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Introduction 

This book is a course in general topology. intended for students in the 
first year of the second cycle (in other words, students in their third univer­
sity year). The course was taught during the first semester of the 1979-80 
academic year (three hours a week of lecture, four hours a week of guided 
work). 

Topology is the study of the notions of limit and continuity and thus is. in 
principle, very ancient. However, we shalllimit ourselves to the origins of the 
theory since the nineteenth century. One of the sources of topology is the 
effort to clarify the theory of real-valued functions of a real variable: uniform 
continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass 
theorem (this work is historically inseparable from the attempts to define 
with precision what the real numbers are). Cauchy was one ofthe pioneers in 
this direction, but the errors that slip into his work prove how hard it was to 
isolate the right concepts. Cantor came along a bit later: his researches into 
trigonometric series led him to study in detail sets of points of R (whence the 
concepts of open set and closed set in R, which in his work are intermingled 
with much subtler concepts). 

The foregoing alone does not justify the very general framework in which 
this course is set. The fact is that the concepts mentioned above have shown 
themselves to be useful for objects other than the real numbers. First of aU, 
since the nineteenth century. for points ofRR. Next. especially in the twentieth 
century, in a good many other sets: the set of lines in a plane, the set of linear 
transformations in a real vector space. the group of rotations, the Lorentz 
group, etc. Then in 'infinite-dimensional' sets: the set of all continuous 
functions, the set of all vector fields, etc. 

Topology divides into 'general topology' (of which this course exposes 
the rudiments) and 'algebraic topology', which is based on general topology 
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but makes use of a lot "f a.lgebra. We cite some tlleorems whose most natural 
proois appeal to algebraic topology: 

(1) let B be a closed ban in K". f a continuous mappiog of B into B: then! 
has a fixed point; 

(2) for every .!C e S2 (the 2-dimensional sphere) let 9(x) be a vcctor tangent to 
S2 at x; suppose that 9(x) depends continuousJy on x; then there exists an 
.to e S2 such that '9lxo) - 0; 

(3) Jet U and V be homeomorphic subsets of R": if U is open in R", then V is 
open in R". 

These theorems cannot be obtained by the methods of this course, but, having 
seeD their statements. some readers will perhaps want to learn something 
about algebraic topology. 

The sign. in the margin pertains to theorems that are especially deep or 
especially useful. The choice of these statements entails a large measure of 
arbitrariness: there obviously exist many little remarks. very easy and con­
stantly used. that are not graced by the sign •. 

The sign * signals a passage that is at the limits of 'the program' (by which I 
mean what has been more or less traditional to teach at this level for some 
years). 

Quite a few of the statements have already been encountered in the First 
cycle. For clarity and coherence ofthe text, it seemed preferable to take them 
up again in detail. 

The English edition differs from the French by various minor improve­
ments and by the addition of a section on normal spaces (Chapter 7, 
Section 6). 



CHAPTER I 

Topological Spaces 

After reviewing in §I certain concepts already known concerning 
metric spaces, we introduce topological spaces in §2. then the simplest 
concepts associated with them. For example. one has an intuitive notion 
of what is a boundary point of a set E (a point that is 'at the edge' of E), 
a point adherent to E (a point that belongs either to E or to its edge), 
and an interior point of E (a point that belongs to E but is not on the 
edge). The precise definitions and the corresponding theorems occupy 
§§4 and 5. Separated topological spaces are introduced in §6; on first 
reading, the student can suppose in what follows that all of the spaces 
considered are separated. 

1.1. Open Sets and Closed Sets in a Metric Space 

1.1.1. Let E be a set. Recall that a metric (or 'distance function') on E is a 
function d, defined on E ')( E, with real values ~ O. satisfying the following 
conditions: 

(i) d(x. y) = 0 - x .. y: 
(ii) d(x, y) = dey, x) for all x. y in E: 

(iii) d(x, z) .s; d(x. y) + d(v.;) for all x, y. : in E ('triangle inequality'). 

(On occasion we shall admit the value + 'x. for a metric: this changes 
almost nothing in what follows.) 

A set equipped with a metric is called a metric space. One knows that the 
preceding axioms imply 

(iv) \d(x, z) - d(x. ,v)\ .s; d(y, z) for all x. JI, Z In E. 
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There is an obvious notion of isomorphism between metric spaces. 
Let E' be a subset of E. Take the restriction to E' x E' of the given distance 

function d on E x E. Then E' becomes a metric space, called a metric sub­
.'tpace of E. 

1.1.2. Examples. The ordinary plane and ordinary space. with the usual 
Euclidean distance, are metric spaces. For x = (Xl> x~, • '" ''(n) ERn and 
Y = (YI' fl, ... , Yn) eRn, set 

d(x, Y) = «XI - YI)~ + ..• + (x. - y.)'Z)I/J. 

One knows that d is a metric on R", and in this way R" becomes a metric space, 
as do all of its subsets. In particular R, equipped with the metric (x, y)_ 
Ix - YI. is a metric space. 

1.1.3. Definition. Let E be a metric space (thus equipped with a metric d). 
A 11 subset of E. One says that A is open if, for each Xo e A, there exists an 
Ii> 0 such that every point x of E satisfying d(xo, x) < Ii belongs to A. 

1.1.4. Example. Let E bea metric space, a e E, p a number ~ 0, A the set orall 
X e E such that dCa, x) < p. Then A is open. For, let Xo e A. Then d(a. xo) < p. 
Set e = p - d(a, xo) > O. If x E E is such that d(xo, x) < e. then 

dCa, x) ~ dCa, xo) + d(xo. x) < dCa, xo) + e = p, 

thus x E A. 
The set A is called the open ball with center a and radius p. If P > 0 then 

a e A; jf p = 0 then A - 0. In the ordinary plane, one says 'disc' rather than 
'ball'. 

1.1.5. In particular. let a, b be real numbers such that a ::s; b. The interval 
(a, bj is nothing more than the open ball in R with center 1(a + b) and radius 
!(b - a). One vermes easily that the intervals ( - 00, a), (a. + 0:::) are open. 
This justifies the expression 'open interval' employed in elementary courses. 

1.1.6. Theorem. Let E be a metric space. 

(i) The subsets 0 and E olE are open. 
(ii) Ever.v union a/open subsets olE is open. 

(iii) Ever).' finite intersection 0/ open subsets of E is open. 

The assertion (i) is immediate. 
Let (A,);&! be 11 family of open subsets of E, and let 

A - U Ai' A' = n A" i.' i&1 

Let us show that A is open. Let Xo e A. There exists i E [ such that Xo e A,. 
Then there exists e > 0 such that the open ball B with cenLer ''((1 and radius 
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G is contained in AI' A fortiori. A :=I .8. Thus A is open. Assuming I is finite. 
let us show that A' is open. Let XI e A'. For every tel, there exists Bi > 0 such 
that the open ball with center .'(\ and radius III is contained in A,. Let I: be the 
smallest of the G/. Then G > O. and the open ball with center .x 1 and radius G IS 

contained in each Ai' hence in A'. Thus A' is open. 

1.1.7. Let us maintain the preceding notations. If I is infinite. n"'1 Ai is not 
always open. For example. in R. the intersection of the open intervals 
(-lin, 1m) for n =- 1.2. 3 ..•. reduces to {Ol, thus is not open. 

1.1.8. Defillition. Let E be a metric space. B a subset of E. One says that B is 
closed if the subset E - B is open. 

1.1.9. Example. Let a e E. p ~ O. B the set ofx e E such thatd(a. x) S; p. Then 
B is closed. For, let .'Co e E - B. Then d(a • . '(u) > p. Set I: - d(a. xo) - p > O. 
If X e E is such that d(xo, x) < G, then 

d(a. x) ~ d(a, xo) - d(xo. x} > dCa, xo) - 6 "" p. 

therefore X e E - B. Thus E - B is open, consequently B is closed. 
The set B is called the closed ball with cenrer a and radius p. One hilS 

a e B. If p == 0 then B = {a}. In the ordinary plane. one says 'disc' rather than 
·ball'. 

1.1.10. In particular. let a. b be real numbers such that a S; b. The interval 
[a, b] is nothing more than the closed ban in R with center !(a + b) and 
radius 1(b - a). One verifies easily that the intervals [a • ... ·XI) and ( - ''Xl, a] 
are closed. This justifies the expression 'closed interval' employed in elemen­
tary courses. One also :sees that an interval of the form [a, b) or (a, b], with 
a < b, is neither open nor closed. 

1.1.11. Theorem. Ler E be a metric space. 

(i) The subsets 0 and E ofE are closed. 
(ii) Er:ery intersection of c/oS£'d subsets of E is closed. 

(iii) Every finite union (if dosed subsets ofE is closed. 

This follows from 1.1.6 by passage to complements. 

1.1.12. Example. Let E be a metric space. a e E, p ~ 0, S the set of all x e E 
such that d(a. x) - p. Then S is closed. For, let A Crespo B) be the open ball 
(resp. closed ball) with center a and radius p. Then E - A is closed. Since 
S - B n (E - A). S is closed by 1.1.l1(ii~. 

The set S is called the sphere wirh cenrE'r a and radill.~ p. If p - 0 then 
S - {Q}. 

[n R. a sphere of radius> 0 reduces to a set with 2 points. In the ordinary 
plane, one says 'circle' rather than 'sphere', 
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1.1.13. Let E be a metric space. On comparing 1.1.6 and 1.1.11, one sees that 
E (and similarly 0) is a subset that is both open and closed. This is exceptional: 
in the most common examples of metric spaces. it is rare that a subset is both 
open and closed (cf. Chapter X). 

On the other hand. although it is easy to exhibit examples of subsets that 
are either open or closed, it should be understood that a subset of E chosen 
'at random' is in general neither open nor closed. For example, the subset Q 
of R is neither open nor closed. 

1.1.14. Theorem. Let E be a set, d and d' metrics on E. Suppose there exist 
constants c. c' > 0 such that 

c d(x, y') oS d'(x,)I) S c' d(x, y) 

for all x, Y E E. The open subsets of E are the same for d and d'. 

Let A be a subset of E that is open for d. Let Xo E A. There exists an s > 0 
such that every point x of E satisfying d(xo. x) < £ belongs to A. If x E E 
satisfies d'(xo. x) < cs. then d(;'Co, x) < to therefore x EA. This proves that A 
is open ford'. Finally, one can interchange the roles of d and d' in the foregoing. 

1.1.15. However (with the preceding notations) the balls and spheres of E 
are in general different for d and d'. For example, for x = ('~1' .... x.) E R" 
or C". and .v = (YI' .... Y.) E R" or C-. set 

d(x.y)" (ix i - YIIZ + .. ,+ Ix. - y.ll)I/:, 

d'(x, y) - IXI - ytl + ... + Ix. - .v.l. 

d"{x,y) = sup(lxl - Y11., •• , Ix" - .1'. i). 

One knows that d, d', d" satisfy the conditions of 1.1.14, hence define the same 
open st!bsets of R". However, for d" the open ball with center (x I, .••. xn) and 
radius p is an 'open slab with center (XI> •• ,. x.)': 

(XI -P"~I + p) X (X2 - p, Xz + p) X .1' X (x. - p,.~. + pl. 

1.2. Topological Spaces 

1.2.1. Definition. One calls topological space a set E equipped with a family 
(!) of subsets of E (called the open sets of E) satisfying the following conditions: 

(i) the subsets 0 and E of E are open: 
(ii) every union of open subsets of E is open: 
(iii) every finite intersection of open subsets of E is open. 
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One also says that Ci defines a topology on E. 

1.2.2. For example, a metric space is automatically a topological space, 
thanks to 1.1.3 and 1.1.6; this structure of topological space docs not change 
if one replaces the metric d of E by a metric ef related to d by the condition 
of 1.1.14. 

In particular, every subset of the ordinary plane. or of ordinary space. or of 
RR, is a topological space. For a large part of the course, these are the only 
interesting examples we shall have at our disposal: but they already exhibit a 
host of phenomena. 

1.2.3. Let E be a set. In gene ral there is more than one way of choosi ng in E a 
family ~ of su bsets satisfying the conditions 1.2.1. In other words, a set E may 
be equipped with more than one structure of topological space. For example. 
if one takes for ~ the family of all subsets ofE, the cond itions 1.2.1 are satisfied, 
thus E becomes a topological space called a discrete space (one also says that 
the topology of E is discrete). For another example. if one takes for ~ the 
family consisting only of 0 and E. the conditions 1.2.1 arc satisfied, thus E 
becomes a topological space called a coarse space (or 'indiscrete space'); one 
also says that E carries the coarsest topology (or 'indiscrete topology'). If 
~1 and ~z are topologies on E, ~l is said to be finer than r z (and ;Fz 
coarser than 9',) if every open set for ~z is open for r ,; this is an order 
relation among topologies. Every topology OD E is finer than the coarsest 
topology, and coarser than the discrete topology. 

1.2.4. For example on Rft one can consider, in addition to the topology 
defined in 1.2.2, the discrete topology and the coarsest topology (and, to be 
sure, many other topologies). However, it is the topology defined in 1.2.2 that 
is by Car the most interesting. Whenever we speak ofR" as a topological space 
without further specification, it is always the topology defined in 1.22 that is 
understood. 

1.1.5. DefInItion. Let E be a topological space, A a subset of E. One says that 
A is closed if the subset E - A is open. 

1.2.6. Theorem. Let E be a ropological space. 

(i) The subsets 0 and E ofE are dosed. 
(ii) Every intersection of closed subsets ofE is closed. 

(iii) Every finite union of closed subsets of E is closed. 

This follows from 1.2.1 by passage to complements. 
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1.3. Neighborhoods 

1.3.1. Deftnjtion. Let E be a topological space and let :( e E. A subset V of E 
is called a neighborhood of;c in E if there exists an open subset U of E such 
that .'tC e lJ c V. 

According to this definition, an open nel?Jhborhood of x is nothing more 
than an open subset of E that contains .'tC. 

1.3.1. Example. Let E be a metric space, x e E. VeE. The following con­
ditions arc equivalent: 

(j) V is a neighborhood of x; 

(ii) there exists an open ball with center x and radius > 0 that is contained 
in V. 

(ii) -li). This is clear since the ball considered in (ii) is open and contains x. 
(if- (ii). ICV is a neighborhood ofx. there exists an open subset U ofEsuch 

that x e U c V. By 1.1.3, there exists s > 0 such that the open ball with center 
x al,ld radius £ is contained in U, thus afortiori contained in V. 

" 1.3.3. Example. [n R, consider the subset A = [0, 1].l,..et x e R.lfO < .'tC < 1 
then A is a neighborhood of x. If x ~ 1 or x S 0, A is not a nclghborhood 
of x. 

1.3.4. Theorem. Let E be a topological space. and let x e E. 
(i) If V and V' are neighborhoods of x. then V ,.., V' is a neighborhood of x. 

(ii) If V is a neighborhood o/x, and W Is a subset of E containing V. then W is a 
lIeighborhood ofx. 

Let V. V; be neighborhoods of :c. There exist open subsets U. U' of E such 
that .'tC E U C V. x e U' c: V'.-Then 

.It e U n U' c: V 1""1 V', 

and U 1""1 U' is open by 1.2.l(iit). therefore V 1""1 V' is a neighborhood of x. 
The assertion (ii) is obvious. 
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.. 1.3.5. Theorem. Let E be a topol()gical space, A a subset of E. Thefollowing 
conditions are equit'alem: 

(i) A is open; 
(ii) A is a neighborhood of each of its points. 

(i) => (ii). Suppose A is open. Let x E A. Then .'1: E A c:: A. thus A is a 
neighborhood of x, 

(ii) => (i). Suppose condition (ii) is satisfied. For every x E A, there exists an 
open subset Bx of E such that x E Bz c:: A. Let A' - UnA B ... Then A' is 
open by 1.2.l(ii), A' c:: A since B .. c:: A for all x E A, and A' ~ A since each 
point x of A belongs to B .. , hence to A'. Thus A is open. 

1.3.6. Definition. Let E be a topological space, and Jet x E E. One calls 
fundamental system oflleighborhoods of x any family (Vi)IE! of neighborhoods 
of x, such that every neighborhood of x contains one of the V /. 

1.3.7. Examples. (a) Suppose E is a metric space. x E E. For 11 = 1. 2. 3, , .. , 
let BN be the open ball with center x and radius lin. Then the sequence 
(B I , Bz, ... ) is a fundamental system of neighborhoods of :\:. For. if V is a 
neighborhood of x. there exists an e > 0 such that V contains the open ball B 
with center x and radius G (1.3.2). Let rI be a positive integer such that lin S; e. 
Then B. c:: B -= v. 

(b) Let us keep the same notations, and let B~ be the closed ball with 
center x and radius lIn. Then (B'» B2 •... ) is a fundamental system of neighbor­
hoods of x. For. B. c: B~ c: B. -1' thus our assertion follows from (a). 

(c) Let E be a topological space, and let x E E. The set of all neighborhoods 
of:< is a fundamental system of neighborhoods ofx. The set of all open neigh­
borhoods of x is a fundamental system of neighborhoods of x (cr. 1.3.1). 

1.3.S. Let E be a topological space, and let x E E. If one knows a fundamental 
system (V /)Ie1 of neighborhoods of x, then one knows all the neighborhoods of 
x. For. let VeE; in order that V be a neighborhood of x. it is necessary and 
sufficient that V contain one of the Vj (this follows from 1.3.4{ii) and 1.3.6). 

1.4. Interior, Exterior, Boundary 

1.4.1. Definition. Let E be a topological space, AcE, and x EO E. One says 
that x is interior to A if A is a neighborhood of x in E, in other words if there 
exists an open subset ofEcontained in A and containingx. Th~ set of all points 
interior to A is called the interior of A and is often denoted A. 

1.4.2. If x is interior to A. then of course x E 1\. But the converse is not true. 
For example, if E - R and A = [0, 1], then A = (0, 1): the points 0 and I 
belong to A but are not interior to A. If E = R and A = Z, then A - 0. 
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° 1.4.3. Theorem. Let E be a topologtcal space, A a subset olE. Then A is the 
largest open set contained in A. 

Let U be an open subset of E contained in A. If x e U then A is a neigh bor­
hood of x, therefore x IS A. Thus U c: A. 

It is clear that A c: A. Let us show that A is open. By 1.3.5, it suffices to 
prove that it x e ..t, then A is a neighborhood of x. Now, there exists an open 
subset B ofE such that x e B c: A. Then B c: A by the first part of the proof, 
thus A is a neighborhood of x. 

1.4.4. Theorem. Let E be a topological space, A a subset 0/ E. The following 
conditions are equivalent: 

(i) A is open; 
(ii) A = A. 

(i) :::. (ii).1f A is open, t hen the largest open set contained in A is A. therefore 
A = A by 1.4.3. 

(ii) ==- (i). If A = A. then A is open because A is open (1.4.3). 

1.4.5. Theorem. Let E be a topological space. A and B subsets olE. Then 
(A n 8)° = A n .A. 

The set (A n B)O is open (1.4.3) and is contained in A n B. hence a/ortiori 
in A. Consequently (A n B)O c: A ° by \.4.3. Similarly, (A n B)O c: BO, 
therefore (A n B)O c: A ° n BO. 

One has A c: A. A c: B.. therefore A nBc: A n B. But A n fJ is open 
(1.2.1 (iii), therefore A n fJ c: (A n B)O-by 1.4.3. 

1.4.6. However, in general (A. u B)O :F- A u .A. For example. take E = R. 
A .; [0, 1], B a [1,2]. Then 

A u B - [0, 2], A - (0, 1), A = (I. 2), 

(A u Bt = (0, 2) ~ (0, 1) u (1. 2). 

1.4.7. Definition. Let E be a topological space, A a subset ofE.:( a point ofE. 
One says that x is exterior to A ifit is interior to E - A, in other words if there 
exists an open subset of E disjoint from A and containing x. The set of all 
exterior points of A is called the exterior 0/ A: it is the interior of E - A. 
Interchanging A and E - A. we see that the exterior of E - A is the interior 
of A. 

1.4.8. Let E be a topological space, A c: E. Al the interior of A. A2 the 
exterior of A. The sets AI and A2 are disjoint. Let A, - E - (A. u A2). Then 
A h Az. A3 form a partition of E. One says that A, is the boundary of A. It is a 
closed set. since A I v A2 is open. If one interchanges A and E - A. then A I 
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and Al are interchanged, therefore A.J Is unchanged: a set and rts complement 
have the same boundary. 

1.4.9. Example. Let A be the subset [0, 1) of R. The interior of A is (0. I), the 
exterior of A is ( -00. 0) u (1, + x), therefore the boundary of A is {O} \.J {1}. 

1.5. Closure 

1.5. t. Deftnidoa. Let E be a topological space, A c: E and x e E. One says 
that x is adherent to A ifevery neighborhood ofx in E intersects A. The set of 
all points adherent to A is called the do.sure (or 'adherence) of .A., and is 
denoted A. . 

1.5.2. If x e A then of course x is adherent to A; but the converse is not true. 
For example. if E .. R and A - (0. 1). then A ... [0. 1]. 

1.5.3. Theorem. Let E be a topological.ypace, A a subset ofE. Then A is the 
C'omplemenr of the exterior qf A. 

Let x e E. One has the follow1ng equi valences: 

x f A - there exists a neighborhood of x disjoint from A 
_ there exists a neighborhood of x contained io E - A 
_ x is interior to E - A 
_ x belongs to the exterior of A. 

whence the theorem. 

1.5.4. Theorem. Let E be a topologiC'al space, A c: E, B c: E. 

(i) A is the smallest dosed subset olE containing A: 
(ii) A is clo •• ed - A - A; 

(iii) (A u Sf .. A u B. 

In view of 1.5.3, this follows from 1.4.3, 1.4.4, 1.4.5 by passage to comple. 
ments. For example. let us prove (i) in detail. The exterior of A is (E - AY 
(1.4.7), that is to say, the largest open set contained in E - A (L.4.3). Therefore 
its complement A (1.5.3) is closed and contains A. If F is a closed subset of E 
containing A, then E - F is open and is contained in E - A, therefore 
E - F c: (E - A)O - E - A, thus F :;) A. 

1.5.5. Taking up again the notations of 1.4.8. Theorem 1.5.3 shows that 
A = AI U A3 • (E - Af .. Az U AJ. Therefore the boundary AJ is the 
intersection ot' the closures A and (E - Af. 
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1.5.6. Theorem. Ln E be a ropoloyical spa"f!. A u subset olE. The follo ..... ing 
cunditions are equiL'n/em; 

(0 every l10llempty open subset olE illt(!lw(!c:t,~ A~ 
(ii) the e:l:tt'rior (llA is empty; 

(iii) the closure of A is all of' E. 

Condition (i) means that the only open set contained in E - A is 0. thus. 
by 1.4.3. that the interior of E - A. is empty .. This proves (i) -- (ii), The 
equivalence (ii) <0 (iii) follows from 1.5,3. 

1.5.7. DefIDldoa. A subset A of E satisfying the conditions 1.S.6 is said to be 
dense in E. 

1.5.S. Example. Q is dense in R: for. every nonempty open subset of R 
contains a nonempty open interva~ hence contains rational numbers. The 
complement R - Q of Q in R is also dense in R, because every nonempty 
open interval contains irrational numbers. 

1.5.9. Theorem. Let A he a nonempry subset o/R that is bOtmded aboue. x Its 
.supremum. Theil .'C i.' the largest elemt'nt a/A. 

Let V be a neighborhood of.'C in R. The~ exists an open subset Uof R such 
that .'C e U c V. Then there exists 8 > 0 such that (x - e,.'C + e) c: U. By 
the definition of supremum (least upper bound), there exists yeA such that 
,'C - Il < Y S x. Then y e U c V. therefore V ("\ A ¢ 0. Thus x is adherent 
to A, _ 

Let x' e A. If x' > x, set e - x' - .'C > O. Then (x' - e. x' + e) is a neigh. 
borhood of x'. therefore intersects A. Let yeA ("\ (x' - .. x' + e), Since 
y > »' - e = ,'C. X is not an upper bound for A, which is absurd. Thus x' S; x, 
This proves that x is the largest element of A. 

1.6. Separated Topological Spaces 

1.6.1. DeftDltIoD. A topological space E is said to be separated (or to be a 
Hausdorft'space) if any two distinct points ofE admit disjoint neighborhoods. 

1.6.2. Examples. (a) A metric space E is separated. For, let .'C, .v e E with 
.~ ... y. Set 8 - d(x, y) > O. Then the open balls V. W with centers .'C,.Y and 
radius e;2 are disjoint (because if: e V ("\ W then d(x. :) < Bl2 and dry. :) < 
e/2. therefore d(x, y) < e. which is absurd), 

(b) A discrete topological space E is separated. For, if :c. j' e E and x ;* ,V. 
then {.~} and {y} are disjoint open neighborhoods of x. y. 
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(c) A coarse topological space E is not separated (if it contains more than 
one point). For. let .'t, ye E with x :;I: ;1: Let V, W be Ileighborhoods of x, y. 
Then V contains an open subset U of E containing x, whence U .. E and 
Q !ortrbri V-E. Similarly W ... E. Thus V f"I W -::p 0. 

1.6.3. Theorem. Lei E be a separared l(lpological space. x E E. Then {xl is 
closed. 

Let j' e E - [:c}. Then j' #- x, therefore there exist neighborhoods V. W 
of .t, y that are disjoint. In particular, WeE - {xl. therefore E - {:,} is a 
neighborhood of y. Thus E - {xl is a neighborhood of each of its points. 

,consequently is open (1.3.5). Therefore {xl is closed. 



CHAPTER II 

Limits. Continuity 

A.s mentioned in the introduction, the limit concept is one of those at the 
origin of topology. The student already knows several aspects of this 
concept: limit of a sequencc of points in a lDCtric space, limit of a 
functton at a point, etc. To avoid a proliferation of statements later on. 
we present in §2 a framework (limit along a 'filter base') that encom­
passes all of the uset'ul aspects oflimits. It doesn't hurt to understand this 
gQneral de1inition. but it is much morc important to be familiar With a 
host of special cases. 

The definition of limit of course brings with it that of continuity of 
fUDctions: sec §§3 and 4. Two topological spaces are said to be homeo­
morphic (§5) ifthere exists a bijection of one onto the other which, along 
with the inverse mapping, is continuous; two such spaces have the 
same topological properties, and one could almost consider them to be 
the same topologicaJ space. (For example, a circle and a square are 
homeomorphic: a circle and a line are not homeomorphic; and, what is 
perhaps more surprising, a line and a circle with a point omitted arc 
homeomorphic.) A reasonable goal oftopology would be to classify all 
topological spaces up to homeomorphism, but this seems to be out of 
reach al the present time. 

One knows very well that a sequence does not always have a limit. 
As a substitute for limit. we introduce in §6 the concept of adherence 
value. 
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2.1. Filters 

%.l.I. DeftDltioD. Let X be a set. Afilteron X isaset oF of non empty subsets of 
X satisfying the following conditions: 

(i) if A c.:? and BE -F. then A 1"'\ Be.F (in particular. A ("'I B ;/: 0); 
(ii) if A e!ll and if A' is a subset of X containing A. then A' e :F. 

One callsjilter base on X a set ~ of nonempty subsets of X satisfying the 
following condition: 

(n if A E J8 and BE J, there exists C e JI such that C cAn B (in particular . 
• 4. n, B :jIt 0). 

A filter is a filter base. but the converse is not true. If til is a filter base on X. 
one sees immediately that the set of subsets of X that contain an element of 1M 
is a filter. 

2.1.2. Ex.ample. Let X be a topological space. Xo e X. The set"'" of neighbor. 
Doods of Xo is a tUter on X (1.3.4). If 1r is a fundamental system of neigh· 
borhoods of xo, then '/I' is a filter base on X. 

2.1.3. Example. Let -'=0 e R. The set of intervals (xo - &. .'1:0 + e). where 8 > O. 
is a tilter base on R. This is. moreover. a special case of 2.1.2. But here are 
some examples of filter bases on R that are not special cases of 2.1.2: 

the set of [xo. Xo + e). where e > 0; 

the set of (.:co, Xo + e), where II> 0; 

the set of (xo - e • .'1:0]. where 4>0; 

the set of (xo - 8. ''(0), where E > 0: 

the set of (:<0 - e, xo) u (xo. Xo + el. where 1\ > O. 

1.1.4. Example. The set of intervals [a. + oc), where a e R. is a filter base on 
R. Similarly for the set of (- Xl. a]. 

1.1.5. Exa.pIe. On N, the sel of subsets {I'I, n .. I. n +- 2. ... J, where 
1'1 e N. is a filter base. 

1.1.6. Example. Let X be a topological space. Y c X. and .'1:0 E Y. The set of 
subsets oJf Y of the form Y f'\ V, where V is a neighborhood of ''(0 in X. is a 
filter on Y (notably Y r". V 7* 0 because ;'(0 e Y). If Y = X. one recovers 
2.1.2. 
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2.2. Limits Along a Filter Base 

1.2.1. Deftaltioa. Let X be a set equipped with a filter base 91, E a topological 
space, I a mapping of X into E, I a point of E. One says that 1'tends to 1 along 
II if the following condition is satisfied: 

for every neighborhood V of I in E, there exists Be dl such that 
I(B) c V. 

If one knows a fundamental system (V,) of neighborhoods of I in E, it 
suffices to verify this condition for the V, (for, every neighborhood of I 
contains a V,). 

1.1.2. Example. Suppose X - N, with the filter base dl considered in 2.1.5. 
A mapping of N into E is nothing more than a sequence (ao. alJ az, ... ) of 
points of E. To say that this sequence tends to 1 along dl means: 

for every neighborhood V of I in E, there exists a positive integer 
N such that /I ~ N .. Q. e V. 

One then writes lim._ oa Q. = I. 
If, for examp~ E is a metric space, this condition can be interpreted as 

ro1\ows: 
for every II > 0, there exists N such that /I Oi: N .. d(an, I) s e. 



2.2. Limits Along a Filler Base 15 

One recognizes the classical definUion of the limit of a sequence of points 
in a metric space (for example. or a sequence of real numbers). 

l.l.3. Example. Let X and E be topological spaces, f a mapping of X 
into E. Xo e X,I e E. Take for 51 the filter of neighborhoods of Xo in X (2.1.2). 
To say that f tends to I along ~ means: 

ror every neighborhood V of I in E. there exists a neighborhood 
W of Xo in X such that x e W =-f(x) e V. 

One then writes 1im:r~"o f(x) = I. 
If X = E - R one recovers the definition of the limit of a real-valued 

function of a real variable at a point. 

2.l.4. Examples. One knows that the concept of limlt of a real-valued func­
tion of a real variable admits many variants. These variants fit into the general 
framework of 2.2.1. For example. if X = E = R and if one takes the filter 
bases considered in 2.1.3. 2.1.4. one recovers the following known concepts: 

lim f(x) 
~"xn,~~.xll 

lim f(x) 
,x"xo • .x>zo 

lim f(x) 
.x-JCO.~:5iZO 

lim f(x) 
,E"'~o,X<.xn 

lim f(x) 
"~xo."''''''' 

lim f(x) 
.x"'~Q,) 

lim f(x). 
,,- -II) 

2.2.5. Example. Let X and E be topological spaces, Y c:: X, Xc e Y, 
f a mapping of Y into E, leE. Take for .11 the 6Jter defined in 2.1.6. To say 
that/tends to I along 1iI means: 

for every neighborhood V of I in E. there exists a neighborhood 
W of Xo in X such that .~ e Y f'\ W => f(x)e V. 

One then writes lim:r-"'o.nY f(x) - I. 
This example generalizes 2.2.3. On taking X = E - R. and for Y various 

sub!lcts of R. one recovers the first five examples of 2.2.4. 
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2.2.6. 1beorem. Let X, E be topologIcal spaces, f a mapping of X -Into E, 
Xo E X, leE, (Wi)'a. afimdamental system of neighborhoods ofxo in X, (Vj»)tiJ 
a fimdamental system of neighborhoods of I in E. The following conditions are 
equtvalem: 

(i) lim .. _ x• f(x) ... I; 
(ii) for every j E J, there exists i E I such that feW IJ C v,. 

Suppose condition (i) is satisfied. Let j E J. There exists a neighborhood W 
of Xo in X such that f(W) c VJ' Next. there exists i E I such that W, c W. 
Then f(Wl) c Vj' -

Suppose condition (ii) is satisfied. Let V be a neighborhood of I in E. There 
exists j E J such that V) c V. Then there exists i E I such that f(W1) ::: Vi' 
therefore fCW,) c v. 

2.2.7. CoroUary. Let X, E be metric spaces, f a mapping of X Into E, Xo E X, 
lEE. The following conditions are equivalent: 

(i) lim"_,,o f(x) = I; 
(ii) for every 8 > 0, there exists" > 0 such chat 

X E X, d(x. xo) S;" ~ d(f(x), I) S; 8. 

For, the closed balls with center Xo Crespo I) and radius > 0 in X (resp. E) 
form a fundamental system of neighborhoods of Xo (resp. I) in X (resp. E). 

2.2.8. Tbeorem. Let X be a set equipped with a jilter base 91, E a separated 
topological space, f a mapping of X inco E.If f admits a limit along 91. this limit 
is Uflique. 

Let I, I' be distinct limits of f along 11. Since E is separated, there exist dis­
joint neighborhoods V. V' of I, l' in E. There exist B. B' E 11 such that feB) c v. 
feB') c V'. Next. there exists B" E 11 such that B" c B f"I B'. Then f(B") c 
V f"I v'. Since B" :i: 0, one has f(B") :i: 0, therefore V f"I V' :i: 0, which is 
absurd. 

2.2.9. However, if E is not separated, f may admit more than one limit along 
II. For example, if E is a coarse space, one verifies easily that every point of E 
is a limit of f along rJI. The use of the limit concept in non-separated spaces is 
risky; in this course, we shall scarcely speak of limits except for separated 
spaces. Under these qualifications, Theorem 2.2.8 permits one to speak of 
the limit (if it exists! the rewier already knows many examples of mappings 
that have no limit at all). 
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1.1.10. 1'IIeareal (Local Character of the Limit). Let X be a set equipped with a 
jilter base ii, E a topologtcal space, f a mapping of X Into E, leE. Let X' ell 
and let f' be the restrictIon 0/ f to X'. The sets B f"I X', where Bell, form a 
jilter base dI' on x'. The/ollowlng conilttlon3 are equtvalent: 

(i) f tends to I along II; 
(ii) f' tends to I along •. 

Suppose thatftends to I along II. Let V be a neighborhood of I in E. There 
exists B ellsuchthatf(B) c: V. Thenf'(B f"I X') c: V and B f"I X' e', thus 
f' tends to I along •. 

Suppose that f' tends to I along •. Let V be a neighborhood of I in E. 
There exists B' e. such that f'(B') c: V. But B' is of the form B f"I X' with 
Bell. Since X' eil. there exists Bt e II such that Bt c: B f"I X'. Thenf(B t ) c: 
/,(B') c: V. thus f tends to I along II. 

2.3. Mappings Continuous at a Point 

1.3.1. De8aIdaa. Let X and Y be topological spaces, f a mapping of X into Y, 
and Xo e X. One says that f is continuow at Xo if lim.,_ ... f(x) - f(xo), in 
other words (2.2.3) if the following condition is satisfied: 

f 

for every neighborhood W ofJ(xo) in Y. there exists a neighbor­
hood V of Xo in X such that f(V) c: W. 

2.3.2. Exuaple. Let X and Y be metric spaces. f a mappIng of X into Y, and 
Xo e X. By 2.2.7. to say that / is continuous at Xo means: 

for every £ > O. there exists " > 0 such that 
x e X and d(x, xo) ~" ~ d(f(x). f(xo» ~ 6. 

We recognize here a classical definition. For example, if X - Y - R, one 
recovers the continuity of a real-valued function of a real variable at a point. 
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2.3.3. Theorem. Lee T be a Sltt equipped with afilter base eI, X and Y topological 
spaces, I E X, f" mapptl1(J of T illto X that teMs to I along II, and g " map­
pll1(J orX inro Y that is continuous at I. Then g" f tends to gel) along .aI. 

Let W be a neighborhood of g(l) in Y. There exists a neighborhood V of I 
in X such that g(V) c W. Next. there exists aBE!f such thatfCB) c V. Then 
(g ... f)(B) c g(V) c W. whence the theorem. 

2.3.4. CoroUary. Let T, X. Y be topological spaces, f: T - X and g: X - Y 
mappings. and to e T. Ilf is conttnuous at co, and g is continunus at f(co), then 
9 ~ f is comintlOus at r o. 

One applies :!.3.3 on taking for 1M the filter of neighborhoods of to in T. 
and I = J(to). Theng: ftends to g(f(to»alongJ1l. that is,9 CI fiscontinuous 
at t~ 

.. 
2.4. Continuous Mappings 

Z.4.1. DefiDltioa. Let X and Y betopolog.icaJ spaces,j' a mapping of X into Y. 
One says that f is continuous on X if f is continuous at every point of X. The 
set of continuous mappings of X into Y is denoted <jf{X, V). 

Z.4.2. Examples. This notion of continuity is well known for real-valued 
tunctions of a real variable, and more generally for mappings of one metric 
space into another. 

Z.4.3. 11aeorem. Let X, Y. Z be topological space.,. l' € ~x. Y) (1M g E 

"ICY. Z). Then 9 .. f e 1'(X. Z). 

This follows at once Crom 2.3.4. 
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.. 2.4.4. Theorem. Let X and Y be topological spaces, J a Irrappin~1 0/ X into Y. 
The folloWing conditions .lre t!quivalenr: 

Ii) l is continuous: 
(ii) the inverse image under fa/every open subset of Y is lin open subset oIX: 
(iii) rite int"erse image under f of every closed subset oj Y IS a dosed subset of X; 
liv) for every $ubset A of x. leA) c teA). 

