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Preface 

Optimization is the process by which the optimal solution to a problem, or 
optimum, is produced. The word optimum has come from the Latin word 
optimus, meaning best. And since the beginning of his existence Man has 
strived for that which is best. There has been a host of contributions, from 
Archimedes to the present day, scattered across many disciplines. Many of 
the earlier ideas, although interesting from a theoretical point of view, were 
originally of little practical use, as they involved a daunting amount of com­
putational effort. Now modern computers perform calculations, whose time 
was once estimated in man-years, in the figurative blink of an eye. Thus it has 
been worthwhile to resurrect many of these earlier methods. The advent of 
the computer has helped bring about the unification of optimization theory 
into a rapidly growing branch of applied mathematics. The major objective 
of this book is to provide an introduction to the main optimization tech­
niques which are at present in use. It has been written for final year undergrad­
uates or first year graduates studying mathematics, engineering, business, or 
the physical or social sciences. The book does not assume much mathemati­
cal knowledge. It has an appendix containing the necessary linear algebra 
and basic calculus, making it virtually self-contained. 

This text evolved out of the experience of teaching the material to finishing 
undergraduates and beginning graduates. A feature of the book is that it 
adopts the sound pedagogical principle that an instructor should proceed 
from the known to the unknown. Hence many of the ideas in the earlier 
chapter& are introduced by means of a concrete numerical example to which 
the student can readily relate. This is followed by generalization to the 
underlying theory. The courses on which the book is based usually have a 
significant number of students of Business and Engineering. The interests 

ix 



x Preface 

of these people have been taken into account in the development of the 
courses and hence in the writing of this book. Hence many of its arguments 
are intuitive rather than rigorous. Indeed plausibility and clarity have been 
given precedence before rigour for the sake of itself. 

Chapter I contains a brief historical account and introduces the basic 
terminology and concepts common to all the theory of optimization. Chap­
ters 2 and 3 are concerned with linear programming and complications of 
the basic model. Chapter 2 on the simplex method, duality, and sensitivity 
analysis can be covered in an undergraduate course. However some of the 
topics in Chapter 3 such as considerations of efficiency and parametric pro­
gramming, may be best left to graduate level. Chapter 4 deals with only the 
basic strategies of integer linear programming. It is of course dependent on 
Chapter 2. It does contain a number of formulations of applications of inte­
ger programming. Some of this material has never appeared before in book 
form. Chapter 5 is on network analysis and contains a section on using net­
works to analyze some practical problems. 

Chapter 6 introduces dynamic programming. It is beyond the scope of 
this book to provide a detailed account of this vast topic. Hence techniques 
suitable for only deterministic, serial systems are presented. The interested 
reader is referred to the extensive literature. Chapter 7 serves as an introduc­
tion to Chapter 8, which is on nonlinear programming. It presents some of 
the classical techniques: Jacobian and Lagrangian methods together with the 
Kuhn-Tucker conditions. The ideas in this chapter are used in devising the 
more computationally efficient strategies of Chapter 8. 

This text contains enough material for one semester at the undergraduate 
level and one more at the graduate level. The first course could contain Chap­
ters 1, 2, the first half of Chapter 3, and parts of Chapter 4 and Chapter 5. 
The remainder can be covered in the second course. A plan outlining this 
follows. 

The book contains a large number of exercises. Students are strongly en­
couraged to attempt them. One cannot come to grips with the concepts by 
solely looking at the work of others. Mathematics is not a spectator sport! 

The author is grateful for this opportunity to express his thanks for the 
support of his employers, the University of Canterbury, which he enjoyed 
while finishing this book. He is also thankful for the faith and encouragement 
of his wife, Maureen, without which it would never have been written. He is 
also grateful to a number of friends including David Robinson, Hans 
Daellenbach, Michael Carter, Ian Coope and Susan Byrne, who read parts of 
the manuscript and made valuable suggestions. A vote of thanks should also 
go to his student, Trevor Kearney, who read the entire manuscript and dis­
covered an embarrassing number of errors. 

Christchurch, New Zealand 
November 1980 

L. R. Foulds 
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Chapter 1 

Introduction 

1.1 Motivation for Studying Optimization 

There exist an enormous variety of activities in the everyday world which 
can usefully be described as systems, from actual physical systems such as 
chemical processing plants to theoretical entities such as economic models. 
The efficient operation of these systems often requires an attempt at the 
optimization of various indices which measure the performance ofthe system. 
Sometimes these indices are quantified and represented as algebraic vari­
ables. Then values for these variables must be found which maximize the 
gain or profit of the system and minimize the waste or loss. The variables 
are assumed to be dependent upon a number of factors. Some of these 
factors are often under the control, or partial control, of the analyst respon­
sible for the performance of the system. 

The process of attempting to manage the limited resources of a system 
can usually be divided into six phases: (i) mathematical analysis of the 
system; (ii) construction of a mathematical model which reflects the impor­
tant aspects of the system; (iii) validation of the model; (iv) manipulation 
of the model to produce a satisfactory, if not optimal, solution to the model; 
(v) implementation of the solution selected; and (vi) the introduction of a 
strategy which monitors the performance ofthe system after implementation. 
It is with the fourth phase, the manipulation of the model, that the theory 
of optimization is concerned. The other phases are very important in the 
management of any system and will probably require greater total effort 
than the optimization phase. However, in the presentation of optimization 
theory here it will be assumed that the other phases have been, or will be, 
carried out. Because the theory of optimization provides this link in the 
chain of systems management it is an important body of mathematical 
knowledge. 
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1.2 The Scope of Optimization 

One of the most important tools of optimization is linear programming. A 
linear programming problem is specified by a linear, multivariable function 
which is to be optimized (maximized or minimized) subject to a number of 
linear constraints. The mathematician G. B. Dantzig (1963) developed an 
algorithm called the simplex method to solve problems of this type. The 
original simplex method has been modified into an efficient algorithm to 
solve large linear programming problems by computer. Problems from a 
wide variety of fields of human endeavor can be formulated and solved by 
means of linear programming. Resource allocation problems in government 
planning, network analysis for urban and regional planning, production 
planning problems in industry, and the management of transportation dis­
tribution systems are just a few. Thus linear programming is one of the 
successes of modern optimization theory. 

Integer programming is concerned with the solution of optimization prob­
lems in which at least some of the variables must assume only integer values. 
In this book only integer programming problems in which all terms are 
linear will be covered. This subtopic is often called integer linear program­
ming. However, because little is known about how to solve nonlinear integer 
programming problems, the word linear will be assumed here for all terms. 
Many problems of a combinatorial nature can be formulated in terms of 
integer programming. Practical examples include facility location, job se­
quencing in production lines, assembly line balancing, matching problems, 
inventory control, and machine replacement. One of the important methods 
for solving these problems, due to R. E. Gomory (1958), is based in part on 
the simplex method mentioned earlier. Another approach is of a combina­
torial nature and involves reducing the original problem to smaller, hope­
fully easier, problems and partitioning the set of possible solutions into 
smaller subsets which can be analyzed more easily. This approach is called 
branch and bound or branch and backtrack. Two of the important contri­
butions to this approach have been by Balas (1965) and Dakin (1965). 
Although a number of improvements have been made to all these methods, 
there does not exist as yet a relatively efficient method for solving realistically­
sized integer programming problems. 

Another class of problems involves the management oj a network. Prob­
lems in traffic flow, communications, the distribution of goods, and project 
scheduling are often of this type. Many of these problems can be solved by 
the methods mentioned previously-linear or integer programming. How­
ever because these problems usually have a special structure, more efficient 
specialized techniques have been developed for their solution. Outstanding 
contributions have been made in this field by Ford and Fulkerson (1962). 
They developed the labelling method for maximizing the flow of a commodity 
through a network and the out-oj-kilter method for minimizing the cost of 
transporting a given quantity of a commodity through a network. These 
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ideas can be combined with those of integer programming to analyze a 
whole host of practical network problems. 

Some problems can be decomposed into parts, the decision processes of 
which are then optimized. In some instances it is possible to attain the opti­
mum for the original problem solely by discovering how to optimize these 
constituent parts. This decomposition process is very powerful, as it allows 
one to solve a series of smaller, easier problems rather than one large, 
intractable problem. Systems for which this approach will yield a valid 
optimum are called serial multistage systems. One of the best known tech­
niques to attack such problems was named dynamic programming by the 
mathematician who developed it, R. E. Bellman (1957). Serial multistage 
systems are characterized by a process which is performed in stages, such 
as manufacturing processes. Rather than attempting to optimize some 
performance measure by looking at the problem as a whole, dynamic 
programming optimizes one stage at a time to produce an optimal set of 
decisions for the whole process. Problems from all sorts of areas, such as 
capital budgeting, machine reliability, and network analysis, can be viewed 
as serial multistage systems. Thus dynamic programming has wide applica­
bility. 

In the formulation of many optimization problems the assumption of 
linearity cannot be made, as it was in the case of linear programming. There 
do not exist general procedures for nonlinear problems. A large number of 
specialized algorithms have been developed to treat special cases. Many of 
these procedures are based on the mathematical theory concerned with 
analysing the structure of such problems. This theory is usually termed 
classical optimization. One of the outstanding modern contributions to this 
theory has been made by Kuhn and Tucker (1951) who developed what are 
known as the Kuhn-Tucker conditions. 

The collection of techniques developed from this theory is called nonlinear 
programming. Despite the fact that many nonlinear programming problems 
are very difficult to solve, there are a number of practical problems which 
can be formulated nonlinearly and solved by existing methods. These 
include the design of such entities as electrical transformers, chemical 
processes, vapour condensors, microwave matching networks, gallium­
arsenic light sources, digital filters, and also problems concerning maximum 
likelihood estimation and optimal parts replacement. . 

1.3 Optimization as a Branch of Mathematics 

It can be seen from the previous section that the theory of optimization is 
mathematical in nature. Typically it involves the maximization or minimi­
zation of a function (sometimes unknown) which represents the performance 
of some system. This is carried out by the finding of values for those variables 
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(which are both quantifiable and controllable) which cause the function to 
yield an optimal value. A knowledge of line&r algebra and differential 
multivariable calculus is required in order to understand how the algorithms 
operate. A sound knowledge of analysis is necessary for an understanding 
of the theory. 

Some ofthe problems of optimization theory can be solved by the classical 
techniques of advanced calculus-such as Jacobian methods and the use 
of Lagrange multipliers. However, most optimization problems do not 
satisfy the conditions necessary for solution in this manner. Ofthe remaining 
problems many, although amenable to the classical techniques, are solved 
more efficiently by methods designed for the purpose. Throughout recorded 
mathematical history a collection of such techniques has been built up. 
Some have been forgotten and reinvented, others received little attention 
until modern-day computers made them feasible. 

The bulk of the material of the subject is of recent origin because many 
of the problems, such as traffic flow, are only now of concern and also 
because of the large numbers of people now available to analyze such 
problems. When the material is catalogued into a meaningful whole the 
result is a new branch of applied m&thematics. 

1.4 The History of Optimization 

One of the first recorded instances of optimization theory concerns the 
finding of a geometric curve of given length which will, together with a 
straight line, enclose the largest possible area. Archimedes conjectured 
correctly that the optimal curve is a semicircle. Some of the early results are 
in the form of principles which attempt to describe and explain natural 
phenomena. One of the earliest examples was presented approximately 
100 years after Archimedes' conjecture. It was formulated by Heron of 
Alexandria in C. 100 B.c., who postulated that light always travels by the 
shortest path. It was not until 1657 that Fermat correctly generalized this 
postulate by stating that light always travels by the path which incurs least 
time rather than least distance. 

The fundamental problem of another branch of optimization is concerned 
with the choosing of a function that minimizes certain functionals. (A 
functional is a special type of function whose domain is a set of real-valued 
functions.) Two problems of this nature were known at the time of Newton. 
The first involves finding a curve such that the solid of revolution created 
by rotating the curve about a line through its endpoints causes the minimum 
resistance when this solid is moved through the air at constant velocity. 
The second problem is called the brachistochrone. In this problem two points 
in space are given. One wishes to find the shape of a curve joining the two 
points, such that a frictionless bead travelling on the curve from one point 
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to the other will cover the journey in least time. This problem was posed as a 
competiton by John Bernoulli in 1696. The problem was successfully solved 
by Bernoulli himself, de I'Hopital, Leibniz, and Newton (who took less than 
a day!). Problems such as these led Euler to develop the ideas involved into 
a systematic discipline which he called the calculus of variations in 1766. 
Also at the time of Euler many laws of mechanics were first formulated in 
terms of principles of optimality (examples are the least action principle of 
Maupertuis, the principle of least restraint of Gauss, and Lagrange's kinetic 
principle). Lagrange and Gauss both made other contributions. In 1760 
Lagrange invented a method for solving optimization problems that had 
equality constraints using his Lagrange multipliers. Lagrange transforma­
tions are, among other uses, employed to examine the behaviour of a function 
in the neighbourhood of a suspected optimum. And Gauss, who made 
contributions to many fields, developed the method of least squares curve 
fitting which is of interest to those working in optimization as well as 
statistics. 

In 1834 W. R. Hamilton developed a set of functions called Hamiltonians 
which were used in the statement of a principle of optimality that unified 
what was known of optics and mechanics at that time. In 1875 J. W. Gibbs 
presented a further principle of optimality concerned with the equilibrium 
of a thermodynamical system. Between that time and the present there have 
been increasing numbers of contributions each year. Among the most out­
standing recent achievements, the works of Dantzig and of Bellman have 
already been mentioned. Another is the work ofPontryagin (1962) and others, 
who developed the maximum principle which is used to solve problems in 
the theory of optimal control. 

1.5 Basic Concepts of Optimization 

This section introduces some of the basic concepts of optimization. Each 
concept is illustrated by means of the following example. 

The problem is to: 

Maximize: Xo = f(X) = f(xl> X2) (1.1) 

subject to: hl(X) ~ 0 (1.2) 

Xl ~ 0 (1.3) 

X2 ~O. (1.4) 

This is a typical problem in the theory of optimization-the maximization 
(or minimization) of a real-valued function of a number of real variables 
(sometimes just a single variable) subject to a number of constraints (some­
times the number is zero). The special case of functionals, where the domain 
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of the function is a set offunctions, will be dealt with under the section on the 
calculus of variations in Chapter 7. 

The function f is called the objective function. The set of constraints, in 
this case a set of inequalities, is called the constraint set. The problem is to 
find real values for Xl and X2' satisfying (1.2), (1.3) and (1.4), which when 
inserted in (1.1) will cause f(xl, x 2) to take on a value no less than that for 
any other such Xl> X2 pair. Hence Xl and X2 are called independent variables. 

Three objective function contours are present in Figure 1.1. The objective 
function has the same value at all points on each line, so that the contours 
can be likened to isobar lines on a weather map. Thus it is not hard to see 

Figure 1.1. Objective function contours and the feasible region for an optimization 
problem. 
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that the solution to the problem is: 

X* = (xf,x!) = (1,0). 

This means that 
f(X*) ~ f(X) for all XES. (1.5) 

When a solution X* E S satisfies (1.5) it is called the optimal solution, and 
in this case the maximal solution. If the symbol in (1.5) were "::S;;", X* would 
be called the minimal solution. Also, f(X*) is called the optimum and is 
written X6. 

On looking at Figure 1.1 it can be seen that greater values for f could 
be obtained by choosing certain Xl> X2 outside S. Any ordered pair ofreal 
numbers is called a solution to the problem and the corresponding value of 
f is called the value of the solution. A solution X such that 

XES 
is called a feasible solution. 

Let us examine which Xl> X2 pairs are likely candidates to achieve this 
maximization. In Figure 1.1 the set of points which satisfy this constraint 
set has been shaded. The set is defined as S: 

S = {(Xl,X2): h(Xl>X2)::S;; 0, Xl ~ 0, X2 ~ O}. 

Such a set S for an optimization problem is often a connected region and 
is called the feasible region. 

Many optimization problems do not have unique optimal solutions. For 
instance, suppose a fourth constraint 

(1.6) 

is added to the problem. The feasible region is shown in Figure 1.2. In this 
case one of the boundaries of S coincides with an objective function contour. 
Thus all points on that boundary represent maximum solutions. 

However, if it exists the optimal value is always unique. 
As another example of a problem which does not have an optimal solution, 

suppose (1.2) is replaced by: 
(1.7) 

On examining Figure 1.2, it becomes apparent that (1.7) does not hold for 
X* = (1,0), hence X* ¢ S. In fact, there is no solution which will satisfy 
(1.5), as points successively closer to (but a positive distance away from) 
(1,0) correspond to successively larger Xo values. To recognize this situation 
we called f(X') an upper bound for f under S if 

f(X') ~ f(X) for all XES. (1.8) 

Also f(X') is called a least upper bound or supremum for f under S if f(X') 
is an upper bound for f under Sand 

f(X') ::s;; f(X) for all upper bounds f(X) for f under S. (1.9) 
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Figure 1.2. Feasible region for an optimization problem where one constraint is 
identical with an objective function contour. 

Most of the preceding ideas have been concerned with maximization. Of 
course many optimization problems have the aim of minimization and each 
of the above concepts has a minimization counterpart. The sense of the 
inequalities in (1.7), (1.8), and (1.9) need to be reversed for minimization. 
The counterparts of the terms are: 

minimum 
lower bound 
greatest lower bound 
infimum 

maximum 
upper bound 
least upper bound 
supremum 
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Throughout the remainder of book we shall deal mainly with maximi­
zation problems only, because of the following theorem. 

Theorem 1.1. If X* is the optimal solution to problem P1: 

Maximize: f(X), 

subject to: giX) = 0, 

hj(X) ::;; 0, 

j = 1,2, ... , m 

j = 1,2, ... , k 

then X* is the optimal solution to problem P2: 

Minimize: - f(X), 

subject to: giX) = 0, 

hiX)::;; 0, 

j = 1,2, ... , m 

j = 1,2, ... , k. 

PROOF. Because X* is the optimal solution for P1, it is a feasible solution 
for P1, hence 

gj(X*) = 0, 

hj(X*) ::;; 0, 

j = 1,2, ... , m 

j = 1,2, ... , k. 

Hence X* is a feasible solution for P2. 
Also, 

f(X*) 2:: f(X) for all XES 
where 

S = {X: gj(X) = O,j = 1,2, ... , m; hiX)::;; O,j = 1,2, ... , k}. 

Hence 
- f(X*) ::;; - f(X) for all XES. 

Hence X* is optimal for P2. D 

This result allows us to solve any minimization problem by multiplying 
its objective function by -1 and solving a maximization problem under the 
same constraints. Of course we could have just as easily proven another 
theorem concerning the conversion of any maximization problem into an 
equivalent minimization problem. 



Chapter 2 

Linear Programming 

2.1 Introduction 

This present chapter is concerned with a most important area of optimiza­
tion, in which the objective function and all the constraints are linear. Prob­
lems in which this is not the case fall in the nonlinear programming category 
and will be covered in Chapters 7 and 8. 

There are a large number of real problems that can be either formulated 
as linear programming (L.P.) problems or formulated as models which can 
be successfully approximated by linear programming. Relatively small prob­
lems can readily be solved by hand, as will be explained later in the chapter. 
Large problems can be solved by very efficient computer programs. The 
mathematical structure of L.P. allows important questions to be answered 
concerning the sensitivity of the optimum to data changes. L.P. is also used 
as a subroutine in the solving of more complex problems in nonlinear and 
integer programming. 

This chapter will begin by introducing the basic ideas of L.P. with a sim­
ple example and then generalize. A very efficient method for solving L.P. 
problems, the simplex method, will be developed and it will be shown how 
the method deals with the different types of complications that can arise. 
Next the idea of a dual problem is introduced with a view to analyzing the 
behaviour of the optimal L.P. solution when the problem is changed. This 
probing is called postoptimal analysis. Algorithms for special L.P. problems 
will also be looked at. 

10 
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2.2 A Simple L.P. Problem 

A coal mining company producing both lignite and anthracite finds itself in 
the happy state of being able to sell all the coal it can process. The present 
profit is $4.00 and $3.00 (in hundreds of dollars) for a ton of lignite and an­
thracite, respectively. However, because of various restrictions the cutting 
machine at the coal face, the screens, and the washing platit can be operated 
for no more than 12, 10, and 8 hours per day, respectively. It requires 3, 3, 
and 4 hours for the cutting machine, the screens, and the washing plant, re­
spectively, to process one ton of lignite. It requires 4, 3, and 2 hours for the 
cutting machine, the screens, and the washing plant, respectively, to process 
one ton of anthracite. The problem is to decide how many tons of each type 
of coal will be produced so as to maximize daily profits. 

In order to solve this problem we need to express it in mathematical terms. 
Toward this end the decision (independent) variables are defined as follows. 
Let 

Xl = the daily production of lignite in tons, 
X2 = the daily production of anthracite in tons, 
Xo = the profit gained by producing Xl and X2 tons oflignite and anthra­

cite, respectively. 

If Xl tons of lignite are produced each day, and the profit per ton is $4.00 
then the daily profit for lignite is 

$4X l· 

Similarly, if X2 tons of anthracite are produced each day with a profit of $3.00 
per ton, then the daily profit is 

Thus for a daily production schedule of Xl and X2 tons oflignite and anthra­
cite, the total daily profit, in dollars, is: 

4Xl + 3X2 (=xo). 

It is this expression whose value we must maximize. 
We can formulate similar expressions for the constraints of time on the 

various machines. For instance, consider the cutting operation. If Xl tons of 
lignite are produced each day and each ton of lignite requires 3 hours' cut­
ting time, then the total cutting time required to produce those Xl tons of 
lignite is 

3Xl hours. 

Similarly, if X2 tons of anthracite are produced each day with each ton taking 
4 hours to cut, the total cutting time required to produce those Xl tons of 
anthracite is 

4X2 hours. 
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Thus the total cutting time for Xl tons oflignite and X2 tons of anthracite is 

3Xl + 4X2' 

But only 12 hours' cutting time are available each day. Hence we have the 
constraint: 

3Xl + 4X2 :::; 12. 

We can formulate similar constraints for the screening and washing times. 
This has been done below. The problem can now be stated mathematically: 

Maximize: 

subject to: 

4Xl + 3X2 = Xo 

3Xl + 4X2 :::; 12 

3Xl + 3X2 :::; 10 

4Xl + 2X2 :::; 8 

~o 

The above expressions are now explained: 

(2.1): The objective is to maximize daily profit. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.2): A maximum of 12 hours cutting time is available each day. 
(2.3): A maximum of 10 hours screening time is available each day. 
(2.4): A maximum of 8 hours washing time is available each day. 

(2.5), (2.6): A nonnegative amount of each type of coal must be produced. 

Because only two independent variables are present it is possible to solve 
the problem graphically. This can be achieved by first plotting the constraints 
(2.2)-(2.6) in two-dimensional space. The origin can be used to test which 
half-plane created by each constraint contains feasible points. The feasible 
region is shown in Figure 2.1.11 can be seen that constraint (2.3) is redundant, 
in the sense that it does not define part ofthe boundary of the feasible region. 
The arrow on constraint (2.3) denotes the feasible half-plane defined by the 
constraint. The problem now becomes that of selecting the point in the fea­
sible region which corresponds to the maximum objective function value­
the optimum. This point is found by setting the objective function equal to a 
number of values and plotting the resulting lines. Clearly, the maximum 
value corresponds to point (!, V). Thus the optimal solution is 

xt =! and 

with value 10l Hence the best profit the company can hope to make is $1,040 
by producing 0.8 tons of lignite and 2.4 tons of anthracite per day. 

When more than two independent variables are present, linear programs 
are solved by analytic methods, as it is difficult to draw in three dimensions 
and impossible in higher dimensions. The next section introduces the general 
problem. 
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\ 2 
Xo = 1~ 

(2.4) 

Figure 2.1. Graphical solution to the L.P. example problem. 

2.3 The General L.P. Problem 

The problem of (2.1)-(2.6) can be generalized as follows: 

Maximize: 

subject to: 

C1X1 + CzXz + ... + CnXn = Xo 

allxl + a12x Z + ... + alnXn ::; b1 

aZ1x 1 + azzxz + ... + aZnXn ::; bz 

Xi :2: 0, i = 1,2, ... , n. 

Of course this problem can be stated in matrix form: 

Maximize: 

subject to: 

cTX 

AX::; B, 

X :2: 0, 

13 
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where 
C = (C l, C2, ... , Cn)T 

X = (Xl,X2,···, xnf 

A = (aij)mxn 

B = (bbb 2 ,···, bmf 

0= (0)1 xn' 

2 Linear Programming 

Here (Xl' X2, ... , xnf represents the transpose of (Xb X2, ... , xn). The gen­
eral minimizing linear program has an analogous form: 

Minimize: 

subject to: 

CTX 

AX~B 

X~O. 

Weare now in a position to discover some basic features of the general 
linear programming problem. 

1. The objective function and all the constraints are linear functions of the 
independent variables. This assumption has some important implica­
tions. It means that both the contribution of the level of each activity 
represented by its decision variable value (for the objective function) and 
the drain on resources of each activity (for the constraints) are directly 
proportional to the level ofthe activity. That is, for example, doubling the 
amount of a product produced will double both the profit gained by the 
product and the amount of each resource used on the product. It also 
means that both the total contribution to the objective and the total drain 
on each resource of all activities is, in each case, the sum of those of the 
individual activities. 

2. The independent variables are all nonnegative. Nearly all problems which 
come from real situations have this property. In the few cases where this 
is not so, no great hardship need occur. A method for replacing variables 
unrestricted in sign by nonnegative ones will be explained later in this 
section. 

3. The independent variables are all continuous. This feature does restrict 
the application of linear programming. It does not make sense to advo­
cate the allocation of a noninteger number of ships to a task, as this would 
be indiscrete in more ways than one! When the variables concerned have 
relatively large values at the optimum they can often be rounded to the 
nearest feasible combination of integral values to yield a satisfactory so­
lution. When this is not true, specialized artillery, collectively called inte­
ger linear programming, must be brought into service. Some of the shots 
that can be fired are examined in Chapter 4. 

4. Each constraint involves either a "::;" or a "~" sign. In many problems, 
one or more constraints contain an equality sign. A method for replacing 
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such equations by inequalities will be explained later. In the previous 
chapter we found that a problem with a strict inequality constraint (in­
volving either a "<" or a ">" sign) does not necessarily have an optimal 
solution. This is also true for linear programming. Most problems from 
real situations do not contain strict inequality constraints, and methods 
for solving L.P. problems do not allow for strict inequalities. Thus we 
shall confine our attention to problems in which all the inequalities are 
nonstrict, i.e., are of the" :::;" or " ~ " type, not the" <" or " > " type. 

