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Preface

Optimization is the process by which the optimal solution to a problem, or
optimum, is produced. The word optimum has come from the Latin word
optimus, meaning best. And since the beginning of his existence Man has
strived for that which is best. There has been a host of contributions, from
Archimedes to the present day, scattered across many disciplines. Many of
the earlier ideas, although interesting from a theoretical point of view, were
originally of little practical use, as they involved a daunting amount of com-
putational effort. Now modern computers perform calculations, whose time
was once estimated in man-years, in the figurative blink of an eye. Thus it has
been worthwhile to resurrect many of these earlier methods. The advent of
the computer has helped bring about the unification of optimization theory
into a rapidly growing branch of applied mathematics. The major objective
of this book is to provide an introduction to the main optimization tech-
niques which are at present in use. It has been written for final year undergrad-
uates or first year graduates studying mathematics, engineering, business, or
the physical or social sciences. The book does not assume much mathemati-
cal knowledge. It has an appendix containing the necessary linear algebra
and basic calculus, making it virtually self-contained.

This text evolved out of the experience of teaching the material to finishing
undergraduates and beginning graduates. A feature of the book is that it
adopts the sound pedagogical principle that an instructor should proceed
from the known to the unknown. Hence many of the ideas in the earlier
chapters are introduced by means of a concrete numerical example to which
the student can readily relate. This is followed by generalization to the
underlying theory. The courses on which the book is based usually have a
significant number of students of Business and Engineering. The interests

iX



X Preface

of these people have been taken into account in the development of the
courses and hence in the writing of this book. Hence many of its arguments
are intuitive rather than rigorous. Indeed plausibility and clarity have been
given precedence before rigour for the sake of itself.

Chapter 1 contains a brief historical account and introduces the basic
terminology and concepts common to all the theory of optimization. Chap-
ters 2 and 3 are concerned with linear programming and complications of
the basic model. Chapter 2 on the simplex method, duality, and sensitivity
analysis can be covered in an undergraduate course. However some of the
topics in Chapter 3 such as considerations of efficiency and parametric pro-
gramming, may be best left to graduate level. Chapter 4 deals with only the
basic strategies of integer linear programming. It is of course dependent on
Chapter 2. It does contain a number of formulations of applications of inte-
ger programming. Some of this material has never appeared before in book
form. Chapter 5 is on network analysis and contains a section on using net-
works to analyze some practical problems.

Chapter 6 introduces dynamic programming. It is beyond the scope of
this book to provide a detailed account of this vast topic. Hence techniques
suitable for only deterministic, serial systems are presented. The interested
reader is referred to the extensive literature. Chapter 7 serves as an introduc-
tion to Chapter 8, which is on nonlinear programming. It presents some of
the classical techniques: Jacobian and Lagrangian methods together with the
Kuhn-Tucker conditions. The ideas in this chapter are used in devising the
more computationally efficient strategies of Chapter 8.

This text contains enough material for one semester at the undergraduate
level and one more at the graduate level. The first course could contain Chap-
ters 1, 2, the first half of Chapter 3, and parts of Chapter 4 and Chapter 5.
The remainder can be covered in the second course. A plan outlining this
follows.

The book contains a large number of exercises. Students are strongly en-
couraged to attempt them. One cannot come to grips with the concepts by
solely looking at the work of others. Mathematics is not a spectator sport!

The author is grateful for this opportunity to express his thanks for the
support of his employers, the University of Canterbury, which he enjoyed
while finishing this book. He is also thankful for the faith and encouragement
of his wife, Maureen, without which it would never have been written. He is
also grateful to a number of friends including David Robinson, Hans
Dacllenbach, Michael Carter, Ian Coope and Susan Byrne, who read parts of
the manuscript and made valuable suggestions. A vote of thanks should also
go to his student, Trevor Kearney, who read the entire manuscript and dis-
covered an embarrassing number of errors.

Christchurch, New Zealand L. R. Foulds
November 1980
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Chapter 1

Introduction

1.1 Motivation for Studying Optimization

There exist an enormous variety of activities in the everyday world which
can usefully be described as systems, from actual physical systems such as
chemical processing plants to theoretical entities such as economic models.
The efficient operation of these systems often requires an attempt at the
optimization of various indices which measure the performance of the system.
Sometimes these indices are quantified and represented as algebraic vari-
ables. Then values for these variables must be found which maximize the
gain or profit of the system and minimize the waste or loss. The variables
are assumed to be dependent upon a number of factors. Some of these
factors are often under the control, or partial control, of the analyst respon-
sible for the performance of the system.

The process of attempting to manage the limited resources of a system
can usually be divided into six phases: (i) mathematical analysis of the
system; (ii) construction of a mathematical model which reflects the impor-
tant aspects of the system; (iii) validation of the model; (iv) manipulation
of the model to produce a satisfactory, if not optimal, solution to the model;
(v) implementation of the solution selected; and (vi) the introduction of a
strategy which monitors the performance of the system after implementation.
It is with the fourth phase, the manipulation of the model, that the theory
of optimization is concerned. The other phases are very important in the
management of any system and will probably require greater total effort
than the optimization phase. However, in the presentation of optimization
theory here it will be assumed that the other phases have been, or will be,
carried out. Because the theory of optimization provides this link in the
chain of systems management it is an important body of mathematical
knowledge.
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1.2 The Scope of Optimization

One of the most important tools of optimization is linear programming. A
linear programming problem is specified by a linear, multivariable function
which is to be optimized (maximized or minimized) subject to a number of
linear constraints. The mathematician G. B. Dantzig (1963) developed an
algorithm called the simplex method to solve problems of this type. The
original simplex method has been modified into an efficient algorithm to
solve large linear programming problems by computer. Problems from a
wide variety of fields of human endeavor can be formulated and solved by
means of linear programming. Resource allocation problems in government
planning, network analysis for urban and regional planning, production
planning problems in industry, and the management of transportation dis-
tribution systems are just a few. Thus linear programming is one of the
successes of modern optimization theory.

Integer programming is concerned with the solution of optimization prob-
lems in which at least some of the variables must assume only integer values.
In this book only integer programming problems in which all terms are
linear will be covered. This subtopic is often called integer linear program-
ming. However, because little is known about how to solve nonlinear integer
programming problems, the word linear will be assumed here for all terms.
Many problems of a combinatorial nature can be formulated in terms of
integer programming. Practical examples include facility location, job se-
quencing in production lines, assembly line balancing, matching problems,
inventory control, and machine replacement. One of the important methods
for solving these problems, due to R. E. Gomory (1958), is based in part on
the simplex method mentioned earlier. Another approach is of a combina-
torial nature and involves reducing the original problem to smaller, hope-
fully easier, problems and partitioning the set of possible solutions into
smaller subsets which can be analyzed more easily. This approach is called
branch and bound or branch and backtrack. Two of the important contri-
butions to this approach have been by Balas (1965) and Dakin (1965).
Although a number of improvements have been made to all these methods,
there does not exist as yet a relatively efficient method for solving realistically-
sized integer programming problems.

Another class of problems involves the management of a network. Prob-
lems in traffic flow, communications, the distribution of goods, and project
scheduling are often of this type. Many of these problems can be solved by
the methods mentioned previously—Ilinear or integer programming. How-
ever because these problems usually have a special structure, more efficient
specialized techniques have been developed for their solution. Outstanding
contributions have been made in this field by Ford and Fulkerson (1962).
They developed the labelling method for maximizing the flow of a commodity
through a network and the out-of-kilter method for minimizing the cost of
transporting a given quantity of a commodity through a network. These
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ideas can be combined with those of integer programming to analyze a
whole host of practical network problems.

Some problems can be decomposed into parts, the decision processes of
which are then optimized. In some instances it is possible to attain the opti-
mum for the original problem solely by discovering how to optimize these
constituent parts. This decomposition process is very powerful, as it allows
one to solve a series of smaller, easier problems rather than one large,
intractable problem. Systems for which this approach will yield a valid
optimum are called serial multistage systems. One of the best known tech-
niques to attack such problems was named dynamic programming by the
mathematician who developed it, R. E. Bellman (1957). Serial multistage
systems are characterized by a process which is performed in stages, such
as manufacturing processes. Rather than attempting to optimize some
performance measure by looking at the problem as a whole, dynamic
programming optimizes one stage at a time to produce an optimal set of
decisions for the whole process. Problems from all sorts of areas, such as
capital budgeting, machine reliability, and network analysis, can be viewed
as serial multistage systems. Thus dynamic programming has wide applica-
bility.

In the formulation of many optimization problems the assumption of
linearity cannot be made, as it was in the case of linear programming. There
do not exist general procedures for nonlinear problems. A large number of
specialized algorithms have been developed to treat special cases. Many of
these procedures are based on the mathematical theory concerned with
analysing the structure of such problems. This theory is usually termed
classical optimization. One of the outstanding modern contributions to this
theory has been made by Kuhn and Tucker (1951) who developed what are
known as the Kuhn—Tucker conditions.

The collection of techniques developed from this theory is called nonlinear
programming. Despite the fact that many nonlinear programming problems
are very difficult to solve, there are a number of practical problems which
can be formulated nonlinearly and solved by existing methods. These
include the design of such entities as electrical transformers, chemical
processes, vapour condensors, microwave matching networks, gallium-—
arsenic light sources, digital filters, and also problems concerning maximum
likelihood estimation and optimal parts replacement.

1.3 Optimization as a Branch of Mathematics

It can be seen from the previous section that the theory of optimization is
mathematical in nature. Typically it involves the maximization or minimi-
zation of a function (sometimes unknown) which represents the performance
of some system. This is carried out by the finding of values for those variables
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(which are both quantifiable and controllable) which cause the function to
yield an optimal value. A knowledge of linear algebra and differential
multivariable calculus is required in order to understand how the algorithms
operate. A sound knowledge of analysis is necessary for an understanding
of the theory.

Some of the problems of optimization theory can be solved by the classical
techniques of advanced calculus—such as Jacobian methods and the use
of Lagrange multipliers. However, most optimization problems do not
satisfy the conditions necessary for solution in this manner. Of the remaining
problems many, although amenable to the classical techniques, are solved
more efficiently by methods designed for the purpose. Throughout recorded
mathematical history a collection of such techniques has been built up.
Some have been forgotten and reinvented, others received little attention
until modern-day computers made them feasible.

The bulk of the material of the subject is of recent origin because many
of the problems, such as traffic flow, are only now of concern and also
because of the large numbers of people now available to analyze such
problems. When the material is catalogued into a meaningful whole the
result is a new branch of applied mathematics.

1.4 The History of Optimization

One of the first recorded instances of optimization theory concerns the
finding of a geometric curve of given length which will, together with a
straight line, enclose the largest possible area. Archimedes conjectured
correctly that the optimal curve is a semicircle. Some of the early results are
in the form of principles which attempt to describe and explain natural
phenomena. One of the earliest examples was presented approximately
100 years after Archimedes’ conjecture. It was formulated by Heron of
Alexandria in C. 100 B.C., who postulated that light always travels by the
shortest path. It was not until 1657 that Fermat correctly generalized this
postulate by stating that light always travels by the path which incurs least
time rather than least distance.

The fundamental problem of another branch of optimization is concerned
with the choosing of a function that minimizes certain functionals. (A
functional is a special type of function whose domain is a set of real-valued
functions.) Two problems of this nature were known at the time of Newton.
The first involves finding a curve such that the solid of revolution created
by rotating the curve about a line through its endpoints causes the minimum
resistance when this solid is moved through the air at constant velocity.
The second problem is called the brachistochrone. In this problem two points
in space are given. One wishes to find the shape of a curve joining the two
points, such that a frictionless bead travelling on the curve from one point
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to the other will cover the journey in least time. This problem was posed as a
competiton by John Bernoulli in 1696. The problem was successfully solved
by Bernoulli himself, de I’'Hopital, Leibniz, and Newton (who took less than
a day!). Problems such as these led Euler to develop the ideas involved into
a systematic discipline which he called the calculus of variations in 1766.
Also at the time of Euler many laws of mechanics were first formulated in
terms of principles of optimality (examples are the least action principle of
Maupertuis, the principle of least restraint of Gauss, and Lagrange’s kinetic
principle). Lagrange and Gauss both made other contributions. In 1760
Lagrange invented a method for solving optimization problems that had
equality constraints using his Lagrange multipliers. Lagrange transforma-
tions are, among other uses, employed to examine the behaviour of a function
in the neighbourhood of a suspected optimum. And Gauss, who made
contributions to many fields, developed the method of least squares curve
fitting which is of interest to those working in optimization as well as
statistics.

In 1834 W. R. Hamilton developed a set of functions called Hamiltonians
which were used in the statement of a principle of optimality that unified
what was known of optics and mechanics at that time. In 1875 J. W. Gibbs
presented a further principle of optimality concerned with the equilibrium
of a thermodynamical system. Between that time and the present there have
been increasing numbers of contributions each year. Among the most out-
standing recent achievements, the works of Dantzig and of Bellman have
already been mentioned. Another is the work of Pontryagin (1962) and others,
who developed the maximum principle which is used to solve problems in
the theory of optimal control.

1.5 Basic Concepts of Optimization

This section introduces some of the basic concepts of optimization. Each
concept is illustrated by means of the following example.
The problem is to:

Maximize: Xo = f(X) = f(xy,x5) (1.1)
subject to: hi(X)<0 (1.2)
x; 20 (1.3)
x, = 0. (1.4)

This is a typical problem in the theory of optimization—the maximization
(or minimization) of a real-valued function of a number of real variables
(sometimes just a single variable) subject to a number of constraints (some-
times the number is zero). The special case of functionals, where the domain
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of the function is a set of functions, will be dealt with under the section on the
calculus of variations in Chapter 7.

The function f is called the objective function. The set of constraints, in
this case a set of inequalities, is called the constraint set. The problem is to
find real values for x; and x,, satisfying (1.2), (1.3) and (1.4), which when
inserted in (1.1) will cause f(x;,x,) to take on a value no less than that for
any other such x;, x, pair. Hence x, and x, are called independent variables.

Three objective function contours are present in Figure 1.1. The objective
function has the same value at all points on each line, so that the contours
can be likened to isobar lines on a weather map. Thus it is not hard to see

x, = 0.25
X2

©,1

»
>

xo = 0.50

xo = 1.00
hy(X) =0

\\

(1,0

(0, 0) / l X

Figure 1.1. Objective function contours and the feasible region for an optimization
problem.
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that the solution to the problem is:
X* = (x},x3) = (1,0).

This means that
f(X* = f(X) forall XeS. (1.5)

When a solution X* € § satisfies (1.5) it is called the optimal solution, and
in this case the maximal solution. If the symbol in (1.5) were “<”, X* would
be called the minimal solution. Also, f(X*) is called the optimum and is
written x§.

On looking at Figure 1.1 it can be seen that greater values for f could
be obtained by choosing certain x;, x, outside S. Any ordered pair of real
numbers is called a solution to the problem and the corresponding value of
f is called the value of the solution. A solution X such that

Xes
is called a feasible solution.
Let us examine which x;, x, pairs are likely candidates to achieve this
maximization. In Figure 1.1 the set of points which satisfy this constraint
set has been shaded. The set is defined as S:

S = {(x1,%3): h(x;,x;) <0, x; >0, x, > 0}.

Such a set S for an optimization problem is often a connected region and
is called the feasible region.

Many optimization problems do not have unique optimal solutions. For
instance, suppose a fourth constraint

ha(x4,%,) < 0 (1.6)

is added to the problem. The feasible region is shown in Figure 1.2. In this
case one of the boundaries of S coincides with an objective function contour.
Thus all points on that boundary represent maximum solutions.
However, if it exists the optimal value is always unique.
As another example of a problem which does not have an optimal solution,
suppose (1.2) is replaced by:
hy(X) < 0. (L.7)

On examining Figure 1.2, it becomes apparent that (1.7) does not hold for
X* =(1,0), hence X* ¢ S. In fact, there is no solution which will satisfy
(1.5), as points successively closer to (but a positive distance away from)
(1,0) correspond to successively larger x, values. To recognize this situation
we called f(X') an upper bound for f under S if

(XY= f(X) forall XeS. 7 (1.8)

Also f(X') is called a least upper bound or supremum for f under S if f(X')
is an upper bound for f under S and

f(X') < f(X) for all upper bounds f(X) for f under S. (1.9)
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X2

hy(X) =0

(0,0) |
|
\
\

Figure 1.2. Feasible region for an optimization problem where one constraint is
identical with an objective function contour.

Most of the preceding ideas have been concerned with maximization. Of
course many optimization problems have the aim of minimization and each
of the above concepts has a minimization counterpart. The sense of the
inequalities in (1.7), (1.8), and (1.9) need to be reversed for minimization.
The counterparts of the terms are:

minimum maximum

lower bound upper bound
greatest lower bound least upper bound
infimum supremum
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Throughout the remainder of book we shall deal mainly with maximi-
zation problems only, because of the following theorem.

Theorem 1.1. If X* is the optimal solution to problem P1:
Maximize: f(X),
subject to: g;(X) =0, j=L2,...,m
hi(X) <0, i=1,2,...,k
then X* is the optimal solution to problem P2:
Minimize: —f(X),
subject to: g;(X) =0, j=1L2,....,m
hi(X)<0, j=12,...,k

PRrOOF. Because X* is the optimal solution for P1, it is a feasible solution
for P1, hence
gi{(X*) =0, j=12,...,m

h(X*) <0, j=12,...,k

Hence X* is a feasible solution for P2.
Also,
S(X*) > f(X) forall XeS
where

S={X:g(X)=0,j=1,2,...,mh(X)<0,j=1,2,...,k}.

Hence
—f(X*) < —f(X) forall X eS.

Hence X* is optimal for P2. .

This result allows us to solve any minimization problem by multiplying
its objective function by — 1 and solving a maximization problem under the
same constraints. Of course we could have just as easily proven another
theorem concerning the conversion of any maximization problem into an
equivalent minimization problem.



Chapter 2

Linear Programming

2.1 Introduction

This present chapter is concerned with a most important area of optimiza-
tion, in which the objective function and all the constraints are linear. Prob-
lems in which this is not the case fall in the nonlinear programming category
and will be covered in Chapters 7 and 8.

There are a large number of real problems that can be either formulated
as linear programming (L.P.) problems or formulated as models which can
be successfully approximated by linear programming. Relatively small prob-
lems can readily be solved by hand, as will be explained later in the chapter.
Large problems can be solved by very efficient computer programs. The
mathematical structure of L.P. allows important questions to be answered
concerning the sensitivity of the optimum to data changes. L.P. is also used
as a subroutine in the solving of more complex problems in nonlinear and
integer programming.

This chapter will begin by introducing the basic ideas of L.P. with a sim-
ple example and then generalize. A very efficient method for solving L.P.
problems, the simplex method, will be developed and it will be shown how
the method deals with the different types of complications that can arise.
Next the idea of a dual problem is introduced with a view to analyzing the
behaviour of the optimal L.P. solution when the problem is changed. This
probing is called postoptimal analysis. Algorithms for special L.P. problems
will also be looked at.

10
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2.2 A Simple L.P. Problem

A coal mining company producing both lignite and anthracite finds itself in
the happy state of being able to sell all the coal it can process. The present
profit is $4.00 and $3.00 (in hundreds of dollars) for a ton of lignite and an-
thracite, respectively. However, because of various restrictions the cutting
machine at the coal face, the screens, and the washing plant can be operated
for no more than 12, 10, and 8 hours per day, respectively. It requires 3, 3,
and 4 hours for the cutting machine, the screens, and the washing plant, re-
spectively, to process one ton of lignite. It requires 4, 3, and 2 hours for the
cutting machine, the screens, and the washing plant, respectively, to process
one ton of anthracite. The problem is to decide how many tons of each type
of coal will be produced so as to maximize daily profits.

In order to solve this problem we need to express it in mathematical terms.
Toward this end the decision (independent) variables are defined as follows.
Let

x,; = the daily production of lignite in tons,

x, = the daily production of anthracite in tons,

Xxo = the profit gained by producing x; and x, tons of lignite and anthra-
cite, respectively.

If x, tons of lignite are produced each day, and the profit per ton is $4.00
then the daily profit for lignite is

$4x,.

Similarly, if x, tons of anthracite are produced each day with a profit of $3.00
per ton, then the daily profit is

$3x,.

Thus for a daily production schedule of x; and x, tons of lignite and anthra-
cite, the total daily profit, in dollars, is:

4x1 + 3x2 (=XO).

It is this expression whose value we must maximize.

We can formulate similar expressions for the constraints of time on the
various machines. For instance, consider the cutting operation. If x; tons of
lignite are produced each day and each ton of lignite requires 3 hours’ cut-
ting time, then the total cutting time required to produce those x, tons of
lignite is

3x; hours.

Similarly, if x, tons of anthracite are produced each day with each ton taking
4 hours to cut, the total cutting time required to produce those x; tons of
anthracite is

4x, hours.



12 2 Linear Programming

Thus the total cutting time for x, tons of lignite and x, tons of anthracite is
3x; + 4x,.

But only 12 hours’ cutting time are available each day. Hence we have the
constraint:
3xy + 4x, < 12.

We can formulate similar constraints for the screening and washing times.
This has been done below. The problem can now be stated mathematically:

Maximize: 4x; + 3x, = Xxq 2.1
subject to: 3x; +4x, <12 (2.2)
3x; +3x, <10 (2.3)

4x, + 2x, <8 (2.4)

Xy >0 (2.5)

X3 > 0. (2.6)

The above expressions are now explained:

(2.1): The objective is to maximize daily profit.

(2.2): A maximum of 12 hours cutting time is available each day.

(2.3): A maximum of 10 hours screening time is available each day.

(2.4): A maximum of 8 hours washing time is available each day.
(2.5), (2.6): A nonnegative amount of each type of coal must be produced.

Because only two independent variables are present it is possible to solve
the problem graphically. This can be achieved by first plotting the constraints
(2.2)—(2.6) in two-dimensional space. The origin can be used to test which
half-plane created by each constraint contains feasible points. The feasible
region is shown in Figure 2.1. It can be seen that constraint (2.3) is redundant,
in the sense that it does not define part of the boundary of the feasible region.
The arrow on constraint (2.3) denotes the feasible half-plane defined by the
constraint. The problem now becomes that of selecting the point in the fea-
sible region which corresponds to the maximum objective function value—
the optimum. This point is found by setting the objective function equal to a
number of values and plotting the resulting lines. Clearly, the maximum

value corresponds to point (%,%2). Thus the optimal solution is

and x3 =12,

wulp

x¥ =

with value 10%. Hence the best profit the company can hope to make is $1,040
by producing 0.8 tons of lignite and 2.4 tons of anthracite per day.

When more than two independent variables are present, linear programs
are solved by analytic methods, as it is difficult to draw in three dimensions
and impossible in higher dimensions. The next section introduces the general
problem.
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Figure 2.1. Graphical solution to the L.P. example problem.

2.3 The General L.P. Problem

The problem of (2.1)—(2.6) can be generalized as follows:
Maximize: CiXy+ CyXg 4+ 4 X=X
subject to: X1+ Ayaxs + 0+ agx, < by

Ap1Xy + dpaXs + a3 X, < by

am1x1+am2x2+'“+amn-xnsbm
x; >0, i=1,2,...,n

Of course this problem can be stated in matrix form:
Maximize: oLb¢
subject to: AX < B,
X =0,

13
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where
C = (617627 vy Cn)T
X = (x17x2’ crty xn)T
A= (aij)mxn
B = (b17b25 LR} bm)T
0 = (0)1 <.
Here (x,x,, . . ., x,)T represents the transpose of (x;,x,, . . ., x,). The gen-

eral minimizing linear program has an analogous form:

Minimize: c'x
subject to: AX > B
X =0

We are now in a position to discover some basic features of the general
linear programming problem.

1. The objective function and all the constraints are linear functions of the
independent variables. This assumption has some important implica-
tions. It means that both the contribution of the level of each activity
represented by its decision variable value (for the objective function) and
the drain on resources of each activity (for the constraints) are directly
proportional to the level of the activity. That is, for example, doubling the
amount of a product produced will double both the profit gained by the
product and the amount of each resource used on the product. It also
means that both the total contribution to the objective and the total drain
on each resource of all activities is, in each case, the sum of those of the
individual activities.

2. The independent variables are all nonnegative. Nearly all problems which
come from real situations have this property. In the few cases where this
is not so, no great hardship need occur. A method for replacing variables
unrestricted in sign by nonnegative ones will be explained later in this
section.

3. The independent variables are all continuous. This feature does restrict
the application of linear programming. It does not make sense to advo-
cate the allocation of a noninteger number of ships to a task, as this would
be indiscrete in more ways than one! When the variables concerned have
relatively large values at the optimum they can often be rounded to the
nearest feasible combination of integral values to yield a satisfactory so-
lution. When this is not true, specialized artillery, collectively called inte-
ger linear programming, must be brought into service. Some of the shots
that can be fired are examined in Chapter 4.

4. Each constraint involves either a “<” or a “>" sign. In many problems,
one or more constraints contain an equality sign. A method for replacing
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such equations by inequalities will be explained later. In the previous
chapter we found that a problem with a strict inequality constraint (in-
volving either a “<” or a “>” sign) does not necessarily have an optimal
solution. This is also true for linear programming. Most problems from
real situations do not contain strict inequality constraints, and methods
for solving L.P. problems do not allow for strict inequalities. Thus we
shall confine our attention to problems in which all the inequalities are
nomstrict, i.¢., are of the “<” or “ =" type, not the “<” or “>" type.

Although all L.P. problems possess all four features outlined above, it is
obvious that there can be many variations. The problem could be one of
maximization or minimization, it may contain variables unrestricted in sign,
and it may contain a mixture of constraint signs. Rather than devise a method
for each class of problems, a method will be presented which will solve the
problems of one common class. The method is completely general, as it will
be shown that any L.P. problem can be made a member of the class by a
series of simple steps. L.P.’s belonging to the class of interest are said to be in
standard form.

An L.P. is in standard form if it can be expressed as:

Maximize:  CTX 27
subject to: AX =B (2.8)
X =0, 2.9)
where
B>0.

Thus the features of a problem in standard form are

. The objective function is to be maximized.

. All constraints except the nonnegativity conditions are strict equations.

. The independent variables are all nonnegative.

. The constant to the right of each equality sign in each constraint is non-
negative.

BN =

The steps that transform any L.P. into standard form are as follows.

1. A minimizing problem can be transformed into a maximizing problem by
replacing the objective function by a new function in which the signs of
the objective function coefficients have all been changed. (See Section 1.5).

2. Each variable unrestricted in sign can be replaced by an expression rep-
resenting the difference between two new nonnegative variables. For
example, if x; is unrestricted, it is replaced by

Xj— Xps
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where x; and x, are new variables. Two new constraints,

x;>0
X, >0,

are added to the problem.

3. Each negative right-hand-side constraint constant can be made positive
by multiplying the entire equation or inequality by minus one.

4. Each inequality constraint can be made an equation by adding a non-
negative variable to a “<” constraint, or subtracting a nonnegative vari-
able from a “>" constraint. For example, consider the constraint

3x, + 4x, <6.
This becomes
3x1 '+‘ 4x2 + xi = 6,

and a new constraint is added:

x; > 0.

Similarly, a constraint of the form

5x3 —9x, > 18
becomes
Sx3— 9%, — x; =18,

with the additional constraint:
x; 2 0.

Note that as all decision variables must be nonnegative the new variables
which force equality must be added for “<” constraints and subtracted for
“>” constraints. The new variables added to the constraints are called slack
variables. The original variables are called structural variables.

The problem of Section 2.2 has the following standard form:

PROBLEM 2.1
Maximize: 4x; + 3x, = X, (2.10)
subject to: 3x; + 4x, + X3 =12 (2.11)
3x; + 3x, + X4 =10 (2.12)
4x, + 2x, +x5=28 (2.13)

x; >0, i=1,2...,5.

Now that the problem is in a form suitable to be attacked, we can consider
ways to find its solution. It is apparent that realistically-sized problems will
present quite a challenge and thus trial-and-error methods would be futile.
Before unveiling the algorithm, some mathematical preliminaries are pre-
sented which are essential to the understanding of the method.
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2.4 The Basic Concepts of Linear Programming

Consider the L.P. problem (2.7)-(2.9). Suppose that the problem has n vari-
ables and m constraints:

X = (xg,%p,...,%,)7
and
B = (by,b,,...,b,)".
A solution X is feasible if it satisfies (2.8) and (2.9). Let us now consider (2.8):
AX = B.
This represents a system of m equations in n unknowns.

If
m > n,

some of the constraints are redundant.
If

ms=n,
and A is nonsingular (see Section 9.1.5), a unique solution can be found:

X=A'B.
If
m<n,

n — m of the variables can be set equal to zero. This corresponds to the for-
mation of an m X m submatrix 4 of A.

As an example of this last possibility, consider Problem 2.1, where

m=3 and n=>5.

Here
34100
A={(3 3 0 1 0
4 2 0 01
By setting
x,=0 and x5=0,
we obtain
3 41
A=(3 3 0]
4 2 0

Provided A is nonsingular, the values of the remaining variables can be
found, as there are now m equations in m unknowns. Such a solution is called
a basic solution and the m variables are called basic variables.
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If this basic solution, which must satisfy (2.8), also satisfies (2.9) it is called
a basic feasible solution. A basic feasible solution is called degenerate if at
least one of the basic variables has a zero value.

A subset, S of R" is said to be convex if the line segment joining any two
points of S is also in S. That is, S is convex <aX, + (1 — )X, € S, for all
X, X,€8,0 <a < 1. Using this definition we can form some idea of what
a convex set is like in two dimensions. In Figure 2.2, sets D and E are convex,
sets F and G are not.

It is not difficult to show that the set S of all feasible solutions to a L.P.
problem in standard form is convex. If the set is nonempty it must be ex-
amined in order to identify which of its points corresponds to the optimum.
A point X of a convex set, S is said to be an extreme point of S if x cannot be
expressed as:

X=aX;+(1—-o)X,, forsomea,0<a<l;X,; #X,;X,;,X,€8.

R
S
/A\

Figure 2.2. Convex and nonconvex sets.
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Suppose that the convex set of feasible solutions to an L.P. problem is
denoted by S and S is bounded. Then an optimal solution to the problem
corresponds to an extreme point of S. This fact considerably reduces the
effort required to examine S for an optimal solution. We need examine only
the extreme points of S to find an optimum. The next section introduces
the method which takes advantage of this fact.

2.5 The Simplex Algorithm

2.5.1 Background

In the previous section it was noted that the optimal solution to the L.P.
problem corresponds to an extreme point of the feasible region of the
problem. Each extreme point can be determined by a basic solution. Now
by (2.9) all the variables have to be non-negative in a feasible solution.
Thus it is necessary to examine only the basic feasible solutions, rather than
all basic solutions, in order to find the optimum. This amounts to examining
only those extreme points for which all variables are non-negative. The
algorithm is a process by which successive basic feasible solutions are
identified and in which each has an objective function value which is greater
than the preceding solution. Each basic feasible solution in this series is
obtained from the previous one (after the first has been selected) by replacing
one of the basic variables by a nonbasic variable. This is attained by setting
one of the basic variables equal to zero and calculating the values of the
other basic variables and the new variable (which is now part of the basis)
which satisfy (2.8). This replacement of one variable by another is carried
out with the following criterion in mind. The new variable that is becoming
part of the basis (the entering variable) is selected so as to improve the
objective function value. This happens if the nonbasic variable with the
largest per unit increase is selected (as long as the solution is not degenerate).
The variable to leave the basis is selected so as to guarantee that feasibility
has been preserved. This procedure is repeated until no improvement in
objective function value can be made. When this happens the optimal
solution has found.

Consider once again Problem (2.1). Suppose we choose an initial basis
of (x3,x4,Xs). The nonbasic variables are then x, and x,, which are set
equal to zero. The submatrix 4 corresponding to this basis is the identity
matrix I and is of course nonsingular. Hence we can solve for the basic
variables:

Xy =12
x4 =10

x5 = 8.
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As all these basic variables are nonnegative, we have found a basic feasible
solution. The next step is to find a new basic feasible (b.f.) solution with an
improved (larger) value. Recall that when a new b.f. solution is created
exactly one new variable replaces one existing variable in the basis. Which
variable should be brought into the basis in the present problem? On looking
at (2.10) it can be seen that x, has the largest gain per unit (4) in the objective
function. Hence it seems wise to prefer x; to x,. In some cases this criterion
will not always yield the greatest improvement; however, it has been shown
that other criteria usually require more overall computation to find the
optimum. Now that x; has been chosen to enter, which of x;, x,, or x;
should leave the basis? Two factors must be considered:

1. We wish to allow x; to assume as large a value as possible in order to
make the objective function take on the largest possible value.

2. The new basic solution must be feasible: all variables must be non-
negative.

How much can we increase x; and still satisfy factor 2? Suppose we
write the constraints of (2.10) as functions of x, :

Now, as
x, =0,
these equations reduce to
X1 =4 — 3x, (2.14)
X =4 —3x, (2.15)
Xy =2 — 3xs. (2.16)

Consider in turn the removal of one of x; or x, or x5 from the basis. That
18, set x3, Or X, Or x5 equal to zero one at a time. Here x, will take on the
following values:
X3=0=x, =4
X4 = 0 = xl = lag

Xs =0=x;, =2.
Now it can be seen from (2.15) and (2.16) that

x3=0=x, <0,x5 <O,
X4=0$x5<0.

Hence setting either of x5 or x, equal to zero will cause the new basis to be
infeasible. Therefore, the leaving variable should be x5, and the new basis
is (xq,X3,%4). It should be noted that the leaving variable belongs to the
equation which has the minimum positive constant out of (2.14), (2.15), and
(2.16). This is no coincidence, and will always occur.
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Now that the new basis has been chosen, the values of its variables can
be found. We have: _
A(xh X3, x4)T = (12, 105 8)Ta

where
310
A=(3 0 1)
4 0 0
Thus
X, =2
x2=6
and
X, =4

The corresponding objective function value is 8.

What has been performed here is basically one iteration of the simplex
method. In order to perform the iterations of the simplex algorithm it is
convenient to set out the problem in a tableau. How this is done is dis-
cussed in the next section.

2.5.2 Canonical Form

As was mentioned previously, the calculations of the simplex method are
most easily performed when the problem is set out in a tableau. We shall
assume that all the inequalities of the problem are of the “<” type, with a
nonnegative right-hand-side (r.h.s.) constant. Thus in converting the problem
into standard form a slack variable is added to each inequality to transform
it into an equation. Other cases shall be considered in Section 2.5.4. Problem
2.1 is of the required form and will be used for illustrative purposes.

Refer to Table 2.1. Each column of the tableau corresponds to a variable,
except the last column, which corresponds to the r.h.s. of each standard
form equation. For consistency, the objective function equation must be
put in the same form as the constraint equations. In Problem 2.1, (2.10)

Table 2.1
Variables
Constraint X X X X3 Xq Xs r.hs.
(2.11) 0 3 4 1 0 12
(2.12) 0 3 3 0 1 10
(2.13) 0 4 2 0 0 1 8
(2.10) 1 —4 -3 0 0 0 0
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can be expressed as:
xO - 4x1 - 3x2 = 0

The x, column is usually not included in the tableau. Each row of the
tableau corresponds to a constraint equation, the last row corresponding
to the objective function. The r.h.s. entry of the objective function row equals
the value of the objective function for the current basis.

We must now select an initial basis for the problem and calculate the
values of the basic variables. An initial basic feasible solution can always
be found by letting all the slack variables only be basic. Each basic variable
then has a value equal to the r.h.s. constant of its equation. The value of
this solution is zero, as all basic variables have a zero objective function
coefficient. It can be seen from Table 2.1 that the coefficients in 4 corre-
sponding to the basis form an identity matrix. As the simplex method is
applied to the elements of the tableau, their values will be manipulated.
However, at the end of each iteration, the coefficients of the current basis
will form an identity matrix (within a permutation of rows) and the objective
function coefficients of basis variables will be zero. A tableau which possesses
this property is said to be in canonical form.

2.5.3 The Algorithm

Before discussing the steps of the algorithm it is necessary to make a digres-
sion into the area of matrix manipulation. It has been noted that the columns
in the simplex tableau corresponding to the basic variables form an identity
matrix (within a permutation of rows). When another iteration is performed
(if necessary), one of the basic variables is replaced by a nonbasic variable.
This new basis must have coefficients in the tableau which form an identity
matrix. How is the tableau to be transformed so as to create this new identity
matrix?