(i) =- (iv). Suppose f is contmuous. Let A c X and Xo eA. Let W be a 
neighborhood of f(xo) in Y. Since r is continuous at xo, there exists a 
neighborhood V of Xo in X such that f(V) c:: W. Since ."Co Eo A. V " A # 0. 
Since f(V Ii A) c W f"' leA), one sees that W .~, f(A) # 0. This being true 
for every neIghborhood W off(xo), one has/(.,o) E f(A). Thusf(A) c f(A). 

(iV) => (iii). Suppose condition (iv) is satisfied. Let Y' be a closed subset ofY 
and let X' = r ley). Then f(X') c Y·. therefore leX') Co Y' (1.5.4). (f 
x E~' then f(x) E feX') by condition (iv), therefore f(x.) E Y' and so x EX'. 

Thus X' = -,c'. which proves that X' is closed. 
(iii) => (ii). Suppose condition (iii) is satisfied. Let Y' be an npen subset ofY. 

Then Y - Y' is closed, therefore/-I(y - Y') is c1o~ed. But f·l(y - Y') = 
X - r I(y'). Therefore f - l(y') is open. 

(ii) => (i). Suppose condition (ii) IS satislied. Let Xo E X; let us prove that I 
is continuous at Xo. Let W be a neighborhood of f{Xo) in Y. There exists an 
open subset Y' of Y such that f(xo) E Y' c W. Let X' = I-l(y). Then X' is 
open by condition Oi). and Xo EX'. thus X' is a neighborhood of.'\o. Since 
I(X') c Y' c W. this proves the continuity of f at xo. 

2.4.5. Example. Let (/. b be numbers > O. One knows that the mapping 
(x. v) 1-+ x~.'al + Y~ibl - 1 of RZ into R is continuous. On the other hand. 
[0. + X:) is a closed subset of R. Therefore the set of (x, y) E R2 such that 
X"h1 2 -I- \,2 !bl - I ~ 0 is closed in R2. Similarly. the set of (x. y) e RZ such 
that .'(2/a:' ... .1'2. 'b" - t = 0 (an ellipse) is closed in R2. etc. 

2.4.6. Mistake to Avoid. There is a risk of confusing conditions (ii) and (jii) 
of 2.4.4 with the following conditions: 

(ii') the direct image of every open subset of X is an open subset of Y: 
(iii') the direct image of every closed subset of X is a closed subset of Y. 

Mappipgs satlsfymg (ii·) Crespo (iii'» are called open mappings (resp. 
closed mappings). There ex.ist continuous mappings that are neither open 
nor closed. open mappmgs that are neither continuous nor closed, and closed 
mappings that are neither continuous nor open. 

2.4.7. Let YJo y~ be two topologies on a set E. Denote by E\, El the set E 
equipped with the topologles:T1• Y l . To say that Y 1 is finerthtm Y: means, by 
2.4.4(ii), that the identity mapping of E\ into E2 is continuous. 
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2.S. Homeomorphisms 

1.5.1. TheorelD. Let X and Y be topological spaces, / a bijective mapping o/X 
onto Y. The/ollowing conditions are equivalent: 

(i) / and /-1 Ql'e continuous; 
(ii) in order that a subset o/X be open, it Is necessar.v and ~1lfficient that its 

image in Y be open; 
(iii) in order that a subset o/X be closed, it is necessary and sufficient that its 

image in Y be closed. . 

This follows at once from 2.4.4. 

2.5.2. DefIaIdon. A mapping/ of X into Y that satisfies the conditions of 2.5.1 
is called a bicontinuous mapping of X onto Y, or a homeomorphism of X onto Y. 
(By 2.5.J(ii), this is the natural concept of isomorphism for the structure of 
topological space.) 

2.5.3. It is clear that the inverse mapping of a homeomorphism is a homeo­
morphism. By 2.4.3, the composite of two homeomorphisms is a homeo­
morphism. 

2.5.4. Let X and Y be topologIcal spaces. If there exists a homeomorphism of 
X onto Y, then X and Yare said to be homeomorphic. By virtue of 2.5.3. this 
is an equivalence relation among topological spaces. If X and Y are homeo­
morphic. the open set structure is the same in X and Y; since all topological 
properties are defined on the basis of open sets, X and Y will have the same 
topological properties; X and Y are aJmost the 'same' topological space. 
One of the goals of topology (not the only one, far from it)consists in recogniz­
inlt' whether or not two given spaces are homeomorphic, and classifying 
topological spaces up to homeomorphism; this goal is far from being attained 
at the present time. 

2.5.5. Examples. All nonempty open intervals in R are homeomorphic. For, if 
the open intervals (I and 12 are bounded, there exists a homothety or a 
translation / tbat transforms (I into (2, and / is obviously bicontinuous. 
Similarly if II and 12 are of the form (a, +;:c) or (- 00, a). Thus. it remains to 
compare the intervals (0, 1), (0, + 00) and ( -..x;, + 00). Now, the mapping 
x-tan(2t/2)x of (0,1) into (0. +00) is bijective and continuous, and the 
inverse mapping x _ (2/n)Arctan x is continuous; thererore (0, 1) and 
(0, + 00) are homeomorphic. Similarly, the mapping x- tan(7t/2)x of( -I. 1) 
into ( - 'X), + 'Xl) is a homeomorphism. 

The intervals (0, 1) and [0, 1] are nor homeomorphic (cf. 4.2.8). 

1.5.6. ExUlple. A circle and a square in RZ are homeomorphic (via a 
translation followed by a central projection). 
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2.S.7. Example: Stereographic ProJe~tton. Let Sft be the set of 

X =(XhXl •••• ,x.+I)eR· .. 1 

such that xi + ...... X~.I = 1 ('n·'dimenslonal sphere'). Let 

a = (0. O .. ~ ,,0. 1) e S •. 

21 

Let us identify a' with the set of (XI. ~ ••• Xft. 0) E an• l . We are going to 
define a homeomorphism of 5. - {a} onto RO. 

Let x = (:<1>"" X.+ I) eS. - {al. The line Din R·" I joining a and x is 
the set of points of the form 

(),xl> •••• ),x,l> 1 + ;l.(X.-1 - 1») 

with .t e R. This point is in R" when I + .t(.t ... 1 - t) = 0, that is. when 
,t = (I - x .... I) - 1 (X ..... I ~ 1 because x :F a). Thus D ,... a" reduces to the 
point I(x) with coordinates 

(1) 
• XI 

XI = . 
1 - .'1: ... 1 

I Xs . x. , 0 
X2 = 1 .•. ~ .• X. = 'I--'-'-=-' x .... & = . 

- X ... 1 - x"+ 1 

We have thus defined a mapping I of 5" - {a} into a". Given x' = 
(X'II ~" • x~, 0) in R". there exists one and only one point 

X = (."(I ••.•• ,x.+I)eS. - {a} 

such that I(x) == ~. For, the solution of (1) yields the condition~ 

."(, = x;(l - X.+ I) for 1 S; i S; n • 

• 
L:<j2(1 - x •• 1)% + X~.I = 1. 

I-I 

then. after dividing out the nonzero factor I - X._ I> 

("'::12 + ... T x~~)(t - :e.;. I) - I - X._ l = 0, 
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whence 

(2) 

Thus / is a bijection of S. - {a} onto R". The formulas (\) and (2) prove, 
moreover, that / and 1- I are continuous. 

TI1e homeomorphism 1 is caJled srereographic projection of Sft - {a} 
onto R", 

2.6. Adherence Values Along a Filter Base 

2.6.1. Deflaldon. Let X be a set equipped with a filter basedl. E a topologicaJ 
space, 1 a mapping of X into E. and I a point of E. One says that I is an ad­
herence I)Q/ue 011 along fJI if the following condition is satisfied: 

for every neighborhood V of I in E and for every Be 31, 
I(B) intersects V. 

If one knows a fundamental system of neighborhoods (VI) of I in E. it 
suffices to verify this condition for the VI' 

2.6.2. Example. Suppose in 2.6.1 that X = .~. with the filter base 2.1.5. We 
are thus considering a sequence (ao. al'" .) of points of E. To say that I is an 
ad~rence value of the sequence means: 

for every neighborhood V of I in E, and every positive integer N, 
there exists n ~ N such that a~ e V, 

It for example. E is a metric space, this condition may be rewritten as 
follows: 

for every B > 0, and every positive integer N, there exists n ~ N 
such that dCa., n :S f:. 

For example, taking E - R. consider the sequence of numbers 

i. 1 - 1. t. \ -!. t. J - t· .• " 
The verification that the adherence values of this sequence are 0 and 1 is left 
as an exercise. 
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2.6.3. Example. Let X and E be topological spaces. Y c X. Xo E Y . .r a 
mapping of Y into E. and lEE. Take for JI the filter 2.1.6. To sa.f that I is an 
adherence value of f along 21 means: 

for every neighborhood V of I in E, and every neighborhood W 
of Xo in X. f(W 1"1 Y) intersects V. 

One then says that I is an adherence value of f as x tends to Xo while 
remaining in Y. 

--~--~-+~-+++~~~-+--~----~x 

-1 

For example, take X = E ... R. Y = R - {O}, Xo = 0, and f(;'C) = 
sin(l/x) for x E R - {O}. It is left as an exercise to show that the adher­
ence values of f. as x tends to 0 through values i= 0, are all the numbers in 
[-I.IJ. 

From the examples 26.2. 2.6.3, one recognizes that the concept of ad­
herence value is a kind of substitute for the limit concept. This poilu will now 
be elaborated. 

2.6.4. 'Theorem. Let X be a set equipped with a filter base 21, E a separated 
topological space. f a mapping of X into E. and I a poillt of E. Iff tends Iv I 
along Pl. then I is the unique adherence value off along :il. 

Let V be a neighborhood of / in E and let BE fA. There exiSlS B' E fJ such 
that f(B') C V. Then B " B' i= 0. therefore f(B " B') i= 0. and f(B.n B') 
c f(B) n V. Therefore f(B) intersects V. Thus l is an adherence value of f 
along.:ll. 

Let [' be an adherence value of f along 1'4. and suppose I' i= I. There exist 
neighborhoods V. V' of /.1' that are disjoint. Next. there exists Be fA such that 
f(B) c V. Then feB) " V' = 0. which contradicts the fact that I' is an 
adherence value. 

2.6.5. Thus, when f admits a limit along:14, the concept of adherence value 
brings nothing new with it and is thus without interest. But what can happen 
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ifj'does not have a limit along II'! 

(a) it can happen that I has no adherence value; example: the sequence 
(0, I. 2. 3 ... ~.J in R has no adherence value; however. cr. 4.2.1.; 

(b) it can happen that/has a unique adherence value: example: the sequence 
(0. 1, 0, 2, 0.3 .• ,.) in R has no limit. and its only adherence value is 0: 
however. cr. 4.'2.4; 

(c) it can happen that j has more than one adherence value (cr. 2.6.2. 2.6.3). 

To sum up. in relation to the limit concept, one loses uniqueness but one 
gains as regards existence. 

2.6.6. Theorem. Let X be a set equipped with a filter base ~. E Q topological 
.!pace./ a mapptJIflJ{i into E. The set 01 adherence values 011 along 91 is the 
intersection 01 the as B runs over :fl. 

Let I be an adherence value of 1 along 4. Let 8 e 91. Every neighborhood 
of I intersects I(B). therefore I e ]'(B). TItus 

Ie n I(B). 
Best 

Suppose me fiB'" /(B). Let V be a neighborhood of m and let Be 14. 
Since me I(B). /(B) intersects V. Therefore m is an adherence value of I. 

(There is thus a connection between the concept of adherence value and 
that of adherent point. However. the two concepts should not be confused.) 



CHAPTER III 

Constructions of Topological Spaces 

The study of any structure often leads to the study of substructures. 
product structures and quotient structures. For example. the student 
has already seen this in the study of vector space structure. The same is 
true for topological spaces. This yields important new spaces tfor 
example. the tori T": cr. also the projective spaces. in the exercises 
for Chapter IV). 

3.1. Topological Subspaces 

3.1.1. 1beorelD. Let E be a topological space, F a subset ofE. LeI "41 be the 
:M a/open subsets of E. Let'r be the set of subsets of F oflhe form U r. F. where 
U E~. Theil '1' .~Qtisfies the a.doms (i), (ii), (iii) of l.2.1. 

(i) One has 0 E o/J and E e 6/l, therefore 0 = 0 (j Fe 't' and F = 
E ('\ Fe 'Y. 

Cii) Let (V,)'el be a ramil) of subsets belonging to .y. For every i E l. there 
exists ViE .g such that Vj = V. i"I F. Then UIGI Ui E lift. therefore 

U V~ = U (V .. t"I F) - (·U u,) f"I. Fe 'I --
1.1 4.1 tEl, 

(iii) With notations as in (ii). suppose moreover that I is finite. Then nltl U! E -1'. therefore 
. (. 

Ii V, = n (V, f"\ F) = (n VI).0 Fe "I": 
i~' 1.£ : . .18 I ( 
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3.1.1. By 3.1.1. -r is the set of open sets ofatopology on F,caJled the topology 
induced on F by the given topology of E. Equipped with this topology. r is 
called a IOp%g iC'aI subspace (or simply a subspace) of E. The open sets of Fare 
thus. by definition. the intersections with F afthe open sets ofE. 

3.1.3. Remark. Let E be a topological space, r a subspace of E. If A is a 
subset of F. the properties of A relative to F and relative to E may differ. For 
example, if A is open in E then A is open in F (because A = A ("'\ F). but the 
converse is in general not true (for example, F is an open subset of F but in 
general is not an open subset of E). However, if F is an open subset of E and if 
A is open in F, then A is open in E (because A - B ,.., F with B open in E. and 
the intersection of two open subsets of E is an open subset of E). 

3.1.4. Theorem. LeI E bea topological space. F a subspace"rE. A asubser ofF. 
The jolJowing C'onditions are equivalent: 

(i) A Is dosed in F: 
(ii) A is ehe intersection with F of a closed subset ofE. 

(i) => (ii). Suppose A is closed in F. Then F - A is open in F. therefore 
there exists an open subset U of E such that F - A = U ,... F. Since A = 
(E - U) ,... F and since E - t: is closed in E, we see that condition (ii) is 
satisfied. 

(ii) =- (i). Suppose A = X r'I F, where X is a closed subset of E. Then 
F - A = (E - X) r'I F, and E - X is open in E. therefore F - A is open in F. 
thus A is closed in F. 

3.1.5. Remark. Let us maintain the notations of 3.1.4. JC A is closed in E then 
A ls closed in F. but the converse is in general not true (for example. F is 
closed in F but in general not in E). However, if F is closed in E and if A is 
closed in F, then A is closed in E (because A ... X ,... F with X closed in E, 
and the intersection of two closed subsets of E is a closed subset of E). 

3.1.6. 1beorem. Let E be a topological space, F a sub.~pace of E. and x e F. 
Let W c: F. TIle following conditions are equivalent: 

(i) W is a neighborhood o/x in F: 
(ii) W is the imersection with F ofa neighborhood ofx ill E. 

(i) => (ii). SLlppose W is a neighborhood of x in F. There exists an open sub­
set B of F such that x e B c: W. Then there exists an open subset A of E such 
that B = F ,"" A. Let V = A u W. Then JC e A c: V, thus V is a neighborhood 
of x in E. On the other hand. 

F (". V - (F ,... A) v (F ("\ W) = B u W "" W. 
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(ii) ~ (j), Suppose W = F n V, where V is a neighborhood of x in E, 
There exists an open subset A of E such that ."( e A c V, Then x E F ,., A c 
F ,""\ V - W, and F ."'" A is open in F, thus W is II. neighborhood of x in F. 

3.1.7. Theorem. Let E be a topologIcal space. F a subspace of E. If E is sepa­
rated. then F is separated. 

Let x. y be distinct points of F. There exist disjoint neighborhoods V, W of 
x. yin E. Then F ,... V. F f" W are neighborhoods of x, yin F (3.1.6) and they 
are disjoint, Thus F is separated. 

3.1.8. Definltlo •• Let E be a topological space, A c:: E and x E A. One says 
that x is an isolated point of A if there exists a neighborhood V of x in E such 
that V n A "" ix}, 

3.1.9. Theorem. LI11 E be a topological space and let FeE. The following 
conditions are equivalent: 

(i) the topological space F is discrete; 
(ii) euer}' point of F is isolaced. 

(i) ~ (ii). Suppose F is discrete. Let x E F, Then {,,(} is an open subset of F. 
therefore there exists an open subset V of E such that {x} = U n F. Since U 
is a neighborhood of x in E. we see that x is an isolated point of F. 

(ii) ~ 0). Suppose that every point of F is isolated. Let x E F. There exists 
a neighborhood V of.\' in E such that V ,., F = {xl. Passing to a subset orv, 
we can suppose that V is open in E, Then {xl is open in F. Since every subset 
of F is the union of one-element ~ubsets. every subset of F is open in F, Thus 
the topological space F is discrete, 

3.1.10. Example. In R. consider the subset Z. If n e Z then 

{n} = Z ,... (n - t. n ~ t) . . 
therefore n is isolated in Z. Thus the topological subspace Z of R is discrete, 

3.1.11. Theorem (Transitivity of Subspaces). Let E. E'. En be sets suc:h that 
E ::l E' ::l En. Let:T' be a topology on E..:T' che copology induced by Y 01'1 E', 
;7''' the topology induced by ff' on E", Then ;/"" i" the topology induced by .T 
01'1 E", 

Let .1"~ be the topology induced by.T on E", 
Let U" = E" be an open set for :T", There exists a subset U' of E'. open for 

.~'. such that V' ,..., E" "'" U·, Next. there cxists a subset U of E. open for ff. 
such that U n E' = V'. Then li ,..., E" - U". thus U" is open for 9"7. 
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Let V" c E"be an open selCor ff~. There exists a subset VoCE.open for 9'. 
such that V,..., E~ - V". Set V' = V,.., E'. Then V' is open for :T', and V" = 
V' 1"'\ EN. thus V" is open for ;1"". 

3.1.12. Theorem. Lec E be a metric space. E' a metric' subspace 01 E(1.1.I). Let 
,. Y' be the topologies 01 E. E' defined by their metrics (1.2.2). Then Y' is 
nothing mort than tile topology induced by Y on E'. 

Let Y', be the topology induced by;T on E'. 
Let V' c E' be an open set for $"'. For every.:t E U', there exists e" > 0 

such that the open ball B~ in E' with center x and radius 8 .. is contained in V' .. 
Let B .. be the open ball in E with center x and radius e". Then Br is a neighbor. 
hood of x for :Y. thereCore B~ is a neighborhood of x Cor 5"'1 ~3.1.6). Thus (1 
is a neighborhood of x for Y' •. This being true for every .'C E V'. we see that U' 
is open in E' Cor Yi (1.3.5). 

Let V' c: E' be an open set for .1";. There exists an open subset V of E such 
that V' = Vf'\ E'. For every x E V'. there exists '1" > 0 such that the open ball 
C .. in E with center x and radius '1;c is contaIned in V. Let C~ be the open ball 
in E' with center x and radius 1'/". Then C~ = C" 1"'\ E' c V 1"'\ E' = V'. 
Therefore V' is open for ;Y'. 

3.1.13. For example. iC a subset A ofRn is regarded as a topological subspace 
of Rft, the topology oC A is none other than the one considered in 1.2.2. 

3.1.14. Theorem. Let X be a set eq"tpped with aftlter base 91, E a topolog. 
ical space, E' a subspace olE, I a mapping olX into E', I apoin, olE', The 
lollowing conditions are equif]Q/t'nI: .. 

(i) j..tends to I along 18 relative to E'; 
(ii) I tends to t alung * relative to E. 

Suppose condition (i) is sadstied. Let V be a neighborhood of I in E. Then 
V 1"'\ E' is a neighborhood of I in E' (3.1.6). There exists B E ~ such that 
I(B) c V 1"'\ E'. A/ortiori,.-/(B). c V. Thus l tends to I along ~ relative to E. 

Suppose condition (ii) is s<ltisfied. Let V' be a neighborhood of I in E'r 
There extsts a neighborhood V of I in E such that V r'I E' .. V' (3.\.6). Then 
there exists Be6f such that I(B) c V. Since I(X) c E'. one has I(B) c 
VilE' = V'. Thus/tends to [along JI relative to E'. 

~ 3.1.15. Theorem. Let T. E be topologiC'al spaces. E' a sllbspace of E. 
J" mapping 01 T illto E'. The/ollowing conditions are equicalenr;.. 

(i) I is continuous: 
(ii} 1'. regarded as a mappil'llj ofT illlo E, ~~ontinuous. 
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Indeed, for every to e T, the condition limr- ro f(t) - f(to) has the same 
meaning. according to 3.1.14. whether one considers f to have values in E' 
or to have values in E. 

3.1.16. CoroUary. Let E be a topological space. E' a subspace of E. The 
identity mapping of E' into E is continuous. 

For. the identity mapping of E' into E' is obviously continuous. One then 
applies 3. t.l S. 

3.2. Finite Products of Topological Spaces 

3.1.1. Let E1• EJ ..... E. be topological spaces. We are going to define a 
natural topology on E - E 1 X E2 X ••• x En. 

Let us call elementary open set in E a subset of the form U I x U Z x ... 
x Un, where U, is an open subset ofE,. Let us call open set in E any union of 
elementary open sets. To justify this terminology. we are going to show that 
this family of subsets of E satisfies the axioms (i), (ii). (iii) of 1.2.1. 

First of all. 

E - El X Ez x ... x E. and 0 - 0 X Ez x .• ~ x E. 

are open sets, even elementary open sets. 
Axiom (ii) is obvious. 
Finally. let A. B be open subsets of E and let us show that A ,..., B is an 

open subset of E. One has A ,.. U A ... B - U B". where the AA and BII are 
elementary open sets. Then A "" B is the union of the Ai. (", B" and it suffices 
to prove that, for fixed A and 14. Ai"" BII is an elementary open set. Now. 

where U,. V, are open subsets of E,• It follows that 

AJ."'" BII - (U I "" VI) x ... x (Un"" Vn); 

since V, ("l Vi is an open subset of EI • this completes the proof. 

3.1.1. We have thus defined a topology on E. called the product topo/og, 
of the given topologies on EI •.••• En. We also say that E is the product 
topological space ofthe topological spaces E,. El ...... En. 

3.2.3. Example (Product of Metric Spaces). Let Eh Ez •... , E" be metric 
spaces. Set 

E - E, x .,. x Eft' 
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If.x .. (x I> ••• , XII) e E and .\' - (Yl' .... . v,J e E, set 

One verifIes as in the case of Kft that d is a metric on E. TItus. a product of 
metric spaces is automaticafly a metric space. Let !T be the topology on E 
defined by this metric (1.2.2). In addition, El ..... E. are topological spaces 
(1.2.2), thus by 3.2.2 there is defined a product topology!T' on E. Lel us show 
thar!T = .r. 

Let U be a subset of E that is open for :T'. For every:c .. (XI' "_, x.) E U. 
there exist open neighborhoods U l' __ " U. of XI' _ ... XII m E\> ... , E" such 
that U I )t .L. x u. c: U. There exists 8; > 0 such that the open ball in EI 

with center XI and radius Ilj is contained m U,. Let B be the open ball in E with 
center x and radiuS8 .. inf(81.· •• , 8,J.lfy = <11' •••• JII) e B then d(x. y) < 8, 
therefore d(x" II) < t S Il, for all i. thus y, e L: j. and so y 6 U. Thus B c: U. 
We have thus proved that U is open for .1'. 

Let V be a subset of E that is open for 9', For every :r .. (x I' .... _til) e V. 
there exists Il > 0 such that V contains the open ball with center .t and radius 
8. Let Br be the l)pen ball in E; with center Xr and radius BIn. If 

then 

therefore y e V. Thus. the elementary open set B I X ••• x B. is contained in V 
and contains .t. Consequently, V is the union of elementary open sets, there­
fore ts open for ;r'. 

In particular. ifK" is equipped with the topology defined by its usual metric 
(1.1.2). R· appears as the product topological space R x R x .... x R. 

3.2.4. Theorem. 1.el E = El X ••• x E" be a produ, .. , of lopoiogt('ai spaces. 
Let x = (:<1. ---. XII) s E. The .sets olthe/orm V I x ... x V •• where Vy is a 
neighborhood of x, in E,• conslttulfd aftmdamental system ofnetghborhood .• oj'."( 
in E. 

For i = 1 ... _, n,let VI be a neighborhood ohl in E,. There exists an open 
subset tJ I of Ei such that x, e U j c: V,_ Then 

.'l:sU, )t ... )( U.c: VI X···" V. 

and L: 1 leo ••• Ii: t:. is open in E, thus V I X ... xV. is a neighborhood of X 

in E. 
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Let V be a neighborhood of x in E. There exists an open subset U of E such 
that x e U c: V. The set U is the union of elementary open sets, therefore ;\: 
belongs to one of these sets. say U I x .•. x U •. where VI is an open subset of 
E,. Then Xi E V" thus U, is a neighborhood of Xi in E,. and U I x ..• :< U. 
c: V. 

3.2.5. Theorem. Lec E = EI X .,. x E. be a producr of topological spaces. 
/f each Ef is separated. then E i.~ separated. 

Let ;\: = (x I' ..... 'e.) and :" = (Y I' , . -. Y.) be two distinct points of E. 
One has x, * Yi for at least one i, for exampJe Xl ~ Yr. There exist disjoint 
neighborhoods V, W of Xl' YI in E\. Then V x E1 X ••. x E. and W x 
E2 x',, x E. are neighborhoods of x. y in E (3.2.4) and they are disjoint. 

3.2.6. Theorem. Let X be a set equipped with a filter hase Ill. E = EI )( 
Ez x .•• x E. a product of topological spaces, I = (II I • - - ,I.) E E. Let f he a 
mapping of X inco E. thus of the form x..- (fl (x), ... ,f.(x), where j; is a 
mapping of X infO Ej • Then ehe following conditions are equiv,dent: 

(i) f tends co I along JI: 
(ij) for i = I, 2 •••.. n. j; tends to It along ~. 

~_ ... E~' ~r;~:: r-:-:-7-i-.. -,-(-X-' --, E 

: f, (~) .. 

Suppose that ftends to I along 91. Let us show, for example. that fl tends to 
II along&w. Let VI be a neighborhood of I I in E I • Then VI x Ez X···;.( E. 
is a neighborhood of I in E (3.2.4). Therefore there exists B e ~ such that 
/(B) c: V I X E;: x .•. x Eft. Then ji(B) c: V I' thus fl tends to 1\ along~. 

Suppose condition (ii) is satisfied. Let V be a neighborhood of I in E. 
There exist neighborhoods V I' ••.• V. of II' ','. I. in E, •• _ .• E. such that 
VI x .• - X V. c: V (3.2.4). Then there exist RI .... , B.e.di such that 
[\(B\) c: V I' .... f.(B.) c: V.' Next. there exists B e ~ such that B c: 
B\ ," --, ~ B._ Then 

thus / tends to I along ~. 
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~ 3.1.7. Theorem. Let E - E I x-.·· x E. be a product otropological spaces. 
and T a topological space. Let f be a mapping of T into E, thus of the form 
[t-O (fl(e) • ...• f.(t)). where {, Is a mapping ofT imo EI • The following con­
ditions are equivalent: 

(i) f Is conti/'IUousj 
(ii) il' f." f. are continuous. 

fndcedt for every to e T, the conditions 

lim f(t) = f(t o), 

lim f~t) = {,(to) for f - 1 •...• n 
,"'ro 

are equivalent by 3.2.6. 

3.2.8. CoroUary. Let E - EI X ••• x E. be a product of top%gtcal spaces. 
The canonlca/ projections of E onto EI , ••••• E. are continuous. 

Let fbe the identity mapping of E. It is continuous. Now. it is the mapping 
.'c .... (f1(X.), •.. , f.(:e», where fl' ... , f. are the canonical projections of E 
onto EI , • ~.~.E •. It then suffices to apply 3.2.7. 

3.:2.9. Tbeorem. Let X. Y. Z be topological spaces. The mapping (x, y. z)1-o 
«:c, y), z) of X x Y x Z onto (X x Y) x Z is a homeomorphism. 

This mapping is obviously bijective. 
The mappings (x, y, z) - x and (x, y, z) - y of X x Y x Z into X and Y 

are continuous (3.2.8~ therefore the mapping (x, y, z) t-O (x, y) of X x Y x Z 
iniD X x Y is continuous (3.2.7). Similarly, the mapping (x, y, z) t-O z 
of X x Y x Z into Z is continuous (3.2.8), therefore the mapping (:e. y, z) t-O 

«(x. y). ::) of X x Y x Z into (X x Y) x Z is continuous (3.2.7). 
Similarly. one proves successively the continuity of the follo wing map pings: 

«x, y). ::) 1-0 (x, y). «x, y), z) _ x.. «x, y), z) _ y, «x, y). z) _ z. «x, y). z) _ 
(x. y. z). 

3.1.10. On account of3.2.9, one identifies the topological spaces (X x Y) x Z 
and X x Y x Z. This reduces step by step the study of finite products of 
topological spaces to the st udy of a product of two spaces. 

For 1 :S P < n, one identifies R" with R' x ao-" etc. 

3.l.11. Theorem. Let X. Y be topological spaces. Yo a fixed polm ofY. A tile 
subspace X x {Yol of X x Y. The mappi/'li ."( - (.'c, .vo) 01 X onto A Is u 
homeomorphism. 
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This mapping is obviously bijective, It IS continuous from X into X x Y by 
3,2.7. therefore it is continuous from X into A 

:. ~ ______ ~ __ (_)(""r":""'O)---i X " Y 

X 

by 3.1.15. The inverse mapping is the composite of the canonical injection of A 
into X x Y. which is continuous (3.1.16), and of the canonical projection of 
X x Y onto X. which is also continuous (3.2.8). 

3.2.12. For example. one can identify R with the subspace R x to} ofRl. etc, 

3.2.13. Theorem. Let X be a ,separated topological space. A the diagonal of 
X x X (that is. the ser of all (x. x). where .'( runs oller X). Then A is closed in 
X x X. 

Let us show that (X x X) - A is open in X x X. that is. is a neighborhood 
of each of its points. Let (x. y) E X x X. If (x, y) I/i d then x ;* ,v. Since X is 
separated. there exist disjoint neighborhoods V. W of x, y. Then V x W is a 
neighborhood of (x, y) in X x X (3.2.4). and V x W is disjoint from ~ that is 
to say contained in (X x X) - A. Thus (X x X) - .1. is a neighborhood of 
(x, y). 

3.2.14. Corollary. Let E be a topologk'al .~pace, F a separattd topological 
space, I and g continuous 11Ulppillgs oj' E into F. TIle set of x E E such that 
fv .. ) - g(x) is closed in E, 

For. the mapping x 1-+ h(.'() = (f(x). g(x» of E into F x F is continuous 
(3,2.7). Let A be the diagonal ofF x F. which is closed in F x F (3,2.13). The 
set .studied in the corollary is nothing more than h - leA), therefore is closed 
(2.4.4). 

3.2.15. Corollary. Let E. F. r. 9 be as En 3,2.14. If! and 9 are equal on a dense 
subset ofE. then f = g. 

For. the set of 12.14 is here both dense and closed, therefore equal to E, 
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3.3. Infinite Products of Topological Spaces 

3.3.1. Let (E,)i.1 be a family of topological spaces. Let E = fIlii E •. There is 
an obvious way of extending the definitions 3.2.1, 3.2.2 to this situation. but 
this does nOI lead to a useful concept. 

One calls elementary open ~et in E a subset I.lf the form fIlII UI' where Ui 

is an open subset of Ei • and where UI = E, jor almost all i e [ (which. in this 
context. will mean that Ui = E, for all but a finite number of indices). For I 
finite. one recovers the definition 3.2.1. 

One again calls open set of E any union of elementary open sets. One 
verifies as in 3.2.1 that this defines a topology on E. called the pmduct topology 
of the topologies of the E,. 

3.3.2. ~ost of the arguments of 3.2 may be extended with minimal complica­
tions. We state the results: 

(a) Lel x = (''Ci)'el e E. where x, rS E, for all i E I. The sets of the form 
fI'e) VI. where Vi is a neighborhood of Xi in EI and where Vi - Ei for almost 
all i. constitute a fundamental system of neighborhoods of .Y: in E. 

(b) If every Ei is separated. then E is separated. 
(c) Let X be a set equipped with a filter base ~. f a mapping of X into E 

(thus of the form .v.: ~ (j';(x)h I' where J; is a mapping of X into E/). and 
, = (flh., E E. The following conditions are equivalent: 

Ol f tends to' along .-M: 
(ii) for every j e I. Ji tends to Ii along IJ. 

(d) Let T be a topological space. f a mapping of T into E (thUS of the form 
I ..... (Ji(t»ltl' whereJi is a mapping ofT into E,). The following conditions are 
equ!yalent: (i) f is continuous: Cii) every Ii is continuous. 

(c.) The canonical projections of E onto the Ej are continuous. 
(n IfI is the union of disjoint subsets I .... where A. runs over a set ,\, then the 

topological space fI,el E. may be identified with the topological space nhA (O,eIA Ej ) ('associativity of the topological product'), 

3.4. Quotient Spaces 

3.4.1. Theorem. Let E be a topological space, Ran equit'alence relation on E, 
F the quotient set E/R, 11: Ihe canonical mapping of E onto F. Let ~ bl! the 
sel of subsets A ofF such that 11: - I(A) is open in E. Tllen (!) satisfies the oxfoms 
(n, (m, (iii) of 1.2. I. 

This is immediate. 
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3.4.2. Thus, (!~ is the set of open sets of a topology on F. called the quotient 
topology of the topology of E by R. Equipped with this topology, F is called the 
quotient space of E by R. 

The mapping 1t of E onto F is continuous (for, if A is open In F. then 7t- IrA) 
is open in E). 

3.4.3. Example. The set T is defined to be the quotien t of R by the eq uivalence 
relation ~'( - y E Z. By 3.4.2. T is equipped with a topology that makes it tI. 

quotient space of R. 

~ 3.4.4. Theorem. Let F = E/R be the quotient space of a ropological space 
E by an equivalence relation R, 1t rhe canonical mapping of E onto F. Y " 
topological space, and f a mapping of F into Y. The following conditions are 
equivalent : 

(i) Its cominuous; 
(ii) the mapping f.fi 1t ofE into Y is continuous. 

~@ 
----------------
E/R f- 1 (U) 

Suppose f is continuous. Since 1t is continuous (3.4.2), r~' 17: is conti.nuous. 
Suppose / Or 1t is continuous. Let U be an open subset of Y. Then 

7C- IU- I(U» = (J'U:)-I(U) 

is open in E (2.4.4). thereforef- I(U) is open in F (3.4.2). Thusj' is continuous 
(2.4.4). 

3.4.5. Example. Denote by U the set of complex numbers of absolute value 1. 
One knows that the mapping.~ 1-+ g(x) = exp(27tix) of R into Uis surjective. 
and that g(x) ,.. g(x') <=> x - x' € Z. Thus, if p denotes the canonical mapping 
of Ronco T. then 9 defines. by passage [0 the quotient. a bijection f of Tonto 
U such that f Q P ,.. g. Since 9 is continuous. f is continuous (3.4.4). We shall 
see later on (4.2. 16)thatfis a homeomorphism. Let us showthatT issepal'ared. 
Let .'C, y be distinct points ofT. Then f(x) *' fey). Since II is separated. there 
exist disjoint open neighborhoods V. W of f(x). j'(;) in U. Then r I(V), 
f - lew) are disjoint open neighborhoods of x, yin T. 



CHAPTER IV 

Compact Spaces 

This chapter is probably the most important of the course. Although 
the definition of compact spaces (§ 1) suggests no intuitive image, it is a 
very fruitful definition (see the properties of compact spaces in §§2 and 
3. and the applicationl! in nearly all the rest of the course). In §4. we 
adjoin to the real line R a point + ':.c and a point - IX' so as to obtain a 
compact space, the 'extended real line' R; the itudent has made use of 
this for a long time. even though the terminology may appear to be new, 

Locally compact spaces are introduced in §S; for this course. they are 
much less important than the compact spaces. 

4. ),r.. Definition of Compact Spaces 

4.1.1. Tbeorem. Let E be " topological space, Tile following conditions are 
equll1alent: 

(i) If a fomily 0/ opt" subsets of E cOIJers E, une can extracr from it a finite 
.nlbjCmdly that !.I(Jaln cOllers E. 

(in ~f a family of closed subsets of.. E has empty intersection. one can eXTract 
from il Q finite su4family whose i,irer"ectlon is again limplY. 

This is immediate by passage to complements. 

4.1.2. Defialdoo. A separated space that satisfies the equivalent conditions 
of 4.1.1 is called a compact space. 

Let E be a topological space. A subset :\ of E such that the topological 
space A (3. I .Z) is compact is of course called a 1!'ompacr subset of E. 
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4.1.3. Theorem. Let E be a ropologlcal space, A a separared subspace of E. 
The following conditions are equivaiem: 

(i) A is compact; 
(ii) if a family of open subsers of E covers A. one can extract from ir a finite 

.~ubfamil.v that again covers A. 

Suppose A is compact. Let (U ,)'al be a family of open subsets ofE covering 
A. The Vi n A are open in A (3. L2) and cover A, therefore there exists a 
finite subset J of I such that the family (Ui n A)lsJ covers A. A fortiori. the 
family (U,)/aJ covers A. 