Although all L.P. problems possess all four features outlined above, it is 
obvious that there can be many variations. The problem could be one of 
maximization or minimization, it may contain variables unrestricted in sign, 
and it may contain a mixture of constraint signs. Rather than devise a method 
for each class of problems, a method will be presented which will solve the 
problems of one common class. The method is completely general, as it will 
be shown that any L.P. problem can be made a member of the class by a 
series of simple steps. L.P.'s belonging to the class of interest are said to be in 
standard form. 

An L.P. is in standard form if it can be expressed as: 

Maximize: 

subject to: 

where 
B~O. 

cTX 

AX=B 

X~O, 

Thus the features of a problem in standard form are 

1. The objective function is to be maximized. 

(2.7) 

(2.8) 

(2.9) 

2. All constraints except the nonnegativity conditions are strict equations. 
3. The independent variables are all nonnegative. 
4. The constant to the right of each equality sign in each constraint is non­

negative. 

The steps that transform any L.P. into standard form are as follows. 

1. A minimizing problem can be transformed into a maximizing problem by 
replacing the objective function by a new function in which the signs of 
the objective function coefficients have all been changed. (See Section 1.5). 

2. Each variable unrestricted in sign can be replaced by an expression rep­
resenting the difference between two new nonnegative variables. For 
example, if Xi is unrestricted, it is replaced by 
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where x j and Xk are new variables. Two new constraints, 

Xj~ 0 

Xk ~ 0, 

are added to the problem. 
3. Each negative right-hand-side constraint constant can be made positive 

by multiplying the entire equation or inequality by minus one. 
4. Each inequality constraint can be made an equation by adding a non­

negative variable to a "~" constraint, or subtracting a nonnegative vari­
able from a "~" constraint. For example, consider the constraint 

3Xl + 4X2 ~ 6. 
This becomes 

3Xl + 4X2 + Xi = 6, 

and a new constraint is added: 

Xi~O. 

Similarly, a constraint of the form 

5X3 - 9X4 ~ 18 
becomes 

5X3 - 9X4 - Xj = 18, 

with the additional constraint: 

Xj~ O. 

Note that as all decision variables must be nonnegative the new variables 
which force equality must be added for "~" constraints and subtracted for 
"~ " constraints. The new variables added to the constraints are called slack 
variables. The original variables are called structural variables. 

The problem of Section 2.2 has the following standard form: 

PROBLEM 2.1 

Maximize: 

subject to: 

4Xl + 3X2 

3Xl + 4X2 + X3 

= Xo 

= 12 

=10 

+ Xs = 8 

Xi~O, i = 1,2, ... ,5. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Now that the problem is in a form suitable to be attacked, we can consider 
ways to find its solution. It is apparent that realistically-sized problems will 
present quite a challenge and thus trial-and-error methods would be futile. 
Before unveiling the algorithm, some mathematical preliminaries are pre­
sented which are essential to the understanding of the method. 
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2.4 The Basic Concepts of Linear Programming 

Consider the L.P. problem (2.7)-(2.9). Suppose that the problem has n vari­
ables and m constraints: 

and 

A solution X is feasible if it satisfies (2.8) and (2.9). Let us now consider (2.8): 

AX=B. 

This represents a system of m equations in n unknowns. 

If 
m>n, 

some of the constraints are redundant. 
If 

m=n, 

and A is nonsingular (see Section 9.1.5), a unique solution can be found: 

X=A-1B. 
If 

m<n, 

n - m of the variables can be set equal to zero. This corresponds to the for­
mation of an m x m submatrix A of A. 

As an example of this last possibility, consider Problem 2.1, where 

m = 3 and n = 5. 
Here 

By setting 

we obtain 

4 1 
3 0 
2 0 

o 0) 
10. 
o 1 

X4 = 0 and Xs = 0, 

(3 4 1) 
A= 33 O. 

420 

Provided A is nonsingular, the values of the remaining variables can be 
found, as there are now m equations in m unknowns. Such a solution is called 
a basic solution and the m variables are called basic variables. 
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If this basic solution, which must satisfy (2.8), also satisfies (2.9) it is called 
a basic feasible solution. A basic feasible solution is called degenerate if at 
least one of the basic variables has a zero value. 

A subset, S of R n is said to be convex if the line segment joining any two 
points of S is also in S. That is, S is convex ¢>aX 1 + (1 - a)X 2 E S, for all 
X b X 2 E S, 0 :::::; a :::::; 1. Using this definition we can form some idea of what 
a convex set is like in two dimensions. In Figure 2.2, sets D and E are convex, 
sets F and G are not. 

It is not difficult to show that the set S of all feasible solutions to a L.P. 
problem in standard form is convex. If the set is nonempty it must be ex­
amined in order to identify which of its points corresponds to the optimum. 
A point X of a convex set, S is said to be an extreme point of S if x cannot be 
expressed as: 

X = aXl + (1 - a)X2' for some a, 0 < a < 1; Xl ¥- X 2; Xl' X2 E S. 

C) 
E 

F 

G 

Figure 2.2. Convex and nonconvex sets. 
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Suppose that the convex set of feasible solutions to an L.P. problem is 
denoted by Sand S is bounded. Then an optimal solution to the problem 
corresponds to an extreme point of S. This fact considerably reduces the 
effort required to examine S for an optimal solution. We need examine only 
the extreme points of S to find an optimum. The next section introduces 
the method which takes advantage of this fact. 

2.5 The Simplex Algorithm 

2.5.1 Background 

In the previous section it was noted that the optimal solution to the L.P. 
problem corresponds to an extreme point of the feasible region of the 
problem. Each extreme point can be determined by a basic solution. Now 
by (2.9) all the variables have to be non-negative in a feasible solution. 
Thus it is necessary to examine only the basic feasible solutions, rather than 
all basic solutions, in order to find the optimum. This amounts to examining 
only those extreme points for which all variables are non-negative. The 
algorithm is a process by which successive basic feasible solutions are 
identified and in which each has an objective function value which is greater 
than the preceding solution. Each basic feasible solution in this series is 
obtained from the previous one (after the first has been selected) by replacing 
one of the basic variables by a non basic variable. This is attained by setting 
one of the basic variables equal to zero and calculating the values of the 
other basic variables and the new variable (which is now part of the basis) 
which satisfy (2.8). This replacement of one variable by another is carried 
out with the following criterion in mind. The new variable that is becoming 
part of the basis (the entering variable) is selected so as to improve the 
objective function value. This happens if the non basic variable with the 
largest per unit increase is selected (as long as the solution is not degenerate). 
The variable to leave the basis is selected so as to guarantee that feasibility 
has been preserved. This procedure is repeated until no improvement in 
objective function value can be made. When this happens the optimal 
solution has found. 

Consider once again Problem (2.1). Suppose we choose an initial basis 
of (X3, X4, xs). The nonbasic variables are then Xl and X2, which are set 
equal to zero. The submatrix A corresponding to this basis is the identity 
matrix I and is of course nonsingular. Hence we can solve for the basic 
variables: 

X3 = 12 

X4 = 10 

X5 = 8. 
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As all these basic variables are nonnegative, we have found a basic feasible 
solution. The next step is to find a new basic feasible (b.f.) solution with an 
improved (larger) value. Recall that when a new b.f. solution is created 
exactly one new variable replaces one existing variable in the basis. Which 
variable should be brought into the basis in the present problem? On looking 
at (2.10) it can be seen that Xl has the largest gain per unit (4) in the objective 
function. Hence it seems wise to prefer Xl to Xz' In some cases this criterion 
will not always yield the greatest improvement; however, it has been shown 
that other criteria usually require more overall computation to find the 
optimum. Now that Xl has been chosen to enter, which of X3, X 4 , or Xs 

should leave the basis? Two factors must be considered: 

1. We wish to allow Xl to assume as large a value as possible in order to 
make the objective function take on the largest possible value. 

2. The new basic solution must be feasible: all variables must be non­
negative. 

How much can we increase Xl and still satisfy factor 2? Suppose we 
write the constraints of (2.10) as functions of Xl: 

Now, as 

these equations reduce to 

Xl = 4 -1Xz -1X3 

Xl = 13° - X z -1X4 

Xl = 2 - ~Xz - ixs. 

Xl = 4 -1X3 

Xl = 13° -1X4 

x1=2-txs· 

(2.14) 

(2.15) 

(2.16) 

Consider in turn the removal of one of X3 or X4 or Xs from the basis. That 
is, set X3, or X4 or Xs equal to zero one at a time. Here Xl will take on the 
following values: 

X 3 =0=>X1=4 

X4 = ° => X 1 = 13° 

Xs = ° =>X 1 = 2. 

Now it can be seen from (2.15) and (2.16) that 

X3 = ° => X4 < 0, Xs < 0, 

X4 = O=>Xs < 0. 

Hence setting either of X3 or X4 equal to zero will cause the new basis to be 
infeasible. Therefore, the leaving variable should be xs, and the new basis 
is (x 1> X3, x 4 ). It should be noted that the leaving variable belongs to the 
equation which has the minimum positive constant out of (2.14), (2.15), and 
(2.16). This is no coincidence, and will always occur. 
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Now that the new basis has been chosen, the values of its variables can 
be found. We have: 

where 

(3 1 0) 
A= 3 0 1. 

400 
Thus 

and 
X4 =4. 

The corresponding objective function value is 8. 
What has been performed here is basically one iteration of the simplex 

method. In order to perform the iterations of the simplex algorithm it is 
convenient to set out the problem in a tableau. How this is done is dis­
cussed in the next section. 

2.5.2 Canonical Form 

As was mentioned previously, the calculations of the simplex method are 
most easily performed when the problem is set out in a tableau. We shall 
assume that all the inequalities of the problem are of the "~" type, with a 
nonnegative right-hand-side (r.h.s.) constant. Thus in converting the problem 
into standard form a slack variable is added to each inequality to transform 
it into an equation. Other cases shall be considered in Section 2.5.4. Problem 
2.1 is of the required form and will be used for illustrative purposes. 

Refer to Table 2.1. Each column of the tableau corresponds to a variable, 
except the last column, which corresponds to the r.h.s. of each standard 
form equation. For consistency, the objective function equation must be 
put in the same form as the constraint equations. In Problem 2.1, (2.10) 

Table 2.1 

Variables 

Constraint Xo Xl X2 X3 X4 Xs r.h.s. 

(2.11) 0 3 4 1 0 0 12 
(2.12) 0 3 3 0 1 0 10 
(2.13) 0 4 2 0 0 1 8 

(2.10) 1 -4 -3 0 0 0 0 
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can be expressed as: 
Xo - 4Xl - 3X2 = o. 

The Xo column is usually not included in the tableau. Each row of the 
tableau corresponds to a constraint equation, the last row corresponding 
to the objective function. The r.h.s. entry ofthe objective function row equals 
the value of the objective function for the current basis. 

We must now select an initial basis for the problem and calculate the 
values of the basic variables. An initial basic feasible solution can always 
be found by letting all the slack variables only be basic. Each basic variable 
then has a value equal to the r.h.s. constant of its equation. The value of 
this solution is zero, as all basic variables have a zero objective function 
coefficient. It can be seen from Table 2.1 that the coefficients in A corre­
sponding to the basis form an identity matrix. As the simplex method is 
applied to the elements of the tableau, their values will be manipulated. 
However, at the end of each iteration, the coefficients of the current basis 
will form an identity matrix (within a permutation ofrows) and the objective 
function coefficients of basis variables will be zero. A tableau which possesses 
this property is said to be in canonical form. 

2.5.3 The Algorithm 

Before discussing the steps of the algorithm it is necessary to make a digres­
sion into the area of matrix manipulation. It has been noted that the columns 
in the simplex tableau corresponding to the basic variables form an identity 
matrix (within a permutation of rows). When another iteration is performed 
(if necessary), one of the basic variables is replaced by a nonbasic variable. 
This new basis must have coefficients in the tableau which form an identity 
matrix. How is the tableau to be transformed so as to create this new identity 
matrix? 

As an example, consider Table 2.1. It was decided that Xl should replace 
Xs in the basis. Thus the Xl column should be manipulated until it looks 
like the present Xs column. It can be shown (Hu (1969» that Gauss-Jordan 
elimination can achieve this without altering the set of feasible solutions to 
the problem. For convenience, Table 2.1 is reproduced in Table 2.2 with 
extraneous matter omitted and the objective function row labelled Xo rather 
than (2.10). 

Table 2.2 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 3 4 0 0 12 
(2.12) 3 3 0 0 10 
(2.13) ® 2 0 0 1 8 

Xo -4 -3 0 0 0 0 
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The entry which lies at the intersection of the entering variable column 
and the row containing the unit element of the leaving variable is called 
the pivot element. It is circled in Table 2.2. The first step is to divide each 
element in the pivot row (the row containing the pivot element) by the pivot 
element. This produces Table 2.3. We have now produced a unit element in 
the correct position in the Xl column. 

Table 2.3 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 3 4 1 0 0 12 
(2.12) 3 3 0 1 0 10 
(2.13) 1 1 0 0 1 2 2 4 

Xo -4 -3 0 0 0 0 

Next, each row other than the pivot row has an amount subtracted from 
it, element by element. The amount subtracted from each element is equal 
to the present entry of the corresponding pivot row element multiplied by 
a constant. That constant is equal to the entry in the row concerned which 
lies in the pivot column-the column containing the pivot element (the 
entering variable column.) 

For example, let us subtract from the first row of Table 2.3 element by 
element. The constant to be subtracted is the entry in row (2.11) in the Xl 

column: 3. Thus row (2.11) becomes: 

3 - 3(1) 4 - 3(t) 1 - 3(0) 0 - 3(0) 0 - 3(i) 12 - 3(2) 

This produces Table 2.4. 

Table 2.4 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 0 s 1 0 3 6 "2 -4 

(2.12) 3 3 0 1 0 10 

(2.13) 1 1 0 0 t 2 "2 

Xo -4 -3 0 0 0 0 

We have now produced a zero element in the first entry of the Xl column. 
Performing the same operation for each other row (other than the pivot 
row) produces Table 2.5. The new basis (Xl> X2, X4) now has coefficients 
which form an identity matrix, (within a permutation of rows). 

The simplex method can now be outlined. 

1. Transform the problem into standard form. 
2. Set up the initial simplex tableau. 
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Table 2.5 

Constraints XI X2 X3 X4 Xs r.h.s. 

(2.11) 0 s 0 3 6 2" -4 

(2.12) 0 3 0 3 4 2" -4 

(2.13) 1 I 0 0 I 2 2" 4 

Xo 0 -1 0 0 8 

3. Identify the negative entry which is largest in magnitude among all en­
tries corresponding to nonbasic variables in the objective function row. 
Ties may be settled arbitrarily. (If all such entries are nonnegative, go to 
step 10). Suppose the entry in column i is identified. 

4. Identify all nonnegative elements in column i. 
5. For each element identified in step 4, form a ratio of the r.h.s. constant 

for the row of the element to the element itself. 
6. Choose the minimum such ratio and identify to which row it belongs, say 

row j. Ties may be settled arbitrarily. 
7. Identify the basic variable which has a unit entry in row j, say Xk. 

8. Replace variable Xk by variable Xi in the basis using Gauss-Jordan elim­
ination. 

9. Go to step 3. 
10. The optimal solution has been found. Each basic variable is set equal to 

the entry in the r.h.s. column corresponding to the row in which the vari­
able has a unit entry. All other variables are set equal to zero. The opti­
mal solution value is equal to the entry at the intersection of the Xo row 
and the r.h.s. column. 

Problem 2.1 will now be solved by the simplex method. Refer to Table 
2.6. The initial basis is (X3. X4, xs), with values 

X3 = 12 

X4 = 10 

Xs = 8 
and 

Xo = O. 

Table 2.6 

Constraints XI X2 X3 X4 Xs r.h.s. Ratio 

(2.11) 3 4 0 0 12 Il 

(2.12) 3 3 0 0 10 13° 

(2.13) @) 2 0 0 1 8 ~ 
4 

Xo -4 -3 0 0 0 0 
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Table 2.7 

Constraints Xl X2 X3 X4 X5 r.h.s. Ratio 

(2.11) 0 CD 1 0 3 6 II -"4 

(2.12) 0 3 0 3 4 J 2' -"4 

(2.13) 1 t 0 0 1. 2 t 4 

Xo 0 -1 0 0 8 

The entering variable is Xl' as it has the smallest xo-row (objective-function­
row) coefficient. The leaving variable is xs, as it has a unit element in the row 
corresponding to the minimum ratio (~). The pivot element has been circled. 
Gauss-Jordan elimination produces Table 2.7. 

The new basis is (Xt>X3,X4), with values 

and 

Xl = 2 

X3 = 6 

x4=4 

Xo = 8. 

The entering variable is X2, as it has the smallest xo-row coefficient ( -1). The 
leaving variable is X3, as it has a unit element in the row corresponding to 
the minimum ratio ell. The pivot element has been circled. Gauss-Jordan 
elimination produces Table 2.8. 

As there are no more negative entries in the Xo row, the optimal solution 
has been found. It can be read off from the tableau, the basic variables being 
equal to the r.h.s. values of the rows in which their column entry is a unit 
element. Thus 

X! =! 
x! = II 
x~ =~. 

All other variables are zero. The optimum is 

Table 2.8 

Constraints Xl 

(2.11) 0 
(2.12) 0 
(2.13) 

Xo 0 

X* -~ 0- s· 

X 2 X3 

1 ~ 
5 

0 3 -s 
0 I -s 
0 t 

X4 X5 r.h.s. 

0 3 II -TO 

1 3 t -TO 

0 t ! 
0 ?o li 

5 
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The slack variables in constraints (2.11) and (2.13) are zero at the optimal 
solution. This means that the amount of resource available in each of these 
constraints (cutting and washing time, respectively) is to be fully used. There 
are 12 and 8 hours' cutting and washing time available per day, respectively, 
and all this is going to be used in the optimal solution. Such constraints are 
called binding constraints. The slack variable of constraint (2.12) is positive. 
This means that not all of the available screening time of 10 hours is to be 
used. The amount unused per day is equal to the optimal value of the slack 
variable, ! hour. A constraint such as (2.12) is called a slack constraint. 

The algorithm presented above is designed to solve maximization prob­
lems only. A minimization problem can be converted into a maximization 
problem by maximizing the negative of its objective function. However, the 
algorithm can instead be easily modified to solve such problems directly. 
At the beginning of each iteration in which a minimization problem is being 
solved, the xo-row element that is the minimum of all negative elements is 
identified. The column of this element becomes the pivot column. The itera­
tion then proceeds as before. When all elements in the Xo row are nonnegative 
the optimum has been found. 

2.5.4 Artificial Variables 

Until now it has been assumed that all constraints in the linear programming 
problem were of the ":s:;" type. This allowed slack variables to be added to 
(rather than subtracted from) each inequality to transform it to an equation. 
The positive unit coefficients of these slack variables meant that an identity 
submatrix was present in A. Thus the collection of slack variables conve­
niently formed an initial basis which represented a basic feasible solution. 
Hence the simplex algorithm could be easily initiated using this easily 
found basis. 

With constraints of the" =" or "~" type the procedures differ: no slack 
variable need be introduced in the former case and the slack variable is 
subtracted in the latter, so each equation does not necessarily contain a 
unique element with a positive unit element as coefficient. Therefore an 
identity submatrix of A is not necessarily present. As many problems contain 
constraints of these types, we must develop a systematic method for creating 
an initial feasible basis so that the simplex algorithm can be used. 

2.5.4.1 The Big M Method 

The problem is first transformed into standard form. Next a new variable 
is added to the left-hand side of each constraint equation which was of the 
"=" or "~" type. The collection of these variables together with the slack 
variables in the equations that were of the":s:;" type form the initial feasible 
basis. As with all other variables these new variables are constrained to be 
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non-negative. Any feasible solution must contain these new variables all at 
the zero level, for any positive new variable causes its constraint to be 
violated. In order to ensure that all the new variables are forced to zero 
in any feasible solution, each is included in the objective function. The 
coefficient of each new variable in the objective function is assigned a re­
latively large negative (positive) value for a maximization (minimization) 
problem. These coefficients are usually represented by the symbol M. Thus 
this technique is sometimes called the big M method. The new variables 
introduced have no physical interpretation and are called artificial variables. 

To illustrate the method, suppose an additional constraint is added to 
Problem 2.1. Because of contractual commitments at least one ton of coal 
must be produced and the buyers are not concerned about the ratio of 
lignite to anthracite. The new constraint is 

which, on the introduction of the slack variable X6, becomes 

Xl + X2 - X6 = 1. 

When the artificial variable X7 is introduced we have 

Xl + X2 - X6 + X7 = 1, 

and the new objective function is 

Xo = 4XI + 3X2 - MX7' 

In mathematical form the new problem is 

PROBLEM 2.2 

Maximize: 

subject to: 
4XI + 3X2 

3XI + 4X2 + X3 

+ Xs 

- MX7 = Xo 

= 12 

=10 

=8 
3XI + 3X2 

4XI + 2X2 

Xl + X2 

Xj ~ 0, 

- X6 + X7 = 1 
i = 1,2, ... ,7. 

(2.17) 

The feasible region for this problem is shown in Figure 2.3. The optimal 
solution remains unchanged because the optimal solution of the previous 
problem is still a solution to the new problem, whose feasible set is a subset 
of the original feasible set. The initial tableau for the problem is displayed 
in Table 2.9. 

The initial basis is (X3, X4,XS, X7)' However, because the objective function 
coefficient of the basic variable X7 is nonzero, the tableau is not yet in ca­
nonical form. Gauss-Jordan elimination is used to remedy this by replacing 
the Xo row by the sum of the Xo row and - M times (2.17). This creates 
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Xo = 1~ Xl 
(2.17) (2.4) 

Figure 2.3. The graphical solution to the expanded example problem. 

Table 2.9 

Constraints Xl Xl X3 X4 Xs X6 X7 r.h.s. 

(2.11) 3 4 0 0 0 0 12 
(2.12) 3 3 0 0 0 0 10 
(2.13) 4 2 0 0 1 0 0 8 
(2.17) 0 0 0 -1 1 

Xo -4 -3 0 0 0 0 M 0 

Table 2.l0. The simplex iterations required to reach the optimal solution 
are displayed in Tables 2.11-2.13. The optimal solution is 

xi =!, X* _ll 2 - 5 

xl =~, x~ = V 
x~, x~, x~ = 0 

x~ = 5l. 
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Table 2.10 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. Ratio 

(2.11) 3 4 0 0 0 0 12 ¥ 
(2.12) 3 3 0 0 0 0 10 \0 
(2.13) 4 2 0 0 0 0 8 ! 
(2.17) CD 0 0 0 -1 1 1 1-

1 

Xo -M-4 -M-3 0 0 0 M 0 -M 

Table 2.11 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. Ratio 

(2.11) 0 1 1 0 0 3 -3 9 1 
(2.12) 0 0 0 1 0 3 -3 7 7 

"! 

(2.13) 0 -2 0 0 1 @ -4 4 4 
4 

(2.17) 1 0 0 0 -1 1 1 

Xo 0 0 0 0 -4 (M + 4) 4 

Table 2.12 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. Ratio 

(2.11) 0 CD 0 3 0 0 6 V -4 

(2.12) 0 t 0 1 3 0 0 4 8 -4 "! 

(2.13) 0 -t 0 0 1 1 -1 1 4 

(2.17) 1 1 0 0 1 0 0 2 4 
"2 4 T 

Xo 0 -1 0 0 1 0 M 8 

Table 2.13 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. 

(2.11) 0 z 0 3 0 0 If 
5 -TO 

(2.12) 0 0 -t 1 3 0 0 t -TO 

(2.13) 0 0 t 0 /0 1 -1 II 
5 

(2.17) 0 1 0 2 0 0 ! -5 5 

Xo 0 0 t 0 t'o 0 M II 
5 
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2.5.4.2 The Two-Phase Method 

There exists another method for finding an initial feasible solution to an 
L.P. problem with" = " or "~" constraints. It is called the two-phase method. 
Phase I of the method begins by introducing slack and artificial variables 
as before. The objective function is then replaced by the sum of the artificial 
variables. In terms of the present example, the new objective function is 
Xo = X 7 . This creates a new problem in which this new objective function 
is to be minimized subject to the original constraints. 

When this minimization has taken place, the optimal solution value is 
analyzed. A value greater than zero indicates that the original problem does 
not have a feasible solution. A value of zero corresponds to a solution which 
is basic and feasible for the original problem as all the artificial variables 
have value zero. In this case the original objective function is substituted in 
the Xo row of the final tableau, and this basic feasible solution without the 
artificial variables is used as a starting solution for further iterations of the 
simplex method. This is phase II. 

The two-phase method is usually preferred to the big M method as it 
does not involve the problem of roundoff error that occurs in using the large 
value assigned to M. It will now be illustrated by employing Problem 2.2. 

PHASE I 

Minimize: 

Subject to: 3Xl + 4X2 + X3 

3x l + 3X2 + X4 

= 12 

= 10 

=8 4Xl + 2X2 + Xs 

Xl + X2 

Xi~ 0, 

- X6 + X7 = 1 
i = 1,2, ... ,7. 

Table 2.14 shows the initial tableau for phase I. Note that the xo-row 
coefficient of X7 is + 1 rather than -1 as the objective has been changed 
to one of maximization. Transforming the problem to canonical form, we 

Table 2.14 

Constraints Xl X 2 X3 X4 Xs X6 X7 r.h.s. 

(2.11) 3 4 0 0 0 0 12 
(2.12) 3 3 0 1 0 0 0 10 
(2.13) 4 2 0 0 1 0 0 8 
(2.17) 1 0 0 0 -1 1 1 

x~ 0 0 0 0 0 0 0 
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Table 2.15 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. Ratio 

(2.11) 3 4 0 0 0 0 12 12 
""3 

(2.12) 3 3 0 0 0 0 10 130 

(2.13) 4 2 0 0 1 0 0 8 ! 
(2.17) Q) 1 0 0 0 -1 1 1 t 
x~ -1 -1 0 0 0 0 -1 

Table 2.16 

Constraints Xl X2 X3 X4 Xs X6 X 7 r.h.s. 

