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Preface

This book discusses some of the first principles of modern analysis. It can be
used for courses at several levels, depending upon the background and ability
of the students.

It was written on the premise that today’s good students have unexpected
enthusiasm and nerve. When hard work is put to them, they work harder and
ask for more. The honors course (at the University of Wisconsin) which
inspired this book was, I think, more fun than the book itself. And better.
But then there is acting in teaching, and a typewriter is a poor substitute for an
audience. The spontaneous, creative disorder that characterizes an exciting
course becomes silly in a book. To write, one must cut and dry. Yet, I hope
enough of the spontaneity, enough of the spirit of that course, is left to enable
those using the book to create exciting courses of their own.

Exercises in this book are not designed for drill. They are designed to
clarify the meanings of the theorems, to force an understanding of the proofs,
and to call attention to points in a proof that might otherwise be overlooked.
The exercises, therefore, are a real part of the theory, not a collection of side
issues, and as such nearly all of them are to be done. Some drill is, of course,
necessary, particularly in the calculation of integrals.

Those using the book should not feel obliged to do every proof. It is more
important for teachers to explain the theorems well and to show how they are
used, and why they are interesting, than to spend all the time on proofs. This
is one place where the teacher has an advantage over the author. He can
choose proofs that seem to him exciting or illuminating, and skip some of the
others. The author, however, must do nearly all. In this book I have omitted
only the proof of Fubini’s theorem—in favor of a long list of applications.

Many topics in the mathematics curriculum find their best use in the
calculus of several variables: for example, much linear algebra, much topology,
much measure theory, and so forth. Usually students learn them as separate
topics. As a result, they understand these subjects narrowly and apply them
poorly. I have therefore done quite a bit of linear algebra, topology, and mea-
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sure theory—but always with the applications in mind and following close
behind. The result should be that students will understand both sides much
better.

Part I begins with a half intuitive-half rigorous discussion of applications,
chosen to arouse interest and to show the need for a precise and general theory,
and then develops this theory for functions of one variable. Unusual features
include the solid treatment of Taylor’s formula, the discussion of real analytic
functions, and the Weierstrass approximation theorem.

In Part II the differential properties of functions of several variables are
studied. There is some background on metric and vector spaces, but the bulk
of this part deals with applications of the implicit-function theorem to the study
of surfaces and manifolds, tangent and normal planes, maximum and minimum
problems in several variables and on manifolds, and so forth. Various interest-
ing sidelights, such as the derivation of Kepler’s laws of planetary motion and
mini-max descriptions of eigenvalues, are included.

In Part III the integration and differentiation of measures are studied.
The Lebesgue theory of integration is developed in the simple, yet perfectly
general, abstract setting of outer measures, and applied in many and diverse
situations, such as integration in R*, summation of multiple power series, and
Sard’s theorem on regular values of differentiable functions. The Lebesgue
theory of differentiation is presented for regular Borel measures on R and used,
for example, in establishing the formulas for change of variable in multiple
integrals. The theory of differentiation leads naturally to the study of surface
area via the area measures of Hausdorff. In the final chapter I discuss the
Brouwer degree of maps of spheres and its applications, developing the degree
from the analytic point of view suggested by John Milnor.

Theorems, Definitions, etc., are numbered within each chapter and section.
Thus, Theorem 6.3 of Chapter 8 is found in Section 6 of Chapter 8. Theorem
6.3 without any chapter reference is found in Section 6 of the chapter in which
the reference is made. The chapter number and title are printed in the upper
left-hand corner of each double-page spread.

The index lists most of the terms and symbols that are used and the page
or pages on which they are defined. The symbols occur ahead of the terms
beginning with the same letter. Thus, |4} and an occur at the head of the a’s.

I wish to thank my colleagues at Oregon State University and at the Uni-
versity of Oregon who read and commented upon earlier versions of the manu-
script. These include Professors P. M. Anselone, D. S. Carter, R. B. Guenther,
B. Petersen, and, particularly, R. M. Koch. Professor Norton Starr of Amherst
College also read an earlier version of the manuscript and made suggestions.
In addition, I wish to thank Professor D. C. Rung of The Pennsylvania State
University for suggesting the title. Finally, I wish to praise Mr. Edward J.
Quigley, who is a new publisher, but a good one.



preface ix

It is fitting to end this preface with advice to the reader from the creator
and patron saint of calculus. The following statement came in answer to the
question of how he had made his famous discoveries:

Isaac Newton

“By always thinking about them, I keep the subject constantly before me and
wait till the first dawnings open little by little into the full light.”

PREFACE TO THE
SPRINGER EDITION

Rademacher’s theorem on the differentiability of Lipschitz functions has been
added. Applications of Rademacher’s theorem and the Brouwer degree to
changes of variable in multiple integrals have been added. The main addition,
however, is a chapter on the results of Hestenes, Seeley, and Adams—Aronszajn~
Smith on extension of differentiable functions of various kinds across Lipschitz
graphs. A construction is given for a single extension operator which applies
to functions of class C™, functions of class C™ with bounded derivatives, functions
of class C™ with Hélder continuous derivatives, and to Sobolev functions. It
applies to many other function classes as well, but these are the ones discussed
explicitly. The discussion of the Sobolev spaces requires a2 minimal knowledge
of I? spaces (mainly the Hélder and Minkowski inequalities). The theorems
cover polyhedral domains, so they are of use in the numerical study of partial
differential equations, as well as of theoretical interest.

K.T.S.
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1 i Applications

1

DEFINITION
1.1

TANGENT LINES

The origin of calculus was the problem of finding the tangent to a curve. Like
most geometric problems, this has an immediate appeal and is very tricky.
What is a curve? What is the tangent line? From a straight geometrical point
of view both questions are almost impossible.

The thing to do with impossible questions is to avoid them. In the first
place, we shall not consider an arbitrary curve but rather the graph of a function.
In the second place, we shall not attempt a geometric definition of the tangent
line but shall use geometric intuition to come to an analytic definition. This
has several advantages. The analytic definition is fairly easy to give. The
notion that emerges is relevant not only to the tangent line, but also to other
problems where the tangent line has no role. Finally, in an analytic setting
the power of arithmetic and algebra can be brought to bear.

