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Introduction

This book is a course in general topology, intended for students in the
first year of the second cycle (in other words, students in their third univer-
sity year). The course was taught during the first semester of the 1979-80
academic year (three hours a week of lecture, four hours a week of guided
work).

Topology is the study of the notions of limit and continuity and thus is, in
principle, very ancient. However, we shall limit ourselves to the origins of the
theory since the nineteenth century. One of the sources of topology is the
effort to clarify the theory of real-valued functions of a real variable: uniform
continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass
theorem (this work is historically inseparable from the attempts to define
with precision what the real numbers are). Cauchy was one of the pioneers in
this direction, but the errors that slip into his work prove how hard it was to
isolate the right concepts. Cantor came along a bit later; his researches into
trigonometric series led him to study in detail sets of points of R (whence the
concepts of open set and closed set in R, which in his work are intermingied
with much subtler concepts).

The foregoing alone does not justify the very general framework in which
this course is set. The fact is that the concepts mentioned above have shown
themselves to be useful for objects other than the real numbers. First of all,
since the nineteenth century, for points of R*. Next, especially in the twentieth
century, in a good many other sets: the set of lines in a plane, the set of linear
transformations in a real vector space, the group of rotations, the Lorentz
group, etc. Then in ‘infinite-dimensional' sets: the set of all continuous
functions, the set of all vector fields, etc.

Topology divides into ‘general topology' (of which this course exposes
the rudiments) and ‘algebraic topology’, which is based on general topology
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but makes use of a lot of algebra. We cite some theorems whose most natural
proofs appeal to algebraic topology:

(1) let B be aclosed ball in R, f a continuous mapping of B into B: then f
has a fixed point;

(2) for every x € S, (the 2-dimensional sphere) let V(x) be a vector tangent to
S, at x; suppose that V(x) depends continuously on x; then there exists an
X0 €S, suchthat V(xo) = 0;

(3) let U and V be homeomorphic subsets of R*: if U is open in R, then V is
open in R".

These theorems cannot be obtained by the methods of this course, but, having
seen their statements, some readers will perhaps want to learn something
about algebraic topology.

The sign » in the margin pertains to theorems that are especially deep or
especially useful. The choice of these statements entails a large measure of
arbitrariness: there obviously exist many little remarks, very easy and con-
stantly used, that are not graced by the sign ».

The sign * signals a passage that is at the limits of ‘the program’ (by which |
mean what has been more or less traditional to teach at this level for some
years).

Quite a few of the statements have already been encountered in the First
cycle. For clarity and coherence of the text, it seemed preferable to take them
up again in detail.

The English edition differs from the French by various minor improve-
ments and by the addition of a section on normal spaces (Chapter 7,
Section 6).



CHAPTER I
Topological Spaces

After reviewing in §! certain concepts already known concerning
metric spaces. we introduce topological spaces in §2. then the simplest
concepts associated with them. For example, one has an intuitive notion
of what is a boundary point of a set E (a point that is ‘at the edge’ of E).
a point adherent to E (a point that belongs either to E or to its edge),
and an interior point of E (a point that belongs to E but is not on the
edge). The precise definitions and the corresponding theorems occupy
§§4 and 5. Separated topological spaces are introduced in §6: on first
reading, the student can suppose in what follows that all of the spaces
considered are separated.

1.1. Open Sets and Closed Sets in a Metric Space

I.I.1. Let E be a set. Recall that a metric (or ‘distance function’) on E is a
function d, defined on E x E, with real values = 0. satisfying the following
conditions:

(i) dx. ) =0 x = y:
(i) d(x, y) = dy,x) forallx.yin E:
(iii) d(x, 2) < d(x.y) + d(v.s) for all x, y. = in E (‘triangle inequality").
(On occasion we shall admit the value + o for a metric; this changes
almost nothing in what follows.)

A set equipped with a metric is called a metric space. One knows that the
preceding axioms imply

(iv) ld(x, z) — d(x, y)| < d(y,2) forallx,y, zinE.
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There is an obvious notion of isomorphism between metric spaces.

Let E’ be a subset of E. Take the restrictionto E’' x E' of the given distance
function d on E x E. Then E' becomes a metric space, called a metric sub-
space of E.

1.1.2, Examples. The ordinary plane and ordinary space. with the usual
Euclidean distance, are metric spaces. For x = (x,, x;,....x,) €R" and
Y=, ¥ e, yn)ER.a set

d(x, y) = ((x, - yl)z F oo (x, = YRR

One knows that d is a metric on R", and in this way R" becomes a metric space,
as do all of its subsets, In particular R, equipped with the metric (x, y)
[x = y|, is a metric space.

1.1.3. Definition. Let E be a metric space (thus equipped with a metric d),
A a subset of E. One says that A is open if, for each x, € A, there exists an
& > 0 such that every point x of E satisfying d(x,, x) < ¢ belongs to A.

1.1.4. Example. Let E be a metric space, a € E, p anumber > 0, A the set of all
x e Esuchthatd(a, x) < p. Then Ais open. For, let x, € A. Then d(a, x,) < p.

Set ¢ = p — d(a, xg) > 0. If x € E is such that d(x,, x) < ¢ then
d(a, x) < d(a, xq) + d(xq, x) < d(a, xg) + & = p,

thus x € A.

The set A is called the open ball with center a and radius p. If p > 0 then
aeA;ifp = 0then A = &. In the ordinary plane, one says ‘disc’ rather than
‘ball’.

1.1.5. In particular. let a, b be real numbers such that a < b. The interval
(a, b') is nothing more than the open ball in R with center 4(a + b) and radius
4(b - a). One verifies easily that the intervals (— 0, a), (a. +<c) are open.
This justifies the expression ‘open interval’ employed in elementary courses.

1.1.6. Theorem. Let E be a metric space.

(i) The subsets & and E of E are open.
(ii) Every union of open subsets of E is open.
(iii) Every finite intersection of open subsets of E is open.

The assertion (i) is immediate.
Let (A;);q; be a family of open subsets of E, and let
A=JA. A=A,

iel ial

Let us show that A is open. Let xq € A. There exists i € [ such that xge AL
Then there exists ¢ > 0 such that the open ball B with center x, and radius
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¢ is contained in A;. 4 fortiori, A > B. Thus A is open. Assuming 1 is finite,
let us show that A’ is open. Let x, € A'. For every i € 1, there exists ¢, > 0 such
that the open ball with center x, and radius ¢, is contained in A;. Let ¢ be the
smallest of the ¢;. Then ¢ > 0. and the open ball with center x, and radius ¢ 1s
contained in each A;, hence in A’. Thus A’ is open.

1.1.7. Let us maintain the preceding notations. If 1 is infinite. (), A, is not
always open. For example, in R. the intersection of the open intervals
(=1/n, In)forn = 1. 2, 3.... reduces to {0}, thus is not open.

1.1.8. Definition. Let E be a metric space. B a subset of E. One says that B is
closed if the subset E — B is open.

1.1.9. Example. Leta€ E,p > 0.Btheset of x € Esuchthatd(a. x) < p. Then
B is closed. For, let xo € E — B. Then d(a. xy) > p. Set¢ = d(a. xo) — p > 0.
If x € E is such that d(xy, x) < ¢, then

d(a. x) 2 d(a, xp) — d(xg. x) > dla, xq) — € = p.

therefore x € E — B. Thus E — B is open, consequently B is closed.

The set B is called the closed ball with center a and radius p. One has
aeB.Ifp = 0then B = {a}. In the ordinary plane, one says ‘disc’ rather than
‘ball’.

1.1.10. In particular. let a. b be real numbers such that a < b. The interval
[a, b] is nothing more than the closed ball in R with center ¥« + b) and
radius 4(b — a). One verifies easily that the intervals [a, + ) and (— 0, a]
are closed. This justifies the expression ‘closed interval’ employed in elemen-
tary courses. One also sees that an interval of the form [a, b) or (¢, b], with
a < b, is neither open nor closed.

1.1.11. Theorem. Ler E be a metric space.

(i) The subsets & and E of E are closed.
(ii) Ecery intersection of closed subsets of E is closed.
(iii) Every finite union of closed subsets of E is closed.

This follows from 1.1.6 by passage to complements.

1.1.12. Example. Let E be a metric space, a € E, p 2 0, Sthe set of all xe E
such that d(a, x) = p. Then S is closed. For, let A (resp. B) be the open ball
(resp. closed ball) with center a and radius p. Then E — A is closed. Since
S =B n (E - A). S isclosed by 1.1.11(i).

The set S is called the sphere with center a and radius p. If p = 0 then
S = {a}.

In R. a sphere of radius > 0 reduces to a set with 2 points. In the ordinary
plane, one says “circle’ rather than ‘sphere’,
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1.1.13. Let E be a metric space. On comparing 1.1.6 and 1.1.11, one sees that
E (and similarly &) is asubset thatis both open and closed. This is exceptional:
in the most common examples of metric spaces, it is rare that a subset is both
open and closed (cf. Chapter X).

On the other hand, although it is easy to exhibit examples of subsets that
are either open or closed, it should be understood that a subset of E chosen
‘at random’ is in general neither open nor closed. For example, the subset Q
of R is neither open nor closed.

1.1.14. Theorem. Let E be a set, d and d’' metrics on E. Suppose there exist
constants ¢, ¢’ > 0 such thar
cd(x, y) S d'(x,y) < c'd(x,y)
for all x, y € E. The open subsets of E are the samne for d and d'.
Let A be a subset of E that is open for d. Let x4 € A. There exists an ¢ > 0
such that every point x of E satisfying d(xq, x) < ¢ belongs to A. If x6E

satisfies d'(xq. x) < c& then d(xq, X) < g, therefore x € A. This proves that A
isopen for 4'. Finally, one can interchange the roles of d and 4 in the foregoing.

1.1.15. However (with the preceding notations) the balls and spheres of E
are in general different for 4 and d'. For example, for x = (x;.....x,)eR"
orC" and y = (¥;, . .44 yu) ER" or C". set

d(x.p) = (1%, = )2 + o4 %, = YalD'3,
d'(x,.V) = lxl - .V:l + oo+ Xy = Vals
d"(x, y) = sup(IxX; = Yilssers [Xg = Val):

One knows that d, &', d” satisfy the conditions of 1.1.14, hence define the same
open subsets of R". However, for d” the open ball with center (x,, ... x,) and
radius p is an ‘open slab with center (x;,...y X,)":

(X, = 0.X, + P) X (X3 = Py X2 + p) X 132 X (X, = p, %, + p)

1.2. Topological Spaces

1.2.1. Definition. One calls ropological space a set E equipped with a family
@ of subsets of E (called the open sets of E) satisfying the following conditions:

(i) the subsets &f and E of E are open;
(ii) every union of open subsets of E is open;
(iii) every finite intersection of open subsets of E is open.
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One also says that ¢ defines a topology on E.

1.2.2. For example, a metric space is automatically a topological space,
thanks to 1.1.3 and 1.1.6; this structure of topological space does not change
if one replaces the metric d of E by a metric 4" related to 4 by the condition
of 1.1.14.

In particular, every subset of the ordinary plane, or of ordinary space, or of
R", is a topological space. For a large part of the course, these are the only
interesting examples we shall have at our disposal; but they already exhibit a
host of pheniomena.

1.2.3. Let E be a set. In general there is more than one way of choosingin Ea
family @ of subsets satisfying the conditions 1.2.1. In other words, a set E may
be equipped with more than one structure of topological space. For example,
if one takes for @ the family of all subsets of E, the conditions 1.2.1 are satisfied,
thus E becomes a topological space called a discrete space (one also says that
the topology of E is discrete). For another example, if one takes for @ the
family consisting only of & and E. the conditions 1.2.1 are satisfied, thus E
becomes a topological space called a coarse space (or ‘indiscrete space”); one
also says that E carries the coarsest topology (or ‘indiscrete topology’). If
g, and J, are topologies on E, 7, is said to be finer than J; (and J,
coarser than 7) if every open set for &, is open for Z,; this is an order
relation among topologies. Every topology on E is finer than the coarsest
topology, and coarser than the discrete topology.

1.2.4. For example on R" one can consider, in addition to the topology
defined in 1.2.2, the discrete topology and the coarsest topology (and, to be
sure, many other topologies). However, it is the topology defined in 1.2.2 that
is by far the most interesting. Whenever we speak of R" as a topological space
without further specification, it is always the topology defined in 1.2.2 that is
understood.

1.2.5. Definition. Let E be a topological space, A a subset of E. One says that
A is closed if the subset E — A is open.

1.2.6. Theorem. Let E be a ropological space.

(i) The subsets & and E of E are closed.
(ii) Every intersection of closed subsets of E is closed.
(iii) Every finite union of closed subsets of E is closed.

This follows from 1.2.1 by passage to complements.
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1.3. Neighborhoods

1.3.1. Definition. Let E be a topological space and let x € E. A subset V of E
is called a neighborhood of x in E if there exists an open subset U of E such
thatxelU < V.

E

\4

)

According to this definition, an open nelghborhood of x is nothing more
than an open subset of E that contains x.

1.3.2. Example. Let E be a metric space, x € E. V < E. The following con-

ditions are equivalent:

(i) V is a neighborhood of x:

(ii) there exists an open ball with center x and radius > 0 that is contained
inV.

(if) = (i). This is clear since the ball considered in (ii) is open and contains x.

(iy’= (ii). If Vis aneighborhood of x, there exists an open subset U of E such
that x e U < V. By 1.1.3, there exists ¢ > 0 such that the open ball with center
x an radius ¢ is contained in U, thus a fortiori contained in V.

1.3.3. Example. [n R, consider the subset A = [0, 1]. LetxeR. If0 < x < 1
then A is a neighborhood of x. If x = 1 or x < 0, A is not a nélghborhood
of x.

1.3.4. Theorem. Let E be a topological space. and let x€E.

(i) If V and V' are neighborhoods of x, then V n V' is a neighborhood of x.
(ii) If'V is a neighborhood of x, and W Is a subset of E containing V, then W isa
neighborhood of x.

Let V, V! be neighborhoods of x. There exist open subsets U, U’ of E such
thatxeU c V,xeU < V. Then

xeUnUcVaAaV,

and U n U’ is open by 1.2.1iil), therefore V ~ V' is a neighborhood of x.
The assertion (ii) is obvious.
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» 1.3.5. Theorem. Let E be atopological space, A a subset of E. The following
conditions are equivalent:

(i) A is open;
(i) A is a neighborhood of each of its points.

(i) = (ii). Suppose A is open. Let xe A. Then xeA < A, thus Ais a
neighborhood of x.

(ii) = (i). Suppose condition (ii) is satisfied. For every x € A, there exists an
open subset B, of E such that xe B, < A. Let A" = | J,., B,. Then A" is
open by 1.2.1(ii), A’ < A since B, < A for all xe A, and A’ > A since each
point x of A belongs to B, hence to A". Thus A is open.

1.3.6. Definition. Let E be a topological space, and let x ¢ E. One calls
Sfundamental system of neighborhoods of x any family (V,),, of neighborhoods
of x, such that every neighborhood of x contains one of the V,.

1.3.7. Examples. (a) Suppose E is a metric space, xeE. Forn =1.2.3, ...,
let B, be the open ball with center x and radius 1/a. Then the sequence
(B,, B;,...) is a fundamental system of neighborhoods of x. For. if Vis a
neighborhood of x, there exists an ¢ > 0 such that V contains the open ball B
with center x and radius ¢ (1.3.2). Let n be a positive integer suchthat 1/n < ¢.
Then B, c B= V.

(b) Let us keep the same notations, and let B, be the closed ball with
center x and radius 1/n. Then (B, B3, .. .)isa fundamental system of neighbor-
hoods of x. For. B, < B, < B, _,, thus our assertion follows from (a).

(c) Let E be a topological space, and let x € E. The set of all neighborhoods
of x is a fundamental system of neighborhoods of x. The set of all open neigh-
borhoods of x is a fundamental system of neighborhoods of x (cf. 1.3.1).

1.3.8. Let E be a topological space, and let x € E. If one knows a fundamental
system (V,);; of neighborhoods of x, then one knows all the neighborhoods of
x. For, let V < E;in order that V be a neighborhood of x, it is necessary and
sufficient that V contain one of the V, (this follows from 1.3.4(ii) and 1.3.6).

1.4. Interior, Exterior, Boundary

1.4.1. Definition. Let E be a topological space, A < E, and x € E. One says
that x is interior to A if A is a neighborhood of x in E, in other words if there
exists an open subset of E contained in A and containing x. The set of all points
interior to A is called the interior of A and is often denoted A.

1.4.2. If x is interior to A, then of course x € A. But the converse is not true.
For example, if E = R and A = [0, 1], then A = (0, 1): the points 0 and !
belong to A but are not interior to A. IfE = Rand A = Z, then A = ¢,
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1.4.3. Theorem. Let E be a topological space, A a subset of E. Then A is the
largest open set contained in A.

Let U be an open subset of E contained in A, If x € U then A is a neighbor-
hood of x, therefore x€ A. Thus U < A

It is clear that A < A, Let us show that & is open. By 1.3.5, it suffices to
prove that if x € A, then Aisa neighborhood of x. Now, there exists an open
subset B of E such that xe B < A. Then B < A by the first part of the proof,
thusAisa neighborhood of x.

1.4.4. Theorem. Let E be a topological space, A a subset of E. The following
conditions are equivalent:

(i) A is open;
Gi) A = A

(i) = (ii). If A is open, then the largest open set contained in A is A, therefore
A = A by 1.43.
(i) = (i). If A = A, then A is open because A is open (1.4.3).

1.4.5. Theorem. Let E be a topological space, A and B subsets of E. Then
(AnBP =4n

The set (A n B)° is open (1.4.3) and is contained in A N B, hence a fortiori
in A. Consequently (A N B)° = A° by 1.4.3. Similarly, (A n B)° < B°,
therefore (A N B)° < A° n B°.

One has A = A, B < B, therefore A n B < AN B. But,x.nﬁisopen
(1.2.1(iii)), therefore & A B < (A A B)°by 1.4.3.

1.4.6. However, in general (A U B)° # A U B. For example, take E =R,
A = [0, 11, B = [1, 2]. Then

AUuB=[0,2], A=(1, B=(L.2,
(AUB)Y =(0,2) % (0, 1) u(l 2.

1.4.7. Definition. Let E be a topological space, A a subset of E, x a point of E.
Onesays that x is exterior to A if it is interior to E — A, in other words if there
exists an open subset of E disjoint from A and containing x. The set of all
exterior points of A is called the exterior of A: it is the interior of E — A.
Interchanging A and E — A, we see that the exterior of E — A is the interior
of A.

1.4.8. Let E be a topological space, A < E, A, the interior of A, A, the
exterior of A. Thesets A, and A, are disjoint. Let A; = E - (A, U A;), Then
A1, A, A, form a partition of E. One says that A, is the boundary of A. Itisa
closed set, since A; U A, is open. If one interchanges A and E — A, then A,
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and A, are interchanged, therefore A is unchanged: a set and Its complement
have the same boundary.

1.4.9. Example. Let A be the subset [0, 1) of R. The interior of A is (0. 1), the
exterior of A is(—o0. 0) u (1, + x), thereforethe boundary of A is {0} U {1}.

1.5. Closure

1.5.1. Definition. Let E be a topological space, A < E and x € E. One says
that x is adherent to A if every neighborhood of x in E intersects A. The set of
all points adherent to A is called the closure (or ‘adherence’) of A, and is
denoted A. :

1.5.2. If x € A then of course x is adherent to_A; but the converse is not true.
For example, if E = Rand A = (0, 1), then A = [0, 1].

1.5.3. Theorem. Let E be a topological space, A a subset of E. Then A is the
complement of the exterior of A.

Let x € E. One has the following equivalences:

x ¢ A <> there exists a neighborhood of x disjoint from A
<> there exists a neighborhood of x contained in E - A
<> x is interior to E — A
<> x belongs to the exterior of A,

whence the theorem.

1.5.4. Theorem. Le¢t E be a topological space, A < E, B < E.

(i) A is the smallest closed subset of E containing A:
(ii) A is closed <A =A;
(i) (AuB) =AuUB.

In view of 1.5.3, this follows from 1.4.3, 1.4.4, 1.4.5 by passage to comple-
ments. For example. let us prove (i) in detail. The exterior of A is (E — A)*
(1.4.7), that isto say. the largest open set contained in E — A (1.4.3). Therefore
its complement A (1.5.3) is closed and contains A. If F is a closed subset of E
containing A, then E — F is open and is contained in E — A, therefore
E-Fc(E- AP =E-A thusF > A

1.5.5. Taking up again the notations of 1.4.8. Theorem 1.5.3 shows that
A=A, UA;. (E~- A) = A; UA,;. Therefore the boundary A; is the
intersection of the closures A and (E — A) ™.
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1.5.6. Theorem. Ler E be a topological space. A u subset of E. The following
conditions are equivalent:

(i) every nonempry vpen subset of E intersects A
(ii) the exterior of A is empty';
(iii) the closure of A is all of E.

Condition (i) means that the only open set contained in E — A is &J, thus,
by 1.4.3, that the interior of E — A is empty. This proves (i) < (ii). The
equivalence (ii) < (iii) follows from 1.5.3.

1.5.7. Definition. A subset A of E satisfying the conditions 1.5.6 is said to be
dense in E.

1.5.8. Example. Q is dense in R: for, every nonempty open subset of R
contains a nonempty open interval, hence contains rational numbers. The
complement R — Q of Q in R is also dense in R, because every nonempty
open interval contains irrational numbers.

1.5.9. Theorem. Ler A bhe a nonempty subset of R that is bounded above. x its
supremum. Then x is the largest element of A.

Let V be a neighborhood of x in R. There exists an open subset U of R such
that xe U < V. Then there exists ¢ > 0 such that (x — ¢, x + ¢) = U. By
the definition of supremum (least upper bound), there exists y € A such that
x—e<y<x Then yeU < V, therefore V~ A # . Thus x is adherent
to A |

Let x € A. If x' > x, set ¢ = x' — x > 0. Then (x' — & x' + €) is a neigh-
borhood of x'. therefore intersects A. Let yeAn(x' - ¢ x" + ¢). Since
y > % — ¢ = x.xisnot an upper bound for A, which is absurd. Thus x < x.
This proves that x is the largest element of A.

1.6. Separated Topological Spaces

1.6.1. Definitlon. A topological space E is said to be separated (or to be a
Hausdorff space) if any two distinct points of E admit disjoint neighborhoods.

1.6.2. Examples. (a) A metric space E is separated. For, let x, ve E with
x % y. Set ¢ = d(x, y) > 0. Then the open balls V. W with centers x, y and
radius ¢/2 are disjoint (because if € V. ~ W then d(x, 2) < &2 and d(y. 2) <
¢/2, therefore d(x, y) < & which is absurd).

(b) A discrete topological space E is separated. For, if x. y€ E and x # y,
then {x} and {y} are disjoint open neighborhoods of x, y.
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(€) A coarse topological space E is not separated (if it contains more than
one point). For. let x, ye E with x # y: Let V, W be neighborhoods of x, y.
Then V contains an open subset U of E containing x, whence U = E and
aforttori V = E. Similarly W = E. Thus VA W # .

1.6.3. Theorem. Ler E be a separated tapological space. x€ E. Then {x) is
closed.

Let ye E — {x}. Then y # x, therefore there exist neighborhoods V., W
of x, ¥ that are disjoint. In particular, W =« E -~ {x}, therefore E — {x} isa
neighborhood of y. Thus E — {x} is a neighborhood of each of its points,

-consequently is open (1.3.5). Therefore {x} is closed.



CHAPTER II
Limits. Continuity

As mentioned in the introduction, the limit concept is one of those at the
origin of topology. The student already knows several aspects of this
concept: limit of a sequence of points in a metric space, limit of a
function at a point, etc. To avoid a proliferation of statements later on,
we present in §2 a framework (limit along a ‘filter base’) that encom-
passes all of the useful aspects of limits. It doesn't hurt to understand this
general definition, but it is much more important to be familiar with a
host of special cases.

The definition of limit of course brings with it that of continuity of
functions: see §§3 and 4. Two topological spaces are said to be homeo-
morphic (§5) if there exists a bijection of one onto the other which, along
with the inverse mapping, is continuous; two such spaces have the
same topological properties, and one could almost consider them to be
the same topological space. (For example, a circle and a square are
homeomorphic: a circle and a line are not homeomorphic; and, what is
perhaps more surprising, a line and a circle with a point omitted are
homeomorphic.) A reasonable goal of topology would be to classify all
topological spaces up to homeomorphism, but this seems to be out of
reach at the present time.

One knows very well that a sequence does not always have a limit.
As a substitute for limit. we introduce in §6 the concept of adherence
value.
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2.1. Filters

2.1.1. Definition. Let X be a set. A filter on X is a set # of nonempty subsets of
X satisfying the following conditions:

(i) if Ae # and Be #, then A ~ Be # (in particular. A n B # &);
(i) if Ae.# and if A’ is a subset of X containing A. then A’ & .F.

One calis filter base on X a set & of nonempty subsets of X satisfying the
following condition:

(i ifA e #and B e &, there exists C € 4 such that C © A n B (in particular.
AnB=g)

A filter is a filter base, but the converse is not true. If # is a filter base on X,
one sees immediately that the set of subsets of X that contain an element of #
is a filter.

2.1.2, Example. Let X be a topological space, x, € X. The set ¥ of neighbor-
hoods of x, is a filter on X (1.3.4). If %" is a fundamental system of neigh-
borhoods of x4, then %’ is a filter base on X,

2.1.3. Example. Let x, € R. The set of intervals (xo — & x¢ + ¢), whereg > 0.
is a filter base on R. This is, moreover. a special case of 2.1.2. But here are
some examples of filter bases on R that are not special cases of 2.1.2:

the set of [x4. X + ¢), where &> 0;
the set of (xq, xo + &), Wwhere £>0;
the set of (xo — & xo], where &> 0:
the set of (xo — & xp), where £ > 0:
the set of (xo — &, X} U (Xg, Xo + &), where &> 0.

2.1.4. Example. The set of intervals [a, + oc), where a € R, is a filter base on
R. Similarly for the set of (— 2, a].

2.1.5. Example. On N, the set of subsets {n,n + 1,n+ 2,...}, where
ne N, is a filter base.

2.1.6. Example. Let X be a topological space. Y = X, and x, € Y. The set of
subsets of Y of the form Y n V, where V is a neighborhood of x4 in X, is a
filter on Y (notably Y ~ V % & because xo€ Y). If Y = X. one recovers
2.1.2
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2.2. Limits Along a Filter Base

2.2.1. Definition. Let X be a set equipped with a filter base &, E a topological
space, f a mapping of X into E, / a point of E. One says that f'tends to { along
# if the following condition is satisfied:

X f E

/-_“\

@ &

for every neighborhood V of / in E, there exists B € @ such that
f(B)c V.

If one knows a fundamental system (V) of neighborhoods of / in E, it
suffices to verify this condition for the V, (for, every neighborhood of /
contains a V).

2.2.2. Example. Suppose X = N, with the filter base # considered in 2.1.5.
A mapping of N into E is nothing more than a sequence (g, a4, 3, ...) Of
points of E. To say that this sequence tends to | along # means:

for every neighborhood V of  in E, there exists a positive integer
Nsuchthatn = N=gq,€V.

One then writes lim,. , a, = I.
If, for example, E is a metric space, this condition can be interpreted as
follows:

for every ¢ > 0, there exists N such thatn = N = d(a,, /) < &
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One recognizes the classical definition of the limit of a sequence of points
in a metric space (for example. of a sequence of real numbers).

2.2.3. Example. Let X and E be topological spaces, f/ a mapping of X
into E, x, € X, ! € E. Take for 4 the filter of neighborhoods of x, in X (2.1.2),
To say that f tends to / along # means:

for every neighborhood V of [ in E, there exists a neighborhood
W of xo in X such that xe W = f(x)e V.

One then writes lim, . ., f(x) =1
If X = E = R one recovers the definition of the limit of a real-valued
function of a real variable at a point.

2.2.4. Examples. One knows that the concept of limit of a real-valued func-
tion of a real variable ad mits many variants. These variants fit into the general
framework of 2.2.1. For example. if X = E = R and if one takes the filter
bases considered in 2.1.3, 2.1.4. one recovers the following known concepts:

lim f(x)

KXo, X2 X0

lim  f(x)

X X0, x> X

lim f(x)

X=* X0, X 3 X0

lim  f(x)

X %0, X < X0

lim f(x)

X = X0, X # X0

lim f(x)

X™Tr@

lim f(x).

K== =

2.2.5, Example. Let X and E be topological spaces, Y = X, x,€ Y,
famapping of Y into E, / € E. Take for # the filter defined in 2.1.6. To say
that ftends to / along # means:

for every neighborhood V of / in E, there exists a neighborhood
W of xo in X such that xe Y n W= f(x)e V.

One then writes lim ., v f(X) = .
This example generalizes 2.2.3. On taking X = E = R. and for Y various
subdets of R. one recovers the first five examples of 2.2.4.
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2.2.6. Theorem. Let X, E be topological spaces, f a mapping of X into E,
xo € X, 1€ E, (W)i,1 a fundamental system of neighborhoods of xq in X, (V));¢,
a fundamental system of neighborhoods of | in E. The following conditions are
equivalent:

() lime.y, f(x) =1;
(if) for every je ], there exists i€ [ such that f(W)) = V,.

Suppose condition (i) is satisfied. Let j € J. There exists a neighborhood W
of xo in X such that f(W) < V,. Next, there exists { € I such that W, c W.
Then f(W) < V,.

Suppose condition (ii) is satisfied. Let V be a neighborhood of /in E. There
exists je J such that V, < V. Then there exists i€ [ such that f(W) = V,,
therefore f(W) < V.

2.2.7. Corollary. Let X, E be metric spaces, f a mapping of X into E, x, € X,
| € E. The following conditions are equivalent:

(i) limeL g f(x) =1,
(ii) for every e > O, there exists n > 0 such that

xeX, d(x,x) Sn = d(f(x) ) S e

For, the closed balls with center x, (resp. /) and radius > 0 in X (resp. E)
form a fundamental system of neighborhoods of x, (resp. /) in X (resp. E).

2.2.8. Theorem. Let X be a set equipped with a filter base #, E a separated
topalogical space, f a mapping of X into E. If f admits a limit along @, this limit
is unique.

Let /, I be distinct limits of f along 4. Since E is separated, there exist dis-
joint neighborhoods V, V' of |, I in E. There exist B, B’ e # such that f(B) < V.
f(B) < V'. Next, there exists B” € & such that B” ¢« B~ B'. Then f(B”) <
V ~ V'.Since B” # &, one has f(B") # &, therefore VA V' # &, which is
absurd.

2.2.9. However, if E is not separated, f may admit more than one limit along
®. For example, if E is a coarse space, one verifies easily that every point of E
is a limit of f along &. The use of the limit concept in non-separated spaces is
risky; in this course, we shall scarcely speak of limits except for separated
spaces. Under these qualifications, Theorem 2.2.8 permits one to speak of
the limit (if it exists! the reader already knows many examples of mappings
that have no limit at all).
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2.2.10. Theorem (Local Character of the Limit). Let X be a set equipped witha
filter base A, E a topological space, f a mapping of X into E, l€E. Let X' e 2
and let ' be the restriction of f 1o X'. The sets B n X', where Be &, form a
filter base &' on X'. The following conditions are equivalent:

(i) f tends to !l along &;
(ii) f' tendsto lalong &'.

Suppose that f tends to / along @. Let V be a neighborhood of | in E. There
exists B € # suchthat f(B) = V. Then f'(B " X) = Vand B n X' e &, thus
f' tends to l along &'

Suppose that f* tends to | along &'. Let V be a neighborhood of [ in E.
There exists B' € & such that f'(B") < V. But B’ is of the form B n X’ with
Be #.Since X' e &, there exists B, € #such that B; <« B n X'. Then f(B,) <
f'(B) <V, thus f tends to ! along #.

2.3. Mappings Continuous at a Point

2.3.1. Definition. Let X and Y be topological spaces, f a mapping of X into Y,
and xo € X. One says that f is continuous at X if lim,.,, f(x) = f(xo), in
other words (2.2.3) if the following condition is satisfied:

,

for every neighborhood W of f(x,) in Y, there exists a neighbor-
hood V of x, in X such that f(V) = W,

2.3.2. Example. Let X and Y be metric spaces, f a mapping of X into Y, and
X € X. By 2.2.7, to say that f is continuous at x, means:

for every ¢ > 0, there exists n > 0 such that
xe X and d(x, Xo) S = d(f(X), f(xo)) S&

We recognize here a classical definition. For example, if X = Y = R, one
recovers the continuity of a real-valued function of a real variable at a point.
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2.3.3. Theorem. Let T be a set equipped with a filter base #, X and Y topological
spaces, le X, [ a mapping of T into X that tends to ! along 8, and g a map-
ping of X into Y that is continuous at l. Then g s f tends to g(I) along #.

f
-
—— g
@ o

Let W be a neighborhood of g(J) in Y. There exists a neighborhood V of /
in X such that g(V) < W. Next, thereexists a B € # such that f(B) < V.Then
(g« /)B) < g(V) c¢ W, whence the theorem.

