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Preface

Transformation geometry is a relatively recent expression of the successful
venture of bringing together geometry and algebra. The name describes an
approach as much as the content. Our subject is Euclidean geometry.
Essential to the study of the plane or any mathematical system is an under-
standing of the transformations on that system that preserve designated
features of the system.

Our study of the automorphisms of the plane and of space is based on only
the most elementary high-school geometry. In particular, group theory is not
a prerequisite here. On the contrary, this modern approach to Euclidean
geometry gives the concrete examples that are necessary to appreciate an
introduction to group theory. Therefore, a course based on this text is an
excellent prerequisite to the standard course in abstract algebra taken by
every undergraduate mathematics major. An advantage of having no college
mathematics prerequisite to our study is that the text is then useful for
graduate mathematics courses designed for secondary teachers. Many of the
students in these classes either have never taken linear algebra or else have
taken it too long ago to recall even the basic ideas. It turns out that
very little is lost here by not assuming linear algebra. A preliminary version
of the text was written for and used in two courses—one was a graduate
course for teachers and the other a sophomore course designed for the
prospective teacher and the general mathematics major taking one course
in geometry.

A several-track option allows the basic material on isometries to be
followed by application of isometries to the ornamental groups, tessella-
tions, similarities and their application to classical theorems, affine
transformations, and transformations on three-space. The illustration at
the end of this Preface shows the interdependence among the chapters. The
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Vil Preface

book may be used for either a one-semester or a one-year course. The first
nine chapters are necessary and sufficient for such a course.

Instructors who pursue the study of the ornamental groups in Chapter 12
will want to know about the Dover Pictorial Archive Series by Dover Publi-
cations of New York. Several of the illustrations in this text are taken from
Designs and Patterns from Historical Ornament by W. and G. Audsley and
other paperback books in that series of copyright-free art. Those feeling
strongly about including or excluding the traditional topics that constitute
what was called college geometry a few years ago may choose to emphasize
or omit Chapter 14. Such decisions permit a course with the instructor’s
own mark. Perhaps some students will use chapters not covered in class for
independent study.

The belief that geometries can be classified by their symmetry groups is no
longer tenable. However, the correspondence for the classical geometries
and their groups remains valid. Undergraduates should not be expected to
grasp the idea of Klein’s Erlanger program before encountering at least the
projective and hyperbolic geometries. Therefore, although the basic spirit
of the text is to begin to carry out Klein’s program, little mention of the
program is made within the text.

I am indebted to my colleagues Hugh Gordon and Violet Larney for
classroom testing the preliminary version of the text at the undergraduate
and graduate levels. I am especially indebted to Hugh for the discussions
and many helpful suggestions offered at our lunch meetings over the years.
Finally, I would like to thank Anne Marie Vancura for producing the art
work.
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Chapter 1

Introduction

§1.1 Transformations and Collineations

Euclid’s Elements first placed mathematics on an axiomatic basis. Written
shortly after 300 B.c. in Alexandria, then a Greek city at a mouth of the Nile,
the Elements proved to be the world’s most successful secular book. Accord-
ing to one story, Euclid had to tell King Ptolemy, who was not the last to find
the work difficult, that there was no royal road to geometry. Today, Euclid
would revise that comment and present much of his mathematics through
transformations. Transformation geometry is a stretch along the royal road
to geometry. The name describes an approach as much as the content of our
study. Our subject is Euclidean geometry and, until Chapter 16 where we
consider three-space, we suppose we are talking about the Euclidean plane.

A transformation on the plane is a one-to-one correspondence from the
set of points in the plane onto itself. For a given transformation f, this
means that for every point P there is a unique point Q such that f(P) = Q
and, conversely, for every point R there is a unique point S such that
f(S) = R. To fully understand any mathematical system you must under-
stand the transformations of the system and especially those transformations
of the system that leave some particular aspect of the system invariant. The
set of all transformations on the plane is too large to be very interesting. One
very large subset consists of those transformations that preserve nearness,
meaning point P near point Q implies f(P) near point f(Q). Making this
meaning precise and subsequent study fall into the mathematical realm
called ropology. Topology has been called rubber sheet geometry since a line
need not go into a line under such a transformation. However, we shall study
the more classical transformations f having the property that if / is a line
then f(/) is also a line. A transformation f with this property is called a

1



2 I Introduction

collineation. We take the view that a line is a set of points and f{/) is the set
of all points f(P) with point P on line /. For a given collineation f, then f(/)
is a line and point f(P) is on line f(/) if and only if point P is on line /. Trans-
lations and rotations are examples of collineations. Our study might well be
called ““collineation geometry.” In any case, let us realize that we shall be
studying Euclidean geometry using the methods supplied by emphasizing
transformations.

To say that for every point P there is a point Q such that f(P) = Q is to
say that fis a mapping on the set of points. Mapping f'is said to be onto if for
every point P there is a point Q such that f(Q) = P; mapping fis said to be
one-to-one if f(R) = f(S) implies R = S. So a transformation is just a
mapping on the points that is both one-to-one and onto. (Transformation
may be defined differently in other courses, such as linear algebra.)

Points will be denoted by capital Roman letters. Lines will be denoted
by lowercase Roman letters. Transformations will be denoted by lowercase
Greek letters. The reason for this last choice is to make expressions easier to
read, once you become familiar with the letters. You already know alpha «,
beta B, and gamma y from trigonometry and perhaps also theta ®, phi @,
and psi ¥. Four more letters that we shall use often are rho p, sigma o,
tau 7, and iota 1. (Learn to pronounce the names of the letters the way your
instructors do—even if this means different pronunciations in different
classes.) For reference the entire Greek alphabet is given below.

The Greek Alphabet
Letters Names Letters Names Letters Names
A « alpha I iota P p rho
B B beta K « kappa Z o sigma
r vy gamma A A lambda T 1 tau
A 6 delta M u mu T v upsilon
E ¢ epsilon N v nu o ¢ phi
7z ¢ zeta = ¢ Xi X chi
H 7 eta O o omicron Y psi
e 0 theta n = pi Q o omega

We suppose familiarity with the Cartesian plane. Here, a point is an
ordered pair (x, y) of numbers, a line is the set of points satisfying an equation
aX + bY + ¢ = 0 where a, b, ¢ are numbers with not both a = 0 and
b = 0, and the distance between points (xy, y,) and (x,, y,) is given by

\/(xz —x) 4+ (2, — -

Note that numbers and lines are both denoted by lower case Roman
letters; there is little likelihood of confusion, however. Let’s agree once and
for all that O is the origin (0, 0) in the context of the Cartesian plane. The
Cartesian plane is the standard model of the Euclidean plane, and, for our




§1.2 Geometric Notation 3

purposes, the two may be identified. We shall use ““Cartesian plane” to
emphasize that we are dealing with the analytic aspect of the plane. The
name comes from that of Rene Descartes (1596-1650), who is usually
given credit for the invention of analytic geometry and is often called the
founder of modern philosophy. There is very little of importance in geometry
between Pappus’ Collection, which was written in Alexandria about A.D. 320,
and Descartes’ The Geometry, published in 1637. Descartes’ bringing
together of geometry and algebra released the bind which essentially limited
the advancement of Greek mathematics. Transformation geometry is a more
recent expression of the successful venture of bringing geometry and algebra
together.

We can use the Cartesian plane to provide some examples. The mapping o
on the Cartesian plane that sends (x, y) to (x2, y) is not a transformation since
there is no point (x, y) such that a((x, y)) = (—1, 2). The mapping 8 on the
plane that sends (x, y) to (x, y*) is a transformation as (u, v'/3) is the unique
point sent to (&, v) for given numbers u and v. However, f is not a collineation
since the line with equation Y = X is not sent to a line but rather to the
cubic curve with equation Y = X3, Let us now show that the mapping y that
sends each point (x, y) to the point (—x + y/2, x + 2) is a collineation.
Settingu = —x + y/2and v = x + 2, we have unique solutionsx = v — 2
and y = 2u + 2v — 4 such that y((x, y)) = (u, v) for any numbers u and v.
Hence, y is a transformation. Then, the following are equivalent where

P((x, ) = (u, v):

(1) (x, y) on line with equation aX + bY + ¢ = 0.

2 ax+by+c=0.

B)aw—-2)+bQ2u+2v—4)+c=0.

4) 2b)u + (a + 2b)v + (c — 4b — 2a) = 0.

(5) (u, v) on line with equation 2b)X + (@ + 2b)Y + (¢ — 4b — 2a) = 0.
(6) y((x, y)) on line with equation (2b)X + (a + 2b)Y + (¢ — 4b — 2a) = 0.

So the line withequationa, X + b,Y + ¢; = 0goes to the line with equation
a, X + b,Y + ¢, =0 where a, = 2b,, b, = a, + 2b,, and ¢, = ¢, —
4b, — 2a,. Hence, 7 is a collineation.

§1.2 Geometric Notation

You must master the notation used in the text so that you can understand
what it is you are reading. The notation in the next paragraph is basic. The
remaining material is all used somewhere later and should be familiar. This
should be read now to emphasize the basic notation and used later as a
reference.



4 1 Introduction

Number 4B is the distance from point A to point B. By the triangle
inequality, AB + BC = AC for points 4, B, C. ““A-B-C” is read ‘‘point B
is between points 4 and L and means 4, B, C are three distinct points such
that AB + BC = AC 4B is the unique /ine determined by two points A
and B. (Read ° “4B” as “line 4 B” and not as “A B” since AB # AB) AB
is a segment and consists of 4, B, and all points between 4 and B. ABisa
ray and consists of all points in 4B together with all points P such that
A-B-P. L ABCis an angle and is the union of noncollinear rays BA and
BC. mL ABC is the degree measure of Z ABC and is a number between 0
and 180. AABC is a triangle and is the union of noncollinear segments
AB, BC, and CA.

You probably know that “iff”” means “if and only if.” Also, “off”
means ‘‘not on,” as in ‘““the line is off the point.”

“x=" is read ‘‘is congruent to” and has various meanings depending on
context. AB = CDiff AB = CD. L ABC = [/ DEFiffm/ ABC = m/. DEF.
AABC =~ ADEFiff AB = DE,BC =~ EF, AC=DF, LA = LD, /LB =
LE,and LC = LF. Not all six corresponding parts must be checked to
show triangles congruent. The familiar congruence theorems for triangles
NAABC and ADEF are:

(1) SAS:If AB =~ DE, L A = / D,and AC = DF, then AABC = ADEF.
(2) ASA:If LA~ /L D,AB =~ DE,and L B = [ E,then AABC =~ ADEF.
(3) SAA:IfAB = DE, /. B~ L E,and L C =~ L F,then AABC =~ ADEF.
(4) SSS:If AB = DE, BC = EF, and CA = FD, then AABC =~ ADEF.

The Exterior Angle Theorem states that given AABC and B-C-D, then
mlLACD = m/l A+ m/LB. So for AABC we have m.L A+ m/L B +
m/ C = 180. Given AABC and ADEFsuchthat . A =~ /D, /B = LE,
and LC = L F, then AABC ~ ADEF, where “~" is read ‘‘is similar to.”
If two of these three angle congruences hold then the third congruence
necessarily holds and the triangles are similar; this result is known as the
Angle-Angle Similarity Theorem. Two triangles are also similar iff their
corresponding sides are proportional.

We suppose familiarity with directed angles and directed angle measure,
say from AB to R’ with counterclockwise orientation chosen as positive,
and clockwise orientation chosen as negative. In general, for real numbers @
and @ we agree that @° = @° iff @ = ® + £(360) for some integer A.

Given line /, the points of the plane are partitioned into three sets, namely
the line itself and the two halfplanes or sides of the line. Pasch’s Axiom
requires that a line / intersecting AABC at a point between 4 and B must
intersect the triangle in at least one more point (which is unique unless
| = AB). A set of points is convex if for any two points 4 and B in the set all
the points between A4 and B are in the set.

Lines [ and m in the plane are paralleliff either / = m or else / and m have
no point in common. In planar coordinate geometry, point (x, y) is on the
line with equation aX + bY + ¢ = 0 iff ax + by + ¢ = 0. So point (x, )




§1.3 Exercises 5

is off the line with equation aX + bY + ¢ = 0 iff ax + by + ¢ # 0. Lines
with equations aX + bY + ¢ = 0 and dX + eY + f = 0 are parallel iff
ae — bd = 0 and are perpendicular iff ad + be = 0.

In three-dimensional space, lines | and m are parallel iff either | =m or
else / and m are coplanar lines that do not intersect. Nonintersecting lines
that are not coplanar are skew to each other. Planes I' and A are parallel iff
either I' = A orelse I" and A do not intersect. Line / and plane IT are parallel
iff either [ is on I1 or else / and I1 do not intersect.

In the plane, the locus of all points equidistant from two points 4 and B
is the perpendicular bisector of 4 and B, which is a line through the midpoint
of AB and perpendicular to AB. In space, the locus of all points equidistant
from two points 4 and B is the perpendicular bisector of 4 and B, whichis a
plane through the midpoint of 4B and perpendicular to AB.

§1.3 Exercises

1.1. Which of the mappings defined on the Cartesian plane by the equations below are
transformations?

d((.\”, y)) = (Xs, yS)’ /;((x, }’)) = (COS X, sin y)’ ’)’((,\”, _}’)) = (X3 - X, }’),
(5((“\; y)) = (ZX, 3}”)’ ‘:((x’ y)) = (—X, x + 3)7 V]((X, y)) = (3.}” X + 2)’
p((x, y)) = (\3/}? e}‘)’ O‘((X’ J’)) = (_X’ _y)? T((X, y)) = (X + 2’ Yy - 3)

1.2.  Which of the transformations in the exercise above are collineations? For each
collineation, find the image of the line with equation aX + bY + ¢ = 0.

1.3. Without looking back in the text, write in your own words definitions for trans-
SJormation and collineation. Then compare to see whether your definitions are
equivalent to those in the text.

1.4. Find the image of the line with equation Y = 5X + 7 under collineation « if
((x, y)) is:
(a) (_X’ J’), (b) (X, _}’), (C) (_X’ _}’), (d) (2)Y - X, X — 2)

1.5. True or False
Suppose ¢ is a transformation on the plane.
(@) If o(P) = 0(Q), then P = Q.
(b) For any point P there is a unique point Q such that o(P) = Q.
(c) For any point P there is a point Q such that o(P) = Q.
(d) For any point P there is a unique point Q such that ¢(Q) = P.
(e) For any point P there is a point Q such that ¢(Q) = P.
(f) A collineation is necessarily a transformation.
(g) A transformation is necessarily a collineation.
(h) A collineation is a mapping that is one-to-one.
(i) A collineation is a mapping that is onto.
(J) A transformation is onto but not necessarily one-to-one.
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1.6. Let M = (a, b) 1n the Cartesian plane. Find equations for x” and y” where
a((x, y)) = (x', y") and «a is the mapping such that for any point P the midpoint
of P and a(P) is always M.

1.7. Copy each of the lowercase Greek letters five times or else use the Greek letters
to make up some “sillies”” such as [®, ®, foe fum] and [®], where the first is a
familiar line that uses the two common ways of pronouncing phi and the second
denotes a good phonograph.

1.8. Learn the Greek alphabet.

1.9. Give three examples of transformations on the Cartesian plane that are not
collineations.

1.10. Fill in the table with appropriate “Yes” or “No” for mapping « on the Cartesian
plane.

a((x, ¥)) (Uxl 1D | €5 e) | (x> = x2, » |, 3 [ 012, 2%) [(x/2, y/2) | (x = 2, 39) | (=y, —%)

ois 1-1

a is onto

o is a trans-
formation

oisa
collineation

1.11. Show that a collineation determines a one-to-one correspondence from the set of
all lines onto itself.

1.12. Produce two noncongruent triangles such that five parts of one are congruent to
five parts of the other.

1.13. Find the preimage of the line with equation Y = 3X + 2 under the collineation
a where o((x, )) = 3y, x — »).

1.14. Show the lines with equations aX + bY + ¢ =0 and dX + eY + f = 0 are
parallel iff ae — bd = 0 and are perpendicular iff ad + be = 0.

1.15. Prove or disprove: A mapping on the Cartesian plane that preserves betweenness
among the points is necessarily a collineation.

15\‘




Chapter 2

Properties of Transformations

§2.1 Groups of Transformations

The identity transformation 1 is defined by 1(P) = P for every point P. No
other transformation is allowed to use this Greek letter iota. As you can see,
1 is in some sense actually the least exciting of all the transformations. If 1
is in set 4 of transformations, then ¥ is said to have the identity property. We
continue below to look at properties of a set 4 of transformations that make
% algebraically interesting.

Recall that y is a transformation iff for every point P there is a unique
point Q such that y(P) = Q and, conversely, for every point P there is a
unique point Q such that y(Q) = P. From this definition we see that y~! is
also a transformation where y ! is the mapping defined by y~!(4) = Biff
A = y(B). The transformation y~! is called the inverse of transformation 7.
We read “y~!” as “‘gamma inverse.” If y~! is also in % for every transfor-
mation y in our set ¢ of transformations, then % is said to have the inverse
Dproperty.

Whenever two transformations are brought together they might form
new transformations. In fact, one transformation might form new transfor-
mations by itself, as we can see by considering « = f below. The composite
p o o of transformations « and f is the mapping defined by f o a(P) = B(«(P))
for every point P. Note that « is applied first and then f is applied. We read
“Boa’ as ““beta following alpha.” Since for every point C there is a point B
such that f(B) = C and for every point B there is a point 4 such that a(4) =
B, then for every point C there is a point 4 such that o a(4) = f(u(A4)) =
B(B) = C. So Boa is an onto mapping. Also, o a is one-to-one as the
following argument shows. Suppose B o a(P) = f o a(Q). Then B(x(P)) =
B(«(Q)) by the definition of composite foa. So a(P) = a(Q) since B is

7



8 2 Properties of Transformations

one-to-one. Then P = Q as « is one-to-one. Therefore, f§ o a is both one-to-
one and onto. We have thus proved the following theorem.

Theorem 2.1. The composite f o o of transformations o. and B is itself a trans-
formation.

If our set ¢ has the property that the composite f o « is in ¥ whenever a

and B are in %, then % is said to have the closure property. Since both y~! o

y(P) = P and yoy~ (P) = P for every point P, we see that y !0y =
yoy~ ! = for every transformation y. Hence, if % is a nonempty set of
transformations having both the inverse property and the closure property,
then ¢ must necessarily have the identity property.

Our set % of transformations is said to have the associative property, as
any elements o, f§, y in ¥ satisfy the associative law:y o (foa) = (yo f)oa.
The proof of this is given below, except that as Exercise 2.1 you will be asked
to give the reason for each equality sign. For every point P,

[y o (B 0)]J(P) = y((B > 2)(P))
= Y(B((P)))
= (y ° B)((P))
= [(y > B) o al(P).

The important sets of transformations are those that simultaneously
satisfy the closure property, the associative property, the identity property,
and the inverse property. Such a set is said to form a group. We mention all
four properties because it is these four properties that are used for the
generalized definition of a group in abstract algebra. However, when we
want to check that a nonempty set ¢ of transformations forms a group, we
need check only the closure property and the inverse property. Since these
two properties hold for the set of all transformations, we have the first part
of the following theorem.

Theorem 2.2. The set of all transformations forms a group. The set of all
collineations forms a group.

For the proof of the second part of the theorem, we suppose o and f are
collineations. Suppose / is a line. Then a(/) is a line since « is a collineation,
and B(a(!)) is then a line since g is a collineation. Hence, 8 o (/) is a line, and
B o ais a collineation. So the set of collineations satisfies the closure property.
There is a line m such that a(m) = L. (Why?) So a~!(/) = a~ Ya(m)) =
a”!oa(m) = i((m) = m. Hence a~! is a collineation, and the set of all
collineations satisfies the inverse property. The set is not empty as the
identity is a collineation. Therefore, the set of all collineations forms a
group.

If every element of transformation group %, is an element of trans-
formation group ¥,, then ¥, is a subgroup of %,. All of our groups will be
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subgroups of the group of all collineations. These transformation groups
will be a very important part of our study. There will be more examples of
groups in the next section and throughout the remainder of this book.

We should take note that the word group now has a technical meaning
and should never be used as a general collective noun in place of the word set.
The technical word was first used by the eccentric French Republican
Evariste Galois (1811-1832). After failing an entrance examination to the
Ecole Polytechnique, the seventeen-year-old Galois worked up his mathe-
matical discoveries into a paper for the mathematician Cauchy to present to
the Académie. Cauchy lost the paper. A second entrance examination
resulted in failure, and a second paper submitted to the mathematician
Fourier was lost. Galois then submitted what is one of the most beautiful
pieces of modern mathematics, which is now called Galois theory, to the
Académie. This was rejected as incomprehensible by the mathematician
Poisson. Galois joined the National Guard. The night before an absurd
duel he spent hours jotting down the outlines of his research. The duel was
fatal for the twenty-one-year-old mathematical genius, who had in his
haste, the night before, written in the margin, *‘I have no time.”

Transformations a and f may or may not satisfy the commutative law
oo f = Boa. If the commutative law is always satisfied by the elements
from a group, then that group is said to be abelian or commutative. The term
abelian is after the brilliant Norwegian mathematician Neils Henrik Abel
(1802-1829), who died of tuberculosis at twenty-six. Cauchy, who you
recall mislaid the work of Galois, also mislaid Abel’s paper on elliptic
functions. This paper was later called, ““a monument more lasting than
bronze.”” Abel is best known for disposing of the long-outstanding problem of
solving the quintic equation. In 1824, Abel showed that a general solution is
impossible: There is no general formula expressed in algebraic operations
on the coefficients of a polynomial equation that gives a solution to the
equation if the degree of the polynomial equation is greater than 4.

§2.2 Involutions

Life becomes somewhat easier once we admit that we are basically lazy.
We rationalize this by saying we find it convenient to streamline our no-
tation. Thus we abbreviate ‘o a” as *“ o> and talk about ‘“ the product of
multiplied by § on the left”” or ““ the product of f multiplied by « on the right”
or just ‘““‘the product beta-alpha.” We claim no confusion will arise if we
drop the symbol denoting composition. Since the associative law holds for
composition of transformations, then ““(g o (6 © y)) o (B o @)’ is now written
“edyPa.’ In‘y = a,a,_, - - - 2,00, With na positive integer, transformation
y is expressed as a product of n transformations. Also, if all the a; are equal
to «, then we write *‘y = «".” Further, if« = B!, then we write “‘y = 7"
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As expected, we define B° to be 1 for any transformation . So (B~')" = "
for any transformation f and any integer n.

In Exercise 2.2 you will be asked to prove the next theorem. The first
implication in the theorem is called the right cancellation law; the second is
called the left cancellation law.

Theorem 2.3. If o, B, and y are elements in a group, then Ba = yo implies
B =7y, pa = By impliesa =y, fa = o implies f = 1, fo. = B implies o = 1,
and o = 1 implies p = a Y anda = 1.

From the easily verified equations
(@ yp)e™ B~y ™) =,
@'y o o) =1,

we see that (w - - - pPa) ! = a !y 1 ... w ! Thisresult is stated as our

next theorem.

Theorem 2.4. In a group, the inverse of a product is the product of the inverses
in reverse order.

If group ¢ has exactly n elements, then ¥ is said to be finite and have
order n; otherwise ¥ is said to be infinite. Analogously, if there is a smallest
positive integer n such that «" = 1, then transformation « is said to have
order n; otherwise o is said to have infinite order. For example, let p be a
rotation of 360/n degrees about the origin with n a positive integer and let
7((x, y)) = (x + 1, y). Then p has order n, the set {p, p, ..., p"} forms a
group of order n, element 7 has infinite order, and the set of all transfor-
mations t* with k an integer forms an infinite group. In Exercise 2.6 you are
asked to show in general that if transformation o has order nthen {o, o2, . . .,
o"} forms a group of order n, while if « has infinite order then the set of all
integral powers of o forms an infinite group.

If every element of a group containing « is a power of a, then we say
that the group is cyclic with generator o and denote the group as {a). For
example, if p is a rotation of 36°, then {p) is a cyclic group of order 10. Note
that this same group is generated by B where B = p. In fact, we have
(pY = {p*> = {p") = {p°®). So a cyclic group may have more than one
generator. Since the powers of a transformation always commute, i.e.,
a"o™ = "™ = o™*" = ™" for integers m and n, we see that a cyclic group
is always abelian.

The notation for a cyclic group introduced above is generalized as
follows. If 4 = <a, B, 7, . . .), then every element of group ¥ can be written
as a product of powers of a, f, y, . . . and ¥ is said to be generated by
{a, B, 7, ...}. Such a product might be a’B3a =2y~ 7p*.

Foremost among the particular transformations that will command our
attention are the involutions, which are the transformations of order 2. In
other words, transformation y is an involution iff y2 = 1 but y # 1. For still
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Table 2.1 Table 2.2

C, | 1 p p? p? Vy 1 o o, Go
1 1 p p? o’ 1 1 o G, 6o
p | o PP P o | o0 1 oo 0,
Pt | P P p 6, | o, @ 1 O
PP p P 6 | 60 0, o 1

another characterization, we see that nonidentity transformation y is an
involution iff y = 77!, This last observation follows from the fact that
equations y2 = randy = y~! are easily seen to be equivalent by multiplying
both sides of the first by y ~! and by multiplying both sides of the second by y.
Note that the identity is not an involution by definition.

A multiplication table for a finite group is often called a Cayley table for
the group. This is in honor of the mathematically prolific algebraist Arthur
Cayley, who was one of the first to study matrices and who is credited with
introducing the ordinary analytic geometry of n-dimensional space. In a
Cayley table, the product fa is found in the row headed *‘ 8’ and the column
headed‘a.” Table 2.1 gives a Cayley table for the group C, that is generated
by arotation p of 90° about the origin. Table 2.2 gives the Cayley table for the
group V,, where the elements of V, are defined on the Cartesian plane by

l((x’ V)) = (X, }’), 00((X, y)) = (—X, —y)3

Gh((xa y)) = (X, _y)’ O'V((X, y)) = (—X, y)

From their Cayley tables, it is easy to check the closure property and the
inverse property for each of C, and V,. So C, and ¥V are certainly groups
and each has order 4. Group C, is cyclic and is generated by p. Since (p®)* =
p® = p%, (p*)® = p® = p, and (p®)* = p'? =1, then C, is also generated
by p3. So C, = (p> = {p3)>. Group C, contains the one involution p?.
Group V, is abelian but not cyclic. Every element of V, except the identity
is an involution. Evidently, V, = {a,, 0,) = {0y, 09) = {0,, o).

The Cayley table for V, can be computed algebraically without any
geometric interpretation. For example, since g,0((x, y)) = o,((—x, —))) =
(—x, y) for all (x, y), then 6,6, = 5,. However, you probably recall that
gy 1s just the reflection in the X-axis, g, is the reflection in the Y-axis, and
0, is the rotation about the origin of 180°. So p? and g, are the same trans-
formation.

You will have noticed that Chapters 1 and 2 have been concerned mostly
with vocabulary. Armed with this vocabulary, we next begin our study of
specific groups of transformations. However, we might pause to emphasize
the often-overlooked fact that definitions are just as important in mathe-
matics as the theorems. You should be able to define each of the words or
phrases that appears in boldface italics as well as the symbols. If you are going
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to memorize anything, then memorize the definitions. Remember that if you
don’t know the meaning of the words you use then you don’t know what
you’re talking about. Can you define the following ten key terms that have
been introduced in the first two chapters: transformation, one-to-one, onto,
composite, collineation, Cartesian plane, group, order, involution, generator?

§2.3 Exercises

2.1
2.2.
2.3.

24

2.5.

2.6.

2.7.
2.8.
2.9.

2.10.

Verify that every set of transformations has the associative property.
Prove Theorem 2.3.

Show that in a Cayley table for a finite group, each element of the group appears
exactly once in each row and exactly once in each column.

Find the image of each of (2, 3), (=2, —3), (—2, 3), (2, —3) under each of the
involutions in V,. Also, verify the Cayley table for V, by the algebraic methods
described above.

True or False

(a) If « and f are transformations, then a = f3 iff x(P) = f(P) for every point P.
(b) Transformation 1 is in every group of transformations.

(c) Ifap = 1,thenx = f~ ' and B = «~ ! for transformations « and f.

(d) oo is read “beta following alpha.”

(e) If x and f are both in group ¥, then off = fo.

(f) (1) is a cyclic group of order 1.

(g) y> = {y~ " for any transformation 7.

(h) An abelian group is always cyclic, but a cyclic group is not always abelian.

(i) (@B)~! = a B! for transformations « and B.
() If ey = (B),thena = Bora = 7.
Prove: If transformation o has order n, then {«, «?, 2>, . . ., «"} forms a group of

order n; if transformation « has infinite order, then the set of all integral powers of
o forms an infinite group.

Prove or disprove: There is an infinite cyclic group of rotations.
Prove or disprove: A nonidentity cyclic group has at least two generators.

Prove or disprove: Every group that contains at least two elements contains an
involution.

Prove or disprove: Any group of order 4 has a Cayley table that except for
notation denoting the elements is like that of C, or V.

2.11. Read one of the biographical chapters on Descartes, Abel, Galois, or Cayley from

2.12.

2.13.
2.14.

Men of Mathematics by E. T. Bell.

Find out more about Galois by looking in the book Whom the Gods Love by
Leopold Infeld.

Find all a and b such that « is an involution if a((x, y)) = (ay, x/b).

Divide a given rectangular region into two congruent regions in five different
ways.
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Chapter 3

Translations and Halfturns

§3.1 Translations

The methods of this chapter are from analytic geometry. To emphasize the
use of numbers, we often call this approach coordinate geometry. In either
case, we start with the translations as they are important and so easily
studied by these methods. Later, we shall not hesitate to use the older syn-
thetic methods from the geometry of Euclid when they are most convenient.
Then, as we progress, we shall be using more and more group-algebraic
methods. At times it may even be hard to say whether a particular part is
essentially synthetic, analytic, or algebraic, but this will be completely
unimportant.
When we say mapping o has equations

x =ax + by + ¢,
Yy =dx + ey + f,

we mean (x’, ") = a((x, y)) for each point (x, y) in the Cartesian plane,
where a, b, ¢, d, e, f are numbers. A translation is a mapping having equations

of the form
x'=x+ a,
y =y+b

Given any two of (x, p), (x’, »’), and (a, b), the third is then uniquely deter-
mined by this last set of equations. Hence, not only is a translation a trans-
formation, but there is a unique translation taking given point P to given
point Q. For example, let P = (¢, d) and Q = (e, f). Then there are unique

14
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numbers a and b such thate = ¢ + aand f = d + b. So the unique transla-
tion that takes P to Q has equations

xX=x+4+(—c¢) and Yy =y + (f - d).

We shall denote this unique translation bytp ¢ and use the Greek letter tau
only for translations. We have proved the following.

Theorem 3.1. Given points P and Q, there is a unique translation taking P to Q,
namely Tp ¢ .

By the theorem above, if 1p o(R) = S, then 15 o = 14,5 for points P, Q,
R, S. Note that the identity is a special case of a translation as 1 = 1 p for
each point P. Also, if tp o(R) = R for point R, then P = Q as 1p o =

TRR—l

Qlu+a, v+ b)

Pfu,v)

Figure 3.1

Now let T = (a, b) and P = (u, v). Then 1, r is the translation taking
(0, 0) to (a, b) and has equations x’ = x + aand y’ = y + b. So 14 ((x, y))

= (x + a,y + b). Suppose Q = 1o (P). See Figure 3.1. Then 14 =
Tpo and Q = (u + a,v + b). It is easy to check that OT = PQ by the
distance formula and, when T # O, that OTIIPQ as either Qﬁl;n l(l_q_t;s have
no slope or else both have the same slope. Likewise, we have OP || TQ. Since
a quadrilateral is a parallelogram iff a pair of opposite sides are congruent
and parallel, we can state part of our result above as follows.

Theorem 3.2. Suppose A, B, C are noncollinear points. Then T4 g = t¢ p iff
OCABD is a parallelogram.

It follows that a translation moves each point the same distance in the
same direction. For nonidentity translation 7, p, the distance is given by
AB and the direction by AB. A visual image of a translation is suggested by
Figure 3.2. You can probably see why translations are often called slides in
elementary-school geometry.

We have yet to show that a translation is a collineation. Suppose line /
has equation aX + bY + ¢ = 0 and nonidentity translation tp o has
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Figure 3.2

equations x; = x + h and )’ =y + k. So 1p ¢ = 79 g Where R = (h, k)
and PQ|OR. Under the equations for tp o, we see that ax + by + ¢ = 0
iff ax” + by" + (¢ — ah — bk) = 0. We calculate that 7, ,(/) is the line m
with equation aX + bY + (¢ — ah — bk) = 0. We have shown more than
the fact that a translation is a collineation. By comparing the equations for
lines / and m, we see / and m are parallel. Thus, a translation always sends a
line to a parallel line. In general, a collineation « is a dilatation if [||o(/) for
every line [. Our calculation has shown that a translation is a dilatation.
(While any collineation sends a pair of parallel lines to a pair of parallel lines,
a dilatation sends each given line to a line parallel to the given line. For
example, we shall see that a rotation of 90° is a collineation but not a dilata-
tion.) We have even more results from our calculation. Now / and m are the
same line iff ah + bk = 0. Since OR has equation kX — hY = 0, then
ah + bk =0 11Tl||0R Thus tp o(/) = [ for line llffl”PQ We say transfor-
mation o fixes point P iff «(P) = P. Transformation o fixesline /iff of/) = /
and, in general, fixes set s of points iff a(s) = s. (Note that tp, 0 fixes PQ but
fixes no point on PQ when P # Q.) The next theorem summarizes the results
of our calculation.

Theorem 3.3. A translation is a dilatation. If P # Q, then tp , fixes no points
€«
and fixes exactly those lines that are parallel to PQ.

Dilatations are collineations. By the symmetry of parallelness for lines
(i.e., /||/” implies /’||/), the inverse of a dilatation is a dilatation. By the
transitivity of parallelness for lines (i.e., /||/” and /’||/” implies /||/"), the com-
posite of two dilatations is a dilatation. So the dilatations form a group 2
of transformations, called the dilatation group.

We want to show the translations form a group J of transformations,
called the translation group. Let S = (a,b), T = (¢, d), and R = (a + ¢,
b + d). Then

To,170,5(X, 1) = to,r(x + @,y + b)) = (x +a+ ¢,y + b+ d)

o, R((x’ y))
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From this we can draw several conclusions. Since 14 17o s = To g, then a
product of two translations is a translation. Also, by taking R = O, we see
that the inverse of the translation 1y g With S = (a, b) is 7o, ¢ With T =
(—a, —b). Hence, the set of all translations forms a group. Further, since
a+c=c+aand b+ d=d+ b, it follows that 15 1795 = To,s%0,T-
Therefore translations commute. Putting all this together, we have proved
the following.

Theorem 3.4. The translations form an abelian group 7. The dilatations form
agroup 9.

The symbols “.7 > and “9” are reserved for the translation group
and the dilatation group 2 of Theorem 3.4.

§3.2 Halfturns

A halfturn turns out to be an involutory rotation, that is, a rotation of 180°.
So a halfturn is just a special case of a rotation. Although we have not
formally introduced rotations yet, we look at this special case now because
halfturns are nicely related to translations and have such easy equations in the
analytic geometry. We want to give a coordinate geometry definition for
halfturns that is like the definition above for translations. Informally, we
observe that if point A4 is rotated 180° about point P to point 4’, then P is
the midpoint of 4 and A’. See Figure 3.3 below. Hence, we need only
the midpoint formulas to obtain the desired equations. From equations
(x + x)2=a and (y + y")/2 = b we can formulate our definition as
follows. If P = (a, b), then the halfturn o about point P is the mapping with
equations

{x’ = —x + 2a,
y = —y+2b

The use of the Greek letter sigma to denote halfturns will be explained later.

Alx,y)

Figure 3.3
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In particular, we note that for the halfturn about the origin we have
ago((x, ¥)) = (—x, —y). Under transformation o, does (x, y)goto (—x, —y)
by going directly through O, by rotating counterclockwise about O, by
rotating clockwise about O, or by taking the other fanciful path illustrated
in Figure 3.3? Either the answer is ** None of the above ” or perhaps it would
be better to ask whether the question makes sense. Recall that transforma-
tions are just one-to-one correspondences among the points. There is
actually no physical motion being described. (That is done in the study
called differential geometry.) We might say we are describing the end position
of physical motion. For example, the end position in rotating counterclock-
wise 180° and rotating clockwise 180° is the same even though these are
physically different motions. Since our thinking is often aided by language
indicating physical motion, we continue such usage as the customary *“ P goes
to Q" in place of the more formal ** P corresponds to Q.”

What properties of a halfturn follow immediately from the definition
of ap? First, for any point 4, the midpoint of 4 and op(A4) is P. This, of course,
is how the definition was formulated in the first place. However, from this
simple fact alone, it follows that g, is an involutory transformation. Also
from this simple fact, it follows that op fixes exactly the one point P. It even
follows that o fixes line /iff Pis on /. We shall also see this last result again in
showing op is a collineation. Suppose line / has equation aX + bY + ¢ = 0.
Let P = (h, k). Then op has equations x’ = —x + 2hand ' = —y + 2k.
Then ax + by + ¢ = 0iff ax’ + by’ + ¢ — 2(ah + bk + ¢) = 0. So ap(/)
is the line m with equation aX + bY + ¢ — 2(ah + bk + ¢) = 0. There-
fore, not only is op a collineation but a dilatation as [||m. Finally, | and m
are the same line iff ah + bk + ¢ = U, which holds iff (4, k) is on /. We have
proved the following.

Theorem 3.5. A halfturn is an involutory dilatation. The midpoint of points A
and op(A) is P. Halfturn op fixes point A iff A = P. Halfturn o, fixes line |
iff Pisonl

Since a halfturn is an involution, then 6p0p = 1. What can be said about
the product of two halfturns in general? Let P = (a, b) and Q = (c, d).
Then

0g0p((x, ) = 0o((—x + 2a, —y + 2b))
=(—[—x+ 2a] + 2¢, —[—y + 2b] + 2d)
= (x + 2[c — al,y + 2[d — b]).
Since oy0p has equations x" = x 4+ 2(c —a) and y' = y + 2(d — b), then
0o0p is a translation. This proves the important result that the product of

two halfturns is a translation. Suppose R is the point such that Q is the mid-
point of P and R. Then

0o0p(P) = do(P) = R and 0aroy(P) = gr(R) = R.
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Since there is a unique translation taking P to R, then each of gy0p and
0r0g must be tp . We have proved the following.

Theorem 3.6. If Q is the midpoint of points P and R, then

GQGP = TP,R = GRGQ'

Observe that the theorem above states that a product of two halfturns is a
translation and, conversely, a translation is a product of two halfturns.
Also note that 6,0, moves each point twice the directed distance from P

to Q.

Pfa,b) Sta-c+e, b-d+f)

(c,d)
Q Rfe,f)

Figure 3.4

We now consider a product of three halfturns. By thinking about the
equations, it should almost be obvious that g, 6,05 is itself a halfturn. We
shall prove that and a little more. Suppose P = (a, b), Q@ = (¢, d),and R =
(e.f) LetS=(@@—c+e,b—d+f) Incase, P, Q, R are not collinear,
then (JPQRS is a parallelogram. This is easy to check as opposite sides of the
quadrilateral are congruent and parallel. See Figure 3.4. We calculated
ao0p((x, y)) above. Whether P, Q, R are collinear or not, with one more
step we obtain

or0gop((X,») =(—=x+2[la—c+e],—y+2[b—d+[)
os((x, »)).

Our theorem now follows.

Theorem 3.7. A product of three halfturns is a halfturn. In particular, if points
P,Q, R are not collinear, then 6r6,0p = a5 where JPQRS is a parallelogram.

We can solve the equation 1, 5 = 0,0 for any one of 4, B, C, D in terms
of the other three. Knowing C, D, and one of 4 or B, we let the other be
defined by the equation op0-(4) = Bor the equivalent equation g.a(B) =
A. In either case, product o0 is the unique translation taking 4 to B, and
s0 6p0c = 1,4, 5. When we know both 4 and B, we let M be the midpoint of
A and B. So 1,4 3 = 0y,0,. Knowing A, B, D, we have C is the unique
solution for Y in the equation 6040, = oyasthent, 5 = 0y0, = o,0y.
Knowing 4, B, C, we have D is the unique solution for Z in the equation
Opm040c = 0z asthent, g = 0,0, = 0,0.. We have proved the following
theorem.
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Theorem 3.8. Given any three of the not necessarily distinct points A, B, C, D,
then the fourth is uniquely determined by the equation t, = 0p0c.

If 050p = 1p g, then 15} = 0p0y. S0 0y0p = 0p0, iff P = Q. How-
ever, a product of three halfturns can be written backwards since for any
points P, Q, R there is a point S such that

—_ — -1 __ -1 __ -1 .—-1_-1 __
OROg0p = 05 = 05 = (Or0p0p) = Op Gy Op ' = GpGy0g.

Hence, although halfturns do not commute in general, we have proved the
following theorem.

Theorem 3.9. 6r0,0p = dpoy0g for any points P, Q, R.

The halfturns do not form a group by themselves. A product of two
halfturns is a translation. Since a translation is a product of two halfturns,
then the product in either order of a translation and a halfturn is a halfturn
by Theorem 3.7. In general, a product of an even number of halfturns is a
product of translations and, hence, is a translation. Then, a product of an
odd number of halfturns is a halfturn followed by a translation and, hence,
is a halfturn. Thus the group generated by the halfturns contains just the
halfturns and the translations.

Theorem 3.10. The union of the translations and the halfturns forms a group H# .

We reserve ““ # ” for the group in the theorem. This group seems to have
no name other than the group generated by the halfturns.

Can you define the following key words and symbols introduced in this
chapter: translation, halfturn, dilatation, « fixes s, tp o, O, D, #, T ?

§3.3 Exercises

3.1. Find all triangles such that three given noncollinear points are the midpoints of
the sides of the triangle.

3.2. Provet, gopt,y = 0y Where Q = 1, 4(P).

3.3. In Figure 3.5, sketch the shortest road from Bto E that crosses the river r over a
bridge at right angles to the parallel banks of the river r.

3.4. In Figure 3.5, sketch points X, Y, Z such that 6,60, = 6y, 6,74 ¢ = 0y, and
Tp,cTa8Te a(4d) = Z.
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L~

3.5.

3.6.

3.7.
3.8.

3.9.

3.10.

3.11.
3.12.

3.13.

3.14.

3.15.
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Figure 3.5

True or False

(a) A product of two involutions is an involution or 1.

(b)Y c # < 7.

(c) If J is a dilatation and lines [ and m are parallel, then d(/) and d(m) are parallel
to /.

(d) Given points A, B, C, there is a D such that 74, 5 = 1), ¢.

(e) Given points 4, B, C, there is a D such that 1, 5 = opo.

() Ift,5(C) =D, thent, g = 1¢ p.

(g) Ifoy0p = Tp g, thenopay = T¢ p.

(h) 6,050 = ogoc0, for points 4, B, C.

(i) A translation has equationsx’ = x —aand )’ =y — b.

(j) 690p = 13 for any points P and Q.

X' = —x + 3and )y = —y — 8 are the equations for which transformation?
What are the equations for 15 ;- if S = (a, ¢) and T = (g, h).

Prove or disprove: 6p1, gop = T¢c,p Where C = agp(A4) and D = 6p(B).
If P; = (a;, b)) for i = 1,2, 3, 4, 5, then what are the equations for the product

TP4.PsTPJ.P4TP2.P3TP1.Per.Pl?

What is the image of the line with equation Y = 5X + 7 under op when P =
(—-3,2)?

If « is a translation, show that agp is the halfturn about the midpoint of points P
and o(P). What is gpa?

Use Theorem 3.9 twice to prove two translations commute.

Draw line / with equation Y = 5X + 7 and point P with coordinates (2, 3). Then
draw ap(/).

Show 1,  has infinite order if P # Q.

Suppose (tp, o> is a subgroup of {(tg s»>. Show there is a positive integer n such
that PQ = nRS.

Show (1p ¢ = (g5 implies 15 o = Tg 50 Tp o = Ts .
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3.16. If X’ = ax + by + c and y’ = dx + ey + f are the equations for mapping «,
then what are the necessary and sufficient conditions on the coefficients for o to
be a transformation. Is such a transformation always a collineation?

3.17. Given £ ABC, construct P on 4B and Q on BC such that PQ = AB and P(_Q>
intersects BC at an angle of 60°.

3.18. Given two circles ¢, and ¢, and a segment C—D,Qnstruct points 4 on ¢, and B
on ¢, such that 4B is congruent and parallel to CD.




Chapter 4

Reflections

§4.1 Equations for a Reflection

Suppose house H and barn B are omr the same side of the Mississippi River m
as indicated in Figure 4.1. The problem is to go from the house to the barn
by way of the river along the shortest possible path. You may wish to stop
and try to solve this problem before reading further. Supposedly, we are
after a pail of water from the river. Anyway, it is clear that we do not walk
along the river once we get there. Suppose the shortest path touches the
river at point R. So R is the point on m such that HR + RB is minimal.
As you may have guessed, a solution to this problem has something to do with
reflections. If we let H’ be the mirror image of H reflected in line m, then
surely HR = H’R. So we want R on m such that H’'R + RB is minimal.
This problem is very easy. Obviously R is the intersection of m and BH'.
The path obtained is the path of a ray of light traveling from H to B that is
reflected in mirror m, as the angle of incidence at m is congruent to the angle
of reflection.

It is almost certain that you can point to H’ in the problem above. Points
H and H’ are symmetrically placed with respect to line m. However, it may
not be so easy to describe exactly where H’ is located in a succinct manner.

H.

*B
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Figure 4.1
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Figure 4.2

In Figure 4.2, point Q is the reflected image of point P in line m. Check to
see if the following definition satisfies your intuitive idea of just what a
reflection should be. Reflection o, in line m is the mapping defined by

P, if point Pis on m,

on(P) =10, ifPisoff mand misthe
perpendicular bisector of PQ.

Some properties of a reflection follow immediately from the definition.
First, 6,, # 1 but 2 = 1 as the perpendicular bisector of PQ is the perpen-
dicular bisector of QP. Hence, g,, is onto as a,,(P) is the point mapped onto
given point P since 7,,(d,,(P)) = P for any point P. Also, g,, is one-to-one as
0,.(A) = 0,(B) implies 0,,(0,(A4)) = 0,(0,,(B)) and A = B. Therefore o,
is an involutory transformation. Then, from the definition of g,,, it follows
that g,, interchanges the halfplanes of m. Clearly g,, fixes point P iff Pis on m.
Not only does g, fix line m, but g,, fixes every point on m. In general, trans-
formation « is said to fix pointwise set s of points if a(P) = P for every point
P in s. Note the difference between fixing a set and fixing a set pointwise.
Every line perpendicular to m is fixed by a,,, but none of these lines is fixed
pointwise as each contains only one fixed point. Suppose line / is distinct
from m and is fixed by g,,. Let @ = ¢,(P) for some point P that is on / but
off m. Then P and Q are both on /since / is fixed, and m is the perpendicular
bisector of PQ. Hence, /and m are perpendicular. These immediate properties
of a reflection are summarized in the following theorem.

Theorem 4.1. Reflection o, is an involutory transformation that interchanges
the halfplanes of m. Reflection o,, fixes point P iff P is on m. Reflection o,
fixes line | pointwise iff | = m. Reflection a,, fixes line l iff | = mor ! L m.

We do not use the word reflection to denote the image of a point or of a
set of points. A reflection is a transformation and never a set of points. Point
0,,(P) is the image of point P under the reflection o,,.

You will have noticed that we have used the Greek letter sigma, a, for
both halfturns and reflections. This follows international custom and is a
convenient convention for English as then rho, p, is left free for use later
with rotations. The Greek o corresponds to the Roman s which begins the
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M Orx’, y*)
P(x,y)

Figure 4.3

German word Spiegelung, meaning reflection. A halfturn is a sort of *“‘re-
flection in a point,” although we shall never use this terminology and thus
avoid confusion. The similar notation for halfturns and reflections empha-
sizes the important property they do share, namely that of being involutions:

_ -1 _ -1
o, =0, |, Gp = Op

What are the equations for a reflection? We shall find the equations for
g,, where m has equation aX + bY + ¢ = 0. Let P = (x, y) and o,(P) =
(x’, ¥") = Q. See Figure 4.3. For the moment, suppose P is off m. Now, the
line through points (x, y) and (x’, y’) is perpendicular to line m. This geo-
metric fact is expressed algebraically by the equation

b(x" — x) = a(y’ — y).

Also, ((x + x)/2, (y + y')/2) is the midpoint of PQ and is on line m. This
geometric fact is expressed algebraically by the equation

x + x y+ )y _
a( 5 )—f—b( 3 )+c—0.