Let f be a real-valued function defined on an interval /, and let a be an
interior point of I (i.e., not an end point). We ask for the tangent line to the
graph of f at the point (g, b), b = f(a) (Figure 1).

A straightforward preliminary notion is that of a chord through the point
(a, 8). Itissimply a line through this point and some other point (x, y) of the
graph. Geometric intuition says that the tangent line should be the limit of
the chord as the point x approaches the point a.

The idea of the limit of a family of lines may seem as nebulous as that of
the tangent line itself. The trick is to replace each line by a number and to
deal with a limit of numbers instead. The number to use gives the direction
of the line. It is called the siope.

Let L be the line passing through the two points (a, b) and (x, y), a # x.
The slope of L is the number m = (y — b)/(x — a).
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Exercise 1

Exercise 2

Exercise 3

\

_____+

Figure 1

For the definition to make sense x must be different from ¢. What condition
does this impose on the line L?

Elementary trigonometry shows that the slope is the tangent of the counter-
clockwise angle from the positive x axis to L. Itisindependent of the particular
points (a, b) and (x, y) chosen on L.

Show that the slope is independent of the points (a, ) and (x, y) chosen on L
by using similar triangles.

Find the equation of the line passing through the points (—1, 2) and (3, 6).
[Hint: Calculate the slope in two ways—first by using the two points (—1, 2)
and (3, 6), and then by using the two points (—1, 2) and (x, y).]

If (a, b) and (x, y) are points on the graph of f, then b = f(a) and y = f(x),
so the slope of the chord joining them is

y—b _ &) =@

X —a X —a
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According to our intuitive geometric reasoning, the slope of the tangent line to
the graph of f at the point (a, ) should be the limit of these numbers as x
approaches a.

DERIVATIVES

The limit of the numbers

f@x) = f(a)

x—a
as x approaches a is called the derivative of f at the point a. It is written f'(a).
The result of Section 1 is that the tangent line to the graph of f at the
point (g, b) is the line passing through this point with slope f’(a). According to
the definition of slope, the equation of the tangent line is therefore

)~ b Y
L - 1@

Of course, the definition of a limit of numbers is lacking. Intuitively, the
limit of g(x) as x approaches g is the number /, if g(x) is as close as we please to
[ for every x that is close enough to a. To be useful in real proofs the definition
must be given a precise quantitative form. Note that the distance between
two numbers z and w is |z — w|.

The limit of g(x) as x approaches a is the number I, written lim,._,, g(x) = I,
if for each positive number € there is a positive number & such that
[g(x) — {| < € whenever |x — a| < & and x # a.

The definition would seem to fit the intuitive idea of limit, but its real
significance must come out of the results that can be obtained from it. Before
taking these up (in most of the rest of the book), let us look at some examples in
which the value of the limit is pretty clear.

First, let f(x) = x%. Then

f@x) — f(a) _ x2 — a?

X —a X —a

= x + a.

When x is close to a, x + a is close to a + g, so the limit is 2a; that is, f'(a) = 2a.
Find the tangent line to the curve y = x? at the point (2, 4).

The slope is f’(2) = 4, and the equation is

—4
2=y

ot or y=4x—4%
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THEOREM
2.2

Exercise 1

THEOREM
23

Example

Next, let f(x) = x®. Then
fx) — f(a) _ x3—ad

X —a X —a

= x?+ xa + a2

When x is close to a, x? is close to a® and xa is close to ¢®. Thus, the sum is
close to 3a? and f'(a) = 3a2
Let f(x) = x, where n is any positive integer. Then
f&) = f@) _ x*—a"
x—a x—a
To see this call the right side R and consider (x — )R = xR — aR. Each
term in xR cancels with the previous one in aR, so all terms cancel except the -
first one in xR, which is x*, and the last one in aR, which is a». It looks like this:
xR = x + x"1lg + X722 + ... + x2an—2 + xan—l’
aR = x"1g + xn—2a2 + ........ + Xan—l + an.
In the difference each term cancels with the one above or below it, leaving only
x" — a™.
The limit is a sum of n terms each of whichisa®!. Therefore, f’(a) = na™1.

= xn—1 + xn—2a + xn—-saz + .« . + xan-z + a™1,

If f(x) = x™, where n is a positive integer, then f'(x) = nx™ 1.

When 7 is a negative integer the same formula holds at any point x # 0. Try
to fashion an intuitive proof based on the one above. Discuss also the case

n=0.

The common functions occur as combinations, such as sums, products,
and quotients, of a certain few functions, such as x™, sin x, cos x, 4%, and log x.
To calculate the derivative of any common function, what is needed is the
calculation for each one of the few functions, and then some rules to deal with
combinations. The special calculations, even more than the general rules,
involve points of considerable interest and difficulty. They are carried out in
Chapter 2, as are the proofs of the general rules. Here we shall state without
proof one simple general rule that can be used in conjunction with Theorem 2.2
and Exercise 1 to illustrate the developing theory.

If f(x) = ag(x) + Bh(x), where a and B are real numbers, then f'(x) =
ag'(x) + BH (x).

Let f(x) = 3x2 — (8/x). If g(x) = x? then by Theorem 2.2, g’(x) = 2x; if
h(x) = x~1, then by Exercise 1, #'(x) = —x~%2. Therefore,

flix) =3 -2x 4 (=8)(—1)x% = 6x + ;?2
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MAXIMUM AND MINIMUM PROBLEMS

One of the intriguing applications of the derivative comes in finding the maxi-
mum and minimum values of a function and the points where they occur. The
geometric idea is that if f has a maximum or minimum at the point a, then the
tangent line to the graph at the point (g, f(a)) should be horizontal. In other
words, its slope is 0, or, in still other words, f'(a) = 0.