2.3.4. Corollary. Let T, X, Y be topological spuces, f T— Xand g: X =Y
mappings. and ty € T. If' f is continuous at ty, and g is continuous at f(t,), then
g= f is continuous at tq.

One applies 2.3.3 on taking for & the filter of neighborhoods of ¢ in T,
and [ = f(t,). Theng : ftendsto g( f(¢,))along #.thatis,g e fiscontinuous
at tg.

-

2.4. Continuous Mappings

2.4.1. Definition. Let X and Y be topological spaces, /'a mapping of X into Y.
One says that f is continuous on X if f is continuous at every point of X. The
set of continuous mappings of X into Y is denoted €(X, Y).

2.4.2. Examples. This notion of continuity is well known for real-valued
functions of a real variable, and more generally for mappings of one metric
space into another.

2.4.3. Theorem. Let X, Y, Z be topological spaces. fF€€(X.Y) and g
(Y. 2). Theng + { = €(X. Z).

This follows at once from 2.3.4.
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» 2.4.4, Theorem. Let X and Y be topological spaces, } a mapping of X into Y.
The following conditions ure equitalent:

{i) / is continuous:

(ii) the inverse image under f of every open subset of Y is an open subset of X.
(iii) the inverse image under fof every closed subset of Y 1s a closed subset of X;
(iv) for every subset A of X. f(A) = f(A).

(i) = (iv). Suppose f is continuous. Let A < X and xo€A. Let W be a
neighborhood of f(xo) in Y. Since f is continuous at x,, there exists a
neighborhood V of x, in X such that f(V) < W.Since x,eA. VA # .
Since f(V A A) c W~ J(A), onesees that W ~ f(A) # . This being true
for every neighborhood W of f(x,), one has f(x,) € f(A). Thus f(A) = f(A).

(iv) = (iii). Suppose condition (iv) is satisfied. Let Y’ be a closed subset of Y
and let X' = f7XY'). Then f(X) < Y therefore f(X) < Y (L354). If
xe X' then f(x) e f(X) by condition (iv), therefore f(x)eY' and so x€ X"
Thus X' = X'. which proves that X' is closed.

(iii) = (ii). Suppose condition (1ii) is satisfied. Let Y’ be an open subset of Y.
Then Y - Y' is closed, therefore f ~*(Y — Y'}isclosed. But f "{(Y - Y') =
X — [ YY’). Therefore £~ '(Y’) is open.

(ii) = (1). Suppose condition (ii) 1s satisfied. Let x, € X: let us prove that f
is continuous at xo. Let W be a neighborhood of f(x,) in Y. There exists an
open subset Y’ of Y such that f(xg)e Y « W. Let X’ = £~(Y’). Then X' is
open by condition (ii), and x, € X', thus X' is a neighborhood of x,. Since
J(X)Y < Y' = W. this proves the continuity of f at xg.

2.4.5. Example. Let ¢, b be numbers > 0. One knows that the mapping
(x. v) x*/a* + y*:b* — 1 of R* into R is continuous. On the other hand.
[0. +x) is a closed subset of R. Therefore the set of (x, y) € R* such that
x¥u® 4+ v*% = 1 2 Ois closed in R2, Similarly. the set of {x, y)& R* such
that x®/a* « y*'b* — i = 0 (an ellipse) is closed in R2, etc.

2.4.6. Mistake to Avoid. There is a risk of confusing conditions (ii) and (iii)
of 2.4.4 with the following conditions:

(ii") the direct image of every open subset of X is an open subset of Y:
(iii") the direct image of every closed subset of X is a closed subset of Y.

Mappings satisfying (ii’) (resp. (iit')) are called open mappings (resp.
closed mappings). There exist continuous mappings that are neither open
nor closed, open mappings that are neither continuous nor closed, and closed
mappings that are neither continuous nor open.

2.4.7. Let 7, 7, be two topologies on a set E. Denote by E,, E; the set E
equipped with thetopologies 7. 7;. To say that 7, is finer than 7, means, by
2.4.4(ii), that the identity mapping of E, into E, is continuous.
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2.5. Homeomorphisms

2.5.1. Theorem. Let X and Y be topological spaces, f a bijective mapping of X
onto Y. The following conditions are equivalent:

(i) fand f~" are continuous;
(ii) in order that a subser of X be open, it is necessary and sufficient that its
image in Y be open;
(iii) in order that a subset of X be closed, it is necessary and sufficient that its
image in Y be closed.

This follows at once from 2.4.4.

2.5.2. Definition. A mapping f of X into Y that satisfies the conditions of 2.5.1
is called a bicontinuous mapping of X onto Y, or a homeomorphism of X onto Y.
(By 2.5.1(it), this is the natural concept of isomorphism for the structure of
topological space.)

2.5.3. It is clear that the inverse mapping of a homeomorphism is a homeo-
morphism. By 2.4.3, the composite of two homeomorphisms is a homeo-
morphism.

2.5.4. Let Xand Y be topological spaces. If there exists a homeomorphism of
X onto Y, then X and Y are said to be homeomorphic. By virtue of 2.5.3. this
is an equivalence relation among topological spaces. If X and Y are homeo-
morphic, the open set structure is the same in X and Y; since all topological
properties are defined on the basis of open sets, X and Y will have the same
topological properties; X and Y are almost the ‘same’ topological space.
One of the goals of topology (not the only one, far from it) consists in recogniz-
ing> whether or not two given spaces are homeomorphic, and classifying
topological spaces up to homeomorphism; this goal is far from being attained
at the present time.

2.5.5. Examples. All nonempty open intervals in R are homeomorphic. For, if
the open intervals [, and I, are bounded, there exists a homothety or a
translation f that transforms I, into I, and f is obviously bicontinuous.
Similarly if I, and I, are of the {form (a, + =) or (- o0, a). Thus. it remains to
compare the intervals (0, 1), (0, + ) and (-, + ). Now, the mapping
x = tan(n/2)x of (0, 1) into (0, + o) is bijective and continuous, and the
inverse mapping x— (2/m)Arctan x is continuous; therefore (0, 1) and
(0, + o0)are homeomorphic. Similarly, the mapping x + tan(n/2)x of (— 1. 1)
into (-~ 0, +20)is a homeomorphism.
The intervals (0, {) and [0, 1] are nor homeomorphic (cf. 4.2.8).

2.5.6. Example. A circle and a square in R? are homeomorphic (via a
translation followed by a central projection).
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2.5.7. Example: Stereographic Projection. Let S, be the set of
X = (X}, X3, 000, Xpe1) ER"!
such that x} ++++ + x2.; = | (*n-dimensional sphere’). Let
a=(00...,,0 DeS,.

Let us identify R" with the set of (xy, +.-, x,. 0) € R**!. We are going 10
define a homeomorphism of S, — {a} onto R".

Let x = (x;,..., Xp+1) €S, = {a}. The line D in R*"! joining a and x is
the set of points of the form
(bc(,...,_/lx,,,l + A(X,,-( - l))

with AeR. This point is in R* when | + A(x,.; — 1) =0, that is, when
A=(l = x,.1)"" (x4 # 1 because x # a). Thus D ~ R" reduces to the
point f(x) with coordinates
Xy

1 - Xne1

/ X3
D ——
l_xnc»l

1 x X

e X ==y xh 0 =0,
We have thus defined a mapping f of S, - {a} into R". Given x' =
(x}, ... x5, 0) in R", there exists one and only one point
X = (X, 000y Xpe1) €S, — {u}
such that f(x) = x". For, the solution of (1) yields the conditiong
xp =x(l =x,,,) for 1<ign,

™=

X = xpu1)? + X2, =1,
H

then. after dividing out the nonzero factor | — x,_;,

[}
-

(x4 F (1 - Xpi) = | = Xq.y =0,
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whence
< XE - FxE -1
Speg = 0 .
A e
(2)

2x;

x'|z+"‘+x:.2+l =<ign).

X =

Thus f is a bijection of S, — {a} onto R". The formulas (1) and (2) prove,
moreover, that f and f~! are continuous.

The homeomorphism f is called stereographic projection of S, - {a}
onto R"

2.6. Adherence Values Along a Filter Base

2.6.1. Definition. Let X be a set equipped with a filter base &, E a topological
space, f a mapping of X into E, and [ a point of E. One says that | is an ad-
herence value of f along 2 if the following condition is satisfied :

for every neighborhood V of / in E and for every B e %,
S(B) intersects V,

If one knows a fundamental system of neighborhoods (V) of / in E. it
suffices to verify this condition for the V,.

2.6.2. Example. Suppose in 2.6.1 that X =, with the filter base 2.1.5. We
are thus considering a sequence (ao. a;. .. .) of points of E. To say that ! is an
adberence value of the sequence means:

{or every neighborhood V of lin E, and every positive integer N,
there exists n = N such that g, €V,

If, for example. E is a metric space, this condition may be rewritten as
follows:

forevery e > 0, and every positive integer N, there existsn > N
such that d(a,, ) < e

For example, taking E = R, consider the sequence of numbers
3 1-4 L oi=-48 0 1-4.,

The verification that the adherence values of this sequence are 0 and 1 is left
4s an exercise.
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2.6.3. Example. Let X and E be topological spaces. Y < X. xoeY. f a
mapping of Y into E, and / ¢ E. Take for - the filter 2.1.6. To say that [ is an
adherence value of f along # means:

for every neighborhood V of  in E, and every neighborhood W
of xo in X, f(WAY) intersects V.

One then says that ! is an adherence value of f as x tends to x, while
remaining in Y.

sin i—

/\/\MI\/\P
J VUV V

For example, take X =E=R, Y=R -~ {0}, xo =0, and f(x) =
sin(1/x) for xe R = {0}. It is left as an exercise to show that the adher-
ence values of f. as x tends to 0 through values # 0, are all the numbers in
[-1.1].

From the examples 2.6.2, 2.6.3, one recognizes that the concept of ad-
herence value is a4 kind of substitute for the limit concept. This point will now
be elaborated.

2.6.4. Theorem. Let X be a set equipped with a filter base @, E a separated
topological space. [ a mapping of X into E, and ! a point of E. If f tends to |
along A, then | is the unique adherence value of f along %.

Let V be a neighborhood of / in E and let B € 8. There exists B’ € & such
that f(B") = V. Then B n B’ # ¢, therefore /(B n B’) # ¢, and f(B.n B)
< f(B) n V. Therefore f(B) intersects V. Thus | is an adherence value of f
along .

Let I’ be an adherence value of f along ®. and suppose [ # [. There exist
neighborhoods V. V' of I, I' that are disjoint. Next. there exists B € 4 such that
J(B) = V. Then f(B) n V' = &, which contradicts the fact that ' is an
adherence value.

2.6.5. Thus, when f admits a limit along %, the concept of adherence value
brings nothing new with it and is thus without interest. But what can happen
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if £ does not have a limit along %?

(a) it can happen that f has no adherence value; example: the sequence
(0, 1, 2, 3...4) in R has no adherence value; however. cf. 4.2.13

(b) itcan happen that fhas a unique adherence value: example: the sequence
(0, 1,0,2,0.3.;,.) in R has no limit. and its only adherence value is 0:
however. cf. 4.2.4;

(€) it can happen that f has more than one adherence value (cf. 2.6.2. 2.6.3).

To sum up. in relation to the limit concept, one loses uniqueness but one
gains as regards existence.

2.6.6. Theorem. Let X be a set equipped with a filter base 8. E a topological
space. f a mapping of X into E. The set of adherence values of f along B is the
intersection of the as B runs over &.

Let [ be an adherence value of f along #. Let B € #. Every neighborhood

of | intersects f(B), therefore [ & f(B). Thus

le [ f(B.

BOaf

Suppose me [)aem /(B). Let V be a neighborhood of m and let Be .
Since me f(B). f(B) intersects V. Therefore m is an adherence value of f.
(There is thus a connection between the concept of adherence value and
that of adherent point. However. the two concepts should not be confused.)



CHAPTER III
Constructions of Topological Spaces

The study of any structure often leads to the study of substructures.
product structures and quotient structures. For example. the student
has already seen this in the study of vector space structure. The same is
true for topological spaces. This vields important new spaces (for
example, the tori T": cf. also the projective spaces. in the exercises
for Chapter [V).

3.1. Topological Subspaces

3.1.1. Theorem. Let E be a topological space, F a subset of E. Ler U be the
set of open subsets of E. Let ¥ be the set of subsets of F of the form U r F.where
Ue%. Then ¥ satisfies the axioms (i), (ii), (iii) of 1.2.1.

(i) One has Je# and Ee#. therefore = NnFe¥ and F =
EnFev,

(ii) Let (V ), be a family of subsets belonging to ¥", For every i € I. there
exists U; e % such that V, = U, n F. Then | };; U; € %, therefore

Uvi=UJUnF) = (U U‘) ~nFey.
fal tul tel

(ili) With notations as in (ii). suppose moreover that I is finite. Then
(:a1 U, & #. therefore

. 4 R
nv,.sﬂcu,nF)a- ﬂU,)nFev".
4

il L 1 S
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3.1.2. By 3.1.1. ¥ is theset of open sets of a topology on F, called the topology
induced on F by the given topology of E. Equipped with this topology. F is
called a topological subspace (or simply a subspace) of E. The open sets of F are
thus, by definition. the intersections with F of the open sets of E.

3.1.3. Remark. Let E be a topological space, F a subspace of E. If A is a
subset of F. the properties of A relative to F and relative to E may differ. For
example, if A is open in E then A is open in F (because A = A n F), but the
converse is in general not true (for example, F is an open subset of F but in
general is not an open subset of E). However, if F is an open subset of E and if
AisopeninF,then AisopeninE (because A = B ~ F with B open in E.and
the intersection of two open subsets of E is an open subset of E).

3.1.4. Theorem. Let E be a topological space, F a subspace of E, A asubset of F.
The following conditions are equivalent:

(i) Aisclosed in F:
(ii) A is the intersection with F of a closed subset of E.

(i) = (ii). Suppose A is closed in F. Then F —~ A is open in F, therefore
there exists an open subset U of E such that F — A = U~ F. Since A =
(E - U)~F and since E — U is closed in E, we see that condition (ii) is
satisfied.

(i) = (i). Suppose A = X n F, where X is a closed subset of E. Then
F—-A=(E-X)nF,andE — XisopeninE, therefore F — AisopeninF,
thus A is closed in F.

3.1.5. Remark. Let us maintain the notations of 3.1.4. If A is closed in E then
A is closed in F, but the converse is in general not true (for example. F is
closed in F but in general not in E). However, if F is closed in E and if A is
closed in F, then A is closed in E (because A = X n F with X closed in E,
and the intersection of two closed subsets of E is a closed subset of E).

3.1.6. Theorem. Let E be a topological space, F a subspace of E. and x€F.
Let W < F. The following conditions are equivalent:

(i) W is a neighborhood of x in F:
(i) W is the intersection with F of a neighborhood of x in E.

(i) = (ii). Suppose W is a neighborhood of x in F. There exists an open sub-
set B of F such that x e B « W. Then there exists an open subset A of E such
thatB = F~ A.Let V=A U W.Thenxe A < V, thus V isaneighborhood
of x in E. On the other hand,

FrV=FnA)UFrW)=BuW=W,
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(i) = (i). Suppose W = F n V, where V is a neighborhood of x in E.
There exists an open subset A of E such that xe A <« V.ThenxeF n A c
F~V =W.and F ~ A is open in F, thus W is a neighborhood of x in F.

3.1.7. Theorem. Let E be a topologlical space. F a subspace of E. If E is sepa-
rated. then F is separated.

Let x, y be distinct points of F. There exist disjoint neighborhoods V, W of
x,yin E. ThenF ~ V.F » W are neighborhoods of x, y in F (3.1.6) and they
are disjoint. Thus F is separated.

3.1.8. Definition. Let E be a topological space, A < E and x & A. One says
that x is an isolated point of A if there exists a neighborhood V of x in E such
that V n A = {x}.

3.1.9. Theorem. Let E be a ropological space and let F < E. The following
conditions are equivalent:

(i) the topological space F is discrete;
(ii) every point of F is isolated.

(i) = (i). Suppose F is discrete. Let x € F. Then {x} is an open subset of F.
therefore there exists an open subset U of E such that {x} = U ~ F. Since U
is a neighborhood of x in E, we see that x is an isolated point of F.

(ii) = (i). Suppose that every point of F is isolated. Let x € F. There exists
aneighborhood V of x in E such that V ~ F = {x}. Puassing to 4 subset of V,
we can suppose that V is open in E. Then {x} is open in F. Since every subset
of F is the union of one-element subsets, every subset of F is open in F. Thus
the topological space F is discrete.

3.1.10. Example. In R. consider the subset Z. If n € Z then
{n} =Zn(n _i'$" *%)1

therefo;e n is isolated in Z. Thus the topological subspace Z of R is discrete.

3.1.11. Theorem (Transitivity of Subspaces). Ler E. E', E” be sets such that
E S E o E" Let J be atopology on E. 7 the topology induced by 7 on E',
T the topology induced by 7 on E". Then T is the topology induced by -7
on E”.

Let 7 be the topology induced by 7 on E".

Let U” = E” be an open set for 7 ". There exists a subset U’ of E". open for
7. such that U’ n E” = U". Next, there exists a subset U of E. open for 7.
such that U nE' = U’. Then U n E” = U". thus U” is open for 7.
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Let V" < E” be an open set for 7°1. There exists a subset V of E. open for &,
suchthat VA E" = V". Set V' = V ~ E’. Then V' is open for 7, and V" =
V' ~ E”. thus V" is open for 7",

3.1.12. Theorem. Let E be a metric space. E’ a metric subspace of E(1.1.1). Let
7, T be the topologies of E, E’ defined by their metrics (1.2.2). Then T is
nothing more than the topology induced by 7 on E'.

Let 7| be the topology induced by 7 on E".

Let U’ < E’ be an open set for J. For every e U’, there exists ¢, > 0
such that the open ball B in E’ with center x and radius &, is contained in U’,
Let B, be the open ball in E with center x and radius ¢,. Then B, is a neighbor-
hood of x for 7. therefore B, is a neighborhood of x for 77, (3.1.6). Thus U*
is a neighborhood of x for 7. This being true for every x € U’, we see that U’
is open in E' for 77} (1.3.5).

Let V' = E’ be an open set for 7). There exists an open subset V of E such
that V' = V A E'. For every x € V', there exists #, > 0such that the open ball
C, in E with center x and radius #, is contained in V. Let C;, be the open ball
in E' with center x and radius .. Then C, =C,nE'c VAE =V,
Therefore V' is open for 7',

3.1.13. For example, if a subset A of R" is regarded as a topological subspace
of R", the topology of A is none other than the one considered in 1.2.2.

3.1.14. Theorem. Let X be a set eqza&:ped with a filter base #, E a topolog-
ical space, E’ a subspace of E, fa mapping of X into E’, [ a point of E'. The
Jfollowing conditions are equivalent:

-4
(i) Jntends to | along & relative to E';
(1) f tends to [ along 3 relative to E.

Suppose condition (i) is satisfied. Let V be a neighborhood of | in E. Then
V n E’ is a neighborhood of | in E' (3.1.6). There exists Be % such that
f(BY = V A E'. A4 fortiori, f(B) = V. Thus f tends to [ along 2 relative to E.

Suppose condition (ii) is satisfied. Let V' be a neighborhood of [ in E'.
There exists a neighborhood V of | in E such that VA E' = V' (3.1.6). Then
there exists Be # such that f(B) < V. Since f(X) < E’, one has f(B) =
V ~ E' = V', Thus f tends to / along @ relative to E'.

» 3.1.15. Theorem. Let T. E be topological spaces. E' a subspate of E.
J' a mapping of T into E'. The following conditions are equivalent;

(1) fis continuous:
(ii) #.regarded as a mapping of T into E, I® eontinuous.
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Indeed, for every o € T, the condition lim,., f(t) = f(to) has the same
meaning. according to 3.1.14. whether one considers f to have values in E’
or to have values in E.

3.1.16. Corollary. Let E be a topological space. E' a subspace of E. The
identity mapping of £’ into E is continuous.

For. the identity mapping of E’ into E' is obviously continuous. One then
applies 3.1.15.

3.2. Finite Products of Topological Spaces

3.2.1. Let E|, E,..... E, be topological spaces. We are going to define a
natural topologyonE = E; x E; x-+-: x E,.

Let us call elementary open set in E a subset of the form U; x U, x «--
x U,, where U, is an open subset of E,. Let us call open set in E any union of
elementary open sets. To justify this terminology, we are going to show that
this family of subsets of E satisfies the axioms (i), (ii), (iii) of 1.2.1.

First of all.

E=E, xE;x+-xE, and J=J xE; x.«: x E,

are open sets, even elementary open sets.

Axiom (ii) is obvious.

Finally, let A. B be open subsets of E and let us show that A ~ B is an
open subset of E. One has A = (J A;. B = B,, where the A, and B, are
elementary open sets. Then A » B is the union of the A; n B, and it suffices
to prove that, for fixed A and u, A; n B, is an elementary open set. Now.

A,‘=U|x-ux U,,, B,‘=V|x~‘“-xV,,.
where U,, V, are open subsets of E,. It follows that
A;nB,=(U nV)x e x(U,nVy,

since U, N V; is an open subset of E,, this completes the proof.

3.2.2, We have thus defined a topology on E. called the product topolagy
of the given topologies on E;..... E,. We also say that E is the product
topological space of the topological spaces E,. E,. .4., E,.

3.2.3. Example (Product of Metric Spaces). Let E, E;, ..., E, be metric
spaces. Set

E=E, x..- x E,
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Hx =(x,....x,)JeEand ¥ = (§;. .41, ¥,) €E, set
dix. y) = (d(xy, y1)F + 00+ d(x,. y,)2)H.

One verifies as in the case of R” that 4 is a metric on E. Thus, a product of
metric spaces is automatically a metric space. Let J be the 1opology on E
defined by this metric (1.2.2). In addition, E,...., E, are topological spaces
(1.2.2), thus by 3.2.2 there is defined a product topology 7' on E. Let us show
thaa T = F.

Let U be a subset of E that is open for 7. For every x = (x,,..., x,)e U,
there exist open neighborhoods U,,..., U, of x;,...,x, n E,, ..., E, such
that U; » -«. x U, < U. There exists ¢ > 0 such that the open ball in E;
with center x; and radius ¢; is contained 1n U,. Let B be the open ball in E with
center x and radius & = inf(¢,,...,&,). If y = (y,..., y,)€Bthend(x. y) < ¢,
therefore d(x;, y) < & < & for all i, thus y,e U;. and so ye U. Thus B <« U.
We have thus proved that U is open for 7.

Let V be a subset of E that is open for 7. Forevery x = (x,.....x,)e V.
there exists ¢ > 0 such that V contains the open ball with center x and radius
& Let B; be the open ball in E; with center x; and radius ¢/n. If

¥={pp...c.¥)€B, x -1~ x B,.

then

d(X~_V)2 = Zd(xb yl’)z < Z %;- s 82'
i=l l=1

therefore y € V. Thus.the elementary openset B, x :+. x B,iscontainedinV
and contains x. Consequently, V is the union of elementary open sets, there-
fore is open for 7.

In particular. if R" is equipped with the topology defined by its usual metric
(1.1.2), R" appears us the product topological space R x R x --+ x R.

3.2.4. Theorem. Let E = E; x -+« x E_ be a product of topological spaces.
Let x = (xy,.--, x,)& E. The sets of the form V, x --- x V,, where V;is a
neighborhood of x, in E,. constitute a fundamental system of neighborhoods of x
in E.

Fori = 1,..., n,let V, be a neighborhood of x, in E,. There exists an open
subset U, of E, such that x,e U; = V. Then

xel, - xU,cV, x--. 2V,

and U x --- x U, isopen in E, thus V; x --- x V, is a neighborhood of x
in E.
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Let V be aneighborhood of x in E. There exists an open subset U of Esuch
that x€ U < V. The set U is the union of elementary open sets, therefore x
belongs to one of these sets.say U, x «+- x U,,where Uyis an open subset of
E,.. Then x; € U,, thus U, is a neighborhood of x; in E;,,and U; % :-+ x U,
cV.

3.2.5. Theorem. Let E = E, x .-- x E, be a product of topological spaces.
If each E, is separated. then E is separated.

Let x =(x;,..... x,) and ¥ = (y,,---. y,) be two distinct points of E.
One has x, # y, for at least one i, for example x, # y;. There exist disjoint
neighborhoods V, W of x,, y, in E;. Then V x E, x .-- x E, and W x
E, x +-- x E, are neighborhoods of x, y in E (3.2.4) and they are disjoint.

3.2.,6. Theorem. Let X be a set equipped with a filter hase #, E = E, x
E; x ++- x E, a product of topological spaces. ! = (l;,.-..,!,)€E. Let fhea
mapping of X into E. thus of the form xr (fi(x), ..., f{{x)), where f; is a
mapping of X into E;. Then the following conditions are equitalent:

(i) ftends to ! along B
(i) fori =1,2.....n f tends to I, along #.

Suppose that ftends to / along 8. Let us show, for example. that ) tends to
{, along &. Let V, be a neighborhood of [, in E,. ThenV,; x E; x :+«t E,
is a neighborhood of [ in E (3.2.4). Therefore there exists B € :# such that
fB)= V, x E; x -+ x E,. Then f,(B) < V,. thus f; tends to /, along .

Suppose condition (ii) is satisfied. Let V be a neighborhood of / in E.
There exist neighborhoods V,,....V, of l;..... I, in Ey..., E, such that
V,; x-+-x V,cV (3.24). Then there exist By,...,B,e# such that
fiBy)  Vy,.... fi(By « V,. Next. there exists Be# such that Bc
B, ~--+m B,. Then

SBYe fi(B) x -+ x fB) = Vy x - x V, =V,

thus f tends to { along 2.
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» 3.2.7. Theorem. Let E = E| x +-- x E, be a product of‘topological spaces.
and T a topological space. Let f be a mapping of T into E, thus of the form
te= (fi(0, ... Jy(2)), where f; is a mapping of T into E,. The following con-
ditions are equivalent:

(i) f is continuous;
(ii) fi. cv., Jy are continuous.

Indeed, for every t, € T, the conditions
lim f(t) = f{to),

| SA1]

lim f(t) = fi(te) for I=1.....n

=19

are equivalent by 3.2.6.

3.2.8. Corollary. Let E = E, x .- x E, be a product of topological spaces.
The caronical projections of E onto E,, .... E, are continuous.

Let f be the identity mapping of E. It is continuous. Now, it is the mapping
X (f1(X),+.., fi(x)), where fi,..., f, are the canonical projections of E
onto E,, ..,:.E,. It then suffices to apply 3.2.7.

3.2.9. Theorem. Let X, Y, Z be topological spaces. The mapping (x, y, 2)+>
((x, ) 2)of X x Y x Zonto (X x Y) x Z is a homeomorphism.

This mapping is obviously bijective.

The mappings (x, y, z)—x and (x, y, z)»yof X x Y x Zinto Xand Y
arg continuous (3.2.8), therefore the mapping (x, y, 2)—~ (x, y)of X x Y x Z
into X x Y is continuous (3.2.7). Similarly, the mapping (x, y.2)—2z
of X x Y x Zinto Z is continuous (3.2.8), therefore the mapping {x, y, z2)—
{(x, ). 2)of X x Y x Z into (X x Y) x Z is continuous (3.2.7).

Similarly, one proves successively the continuity of the following mappings:
g(x, 37 )z) = (%, Y (%, ) 2) = X, (%, 9), 2) =y, (X, Y D= 2 ((x, 9 2) =
X, ¥, 2).

3.2.10. Onaccount 0f3.2.9, oneidentifies the topological spaces (X x Y) x Z
and X x Y x Z. This reduces step by step the study of finite products of
topological spaces to the study of a product of two spaces.

For 1 £ p < n, one identifies R” with R? x R""?, etc.

3.2.11. Theorem. Let X. Y be topological spaces. y, a fixed point of Y. A the
subspace X x {yo} of X x Y. The mapping x—(x.yo) of X onto A is u
homeomorphism.
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This mapping is obviously bijective. It 1s continuous from X into X x Y by
3.2.7, therefore it is continuous from X'into A

Y XxyY
{x,
V) Yo)
)
}
1
!
{
X X

by 3.1.15. The inverse mapping is the composite of the canonical injection of A
into X x Y. which is continuous (3.1.16), and of the canonical projection of
X x Y onto X. which is also continuous (3.2.8).

3.2.12. For example, one can identify R with the subspace R x {0} of R?, etc.

3.2.13. Theorem. Let X be a separated topological space. A the diagonal of
X x X (that is. the set of all (x, x). where x runs over X). Then A is closed in
X x X.

Let usshow that (X x X) — Aisopenin X x X, that is, is aneighborhood
of each of its points. Let (x. y)e X x X. If (x, y) ¢ A then x s y. Since X is
separated. there exist disjoint neighborhoods V. W of x, ». Then V x Wisa
neighborhood of (x, y)in X x X (3.2.4),and V x W isdisjoint from A, that is
to say contained in (X x X) — A. Thus (X x X) — A is a neighborhood of
(x, ).

3.2.14. Corollary. Let E be a topological space, F a separated topological
space, f and g continuous mappings of E into F. The set of x € E such that
J(x) = g(x) is closed in E.

For. the mapping x — h(x) = (f(x). g(x)) of E into F x F is continuous
(3.2.7). Let A be the diagonal of F x F,whichisclosedin F x F(3.2.13). The
set studied in the corollary is nothing more than h~!(A), therefore is closed
(2.4.4).

3.2.15. Corollary, LetE, F. fog be as In 3.2.14. If { and g are equal on a dense
subset of E, then f = g.

For, the set of 3.2.14 is here both dense and closed, therefore equal to E.
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3.3. Infinite Products of Topological Spaces

3.3.1. Let (E ), be a family of topological spaces. Let E = [T;¢; E.. There is
an obvious way of extending the definitions 3.2.1, 3.2.2 to this situation. but
this does not lead to a useful concept.

One calls elementary open set in E a subset of the form [, U;. where U;
is an open subset of E;, and where U; = E, for almost all i € | (which. in this
context. will mean that U; = E, for all but a finite number of indices). For [
finite. one recovers the definition 3.2.1.

One again calls open set of E any union of elementary open sets. One
verifies as in 3.2.1 that this defines a topology on E. called the product topology
of the topologies of the E,.

3.3.2. Most of the arguments of 3.2 may be extended with minimal complica-
tions, We state the results:

(a) Let x = (x;);.;€ E. where x;cE, for all i€l The sets of the form
[Ties Vi, where V, is a neighborhood of x; in E; and where V; = E, for almost
all i. constitute a fundamental system of neighborhoods of x in E.

(b) If every E; is separated. then E is separated.

(c) Let X be a set equipped with a filter base %, s a mapping of X into E
(thus of the form x— (fi(x));,. where f; is a mapping of X into E;), and
{ = ()1 € E. The following conditions are equivalent:

(i) f tends to ! along B:
(ii) for every iel, f; tends to /; along &.

(d) Let T be a topological space. f a mapping of T into E (thus of the form
t+= ( fi(t));s,. where f; is a mapping of T into E;). The following conditions are
equivalent: (i) f is continuous: (ii) every f; is continuous.

(¢) The canonical projections of E onto the E; are continuous.

(N If 1is the union of disjoint subsets I, where A runs over a set A, then the
topological space [],, E, may be identified with the topological space
[Tiea ([Tie1, E) (cassociativity of the topological product”.

3.4. Quotient Spaces

3.4.1. Theorem, Let E be a topological space, R an equivalence relation on E,
F the quotient set EjR, & the canonical mapping of E onto F. Let & be the
set of subsets A of F such that n~ '(A) is open in E. Then C satisfies the axioms
(i, (i, (i) of' 1.2.1.

This is immediate.
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3.4.2. Thus, ¢t is the set of open sets of a topology on F. called the quotient
topology of the topology of E by R. Equipped with this topology, F is called the
quotient space of E by R.

The mapping 7 of E onto F is continuous (for, if Aisopenin F.thenn~ '(A)
is open in E).

3.4.3. Example. The set T is defined to be the quotient of R by the equivalence
relation x — y € Z. By 3.4.2. T is equipped with a topology that makes it a
quotient space of R.

» 3.4.4. Theorem. Let F = E/R be the quotient space of a topological space
E by an equivalence relation R, m the canonical mapping of E onto F. Y a
topological space, and f a mapping of F into Y. The following conditions are
eyuivalent:

(1) fIs continuous;
(ii) the mapping f 4 r of E into Y is continuous.

fot

_ -

E/R -1 (U)

Suppaose f'is continuous. Since 7 is continuous (3.4.2), [+ # is continuous.
Suppose /'# n Is continuous. Let U be an open subset of Y. Then

= (fTHU)) = (Fem)™'(U)

isopen in E (2.4.4), therefore £ ~ '(U) is open in F (3.4.2). Thus £ is continuous
(2.4.4).