Rewriting these two equations as

bx" — ay’ = bx — ay,
ax' + by’ = —2¢ — ax — by,

we see we have two linear equations in the two unknowns x” and ). Solving
these equations for x” and y’, we get

_ b(bx — ay) + a(—2c — ax — by)

’

b* + a*
_ b’x + a’x — 2a’x — 2aby — 2ac
- az + b2 ’
, _ b(=2c — ax — by) — albx — ay)
- b* + a*

_a’y + b’y — 2b*y — 2bax — 2bc
h a* + b? ’
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With these equations in the form

oy 2a(ax + by + ©)
a* + b*
, 2b(ax + by + ©)

y =)y - a2 + b? ’

b

it is easy to check that the equations also hold when P is on m as then ax +
by + ¢ = 0. This proves the theorem.

Theorem 4.2. If line m has equation aX + bY + ¢ = 0, then o, has equations
{x’ = x — 2a(ax + by + ¢)/(a* + b?),
y =y — 2blax + by + ¢)/(a* + b?).

You can now appreciate our synthetic definition of reflection. Suppose
we had defined a reflection as a transformation having equations given by
Theorem 4.2. Not only would this have seemed artificial, since these equa-
tions are not something you would think of examining in the first place, but
just imagine trying to prove Theorem 4.1 from these equations. To show a,,
is an involution, we would need to show (x")’ = x and (')’ = y. Although
this is conceptually easy, the actual computation involves a considerable
amount of algebra.

§4.2 Properties of a Reflection

We have already mentioned those properties of a reflection that follow
immediately from the definition (Theorem 4.1). Another important property
is that a reflection preserves distance, which means the distance from g,,(P)
to 6,,(Q) is equal to the distance from P to Q for all points P and Q. The
name for any transformation that preserves distance comes from the Greek
isos (equal) and metron (measure). Thus, in general, a transformation « is an
isometry if P’Q’ = PQ for all points P and Q where P' = a(P) and Q' =
a(Q). We want to prove ¢,, is an isometry. One method is simply to use the
equations for a reflection (Theorem 4.2) and show that the distance from
(x1, ¥1) to (x5, ¥5) is equal to the distance from (x,, y;) to (x,, y,). Although
this entails only algebra of the most elementary kind, there is so much of it
that this method is rejected.

To show g, is an isometry for any line m, we shall consider several cases.
Suppose P and 0 are two points, P’ = g,,(P), and Q' = 4,(Q). We must
show P’'Q’" = PQ. If PQ = mor if @ 1 m, then the desired result follows
immediately from the definition of a,,. Also, if PQ is parallel to m but
distinct from m, the result follows easﬂy as (JPQQ'P’ is a rectangle and so
opposite sides PQ and P’Q’ are congruent. Further, if one of P or Q, say P,
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(a) (b) (c)
Figure 4.4

is on m and Q is off m, then P'Q" = PQ follows from the fact P = P and
that m is the locus of all points equidistant from Q and Q’. See Figure 4.4a.
Finally, suppose P and Q are both off m and that 1"6 intersects m at point R
but is not perpendicular to m. So RP = RP’ and RQ = RQ’. The desired
result, P’Q’ = PQ, then follows provided R, P’, Q' are shown to be collinear.
See Figure 4.4b for the case P and Q are on the same side of m and Figure 4.4c
for the case P and Q are on opposite sides of m. Let S be the midpoint of P
and P’; let T be the midpoint of Q and Q’. Som = ST Ineither case, each of
the angles /. SRP', /. SRP, /. TRQ, and / TRQ', is congruent to the next.
That L SRP’ is congruent to £ TRQ’ implies R, P’, Q' are collinear. So
P'Q’" = PQ, as desired.

Theorem 4.3. Reflection a,, is an isometry.

Now that we know a reflection is an isometry, a long sequence of other
properties dependent only on distance will follow. Since these properties are
shared by all isometries, we shall consider a general isometry «. Suppose
A, B, C are any three points and let 4" = a(4), B’ = a(B), C’ = a(C).
Since o preserves distance, if AB + BC = AC then A'B’ + B'C’' = A'C’
as A'B" = AB, B'C’ = BC, and A’'C’ = AC. Hence, A-B-C implies
A’-B’-C’; in other words, if B is between 4 and C, then B’ is between A’
and C". We describe this by saying a preserves betweenness. The special
case AB = BC in the argument above implies A’B’ = B’C’. In other words,
if B is the midpoint of 4 and C, then B’ is the midpoint of 4" and C’. Thus
we say a preserves midpoints. More generally, since AB is the union of 4, B,
and all points between 4 and B, then a(A4B) is the union of 4’, B’, and all
points between 4’ and B'. So «(AB) = A'B’ and we say « preserves segments.
Likewise, since a is onto by definition and AB is the union of 4B and all
points C such that A-B-C, then a(f@}ns the union of 4’B’ and all points C’
such that 4'-B"-C". So oz(AB) = A'B and we say o preserug_{ays Sﬂg
AB is the union of AB and BA then oz(AB) is the union of A'B’ and B'A’,
which is A'B’. So a is a transformation that preserves lines; in other words,
a is a collineation. If 4, B, C are not collinear, then AB + BC > AC and so
A’'B" + B'C’ > A'C’ and A’, B’, C’ are not collinear. Then, since AABC
is a union of the three segments 4B, BC, CA, then we conclude a(AA4BC)
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is just AA’B’C’. So an isometry preserves triangles. It follows that a pre-
serves angles as a(L ABC) = L A’B’C’. Not only does a preserve angles
but a also preserves angle measure. That g méﬁBC = ﬂéAlﬁ} since
NAABC = NA’B’C’ by SSS. Finally, if BA L BC then B’A" L B'C’ since
ml ABC = 90 implies m/L A’B'C’ = 90. So a preserves perpendicularity.
Also, a preserves parallelness, since parallel lines have a common per-
pendicular, but we already know « preserves parallelness since a is a col-
lineation. All this is put together as our new theorem.

Theorem 4.4. An isometry is a collineation that preserves betweenness, mid-
points, segments, rays, triangles, angles, angle measure, and perpendicularity.

Isometries do all that! Isometries are very important, and we shall con-
tinue to study them for some time.

Perhaps you remember making ink blots as a child. It’s rather fun and
you might try it again. The idea is to drop some ink on a sheet of paper, fold
the paper with the ink on the inside, press the sheet firmly, and unfold to
reveal the ink blot. The fold is a /ine of symmetry for the ink blot. We for-
malize and extend this idea as follows. Line m is a line of symmetry for set s
of points if o,(s) = s, that is, if g, fixes s. Point P is a point of symmetry
for set s of points if 6p(s) = s. Isometry « is a symmetry for set s of points if
a(s) = s. In Figure 4.5, line m is one of six lines of symmetry for the regular
hexagon and point P is a point of symmetry for the regular hexagon. It is
clear that a rotation of 60° about Pis also a symmetry for the regular hexagon.
Note that the shaded hexagonal region in the figure has no line of symmetry
and no point of symmetry, although the shaded region does have the sym-
metry of a rotation of 120°. The center of this rotation will be defined later
as a center of symmetry. This is mentioned now only to prevent forming a
misconception of the definition of a point of symmetry.

Let’s consider the symmetries of the rectangle that is not a square in
Figure 4.6. Evidently the axes of the plane are lines of symmetry for the
rectangle and the origin is a point of symmetry for the rectangle. Denoting

Figure 4.5
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Y
B A
(0] X
C D
Figure 4.6

the reflection in the X-axis by g, and the reflection in the Y-axis by o,, we
then have that g, g,,, 05, and 1 are symmetries for the rectangle. Note that :
is a symmetry for any set of points. Since the image of the rectangle is known
once it is known which of 4, B, C, D is the image of A4, then these four are the
only possible symmetries for the rectangle. Recall that these isometries are
the elements of group ¥, introduced in Chapter 2. See Table 2.2 in Chapter 2.
We see that the symmetries for a rectangle that is not a square form a group.
The fact that the symmetries of any set of points form a group is shown
next.

Let s be any set of points. The set of symmetries for s is not empty as 1 is a
symmetry for s. Suppose « and ff are symmetries for s. Then fa(s) = B(a(s)) =
B(s) = s. So the set of symmetries has the closure property. If « is a sym-
metry for s, then « and o~ ! are transformations and o~ '(s) = a™ !(a(s)) =
1(s) = s. So the set of symmetries also has the inverse property. We have
proved the following.

Theorem 4.5. The set of all symmetries of a set of points forms a group.

What happens if the set of points in this theorem is taken to be the set of
all points? In this special case, the symmetries are exactly the same thing as
the isometries. The theorem thus provides the following corollary.

Theorem 4.6. The set of all isometries forms a group.

The group of all symmetries for a set s of points is called the symmetry
group of s or the full group of symmetries for s. The group of all isometries is
denoted by #. So £ is the symmetry group of the plane, and V, is the
symmetry group for a rectangle that is not a square. In case you are wondering
why “V> is always used to denote this symmetry group, the group is also
known as Klein’s Vierergruppe (four-group in German). Felix Klein (1849-
1925) was interested in applying the concept of a group as a convenient
means of characterizing the various geometries of his time. His models of
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non-Euclidean geometries eventually helped mathematicians understand the
significance and place of the new geometries within mathematics. Upon
accepting a chair at the University of Erlangen, in 1872 Klein made his
famous inaugural address, which has become known as the Erlanger
Program. The Erlanger Program describes a geometry by its group of
symmetries. For example, basic Euclidean geometry is characterized by its
isometries, those transformations that preserve distance and, hence, are
concerned with such properties as length, congruence, angle measure, and
collinearity. Much of our work is consistent with this approach. Klein also
played an important role in the development of mathematics in the United
States through his many American students.

Can you define the following key words and symbols introduced in this
chapter: reflection, isometry, symmetry, point of symmetry, line of symmetry,
symmetry group, fixed pointwise, c,,, ¥ ?

§4.3 Exercises

4.1. Prove: If a € S#, then a is an isometry.

4.2.  What is the minimum length of a flat-against-the-wall, full-length mirror for the
Smiths who range in height from 170 cm to 182 cm, if you assume eyes are 10 cm
below the top of the head?

4.3. Fill in the missing entry in each row:

Equation of line m Point P Point ¢,,(P)
X=0 (x,») *
Y=0 * (x,»)
Y=X * 2,3)
Y=X (x,y) *
X=2 (-2,3) *
Y=-3 (-4, -1 *
Y=-3 (x, ) *

* 5,3) (—8,3)

* ©, 3) (=3,0)

* (_y’ —X) (X, y)
Y =2X * “4,3)

4.4. What is the symmetry group of a parallelogram that is neither a rectangle nor a
rhombus? What is the symmetry group of a rhombus that is not a square?

4.5. Given two parallel lines p and ¢ in Figure 4.7, sketch a construction of the path
of a ray of light issuing from 4 and which passes through E after being reflected
exactly twice in p and exactly once in g.



§4.3 Exercises 31

4.6.

4.7.

4.8.
4.9.

4.10.

4.11.

4.12.

oA

E.

Figure 4.7

True or False

(a) If isometry a interchanges distinct points P and Q, then « fixes the midpoint
of Pand Q.

(b) If Pis a point of symmetry for set s of points, then P isin s.

(c) If / and m are perpendicular lines, then g, is a line of symmetry for m.

(d) 6, = o5 ' if point P is on line p.

(e) If x € # but a # 1, then (o) has order 2.

(f) Reflection g, fixes the halfplanes of m but does not fix the halfplanes point-
wise.

(g) Reflection o, fixes line [ iff / L m.

(h) For line l and point P,6, = o, ! # 1and 6p = 05 ' # 1.

(1) A regular pentagon has a point of symmetry.

(j) The symmetry group of a rectangle has order 4.

What are the images of (0, 0), (1, —3), (—2, 1), and (2, 4) under the reflection in
the line with equation ¥ = 2X — §?

Why can’t a letter of the alphabet have two points of symmetry?

What are the symmetries for the various playing cards in a standard bridge deck?
What are the symmetries if the indices are ignored?

What capital letters could be cut out of paper and given a single fold to produce
Figure 4.8?

Figure 4.8

A cup of coffee and a cup of milk contain equal amounts of liquid. A spoonful of
milk is transferred from the milk cup to the coffee cup, and the coffee cup is
stirred. Then, a spoonful of the mixture is returned to the milk cup. The two cups
again have the same amount of liquid. Now, is there more milk in the coffee cup
or more coffee in the milk cup?

If mapping « is such that 4’B" = 4B for all points 4 and B where 4’ = a(4)
and B’ = o(B), then show « is an isometry.
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4.13. Given line m and three points P, Q, a,,(P), then construct with a ruler only the
point ¢,,(Q).

4.14. Given a line and two circles, construct the squares having a pair of opposite
vertices on the line and a vertex on each of the two circles.

I

B

Figure 4.9

4.15. The vertex of L AVBis obstructed in Figure 4.9. Without using the region behind
the obstruction, construct that part of the angle bisector that is not behind the
obstruction.




Chapter 5

Congruence

§5.1 Isometries as Products of Reflections

The halfturns generate the group . What group of isometries does the set
of reflections generate? Since a reflection is its own inverse, every element in
this group must be a product of reflections (Theorem 2.4). A product of
reflections is clearly an isometry; in this section we show that every isometry
is a product of reflections. Thus, we shall see that the reflections generate all
of #£. The reflections are the building blocks for the symmetries of the plane.

Suppose you were asked to actually prove the obvious fact that g,
and o¢ are not equal. You could answer that ¢,, and o must be distinct since
they have different sets of fixed points. Looking at the fixed points of iso-
metries turns out to be very rewarding in general. Specifically, this attack is
used below to show the reflections generate all the isometries.

Knowing point P is on the line through distinct points 4 and B and
knowing the nonzero distance 4P, we do not know which of two possible
points is P. However, if we also know the distance BP, then P is uniquely
determined. It follows that an isometry fixing both 4 and B must also fix
the point P, since an isometry is a collineation that preserves distance. In
other words, an isometry fixing distinct points 4 and B must fix every point
on the line through 4 and B. Suppose now that an isometry fixes each of
three noncollinear points A, B, C. Then we have just observed the isometry
must fix every pomt on AABC as the isometry fixes every point on any one

of the lines AB BC, CA. Every point Q in the plane lies on a line that inter-
sects AABC in two distinct points; for example, a line through Q and the
midpoint M of A and B must intersect the triangle at another point of the
triangle different from M. Hence the point Q is on a line containing two
fixed points and, therefore, must also be fixed. So an isometry that fixes

33
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three noncollinear points must fix every point Q in the plane. We state these
results as our first theorem.

Theorem 5.1. If an isometry fixes two distinct points on a line, then the isometry
fixes that line pointwise. If an isometry fixes three noncollinear points, then the
isometry must be the identity.

Suppose isometries o and f are such that a(P) = B(P), (Q) = B(Q),
and a(R) = B(R) for three noncollinear points P, Q, R. Multiplying each of
these equations above by ™! on the left, we see that B~ 'a fixes each of the
three noncollinear points P, Q, R. Then B~ 'a = 1 by the first theorem. Multi-
plying this last equation by § on the left, we have o = . We have proved a
powerful theorem.

Theorem 5.2. If « and f are isometries such that

«P) = B(P), Q)= BQ), and oR)= B(R)

for three noncollinear points P, Q, R, then a = f.

Suppose isometry o fixes distinct points P and Q on line m. We know two
possibilities for o, namely : and o,,. We shall show these are the only two
possibilities by supposing « # 1 and provinga = 0g,,. If & # 1, then thereisa
point R not fixed by a. So R is off m (Theorem 5.1), and P, Q, R are three
noncollinear points. Let R = a(R). So PR = PR’ and QR = QR/, as a
is an isometry. Therefore, m is the perpendicular bisector of RR’ as each of P
and Q is in the locus of all points equidistant from R and R'. Hence, a(R) =
R = 0,(R) as well as a(P) = P = ¢,(P) and o(Q) = Q = 7,,(Q). By the
previous theorem, we have « = ¢,, and the following theorem.

Theorem 5.3. An isometry that fixes two points is a reflection or the identity.

Suppose isometry « fixes exactly one point C. Let P be a point different
from C, let ao(P) = P’, and let m be the perpendicular bisector of PP’
Since CP = CP’ as « is an isometry, then C is on m. So ¢,(C) = C and
6.(P)=P. Then o¢,,4C)=0,C)=C and o,oP)=0,(P)=P. By
the previous theorem, o¢,,a =1 or 6,0 = o, where [/ = CP. However,
0,0 # 1 as otherwise « is a,, and fixes more points than C. Thus ¢,,0 = 0,
for some line /. Multiplying this equation by a,, on the left, we have a =
0,,0, and the next theorem.

Theorem 5.4. An isometry that fixes exactly one point is a product of two
reflections.

Since 1 = ¢,,0,, for any line m, we have the following theorem as a
corollary of the previous two theorems.
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Theorem 5.5. An isometry that fixes a point is a product of at most two reflec-
tions.

We are now prepared to prove the principal proposition that every
isometry is a product of reflections. Actually, we shall do better than that by
showing the product has at most three factors. (We count the number of
factors even though the factors themselves may not be distinct.) The identity
is a product of two reflections. Suppose nonidentity isometry « sends point P
to different point Q. Let m be the perpendicular bisector of PQ. Then g,
fixes point P. We have just seen in the theorem above that g, 0 must be a
product g of at most two reflections. Hence « = ¢,, § and « is a product of at
most three reflections. Not only is every isometry « a product of reflections,
but every isometry is a product of reflections where the number of factors
in the product is 1, 2, or 3. Our initial observation in this section was that a
product of reflections is an isometry. We have just shown the important
converse of this observation.

Theorem 5.6. A product of reflections is an isometry. Every isometry is a
product of at most three reflections.

From the theorem it follows that a given product of eight reflections is
equal to a product of at most three reflections. The proof of our next theorem
shows how you might find these one, two, or three reflections if you know
the images of three noncollinear points P, Q, R under the given product of
eight reflections. Suppose APQR = AABC. We know there is at most one
isometry o such that a(P) = 4, «(Q) = B, and a(R) = C (Theorem 5.2).
The question is whether there exists at least one such isometry a. To see
how we are going to show there is such an isometry, look at Figure 5.1. The
reflection in / will take APQR to ANAQ,R;, the reflection in m will take
NAQ R, to AABR,, and the reflection in n will take A4ABR, to AABC.
The composite will then take APQR to AABC in the desired manner. If
certain points coincide, we may not need all three reflections. Used several
times in the proof are the fact that a reflection is an isometry and the

Figure 5.1
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fact that the locus of all points equidistant from two points M and N is the
perpendicular bisector of MN.

Suppose APQR = ANABC. So AB = PQ, AC = PR, and BC = QR.
If P # A, then let o, = g, where [ is the perpendicular bisector of PA. If
P = A, then let o; = 1. In either case, then a,(P) = A. Let ,(Q) = Q, and
o, (R) = R,. If Q, # B, then let a, = 0,, where m is the perpendicular
bisector of Q,B. In this case, point 4 is on m as AB = PQ = AQ,. If
Q, = B, thenlet a, = 1. In either case, we have a,(4) = 4 and a,(Q,) = B.
Let ,(R,) = R,. If R, # C, then let a3 = g, where n is the perpendicular
bisector of R,C. In this case, n = AB as AC = PR = AR, = AR, and
BC = QR = Q,R; = BR,.If R, = C, thenleta; = 1. Inany case, we have
o3(A) = A4, a3(B) = B,and a3(R,) = C. Let a = a;3a,a,. Then

a(P) = azaya,(P) = azay(4) = a3(A4) = 4,
w(Q) = azya,0,(Q) = aza,(Qy) = a3(B) = B,
a(R) = azo,0(R) = a305(R;) = a3(R;) = C,

as desired.

Theorem 5.7. If APQR =~ A ABC, then there is a unique isometry o such that
a(P) = A, (Q) = B, and o(R) = C.

Since two congruent segments are corresponding sides of congruent
equilateral triangles and since two congruent angles are corresponding
angles of congruent triangles, the theorem above has the theorem below as
an immediate corollary.

Theorem 5.8. Two segments, two angles, or two triangles are, respectively,
congruent iff there is an isometry taking one to the other.

In elementary geometry there are three different relations indicated by
the same words is congruent to, one for segments, one for angles, and a
third for triangles. All three can be combined under a generalized definition
that applies to arbitrary sets of points as follows. If s; and s, are sets of
points, then s, and s, are said to be congruent if there is an isometry o such
that a(s,) = s,.

§5.2 Paper Folding Experiments and Rotations

Paper folding experiments lead to conjectures in transformation geometry.
Here we describe the experiments that lead to the conjectures; in the next
chapter proofs are given to show the conjectures are actually theorems.
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Figure 5.2 Figure 5.3

The only materials needed are a pencil and at least three sheets of waxed
paper about 30 cm square. A ruler and a protractor might also help.

The first sheet of waxed paper is used to introduce the technique of using
waxed paper to illustrate reflections. Take a sheet of waxed paper and fold
the sheet in half over itself and make a crease. You might consider how
many ways this can be done if you start with a perfect square. Not that it
makes much difference, we suppose you have formed regions that are
approximately rectangular rather than triangular. When you unfold the
sheet, the crease of the fold is still evident. The crease represents a line which
we shall call m. With the pencil, mark any point P off line m. Is it obvious
how to find the mirror image P’ of point P under the reflection in line m?
We merely have to fold the sheet on m, trace the point P with the pencil
(from either side of the sheet), unfold the sheet, and label the new point P’.
To practice finding the images of figures under the reflection in line m, give
yourself some figures such as those in Figure 5.2. After performing the
operations described above, you should have Figure 5.3. You can discern
many of the properties of a reflection by considering these figures.

For more practice, now trace the images of the images of the original
numerals 5, 6, and 7 under the reflection in the line #» shown in Figure 5.3.
This will probably convince you that this tracing is not as easy as it sounds
at first. You should not be impatient with yourself when you find you have
traced a wrong figure. You may want to use an additional sheet to practice
finding the image of one figure at a time under reflection first in line m and
then the image of this image under reflection in line .

What is the result of successive reflections in more than one line? This
question is the subject of our investigation. We start by considering two lines.
Of course, there are two cases: the lines may be parallel or the lines may
intersect. We begin with the case of two parallel lines and a fresh sheet of
waxed paper. However, before we can get underway, we are faced with the
problem of constructing the two parallel lines. Using the theorem that two
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lines perpendicular to a third line are parallel, we can construct the parallel
lines as follows. Fold a line u across the bottom of the second sheet of waxed
paper. (If an edge of the sheet is straight, then this edge may be taken as u.)
By folding the paper so that line u falls on itself, the line of the crease is
perpendicular to line u. With two such foldings we have our parallel lines.

In order to make a fairly uncomplicated figure, we suppose you have folded
your second sheet of waxed paper so that parallel lines /, m, and n are about
7, 11, and 21 cm, respectively, from the left-hand edge of the sheet. With the
pencil, add some points such as P, Q, and R in Figure 5.4 and also some
figures such as the numerals 4, 5, and 6, placed about 6, 8 and 12 cm from the
left edge. These are all on the left-hand side of Figure 5.4. Now, by paper
folding, find the images of these three points and three figures under the
reflection in line /. These images are not given in Figure 5.4. Then find the
images of these images under the reflection in line m. These images of the
images are shown in Figure 5.4. Now ask yourself, ** What do I conjecture is
the result of first reflecting in line / and then reflecting in line m?”’ Although
the “proper ” conjecture is more evident in Figure 5.4 because the intermedi-
ate images are not shown, it probably does not take too long to see that the
figures have just been “slid over.” In what direction? And, how far? Study
the other side of the sheet too. You should conjecture a,,0; is the translation
through twice the directed distance from / to m.

That’s the easy part. Now, reflect the last set of images in the line n. Ask
yourself, ““What is the result of composing the three reflections in the three
parallel lines /, m, and n?”’ The answer will probably not come as quickly as
the previous conjecture. After some study, the principal conjecture to be
made here can be strengthened by one more folding of the waxed paper.
As another hint: if the conjecture is correct, we need not go on with the
experiment to consider reflections in four or more parallel lines.
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For the last experiment, we want to make conjectures about composing
reflections in lines that are concurrent. Take the third sheet of waxed paper
and fold any three concurrent lines /, m, and n. Add some points, say one on /,
one on m, and at least one off both / and m. You might also add some
additional figures such as numerals or your initials. Now, by paper folding,
find the images of these figures under the reflection in /. Then find the images
of these images under the reflection in line m. It’s time to stop and make
some conjectures about the nature of the composition of two reflections in
intersecting lines. Here is where the protractor comes in handy. Once you
have done this, you are ready to reflect the last set of images in the line n. A
conjecture about the composite of three reflections in three concurrent
lines finishes the experiments. Again, you can strengthen your last conjecture
by folding the sheet one more time.

Of course, you may not use any of your conjectures until they are proved
as theorems. However, one of your conjectures should have involved
rotations, which we now formally define in the most elementary manner. A
rotation about point C through directed angle of ®° is the transformation
Pc, e that fixes C and otherwise sends a point P to the point P’ where CP’ =
CP and O is the directed angle measure of the directed angle from CP to
CP’. We agree that p. , is the identity 1. Rotation p¢ e is said to have
center C and directed angle ®°. We want to show a rotation is an isometry.
Suppose pc,e sends points F and Q to points P’ and Q’, respectively. If
C, P, Q are collinear, then PQ = P’Q’ by the definition. If C, P, Q are not
collinear, then APCQ = AP'C’'Q’ by SASand PQ = P’Q’. See Figure 5.5.
So pc, e is a transformation that preserves distance.

Theorem 5.9. A rotation is an isometry.

For distinct points C and P, circle Cp is defined to be the circle with
center C and radius CP. So CP is a radius of the circle Cp, and point P is
on the circle.

That p¢ 130 = o follows from the fact that each of the transformations
fixes point C and otherwise sends any point P to a point P’ such that C is the

7B
) S( C T U

Figure 5.5
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Figure 5.6

midpoint of P and P’. The remainder of the following theorem also follows
immediately from the definition of a rotation.

Theorem 5.10. A rnonidentity rotation fixes exactly one point, its center. A
rotation with center C fixes every circle with center C. If C is a point and ®
and ® are real numbers, then pc opc.e = Pc,e+o aMd pc.o = pc,-o- The
rotations with center C form an abelian group. The involutory rotations are the
halfturns, and p¢, 1g0 = o for any point C.

Note that pc 30 = Pc,300 = Pc, -330 as, in general, for real numbers ©
and @ we have ©° = @° iff ® = ® + k(360) for some integer k. Your con-
jecture involving rotations should also have involved a directed angle from
line / to line m. For distinct intersecting lines / and m, there are two directed
angles from / to m. Clearly, as in Figure 5.6, these will have directed angle
measures that differ by a multiple of 180. (Fortunately, your conjecture
should have involved twice a directed angle.) If ® and W are the directed
angle measures of the two directed angles from / to m, then (20)° = 2¥)°
since numbers ® and ¥ differ by a multiple of 180. For example, again with
reference to Figure 5.6, we have 135 # —45, 135° # —45°, 270 # —90,
but 270° = —90°. So, if we are talking about the rotation through twice a
directed angle from line / to line m, then it makes no difference which of the
two directed angles we choose.

Can you define the following key words and symbols introduced in this
chapter: congruent, rotation, pp ¢, Cp?

§5.3 Exercises

5.1. Given AABC =~ ADEF where A = (0, 0), B = (5, 0), C = (0, 10), D = (4, 2),
E = (1, —2),and F = (12, —4), find equations of lines such that the product of
reflections in these lines takes AA4BC to ADEF.

5.2. Suppose lines I, m, n have, respectively, equations X =2, Y =3, and ¥ = 5.
Find the equations for ¢,,0, and for ¢,5,,.

5.3.  Prove or disprove: Every isometry is either a product of five reflections or a pro-
duct of six reflections.
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5.4.

5.5.

5.6.

5.7.
5.8.

5.9.
5.10.
5.1

5.12.

5.13.

5.14.

Prove or disprove: The images of a triangle under two distinct isometries cannot
be identical.

True or False

(a) (6.0,6,---0,0,6,) ' =0,0,0.---6,0,6,foralllinesa, b, c,..., x,,z.
(b) If Ay = Cp, then AD = BC.

(c) A product of four reflections is an isometry.

(d) The set of all rotations generates an abelian group.

(e) The set of all reflections generates .#.

(f) If A and B are two distinct points, P4 = PB, and Q4 = QB, then P = Q.
(g) An isometry that fixes a point is an involution.

(h) If isometry « fixes points 4, B, and C, then o = 1.

(i) If z and f are isometries and > = 2, thena = fora = 1.

() pc.e = pe. -o = o for any point C.

Carry out the paper folding experiments described in the text. (If waxed paper is
not available, try tracing paper.)

Give a reasonable definition for: JABCD = [JSPQR.

If JOABCD and (JEFGH are congruent rectanglesand 4B # BC, then how many
isometries are there that take one rectangle to the other?

Prove: If 0,0, fixes point P and m # n, then P is on both m and .
Prove or disprove: If p is a rotation, then {p) is finite.

Prove or disprove: If T, T,, T, T, are sets of points such that T, is congruent
to T, while Ty is congruent to T, then T, N Ty is congruentto 7, N T,.

Prove or disprove: If « is an involution, then Baf~! is an involution for any
transformation f3.

Ifthe heads-up coinisrolled around the tails-up coin in Figure 5.7 until the heads-up
coin is directly under the other, will the head then be upside down?

Given point P off line a, construct pp_¢¢(a).

Figure 5.7
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5.15. Given point 4 off two lines b and d, construct the squares [14BCD with Bon b
and Dond.

5.16. Given point P and two lines g and r, construct the equilateral triangles APQR
with Q ongand Ronr.

5.17. Arrange the capital letters written in most symmetric form into equivalence
classes where two letters are in the same class iff the two letters have the same
symmetries when superimposed in standard orientation.

e
SATAY/
:‘

. \ \



Chapter 6
The Product of Two Reflections

§6.1 Translations and Rotations

Every isometry is a product of at most three reflections (Theorem 5.6). So
each isometry is of the form o¢,, 0,,0,, or 6,0,,0,. In this section the case
6,,0; 1s examined. Since a reflection is an involution, we know a,0, = 1 for
any line I. Thus we are concerned with the product of two reflections in
distinct lines / and m. There are two cases: either / and m are parallel or else /
and m intersect at a unique point. We shall show first that if / and m are
parallel lines then the product ¢,,0, is the translation through twice the
directed distance from [ to m. SN

Let [ and m be distinct parallel lines. Suppose LM is a common perpen-
dicular to / and m with L on [ and M on m. The directed distance from [ to m
is the directed distance from L to M. We are going to use Theorem 5.2;
look back at that theorem now. See Figure 6.1 below. With K a point on [
distinct from L, let L' = ¢,(L) and K' = 1, ;.(K). Then (Theorems 3.1
and 3.2), we have tx x = 7, ;- and [JLKK'L' is a rectangle with m the
common perpendicular bisector of LL’ and of KK'. So 6,(K) = K. Now,
let J = o,(M). Then, since L is the midpoint of JM and M is the midpoint
of LL’, we have T;.m = Tp.p Where 7, ;. is the translation through twice the
directed distance from / to m. Hence,

O0mo(J) = 0,(M) =M =1 1 (J),
0, 0(K) = 0,(K) = K" = 1, 1(K),
0,0(L) = 0,(L)y=L" =1, (L)
Since an isometry is determined by any three noncollinear points (Theorem

5.2), the equations above give the desired result 0,,0, = 1, ;. = ..

43
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Figure 6.1

Theorem 6.1. If lines | and m are parallel, then 6,,0, is the translation through
twice the directed distance from l to m.

In the proof above we have 1, ;. = oy,6, (Theorem 3.6). Thus we have
already proved the next theorem.

Theorem 6.2. If line b is perpendicular to line | at L and to line m at M, then
0n0; = le,,M =0m0L.-

Is every translation a product of two reflections? Given nonidentity
translation t,_y, then 1, y = 0, 0, where M is the midpoint of LN. With [
the perpendicular to LM at L and m the perpendicular to IMatm , we have
0y, 0 = 0,,0, by the previous theorem. So 1, y = 6,,0, with [ || m. Thus we
have proved a converse of our first theorem.

Theorem 6.3. Every translation is a product of two reflections in parallel lines,
and, conversely, a product of two reflections in parallel lines is a translation.

The equations 6,6, = 6,0, = 7,0, have unique solutions for lines p and g
when given lines [, m, n are parallel. To show this, let line b be perpendicular
to parallel lines [, m, n at points L, M, N respectively. See Figure 6.2. Let P
and Q be the unique points on b such that g, 6, = oy0p = oyoy. Let line p
be perpendicular to b at P, and let line g be perpendicular to b at Q. Then

0,0, = 00 = Oy0p = 0,0, and 0,0, = 0y 0, = 0y0y = 0,0,.

I | ! I

Figure 6.2
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The uniqueness of these lines p and g that satisfy the equations follows from
the cancellation laws; for example, 6,0, = 0,0, implies ¢, = g,, which
implies p = t. We have proved the following useful theorem.

Theorem 6.4. If lines I, m, n are perpendicular to line b, then there are unique
lines p and q such that
00 = 0,0, = 0,0,.

Further, the lines p and q are perpendicular to b.

In the theorem above, note that p is just the unique line such that directed
distance from p to n equals the directed distance from [ to m and that ¢ is
just the unique line such that the directed distance from » to g equals the
directed distance from [ to m. Because of Theorem 6.3, we can restate the
content of the important Theorem 6.4 as follows.

Theorem 6.5. If P +# Q, then tp o may be expressed as g, 6, where either one
of a or b is an arbitrarily chosen line perpendicular to PQ and the other is then
a uniquely determined line perpendicular to PQ.

Since 0,,0, = 0,0, and ¢,0,0, = g, are seen to be equivalent equations
by multiplying each by o, on the left, we can restate the content of Theorem
6.4 in still another form. The reflection in the statement of the next theorem is
just g, of Theorem 6.4.

Theorem 6.6. If lines I, m, n are perpendicular to line b, then 0,0,,0, is a re-
flection in a line perpendicular to b.

We now turn to the case where | and m are distinct lines intersecting at a
point C. We shall follow much the same path as we did for parallel lines. We
first show ¢,,0, is a rotation about C by using the theorem that three non-
collinear points determine an isometry. Suppose ®/2 is the directed angle
measure of one of the two directed angles from I to m. We may as well suppose
—90 < ©/2 < 90. Note that the notation suggests correctly that we are
going to encounter twice the directed angle from [ to m in our conclusion.
Let L be a point on [ different from C. Let point M be the intersection of line
m and circle C; such that the directed angle measure from CL to CM is
©®/2. See Figure 6.3. We have | = CLandm = CM. Let L' = pc.o(L). Then
L' is on circle C;, and m is the perpendicular bisector of LL. So L' = a,,(L).
Let J = g(M). Then [ is the perpendicular bisector of J JM. So J is on circle
C,, and the directed angle measure from CJ to CM is ©. Hence M =
pc,e(J). Therefore,

amal(c) = Gm(C) = C = pC.@(C)’
amal(J) = Um(M) = M = pC,O(J)’
0m0(L) = 0,(L) = L' = pc_o(L).
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Figure 6.3

Since points C, J, L are not collinear, we conclude ¢,,6, = p¢ ¢. S0 0,,0,
is the rotation about C through twice a directed angle from [ to m. The dis-
cussion at the end of Chapter 5 explains why either directed angle from [ tom
may be used in the statement of our theorem.

Theorem 6.7. If lines | and m intersect at point C and the directed angle measure
of a directed angle from [ to m is ®/2, then 6,,6, = pc. o

Conversely, suppose p¢ ¢ is given. Let [ be any line through C, and let m
be the line through C such that a directed angle from [ to m has directed
angle measure ®/2. Then p¢ ¢ = 6,,0,, and we have the following analogue
to Theorem 6.3.

Theorem 6.8. Every rotation is a product of two reflections in intersecting lines,
and, conversely, a product of two reflections in intersecting lines is a rotation.

Given rays CL CM and CN N, there are unique rays CP and ¢ co Q such that
the directed angle from gd’ to CM the directed angle from CPto CN N, and
the directed angle from CN to cg Q all have the same directed angle measure.
See Figure 6.4. Withn = CW, p= CP andq = CQ we have solutions pand ¢
to the equations ¢,,6, = 6,0, = 6,0, when I, m, n are given lines concurrent
at C. The uniqueness of such lines p and q follows from the cancellation laws.
Because of itsimportance, our result is stated in three different ways, analogous
to Theorems 6.4, 6.5, and 6.6.

Theorem 6.9. If lines I, m, n are concurrent at point C, then there are unique
lines p and q such that
00 = 0,0, = 0,0,.

Further, the lines p and q are concurrent at C.
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C

Figure 6.4

Theorem 6.10. Rotation p¢ o may be expressed as 6,0, where either one of a
or b is an arbitrarily chosen line through C and the other is then a uniquely
determined line through C.

Theorem 6.11. If lines I, m, n are concurrent at point C, then 6,06,0, is a re-
flection in a line through C.

Since pp g0 = op for any point P, a special case of Theorem 6.10 has the
following form.

Theorem 6.12. Halfturn o, is the product (in either order) of the two reflections
in any two lines perpendicular at P.

Of course, 9,0, = Tp, p = pp o = 1 for any line | and any point P. Also, a
rotation has a fixed point while a nonidentity translation does not. From these
observations and the fact that lines / and m must be parallel or intersect, we
have the last theorem of this section.

Theorem 6.13. A product of two reflections is a translation or a rotation; only
the identity is both a translation and a rotation.

§6.2 Fixed Points and Involutions

We have not considered products of three reflections, except in the very
special cases where the reflections are in lines that are parallel or in lines that
are concurrent. Therefore, it would be fairly surprising if we could at this
stage classify all the isometries that have fixed points and classify all the
isometries that are involutions. Such is the case, however.

An isometry with a fixed point is a product of at most two reflections
(Theorem 5.5). Of course, the identity and a reflection have fixed points.
Otherwise, an isometry with fixed points must be a translation or a rotation
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(Theorem 6.13). Since a nonidentity translation has no fixed points and a
nonidentity rotation has exactly one fixed point, we have the following
classification of the isometries with fixed points.

Theorem 6.14. An isometry that fixes exactly one point is a rotation. An
isometry that fixes a point is a rotation or a reflection.

The involutions come next. Suppose « is an involutory isometry. Since
o is not the identity, there are points P and Q such that «(P) = Q # P.
Since P = a*(P) = a(Q), then « interchanges distinct points P and Q.
Hence (Theorem 4.4), « must fix the midpoint of PQ. Therefore « must be a
rotation or a reflection by the previous theorem. Since the involutory
rotations are the halfturns (Theorem 5.10), we have the following classifica-
tion of the isometries that are involutions.

Theorem 6.15. The involutory isometries are the reflections and the halfturns.

Although we know (Theorem 3.5) that halfturn o, fixes line [ iff point P
is on line /, we have not considered the fixed lines of an arbitrary rotation.
We do so now, and suppose nonidentity rotation pc ¢ fixes line I. Let m be
the line through C that is perpendicular to I. Then (Theorem 6.10), there is a
line n through C and different from m such that p. ¢ = ¢,0,,. Since  and m
are perpendicular, then (Theorem 4.1) we have [ = p¢ o(l) = 6,0,(I) = a,(D.
So g, fixes line I. Then, n = [ or n L I Lines m and n cannot be two inter-
secting lines and both perpendicular to I. Hence, n = . So m and n are
perpendicular at C and pc g is the halfturn o..

Theorem 6.16. A nonidentity rotation that fixes a line is a halfturn.

The useful trick of interchanging “¢,0,0,0,” and “o,0,” is akin in
arithmetic to multiply or dividing by 1 in some clever form, say to reduce a
fraction or to rationalize the denominator of the fraction. The advantage of
factoring out the identity g,0, is to simplify. However, sometimes it is con-
venient to insert the identity as a factor. For example, if m | n, the quickest
way to find points M and N such that ¢,0,, = oy0), is to insert the identity
in the form “o,0,” where [ is conveniently chosen to be a common per-
pendicular to m and n, say at points M and N, respectively. Then

OpOpy = OplOy = Un(al al)am = (O',, al)(alam) = ONOp-

Reading the line above backwards we see how to solve the converse problem
of getting from oy0, to 0,0, Similar to that problem is the problem of
finding the fixed point of pg 90 p 4. 60 in Figure 6.5. The line I that relates these
rotations is the line through the centers A and B. There is a line m’ through A
such that p, ¢, = 0, 0,. True, but we are not interested. We want the com-
mon “g,” to be in the middle of our product. There is a line m through 4
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75

Figure 6.5

such that p, 4o = 0,0,, and there is a line n through B such that pp 4o = 0,,0;.
Then it is no surprise that

PB,90P4a,60 = 0n010,0y = 0,0 = Pc,150-

We finish this section with a study of the symmetry of the alphabet.
The problem (Exercise 5.17) is to arrange the capital letters written in most
symmetric form into equivalence classes where two letters are in the same
class iff the letters have the same symmetries when superimposed in standard
orientation. Do you agree that there are the ten classes given by the columns
of Table 6.1? An interesting word game is to try to make up a ten-letter

Table 6.1

A B F H L N O Q X Y
M C G I s

T D J z

U E R

v K P

w

word or phrase that uses exactly one letter from each of the ten classes. For
example, see Figure 6.6.

—L Y7 EQUINOX
L D

Q)

Figure 6.6
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§6.3 Exercises

6.1. Prove: If Pis a point and / and m are lines, then there are lines p and g such that
Pisonpando,o, = 0,0,

6.2. In Figure 6.7, sketch the fixed point of 5,0, where 6, = 6,0,,0,and 6, = 0.0,0,.

a ’ ‘

Figure 6.7

6.3. Given a figure consisting of two points P and Q, sketch a construction of the
fixed point of 15 ¢0p 45.

6.4. Given a figure consisting of three points 4, B, C, sketch a construction of the
fixed point of T3 ¢p 4. 120-

6.5. What are the equations for ,0,, if line m has equation ¥ = —2X + 3 and line n
has equation Y = —2X + 8?

6.6. Show that 6,p¢ 60, = p¢, - if point C is on line /.

6.7. True or False

(a) If a directed angle from line / to line m is 240°, then a,,0, is a rotation of 120°.

(b) 6,,0, = 1}, = opoy if point L is on line / and point M is on line m.

(c) Anisometry has a unique fixed point iff the isometry is a nonidentity rotation.

(d) An isometry that is its own inverse must be a halfturn, a reflection, or the
identity.

(e) If L’ =0,(L) and K’ = 1, ;(K), then m is the perpendicular bisector of
KK

(f) Given points L, M, N, there is a point P such that opy0, = gy0p.

(g) Given lines /, m, n, there is a line p such that 6,0, = 7,0,.

(h) If lines /and m intersect at point C and a directed angle from /to m is ®°, then
Om01 = Pc20-

(i) An isometry that fixes a point must be a rotation, a reflection, or the identity.

(j) Isometry 2Ba~ ! is an involution for any isometry « iff isometry f3 is an involu-
tion.

6.8. G_lyen nonparallel lines 4B and CD, show there is a rotation p such that p(4B) =
CD.

6.9. Prove or disprove: Every translation is a product of two noninvolutory rotations.

6.10. Prove or disprove: If P # Q, then there is a unique translation taking point P
to point Q but there are an infinite number of rotations that take P to Q.
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6.11.

6.12.
6.13.
6.14.

6.15.

6.16.

6.17.
6.18.

If /, m, n are the perpendicular bisectors of sides AB, BC, CA, respectively, of
NANABC, then 6,0,,0, is a reflection in which line?

What lines are fixed by rotation p¢ ¢?
Prove Theorem 6.4 follows from Theorem 6.5.

If 6.0,0, is a reflection, show that lines a, b, ¢ are either concurrent or parallel to
each other.

Show that ¢,0,,0, = 0,0,0, whenever lines /, m, n are concurrent or have a
common perpendicular.

Show that the product of the reflections in the three angle bisectors of a triangle
is a reflection in a line perpendicular to a side of the triangle.

If 6,0,,((x, ) = (x + 6,y — 3), find equations for lines m and n.

If / and m are distinct intersecting lines, find the locus of all points P such that
pp.o(l) = m for some ©.

X
X
3

S5

53

S

2
2
N
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Chapter 7

Even Isometries

§7.1 Parity

A product of two reflections is a translation or a rotation. By considering
the fixed points of each, we see that neither a translation nor a rotation can be
equal to a reflection. Thus, 6, 0,, # o, for lines /, m, n. When a given isometry
is expressed as a product of reflections, the number of reflections is not
invariant; indeed, we can always add 2 to the number of reflections in a given
product by inserting “o,0,” into the product. Although a product of two
reflections cannot be a reflection, we know that in some cases a product
of three reflections is a reflection. We shall see this is possible only because
both 3 and 1 are odd integers. In mathematics, parity refers to the property
of an integer being either even or odd. An isometry that is a product of an
even number of reflections is said to be even; an isometry that is a product of
an odd number of reflections is said to be odd. Since an isometry is a product
of reflections, then an isometry is even or odd. However, the definition will be
useful only if we show that no isometry is both even and odd. Of course no
integer can be both even and odd, but is it not conceivable some product of
ten reflections could be equal to some product of seven reflections? To show
this is impossible, we first show that a product of four reflections is always
equal to a product of two reflections.

Our argument that a product of four reflections is a product of two
reflections depends on two applications of the lemma: If P is a point and a
and b are lines, then there are lines ¢ and d with ¢ passing through P such that
6,0, = 0,0.. Suppose a, b, P are given. If a || b, let ¢ be the line through P
that is parallel to a; if ¢ and b intersect at C, let ¢ be a line through P and C.
So «, b, ¢ are either parallel to each other or else concurrent. In either case,
there is a line d such that ¢,6,0, = o¢,. Then 0,0, = 0,0, and we have the

52
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.U
Q\

Figure 7.1

desired lemma. Now, suppose product ¢,0,0,0, is given. We want to show
this product is equal to a product of two reflections. Let P be a point on line p.
See Figure 7.1 for an example. By the lemma, there are lines ¢’ and r’ such that
0,0, = 0,6, with P on ¢'. Again by the lemma, there are lines r” and m such
that 6,0, = 6,0, with P on r”. Since p, ¢', r" are concurrent at P, then there
is a line I such that o,.6, 0, = 0,. Therefore,

6,0,0,0, = 0,0,,0,0, = 0,0,.0,0, = 0,0].

Not only are there lines such that the given product of four reflections is
equal to ¢,,0,, but our proof even tells how to find such lines.

Theorem 7.1. A product of faur reflections is a product of two reflections.

Given a long product of reflections, we can use this theorem repeatedly
to replace the first four reflections by two reflections until we have obtained
a product with less than four reflections. By repeated application of the
theorem to an even isometry, we can reduce the even isometry to a product
of two reflections. Also, by repeated application of the theorem to an odd
isometry, we can reduce the odd isometry to a product of three reflections
or to a reflection. Therefore, to show an isometry cannot be both even and
odd, we need to show only that a product of two reflections cannot equal
areflection or a product of three reflections. Assume there are lines p, g, r, s, t
such that 0,0,0, = g,0,. Then, we have shown above that there are lines /
and m such that ¢,,0, = 0,0,0,0, = 0,0,0, = ,. We have a contradiction
since 6,0, is a translation or a rotation and cannot be equal to reflection g,.
A product of two reflections is never equal to a reflection or a product of
three reflections. We have our desired theorem concerning parity.

Theorem 7.2. An even isometry is a product of two reflections. An odd isometry is
a reflection or a product of three reflections. No isometry is both even and odd.

The even isometries are the translations and the rotations. Since the
involutory isometries are the halfturns and the reflections, the theorem above
gives the following partition of these involutions.
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Theorem 7.3. An even involutory isometry is a halfturn; an odd involutory
isometry is a reflection.

An isometry and its inverse have the same parity, since the inverse of a
product of reflections is the product of the reflections in reverse order. So the
set & of all even isometries has the inverse property. Further, the set & has the
closure property since the sum of two even integers is even. That’s all we
need to show that & forms a group.

Theorem 7.4. The even isometries form a group &.

& will always denote the group of even isometries. So & consists of the
translations and the rotations. Since some persons call only these isometries
in & motions while others call any isometry in .# a motion, we shall get along
without using the term at all.

agpa” ' = g,p for any isometry o since agpa™! is an even involutory
isometry that fixes a(P). That’s true but a little fast. Suppose « and f§ are
isometries. Then,«fa ™! isan involution iff fis an involution since (xfa~)? =
afa”' = 1 iff # = 1 and since afa” ' = 1 iff B = 1. For example, since ap
and o,, are involutions, then aopa™' and ac,,a” ' are involutions. Further,
afo~ ! and B must have the same parity since o and its inverse ! have the
same parity. For example, acpa™' is even because op is even, and a0 !
is odd because g,, is odd. Since aopa”! is an even involution, then acpo”
must be a halfturn (Theorem 7.3). Hence, since halfturn acpa™! clearly
fixes point a(P), then agpo~ ! must be the halfturn about a(P). That is, aope ™!