This is apparent geometrically, but it can be looked at analytically, too.
Suppose that f has a minimum ata. Then f(x) 2 f(a) for every point x, which
means that the quotient

f@x) = f(a)
X

(0 =20

- a

is >20ifx > aandis <0if x < a. Let x approach a but be always >a. The
limit f'(a) must be >0, since it is the limit of numbers that are all >20. Now
let x approach a but be always <a. This time f’(a¢) must be <0, since it is the
limit of numbers that are all <0. Thus, f’(¢) > 0 and f’(a) < 0, which leaves
only f'(a) = 0.

If f has a maximum or minimum at a and if f'(a) exists, then f'(a) = 0.
Now let us give a real proof using the formal Definition 2.1 of limit.

Suppose that f has a minimum ata. We assume that f’(a) > 0 and derive
a contradiction. [The contradiction is similar if we assume that f’(a) < 0.]
In Definition 2.1 take ¢ = 4f’(a) and find the corresponding positive
number & such that
lg(x) — f(a)] < e = 3f'(a) if [x—a/ <& and x #a.
Then
g(x) > f(@) —3%f(@ >0 if |[x—a <d and x #a,

whereas we saw above that g(x) < 0forevery x < a when f has a minimum
at a.

A cylindrical barrel is to contain 1 ft® of whiskey. What should be the dimen-
sions so that the barrel is built with the least amount of wood?

If x is the radius of the barrel and £ is the height, then the volume is wx%A, so

1
1 = mx*h and h=—:
T
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Exercise 1

Exercise 2

4

The amount of wood used is essentially the surface area of the barrel, which is
the area of the top plus the area of the bottom plus the area of the cylindrical
side. Thus,

2
area = wx2 + wx? 4 2wxh = 2wx? 4 —
X
Therefore, the problem is to find the value of x at which the function

flx) = 2mx* + %

is minimum.
By Theorems 2.2 and 2.3 (the same calculation as in the last section) we

have
2
fi(x) = 4mx — —-
x

If f has a minimum at g, then f'(a¢) = 0. Hence, 2ra® = 1, or

a= (2r)~"%  and h = 1—}-1 = 2237113 = 24,
a

The legitimate conclusion of this is that if the problem does have a solution,
then the best barrel is the one whose height is twice its radius. But it is not at
all clear that the problem does have a solution. Perhaps the function f does
not have a minimum. (Note that it certainly does not have a maximum.)
It could well be that there is no best barrel for a cubic foot of whiskey!

To settle this kind of question (from an amoral point of view, of course) we
shall have to prove a theorem to the effect that under the right conditions a
function must have a minimum or a maximum.

What are the right dimensions to make a rectangular field that contains 100
yd? of grass using the least amount of fencing?

What is the shortest distance from the point (18, 0) to the curvey = x2?
Where is the closest point on the curve?

VELOCITY AND ACCELERATION

A physical problem, apparently unrelated to the geometrical problem of tangent
lines, is the motion of an object along a straight line. An example is a falling
body.

Let coordinates be chosen on the line, and let s(f) be the coordinate of the
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object at the time ¢. In elementary physics the average velocity over the time
interval from ¢ = a to ¢ = x is (by definition) the difference between the final
and initial positions divided by the length of the time interval. Thus,

average velocity = i(-%—:—i&)-' (1

It is plain then how to define the velocity af the time t = a. It is the limit of the
average velocity as the time interval goes to 0. In other words, the velocity
at the time ¢ = a is the derivative 5'(a).

In this context it is natural to consider the velocity function, the function »
whose value at any time ¢ is the velocity at that time. We have

v() = 5'(¢) for each ¢. ©)

In elementary physics the average acceleration of the object over the time
interval from ¢ = a to ¢t = x is (by definition) the difference between the final
and initial velocities divided by the length of the time interval:

average acceleration = f’&%‘_”(@. (3)
—a

The acceleration at the time ¢ = a is the limit of the average acceleration as the
time interval goes to 0. Thus, the acceleration at the time ¢ = a is the deriva-
tive o(a).

The acceleration is the derivative of the derivative of s, which is called the

second derivative of s and is written s”.
Again, it is natural to consider the acceleration function a whose value at

any time ¢ is the acceleration at that time:
a(t) = () = s"(¢) for each ¢. 4)

A stone is dropped from the top of a 100-ft tree. When does it hit the ground?

What is known is the total force that acts on the stone. There is the force
of gravity pulling the stone down and the air resistance pushing the stone up.
Knowing these two forces, we must solve the problem.

The basis for the solution is the law of physics, the famous second law of
Newton, which states that the acceleration of an object is proportional to the
force acting on it. In other words, there is a constant ¢ such that if a(¢) is the
acceleration at time ¢ and f(¢) is the force acting on the object at time ¢, then

a(t) = cf(t) for each ¢. 5)

(The constant ¢ is determined by the units in which the acceleration and force
are measured.)
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THEOREM
4.1

In our present case the air resistance is nearly negligible, and we shall
neglect it. The force of gravity is nearly constant. (It depends on the distance
between the stone and the center of the earth which varies only 100 ft during
the fall.) We shall assume that it is constant. Therefore, according to formula
(5), the acceleration is constant. This constant, usually called g, has the value
of about 32 ft/sec/sec. 3

To proceed we have to choose the eoordinates. The line of motion is the
line from the top of the tree to the center of the earth. Let the coordinates on
this line be such that the origin is at the surface of the earth and the positive
direction on the line is upward. Let the time be measured from the moment
the stone is dropped. Then the information we have is that

v'(f) = a() = =32 and 2(0) = 0.

The condition 2(0) = 0 says that the stone has velocity 0 at the moment it is
dropped. If it were thrown down with a speed vy, then the condition would be

v(0) = —up. The minus sign here and in the acceleration come from the fact
that they are directed downward, while the positive direction on the line is
upward.

Now we see what the problem is: to determine the function » from its
derivative and its value at one point. Once this is done the function s is to be
determined from similar information.

An obvious question occurs. To what extent is a function determined by
its derivative? The answer is as follows.