Suppose conditions (ii) is satisfied. Let (Vi)II' be a family of open sets of 
A covering A. For every i e I. there exists an open set WI of E such that 
Vi - WI n A (3.1.2). Then (WI)iel covers A. thus there exists a finite subset 
J of I such that (Wt)isJ covers A. Therefore (V/),.J covers A. 

4.1.4. Theorem (Borel-Lebesgue). Let a. b e R with a S b. Then the interval 
[a. b] is compact. 

It is clear that [a. b] is separated. 
Let (Ui)la. be a family of open subsets of R covering [a. b]. Let A be the 

set of x e [a, b] such that [a. x] is covered by a finite number of the sets VI' 
The set A is nonempty because a e A. It is contained in [a, b], therefore it 

is bounded above. Let m be its supremum. Then a .:s;; m S b. 
There existsj E I such that mEL: j' Since U J is open in R. there existS8 > 0 

such that [m - e. m ~ 8] c: Vj • Since m is the supremum of A, there exists 
x e A such that m - II < X .:s;; m. Then [a. x] is covered by a finite number of 
the U,. and [:c. m + 8] c: U/ ' therefore [a.. m + 8] is covered by a finite 
number of the Ui . Ifm < b then, after reducing 8 if necessary so that m + II e 
[a. b]. one sees that m + e e A. which contradicts the definition of supremum. 
Therefore m = b. and [a. b] is covered by a finite number of the U,. It then 
suffices to apply 4.1.3. 

4.2. Properties of Compact Spaces 

We are going to show: (1) that compact spaces have useful properties: (2) that 
there exist interesting examples of compact spaces (besides those of 4.1.4). 
The logical order of the proofs unfortunately obliges us to mix the two 
objectives . 

• 4.2.1. Theorem. Ler X be a sec equipped with a filter base ~. E a compaCt 
space. f a mapping of X Inco E. Then f admits ar /ea.~t one adherence !l(//ue 
along '91. 
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Consider the family of subsetsf(B) of E. where B runs over tI. These are 
closed sets. Let A =tls •• /(B). If A = 0. there ellist B1.lol, B.e. 
such that ..i'C!7J ,...., .. , . ,...., f(B.) - 0 (because E is compact). Now, there 
exists Bo e 31 such that Bo c: B I ,...., ..• (.'\ B., whence f(Bo) c: feB d "" .•• ~ 
f(B.) and consequently f(BtJ ,...., .... ,...., f(B.) :p 0. This contradiction proves 
that A i!= 0. In view of 2.6.6, this proves the theorem. 

4.2.2. coroUary. 111 a compact space. every sequence of points admits at least 
olle adherence ualue. 

4.2.3. Theorem. Lee X, £I, E, f be as in 4.2.1. Let A be the set (llollempry) 
of adherence f)(Jlues of f along ~. Let U be an open subset of E containing A. 
There exists B e 91 such that feB) c: U (and even nm c: U). 

One has (E - U) ,...., A .. 0, thus 

(E - U)" n feB) .. 0· 
Bill 

Since E - U and the.nB) are closed we infer, by the compactness of E. that 
there exist B I, '.', B. ! !I such that 

(E - U) ,...., f(Bd ,...., . .1 .. ,...., f(BJ - 0. 
Next. there exists Bo E! '!JI such that Bo c: Bl ,...., . ~i-I"I B •. Then 

(E - U) '" f(Bo) - 0. 
that is, f(Bo) c: U . 

• 4~.4. CoroUary. Let X. tM. E, f be as in 4.2.1. Iff admlrs only one ad­
hereace !!alue I along ai, then f tends to I along 91. 

With the preceding notations. we have A - (I}, and U can be taken to be 
any open neighborhood of I. 

4.2.5. Corollary. J 11 a compact space, if a sequence of points lias only one ad­
herence I)Q lue I. then It tends to I . 

• 4.2.6. Theorem. LeI E be a compact space. F a closed subspace 0/ E. The" 
F is compact. 

Since E is separated. F is separated. Let (Fe), •• be a family of closed subsets 
of F wfth empty intersection. Since F is closed in E, the Fe are closed in E 
(3.1.5). Since E is compact, there exists a finite subfamily (F,),.J with empty 
intersection. 
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4.2.1. The converse of 4.2.6 is true. Better yet: 

~ Theorem. Let E be a ,~eparated space. F a compact subspace of E. Then 
F is cl03ed in E. 

We are first going to prove the following: 

(.) Let Xo e E - F. There exist disjoint open sets U, V of E such 
that .1(0 E U and F c: V. 

Since E is separated, for every y e F there exist open neighborhoods 
U" V, of xo. y in E that are disjoint. The V" as y runs over F. cover F. 
Since F is compact. there exist (4.1.3) points Y1>"" y" of F such that F c: 
V'I \,.J ••• U V,"' Let U - U,I 1"'\ ••• "" U,." which is an open neighborhood 
of Xo in E. Set V - V'I U .•• U V hi' which is an open subset of E con­
taining F. Then U and V are disjoint, and we have proved (*). 

SinceU c: E - F,itfollowsinparticularfrom(*)thatE - Fisaneighbor­
hood of Xo in E. This being true for every Xo e E - F. E - F is open in E, 
therefore F is closed in E. 

4.2.8. coroUary. In R. the compact subsets art!' the closed bounded subsets. 

Let A be a compact subset of R. Then A is closed in R (4.2.7). On the other 
hand, it is clear that A c: UnA (:C - 1. X + 1); by 4.1.3, A is covered by a 
finite number of intervals (Xi - 1. x, + 1), hence is bounded. 

Let B be a closed, bounded subset of R. There exists an interval [a, b] 
such that B c: [a, b]. Then [a, b] is compact (4.1.4), and B is closed in [a. b] 
(3.1.5) hence is compact (4.2.6). 

4.1.9. Theorem. Let E be a separated space. 

(0 If A, B are compact subsets of E, then A u B is compact. 
(ii) If (A')'E! is a flonempty family of compact subsers of E, then n,.t A, is 

compact. 

Let (Ui);el be a covering "r Au B by open subsets of E. There exist 
finite subsets J I• J2 of 1 such that (U')'eJI covers A and (U')ltrJa covers B. 
Then (U,)ceJ, ... h covers A u B. which proves that Au B is compact (4.1.3). 

The A, are closed in E (4.2.7), therefore ()i&1 AI is closed in Eo hence in 
each A, (3.1.5). Since the AI are compact. n'EI A, is compact (4.2.6). 

4.2.10. However. an infinite union of compact subsets is not in general 
compact. For example. the intervals [-1,1], [- 2, 2], [-3.3], ... of R 
are compact. but their union. which is R. is not compact (4.2.8). 
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4.2.11. Theorem. 

0) Let E be a separated space. A and B disJoint compact subsets ofE. There 
exisr disjoint open sets V, V of E such that A c V and B c V. 

(ii) In a compact space, every point has a Jundamental system of compact 
11eighborhoods. 

(i) For every x E A. there exist disjoint open subsets W x' W~ of E such 
that x e W~. B c W~ (cf. the <15sertion (*) in the proof of 4.2.7). Since A 
is compact. there exist x I' • - •• :~p s A such that A c WXI "-J ••• u WXp ' 
Set U ... WXI·...J ••• U W'" and V = W~I ("I ••• f'\ W~" Then U and V are 
open subsetS of E. A c U. B c V and V t""I V - 0. 

(ii) Suppose E is compact. Let x e E and let Y be an open neighborhood 
of' x in E. Then {x} and E - Yare disjoint compact subsets ofE. By (0. there 
e."C.ist disjoint open sets U, V of E such that x E li and E - Y c V. Then 
(j is a compact neighborhood of x. We have VeE - V, therefore 0 c 
E - V since E - V is closed. whence U c Y . 

• 4.2.12. Theorem. Let E be a compact space. Fa .geparared space,fa con­
tinuous mapping ofE into F. Then fee) i.~ compact. 

First, f(E) is separated since F is separated. 
Let (Vi)II' be a family of open subsets of F covering feE). Since f is 

continuous, the 1-I(Vi) are open subsets of E (2.4.4). Since the VI cover 
f(E), the r I(V£) cover E. Since E is compact. there exists a finite subset 
J of I 'such that (f - I(VI»r"J covers E. Then (U/)IGJ covers feE). Therefore 
fee) is compact (4.1.3). 

4.2.113. Corollary. Lel E be a nonempry compact space, ! (I continuous real-
1)CIiued jUnction on E. Then f is bounded and attains its infimum and supremum. 

By 4.2.12. feE) is a compact subset of R. hence is a closed, bounded subset 
of R (4.2.8). Since fee) is bounded, f is bounded. Since. moreover. fee) 
is closed, f(E) has a smallest and a largest element (I.S.9). If, for example, 
f(xo) is the largest element of fee). then.r attains its supremum at Xo. 

4.2.14. Corollary. Lilt E be (l compact space. J a colltinr~()us real-valued 
function on E with calues >0. Tlrere exists:c > 0 such chat l(x) ~ x for all 
x E E. 

Let :c be the infimum of Ion E. By 4.2.13. there exists Xo E E such that 
f(xo) = :c. Therefore :x > O. It is clear that {(x) ~ :x for all x E E. 
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4.2.15. Corollary. Let E be a compac:.t space, F a ~parated space. f a con­
ttnuQU~ bijective mapph1g ofE onto F. Then f -I is continuous ~n other worth, 
J ts a homeomorphism of E onto F). 

Let 9 - I-I. If A is a closed subset of E. then A is cO.mpact (4.2.6). there­
fore I(A) is compact (4.2.12). therefore I(A) is closed In F (4.2.7), in other 
words g-I(A) is closed in F. This proves that 9 is continuous (2.4.4). 

4.2.16. Example. Let p be the canonical mapping of R onto T. It is con­
tinuous (3.4.2). Since T is separated (3.4.5) and [0. 1] is compact (4.1.4). 
p([O. I]) is compai.'t {4.2.l2). But P([O. 1]) - T. Thus the space T is compact. 

In 3.4.S we defined' a continuous bijectionf ofT onto U. Now, T is compact 
and 1) is separated. Therefore f is a homeomorphIsm (4.2.15). Thus. the 
spaces T and U are homeomorphic. 

Since U2 may be identified with the surface of the space commonly called 
a 'torus', one says that Tl is the 2-dimensional torus. and more generally that 
1"" is the n-dimenstoM/ torus. In particular. T is called the l-dimensional torus . 

• 4.2.17. Theorem. The produC't of a finite number of compact spaces is 
compact. 

It suffices to show that if X and Y are compact. then X x Y is compact. 
First. X x Y is separated (3.2.5). 

Let (U')i •• be an open covering of X x Y. For every In ... (x. y) e X x Y. 
choose an i(m) e I such that m e U 1( .. ). By 3.2.4, there exist an open neigh­
borhood V .. of x in X and an open neighborhood W 1ft of y in Y such that 
V .. x W .. C VI( .. ). Set p .. = V .. x W ... 

Provisionally. fix Xo eX. The subset {xo} x Y of X x Y is homeomorphic 
to Y (3.2.11) hence is compact. The subsets p .. , where m runs over {xo} x Y. 
are open in X x Y and cover {.'Co} x Y. therefore {xo"l x Y is contained in 
a finite union P 1ft 1 I.tl ... u Pili_ (4.1.3). The intersection Villi ("I , ... 1"'\ V,.. is 

Wm I 
, 0 

V 

-+ .... - .• - _ . .;.- - .-+-+-+-.., 

-::::::.:: -:--:-1-=+' ::t:::+:~ 

, , , ., . , 
1 I 0' • ,', 

XxV 

X 
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an open neighborhood 0\"'0 of Xo in X. If tx, y) e Axo x Y, there exists a 
k such thattxo• y) E P 1ft_ ... V",. ~ W", •. whence yeW 1ft. and 

(x, y) e A .. x W ... c: V... x W"'. = p ... , 

Thus Axo l( Y is covered by a finite number of the sets UI' 
lfnow Xo runs over X, the Axo form an open covering ofX. from which one 

can extract a ftnite covering 

X ... Ax. v . -- u Ax,. 

Each Ax~ x Y ill covered by a finite number of the sets U •• therefore X x Y 
is covered by a finite number of the sets UI' 

• 4.1.18. CoroU..,. In Kn. the compact sets are the closed bounded sees. 

(A subset of Kif is said to be bounded if Its " canonical projections onto R 
are bounded.) 

Let A be a compact subset of Kif. Then A is closed in R" (4.2. 7). Its canonical 
projections onto R are compact (3.2.8 and 4.2.12). hence bounded (4.2.8). 
thus A is bounded. 

Let B be a cll~sed. bounded subset of R". Since B is bounded, one has 

B ::: [al> btl IC [a2. bzJ x .;- ~ [a •• bJ = C. 

Now, C is compact (4.1.4 and 4.2.17). and B is closed in C (3.1.5) hence is 
compact (4.2.6). 

4.1.19. Examples. The space R" is not compact. 
The sphere S. (2.5.7) is bounded in R"·Pl. and closed in R,,·1 (1. 1.12). 

hence is compact (4.1.18). 
With the notations of 2.5.7. the space Sn - {a} is homeomorphic to RIf, 

hen~ is not compact. 

4.3. Complement: Infinite Products of 
Compact Spaces 

* 4.3.1. Let X be a set. If'1 and ~ are filters on X. the relation ;;1 c: '2 
is meaningful since"l and $liz are subsets of~X) (the set ofal1 subsets of X). 
Thus. the set of filters on X is ordered by inclusion. One calls ultrafilte,. on X 
a filter on X that is maximal for this order relation (that is to say, Ii filter ;F 
such that if fI is a tilter on X containing" then '"II - $'). 

• 4.3.2. Let (.:F.h .... be II. totally ordered family of filters on X (thus. for 
any A and /i. either .F~ c .F,. or .F~ c F;,). Then ~ = U~.A ~;. is a filter 
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on X. For. let Y e:F and let Z c X be such that Z :=l Y: then Ye.F;. for 
some A.. therefore 2 E;F.. therefore 2 E .'fl. On the other hand. let Y I' Y1 E 7: 
there exist A.. ,U E t\ such that Y I e ./F •• Y l E oF"; if. for example. ,/F;. c:; ~,. 
then Y j E ,~" therefore Y 1 ("\ Y 2 E.7" c:; §'. This proves our assertion. 

It then follows from 20rn's theorem (see. for example. Bourbaki. Theory 
of Sets. Ch. Ill. §2, Cor. I of Th, 2) that eL'ery filter on X is contained ill an 
ultrafilcer. 

'" 4.3.3. Theorem. Let .J' be a,filter on X. The following conditions are equiva­
lent: 

(i) .F i$ an ultrafilter; 
(ii) jbr eeery sub.set Y of X. either Y E :IF or X -- Y E .F. 

Suppose that 7 is not an ultrafilter. Let oF' be a filter on X strictly con­
taining §. There exists Y e ,';;;' such that Y ¢ ,fF. Then X - Y ft Jil' (because 
y ('\ (X - Y) = 0) and afortiori X - Y ¢: Y. 

Suppose there exists a subset Y of X such that Y $ Jl and X - Y rf: F. Let 
'§ be the set of all subsets of X containing a set of the form F r. Y with FE .:F. 
Let us show that '§ is a filter. For every FE Jii.. one has F::: X - Y. (otherwise. 
X - Y E F). therefore F '"'i Y "" 0; thus. every element of ~ is nonempty. 
It IS clear that every subset of X ~ontaming an element of C§ belongs to f§. 

Finally. let G I' G l be elements of t§; then G 1 =:l F 1 ,...., Y, G2 =:l F: ('\ Y with 
F,. F. E Y. therefore G 1 !"'\ G: =:l {FI ('\ F1) ('\ Y and F j ('\ F2 e.IF: there­
fore G1 ('\ G! e 'fl. We have thus shown that ~ IS indeed a filter. It is clear 
that'd :::l .F and that Y E '-1. therefore '1 '# .-1' and :F is not an ultrafilter. 

* ".3.4. Theorem. Let X and X be .~ets. f (I mapping of X into X'. Y; an [IUra­
filter on X. Let .'F' be the set 0/ all subsets o/X that coma in a set oj Ihe form 
f (F). where F e:F. Then ,7' is an ultrajiit!!r on X. 

It IS clear thaI .F' is a filter on X'. Let Y' c:; X'. Set Y = j-I(Y'). Then 
y e .~ or X - Y E Jl (4.3.3). If Ye :F. then Y' E :Y;' because f(Y) c:: Y'. If 
X - Y E.'F, then X' - Y' E .'F' because f(X - Y) c:: X - Y' Therefore ,~' 
IS an ultrafilter (4.3.3). 

" 4.3.5. Theorem. Let E be a separated TOpological space. Th£' followiny 
conditions (Ire equivalent: 

(I) E i$ comPilet: 
(Ii) if'll is an ultrafilter ,m a sec X. and iff i,s a mappi/lg a/X into E. then J 

has a limit along 1,11. 

(a) Suppose E is compact. Let X. iII,f be as in (ii). 
Let Xo be an l\dherence value of.f along 'PI (4.1.1). The sets of the form 

fCU) .""' V. where L' e 11 and V is a neighborhood of Xo tn E. are nonempty 
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(2.6.1). They constitute a filter base 31 on E. because if U I' U 2 e ft and V l' 
V 2 are neighborhoods of xo, then 

Let' be the set of subsets of E that contain an element of $I. Then 3' is a 
filter on E (2.1.1). 

Let f§ be the set of subsets of E that contain a set of the form feU), where 
U e~. Then f§ is an ultrafilter (4.3.4). It is clear that f§ c: 3'. Therefore 
'I - §. Now let V be a neighborhood of Xo' Then V e 3'. therefore V e « 
therefore there exists U e fI such thatf(U) ::: V. Thus/tends to Xo along ft. 

(b) Suppose condition (ii) is satisfied. Let (Fi),.1 be a family of closed 
subsets of E. Suppose that for every finite subset J of 1, the set FJ = n'.J F, 
is nonempty. We are to show that nl.1 F, " 0. Now, the FJ form a tilter 
base. Let :fI be an ultrafilter on E containing all the FJ (4.3.2). Let us apply 
condition (ii) to the identity mapping of E into E: we see that there exists an 
Xo e E such that every neighborhood of Xo contaiDS an element of 'if. Fix 
tel. Let V be a neighborhood of Xo. Let U e 'if be such that U c: V. Then 
F, r. U ~ 521 since F, e ~ and U e 'if. Therefore F, ,..., V ,. 0. This being 
true for all V, we have Xo e F; ". Fr. This being true for all t, we see that 
Xo e niSI Fl' 

'" 4.3.6. Theorem. Ler (E,),.I be a family of compact spaces. and Ie' E = n.1 E,. Then E is compact. 

Let X be a set. 'i' an ultrafilter on X. f a mapping of X into E, hence of the 
form XI-+(f~X»'.I' where Jj is a mapping oC X into E,. By 4.3.5, Ii has a 
limit I, e Ej along~. Let 1- (/,),&1' By 3.3.2(c),ftends to I along '1'. Therefore 
E is compact (4.3.5) . 

• 

4.4. The Extended Real Line 

4.4.1. Let R be the set obtained by adjoining to R two elements, denoted + oc 
and - 00. not belonging to R. If x, y e Ii. the relation x oS; y is defined in the 
following way: 

(1) if.'C. y e R, then x .s; y has the usual meaning; 
(2) Cor all x e R, one sets x < + co and -00 < x; 
(3) one sets - co < -+- oc. 

It is easily verified that one obtains in this way a total order on It The ordered 
set I is called the extended real line. 
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4.4.1. Consider the mapping I of [ -.1tI2. 1t/2] into i defined as follows: 

I( ) 'f 1t It 
X = tan x 1 - '2 < x < '2' 

I(~) = +~, I( -~) - -~'. 
Then J'is bijective and increasing, as is I - I. and is therefore an isomorphism 
of ordered sets. Every property of the ordered set [-It/'2. n/2] is therefore 
also true in the ordered set R. In particular. elJer y nonempc)' iubset 01 R 
admits a supremum and an infimum. 

4.4.3. Topology of I. Let us call open subset of I the image under I of an 
open subset of [ -It/2. nl2], One thus defines a topology on I. and I is a 
homeomorphism of [-'It/2, n/2] onto I. It follows that I is compact and 
that. in I. eoery nonempty closed subset has a smallest and a largest element. 

Since the restriction of Ito ( - 1[/2. 1[12) is a homeomorphism of ( -teI2. 1[/2) 
onto R (2.5.5), the topology ofl induces on R the usual topology, 

The intervals [b. 1[12], where -'lt12 < b < 1[/2 form a fundamental system 
of neighborhoods of 1[/2 in [ -1[/2. 1[;2]. Therefore the intervals [a. + ~], 
where a e R. form a fundamental system of neighborhoods of + 'l:: in I. 
Similarly. the intervals [ - ~, aJ. where a e R. form a fundamental svstem of 
neighborhoods of - OX) in I. It follows that if (XI' Xz ••• ,) is a seq~ence of 
real numbers. to say that XR - + 00 in i means that Xn - +:x; in the usual 
sense. 

4.4.4. Theorem (Passage to the Limit in inequalities). Let X be a set equipped 
with afilter base ~ • .f and r mappings olX into R, admittIng limits I, I' along:1l. 
Suppose that I(x) s; r(x) lor a/l x e X. Then I S; f. 

Suppose I> r. Let a e R be such that I > a > r. Then (a. ... ~] and 
[ - XI. a) are neighborhoods of I and r in R. Therefore there exist B e a 
and B' e dI such that 

.'C e B - I(x) > a. x e B' - f'{x) < a . 

If X e B r"I B', one sees that I{.'() > f'(x). which is absurd. 

4.5. Locally Compact Spaces 

4.5.1. Tbeorem. Let E be a topoloqi~al space. The following condirions are 
equiVQlent : 

(i) er;er y point of E admits a compa~r n,ighborhood; 
(ii) every point of E adml'ts a .fUndamental system 0/ compacr neighbor­

h(l(Kis. 
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Obviously (ii) => (i). Let x E E and let V be u compact neighborhood of x. 
By 4.2.11(iO. x admits in Va fundamental system (Vj ) of compact neighbor­
hoods. One verifies easily that (Vi) is a fundamental system of neighborhoods 
of x in E (cC. 3.1.6). 

4.5.2. Definition. A. topological space is said to be locally compact if it is 
separated and satisfies the equivalent conditions of 4.5.1. 

4.5.3. Examples. (al Every compact space is locally compact. 
(b) Rn is locally compact (without being compact). For. Rft is separated. 

and every point of Rft admits as neighborhood a closed ball. which is compact 
(4.2.18). 

(c) Let us show that Q is not locally compact. Suppose that the point 0 
of Q possesses in Q a compact neighborhood V. There exists a neigh borhood 
W of 0 in R such that V = W '"' Q (3.1.6). Then there exists % > 0 such that 
(-~. :c) c W, whence (-ac.:c) '"' Q c V. Moreover. since V is compact, 
V is closed in R (4.2.7). Now. every real number in (-:c,:x) is adherent to 
(-%, :xl n Q. whence (-~, ac) c V, which is absurd since V c Q. 

4.5.4. Theorem. Let X be a loceilly compelct space, Y an open or closed subset 
of X. Then rhe space Y is locally compact. 

First. Y is separated. On the other hand. let Y E Y. There exists a compact 
neighborhood V of y in X. Then V 1-. Y is a neighborhood of ,II in Y (3.1.6). 
If Y is closed in X. then V f'1 Y is closed in V (3.1.4), hence is compact (4.2.6). 
If Y is open in X. one can suppose V c Y (4.5.1(ii» and then V '"' Y ... V. 

4.5.5. Theorem. Let XI' X2 , .... Xft be locally compact .~puces and let X"" 
XI X .,. x X •. Then X is locall}' compact . .. 

First. X is separated. On t he other hand. let x := (:c I, .•.• x.) E X. For every 
I. there exists a compact neighborhood VI of.'!:, in Xi' Then V I x .•. x V n is a 
neighborhood of x in X (3.2.4) and IS compact (4.2.17). 

* 4.5.6. Remark. Let E be a compact space. w a point of E. By 4.5.4, the 
space X = E - (w} is locally compact. 

* 4.5.7. Let us show. under the conditions of 4.5.6. how one can reconstruct 
the topology of E starting from that of X. We are going to prove that the 
open SetS of E are: (I) t he open sets of X: (2) the sets of the form (X - C) u 
{co}, where C is a compact subset of X. 

First. an open set of X is open in E (3.1.3). Next. if C is a compact subset of 
X. then C is closed in E (4.2.7). therefore E - C is open in E: now, 

E - C = (X - C) u {w}. 
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Finally, let t.; be an open set in E. If w.f U then VeX. and U is open in X 
(3.1.3); if OJ E U, then 

L' = (X - C)v {w}. 

where C is the complement of U in E; this complement is closed in E, hence 
is compact (4.2.6). 

• 4.5.8. The interest of Remark ~.5.6 is that it yields all of the locally com­
pact spaces, as we shall now see. 

Let X be a locally compact space. X' a set obtained by adjoining to X II. 
point w not belonging to X. The construction we shall give is inspired by 
4.5.7. Let us say that a subset U of X' is open in the following two cases: 
(:x) U is an open set of X; (fJ) U is of the form (X - C) v {w}, where C is a 
compact subset of X. Let us show that the axioms (i). (ii), (iii) of 1.2.1 are 
satisfied. This is clear for (i). Let (V')'.I be a family of open sets of X'. and t.: 
the union of the V" Then I - J v K. where: (1) for Ie J, tit is open in X: 
l2) for i e K, Ui '"" (X - Ct) v {OJ} with Ct compact in X. If K = 0 then l.: 
is an open subset of X. Suppose K ". 0. Then w e U and 

X' - V .. n (X' - Vi) ... (n c,) '" (n (X - VI»' 
i.1 i.X. 'aJ • 

Now, (I'd CI is compact in X (4.2.9(ii» and nil!J (X - VI) is closed in X. 
therefore X' - U is a compact subset C of X (4.2.6). and U '"" (X - C) v {OJ}. 
We have thus verified axiom (ii). Now let U I' U z be open sets of X' and let 
us show that V I '"' V z is an open set of X'. This is clear if V I, V 2 are open in 
X. IfUI is open in X and V2 = (X - C) U {OJ} with C compact in X, then 
UI ('I Ul = UI '"' (X - e), and X - C is open in X (4.1.7), therefore 
UI '"' V z is open inX If1:1 .. (X - Cd U {w} and Ul = (X - Cz) v {w} 
with C I , Cz compact in X. then 

U I rI Uz - (X - (CI U Cz» v (w}. 

and CI U Cz is compact in X (4.2.9(i». 
We have rhus defined a topology on X'. The subset X of X' is open in X'. 

The intersections with X of the open sets of X' are the open sets of X. In 
other words, the topology induced on X by that of X' is the given topology 
on X. 

Let us show that X' is separated. Let x, .v be distinct points of X'. and let us 
show that x and y admit disjoint neighborhoods in X'. This is clear if x. ): EO X. 
Suppose.'C - (U and Y EX. Let W be a compact neighborhood of y in X. This 
is also a neighborhood of y in X' (because X is open in X'). Set 

v = ex - W) v [wI· 

This is an open neighborhood of (:j in X'. and V , ... W = 0. 



48 IV. Compact Spac:es 

Let us show that X' is compact. Let (U')II!I be an open covering of X'. 
There exists io e I such that (.lieU ... Then 

U,. = (X - C) 'I.; {w}. 

where C is compact. The Vi cover C. therefore there exists a finite subset J 
of I such that (Uj)IOiJ covers C (4.1.3). Then 

X' .. U'o U "(U UI)' ,.J 
* 4,s.9. One often says that w is the po/Ill aF injinit1 of X', and that X' 
results from X by [he adjunction af a point ar infiniry. One also says that X' is 
the Alexandroff compactijication af X. 

• 4.5.10. Let X be a locally compact space. E, and Ez compact spaces 
such that X is a subspace of EI and El • and such that E, - X reduces to a 
point WI (for t ... I and 2). Then the unique bijection f of EI onto Ez that 
red uces to t he identity on X and transforms flj 1 into CCJ2 is Q homeomorphism 
oCE, onto E2 ; for. by 4.5.1;!transCorms the open sets ofEI into the open sets 
of El . 

This proves. in a certain sense. the uniqueness of the Alexandroft' com· 
pactification. 

• 4.S.I1. Example. We defined in 2.5.7 a homeomorphism of Rft onto the 
complement S. - fa) of {aJ in the sphere S •. Now. R" is locally compact and 
S. is compact. In view of 4.5.10. the .41exandroff conzpac£ificarion afR" may 
be idfnrtjied ..... irh S.' For example, the Alexandroft' compactification of R 
may be identified with the circle SI. hence with U (hence with the I-di­
mensional torus T. by 4.2.16). 



CHAPTER V 

Metric Spaces 

This chap[e~ in which we reconsider metric spaces in greater detail, 
is heterogeneous. 

In ~1. we introduce some concepts that are quite geometrical: 
diameter of a set. distance between two sets. 

In §2. we note that some of the earlier definitions take on a much 
more intuitive aspect in metric spaces. For example, a point adherent 
to a set A is nothing more than the limit of a sequence of points of A. 

The student already knows what is meant by uniform continuity for 
a real·valued function of a real variable. This concept is studied in the 
setting of arbitrary metric spaces in §3. and the somewhat analogous 
concept of equicontinuity in §4. 

The very important concept of complete metric space is studied 
in §§5, 6. -1. Among the numerou& useful theorems concerning such 
spaces, we cite Baire's theorem (5.5.12). 

5.1. Continuity of the Metric 

5.1.1. Theorem. Let E be a metric space. d its metriC. The mapping 
(OX. y) ....... d(x. y) orE ~. E inca R t.s continuous. 

Let (xo •. vo)e E )( E and let e > O. Let V. W be the closed balls With 
centers .xo. :ro and radius 8/2, Then V It W is a neighborhood ()f (XI), ~) 
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inEx E.lf(x.y)eV X W.then 

d(x, y) S; c/(x. xo) + d(xo. _Vo} -+- d<Yo. y) 

& ~ 
S; 2 ~ d(xo, Yo) + 2 = d(xo, Yo) + to 

d(xo· Yo) :so d(xo. x) -+- d(x, y) + dey. Yo) 

e B 
s; 2 - d(x. y) + 2 = d(x. y) -+- e, 

therefore Id(x. y) - d(xo, Yo)! S; 1:. This proves the continuity of d at (xo, Yo). 

5.1.2. Defillitioa. Let E be a metric space, A a nonempty subset of E. One 
calis diameter of A the supremum., finite or infinite. of the set of numbers 
d(x. ,Vj. where x and y run over A. 

5.1.3. Theorem. The sets A and A have the same diameter. 

Let 0 c:: R (resp. 0' c:: R) be the set of d(x, y) where .t. y run over A 
(resp. A). Then 0 c:: 0'. Since every point of Ax A is adherent 10 A x A 
(3.2.4), we have 0' c:: D (2.4.4(iv) and 5.1.1). Therefore D - 0', If 0 is 
bounded. the diameter of A (resp. A) is the largest element of i5 (resp. 0') 
(1.5.9). If 0 is unbounded, then 0 and 0' both have supremum + ~. 

5.1 .... Deftllidoll. Let E be a metric space. A and B nonempty subsets of E. 
One calls disl(lnce from A to B the infimum of the numbers d(x. ).), where 
:( runs over A and J runs over B. It is denoted dCA, B). One has d(A. B) :8 

d(B.ft). We remark that if deA, B) = 0, A and B need not be equal and may 
even be disjoint. 

If leE and A c:: E, we set d(i!. A) = d({z}. A) = infnA d(::, ;~). 

5.1.5. Theorem. Lec E be Q merrk space, A and B nonempty subsets of E. 
Then d(A. B) = dCA. B). 

The proof is analogous to that of 5.1.3. 

5.1.6. Theorem. Let E be Q metric space. A Q nonempty subset of E. and 
x. }'e E. Then Id(x. A) - d(y. A)I S; d(x, y). 

Let II > O. There exists z e A such that d(x. z) s; d(x, A) .;.. e. Then 

dey. A) S; dey, z) S; d(y, x) + d(.'t. z) S; d(.'t. y) .;.. d(.'t. A) + it. 
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Thus dey, A) - d(.'(. A) S; d(x. y) - a. Interchanging the roles of x and J. 
one sees that d(.'C. A.) - d(y. A) S; d(x, y) + (. Therefore (d( x, .\) - d(~I. A)I 
S; d(x, 1) + s. This being true for every, > O. one obtains IdC,. A) - de>'. A)i 
s; d(.'C. ~'). 

5.2. The Use of Sequences of Points in 
Metric Spaces 

.. S.2.1. Theorem. Let E be a metric space, A c:: E .. 'C E E. The following 
conditions IJre equivalent: 

(i) .'C e A: 
(ii) there exists a sequence (XI' x~ .... ) of points of A that rends co \'. 

If t.:ondition (ii) IS satisfied. every neigh borhood of x contains an x •. 
therefore intersects A: consequently .'C E A. 

If .'C e A then. for every integer n ~ 1. there exists a pomt ,.\. of . .\ that 
belongs to the closed ball with center x and radius l.·n. Then x. tends to x 
by 2.2.1 . 

.. 5.2.1. Theorem. LIlI E be a metric space. (XI' X2. , . ,) a sequence of poinlS 

~f' E. and .'( E E. Tile following conditions are equi,;alem: 

(i) X i.! an adherence IJa/ue of (.'C.): 
(ii) therE' e.'Cists a subsequence (x.,. XOl " , .). where nl < n~ < .. " Lhat tends 

Iv.'C. 

Suppose condition (ii) is satisfied. Then x is an adherence value of 
(x., . . 'C.z .... ) and "fortiori of (XI' X2." .). 

Suppose condition (i) is satisfied. There exists n l such that d(x ••• x) s; 1 
Then there exists n2 > I'll such that d(XM1 • x) .s; t, Then there exists n1 > "l 
such that d(x"3' x) :so !. etc. The sequence (x"'. x" .. ... ) then tends to x. 

S.l.3. Theorem. Lec X. Y be metric spa,'es, A a subset of X. f c.l mapping ~!f 
A. inw Y, a e A. and y e Y. The following conditions ure e£/ulvalenr: 

(i) .,·/s an adherence value (Iff a.! x tends fo a while remaining ill A 12.6.3); 
(ii) there exist.! a sequence (x.) of points (Jf A .fue/l Chal .'1:. -. a alta j'( x.) - y. 

The proof is analogous to that of 5.2,~, 
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5.2.4. Theorem. Let X. Y ne metl'ic space.~ • .f a mapping of X Into y, and 
x E X. The/allowing conditions are equivalem: 

(i) f is continuous CII x: 
(ii) for every.requence (Xn) of points of X t('ndillg co x. the sequence U(x.» 

tends to f(.'(). 

(i) ::;. (ii). This is true for any topological spaces (2.3.3). 
Not (i) .. not (li). Suppose that f is not continuous at x. There exists 

" > 0 such that, for every " > O. there is aYE X with d(x, y) .:s:" yet 
d(f(x). f(y» ;::: 8. Successively take " .. 1.1. t .. , .. One obtains points 
YI' Yl' Y3 .... of X such that d(x. Yn) .:s: 1/11 and d(f(x),f<Y.» C1: e- Then 
Y. - x but fevn) does not tend to f(x) . 

.. 5.2.5. Theorem. Let X be a metric space. The following contiitions are 
equiualenr : 

(i) X is compact: 
(ii) ellery sequence oj' poim.! ill X admits at least one adherence value. 

(i) ::;. (ii). This is true for every compact space (4.2.2). 
(ji) ::;. (i). Suppose condition (iil is satisfied. Let (U,)'.I be an open covering 

of X. and let us show that X can be covered by a finite number of the UI • 

We denote by B(x. p) the open bull with center x and radius p. 
(a) Let us show the existence of an -:z > 0 such that every ball B(x,-x) 

is contained in some Ui . 

Suppose that no such 'x exists. Then. for II .. 1. 2, . . .. there exists an 
X. E" such that B(x., 1/n) Is not contained in any Ui • Let x be an adherence 
value of (x\. ''(2, ••• ). Then x e UI for some i. and so B(x. liN) c: Vr for 
SOlVe N. Next. there exists n ~ :!N such that X. E B(x. l;'2N). Then 

B( Xn.~) C B('(R' 2~) c: B(.'(. 2~ + 2~) C U(O 

which is absurd. 
(b) It now suffices to prove that X can be covered by a finite number of 

balls B(x. :t:). Let Xl EX. If BC'tI' :t:) "" X. the proof is over. Otherwise. let 
''(2 E X - B{XI' -x). If B(x l • a) u B(.'tz. -x) "" X, the proof is over. Otherwise, 
let X3 e X - (B(xl'~) U B(Xl. :z»: etc. If the process stops, the theorem is 
established. Otherwise, there exists a sequence ('''(1' X3'" ,) of points of X 
such that 

xR * B(x i • :z) U ••• ..., B(."Cft _ I' -x) 

for every n. The mutual distances of the Xl are ~ :t:. Let x E X be an adherence 
value of (x 10 Xl •••. ). There exists an n such that ''(R e B(x. :z:2)' Next, there 
exists an,,' > n such that xR' e B(x. :z/2). Then dex •• . 't.,) < -1, which is absurd. 
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5.1.6. CoroUary. Ler X be a metric space. A a subser of X. The following 
conditions are equivalenr: 

(i) A is compact: 
(ii) from every sequence of poinrs of A. on" can exrract a .~ubsequence that has 

a linait in X. 

Suppose A Is compact. Let (x.) be a sequence of points of A. hence of A. 
It has an adherence value x EA. By 5.2.2. some subsequence tends to x. 