As an example, consider Table 2.1. It was decided that x; should replace
X5 in the basis. Thus the x; column should be manipulated until it looks
like the present x5 column. It can be shown (Hu (1969)) that Gauss—Jordan
elimination can achieve this without altering the set of feasible solutions to
the problem. For convenience, Table 2.1 is reproduced in Table 2.2 with
extraneous matter omitted and the objective function row labelled x, rather
than (2.10).

Table 2.2
Constraints X X, X3 X4 Xs r.hs.
@.11) 3 4 10 0 12
(2.12) 3 3 0 1 0 10
(2.13) @ 2 0 0 1 8
Xo -4 -3 0 0 0 0
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The entry which lies at the intersection of the entering variable column
and the row containing the unit element of the leaving variable is called
the pivot element. It is circled in Table 2.2. The first step is to divide each
element in the pivot row (the row containing the pivot element) by the pivot
element. This produces Table 2.3. We have now produced a unit element in
the correct position in the x; column.

Table 2.3
Constraints X, X X3 X4 Xs rhs.
2.11 3 4 1 0 0 12
(2.12) 3 3 0 1 0 10
(2.13) 1 4 0 0 L 2
X -4 -3 0 0 0 0

Next, each row other than the pivot row has an amount subtracted from
it, element by element. The amount subtracted from each element is equal
to the present entry of the corresponding pivot row element multiplied by
a constant. That constant is equal to the entry in the row concerned which
lies in the pivot column—the column containing the pivot element (the
entering variable column.)

For example, let us subtract from the first row of Table 2.3 element by
element. The constant to be subtracted is the entry in row (2.11) in the x,
column: 3. Thus row (2.11) becomes:

3-3(1) 4303 1 -3 0—3(0) 0-3@% 12 - 3(2)
This produces Table 2.4.

Table 2.4
Constraints X X, X3 X4 Xs rhs.
(2.11) 0 3 1 0 -3 6
(2.12) 3 3 0 1 0 10
(2.13) 1 1 0 0 1 2
Xo -4 -3 0 0 0 0

We have now produced a zero element in the first entry of the x; column.
Performing the same operation for each other row (other than the pivot
row) produces Table 2.5. The new basis (x;, x,,x,) now has coefficients
which form an identity matrix, (within a permutation of rows).

The simplex method can now be outlined.

1. Transform the problem into standard form.
2. Set up the initial simplex tableau.
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Table 2.5
Constraints X, Xy X3 X4 Xs rhs
(2.11) 0 3 1 0 -3 6
(212) o 3 o 1 -3 4
(2.13) 1 3 0 0 1 2
Xo 0 -1 0 0 1 8

. Identify the negative entry which is largest in magnitude among all en-

tries corresponding to nonbasic variables in the objective function row.
Ties may be settled arbitrarily. (If all such entries are nonnegative, go to
step 10). Suppose the entry in column i is identified.

Identify all nonnegative elements in column i.

. For each element identified in step 4, form a ratio of the r.h.s. constant

for the row of the element to the element itself.

. Choose the minimum such ratio and identify to which row it belongs, say

row j. Ties may be settled arbitrarily.

. Identify the basic variable which has a unit entry in row j, say x,.
. Replace variable x, by variable x; in the basis using Gauss—Jordan elim-

ination.

. Go to step 3.
. The optimal solution has been found. Each basic variable is set equal to

the entry in the r.h.s. column corresponding to the row in which the vari-
able has a unit entry. All other variables are set equal to zero. The opti-
mal solution value is equal to the entry at the intersection of the x, row
and the r.h.s. column.

Problem 2.1 will now be solved by the simplex method. Refer to Table

2.6. The initial basis is (x3, X4, X5), with values

and

X3 = 12
X4 = 10
x5 = 8
xO = 0
Table 2.6
Constraints X, X, X3 X4 Xs r.h.s. Ratio
(2.11) 3 4 1 0 0 12 12
(2.12) 3 3 0 1 0 10 10
(2.13) @ 2 0 0 1 8 8
Xo -4 -3 0 0 0 0
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Table 2.7
Constraints Xy Xy X3 X4 Xs r.hs. Ratio
(2.11) o & 1 o -3 6 12
(2.12) 0 3 0 1 -3 4 3
(2.13) 1 1 0 0 1 2 4
Xo 0o -1 0 0 1 8

The entering variable is x;, as it has the smallest x,-row (objective-function-
row) coefficient. The leaving variable is x5, as it has a unit element in the row
corresponding to the minimum ratio (§). The pivot element has been circled.
Gauss—Jordan elimination produces Table 2.7.

The new basis is (x4, X3, X4), with values

x1=2

X3=6

X4=4
and

XO=8.

The entering variable is x,, as it has the smallest x,-row coeflicient (— 1). The
leaving variable is x3, as it has a unit element in the row corresponding to
the minimum ratio (12). The pivot element has been circled. Gauss-Jordan
elimination produces Table 2.8.

As there are no more negative entries in the x, row, the optimal solution
has been found. It can be read off from the tableau, the basic variables being
equal to the r.h.s. values of the rows in which their column entry is a unit
element. Thus

*x 4
Xy =73
* 12
X2 =75
* _ 2
xi=%

All other variables are zero. The optimum is

x§ =%
Table 2.8
Constraints X, X, X3 X4 Xs rhs
(2.11) 0 1 1 0 -3 12
(2.12) 0 0 -3 1 -3 2
(2.13) 1 0 -1 0 Z £
X0 0 0 Z 0 o 32
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The slack variables in constraints (2.11) and (2.13) are zero at the optimal
solution. This means that the amount of resource available in each of these
constraints (cutting and washing time, respectively) is to be fully used. There
are 12 and 8 hours’ cutting and washing time available per day, respectively,
and all this is going to be used in the optimal solution. Such constraints are
called binding constraints. The slack variable of constraint (2.12) is positive.
This means that not all of the available screening time of 10 hours is to be
used. The amount unused per day is equal to the optimal value of the slack
variable, Z hour. A constraint such as (2.12) is called a slack constraint.

The algorithm presented above is designed to solve maximization prob-
lems only. A minimization problem can be converted into a maximization
problem by maximizing the negative of its objective function. However, the
algorithm can instead be easily modified to solve such problems directly.
At the beginning of each iteration in which a minimization problem is being
solved, the x,-row element that is the minimum of all negative elements is
identified. The column of this element becomes the pivot column. The itera-
tion then proceeds as before. When all elements in the x, row are nonnegative
the optimum has been found.

2.5.4 Artificial Variables

Until now it has been assumed that all constraints in the linear programming
problem were of the “<” type. This allowed slack variables to be added to
(rather than subtracted from) each inequality to transform it to an equation.
The positive unit coefficients of these slack variables meant that an identity
submatrix was present in A. Thus the collection of slack variables conve-
niently formed an initial basis which represented a basic feasible solution.
Hence the simplex algorithm could be easily initiated using this easily
found basis.

With constraints of the “=" or “>" type the procedures differ: no slack
variable need be introduced in the former case and the slack variable is
subtracted in the latter, so each equation does not necessarily contain a
unique element with a positive unit element as coefficient. Therefore an
identity submatrix of 4 is not necessarily present. As many problems contain
constraints of these types, we must develop a systematic method for creating
an initial feasible basis so that the simplex algorithm can be used.

2.54.1 The Big M Method

The problem is first transformed into standard form. Next a new variable
is added to the left-hand side of each constraint equation which was of the
“=" or “>" type. The collection of these variables together with the slack
variables in the equations that were of the “<” type form the initial feasible
basis. As with all other variables these new variables are constrained to be
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non-negative. Any feasible solution must contain these new variables all at
the zero level, for any positive new variable causes its constraint to be
violated. In order to ensure that all the new variables are forced to zero
in any feasible solution, each is included in the objective function. The
coefficient of each new variable in the objective function is assigned a re-
latively large negative (positive) value for a maximization (minimization)
problem. These coefficients are usually represented by the symbol M. Thus
this technique is sometimes called the big M method. The new variables
introduced have no physical interpretation and are called artificial variables.

To illustrate the method, suppose an additional constraint is added to
Problem 2.1. Because of contractual commitments at least one ton of coal
must be produced and the buyers are not concerned about the ratio of
lignite to anthracite. The new constraint is

Xi+x,>1, (2.17)

which, on the introduction of the slack variable x,, becomes
X1+ X, — xg=1.
When the artificial variable x, is introduced we have
X1+ X, — X + X7 =1,
and the new objective function is
Xo = 4x; + 3x, — Mx,.

In mathematical form the new problem is

PROBLEM 2.2
Maximize: 4x, + 3x, — Mx,; = xq
subject to: 3xq +4x, + X3 =12
3x, + 3x, + X4 =10
4x, + 2x, + x5 =8
X1+ X, —Xg+x;=1

XJZO, i=1,2,...,7.

The feasible region for this problem is shown in Figure 2.3. The optimal
solution remains unchanged because the optimal solution of the previous
problem is still a solution to the new problem, whose feasible set is a subset
of the original feasible set. The initial tableau for the problem is displayed
in Table 2.9.

The initial basis is (x3, x4, X5, X;). However, because the objective function
coefficient of the basic variable x, is nonzero, the tableau is not yet in ca-
nonical form. Gauss—Jordan elimination is used to remedy this by replacing
the x, row by the sum of the x, row and —M times (2.17). This creates
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Figure 2.3. The graphical solution to the expanded example problem.

Table 2.9
Constraints X, X X3 X4 Xs Xg X4 rhs.
(2.11) 3 4 1 0 0 0 0 12
(2.12) 3 3 0 1 0 0 0 10
(2.13) 4 2 0 0 1 0 0 8
(2.17) 1 1 0 0 0 -1 1 1
X —4 -3 0 0 0 0 M 0

Table 2.10. The simplex iterations required to reach the optimal solution
are displayed in Tables 2.11-2.13. The optimal solution is

* _ 4 * . 12
X1 =73, X2 =75
% 2 * . 11
X3 =%, X6 =5
X ok ok _
x3,x5,x7—0
5

=

O
Il

S
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Table 2.10

X4 Xs X¢ Xx; rhs  Ratio

X3

X1 X2

Constraints
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10
8
1

@.11)
2.12)
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2.17)
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Xo

Table 2.11
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Constraints

en ~jen <t

0
0
0
1

@.11)
(2.12)
(2.13)
2.17)

M+4 4

—4

X0

Table 2.12
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X1

Constraints
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Table 2.13
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2.5.4.2 The Two-Phase Method

There exists another method for finding an initial feasible solution to an
L.P. problem with “=" or “>" constraints. It is called the two-phase method.
Phase I of the method begins by introducing slack and artificial variables
as before. The objective function is then replaced by the sum of the artificial
variables. In terms of the present example, the new objective function is
Xy = x,. This creates a new problem in which this new objective function
is to be minimized subject to the original constraints.

When this minimization has taken place, the optimal solution value is
analyzed. A value greater than zero indicates that the original problem does
not have a feasible solution. A value of zero corresponds to a solution which
is basic and feasible for the original problem as all the artificial variables
have value zero. In this case the original objective function is substituted in
the x, row of the final tableau, and this basic feasible solution without the
artificial variables is used as a starting solution for further iterations of the
simplex method. This is phase II.

The two-phase method is usually preferred to the big M method as it
does not involve the problem of roundoff error that occurs in using the large
value assigned to M. It will now be illustrated by employing Problem 2.2.

PHasE 1
Minimize: X7 = Xg
Subject to: 3x; +4x, + x5 =12
3x, + 3x, + X4 =10
4x, + 2x, + X5 =8
X+ X, —Xg+x7=1

x>0, i=12...,17

Table 2.14 shows the initial tableau for phase I. Note that the x,-row
coefficient of x, is +1 rather than —1 as the objective has been changed
to one of maximization. Transforming the problem to canonical form, we

Table 2.14
Constraints X, X, X3 X, Xs Xg X4 rhs.
(2.11) 3 4 1 0 0 0 0 12
(2.12) 3 3 0 1 0 0 0 10
(2.13) 4 2 0 0 1 0 0 8
(2.17) 1 1 0 0 0 -1 1 1
Xo 0o -0 0 0 0 0 1 0
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Table 2.15
Constraints  x; X, X3 X4 Xs X¢ X r.hs. Ratio
(2.11) 3 4 1 0 0 0 0 12 2
(2.12) 3 3 0 1 0 0 0 10 10
(2.13) 4 2 0 0 1 0 0 8 g
(2.17) @) 1 0 0 0 -1 1 1 1
X -1 —1 0 0 0 1 0 -1
Table 2.16
Constraints X, X, X3 X4 Xs X X4 r.hs.
(2.11) 0 1 1 0 0 3 -3 9
(2.12) 0 0 0 1 0 3 -3 7
(2.13) 0 -2 0 0 1 4 —4 4
(2.17) 1 1 0 0 0 —1 1 1
Xp 0 0 0 0 0 0 1 0

obtain Tables 2.15 and 2.16. It is clear from Table 2.16 that phase I is now
complete, as the objective function has value zero. (Note that the objective
can never attain an optimal negative value as it is the sum of a set of variables
all constrained to be nonnegative.) The solution in Table 2.16 represents a
basic feasible solution to the original problem.

PHaSE II. The original objective function is substituted, neglecting the arti-
ficial variable x,. This gives Table 2.17, which is expressed in canonical
form as Table 2.18. Subsequent iterations are shown in Tables 2.19 and 2.20.

Table 2.20 displays the same optimal solution as that found by the big
M method in Table 2.13. It can be seen that the iterations in phase II are
identical to those of the big M method. This is no coincidence, and will
always happen.

Table 2.17
Constraints X Xy X3 X4 Xs X r.hs.
(2.11) 0 1 1 0 0 3 9
(2.12) 0 0 0 1 0 3 7
(2.13) 0 -2 0 0 1 4 4
(2.17) 1 1 0 0 0 -1 1
Xo -4 -3 0 0 0 0 0
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Table 2.18
Constraints X, X, X3 X4 X5 X6 r.hs. Ratio
(2.11) 0 1 1 0 0 3 9 2
(2.12) 0 0 0 1 0 3 7 1
(2.13) 0 -2 0 0 1 @ 4 4
(2.17) 1 1 0 0 0 -1 1 —
Xo 0 1 0 0 0 —4 4
Table 2.19
Constraints X X, X3 X4 Xs X r.hs Ratio
.11 0 3 1 0 -2 0 6 12
2.12) 0 310 1 -2 o0 4 L]
(2.13) o -1 o0 0 1 1 —
(2.17) 1 L0 0 i 0 2 t
Xo 0 -1 0 0 1 0 8
Table 2.20
Constraints X, X, X3 X4 X5 X r.hs.
(.11 0 1 2 0 -3 0 12
(2.12) o o -} 1 - o0 2
(2.13) 0 o L0 &1 i
(2.17) 1 o -1 o0 2 0 ¢
Xg 0 0 2 0 & 0 32

2.5.5 Multiple Optimal Solutions

Suppose that in order to compete with other companies in the sale of lignite,
the firm must reduce its price per ton. The profit is now $3 per ton. In order
to compensate, the profit on anthracite is raised to $4/ton. Although the
feasible region of the problem remains unchanged, as given in Figure 2.1,
the new objective function is:

Xo = 3x1 + 4x2.

The problem is solved graphically in Figure 2.4. When the objective function
is drawn at the optimal level, it coincides with constraint line (2.2). This
means that all points on the line from point (0, 3) to (£, %2) represent optimal

solutions. This situation can be stated as follows:
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X2

©,3)

>

~ Xy
Xq =

Figure 2.4. An L.P. problem with multiple optimal solutions.

3x¥ + 4x% =12
0<x¥<t
L<x3<3
x§ =12

Note that for the multiple optimal solutions to be present the objective
function line, plane, or hyperplane (in two, three, or more dimensions, re-
spectively) must be parallel to that of a binding constraint. When this occurs
there is always an infinite number of optimal solutions (except when the
solution is degenerate,—see Section 2.5.6).

The problem is now solved using the simplex method (see Tables 2.21
and 2.22). Table 2.22 yields the following optimal solution:

X% =
xk=1
x¥ =
x5 x3=0

x¥ =12
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Table 2.21
Variable
Constraints X, X, X3 X4 Xs rhs. Ratio
(2.11) 3 @ 1 0 0 12 1
(2.12) 3 3 0 1 0 10 10
(2.13) 4 2 0 0 1 8 s
Xo -3 -4 0 0 0 0
Table 2.22
Constraints X, X, X3 X, Xs r.hs. Ratio
(2.11) 3 1 1 0 0 3 12
(2.12) 3 0 -3 1 o 1 3
(2.13) 3 0 -1 0 1 2 S
Xo 0 0 1 0 0 12

However, the nonbasic variable x, has a zero x,-row coefficient, indi-
cating that the objective function value would remain unchanged if x, was
brought into the basis. This is carried out in Table 2.23, this tableau yields
the optimal solution:

* _ 4
X1 =73
* 12
X2 =75
x _ 2
X4 =73
x%,x¥=0
and
x¥ = 12.

Of course the x,-row value of x5 is zero, indicating that x5 could replace x,
in the basis at no change in objective function value. This would produce
Table. 2.22.

The significance of this example is that we have discovered two basic
optimal solutions. It is straightforward to prove that if more than one basic

Table 2.23
Constraint X, X, X3 X4 Xs rhs
(2.11) 0 1 2 0 -3 2
(2.12) 0 0 -3 1 -5 2
(2.13) 1 0 -1 0 2 ¢
Xo 0 0 1 0 0 12
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feasible solution is optimal, then any linear combination of those points is
also optimal (see, for example, Gass (1969)). As we have seen from Figure 2.4,
any point on the line segment joining the two basic optimal solutions is
optimal. Multiple optimal solutions are present if nonbasic variables have
zero entries in the x,-row of the simplex tableau which displays an optimal
solution.

2.5.6 Degeneracy

Suppose that the management of the mining company would like to reduce
the number of hours of screening time available each day. They reason that,
as it is not all being used in the present optimal plan, why not reduce it?
Exactly 92 hours are used daily, so this becomes the amount available.
Mathematically the new problem is the same as Problem 2.1, except that
constraint (2.12) is replaced by

3x1 + 3x2 + X4 = 9%. (2.18)

This problem is solved graphically in Figure 2.5. Notice that constraint
(2.18) coincides with exactly one point of the feasible region—the optimal

A
X2

(2.11)

AN

\
\
\
\
\
\
\
\
\
\

AN (2.18)
AN
xo = 10%

\ x,
(2.13)

Figure 2.5. The graphical solution to a degenerate L.P. problem.
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Table 2.24
Constraints X, Xy X3 Xg Xs r.hs. Ratio
2.11) 3 4 1 0 0 12 12
(2.18) 3 30 1 0 93 18
(2.13) @ 2 0 0 1 8 8
Xo -4 -3 0 0 0 0
Table 2.25
Constraints X, X, X3 X4 Xs rhs. Ratio
(2.11) o & 1 o -3 ¢ 2
2.18) 0 F S SR St 12
(2.13) 1 10 0 1 4
Xo 0 -1 0 0 1
Table 2.26
Constraints X, X, X3 X4 Xs r.hs
(2.11) 0 1 2 0 -5 12
(2.18) 0 0 -3 1 -5 0
(2.13) 1 o -1 o0 2 4
Xo 0 0 2 0 % 32

point. This problem is solved by the simplex method in Tables 2.24-2.26.
It can be seen from the tableau of Table 2.25 that x, should enter the basis.
However, on forming the ratios to decide which variable leaves the basis, a
tie occurs. Whenever this happens the next iteration will produce one or
more basic variables with value zero. Such basic feasible solutions are called
degenerate solutions. As it happens, we have reached the optimum in the
same tableau as the first instance of degeneracy, so no problems occur.
However, if Table 2.26 did not display the optimum, complications might
have arisen. These are best explained by means of another example.

Suppose that a new screening plant is built and it now takes 4 hours to
process one ton of lignite and 1 hour to process one ton of anthracite. There
are 8 hours’ screening time available per day. This means that the problem
is the same as Problem 2.1 except that constraint (2.12) is replaced by

4x1 + X; + x4 = 8. (219)

The problem is solved graphically in Figure 2.6. It is solved in by the simplex
method in Tables 2.27-2.29.
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x4
xo = 104
\
(2.11) \ (2.19)
AN \
\
\
\
\

\
(2.13)

Figure 2.6. The graphical solution to a second degenerate L.P. problem.

Table 2.27
Constraints X, Xy X3 X4 Xs rhs. Ratio
(2.11) 3 4 1 0 0 12 12
(2.19) 4 0 1 0 8 2
(2.13) @ 2 0 0 1 8 2
Xo —4 -3 0 0 0 0
Table 2.28
Constraints X, X, X3 X4 Xs rhs. Ratio
(2.11) 0 ® 1 0o -3 6 12
2.19) 0 -1 0 1 -1 0 -
(2.13) 1 L0 0 3 2 $
Xo 0 -1 0 0 1 8
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Table 2.29
Constraints X4 X, X3 X4 Xs rhs
(2.11) 0 1 2 0 - 12
(2.19) 0 0 2 1 -1 2
(2.13) 1 0 -1 0 2 $
Xo 0 0 2 0 1 32

We can see from Table 2.28 that one of the basic feasible solutions pro-
duced by the simplex method was degenerate, as the variable x, has zero
value. However, there is no degeneracy in the tableau of the next iteration.
This is because the entering-variable (x,) coefficient is negative (—1) in
(2.19). Thus no ratio is formed, hence the dash in the ratio column. What
would have happened if that x, coefficient had been positive and the ap-
propriate ratio was formed? This would have caused the ratio to be zero.
Thus that x, coefficient would become the pivot element. Then the next
basic feasible solution would also be degenerate. Also there would be no
improvement in the value of the objective function.

But the simplex algorithm assumes that each new basic feasible solution
value is an improvement over the preceding one. When this does not happen,
there is a danger that eventually a previous basis will reappear, and an
endless series of iterations will be performed, with no improvement in the
objective function value. And the optimal solution would never be found.
This unhappy phenomonen is termed cycling.

Degeneracy occurs often in realistic large-scale problems. However, there
do not appear to be any reported cases of cycling of the simplex technique
in solving realistic problems. Because of this most computer codes do not
contain measures to prevent cycling. This appears to be quite safe, because
the accumulation of rounding errors will usually prevent any basic variable
from assuming a value of exactly zero. There are a number of theoretical
techniques which do prevent cycling (see, for example, Gass (1969)).

In the previous paragraph we asked the question, what would happen if
the x, coefficient in the (2.19) row of Table 2.28 had been positive. This will
come about if constraint (2.19) is replaced by

dx; + 24x, + x4 =8 (2.20)
in Table 2.20. We are solving the following problem:
Maximize: 4x; + 3x, = X,
subject to: 3x; + 4x, + x5 =12
dx, + 24x, + X4 =8
4x; + 2x, +x5=28

x>0, i=12...,5



2.5 The Simplex Algorithm

X2

.11

(2.13)

'x\ (2.20)

Figure 2.7. The graphical solution to a third degenerate L.P. problem.
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This problem is solved graphically in Figure 2.7 and analytically in Tables
2.30-2.33. The optimal solution is

xt =4
Xt =
x¥=x¥=0
x% = 975.
Table 2.30
Constraint X, X X3 X4 Xs rhs. Ratio
(2.11) 3 4 1 0 0 12 12
(2.20) 4 23 0 1 0 g
(2.13) ® 2 0 0 1 g
Xo —4 -3 0 0 0
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Table 2.31
Constraint X, X X3 X4 Xs rhs. Ratio
(2.11) 0 3 1 0 -2 6 iz
(2.20) o @& o 1 -1 0 0
(2.13) 1 L0 0 i 2 4
Xo o0 -1 0 0 1 8
Table 2.32
Constraint X, X, X3 X4 Xs r.hs. Ratio
(2.11) 0 0 1 -5 6 24
(2.20) 0 1 0 2 -2 0 —
(2.13) 1 0 0 —1 3 2 8
Xo 0 0 0 2 -1 8
Table 2.33
Constraint X, X, X3 X, X5 r.hs.
2.11) 0 0 S =
(2.20) 0o 1 £ & 0 48
(2.13) 1 0o —-% £ 0 &
Xo 0 0 i e 0 9%

Notice in Table 2.31 that the circled x, coefficient under question is indeed
positive. Thus the corresponding ratio is formed and is zero, and this co-
efficient becomes the pivot element. Therefore the next basic solution, in
Table 2.32, has the same value as that of the previous solution and is still
degenerate. Happily, the next iteration produces a nondegenerate optimal
solution.

In Section 2.5.5 it was stated that for multiple optimal solutions to be
present, the objective function hyperplane must be parallel to that of a
binding constraint. The converse is not universally true, as illustrated by
the following example. Suppose Problem 2.1 is modified by simultaneously
adopting the following changes. The price per ton of both lignite and an-
thracite is $3. The amount of screening time available is 93 hours per day.
The problem we are solving is given by:
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Maximize: 3xy + 3x, = Xg
subject to: 3x, + 4x, + X3 =12 (2.11)
3x; + 3x, + X4 =93 (2.18)
4x, + 2x, +x5=28 (2.13)
X1, Xz, ..,%520.

This problem is solved graphically in Figure 2.8 and analytically in the
following Tables 2.34—2.36. The optimal solution is

Xt =4
=%
xX=x¥=x¥=0
xt =93

Consider Table 2.36. As there are no nonbasic x,-row coefficients with
zero value, there are no alternative optimal solutions. Yet the objective

A
X2

12.11) \\
N\ (@218)

N\
xo =9

Xy
(2.13)

Figure 2.8. The optimal solution to an L.P. problem in which the objective function
is parallel to a binding redundant constraint.
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Table 2.34
Constraints X X, X3 X4 Xs r.hs. Ratio
(2.11) 3 1 0 0 12 12
(2.18) 3 3 0 1 0 93 16
@13) @ 2 0o 0o 1 s 5
Xo -3 -3 0 0 0 0
Table 2.35
Constraints X X, X3 X4 Xs r.hs Ratio
(2.11) 0 3 1 0 -3 6 12
(2.18) 0 3 0 1 -3 32 12
(2.13) 1 10 0 1 2 t
Xo 0 -3 0 0 3 6
Table 2.36
Constraints X, X, X3 X4 Xs rhs
(2.11) 0 1 2 0 -5 L2
(2.18) 0 0 -3 1 -5 0
(2.13) 1 0 -1 0 1 ¢
Xo 0 0 3 0 &% 93

function is parallel to the binding constraint (2.18). (Constraint (2.18) is
binding because its slack variable, x,, has zero optimal value) This is
possible because the constraint is redundant (although binding), as shown
in Figure 2.8. This creates a degenerate optimal solution.

2.5.7 Nonexistent Feasible Solutions

Suppose now that the company management, heartened by the efficiency of
the L.P. approach, demands a plan that guarantees that at least 4 tons of
coal are produced each day. The coal produced no longer need be screened.
This means that the problem is the same as Problem 2.1 except that con-
straint (2.12) is to be replaced by a constraint representing the new guarantee.
Mathematically, this guarantee can be expressed as

X, +x,=>4

When we introduce a slack variable (x¢) and an artificial variable (x,), it
becomes
x1 + X2 + X4 - x6 = 4 (221)
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So the problem is the following:

Maximize: 4x; + 3x, — Mx, = X,
subject to: 3xy + 4x, + x5 =12 (2.11)
X+ X, + x4 —xe=4 (2.21)
4x, + 2x, + X5 =38 (2.13)

xiZO, i=1,2,...,6.

When this problem is expressed graphically, as in Figure 2.9, it can be seen
that there does not exist a point which will satisfy all constraints simulta-
neously. Hence the problem does not have a feasible solution. We need a
strategy for detecting this situation in the simplex method. Towards this end

X2 A

\

@.11)

(2.13) \ \ X,

\
%o = 11 2.19)

Figure 29. An L.P. problem with no feasible solution.
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the present problem shall be “solved” by the simplex algorithm. Table 2.37
shows the initial tableau. The first step is to transform the problem into
canonical form, as in Table 2.38. Tables 2.39 and 2.40 complete the process.

Table 2.40 displays the “optimal” solution. However, it will be noticed
that the artificial variable x, has a positive value (%) in this solution. When-
ever this occurs in the final simplex tableau, it can be concluded that the

Table 2.37
Constraints X Xy X3 X4 Xs X rhs.
(2.11) 3 4 1 0 0 0 12
(2.21) 0 1 0 -1
(2.13) 4 0 0 1 0 8
Xo -4 -3 0 M 0 0
Table 2.38
Constraints X, Xy X3 X4 X X r.hs. Ratio
(2.11) 3 4 1 0 0 0 12 2
(2.21) 1 1 0 1 0 -1 4 $
(2.13) @ 2 0 0 1 0 8 8
X -M+4) -—-M+3 O 0 0 M  —-4M
Table 2.39
Constraints  x; X, X3 X4 Xs X rhs. Ratio
(2.11) 0 3 1 0 -3 0 6 12
@2)- 0 3 S S S 2 4
(2.13) 1 1 0 0 1 0 2 ¢
X 0 -M2+1) 0 0 M/d+1 M -2M+38
Table 2.40
Constraints X X, X3 X4 Xs X r.hs.
(2.11) 0 1 2 0 -3 0 12
(2.21) 0 0 -1 1 —15 —1 4
(2.13) 1 0 -1 0 2 0 %
X 0 0 M +2) 0 &M +7) M 1(52 — 4aMm)
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problem has no feasible solution. If the two-phase method had been used,
we would have obtained a positive xj at the end of the first phase, indicating
no feasible solution.

2.5.8 Unboundedness

Consider the following L.P. problem.
Maximize: Xy 4+ 2x, = X
subject to: —4x; + x,<2
X+ x,>3
X +2x,>4
Xy — X,<2
x; >0
x, 2 0.
On looking at the graphical solution to the problem in Figure 2.10 it can
be seen that the feasible region is unbounded. Becduse of the slope of the
objective function (dashed line), the x, line can be moved parallel to itself
an arbitrary distance from the origin and still coincide with feasible points.
Therefore this problem does not have a bounded optimal solution value.

We shall now attempt to apply the simplex method to the problem.
Transforming the problem into standard form yields:

Maximize: Xy + 2x, —Mxy; —Mx, =xg

subject to: —4x; + X, + X3 =2 (222
X+ x, — X4+ Xs =3 (223)
Xy + 2x, — X¢ + X4 =4 (224
Xy — X, +xg=2 (2295

xiZO, i=1,2,...,8.

The simplex tableaux are given in Tables 2.41-2.45.

From Table 2.45 it can be seen that x, should enter the basis next. Which
variable should leave the basis in order to ensure feasibility? All of the x,
constraint coefficients are now negative. So x, can be bought into the basis
at an arbitrarily large positive level. This will cause the objective function to
assume an arbitrarily large value. Thus there is no bounded optimal solution
to the problem. This situation can always be detected in the simplex algo-
rithm by the presence of a negative x,-row variable coefficient with column
entries all nonpositive.

Sometimes a problem will have an unbounded feasible region but still
have a bounded optimum. This is illustrated by the dotted line in Figure



46 2 Linear Programming

x, A
(2.22)
N
AN
AN
N
Y
223) /
! /
N
xo=%"
Figure 2.10. L.P. problems with an unbounded feasible region.
Table 2.41
Constraints x, X, X3 X4 Xs X X4 Xg r.hs.
(2.22) -4 1 1 0 0 0 0 0 2
(2.23) 1 1 0 -1 1 0 0 0 3
(2.24) 1 2 0 0 0 -1 1 0 4
(2.25) 1 -1 0 0 0 0 0 1 2
Xo -1 -2 0 0 M 0 M 0 0
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Table 2.42

47

Constraints

X7 Xg

r.hs.

Ratio

(2.22)
(2.23)
(2.24)
(2.25)
Xo
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N
S O O O =
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S = O © O

N N AW N

[N R Y

Table 2.43

Constraints

X3

X4

r.hs.

Ratio

(2.22)
(2.23)
(2.24)
(2.25)

X0

—(14M +9)

1
-1
-2

1
@ + 3M)

0
-1
0
0
M

S O O = O

|
—_
oo =00

oS = O O O

H O = N

] o u- )

Table 2.44

Constraints
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w
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Table 2.45

Constraints

X

w
=
e
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Xo
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2.10, where the problem is the same as the previous one, except the objective
is now to maximize:

xl b 2x2 = xO.

This problem is solved by the simplex method in Tables 2.46-2.52. The opti-
mal solution is

xt =3
x5 =3
x¥=12
xj=3%
xt=xf=x¥=x{=0
xE =%
Table 2.46
Constraints Xy X3 X3 X4 Xs X¢ X7 Xg r.hs.
(2.22) —4 1 1 0 0 0 0 0 2
(2.23) 1 1 0 -1 1 0 0 0 3
(2.24) 1 2 0 0 0 -1 1 0 4
(2.25) 1 -1 0 0 0 0 0 1 2
Xo — 2 0 0 M 0 M 0 0
Table 2.47
Constraints X X, X3 X, Xs X¢ X7 Xg rhs. Ratio
(2.22) —4 ® 1 0 0 0 0 0 2 2
(2.23) 1 1 0o -1 1 0 0 0 3 3
(2.24) 1 2 0 o 0 -1 1 0 4 4
(2.25) 1 -1 0 0 o 0 0 1 2 —-
Xo —1+4+2M) 2-3M O M 0 M 0 0 -7M
Table 2.48
Constraints X4 X, X3 X4 Xs X¢ X7 Xg r.hs. Ratio
(2.22) —4 1 1 0 0 0 0 O 2 —
(2.23) 5 0 -1 -1 1 0 0 0 1 1
(2.24) @ o -2 0 0 -1 1 0 0 9
(2.25) -3 0 1 0 0 0 0 1 4 —
Xo 7-14M 0 3M-2 M 0 M 0 0 —-M+4
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Table 2.49

Constraints  x; X, r.hs. Ratio
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Table 2.50

Constraints  x; X, Ratio
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Table 2.51

Constraints x; X, X3 X4 Xs X6 X5 xg rhs. Ratio

1 —1 —1 1
-9 9 5 =5
-2 2 1 -1
3 -3 -2 2

-4 @4+M) 3 M-3

(2.22) 0
(2.23) 0
(2.24) 1
(2.25) 0
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Table 2.52

Constraints Xy X, X3 X4 Xs X¢ X4
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2.6 Duality and Postoptimal Analysis

Duality is an important concept and we now present some of the reasons for
this importance. In the previous section it became obvious that the more
constraints an L.P. problem had, the longer it took to solve. Experience with
efficient computer codes has shown that computational time is more sensi-
tive to the number of constraints than to the number of variables. In order to
solve a relatively large problem it would therefore be convenient to reduce
its number of constraints. This can often be done by constructing a new L.P.
problem from the given problem, where the new problem has fewer con-
straints. This new problem is then solved more easily than the original one.
The information obtained in the final simplex tableau can be used to deduce
the optimal solution to the original problem. The new problem constructed
for this purpose is called the dual problem to the original problem. The orig-
inal problem is called the primal.

After an L.P. problem has been solved one would often like to know the
sensitivity of the solution to changes in the objective function, constraint
coefficients and the r.h.s. constants and to the addition of new variables and
constraints. Duality can be used to answer such questions.

2.6.1 Duality

2.6.1.1 The Relationship Between the Primal and the Dual

Consider once again the initial L.P. problem outlined in Section 2.2. Suppose
that a corporation is considering hiring the equipment of the mining com-
pany. The corporation is uncertain about the hourly hireage rates it should
offer the company for the three types of implements. During negotiations
the mining company reveals that its profits per ton of lignite and anthracite
are 34 and $3, respectively. The company states that it will not accept hireage
rates which amount to less revenue than these present figures. For the pur-
pose of fixing acceptable rates the following variables are defined. Let

y: = the hourly hireage rate of the cutting machine,
v, = the hourly hireage rate of the screens,
y3 = the hourly hireage rate of the washing plant.

Recall that it requires 3,3, and 4 hours for the cutting machine, the screens,
and the washing plant, respectively, to process 1 ton of lignite. The revenue
of the company from hiring out the machines for the corporation to process
one ton of lignite is then

3ys + 3y, + 4y,
Because the company requires a revenue no less than its present profit, this
revenue must be such that

3y, + 3y, + 4y, > 4.
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By analogy, the constraint for anthracite is
4y + 3y, +2y3 2 3.

The corporation obviously wishes to minimize the total daily hireage cost
it has to pay. Recall that the cutting machine, the screens, and the washing
plant can be operated for no more than 12, 10, and 8 hours per day, respec-
tively. The objective of the corporation is to minimize

12y, + 10y, + 8y;.