Two functions have the same derivative at each point of an interval if and
only if they differ by a constant.

Part of the theorem is easy. If f = g — &, then by Theorem 2.3, f’ =
g — K. If f is constant, then f' = 0, so g’ = h’. The other part is not
so easy. Itis proved in Section 10 of Chapter 2.

Now let us return to the problem of the stone. We have v/(f) = —32, and
we know from Theorem 2.2 that the derivative of —32¢is also —32. According
to the present theorem, we must have »(f) = —32¢ 4~ ¢ for some constant c.

The value of ¢ is determined by the condition #(0) = 0. Indeed, 0 = »(0) =
—32-0+4 ¢. Therefore, ¢ = 0, and

o(f) = —32t. (6)

Now for s. We have s'(f) = —32¢, and we know from Theorem 2.2 that

the derivative of —16¢2 is also —32¢. According to the present theorem we
must have s(f) = —16¢2 + d for some constant d. This time s(0) = 100, so

100 = 5(0) = —16 -0 4+ d. Therefore, 4 = 100, and
s(t) = —16¢% + 100. (7
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When does the stone hit the ground? At the time ¢, when s(f) = 0 we

have
—1624 100 =0 or t= 3.

With what velocity does it hit the ground? With the velocity
»(3) = —32§ = —80.

AREA

The problem is to find the area under the graph of a function.

To be more precise, let f be a nonnegative function on an interval I, and
let ¢ and 5 be two points of I with a < b. We want to find the area of the set
that is under the graph of f, above the x axis, and between the lines x = 2 and
x = b—that is, of the set

{(x,):a <x<band 0<y <L flx)}.

Let J* f denote the area of this set.

The number [ is called the integral of f from a to 5. The symbol [ is
designed to be a peculiar letter S, standing for sum. When the integral is
defined properly (Chapter 3), it will appear as a limit of sums associated with
the function f, and area will be only one of many interpretations that can be
given to it.

It is not clear that the problem of area makes sense. Rectangles, triangles,
etc., have areas, but there is little reason to believe that such general sets do.
One thing is clear, however: If the area does make sense, then it ought to
satisfy the following two conditions:

A Ifm<flx) KMoma< x< b, thn
mb—a) < ["f< MG - ).
B. If a £ b L ¢, then

/:f=[:f+/bcf.

The first condition says that if a set contains a rectangle, its area is larger
than or equal to the area of the rectangle, whereas if it is contained in a rectangle,
its area is smaller than or equal to the area of the rectangle. The second condi-
tion says that if a set is cut into two parts by a vertical line, the area is the sum
of the areas of the parts.

In fact, it is not possible to define the area so that these two simple condi-
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tions hold unless some restriction is put on the function f. One natural restric-
tion is that f be continuous at each point in the following sense:

The function f on the interval I is continuous at the point a € I if lim,_,,

f(x) = f(a).

There is a detailed discussion of continuity in Chapters 2 and 3. For the
present it suffices to say that all the common functions are continuous except at
certain quite obvious points. For instance, the function f(x) = 1/xiscontinuous
at every point except O—and there is no way to define it at 0 so that it becomes
continuous there. The same is true of the function f(x) = sin(1/x).

Draw graphs of the functions f(x) = 1/x and f(x) = sin(1/x).
If f has a derivative at the point 4, then f is continuous at a.

(Don’t worry if there is difficulty with this one. The proof appears in
Section 3 of the next chapter. The statement is given mainly to bear out the
contention that the common functions really are continuous.)

The theory of area works very well for continuous functions.

Let f be continuous at each point of the interval I.

(2) For any two points a and b of I it is possible to define [3 f 50 that
conditions A and B above hold.

(b) Let a be a fixed point of I, and for each x € I define F(x) = [Z f.
Then F'(x) = f(x) for each x € I.

(c) Let G satisfy G'(x) = f(x) for each x € 1. Then for any two
points a and b of 1, [% f = G(b) — G(a).

Part (c) of this astonishing theorem is what permits the calculation of
integrals.

Find the area under the curve y = x% between x = 0 and x = 2.

According to the theorem, we should look for a function whose derivative
is 3.  One such is G(x) = x*/4, so

area = G(2) — G(0) = 4.

Part (a) of the theorem is not easy to prove. Parts (b) and (c) can be
proved now, but part (a) is postponed to Chapter 4. [Logically, however,
parts (b) and (c) do not make sense without part (a) to show that they do.]
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It is technically convenient to use the symbol f 2falsowhena > 5. In
this case it is defined to be — [¢ f.

Exercise 3 Show that condition B holds, that is, that

ch=/;bf+/;cf

no matter what the relative positions of the three points.

Proof of Part (b) This is a situation that requires the quantitative definition of limit. It
must be shown that for every positive number e there is a positive number
4 such that
F(x) — F(b
—({)-——(—Z—f(b)’ge if [x — 8| <& and x5 b,

x—b
which is the same as

F(x) — F(b)

fd) —e< > <fb) + e if[x— b <8 and x6. (1)

According to the definition of F and condition B,

z b z a z
Foy—F®) = [Tf=[Cr=[r+[r=[r
Therefore, formula (1) is the same as
z
f(b)—esx—l—b/ FL<fB)+e iflx—b <5 and x=b. (2
—0Jp

Let € > 0 be given. Use the fact that f is continuous at b to find

8 > 0 such that [f(y) — f(6)| < €if |y — b] < 8, hence such that

f6) —e<fO) Sfb)+e ifly—b <8 ©)

This is the & required in formula (2). Indeed, let |x — 5| < § and x > &.
If y is in the interval between & and x, then |y — 5| < §; so inequality (3)
holds. Therefore, by condition A,

(f6) = ) =5 < [T < (0 + = — ).
Division by x — b gives inequality (2).

Exercise 4 In the final paragraph it is assumed that x > b. What happens when x < 6?