= 0,p). In similar fashion, since ao,,0~ ! is an odd involutory isometry, then
1 1

1

1

ao,a” ' is a reflection. Hence, since ag, o™ ' clearly fixes every point a(P)
on line a(m), then o, o~ ' must be the reflection in the line a(m). That is,
AT~ = Oy

Theorem 7.5. If P is a point, m is a line, and o is an isometry, then

%0, 0" = 0, and oacpaT! = 0,p.

Figure 7.2 illustrates an example of the first equation in the theorem with
o taken to be pp 4. The theorem says that if we rotate the points of the plane
about P through —60°, then reflect in line m, and then rotate about P through
+60°, the effect of all this is just the same as only reflecting in line n where
n = pp_¢o(m). That seems truly amazing.

In general, afo™ ! is called the conmjugate of B by . We next look at the
conjugate at, ga~ ' of translation t, g by isometry a. If M is the midpoint
of A and B, then point a(M) is the midpoint of points a(4) and a(B). Also,
Tgp = 0y0,4 aNd T, 4) 2y = OuryOuay- Using our method of inserting the
identity in a useful form, we then have

-1 _ -1 _ -1 -1 _ —
AT 4, A = AOpO 40 = UAOp A Ao 4O = Oy M)Oqa) = Txa),a(B)-
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Figure 7.2

What could be nicer than the result at, o~ ' = 7,4 45 ? Finding the
conjugate of a rotation is slightly more complicated. We first examine the
conjugate of p¢ ¢ by ;. Let m be the line through C that is perpendicular to /.
Then there is a line n through C such that p¢ ¢ = 0,0,,. See Figure 7.3. Now
a,(m) and o/(n) intersect at o,(C), and a directed angle from a,(m) to o/(n)
is the negative of a directed angle from m to n. This explains the negative sign
on the far right in the following calculation:

-1 _ -1 __ -1 -1 __ —
01pc.e01 = 0,0,0,0, = 0,0,0; 00,0, = Ogyn0g,m) = PoyC), -0

If « = g,0,, then 0pc o0~ ' = 0(0,pc.005 )0, ' = pac). +o With a positive
sign replacing two negative signs in front of ®. If « = g,0,0, then the sign in
front of ® is back to a negative sign again. We summarize our results as
follows.

Theorem 7.6. If o is an isometry, then

-1 -1 _
AT4p% | = Ty AN APc od " = Puc), te>
where the positive sign applies when o is even and the negative sign applies when

o is odd.

By taking « = pj ¢ in the theorem, we can show nonidentity rotation
Pp.o does not commute with nonidentity rotation pc g unless D = C. We

c m=a,(m) a,(C)

Figure 7.3
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state this as a theorem here but leave the details of the argument as Exercise
7.1.

Theorem 7.7. Nonidentity rotations with different centers do not commute.

We are also in a position to answer the question, “When do reflections
commute?” For any lines m and n, the following five statements are seen to be
equivalent. (1) 0,,0, = 06,0,,.(2) 0,0,0, = 6,,.(3) Oy () = Opy- (4) 5,(M) = M.
(5) m =n or m L n. Comparing (1) and (5), we have the answer to our
question.

Theorem 7.8. ¢,,0, = 6,0, iff m =norm L n.

Several equivalences between algebraic equations and geometric relations
similar to that in Theorem 7.8 are indicated in Exercise 7.3. These are verified
in the same manner.

We now consider products of even isometries. We already know (Theorem
3.4) that the product of two translations is a translation. We also know
(Theorem 3.6) that the product of two rotations can be a translation in some
cases. For example, 650, = 15 5; don’t forget that a halfturn is a rotation of
180°. We know pc ¢pc.e = pPc.o+e Dy Theorem 5.10. Let’s consider the
product pg ¢p.4,e Of two nonidentity rotations with different centers. With
¢ = AB, there is a line a through A and a line b through B such that p, o =
g.0,andpg ¢ = 0,0,.50Pp ¢P4se = 0,0.0.0, = 0,0,. When(® + ®)° =0°,
then the lines a and b are parallel and our product is a translation. This is
easier to see when the directed angles are chosen as interior angles on the
same side of c; for example, in Figure 7.4 we have ©/2 + ®/2 = —180. On
the other hand, when (® + ®)° # 0°, then the lines a and b intersect at some
point C and our product is a rotation.

More than that, with the directed angles chosen as interior angles on the
same side of ¢ as C, we can see by the Exterior Angle Theorem from elementary
geometry that one directed angle from a to b is (®/2 + ®/2)°. See Figure 7.5.
Hence our product g, 0, is a rotation about C through an angle of (® + ®)°.
That is, pp oP4.@ = Pc.e+o- NOW, what is the product of a translation

A 0/2 /2 B
/]

Figure 7.4 Figure 7.5
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and a nonidentity rotation? In such a product we replace the translation
by a product of two rotations of 180° each and obtain as the product of the
three rotations a rotation of (® + 180 + 180)°, which is just a rotation of ®°.
We have proved The Angle-addition Theorem.

Theorem 7.9. A rotation of ®° followed by a rotation of ®° is a rotation of
(© + ®)° unless (O + ®)° = 0°, in which case the product is a translation. A
translation followed by a nonidentity rotation of ®° is a rotation of ©°. A
nonidentity rotation of ®° followed by a translation is a rotation of ®°. A
translation followed by a translation is a translation.

The Angle-addition Theorem can also be proved by using the equations
for the even isometries that will be developed in Section 9.1.

§7.2 The Dihedral Groups

We are going to compute the symmetry group of a regular polygon. As a
specific example of what we are going to do, we first consider the square.
We suppose the square is centered at the origin in the Cartesian plane and
that one vertex lies on the positive X-axis. With the notation as in Figure 7.6,
we see that the square is fixed by p and by ¢ where p = pg o0 and ¢ = a,,.
Note that p* = 6% = 1. Since the symmetries of the square form a group,
then the square must be fixed by the four distinct rotations p, p?, p3, p* and
by the four distinct odd isometries pa, p2s, p3a, p*c. Let V, and V, be
adjacent vertices of the square. Under a symmetry, V; may go to any one of
the four vertices, but then V, must go to one of the two vertices adjacent to
that one and the images of all remaining vertices are then determined. So

Figure 7.6
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there are at most eight symmetries for the square. We have listed eight
distinct symmetries above. Therefore, there are exactly eight symmetries
and we have listed all of them. Isometries p and o generate the entire group.
The symmetry group of the square is {p, ), a group of order 8 and denoted
by D,. Check each of the following calculations.

p=00,=p > po = o, op = p’c

p* =0,0,=p°
p’=0,0,=p

The Cayley table for D, is given in Table 7.1. Let’s see how to compute this
table. The first row is trivial. The p row is easily computed by just multiplying
each corresponding element in the : row by p on the left. Likewise, the p?
row is obtained by multiplying each corresponding element in the p row by p
on the left, and the p® row is obtained by multiplying each corresponding
element in the p? row by p on the left. Now the ¢ row is quite different. The
equations in the third column above tell how a ¢ “hops over a power of p.”
Once we have computed the o row, we return to computing each of the re-
maining rows by multiplying each corresponding element in the row above
by p on the left. So the whole table is easy to compute once the ¢ row is known.
However, since O is on the X-axis, then ap* is a reflection in a line through O
(Theorem 6.11), and hence an involution. So op* = (ap*)™' = p %o =
p*~*s. Therefore, to compute the entire Cayley table, all that is needed are
the equations ap* = p~*¢ and p* = ¢ = 1. Study this special case involving
the square before going on to the general regular polygon.

Let n be a positive integer greater than 2. Suppose a regular n-gon is
centered at the origin in the Cartesian plane and that one vertex lies on the
positive X-axis. The n-gon is fixed by p and by ¢ where p = py 360/n and o

p’o =0, op’=pc

Yoplo=9,  opP=ypo

is the reflection in the X-axis. Note that p" = ¢ = 1. Since the symmetries
of the n-gon form a group, then the n-gon must be fixed by the n distinct even
rotations p, p?, ..., p" and by the n distinct odd isometries pa, p?a, ..., p"o.

Table 7.1

D, 1 0 p? 3 o po p?e  pic

1 1 p p? IS o PG p?c  pic

p p p* p? ! ps  plc  pc o

p p? 0’ ! P pe  pe o po

P p’ ! p p? pc ¢ ps  p’c

¢ o plc  p*c  po 1 p3 p? )

ps | po o pla  ple p 1 p? p?

p*e | pa  ps o plc  p? P ! p?

pc | pe  ple  po o p? p? p !
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The symmetry group of the n-gon must have at least these 2n symmetries.
Let V; and V, be adjacent vertices of the n-gon. Under a symmetry, V; may
go to any of the n vertices, but then V, must go to one of the two vertices
adjacent to that one and the images of all remaining vertices are then de-
termined. So there are at most 2n symmetries for the n-gon. Therefore, there
are exactly 2n symmetries of the n-gon and we have listed all of them. Iso-
metries p and o generate the entire group. The symmetry group of the n-gon
is {p, o), a group of order 2n denoted by D,. These symmetry groups D,
are called dihedral groups, as are groups D, and D, where D, = {(s)and D, =
{p, oy with p a rotation about O of 180°. Since O is on the X-axis, then ap*
is a reflection in a line through O (Theorem 6.11) and hence is an involution

for any integer k. Therefore, op* = (6p*)™! = p %6 = p""*o. (We can also
obtain this equation from Theorem 7.6 with « = ¢ and p¢ ¢ = p*.) With the
elements of D, written in the form 1, p, p2,...,p" ', 0, po, p*a,...,p" ‘o,

we can easily write down the entire Cayley table for D, just by using the
equations gp* = p %o and p" = ¢% = 1.

Groups D, and D, are, respectively, symmetry groups of an isosceles
triangle that is not equilateral and of a rectangle that is not a square. (Note
that D, is the familiar group V, from Section 2.2.) For any positive integer n,
the subgroup of D, containing all the even isometries in D, is denoted by C,,.
So C, is the cyclic group of order n generated by p where p = pp 360/n-
Group C, contains only the identity element and is the symmetry group of a
scalene triangle. Since C, contains only the identity and a halfturn, then C,
is the symmetry group of a parallelogram that is not a rhombus. For n > 2,
group C, is the symmetry group of a 2n-gon akin to that in Figure 4.5 for
n = 3; the trick is to take a properly chosen fourth of each side of a regular
n-gon to be an alternating side of the 2n-gon. The case for n = 6 and a
ratchet polygon also having symmetry group C, are shown in Figure 7.7.
We have defined the groups C, and D, and verified the following theorem.

Theorem 7.10. For each positive integer n, there is a polygon having symmetry
group D, and a polygon having symmetry group C,.

Do you suppose that, conversely, every polygon has a symmetry group
C, or D, for some n? This will be discussed in the next chapter.

Figure 7.7
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Can you define the following key words and symbols introduced in this
chapter: even, odd, &, C,, D,?

§7.3 Exercises

7.1. Prove: Nonidentity rotations with different centers do not commute (Theorem
7.7).

7.2. In Figure 7.8, sketch lines / and m such that 6,0,0,0, = 0,,0,.

p q
Figure 7.8

7.3.  Expresseach of the following equations in a form that does not involve isometries:
040p = 0p0,, Og04 = Oc0g,  Op0, = O,0p,
0,04 = G0y, 0,04 = G404, 0,0, = 0.0.

7.4. Compute a Cayley table for D;.

7.5. Sketch a polygon having symmetry group Cs.

7.6. Find all points that have the same image under each of two given rotations.

7.7. True or False
(a) An even isometry that fixes two points is the identity.
(b) The set of rotations generates &.
() An odd isometry is a product of three reflections.
(d) An even isometry is a product of four reflections.
@) If pycre = Pc, o for isometry o, then « fixes C.
(f) For any isometry a, any points 4, B, C, and any line m:

ACpy = O s AOc = Oy,
AT4, B = Tya). x(BY%> Apc.o = Pucro:

(8) ps.o P4, -o 18 the translation that takes 4 to pg ¢(A4).
(h) Exactly n of the elements of D, are involutions.

(i) Group D, is a cyclic group with 2n elements.

(j) Group D, contains exactly » reflections.

7.8. Give the equations for each transformation in D,.

7.9. 1In Figure 7.9 sketch a construction for the point Z that is fixed by ¢,0p0,.
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7.10.
7.11.

7.12.

7.13.

7.14.

7.15.

7.16.
7.17.

Figure 7.9

Find Q and O such that 6,0.0,0, = pg ¢ in Figure 7.9.

In a figure consisting of two points 4 and B, sketch a construction for point Psuch
that 1p gpg 6o fixes 4.

In a figure consisting of two points 4 and B off line p, sketch a construction for the
lines z that are fixed by 630,0,.

Prove or disprove: Given 1, 5 and nonidentity rotation p ¢, there is a rotation
pp,osuchthat T, g = ppopc.e-

Show that if p,, p,, p,p,, and p; 'p, are rotations, then the centers of p,, p, py,
and p; 'p, are collinear.

Given four distinct points, find a square such that each of the lines containing a
side of the square passes through one of the four given points.

Describe the symmetry group for each of the eight figures in Figure 7.10.

Show 6p0,0p0,0p0,05 is a reflection in a line parallel to line /.

Il
il

P
2

KRS
i

Figure 7.10




Chapter 8

Classification of Plane Isometries

§8.1 Glide Reflections

We have classified all the even isometries as translations or rotations. An
odd isometry is a reflection or a product of three reflections. Only those odd
isometries ¢,0,0, where a, b, ¢ are neither concurrent nor have a common
perpendicular remain to be considered. Although it seems there might be
many cases, depending on which of a, b, ¢ intersect or are parallel to which,
we shall see this turns out not to be the case. However, we begin with the
special case where a and b are perpendicular to ¢. Then ¢, g, is a translation or
glide and g is, of course, a reflection. If a and b are distinct lines perpendicular
to line ¢, then ¢,0,0, is called a glide reflection with axis c. We might as well
call line m the axis of g,, as the reflection and the glide reflection then share the
property that the midpoint of any point P and its image under the isometry
lies on the axis. To show this holds for the glide reflection, suppose P is any
point. See Figure 8.1. Let line [ be the perpendicular from P to ¢. Then there
is a line m perpendicular to ¢ such that g,0, = 0,,0,. If M is the intersection
of m and ¢, then P and M are distinct points such that

0.0,0(P) = 6.0,0,(P) = 0.6,(P) = o,(P) # P.

Since 6,6, 0,(P) = 0,,(P)and M isthe midpoint of distinct points P and a,,(P),
we have shown that glide reflection 6.0, 0, fixes no point but the midpoint
of any point P and its image ¢.0,a,(P) lies on the axis of the glide reflection.
So a glide reflection interchanges the halfplanes of its axis. Hence, any line
fixed by the glide reflection must intersect the axis at least twice. That is, the
glide reflection can fix no line except its axis. The axis of a glide reflection is
the unique line fixed by the glide reflection. We have demonstrated the
following properties of a glide reflection.

62
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P
a b
] ] 4 ] ud N
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/ m |
og.0p0q(P)

Figure 8.1

Theorem 8.1. A4 glide reflection fixes no points. A glide reflection fixes exactly
one line, its axis. T he midpoint of any point and its image under a glide reflection
lies on the axis of the glide reflection.

If y is a glide reflection, then there are distinct lines a, b, ¢ such that y =
o.0,0,whereaand b are perpendicular to ¢, say at points 4 and B, respectively.
Now, 6, = 0,0, = 0.0, and a5 = g,0. = 7,.0,. Hence,

y = a(0,0,) = (0,0,)0, = 0,(0,.0,) = (0,0,)0,
= O'Baa - UbGA.

The first line of these equations tells us that y is the composite of the glide
0,0, and the reflection ¢, in either order. More important, the second line
tells us that y is a product 50, with B off @ and a product 6,0, with 4 off b.
See Figure 8.2. We want to show, conversely, that such a product is a glide
reflection. Suppose point P is off line . Let p be the perpendicular from P to [
and let m be the perpendicular at P to p. Lines | and m are distinct since P
is off . Furthermore, op0, = 0,0,0, and 0,0p = 0,0,0,, = 6,0,0,,. There-
fore, the products op0, and g,0, are glide reflections by the definition of a
glide reflection, as desired.

Theorem 8.2. A glide reflection is the composite of a reflection in some line a
followed by a halfturn about some point off a. A glide reflection is the composite
of a halfturn about some point A followed by a reflection in some line off A.
Conversely, if point P is off line |, then apo, and a,0p are glide reflections with
axis the perpendicular from P to .

a b

m p

Figure 8.2
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Since gp0, and o,0p are inverses of each other for any point P and line I,
the set of all glide reflections has the inverse property. Of course, the set of all
glide reflections does not have the closure property because the product
of two odd glide reflections must be an even isometry. Since a translation
fixing line ¢ commutes with ¢, and since any two translations commute,
then a translation fixing line ¢ commutes with any glide reflection with axis c.
The square of a glide reflection y with axis ¢ is just the square of the glide and,
hence, a nonidentity translation fixing ¢. The group {y?), the cyclic group
generated by nonidentity translation 72, is infinite and is contained in {7,
the cyclic group generated by y. So (y2) contains all the even powers of 7,
and {y) contains all the powers of }. Since {77 is infinite, then {}> must be
infinite. We have proved the following.

Theorem 8.3. A translation that fixes line ¢ commutes with a glide reflection
with axis ¢. The square of a glide reflection is a nonidentity translation. A
glide reflection generates an infinite cyclic group.

The picture that powers of a glide reflection always bring to mind is
Figure 8.3. Each footprint there is the image of the preceding footprint under
a glide reflection 7; each left footprint is the image of the preceding left
footprint under the translation y2.

U L L
o 3o 33

Figure 8.3

If 0,0,0, is a glide reflection, then 6,0, is not a reflection and the lines
p, 4, r cannot be either concurrent or parallel. In order to prove the converse,
we suppose p, ¢, r are any lines that are neither concurrent nor have a common
perpendicular. We wish to prove that ¢,0,0, is a glide reflection. First, we
consider the case lines p and ¢ intersect at some point Q. Then Q is off r as
the lines p, g, r are not concurrent. See Figure 8.4. Let P be the foot of the
perpendicular from Q to r, and let m be the line through P and Q. There is a
line / through Q such that 6,0, = 0,,0,. Since p # ¢, then! # mand P is off I.
Hence, 0,0,0, = 0,0,,0, = gpa, with P off I. Therefore, g,0,0, is a glide
reflection by Theorem 8.2.

There remains the case p | ¢. In this case, lines r and g must intersect as
otherwise p, ¢, r have a common perpendicular. Then, by what we just proved
in the paragraph above there is some point P off some line [ such that 60,0, =
opo;. Hence,

0,0,0, =(0,0,0,)" " =(0p0)" ' = 0,0p

with point P off line I. Therefore, again we have g,0,0, is a glide reflection.
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Figure 8.4

Theorem 8.4. Lines p, q, r are neither concurrent nor have a common perpen-
dicular iff 0,0,0, is a glide reflection.

An immediate corollary of this theorem is that a product of three re-
flections is a reflection or a glide reflection. Thus, we have a classification of
the odd isometries.

Theorem 8.5. An odd isometry is either a reflection or a glide reflection.
We finally have The Classification Theorem for the Isometries on the Plane:
Theorem 8.6. Each nonidentity isometry is exactly one of the following:

translation,  rotation,  reflection, glide reflection.

X\

Figure 8.5

Figure 8.5 should not look like mere doodling to you. You should be
reminded, in turn, of a translation, a rotation, a reflection, and a glide
reflection. Conversely, each of the words translation, rotation, reflection, and
glide reflection should cause a part of the figure to come to mind. As a special
case whenever anyone says “halfturn,” you should first think “perpen-
dicular lines.”

Suppose 7 is a glide reflection with axis ¢ and o is an isometry. So y? # 1.
Since aya~ ! is an odd isometry that fixes line a(c) but is not an involution,
then aya™ ! has to be a glide reflection with axis a(c).

Theorem 8.7. Ify is a glide reflection with axis c and o is an isometry, then aya ™
is a glide reflection with axis o(c).

At the end of the next section we are going to list all the isometries that
take a given point P to a different given point Q. Since this is an excellent
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review exercise, you may wish to test your skill by doing the exercise before
you read the solution.

§8.2 Leonardo’s Theorem

Do yourself a favor. Obtain from your library or bookstore a copy of
Symmetry by the renowned mathematician Hermann Weyl (1885-1955).
Read this delightful, popular book published by Princeton University Press
in 1952 and still in print. In Symmetry, Weyl points out that Leonardo da
Vinci (1452-1519) systematically determined the possible symmetries of a
central building and how to attach chapels and niches without destroying
the symmetry of the nucleus. We shall prove Leonardo’s result, which in our
terms states that the only finite groups of symmetries are the cyclic groups C,
and the dihedral groups D,,.

Suppose % is a finite group of isometries. Then % cannot contain a non-
identity translation or a glide reflection, as either of these would generate an
infinite subgroup of 4. So ¥ contains only rotations and reflections. We shall
consider the case % contains only rotations and the case ¢ contains at least
one reflection separately.

Suppose ¥ is a finite group of symmetries that contains only rotations.
One possibility is that ¢ is the identity group C,. Otherwise, we suppose ¢
contains a nonidentity rotation p 4 . Assume pp ¢ is a nonidentity rotation
in ¢ such that B # A. Then ¢ must contain the composite

-1 -1
PB,oP4,0PBoP4a o>

which is a translation by the Angle-addition Theorem (Theorem 7.9) that is
not the identity (Theorem 7.7). Since this is impossible, then we must have
B = A and all the nonidentity rotations in % have center A. We note that
Pa -—oisinZiff p, oisin 4 and that all the elements in & can be written in the
form p4 ¢ wWhere 0 < @ < 360. Let p = p, o Where @ has the minimum
positive value. If p, ¢ is in ¥ with ¥ > 0, then ¥ — k® cannot be positive
and less than @ for any integer k by the minimality of ®. So ¥ = k® for
some integer k and p, y = p* In other words, the elements of ¢ are precisely
the powers of p. We conclude that a finite group of isometries that contains
no reflections is a cyclic group C, for some integer n.

We now turn to the case where % is a finite group of isometries that
contains at least one reflection. Since 1 is an even isometry, since an isometry
and its inverse have the same parity, and since the product of two even
isometries is an even isometry, it follows that the subset of all even isometries
in 4 forms a finite subgroup of 4. By the preceding paragraph, we see that this
subgroup must be the cyclic group C, generated by some rotation p, say with
center A. So the even isometries in % are the n rotations p, p?,..., p" with
p" = 1. Suppose ¥ has m reflections. If ¢ is a reflection in %, then the n odd
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isometries po, p’o,...,p"s are in 4. So n < m. However, the m odd iso-
metries multiplied on the right by ¢ give m distinct even isometries. So
m < n. Hence, m = n and % contains the 2n elements generated by rotation
p and reflection o. If n = 1, then ¥ = (o). If n > 1, then po must be a
reflection in a line through the center of A. We conclude that finite group
of isometries that contains a reflection is a dihedral group D, for some
integer n.

Compiling the two results above, we have a proof of Leonardo’s Theorem:

Theorem 8.8. A finite group of isometries is either a cyclic group C, or a di-
hedral group D,.

In formulating the definition of the dihedral groups in the preceding
chapter, we noticed that a polygon with m vertices has at most 2m symmetries.
Since the symmetry group of a polygon must then be a finite group, Leo-
nardo’s Theorem has the following immediate corollary.

Theorem 8.9. The symmetry group for a polygon is either a cyclic group or a
dihedral group.

Our set task is to list, without repetition, all the isometries that take a
given point P to a different given point Q. To do this we let M be the midpoint
of PQ and let m be the perpendicular bisector of PQ. We shall see below that
the list consists of exactly the isometries ¢,0,, and ¢,0) Where g ranges over
the set of all the lines that pass through Q. The even isometries and the odd
isometries will be considered separately.

Translation 15  is the unique translation that takes P to Q, and 1p o =
0,0, Where g is the line through Q that is parallel to m. If rotation p¢ ¢ takes
Pto Q,then C must be on m, the perpendicular bisector of PQ, since CP = CQ.
Since m passes through C, then there is a unique line g through C such that
Pc,e = 0,0,. Then, since Q = 0,0,(P) = d,(Q), point Q lies on g. Hence,
every rotation taking P to Q has the form o,0, where q is a line through Q
that intersects m. Conversely, if g is a line through Q that intersects m, then
0,0, is a rotation taking P to Q. Therefore, the even isometries that take P
to Q are exactly the isometries o, 0,, with g on Q.

Reflection g,, is the unique reflection taking P to Q since m is the unique
perpendicular bisector of PQ. If glide reflection y with axis ¢ takes P to Q,
then M, the midpoint of P and Q, is on c. Since M is on c, there is a unique
line g off M such that y = o,0),. Then, since Q@ = y(P) = ,0(P) = 7,(Q),
point Q lies on g. Hence, every glide reflection taking P to Q has the form
0,0y Where g is a line through Q but off M. Conversely, if g is a line through
Q but off M, then a,0,, is a glide reflection taking P to Q. Now, g,, = 6,0y
with ¢ = PQ Therefore the odd isometries that take P to Q are exactly
the isometries o,0, with g on Q.
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A second, shorter argument than that in the preceding paragraph runs
as follows. Suppose « is an odd isometry that takes P to Q. Let n = PQ.
Then ao, is an even isometry that takes P to Q. By the argument for the even
isometries, ao, = 0,0,, for some line g on Q. So a = ¢,0,0, = 0,0, With
line g on Q. Conversely, 6,0, with g on Q is an odd isometry taking P to Q.
As above, the odd isometries that take P to Q are exactly the isometries 6,0y,
with g on Q.

§8.3 Exercises

8.1. Suppose PQ has midpoint M and perpendicular bisector m. Show the set of
isometries that take P to Q consists of exactly the isometries ¢,,6, and 646, where
p ranges over the set of all lines that pass through P.

8.2. Ifline b intersects lines @ and ¢ only at distinct points C and 4, respectively, show
that the axis of the glide reflection o.0,0, contains the feet of the perpendiculars
to @ and ¢ from A4 and C, respectively. This gives an easy construction for the axis
of the glide reflection. In Figure 8.6, sketch the axis of 6.6, 0,, the axis of 6,0, 0.,
and the axis of 6,0.0,.

Figure 8.6

8.3.  With the notation as in Figure 8.6, show that p¢ ;45 2004, 26 1S @ nonidentity
translation although p, 65 200c.2% = I.

8.4. Show that translation T commutes with o, iff 7 fixes ¢. Also, that t commutes with
a glide reflection with axis c iff t fixes c.

8.5. Prove Hjelmslev’s Theorem: If a is any isometry and / is any line, then there is a
line m such that for every point P on [ the midpoint of P and «(P) is on m.

8.6. Name the symmetry group for each of the figures in Figure 8.7.

8.7. True or False
(a) Every isometry is a product of two involutions.
(b) If n > 2, then D, is generated by two reflections.
(c) An isometry that does not fix a point is a glide reflection.
(d) Ifyis a glide reflection, then y(P) # P for every point P but the midpoint of P
and y(P) is on the only line fixed by y.
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8.8.

8.9.

8.10.

8.11.

8.12.
8.13.
8.14.
8.15.

8.16.
8.17.

8 Classification of Plane Isometries

(e) If y = o,0p, then y is a glide reflection with axis the line through P that is
perpendicular to /.

(f) Ifyis a glide reflection with axis ¢ and P is a point on ¢, then there are unique
lines / and m such that y = 6,,6p = dp0,.

(g) If o.050, fixes line m, then 6,650, is a glide reflection with axis m.

(h) If oc0,0, fixes line m, then o-0,0 4 is a glide reflection with axis m.

(i) A group of isometries that has order 35 must be a cyclic group Css.

(j) Every finite group of isometries is the symmetry group of some polygon.

Name the finite groups of isometries such that every element in the group fixes
given line /. Name the finite groups of isometries such that every element in the
group fixes given point P.

Prove or disprove: If point M is on the axis of glide reflection y, then there is a
point P such that M is the midpoint of P and y(P).

Prove or disprove: Every glide reflection is a product of three reflections in the
three lines containing the sides of some triangle.

Prove or disprove: If o is an odd isometry, then o« = ¢.0,0, where any one of
a, b, c may be arbitrarily chosen.

Which isometries are dilatations?
Prove: If 7 is a translation, then there is an odd isometry y such that t = y2.
Prove: If y™ = 3" for glide reflection y, then m = n.

List all symmetry groups that are the symmetry groups of quadrilaterals and for
cach group sketch a quadrilateral having that symmetry group.

If an n-gon has symmetry group C,, what can be said about n?

Prove Lagrange’s Theorem: Let 4 be a finite group. Then the order of any sub-
group of ¥ divides the order of ¢, and the order of any element of ¥ divides the
order of 4.




Chapter 9
Equations for Isometries

§9.1 Equations

The equations for a general translation were incorporated in the definition
of a translation. Equations for a reflection were determined in Theorem 4.2.
We now turn to rotations. Equations for the rotation about the origin through
a directed angle of ®° are considered first. Let p ¢y, 0 = 0,0, Where [ is
the X-axis. Then one directed angle from / to m has directed measure ©/2.
From the definition of the trigonometric functions, we know (cos(®,2),
sin(®/2)) is a point on m. So line m has equation (sin(®/2))X — (cos(®/2))Y
+ 0 = 0. Hence ¢,, has equations

oo — 2(sin(©/2))[(sin(©/2))x — (cos(©/2))y]
N sin%(®/2) + cos*(©/2)
= [1 — 25in%(©/2)]x + [2 sin(®/2)cos(®/2)]y
= (cos ®)x + (sin O)y,

2(cos(©/2))[(sin(®/2)x — (cos(©/2))y] .
+ sin%(©/2) + cosX(©)2) = (sin @)x — (cos O)y.

’

Since o, has equations x' = x and y’ = —y, then the rotation a,,0, has
equations given by the following theorem.

Theorem 9.1. In the Cartesian plane, rotation poy o about the origin has
equations

x" = (cos ®)x — (sin O)y,
y' = (sin ®)x + (cos O)y.

71
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Since pii,0 = T(0,0), (h. k) P(0,0).0(h k), 0,0) BY Theorem 7.6, the equations
for rotation py, ,, e about the point (h, k) are easily obtained by composing
three sets of equations. The rotation has equations

x" = (cos ®)(x — h) — (sin ®) (y — k) + h,
Yy = (sin ®) (x — h) + (cos ®)(y — k) + k.

It is easier to derive these equations from Theorem 9.1 when needed than to
remember them as a special theorem. These equations for the rotation
P 1), @ have the form

x' = (cos @)x — (sin @)y + r,
y' = (sin @) x + (cos ®O)y + s,

which, conversely, are the equations of a rotation unless ®° = (°, since given
r, s, and © there are unique solutions for 4 and k given by

r=h(l — cos ®) + k(sin ®) and s = h(—sin ®) + k(1 — cos ®)

unless ®° = 0°. In case ®° = 0°, the equations above are those of a general
translation. Note that Theorem 7.9, the Angle-addition Theorem, can thus
be proved directly by composing two sets of equations of this last form. Since
the even isometries are the translations and the rotations, setting a = cos @
and b = sin ® we have the following theorem.

Theorem 9.2. The general equations for an even isometry on the Cartesian
plane are

;= _b
{x Dbyt G a4 b =1

y =bx + ay + d,

and, conversely, such equations are those of an even isometry.

If « is an odd isometry and [/ any line, then a is the product of even isometry
g,o followed by o,. Taking I as the X-axis, we have any odd isometry is the
product of an even isometry followed by the reflection in the X-axis. This
observation, together with Theorem 9.2, gives the following theorem where
the positive sign applies when the isometry is even and the negative sign
applies when the isometry is odd.

Theorem 9.3. The general equations for an isometry on the Cartesian plane are

{x e witha® + b* =1

y = x(bx + ay + d),

and, conversely, such equations are those of an isometry.
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It is certainly easy to distinguish between equations for translations and
equations for rotations. Criteria for distinguishing between equations for
reflections and equations for glide reflections are left for the exercises in
Section 9.3.

§9.2 Supplementary Exercises (Chapters 1-8)

(a) What is the next figure in the sequence illustrated in Figure 9.1?

M, 2 s S

Figure 9.1

(b) InFigure 9.2, sketch and find the length of the shortest path from Bto Cto Dto E
where points C and D are 4 units apart on line r.

E

13
B 10
5

’

F G

*H

Figure 9.2

(c) In Figure 9.2, sketch a pentagon having points E, B, F, H, G as midpoints of the
sides taken in order.

(d) InFigure 9.2, if 650p0((B) = F, then sketch a construction for point P.

(e) Sketch a construction of a path of a hole-in-one in the miniature golf course in

Figure 9.3.
&

]
Ball

Figure 9.3
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9 Equations for Isometries

List as many infinite groups of isometries as you can think of in ten minutes.

The equation S = [(@ + b — ¢)(a — b + c)/a]"’? cannot be a general formula
for the area S of triangles having sides of length a, b, c. How can you tell this at a
glance?

Prove or disprove: If sis the set of all images of point 4 under the elements of some
nonidentity group ¥ of isometries, then % may be a proper subgroup of the group
of symmetries of s.

If4 = (1, 2)and B = (—3, 6), find Csuch that ogo,(C) = (4, —2).If E = (2, 3),
then find D such that ozap((1, —2)) = (3, 5).

If 4 = (3, 0), find equations for lines m and » such that (2, —4)isonmand 6, =
GpGp-

If point A4 is off each of the intersecting lines p and g, find all pairs P and Q such
that Pis on p, Q is on g, and 4 is the midpoint of P and Q.

Sketch the shortest path from B to E that crosses each of the three indicated
“rivers” in Figure 9.4 at right angles.

Eqe

oB

(L 8 s 3

g 3 {k
.f:%-,‘:\(%“ &
5x5

-1
Ry
PG

Figure 9.4

Suppose « and f# are two symmetries for set s of points and «(P) = S(P) for every
point P in 5. What can you say about s?

Prove or disprove: If C, is a group of symmetries of an n-gon, then D, is the sym-
metry group for the n-gon.

Prove or disprove: If C,, or D,, is the symmetry group for an n-gon, then n = km
for some integer k.

. «>
Prove or disprove: If pg op4.06 = Pc,0+0> Pa.0PB.® = Pp.o+o, and m = AB,
then D = 4,,(C).

Given point M, a line, and a circle, find points L and C such that L is on the line,
C is on the circle, and M is the midpoint of L and C.

Given a line / and two circles, find squares JPQRS such that P and R are on the
line, Q is on one circle, and S is on the other circle.

The pool table in Figure 9.5 has pockets only at the corners. Into which pocket
does the ball go?
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L 9.4

0.0 4,0)
Figure 9.5
(t) Thomsen’s relation: Prove that for any lines a, b, c:
0,0,0,0.0,0,0,0,0,0,0,0.0,6,0,0,0,0,0,6,0,0, = L.

(u) Name the symmetry group for each of the nine figures in Figure 9.6. These are taken
from Hajime Ouchi’s Japanese Optical and Geometrical Art in the Dover Pictorial
Archive Series.

(
)
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" %
7
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e 20

(v) Given a point, a line, and a circle, find the squares having one vertex the point, one

vertex on the line, and a third vertex on the circle.

Y

Figure 9.6

(w) Given AABC,if ABCD and AACE are equilateral with 4 and D on opposite sides
of BC and with B and E on opposite sides of AC, then show AD = BE.
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9 Equations for Isometries

If point P is on side BC of acute triangle AABC, find point Q on AC and point R
on AB such that APQR has minimal perimeter.

Given acute triangle A 4BC, find points P, Q, R with P on BC, Q on AC, and Ron
AB such that A PQR has minimal perimeter (Fagnano’s problem).

A bee and a lump of sugar are inside an acute triangle. The bee wishes to reach the
sugar but must touch all three sides of the triangle before coming to the sugar.
What is the shortest path for the bee?

§9.3 Exercises

9.1.
9.2.
9.3.

9.4.

9.5.

9.6.

9.7.
9.8.

What are the equations for each of py g9, Po. 180> and po, 2707
What are the equations for py 6o and for p; _; 60?

Explain the test for symmetry of a curve with respect to the X-axis, namely that
the equation of the curve remains unchanged when ‘Y is replaced by “—Y”
throughout the equation. What are the tests for symmetry with respect to each of
the Y-axis, the origin, the line with equation ¥ = X, and the line with equation
Y = —-X?

Show x” = ax + by + cand y’ = bx — ay + dare general equations for an odd
isometry when a? + 6% = 1.

Ifx" =ax + by + cand y’ = bx — ay + dwitha® + b? = | are the equations
for isometry a, show a is a reflection iff ac + bd + ¢ = 0and ad — bc — d = 0.

True or False

(@) X = —x + 6and y’ = —y — 7 are equations for a rotation.

(b) X’ = px — gy + rand y’ = gx + py + sare equations for an even isometry.

() = —px —qy —r and y' = gx — py — s are equations for an even
isometry if p? + g% = 1.

(d) x = —ax + by + ¢ and y' = bx + ay + d are equations for an odd
isometry if a®> + b? = 1.

() x =+ ax — by + cand y’ = + bx + ay + dare equations for an isometry
ifa®> + b% = 1.

(f) x’ = xcos 20 + ysin2®and y’ = x sin 20 — y cos 2d are equations of the
reflection in the line m through the origin such that a directed angle from the
X-axis to m is @°.

(g) If mis any line, then every odd isometry is the product of o,, followed by an
even isometry.

(h) If m is any line, then every odd isometry is the product of an even isometry
followed by a,,.

(i) If tisa translation, then top is the halfturn about the midpoint of P and t(P).

(j) If 7 is a nonidentity translation that fixes line ¢ and line / is perpendicular to
¢ at point P, then 70, is the reflection in the perpendicular bisector of P and
(P).

If x' = 3x/5 + 4y/5 and y' = 4x/5 — 3y/5 are equations for g,,, then find m.

If X = —3x/5 4+ 4y/5 and y’ = —4x/5 — 3y/S are equations for isometry a,
then describe o where (3/5, 4/5) = (cos @, sin ®).
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9.9.

9.10.

9.11.
9.12.

9.13.

9.14.

9.15.

9.16.

If2x’ = —3"Y2x — y + 2and 2y’ = x — 3"2y — 1 are equations for pp ¢, then
find P and ©.

If X =xcos® — ysin® + rand ) = xsin ® + ycos ® + s are equations
for nonidentity rotation pp, ¢, then find P.

If X = ax + by + cand y’ = bx — ay + d are equations for o, then find m.

If x = ax + by + cand y' = bx — ay + d are equations for glide reflection y,
show y has axis with equation

2bX — 2(a+ )Y + (ad — bc + d) =0
unless b = 0 and a = —1, in which case the axis has equation X = ¢/2.

Ifx" = a;x + b;y + c;andy” = d;x + ¢;y + f;areequations for transformation
o; and a3 = a,;, then show

ay by ¢ a, by cfla; b ¢
dy ey fi| =14, e; fi|lldi e N
0 0 1 0 0 1 0 0 1

Prove Theorem 7.9, the Angle-addition Theorem, directly from equations for an
even isometry.

Withx = rcos®, y = rsin ®, x’ = r(cos ® + @), and y' = r(sin ® + O), use
polar coordinates to prove Theorem 9.1.

Each of the patterns indicated in Figure 9.7 is assumed to extend infinitely far to
the right and to the left. For each of the four patterns, assume a convenient
coordinate system and then give the equations for all the symmetries of the
indicated pattern.

Figure 9.7



Chapter 10

The Seven Frieze Groups

§10.1 Frieze Groups

Around the frieze of an older building there is often a pattern formed by the
repetition of some figure or motif over and over again. The essential property
of an ornamental frieze pattern is that it is left fixed by some “smallest
translation.” We can call AB the length of translation 1, z and say 7, g is
shorter than 7. , if AB < CD. Other symmetries in addition to translations
are often apparent in a frieze as well. Of course, there is infinite variety in the
subject for such patterns. However, by discounting the scale and subject
matter and by considering only the symmetries under which such patterns
are left invariant, we shall see that there are only seven possible types of
ornamental frieze patterns.

If isometries « and ¢, are in group % of isometries, then g,p, is also in %
because the product agpa™ ' must be in 4. Similarly, if isometries « and g,
are in group ¥ of isometries, then ¢, is also in ¢ because the product
ao;a” ! must be in . Since the symmetries of any set of points form a group,
we have proved the following.

Theorem 10.1. If P is a point of symmetry for set s of points and o is a symmetry
of s, then a(P) is a point of symmetry for &. If lis a line of symmetry for set s
of points and o is a symmetry of s, then (1) is a line of symmetry for s.

A group of isometries that fix a given line ¢ and whose translations form an
infinite cyclic group is a frieze group with center ¢. Let T be a nonidentity
translation that fixes a given line ¢. We shall determine all frieze groups %
with center ¢ and whose translations form the infinite cyclic group generated
by . There will be seven of them. For each group, we shall give a frieze

78
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pattern having that group as its group of symmetries. We shall also state in
italics criteria which distinguish those patterns having that particular
symmetry group.

The following notation will be used throughout the development. We
begin by choosing a point A on line ¢ as follows. If # contains halfturns, then
A is chosen to be the center of one of these halfturns; if # contains no half-
turns but does contain reflections in lines perpendicular to c, then A is chosen
to be the intersection of one of these lines and c; otherwise, point A4 is chosen
to be any point on c. Let 4; = t'(A). So A, = A. Since t%(4;) = 1" *(A4), then
every translation in .# must take each A4, to some A4;. Let M be the midpoint
of A and A,, and let M; = t/(M). So M; is the midpoint of 4; and A4, , and
also the midpoint of Ay and 4,;, ;.

YA £ Z
[ ] e} [ ] e} [ ] O [ ] (o] [ ]
Ay M, A, M, A, M, A, M, A,

Figure 10.1

One possibility for .# is just the group generated by 1. Let ¥, = (7).
A frieze pattern having % | as its symmetry group has no point of symmetry,
has no line of symmetry, and is not fixed by a glide reflection. See Figure 10.1,
where here, as in the next six figures, the solid dots 4; and the open dots M,
are not to be considered part of the pattern illustrated.

Other than translations, the only even isometries that fix center ¢ are the
halfturns with center on ¢. Suppose % contains a halfturn. Then ¢, is in &
by the choice of A. Also, g, is in F as g, is the product 76 ,. By the first
theorem, then % contains the halfturn about each A; and about each M.
Now suppose P is the center of some halfturn in %#. Then the translation
opo 4 is in #. So apa,(A) = A, for some n. Then op(A) = A,, and P is
the midpoint of 4 and A4,. Hence # contains exactly those halfturns that
have center A; and those that have center M;. Let #, = (1, 6. Since 10,
is an involution, then o, = g1~ '. So every element in %, is of the form
© or 47 Every element in %, is of the form 1. Also, #, = (04, 0y
since oy T = 0,. A frieze pattern having F , as its group of symmetries has a
point of symmetry but no line of symmetry. See Figure 10.2.

Figure 10.2

If # contains only even isometries, then # must be one of &, or F,.
The other possibilities for & are obtained by augmenting &, or &, with
odd isometries. We first consider adding reflections. Recall that o, fixes ¢
iff i=corlLlec Let #| = (z, 0. Since 16, = 7,1, then F | is abelian and

every element is of the form o/t If n#0, then #| contains the glide
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Figure 10.3

reflection with axis ¢ that takes A to A,. A frieze pattern having ¥} as its
symmetry group has no point of symmetry and the center is a line of symmetry.
See Figure 10.3.

Let #} = (1, 64, 6,). Since 6, commutes with both t and o, then every
element of #} is of the form ¢ o/, If n # 0, then %} contains the glide
reflection ¢,.7" with axis ¢ that takes 4 to 4,. Also, #; contains t%'s 0,,
which is the reflection in the line perpendicular to ¢ at A;, and &} contains
12i*1g ,a., which is the reflection in the line perpendicular to ¢ at M;. If a is
the line perpendicular to ¢ at A, then #} = <1, 0,,0.). A frieze pattern
having F} as its symmetry group has a point of symmetry and the center is a
line of symmetry. See Figure 10.4.

L N/L N /L NZ N\

e O . o e o© ° o e

N T /7N T 7N T U7X 7
Figure 10.4

Suppose & does not contain a halfturn but does contain the reflection in
a line a that is perpendicular to c. In this case, we suppose A4 is on a. Then #
contains t%'g,, which is the reflection in the line perpendicular to c at A4;,
and # contains t*'* 'g,, which is the reflection in the line perpendicular to
¢ at M;. Assume ¥ contains another reflection o,. Then [ # c as the halfturn
og.0,isnotin #.So !l L ¢. Then & contains the translation g,0,, which must
take A to A, for some n. So g(A) = A, for some n withn # 0, and [ is perpen-
dicular to ¢ at some A; or at some M,. Therefore, # must contain exactly
those reflections in lines perpendicular to ¢ at A; for each i and those re-
flections in lines perpendicular to ¢ at M, for each i. We have now considered
all possible cases of adding reflections to & ,. Let #? = (1, g,> where a is
perpendicular to ¢ at A. Since 16, = 6,7, then every element of .2 is of
the form ¢4 1'. # 2 does not contain o, but does contain the reflections in the
lines that are perpendicular to ¢ at A; or M;. A frieze pattern having F 3
as its symmetry group has no point of symmetry, has a line of symmetry, but
the center is not a line of symmetry. See Figure 10.5.

L NZL N/ _NZ N
) o e o e o e O °

Figure 10.5

Now suppose % does contain a halfturn and the reflection in a line gq.
If ¢ = ¢, q is perpendicular to ¢ at A4;, or g is perpendicular to ¢ at M;, then
we are back to # ). To obtain something new, we must suppose q is off each
A; and off each M;. Since o,(A) must be the center of a halfturn in & by the
first theorem (with x = ¢,), the only remaining possibility is that g is the
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perpendicular bisector of AM, for some i. Because of the halfturns in %, the
second part of the first theorem then requires that & contain the reflection in
the perpendicular bisector of AM, for each i. Hence, in particular, # contains
o, where p is the perpendicular bisector of AM. If line a is perpendicular to ¢
at A, then # cannot contain both ¢, and g, as the translation ¢ ,¢, would take
A to M, which is impossible. Also, since ¢,0, = 6,0.0,, then F# cannot
contain both o, and .. We have now considered all possible cases of adding
reflections to #,. Let #3 = (1, 0,,0,) where p is the perpendicular
bisector of AM. Note that %3 contains the glide reflection ¢,0, with axis ¢
that takes A to M. Let y = ¢,0,. Since t = y? and ¢, = y0,, then ¥} =
{y, 64>. F35 does not contain o,. A frieze pattern having F 2 as its symmetry
group has a point of symmetry, has a line of symmetry, but the center is not a
line of symmetry. See Figure 10.6 but ignore the dots.

Figure 10.6

We have considered all possibilities for & that do not necessarily contain
a glide reflection. Now suppose & contains the glide reflection «. Then « has
axis ¢ and o is a translation that fixes c. We have two cases: a> = 72" and
o> = t?"*! for some integer n. Suppose «? = t2". Since a and t commute,
then (axt~")? is the identity. So the odd involutory isometry at ™" must be a,.
Hence a = o.7". In this case & contains ¢.and o.1t™ for each integer m. If #
does not contain a halfturn, then we are back to #}; if # does contain a
halfturn, then we are back to & .. Now suppose a? = 72"*!, Then (" "a)? is 1.
Let y = 77"« Then y is an odd isometry whose square is 7. Hence y must be
the unique glide reflection with axis ¢ that takes 4 to M. Since y>™ = ™
and y*™*! = ™y, the glide reflections in & are exactly those of the form t™y.
Let #3 = (y) where y is the glide reflection with axis ¢ such that y> = 1.
A frieze pattern having 3 as its symmetry group has no point of symmetry,
has no line of symmetry, but is fixed by a glide reflection. See Figure 10.7 but
ignore the dots.
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Figure 10.7

Suppose # contains isometries in addition to those generated by the
glide reflection y with axis ¢ where y? = 1. Since the square of the translation
o.7is1,then g, yisnotin {z).So g, cannot be in #. If # contains g, with[ L c,
then & contains the halfturn o,y. If % contains a halfturn, then % must
contain o 4. In this case, # contains g, and the glide reflection y with center ¢
such that y? = 1. Hence & is #%. We have finally run out of possibilities.
Group & must be one of the seven groups given above, and we have our
theorem.
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Theorem 10.2. Let & be a frieze group with center ¢ whose translations form the
group generated by translation t. If # contains a halfturn, suppose % contains
0 4; if F contains a reflection in a line perpendicular to c, suppose & contains
o, witha L c. Let y be the glide reflection with axis ¢ such that y*> = t. Then,
Z is one of the seven distinct groups defined as follows.