Of course all hireage costs have to be nonnegative. The corporation is then
faced with the following L.P. problem:

Minimize: 12y, + 10y, + 8y3 = yo

subject to: 3y, + 3y, +4y; =>4
dy; + 3y, +2y;=3
y;i =0, i=1,223

Let us now compare this problem with the original L.P. problem, which is
reproduced here for convenience:

Maximize: 4x + 3x, = xq
subject to: 3x; +4x,< 12
3%, +3x, <10
4x, +2x,< 8
x; =0, i=1,2.

A moment’s comparison shows that both problems have the same set of
constants, but in different positions. In particular, each “row” of the hireage
problem contains the same coefficients as one “column” of the original prob-
lem. When two L.P. problems have the special relationship displayed here,
the original problem is called the primal and the new problem is called the
dual. We shall now formalize this relationship by showing how the dual is
constructed from the primal.

1. Replace each primal equality constraint by a “<” constraint and a “>"
constraint. For example, replace

3x, + 4x, + 5x3 = 6,
by

3x; + 4x, + 5x3 = 6,
and

3x; + 4x, + 5x3 < 6.

2. If the primal is a maximization (minimization) problem, multiply all “>
(“<”) constraints by (—1). This ensures all constraints are of the “<’
type for maximization and of the “>" type for minimization.

3. Define a unique nonnegative dual variable for each primal constraint.

»
)
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4. Define each dual objective function coefficient to be equal to the r.hs.
constant of the primal constraint of the variable.

5. If the primal objective is maximization, define the dual objective to be
minimization, and vice versa.

6. Define the dual r.h.s. constraint constants to be the primal objective func-

tion coefficients.

7. If the primal objective is maximization (minimization), define the dual
constraint inequalities to be of the “>" (“<”) type.

8. Define the dual constraint coefficient matrix, A (defined in Section 2.3) to
be the transpose of primal constraint coefficient matrix.

These steps can be summed up in mathematical form. The primal:

Maximize:

subject to:

has dual:

Minimize:
subject to:

CiXy + CaXp+ 4 X, = Xp
A1 Xy + a1X, + 0+ agX, < by
Ap1X; + AppXy + 0 + A3,%, < b,

Am1X1 +am2x2+"'+amnxngbm
x; >0, i=12,...,n,

biyi1 + by, + -+ buym=Yo
apyr +axy,+ 0t Gy ym =€y
12V T QY2+ GpaYm 2 Ca

alny1+a2ny2+.”+amnymzcn
y; =0, i=12,...,m

This can also be expressed in matrix form. The primal:

has dual:

where

Cisn x 1,
Xisnxl1,
Aism x n,
Bism x 1, and
Yism x 1.

Maximize: CTx

subject to: AX <B (2.26a)
X=0
Minimize: BTY,
subject to: ATY > C (2.26b)
Y >0,
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Suppose the dual of (2.26b) is constructed:
Maximize: C'x
subject to:  (4AT)TX < (BT
X>0.

Because the transpose of the transpose of a matrix (vector) is the matrix
(vector), we have proven:

Theorem 2.1. The dual of the dual of a primal L.P. problem is the primal L.P.
problem itself.

2.6.1.2 The Optimal Solution to the Dual

The dual problem introduced in the last section will now be solved by the
two-phase method. In standard form the problem is as follows:

PROBLEM 2.3
Maximize: —12y, — 10y, — 8y, = Yo (2.27)
subject to: 3y;+ 3y, +4ys—yat+ys =4 (2.28)
4y, + 3y, + 2y; — Y+ y,=3 (2.29)
y; =0, i=12...,7.

Phase I, with y, = y5 + y, is shown in Tables 2.53-2.56.
Phase II, with columns corresponding to artificial variables removed, is
shown in Tables 2.57 and 2.58.

Table 2.53

Constraints Vi V2 Vs Ya Vs Ve 1z r.hs.

(2.28) 3 3 4 -1 1 0 0 4
(2.29) 4 3 2 0 o0 -1 1 3
Yo 0 0 0 0 1 0 1 0
Table 2.54
Constraints Vi V2 V3 Va Vs Ve ¥y, r.hs. Ratio
(2.28) 3 3 4 -1 1 0 0 4 $
(2.29) @ 3 2 0 0 -1 1 3 3

Vo -7 -6 —6 1 0 1 0 -7
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Table 2.55
Constraints Y1 V2 V3 Va Vs Ve y7 rhs Ratio
e® o 3 @ -1 1 i - i %
(229) 1 3 3 o o -1 1 3 3
Yo o -3 -3 1 0 -3 % i
Table 2.56
Constraints Y1 V2 V3 Va Vs Ve V7 rhs.
(2.28) o & 1 -3 3 & -% 5
(2.29) 1 3 0 1 -1 -2 2 2
Yo 0 0 0 0 1 0 1 0
Table 2.57
Constraints Vi Va2 V3 Va Ve rhs.
(2.28) 0 = 1 -2 &5 &
(2.29) 1 3 0 1 -2 1
Yo 12 10 8 0 0 0
Table 2.58
Constraints Y1 V2 V3 Va Ye rhs.
(2.28) 0 % -3 o 15
(2.29) 1 3 o0 -3 2
o0 % 0 % ¥ ¥

The solution to the original minimization problem is:

* _ 2
Y1 =5
* . T
Y3 =10
y¥ =0, otherwise
* _ 52
Yo =75

2.6.1.3 Properties of the Primal—Dual Relationship

Compare Table 2.58, the optimum tableau for the dual, with Table 2.8, the
optimum tableau for the primal, which is reproduced here for convenience.
As the primal and the dual had the same set of constants in their mathemat-
ical formulation, it is not surprising to find some similarities in their optimal
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Table 2.8
Constraints X X, X3 X4 Xs rhs
@.11) 0 1 ¢ 0o -5 ¥
(2.12) 0 0 -3 1 — Z
(2.13) 1 0 -1 0 2 4
Xo 0 0 % 0 o ésl

tableaux. These similarities are:

1. The value of optimal solutions of the primal and dual are equal.

2. The optimal value of each slack variable in one problem is equal to the
objective function coefficient of the structural variable of the correspond-
ing equation in the other.

3. (a) Whenever a primal structural variable has a positive optimal value,
the corresponding dual slack variable has zero optimal value.

(b) Whenever a primal slack variable has positive optimal value, the cor-
responding dual structural variable has zero optimal value.

Result 3 is an example of what is known as the complementary slackness
theorem. Indeed, these results are true for any primal—dual pair of L.P. prob-
lems which have finite optimal solutions. We now go on to prove some gen-
eral results concerning duality for the pair of problems defined by (2.26),
with a view to proving the complementary slackness theorem in general.

Theorem 2.2. If X and Y are feasible solutions for (2.26a) and (2.26b), respec-
tively, then the value of Y is no less than the value of X. That is,

CTX < B"Y.
PROOF. As X is feasible,
AX <B
As Y is feasible,
Y >0.
Therefore
YTAX < Y'B.
As Y is feasible,
ATy > C.
As X is feasible,
X=>0.
Therefore
XTATY > X7C.
But

XTATY = (AX)TY
= YTAX.
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Therefore

CTX =X"C< XT4"Y = YTAX < Y"B = BTY. O

Theorem 2.3. If X* and Y* are feasible solutions for (2.26a) and (2.26b) such
that CTX* = BTY*, then X* and Y* are optimal solutions for (2.26a) and
(2.26b), respectively.

PrOOF. By Theorem 2.2,
C'X < BTY*, for any feasible X.
But, by assumption,
CTX* = BTYy*,

Therefore
CTX < CTX*, for any feasible X.

Thus X* is optimal for (2.26a). Similarly,

CTX* < BTY, for any feasible Y.

And, by assumption,
CTX* = BTYy*,

Therefore
BTY* < BTY, for any feasible Y.

Thus Y* is optimal for (2.26b). O

We can make a number of inferences from these results. Firstly, the value
of any feasible primal solution is a lower bound on the value of any feasible
dual solution. Conversely, the value of any feasible dual solution is an upper
bound on the value of any feasible primal solution. The reader should verify
that these observations are true for the numerical example. Secondly, if the
primal has an unbounded optimal solution value, the dual cannot have any
feasible solutions.

The converse to Theorem 2.3 is also true:

Theorem 2.4. If X* and Y* are optimal solutions for (2.26a) and (2.26b) re-
spectively then
CTX* = BTY*

For a proof of this theorem, see the book by David Gale (1960).

Theorem 2.5 (Complementary Slackness). Feasible solutions X* and Y* are
optimal for (2.26a) and (2.26b), respectively if and only if

(X®T[ATY* = CT] + (Y®T[B— AX*] =0.
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Proor. Let U and V be the set of slack variables for (2.26a) and (2.26b), re-
spectively, with respect to X* and Y* i.e.,

AX*+U=B
ATY* -V =C
U,V =0

Premultiplying the first equation by (Y*)7, we obtain
(YHTAX* + (Y*)TU = (Y*)TB;

premultiplying the second by (X*)7, we obtain
(XH)TATY* — (X*)TV = (X*)TC.

As
(XMTATY* = (Y*)TAX*,

we can eliminate this common expression from these two equations, to

obtain
(Y*'B — (Y*)TU = (X*)TC = (X¥)TV. (2.30)

In view of the way the slack variables have been introduced, we have
U=B- AX*
V=ATY* — C.

Thus, in order to prove the theorem we must show that X* and Y* are opti-
mal for (2.26a) and (2.26b) if and only if

XHV +(Y®T'U =0. (2.31)

(=) If X* and Y* are assumed optimal for (2.26a) and (2.26b), respectively,
then, by Theorem 2.4,
CTXx* = BTY*

Thus (2.30) reduces to (2.31).
(<=) Assuming (2.31) holds, (2.30) reduces to
CTX* = BTY*,
Thus, by Theorem 2.3, X* and Y* are optimal solutions for (2.26a) and
(2.26b), respectively. O

Let us examine (2.31) more closely in order to discover why Theorem 2.5
is named the complementary slackness theorem. Because X*, Y*, U, and V
are all nonnegative we have

(X*HTV >0,
and
(Y®TU > 0.
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Therefore
x¥v; > 0, i=1,2,...,n and
yiu; > 0, j=L2...,m
But by (2.31) we can conclude that
x¥v; = 0, i=1,2...,n and
y¥u; =0, j=12,...,m
Thus we can conclude that the results 1, 2, and 3 hold for any pair of primal-
dual L.P. problems with finite optimal solution values.
It will now be shown what happens to the dual when the primal either

does not have a feasible solution or else has an unbounded optimum. Recall
the problem of Section 2.5.7. The dual of that problem is

Minimize: 12y; — 4y, + 8y = y, (2.32)
subject to: 3y;— Yy, +4y;=4 (2.33)
4y, — y,+2y;=>3 (2.39

V1, Y2, Y3 2 0.

An attempt will now be made to solve this problem by the two-phase method.
Phase [ is shown in Tables 2.59-2.62. Here,

Yo=Uys+y7
Phase I is shown in Tables 2.63 and 2.64. This problem has an unbounded
optimum because y, can be introduced to the basis at an arbitrarily high
level, causing an arbitrarily large objective function value. It is true in general
that when a primal L.P. problem has no feasible solution the dual has either an
unbounded optimum or no feasible solution.

Table 2.59

Constraints Y1 V2 V3 Va Vs Ve V7 r.hs.

(2.33) 3 —1 4 -1 1 0 0 4
(2.39) 4 -1 2 0 -1 1 3
Yo 0 0 0 0 1 1 0
Table 2.60
Constraints V1 V2 V3 Va Vs Ve V7 r.hs. Ratio
(2.33) 3 -1 4 -1 1 0 0 $
(2.34) @ -1 2 0 o0 -1 1 3 3

Yo —7 2 -6 1 0 1 0 -7
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Table 2.61

Constraints Y1 Vs Ve y7 r.hs. Ratio

<
Y
‘<
w
<
»

e o0 4+ @ -1 1 i - i &
(2.34) 1 - 3 0 o0 -3 i 3 3
Yo 0 i -3 1 0 -3 i -7
Table 2.62
Constraints Y1 V2 V3 Va Vs Ve y7 r.hs.
(2.33) 0 —15 1 -2 2 &5 -5 5%
L T T T
Yo 0 0 0 0 1 0 1 0
Table 2.63
Constraints  y; 2 ys Y Vs Ve 2 rhs
(2.33) 0 ~15 1 -3 2 3 -3 &
(2349 1 -1 0 1 -1 —2 2 2
Yo 12 — 4 8 0 0 0 0 0
Table 2.64
Constraints Y1 Va2 V3 Va Vs Ve V2 r.hs.
@3® 0 % 1 -} 3 & & g
L T e T T
i 0 -t o § -t -¥ -2 -3

Considering problem (2.32)—(2.34) as the primal, we have an example of
the following statement which is true in general: When a primal L.P. prob-
lem has an unbounded optimum the dual has no feasible solution. This result is
a corollary to Theorem 2.3.

2.6.2 Postoptimal Analysis

When the optimal solution to a linear program is analyzed to answer ques-
tions concerning changes in its formulation, the study is called postoptimal
analysis. What changes can be made to an L.P. problem? Of the variety that
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can be studied, the following will be considered:

Changes in the coeflicients of the objective function.
Changes in the r.h.s. constants of the constraints.
Changes in the Lh.s. coefficients of the constraints.
The introduction of new variables.

The introduction of new constraints.

LNk W=

Obviously, when the original L.P. is changed, the new problem could be
solved from scratch. If the changes are minor, however, it seems a shame to
ignore the valuable information gained in solving the original problem. The
following sections show how the optimal solution to a modified problem can
be found using duality and the solution to the original L.P.

2.6.2.1 Changes in the Objective Function Coefficients

When changes are made to the objective function only, the optimal solution
is still feasible, as the feasible region is unaltered.

Consider once again problem 2.1. The optimal simplex tableau for this
problem was presented in Table 2.8, which is reproduced here for conve-
nience.

Table 2.8
Constraints X, X5 X3 X4 Xs r.hs
(2.11) 0 1 2 0 -3 2
(2.12) 0 0 -3 1 -5 Z
(2.13) 1 0 —% 0 Z ¢
X 0 0 2 0 15 2

(i) Changes to Basic Variable Coefficients. Suppose that the objective
function coefficient ¢, of x, is going to be changed. What is the range from
its present value of 3 for which the present solution will remain optimal?
Suppose c, is changed from 3 to 3 + g. The initial simplex tableau for the
problem then is as shown in Table 2.65.

Table 2.65
Constraints X4 X, X3 X4 Xs rhs.
(2.11) 1 0 0 12
(2.12) 3 3 0 1 0 10
(2.13) 0 0 1 8
Xo —4 ~3+9) 0 0 0 0
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Table 2.66
Constraints b X X3 X4 Xs r.h.s
(2.11) 0 1 Z 0 -5 2
(2.12) 0 0 -3 1 -5 Z
(2.13) 1 0 -1 0 Z ]
xg 0 ¢ % 0 % 2
Table 2.67
Constraints b X, X5 X4 Xs r.h.s
(2.11) 0 1 Z 0 -3 12
(2.12) 0 0 -3 1 -3 2
(2.13) 1 0 -1 0 1 4
xo 0 0 i+l 0 H-da 4

It is easily verified that the tableau corresponding to table 2.8 is that shown
in Table 2.66. In order for the present basis to remain optimal, x, must still
be basic. Therefore, the x, value in the x, row must have zero value. This is
achieved in Table 2.67 by adding g times (2.11) to the x, row.

For the present basis to remain optimal, all x,-row values must be non-
negative. Thus,

i
o
\%

\%
o o

+

lw

q
q

A
i0 1

(=)

Therefore,
—-1<gq<3.

Hence the range for ¢, is (3 — 1,3 + 3), with a corresponding optimum range
of (8, 16). This is illustrated in Figure 2.11.

This approach can be generalized. If the objective function coefficient c;
of a basic variable x; is replaced by (c; + g), it is of interest to know whether
the original optimal solution is still optimal or not. On considering the
mechanics of the simplex method, it is clear that if the same iterations were
repeated on the new problem the only change in the optimal tableau is that
the x; coefficient in x, is reduced by q. Hence this coefficient is (—g), as it was
originally zero as x; was basic.

For the present basis to remain optimal, x; must remain basic. That is, the
x; coefficient in the x, row must be zero. This is achieved by adding g times
the equation containing x; as its basic variable to the x, row. The tableau is
now in canonical form. For the present basis to remain optimal, all the x,-
row coefficients must be nonnegative. Conditions on g can be deduced to
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(2.2) \

Xo = 4x; + £x, = 16

>
:

(24)
Figure 2.11. The graphical solution to an L.P. when an objective function coefficient
ranges.

achieve this. If a particular value of q is given, it can be deduced whether the
present basis is optimal. If it is not, further simplex iterations can be carried
out in the normal way.

(ii) Changes to Nonbasic Variable Coefficients. The situation is even sim-
pler for a change of + ¢ to the objective function coefficient c; of a variable
x; that turns out to be nonbasic in the optimal solution. The coefficient of x;
in the x, row is still reduced by q. However, in the present case there is no need
for the coefficient to become zero (as x; is nonbasic). Hence it simply remains
to check whether the coefficient is nonnegative for the present basis to remain
optimal. Thus once more conditions on ¢ can be deduced.

2.6.2.2 Changes in the r.h.s. Constants of the Constraints

Suppose that a r.h.s. constant of an L.P. problem is altered. Is the current
optimal solution still feasible? If it is still feasible it will still be optimal, as
the x,-row coefficients are unchanged.
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For example, consider Problem 2.1. The optimal simplex tableau for this
problem is given in Table 2.8.

(i) Change in r.h.s. Constant Whose Slack Variable Is Basic. Suppose that
the r.h.s. constant of constraint (2.12) is changed from 10 to (10 + r). For what
values of r will the present solution remain feasible and hence optimal?

Recall that (2.12) was:

3x; + 3x, + x4 = 10.
It now becomes:
3x; +3x,+41-x,=10+1"r

Note that the columns corresponding to x, and r are identical in the initial
tableau of the new problem, i.e.,

(0,1,0,0)".

Hence they will remain equal in any subsequent simplex tableau. But, as x,
is basic in Table 2.8, its column of coefficients is unchanged. Hence when the
same sequence of iterations that produced Table 2.8 is performed on the new
problem the only place in which r will appear is the r.h.s. of (2.12). This new
constant becomes (# + r). For this solution to remain feasible, all the r.h.s.
constants must be nonnegative, i.e.,

Z+r>0
or
r=> —%
Thus, as long as
b, > 10 — %,
ie.,
b, > 93,

the current solution will remain feasible and optimal.

Let us now generalize the above considerations. Suppose it is decided to
increase the r.h.s. constant of constraint i from b; to b; + r, and the slack
variable of the constraint is basic at the optimum. Then the only possible
change in the new optimal tableau will occur in the final b; entry. This entry
could be negative, indicating that the present solution may be infeasible.
However, if it is feasible it will still be optimal. Now if the final b; entry was
b;, the present solution will be optimal if

b;+r=>0,
ie.,
r 2 _Ei’

It may be that a specific value of r has been given that forces this inequality
to be violated, and hence for the present solution to be infeasible. One then
may ask what is the new optimal solution and its value? The negative r.h.s.
entry (b; + r) for constraint i is removed to attain feasibility. This is achieved
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by replacing the basic variable associated with this constraint by a nonbasic
variable. How this is done forms the kernel to the dual simplex method, which
is explained in the next chapter.

(ii) Change in r.h.s. Constant Whose Slack Variable Is Nonbasic. Suppose
now that the r.h.s. constant of constraint (2.11) is changed from 12 to (12 + r).
Once again we ask for what values of r will the present solution remain
feasible and hence optimal? Equation (2.11) was

3x; +4x, + x5 =12

It now becomes
3X1 +4XZ+1'X3:12+1'V.

As with the previous case, the columns in any simplex tableau corresponding
to x5 and r are identical, and will remain identical in any subsequent simplex
tableau. But now x5 is nonbasic, and hence its column in the optimal tableau
is substantially changed. Hence the r.h.s. column in the tableau found by
performing the same iterations to the new problem is:

12 2., 2 3.4 1.. 52 2.0\T
(5 +5ns—sn5—3n% +57).

The first three entries must be nonnegative to preserve feasibility (and
optimality):

2+%2>20
23>0
t-Lr>0
That is,
—-6<r<2,
with a corresponding solution value
% + %r.

This can be generalized quite naturally. Suppose that the r.h.s. constant,
b, of constraint i is changed to (b; + r), where the starting basic variable in
constraint i is x;. That is, constraint i is changed from

i1 X1 + Xy + 0+ apX, + X5 = bi
to
ailxl +ai2x2+"'+ai"x"+l‘xj':bi_*_l.r.

Assuming that x; is nonbasic in the optimal tableau, let its coefficients in this
tableau be given in the vector:

(—a-ljaaZja ce ey amj)T

and let the final r.h.s. coefficients be given in the vector:

(0,05, ...,b,)".
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Then the current solution will still be feasible (and optimal) if
by +a,;r>0
b,+a,r=0

. b, + Gpr = 0

all hold.
Those inequalities can be used to deduce a range in which the present

solution remains optimal. Provided r remains within this range, this yields

optimal solution values

Xg + ao;t,

where x§ is the present optimal solution value and a,; is the x,-row co-
efficient of x; in the optimal tableau.

2.6.2.3 Changes in the l.h.s. Coefficients of the Constraints

(i) Changes to Nonbasic Variable Coefficients. Consider changing a Lh.s.
coefficient a;; to a;; when its associated variable x; is nonbasic in the optimal
tableau. Suppose that the same sequence of simplex iterations are carried out
on the new problem. How will the new optimal tableau differ from the original
optimal tableau? The only differences that can possibly occur are in the x;
column. However, we have assumed that x; is nonbasic. Thus

. J.
x¥ =0.

Therefore changes in the x; coefficients in the constraints have no effect, and
the original solution will still be obtained and so must still be feasible. It
remains to settle the question of its optimality. The new x,-row coeflicient
of x; can be obtained as follows.

Let the starting basic variable from constraint i be x,;,. This variable does
not appear in any original equation other than constraint i, where it has
coefficient 1. So it is possible to deduce what multiple of a;; was added to
(—c;), the coefficient of x; in the x, row. Indeed, if ag,; is the final coefficient
of x;, then exactly af,; times equation i must have been somehow added to
equation 0. Let the current x,-row coefficient of x; be a§;. Then the new x-row
coefficient of x; should become

* % (=
ag; + agyw)@;; — a;j).

If this value is nonnegative, the present solution is still optimal. If the value is
negative, further simplex iterations must be performed, beginning with x;
entering the basis. In order to decide which variable leaves the basis it is
necessary to update the rest of the x; column. It can be shown by an argument
similar to that for a§; that the coefficient of x;inrowk(k = 1, 2, . . ., m)should
be changed from aj; to

* * (7
af; + ajelai; — ag).
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It is also possible to decide the question of whether the change to g;; affects
the optimality of the current solution by analyzing the dual problem. The
only change in the dual problem is that the jth constraint

a1yt azy, + ot agyi+ 0+ Ayiym = €
becomes
¥y +azy2+ 8V AV 2 €

It is possible to deduce the optimal y; values, y¥, either by having solved the
dual originally or from the x,-row coefficients in the optimal primal tableau.
Hence one can substitute in these y¥ values and check whether this new
constraint is satisfied. If it is the solution is still optimal. If it is not, and the
optimal dual tableau is available, the optimal solution to the new problem
can be obtained by using the dual simplex method. This method will be
explained in Chapter 3.

(ii) Changes to Basic Variable Coefficients. Consider once again Problem
2.1. Suppose that a;, is changed from 2 to 3 in (2.13). Suppose now that the
same sequence of simplex iterations is performed on the new problem as
that which produced Table 2.8. This will produce a tableau which differs
from Table 2.8 only in the x, column. The new x, column values can be
calculated by the method outlined in the previous section. This new tableau
is shown in Table 2.68. Here the condition of canonical form is destroyed,
as x, is supposed to be a basic variable with column

(1,0,0,0).

This condition is restored by row manipulation in Table 2.69.

Table 2.68
Constraints X4 Xy X3 X4 Xs r.hs
(2.11) 0 15 2 0 ~15 2
(2.12) 0 -3 -2 1 -3 2
(2.13) 1 z -1 0 3 £
Xo 0 To 2 0 o =3
Table 2.69
Constraints X4 X, X3 X4 Xs rhs
(2.11) 0 1 2 0 -3 24
(2.12) 0 0 -3 1 -3 0
(2.13) 1 0 -3 0 4 -4
Xo 0 0 0 0 1 8
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It can be seen that this solution is infeasible, as
x¥ = ~%

The dual simplex method (detailed in Chapter 3) can be used to transform
this tableau into an optimal one.

However, if the condition for optimality (all x,-row coefficients non-
negative) has not been satisfied the situation may be somewhat gloomy. In
this case one can select an earlier tableau where the condition is satisfied
and use the dual simplex method from there. If there are no such suitable
earlier tableaux, little of the computation can be saved and it is necessary
to solve the new problem from scratch.

If Table 2.69 had displayed a feasible but suboptimal solution, further
simplex iterations would have been needed to produce optimality. If it had
displayed a feasible solution satisfying the condition for optimality, nothing
more would have been necessary

2.6.2.4 The Introduction of New Variables

Suppose that a new variable, x, is added to Problem 2.1 as follows:

Maximize: 4x, + 3x, + 5x¢

subject to: 3x; + 4x, + X3 + 2x6 =12
3x; + 3x, + X4 + 3x¢ =10
4x, + 2x, + x5+ 4xg =8

xiZO, i=1,2,...,6.

The original optimal solution given in Table 2.8 can be considered a solution
to this new problem with x¢ nonbasic, i.e.,

x¥=0.

Hence it must still be a feasible solution. One must now decide whether it
is optimal or not. The new dual problem can be used to make this decision.
It will be identical to the original dual except that a new constraint,

2y; + 3y, +4y; =5, (2.35)

based upon x4 must be added to Problem 2.2. So the original dual solution
given in Table 2.64 remains feasible if and only if it satisfies (2.35). And
feasibility of the original dual solution implies optimality of the original
primal solution (with x¥ = 0) for the new primal problem. However the
optimal dual solution given in Table 2.64 unfortunately does not satisfy
(2.35). So more primal simplex iterations are necessary to produce optimality.

Before they can be carried out it is necessary to calculate the coefficients
of x4 in the tableau produced when the iterations that produced Table 2.8
are applied to the new problem. These coefficients can be found by consid-
ering x¢ as an original variable with constraint and objective function



68 2 Linear Programming

coefficients equal to zero. Then the introduction of x4 corresponds to a
change in the value of these coefficients from zero to their present values.
How to perform calculations based on these changes was explained in
Section 2.6.2.3. As each x4 coefficient was assumed to be zero, it would
remain zero when the simplex iterations are performed on the original
problem. Hence af; = 0,k =0, 1, . . ., 4. For the purposes of the calculations
it is assumed that the changes occur one at a time. This produces Table 2.70.
Now further simplex iterations can be carried out with first x4 entering the
basis.

Table 2.70
Constraint  x; X, X3 X4 X5 X r.hs.
(211) 0 1 : 0 - [32) +003) — 1o 4)] ¥
(2.12) 0 0 -3 1 -5 [+ 13) - 5@)] Z
(2.13) 1 0 -1 0 2 [-i0@ + 003) + 4)] $
Xo 0 0 $ 0 5 [=5+%2) +00) + 5(4)] 3
2.6.2.5 The Introduction of a New Constraint
Suppose that a new constraint,
Xy 4 X, < 3, (2.36)

is added to Problem 2.1. Is the solution in Table 2.8 still feasible? When a
further constraint is added to an L.P. problem, a new optimal solution
cannot improve on the original one. So if the original optimal solution is
still feasible, it is still optimal. However this is not true with regard to (2.36)
and the solution in Table 2.8. Hence a new slack variable, x¢ is added to
(2.36) to produce

Xy + X, + x6 =13, (2.37)

which is added to Table 2.8 to give Table 2.71.

Table 2.71
Constraints X X, X3 X4 Xs X r.hs
@.11) 0o 1 2 0 —& 0 12
(2.12) o 0o ¥ 1 - 0 2
(2.13) 1 o -i o0 2 0 4
(2.37) 1 1 0 0 0 1 3
Xo 0 0 10 &0 %2
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Table 2.72
Constraints Xy Xq X3 X4 Xs X¢ r.hs
2.11) 0 1 Z 0 -5 0 2
(2.12) 0 0 -3 1 -3 0 z
(2.13) 1 0 . 0 Z 0 4
(2.37) 0 0 ~4 0 —1i5 1 -1
Xo 0 0 2 0 o 0 32

When this Table 2.71 is reduced to canonical form by subtracting (2.11)
and (2.13) from (2.37) it is seen that the resulting solution is infeasible, as

= 1
X6 = T3>

even though the condition for optimality is satisfied. This is shown in Table
2.72. This situation can be remedied to produce optimality using the dual
simplex method of Chapter 3.

2.7 Special Linear Programs

2.7.1 The Transportation Problem

The transportation problem is a special type of linear program. Because of
its structure it can be solved more efficiently by a modification of the sim-
plex technique than by the simplex technique itself. Consider a supply sys-
tem comprising three factories which must supply the needs for a single
comimodity of three warehouses. The unit cost of shipping one item from
each factory to each warehouse is known. The production capacity of each
factory is limited to a known amount. Each warehouse must receive a mini-
mum number of units of the commodity. The problem is to find the minimum
cost supply schedule which satisfies the production and demand constraints.
Figure 2.12 shows a typical supply system in diagrammatic form, the num-
bers associated with the arrows representing unit shipping costs. The supply
schedule to be found consists of a list which describes how much of the com-
modity should be shipped from each factory to each warehouse. For this
purpose, define x;; to be the number of units shipped from factory i to ware-
house j.

Consider factory 1 with capacity 20. Factory 1 cannot supply more than
20 units in total to warehouses 1, 2, and 3. Hence

X11 + X152 + X3 < 20,



70 2 Linear Programming

Capacity Factories Warehouses Demand
20 1 1 5

2 20

10 3 3 20

0.8
Figure 2.12. The supply system of a typical transportation problem.

The production constraints for factories 2 and 3 are, respectively,
X1 + Xpp + X33 <15

and
X31 + X35 + X33 < 10,

Consider warehouse 1 with a demand of 5. Warehouse 1 must receive at
least five units in total from factories 1, 2, and 3, hence

X1+ Xa1 + X371 = 5.
The demand constraints for warehouses 2 and 3 are, respectively,
Xy + X3 + X35 220

and
x13 + x23 + X33 > 20

Of course, all quantities shipped must be nonnegative; thus,
xijZO, l=1,2,3
j=1273.

The objective is to find a supply schedule with minimum cost. The total
cost is the sum of all costs from all factories to all warehouses. This cost x,,
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can be expressed as

Xo =09x;; + 1.0x,, + 1.0x,5 + 1.0x,, + 1.4x,,
+ 0.8x,3 + 1.3x3; + 1.0x5, + 0.8x33.
The problem can now be summarized in linear programming form as
follows.
Minimize: Xo =09x;; + 1.0x,, + 1.0x,5 + 1.0x,, + 1.4x,,
+ 0.8x53 + 1.3x3; + 1.0x3, + 0.8x33
subject to: X113+ X152+ %3520
X1+ X35 + X33 < 15
X33+ X33 + X33 < 10
X131+ X1 + %325
X1z + X2 + X35> 20
X13 + Xz3 + X33 > 20
x;; = 0, i=1,2,3,
j=1,23.

The problem can be generalized as follows. Let

m = the number of factories;
n = the number of warehouses;
a; = the number of units available at factory i,i=1,2,...,m;
b; = the number of units required by warehouse j,j=1,2,...,n;
¢;; = the unit transportation cost from factory i to warehouse j.

Then the problem is to

Minimize:  xo= Y Y ¢;%; (2.38)
i=1j=1
subject to: Yoxi;=b,  j=1,2...,n (2.39)
i=1
z xijSa,-, i=1,2,...,m (240)
=1
x;; = 0, i=1,2, , m,
j=12,...,n

Problems which belong to this class of L.P. problems are called trans-
portation problems. However, many of the problems of this class do not
involve the transporting of a commodity between sources and destinations.
In the particular problem studied here, total supply is equal to total demand.
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Figure 2.13. The distinctive pattern of the unit constraint coefficients in the trans-
portation problem.

Hence in any feasible solution each factory will be required to ship its entire
supply and each warehouse will receive exactly its demand. Therefore, all
constraints will be binding in any feasible solution. The algorithm for the
solution of the transportation problem, shortly to be explained, assumes
that supply and demand is balanced in this way. Of course, there may exist
well formulated problems in which “supply” exceeds “demand” or vice versa,
as the problems may have nothing to do with the transportation of a com-
modity. In this case a fictitious “warehouse” or “factory” is introduced,
whichever is required. Its “capacity” or “demand” is defined so as to balance
total supply with total demand. All unit transportation costs to or from this
fictitious location are defined to be zero. Then the value of the optimal
solution to this balanced problem will equal that of the original problem.

It was mentioned earlier that, because of its structure, the transportation
problem could be solved efficiently by a modified simplex procedure. This
structure is.

1. All Lh.s. constraint coefficients are either zero or one.

2. All Lh.s. unit coefficients are always positioned in a distinctive pattern in
the initial simplex tableau representing the problem (ignoring slack vari-
ables). This is shown in Figure 2.13.

3. All r.h.s. constraint constants are integers.

This structure implies a very important result, that the optimal values of the
decision variables will be integer.

In solving problems by hand using the simplex method it was convenient
to display each iteration in a tableau. This is also done in the transportation
problem, except a different type of tableau is used. The general tableau is
given in Table 2.73.

The tableau for the example problem is given in Table 2.73a. The value
of each decision variable is written in each cell. A feasible solution to the
problem is displayed in Table 2.74. Methods by which an initial feasible
solution can be identified are outlined in the next section.



2.7 Special Linear Programs

Table 2.73
Warehouses
1 2 j n
1 Ci1 | C12 Cij Cin
2 Ca1 | €22 Caj Con
Factories
! Cit | Ciz C;j Cin
m Cm1 Cm2 ij Crnn
Demand by b, b; b,
Table 2.73a
1 2 3
1 09 1 1 20
2 1 14 0.8 15
3 1.3 1 0.8 10
5 20 20
Table 2.74
1 2 3
1 0.9 1 1 20
® ®
2 1 14 0.8 15
®
3 13 1 0.8 10
5 20 20

Supply

a

a;

73
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2.7.1.1 The Identification of an Initial Feasible Solution

2.7.1.1.1 The Northwest Corner Method. This method starts by allocating
as much as possible to the cell in the northwest corner of the tableau of the
problem, cell (1,1) (row 1, column 1). In the example problem, the maximum
that can be allocated is five units, as the demand of warehouse 1 is five. This
satisfies the demand of warehouse 1 and leaves factory 1 with 15 units left.
As warehouse 1 is satisfied, column 1 is removed from consideration. Then
cell (1,2) becomes the new northwest corner. As much as possible is allocated
to this cell. The maximum that can be allocated is 15, all that remains in
factory 1. Warehouse 2 now has its demand reduced to 5, as it has just
received 15 units from factory 1. Row 1 is dropped from consideration as it
has now expended all its resources. This means that cell (2,2) becomes the
new northwest corner. This procedure continues until all demand is met.
Table 2.74 shows the feasible solution thus obtained.

2.7.1.1.2 The Least Cost Method. Although the northwest corner method
is easy to implement and always produces a feasible solution, it takes no
account of the relative unit transportation costs. It is quite likely that the
solution thus produced will be far from optimal. The methods of this section
and the next usually produce less costly initial solutions. The least cost
method starts by allocating the largest possible amount to the cell in the
tableau with the least unit cost. In the example problem, this amounts to
allocating to either cell (2,3) or cell (3, 3). Suppose cell (2, 3) is chosen arbi-
trarily and 15 units are assigned to it. This procedure will always satisfy a
row or column which is removed from consideration. In this case row 2 is
removed. The demand of warehouse 3 is reduced to 5, as it has been allocated
15 by factory 2. (The cell with the next smallest unit cost is identified and the
maximum is allocated to it. This means 5 units are allocated to cell (3, 3).
This procedure continues until all demand is met. Table 2.75 shows the
feasible solution thus obtained.

Table 2.75
1 2 3
1 0.9 1 1 20
® ®
2 1 1.4 0.8 15
®
3 1.3 1 0.8 10
® ®
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2.7.1.1.3 The Vogel Approximation Method. The Vogel approximation
method often produces initial solutions which are even better than those
of the least cost method. However, the price of this attractiveness is con-
siderably more computation than the previous two methods. The approach
is similar to that of the Hungarian method for the assignment problem,
discussed later in this chapter, and also to that used in solving the travelling
salesman problem by branch and bound enumeration, discussed in Chapter 4.