Suppose condition (ii) is satisfied. Let 0'1' Yl' ... ) be a sequence of 
points of A. Let x, e A be such that dey,. x,) :s J/i. Some subsequence 
(x ... x.1 , ••• ) tends to a point x e X. Then .'( e A (5.2.1). On 1he other hand. 

1 
d(y.,. x) :S d{j' ... x.,) + d(."C ••• . "C) .:s; n; ..,. d(x. i , x) - O. 

therefore Yo. tends to x. Thus. the sequence (YI • .Yz • ..• ) has a.n adherence 
value in A. Consequently. A is compact (5.2.5). 

5.3. Uniformly Continuous Functions 

5.3.1. Definition. Let X and Y be metric spaces, f a mapping of X into Y. 
We say that lis ulliformly conrinr,ous if. for every /l > 0, there exists an,., > 0 
such that 

5.3.l. It is clear that a uniformly contmu()us mapping of X into Y is con­
tinuous at every point, thereiore is continuous. But the converse is not true. 
For example. the mapping x ...... x: of R into R is continuous. but it is not 
uniformly continuous. For. suppose it were. Taking/l - 1 m Definition 5.3.1. 
there would exist f/ > 0 such that 

XI> x: 5 Rand Ix\ - .x:~1 S 1/ ~ 1."Cj - xii :S l. 

Now. let XI - 1,,., .. "Cz - 1/,., + 'I. Then JX I - xli Sf/and 

2 z ill,,' 2 1 
""CI - '''C21 = I,.,l - ;r - 2 -,,- - T YJ > 1. 

5.3.3. The example 5.3.2 lends weight to the following theorem: 

• Theorem. Let X and Y be metric spaces, f a comlnl/ous mapping of .'( 
inco Y. Assume X is compact. Then f is unifnrml,v concinu()"s. 
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Fix. :> O. We are to construct an '1 > 0 with the property of 5.3.1. For 
every :c EX. there exists an "" > 0 such that 

!C. EX, d(x" x) :$; '1" ~ d(f(x'),J(x» :$; ~. 

Let 0" be the open ball with center x and radius hoW' The 0". as x runs 
over X, form an open covering of X. Since X is compact, X is covered by Ii 

finite number ofsuch balls Ox,. Bxz •• ,., Ox". Set 

'1 = jnft!""". i"",z' ·, ... 1"",,) > O. 

Now let ~. x" e X be such that d(x'. xH
) S; ". There exists an i such that 

s' E Bx •• in other words. 

(1) 

Then 

thus 

(2) 

d(x,. x') < f"",. 

d(x" x") < 1'/",,' 

The inequalities 0) and (2) imply 

d(f(x'). 1(.'(,» :$; ~, 

whence d(j'(x'), I(x"») S; s. 

5.4. Equicontinuous Sets of Functions 

5.4.1. Let X and Y be metric spaces, 1 a mapping of X into Y. We recall: 

(a) f is continuous at .'Co if, for every 8 > 0, there exists an " > 0 such that 
d(x. xo) :$; 1'/ ~ d(f(x), j(xo» S; Il; 

(b) J is continuous on X if f is continuous at every point of X: 
(C) J is uniformly continuous on X if. for every Il > 0, there exists an 1'/ > 0 

such that d(x. :\,') S; " ~ d(/(x). I(x'» S; .. 

Now let ~h) be a Jamily of mappings of X into Y. 
(a) The family (fJ is said to be eqldcoPllinllolls at Xo if. ror every 8 > 0, 

there exists an 1'/ > 0 such that 

d(:c. :Co) S; 1'/ ~ d(J~(x).J.<x.o» :$; ! 

for aUIZ. 
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(b) The family <fJ is saId to be equi~ontinu(Jus un X if it is equicontinuous 
at every point of X 

(c) The family (fz) is said to be t4niformly equiconctnuous on X if. for every 
• > 0, there exists an '7 > 0 such that 

d(x. x) s;" => dt!.(x) • .1.(x'» S; s 

for all ~, 

5.4.2. Example. Take X - Y = R. Let (J..) be the family of all differentIable 
real-valued functions on R whose derivative is bounded by 1 in absolute 
value. Then (/3) ill uniformly equicontinuous. For. let e > 0; if x. x' e R 
are such that Ix - .~/I S; e. then 1J~<x) - /z(x')1 S s for all GZ by the mean 
value theorem. 

5.4.3. Remark. If a family (J,,) is equicontinuous. then each J~ is contmuous; 
However. the converse is not true. For example. take X = Y = R and let 
(j.) be the family of all linear functions. Each h is continuous, but the family 
(J,,) is not equicontinuous at any point of R, For. suppose lfJ were equl­
continuous at Xo. Take 8 = 1 in Definition 5.4.1. There would exist an '7 > t) 

lIuch that 

Ix - :Col S; '7:0 1J.,(x) - J~(xo)i S; I 

for all ce. Now. the function .~ H (2/,,>x. is linear. and 

: (xo + 11) - - Xu I .. 2 > 1. 

'

''' 2 I 

" " : 

5.4.4. Theorem. Let X and Y be metric spaces. (Iz) an equicontinuousfamily 
of mappings of X inco Y. Assume that X is compact. Then rhe Jamily llJ Is 
uniformly equiconrinuous. 

The proof is nearly the same as in S.:U, 

5.5. Complete Metric Spaces 

5.5.1. DefimtfGa. Let X be a metric: space. (a •• 022. , •• ) a sequence of points 
of X. Recall that the sequence IS called a Cauchy sequenc£' if 

d(llrn , a.) - 0 as In and /I - :C, 

in other words, if 

for every 8 > O. there exists an N such that m. n ~ N :0 
dla ... , a.) S; 8. 
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5.5.2. Theorem. Let X be a metric space, (a l • a2 •... ) a Sf!quence of points 
of X. If the sequence has a limit in X. then it is a Cauchy seql~ellce. 

Suppose that (a.) tends to a. Let" > O. There exists a positi'Ye integer N 
such that n ~ N =- d(alt. a) S 8/2. Then 

8 8 
I?I, n ;;: N ::;0. d(a",. a) s 2 and d(a., a} s 2 =- d(a",. ao) :s: e. 

5.5.3. It is well known that the converse of 5.5.2 is in general not true (for 
example in X = Q). We therefore make the following definition: 

DeflnitioD. A metric space X is said to be complete if every Cauchy sequence 
has a limit in X. 

5.5.4. Example. One knows that the metric space R is complete. 

5.5.5. Theorem. Let X be a metric space, (XI. X2' •• ,) a Cauchy sequence 
in X. (x.l' ,'(02' ••• ) a subsequence. If the sequence (xo,) has ~ limit I, then the 
sequence (x.) also tends to I. 

Let e > O. There exists an N such that m. n ~ N::;o. d(x"" .~.) s; e. Fix 
n ~ N. For nj ~ N. we have 

(1) d(x." x.) :s: e. 

A.s 1- 'X:, we have x", ...... /. therefore d(x." ,'(ft) ...... del, xo) (5.1.1). By 
4.4.4; the inequality (1) implies in the limit that del, xo) S; I:. This being true 
for all n ~ N. we have x • ...... 1. 

~ 5:5.6. Theorem. Let X be a complete metric space, Y a closed subspace 
of X. Then Y is complete. 

Let U'I • Y2' ... ) be a Cauchy sequence in Y. It is also a Cauchy sequence 
in X Therefore it has a limit a in X. Since y, e Y for all t, we have a E Y - Y, 
thus {yJ has a limit in Y. 

5.5.7. The converse of 5.5.6 is true. Better yet: 

~ Theorem. Let X be a metric space, Ya complete subspace. Then Y i$ closed 
in X. 

Let a e Y. There exists a sequence (y I, Y 2, ... ) in Y that tends to a (5.2.1). 
The sequence (Y,) is a Cauchy sequence (5.5.2). It thus has a limit b in Y 
since Y is complete. In X. (Yr) tends to a and to b, therefore a = beY. 
Thus Y - Y •. 
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~ 5.5.8. neorem. Let XI' '" X, bt' comp/ele metric spaces. X = 
Xl X , .• >c X, the product metric space. Then X is complete. 

Let (,V1< .111 ••• ,) be a Cauchy sequence in X. Each point y, is of the form 
(YII' YllI .. •• Yip), where YII e Xl.·.· .'vip e Xp' We have 

d(Y",I • . 1'.1> s d(y", •. v.) -+ 0 

as 1'11, n -+ :x:. therefore (,l'U.}':I' .\'31' ... ) is a Cauchy sequence in X" 
Since XI is complete, this sequence has a limit I, in XI' Similarly. 
(J'12.y2l.y3l ••• ·) has a limit 13 in X!, ...• (YI",V!r-',I".,.) has a limit 
i~ in Xp' Therefore (YI' ,lI2' ••. ) lends in X to the point {- (/1" .•• /p) (3.2.6). 

5.5.9. Examples. By 5.5.4 and 5.S.8. R· is complete. By 5.5.6, every closed 
su bset of R" is a complete space. 

5.5.10. Theorem. LeI X be a complete metric space. LeI (F\. Fl , ... ) be" 
dt'creasinfl sequence qrnonempty clm;ed subset~i o/X with diameters 0\. 6:. , ' .. 
Assume that is; -- 0 a.s r - :x;. Then the inrcrsection oflhe F; consist,s 01 
exactly one point. 

Let F - F I 1"1 F l r. F 3 I"" .•• , If F is nonempty then its diameter is S 151 

for all i. hence is zero. There are thus two possibilities: either F is empty or 
it reduces to one point. Let us show that F is nOllempty. 

Let at e Fl' Let us show that (a 1, Uz ••.• ) is a Cauchy sequence. Let 
g> O. There exists an N such that ON S; Il. rf 1'11, n ~ N then cz .. , L/~ e F~. 
therefore d(a"" a.) S; ~;. 

Since X is complete. the sequence (at) tends to a limit a in X. Since at e F. 
for j ~ tI. we have a e F'. - F •. This being true for every II, we have a e F. 

5.5.11. Theorem. Let X be a complete me/ric space. T c.l .iet eq/lipped with u 
filter base ~. 1 a mapping of T into X. Assume that Jor c!very i > 0, there 
exists B e:!I such that JtB) has diameter S; 8. Then 1 has a limit along ~. 

Denote by J(A) the diameter of a subset A of X There exists Bl e J such 
that cS(ftB 1» S 1. Next. there exists Bl IS ~ such that c5(f(Bl» s t; re­
placing Bl by an element of.~ contained In BI ,- Bl • we ctln suppose that 
B2 c:: 8,. Next. there exists B) e::i such that acr(B 3») s j and 8:1 c: B~. 
etc. By 5.1.3. «5(/(B,» S; Iii. By 5.5.10. the intersection of the f(B.) consists 
of a point I. Let us show that 1 tends to I along ¥i. Let ~ > O. There exists a 
positive mteger /I such that l,n S e. If' x e B. then [(x) e /(8.> and (s j( Bn). 

therefore 

d(j'!:c), f) S o([(B.» S; ~ S; " 
11 

Thus f(B.) is contained in the closed ball with ~enterl and radius J:. 
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• 5.5.12. Theorem (Saire). Let X be II complete metric space, C!, C:, ... 
U iequena ,)t dense open subsets ~1 X. Then U, .~ U, ,.., ... '.1 dense In X. 

Set C = C \ ,-~ L ~ ('. . We are to prove that for every '.:>pen ball B 
with radius:> 0, L" "" B is nonempty. Denote by B(x, fJ) (n:sp. B'lx, p» the 
·.'pen ball (resp. closed b<l.Il) with center x and radius p. 

The set L I ("" B IS open and nonempty. therefore it contains a ball 
B~ = B'(x!. PI) such that 0 < 1'1 S L The set U: '" B(x l , PI) IS open and 
nonempty. therefore it contains a ball B z = B'(x •. pz) such that 0 < pz S ~. 
The set U., ., B(x:. P2) is open and nonempty. therefore it contains a ball 
B3 = 8'(X3. P3) such that 0 < P3 S 1. etc. 

By constructlon. B ::l Bl .=l 82 ..:l B3::l . . The Bi are clo~d and their 
diameter tends to zero. By 5.5.10. there exists a pomt tl that belongs to all 
,)f the B . Then ,/ E 8. \If oreover. a ~ BII ':: UII for all ~: therefore a = C. 

5.5.13. Theorem. Let X be 0 metric Ypw.:e. X' (I dense subspace oj X, Y a 
complere metric space, r a uniformly continuous mapping oj X' into Y 

III There eX.isls I)ne and !)nly one wnwllIous mopping f rJj' X inro Y tlwr 
~xt.?",is j". 

l iiI f IS <mijiJrmil" cO/lLinu()lIs. 

The uniqueness of J in (i) follows from 3.2.15, Let us prove the existence 
of f. For each x E X, choose a sequence (x.) in X that tends t(," Let s > O. 
There eXists an '1 > 0 such that 

:,. =. E X' and d(:,. =2)::::; 'I => den:,), ('(z:.)) S I;. 

Now. ('l;.) is a Cauchy sequence. therefore there ~xists an N such th:it 

m. II ~ :-.i => d(x"" x.) :s; n. 
Then-

m. n ~ i'-i => d«(,(x",), f"{x.» ::::; .~ 

Thus (/'(x.)) IS a Cauchy sequence in Y. consequently tillS a limit in Y 
which we denote j(X). We have thus defined C\ mapping f of X into Y. If 
.\" E X' then ('(x.) tends to F(x), therefore l(x I = f'(x): ill other words. 
r ~xtends f'. 

L~t 11. ,'E X be such that d(u, 1.'1:S; '1.'2. Let lUI' u:.,. ) and (1'1' l':. - .J be 
th~ chosen sequences in X' tending to u and I!. Then £1(11" l'n) .... d(u. 1:) 
(5.1.1). therefore there exists an ~ such that 

n ~ N => d(u •. ,'n) S; '1 => d(j'(u.),f'lL'.» S; e. 

Letting 'I tend to tntlnit), one obtatns d( /(u). j (1')) S; r;. Thus 

u. I' E X and d(u. ~) S ~ => £II,} (It). fft.'» ::::; e., 
"" 

whIch proves that f is uniformly continuous, and ,I ;;mi(!rl continuou~. 
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5.6. Complete Spaces and Compact Spaces 

~ 5.6.1. Theorem. Lei X be (J metric space. The following ronditiol1s are 
eqllil'alenr ; 

(I) X is compact: 
(ii) X is complete anci.jor eL'ery r > O. there exists a finite cOI:el'il1g of X by 

balls (If radius e. 

Suppose X is compact. Let (Xl'X~ •• ,.) be a Cauchy sequence in X. 
One can extract a subsequence that has a limit in X (5.1.6). Therefore 
(Xt. -"2' •• .) has a limit in X (5.5.5). Thus X is complete. Let I: > O. The open 
balls with radius I: form a covering of X; since X is compact. a finite number 
of such balls suffices for covermg X. 

Suppose condition (ii) is satisfied. Let (x I, x~ • . , .) be a sequence of points 
of X. Cover X by a finite number of balls of radius!; one of these balls 
contains Xi for infinitely many i. One can therefore extract from (Xi) a sub­
sequence of points whose mutual distances are S; 1. Let us start anew with 
! replaced by 1. t, t .. '" We obtain an infinity of sequences 

)'t· .v!. }.~, •.. 
yf· y~. J'3· ... 
Jlt. yL )1$. , .. 

each of which is a subsequence of the preceding one, and :iUch that 
d(yi, yj~ S; 1/11 for ull i and j. The 'diagonal' sequence Cr:. y~ . . 1'3 .... ) is a 
subsequence of(x(), and d(y:;:, J'-:> S; l/m for m s; n. Therefme (yl) is U Cauchy 
sequence: consequently, it has a limit. Then X is compact by 5.2.6 applied 
with A = X. 

One can obviously replace condition (ii) by the folJowing: X is complete 
and. for every '1 > O. there exists a finite covering of X by sets of diameter S; '1. 

5.6.2. Theorem. LeI X he a compiet(> metric space. A a sub~('t ofX. The follow­
ing cOl1diciol1.5 are equil:ale"r' 

(i) A is compact: 
(ii) J()r e~'er}' " > O. one can cor;er A hy a finlee number of bal/s qf X with 

radius e. 

(i) = (ii). This is obvious. 
(ii) =- 0). Suppose condition (ii) is satisfied. Let Il > O. There exist closed 

balls B\ ....• B. in X with radius e that cover A. Then A c: B1 I.i ., .... B •. 
On the other hand. A is complete (5.5.6). Therefore A is compact (5.6.1 ). 
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5.7. The Method of Successive Approximations 

5.7.1. Theorem. LeT X be- a complete metric space, r a mapping of X into X. 
AS~'ltme lhut tllere exists", A. e [0, I) .~uch that d(f(x), f(;'(') S; .td(x, x') [or 
all.1:. x :: X. 

(i) TJu!re I!xisr.' one and only one a e X ~1tch rhat na) - a. 
(ii) For an}' Xo e X. the secluence of poinTS 

rellds ro a. 

Let a. heX be such that a ~ /(a). b = fIb). Then 

dCa, b) = dUCal. f(b» S M(a. b), 

thus (l - ).)d(a. b) S; O. Since 1 - ). > 0 we infer that dCa. b) S; O. whence 
d(a. b, = 0 and a "" b 

Let :co eX. Set .>: I = ftxo). x~ .. J'(x. I ).. •• We are going to prove that 
(x.) tends to a limit a and that I(a) "" a. The theorem will thus be established. 

Let us show that d(x •. l'n_ I) S; A"d(xo, Xl). This is clear for n - O. If it is 
true for n. then 

cI(."C ... ,. \' ..... 2) - dU(l'.). l(x •• I» S; A.d(x., x."" 1) 

S; M·d(xo, XI) - ). ... Id(xo • . ll)' 

whence our assertion by induction. From this. one deduces that if nand p 
are integers?; O. then 

~ d('''(". x •• ,) S; d(x •. .'(~.l) + d(x ••. I . x.'I'!J +- ..• + d(x •• ,._I' ."C.",,) 

S; (;'" + In'''' + ... + A..",-I)d(xo • ."C 1) 

S; ;'''(1 .j. ;. .j. ,tl .j. .•• J dlxo. >:1) = ,tn d(;~ ~.d. 

Since 0 :;;; .\ < 1. )." - 0 as 1'1 - ~. We thus see that lhe sequence (x.) is a 
Cauchy sequence. consequently tends to a limit a. 

We have d(x", a) - O. therefore d(j'(x.). f(a» - O. that is. d(x"I./(a» 
- O. Thus. the sequence (x.) tends also to I(a). whence II") == a. 

5.7.2. Example. Let I be a closed illterval of R. .r a functIon defined on I. 
with values in I. such that sUP ... d.f'(x) ! < 1. By the mean value theorem. 
I satisfies the condition of 5.7.1. Consequently. the equation x = j(x) has 
a unique ';oluti()D in I which can be obtained. starting with any point Xo 
of J. by [he 'successive approxImations' XI = flxo) •. '(! = ((."1) •.... 
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" 5.7.3. Remark. Let X be a complete metric space. B the closed ball in X 
with center:co and radius p,j a mapping (JfB into X such that d(f(x).j,x'\) 
S; ).tUx. :.;') for all ;(, x' e B (where 0 S; ;.. < 1). Assume. moreover, that 

d(f(xo), xo) .s; (1 - ;.)p. 

Then there exists one and only one a e B such that f(a) = oJ. 

Uniqueness is proved as In 5.1.1. One again forms XI = /(xo), x~ = 
l(xl),''', but. for these points to be defined. one must prove that they do 
not exit B. Indeed, let us suppose that xp E Band d(x p• X,-tJ ~ ;'Pd(xo . .xtl 
for p - 0, 1" -_. n. Then 

J(xo. :(n ... d S (1 + A. + .. ~ -to A.")d(·~o, XI) S -I 1 . d(xo. XI,1 S p-. 
-1\ 

therefore x._ l e B. and d('~'_l' X._2) ~ ;,n- ld(xo. Xl) may be proved as in 
5.7.1. 

This established. (xn) is again a Cauchy sequence and tends to a limit 
a:: B:/(a) = a is proved as in 5.i.1. 



CHAPTER VI 

Limits of Functions 

For real-valued functions of a real variable, the student already knows 
what it means for a sequence fl' f2 •... of functions to tend uniformly. 
or to tend simply. to a function f. In this chapter we study these con­
cepts in the general setting oCmetric spaces. We obtain in this way certain 
of the 'infinite-dimensional' spaces alluded to in the Introduction, and, 
thanks to Ascoli's theorem. the compact .'lUbsers of these spaces. 

6.1.- Uniform Convergence 

6.1.1. Let X and Y be two sets. The mappings of X into Y form asct which will 
henteforth be denoted '(X. V) • .. 
6.1.2. Let X be a set, Y a metric space. For f. 9 e '(X. V). we sct 

d(/. 9) - sup d(f(x), g(x» e [0. + 'X)]. 

Let us show that d is a metric (wtth possibly infinite values) on ~(X. V). If 
dU. g) - 0 then. for every x e X. 

d(!(x). g(:c» .. 0, 

therefore !(x) - g(x); thus f - g. It is clear that dU. 9) = d(g. f). Finally. if 
he ,,(x. Y) then, for every x IS X. 

d(f(x), h(:c» :s; d(f(x). 9(:C» + d(g(x). h(x» :s; d(f. g) + d(g. h): 

this being true Cor all :c e X. we infer that 

dU. h) :s; dC!. g) + d(g, h). 
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This metric is called the metric of uniform convergence on Ji'Cx. V). The 
corresponding topology is called the topology oluniform ,·onvergence. 

6.1.3. Let I. II' 12' 13' ... s ~(X. V), To say that (j,,) tends to f for this 
topology means that supnX dC/(x). I.(x» -+ O. in other words: for every 
p. > 0 there exists an N such that 

n ~ N ~ d(J,,(x)./{x» s; s for all :c e X. 

We then also say that the sequence (/.) tends uniformly to I. 

6.1.4. Let A be a set equipped with a filter base $I. For every ;, eA. let 
f~ e :F(X, Y). Let f e 'CX. V). To say that f~ tends to f along. for the 
topology of uniform convergence means: for every I: > O. there exists B e JI 
such that 

). e B ::0 d(j~(x). I(."C» s; s for all x e X, 

We then also say that fA tends to f uniformly along N. 

6.1.5. Exaaaple. Take X = Y = A - R. For filter base ~ on ~ take the set of 
intervals [a. +<XI). For A e Rand xeR. set f .. (x) - e-.\(JI:~+ll. TIleniA tends 
to 0 uniformly as A. -+ + <XI (that is. along ~). For. let e> O. There exists 
a Iii R such that A C1!: a,. e-~ s; 6. Then (provided a C1!: 0): 

A. C1!: a ::00 le- A( .. 3·rL• - 01 - e- A( .. l, I) S; t!-;' S I for all x sR. 

6.1.6. Theorem. Let X be a set, Y a complete metric space. Then the melric 
space '(X. Y) i.! complere. 

Let (fJ be a Cauchy sequence in .F(X. V). Let x e X. Then 

d(f".(x).!.(x» :s;; d(f",.fJ -+ 0 as m, n - 'X). 

thus (!.(x» is a Cauchy sequence in 'I. consequently has a limit in Y which 
we denote f(x). We have thus defined a mapping r of X into Y. 

Let 6 > O. There eXists an N such that 

m. n ~ N ;::;. dU .. , .fn) ,s; I: 

.- d(j",(x), f.(x» ,s;. for all JC e X. 

We provisionally fix x e X and m ~ N. As n -+ ~. the preceding inequality 
yields in the limit 

d( (",(.Y,). f(."C» ,s; e, 

This being true for all x e X. we have d(l;". f) s to Thus. 

m ~ N ~ d(f".. f) S B. 

rn other words. (I .. ) tends to 1 in ;F(X. Y), 
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6.1.7. Thus. to verify that a sequence oCmappmgs of X into Y tends uniformly 
to a limit, it suffices to verify a 'Cauchy criterion' for the sequence. 

6.1.8. Let UI' Uz • ••• E '(X. C). Let s e ~(X, C). We say that the series with 
general term u~ c,'olll'ergeJ IIniformly and has sum s if the sequence of finite 
partial sums U I 1" ". -+-. - • .j.. u" tends uniformly to , as n - "C. in other 
words if. for every 8 > 0, there exists an N such that 

n ~ N => lUt(x) ;- uz(:'C) .;. ••• + u.(x) - s( .. c)! S I for all x e X. 

For the series with general term u. to converge uniformly, it is necessary 
and sufficient, by 6.1.6, that the following condition be satisfied: for every 
t > 0. there exists an N such that 

n ~ /PI ~ :"1/ - I u",(x) .. u ... 1(;\:) .,.. • - . ..;.. u.ex)1 :S I: for alI:( e X. 

6.1.9. Let "I. "~. -" e ,,(X, 0. We say that the series with general term u. 
converges normally if there exists a sequence ill' Ct~. _ •• of numbers ~ 0 such 
that If :x. < .,.. ~ and such that 11I.(x)i :S :x. for all n - 1.2. ... and all 
:(eX. 

6.1.10. Theorem. A normally convergent series is uniformly conlJergenl, 

Let U hill, • __ e .Fex, C). Let :x \. (Xl_ • - • be numbers ~ 0 such that Li' :x. < 
+.~ and 11l,,(:c)l :S %" for all nand x. Let e > O. There exists an N such that 

n ~ m ~ N - :x", + ~_ I .,. - •• ..;.. !X. :S B. 

Then 

.. n ~ m ~ N - 11I",(;c) + .•• + u.(x)1 :S 

lu",lx)l + '. - ..;.. 'u.{x)1 :S !x'" + , .. + !X" :S ~ 

for all x e X, By 6.1.8. the series with general term u. is uniformly convergent. 

.. 6.1.11. Theorem. Let X be a lopologjcal space, Y a metric space. A a 
sel equipped with a filter base iM. For every A. e A, lelIA. e !6(X. Y). Assume 
thatfA. lends tof e '(X. Y) uniform/}' along;1l. Thenfe <€(X. V). 

Let Xo E X and 6 > O. There exists .t e A such that 

• d(J..(x).l(x» S; 3 

for all x :: X. Next. there exists a neighborhood V of Xo in X such that 

6 
x e V - dU~(X),fAl·'Co» :S 3' 
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Then. for all:c E V. we have 

d(j(.y.), j(.Y.o» S d(jey.), f .. (x» + dU,,{.y.). f!(:'<o)) • d(f,,(xu). [(Xo)) 

Il I: « 
S3-+-3"'j=e. 

thus f is continuous at ."Co. 

6.1.12. Corollary. Let X be a wpological space. Y a m~Tric space. 

(i) 'G(X, Y) i.~ cl()sed in ,'F(X. V). 
(ii) If Y is complete. then '\f(X, Y) is complete. 
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The assertion (i) follows from 6.1.11 and 5.2.1. Assertion (ii) follows from 
(i), 6.1.6 and 5.5.6. 

6.1.13. Theorem. Let T and X be topological spaces, Y II mer rIC: .~pa(·e, and 
9 E 'G(T x X, V). For every t e T, set f,(x) = get. x) (where x e: X). so that the 
!c are mappings of X into Y. Let to E T. Assume that X is compact. Then f, 
tends uniformly to f,1l as I tends to to. 

Let e > O. For each x e X. 9 is continuous at (to. x). therefore there exist an 
open neighborhood V t of to in T and an open neighborhood W x ofx in X such 
that 

(I) t E V" and x.' e W", :::. d(g(t. x'), g(to• x» S ~. 

As x runs over X. the W", form an open covering of X, therefore there exist 
XI."', X. E X such that X ... W"" ,,-, ... u W" •. Set V = V"' (",""""\ V.,.: 
this is a neighborhood of to in T. 

Let t e V, : E X. There exists an i such that'! E W:r,. Moreover. t E V •. ' 
Therefore d(g~t. z), 9(to • . '<,») S el2 by (I). Similarly. I.\) implies that 
d(g(to, z). g(to, Xi) S (./2. Then 

d(g(t, z), g(lo. ::» ~ e. 

This being true for every: 1$ X, we have d(j" ;;n) S e. Thus t E V = d(j; • .f;,J 
:s; r, so that f, tends to fro uniformly as t tends to to. 

6.1.14. Theorem (Interchange of Order of Limits). Let Sand T be sets 
equipped with filter bases ~, ~. Ll!t Y he " complete metric space. y a mapping 
oj' S x T InlO Y. For ever.\' S E S. set j~(t) = yes. /) (wlrere t ~ T). s() tllar 
,: E .F(T, V). We make the follvwing assumprions: 

each r. has a limit I. along '6: 
Is tends uniformly along .!A to an r E .FrT. V). 
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Then: 

Ii) f has <l limit ;' along ~. 
rii) s'-+ I, hu.~ a limit l' aiollg .~: 

(iii) 1 = t. 

VL Limits of Functions 

Let ~ > O. There exists BE,. such that S E B => dC(" f) s £; 3. Fix ~t1 E B. 
Then 

(1) 
8 

d(f..(n run s ~ for alIt E T. 
J 

There eXIsts C e '4 such that I. ( oe C =- d(/, .. (r). J~(()l S 1:;3. Then if t. (E C. 
we have 

Since Y is complete. we deduce from this (5.5.11) that J has II limit I along 'i. 
Again let .lO E B. Along ~. the pair 

U~Q(r). f(r» ~ y )( Y 

tends to (/~". f). The inequality il)yields in the limitd(I'n' I) S &/3. This being 
true for every So E B. we conclude that Is tends to J along 41. 

* 6.1.15. Remark. Let X be a topological space. Y a metric space. i I~) a 
sequence of mappings of X into Y, f a mapping of X mto Y. We say that Un) 
tends ~o f uniformly on t't'er)' compact sec if. for every compllct subset C of X, 
the sequence of restrictions fnlC tends uniformly to fIe. There exists a 
'topology of compact con vergence' such that the preceding concept is precisely 
lhe ~ncept of a sequence tending to a limit for this topology: however, we 
shalf not define it. 

If lJ~) tends to (uniformly on X. then of Cl)UrSe (j~) tends to f uniformly 
on every ;;ompact :set. However, the converse is not true. For example. take 
X = Y = Rand M."() = e - ,... R): for n = I. 2 •.... Let a > 0 and A > O. Then 

.'( E [ - iI. J J and n ;=: A + a=-( x - n)z c: A 2 => ~. ,~- n): S " . ,~ . 

therefore Un) tends umfonnly to 0 on [ - a. aJ. and thiS lor every a. Therefore 
i in) tends to 0 u11iformly on each compact subset of R. However. U~) does 
not lend to 0 uniformly on R. because J~(n) = 1 and so SUP~d 1 (,.(x) 1 ~ t. 

* 6.1.16. ~evertheless. we have the following result: 

Theorem. Let X be a 10caJly c:ompacl space. 'I' a merrk space. Ct;.) a sequence of 
t:ontinu()uo!)' ",crppinys of X inco Y. f a mappiP1g oi X inrn Y. Assume thar (f,,) 

tl:'l1d.s m lllnifnrmh' OIl t!r;t!ry w'"paL:1 set. The,t f I., .:onrinuous. 
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Letxo e X. Thereexis[s a compact neighborhood V ufxt) in X. The sequence 
(j~IV) tends uniformly to f I V. therefore/IV is continuous (6.1.11). By 2.2.10. 
f is continuous at XII' Thus t is continuous. 

6.2. Simple Convergence 

6.2.1. Let X and Y be sets. Consider the family of sets (Y ... )ux, where Y ... = Y 
for all x eX. "n element of nux Y" is the gIving, for each x E X.l1fan element 
of Y: In other words. it IS:l mapping of X into Y. Thus: 

n Y" = '(X. V). 
XFX 

Now suppose Y is a topological space. Then nux Y", in other words 
.F(X. V), ~arries a product topology (3.3.1). called the topology of simple 
conver(Jence (or the 'topology of pointwise convergence'). 

6.2.2. Theorem. Let X be a sec. Y a top(}l/}gical~pace. and f e :FCX, V). Let 
"I' ...• \N e X lind let W, be a neighborhood of/tx,) in Y. Let 

V(x1 ••.• x •• W \ ••• " Vv'N) 

be the set of all g e :F(x' Y) such chat 

g(x\)<?W\. g(X:)EWl ..... g(x.)eVv' •. 

Then the V(xJ ..... x •. WI, . ". W.) constitute a jundamental system of 
neiqhborlioods of f in .F(X. Y) for the WP()/ogy (Jf si,nple conL·ergen,·e. 

ThiS follows from 3.3.2(a). 

6.2.3. Theorem. if Y is separated. rhen .F(X. Y) is separaredjor The topology 
f)fsimple c(mveryenc:e. 

This follows from 3.3.2(b). 

6.1 .... Theorem. Let A bl! a .set equipped with a filter base ~. For every A. e /\. 
Ilfr J~ e F(X. Y). Let f :: ~(X. Y). The following conditions are equiz;alen!: 

(iI h tt!nds ro f 'I long .fI for thl! lOpolclY)' of simple convergence: 
Iii) jar !'Ilery x 0:; X. /.(). j tencis TO J'tx) alung 111. 

This follows from 3.3.2( C). 

6.2.5. In particular. if j~ fl' .f~. fl.' .. are mappmgs of X mto Y. to say that 
the sequence ( f.) tends to.r for the topology of SImple cun ~ergence means that. 
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for every ;c e X. (,,(x) tends to I(x). We then also say that (I.) lends simply 
to/-

6.2.6. Theorem. Let XOE X. The mapping j'.- !(:'Co) of :~(X. Y) imo Y is 
colltinuOlls Jor the lopology of .~imple ,·onvergence. 

This follows from 3.3.2(e). 

6.2.7. Let X be a set. Ya meLric space. On $I(X. V). there is the topology Y 1 

of uniform convergence and the topology ~ of simple convergence. Then 
5; is finer than 92. By 2A.7. it suffices to show that the identny mapping 
of .'F(X, Y) equipped with :T,. into $I(X. Y) equipped with .-1i is continuous. 
For this. it suffices by 6.2.4 to show that. for any fixed Xo in X. the mapping 
f- /(.'(o) of .?(X. Y) equipped with.:li into Y is continuous. Now, this is 
clear since 

d(f(xo), g(xo» ~ dU. g) for J~ g e .,(X. V). 

6.2.8. Let X be a set. Ya metric space. It follows from 6.2.7 that if a sequence 
(/.) of elements of 'ex. Y) tends uniformly to an element I of F(X. V). then 
U.) tends simply to f. The converse is in general not true (see the example in 
6.1.15). 

6.2.9. Nevertheless. we have the following result: 

.. Tbeorem (Dini). Let X be 11 compact space. Let 

Assume tllac Ii S fz s J3 :S ••• and chat U.) rends simply to 1. Theil (/.) 
tends T4niformly co f. 

Wehave!..(x) s; f(."C)forallxeX.Setg. - f - fn·Theg.arecontinuous. 
tend simply to 0, and 

Let e > O. Let X. be the set of x e X such that g.(x) ~ e. Then Xl ::J Xl ::J 

X3 ::J ••• and the X. are closed (cr. 2.4.5). If ."C e n X. then g.(x) ~ 6 for all 11. 

which is absurd. Therefore () X. - 0. Since X is compact. the intersection of 
a finite number of the X. is empty. Since the X. decrease. this intersection is 
one of the Xn • Thus XIII) '"" 0 for some 1'10' Then, for 11 ~ 1'10. we have 0 s; 
g.(x) S; II for all .x E X. thus I!.(x) -/(x)1 S t: for all x e X. 

6.1.10. Changing j" to -I.. we see that Dinfs theorem remams valid for 
decreasing sequences. 
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6.3. Ascoli's Theorem 

~ 6.3.1. Theorem (AscoJi). Lee X be a compact metric spaC'e, Y a complete 
metric space. A an equicontinuou.~ 5ubset 01 Cff(X. Y). Assume chat lor each 
x e X ehe set 0/ /(;~). where I runs over A, has compact closurt in Y. Tlten A has 
compact closure in the metric space Cff(X, V). 

The metric space~(X, Y) is complete (6.1.12). By 5.6.1. it suffices to prove 
the following; given any & > O. A can be covered by a finite number of balls of 
radius e. 

By 5.4.4. there exists an " > 0 sucb that 

£ 
X. :.t eX. d(x. x') S; n. I I: A ==- d(f(x). .r(x'» oS; 4 . 

We can cover X by a finite number of open balls with centers x I ••.•• x. and 
radius ". The set of values of the elements of A at Xl ..... XII has compact 
closure in Y (4.2.9(i»: we cover it by a finite number of open balls with centers 
.~I~ , ... )', and radius 6;4. 

Let r be the ~et of all mappings of i L, 2 •.•.. n} into {I, 2 ••• '. p}; this is a 
finite set. For each ;' E r let A, be the set of J e A such that 

B • ) r. 
d(f(x L), Y7( I,) .s; 4'" . , d(j (x,,), Yrllll S 4' 

By construction. the A7 cover A. It remains only to show that for any fixed f. 
A, is contained in some ball of radius s. 

Now, let J~ 9 e A? Let x eX. There exists an XI such that d(x. x,) < ". 
Therefore 

Moreover, 

d(f(x).j(x,» s~. .. 
dCg(:'(), g(Xj)) S 4' 

Therefore d(f(x). g(x» S B. This being true for all x e X. we have d(j, 9) S t. 

6.3.2. Example. Talce X = [0, 1], Y - R. Let A be the set of differentiable 
real-valued functions on (0, 1] such that I j(x) lSi and I f'(x) I S 1 for all 
x e [0, 1]. As in S.4.1. A is equicontinuous. By 6.3.1. A has compaCt closure 
in ~([O, 1]. R). 

In particular (5.2.6). every sequence of functions belonging to A has a 
uniformly convergent subsequence. 