(2.11) 0 1 1 0 0 3 -3 9 
(2.12) 0 0 0 1 0 3 -3 7 
(2.13) 0 -2 0 0 1 4 -4 4 
(2.17) 1 1 0 0 0 -1 1 
x~ 0 0 0 0 0 0 0 

obtain Tables 2.15 and 2.16. It is clear from Table 2.16 that phase I is now 
complete, as the objective function has value zero. (Note that the objective 
can never attain an optimal negative value as it is the sum of a set of variables 
all constrained to be nonnegative.) The solution in Table 2.16 represents a 
basic feasible solution to the original problem. 

PHASE II. The original objective function is substituted, neglecting the arti­
ficial variable X7' This gives Table 2.17, which is expressed in canonical 
form as Table 2.18. Subsequent iterations are shown in Tables 2.19 and 2.20. 

Table 2.20 displays the same optimal solution as that found by the big 
M method in Table 2.13. It can be seen that the iterations in phase II are 
identical to those of the big M method. This is no coincidence, and will 
always happen. 

Table 2.17 

Constraints Xl X2 X3 X4 Xs X6 r.h.s. 

(2.11) 0 1 1 0 0 3 9 
(2.12) 0 0 0 1 0 3 7 
(2.13) 0 -2 0 0 1 4 4 
(2.17) 1 1 0 0 0 -1 1 

Xo -4 -3 0 0 0 0 0 
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Table 2.18 

Constraints XI X2 X3 X4 X5 X6 r.h.s. Ratio 

(2.11) 0 1 1 0 0 3 9 9 
3" 

(2.12) 0 0 0 0 3 7 7 
3" 

(2.13) 0 -2 0 0 1 @ 4 4 
4 

(2.17) 0 0 0 -1 

Xo 0 0 0 0 -4 4 

Table 2.19 

Constraints XI x 2 X3 X4 X5 X6 r.h.s. Ratio 

(2.11) 0 CD 0 3 0 6 12 
-4 """5 

(2.12) 0 ~ 0 3 0 4 8 
-4 3" 

(2.13) 0 I 0 0 I 1 -2 4 

(2.17) 1 I 0 0 I 0 2 4 
2 4 T 

Xo 0 -1 0 0 0 8 

Table 2.20 

Constraints XI X2 X3 X4 X5 X6 r.h.s. 

(2.11) 0 1 1- 0 3 0 II 
5 -TO 5 

(2.12) 0 0 3 3 0 2 -s -TO S 

(2.13) 0 0 I 0 I .u s TO 5 

(2.17) 1 0 I 0 t 0 ± -s 5 

Xo 0 0 1- 0 7 0 52 
5 TO """5 

2.5.5 Multiple Optimal Solutions 

Suppose that in order to compete with other companies in the sale oflignite, 
the firm must reduce its price per ton. The profit is now $3 per ton. In order 
to compensate, the profit on anthracite is raised to $4/ton. Although the 
feasible region of the problem remains unchanged, as given in Figure 2.1, 
the new objective function is: 

Xo = 3x1 + 4X2' 

The problem is solved graphically in Figure 2.4. When the objective function 
is drawn at the optimal level, it coincides with constraint line (2.2). This 
means that all points on the line from point (0, 3) to (!, V) represent optimal 
solutions. This situation can be stated as follows: 
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..... 
...... 

..... 
...... 

...... 
...... 

...... 
...... 
Xo = 12 

...... 

...... Xo = 8 

..... 
..... Xo = 4 

Figure 2.4. An L.P. problem with multiple optimal solutions. 

3xt + 4x! = 12 
0:::;; xt:::;;! 
V :::;;x!:::;;3 

x~ = 12. 
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Note that for the multiple optimal solutions to be present the objective 
function line, plane, or hyperplane (in two, three, or more dimensions, re­
spectively) must be parallel to that of a binding constraint. When this occurs 
there is always an infinite number of optimal solutions (except when the 
solution is degenerate,-see Section 2.5.6). 

The problem is now solved using the simplex method (see Tables 2.21 
and 2.22). Table 2.22 yields the following optimal solution: 

x! = 3 

x: = 1 

x~ = 2 

xt, x! = 0 

x~ = 12. 
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Table 2.21 

Variable 

Constraints Xl X 2 X3 X4 Xs r.h.s. Ratio 

(2.11) 3 @) 0 0 12 11 

(2.12) 3 3 0 1 0 10 130 

(2.13) 4 2 0 0 8 ! 

Xo -3 -4 0 0 0 0 

Table 2.22 

Constraints Xl X2 X3 X4 Xs r.h.s. Ratio 

(2.11) i 1 1 0 0 3 12 
4 ""3 

(2.12) 3 0 3 1 0 4 
4 -4 "3 

(2.13) ! 0 1 0 1 2 ± -2" s 

Xo 0 0 0 0 12 

However, the nonbasic variable Xl has a zero xo-row coefficient, indi­
cating that the objective function value would remain unchanged if Xl was 
brought into the basis. This is carried out in Table 2.23, this tableau yields 
the optimal solution: 

and 

xt =! 
x! = II 
x: =~ 

x~, xt = 0 

X~ = 12. 

Of course the xo-row value of Xs is zero, indicating that Xs could replace Xl 

in the basis at no change in objective function value. This would produce 
Table. 2.22. 

The significance of this example is that we have discovered two basic 
optimal solutions. It is straightforward to prove that if more than one basic 

Table 2.23 

Constraint Xl X2 X3 X 4 Xs r.h.s. 

(2.11) 0 1 2 0 3 II s -TO 

(2.12) 0 0 3 3 2 -s -TO S 

(2.13) 0 1 0 2 4 -s S s 
Xo 0 0 0 0 12 



2.5 The Simplex Algorithm 35 

feasible solution is optimal, then any linear combination of those points is 
also optimal (see, for example, Gass (1969)). As we have seen from Figure 2.4, 
any point on the line segment joining the two basic optimal solutions is 
optimal. Multiple optimal solutions are present if nonbasic variables have 
zero entries in the xo-row of the simplex tableau which displays an optimal 
solution. 

2.5.6 Degeneracy 

Suppose that the management of the mining company would like to reduce 
the number of hours of screening time available each day. They reason that, 
as it is not all being used in the present optimal plan, why not reduce it? 
Exactly 9~ hours are used daily, so this becomes the amount available. 
Mathematically the new problem is the same as Problem 2.1, except that 
constraint (2.12) is replaced by 

(2.18) 

This problem is solved graphically in Figure 2.5. Notice that constraint 
(2.18) coincides with exactly one point of the feasible region-the optimal 

X 2 

(2.13) 

Figure 2.5. The graphical solution to a degenerate L.P. problem. 
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Table 2.24 

Constraints Xl 

(2.11) 3 

(2.18) 3 

(2.13) ® 
Xo -4 

Table 2.25 

Constraints Xl 

(2.11) 0 

(2.18) 0 

(2.13) 1 

Xo 0 

Table 2.26 

Constraints 

(2.11) 

(2.18) 

(2.13) 

Xo 

X 2 

4 
3 

2 

-3 

X2 

CD 
! 
t 

-1 

Xl 

0 

0 

0 

X 2 

o 
o 
o 

X3 

0 

0 

0 

X3 

0 

0 

0 

X3 

~ 
3 -5 

-t 
~ 
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X4 Xs r.h.s. Ratio 

0 0 12 II 
0 9t 1.§. 

s 
0 1 8 8 

4 

0 0 0 

X4 Xs r.h.s. Ratio 

0 3 6 12 
-4 5 

1 3 3t II -4 s 
0 1 2 ± 

4 1 

0 8 

X4 Xs r.h.s. 

0 3 \2 -TO 

1 3 0 -TO 

0 2 4 
5 5 

0 170 Sl 

point. This problem is solved by the simplex method in Tables 2.24-2.26. 
It can be seen from the tableau of Table 2.25 that X2 should enter the basis. 
However, on forming the ratios to decide which variable leaves the basis, a 
tie occurs. Whenever this happens the next iteration will produce one or 
more basic variables with value zero. Such basic feasible solutions are called 
degenerate solutions. As it happens, we have reached the optimum in the 
same tableau as the first instance of degeneracy, so no problems occur. 
However, if Table 2.26 did not display the optimum, complications might 
have arisen. These are best explained by means of another example. 

Suppose that a new screening plant is built and it now takes 4 hours to 
process one ton of lignite and 1 hour to process one ton of anthracite. There 
are 8 hours' screening time available per day. This means that the problem 
is the same as Problem 2.1 except that constraint (2.12) is replaced by 

(2.19) 

The problem is solved graphically in Figure 2.6. It is solved in by the simplex 
method in Tables 2.27-2.29. 
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XI 

(2.13) 

Figure 2.6. The graphical solution to a second degenerate L.P. problem. 

Table 2.27 

Constraints XI X2 X3 X4 X5 r.h.s. Ratio 

(2.11 ) 3 4 0 0 12 12 
""3 

(2.19) 4 1 0 0 8 8 
4 

(2.13) ® 2 0 0 1 8 8 
4 

Xo -4 -3 0 0 0 0 

Table 2.28 

Constraints XI X2 X3 x 4 X5 r.h.s. Ratio 

(2.11) 0 CD 1 0 3 6 12 -4 ""5 

(2.19) 0 -1 0 1 -1 0 

(2.13) I 0 0 I 2 4 
"2 4 T 

Xo 0 -1 0 0 8 
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Table 2.29 

Constraints Xl X2 X3 X4 X5 r.h.s. 

(2.11) 0 2 0 3 12 
"5 TO 5 

(2.19) 0 0 2 1 13 12 
"5 TO 5 

(2.13) 1 0 1 0 2 4 
"5 "5 "5 

Xo 0 0 2 0 7 52 
"5 "5 5 

We can see from Table 2.28 that one of the basic feasible solutions pro­
duced by the simplex method was degenerate, as the variable X 4 has zero 
value. However, there is no degeneracy in the tableau of the next iteration. 
This is because the entering-variable (xz) coefficient is negative (-1) in 
(2.19). Thus no ratio is formed, hence the dash in the ratio column. What 
would have happened if that Xz coefficient had been positive and the ap­
propriate ratio was formed? This would have caused the ratio to be zero. 
Thus that X z coefficient would become the pivot element. Then the next 
basic feasible solution would also be degenerate. Also there would be no 
improvement in the value of the objective function. 

But the simplex algorithm assumes that each new basic feasible solution 
value is an improvement over the preceding one. When this does not happen, 
there is a danger that eventually a previous basis will reappear, and an 
endless series of iterations will be performed, with no improvement in the 
objective function value. And the optimal solution would never be found. 
This unhappy phenomonen is termed cycling. 

Degeneracy occurs often in realistic large-scale problems. However, there 
do not appear to be any reported cases of cycling of the simplex technique 
in solving realistic problems. Because of this most computer codes do not 
contain measures to prevent cycling. This appears to be quite safe, because 
the accumulation of rounding errors will usually prevent any basic variable 
from assuming a value of exactly zero. There are a number of theoretical 
techniques which do prevent cycling (see, for example, Gass (1969)). 

In the previous paragraph we asked the question, what would happen if 
the Xz coefficient in the (2.19) row of Table 2.28 had been positive. This will 
come about if constraint (2.19) is replaced by 

4Xl + 2txz + X4 = 8 

in Table 2.20. We are solving the following problem: 

Maximize: 

subject to: 

4Xj + 3xz = Xo 

3x1 + 4X2 + X3 = 12 

4Xl + 2tX2 

4Xl + 2xz 
Xi ~ 0, 

+ X4 = 8 

+ Xs = 8 
i = 1,2, ... , 5. 

(2.20) 
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(2.11) (2.13) 

(2.20) 

Figure 2.7. The graphical solution to a third degenerate L.P. problem. 

This problem is solved graphically in Figure 2.7 and analytically in Tables 
2.30-2.33. The optimal solution is 

x! = 147 

x~ =g 
x! = fi 

x! = x! = 0 

x~ = 9/7 , 

Table 2.30 

Constraint Xl X2 X3 X4 Xs r.h.s. Ratio 

(2.11) 3 4 0 0 12 12 
""3 

(2.20) 4 2t 0 0 8 ! 
(2.13) @ 2 0 0 8 ! 

Xo -4 -3 0 0 0 0 
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Table 2.31 

Constraint XI X 2 X3 X4 Xs r.h.s. Ratio 

(2.11 ) 0 5 1 0 3 6 12 
"2 "4 5 

(2.20) 0 CD 0 -1 0 0 

(2.13) 1 I 0 0 I 2 4 
"2 "4 T 

Xo 0 -1 0 0 8 

Table 2.32 

Constraint XI X 2 X3 X4 Xs r.h.s. Ratio 

(2.11) 0 0 1 -5 (£J 6 24 
17 

(2.20) 0 0 2 -2 0 

(2.13) 1 0 0 -1 5 2 8 
"4 5 

Xo 0 0 0 2 -1 8 

Table 2.33 

Constraint Xl X2 X3 X4 Xs r.h.s. 

(2.11) 0 0 4 20 1 24 
17 17 17 

(2.20) 0 8 -.!L 0 48 
17 17 17 

(2.13) 0 5 8 0 4 
17 17 17 

Xo 0 0 4 14 0 9177 17 17 

Notice in Table 2.31 that the circled X2 coefficient under question is indeed 
positive. Thus the corresponding ratio is formed and is zero, and this co­
efficient becomes the pivot element. Therefore the next basic solution, in 
Table 2.32, has the same value as that of the previous solution and is still 
degenerate. Happily, the next iteration produces a non degenerate optimal 
solution. 

In Section 2.5.5 it was stated that for multiple optimal solutions to be 
present, the objective function hyperplane must be parallel to that of a 
binding constraint. The converse is not universally true, as illustrated by 
the following example. Suppose Problem 2.1 is modified by simultaneously 
adopting the following changes. The price per ton of both lignite and an­
thracite is $3. The amount of screening time available is 9% hours per day. 
The problem we are solving is given by: 
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Maximize: 3Xl + 3X2 

subject to: 3Xl + 4X2 + X3 

= Xo 

= 12 

+ Xs = 8 

41 

(2.11) 

(2.18) 

(2.13) 

This problem is solved graphically in Figure 2.8 and analytically in the 
following Tables 2.34-2.36. The optimal solution is 

xt =! 
x! = II 

x! = X~ = X~ = 0 

X6 = 9!. 
Consider Table 2.36. As there are no nonbasic xo-row coefficients with 

zero value, there are no alternative optimal solutions. Yet the objective 

Xl 

~2.11) 

\ 
\ 

\. 
\. 

\. 
\. 

\. 
\. 

(2.13) 

\. 
Xo = 9! 

Figure 2.8. The optimal solution to an L.P. problem in which the objective function 
is parallel to a binding redundant constraint. 
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Table 2.34 

Constraints Xl X 2 X3 X4 Xs r.h.s. Ratio 

(2.11 ) 3 4 0 0 12 12 
""3 

(2.18) 3 3 0 0 n 16 
5 

(2.13) @) 2 0 0 1 8 .!l. 
4 

Xo -3 -3 0 0 0 0 

Table 2.35 

Constraints Xl X 2 X3 X4 X5 r.h.s. Ratio 

(2.11) 0 CD 0 1. 6 12 
4 5 

(2.18) 0 3 0 3 3t 12 
2 -4 5 

(2.13) 1 0 0 1 2 4 
2 4 T 

Xo 0 3 0 0 3 6 -2 4 

Table 2.36 

Constraints Xl X 2 X3 X4 Xs r.h.s. 

(2.11) 0 2 0 3 12 
5 TO 5 

(2.18) 0 0 1. 3 0 5 -TO 

(2.13) 1 0 1 0 2 4 
5 5 5 

Xo 0 0 3 0 ~ 9t 5 10 

function is parallel to the binding constraint (2.18). (Constraint (2.18) is 
binding because its slack variable, X4, has zero optimal value.) This is 
possible because the constraint is redundant (although binding), as shown 
in Figure 2.8. This creates a degenerate optimal solution. 

2.5.7 Nonexistent Feasible Solutions 

Suppose now that the company management, heartened by the efficiency of 
the L.P. approach, demands a plan that guarantees that at least 4 tons of 
coal are produced each day. The coal produced no longer need be screened. 
This means that the problem is the same as Problem 2.1 except that con­
straint (2.12) is to be replaced by a constraint representing the new guarantee. 
Mathematically, this guarantee can be expressed as 

Xl + X2 ;:::: 4. 

When we introduce a slack variable (X6) and an artificial variable (X4), it 
becomes 

(2.21) 
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So the problem is the following: 

Maximize: 

subject to: 

+ Xs 

Xi 2 0, i = 1,2, ... , 6. 

= Xo 

= 12 

=8 

43 

(2.11 ) 

(2.21) 

(2.13) 

When this problem is expressed graphically, as in Figure 2.9, it can be seen 
that there does not exist a point which will satisfy all constraints simulta­
neously. Hence the problem does not have a feasible solution. We need a 
strategy for detecting this situation in the simplex method. Towards this end 

X2 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

\ 
Xo = 11 (2.19) 

Figure 2.9. An L.P. problem with no feasible solution. 
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the present problem shall be "solved" by the simplex algorithm. Table 2.37 
shows the initial tableau. The first step is to transform the problem into 
canonical form, as in Table 2.38. Tables 2.39 and 2.40 complete the process. 

Table 2.40 displays the "optimal" solution. However, it will be noticed 
that the artificial variable X 4 has a positive value (~) in this solution. When­
ever this occurs in the final simplex tableau, it can be concluded that the 

Table 2.37 

Constraints 

Table 2.38 

Constraints 

(2.11) 

(2.21) 

(2.13) 

(2.11) 

(2.21) 

(2.13) 

Xo 

3 

1 

@ 
Xo -(M + 4) 

Table 2.39 

Constraints Xl 

(2.11) 0 

(2.21) 0 

(2.13) 1 

3 

4 

-4 

X 2 

.2. 
2 

1 
2 
1 
2 

X2 

4 

2 

-3 

o 
o 
o 

o 
1 

o 
M 

o 
o 
1 

o 

4 0 0 

o 0 

2 0 0 

-(M + 3) 0 0 0 

o 
o 1 

o 0 

3 
"4 

-i 
l 
4 

o 
-1 

o 
o 

o 
-1 

o 
M 

o 
-1 

o 

r.h.s. 

12 

4 

8 

o 

r.h.s. 

12 

4 

8 

-4M 

r.h.s. 

6 

2 

2 

Ratio 

12 
3"" 
4 
T 
8 
"4 

Ratio 

12 
5 
4 
T 
4 
T 

Xo o -(M/2 + 1) 0 o M/4 + 1 M -2M + 8 

Table 2.40 

Constraints 

(2.11) 

(2.21) 

(2.13) 

o 
o 
1 

o 

o 
o 
o 

2 
5 
1 

-5 
1 

-5 

t(M + 2) 

o 

o 
o 

- 130 

-fa 
2 
5 

/o(M + 7) 

o 
-1 

o 
M 

r.h.s. 

12 
5 

4 
5 
4 
5 

t(52 - 4M) 
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problem has no feasible solution. If the two-phase method had been used, 
we would have obtained a positive Xo at the end of the first phase, indicating 
no feasible solution. 

2.5.8 Unboundedness 

Consider the following L.P. problem. 

Maximize: 

subject to: 
Xl + 2X2 = Xo 

-4x l + x2~2 
Xl + X2;::': 3 

Xl + 2X2 ;::.: 4 

Xl - X2 ~ 2 

Xl ;::.: ° 
X 2 ;::.: 0. 

On looking at the graphical solution to the problem in Figure 2.10 it can 
be seen that the feasible region is unbounded. Because of the slope of the 
objective function (dashed line), the Xo line can be moved parallel to itself 
an arbitrary distance from the origin and still coincide with feasible points. 
Therefore this problem does not have a bounded optimal solution value. 

We shall now attempt to apply the simplex method to the problem. 
Transforming the problem into standard form yields: 

Maximize: Xl + 2X2 -Mxs - MX7 = Xo 

subject to: -4Xl + X2 + X3 

Xl + X2 - X4 + Xs 

Xl + 2X2 - X6 + X7 

Xi;::': 0, i = 1,2, ... , 8. 

The simplex tableaux are given in Tables 2.41-2.45. 

=2 

=3 

=4 

(2.22) 

(2.23) 

(2.24) 

+ Xs = 2 (2.25) 

From Table 2.45 it can be seen that X4 should enter the basis next. Which 
variable should leave the basis in order to ensure feasibility? All of the X4 
constraint coefficients are now negative. SO X4 can be bought into the basis 
at an arbitrarily large positive level. This will cause the objective function to 
assume an arbitrarily large value. Thus there is no bounded optimal solution 
to the problem. This situation can always be detected in the simpiex algo­
rithm by the presence of a negative xo-row variable coefficient with column 
entries all nonpositive. 

Sometimes a problem will have an unbounded feasible region but still 
have a bounded optimum. This is illustrated by the dotted line in Figure 
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" " " 

-
" " " " " Xo = 12 

Figure 2.l0. L.P. problems with an unbounded feasible region. 

Table 2.41 

Constraints Xl X2 X3 X4 Xs X6 X7 Xs r.h.s. 

(2.22) -4 1 0 0 0 0 0 2 
(2.23) 1 1 0 -1 1 0 0 0 3 
(2.24) 1 2 0 0 0 -1 1 0 4 
(2.25) 1 -1 0 0 0 0 0 1 2 

Xo -1 -2 0 0 M 0 M 0 0 
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Table 2.42 

Constraints Xl X2 X3 X4 X5 X6 X7 Xs r.h.s. Ratio 

(2.22) -4 CD 1 0 0 0 0 0 2 t 
(2.23) 1 1 0 -1 0 0 0 3 t 
(2.24) 1 2 0 0 0 -1 0 4 t 
(2.25) 1 -1 0 0 0 0 0 1 2 

Xo -(1 + 2M) -(3M + 2) 0 M 0 M 0 0 -7M 

Table 2.43 

Constraints Xl X2 X3 X4 X5 X6 X7 Xs r.h.s. Ratio 

(2.22) -4 0 0 0 0 0 2 
(2.23) 5 0 -1 -1 1 0 0 0 1 ! 
(2.24) ® 0 -2 0 0 -1 1 0 0 0 

"9 

(2.25) -3 0 1 0 0 0 0 1 4 

Xo -(14M + 9) 0 (2 + 3M) M 0 M 0 0 4-M 

Table 2.44 

Constraints Xl X2 X3 X4 Xs X6 X7 Xs r.h.s. Ratio 

(2.22) 0 1 0 0 4 4 0 2 -9 -9 9 

(2.23) 0 0 1 -1 CD 5 0 ! 9 -9 

(2.24) 0 2 0 0 1 ~ 0 0 -9 -9 

(2.25) 0 0 t 0 0 1 1 4 -3" 3" 

M -CM9+ 9) C4~ +9) Xo 0 0 M 0 0 4-M 
9 

Table 2.45 

Constraints Xl X2 X3 X4 X5 X6 X7 Xs r.h.s. 

(2.22) 0 1 4 ! 0 0 0 154 5 -5 

(2.23) 0 0 ! 9 ~ -1 0 ~ -5 

(2.24) 0 -1 1 ! 0 0 0 ! -5 

(2.25) 0 0 3 t 0 0 2l -5 

Xo 0 0 9 M+~ 0 M 0 ~ -5 
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2.10, where the problem is the same as the previous one, except the objective 
is now to maximize: 

This problem is solved by the simplex method in Tables 2.46-2.52. The opti-
mal solution is 

x! = i 
x~ = ~ 
x~ = 12 

xl = i 
x~ = x~ = x~ = x~ = ° 

x~ = 1. 

Table 2.46 

Constraints XI X 2 X3 X4 Xs X6 X 7 Xs r.h.s. 

(2.22) -4 0 0 0 0 0 2 
(2.23) 1 1 0 -1 1 0 0 0 3 
(2.24) 2 0 0 0 -1 1 0 4 
(2.25) 1 -1 0 0 0 0 0 1 2 

Xo -1 2 0 0 M 0 M 0 0 

Table 2.47 

Constraints Xl X2 X3 X4 Xs X6 X7 Xs r.h.s. Ratio 

(2.22) -4 CD 1 0 0 0 0 0 2 2 
T 

(2.23) 1 1 0 -1 0 0 0 3 3 
T 

(2.24) 1 2 0 0 0 -1 1 0 4 4 
"2 

(2.25) 1 -1 0 0 0 0 0 2 

Xo -(1 + 2M) 2-3M 0 M 0 M 0 0 -7M 

Table 2.48 

Constraints XI X2 X3 X4 Xs X6 X7 Xs r.h.s. Ratio 

(2.22) -4 0 0 0 0 0 2 
(2.23) 5 0 -1 -1 1 0 0 0 1 

5 

(2.24) ® 0 -2 0 0 -1 1 0 0 0 
9 

(2.25) -3 0 0 0 0 0 1 4 

Xo 7 -14M 0 3M-2 M 0 M 0 0 -(M + 4) 
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Table 2.49 

Constraints Xl X2 X3 X4 X5 X6 X7 Xs r.h.s. Ratio 

(2.22) 0 1 I 0 0 4 4 0 2 9 -9 9 

(2.23) 0 0 I -1 1 ~ 
, 

0 1 9 
9 -g- 5" 

(2.24) 1 0 2 0 0 I I 0 0 -9 -9 9 

(2.25) 0 0 1- 0 0 I I 4 3 -3 3 

_(M: 4) 7-SM 14M - 7 
Xo 0 0 M 0 -- --- 0 -(M + 4) 

9 9 

Table 2.50 

Constraints Xl X2 X3 X4 Xs X6 X7 Xs r.h.s. Ratio 

(2.22) 0 I 4 4 0 0 0 14 14 
5 -5 5 5 T 

(2.23) 0 0 CD 9 9 -1 0 9 9 -5 5 5 T 

(2.24) 0 1 I 1 0 0 0 1 
5 -5 5 5 

(2.25) 0 0 2 3 3 0 0 23 23 
5 -5 5 5 T 

Xo 0 0 3 7 CM5- 7) 0 M 0 27 -5 5 5 

Table 2.51 

Constraints XI X2 X3 X4 Xs X6 X7 Xs r.h.s. Ratio 

(2.22) 0 1 0 -1 -1 0 1 1 
T 

(2.23) 0 0 -9 9 5 -5 0 9 

(2.24) 0 0 -2 2 -1 0 2 

(2.25) 0 0 0 G) -3 -2 2 1 
3 

Xo 0 0 0 -4 (4 + M) 3 M-3 0 0 

Table 2.52 

Constraints XI X2 X3 X4 Xs X6 X7 Xs r.h.s. 