Proof of Part (c) This one is easy now that part (b) is established. Indeed, G and F have
the same derivative. According to Theorem 4.1, they must differ by a
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constant; that is, G(x) = F(x) + a. In the difference G(b) — G(a) the
constant a cancels out, so

G®) — 6@ = F®) — Fa) = [ = [*r=['F.

The integral shows up in a great variety of mathematical and physical
problems.

A spring has a length of 1 ft when it is unstretched. Find the work done in
stretching it to a length of 2 ft.

First consider the physical background. Work is done when a force acts
through a distance. When the force is constant, the work is by definition the
product of the force and the distance.

In the present case the force is not constant. A characteristic of springs is
that the force is proportional to the amount of stretching. Let the spring be
anchored at the origin and stretched along the x axis, and let f(x) be the force
when the unanchored end is at the point x. The fact that the force is propor-
tional to the amount of stretching means that there is a constant ¢ such that
f(x) = ¢(x — 1). The constant ¢ is a quantity associated with the particular
spring, which is determined by experiment. Let us suppose that ¢ = —1, so

f@) = —@x-1). ‘
Why is ¢ negative?

In general, let W2(f) be the work done by the force f as it acts through the
interval from a to 4. Conditions A and B are clearly satisfied by W. The
first says that if the force is everywhere >m, then the work done is > that
done by the constant force m, whereas if the force is everywhere <M, then the
work done is < that done by the constant force M. The second says that if &
is between a and ¢, then the work done over the interval from a to ¢ is the sum
of the work done from a to 4 and the work done from & to c.

Theorem 5.2 was proved solely on the basis of conditions A and B. There-

fore, if G'(x) = f(x), then
W = Gb) - Ga) = ['f.

In our particular case, G(x) = —4x? 4 x satisfies G'(x) = f(x), so the solu-
tion of the problem is

work = G(2) — G(1) = —13.

Is this really the solution, or should the solution be +3?
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Calculation
of Derivatives

LIMITS

The statement lim.,q g(x) = [ has been discussed in two cases. In the first,
the definition of the derivative, g is the quotient

f&x) — f(a) ) f@@)

—a

gx) =

where f is a function defined on some interval and ¢ is an interior point of the
interval (i.e., not an end point). In this case g is defined at every point suffi-
ciently close to a, except for a itself.

In the second case, the definition of continuity, g is a function defined on
some interval I and a is a point of I, quite possibly an end point.

In general g is a function defined on some set S, 4 is a point that may or
may not belong to §, and / is a number. There are two ideas to be expressed.
The first is that there are points of § as close as we please to a. The second is
that g(x) is as close as we please to / if x is in § and is close enough to a.

These ideas are relevant in a wide range of situations. There is no reason
that the set S on which g is defined must be a set of real numbers, or that the
values of g must be real. What is necessary is that there be a distance,
so that it makes sense to say that x is close to a and that g(x) is close to /.
For instance, either set could be the plane, or the three-dimensional space.
This general point of view will be necessary in the end, but for the time
being it will be simpler to stick to real-valued functions defined on sets of real
numbers.
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1.2

Proof

THEOREM
1.3

Let g be a real-valued function on a set S of real numbers. Let a and [ be
real numbers. The statement

lim g(x) =/
z—a
zES
means that
(a) For each positive number & there is at least one point x & S with
|x — a] < 6.

(b) For each positive number e there is a positive number & such that if
|[x —a| < dand x € S, then |g(x) — || < e.

If a limit exists, it is unique.

Suppose that
lim g(x) =1{ and lim g(x) = m.

z€s zes
Let € be a positive number. (We shall see how small to take it at the
end.) Find 8; > 0 so that
lg(x) =l <e if|x—a| <8 and xES,
and find é; > 0 so that
lg(x) —m| <e iflx—a| <8 and xES.

If 6 is the smaller of the two numbers 8; and &3, then by condition (2) in
the definition there is at least one point x € § with |[x — a| < 8. For
this point x we have

[f—ml <l — g+ |gkx) —m| <ete=2e
If [ # m, then we can take ¢ < |/ — m| and obtain the contradiction
[l —m|l <2< |l —ml.

It is not true, of course, that a limit always exists. Consider the function 1/x
ontheset S = {x:x 3 0}. Itisclear that for every interval I containing 0 this
function is unbounded on I/ S. On the other hand, we have the following

theorem.

If the limit
lim g(x)
r—a

zES
exists, then there is an interval I with center a such that g is bounded on 1M S.
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Proof Let / be the limit and find & > 0 corresponding to ¢ = 1. If I is the
interval {x:|x — 4| < 8}, then

e < lgx) =l + il <1+ forxEINS.

It is not true either that a limit always exists when the function g is
bounded. Give a couple of examples.

THEOREM If g(x) 2> 0 everywhere on S and if
1.
lim g(x)

z—a
zES
exists, then
lim g(x) 2 0.

z—a

zES

Proof Suppose that the limit / is negative, let e = —/, and find the corresponding
8. By condition (a) there is at least one point x € § with |x — a| < 8.
For this point we have

gx) S+ gl) =l <i—-1=0,
while by hypothesis g(x) > 0.

Exercise 1 Suppose that
lim g(x)
z—a
zES
exists and that there is an interval I with center a such that a < g(x) < 8 for
every x © IM S. Then
a <lim g(x) < 8.
z—a
ze8S
There are some special cases that are particularly common and useful and
have their own particular names.

DEFINITION When S = I — {a}, where I is an interval and a is an interior point (i.c.,
L5 not an end point), we write
lim g(x)  for  lim g(x).
T—a T—a
T7#a zE8

When S = I — {a}, and a is the right end point of I, we write
lim g(x),

z—a
z<a

and call the limit the left-hand limit.



18 2/calculation of derivatives

Exercise 2

DEFINITION
2.1

Exercise 1

Exercise 2

When S = I — {a} and a is the left end point of I, we write

lim g(x),
z—a
z>a

and call the limit the right-hand limit.

The limit
lim g(x)
r—a

T#a

exists if and only if both the left- and right-hand limits exist and are equal.
(Then, of course, they are equal to the limit.)