3.4.5. Example. Denote by U the set of complex numbers of absolute value 1.
One knows that the mapping x — g(x) = exp(2zi.x) of R into U is surjective.
and that g(x) = g(x") & x — x' € Z. Thus, if p denotes the canonical mapping
of R onto T. then g defines. by passage to the quotient. a bijection f of T onto
U such that fap = g. Since g is continuous, f is continuous (3.4.4). We shall
see later on (4.2.16) that fis a homeomorphism. Let us show that Tis separated.
Let x. y be distinct points of T. Then f(x) % f(y). Since U is separated. there
exist disjoint open neighborhoods V. W of f(x). f(y) in U, Then f~!(V),
S~ Y(W) are disjoint open neighborhoods of x, yin T.



CHAPTER [V
Compact Spaces

This chapter is probably the most important of the course. Although
the definition of compact spaces (§1) suggests no intuitive image, it is a
very fruitful definition (see the properties of compact spaces in §2 and
3. and the applications in nearly all the rest of the course). In §4. we
adjoin to the real line R a point + ¢ and a point — o 50 as to obtain a
compact space, the ‘extended real line’ R; the student has made use of
this for a long time. even though the terminology may appear to be new.

Locally compact spaces are introduced in §5; for this course, they are
much less important than the compact spaces.

4.F. Definition of Compact Spaces

4.1.1. Theorem. Let E be a topological space. The following conditions are
equivalent:

(i) If a family of open subsets of E covers E, one can extract from it a finite
subfamily that ugain covers E.

(i) If a family of closed subsets of E has empty intersection. one can extract
Jrom it a finite subfamily whose intersection is again empty.

This is immediate by passage to complements.

4.1.2. Definition. A separated space that satisfies the equivalent conditions
of 4.1.1 is called a compacr space.

Let E be a topological space. A subset A of E such that the topological
space A (3.1.2) is compact is of course called a compacr subset of E.
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4.1.3. Theorem. Ler E be a topological space. A a separated subspace of E.
The following conditions are equivaien::

(i) A is compact;
(ii) if a family of open subsets of E covers A, one can extract from it a finite
subfamily that again covers A.

Suppose A iscompact. Let (U,),,, be a family of open subsets of E covering
A. The U; n A are open in A (3.1.2) and cover A, therefore there exists a
finite subset J of I such that the family (U; n A),.; covers A. 4 fortiori, the
family (U)),¢) covers A,

Suppose conditions (ii) is satisfied. Let (V}),¢; be a family of open sets of
A covering A. For every i € L. there exists an open set W, of E such that
V, = W; n A (3.1.2). Then (W));, covers A. thus there exists a finite subset
J of I such that (W,),; covers A. Therefore (V,);s, covers A.

4.1.4. Theorem (Borel-Lebesgue). Let a, b € R with a < b. Then the interval
[a. b] is compact.

It is clear that [g, b] is separated.

Let (U);¢; be a family of open subsets of R covering [a. b]. Let A be the
set of x € [a, b] such that [a, x] is covered by a finite number of the sets U,.

The set A is nonempty because a € A. It is contained in [a, b], therefore it
is bounded above. Let m be its supremum. Thena < m < b.

There existsj € Isuch that m e U,. Since U, is open in R. there exists ¢ > 0
such that {m — e.m + &] < U;. Since m is the supremum of A, there exists
x € Asuchthatm - ¢ < x < m. Then [a, x] is covered by a finite number of
the U,. and [x,m + ¢] <= U,, therefore [a, m + &] is covered by a finite
number of the U,. If m < b then, after reducing ¢ if necessary so thatm + ¢ &
[a. b].one sees that m + ¢ € A. which contradicts the definition of supremum.
Therefore m = b, and [a. b] is covered by a finite number of the U,. It then
suffices to apply 4.1.3.

4.2. Properties of Compact Spaces

We are going to show: (1) that compact spaces have useful properties: (2) that
there exist interesting examples of compact spaces (besides those of 4.1.4).
The logical order of the proofs unfortunately obliges us to mix the two
objectives.

» 4.2.1. Theorem. Ler X be a ser equipped with a filter base B. E a compact
space, [ a mapping of X into E. Then f admits at least one adherence value
along 8.
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Consider the family of subsets f(B) of E. where B runs over 3. These are
closed sets. Let A ='ﬁ,,,3, f(B). If A=, there exist B,.,.s, B,c®

such that f(B,) A+ f(B,) = & (because E Ts compact). Now, there
exists By € # such that By = By n - -+ » B,, whence f(By) < f(B;) N -sert
Sf(By)and consequently f(B,) n -+ n f(B,) # &. Thiscontradiction proves
that A # . In view of 2.6.6, this proves the theorem.

4.2.2. Corollary. In a compact space. every sequence of points admits at least
one adherence value.

4.2.3. Theorem. Let X, &, E, f be as in 4.2.1. Let A be the ser (nonempty)
of adherence values of f along #. Let U be an open subset of E containing A.
There exists B € # such that f(B) = U (and even f(B) < U).

One has (E — U) n A = , thus
E-Un B =2

Be®

Since E — U and the f(B) are closed we infer, by the compactness of E. that
there exist By,..., B, & # such that

E-UnNfB)N 1nfB)=¢.
Next. there exists B, € 2 such that By = B; n -+~ B,. Then
(E - U)n f(By) = @
that is, f(Bo) < U.

» 4.2.4. Corollary. Let X. &, E, f be as in 4.2.1. If f adnilts only one ad-
hereuce value | along B, then f tends to | along 8.

With the preceding notations, we have A = {/}, and U can be taken to be
any open neighborhood of /.

4.2.5. Corollary. In a compact space, if a sequence of points has only one ad-
herence value |. then it tends to l.

» 4.2.6. Theorem. Let E be a compacr space, F a closed subspace of E. Then
F is compact.

Since E is separated, F is separated. Let (Fy);q, be a family of closed subsets
of F with empty intersection. Since F is closed in E, the F, are closed in E
(3.1.5). Since E is compact, there exists a finite subfamily (F)),¢, with empty
intersection.
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4.2.7. The converse of 4.2.6 is true, Better yet:

» Theorem. Let E be a veparated space, F a compact subspace of E. Then
F isclosed in E.

We are first going to prove the following:

(%) Let xo € E — F. There exist disjoint open sets U, V of E such
that xoe Uand F < V.,

Since E is separated, for every ye F there exist open neighborhoods
U,, V, of xo, y in E that are disjoint. The V,, as y runs over F. cover F.
Since F is compact. there exist (4.1.3) points y;,...,y, of F such that F =
V,,u---uV, . LetU=U, n.sn U,, which is an open neighborhood
of xo in E. Set V=V, u---uV, which is an open subset of E con-
taining F. Then U and V are disjoint, and we have proved (»).

Since U = E - F,itfollows in particular from (s)that E — Fis aneighbor-
hood of x, in E. This being true for every xo€ E - F, E — F is open in E,
therefore F is closed in E.

4.2.8. Corollary. In R, the compact subsets are the closed bounded subsets.

Let A be a compact subset of R. Then A is closed in R (4.2.7). On the other
hand, it is clear that A = ( J,ea (x — 1. x + 1); by 4.1.3, A is covered by a
finite number of intervals (x; — 1, x; + 1), hence is bounded.

Let B be a closed, bounded subset of R. There exists an interval [g, b]
such that B = [g, b]. Then [4, b] is compact (4.1.4), and B is closed in [a. b]
(3.1.5) hence is compact (4.2.6).

4.2.9. Theorem. Let E be a separated space.

(i) If A, B are compact subsets of E, then A U B is compact.
(ii) If (A)e; is @ nonempry family of compact subsets of E, then ()1 A, is
compact.

Let (U;); be a covering of A U B by open subsets of E. There exist
finite subsets J,. J, of I such that (U;),;, covers A and (U;);.,, covers B.
Then (Uj);ey, .1, cOvers A U B, which proves that A U B is compact (4.1.3).

The A, are closed in E (4.2.7), therefore [);q; A; is closed in E, hence in
each A, (3.1.5). Since the A, are compact, (), A, is compact (4.2.6).

4.2.10. However, an infinite union of compact subsets is not in general
compact. For example, the intervals [-1,1}, [=2,2), [-3,3],... of R
are compact. but their union. which is R, is not compact (4.2.8).
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4.2.11. Theorem.

(i) Let E be a separated space, A and B disjoint compact subsets of E. There
exist disjoint open sets U,V of E such that A c Uand B c V.

(ii) In a compact space, every point has a fundamental system of compact
neighborhoods.

(i) For every x € A, there exist disjoint open subsets W,. W} of E such
that x e W,, B « W, (cf. the assertion () in the proof of 4.2.7). Since A
is compact. there exist x;,.....x,&A such that Ac W, u.«+UW,
Set U=W, w:-rUW, and V=W, neee AW, . Then U andVare
open subsets of E. A < u BcVandUnV = 7.

(ii) Suppose E is compact. Let x € E and let Y be an open neighborhood
of xin E. Then {x} and E - Y are disjoint compact subsets of E. By (i), there
exist disjoint open sets U, V of E such that xe U and E = Y < V. Then
U is a compact nelghborhood of x. We have U < E — V, therefore U <
E - Vsince E — V is closed, whence U = Y.

» 4.2.12. Theorem. Let E be a compact space. F a separated space, f a con-
tinuous mapping of E into F. Then f(E) is compact.

First, f(E) is separated since F is separated.

Let (U,); be a family of open subsets of F covering f(E). Since f is
continuous, the f~!(U,) are open subsets of E (2.4.4). Since the U, cover
f(E), the f~(U) cover E. Since E is compact. there exists a finite subset
J of I'such that (f ~Y(U))., covers E. Then (U,),.; covers f(E). Therefore
f(E) is compact (4.1.3).

4.2.13. Corollary. Let E be a nonempty compact space, | a continuous real-
valued function on E. Then f is bounded and attains its infimum and supremum.

By 4.2.12, f(E) is a compact subset of R, hence is a closed, bounded subset
of R (4.2.8). Since f(E) is bounded, f is bounded. Since, moreover. f(E)
is closed, f(E) has a smallest and a largest element (1.5.9). If, for example,
f(xo) is the largest element of f(E). then f attains its supremum at x,.

4.2.14. Corollary. Let E be u compact space. | a continuous real-valued
function on E with values >0. There exists x > 0 such that f(x) Z x for all
xeE.

Let 2 be the infimum of f on E. By 4.2.13, there exists xo € E such that
f(xo) = o Therefore x > 0. It is clear that f(x) 2 xforallx = E



4.2. Properties of Compact Spaces 4]

4.2.15. Corollary. Let E be a compact space, F a yeparated space. f a con-
tinuouys bijective mapping of E onto F. Then f =" is continuous (in other words,
[ is a homeomorphism of E onto F).

Letg = f~'. If A is a closed subset of E, then A is compact (4.2.6), there-
fore f(A) is compact (4.2.12), therefore f(A) is closed in F (4.2.7), in other
words g~ '(A) is closed in F. This proves that g is continuous (2.4.4).

4.2.16. Example. Let p be the canonical mapping of R onto T. 1t is con-
tinuous (3.4.2). Since T is separated (3.4.5) and [0, 1] is compact (4.1.4),
p([0, 1]) is compact (4.2.12). But p([0, 1]) = T. Thus the space T is compact.

In 3.4.5 wedefined'a continuous bijection f of T onto U. Now, T is compact
and U is separated. Therefore f is a homeomorphlsm (4.2.15). Thus, the
spaces T and U are homeomorphic.

Since U? may be identified with the surface of the space commonly called
a‘torus’, one says that T? is the 2-dimensional torus, and more generally that
T" is the n-dimensional torus. In particular. T is called the 1-dimensional torus.

» 4.2.17. Theorem. The product of a finite number of compact spaces is
compact.

It suffices to show that if X and Y are compact, then X x Y is compact.
First, X x Y is separated (3.2.5).

Let {U;),,; be an open covering of X x Y, Foreverym = (x,y)e X x Y,
choose an i(m) €] such that me Uy,,. By 3.2.4, there exist an open neigh-
borhood V,, of x in X and an open neighborhood W, of y in Y such that
Vp x W, = U, . Set P, =V, x W,.

Provisionally. fix xo € X. The subset {x,} x Yof X x Y is homeomorphic
to Y (3.2.11) hence is compact. The subsets P,,, where m runs over {xo} x Y.
are open in X x Y and cover {xq} x Y, therefore {xo} x Y is contained in
a finite union P,, Wi+« P, (4.1.3). The intersection V,, N - AV, s

Y
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an open neighborhood A, of xo in X. If (x, y)€A,, x Y, there exists a
k such that (xq, y)€P,, =V, « W,  whence ye W, and

(x, VEAZLX W, cV, xW, =P,

Thus A,, ¥ Y is covered by a finite number of the sets U,.
Ifnow x, runs over X, the A, form an open covering of X. from which one
can extract a finite covering

X=A,wv---UA,.

Each A, x Y is covered by a finite number of the sets U,, therefore X x Y
is covered by a finite number of the sets U,.

» 4.2.18. Corollary. In R". the compact sets are the closed bounded sets.

(A subset of R” is said to be bounded if its » canonical projections onto R
are bounded.)

Let A bea compact subset of R". Then A isclosed in R" (4.2.7). Its canonical
projections onto R are compact (3.2.8 and 4.2.12), hence bounded (4.2.8),
thus A is bounded.

Let B be a closed. bounded subset of R". Since B is bounded, one has

B = [a,.b,] = [a;,b;] x -+- % {a,, b,] =C.

Now, C is compact (4.1.4 and 4.2.17). and B is closed in C (3.1.5) hence is
compact (4.2.6).

4.2.19. Examples. The space R" is not compact.

The sphere S, (2.5.7) is bounded in R*"*, and closed in R""! (1.1.12).
hence is compact (4.2.18).

With the notations of 2.5.7. the space S, — {a} is homeomorphic to R",
henge is not compact.

4.3, Complement: Infinite Products of
Compact Spaces

* 4.3.1. Let X be a set. If #, and #, are filters on X, the relation #, = #,
is meaningful since #, and %, are subsets of 2(X) (the set of all subsets of X).
Thus. the set of filters on X is ordered by inclusion. One calls ultrafilter on X
a filter on X that is maximal for this order relation (that is 10 say, a filter F
such that if 4 is a filter on X containing % then ¥ = #).

* 4.3.2. Let (#,);.4 be a totally ordered family of filters on X (thus. for
any 4 and u. either #, = &, or F, = F). Then # = | J;,4 #, is a filter
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on X. For. let Ye F and let Z = X be such that Z > Y: then Y & .Z, for
some 4. therefore Z € #,.therefore Z € # Onthe other hand. let Y,. Y, e #:
there exist A, u € A such that Y, € #,. Y, € Z,; il. for example. #F, < #,.
then Y, € #,. therefore Y, ~ Y, € #, « F.This proves our assertion.

It then follows from Zorn's theorem (see. for example. Bourbaki. Theory
of Sets, Ch. I1L §2, Cor. 1 of Th. 2) that every filter on X is contained in an
ultrafilter.

* 4.3.3. Theorem. Let F be a filter on X. The following conditions are equiva-
lent:

1) F is an ultrdfilter;
(i1) for every subset Y of X, eitherYe F or X -- Y € £

Suppose that # is not an ultrafilter. Let #" be a filter on X strictly con-
taining F. There exists Y € .7’ such that Y& .# Then X — Y ¢ #’ (because
Y (X~-Y)=)and afortiori X — Y¢ &

Suppose there exists a subset Y of X such that Y ¢ # and X — Y ¢ # Let
% be the set of all subsets of X containing a set of the form F n Y withFe #
Let us show that ¥4 is a filter. For every F & #. one has F « X - Y. (otherwise.
X - Y e #) therefore F ~ Y % F; thus. every element of 4 is nonempty.
It 15 clear that every subset of X containing an element of ¥ belongs to .
Finally, let G,. G, be elements of 4;then G, > F;, ~ Y, G, o F. ~ Y with
F,. F; & # therefore G, n G, o {F, nF;) n Y and F, n F, € Z: there-
fore G, ~ G, € %. We have thus shown that % 1s indeed a filter. It is clear
that 4 = .# and that Y € %. therefore ¢ # .# and .# is not an ultrafilter.

* 3.3.4. Theorem. Let X and X' be sets, f a mapping of X into X'. # an ultra-
filter on X. Let F° be the set of all subsets of' X' that contain a set of the form
f(F), where F ¢ F. Then 7' is an ultrafilter on X'.

It 1s clear that ' is a filteron X. Let Y' = X". Set Y = f~'(Y’). Then
YeZF or X=YeF (433). If Ye # then Y e .F because f(Y)< Y. If
X - Ye# then X' — Y € # because f(X — Y) « X' — Y Therefore F°
1s an ultrafilter (4.3.3).

* 4.3.5. Theorem. Ler E be a separated ropological space. The following
conditions are equivalent:

(v) E is compact.
() if ¥ is an ultrafilter on a set X, and if’ }' is a mapping of X into E. then !
has a limit along %.

(a) Suppose E is compact. Let X, %, f be as in (ii).
Let x, be an adherence value of [ along # (4.2.1). The sets of the form
FUY ~ V., where U € # and V is a neighborhood of x, 1n E, are nonempty
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(2.6.1). They constitute a filter base 2 on E, because if U,, U, € #and V,,
V, are neighborhoods of xq, then

JUINAU)A NV, AV) s (f(U)n V)N (f(U)N V)

Let & be the set of subsets of E that contain an element of . Then # is a
filter on E (2.1.1).

Let ¢ be the set of subsets of E that contain a set of the form f(U), where
U e%. Then 4 is an ultrafilter (4.3.4). It is clear that ¥ < & Therefore
# = #. Now let V be a neighborhood of x,. Then V € & therefore Ve 4
therefore there exists U e % such that f(U) = V. Thus ftends to x, along #.

(b) Suppose condition (ii) is satisfied. Let (F;),,; be a family of closed
subsets of E. Suppose that for every finite subset J of L, the set F; = (;, F;
is nonempty. We are to show that (), F; # . Now, the F, form a filter
base. Let % be an ultrafilter on E containing all the F, (4.3.2). Let us apply
condition (ii) to the identity mapping of E into E: we see that there exists an
X, € E such that every neighborhood of x, contains an element of #. Fix
i e L Let V be a neighborhood of x,. Let U € & be such that U = V. Then
F,n U # & since F,e % and U e %. Therefore F; n V # . This being
true for all V, we have x, € F; = F;, This being true for all i, we see that
X0 € et Fo.

* 4.3.6. Theorem. Let (E;);o; be a family of compact spaces, and let E =
[Tiet Ei. Then E is compact.

Let X be a set, 4 an ultrafilter on X, fa mapping of X into E, hence of the
form x — (f{x))e;, Where f; is a mapping of X into E,. By 4.3.5, f; has a
limit /; € E; along #. Let | = (I;);¢,. By 3.3.2(c), f tends to { along #%. Therefore
E is compact (4.3.5).

4.4. The Extended Real Line

4.4.1. Let R be the set obtained by adjoining to R two elements, denoted +
and —co. not belonging to R. If x, y € R, the relation x < y is defined in the
following way:

(1) if x. y € R, then x £ y has the usual meaning;
(2) forallxeR,onesets x < +w and = < X;
(3) onesets —x® < +x.

1t is easily verified that one obtains in this way a total order on R. The ordered
set R is called the extended real line.
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4.4.2. Consider the mapping f of [ - /2. 7/2] into R defined as follows:

, n ]
f(x) =tan x if -§<x<-2-.

)-em Ao

Then f is bijective and increasing, as is f ~ !, and is therefore an isomorphism
of ordered sets. Every property of the ordered set [ —n/2. /2] is therefore
also true in the ordered set R. In particular. every nonempty subset of R
admits a supremum and an infimum.

4.4.3. Topology of R. Let us call open subset of R the image under f of an
open subset of [—7/2. 7/2]. One thus defines a topology on R, and f is a
homeomorphism of [ -2, n/2] onto R. It follows that R is compacr and
that. in R, every nonempty closed subset has a smallest and a largest element.

Since the restriction of f to ( — /2, #/2) isa homeomorphism of (— /2. 7/2)
onto R (2.5.5), the topology of R induces on R the usual topology.

The intervals [b, n/2], where —n/2 < b < =n/2. form a fundamental system
of neighborhoods of #n/2 in [ - 7/2, n;2]. Therefore the intervals [a. + x],
where a e R. form a fundamental system of neighborhoods of +x in R
Similarly, the intervals [ — x, a], where a € R. form a fundamental system of
neighborhoods of — % in R. It follows that if (x,. x;....) is a sequence of
real numbers, to say that x, — 4 cc in R means that x, = + o« in the usual
sense.

4.4.4, Theorem (Passage to the Limit in Inequalities). Let X be a set equipped
with a filter base 8, f and | mappings of X into R, admitting limits |, I' along 2.
Suppose that f(x) £ f'(x) forall x € X. Then! < I.

Suppose { > I. Let a€ R be such that [ > a> [I. Then (a. +x] and
[~ x. a) are neighborhoods of [ and I in R. Therefore there exist B € 2
and B’ € # such that

xeB= f(x) > a, xeB=f(x)<a
If x e B ~ B, one sees that f(x) > f'(x), which is absurd.

4.5. Locally Compact Spaces

4.5.1. Theorem. Ler E be a topological space. The following conditions are
equivalent:

(i) every point of E admits a compact neighborhood ;
(i) every point of E admits a fundamental system of compact neighbor-
houds.
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Obviously (ii) = (i). Let x € E and let V be a compact neighborhood of x.
By 4.2.11(ii). x admits in V a fundamental system (V,) of compact neighbor-
hoods. One verifies easily that (V) is a fundamental system of neighborhoods
of x in E (cf. 3.1.6).

4.5.2. Definition. A topological space is said to be focally compact if it is
separated and satisfies the equivalent conditions of 4.5.1.

4.5.3. Examples. (a) Every compact space is locally compact.

(b) R" is locally compact (without being compact). For. R" is separated,
and every point of R" admits as neighborhood a closed ball. which is compact
(4.2.18).

(c) Let us show that Q is not locally compact. Suppose that the point 0
of Q possesses in Q a compact neighborhood V. There exists a neighborliood
W of 0 in R such that V = W ~ Q (3.1.6). Then there exists x > 0 such that
(—x x) < W, whence (—a. 2) n Q = V. Moreover. since V is compact,
V is closed in R (4.2.7). Now, every real number in (—a, x) is adherent to
(=2, x) n Q. whence (—a, 2) = V, which is absurd since V < Q.

4.5.4. Theorem. Let X be a locally compact space, Y an open or closed subset
of X. Then the space Y is locally compact.

First. Y is separated. On the other hand. let y € Y. There exists a compact
neighborhood V of y in X. Then V ~ Y is a neighborhood of v in Y (3.1.6).
IfY isclosed in X, then V ~ Y is closed in V (3.1.4), hence is compact (4.2.6).
If Y is open in X, one can suppose V < Y (4.5.1(ii)) and then VA Y = V,

4.5.5. Theorem. Let X,, X;,.... X, be locally compact spaces and let X =
Xy x - x X,. Then X is locally compact.

Fifst, X is separated. On the other hand. let x = (x,,....x,) € X. Forevery
i, there exists a compact neighborhood V,of x,in X;. Then V, x --+ x V,isa
neighborhood of x in X (3.2.4) and 1s compact (4.2.17).

* 4.5.6. Remark. Let E be a compact space. w a point of E. By 4.5.4, the
space X = E — {w} is locally compact.

* 4.5.7. Let us show, under the conditions of 4.5.6, how one can reconstruct
the topology of E starting from that of X. We are going to prove that the
open sets of E are: (1) the open sets of X: (2) the sets of the form (X — C) u
{w}, where C is a compact subset of X.

First. an open set of X is open in E (3.1.3). Next. if C is a compact subset of
X. then C is closed in E (4.2.7). therefore E — C is open in E: now,

E-C=X-CQui{w}
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Finally, let U be an openset in E. [f w ¢ U then U < X.and U is open in X
(3.1.3);if w € U, then

U=(X=C)wv{w}

where C is the complement of U in E; this complement is closed in E, hence
is compact (4.2.6).

» 4.5.8. The interest of Remark 4.5.6 is that it yields all of the locally com-
pact spaces, as we shall now see.

Let X be a locally compact space. X' a set obtained by adjoining to X a
point @ not belonging to X. The construction we shall give is inspired by
4.5.7. Let us say that a subset U of X' is open in the following two cases:
(«) U is an open set of X; (8) U is of the form (X — C) u {w}, where Cisa
compact subset of X. Let us show that the axioms (i). (ii), (iii) of 1.2.1 are
satisfied. This is clear for (i). Let (U,),; be a family of open sets of X', and U
the union of the U;. Then [ = J U K, where: (1) for i € J, U, is open in X:
DforiekK, U =X - C) v {w} with C,compact in X. IfK = ¢ then U
is an open subset of X. Suppose K # . Then w € U and

X-Us=(X=U)= (n C.) A (m X - U.-)).

i€l ieK iel )
Now, {iex C; is compuact in X (4.2.9(ii)) and ;¢, (X - U)) is closed in X,
therefore X' — Uisacompact subset C of X(4.2.6).and U = (X - C) U {w}.
We have thus verified axiom (ii). Now let U, U, be open sets of X’ and let
us show that U; n U, is an open set of X'. This is clear if U,, U, are open in
X IfU, isopenin X and U, = (X = C) U {w} with C compact in X, then
UnU,=U,~"n(X-C), and X~-C is open in X (4.2.7), therefore
U nU,isopeninX IfU; = (X -C)) v {w}and U, = (X = C,) u {w}
with C,, C, compact in X, then

U nU; =(X=(C, uCy)) v {w}

and C,; u C, is compact in X (4.2.9(i)).

We have thus defined a topology on X'. The subset X of X' is open in X',
The intersections with X of the open sets of X' are the open sets of X. In
other words, the topology induced on X by that of X' is the given topology
on X.

Let us show that X’ is separated. Let x, y be distinct points of X', and let us
show that x and y admit disjoint neighborhoods in X'. This isclear ifx, y € X.
Suppose x = wand y € X. Let W be a compact neighborhood of y in X. This
is also a neighborhood of y in X' (because X is open in X'). Set

V=(X-Wulw
This is an open neighborhood of win X.and V ~ W = (3.
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Let us show that X' is compact. Let (U,);.; be an open covering of X'.
There exists iq € I such that w & Uy, Then

Up = (X = O {w}

where C is compact. The U, cover C. therefore there exists a finite subset J
of 1 such that (Uj);,, covers C (4.1.3). Then

X =U, u(U U,).
iel

* 4,59. One often says that w is the point ar infinity of X', and that X'
results from X by the adjunction of a point at infiniry. One also says that X' is
the Alexandroff compactification of X.

* 4.5.10. Let X be a locally compact space. E, and E, compact spaces
such that X is a subspace of E, and E,, and such that E; — X reduces to a
point «; (for { = | and 2). Then the unique bijection f of E, onto E, that
reduces to the identity on X and transforms w, into w, is a homeomorphism
of E, onto E,; for, by 4.5.%, f transforms the open sets of E, into the open sets
of E,.

This proves. in a certain sense. the uniyueness of the Alexandroff com-
pactification.

* 4.5.11. Example. We defined in 2.5.7 a homeomorphism of R" onto the
complement S, — {a} of {a} in the sphere S,. Now. R" is locally compact and
S, is compact. In view of 4.5.10, the Alexandroff compactification of R* may
be identified with S,. For example, the Alexandroff compactification of R
may be identified with the circle S, hence with U (hence with the 1-di-
mensional torus T, by 4.2.16).

-»



CHAPTER V
Metric Spaces

This chapter, in which we reconsider metric spaces in greater detail,
is heterogeneous.

In 81, we introduce some concepts that are quite geometrical:
diameter of a set, distance between two sets.

In §2. we note that some of the earlier definitions take on a much
more intuitive aspect in metric spaces. For example, a point adherent
to a set A is nothing more than the limit of a sequence of points of A.

The student already knows what is meant by uniform continuity for
a real-valued function of a real variable. This concept is studied in the
setting of arbitrary metric spaces in §3. and the somewhat analogous
concept of equicontinuity in §4.

The very important concept of complete metric space is studied
in §§5, 6.-7. Among the numerous useful theorems concerning such
spaces, we cite Baire's theorem (5.5.12).

5.1. Continuity of the Metric

5.1.1. Theorem. Let E be a metric space. d its metric, The mapping
ix, Y)—d(x. y) of E = E into R i5 continuous.

Let (xq, ¥o)€E x E and let ¢ > 0. Let V. W be the closed balls with
centers X,, ¥, and radius &f2: Then V ¢ W is a neighborhood of (x,. )



50 V Metrnc Spaces

inE» E. If(x. ¥)eV x W, then
d(xa }‘) < d(x‘ Xo) + d(xo‘.Vo) + dO’OS ,V)

' 2
< 3 d(xg, yo) + 5 = d(xq, yo) + &

d(xg. Yo) S d(xg. x) + d(x, v} + d(y. yo)

SE-dxy)+s=dixy) +e
therefore |d(x. ¥) = d(xq, Yo)| < ¢ This proves the continuity of d at (xg, yo).

5.1.2. Definition. Let E be a metric space, A a nonempty subset of E. One
calls diameter of A the supremum, finite or infinite, of the set of numbers
d(x. y), where x and y run over A.

5.1.3. Theorem. The sets A and A have the same diameter.

Let D < R (resp. D' = R) be the set of d(x, y) where x, y run over A
(resp. A). Then D < D. Since every point of A x A is adherent to A x A
(3.24), we have D’ = D (2.4.4(iv) and 5.11). Therefore D = D, If D is
bounded, the diameter of A (resp. &) is the largest element of D (resp. D)
(1.5.9). If D is unbounded, then D and D’ both have supremum + .

5.1.4. Definition. Let E be a metric space, A and B nonempty subsets of E.
One calls distance from A to B the infimum of the numbers d(x, y), where
x runs over A and y runs over B. It is denoted d(A, B). One has d(A, B) =
d(B."A). We remark that if d(A. B) = 0, A and B need not be equal and may
even be disjoint.

IfzsE and A < E, we set d(z, A) = d({z}. A) = inf, 4 d(z, X).

5.1.5. Theorem. Let E be a metric space, A and B nonempty subsets of E.
Then d(A. B) = d(A, B).

The proof is analogous to that of 5.1.3.

5.1.6. Theorem. Let E be a metric space, A a nonempty subset of E. and
x, v E. Then |d(x, A) — d(y. A)| < d(x, ).

Let ¢ > 0. There exists z € A such that d(x, z) < d(x, A) + & Then

diy. A) < d(y, 2) < d(y, x) + d(x.z) < d(x. y) + d(x. A) +~ &
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8.2 The Use of Sequences of Points in Metnc Spaces

Thus d(y, A) — d(x. A) < d(x, y) - = Interchanging the roles of x and .
one sees that d(x. A) - d(). A) < d(x, y) + & Therefore (d(x, A) — d(;. AP
< d(x, ¥) + & This being true forevery ¢ > 0. one obtains rd(x. A) — d(r. A)j
< d(x. ¥

5.2. The Use of Sequences of Points in
Metric Spaces

» 5.2.1. Theorem. Let E be a metric space, A < E. x€E. The jfollowing
conditions ure equivalent:

(i) xsA;
(ii) there exists a sequence (x,. Xa.-..) of points of A thar tends 1o x.

If condition (ii) I1s satisfied. every neighborhood of x coniains an x,.
therefore intersects A: consequently x € A.

If xe A then, for every integer n 2 1. there exists a pomnt x, of A that
belongs to the closed ball with center x and radius I,;n. Then x, tends to x
by 2.2.2

» 5.2.2. Theorem. Let E be a metric space. (x,. x5, . ..) a sequence of points
of E, and x € E. The following conditions are equivalent:

(i) x is an adherence value of (x,):
(i} there exists a subsequence (X, . Xp....). where ny < ny < -, that tends
X

Suppose condition (ii) is satisfied. Then x is an adherence value of
(Xnye Xny. ---) and a fortiori of (x. x5.,..).

Suppose condition (i) is satisfied. There exists n, such that d(x,, x) < 1
Then there exists n; > ny such that d(x,,. x) < %. Then there exists n, > n,
such that d(x,,, x) < {. etc. The sequence (x,, . X,,. . ..) then tends to x.

5.2.3. Theorem. Ler X. Y be merric spaces, A a subset of X. [ u mapping of
Ainto Y,aeA. and y € Y. The following conditions ure equavalent:

(i) ¥ is an adherence value of f as x tends to a while remaining in A (2.6.3);
(i) rthere exists a sequence (x,) of points of A such that x, — a and f(x.) — 5.

The proof is analogous to that of 5.2.2.
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5.2.4. Theorem. Let X. Y he metric spaces. f a mapping of X tnto Y, and
x € X. The following conditions are equivalent:

@) fis continuous at x:
(i) for every sequence (x,) of points of X tending to x. the sequence (f(x,))
tends 1o f(X).

(1) = (ii). This is true {or any topological spaces (2.3.3).

Not (i) = not (ii). Suppose that f is not continuous at x. There exists
¢ > 0 such that, for every n > 0, there 1s a yeX with d(x, y) < n yet
d(f(x). f(y)) = & Successively take n = 1.4,4,.... One obtains points
Y1+ V2> Y3000, of X such that d(x, y,) < 1/n and d(f(x), f(3,)) = & Then
¥, = x but f(y,) does not tend to f(x).