F,=X1), Fi=(n0) Fi=L(50), Fi={,
yZ = <T’ 0A>’ ‘975 = <T’ G4,0 >’ 'g;g = <')), 0A>'

The seven types of ornamental frieze groups are illustrated in Figure 10.8.

#FFFFFFFF #S5S5SS5SSSSSS
#'DDDDDDDD AHFITITIIIITII
FEAAAAAAAA FZMNMANMNMN
FZ’DINDMDWD M

Figure 10.8

In the next chapter we shall use the fact that the only frieze group con-
taining a glide reflection but no reflections is #3. This follows from the
observations that only # ,, % ,, and #; contain no reflections while only %,
and &, contain no odd isometries. The subgroup relationship among the
frieze groups is given in Figure 10.9.

/lz\/z\
Z 1 72 73
7
Figure 10.9

§10.2 Frieze Patterns

Can you determine the frieze group that is the symmetry group for each of the
seven types of frieze patterns as illustrated in Figure 10.10? To make a key
to the frieze patterns, we can ask the following questions.

(1) Is there a point of symmetry?

(2) Is the center a line of symmetry?

(3) Is there any line of symmetry?

(4) Is the pattern fixed by a glide reflection?
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ME COOK-HE COOK-WE COOK: -HE C
SANTA CLAUS SANTA CLAUS SA

HOHOHOHOHOHOHOHOHOHOHOHO
MTMTMTMTMTMTMTMTMTMTMTMT
NOON NOON NOON NOON NOON NO
NOMOWOMOWOMOWOMOWOMOWOMO

IO HFO=9dH-FO IO FHOZ=ZIHO IO
Figure 10.10

Knowing the answers to these questions allows us to determine the symmetry
group of the frieze. These questions are based on the criteria in italics from
the previous section. The key is given in Figure 10.11. Check the key against
Figure 10.8 and then classify the patterns in Figure 10.10. With very little
practice you will be able to classify at least four or five patterns in a minute,
although at first you will probably need more time than that.

Since there are only seven frieze groups, only three questions are necessary
to make a key. However, the four question key seems easier to use. This also
agrees with the notation for the groups, which is due to the Hungarian
mathematician Fejes Toth. The subscript 2 or | to the # indicates whether
or not there is a halfturn in the group. The superscript 1 indicates the center

Halfturn?
No Yes
Reflection Reflection
n center? in center?
No Yes No Yes
Reflection? % ! Reflection? ’2/
No Yes No Yes
Glide Reflection? 72 7 7
No Yes

7 3
7 7,

Figure 10.11



84 10 The Seven Frieze Groups

() I ) \l\l

61$E@€Eﬁw>>>>>>z>

LT NWW
m%:d% éf“\m X
AR, LA
R IR E EIHE

(c)

Figure 10.12

is a line of symmetry. The superscript 2 indicates the center is not a line of
symmetry but there is a line of symmetry perpendicular to the center. The
superscript 3 is left for the special case that the group is generated by a glide
reflection.

More patterns for practice in classifying frieze patterns by their symmetry
group are given in Figure 10.12 above. However, beware, one of these pat-
terns is not a frieze pattern. Which one? Why? Perhaps the best way to get a
feeling for the patterns is to make some yourself. You will be asked to do just
this in one of the exercises. Of course, frieze patterns are used in many places
other than about the friezes of buildings. Be on the lookout for the frieze
patterns you encounter in your surroundings.
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§10.3 Exercises

10.1.
10.2.
10.3.

10.4.

10.5.

Name the frieze group for each pattern in Figure 10.10.
Name the frieze group for each of the frieze patterns in Figure 10.12.

Make two patterns something like those in Figure 10.12 for each of the seven
frieze groups.

The four patterns in Figure 10.13 use the same motif as those given in Figures 10.1
through 10.6. Name the symmetry group for each of these frieze patterns.

yd

“— < <

Z N\ AN N £
(b)

N7 N N 7/

L YA L L
“ N I 7 7
y - N Z N Z
(d) — — <

Figure 10.13

True or False

(a) Any isometry in a frieze group must fix the set of all centers of the halfturns
in the group.

(b) A glide reflection in a frieze group containing a halfturn must fix the set of all
centers of halfturns in the group. -

(c) Ify is a glide reflection such that y> = t, ,, then y has axis AB.

(d) A frieze group containing a glide reflection contains the group &} or the
group .7 3.

(e) If afrieze group contains a glide reflection «, then a? generates the subgroup
of all translations in the frieze group.

(f) If points 4 and B are distinct, then there is a unique glide reflection y with
axis AB such that y> = 1, .

(g) Frieze group # 2 contains % 3.

(h) Frieze group #? contains # 1.

(i) Frieze groups & ,, %, and & are the only frieze groups that do not contain
a glide reflection.

(j) Ifoand o, are symmetries of a given set of points and a takes line / to line m,
then o, is in the symmetry group for the set of points.
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10.6.
10.7.

10.8.

10.9.

10.10.

10.11.

10.12.

10 The Seven Frieze Groups

Name the frieze group for each of the ten patterns formed by repeating one of
the letters from Figure 6.6, e.g.: FFFFF.

Make a three question key to the frieze patterns.

Find all possible groups of symmetries that fix a given line but do not contain a
translation. For each of these groups, give a figure that could be on the frieze of
some building.

Name the frieze group for each of the following patterns:

(a) AAAAAAAA (b) FFFF
AAAAAAAA, FFFF,

(c) EEEEEEEE (d EEEE
EEEEEEEE, EEEE

(¢) NNNNNNNN (f) NNN
NNNNNNNN, N N N N,

(g) DDDDDDDD (hy DDDD
DDDDDDDD, D D D D,

(i) HHHHHHHH () HHHH
HHHHHHHH, HHH H.

Two mathematicians look at a frieze pattern and disagree on the frieze group.
Give an example of such a frieze pattern.

Prove or disprove: A set of points in the interior of a circle cannot have two
points of symmetry.

Figure 10.14 illustrates a pattern with symmetry group . ,. For each of the other
six frieze groups, complete Figure 10.14 to a pattern having that group as its
symmetry group by adding as little as possible. (There are to be at least four
repetitions.)

10.13.

10.14.

10.15.
10.16.

10.17.

Figure 10.14

Using a grid like that in Figure 10.14, illustrate each of the seven types of frieze
patterns by filling each of the boxes with “X” or “O”.

Prove or disprove: A group generated by two glide reflections with the same axis
is a frieze group.

Find all glide reflections y such that y*> = 1 for given nonidentity translation z.

Show that each fricze group .#,, %2, and .#2 is generated by two involutions.
Show #1 is generated by three involutions.

Prove: If P is the center of a rotation of 90° in a given group of isometries and
the group contains an isometry that takes P to Q, then Q is also the center of a
rotation of 90° in the group.
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10.18. Name the symmetry group associated with each of the fourteen frieze patterns
indicated in Figure 10.15. These are taken from Theodore Menten’s Japanese

Border Designs in the Dover Pictorial Archive Series.
G]1G]|6G]|G]|G]| 6] ]

F|EER|ER|E %I FA|E(E|E 0
o fdjicd{cdjjc}[cd]fcd]]|c]

[1]o]G]
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Chapter 11

The Seventeen Wallpaper Groups

§11.1 The Crystallographic Restriction

The ornamental groups of the plane are the rosette groups, the frieze groups,
and the wallpaper groups. The rosette groups are the finite groups of isom-
etries, which by Leonardo’s Theorem are the groups C, and D,. A frieze
group is a group of isometries whose subgroup of translations is generated
by one translation. Frieze groups were treated in Chapter 10. We now turn
to the last of the ornamental groups of the plane by considering groups
whose subgroup of translations is generated by two translations.

A wallpaper group W is a group of isometries whose translations are
exactly those in (1, 7,)» where if 1, = 7, g and 1, = 7, ¢ then 4, B, C are
noncollinear points. The translation lattice for ¥~ determined by point P is
the set of all images of P under the translations in #". Since every translation
in wallpaper group #"is of the form 7} 7}, then all points 4;;form a translation
lattice where A;; = 14 1}(A). See Figure 11.1. A unit cell for W with respect
to point A and generating translations 7, and 7, is a quadrilateral region with
vertices A,J, Aivr,js Aij+1, and A;py 4. A unit cell is always a quadri-
lateral region determined by a parallelogram. A translation lattice with a
rectangular unit cell is called rectangular ; a translation lattice with a rhombic
unit cell is called rhombic. Our first task is to show that a translation lattice
is necessarily rhombic or rectangular when #” contains odd isometries.

Suppose g, is in wallpaper group # . We wish to show that [ is parallel to a
diagonal of a rhombic unit cell or that [ is parallel to a side of a rectangular
unit cell. Let 4 be a pointon l. Let 7, pbea a shortest nonidentity translation
in #". There are two cases. Case 1: Nelther AP = Inor AP L I Let Q = g(P).
Then 7, ,isin # as 1, = 0,14 po; '. See Figure 11.2. Since AP = AQ
and points A, P, Q are not collinear, then {t4 p, 7,4 o> is the group of all

88
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C=Ao,1/ /Al,l /Az,l /41

Ayl 7’43,-1

Figure 11.1

trapslations in #” and I contains a diagonal of a rhombic unit cell. Case 2:
AP =lor AP L I Let a be perpendicular to AP at A; let m be the perpen-
dicular bisector of AP; and let n = a,(m). See Figure 11.3. Let 7, g be a
shortest translationin %" thatisnotin {t, p». Then Risonm,onn, or between
m and n, as otherwise 157, g is shorter than 7, . Further, considering
both 7, ; and its inverse, we may suppose without loss of generality that
T4, g 1S such that R is on m, on d, or between m and a. Let S = ¢,(R). Assume
R is between m and a. Ifl = AP then 7,4 57,4 g is a translation in #” shorter
than 7, p; if | L AP, then 15 47, x is a translation in ¥~ shorter than 4 p.
Therefore, we must have R ison m or on a. If R is on m, then {14 g, T4 ) IS
thesameas (T4 p, T4 gy SINCE T4 5T4 g = T4 p. Thuslis parallel to a diagonal
of a rhombic unit cell (HARPS, in Figure 11.3) with respect to point A and
generating translations 7,  and 7, 5. On the other hand, if R is on g, then
{T4.p> T4, ry i the group of all translations in #” and [ is parallel to a side
of a rectangular unit cell for #". This finishes the proof of the following
theorem.

Theorem 11.1. If o, is in wallpaper group #", then lis parallel to a diagonal of a
rhombic unit cell for W or else | is parallel to a side of a rectangular unit cell
for .

Now suppose wallpaper group # contains no reflections but does contain
a glide reflection with axis line I. By the comments following Theorem 10.2,

$
Reu =& s,
! A «
s 2 R?
' R?

Figure 11.2 Figure 11.3
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A

Figure 11.4

we see that the smallest group containing the glide reflection and the trans-
lations in %" that fix [ is a frieze group &} generated by glide reflection y
with axis I. Hence, we may suppose y? is a shortest translation fixing [ Let
A be a point on L. Let a be perpendicular to [ at A, m = y(a), p = y*(a), and
P = y*(A). So 1, p is a shortest translation in {y). Let 7, 5 be a shortest
translation in % that is not in {y*). Since 7} 51, 5 cannot be shorter than
T4, 8, We may suppose without loss of generality that B is on a or lies between
a and p. If B is on a, then ¥ has a rectangular translation lattice and [ is
parallel to a side of a rectangular unit cell. Suppose B is between a and p.
See Figure 11.4. Let C = o(B). Then 1, isin # as 1, =y, 57 ' So
T4.cTap = y* and Bis on m. So (JABPC is a rhombic unit cell with I con-
taining a diagonal. Thus we have the following.

Theorem 11.2. If wallpaper group #~ contains a glide reflection, then W~ has a
translation lattice that is rhombic or rectangular.

If glide reflection y takes point A to point P in the translation lattice
determined by A4 for wallpaper group #’, then y followed by tp , must be a
reflection as the product is an odd isometry fixing point 4. In particular, this
proves the following.

Theorem 11.3. If a glide reflection in wallpaper group W' fixes a translation
lattice for W, then W~ contains a reflection.

This finishes the preliminary results needed about odd isometries in a
wallpaper group. We turn to the rotations. Point P is an n-center for a group
% of isometries if the rotations in ¢ with center P form a finite cyclic group
C, with n > 1. A figure is a nonempty set of points. If point P is an n-center
for the symmetry group for a figure, then P is also called an n-center for
the figure. A center of symmetry is an n-center for some n. So, if point P is a
4-center for some figure, then P is a point of symmetry for that figure since
0p = pp.oo- In this case, point P is a point of symmetry but P is not a 2-
center. Also note that if point Q is a 3-center for some figure then Q is not a
point of symmetry for that figure.

Examining the n-centers for a group turns out to be very profitable. First,
for a given n, the set of n-centers must be fixed by every isometry in the group.
To see this, suppose a(P) = Q for some isometry a in group 4. From the
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equations app o0~ ' = po +e and a”'py o = pp +e, We see that Q is an
n-center iff P is an n-center (for the same n). This very important analogue of
Theorem 10.1 is stated below, where the second part of that theorem is
repeated here for emphasis.

Theorem 11.4. For given n, if point P is an n-center for group % of isometries
and % contains an isometry that takes P to Q, then Q is an n-center for 9.
If 1 is a line of symmetry for a figure and the symmetry group for the figure
contains an isometry that takes l to m, then m is a line of symmetry for the figure.

The first three exercises in Section 11.3 use Theorem 11.4 and probably
should be done before starting the next section. In fact, the first nine of the
exercises use this important theorem, and all nine could be done now if the
groups denoted are assumed to be defined by the first equation in cor-
responding Figures 11.8, 11.9, 11.12, 11.14, 11.15, 11.18-11.20, and 11.22-
11.30 from the next section.

Since a closest center of symmetry to a given n-center is often needed in the
proofs below, we want to show that certain centers of symmetry cannot be
arbitrarily close. Suppose rotations p 4 3go;s a@nd pp 360, With P # 4 and
n>1 are in wallpaper group #". Then ¥  contains the product
PP. 360m P4, - 360/m» Which is a nonidentity translation tj t} for some i and j by
the Angle-addition Theorem. So

" N —
Pp,360m = TAT1P4, 360m and PP,360/n(A) =14 T'lpA,360/n(A) = Aij'

Hence, either P is the midpoint of 4 and A;; (when n = 2) or else AAPA;;
is isosceles. In either case, 24P = AP + PA;; > AA;; > 0 by the triangle
inequality. Therefore, 2AP is not less than the length of any nonidentity

translation in .

Theorem 11.5. If p 4 360/n and pp 360/n With P # A and n > 1 are in wallpaper
group W, then 2AP is not less than the length of the shortest nonidentity
translation in W".

The theorem above more precisely states—but contains—each of the
following:

(1) No two n-centers (same n) can be “too close.”
(2) A 2-center and a 4-center can’t be too close.
(3) A 3-center and a 6-center can’t be too close.
(4) A 2-center and a 6-center can’t be too close.

We shall use (1) immediately to show that the possible values of n such that
there is an n-center in a wallpaper group are rather restricted.

Suppose point P is an n-center of wallpaper group #". Let Q be an n-center
(same n) at the least possible distance from P with Q # P. The existence of
point Q is assured by the previous two theorems. Let R = pg 360/u(P)-
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VAKX

R ' Q R
Then Risann-centerand PQ = QR.LetS = pg 360/x(Q)- Then Sisan n-center
and RQ = RS.If S = P, then n = 6. See Figure 11.5. If S # P, then we must
have SP > PQ = RQ by the choice of Q. Hence, if S # P,thenn < 4.Son s
one of 2, 3,4, or 6. We have proved the Crystallographic Restriction:

N

Figure 11.5

Theorem 11.6. If point P is an n-center for a wallpaper group, then n is one
of 2, 3,4, or 6.

As an immediate corollary of the Crystallographic Restriction we have the
following.

Theorem 11.7. If a wallpaper group contains a 4-center, then the group con-
tains neither a 3-center nor a 6-center.

This follows from the fact that both pp 0 and p, 4o cannot be in the
same wallpaper group because the product pp ;,0p, - 90 is a rotation of 30°
about some point and cannot be in any wallpaper group by the Crystallo-
graphic Restriction.

§11.2 Wallpaper Groups and Patterns

We shall find all possible wallpaper groups #", beginning with those groups
that contain an n-center. By the Crystallographic Restriction, it is sufficient
to consider only values 6, 3, 4, and 2 for n. We begin by proving the following
theorem which shows the abundance of symmetry required to support a
6-center.

Theorem 11.8. Suppose A is a 6-center for wallpaper group W". T here there are
no 4-centers for W . Further, the center of symmetry nearest to A is a 2-center
M, and A is the center of a regular hexagon whose vertices are 3-centers and
whose sides are bisected by 2-centers. All the centers of symmetry for W are
determined by A and M.

To begin the proof, we note that #" can contain no 4-centers since #~
contains the 6-center 4 (Theorem 11.7). Let M be an n-center nearest to A.
If M were a 3-center or a 6-center, then there would be a center F closer to A
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o)

F

Figure 11.6

than M, where py 1,00.4,60 = Pr,180- See Figure 11.6 above. Hence, M
must be a 2-center. Define point G by the equation py 18004, -60 = Pé. 120
So G is either a 3-center or a 6-center. However, G cannot be a 6-center as
then there would be a center J between A and M, where J is defined by the
equation pg. ¢0P4.60 = PJ.120- Hence G must be a 3-center. The images of G
under the powers of p 4 ¢, are the vertices of the hexagon in the statement of
the theorem. With B = g,,(A4) and C = p, ¢¢(B), then B and C are 6-centers
for #". The centers of symmetry determined by the 6-center 4 and the 2-center
M are asarranged in Figure 11.7. With N = p, ¢,(M), then N is a 2-center for
W . Also, since 6-center A must go to a 6-center under an element of #, then
o, 04 and oyo, are shortest translations in #". Hence 7, 5 and 7,4 must
generate the translation subgroup of #". We have our first specific wallpaper
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Figure 11.7
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group: W' = (T4, Ta,c> P60y = {Pa.so, Oy Where AABC is equi-
lateral and M is the midpoint of AB.

In Figure 11.7, a unit cell determined by (JABDC is lightly shaded with M
the midpoint of AB and N the midpoint of AC. This notation will be used
throughout, with E the point such that CJNAME is a parallelogram. The two
darker regions in Figure 11.7 are called bases for # 4. A smallest polygonal
region ¢ such that the plane is covered by {a(t)|o € #"} is called a (polygonal)
base for wallpaper group # . (Fancier bases are possible but not necessary
for our purpose here.) The bases may be used to create wallpaper patterns
having a given wallpaper group as symmetry group. If ¢’ is a figure with
identity symmetry group in base ¢, then the union of all images a(t') with o
in # is a figure with all the symmetries in #". This figure is said to have
motif t'. In producing a wallpaper pattern, once motif ¢’ is picked for base ¢,
that part of the pattern in a unit cell is determined and this is then just trans-
lated throughout the plane to give the wallpaper pattern. For each wallpaper
group, a pattern will be given below where the motif is the same check used
to illustrate the frieze patterns in Figures 10.1 through 10.7. For each of the
seventeen wallpaper groups we shall have a figure such as Figure 11.8. These
will have a pattern with the check motif, a unit cell with a base and symmetries
indicated, two sets of generators for the group, and two designations for the

A

We = <Ta,B Ta.c> Pa.60)
= <Pa.60- Om)
= p6

Figure 11.8
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group. In addition to the notation of Fejes Téth involving “#7,” the short
international form used by crystallographers will be given. For example,
group # ¢ is designated p6 by crystallographers.

Consider extending # ¢ to #. Since the rhombic translation lattice of
6-centers determined by 6-center A must be fixed by any isometry in %",
then (Theorem 11.3) any extensions of # ¢ are obtained by adding reflec-
tions that fix this translation lattice. However, because of the richness of #,
adding any one of the possible reflections requires introducing all of the
possible reflections. See Figure 11.9. Let #°§ = (T4 p, Ta.cs Pa.60s TRy
From the result on #7¢, then #'§ = {p4 60> Oum> Tizcy- SO

1 — e ge—
We = <046, 05> Oird)

and #} is generated by the three reflections in the three lines that contain the
sides of a 30°-60°-90° triangle. We leave it as an exercise to show that
W = P4 60> Oiicy- A wallpaper pattern having symmetry group W ¢ has a
6-center but no line of symmetry; a wallpaper pattern having symmetry group
WL has a 6-center and a line of symmetry. A wallpaper pattern having a 6-
center has a symmetry group # ¢ or %}.

We turn to wallpaper groups with a 3-center but no 6-center and prove the
following analogue to the previous theorem.

A M B
W= T8> Ta.C> Pa. 605 TFC)
= {pa.s0> Oirc)
=pbm

Figure 11.9
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Theorem 11.9. If A is a 3-center for wallpaper group #~ and there are no 6-
centers for W', then every center of symmetry for W is a 3-center and A is the
center of a regular hexagon whose vertices are 3-centers. All the centers of
symmetry for W are determined by A and a nearest 3-center.

That every center P for #” must be a 3-center follows from the fact that
P4, -120Pp, 180 cannot be in ¥ for any point P since #" contains no 6-centers.
Let G be a nearest 3-center to A. Let J be such that pg 1,004,120 = £, 240-
Then J is a 3-center and AAGJ is an equilateral triangle. The images of G
and J under powers of p 4 ;,, are the vertices of the hexagon in the statement
of the theorem. Repetition of the argument for each 3-center shows that all the
3-centers are arrayed as in Figure 11.10 and finishes the proof of the theorem.
Further, from Figure 11.11, we see that each of pg 1,074, ¢ and p; 12074y
is po 120 Where Q is the centroid of AAGJ. Hence neither 1, ¢ nor 7,
is in #~ as otherwise Q would be a 3-center nearer to A than G. So, if 74 p
is a shortest translation in #7, then 3-center B is not a vertex of the hexagon
of nearest 3-centers to A. Let Band C bedefined by 1, 5 = pg 12004, - 120and

\
/

J

Figure 11.11
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T4.c = PG, -120P4,120- Then 14 gand 1, . are shortest translations in #” and
take A to next nearest 3-centers. Hence, 7, zand 7,  generate the translation
group of W. Let # '3 =145, TacsPa 1200 = Pa, 1205 PG, 1200 If W~
contains no odd isometries then #” must be # ;. See Figure 11.12.
Consider extending #; to a wallpaper group #~ without reflections by
adding glide reflections. Then (Theorem 11.3), #” must have a glide re-
flection that takes 3-center A4 to a 3-center that is not in the translation lattice
determined by A. By composing this glide reflection with a translation and
possibly a rotation about A, we may assume ¥~ contains a glide reflection
that takes A to either G or J. Suppose 7y is a glide reflection in #" that takes A
to G. Then y = g,0, where Z is the midpoint of 4 and G and z is some line
through G. Since g fixes the set of all 3-centers, then ¢, must also fix the set
of all 3-centers. See Figure 11.13. By composing o, with a rotation about G,
we may suppose withog_t) loss of generality that z is either the Qgpendicular
bisector of JB or z = GJ. The first is impossible as otherwise AG is the axis
of y and g 47" is a translation in ¥~ of length AG and shorter than t, 5. So
z = GJ. However, then pg _,,07 = 05¢0,0,0, = dz5 and #~ contains the
reflection in the perpendicular bisector of AG. Likewise, the presence of a
glide reflection taking A to J implies the reflection in the perpendicular

D——m>

Figure 11.13
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bisector of AJ is in % . In any case, # must contain a reflection if #  is
an extension of #7; and contains an odd isometry.

All extensions of #75 to a group with no 6-centers by adding odd isom-
etries are obtained by adding reflections. If #7, is extended by adding o,
then line / must be a line of symmetry for the set of 3-centers. Since such a
line must pass through at least one 3-center, we suppose [ is a line through
3-center A. Let #'} = (T4 p,Ta.csPa 120-04¢y and #'3 =<1 5, Tscs
P4, 120, 045, See Figures 11.14 and 11.15. We leave as an exercise the proof
that #°} is generated by the three reflections in the three lines containing the
sides of an equilateral triangle. Groups #°} and # 3 are obtained by adding
to # 5 the reflection in one of the diagonals of the rhombic unit cell de-
termined by A. Adding the reflections in both diagonals would introduce a
halfturn and a 6-center. So any wallpaper pattern containing only three
centers has one of ¥ 5, #'}, or #'3 as its symmetry group. A wallpaper
pattern having symmetry groups % 5y has a 3-center, has no 6-center, and
has no line of symmetry. A wallpaper pattern having symmetry group W'}
has a 3-center, has no 6-center, and every 3-center is on a line of symmetry. A
wallpaper pattern having symmetry group #'3 has a 3-center off a line of
symmetry but no 6-center.

W3 = Ta g Ta,cr Pa. 1200 O45)
= {pc.120+ T4B) >_) >_) >_> >_9
= p3lm

Figure 11.15
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The short international forms p3ml and p31m have often been inter-
changed in the mathematical literature and caution is advised whenever these
are encountered.

The following theorem regarding 4-centers in a wallpaper group is
analogous to that regarding 6-centers. The proof follows the statement of the
theorem. See Figure 11.16.

Theorem 11.10. Suppose A is a 4-center for wallpaper group # . Then, there
are no 3-centers for W™ and there are no 6-centers for #'. Further, the center of
symmetry nearest to A is a 2-center M, and A is the center of a square whose
vertices are 4-centers and whose sides are bisected by 2-centers. All the centers
of symmetry for W are determined by A and M.

By the corollary (Theorem 11.7) to the Crystallographic Restriction, if 4
is a 4-center for wallpaper group %", then every center of symmetry for #~
is either a 2-center or a 4-center. Let M be a center of symmetry nearest to A.
If M were a 4-center, then K would be a center of symmetry closer to 4 than
M where K is given by py 9004, 90 = 0k. See Figure 11.17. So M must be a
2-center. Then E is a 4-center where py 18004, - 90 = PE, 00- 1 he images of E
and M under the powers of p, ¢, are, respectively, the vertices and mid-
points of the square in the statement of the theorem. Translation 7, g is
not in ¥~ as otherwise Z is a center of symmetry closer to A than M where
T4 04 = 0z. With N = p, 4o(M), 143 =04y0,, and 1, = oya,, then
OONAME is a square and 7, p and 1, ¢ are shortest translations in #” and
generate the translation subgroup. Thus, there is no more room for any more
centers of symmetry than already accounted (Theorem 11.5). The centers of
symmetry for #" are as arranged in Figure 11.16. Let # ", = {14 5, T4.c>
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P4,00y Where E is the center of square [JABDC. If #" contains no odd isom-
etries then #” must be #,. It should be easy to check that ¥ ', is generated
by p4.90 and pg o0. See Figure 11.18.

Consider extending #, to wallpaper group #" by adding odd isometries.
If g,is in %7, then I must be a line of symmetry for the set of all 4-centers in #".
Because of the abundance of rotations in #7,, it is seen to be sufficient to
consider adding either a reflection in a line of symmetry through a {-_cgnter
or else a reflection in a line of symmetry off all the 4-centers. Lines AE and
MN will serve our purpose. First, let %'} = {T4 g, Ta.c» Pa.00> O4E. S€€
Figure 11.19. It is easy to check that %7} is also generated by the three re-
flections in the three lines that contain the sides of an isosceles right triangle.
Secondly, let #75 = (T4 p, Ta.c>Pa 00> Tirny- See Figure 11.20. Both o3z
and a7 cannot be added to #°, without introducing a center of symmetry
closer to A than M.

To consider the possibility of extending # ', to a wallpaper group #~
without reflections by adding odd isometries, it is sufficient (Theorem 11.3)
to suppose #” contains a glide reflection taking 4-center A4 to a 4-center that

# 4= <Ta B Ta.coPa.o0)
= {pa.o0s PE.90) A
p4 AN AN

Figure 11.18
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Figure 11.19

is not in the translation lattice determined by 4. By composing this glide
reflection with an appropriate translation, we may suppose #~ contains a
glide reflection y taking 4 to E. With Z the midpoint of A and E, then y =
g,0, for some lin&i tl(‘n_r_gugh‘E)Since y must fix the set of all 4-centers, then
z must be one of ME, BE, or NE. Howeyer, y followed, respectively, by pg, 90,
PE. 1805 OF PE. 270 gives the reflection in MN. Extending #", by odd isometries
leads only to %} or w'3. A wallpaper pattern having symmetry group ¥ ,
has a 4-center and no line of symmetry. A wallpaper pattern having symmetry
group W'} has a line of symmetry on a 4-center. A wallpaper pattern having
symmetry group W'} has a 4-center and a line of symmetry off all 4-centers.
Now suppose wallpaper group #~ has a 2-center A and every center of
symmetry for #” is a 2-center. So g, is in #". With {4 3, 74 ) the transla-
tion subgroup of #', let oy, = 1, 30,4, On = T4 c04, and g = ONT Ty
Points M, N, E are 2-centers and we have our usual notation with (JABDC
defining a unit cell. See Figure 11.21. Every point 4;; in the translation lattice
determined by A is a 2-center as well as the midpoint of any two such lattice
points. There can be no more centers of symmetry than these. Let %", =
{TaB>Ta,cs 04y If # contains no odd isometries, then ¥ = #7,. See

2
Wi =<TanTa.co Pa.905 OiiN)
= <{Pa.o0> TiN)

= pdy

Figure 11.20
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O—O0—0—0—0—0—0
Figure 11.21

Figure 11.22. It is easy to check that #", is generated by 1, p, 74 ¢, and og
and also by gy, 0, and ay.

Consider extending ¥, to wallpaper group # by adding only odd
isometries. Suppose o, is in #". Then #" has a rhombic or rectangular trans-
lation lattice (Theorem 11.1). In the nonrectangular rhombic case, line [
is parallel to a diagonal of a unit cell and so must pass through a 2-center. In
this case, we may suppose A4 to be a 2-center on [. Then [ contains a diagonal
unit cell of the translation lattice determined by A. However, adding the
reflection in one diagonal of a unit cell necessitates adding the reflection in
the other diagonal as the center of the unit cell is a 2-center. Let

1 —
W3 = {Ta, > Ta,c> OAE> OBE)-

See Figure 11.23. Therefore, in the nonrectangular case, we have only the one
possibility that #~ = % }. It should be easy to check that #"} is also generated
by 6 5%, 038, and o,,. If a rhombic unit cell is rectangular, then the unit cell is
square and is a special case of the general rectangular case considered next.

/ / 7 7/
Z ya
/
Z L Z
7/
Wy =<Tap Ta.c>0a) yd Z
/
= {Oum> OFs On)
=p2 Z
£ 7 V4

Figure 11.22
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An extension # of #~, cannot have a reflection in a diagonal of a unit cell
unless the unit cell is rhombic and cannot have reflections in both a diagonal
and a line parallel to a side since every n-center is a 2-center. Thus, to extend
W, with reflections there remains to consider only the case where a unit
cell is rectangular (possibly square) and o, is in #~ with [ parallel to a side of
unit cell defined by JABDC. There are the two possibilities that either !
passes through a 2-center or else / passes between two adjacent rows of 2-
centers. In the first case, introducing the reflection in one of the lines that
contains a side of CJNAME requires the introduction of the reflection in
each of these lines. In this case, #" is # 2 defined by

2 — —
W5 =T B Ta,cr OiNi» OIN)-

See Figure 11.24. In the second case, where [ passes between two adjacent
rowggf 2-centers, we may suppose without loss of generality that [ is parallel
to AN. In this case, #" is #°} defined by #73 = (14 5, Ta.c, 04, 0,» Where p
is the perpendicular bisector of AM. See Figure 11.25. We have finished
extending #~, by adding only reflections.

Consider extending ¥, to wallpaper group #" by adding a glide reflection
y such that no reflections are introduced. A glide reflection having an axis
that passes through a 2-center necessitates the introduction of a reflection.
Hence, the axis of y must pass between two adjacent rows of 2-centers. This

g N e
o o <|> ¢ — ¢
N E o PN
N & N
A M % N 7
#§ = T4, 85 Ta.c> O4M» OiN) v \ v N J N
= {013 OWE» 04K ORE) 7 N 4
= pmm

Figure 11.24
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requires that the parallelogram unit cell be rectangular. We shall see that one
choice of axis for y introduces glide reflections whose axes consist of all
possible candidates. Let p be the perpendicular bisector of AM ; let g be the
perpendicular bisector of AN. A glide reflection with axis p taking 2-center
M to 2-center C followed by 1. 4 produces the undesired reflection a,,.
So let y be the glide reflection taking M to N and A to E. Let ¢ be the glide
reflection taking N to M and A to E. The axis of y is p and y* = 1 ; the
axisofeisgande? = 1, 5. Check thatyo, = e. Let W' = (1,4 5, T4, cs 045 7)-
Then %74 not only contains both y and ¢—and hence all possible glide
reflections whose presence does not also require reflections—but %%
is even generated by y and ¢. See Figure 11.26, where the axes of glide re-
flections are indicated by broken lines. Thus the extension of #7, to a wall-
paper group by adding only odd isometries gives one of ¥}, w3, w3,
or 3.

A wallpaper pattern having symmetry group W , has a 2-center, every
center of symmetry is a 2-center, and is not fixed by any odd isometry. A wall-
paper pattern having symmetry group W' has a 2-center, every center of
symmetry is a 2-center, and some but not all 2-centers are on a line of symmetry.
A wallpaper pattern having symmetry group #°3 has a 2-center, every center
of symmetry is a 2-center, and every 2-center is on a line of symmetry. A
wallpaper pattern having symmetry group W3 has a 2-center, every center
of symmetry is a 2-center, has a line of symmetry, and all lines of symmetry are
parallel. A wallpaper pattern having symmetry group %% has a 2-center, every
center of symmetry is a 2-center, has no line of symmetry, but is fixed by a glide
reflection.

At last we come to those wallpaper groups %~ that have no center of
symmetry. If # contains o,, suppose A4 is on I. If # contains no reflection but
does have a glide reflection, suppose A is on the axis of a glide reflection in %",
There is the case where #~ contains no isometries other than translations.
In this case, the W~ = # | where #"| = {1, p, T4, ¢y With A arbitrary and
A, B, C noncollinear. See Figure 11.27.
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Consider extending #”, to wallpaper group # by adding only odd
isometries. If g, is in #” with 4 on [, then n (Theorem 11.1) there is a rhombic
unit cell defined by JABDC with 1= AD or else there is a rectangular unit
cell defined by (JABDC with | = AC In case (1ABDC is a square, #" cannot
have reflections in both AD and AC because # contains no rotations. Let
W=ty Tac- 045y and #72 ={1, 5 T4, 00> If W containg a
reflection then # " is one of #"} or # 2. See Figure 11.28 and note that NK
is not a line of symmetry for #°}. Let y be the glide reflections with axis NK
that takes N to K. So y? = 1, . Check that y is in #°} and, in fact, %}
is generated by y and ¢ 35. On the other hand, all the glide reflections in %%
are of the form (o3¢t p)t’y ¢ with i # 0 and have axes that are also lines of
symmetry for # <. This property can be used to distinguish patterns with
symmetry groups ¥ | and #°3. See Figure 11.29.

Finally, consider extending %", with glide reflections only. The axes of the
glide reflections must be parallel because #", contains no rotations. We have

/ NN

/1 A % /N
W= Tups Taco 05T
= {T4.cs O4c> ORED
—om NN A

Figure 11.29
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the one further case where one of the generating translations is the square
of a glide reflection m W. Let W3 = {145, Tac,yy Where y is the glide
reflection with axis AB that takes A to M. See Figure 11.30. So y* = 14 .
Clearly %7} is generated by 7, ¢ and 7. Let ¢ =1, ¢y. Check that ¢ is the
glide reflection with axis NE that takes N to E and that % 3 is generated by y
and . So #; contains all possible glide reflections. The extension of % to
a wallpaper group by adding only odd isometries gives one of %'}, #1,
or 3.

A wallpaper pattern having symmetry group # , has no center of symmetry
and is not fixed by any odd isometry. A wallpaper pattern having symmetry
group W'\ has no center of symmetry, is fixed by both reflections and glide
reflections, but some axes of the glide reflections are not lines of symmetry. A
wallpaper pattern having symmetry group %% has no center of symmetry, is
fixed by both reflections and glide reflections, and all axes of the glide reflections
are lines of symmetry. A wallpaper pattern having symmetry group %3 has no
center of symmetry, has no line of symmetry, but is fixed by a glide reflection.

Our search is at an end. All the wallpaper groups have been listed.

Theorem 11.11. If %  is a wallpaper group, then there are points and lines
such that # is one of the seventeen groups
Wl ”/.2 W4 Wﬁi W6
W W) Wl W Wl
w32 w32 W'l W32
/2
defined above.

Table 11.1 gives the key to the wallpaper patterns that we have been de-
veloping throughout the argument, where here the words some and all are
to imply the existence of at least one, while some excludes at least one.
Figure 11.31 gives a pattern for each group in corresponding position to the
key. The patterns in this figure are called tilings and are the subject of the
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next chapter. Figure 11.32'gives a pattern for each of the seventeen wallpaper
groups for practice using the key.

The classification theorem above for the wallpaper groups is known as
Fedorov’s Theorem as Fedorov first treated these groups in 1891, a few
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o m MR |S s s s s
M M M M|PPPP® |SSSSS
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Figure 11.32
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months after he gave the analogous three-dimensional groups. The theorem
was rediscovered in 1897 by Fricke and Klein and again in 1924 by Polya and
by Niggli. Although it would not have occurred to the Moors to classify a
design by its symmetry group, many of the seventeen groups were implicitly
known to the Moors in the decoration of the Alhambra. Yet, two groups seem
to be missing from all of Islamic ornamentation. How extensively must you
search before encountering all seventeen groups in your environment?

§11.3 Exercises

11.1.
11.2.
11.3.
11.4.
11.5.

11.6.

11.7.

11.8.

11.9.

11.10.
1111
11.12.
11.13.

11.14.

11.15.

If T is the center of square [JPQRS, show that 6p, 6, o¢ are in {opg, 05, o7 ).
Show {p, 60. ey = {035, 0¢G> 05> If G is the center of equilateral AABC.
Show <p4 60- TuD> = {Pa.60> PB.6oy if M is the midpoint of AB.

Show #°} = {p4. 0. Gi7¢y With notation as in Figure 11.9.

Show ¥ 3 = {pg. 120, 045> With notation as in Figure 11.15. Also, show # 2 is
generated by two glide reflections.

Show ¥} is generated by the reflections in the lines containing the sides of an
equilateral triangle.

With the notation as in Figures 11.18, 11.19, and 11.20, show that %" is generated
by p4.90 and oy and also by p, o0 and pg_ o0, that #7} is generated by the three
reflections in three lines containing the sides of an isosceles right triangle, and that
# 3 is generated by p, g0 and o7

Using the notation in the text, show that #°, is generated by t, 5,7, cand oz and
byay,og,and oy, that %} is generated by 6 5z, 65z, and 6y, that %2 is generated
by o7, 0%, 045, and oiz, that # 73 is generated by a4, oy, and ¢, and that %4
is generated by two glide reflections with perpendicular axes.

Show that #| is generated by a glide reflection and a reflection and that #73 is
generated by two glide reflections with parallel axes.

Find a unit cell in each of the patterns in Figure 11.31.
Name the symmetry group for each of the wallpaper patterns in Figure 11.32.
Find a unit cell and a base for each of the patterns in Figure 11.32.

Find the symmetry group, a unit cell, and a base for each of the four wallpaper
patterns in Figure 11.33.

For each of the seventeen wallpaper groups, make a page size wallpaper pattern
that has that group as its symmetry group.

Prove or disprove: A wallpaper pattern with a 4-center and a line of symmetry has
symmetry group %'} iff there are two lines of symmetry intersecting at an angle
of 45°.
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Figure 11.33

11.16. Prove or disprove: A wallpaper pattern with a 4-center and a line of symmetry has
symmetry group % 2 iff any two lines of symmetry are parallel or perpendicular.

11.17. Name the symmetry group of the wallpaper patterns in Figure 11.34. These are
taken from W. & G. Audsley’s Designs and Patterns from Historical Ornament in
the Dover Pictorial Archive Series.

11.18. Prove or disprove: A translation lattice for a wallpaper group that is both
rectangular and rhombic must have a square for a unit cell.

11.19. In Figure 11.25, find at least ten bases for # 7 in the unit cell defined by (JABDC.

11.20. What can you say about those groups of isometries of the plane whose subgroup
of translations is generated by three translations?
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11.21. Name the symmetry group of the wallpaper patterns in Figure 11.35.

11.22. Prove: Every wallpaper group is a subgroup of either a wallpaper group %'} or of
a wallpaper group #7¢.

11.23. Read Fantasy and Symmetry, The Periodic Drawings of M. C. Escher by Caroline
H. Macgillavry (Abrams; New York, 1976).

11.24. For an explanation of the short international form for the wallpaper groups, read
“The plane symmetry groups: their recognition and notation” by Doris Schatt-
schneider in the American Mathematical Monthly 85 (1978), 439-450.
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Chapter 12

Tessellations

§12.1 Tiles

Almost everyone has at one time or another been intrigued by mosaic
patterns. Figure 11.31 illustrates seventeen tilings of the plane. A tiling of the
plane is also called a mosuaic, tessellation, or paving of the plane. Tiling as an
art predates human history and, perhaps, reached its zenith in the Moorish
forts, palaces, and mosques near the end of what Westerners call the Middle
Ages. Except for an initial study by the astronomer Johannes Kepler (1571-
1630), little formal mathematical investigation of tilings took place before
the end of the last century. Much of what has been done is the work of chemists
and crystallographers. Today, mathematicians are taking more interest in
this ancient topic.

A tessellation or tiling of the plane is a set {T,, T,,...} of polygonal
regions that cover the plane without gaps and without overlap of nonzero
area. (A polygonal region T; contains its boundary and will be called a
polygon in this chapter. Fancier regions are possible but not necessary here.)
The polygons T are the tiles of the tessellation. Every polygon is a tile for some
tessellation. A tiling is respectively monohedral, dihedral, or trihedral if under
congruence the tiles form one class, two classes, or three classes, respectively;
in general a tiling is r-hedral if there is a set {P,, P,,..., P,} of r polygons,
called prototiles, such that each tile of the tiling is congruent to exactly one of
the prototiles and if each prototile is congruent to at least one of the tiles. If P
is a prototile for a monohedral tiling, we say P admits a tiling or P tiles the
plane. The tiling illustrated in Figure 12.1a is dihedral with a triangle and a
hexagon as its two prototiles. The tiling illustrated in Figure 12.1c is mono-
hedral with a cross as its single prototile.
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Figure 12.1

If {T,, T,,...} is a tiling and « is a similarity, then {a(T}), «(T3),...} is a
tiling that is similar to the first tiling; if « is an isometry, the tilings are
congruent. In Figure 12.1, tilings a and b are congruent, as are tilings ¢ and d.
None of these tilings has a line of symmetry. In the same figure, each of the
tilings ¢, d, e is similar to the other. Tilings that are similar are often tacitly
supposed to be “the same.”

Is there anyone not familiar with the three regular tilings, given in Figure
12.2? Each of these monohedral tilings has a regular polygon for its prototile.

AR
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Figure 12.2
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The regular pentagon does not tile the plane since three around a vertex
leave a gap and four overlap. That is not to say that there are not many
equilateral pentagons that tile. The beautiful Cairo tessellation with a convex
equilateral pentagon as its prototile is illustrated in Figure 12.3. The tessella-
tion is so named because such tiles were used for many streets in Cairo. The
construction of the prototile is shown in Figure 12.4 where one starts with the
base AB, the midpoint of this base, and the 45° angles shown. Vertices C and E
and then finally D are obtained by a compass with opening AB. The angles at
C and E are right angles (Exercise 12.8). Since the sum of the measures of the
angles at A, B, and D must then be 360, four copies of the prototile form the
hexagon in Figure 12.4. Since this hexagon has a point of symmetry, it is
seen in the next paragraph that the hexagon tiles the plane under translations
alone, giving rise to the desired Cairo tessellation.

Suppose hexagon H has point L as a point of symmetry. We want to show
H tiles the plane. First note that the pairs of opposite sides of a hexagon,
whether convex or not, are parallel and congruent iff the hexagon has a point
of symmetry. (A halfturn is a dilatation and an isometry.) Let M and N be the
midpoints of sides AB and BC, respectively, of hexagon H. Then a0, is a
translation taking the side opposite AB onto AB. The union of all images of H
under all the powers of the translation o,, 0, is a string of hexagons dividing
the plane. In Figure 12.5, this string is along the left edge. The images of this
string under the powers of the translation oyo, cover the plane without
overlap. Thus, a hexagon having a point of symmetry tiles the plane under

D
E ¢ s 2
= 5
45 45
A M B

Figure 12.4
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Figure 12.5

translations alone. With this little lemma, we can prove the somewhat
surprising fact that every quadrilateral admits a tiling of the plane. It makes
no difference whether the quadrilateral is convex or not. Let L be the mid-
point of a side of any quadrilateral Q. See the lower right side of Figure 12.5.
Now, quadrilaterals Q and o;(Q) intersect only along their common side
containing L, and their union is a hexagon H having L as a point of symmetry.
Since H tiles the plane, then it is trivial that Q must tile the plane also.
Therefore, every quadrilateral does tile the plane. Further, since the union of
any triangle and its image under the halfturn about the midpoint of a side is
a quadrilateral, it follows that any triangle also tiles the plane.

Theorem 12.1. Any triangle tiles the plane; any quadrilateral tiles the plane. A
hexagon with a point of symmetry tiles the plane.

There is no known general procedure for telling whether or not a polygon
is a prototile for a monohedral tessellation. Although, it is easy to see that the
bow tie in Figure 12.6 admits a tiling, which of the other polygons in the figure
tile the plane? The four polygons on the right side of Figure 12.6 are heptom-
inoes. They are special cases of polyominoes, which are the figures formed by

Figure 12.6
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Figure 12.7

connecting unit squares edge-to-edge. Of course the union of two such
rookwise connected unit squares is a domino. Then there are the trominoes,
tetrominoes, pentominoes, hexominoes, etc. The polyominoes were introduced
by Solomon W. Golomb, and his delightful book Polyominoes is a good
place to start enjoying their study. Polyiamonds, on the other hand, are formed
by connecting congruent equilateral triangles edge-to-edge. The union of
two such triangles with a common edge is a diamond. Then there are the
triamonds, tetriamonds, pentiamonds, hexiamonds, etc. Polylamonds have
been stressed by Thomas H. O’Beirne in his column in the British magazine
New Scientist. Which of the polyiamonds in Figure 12.7 are prototiles for a
monohedral tessellation? The polyiamond of order 18 (second from the left
on top) in Figure 12.7 is Roger Penrose’s loaded wheelbarrow. Roger Penrose
is the celebrated Oxford mathematician featured in the cover article of the
December 1980 issue of Science 80. The loaded wheelbarrow does tile the
plane. In Figure 12.7, the polyiamonds at the far right and far left are poly-
hexes. In fact, each is a hexahex.

Once it is shown that a particular polygon admits a tiling, there is the
question, “In how many ways?” The following definition makes precise the
idea that a prototile tesselates the plane in exactly k ways. If P is the only
prototile for each of k mutually incongruent tilings and if any monohedral
tiling having P for its prototile is congruent to one of these k tilings, then P
is said to be k-morphic. It is not necessary to search far to find a tile that is
monomorphic (i.e., I-morphic). Dimorphic and trimorphic tiles are given in
Figure 12.8. These tiles were introduced by Branko Griinbaum and G. C.
Shephard. Griinbaum and Shephard have coauthored many publications
on tessellations and their book Tilings and Patterns should be sought for

Figure 12.8
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Figure 12.9

further study on this topic. The two tessellations determined by the di-
morphic prototile and the three tessellations determined by the trimorphic
prototile are left for Exercise 12.18.