LIMITS AND DERIVATIVES

Let f be a real-valued function defined on an interval I and let 2 be an interior
point of I.

If the limit
o ) = £@)
1m
z—a X —a
z#a

exists, then f is differentiable at the point a. The value of the limit is called
the derivative of f at a, or f'(a).

The left- and right-hand derivatives are defined in the same way with
limit replaced by left- or right-hand limit.
Of course, the derivative does not always exist.

The derivative exists if and only if the left- and right-hand derivatives both
exist and are equal.

Let f(x) = |x|. The left- and right-hand derivatives exist at every point.
They are equal at every point except 0 and are different at 0.

Let us calculate the derivative of the function f(x) = x*, where n is a
positive integer. We have seen in Section 2 of Chapter 1 that

f(x) f(a) xn1 + X2 + xn—3a2 + . . e + xa™2 + an—l, (1)

X —a
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so we have to calculate the limit of this sum. In Section 2 of Chapter 1 we
reasoned that each term in the sum has the limit 2" and that there are n such
terms, so the limit should be ng*=. The justification of this reasoning calls
for a theorem on limits of sums and products.

Let
lim g(x) = { and lim A(x) = m.
78 zes

(@) Iff =g+ h, then
lim f(x) =1+ m.

T—a

zES
(b) If f = gh, then
lim f(x) = Im.

T—a

zES
(©) Iff = g/h, then
lim f(x) = /m provided m # 0.

T—a

zES

[In these statements it is assumed tacitly that f, g, and 4 are all defined on the
same set . In part (c) this requires that A(x) # 0 for all x € S. However,
see the exercises.]

The theorem is applied in the following way. Part (b) shows that the
limit of each term in (1) is 2"}, and part (a) shows that the limit of the sum is
na®'. This is not quite fair, since the theorem deals with the sum and product
of two functions, while here there are sums and products of several. (The
typical term in the sum is x*~*~1q* which should be thought of as a product of
n — 1 factors, k£ of them equal to 2 and n — k — 1 of them equal to x. Each
factor obviously has the limit g, so there are n — 1 factors each with the limit a.)
The case of several functions follows easily from the case of two, with the result
that the limit of a sum is the sum of the limits, and the limit of a product is the product
of the limits, no matter how many functions are involved.

The idea is always to estimate the quantity that must be proved to be small
by means of those that are known to be small.

First take part (a). The quantity that must be proved to be small is
|f(x) — (I + m)]|, and those that are known to be small are |g(x) — /| and
|h(x) — m|. In this case we have the estimate

If(x) — 0+ m)| = |gx) — I + h(x) — m|< |g(x) — 1| + |a(x) — m].
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If € is a given positive number, then ¢/2 is also a positive number; so we
can find a positive number & such that

lg(x) =] < ¢/2 and |h(x) — m| < ¢/2
whenever |x —a] < 8 and xES.
Then

[f(x) = I+ m)| <e/2+€¢/2=¢€¢  whenever|x —a|<é and xES.

Strictly speaking, we should find first a 6, for g and a §, for 4, and
then take & to be the minimum of &; and 8;. Usually some of these
intermediate steps are skipped, and 6 is chosen so as to satisfy several condi-
tions simultaneously.

Part (b) is more complicated. In this case the quantity that must
be proved to be small is |f(x) — im|, and those that are known to be
small are again |g(x) — /| and |k(x) — m|. There is a trick that is almost
always used with products, which is to add and subtract the same num-
ber, in this case the number lA(x). We have

|fx) = Im| = |g(x)h(x) — Ih(x) + Ih(x) — Im]|
< lg@) — 1| [k(=)] + || [~(x) — m].

The term |I| |h(x) — m| is not at all troublesome. [If |4(x) — m]| is small,
then so is |{| [#(x) — m|.] The term |g(x) — I| |h(x)| could be. Itiscon-
ceivable that although [g(x) — /| is small, |A(x)]| is big, so that the product
is not small. This is covered by Theorem 1.3.

We proceed as follows. Let ¢ be a given positive number. First
choose a positive number 8, and a positive number M so that |i(x)| < M,
whenever |x — a| < 8§ and x € §. Then ¢/(|I| + M) is also a positive
number, so we can find a positive number §; such that

and |h(x) — m| <

€
6 =< T+

whenever |x — 2| < §; and x E S.

If 6 is the minimum of & and §; and if [x — 4| < & and x € S, then

€.

[f(x) — M<M+M +HM+M

In doing part (c) we can take account of part (b) and suppose that g
is the constant 1, in which case we have
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The point here is to make sure that the denominator of the fraction is not
too small. We know that the numerator is small, but if the denominator
were also small, then the fraction could be big.

Since |m|/2 is a positive number, we can find 8 so that |k(x) — m| <
|m|/2, whenever |[x — a| < 8 and x € S. Then

[h(x)| = |m = (m — h(x))| > |m| — %: l_';l_l

iflx—a|l<é and xES;
therefore,

1

£ — 1 < 2|h(x) — m|

> whenever [x —a| < & and x € S.
m

Now let € be a given positive number. Then m?%/2 is also a positive
number, and we can find §; so that

|h(x) — m| < m%/2  whenever x —a| <8 and xES.
Taking & to be the smaller of § and 8, we have the inequality required.

The three parts of the theorem are now proved.

If f(x) = x", where n is any integer, then f'(a) = na™?, provided a #~ 0
if n is negative.

The theorem is already proved if n is positive. It is obvious if n = 0.
Let n be negative, say n = —k. Then

f) = f@ _ _1 (_1 _1)_( xk—ak)i.
x—a x—a\x* a*) x — a ) x*a*
We have seen already that the limit of the first factor is —ka*~! and by

Theorem 2.2(c) that the limit of the second is 1/a%. Therefore, the limit
of the product is

—kab1m% = —fg—k—l = pgn—l,

If a is an interior point of an interval J, then

lim f(x) = lim f(x).