CHAPTER VII 

Numerical Functions 

This chapter. devoted to real-valued functions. is heterogeneous. 
In §§ I and 2 we take up again some familiar concepts. perhaps in a 

little more general setting. 
Let (UI. Uz. U3 •••• ) be a sequence of real numbers. The sequence 

does not always have a limit. but it does have adherence values in I; 
among these, two play an important role: they are called (perhaps 
inappropriately) the limit superior and the limit inferior of the sequence. 
A)nore general definition is presented in ~3. 

In §4 we define semicontinuous functions. which generalize (for 
real-valued functions) the continuous functions. In connection with 
Theorem 7.4.15 (which is Ii corollary of Baire's theorem) we point out 
that even if we limited ourselves to continuous functions. the proof 
would naturally introduce semicontinuous functions. 

The student is already familiar with various theorems on the 
approximation of real-valued functions of a real variable: by ordinary 
polynomials. or by trigonometric polynomials (cf. the theory of Fourier 
series). In §5 we give a very general result that encompasses these earlier 
results. It is applied in §6 (devoted to 'normal' spaces) to the approxima­
lion of continuous functions OD product spaces. 

The mappings of a set X into i are called numerical tunctions. If the 
mapping nas values in R we lOometimes say, more precisely, finite numerical 
function. 



1.1. Bounds of a Numenaal Function 71 

7.1. Bounds of a Numerical Function 

7.1.1. Let j be a. numerical function on X, Recall that the supremum off 
011 X, denoted sup.,." I(x), is the supremum of the set leX). This is the ele· 
ment a of ii characterized by the following two properties: 

0) lex) :saforaltxeX; 
(2) for any b < a, there exists an x e X such that j(x) > b. 

The infimum of f on X. denoted inf.,.x jex). is the infimum of the set f(X). 
One has 

inf f(x) = -sup(-f(x)~ 
.,.x :r.X 

which reduces the properties of the infimum to the properties of the 
supremum, 

7.1.2. Recall that J is said to be bounded above if sup.,.x I(x) < 1" 'X.. 

bounded below if inr.,.x I(x) > -:.c, and bounded if it is both bounded 
above and bounded below, A bounded function is finite, but a finite function 
is not necessarily bounded. 

7.1.3. One calls asci/Iillion al f ouer X the number 

sup/ex) - inf j"(x) 
:rIX x.X 

(provided that 1" is neither constantly +::c nor constantly - 'lO, so that the 
difference is defined), 

7.1.4. Theorem. Let X be a set, I a nU1M1'ical junction on X, (X/lie' ajami/y 
o/subsets o/X covering X. Then: 

sup/ex) -sup ('sup /(X)). 
;UX 1.1 .,aX, 

Set a = supux f(x). a. = sup.,. x, /(x). It is clear that a, :S a for all i e I. 
Let b < a. There exists x e X such that /(x) > b. Next. there exists j e I 
such that x E X" Then b < a,. Thus a = SUP'&I ai' 

7.1.5. Corollary. Let X. Y be sets • .r a numerical junction on X x y, Then: 

sup j(x. y) - sup (suPf(X. )I)) 
j;I:.1ICX~Y "liX IE)' • 

- sup (sup I(x. y»). 
y.V .,EX • 
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The set X ;( Y is the union. as x runs over X. of the sets lxl x Y. The 
first equality thus follows from 7.1.4. 

7.1.6. Theorem. Let X be Q set. I Qnd q numerical Junctions:m X. 

(i) sUPux i]'(.-.;) + g(x)) ~ supnX lex) .J.. SUPxEX g(x). 
(ii) If f ~ 0 and 9 ~ 0. then 

sup l/(x)g(;~» ~ (sup f(X») (sup q(X»). 
uX \.:.x, x.x 

Set a = supux lex}. b :a Supux g(x). For every x e X. we havef(x) ~ a, 
gex) ~ b. therefore I(x) + q(:r:) ~ a .,.. b. Consequently sUP:aaX (f(x)+g(.y.)) 
~ a-b. Assertion (in is proved in an analogous manner. 

I,The statemem presumes that the numbers lex) -I- g(x). for example. are 
defined: this would not be the case if. at some point Xo of X. one had for 
example /(xo) = + "C and g(xoi = - ':t:. Also excluded are expressions such 
as O· + oX;. Here, and in what follows, it is implicitly undersl.ood that we are 
avoiding such Indeterminate expressions.) 

7.1.7. Theorem. Lt!t X be r.l ser. f" numerical JUl1ctiolll)PI X. and k E R. 
\i) SUP.ux (l(x) 1- k) - (sup,..xf(x) ..;. k. 

(ii) Ilk ~ O. then supux (klex» = k(supux lex»~. 

Set Cl "'" sUP:o:exf(x). By 7.1.6. 

sup (fIX) + k) ~ a • k . ... " 
If k - +::.c. equality clearly holds; suppose k < 'T' "-'. Now let h < a + k. 
We have b = C T k with c < a. There exists "CI) E X with 1('(0) ~ c. whence 
!(Xc) + k ~ c - k ... b: therefore SUP.:ex (f(.'() - Ie) ~ b. This proves (i). 
One reasons analogously for (ii). 

7.1.8. Corollary. Let X. Y be sets, / Q numerzcal jimcticm on X, and 9 
a numericallunc£ion on Y. 

(i) sup .. .x.l''IY (1(:c, + g(y» .. sup .... x /(x) + sUPV€Y gO'). 
(ii) III ~ 0 and 9 ~ O. then 

","~~f.//(Xlg(y» = (:~~ ((X»). (~~~g(y»). 
Set 

a ... sup!(x). b = supq(,YJ. 
x.X Y.V 

~... sup (((."C) + g(y) • 
... 11:. v.Y 



't,l. L.mit of an IncreasIng NumerIcal FUnctIon 

By 7.1.5. 

.: = sup [sup (J(x) ..;.. g(y»]. 
,&Y ".x 

Inside the brackets. g(y) is a constant. By 7.1.7. 

t: ... supl.a -i- g(}». 
1sY 

Then. again by 7.1.7. c - a + b. One reasons similarly for (ii). 

7.2. Limit of an Increasing Numerical Function 

il 

7.2.1. Let X be an ordered set. We say that X is increasingl), jilteriny (or 
'directed upward') if. for every x e X and x,' e X. there exists an x" e X such 
that x" 2: x and x" 2: x'. Decreasingly filtering ordered sets are defined in l.n 
analogous way. 

1.2.2. Examples. (a) A totally ordered set is both increasingly filtenng and 
decreasingly filtering. 

(bl Let I be a set. X the set of all finite subsets of I. Order X by Inclusion. 
Then X is both increasingly filtering and decreasingly filtering. 

(e) Let :II be a filter base on a set. Order .:B by inclusion. Then .4 is de­
creasingly filtering. 

7.2.3. Let X be an IDcreasingly filtering ordered set. for every :c e X. let 
B" be the set of majorants of x in X (that is. the set of elements of X that are 
2: x). Then. the B. form a filter base JI on X. For. x e B ... thus Bx 'F- 0. On 
tbe other hand, if x.;c' E X. there exists a majorant x" of x and x', and one has 
B •• -= B,.."" B •.. 

When f is a mappmg of X into a topological space. the limit of / along 
.-I-if it exists-is called the limit off along tile inoea.'1ingl,\· jiltering .~et X 
and is dentlted Iimx f or Iimx f(xl. 

There are analogous definitions for decreasingly filtering sets. 

7.2.4. Theorem.I.er X he an Increasingly jiltering ordel'ed sec, .r an in'·rea.~ing 
",uppil'l(J of X inco I. and I tIle .'l4premum of f. Then the limir of f along X 
.!xl.us and is r!qllal tv l. 

We can suppose I > -~. Let V be a neighborhood of I In it: it contains a 
neighborhood of the form [a. b]. where a < l ~ b. There exists an x!: X 
such that j(x) 2: a. Then. for all y 2: x in X. we have 

f(y) :i!: fIx) ~ cl • 

... hereas JO') ~ I. therefore /I}')e [a. bl= v. 
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7.2.5. Changing f to - J, we see that if f is decreasing and I' is its infimum. 
then the limit of f along X exists and is equal to r. 

7.2.6. Suppose X is decreasingly filtering. If / is increasing (resp. decreasing). 
then the limit of f along X exists and is equal to the infimum (resp. supremum) 
off. Indeed, for the opposite order on X, X is then increasingly filtering and 
fis decreasing (resp. increasing). 

7.3. Limit Superior and Limit Inferior of a 
Numerical Function 

7.3.1. Definition. Let X be a set equipped with a filter base .11, f a mapping 
of X into R. A the set of adherence values of r along JI. By 2.6.6 and 4.2.1. 
A is closed in R and is nonempty, hence admits a smallest and a largest 
element (4.4.3), These elements are called the limit inferior of / (liong:JI and 
the limit superior 0/ / along fII. They are denoted lim inf .. f and lim sup. f 
(or lim in( .. f(x). lim sup. /(x)). 

This definition admits many special cases: 

(a) If (II.) is a sequence of real numbers. one can speak of lim sup._"" u. 
and liln inf"_,,, u. (these are elements of R and always exist. whereas 
Iim._or: u. does not always exist). 

(b) If I is a mapping of a topological space X into R and if a e X. one can 
speak of lim suP",_. I(x) and 11m in(._. lex). 

Etc. 

• 7.3.2. Theorem. Let X be a set equipped with a filter base iii, f a map­
ping olX inlO It. 
(i) lim sup. f(x) 2: lim inf,i! f(x). 

(ii) For / to have a limit a/ony~. it is neceSStlry and su.fficient that 

lim sup /(:c) = lim inf/(x), 
111 .. 

and the common value is then the limit of f. 

(i) This is obvious. 
(ii) The :space R is compact (4.4.3). Therefore. in ordCl' that f have a limit 

along ~. it is necessary and sufficient that the set of adherence values of l 
along ~ reduce to a single point. which is then the Iimii (2.6.4 and 4.2.4). 
Thii implies (ii) at once. 
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7.3.3. Theorem. Let X be a set equipped with a filter base ZI./" a mapping or 
X inro R. and m. n E R such that . . 

m > lim sup lex) and n-< lim inf r(~). 
II JI 

Then chere exi$ts B E r::4 ,>uch chat 

X E B :;> n < f(x.) < m. 

For. (11, m) is an open interval of R that contains the set of all adherence 
values of f along;;j. and it suffices to apply 4.2.3. 

7.3.4. Theorem. Let X be a set !'quipped wirh a filter base JI.i a mapping of 
X Into R. For every B E fA. let 

U8 = sup I(x), L'8 = inf /(x). 
%.8 ",eB 

TheIl (cj 7.2.2(c) and 7 . .2.3): 

lim sup j(x.) = inf UB = lim UB' .. Be~" 

lim inf trx) = sup 118 = lim L'B' 
!II B •• ' iI 

Since f ~n be replaced by -J. it suffices to prove the first group of 
formulas. Set 

a = lim sup f(x). ,. h = inf UB' 
Be~ 

If B. B' e .!JH and B ':l B'. then 118 2: UB': by 7.2.4. lim" LIB exists and is equal to 
b. Since a is an adherence value of f along ~. we have a E f(B) for all B E ~ 
(2.6.0); since UB is the largest element ofJ(B)( 1.5.9 and 4.4.3), we have a S; U8; 

this being true for every B E (ii, we have a :s; b. Suppose a < b. Let :x E (a. b). 
As in 1.3.3. there exists B E f!l such that x E B => f(x) < ~: then U8 :s; :x and 
a fortiori b :s; 'l. which is absurd. 

7.3.5. Example. Let (II.) be a sequence of real numbers. TIlen: 

lim sup u. = inf(SuP u.) = lim (~sup u.) 
II-,¥I P .'I~p '. ,-".C lloi!.P ..! 

lim inf Un = sup(mf 14.\ = lim (tnfu.)' 
,.-a: p lIap 1/ ,'_'4~ IJc:.p . 
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• 7.3.6. Theorem. Let X be a ~t equipped with a filter base !N.I and 9 
mappings of X into R such that I(x) s g(x) for all."C 5 X. Tilen: 

lim sup f(x) $ lim sup g~x). 
ill /I 

lim inf I(x) .s; lim inf q(x). 
:11 ill 

Let B e ~. Thenl(x) s; SUP ... B g( .. ~) for all x e B. therefore sUP"..s Itx) S; 
SUpuB g(x). Passing to the limit in this inequality. and taking account of 
7 • .3.4. one obtains lim !UP:II I(x) s; lim sUP. g(x). One sees similarly that 
lim inf. f(.'C) S; lim inf. g(x). 

703.7. Theorem. Let X be a set equipped with a lilter base~.f ,md oJ mappings 
of X into R. Then 

lim sup (I(x) T g(:c» .s; lim sup [(x) ~ lim sup g(x), 
ill :JI 61 

and, if j ~ O. 9 ~ O. then 

lim.sup (j(x)g(x» $ (lim.sup lex») . (lim.sup g(X)} 

If one of the functions I. 9 has a limit along .'M. the::.e inequaliTies become 
equalities. 

Let B e ~. Then 

sup (f(x) + y(x» $ sup lex) '" sup (I(X) 
".s , .. 8 >,.s 

by 1.),.6: passing to the limit along [he ordered set JtJ. and using 7.3.4. we 
deduce that 

(1) lim sup (J(x) + g(x)) S; lim sup I(x) + lim sup g(:-cl. 
:II ill A 

Set I'S = inf .. ea"x). For all.'( e B. 

Va T ~(xJ s; Itx) - g(x). 

therefore, in view of i.1.7. 

L'B + sup g(;'() S; sup (j'(:c) - g(x)): 
:uB ... 8 

passing to tile limit along the ordered set ., we deduce that 

(:) lim inf lex) ~ lim sup ,,(.~) S; lim sup (ft:c) .. g(x)~ 
• • A 
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If I has a limit along :M. then lim sup" f~) = lim inf.l(x). Comparing 
( 1) and (2), we see that 

lim sup (fi,() ... g(;c» = lim I(x) + lim sup g(x). 
" !II !II 

One reasons in an analogous way if /I has a limit. and in the case of products. 

7.4. Semicontinuous Functions 

7.4.1. DeftDftioD. Let X be a topological space., Xo '= X. and IE '?(X, I). 
We 1ay that I is lower semiconctnuous at Xo if. (or every ~ < f(xo). there 
exists a neighborhood V of Xo in X such that 

x e V =- },(.'t) ~ A.. 

We say that! is upper semiconrinuous at Xg if. for every JI. > I(xo). there 
exists a neighborhood V of Xo in X such that 

x e V =- I(x) S Il. 

7.4.2. To say that J is lower semicontinuous at :Co amounts to saying that 
-fis upper semicontinuous at Xo. It therefore: suffices. in principle. to study 
the properties of lower semicontinuous functions. 

7.4.3. Example. Let X be a topological space. :Co eX. and Je ~(X. R). 
Then: J is continuous at .'to <=>.r is both lower and upper seI1llcontinuous 
at Xo. 

7.4.4. Example. For x e R. set I(x) = x if x ¢ 0, and 1'(0) .. 1. Then r 
is continuous at every point of R - {Ol, and lis upper semicontinuous at 0 
but not lower semicontinuous there. 

7.4.5. DefiDltioo. Let X be a set. CJi),EI a family of numerical functions on X. 
We denote by ~UPI.t ii. infi&t ii the functions x - SUP'lIt I~x).;c ~ infieJij(x) 
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on X. These are called the upper envelope and lower envelope of the family 
tJ;liel' Tn particular. If J and 9 are two numerical functions on X. one can 
.ipeak of super. g) and inf(l g). 

7.~.6. Theorem. Let X be a lopologfcal space, Xo E X. f wnd g numerical 
junctions on X thac are lower semicontinuous at Xo' Then sup(j. gj, infU;g) 
and.l-lot 9 are lower semicontrnuou~ at Xo! The same Is true Q"f [g if ,~ 0 and 
9 ~O. 

We give the proof for i + 9 (the other cases may be treated in an an­
alogous way). If J(xo) = -~ or g(xo) = - 01:.. the result is evident. Other­
wise. let A. < J(.to) + g(~'(o ~ There exist ?t. v t: R such that 1-' + ,t ~ t.. 
".<J(x~ , <: g('!qJj.. Next. there exist neighborhoods V. W of Xn in X 
such that 

~ E V =- I(x) 2: J.t. 

Then 

X E V'A W ::::. /(x) ,.. g(x) 2: J.t T __ - A.. 

7.4.7. The assertion 7.4.6 may be extended. one step at J. time. to finile 
families of numerical functions. 

7.4.8. The case of infinite families requires some precautions, as the follow­
ing example shows. For n = 1. 2, ••• , let .r.. be the numerical function on R 
defined by (.{x) = e-u '. Each .I~ is continuous. However. inf(f,,) is the 
function Ion R such that ](x) to: 0 for x oF O. f(O) = 1: and J is not lower 
semicontinuous at O . 

../ 

• 
7.4.9. Nevertheless. we have the following result: 

~ Theorem. Let X be a topological space. Xo e x.. (,!i)ie 1 a family ofnumerical 
functions Oil X. and f = SUP;.IJi. If che [; are lower semicontinuous at Xo 

'lJor I!xmnple. continuous at xo), then lis lower.semicontinuolls at Xot 

Let.t < !tl:o). We have f(xo) = SUPt., Ji(xo). Therefore there exists an 
i E I such thaf A. < /;(xo'J,. Next. there exists a neighborhood V of Xo such that 
x E V -J!(x) 2: .t,. Then x E V ::::.J{x) 2: I.. 

7.4.10. Definidon. LeI X be a topological space and fE'(X,~; We say 
that f is lower (resp. upper) semicontinuous on X it" f is lower (resp. upper) 
semicontinuous at every point of X. 
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• 7 .... 11. Theorem. Let X be a topological space. and lE .?"(X. Ih The 
folluwzng "ondittons are eqllivalenr' 

(i) r is (ower semiconcinllous on X: 
iii) }'or livery .1. oS R. the set o/x E X such that I(.c) S .i. i.~ dosed: 
(iii) for every;' e R. the set qfx E X such that I(."C) > .4. is open. 

Since f-I([ - X. A.]) and j-I«A.. + x]) are complementary in X. 
conditions (ii) and (iii) are equivalent. 

(j) =- (iii). Suppose ,. is lower semicontinuous on X. Let 

A = f 1((A.. + x]). 

lfoto e A thenf(xo) > A.: sincefis lower semicontinuous at Xo. there eXIsts a. 
neighborho()d V of ."C" such that x E V =- /(X I > A.. Therefore V c: A. Thus . 
• \ IS a neighborhood oj' each of its points. consequently is open. 

tiii) =0 (i). Suppose condition (iii) IS satisfied. Let Xo e X. Let A. < !(xo). 
The set A = f- I«(A.. - -x:]) is open. and Xo e A. thus A IS a neighborhood of 
.'Ct. Since f(:<) > A for all x E A. we see that f is lower semicontinuous at x~. 

7.4.12. There are analogous characterizations of upper semicontinuous 
functlons. 

7 .... 13. Corollary. Let X be a topological space, Y a subset o/X, ({) the charac­
reriSllC lun~tion. olY in X. For Y to be open (resp. closed), it is n.ecessary 
and Jufficient that ({) be lower (resp. I.pper) semicon.zinuous. 

Let X,t be the set of x oS X such that (()(x) > A.. If A. < O. then X. = X. £r 
o S A. < I. tben Xi. = Y. If A. ~ 1. then X, - 0. The sets X and 0 are open 
in X. By 7.4.11. we thus have 

(/) lower semlcontlnUQUII _ Y 0pen. 

From this. one deduces the characterization of the closed sets. 

7.4.14. Theorem. Let X be a compact space.j a lower semironrinuous junction 
on X. and m = inf ... xj(x). There exists an Xo E X sudl rhal/(xlJ) = m. 

For every;' > m, let X .. be the set of :c E X such that llX) ~ A.. This set 
IS closed (7.4.11). and it is nonempty by the definition of the infimum m. 
Every finite intersection 

IS nonempty (because if A., is the smallest of the numbers AI' '" .1. •• then 
X., ,- .•. ,.., XAft - X;). Since X is compact. nJ.>'" XA is nonempty. Let Xn 

be a point of this intersection. For every A. > m. we have ''(0 Ii: X •. that IS. 
l(.'CQ ) ~ A.. Therefore /(xo 1 Sm. Also f(."«() ~ m. thus.!'(:co) = m. 
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• 7.4.15. Tbeorem. Let X be a complete metric space. U;)ill a family of 
IOMier semicontinuous functions on X such that SUPie.Jj(X) < +.'JC for each 
x e X. Then there exi.n a nonempcJI open subset t.: of X !lnd a jinite number 
M such chat JXx) S M: for all i e I and x e V. 

Let .r - sUPiaiJi. Then I(x) < + 00 for all x e X by hypothesis. and f 
is lower semicontinuous by 7.4.9. For n = I, 2, _ .. , let U. be the set of.lC e X 
such that f(x) > n. This is an open subset of X (7.4.11). If all of the U. were 
dense in X. there would exist a point Xo belonging to all of the U. (5.S.12). 
One would then have f(xo) > n for all n, therefore f(xo) = +:0, which is 
absurd. Thus for some integer no, Uno is not dense; in other words. there 
exists a nonempty open subset U of X disjoint from L' NO' For all x e V, we 
have x IE U.o' therefore lex) SilO, consequently ftx) ::s; no for a11 i e I. 

7.5. Stone-Weierstrass Theorem 

7~.1. Lemma. Let X be a compact space, ;Ie a subset olfl(X, R) having the 
following properties: 

(i) if u e .If and u e Jt:: then sup(u. u) e ~ and inf(u. D) e Jr'; 
(ii) ifx, y are points of X and if'%, peR (with l: = P ifx = y). then chere exists 

u e .If such that u(xj = :X. u(y) - p. 
Then every function ill fI(X, R) Is the uniform limit of a sequence of lunc· 

tions in.K. 

Let j'e ~(X. R) and Il > O. We are to construct 9 e:lf such that f - l: S 
gSf+B. 

(ao) Let Xo e X. Let us show that there exists a function 1/ e.J'f such that 
II(Xo) = f(.to) and 1.1 ~ f - B. 

For every y e X. there exists Ii function u, e.1f such that uy(xo) = J(xo) 
and u,(yj = 1(Y). The set V, of all x e X such that Il,(x) > I(x) - Il is open 
(cr. 2.4.5). We have y E V" thus the V." as )' runs over X, form an open 
covering of X. Since X is compact, it is covered by sets V"" ... V'ft' Let 

U = sup(uy1 • 1.172 ' .... uyft ) e Jt: 

We have u,,(xo) =- I(xo) for ail i, therefore u(xo) .. )'(xo). Let x Ii: X. We 
have x E V'o for some i. Then u(x) ~ u,,(x) > I(x) - 8. and u satisnes the 
stated conditions. 

(b) The function u constructed in (a) depends on .to- For every x eX. 
let us define similarly a function u" e.Jt' such that II,,(X) = j(x) and II" ~ 
f - e. The set W ~ of all Z E X such that II",(Z) < 1(:) + s is open. We have 
.'t Ii: W x' Since X is compact. it is covered by sets W"", .. 0, W"p' Let 

9 = inf(II", •... , Ii",.) e Jf. 
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We have vz, ~ J - 8 for all i, therefore 9 ~ f - eo Let x e X. We have x e W"J 
for some j. Then g(x) ~ v",(x) < J(x) + s. Thus 9 ~ J T ~ 

7.5.2. Lemma. The fi4nctton ... /i on [0, 1] is I he IUliform limit oj a sequence oj 
polynomials in l with real coefficients. 

We define functions poet), PICr). Pl(t).. I I, for t e [0, 1], recursively. in 
the following way: 

PoCt) = O. 

P.+ I(t) .... Po(t) + 1<l - P.(t?). 

Let us show by induction that 

poet). PI(l)," ••• P.(t) are polynomials in t. 

and 

° S; poet) S; PI(r) s; ••• S; P.(t) S; ..;~ on [0, 1]. 

This is cenainly the case for PI .... 0. Let us admit the preceding statements 
and let us prove the corresponding results for n + 1. It is first of all immediate 
that PO+l(t) is a polynomial in r. Next. for t e [0. 1]. we have r ~ P.(t)=, 
therefore P"-ltt) ~ p,.(t~ Finally. 

P,"I(t) - Ji .. P.(t) - ,/i + ~t - p,,(t)l) 

- (PII(t) - Jix 1 - l<P.(t) ..f. "Ii». 
Now. p,,(t) + Ji ~ 2.Jt, therefore 1 - i<P1I(t) + Ji) ~ I - ..fi ~ 0 in 
[0. I], and P.W - Jr s; 0, therefore Po+l(t) s; ,p. 

For every t e [0, 1], the sequence (p.(l» is increasing and bounded above 
by .Jr.. therefore has a finite limit f(l) ~ 0 that satisfies 

J(t) .. fell T -kt - f(t)2). 

whence/(t) = . ..,ri. Finally. the P. tend to! uniformly on [0, 1] by 6.2.9 . 

• 1.5.3. Theorem (Stone-Weierstrass). Let X be a compacr space, .7f a 
subset of 1f(X. R) har:ing the following propertieli: 

(i) the constant /unctions belong to .Jf; 
(ii) I/" II, 11 e .K, then II + V e .It' and uv e oK ; 

(iii) ifx. yare di.!tinct point .• afX. there exists u e;.J( .such that U\x) ,p. 14lV). 

Then every function ill ~'( X. R) is the uniform lImit of a sequence of functions 
lnJt: 

Let :;P be the closure of Jt' in (j(X, R) for the topology of uniform con­
.... ergence. We are going to show that if possesses the properties (i) and (ii) 
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\)f 7 . .5.1. Then. by 7.5.1. the closure of Yi will be equal to 'C(X. R). whence 
JiI = ~(X. R). which will imply the theorem. 

(a) If II E K and L' e .K. then u ..I. 17.: ,ff. For, there exist sequences (u.), 
(t'.) olf iunclIons in .It such that Un - U, Ii. - ,,' uniformly: then u, - v. -
" - I: uniformly. whence II - {''; Yl. Similarly. UL' '.: .K; and if A. e R. then 
),u E Jlt. Thus. every polynomial in II, that is. every function of the form 

A., + A.IU + A.2U2 ? .. "T" A.,U', 

where ..i.o, •..• A.. E R. belongs to ]I'. 
Ib) Let x. y be distinct points of X. and 2. fJ E R. There exists r: s.lf 

such that v(x) ;0= "tV!. Sel 

,r = I -(l" - Ii(V». 
L'(X) - r;(y) • 

Then r' ~ oK. t·'(x) = I. u'(y) = O. Let 

U == fJ '1" (2 - {J)v'. 

Then u e.Jf and It(X) = :x. u(y) = /3. 
(c) Let us :Kand let us show that :lli e .ft:Thefunctionu. being continuous 

on X. is bounded (4.::.13). On mUltiplying II by a suitable constant, we are 
thus reduced to the case that - I S; £I :s; 1. Then 0 :S ul :s; I. Let s > O. 
By 7.S.2. there exists a polynomial pet) with real coefficients. such that 
p(t) - ,,It I :s; e for all t e: [0. 1]. Then I P(U(;~)2) - ",- U(,t)2, :s; e for all 

x = X. that is. I p(ul ) - I u II :s; B. Sow. p(u2) E 71 by (a). Thus i II I is adherent 
10 :if: consequently lui e :if. 

(d) Let II. v e ~ In view of (a) and (c). we have 

sup(u, tJ) =!<LI ... "'" 11.1 - t"l) e.lt', 

inf(u. v) ... !(u ... L' - :1.1 - 1'1) e .f{', 

7.5.4. Corollary. Lei X be a compact spac£' •. W' a set vI cominuous ... ~ampll!x­
valuedluncrions on X, hat'ing theJollowinq properties: 

(i) the cmnplex-lJailled cOllsumt Ji.lllclions belongs to .if': 
(ii) if II. V e Jff. then u +' t' e .Jf'. uv e .It and U E Jff: 
(iii) ifx. y. are distinct points or X there exists 1.1 e :1t Slldl that U(X) == lIev}. 

TJum t't·ery fUliction in ~(X. C) is the uniform limit of.J sequence of 
function!.' in .ft; 

Let .Jt" be the set of functions belonging to ,It that are real-valued. Then 
.tf' satisfies the conditions (i) and (jj) of 7 . .5.3. If .'c. f are distinct points of X. 
there exists u e AI' such that u(x) ;i= 11(.1'). Then either Re u(x) ;= Re u(y) or 
1m u(x) ;;6: 1m l.I(y). Now. 

I 
Rc u =-1(u ~ u) c ,If' und 1m U = fi (II - Ii) e 11.". 
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therefore .1(' also satisfies condition (iii) of 7.5.3. Let 9 s '~'(X. (./, Then 
9 - 91 + ifh with 91' B2 E I'I(X. R). By 7.5.3, 91 and 9l are uniform limits of 
functions in .ft". therefore 9 is the uniform limit of functions in .Yt. 

7.5.5. Corollary. Let X be (/ compact subset of R", .md .f E '6(X. C). Then f 
is the uniform limit 011 X of a ,~equence of poly,.omia/~ in n rar/ables with com­
plex coefficients. 

Consider the polynomials in n vanables with complex coefficients. These 
are functions on R" whose restrictions to X form a subset .If' of 'ef(X. C). 
I! is clear that .:If satisfies conditions (i). (ii). (iii) of 7.5.4. whence the corollary. 

7.5.6. Corollary. Let f be ~ continuous, ~omplex-l)a/lled periodic }imctioll on 
R of period I. Then J is the uniform limit on R of a sequence of trig(Jlloltlerric 
polynomials (thar is. JUllction.~ of the form 

... -II 

where the a, are complex conswms). 

Let p be the canonical ma pping of R onto T (3.4.3). Since f has period I, 
there exists a complex-valued function 9 on T such that f(x) = g(p(.x) for 
all x E R. By 3.4.4. 9 is continuous. By 4.1.16. there exists a homeomorphism 
B of U onto T such that (} - l(p(X)) - eZ1ri.T for all .'( E R. Let It = y • a.: 
~(U. C). For all x e R. f(x) = g(p(x» = h(lr l(p(X») = h(e:l"iX). 

Now. U IS a compact subset of RZ = C. Let c > O. There exists a poly­
m)mial L ... " a",nx·'y" in x and y. with complex coefficients. such that 

! h(.x + iy) - L a .. nx"'y" i ~ c 
I m.1I \ 

for every point x + I}, ofU (7,5.5). Consequently. for every r E R. we have 

I h(el&i') - I (1 ... (COS 27tt)"'(sln 27tt)" I ~ &. 

that is. 

Ifi!) - I I.l",icos 27tt)",(sin 27tt)" I' :s; 1':. 
,",n 

Since cos 27tt = !(e11C1i ~ e - Jlfi') and SID 21tt = (1/2i)( t!l'''' - l! - lnll). the 
function 

L GI",n\cos 27tt)"'(sin 2m l" 
",.11 

is a trigonometric polynomial. 
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• 7.5.7. Let X be a noncompact locally compact space. The sets of the form 
X - C, where C is compact in X. form a filter base 31 on X (4.2.9(i). Let 
X' = Xu Itu) be the Alexandroff compactification of X (4.5.9). By 4.5.8. 
the sets (X - C) v (w}. where C is compact in X. are the open neighborhoods 
of (J) in X'. 

Consequently, if f is a complex-valued function on X. the following 
conditions are equivalent: 

(i) f tends to 0 along ~: 
(ii) if.f' is the function on X' that extends f and vamshes at w, then 

lim%_w f'(:c) = O. 

When these conditions are satisfied. we say that f tends to Oat tnfinicyon X. 
We remark that if. in addition, f is continuous on X. then f' is continuous on 
X'. 

• 7.5.8. Corollary. Let X be a noncompact locally compact space. ~o ,he set 
of continuous complex·valued jUnctions on X that tend to 0 at infinity, crnd Jft' 
a subset of'6'o having the following properties: 

(i) ifu. v E ;H' and A. E C. then u + v e Jf: uv e Yf. U E.If and Au : Jf; 
(ii) ifx. yare distinct points ofX. there exists u e.1f such that !I(x) ". UCl'J: 

(iii) if x E X. there exists u e .it'such that u(x) '" O. 

Then every function in '90 is the uniform limit of a .~equence offimction$ 
in .1f. 

Let us keep tbe notations of 7.5.7. Let Jt" be the set of functions on X' 
of the form f' .... )., where f E.ff and), e C. Then .;1" c I6'(X', C). Obviously 
Jff" satisfies condition (i) of 7.5.4. Let u, v E JIt". We have u = f' ... ..i., v = 
g' +. J1. with f. 9 =.Yf and A.. J1. E C. Then: 

L4 + 1.i = f' + g' - ). + ~l = (J' ..,. g)' -i' l). + Jl)': ./f'. 

Ul' = /'9' + ).g' + fJF + Ap, 

= ([g + ;,g -i' jif'J + A'" E .~t". 

and 

- r ~ 'J)' • ~, u= .... ,..=1 TAoE.H_ 

Finally, if .~. )' are distinct points of X. tl1ere exists tI = J'f" such that 
u(x) ;= u(y) (if .'1:. y E X. this follows from the hypothesis (ii): if x = IJJ or 
y .. w. It follows from the hypothesJs (iii». Now let h EO 'Ito and II> O. By 
7.5.4. there exist I ~.)'f and A e C such that 

ih'(xl - j'(xl - AI S; ~ 
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for all x EX. In partlcular.<t,.2 ;;;: h(w) - r(w) - .-i: = IAI Therefore 

e e 
t h(x) - lex) I ::;; ::; + ;; = ;-; 

... J,. 

for all x E X. 

* 7.6. Normal Spaces 

7.6.1. Theorem. Let X be a topological space. The following conditions are 
equIValent: 

(I) For any disjoint closed subsets A and B ojX. there exi.~t disjoint open sets 
L' and V of X such that A c lJ. B c: v. 

~II) For ~ver)' closed subset A of X and every open set W of X such that 
A c W. there exist$ an open set W' of X ,"Uch thai A c: W' c: W' c: W. 

(iii) For any disjomt closed subsets A and B of X. there exists a concinuous 
mapping o/X into [0. I] equal to 0 at ,wery point of A and to 1 ..zt ecery 
point of B. 

dv) For every closed subset A of X and every numericalfimction f defined and 
continuous on A. there exists a numeTical function defined and contlnu,JUS 
on X thar extends f. 

,iv) =- (i). Suppose that condition (iv) IS satisfied. Let A and B be disjoint 
closed subsets of X. Then C = A v B is a closed subset of X. Set f(x) = 0 
for x E A and f(x) = 1 for x E B. Then f is continuous on (' (because A 
.llld B are open in C). By (iv), there exists a continuous mapping 9 of X into 
R that extends f Let 

U=!l-I(-x;,t). V =g-l«t. -x.)). 

Then U and V are disjoint open sets in X. and A c: C. B c: v. 
ii) =- (ii). Suppose that condition til IS satisfied. LeI A (resp. Wi be a 

closed (resp. open) set in X with A c: W. Set B = X - W; this is a closed set 
in X disjoint from A. By (i). there exist diSjoint open sets U and V of X SLich 
that A= C'. B c: V Then L' c: X - V and X - V is closed. therefore 
C -= X - V c: X - B = W. Thus A c: L: c: t -= W. 

iii) =- (iii). Suppose that condition (ii) IS satisfied. Let A and B be disJoinr 
closed subsets of X. We are to construct a continuous mapping of X 1Oto 
[0. 1] equal to 0 on A and to I on B. 

Let 0 be the set of 'dyadic' numbers belonglOg to [0. 1J. that is. the set of 
numbers of the torm k,2". where n = 0, 1. 2 •. , . and k = O. 1. ~ ... _,~" ThiS 
set is dense in [0. 1]. For every a E D. we are going to construct an open 
subset U(dl of X in such a way thaI 

(I) d < d' =- etd) c: (J(d·). 
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We set U( 1) - X - B and we choose an open set U(O) such that 

(2) A c:: U(O) c U(O) c U( 1) 

(this is possible by (ii». Suppose the U(d) already chosen for d - 0, 1/2". 
2:'2" ...•• ~",1" - 1. in such a way that 

U(k/2") c U{(k T 1)/2") for O:S; k < 2". 

Let us define U(k!2"+ I) for k - 0, 1. ... ,2""" 1. For k even. U(k/2"·1) has 
already been chosen. For k odd. thus of the form 2h - l. we choose an open 
set u(2h ..... 1)/2'" 1) such that 

V(2hI2/1· ') c U«2h ... 1)/2,,·1) c U({2h T 1>12"· 1) c u«2h + 2)/2"" I). 

which is possible by (ii). By induction. the open sets t:(d) are thus defined 
for aU d e D, and propeny (I) certainly holds. 

If x e B we set I(x) = 1. If x, B, then .t e U(l); let I(x) be the infimum 
in R of the d e D such that x e l."(d). We have thus defined a mapping f of 
X into [0, I], equal to I at every point of B. If x e A then x e U(O) by (2). 
therefore I(x) - O. 

Finally, let us show that f is continuous at every point x l,rX. Let a .. lex) 
ande>O. 

If 0 < a < 1, then there exist d. d', d" e D such that 

fl-es.d<d'<a<dn s.aol. .. 