» 5.2.5. Theorem. Let X be a merric space. The following conditions are
equivalent:

(i) X is compact:
(ii) every sequence of points in X admits ar least one adherence value.

(i) = (ii). This is true for every compact space (4.2.2).

(ii) = (i). Suppose condition (ii) is satisfied. Let (U;),, be an open covering
of X, and let us show that X can be covered by a finite number of the U,.
We denote by B(x, p) the open ball with center x and radius p.

(a) Let us show the existence of an 2 > @ such that every ball B(x, a)
is contained in some U,.

Suppose that no such x exists. Then. for # = 1, 2,.... there exists an
x, € X such that B(x,, 1/n) is not contained in any U,. Let x be an adherence
value of (x,, x;,...). Then x& U, for some i, and so B(x. N} < U, for
some N. Next. there exists n > 2N such that x, € B(x. 1/2N). Then

1 1 1 1
B(xm ;!') < B(.’C,,, i‘ﬁ) < B(x.z—N -+ 2—N) [y U{c

which is absurd.

{(b) It now suffices to prove that X can be covered by a finite number of
balls B(x. x). Let x, € X. If B(x,.a) = X, the proof is over. Otherwise, let
x;€X = B(x,.a). If B(x,, 2) U B(x,, 2) = X, the proof is over. Otherwise,
let x5 X — (B(x,, 2) v B(x;, z)): etc. If the process stops, the theorem is
established. Otherwise, there exists a sequence (x,. x,....) of points of X
such that

Xxa & B(x,, 2) W~ B(x,-,.2)
for every n. The mutual distances of the x; are > x. Let x € X be an adherence

value of (x;, x;,...). There exists an n such that x, € B(x, 2:2). Next, there
exists ann’ > nsuch that x,,. € B(x, z/2). Then d(x,. x,') < x. which is absurd.
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5.2.6. Corollary. Ler X be a merric space. A a subser of X. The following
conditions are equivalent:

(i) A is compact:
(ii) from every sequence of points of A. one can extract a subsequence that has
a limit in X.

Suppose A Is compact. Let (x,) be a sequence of points of A, hence of A,
It has an adherence value x € A, By 5.2.2, some subsequence tends to x.

Suppose condition (ii) is satisfied. Let (¥,, y2....) be a sequence of
points of A. Let x, €A be such that d(y,.x) < 1/i. Some subsequence
(Xny» Xng» +++) tends to a point x & X. Then x € A (5.2.1). On the other hand,

1
d(yn'v x) < d()’,“q X,”) + d(xm. x) < ’T -+ d(.x,,i, x) - 0.
i

therefore y,, tends to x. Thus. the sequence (y,, y,, ...y has an adherence
value in A. Consequently. A is compact (5.2.5).

5.3. Uniformly Continuous Functions

5.3.1. Definition. Let X and Y be metric spaces, / a mapping of X into Y.
We say that [ is uniformly continuous if, for every & > 0, there exists ann > 0
such that

xp, x; € X and d(xy, x2) S n = d(f(xy), f(x)) < e

5.3.2. It is clear that a uniformly continuous mapping of X into Y is con-
tinuous at every point, therefore is continuous. But the converse is not true.
For example, the mapping x+— x* of R into R is continuous. but it is not
uniformly continuous, For. suppose it were. Taking ¢ = 1in Definition 5.3.1,
there would exist # > 0 such that

x,x:sRand|x; = x.{<n = Ix} = x3l g1,
M 1 ? 2

Now. let x; = lin. x; = 1/q + n. Then ix; ~ x;| < nand

i1 1 o 5
|x§—x§l=%?—ﬁs—2-n' =2+ >L

5.3.3. The example 5.3.2 lends weight to the following theorem:

» Theorem. Let X and Y be metric spaces, f a contimtous mapping of X
into Y. Assume X is compact. Then f is uniformly continuous.
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Fix & > 0. We are to construct &n # > 0 with the property of 3.3.1. For
every x = X. there exists an 7, > 0 such that

FeX.dx\x) Sn, = df(x), fx) < L,

Let B, be the open ball with center x and radius 45,. The B,, 2s x runs
over X, form an open covering of X. Since X is compact, X is covered by a
finite number of such balls B,,. B,,, ..., B;,. Set

n = inf(in,,. .. oe 30 > 0

Now let x’. x" € X be such that d(x’, x") < n. There exists an i such that
X' B, , in other words,

() d(x;. x) < 40,
Then
d(xi, X) < dlxy, XY + d(X. x") < 4y, + 0 S g, + $0,
thus
() d(x;, X) < Ny

The inequalities (1) and (2) imply

AfE SN S35 S < 2

whence d(f(x), f(xN < &

5.4. Equicontinuous Sets of Functions

5.4.1, Let X and Y be metric spaces, f a mapping of X into Y. We recall:

(a) fis continuous at x, if , for every & > 0, there exists an n > 0 such that
d(x. xo) < n=d(f(x), f(xo)) < &

(b) £ is continuous on X if f is continuous at every point of X:

(c) { is uniformly continuous on X if, for every ¢ > 0, there exists an n > 0
such thatd(x. X) < n=>d(f(x). f(x)N < &

Now let () be a family of mappings of X into Y.
(a) The family (f,) is said to be equicontinuous at x, if. for every ¢ > 0,
there exists an 7 > 0 such that

d(x. Xo) S N = d(fix), fi(xo)) S &

for all w.
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(b) The family (f,) is said to be equicontinuous on X if it is equicontinuous
at every point of X,

(¢) The family (f;) is said to be uniformly equicontinuous on X if. for every
£ > 0, there exists an n > 0 such that

dx.x)<n = dfix) flxN S ¢
for all .

5.4.2. Example. Take X = Y = R. Let (f£;) be the family of all differentiable
real-valued functions on R whose derivative is bounded by | in absolute
value. Then (f,) is uniformly equicontinuous. For. let ¢ > 0; if x,. ¥'€R
are such that jx — X'} < ¢, then | f;(x) = f(x) < ¢ for all 2 by the mean
value theorem.

5.4.3. Remark. If a family (f;) is equicontinuous, then each f, is continuous.
However. the converse is not true. For example. take X = Y = R and let
(,) be the family of all linear functions. Each f, is continuous, but the family
(f,) is not equicontinuous at any point of R, For. suppose ( f,) were equi-
continuous at x4, Take ¢ = 1 in Definition 5.4.1. There would existan 5 > 1)
such that

Ix = x| S 1 = 1fi(x) = filxo)i S I
for all . Now, the function x— (2/1)x is linear, and

2t + M) =2 xy| =2 1
S(xo+ M) =-x| =2> 1.
r'o'f”o

5.4.4. Theorem. Let X and Y be metric spaces. ( f;) an equicontinuous family
of mappings of X into Y. Assume that X is compact. Then the family \f,) is
uniformly equicontinuous.

The proof is nearly the same as in 5.3.3.

5.5. Complete Metric Spaces
5.5.1. Definition. Let X be a metric space. (a,. 2. ...) a sequence of points
of X. Recall that the sequence 1s called a Cauchy sequence if
d(ay.a,) =0 as mandn-— x,
in other words, if

for every ¢ > 0. there exists an N such that m.a 2> N=
@y, ay) S &
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5.5.2. Theorem. Let X be a metric space, (a,, a,,...) a sequence of points
of X. If the sequence has a limit in X, then it is a Cauchy sequence.

Suppose that (a,) tends to a. Let ¢ > 0. There exists a positive integer N
such that n > N = d(a,, a) < ¢/2. Then

mn2N = dia,, a) < ;and d(a,, a) < ; = d@g,a) S &

5.5.3. It is well known that the converse of 5.5.2 is in general not true (for
example in X = Q). We therefore make the following definition:

Definition. A metric space X is said to be complere if every Cauchy sequence
has a limit in X,

5.5.4. Example. One knows that the metric space R is complete.

5.5.5. Theorem. Let X be a metric space, (xy, x5, ...) a Cauchy sequence
in X, (Xp,; Xny, -+ .) a subsequence. If the sequence (x,) has a timit |, then the
sequence (x,) also tends to l.

Let £ > 0. There exists an N such that m,n > N = d(x,,, x,) < & Fix
n 2 N. For n; 2 N. we have

(n d(x,,, x,) < e

As ! — x, we have x,, — . therefore d(x,, x,) = d(lx,) (5.1.1). By
4.4.4; the inequality (1) implies in the limit that d(], x,) < « This being true
foralln = N, we have x, = 1.

» 5.5.6. Theorem. Let X be a complete metric space, Y a closed subspace
of X. Then Y is complete.

Let (3. y;....) be a Cauchy sequence in Y. It is also a Cauchy sequence
in X. Therefore it has a limit a in X. Since y; € Y for all i, we haveae Y = Y,
thus (y,) has a limit in Y.

5.5.7. The converse of 5.5.6 is true. Better yet:

» Theorem. Let X be a merric space, Y a complete subspace. Then Y is closed
in X,

Let as Y. There exists a sequence (y,, y;,...) in Y that tends to a (5.2.1).
The sequence (y;) is a Cauchy sequence (5.5.2). It thus has a limit b in Y
since Y is complete. In X, (y;) tends to a and to b, therefore a = be Y.
Thus Y =Y.
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» 55.8. Theorem. Let X,. ...X, be complete metric spaces. X =
X, X -+ % X, the product metric space. Then X is complete.

Let (vq. ¥44...) be a Cauchy sequence in X. Each point j; is of the form
Ut1s Vizs o+ Yiph Where y,, € XL Ly, € X,. We have

d{..vmh Ym) S d(yow Va) = 0

as m, n— x, therefore (yyy, ¥z;. ¥a1....) is a Cauchy sequence in X,.
Since X, is complete. this sequence has a limit ¢, in X,. Similarly.
(F12+ Y22+ Yaze+--) has a limit [, in Xy, ... (), ¥2,. Pyp,..-) has a limit
{,in X,. Therefore (y. »,....) tends in X to the point [ = (/.. ... 1,) (3.2.6).

5.5.9. Examples. By 5.5.4 and 5.5.8, R" is compiete. By 5.5.6. every closed
subset of R” is a complete space.

5.5.10. Theorem. Let X be a complete metric space. Let (F(. F,....) be a
decreasing sequence of nonempty closed subsets of X with diameters §,.0,.. ...
Assume that &; = 0 as [ — x. Then the intersection of the F, consists of
exactly one point.

Let F=F, AnF;nF;n-+-. If F is nonempty then its diameter is < J;
for all i, hence is zero. There are thus two possibilities: either F is empty or
it reduces to one point. Let us show that F is nonempty.

Let a;eF,. Let us show that (a,,a,....) is a Cauchy sequence. Let
¢ > 0. There exists an N such that dy < e If mn 2 N then a,,u,eF\.
therefore d(a,,, a,) < &

Since X is complete, the sequence {g,) tends to a limit a in X. Since ;e F,
fori > n. we have ae F, = F,. This being true for every n, we have ae F.

5.5.11. Theorem. Ler X be a complere metric space. T a set equipped with
Jilter base B. | a mapping of T into X. 4ssume that for every & > 0, there
exists B € 2 such that f{B) has diameter < ¢. Then f has a limit along 4.

Denote by d(A) the diameter of a subset A of X. There exists B, € .4 such
that 6(f(B,)) < 1. Next. there exists B, &4 such that & f(B,)) < %; re-
placing B, by an element of :# contained in B; ~ B,. we can suppose that
B, = B,. Next, there exists By € # such that J(f(B3)) < { and B; < B,.
etc. By 5.1.3. 8(F(By)) < 1/1. By 5.5.10. the intersection of the f(B;) cousists
of a point /. Let us show that f tends to / along #. Let & > 0. There exists a
positive integer n such that i/n < & 1f xe B, then f(x)€ /(B,) and { ¢ J(B,).
therefore

. 1
di fix), h < &f(B,)) < " <e

Thus f(B,) s contained in the closed ball with venter ! and radius «.
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» 5.5.12. Theorem (Baire). Let X be u complete metric space, U,, Us, ...
u sequence »f dense open subsets of X. Then U, ~ U, ~ .- is dense m X.

Set U=U,~UL.~ - . We are to prove that for every open ball B
with radius > 0, U ~ B is nonempty. Denote by B(x, a} (resp. B'(x, p)) the
open ball (resp. closed ball) with center x and radius p.

The set L, ~ B 1s open and nonempty. therefore it contains a ball
B, = B'(x,. p,) such that 0 < g, < 1. The set U, » B(x,, p,) 1s open and
nonempty. therefore it contains a ball B, = B'(x,. p;)such that0 < p, < 4.
The set U, ~ B(x.. pJ) is open and nonempty. therefore it contains a ball
B; = B'{x;.p;)suchthat 0 < o, < 4. ete.

By construction. B > B; = B, 2 B; o ... The B, are closed and their
diameter tends to zero. By 5.5.10. there exists a point a that belongs to all
of the B.. Then a £ B. Moreover, 2= B, = L, for all n: therefore n = L.

5.5.13. Theorem. Let X be a metric space. X' a dense subspace of X, Y u
complete metric space, {' a uniformly continuous mapping of X' into'Y

1 There exists vne and only one contuous mapping ¥ of X into Y that
extends 1.
131) 15 uniformly continuous.

The uniqueness of f in (i) follows from 3.2.135, Let us prove the existence
of f. For each x X, choose a sequence (x,) in X that tends to x. Let s > 0,
There exists an n > 0 such that

soneXandd(z )y < = d(f(2), () S e
Now. (x,) is a Cauchy sequence. therefore there exists an N such that
man 2N = d(x,, x,) <1

Then”
mn2N = d(f(x,), fx,)) < &

Thus ("(x,)) s a Cauchy sequence in Y. consequently has a limit in Y
which we denote f(x). We have thus defined a mapping 7 of X into Y. If
xe X' then f'(x,) tends to f'(x), therefore f(x) = f(x): in other words.
fextends [,

Let . = e X be such that d(u, vy < n.2. Let (u,. u,. .. Yand (vy v, . .y be
the chosen sequences in X' tending to w and r. Then d(u,, ) — d{u. )
(5.1.1), therefore there exists an N such that

nzN = du,. t,) £n = dfw)fw)<e
Letting 2 tend to intinity, one obtawns d( 7{u). j (¢)) < & Thus

u re Xand d(w. v) < Z = d{f () f(r) €&

which proves that f is uniformly continuous, and a jortior continuous.
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5.6. Complete Spaces and Compact Spaces

» 5.6.1. Theorem. Let X be a metric space. The following conditions are
equivalent:

(1) X is compact:
tii) X is complete and, for every ¢ > 0, there exists a finite covering of X by
balls of radius ¢.

Suppose X is compact. Let (x,, x.....) be a Cauchy sequence in X,
One can extract a subsequence that has a limit in X (5.2.6). Therefore
(%4 X2..-.) has a limit in X (3.5.5). Thus X is complete. Let £ > 0. The open
balls with radius « form a covering of X: since X is compact. a finite number
of such balls suffices for covering X,

Suppose condition (ii) is satisfied. Let (x,, x,....) be a sequence of points
of X. Cover X by a finite number of balls of radius 4; one of these balls
contains x; for infinitely many i. One can therefore extract from (x;) a sub-
sequence of points whose mutual distances are < 1. Let us start anew with
breplaced by $, 4, 4. ... We obtain an infinity of sequences

Y Vi rh e
2 2
noraone.

oo

each of which is a subsequence of the preceding one. and such that
d(yf, ¥ < l;n for all i and j. The ‘diagonal’ sequence (y}. yiopd)isa
subsequence of (x;), and d(y7, 3) < 1/mform < n. Therefore (y}) is a Cauchy
sequence: consequently, it has a limit. Then X is compact by 5.2.6 applied
withA = X

One can obviously replace condition (ii) by the following: X is complete
and. for every n > 0, there exists a finite covering of X by sets of diameter <n.

5.6.2. Theorem. Let X he a complete metric space, A a subset of X. The follow-
ing conditions are equitaler'

(i) A is compacr:
(ii) for every & > (. one can cover A by a finite number of balls of X with
radius e.

(iY = (ii). This is obvious.

(ii) = (i). Suppose condition (ii) is satisfied. Let 2 > 0. There exist closed
balls B,..... B, in X with radius ¢ that cover A. Then A = B, v ‘' B,.
On the other hand. A is complete (5.5.6). Therefore A is compact (5.6.1).
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5.7. The Method of Successive Approximations

5.7.1. Theorem. Let X be a complete metric space, f a mapping of X into X.
Assume that there exists a A€ [0, 1) such that d(f(x), f(x)) < Ad(x, x') for
allx.x =X

(i) There exists one and only one a € X such that f(a) = a.
(it) For any xq € X, the sequence of points

Xy = flxg) x; = f(x)...

rends 1o a.
Leta, he X besuch that ¢ = f(a). b = f{b). Then
d(a, by = d(f(a). (b)) < Ad(a, b),

thus (I — A)d(a. b) < 0. Since 1 — A > 0 we infer that d(a. b) £ 0. whence
d(a, by =0anda =b
Let xge X Set x; = f(xq). xa = f(x,),. .- We are going to prove that
(x,) tends to a limit a and that f(a) = a. The theorem will thus be established.
Let us show that d(x,. x,. ;) < A"d(xq, x,). This is clear for n = 0. f it is
true for n. then

d(Xpete ez} = d(f () [ (% ) < Adix,, Xpa 1)
< Ad(xq, x;) = A" Nd(xg, X,)

whence our assertion by induction. From this, one deduces that if n and p
are integers = 0. then

‘:‘ dix,, x.-u"p) < d(x,. xu-l) + d(Xn-.l- Xpp1) -+ d(x""'"l‘ x""'P)
< (}." + Attt e ,{"Lp-l)d(XO-xl)

< in(i - A+ Az - ')d(xo. X,) =" 4‘(%9:.'.—;&‘

Since ) £ A <« 1. " = 0 as n — x. We thus see that the sequence (x,) is 4
Cauchy sequence. consequently tends to a limit a.

We have d(x,, a) — Q. therefore d( f{x,). f(a)) = 0, that is. d(x,. . f(a))
— Q. Thus. the sequence (x,) tends also to f(a). whence f(a) = a.

5.7.2. Example. Let I be a closed interval of R, [ a function defined on 1,
with values in I, such that sup,.,|f'(x)! < 1. By the mean value theorem.
f sausfies the condition of 5.7.1. Consequently, the equation x = f(x) has
a unique solution in I which can be obtained, starting with any point x,
of 1. by the ‘successive approximations’ x, = fix,), X, = {{x,),....
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* 5,7.3. Remark. Let X be a complete metric space. B the closed ball in X
with center x, and radius p. /'a mapping of B into X such that d( f(x). f{x"})
< Ad(x. x") for all x, x'€ B (where 0 £ 4 < 1). Assume. moreover, that

d(f(xo) xo) < (1 = 4)p.
Then there exists one and only one a € B such that f(a) = a.
Uniqueness is proved as in 5.7.1. One again forms x, = f(xg), X1 =
f(xy), ..., but, for these points to be defined. one must prove that they do

not exit B. Indeed, let us suppose that x, € B and d(x,, x,.4} < APd(xq. x,)
forp =0.1,,..,n Then

. 1
d(Xg: Xpet) S (14 A+ 2ov o+ Alx0, X1) S 7= dlXo. 1) S 4

therefore x,., €B, and d(x,. . x,-3) < A"~ 'd(x,. x,) may be proved as in
57.1.

This established. (x,) is again a Cauchy sequence and tends to a limit
asB: f(a) = ais proved as in 5.7.1.



CHAPTER VI
Limits of Functions

For real-valued functions of a real variable, the student already knows
what it means for a sequence f. f, ... of functions to tend uniformly.
or to tend simply, to a function f. In this chapter we study these con-
cepts in the general setting of metric spaces. We obtain in this way certain
of the ‘infinite-dimensional’ spaces alluded to in the Introduction, and,
thanks to Ascoli’s theorem, the compact subsets of these spaces.

6.1. Uniform Convergence

6.1.1. LetXand Y betwo sets. The mappings of X into Y form a set which will
henfeforth be denoted F(X, Y).

6.1.2. Let X be a set, Y a metric space. For f, ge F(X. Y), we set
d(f.g) = sup (f(x), g(x)) € [0, +=].
XE
Let us show that d is a metric (with possibly infinite values) on F(X, Y). If
d(f. g) = 0 then, for every x € X,
d(f(x) g(x)) =0,

therefore f(x) = g(x);thus f = g. It is clear that d(f, g) = d(g, f). Finally, if
he F(X.Y) then, for every xs X,

d(f(x) h(x)) < d(f(x), g(x)) + d(g(x). h(x)) < d(f. ¢) + d(g. h):
this being true for all x € X, we infer that
d(f, h) < d(f,g) + d(g, b
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This metric is called the metric of uniform convergence on #(X. Y). The
corresponding topology is called the topology of uniform convergence.

6.1.3. Let f. fi. f2. f5....e F(X Y). To say that (f,) tends to j for this
topology means that sup,.x d( f(x). fy(x)) = 0. in other words: for every
¢ > 0 there exists an N such that

n2 N = df(x). f(x)) <e¢ forallxeX.

We then also say that the sequence (f,) tends uniformly to f.

6.1.4. Let A be a set equipped with a filter base #. For every 4 € A. let
fie FX, Y). Let fe F(X, Y). To say that f, tends to f along # for the
topology of uniform convergence means: for every & > O, there exists B € #
such that

AeB = d(fi(x), f(x) s e forall xeX.
We then also say that f; tends to f uniformly along #.

6.1.5. Example, Take X = Y = A = R. For filter base # on A, take the set of
intervals [a. +0). For AR and x &R, set fy(x) = e~**** 1 Then f, tends
to 0 uniformly as 4 = + o0 (that is, along @). For. let ¢ > 0. There exists
a&Rsuchthat A 2 a = ¢~* < ¢ Then (provided a > 0):

Aza= eV _ga et D g omi g forallxeR

6.1.6. Theorem. Let X be a set, Y a complete metric space. Then the metric
space F(X. Y) is complete.

Let (f,) be a Cauchy sequence in #(X. Y). Let x € X. Then

A fulX). fo(x) < d(fur SO O a5 mn— .

thus (f;(x)) is a Cauchy sequence in Y, consequently has a limit in Y which
we denote f(x). We have thus defined a mapping f of X into Y.
Let ¢ > 0. There exists an N such that

mn2N = d(f,,f)s¢
= d(fu(x), f(x) <6 forall xeX

We provisionally fix xe X and m 2 N. As n — . the preceding inequality
yields in the limit
A fu(x) f()) S e

This being true for all x € X. we have d(f,,. f) < & Thus.
m2N = d(f..f) s e
In other words, (f,,) tends to f in F(X. Y).
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6.1.7. Thus, to verify that a sequence of mappings of X into Y tends uniformly
to a limu, it suffices to verify a ‘Cauchy criterion’ for the sequence.

6.1.8. Letug, u;,...e F(X. O). Let se F(X. C). We say that the series with
general term u, converges uniformly and has sum s if the sequence of finite
partial sums u, + u; + +-+ + u, tends uniformily to ¥ as n — <. in other
words if. for every ¢ > 0, there exists an N such that

n2N = |[u(x) + u(x) + oo+ u,(x) - s(x)! <& forall xeX.

For the series with general term u, Lo converge uniformly, it is necessary
and sufficient, by 6.1.6, that the following condition be satisfied: for every
g > 0, there exists an N such that

n2m2N = JUpy(X) + Upo(3)+ - +ux)| ¢ lJorall xeX
6.1.9. Let u,, u;....e Z(X, C). We say that the series with general term u,
converges normully if there exists a sequence a,, a,. ... of numbers = 0such

that ¥'P 2, < + = and such that yu(x){ <z, for all n = 1,2,... and all
xeX.

6.1.10. Theorem. A normalily convergent series is uniformly convergent,

Letuy,ua,...e F(X, C). Letz,,a,.... be numbers 2 Osuchthat 2, <
+ % and |u,(x)| < x, for all n and x. Let ¢ > 0. There exists an N such that

n2m2N = 2, + %pe; + -+ 2, S &
Then

“n2m2N = |uu(x) + e+ u(0)l
" [UmX)] + v lUp(X)| S X + -+ 2, S &

for all x € X. By 6.1.8, the series with general term u, is uniformly convergent.
» 6.1.11. Theorem. Let X be a topological space, Y a metric space, A a
set equipped with a filter base B. For every A e A, let f, € ¥(X. Y). Assume
that f, tends to f € F(X,Y) uniformly along B. Then e €(X. Y).
Let xo X and ¢ > 0. There exists 4 € A such that
3
d{fax). f(x) < 3

for all x = X. Next. there exists a neighborhood V of x4 in X such that

xeV = dfix) fitxo) < 3.
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Then. for all xe V, we have
d(f(x), f(xo)) S d(f1x), fo(x)) + d( filx) filxo)) + dl fi(xo) f(xo))

<

3T =G

(ST Y
[FSI )
(PSR 3

thus f is continuous at x,.

6.1.12. Corollary. Ler X be u topological space. Y a merric space.

(i) €(X, Y) is closed in F(X, Y).
(i) If Y is complete, then 6(X, Y) is complete.

The assertion (i) follows from 6.1.11 and 5.2.1. Assertion (ii) follows from
(i), 6.1.6 and 5.5.6.

6.1.13. Theorem. Let T and X be topological spaces, Y a merric space, and
ge ¥ (T x X, Y). Forevery t €T, set fi(x) = g(t, x) (where x & X), so that the
J, are mappings of X into Y. Let to€ T. Assume that X is compact. Then f,
tends uniformly to f;, as t tends to 1,.

Let¢ > 0. Foreach x € X. g is continuous at (74, x). therefore there exist an
open neighborhood V. of t4 in T and an open neighborhood W, of x in X such
that

() teV,and ¥ € W, = d(g(t. x'), glto, X)) < %
As x runs over X, the W, form an open covering of X, therefore there exist
Xppeoo, X,€X such that X =W, w-- UW, . Set V=V, n-..nV_:
this is a neighborhood of ¢; in T.

Let te V. zeX. There exists an { such that ze¢ W . Moreover, r=V,
Therefore d(git, z), gite.x)) < &2 by (1). Similarly. (1) implies that
d(g(te, 2), g(tg, x)) < &2. Then

d(g(t, 2), g(ty. 2)) S &

This being true for every = = X, we have d(f,, f;,) S & Tauste V = d(fi. fi)
< ¢, so that f tends to f,, uniformly as ¢ tends to .

6.1.14. Theorem (Interchange of Order of Limits). Let S and T be sets
equipped with filter bases B, 6. Let Y be a complete metric space. y a mapping
of Sx T o Y. For every s€S. set f,(t) = g(s. 1) (where t=T). so thar
1: € F(T, Y). We make the following assumptions:

each f, has a limit |; along '€
£, tends uniformly along B to an [ < FIT. Y).
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Then:

) [ has a limie { along % ;
{ii) s=={ hus a limit " along #B:
(i) ! =1

Let £ > 0. There exists Be # such thatse B=d(f,, f) < &3. Fix sp€B.
Then

o0 df(t). F(1) S § for all 1< T,

There exists Ce4 such that 1,7 ¢ C = d( f,{r), Jo,(* N < -3 Then if ¢, £ £ C.
we have

dOEG U <A@ [o 8 = dUG(0), G0t ) + d 6300 £

e £ £
S.+;+z=4
3 33

Since Y is compiete, we deduce from this (5.5.11) that / has 4 limit  along 4.
Again let 5 € B. Along ¥. the pair

solth £ Y x Y

tends to (I, /). The inequality (1) yields in the limit d(/,,. /) < &/3. This being
true for every s, € B. we conclude that /; tends to / along #.

* 6.1.15. Remark. Let X be a topological space. Y a metric space. (/,) a
sequence of mappings of X into Y, /' a mapping of X into Y. We say that ( f,)
tends to J uniformly on every: compact set if. for every compact subset C of X,
the sequence of restrictions f,|C tends uniformly to f'/C. There exists a
‘topology of compact convergence’ such that the preceding concept is precisely
the Concept of a sequence tending to a limit for this topology: however, we
shall not define it.

If (f,) tends to f uniformly on X. then of course ( f,) tends to f uniformly
on every compact set. However, the converse is not true. For example. take
X=Y=Randf(x) =¢ * ™forn =1.2,....Leta > 0and A > 0.Then

xe{-aalandnz A +a = (x—n? 2 A’ = ¢ ¥ W gp
therefore (/,) tends uniformly to 0 on [ —a. a]. and this for every a. Therefore
i /») tends to O uniformly on each compact subsct of R. However. 1 /,) does
not tend to O uniformly on R, because f,(n) = 1 and so sup,.a | fi(x)1 = 1.

* 6.1.16. Nevertheless. we have the {ollowing result:
Theorem. Ler X be a locally compact space. Y a merric space,{ f,) a sequence of

continuous mappings of X into Y. f a mapping of X into Y. Assume that { £,)
tends ra ; uniformly on every compact set. Then f 13 continuous.
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Let xq & X. There exists a compact neighborhood V uf x, in X. The sequence
{ f,1V) tends uniformly to £V, therefore ;| V is continuous (6.1.11), By 2.2.1¢,
f 15 continuous at x,. Thus # 1s continuous.

6.2. Simple Convergence

6.2.1. Let X and Y be sets. Consider the family of sets (Y, ) .x-Where Y, = Y
for all x € X. Anelement of [ |..x Y is the giving, for each x € X, of an element
of Y:n other words. it 1s a mapping of X into Y. Thus:

[1Y. = #FX .

xeX

Now suppose Y is a topological space. Then [],.x Y., in other words
F(X.Y), carries a product topology (3.3.1). called the topology of simple
convergence (or the ‘topology of pointwise convergence’).

6.2.2. Theorem. Let X be a set, Y a topological space, and f & F(X, Y). Let
X -os \wE€Xand let W, be a neighborhood of f(x,)in Y. Let
V(xu vy Xpa wl ~~~~ W',,)
be the set of all ge F(X. Y) such thar
g(x)e W, glx.)e W, ..., g(x,) e W,
Then the V(x,,....x,. W,,..., W,) constitute a fundamental system of
neighborhoods of [ in F(X. Y) Jor the topology of simple convergence.
This follows from 3.3.2(a).

6.2.3. Theorem. If' Y 1s separated, rhen F(X. Y) is separated for the topology
of simple converyence.

This follows from 3.3.2(b).

6.2.4. Theorem. Ler A be a set equipped with a filter base B. For every A€ A.
let £, F(X.Y). Let f = F(X. Y). The following conditions are equivalent:

(3) £, tends to § along B for the topology of simple convergence:
(i) for every x 2 X, filx) tends ro f'(x) along .

This follows {rom 3.3.2(c).

6.2.5. la particular, if /. f,. f;. f3, ... are mappings of X into Y. to say that
the sequence ( f,) tends to f for thetopology of simple convergence means that,
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for every x € X, f,(x) tends to f(x). We then also say that () tends simply
to f-

6.2.6. Theorem. Let xo€ X. The mapping f — f(xo) of F(X. Y} into Y is
continuous for the topology of simple convergence.

This follows from 3.3.2(¢).

6.2.7. Let X be a set, Y a metric space. On F(X, Y), there is the topology 7,
of uniform convergence and the topology 7, of simple convergence. Then
Z is finer than 7;. By 2.4.7, it suffices to show that the idenuty mapping
of #(X, Y) equipped with 7] into F(X, Y) equipped with % is continuous.
For this, it suffices by 6.2.4 to show that. for any fixed x4 in X. the mapping
L= flxo) of F(X, Y) equipped with 7, into Y is continuous. Now, this is
clear since

d(f (o) g(xo)) < d(f. g) for f.g & F(X. Y).

6.2.8. Let X bea set. Y a metric space. It follows from 6.2,7 that if a sequence
(f,) of elements of #(X, Y) tends uniformly to an element f of #(X, Y). then
(f,) tends simply to f. The converse is in general not true (see the example in
6.1.15).

6.2.9. Nevertheless, we have the following result:
» Theorem (Dini). Let X be a compact space. Let
LS for i €€(XR).

Assume that f, < f, < f3 < -+~ and that (f,) tends simply to f, Then (f,)
tends uniformly to f.

We have f,(x) < f(x)forallxe X, Setg, = / — f,.Theg,arecontinuous,
tend simply to 0, and

g1=29:2932--20

Let e > 0. Let X, be the set of x € X such that g,(x) 2 & Then X, o X; o
X3 o ---and the X, are closed (cf. 2.4.5). If xe ) X, then g,(x) = ¢ for all n,
which is absurd. Therefore () X, = . Since X is compact, the intersection of
a finite number of the X, is empty. Since the X, decrease, this intersection is
one of the X,. Thus X,, = & for some n,. Then, for n = ng, we have 0 <
go(x) < e for all xeX. thus | fi(x) = f{x) seforall xsX

6.2.10. Changing f, to — f,, we see that Dini’s theorem remains valid for
decreasing sequences.
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6.3. Ascoli’s Theorem

» 6.3.1. Theorem (Ascoli). Ler X be a compact metric space, Y a complete
metric space. A an equicontinuous subset of €(X. Y). Assume that for each
x € X the set of f(x), where f runs over A, has compact closure in Y. Then A has
compact closure in the metric space €(X. Y).