For the rest of this section, we restrict our attention to tessellations whose
prototiles are regular polygons. From Figure 12.9 it follows that the pos-
sibilities are infinite and we might therefore impose further restrictions. For
one thing, the polygons in Figure 12.9 do not meet edge-to-edge. A tessella-
tion is edge-to-edge if each two tiles intersect along a common edge, only at a
common vertex, or not at all. It follows (Exercise 12.3) that up to similarity
the only monohedral edge-to-edge tilings by regular polygons are the three
regular tilings of Figure 12.2. The kagome tiling on the left in Figure 12.10
is dihedral and edge-to-edge. This tiling, named after a three-way bamboo
weave, has vertices surrounded by three hexagons and vertices surrounded
by two hexagons and two triangles. We would like our tilings to be edge-to-
edge and to have all vertices surrounded alike in the number of each kind of
regular polygon, in which case we say the vertices have the same species. That
this still leaves infinitely many possibilities can be seen from the edge-to-edge
tilings indicated on the right in Figure 12.10 and composed of alike horizontal
stripes. Here, every vertex is surrounded by two hexagons and two triangles.
This property is maintained in each of the infinitely many tessellations ob-
tained by sliding each horizontal strip one unit to the right (or left) or else
leaving the strip in position. More interesting examples of infinite families
of edge-to-edge tilings by regular polygons where all vertices have the same
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species are indicated in Exercises 12.16 and 12.17. The determination of all
such tessellations is yet to be accomplished. So we would like each vertex
to be surrounded not only alike in the number of each kind of regular polygon
but also alike in the cyclic order of these polygons about the vertex. If a
vertex is surrounded in cyclic order by regular n-gons of order ny, n,, ..., and
n,, then the vertex is said to be of type n, - n, - - - n,. Certain obvious abbrevia-
tions are also used. For example, on the right in Figure 12.10 there are vertices
oftype3-6-3-6and verticesoftype 3 - 3 - 6 - 6. These types can be abbreviated
(3-6)? and 3% - 6%, respectively. Sliding the shaded strip in the figure one unit,
we then have all vertices of type (3 - 6). It turns out not to be necessary for
our purpose to further subdivide the types by considering orientation (clock-
wise vs. counterclockwise). Hence, we want all edge-to-edge tessellations by
regular polygons where all vertices have the same type.

What are the possible types for a vertex? Suppose vertex V is of type
ny-n,---n,. Since among the regular polygons the equilateral triangle
has the smallest vertex angles, then r < 6, withr = 6iffeach n; is 3. In general,
the vertex angle of a regular n-gon has degree measure 180(n — 2)/n. Hence,
the sum of the r terms 180(n; — 2)/n; must be 360. Equivalently, we want the
solutions in positive integers to the equations

| r—2
Zn= 2

with3 < r < 6. Theseventeen numerical solutions are obtained by arithmetic.
These solutions give the seventeen possible species. Four of these give rise
to two types. Thus, there are the twenty-one types listed in Table 12.1,
corresponding to the seventeen solutions.

Not all the types given by the arithmetic are possible for an edge-to-edge
tessellation by regular polygons where each vertex has the same type.
Suppose every vertex is of type 3-x-y. Marching around an equilateral

Table 12.1

(1) 3-3-3-3-3:3

(2) 3:3:3:3:6

3) 3-3-3-4-4 and 3-3:4-3:4
4) 3-3:-4-12 and 3.4.3-12
(5) 3:-3:6-6 and 3:6-3:6
(6) 3-4-4-6 and 3-4-6-4
(7) 4-4-4-4

(8) 3-7-42 ©  3.8.24
(10) 3-9-18 (1)  3-10-15
(12) 3-12-12 (13)  4.5.20
(14) 4:-6-12 (15) 4-8-8
(16) 5-5-10 (17) 6:6-6
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triangle, we see the sides of the triangle alternate as common sides with an
x-gon and a y-gon. Since 3 is odd, after one circuit we have x = y. This
eliminates species 8, 9, 10, and 11 in Table 12.1 but not species 12. Likewise,
the vertices cannot be of type x-5- y unless x = y since S is also odd. This
eliminates species 13 and 16. If each of A and B of equilateral AABC is of
type 3-x-y-z then at vertex C the triangle lies either between two x-gons
or between two z-gons, which is impossible if A, B, C all have type 3-3-4- 12,
3.4.3.12,3-3-6-6, or 3-4-4.6. We have eliminated all but the eleven
types in boldface in Table 12.1. Of these, only type 4-6-12 has two dis-
tinguishable orientations; the other ten types read the same whether reading
clockwise or counterclockwise about a vertex. Perhaps this type will therefore
yield several tessellations. Of course, types 3, 4%, and 6° give precisely the
three regular tessellations. Figure 12.11 can be used to demonstrate that each
of the remaining eight types does, in fact, have one realization in a desired
tiling. For each of the eight figures in Figure 12.11, pick a vertex and mark the
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polygons sharing that vertex by placing an “n” in an n-gon. Then continue
to mark those polygons whose position is forced by assuming all vertices have
the same type. Several observations result from this valuable exercise. First,
in the figure having a vertex of type 4 - 6 - 12, it is immediately clear that both
orientations of the type are required for a tiling. With both orientations
allowed, the one vertex then uniquely determines the rest of the tessellation.
This maverick tiling might be excluded if it did not share other nice properties
with the remaining tilings. A second observation concerns the figure con-
taining a vertex of type 3* - 6. Beginning with one vertex we find the rest of the
tiling is not forced. At the time you have marked one hexagon and its sur-
rounding eighteen triangles, there is a choice to be made concerning the
placing of the next hexagon. Making one of the two possible choices for
placing the next hexagon on one side of the hexagonal figure consisting of the
first hexagon and its surrounding triangles, the remaining part of the tiling
is then forced. The two tilings obtained in this manner are congruent,
however. One is the image of the other under a reflection. (The two forms are
said to be enantiomorphic; in general, any figure without a line of symmetry
and its image under an odd isometry are enantiomorphs of each other.)
See Figure 12.1 again. This is the only tiling of the eight without a line of
symmetry. For another peculiarity of this tiling see Exercise 12.1. No problem
is encountered in the unique extension of the remaining types to a tiling.
Hence, we have the surprising result that, up to similarity, each type gives rise
to a unique tessellation of the plane. Therefore, the tiling itself can be un-
ambiguously named after the type of its vertices. These eight tessellations
are said to be the semiregular or Archimedean tessellations of the plane.
Since Kepler is the first person known to exhibit the regular and semiregular
tilings, it seems only fair to call the result of our search Kepler’s Theorem.

Theorem 12.2. Up to similarity, there are exactly eleven edge-to-edge tessella-
tions whose prototiles are regular polygons and such that all vertices have the
same type.

A tessellation is said to be vertex transitive, edge transitive, or tile transitive
if given two vertices, edges, or tiles, respectively, there is a symmetry of the
tessellation that takes one to the other. Another surprising property shared
by the Archimedean tilings is that they are all vertex transitive. So not only
the immediate neighborhood looks the same from each vertex, but the
whole tiling looks the same from each vertex. Only one of the Archimedean
tessellations is edge transitive. Which? The two tilings in Figure 12.12 are
both vertex transitive and both edge transitive, and one of them is also tile
transitive. The three regular tessellations are tile transitive, but none of the
Archimedean tessellations could be tile transitive. The tiling on the right in
Figure 12.12 has the property that for any two given congruent tiles of the
tessellation there is a symmetry of the tessellation that takes one of these tiles
to the other. Is this property shared by the Archimedean tessellations?
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Figure 12.12

§12.2 Reptiles

Which convex polygons admit a monohedral tiling of the plane? The answer
to this question is unknown, again. The “again” will take some explaining.
It can be shown that no tiling has as its set of prototiles a finite set of convex
polygons each having more than six sides. A reference for this result is given
in Exercise 12.9. So any monohedral tiling by a convex polygon must have a
prototile that is a hexagon, a pentagon, a quadrilateral, or else a triangle. It
has long been known that a convex hexagon tiles the plane iff vertices 4, B, C,
D, E, F can be named in cyclic order such that one of the following conditions
is satisfied:

(1) mLA+mLB + mLC = 360,CD = FA.
(2Q) mLA+ mLB +mLD = 360, BC = DE.CD = FA.
(3) mLA=mLC =mLE = 120, FA = AB, BC = CD, DE = EF.

We know every quadrilateral tiles the plane and every triangle tiles the plane.
Thus, there remains only the question of which convex pentagons tile the
plane. The problem was presumed to be solved in 1918 and independently
again in 1963. However, in 1968, R. B. Kershner announced in the American
Mathematical Monthly that in addition to the previously known five types
of convex pentagons that admit a tiling there were three new types. (A
property of these new types will be discussed below.) Martin Gardner de-
scribed what was thought to be the complete list of tiling convex pentagons
in his celebrated column “Mathematical Games” from the magazine
Scientific American (July 1975). As a puzzle, Richard E. James III thought he
would try to determine the list before he finished reading the article. The
result of this was Gardner’s announcement in his December column that
James had found a family overlooked by Kershner. Marjorie Rice, a mathe-
matician with no mathematical training beyond high school, has since
found several additional families. Whether the present list is complete is not
known. Even the list of all convex pentagons admitting an edge-to-edge
tiling and the list of all equilateral convex pentagons admitting a tiling are
unknown.



§12.2 Reptiles 127

Figure 12.13

David Hilbert (1862-1943), who is frequently called the leading mathe-
matician of this century, addressed the second International Congress of
Mathematicians at Paris in 1900. Here he proposed a list of problems which
he thought should occupy the attention of mathematicians in the twentieth
century. Indeed, these problems have greatly influenced the direction of
mathematical research since 1900. Some of the problems had several parts
and some were not well formulated. One question had to do with tiling. You
should be able to think of a monohedral tiling by dominoes that has the
identity as its only symmetry. However it is even easier to find a tiling by
dominoes that is tile transitive. Is it true that a prototile for any monohedral
tiling also admits a tiling that is tile transitive ? Hilbert apparently thought so.
He was proved wrong in 1935 with a counterexample having a nonconvex
prototile. The new families of pentagons discovered by Kershner provided
examples of convex polygons admitting only edge-to-edge tilings that are not
tile transitive. The construction of one such pentagon is given in Figure 12.13.

For each frieze group, Exercise 12.5 asks for a monohedral tiling by
dominoes that has the frieze group as its symmetry group. These tilings
are invariant under translations in only one independent direction. However,
there certainly is a tiling by dominoes that has a wallpaper group for its
symmetry group. A tiling whose symmetry group is neither a wallpaper group
nor a frieze group must have a finite symmetry group C, or D,,. Such a tiling
is said to be nonperiodic. The monohedral tiling in Figure 12.14 is nonperiodic,
with symmetry group C,. However, the prototile of this tiling does admit a
tiling with a wallpaper group as its symmetry group (Exercise 12.11). One
of the major problems in tiling theory is the following. Does there exist a
prototile admitting only nonperiodic tilings ? The problem can be stated in a
more severe form. Is there a monomorphic prototile whose monohedral
tiling has symmetry group C,? Roger Penrose, mentioned in the previous
section, has invented a pair of tiles that give only dihedral tilings that are
nonperiodic. The two prototiles are constructed from a rhombus, as in
Figure 12.15 where the measure of each angle is a multiple of 36, but instead
of adding bumps and dents to give the tiles the desired matching properties,
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Figure 12.14

the tiles are colored as in the figure. When placed next to each other in a tiling,
the circles around a vertex must be of one color. Thus, the position in Figure
12.15 is not allowed in a tiling. The tiles are called kites and darts. The reader
is warned that tiling with the Penrose kites and darts can be habit forming.
Replacing the colored circles by your own bumps and dents to force only
allowed juxtapositions can be fun. Penrose himself has changed the two
prototiles into two chickens. These may be seen in Martin Gardner’s column
in the January 1977 Scientific American. Penrose’s pair of nonperiodic
chickens comprise an advanced piece of mathematics.

Solomon W. Golomb, who introduced polyominoes, is also responsible
for focusing attention on replicating figures in the plane. If polygon P can be
cut into k congruent polygons (with shared boundaries) each of which is
similar to polygon Q, then we say Q divides P with multiplicity k. If polygon
P divides itself with multiplicity greater than 1, then we follow Golomb and
say P is a reptile (or replicating figure). To say that polygon P is a reptile
that divides itself with multiplicity k, we simply say P is rep-k. The hexiamond
outlining Figure 12.16 is called the sphinx and is evidently rep-4. In fact, the
sphinx is the only known rep-4 pentagon. Can you show the sphinx is also
rep-9? Examples of rep-4 hexagons are given in Figure 12.17. The tromino

Figure 12.15
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Figure 12.16

in the figure is a special case of the reptile formed by removing a quadrant
from any rectangle. The pentomino on the right in the figure and the tro-
mino are also both rep-9. Rather than view reptiles as dissection problems,
we notice that polygon P is rep-k iff k congruent copies of P can be assembled
without overlap (except along boundaries) into a polygon Q that is similar to
P. Then, of course, k copies of Q can be assembled into a still larger polygon
similar to all the others. Each of the k copies of Q contains k copies of P.
Continuing in this fashion, we obtain larger and larger polygons each similar
to P and each divided into polygons congruent to P. We claim it follows that
P tiles the plane. This appears obvious only at first. Some of the difficulties
become apparent when you try to verify the result for a particular reptile,
say the sphinx. For a general proof, see the Extension Theorem in the book
Tilings and Patterns by Griinbaum and Shephard, mentioned earlier. For
any of the individual reptiles we shall encounter, these difficulties can be
overcome, and we shall suppose that any reptile tiles the plane.

For any positive integer k, there is a rep-k reptile. Any 1 by \/E parallelo-
gram is rep-k since 1 /\/E = \/E/k. Parallelograms are the only known rep-7
reptiles. Figure 12.18 illustrates a rep-3 parallelogram and the only three
known examples of rep-4 quadrilaterals that are not parallelograms.

The altitude to the hypotenuse of an isosceles right triangle divides the
triangle into two congruent triangles each similar to the original triangle.
Hence an isosceles right triangle is rep-2. It is not too difficult to prove that
the only rep-2 triangles are the right isosceles triangles, that the only rep-2

Figure 12.17
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=

Figure 12.18

quadrilaterals are the 1 by \/5 parallelograms, and that any convex rep-2

reptile is an isosceles right triangle or else a 1 by \/5 parallelogram. A 30-
60-90 triangle is easily seen to be rep-3.

The parallelogram in the middle of Figure 12.19 is rep-32, as are the two
triangles determined by a diagonal of the parallelogram. From this special
case, we generalize to show first that given a parallelogram P and a positive
integer k, the parallelogram is rep-k2. Consider the points on the diagonal of
P that divide the diagonal into k congruent segments. The lines through these
points and parallel to the sides of P then determine the k* congruent parallelo-
grams similar to P. So P is rep-k®. Using a halfturn about the midpoint of a
side of a triangle, we see every triangle is half a parallelogram. It quickly
follows that, given a triangle and a positive integer k, the triangle is rep-k2.

Suppose positive integer k is given. Since each of the three smaller triangles
in the 30-60-90 rep-3 triangle in Figure 12.19 is itself rep-k2, then the 30—
60-90 triangle is rep-3k2. That there also exists a rep-2k? triangle is a special
case of the argument that if n = a? + b? then there is a rep-n triangle. We
suppose we are given positive integers a and b. See Figure 12.19 again. The
altitude to the hypotenuse divides a right triangle T with legs of lengths a and
b into two smaller triangles A and B, each similar to T. Now A, the smaller
triangle with hypotenuse of length a, is rep-a?, and B, the smaller triangle with
hypotenuse of length b, is rep-b%. So we have a? + b? triangles each similar
to T. However, are the a? triangles in A and the b? triangles in B congruent?

7 § 4

Figure 12.19
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Yes, since the ratio of the area of 4 to the area of B is a?/b?, then the a® + b?
triangles all have the same area. Similar triangles with the same area are
congruent. Hence T is rep-n where n = a* + b?. (Students of the theory of
numbers will recall that n = a® + b? iff the square free part of n is not divisible
by a prime of the form 4t — 1.)

Theorem 12.3. Every parallelogram is rep-k* and every triangle is rep-k?,
for any positive integer k. If n = a* + b* or n = 3a® where a and b are integers
with a # 0, then there is a rep-n triangle. For any positive integer k, there is a
rep-k parallelogram.

The following follows directly from the definition of multiplicity.

Theorem 12.4. Let P, Q, R be polygons. If P divides Q with multiplicity s and Q
divides P with multiplicity r, then P is rep-rs. If P divides Q with multiplicity s,
Q divides R with multiplicity t, and R divides P with multiplicity u, then P is
rep-stu.

The hexiamonds have rather fancy names in the mathematical literature.
Hexiamonds lobster, snake, butterfly, and bat are illustrated in Figure 12.20.
A snake cannot be a reptile since a snake cannot fit into a 60° angle and
contain the vertex of that angle. However, a lobster divides a 2 by 3 parallelo-
gram with multiplicity 2, and a 2 by 3 parallelogram divides a lobster with
multiplicity 18. Hence, by the first part of Theorem 12.4, a lobster is rep-36.

Theorem 12.5. A lobster is a reptile; a snake is not a reptile.

The second part of Theorem 12.4 is illustrated by the following. The stairs
and F hexominoes in Figure 12.21 divide a 3 by 4 rectangle with multiplicity 2;
a 3 by 4 rectangle divides a square with multiplicity 12; and a square divides
a hexomino with multiplicity 6. Hence, these two hexominoes are rep-144.
Hexomino J in Figure 12.21 also divides a 3 by 4 rectangle with multiplicity 2;

& ® & &

Figure 12.20
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Figure 12.21

a 3 by 4 rectangle divides a 1 by 2 rectangle with multiplicity 6; and a 1 by 2
rectangle divides the J with multiplicity 3. Hence, the J hexomino is rep-36.

Finally, we mention some ways of generating reptiles. From the center of a
2n by 2n checker board to an edge, trace a path along boundaries of the colored
squares such that, except at the center, the path does not intersect its other
images under successive rotations of 90° about the center. The images de-
fine a n’-omino that is rep-4n®. See Figure 12.22. Similar constructions
beginning with 3m triangles on the side of an equilateral triangle give rise
to 3m?-iamonds that are rep-9m?.

Figure 12.22

§12.3 Exercises

12.1. For which Archimedean tilings is it true that given two congruent tiles there is a
symmetry of the tessellation taking one tile onto the other. Which Archimedean
tilings.are edge transitive?

12.2. Cut out of heavy paper a convex quadrilateral templet having angles of measure
(approximately) 50, 70, 110, and 130. By tracing around the templet, draw a
monohedral tiling of the plane having the quadrilateral as its prototile.

12.3.  Show any monohedral edge-to-edge tiling by a regular polygon is one of the three
regular tessellations.

12.4. The dual of an Archimedean tiling is obtained by joining the centers of adjacent
tiles. Figure 12.23 shows 32-4-3-4 and its dual. Draw the dual for the other
Archimedean tilings.
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Figure 12.23

12.5.  For each of the seven frieze groups and for each of the groups C,, C,,C,, D, and
D,, give a monohedral tiling by dominoes that has this group as its symmetry
group.

12.6. Construct a rep-12 triangle, a rep-16 triangle, a rep-16 quadrilateral, and a rep-24
quadrilateral.

12.7. Trueor False

(a) Every trapezoid admits a tiling of the plane.

(b) If polygon P divides polygon Q and polygon Q divides P, then both P and Q
are reptiles.

(c) Suppose P, Q, R are polygons. If P divides Q with multiplicity a, Q divides R
with multiplicity b, and R divides P with multiplicity ¢, then each of P, Q, R
is rep-abc.

(d) Once one tile is placed, the position of all the remaining tiles of a tessellation
by a monomorphic prototile is determined.

(e) Any pentagon having a pair of parallel sides admits a tiling.

(f) With x and y positive rational numbers, an x by y rectangle divides a square.

(g) Given square S and rectangle R, then S divides R.

(h) A polygon that divides a square is a reptile.

(i) A tiling whose prototiles are all regular polygons is called an Archimedean
tiling. - B

(J) 1f k is the product of positive integers m and n, then a \/m by \/n parallelo-
gram is rep-k.

12.8.  Show the prototile constructed in Figure 12.4 for the Cairo tessellation has two
right angles.

12.9. Read " Convex pologons thatcannottile the plane ” by Ivan Nivin in the December
1978 (volume 85) American Mathematical Monthly (pp. 785-792).

12.10. Show the sphinx and each of the polygons in Figure 12.18 are rep-9.



12.14.

12.15.
12.16.

12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

12.25.

12 Tessellations

Show the prototile of the monohedral tessellation in Figure 12.14 tiles the plane in
a pattern having a wallpaper group as its symmetry group.

. Which polygons in Figure 12.6 admit a tiling?

. Show that the only rep-2 triangles are the isosceles right triangles, that the only

rep-2 quadrilaterals are the 1 by \/5 parallelograms, and that any convex rep-2
reptile is an isosceles right triangle or a 1 by ﬁ parallelogram.

Show Penrose’s loaded wheelbarrow admits a tiling. Which other polyiamonds
in Figure 12.7 admit a tiling?

Prove the sphinx and the middle polygon in Figure 12.17 each tile the plane.

Show there are infinitely many edge-to-edge tilings by equilateral triangles and
squares such that all vertices have the same species.

Show there are infinitely many edge-to-edge tilings by regular polygons such that
each vertex has species 6 from Table 12.1.

[llustrate the two tessellations by the dimorphic prototile and three tessellations
by the trimorphic prototile in Figure 12.8.

On a sheet of graph paper, join (0, 0) to (0, 1) to (4, 3) to (4, 4) and join (0, 4) to
(1,4)to (3, 0) to (4, 0). To these points add their images under the reflection in the
X-axis, the reflection in the Y-axis, and the halfturn about (0, 0). Consider this
augmented set together with its images under all translations with equations
x" = x + 8hand y' = y + 8k where h and k are integers. Describe what you have
and name the symmetry group for the set.

Show that if D is in the interior of A4BC, point M is the midpoint of AC,and E =
ou(D), then A, B, C, D, E are the vertices of a pentagon that tiles the plane.

Which of the hexominoes in Figure 12.24 are reptiles?

— | E——

Figure 12.24

The polyomino with vertices (0, 0), (1, 0), (1, 4), (0, 4), (0, 3),(—1, 3), (=1, 2), and
(0, 2) is a Y pentomino. Is this polygon a reptile?

Draw a picture of each of the twelve hexiamonds: bar, butterfly, bat (cheveron),
crown, hexagon, crook (club), hook (shoe), lobster, pistol (signpost), snake,
sphinx, and yacht. Which hexiamonds are reptiles?

The F octomino is formed by rows of 3, 1, 2, 1, 1 squares. How many tilings does
this octomino admit?

Show Kershner’s tile in Figure 12.13 admits only edge-to-edge tilings that are not
tile transitive.
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Figure 12.25

12.26. Prove or disprove: Figure 12.25 defines an infinite sequence of dimorphic pro-
totiles for monohedral tilings. The prototiles are polyominoes of order t2 — 2 for
t=4,56,....

Figure 12.26

12.27. Prove or disprove: Figure 12.26 defines an infinite sequence of trimorphic pro-
totiles for monohedral tilings. The prototiles are polyominoes of order s? + 1 for
s=13,4,5....

(a) (b)

Figure 12.27

12.28. The prototiles (a) and (b) in Figure 12.27 are x-morphic and y-morphic,
respectively. Find x and y.



Chapter 13
Similarities on the Plane

§13.1 Classification of Similarities

This chapter may be read following Chapter 9.

The image of a triangle as seen through a magnifying glass is similar to
the original triangle. We shall see that any two similar triangles in the plane
are related by such a magnification and an isometry. The transformation
that sends (x, y) to (2x, 2y) is a magnifying glass for the Cartesian plane,
multiplying all distances by 2. We shall call this mapping a stretch. The
inverse transformation, which sends (x, y) to (x/2, y/2), will not be called a
shrink here but will also be called a stretch. Be warned, the language of
similarity theory is not standardized ! In general, it is impossible to tell what
any of the following words means without examining the context in which that
word is used: stretch, dilation, dilatation, homothety, enlargement, contrac-
tion, central similarity, radial transformation, or size transformation. (Note
that di-lation and dil-a-tation are different words.) For easy reference, the
next paragraph contains all of the definitions of the new transformations
needed for our study of similarities.

If Cis a point and r > 0, then a stretchof ratio r about C is the transforma-
tion that ﬁigs C and otherwise sends point P to point P’ where P’ is the unique
point on CP such that CP' = rCP. We allow the identity to be a stretch. A
dilation about point C is a stretch about C or else a stretch about C followed by
the halfturn about C. A stretch reflection is a nonidentity stretch about some
point C followed by the reflection in some line through C. A stretch rotation is
a nonidentity stretch about some point C followed by a nonidentity rotation
about C. If r > 0, then a similarity of ratio r is a transformation « such that
P'Q’ = rPQ for all points P and Q where P’ = a(P)and Q' = a(Q).

136
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Before going any further, reread the preceding paragraph at least twice
to get the definitions firmly in mind. Recall that a dilatation is a collineation «
such that / || a(/) for every line [ and that the group s generated by the half-
turns is contained in the group 2 of all dilatations. Since a similarity is a
transformation that multiplies all distances by some positive number, then
the image of a triangle under a similarity is a triangle. It follows that collinear
points are mapped onto collinear points by a similarity transformation,
since the inverse of a similarity is also a similarity. Thus, a similarity is a
collineation. The remainder of the first theorem should be evident from the
definitions. Group & is always the group of all similarities.

Theorem 13.1. An isometry is a similarity. A similarity with two fixed points is
an isometry. A similarity with three noncollinear fixed points is the identity.
A similarity is a collineation that preserves betweenness, midpoints, segments,
rays, triangles, angles, angle measure, and perpendicularity. The composite of
a similarity of ratio r and a similarity of ratio s is a similarity of ratio rs. The
similarities form a group & that contains the group # of all isometries.

To show a dilation is a dilatation and a similarity, first suppose « is a
stretch of ratio r about point C. Transformation « fixes the lines through C.
Suppose P, Q, R are three collinear points on a line off C and have images
P, Q', R', respectively, under a. See Figure 13.1. Since CP' = rCP, CQ’ =
rCQ, and CR’ = rCR, then it follows from the theory of similar triangles
that PQ I @ that points P’, Q', R’ are collinear, and that P'Q’ = rPQ.
Hence, a stretch is a dilatation and a similarity. Since a halfturn is a dilatation
and a similarity, then the composite of a stretch and a halfturn is both a
dilatation and a similarity.

Theorem 13.2. A dilation is a dilatation and a similarity.

Suppose AB 1A 4B’ and there is a dllatatlon 0 such that 6(4) = A’ and
O0(B) = B'. See Figure 13.2. If point P is off AB then §(P) is umquely de-
termined as the intersection of the line through A’ that is parallel to AP and
the line through B’ that is parallel to BP. Then, if Q is on AB point 6(Q) is

Figure 13.1
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B Q) A’

8(P)
Figure 13.2

uniquely determined as the intersection of A 4B’ and the line through J(P)
that is parallel to P_> Since the image of each point is uniquely determined
by the images of 4 and B, then there is at most one dilatation ¢ taking A to A’
and B to B'. On the other hand, 7, , followed by the dilation about A’ that
takes t, 4,(B)to B'isa dilatation taking 4 to A"and Bto B'.

Theorem 13.3. Ifﬁ I 21’_3", then there is a unique dilatation d such that 6(A) =
A’ and 6(B) =

If dilatation ¢ does not fix point A and if A" = 0(A), then ()(AA ) must be
the line through d(A) that is parallel to AA’. This simple observation is our
next theorem.

Theorem 13.4. If point A is not fixed by dilatation 9, then line A4 is fixed by 6
where A" = 3(A).

We can now answer the question, “What are the dilatations?” A non-
identity dilatation  must have some nonfixed line /. So / and «(/) are distinct
parallel lines. Any two points A and B on line [/ are such that neither er oA)
nor oc(B) isonl Let A" = a(A) ar&d_}B T_“,(B) See Figure 13.3. Now, 4B and
A'B are dlstmct parallel lines. If 44" || BB',then []JAA'B'Bis a parallelogram,
74 4(B) = B',and (Theorem 13.3) dilatation amust be the translation 7, 4.
However, suppose AA e BB'. Then the lines A4’ and BB are fixed (Theorem
13.4) and must intersect at some fixed xed point C. Since 4B is not fixed, then C
is off both parallel lines AB and 4B’ with C, A, A collinear and C, B, B

B,

Figure 13.3
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collinear. So CA’/CA = CB’/CB. Then there is a dilation § about C such that
0(A) = A" and 6(B) = B'. (If point C is between points 4 and A’, then J is a
stretch followed by o.; otherwise, § is simply a stretch about C.) By the
uniqueness of a dilatation taking 4 to A’ and B to B’, the dilatation o must be
the translation 7, 4. or else the dilation 4.

Theorem 13.5. A dilatation is a translation or a dilation.

To show there is a similarity taking one triangle onto any similar triangle,
suppose AABC ~ AA'B'C'. See Figure 13.4. Let 6 be the stretch about A
suchthat §(B) = Ewith AE = A’'B’. With F = §(C),then AAEF =~ ANA'B'C’
by ASA. Since there is an isometry f such that f(4) = A’, f(E) = B, and
P(F) = C’, then 0 is a similarity taking A, B, C to A, B', C’, respectively.
If o is a similarity taking 4, B, C to A’, B, C’, respectively, then o™ !(B5) fixes
three noncollinear points and must be the identity. Therefore, « = 0, and
we have the following analogue to Theorem 5.7.

Theorem 13.6. If ANABC ~ ANA'B'C’, then there is a unique similarity o
such that o(A) = A', o(B) = B, and a(C) = C".

Generalizing from triangles to arbitrary sets of points, we say figures s
and ¢ are similar if there is a similarity a such that a(s) = t.

By the proof above, a similarity is just a stretch about some point P
followed by an isometry. Actually, the point P can be arbitrarily chosen as
follows. If « is a similarity of ratio r, let § be the stretch of ratio r about P.
Then 6! is a stretch of ratio 1/r. So «d ™! is an isometry and a = (2d~ ) (J).

Theorem 13.7. If o is a similarity and P is any point, then o = & where § is a
stretch about P and f3 is an isometry.

This important theorem gives us a feeling for the nature of the similarities.
We need only one more theorem on similarities before the classification
theorem. However, the proof uses a lemma about directed distance, which
must be introduced next. Directed distance will play a major role in the next
chapter.
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We suppose the lines in the plane are directed (in an gﬂ))itrary fashion) and
AB denotes the directed distance from A4 to B on line AB. For any points A
and B, we have AB = —BA and so A4 = 0. Note that for distinct points
A, B, C, on line [ the number AC/CB is independent of the choice of positive
direction on line /, as changing the positive direction would change the sign
of both numerator and denominator and leave the value of the fraction itself
unchanged. The lemma we wish to prove is the following.

Theorem 13.8. If y # — 1, then there exists a unique point Pon 4B different
from B such that AP/PB = y. If P is a point on AB different from B, then
AP/PB # —1and P is between A and B iff AP/PB is positive.

To begin the proof, observe that there is a one-to-one correspondence
between the points X on AB and real numbers x given by the equation
AX = x(AB). Then XB = XA + AB = AB — AX = (1 — x)(4B). Let f(x)
=x/(1 — x). So f(x) = AX/XB and f(x) # —1. Also, as f(x) = f(2)
implies x = z for num?gr}s x and z so AX/XB = AZ/ZB implies X = Z
for points X and Z on AB. In other words, point P in the first statement of
Theorem 13.8 is unique provided P exists. For the existence of P, if y # —1,
let P be the point such that AP = [y/(1 + y)1(AB). Then AP/PB =y, as
desired. The last part of the theorem then depends only on the fact that point
P on AB is between A and B iff nonzero numbers AP and PB have the same
sign.

The lemma above will now be used to show a similarity that is not an
isometry must have a fixed point. Suppose « is a similarity that is not an
isometry. We may suppose o is not a dilatation. (Why?) So there is a line /
such that I jf I where I' = a(l). Let [ intersect I’ at point A. With A" = a(A),
then A’ is on [I'. See Figure 13.5. We suppose A" # A. (Why?) Let m be the
line through A’ that is parallel to I. With m' = a(m), then m’ || I'. Let m’
intersect m at point B. With B: a(B), the(__}n B'is OM’ agﬁ distinc&om A
We suppose B' # B. So I' = AA", m" = BB', and AA’ | p_B) Now AB )} A'B’
asotherwise A'B' = ABand a iﬁgn isometry. So 4B and A'B intersect at some
point P off both parallel lines A4" and BB with P, A, Beollinear and P, A', B’
collinear.So AP/PB = A'P/PB'. Ifa hasratiorand P’ = a(P),then AP/PB =
rAP/rPB = A'P'/P'B'. Hence, A'P/PB’ = A'P'/P'B'. Point P is between A’

[ \E /B

Figure 13.5
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and B iff P is between A4 and B since 44’ I Bf’, but P is between A4 and B iff
P’ is between 4’ and B'. Hence P is between A’ and B’ iff P’ is between A’
and B'. Therefore, by the lemma above, A'P/PB' = A'P'/P'B’ and P = P'.
So a(P) = P, as desired.

Theorem 13.9. A4 similarity without a fixed point is an isometry.

In order to classify the similarities, suppose « is a similarity that is not an
isometry. Then a has some fixed point C. So a = 0 where J is a stretch
about C and where f is an isometry. Since B(C) = aé~!(C) = C, then B
must be one of the identity i, a rotation p about C, or a reflection ¢. with C
on c. Hence, o is one of 3, pd, or a.0. We have proved the major part of
The Classification Theorem for Similarities on the Plane.

Theorem 13.10. A nonidentity similarity is exactly one of the following:

isometry, stretch, stretch rotation, stretch reflection.

There remains only the task of verifying the “exactly” in the statement of
the classification theorem. This is left for Exercise 13.1.

§13.2 Equations for Similarities

There are several theorems concerning the conjugate of one similarity by
another. In proving some of these, we suppose everywhere below that o is a
similarity of ratio r. If y is an isometry, then the conjugate aya~! of y by «
has ratio (r)(1)(1/r) and must also be an isometry. Now suppose 9 is a dilata-
tion. Then a~!(I) | da~ !(I) for any line I by the definition of a dilatation.
Since « is a collineation and aa”!(l) = [, then I || ada™(!) for any line L
So ada ™! must also be a dilatation. If 5 is in the group generated by the half-
turns, then so is ana ™ ! since ana ™! is both an isometry and a dilatation by the
results above, (# = 2 N #). If t is a translation, then so is ata™! since
ato” ! is in the group generated by the halfturns but is not an involution.
On the other hand, agpa ™! is in the group generated by the halfturns and is
an involution fixing a(P). So agpa™! must be the halfturn about a(P).
Finally, ao,o.” ! is a nonidentity isometry fixing every point on line (/) and
must be the reflection in a(/). All these results are put together in the following.

Theorem 13.11. Suppose o € &. Then
aye tes ifyed, wo e ifde 9,
ana " teH ifnet, ata"'e T ifte T,

agpo” ' = Oyp), and a0t = a,.
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In order to look at the dilatations a little more closely, a notation for the
dilations is introduced as follows. If x > 0, then J; , is the stretch about P
of (similarity) ratio x and dilation Jp _, is defined by dp _, = 6pdp ,.
Multiplying both sides of this last equation by gp on the left, we have opdp _,
= 0p 4. S0 0p _, = dp0p_, for all r # 0. The number r is called the dilation
ratio of dilation dp ,. There are the two special cases where a dilation is also
anisometry:dp ; = 1and dp _; = op. Clearly, the ratio of §, , is the absolute
value |r| of the dilation ratio r. For example, dp__ 5 has ratio + 3 but dilation
ratio —3.Since 0p0p , = Jp , 0pfollows from the special case 6p = 6p ,0pdp.,
of the theorem above, then Jp (0p, = Jp ,, holds for all nonzero r and s
as well as for the obvious case when both r and s are positive. Thus, 6, | =
Op. 1, for any point P and nonzero r. If « is any similarity, then adp ,0 " 'isa
dilatation (Theorem 13.11) fixing point «(P) and has ratio |r|. Hence,
adp 0~ ' = O,p, s Where s = +r. The question is, “Is r the dilation ratio of
adp o 1?7 With P’ = a(P) and Q' = a(Q) for Q # P, that the answer is
“Yes” follows from the equivalence of each of the following: (1) r > > 0.
(2) dp, is a stretch. (3) 5P AQ) is on PQ 4 aé,, AQ) is on PQ
(5) adp.,a” (a(Q)) is on P'Q". (6) dp (Q') is on P'Q. (7) dp.s is a stretch.
(8) s > 0. Since s = +r and both r and s have the same sign, then r = s, as
desired.

Theorem 13.12. If P is a point, then §p _, = apop , for any r # 0, dp ; =1,
Op,_1 = 0p, and Sp Op , = Op_, fOr any nonzero r and s. If o is any similarity
then

. -1 s
®p 0 = Oypy,,

If r # 1, then the nonidentity dilation J, , is said to have center P.

Further results on the dilatations are more easily obtained by using co-
ordinates. In the Cartesian plane with O = (0, 0), we clearly have d,_,((x, y))
= (rx, ry) for positive r and this same equation must hold for negative r
since gy((x, y)) = (—x, —y). So 6y, has equations x' = rx and y’ = ry in
any case. Now, suppose P = (a, b) and Jp ((x, y)) = (x', ). Then, from the
equations

Op,, = 1-'o'll"so,r'fa‘lp = 10.p00.: TP, 0>

we have
Op,((x, y)) = (r(x —a) + a, r(y — b) + b) = (x,))

and the following.

Theorem 13.13. If P = (a, b), then dp_, has equations

x'=rx+ (1 - ra,
y =ry+ (1 —r)b
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The next theorem follows from the theorem above, and the proofs are left
for Exercise 13.2.

Theorem 13.14. Given 6 4 ,,, and dg_,, then for some point C
081041 = Tac
Given 04, and O _, with rs # 1, then for some point C
58.56A.r = 5C,rs-
Given t4 g and 0, , with r # 1, then for some point C
T4.804,r = 05,748 = Oc,,-

Although the coordinate proofs for Theorem 13.14 are easy to give and
the content of the equations themselves is easy to understand, in one sense
visualization is virtually impossible. With the help of Figure 13.6 it may be
easy to see point for point that the result of 6, , followed by 65 /4 is Tp .
However, it would take a very special mind to see this transformation as the
result of the continuous change associated with the dilation about A of
ratio 4 followed by that associated with the dilation about B of ratio 1/4.
Nevertheless, we know as a result of our proofs that such is the case.

3x 3y
o
P
\ —N
A
Figure 13.6

A similarity on the Cartesian plane is a stretch about the origin O followed
by an isometry (Theorem 13.7). From this fact and the equations for an
isometry given by Theorem 9.3, it follows that a similarity has equations of the

form
{x’ =  (rcos@®)x — (rsin®)y +c,

y = x[(rsin ®)x + (rcos O)y + d],
where r and © are numbers with r > 0 and, conversely, equations of this form

are those of a similarity. With a = r cos ® and b = r sin ®, we have the
following.

Theorem 13.15. A similarity on the Cartesian plane has equations of the form

{x’= ax — by + ¢,

itha®> + b* # 0,
Vo= +[bx+ay+d), VEEF

and, conversely, equations of this form are those of a similarity.
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A similarity o that is a stretch about some point P followed by an even
isometry is said to be direct; a similarity o that is a stretch about some point
P followed by an odd isometry is said to be opposite. From the equations for
isometries and similarities it is evident that whether a similarity is direct
or opposite is independent of the point P above. In the equations in Theorem
13.15, the positive sign applies to direct similarities and the negative sign
applies to opposite similarities.

Theorem 13.16. Every similarity is either direct or opposite but not both. The
direct similarities form a group. The product of two opposite similarities is
direct. The product of a direct similarity and an opposite similarity is an
opposite similarity.

The next chapter contains some applications of similarity theory to
plane geometry.

§13.3 Exercises

13.1.  Finish the proof of the Classification Theorem for Similarities on the Plane.
13.2. Prove Theorem 13.14.

13.3. Show that app g0t~ ' = p,p. 1+ fOr any rotation p, o where the positive sign
applies when « is a direct similarity and the minus sign applies when « is an
opposite similarity.

13.4. List all similarities whose square is a dilatation.

13.5. Findil)l fixed points and all fixed lines of 6,8, , where AABC is equilateral and

I = BC.
13.6. For what point P does a dilation about P have equations x' = —2x + 3 and
Yy ==2y—47

13.7.  Show that any two parabolas are similar.

13.8. Whatare the fixed points and fixed lines of a stretch reflection? What are the fixed
points and fixed lines of a stretch rotation?

13.9. True or False

(a) A similarity that is not an isometry has a fixed point, and a dilatation that is
not a translation has a fixed point.

(b) d¢., fixes point C and otherwise sends point P to P’ where P’ is the unique
point on TP such that CP = rCP.

(c) The group of all dilatations is generated by the dilations.

(d) 0pdp., = dp. .65 for any point P and nonzero number r.

(e) 0, (B)ison ABif A # B.

(f) If 2 is an opposite similarity of ratio r, P is any point, and [ is any line, then
there is an even isometry f§ such that x = fig,0p_,.
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13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

13.16.
13.17.

13.18.

(8) T4 5% " = T,a).ap fOr any similarity o and points A and B.

(h) There is a unique point Q on 4B such that AQ/QB = 1.

(1) A dilatation is a similarity.

(j) A stretch rotation is not an isometry, and neither a stretch nor a rotation is a
stretch rotation.

To determine the height of an object you can place a mirror on the ground and
move back until you see the top of the object in the mirror. Explain how this
procedure works.

Given a figure consisting of distinct points 4 and B, sketch the set of all lines
fixed by 0p 394, - 5.

Prove or disprove: If o is a transformation and ¢ is a dilation, then ada™! is a

dilatation.

Prove or disprove: If r > 0, then a mapping « such that P'Q" = rPQ for all points
P and Q with P" = a(P) and Q' = «(Q) is a similarity.

Suppose « is a transformation such that AB = CD implies B’ = C'D’ for all
points A, B, C, D and their images A', B, C', D, respectively, under «. Show a is a
similarity.

Complete each of the following:

@) If 6p 3((x, »)) = 3x 4+ 7,3y — 5), then P =

(b) If X' = 3x + 5y + 2and y' = tx — 3y are the equations of a similarity, then
t= .

(c) lfopdp 15 = 0p ., thenx = .

(d) If 6¢c T4, = Tp,o0c, , then P = and Q =

() If0p —5pa.1008'-s = pp. 10, then P =

(f) If0p 564, = 01,05 then T =

(g) prA.G(SA.r = ‘5A.rpA,x’ then x =

(h) If6,6p, = dp ,0, Wwhen pison P, then x =

(i) Iftz'y=14c,then C =

Prove or disprove: A finite group of similarities is either C, or D, for some n.

Prove or disprove: Nonidentity dilatations « and § commute iff « and f are
translations.

Given line / and points C, A, B in Figure 13.7 with . ,(4) = B, find M and m such
that 6,0¢,, = 0,,0y., and point M is on line m.

Figure 13.7
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13.19. Find all stretch reflections taking point 4 to point B.
13.20. Find all stretch rotations taking point 4 to point B.
13.21. If a((1, 2)) = (0, 0) and «((3, 4)) = (3, 4), then what is the ratio of similarity a?

13.22. If ((0, 0)) = (1, 0), 2((1, 0)) = (2, 2), and a((2, 2)) = (— 1, 6) for similarity «, then
find o((—1, 6)).

13.23. Prove or disprove: There are exactly two dilatations taking circle A to circle Cp,.

13.24. Show that if « is a collineation that preserves the set of all circles, then o is a
similarity.
13.25. Show that an involutory similarity is a reflection or a halfturn.

13.26. Prove the last equation in Theorem 13.12 by using the fact that é, , is a square
when r > 0.

13.27. Show that a nonidentity dilation with center P commutes with ¢, iff Pis on [.
Show nonidentity dilations J 4 , and dp , commute iff 4 = B. Show dilatations
d4.q0and 74 g never commute if A # Band a # 1.

Figure 13.8

13.28. Given acute triangle AABC, construct the square inscribed in the triangle that
has a side on AB. See Figure 13.8 for an idea.

';u




Chapter 14

Classical Theorems

§14.1 Menelaus, Ceva, Desargues, Pappus, Pascal

For each of the mathematicians that lends his name to the title of this section,
there is at least one famous theorem that bears his name. As we shall see, the
Alexandrian Greek mathematician Pappus can be paired with either of the
seventeenth-century French mathematicians Desargues or Pascal. However,
the Alexandrian Greek mathematician Menelaus and the seventeenth-
century Italian mathematician Ceva are invariably mentioned together.
Menelaus’ Theorem, which involves a test for the collinearity of three points,
and Ceva’s Theorem, which involves a test for the concurrency of three
lines, are frequently called the Twin Theorems. These theorems should have
been discovered together, and it is not insignificant that such a long period
separates Menelaus and Ceva. During the 1500 years that separate the two
there was little development in mathematics.

About the year A.D. 100, Menelaus of Alexandria extended a then well-
known lemma to spherical triangles in his Sphaerica, the high point of Greek
trigonometry. It is this lemma for the plane that today bears the name of
Menelaus. Of the Ceva brothers, the lesser known Tommaso (1648-1737)
wrote on the cycloid while Giovanni (1647-1736) resurrected the forgotten
Menelaus’ Theorem and published it in 1678 along with the twin theorem
now known as Ceva’s Theorem.

Our classical theorems will depend mostly on the following lemma.
Read the statement and see if you can prove each of the four parts before you
read the proofs given after the statement.

Theorem 14.1. A dilatation with a fixed point off a fixed line(i_s}the identity.
If A # Band ab # 1, then dg ,0 4, is a dilation with center on AB. If

5R,r5Q,q5P.p =1

147
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B 0 %
Figure 14.1

and one of the numbers p, q, r is different from 1, then points P, Q, R, are collinear.
If distinct lines AB and PQ intersect at point L, then

04 o(P) = 35 ,(Q) implies 35 4040 = OL.app-

A dilatation with a fixed point is a dilation (Theorem 13.5). A dilation
fixes its center and all lines through the center, and a dilation fixing any other
point or any other line must fix two points and so be the identity (Theorem
13.3). This proves the first part of the theorem. For the second part, i if ab # 1,
then the dilatation dp ,d, , is a nonidentity dilation that fixes AB. By the
first part, the center of the dilation must be on 4B.

For the third part of Theorem 14.1, suppose 5R‘,5Q‘q(5p‘p is the identity
with points P, Q, R distinct. Then 6y ,0p , = 0z ;. If r =1, thenp =g =1
also, as we would have to have d, , = d;, w1th P # Q So r # | and the
center R of dilation d,, ,0p , must be on the fixed line PQ by the second part
of the theorem. To prove the last part of the theorem, let § , (P) = J5 ,(Q) =
and d = g 1,0, 4. See Flgure 14.1 Now,a # b,asotherwise AV/AP = BV/BQ
which holds only if lines AB and PQ are parallel. Soa/b # land di isa dilation
with center on AB. Since o(P) = Q, the dilation ¢ has center on PQ Hence,
0 = Oy an» as desired.

Each of the Twin Theorems involves a certain product of ratios of directed
distances. Except in the statement of a theorem, this product will be denoted
throughout by * to save space. Suppose points D, E, F are respectively on
lines E_f, ﬁ, AB and each point is distinct from the vertices of AABC.
Then = is defined by the equation

* = (AF/FB)BD/DC)(CE/EA).
The equation for « is easy to remember. See Figure 14.2. Points D, E, F are
on the extended sides opposite vertices A, B, C, respectively. Then to form =
we start at 4 and march around the triangle. First, go from A to B by way of F;
second, go from B to C by way of D; and, finally, go from C back to 4 by
way of E. Practice forming = for each AABC illustrated in Figure 14.2. We
are ready to state and then prove Menelaus’ Theorem.

Theorem 14.2. Suppose points D, E, F are respectively on lines bTC’, R, 4B
and each is distinct from the vertices of ANABC. Then points D, E, F are col-
linear iff

(AF/FB)(BD/DC)CE/EA) = —
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Figure 14.2

For the proof of Menelaus’ Theorem, let f, d, e be numbers such that
O {(B) = A, 0p (C) =B, and g [(A4) = C. In other words, numbers
f, d, e are such that FA = fFB, DB = dDC, and EC = eEA. Let § =
O ;0p 49k, .- Dilatation o fixes point 4 and so must be a dilation. Now,
first suppose D, E, F are collinear on line . Then ¢ has fixed point A4 off fixed
line I. Hence, 0 = 1 and the dilation ratio fde of 6 is +1. Since fde = +1,
then * = — 1. Conversely, suppose * = —1. Thenfde = + 1 and § = 1. Since
none of d, ¢, f is 1, then points D, E, F are collinear, as desired.

When points D, E, F in Theorem 14.2 are collinear on line ¢, then ¢ is called
a transversal to AABC. A line through exactly one vertex of a triangle is a
cevian for that triangle. In Figure 14.3, lines AD, BE, and CF are cevians for
AABC. We now state and then prove Ceva’s Theorem.

Theorem 14.3. Suppose points D, E, F are respectively on lirﬁB , AC, A
and each is distinct from the vertices of /NABC. Then lines AD, BE, CF are
concurrent or parallel iff

(AF/EB)BD/DC)(CE/EA) = +1.
To begin the proof of Ceva’s Theorem, let f, ¢, d, a be numbers such that
Op (B) = 0c (E) = A and dp «B) = 04 (E) = C.