The variation of the Vogel approximation method described here begins
by first reducing the matrix of unit costs. This reduction is achieved by sub-
tracting the minimum quantity in each row from all elements in that row.
This results in the following unit costs in the current example in Table 2.76.
The costs are further reduced by carrying out this procedure on the columns
of the new cost matrix. This produces Table 2.77.

A penalty is then calculated for each cell which currently has zero unit
cost. Each cell penalty represents the unit cost incurred if a positive allocation
is not made to that cell. Each cell penalty is found by adding together the
second smallest costs of the row and column of the cell. These second

Table 2.76
1 2 3

1 0 0.1 0.1 (-0.9)
2 0.2 0.6 0 (—0.8)
3 0.5 0.2 0 (—0.8)

Table 2.77

1 2 3
1 0 0 0.1
2 0.2 0.5 0

(0) (=0.1) )
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smallest costs for each row and column are shown alongside each row and
column for the example problem in Table 2.78. The penalties are shown in
the top right-hand corner of each appropriate cell.

Table 2.78
1 2 3
of [l 1]
1 0.2 0.1 0 0)
02 0s ] o
2 0 0 0.2 0.2
T
03] o1 o]
3 0 0 0.1 (0.1)
0 O ©

The cell with the largest penalty is identified. The maximum amount
possible is then allocated to this cell. Ties are settled arbitrarily. In the
example, either cell (1, 1) or cell (2,3) could be chosen, each with a penalty of
0.2. Cell (1, 1) will be arbitrarily chosen, and 5 units are allocated to it. This
procedure will always satisfy a row or column (or both), which is then re-
moved from further consideration. This removal may necessitate a further
reduction in the cost matrix and a recalculation of some penalties. This
results in Table 2.79. This process is repeated until all demand is met. The
final allocation is given in Table 2.80.

A comparison of the three techniques shows that the northwest corner
method produced an initial solution with value 42.5, the least cost method
and the Vogel approximation method produced the same solution with
value 40.5. It will be shown that this latter solution is optimal.

Table 2.79

5 0 02 0.1 0.1)

0.5 0 05 0.5)

0.1 0 01 0.1)

(0.1) (©)
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Table 2.80
1 2 3
1 0.9 1 1
® ®
2 1 1.4 8
®
3 1.3 0.8
® ®

2.7.1.2 The Stepping Stone Algorithm

Once an initial feasible solution has been found by one of the three preceding
methods, it is desired to transform it into the optimal solution. This is
achieved by the stepping stone algorithm. Consider the initial feasible solu-
tion found by the northwest corner method given in Table 2.74. To deter-
mine whether this solution is optimal or not it is necessary to ask, for each
cell individually, if the allocation of one unit to that cell would reduce the
total cost. This is done only for those cells which presently have no units
assigned to them.

For example, cell (1, 3) has nothing assigned to it. Would the total cost
be reduced if at least one unit was assigned to that cell? Assume that one
unit is assigned, i.e.,

X3 =1

This means row 1 and column 3 are unbalanced—the sum of their assign-
ments do not add up to the appropriate capacity and demand. To balance
row 1, one unit is subtracted from cell (1,2) so that now

x12 = 14

Now column 2 is unbalanced. To correct this, one unit is added to cell 2, 2,
so that now
xZZ = 6

Now row 2 is unbalanced. To correct this, one unit is subtracted from cell
2,3):

X3 =9.
This also balances row 3.

What we have done is to trace out a circuit of cells, the only empty one
being the cell under scrutiny. This circuit is shown in Table 2.81. Is this
solution an improvement over the initial solution? The solution is displayed
in Table 2.82.
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Table 2.81
1 2 3
1 0.9 1 1 20
® ® ?
2 1 14 0.8 15
®
3 1.3 1 0.8 10
5 20 20
Table 2.82
1 2 3
1 0.9 1 1 20
® ®
2 1 1.4 0.8 15
® ®
3 1.3 1 0.8 10
5 20 20

The difference between the solutions in Tables 2.81 and 2.82 is

+3$1.0 for the unit shipped from factory 1 to warehouse 3
—$1.0 for the unit less from factory 1 to warehouse 2
+81.4 for the unit shipped from factory 2 to warehouse 2
—$0.8 for the unit less from factory 2 to warehouse 3

$0.6

Thus an allocation of one unit to cell (1, 3) causes an increase of $0.6. Hence
such an allocation is not worthwhile. We can evaluate the worth of all other
empty cells in a similar manner; that is, for each empty cell we can form a
circuit of cells, the only empty cell in the circuit being the cell in question.
The reader should verify that the changes in x, for a unit allocation to
cells (2, 1), (3,1), and (3,2) is —$0.3, $0.0, and — $0.4, respectively. The circuit
of cells for this last proposed allocation is shown in Table 2.83.

As there is a decrease in x, of $0.4 for each unit allocated to cell (3,2),
we wish to allocate the maximum possible amount to (3,2). The cells which
are going to have their allocations reduced are (2, 2) and (3, 3). The minimum
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Table 2.83
1 2 3
1 9 1 1
® ®
2 1 1.4 0.8
Or——©
3 1.3 1 ‘f 0.8
7 (19

allocation among these is 5 units in (2, 2). Hence the maximum allocation we
can make to (3,2) is 5: any more and (2, 2) would have a negative allocation,
which would be infeasible. The new assignment is shown in Table 2.84. The
total cost is decreased by

$(5 x (0.4)) = $2.0.
Thus the new total cost is
$(42.5 — 2.0) = $40.5,

which can be verified by direct computation. We have now completed one
iteration of the stepping stone method. All empty cells in Table 2.84 are
examined in the same way. Of course we know from the previous iteration
that a unit allocation to (2,2) will produce an increase in x, of $0.4. Indeed
an allocation to any empty cell in Table 2.84 will effect an increase in x,.
The circuit of cells for each empty cell is:

(1,3): (1,3),(3,3),(3,2),(1,2), (1,3)) (+%0.2)
(2,1): (2,1),(1,1),(1,2), (3,2),(3,3), (2, 3), 2,1)) (+350.1)
(2,2): 2,2),(2,3) (3,3),(3,2,(2,2)» (+%0.4)
(3,1): {(3,1),(1,1),(1,2),(3,2), (3, 1)> (+50.4).
Table 2.84
1 2 3
1 0.9 1 1
® ®
2 1 1.4 0.8
@
3 1.3 1 0.8
® ®
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Note that the circuit for (2,1) crosses over itself, but this need not cause
any alarm.

This means that we have arrived at the optimal solution. The shipping
schedule is: ship

5 units from factory 1 to warehouse 1,
15 units from factory 1 to warehouse 2,
15 units from factory 2 to warehouse 3,

5 units from factory 3 to warehouse 2,

5 units from factory 3 to warehouse 3,

for a total cost of $40.5. This solution is the same as that obtained by the
Vogel approximation method and the least cost method.

It has been stated that total supply must equal total demand for the
problem to be in a form suitable for the stepping stone algorithm. This means
that one of the constraints (2.39), (2.40) can be expressed in terms of the others
and is redundant. Hence the problem possesses in effect (m + n — 1) con-
straints. Thus any basic feasible solution should contain (m + n — 1) basic
variables. It may occur that a solution contains less than (m + n — 1) basic
(positive) variables. Such a solution is degenerate.

It is not possible to analyze all the empty cells of the tableau of the degen-
erate solution to find an improvement. This problem can be overcome by
declaring basic as many cells as necessary to bring the number in the basis
up to (m + n — 1). This is achieved by allocating a very small positive real
number ¢ to these cells. These allocations are made to cells in rows or columns
where there is only one basic cell in order to enable circuits of cells to be
created for all empty cells. These &’s are then removed when the optimal
solution has been found.

2.7.1.3 Dantzig’s Method

The stepping stone method will guarantee to find the minimal solution for
any well formulated transportation problem in a finite number of steps.
However, its implementation becomes very laborious on all but the smallest
problems. For realistically sized problems the following simpler method due
to Dantzig is recommended. Like the stepping stone method it evaluates each
empty cell—in order to see whether it would be profitable to make a positive
assignment to it. This evaluation is based on the theory of duality of Section
2.6.1. To be more specific, values are calculated for variables in the dual of
the transportation problem regarded as an L.P.

Unlike the stepping stone method, Dantzig’s method does not create a
circuit of cells in order to evaluate the worth of an empty cell. Instead it
calculates values for the dual variables; these enable one to determine which
empty cell should be filled. It then creates one circuit of cells in order to deter-
mine how much should be allocated and which cell leaves the basis. As only
one circuit is created at each iteration, this method is far simpler than the
preceeding one. :
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We now explain how the method works by using it to solve our example
problem. Consider once again the solution obtained by the northwest corner
method, given in Table 2.74. We associate multipliers ; with each row i and
v; with each column j. For each basic cell (i, j) set

u; + v; = ¢,

the unit transportation cost, and
ul = O.

The values of all u;’s and v;’s can be then be calculated as the c;;’s are known

constants. From Table 2.74 we have

0+0, =09, (4 =0)

0+v,=1, (uy, =0)
u, +v,=14
u, +v3 =038
us + vy = 0.8,

which can be solved to yield
u, =0, v, =09, v, =1, u, = 04, vy =04, u; = 04.

Having determined values for what will be seen to be dual variables, we
now calculate the change in x, for a unit allocation to each nonbasic cell
(k, 1):

Cu = Cy — U — Uy
The ¢,,’s will have the same values as those determined by the stepping stone
method. For our example:
13=C3— U —v3=1-04=06
21 =Cyy—U;—0;=1-04-09=-03
33 =C33 —U3—0;,=13-04-09=0
Ciy=0C3,—U3—0,=1—-04—-1=—-04.

I o o al
i

Thus, as with the stepping stone method, we have discovered that the maxi-
mum amount possible should be allocated to cell (3,2). This allocation is
made as in the previous method. We effect the change of basis, producing
Table 2.84 from Table 2.83. The multipliers for Table 2.84 are now calculated:

0+Ul :09, (ul =0)

04+v,=1 (u, =0)
u, + v =0.8

Uz +v,=1

uz + vy = 0.8.

These are solved to yield:

u, =0, v; = 0.9, v, =1, u; =0, v = 0.8, u, = 0.
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We can now calculate the change in x,, for a unit allocation to each nonbasic
cell:

Ci3=1-0-08=02

T, =1-0-09=0.1

C,,=13-0-09=04

T3, =13-0-09=04

These values are identical with those obtained by the simplex method and
are all nonnegative. As the optimal solution has been found, as displayed
in Table 2.84, the method is terminated.

In order to explain why the method works, let us take the dual of the
capacitated version of (2.38), (2.39), (2.40). That is, we assume equality in the
constraints and the problem becomes

m n
Minimize:  xo= ). Y, ¢;Xy;
i=1j=1

subject to: Y x;=b;, j=12...,n

x;; = 0.

The reader unfamiliar with L.P. duality should refer to Section 2.6.1. In
taking the dual, suppose we associate a dual variable v; with each of the
first n constraints and a dual variable, u; with each of the next m constraints.
The dual problem is:

n m
Maximize: Y b+ Y au
j=1 i=1

subject to: v; + u; < ¢, i=12,....,m

Note that the u;’s and v;’s are not restricted to nonnegative values, as they
arise from equality constraints. The special nature of the inequality con-
straints in the dual arises because of the structure of the primal constraint
matrix, as illustrated in Figure 2.13.

Suppose we are solving the transportation problem as a regular L.P. using
the simplex method. We would wish to calculate the x,-row coefficients ¢;;
at each iteration in order to test for optimality and, if the test is negative,
decide which variable enters the basis. Now, according to property 3(a) of

complementary slackness (see Section 2.6.1.3),
X;;>0=v;+u=c;

for every basic variable x;;. This creates (m + n — 1) equations in (m + n)
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unknowns, which can be solved by assigning an arbitrary value to one of
the unknowns. Traditionally u, is set to zero.
Now the value of each slack variable in the dual constraint

Uj+u,~S cij
18
Cii—Uu v

ij i = Uje

Thus from property 2 of Section 2.6.1.3 we have

Eij = Cij - ui - Uj.
Thus in order to determine which variable x;; should enter the basis (if op-
timality has not yet been reached) we must simply select the x;; which has the
most negative value of ¢;; — u; — v;. Note that the most negative (rather than

most positive) is selected, as our original objective is one of minimization.

2.7.2 The Assignment Problem

The assignment problem is a special type of transportation problem. Because
of its structure it can be solved more efficiently by a special algorithm than
by the stepping stone algorithm. Consider a collection of n workers and n
machines. Each worker must be assigned one and only one machine. Each
worker has been rated on each machine and a standardized time for him to
complete a standard task is known. The problem is to make an assignment
of workers to machines so as to minimize the total amount of standardized
time of the assignment.
For the purposes of describing an assignment, define

o {1, if worker i is assigned to machine j,
H 0, otherwise
n= the number of workers and the number of machines
¢;; = the standardized time of worker i on machine j, assumed to be non-
negative.

Then the problem is to

Minimize:  xo= Y Y, ¢;jX; (2.41)
i=1j=1
subject to: Y ox=1, j=1,2,...,n (2.42)
i=1
inj-:l, i=1,2,...,n (243)
j=1
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It can be seen on comparison with (2.38), (2.39), (2.40) that this formula-
tion is indeed a special case of the transportation problem the workers re-
presenting factories and the machines representing warehouses. Here each
“factory” and each “warehouse” has a capacity and demand of one unit.
The problem can be represented by a tableau like Table 2.73, shown in
Table 2.85. The problem could be solved using the techniques developed
for the transportation problem. However let us examine the problem a little
more deeply in order to discover a more efficient method which exploits
the special structure of this assignment problem.

Table 2.85
Machines
1 2 e J n
1 1
2 1
Workers
i ¢y
n 1
1 1 1
The matrix of standardized times
€11 Cip 77 €1 77 Cyy
Cay Cap 77 Cpp "7 Cpy
C —
Cir Co 77 Gyt Gy
cnl Cn2 Chi Cpn

holds the key to the problem. Because there is a one-to-one assignment of
workers to machines, our problem reduces to finding a set S of n entries of C
with the properties that (i) exactly one entry of S appears in each row of C
and (ii) exactly one entry of S appears in each column of C. Then among all
sets S of n entries of C we require the one with the least sum. In order to
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make use of this fact, consider the following numerical example:

n=>5
and

In this case it is possible to identify a minimal S quite easily. Because every
entry in C is at least one, any set S with sum five must be minimal. Such a
set has been circled and it has, of course, exactly one entry in each row and in
each column, thus obeying properties (i) and (ii).

Suppose now that we subtract one unit from each entry in C to obtain C':

4 © 4 0 2
35 © 7 3
c=l® 2 1 1 2
4 5 4 © 5
1 0 4 2 ©

Because the relative value of the entries remain unchanged, the minimal
solution remains the same.

These observations hold true for any matrix C, and furthermore, because
all entries are assumed to be nonnegative, once a set S of all zero entries has
been identified it must be minimal. The Hungarian method, due to the Hun-
garian mathematician Konig has this as its aim. The method progressively
reduces the entries in a manner similar to our step from C to C’ until a set
S of zeros can be identified.

The method is made up of three parts:

1. Cisreduced by subtracting the least entry in column i from every element
in column j, for each column i,i= 1,2, ..., n. Then if any row has all
positive entries, the same operation is applied to it.

2. A check is made to see whether a set S of all zeros can be found in the
matrix. If so, S represents a minimal solution and the method is terminated.
If not, step (c) is applied.

3. As a minimal S cannot yet be identified, the zeros in C are redistributed
and possibly some¢ new zeros are created. How this is carried out will be
explained shortly. Then the check of step 2 is performed again. This cycle
of steps 2 and 3 is repeated until a minimal S is found.

A few comments about these steps will now be made. We need to show
that if C’ is the matrix obtained from C by step (1), then the set of minimal
sets S for C and C’ are identical. Suppose that «; and f;, positive real numbers,
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are subtracted from the ith row and jth column of C, respectively, for each
row i and each column j. Then, if ¢;; and cj; are the i — j elements of C and
C', respectively,

cj=cij— o — P
Further, if x;, is the objective function associated with the new assignment
problem represented by C’, then

n n
Xo = Z 2 ChiXi

Il
=
NIE

(Cij -0 = ﬁj)xij

n n n n
CijXij — Z Z X5 — Z Z Bjxij

i=1j=1 i=1j=1 i=1 j=1

— Xg— i <oc,- Ji xii) - ]i ﬁj<i§1 x.-,-)-

=1

Il
M=
M=

Thus x|, and x, differ only by the total amount subtracted, which is a con-
stant. Therefore they have identical minimal sets.

We need to have an efficient way of performing step (2). That is, we need
to be able to pronounce whether or not a set S of zeros exists, and if it does,
which entries belong to it. A moment’s reflection reveals that any such S
has the property that its zeros in C’ can be transformed into a leading
diagonal of zeros by an interchange of rows. For example the C' of our
numerical example:

@2 112
4O 4 0 2
350 7 3|
4 5 40O 5
1 0 420
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One needs exactly n (in this case 5) straight lines in order to cross out all the
circled zeros: no smaller number of straight lines will suffice:

Iy 1 1
=11

Because the interchange of rows does not affect this minimum number
of crossing lines, we have discovered a simple test to determine whether or
not a minimal S can be found:

If the minimum number of lines necessary to cross out all the zeros equals n,
a minimal S can be identified. If the minimum number of lines is strictly less
than n, a minimal S is not yet at hand.

How can we be sure we are using the smallest possible number of crossing
lines? The following rules of thumb are most helpful in this regard: (a)
Identify a row (column) with exactly one uncrossed zero. Draw a vertical
(horizontal) line through this zero. (b) If all rows or columns with zeros
have at least two uncrossed zeros, choose the row or column with the least,
identify one of the zeros and proceed as in (a). Ties are settled arbitrarily.

In order to make these rules clear, we illustrate them on the following
example:

A W oo N O
N OO O O
S = 0 O M
S 0O W N
o O o O O

The first column has exactly one zero, so according to (a) we cross out the
first row:

6—6—4—4—9
6 00 50
8 0 8 0 8
301280
4 2 0 0 5

We must now use (b). We arbitrarily choose c¢3, and cross out the second
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column:

w 00 O
—_ o0 O
oo O W
S oo O

4 20

o
w

Now row 4 has one uncrossed zero, thus we cross out column 5. Proceeding
in this way we produce:
-0—
6
8
3

4 2
This requires five lines and thus contains a minimal S. Identifying such an
S is usually not difficult if one begins by looking for rows or columns with
exactly one zero.
Now we come to step (3). Suppose that strictly less than n lines are needed
to cross out all the lines in C'. We know then that a minimal S cannot be
found directly. In order to transform C' we make use of Kdnig’s theorem:

If the elements of a matrix are divided into two classes by property R, then the
minimum number of lines that contain all the elements with the property R is
equal to the maximum number of elements with the property R, with no two
on the same line.

Applying this to C', where R is the property of being zero, we now present
a way to transform C’. We wish to change at least one of the uncrossed
(and hence positive) numbers to become zero. This is brought about by (i)
subtracting the minimum uncrossed entry from all uncrossed entries; and
(i) adding this same number to each doubly crossed entry (an entry with
both horizontal and vertical lines passing through it). All lines are then
removed and step (3) is completed.

Table 2.86

Machines
1 2 3 4 5

Workers

(VN SR USSR
—_h N W
W \O ~J 0 W
~ 00 O\ W \O
WO
N o N L O\
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2.7.2.1 A Numerical Example

The Hungarian method will now be used to solve the problem whose C
matrix is given in Table 2.86. Here n = 5. Following step 1 we subtract a
quantity from each column of the (c;;) matrix. This amount is equal to the
minimum quantity in that column. Thus the initial (c;;) matrix becomes:

5 2 6 1 4
2 5 0 6 3
1 4 3 2 4
4 6 S 0 6
0 0 4 1 0

(=) (=3 (=3 (=3 (=2

The next step is to carry out the same operation for each row. The matrix
becomes

4150 3 (=1
250 6 3 (0)
0321 3 (=1
4 6 50 6 (0
0041 0 (0

Following step 2, the minimum number of lines passing through all the
zero elements are drawn:

If the minimum number of lines had been 5, an optimum solution could
have been found by inspection. This involves selecting five zero elements—
one such element in each row and each column. This selection will be
illustrated shortly. Such is not the case in the present problem, where only
four lines are necessary. This means that an implementation of step 3 is
required. The minimum uncrossed number is selected. It is subtracted from
all uncrossed numbers:

4 0 4 0 2
2 506 3
02112 (-1
4 5405
00410
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This same number (1 in this case) is added to all numbers with two lines
passing through them:

40 40 2
3507 3
02 1 1 2 (+1)
4540 5
10420

The minimum number of lines are again drawn through all the zero elements:

4—6—4—6——2-
3540673
—2—+1+2
4—5—4—06—>5
+—6—4—26

As five lines are required, the minimal solution can be found.
The solution for the present problem is

X, =1
X3 =1
x3; =1
X44 =

Xs5 =1

The value of this solution is equal to the total of the numbers subtracted,
1e.,

x¥=14+34+3+3+24+14+0+14+0+0+1=15

This value can be checked by inspecting the original (c;;) matrix.

2.8 Exercises

(I) Computational

1. Solve the following problems graphically.
(a) A baker bakes two types of cakes each day, one chocolate and one banana. He
makes a profit of $0.75 for the chocolate cake and $0.60 for the banana cake
The chocolate cake requires 4 units of flour and 2 units of butter and the banana
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(b)

(©

cake requires 6 units of flour and 1 unit of butter. However, only 96 units of
flour and 24 units of butter are available each day. How many of each type of
cake should he bake each day so as to maximize profit?

A bakery produces two types of bread. Each type requires two grades of flour.
The first type requires 5 kg of grade 1 flour and 4 kg of grade 2 flour per batch.
The second type requires 4 kg of grade 1 and 6 kg of grade 2 per batch. The
bakery makes a profit of $10 and $20 per batch on the first and second types,
respectively. How many batches of each type should be made per day if 200 kg
of grade 1 and 240 kg of grade 2 flour can be supplied per day?

In the production of wool yarn by carding it is found that the waste produced
is dependent on the quantity by weight of a lubricant/water emulsion added
before processing. Because of pumping restrictions the concentration of the
emulsion should not exceed 1 part lubricant to 2 parts water. The application
of the emulsion should be at a rate so that no more than 5% dry wool weight of
emulsified wool is emulsion. Assume that the densities of water and lubricant
are the same. Quality control measures stipulate that the lubricant should not
be more than 4%, (dry wool weight) of the emulsified wool. It is found that the
waste produced decreases by 8 kg per kg lubricant added and decreases by 5 kg
per kg water added. Find the amounts of lubricant and water to apply to 100 kg
of dry wool so as to minimize the waste produced.

(d) A company makes two types of brandy: The Seducer (S), and Drunkard’s

C)

Delight (D). Each barrel of S requires 5 hours in the fermenter and 2 hours in
the distiller, while each barrel of D requires 3 hours in the fermenter and 4 hours
in the distiller. Because of various restrictions the fermenter and the distiller
can be operated for no more than 15 and 8 hours per day, respectively. The
company makes a profit of $210 for a barrel of S and $140 for a barrel of D. How
many barrels of each type should be produced to maximize daily profit?

A farmer produces potatoes at a profit of $200 per unit and pumpkins at a
profit of $140 per unit. It takes him 5 days to crop a unit of potatoes and 7 days
to crop a unit of pumpkins. Earlier in the year it takes him 5 days to prepare
the land and plant seeds for a unit of potatoes and 3 days for a unit of pumpkins.
He has 90 cropping days and 50 preparation days available. What amount of
each vegetable should he plan on in order to maximize profit?

2. Solve the following problems by the simplex method.
(a) A plant manufactures three types of vehicle: automobiles, trucks, and vans, on

which the company makes a profit of $4,000, $6,000, and $3,000, respectively,
per vehicle. The plant has three main departments: parts, assembly, and
finishing. The labour in these departments is restricted, with parts, assembly,
and finishing operating 120, 100, and 80 hours, respectively, each two-week
period. It takes 50, 40, and 30 hours, respectively, to manufacture the parts for
an automobile, truck, and van. Assembly takes 40, 30, and 20 hours, respectively,
for an automobile, truck, and van. Finishing takes 20, 40 and 10 hours, respec-
tively, for an automobile, truck, and van. How many of each type of vehicle
should the company manufacture in order to maximize profit for a two-week
period?

(b) A manufacturer produces three soft drink cocktails: Fruito, Fifty/fifty, and

Sweeto. The amounts of sugar and extract in one barrel of each are shown in
Table 2.87. The manufacturer can obtain 6 kg, 4 kg, and 3 kg per day of sugar,
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Table 2.87. Data for Exercise 2(b).

Cocktail Profit/barrel Sugar Orange extract Lemon extract

Fruito $30 1 kg 2kg 1kg
50/50 $20 2 kg 1 kg l kg
Sweeto $30 3kg 1 kg 1kg

(©

orange extract, and lemon extract, respectively. The profit is proportional if
fractional quantities of a barrel are produced. How much of each cocktail
should be produced in order to maximize daily profit?

The problem is to maximize the satisfaction gained on a 140 km journey when
only 3 constant speeds are permitted: 0, 50, and 80 km/hr. The satisfaction
gained from stopping and resting (0 km/hr), travelling slow (50 km/hr) and
travelling fast (80 km/hr) is rated at 5, 9, and 2 units/hr, respectively. Restric-
tions imply that the journey must be completed in no longer than 4 hours, the
total time spent stationary or travelling at high speed must not exceed 1 hour,
and the average speed of the journey must not be less than 40 km/hr.

(d) A small company makes 3 types of biscuits: 4, B, and C. 10 kg of biscuit 4

(®)

(8

requires 5 kg of sugar, 3 kg of butter, and 2 kg of flour. 10 kg of biscuit B re-
quires 4 kg of sugar, 3 kg of butter, and 3 kg of flour. 10 kg of biscuit C requires
3 kg of sugar, 4 kg of butter, and 3 kg of flour. The company has available per
day 40 kg of sugar, 33 kg of butter, and 24 kg of flour. The company can sell all
it produces, and makes a profit of $60, $50, and $30 from 10 kg of biscuits A4,
B, and C, respectively. How much of each biscuit should the company make to
maximize daily profit?

Recall the farmer in Exercise 1(e). He discovers he can now make a profit of
$160/kg from beets. These take 4 days for planting and 4 days for cropping per
kilogram. He also considers the time it takes to sell his produce in the market.
It takes 2 days to sell one kilogram of any vegetable. He has 30 days to sell his
vegetables. What weights of the three crops should he now plan for in order to
maximize profit?

A man has approximately 100 m? of garden space. He decides to grow corn (C),
tomatoes (T'), and lettuce (L) in the 20 week growing season. He estimates that
on average for every expected kg of yield from the crops it takes 0.5, 1.0, and
0.5 minutes each week to cultivate the corn, tomatoes, and lettuces respectively.
He does not want to spend more than 3 hours per weekend cultivating. He will
spend up to $2.00/week for seeds. The seed costs (on a weekly basis) per kg
yield for C, T, and L are 0.5, 1.5, and 1.0 cents, respectively. Each crop, C, T,
and L requires %, £, and £ m?, respectively, in space per kg yield. He can sell the
vegetables for 0.40, 1.00, and 0.50 dollars per kg for C, T, and L respectively.
What amounts should he plan for in order to maximize revenue?

An ice cream factory makes 3 different types of ice cream: plain (P), hokey
pokey (H), and chocolate (C). Profits for one unit of each type are $5, $2, and
$1 for P, H, and C, respectively. Time constraints for producing a unit of each
are shown in Table 2.88. Available hours per day are 8, 10, and 4 for machining,
men, and, packing, respectively. What amounts of the different ice creams
should be manufactured to maximize daily profit?
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Table 2.88. Data for Exercise 2(g).

Product Machine hours Man hours Packing hours

P 4 3 1
H 2 2 1
C 1 2 1

3. Solve the following problems graphically and by the simplex method and compare
your solutions.

(@

(b)

(©

()

(©

A housewife makes sauce (S) and chutney (C) which she sells to the local store
each week. She obtains a profit of 40 and 50 cents for a pound of C and S,
respectively. C requires 3 Ib tomatoes and 4 cups of vinegar; requires 51b
tomatoes and 2 cups of vinegar. She can buy 24 1b tomatoes and 3 bottles of
vinegar at discount price each week. The 3 bottles provide 16 cups of vinegar.
In order to make it worthwhile, the store insists on buying at least 3 1bs of goods
each week. What combination should be made in order to maximize profit?

A man makes glue in his backyard shed. Glue A4 requires 2 g of oyster shell and
4 g of a special rock to produce a 2 kg package. Glue B requires 3 g of shell
and 2 g of rock for each 2 kg package. He must produce at least 8 kg of glue
per day to stay in business. His son scours the sea shore for the shell and rock
and can gather 12 kg of each per day. If the profit is $3 and $4 on a 2 kg package
of type A and B, respectively, what is the maximum profit he can hope to make?
An orchard which grows apples (4) and pears (B) wishes to know how many
pickers to employ to maximize the quantity of fruit picked in a given period.
The average quantity of fruit a picker can gather is 14 kg of 4 or 9 kg of B. The
orchard can afford to employ no more than 18 people. There cannot be more
than 9 picking apples or the supply will be exhausted too soon, flooding the
market and reducing returns. But there must be more than half as many picking
apples as there are picking pears or costs are increased because of fallen fruit
being wasted. )

Recall Exercise 1(€). Suppose in time of war the government insists that the
farmer produces at least 5 kilograms of vegetables. What should he do to
maximize profits now?

Consider the gardener who decides to eat some of his corn and tomatoes. A
100 g serving of corn will add 80 calories; a 100 g serving of tomatoes will add
20 calories. He does not want to take in more than 200 calories from this part
of his diet. He needs at least 50 mg of vitamin C and at least 1.8 mg of iron
from these vegetables to make up his daily intake. A 100 g serving of corn
yields 10 mg of vitamin C and 0.6 mg of iron, while a 100 g serving of tomatoes
yields 18 mg of vitamin C and 0.8 mg of iron. With corn and tomatoes costing
4 and 10 cents per 100 g, how should he achieve his dietary needs while mini-
mizing costs?

4. The following problems have multiple optimal solutions. Solve each graphically
and by the simplex method. Define the set of all optimal solutions.

(a)

A builder finds he is commonly asked to build two types of buildings, 4 and B.
The profits per building are $4,000 and $5,000 for A and B respectively. There
are certain restrictions on available materials. 4 requires 4,000 board feet of
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timber, 4 units of steel, 3 units of roofing iron, and 2 units of concrete. B re-
quires 5,000 board feet of timber, 3 units of steel, 2 units of roofing iron, and
1 ton of concrete. However only 32,000 board feet of timber, 24 units of steel,
20 units of roofing iron, and 16 units of concrete are available per year. What
combination of A4 and B should he build per year to maximize profit?

Recall the glue manufacturer of Exercise 3(b). In order to remain competitive
he finds he must add resin and filler to his glues. 3 g of resin must be included
in each packet of each glue and 4 g of filler must be included in glue 4 and
2 g of filler in glue B. His son can manufacture only 15 g of resin and 9 g of
filler each day. He can now make a profit of $8 and $4 for a package of glues A
and B, respectively. What is the maximum profit he can hope to make?

A recording company is going to produce an hour-long recording of speeches
and music. The problem is to fully utilize the 60 available minutes. There can be
no more than 3 speeches and 5 musical items. The time allotted for speeches
must be no less than one-eighth of the time allotted to music. The gaps between
items or speeches must be filled with commentary, which must be no more than
12 minutes in total. The speeches are 5 minutes long, the items 8 minutes. How
many of each should be included so as to minimize the commentary time on
the recording?

A bakery makes 2 types of cakes, 4 and B. 10 1b of cake A4 requires 2 1b of flour,
3 Ib of sugar, 3 eggs, and 4 1b of butter. 10 b of cake B requires 4 1b of flour, 3 1b
of sugar, 6 eggs, and 1 1b of butter. The bakery can afford to purchase 24 1b of
flour, 27 1b of sugar, 24 eggs, and 20 1b of butter per day. The bakery makes a
profit of $3 for 101b cake 4 and $6 for 10 1b of B. How much of each cake
should be made daily in order to maximize profit?

Melt-In-Your-Mouth Biscuit Co. finds that its two best sellers are Coco De-
lights (C) and Cheese Barrel Crackers (B). C and B produce a profit of $10 and
$15 per carton sold to the supermarkets. Some ingredients are common to each
biscuit. Each week no more than 500 kg of flour, 360 kg of sugar, 250 kg of
butter and 180 kg of milk can be used effectively. Every 100 kg of C requires
20 kg of flour, 16 kg of sugar, 18 kg of butter, and 15 kg of milk. Every 100 kg
of B requires 30 kg of flour, 20 kg of sugar, 12 kg of butter, and 10 kg of milk.
Find the weekly combination of production which maximizes profit.

A man finds he is eating a lot of corn and no cheese and decides to do some-
thing about it. Being very careful of his dietary considerations he realises that
he needs 600 I.U. of vitamin A, 1 mg of iron, 0.12 mg of calcium, and no more
than 400 calories per day. Now 100 g of cheese gives 400 I.U. Vitamin A, 0.3 mg
iron, 0.2 mg calcium, and 120 calories. Also, 100 g of corn gives 160 I.U. vita-
min A, 0.6 mg iron, no calcium, and 80 calories. Moreover, cheese costs 10 cents
and corn 4 cents per 100 g. What should his daily intake of these two items be
if he is to satisfy the requirements above at minimal cost?

. The following problems have degenerate optimal solutions. Solve them by the

simplex method and interpret the final tableau.

(@

Consider a farmer who wishes to plant 4 types of grain: oats, barley, wheat,
and corn. The profits he can make from an acre of corn, barley, wheat and oats
are $300, $200, $400, and $100, respectively. However, there are a number of
restrictions regarding fertilizing, spraying, and cultivation. These are as follows:
the corn, barley, wheat, and oats require 8, 2, 5, and 4 cwt of fertilizer per acre,
respectively, but only 16 cwt is available for the season. Similarly corn, barley,
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wheat, and oats require 6, 4, 3, and 2 gallons of insecticide per acre, respectively,
but only 10 gallons are available. Also it takes 3, 3, 2, and 1 day to cultivate
1 acre of corn, barley, wheat, and oats, respectively, but the farmer can spare a
total of only 62 days. What crop combination maximizes profit?

(b) A man operates a small warehouse to store goods for other companies on a

temporary basis. His warehouse is limited to 150 m? in usable space. He can
afford to employ up to 10 men. Each load of product 4, B, C, and D requires
16, 15, 20, and 30 m? of space, respectively. Each load of 4, B, C, and D keeps
1,9, 1, and 2 men fully occupied, respectively. His storage charges are $200,
$300, $400, and $700 per load for A, B, C, and D respectively. What combina-
tion of goods should he attempt to store in order to maximize revenue?

In a carpet wool spinning plant four blends of wool can be produced and are
worth $80, $60, $50, and $20 per kg for blends 1, 2, 3, and 4, respectively. As-
suming that all the yarn produced can be sold, find the amount of each blend
necessary to maximize profit. Because of certain restrictions with shiftwork and
staff regulations, the carding, spinning, twisting, and hanking machinery can
only be operated for a maximum of 18, 15, 10, and 12 hours a day, respectively.
The hours each machine takes to process 10° kg of each blend are shown in
Table 2.89. A further restriction limits the quantity of blends 3 and 4 to 5 x
103 kg per day.

Table 2.89. Data for Exercise 5(c).

Blend Carding Spinning Twisting Hanking

HOW N =
[ NS RIS N
N W WA
(=2 S I S N
AN A

(d) A company produces 4 types of fertilizer: 4, B, C, and D. 10 1b of A4 requires

©
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3 1b of potash (P), 4 1b of phosphate (H), and 3 1b of nitrogen (N). 101b of B
requires 3 1b of P, 3 1b of H, and 4 1b of N. 10 1b of C requires 5 1b of P, 2 1b of
H, and 3 1b of N. 101b of D requires 4 1b of P, 4 1b of H, and 2 1b of N. The
company can produce 40 lb, 40 1b, and 60 1b of P, H, and N, respectively, per
day. The company makes a profit of $20, $40, $50, and $30 per 10 1b of A4, B,
C, and D respectively. Determine the amount of each type that should be
produced each day so as to maximize profit.