The metric space €(X. Y) is complete (6.1.12). By 5.6.2. it suffices to prove
the following: given any ¢ > 0. A can be covered by a finite number of balls of
radius «.

By 5.4.4, there exists an n > 0 such that

neeXdx.x)Sn feA = dfx), f(x) s : .

We can cover X by a finite number of open balls with centers x, ..., x, and
radius 7. The set of values of the elements of A at x,..... x, has compact
closure in Y (4.2.9(1)): we cover it by a finite number of open balls with centers
Yurs.-. ¥, and radius g4,

et I be the set of all mappings of {1, 2,....n}into {1,2,..., p};thisisa
finite set. For each ; €T let A, be the set of f < A such that

ACFGE, Vo) € oeee dUS0ED, Vo) < %

By construction, the A, cover A, It remains only to show that for any fixed .
A, is contained in some ball of radius e.

Now, let f, geA,. Let xe X. There exists an x; such that d(x. x,) < ».
Therefore

df . SG) S5 dlgla oo S 7,

Moreover,

e £
d(f(xl)a }’)'(n) < Zf d(g(xi)’ yr(h) < Z
Therefore d( f(x), g(x}) < & This being true for all x e X. we have d(f, g) < ¢

6.3.2. Example. Take X =10, 1], Y = R. Let A be the set of differentiable
real-valued functions on {0, 1] such that | f(x)i £ | and | f'(x)| < 1 for all
xe[0, 1]. Asin 5.4.2. A is equicontinuous. By 6.3.1. A has compact closure
in ([0, 1].R).

In particular (3.2.6). every sequence of functions belonging to A has a
uniformly convergent subsequence.



CHAPTER VII
Numerical Functions

This chapter. devoted to real-valued functions, is heterogeneous.

In §§1 and 2 we take up again some familiar concepts. perhaps in a
little more general setting.

Let (uy, u,, us,...) be a sequence of real numbers. The sequence
does not always have a limit, but it does have adherence values in K;
among these, two play an important role: they are called (perhaps
inappropriately) the limit superior and the limit inferior of the sequence.
A more general definition is presented in §3.

In §4 we define semicontinuous functions, which generalize (for
real-valued functions) the continuous functions. In connection with
Theorem 7.4.15 (which is a corollary of Baire's theorem) we point out
that even il we limited ourselves to continuous functions, the proof
would naturally introduce semicontinuous functions.

The student is already familiar with various theorems on the
approximation of real-valued functions of a real variable: by ordinary
polynomials, or by trigonometric polynomials (cf. the theory of Fourier
series). In §5 we give a very general result that encompasses these earlier
results. It is applied in §6 (devoted to ‘normal’ spaces) to the approxima-
tion of continuous functions on product spaces.

The mappings of a set X into R are called numerical functions. If the
mapping has values in R we sometimes say, more precisely, finite numerical
function.
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7.1. Bounds of a Numerical Function

7.1.1. Let f be a numerical function on X. Recall that the supremum of f
on X, denoted sup,¢x f(x), is the supremum of the set j (X). This is the ele-
ment a of R characterized by the following two properties:

{1) f(x) <aforallxeX;
(2) for any b < q, there exists an x € X such that f(x) > b.

The infimum of f on X, denoted inf,,x f(x), is the infimum of the set f(X).
One has
inf f(x) = —Sup(—f(x)),

xeX

which reduces the properties of the infimum to the properties of the
supremum.

7.1.2. Recall that f is said to be bounded above if sup,.x f(x) < +x.
bounded below if inf; x f(x) > — x. and bounded if it is both bounded
above and bounded below. A bounded function is finite, but a finite function
is not necessarily bounded.

7.1.3. One calls ascillation of f over X the number
sup f(x) — inf f(x)

x6X xeX

(provided that f'is neither constantly + ¢ nor constantly — =c, so that the
difference is defined).

7.1.4. Theorem. Let X be a set, f a numerical function on X, (X;);c1 a family
of subsets of X covering X. Then:

sup f(x) =sup (sup f (x)).

x6X iel \xeXy

Set a = sup,¢x f(x) a, = sup,.x, f(x). Itis clear thata; < aforalliel.
Let b < a. There exists x € X such that f(x) > b. Next, there exists iel
such that x € X;. Then b < g;. Thus a = sup; 4;.

7.1.5. Corollary. Let X, Y be sets, f a numerical function on X x Y. Then:

sup  f(x.y) =sup (SUPf (x, y))

tx. e XxY x6X \yeY

= sup (sup f(x. v))

yeY \xeX
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The set X x Y is the union. as x runs over X. of the sets |x} x Y. The
first equality thus follows from 7.1.4.

7.1.6. Theorem. Let X be a set. f and g numerical functions on X.

(i) SUPxax (£(x) + g(X)) < SUPcex SX) + sUP,.x g(x).
(i) If f =2 0and g 2 0, then

I3
sup (f(x)g(x)) < (sug f (X)) (sup g(x)).

teX /\xeX

Seta = sup,ex f(X) b = sup,ex g(x). For every x € X. we have f{x) < a,
g(x) < b, therefore f(x) + g(x) < a = b. Consequently sup,,.x (f(x)+g(x))
< a -~ b, Assertion (ii) is proved in an analogous manner.

{The statement presumes that the numbers f'(x) + g(x). for example, are
defined: this would not be the case if, at some point x, of X. one had for
example f(xy) = +c and g(xy) = — <«¢. Also excluded are expressions such
as 0« +c. Here, and in what follows, it is implicitly undersiood that we are
avoiding such indeterminate expressions.)

7.1.7. Theorem. Let X be u set. f a numerical function on X. and k € R.

) supgex (f(X) + k) = (sup;ex f(x) = k.
(i) Ifk = 0. then sup.x (kf'(x)) = k(sup,4x F(x))

Set a = sup,.x f(x). By 7.1.6.
sup (fix) + k) <a ~ k.

xaX
If k = + =, equality clearly holds; suppose k < + ». Now leth < a + k.
We have b = ¢ + k with ¢ < a. There exists \, =X with f {xg) 2 c. whence
F(xp) + k = ¢ = k = b: therefore sup,.x (f(x) = k) 2 b. This proves (i}.
One reasons analogously for {ii).

7.1.8. Corollary. Let X. Y be sets, f a numerical function on X, and g
a numerical functiononY.

() SUP;ex.ysY (f{x) + g(»)) = supgex f(X) + suUp,cy 9(¥).
(i) If f = 0and g 2 O. then

sup {(f(x)g(y)) = (SUP l’(x).‘) : (supgf.v)\.
raX.yeY \xeX J ysY H
Set

a = sup f(x). b = supyg(rs.
xeX yev

c= sup (fix) + g(¥).

29X, ¥eY
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By 7.1.5.
£ =sup [sup(f(x) - g(,v))].

yeY LxsX
Inside the brackets. g(y) is a constant. By 7.1.7,

c = supia + g(»).
vsY

Then. again by 7.1.7. ¢ = a + b. One reasons similarly for (i)

7.2. Limit of an Increasing Numerical Function

7.2.1. Let X be an ordered set. We say that X is increasingly filtering {or
‘directed upward") if. for every x € X and x’ € X. there exists an x” € X such
that x” 2 xand x” > x". Decreasingly filtering ordered sets are defined in an
analogous way.

7.2.2. Examples. (a) A totally ordered set is both increasingly filtenng and
decreasingly filtering,

(b) Let I be a set. X the set of all fimite subsets of I. Order X by inclusion.
Then X is both increasingly filtering and decreasingly filtering,

{c) Let /@ be a filter base on a set. Order # by inclusion. Then # is de-
creasingly filtering.

7.2.3. Let X be an increasingly filtering ordered set. For every x £ X, let
B, be the set of majorants of x in X (that is. the set of elements of X that are
2 x). Then, the B, form a filter base 8 on X. For.x € B,, thus B, # &.On
the other hand, if x, x' € X, there exists a majorant x” of x and x’, and one has
B,. = B, ~ B,..

When f is a mapping of X into a topological space, the limit of f along
B—if it exists—is called the limir of 1 along the increasingly filtering set X
and is denoted limy f or limy f(x).

There are analogous definitions for decreasingly filtering sets.

7.2.4. Theorem. Ler X he an increasingly filtering ordered set, f an increasing
mapping of X into R. and | the supremum of f. Then the limit of f along X
exists and is equal tu 1.

We can suppose | > — x. Let V be a neighborhood of  1n R: it contains a
neighborhood of the form [a, b], where a < ! < bh. There exists an x & X
such that f(x) > a. Then. for all y > xin X, we have

fzSfix)za
whereas f(v) < I, therefore fiy)e [u. b] = V.
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7.2.5. Changing f to —f, we see that if f is decreasing and /' is its infimum,
then the limit of f along X exists and is equal to .

7.2.6. Suppose X is decreasingly filtering. If fisincreasing (resp. decreasing).
then the limit of f along X exists and is equal to the infimum (resp. supremum)
of £ Indeed, for the opposite order on X, X is then increasingly filtering and
[is decreasing (resp. increasing).

7.3. Limit Superior and Limit Inferior of a
Numerical Function

7.3.1. Definition. Let X be a set equipped with a filter base &, /' a mapping
of X into R, A the set of adherence values of f along #. By 2.6.6 and 4.2.1.
A is closed in R and is nonempty, hence admits a smallest and a largest
element (3.4.3), These elements are called the limit inferior of f along # and
the limit superior of f along 2. They are denoted lim infg f and lim supg f
(or lim inf 4 f(x). lim supg f(x)).

This definition admits many special cases:

{a) If (u,) is a sequence of real numbers, one can speak of lim sup,. . u,
and lim inf, ., u, (these are elements of R and always exist. whereas
lim,. . u, does not always exist). _

(b) If f is a mapping of a topological space X into R and if a € X. one can
speak of lim sup,.., f(x) and lim inf,., f(x).

Etc.

» 7.3.2. Theorem. Let X be a set equipped with a filter base 8, f a map-
ping of X into R.

(i) lim supga f(x) 2 lim infg f(x).

(ii) For f to have a limit along 3. it is necessary and sufficient that

lim sup f(x) = lim inf f(x),
2 P

and the common value is then the limit of f,

(i) This is obvious.

(ii) The space R is compact (4.4.3). Therefore, in order that f have a limit
along A. it is necessary and sufficient that the set of adherence values of ¢
along # reduce to a single point, which is then the limit (2.6.4 and 4.2.4).
This implies (ii) at once.
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za. Limut Superior and Limut Inferior of a Numerical Function

7.3.3. Theorem. Let X be a set equipped with a filter base B, f a mapping of”
X into R. and m. n € R such that

m > lim sup f(x) and n-& lim inf J(x).
P 2

Then there exists B € @ such that
xeB = n< f(x)<m

For, (1, m) is an open interval of R that contains the set of all adherence
values of f along . and it suffices to apply 4.2.3.

7.3.4. Theorem. Let X be a set equipped with a filter base 3. fa mapping of
X Into R. For every B e &, let

ug =sup f(x), v = inf f(x)
xeB

xeB
Then (¢f. 1.2.2(¢) and 7.2.3):

lim sup f(x) = inf ug = hm ug.
2 Bed

lim inf f(x) = sup g = hm tg.
E Bs &

Since f‘can be replaced by —/f. it suffices to prove the first group of
formulas. Set

a = lim sup f(x). b = inf ug.
2 Bed

IfB.B's #and B = B'. then ug = ug.! by 7.2.4. limy up exists and is equal to
b. Since a is an adherence value of f along . we have a € f(B) for all B € B
(2.6.6); since ug Is the largest element of f(B)(1.5.9and 4.4.3), we have a < ug;
this being true for every B € &, we have a < b. Suppose a < b. Let x € (a. b).
As in 7.3.3. there exists B € 4 such that x e B = f(x) < a: then uy < x and
a fortiori b < . which is absurd.

7.3.5. Example. Let (1,) be a sequence of real numbers. Then:

. P .
lim sup u, = ‘mf(sup u,.) = lim (sup u,,),

= % P W12 pm\nzp

§im inf u, = sup(mf u,,) = lim (lni"u,.).
LEX P A2 P pex\n2p s
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» 7.3.6. Theorem. Let X be a set equipped with a filter base #. f and g
mappings of X into R such that f(x) < g(x) for ali x X. Then:

lim sup f(x) < lim sup g(x)
R a3

lim inf f(x) < lim inf g{(x).
2 2

Let B € Z. Then f(x) < sup,.s g(x)forall x B, therefore sup,.5 f(x) £
SUP.¢p 9(x). Passing to the limit in this inequality. and taking account of
7.3.4. one obtains lim supg f(x) < lim supg g(x). One sees similarly that
lim infy f(x) < lim infg g(x).

7.3.7. Theorem. Let X be a set equipped with a filter base 8. J und g mappings
aof X into R. Then

lim sup (f(x) + g(x)) < lim sup f(x) + lim sup g(x),
2 ] )
and, if f 2 0.9 > 0. then
r
lim sup (f(x)g(x)) < ( lim sup j'(x)) . ( lim sup g(x)).
2 " @ 2

If one of the functions f, g has a limit alony B. these inequalines become
equalities.

Let Be #. Then
sup (f(x) + g(x)) < sup f(x} + sup g(x)

x€B xeB reB

by 7.1.6: passing to the limit along the ordered set #. and using 7.3.4. we
deduce that

(n lim sup (f(x) + g(x)) < lim sup f(x) + lim sup g(x).
a 2 2

Set vy = inf, g f{x). For all x € B,
vg = @(x1 S fix) ~ g(x)
therefore, in view of 7.1.2,

vy + sup gx) < sup ({(x) = g(x):

xeB xeB

passing to the limit along the ordered set &, we deduce that

) lim inf f(x) = lim sup y(x) < lim sup (;'(x) + g(xM.
P’ 2 p)
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If f has a limit along 4, then lim supg f(x) = lim inf, f(x). Comparing
(1) and (2), we see that

lim sup { fi{x} + g(x)) = lim f(x) + lim sup g(x).
£ J 2 E

One reasons in an analogous way if g has a limit. and in the case of products.

7.4. Semicontinuous Functions

7.4.1. Definition. Let X be a topological space, x, € X. and fe F(X, R).
We say that f is lower semicontinuous ar x, if. for every 1 < f(x,). there
exists a neighborhood V of x4 in X such that

XeV=f(x) = A

We say that fis upper semicontinuous at xg if, for every u > f(x,). there
exists a neighborhood V of x4 in X such that

xeV=f(x) S u

7.4.2. To say that f is lower semicontinuous at x, amounts to saying that
—fis upper semicontinuous at x,. [t therefore suffices. in principle, to study
the properties of lower semicontinuous functions.

7.4.3. Example. Let X be a topological space, xo € X. and f'e #(X. R).
Then: f is continuous at x, <> f is both lower and upper semicontinuous
at Xg.

7.4.4. Example. For xe R, set f(x) =x if x #0, and f(0) = 1. Then [
is continuous at every point of R — {0}, and f is upper semicontinuous at 0
but not lower semicontinuous there.

7.4.5. Definition. Let X be a set. ( f));; a family of numerical functions on X,
We denote by sup;,; f;. inf;; f; the functions x = sup;¢; fi{x). x = inf;¢; f(x)
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on X. These are called the upper envelope and lower envelope of the family
‘t_{;a,-sl. In particular. if f and g are two numerical functions on X. one can
speak of sup({. ¢) and inf( [ g).

7.4.6. Theorem. Let X be a topologlcal space, xy € X, f and g numericai
Juncrions on X thar are lower semicontinuous at xo. Then sup([, g), inf(fyg)
and ‘[ + g are lower semicontinuous at xo: The same is true of fg if [ = 0 and
g20

We give the proofl for f+ g (the other cases may be treated in an an-
alogous way). If f(xo) = —wC or g(xo) = — &. the result is evident. Other-
wise, let i < f(xq) # g(xo) There exist g, veR such that u+ v = A .
#.< flxgh P < glxgh. Next, there exist neighborhoods V. W of x, in X
such that

xeVa=f(x) 2 u xeW=g(x) 2,
Then
xeE¥AW= X)) rgx)2u+e=4i

7.4.7. The assertion 7.4.6 may be extended. one step at a time, to finite
families of numerical functions.

7.4.8. The case of infinite families requires some precautions, as the follow-
ing example shows. For n = 1. 2, .., let f, be the numerical function on R
defined by f,(x) = e~"*". Each j, is continuous. However. inf(f,) is the
function § on R such that f(x) = 0 for x # 0. f(0) = 1:and f is not lower
sergnicontinuous at 0.

7.4.9. Nevertheless, we have the following result:

» Theorem. Ler X be a topological space. xo € X, (f)ic1 a family of numerical
Sunctions on X, and f = sup,q, f;. If the [, are lower semicontinuous at x,
‘| for example. tontinuous at x,), then J is lower. semicontinuous at xo+

Let £ < ftsto). We have f(xq) = sup;q; fi(xq). Therefore there exists an
i=lsuch that'd < f(xo) Next. there exists a neighborhood V of x, such that
xeV=fix)2 4L ThenxeV= f(x)2 4

7.4.10. Definition. Let X be a topological space and fe #(X, R): We say
that f is lower (resp. upper) semicontinuous on X if f is lower (resp. upper)
semicontinuous at every point of X.
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» 7.4.11. Theorem. Let X be a topological space. and fe F(X. R\. The
Jollowing conditions are equivalent:

{iy fis lower semicontinuous on X
i) for every i € R, the set of x € X such that f{x) < iis closed:
(iii) for every i € R. the set of x & X such that f(x) > 4 is open.

Since f~Y[-x,4]) and f~!'((i +x]) are complementary in X.
conditions (ii) and (iii) are equivalent,
(i) = (iii). Suppose f is lower semicontinuous on X. Let

A=f Y4 +x]).

If xq & A then f(x,) > 4:since f is lower semicontinuous at x,. there exists a
neighborhood V of x4 such that x € V = f(x) > A Therefore V < A, Thus,
As aneighborhood of each of its points, consequently is open.

(ii1) => (i). Suppose condition (iii) 1s satisfied. Let xq & X. Let 4 < f(xq).
Theset A = f~!({4, =~ «])is open. and x4 € A, thus A 1s a neighborhood of
Xe- Since f(x) > iforall x & A, we see that f is lower semicontinuous at x..

7.4.12. There are analogous characterizations of upper semicontinuous
functions.

7.4.13. Corollary. Let X be a topological space, Y a subset of X, ¢ the charac-
teristic function of Y in X. For Y to be open (resp. closed), it is necessary
and sufficient that @ be lower (resp. upper) semicontinuous.

Let X; be the set of x ¢ X such that o(x) > A If 4 <O, then X; = X. If
0< i< l.thenX; =Y. If 1 = L then X; = J. The sets X and ¢J are open
in X. By 7.4.11, we thus have

o lower semicontinuous <> Y open.

From this. one deduces the characterization of the closed sets.

7.4.14. Theorem. Let X be a compact space. f a lower semicontinuous function
on X, and m = inf, . x f(x). There exists an xq € X such that f(x,) = m.

For every 4 > m, let X, be the set of x = X such that f(x) < A This set
1s closed (7.4.11), and it is nonempty by the definition of the infimum m.
Every finite intersection

x&..ﬁ...ﬁxu‘"

1s nonempty (because if 4, is the smallest of the numbers 4;, ... 4,. then
X, ~ -~ X, =X, Since X is compact. (., X, is nonempty. Let xo
be a point of this intersection. For gvery 4 > m. we have xq € X;. that s,
fixq) S A Therefore r{xy) € m. Also f(xq) = m. thus fix,) = m.
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» 7.4.15. Theorem. Let X be a complete metric space. ( f)is; a family of
lower semicontinuous functions on X such that sup;.; f{x) < +-c for each
x € X. Then there exist a nonempty open subset U of X and a finite number
M such that f{x) < M forallicland x e U.

Let { = sup;, f;. Then f{x) < + = for all x € X by hypothesis. and f
is lower semicontinuous by 74.9. Forn = 1,2,...,let U, be the set of x € X
such that f(x) > n. This is an open subset of X (7.4.11), If all of the U, were
dense in X, there would exist a point x, belonging to all of the U, (5.5.12).
One would then have f(x,) > n for all n, therefore f(x,) = + 2, which is
absurd. Thus for some integer ng, U, is not dense; in other words. there
exists a nonempty open subset U of X disjoint from U,,. Forall x € U, we
have x ¢ U,,, therefore f(x) < ng, consequently fi(x) < no foralliel.

7.5. Stone-Weierstrass Theorem

7.5.1. Lemma. Let X be a compuct space, #° a subser of €(X, R) having the
Jollowing properties:

(i) if u e S and ve H then sup(u. v) € # and inf(u. v) € #;
(ii) ifx, y are points of X and if 1, B € R (withx = B if x = ). then there exists
u € M such that u(x) = x, u(y) = p.

Then every function in (X, R) is the uniform limit of a sequence of func-
tions in .

Let fe¥(X.R)and ¢ > 0. We are to construct g€ # such that f — ¢
gsf+e

(&) Let x, € X. Let us show that there exists a function « € # such that
ulxe) = f(xg)and u 2 f — &.

For every y € X, there exists a function u, € # such that u,(xg) = f(x¢)
and u(y) = f(y). The set V, of all x &€ X such that u,(x) > f(x) — ¢ is open
(cf. 2.4.5). We have ye V,, thus the V,, as y runs over X, form an open
covering of X. Since X is compact, it is covered by sets V..., V, . Let

u = SUP(Uy,. Upysoa . Uy ) €

We have u,(xo) = f(xo) for all i, therefore u(xo) = f(xo). Let xeX. We
have x €V, for some i Then u(x) = u,(x) > f(x) ~ e. and u satisfies the
stated conditions.

(b) The function u constructed in (a) depends on x,. For every x € X,
let us define similarly a function v, € 5 such that v,(x) = f(x) and ¢, 2
[ — & The set W, of all ze X such that v(z) < f(z) + = is open. We have
x & W,. Since X is compact. it is covered by sets W, ,..., W_ . Let

g= inf(v,l. e vx,) € X
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Wehavev,, 2 f — eforalli,thereforeg 2 f — e.Let x € X. Wehave xe W,
for some j. Then g(x) S v, (x) < f(x) + . Thusg < f + &

7.5.2. Lemma. The function V«'? on [0, 1] is the uniform limit of a sequence of
polvnomials in t with real coefficients.

We define functions pg(t), p,(t). pa(t).... for t € [0, 1], recursively, in
the following way:

Polt) =0,
Pre1(8) = po(t) + Kt = pu(t)?).
Let us show by induction that
Do), p1(2), - .. p,(7) are polynomials in ¢,
and
0< polt) S i) S -+ S pf0) < L on [0, 1],

This is certainly the case for n = 0. Let us admit the preceding statements
and let us prove the corresponding results for n + 1. It is first of all immediate
that p,.(r) is a polynomial in r, Next. for ¢t € [0, 1]. we have 1 = p,(1)°,
therefore p,.(¢) 2 p(t). Finally,

Paet(t) = 1 = py(0) = 1 + Kt = pu(0)
= (2al®) = X1 = YD) + (D).
Now. pit) + /1 < 2/1, therefore 1 —}p, () + /D21~ Jf120 in

{0, 1], and p,(r) - /T < O, therefore p,. (1) < JT.
For every t € [0, 1], the sequence (p,(1)) is increasing and bounded above

by \/{. therefore has a finite limit f(t) = 0 that satisties

F@ = (0 + 3¢ = f0A.
whence f(t) = Vf?. Finally, the p, tend to / uniformly on [0, 1] by 6.2.9.

» 7.5.3. Theorem (Stone-Weierstrass). Let X be a compact space, ¥ a
subset of ¥(X, R) having the following properties:

{i) the constant functions belong to ¥ ;
(i) ifu,ve N then u + ve # and uv € o ;
(iil) if x. y are distinct points of X, there exists u € ¥ such that u(x) # «(y).

Then every function in 6(X. R) is the uniform limir of a sequence of functions

Let J be the closure of J in €(X, R) for the topology of uniform con-
vergence. We are going to show that J® possesses the properties (i) and (ii)
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of 7.3.1. Then. by 7.5.1. the closure of # will be equal 10 4X. R). whence
J# = %(X. R). which will imply the theorem.

(a) If ue # and ¢ € A then u - v # For, there exist sequences (u,),
(v, of luncuons in # such that u, — 4, ¢, — ¢ uniformly: then u, - v, —
w — ¢ uniformly, whence u — v < 3 Similarly. ur < #; and if A€ R. then
Aw € # Thus. every polynomual in , that is. every function of the form

Ao + A+ it + oo+ Ao,
where 4g, ....4, € R, belongs to J#.
{b) Let x, y be distinct points of X, and 2. #& R There exists v s S
such that ¢(x) = «{y). Set

¢ = (T — ¥(V)).

= o(x) - m’y)(
Then ' 2 £ v'(x) = 1. &'(3) = 0. Let
u=pg~+(x-~pw.
Then u & J# and u(x) = z. u()) = 5. _

(c)Letu € # and let us show that'ui € 3 The function u, being continuous
on X. is bounded (4.2.13). On multiplying u by a suitable constant, we are
thus reduced to the case that —1 < w < 1. Then 0 <u® <! Let 5> 0.
By 7.5.2, there exists a polynomial p(r) with real coefficients. such that
Pt — ti<e for all te[0.1]. Then |pu(x)?) - V"u(.t)’a < ¢ for all
x g X. that is. | p(u®) —~ |u]] < & Now, p(u*) € 5 by (a). Thus ju is adherent
10 # consequently {ui € &

(d) Let u. v € 3 In view of (a) and (¢), we have

sup(u, v) = Hu «~ ¢ + lu — ))&

- influ.s) =Hu~v—="u=r))e

7.5.4. Corollary. Let X be a compact space, # a set of contimeous. complex-
valued functions on X, having the following properties:

(1) the eomplex-valued constant functions belongs to #':
(i) ifu.ve Hthenu + re K uve # and a € F:
(ii1) if x. y. are distinct points of X, there exists u € # such that u(x) = u(y).

Then every function in 9(X.C) Is the uniform limit of u sequence of
Junctions in #.

Let # be the set of functions belonging 1o .# that are real-valued. Then
" satisfies the conditions (i) and (ii) of 7.5.3. If x. y are distinct points of X,
there exists u & o such that u(x) = u{v). Then either Re u(x) = Re u(y) or
Im u(x) # Im u(y). Now.

Reu=4u+iaye# and Imu =%,(H—l-¢)5 H.
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therefore " also satisfies condition (iii) of 7.5.3. Let g %(X. C,. Then
g =4, + ig, withg,. g, ¢ ¢(X. R). By 7.5.3, ¢, and ¢, are uniform limits of
functions in .#", therefore ¢ is the uniform limit of functions in

7.5.5. Corollary. Ler X be a compact subset of R, and f€4(X.C). Then [
is the uniform limit on X of a sequence of polynomials in n variables with com-
plex coefficients.

Consider the polynomials in n variables with complex coefficients. These
are functions on R” whose restrictions 1o X form a subset # of ¢(X. C).
It is clear that J# satisfies conditions (i). (i), (iii) of 7.5.4. whence the corollary.

7.5.6. Corollary. Ler f be a continuous, complex-valued periodic jfunction on
R of period 1. Then f is the uniform limit on R of a sequence of trigonomerric
polynomials (that is, functions of the form

n
I - Z a,ez“"'.

where the a, are complex constants).

Let p be the canonical mapping of R onto T (3.4.3). Since f has period 1,
there exists a complex-valued function g on T such that f(x) = g(p(x)) for
all x e R. By 3.4.4, g is continuous. By 4.2.16, there exists a homeomorphism
9 of U onto T such that #”'(p(x)) = ¢*** for all xeR. Let h =g- 0
%(U.C). Forall x e R. f(x) = g(p(x)) = h(8~ (p(x))) = h(e*™™).

Now. U is a compact subset of R = C. Let ¢ > 0. There exists a poly-
nomial ¥, , dpmX™y" in x and y. with complex coefficients. such that

ih(x + 1Y) = 2 QXY l s
m.n i
for every point x + iy of U (7.5.5). Consequently. for every r € R. we have

h(e2™) — Y ana(cos 2mt)™(sin 2ar)"

m.n

<a

that is,
‘j‘(:) = Y ap,(cos 2ar)™(sin an\‘l <%

Since cos 2nt = He*™ «~ ¢~ and sin 2wt = (1/2i)e™ ~ 272", the
function

Y a,u(cos 2ntym(sin 2me)"

m.a

is a trigonometric polynomial.
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* 7.5.7. Let X be a noncompact locally compact space. The sets of the form
X - C, where C is compact in X, form a filter base Z on X (4.2.9(i)). Let
X = X u {w} be the Alexandroff compactification of X (4.5.9). By 4.5.8.
the sets (X — C) u {w}.where Cis compact in X, are the open neighborhoods
of win X',

Consequently, if f is a complex-valued function on X. the following
conditions are equivalent:

(i) f tends to O along #:
(iiy if f* is the function on X' that extends f and vamshes at w, then
lim,.., f(x) =0.
When these conditions are satisfied. we say that f tends to 0 at infinity on X,
We remark that if, in addition, f is continuous on X. then f” is continuous on
X,

* 1.5.8. Corollary. Let X be a noncompact locally compact space. ¥, the set
of continuous complex-vatued functions on X that tend to O at infinity, and ¥
a subset of 6, having the following properties:

() fuveF andAeC.thenu + te ¥ uve HieH and iu s #;

(i) if x, y are distinct points of X, there exists u € 3# such that u(x) # u(p):
(iii) if x € X, there exists u € # such that u(x) # 0.

Then every function in 6 is the uniform limit of a sequence of functions
in #

Let us keep the notations of 7.5.7. Let #’ be the set of functions on X’
of the form f' + A, where f e # and A € C. Then /' < €(X’, C). Obviously
' satisfies condition (i) of 7.5.4. Let u, ve #". Wehaveu = f' + 4, v =
g + pwith f.ge s and A peC. Then:

Utv=f+g —-A+u= gy + A+,
ut =f'q + Ag' + uf" + au
=(fg+ig + Y +ius K"
and
a=f+l=ifY+icH
Finally, if &. y are distinct pomts of X', there exists ue J## such that
utx) = u(y) (if x. v € X. this follows from the hypothesis (ii): if x = w or

y = w. 1t follows from the hypothesis (iii)). Now let h € €, and & > 0. By
7.5.4, there exist f = and A € C such that

) = [0~ i<
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forall x € X. In particular, &2 2 h{w) — f(w) — 4! = |4| Therefore
[4 &
lh(x) = f(x)| < 3tz =¢

forall x& X.

* 7.6. Normal Spaces

7.6.1. Theorem. Let X be a topological space. The jollowing conditions are
equivalent:

(1) For any disjoint closed subsets A and B of X. chere exist disjoint open sets
Uuand Vo Xsuch that A= U.BeV.

(i) For cvery closed subset A of X and every open set W of X such that
A < W. there exists an open set Wof X suchthat A= W = W c W,

{iii) For any disjoint closed subsets A and B of X. there exists a continuous
mapping of X into [0. 1] equal to O at every point of A and to | ut every
point of B.

tivy For every closed subset A of X and every numerical function f defined and
continuous on A, there exists a numerical function defined and continuous
on X that extends f.

{iv) = (i). Suppose that condition (iv) 1s satisfied. Let A and B be disjoint
closed subsets of X. Then C = A u B is a closed subset of X. Set f(x) =0
for xe A and f(x) =1 for x € B. Then f is continuous on C (because A
and B are open in C). By (iv), there exists a continuous mapping ¢ of X into
R that extends f Let

U=g74(-x, V=g Y4 -x).

Then U and V are disjoint open setsin X.and A= U.B = V.

{i) = (ii). Suppose that condition (i} 15 satisfied. Let A (resp. W) be a
closed (resp. open) set in X with A = W. Set B = X — W this is a closed set
in X disjoint from A. By (i), there exist disjoint open sets U and V of X such
that A=U. BecV Then U< X -V and X — V is closed. therefore
UzX-V=sX-B=WThsaAclUclU =W

{ii) = (iii). Suppose that condition (ii) is satisfied. Let A and B be disjoint
closed subsets of X, We are to construct a continuous mapping of X into
(. 1] equaitoOon Aand to 1 on B.

Let D be the set of "dvadic’ numbers belonging to {0. 1]. that is. the set of
numbers of the jorm k,2". wheren =0, 1. 2,...and A =0. 1. 2...., 2" This
set is dense in [0, 1]. For every a € D, we are going to construct an open
subset Utd) of X in such a way that

(h d<d=TCid)= U
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We set U(1) = X ~ B and we choose an open set U(0) such that
(2) A< U@©) cTO < U1

(this is possible by (ii)). Suppose the U(d) already chosen for d = 0, 1,2",
22" 272" = 1,in such a way that

U c U((k + 1)/ for O0<k<2n

Let us define Uk/2"*!) for k =0, 1....,2"* !, For k even. U(k/2""!) has
already been chosen. For k odd. thus of the form 2h « 1, we choose an open
set U((2h < 1)/2"* 1) such that

CRR2™ 1) = U((2h + 1y Y < Uk + 1270 < U((2h + 22 1),

which is possible by (ii). By induction, the open sets U(d) are thus defined
forall d € D, and property (1) certainly holds.