So f = FA/FB, ¢ = CA/CE, d = DC/DB, a = AC/AE, and (fa)/(dc) = .
<« «—> <« €«

Also, note that f = ¢ iff FC | BE and that d = a iff DA || BE. Let §;, =

O¢c.20p. ; and 8, =05 40p 4. So 8,(B) = 6,(B) = E. Now, if the cevians

F
A
e M
E

B D C B C D B D C
Figure 14.3
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le, ﬁf CF are parallel, then f = ¢,d = a,and so * = + 1. If the cevians are
concurrent at some point P, then 6, = dp . and 6, = dp_4,. Since 6,(B) =
0,(B) = E and 6,(P) = 0,(P) = P, then §, = 6,.So f/c = d/aand x = +1.
Conversely, suppose * = + 1. Then f/c = d/a. If f/c = d/a = 1, then f = ¢,
d = a, and the cevians are parallel. If f/c = d/a # 1, then ¢, is a dilation with
center Q, the intersection ofli‘rﬁs CF aﬂﬁ, and 0, is a dilation with center
R, the intersection of lines AD and BE. Thus, QE/QB = RE/RB because
0,(B) = 0,(B) = E and s9 6, and 9, have the same dilation ratio. Therefore,
since Q and R are on BE, we have Q = R and the cevians are concurrent
(Theorem 13.8). Hence, the cevians are either parallel or concurrent, as
desired.

(a) ! (b)
Figure 14.4

In Figure 14.4a, triangles AABC and AA'B'C’ are said to be copolar
as the lines H ﬁ cc joining corresponding vertices of the triangles are
concurrent at point V. In Figure 14.4b, triangles AABC and AA'B'C’ are
said to be coaxial as the points D, E, F of intersection of corresponding ex-
tended sides of the triangles are collinear on line /. Note that the figures (a)
and (b) can be superimposed; this is the idea behind Desargues’ Theorem.

Theorem 14.4. Suppose points A, B, C, A', B, C', &E, F,Lq;‘e distinct and
triangles ANABC and A\A'B'C’ are such that lines BC and B'C" intersect at D,

«—> «—> «—> «— «—>
lines AC and A'C’ intersect at E, liﬁe_}S ,é‘lﬁ)an‘d_f)i’B’ intersect at F, and lines AA’
and BB intersect at V. Then lines AA’, BB, CC' are concurrent iff points D, E. F
are collinear.
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Figure 14.5

First suppose lines AA', BB, CC’ in the theorem are concurrent at point V.
Let a, b, c be numbers such that

04.o(A") = g y(B") = dc (C) = V.

Then 651040 = Or.aps Oc.i055 = Opbes and d;%0¢. = dg .. Hence,
OF./a0p.bcOF.ap = 1 and points D, E, F are collinear, as desired. (This first
part alone is sometimes called Desargues’ Theorem.)

Conversely, now suppose points D, E, F are coll{mga{r__s)ee Figure 14.5.
Then AAEA' and ABDB' are copolar from F as AB, ED, A'B’ are concurrent
at F. Hence, by the first part above, the tr1angle(§_a>re coaxial and points C’,
V, C must be collinear. In other words, line CC’ passes through V and,
surprisingly, the converse of the first part is actually only a disguised re-
statement of the first part.

A statement of Desargues’ Theorem requires only properties of incidence
among the points and lines. This means that the theorem properly belongs
to projective geometry and is most concisely stated in that context. In pro-
jective geometry two lines determine a point as well as two points determine a
line: the incidence structure of the points and lines of the Euclidean plane is
extended so that any two lines intersect, while Euclidean concepts such as
distance and betweenness must be forfeited. We shall not delve into pro-
Jjective geometry except to indicate that some of the mysterious concepts of
what goes on “at infinity” can be made precise and meaningful in this
geometry. One such idea is that the point V' in Theorem 14.4 might be “at
infinity.” This means that the point V' does not exist because lines A4,

B', CC' are parallel. In this case, the theorem takes the following form.

T{E}orem 14.5. Suppose AA’ BB CC’ are three parallel lines, l‘zle:s BC and
B'C' intersect at D, lines ac and A C’ intersect at E, and lines AB and A B’
intersect at F. Then points D, E, F are collinear.
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Figure 14.6

The proof of the theorem above uses three dilatations. Since A4, B, F are
collinear, suppose 6 ((4) = B. Then é, (A") = B'sincedilation oy isadila-
tation. Since B, C, D are collinear, suppose J, 4B) = C. Then §, «B) = C".
Since A, C, E are collinear, suppose dg (C) = A. Then . (C') = A". Since
the product 6 .0, 40, ; fixes both 4 and A’, then the product is the identity
and D, E, F are collinear, as desired.

In projective geometry, where there are no distinct parallel lines, Desargues’
Theorem states that two triangles are co-axial iff they are copolar. Euclidean
formulations need to consider the possibility of various lines not intersecting.
The following Euclidean formulation states that if two of D, E, F are “at
infinity,” then so is the third. The proof is left as Exercise 14.1. See Figure 14.7.

Theorem 14.6. If the three lines AA', BB', CC’ are either concurrent or parallel
«— «—> “—> =4 «—
and if AB|| A'B' and AC || A'C’, then BC | B'C’.

It was while Descartes and Fermat were proposing the new methods of
analytic geometry that the French engineer and architect Girad Desargues
(1591-1661) offered the new field of projective geometry. Desargues’ treatise
on conics, the Brouillon Projet of 1639 that introduced projective geometry,
was one of the most unsuccessful great books ever written. In addition to its
being revolutionary and extremely terse, the book contained an abundance
of new terms. Many of these had a curious botanical nature. For example, a
“line” in the new geometry was called a “palm.” Of the seventy new terms,
one survived mainly because the term was singled out for the sharpest

Figure 14.7
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ridicule by critics. That term is involution. The basic theorem that bears
Desargues’ name was not published until 1648, where it appears as an appen-
dix by Desargues to a defense by his friend Abraham Bosse of the new type
of geometry. For defending Desargues, Bosse lost his job. Desargues’ work
had been labeled “dangerous and unsound” by his enemies. Desargues was
even compelled to post signs all over Paris offering a reward to anyone who
could prove his methods were not sound. However, Desargues’ ideas were to
lie almost dormant until revived in 1822 by Poncelet in his treatise on pro-
jective geometry that was written while a prisoner of the Russians during
Napoleon’s retreat from Moscow.

The theorem named after Pappus can be paired with Desargues’ Theorem
since the theorems are often encountered together in an axiomatic study of the
foundations of geometry. In the history of geometry and mathematics,
Descartes and Desargues (circa 1650) are essentially preceded only by
Pappus of Alexandria (circa A.D. 320). Although the Museum-Library at
Alexandria that began in the third century B.C. with Euclid, Archimedes, and
Apollonius continued until the fall of Alexandria in A.D. 641, there was
little mathematical creativity in the Western world for 1000 years after
the last giant of Greek mathematics, Pappus. From Pappus’ great work
called Collection, it seems that the theorem below that bears the name of
Pappus and the theorem above that bears the name of Menelaus were in all
probability known to Euclid (circa 300 B.C.).

Pappus’ Theorem is another theorem that properly belongs to projective
geometry. In that context the theorem states that the three pairs of opposite
“sides” of a “hexagon” with alternate vertices on two lines intersect on a line.
See Figure 14.8, where the hexagon has vertices A, B, C, D, E, F and the
opposite sides intersect in the points L, M, N. Our Euclidean formulation
below requires the existence of three additional points of intersection P, Q, R.
Thus we next state and then prove a somewhat special case of Pappus’
Theorem.

Figure 14.8
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Theorem 14.7. Suppose A, B, C,D, E, F are six(_p_gints s:u_c}h that points A, C, E
are collmear, pomts B, D, F are collinear, lmes AB and DE intersect at point L,
lines BC and 11311 intersect at point M, lines Q and 1:";1 intersect at point N,
lines AB cM CcD intersect at point P, lines CD and EF intersect at point Q,
and lines AB and EF intersect at point R. Then points L, M, N are collinear.

Suppose g (R) = dp (P) = Q, ¢ (Q) = 05 ,(R) = P, and J, (P) =
5F,f(Q) = R. Then, 5525041 = 6L‘d/e’ 5c_,¢! Op,p = Op. pic» and 6/4_,11151:,[ =
ON, fia- Al80, 01 4e(P) = R, Spr 4 (R) = Q, oy, ;,(Q) = P and so

6N,f/a6M.b/t'6L.d/e

is a dilation with center P and having dilation ratioL_)with r = (fbd)/(ace).
However, 6¢ .0g .04, = tasthe product fixes Pand AC,and ;405 ,0F ;=1
as the product fixes Q and BD. Hence, cea = 1, dbf =1, and so r = 1.
Therefore points L, M, N are collinear, as desired.

We have mentioned that Theorem 14.7 holds if references to P, Q, R are
dropped from the statement of the theorem. See Figure 14.9. The same
comment applies to Theorem 14.8 below, which is exactly like the statement
of Pappus’ Theorem except that now the points A, B, C, D, E, F are on a
circle. The theorem is sometimes called Pascal’s Theorem but often goes under
the name given by Pascal, the Mystic Hexagon Theorem. See Figure 14.10.

Theorem 14.8. Suppose A,B,C,D, E, F are six points on a circ le such that lines
AB and DE intersect at point L, lines BC and EF intersect at point M, lines

Figure 14.9
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Figure 14.10

CD and FA intersect at point N, lines AB and CD mtersect at point P, lines
CD and EF intersect at point Q, and lines AB and EF intersect at point R.
Then points L, M, N are collinear.

For the proof of Pascal’s Mystic Hexagon Theorem we suppose a, b, ¢, d,
e, f, r are exactly as determined by the beginning of the proof following the
statement of Theorem 14.7. (We follow that proof up to the “However.”)
So EQ = eER,DQ = dDP,CP = cCQ,BP = bBR, AR = aAP,FR = fFQ,
and r = (fbd)/(ace). As before, points L, M, N are collinear if r = 1. Now,

jbd RERF QCQD PAPB
ace  RARB QEQF PCPD’

Since points A4, B, C, D, E, F are on a circle, then each of the three terms in the
product on the right has value + 1. Sor = 1 and points L, M, N are collinear.

Blaise Pascal (1623-1662) was in on the beginning of the formulation of
the theory of probability and is perhaps most often remembered for his
extensive study of a certain array that had been known for centuries but that
we now call Pascal’s Triangle. Pascal published his Mystic Hexagon Theorem
in 1640, at the age of sixteen. He was a disciple of Desargues and realized
that the theorem could be generalized and expanded in projective geometry
to state that the three pairs of opposite “sides” of a “hexagon” intersect
on one “line” iff the “hexagon” is inscribed in a “conic.” This result is often
called Pascal’s Theorem and sometimes the Pappus—Pascal Theorem with
Pappus’ Theorem viewed as the case where the “conic” degenerates to two
lines. Pascal is not among the supergiants of mathematics, probably only
because he abandoned the subject in favor of theology.

Stated without proof, here are some more properties of the figure associated
with Pascal’s Mystic Hexagon Theorem. Suppose there are six points on a
circle. These points may then be picked in sixty ways to form a “hexagon”
inscribed in the circle. Each such hexagon determines a Pascal line as given
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by the theorem. Now, the sixty Pascal lines are concurrent in threes at
twenty points, called Steiner points, with one Steiner point on each Pascal
line. The twenty Steiner points are collinear in fours on fifteen lines, called
Pliicker lines, with each Pliicker line through three Steiner points. The sixty
Pascal lines are also concurrent in threes at sixty points, called Kirkman points,
with three Kirkman points on each Pascal line. The sixty Kirkman points
are collinear in threes on twenty lines, called Cayley lines, with each Cayley
line through three Kirkman points and one Steiner point. The twenty Cayley
lines are concurrent in fours at fifteen points, called Salmon points. Enough?

§14.2 Euler, Brianchon, Poncelet, Feuerbach

This section might well have been called The Triangle; we shall look at
enough of the classical theorems about the triangle to get an idea of the sub-
ject. The nineteenth century saw such a concentrated study of the triangle
that the field might seem exhausted. However, even today, new elementary
theorems do pop up. Whether developing new results or studying the old
results, both professional and amateur have found the triangle a source of
delight since the time of Thales.

We are studying AABC. The angle bisectors of the angles at vertex A
are necessarily perpendicular. See Figure 14.11. The union of these bisectors
is the set of all points equidistant from AB and AC. Suppose that point Pison
BC and that 4P is one of these angle blsectors Then, AP is an angle bisector
of AABC. Also, if AQ is perpendicular to AP then AQ is an external angle
bisector of AABC. With this notation, as in Figure 14.11, let €V be parallel
to AP with V on AB. Then, since AV = AC, we have BA/BP = AV/PC =
AC/PC. So BP/PC = AB/AC. Similarly, for external bisector AQ with Q
on BC we obtain BQ/QC = —AB/AC. (If AB = AC, then the triangle is

Figure 14.11
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isosceles and external angle bisector @ does not intersect (3;(:).) These same
results can be obtained by comparing areas of triangles. In any case, by
following Euclid’s proof (Proposition V1.3 in Euclid’s Elements), we have
obtained the often overlooked elementary theorem that an angle bisector
divides the opposite side of a triangle into segments prcportional to the
adjacent sides.

Theorem 14.9. If the angle bisector or the external angle bisector of the angle
at A of ANABC intersects BC at R, then BR/RC = AB/AC.

An easy application of Ceva’s Theorem and the theorem above gives the
following.

Theorem 14.10. The angle bisectors of a triangle are concurrent. The angle
bisector of an angle of a triangle and the two external angle bisectors of the
other angles of the triangles are concurrent.

The point of concurrency of the three angle bisectors of a triangle is the
incenter of the triangle. In this chapter, I denotes the incenter of AABC.
See Figure 14.12. The point of concurrency of the angle bisector at A and the
external angle bisectors at B and C is called an excenter of AABC and is
denoted by I, in this chapter. Excenters I, and I, are defined similarly. The
incenter and the three excenters are the four points that are equidistant from
all three sides of the triangle. So the incenter is the center of the inscribed circle

o]

Incenter I Excenters I, I, I,

Figure 14.12
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Gergonne point K Nagel point J
Figure 14.13

or incircle, which is the circle tangent to the three sides of the triangle. Further,
each of the excenters is the center of an escribed circle or excircle, which is a
circle tangent to a side and to the extensions of the other two sides of the
triangle. The incircle and the three excircles for a triangle are illustrated in
Figure 14.12.

Since the two tangents to a circle from a point outside the circle are con-
gruent, Ceva’s Theorem immediately gives the following theorem. See
Figure 14.13.

Theorem 14.11. The three cevians joining the vertices of a triangle to the points
of tangency of the opposite sides with the incircle are concurrent.

The point of concurrency in Theorem 14.11 is called the Gergonne point
of the triangle. The geometer Joseph-Diaz Gergonne (1771-1859) advocated
the methods of analytic geometry and is noted for founding in 1810 the first
purely mathematical journal.

Ceva’s Theorem and the congruence of tangents to a circle from a point
outside the circle also give the next theorem, published in 1836 by C. H.
Nagel (1803-1882). The existence of the point of concurrency in the theorem
is left for Exercise 14.18. The point of concurrency is called the Nagel
point of the triangle. In Figure 14.13, note that AB + BL = AC + CL. So
point L is halfway around the perimeter of the triangle from vertex 4.
Likewise, points M and N are halfway around from vertices B and C, re-
spectively. For this reason, Nagel’s Theorem is sometimes called the Half-
way-around Theorem.

Theorem 14.12. The cevians joining the vertices of a triangle to the points of
tangency of the opposite sides with the corresponding excircles are concurrent.
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Circumcenter O Centroid G
Figure 14.14

The perpendicular bisector of a side of a triangle is the set of all points
equidistant from the endpoints of the side. So the three perpendicular bi-
sectors of the sides of AABC are concurrent at a point O, which is called the
circumcenter of the triangle. Since circumcenter O is equidistant from
vertices A, B, C, then the circle O, is the circumscribed circle or circumcircle
of AABC. See Figure 14.14.

Points A’, B', C’ will be the midpoints of sides BC, CA, AB, respectively,
throughout this section. That the medians AA’, BB’, CC’ are concurrent is a
trivial result of Ceva’s Theorem as (+1)* = + 1. This point of concurrency
is the centroid G of AABC. See Figure 14.14. Further, by Menelaus’ Theorem
with CC’ as a transversal to AAA’'B, then

and so AG = 2GA'. Therefore, the centroid trisects each median. We state
these familiar results for the record.

Theorem 14.13. The perpendicular bisectors of the sides of a triangle are
concurrent. The medians of a triangle are concurrent at a point that trisects
each median.

Just for the fun of it, let’s get these same results without using the theorems
of Menelaus and Ceva. Suppose point G is the intersection of BB’ and CC'.
Let r be such that 6; (B) = B'. Since dilation J¢_, is a dilatation, then d4_,(C)
= (', and, since B'C' = BC/2, then r = — 1/2. Since J;_, is a dilatation, then
d6,(A) is on the line through B’ that is parallel to B and also on the line
through C' that is parallel to AC. Hence, 6, _,,,(4) = A'. Thus, the medians
AA', BB', CC’" are concurrent at G and AG = 2GA’, as before. Which of the
two methods of proof do you like more?

NA'B'C' is called the medial triangle of ANABC. Points A', B, C' are
the respective images of 4, B, C under 6, _,,,. In general, a prime in the
remainder of this chapter denotes the image under J¢, _ ,,,. Since a similarity
preserves midpoints, then G’ is the centroid of AA'B’C’. Hence, since G = G/,
then the centroid of a triangle is the centroid of its medial triangle. Further,
the dilation 65 _,,, provides a simple way of showing the altitudes of a
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C’ B’

B A’ C
Orthocenter H

Figure 14.15

mngle are concurrent. The altitude at A of AABC is the perpendicular to
BC that passes through 4. See Figure 14.15. Under o, _,,,, the altitudes of
AABC go to the altitudes of AA'B'C’". More interesting is the fact that the
image of the altitude at A4 is also the perpendicular bisector of side BC. Now
we know the perpendicular bisectors of AABC are concurrent at O. Hence,
the altitudes of medial triangle A A'B'C" are concurrent at 0. Let H be defined
as the point such that ¢ _,,,(H) = O. Then H must be a point on each of the
altitudes of AABC. In other words, the altitudes of A ABC are concurrent at
point H, called the orthocenter of AABC.

Theorem 14.14. The altitudes of a triangle are concurrent. The circumcenter
of atriangle is the orthocenter of its medial triangle. The centroid of a triangle
is the centroid of its medial triangle.

Did you notice that the statement of the theorem above did not include a
rather surprising result that has already been proved ? Since 6. _,,,(H) = O,
then the orthocenter of a triangle, the centroid of the triangle, and the circum-
center of the triangle are on one line. Not only are H, G, O collinear, but G
trisects HO when H # O. If H = O, then G = H = O and the triangle is
equilateral; conversely, if the triangle is equilateral, then points G, H, O
coincide. In any case, we have HG = 2GO since O = H'. Under 65 -3,
the circumcircle of AABC and its center O go respectively to the circum-
circle of AA'B'C’ and its center O'. Letting N = O’, we have OG = 2GN.
So H, N, G, O are collinear with

HG =2G0 = 4NG.

In anticipation of a later theorem, we call the circumcircle of the medial
triangle of a given triangle the ninepoint circle of the given triangle. So N is the
center of the ninepoint circle of AABC. At present, the midpoints 4, B', C'
of the sides of AABC are the only noteworthy points we know to lie on the
ninepoint circle of A ABC. There will be more. In any case, we know that N is
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the midpoint of the orthocenter H and circumcenter O of AABC. See Figure
14.16.

Theorem 14.15. The orthocenter H, the center N of the ninepoint circle, the

centroid G, and the circumcenter O of a triangle are collinear with HG =
2G0O = 4NG.

If AABC is not equilateral, then the line containing H, N, G, O is called the
Euler line of ANABC. Since N = O, G = G’,and O = H’, we have the follow-
ing corollary immediately.

Theorem 14.16. The Euler line of a nonequilateral triangle is the Euler line
of its medial triangle.

Catherine I of Russia called the Swiss mathematician Leonhard Euler
(1707-1783) to the St. Petersburg Academy, which she established at the
instigation of her late husband Peter the Great. Although Catherine I died
the day Euler arrived in St. Petersburg (Leningrad), Euler remained at the
academy until 1741, when Frederick the Great invited him to the Berlin
Academy. Frederick the Great called Euler his “mathematical cyclops,”
as Euler had lost an eye in 1735. After twenty-five years in Berlin, Euler was
eager to respond to the invitation of Catherine the Great to return to St.
Petersburg. Euler remained in Russia and had been totally blind for seventeen
years before he died at the age of seventy-six.

Euler influenced much of the mathematical notation we use today. He is
responsible for the notation for e and i as well as standardizing the notation
for 7. He also put these together to relate the five most important constants in
mathematics:

eém+1=0.

Euler was the most prolific mathematician of all time. His collected works
are expected to run close to seventy-five substantial volumes. This supergiant
among mathematicians touched most parts of modern mathematics.

The midpoint between the orthocenter and a vertex of a triangle is called
an Euler point of the given triangle. The triangle with the three Euler points as
vertices is the Euler triangle of the given triangle. The triangle whose vertices
are the feet of the altitudes of A ABC is the orthic triangle of A\ABC. In 1765,
Euler showed that the cirumcircle of the orthic triangle and the circum-
circle of the medial triangle coincide. (So the ninepoint circle has at least
six noteworthy points on it.) In 1822, a joint paper by the French geometers
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Charles-Julian Brianchon (1785-1864) and Jean-Victor Poncelet (1788-
1867) showed that the circumcircle of the Euler triangle coincides with the
other two circumcircles. Therefore, as you would expect and as we shall
prove next, the nine-point circle does pass through nine noteworthy points.
Poncelet was introduced briefly in the last section. He gave the main impetus
to the revival of projective geometry, having laid the foundations of modern
projective geometry while a prisoner of the Russians in the Napoleonic Wars.
Brianchon is most famous for the theorem of projective geometry he proved
as a student. The theorem is known as Brianchon’s Theorem: The three
diagonals of a hexagon circumscribed about a conic are concurrent.

We have defined the ninepoint circle of AABC to be the circumcircle of the
medial triangle AA'B'C’". We first wish to show this circle, which has center
N, also passes through the feet of the altitudes. Let F, be the foot of the
altitude through 4. So F, and A" are both on BC. We wish to show NF,
NA'. Wesuppose F, # A'. See Figure 14.17. Now, points H and F, are on the

perpendicular to BC at F,, and points O and A’ are on the perpendicular to

BC at A'. Then, since N is the midpoint of H and O, point N must be on the
perpendicular bisector of segment F,A4". So NF, = NA’, as desired. Likewise,
NF, = NB'and NF, = NC’,where F,and F, are the feet of the altitudes from
B and C, respectively. Therefore, the vertices of the orthic triangle are on the
ninepoint circle.

Now let E_, E,, E, be the midpoints between H and A, B, C, respectively.
See Figure 14.17. We wish to show these Euler points are also on the nine-
point circle of AABC. Since the product d; _, ,0y4. , has dilation ratio —1
and fixes point N, then the product is ay. So ay(E,) = A, on(E,) = B’, and
on(E.) = C'. Hence, NE, = NA’, NE, = NB', and NE, = NC/, as desired.
We have proved the Ninepoint Circle Theorem of Brianchon and Poncelet.

Ninepoint circle

Figure 14.17
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Theorem 14.17. For any triangle the midpoints of the sides, the feet of the
altitudes, and the Euler points lie on one circle.

The name for the ninepoint circle used by English speaking mathematicians
obviously comes from the Ninepoint Circle Theorem of Brianchon and
Poncelet. Many French mathematicians call the ninepoint circle Euler’s
circle, and the Germans invariably refer to Feuerbach’s circle. With a drawn
sword, Karl Wilhelm Feuerbach (1800-1834) once threatened to behead any
of his students who could not solve the equation he had written on the board;
the political harassment for erroneous charges concerning his undergraduate
activities had taken its toll. Relieved of his teaching duties, the young high-
school teacher withdrew from reality and then soon from life itself. However,
in a small book published in 1822, Feuerbach had given the world what is
often regarded as the most famous of all the theorems of the triangle dis-
covered since the fall of Alexandria in the year 641. Mathematicians from all
nations call the result Feuerbach’s Theorem: The ninepoint circle of a triangle
is tangent internally to the incircle and tangent externally to each of the ex-
circles of the given triangle.

Feuerbach’s Theorem is stated here without proof. The elementary
proofs are too long, and the short proofs involve inversive geometry, whose
introduction would lead us astray. See page 9 of the Dover reprint of Circles,
A Mathematical View by D. Pedoe.

The points of tangency for the triangle in Feuerbach’s Theorem are called
Feuerbach points of the given triangle. Feuerbach, as did Euler himself,
missed the Euler points on the ninepoint circle. In any case, we now have the
original nine plus the four Feuerbach points for a total of thirteen note-
worthy points on the ninepoint circle of a scalene triangle.

Starting with AABC and its orthocenter H, it takes but a minute to see
that the orthocenters of AABC, AHBC, AAHC, AABH are respectively
H, A, B, C. See Figure 14.18. After a couple more minutes, we see that each
of these four triangles has the same ninepoint circle and, in fact, the same set

Oy,

Figure 14.18
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of nine distinguished points. Further, let O, O,, O,, O, be the respective
images under oy of points H, A, B, C. So O is the orthocenter of AO,0,0,
Then, by the same argument as above, each of the four triangles AO,0,0.,,
A00,0., N0,00,, ANO,0,0 has the same ninepoint circle as the other and
with the same set of nine distinguished points. Recall from the proof of
Theorem 14.19 that op(E,) = A', op(E,) = B, and oy(E.) = C'. So the
ninepoint circles of AABC and AO,0, 0O, coincide. The feet of the altitudes
of A0,0,0, provide three additional points to the original nine. Thus all
eight triangles have the same ninepoint circle with twelve distinguished
points. However, the eight triangles have different incircles and excircles.
Hence, each of the eight triangles yields four additional Feuerbach points on
the ninepoint circle. Therefore, we have forty-four noteworthy points on the
ninepoint circle of AABC. In fact, one can find an infinite sequence of circles
tangent to the ninepoint circle to yield an infinite number of “noteworthy”
points on the ninepoint circle. Enough!

§14.3 Exercises

14.1. Prove Theorem 14.6.
14.2. Prove part of Ceva’s Theorem by using Menelaus’ Theorem.

14.3.  Prove Desargues’ Theorem (Theorem 14.4) by using Menelaus’ Theorem. (Note
—> —> —>
that A'B’, B'C’, C' A’ are respectively transversals to AABV, ABCV, ACAV)

14.4. Prove Pappus’ Thec‘)Le’m ﬂ h(e_o)rem 14.7) by applying Menelaus’ Theorem three
times, with each of AF, BC, DE as transversals to APQR.

— 3 . . s
14.5. Suppose 4,4,, B, B,, C, C, are three parallel lines such that lines B, C,; and
B, C, intersect at point D and lines A, C, and A, C, intersect at point E. Show that
lines A, B, and A, B, are either parallel to DE or else intersect on DE.

14.6. Prove or disprove: There is unique dilatation that takes given point P to given
point Q and fixes given line AB.

14.7. Prove or disprove: Given AABC, if point F is on AB with AF = 2FB, point D i Dis
on B{C_}wnh BD = 2DC, and point E is on AC with CE = 2AE, then lines AD
BE CF are concurrent.

14.8. Prove Pascal's Mystic Hexagon Theorem (Theorem 14.8) by using Menelaus’
Theorem with each of 1(9—C> b_E, ﬁ as a transversal to APQR.

14.9. Give a proof of Menelaus’ Theorem that is independent of transformation
geometry.

14.10. Prove that Ceva’s Theorem follows from Menelaus’ Theorem.

14.11. Suppose 4, B, C, D, E, F are six points such that points A, C, E are collinear, points

B, D, F are collmeag_l}mes ,ﬁ»and CD are parallel, and lines BC and EF are
parallel. Show lines AB and DE are parallel.
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14.12.

14.13.

14.14.

14.15.

14.16.

14.17.

14.18.
14.19.

14.20.

14.21.

14.22.

14.23.

14.24.

14.25.
14.26.

Show lhat‘_l_f’cc‘v_l;ms AD BE CFOFAA BC are concurrent at point Q and D, E,
Fare on BC, CA, AB, respectively, then

(AQ/AD) + (BQ/BE) + (CQ/CF) = 2,
(QD/AD) + (QE/BE) + (QF/CF) =

Suppose AABC is equilateral. If point E is on side AC such that AE = AC/3,
point D is on sid_e BC such that CD = BC/3,and AD and BE intersect at point P,
show BP and CP are perpendicular.

Given point P in the interior of L CAB, construct the circles through P that are
tangent to both AB and AC.

Given four distinct points 4, é ,(A4), B, d¢.,(B) on a line, show how to construct
the point C.

Show how to construct a quadrilateral from four given segments such that the
vertices of the quadrilateral will lie on some circle (not given).

Prove or disprove: For an excircle of a given triangle the lines joining the points
of tangency with the extended sides to the opposite vertices are concurrent.

Prove the existence of the Nagel point of a triangle (Theorem 14.12).

Show that the external bisectors of the angles of a scalene triangle intersect the
opposite sides in three collinear points.

Show the three lines through the midpoints of the sides of a triangle and parallel
to the bisectors of the opposite angles meet in a single point.

lfpomls P and Q on side BC of AABC have the same midpoint as B and C, then
AP and AQ are called isotomic conjugate lines of the triangle. Show that if three
cevians, one from each vertex of a triangle, are concurrent at point ¥, then their
isotomic conjugates are concurrent at some point W. The points V and W are
called isotomic conjugate points.

Show that the tangents to the circumcircle at the vertices of a scalene triangle
intersect the opposite sides in three collinear points.

Show the feet of the perpendiculars to the sides of a triangle from a point on its
circumcircle are collinear. (This is the Simson Line Theorem, erroneously named
after Robert Simson (1687-1768) but due to William Wallace (1768-1843).)

Prove or disprove: Al I, I has orthocenter I and ninepoint circle that is the
circumcircle of AABC.

Show the incenter of a triangle is the Nagel point of its medial triangle.

The tangents to the circumcircle at the vertices of a nonright triangle form a
triangle called the tangential triangle of the given triangle. Show the circumcenter
of the tangential triangle of a given triangle lies on the Euler line of the given
triangle.
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14.27.

14.28.

14.29.

14 Classical Theorems

Given AABG, if R is the circumradius, r is the inradius, r, is the radius of the
excircle with center I,, s is half the perimeter, and K is the area, then show

K = /s(s — AB)(s — BC)(s — CA) = rs

AB)(BC)(CA
-y, = ABEOCH

ra+ry+r.=r+4R.

If lines | and m passing through a vertex of a given triangle are symmetric with
respect to the angle bisector at that vertex, then the lines are called isogonal
conjugates of each other for the triangle. The isogonal conjugate of a median is
called a symmedian of the triangle. Using the Law of Sines, show a symmedian
through a given vertex of a triangle divides the opposite side into segments pro-
portional to the squares of the lengths of the adjacent sides. Then show that the
isogonal conjugates of three lines concurrent at a point V off the circumcircle of
the triangle, one line through each vertex, are concurrent at a point W. The points
Vand W are called isogonal conjugate points. The isogonal conjugate of the cen-
troid is called the symmedian point of the triangle. Show the circumcenter and
orthocenter are isogonal conjugate points.

Show JG = 2GI for AABC. So d¢. —,,(J) = I. That is, the incenter of a triangle
is the Nagel point of its medial triangle. Define point S by ;. _,,,(I) = S. See
Figure 14.19. Define the Spieker circle of AABC to be the incircle of the medial

3 1 2

Py

J S G I
Figure 14.19

triangle. (Recall the Euler circle is the circumcircle of the medial triangle.) Show
the Spieker circle has center S and is the incircle of the triangle whose vertices
are the three points midway between the Nagel point and the vertices of the
triangle.
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Chapter 15

Affine Transformations

§15.1 Collineations

Up to this point we have studied in modern format mostly the geometry of
Euclid. We now turn to transformations that were first introduced by the
great mathematician Leonhard Euler (1707-1783). (Euler was introduced
in the preceding chapter following Theorem 14.16.) From the meaning of the
word affine, we must define an affine transformation as a collineation on the
plane that preserves parallelness among lines. So, if | and m are parallel
lines and « is an affine transformation, then lines a(l) and a(m) are parallel.
However, if f is any collineation and ! and m are distinct parallel lines, then
p(l) and f(m) cannot contain a common point B(P) as point P would then
have to be on both [ and m. Therefore, every collineation is an affine transfor-
mation. Hence, affine transformations and collineations are exactly the same
thing for the Euclidean plane.

Theorem 15.1. A collineation is an affine transformation; an affine transforma-
tion is a collineation.

The choice between the terms affine transformation and collineation is
sometimes arbitrary and sometimes indicates a choice of emphasis on parallel-
ness of lines or on collinearity of points.

Loosely speaking, affine geometry is what remains after surrendering the
ability to measure length (isometries) and surrendering the ability to measure
angles (similarities) but maintaining the incidence structure of points and
lines (collineations). Isometries and similarities are affine transformations
since they preserve parallelness. For an example of an affine transformation

167
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that is not a similarity, consider the mapping with equations x’ = 2x and
y" = y. In the next section, we shall find a coordinate characterization for the
affine transformations. Since we have been studying collineation geometry
all along and since collineation geometry and affine geometry are the same
thing, then like Moliere’s character who is pleasantly surprised to find he
has been speaking prose all his life, you may be pleasantly surprised to find
you have been learning affine geometry most of your life.

The word symmetry probably brings to mind such general ideas as
balance, agreement, order, and harmony. Color, sound, and time are often
components of symmetry in everyday life. We have been exceedingly con-
servative in our use of the word symmetry; for us, symmetries are restricted
to isometries. With a broader mathematical usage of the term, we would
certainly be saying that the similarities are the symmetries of similarity
geometry and that the collineations are the symmetries of affine geometry.
It is in this sense that the entire book is about symmetry. In the most broad
usage, the group of all transformations on a structure that preserves the
essence of that structure constitutes the symmetries of the structure.

A collineation preserves collinearity of points. We wish to show that,
conversely, a transformation such that the images of every three collinear
points are themselves collinear must be a collineation. So we suppose «
1s a transformation that preserves collinearity and aim to show a(/) is a line
whenever [ is a line. Let A and B be distinct points on /, and let m be the line
through points x(A4) and «(B). By the definition of =, all the points of a(/)
are on m. However, are all the points of m on x(/)? Suppose C’ is a point on m
distinct from a(A4) and a(B), and let C be the point such that «(C) = C".
To show C must be on [, we assume C is off / and the‘rlgb‘t;dén a cop_tgadiction.
See Figure 15.1. Now, the image of all the points of AB, BC, and AC are on m
since collinearity is preserved under a. However, any point P in the plane is
on a line containing two distinct points of AABC. Since the images of these
two points lie on m, then the image of P lies on m. Therefore, the image of
every point lies on m, contradicting the fact that « is an onto mapping.
Hence, C must lie on [, m = «(l), and a is a collineation, as desired.

Figure 15.1
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Theorem 15.2. A transformation such that the images of every three collinear
points are themselves collinear is an affine transformation.

Are the affine transformations the same as those transformations for which
the images of any three noncollinear points are themselves noncollinear?
We shall see the answer is “Yes.” Suppose « is an affine transformation.
Then «~ ! is an affine transformation and can’t take three collinear points to
three noncollinear points. Hence, « can’t take three noncollinear points to
three collinear points. Therefore, affine transformation a must take any three
noncollinear points to three noncollinear points. (Warning, don’t be sur-
prised if the following delightful, short proof of the converse of the preceding
statement is at first as confusing as suddenly finding yourself at a teddy
bears’ picnic. The proof of the converse follows by the method of proof by
contradiction while using the contrapositive of a known theorem and the
trick just used of learning something about a transformation by looking at
its inverse.) Conversely, suppose f is a transformation such that the images of
any three noncollinear points are themselves noncollinear. Assume f§ is not
an affine transformation. Then B! is not an affine transformation. By the
contrapositive of the preceding theorem, then there are three collinear points
whose images under 7! are not collinear. Hence, since f is the inverse of
B!, then there are three noncollinear points whose images under B are
collinear, a contradiction. Therefore, § is an affine transformation, and we
have proved the following theorem.

Theorem 15.3. A transformation is an affine transformation iff the images of
any three noncollinear points are themselves noncollinear.

The theorem above does not state that the image of a triangle under an
affine transformation is necessarily a triangle but states only that the images
of the vertices of a triangle are themselves vertices of a triangle. We do not
know the image of a segment is necessarily a segment. More fundamental,
we do not know that an affine transformation necessarily preserves between-
ness. It will take some effort to prove this. We begin by showing that midpoint
is actually an affine concept, that is, an affine transformation carries the
midpoint of two given points to the midpoint of their images.

Suppose A and B are distinct points and « is an affine transformation.
Let P be any point off AB. See Figure 15.2. Let Q be the intersection of the
ling through 4 that is parallel to PB and the line through B that is parallel
to PA. So CJAPBQ is a parallelogram. Let A" = a(A), B' = «(B), P’ = a(P),
and Q' = a(Q). Since two parallel lines go to two parallel lines under «, then
A4’ P’'B'Q’ isa parallelogram. (We are not claiming e((J4 PBQ)=[1A4"P'B'Q’
but only that A’, P’, B, Q' are vertices in order of a parallelogram.) Further,
M, t@__i}ntersection of 4B and I"@: must go to M’, the intersection of AB
and P'Q’. However, since the diagonals of a parallelogram bisect each other,
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then M is the midpoint of 4 and B while M’ is the midpoint of A" and B'.
Hence, o preserves midpoints.

Theorem 15.4. If o is an affine transformation and M is the midpoint of points
A and B, then a(M) is the midpoint of a(A) and a(B).

Suppose o is an affine transformation and the n + 1 points P,, P,
P,,..., P, divide the segment P, P, into n congruent segments P;_,P;. See
Figure 15.3. Let P; = a(P,). Since P,P, = P,P,, P,P, = P, P;, etc., then
P, is the midpoint of P, and P,, point P, is the midpoint of P, and P;,
etc. Hence, P is the midpoint of Py and P, point P} is the midpoint of P}
and P}, etc. So the images Py, P}, P,, ..., P, divide the segment P, P, into
n congruent segments P;_, P;.

Theorem 15.5. If o is an affine transformation, the n + 1 points P, P,
P,,..., P, divide the segment P, P, into n congruent segments P,_ P;, and
P: = a(P,), then the n + 1 points Py, Py, P5,..., P, divide the segment
P, P, into n congruent segments P;_P:.

It follows from this theorem that P between 4 and B implies a(P) between
a(A) and o(B) provided AP/PB is rational. It would have to be a very strange
collineation that allowed betweenness not to be preserved in general although
preserving midpoints. Early geometers avoided such a monster transforma-
tion simply by incorporating the preservation of betweenness within the
definition of an affine transformation. In 1880, the French mathematician

Figure 15.3
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Darboux showed the monster transformation does not exist. Gaston Darboux
(1842-1917) studied questions of continuity in geometry and analysis. He
made contributions to the theory of integration. In particular, he first
gave a necessary and sufficient condition for a bounded function to be inte-
grable on a closed interval. (The condition is that the points of discontinuity
in the closed interval can be enclosed in a set of intervals whose total length is
arbitrarily small.) Darboux taught secondary school from 1867 to 1872 and
later held the chair of higher geometry at the Sorbonne. His ingenious
proof showing affine transformations preserve betweenness is given here in
two parts, the first being a lemma about ratios of directed distances.

Suppose for a positive number ¢ different from 1 that points P and Q are

on AB and
AP/PB = +t and AQ/QB = —u.
We intend to show C is the midpoint of P and Q iff
AC/CB = —1*

First suppose point C is such that this third equation holds. We shall show C
is the midpoint of P and Q. The converse will then follow from the unique-
ness of a point on AB such that the third equation holds. Now,

AP/AB = AP/(AP + PB) = t/(t + 1),

AQ/AB = AQ/AQ + QB) = —t/(—t + 1),
AC/AB = AC/(AC + CB) = —t*/(—t* + 1).
So
(AP/AB) + (AQ/AB) = 2(AC/AB).
Hence, (AP + AQ)/2 = AC and C must be the midpoint of P and Q.

Theorem 15.6. If AP/PB = +t and AQ/QB = —t for points P and Q on
AB, then C is the midpoint of P and Q iff AC/CB = —1>.

For the principal part of Darboux’s proof that affine transformations
preserve betweenness, suppose o is an affine transformation. Let a prime
denote image under «; for example, P’ = a(P). Our aim is to show a point
between points 4 and B goes to a point between points A and B'. If « were
to send a point on AB to a point off A'B’, then the affine transformation o~
would send a point off 4B’ to a point on AB. Hence, it is sufficient to prove
that point C off AB implies point C’glj;A_’F. (The teddy bears are picnicking
again.) We suppose point C is on AB but off AB Then there is a positive
number t different from 1 such that AC/CB = —t2. Let P and Q be points on
4B such that AP/PB = +tand AQ/QB = —t. So C is the mldpomt of P and

Q by the previous theorem. See Figure 15.4. Now suppose DA L AB. Let E
be the point such that A4 is the midpoint of D and E. Let the line through B
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that is parallel to DE intersect @ at F and intersect Eé at G. Then B is the
midpoint of F and G. Since AD/BF = AQ/BQ =t = AP/PB, then DG and
EF intersect at P. Consider the image under « of the configuration illustrated
in Figure 15.4. We can’t expect the perpendicular lines to go to perpendicular
lines since angle measure may not be invariant under a. Of course, we can’t
suppose betweenness is preserved either, since that is what we are proving now.
However, since a sends collinear points to collinear points, sends a pair of
parallel lines to a pair of parallel lines, and sends midpoints to midpoints,
we know quite a bit about the image of the configurative in question. Points
A', B, C', P', Q' are collinear. Points D', E', F', G’ are off A'B with point A’
the midpoint of D" and E’, point B’ the midpoint of F’ and G', and DE I FG.
Three cases might be distinguished accarding to which of D', F', Q' is between
the other two. See Figure 15.5. In any case, by similar triangles there is a
nonzero number s (which has absolute value A’'D'/B'G’ and which is positive
iff A'-P'-B’) such that A’P'/P'B' =s and A'Q'/Q'B’ = —s. Since C' is
necessarily the midpoint of P’ and Q' then A’C’/C'B’ = —s? by the previous
theorem. However, since —s? is negative, then C’ is off A'B’. This finishes
Darboux’s theorem that affine transformations preserve betweenness.

Fr ¢
A' P' B, Ql

Figure 15.5
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Theorem 15.7. If a is an affine transformation and point P is between points A
and B, then point o(P) is between o(A) and a(B).

Using Theorems 15.5 and 15.7, it is now possible to go back and show s = ¢
in the proof of Theorem 15.7. For this reason, if three points P, A, B are
collinear then “AP/PB” is called an affine ratio since the value is invariant
when the points are replaced by their images under an affine transformation.
Thus, the theorems of Menelaus and Ceva from the preceding chapter are
often called affine theorems. Note that these theorems deal only with the
basic incidence structure, which is invariant under collineations.

As an immediate consequence of Theorem 15.7, we know that an affine
transformation preserves all those geometric entities whose definition goes
back only to the definition of betweenness. Thus, an affine transformation
preserves segments, rays, triangles, quadrilaterals, halfplanes, interiors of
triangles, etc. The preservation of segments and triangles is singled out for
emphasis in the following theorem.

Theorem 15.8. If A’, B', C' are the respective images of three noncollinear
points A, B, C, under affine transformation o, then «(AB) = A'B’ and a(/NABC)
= AA'B'C'.

HSuppose affine transformation o fixes two pomts A and B. Does a fix
AB pointwise? Assume there is a point C on AB such that C' #, C with
C’' = a(C). Without loss of generality, we may suppose C is on AB. As an
intermediate step, we shall show C is between two fixed points A and D.
Let B, = B and define B;,, so that B; is the midpoint of 4 and B;,, for
i=20,1,2,....SeeFigure 15.6a below. Since 4 and B, are given as fixed by a,
then each of B,, B,, B;,... in turn must be fixed by a since o preserves
midpoints. Let D = B, where k is an integer such that AB, = 2*4AB > AC.
Then C lies between fixed points 4 and D. So AD is then fixed and both C
and C’ lie in AD. Now, let n be an integer large enough so that nCC’ > AD.

I o
+
A=P, c

|| ——

P
(a) (b)

Figure 15.6
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Let P, = A, P, = D, and the n + 1 points Py, P,,..., P, divide the segment
AD into n congruent segments P,_ | P;. See Figure 15.6b. Each of the points
P, is fixed by o by Theorem 15.5. So each AP; and P;D is fixed by «. However,
integer n was chosen large enough so that for some integer j point P; is
between C and C'. So C and C’ are in different fixed segments AP;and P;D, a
contradiction. Therefore, a(C) = C for all points on ;I_B’, as desired. The
remainder of the following theorem is left for Exercise 15.9.

Theorem 15.9. An affine transformation fixing two points on a line fixes
that line pointwise. An affine transformation fixing three noncollinear points
must be the identity. Given ANABC and ADEF, there is at most one affine
transformation o such that o(A) = D, a(B) = E, and a(C) = F.

In the next section, we shall see that there is also at least one affine trans-
formation o as described in the last part of the theorem above. Thus an affine
transformation will be completely determined once the images of any three
noncollinear points are known. The next section also uses the following
elementary theorem.

Theorem 15.10. If (p,, p,), (4:, 42), and (r,, r,) are vertices of a triangle, then
the area of that triangle is the absolute value of

(g, — p)(r2 — p2) — (g2 — p2)(ry — p1)1/2.

The theorem is proved with reference to the notation in Figure 15.7. You
are left to your own devices to prove the area of the shaded triangular region
is half the absolute value of ad — bc. Since 1p_o(P) = (0, 0), 7p o(Q) = (a, b),
and 7p o(R) = (¢, d), then the area of APQR is also |ad — bc|/2. Substitu-
tion then yields the expression given in the statement of the theorem.

Q(quqZ)
(a,b)= (q,-p;> 4P,

P(P,,pz)
(0,0)

R(r,ry)

(C,d) =(rl‘p1, rz'pz)

Figure 15.7
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§15.2 Linear Transformations

The term “linear transformation” is used in several different contexts in
mathematics and so has several different definitions. One thing you can
count on is that whenever the term is applied it is applied to something
important. For our purposes, a linear transformation is any mapping « that
has equations

’ — y h,
{x ax + by + where ad — bc # 0.

Y =cx +dy + k,

The number ad — bc is called the determinant of o. A linear transformation is
actually a transformation since a given (x, y) obviously determines a unique
(x', y) and, conversely, a given (x', ') determines a unique (x, y) precisely
because the determinant is nonzero.

As you might expect, linear transformations are related to affine trans-
formations. Let’s check that the linear transformation « given above is
actually a collineation. Suppose line | has equation pX + qY + r = 0.
Since p and ¢ are not both zero, then ap + c¢q and bp + dq are not both zero.
So there is a line m with equation

(ap + cq)X + (bp + dq)Y + (r + hp + kq) = 0.

Line m is introduced because each of the following implies the next where
a((x, y)) = (x, y):

(1) (x', y') on line [,

Q) px'+qy +r=0,

(3) plax + by + h) + glex +dy + k) +r =0,

(4) (ap + cq)x + (bp + dq)y + (r + hp + kq) = 0,
(5) (x, y) on line m.

We have shown o™ ! is a transformation that takes any line [ to some line m.
So a~ ! is a collineation. Hence, « is itself a collineation, proving the first
part of the following theorem.

Theorem 15.11. A linear transformation is an affine transformation; an affine
transformation is a linear transformation.

For the second part of the theorem, suppose « is an affine transformation.

Let O(((O, 0)) = (pl’ pZ) = P’ O(((l, 0) = (ql’ ‘h) = Q’ and a((o’ 1)) = (rl’ 7‘2)
= R. Since (0, 0), (1, 0), (0, 1) are noncollinear, then P, Q, R are noncollinear.
Hence the mapping 8 with equations

{xl =(q; — py)x + (ry —py)y + py,
V' =(q2 — p2)x + (ry — p2)y + pas
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is a linear transformation, since the absolute value of its determinant is twice
the area of A PQR and therefore nonzero (Theorem 15.10). Further, f((0,0)) =
a((0, 0)), B((1, 0)) = a((1, 0)), and B((0, 1)) = a((0, 1)). Therefore (Theorem
15.9), we have a« = f§. So « is a linear transformation. This finishes the proof
of Theorem 15.11. Choosing the term linear transformation over its equiva-
lents collineation and affine transformation can emphasize a coordinate
viewpoint.