A brick manufacturer produces red (R), white (W), brown (B), and grey (G)
bricks at profits of $100, $200, $300, and $300 per ton, respectively. These are
all produced using the same equipment, which can operate continuously. It
takes 2, 3, 5, and 4 equipment hours to produce a ton of R, W, B, and G, respec-
tively. He has a maximum electric power allocation of 252 units because of
shortages. It takes 3, 4, 5, and 6 units to produce a ton of R, W, B, and G re-
spectively. Find his maximum weekly profit.

Recall Exercise 2(f). The man now decides to plant pumpkins as well. To pro-
duce one kg of yield cultivation will take 0.5 minutes, 0.5 cents will be spent on
seed each per week, and 0.5 m? of garden space is required. Pumpkins can be
sold for 40 cents per kg. Also the cultivation time for corn can now be reduced
to # of a minute per week. Solve 2(f) over.
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6. The following L.P. problems exhibit temporary degeneracy during the simplex
iterations. Solve each by this method and comment on this phenomenon.
(a) A dairy factory is about to start production. The manager wishes to know what

lines of production—butter, cheese, milk powder, or yoghurt—would be most
profitable. The various restrictions, requirements and unit profits are shown
in Table 2.90. Solve this problem by the simplex method.

Table 2.90. Data for Exercise 6(a).

Profit Milk Labour Electricity

Butter 3 3 1 2
Cheese 4 2 3 3
Milk powder 2 4 4 5
Yoghurt 1 2 2 1
Amount available — 8 9 9

(b) Recall the warehouse problem of 5(b). The manager finds that he receives too

(c

~

=
&
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many orders for storage of A. So he streamlines the process for 4 by reducing
its storage requirement per load to 120 m? and increases the storage fee to
$360 per load. What is his optimal strategy now?

Recall the wool spinning plant in Exercise 5(c). A competing plant realises it
has to match the efficiency of the first plant if it is to survive. It produces the
same 4 blends, but has a profit of $120, 60, 60, and 30 per kg for each type.
The plant can obtain 23 hours and 14 hours carding and hanking time per day,
respectively. The other times are identical. However this factory has older
twisting machines and it takes 4 hours to produce 102 kg of blend 3. Also no
more than 2.5 x 10* kg of blends 3 and 4 are to be produced per day. What is
the best policy for the plant?

Recall the fertilizer problem of Exercise 5(d). A rival company has the data
shown in Table 2.91. What is the best way for this company to operate?

Table 2.91. Data for Exercise 6(d).

Fertilizer P H N Profit

A(101b) 4 1 5 $3
B (10 1b) 3 2 s $4
C(101b) 5 2 3 $4
D (10 1b) 4 4 2 $5

Availability 40 40 30

An ice cream manufacturer makes 2 types of ice cream—creamy and ordinary.
Creamy sells at a profit of $5 per unit, ordinary at $4 per unit. Each requires
4 tanks of milk per unit. Creamy requires 5 tanks of cream and 5 bags of sugar
per unit. Ordinary requires 2 tanks of cream and 3 bags of sugar. Also 10 tanks
of cream and 10 bags of sugar are available each day. How does the manu-
facturer maximize profit ?
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(f) Recall Exercise 2(f). The man decides to plant cucumbers as well. Corn can be
cut down to 4 minute cultivation time per week per kg yield. One kg yield of
cucumbers require 1 minutes of cultivation per week, 0.5 cents per week on
seeds and 43 m? of garden space. They sell for 40 cents per kg. The garden has
been reduced to 883 m?. Also the gardener decides he cannot spend more than
150 minutes in the garden each weekend. Solve the problem over with the new
data.

7. The following L.P. problems have no feasible solutions. Prove that this is so by
use of the simplex method. Also attempt to solve the problems graphically where
possible.

(a) A small clothing factory makes shirts and skirts for a boutique in town. A
profit of $4 and $3 is made from a shirt and skirt respectively. A shirt requires
3 yards of material and a skirt 4, with only 12 yards available daily. It takes
5 hours of total time to make a shirt and 2 hours to make a skirt, with 8 hours
available daily. At least 5 garments must be made per day. Attempt to maximize
profit.

(b) A man has a part time job making chairs (C), deck chairs (D), and stools (S).
Each chair takes 5 hours to complete and weighs 2 kg. Each deck chair takes
3 hours and weighs 1.5 kg. Each stool takes 2 hours and weighs 1 kg. He has
only 10 hours to spend each weekend on this work. Now his employers sud-
denly state that in order to make it worth their while he must produce at least
20 kg of furniture per week. Can he continue?

(c) Assuming an unlimited supply of paint and turpentine, attempt to maximize
the coverage of a mixture of the two when the addition of an equal quantity of
turpentine to the paint increases the coverage by 50%, the coverage of paint
alone being 8 m?/litre. Paint costs $3.00 a litre and turpentine $0.50. The total
cost of the mixture must be no more than $21.00. To aid spraying, the volume
of turpentine plus $ times the volume of paint must be greater than 50 litres.

(d) A nursery covers 5,000 m?. It grows trees at a profit of 35 cents each and shrubs
at a profit of 20 cents each. At least 2,000 plants must be grown. A tree needs
4 m? to grow, a shrub 1 m2. Each tree requires 2 g of fertilizer, each shrub 3 g,
while 4 kg is available. Attempt to maximize profit.

(e) Recall Exercise 2(f). Suppose that seeds costs are to be neglected. However, it
is vital that the energy value gained from the crop should be greater than
300 calories. Now corn, lettuce, and tomatoes will yield 0.8, 0.1, and 0.2 calories
per gram, respectively. Attempt to solve 2(f) over with the new data.

8. Create and solve the dual for each of the following problems. Find the optimal
solution to the original solution by interpreting the optimal dual tableau.

(a) A local vintner makes two types of wine, medium white (M) and dry white (D),
to sell to the local shop. He makes $5 profit per gallon from M and $4 a gallon
from D. Now M requires 3 boxes of grapes, 4 1b of sugar, and 2 pints of extract
per gallon. Also, D requires 4 boxes of grapes, 2 1b of sugar, and 1 pint of ex-
tract per gallon. He has 14 boxes of grapes, 8 Ib of sugar, and 6 pints of extract
left before selling his business. How should he use these resources to maximize
profit?

A turning workshop manufactures two alloys, A and B, at a profit of $5 and $2
a kg, respectively. Alloy A requires 2, 5, 5, and 2 g of nickel, chrome, germanium,
and magnesium, respectively. Alloy B requires 3, 2, 3, and 1 g of the metals in

(b

~
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the same order. Supplies of the metals are reduced to 7, 11, 10, and 6 kg of the
metals in the same order. The furnace cannot be operated for more than 6 hours
per day. Alloys A and B require 1 and 2 hours of furnace time, respectively, to
produce 1 kg of alloy. How can profits be maximized?

Recall Exercise 7(c). Suppose now the total cost of paint and turpentine cannot
exceed $100. The paint now used is of lower quality and costs only $2/litre.
However, because of price rises and the decision to use a better grade, the price
of turpentine has risen to $2/litre. A new sprayer has been purchased, and now
the volume of turpentine plus twice the volume of paint need exceed only
20 litres. However, the ratio of turpentine to paint must be between 1:4 and
3:1. Solve Exercise 7(c) over with the new data.

Recall Exercise 7(d). Having discovered that this problem was infeasible, the
nursery removed the restriction that 2,000 plants must be grown. During the
summer each plant requires one litre of water, but because of restrictions
brought on by the annual drought only 6,000 gallons can be used per day. Also
4 g of beetle powder must be used on each shrub each day and 1 g on each tree.
There are 4 kg of powder available per day. Solve Exercise 7(d) over with the
new data.

A person has the option of eating chocolate, oranges, or ice cream as a means
of obtaining at least 109, of the minimum recommended daily vitamin intake.
At least 0.1 g of calcium, 1 mg of iron, 8 mg of vitamin C, 0.2 mg of riboflavin,
and 2 mg of niacin are required daily. The three foods would provide these, as
shown in Table 2.92. The problem is to keep calorie intake down to a minimum
where 100 gm of chocolate, oranges, or ice cream provide 400, 40, and 160
calories respectively. What combination of the foods should be eaten to achieve
these objectives?

Table 2.92. Data for Exercise 8(e).

100 g of:

Chocolate Oranges Ice cream

Calcium 0.5 gm 0.03 gm 0.1 gm
Iron 1.0 mg 0.4 mg 0.1 mg
Vitamin C — 40 mg 1 mg
Riboflavin 0.2 mg 02mg 0.1 mg
Niacin 1.0 mg 0.2 mg 0.1 mg

9. Ineach of the following problems an objective function coefficient has been changed.
Examine the effect that this has on the optimal solution and its value by solving
the original problem and then performing sensitivity analysis.

(@)

Consider the primal L.P. problem of 8(a):
Maximize: 5xq + 4x,
subject to: 3x, +4x, <14
4x, + 2x, <8

2x1+ x, <6

X1, X, = 0.
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10.

11.

For what range of profit for x, will the present optimal basis remain optimal?

(b) Recall Exercise 2(c). The driver finds that he gets satisfaction at the rate of
10 units/hour driving at 80 km/hr. What is the optimal solution to this new
problem?

(c) Recall Exercise 2(d). Suppose that the manager of the company discovers that
biscuit B can be sold to another buyer at $7 per 10 kg. What is the optimal
solution now?

(d) A paper manufacturer produces 3 grades of paper: fine (F) at a profit of $600
per ton, medium (M) at a profit of $400 per ton, and heavy (H) at a profit of
$250 per ton. F requires 90 tons of wet pulp and 60 units of electric power to
produce one ton. M requires 80 tons of wet pulp and 50 units of power to pro-
duce one ton. H requires 70 tons of wet pulp and 30 units of power to produce
one ton. 5,000 tons of pulp and 2,000 units of power are allocated each week
for this activity. Find the optimal solution to the problem. If the profit for H is
increased to $350, how does this affect the solution?

(e) Recall Exercise 6(f). As their contribution to fighting inflation the supermarkets
are going to pay only 80 cents per kg for tomatoes. How does this affect the
present basis?

Solve the following L.P. problems by the simplex method. Then analyze what effect

the given change in a r.h.s. constant has.

(a) Recall Exercise 8(a). Suppose the vintner wishes to vary the supply of grapes he
requires in the production of his two white wines. He wants to know if his wine-
making business will still be profitable if for some reason there is a shortage of
grapes. How much below 14 can the supply drop for the present basis to be still
optimal?

(b) Recall Exercise 5(b). One of the men is injured and cannot work for one month.
Is the present policy still optimal? Is so, what is the new optimal solution value?

(¢) Recall Exercise 8(c). Suppose the cost limitation is raised from $100 to $110.
What is the new optimal solution and its value?

(d) Consider the following problem:

Maximize: 21x, + 14x,
subject to: S5x;+ 3x, <15 (2.44)
2x, + 4x, <8
x 1+ xp,2>1
X1,%X3 = 0.

Solve this problem by the simplex method. What is the optimal solution and
its value if the r.h.s. of (2.44) is changed from 15 to 9?

(e) Recall the Exercise 9(d). Suppose that the total weekly pulp production is halved.
Find the new optimum.

(f) Recall Exercise 2(f). Suppose the gardener now wishes to spend 15 minutes less
in the garden each week. How does this affect the optimal solution?

In each of the following L.P. problems one of the Lh.s. constraint coefficients is

changed from an original value. Analyze the affect of this change by using sensitivity

analysis rather than solving the problem again from scratch.

(a) Recall Exercise 8(a). Suppose now that the medium white requires 75 units of
extract. How does this affect the solution?
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(b) Recall Exercise 5(b). Suppose now the floor space is increased to 175 m2. Per-
form sensitivity analysis with this change.

(c) Recall Exercise 8(c). Suppose that it is desired to change the restriction that the
volume of turpentine plus twice the volume of paint exceeds 20 litres. If the
twice is replaced by thrice is the present basis still optimal?

(d) Recall Exercise 9(d). Suppose that a new system is put into operation whereby
power consumption is reduced for medium grade paper from 50 units to 30 units.
How does this affect optimality?

(e) Recall Exercise 3(e). Consider the dual of that problem as a problem of maxi-
mizing the benefits to be gained from a diet of corn and tomatoes with cost
constraints. The relative cost of iron has been re-estimated at 0.5 cents per
100 gm.

In each of the following L.P. problems a further variable is introduced. The new

optimal solution is then to be found.

(a) Recall Exercise 5(b). Suppose a new product comes on the market with the
following storage requirements: 2 m? per truckload, one man week per truck-
load, and $500 profit per truckload. Is it worthwhile for the storage agency to
accept orders to store this new product?

(b) Consider the L.P. problem:

Maximize: 8x; + 4x,
subject to: 2x, + 2x, <100 (2.45)
2x; + x, 220 (2.46)
=3x; 4+ x, <0 (2.47)
x; —4x, <0 (2.48)
X1,X, > 0.

Suppose a new variable is added, with coefficients 1, 1, 1, and — 1 in constraints
(2.45), (2.46), (2.47), and (2.48), respectively. You should have solved the original
problem when you did Exercise 8(c). Now if the coefficient in the objective
function of the new variable is 6, use sensitivity analysis to see if it is worthwhile
using this new variable.

(c) Recall Exercise 1(d). Suppose the company has decided to manufacture another
type of brandy. Each barrel of this brandy requires 4 hours’ fermentation, and
5 hours’ distillation. Should the company produce this brandy if its profit is $16
per barrel?

(d) Recall Exercise 9(d). A new grade of paper, extra fine, is now to be made for a
profit of $800/ton. It requires 95 tons of wet pulp and 70 units of power for
every ton produced. Find the new optimum.

Each of the following problems is a transportation problem. For each problem find

an initial basis by (i) the northwest corner method, (ii) the least cost method, (iii) the

Vogel approximation method. Solve the problem by the stepping stone algorithm

and by Dantzig’s method, starting with each basis.

(a) Consider the supply system of 4 breweries, supplying the needs of 4 taverns for
beer. The transportation cost for a barrel of beer from each brewery to each
tavern is as shown in Table 2.93. The production capacities of breweries 1, 2, 3,
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Table 2.93. Data for Exercise 13(a).

Taverns
1 2 3 4

8 14 12 17
11 9 15 13
12 19 10 6
12 5 13 8

Breweries

BN =

and 4 are 20, 10, 10, and 5 barrels per day, respectively. The demands of taverns
1,2,3,and 4 are 5, 20, 10, and 10 barrels per day respectively. Find the minimum
cost schedule.

(b) A bread manufacturer has 4 factories. He supplies 4 towns. The unit transporta-
tion costs are shown in Table 2.94. The demands of towns 1, 2, 3, and 4 are 6,000,
12,000, 5,000, and 8,000 loaves per day, respectively. The daily production
capacities of the factories 1, 2, 3, and 4 are 7,000, 8,000, 11,000, and 5,000 loaves,
respectively. Find the minimum cost schedule.

Table 2.94. Data for
Exercise 13(b).

Town

Factory

BN -
[JSIN- NV RN |
PRV I SV
NN b
O W w

(c) Aneffluent treatment plant has 4 independent oxidation systems with capacities
of 15, 18, 20, and 30 (in millions of litres) per day. These systems can be inter-
connected in any combinatioh to any of 5 effluent mains by intermediate pump-
ing stations. The outputs of the mains are 12, 17, 15, 19, and 14 (x 10°) litres per
day. The cost involved in pumping 106 litres from any of the mains to any of
the systems is shown in Table 2.95. Find the least cost flow.

Table 2.95. Data for
Exercise 13(c).

System
1 2 3 4
1 4 6 7 5
2 3 2 2 1
Main 3 1 7 4 3
4 7 3 0 4
5 2 3 8 2




102 2 Linear Programming

(d) Four large farms produce all the potatoes to satisfy the demands of markets in
four towns. The monthly production of the farms and the demand of the towns
are shown in Table 2.96, and the transportation costs per ton are shown in Table
2.97. Find the minimum cost schedule.

Table 2.96. Production and Demand
in Exercise 13(d).

Farm Production Town Demand

1 30 1 20
2 40 2 35
3 25 3 50
4 45 4 35

Table 2.97. Transportation Cost
in Exercise 13(d).

Town
1 2 3 4
1 7 7 10 8
Town 2 6 6 9 6
3 8 7 9 5
4 1 10 12 8

(e) The roads board is about to complete four urgent tasks on state highways in the
Wellington province. Costs must be minimized to the satisfaction of the audit
team from the treasury. A costly part of the operation involves the transportation
of suitable base course and sealing metal from screening plants at Masterton,
Otaki, Bulls, Raetihi, and the Desert Road to the tasks at Levin, Palmerston
North, Taihape, and Wanganui. In the time available the plants can supply in
(1,000-ton units) Masterton, 10; Otaki, 18; Bulls, 12; Raetihi, 14; Desert Road,
24. The demand is: Levin, 20; Palmerston North, 10; Taihape, 30; and Wanga-
nui, 15. Unit costs of loading, transportation and unloading in terms of man
hours are shown in Table 2.98. Find the minimum cost schedule.

Table 2.98. Transportation Costs in Exercise 13(e).

Masterton Otaki Bulls Raetihi  Desert Road

Levin 6 2 2 8 7
Palmerston North 4 4 1 7 6
Taihape 8 7 3 3 2
Wanganui 7 6 2 5 7
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14. Each of the following problems is an assignment problem. Solve each one by the
Hungarian method.

(@)

(b

~—~

©

(d)

Consider a collection of six students and six assignments. Each student must be
assigned a different assignment. The time (in hours) it is likely to take each
student to complete each assignment is given in Table 2.99. Find the minimum
time assignment.

Table 2.99. Assignments in Exercise 14(a).

Tasks

1 2 3 4 5 6

1 7 5 3 9 2 4

2 8 6 1 4 5 2

3 2 3 5 6 8 9

Students 4 6 8 | 3 7 )
5 4 5 6 9 4 7

6 9 2 3 5 1 8

A factory manager has a table (Table 2.100) which shows how much profit is
accomplished in an hour when each of six men operate each of six machines.
Note that: man 6 cannot work on machine 1 because this task requires good
eyesight; man 2 cannot work on machine 3 because he is allergic to dust; and
man 5 cannot work on machine 6 because this job requires two hands. You
are required to find the maximum profit assignment.

Table 2.100. Assignments in Exercise 14(b).

Men
1 2 3 4 5 6

Machines

= R S S R S
I N -
oo b | »va
<9 = L o
I NSV V- NN

1= N - NV
O\O\-hu-m|

In carpet manufacture the carpets are inspected for faults and repaired by hand
sewing, called picking. In a certain factory there are 6 picking boards and the
management wishes to assign 6 rated workers to these boards so that the total
time to repair any quantity of carpet is minimized. The rates of the workers on
the different picking boards are shown in Table 2.101; they vary because the
boards handle different sizes and types of carpets depending upon their location.
An air force has six pilots which it wishes to assign to six different types of aircraft.
Each pilot has been rated on each one and given a numerical rating in terms of
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Table 2.101. Data for Exercise 14(c).

Workers
1 2 3 4 5 6

118 6 1 4 9 4
213 4 10 2 3 2
3|4 5 6 7 4 6
Boards | | ¢ 5 1 5 6
s {7 2 3 7 10 3
6|2 5 5 3 7 5

Table 2.102. Ratings in Exercise 14(d).

Aircraft
1 2 3 4

W
[=))

Pilots

AN AW N
W N L oo
wn AN WK WS
AN NN W W oo
S 0OON 0NN
DN W 3N W
~N = N NO B W

errors in operation (Table 2.102). Make an assignment of pilots to aircraft so
as to minimize the culmulative rating of those assigned.

Table 2.103 gives the standardized times of seven workers on seven machines.
Find a minimum time assignment.

Table 2.103. Data for Problem 14(e).

Machines
1 2 3 4 5 6 7

Workers

~N NN R W
N AN WIR
NN = ONW WA
WO AUV J~ &
O 00 OO = =
—_ 00 N = \O W D\
00 N = U N \O
N O H 0NN B

A novelty atheletics meeting is to be held for teams of eight. There are eight
events, and one man from each team is to enter each event. A certain team has a
member who predicts where each man would be placed if he entered each event
(Table 2.104). Given that the team accepts his predictions, and that each finisher’s
score is inversely proportional to the place he gets, find the optimal allocation.
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Table 2.104. Predictions of Exercise 14(f).

Events
100 m Long High Shot

Athletes 100m hurdles 400m 1500 m jump jump Javelin put
Allan 4 3 3 4 3 2 4 6
Big Billy 3 2 2 1 3 1 2 4
Chris 5 3 5 7 2 4 2 2
Dangerous

Dan 3 2 2 5 4 3 3 2
Ewen R. 2 3 1 2 1 2 3 4
Freddy 1 1 2 3 2 4 4 6
George 2 4 3 3 2 5 1 1
Harry 4 6 4 6 4 6 3 5

(IT) Theoretical

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

Formulate a number of real-world problems as linear programming problems.
Show that the set of feasible solutions to an L.P. in standard form is convex.

Prove that, if more than one basic feasible solution is optimal for a linear program-
ming problem in standard form, then any convex combination of those basic
feasible solutions is also optimal.

Attempt to solve the problem of Section 2.5.7 by the two-phase method. Compare
the efficiency of that approach with using the big M method.

Attempt to solve the problems of Section 2.5.8 by the two-phase method. Draw
conclusions about the use of that method on problems with unbounded optima in
general. Prove your conclusions.

Solve the transportation problem of Section 2.7 as a linear programming problem
by the simplex method. Compare the process, step by step, with that obtained by
the stepping stone method.

Formulate a 3 x 3 assignment problem as a linear programming problem. Solve it
by the simplex method. Formulate the same problem as a transportation problem
and solve it by the stepping stone method. Compare these processes with solving
the problem by the Hungarian method.

If a linear programming problem has multiple optima, then its objective function
hyperplane is parallel to that of a binding constraint. State conditions which must
hold when the converse is not true.

Prove that if a linear programming problem has an unbounded optimum its dual
cannot have any feasible solutions.

Prove that a variable is unrestricted in sign in a L.P. if and only if the corresponding
constraint in the dual is an equality.



Chapter 3

Advanced Linear Programming Topics

3.1 Efficient Computational Techniques for
Large L.P. Problems

We shall now discuss how large linear programming problems may be
solved on a digital computer with the aid of properly organized calculations.
In spite of the recent tremendous advancement in the computational power
and memory size of modern computers, computational difficulties still arise
in solving large L.P. problems. New techniques have been developed to
overcome some of these. The techniques that we shall discuss are: the re-
vised simplex method, the dual simplex method, the primal-dual algorithm,
and Wolfe-Dantzig decomposition.

3.2 The Revised Simplex Method

We turn now to improving the efficiency of the simplex method presented
in the previous chapter. Although fairly small problems can be solved by
hand using the method, realistic industrial problems are too large for even
the most patient arithmetician. As they are to be solved using scarce, expen-
sive computer time, it is desirable to make the simplex method as efficient
as possible.

Anyone who has used the simplex method on a nontrivial problem will
have noticed that most tableau entries have their values calculated and re-
calculated. Often, many such values are never actually used to make deci-
sions about entering and leaving basic variables and may just as well never

106
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have been computed. At any iteration, what entries are necessary in order to
know how to proceed? The x,-row coefficients of nonbasic variables are
needed to decide whether or not to continue, and if so what variable enters
the basis. The other coefficients of entering variable and the r.h.s. entries
are needed to take ratios to decide which variable should leave the basis. It
is desirable to have these values available without having to calculate all
the others, which are of no immediate interest.

The revised simplex method achieves this. It is in essence no different
from the simplex method; it is simply a more efficient way of going about
things when using a computer. As fewer numbers are calculated at each
iteration, less storage is required by the computer, which may be an impor-
tant factor in dealing with relatively large problems.

3.2.1 A Numerical Example
Let us return once more to Problem 2.1 and find how we can solve it in an

efficient manner. The first two tableaux generated in solving the problem
by the regular simplex method are given in Tables 3.1 and 3.2.

Table 3.1
Constraints X4 X, X3 X4 Xs rhs. Ratio
(2.11) 3 1 0 0 12 12
(2.12) 3 3 0 1 0 10 3
(2.13) @ 0 0 1 8 g
X —4 -3 0 0 0 0
Table 3.2
Constraints X, X, X5 X4 Xs r.hs. Ratio
(2.11) 0 3 1 0 -3 6 12
(212) 0 3 0 1 -3 4 %
(2.13) 1 : 0 0 4 2 $
Xo 0 -1 0 0 1 8

Given Table 3.1, what information is needed to generate the next itera-
tion, which produces Table 3.27? In order to decide whether any further itera-
tions are necessary, the x, row is required: (—4, —3,0,0,0,0). The column
(3,3,4, )T of the incoming variable x; and the r.h.s. column (12,10,8, )T are
required to decide upon the outgoing basic variable. None of the other
information is relevant at this moment.
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Recall that the simplex method starts with an initial basis and a corre-
sponding basic feasible solution and generates a sequence of improving basic
feasible solutions by replacing one basic variable at a time. The kernel of the
revised simplex method is that the basic feasible solution corresponding to
any basis can be calculated from the original tableau by a correct sequence
of row operations. In order to motivate this, consider Problem 2.1 in matrix
form:

Maximize: Xo = (4,3,0,0,0)(x, X2, X3, X4, Xs)"
subject to: Xy
3410 0\[x,| /12
3301 0ffxs]=110 (3.1)
4200 1/\x, 8
X5
x>0, i=1,2,...,5 (3.2)

In this problem, three equations in five unknowns form the constraints.
Hence any basic feasible solution is found by setting two variables equal to
zero and solving the remaining three equations in three unknowns. This
creates a basis matrix, a submatrix of the original constraint matrix, found
by deleting the columns corresponding to nonbasic variables.

The initial basis is f; = {X3, x4, Xs}. In Table 3.1 it can be seen that x,
should replace x5 in the basis, creating a basis , = {x3, x4, x,}. The basis
matrix for f, is found by deleting columns 2 and 5 from the constraint
matrix in (3.1) and rearranging the order of the remaining columns if neces-
sary, i.e.

1 0 3
B=[0 1 3]
0 0 4
And, as

X, =x5=0,
(3.1) can be abbreviated as

10 3\ /x)\ /12
0 1 3|{x.|={10}
0 0 4/\x, 8

so that the basic feasible solution (b.fs.) corresponding to f, is

\ /1 0 3\"1/12\ /1 0 =3\ /12\ /6
xol={0 1 3] [10]={0 1 =2}{10]=(4}
x,/ \0 0 4 8/ \o o i\s8 \2

Once B~! has been found, any column in the tableau representing the
b.fs. based on B; can be calculated. This is achieved by multiplying the
original column by B~'. For instance, if it is desired to find the x, column
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C, in the tableau corresponding to j,,

62 = B_ICZ
10 —32\/4\ /3
=0 1 —2|3]=[12}
0 0 \2 1

where
C,; = x; column in original tableau,

C; = updated x; column,

It is necessary to calculate the x, row in any new tableau to find whether
the new tableau is optimal and, if not, which variable should enter the
basis. The x,-row coefficients of the basic variables will be zero. How are
the x,-row coefficients of the nonbasic variables calculated in the regular
simplex method? For instance, let us discover the steps taken to calculate
¢,, the xy-row coeflicient of x, in Table 3.2. Suppose that rows (2.11), (2.12),
and (2.13) have been updated, and now the x, row is to be revised. One can
form a vector of the coefficients of the basic variables in the original tableau:

CB = (07 07 _4)
The scalar

CBCZ = (0* 0’ —4)

Nl— Njw Nju

is the quantity that has been subtracted from the original x,-row coefficient
of x, when Table 3.2 has been arrived at. Hence

Cy=c, —cgCy=—3—-(0,0,—4)

Nj= Njw Njwn
Il
I
—

But we have seen how to deduce C, from C,, ie.,
Cz == B_ 1C2
EZ = C2 - CBB_ICZ.
For brevity let
n= CBB_ 1.
Then
EZ = cZ - TCC2.

The entries in 7 are called simplex multipliers.
We are now in a position to calculate all the nonbasic variable coefficients,
given that the new basis is f8,:

1 0 -2
n=cgB 1 =(0,0,—4)[0 1 —%|=(0,0,—1).
0 0 1
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Hence
¢, = —1, asbefore
s =c5 —1Cs
0
=0-(0,0,—-1)|0
1
= 1.

On examining ¢, and Cs we see that ¢, alone is negative and therefore x,
enters the basis. We must now decide which variable leaves the basis. The
information required for this is the x, column entries and the r.h.s. entries in
the new tableau, Table 3.2. These can be obtained, as shown earlier, by mul-
tiplying the original x, column and r.hs. by B~ 1. On taking ratios it is seen
that x5 should leave the basis. The new basis becomes

Bs= {xz, X4, x1}~
Thus the new B is
4 0 3
31 3.
2 0 4

B:

We could calculate the new B~ ! by directly inverting B. However, because of
the nature of the simplex iteration it is computationally more efficient to
calculate each new B~ ! from the previous one. In order to understand how
this can be achieved it is necessary to realise that each entry b;;', i #j, in
B! is simply the multiple of the original constraint (j) which has been fi-
nally added to the original constraint (i) to obtain the ith row in present
tableau. For instance, if we wished to create row (2.12) in the next tableau
from Table 3.2 using the regular simplex method we would subtract 3/3
times row (2.11) from row (2.12). Thus the middle row in the new B~ (cor-
responding to (2.12)) can be obtained from the previous B™! in the same
way, i.e.,
(b3,b37,b38) = 0,1, —3) — 3/3)(1,0, —3)
= (_%a la _%)
The bottom row can be found in a similar manner:
(b3‘113 b;213 b;31) = (Oa Oa 7}:) - (%/%)(1: 09 _%)
= ( - %: 0: %)

Of course, the top row can be found by dividing the top row of the previous
B~ ! by 3. Therefore,

(b7, bia,bis) = (1,0, —3)

= (%9()’ —13—0)
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Hence the new B~ ' is

B™'=

V= VW VN
—
L —
witg ol"" o|°’

Now the very first Bis I, so
B~!' =1, Iinitially.

The next B~! can be obtained from this one, using the method illustrated
above. And indeed each B~! can be found from the one before.

Going back to the example, we can now calculate the new simplex mul-
tipliers associated with the new basis f5:

2 0 3
5 10
m=cB ™' =(=3,0,-4 (-2 1 —F|=(-%0—1%)
1 0 2
5 5

We now calculate the nonbasic ¢; to discover whether or not f8 is an optimal
basis:
63 =C3 — 77:C3

1
=0—(=4,0,—7)(0
0
=4
Cs =c5 — nCs

.
=170-

As both entries are nonnegative, the optimal solution has been found. This
solution is

—
(8]

3\ /12

2
X, Y 5
I 3 —|z2
Xg|=|—-5 1 —15||10]=]|%
1 2 4
Xy -5 0 £ 8 35

x; =0, i=35.

The actual solution value can be found by substituting these values in the
original objective function.

-~
ol

=
(=13
Il
—_—
\PJ
. o
S
=
wip i u"
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3.2.2 Summary of the Revised Simplex Method

Consider the following problem:

Maximize: xo=CTX (3.3)
subject to: AX =B
) (3.4)
X=>0,
with m constraints and n variables.
Let
apy 4y3 A1n
Ay Qs Asp
Am Xn :
aml am2 amn
b, X1
2 X2
Bm><1= : s xn><1= : s CnXlz(ClaCZa"'acn)T'
b, X,

Let the jth column of A be denoted by Cj, i.e.,

Suppose at some point in the implementation of the revised simplex method
a basis f; has been identified corresponding to a basic feasible solution to
the problem. Without loss of generality, let this basis be given by the first
m variables, i.e.

Bi={X1,X2, -, Xy}

A basis matrix B; is defined for each basis f;. B; is the matrix formed by
ordering the columns of A corresponding to the variables in f; in the order
in which they would form the columns of an identity matrix in the regular
simplex tableau.

Suppose that for §; this order is 1, 2, ..., m; then

a1 Q12 0 Qim
Az; Gz 7" 4y

B, = . : :m =(C; Cy - Cp)
Ami (23 S

For the first basic feasible solution, with a basis of slack and artificial
variables,
B, =1 (3.5)
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In order to discover whether or not the b.fs. corresponding to f; is optimal,
it is necessary to calculate B; . With the first basis matrix, because of (3.5),

Bil=1

However, in general B, ! can be calculated from B;_!, as follows.

Suppose that the last variable to enter f; is x,, and that x, is the basic
variable for the gth constraint. That is, in terms of the regular simplex
method, the element in the gth row and pth column was the pivot element.
Now let (a;,),k = 1,2, ..., m be the column entries according to x, in the
tableau corresponding to f§;_; and

a;y dgs A1
a a a
-1 _| 921 22 2m
Bl—l -
aml am2 e amm

Then the entry in the kth row and jth column of B; ! is

@,

— p —

Agj — — (aqj)a for k # q,
aqP

or

o

q

|

, fork=q.

S
=

p

Once B; ! is calculated as described above, the x, row corresponding to
B; is found.

Let cp be the row vector of the negative of the basic variable coefficients.
Define the simplex multipliers ; as

TCi = CBBi_ 1.

Once the row vector 7; has been found, the nonbasic variable coefficients of
the x, row are calculated.
Let ¢; be the x, row coefficient of each nonbasic variable x;. Then

¢ =c¢;—mC

i iC;, for all nonbasic variables x;.

If
¢; >0, for all nonbasic variables x;, (3.6)

the basis f; corresponds to an optimal solution. This solution x5 can be

found as follows:
xB = Bi_lb, (37)

and the optimal solution value is
X§ = —cpxp.

If (3.6) is not satisfied, the column corresponding to the entry which is largest
in magnitude is identified. Let this be column p. x, will enter the next
basis, f; -
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In order to determine which basic variable x, replaces it is necessary to
calculate the r.h.s. and pth column in the tableau according to f;. The r.h.s.
column is given in (3.7); the pth column, C), is

C,=B;'C,.

Ratios of corresponding elements of xz and C), are formed to decide which
variable leaves f;, say the basic variable for the gth constraint. Now ;.4
can be identified, and the previous steps can be repeated with ;. ; replacing
B:. The process stops, as with the regular simplex method, when (3.6) is
satisfied.

3.2.3 The Calculations in Compact Form

Problem 2.1 will now be reworked using the revised simplex method with
the calculations laid out in the normal compact form. The reader should
compare this with the tableaux necessary for the regular simplex method,
shown in Tables 2.2-2.8.

From (3.1):
34100 12
A=(3 3 0 1 0}, b=[10],
4 2 0 01 8

c=(4,3,0,0,0).

The iterations are shown in Tables 3.3—3.5. Table 3.5 reveals the same op-
timal solution as that found by the regular simplex method in Table 2.8,
namely,

xt= 4
xt =4
xi=
x§=x¥=0
x¥ =32
Table 3.3
Entering
B, Cy B! 7, b C; Ratio  variable
X3 0 1 0 0 0 12 L2
X4 0 0 1 0 0 10 10
X5 0 0 0 1 0 8 g X,

(-g) -4 -3 0 0 0 0
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Table 3.4
Entering
B, Cy B;! T, b C; Ratio variable
X3 0 1 0 -3 0 6 3 2 X,
X4 0 0 1 -3 0 4 3 g
X, —4 0 0 1 -1 2 1 4
(-¢) 0 -1 0 0 1 8
Table 3.5
B3 Cg By! T3
xoo-3 3 0 3 %
X4 0 -3 1 - 0 2
X1 —4 -3 0 % —1o %
(=) 0 0 3 0 SR

To sum up, the advantages of the revised over the regular simplex method
are:

1. Fewer calculations are required.

2. Less storage is required when implementing the revised simplex method
on a computer.

3. There is less accumulation of round-off error, as tableau entries are not
repeatedly recalculated. An updated column of entries is not calculated
until its variable is about to become basic.

3.3 The Dual Simplex Method

3.3.1 Background

Consider the application of the simplex method to an L.P. problem. When
an optimal solution has been found (assuming its existence), the optimal
solution to the dual problem can be found by inspecting the optimal primal
tableau. However, each tableau generated by the simplex method in solving
the primal can be inspected to yield a solution to the dual. What is the
nature of this sequence of solutions to the dual? It can be shown that all
except the last are infeasible and have solution values which are better than
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the optimum. As an example of this, consider Problem 2.1 and its solution
by the simplex method:

Maximize: 4x, + 3x, = Xq (2.10)
subject to: 3x, +4x, + x5 =12 (211)
3x; + 3x, + X4 =10 (2.12)
4x, + 2x, + x5 =28 (2.13)

X1,X2,X3,X4,Xs = 0.