If one had :c, U(d"). it would follow that f(x) ;;:: d". which is absurd; thus 
x e U(d"). On the other hand, I(x) > d', therefore .t, U(d'), therefore 
.t ~ li(d) by (I). Consequently, if one sets V "" U(d") f"l (X - U(cl). 'Ii is an 
open.. neighborhood of x. Let y e V. Then J.' e U(d"). therefore fey) s; d": 
andj(y) ;;:: d, since otherwise one would have y e U(d). Thus. 

y e V =-I/Lv) - /(x) I :s; e, 

which proves our assertion when 0 < a < 1. 
If a - I, there exist d. d' e D such that a - B :s; d < d' < a = 1. We see 

as above that V - X - ma> is an open neighborhood of x and that. for 
every y e V. one has f(y) ;;:: d. therefore I ICy) - I(x) I ;S; 6. 

If a - 0, there exists d" e 0 such that 0 = a < d" S; a + ~. One sees as 
above that V - U(d") is an open neighborhood of x and thaL for every 
leV, one has I(y) :::;; d", therefore I I(y) - l(x)1 s. e. 

(iii) =- (iv). Suppose that condition (iii) is satisfied. Let 01\ be a closed set 
in X and letlbe a continuous mapping of A into I. Let us define a continuous 
mapping of X into R that extends f. Since I and [ - 1. 1] are homeomorphic. 
we can suppose that I talces its values in [ - 1. 1]: we will define a continuous 
mapping of X into [ - 1. 1 J that extends I. 
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We shall first prove the following intermediary result; 

(*) If u is a continuous mapping of A mto [ -1, 1], there exists a 
continuous mapping I: of X into [ - t. t] such that I u(x) - c(x)l 
;s; t for all x E A. 
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For, let H (resp. K) be the set of x E A such that - 1 S; u(x) s; -, (resp. 
1 s; u(x) S; 1). The sets Hand K are closed in A. therefore in X, and they 
are disjoint. By (iii), there exists a continuous mapping I: of X into [ -l, t], 
equal to -! at every point of H and to 1 at every point of K. It is clear that 
lu(.t) - v(x)1 S; j for all x E A. 

This established. we are going to recursively construct continuous 
numerical functions go. g I' g2' 0 •• on X such that 

(3) 
f-I+C~)"+:;S;g.(x)S;1-(jr-! foraH xeX 

1 IICx) - g.(x) I ;s; Ci)·· 1 for all x e A. 

The existence of go results from applying (.) with II = f. Suppose 1:10. 
g, ••. .• g" already constructed. Define 

u(x) = (if"'" 1(f(X) - g.(x)) for x E A. 

Then Il is a continuous mapping of A imo [-1, IJ. By (*), there exists a 
continuous mapping v of X into [ - ~, 1] such that I u(x) - v(x)1 S; i for all 
x E A. Then. for all x E A-

I ((x) - g.(x) - (ir Iv(x)1 = (tr Ilu(x) - v(x)1 S; (jr J, 

On the other hand. for all x E x. 
Ig.(x) + (,Y" lV(x)1 S; I - (tf' 1 + (ir I.! = I - (1)"+2. 

Setting 
g.,. !(x) -= y.(x) + (1,-IV(X) 

for every x E X. the construction of the Un is complete by induction. We 
observe. moreover. that 

IYa+I(x) - g.(x)1 ::;; i<.ir I for all x E X. 

Since the series with general term t(1)"+ 1 is convergent. the series with general 
term g. _, - g. is normally convergent. therefore uniformly convergent 
(6.1.10); in other words. y. has a uniform limit 9 on X. This limit is con· 
tinuous (6.1.11). By (3). we have - 1 s: g( X) .s: 1 for all x E X and f(x) = g(x) 
for all .~ E A. 

7.6.2. DeftDitiOD. One calls normal space a separated space that satIsfies the 
equivalent conditions of 7.6.1. 

7.6.3. Examples. (a) Ever)' metric space is normal. For let X be a metric 
space. d its metric. A and B disjoint, nonempty clo&ed ~ubsets 01' X. Since the 
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functions .'1: ...... d(x. A) and x ...... d(x. B) are contmuous on X (5.1.6), the set L" 
(resp. V) of x e X such that d(:c. AJ < d(x, B) (resp. d(x. B) < d(x. A» is 
open in X. It is c1earthat t: !"'o V = 0.lfx E A then d(x. 0\) == /) and d(x. B) >0 
(because the relation d(x. B) = \) would Imply x E B. therefore ,"( E B). Thus 
~ c U. and similarly B -= V. 

(b) EL'ery compaCT space i~ normal. This follows from 4.2.1 Hi). 
(c) If I is an uncountable set. it can be shown that RI is not normal. One 

can also construct locally compact spaces that are not normal. 

7.6.4. Remark. Let X be a normal space .. \ a closed subset of X. f a numerical 
function defined and continuous on A. We know that there exists a numerical 
function g. defined and continuous on X. that extends f. Suppose, moreover, 
lhat r isfinire. We shall see that q can then be chosen to be finite. 

Suppose first that { ~ 0 on A. A /orriori • .r takes its values in [0. + :x;;]. 
therefore we can suppose that 9 takes Its values in [0 .... x] (which is honleo­
morphic to R). Let B = 9 -I( { .,..:x;;}). Then B is closed and IS disjomt from A. 
The function h on the closed set A v B that is equal to I 011 A and to 0 on B 
IS therefore continuous. Let g' be a continuous el(tension of h to X taking its 
values in [0. + x.]. Replacing 9 by inf(g. g'). we obtain a continuous ex­
extension off to X that is finite at every point of X. 

In the general case. let /1 = sup(f. 0). f: - SUp( -/. 0). Then f = 11 - 11' 
and/I .!: are finite. ~ 0 and continuous. It now suffices to apply the preceding 
paragraph to /1 and /2 . 

7.6.S. Tbeorem, Let X be a compact space. There exists a set I SlIch that X 
is homeomorphic to a closed subset 0/ [0, 1]1. 

Let (jj)161 be a family of continuous mappings of X into [0, 1]. By 3.3.~(d). 
the mapping f: x - {J;(X»'al of X into [0, 1]1 is contlOuuus. The set (X) 
is a cpmpact. hence closed. subset of [0. \]1 (4.2.12. 4.1.7). lffis injective. then 
f is a homeomorphIsm of X onto reX) (4.2.15). 

Now, if one takes for (Ji)rel the family of ali continuolls mappings of X 
into [0. 1]. then / is injective. For, let iJ and b be distinct points of X. Since 
X is normal (7.6.3(b», there exists a continuous mapping 9 of X into 
[0, l]suchthatgta) ... 0,9tb) ... 1. Sincegis one ofthejj.wehave/(a) ~ f(b). 

7.6.6. Theorem 7.6.5 IS sometimes expressed by saying that every compact 
space may be embedded lD a 'generalized cube'. 

7.6.7. Tbeorem. Let X and Y be compact spaces. Let Jf be rhe ser offimcrions 
on X '" Yo/the form 

Cx. yJ ...... It(X)g1 (Y) .... .!:(X)g20') ":" .. - - f~(x)gftC.~°l. 

where Ill ... ,!. e 'lex. R). 9 I' ..• ,(I. E Cf/(Y, R). n = 1. 2. .... Then .¥t. is 
dense in ""(X x Y. Rl for the lopology oJ uniform ('otlve'·gellce. 
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To apply the Stone-WeierStrass theorem. it suffices to check that J'f 
satisfies the conditions (i), (ii), (iii) of 7 . .5.3 relative to the compact space 
X x Y. This is clear for conditions (i) and (H). Let (a. b) and (a', b') be two 
distinct points of X x Y. Suppose for example that a :F a'. Since X is normal. 
there exists Ie 'l(X, R) such that I(a) - 0. lea') - 1. Set g(y) = 1 for all 
ye Y. Then the runction (x, ytt- I(x)g(y) on X x Y takes on different values 
at (a. b) and (a'. b'). 



CHAPTER VIII 

Normed Spaces 

We take up again the theory of Donned spaces and pre-Hilbert spaces. 
~1 to j are already familiar. excepting possibly Theorem 8.3.4 on 
equivalent norms. In §§6, 7. 8 we make the connection belween this 
theory and that of complete spaces: some of these results (Banach­
Steinhaus theorem. Riesz's theorem) are very fruitful. but the reader 
can hardly be convinced of this unless (s)he studies 'functional analysis' 
laler on. 

8.1. Definition of Normed Spaces 

8.1.1; DefiDition. Let E be a vector space over R or C. A ,eminorm on E is a 
function x t--> /I.'(N defined on E. with finite values ~ 0, such that 

(a) 'AXI! = ~,t. txll for all x E E and all ~alars A.: 
(b) 'Ix + y4 ::;; 'xq + 1~'.v'1 for all x E E and Y E E (triangle inequality). 

It follows from (a) that x = 0 =- qxl = O. If, conversely, ~x" = 0 =- :'( = O. 
the seminorm is called a norm. 

When a seminonn (resp. norm) is given on E, we say that E is a semfnormed 
(resp. normed) vector space. 

Conditlons (al and (b) imply at once: 

i-xll- Vx!1 forallxEE. 

Ix - )'11 ::;; t,x. + IYII forall x e E and yE E. 

There is an obvious notion of isomorphism between normed or semi­
normed spaces. 
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8.1.2. Example. In R" or C" one can defu1e. for example. tlte following 
norms: 

II(x, •..• :<.)11 = IXll -t- ••. + Ix.l. 

II(x, ..... .'(,,)11 = sup( Ix,I.· -', Ix.j). 

8.1.3. Example. Let X be a set, E the vector space of all bounded real-valued 
(or complex-valued) functions defined on X. For every feE, set 

IJ, ,. sup fIx):. 

One verifies immediately that f ....... II n is a norm on E. 
1\ow let A be a subset of X. ThIS time, for every feE set 

ij/'I = sup If(x)j. 
xeA 

One verifies that I ...... liU is a seminorm (lQ E. 

8.1.4. Example. Let E be the vector space of all sequences 0.,. A.a •••• ) of 
real (or complex) numbers. The bounded sequences form a linear subspace 
of E. denoted I: or I~ (or simply!""). For every ~ = (x I' x: • ... ) e F'''. set 

b,1 = sup(lx,l. IX21.' •• ). 

Then /"" becomes a normed ~pace. ThiS is the special case of 8. t.J where one 
takes X = p, 2, 3 .... }. 

8.1.5. Example. We denote by Ib or I~ (or simply fl) the set of sequence::; 
S = (Xl' Xl"") of compiex or real numbers such that L:=l Ix.I < +:x:. 
This IS a. linear subspace of /"'. For. if :t = (x I' X2" • .) <:: /1 and I. ::z 

IYl'Yl,' .)E/I.then 
~ ~ ~ 

(I) I Ix. -t- J'-", S; I Ix.l- LlYn' < +~. 
"=1 n-t "=~ 

thus oS + t E /1, It is clear that ),s e II for every scalar A.. 
Fors = (X I ,."<2 .... )el l .set 

.x. 

11"11 = L:: \ 'Col· .-1 
Then s ....... Usil is a norm on 11 (the triangle inequality results from (l »). 

8.1.6. The ~leh'ic Deduced From a Norm. Let E be a normed vector space. 
For x, Y E E. set d(.x:. y) = :IX - ft. One verifies without difficulty that d is a 
metric on E. (Thus. a normed space is automatically a metric space, hence J 
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topological space.) This metric is invariant under translations in E, that is. 
d(x. y) = d(x .... a, y .... a) for all x, ,. a E E. For every x E E, d(x, 0) "" IlxU. 

8.1.7. Examples. Starting with the norms 8.1.2. one recovers the usual 
metrics on R" or C· (1.1.15). In [GO, the distance between two sequences (x,) 
and (YI) is SUP(IXI - Y11~lxl - Yll .... ). In /1. the distance between two 
sequences (xJ and (yJ islx1 - yli + IX 2 - Y21 + "'. If I and 9 are two 
bounded. real·valued or complex-valued functions on a set X. then the 
distance between them deduced from the norm of 8.1.3 is 

d(j, g) = sup ~!(x) - g(x) I; 
.. eX 

this is the metric of uniform convergence. 

8.1.8. Theorem. Let E he a normed space. 

(i) The mapping (x, y) H X + Y of E x E into E is continuous. 
(ii) The mapping (A, X) I0-Io .i.x ofR x E {or C x E) into E is continuous. 

Let xo, Yo e E and 8 > O. If x, y e E are such that 

qx - ''\:oli ::;; ~ and 1y - Yoll S~, 

then 

n(x + y) - (xo + Yo)" =- U(x - Xo) + (y - Yo)1I 
::;; Ux - xol + Uy - yo~ ::;; e. 

This proves (i). 
Let Xo e E. A.o e R (for example) and e > O. Set 

" = inr(l. 1 + lA.o~ + Ilxon) > O. 

Let x e E, A. E R be such that I A. - ).01 ::;;" and Hx - xo~ ::;; ". Then 

l).x - ).0 xoll = W. - A.o)(x - xo) + AO(X - ''\:0) + (). - A.o).'\:or 

This proves ~ii). 

::;; IA. - ;'OI~X - xo" + l.l.olilx - xoll + IA - Aollixol 
::;; I'(l + lA.oll'( .... IIxoil" ~ lJ{1 + IAol + IIxoiD ~ e. 

8.1.9. IfE is a normed vector space, then every linear subspace of E. equipped 
with the restriction of the norm of E, is automatically a normed vector space. 
For example., let X be a topological space and F the set of continuous, 
bounded real-valued functions on X. Then F, equipped with the norm oi 
uniform convergence, is a normed linear subspace of the nonned space 
defined in 8.1.3. 



8.2. Continuous Llneat Mappmgs 93 

8.1.10. Product of Semioormed Vector Spaces. Let E1 •. ·., E. be seml' 
normed vector spaces (all real or all complex). Let E = El ~ ., x E., 
which IS a real or complex vector space. For x = (x!. ___ • x.) E E. set 

Uxll = (I,xill! +- ••. ..,.. ,lxaI12)1::, 

One verifies in the usual way that this defines a seminorm on E. If E \ ... , , E. 
are normed spaces. then this seminorm is a norm. and the metric space 
defined by the norm of E is the product of the metric spaces E l' ,. . E. in the 
sense of 3.2.3. 

Other useful norms can be defined on E: for example. 

ilxl! = IlxI' -:- ... + Ix.:, 
II xII = sup(!I.'( 1:1 ... " II ,'I:. IV, 

On R" or C', one recovers the norms of 8.1.2. 

8.1.11. The ~ormed Space Associated wiell a Semioormed Space. Let E be a 
seminormed space. Let F be the set of x E E such that Ixi! = 0, If x. y; F 
then II x .... yl! ~ Ix" + !IY'; = O. therefore x ... y E F. Obviously A.X; F for 
every scalar A.. Thus F is a linear subspace of E, and one can form the 
quotient vector space E' = E,T 

Let x' E E', Choose a representative x of."t' in E. The number :lxl! depends 
only on x' and not on the choice of the representative x, For, every other 
representative of x' is of the form x +- u with U E F: then ilx "" u~ ~ 
IIxj + ~u I .. ~lx:l, and Similarly iix~ ~ Ilx .,. u',1 .,...Iuo = ~x oj- u~, thus 
Ox - UII = IX:!. We may therefore setllx'il = Ilx~. Since Xl-t- 4xn is a semi· 
norm on E, one verifies easily that x' - 11.'('1\ is a seminorm on E', This 
seminorm is a norm: for. jf x' E E' is such that Ilx'll = O. and jf x is a representa· 
tlve of x' in E. then !Ixll = 0, therefore x € F, therefore x' = 0, We say that 
E' is the normed space associated with the seminormed space E. 

The study of the properties of E is practically equivalent to the study of 
the properties of E', 

8.2. Continuous Linear Mappings 

8.1.1. Let E, F be normed spaces. Let u be a linear mapping of E into F, Let 
B be the closed ball in E with center 0 and radius 1. We define' 

(1) 

We have 

(2) 

ilu~ = sup 'IIL,(,~ E [0 .... -:c]. 
, .. s 

liu.l'll ~ 'luUyll for all y ~ E 
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(with the .,;onvenl1on that 0·. :x: = 0). For. f 2) IS clear If y = O. If y ¢ 0, 
let x = lye - ~y. Then y = Iyllx, therefore uy = Iylux, and so tuy.l =< 

rfllllxlI S '1.1'1' 'UI; because x E B. 

8.2.2. More precisely. IIUII is the smallest of the numbers a e [0 .... -,:,1 such 
that 

(3) lIuYII s: <.1&."" for all Y E E. 

For. if a satisfies (3) then. in particular. ~ UX!I s: a for all x E B. th~refore 
.Iu' s: a. 

8.2.3. Let S be the sphere in E with center 0 and I".tdius I. If E :j:. O. then 
every element of B may be written .tx With 0 s: A. s: I and :c E S. therefore 

(4) IIU'i = sup Ilux:, 
... s 

• 8.2.4. Theorem. Ler E, F be normed spaces and u a linear mapping of 
E into F. The follo ..... ing conditIons are equiL'alent: 

0) II is (ontinuaus at 0: 
Iii) u is continuous: 

(iii) u is uniformly continuous: 
(iv) ~UI: < .... :x;.. 

(iii) ~ (ii) ~ ii). This is obvious. 
(i) ~ (iv). Suppose that II is continuous at O. There exists an " > 0 such 

that JI E E and Iii S; " imply '11I.vlI S 1. Then, if x E E, we have 

flx!1 S; 1 ~ II"xll S " ~ Ilu("x)1I s I ~ Iluxll s: ,,- '. 
therefore 1 u II < +:x:. 

(iV) ~ (iii). Suppose lUll < ... :s:. Let x, J.';; E and t: > I). Then 

Ilx - JOt s: ':!I =- :llIx - u}"f - ,IU(X - ,\')11 s: Ii tl II Ix - 111 S; t. 

thus u is uniformly continuous. 

8.1.5. Condition (iv) of S.2A means, in the notations of lU.l. that u(B) is 
bounded. The expression "bounded linear mapping" is used as Ii synonym for 
'continuous linear mapping', 

8.2.6. ExalapJe. Let E = ~'([O. 1], R), equipped WIth the norm of umform 
convergence. The mapping f- /(0) of E into R IS linear: it is continuous 
because .f (0) I .:$; II.fl for all / E E. 

Let F be the linear subspace of E formed by the differentiable functions, 
equipped with the norm induced by that of E. The mapping I- f'(0l of F 
into R is linear::t IS not continuous, since. for every number A > 0, one can 
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construct a function f e F such tbat l/<xH ~ 1 for all x e [0. 1] but 1"(0) ;:= A 
(for example. f(x) - A.x;(I - Ax». 

8.2.7. Let E, F be normed spaces. We denote by ~(E. F) the set of all con· 
tinuous linear mappings of E into F. If u, " e ~(E, F) and l is a scalar. then 
II or IJ e 2(E, F) and Au e 2(E. F) by 8.1.8. Thus ~(E, F) is in a natural way 
a real or complex vector space. When E = F. one writes .5!'(E) = 2(E. E). 
The identity mapping idE' also denoted I or I, is an element of ~(E). If 
II e 2'(E) and ve 2'( E) then II , II e 2'CE). so that 2'(E) is in a natural wayan 
algebra over R or C with unity element I. 

8.2.S. Theorem. Let E. F. G be normed spaces. 

(i) The mapping u ...... Iull of 2'(E, F) inro [0, + x) i.' a 1I0rm 011 .5!'(E. F). 
(ii) Ifu e .5!'(E, F) and r; e ~(F. G), then 1111 c: ull ~ IIv111un. 
(iii) iiidEIl = 1 if E ~ O. 

(i) Let II, "e 2'(E, F). For every x e E, 

"(u - ril(x)11 = nux.;.. vxll ~ Hux:1 T ,Ivxll 
s; tlullllx!! + Ilv.llxll .. (lllln -llJf)llx:l, 

therefore (Iu - vII :s; Ilull + Iv!!. Also. 

IIlu~ = sup n(lu)(x)U = sup Ililluxt 
II",IIJU .",IISJ 

= IAI sup !luxll -1A.lllull. 
'1%11 -S 1 

Finally. if IUil = 0 then Iluxn = 0 for all x e E. therefore ux = 0 for all 
x e E, thus u = O. 

(ii) Let u e 2(E. F). v e 2'(F. G). For every x e E. 

I(v"u)(x)U:s; """ !lux. :s; 11"!I'IIIl~lIx:\. 
therefore IIv 0 ull :s; IIva (u!!. 

(iii) This is obvious. 

8.2.9. Thus. 2(E. F) is in a natural way a normed vector space. The norm 
defines a metric and a topology on 2(E, F). This topology is called the 
norm topology on 2(E, F). By 8.1.8, the mappings 

(u. v) ...... II + U of 2"(E. F) x 2(E. F) Into 2"(E, F). 

fA. u) ...... AU of R x 2"(E. F) (or C " 9'(E. F» into 2(E. F). 

are continuous. It follows easily from 8.2.8(JJ) that the mapping 

(u.I1)-v ll u of .2'(E.F) x ~(F.G) into ~(E.Gl 

is continuous. 



96 VIII. :o-Iormc:d Spaces 

8.2.10. Let E be a real or complex vector space. The elements l)f ~(E. R) 
0:- ;l'(E. C) are the ~'0I11i"uous linear forms on E. The space ;tI( E. R) or 
.t'( E. C) IS a normed vector space, called the dual of E and often denoted E'. 

8.3. Bicontinuous Linear Mappings 

8.3.1. Theorem. Let E. F be normed spaces. u a linear mapping q( E onto F. 
Tlte following condinons are equlvaiem: 

~i) u is biiective and bicontinuous; 
(ii) chere exist numbers a. A e (0 • .j.:.c) .5uch that 

a1X S tux,/ S AI::cl: 

)f)rallxeE; 
(iii) chere exist numbers a. A c (0, - x:) such thar 

;l SluX;1 S A 

for all x e E with Ixll = 1. 

0) => (ii). Suppose u is bijective and bicontinuous. There exist 
~ Be(o. +-,:) such that Ilux~1 S Aiixll for all xeE and rlu- 1Yil S Bll.vl 
for aU .1';: F (8.2.~). Let x E E. Set y = ux. so that x = u -: y. Then . x:1 S 
BIIYI;, that is. (l/B)II:o S iluxll. and I ,'B > 0 since B < ... :1:.:. 

(ii) => en. Suppose condition (ii) is satlsfied. Then II is continuous (8.2.4). 
;o.Jext. u.\' = 0 implies a!lx/i = 0, therefore x = 0 (because Il > O): this proves 
that It (which is sUlJective by hypothesis) is bijective. Finally, let}' e F. Set 
x .. fj - I.'" Then v "., U."C, and the inequality ali.'" I S lux;' may be wntten 
'1:11t-~l.\'i S ;~y!l. or u -1.V; S (1. a):/.}' I. Thus u- I is continuous (8.2.4). 

fir) => (iii). This IS obvious. 
(iii) => (ij). Suppose th~lt condition (iii) is satisfied and let us prove that 

allx' slux r :s; A l..tll for all x e E. This is clear if .lC = O. If :c '=1= O. let x' = 
xx~. Then lXI, - l. therefore a:s; ilux'il :s; A. Now. ux = u(ilxi'x') = 
.Ixiux', therefore (1!lx l S liuxll S Ailxn· 

8.3.2. Tbeorem. Let x 1-+ \lx'i I and x ..... iXa 2 be two norms on a v('ctor 
space E. The ji)lIowing conditions are equivalent' 

(i) the rop%qies defined by thf! rwo norms on E are rhe same: 
(ii I 'he idemity mappmq of E I into E: (where E\. E. denote the vector space 

E equzpped with the norms x,..... IXI' I' :, t-+ '!:(1~2) is blconcinuvus: 
( iii j there eXist numoers Q. A E (0. + x.) such that 

a~xllJ S Ixll S A'lx,,! 

for all x .; E. 
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The eqwvalence Ii) _ (Ii) is obvious for any pair of topologies ,)n a set 
\cr. ~.4. -:'). The eqUIvalence (ii) _ (iii) follows from 8.3.!. 

8.3.3. DefiDitiOll. If two norms on a vector space :lansfy the conditions of 
·3.3 . .!. they are said to be equivalent. This IS clearly an equivalence relation 
among norms, 

8.3.4. For example. it is well known that. on R" or C. the three norms 
defined in 8.1.: are equivalent. More generally' 

• Theorem. On R" or C', (//1 norms are equivalent. 

Let us treat for example the case of Rft. L!:t \: ...... !xll be a norm on R" 
Let .t ~ 'Ix.;' be the norm (x), .... x.) ~ I x \1 of- ' .. - I,xft I It suffices TQ 

prove that these two norms are equivalent. In the proof. we are going to use 
topological concepts in R": the only topology on Rn we shall use will be the 
usual topology. which is defined by the norm.X' 1-0 \i~II' (cf. 8.1.7. 1.1.15. 1.1.2). 

Let (e l •.. " e.) be the canonical basis of RR. Set 

A. = 3up(Ilt'\II.·· , lie,,!!). 

If:c = LXI' ... , x.J E R". then 

""II = lI:c,i'J ..... ,. +c.o' .. A S; lx, I lie, ,I + , .• Ix •• le.;1 
S; ,~(:XII - '" + 1:(.1.1 - Attx'l'. 

Jt follows from this that the function x -- 'Ixll on R" is continuous; for. If 
'(, Xo E R" and , > 0, then 

'X Y I'.r 8 - ~Iv -"'0 SO" =- 1',1"',', - I" 'II'..,. . - '~oJ' ~ A -- ," .. .. .. "0' ~ ... 

Let S be the set of.'( = ~Xt •..• x,,) E R" such that 

IlxiI' = I'~II ... '" .. ,x,,1 = 1. 

ThiS IS a closed set In R" (1.1.12). clearly bounded. hence compact (4.2.18). 
The functioll x ..... II;C!! IS continuous on S by what was shown earlier. and it 
does not vanish on S. therefore there exists Ii number a > 0 such that 'jx!1 2: a 
for all XeS (4.2.14). Since. moreover. IXII :s: A for all :t e S. we see that the 
two norms are equivalent. 

8.3.5. CoroUary. On 11 finite-dimensional real or ~omplf'X t:ector spacl!. flU 
Iwrms are equ,,;ale11l, 

For. such a vector space IS isomorphic to R" or C· for some n. 

8.3.6. Thus. on a finite-dimensional real or complex vector space E. there 
eXists a 'natural' topology'-: [he topology defined by any norm on E. [f !/ 
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is any isomorphism of the vector space H" or C" onto E. then Y is the trans­
port b) « of the usual topology of R" or en. 

8.3.7. Let E, F be normed vector spaces. u a linear mapping of E into F. 
If E is finite-dimensional. then u is automatically conrinllous. For. we can 
suppose by 8.3.6 that E = H" (or C")' Let fel"'" (',,) he the canonical 
basis of H" (for example). Let at = u(e,) e F. For every.'( - (XI"." ,,(.) e R", 
we have u(x) = xl"1 'T" '" ;- .~.a", The mapping X ..... XI ()f R" into R is 
continuous (3.2.8). The mapping A. ..... A.a I of R into F is continuolls (8.1.8). 
Therefore the mapping x ...... . 'Clal of R" iDto F is cODtinuous. Similarly for 
the mappings x ...... x~ a~ . .... x - x"a.. Therefore the mapping x-
(,'Clal>"" x"a.) of R· into F" is contlnuous (3.2.7). Consequently. the map­
ping.'( ..... Xlal ..,.. •• , - x.a. of R" IDtO F is continuous (8.1.8), 

However. if E is infinite-dimensional then II may be discontinuous. as 
we saw in 8.2.6. 

8.3.8. If E and Fare normed spaces of finite dimensions m and n. then. by 
8.3.7, ~(E. F) is the vector space of all linear mappings of E into F. This 
vector space has dimension mn, so by 8.3.6 it possesses a natural topology Yo 
If one chooses bases m E and F, there is a canonical linear biject ion u - M. 
l)f .!f(E. F) ontO the vector space Mil, '" of real or complex matrices with n 
rows and m columns. Under this bijection. the topology Y corresponds to 
the natural topology of M ..... ; the latter topology is defined, for example. by 
the norm (~ij)l!iii SII. 1 :IoJ::;"' ..... L;.J i 211:' 

8.4. Pre-Hilbert Spaces 

8 •. U. DefiDitioa. A cornple,"( pre-Hilbert space is a complex vector space E 
equipped with a mapping (x. y)-(.'c:y) of E x E into C, called the scalar 
product (or 'inner product'), satisfying the following conditions: 

(i) (.'Cly) depends linearly on y. for fixed x; 
(ii) (:c I y) = (y I x) for x, Y E E (so that (x I y) depends 'conjugate-linearly' 

on x, for fixed y): 
(iii) (x Ix) ~ 0 for x e E. 

There is an obvious notion of ISomorphism ofpre-Hilbcrt spaces. 

8.4.2. ExUlpJe. For 

:c=(x\ .. ".x.)eC" and y=(YI ..... Yn)eC". 

set 
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One verifies Immediately that (x, y)-Ixly, is 4 scalar product on C", 
called the canol1ical scalar producr. 

8.4.3. Exam,le. Let E be the complex vector :space whose elements are the 
sequences (A.,. AZ"") of complex numbers that are zero from some index 
onward. For 

set 

(this sum involves only a finite number ~f nonzero terms). One verifies 
immediately that (x, y).-- (XUI) is a scalar product on E. 

8.4.4. Example. More generally, let I be a set. Lei E be the complex vector 
space whose elements are the families (..t')'d of complex numbers such that 
A.; - 0 for almost all i E I (cf. 3.3.1). For x = (A')'&I e E and ~, = UL')'CI: E. 
set 

(xly) = ~ ;',fJl' ,.1 

This is a :scalar product on E. If I .. {I. 2 .... , 11}. one recovers Example 
8.4.2. If I ... { I. 2, 3, .•. It one recovers Example 8.4.3. 

8.4.5. Example. Let E be the set of continuous complex·valued functions 
on [0. 1]. For g.1I e E. set 

.1 

(glh) = tg(t)h(t)dt. 

This IS a scalar product on E. 

8.4.6. Example. Let X be the vector space of all sequences (i l • ;'l" ."1 
of complex numbers. We denote by I~, Ilr simply fl. the set of sequences 
(..i. I' A2 •••. ) e X such that L~ I I; ... rl < + x:. Let us show that this is cz 
linear subspace ofX. It is clear that if s efland ;. e C, then A.s E [l. Let 

j=(A'l.A.~ •••• )EJ' and t=(J.lI.J.ll .... )E,~. 

Recall thal if .x, p e C then 

Ix - PI: + 'x - p:: = (~-- P'lc'Z + 8) -I- (:i - ~XX - Pl 
= 2:m -I- 2P{J = 21%:~ -I- :!lflI2: 
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therefore 'l ... ~ll S; 2lai= - 2IiJ!". This established. we have 
:t: J') 

2: IA. • .;. 1-'.:: !i I !lll..12 • 211-'./a) 
"=1 ~=l 

z. " 
= 2)' IA.:: -+ 2 ') !1-'.1.2 < ';':1;, _ -~ _ r 

,!lao 1 ,,~ t 

thus s ~ t e [2. 

Moreover. 0 S; tiCtI- fIll): = !~12 ..:..1,811 - 2t<lI'JJ/. therefore 

.,; '" 
2 I lA,.iI,unl S; I r,j,O .• ;Z ... 1!l.II ) < ... ~. 

11"·1 n:lll 1 

so that the series I:. lr..tt. is absolutely convergent. Set 

(sit) = ~JIJI ~ rllL:. ~ ... , 

We obtain 111 this way a scalar product on I~. 

8.4.7. Let E be a pre· Hilbert space. E' a linear ~ubspace of E. The scalar 
product orE, restricted to E'.IS a scalar product on E', Thus E' automatically 
becomes a pre-Hiibert space, 

For example, the pre-Hilbert space of 8.4.3 is a pre· Hilbert subspace of IJ. 

8.4.8. Let E be a pre-Hilbert space. and x. ,v E E. We say that x. yare 
orthogonal if (xLv) = O. This relation between ,~ and ~I is symmetric. We 
say that su bsets M. N of E are orthogonal if every element of M is orthogonal 
to every element of N. If M is orthogonal to N. then every linear :ombination 
of elements of M IS orthogonal to every linear combination of elements of ;\I. 

8.4.9. Let ~1 ::: E. The set of elements of E orthogonal to M IS a linear sub­
space of E that is denoted M":' and is called. through misuse oi language. the 
linear su bspace of E orthogonal to M. 

8.4.10. Theorem (Cauchy-Schwarz Inequality). Let E be a pre-Hilhert space. 
For all x. \' E E. 

l(xiyW S; (xjx)(yjy). 

For all ;;. E C, we have 

O!i I.x ... A.}tlx ~ A.y. 
= I,i(.1'!'y) - X(y I.~) .... A.( x t y) .;. (Xl.~). 

~lultjply through by IY:}';: ,liter calculat!on. we obtain 

(2) 0 S; [X(Yly) .... (:<~y)J U1..vly) - (yl_'()] .;.. (:<I.'()(y',Y)·- (.Y:)')lylx). 

Suppose !irs! that (yly) ;/; O. We can then set 

A = -I)'I;I:)/tvlyl 
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!D (2). obtaining 

Os (.x::<)(ylit - (xlyXylx). 

which is the inequality of the theorem. If (x I x) ~ O. we need only interchange 
the roles of x and y in the preceding. Finally, if (x! .~) - (VI,) = 0 then (1) 
reduces to 

(3) 

Taking;" .. -(ll x) in (3). we get 

Os -(xly)(xl>') - (:c,),)(xly) = -2Itx:)')I~. 
therefore (xly) "" 0 and the inequality of the theorem is again verified. 

8.5. Separated Pre-Hilbert Spaces 

8.S.1. Theorem_ Let E be a pre-Hilbert space, and :( un element of E. The 
/ollowinq conditions are equicalent: 

(i) :< ~ E- (in other words. (x! y) = 0 for all ye E); 
(ii) (xix) = O. 

(i) = (ji). This is obvious. 
(il) ==- (i). Suppose (x I;c) = O. By SA.lO. for every .y e E we have 

!{x!y)l: ... o. therefore (."( y) = o. 

8.S.l. The linear subspace EJ. of E is called the kerllei of the scalar product, 
If E- = 0, we say that the scalar product is non-degenerare. or that the pre­
Hilbert space is separated (cf. 8.5.8). By 8.S.I. this amounts to saying that 
(XIX) > 0 for every nonzero vector x of E. 

8.5.3. One verifies easily that the pre· Hilbert spaces defined in 8.4.1-8.~.6 
are separated, However. if E is a nonzero complex ~·ector space and if one 
sets (x Lt') = 0 for all x • .\' e; E. then the pre-Hilbert space so obtained is not 
separated. 

8.5.4. Let E be a pre-Hilbert space. E- its kernel. E' the complex vector 
space E, P'. We are gomg to define a scalar product on E', Let x', i e E'. 
Choose representatives:c. y of x', "/ in E, Then the number (x I y) depends only 
on x',.f and not on the choice of representatives. For. any other representa­
tives are of the form .'<, = _~ "T" U,)'I = 1- l· WIth II. VE E-. whence 

(:c, 1."1) == (xly) + (xl!.") + (lilY) ... (uit') 

= (xly) ..I.. Co ~ 0 ..:.. 0 = I.t\i), 
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We can therefore define (x' f) .. (x IY). The fact that L~ .~,).- IXly) is a 
scalar prod uct on E Implies easily that i.'\". Jlh- f x'I /) IS .1 scalar product 
on E' Thus E' is a pre- Hilbert space. Let us show that E' is separared. Let ., 
be a nonzero element of E'. Let .'( be a representatlve of .'( in E. Then x ~ E­
(otherwise. x' .".0). therefore (x !x) > 0 and consequently (x' "(') > O. We say 
that E' IS tite .~I!paraled pre-Hilbert space ,Js.~()c:jated wlrh E. ThiS construction 
reduces most problems abQut pre-Hilbert spaces to problems about separated 
pre-Hilbert spaces. 

8.S.S. Theorem. Let E be a pre-Hilbert space. For every (e E. seT t,;11 = 
" (XX). Then ~.- ;.:c:lu a seminorm on E. For thIs seminorm to be t.I norm. 
ir IS 'Iecessary and ~(ficie"r rhac the pre-Hilberr space be sel'araled. 

If Y •. \ 0: E and A. :: C. then 

,A-'\: Z = (A.UU) = I~(xlx) = jAllt'cl!!, 

oX - yljl = (x -- y!x .,.. yl = (xix) -l\'!y)", 2 ReIX.Y) 
~ ,Ixl l ~ ,.\"i! ~ 2!(:\'IJ)1 

~ Ixll: -. IIYll l ~ l:!x!! ,lYI! by 8.4.10 
= (flx .. ,)'Ii)~. 

therefore :c f-+ ,Xi! is a seminorm, For this serninorm to be a norm. it IS 

necessary and sufficient that 

.\' = 0 =- 'i)'" > O. 

In other words that 

.\. ~ 0 =-- (x 1 x) > O. 

8.5.6. Theorem. Ll!r E be f.l pre-Hilbert ~pace i1l1d ."(. n: E. Then: 

(i) Ii~ ~ j'~1. + lix -- J:: = ~1.'('ll + 2_v1l 1 (parallelogram;" ..... ), 

and 

Iii) 4(."(1.1'1 = .'t + y,1 1 - 'I-x ~ )'.1. -10 jili.'( _ JI,l _ i -1,'(" ,\" 1. 

(polarizdrion idemity). 

For 

Ix ~ r"= .... :.": - ,I':~ = (x .... y 't - vI 'T' ,.'( - .L' " - .~o) 

- tx:x) ... (."(1.1') "I" lj'IX) "I" tyly) 

-10 (Xix) -(xl)') - {SIx} - iy'.I'} 
- 2(.\·!.c) ... l(y'.]/ J. 
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and 

(.( ~ J'IX - ~,) = (:<1.'(, + (xl.v) + (yIX) .... i)'iY). 