(2.22) 0 1 0 0 0 I I I 2 
-3 3 -3 3 

(2.23) 0 0 1 0 0 -1 3 12 

(2.24) 0 0 0 0 I I 2 i -3 3 3 

(2.25) 0 0 0 -1 2 2 1 1 
-3 3 3 3 

0 1 
3M -1 

4 1 Xo 0 0 0 M 3 3 3 
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2.6 Duality and Post optimal Analysis 

Duality is an important concept and we now present some of the reasons for 
this importance. In the previous section it became obvious that the more 
constraints an L.P. problem had, the longer it took to solve. Experience with 
efficient computer codes has shown that computational time is more sensi­
tive to the number of constraints than to the number of variables. In order to 
solve a relatively large problem it would therefore be convenient to reduce 
its number of constraints. This can often be done by constructing a new L.P. 
problem from the given problem, where the new problem has fewer con­
straints. This new problem is then solved more easily than the original one. 
The information obtained in the final simplex tableau can be used to deduce 
the optimal solution to the original problem. The new problem constructed 
for this purpose is called the dual problem to the original problem. The orig­
inal problem is called the primal. 

After an L.P. problem has been solved one would often like to know the 
sensitivity of the solution to changes in the objective function, constraint 
coefficients and the r.h.s. constants and to the addition of new variables and 
constraints. Duality can be used to answer such questions. 

2.6.1 Duality 

2.6.1.1 The Relationship Between the Primal and the Dual 

Consider once again the initial L.P. problem outlined in Section 2.2. Suppose 
that a corporation is considering hiring the equipment of the mining com­
pany. The corporation is uncertain about the hourly hireage rates it should 
offer the company for the three types of implements. During negotiations 
the mining company reveals that its profits per ton of lignite and anthracite 
are $4 and $3, respectively. The company states that it will not accept hireage 
rates which amount to less revenue than these present figures. For the pur­
pose of fixing acceptable rates the following variables are defined. Let 

Yl = the hourly hireage rate of the cutting machine, 
Y2 = the hourly hireage rate of the screens, 
Y3 = the hourly hireage rate of the washing plant. 

Recall that it requires 3,3, and 4 hours for the cutting machine, the screens, 
and the washing plant, respectively, to process 1 ton of lignite. The revenue 
of the company from hiring out the machines for the corporation to process 
one ton of lignite is then 

3Yl + 3Y2 + 4Y3· 

Because the company requires a revenue no less than its present profit, this 
revenue must be such that 
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By analogy, the constraint for anthracite is 

4Yl + 3Y2 + 2Y3 ;;:: 3. 

The corporation obviously wishes to minimize the total daily hireage cost 
it has to pay. Recall that the cutting machine, the screens, and the washing 
plant can be operated for no more than 12, 10, and 8 hours per day, respec­
tively. The objective of the corporation is to minimize 

12Yl + 1OY2 + 8Y3. 

Of course all hireage costs have to be nonnegative. The corporation is then 
faced with the following L.P. problem: 

Minimize: 

subject to: 
12Yl + 10Y2 + 8Y3 = Yo 

3Yl + 3Y2 + 4Y3 ;;:: 4 

4Yl + 3Y2 + 2Y3 ;;:: 3 
Yi ;;:: 0, i = 1, 2, 3. 

Let us now compare this problem with the original L.P. problem, which is 
reproduced here for convenience: 

Maximize: 

subject to: 

4Xl + 3x2 = Xo 

3x1 + 4x2 :::; 12 

3Xl + 3X2:::; 10 

4Xl + 2X2:::; 8 
Xi ;;:: 0, i = 1, 2. 

A moment's comparison shows that both problems have the same set of 
constants, but in different positions. In particular, each "row" of the hireage 
problem contains the same coefficients as one "column" of the original prob­
lem. When two L.P. problems have the special relationship displayed here, 
the original problem is called the primal and the new problem is called the 
dual. We shall now formalize this relationship by showing how the dual is 
constructed from the primal. 

1. Replace each primal equality constraint by a ":::;" constraint and a ";;::" 
constraint. For example, replace 

3x1 + 4X2 + 5X3 = 6, 
by 

and 
3Xl + 4X2 + 5X3 :::; 6. 

2. If the primal is a maximization (minimization) problem, multiply all ";;::" 
(":::;") constraints by (- 1). This ensures all constraints are of the ":::;" 
type for maximization and of the";;::" type for minimization. 

3. Define a unique nonnegative dual variable for each primal constraint. 
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4. Define each dual objective function coefficient to be equal to the r.h.s. 
constant of the primal constraint of the variable. 

5. If the primal objective is maximization, define the dual objective to be 
minimization, and vice versa. 

6. Define the dual r.h.s. constraint constants to be the primal objective func­
tion coefficients. 

7. If the primal objective is maximization (minimization), define the dual 
constraint inequalities to be of the" ;;?: " (" ::;;") type. 

8. Define the dual constraint coefficient matrix, A (defined in Section 2.3) to 
be the transpose of primal constraint coefficient matrix. 

These steps can be summed up in mathematical form. The primal: 

has dual: 

Maximize: 

subject to: 

Minimize: 

subject to: 

C1X l + C2 X 2 + ... + CnXn = Xo 

allxl + a12x 2 + ... + alnXn ::;; b l 

a2lx l + a22x2 + ... + a2nX n ::;; b 2 

Xi;;?: 0, i = 1,2, ... , n, 

blYl + b 2Y2 + ... + bmYm = Yo 

allYl + a21Y2 + ... + amlYm ;;?: Cl 

a12Yl + a22Y2 + ... + a m2Ym ;;?: C2 

alnYl + a2nY2 + ... + amnYm ;;?: Cn 

Yi ;;?: 0, i = 1, 2, ... , m. 

This can also be expressed in matrix form. The primal: 

has dual: 

where 

Cis n x 1, 
X is n x 1, 
Aismxn, 
B is m x 1, and 
Yis m x 1. 

Maximize: 

subject to: 

Minimize: 

subject to: 

CTX 

AX::;;B 

X;;?: ° 
BTy, 

ATy;;?: C 

y;;?:O, 

(2.26a) 

(2.26b) 
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Suppose the dual of (2.26b) is constructed: 

Maximize: 

subject to: 

cTX 

(ATfX ~ (BT)T 

X~O. 

53 

Because the transpose of the transpose of a matrix (vector) is the matrix 
(vector), we have proven: 

Theorem 2.1. The dual of the dual of a primal L.P. problem is the primal L.P. 
problem itself. 

2.6.1.2 The Optimal Solution to the Dual 

The dual problem introduced in the last section will now be solved by the 
two-phase method. In standard form the problem is as follows: 

PROBLEM 2.3 

Maximize: -12Yl - lOY2 - 8Y3 = Yo 

subject to: 3Yl + 3Y2 + 4Y3 - Y4 + Ys =4 

- Y6 + Y7 = 3 

i = 1,2, ... ,7. 

Phase I, with Y~ = Ys + Y7' is shown in Tables 2.53-2.56. 

(2.27) 

(2.28) 

(2.29) 

Phase II, with columns corresponding to artificial variables removed, is 
shown in Tables 2.57 and 2.58. 

Table 2.53 

Constraints Yl Y2 Y3 Y4 Ys Y6 Y7 r.h.s. 

(2.28) 3 3 4 -1 1 0 0 4 
(2.29) 4 3 2 0 0 -1 1 3 
y~ 0 0 0 0 1 0 1 0 

Table 2.54 

Constraints Yt Y2 Y3 Y4 Ys Y6 Y7 r.h.s. Ratio 

(2.28) 3 3 4 -1 0 0 4 

(2.29) ® 3 2 0 0 -1 1 3 

y~ -7 -6 -6 0 1 0 -7 
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Table 2.55 

Constraints Y1 Y2 Y3 Y4 Y5 Y6 Y7 

(2.28) 0 3 CD -1 1 3 
4 -4 

(2.29) 1 1 t 0 0 1 1 
-4 4 

Yo 0 3 5 0 3 i -4 -2 -4 

Table 2.56 

Constraints Y1 Y2 Y3 Y4 Y5 Y6 

(2.28) 0 3 1 2 t 3 
TO -5 TO 

(2.29) t 0 1 1 2 
5 -5 -5 

Yo 0 0 0 0 0 

Table 2.57 

Constraints Y1 Y2 Y3 Y4 Y6 

(2.28) 0 3 2 
130 TO -5 

(2.29) 1 3 0 1 2 
5 5 -5 

Yo 12 10 8 0 0 

Table 2.58 

Constraints Y1 Y2 Y3 Y4 Y6 

(2.28) 0 ..J.. 2 
130 10 -5 

(2.29) 1 3 0 1 2 
5 5 -5 

Yo 0 2 0 4 II 5 5 5 

The solution to the original minimization problem is: 

y! =~ 
y~ = 170 

yf = 0, otherwise 

y~ = 5l· 

2.6.1.3 Properties of the Primal-Dual Relationship 

r.h.s. Ratio 

7 
170 4 

1 3 
2 

7 -4 

Y7 r.h.s. 

3 7 
-TO TO 

2 2 
5 5 

0 

r.h.s. 

t'o 
t 
0 

r.h.s. 

7 
TO 

t 
52 -5 

Compare Table 2.58, the optimum tableau for the dual, with Table 2.8, the 
optimum tableau for the primal, which is reproduced here for convenience. 
As the primal and the dual had the same set of constants in their mathemat­
ical formulation, it is not surprising to find some similarities in their optimal 
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Table 2.8 

Constraints XI X2 X3 X4 Xs r.h.s. 

(2.11 ) 0 2 0 3 12 
5 -TO "5 

(2.12) 0 0 3 1 3 2 -5 -TO 5 

(2.13) 0 I 0 t 4 -5 5 

Xo 0 0 2 0 7 g 
5 TO s 

tableaux. These similarities are: 

1. The value of optimal solutions of the primal and dual are equal. 
2. The optimal value of each slack variable in one problem is equal to the 

objective function coefficient of the structural variable of the correspond­
ing equation in the other. 

3. (a) Whenever a primal structural variable has a positive optimal value, 
the corresponding dual slack variable has zero optimal value. 
(b) Whenever a primal slack variable has positive optimal value, the cor­
responding dual structural variable has zero optimal value. 

Result 3 is an example of what is known as the complementary slackness 
theorem. Indeed, these results are true for any primal-dual pair ofL.P. prob­
lems which have finite optimal solutions. We now go on to prove some gen­
eral results concerning duality for the pair of problems defined by (2.26), 
with a view to proving the complementary slackness theorem in general. 

Theorem 2.2. If X and Yare feasible solutions for (2.26a) and (2.26b), respec­
tively, then the value of Y is no less than the value of X. That is, 

PROOF. As X is feasible, 

As Y is feasible, 

Therefore 

As Y is feasible, 

As X is feasible, 

Therefore 

But 

CTx::;; BTy' 

AX::;;B. 

Y~O. 

X~o. 

XTATy = (AXfY 

= yT AX. 
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Therefore 

o 

Theorem 2.3. If X* and y* are feasible solutions for (2.26a) and (2.26b) such 
that CT X* = BT Y*, then X* and y* are optimal solutions for (2.26a) and 
(2.26b), respectively. 

PROOF. By Theorem 2.2, 

CTX ~ BTy*, for any feasible X. 

But, by assumption, 

Therefore 
cT X ::::; CT X*, for any feasible X. 

Thus X* is optimal for (2.26a). Similarly, 

CTX* ~ BTy, for any feasible Y. 

And, by assumption, 

Therefore 
BTy* ~ BTy, for any feasible y. 

Thus y* is optimal for (2.26b). o 

We can make a number of inferences from these results. Firstly, the value 
of any feasible primal solution is a lower bound on the value of any feasible 
dual solution. Conversely, the value of any feasible dual solution is an upper 
bound on the value of any feasible primal solution. The reader should verify 
that these observations are true for the numerical example. Secondly, if the 
primal has an unbounded optimal solution value, the dual cannot have any 
feasible solutions. 

The converse to Theorem 2.3 is also true: 

Theorem 2.4. If X* and y* are optimal solutions for (2.26a) and (2.26b) re­
spectively then 

For a proof of this theorem, see the book by David Gale (1960). 

Theorem 2.5 (Complementary Slackness). Feasible solutions X* and y* are 
optimal for (2.26a) and (2.26b), respectively if and only if 

(X*f[ATy* - CT] + (Y*f[B - AX*] = o. 
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PROOF. Let U and V be the set of slack variables for (2.26a) and (2.26b), re­
spectively, with respect to X* and Y*, i.e., 

AX* + U = B 

ATy* - V = C 

u, V;:::::O. 

Premultiplying the first equation by (y*f, we obtain 

(y*)T AX* + (y*fu = (y*)TB; 

premultiplying the second by (X*f, we obtain 

(X*)T ATy* - (X*fV = (X*fC. 
As 

(x*f ATy* = (y*fAX*, 

we can eliminate this common expression from these two equations, to 
obtain 

(Y*fB - (y*)TU = (X*fC = (X*fV. 

In view of the way the slack variables have been introduced, we have 

U = B - AX* 

V=ATy*-c. 

(2.30) 

Thus, in order to prove the theorem we must show that X* and y* are opti­
mal for (2.26a) and (2.26b) if and only if 

(x*fv + (y*fu = o. (2.31) 

(=» If X* and y* are assumed optimal for (2.26a) and (2.26b), respectively, 
then, by Theorem 2.4, 

Thus (2.30) reduces to (2.31). 

(<=) Assuming (2.31) holds, (2.30) reduces to 

CTX* = BTy*. 

Thus, by Theorem 2.3, X* and y* are optimal solutions for (2.26a) and 
(2.26b), respectively. 0 

Let us examine (2.31) more closely in order to discover why Theorem 2.5 
is named the complementary slackness theorem. Because X*, Y*, U, and V 
are all nonnegative we have 

(x*fv;::::: 0, 
and 
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Therefore 
xtv;;;::: 0, 

yju j ;;::: 0, 

i = 1, 2, ... ,n, and 

j = 1,2, ... , m. 

But by (2.31) we can conclude that 

xtv; = 0, 

ytUj = 0, 

i = 1, 2, ... ,n, and 

j = 1,2, ... , m. 

2 Linear Programming 

Thus we can conclude that the results 1,2, and 3 hold for any pair of primal­
dual L.P. problems with finite optimal solution values. 

It will now be shown what happens to the dual when the primal either 
does not have a feasible solution or else has an unbounded optimum. Recall 
the problem of Section 2.5.7. The dual ofthat problem is 

Minimize: 12Yl - 4Y2 + 8Y3 = Yo (2.32) 

subject to: 3Yl - Y2 + 4Y3 ;;::: 4 

4Yl - Yz + 2Y3 ;;::: 3 

Yt> Y2' Y3 ;;::: 0. 

(2.33) 

(2.34) 

An attempt will now be made to solve this problem by the two-phase method. 
Phase I is shown in Tables 2.59-2.62. Here, 

y~ = Ys + Y7' 

Phase II is shown in Tables 2.63 and 2.64. This problem has an unbounded 
optimum because Y2 can be introduced to the basis at an arbitrarily high 
level, causing an arbitrarily large objective function value. It is true in general 
that when a primal L.P. problem has no feasible solution the dual has either an 
unbounded optimum or no feasible solution. 

Table 2.59 

Constraints Yl Y2 Y3 Y4 Ys Y6 Y7 r.h.s. 

(2.33) 3 -1 4 -1 1 0 0 4 
(2.34) 4 -1 2 0 0 -1 1 3 
Y~ 0 0 0 0 0 1 0 

Table 2.60 

Constraints Yl Y2 Y3 Y4 Ys Y6 Y7 r.h.s. Ratio 

(2.33) 3 -1 4 -1 1 0 0 4 4 
3" 

(2.34) @) -1 2 0 0 -1 1 3 3 
4: 

Y~ -7 2 -6 0 0 -7 
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Table 2.61 

Constraints Y1 Y2 Y3 Y4 Ys Y6 Y7 r.h.s. Ratio 

(2.33) 0 1 CD -1 ! 3 7 7 
-4 -4 4 TO 

(2.34) 1 1 0 0 1 1 ! 3 -4 2 -4 4 2 

Y~ 0 1 S 0 3 7 7 
4 -2 -4 4 -4 

Table 2.62 

Constraints Y1 Y2 Y3 Y4 Ys Y6 Y7 r.h.s. 

(2.33) 0 1 2 t 3 3 7 -TO -s TO -TO TO 

(2.34) 1 0 1 1 2 2 2 -s S -s -s s s 
Y~ 0 0 0 0 0 0 

Table 2.63 

Constraints Y1 Y2 Y3 Y Y5 Y6 Y7 r.h.s. 

(2.33) 0 1 1 2 2 3 3 7 -TO -s S TO -TO TO 

(2.34) 1 0 1 1 2 2 2 -s S -s -s s s 
Yo 12 - 4 8 0 0 0 0 0 

Table 2.64 

Constraints Y1 Y2 Y3 Y4 Y5 Y6 Y7 r.h.s. 

(2.33) 0 1 1 2 2 -to 3 7 
-TO -s S -TO TO 

(2.34) 1 1 0 t 1 2 2 t -s -s -s s 
Yo 0 4 0 4 4 12 12 II -s S -s -5 -5 - s 

Considering problem (2.32)-(2.34) as the primal, we have an example of 
the following statement which is true in general: When a primal L.P. prob­
lem has an unbounded optimum the dual has no feasible solution. This result is 
a corollary to Theorem 2.3. 

2.6.2 Postoptimal Analysis 

When the optimal solution to a linear program is analyzed to answer ques­
tions concerning changes in its formulation, the study is called postoptimal 
analysis. What changes can be made to an L.P. problem? Of the variety that 
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can be studied, the following will be considered: 

1. Changes in the coefficients of the objective function. 
2. Changes in the r.h.s. constants of the constraints. 
3. Changes in the l.h.s. coefficients of the constraints. 
4. The introduction of new variables. 
5. The introduction of new constraints. 

Obviously, when the original L.P. is changed, the new problem could be 
solved from scratch. If the changes are minor, however, it seems a shame to 
ignore the valuable information gained in solving the original problem. The 
following sections show how the optimal solution to a modified problem can 
be found using duality and the solution to the original L.P. 

2.6.2.1 Changes in the Objective Function Coefficients 

When changes are made to the objective function only, the optimal solution 
is still feasible, as the feasible region is unaltered. 

Consider once again problem 2.1. The optimal simplex tableau for this 
problem was presented in Table 2.8, which is reproduced here for conve-
nience. 

Table 2.8 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 0 1. 0 3 12 
5 -10 5 

(2.12) 0 0 3 3 2 -s -10 S 

(2.13) 1 0 1 0 1. 4 -s 5 S 

Xo 0 0 2 0 7 Sl s TO 

(i) Changes to Basic Variable Coefficients. Suppose that the objective 
function coefficient C2 of X2 is going to be changed. What is the range from 
its present value of 3 for which the present solution will remain optimal? 
Suppose C2 is changed from 3 to 3 + q. The initial simplex tableau for the 
problem then is as shown in Table 2.65. 

Table 2.65 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 3 4 1 0 0 12 

(2.12) 3 3 0 1 0 10 

(2.13) 4 2 0 0 1 8 

Xo -4 -(3 + q) 0 0 0 0 
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Table 2.66 

Constraints Xl X2 X3 X4 X5 r.h.s. 

(2.11) 0 ~ 0 -130 
II 

5 5 

(2.12) 0 0 3 3 2 -s -10 S 

(2.13) 1 0 1 0 ~ ! -s 5 

Xo 0 -q ~ 0 ?o II 
5 5 

Table 2.67 

Constraints Xl X2 X3 X4 X5 r.h.s. 

(2.11) 0 1 ~ 0 3 Il 5 -TO 

(2.12) 0 0 3 1 3 ~ -s -TO 5 

(2.13) 0 1 0 ~ 4 -s 5 S 

Xo 0 0 ~+~q 0 170 - 130q 5l + Ilq. 

It is easily verified that the tableau corresponding to table 2.8 is that shown 
in Table 2.66. In order for the present basis to remain optiqlal, X2 must still 
be basic. Therefore, the X2 value in the Xo row must have zero value. This is 
achieved in Table 2.67 by adding q times (2.11) to the Xo row. 

For the present basis to remain optimal, all xo-row values must be non­
negative. Thus, 

~ + ~q ~ 0 
170 - 130q ~ O. 

Therefore, 
-l:S;q:S;1. 

Hence the range for C2 is (3 - 1,3 + i), with a corresponding optimum range 
of (8, 16). This is illustrated in Figure 2.11. 

This approach can be generalized. If the objective function coefficient Ci 

of a basic variable Xi is replaced by (Ci + q), it is of interest to know whether 
the original optimal solution is still optimal or not. On considering the 
mechanics of the simplex method, it is clear that if the same iterations were 
repeated on the new problem the only change in the optimal tableau is that 
the Xi coefficient in Xo is reduced by q. Hence this coefficient is ( - q), as it was 
originally zero as Xi was basic. 

For the present basis to remain optimal, Xi must remain basic. That is, the 
Xi coefficient in the Xo row must be zero. This is achieved by adding q times 
the equation containing Xi as its basic variable to the Xo row. The tableau is 
now in canonical form. For the present basis to remain optimal, all the Xo­

row coefficients must be nonnegative. Conditions on q can be deduced to 
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Xo = 4xI + 136X2 = 16 

Figure 2.11. The graphical solution to an L.P. when an objective function coefficient 
ranges. 

achieve this. If a particular value of q is given, it can be deduced whether the 
present basis is optimal. If it is not, further simplex iterations can be carried 
out in the normal way. 

(ii) Changes to Nonbasic Variable Coefficients. The situation is even sim­
pler for a change of + q to the objective function coefficient c j of a variable 
Xj that turns out to be nonbasic in the optimal solution. The coefficient of Xj 

in the Xo row is still reduced by q. However, in the present case there is no need 
for the coefficient to become zero (as Xj is nonbasic). Hence it simply remains 
to check whether the coefficient is nonnegative for the present basis to remain 
optimal. Thus once more conditions on q can be deduced. 

2.6.2.2 Changes in the r.h.s. Constants of the Constraints 

Suppose that a r.h.s. constant of an L.P. problem is altered. Is the current 
optimal solution still feasible? If it is still feasible it will still be optimal, as 
the xo-row coefficients are unchanged. 
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For example, consider Problem 2.1. The optimal simplex tableau for this 
problem is given in Table 2.8. 

(i) Change in r.h.s. Constant Whose Slack Variable Is Basic. Suppose that 
the r.h.s. constant of constraint (2.12) is changed from 10 to (10 + r). For what 
values of r will the present solution remain feasible and hence optimal? 

Recall that (2.12) was: 

It now becomes: 

3Xl + 3X2 + 1 . X4 = 10 + 1 . r. 

Note that the columns corresponding to X4 and r are identical in the initial 
tableau of the new problem, i.e., 

(0, 1,0, Of. 

Hence they will remain equal in any subsequent simplex tableau. But, as X 4 

is basic in Table 2.8, its column of coefficients is unchanged. Hence when the 
same sequence of iterations that produced Table 2.8 is performed on the new 
problem the only place in which r will appear is the r.h.s. of (2.12). This new 
constant becomes (~ + r). For this solution to remain feasible, all the r.h.s. 
constants must be nonnegative, i.e., 

~+r;::::O 
or 

Thus, as long as 

i.e., 
b2 ;:::: 9!, 

the current solution will remain feasible and optimal. 
Let us now generalize the above considerations. Suppose it is decided to 

increase the r.h.s. constant of constraint i from bi to bi + r, and the slack 
variable of the constraint is basic at the optimum. Then the only possible 
change in the new optimal tableau will occur in the final bi entry. This entry 
could be negative, indicating that the present solution may be infeasible. 
However, if it is feasible it will still be optimal. Now if the final b i entry was 
Oi' the present solution will be optimal if 

0i + r;::::O, 
i.e., 

r;:::: -Oi. 

It may be that a specific value of r has been given that forces this inequality 
to be violated, and hence for the present solution to be infeasible. One then 
may ask what is the new optimal solution and its value? The negative r.h.s. 
entry (Oi + r) for constraint i is removed to attain feasibility. This is achieved 
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by replacing the basic variable associated with this constraint by a nonbasic 
variable. How this is done forms the kernel to the dual simplex method, which 
is explained in the next chapter. 

(ii) Change in r.h.s. Constant Whose Slack Variable Is Nonbasic. Suppose 
now that the r.h.s. constant of constraint (2.11) is changed from 12 to (12 + r). 
Once again we ask for what values of r will the present solution remain 
feasible and hence optimal? Equation (2.11) was 

It now becomes 
3X1 + 4X2 + 1 . X3 = 12 + 1 . r. 

As with the previous case, the columns in any simplex tableau corresponding 
to X3 and r are identical, and will remain identical in any subsequent simplex 
tableau. But now X3 is non basic, and hence its column in the optimal tableau 
is substantially changed. Hence the r.h.s. column in the tableau found by 
performing the same iterations to the new problem is: 

(V + tr,t - ~r,~ - tr, 5l + tr)T. 

The first three entries must be nonnegative to preserve feasibility (and 
optimality): 

That is, 

II + tr 2:: 0 

t - ~r 2:: 0 

~ - tr 2:: o. 

with a corresponding solution value 

5l + tr. 

This can be generalized quite naturally. Suppose that the r.h.s. constant, 
bi of constraint i is changed to (b i + r), where the starting basic variable in 
constraint i is Xj. That is, constraint i is changed from 

to 

Assuming that Xj is nonbasic in the optimal tableau, let its coefficients in this 
tableau be given in the vector: 

(a1j' a2j' ... , amjf 

and let the final r.h.s. coefficients be given in the vector: 

(51,52 , ... ,omf. 
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Then the current solution will still be feasible (and optimal) if 

51 + aljr ~ 0 

52 + a2 j r ~ 0 

all hold. 
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Those inequalities can be used to deduce a range in which the present 
solution remains optimal. Provided r remains within this range, this yields 
optimal solution values 

where x;'; is the present optimal solution value and aOj is the xo-row co­
efficient of Xj in the optimal tableau. 