Given AABC and ADEF, we know (Theorem 15.9) there is at most one
affine transformation o such that a(A) = D, a(B) = E, and a(C) = F. We
now show there is at least one such affine transformation «. From the pre-
ceding paragraph, we see how to find the equations for a linear transforma-
tion f, such that 8,((0, 0) = 4, ,((1, 0)) = B, and f,((0, 1)) = C. Repeating
the process, we see there is a linear transformation f3, such that 8,((0, 0)) = D,
B,((1, 0)) = E, and B,((0, 1)) = F. The linear transformation f, ;" is the
desired affine transformation « that takes points A, B, C to points D, E, F,
respectively.

Theorem 15.12. Given AABC and ADEF, there is a unique affine transforma-
tion a such that o(A) = D, (B) = E, and o(C) = F.

Some specific, basic linear transformations are introduced next. If for
nonzero number k linear transformations « and f§ have, respectively, sets of

equations
x'= x, "= kx,
{ , and {x/ ¥
y = ky, y=»n

then o is called a strain of ratio k about the X-axis and f is called a strain
of ratio k about the Y-axis. For fixed k, the composite fu is the familiar
dilation about the origin with dilation ratio k and having equations x’ = kx
and y' = ky. With a strain of ratio k about a given line defined analogously
(Exercise 15.8), it follows (Exercise 15.19) that any dilation is the product of
two strains about perpendicular lines.

The strain with equations x’ = 2x and )y’ = y fixes the Y-axis pointwise
and stretches out the plane away from and perpendicular to the Y-axis. See
Figure 15.8 where (b) illustrates the images of the elements shown in (a).
As with similarity theory, the terminology here is not standardized. Each of
the following words has been used for a strain or for a strain with positive
ratio: enlargement, expansion, lengthening, stretch, compression. Seek solace
in the fact that whatever property is used to define the term affine transforma-
tion, the term means the same thing the world over.

Another basic affine transformation is a shear about the X-axis having
equations

{x’ = x + ky,
Y= Y
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(a)

(b)
Figure 15.8

Here the X-axis is fixed pointwise and every point is moved horizontally a
directed distance proportional to its directed distance from the X-axis.
See Figure 15.9 where (b) illustrates the images of the elements shown in (a)
for the case k = 1. We shall see below that a shear has the property of pre-
serving area. An affine transformation that preserves area is said to be

equiaffine.
Strains and shears are basic in that simplifying the equations

x' =a x+ab+Cd ad—bc[’] h
- 2+’ Y+ v +
e x+ab+cd + ad—bc[] K

y= a2+c2y aa2+c2y T

we see that the general linear transformation with equations

x'=ax + by + h,
Yy =cx +dy +k,

withad — be # 0

can be factored into the similarity with equations

x' =ax —cy + h,
Yy =cx +ay+k,

7777 7
ZAL77

(a)

Figure 15.9
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following the strain with equations

x' = x,
, _ad—bc
Y=y
following the shear with equations
v + ab + cd
= X R
a2+t
y = ¥

Theorem 15.13. An affine transformation is the product of a shear, a strain,
and a similarity.

Factoring is hardly ever easy in mathematics. Here you are asked only
to check the factoring given next is correct. First, the shear with equations

{x’ =x+y,

y = ¥,

can be factored into the composite of the similarity with equations
{x’ =[5 = /90201 x + [(5 = 3/5)/200y,
V= [(=5 + 3/9)/201x + [(S — /9)/20] »,

following the strain with equations

{x' = [3 +V/9)21x,

’

y = Y

following the similarity with equations

X = 2+ (1 +/35) ¥
V= —(+5 x+ 2y.

Secondly, the nonidentity shear with equations x' = x + ky and ) = y can
be factored into the strain of ratio k about the Y-axis (x' = kx, y' = y)
following the shear that was just factored above following the strain of ratio
1/k about the Y-axis (x" = x/k, y’ = y). Putting these results together with
the previous theorem, we see that an affine transformation is a product of
strains and similarities. Since a similarity is an isometry following a dilation
about the origin (Theorem 13.7) and since a dilation about the origin is a
product of two strains, then an affine transformation is a product of strains
and isometries. However, isometries are products of reflections, which are
special cases of strains. Thus, affine transformations are products of strains.
We have proved the part of the theorem below that is not in parentheses.
We shall not take the time to prove the part in parentheses; that result is
blatantly stated without proof.



§15.2 Linear Transformations 179

Theorem 15.14. An affine transformation is a product of strains. (An affine
transformation is the product of a strain and a similarity.)

Suppose x' =ax + by + h and y' = cx + dy + k are equations for
affine transformation a. So the determinant ad — bc of « is nonzero. What are
the necessary and sufficient conditions for « to be equiaffine? In other words,
when is area preserved by a? Suppose P, Q, R are noncollinear points with
P = (pl’ Pz), Q = (qla qZ)’ R = (rl’ rZ)’ P = O((P) = (pll’ pll), Q’ = Ol(Q) =
(44, q5), and R’ = a(R) = (r, r3). Recall (Theorem 15.10) that the area
POR of APQR is given by

POR = +[(q, — pi)(r2 — p2) — (q2 — p2)(ry — p1)]/2
and similarly the area P'Q'R’ of AP'Q'R’ is given by
PQ'R = +[(qy — p))ry — P3) — (45 — p)(ri — p1)1/2
Substitution shows that
P'Q'R' = +(ad — bc)PQR.

Thus, under an affine transformation with determinant ¢, area is multiplied
by +t. This more than answers our question about preserving area. Area is
preserved by « when the determinant of o is + 1.

Continuing with the same notation for affine transformation «, we recall
that o is a similarity iff there is a positive number r such that P'Q" = rPQ for
all points P and Q. With substitution, this equation becomes

V@ + g, — p)? + (b + d*)q, — p,)* + 2ab + cd)g, — p1)d2 — P2)
= "\/(‘h - Pl)z + (g, — Pz)z'

This equation can hold for all p,, p,, q,, q; iff a> + ¢* = b*> + d* = r* and
ab + cd = 0. Since a similarity of ratio r is an isometry iff r = 1, we have our
last theorem.

Theorem 15.15. Suppose affine transformation o has equations

S )
Transformation o is equiaffine iff
lad — bc| = 1.
Transformation o is a similarity iff
a*+c2=b>+d*> and ab+cd =0.
Transformation o is an isometry iff

a+ct=b*+d*=1 and ab+ cd = 0.
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§15.3 Exercises

15.1.

15.2.

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

15.9.
15.10.

15.11.

15.12.

If x' = 2x and y’ = y are the equations of transformation «, show « is a collinea-
tion that is not a similarity.

Prove the area of a triangle with vertices (0, 0), (a, b), (c, d) is half the absolute
value of ad — bc.

Show that any given ellipse is the image of the unit circle under some affine
transformation.

If P=(=2,—-1), Q =(l,2), and R = (3, —6), what is the area of APQR?
What are the areas of the images of A PQR under the collineations %, and S, from
the next exercise?

For a given nonzero number k, find all fixed points and fixed lines for the affine
transformations &, and f§, with respective equations

{x' = kx, {x’ =x + ky,

, and ,

y=1J% y = ¥

Show that {«, |k # 0} and {,} form abelian groups, when %, and f3, are defined in
the preceding exercise.

True or False

(a) An affine transformation is a collineation; a collineation is a linear trans-
formation; and a linear transformation is an affine transformation.

(b) An affine transformation is determined once the images of three given points
are known.

(c) If AABC = ADEF, then there is a unique affine transformation « such that
a(4) = D,a(B) = E,and 2(C) = F.

(d) If AABC ~ ADEF, then there is a unique affine transformation « such that
a(A) = D, «(B) = E, and o(C) = F.

(e) If AABC and ADEF are any given triangles, then there is a unique affine
transformation x such that x(AABC) = ADEF.

(f) Strains and shears are equiaffine.

(g) A shear is a product of strains and similarities.

(h) A collineation is a product of strains and similarities.

(1) A collineation is a product of strains and isometries.

(jJ) A dilation is a product of strains; a strain is a product of dilations.

Given nonzero number k and line [, give a definition for the strain of ratio k about
line [.

Finish the proof of Theorem 15.9.

If x"=ax + by + hand )’ = cx + dy + k are the equations of mapping « and
ad — bc = 0, then show « is fiot a collineation since all images are collinear.

Prove or disprove: If linear transformation x has determinant t, then ™' has

determinant t !,

Suppose any affine transformation is the product of a strain and a similarity. Then
show that an affine transformation is a product of two strains about perpendicular
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lines and an isometry. (To see that the perpendicular lines cannot be chosen
arbitrarily, see the next exercise.)

15.13. Show the shear with equations x’ = x + y and y' = y is not the product of
strains about the coordinate axes followed by an isometry.

15.14. Show that the shears do not form a group.
15.15. Prove or disprove: The shears generate the group of affine transformations.
15.16. Prove or disprove: An equiaffine similarity is an isometry.

15.17. Give an example of an equiaffine collineation that is neither an isometry nor a
shear.

15.18. Prove or disprove: An involutory affine transformation is a reflection or a
halfturn.

15.19. Using your definition from Exercise 15.8, show that a dilation is a product of two
strains.

15.20. Find equations for the strain of ratio k about the line with equation Y = mX.
15.21. Show Theorem 15.15 is compatible with Theorem 9.3 and with Theorem 13.15.

15.22. Use Theorems 15.5 and 15.7 to show the affine ratio AP/PB is invariant under an
affine transformation where A, P, B are three collinear points.

15.23. For points P and Q on a line with slope m and for linear transformation «, let P =
(P15 P2), Q@ = (41, 42), P' = a(P), and Q" = «(Q). Then show P'Q" = k,|q, — p,|
where k,, is a constant depending on only m and the coefficients in the equations
for a. Also, use the result to solve the problem in the preceding exercise.

P B’
L) [ )
A
L) L)
Cc’ °
4°
L) [ ]
B C
Figure 15.10

15.24. In Figure 15.10, construct P’ where A, B', C', P’ are the images of A, B, C, P under
a linear transformation.

‘r.

A
AV VA AVA

: QVAV

VAV V‘V
\V {.

.IA ﬂ



Chapter 16

Transformations on Three-space

§16.1 Isometries on Space

This chapter may be read following Chapter 13.

Turning to Euclidean three-space, we abandon all of the technical vo-
cabulary and notation from the previous chapters. The reason for this
drastic action is that we now want to use these words and symbols in the
context of space. So the words and symbols will have new meanings. We
suppose from now on that all points, lines, and planes are in three-space.
Planes are denoted by capital Greek letters. Of course, we do not abandon
all the knowledge from our study of plane collineations. By a careful choice of
words we are able to refer to some of these results. However, to avoid total
confusion, we agree never to use the symbols for the transformations de-
fined below to indicate their old meaning. The definitions needed are given
together for easy reference.

A transformation on three-space is a one-to-one correspondence from the
set of points in space onto itself. A transformation « having the property
that «(l) is a line for every line [ is a collineation. Transformation x is an
isometry if P'Q" = PQ for all points P and Q where P’ = a(P)and Q' = x(Q).
The identity 1 is defined by 1(P) = P for every point P. Transformation « is
an involution iff «* = 1 but o # 1. [sometry « is a symmetry for a set of points
if « fixes that set of points.

If A is a plane, then the reflection o, is the mapping on the points in space
such that g,(P) = P if point P is on A and o,(P) = Q if point P is off A and
plane A is the perpendicular bisector of PQ. A product of an even number of
reflections is even; a product of an odd number of reflections is odd. If planes
I" and A are parallel, then 0,0 is a translation along the common perpen-
dicular lines to planes I" and A. If two planes I and A intersect at line /, then

182
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L 1> )
LT

Figure 16.1

0,01 1s a rotation about axis . Note that the identity is a translation but not
a rotation. The halfturn o, about line [ is the involutory rotation about I.
A screw is the product of a nonidentity translation along a line / and a rotation
about the line /. (A halfturn is sometimes called a line reflection, and a screw
is sometimes called a twist or a glide rotation.) See Figure 16.1.

If I' and A are two parallel planes each perpendicular to plane I1, then
000y is a glide reflection with axis 1. If I and A are two intersecting planes
each perpendicular to plane I1, then oo ,0 is a rotary reflection about the
point common to I', A, and I1. If M is a point, the inversion o,, about M is the
transformation such that a,,(P) = Q for all points P where M is the midpoint
of P and Q. (A rotary reflection is also called a rotatory reflection. To dis-
tinguish among the many meanings of the word “inversion” in geometry,
transformation a,, is sometimes called a central inversion or a point reflection.)

Without looking back, define each of the words: transformation, collinea-
tion, isometry, and symmetry. Now, look back to check your definitions.
Since each plane is the locus of all points equidistant from some two points,
then an isometry must preserve the set of planes in space. Since each line is
the intersection of distinct intersecting planes, then an isometry must be a
collineation. The remainder of the first theorem is immediate.

Theorem 16.1. An isometry is a collineation; an isometry preserves segments,
rays, and planes. The set of all collineations forms a group. The set of all
symmetries for a given set of points forms a group. The set of all isometries
forms a group.

Can you define the reflection 6,? Check with the definition above and
note that a reflection is an involution. We want to show g, is also an isometry.
If A and B are two points, then there is a plane I that contains both A4 and
B and tkl_a)t is perpendicular to plane A. See Figure 16.2. (Plane I' is unique
unless AB L A.) Suppose I' and A intersect at line [. By the definition of a,,
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Figure 16.2

points A" and B’ are also in ' where A" = ,(A) and B’ = g,(B). The re-
striction of o, to the plane I' is just the plane reflection in line /. Hence,
A'B' = AB by our results on plane isometries. Therefore, reflection g, is an
isometry.

Theorem 16.2. A reflection is an involutory isometry. A product of reflections
is an isometry.

The converse of the second statement in the theorem above is our next
goal. Analogous to the theorem that a plane isometry is a product of at most
three plane reflections, we shall show that an isometry here is a product of at
most four reflections. A line having two fixed points under an isometry is
fixed pointwise as each point on the line through the two fixed points is
uniquely determined by its distances from these two points. A plane having
three noncollinear fixed points under an isometry is fixed pointwise as each
point on the plane is uniquely determined by its distances from these three
noncollinear points (cf. Theorem 5.1). So, if an isometry fixes four points
not in one plane, then the isometry fixes pointwise each plane that contains a
side of the tetrahedron having the four fixed points as vertices. Hence, since
each point in space is on a line that intersects the tetrahedron in two points,
then each point is fixed by such an isometry. We have shown an isometry
fixing four points not all in one plane must be the identity. Thus, if « and f
are isometries that send each of the vertices of some tetrahedron to the same
points, then 7~ '« fixes the vertices of the tetrahedron, B~ 'a = 1, and « = f.
We have an analogue of Theorem 5.2.

Theorem 16.3. If « and f§ are isometries such that

a(P) = B(P), a(Q) = B(Q), a(R) = B(R), a(S) = B(S)
for four points P, Q, R, S not all in one plane, then o = f5.



§16.1 Isometries on Space 185

Our goal is still to show that the reflections are building blocks for the
isometries. Suppose isometry « takes points P, Q, R, S not all in one plane to
points P', Q', R, §', respectively. (Note that o is the unique isometry to do so.)
We consider five cases.

Case I: P=P,Q=Q',R=R’,and § = S'. We have considered this case
above. Here « = 1 = 6,0, where A is any plane through P.

Case2: P =P,Q = Q',R = R',but S # §'. Then the plane I containing
P, Q, R is the perpendicular bisector of S§”. (Why?) So, & =o.

Case3: P = P',Q = Q’,but R # R'. Here points P and Q lie on the plane
A that is the perpendicular bisector of RR’. A reflection in A then reduces the
problem to Case 1 or to Case 2 above. So « is a product of at most two
reflections.

Case 4: P = P' but Q # Q'. Then point P lies on the plane Il that is the
perpendicular bisector of QQ’ and a reflection in IT reduces the problem to
one of the cases above. Hence, o is a product of at most three reflections in
planes through P.

Case 5: P # P'. A reflection in the plane that is the perpendicular bisector
of PP’ reduces the problem to one of the four previous cases. Hence, every
isometry is the product of at most four reflections. We have achieved our
initial goal.

Theorem 16.4. An isometry is the product of at most four reflections. An iso-
metry with a fixed point P is the product of at most three reflections in planes
through P. An isometry that fixes two points is a rotation, a reflection, or the
identity. An isometry that fixes three noncollinear points is a reflection or the
identity. An isometry that fixes four nonplanar points is the identity.

Many theorems for space are evident from our study of plane isometries.
Our next theorem lists some of those that follow from our knowledge of
plane translations. Be sure you can define a translation. See Figure 16.3.

A r A(Q

0\0p = 0,0 = 0p;0q

Figure 16.3
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OO = 07O = Op0q

Figure 16.4

Theorem 16.5. If two planes I and A are parallel, then the translation oo
fixes every line that is a common perpendicular to I and A, fixes every plane
that is perpendicular to each of I and A, but fixes no points. The inverse of a
translation is a translation. If the planes T', A, I1 are perpendicular to line |,
then there exists unique planes A and Q such that

OAOp = 050 = 0n0q.

If planes T', A, T1 are perpendicular to line I, then aqo 0y is a reflection in a
plane perpendicular to I. If P and Q are distinct points, then there is a unique
translation taking P to Q, and this translation may be expressed as o,0p
where either one of I or A is an arbitrarily chosen plane perpendicylar tow
and the other is then a uniquely determined plane perpendicular to PQ.

The unique translation taking point P to point Q is denoted by 1, ,.
The next theorem lists some of the results that follow from our knowledge of
plane rotations. Be sure you can define a rotation. See Figure 16.4.

Theorem 16.6. If two planes I' and A intersect at line I, then the rotation
o071 fixes exactly those points that are on |, fixes every plane that is perpen-
dicular to I, and fixes every circle having center on l in such a plane. If planes
I, A, T1 are concurrent at every point on line I, then there are unique planes A
and Q on | such that

OAOp = 050 = Oy 0q.
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If planes T', A, I1 are concurrent at each point on line I, then opo,0r is a
reflection in a plane containing l. A rotation about line | may be expressed as
a,0r where either one of T or A is an arbitrarily chosen plane containing | and
the other is then a uniquely determined plane containing l.

If o is any isometry and I is any plane, then aora ™! is an involutory iso-
metry that fixes every point on plane a(I') and so must be the reflection in
o(I"). This result and our knowledge of plane halfturns lead to the theorem
below. Be sure you can define a halfturn.

Theorem 16.7. If o is any isometry and I is any plane, then

1
aoro” = Oyr)-

If T and A are planes, then o0 = oo, iff T = AorT' L A If I and A are
any planes perpendicular at line I, then 6, = a,0r. If lines p, q, r are perpen-
dicular to plane 1, then 6,0,0, is a halfturn about a line perpendicular to T1
and 0,0,0, = 6,0,0,. If planes T', A, I1 have a common line or a common
perpendicular line, then 60,0 = 0-0,0-

Be sure you can define an inversion. Let I', A, [T be three mutually perpen-
dicular planes concurrent at point M. For any point P different from M,
points P and oo,0r(P) are the endpoints of a diagonal of a rectangle with
center M. See Figure 16.5 where P; = o0, 0(P)but the three planes through
M are not shown to avoid complicating the figure. Hence, g,, = oq0,0r.

Theorem 16.8. The product of the three reflections in any three mutually
perpendicular planes with common point M is the inversion about M.

P,

P,

[¥o.]

Figure 16.5
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0n0a0r = (0 0,00)(0q0r) = dy(dq0r)

Figure 16.6

Be sure you can define a rotary reflection. What are the involutory rotary
reflections ? Suppose plane I is perpendicular to each of distinct intersecting
planes I and A. Then 0,0 = 0,010 and (opo,0p)* = (9,01)%. Since
(o,0r)* = 1iff T = Aor [ L A, thenrotary reflection 6,0 is an involution
iff LA

Theorem 16.9. If I and A are two intersecting planes perpendicular to plane I1,
then rotary reflection a0y is an involution iff T L A.

Combining the two previous theorems, we have the following determina-
tion of the inversions.

Theorem 16.10. T he inversions are the involutory rotary reflections.

A glance at Figure 16.6 and the equations there explains why a rotary
reflection that is not an inversion is sometimes called a rotary inversion.
Specifically, given distinct intersecting but nonperpendicular planes I' and A
each perpendicular to plane IT with M the point common to I', A, I, let Q
be the plane through M that is perpendicular to the intersection of A and I1.
Then the rotary reflection o0, 07 is equal to 6,,(c6q0r) with M on the inter-
section of I' and Q by the equations in the figure. Note that we are back to
using the method of multiplying by the identity in an appropriately useful
form. The method will be used many times below. Now, given point M on the
intersection of distinct planes I and Q, we can define planes A and IT such
that we can read the equations in Figure 16.6 from right to left and obtain the
following theorem that is needed later.

Theorem 16.11. A rotation about a line followed by the inversion about a point
on that line is a reflection or a rotary reflection.

The method of introducing the identity in a useful form and a glance at
Figure 16.7 lead to the following theorem.
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I

050 = (0,0100)(0q0n0r) = 0p0¢

Figure 16.7

Theorem 16.12. A product of two inversions is a translation. Conversely, a
translation is the product of two inversions, where either the first or the second
may be arbitrarily chosen and the other is then uniquely determined.

Figure 16.8 helps to formulate one of the theorems that deal with “twice
the directed distance” or “twice the directed angle.” These are left for the
exercises however. Instead, we consider the product of three inversions.
Givena,,ay,0c,by the previous theorem there is a point P such that .05 =
6p0,4.S0 6c0z0, = 0p = 0p' = 0,4050c. If A, B, C are not collinear, then
the inversion o050 4 fixes the vertex D of parallelogram [(JABCD. Hence, we
must have 6.050,, = 6, since an inversion fixes a unique point.

Theorem 16.13. A product of three inversions is an inversion. If points A, B, C
are not collinear, then ocoy56, = op where (JABCD is a parallelogram. If
A, B, C are points, then 66506, = 0,050.

The proof of the next theorem is left for Exercise 16.1.

Theorem 16.14. The translations form an abelian group.

P

o (P)

poc(P)

Figure 16.8
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A0 = 0,000 = 6,0

Figure 16.9

A glance at the two parts of Figure 16.9 and the equations there gives the
first two parts of the following important theorem.

Theorem 16.15. A translation is the product of two halfturns about parallel
lines, and conversely. A rotation is the product of two halfturns about two inter-
secting lines, and conversely. A screw is the product of two halfturns about two

skew lines, and conversely.

The third part of the theorem above remains to be proved. Be sure you
can define a screw. Given distinct planes I' and A perpendicular to line !
and given distinct planes [T and Q containing line /, let m be the intersection
of I and IT and let n be the intersection of A and Q. See Figure 16.10. Then

n

™~

/

Figure 16.10
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Q

Te,p = Op0p = 0,0 = 6,0, = 0,0, = Op0¢ = Op0p

Figure 16.11

m and n are skew and I1 and A are perpendicular. Hence, (cqop)(0,01) =
0q0,00r = 0,0,. Conversely, if lines m and n are skew, then let I be the
plane through m that is parallel to n, let A be the plane through n that is
parallel to m, let I1 be the plane through m that is perpendicular to A, and let
Q be the plane through n that is perpendicular to I'. Then, ¢,6,, = 6q0,00t
= (0qon)(0,0r), finishing the proof of Theorem 16.15.

The following theorem contains nothing new but does bring several
previous results together. See Figure 16.11.

Theorem 16.16. If point P is the midpoint of CD in plane Q, if lines c, p, d are
perpendicuﬂ to Q at C, P, D, respectively, and if planes T, I, A are perpen-
dicular to CD at C, P, D, respectively, then

TC.D = 0pOp = 0,0 = O'pO'c = OdO'p = 0p0c = O0pO0p.

A figure is a nonempty set of points. Let s and ¢ be figures. Then s is
congruent tot if there is an isometry o such that a(s) = t. Transformation o
fixes s if a(s) = s, and transformation « fixes s pointwise if a(P) = P for
every point P in s. Plane Il is a plane of symmetry for figure s if o fixes s,
line [ is a line of symmetry for figure s if g, fixes s, and point P is a point of
symmetry for figure s if op fixes s.

A figure without a plane of symmetry is said to be chiral. This term was
introduced by Lord Kelvin in his Baltimore Lectures. A figure with a plane of
symmetry is then said to be achiral. Here we wish only to establish the exis-
tence of a chiral figure. In everyday experience, a chiral object is readily at
hand. In fact, your right hand is a chiral object. (Cheir is Greek for hand.)
The reflected image of your right hand looks like a left hand. In general,
if figure s is chiral and t = op(s) for some plane I1, then s and t are called
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Figure 16.12

enantiomorphs of each other. The helical springs in Figure 16.12 are enantio-
morphic, as are the tetrahedra. A left glove is not a right glove but is an
enantiomorph of a right glove. So the image of a right glove under an even
number of reflections is a right glove, and the image of a right glove under an
odd number of reflections is a left glove. Since a left glove (or hand) is not a
right glove (or hand), then it follows that a product of an even number of
reflections is never equal to a product of an odd number of reflections.

Theorem 16.17. No isometry is both even and odd.

From this theorem it follows that an even isometry a with fixed point P
is a product g, 0 of two reflections in planes through P, since any isometry
with fixed point P is a product of at most three reflections in planes through P.
IfA| T,then ' = Aand a = 1. Otherwise, I and A are distinct planes inter-
secting in some line through P and « is a rotation about that line.
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Theorem 16.18. An even isometry with a fixed point P is either the identity or a
rotation about a line through P.

An odd isometry a with fixed point P is either a reflection or a product of
three reflections in planes through P. Then opa is even and fixes point P.
With f§ = opa, we have f is either the identity or a rotation about a line
through P. Hence o = opf, and we have the following consequence of
Theorem 16.11.

Theorem 16.19. An odd isometry with a fixed point is either a reflection or a
rotary reflection.

Be sure you can define a glide reflection. Suppose x is an odd isometry
with no fixed point. Then « must be a product of three reflections in planes
having no point in common. Further, the three factors in the product must
be distinct, as their product is not a reflection (Theorem 16.7). Hence, the
planes are three distinct planes that are not all parallel and that have no
common point. Therefore, the three planes must be perpendicular to some
fourth plane. We now have o = ago, 0 where I', A, I1 are three planes
perpendicular to some plane Q. Since I', A, I are neither all parallel nor all
pass through some line, then from our knowledge of plane glide reflections
(Theorem 8.4) we have the following.

Theorem 16.20. An odd isometry with no fixed point is a glide reflection.
The last two theorems give all the odd isometries.

Theorem 16.21. An odd isometry is a reflection, a glide reflection, or a rotary
reflection.

Suppose isometry « is even and sends points P to point Q with P # Q.
Let " be the perpendicular bisector of PQ. Then aor is odd and fixes Q.
So a0 = 0070, Where intersecting planes A and IT (possibly equal) are
perpendicular to plane Q. There are planes A and E that are perpendicular
to Q such that AL T and oo, = 6z0,. See Figure 16.13. Then, a =
(6q0n0,)or = (0g0z)(00r) and o is the product of two halfturns.

Theorem 16.22. An even isometry is the product of two halfturns.
This theorem together with Theorem 16.15 give the following theorem.
Theorem 16.23. An even isometry is a translation, a rotation, or a screw.

With one more step, which is left for Exercise 16.3, we have The Classifi-
cation Theorem for Isometries on Space.
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Figure 16.13

Theorem 16.24. An isometry is exactly one of the following :

translation,  reflection,
rotation, glide reflection,
screw, rotary reflection.

As so many other theorems in mathematics, the theorem above is another
that might be called Euler's Theorem. (See Section 14.2.) In A History of
Geometrical Methods by J. L. Coolidge, we find that Euler determined the
isometries of space in 1776, while the classification of plane isometries was
given in 1831 by Chasles. Michel Chasles (1793-1880) was a mathematical
historian and French geometer who made many contributions to the study
of projective geometry.

§16.2 Similarities on Space

Our task is clear. We begin with the definitions. If C is a point and r > 0,
then a stretch of ratio r about C is the transformation that fixes C and other-
wise sends point P to point P’ on CP where CP’' = rCP. We allow the identity
to be a stretch. If r > 0, then d., is the stretch about C of ratior and 6., _, =
o¢Oc,,. For s # 0, we call o¢c_, a dilation about C with dilation ratio s. If
dilation ¢ about point P is not an isometry and p is a rotation about a line
through P, then pé is a dilative rotation. The definitions are chosen such that
the rotary reflections are not dilative rotations, since no isometry is a dilative
rotation. If r > 0, then a similarity of ratio r is a transformation « such that
P'Q’ = rPQforall points Pand Q where P’ = a(P)and Q' = «(Q). If similarity
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a is a product of a stretch and an even isometry, then o is direct ; if similarity
a is a product of a stretch and an odd isometry then o is opposite

Let’s put down some things that follow rather quickly from the definitions.
First, the similarities obviously form a group. Then, given a stretch ., and
any line [, the restriction of i, to a plane containing C and ! is just a plane
stretch about C of dilation ratio r. Hence, . ,(I) is a line parallel to /. It follows
that a stretch is a collineation and a similarity. If « is a similarity of ratio r
and P is any point, then «Jp_,, is a similarity of ratio 1 and, hence, is some
isometry . So « = 80, and a similarity is just a stretch about P followed
by an isometry. The rest of the following theorem then follows from the fact
that a stretch changes the size of a glove but not the handedness of the glove.

Theorem 16.25. The similarities form a group. A stretch is a collineation and a
similarity. If o is any similarity of ratio r and P is any point, then there is an
isometry B such that o = fop_ .. A similarity is a collineation that is either
direct or opposite but not both. The composite of two direct similarities or of
two opposite similarities is direct; the composite of a direct similarity and an
opposite similarity (in either order) is opposite. The direct similarities form a

group.

We want to show that a similarity that is not an isometry has a unique
fixed point. The proof uses the plane analogue, Theorem 13.9. Suppose
similarity o has ratio r with r # 1. Then a is not an isometry and cannot have
two fixed points. We want to show « has at least one fixed point. Suppose
a(A) = A" # A. Let s = +rif o is direct; let s = —r if a is opposite. Let Q
be the point on AA such that QA'/QA = 5. Let 6 = 6y ;. Then 6(A) = A4, 9
has similarity ratio », and « and ¢ are either both direct or both opposite.
Hence, x5~ ' is an even isometry that fixes point A". If ad ~ ! is the identity, then
a is a dilation and fixes point Q. If a5~ ! is not the identity, then a6~ ! is a
rotation p about some line [ with A’ on [ (Theorem 16.18). In this case, let I’
be the plane through Q that is perpendicular to . See Figure 16.14. Since
both § and p fix plane T, then a(I') = pd(I') = I'. The restriction of « to the
plane I" induces a plane similarity on I that is not an isometry. So (Theorem
13.9), there is some point S on I" such that a(S) = S.

Theorem 16.26. A similarity without a fixed point is an isometry.

Suppose « is a similarity with fixed point S and similarity ratio r. Let
s = +rif a is direct; let s = —r if « is opposite. Let § = s ;. Then ad ™!
is an even isometry that fixes point S. So either « = § or else ad~ ! = p
where p is a rotation about some line through S. In the second case, « = pd
and « is a dilative rotation when r # 1. This gives The Classification Theorem
Sor Similarities on Space.
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/ A

Al

Figure 16.14

Theorem 16.27. A similarity that is not an isometry is either a dilation or a
dilative rotation.

Thus the similarities of space are the isometries, the dilations, and the
spirals, as the dilative rotations are sometimes called.

§16.3 Exercises

16.1.

16.2.

16.3.

16.4.
16.5.

16.6.

Prove: The translations form an abelian group (Theorem 16.14).
Show that a screw is neither a translation nor a rotation.

Verify the “exactly” in Theorem 16.24.

Prove the last statement in Theorem 16.7.

Prove or disprove: A similarity that is not an isometry is a dilation, a stretch
rotation (a nonidentity stretch about some point followed by a rotation about a
line through that point), or a stretch reflection (a nonidentity stretch about some
point followed by a reflection in a plane through that point).

True or False
(a) Dilation p__, has dilation ratio —2 and similarity ratio +2.
(b) Only 1 is both a translation and a rotation.
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16.7.
16.8.
16.9.

16.10.

16.11.
16.12.

16.13.

16.14.
16.15.
16.16.

16.17.
16.18.
16.19.
16.20.

16.21.
16.22.
16.23.
16.24.

16.25.

(c) A product of four reflections is a product of two reflections.

(d) An isometry with three fixed points is a reflection.

(e) A product of two rotations might be a screw.

(f) A product of two screws might be a rotation.

(g) A screw followed by an inversion is another screw.

(h) There is always a plane perpendicular to each of three given planes with no
common point.

(1) There is a line perpendicular to each of three given planes with no common
point.

(J) A similarity that is not an isometry has a fixed point.

Write out a proof of Theorem 16.11.
Which isometries are involutions? Which similarities are involutions?
Give the Cayley table for (op, o> where point P is on plane [1.

A dilatation is a collineation x such that [ || a(]) for every line I. Which similarities
are dilatations?

Describe o0, when point P is off plane I1.

If xis a similarity, Tis a translation, p is a rotation, and 7 is a screw, then show ato ™!

is a translation, xpx ™~ ! is a rotation, and ano~ ! is a screw.

Prove or disprove: Isometry o0, is a glide reflection iff line [ is parallel to plane I
but off T.

Prove or disprove: Isometry a,0, is a glide reflection iff point P is off line /.
Prove or disprove: A rotation about line ! fixes plane IT iff [ L I1.

List several conjectures about isometries that involve * twice the directed distance”
or “twice a directed angle.”

Prove or disprove: Every isometry is a product of isometries of order 4.
Why does a mirror interchange right and left but not top and bottom?
Show that the product of two dilations is a dilation or a translation.

Find and prove a necessary and sufficient condition for translation t and rotation
p to commute.

Describe the even symmetries of a regular tetrahedron.
Describe the even symmetries of a cube.
Which similarities commute with a given screw?

Find and verify the equations for the inversion about (a, b, ¢) in Cartesian three-
space.

If line [ passes through the two points (0, 0, 0) and (a, b, ), then what are the
equations for ¢,?



Chapter 17

Space and Symmetry

§17.1 The Platonic Solids

Ifa convex polyhedron has v vertices, e edges, and f faces,thenv — e + f = 2.
This simple but elegant theorem is known as Euler’s Formula, even though
Descartes had stated the equation over 100 years before Euler gave the result
in 1752. A polyhedron is convex if all the vertices not on any given face lie on
one side of the plane containing that face. To prove the famous formula,
imagine that all the edges of a convex polyhedron are dikes, exactly one
face contains the raging sea, and all other faces are dry. We break dikes one
at a time until all the faces are inundated, following the rule that a dike is
broken only if this results in the flooding of a face. Now, after this rampage, we
have flooded /' — 1 faces and so destroyed exactly f — 1 dikes. Noticing that
we can walk with dry feet along the remaining dikes from any vertex P to any
other vertex along exactly one path, we conclude there is a one-to-one cor-
respondence between the remaining dikes and the vertices excluding P. Hence,
there remain exactly v — 1 unbroken dikes. So e = (f — 1) + (v — 1) and
we have proved Euler’s Formula.

Theorem 17.1. If a convex polyhedron has v vertices, e edges, and f faces, then
v—e+ f =2

Undoubtedly you have heard there are exactly five regular solids. These

are illustrated in Figure 17.1 and, except for the cube, are named after their

number of faces. A convex solid and the polyhedron that is the surface of that

solid have the same name and serve the same function for our purposes. The
regular tetrahedron, the cube, and the regular octahedron occur naturally in

198
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i A Octahedron

Cube

Tetrahedron i i ;

Dodecahedron Icosahedron

Figure 17.1

common crystals. The regular dodecahedron and the regular icosahedron
cannot occur as crystals. A toy regular dodecahedron has been found near
Padua in Etruscan ruins from 500 B.c. All the regular solids have been
observed as the shapes of certain microscopic marine animals called radio-
larians. The abstract concept of a regular solid is due to Theatetus (419-
369 B.C.), who is also famous for laying the foundation of the study of ir-
rationals that appears in Euclid’s Elements. Theatetus is given credit for the
determination that there are exactly five regular solids. However, the solids
are usually named after his student, colleague, friend, and founder of the
Academy at Athens, Plato.

The symmetry groups of the Platonic solids play an important role in the
determination of all the finite groups of isometries. All such groups will be
found in the next section. As we verify below that there are exactly five
regular polyhedra, we shall also learn a few things about the symmetry groups
of these famous polyhedra.

For our purposes, a polyhedron is regular if the polyhedron is convex, all
its faces are regular p-gons for some fixed p, and the same number q of these
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Table 17.1

p q v e f Platonic Solid

4 6 4 Regular Tetrahedron

6 12 8 Regular Octahedron
12 30 20 Regular Icosahedron

8 12 6 Cube
20 30 12 Regular Dodecahedron

(O IS SRS )
w W wn AW

faces meet at each vertex. So p > 2 and g > 2. We suppose we have such a
regular polyhedron with v vertices, ¢ edges, and f faces. Since each edge is
shared by two faces and also contains two vertices, then pf and qv both give
twice the number of edges. So, qv = 2¢ = pf, and, by Euler’s Formula,

2=v—e+ f=v—(q)/2+ (qu)/p
= [2p + 29 — pql(v/2p)
=[4—-(p —2)(q — 2)1(v/2p).

Therefore, we have

4p qu qu
v T ra— e=, f P and (p—2)(q —2) <4
These first three equations tell us that v, e, f are determined once p and q are
known. It follows that a given p and g determine at most one regular solid. Since
p and q are integers greater than 2, then the inequality is very easily solved.
There are exactly five solutions for p and q to the inequality, and these are
given in the first two columns of Table 17.1, along with corresponding values
for v, e, f.

We have shown there are at most five regular polyhedra. These are given
by the rows of Table 17.1. We also need to argue that there exist polyhedra
satisfying the conditions demanded by these solutions p and g. Do twelve
congruent regular pentagons really fit together as in the figure to form the
regular dodecahedron or do they miss by a small amount not discernible in
the picture? A similar question might be posed for the other proposed poly-
hedra. The easiest way out of this problem is to produce the polyhedra in
coordinate geometry. By the distance formula, the points

1,1, 1), 1, -1, —-1), (-1,1, -1, (-1, -1L1

are seen to be the four vertices of a regular tetrahedron with edges of length
\/ 2, and points

are seen to be the eight vertices of a cube. See Figure 17.2a. Since we probably
did not doubt the existence of these particular two polyhedra, it is interesting
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(a)

Figure 17.2

to note that the vertices of the tetrahedron are among those of the cube and
that every symmetry of the tetrahedron is also a symmetry of the cube. Thus,
the symmetry group of a cube contains the symmetry group of a tetrahedron.
The polyhedron formed by joining the centers of adjacent faces of the cube
has the six vertices

(£1,0,0), (0, +£1,0), (0,0, £1)

and is easily seen to be a regular octahedron. See Figure 17.2b. So a regular
octahedron does exist and every symmetry of this octahedron is a symmetry
of the cube. A polyhedron with edges obtained by joining the centers of
adjacent faces of a given regular polyhedron is called the dual of the given
polyhedron. The dual of a tetrahedron is a tetrahedron. However, not only is
the regular octahedron the dual of the cube, but the dual of the regular
octahedron is another cube. See Figure 17.2b again. This means that the cube
and the regular octahedron have the same symmetry group.

Looking at Figure 17.1 again, we see that if either the regular icosahedron
or the regular dodecahedron exists then both must exist as each would have
the other as a dual. Further, if such polyhedra do exist, then it follows that
they must have the same symmetry group. Let g be the positive number such
that g2 = g + 1. We claim the points

(£1,0, £g), (0, £g, £1), (£g, £1,0)
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(-1,0,-g) / \ (1,0,-8)
0.8-1)  (0,-8-1)

Figure 17.3

are the twelve vertices of a regular icosahedron with edge of length 2. See
Figure 17.3. Because this set of twelve vertices is symmetric with respect to
each of the three planes containing two of the coordinate axes, we need check
only the lengths of the six edges indicated by a bar in the figure. This is easily
done using the distance formula. The vertices of the dual of the icosahedron
above have coordinates that, when multiplied by 3/¢ to avoid fractions, give

0, £1, +¢%), (g% 0, £1), (1, £4%0), (+g, £g, +9)

as the twenty vertices of a regular dodecahedron. (Note 2g + 1 = g?g since
g?> = g + 1.) See Figure 17.4. Vertices (+g, +g, +g) of a cube are among
those of the regular dodecahedron, but not every symmetry of this cube is a
symmetry of the dodecahedron. However, those symmetries of a regular
tetrahedron inscribed in this cube as in Figure 17.2 are symmetries of both
the circumscribed cube and the circumscribed regular dodecahedron.

Let’s recapitulate. There are exactly five regular polyhedra; these are the
surfaces of the Platonic solids of Table 17.1. The vertices of a regular tetra-
hedron are among those of a cube, and the symmetry group of this cube

=N
R

V

Figure 17.4
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contains the symmetry group of the regular tetrahedron. Since cubes and
regular octahedra are dual to each other, the cube and the regular octa-
hedron have the same symmetry group. The vertices of a regular tetrahedron
are among those of a regular dodecahedron, and the symmetry group of this
dodecahedron contains the symmetry group of the tetrahedron. Since the
regulardodecahedron and theregular icosahedron are dual to each other, then
the regular dodecahedron and the regular icosahedron have the same sym-
metry group. Our results are summarized in Theatetus’ Theorem.

Theorem 17.2. There are exactly five regular polyhedra. The symmetry group of
a cube is the symmetry group of a reqular octahedron. The symmetry group of a
regular dodecahedron is the symmetry group of a regular icosahedron. The
symmetry group of a regular tetrahedron is contained in both the symmetry
group of a regular octahedron and the symmetry group of a regular icosahedron.

Each of the Platonic solids can be inscribed in a sphere. Any vertex V of a
Platonic solid can be brought to different vertex V' by a symmetry of the
sphere that is a rotation about the axis of the sphere that is perpendicular to a
plane containing V, V’, and the center of the sphere. Each of the Platonic
solids also has a plane of symmetry, and so the full group of symmetries of
each Platonic solid contains odd isometries. However, we wish to introduce
at this time only the subgroups of even isometries for the Platonic solids.
The group of all even isometries that fix a regular tetrahedron is called a
tetrahedral group and is denoted by T; the group of all even isometries that
fix a regular octahedron (or cube) is called an octahedral group and is denoted
by O; the group of all even isometries that fix a regular icosahedron (or regular
dodecahedron) is called an icosahedral group and is denoted by I; and by the
last part of Theatetus’ Theorem we may suppose that I contains T and that O
contains T. Again, note that T, O, and I are not the symmetry groups of the
Platonic solids since these groups contain no odd isometries. With g and v
as in Table 17.1, we can compute the orders of these three groups at once. Let
V; and V, be adjacent vertices of one of the Platonic solids. Once the images
of V; and V, are determined then the images of all vertices are determined, as
the identity is the only even isometry that fixes each of two adjacent vertices.
By a rotation or the identity, vertex V; can be made to coincide with any of the
v vertices of the solid. However, V, must then go to one of the g vertices that
are adjacent to that one and this too can be accomplished by a rotation or the
identity. Since the images of V, and V, determine the images of all vertices,
we see that the group of all even isometries fixing the solid has order vgq.

Theorem 17.3. Groups T, O, and I have orders 12, 24, and 60, respectively.
Group [ contains group T, and group O contains group T.

Two vertices, two edges, or two faces of a polyhedron are said to be
equivalent if there is a symmetry of the polyhedron that takes one onto the
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Figure 17.5

other. The argument above showed that all the vertices and all the edges of a
Platonic solid are respectively equivalent. Since each edge of a Platonic solid
lies on a plane of symmetry, it follows that all the faces of a Platonic solid are
also equivalent. Conversely, if all the vertices, all the edges, and all the faces
of a polyhedron are respectively equivalent, then it can be shown that each
vertex is surrounded by the same number of regular polygonal faces. The
following theorem, which is not used later, then gives an alternative character-
ization for the Platonic solids.

Theorem 17.4. A convex polyhedron is reqular iff the polyhedron has equivalent
vertices, equivalent edges, and equivalent faces.

Let’s describe the even symmetries of a cube. Figure 17.5 will help. First,
about each of the three axes that contain centers of opposite faces there are
rotations of 90°, 180°, and 270°. This gives nine rotations. Secondly, about
each of the four diagonals there are rotations of 120° and 240°. This gives
eight more rotations. (Many people are surprised to realize that a cube has a
three-fold symmetry. This is probably because we seldom visualize the cube
from the perspective given in Figure 17.1.) Also, there are halfturns about each
of the six lines through the midpoints of opposite edges. This gives six addi-
tional rotations. Together with the identity we now have a total of twenty-
four even isometries and should stop looking for more (Theorem 17.3).

Three-dimensional models are almost a necessity for studying many of the
more complicated polyhedra. The paperback Mathematical Models by
H. M. Cundy and A. P. Rollett is an excellent guide for building such models.
We cannot resist describing the construction of a model of a regular dode-
cahedron that was given by the eminent Polish mathematician Hugo Steinhaus
in his classic Mathematical Snapshots. Cut two enlarged copies of Figure 17.6
from poster board. (Use a protractor to help construct the pentagons.) Crease

Figure 17.6
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Figure 17.7

each copy along the edges of the inner pentagon. Place the two copies flat
against each other with the creases outside and with one copy rotated 36° with
respect to the other. Then, weave a rubber band alternately above and
beneath the corners of the double star, holding the double star flat with one
hand. A perfect model of the regular dodecahedron will pop up when you
lift your hand if the rubber band is just right. Try it.

Although we have no intention of making a thorough study of polyhedra,
we shall now look at several more polyhedra in order to provide examples and
exercises for the discussion on finite symmetry groups. All six faces of the
rhombohedron in Figure 17.7a are rhombi and all these faces are congruent.
Copies of this polyhedron can be stacked together to fill all of space without
leaving any gaps. This is what we mean when we say a polyhedron tessellates
space. Any polygon can be the base of a pyramid. A bipyramid is a pyramid
together with its image under the reflection in the plane containing its base.
The bipyramid in Figure 17.7b is formed by two regular tetrahedra. For this
bipyramid, it is easy to see that the faces are equivalent. Therefore, the Platonic
solids are not the only polyhedra having all faces regular polygons and all
faces congruent.

Among the pyramids with a triangular base, the most interesting are the
disphenoids. See Figure 17.8. These are formed by folding an acute triangle
along the segments joining the midpoints of the sides to have the vertices of
the acute triangle coincide at the apex of the pyramid. Obviously, the four
faces of a disphenoid are congruent. Models can be quickly made with paper,

A,B,C

Figure 17.8
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Figure 17.9

scissors, and Scotch tape. You should make two such models: a chiral model
based on a scalene triangle and an achiral model based on an isosceles
triangle. With these models it is easy to see that the faces of a disphenoid are
equivalent and the vertices of a disphenoid are equivalent. The edges of a
disphenoid are equivalent iff the original triangle is equilateral, in which case
the disphenoid is a Platonic solid.

Any polygon can be the base of a prism. The sides of a prism are rectangles;
by proper selection of the height so that the rectangles are squares, a prism
can have faces that are all regular polygons. In case the base is also a square,
the prism is a cube. Note that a prism with regular n-gon as base has a point of
symmetry iff n is even. The vertices of a prism with a regular polygon as base
are equivalent. An antiprism is formed by twisting the top of a prism with
regular n-gon as base through an angle of (180/n)° and forming new sides that
are triangular. By proper selection of the height so that the sides are all
equilateral triangles, an antiprism can have faces that are all regular poly-
gons. In case the base is also an equilateral triangle, the antiprism is a regular
octahedron. (Hold Figure 17.1 at an angle.) In Figure 17.9 the antiprism with
a square base has triangular sides that are equilateral. Note that an anti-
prism with regular n-gon as base has a point of symmetry iff n is odd. The
vertices of an antiprism with a regular polygon as base are equivalent. Prisms
and antiprisms will be used extensively in the next section.