-I -~ -r~II-.\: ... \.'l = -{X,x)"" (x' l') .,.. (Vlx) - (.)II}'). 

i(ix - .vlix ~ yl = i(xlx\ - (xly) - (Vlxl -i- ;(ylyl. 

-i(-Ix + JI -IX.,.. 1') = -i(xl'(l-'- (X "v) -IYlx) - i(i),l. 
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8.5.7. Theorem (Pythagoras). Let E be.: pre-Hilbert space, and XI' __ •. >:. 
pairwise orthogonal elements of E. Then 

For. 

8.5.8. Let E be a separated pre-Hilbert space. By 8.5.5, E has a norm \: -+ I x~. 

Therefore. by 8.1.6. E has a metric 

d(;c.)'l =- ~x - yll = (x - .Vix _ 11)1:. 

hence a topology This topo logy IS separated (1.0.2(a», whIch in some measure 
justifies the expressIOn 'separated pre-Hilbert space' 

8.5.9. Examples. If C· is equIpped with the canonical scalar product, one 
recovers the norm and metric already conSIdered. In /2, one has 

d«(A." ..i.! •. ,.l. (,ll,.ttl' ... » = flA.t - J.l11 l ... 11; - J.ll!:~ .,.. ... )13. 

In the pre-Hilbert space rt([O, 1], C) of 8.4.5. one has 

dU, g) = ( r If(c) - g(t)l: dt): :: 
\,,0 . 

the corresponding topology is called the topology r;j conL'eryence ill mean 
rquare. If a sequence ({.) tends to f for this topology, one says that Un} 
tends to f in mean square. 

8.S.10. Theorem. Let E be Il seoarated pre-Hilbert space. Tile mapping 
I.X. yl t- (XIY) of E x E Into C is continuous. 

The mapping x ...... ~."Cil = d(x, 0) IS continuous (5. i.1). Moreover. the 
mappmgs (."C. y) _ X - y. ~A., x) ...... A.x are cont In uous (R.!.x). The theorem 
then follows from the polarization ldentity (8.5.6). 
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8.6. Banach Spaces, Hilbert Spaces 

8.6.1. Definition. A normed space that is complete (as a metric space) is 
called a Banach space. A complete. separated pre-Hilbert space is called a 
Hllberl space. 

8.6.2. Example. Let E be a finite-dimensional normed space. Then E is a 
Banach space. For, one can suppose that E = Rn or C". The given norm is 
equivalent to the usual norm of Rft or C" (8.3.4). Every Cauchy sequence for 
the given norm is therefore a Cauchy sequence for the usual norm, hence 
has a limit (5.5.9). Thus E is complete. 

In particular, a finite-dimensional separated pre· Hilbert space (for 
example. C" equipped with the canonical scalar product) is a Hilbert space. 

8.6.3. ExampJe. Let X be a set. E the vector space of bounded real-valued 
functions on X, equipped with the norm of uniform convergence. Then E 
is a Banach space. For. ;:F(X, R) is complete for the metric of uniform con­
vergence (6.1.6~ If a sequence (j,,) of functions in E tends uniformly to a 
function fe .F(X. R), then sUP"eX I!.(x) - f(x) I ~ I for n sufficiently 
large. therefore f is bounded. Thus E is closed in .F(X. R) hence is complete. 

In particular, /«- is a Banach space. 

8.6.4. Example. Let us show that /% is complete (hence is a Hilbert space). 
For n = I, 2 ..... let x.ell , Then :e. = ()."Il A.2. A.3' ... ) with It:'11A..if2 
< + 'Xl. Suppose that Ix" - xq/I - 0 as p. q -+ OCt and let us show that 
(x.) tends to an element of /2. We have L~ t I A.Pf - Aqll~ - 0 as p, q - 'Xl. 

A fortiori. for every fixed positive integer i, I.t", - A.qi1- D as p, q - ::0. 

therefore (A.nf) tends to a complex number A./ as n - .:c. Let a > O. There 
eltists a positive integer N such that 

'" p. q :<!: N => L /A'Pi -. Aq;ll ~ e. 
i =r 1 

Let A be a positive integer. provisionally tilted. We have 

A 

p. q ~ N = L I A.pi - A.q;!Z ~ e, 
,al 

Fix P ~ N and let q - .x;. We obtain: 

A 

P ~ N = L IA."I- ).,ti2 ~ e. 
J-1 
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This inequality bemg true for every positive integer A, we deduce that 

r. 

(1) p ;;:: N => I I • .1." - ;., j% S e. 
i-I 

Tnis proves, first of all. that for p ~ N the sequence (A,i - Ai) belongs to Il. 
Since A.i = A.JlI - (A.,. - ~). we dcd uce that (A'I) is Itn element x of /2. The 
relation (I) can now be written 

N ' , 
p ;;::, - Itx" - xll- S e. 

Thus x" .... x as p - :c. 

8.6.S. Example. An almost identical pr()of shows thaL II is a Banach space. 

8.6.6. Example. The separated pre-Hilbert space of 8.4.3 is not complete 
(cf. 8.7.1). 

8.6.1. Theorem. (i) A closed linear subspace of a Banach space is a Banach 
space. 

(ii) A finite product oJ[ Banach spaces is a Banach space. 

Assertion (i) fonows from 5.5.6, assertion (ii) from 5.5.8. 

8.6.8. Theorem. Let E be a normed $pace, F a Banach space. Then ~(E, F) 
is a Banach space. 

Let (f.) be It Cauchy sequence in ~(E, F). Let x e E. We have 

as m, n - x. Since F is complete. there exists an element J (."C) of F 1uch 
that j,,(x) - f(x) as n .... 'X). We have thus defined a mapping f of E into F. 
The equality f,Jx .... Y) = f.(x) .... . (,.(y), valid for all n. yields f(x .... }.) = 
lex) -- rtv) in the limit; similarly f(lx) = ).f(x) for every scalar .i Thus f 
is linear. Let e > O. There exists an N such that In, n ~ N - Ilf .. - /,.1 S G. 

that is, oIi .. (x) - f.('''C)~ :s; If for :111 X e E such that IIx. :s; l. Fixing x and m. 
and !ettmg 1'1 tend to infinity. we obtain II f~(x) - f(."C)11 :s; /! for Ilxl S; 1. 
From this. we deduce first of all that 

I'(."C)II S; I + aJ';'(."C)1I :s; e - 11,;',1 for IXII:S; I, 

therefore f E ~(E. F). Moreover. we see that Hf." - f1 S t. and thiS for all 
m ;;:: ~. Thus (f,.) tends to f in !i'(E. F). 
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8.6.9. Corollary. Let E be a normed space. Irs dual is a Banach space. 

For. the dual is either 2(E. Rl or .'z!?(E. C), and R. C are complete. 

'II. 8.6.10. Theorem (Banach-Steinhaus). Let E be a Banach space. F 
a normed space. (U/)tel a family of .:ontinuous linear mappings of E into F. 
The following conditicns are equll'alem: 

(i) SUPtll'!Ur < -71;: 
(in for aach :( E E. sup/.; fUix'! < -~. 

(i) =- (ii). This IS Immediate since Ilui."I:, .so ,lul,11x;i, 
Suppose that condition (ii) is satisfied. The functions x ...... lu/x,1 on E 

are continuous, and their upper envelope is finite. By 7..4.15. there exist 
a closed ball Bin E with center a and radius p > O. and a constant ~ > 0, 
such that 1'lIj;<1I oS; M for all x e Band j e l. Since lu,(x - .:z)I! oS; 

tUtX -+- flu/lollI. there exists a constant ~I' > 0 such that !Iu/ylf ::;; ~' for 
tyll ::;; p and for all i E I. Then. for ':-,",'1 ::;; 1. we have 

therefore '!u;1I ::;; p - ·~f. and Lhis ior every tEl. 

* 8.6.11. Corollary. Let E be a Banach space. F Iol normed space. and 
(III' u~ . ... J a sequence of cominuous linear mappings of E into F such thal, 
for er:er}' x E E. " •. "1: has a limit u:( in F. Thel1 1/ is a continuous linear 
mapping of E into F. 

The fact that u is linear is immediate. By 8,6.10. there exists a finite constant 
M such that !lu~,1 oS; M for all n. For every x e E. we have 'Iuwxll ::;; M'lx'l 
for all n, whence Nuxl ::;; yHxh on passage to the limit. Therefore u is 
continuQus. 

8.7. Linear Subspaces ofa Norrned Space 

8.7.1. LeL X be Ii normed space. E a linear subspace of X. If E IS finite­
dimensioll,lI. then E is closed in X (8.6.~ and 5.5.7). In particular. in a finite­
dimensional normed space. all linear subspaces are closed. 

Thts IS not so in general. For example. consider again the example E of 
SA.3, which is a linear subspace of I~. Let us show that E is dense in i2. (hence 
not closed. since it is distmct rrom 11). Let ().nJ e 12 and jj> O. Therc eXlsts a 
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positive integer N such that I:n;'N 1A-,,!:: ::;; s. Let Ill.) be the element of E 
such that ;.t. = A. ior 11 < ~,11. = 0 for n ~ ~. Then 

"" ,1(..1..) - ().t.)I!l = I :i,.. - ~L.:2 = I 1~.,2 $ , . 
• =1 ';'~ 

which proves our assertion. 
In particular. E IS not complete. 

8.7.2. Theorem. Let E he a Hormed space. F a linear sllbspace of E. Theil 
the closure F of F in E is a linear subspace ofE. 

Let x. >' E t. There exist sequences (x.), {Y.) In F such that x~ -- x, y, - .... 
Then x. + Y. E F and x • ..... Y .. - x + y (8.1.8), therefore x T Y E F. If;. IS a 
scalar. then ;.x. -- AX and Ax. E F, therefore AX E F. 

8.7.3. Theorem. Let E he a normed space. and A c::: E. Let B be cile set (i 
linear combinJltions of elements of A and let C = B. Tllen C is the smallest 
closed linear subspace of E containing .-\. 

One knows that B is a linear subspace of E, therefore C is a linear subspace 
of E (8.7.2), and It lS clear that C :::l A. If C' IS a closed linear subspace of E 
containmg A. then B c::: C' since C' is a linear subspace. therefore C c: C 
since C" is closed. 

8.7.4. Definition. With the notations of 8.7.3. we say that C is the clused 
linear subspace oj' E generared by A. If C = E. we say that A is total in E. 

8.7.5. Theorem. Let E. F be normed spaces. and u e $f(E. F)' Tilen the 
kernel of u is a dosed linear subspace (}f E. 

For. the kernel is u-lCO). and it suffices to apply 204.-'. 

8.7.6. However. the range of u is in general not closed in F 

8.7.7. Theorem. Let E be a normed space, E a dense linear subspace 
u/ E. F a Banach space, .md u' e $feE'. F). There eXIsts one and on/y'me 
u € 2'(E, F) that extends II'. One has :1 ud = Tu'l. 

The uniqueness of II follows from 3.2.15. 
By 8.2.4, II' is uDlformly .:ontinuous. By 5.5.13. there eXISts a contmuous 

mapping u of E into F that extends :I. If X • .I' e E. there eXlst sequences 
(x.). iy.) in E' such thut x. - x. Y. -- ~'. Then u·C,. ~ .v.) = u x. - 1(' .... 
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which gives u~x + y) = ux + uy In the IimiL. One sees similarly that 
U(i.x'i .. .tux for every scalar A. Thus u is linear. Since u extends u'. it is clear 
that lIu 'I ~ -:u'Jf. On the other hand. the mequality 

'ux~ S; ~rlill.lr'1 

IS true for every .'( E E'. hence remains true for every x E E by passage to the 
limit. therefore .ud S; ~u'l. 

8.7.8. Theorem. Let E he a separated pre-Hilberr spa('e. and A t:: E. Then 
A - is dosed linear subspace of E. 

We already know that A'" is a linear subspace of E. On the other hand. 
for every :c e E let F. be the set of y such that (x i y) = 0, Then F. is closed 
by 2.4,4 and 8.5.10. Now. A- = (lnA F". therefore A~ is closed. 

8.8. Riesz's Theorem 

•• 8.8.1. Theorem (Riesz). Let E be a separated pre-Hilbert space. F fl 

"'omp/elf Unear subspace of E •. ~ E E. and 0 rhe distance frum x to F. 

(i) There' exists one and I)n/), one y IS F such that !I~ - ." ... O. 
(ii) )' i4 the onl}' elemel1l of F such that x - Y E FL, 

(al There eXlsts a sequence lY.) in F such that Ilx - Y~B - b. Let It> I). 
There _exists a positive integer ~ such that 

n ~ N _ ~.'( - > •• ~J S; ~2 .I.. I­

For m. n 2: N. we then have 

2!lx - y ... !!; 'T' 1i1x - 1'.n.1 S; 4d l -i- 46. 

ApplYing the parallelogram law (8.5.6) to the lefl side. we ootain 

!I2x -,\' ... - Jifti z + IIY ... - )'ft11 1 S; ~1 +~, 

or 

II,}' ... - .~.,Jz S; 4c5z + 48 - 4~.tr - r", ; Yn r 
Now. hy", ..;.. .l'~) c F, therefore 

4~X _ Y .. -+- .v ... ~' > ... .l r 2 II _"':'. 
so chat 

lIy .. - .l'~II! S 4,.. 
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Since F IS complete, the sequence (y.) tends to an eiement y of F. Since 
11·"( - }.~ - .!x - .1''', we have ix - .vlI = J. 

(bl L~t : ... F. For all'( e R, we have 

Ilx - )I~Z ::; qx - II + ,.l.z)ft:: = Ilx - y'l l - .~l ;':II! -: Re(x - ),i • .l.z) 

A /' 
/. 0 Y""\Z /' 

~/ ___ Z __ ---,/' 

whence 

Os: ,P.'z!': - :.A Rctx - )'Iz). 

This requires that Relx - .vI;) - O. Replacing = by i=. we see that 
Ix - y ;1 = O. In I,)ther words. x - y E f-, 

I c) Let .OJ· be an element of F distinct from .'J. Then x - )' is orthogonal to 
y - .v·, smce)' - i e F. By the theorem of Pythagoras (8.S.':'), we have 

'\.'( - )"', ~ = ,x - )',:l ..,.. 1.11 - ,v".'! > .I.x - ,1/11= .. J~. 

This proves the uniqueness assertion In (i). Moreover. '\ - Y 15 not orthog­
onallo f, smce 

(X - .~'I.\' - l) = (x - 11J' - y') ~ IJI - til' - y') 
= tv - L"';: > O. 

This proves the uniqueness assertion In lir~ 

• 8,8.2. With the notations of 8.8.!, we say that y is the orthogonal projection 
ofx I,)n F. 

110. 8.8.3, Theorem. Let E be a Hilbert spaCf. 
!l) ifF is a closed linear subspace olE. then (F-~'" =- F. 

ijil .Wore generally, if AcE then (A·)- is the closed linear subspace ,qenerated 
by A. 

(i) It IS dear that F c: IF"',-. Let x be an element ,)f E that does not 
belong to F Let~' be ItS ()rthogona! projection on F Then :~ - )' ~ F~. 
therefore (YI x - JI =- O. consequently 

Ix .T - JJ = (~ - J'IX -I') ::"> C) because x"* y. 
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(ii) Let B be the set of linear combInations of elements of A and let 
C = :s (cf. 8.7.3 and 8.7.4). It is clear that B'" .. Ai. We have C.L .. B.L on 
account of 8.5.10. Therefore (A.l.).l. .. (C.L) ..... But (C.L)-:I C by (i~ thus 
(A':').L =- C . 

... 8.8.4. Theorem. Let E be a Hilbert space, and A c:: E. The Jollowing 
conditions are equivalent: 

(i) A is total in E: 
(ii) 0 is the only element ofE orthogonal to A. 

Set B .. A"'. To say that A is total means, by 8.8.3Cii). that (A.l.).l. = E. 
in other words that Bi = E. But the latter condition is equivalent to B .. {O} 
since E is a separated pre-Hilben space. 

... 8.8.5. Theorem. Let E be a Hilberr space. 

(i) For euery x e E. the mapping y ..... (x I y) of E into C is a continuous linear 
form flo 011 E. 

(ii) The mapping x ..... J; of E into E' is bijective and conjugate-linear. One 
has SIx" .. IIx~ lor all x e E. 

It is clear that flo is a linear form on E. We have 

!/h) I =-1(xly)1 :S IlxlillYIi. 
therefore flo is continuous and IIfxl :S Ilxll. Let us show that II.I~' .. !lxl 
for all x e E. This is obvious if x = O. Suppose :c ¢ 0; then ~xlIl = fJ..x) 
:S UxW ~ II. thus Ixft :S II !xll after cancelling /lxll. 

Let Xl' Xl e E and ~L' A.l e C. For all ye E. 

IAII.I+J.ZX1(y) .. (A'LXI + A.lxzfy) 
- II(x.ly) + Iz(xzIY) 
= Idx,(Y) + "J.z!Xl(Y) 

.. (It/XI + Iz IxzXy~ 
thus I1IX I+A.ZXZ -ldx, + rzfxz. In other words. the mapping x ..... J~ of E 
into E' is conjugate-linear. In view of the equality 11/1.11 .. IIxll, it is injective. 

Let us show that it is surjective. Let leE' and let us prove that there exists 
an x e E such that f" - Ix. This is obvious if I = O. Assume I ¢ O. Then the 
kernel F of I is a closed linear subspace of E distinct from E. Therefore 
F.L ¢ 0 (8.8.3). Choose a nonzero element t of Fl. Then t j F (otherwise 
(t I l) - 0). thus ICr) #- O. Multiplying t by a suitable scalar. we can suppose 
that f(t) = 1. Let x = Rtll -lr. For all y e E, 

I(y - fCy)t) - I(y) - l(y)/(r) = 0, 
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thus y - fey), E F. Consequently 

/",(y) ... (xIY) .. (XI/(y)t) - f(y)(xlt) = /(Y)lItll- 2(tlt) - ICY). 

S.8.6. Let E be a separated pre-Hilbert space. One calls orthonormal family 
in E a family (et),.1 of elements of E such that Ile,lI = I for all j e I and 
(e,1 e j) = 0 for i E I, j e J. i :#: j. Such a family is linearly independent. because 
if 

All e'l + ... + At. ei. == 0 

for scalars A.", •.•. A.'.' then the Pythagorean theorem implies that 

o = ,IIA., e, + ... ~ A.I e, .2 .. Il .• 2 + ... ;- I 1 12 I 1 · .... 11 ..... , • Ai" I I 

whence A.II = ... = ~. = O. 
If E has finite dimension p, the cardinal number of I is therefore at most 

equal to p. However, in general there exist infinite orthonormal families. For 
example in 12, let e. - (0,0, ... ,0. 1,0. 0, ... ). where the 1 appears in the 
n'th place. Then the sequence (el' e2' ... ) is orthonormal. 

S.S.7. Let E be a separated pre.Hilbert space. One calls orthonormal basis 
of E a total orthonormal family in E. that is (8.7.4). an orthonormal family 
(e/),.I such that the linear combinations of the e, are dense in E. 

Suppose E is finite-<iimensional. By 8.7.1. an orthonormal basis of E is 
an orthonormal family that is a basis in the algebraic sense. For example. in 
C" equipped with the canonical scalar product, the canonical basis is an 
orthonormal basis. 

In general, an orthonormal basis is not a basis in the algebraic sense (but 
there is almost never any risk of confusion). For example in /2, the sequence 
(e~) of 8.8.6 is an orthonormal basis by 8.7.1. 

• 8.S.S. Theorem. COrl3ider E - fI([o, 1], C) as a separated pre·Hilbert 
space with the scalar product (f, 9) ...... fA f(J)g(t) dt (8.4.5). For ePery n E Z. 
let e. be the /unctlon t .... e2 .... 1 on [0, 1], which is an element of E. Then the 
family (e.) •• z is an orthonormal basis a/E. 

(a) We have (e .. le.) = fA e-h'''''elll'.' dt = fA e2• if.-",)1 dt. If n = m, the 
value of the integral is 1. If n :#: m, then the function t .... e.2l1/CII-"11 admits the 
primitive e 2Zi(.-IIIII,'2nl(n - m), which takes on the same value at t - 0 
and t = 1. therefore the integral is O. Thus, the family (e,,) .. z is orthonormal. 

(b) Let E' be the set of feE such that /(0) = /(1). If/ e E' then f may be 
extended in a unique way to a function 9 of period 1 on R. and 9 is continuous. 
By 7.5.6. there exists a sequence (f~ of trigonometric polynomials that 
tends to 9 uniformly on R. Then fA I/(t) - /p(t)12 de - 0. thus Up) tends to 
/ in the pre-Hilbert space E. Now, /p is a finite linear combination of the e~. 
Thus. if we denote by A the linear subspace of E generated by the e., then 
A:::I E'. 
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M Let "E E. For n = L'::. 3, ._. iet ~ be .he functlCn that ~oincides 
with h on Din- 1 J. such that h~(O) = h"en. and which IS .linear on [O.-11n]; 
The Ih •• are bounded above br a fixed constant ·M {fQt example. ~ = 
sup, &1"" "lh(t'}l); Then 

d(h.~.'j2 = £ ,Mn .~ h.tt) 12 dt 

= 'r 1 "11I(11_ h.tt)l! dt oS; ~ CM)~. Jc n 

therefore hn tends to h in E. ~"w, n. ~ E'. Therefore f = E. Then Ii: :::;) r 
= E, whence A = E, and the family ten) is an orthonormal basis. 

*. 8.8.9. Theorem. Every HUbert space has an orthonormal basi.~. 

Let E be a Hilbert space. Consider the 0rthonormal subsets oi E. They 
form a set ,-1 ordered by inclusion. Let (P J be a totally ordered family of 
elements of ~ Each p ... IS an orthonormal subset of E. Moreover. for any A. 
and /oJ. either P~ :::;) p. or P" => Bl~ it is then clear that the union of the p ... 
is an orthonormal set, containing all the P}.. By Zorn's theqrem. there exists 
a maximal orthonormal subset P of E. If P is not total in E. then there exists a 
nonzero x in E orthogonal to P (8.8.4': replacing x by ~. xft. one can suppose 
11.,,1 == 1. Then P u, tx} is an orthonormal subset of E. which contradicts 
the maximality uf P. Thu' P IS total in E, hence is a.n orth<mormal basis. 



CHAPTER IX 

Infinite Sums 

The student already knows the definition of a convergent series XI ~ 
Xl + ... of real numbers, and the definition of the sum of such a series. 
In this chapter. we generalize in two different directions: 

(1) Instead of the X, being real numbers. we take them to be vectors 
in a normed space. This is a fairly superficial generalization (though 
useful in eertain contexts-see §S). 

(2) Instead of the Xr being indexed by the integers 1.1 ••••• we assume 
that the 5et of indices is arbitrary. A lot ohery concrete questions lead 
in fact to the case where the set of indices is NZ ('double series')' or N' 
('p-fold series'). or Z. etc., and the best thing is to study at one stroke the 
general situation. We shall then see why we spoke of '1Jmit along .1 

filtering set' ID 7.1.3. 
Although the case of series is a good point of reference., it IS well to be 

prudent: for example. compare Theorem 9.4.6 with the lI1o'ClI-known fact 
that 1:1 convergent !Cries is not always absolutely convergent. 

9.1. Summable Families 

9.1.1. DefiDftioa. Let E be a normed space. (Xr)/.I a family of elements of E. 
Let :\ be the set of finite subsets of I: it is an increasingly filtering ordered set. 
thus one can spea!C of limit along A (7.2.3). For every J : A. let 

Let se E. 

SI .. ~ XjE E. 
ill 
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The family (Xi)!&l is said to be summtlble. with sum s, if the family (SJ)JoA 
tends to s along :\. We then write s = Lis1 Xi' 

In other words. (Xi)i.1 is summable with sum s if. for every e > O. there 
eXists a finite subset Jo of! such that. for every finite subset J of! containing Jo• 
one has ULI.J Xi - sll S e. 

9.1.2. Theorem. Let (Xi),el' (Yi)'&1 be summable families in E. with sums s. r. 
Then the family (Xi + Y/)iel is summable with sum 5 -t- t. 

For j e A. let SJ = LI.J XU tJ = Li&J Yi' Then. along A. SJ tends to S and tl 
tends to t. therefore (51' 'I) e E x E tends to (.s. t) e E x E, therefore SI + tJ 
tends to 5 + t. Now,5J + tJ = LieJ (Xi + y,). 

9.1.3. Similarly. if A. is a scalar. then the family (Ax')'el is summable with sum 
As. We thus have the formulas 

L Axi = A. ~::XI' 
/el i,l 

9.1.4. Theorem. Let (X')iel be a ~"Ummable infinite family of elements of E. 
Then XI rends to 0 along the filter of complements of finite subsets of I. 

Let S = LI.! x,. Let a> O. There exists J e A such that 

Then .. 

e 
J' e A, J' :=l J;:;;> lis)' - S. S 2' 

j e I - J =- IlsJvlil - s/I S i and IlsJ - s11 ~ i 
=- jjsJ",!11 - sJJ S e;:;;> II XI II S e. 

9.1.5. Example. If (XI. Xl' ••. ) is a summable sequence of elements ofE. then 
the sequence (x.) tends to 0 as n .... ~. It is well known, from the example 
E = R, that the converse is not true . 

.. 9.1.6. Theorem (Cauchy's Criterion), Let E be a Banach space, (XI)i.! a 
famUy of elements of E. The following conditions are equivalent: 

(i) the family (Xi)lel is summable; 
(ii) for every e > 0, there exists a finite subset Jo of I such that, for every 

finite subset K of I disjoint from Jo• one has IlsKU S; e. 
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Suppose (x,),., is summable with sum s. Let B > O. There exists Jo e A 
such that. if J e 1\ and J := 10, then IIs, - sM S B/2 Let K e 1\ with K ,.., 10 .. 
~. Then 

£ ~ 

Iislo - 511 S'2 and ~SJo"'K - sll S; 2' 

therefore KSKD = ~Slo"'K - s)oll S 6. 

Suppose that the condition (ii) is satisfied. Let B > O. There exists 10 e 1\ 
such that, for K e A satisfying K /"'\ Jo - ~. one has IIsltft S 6/2. If J, l' e 1\ 
and 1, J' ~ 10 • then 

therefore Us) - sJ'U S 6. Thus. the set ofsh forJ e 1\ and 1 ~ Jo, has diameter 
S e. Therefore (s))J&i\ has a limit along .11. (5.5.11). 

9.1.7. Definition. Let E be a normcd space. (x')'e' a family of clements of E. 
The family (x,),., is said to be absolutely summllble if the family <:Ix,,!),., is 
summable in R . 

• 9.1.8. Theorem. Let E be a Banach space, (XI),., an absolutely summllble 
family of elements of E. Then (x,),., fs summable. 

Let £ > O. There exists 10 e 1\ such that 

K e 1\, K /"'\ 10 - ~ ~ ~):c,u S 8 .. ~ L x,t S B. 
1.1t ,,&It ! 

therefore (x,),., is summable by 9.1.6. 

9.2. Associativity, Commutativity 

9.1.1. 11IeorelD. Let E be a Banach space, (xi)'e, a summablefamily of elements 
ofE. Let 1 c:: I. Then (x,),. I is summable. 

Let B > O. There exists a finite subset 10 of I such that, if K is a finite subset 
of I disjoint from Jo• then :1,sItM S; B. Then 11"'1 Jo is a finite subset of 1. and if 
K' is a finite subset of 1 disjoint from 1 /"'\ 10 then ,Islt· ~ S; B. Cauchy's criterion 
applied to (X/)'d proves that this family is summable . 

• 9.1.2. Theorem (Associativity). Let E be a Banach space. (x/)'e, a summable 
famtly in Eo (I')'.L a partition of I. For every Ie L, set y, - L'el, x,. which Is 
meaningful by 9.21. Then thefamily (Y')'eL is summable and Lt&, x, = rieL ,.1' 
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Set:J = Liel x,. Let £ > O. There exists a finite subset Jo of! such that. if J 
IS a finite subset of I containing Jo, then ~sJ - sM S £/2. 

Let Mo ::: L be the set of Ie L such that I, intersects JQ • This is a finite 
subset ofL. Let M bea fimte subset ofL containmg Mo. Weare going to show 
that 

(1) 

which will establish the theorem. 
Let 11 be the number of clements of M. For each Ie L. there ex.ists a finite 

subset I; of I, such that fy, - s.:l1 s e/2n, and we can require that I; contain 
Jo ~ I, by enlarging it if necessary. The union of the Ii, as i =uns over M, is a 
finite subset J of I. and J :J Jo. We have :15J - sri S &/'2. thaI is, 

(2) , L Slj - sll -S 8/2. 
leM ij 

Now, II)', - sd S e/2n for every IE M, therefore 

(3) II i: Y, - L 51;;1 S 8,2. 
:.M rEM V 

The mequality (I) follows from (2) and (3). 

9.2.3. Example. Let (x",.)", .• _ •. z .... be a double sequence of real numbers. If 
it IS summable. then 

9.2.4. Let E be a Banach space. (X')'el a family of elements of E, (I'),.L a 
partition ofl Suppose that each subfamily (x,), •• , is summable with sum YI' and 
that the family (,VI)'"L is summable. This does not imply that the family 
(x,),.! is summable. For example, take E = R and consider the sequence of 
real numbers (1. - 1, 1, - 2 .... , n, - n .... ). Each subfamily (n. - n) is 
summablewith sumO. and the family (0. 0.0, ... ) is summable, yet the original 
sequence is not summable (for example by 9.1.5). 

9.2.5. However. one has the following result: 

Theorem. Let E be a normed Iiector .!pace. (X/)/Ol a family of elements ~f E. 
(I')/eL GI partition of I with L finite. Assume that each subfamily (x,),.:, is 
slimmable with sum '\',. Then (X,)iel is 5ummable with sum ·L.l. ."1' 
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Let c: > O. Let n be the number of elements of L. For every I .. L. there e:<lSts 
a fimte subset 11 of II such that. If l' is a finite subset ofI l contaming JI , then 
• sl' - J',.I S; em. Let J = 11.)10 L JI • which IS a finite subset oi l. If l' is a 
finIte subset of I contaimng J. tilen l' is the disJoint union of the l' .... I" 
and l' t" IllS a finite subset of II contaming JI . Therefore !i$.t~I' - YJ'l S; o.n, 
and this for every I EO L. Since '>,. = Lie L $1'- 11- we have SJ' - Lie to Y'" S; ,:. 

whence the theorem. 

9.2.6. Theorem ,Commutativity). LeI E be a normed space. (;X ,), .. 1 a )'Ummabie 
family of z/emems of E with sum ~. Let 'T be a hijec!ion of I onto 1. Then the 
Jamily (.Xa1ilJi,,1 is summable with sum s. 

Let e > O. Let 10 be as in 9 I.!. Then (j - If),) IS a fimte subset eiL LetJ be a 
finite subset ofI containing(j- L(1 0 ). Then (j(J) :=; 10 , therefore IL'iO'(j)X, -.'In 
S; e. that IS. 

whence the theorem. 

9.3. Series 

'I p, 

~ It X~{I) - stl :::;; o. 
J i Ii .. 

9.3.1. Definition. Let E be il normed space. and (Xl' _l; ••.• ) a sequence of 
elements of E. We say that the series with generai term x. is convergenr IIlith 
l'wn s (where .~ E E) if s. = L:7. I Xi tends to s as n tends to infimty. We then 
write .~ = I:.. 1 .X' •• 

In other words. the series is convergent with sum s if. for every e > O. there 
exists an N such that /I ~ N:::> i1s. - s·l :::;; E. 

The senes wlth general term .Y. 1S said to be :1bsoiurely coflt'ergenr if the 
series with general term ;Ix,'i IS convergent. 

9.3.2. By means of proofs analogous to those of 9. I. one establishes the 
following results: 

t a) If the series with general terms x. and y. are convergent. then the series 
with general term~ .X', ~ y. and i.x, (A a scalar) are convergent. and 

'XI ;Ie.l'; 

I (x. - Y.) '= L: x. - I r •. 
1=! ,=l n=1 

.. lC 

L: h. =.;,2: x,. 
11= 1 ,.-1 

(b) If the ~e:'les w1th general term x. is convergent. then .'(, tends to 0 as ~, 
tends tt, mfinlty (The .;onver5e is not true.) 
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IC; (Cauchy's Criterion.) Let E be a Banach space, (.,\: I' ."(~, ... ) a sequence 
of elements of E. The following conditions are equivalent: 

Ii) the series with general ter:n X. IS convergent; 
(ii) for every e > 0, there exists an N such that 

(d) Let E be a Banach space. (XI' X2"'.) a sequence of elements of E.lf 
the series with general term X. is absolutely convergent. then the series is 
convergent. (The converse IS not true.) 

9.3.3. Theorem. Let E be a normed space, IXL' Xl, __ .)a :;equence ofelemencsD[ 
E. lj'the sequence is $ummable with sum s, then the series with yenera/ term X. IS 

tont'ergent with sum s. 

Let;, > O. There exists a finite subset 10 of {I. ~ .... } such that, if I is a 
nnite subset of ,1. 2 •... 1 containing 10 , then :jS - IIE J X,~ ::; t.. Let N be the 
largest of the integers in Jo. If n ;;:: N then Jf) C ~ I. 2 ...• nf, therefore 
as - )'7a I :t,~ :s; 1-:. This proves that y~=, x, - s as n - 'X. - -
9.3.4. The converse of 9.3.3 is false. as will follow from the example in 93.5. 

9.3.5. Let E be a normed space. (.x: I' X., __ .) a sequence of elements of E. (] a 
permutation of 11. 2, 3, .. ·1. If the sequence ~.( II X2, •.• ) is summable. then 
~."'.l .t. = I.X' .. , xa1n ' by 9.3.3 and 9.2.6. However, consider the series 

1-!-1-±+~-"" 

which one knows to be convergent with sum log 2. By a suitable permutation 
of the order of the terms. one obtains the series 

I -! -0 ± .. ! - i - t - t - to- - ~ '1" •.•• ______ --.-... '--v--' 

This series IS easily seen to be convergent, with the same sum 15 

thiS sum is therefore t log :!. The ~um hU3 changed aJter rearrangement of the 
terms. In particular. the sequence (1. -!.', -1. ... ) is not summable (cf. also 
9.4.6). 
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9.4. Summable Families of Real or 
Complex Numbers 
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• 9.4.1. neorem. Let lx,),., be a Jami/, of realllu"",ers ~ O. Consider the 
finite partial sumS 5, = Ile' ~t. where J e t\ (rile set of aI/finite subsets oj I). 
Let! = suP,." s, e [0, +::0]. 

(i) lIs < +00, tllen thefamily (x,h., is summable with .~um s. 
(ii) If ~ = +~, then 5, tends to + cc alolVi A. 

The mapping J ...... 5, of A into R is increasing, since the x, are ~ Q.. The 
theorem therefore follows from 1.114. 

9.4.2. Thus, for a family (x,)'e' of numbers ~ O. the symbol Llel ~,is a/wan 
meaningful: it is a finite number if the family (X,),., is summable, +~ other­
wise. 

9.4.3. Theorem. Lei (.~t)'." tJ')'11 be two families of numbers c:= 0: assume 
thar x, s; 1.1 for all i e 1. Then I:II'" S; I'eIY .. In particular. if the family 
""',el is summab/e, then Ihe/ami~v (X,)t, I Is summable. 

Let A be the set of finite subsets of I. If J eA. then LI.' X, S; I,.1' .~. 
Passing to the limit along A, we obtain Li., :(, S; I~~~ 

9 ••• 4. Theorem'(Associativity). Let ~'~"r.1 be a/amily o/numbers ~ 0, (l')/eL 
a partition 0/1. Then 

) Xr - I (Lx,). 
1.1 .fcL ,'e', , 

If the family {XT)'el IS sum mabie. this follows from' 9.:!.2. Otherwise. 
~I.11t = + 70 •. For e .. ery finite subset J of I, we hue 

l: ~i'= l: (r .~) 
,., leL 1.1 ... ' I 

s; I (L Xi) by 9.4.3. '.L I." '. 
This being true for all J, we conclude that 

thus the equality of the theorem is again true. 
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CNe make the convention that o· 1" 'Xl - 0.) 

By 9.4.4. we have 

L x'YJ = r (r X,YJ)' 
U.jlslxJ III ieJ 

Now. L.J XIY}" XI LeJ Yj· Setting t .. L.J YJ. we thus have 

L x'Yj'" r xlt. 
(i. JIll' J ill 

It t < + x. this is equal to t(L,el x,~ whence the theorem. If t = -+- 00, we 
distinguish two cases. If all of the X, are zero, then tXt = 0 for all i, therefore 
LI'I tX, = 0 .. r L'II XI' If one of the X, is > 0, then lX, - + x for such an i, 
therefore LIII tx, ... + 'Xl: on the other hand. L:'I XI > O. therefore t Lei x, 
.. +00 . 

.. 9.4.6. Theorem. Let (XI)lel be a fDnlny of real or complex nurrrlurs. The 
following conditions are equivalent: 

(i) the family (XI)'II is summable; 
(ii) the fDnlily (X')'II is absolutely summable. 

(ii) ~ (i). This follows from 9.1.8. 
(i) ~_ (ii). Suppose that the family (Xt)lal is summable. If the X, are all real, 

let II (resp. Il ) be the set of j e I such that X, ~ 0 (resp. XI < 0). The families 
(x,)IEh and (x,)llh are summable (9.2.1). Therefore the families (Ix; 1)1, .. and 
(lxd)l1la are summable (9.1.3). Therefore the family (Ix,!)", is summable 
(9.2.S); If the XI are complex, then the family (x,) is Clearly summable. Since 
Re XI ... !<xj .,. Xi). the family (Re Xi) is summable (9.1.2). Similarly, the 
family (1m XI) is summable. Then the families (I Re x,l). (11m xd) are 
summable by the first part of the proof, therefore so is the family 
(I Re xd + 11m xd). Finally. since IXII SIRe xd + 11m xii, the family (I XI I) 
is summablc (9.4.3). 