2.6.2.3 Changes in the l.h.s. Coefficients of the Constraints 

(i) Changes to N onbasic Variable Coefficients. Consider changing a l.h.s. 
coefficient aij to aij when its associated variable Xj is nonbasic in the optimal 
tableau. Suppose that the same sequence of simplex iterations are carried out 
on the new problem. How will the new optimal tableau differ from the original 
optimal tableau? The only differences that can possibly occur are in the Xj 

column. However, we have assumed that Xj is nonbasic. Thus 

xj = O. 

Therefore changes in the Xj coefficients in the constraints have no effect, and 
the original solution will still be obtained and so must still be feasible. It 
remains to settle the question of its optimality. The new xo-row coefficient 
of Xj can be obtained as follows. 

Let the starting basic variable from constraint i be X~(i)' This variable does 
not appear in any original equation other than constraint i, where it has 
coefficient 1. So it is possible to deduce what multiple of aij was added to 
(- c), the coefficient of Xj in the Xo row. Indeed, if a;';~(i) is the final coefficient 
of Xi' then exactly a;';~(i) times equation i must have been somehow added to 
equation O. Let the current xo-row coefficient of x j be a;';j. Then the new x-row 
coefficient of Xj should become 

If this value is nonnegative, the present solution is still optimal. If the value is 
negative, further simplex iterations must be performed, beginning with Xj 

entering the basis. In order to decide which variable leaves the basis it is 
necessary to update the rest of the x j column. It can be shown by an argument 
similar to that for a;';j thatthe coefficient ofx)n row k(k = 1,2, ... , m)should 
be changed from atj to 
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It is also possible to decide the question of whether the change to aij affects 
the optimality of the current solution by analyzing the dual problem. The 
only change in the dual problem is that the jth constraint 

becomes 
a 1 jY1 + a2jY2 + ... + aijYi + ... + amjYm ~ Cj. 

It is possible to deduce the optimal Yi values, yf, either by having solved the 
dual originally or from the xo-row coefficients in the optimal primal tableau. 
Hence one can substitute in these yf values and check whether this new 
constraint is satisfied. If it is the solution is still optimal. If it is not, and the 
optimal dual tableau is available, the optimal solution to the new problem 
can be obtained by using the dual simplex method. This method will be 
explained in Chapter 3. 

(ii) Changes to Basic Variable Coefficients. Consider once again Problem 
2.1. Suppose that a32 is changed from 2 to 3 in (2.13). Suppose now that the 
same sequence of simplex iterations is performed on the new problem as 
that which produced Table 2.8. This will produce a tableau which differs 
from Table 2.8 only in the X2 column. The new X2 column values can be 
calculated by the method outlined in the previous section. This new tableau 
is shown in Table 2.68. Here the condition of canonical form is destroyed, 
as X2 is supposed to be a basic variable with column 

(l,O,o,of· 

This condition is restored by row manipulation in Table 2.69. 

Table 2.68 

Constraints Xl X 2 X3 X4 Xs r.h.s. 

(2.11) 0 ~ ~ 0 3 li 
10 s -TO s 

(2.12) 0 3 3 3 ~ -TO -s -TO s 

(2.13) 1 ~ 1 0 ~ ~ 
s -s s s 

Xo 0 7 ~ 0 7 g 
TO s TO s 

Table 2.69 

Constraints Xl X2 X3 X4 Xs r.h.s. 

(2.11) 0 1 4 0 3 274 -"7 

(2.12) 0 0 3 3 \0 -"7 -"7 

(2.13) 1 0 3 0 4 4 
-"7 -"7 

Xo 0 0 0 0 8 
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It can be seen that this solution is infeasible, as 

x! = -4. 
The dual simplex method (detailed in Chapter 3) can be used to transform 
this tableau into an optimal one. 

However, if the condition for optimality (all xo-row coefficients non­
negative) has not been satisfied the situation may be somewhat gloomy. In 
this case one can select an earlier tableau where the condition is satisfied 
and use the dual simplex method from there. If there are no such suitable 
earlier tableaux; little of the computation can be saved and it is necessary 
to solve the new problem from scratch. 

If Table 2.69 had displayed a feasible but suboptimal solution, further 
simplex iterations would have been needed to produce optimality. If it had 
displayed a feasible solution satisfying the condition for optimality, nothing 
more would have been necessary 

2.6.2.4 The Introduction of New Variables 

Suppose that a new variable, X6 is added to Problem 2.1 as follows: 

Maximize: 

subject to: 
4Xl + 3X2 

3x 1 + 4X2 + X3 

3Xl + 3X2 + 
4Xl + 2X2 

Xi~O, 

+ 5X6 

+ 2X6 = 12 

X4 + 3X6 = 10 

+ Xs + 4X6 = 8 
i = 1,2, ... ,6. 

The original optimal solution given in Table 2.8 can be considered a solution 
to this new problem with X6 nonbasic, i.e., 

x~ = O. 

Hence it must still be a feasible solution. One must now decide whether it 
is optimal or not. The new dual problem can be used to make this decision. 
It will be identical to the original dual except that a new constraint, 

(2.35) 

based upon X6 must be added to Problem 2.2. So the original dual solution 
given in Table 2.64 remains feasible if and only if it satisfies (2.35). And 
feasibility of the original dual solution implies optimality of the original 
primal solution (with x~ = 0) for the new primal problem. However the 
optimal dual solution given in Table 2.64 unfortunately does not satisfy 
(2.35). So more primal simplex iterations are necessary to produce optimality. 

Before they can be carried out it is necessary to calculate the coefficients 
of X6 in the tableau produced when the iterations that produced Table 2.8 
are applied to the new problem. These coefficients can be found by consid­
ering X6 as an original variable with constraint and objective function 
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coefficients equal to zero. Then the introduction of X6 corresponds to a 
change in the value of these coefficients from zero to their present values. 
How to perform calculations based on these changes was explained in 
Section 2.6.2.3. As each X6 coefficient was assumed to be zero, it would 
remain zero when the simplex iterations are performed on the original 
problem.lIence at6 = 0, k = 0, 1, ... ,4. For the purposes of the calculations 
it is assumed that the changes occur one at a time. This produces Table 2.70. 
Now further simplex iterations can be carried out with first X6 entering the 
basis. 

Table 2.70 

Constraint Xl X2 X3 X4 X5 X6 

(2.11) 0 1 2 0 3 [H2) + 0(3) - /0(4)] 5 -TO 

(2.12) 0 0 3 3 [ -t(2) + 1(3) - M4)] -5 -TO 

(2.13) 0 1 0 2 [ -t(2) + 0(3) + t(4)] -5 5 

Xo 0 0 2 0 7 [ - 5 + t(2) + 0(3) + ?0(4)] 5 TO 

2.6.2.5 The Introduction of a New Constraint 

Suppose that a new constraint, 

r.h.s. 

12 
5 

2 
5 

~ 
5S2 

(2.36) 

is added to Problem 2.1. Is the solution in Table 2.8 still feasible? When a 
further constraint is added to an L.P. problem, a new optimal solution 
cannot improve on the original one. So if the original optimal solution is 
still feasible, it is still optimal. However this is not true with regard to (2.36) 
and the solution in Table 2.8. Hence a new slack variable, X6 is added to 
(2.36) to produce 

Xl + X 2 + X6 = 3, (2.37) 

which is added to Table 2.8 to give Table 2.71. 

Table 2.71 

Constraints Xl X2 X3 X4 Xs X6 r.h.s. 

(2.11) 0 1 2 0 3 0 II 5 -TO 

(2.12) 0 0 3 3 0 2 
-5 -TO 5 

(2.13) 1 0 1 0 t 0 4 
-5 5 

(2.37) 1 0 0 0 3 

Xo 0 0 2 0 7 0 Sl 5 TO 
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Table 2.72 

Constraints Xl X2 X3 X4 X5 X6 r.h.s. 

(2.11) 0 ~ 0 3 0 V -TO 

(2.12) 0 0 3 1 3 0 ~ -5 -TO 

(2.13) 1 0 1 0 2 0 ! -5 5 
(2.37) 0 0 1 0 1 1 1 -5 -TO -5 

Xo 0 0 2 0 7 0 52 
5 TO ""5 

When this Table 2.71 is reduced to canonical form by subtracting (2.11) 
and (2.13) from (2.37) it is seen that the resulting solution is infeasible, as 

even though the condition for optimality is satisfied. This is shown in Table 
2.72. This situation can be remedied to produce optimality using the dual 
simplex method of Chapter 3. 

2.7 Special Linear Programs 

2.7.1 The Transportation Problem 

The transportation problem is a special type of linear program. Because of 
its structure it can be solved more efficiently by a modification of the sim­
plex technique than by the simplex technique itself. Consider a supply sys­
tem comprising three factories which must supply the needs for a single 
commodity of three warehouses. The unit cost of shipping one item from 
each factory to each warehouse is known. The production capacity of each 
factory is limited to a known amount. Each warehouse must receive a mini­
mum number of units of the commodity. The problem is to find the minimum 
cost supply schedule which satisfies the production and demand constraints. 
Figure 2.12 shows a typical supply system in diagrammatic form, the num­
bers associated with the arrows representing unit shipping costs. The supply 
schedule to be found consists of a list which describes how much of the com­
modity should be shipped from each factory to each warehouse. For this 
purpose, define xij to be the number of units shipped from factory i to ware­
housej. 

Consider factory 1 with capacity 20. Factory 1 cannot supply more than 
20 units in total to warehouses 1, 2, and 3. Hence 
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Capacity Factories Warehouses Demand 
0.9 

20 

15 

10 

__ ----------~----------~1 5 

2 ... ---=-:..-----*-------------:. 2 

3~---------------------.....,.3 
0.8 

20 

20 

Figure 2.12. The supply system of a typical transportation problem. 

The production constraints for factories 2 and 3 are, respectively, 

X21 + X22 + X23 ~ 15 

and 

X31 + X32 + X33 ~ 10. 

Consider warehouse 1 with a demand of 5. Warehouse 1 must receive at 
least five units in total from factories 1, 2, and 3, hence 

Xu + X21 + X31 ~ 5. 

The demand constraints for warehouses 2 and 3 are, respectively, 

X12 + X22 + X32 ~ 20 

and 
X13 + X23 + X33 ~ 20. 

Of course, all quantities shipped must be nonnegative; thus, 

i = 1,2,3 

j = 1,2,3. 

The objective is to find a supply schedule with minimum cost. The total 
cost is the sum of all costs from all factories to all warehouses. This cost Xo 
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can be expressed as 

Xo = 0.9xu + 1.0x12 + 1.0x13 + 1.0X21 + 1.4X22 

+ 0.8X23 + 1.3X31 + 1.0X32 + 0.8X33' 

71 

The problem can now be summarized in linear programming form as 
follows. 

Minimize: Xo = 0.9x u + 1.0X12 + 1.0X13 + 1.0X21 + 1.4X22 

subject to: 
+ 0.8X23 + 1.3X31 + 1.0X32 + 0.8X33 

Xu + X12 + X13 ::;; 20 

X21 + X22 + X23 ::;; 15 

X31 + X32 + X33 ::;; 10 

Xu + X 21 + X 31 ~ 5 

X12 + X22 + X32 ~ 20 

X13 + X23 + X33 ~ 20 

Xij ~ 0, i = 1,2,3, 

j = 1,2,3. 

The problem can be generalized as follows. Let 

m = the number of factories; 

n = the number of warehouses; 

ai = the number of units availllhle at factory i, i = 1,2, ... , m; 

bj = the number of units required by warehousej,j = 1,2, ... , n; 

cij = the unit transportation cost from factory i to warehouse j. 

Then the problem is to 

m n 

Minimize: Xo = L L CijXij 
i= 1 j= 1 

m 

subject to: L xij ~ bj , j = 1,2, ... , n 
i=l 

n 

L Xij::;; ai' i = 1,2, ... , m 
j= 1 

Xij~ 0, i = 1,2, ... , m, 

j = 1,2, ... , n. 

(2.38) 

(2.39) 

(2.40) 

Problems which belong to this class of L.P. problems are called trans­
portation problems. However, many of the problems of this class do not 
involve the transporting of a commodity between sources and destinations. 
In the particular problem studied here, total supply is equal to total demand. 
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Figure 2.13. The distinctive pattern of the unit constraint coefficients in the trans­
portation problem. 

Hence in any feasible solution each factory will be required to ship its entire 
supply and each warehouse will receive exactly its demand. Therefore, all 
constraints will be binding in any feasible solution. The algorithm for the 
solution of the transportation problem, shortly to be explained, assumes 
that supply and demand is balanced in this way. Of course, there may exist 
well formulated problems in which "supply" exceeds "demand" or vice versa, 
as the problems may have nothing to do with the transportation of a com­
modity. In this case a fictitious "warehouse" or "factory" is introduced, 
whichever is required. Its "capacity" or "demand" is defined so as to balance 
total supply with total demand. All unit transportation costs to or from this 
fictitious location are defined to be zero. Then the value of the optimal 
solution to this balanced problem will equal that of the original problem. 

It was mentioned earlier that, because of its structure, the transportation 
problem could be solved efficiently by a modified simplex procedure. This 
structure is. 

1. Alll.h.s. constraint coefficients are either zero or one. 
2. Alll.h.s. unit coefficients are always positioned in a distinctive pattern in 

the initial simplex tableau representing the problem (ignoring slack vari­
ables). This is shown in Figure 2.13. 

3. All r.h.s. constraint constants are integers. 

This structure implies a very important result, that the optimal values of the 
decision variables will be integer. 

In solving problems by hand using the simplex method it was convenient 
to display each iteration in a tableau. This is also done in the transportation 
problem, except a different type of tableau is used. The general tableau is 
given in Table 2.73. 

The tableau for the example problem is given in Table 2.73a. The value 
of each decision variable is written in each cell. A feasible solution to the 
problem is displayed in Table 2.74. Methods by which an initial feasible 
solution can be identified are outlined in the next section. 
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Table 2.73 

Warehouses Supply 

2 j n 

Cll C12 c1j c1n 

2 c2 ! C22 c2j c2n 

Factories 

cil Ci 2 cij Cin 

m Cm ! Cm 2 Cmj Cmn 

Demand 

Table 2.73a 

2 3 

0.9 1 1 20 

2 1 1.4 0.8 15 

3 1.3 1 0.8 10 

5 20 20 

Table 2.74 

2 3 

0.9 1 1 20 
CD @ 

2 1 1.4 0.8 15 
CD @ 

3 1.3 1 0.8 10 
@ 

5 20 20 
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2.7.1.1 The Identification of an Initial Feasible Solution 

2.7.1.1.1 The Northwest Corner Method. This method starts by allocating 
as much as possible to the cell in the northwest corner of the tableau of the 
problem, cell (1,1) (row 1, column 1). In the example problem, the maximum 
that can be allocated is five units, as the demand of warehouse 1 is five. This 
satisfies the demand of warehouse 1 and leaves factory 1 with 15 units left. 
As warehouse 1 is satisfied, column 1 is removed from consideration. Then 
cell (1,2) becomes the new northwest corner. As much as possible is allocated 
to this cell. The maximum that can be allocated is 15, all that remains in 
factory 1. Warehouse 2 now has its demand reduced to 5, as it has just 
received 15 units from factory 1. Row 1 is dropped from consideration as it 
has now expended all its resources. This means that cell (2,2) becomes the 
new northwest corner. This procedure continues until all demand is met. 
Table 2.74 shows the feasible solution thus obtained. 

2.7.1.1.2 The Least Cost Method. Although the northwest corner method 
is easy to implement and always produces a feasible solution, it takes no 
account of the relative unit transportation costs. It is quite likely that the 
solution thus produced will be far from optimal. The methods of this section 
and the next usually produce less costly initial solutions. The least cost 
method starts by allocating the largest possible amount to the cell in the 
tableau with the least unit cost. In the example problem, this amounts to 
allocating to either cell (2,3) or cell (3,3). Suppose cell (2,3) is chosen arbi­
trarily and 15 units are assigned to it. This procedure will always satisfy a 
row or column which is removed from consideration. In this case row 2 is 
removed. The demand of warehouse 3 is reduced to 5, as it has been allocated 
15 by factory 2. (The cell with the next smallest unit cost is identified and the 
maximum is allocated to it. This means 5 units are allocated to cell (3,3). 
This procedure continues until all demand is met. Table 2.75 shows the 
feasible solution thus obtained. 

Table 2.75 

2 3 

0.9 1 1 20 

CD @ 

2 1 1.4 0.8 15 
@ 

3 1.3 1 0.8 10 

CD CD 
5 20 20 
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2.7.1.1.3 The Vogel Approximation Method. The Vogel approximation 
method often produces initial solutions which are even better than those 
of the least cost method. However, the price of this attractiveness is con­
siderably more computation than the previous two methods. The approach 
is similar to that of the Hungarian method for the assignment problem, 
discussed later in this chapter, and also to that used in solving the travelling 
salesman problem by branch and bound enumeration, discussed in Chapter 4. 

The variation of the Vogel approximation method described here begins 
by first reducing the matrix of unit costs. This reduction is achieved by sub­
tracting the minimum quantity in each row from all elements in that row. 
This results in the following unit costs in the current example in Table 2.76. 
The costs are further reduced by carrying out this procedure on the columns 
of the new cost matrix. This produces Table 2.77. 

A penalty is then calculated for each cell which currently has zero unit 
cost. Each cell penalty represents the unit cost incurred if a positive allocation 
is not made to that cell. Each cell penalty is found by adding together the 
second smallest costs of the row and column of the cell. These second 

Table 2.76 

2 3 

0 0.1 0.1 ( -0.9) 

2 0.2 0.6 0 ( -0.8) 

3 0.5 0.2 0 ( -0.8) 

Table 2.77 

2 3 

0 0 0.1 

2 0.2 0.5 0 

3 0.5 0.1 0 

(0) ( -0.1) (0) 
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smallest costs for each row ahd column are shown alongside each row and 
column for the example problem in Table 2.78. The penalties are shown in 
the top right-hand corner of each appropriate cell. 

Table 2.78 

2 3 

0 I o I .I I 
r---' ~--' ---' 

0.2 0.1 0 (0) 

0.2 I 0.5 I o I 
r---' r--~ ---' 

2 0 0 0.2 (0.2) 

0.5 I 0.1 I o I 
r---' I---~ ---' 

0 0 0.1 3 (0.1) 

(0.2) (0.1) (0) 

The cell with the largest penalty is identified. The maximum amount 
possible is then allocated to this cell. Ties are settled arbitrarily. In the 
example, either cell (1, 1) or cell (2,3) could be chosen, each with a penalty of 
0.2. Cell (1, 1) will be arbitrarily chosen, and 5 units are allocated to it. This 
procedure will always satisfy a row or column (or both), which is then re­
moved from further consideration. This removal may necessitate a further 
reduction in the cost matrix and a recalculation of some penalties. This 
results in Table 2.79. This process is repeated until all demand is met. The 
final allocation is given in Table 2.80. 

A comparison of the three techniques shows that the northwest corner 
method produced an initial solution with value 42.5, the least cost method 
and the Vogel approximation method produced the same solution with 
value 40.5. It will be shown that this latter solution is optimal. 

Table 2.79 

5 0 0.2 0.1 (0.1) 

0.5 0 0.5 (0.5) 

0.1 0 0.1 (0.1) 

(0.1) (0) 
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Table 2.80 

2 3 

0.9 1 1 
(]) @ 

2 1 1.4 8 
@ 

3 1.3 0.8 
(]) (]) 

2.7.1.2 The Stepping Stone Algorithm 

Once an initial feasible solution has been found by one ofthe three preceding 
methods, it is desired to transform it into the optimal solution. This is 
achieved by the stepping stone algorithm. Consider the initial feasible solu­
tion found by the northwest corner method given in Table 2.74. To deter­
mine whether this solution is optimal or not it is necessary to ask, for each 
cell individually, if the allocation of one unit to that cell would reduce the 
total cost. This is done only for those cells which presently have no units 
assigned to them. 

For example, cell (1,3) has nothing assigned to it. Would the total cost 
be reduced if at least one unit was assigned to that cell? Assume that one 
unit is assigned, i.e., 

X 1 3 = 1. 

This means row 1 and column 3 are unbalanced-the sum of their assign­
ments do not add up to the appropriate capacity and demand. To balance 
row 1, one unit is subtracted from cell (1,2) so that now 

X 1 2 = 14. 

Now column 2 is unbalanced. To correct this, one unit is added to cell 2, 2, 
so that now 

X22 = 6. 

Now row 2 is unbalanced. To correct this, one unit is subtracted from cell 
(2,3): 

This also balances row 3. 
What we have done is to trace out a circuit of cells, the only empty one 

being the cell under scrutiny. This circuit is shown in Table 2.81. Is this 
solution an improvement over the initial solution? The solution is displayed 
in Table 2.82. 
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Table 2.81 

2 3 

0.9 1 1 20 
CD @) ? 

2 1 1.4 0.8 15 
CD @ 

3 1.3 1 0.8 10 
@ 

5 20 20 

Table 2.82 

2 3 

0.9 1 1 20 
CD @ CD 

2 1 1.4 0.8 15 
@ ® 

3 1.3 1 0.8 10 
@ 

5 20 20 

The difference between the solutions in Tables 2.81 and 2.82 is 

+$1.0 for the unit shipped from factory 1 to warehouse 3 
- $1.0 for the unit less from factory 1 to warehouse 2 
+ $1.4 for the unit shipped from factory 2 to warehouse 2 
- $0.8 for the unit less from factory 2 to warehouse 3 

$0.6 

Thus an allocation of one unit to cell (1,3) causes an increase of $0.6. Hence 
such an allocation is not worthwhile. We can evaluate the worth of all other 
empty cells in a similar manner; that is, for each empty cell we can form a 
circuit of cells, the only empty cell in the circuit being the cell in question. 
The reader should verify that the changes in Xo for a unit allocation to 
cells (2, 1), (3, 1), and (3, 2) is - $0.3, $0.0, and - $0.4, respectively. The circuit 
of cells for this last proposed allocation is shown in Table 2.83. 

As there is a decrease in Xo of $0.4 for each unit allocated to cell (3,2), 
we wish to allocate the maximum possible amount to (3,2). The cells which 
are going to have their allocations reduced are (2, 2) and (3,3). The minimum 
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Table 2.83 

2 3 

9 1 1 
0) @ 

2 1 1.4 0.8 
Q> ~ 

1.3 1 t 0.8 
.@ 

3 

allocation among these is 5 units in (2,2). Hence the maximum allocation we 
can make to (3,2) is 5: any more and (2,2) would have a negative allocation, 
which would be infeasible. The new assignment is shown in Table 2.84. The 
total cost is decreased by 

$(5 x (0.4)) = $2.0. 

Thus the new total cost is 

$(42.5 - 2.0) = $40.5, 

which can be verified by direct computation. We have now completed one 
iteration of the stepping stone method. All empty cells in Table 2.84 are 
examined in the same way. Of course we know from the previous iteration 
that a unit allocation to (2,2) will produce an increase in Xo of $0.4. Indeed 
an allocation to any empty cell in Table 2.84 will effect an increase in Xo. 

The circuit of cells for each empty cell is: 

(1,3): 
(2,1): 
(2,2): 
(3,1): 

«(1,3), (3,3), (3,2), (1,2), (1,3) 
«(2,1), (1, 1), (1,2), (3,2), (3,3), (2,3), (2,1) 
«(2,2), (2,3) (3,3), (3,2), (2,2) 
«(3,1), (1, 1), (1,2), (3,2), (3, 1) 

Table 2.84 

2 3 

0.9 1 1 
0) @ 

2 1 1.4 0.8 

3 1.3 1 0.8 
0) 

@ 

0) 

( +$0.2) 
( +$0.1) 
( +$0.4) 
( +$0.4). 
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Note that the circuit for (2,1) crosses over itself, but this need not cause 
any alarm. 

This means that we have arrived at the optimal solution. The shipping 
schedule is: ship 

5 units from factory 1 to warehouse 1, 
15 units from factory 1 to warehouse 2, 
15 units from factory 2 to warehouse 3, 
5 units from factory 3 to warehouse 2, 
5 units from factory 3 to warehouse 3, 

for a total cost of $40.5. This solution is the same as that obtained by the 
V ogel approximation method and the least cost method. 

It has been stated that total supply must equal total demand for the 
problem to be in a form suitable for the stepping stone algorithm. This means 
that one ofthe constraints (2.39), (2.40) can be expressed in terms of the others 
and is redundant. Hence the problem possesses in effect (m + n - 1) con­
straints. Thus any basic feasible solution should contain (m + n - 1) basic 
variables. It may occur that a solution contains less than (m + n - 1) basic 
(positive) variables. Such a solution is degenerate. 

It is not possible to analyze all the empty cells of the tableau of the degen­
erate solution to find an improvement. This problem can be overcome by 
declaring basic as many cells as necessary to bring the number in the basis 
up to (m + n - 1). This is achieved by allocating a very small positive real 
number t; to these cells. These allocations are made to cells in rows or columns 
where there is only one basic cell in order to enable circuits of cells to be 
created for all empty cells. These t;'S are then removed when the optimal 
solution has been found. 

2.7.1.3 Dantzig's Method 

The stepping stone method will guarantee to find the minimal solution for 
any well formulated transportation problem in a finite number of steps. 
However, its implementation becomes very laborious on all but the smallest 
problems. For realistically sized problems the following simpler method due 
to Dantzig is recommended. Like the stepping stone method it evaluates each 
empty cell-in order to see whether it would be profitable to make a positive 
assignment to it. This evaluation is based on the theory of duality of Section 
2.6.1. To be more specific, values are calculated for variables in the dual of 
the transportation problem regarded as an L.P. 

Unlike the stepping stone method, Dantzig's method does not create a 
circuit of cells in order to evaluate the worth of an empty cell. Instead it 
calculates values for the dual variables; these enable one to determine which 
empty cell should be filled. It then creates one circuit of cells in order to deter­
mine how much should be allocated and which cell leaves the basis. As only 
one circuit is created at each iteration, this method is far simpler than the 
preceeding one. 
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We now explain how the method works by using it to solve our example 
problem. Consider once again the solution obtained by the northwest corner 
method, given in Table 2.74. We associate multipliers U j with each row i and 
Vj with each columnj. For each basic cell (i,j) set 

the unit transportation cost, and 
Ul = o. 