In addition to the five Platonic solids and certain obvious infinite families
of prisms and antiprisms just described, it can be shown that there are exactly
thirteen convex polyhedra having equivalent vertices and congruent edges.
These are called the Archimedean solids. The faces of an Archimedean solid are
regular polygons. These solids may be denoted by giving the number of the
sides of the faces in cyclic order about any one vertex: 3-62, 3-82 4.6%
3-4% 4-6-8,3-4% 33.4 3.10% (3-5)2 5-6% 4-6-10,3-4-5-4, and
3*.5. For example, the truncated octahedron 4-6* has a square and two
regular hexagons surrounding each vertex. If we truncate each vertex of a
regular octahedron so that the original triangular faces become regular
hexagons (Figure 17.10a), the resulting solid is the truncated octahedron
(Figure 17.10b). Clearly the edges of the truncated octahedron are not all
equivalent. One of the most interesting things about the truncated octahedron
is that the polyhedron tessellates space.
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Figure 17.10

The vertex figure at vertex A of a polygon is the segment joining the mid-
points of the two sides of the polygon that contain A; the vertex figure at
vertex A of a polyhedron is the union of the vertex figures at 4 of all the faces
of the polyhedron that contain A. Although in general a vertex figure of a
polyhedron will not lie in one plane, vertex figures are more convenient to
work with than solid angles. The vertex figure at each vertex of a cube is a
triangle. See Figure 17.11a. The polyhedron whose set of edges is the union of
the eight vertex figures of a cube is a cuboctahedron. This is the Archimedean
solid (3 - 4)%, where each vertex is surrounded in cyclic order by a triangle, a
square, a second triangle, and a second square. The convex solid with vertices

O, £1, £1), (£1,0,£1), (£1,£1,0)

is a cuboctahedron. This Archimedean solid not only has congruent edges but
equivalent edges as well. Our next polyhedron is the “Archimedean dual” of

(b)

Figure 17.11
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Figure 17.12

the cuboctahedron. (We shall not pause to define the concept of the Archime-
dean dual of an Archimedean solid.) The easiest approach to this non-
Archimedean solid is to first visualize space tessellated with cubes that
are alternately colored red and black —think of an infinite three-dimensions
checker board. Now, each of the red cubes consists of six square-based
pyramids having the center of the red cube as common vertex and one face of
the red cube as base. The solid formed by a black cube together with the six
adjacent red pyramids, one from each of six different adjacent red cubes, is
called a rhombic dodecahedron. See Figure 17.11b. The twelve faces of the
rhombic dodecahedron are rhombi. Further, these faces are equivalent. From
our method of construction, it is clear that the rhombic dodecahedron
tessellates space.

Folding the templet in Figure 17.12 into a convex polyhedron, we obtain
the rhombicuboctahedron in Figure 17.13a. The rhombicuboctahedron is the
Archimedean solid 3 - 4°. Each vertex is surrounded by an equilateral triangle
and three squares. Now, giving the roof of the rhombicuboctahedron a twist
of 45°, we have Sommerville’s solid. See Figure 17.13b. Each vertex of Sommer-
ville’s solid is also surrounded by an equilateral triangle and three squares.
Sommerville’s solid, which is also called the pseudo-rhombicuboctahedron or

(a) (b)
Figure 17.13
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Figure 17.14

the elongated square gyrobicupola, was discovered by the English mathe-
matician, D. M. Y. Sommerville in 1904. Sommerville’s solid is not an Archi-
medean solid, although all of its faces are regular polygons and all the vertex
figures are congruent.

The Archimedean solid 3* - 4 is called the snub cube and the Archimedean
solid 3* - 5 is called the snub dodecahedron. These are perhaps the most inter-
esting of the Archimedean solids because each is chiral. The templet in
Figure 17.14a can be folded to make the snub cube shown in Figure 17.14b.
By folding the templet “the other way,” which in essence turns the templet
over, we obtain the enantiomorph of the snub cube in Figure 17.14b. In
Figure 17.15a, this enantiomorph is shown with a cube in position such that
each of the square faces of the snub cube lies in a face of the cube. The coplanar
square faces of the cube and snub cube have the same center but their edges
are not parallel. The Archimedean solids are studied in Solid Geometry by
L. Lines, where it is shown that the relative position of the coplanar squares is
given in Figure 17.15b, with the cube having edge of length 2, ¢ = 2b — 1,

N

Ve e — - = =

b — = — — — = —

N |- - -

(b)
Figure 17.15
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Figure 17.16

and b is the real root of the equation x* + x* + x — | = 0. (An approxima-
tion for b is 0.544.) A regular dodecahedron can be placed relative to a given
snub dodecahedron such that each of the twelve pentagonal faces of the snub
dodecahedron lies in a face of the regular dodecahedron.

The fact that the sum of the measures of the angles of a spherical triangle is
greater than 180 is needed in the next section. We shall finish this section by
proving this lemma. A spherical triangle has sides that are three minor arcs of
great circles on a sphere. Recall that a great circle is the intersection of the
sphere with a plane through the center of the sphere. We suppose we have a
spherical triangle with vertices 4, B, C. Let A" and B’ be the antipodal points
corresponding to A and B respectively. The great circle containing A and B
passes through A’ and B’ and divides the sphere into two hemispheres. Let
X, u, v, w be the areas in the hemisphere containing C of the regions indicated
in Figure 17.16. The hemisphere not containing C has regions that are con-
gruent to those we see in the figure. Let s be the area of the sphere. (We needn’t
know s = 4nr?) Then m L A/360 = (x + u)/s. This gives the first of the
similarly derived equations

x + u = (mL A)(s/360),
x + v = (mL B)(s/360),
x + w = (mL C)(s/360).

Since x + u' + v + w = s/2, adding the three equations above, we get the
single equation

2x =(mL A+ mLB+ mLC — 180)(s/360).
Since x > 0, we have the desired result
mlLA+mlLB+mlC > 180.

Theorem 17.5. The sum of the measures of the angles of a spherical triangle is
greater than 180.



§17.2 Finite Symmetry Groups on Space 211

§17.2 Finite Symmetry Groups on Space

The determination of the finite groups of isometries on space was accomplished
in 1830 by the mineralogist Johann Friedrich Christian Hessel (1796-1872).
This work received no recognition among his contemporaries and remained
almost unknown until republished in 1897. The same determination was
made independently, more elegantly, but later by Auguste Bravais (1811-
1863), who made notable contributions to botany among his many scientific
accomplishments. This section is devoted to finding all the finite groups of
isometries. We begin by looking for all the finite groups that contain only
even isometries. Since each of a nonidentity translation and a screw has
infinite order, such a group can contain only rotations and the identity. Any
group containing only rotations and the identity is called a rotation group.
For example, all the rotations with axes concurrent at point C together with
the identity form a rotation group. This follows from the fact that the product
of two such rotations and the inverse of such a rotation are even and fix C and
the fact that the only even isometries with a fixed point C are the identity and
the rotations with axes through C. At the other extreme, the group consisting
of only the identity is also called a rotation group.

A finite isometry group G is sometimes called point group because, as we
shall see, there is always a point C fixed by every member of G. So the axes of
all rotations in G are then concurrent at C. In order to prove the existence of
such a point C, we first assume G is a rotation group containing rotations a
and f with distinct parallel axes m and n, and we seek a contradiction. (We
know fa is a rotation or a translation from our results on plane isometries.)
Let IT be the plane containing m and n. Then there are planes I' and A such
that « = oo and f = g,0. See Figure 17.17a. Since I', A, IT have no
common point, then g0, 0y is a glide reflection. Thus (60, 01)? is a non-
identity translation and consequently not in G. However, if  and f are both
in group G, then B~ 'a~ ! Ba must be in G. The desired contradiction follows
from the equation f~'a~!fa = (6no,0r)®. Seeking another contradiction

U Q

(a) (b)
Figure 17.17
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we now assume rotation group G contains rotations « and § with axes m and
n, respectively, that are skew. Supposed rotation fo must fix some point P,
whichisoffboth mand n. With Q = a(P), the axis m of a is on the perpendicular
bisector of PQ. See Figure 17.17b. Since f(Q) = P, then the axis n of f is on
the perpendicular bisector of PQ. Hence, we have the desired contradiction
that m and n are coplanar. The argument shows that the product of rotations
o and f with skew axes m and n, respectively, cannot be a rotation. In passing,
it is not too difficult to see that fo cannot be a translation either. Since a
rotation fixes its axis, then fa cannot be a translation unless m || f(m) and
a” '(n) | n, which requires that m and n be perpendicular and that « and f3 are
both halfturns. However, even in this case fu is a screw where the rotation isa
halfturn about the common perpendicular to m and n. Somewhat by seren-
dipity, we have the following.

Theorem 17.6. If rotations o and § have skew axes, then Po is a screw.

We have shown two axes of the rotations in a rotation group can be neither
parallel nor skew. It may seem that we have finished the proof that all axes are
concurrent. We have not. What we have shown is that any two axes intersect.
It is necessary to show that any three axes are concurrent to be sure that all
the axes are concurrent. However, if «, f5, y are three rotations with axes that
intersect in pairs but are not concurrent, then yf is a screw. The argument for
this (Exercise 17.2) follows from Theorem 17.6 and Figure 17.18. We have
then proved the following.

Theorem 17.7. The axes of the rotations in a rotation group are concurrent.

Since ag,0ra ! = ag 0 'agra ! = 0,40, for any planes I'and A and
any isometry a, then it follows that the conjugate apa™" of a rotation p of
order n with axis [ is a rotation of order n with axis a(/). In particular, since a
and p in a group implies apa ! is in the group, then the images of an axis of
rotation of order n under the elements of a symmetry group are axes of rota-
tion of order n in the group. This is important enough to mention as a theorem.

Figure 17.18
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Theorem 17.8. If o and p are in isometry group G where p is a rotation of order n
with axis I, then G contains a rotation of order n with axis o(l).

Since the axes of the rotations in a rotation group H are concurrent, there is
a point fixed by all the rotations in H. If there are rotations in H with distinct
axes, then this point is uniquely determined as the point of concurrency of all
the axes of the rotations. If all the rotations have the same axis /, then every
point on /s fixed by all the rotations in H. If H contains only the identity, then
every point is fixed. Group G fixes point C if every isometry in G fixes C. So a
rotation group fixes a point. We wish to show below that every finite isometry
group G has a fixed point. By the remarks above, we need consider only finite
groups G containing odd isometries.

Suppose finite isometry group G contains an odd isometry f. Half the
elements in G are then even isometries and half the elements in G are odd
isometries. Since G is finite, the even isometries form a rotation subgroup H.
The odd isometries are the composites of the elements in H followed by S.
Since a glide reflection has infinite order, then odd isometry § must be a
reflection or a rotary reflection. Since a reflection fixes all the points on a plane
and a rotary reflection has a unique fixed point, if H = {1}, then G = {1, 8}
and G has a fixed point. Suppose next that H has rotations and all the rota-
tions have the same axis . If = g7, then I1 must intersect / at some point C as
otherwise | and op(l) would be parallel axes of rotation in finite rotation
group H, a contradiction. If § is a rotary reflection, then f must fix /, the only
axis of rotation, and so the fixed point C of f must lie on I. In either case, since
C is fixed by  and by each element in H, then C is fixed by each element in G.
Finally, suppose that H has rotations with distinct axes concurrent at point C.
Since f§ permutes the axes of rotation, then  must fix the point of concurrency
of these axes. Again, since f§ and the elements in H fix C, then all the elements
in G fix C.

Theorem 17.9. A rotation group has a fixed point. A finite group of isometries
has a fixed point.

The finite groups of plane isometries can be interpreted as coming from
finite rotation groups. A nonidentity plane rotation about point P in a given
plane can be interpreted as the restriction of a rotation (on space) with axis
perpendicular to the given plane at P. With this in mind we now let C, denote
the cyclic group generated by a rotation of order n and define C, to be the
group containing only the identity. A plane reflection with axis [ in a given
plane can be interpreted as the restriction to the given plane of the halfturn
(on space) about line I. That is, the rotation of 180° about line / has the same
effect on a plane IT through [ as the plane reflection in [ on I1. With this in
mind, we now let D, denote the group generated by a rotation p of order n and
a halfturn ¢ when the axes of p and ¢ are perpendicular. Group D, has order
2n and contains n halfturns about axes that are perpendicular to the axis of p
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at a common point and that form angles of (360/2n)° with each other. Rota-
tion group C, is called a cyclic group, and notation group D, is called a
dihedral group, where the latter term designates any group generated by
distinct elements o and p where p has finite order and both ¢ and po are
involutions.

Since the identity is not a rotation, you might have noticed the dihedral
group of two elements from the plane isometries did not get carried up to a
group D, on space. Such a designation would have been superfluous anyway
since the group would contain exactly the identity and one halfturn and,
hence, would be a group C,. In classifying groups, if lines [ and m are distinct,
we identify both groups {1, ¢} and {1, g,,} because there is an isometry taking
I'to m. To be very formal, a geometer identifies groups G and H if the elements
of one are the conjugates of the elements of the other by some fixed isometry.
Of course, groups G and H are called conjugate groups in this case. A geo-
meter does not identify {1, o,} and {1, op} just because each is generated by an
involution. Such an identification is of interest to those studying abstract
algebra but not to us.

Groups C, and D, are rotation groups and so contain only even isometries.
This phenomenon may surprise you. You should be able to see that a plane
glide reflection is also the restriction to the plane of an even isometry on space,
namely a screw where the rotation is of 180°. “Clockwise” and “counter-
clockwise” are meaningless terms when applied to a plane in space without
some particular reference system. This phenomenon carries forward to higher
dimensions. A reflection on space is the restriction of a rotation in four-space.
Transported into four-space, you would have to be careful not to drop your
left shoe carelessly; your left shoe might get rotated and leave you with two
right shoes.

The last sentence gives cause for a slight digression concerning chirality.
In 1848 Louis Pasteur discovered that certain molecules exist in distinct right-
handed and left-handed optically active forms depending on whether or not
the molecules were from natural sources. This discovery has had far reaching
consequences. We now know that although most compounds involved in
fundamental life processes are chiral only one of the two enantiomorphic
forms occurs in living organisms on Earth. Right-handed amino acids found
in meteorites are known to be extraterrestrial because all amino acids originat-
ing on Earth are left-handed. All helices of protein and nucleic acids formed on
this planet are right-handed. In four-space you would have to be careful your
food didn’t get rotated and become useless to you .The inorganic enantio-
morphic forms of chiral substances on Earth are always found in equal
proportions. Before 1957, physicists assumed there was no preference for one
handedness over the other in the basic laws of physics. The contradiction of
this assumption, which is called the “fall of parity,” resulted from the cele-
brated work of Yang and Lee. In that the antinutrino is presumably the
enantiomorphic form of the nutrino, the physicists have the first analogues on
the particle level of Pasteur’s enantiomorphic form of the tartaric acid found a
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(a) (b)
Figure 17.19

little over 100 years before in fermenting grapes. The existence and implica-
tions of chirality in space, time, and the elementary forces are at the forefront
of modern research in physics. If antimatter is indeed the enantiomorphic
form of matter, then the inconvenience of the two right shoes in the last
paragraph is obliterated along with everything near the shoes as they annihi-
late each other. Apparently, having four dimensions of space would be
hazardous to one’s health.

Prisms and antiprisms, usually with “roofs” added to one or both bases,
can be used to give polyhedra having certain symmetry groups. Figure 17.19a
illustrates a roof that could be added when the base is a square. For our
purposes, the essential difference between prisms and antiprisms based on
regular n-gons is the following. For odd n the antiprisms have a point of sym-
metry but the prisms do not; for even n, the prisms have a point of symmetry
but the antiprisms do not. The figures for these polyhedra are invariably too
complicated to see what is going on, however. Therefore, these polyhedra are
replaced in our figures by their circumscribed cylinders with added nodes
corresponding to the vertices. The triangular prism and triangular antiprism
are thus represented in Figure 17.19b. Further, the roof in Figure 17.19a will
be represented by four arrows. For example, models having symmetry group
C, or D, are illustrated in Figure 17.20 for n = 3 and n = 4.

C,.C,,C;,...and D,,D;,D,, ...arethefinite rotation groups we have so
far. Are there more? The rotation groups of the Platonic solids have orders
12,24, and 60, but none of these groups has a rotation of order greater than 5.
Hence, none of these rotation groups is represented in the two lists above. In
searching for all the finite rotation groups G, we shall consider three cases:
(1) Group G contains only the identity and halfturns, (2) All the rotations in
G of order greater than 2 have the same axis, and (3) Group G contains
rotations of order greater than 2 with distinct axes.

The product ¢,0,, of two halfturns is a halfturn iff lines m and n are
perpendicular. Hence, a rotation group containing only the identity and
halfturns must have exactly 0, 1, or 3 halfturns. Therefore, a rotation group
containing only the identity and halfturns is one of the cyclic groups C, or C,
or else the dihedral group D, . Group D, consists of the identity and the three
halfturns about three mutually perpendicular axes. Case 1 has provided no
new finite rotation groups.
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Figure 17.20

Next, suppose finite rotation group G contains rotations of order greater
than 2 and that all these rotations have the same axis . Since any rotationin G
must fix /, the only possibility for rotations with axes different from [ are half-
turns about lines perpendicular to I. These perpendiculars must be concurrent
since the group is finite. Therefore, if all the rotations of order greater than 2
in a finite rotation group have the same axis, the group is either C, or D,,. Case
2 has provided no new finite rotation groups.

Since there is a point C such that each rotation in finite rotation group
fixes C, the rotationsin G are determined by their restriction to the unit sphere
with center C. Each rotation in G has an axis that contains a diameter of the
sphere and effects a rotation on the sphere about the points of intersection of
the axis and the sphere. These points are called poles of the rotation. (Of
course, if the rotation is viewed as clockwise about one pole, then the same
rotation is viewed as counterclockwise about the antipodal pole.) Using the
sphere helps in considering our third and last case, when G contains at least
two rotations of order greater than 2 and with distinct axes. Since there are
only a finite number of poles, we may suppose points P and Q are two nearest
poles for rotations of order greater than 2. Let « and B in G generate the
rotations in G with axes CP and CQ, respectively. Suppose « and f have orders
p and g, respectively. So p > 3 and g > 3. Then Ba is a rotation in G, say of
order r. See Figure 17.21a. A pole R of fa can be picked such that: the measure
of the dihedral angle from the plane containing C, P, R to the plane containing
C, P, Q has measure 360/2p; the measure of the dihedral angle from the plane
containing C, P, Q to the plane containing C, P, R has measure 360/2q; and
the measure of the dihedral angle from the plane containing C, P, R to the
plane containing C, Q, R has measure 360/2r. Since these dihedral angles have
the same angle measure as the angles of the spherical triangle with vertices
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P, Q, R, then (Theorem 17.5) the sum of their measures is greater than 180.
Hence,

1 1 1

- +-+->1

p 49 r
Since (1/p) + (1/g) isat most 2/3,thenr < 3.Sor = 2.Sincer = 2and q > 2,
then R is closer to P than Q is. Also, since r = 2, then (1/p) + (1/q) > 1/2 or,
equivalently, (p — 2)(q — 2) < 4. We have five solutions:

N p=349=3;
2 p=3q9=4
(3)p=3,q=5;
(4)P=4,¢1=3;
5) p=549=3

Now, P is the center of a spher@l regular p-gon with vertices the images of Q
under the rotations with axis CP. See Figure 17.21b. The rotations about Q
move this p-gon to a set of g such p-gons surrounding Q, since P and Q are
nearest poles of rotations of order greater than 2. Further, rotations of the same
nature give a set of p-gons fitting together to cover the sphere. In other words,
the images of Q form the vertices of a Platonic solid inscribed in the sphere.
Similarly the images of P form the vertices of a dual Platonic solid inscribed
in the sphere. There is no more room for rotations of order greater than 2 since
P and Q are nearest poles of rotations of order greater than 2. The five solu-
tions above do have realizations represented by the five Platonic solids. The
images of CR are the axes of halfturns in G. We see that we have at least the
rotation groups of the Platonic solids. Can there be more halfturns in G?
Since poles P and Q are closest for rotations of order greater than 2, the only
possibility for adding the pole of a halfturn would require a pole midway on
the sphere between P and Q. However, <s_u»ch a halfturn composed with o
would give a rotation of order 4 about CR. Then R would be a pole of a
rotation of order greater than 2 and nearer to P than Q is, a contradiction.
There can be no more halfturns. Case 3 has provided only the groups T, O, and
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Figure 17.22

I to add to the cyclic groups C, and the dihedral groups D,,. We have obtained
all the finite rotation groups.

Theorem 17.10. A finite rotation group on space is one of

C,,Cy,Cy,... Dy,D3,D4,... T,0,I

Wire models having full symmetry group T, O, or I can be found by adding
elements to the faces of the tetrahedron, the octahedron, and the icosahedron.
These elements break any reflection or inversive symmetry but maintain all
rotational symmetries. Each of these polyhedra has faces that are equilateral
triangles, each triangular face is to be replaced by one having symmetry
group C; such as Figure 17.22a. Another replacement that provides a wire
model that “hangs together” is shown drawn on the faces of a solid octa-
hedron in Figure 17.22b. You can see how you might add roofs on each of the
trapezoids in the figure to give a polyhedron having full symmetry group O.

Now that we have all the finite groups of even isometries, we can begin to
look for all the finite groups of isometries. We henceforth suppose G is a finite
group of isometries containing an odd isometry. We may suppose (Theorem
17.9) that G fixes point C. Our search will entail two cases, distinguished by
the presence or absence of g in G. Half the elements in G are even and half the
elements are odd. The even elements form a finite rotation group H. We have
just determined all the possibilities for H. If G contains o, then the odd iso-
metries in G are the products of the elements in H with o.. Conversely, if H is
arotation group withelementsa, a5, ..., &, fixing C, then these together with
odd isometries 6¢cay, dcas, . . . , Gca, form a set of 2k isometries denoted by H.
We claim H is a group. Since the axis of each rotation in H passes through C,
then o commutes with each «;. So

ai(JCaj) = O'C(aiflj), (aCai)aj = GC(aiaj)a (Ucai)(ac%) = o5,
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Figure 17.23

D,

and H has the closure property. Also, (6co;) ! = o 'oc! = oco; ! and H
has the inverse property. Hence, for each rotation group H we have a new
group H. In addition to the rotation groups, we can now add

C,,C,,Cy,... D,,D;,D,,... T,0,1
to our list of finite groups of isometries.

Models for C, and D, are illustrated in Figure 17.23. To obtain these
start with the antiprism models from Figure 17.20 if n is odd but the prism
models if n is even and then add the required point symmetry. For D, the
arrows can be removed as the top and bottom have full symmetry. Since the
octahedron (cube) and icosahedron (dodecahedron) have a point of sym-
metry, then O is the full symmetry group of the octahedron and [ is the full
symmetry group of the icosahedron. The tetrahedron, on the other hand,
does not have a point of symmetry. Check that the wire model based on a cube
in Figure 17.24 has full symmetry group T. We know there must be more finite
groups of isometries as we have not yet encountered the full symmetry group
of the tetrahedron.

Returning to our search for all finite isometry groups, we suppose G is a
finite group of isometries containing subgroup H of even isometries a;,
®;,...,0, and containing odd isometries B;, f5,..., B,. If some B; is an
inversion, then G is an H. Hence, we suppose no f; is an inversion. There is a
point C that is fixed by G. With y, = ¢ f;, the odd isometries in G are ¢y,
OcYs2s---» OcYy. Isometries vy, 7,,..., 7, are distinct even isometries. As-
suming @; = y;, we would have «; = o¢f;and so ¢ = «;; !, a contradiction

Figure 17.24
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since g¢is not in G. Hence, there are exactly 2h elements in the set K consisting
of the even isometries ay, «,, ..., o, and yy, y2, - . ., y4. The surprising thing is
that K turns out to be a group. Since (Exercise 17.1) an isometry fixing point C
commutes with o, then 6. commutes with each element in G. Therefore, set K
has the closure property and the inverse property since there are subscripts
r, s, t, u such that

Vi%i = Ucﬁjai =ach, = Vs
Ay = aiGCBj = Gcaiﬂj = 0cBs = s

ViV = ocBijochi = BiBi = ,,

yi ' =(0cB) ! = Bilac = Buoc = chu = Vu-
Group K is a rotation group since all the elements in K are even.

Conversely, suppose rotation group H has order h with elements a,,

®,, ..., a,,and suppose there is a rotation group K of order 2h having H as a
subgroup and containing the additional rotations y,, y,, ..., y, not in H. Let
rotation group K fix point C. Then o, commutes with the elements in K. Let
K H denote the set of 2h elements consisting of the h elements in H and the h
odd isometries a¢cy,, G¢Y,, .-, 0cYy. Nonempty set KH has the closure
property and the inverse property since there are subscripts r, s, t, u such that

(0c7)() = ac(y;o) = ocy,,
ai(ac)’j) = Uc(aiyj) = 0c¢cYVs»
(Gc)’j)(o'c)’i) =ViVi = %,
(ocy) ™" =i 'oc = ocyi ' = ocha-

No inversion oy is in group KH as a.y; = op implies y; = 6.0, a contradic-
tion (even if C = D). Hence, KH is a finite group of isometries containing odd
isometries but no inversion.

In summary, the finite groups of isometries containing odd isometries are
obtainable from the rotation groups in one of two ways. Starting with a rota-
tion group H of order h that fixes point C, we obtain a group of order 24 with
either method. The first method is simply to throw o in with the group H to
get new group H. In H, the odd isometries are just the products of the elements
in H with a¢. The second method is to find (if possible) a rotation group K
containing H and with exactly 2k elements. The new group KH is formed by
taking the elements in H and the odd isometries formed by multiplying the h
elements of K that are not in H by o where C is a fixed point of K.

The second method above is a recipe for finding all remaining finite groups
of isometries. For the group H we begin with C,. Of the finite rotation
groups of order 2n, group C, is a subgroup of C,, and of D,. This gives new
groups C,, C, and D, C,. The only finite rotation group of order 4u of which
D, is a subgroup is D,,. This gives the new groups D,, D,. The remaining
possibilities for H are now limited to T, O, and I. Recall that these rotation
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sisiSis

C4Cy GG D,D;
Figure 17.25

groups have orders 12, 24, and 60, respectively. There is no rotation group
having half of its elements the 60 elements in I, and there is no rotation group
having half its elements the 24 elements in O. However, there is one rotation
group, namely O, that has half of its elements the 12 elements in T. Therefore,
we have to add the group OT'to finish our list of the finite groups of isometries.
The group OT is the full symmetry group of the tetrahedron. We have proved
Hessel’s Theorem.

Theorem 17.11. A finite group of isometries on space is one of

Cc,, GC, C,C,, (n=1,2..)
D D D,C,, D,,D,, (n=23,..)

n»

T,O,1, T,0,1, OT.

n»

For our cylindrical models, a rotation about the vertical axis through an
angle of (180/n)° is an even isometry (y, in the argument presented above) in
D,, thatis not in D,,. The roles of prism and antiprism are interchanged from
the formulation of the models in Figure 17.23. Hence, Figure 17.25 illustrates
models for C,,C, and D,,D,. The odd isometries here include rotary reflec-
tions about the vertical axis. Halfturns about horizontal axes are rotations in
D, that are not in C,. One of these composed with g gives a reflection in a
plane containing the vertical axis. The odd isometries in D, C, are n reflections
in planes containing the vertical axis, as illustrated in Figure 17.26. Groups

D,C, D,C,
Figure 17.26
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D, C, are dihedral groups generated by a rotation and a reflection analogous
to the dihedral groups encountered in studying plane isometries.

We have proved Hessel’s Theorem and indicated figures having each of the
possible finite symmetry groups. Every finite group of isometries is a sym-
metry group.

§17.3 Exercises

17.1.
17.2.

17.3.
17.4.
17.5.

17.6.

17.7.

17.8.

17.9.

17.10.

Show that an isometry fixing point C commutes with o.

Show that a product of three rotations with axes that intersect in pairs but are not
concurrent is a sCrew.

Describe the 24 odd symmetries of a cube.
Describe the 24 symmetries of a regular tetrahedron.

Excluding the regular tetrahedron, describe the symmetries of a pyramid having a
regular n-gon for a base. Also, excluding the regular octahedron, describe the
symmetries of the corresponding bipyramid.

Excluding the cube, describe the symmetries of a prism having a regular n-gonfora
base. Also, excluding the regular octahedron, describe the symmetries of an
antiprism having a regular n-gon for a base.

Describe the symmetries of a rhombohedron that is not a cube and the symmetries
of a truncated octahedron.

Describe the symmetries of a square. Also, describe the symmetries of an orange,
of a banana, and of a pear.

Prove or disprove: A group containing a rotary reflection that is not an inversion
has infinite order.

True or False

(a) A finite group of even isometries is one of C,,, D,,, T, O, or I.

(b) Groups O and I are the only rotation groups G such that G is not a subgroup
of a rotation group having twice the order of G.

(c) Ifo,,0,,0,are the halfturns about the X-axis, Y-axis, and Z-axis, respectively,
theno,0, = 0,.

(d) Iffigures s, is a subset of figure s,, then the symmetry group of s, contains the
symmetry group of s;.

(e) Ifagroup G of isometries contains only the identity and rotations, then G is a
cyclic group.

(f) Groups C,,C,, D,C,, and D,,D, have order 2n.

(g) Every subgroup of the icosahedral group is either I or else a group C, or D,,.

(h) Group C,C, contains the identity and a reflection; group C, contains the
identity and an inversion.

(i) There is a unique point that is fixed by the elements of a finite rotation group.

(j) Distinct rotations «, 8, and o can have axes that are concurrent and coplaner.
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17.11.

17.12.

17.13.

17.14.

17.15.
17.16.
17.17.

17.18.

17.19.

17.20.

17.21.

17.22.

17.23.

17.24.

Exhibit the elements in each of the following groups: C,, C,,D,,C,,C,, D,,and
c,C,.

Make a paper model of a disphenoid from an isosceles triangle and another from a
scalene triangle. Name the symmetry group for each disphenoid.

Name the symmetry group for the cuboctahedron and the symmetry group for the
rhombic dodecahedron.

Name the symmetry group for the rhombicuboctahedron and the symmetry
group for Sommerville’s solid.

Name the symmetry groups associated with each of Exercises 17.4 through 17.8.
Describe the symmetries of a regular octahedron.

Describe the symmetries of a regular dodecahedron and the symmetries of a
regular icosahedron.

Make enantiomorphic models of the snub cube. How many vertices, edges, and
faces does a snub cube have? What is the symmetry group for the snub cube?

Make enantiomorphic models of the snub dodecahedron. How many vertices,
edges, and faces does a snub dodecahedron have ? What is the symmetry group for
the snub dodecahedron?

If the pattern in Figure 17.27a is folded into a polyhedron, what is the symmetry
group for that polyhedron?

(a) (b)

Figure 17.27

The pattern in Figure 17.27b can be folded into a polyhedron called a great
rhombicuboctahedron. What is the symmetry group for this polyhedron?

Show that the product of two halfturns is a halfturn iff the axes of the halfturns are
perpendicular.

Which Platonic solids cause the most problems in marking if the solids are tossed
as “dice” in a game of chance?

Prove or disprove: There is a polyhedron with equivalent edges, with equivalent
faces, but without equivalent vertices.
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17.25.

17.26.

17.27.

17.28.

17.29.

17.30.

17 Space and Symmetry

For each of the Platonic solids, describe the convex polyhedron determined by
the union of the vertex figures of the Platonic solid.

Every finite group of isometries is a symmetry group. Is every group of isometries
a symmetry group?

Use the concept of a centroid to show that a finite group of rotations must have a
fixed point.
What are the finite groups of isometries that fix the set of all points in Cartesian

space that have all coordinates integers?

A deltahedron is a polyhedron all of whose faces are quilateral triangles. Find all
the convex deltahedra and give the symmetry group for each.

If a triangulation of a polygon in a plane results in ¢ triangular faces, b vertices on
the boundary of the polygon, and i vertices in the interior of the polygon, then
show

t=2i+b-2




Hints and Answers

Chapter 1

1.1. a,d,1,0,rT,

1.2. 6: 3aX +2bY + 6¢c=0, n: bX + 3aY + 3(c —2a) =0, o: aX +
bY —c=0,7:aX + bY + (¢ — 2a + 3b) = 0.

14 Y=-5X+7Y=-5X-7,Y=5X—-7,X-9Y -32=0.

1.5. Only g and j are false.

1.6. X' = —x+2a,y = —y+ 2b.

1.12. n3,n(n + D%, n?(n + 1);n%(n + 1), (n + 1), n(n + 1)

Chapter 2

22.

Multiply both sides by a ™! or 1.

2.3. Any two of a, §, y determine the third if fux = .
2.5. TTTFF TTFFF.
2.7. Rotation of 1 radian.
2.9. Consider groups of odd order.
Chapter 3
3.1. Given P, Q, R then oz 0,0, fixes a vertex of the unique triangle.
3.2. A product of five halfturns that fixes Q.
3.3. Suppose bridge is PQ. Let 1, 5(Q) = R. Opposite sides of a parallelo-

gram are congruent. So BP + PQ + QE = BR + RQ + QE. BR is
fixed length of bridge and RQ + QF is minimum if equal to RE. Hence,

the idea is to build the bridge BR first from B, determine point Q
between R and E, and then translate the bridge to PQ.

225
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35. FFTTT TTFTT.

38. xX'=x+as,y =y + bs.

3.11. 0,00,050,4 = 6,0,050¢c = GG 40p0¢.

3.18. The intersections of ¢; with ¢ p(c,) and 1 ¢(c,) give the possible

points A.
Chapter 4
42. 97 cm.

44. C, = oy, V.

4.5. By unwinding from both ends, we see that one part of the path lies on
the line through ¢,0,(A4) and o ,(E).

4.6. Onlya and h are true.

4.10. Two letters.

4.12. You need to show « is a transformation.

4.14. Consider intersections of ¢, and g,(c,).

4.15. Think of the wall as a mirror.

Chapter 5§

5.1. Perpendicular bisector of ADand DE: Y = —2X + 5,4X — 3Y — 10
= 0.

53. g0,=1

5.5. TTTFT FFFFF.

5.8. There are at most four and at least one, say a. Then, with the proper
notation 1, 6,9, ¢,o, and g, are the four.

59. If Q =o0,(P)=0,P)+# P, then n and m are both perpendicular
bisectors of PQ.

5.10. Suppose directed angle is \/F

5.14. With P, = P and a = RQ, then a’ = R'Q’.

5.15. Don p, .40(b).

Chapter 6

6.5. The perpendicular to m at (0, 3) intersects n at (2, 4): x' = x +
22 -0),y =y +24-3).

6.6. 0,0,0,0, = 0,0,.

6.7. TFTTF TFTTT.

69. o¢,0,0,0, = 0,0,.

6.11. Find two fixed points.

6.12. If p(l) = llet m L land p = 6,0,,-

6.13. 0,,0,0,is a reflection in g with g L b.

6.15. A reflection is an involution.
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Chapter 7

7.3.

A = B, B is midpoint, B is on midline of parallel lines a and b, b is
perpendicular bisector, 4 on b, b is midline or angle bisector.

7.6. p, = 0.0, py = 6.0y, p; 'p, fixes P.

7.7. TTTTF FTFFT.

7.9. Theorems 6.12, 6.11, 6.10.

7.12. Theorems 6.12. 6.6, 4.1.

7.13. Easy, pp o = Ta.sPc.-0-

7.15. Given A, B, C,‘Q+want a, b, ¢, d. Take P such that pp ¢o(B) = C. Let
E = pp oo(D). AE is a.

Chapter 8

8.2. Follow the proof of Theorem 8.4.

8.3. Theorem 8.3.

8.5. Consider the easy case « odd first; then consider xo, when « is even.

8.7. TTFTF TFFTT.

8.12. If g,0p were a dilatation 9, then g, would be the dilatation dgp.

8.17. C, = {a,,...,2,} and C, is a subgroup of order m in group G of
order n. If §, in G but not in C, then C, = {«,f,,...,a,B,} has m
elements and is disjoint with C,. If 5 in G but not in C, or C,, then
Cy={of3,.-., 2,5} . Eventually terminate with C,, C,, ..., C,
and n = km.

Chapter 9

9a. Reflectionsand 1,2, 3,4, 5, ... two sixes back to back.

9b. 21 units.

9c. Vs vertex fixed by o, where g;0,(0r050) = ogoy0; = 0.

9l.  Building two bridges from B and one from E is one possible beginning.

9p. Beware translations.

9s. (0, 4).

9t. Theoremsg.3,2.4,3.4.

9W.  pc.so-

9x. Withm = AC n= AB Q =o,(P),and R' = ¢,(P), pointsR',R,Q,Q’
are collinear.

9y. Sincein9x,mL R'AQ" = 2m /L BAC and AR’ = AP = AQ', then R'Q’
is minimal if AP is minimal; P, Q, R are the feet of the altitudes (vertices
of the orthic triangle) of ANABC.

94. o = (a0))a,.

9.5. Involutory odd isometry, or odd isometry with fixed points.

9.6. Only b is false.

9.7.  Look for fixed points.

9.8. Rotation about O through (® + 180).

9.10. 2h = r — s/(tan ©/2), 2k = s + r/(tan ©/2), and P = (h, k).
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9.11. (a— )X+ bY+c=00r Y=df2;see 9.5and 9.12.
9.12. Use Theorem 8.1 with (0, 0), (1, 0), and their images.

Chapter 10

101, 3, 7,7, 73, 7,,F3, F1..
10.5. TTFTF TFFTT.

106. #,,.7,FLFLF,,F:LF), 7,,
10.8. C,:1984, C,: 1961, D,: 1881, D,: 1883.
10.10. One 1s colorblind.

Chapter 11
11.I. RS = oT(Fé), Ops = 05053, Q—ﬁ = aT(i’TS:), and Theorems 11.4 and
6.12.

11.2. Let Gy = {py.60-0¢¢» and G, = {033, 055, O'AB> Suppose Pa.e0(B)
= C, for orientation. Since B = ogg(A4) and BG = P4 6O(CG) then
then pg ¢ and o5z in G,. So G, = Gy where G3 = {p4 60, 0>
PB.60> O5G> OB OG- Likewise, show G, = G;.

115, pG. 120048, P6.2400 75

11.8. ye =0y, 8 =0y, 0,4 = &

R ANANES

Chapter 12

12.1. Tiles: all except 3* - 6; edges: only (3 - 6)%.

12.3.  If type p% then measures of interior angle (360/¢) and central angle
(360/p) add to 180 and so (p — 2)(y — 2)= 4

127. TTTFT TFFFT.

12.11. Prototile divides a hexagon having a point of symmetry with multi-
plicity 8.

12.12. Bow tie, leaf, and middle two of four heptominoes.

12.14. Those touching bottom edge of figure do not.

12.16. Cut 3-4-4-3-4 into congruent infinite strips.

12.17. In3-4.6-4 rotate by 30° some dodecagons formed by a hexagon and
its adjacent squares and triangles.

12.24. Figure 11.33; F’s cover Figure 10.12i two ways.

Chapter 13

13.1. A nonidentity stretch about C fixes exactly the rays with vertex C; a
stretch rotation about C fixes no rays; a stretch reflection fixes exactly
two rays.

133. o= fop,;0p,pp. GoPr = Pr.e:

13.5. @,0¢. , with G the centroid of AABC, G ort m, and m || ‘BC: G, m, ‘AG.

13.7. There is a similarity taking focus and latus rectum of one to focus and
latus rectum of the other.
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13.9. Only e and h are false.

13.18. Let L be the foot of the perpendicular from C to [ Let S be on CA such
that CS = 2CA. Let T'be on CAsuchthat CT = CB + CA.Then M is
on CL such that SM | TL,and m L. CM at M.

Chapter 14

14.1. The dilatation that takes A to A’ and B to B’ takes BC to B'C..

14.2. CF is a transversal to AABD, and BE is a transversal to AACD.

14.5. In Theorem 14.5 replace 6 , by 7,4 5.

14.9. Let p, q, r be lengths of perpendiculars from A, B, Cto transversal DE
AF/FB = p/q; for converse, let DE intersect AB at F".

14.14. Start with any circle tangent to both rays.

14.15. First, find ¢ (P) for a point off the line.

14.18. If s is half the perimeter of the triangle, then BL = s — AB, LC =
s —AC,CM = s — BC, etc.

14.20. I'. -

14.22. BP/CP = (AB/AC)* when AP is tangent with B-C-P.

14.26. O and H are respectively the incenters of the tangential triangle and the
orthic triangle.

Chapter 15
15.1. What are the images of the perpendicular lines with equations Y = X
and Y = - X?

154. 15, +15k, 15.

15.6. a0y = oy and B, By = By

15.7. TFTTF FTTTF.

15.9. See proofs of Theorems 5.1 and 5.2.

1514. X =x —y,y =y; x =x,y = x + y; only one fixed point.
15.17. X' = 5x,y = y/5.

Chapter 16

16.1. 6,00050,4 = 0,0,0506c = G0 40,0¢.
164. opo,or = og'.

16.5. 0pp, 900p.2-

16.6. TFFFT TFTFT.

169. o, = opop.

16.10. The group generated by the dilations.
16.12. First show ao,a” " is a halfturn.

16.21. (4)(3) = 12.

16.22. (8)(3) = 24.
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Chapter 17

17.1. asca™ ' = oc iff o(C) = C.

17.2. Figure 17.18 and Theorem 17.6.

17.5.  Pyramid:rotations and reflections in D, C,.. Bipyramid: symmetries in
D,,D, if nis odd but D, if n is even.

17.6. Prism: symmetries in D, if n is even but D,, D, if n is odd. Antiprism:
symmetries in D,, D, if n is even but D, if n is odd.

17.10. TTTFF FFTFF.

17.18. 24, 60, 38, O.

17.19. 60, 150,92, I.

17.27. The centroid of the finite set of points consisting of all images of a given
point must be fixed by each of the rotations since the set is itself fixed.

_



Notation Index

Page Symbol

3 (0]

4 AB, A-B-C, AB, AB, AB, L. ABC, m L ABC, AABC, =, ~, ®°
7 Ly LBoa
9 Jifs

10 (ad, Lo, By, ...
1 A

15 Tp.0

16 2,9

17 Op

20 H

24 O,

39 pc.e: Cp

54 &

59 D,,C,

82 Fi

107 /2

137 S

140 AB

142 6p,

148 *

157 L1,

159 A,B,C.,G
160 H,N

182 1, Oy

183 gy, Oy

186 Tp.g

231
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194
203
213
218
220

H 0T,C,,C, D,.C, D,,D,

Notation Index



Index

Abel, 9, 12
abehan, 9
achiral, 191
admit, 117
affine
geometry, 167
ratio, 173
transformation, 167, 175, 179
alphabet
Greek, 2
symmetry of, 49
altitude, 160

angle, 4
bisector, 156
measure, 4

Angle-addition Theorem, 57
Angle-Angle Similarity Theorem, 4
Archimedean
solid, 206
tiling, 125
ASA, 4
associative
law, 8
property, 8
Audsley, 112
axis, 62

base, 94
bat, 131
Bell, 12

Bravais, 211

Brianchon, 162
Brianchon’s Theorem, 162
butterfly, 131

C

Cairo tessellation, 119
cancellation laws, 10
Cartesian plane, 2

Cauchy, 9
Cayley, 11, 12
table, 11

center, 39, 78, 90, 142
of symmetry, 90

centroid, 159

Ceva, 147

Ceva’s Theorem, 149, 173

cevian, 149

Chasles, 194

chickens, 128

chiral, 191

circumcenter, 159

circumcircle, 159

Classification Theorem
for Isometries on the Plane, 65
for Isometries on Space, 193, 194
for Similarities on the Plane, 141
for Similarities on Space, 195, 196

closure property, 8

coaxial, 150

collineation, 2, 167, 182

commutative law, 9

composite, 7

233
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congruent, 4, 36, 118, 191 Euler’s circle, 163
conjugate, 54 Euler’s Formula, 198
convex, 4, 198 even isometry, 52, 182
Coolidge, 194 excenter, 157
copolar, 150 excircle, 158
Crystallographic Restriction, 88, 92 exterior angle bisector, 156
Cundy, 204 Exterior Angle Theorem, 4
cyclic, 10
group, 59, 214
F
D
Fagnano's problem, 76
Darboux, 171 Fedorov's Theorem, 110
Desargues, 147, 152, Fejes Toth, 83, 95
Desargues” Theorem, 150, 152 Feuerbach, 163
Descartes, 3, 12, 198 points, 163
determinant, 175 Feuerbach'’s circle, 163
dihedral Feuerbach's Theorem, 163
group, 57, 59, 214 figure, 90, 191
tiling, 117 finite order, 10
dilatation, 16, 139, 197 fix, 16, 191, 213
group, 16 pointwise, 24, 191
dilation, 136, 194 Fourier, 9
ratio, 142, 194 Fricke. 111
dilative rotation, 194 frieze group, 78, 82
direct similarity, 144, 195
directed
angle, 4, 39
distance, 140 G
distance. 2, 4
divide, 128 Galoss, 9, 12
dual Gardner, 126, 128
polyhedron, 201 generate, 10
tiling, 132 generator, 10
Gergonne point, 158
glide reflection, 62, 183
E Golomb, 121, 128
Greek alphabet, 2
edge transitive, 125 group, 8
edge-to-edge, 122 generated by halfturns, 20
enantiomorph, 192 Griinbaum, 121, 129
equations
for an isometry, 71
for a mapping, 14
for a similarity, 141, 143 H
equiaffine, 177
equivalent, 203 halfplane. 4
Erlanger Program, 30 halfturn, 17, 47,183
Escher, 113 Halfway-around Theorem, 158
Euclid, 1, 153, 199 herpetologist, v
Euler, 161, 194, 198 Hessel, 211
line, 161 Hessel's Theorem, 221
pont, 161 Hilbert, 127

triangle. 161 Hjelmslev's Theorem, 68
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icosohedral group, 203

identity, 7, 182
property, 7
iff, 4

incenter, 157
incircle, 158
Infeld, 12
infinite order, 10
inverse, 7

property, 7
inversion, 183
involution, 10, 48, 182
isogonal conjugate, 166
isometry, 26, 65, 182, 194, 221
isotomic conjugate, 165

James, 126

K

Kepler’s Theorem, 125
Kershner, 126, 134
Klein, 29, 111

L

Lagrange’s Theorem, 70
length, 78
Leonardo’s Theorem, 66, 67
line, 2, 4

of symmetry, 28, 191
linear transformation, 175
Lines, 209
loaded wheelbarrow, 121
lobster, 131

MacGillavary, 113

mapping, 2

medial triangle, 159

median, 159

Menelaus, 147

Menelaus’ Theorem, 148, 173
Menten, 87

monohedral, 117

mosaic, 117

motif, 94

multiplicity, 128

Mystic Hexagon Theorem, 154

Nagel point, 158

Niggli, 111

ninepoint circle, 160
Ninepoint Circle Theorem, 162
Nivin, 133

nonperiodic, 127

O’Beirne, 121
octahedral group, 203
odd, 52, 182

off, 4

one-to-one, 2
onto, 2

opposite, 144, 196
order, 10

ornamental group, 88
orthic triangle, 161, 227
orthocenter, 160
Ouchi, 75

paper folding, 36
Pappus, 3, 147, 153
Pappus’ Theorem, 153
parallel, 4, 5
parity, 52
Pascal, 147, 155
Pascal’s Theorem, 154
Pasch’s Axiom, 4
Pasteur, 214
paving, 117
Pedoe, 163
Penrose, 121, 127, 128, 134
plane of symmetry, 191
Plato, 199
Platonic solid, 199
point, 2

group, 211

of symmetry, 28, 191

235



236

pointwise, 24, 191
pole, 216

Polya, 111
polyhedral, 117
polyhex, 121
polyiamond, 121
polymorphic, 121
polyomino, 120
Poncellet, 153, 162
preserve, 27
product, 9
projective geometry, 151
prototile, 117

ratio
dilation, 142
similarity, 136, 194
stretch, 136, 194
ray, 4
rectangular, 88
reflection, 24, 182
regular
tiling, 118
polyhedron, 199
rep-k, 128
reptile, 128
rhombic, 88
Rice, 126
Rollett, 204
rosette group, 88
rotary
inversion, 188
reflection, 183
rotation, 39, 46, 183
group, 211, 218
rubber sheet geometry, |

SAA, 4

SAS, 4
Schattschneider, 112
screw, 183

segment, 4
semiregular tiling, 125
shear, 176

Shephard, 121, 129
shorter than, 78

Index

similar, 4, 118, 139

similarity, 136, 141, 194, 196

Simson, 165

Simson Line Theorem, 165

skew, 5

snake, 131

Sommerville’s solid, 208

species, 122

Speiser, 111

sphnix, 128

Spieker circle, 166

SSS, 4

Steinhaus, 204

strain, 176, 180

stretch, 136, 194
reflection, 136
rotation, 136

subgroup, 8

symmedian, 166

symmetry, 28, 168, 182
group, 29

T

tangential triangle, 165
teddy bears’ picnic, 169
tessellate, 205
tessellation, 117
tetrahedral group, 203
Theatetus, 199
Theatetus® Theorem, 203
Thomsen’s relation, 75
tile, 117

transitive, 125
tiling, 117
topology, |
transformation, 1, 182
translation, 14, 44, 182

group, 16

lattice, 88
transversal, 149
triangle, 4

inequality, 4
trihedral, 117
Twin Theorems, 147
type, 123

unit cell, 88
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vertex
figure, 207
transitive, 125
Vierergruppe, 29

Wallace. 165
wallpaper group, 88, 92, 107
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