This problem has the following dual:

Minimize: 12y, + 10y, + 8y; = Yo
subject to: 3y;+ 3y, +4y; — v, =4
4y, + 3y, +2y; —y6=3

Y1, Y2, V3, Vas Y6 2 0.

The initial tableau for the primal is shown in Table 2.6, repeated here for
convenience.

Table 2.6

Constraints b X, X3 X4 Xs r.hs.
(2.11) 3 4 1 0 0 12
(2.12) 3 3 0 1 0 10
(2.13) @ 2 0 0 1 8
(2.10) —4 -3 0 0 0 0

Using the summary given in Section 2.6.1.3 on interpreting the primal
tableau to find a solution to the dual, it can be seen that Table 2.6 corresponds
to the following dual solution:

y1=0

y2=0

y3=0

Vo= —4

Vo= —3
and

Yo=0.

When we solved the dual in Section 2.6.1.2 we found that the optimal

solution had value

* _— 52
Yo ="

Hence this present solution is better in value (y, = 0), as we are minimizing,
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Table 2.7

Constraints X Xy X5 X4 Xs r.hs
(211) 0 3 1 0 -3 6
(2.12) 0 390 1 -3 4
(2.13) 1 4 0 0 1 2
(2.10) 0 -1 0 0 1 8

The next simplex iteration for the primal produces Table 2.7, repeated
here for convenience.
This corresponds to the following dual solution:

y1=0

y2=0

ya=1

ya=0

ye = —1
and

¥yo = 8.

This solution is still infeasible, and is worse in value than the last produced,
but still better than the optimal solution which is generated in the next
iteration (see Section 2.6.1.3).

It is true in general that the sequence of solutions (all but the last) for a
dual problem generated by interpreting successive primal tableaux have the
following properties:

1. They are infeasible.
2. Each has a solution value worse than the last.

The very last such solution is optimal, as has been seen in the previous
chapter. So the possibility presents itself of a new approach to solving L.P.
problems. Rather than start with a feasible solution and produce a sequence
of feasible and improving (better solution values) solutions, why not start
with an infeasible solution and produce a sequence of infeasible solutions
with worsening solution values ultimately terminating with the optimal
solution? The dual simplex method does just that.

When is such a strategy likely to produce a more efficient procedure?
When a problem contains many “>" constraints, many artificial variables
have to be introduced in the regular simplex method. Considerable effort
may be expended in reaching a solution in which all of these have zero value.
In such circumstances it is usually better to start with an initial solution of
slack variables. Such a solution will be infeasible, as each slack in a “>”
constraint will have negative value. However, usually fewer iterations are
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needed to attain optimality than in the two-phase method or the big M
method.

A second situation in which one is trying to transform an infeasible
solution into a feasible solution with a worse value is in postoptimal analysis.
The optimal solution to an L.P. problem may no longer be feasible once
changes are made to the parameters of the problem. The dual simplex
method can be applied to transform this basic, infeasible solution into the
optimal one. The mechanics of the method will be explained by means of
an example in the next section.

3.3.2 The Dual Simplex Method Applied to a Numerical Example

One of the problems of the previous section will be solved by the dual
simplex method:

Minimize: 12y, + 10y, + 8y, =Y (3.8)
subject to: 3y + 3y, +4ys—ys =4 (3.9
4y, + 3y, + 2y —y6=3 (3.10)
V1 Y25 Y35 Yas Y6 2 0. (3.11)
As usual we shall adopt the criterion of maximization:
Maximize: —12y, — 10y, — 8y3 = yo. (3.12)

Consider problem (3.9)—(3.12) as the primal L.P. The initial step is to
find a basic solution in the first tableau in which:

1. The criterion for optimality is satisfied, (all nonbasic variables have non-
negative yo-row coefficients); and
2. All basic variables have zero y,-row coefficients.

Table 3.6 displays the problem. It can be seen that criteria 1 and 2 would
be satisfied if the nonzero entries in the y, and y¢ columns were of opposite
sign. Then {y,, y¢} would be a suitable basic set. This is achieved by multi-
plying the two constraints by negative one, as shown in Table 3.7, i€.,

ya=—4
ye = —3.
Table 3.6
Constraints V1 V2 V3 Va Ve rhs.
(3.9) 3 3 4 -1 4
(3.10) 4 3 2 0 -1 3
Yo 12 10 8 0 0
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Table 3.7
Constraints Y1 V2 V3 Va Ye r.hs.
(39 -3 -3 —4 1 0 -4
(3.10) -4 -3 -2 1 -3
Yo 12 10 8 0 0 0

This solution corresponds to a basis of all slack variables, which is
usually the case. If it was feasible it would be optimal, as the criterion for
optimality is satisfied. Alas, this is not the case, as both basic variables are
negative. However, the solution value is

Yo =0,

which is better than the known optimum of 32. This solution corresponds
to the solution in Table 2.8, as discussed in the previous section. (The reader
is urged to compare the discussion concerning the numerical example in
Section 3.3.1 with the similar steps of the present section.) As the present
solution is infeasible, a change of basis is made in order to reduce this
infeasibility, so it must be decided which variable leaves the basis and which
enters.

First the question of the leaving variable is settled. Recall that when
the regular simplex method is applied to the dual the variable with the most
negative x,-row coefficient is selected to enter the basis. This is shown in
Section 3.3.1, where x, is selected as the incoming basic variable in Table 2.6.
This most negative x,-row coefficient corresponds to a value of one of basic
variables in the problem. For instance, the most negative x,-row coefficient
of variable x,, equalling —4, corresponds to the present value of y,. (Com-
pare Tables 2.6 and 3.7). It is this basic variable which is to leave the basis.
This is intuitively quite reasonable, as it is natural to remove the most
negative variable when trying to attain feasibility by eventually making all
variables nonnegative.

Next the question of which variable enters the basis is settled. Once
again, let us consider the mechanics of the regular simplex method in solving
the dual. Having selected x, to enter the basis, one then takes the ratios

by by b3\ 12 10 8
aj; agy a;3) \3°3°4
and selects the minimum. The ratios correspond to a set of ratios in Table

3.7:
£ 10 8
-3 -3 —4)

Note that when taking ratios with the regular simplex method, ratios with
negative denominators are ignored. Now, as all equations in our primal in
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Table 3.7 have been multiplied by — 1, only ratios with negative denominators
are taken into account and the variable corresponding to the largest ratio
enters the basis. Thus y; enters the basis.

Note that the above criteria for deciding which variables enter and leave
the basis represent a departure from the regular simplex method. However,
the mechanics of the regular and dual simplex methods are otherwise the
same.

Once it is determined that y; enters the basis and y, leaves, this transfor-
mation is carried out by the usual Gauss—Jordan elimination, which produces
Table 3.8. This solution corresponds to the second one found in the previous
section, i.e.,

y3=1
o= —1
Vo= —8, 1ie, y,=28

Note that the value needs to be multiplied by —1, as we took the negative
of the objective function in (3.12) in order to maximize.

Table 3.8
Constraints V1 V2 V3 Ya Ve r.hs.
(3.9 2 2 1 -4 0 1
(3.10) 5 -3 o -1 1 -1
Vo 6 4 0 20 -8

The process is repeated once more. The leaving basic variable is yg, as it
is the only one with a negative value. Taking the ratios, we obtain

6/(=3),  4/(=3, 2/(-D

Thus y, enters the basis. This produces Table 3.9, which represents the
optimal solution to the problem, as it is feasible and satisfies the criterion
for optimality. The solution is identical to that found previously.

Table 3.9
Constraints Vi Va2 V3 Va Ve r.hs.
3.9 0 &% 1 -3 - To
(3.10) I R S 3
Yo o % 0 % ¥ %
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3.3.3 Summary of the Dual Simplex Method

When solving an L.P. problem with the dual simplex method the following
steps are carried out.

Step 1. Equality constraints are split into pairs of inequality constraints with
opposite sense. For example, the equality constraint

A Xq + AipXo + 0+ Xy = by
is replaced by

41Xy + A3Xy + 0+ QX < b;
and

a;1Xq + GipXy + 0+ Xy 2 by,

which on the introduction of slack variables become

A;1X1 + AiXy + 0+ A Xy + Xy j=b;
and
;X1 + AppXy + 0+ QX — Xpy iy = by

Step 2. A basic solution (normally comprising exactly the set of slack vari-
ables) is found which satisfies the criterion for optimality. This criterion is
that all x,-row coefficients for nonbasic variables are nonnegative. Of course
all basic variable x,-row coefficients must be zero, as usual.

Step 3

3.1. Determination of the feasibility of the present solution. Each solution
generated satisfies the condition for optimality. Thus if it is feasible it
will be optimal. A solution will be feasible if all its variable values are
nonnegative. If this is so, the process is terminated and the present
solution is optimal. Otherwise, proceed.

3.2. Determination of variable to leave the basis. Among all variables with
negative values, the one with the value which is largest in magnitude is
selected to leave the basis.

3.3. Determination of variable to enter the basis. Identify the equation
which contains a unit coefficient for the leaving variable discovered in
step 3.2. Identify all variables which have negative coefficients in this
equation, say (j). For each such variable, form a ratio of its current
xo-row coeflicient divided by its coefficient in equation (j). The variable
with the ratio which is largest enters the basis.

3.4. Make the change of basis according to the variables found in steps 3.2
and 3.3 by Gauss—Jordan elimination and create a new tableau. Go to
step 3.1.

It is important that the reader realises that the dual simplex method
performs corresponding iterations on the L.P. problem as the regular simplex
method would perform on the dual problem.
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3.4 The Primal-Dual Algorithm

The dual simplex method was presented in Section 3.3 as a way of overcoming
the inefficiency brought about by introducing a relatively large number of
artificial variables when solving an L.P. problem. There is another approach
possible. Rather than begin with an infeasible solution with value better
than the optimum, as in the dual simplex method, why not begin with an
infeasible, worse than optimal solution? At least such an initial solution
should be easy to find. This is the essence of the primal—-dual algorithm.

The algorithm begins by constructing the dual L.P. problem. A feasible
solution is then found for the dual. On the basis of this solution, the original
primal L.P. is modified and this modified problem is used to create a new
feasible solution to the dual with an improved value. The process continues
in this manner, examining solutions to the dual and a modified primal
alternately until the optimal dual solution is produced. (Convergence must
take place.) Loosely speaking the successive solutions to the dual correspond
to primal solutions which are successively less infeasible for the primal, until
the optimal dual solution corresponds to a primal solution which is not
only feasible but optimal.

The algorithm is fully described in Hadley (1962) and Dantzig (1963).

3.5 Dantzig—-Wolfe Decomposition

3.5.1 Background

Nearly all real-world L.P. problems have far more variables and constraints
than the small problems concocted for illustrative purposes so far in this
book. In fact some industrial problems are so large that it is not very practical
to consider solving them by the methods presented up to this point. One
line of approach is to ask what special structure an L.P. must possess in
order for it to be possible to break it up into a number of smaller, hopefully
easier subproblems. The idea is to somehow combine the solutions of the
subproblems in order to find the solution for the original problem.

It has been found that many realistic L.P. problems possess a matrix A
of Lh.s. coefficients which has the property called block angular structure.
What this structure is will be described a little later. The point is that block
angular L.P. problems can be decomposed into smaller subproblems. By
solving these in a special way it is possible to identify an optimal solution
to the original problem. This is achieved by Dantzig—Wolfe decomposition,
which is due to Dantzig and Wolfe (1960). Their method is now introduced
by means of a numerical example. This section requires a more thorough
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understanding of matrix theory. The unprepared reader is referred to the
Appendix.

3.5.2 Numerical Example

We shall now consider an expanded version of the coal mining problem
which was introduced at the beginning of the previous chapter. Suppose
now that the coal mine mentioned earlier (mine No. 1) is taken over by
another company which already owns a mine (No. 2). Thus the company
now has two mines. For simplicity, constraints generated by screening the
coal are neglected. However the company is anxious to maintain good
labour relations with its new miners, and so maintains the same restriction
of 12 and 8 hours of cutting and washing, respectively, per day, with unit
consumption being 2 and 1 hour for lignite and 1 hour for anthracite for
both cutting and washing. A restriction of 24 and 14 hours per day of cutting
and washing are in force at mine 2. Electricity and gas are purchased by the
company and supplied to its mines. Because the mines employ different
processes, the same type of coal in different mines requires different amounts
of electricity and gas to produce the same quantity. Thus, to produce one
ton of lignite and anthracite requires 2 and 3 units of electricity, respectively,
in mine 1 and 4 and 1 units, respectively, in mine 2. The corresponding
figures for gas consumption are 4§, 4§, 6, and 8. Due to energy shortages
the company is allocated a maximum of 20 and 30 units daily of electricity
and gas, respectively. The unit profit for mine 1 lignite and anthracite was
$4 and $3, respectively (in hundreds of dollars), and this can be maintained.
Because of increased shipping costs, as mine 2 is in a remote area, unit
profit for mine 2 lignite and anthracite is $33 and $35 respectively. Let

x,; = daily production of mine 1 lignite in tons

x, = daily production of mine 1 anthracite in tons

x5 = daily production of mine 2 lignite in tons

x, = daily production of mine 2 anthracite in tons.

Then the problem can be expressed as follows:

Maximize: dx; + 3x, + 33x3 + 25x4 = X, (3.13)
2x; + 3x,+ 4x3+ x4, <20 (3.14)

subject to:  $8x, + %8x, + 6x3 + 8x, <30 (3.15)
3x; + 4x, <12 (3.16)

4x, + 2x, <38 (3.17)

2xs + x4 <24 (3.18)

Xy 4+ x,<14 (3.19)

X1,X5,X3,%X4 = 0. (3.20)
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Matrix A for this problem is

2 3 141
1 %168
34 170 0
4 2100
0 0 12 1
0 0 |11

Now, letting

2 3 4 1 3 4 2 1
A, = . A, = . Ay = . A, = ,
S P A HY N

A can be expressed as

A, A,
A = A3 0 N
0 4,

where Ois a2 x 2 matrix of zeros. In general, a matrix which can be expressed
as

A, A, o Ay
Ay, O e 0
0 Ay+s "0 O
0 0 o A,y

is termed block angular. Let x; be the vector of variables corresponding to
the columns of submatrix A4;. The constraints:

N
Y, Ax; <b,
i=1

are called global constraints. The constraints:
An+iX; < b,

are called local constraints.

Block angular matrices appear in L.P. problems when, as in the present
example, the total operation can be divided into groups of activities, each
with its own exclusive resources, and there are further resources which
must be shared by all activities. Thus, apart from the gas and electricity
constraints the problem can be considered as two separate L.P. problems,
one for each mine. These subproblems are:
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Mine 1 Mine 2
Maximize:  4x, + 3x, Maximize:  33x; + 2%x,4
subject to: 3x; +4x, <12 subject to: 2x3+ x,<24
4x, +2x, <8 X3+ x,<14
X1,X, = 0. X3,X4 = 0.

In the general case there will be N subproblems of the form:

Maximize:  cfx;
subject to: Ay.jx;<b; , forj=1,2,...,N,
x; >0
where
c=(c; ¢, -~ cy)' = the vector of objective function coefficients.
x=(x; X, -+ xy)7 = the vector of decision variables.
b=®bI bl --- bHT = the vector of r.h.s. constants.

Now suppose the constraints (3.14) and (3.15) are temporarily ignored. Then
if the optimal solutions to the two subproblems are feasible for these con-
straints, their combination represents an optimal solution to the original
problem. Hence it appears worthwhile to attempt to solve the original
problem by analyzing the subproblems. Of course, there must be some
modification to the strategy of simply solving the subproblems, as their
combined solutions will seldom satisfy the global constraints (3.14) and
(3.15). A technique called the method of decomposition developed by Dantzig
and Wolfe will now be explained by using it to solve the example problem.
The simplified version of the method assumes that each subproblem has a
set of feasible solutions which is bounded, i.e., no variable can take on an
infinite feasible value. We make that assumption here.

The assumption of boundedness implies that the set of feasible solutions
for each subproblem has a finite number of extreme points. Furthermore,
any point in such a set can be expressed as a convex combination of these
extreme points. More precisely, if subproblem j, j=1,2,..., N, has m;
extreme points, denoted by xf, k=1,2,...,m then any feasible solution
x; to the subproblem j can be expressed as:

m;
— ko k
X;= kZl %X

where
m;
Y k=1
k=1

ok >0, k=1,2,...,n;

Also, no point outside the set can be expressed in this way.
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For example, in subproblem 1, Figure 2.1 reveals that there are four
extreme points:

=00, x{=@20, xi=(03), xi=¢9

So m; = 4. Thus any point, X, in the feasible region satisfies

X, =oc}<0>+ocf<2)+af<0>+al< 4>
0 0 3 12

ai+al+ad+at=1
ok >0, k=1,23,4

le

where

A similar expression for subproblem 2 can be found which also involves
four extreme points:

X1
X, = (x >= <oc}xi +adxd 4 ot oc‘fx‘f)
2

) (3.21)
= Z akxk
k=1
and
X, = (i"’) = <a§x§ + o3x3 + a3x3 + “gx‘%)
4 (3.22)

4
= Z o5x’

Now problem (3.13)—(3.20) ¢ written in matrix form as follows:

()
subject to: (‘;—23 %>< ) ( >< > < <§8> (3.23)
) < <1§> (3.24)

(4 3)C
<1 DC:)SGZ) (3.29)

x; =0, i=1,234 (3.26)

n be
Maximize:  (4,3) 3< > + (33,

Now if (3.21) and (3.22) are used to eliminate x,, x,, x5, and x, from this
formulation, (3.24), (3.25), and (3.26) are no longer needed, as they are
implicitly satisfied in (3.21) and (3.22). Making this substitution, the problem
becomes:

4 4
Maximize: Z +63.39 Y abxk (3.27)
k= k=1
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2 3 4 1
subject to: <46 46> Y okxt + <6 8)
19 19/ k=1
o

The x* and x% are constant. The decision variables are the «f. However,
the formulation has fewer constraints and should be easier to solve.

It would appear that it is necessary to find all the extreme points of the
subproblems before the solving process can be started. This is a substantial
task and would negate the gains made by the reduction in the number of
constraints. Fortunately, it is unnecessary to find all the extreme points
first; they can be found one at a time as needed. The basis for achieving
this is the revised simplex method.

We begin by introducing slack variables into (3.28):

2 3\ & . <4 1) : <x5> (20)
okxk + okxk + = .
<‘1t_g %‘g‘) kgl 17 6 8 kgl 2 X6 30

Define the actual variable values at the extreme points as follows:
1 2 3 4
x x x X
A=() == =-(E) ==(3)
X2 X2 X2 X2
1 2 3 4
1 X3 2 X3 3 X3 a X3
X; = , X5 = , X3 = , X5 = .
: <xi) : (xi) ’ <x3> ’ <Xi>
On substituting these into problem (3.27)—(3.29), we obtain the following
problem:
2 3
X x X x
x X3 x5 X
4
X x X
X X x5
4
x x
2
4
x x
X X5

al+ ol +ad+af=1
wi+ o3 +ad+ai=1
ok >0, forallj, k.

4
1
4
2

(S

Maximize:  (4,3) {a} <

3
3
3
4

. 2 3
subject to: 46 46

LW WW
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On rearrangement, this becomes
Maximize:  (4x] + 3x3)ai + (4x? + 3x2)o? + (4x3 + 3xd)a
+ (4xT + 3x3)as + 33x5 + Bxhyal + (33x3 + 18x2)a2  (3.30)
+ (3303 + 253 + (33x3 + 25xDod
subject to:  (2x] + 3xal + (2x? + 3x3)ad + (2x3 + 3x3)ad
+ (2x1 + 3xPat + (dxd + xDod + (4x% + x2)o? (3.31)
+ (4x3 + xo3 + (dx% + xHod + x5 =20
(18x1 + 18xDat + (#8x] + 15xod + ($8x] + $5xd)od
+ ($8x% + 15xDat + (6x) + 8x)ad + (6x3 + 8x2)od  (3.32)
+ (6x3 + 8x3)a3 + (6x% + 8x2)ad + x5 = 30
ol +ai+ad+at=1
ay+oitad+at=1
ot >0, forallj, k.

Now on examining the subproblems it can be seen that (0,0)7 is an extreme

point for both problems. Let
xi\ (0
xi) \o

(5)-()

These points are associated with o] and «l, respectively. These values of
x1, x3, X}, and x}, cause «f and o} to drop out of (3.31) and (3.32). Thus a
suitable initial basis is

and

ﬁl = {XS,X6,O(L(Z§}.

Hence, in terms of the revised simplex method,

1000
0100

B: = _1
001 0/°8"
000 1
xp = [20,30,1,1]7
cs = [0,0,0,0]".

The subscript of the B, denoting the iteration number, has been dropped,
as we shall use it for another purpose soon.

We must now decide whether or not this solution is optimal. This is done
in the revised simplex method by examining the sign of the minimum
element in the x, row. Let ¢, be the x,-row coefficient of of. Now the
evaluation of the ¢;, depends upon the extreme points x’}. However, rather
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than determining all extreme points one can simply find the extreme point
for each subproblem j which yields the smallest ¢ ;. Now remember that the
x% are the extreme points for subproblem j, which has the following feasible
region:
AyniX; < b;
x; > 0.

Thus the problem of finding the extreme point for each subproblem j yielding
the smallest ¢, reduces to solving a number of L.P.’s of the following form:
Minimize: Tik (3.33)

subject to: Ay+jX;j < b;

x; > 0.

At any iteration of the revised simplex method, an expression for the T
can be found as follows. Recall that the x,-row coefficient ¢; of each nonbasic
variable x; in an ordinary problem is found by

C; —7;C;

J i~
where

c; = the original coefficient of x;
C; = the jth column of 4
n; = ¢;B~ 7, the current simplex multipliers.

Now for our original problem let p be the number of global constraints. In
the present example, let

(B~ Y)? = the first p columns of B~!
B; ! = the jth column of B~ considered as a vector.

Then
Ty =cp(B™Y)PA; x5 + cfB,}; — chxh
= (cg(B™1)P4; — cj)xk + ¢iB,} ;.

This expression can be substituted into (3.33) to produce the following for-
mulation:

Minimize:  (cz(B™')PA; — ch)x; + ¢iB,};
subject to: Ay, x; < b;
x; >0.

The optimal (minimal) solution value of this L.P. corresponds to the mini-
mum x,-row coefficient in the original problem. If it is negative, the optimal
solution to (3.33) corresponds to the extreme point we are trying to find.
Thus an L.P. of the form of (3.33) must be solved for each subproblem.
If all solution values are nonnegative, no further iterations are required.
Returning to the example problem, the L.P. of the form (3.33) for the first
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subproblem is

Minimize* <(0 0,0,0)

<426 436>—(4,3)>< >+(0000)
19 19 X2

e (2 9)-C
(2)=()

This problem can be solved graphically by examining Figure 2.1. More gen-
eral problems can be solved by the simplex method. The optimal solution is

S = O O

4
xf= 5
12
3= %
and
1 — 52
(xo)* = —%~.
This corresponds to an extreme point of subproblem 1, say x3. Therefore
[4 12T
and
612 = _§5'2‘ < 0.

Hence optimality has not been reached.
The L.P. associated with the second subproblem is

1 0 0

. 0 11/4 1
Minimize: <(0,0, 0,0) 0 0 <6 8)—(-5—} ?))( >+(O 0,0,0) 8
00 1

subject to: G i)(ﬁ)S(ﬁ)
()=00)

This problem can also be solved graphically to yield the following optimal

solution:

=0
1

Let this solution correspond to the solution x3 of subproblem 2.

x3 =[x3,x2] =[10,4]" and 7,, = —138* <0.
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As this value ¢,, represents the minimum x,-row coefficient, and it is nega-
tive, its variable a3 enters the basis. Following the steps of the revised simplex
method we next calculate the a3 column in the tableau. On looking at (3.31)
and (3.32) it can be seen that this column is.

[4x2 + x2,6x3 + 8x2,0,1]7 = [14,112,0,1]7
The r.h.s. column is (20, 30,1, ). On taking the ratios:

10 1
7

-
n

h_L
> 1

W
O\

it can be seen that the minimum corresponds to variable x¢, which now
leaves the basis. Therefore,

BZ = {xS’agsai’aé}
and
¢ = (0,1064,0,0)T.

B~ ! is now updated and becomes

o[

B™'=

S O O =
O'-‘\
-
(3]

S = O O

—_ o O O

“-‘

11

N

We must now test whether B, corresponds to an optimal solution. The
L.P. for subproblem 1 is:

1 _1
8
. . . 0 L 2 3
Minimize: <,“2)§4,0 0) 0 02 <g ﬁ)
19 19
0 —1iz
0
x 0
~63)(7) + 0x20| ]| - =
2
0

wieeror (4 5)(7) = (")
(5)=(6)
a-(0w(g 5)-3)(7)

= —3x; — 2x,.

v

Now
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The optimal solution to this problem is

* 4
X1 = 3
* 12
X2 = 5
and
1x __ 36
xO ——5.

As x}* is negative, the optimal solution has not been reached. The L.P.
problem for subproblem 2 is

0
s e . 4 1 X 0 0
Minimize: ((0,3—2(6 8)—(%,%%>><xj>+<o,%§—é,o,o> ° =xa=(0)
1

subject to: (f D(ij)sc:)
(2)=()

Hence the minimum solution is provided by subproblem 1, and corresponds
to the extreme point
xi = [x1,x3] =[0,0]"
and
Ty, =0.

The corresponding variable a? enters the basis. We next calculate the o?
column in the tableau, which is

2x% + 3x3 1 -3 0 0\ /% B
s sd| (o o ofwe| _[ &
1 0 0 1 0J\1 1
0 0 —i 0 1/ \0 — 5
The r.h.s. column is
1 L 0 0\ /20 65
0 o) 0 01/ 30 15
B—1 — 112 — 56
b 0 0 1 ofl 1 1
0 —5i5 0 1 1 4L

On taking the ratios:
(Gh23, 9915 1

297652576>
it can be seen that the minimum corresponds to variable i, which now
leaves the basis. Therefore
— 2 2 1
ﬁ3 - {x53 aZa al: aZ}
— 1064 52 T
CB - (052—37T50) .
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B~!is now updated and becomes:

R
B != 0 ﬁ _% 0
0 0 1 0
0 -y A 1

133

We now test whether S5 corresponds to an optimal solution. The L.P.

for subproblem 1 is

I -3
-1
Minimize: (0,%4-,%0)8 0 (é
19
0 —1h

Now

2 3 X
xé=<(0,—3—§1)<ﬁ a6 —(4,3)>< 1>+35—6
19 19 X2

= —3x; —2x, + %8,

and the optimal solution is

* _ 4
X1 =73
* 12
X3 =75
xs* =0.

The L.P. problem for subproblem 2 is
4 1
Minimize:  ( (0,33 ~(3.39)( 72 )+0.4982.%2,
6 8 X4

biect to 21x3<24
subject to: 11\ =\as)

w

S
=)

N——

[
0|

N
IS
IS

X
O WUy

=)
[«
|

0)

=)

[

=)
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Hence the minimum solution is provided by subproblem 1. We have arrived
at an optimum as none of the x,-row coefficients are negative.
The optimal solution is

1 744 3199
Xs 1 —3 —795 0\ /20 380
2 1 46 151
o2 —B_lb—o 112 665 0 30_766
2 ) o -
oy 0 0 1 0 1 1
o) 0 _112 4665 1 1 223
Therefore
o 4 4 4
1 5 5
xt= ()= 2 e =ow1x(5;)ror0-(3,)
X2 k=1 5 5
* 4
x% 0 0 0
* _ _ kok _ 609 151
X2—<*>—Z“2X2—760 + 76 14 +0+0={ 05
X4 k=1 0 380
% _ 3199
X5 =380
2% _ 151
42" = 760
a?* =1
1% _ 609
A" =760
x¢=0
3199
380
151
* — [0 1064 52 0 760 __ 2253 19.59
xo—[,zs,s,]l =915 =
609
760

The objective function hyperplane is parallel to that representing the con-
straint on the gas:

$x, + 5%, + 6x3 + 8x4 + xg = 30.

As this contraint is binding at the optimum (x# = 0), multiple optima exist.
The complete set of solutions is given by:

X

e

* N¥ =¥ O%
Il
— bld

X2 =5
3x% 4 dxk = 1337,
where
0<xi<id
and
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3.5.3 Summary of the Decomposition Algorithm

Given an L.P. in the following form:

Maximize: c’x
A1 A2 PR AN
Ay+q O 0
subject to: 0 Ansy, =0 O x<b
0 0 o Ayy
x >0.
Let
c=(cf,e7,...,ep)
X = (xlax25 T, xN)T
and

b = (b, b, ..., by)".

Define a set of feasible points x; satisfying
x; > 0.
Let the jth such set have n; extreme points x}, x7, ..., x¥. Then any point
Xx; in the jth set can be expressed as
nj

X;= 2, 4

>0, k=12...,n,

The given problem can now be reformulated with the introduction of a
vector X, of slack variables:

N n;
Maximize: YooY (exb)ak
j=1kKk=1
N nj
subject to: Y. Y (4;x5)ak + x, = b,
j=1k=1

1
ot >0, j=1,2,..., N,
k=1,2,...,n;

This formation is then solved using the revised simplex method.
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In order to calculate the minimum x,-row coefficient, N linear program-
ming problems of the form

Minimize:  (cg(B™!)P4; — ¢))x; + ¢fB,};
subject to: Ay:X; < b;
x; 20

are solved, where the terms above have been defined in the previous section.
The minimum solution value obtained in solving the above problems is
equal to the minimum x,-row coefficient. If it is nonnegative, the optimal
solution has been found. Otherwise, a substitution in the set of basic vari-
ables is made in the usual way.

3.6 Parametric Programming
3.6.1 Background

In Section 2.6 the sensitivity of the optimal solution of an L.P. problem to
changes in its coefficients was discussed. It was assumed that these changes
were made one at a time. We now look at the possibility of analyzing the
effects of simultaneous changes. Only changes in objective function coeffi-
cients and r.h.s. constants will be dealt with here. The approach is to develop
techniques whereby the investigation can take place in an efficient manner,
as opposed to solving the whole problem from scratch with the new values
inserted. The techniques are collectively called parametric linear programming,
although the term linear will be dropped, as it is understood that we are
dealing solely with L.P. problems. Such methods are useful in situations in
which, because of the effects of some predictable process, many of the L.P.
parameters vary at constant rates. For example, profits or costs could vary
as a result of inflation, or daily consumption of resources may have to be
steadily reduced as the supply of raw materials dwindles. It will be assumed
that the coeflicients vary linearly with time.

3.6.2 Numerical Example

3.6.2.1 Changes in the Objective Function Coefficients

Consider again problem 2.1.

Maximize: 4x, + 3x, = Xq

subject to: 3x; + 4x, + x5 =12
3x, + 3x, + X4 =10
4x, + 2x, +x5=28

x>0, i=12...,5
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Suppose that the x,-row coefficients, 4 and 3, are changing at the rates of 2
and 3 units per unit of time, respectively. Then if 6 is defined as the amount
of elapsed time, after 6 units of time have elapsed x, becomes

Xo = (4 + 20)x, + (3 + 30)x,. (3.34)

Given a particular value of 0, it is possible to determine the optimal solu-
tion and its value. This has already been done for the case 8 = 0. We now
address ourselves to the task of using this solution to find the solution for
any other positive 6 in a way which requires less work than solving the new
problem from the beginning using the simplex method.

The optimal solution to the problem when 6 = 0 is given Table 2.8, re-
peated here for convenience. When 6 is given any nonnegative real value,
the only change in Problem 2.1 occurs in the objective function. Hence the
solution in Table 2.8 will be feasible for the problem corresponding to any
6. As 0 is increased from zero to a relatively small positive value it is likely
that the present solution will remain optimal. However, it may be that as
6 is progressively increased in value there will occur a critical point at which
the present solution is no longer optimal. A new optimal solution can be
established and 6 increased further. Later a new critical point may be estab-
lished. We shall now establish the ranges for 6 for which the various possible
bases are optimal.

Table 2.8
Constraints X4 X, X5 X4 Xs rhs
(2.11) 0 1 2 0 -5 2
(2.12) 0 0 -3 1 -5 2
(2.13) 1 0 -4 0 2 $
Xo 0 0 $ 0 SO &

Suppose Problem 2.1 has its objective function replaced by (3.34). If the
manipulations carried out in Tables (2.1)—(2.8) are applied to this new prob-
lem, the final tableau will be as shown in Table 3.10. Transforming this to

Table 3.10
Constraints X X, X3 X4 X5 r.hs.
(2.11) 0 2 0 - 2
(2.12) 0 0 -3 1 -3 2
(2.13) 1 0 —1 0 2 $
Xo —20 ~30 2 0 & 32
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canonical form, we get Table 3.11. Thus it can be seen that for the present
basis to remain optimal all the x,-row coefficients must be nonnegative, i.e.,

2+ 40
5

>0
and
7—-0

——>0.
10 =0

As it has been assumed that 6 is nonnegative,
0<7.

So setting 8 = 7 we have reached the first critical point.

Table 3.11
Constraints Xy Xy X3 X4 Xs r.hs.
(2.11) 0 1 Z 0 -5 2
(2.12) 0 0 -3 1 -3 2
(2.13) 1 0 -1 0 2 $
2440 T—0 52+ 446
0 - =TT
Yo o 0 5 10 5

Substituting this value into Table 3.11, we obtain Table 3.12. This, of

course, corresponds to a situation with multiple optimal solutions. The ob-
jective function for this value of 0 is:

Xo = (4 + 2(T)x; + (3 + 3(7))x, = 18x, + 24x,.

It can be seen from Figure 3.1 that the increase in 6 from O to 7 has changed
the slope of the objective function to a point where it is now parallel to (2.11).

Table 3.12
Constraints X, Xy X3 X4 Xs r.hs. Ratio
(211) 0 1 2 0 -5 2 —
(2.12) 0 0 -3 1 -3 2 _
(2.13) 1 o =1 o0 2 $ 2
Xo 0 0 6 0 0o 72
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X2
2.11) .
\ ’
/
¢
SN
N

S xowithf =7

xo with 8 =0

7

N
(2.13)

Figure 3.1. Parametric programming with x,-row coefficient changes.

Table 3.13
Constraints Xy X, X3 X4 Xs r.hs.
(2.11) 3 1 P 0 0 3
(2.12) 3 0 -3 1 0 1
(2.13) 3 0 -3 0 1 2
2440 7-0 52 + 440
Xo 0 0 b o =2 x2F%
5 10 5

Bringing x5 into the basis at the expense of x, in Table 3.11 produces
Table 3.13. Now as it has been assumed that 0 is nonnegative, all that is

required is that
0=>17.

For any values of 0 no less than 7 the present basis remains optimal. Thus
there is only one critical point. These results are summarized in Table 3.14.
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Table 3.14. Results of a
Change in the Objective
Function coefficients.

0< 6< 7 7<9
4<c, <18 18<¢
3<c, <24 24<gc,

52 + 440 47 + 450

5 5
x¥ 4 0
x% 2 3
x% 0 0
x% 2 1
x¥ 0 2

3.6.2.2 Changes in the r.h.s. Constants

Suppose now that the r.h.s. constants in Problem 2.1 are increasing from
12, 10, and 8 at the rates of 2, 2, and 3 units per unit of time, respectively.
Then after 8 units of time have elapsed, these r.h.s. constants are, respectively,

12 + 20, 10 + 20, and 8 + 36.

Once again we wish to identify the optimal solution and its value for in-
creasing 6. The optimal solution when 6 = 0 is given in Table 2.8. Now
suppose the new r.h.s. constants for a given positive value of the 0 are intro-
duced to the problem and this new problem has the same simplex iterations
applied to it as produced Table 2.8. Then if the methods of Section 2.6.2.2
are used repeatedly for each r.h.s. constant, the new tableau will be as shown
in Table 3.15. For this basis to remain feasible, all r.h.s. values must be
nonnegative. Therefore

and

ie.,
0<4.