If xe B we set f(x) = 1. If x ¢ B, then x € U(1); let f(x) be the infimum
in R of the d € D such that x € U(d). We have thus defined a mapping f of
X into {0, 1], equal to | at every point of B. If x € A then x € U(0) by (2),
therefore f(x) = 0.

Finally. let us show that f is continuous at every point x of X. Leta = f(x)
and ¢ > 0.

110 < a < |, then there exist d, &', d" € D such that

a—ctLd<d <a<d £a+s

If one had x ¢ U(d”), it would follow that f(x) = 4", which is absurd; thus
x € U(d"). On the other hand, f(x) > d’, therefore x ¢ U(d’), therefore
x ¢ U(d) by (1). Consequently, if one sets V = U(d") n (X — U{@)). V is an
open. neighborhood of x. Let ye V. Then y € U(d"). therefore f(y) < d”":
and f(y) 2 d, since otherwise one would have y € U(d). Thus,

yeV=1fo)-fx)<ea

which proves our assertion when0 < a < 1.

Ifa=1,there existd, d e Dsuch thata — e <d < d' < a = 1. We see
as above that V = X — U(d) is an open neighborhood of x and that. for
every y € V, one has f(y) 2 d, therefore | f(y) — f(x)| < &

If a = 0, there exists ¢” € D such that 0 = g < d" < a + 2 One sees as
above that V = U(d") is an open neighborhood of x and that. for every
v €V, one has f(y) < d”, therefore | f(y) — f(x)| < &

(iii) = (iv). Suppose that condition (iii) is satisfied. Let A be a closed set
in X and let f be a continuous mapping of A into R. Let us define a continuous
mapping of X into R that extends f. Since R and [ - 1, 1] are homeomorphic,
we can suppose that f takes its values in [— 1, 1]: we will define a continuous
mapping of X into [ — 1, 1] that extends f.
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We shall first prove the following intermediary result:

* If u is a continuous mapping of A into [—1, 1], there exists a
continuous mapping ¢ of Xinto [ —4. 4] such thatu(x) — u(x)|
< 4forall x e A,

For, let H (resp. K) be the set of x € A such that —{ < u(x) < -4 (resp.
4 < u(x) < 1). The sets H and K are closed in A. therefore in X, and they
are disjoint, By (iii), there exists a continuous mapping ¢ of X into [ -4, {],
equal to — 4 at every point of H and to 4 at every point of K. It is clear that
lu(x) — v(x)] < $forall x e A.

This established. we are going to recursively construct continuous
numerical functions gq. ¢;, g3.... on X such that

[-1+@r" g <1 =@t forall xeX
V£ = g0 < @ forall xeA.

The existence of g, results from applying (s) with u = f. Suppose g,
g1+ - - -+ g already constructed. Define

u(x) = @) f(x) = gulx) for xeA

Then « is a continuous mapping of A into [ -1, 1]. By (*), there exists a
continuous mapping v of X into [ —1, 4] such that ju(x) — #(x)| < % for all
x € A. Then, for all x € A.

11(x) = gulx) = B~ o)l = @)™ |ux) = v(x) < (372
On the other hand, for all x € X,

lgn(x) + @ o0l ST =@+ @ =1 =@
Setting

(3)

gn# l(x) = gn(x) + (é)"‘lv(x)

for every x € X, the construction of the g, is complete by induction, We
observe, moreover. that

Igns 1 (X) = gulX)| < $E)* Y forall xeX

Since the series with general term 4(4)"* ! is convergent. the series with general
term g,., — ¢, is normally convergent, therefore uniformly convergent
(6.1.10); in other words, g, has a uniform limit g on X. This limit is con-
tinuous (6.1.11). By (3). we have =1 < g(x) < 1forall x e Xand f(x) = g(x)
for all x € A.

7.6.2. Definition. One calls normal space a separated space that satisfies the
equivalent conditions of 7.6.1.

7.6.3. Examples. (a) Every metric space is normal. For let X be a metric
space. d its metric, A and B disjoint, nonempty closed subsets of X. Since the



88 VII. Numerical Functions

functions x = d(x, Aj and x —d(x, B) are continuous on X (5.1.6), the set U
(resp. V) of xe X such that d(x, A) < d(x, B) (resp. d(x. B) < d(x, A)) is
openin X. [tisclearthat U ~ V = . Ifx € Athend(x, A) = Nandd(x. B)>0
(because the relation d(x. B) = 0 would imply x g B, therefore x & B). Thus
A = U, and similarly B = V.

(b) Every compacrt space is normal. This follows from 4.2.11(1).

tc) If 1 is an uncountable set, it can be shown that R! is not normal. One
can also construct locally compact spaces that are not normal.

7.6.4. Remark. Let X be a normal space. A a closed subset of X, f'a numerical
function defined and continuous on A. We know that there exists 2 numerical
function g, defined and continuous on X that extends f. Suppose, moreover,
that £is finite. We shall see that g can then be chosen to be finite.

Suppose first that f > 0 on A. A fortiori, [ takes its values in [0, +x],
therefore we can suppose that g takes its values in [0, - =] (which is homeo-
morphic to R). Let B = g~ !({ -+ x}). Then B is closed and 1s disjoint from A.
The function h on the closed set A 'w B thatis equalto fon Aandto0on B
1s therefore continuous. Let g’ be a continuous extension of 4 to X taking its
values in [0, + ¢ ]. Replacing ¢ by infig. ¢'), we obtain a continuous ex-
extension of fto X that is finite at every point of X.

In the general case. let /| = sup(f. 0). fs =sup(—7.0). Then [ = f, - f.
and f}, f, are finite, 2 0and continuous. It now suffices to apply the preceding
paragraph to f, and f;.

7.6.5. Theorem. Let X be a compact space. There exists a set | such that X
is homeomorphic to a closed subset of [0, 1]

Let € f);) be a family of continuous mappings of X into [0, 1]. By 3.3.2(d),
the mapping /: x = ( fi(x));¢; of X into [0, 1]’ is continuous. The set f(X)
is a compact. hence closed. subset of [0. 1]'(4.2.12. 4.2.7). If fis injective, then
fis a homeomorphism of X onto f(X) (4.2.15).

Now, if one takes for (f);., the family of all continuous mappings of X
into [0. 1]. then f is injective. For, let  and b be distinct points of X. Since
X is normal (7.6.3(b)), there exists a continuous mapping ¢ of X into
{0, 11suchthatgia) = 0,g(b) = 1.Since gisone ofthe fj. wehave f{a) # f(b).

7.6.6. Theorem 7.6.5 1s sometimes expressed by saying that every compact
space may be embedded n a ‘generalized cube’.

7.6.7. Theorem. Ler X and Y be compact spaces. Let ¥ be tae set of functions
on X x Y of the form
(x. y) = f1{x)g (3) = £20x)g200) = -+ = Flx)ga(y)

where fi,.... asB(X.R). g5..... Gn€E€Y,R). n=12.... Then 5 is
dense in €(X x Y, R) for the topology of uniform convergence.
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To apply the Stone-Weierstrass theorem, it suffices to check that #
satisfies the conditions (i), (i), (iii) of 7.5.3 relative to the compact space
X x Y. This is clear for conditions (i) and (ii). Let (a. b) and (a', b’) be two
distinct points of X x Y. Suppose for example thata = a'. Since X is normal.
there exists fe €(X, R) such that f(a) = 0. f(a’) = 1. Set g(y) = 1 for all
y € Y. Then the function (x, y}+— f(x)g(y) on X x Y takes on different values
at (a, b) and (a’. b").



CHAPTER VIII
Normed Spaces

We take up again the theory of normed spaces and pre-Hilbert spaces.
31 to 5 are already familiar. excepting possibly Theorem 8.3.4 on
equivalent norms. In §§6, 7. 8 we make the connection between this
theory and that of complete spaces: some of these results (Banach-
Steinhaus theorem, Riesz's theorem) are very {ruitful, but the reader
can hardly be convinced of this unless (s)he studies ‘functional analysis’
later on.

8.1. Definition of Normed Spaces

8.1.[, Definition. Let E be a vector space over R or C. A seminormon E is a
function x — x|} defined on E. with finite values > 0, such that

(a) Wixf ='4")x| for all x € E and all scalars A:
(b) Nx + yi < tx§ + Iyl for all x & E and y € E (triangle inequality).

1t follows from (a)that x = 0 = %) = 0.If, conversely, {xf} = 0= x =0,
the seminorm is called a norm.

When a seminorm (resp. norm) is given on E, we say that E is a seminormed
(resp. normed) vector space.

Conditions (a) and (b) imply at once:

P=x) = ix] for all x= E.
Ix =yl < 4xy + dy| forall xeEand yeE.

There is an obvious notion of isomorphism between normed or semi-
normed spaces.
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8.1.2. Example. In R" or C" one can define, for example. the following
q0Tms:

(e Xl =X = xR
I(Xs e oo Xl = 1290 + o« + 1,1,

H0ge e v X = SUPCIXy <o ooy 1%, )

8.1.3. Example. Let X be a set, E the vector space of all bounded real-valued
{or complex-valued) functions defined on X. For every f s E, set
1. =sup fx).
xeX
One verifies immediately that §f — ' is a norm on E.
Now iet A be a subset of X, This time, for every f€E set
N f| =sup|f(x)].

€A

One verifies that /' — | J'|) is a seminorm on E.

8.1.4. Example. Let E be the vector space of all sequences {4,, 4;....) of
real (or complex) numbers. The bounded sequences form a linear subspace
of E. denoted [ oc ¢ (or simply !*). For every s = (x,, %;....)e [, set

's| = sup(lx;liixag,..)

Then /™ becomes a normed space. This is the special case of 8.1.3 where one
takes X = {i,2, 3,....

8.1.5. Example. We denote by I or /4 (or simply ) the set of sequences
s = (X, X;,-..) of compiex or real numbers such that ¥ 2, Ix,i < +x.
This 1s a linear subspace of {® For. if v = (x,,x;,...0e! and 1 =
197, ¥3,. .)€ !’ then

el o
(n Y g ¥l S Y Ixl = 3 iy <+,
n=1

ot
n=| n=13

thus s + te!l'. It is clear that Ase!' for every scalar 4.
Fors = (x,, X;....)&l' set

L
sl = 3 V%l
n=ay
Then s~ (s is a nocm on {* (the triangle inequality results from (1)),
q

8.1.6. The Metric Deduced From a Norm. Let E be a normed vector space.
For x, ye E, set d(x. v) = |x — p|. One verifies without difficulty that 4 is a
metric on E. (Thus. 4 normed space is automaucally a metric space, hence a
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topological space.) This metric is invariant under translations in E, that is,
d(x.y) =d(x + a,y + a)forallx, », ae E. Forevery x € E, d(x, 0) = | x|

8.1.7. Examples. Starting with the norms 8.1.2, one recovers the usual
metrics on R" or C” (1.1.15). In [®, the distance between two sequences (x;)
and (yy) is sup(|x; = ¥;ls X2 = yal....) In {!, the distance between two
sequences (x;) and (¥) is |x; — y,| + 1X3 — y2| + -+-. If f and g are two
bounded. real-valued or complex-valued functions on a set X, then the
distance between them deduced from the norm of 8.1.3 is

d(f,g) =sup . f(x) — g(x)!;

xeX

this is the metric of uniform convergence.

8.1.8. Theorem. Let E be a normed space.

(i) The mapping (x, y)r—x + y of E x E imo E is continuous.
(ii) The mapping (4, x)— ix of R x E (or C x E) into E is continuous.

Let xq, yo€Eand e > 0. If x, y € E are such that

be-xol <5 and 1y -yl <3,

then
I(x + y) = (xq + o)l = U(x = Xxq) + (¥ — yo)l
_ Six—xd +hy -yl se

This proves ().

Let xo € E, 4 € R (for example) and ¢ > 0. Set

B . g

= inf] |, —————] >0
T "f( T+ 1%l + uxon)

Let xe E, Ae R be such that |4 — 44| < nand §x — xo} < . Then

HAx = Agxgll = (A = Ag)Mx — xo) + Ag(x — Xg) + (4 = Ag)xof
SiAd = Agidx = xgll +{Aolllx = xolt + |4 = Aglllxol
<+ |AoIn + IIxoln < n(1 + |Ao] + Ixel) S &

This proves (ii).

8.1.9. IfEis a normed vector space, then every linear subspace of E. equipped
with the restriction of the norm of E, is automatically a normed vector space.
For exampie, let X be a topological space and F the set of continuous,
bounded real-valued functions on X. Then F, equipped with the norm of
uniform convergence, is a normed linear subspace of the normed space
defined in 8.1.3.
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8.1.10. Product of Seminormed Vector Spaces. Let E,....,E, be sem-
normed vector spaces (all real or all complex). Let E=E, x - x E,,
which is a real or complex vector space. For x = (x,....,x,)€E. set

Ul = (hx 1* + - = Ix ]2

One verifies in the usual way that this defines aseminormon E. IfE,. ..., E,
are normed spaces. then this seminorm is a norm. and the metric space
defined by the norm of E is the product of the metric spaces E,. .. . E, in the
sense of 3.2.3.

Other useful norms can be defined on E: for example.

:'xﬂ = ||xl” + et 'xn:t
Ixd = sup(lx iy ..., [xX.8)

On R" or C", one recovers the norms of 3.1.2.

8.1.11. The Normed Space Associated with a Seminormed Space. Let E be a
seminormed space. Let F be the set of xe E such that (x| =0.If x, yeF
then lIx = yj| < [x! + jy? = 0. therefore x ~ y& F. Obviously ixs F for
every scalar 4. Thus F is a linear subspace of E, and one can form the
quotient vector space E' = E/F.

Let x' € E'. Choose a representative x of x’ in E. The number |x|| depends
only on x‘ and not on the choice of the representative x. For, every other
representative of x' is of the form x + u with ueF: then i|x + uy <
Ix§ + dut = x|, and similarly #x} < |x = u) = |ud = fx + uy, thus
flx = uh = (x}l. We may therefore set |jx'| = ||x4. Since x+— {xi is a semi-
norm on E, one verifies easily that x'— |Ix'| is a seminorm on E'. This
seminorm is a norm: for, if x’ € E' is such that |x’|| = O, and if x is a representa-
tive of x' in E, then || x!! = 0, therefore x & F. therefore x' = 0. We say that
E' is the normed space associated with the seminormed space E.

The study of the properties of E is practically equivalent to the study of
the properties of E'.

8.2. Continuous Linear Mappings

8.2.1. Let E, F be normed spaces. Let u be a linear mapping of E into F. Let
B be the closed ball in E with center 0 and radius 1. We define:

(1) juy = sup ‘uxy € [0. ~x].

xeB

(2) liuph < lultyll forally=E
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(with the convenuon that 0+ x =0). For. 12)isclearif y = 0. If y # 0,
let x = ¢y( *y. Then y = Iy|x, therefore uy = |ylux, and so ‘uy| =
yluxil S ¥ 'ui because x € B.

8.2.2. More precisely. |ul is the smallest of the numbers a € [0. - =] such
that

3) luyi < alfwil for ail ye E.

For. if a satisfies (3) then, in particular, juxy < « for all x € B. therefore
ut £ a.

8.2.3. Let S be the sphere in E with center 0 and radius I. If E = 0, then
every element of B may be written ix with 0 < 4 < | and x 8, therefore

4) fui = sup fux..
xe§

» 8.2.4. Theorem. Ler E, F be normed spaces and u a linear mapping of
E into F. The following conditions are equivalent:

(1) u is continuous at 0:

(1) u is continuous.
(iii) u is umformly continuous:
(iv) jJur < ==,

(i) = (ii) = {i). This is obvious.
{1) = (iv). Suppose that u is contnuous at 0. There exists an # > 0 such
that ye E and |y} < nimply juy| < 1. Then, if x € E, we have

Ix) S 1= nxll < n=Ju@mx)l < | =|lux| < 7%,

therefore iuil < + .
(iv) = (iii). Suppose |uj < = =. Letx,y<Eand e > 9. Then

. g _ )
x =pl S —=Jux —uyl = Ju{x — v Slullx =yl <g

[ull

thus u is uniformly continuous,

8.2.5. Condition (iv) of 8.2.4 means, in the notations of 8.2.1. that «(B) is
bounded. The expression "bounded linear mapping’ is used as a synonym for
‘continuous linear mapping’.

8.2.6. Example. Let E = 4([0, 1], R), equipped with the norm of umform
convergence. The mapping f— f(0) of E into R 1s linear: it is continuous
because . f(0)| < || /! forall f'eE.

Let F be the linear subspace of E formed by the differentiable functions,
equipped with the norm induced by that of E. The mapping /' — /(0 of F
into R is linear: it is not continuous, since, for every number A > (), one can
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construct a function f € F such that | f{x)) < 1forallxe [0, 1] but /(0) = A
(for example, f(x) = Ax;(1 - Ax)).

8.2.7. Let E, F be normed spaces. We denote by £(E. F) the set of all con-
unuous linear mappings of E into F. If u, ve £ (E, F) and 4 is a scalar. then
u + ve.Z(E, F)and iu e Z(E. F) by 8.1.8. Thus Z(E, F) is in a natural way
a real or complex vector space. When E = F, one writes #(E) = Z(E. E).
The identity mapping idg. also denoted ! or I, is an element of Z(E). If
ue Z(E)and ve Z(E) then u > ve L(E), so that #(E)is in a natural way an
algebra over R or C with unity element 1.

8.2.8. Theorem. Let E. F. G be normed spaces.

(i) The mapping u — \uy of L(E, F)into [0, + ) is a norm on Z(E. F).
(i) lfue L(E, F)and s € L(F, G), then v = ull < |Jviluk.
(iii) fidg| = 1§ E # 0.
(i) Let u, ve ZL(E, F). For every x € E,
I = XX} = fux + vxll < fux] + lvx|
< tullilxr + dodllxil = (Jul = jodix,

therefore {u — v|| < flul]l + fo!. Also,

Au| = sup §(AuXx)| = sup 14|]uxt
Ixnge x|l s1

|4] sup fux| = |A|Huli.

1=l st
Finally, if fu) =0 then |lux{| =0 for all x€E, therefore ux = 0 for all
xeE, thusuy =0.

(i1) Letue Z(E,F). ve Z(F. G). For every x e E,

1w=uX0l < Nl luxi < fol jul | ).

therefore oo ull < flodful.
(iii} This is obvious.

8.2.9. Thus. .Z(E, F)is in a natural way a normed vector space. The norm
defines a metric and a topology on Z(E, F). This topology is calied the
norm topology on Z(E, F). By 8.1.8, the mappings

. v)u+p of LEF)x LEF) mo ZE,F).
fLw—Au of Rx PE.F) (orCx ZE F) into Z(E. F)
are continuous, It follows easily from 8.2.8(ii) that the mapping
(W v)—veu of LE.F)x LF.G) into LE.G)

is continuous.
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8.2.10. Let E be a real or complex vector space. The elements of Z(E. R)
or Z(E. C) are the continuous linear forms on E. The space Z(E, R) or
Z(E. C}1s a normed vector space, called the dual of E and often denoted E'.

8.3. Bicontinuous Linear Mappings

8.3.1. Theorem. Let E, F be normed spaces. u a linear mapping of E onto F.
The tollowing conditions are equivaient:

(1) u is biiective and bicontinuous:
(ii) there exist numbers a, A (0. + =) such that

ailx < 'ux) < Aixp

forall xeE;
(1ii) there exist numbers a, A < (0, - ) such that

2< luxi S A

Jorall xeEwith |x)| =1,

(i)=> (if). Suppose u is bijective and bicontinuous. There exist
A. Be(0. + ) such that jux| < Aéx}y for all x€E and flu~'pj < Bl
for all peF (8.24). Let xc E. Set ¥ = ux, so that x = u™"y. Then 'x| <
Biyi. that is, (1/B)ix» < juxl,and 1'B > Osince B < + x.

(i) = (i). Suppose condition (ii) is satisfied. Then u is continuous (8.2.4}.
Next, ux = 0 implies ayx|| = 0, therefore x = 0 (because ¢ > 0): this proves
that u (which is surjective by hypothesis) is bijective. Finally, let y & F. Set
x =u"'y. Then v = ux, and the inequality alx| < Jux;' may be wntten
asu~dwi < dytor w ity < (La)lyt Thusu™!is continuous (8.2.4).

(if) = (iii). This 1s obvious.

(iif) = (ii). Suppose that condition (iii) is satisfied and let us prove that
alx: < {uxf! < Ax! forall xeE. Thisisclearif x = 0. If x = 0, let X’ =
x.'xY. Then {x'i= L. therefore a < jux'l £ A. Now, ux = u(|x!x") =
Ixyux’, therefore aflx) < juxl < Alx).

8.3.2. Theorem. Ler x+— llxi, and x— x|, be two norms on a vector
space E. The following conditions are equivalent

(i) the ropologies defined by the two norms on E are the same:
(i1) -he identity mapping of E, into E- (where E,. E, denote the vector space
E equipped with the norms x — 1X1y. X ' X} ,) Is bicontinuous:
(iil) there exist numoers a. A € (0. + ) such that
afxil, € 1x]1 < Anxll,

Jor all x = E.
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The equivalence (i) < (1i) is obvious for any pair of topologies on a set
vof. 2.4.7). The equivalence fii) «» (iii) follows from 8.3.1.

8.3.3. Definition. If two norms on a vector space sausfy the conditions of
3.3.2. they are said to be equivalent. This 1s clearly an equivalence relation
among norms.

8.3.4. For example, it is well known that. on R" or C". the three norms
defined in 8.1.2 are equivalent. More generally-

» Theorem. On R" or C". all norms are equivalent.

Let us treat for example the case of R”. Let v— ix|| be a norm on R”
Let x—ix." oe the norm (x,.....x,) = X1 + - =X, It suffices 1o
prove that these two norms are equivalent. In the proof, we are going to use
topological concepts in R”: the only topology on R" we shall use will be the
usual topology, which is defined by the norm x — %x||"(cf. 8.1.7, 1.1.15, 1.1.2).

Let (e,.....¢,) be the canonical basis of R". Set

A = suplel,.. . llell).
Ifx =(x,.....x,)s R% then
el = llx,2y + -« + Gegd Sixglie ) + - = x4 el
S Alixy ) = - +1x,01) = Allx].

It follows from this that the function x — |xil on R" is continuous; for, if
Y. xg€R"and ¢ > 0, then

, @ N
X-xp Sy = lx- 6= e = Ixol} < e
Let S be the set of x = tx,. .., x,) € R"such that
x| = x|+ o0 = x| = L.

This 15 a closed set in R” (1.1.12), clearly bounded, hence compact (4.2.18).
The function x+ lix" 1s continuous on S by what was shown earlier, and it
does not vanish on S, therefore there exists a numbera > Osuchthat {x! > a
for all x &S (4.2.14). Since. moreover. |x|| < A for all x € S. we see that the
iwo norms are equivalent.

8.3.5. Corollary. On g finite-dimensional real or complex vector space, ali
norms are equitalent,

For. such a vector space 1s isomorphic to R" or C” for some n.

8.3.6. Thus. on a finite-dimensional real or complex vector space E, there
2X1sts a ‘natural’ topology 7 : the topology defined by any norm on E. If 4
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is any isomorphism of the vector space R or C" onto E. then J is the trans-
port by u of the usual topology of R" or C".

8.3.7. Let E, F be normed vector spaces, 4 a linear mapping of E into F.
If E is finite-dimensional. then u is automatically continuous. For, we can
suppose by 8.3.6 that E = R” (or C". Let (e,....,e,) be the canonical
basis of R” (for example). Let a, = u(¢;) e F. For every x = (x;,..., x,) € R",
we have u(x) = x;d, + -+ + X,a, The mapping x=x, of R" into R is
continuous (3.2.8). The mapping A— Aa, of R into F is continuous (8.1.8).
Therefore the mapping x— x,a, of R" into F is continuous. Similarly for
the mappings x— x.a,..... X~ x,a, Therefore the mapping x —
(x,a;, .-, X,a,) of R* into F" is continuous (3.2.7). Consequently. the map-
ping x— Xx,a, + -+ — X,a, of R" into F is continuous (8.1.8).

However. if E is infinite-dimensional then u may be discontinuous. as
we saw in 8.2.6.

8.3.8. If E and F are normed spaces of finite dimensions m and n, then, by
8.3.7. #(E, F) is the vector space of ail linear mappings of E into F. This
vector space has dimension mn, so by 8.3.6 it possesses a natural topology 7.
If one chooses bases :n E and F, there is a canonical linear bijection u~— M,
of #(E. F) onto the vector space M, , of real or complex matrices with n
rows and m columns. Under this bijection. the topology J~ corresponds to
the natural topology of M, ,; the latter topology is defined. for example. by
the nOrm (%;)y <i<n 15)sm™ Loy 1 2ij)

8.4. Pre-Hilbert Spaces

8.4.1. Definition. A complex pre-Hilbert space is a complex vector space E
equipped with a mapping (x. y) = (xiy) of E x E into C, called the scalar
product (or ‘inner product”), satisfying the following conditions:

(i) (x|)) depends linearly on y, for fixed x;
(i) (x|y) = (y[x) for x, yeE (so that (x|y) depends ‘conjugate-linearly’
on x, for fixed y):
(iii} (x[x) = 0forxeE.

There is an obvious notion of isomorphism of pre-Hilbert spaces.

8.4.2. Example. For
X =(X{ -0 x,)€C" and y = (y,,.-..¥)eC"
set

(1) =X,), +Xays+ - = %),
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One verifies immediately that (x, y)— (x|3) is & scalar product on C".
called the canonical scalar product.

8.4.3. Example. Let E be the complex vector space whose elements are the
sequences (4,. 4;....) of complex numbers that are zero from some index
onward. For
x=(A.4y...)eE and y = (g, u;,..)eE
set
(X =Xy + A T

(this sum involves only a finite number of nonzerc terms). One verifies
immediately that (x, y) — {x{}) is a scalar product on E.

8.4.4. Example. More generally, let I be a set. Le1 E be the complex vector
space whose elements are the families {4;);; of complex numbers such that
4; = 0 for almost all i1 (cf. 3.3.1). For x = (A4;);e;€E and v = (u ), 2 E.
set

(XUH = : zl/"l'

This is a scalar product on E. If I = {1. 2, ..., n}. one recovers Example
84.2. If I = {1, 2,3,...}, one recovers Example 8.4.3.

8.4.5. Example. Let E be the set of continuous complex-valued functions
on [0. 1]. For g, heE, set

ot
(goh) = | GOh(e) .
0
This 15 a scalar product on E.

8.4.6. Example. Let X be the vector space of all sequences (4,, 4;.. .)
of compiex numbers. We denote by Ic, or simply /2, the set of sequences
(Aj. da,-..) & X such that Y 2, |4,® < + . Let us show that zhis is a
linear subspace of X. [tis clear Lhat ifse?and 4+ eC,then ise 2 Let

5=(;~1.ﬁ-.:.'.‘)61’ and r=([l'.ﬂ1....)5-¢.
Recall that if x, B & C then

'Z—BP‘P’I‘B‘-: B)(Z"‘B)"'(i-g)(x—ﬂ)
S + 2BB = 21a* + 2B
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therefore 2 + B1* < 2|ai* - 2431°. This established. we have

X o
T it S Y RGP + 2ig, )
=1

n n=a]

2. 8
=25 |2 +2T 1P < ==
n=1 n=
thus s ~ te /%
Moreover, O < (|#] = 181 = '2|* =~ |Bj* — 2ial B]. therefore

X 0

23 lhsilal < X (142 + i) < 42

n=y n=|]

so that the series ) %, i, is absolutely convergent. Set
(10 = Zypy + dgpiy =+

We obtain m this way a scalar product on .

8.4.7. Let E be a pre-Hilbert space, E’ a linear subspace of E. The scalar
product of E, restricted to E'. 1s a scalar product on E'. Thus E' automatically
becomes a pre-Hiibert space.

For example, the pre-Hilbert space of 8.4.3 is a pre-Hilbert subspace of 2,

8.4.8. Let E be a pre-Hilbert space. and x. ve E. We say that x, y are
orthogonal if (x|¥) = 0. This relation between x and ¥ 1s symmetric. We
say that subsets M, N of E are orthogonal if every element of M is orthogonal
to every element of N. If M is orthogonal to N, then every linear combination
of elements of M 1s orthogonal to every linear combination of elements of N.

8.4.9. Let M < E. The set of clements of E orthogonal to M s a linear sub-
space of E that is denoted M-+ and is called. through misuse of language. the
linear subspace of E orthogonal to M.

8.4.10. Theorem (Cauchy-Schwarz Inequality). Let E be a pre-Hilbert space.
Forall x, ve E,

Wi < (x{x)y).
For all A& C, we have

{t) 0 (x+ ).,le_-_b Ay)
= a0y = Aplx) + Axty) + (xlx)

Multiply through by (y:y): after calculation. we obtain
(2) 0 [y + an] iyl — (x)] = (xixXpty = (2 yxy|x).
Suppose first that (»\y) # ©. We can then set

A= —iy)xX) Ay
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1n (2), obtaining
0 < (xixpply) = (xlyXylxd,
which is the inequality of the theorem. If (x| x) # 0, we need only interchange

the roles of x and p in the preceding. Finally, if (x!x) = (viy)} = 0 then {1
reduces to

3 0 < Ay'x) < Axly)
Taking A = ~(ylx)in (3), we get
0 < —(xiy)xT) = (e y)xly) = =200 51,
therefore (x|y) = 0 and the inequality of the theorem is again verified.

8.5. Separated Pre-Hilbert Spaces

8.5.1, Theorem. Let E be a pre-Hilbert space, and x an element of E. The
Jollowing conditions are equivalent:

(i) x <€ E- (in other words. (x!y) = 0 for all y € E);
(i) {xlx) = 0.

(i) = (ii). This is obvious.
() = (i). Suppose (x|x) =0. By 8.4.10. for every ysE we have
Hx!y)I® = 0. therefore (x y) = 0.

8.5.2. The linear subspace E* of E is called the kernel of the scalar product,
If E- = 0, we say that the scalar product is non-degenerate. or that the pre-
Hilbert space is separated (cf. 8.5.8). By 8.5.1. this amounts to saying that
{x'x) > 0 for every nonzero vector x of E.

8.5.3. One verifies easily that the pre-Hilbert spaces defined in 8.4.2-8.4.6
are separated. However, if E {s a nonzero complex vector space and if one
sets (x!{¥) = 0 for all x, y € E. then the pre-Hilbert space so obtained is not
separated.

8.5.4. Let E be a pre-Hilbert space, E- its kernel. E’ the complex vector
space E.E+ We are going to define a scalar product on E'. Let x', ¥ ¢E".
Choose representatives x. v of x'. ¥’ in E. Then the number (x| y) depends only
on x°, 3 and not on the choice of representatives. For, any other representa-
tives are of the form x, = x + u, ¥y = y — ¢ with u. v€ E~ whence

Xz = (xly) + (xje) + @ly) = (uin)
=(x|p) + 5= 0+0=1xly)
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We can therefore define (x' ¥) = (x)). The fact that (x y)—(x|y) is a
scalar product on E implies easily that (x. v} {x'|,") 1s 1 scalar product
on E' Thus E' is a pre-Hilbert space. Let us show that E' is separared. Let x'
be a nonzero etfement of E'. Let x be a representative of x in E. Then xg E~
(otherwise, x' = ), therefore (x|x) > Oand consequently (x' ¥') > 0. Wesay
that E' 1s the separated pre-Hilbert space associated with E. This construction
reduces most problems about pre-Hilbert spaces to problems about separated
pre-Hilbert spaces.

8.5.5. Theorem. Let E be a pre-Hilbert space. For every <€ E. ser \xi| =
v (x x). Then x-— x| s g seminorm on E. For this seminorm tu be u norm,
ir 1s necessary and sufficient that the pre-Hilbert space be separated.

Ifv,veEand 41 C then
v = (I iAx) = AA(x]x) = 1Ak
X = v =(x = y|x =¥ = (xtx) - 31yl + 2 Rerx.y)
< Ixi® + it - 20(xi
< Ixl? = yi? = 2ixdiyl by 84.10
=(x = )
therefore x+— x| is a seminorm. For this seminorm to be a norm. it 1§
necessary and sutficient that
ry=0=1x| >0,
i other words that
- s =0=(xIx) > 0.

8.5.6. Theorem. Ler E be u pre-Hilbert space and x. v € E, Then:
(@) v = pi? + fix - ¥ 1% = 20xh% + 2yvl? (parailelogram law),

and

i) Hxlpy = x+y|2 = f=x+ 12 +ilix =) =i e+ y?
(polarization identity).

For
T=xeyY-y)ix—rx -
= (XIN) + (XI¥) - (X)) + ')

+{xix) = (x])y) = WIx) = {yy)
= 2(xig) = 2(».y).