The values of all u/s and v/s can be then be calculated as the cij's are known 
constants. From Table 2.74 we have 

0+ Vl = 0.9, 

0+ V2 = 1, 

U2 + V2 = 1.4 

U2 + V3 = 0.8 

U3 + V3 = 0.8, 

which can be solved to yield 

Vl = 0.9, 

Having determined values for what will be seen to be dual variables, we 
now calculate the change in Xo for a unit allocation to each nonbasic cell 
(k, I): 

The ck,'s will have the same values as those determined by the stepping stone 
method. For our example: 

c13 = C13 - U l - V3 = 1 - 0.4 = 0.6 

C21 = C2l - U2 - V l = 1 - 0.4 - 0.9 = -0.3 

C3l = C3l - U3 - V l = 1.3 - 0.4 - 0.9 = 0 

C32 = C32 - U3 - V2 = 1 - 0.4 - 1 = -0.4. 

Thus, as with the stepping stone method, we have discovered that the maxi­
mum amount possible should be allocated to cell (3,2). This allocation is 
made as in the previous method. We effect the change of basis, producing 
Table 2.84 from Table 2.83. The multipliers for Table 2.84 are now calculated: 

o + Vl = 0.9, (Ul = 0) 

0+ V2 = 1 

U 2 + V3 = 0.8 

U3 + V2 = 1 
U3 + V3 = 0.8. 

These are solved to yield: 

Ul = 0, Vl = 0.9, V3 = 0.8, 
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We can now calculate the change in Xo for a unit allocation to each nonbasic 
cell: 

C13 = 1 - 0 - 0.8 = 0.2 

C21 = 1 - 0 - 0.9 = 0.1 

C22 = 1.3 - 0 - 0.9 = 0.4 

C31 = 1.3 - 0 - 0.9 = 0.4. 

These values are identical with those obtained by the simplex method and 
are all nonnegative. As the optimal solution has been found, as displayed 
in Table 2.84, the method is terminated. 

In order to explain why the method works, let us take the dual of the 
capacitated version of (2.38), (2.39), (2.40). That is, we assume equality in the 
constraints and the problem becomes 

Minimize: 

subject to: 

m n 

Xo = L L CijXij 
i= 1 j= 1 

m 

L Xij = bj , j = 1, 2, ... , n 
i= 1 

n 

L Xij = ai' 
j= 1 

i = 1,2, ... , m 

Xij :2: o. 
The reader unfamiliar with L.P. duality should refer to Section 2.6.1. In 
taking the dual, suppose we associate a dual variable Vj with each of the 
first n constraints and a dual variable, Ui with each of the next m constraints. 
The dual problem is: 

n m 

Maximize: L bjvj + L aiui 
j= 1 i= 1 

subject to: Vj + Ui ::;; Cij' i = 1,2, ... , m 

j = 1,2, ... , n. 

Note that the u;'s and v/s are not restricted to nonnegative values, as they 
arise from equality constraints. The special nature of the inequality con­
straints in the dual arises because of the structure of the primal constraint 
matrix, as illustrated in Figure 2.l3. 

Suppose we are solving the transportation problem as a regular L.P. using 
the simplex method. We would wish to calculate the xo-row coefficients cij 
at each iteration in order to test for optimality and, if the test is negative, 
decide which variable enters the basis. Now, according to property 3(a) of 
complementary slackness (see Section 2.6.1.3), 

Xij > 0 ~ v j + Ui = cij 

for every basic variable Xij. This creates (m + n - 1) equations in (m + n) 
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unknowns, which can be solved by assigning an arbitrary value to one of 
the unknowns. Traditionally U1 is set to zero. 

Now the value of each slack variable in the dual constraint 

is 

Thus from property 2 of Section 2.6.1.3 we have 

Thus in order to determine which variable xij should enter the basis (if op­
timality has not yet been reached) we must simply select the xij which has the 
most negative value of Cij - U i - Vj' Note that the most negative (rather than 
most positive) is selected, as our original objective is one of minimization. 

2.7.2 The Assignment Problem 

The assignment problem is a special type of transportation problem. Because 
of its structure it can be solved more efficiently by a special algorithm than 
by the stepping stone algorithm. Consider a collection of n workers and n 
machines. Each worker must be assigned one and only one machine. Each 
worker has been rated on each machine and a standardized time for him to 
complete a standard task is known. The problem is to make an assignment 
of workers to machines so as to minimize the total amount of standardized 
time of the assignment. 

For the purposes of describing an assignment, define 

X .. = {1' 
'J 0, 

if worker i is assigned to machine j, 
otherwise 

n = the number of workers and the number of machines 

cij = the standardized time of worker i on machine j, assumed to be non­
negative. 

Then the problem is to 

Minimize: 

subject to: 

n n 

Xo = L L CijXij 
i= 1 j= 1 

n 

L Xij = 1, 
i= 1 

n 

L Xij = 1, 
j= 1 

Xij = 0,1, 

j = 1,2, ... , n 

i = 1,2, ... , n 

i = 1,2, ... , n 

j = 1,2, ... , n. 

(2.41) 

(2.42) 

(2.43) 



84 2 Linear Programming 

It can be seen on comparison with (2.38), (2.39), (2.40) that this formula­
tion is indeed a special case of the transportation problem the workers re­
presenting factories and the machines representing warehouses. Here each 
"factory" and each "warehouse" has a capacity and demand of one unit. 
The problem can be represented by a tableau like Table 2.73, shown in 
Table 2.85. The problem could be solved using the techniques developed 
for the transportation problem. However let us examine the problem a little 
more deeply in order to discover a more efficient method which exploits 
the special structure of this assignment problem. 

Table 2.85 

Machines 

2 ... j n 

2 

Workers 

n 

The matrix of standardized times 

Cll C12 Cli 

C21 C22 C2i 

c= 
Cil Ci2 Cii Cin 

Cn1 Cn2 Cni Cnn 

holds the key to the problem. Because there is a one-to-one assignment of 
workers to machines, our problem reduces to finding a set S of n entries of C 
with the properties that (i) exactly one entry of S appears in each row of C 
and (ii) exactly one entry of S appears in each column of C. Then among all 
sets S of n entries of C we require the one with the least sum. In order to 
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make use of this fact, consider the following numerical example: 

n=5 
and 

5 CD 5 1 3 
6 CD 8 6 

c= 3 2 2 3 
5 6 5 CD 6 

2 1 5 3 CD 
In this case it is possible to identify a minimal S quite easily. Because every 
entry in C is at least one, any set S with sum five must be minimal. Such a 
set has been circled and it has, of course, exactly one entry in each row and in 
each column, thus obeying properties (i) and (ii). 

Suppose now that we subtract one unit from each entry in C to obtain C': 

4 @ 4 0 2 

5 @ 7 3 

C'= 2 1 1 
4 5 4 @ 
1 0 4 2 

Because the relative value of the entries remain unchanged, the minimal 
solution remains the same. 

These observations hold true for any matrix C, and furthermore, because 
all entries are assumed to be nonnegative, once a set S of all zero entries has 
been identified it must be minimal. The Hungarian method, due to the Hun­
garian mathematician Konig has this as its aim. The method progressively 
reduces the entries in a manner similar to our step from C to C' until a set 
S of zeros can be identified. 

The method is made up of three parts: 

1. C is reduced by subtracting the least entry in column i from every element 
in column j, for each column i, i = 1, 2, ... , n. Then if any row has all 
positive entries, the same operation is applied to it. 

2. A check is made to see whether a set S of all zeros can be found in the 
matrix. If so, S represents a minimal solution and the method is terminated. 
If not, step (c) is applied. 

3. As a minimal S cannot yet be identified, the zeros in C are redistributed 
and possibly spme new zeros are created. How this is carried out will be 
explained shortly. Then the check of step 2 is performed again. This cycle 
of steps 2 and 3 is repeated until a minimal S is found. 

A few comments about these steps will now be made. We need to show 
that if C' is the matrix obtained from C by step (1), then the set of minimal 
sets S for C and C' are identical. Suppose that (Xi and pj , positive real numbers, 
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are subtracted from the ith row and jth column of C, respectively, for each 
row i and each column j. Then, if c ij and C;j are the i - j elements of C and 
C', respectively, 

Further, if x~ is the objective function associated with the new assignment 
problem represented by C', then 

n n 

x~ = L L C;jXij 
i=l j=l 

n n 

= L L (cij - lXi - {3)xij 
i=l j=l 

n n n n n n 

= L L cijxij - L L lXiXij - L L {3jXij 
i=lj=l i=lj=l i=lj=l 

= Xo - itl (lXi jtl X ij) - jtl {3j(tl Xij} 

By (2.42) and (2.34), 

n n 

x~ = Xo - L lXi - L {3j. 
i=l j=l 

Thus x~ and Xo differ only by the total amount subtracted, which is a con­
stant. Therefore they have identical minimal sets. 

We need to have an efficient way of performing step (2). That is, we need 
to be able to pronounce whl!ther or not a set S of zeros exists, and if it does, 
which entries belong to it. A moment's reflection reveals that any such S 
has the property that its zeros in C' can be transformed into a leading 
diagonal of zeros by an interchange of rows. For example the C' of our 
numerical example: 

@ 2 1 1 2 

3 5 @ 3 

4 @ 4 2 

454 

104 

upon the interchange of rows 2 and 3 becomes: 

@ 2 1 1 2 

4 @ 4 0 2 

3 5 @ 7 3 

4 5 4 @ 5 

1 0 4 2 @ 
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One needs exactly n (in this case 5) straight lines in order to cross out all the 
circled zeros: no smaller number of straight lines will suffice: 

@ 2 1 1 2 

4 @ 4 0 2 
3 5 @ 7 3 
4 5 4 @ 5 

1 0 4 2 @ 

Because the interchange of rows does not affect this minimum number 
of crossing lines, we have discovered a simple test to determine whether or 
not a minimal S can be found: 

If the minimum number of lines necessary to cross out all the zeros equals n, 
a minimal S can be identified. If the minimum number of lines is strictly less 
than n, a minimal S is not yet at hand. 

How can we be sure we are using the smallest possible number of crossing 
lines? The following rules of thumb are most helpful in this regard: (a) 
Identify a row (column) with exactly one uncrossed zero. Draw a vertical 
(horizontal) line through this zero. (b) If all rows or columns with zeros 
have at least two uncrossed zeros, choose the row or column with the least, 
identify one of the zeros and proceed as in (a). Ties are settled arbitrarily. 

In order to make these rules clear, we illustrate them on the following 
example: 

o 0 4 4 9 

60050 

80808 

3 0 1 8 0 

4 2 008 

The first column has exactly one zero, so according to (a) we cross out the 
first row: 

0 0 4 4 9 

6 0 0 5 0 

8 0 8 0 8 

3 0 1 8 0 

4 2 0 0 5 

We must now use (b). We arbitrarily choose C32 and cross out the second 
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column: 

6 0 5 0 

8 8 0 8 

3 1 8 0 

4 0 0 5 

Now row 4 has one uncrossed zero, thus we cross out column 5. Proceeding 
in this way we produce: 

v 

6 D ( 

8 0 0 

3 D 
4 ~ 

This requires five lines and thus contains a minimal S. Identifying such an 
S is usually not difficult if one begins by looking for rows or columns with 
exactly one zero. 

Now we come to step (3). Suppose that strictly less than n lines are needed 
to cross out all the lines in c. We know then that a minimal S cannot be 
found directly. In order to transform C we make use of Konig's theorem: 

If the elements of a matrix are divided into two classes by property R, then the 
minimum number of lines that contain all the elements with the property R is 
equal to the maximum number of elements with the property R, with no two 
on the same line. 

Applying this to C, where R is the property of being zero, we now present 
a way to transform c. We wish to change at least one of the uncrossed 
(and hence positive) numbers to become zero. This is brought about by (i) 
subtracting the minimum uncrossed entry from all uncrossed entries; and 
(ii) adding this same number to each doubly crossed entry (an entry with 
both horizontal and vertical lines passing through it). All lines are then 
removed and step (3) is completed. 

Table 2.86 

Machines 
1 2 3 4 5 

1 6 5 9 4 6 
2 3 8 3 9 5 

Workers 3 2 7 6 5 6 
4 5 9 8 3 8 
5 1 3 7 4 2 
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2.7.2.1 A Numerical Example 

The Hungarian method will now be used to solve the problem whose C 
matrix is given in Table 2.86. Here n = 5. Following step 1 we subtract a 
quantity from each column of the (Ci) matrix. This amount is equal to the 
minimum quantity in that column. Thus the initial (Ci) matrix becomes: 

5 2 6 1 4 

2 5 0 6 3 

1 4 3 2 4 

4 6 5 0 6 

0 0 4 1 0 

( -1) (-3) (-3) (-3) (-2) 

The next step is to carry out the same operation for each row. The matrix 
becomes 

4 1 5 0 3 (-1) 

2 5 0 6 3 (0) 

0 3 2 1 3 ( -1) 

4 6 5 0 6 (0) 

0 0 4 1 0 (0) 

Following step 2, the minimum number of lines passing through all the 
zero elements are drawn: 

1 5 3 
~. {\ "l 
~ v ~ 

~ 3 2 3 

6 5 6 
{\ (\ 

v v 

If the minimum number of lines had been 5, an optimum solution could 
have been found by inspection. This involves selecting five zero elements­
one such element in each row and each column. This selection will be 
illustrated shortly. Such is not the case in the present problem, where only 
four lines are necessary. This means that an implementation of step 3 is 
required. The minimum uncrossed number is selected. It is subtracted from 
all uncrossed numbers: 

4 0 4 0 2 

2 5 0 6 3 

0 2 1 1 2 (-1) 

4 5 4 0 5 

0 0 4 1 0 
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This same number (1 in this case) is added to all numbers with two lines 
passing through them: 

4 0 4 0 2 

3 5 0 7 3 

0 2 1 1 2 (+ 1) 

4 5 4 0 5 

1 0 4 2 0 

The minimum number oflines are again drawn through all the zero elements: 

4 e 4 e ~ 

3 5 e 'I 3 

e ~ 1 1 ~ 

4 5 4 0 5 

1 e 4 ~ e 
As five lines are required, the minimal solution can be found. 

The solution for the present problem is 

X 12 = 1 

X23 = 1 

X31 = 1 

X44 = 1 

xss = 1. 

The value of this solution is equal to the total of the numbers subtracted, 
i.e., 

X~ = 1 + 3 + 3 + 3 + 2 + 1 + 0 + 1 + 0 + 0 + 1 = 15. 

This value can be checked by inspecting the original (Ci) matrix. 

2.8 Exercises 

(I) Computational 

1. Solve the following problems graphically. 
(a) A baker bakes two types of cakes each day, one chocolate and one banana. He 

makes a profit of $0.75 for the chocolate cake and $0.60 for the banana cake 
The chocolate cake requires 4 units offiour and 2 units of butter and the banana 
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cake requires 6 units of flour and 1 unit of butter. However, only 96 units of 
flour and 24 units of butter are available each day. How many of each type of 
cake should he bake each day so as to maximize profit? 

(b) A bakery produces two types of bread. Each type requires two grades of flour. 
The first type requires 5 kg of grade 1 flour and 4 kg of grade 2 flour per batch. 
The second type requires 4 kg of grade 1 and 6 kg of grade 2 per batch. The 
bakery makes a profit of $10 and $20 per batch on the first and second types, 
respectively. How many batches of each type should be made per day if 200 kg 
of grade 1 and 240 kg of grade 2 flour can be supplied per day? 

(c) In the production of wool yarn by carding it is found that the waste produced 
is dependent on the quantity by weight of a lubricant/water emulsion added 
before processing. Because of pumping restrictions the concentration of the 
emulsion should not exceed 1 part lubricant to 2 parts water. The application 
of the emulsion should be at a rate so that no more than 5% dry wool weight of 
emulsified wool is emulsion. Assume that the densities of water and lubricant 
are the same. Quality control measures stipulate that the lubricant should not 
be more than 4% (dry wool weight) of the emulsified wool. It is found that the 
waste produced decreases by 8 kg per kg lubricant added and decreases by 5 kg 
per kg water added. Find the amounts oflubricant and water to apply to 100 kg 
of dry wool so as to minimize the waste produced. 

(d) A company makes two types of brandy: The Seducer (S), and Drunkard's 
Delight (D). Each barrel of S requires 5 hours in the fermenter and 2 hours in 
the distiller, while each barrel of D requires 3 hours in the fermenter and 4 hours 
in the distiller. Because of various restrictions the fermenter and the distiller 
can be operated for no more than 15 and 8 hours per day, respectively. The 
company makes a profit of$210 for a barrel of Sand $140 for a barrel of D. How 
many barrels of each type should be produced to maximize daily profit? 

(e) A farmer produces potatoes at a profit of $200 per unit and pumpkins at a 
profit of $140 per unit. It takes him 5 days to crop a unit of potatoes and 7 days 
to crop a unit of pumpkins. Earlier in the year it takes him 5 days to prepare 
the land and plant seeds for a unit of potatoes and 3 days for a unit of pumpkins. 
He has 90 cropping days and 50 preparation days available. What amount of 
each vegetable should he plan on in order to maximize profit? 

2. Solve the following problems by the simplex method. 
(a) A plant manufactures three types of vehicle: automobiles, trucks, and vans, on 

which the company makes a profit of $4,000, $6,000, and $3,000, respectively, 
per vehicle. The plant has three main departments: parts, assembly, and 
finishing. The labour in these departments is restricted, with parts, assembly, 
and finishing operating 120, 100, and 80 hours, respectively, each two-week 
period. It takes 50, 40, and 30 hours, respectively, to manufacture the parts for 
an automobile, truck, and van. Assembly takes 40, 30, and 20 hours, respectively, 
for an automobile, truck, and van. Finishing takes 20, 40 and 10 hours, respec­
tively, for an automobile, truck, and van. How many of each type of vehicle 
should the company manufacture in order to maximize profit for a two-week 
period? 

(b) A manufacturer produces three soft drink cocktails: Fruito, Fifty/fifty, and 
Sweeto. The amounts of sugar and extract in one barrel of each are shown in 
Table 2.87. The manufacturer can obtain 6 kg, 4 kg, and 3 kg per day of sugar, 
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Table 2.87. Data for Exercise 2(b). 

Cocktail Profit/barrel Sugar Orange extract Lemon extract 

Fruito $30 1 kg 2 kg 1 kg 
50/50 $20 2kg 1 kg 1 kg 
Sweeto $30 3 kg 1 kg 1 kg 

orange extract, and lemon extract, respectively. The profit is proportional if 
fractional quantities of a barrel are produced. How much of each cocktail 
should be produced in order to maximize daily profit? 

(c) The problem is to maximize the satisfaction gained on a 140 km journey when 
only 3 constant speeds are permitted: 0, 50, and 80 km/hr. The satisfaction 
gained from stopping and resting (0 km/hr), travelling slow (50 km/hr) and 
travelling fast (80 km/hr) is rated at 5, 9, and 2 units/hr, respectively. Restric­
tions imply that the journey must be completed in no longer than 4 hours, the 
total time spent stationary or travelling at high speed must not exceed 1 hour, 
and the average speed of the journey must not be less than 40 km/hr. 

(d) A small company makes 3 types of biscuits: A, B, and C. 10 kg of biscuit A 
requires 5 kg of sugar, 3 kg of butter, and 2 kg of flour. 10 kg of biscuit B re­
quires 4 kg of sugar, 3 kg of butter, and 3 kg of flour. 10 kg of biscuit C requires 
3 kg of sugar, 4 kg of butter, and 3 kg of flour. The company has available per 
day 40 kg of sugar, 33 kg of butter, and 24 kg of flour. The company can sell all 
it produces, and makes a profit of $60, $50, and $30 from 10 kg of biscuits A, 
B, and C, respectively. How much of each biscuit should the company make to 
maximize daily profit? 

(e) Recall the farmer in Exercise l(e). He discovers he can now make a profit of 
$160/kg from beets. These take 4 days for planting and 4 days for cropping per 
kilogram. He also considers the time it takes to sell his produce in the market. 
It takes 2 days to sell one kilogram of any vegetable. He has 30 days to sell his 
vegetables. What weights of the three crops should he now plan for in order to 
maximize profit? 

(f) A man has approximately 100 m2 of garden space. He decides to grow corn (C), 
tomatoes (T), and lettuce (L) in the 20 week growing season. He estimates that 
on average for every expected kg of yield from the crops it takes 0.5, 1.0, and 
0.5 minutes each week to cultivate the corn, tomatoes, and lettuces respectively. 
He does not want to spend more than 3 hours per weekend cultivating. He will 
spend up to $2.00/week for seeds. The seed costs (on a weekly basis) per kg 
yield for C, T, and L are 0.5, 1.5, and 1.0 cents, respectively. Each crop, C, T, 
and L requires t i-, and 1- m2, respectively, in space per kg yield. He can sell the 
vegetables for 0.40, 1.00, and 0.50 dollars per kg for C, T, and L respectively. 
What amounts should he plan for in order to maximize revenue? 

(g) An ice cream factory makes 3 different types of ice cream: plain (P), hokey 
pokey (H), and chocolate (C). Profits for one unit of each type are $5, $2, and 
$1 for P, H, and C, respectively. Time constraints for producing a unit of each 
are shown in Table 2.88. Available hours per day are 8, 10, and 4 for machining, 
men, and, packing, respectively. What amounts of the different ice creams 
should be manufactured to maximize daily profit? 
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Table 2.88. Data for Exercise 2(g). 

Product 

P 
H 
C 

Machine hours 

4 
2 
1 

Man hours 

3 
2 
2 

Packing hours 

1 
1 
1 
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3. Solve the following problems graphically and by the simplex method and compare 
your solutions. 
(a) A housewife makes sauce (S) and chutney (C) which she sells to the local store 

each week. She obtains a profit of 40 and 50 cents for a pound of C and S, 
respectively. C requires 3lb tomatoes and 4 cups of vinegar; requires 5lb 
tomatoes and 2 cups of vinegar. She can buy 24 lb tomatoes and 3 bottles of 
vinegar at discount price each week. The 3 bottles provide 16 cups of vinegar. 
In order to make it worthwhile, the store insists on buying at least 3 lbs of goods 
each week. What combination should be made in order to maximize profit? 

(b) A man makes glue in his backyard shed. Glue A requires 2 g of oyster shell and 
4 g of a special rock to produce a 2 kg package. Glue B requires 3 g of shell 
and 2 g of rock for each 2 kg package. He must produce at least 8 kg of glue 
per day to stay in business. His son scours the sea shore for the shell and rock 
and can gather 12 kg of each per day. If the profit is $3 and $4 on a 2 kg package 
oftype A and B, respectively, what is the maximum profit he can hope to make? 

(c) An orchard which grows apples (A) and pears (B) wishes to know how many 
pickers to employ to maximize the quantity of fruit picked in a given period. 
The average quantity offruit a picker can gather is 14 kg of A or 9 kg of B. The 
orchard can afford to employ no more than 18 people. There cannot be more 
than 9 picking apples or the supply will be exhausted too soon, flooding the 
market and reducing returns. But there must be more than half as many picking 
apples as there are picking pears or costs are increased because of fallen fruit 
being wasted. . 

(d) Recall Exercise l(e). Suppose in time of war the government insists that the 
farmer produces at least 5 kilograms of vegetables. What should he do to 
maximize profits now? 

(e) Consider the gardener who decides to eat some of his corn and tomatoes. A 
100 g serving of corn will add 80 calories; a 100 g serving oftomatoes will add 
20 calories. He does not want to take in more than 200 calories from this part 
of his diet. He needs at least 50 mg of vitamin C and at least 1.8 mg of iron 
from these vegetables to make up his daily intake. A 100 g serving of corn 
yields 10 mg of vitamin C and 0.6 mg of iron, while a 100 g serving of tomatoes 
yields 18 mg of vitamin C and 0.8 mg of iron. With corn and tomatoes costing 
4 and 10 cents per 100 g, how should he achieve his dietary needs while mini­
mizing costs? 

4. The following problems have multiple optimal solutions. Solve each graphically 
and by the simplex method. Define the set of all optimal solutions. 
(a) A builder finds he is commonly asked to build two types of buildings, A and B. 

The profits per building are $4,000 and $5,000 for A and B respectively. There 
are certain restrictions on available materials. A requires 4,000 board feet of 
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timber, 4 units of steel, 3 units of roofing iron, and 2 units of concrete. B re­
quires 5,000 board feet of timber, 3 units of steel, 2 units of roofing iron, and 
1 ton of concrete. However only 32,000 board feet of timber, 24 units of steel, 
20 units of roofing iron, and 16 units of concrete are available per year. What 
combination of A and B should he build per year to maximize profit? 

(b) Recall the glue manufacturer of Exercise 3(b). In order to remain competitive 
he finds he must add resin and filler to his glues. 3 g of resin must be included 
in each packet of each glue and 4 g of filler must be included in glue A and 
2 g of filler in glue B. His son can manufacture only 15 g of resin and 9 g of 
filler each day. He can now make a profit of $8 and $4 for a package of glues A 
and B, respectively. What is the maximum profit he can hope to make? 

(c) A recording company is going to produce an hour-long recording of speeches 
and music. The problem is to fully utilize the 60 available minutes. There can be 
no more than 3 speeches and 5 musical items. The time allotted for speeches 
must be no less than one-eighth of the time allotted to music. The gaps between 
items or speeches must be filled with commentary, which must be no more than 
12 minutes in total. The speeches are 5 minutes long, the items 8 minutes. How 
many of each should be included so as to minimize the commentary time on 
the recording? 

(d) A bakery makes 2 types of cakes, A and B. 10 Ib of cake A requires 21b of flour, 
31b of sugar, 3 eggs, and 41b of butter. 10 Ib of cake B requires 41b of flour, 31b 
of sugar, 6 eggs, and 1 Ib of butter. The bakery can afford to purchase 24 Ib of 
flour, 27 Ib of sugar, 24 eggs, and 20 Ib of butter per day. The bakery makes a 
profit of $3 for 10 Ib cake A and $6 for 10 Ib of B. How much of each cake 
should be made daily in order to maximize profit? 