T
zEINS zES

(That s, if one of the two limits exists, then so does the other, and they are equal.)
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Exercise 4

THEOREM
3.1

Proof

THEOREM
3.2

Theorem 2.2(c) can be improved as follows.

Under the hypotheses of Theorem 2.2(c) there is an interval I with center a such
that h(x) £ O for all x € IM §. In this case f is defined on 7N § and

lim f(x) = {/m.
zeins

DERIVATIVES OF SUMS, PRODUCTS, AND QUOTIENTS

The theorems on the limits of sums, products, and quotients lead to theorems
on the derivatives of sums, products, and quotients. One additional fact is
needed first, however.

If f is differentiable at a, then
lim f(x) = f(a).

z—a
z#a

The number 1 is positive, so we can find a positive number § such that

f&) — @)

—————" —f'@)| <1  whenever |x —a| < & and x a.
x—a 1

Hence

lfx) — f@)| < |x — a|(|f'(a)] + 1)

whenever |x —a| < 80 and x # a.

If € is any given positive number, choose §; so that

€
i(lf e} +1) <e that is, 6 < ————-
If & is the smaller of 8 and &), then we have

[f(x) — fl@)] < e whenever |x — a| < 8.

Let g and h be differentiable at a. Then g + h and gh are differentiable
at a, and so is g/ h if h(a) % 0. Moreover,

@ (@+hn =g+F,
(b) (gh) = g'h + gk,
() (g/B) = (g"h — gh')/ 12,

where all functions and derivatives are calculated at a.
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Part (a) follows directly from Theorem 2.2(a). For part (b), if f = gh,
then
f(x) = f@) _ gW)h(x) — g(a)h(x) + gla)hix) — gla)h(a)

X —a X —a

= 80280 ) 1 40
X —a ’

h(x) — h(a).
x—a
Part (b) then follows from Theorems 2.2 and 3.1.

In proving part (c) we can take account of part (b) and suppose that
g is the constant 1, in which case the formula to be proved becomes

(A/h) = —K/k. (c")
If f = 1/h, then
16 = &) _ 1/h) = 1/h@) _ ha) = hx) 1

x—a x—a x—a h(x)h(a).

Formula (c) follows from Theorems 2.2 and 3.1.

Note that if 4 is the constant «, then #'(z) = 0, and part (b) of the
theorem gives
(ag)’ = ag’  if @ is a constant.

Combining this with part (a) of the theorem, we get

If g and h are differentiable at a, and o and B are real numbers, then ag + Bh
is differentiable at a, and

(g + BR)' = ag' + BH'.
This was the assertion of Theorem 2.3, Chapter 1.

Theorem 3.1 says that if f is differentiable at a, then f is continuous at a.

Prove Theorem 2.3 (the derivative of x") by using Theorem 3.2 and mathe-
matical induction.

Calculate the derivative of

) 20— 3x8 4 12x

x) = —m——
x4+ 1

For a function to be differentiable at a point a it must be defined at least on

some interval with 2 as an interior point. Is this condition met in the case of

the sum, product, and quotient in Theorem 3.2?
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4 CONTINUITY

The purpose of this section is to list some of the simplest properties of continuity,
those that follow directly from the theorems already proved about limits. Some
of the deeper properties have very far-reaching consequences, which will be
explained as they come up (for example in Chapter 3).

DEFINITION A function f on a set S is continuous at the point a & S if
4.1
lim f(x) = f(a).
z—a
zES

The function f is continuous on S, or simply continuous, if it is continuous
at each point a € S.

This is the same definition that was given in Section 5 of Chapter 1, except
that the earlier definition applied only to functions defined on an interval.
If the definition of limit is written out in full, then Definition 4.1 becomes

DEFINITION A function f on a set S is continuous at the point a & S if for every positive
4.2 number € there is a positive number & such that if |x — a| < 8 and x € S,
then

1f(x) = f@)] < e
In terms of continuity the assertion of Theorem 3.1 is as follows.

THEOREM If f is differentiable at a, then f is continuous at a.
4.3
Exercise 1 The hypothesis that f is differentiable at a implies that f is defined at least on
some interval with center a. Apart from this requirement, the set S on which
f is defined is immaterial.

Exercise 2 Show that the function f(x) = || is continuous but not differentiable at 0.

Exercise 3 Let f(x) = 0 if x is irrational and f(x) = 1/¢ if x = p/gq, where p is an integer,
g is a positive integer, and the two have no common factor. Show that f is
continuous at each irrational point, discontinuous at each rational point, and
differentiable nowhere.

There are even examples of functions that are continuous at every point
but differentiable at no point, but these are not easy to construct.
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Theorem 2.2 on the limits of sums, products, and quotients gives the follow-
ing theorem on the continuity of sums, products, and quotients.

If f and g are continuous at a, then f 4+ g and fg are continuous at a, and so
isf/g if g(a) # 0.

Here it is assumed that f and g are defined on the same set S, in which case
the sum and product are defined on § and the quotient is defined on {x:x € S
and g(x) # 0}.

Show that there is an interval I with center a such that the quotient is defined
at all points of § M I, the assumptions being those of the theorem.

State and prove a theorem on the continuity of a composite function. The
composite function is defined as follows. Let f be defined on § and g be defined
on T. The composite function £ is defined on the set {x:x € T and g(x) € §}.
For any point x in this set, 4(x) = f(g(x)). If T is an interval with center 4
and § is an interval with center b = g(a), what can be said about the set on
which £ is defined? What are some simple choices for f and g if 4(x) = Vv 55,

h(x) = sin V'x, or h(x) = (x — 1)#®

TRIGONOMETRIC FUNCTIONS

In plane geometry an angle is an ordered pair of half-lines with a common
initial point. The trigonometric functions are defined as follows. Translate
and rotate the angle so that the initial point is at the origin of the coordinates
of the plane and so that the first half-line coincides with the positive x axis.
Then the sine of the angle is y, the cosine is x, the tangent is y/x, and so on,
where (x, y) is the point where the second half-line meets the unit circle (the
circle with center at the origin and radius 1).