So the first critical point occurs at 6 = 4. Substituting this value into
Table 3.15, we obtain Table 3.16. If 8 is increased beyond 4 the solution in
Table 3.16 will become infeasible, as x, will become negative. Thus x,
should leave the basis. This is done using the dual simplex method, which is
explained in Section 3.3.
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Table 3.15
Constraints X4 X, X3 X4 X r.hs.
(2.11) 0 1 $ 0 ~7%5  2+EGQ+002) —50)0
(2.12) 0 0 -3 1 -5 3+ (-3 +102) - 500
(2.13) 1 0 -1 0 2 2+ (-1 +012 + 2(3))0
Xo 0 0 $ 0 o F+ 302 +002) + 53)0
Table 3.16
Constraints X, X, X3 X4 Xs r.hs.
(2.11) 0 1 2 0 -3 2
212 0 0 -3 1 -3 0
(2.13) 1 0 -1 0 Z 4
Xo 0 0 z2 0 & 22

Thus x, enters the basis in Table 3.15 at the expense of x,, producing
Table 3.17. This basis will remain feasible if all the r.h.s. values are

nonnegative:
16 — 6
>0
5 =
0—4
—>0
g 2
4+ 56
>0,
_ 6
ie.,
16>6>4
Table 3.17
Constraints X, Xy X3 X4 Xs r.hs.
16 — 0
(2.11) 0 1 0 P
0—4
(2.12) o o 1 -3 1 -
4+ 560
2.13) 1 o o -1 1
6
64 + 176
Xo 0o 0 0 2 g 2T

6




142 3 Advanced Linear Programming Topics

Table 3.18
Constraints X, Xy X3 X4 Xs rhs.
(2.11) 0 -2 0 -3 1 9——31—§
(2.12) 0 1 1 —1 0
(2.13) 1 1 0 3 0 10 ;L 20
Xo 0 1 0 3 0 a : 86

So the second critical point occurs at § = 16. If § is increased beyond 16 the
solution in Table 3.17 will become infeasible, as x, will become negative.
Thus x, should leave the basis.
Now x enters the basis at the expense of x,, producing Table 3.18. This

basis will remain feasible if all r.h.s. values are nonnegative:

0 - 16

— >0

3 >
1 2
0 J3r ‘ >0,

Le.,
0 > 16.

For any value of 6 no less than 16 the present basis remains feasible. Thus
there are two critical points. These results are summarized in Table 3.19.

Changing r.h.s. constants in an L.P. problem is equivalent to changing
objective function coefficients in the dual. Hence let us resolve the problem
just analyzed by examining its dual. The dual of the problem is

Minimize: 12y, + 10y, + 8y, = Yo
subject to: 3y;+ 3y, +4y;—ya =4
4y; + 3y, +2y; ~ye =3

y1’y27y3’y4,y6 20

Changing the r.h.s. constants of the primal by 2, 2, and 3 units per unit of
time corresponds to changing the dual y, row coefficients by the same
amounts. The optimal solution to the above problem is given in Table 3.20.

Following the ideas of Section 3.6.2.1, when 0 is introduced the objective
becomes

Minimize: (12 + 26)y, + (10 + 20)y, + (8 + 30)ys,
1e.,
Maximize: Vo= —(12+20)y; — (10 + 26)y, — (8 + 30)y5. (3.35)
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Table 3.19. Results of Changes in the r.h.s.
Constants.

0<6 <4 4<60 <16 16<0
12<b, <20 20<b, <44 44<bh,

8 < 20 20<by<56 56<b,
o 104 + 296 64 + 170 40 + 80
0 10 6 3
. 8—0 4450 10 + 20
X1 —
10 6 3
" 24-0 16 — 0 0
2 10 6
6—4
X% 0 i 2
6
2+40
x¥ + 0 0
5
0— 16
x¥ 0 0 —_—
3
Table 3.20
Constraints Y1 Y2 Ya Va Ye r.hs.
(3.09) 0 &% 1 -% 1o 1o
(3.10) 1 30 i -2 3
Yo 0 Y 2 2 -2

When the manipulations applied to the dual to produce Table 3.20 are
applied to the problem with (3.35) as an objective function, Table 3.21 is
produced. Transforming this into canonical form, we obtain Table 3.22.
Hence for the present basis to remain optimal all the yp-row coefficients

Table 3.21
Constraints ~ y; V2 Vs Ve Ve rhs
(3.09) 0 & 1 -2 3 A
(3.10) 1 3 0 L _2 2
Yo 20 2420 30 4 12 %
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Table 3.22
Constraints Y1 Va V3 Va Ye r.hs.
(3.09) 0 7o 1 -% 1o o
(3.10) 1 ® 0 1 -2 2
, o 2.0 4.4 12 6 52 29
Yo 5710 575 510 5710
must be nonnegative:
2 6
——=—2>0
5 10—
4 46
=+—==0
575
and
12 0
—_—_—> 0,
5 10
ie.,
0<4

Thus 8 = 4 is the first critical point. When 6 > 4 the objective function
of y, is negative, so y, enters the basis, as in Table 3.23. For this basis to
remain optimal all the x,-row coefficients must be nonnegative:

0—4
—_—>
¢ = 0
4+ 50
>0
6 =
16 — 6
>0,
6
1e.,
16>60>4
Table 3.23
Constraints Y1 V2 V3 Ya Ve r.hs.
(3.09 -3 0 1 -3 3 3
(3.10) 3 1 0 4 ~2 2
0—4 4+ 560 16 — 6 64 + 1760
Vo —_— 0 0
6 6 6 6
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Table 3.24
Constraints Y1 Y2 V3 Va Ve rhs.
(3.09) -1 0 2 -1 1 1
(3.10) 11 4 -1 0 %
v, 5 0 0-16 10 + 20 4 40 + 80

Thus 8 = 16 is the second critical point. When 6 > 16 the objective function
coefficient of y, is negative, so y, enters the basis, as in Table 3.24. For this
basis to remain optimal all the yj-row coefficients must be nonnegative,
which is certainly true for 8 > 16. Thus there are only two critical points,
at 4 and 16. These results confirm what was discovered by analyzing the
primal earlier in this section.

3.6.3 Summary of Parametric Programming

3.6.3.1 Changes in the Objective Function Coefficients

Given an L.P. in the following form:

Maximize: Xo= Y CX; (3.36)
i=1
subject to: A;ix; < b, ji=12,...,m
,-; ! ’ (3.37)
x; >0, i=12,...,n
Suppose that the xo-row coefficients ¢;,, i = 1,2, .. ., n, are changing at the

rate of §; units per unit of time. Then after 8 units of time, x, becomes

n

Xo= Y, (¢c; + 6,0)x..
i=1
It is obvious that x§ is a function of 6. It may be desirable to find x#*(0) and
to find ranges for 6 for which the various possible bases are optimal. As 0
represents elapsed time it is assumed that 6 > 0.

First the problem is solved for 8 = 0. Then 0 at the positive level is
introduced. As the only change in the problem comes about in the objective
function, the present solution (found when 8 = 0) will still be feasible for the
problem when 6 > 0. Thus if the same manipulations used in solving the
problem when 6 = 0 are applied to the problem when 8 > 0, only changes
in the xo-row will occur. The new x, row can be obtained by subtracting
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9,0 from the x,-row coefficient of x;, and then transforming the tableau into
canonical form, as explained in Section 2.5.2.

If all the new x,-row coefficients are nonnegative, the present solution is
still optimal. Hence the maximum value for 6, say 8,, for which nonnega-
tivity of all the coefficients occurs can be found; 8, is called the first critical
value. This value is substituted into the x,-row, producing at least one
nonbasic coefficient with value zero. A variable corresponding to this zero
is brought into the basis in the usual manner, and 6 is introduced once
more. The process is repeated to produce further critical values until it is
obvious that the increases in the value of 8 will not create a situation in
which the current basis is suboptimal. Successive tableaux can be examined
to find the ranges for 6 and their corresponding solutions and values.

3.6.3.2 Changes in the r.h.s. Constants

Given an L.P. in the form of (3.36) and (3.37), suppose that the r.h.s. constants
b;,j=1,2,..., m, are changing at the rate of 6; units per unit of time. Then
after 6 units of time the constraints (3.37) become

Y ax;<bj+6,6, j=12,...,m

i=1

First the problem is solved for 6 = 0. Then 6 at the positive level is introduced.
If the present solution, found when 6 = 0, is still feasible it will still be optimal.
The final tableau, produced by applying the manipulations that created the
original optimum to the new problem with 6 > 0, is now be deduced.

This final tableau can be obtained from the original optimal tableau by
repeatedly using the considerations of Section 2.6.2.2 for each r.h.s. constant.
For this new tableau to represent an optimal solution, all the entries in the
r.h.s. column must be nonnegative. As they are functions of 6, an upper
bound on 6 can be obtained. That is, a value 8, can be found such that if

0>0,

at least one r.h.s. entry will be negative. 6, is the first critical value. The
solution and its value, as functions of 8, can be found from the tableau for

0<60<0,.

0, is substituted into the tableau, creating at least one zero entry in the
r.h.s. column. The dual simplex method of Section 3.3 is now applied to
effect a change of basis, with a basic variable with present value of zero
departing. When a nondegenerate basis has been found, the above procedure
is repeated and a second critical point is identified.

The process is repeated until a basis is found with the property that
further increases in the value of § will not lead to the basis being suboptimal.
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This analysis could also be carried out by taking the dual of the problem,
which is
Minimize: Y (b + 08)y;
j=1
subject to: Y apy;i>c, i=1,2,...,n
j=1

ijO, j=12,...,m

Then the procedure of Section 3.6.3.1 can be used.

3.7 Exercises

1. Solve the following problems using the revised simplex method.

(a) Maximize: 3y +2x, + x5+ 2x,
subject to: 3x;+ X+ x3+2x,<9
Xy +2x,+ x3+4x, <12
2%+ X5+ 3x3+ x, <8
3x; +3x, +2x3+ x, <10
x; =0, i=1,2734

(b) Maximize: 2xy ~ 3%, + 2x5 + 4x,
subject to: 2%) + 5%, + 3x3 4+ 3x, < 20
2%y +4x, + X3+ 6x, <20
2xy 4+ 2x, + 2x5 4+ 3x, <12
Xy 4+ 2x, + 2x5 + 4x, < 16

x; =0, i=1,2734
(c) Maximize: Xy + 2% 4+ 3x3— x4
subject to: Xi+ X;— X3+ x,<3
2x, + 3x, <6

3xi + X, +2x3—2x, <10
2%, +3x3+2x, <8
x,-ZO, i=1,2,3,4.

(d) Maximize: 4x, + 2x, + 3x5 — x4

subject to: x; + 2x, +x, <8
3x; + 2x3 +x, <12
2x, + X, + 3x3 <20

2x, + 2x3 + x, < 10
x; >0, i=1,2734
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2. Solve the problems of Exercise 1 by the regular simplex method. Compare the amount
of computational effort required with that required by the revised simplex method.

3. Solve the duals of the following problems by the dual simplex method.

(a) Maximize: 3x; + 2x, + x3 4+ 2x4
subject to: X, +2x,4+ x34+3x,<6
3x; +4x, +2x3+ x4, <8
2x; +3x, +3x3+ x4 <9
2%, + X, + 2x3+ 2x, < 12
x; =0, i=12734

(b) Maximize: 2x 4+ 4x, + x5+ 3x,

subject to: 2x;— X3+ X3+ 2x,<6
2x, — x4<1
X+ X, +2x, <4

3x; + 2%, + 2x3+ x,<9
x; >0, i=12734

(c) Maximize: 2x; + X+ X3+ x4
subject to: X —2x54+ X3+ x, <11
—4x, — X, + 2x3 <4
2x, —2x3+x,<1
— X3+ Xx4=2

x>0, i=1,234

(d) Minimize: Xy + 4%,
subject to: Xi4+2x;,— X3+ x4=3
—2x;— X+ 4x3+x,=2
X1+ 2%, + X3 <11
2%, + 2x3+ x, > 8
x; =20, i=1,2734

4. Solve the problems of Exercise 3 by using the regular simplex method on the duals.
Compare the computation step by step for each problem.

5. Solve the following parametric programming problems where the x,-row coefficient
x; is changing at the rate of S; units per unit of time, where S = (S, S;, S3).
(a) Maximize: 3x; + X, + 2x;
subject to: 2x; + x5 +4x3 <10
X, +2x,4+ x3<4
3x, —2x,+ x3<6
x; =0, i=1,273
S=(1,23).
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(b) Minimize: X, +4x, + X3
subject to: X, +2x,— x3=3
—=2x; — X, +4x3>1
X+ 2x,+ x3<11

X; > 0, i= l, 2, 3
S=(,6,1).
(c) Maximize: X1 + 2x, + 2x5
subject to: 2%, + 2%, — x3 <8

2% — X+ Xx3<2
x; >0, i=1,23
S=2,-2,1).
(d) Maximize: 3%, + 2%, + X5
subject to: 3+ x4+ x3<9
Xy +2x, + x3 <12
2%, + X5+ 3x3 <8
x; =0, i=1,2,3
S =(2,3,4).
6. Solve each of the problems of Exercise 5 by taking the dual and using postoptimal

analysis on the r.h.s. parameters.

7. Solve each of the parametric programming problems in Exercise 5 when the r.hs.
parameters b; increase with time at the rate of A; units per unit of time, 1 = (4,, 4, 43).
(@ A=(213)

(b) A=(1,-2,3)
(©) A=(-5,1,1)
d) A=(2,-3,3).



Chapter 4

Integer Programming

4.1 A Simple Integer Programming Problem

The Speed of Light Freight Company has just secured a contract from a
corporation which wants its big crates of machine parts periodically shipped
from its factory to its new mineral exploration site. There are two types of
crate; A and B, weighing 3 and 4 units, with volume 4 and 2 units, respectively.
The company has one aircraft with a capacity of 12 and 9 units of weight
and volume, respectively. The company gains revenue of 4 and 3 units (in
hundreds of dollars), respectively, for each crate of 4 and B flown to the site.
As the revenue for road transport is much lower, the company would like
to make maximum revenue from its one aircraft, the remaining goods being
trucked. We can formulate this problem mathematically as follows. Let

x, = the number of crates of type 4 flown
X, = the number of crates of type B flown.

As 4 units are gained for one A4 crate flown, the revenue for x, crates is
4x,. Similarly, 3x, is gained for x, B crates. Thus the total return for a
policy of flying x; A crates and x, B crates is 4x,; + 3x,, which we denote
by x,. Now as one A4 crate weighs 3 units, x; 4 crates will weigh 3x;.
Similarly x, B crates weigh 4x,. Thus the total weight flown by the policy
is 3x; + 4x,, which must be less than or equal to 12 units. By similar rea-
soning we can formulate a constraint for volume:

4x, + 2x, <9.
We are now in a position to define the problem mathematically.

Maximize: 4x; + 3x, = xq 4.1)

150
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subject to: 3x, +4x, <12 4.2)
4, +2x,<9 (4.3)

X1,X, 20 4.4)

X1, X, integers. 4.5)

This problem is an example of an integer programming problem. It would
be a linear programming problem if it were not for (4.5). Before going on to
develop methods which will solve this problem, let us define the general
area of combinatorial optimization of which integer programming is a part.

4.2 Combinatorial Optimization

A combinatorial optimization problem is defined as that of assigning discrete
numerical values (from a finite set of values) to a finite set of variables X so
as to maximize some function f(X) while satisfying a given set of constraints
on the values the variables can assume. Some problems of this type have
already been considered: the transportation problem of Section 2.7.1 and
the assignment problem of Section 2.7.2. Stated formally the combinatorial
optimization problem is

Maximize: f(X)

subject to: g,/(X) =0, j=1,2,...,m,
h(X) <0, i=1,2,...,k
X a vector of integer values.

Note that there are no restrictions on the functions f, g;, j=1,2,...,m,
and h;, i = 1,2, ..., k. These functions may be nonlinear, discontinuous, or
implicit. This general problem is difficult to solve, and so we confine our
attention to a drastic simplification, which is a linear programming problem
in which at least one specified variable must have an integer value in any
feasible solution.

Let n be the number of decision variables. Without loss of generality,
suppose that the first g(1 < g < m) variables are constrained to be integer.
Consider the following problem:

Maximize: Cc'x (4.6)
subject to: AX = B, 4.7
X=>0 (4.8)

Xq,X3, - - ., X, integer, 4.9

where X = (x1,X3,...,Xg-..,X,)  and Cisn x 1,Bism x 1,and Aism x n.
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If
q=n,

the problem is termed an integer linear programming problem. Our air freight
problem comes into this category.
If

l<g<n,

the problem is termed a mixed integer linear programming problem.
If (4.9) is replaced by

x;=0o0rl, i=12...,n

then the problem is termed a zero—one linear programming problem.
Of course, if
q=0,

(4.9) ceases to be relevant and the problem becomes an ordinary linear
programming problem.

The transportation problem is an integer linear programming problem
and the assignment problem is a zero—one linear programming problem.
Further examples of integer linear programming problems will be given
later. Because only linear problems will be considered, we will simply refer
to an integer program (LP.).

The formulation (4.6)—(4.9) is identical to an L.P. except for the presence
of (4.9). Because the simplex method is a very efficient way of solving an
L.P., it seems natural to ask whether this method might not be used on the
LP., solving it by ignoring (4.9). If the solution obtained satisfies (4.9) it is
optimal. However, suppose the solution contained, for atleast one i, 1 <i<gq,

xl* = Bia

where b; is noninteger. In this case the L.P. solution is infeasible as an LP.
solution. The value for each such x; could be rounded either up or down as

x,- = [Bl:] or X,- = [Bl] + 1

to achieve feasibility, where [b;] denotes the integer part of b;. Sometimes
this approach yields a satisfactory solution. There are, however, problems.

Consider, for example, Figure 4.1, where the constraints for the following
small I.P. problem have been drawn:

Maximize: Xo= X;+ X,
subject to: 2x, + 12x, < 39
4x, > 9
X1,X, >0

X, X, integer.
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33
4

Optimal I. P.
solution

2f /i

Rounded solution

L.P. solution

1 1 1 1 i 1 »
0 1 2 3 4 5 6 x
Figure 4.1. An example showing the failure to obtain a feasible LP. solution by
rounding an L.P. solution.

It can be seen in Figure 4.1 that the L.P. solution is

X

N O\

7

¥ =¥

X

=1

N

b

which is infeasible for the above I.P. The rounding of x,, either up or down,
does not produce a feasible solution. In fact the optimal LP. solution, as
shown, is not at all close, relatively speaking, to the L.P. solution.

This example points up the pitfalls of rounding L.P. solutions to obtain
I.P. solutions. No combination of rounding either up or down of the non-
integer variables may be feasible, let alone optimal. Even when rounding
does produce feasibility, the solution may be far from optimal.

It is obvious that more sophisticated methods need to be developed if
we are to guarantee an optimal solution to an LP. problem. Some such
methods are described in the next two sections.
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4.3 Enumerative Techniques

Theoretically any L.P. problem can be solved by simply listing all possible
feasible solutions, finding the value of each one and choosing the best. Such
a technique is called exhaustive enumeration. However even for zero—one
problems, in which there are just two possibilities for each variable, as the
number of variables increases the number of possibilities quickly becomes
very large: 2" for n variables. The situation is far worse for general problems.
Hence it is impractical to solve anything other than trivial problems in
this way.

What can be done, however, is to examine the set of all possible solutions
in such a way that whole sets of solutions can be discarded without specific
evaluation of all the solutions in each of these sets. Thus the enumeration is
carried out implicitly, and this approach is termed implicit enumeration.
Dynamic programming, which will be covered in Chapter 6, is an example
of implicit enumeration. An implicit enumeration technique designed espe-
cially for integer programming problems, called branch and bound enumera-
tion, will be described next.

4.3.1 Branch and Bound Enumeration

Branch and bound enumeration is a sequential technique for solving com-
binatorial optimization problems. Its use on such problems produces a
decision tree. The first iteration produces the point at which the tree is
rooted. Any subsequent iteration produces a number of new points which
are connected to the existing tree by lines which all emanate from one
existing point. A set of decisions concerning the values that the variables
can assume is associated with each point along with a bound. The bound
represents a value which is at least as good as that which could be attained
by any feasible solution obeying the set of decisions of that point. The
process begins by creating the root of the decision tree, which represents
all feasible solutions to the problem. A bounding routine calculates a bound
for this point, i.e., a bound on the optimal value. If the solution associated
with this bound is feasible it is optimal and the procedure is terminated. If
not, a partitioning routine partitions the set of feasible solutions into a
number of subsets, each represented by a distinct point in the decision tree,
all connected by lines to the parent point. The bounding routine then cal-
culates a bound for each of these points. An elimination routine discards a
point from the tree if it can be shown that no solution in its set can be optimal.
This would occur, for example, if its bound is worse than the value of a
known feasible solution. The process continues generating new points at
each iteration. Termination occurs when finally the optimal solution or
evidence that no such solution exists has been obtained.
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4.3.1.1 Solving the Numerical Example by Dakin’s Method

Land and Doig (1960) presented a branch and bound algorithm for solving
LP. or mixed L.P. problems. It was found to be very difficult to program
a computer to implement it efficiently. However, Dakin (1965) introduced
a modification of their algorithm which overcome this restriction. The
latter algorithm will be explained here.

The branch and bound decision tree built up in applying Dakin’s method
to problem (4.1)—(4.5) is shown in Figure 4.2. The algorithm begins by
solving (4.1)—(4.4) as an L.P. This has the following optimal solution:

* — 12
X1 =10
* . 21
X2 =10
% _ 111
Xo = 710 -

If this first optimal solution had satisfied (4.5), it would have been optimal
for the I.P. and the method would have been terminated. However, as this is
not the case, we proceed. The bound of 144 is associated with the highest
point of the decision tree, labelled a.fs. (which means that it represents the
set of all feasible solutions). Any feasible solution for the I.P. cannot have
a value greater than this bound. As this solution is infeasible with regard
to (4.5), one of the variables with a noninteger value is arbitrarily chosen,
say x,. The integer part of its value is identified. That is, we find the greatest
integer less than or equal to the current value (35) of x,. As

21 _ 1
=2+ 1o,

this integer part is 2. Now, as x, must be integral in any feasible solution,
either

x, <2 (4.10)
or
4.11)

Figure 4.2. A decision tree for Dakin’s method.
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We now create two new L.P. problems, I and II:

I (4.1),(4.2), (4.3), (4.4), and (4.10)
I (4.1),(4.2), (4.3), (4.4), and (4.11),

that is:
PrOBLEM 1
Maximize: 4x; + 3x,
subject to: 3x, +4x, <12
4x, +2x, <9
X, <2
X4, Xy = 0.
ProBLEM 11
Maximize: 4x; + 3x,

subject to: Ix, + 4x, <12
4x, +2x, <9
Xy >3

X, X%, = 0.

We have in effect partitioned the set of feasible solutions to the original
L.P. into two disjoint subsets: one comprising all the solutions where x, <
2, and the other all solutions where x, > 3. Consequently, two new points
representing these two sets of solutions are added to the decision tree in
Figure 4.2. Problems I and II are now solved. Problem I has optimal solution

xt =3
x¥=2
x§ =11

Problem II has an optimal solution
x¥=0
x¥=3
x5 =09.

The solution to II satisfies (4.5) and is thus stored as the best solution
found so far for the I.P., with value 9. However the bound 11 is associated
with point 1 in the tree. Thus the possibility remains that there may be a
better L.P. solution lurking in its set. We choose x; as the noninteger valued
variable with value 3. As the integer part of this value is 1, we create two
constraints,

x; <1 and x,=>2
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We create two new L.P.’s:

ProBLEM 111
Maximize: 4x, + 3x,
subject to: 3%, +4x, <12
4x, +2x, <9
X, <2
x; <1

X1,X5 = 0.

PrROBLEM IV
Maximize: 4x, + 3x,
subject to: 3x, +4x, <12
4x; +2x, <9
X, <2
X, >2

Xq,%5 = 0.

These problems are now solved. Problem III has an optimal solution:

x¥=1
x3=2
x§ = 10.

As this satisfies (4.5) and its value exceeds that of the best solution found so
far, it is stored as our best solution. Problem IV has value 93, which is less
than the value of present incumbent. We have found a solution whose value
exceeds the bound for any other set of feasible solutions. This solution must
be optimal.

We have discovered that the company should fly one A4 crate and two
B crates on each trip for a maximum return of 10 units.

4.3.1.2 Dakin’s Method in General

Dakin’s method begins to solve a problem of the form of (4.6)—(4.9) by first
ignoring (4.9) and solving the problem as an L.P. using the simplex method.
The value of the solution thus found is the bound assigned to the first point
of the decision tree, representing all feasible solutions to the original I.P.
problem. This makes sense, as (4.6)—(4.9) can be thought of as the equivalent
L.P. with the added constraint of (4.9). Hence it cannot have an optimal solu-
tion better than the equivalent L.P. If the optimal L.P. solution has integer
values for the first g variables, it is optimal for the L.P. and the method ter-
minates. However, suppose at least one variable, x; (1 < i < g) has a non-
integer value
x¥ =Db;, b; noninteger.
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Now as x; is constrained to be an integer, values in the range
[b] < x; <[b]+1,
are infeasible. Hence x; must obey exactly one of the following constraints:
x; < [b]

or
X; > [El] + 1.

Two new L.P. problems are now created:

I: (46),(4.7), (4.8), and x; < [b,]
I: (46),(4.7),(48),and x; > [b,] + 1.

Note that problems I and II differ from the original problem only in the fact
that one more constraint has been added. It is thus possible to deduce the
optimal solutions to these amended problems with relatively little extra
computational effort using the ideas of Section 2.6.2.5 and the dual simplex
method of Section 3.3. Constraints of the type x; < [b;] and x, > [b;] + 1
are called Dakin cuts. Notice that it is no longer possible for x; to take on
the offending value b; in either problem I or II. Two new points are created
in the decision tree, both joined by lines to the original point. The first
represents all feasible solutions to problem I, the second to problem II. The
optimal solution to the original LP. (if such a solution exists) must lie in one
of these sets. In fact the set, S of feasible solutions to (4.6)—(4.9) has been
partitioned into these two sets S; and Sy, in the sense that

S,US; =S5

and
Sin Sy =, the empty set.

Both L.P. problems I and II are solved. Their optimal solution values are
bounds assigned to the corresponding points in the decision tree. The better
of the two bounds is identified. As the objective is one of maximization the
larger bound will be selected. Ties can be settled arbitrarily. If this better
bound corresponds to a feasible solution to (4.6)—(4.9) this solution is de-
clared optimal and the procedure is terminated. If it corresponds to an
infeasible solution another of the variables constrained to be integral with a
noninteger value is identified. Two more cuts are defined based on this
variable. The partitioning (branching) routine is repeated, creating two more
decision tree points.

The algorithm is continued until either (a) a feasible solution with value
no less than that for any other bound is found (this solution is then pro-
nounced optimal), or (b) it is found that no feasible solution exists (all points
have been eliminated from the tree). When a solution is found to be feasible,
its point is never selected for branching, and the point is said to be fathomed.
The point is eliminated unless it is the best feasible solution so far found, in
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which case it is recorded as the incumbent. Of course any point with a bound
worse than that of the incumbent is eliminated.

4.3.1.3 The Zero—One Method of Balas

We now examine the zero—one programming problem and a method for
its solution. Although the model assumes that each variable is binary it is
still useful, as many I.P. problems are formulated this way. Often the vari-
ables represent decisions as to whether to adopt a particular policy or
not, i.e.
_ |1, ifpolicy i is adopted
i {0, otherwise.

Further, any LP. can be converted into a zero—one problem by redefining
each nonbinary variable x; as follows.

Let u; be the largest possible integer value that x; could possibly assume
in any feasible solution. This bound u; is usually deduced by examining the
constraints.

Let N; be the smallest integer such that

2N >y

Then x; can be expressed in terms of the binary variables y}, y}, k. as

Nj+1

x= 5 @

Examples of this conversion will be given in the next section.

Balas (1965) has developed a method for solving zero—one problems which
involves branch and bound enumeration. His approach differs from that of
Dakin’s in that it does not require the simplex method as a subroutine.
Balas describes the method as “additive,” as it requires only the addition
and not the multiplication of numbers. The method is applicable only to
problems with nonnegative objective function coefficients. Any zero—one
programme can be converted into this form by replacing any variable x;
with negative ¢; by X; = (1 — x,).

The method partitions the variables into three sets:

W: the set of variables which have been assigned a value 1
V: the set of variables which have been assigned a value 0
F: the set of unassigned (free) variables.

Initially all variables are assigned to F. For maximization problems all
variables in F are next temporarily assigned a value of 1. If this solution is
feasible it is clearly optimal, as ¢; >0, i=1,2,...n. If this solution is
infeasible an upper bound on the value of the optimal solution can be
obtained. This bound is equal to the sum of the c;, neglecting the minimum
c;, for all x; € F. After this first iteration, a bound can be found for any
partition of the variables among W, V, and F as follows.
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The bound is equal to the sum of the ¢; for all x; € W plus the sum of
¢;, neglecting the minimum c;, for all x; € F, i.e,,
Y ¢+ Y ¢ —min{c¢}.
x;eW xieF xieF

When a solution is found to be infeasible its corresponding point in the
decision tree sprouts two new points, effecting the branching step. Suppose
W, V, and F denote the partition at the parent point and the variable cor-
responding to the minimum c; among variables in F is x;. Then the partition
at one of the new points is:

F becomes F\{x;}, W becomes W u {x;}, V remains the same
and at the other new point:
F becomes F\{x;}, W remains the same, V becomes V U {x;}.

Bounds are then calculated for these two new nodes as just described.
When the partition of a particular point cannot possibly lead to an optimal
solution, the poini is eliminated from the tree. When the partition of a par-
ticular point corresponds to a feasible solution the point is fathomed and
no further branching takes place from it. When a point corresponds to a
feasible solution and has a value no less than that for any other node, this
solution is declared optimal.

4.3.1.4 Numerical Example

The method will be illustrated using the problem (4.1)-(4.5). First upper
bounds on x, and x, must be found, as they are not binary:
Uy = rP}nz {[bi/ay]} = min{[l}],[%]} =2
U = Tinz {[bi/ay]} = min {[*2],[3]} = 3.
Therefore '
N,=1, N, =1
Let
X =201 + 219}
x; = 2% + 21y3.
Then the problem becomes
Maximize:  xo = 4(y} + 2p3) + 3(y? + 2y3) = 4y} + 8yl + 3y} + 6y2
subject to:  3(y} +2y3) +4(yi + 2y <12
4yi+29) + 201 + 299 <9
y1,¥3, 1, y5=0or L

The decision tree built up by the method is shown in Figure 4.3. The
method begins by partitioning the variables into

W=®’ V=ga F={YLJ’£,Y%,Y§}
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Next all the variables in F are temporarily assigned a value 1. This is obvi-
ously infeasible. The bound on the first point is calculated as 4 + 8 + 6 = 18,
the sum of all ¢; of the variables in F except the minimum, which is 3, cor-
responding to y2. Branching now takes place and y? is transferred to W in
point (2) and V in point (3). Bounds are calculated for these nodes as ex-
plained earlier. For instance, the bound for point (2) is arrived at by setting
all the variables in F, y}' y}, y2, equal to 1. This is infeasible, as y} =1
because it is in W. Hence the variable with the minimum coefficient in F,
y1, is discounted when calculating the bound, which is 8 + 6 plus the 3
from y? For point (3) all the free variables are set equal to 1, but this is
infeasible. The variable discarded is y! (y? is unavailable, as it is in V) and
the bound is 8 + 6.

As we are maximizing we branch from point (2) because it has the higher
bound. This produces points (4) and (5). Branching from point (4) produces
points (6) and (7). However, point (6) cannot represent any feasible solutions,
as y2, y!, and y% cannot all be equal to 1, so it is eliminated. (Hence the
“—00” symbol.)

At this stage point (3) has the largest bound. This eventually produces
point (10) with a bound of 10 which represents a feasible solution. All points
with inferior bounds can be eliminated. This leaves point (5), which spawns
points (12) and (13) both with bounds less than 10.

Therefore point (10) is declared optimal, with the solution

yhy;=1
y1Lyy=0
x¥ = 10.

This solution corresponds to that found by Dakin’s method:
x¥=2°)+2'0) =1
x¥ =2°%0) +2'(1) = 2.

4.4 Cutting Plane Methods

Gomory (1958) developed cutting plane algorithms for solving all-integer
and mixed-integer programming problems. He proved that these methods
will produce an optimal solution in a finite number of iterations when
applied to problems with rational data. The methods revolve around the
idea of introducing new constraints (or cuts) to the problem. These cuts
slice away noninteger optimal solutions to the associated L.P. problem, but
leave all feasible integer solutions untouched. This is similar to what is done
in Dakin’s method, but there are fundamental differences between the two
approaches. In cutting plane methods successive constraints are added to
just one problem, whereas in branch and bound methods many different
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(linear programming) problems may be created. Thus in cutting plane
methods the original feasible region for the associated L.P. problem is grad-
ually reduced as extra constraints are added. In contrast, in branch and
bound methods the original feasible region is often broken up into discon-
nected subregions. In Dakin’s method cuts are parallel to the axes; this
seldom happens in cutting plane methods. Finally, cutting plane methods
always preserve all feasible integer solutions, while some feasible integer
solutions are usually eliminated from some of the problems created by the
branch and bound method.

The all-integer and mixed-integer methods will be explained in the next
two sections.

4.4.1 Gomory’s All-Integer I.P. Method

The way in which the Gomory all-integer cutting plane algorithm solves
(4.6)—(4.9) will now be explained. It will be assumed that all variables are
constrained to be integers in (4.6)~(4.9):

qg=n.

The outline of the algorithm is as follows. Problem (4.6)—(4.8) is solved by
the simplex method. If the optimal solution is all-integer the problem is
solved and the algorithm is terminated. If at least one variable is noninteger
a new constraint is added to the problem. This constraint is derived by
choosing a noninteger valued variable and examining the tableau row in
which it appears. The problem is then resolved with this new constraint.

It has been assumed that all variables, including slack variables, are to
be integer in any feasible solution. This assumption can be made workable
by clearing fractions from the constraint coefficients before introducing the
slack variables. That is, if one is confronted with a constraint like

5 6
X1 + 9%, < 1,

one can multiply the constraint by the lowest common denominator of the
coefficients (99) to obtain

45x, + 66x, < 99.

Once this has been done for all necessary constraints the initial L.P. problem
is then solved by the simplex method.

The way in which a new constraint is constructed from a noninteger
tableau will now be explained. Suppose the associated L.P. problem has
been solved and at least one variable, say, x; has a noninteger value. The
row in the optimal tableau in which x; has a unit entry is found, say the
Jth row. Let it correspond to the equation

X+ a5y1 + @y + 0+ 8y, = by, 4.12)
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where y,, k =1,2,..., p, are the nonbasic variables, dy, k =1,2,...,p is
the coefficient of y, in this jth row; and b; is the value of x;. Now (4.12)
is solved for x;:

x;=Db;— Gy —Ajzys— - — ApYp (4.13)
For any « € R, let [«] denote the largest integer no greater than «. Then
o=la] + 0, 4.14)
where o is the fractional part of «; for example,
a=3t=[a]=3 and o' =7%
a=—%=[a]=—-1 and o =4%
a=2=[a]=2 and o =0.

Each rational number in the r.h.s. of (4.13) can be expressed in the fol-
lowing format:

x; = [b;] + b — ([@; ] + @)y — - — ([@jp] + @)y,

On collecting integer terms, this becomes

Xi = {[BJ] - [ajl]h - = [ajp]yp} + {Blj - a;'IyI - a}pyp}'
Now the first part:
{[Bj] - [ah])’l - [ajp]yp}
will be an integer if all the variables y;, ya, ..., y, are integers, which is
true by assumption. Hence for x; to be an integer, the second part:

{E; - ﬁ}lyl —_ = 5;pyp} (4.15)

must be an integer. But
0<bj<1,

as b was assumed to be noninteger. Also
0<a; <1, i=12...,p

because of the definition (4.14). Hence, as the yy, y,, . .., y, are constrained
to be nonnegative integers, (4.15) cannot be a positive integer. Hence (4.15)
must be a nonpositive integer. So the constraint:

by — @y = — Ty, <0 (4.16)

must hold in any feasible integer solution.
Let the slack variable x, be introduced into (4.16):

by — @y, — = Apyp +x,=0. (4.17)

As (4.15) must be an integer, then x, must of necessity be an integer also.
This constraint (4.17) is now added to the final simplex tableau and an
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optimal solution to the amended L.P. solution is found using the dual
simplex method of Section 3.3.

The constraint (4.16) represents a Gomory cut. The process is repeated
until the dual simplex method either produces an all-integer solution (which
will be an optimal solution for the original I.P. problem) or evidence that
no feasible solution exists (in which there are no feasible all-integer solu-
tions). The algorithm will now be illustrated by solving a numerical example.

4.4.1.1 Numerical Example

The method will be illustrated on the problem (4.1)—(4.5). The problem is
first solved by the simplex method, ignoring (4.5). This produces Table 4.1,
where x3 and x, are the slack variables introduced in (4.2) and (4.3).