(e) Melt-In-Your-Mouth Biscuit Co. finds that its two best sellers are Coco De­
lights (C) and Cheese Barrel Crackers (B). C and B produce a profit of $10 and 
$15 per carton sold to the supermarkets. Some ingredients are common to each 
biscuit. Each week no more than 500 kg of flour, 360 kg of sugar, 250 kg of 
butter and 180 kg of milk can be used effectively. Every 100 kg of C requires 
20 kg of flour, 16 kg of sugar, 18 kg of butter, and 15 kg of milk. Every 100 kg 
of B requires 30 kg of flour, 20 kg of sugar, 12 kg of butter, and 10 kg of milk. 
Find the weekly combination of production which maximizes profit. 

(f) A man finds he is eating a lot of corn and no cheese and decides to do some­
thing about it. Being very careful of his dietary considerations he realises that 
he needs 600I.V. of vitamin A, 1 mg of iron, 0.12 mg of calcium, and no more 
than 400 calories per day. Now 100 g of cheese gives 400 LV. Vitamin A, 0.3 mg 
iron, 0.2 mg calcium, and 120 calories. Also, 100 g of corn gives 160 I.U. vita­
min A, 0.6 mg iron, no calcium, and 80 calories. Moreover, cheese costs 10 cents 
and corn 4 cents per 100 g. What should his daily intake of these two items be 
ifhe is to satisfy the requirements above at minimal cost? 

5. The following problems have degenerate optimal solutions. Solve them by the 
simplex method and interpret the final tableau. 
(a) Consider a farmer who wishes to plant 4 types of grain: oats, barley, wheat, 

and corn. The profits he can make from an acre of corn, barley, wheat and oats 
are $300, $200, $400, and $100, respectively. However, there are a number of 
restrictions regarding fertilizing, spraying, and cultivation. These are as follows: 
the corn, barley, wheat, and oats require 8, 2, 5, and 4 cwt of fertilizer per acre, 
respectively, but only 16 cwt is available for the season. Similarly corn, barley, 
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wheat, and oats require 6, 4,3, and 2 gallons of insecticide per acre, respectively, 
but only 10 gallons are available. Also it takes 3, 3, 2, and 1 day to cultivate 
1 acre of com, barley, wheat, and oats, respectively, but the farmer can spare a 
total of only ~ days. What crop combination maximizes profit? 

(b) A man operates a small warehouse to store goods for other companies on a 
temporary basis. His warehouse is limited to 150 m2 in usable space. He can 
afford to employ up to 10 men. Each load of product A, B, e, and D requires 
16, 15, 20, and 30 m2 of space, respectively. Each load of A, B, e, and D keeps 
1, 9, 1, and 2 men fully occupied, respectively. His storage charges are $200, 
$300, $400, and $700 per load for A, B, e, and D respectively. What combina­
tion of goods should he attempt to store in order to maximize revenue? 

(c) In a carpet wool spinning plant four blends of wool can be produced and are 
worth $80, $60, $50, and $20 per kg for blends 1, 2, 3, and 4, respectively. As­
suming that all the yarn produced can be sold, find the amount of each blend 
necessary to maximize profit. Because of certain restrictions with shiftwork and 
staff regulations, the carding, spinning, twisting, and hanking machinery can 
only be operated for a maximum of 18, 15, 10, and 12 hours a day, respectively. 
The hours each machine takes to process 103 kg of each blend are shown in 
Table 2.89. A further restriction limits the quantity of blends 3 and 4 to 5 X 

103 kg per day. 

Table 2.89. Data for Exercise 5(c). 

Blend Carding Spinning Twisting Hanking 

1 4 4 4 4 
2 4 3 4 2 
3 3 3 2 4 
4 2 2 0 1 

(d) A company produces 4 types of fertilizer: A, B, e, and D. 10 lb of A requires 
3 lb of potash (P), 4 lb of phosphate (H), and 3 lb of nitrogen (N). 10 lb of B 
requires 3 lb of P, 3 lb of H, and 4lb of N. 10 lb of e requires 5 lb of P, 2lb of 
H, and 3 lb of N. 10 lb of D requires 4lb of P, 4lb of H, and 2 lb of N. The 
company can produce 40 lb, 40 lb, and 60lb of P, H, and N, respectively, per 
day. The company makes a profit of $20, $40, $50, and $30 per 10 lb of A, B, 
e, and D respectively. Determine the amount of each type that should be 
produced each day so as to maximize profit. 

(e) A brick manufacturer produces red (R), white (W), brown (B), and grey (G) 
bricks at profits of $100, $200, $300, and $300 per ton, respectively. These are 
all produced using the same equipment, which can operate continuously. It 
takes 2, 3, 5, and 4 equipment hours to produce a ton of R, W, B, and G, respec­
tively. He has a maximum electric power allocation of 252 units because of 
shortages. It takes 3, 4, 5, and 6 units to produce a ton of R, W, B, and G re­
spectively. Find his maximum weekly profit. 

(f) Recall Exercise 2(f). The man now decides to plant pumpkins as well. To pro­
duce one kg of yield cultivation will take 0.5 minutes, 0.5 cents will be spent on 
seed each per week, and 0.5 m2 of garden space is required. Pumpkins can be 
sold for 40 cents per kg. Also the cultivation time for com can now be reduced 
to ~ of a minute per week. Solve 2(f) over. 
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6. The following L.P. problems exhibit temporary degeneracy during the simplex 
iterations. Solve each by this method and comment on this phenomenon. 
(a) A dairy factory is about to start production. The manager wishes to know what 

lines of production-butter, cheese, milk powder, or yoghurt-would be most 
profitable. The various restrictions, requirements and unit profits are shown 
in Table 2.90. Solve this problem by the simplex method. 

Table 2.90. Data for Exercise 6(a). 

Profit Milk Labour Electricity 

Butter 3 3 1 2 
Cheese 4 2 3 3 
Milk powder 2 4 4 5 
Yoghurt 2 2 1 
Amount available 8 9 9 

(b) Recall the warehouse problem of 5(b). The manager finds that he receives too 
many orders for storage of A. So he streamlines the process for A by reducing 
its storage requirement per load to 120 m2 and increases the storage fee to 
$360 per load. What is his optimal strategy now? 

(c) Recall the wool spinning plant in Exercise 5(c). A competing plant realises it 
has to match the efficiency of the first plant if it is to survive. It produces the 
same 4 blends, but has a profit of $120, 60, 60, and 30 per kg for each type. 
The plant can obtain 23 hours and 14 hours carding and hanking time per day, 
respectively. The other times are identical. However this factory has older 
twisting machines and it takes 4 hours to produce 103 kg of blend 3. Also no 
more than 2.5 x 103 kg of blends 3 and 4 are to be produced per day. What is 
the best policy for the plant? 

(d) Recall the fertilizer problem of Exercise 5(d). A rival company has the data 
shown in Table 2.91. What is the best way for this company to operate? 

Table 2.91. Data for Exercise 6(d). 

Fertilizer P H N Profit 

A (10 lb) 4 1 5 $3 
B (10 lb) 3 2 5 $4 
C (10 lb) 5 2 3 $4 
D (10 lb) 4 4 2 $5 

Availability 40 40 30 

(e) An ice cream manufacturer makes 2 types of ice cream-creamy and ordinary. 
Creamy sells at a profit of $5 per unit, ordinary at $4 per unit. Each requires 
4 tanks of milk per unit. Creamy requires 5 tanks of cream and 5 bags of sugar 
per unit. Ordinary requires 2 tanks of cream and 3 bags of sugar. Also 10 tanks 
of cream and 10 bags of sugar are available each day. How does the manu­
facturer maximize profit? 
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(f) Recall Exercise 2(f). The man decides to plant cucumbers as well. Corn can be 
cut down to t minute cultivation time per week per kg yield. One kg yield of 
cucumbers require iz minutes of cultivation per week, 0.5 cents per week on 
seeds and H m2 of garden space. They sell for 40 cents per kg. The garden has 
been reduced to 88& m2• Also the gardener decides he cannot spend more than 
150 minutes in the garden each weekend. Solve the problem over with the new 
data. 

7. The following L.P. problems have no feasible solutions. Prove that this is so by 
use of the simplex method. Also attempt to solve the problems graphically where 
possible. 
(a) A small clothing factory makes shirts and skirts for a boutique in town. A 

profit of $4 and $3 is made from a shirt and skirt respectively. A shirt requires 
3 yards of material and a skirt 4, with only 12 yards available daily. It takes 
5 hours of total time to make a shirt and 2 hours to make a skirt, with 8 hours 
available daily. At least 5 garments must be made per day. Attempt to maximize 
profit. 

(b) A man has a part time job making chairs (C), deck chairs (D), and stools (S). 
Each chair takes 5 hours to complete and weighs 2 kg. Each deck chair takes 
3 hours and weighs 1.5 kg. Each stool takes 2 hours and weighs 1 kg. He has 
only 10 hours to spend each weekend on this work. Now his employers sud­
denly state that in order to make it worth their while he must produce at least 
20 kg of furniture per week. Can he continue? 

(c) Assuming an unlimited supply of paint and turpentine, attempt to maximize 
the coverage of a mixture of the two when the addition of an equal quantity of 
turpentine to the paint increases the coverage by 50%, the coverage of paint 
alone being 8 m2/litre. Paint costs $3.00 a litre and turpentine $0.50. The total 
cost of the mixture must be no more than $21.00. To aid spraying, the volume 
of turpentine plus i- times the volume of paint must be greater than 50 litres. 

(d) A nursery covers 5,000 m2• It grows trees at a profit of 35 cents each and shrubs 
at a profit of 20 cents each. At least 2,000 plants must be grown. A tree needs 
4 m2 to grow, a shrub 1 m2• Each tree requires 2 g of fertilizer, each shrub 3 g, 
while 4 kg is available. Attempt to maximize profit. 

(e) Recall Exercise 2(f). Suppose that seeds costs are to be neglected. However, it 
is vital that the energy value gained from the crop should be greater than 
300 calories. Now corn, lettuce, and tomatoes will yield 0.8, 0.1, and 0.2 calories 
per gram, respectively. Attempt to solve 2(f) over with the new data. 

8. Create and solve the dual for each of the following problems. Find the optimal 
solution to the original solution by interpreting the optimal dual tableau. 
(a) A local vintner makes two types of wine, medium white (M) and dry white (D), 

to sell to the local shop. He makes $5 profit per gallon from M and $4 a gallon 
from D. Now M requires 3 boxes of grapes, 41b of sugar, and 2 pints of extract 
per gallon. Also, D requires 4 boxes of grapes, 2 Ib of sugar, and 1 pint of ex­
tract per gallon. He has 14 boxes of grapes, 8 Ib of sugar, and 6 pints of extract 
left before selling his business. How should he use these resources to maximize 
profit? 

(b) A turning workshop manufactures two alloys, A and B, at a profit of$5 and $2 
a kg, respectively. Alloy A requires 2, 5, 5, and 2 g of nickel, chrome, germanium, 
and magnesium, respectively. Alloy B requires 3, 2, 3, and 1 g of the metals in 
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the same order. Supplies of the metals are reduced to 7, 11, 10, and 6 kg ofthe 
metals in the same order. The furnace cannot be operated for more than 6 hours 
per day. Alloys A and B require 1 and 2 hours of furnace time, respectively, to 
produce 1 kg of alloy. How can profits be maximized? 

(c) Recall Exercise 7(c). Suppose now the total cost of paint and turpentine cannot 
exceed $100. The paint now used is of lower quality and costs only $2/litre. 
However, because of price rises and the decision to use a better grade, the price 
of turpentine has risen to $2/litre. A new sprayer has been purchased, and now 
the volume of turpentine plus twice the volume of paint need exceed only 
20 litres. However, the ratio of turpentine to paint must be between 1:4 and 
3: 1. Solve Exercise 7( c) over with the new data. 

(d) Recall Exercise 7(d). Having discovered that this problem was infeasible, the 
nursery removed the restriction that 2,000 plants must be grown. During the 
summer each plant requires one litre of water, but because of restrictions 
brought on by the annual drought only 6,000 gallons can be used per day. Also 
4 g of beetle powder must be used on each shrub each day and 1 g on each tree. 
There are 4 kg of powder available per day. Solve Exercise 7(d) over with the 
new data. 

(e) A person has the option of eating chocolate, oranges, or ice cream as a means 
of obtaining at least 10% of the minimum recommended daily vitamin intake. 
At least 0.1 g of calcium, 1 mg of iron, 8 mg of vitamin C, 0.2 mg of riboflavin, 
and 2 mg of niacin are required daily. The three foods would provide these, as 
shown in Table 2.92. The problem is to keep calorie intake down to a minimum 
where 100 gm of chocolate, oranges, or ice cream provide 400, 40, and 160 
calories respectively. What combination ofthe foods should be eaten to achieve 
these objectives? 

Table 2.92. Data for Exercise 8(e). 

100 g of: 

Chocolate Oranges Ice cream 

Calcium 0.5 gm 0.03 gm 0.1 gm 
Iron 1.0 mg O.4mg 0.1 mg 
Vitamin C 40mg 1 mg 
Riboflavin O.2mg .02mg 0.1 mg 
Niacin 1.0 mg 0.2mg 0.1 mg 

9. In each ofthe following problems an objective function coefficient has been changed. 
Examine the effect that this has on the optimal solution and its value by solving 
the original problem and then performing sensitivity analysis. 
(a) Consider the primal L.P. problem of 8(a): 

Maximize: 

subject to: 

5Xl + 4X2 

3Xl + 4X2 :0;; 14 

4Xl + 2X2 :0;; 8 

2Xl + X2:O;; 6 

Xl, X 2 ~ O. 
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For what range of profit for X 2 will the present optimal basis remain optimal? 
(b) Recall Exercise 2(c). The driver finds that he gets satisfaction at the rate of 

10 units/hour driving at 80 km/hr. What is the optimal solution to this new 
problem? 

(c) Recall Exercise 2(d). Suppose that the manager of the company discovers that 
biscuit B can be sold to another buyer at $7 per 10 kg. What is the optimal 
solution now? 

(d) A paper manufacturer produces 3 grades of paper: fine (F) at a profit of $600 
per ton, medium (M) at a profit of $400 per ton, and heavy (H) at a profit of 
$250 per ton. F requires 90 tons of wet pulp and 60 units of electric power to 
produce one ton. M requires 80 tons of wet pulp and 50 units of power to pro­
duce one ton. H requires 70 tons of wet pulp and 30 units of power to produce 
one ton. 5,000 tons of pulp and 2,000 units of power are allocated each week 
for this activity. Find the optimal solution to the problem. If the profit for H is 
increased to $350, how does this affect the solution? 

(e) Recall Exercise 6(f). As their contribution to fighting inflation the supermarkets 
are going to pay only 80 cents per kg for tomatoes. How does this affect the 
present basis? 

10. Solve the following L.P. problems by the simplex method. Then analyze what effect 
the given change in a r.h.s. constant has. 
(a) Recall Exercise 8(a). Suppose the vintner wishes to vary the supply of grapes he 

requires in the production of his two white wines. He wants to know ifhis wine­
making business will still be profitable if for some reason there is a shortage of 
grapes. How much below 14 can the supply drop for the present basis to be still 
optimal? 

(b) Recall Exercise 5(b). One of the men is injured and cannot work for one month. 
Is the present policy still optimal? Is so, what is the new optimal solution value? 

(c) Recall Exercise 8(c). Suppose the cost limitation is raised from $100 to $110. 
What is the new optimal solution and its value? 

(d) Consider the following problem: 

Maximize: 

subject to: 

21xl + 14x2 

5Xl + 3X2:S; 15 

2Xl + 4X2:S; 8 

Xl + X2 ~ 1 

Xl,X2 ~ o. 

(2.44) 

Solve this problem by the simplex method. What is the optimal solution and 
its value ifthe r.h.s. of (2.44) is changed from 15 to 9? 

(e) Recall the Exercise 9(d). Suppose that the total weekly pulp production is halved. 
Find the new optimum. 

(f) Recall Exercise 2(f). Suppose the gardener now wishes to spend 15 minutes less 
in the garden each week. How does this affect the optimal solution? 

11. In each of the following L.P. problems one of the l.h.s. constraint coefficients is 
changed from an original value. Analyze the affect of this change by using sensitivity 
analysis rather than solving the problem again from scratch. 
(a) Recall Exercise 8(a). Suppose now that the medium white requires 7t units of 

extract. How does this affect the solution? 
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(b) Recall Exercise 5(b). Suppose now the floor space is increased to 175 m2. Per­
form sensitivity analysis with this change. 

(c) Recall Exercise 8(c). Suppose that it is desired to change the restriction that the 
volume of turpentine plus twice the volume of paint exceeds 20 litres. If the 
twice is replaced by thrice is the present basis still optimal? 

(d) Recall Exercise 9(d). Suppose that a new system is put into operation whereby 
power consumption is reduced for medium grade paper from 50 units to 30 units. 
How does this affect optimality? 

(e) Recall Exercise 3(e). Consider the dual of that problem as a problem of maxi­
mizing the benefits to be gained from a diet of corn and tomatoes with cost 
constraints. The relative cost of iron has been re-estimated at 0.5 cents per 
100 gm. 

12. In each of the following L.P. problems a further variable is introduced. The new 
optimal solution is then to be found. 
(a) Recall Exercise 5(b). Suppose a new product comes on the market with the 

following storage requirements: 2 m2 per truckload, one man week per truck­
load, and $500 profit per truckload. Is it worthwhile for the storage agency to 
accept orders to store this new product? 

(b) Consider the L.P. problem: 

Maximize: 8XI + 4X2 

subject to: 2XI + 2X2 ::;; 100 (2.45) 

2XI + X 2 2::: 20 (2.46) 

-3XI + X2::;; 0 (2.47) 

Xl - 4X2 ::;; 0 (2.48) 

XI,X22:::0. 

Suppose a new variable is added, with coefficients 1, 1, 1, and -1 in constraints 
(2.45), (2.46), (2.47), and (2.48), respectively. You should have solved the original 
problem when you did Exercise 8(c). Now if the coefficient in the objective 
function of the new variable is 6, use sensitivity analysis to see ifit is worthwhile 
using this new variable. 

(c) Recall Exercise l(d). Suppose the company has decided to manufacture another 
type of brandy. Each barrel of this brandy requires 4 hours' fermentation, and 
5 hours' distillation. Should the company produce this brandy if its profit is $16 
per barrel? 

(d) Recall Exercise 9(d). A new grade of paper, extra fine, is now to be made for a 
profit of $800/ton. It requires 95 tons of wet pulp and 70 units of power for 
every ton produced. Find the new optimum. 

13. Each of the following problems is a transportation problem. For each problem find 
an initial basis by (i) the northwest corner method, (ii) the least cost method, (iii) the 
Vogel approximation method. Solve the problem by the stepping stone algorithm 
and by Dantzig's method, starting with each basis. 
(a) Consider the supply system of 4 breweries, supplying the needs of 4 taverns for 

beer. The transportation cost for a barrel of beer from each brewery to each 
tavern is as shown in Table 2.93. The production capacities of breweries 1, 2, 3, 



2.8 Exercises 101 

Table 2.93. Data for Exercise 13(a). 

Taverns 
2 3 4 

1 8 14 12 17 

Breweries 
2 11 9 15 13 
3 12 19 10 6 
4 12 5 13 8 

and 4 are 20,10,10, and 5 barrels per day, respectively. The demands of taverns 
1,2,3, and 4 are 5, 20, 10, and 10 barrels per day respectively. Find the minimum 
cost schedule. 

(b) A bread manufacturer has 4 factories. He supplies 4 towns. The unit transporta­
tion costs are shown in Table 2.94. The demands of towns 1,2,3, and 4 are 6,000, 
12,000, 5,000, and 8,000 loaves per day, respectively. The daily production 
capacities ofthe factories 1,2,3, and 4 are 7,000, 8,000, 11,000, and 5,000 loaves, 
respectively. Find the minimum cost schedule. 

Table 2.94. Data for 
Exercise 13(b). 

Town 
2 3 4 

1 7 5 4 3 

Factory 
2 5 4 4 3 
3 6 5 6 7 
4 3 4 7 9 

(c) An effluent treatment plant has 4 independent oxidation systems with capacities 
of 15, 18, 20, and 30 (in millions of litres) per day. These systems can be inter­
connected in any combination to any of 5 effluent mains by intermediate pump­
ing stations. The outputs of the mains are 12, 17, 15, 19, and 14 (x 106 ) litres per 
day. The cost involved in pumping 106 litres from any of the mains to any of 
the systems is shown in Table 2.95. Find the least cost flow. 

Table 2.95. Data for 
Exercise 13(c). 

System 
2 3 4 

1 4 6 7 5 
2 3 2 2 1 

Main 3 7 4 3 
4 7 3 ° 4 
5 2 3 8 2 
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(d) Four large farms produce all the potatoes to satisfy the demands of markets in 
four towns. The monthly production of the farms and the demand of the towns 
are shown in Table 2.96, and the transportation costs per ton are shown in Table 
2.97. Find the minimum cost schedule. 

Table 2.96. Production and Demand 
in Exercise 13 (d). 

Farm Production Town Demand 

1 30 1 20 
2 40 2 35 
3 25 3 50 
4 45 4 35 

Table 2.97. Transportation Cost 
in Exercise 13 (d). 

Town 
2 3 4 

7 7 10 8 

Town 
2 6 6 9 6 
3 8 7 9 5 
4 11 10 12 8 

(e) The roads board is about to complete four urgent tasks on state highways in the 
Wellington province. Costs must be minimized to the satisfaction of the audit 
team from the treasury. A costly part of the operation involves the transportation 
of suitable base course and sealing metal from screening plants at Masterton, 
Otaki, Bulls, Raetihi, and the Desert Road to the tasks at Levin, Palmerston 
North, Taihape, and Wanganui. In the time available the plants can supply in 
(I,OOO-ton units) Masterton, 10; Otaki, 18; Bulls, 12; Raetihi, 14; Desert Road, 
24. The demand is: Levin, 20; Palmerston North, 10; Taihape, 30; and Wanga­
nui, 15. Unit costs of loading, transportation and unloading in terms of man 
hours are shown in Table 2.98. Find the minimum cost schedule. 

Table 2.98. Transportation Costs in Exercise 13 (e). 

Masterton Otaki Bulls Raetihi Desert Road 

Levin 6 2 2 8 7 
Palmerston North 4 4 1 7 6 
Taihape 8 7 3 3 2 
Wanganui 7 6 2 5 7 
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14. Each of the following problems is an assignment problem. Solve each one by the 
Hungarian method. 
(a) Consider a collection of six students and six assignments. Each student must be 

assigned a different assignment. The time (in hours) it is likely to take each 
student to complete each assignment is given in Table 2.99. Find the minimum 
time assignment. 

Table 2.99. Assignments in Exercise 14(a). 

Tasks 
2 3 4 5 6 

1 7 5 3 9 2 4 
2 8 6 1 4 5 2 

Students 
3 2 3 5 6 8 9 
4 6 8 3 7 2 
5 4 5 6 9 4 7 
6 9 2 3 5 8 

(b) A factory manager has a table (Table 2.100) which shows how much profit is 
accomplished in an hour when each of six men operate each of six machines. 
Note that: man 6 cannot work on machine 1 because this task requires good 
eyesight; man 2 cannot work on machine 3 because he is allergic to dust; and 
man 5 cannot work on machine 6 because this job requires two hands. You 
are required to find the maximum profit assignment. 

Table 2.100. Assignments in Exercise 14(b). 

Men 
2 3 4 5 6 

1 7 7 8 6 7 
2 8 5 8 6 5 5 

Machines 
3 6 7 5 6 5 
4 5 4 5 5 4 4 
5 6 6 7 7 6 6 
6 7 8 7 6 6 

(c) In carpet manufacture the carpets are inspected for faults and repaired by hand 
sewing, called picking. In a certain factory there are 6 picking boards and the 
management wishes to assign 6 rated workers to these boards so that the total 
time to repair any quantity of carpet is minimized. The rates of the workers on 
the different picking boards are shown in Table 2.101; they vary because the 
boards handle different sizes and types of carpets depending upon their location. 

(d) An air force has six pilots which it wishes to assign to six different types of aircraft. 
Each pilot has been rated on each one and given a numerical rating in terms of 
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Table 2.101. Data for Exercise 14(c). 

Workers 
2 3 4 5 6 

1 8 6 1 4 9 4 
2 3 4 10 2 3 2 

Boards 
3 4 5 6 7 4 6 
4 1 8 5 5 6 
5 7 2 3 7 10 3 
6 2 5 5 3 7 5 

Table 2.102. Ratings in Exercise 14(d). 

Aircraft 
2 3 4 5 6 

1 7 4 8 2 3 5 
2 8 3 3 6 2 4 

Pilots 
3 2 5 3 7 4 9 
4 5 2 6 6 7 2 
5 6 4 2 8 3 

6 3 5 6 4 5 7 

errors in operation (Table 2.102). Make an assignment of pilots to aircraft so 
as to minimize the culmulative rating of those assigned. 

(e) Table 2.103 gives the standardized times of seven workers on seven machines. 
Find a minimum time assignment. 

Table 2.103. Data for Problem 14(e). 

Machines 
2 3 4 5 6 7 

1 6 4 4 5 6 7 4 
2 7 5 1 1 3 9 2 
3 3 3 7 1 9 6 6 

Workers 4 4 6 5 8 1 5 8 
5 6 1 4 4 2 1 4 
6 6 6 9 8 8 2 9 
7 5 7 3 9 1 8 2 

(f) A novelty atheletics meeting is to be held for teams of eight. There are eight 
events, and one man from each team is to enter each event. A certain team has a 
member who predicts where each man would be placed ifhe entered each event 
(Table 2.104). Given that the team accepts his predictions, and that each finisher's 
score is inversely proportional to the place he gets, find the optimal allocation. 
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Table 2.104. Predictions of Exercise 14(f). 

Events 

100m Long High Shot 
Athletes 100m hurdles 400m 1500m jump jump Javelin put 

Allan 4 3 3 4 3 2 4 6 
Big Billy 3 2 2 1 3 1 2 4 
Chris 5 3 5 7 2 4 2 2 
Dangerous 

Dan 3 2 2 5 4 3 3 2 
Ewen R. 2 3 1 2 1 2 3 4 
Freddy 1 1 2 3 2 4 4 6 
George 2 4 3 3 2 5 1 1 
Harry 4 6 4 6 4 6 3 5 

(II) Theoretical 

15. Formulate a number of real-world problems as linear programming problems. 

16. Show that the set of feasible solutions to an L.P. in standard form is convex. 

17. Prove that, if more than one basic feasible solution is optimal for a linear program­
ming problem in standard form, then any convex combination of those basic 
feasible solutions is also optimal. 