Ix = vf? + ix = yi
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and
(x=piIx == (xx)+ (xI3)+ (x) + (Jiyh
=X Fyl=x+wyi= —(X.X)T(XTV) T (VIX) =y
i(ix = viix =~ p)y = ilx)x} = (x|y) = (¥lxi + i(yIy).
—f=lx = =i = )= = x) = (X V) = Aprx) = iy
8.5.7. Theorem (Pythagoras). Let E be ¢ pre-Hilbert space, and x,,. ... %
pairwise orthogonal elements of E. Then

; .
RPN LI P LI SPRRR e b

For.
;B ] | n n
Yx, z.\',-) =Y (6x)= % xlxs
= Ik B iWd=1 I=1

8.5.8.Let E be a separated pre-Hilbert space. By 8.3.5, E has a norm v — ' x¥.
Therefore. by 8.1.6. E has a metric

dlx, Y = dx =yl =(x = ¥ix — v,
hencea topology. This topology 1s separated (1.6.2{a)), which in some measure
justifies the expression ‘separated pre-Hilbert space’
8.5.9. Examples. If C" is equipped with the canonical scalar product, one
recovers the norm and metric already considered. In %, one has
d(Agehee Dl sge N =140 =gy P+ 1Ay =B+ o)t R
In the pre-Hilbert space $([0, 1], C) of 8.4.5. one has

PR
ic
s

i, g) = ( Jc @) = OF d)

the corresponding topology is called the topology nf convergence in mean
square. If a sequence ( f,) tends to f for this topology, one says that {,)
tends to  in mean square.

8.5.10. Theorem. Let E be a separated pre-Hilbert space. The mapping
1x, W)= (x10 of E x E o C is conrinmious.

The mapping x~ {xil = d(x, 0) s continuous (3.i.1). Moreover. the
mappings (x. ¥)— 2 — J, {4, x)— Ax are continuous (8.1.8). The theorem
then follows from the polarization dentity (8.5.6).
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8.6. Banach Spaces, Hilbert Spaces

8.6.1. Definition. A normed space that is complete (as a metric space) is
called a Banach space. A complete. separated pre-Hilbert space is called a
Hilbert space.

8.6.2. Example. Let E be a finite-dimensional normed space. Then E is a
Banach space. For, one can suppose that E = R” or C*. The given norm is
equivalent to the usual norm of R” or C" (8.3.4). Everv Cauchy sequence for
the given norm is therefore a Cauchy sequence for the usual norm, hence
has a limit (5.5.9). Thus E is complete.

In particular, a finite-dimensional separated pre-Hilbert space (for
example, C” equipped with the canonical scalar product) is a Hilbert space.

8.6.3. Example. Let X be a set. E the vector space of bounded real-valued

functions on X, equipped with the norm of uniform convergence. Then E

is a Banach space. For, #(X, R) is complete for the metric of uniform con-

vergence (6.1.6). If a sequence (f;) of functions in E tends uniformly to a

function fe F(X.R), then sup,.x |fu(x) — f(x)} <1 for n sufficiently

large, therefore f is bounded. Thus E is closed in # (X, R) hence is complete.
[n particular, /* is a Banach space.

8.6.4. Example. Let us show that * is complete (hence is a Hilbert space).
Forn=1,2..., let x,6/’. Then x, = (A, Anz.+ Anz, ...} With Y2, |4,
< +0. Suppose that fx, — x,| =0 as p.q — =, and let us show that
(x,) tends to an element of 2. We have Y 2, |4, — A4> - 0as p,q = .
A fortiori. for every fixed positive integer i, A, — 4,41 =D as p,q ~ x.
therefore (4,;) tends to a complex number 4; as n —» . Let ¢ > 0. There
exists a positive integer N such that

0
p.qz N=> Z IA,,‘ qilz e
i=]
Let A be a positive integer, provisionally fixed. We have
A
p.gq2 N= Z IA.-,,' - q{lz e
=]

Fix p 2 N and let g = 0. We obtain:

A
pzN=Y liy-i’se
=]



8.6. Banach Spaces, Hilbert Spaces 105
This inequality being true for every positive integer A, we deduce that

(1 p=N=

W[

LAy = A e
This proves, first of all. that for p > N the sequence (4, — 4;) belongs 10 I*.
Since A; = Ay — (4, — Ay), we deduce that (4;) is an element x of /%. The
relation (1) can now be written

p2N=ix, - x}* <=

Thus x, = xasp — x.
8.6.5. Example. An almost identical proof shows that {! is a Banach space.

8.6.6. Example. The separated pre-Hilbert space of 8.4.3 is not complete
{cf. 8.7.1).

8.6.7. Theorem. (i) A closed linear subspace of a Banach space is a Banach
space.
(i1) A finite product of Banach spaces is a Banach space.

Assertion (i) follows from 5.5.6, assertion (i) from 5.5.8.

8.6.8. Theorem. Let E be a normed space, F a Banuch space. Then #(E, F)
is a Banach space.

Let (f,) be a Cauchy sequence in Z(E, F). Let xs E. We have
15w(X) = S S N fo = fd3x4 =0

as m, n — x. Since F is complete, there exists an element f(x) of F such
that f(x) — f(x) as n — 2. We have thus defined a mapping f of E into F.
The equality fiix = y) = f,(x) +~ f(¥), valid for all n. yields f(x + ) =
J(x) + f(¥)in the limit; similarly f(4x) = if(x) for every scalar A. Thus
is linear. Let ¢ > 0. There existsan Nsuch that mn 2 N=If, = f,| < <.
that 18, | fu(xX) = f(x) < efor all x e E such that |x+ < L Fixing x and m.
and letting n tend to infinity. we obtain | f,(x) - f(x)| < ¢ for jx| < L
From this. we deduce first of all that

If) Se+ ol <2~ 1l for x4 <1,

therefore /e Z(E. F). Moreover, we see that } /,, — /i < ¢ and this for all
m = N. Thus { f,) tends to { in #(E. F).
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8.6.9. Corollary. Let E be a normed space. Its dual is a Banach space.
For. the dual is either Z(E. R) or Z(E. C), and R, C are complete,

*» 8,6.10. Theorem (Banach-Steinhaus)., Let E be a Banach space. F
a normed space. (u;);e, a family of continuous linear mappings of E into F.
The following conditions are equivalent:

(3) sup;; Uy < =%
(i) for cach x € E, sup;,; ;x| < - x.

{1) = (i1). This 1s immediate since ju;x. < Ju; 1xi.

Suppose that condiuon (i) is satisfied. The functions x — ju;x| on E
are continuous, and their upper envelope is finite. By 7.4.15, there exist
a closed ball B in E with center a and radius p > 0. and a constant M > 0,
such that ju;x) £ M for all xeB and isl Since {u(x - a)l <
fu;x =+ hu;all, there exists a constant M’ > 0 such that ju, vl < M’ for
Iy < pandforalliel Then. for |¥| < 1, we have

luy = p " tlugpy) < p” M.

therefore ull < p~*M’, and this for every i1l

* 8.6.11. Corollary. Let E be a Banach space, F a normed space. and
(41. us. ...) a sequence of continuous linear mappings of E into F such thai,
for every x€E. u,x has a limit ux in F. Then u is a continuous linear
mapping of E into F.

The fact that u is linear is immediate. By 8.6. 10, there exists a finite constant
M such that ju,l < M for all n. For every x € E. we have fu,x| < M{xI
for all n, whence Jux| < Mix| on passage to the limit. Therefore u is
continuous,

8.7. Linear Subspaces of a Normed Space

8.7.1. Let X be a normed space. E a linear subspace of X. If E is finite-
dimensional. then E is closed in X (8.6.2 and 5.5.7). In particular. in a finite-
dimensional normed space. all linear subspaces are closed.

This 1s not so in general. For example, consider again the example E of
8.4.3, which is a linear subspace of /°. Let us show that E is dense in i (hence
not closed. since it is distinct from /?). Let (4,) € [* and ¢ > 0. There exists a
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positive integer N such that ¥,y |4,!® < & Let (u,} be the element of E
such that u, = A, for» < N, g, = 0for n = N. Then

HAn) ~ (“"‘)’!1 = : i A _“":1 = E.r’lmz <i

n=| n2N

which proves our assertion.
In particular. E 1s not complete.

8.7.2. Theorem. Let E he a normed space. F a linear subspace of E. Then
the closure F of F in E is a linear subspace of E.

Let x, y e F. There exist sequences (x,), {¥,) m F such that x, — x, y, = 1.
Then x, + y,€F and x, ~ y, » x + 5 (8.1.8), therefore x + yeF. f 4152
scalar. then 4x, — 4x and Ax, € F, therefore Ax s F.

8.7.3. Theorem. Let E he a normed space. and A < E. Ler B be the set of
linear combinations of elements of A and let C = B. Then C is the smallest
closed linear subspace of E containing A.

One knows that B is a linear subspace of E, therefore C is a linear subspace
of E (8.7.2), and 1t 1s clear that C o A. If C 1s a closed linear subspace of E
contaiming A. then B < C’ since C' is a linear subspace. therefore C < C’
since C" is closed.

8.7.4. Definition. With the notations of 8.7.3, we say that C is the closed
linear subspace of E generared by A. If C = E. we say that A is total in E.

8.7.5. Theorem. Let E. F be norned spaces. and ue L(E. F). Then the
kernel of w is a closed linear subspace of E.

For. the kernel is u~ !(0). and it suffices to apply 2.4.4.
8.7.6. However. the range of « is in general not closed in F.

8.7.7. Theorem. Let E be a normed space, E' a dense linear subspace
of E. F a Banach space, and u' € £(E'. F). There exists one and only une
ue L(E, F) that extends u’. One has u|| = ju’'t.

The uniqueness of « follows from 3.2.13.

By 8.2.4, 1’ is umformly continuous. By 5.5.13. there exists a continuous
mapping u of E into F that extends u. If x. yeE. there exist sequences
(x,). (¥,) in E such that x,— x. v, — » Then u'(x, = ¥,) = ux, - w'y,.
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which gives u(x + ¥) = ux + uy 1 the limit. One sees similarly that
u(ix1 = Aux for every scalar 4. Thus u is linear. Since u extends ', it is clear
that lug 2 -uw’ll. On the other hand. the inequality

fux) < Tu'il fxif
s true for every x € E', hence remains true for every x € E by passage to the
limit. therefore uil < {u').

8.7.8. Theorem. Let E he a separated pre-Hitbert space, and A = E. Then
A- is closed linear subspace of E.

We already know that A* is a linear subspace of E. On the other hand,
for every x € E let F, be the set of v such that (xiy) = 0. Then F, is closed
by 2.4.4 and 8.5.10. Now, A~ = (.4 F,, therefore A* is closed.

8.8. Riesz's Theorem
*» 8.8.1. Theorem (Riesz). Let E be a separated pre-Hiibert space. F a
complete linear subspace of E, x € E, and J the distance from x to F.
(i) There exists one and only one y & F such that | x — y§ = 4.
(i1) y i$ the only element of F such that x — ye F*.

(a) There exists a sequence (y,) in F such that |x — y,[| = 3. Let & > 0.
There exists a positive integer N such that

neN=lx -yttt +~a
For m. n 2 N, we then have
‘ 2x = yu ¥ = 2x = vl < 467 ~ de.
Applying the parallelogram law (8.5.6) to the left side, we obtain
12% = b = Yai? o+ lym = Jall? < 467 + 3¢,

or

I - 2
1ym = ¥u? < 357 + 9 — 45 = 122 Y~ﬂ )
I

Now, ¢y, = ya) & F, therefore

o 1z
4ﬁx -”';‘&'n > 4482,

so ¢hat
".Vm - yu“ : < de.



43, Riesz's Theorem 109

Since F is complete, the sequence (v,) tends to an eiement y of F. Since
|X = ¥4 — Ix — v". we have jx ~ v|| = 4.
(b)Y Let - F. For all e R, we have

ix = y82 < lix =13 + A% = |x = yI* = 212)% = ZRe(x = yiaz)

whence
0 < 120202 - 24 Reix = ylz)

This requires that Re(x - v'z) =0, Replacing = by iz, we see that
fx — y =) = 0. In other words, x — ysF~.
1c) Let ¥" be an element of F distinct from . Then x — ¥ is orthogonal to
v = v,since y — i' € F. By the theorem of Pythagoras (8.5.7), we have
IX=p = x eyt ely =" Ix = v)? =5

This proves the uniqueness assertion (n (i). Moreover. ¥ — y 1s not orthog-
onal to F, since
(x =¥y =3V =(x = yly =YY=ty = ¥y =y

=ly= >0
This proves the uniqueness assertion in {iti

* 8.8.2. With the notations of 8.8.1. we say that y is the orthngonal projection
of vonF.

*» 8.8.3. Theorem. Let E be a Hilberr space.

1) IfF is a closed linear subspace of E, then (F~}* = F.

(1Y Moregenerally,if A < E then(A~)-isthe closed linear subspace generated
by A.

(i) It 1s clear that F = (F*)~. Let x be an element of E that does not
pelong 10 F. Let v be 1s orthogonal projection on F Then = — ysF-.
therefore fyjx — )i = 0, consequently

IX X =3)={x— ¥lx ~ »} > because x # }.

Tauscg(F )~
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(ii) Let B be the set of linear combinations of elements of A and let
C = B (cf. 8.7.3 and 8.7.4). It is clear that B+ = AL, We have C* = B+ on
account of 8.5.10. Therefore (A+)* = (C*)*, But (C*)- = C by (i), thus
(A4)* = C.

*» 8.8.4. Theorem. Let E be a Hilberr space, and A < E. The jollowing
conditions are equivalent:

(i) Aistotal inE;
(ii) O is the only element of E orthogonal to A.

Set B = A+ To say that A is total means, by 8.8.3(ii), that (A4)* = E.
in other words that B+ = E. But the latter condition is equivalent to B = {0}
since E is a separated pre-Hilbert space.

*» 8.8.5. Theorem. Let E be a Hilbert space.

(i) For every x € E, the mapping y — (x|y) of E into C is a continuous linear
form f . onE.

(ii) The mapping x> f of E into E’ is bijective and conjugate-iinear. One
has § | = x| for all x € E.

It is clear that f, is a linear form on E. We have

VO = 1(xin)] < fxliyl,

therefore f; is continuous and || £,§ < |x||. Let us show that || £} = |x}
for all x € E. This is obvious if x = 0. Suppose x # 0; then x| = fi(x)
< (LA x|, thus {xf < || foll after cancelling |} x|,

Letx,, xseEand 4;, 4, €C. Forall yeE,

Juzi+ 1ax9) = iy + 22%21Y)
= f'_l(x! |y) +_;~z(xz|.V)
= ;'_lfm(Y) + A2 50
= (i fx, + A2 L))

thus fi,0,+ 420, = 41 S5, + 42 f5,. In other words, the mapping x+— j; of E
into E’ is conjugate-linear. In view of the equality || £, = ||, it is injective.

Let us show that it is surjective. Let f € E’ and let us prove that there exists
an x € E such that f"= f,. This is obvious if / = 0. Assume f # 0. Then the
kernel F of f is a closed linear subspace of E distinct from E. Therefore
F* # 0 (8.8.3). Choose a nonzero element ¢t of Ft. Then : ¢ F (otherwise
(t]t) = 0), thus f(t) # 0. Multiplying ¢ by a suitable scalar, we can suppose
that () = L. Let x = flzf| %z Forall yeE,

SO =100 =)= ff@) =0,
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thus y — f(y)t € F. Consequently
L) = (x1y) = (x1 f) = fyXx|e) = fO)uel =2l = f().

8.8.6. Let E be a separated pre-Hilbert space. One calls orthonormal family
in E a family (e, of elements of E such that je]l = | for all i and
(e;le)) =0foriel, jel, i # j. Such a family is linearly independent, because
if

ftheh + e j.(_e,-" =0
for scalars 4;,, .... 4;,, then the Pythagorean theorem implies that
0 =1Ae, + -+ A et =14, R+ + 14,12

whence 4, =--- =4, =0,

If E has finite dimension p, the cardinal number of I is therefore at most
equal to p. However, in general there exist infinite orthonormal families. For
example in /2, let e, =(0,0,...,0,1,0,0,...), where the 1 appears in the
n'th place. Then the sequence (ey, €;, -..) is orthonormal.

8.8.7. Let E be a separated pre-Hilbert space. One calls orthonormal basis
of E a total orthonormal family in E, that is (8.7.4), an orthonormal family
()11 Such that the linear combinations of the e, are dense in E.

Suppose E is finite-dimensional. By 8.7.1, an orthonormal basis of E is
an orthonormal family that is a basis in the algebraic sense. For example. in
C" equipped with the canonical scalar product, the canonical basis is an
orthonormal basis.

In general, an orthonormal basis is not a basis in the algebraic sense (but
there is almost never any risk of confusion). For example in /3, the sequence
(e,) of 8.8.6 is an orthonormal basis by 8.7.1.

» 8.8.8. Theorem. Consider E = €([0, 1], C) as a separated pre-Hilbert
space with the scaar product (f, g)— [ f(D)g(t) dt (8.4.5). For every n< Z,
let e, be the function t~ e*™ on [0, 1], which is an element of E. Then the
Jamily (e,), .z is an orthonormal basis of E.

(a) We have (e,le,) = f§ e” 2 me*™ dr = [§ ™™= ™' dp. If n = m, the
value of the integral is 1. If n # m, then the function ¢ ~ ¢**"~™* admits the
primitive e2™"=™2xi(n — m), which takes on the same value at ¢t =0
and ¢ = 1, therefore the integral is 0. Thus, the family (e,), z is orthonormal.

(b) Let E’ be the set of /'€ E such that f(0) = f(1). If f€ E' then f may be
extended in a unique way to a function g of period 1 on R, and g is continuous.
By 7.5.6. there exists a sequence (f,) of trigonometric polynomiais that
tends to g uniformly on R. Then [§ | () — £,(2)* dt — 0, thus (f,) tends to
J in the pre-Hilbert space E. Now, £, is a finite linear combination of the e,.
Thus, if we denote by A the linear subspace of E generated by the e,, then
A>E.
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{c) Let @aeE. For n =123, ... &t & be the functicn that coincides
with & on [1pm 1], such that ~,(0) = i (1) and which 1s linear on [Q.1Mm]:.
The |h,¢ are bounded above by a fixed constant M ffQv example. M =
SUD; (g, (gl (133 Then

. 1
d(h. b, = jn V(1) = h (012 dt

cpla
= $ht] = hio dt < i—(:M):;
C
therefore h, tends to 4 in E. Now, #, = E'. Therefore E=E ThenAsFE
= E, whence A = E. and the family {e,) is an orthonormal basis.

*» 8.8.9. Theorem. Every Hilbert space has an orthonormal basis.

Let E be a Hilbert space. Consider the orthonormal subsets of E. They
form a set 2 ordered by inclusion. Lzt (P,) be a totally ordered family of
elements of $ Each P, is an orthonormal subset of E. Moreover. for any 4
and u. either P, o P, or P, o Pytit is then clear that the union of the P;
is an orthonormal set. containing all the P,. By Zorn’s theyrem. there exists
a maximal orthonormal subset P of E. If P is not total in E, then there exists a
nonzero x in E orthogonal to P (8.8.4): replacing x by x/§ xf|, one can suppose
Ix8 = 1. Then P w {x} is an orthonormal subset of E. which contradicts
the maximality of P. Thu# P is total in E, hence is an orthonormal basis.



CHAPTER 1X
Infinite Sums

The student already knows the definition of a convergent series x, -
X, + - of real numbers, and the definition of the sum of such a series.
In this chapter, we generalize in two different directions:

(1) Instead of the x, being real numbers. we take them to be vectors
in a normed space. This is a fairly superficial generalization (though
useful in certain contexts—see §5).

(2) Instead of the x; being indexed by the integers 1. 2, ., ., we assume
that the set of indices is arbitrary. A lot of very concrete questions lead
in fact to the case where the set of indices is N2 (‘double series’), or N?
(‘p-fold series”), or Z, etc., and the best thing is to study at one stroke the
general situation. We shall then see why we spoke of “imit along a
filtering set’ 1n 7.2.3.

Although the case of series is a good point of reference, it is well to be
prudent: for example, compare Theorem 9.4.6 with the well-known fact
that a4 convergent series is not aiways absolutely convergent.

9.1. Summable Families

9.1.1. Definition. Let E be a normed space. (x,);¢; a family of elements of E.
Let A be the set of finite subsets of I: it is an increasingly filtering ordered set.
thus one can speak of limit along A (7.2.3). For every J £ A, let

5y = v .’CiEE.
L
igl

LetseE.
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The family (x;);¢, is said to be summable, with sum s, if the family (s;);¢ 4
tends to s along A. We then write s = ), x;.

In other words. (x;);.; is summable with sum s if, for every ¢ > 0. there
exists a finite subset J, of Tsuch that, for every finite subset J of I containing J,.
one has |y, ¢ x; — sl S &

9.1.2. Theorem. Let (X;);cs. (V)11 e summable families in E. with sums s, t.
Then the family (X; + y)ie1 is summable with sum s + t.

ForJeA, lets; = Yy X, t; = ) gy ¥i- Then, along A, s, tends to s and ¢,

tends to ¢, therefore (s, ;) € E x E tends to (s, t) € E x E, therefore s; + ¢,
tends 1o s + r. Now, s; + £; = 3 ;¢ (X; + ¥

9.1.3. Similarly, if 4 is a scalar, then the family (Ax,);; is summable with sum
As. We thus have the formulas

Tlxr=y) = Zl-“r'-" "2'_1}'44 ‘Zlb‘f =iy x.

9.1.4. Theorem. Ler (x;);; be a summable infinite family of elements of E.
Then x, tends to Q along the filter of complements of finite subsets of L.

Lets = 3.1 x;. Let & > 0. There exists J € A such that
JeA JoI=|s, —sp < g
£

Then,

™

. : €
iel =J=|sm—sls 3 and |Is; - st <

= HSJUm - S]N Se= I|Xl” e

9.1.5. Example. If (x,. x.....) is a summable sequence of elements of E. then
the sequence (x,) tends to 0 as n — 0. It is well known, from the example
E = R, that the converse is not true.

» 9.1.6. Theorem (Cauchy's Criterion). Let E be a Banach space, (x,);¢; a
family of elements of E. The following conditions are equivalent:

(i) the family (x.)¢ is summable;
(ii) for every ¢ > O, there exists a finite subset Jo of 1 such that, for every
finite subset K of 1 disjoint from J,, one has |sgll < e.
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Suppose (x,);e; is summable with sum s. Let ¢ > 0. There exists Joe A
such that,ifJeAand J = Jg,then [|s; — s S &2 Let KeAwithK n J; =
&. Then

¢
2
therefore fsgll = 5,50k = S5l < &

Suppose that the condition (ii) is satisfied. Let ¢ > 0. There exists Jo€ A

such that, for K € A satisfying K A J, = . one has |sgh < /2. If J, J e A
and J,J > J,, then

Isy, — sl <= and fsjox = sl <

1

LS TN

[ €
“sl - slog < '2', "sl' - slo“ < E:

therefore jjs; — 55§ < & Thus, the set of s;, for Je A and J o Jy, has diameter
< ¢ Therefore (sy),c 4 has a limit along A (5.5.11).

9.1.7. Definition. Let E be a normed space. (x;);; @ family of elements of E.
The family (x,);¢; is said to be absolutely summable if the family (!x,]|);; is
summable in R.

» 9.1.8. Theorem. Let E be a Banach space, (x);; an absolutely summable
Jamily of elements of E. Then (x,);¢; Is summable.

Let ¢ > 0. There exists J, € A such that

KeAKnlg=g = le:c,,!ls e = Zx,gs.e,

ieK teK
therefore (x,);; is summable by 9.1.6.

9.2. Associativity, Commutativity

9.2.1. Theorem. Let E be a Banach space, (x;);¢, a summable family of elements
of E. Let J < 1. Then (x,);¢, is summable.

Let e > 0. There exists a finite subset Jo of I such that, if K is a finite subset
of 1disjoint from J,. then [sg§ < & Then J n J, is a finite subset of J. and if
K’ is a finite subset of J disjoint from J n J, then |ls¢.| < & Cauchy's criterion
applied 10 (x,);; proves that this family is summable.

» 9.2.2. Theorem (Associativity). Ler E be a Banach space. (x,);¢; @ summable
family in E, (1)L a partition of . For every le L, set y, = ¥, x;, which is
meaningful by 9.2.1. Then the family (y)y is summable and Y 3. x; = ¥ . V..
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Sets = ¥, x,. Lete > 0. There exists a finite subset J, of I such that, if J
1s a finite subset of | containing Jo, then 4s; — sl < &2,

Let My = L be the set of /e L such that 1, intersects J,. This is a finite
subset of L. Let M be a finite subset of L containing M,,. Weare going to show
that

9)) Y- Sﬂ < e,
leM
which will establish the theorem.

Let n be the number of elements of M. For each | € L, there exists 4 finite
subset [; of [, such that ¥y, — sill < ¢/2n, and we can require that I; contain
Jo ~ |; by enlarging it if necessary. The union of the [}, as { uns over M, is a
finite subset J of I, and J o J,. We have |s; — s| < &2, that is,

(2) Z S“ - Sgl < «‘:_/2.
leM

Now, ||¥y — s < ¢/2n for every [ ¢ M, therefore

i
- X SI;J <82
leM

TeM

3

The mequality (1) follows from (2) and (3).

9.2.3. Example. Let {x,,,)n »=1.:.... be a double sequence of real numbers. If
it 1s summabile, then

me=Z(Zx..)

mazl mzl \n21
« -s (s x,,,,,).
n21 21

9.2.4. Let E be a Banach space. (x;);¢; a family of elements of E, (1))« &
partition of . Suppose that eachsubfamily (x,); 5, is summable with sum y,,and
that the family (1), is summable. This does not imply that the family
(x:)¢; is summable. For example, take E = R and consider the sequence of
real numbers (1, —-1,2, =2,...,n, —n....). Each subfamily (n. —n) is
summable with sum 0, and the family (0, 0. O, ., .) is summable, yet the original
sequence is not summable (for example by 9.1.5).

9.2.5. However, one has the following result:
Theorem. Ler E be a normed vector space. (x,);¢; a family of elements of E.

(I)eL @ partition of 1 with L finite. Assume that each suofamily (x,);;, is
summable with sum Y. Then (X,);¢( is summable with sum Y ;| ».
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Letz > 0. Let n be the number of elements of L. For every { = L. there exists
a finwte subset J, of 1, such that, if J' is a finite subset of [, containing J;, then
Sp =l S en Let ) =10 J,, which 15 a finite subset of L If J' s a
finite subset of 1 contaiming J. tnen J' is the disjoint union of the J' ~ 1,,
and J' ~ 1,15 a finite subset of I, containing J;. Therefore fisy.,, — ¥l < a1,
and this for every e L. Since sy = ¥ o1 51--1,- we have 5, = 3, i < ¢
whence the theorem.

9,2.6. Theorem (Commutativity). Ler E be a normed space, (x ).y a summakie
family of elements of E with sum s. Let 7 be a hijection of 1 onto 1. Then the
Jamily (Xq5)i61 IS summable with sum s.

Letz > 0. LetJ,beasin9 I.}. Theno~*J,) s afinitesubsetof . Let J bea
finite subset of I containing ¢~ '(J,). Then o(J) = Jo, therefore |3, o X — #f
< e. that 5.

| b
q: x,“" - Sﬁ S 6'
lial

whence the theorem.

9.3. Series

9.3.1. Definition. Let E be a normed space, and (x;. x3,...) a sequence of
elements of E. We say that the series with generai term x, is convergent with
sum s (where s Eif s, = 3", x, tends to s as n tends to infinity. We then
write s = ) & | X,

In other words, the series is convergent with sum s if, for every ¢ > 0. there
exists an Nsuch thatn 2 N=is, — 51 < a

The series with general term x,, 1s said to be absoiutely convergent if the
series with general term |x,| 1s convergent.

9.3.2. By means of proofs analogous to those of 9.1. one establishes the
following results:
{a) If the series with general terms x, and y, are convergent. then the series
with general terms x, + y. and Ax, (4 a scalar) are convergent. and
x ©
(xn -V = : Xp ~ v Voo

! 1=1 Y

(8L

1
2 <
Yix,=4% x,.
L n=1

(b) If the series with general term x, is convergent, ihen x, tends to O as »
tends o wnfinity (The converse s not true.)
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(c) (Cauchy's Criterion.) Let E be a Banach space, (x,, X1, .- .) @ sequence
of zlements of E. The following conditions are equivalent:

(i) the series with general term x,, 1s convergent:
(ii) for every e > O, there exists an N such that

n=mx=N= Zx,ISE.

1=m

{d) Let E be a Banach space. (x,. X1....) a sequence of clements of E. If
the series with general term x, is absolutely convergent. then the series is
convergent. (The converse is not true.)

9.3.3. Theorem. Let E be a normed space,1.x,. x,, .. .)a sequence of elements of
E. lfthe sequence is summable with sum s, then the series with general term x,, is
convergent with sum s.

Let 4 > 0. There exists a finite subset Jo of 11, 2,...} such that, if Jis a
finite subset of (1. 2, ...} containing Jo.then j5s — ¥ ,.; x| < & Let N bethe
largest of the integers in Jy. If n > N then J, = {I,2... . n}, therefore
is = Y. %) < & This proves that ¥ /oy %, ~ sasn — x,

i

9.3.4. The converse of 9.3.3 is false. as will follow from the example in 9.3.5.

9.3.5. Lzt E be a normed space, (x;. x, .- .) a sequence of elements of E, g a
permutation of {1. 2, 3,...}. If the sequence {x,, x.,,..) is summable. then
Y& %, =Y 5 Xom by 9.3.3 and 9.2.6. However, consider the series

T—d-f-d+g- v,

which one knows to be convergent with sum log 2. By a suitable permutation
of the order of the terms, one obtains the series

e AL A
This series 1s easily seen to be convergent, with the same sum as
b=iedogedidheo
this sum is therefore 4 log 2. The sum has changed after rearrangement of the

terms. In particular. the sequence (1, —4. §, —4,...)is not summable (cf. also
9.4.6).
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9.4, Summable Families of Real or
Complex Numbers

» 9.4.1. Theorem. Let (x;);4( be a family of real numbers > 0. Consider the
finite partial sums s; = 3 ;o; x;. where J € A (the set of all finite subsets of D).
Let 8 = supyeq 55 € [0, +20].

(1) Ifs < + oo, then the family (x,);c, is summable with sum s.

(il) Ifs = +eo, then sy tends to +oc along A.

The mapping J—s; of A into R is increasing, since the x, are > . The
theorem therefore follows from 7.2:4,

9.4.2. Thus, for a family (x,); of numbers > 0, the symbol } ,, &, is always
meamngful it is a finite number if the family (x;);, is summable, + c: other-
wise.

9.4.3. Theorem, Let (x))ie1r Ly Jia1 be two families of numbers = Q: assume
that x; < w for all ie |. Then 3 oy 85 S D ie1).. In particular, if the family
L2 is summable, then the family (). Is summable.

Let A be the set of finite subsets of I If JeA, then ¥, yx < Yior i
Passing to the limit along A, we obtain 3¢ ¢ S 2 rpg ¥

9.4.4. Theorem'{Associativity). Let {x,};¢, be a family of numbers = 0, (1),

a pariition of 1. Then
Y x; = ( ¥x )
r‘l lizL \lth i,

If the family {xg),, is summable. this follows from 9.2.2. Otherwise,
Y o1 % = + o For every finite subset J of I, we hawe

su-5 (3 )

<3 (:E; x;) by 9.4.3.
€h v

lel

This being true for all J, we conclude that

.
5 (gx,)'- ,x.
‘tel Wel

thus the equality of the theorem is again true.
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9.4.5. Theorem. Ler (x;);¢1, (¥));¢3 be families of numbers = 0. Then

{We make the convention that 0 +x = 0.)

By 9.4.4, we have

s an=f(5a)

(. elx} tel \Je)
Now. ¥ ,¢) x;y; = X; 31 ;. Setting t = ) ¢, y;. We thus have

Y oxiyy =Y Xt
(L Helx) iel
It t < +x, this is equal to #(} ¢ x;), Whence the theorem. If t = +oc, we
distinguish two cases. If all of the x; are zero, then tx, = 0 for all i, therefore
Yiertx; =0 =13, x.1fone of the x; is > 0, then rx; = + x for suchan i,
therefore ¥, tx; = + . on the other hand, } ;; x, > 0, therefore r } . X,
= +C.

» 9.4.6. Theorem. Let (x);.; be a family of real or complex numbers. The
Jollowing conditlons are equivalent:

(i) the family (x,); ¢ is summable;
(ii) the family (x;);¢( is absolutely summable.

(it) = (i). This follows from 9.1.8.

(i) = (ii). Suppose that the family (x;);; Is summable. If the x, are all real,
let I, (resp. I,) be the set of i €I such that x; > 0 (resp. x, < 0). The families
{(xie1, and (x);¢), are summable (9.2.1). Therefore the families (| x;|);, and
(I1%¢1)re1, are summable (9.1.3). Therefore the family (|x,[),; is summable
(9.2.5): If the x; are complex, then the family (X,) is clearly summable. Since
Re x; = §(x; + x;), the family (Re x,) is summable (9.1.2). Similarly, the
family (Im x;) is summable. Then the families (|Re x;|). (]Im x;}) are
summable by the first part of the proof, therefore so is the family
(JRe x;| + | Im x;/). Finally, since |x;| < |Re x;| + }Im x,}, the family (|x;|)
is summable (9.4.3).