9.4.7. Series with terms 2: O. If .t'\. Xl' ••• arc numbers 2: O. then the 
sequence (r~-, XI) is increasing, therefore has a limn in R equal to its 
supremum s, which is denoted Ll'! I XI' This number is equal to La (1.1 .... 1 XI' 

For, if the sequence (XI) is summable. this follows from 9.3.3. Otherwise. there 
exist arbitrarily large finite subsums rllJ XI (9.4.1). therefore arbitrarily large 
sums D. I X" therefore 

'" LXi = +00 - l: XI' 
i-I iell.3._,) 
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9.4.8. To sum up, if(xihe, is a family of elements of a normed space E. one has 
the following diagrams: 

I arbitrary, E complete: 

absolute summability => summability. 

I arbitrary, E - R or C: 

absolute summability <=0 summability. 

I - {I, 2. , •. }. E complete: 

absolute summability =- summability 
~ U 

absolute convergence => convergence. 

I = {I. 2 .... }. E - R or C: 

absolute summability <=0 summability 
3 U 

absolute convergence => convergence. 

9.4.9. Let l: E R. One knows that the number 

I I I 1 
1+-.l..-+-+ .. ·"" l: -

:'" 3'" 4'" uN-{Ol X· 

is finite if:z > 1 and infinite if oc S 1. This amounts to saying that 

1 L - < ""T' -oc <=> l: > 1 • 
... Z-IOt Ixl'" 

Here is an imponant generalization: 

1'beorelD. Let x 1-O'lx;1 be a norm on RP and le!:z e R. Then 

I 
L -'I II" < -to:c <=0 :z > p. 

:reZP- /Ot X 

Since all norms on R" are equivalent, it suffices (in view of 9.4.3) to carry 
out the proof for the norm 

(XI' Xl'.'!' X,,) ...... sup( IXd.lxz I. t •.• Ix"l). 
On ZP - {O}, this norm takes on the values 1.2.3, •••• For It == 1.2.3, ... , 

let A. be the set of x e ZP such that * x ~ = n. Then 

A. = B •• \oJ B.lv.~:· V B.". 

where B.i is the set of (XI' Xl' •••• XI') e Z" such that Xf - =n and 
- n S x j S n for j ¢ r~ It Is clear that Card(B.,) - l(2n + 1)P-', therefore 

,,1'-1' s; Card A. S 2p(2n + W-: :S :!p(3n),,-1 - l· 31'-1 . pn,,-l. 
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Consequently. 

By 9A.~ and 9.4.4. we deduce from this that 

'\ -~-- :S '\ _1- :S 2. 3P- I 'p '\ __ .&;::'01 n"'-PT I .uZ1'-JOl Ixf' u;:'OJ n",-p·j· 

from which 

- x - !J ..,.. 1 > J - x > p. 

9.4.10. The Hilbert Space /2(1). Let I be a set. We denote by I~(I). or simply 
[l(l). the set of families x = (X')I&. of complex numbers such that 
LI.II xd 2 < "':IC. Let us show that this is a linear subspace of .F(I. C). It is 
clear that if ;c e /l(1) and;" e C, then U 5: [l(I). Let -x = (Xi)'e' E ll(I) and 
}' :II (Yi)IE Ie /l(I). Then 

1: Ix; + }"I: :S I: (2lx j lz .... ~I)'ir) by 9.4.3 
1.1 lei 

= 2 L. \x112 - ~ I! 'ilz by 9.1.2.9.1.3 
iel ,.1 

< - ';C. 

thus X -~ J e l~(l). Next. 

2 L IXtilY11 :S L U~/:z + IJd2 ) < +:IC. 
iel i E 1 

so that the family (XiYI)'.l is absolutely summable, therefore sum mabie 
(9.1.8). Set (x I y) = LI.I'=(,YI- One verifies easily that (x. y),.... (x I y) is a 
scalar produCt on [2(1). Imitllting 8.6.4 step by step. one sees that [=(l) is Q 

Hilbert space. (In the proof of 8.6.4, consideration of the sum L;'. I must be 
replaced by that of a sum LI.J. where J is a finite subset of I.) 

If I = (1.2, 3 .... }, then 12(l) == /2, If I = {1.l .... n}. then [2(1) - CO 
equipped w\th the canonical scalar product. 

Let io e: I. Consider the family e,u - (X,).ol such Lhat x, - 0 for i ",. io • 
• 'tl - 1 for i - io. Then elo e 14(1). The family (ei)'.1 in ll(I) is orthonormal. 
As in 8.7.1. one verifies that the linear .:ombinations of the eo are dense ID 

14m. thus (e,), •• is an orthonormal basis of 12m, called the canonical ortho­
normal basis. 
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9.5. Certain Summable Families in 
Hilbert Spaces 

• 9.5.1. Theorem. Let E be (.l separated pre-Hi/ber! space, (X,)lol afamiiy 
oj pairwise ~mhoqonal elemems of E. 

(i) If the jamily (X,),eI IS summable with slim s. then 

2:: /1.";1'1 < + J:. and :S11 = I ~xdl". 
I'el iff 

Iii) It 2: .. '] ~x,f < +:.c. and E !s a Hilberr space. thell the family (x,) .. 1 1.5 

summable. 

Let ,\ be the set of finite subsets of 1. For every J E A. let II = Ji<1 X,. 

If (Xt)iEd is summable with sum 5, then SI tends to s along ,(-therefore 
~s,f tends to 1'511: along A. Now. lislll; == I.e! IIx,II Z (8.S.i). therefore 
11 ... l - '\ Il v .: 
"'1 - LwuI ,I"I~ , 

Suppose Ii.1 ,xi,l: < ... 'X. For every I! > n, there eXlsts.J E A such that. 
ii K E 1\ and K '''', J = 0. then 2:,oK :!xilll s ~ (9.1.6). that is. 'ISK.i S Co If. 
moreover. E is a Hilbert space. thlS implies that (X')fe' IS summable (9.1.6) . 

• 9.5.2. Theorem. Lel E be a separated pre-Hilbert space, le,),.1 an orrho­
normai basis of E. 

(i) Let x" E, and set A. j = (ej!x). Thefamily O"e')iEI Is summable in E. and 
x = I.", A,e,. _ 

(ii) If Y E E and t', = (eli )I), then thejamily (Ai,uaIEI is summable and (xly) = 
)' ..,. / . I II" \' ' . " .... i.I ... f,ui. n parlleu ar. XI - = ,-,eIIAfl-. 

Let B > O. There exist a finite subset Jo of 1 and a linear combination ::' 
of the e, for i E 10 , such that :1'( - .o;'i S; f:. Let J be a finite subset of I such 
that J ::: J'J' :lnd set 

: = L ;.!..:~. 
liiJ 

For j E 1. we have 
" , 

(e/,x -:) = (eJ1x) - (eJl.I. A.,e j ) = .. , -";'1 = O. 
I ,eJ " 

therefore x' - ; (which IS a linear combination of the f!, for) E J) IS ortho­
gonal to x - :. Consequently 

~x - :11 1 -4- I; - X:l = 1x - x'll l S z;, 

whence :Ix - ;~ S .>. This proves that the family (A.,t',),,<, is summable with 
sum .. <. 
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Since Ii.J A,ei and L.EJ /-Liei tend to x and V along t\, the number 

(LieJ A.iedri~J /Jlei) ~ LiEJ 1i /Jj tends to (xly) along t\. 

9.5.3. Under the conditions of 9.5.2, we say that the A.i are the coordinates 
of x with respect to the orthonormal basis (e,),.,. If E is finite-dimensional. 
we recover the usual concept of coordinates with respect to the basis (e,),eh 
since x = L.e,A.fei' 

.. 9.5.4. Corollary. Let f E ~([O, 1], C). For every k E Z. set 

A.t = f f(c)e - .,,/tl dt 

(' Fourier coefficients of 1'). Then D= -ft A.ke2~.tl tends in mean square to f. 
as n rends to infinity. If also 9 E ~([O, 1], C) and /-Lt = n g(t)e-2",ilr.l dt, then 

(1 f(t)g(t) dt = L Atilt.. 
Jo ftsZ 

This follows from 8.8.8 and 9.5.:; . 

.. 9.5.5. Tbeorem. Let E be a Hilbert space, (e')'el an orthonormal basis of 
E. For every x = (/J')lEl e 1::(1), let f(X) be the element LIE! /J,ef of E (which 
Is defined. by 9..5. I (ii». Then the coordinates of f(x) with respect to (e,)/E1 
are the ilj, and f is an isomorphism of the Hilbert space P(1) onto the Hilbert 
space E that transforms the canonical orthonormal basis of I~(I) into (el),.,' 

(a) Let A be the set of finite subsets of I. Let j E I. If J : ,\ and J ::J {J}, 
then (ejIL.,.J /J,e,) - /.IJ; since LI.J /Jie, tends to f(x) along A, we see that 
(ejl f(~) is equal to /J)' 

(b) It is ciear that f is a linear mapping of 140) into E. For every y E E, 
let g(y) be the family of numbers «ell Y»ieh which belongs to 12(1) by 9.5.2. 
Then 9 is a mapping of E into /2(1), and f(g(y» = y by 9':;.2. On the other 
hand. 9 (f(x» = x for all x E IZ(I) by (a). 

(c) Thus, f and 9 are linear bijections inverse to one another. By 9.5.2, 
9 preserves the scalar product. Thus f is an Isomorphism of the Hilbert 
space Il(I) onto the Hilbert space E. 

(d) It is clear that ftransforms the canonical orthononnal basis of /2(1) 
into (e,)lei' 

III .. 9.5.6. Corollary, Every Hilbert space is isomorphic [0 Il space 12~I). 

This follows from 8.8.9 and 9.5.5. 



CHAPTER X 

Connected Spaces 

This chapter, which is very easy. could have come before Chapter II1 
(but there were so many questions urgently requiring study!). The 
problem is to distinguish. by various methods. those spaces that are 
'in one piece' (for example a disc, or the complement of a disc in a plane) 
and those which are not (for example. the complement of a circle in a 
plane). 

10.1. Connected Spaces 

10.1.1. 1'beorem. Let E be a topological space. The following conditions are 
equivalenr : 

(i) there exIsts a subset of E. distinct from E and 0. that is both open and 
closed; 

(ii) there exist two complementary nonempty subsets ofE both of which are 
open; 

(iii) there exist twO complemenrary nonempty subsets of E both of which are 
closed. 

This is clear. since if A is a subset of Eo we have 

A open and closed <=> A and E - A open 
<=> A and E - A closed. 

10.1.1. Deftnidon. If a topological space E satisfies the conditions of 1O.1.l, 
it is said to be disconnected. In the contrary case. it is said to be connected. 
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10.1.3. Theorem. R j)i connecled. 

Let .~ be an open and closed subset of R. ~ssuming A and R - A 000-

empty. we are going te, arrive Ilt a contradiction. Let :c E R - A. One of the 
sets 1\ ,- [,:, - r.), A ,... f - x. '<] is nonempty. Suppose. for example. that 
B = .~."" [.\. - x..J "" Z. Then B IS closed. Since B = A ~ i.x, -:'L -', B is 
also open. Since B IS closed. nonempty and bounded below. ,t has a smallest 
element b (1.5.9). Since B is open, it contains an interval (b - ':. b i- !;, with 
... > O. Thus b cannot be the smallest element of B. 

10.1.4. However. R - ~Ol is not connected. For. (- To, 0) ilnd 10, - X) are 
complementary nonempty open sets in R - :O}. 

10.1.5. Definition. Let E be a topologicai space and AcE. We say that A 
IS " ~'onne('led subs!!t ! If E if the topologIcal space J\ is connected. 

10.1.6. Theorem. Lee E be a topological space. (A')I'" a family 0/ connected 
~'Ubsets oiE. A = Ij .. ] A,.lfthe Ai incersect pairwise, thE'n ~ i$ connected. 

Suppose":\ is not connected. There exist. in the topologIcal space A, subsets 
U I' L" 2 that are complementary, nonempty and open. For every i E 1. 
VI''''' AI and Uz ('" A, are open in AI and complementary in Ai' Since Ai is 
connected. Li, 1"'. ~, ... 0 or L"; .... Ai = ;0. Let I I (resp. 1:) be the set of 
i E il'luch that Ai = I} 1 Crespo A, c t: ~). Then 1): (resp. L'~) is the union of 
the A: for j E I} (resp. i e 1: I, therefore there exist an Ai and an f\j ihllt are 
disjoint. contrary to hypothesis. 

10.1.7. Theorem. Lt!1 E bl! a topological space, A a connected subset of E. 
B a supsee olE such that A c B :: A. Then B is connected. In particular. A is 
connected. 

Suppose B is the union \)f subsets U l' V 2 that are disjoint and open in B. 
We are to prove that one of them is empty. There exist open sets Ut • 1.:'1 in 
E such that Li l = B ,"'I U'I' Ul = B I~, U~_ The sets A r. U) and A. .... V1 

are open ID A, disjoint. With union A. Since '\ is connected. we have for 
e:tample A ...... C I = 10. therefore 

In other words AcE - V'I' Since E - {J'l IS closed. we infer that 
A == E - VI. whence B r·. (J~ =;21, that IS. C I = Z 

• 10.1.8. Theorem. Let X. Y be topological spaces, f i.l c:oncinuous mapping 
of X into Y fiX !.' connected. then f(X) i$ connected. 
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If ,(oq is not connected. there exist in j(X) sets U",.~{J2 that are open, 
complementary and nonempty~ ThenJ"'(U,},.I- 1(U:" are open. comple­
mentary and nonempty in X. which is absurd. 

~ 10.1.9. Theorem. Let A c: R. The following conditions are equivalent: 

ti) A i$ Connected; 
(ii) ~ is an inrertXlI. 

We can suppose that A is nonempty and not reduced to a point. 
Let A be an interval. If A Is open in R then A is homeomorphic to R 

(2 . .5 • .5). hence is connected (10.1.3). If A is an arbitrar), interval. let I be its 
Interior in R. Then I is an open interval in R hence is connected. and I c 
A c r. so :hat A 'is connected (10.1.7). 

Let A be a connected subset of R and let us show that A ~ an interval. By 
:neans of the increasing homeomorphism x - tan". of ( - :'-'2. 11:,'1) onto R. 
we are reduced to the case that A c: (-1Ci~ :rI2). Then A admits a supremum 
II e R and an infimum a ~ R. We have A c: [a. b]. We are going to show that 
A :;) Ca. b)~ it will then follow that A is one of the four intervals (a. b), lb. b]. 
tao b). [a, b]. and the proof Will be complete. Arguing b)' contradiction. let 
us suppose that there exists an x. such that a < .'Co < band X'o E A. Then A 
is the union ofthe sets A ('l"t -:e. xo) and A ...... (Xa, >t- __ .\.which are open In 
A. Since A is connected. one of these two sets is empty. say .1\ n ~o, + :eta 
Then x <: «If for ;111 .... .:: A. which contradicts the fact that b is the least upper 
bound of A. 

10.1.10. Theorem. Ler X he a connected topological spac~.J a contInuous real­
'IJpLued[unction on X." and b points o[X. The'n Itake.~.,n et.:er,V ralue between 
/'u) and l(b). . 
. For, /(X) Is a connected sub5.et "r R (10.1.8), hence is an Interval of R 
,10.1.9). This interval contams ita) and f(b). hence all numbers in between. 

10.2. Arcwise Connected Spaces 

10.2.1. DeftDition. Let X be a topological space and a. b ~ X. A continuous 
mapping [ of [0, 1] into X such that 1(0) = a, [(1) = b isealled a 'con­
tinuous patA in X with origill a and extremit.~ b. [f any two points of X are 
the origin and extremity of a continuous path, X is said to be i:lr('wist eon­
necred. 

10.2.2. Example. If E is a normed vector space. then E IS arcwise connecte~. 
Fodf C. b ~ E. the mapping 

....... Jet) = G .. P(h - ,1' 
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of [0, I] bno E Is continuous (8.1.8), and /(0) - a. /(1) - b. For example. 
R" is arcwise connected. 

.. 10.1.3. Theorem. Let X be an arc wise connected topological space. Then 
X 1$ connected. 

Let Xo e X. For every x e X. let fa: [0, 1] ... X be a continuous path with 
origin Xo and extremity x. Since [0, I] is connected (10.1.9). the set Aa = 
/a([o. 1]) is a connected subset of X (10.1.8). Now, x e Aa. thus the union of 
the Ax is X. Since Xo belongs to an ofthe Ax. X is connected (l0.1.6). 

10.3. Connected Components 

10.3.1. Theorem. Let X be a topological space. and.x e X. Among the connected 
subsets o/X containing X. there exists one that is "'ger than all the others. 

There exists at least one such sct, namely {x}. The union of all of the con­
nected subsets of X containing x is connected (10.1.6) and is obviously the 
largest of the connected subsets of X containing x. 

10.3.2. DeflllitlOII. The subset of X defined in 10.3.1 is called the connected 
component 0/ x in X. 

10.3.3. Theorem. Let X be a topological space. 

(i) Every connected component a/X is closed In X. 
(ii) Two distinct connected components are disJoint. In other words. the dif'­

/emlr connected components o/X/orm a partldon a/X . . 
(i) Let Ax be the connected component of x. Then Aa is connected (10.1. 7). 

But Ax is the largest connected subset of X containing x, therefore Aa ... Ax. 
(ii) Let A,.. A., be connected components that are not disjoint. Then Aa u A, 

is connected (10.1.6). Since x e Aa u A" we have Aa u A, c Aa. whence 
A., c A,.. Similarly Aa c A,. therefore Ax - A.,. 

10.3.4. Examples. A connected space has only one connected component. 
The space R - to} has two connected components. namely (- a::. 0) and 
(0. + 'X). 



Exercises 

Chapter I 
1. Let ~ be the set of (x. y) e RZ such that xl + r :S 1. Let S be the set of points ot 
R Z of the form (x.. 0) with 0 :S x :S 1. Let A = ~ - S. Find the interior. exterior. bound· 
ary and closure of A (relative to 1 2). 

2. Let X be a topologic:a.l space.. If A is a subset of X. we denote by Bd(A) the boundary 
of A. 

(a) Show that Bd(A) c:: Bd(A). Bd(A) c:: Bd(A). Show by means of an example (try 
X = R aDd A = Q ~ [0, I]) that these three sets can be distinct. 

(b) Let A. B be subsets of X. Show that 

Bd(Au B) c:: BdCA) u Bd(B); 

show by means of an example (try X - R. A .. Q n [0, 1] and B .. [0. I] - A) that 
these two SClS can be distinct. If A rt B - 0. thea Bd(A W B) ... Bd(A) u Bd(B). 

3. (aj Show that, on a set with two elements, there exist four topologies. 
(b) On a finite set. the only separated topology is the discrete topology. 

4. An open subset of I is the union of a sequence of pairwise disjoint open Intervals. 

S. QDe ordinarily identifies I with the subset I x {OJ of 12. Then [0. I] has noD' 
empty iDterior relative to R, but empty interior relative to R~. 

Chapter II 
I. Let X be a topological space and A a nonempty subset of X. A subset V of X is calJed 
a neighborhood of A if there exists an open subset U of X such that A c:: U c:: V. 

(a) The set of neighborhoods of A is a filter ,.. 
(b) Give a necessary and sufficient conditfon for the ideatity mapping of X into X 

to have a limit along' (assuming X is separated). 
(c) Let X = R. A - N. Show that there docs nOI exist a sequeocc VI' V2• VJ .... 

of C1cmcnlS of ~ such that every elemcut ot, contains one of the VI' 
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2. Define a mapping I of R into R by 

fC.,) - (I - ~ SID of. 

Find tbe adherence valuC5 olI (a) as x - - x; fbi as ~ - ... ~ .IC) as x - O. 

3. Let X be the set R equipped with the discrete topology. Show that the Identity 
mapping of X into R is continuous. but is neither open nor ciosed. 

4. Let X. Y be topological spaces. I a mappIng of X mto Y. The following conditions 
are equivalent: (a)/is continuous and closed: (b) [(A) - J(JJ for every subset 0\ of X. 

Chapter III 

I. Let E be a topological space and I - [0. 'J. On the product spal:e E x I. -:onslder 
the equIvalence relation R whose classes are: (1) the sets WIth one element :t:4. r)}. 
where x e E, , E 1. ! '" I; (in the set E x Iii. The topological space C = (E )( I)/R IS 
called the cone construc."ted "ver E. 

(a) For x e E. denote by I(x) the canon1ClllllJlage of (x. 0) in C. Sbow that f is a 
homeomorphism of E onto I(E). 

(b) Show that E is separated If and only If C lS separated. 

2. Let X be a topological space. L a subset o,)f X oInd x e L. We say that L is locally 
closed at x if there exists a neighborhood V of x In X such that L (' V is a closed set 
in the subspace V. We say that L is locally dosed in X if It is locally closed at each of 
Its points. 

(a) Show that tbe follOWIng conditIons are eqUIvalent: (i) L is locally closed: (ii) 
L is open In [. (iii) L is the intersection of an open set and a closed set in X. 

(bl The inverse Image of a locally closed subset under a continuous mapping is 
locally closed. 

(c) [f 1:.\ and L: are locally closed in X. then L\ ,-, Lz is locally closed in X. 
(d) If L\ is locally closed in Lz. and Lz IS locally closed in L" then L\ IS locally 

closed in LJ • 

(e) Seppose that L is locally closed in X. L~ :u be the set of open subsets U' of X 
such that L := li and L IS closed In L:. Let F he the boundary of L with respect to L. 
Then X - F IS the largest element of lII. 

3. Let X. Y be topological space:>. 
(a) Let x, x \ .. "<1' ... E X and }'. J" )'Z I •.• Ii Y. If the sequence «x., Y.J) admits (x. y) 

as adherence value in X x Y, then the sequence (xo) Crespo (Yo» adlnits x (resp. y) as 
adherence value in X (resp. Y). 

(b) Show that there exists in R2 a sequence ({."<., y,» that adrnits no adherence 
value. even though each of the sequences (x.) and (Y.) has an adherence value in R. 

4. The canonical projections of a product olf topological SpaCC5 ont() the factor spaces 
are open mappIngs. 

S. Let X. Y be topologICal spaces. A c:: X and B,= Y The foUowl\'lg topologIes on 
A x B COinCIde: {a) the topology Induced by the product topology In X ..: Y; (b) the 
product of Ihe induced topolOgies on A and B. 

6. On RO, define an equivalence relation :Jl in the follOWing way: (;:\. XJ. •• xo) ana 
()II' .\.: ••••• Yo) are equivalent if Xi - ,v, e Z for all i. Show that the quouent $pace 
R",'fJ1 is homeomorphiC to T" 
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7. ~ p be the canonical mapping ofR onto T. LetJbc the mapping x 1-0 (p(x). p(xJ2» 
of R Into TZ. Show thatJis injective and continuous. but thatJis not a homeomorphism 
of R ontO feR). 

8. Let X. Y be separated topological spaces.fa continuous mapping of X into Y. The 
graph ofJis a closed subset of X It Y. 

9. Let E be a topological space. F and G subsets of E such that G <:: F. For G to be 
closed in F. it is necessary and sufficient that (j ,-,. F = G. where G denotes the closure 
of Gin E. 

Chapter IV 

1. In RZ equipped with the usual metric. let D be an open disc with center Xo and 
radius oX > 0. and let A be a compact set contained in D. Show that there exists %. e (0. :x) 

such that A is conLained in the open disc with ~enter Xo .md radIus a.'. 

2. Let E be a separated space. (.'1:1' Xl.: .. ) a sequence of points of E that tends to a 
point .'1: of E. Show that [x, x I' x,"' .. } is compact. 

3. Let E be l separated space. Suppose that for every set X. every filter base. on X. 
and every mapping/of X into E,fadmlts an adherence value along~ .. Then E is com­
pact. 

4. The topological spaces (0, 1) and (0, 1] are not homeomorphic. 

5. ~ E1, Ez be nonempty topological spaces. II EI x E2 is compact. then E\ and E, 
are compact. 

6. Let.o\ .. R·~· - (O). Define an equivalence relation {jI. on A in the following way: 
two points x and y of A are equivalent if there exists t e R - {OJ such that y = IX. The 
quotient space A'J1. is denoted PtR) and'is called the real projective space of dimen­
sion II. 

(a) Let It be the canonical mapping of A onto p.(R). Show that l! is open. 
(b) Show that It is not closed. 
(c) Let r be the set of (x. y) e.o\ x .0\ such that x is equivalent to y. Show that r Is 

closed. From this. deduce that P.(R) is separated. 
(d) Let .9':, be the equivalence relation on S. obtained by restriction of YI •. Show 

that the quotient space S,,/9'. is compact. 
(e) Let <p be the restriction of It to S~ Show that <p is continuous and defines a 

homeomorphism of S.j9'. onto P.(R). so that P.(R) is compact. 
(f) Let II' be the mapping of SI into Rz such that I/'tx. y) = (xl - y~. 2.\"y) for 

x, y E R. X" "1'" y2 = 1. Show that g(Sd = SI and that II' defines a homeomorphism 
of SI/·Sf onto SI' so that P 1(R) is homeomorphic with SI' 

Chapter V 
1. Show thai the conclusion of 5.5.12 may fail if X is not assumed to be complete. 
(Take X ... Q. Let ' •. '2'''' be the elements of Q arranged in a sequence. Take U. = 
Q - (r.}.)' 

2. Let X be a metric space and A. B. C subsets of X. Show that one does not necessarily 
have dv... C) ::::; d(A. Bl+ deB. c).\Take X = R. A = [0. I). B ... [f; ~]. C = [2.3].) 
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3. In a·, equipped with the usual Euclidean metric, the diameter of aD opeD or closed 
ball is twice its radius. 

4. Let X be a set. For x, y e X. set d(x, y) - I if x ~ 1. d(x, y) - 0 if x .. y. Show that 
d is a metri<: on X and that the corresponding topololY is the discrete topololY. The 
diameter of a ball of radius < 1 is 0. 

5. Let X be a metric space. and X, XI' Xz. X3,' ,. pointl of X. Show that the foilowl 
conditions are equivalcDt: (i) x • ... x; (D) every sUbaeqUCDce of (Xl' xz, ... ) has a sub­
sequence tending to x. 

6. In 5.5.10. there are four hypotheses~ X complete. the F. closed. the F. dec:reas­
ina;. 6 .... O. Show that if anyone of these hypotheses is omitted. it can happen lhat 
FJ /"\ Fz f'I ' , ,is empty. 

7, Show that in 5.5.13.1 may fail to exist iff' is only assumed to be continuous 
(but not unifonnly continuous). (Tab X - Y - R. X' - a - {O}. f(x) - sin(1/x) 
fou eX'.) 

8. Let X be a metric: space, A a closed subset of X. B a compact subset of X Assume 
that A /"\ B - 121. Show that d(A, B) > 0. 

9. Let/I,/z •... be continuous func:tions ;t 0 on [0. 11 such that: (a.)Ji ~ Iz ~ 13 ~ "', 
(/I) the only continuous Nnction Ot 0 on [0. \] that is majorlzcd by all of the J. is the 
runction O. 

(a) For every X e [0, I], let ~x) - lim ..... f.(x). For every integer II 4!: I, let O. -
(x E [0, 1] Il(x) < lin}. Show that O. is a dense open set in [0. 1]. 

(b) Show that I vanishes on a dense subset of [0. 1]. 

Chapter VI 

1. Let C be the set of continuous real-valued functions on [0. 1], equipped with the 
metric of uniform convergence. If II is an integer> 0. we denote by A. tbe set off E C 
for which there exists r e [0. I - 1/11] with the following property: 

(*) I/(t) -/(r)1 S II(t' - t) for all (E Ct. t + 1/11]. 

(a) Let / E C be differentiable at at least one point of [0, I). Shuw that / e A. for 
some II. 

(b) Let (/I'/z, - ,.) be a sequeDCe of elements of A. tendinl uniformly to an element 
/ of C. Assume that there exists in [0, 1 - I,"] a sequence til rz, ... having a limit t, 
such that . 

IJ~I') -/~r,j! S 1I(r' - rf) for all I' e [rIO I, + lill]. 

(a.) Show thatJ.(lf) - fer). 
(/I) Show that l/(t') -/(t)! S 11(( - r) for t' e (t. t "'" 1111). 
(7) Show that r has the property (*) relative toj. 

(c) Show that A. is closed in C. 
(d) Let I E C be a continuously differentiable rUDCtioD and let £ > O. Let II be an 

inteser > 0. Set lid - supo""" I J f'(X) I. 
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Let 0 - 20 < %1 < %1 < -•. < :.1:1'-1 < :X, = 1 be real numbers such that each in­
terval [~. :XI • .J has length S &i(M + 211). Let 9 be the function that is linear on each 
of the intervals [:x,. :XI + a. and is such that 

g(a.o) - g(a.z) ,., g(a..) ...... = O. 

g(a. I ) - g(a.3) = g(a.s) = ... = &. 

(a.) Show that !g(t') - g(t)1 ~ (M + 2II)lt' - tl if t and t' belong to the same 
interval [:x" iXt-4- I]. 

(fJ) Show that dU. / + g) s £. 

(y) Show that / + g, A •. lArgue by contradiction.) 
(e) Show tbat the interior of A. (relative to C) is empty. (Argue by contradiction. 

One uses (d) and the fact that every continuous real· valued function on [0. 1] is the 
uniform limit of continuously difl'ereDtiable functions: on this subject. see 7.5.5.) 

(0 Show that the intersection of the complements C - AI, C - Az.-_- is non­
empty. Show that AI v Az u ... ¢ C. 

(g) Show that there exists an/ e C that is not difl'erentiable at any point of [0. I]. 

2. This ex.ercise is a commentary on Dini's theorem. 
(a) Construct on [0. I] an increasing sequence of continuous rcaJ·valued func­

tions/l./Z •••• that tends simply to a function/that is not continuous (so thatf. does 
not tend uniformly to I). 

(b) Construct on [0. IJ a sequence of continuous real-v;,.: .. .::d functions that tends 
simply to 0 but does not tend uniformly to O. 

(c) Construct on R an increasmg sequence of continuous real-valued functions 
that tends simply to the function I but does not tend uniformly to 1. 

3. Let F be a continuous real-valued function on [0. 1]3. Let C ... ~([O. I], [0. 1]). 
Throughout the: exercise. one utilizes the metric of uniform convergence. 

(a) Let/ e C. Show that for every s e [0. 1J. the function r ~ F(s. r. Jet»~ on [0. IJ 
is continuous. Sel 

g(s)... C F(s. r. /(t» dt. 
-0 

Show that 9 e fI([O. tJ. R). 
(b) As / varies. we have thus defined a mapping /1-+ 9 of C into ~([O. I]. R). Let 

qJ denote this mapping. Show that qJ is uniformly continuous. 
(c) Show that qJ(C) has compact closure in fI([O. 1]. R). 

Chapter VII 

1. Let /: R ~ (0. .;- x) be a lower semicontinuous function. Show that / is the upper 
envelope of a family of continuous functions ~ O. 

2. Let X be a topological space. Xo e X. and /. 9 finite Ilumerical functions on X that 
arc: lower sc:micontinuous at Xo. Suppose that / + 9 is continuous at Xo' Show that 
/ and 9 are continuous at x'). 
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3. Let (U\, "2' U, • •• ,) be a sequence of rC1i1 numbers such that u.,,-. :s; u .. - u. for 
on, /I O!: 1. Let 

'I' u. • = 1m sup-, 
"_%I n 

, -lim lnf ~ 
, .. "'I'~ II 

(a) Show that UI, _.,0' , ..... !$; U!. - UI, - • , , .... "I. for all fl" '. i~. and that 
u ... s; mu. for all positive integers m. n, 

(b) Fix an integer p O!: 1. Let x = sup(O. us. liz .... u,_.). 
(C() For every integer n ~ I. write n - k.p ... '. with 0 s; '. < p (Euclidean 

divIsion of n by p). Show that 

~ sk.p,~ _~. 
/I n p n 

(jj) Show that { s; up; p. What can be deduced about {' from this ~ 
(c) Show that u.,n has a limit;, as /I - :c. and that ullin O!: ;, for all n. 

4. Cl.lnsider the topological space 

X = [0. I] x [0. 1] )( (0. J] :.: ,. '. 

An element of X is an infinite sequence (XI> xz, Xl." ,j of numbers in ~O. 1], 
(I) Let II be an integer O!: I. If IE f8([O, I)". R). one defines a fWlction 9 on X by 

setting 

g(x\. Xl' ·'1:3'" ,i ... ((XI' Xl •.•. '(.) 

for any (XI' Xl' X3 .... ) e x. Show that 9 e rt(;x' R). Let C. be the set of continuous 
functions on X obtained in this way as/runs over "'([0. 1]", R). 

(2) Show that C, c C2 C CJ c: ...• 
(3) Show that C, v C: '-' CJ 1,,1 ••• is dense in fI(X. R) for the topology of llJliform 

convergence. 

S. For a. b. c e R and a < O. denote bY!..h.< the function XI-> e""'-b~- on R. Show that 
every continuous complex.valued function on R tending to 0 at infinity is the uniform 
limit oft R .:Jf linear combinations of the !Unctions f..b.r' 

Chapter VIII 
I. Let (e\. e2' ... ) be the canonical orthonormal basis of /1. Show thai this sequence 
has no convergent subsequence. From this. deduce that /z is notloe-,dly compact. 

2. Show that there exists no scalar product on It for which the corrC50ponding norm is 
the norm of S.1..5. (Show that the parallelogram law fails.) Analogous question for It. 
3. LeI E be a separated pre-Hilbert space. C a complete convex subset of E. x a point 
pf E. Show that there exists one and only one y e C such that d(x. y) ,= d(x. C). 

4. For every.t - (.'(\ •. C3' .. ·) e I:. define a linear formJ~ I.ln IA by the formula 

la«:h· Yl' YJ· .. » - .ttYI ... :e2Y: + XlY' .,. ... 

forall (y I' Yl. 13' .•. ) e I, (note that the series on the rightslde is absolutely convergent~ 
Show that III E (lA)' lind that the mllpping x - jll of If into (Ii)' is <L linear bijection 
such that !I/~; ... ::.'1:1 for all.'( Elf· 
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5. Let E be a Donned Spaa: and II E 2(E). Show that ~II·' I.'. has a Iillllt as n .... :c. 
lL'se Exercise 3 of Chapter VII.) 

6. Let! • ..', .. ,. be continuous complex·valued functions OD [0. I]. CollSlder tbe follow­
Ing conditions: (a)j~ - 0 uniformly: (b)/. - 0 In mean square: (c)f. tends to 0 slDlply. 

Then (a) => (b). ~a) _ (c). Show that the implications (b) - (a). (c) .... (b). (b) ~ (c; 
arc false. 

Chapter IX 

1. If. In a nonned space E. every absolutely convergent series is convergent. then E is 
complete. 

2. Let E be a Banach space and II E 2(E). Show that tnc series 

III II~ 
I+-u---- ... , 

~: 3! 

is abSolutely convergent m 2tE). Its sum is denoted e". Show thaI e" IS blcontinuou:i. 
WIth inverse e-". Show that eO-' • e"e~ if It, Va 2(E) and \Ill - ~'U. Show that '!e"\ :;; 

".". 
3. Let a. b E [0. 1). Show lhat the famliy IIl ... b·)( .... I.l'I.'II is summable lD R. 

4. Let (arJr.1 be a summab1e family of numbers ~ O. Then the family (af'r., is summable. 

S. Let (%\0 xl_ XJ •.•. , be a sequence of real numbers. Suppose that for every sequence 
(Ito 1:, Ylt .. ) of real numbers tending to O. the series XI)'I .,.. X ZY2 - ;\;,13 .... ' . is 
convergent Show that IX I : - Ix,l .,.. 1.'e31'" . < .:r.. 

Chapter X 
1. Let X. Y be lopol08lcal spaces. Consider the folloWlng conditions: (a) X and Yare 
connected: (b) X )C Y IS connected. 

Then (a) =- (b). If X and Y are noncmpty. (b) - la). 

l. Let n be an open subset of R". The follOWIng conditions are equivalent: (a) n IS 
connected: (b) n is arcwise connected. 

3. Let X be a topological space. and a. b e X. The relation: 

there CXlstS a contIDuous path In X wilD on8ln Il and extrenuty to 

IS an equivalence relation In X. The eqllivalence classes for this relation are calleo the 
arcWlse-connected components of X. 

4. A topological 'Space .X IS said to be locally connected if every point admits a funda­
mental system of connecteclllcignborhoods. If thIS ;5 the case, rhen all"f the connected 
components of X are ')pen in X. 

S. The topological spaces X = (0,1) and Y - [0. !) are not homeomorphIC (compare 
the complements of a poInt In X and in Y). 
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6. One wants to show that it is impossible to lind a seq~ oC pairwise disjoint. non­
empty closed subsets Fl' F1,J.",of [0.1] whose lIIlion is (0. 1]. One argues by con­
tradiction. on supposing that such subsets have bceIl constructed. 

(a) If Bd(FJ denotes tbe boundary of F. in [0. I]. show that F - Bd(F.) IfJ 
Bd(F 1) u .... is closed in [0. I]. 

(b) Show that the interior of Bd(F.) in F Is empty. Deduce a .:ontradiction rrom 
this by applytng Bajre's theorem. 

.. .. 
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