In calculus we do not deal with functions defined on the set of ordered
pairs of half-lines, but rather with functions defined on sets of real numbers.

Let 0 be a real number. Let (x, y) be the point obtained by starting at the
point (0, 1) and traveling counterclockwise along the unit circle a distance 6
if 0 > 0 (clockwise a distance —0 if § < 0) (Figure 1). Then

-

sin @ = y, cos § = x, tan § =

RiIx xIv

1 1
csc = — sec 0 = — cot @ =
y x
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P = (e, /27 (1 71%)
1
yla
4' R=(1,0) .
0=(0,0) x

Figure 1

The sine and cosine are defined for all real 8, but the others are undefined at
certain exceptional values of §. What are the exceptional values in each case?

Explain the relation between Definition 5.1 and the geometric definition, and
prove the familiar “addition formulas”
sin(f + @) = sin 8 cos ¢ + cos 6 sin ¢, .
cos(f 4+ @) = cos 0 cos ¢ — sin 0 sin ¢. M
The calculation of the derivatives of the trigonometric functions is based
on the addition formulas and on two inequalities:
Isin 8] < |6 for every real 4, )
6 <tan@ for 0 < 0 < «/2. 3)
From a geometrical point of view these inequalities are easy to prove. Inequality
(2) says simply that the perpendicular distance from the point P = (x, y) to the
x axis is less than the distance along an arc of the unit circle. Inequality (3)
says that the area of the sector § = ORP is less than thearea of the triangle
T = ORQ. To see this, note that T is a right triangle with base 1 and height

y/x. Therefore,

1 y 1
= - el =~ t A
area 7 2 . 2an49

As for the sector, the ratio of the area of S to the area of the whole circle is equal
to the ratio of the arc length 6 to the arc length of the whole circle. In other
words (since the radius of the circle is 1),

area § i .

b
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hence

S=<
area 2

Thus, the inequality (3) does say exactly thatarea § < area T (which is obviously
true since S C 7).

Whether this argument, or even Definition 5.1 itself, can be considered rigorous
is a question that can be debated pretty hotly. On the one hand, they make use
of the notions of arc length and area, which have not even been defined. These
are rather complicated notions in which too-free use of intuition can lead quickly
to trouble. On the other hand, we are not dealing here with the arc length of
some complicated curve or the area of some complicated figure, but just with
arcs and sectors of circles. In this case the geometric argument is very con-
vincing, and, after all, the final test of rigor is whether the argument is really
convincing. So the question is debatable. Presently, we shall be able to end
the debate in either of two ways. One is to provide a sound general theory
of arc length and area so that the above arguments no longer have to appeal to
geometric intuition. The other is to take an entirely different point of view
and to define the trigonometric functions by certain “infinite sums” instead of
by Definition 5.1. Such a definition appears more complicated in the beginning,
but in the end it is much easier to work with. For those who want to, it is all
right to take the results of this section as provisional until the time (Chapters
4 and 6) when the more sophisticated methods are ready.

Now let us calculate the derivatives of the sine and cosine on the basis of
the addition formulas (1), the inequalities (2) and (3), and the identity

sin? § + cos? 6 = 1 for all real 6, “)

which comes from the fact that the point (x, y), x = sin 6, y = cos 6, is on the
unit circle. Take any real number 4 and put § = ¢ = h/2 in the addition
formula for the cosine, and then use the identity (4). The result is

h h
cosh = cos’é - sin’-z- =1- Zsin’E;

hence ‘
1—cosh=2 sin’% for all real A. (5)
Thus, the inequality (2) gives
1 ~cosh sin2(k/2) h
< <|= 6
l A =\ Tw2 |72 ©
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Proof

and in particular that

lim 1 —coskh

1 — =
h—0 h

h=0

)
Inequalities (2) and (3) together show that

cosh<— <1 for |A| < g (8)

lim — = 1. (9

Why does inequality (8) hold for |4| < x/2 and not just for 0 < & < =/2?
Write out the proofs of (7) and (9) with €’s and &s.

If f(x) =sin x, then f'(x) = cosx. If f(x) = cos x, then f'(x) =

—sin x.

It is clear in general that

B —
f(a) = lim f;(‘fi__)__f_@_), (10)
A0 h
R0
which is a more convenient formula than the original for making use of

the addition formulas.

Exercise 5 Prove the obvious formula (10).

In the case of the sine we have

sinfa + k) —sina sinacosh -+ cosasink — sinag
h h

. cosh—1 sin A&

sing ——— 4 cosa —

h

so the result follows from formulas (7) and (9) (and the theorem on the
limit of a sum or product).

Exercise 6 In the case of the cosine the proof is similar. Carry it out.

Exercise 7 Express each of the trigonometric functions in terms of the sine and cosine, and

calculate its derivative.
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Find the maximum of the function f(x, ) = 3x — 2y on the unit circle. [Hint:
(%, ) is on the unit circle if and only if x = cos § and y = sin § for some 6.]

COMPOSITE FUNCTIONS

Another way of combining two functions is to follow one by the other. The
result is called the composite function. The main theorem, called the chain rule,
is as follows.

(Chain Rule) If g is differentiable at a and f is differentiable at g(a) = b,
then the composite function h(x) = f(g(x)) is differentiable at a, and

¥(a) = ()¢ (a) = f'(g(a)) g (a).

The function A(x) = (x — 1)% is the composite of f(y) = y*and g(x) = x — 1.

‘Therefore, #'(a) = 3621 = 3(a — 1)2.

Let g be the function whose graph is the top half of the unit circle [the circle
with center (0, 0) and radius 1]. The equation of the unit circleis x2 + y2 = 1,
so g satisfies the equation

glx)2+ x2 =1,

Take the derivative on both sides, considering g(x)? as the composite of g with
f(y) = y% This gives
2g(x)g’(x) + 2x = 0.

Tl';(:.refore, since g(x) = V1 — x?

—X bt 4

0= T Vice

A remark is needed about the meaning of the theorem.