9.4.7. Series with terms > 0. If x,.x;,... are numbers = 0, then the
sequence (z:'., x;) is increasing, therefore has a limut in R equal to its
supremum s, which is denoted ) 2 x;. This number is equal t0 3 ;¢ 1, 2...4 Xie
For, if the sequence (x;) is summable, this follows from 9.3.3. Otherwise, there
exist arbitrarily large finite subsums ;. x; (9.4.1), therefore arbitrarily large
sums Y Ja, X,, therefore

L
in = +XC = z X
iml iefl, 3, .
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9.4.8. Tosumup,if (x;);¢ is a family of elements of a normed space E, one has
the following diagrams:

1 arbitrary, E complete:

absolute summability = summability.
1 arbitrary, E =R or C:

absolute summability <> summability.
1 ={1,2..,.}, Ecomplete:

absolute summability = summability
3 U

absolute convergence = convergence.
I= {l,2qs¢-},E = ROI‘CI

absolute summability < summability
3 ]
absolute convergence = convergence.
9.4.9. Let 2¢R. One knows that the number
1 l 1 1
1+ + ~ F cee = =
:C 3‘ x(NZ(O) X
is finite if > 1 and infinite if « < 1. This amounts to saying that

— < XS 2>,
:ql-lmlxla

Here is an important generalization:
Theorem. Let x —{| x| be @ norm on R? and let x € R. Then
— < +0 S I>)P
se2r- 1o 1"

Since all norms on R” are equivalent, it suffices (in view of 9.4.3) to carry
out the proof for the norm

(xl* Xaraery xp)’_‘sup(lxlio'xZIOQ--‘ prD-

On Z°? - {0}, thisnormtakes onthe values 1,2,3,....Forn = 1,2,3,...,
let A, be the set of x € Z? such that §x{ = n. Then

A, = B, w B,;\:i-uB,,,

where B,, is the set of (x),x;,..:.x,)€Z” such that x, = +n and
-n< x;<nforj#t Itis clear lhat Card(B,;) = 2(2n + 1)*~!, therefore

n?=Y < Card A, < 2p(2n + 1)P7F < 2p(3nyP~! = 2.37~ 1. pp?~ 4,
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Consequently,
_.l—_=’lp_.-: _l_sz'Bp-l.pnp...,.}P-'.p.-_—l.—
"2'P+l n —x;” !lx‘lz n* - n:-p"‘i‘

By 9.4.3 and 9.4.4, we deduce from this that

t ) !
<23 p ¥ =

2=+ 1 et 2
n xeZ0=n I X0 neN=10)

neN=-10}

from which

1 |
S N - T N —
vy 3 . -p=~i
ceZP =101 X+ reN= o) 1 ?

< =
1=+ 1>l e anp

9.4.10. The Hilbert Space /(I). Let I be a set. We denote by i(I). or simply
(1. the set of families x = (x), ©of complex numbers such that
Yiarlx;)? < = . Let us show that this is a linear subspace of #(I, C). It is
clear that if xg/%(1) and i C, then 4ix g /2(I). Let x = (x;); € (1) and
¥ = (Yies € £4(1). Then

Sii+y' < Z(2lec‘z «2ly:l) by9da

iel lel

=23 Ix?=2YiplP byoi2913
[}

thus x ™+ y & 13(I). Next.

2¥ ixilyd < E(“‘f:: <1y < +x,

so that the family (X;)));e; is absolutely summable, therefore summable
(9.1.8). Set (x|y) = 1 X,y One verifies easily that (x. y)— (xly) is a
scalar product on /3(I). Imitating 8.6.4 step by step. one sees that *(I) is a
Hilbert space. (In the proof of 8.6.4, consideration of the sum I\, must be
replaced by that of a sum Z,. . Where J is a finite subset of 1)

fI=(1,23....} then BD) =i If [ = {1, 2....,n}, then 3(I) = C"
equipped with the canonical scalar product.

Let iy € I. Consider the family e,, = (x);¢; such that x. = 0 for { # i,
x, = 1 for i = iy. Then e, € [*(I). The family (e,);; in 1%(]) is orthonormal.
As in 8.7.1. one verifies that the linear combinations of the e; are dense n
{3(), thus (e,);1 is an orthonormal basis of (3(I), called the canonical ortho-
normal basis.
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9.5. Certain Summable Families in
Hilbert Spaces

» 9.5.1. Theorem. Ler E be a separated pre-Hilbert space, {x,),; a famiiy
of pairwise orthogonal elements of E.

(i) If the family (x,},q; ts summable with sum s, then

Z Il[;c“»‘ < +x and 8% = z Sl
el iet
1) If 3,e1"%,0° < +x and E is a Hilber: space. then the family (x,},¢; 15
summable.

Let A be the set of finite subsets of I. Forevery J e A let 5, = 3, x,.

If (x)ie, is summable with sum s, then s; tends to s along A, therefore
Is;i* tends to rsI® along A. Now. ls)l* = 3., x| (8.5.7), therefore
||3n3 = ZIJI !}xlﬁz'

Suppose Y ¢y  X;J° < + . For every & > ), there exists J € A such that.
fKeAand K ~J = then ¥ .« ix? £ #2 (9.1.6). that is. ys¢y < & If.
moreover. E is a Hilbert space. this implies that (x,);,, 1s summable (9.1.6).

» 9.5.2. Theorem. Let E be a separated pre-Hilbert space, (e,),., an ortho-
normal basis of E.

(1) Let x = E, and set &; = (e;!x). The family t,e);; Is summable in E, and
X = erl A'(ex‘

(i) If y< E and u, = (& v), then the Samily (% uiie, is summable and (x1y) =
Siet Aty In particular, Ix{? = Y, ¢ 14

Let & > 0. There exist a finite subset J, of I and a linear combinatijon x’
of the ¢, for i € Jo. such that }x — &' < & Let J be a finite subset of [ such
that J = J,. and set

t
it
g
>

L)
-

For j € J. we have
(ejix — 2) =(e,lx) — (e,; Y A,e,.) =4, ~4,=0
iisd v

therefore x' — = (which s a linear combination of the e, for ; € J) 1s ortho-
gonal to x — z. Consequently

x—cPF iz =xP = - x|} <7,

whence |x — z{ < ¢ This proves that the family (4,¢);., is summable with
sum .
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Since ¥, Ae; and Y. e tend to x and y along A, the number
(Fies Ml Ties e = Yiey A p; tends to (x| y) along A.

9.5.3. Under the conditions of 9.5.2, we say that the A, are the coordinates
of x with respect to the orthonormal basis (e));s,. If E is finite-dimensional,
we recover the usual concept of coordinates with respect to the basis ()1,
since x = 3,1 Ae;.

» 9.5.4. Corollary. Let f € 4([0, 1], C). For every k€ Z. set
1
Ay = J‘ f(t)e™ 2™ gy
]

( Fourier coefficients of f°). Then Y 3 -, Aye*™" tends in mean square to f.
as n tends to infinity. If also g € ([0, 1], C) and u, = [} g(t)e™2*™ dt, then

1
fofma?) it = ¥ Wi

reZ

This follows from 8.8.8 and 9.5.2.

» 9.5.5. Theorem. Let E be a Hilbert space, (e)),c, an orthonormal basis of
E. For every x = (up)¢1 € P(1), let f(x) be the element Y ., we, of E (which
is defined. by 9.5.1(ii)). Then the coordinates of f(x) with respect to ()¢,
are the y;, and f is an isomorphism of the Hilbert space I*(1) onto the Hilbert
space E that transforms the canonical orthonormal basis of 1*(1) into (e));q;.

(a) Let A be the set of finite subsets of I Let je L If J = A and J o {J},
then (e;|Y iey Hi€)) = W5 since 3, e, tends to f(x) along A, we see that
(e f0Q) Is equal to .

(b) It is ciear that fis a linear mapping of (1) into E. For every y € E,
let g(y) be the family of numbers ((e;| y));¢1, Which belongs to 2(I) by 9.5.2.
Then g is a mapping of E into *(1), and f(g(y)) = y by 9.5.2. On the other

hand. g (f(x)) = x for all x & {*(I) by (a).
(c) Thus, f and g are linear bijections inverse to one another. By 9.5.2,

g preserves the scalar product. Thus f is an isomorphism of the Hilbert

space [3(I) onto the Hilbert space E.
(d) It is clear that f transforms the canonical orthonormal basis of I*(T)

into (ee1.

*» 9.5.6. Corollary. Every Hilbert space is isomorphic to a space 1%(I).

This follows from 8.8.9 and 9.5.5.



CHAPTER X
Connected Spaces

This chapter, which is very easy, could have come before Chapter II1
(but there were so many questions urgently requiring study!). The
problem is to distinguish, by various methods, those spaces that are
‘in one piece’ (for example a disc, or the complement of a disc in a plane)
and those which are not (for example, the complement of a circle in a
plane).

10.1. Connected Spaces

10.1.1. Theorem. Let E be a topological space. The following conditions are
equivalent:

(i) there extsts a subset of E. distinct from E and . that is both open and
closed,
(ii) there exist two complementary nonempty subsets of E both of which are
open,;
(iii) there exist two complementary nonempty subsets of E both of which are
closed.

This is clear, since if A is a subset of E, we have

A open and closed <> A and E — A open
<> A and E — A closed.

10.1.2. Definition. If a topological space E satisfies the conditions of 10.1.1,
it is said to be disconnected. In the contrary case, it is said to be connected.
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10.1.3. Theorem. R iy connecied.

Let A be an open and closed subset of R. Assuming A and R — A non-
empty. we are going to arrive at a contradiction. Let x € R — A. One of the
sets A~ [v, = x), A~ (=x. <] is nonempty. Suppose, for example, that
B=A~{s. -x}# 2 Then B s closed. Since B=A ~ix, =), B is
also open. Since B 1s closed. nonempty and bounded below, it has a smallest
element b (1.5.9). Since B is open, it contains an interval (b — « b + &) with
£ > 0. Thus b cannot be the smallest clement of B.

10.1.4. However. R — (0} is not connected. For,{— %, 0) and (0, - x) are
complementary nonempty open sets in R — [0}

10.1.5. Definition. Let E be a topologicai space and A <= E. We say that A
15 & connected subset af E if the topological space A is connected.

10.1.6. Theorem. Let E be a topological space. (A)., a family of connected
subsets of E. A = \_,.1 A;. If the A, intersect pairwise, then \ is connected.

Suppose A 1s not connected. There exist. in the topological space A, subsets
U,, U, that are complementary, nonempty and open. For every il
Uy~ A and U, A, are open in A; and complementary in A;. Since 4, is
connected. Uy ~ A = Z or U, ~ A, = . Let I, (resp. I,) be the set of
i€l such that A, = U}, (resp. A; < U',). Then U, (resp. U} is the union of
the A, for i, (resp. i € 1,), therefore there exist an A, and an A; that are
disjoint. contrary to hypothesis.

10.1.7. Theorem. L1 E be a topological space, A a connected subset of E
B a subser of E such that A = B = A, Then B is connected. in particuiar. A
connected,

Suppose B is the union of subsets U,. U, that are disjoint and open in B.
We are to prove that one of them is empty. There exist open sets U, U’ in
E such that U, =B~ U), U; =B~ U,. The sets A~ U, and A ~ U,
are open 1n A, disjoint. with union A. Since A is connected, we have for
example A ~ U, = &, therefore

in other words A < E - U, Since E — U} 1s closed. we infer that

A= E - LU, whence B U, = Z, thatss, U, =

» 10.1.8. Theorem. Ler X. Y be topological spaces, { a continvous mapping
of Xinto Y. If X is connected. then f(X) is connected.
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If £¢X} is not connected. there exist in f(X) sets U;;.U, that are open,
complementary and nonempty, Then f =% U,h_,f‘ =% U.,¥ are open. compie-
mentary and nonempty in X. wiiich is absurd.

» 10.1.9. Theorem. Let A = R. The following conditions are equivalent:

() A ig eonnecred;
(i) A is an interval.

We can suppose that A is nonempty and not reduced to a point.

Let A be an interval. If A is open in R then A is homeomorphic to R
(2.5.5). hence is connected (10.1.3). If A is an arbitrary interval, let 1 be its
interior in R. Then 1 is an open interval in R hence is connected. and I <
A = T s0 that A Ts connected (10.1.7).

Let A be a connected subset of R and let us show that A an interval. By
means of the increasing homeomorphism x — tan % of (- 12, &,2) onto R,
we are reduced 10 the case that A < (—m;2, 7f2). Then A admits a supremum
beRand an infimum a s R. We have A < [a, b]. We are going to show that
A D fa. b}: it will then follow that A is one of the four intervals (g, b), {4. b].
Ta. b). [4, b], and the proof will be complete. Arguing by contradiction. let
us suppose that there exists an x, such that @ < xo < band x3 € A. Then A
is the union of the sets A n{— x, Xo) and A 4 (xg, ¥ 9} which are open in
A. Since A is connected. one of these two sets is empty, sayv A ry§xg, + <h
Then x < a4 for all x = A. which contradicts the fact that & is the least upper
bound of A.

10.1.10. Theorem. Ler X he a connected topological space, f a conttnuous real-
‘valued function on X. a and b points of X. Then [ takeson every ralue between
J¥a) and f(b). ’

" For, /(X) Is a connected subset of R (10.1.8), hence is an interval of R
110.1.9). This interval contains f(a) and f(b), hence all numbers in between.

10.2. Arcwise Connected Spaces

10.2.1, Definition. Let X be a topological space and a. b £ X. A coatinuous
mapping f of {0, 1] into X such that f(0) = a, f(1) = b is zalled a con-
tinuous path in X with origin a and extremity b. If any two points of X are
the origin and extremity of a continuous path, X is said to be &rewise eon-
nected.

10.2.2. Example. If E is a normed vector space. then E 1s arcwise connecied.
For,1f &. b = E, the mapping

=) =a= &b —a)
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of [0, 1] Into E Is continuous (8.1.8), and f(0) = a, f(1) = b. For example,
R" is arcwise connected.

» 10.2.3. Theorem. Let X be an arcwise connected topological space. Then
X Is connected.

Let xo € X. For every x € X, let f;: [0, 1] = X be a continuous path with
origin x, and extremity x. Since [0, 1] is connected (10.1.9), the set A, =
J<([0, 17) is a connected subset of X (10.1.8). Now, x € A,, thus the union of
the A, is X. Since x, belongs to all of the A,, X is connected (10.1.6).

10.3. Connected Components

10.3.1. Theorem. Let X be a topological space, and x € X. Among the connected
subsets of X containing x, there exists one that is larger than all the others.

There exists at least one such set, namely {x}. The union of all of the con-
nected subsets of X containing x is connected (10.1.6) and is obviously the
largest of the connected subsets of X containing x.

10.3.2. Definition. The subset of X defined in 10.3.1 is called the connected
component of x in X.

10.3.3. Theorem. Let X be a topological space.

(i) Every connected component of X is closed in X.
(ii) Two distinct connected components are disjoint. In other words, the dif-
Jerent connected components of X form a partition of X.

(i) Let A, be the connected component of x. Then A, is connected (10.1.7).
But A, is the largest connected subset of X containing x, therefore A, = A,.

(i) Let A,. A, beconnected components that are not disjoint. Then A, U A,
is connected (10.1.6). Since x € A, U A,, we have A, U A, c A,, whence
A, < A,. Similarly A, < A,, therefore A, = A,.

10.3.4. Examples. A connected space has only one connected component.
The space R — {0} has two connected components, namely (— o, 0) and
0, +x).



Exercises

Chapter |

1. Let A be the set of (x, y) € R? such that x* + y* < 1. Let S be the set of poiats of
R? of the form (x, 0) with0 < x < 1. Let A = A — S, Find the interior, exterior, bound-
ary and closure of A (relative to R?).

2. Let X be a topological space. If A is a subset of X, we denote by Bd(A) the boundary
of A.

(a) Show that Bd(A) = Bd(A), Bd(A) = Bd(A). Show by means of an example (try
X =Rand A = Q ~ [0, 17) that these three sets can be distinct.

(b) Let A, B be subsets of X. Show that

Bd(Av B) < Bd(A) v Bd(B);

show by means of an example (try X = R, A=Q n [0, 1] and B = [0, 1] — A) that
these two sets can be distinct. If A n B = ¥, then Bd(A U B) = Bd(A) u Bd(B).

3. (a) Show that, on a set with two elements, there exist four topologies.
{b) Cn a finite set, the only separated topology is the discrete topology.

4. An open subset of R is the union of a sequence of pairwise disjoint open Intervals,

5. One ordinarily identifies R with the subset R x {0} of R2. Then [0. 1] has non-
empty interior relative to R, but empty interior relative to R?,

Chapter 11

1. Let X be a topological space and A a nonempty subset of X. A subset V of X is called
a neighborhood of A if there exists an open subset U of XsuchthatAc U c V.

{a) The set of neighborhoods of A is a filter #.

(b) Give a necessary and sufficient condition for the identity mapping of X into X
to have a limit along & (assuming X is separated).

(c) Let X = R. A = N. Show that there does not exist a2 sequence V,, V.. V;....
of elements of ¥ such that every element of # contains one of the V,.
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2. Define a mapping f of R into R by
Jls(l -
Find the adherence values of f: (ajasx — = x;(bjasx — = x.lc)as x = 0.

3. Let X be the set R equipped with the discrete wopology. Show that the identity
mapping of X into R is continuous. but is neither open nor ciosed.

4. Let X, Y be topologicai spaces, f 32 mapping of X mto Y. The following conditions
are equivalent: (a) f is continuous and closed: (b) /(&) = 7(A) for every subset A of X.

Chapter III

1. Let E be a topological space and I = [0. 1]. On the product space E x 1. consider
the equivalence relation R whose classes are; (1) the sets with one element (x.r1)},
where x € E, r € L.t = 1. (i) the set E x {1;. The topological space C = (E x )R s
called the cone constructed over E.

(a) For x e E. denote by f(x) the canonical image of tx, 0 in C. Show that /s a
homeomorphism of E onto f(E).

(b) Show that E is separated 1f and only if C is separated.

2, Let X be a topological space. L a subset of X and x € L. We sav that L is locally
closed at x if there exists a neighborhood V of x 1n X such that L ~ V is a closed set
in the subspace V. We say that L is locally closed in X if 1t is locally closed at each of
1ts points,

(a) Show that the following conditions are equivalent: (i) L is locally closed: (ii)
L is open in L. (iii) L is the intersection of an open set and a closed set in X.

(b) The inverse image of a locally closed subset under a continuous mapping is
locally closed.

(c) If L., and L, are locally closed in X, then L, ~ L, is locally closed in X.

(d) If L, is locally closed in L,. and L, s locally closed in L;, then L, 1s locally
closed in L;.

(¢) Sappose that L is locally closed in X. Ler % be the set of open subsets U of X
such that L = U and L s closed 1in U. Let F he the boundary of L with respect to L.
Then X ~ Fis the largest element of %

3. Let X\ Y be topological spaces.
(8) Letx,x;,x;....€ Xand y, ¥y, 33, ... € Y. If the sequence ({x,, y,)) admits (x. )
as adherence value in X x Y, then the sequence (x,) (resp. (y,)) adinits x (resp. ¥} as

adherence value in X (resp. Y).
(b) Show that there exists in R? a sequence {(x,, v,)) that admits no adherence
value, even though each of the sequences (x,) and (y,) has an adherence vaiue in R.

4. The canonical projections of a product of topological spaces onto the factor spaces
are open mappings.

5. Let X, Y be topological spaces. A @ X and B = Y The following topologies on
A % B coincide: 1a) the topology induced by the product topology on X < Y, (b) the
product of 1he induced topologies on A and B.

6. On R", define an equivalence relation ® in the following way: (. x5, ..x,) ana
(¥ys ¥2u.-., yo) are equivalent if x; — v, s Z for all i. Show that the quouent space
R"/# is homeomorphic to T
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7. Let p be the canonical mapping of R onto T. Let fbe the mapping x — (p(x)k p(x\/i))
of R into T2, Show that fis injective and continuous, but that f'is not 2 homeomorphism
of R onto f(R).

8. Let X, Y be separated topological spaces. j'a continuous mapping of X into Y. The
graph of f'is a closed subset of X # Y.

9. Let E be a topological space. F and G subsets of E such that G < F. For G to be
closed in F, it is necessary and sufficient that G 7 F = G, where G denotes the closure
of G in E.

Chapter IV

1. In R? equipped with the usuai metric, let D be an open disc with center x, and
radius x > 0, and let A be a compact set contained in D. Show that there exists ' € (0. z)
such that A is contained in the open disc with center x, and radius «’.

2. Let E be a separated space, (x,, X2, ,..) a sequence of points of E that tends o0 2
point x of E. Show that {x, x,, X; ...} is compact.

3. Let E be a separated space. Suppose that for every set X, every filter base @ on X.
and every mapping f of X into E, fadmits an adherence value along #.Then E is com-
pact.

4. The topological spaces (0, 1) and (0, 1] are not homeomorphic.

5. Let E,, E, be nonempty topological spaces. If E; x E, is compact. then E, and E,
are compact.

6. Let A = R"™* —~ (0}. Define an equivalence relation &, on A in the following way:
two points x and y of A are equivalent if there exists t € R — {0} such that ¥ = tx. The
quotient space A/, is denoted PYR) and’is called the real projective space of dimen-
sion n.

(a) Let n be the canonical mapping of A onto P,(R). Show that = is open.

(b) Show that n is not closed.

(c) Let I' be the set of (x, ¥) € A x A such that x is equivalent to y. Show that " Is
closed. From this, deduce that P,(R) is separated.

(d) Let ., be the equivalence relation on S, obtained by restriction of %,. Show
that the quotient space S,/¥, is compact.

(e) Let ¢ be the restriction of n to S,. Show that ¢ is continuous and defines a
homeomorphism of S,/%, onto P,(R), so that P,(R) is compact.

() Let g be the mapping of S, into R, such that gix. ) = (x* — »°, 2xy) for
x, ye R, x* + 32 = 1, Show that ¢(S,) = S, and that g defines a homeomorphism
of §,44 onto S, so that P,(R) is homeomorphic with S,.

Chapter V

1. Show tha1 the conclusion of 5.5.12 may fail if X is not assumed to be complete.
(Take X = Q. Let ry, r5.,.. be the elements of Q arranged in a sequence. Take U, =
Q - {f,,}.)'

2. Let X be a metric space and A, B. C subsets of X. Show that one does not necessarily
have d(A. C) < 4(A. B) +.d(B. Ch{Take X = R.A =[0. 1). B = [} 2], C = [2. 3])
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3. In R" equipped with the usual Euclidean metric, the diameter of an open or closed
ball is twice its radius.

4. Let Xbeaset. Forx,yeX,setd(x, y) = | if x # y. d(x, y) = 0if x = y. Show that
d is a metric on X and that the corresponding topology is the discrete topology. The
diameter of a ball of radius <1 is 0.

S. Let X be a metric space. and x, x,, X3, X3, . .. points of X, Show that the following
conditions are equivalent: (i) x, — x; (ii) every subsequence of (x,, x, ...) has a sub-
sequence tending to x.

6. In 5.5.10, there are four hypothesest X compiete, the F, closed, the F, decreas-
ing, 4, — 0. Show that if any one of these hypotheses is omitted. it can happen that
F,nF;~ - isempty.

7. Show that in 5.5.13, f may fail to exist if /* is only assumed to be continuous
(but not uniformly continuous). (Take X =Y =R, X' = R — {0}, f(x) = sin(1/x)
forxeX')

8. Let X be a metric space, A a closed subset of X, B a compact subset of X. Assume
that A N B = . Show that d(A, B) > 0.

9. Letf,,/>....becontinuous functions 2 Qon [0, 1], suchthat: (@)/; 2 2 2 f32 +++
(B) the only continuous function >0 on [0. 1] that is majorized by all of the f, is the
function 0.

(a) For every x € (0, 1], let [(x) = lim,. o fy(%). For every integern 2 1, let O, =
{x € [0, 1]|(x) < 1n}. Show that O, is a dense open set in [0. 1].

(b) Show that ! vanishes on a dense subset of [0, 1].

Chapter VI

1. Let C be the set of continuocus real-valued functions on [0, 1], equipped with the
metric of uniform convergence. If n is an integer > 0, we denote by A, the set of f € C
for which there exists : € [0, | — 1,n] with the following property:

® @)= f@Isn —10) forall ¢ele:+ 1/}

(a) Let f € C be differentiable at at least one point of [0, 1). Show that f € A, for
some n.

(b) Let (f}, f>.--.) be a sequence of elements of A, tending uniformly to an element
Jof C. Assume that there exists in [0, | — 1n] a sequence ¢, ¢,,... having a limit ¢,
such that )

1) = fe)isme’ —¢) forall refr,y+ Iin)

(@) Show that fi(z,) = f(1).
(B) Show that { f(t) — f(t) S n(r’ = ) for ' e (L, ¢ + i/n).
(y) Show that t has the property (s) relative to f.
(¢) Show that A, is closed in C.
(d) Let f € C be a continuously differentiabie function and let ¢ > 0. Let n be an

integer > 0. Set M = supg¢,<: | f(x)l.
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Let 0 = 2y <2 <2, <--- < x,_y <&, = be real numbers such that each in-
terval [a;. a;..,] has length <z/{(M + 2n). Let g be the function that is linear on each
of the intervals [a,. %, ,], and is such that

g(a‘)) = g(al) = g(d‘) =+-=0,
g(al) - g(¢3) = “ﬁg) = iee= g,

{a) Show that ig(t') — g(t)] 2 (M + 2n)|¢’ = ¢t} if ¢ and ¢ belong to the same
interval [a;, a4 ,]

(p) Show thatd(f,f + g) s ¢

(v) Show that f + g ¢ A,. (Argue by contradiction.)

(¢) Show that the interior of A, (relative to C) is empty. (Argue by contradiction.
One uses (d) and the fact that every continuous real-valued function on [0, 1] is the
uniform limit of continuously differentiable functions: on this subject. se¢ 7.5.5.)

(f) Show that the intersection of the complements C ~ A, C ~ A,,... is non-
empty. Show that A, VA, v ---# C.

(g) Show that there exists an f € C that is not differentiable at any point of [0, 1].

2. This exercise is a commentary on Dini’s theorem.

(a) Construct on {0, 1] an increasing sequence of continuous real-valued func-
tions . f, ... that tends simply to a function f that is not continuous (so that f, does
not tend uniformly to /).

(b) Construct on [0. 1] a sequence of continuous real-vai.cd functions that tends
simply to 0 but does not tend uniformly to 0.

(c) Construct on R an increasing sequence of continuous real-valued functions
that tends simply to the function 1 but does not tend uniformly to 1.

3. Let F be a continuous real-valued function on {0, 1]3. Let C = ([0, 13, [0, 1]).
Throughout the exercise, one utilizes the metric of uniform convergence.

(@) Let f € C. Show that for every s € [0, 1], the function ¢+ F(s. t. f(2)) on [0. 1]
is continuous. Set

1
gs) = ‘. F(s. &, f(2)) de.

vQ

Show that g € €([0, 1], R).

(b) As fvaries, we have thus defined a mapping f — g of C into ¥([0. 1]. R). Let
@ denote this mapping. Show that @ is uniformly continuous.

(c) Show that ¢(C) has compact closure in €([0. 1], R).

Chapter VII

1. Let f: R = [0, + ) be a lower semicontinuous function. Show that f is the upper
envelope of a family of continuous functions = 0.

2. Let X be a topological space. x4 € X. and f, g finite aumerical functions on X that
are lower semicontinuous at x,. Suppose that f + g is continuous at x,. Show that
f and g are continuous at x,.
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3. Let (u,, #3, u3....) be a sequence of real oumbers such that u,., < 4, - u, for
m,n 21 Let

! = lim sup b f = lim nf &
= n LR a
(a) Show that u; .., s, Sy, =y, = -~y forali.. ..i,. and that
U < mu, for all positive integers m, n.
(b) Fix an integer p 2 i. Let x = sup(0. uy. Uz .- uyo )
(a) For every integer n 2 1. write n = k,p - r, with 0 < r, < p (Euclidean
division of n by p). Show that

e Kap Uy 2
n~n p n
{#) Show that | < u,p. What can be deduced about /' from this?
) Show that u,, n has a limit A as n — . and that 4, n > 4 for all a,
4. Consider the topological space
X=[011x[0.1]%{01]x::-.
An element of X is an infinite sequence (x, X, X3, ...) of numbers in 0, 1].
(1) Let n be an integer = 1. If f £ €([0, 11" R), one defines a function g on X by
setting
glxy X3, X300 = flx X3, .0 %,)

for any (x,. X1, x3....) € X. Show that g€ $(X. R). Let C, be the set of continuous
functions on X obtained in this way as f runs over #([0, 1]", R).

(2) ShowthatC, =« C, = Cy = -+,

(3) Show that C, v C; v C; w -+ is dense in €(X. R) for the topology of uniform
convergence.

5. Fora.b.c € Rand a < 0, denote by, , . the function x— ¢**~**~" on R, Show that
every continuous complex-valued function on R tending to 0 at infimity is the uniform
limit on R of linear combinations of the functions £, ; ..

Chapter VIII

1. Let {¢,. e;....) be the canonical orthonormal basis of /2. Show thai this sequence
has no convergent subsequence. From this, deduce that /2 is not locally compact.

2. Show that there exists no scalar product on /¢ for which the corresponding norm is
the norm of 8.1.5. (Show that the parallelogram law f{ails.) Analogous question for (2.

3. Let E be a separaied pre-Hilber: space, C a complete convex subset of E. x a point
of E. Show that there exists one and only one y € C such that d(x. y) = d(x. C).

4. For every .« = (x,. x3,.. ) & I, define a linear form J; on /§ by the formula
S y2yse - N =Xy = Xyt Xy

forall (yy, v2, 73, .. ) € l§ (note that the series on the right side is absolutely convergent).
Show that f, & (If)’ and that the mapping x — f, of I into (}§)’ is a linear bijection
such that || £ = iix{ for all xe IR,
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5. Let E be a normed space and u € #(E). Show that §u™ '™ has a limit as n — x.
(Use Exercise 3 of Chapter VII}

6. Letf,, f,. ... becontinuous compiex-valued functions on (0. 1]. Consider the follow-
ing conditions: (a) j, — 0 uniformly: (b) f, = 0 1n mean square: (x) f, tends to 0 sumpiy.
Then (a) = (b), 7a) = (c). Show that the implications (b) = (a), (c) = (b}, (b) = (¢}

are {alse.

Chapter IX

1. If. :n a normed space E. every absolutely convergent series is convergent. then E is
complete.

2. Let E be a Banach space and « € £(E). Show that tne series

2 a
| -vu.
.pu-:;——-*..,

3!

is absolutely convergent in Z(E). Its sum is denoted ¢*. Show that ¢* 1s bicontinuous.
with inverse ¢ "% Show that e*~* = ¢*2¥ il u, v€ Z(E) and uv = tu, Show that '¢*| <
‘. @i .

3. Leta. b e [0. ). Show that the famiily (@™ )im, men < 1S Summabie in R.
4. Letiay,,, be a summable family of numbers 2 0. Then the family (a7 ), is summable.

5. Let {x,,x,. x;, .- .) be a sequence of real numbers. Suppose that for every sequence
(¥go ¥35 ¥3, .« of real numbers tending to 0, the series x ¥, = X;¥; = X3¥3 = - i§
convergent. Show that |x,} = (X3 = x3] = - < &,

Chapter X

1. Let X. Y be topological spaces. Consider the following conditions: (a) X and Y are
connected: () X x Y 1s connected.
Then (a) = (b). If X and Y are nonempty. (b) = (a).

2. Let Q be an open subset of R". The following conditions are equivalent: (a) Q 1s
connected: (b) Q is arcwise connected.

3. Let X be a topological space. and a. b € X. The relation:
there exists a continuous path in X with ongin a and extremuty £

1s an equivalence relation 1n X. The equivalence classes for this relation are called the
arcwise-connected components of X.

4. A topological space X 15 said to be locally connected if every point admits a funda-
mental system of connected neighborhoods. If this :s the case, then all of the connected
components of X are open in X.

5. The topological spaces X = (0, !)and Y = [ \) are not homeomorpiuc (ccmpare
the complements of a point 1n X and in Y).
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6. One wants to show that it is impossible to find a sequence of pairwise disjoint, non-
empty closed subsets F,, F,, sa:.0f [0, 1] whose union is [0, 1]. One argues by con-
tradiction, on supposing that such subsets have been constructed.

(@) If Bd(F,) denotes the boundary of F, in [0, 1], show that F = Bd(F,) «s
Bd(F,) v -+ isclosed in [0, 1].

(b) Show that the interior of Bd(F,) in F Is empty. Deduce a ontradiction from
this by applytng Baire's theorem.
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