Table 4.1
Constraints X X, X3 X4 rhs
4.19) 0o 1 2 3 2
(4.20) 1 0 -1 2 ]
Xo 0 0 % 1L0 111_01

This solution is noninteger, so we must introduce a cut. Consider the
second row in Table 4.1, corresponding to the noninteger-valued variable
x;. This row corresponds to the equation:

x; —8x3 + x4 =§.

Therefore
Xy = % - (—%)xa - %x4
=+ - (—1+9x -0+ Hxa.
The fractional part of this expression is
-é_ - %X3 - %x45

which cannot be a positive integer; hence

1 $x,—%x,<0. (4.18)

As the problem has only two structural variables, it is instructive to
follow the progress of the method graphically. Figure 4.4 shows the graphical
solution to the original L.P. problem. Using the equations

3x;y +4x, + x3=12 4.19)
4x, + 2x, + x4 =9, (4.20)
one can substitute for x; and x, in (4.18), producing

4X1 + 4x2 < 13, (421)
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X, A

N\ 3x, + 4x, = 12

dx, + 4x; = 13

5x, + 4x, = 14

4x, + 3x, = 10

_f—— —— e e - —— — e — —

\ \ %

5x; + 3x, =11 4x, + 2x, =9

Figure 44. Graphical solution to the example problem using Gomory’s method.

which is shown in Figure 4.4. Note that this solution cuts away part of the
feasible region, including the optimal solution to the present, but leaves all
feasible integer solutions still in the region. This will always happen.
On adding a slack variable x5 to (4.18) and taking the constant to the
r.h.s., we have
—%xy —2x4 + x5 = —3. (4.22)

This constraint is added to Table 4.1, and the dual simplex method is used
to produce a new optimum, given in Table 4.2.
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Table 4.2
Constraints X, X, X3 X4 X5 rhs
4.19) 0 1 0 -1 i 2
(4.20) 1 0 0 L -4 3
(4.22) 0 0 1 L -3 i
Xo 0 0 0 1 1 11

As can be seen in Table 4.2, x; has a noninteger value. Hence the equation
X3+ 3% — 3Xs = &
is expressed in terms of x; with integer and noninteger parts:
X3=(0+%)— 0+ Dxs — (=2 + Ixs.
So the new cut is:
1 1x, - 3xs<0. (4.23)

As an aside, we can use (4.19), (4.20), and (4.22) to show that (4.23) is equiva-
lent to

5xy +4x, <14

This constraint is plotted in Figure 4.4. On adding the slack variable x4 to
(4.23) we have

—3X4 — 3Xs + X6 = —%. (4.24)

(4.24) is added to Table 4.2 and the dual simplex method is used to produce
the optimal tableau shown in Table 4.3.

Table 4.3
Constraints Xy X, X3 X4 Xs X r.hs
(4.19) 0 1 0 - 0 3 4
(4.20) 1 0 0 R - 4
4.22) 0 0 1 $ 0 -3 %
(4.24) 0o 0 0 EH S B
Xo 0 0 0 i 0 2 &

Now all the basic variables have noninteger values. The reader who thinks
we are chasing our tails is asked not to despair. The “optimal” solution value
is steadily being reduced at each iteration: from an initial 44 to 11 to &2.
The Gomory cuts are slicing away nonoptimal parts of the original feasible
region, as can be seen in Figure 4.4. Applying the technique to row (4.19) in
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Table 4.3 produces

Xy =% — (= dxs — 36
=1+ — (=1 + 8% — (=1 +Ix6.
Therefore
3~ %4~ 36 <0, (4.25)
which corresponds to
4x, + 3x, < 10,

shown in Figure 4.4.

Adding the slack variable x, to (4.25), which is then added to Table 4.3,
allows the dual simplex method to produce the optimal tableau shown in
Table 4.4. Applying the technique to (4.20) in Table 4.4 produces

Xy = % - %x4 - (—%)x7
=1+ D=0+ Pxa— (—1+hxs.
Therefore
2~ 3x, -1x,<0, (4.26)
which corresponds to
S5x; +3x, <11

shown in Figure 4.4.

Adding the slack variable xg to (4.26), which is then added to Table 4.4,
allows the dual simplex method to produce Table 4.5, which displays the

Table 4.4
Constraints X, Xy X3 X4 Xs X X4 rhs
(4.19) 0 1 0 -1 0 0 1 1
(4.20) 1 0 0 2 0 0 -3 7
4.22) 0 0 1 7 0 0 -3 .
(4.24) 0 0 0 1 1 0 -2 2
(4.25) 0 0 0 1 0 1 -3 3
Xo 0 0 0 0 0 0 1 s
Table 4.5
Constraints Xy Xy X3 X4 Xs X X4 Xg rhs
(4.19) 0 1 0 0 0 0 3 -4 2
(4.20) 1 0 0 0 0 0 -1 1 1
(4.22) 0 0 1 0 0 0 -4 3 1
(4.24) 0 0 0 0 1 0 - % 1
(4.25) 0 0 0 0 0 1 -3 3 1
(4.26) 0 0 0 1 0 0 Z —% 1
Xo 0 0 0 0 0 0 1 0 €
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optimal solution to the original problem, (4.1)—(4.5):

x¥=1
x¥=2
x¥=10

4.4.2 Gomory’s Mixed-Integer I.P. Algorithm

Consider now a mixed-integer programming problem, i.e., some but not all
of the variables are constrained to be integer. In terms of (4.6)—(4.9),

O<g<n

Gomory’s mixed-integer I.P. algorithm follows the same initial pattern as
the all-integer algorithm. Suppose the initial simplex solution contains a
noninteger-valued variable x; which is one of those which is constrained to
be integer. Then its tableau equation (4.12) can be rewritten as

14
[(B]+Db,—x;= 3 @yn. 4.27

At this point the analysis takes a different path from that of Section 4.4.1,
because not all of the variables y,, k = 1,..., p may be constrained to be
integer. Let

S, = {k:a; >0}

S_ = {k: ajk < 0}.
Then (4.27) can be written as
B1+Db,—x;= Y aun+ Y T (4.28)
keS+ keS -

Case 1. Assume
[5,] + 5, — x; <0.

As[b;] is an integer, x; is constrained to be an integer in any feasible solution,
and bj is a nonnegative fraction. Hence

[5,] - x;
must be a negative integer, say —u. Therefore
[6,]+b;,—x;=b;—u,
where u € {1,2,3, .. .}. Substituting this into (4.28) produces
Di—u= Y @+ Y Gph

keS+ keS-
Now, since

ux>1,
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we have
E}_ 1> Z Ap Y + Z 7

keS+ keS—

And, from the definition of S, and the fact that y, > 0 for all ,
bi—1= Y apn.

keS
Now, as

b, —1<0,
we have
1<@®-1D"" Y e

keS_
Multiplying both sides by b, we obtain
B <B®B -1 Y a. (4.29)

keS_
Case I1. Assume

As x; is constrained to be an integer in any feasible solution, we have
(5] +Bj—x;=bj+v
for some v, where v € {0,1,2,3, .. .}. Substituting this into (4.28), we get

’ —_— p—
Di+v=Y apn+ 2 TG
keS+ keS_
Now, since

we have
E}S Z ApYi + Z Ay Vi

keS 4 keS_—

and, from the definition of S_ and the fact that y, > 0 for all k
bi< Y dun. (4.30)

keSS4

Combining (4.29) and (4.30), we obtain
Bo<byb,— 17 Y @iy + Y Gpe (4.31)

keS_ keS+
This inequality must be satisfied if x; is to be an integer. The constraint (4.31)
is the Gomory cut, which is introduced into the final tableau.
A slack variable x, is now added to (4.31):
b, =byb;— 17! ZS: Yy + ZS: Ay Yy — X, 4.32)
keS - keS+
Now, as

Y =0, k=1,2,...,p
we have

x, = —bj

r J°
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which is infeasible. The dual simplex method is used to remedy this situation.
The above process is repeated until either:

1. A tableau is produced in which x;, i=1,2,..., q are integer, in which
case the corresponding solution is optimal; or

2. The use of the dual simplex method leads to the conclusion that no feasible
solution exists, in which case one can conclude that the original mixed-
integer problem has no feasible solution.

4.4.2.1 Numerical Example

The method will be illustrated on the problem (4.1)~(4.4), with the following
additional constraint:
X, must be an integer,
ie.,
qg=1
On examining Table 4.1 it can be seen that x; is noninteger and can be
expressed as
1+45—x = —3x; + Zx,.

Therefore, in terms of (4.27),

[b]=1
b=+
j=2
i=1
p=2
4 = —%
a,=3%
Y1 = X3
Y2 = X4
Also,
S, =4)
S_={3}
Letting
Xp = Xs,

in terms of (4.32) the cut becomes
§=3G - D7H=xs + Ixg — x5 (4.33)

Adding the negative of this constraint to Table 4.1 yields Table 4.6. The
application of the dual simplex method to Table 4.6 yields Table 4.7, which
displays the optimal solution to the problem, as x, is now integer-valued.
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Table 4.6
Constraints X, X, X3 X4 Xs rhs
4.19) 0 1 2 -3 0 i
(4.20) 1 0 -1 2 0 ¢
(4.33) 0 0 — 25 -1 1 -1
Xo 0 0 3 o 0 ¢
Table 4.7
Constraints X, X, X3 X4 Xs r.hs.
(4.19) 0 1 47 0 —3 3
(4.20) 1 0 —25 0 1 1
(4.33) 0 0 1 -3 3
Xo 0 0 % 0 %
This solution is
x¥=1
xt=3
x§ =4

4.5 Applications of Integer Programming

In the sections that follow we shall outline some real-world problems that
can be formulated in terms of integer programming. There is quite an art in
this. On the surface it does not seem possible to describe many of the problems
as integer programs. However with imaginative definition of variables
and construction of constraints it can be done. Once it has been recognized
that a problem is amenable to I.P. formulation there is a great deal to the
task of making the formulation efficient. That is, it is one matter to be able
to formulate a problem, it is another matter to endow the formulation with a
structure or size that can be solved efficiently.

4.5.1 The Travelling Salesman Problem

The travelling salesman problem is one of the classical problems of com-
binatorial optimization. It is concerned with a salesman who must visit a
number of cities once each and return to the city from whence he started. The
problem is to assign an itinerary to the salesman which minimizes the total
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distance travelled in order to accomplish this circuit. It is assumed that the
distance travelled in proceeding directly from one city to any other is known
for all pairs of cities. Note that it is not assumed that the distance from city
i to city j is necessarily the same as the distance from city j to city i. These
two distances may differ for example when the “cities” are intersections in a
one-way street network. When all such i, j-pairs of distances are equal the
problem is called the symmetric travelling salesman problem (T.S.P.), other-
wise it is called the asymmetric travelling salesman problem.

The T.S.P. can be formulated as a zero—one I.P. problem. Let

n = the number of cities,
c;; = the cost of travelling from city i to city j.

Note that if one does not wish the salesman to travel directly from a certain
town to another one can assign a prohibitively large value (denoted by “00”)
to the appropriate c;; value. This will ensure that such a path is never selected
in any optimal solution. For instance, one sets

¢y = 00, 1=1,2, ...,n
Let

_ {1, if the salesman is to proceed directly from city i to city j
Y710, otherwise.

Because each city i must be left exactly once,
z xij=1, i=1,2,...,n. (4.34)
Also, because each city j must be visited exactly once,

Yxy=1  j=12...,n (4.35)

i=1

For any given circuit defined by x;; the objective is to

Minimize: YN X (4.36)
i=1j=1
The reader will recognize that minimizing (4.36) subject to (4.34) and (4.35)
is the assignment problem of Section 2.72. Unfortunately, extra constraints
are needed in order to formulate the T.S.P. This is because (4.34), (4.35), (4.36)
do not exclude the possibility of subtours being formed.

For instance, in a six-city problem one might make the assignments x;, =
X33 = X331 = X45 = Xs56 = X4 = 1, all other x;; = 0. That is, the “circuit” is
1-2-3->1 and then 4 - 5 - 6 — 4. This is a feasible solution for (4.34)
and (4.35), as each city is left once and arrived at once. However, it represents
two disjoint subtours. (A subtour is a circuit which does not involve all cities).
Hence such a solution is not feasible for the T.S.P. Hence we need an extra
family of constraints which prevent subtours from being formed. In order to
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develop this, we notice that there is a partition T, T’ of the set of cities N:
T={1,23},and T'=N — T = {4,5,6}

such that x;; = Oforalli e T and all j e T". This occurs if and only if subtours
exist. Thus the following constraint will prevent subtours:

> Y x; =1, forall proper partitions T, T’ of N. (4.37)

ieT jeT’

(A proper partition T, T' of N is a partition such that T # (J or N.) Thus the
T.S.P. can be expressed as the following zero—one LP.: minimize (4.36)
subject to (4.34), (4.35), and (4.37).

Of course, (4.37) involves a relatively large number of constraints for non-
trivial n. Hence it is not practical to use the above formulation on anything
other than very small problems. However before the reader despairs, one can
consider solving the problem ignoring (4.37). If the resulting solution is a
feasible circuit it is optimal; if not, its value represents a valid lower bound
on the value of the optimal T.S.P. solution. This suggests that one could use a
branch and bound approach calculating bounds in this way. This has indeed
been done initially by Little et al (1963) and Eastman (1958). There have been
a number of improvements to this approach, including those by Bellmore
and Malone (1971), which have been adopted by Garfinkel and Nemhauser
(1972).

4.5.2 The Vehicle Scheduling Problem

The travelling salesman problem of the previous section can be extended in a
number of ways. Suppose that there are now a number of salesmen, all
op:rating from one base, which is one of the cities. All of the other cities must
be visited by one salesman who delivers a quantity of goods. Each city has a
known demand for the goods and each salesman has a capacity for carrying
goods. The problem is to assign each salesman a circuit of cities, starting and
ending at the base where total demand on a circuit must not exceed the
salesman’s capacity. All cities must have their demand met and the total
cost of travel is to be minimized.

This problem can be made more realistic by thinking of the “salesmen” as
representing vehicles (say delivery vans) and the “cities” as demand points
within one city. This problem has a number of important applications, such
as school bus scheduling (Foulds et al. 1977a), milk tanker scheduling (Foulds
et al. 1977b), municipal waste collection (Beltrami and Bodin 1974), fuel oil
delivery (Garvin et al. 1957) and newspaper distribution (Golden et al. 1975).
Surveys of literature on the problem have been carried out by Turner, Ghare,
and Foulds (1974) and Watson—Gandy and Foulds (1981).

The problem will now be formulated in terms of integer programming.
The first formulation is due to Balinski and Quandt (1964). First all feasible
circuits which begin and end at the base are identified. This may be an
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extremely difficult task for problems with 20 or more demand points. How-
ever, the formulation is still useful as a conceptual tool. Let

m = the total number of feasible circuits

—

5. =L if the jth demand point is on the ith feasible circuit
J7700, otherwise
¢; = the total cost of travelling the ith feasible circuit

[y

, if the feasible circuit i is chosen
xi == .
0, otherwise.

Then the problem is to

m
Minimize: ) ¢x;

subject to: Y oyxi=1, j=1,2,...,n

x;=0o0r1, i=1,2,...,m.
The following formulation, due to Garvin et al. (1957), is more explicit
and is far more amenable to integer programming techniques. Let
pr = the demand at point k

C = the capacity of each vehicle (assumed to be identical for
all vehicles)

d;; = the cost of travelling from point i to point j
yiix = the quantity shipped from point i to point j which is destined
for point k
1, if a vehicle travels directly from point i to point j
i = {0, otherwise.
The base shall be denoted by the subscript 0.

Consider two distinct demand points, j and k. Then y;; denotes the
quantity arriving at point j from point i which is destined for point k. Thus

Z Vijk

denotes the total quantity arriving at point j destined for point k. Also,
Vi denotes the quantity leaving point j for point r which is destined for
point k. Thus

Z Virk

denotes the total quantity leaving point j for point r which is destined for
point k. Now because all goods arriving at point j, destined for point k,
should leave point j, we have:

Z Yijk =2, Vi for all points j, k, j # k. (4.38)
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Also, y, denotes the quantity arriving at point k from point i which is
destined for point k. Thus
Z Yikk

denotes the total quantity arriving at point k which is destined for point k.
Now because this total quantity must equal the demand of point k, we have:

Y Yix = Pr» for all points k. (4.39)

Also, y,; denotes the quantity leaving the base for point j which is destined
for point k. Thus

Z Yojk

J

denotes the total quantity leaving the base destined for point k and
22 Yoi
j k
denotes the total quantity leaving the base. Also
Z qx
k

denotes the total demand. Now, as the total quantity leaving the base must
equal the total demand, we have:

Z ; Yojr = %: qx- (4.40)

It is usually assumed in formulating vehicle scheduling models that only
one vehicle will visit each point. The problem of having points with demand
greater than vehicle capacity can be overcome by distributing the demand
of such a point between a number of artificial points all at the same location,
one vehicle visiting each. The assumption implies that only one vehicle will
leave each point. Thus we have:

Z X, = Z x; =1, for all points j. (4.41)
Also

Z Vijk
k

denotes the total quantity carried by the vehicle (if any) which leaves point i
for point j. This quantity cannot exceed vehicle capacity, and if no vehicle
travels on this segment, the quantity is zero. Thus we have:

Y Vi < x;;C, for all points i, j, i # . (4.42)
k

Of course it is implicit that
Vijk 2 0
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and
x;;=0or1, for all points i, j, k. (4.43)
Then the objective is to
Minimize: ) ) dy;xy, (4.44)
i
which is the total cost of all travel.

Thus it can be seen that the problem of minimizing (4.44) subject to
(4.38)-(4.43) is a mixed 0—1 programming problem. It would be difficult to
solve such problems when there are more than about 10 points, as the
number of constraints would be prohibitive. What is usually done is to solve
realistically sized vehicle scheduling problems by heuristic techniques, such
as those of Clarke and Wright (1964), or Foster and Ryan (1976). A heuristic
technique is a solution procedure represented by a series of rules which,
although not guaranteed to find the optimum, usually produce relatively
good solutions. Techniques guaranteed to produce the optimal solution,
such as branch and bound enumeration, can at present be used only on
small problems because of the amounts of computer time and storage they
require. Hence most people studying the vehicle scheduling problem prefer
to concentrate on heuristic techniques. The heuristic of Foster and Ryan
mentioned above does actually use an integer programming formulation.

4.5.3 Political Redistricting

Consider the problem of finding a just method of assigning the census tracts
of a region to a number of electorates (voting districts) for the purposes of
voting. The assignment must satisfy a number of criteria, including approxi-
mate population equality between electorates and connectedness and com-
pactness of electorates. Each tract is indivisible in the sense that all of it
must be included in exactly one electorate. The number of electorates
created must be equal to the given number of members of parliament
(congressmen) for the region. Each electorate should be connected in the
sense that it is possible to travel between any two points of the electorate
without leaving the electorate. Each electorate should be relatively compact
in the sense that its physical shape should be somewhat circular or square
rather than long and thin.

Some of the above criteria will now be expressed in mathematical form.
Let

m = the number of tracts in the region,

n = the number of electorates to be created,
1, iftractiis assigned to electorate j,

c {O, otherwise,

p; = the population of tract i.
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Let
ﬁ =

z Di
i=1

be the mean electorate population. In any true democratic system each
electorate should have a population P to ensure voting equality. However,
this is usually impossible because of the indivisibility of each tract.

The population of electorate j is

m
z DiXij-
i=1

Let its deviation from P be defined as

S |-

'21 DiXij — ﬁ‘~

Then one might attempt to make the maximum deviation over all electorates
as small as possible:

Minimize: Max d;. (4.45)
ji=1,2,..., n
Each tract i must belong to precisely one electorate:
Z xij=1, i:1,2,...,m. (446)
j=1

Also, there must be exactly n electorates created. That is, each electorate
must have at least one tract assigned to it:

Z x;; =1, j=L2...,n (4.47)
i=1
As
xu:Oorl, 1::1,2,...,7" (448)
]:1,2,...,",

(4.45)—-(4.48) would be a zero—one LP. except for the form of (4.45). However,
all is not lost, as one can convert the problem into a standard zero—one
LP. as follows. Let

v= Max d,
j=1,2,.... n
ie.,
d; <v, j=1,2, N
Hence
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and therefore

M=

1

It

PiXij— D=V
! i=1,2...,n (4.49)

M=

piXij—p= —0

i=1

Now the problem becomes
Minimize: v
subject to: (4.46)—(4.49),
which is a straightforward LP.
One can introduce the concept of tract area and develop further con-
straints concerning the connectedness and compactness of the electorates.
This has been done by Smith, Foulds, and Read (1976) and others, including

Garfinkel and Nemhauser (1970); Hess et al. (1965); and Wagner (1968),
who used integer programming to solve his model.

4.5.4 The Fixed Charge Problem

Consider the problem of a factory which must produce at least M units of a
certain commodity and there are n machines available. Let

p; = the unit cost of producing one article on machine i,i=1,2,...,n

F; = the positive fixed cost of setting up machine i for production i =
1,2,...,n

X; = the number of units produced on machine i,i=1,2,...,n.

Then the production cost for producing x; units on machine i is

pix; + F, ifx; >0
C. . —
i) {0, otherwise,

where we have assumed that production costs for each article are additive.
The problem is to minimize the total production cost:

Minimize: Y. Cilxy). (4.50)
i=1

At least M units must be produced, hence

1

x; > M. 4.51)
-1

Also,
X; IS a nonnegative integer, i=1,2,...,n. (4.52)
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Now (4.50), (4.51), (4.52) would be an LP. apart from the nonlinearity of
(4.50). However, this nonlinearity can be overcome by defining

Ji= il, if machine i is set up

~ 10,  otherwise.
Also, let
u; = the maximum possible number of units that machine i could
possibly produce.
Then
Ci(x) = pix; + Fiyi, i=12,...,n
So (4.50) becomes

Minimize: Y pixi+ Y. Fiys (4.53)
i=1 i=1

Some extra constraints need to be added:
x; < Wy, i=12...,n (4.54)
(4.54) ensures that
x;>0=y =1
and
Xi = 0= Yi= 09

the latter implication arising from the facts that (4.53) has the objective of
minimization and all F; > 0. So, with the proviso

yi=0o0rl, i=12,...,n (4.55)
the problem (4.51)—(4.55) is a mixed integer programming problem.

4.5.5 Capital Budgeting

Consider a company which has the opportunity to initiate a number of
projects. Let
n = the number of projects available

m = the number of time periods, during which funds will have to be
injected into the projects

p; = the ultimate profit of project i
f;j = the level of funds that needs to be allocated to project i in time
period j
¢; = the total capital available for distribution in time period j
1, if project i is selected,
P {O, otherwise.
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Then the objective is to maximize ultimate profit, i.e.,
n
Maximize: Y pix; (4.56)
i=1

subject to the fact that the total capital available in each period j:

n
Z ijXi
i=1

cannot exceed the amount available, i.e.,

Z ﬁjxi < C}" ] = 19 2’ BRI (B (457)
i=1

Also
x;=0orl, i=12...,n (4.58)

Problem (4.56)—(4.58) is a standard zero—one LP. If
m=1,
the variables can be redefined as follows:
fii=fi i=12...,n

CIZC.

Consider now the problem of deciding which items to take on a hiking trip.
Let

n = the number of different types of possessions to be taken
p; = the value assigned to an item of type i

f; = the weight of an item of type i

¢ = the total weight that can be carried

x; = the number of items of type i to be taken.

Then let us assume the objective of maximizing the total value of all posses-
sions taken, i.e.,

Maximize: 2": DiX;- (4.59)
i=1
The total weight of all items:
é:l fix;
cannot exceed the total allowable weight, i.e.,

zn: fixi<ec (4.60)
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Of course, only integer quantities of each item can be taken along:
X; = a nonnegative integer, i=12...,n (4.61)

Problem (4.59), (4.60), (4.61) is called the knapsack problem for obvious
reasons, and will be further examined in Chapter 6.

4.6 Exercises

(I) Computational

1. Solve the following integer programming problems by Dakin’s method.
(a) Maximize: 3x; + 5x, + 4x;
subject to: 2x, + 6x, +3x3 <8
Sxy+4x, +4x3<7
6x; + x;+ x3<12

X1,X,, X3 nonnegative integers.

(b) Maximize: 4x, + 3x, + 3x3
subject to: 4x; +2x,+ x3 <10
3x; +4x,+2x; < 14
2x1 4+ X, +3x3 7

X1, X5, X3 NONnegative integers.

(¢) Maximize: 2x, + 4x,5 + 5x;3
subject to: X1+ X;+2x3<9
2x, + x5 +3x3<13
3x; + 2x, + x3 <11

X1, X5, X3 nonnegative integers.

(d) Maximize: Sxq + 4x, + 3x5
subject to: 3xg +4x, + x3<12
4x, + 2%, + x3<9
2x%1 + 3%, +2x3 < 15

X1, X5, X3 NONNegative integers.

() Maximize: 4x, + 6x5 + X3
subject to: 2x, + X, +2x3 <16
X +2x,+ x3<10
3, + x,+ x3<13

X1, X2, X3 nonnegative integers.
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(®)

(h)

()

A food factory produces three types of fruit salad: A4, B, C. Each type requires
a different amount of three varieties of fruits: peaches, pears, and apples as
summarized in Table 4.8. No more than 5, 4, and 6 pounds of pears, peaches,
and apples can be used in producing a can. How many of each type of can
should be produced in order to maximize profits?

Table 4.8. Data for Exercise 1(f).

Weight in pounds:

Type
Pears Peaches Apples Profit per can

A 2 3 4 6
B 2 2 4 5
C 3 3 2 4

Maximize: Xy + 2%, + X3

subject to: 21+ x; +3x3 <12
X+ 4x, +2x3 <10
X +3x,+ x3<14

X1, X5, X3 nonnegative integers.

Maximize: x1 + 3x; + 2x3

subject to: X, +2x;+2x3<9
2x, + X, + x3 <18
2xy + 2%, + x3<20

X1, X,, X3 Donnegative integers.

Maximize: Xy + 3x, + 2x3
subject to: 2xy +4x, + x3<7
3, +2x, +2x3 <5
X1+ X, +3x3<6
X1, X5, X3 DONnegative integers.
Maximize: X + 2x5 + 3x;
subject to: 3% +2x, + x3<5
4x, +3x;<7
2x; +4x, + x3<4
X1, X,,X3 nonnegative integers.
Maximize: 3x; +4x, + X3
subject to: X1+ X34+ x3<8
Xy + 3x, +4x3 < 15
X, +2x3 <12

X1, X5, X3 Nonnegative integers.



184 4 Integer Programming

() Maximize: 3x{ +4x, + X3
subject to: Xy + 2%, —2x3 <9
2x; — X, +4x;3 <15
3x; + 3x, — x3<0

X1, X3, X3 NONnegative integers.

(m) Maximize: 2x, + 2x, + 4x;3
subject to: X + X3+ x3<9
3x; +4x, +2x3 <10
—2x; +4x, +4x3 <8

X1, X,, X3 Nonnegative integers.

(n) Maximize: 3x; + 5x, + 2x;
subject to: 2x; + Xy + 5x3 <12
X +3x,+ x3<8
Sx{4+2x, +3x3<9

X1, X5, X3 NONnegative integers.

(0) Maximize: Sxy + 7x, + 4x,
subject to: Xi1+ xX;— x3<0
2x; + X, + 4x; <32
6x; + 9x, <50

X, X5, X3 NONNegative integers.

(p) Maximize: 2x, + 4x, + 5x;
subject to: X1+ X;+2x3<9
2x 4+ x,+3x3 <13
3x; +2x,+ x3<11

X1, X,, X3 Nonnegative integers.

(q) A surfboard manufacturer wants to know how many of each type of surfboard
he should make per week in order to maximize profits. He makes three types
of board: the knee board (K), the beacher (B), and the cruiser (C), which are
4,6, and 8 feet long, respectively, but he can blow only 50 feet of foam per week.
The profits are $40, $60, and $30 for K, B, and C, and they require 10, 15, and
25 feet of fibreglass cloth respectively. He has 140 feet of cloth available per
week, and 70 pounds of resin per week. K, B, and C need 6, 10, and 14 pounds
of resin each, respectively.

(r) Maximize: X1+ 2%, + 3x3
subject to: X, +2x3<6
X;+ X3+ x3<5
3x, + 2x, <4

X1, X,, X3 nonnegative integers.
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(s)

v

(w)

x)

)

Maximize: 16x, + 10x, + 12x,
subject to: 2x;+ 3x,+ 4x3<10
4x; + 3x,+ 2x3<12
Xy + 2x,+ 3x3<6

X1, X5, X3 nonnegative integers.

A hobbyist making cane baskets (B), trays (T'), and plant holders (P), makes a
profit of $10 on each item, and incorporates three colours: white (W), red (R),
and yellow (Y). He has a maximum of 6, 9, and 10 yards of W, R, and Y cane
per week respectively. B, T, and P require 2,1, 1; 1,3, 1;and 1, 2, 2 of W, R,
and Y cane, respectively. How many items of each type of product should he
make per week in order to maximize profit?

Maximize: 2x; + 3x, + x5
subject to: X1+ 2%+ x3<17
3%, + X, <15
X, +4x3 <12

X1, X, X3 DONnegative integers.

Maximize: Xy + X5+ 2x3
subject to:  dx; +ix, +ix; <&
i+ <Y
X H5 Hixs <
X1,X,,X3 nonnegative integers.
Maximize: 2x, + 4x, + 6x5
subject to: 2%+ x,+ x3<3
X, —2x3; <6
4x, + 6x3 < 10
X1, X5, X3 nonnegative integers.
Maximize: 6x, + 5x, + 4x5

subject to: 5x, + 4x, + 2x3 <40
3x; 4+ 3x, +4x3 <30
2x; 4 3x, +3x3 <20

X1, X3, X3 nonnegative integers.

A jeweller makes three types of silver rings. Ring 4 takes 3 hours, 20 g of silver
and 1 hour of polishing. These quantities are 3, 10, and 3; 1, 20, and 1 for rings
B and C, respectively. The polishing machine is available to him for 2 hours
per day and he can work for another 11 hours per day and can afford to buy
60 g of silver per day. Profits are $30, $20, and $10 for 4, B, and C rings, respec-
tively. How many of each type of ring should he make per day in order to maxi-
mize profit?
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(z) Maximize: 10x, + 12x, + 16x;
subject to: 2x, + 3x, + 4x3<20
3x; + 3x,+ 4x3<30
4x + 3x, + 2x3 <25

X1, X5, X3 onnegative integers.

. Assume for each problem in Exercise 1 that

X1, X2, X3 =00o0r 1.

Find the new optimal solution for each problem using the method of Balas.

. By converting to zero—one variables solve each problem in Exercise | by the method

of Balas.

Solve each problem in Exercise 1 by the Gomory cutting plane method.

. Solve each problem in Exercise 1, assuming that only x, must be integral, by the

Gomory mixed integer method.

(II) Theoretical

6.

13.

Formulate the N-city travelling salesman problem as an I.P. in a way that requires
fewer constraints than the formulation given in Section 4.4.1.

. Construct a branch and bound algorithm for the travelling salesman problem along

the lines of the approach suggested at the end of Section 4.4.1.

List at least three realistic applications for the vehicle scheduling problem not
listed in Section 4.4.2.

. Construct a branch and bound algorithm for the vehicle scheduling problem.
10.
11.
12.

Construct a branch and bound algorithm for the fixed charge problem.
Construct a branch and bound algorithm for the knapsack problem.
Construct a branch and bound algorithm for the assignment problem of Chapter 2.

Solve each of the problems of Exercise 2 by exhaustive enumeration. Compare the
amount of computation involved with that required by the method of Balas.



Chapter S

Network Analysis

5.1 The Importance of Network Models

Many important decision-making problems can be described in terms of
networks. Some obvious examples are concerned with traffic and the ship-
ment of goods. However, there are many other examples with less obvious
links with network modelling such as production planning, capital budgeting,
machine replacement, and project scheduling.

One of the basic network optimization problems is concerned with finding
the shortest path between two given points in a network, the shortest path
problem. A second problem arises in connection with finding a subset of
links of the network which has the property that there is a path between
every pair of points in the network and the total length of the links in the
subset is minimal. This problem is called the minimal spanning tree problem.
A third problem is connected with maximizing the flow of some commodity
through the links of a network from a given origin to a given destination
where each link has a capacity of flow. This is the maximal flow problem.
A fourth problem is related to minimizing the cost of transporting a given
quantity of a commodity from a given origin to a given destination: the
minimum cost flow problem. A fifth problem, critical path scheduling, is
concerned with scheduling the activities of a project.

Because these and other basic network problems can be modelled as
L.P. problems requiring integer solutions, network analysis has strong links
with integer programming. In the next section the basic mathematical
notions necessary to study networks are introduced. The underlying mathe-
matical subject is called graph theory.

187
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5.2 An Introduction to Graph Theory

What most people normally think of as a network (as in road, communica-
tion, or telephone networks) is a special example of a mathematical entity
called a graph. In order to analyze network problems efficiently it is neces-
sary to master some graph theoretic concepts, which are presented in this
section. The discussion here is chiefly for reference that is, the reader should
proceed directly to section 5.3, returning to this section for clarification of
terminology when needed. The interested reader who wishes a more
detailed exposition of graph theory is directed to any of a number of excellent
texts on graph theory, including Busacker and Saaty (1965), Deo (1974),
and Harary (1969).

We begin by defining the term graph, and we use the terminology of the
Harary.

A graph G = (P, L) is an ordered pair where P is a nonempty set of points
(sometimes called vertices, nodes, or junctions) and L is a set of unordered
pairs of distinct points of P, called lines (sometimes also called links, edges,
or branches). Although a graph is an abstract mathematical concept, it is
usual to represent a graph by a picture. For instance, the graph G = (P, L)
where

P= {plapz’p3’ p4}
L = {{pla pZa}’ {pZa p3}’ {p3’ p4’}’ {pla p4a}’ {pih pla}}

is represented in Figure 5.1. It is important to realise that pictures like
Figure 5.1 are only diagrams of graphs, not the graphs themselves, which
are defined abstractly by the specification of P and L. A similar relationship
holds between Venn diagrams and formally defined sets.

P D2

Pa P3
Figure 5.1. A graph.

Further terminology is now introduced.
A walk is an alternating sequence of points and lines of the form:

Pos {Po>P1}> P1s {P1:P2}s Pas - -+ s {Pu— 1> Pu}> Pu-

For example, the sequence

P1, {P1sPa}s Pas {PasP3}s P3s {P3:P1} Py {P1sPa)s Pa
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is a walk for the graph in Figure 5.1. A walk is termed closed if

pO = DPn
and open if
Do # Dn-

The sample walk above is open, but if the last two elements—{p,,p.},
ps,—are removed it becomes closed.
A trail is a walk in which all the lines are distinct. Hence the walk

P1s {P1>Pa}> Pas {Pas P3}s Py {P3:P1}s P1s {P1, P2} P2

in Figure 5.1 is a trail. A path is a trail in which all the points are distinct.
Hence the trail

P1> {P1:Pa}s Pas {P2. D3} P3s {P3, P2}, P2

in Figure 5.1 is a path. Of course if all the points are distinct in any trail,
all its lines are also distinct. A cycle is a closed walk of at least three points
with all its points distinct except that the first and the last are the same.
Hence the walk

P1s {P1:P2}s P2» {P2:P3}s P3s {P3,P1}s D1

in Figure 5.1 is a cycle. A graph is said to be connected if there exists a path
between every pair of points. The graph is Figure 5.1 is certainly connected.
However, if lines {p;,p,} and {p,,p;} are removed the graph is no longer
connected, as there are no paths from p, to any of the other points.

A tree is a connected graph without any cycles. If the lines {p,,p,} and
{ps,ps} are removed from the graph in Figure 5.1 it becomes a tree. The
concept of a tree is one of the most important in graph theory. We can make
some interesting observations about trees. If a graph G = (P, L) is a tree then

1. Every two distinct points of G are joined by exactly one path.
2. The number of lines in L is one less than the number of points in P.
3. If a line not present in L is added to G, then exactly one cycle is created.

The reader should construct a number of trees according to the definition
and verify that these properties are true for those trees.

A graph G’ is said to be a subgraph of a graph G if G’ has all its points
and lines in G and G’ is a graph. Hence the graph (P, L') defined by

P = {{pl’pz}a {pZaPS}a {p15p3}}

is a subgraph of the graph in Figure 5.1. A subgraph (P’,L’) is said to span
a graph (P, L) if
P=P

b

i.e, all the points of the graph are part of the spanning subgraph. A graph
that is a tree <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>