18. Attempt to solve the problem of Section 2.5.7 by the two-phase method. Compare 
the efficiency of that approach with using the big M method. 

19. Attempt to solve the problems of Section 2.5.8 by the two-phase method. Draw 
conclusions about the use of that method on problems with unbounded optima in 
general. Prove your conclusions. 

20. Solve the transportation problem of Section 2.7 as a linear programming problem 
by the simplex method. Compare the process, step by step, with that obtained by 
the stepping stone method. 

21. Formulate a 3 x 3 assignment problem as a linear programming problem. Solve it 
by the simplex method. Formulate the same problem as a transportation problem 
and solve it by the stepping stone method. Compare these processes with solving 
the problem by the Hungarian method. 

22. If a linear programming problem has multiple optima, then its objective function 
hyperplane is parallel to that of a binding constraint. State conditions which must 
hold when the converse is not true. 

23. Prove that if a linear programming problem has an unbounded optimum its dual 
cannot have any feasible solutions. 

24. Prove that a variable is unrestricted in sign in a L.P. if and only if the corresponding 
constraint in the dual is an equality. 



Chapter 3 

Advanced Linear Programming Topics 

3.1 Efficient Computational Techniques for 
Large L.P. Problems 

We shall now discuss how large linear programming problems may be 
solved on a digital computer with the aid of properly organized calculations. 
In spite of the recent tremendous advancement in the computational power 
and memory size of modern computers, computational difficulties still arise 
in solving large L.P. problems. New techniques have been developed to 
overcome some of these. The techniques that we shall discuss are: the re­
vised simplex method, the dual simplex method, the primal-dual algorithm, 
and Wolfe-Dantzig decomposition. 

3.2 The Revised Simplex Method 

We turn now to improving the efficiency of the simplex method presented 
in the previous chapter. Although fairly small problems can be solved by 
hand using the method, realistic industrial problems are too large for even 
the most patient arithmetician. As they are to be solved using scarce, expen­
sive computer time, it is desirable to make the simplex method as efficient 
as possible. 

Anyone who has used the simplex method on a nontrivial problem will 
have noticed that most tableau entries have their values calculated and re­
calculated. Often, many such values are never actually used to make deci­
sions about entering and leaving basic variables and may just as well never 

106 
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have been computed. At any iteration, what entries are necessary in order to 
know how to proceed? The xo-row coefficients of non basic variables are 
needed to decide whether or not to continue, and if so what variable enters 
the basis. The other coefficients of entering variable and the r.h.s. entries 
are needed to take ratios to decide which variable should leave the basis. It 
is desirable to have these values available without having to calculate all 
the others, which are of no immediate interest. 

The revised simplex method achieves this. It is in essence no different 
from the simplex method; it is simply a more efficient way of going about 
things when using a computer. As fewer numbers are calculated at each 
iteration, less storage is required by the computer, which may be an impor­
tant factor in dealing with relatively large problems. 

3.2.1 A Numerical Example 

Let us return once more to Problem 2.1 and find how we can solve it in an 
efficient manner. The first two tableaux generated in solving the problem 
by the regular simplex method are given in Tables 3.1 and 3.2. 

Table 3.1 

Constraints Xl X 2 X3 X4 Xs Lh.s. Ratio 

(2.11) 3 4 1 0 0 12 12 
3 

(2.12) 3 3 0 0 10 10 
3 

(2.13) @ 2 0 0 8 8 
4: 

Xo -4 -3 0 0 0 0 

Table 3.2 

Constraints Xl X 2 X3 X4 Xs Lh.s. Ratio 

(2.11) 0 .2. 0 3 6 12 
2 4: 5 

(2.12) 0 3 0 1 ~ 4 .§. 
2" 4 3 

(2.13) 1 0 0 1 2 4 
2" 4: T 

Xo 0 -1 0 0 8 

Given Table 3.1, what information is needed to generate the next itera­
tion, which produces Table 3.2? In order to decide whether any further itera­
tions are necessary, the Xo row is required: (- 4, - 3, 0, 0, 0, 0). The column 
(3,3,4, V of the incoming variable x 1 and the r.h.s. column (12, 10,8, V are 
required to decide upon the outgoing basic variable. None of the other 
information is relevant at this moment. 
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Recall that the simplex method starts with an initial basis and a corre­
sponding basic feasible solution and generates a sequence of improving basic 
feasible solutions by replacing one basic variable at a time. The kernel of the 
revised simplex method is that the basic feasible solution corresponding to 
any basis can be calculated from the original tableau by a correct sequence 
of row operations. In order to motivate this, consider Problem 2.1 in matrix 
form: 

Maximize: Xo = (4,3,0,0,0)(Xb X2,X 3,X4 ,Xsf 
subject to: Xl 

G 
4 1 ° ~) 

X2 

~ (:~) 3 ° 1 X3 (3.1) 

2 ° ° X4 

Xs 

Xi ~ 0, i = 1,2, ... , 5. (3.2) 

In this problem, three equations in five unknowns form the constraints. 
Hence any basic feasible solution is found by setting two variables equal to 
zero and solving the remaining three equations in three unknowns. This 
creates a basis matrix, a sub matrix of the original constraint matrix, found 
by deleting the columns corresponding to nonbasic variables. 

The initial basis is PI = {X3,X4,XS}' In Table 3.1 it can be seen that Xl 
should replace Xs in the basis, creating a basis P2 = {X 3,X4,xd. The basis 
matrix for P2 is found by deleting columns 2 and 5 from the constraint 
matrix in (3.1) and rearranging the order of the remaining columns if neces-
sary, i.e. 

(1 ° 3) 
B= ° 1 3 . 

004 
And, as 

X2 = Xs = 0, 
(3.1) can be abbreviated as 

so that the basic feasible solution (bJ.s.) corresponding to P2 is 

Once B~ I has been found, any column in the tableau representing the 
hJ.s. based on Pi can be calculated. This is achieved by multiplying the 
original column by B~ 1. For instance, if it is desired to find the X2 column 
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(;2 in the tableau corresponding to P2, 
(;2 = B- l C2 

where 
Ci = Xi column in original tableau, 

Ei = updated Xi column. 
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It is necessary to calculate the Xo row in any new tableau to find whether 
the new tableau is optimal and, if not, which variable should enter the 
basis. The xo-row coefficients of the basic variables will be zero. How are 
the xo-row coefficients of the non basic variables calculated in the regular 
simplex method? For instance, let us discover the steps taken to calculate 
C2' the xo-row coefficient of X2 in Table 3.2. Suppose that rows (2.11), (2.12), 
and (2.13) have been updated, and now the Xo row is to be revised. One can 
form a vector of the coefficients of the basic variables in the original tableau: 

CB = (0,0, -4). 
The scalar 

is the quantity that has been subtracted from the original xo-row coefficient 
of X2 when Table 3.2 has been arrived at. Hence 

c, ~ " - e,G, ~ - 3 - (0,0, -4)(!) ~ -l. 
But we have seen how to deduce E2 from C 2 , i.e., 

E2 = B- l C2 

C2 = C2 - cBB- l C2 · 

For brevity let 

Then 

The entries in n are called simplex multipliers. 
We are now in a position to calculate all the nonbasic variable coefficients, 

given that the new basis is P2: 

• ~ c,Jr' ~ (0,0, -4)(~ ° 1 

° 
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C2 = - 1, as before 

Cs = Cs - nCs 

~ ° - (0,0, -l)(~) 
=1. 

On examining c2 and Cs we see that c2 alone is negative and therefore X2 

enters the basis. We must now decide which variable leaves the basis. The 
information required for this is the X2 column entries and the r.h.s. entries in 
the new tableau, Table 3.2. These can be obtained, as shown earlier, by mul­
tiplying the original X2 column and r.h.s. by B- 1• On taking ratios it is seen 
that X3 should leave the basis. The new basis becomes 

Thus the new B is 

(4 ° 3) B= 3 1 3. 

2 ° 4 

We could calculate the new B- 1 by directly inverting B. However, because of 
the nature of the simplex iteration it is computationally more efficient to 
calculate each new B- 1 from the previous one. In order to understand how 
this can be achieved it is necessary to realise that each entry bi} 1, i #- j, in 
B- 1 is simply the multiple of the original constraint (j) which has been fi­
nally added to the original constraint (i) to obtain the ith row in present 
tableau. For instance, if we wished to create row (2.12) in the next tableau 
from Table 3.2 using the regular simplex method we would subtract i/~ 
times row (2.11) from row (2.12). Thus the middle row in the new B- 1 (cor­
responding to (2.12)) can be obtained from the previous B- 1 in the same 
way, i.e., 

(b:;l, b:;i, b:;i) = (0,1, - i) - (i/~)(l, 0, - i) 
= (-t1,-13o). 

The bottom row can be found in a similar manner: 

(b 3l, b321, b3i) = (O,OJ) - (!/~)(1,0, -i) 
= (-t,OJ). 

Of course, the top row can be found by dividing the top row of the previous 
B- 1 by ~. Therefore, 

(btl,bti,btl) = ~(1,0, -i) 
= (~,O, - ?o). 
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Hence the new B- 1 is 

Now the very first B is I, so 

o 
1 
o 

-1:0) -10 . 
2 
"5 

B- 1 = I, initially. 

III 

The next B- 1 can be obtained from this one, using the method illustrated 
above. And indeed each B- 1 can be found from the one before. 

Going back to the example, we can now calculate the new simplex mul­
tipliers associated with the new basis /33: 

n = cBB- 1 = (-3,0, -4) (-! 
-5 

o 
1 
o 

3 ) 

-TO 

- ~o = ( - ~, 0, - ?o ). 

We now calculate the nonbasic Cj to discover whether or not /33 is an optimal 
basis: 

_1. 
-5 

(;5 = C5 - nC5 

7 
=TO' 

As both entries are nonnegative, the optimal solution has been found. This 
solution is 

i = 3, 5. 

The actual solution value can be found by substituting these values in the 
original objective function. 

x~ = (3, 0, 4)(l) 
= 5l· ! 
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3.2.2 Summary of the Revised Simplex Method 

Consider the following problem: 

Maximize: 

subject to: 

with m constraints and n variables. 
Let 

AX=B 

X~O, 

a12 

a22 

am2 ... 

Let the jth column of A be denoted by Ci , i.e., 

(
ali) 

C j ~ ~'j . 

am} 

a.") a2n 

amn 

(3.3) 

(3.4) 

Suppose at some point in the implementation of the revised simplex method 
a basis Pi has been identified corresponding to a basic feasible solution to 
the problem. Without loss of generality, let this basis be given by the first 
m variables, i.e. 

A basis matrix Bi is defined for each basis Pi. Bi is the matrix formed by 
ordering the columns of A corresponding to the variables in Pi in the order 
in which they would form the columns of an identity matrix in the regular 
simplex tableau. 

Suppose that for Pi this order is 1,2, ... , m; then 

B· = (::: ::: 
I • 

ami am2 

. .. aim) 

. .. ~2m = (C1 

amn 

For the first basic feasible solution, with a basis of slack and artificial 
variables, 

(3.5) 
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In order to discover whether or not the bJ.s. corresponding to Pi is optimal, 
it is necessary to calculate Bi- 1• With the first basis matrix, because of (3.5), 

Bi 1 = I. 

However, in general Bi- 1 can be calculated from Bi-- 11 as follows. 
Suppose that the last variable to enter Pi is x p' and that xp is the basic 

variable for the qth constraint. That is, in terms of the regular simplex 
method, the element in the qth row and pth column was the pivot element. 
Now let (a~p), k = 1,2, ... , m be the column entries according to xp in the 
tableau corresponding to Pi-1 and 

C 
a12 

... 
~,.) 

B.- 1 = a21 a22 ... 
a2m 

,-1 . 

amI a m2 a mm 

Then the entry in the kth row and jth column of Bi- 1 is 

or 

for k # q, 

aqp -,-, for k = q. 
aqp 

Once B i- 1 is calculated as described above, the Xo row corresponding to 
Pi is found. 

Let CB be the row vector of the negative of the basic variable coefficients. 
Define the simplex multipliers '7ti as 

'7ti = cBBi- l • 

Once the row vector '7t i has been found, the non basic variable coefficients of 
the Xo row are calculated. 

Let cj be the Xo row coefficient of each nonbasic variable Xj' Then 

Cj = cj - '7tiCj, for all nonbasic variables Xj' 

If 
Cj ;?: 0, for all nonbasic variables Xj' (3.6) 

the basis Pi corresponds to an optimal solution. This solution X B can be 
found as follows: 

(3.7) 

and the optimal solution value is 

If (3.6) is not satisfied, the column corresponding to the entry which is largest 
in magnitude is identified. Let this be column p. xp will enter the next 
basis, P i+ 1 . 
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In order to determine which basic variable xp replaces it is necessary to 
calculate the r.h.s. and pth column in the tableau according to f3i. The r.h.s. 
column is given in (3.7); the pth column, C~ is 

C~ = Bi-1Cp • 

Ratios of corresponding elements of X B and C~ are formed to decide which 
variable leaves f3i> say the basic variable for the qth constraint. Now f3H 1 
can be identified, and the previous steps can be repeated with f3i+ 1 replacing 
f3i. The process stops, as with the regular simplex method, when (3.6) is 
satisfied. 

3.2.3 The Calculations in Compact Form 

Problem 2.1 will now be reworked using the revised simplex method with 
the calculations laid out in the normal compact form. The reader should 
compare this with the tableaux necessary for the regular simplex method, 
shown in Tables 2.2-2.8. 

From (3.1): 

A ~ (! ~ ~ ~ ~), 
c = (4,3,0,0,0). 

The iterations are shown in Tables 3.3-3.5. Table 3.5 reveals the same op­
timal solution as that found by the regular simplex method in Table 2.8, 
namely, 

xi = 4 
5 

x* _1.2. 2 - 5 

x: = 2 
5 

x! = x! = ° 
x* - 52 0- 5 . 

Table 3.3 

PI CB B- 1 
1 1[1 

X3 0 0 0 0 

X 4 0 0 0 0 

X5 0 0 0 0 

(-c) -4 -3 0 0 0 

b Cj 

12 3 

10 3 

8 4 

0 

Ratio 

12 
""3 
10 
""3 

.!l. 
4 

Entering 
variable 
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Table 3.4 

Entering 

P2 CB Bi 1 11:2 b Cj Ratio variable 

X3 0 0 3 0 6 t II X 2 -4 5 

X4 0 0 1 3 0 4 t .!!. -4 3 

Xl -4 0 0 1 -1 2 1 4 
4 "2 T 

(-c) 0 -1 0 0 1 8 

Table 3.5 

P3 CB B- 1 
3 11:3 b 

x 2 -3 1- 0 -130 
2 12 

5 -s ""5 

X4 0 3 1 -?o 0 2 -s S 

Xl -4 1 0 1- 7 4 -s 5 -TO S 

(-c) 0 0 1- 0 /0 
52 

5 ""5 

To sum up, the advantages of the revised over the regular simplex method 
are: 

1. Fewer calculations are required. 
2. Less storage is required when implementing the revised simplex method 

on a computer. 
3. There is less accumulation of round-off error, as tableau entries are not 

repeatedly recalculated. An updated column of entries is not calculated 
until its variable is about to become basic. 

3.3 The Dual Simplex Method 

3.3.1 Background 

Consider the application of the simplex method to an L.P. problem. When 
an optimal solution has been found (assuming its existence), the optimal 
solution to the dual problem can be found by inspecting the optimal primal 
tableau. However, each tableau generated by the simplex method in solving 
the primal can be inspected to yield a solution to the dual. What is the 
nature of this sequence of solutions to the dual? It can be shown that all 
except the last are infeasible and have solution values which are better than 
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the optimum. As an example of this, consider Problem 2.1 and its solution 
by the simplex method: 

Maximize: 4Xl + 3X2 

subject to: 3x1 + 4X2 + X3 

= Xo 

= 12 

=10 

+ Xs = 8 

This problem has the following dual: 

Minimize: 

subject to: 
12Yt + 1OY2 + 8Y3 

3Yl + 3Y2 + 4Y3 - Y4 

4Yl + 3Y2 + 2h 

Yl' Y2, h, Y4, Y6 ~ o. 

= Yo 
=4 

- Y6 = 3 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The initial tableau for the primal is shown in Table 2.6, repeated here for 
convenience. 

Table 2.6 

Constraints Xl X 2 X3 X4 Xs r.h.s. 

(2.11) 3 4 1 0 0 12 
(2.12) 3 3 0 1 0 10 
(2.13) ® 2 0 0 1 8 
(2.10) -4 -3 0 0 0 0 

Using the summary given in Section 2.6.1.3 on interpreting the primal 
tableau to find a solution to the dual, it can be seen that Table 2.6 corresponds 
to the following dual solution: 

and 

Yl = 0 

Y2 =0 

Y3 = 0 

Y4 =-4 

Y6 = -3 

Yo = o. 
When we solved the dual in Section 2.6.1.2 we found that the optimal 
solution had value 

Y* -g 0- s· 

Hence this present solution is better in value (Yo = 0), as we are minimizing. 
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Table 2.7 

Constraints Xl X 2 X3 X 4 Xs r.h.s. 

(2.11) 0 1 1 0 3 6 -"4 

(2.12) 0 ~ 0 1 3 4 -"4 

(2.13) t 0 0 .1 2 4 

(2.10) 0 -1 0 0 1 8 

The next simplex iteration for the primal produces Table 2.7, repeated 
here for convenience. 

This corresponds to the following dual solution: 

and 

Yl = 0 

Y2 = 0 

Y3 = 1 

Y4=O 

Y6 = -1 

Yo = 8. 

This solution is still infeasible, and is worse in value than the last produced, 
but still better than the optimal solution which is generated in the next 
iteration (see Section 2.6.1.3). 

It is true in general that the sequence of solutions (all but the last) for a 
dual problem generated by interpreting successive primal tableaux have the 
following properties: 

1. They are infeasible. 
2. Each has a solution value worse than the last. 

The very last such solution is optimal, as has been seen in the previous 
chapter. So the possibility presents itself of a new approach to solving L.P. 
problems. Rather than start with a feasible solution and produce a sequence 
of feasible and improving (better solution values) solutions, why not start 
with an infe~sible solution and produce a sequence of infeasible solutions 
with worsening solution values ultimately terminating with the optimal 
solution? The dual simplex method does just that. 

When is such a strategy likely to produce a more efficient procedure? 
When a problem contains many "~" constraints, many artificial variables 
have to be introduced in the regular simplex method. Considerable effort 
may be expe~ded in reaching a solution in which all of these have zero value. 
In such circumstances it is usually better to start with an initial solution of 
slack variables. Such a solution will be infeasible, as each slack in a "~" 
constraint will have negative value. However, usually fewer iterations are 
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needed to attain optimality than in the two-phase method or the big M 
method. 

A second situation in which one is trying to transform an infeasible 
solution into a feasible solution with a worse value is in postoptimal analysis. 
The optimal solution to an L.P. problem may no longer be feasible once 
changes are made to the parameters of the problem. The dual simplex 
method can be applied to transform this basic, infeasible solution into the 
optimal one. The mechanics of the method will be explained by means of 
an example in the next section. 

3.3.2 The Dual Simplex Method Applied to a Numerical Example 

One of the problems of the previous section will be solved by the dual 
simplex method: 

Minimize: 12Yl + lOY2 + 8Y3 = Yo 

subject to: 3Yl + 3Y2 + 4Y3 - Y4 =4 

- Y6 = 3 

Yb h, Y3, Y4, Y6 ~ O. 

As usual we shall adopt the criterion of maximization: 

Maximize: 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Consider problem (3.9)-(3.12) as the primal L.P. The initial step is to 
find a basic solution in the first tableau in which: 

1. The criterion for optimality is satisfied, (all nonbasic variables have non­
negative Yo-row coefficients); and 

2. All basic variables have zero Yo-row coefficients. 

Table 3.6 displays the problem. It can be seen that criteria 1 and 2 would 
be satisfied if the nonzero entries in the Y 4 and Y 6 columns were of opposite 
sign. Then {Y4, Y6} would be a suitable basic set. This is achieved by multi­
plying the two constraints by negative one, as shown in Table 3.7, i.e., 

Y4 =-4 

Y6 = -3. 

Table 3.6 

Constraints Yl Y2 Y3 Y4 Y6 r.h.s. 

(3.9) 3 3 4 -1 0 4 
(3.10) 4 3 2 0 -1 3 

Y~ 12 10 8 0 0 0 
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Table 3.7 

Constraints Y1 Y2 Y3 Y4 Y6 r.h.s. 

(3.9) -3 -3 -4 1 0 -4 
(3.10) -4 -3 -2 0 1 -3 

Y~ 12 10 8 0 0 0 

This solution corresponds to a basis of all slack variables, which is 
usually the case. If it was feasible it would be optimal, as the criterion for 
optimality is satisfied. Alas, this is not the case, as both basic variables are 
negative. However, the solution value is 

Y~ = 0, 

which is better than the known optimum of 51. This solution corresponds 
to the solution in Table 2.8, as discussed in the previous section. (The reader 
is urged to compare the discussion concerning the numerical example in 
Section 3.3.1 with the similar steps of the present section.) As the present 
solution is infeasible, a change of basis is made in order to reduce this 
infeasibility, so it must be decided which variable leaves the basis and which 
enters. 

First the question of the leaving variable is settled. Recall that when 
the regular simplex method is applied to the dual the variable with the most 
negative xo-row coefficient is selected to enter the basis. This is shown in 
Section 3.3.1, where Xl is selected as the incoming basic variable in Table 2.6. 
This most negative xo-row coefficient corresponds to a value of one of basic 
variables in the problem. For instance, the most negative xo-row coefficient 
of variable Xl' equalling -4, corresponds to the present value of Y4' (Com­
pare Tables 2.6 and 3.7). It is this basic variable which is to leave the basis. 
This is intuitively quite reasonable, as it is natural to remove the most 
negative variable when trying to attain feasibility by eventually making all 
variables nonnegative. 

Next the question of which variable enters the basis is settled. Once 
again, let us consider the mechanics ofthe regular simplex method in solving 
the dual. Having selected Xl to enter the basis, one then takes the ratios 

(:111 ' :12/ :13J = C32
, 13°, ~) 

and selects the minimum. The ratios correspond to a set of ratios in Table 
3.7: 

(~23' ~03' ~4} 
Note that when taking ratios with the regular simplex method, ratios with 
negative denominators are ignored. Now, as all equations in our primal in 
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Table 3.7 have been multiplied by -1, only ratios with negative denominators 
are taken into account and the variable corresponding to the largest ratio 
enters the basis. Thus Y3 enters the basis. 

Note that the above criteria for deciding which variables enter and leave 
the basis represent a departure from the regular simplex method. However, 
the mechanics of the regular and dual simplex methods are otherwise the 
same. 

Once it is determined that Y3 enters the basis and Y4leaves, this transfor­
mation is carried out by the usual Gauss-Jordan elimination, which produces 
Table 3.8. This solution corresponds to the second one found in the previous 
section, i.e., 

Y3 = 1 

Y6 = -1 
Yo = -8, i.e., Yo = 8. 

Note that the value needs to be multiplied by -1, as we took the negative 
of the objective function in (3.12) in order to maximize. 

Table 3.8 

Constraints YI Y2 Y3 Y4 Y6 r.h.s. 

(3.9) i J. 1 1 0 1 4 -4 

(3.10) 5 3 0 1 -1 -2" -2" -2" 

Yo 6 4 0 2 0 -8 

The process is repeated once more. The leaving basic variable is Y6, as it 
is the only one with a negative value. Taking the ratios, we obtain 

6/( -~), 4/( -i), 2/( -!). 

Thus Yl enters the basis. This produces Table 3.9, which represents the 
optimal solution to the problem, as it is feasible and satisfies the criterion 
for optimality. The solution is identical to that found previously. 

Table 3.9 

Constraints YI Y2 Y3 Y4 Y6 r.h.s. 

(3.9) 0 ..L 1 2 3 ?o 10 -5 -TO 

(3.10) 3 0 1. 2 ~ 
5 5 -s 5 

Yo 0 ~ 0 ! il 52 
5 5 -5 
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3.3.3 Summary of the Dual Simplex Method 

When solving an L.P. problem with the dual simplex method the following 
steps are carried out. 

Step 1. Equality constraints are split into pairs of inequality constraints with 
opposite sense. For example, the equality constraint 

is replaced by 

and 

which on the introduction of slack variables become 

and 

Step 2. A basic solution (normally comprising exactly the set of slack vari­
ables) is found which satisfies the criterion for optimality. This criterion is 
that all xo-row coefficients for non basic variables are nonnegative. Of course 
all basic variable xo-row coefficients must be zero, as usual. 

Step 3 

3.1. Determination of the feasibility of the present solution. Each solution 
generated satisfies the condition for optimality. Thus if it is feasible it 
will be optimal. A solution will be feasible if all its variable values are 
nonnegative. If this is so, the process is terminated and the present 
solution is optimal. Otherwise, proceed. 

3.2. Determination of variable to leave the basis. Among all variables with 
negative values, the one with the value which is largest in magnitude is 
selected to leave the basis. 

3.3. Determination of variable to enter the basis. Identify the equation 
which contains a unit coefficient for the leaving variable discovered in 
step 3.2. Identify all variables which have negative coefficients in this 
equation, say (j). For each such variable, form a ratio of its current 
xo-row coefficient divided by its coefficient in equation (j). The variable 
with the ratio which is largest enters the basis. 

3.4. Make the change of basis according to the variables found in steps 3.2 
and 3.3 by Gauss-Jordan elimination and create a new tableau. Go to 
step 3.1. 

It is important that the reader realises that the dual simplex method 
performs corresponding iterations on the L.P. problem as the regular simplex 
method would perform on the dual problem. 
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3.4 The Primal-Dual Algorithm 

The dual simplex method was presented in Section 3.3 as a way of overcoming 
the inefficiency brought about by introducing a relatively large number of 
artificial variables when solving an L.P. problem. There is another approach 
possible. Rather than begin with an infeasible solution with value better 
than the optimum, as in the dual simplex method, why not begin with an 
infeasible, worse than optimal solution? At least such an initial solution 
should be easy to find. This is the essence of the primal-dual algorithm. 

The algorithm begins by constructing the dual L.P. problem. A feasible 
solution is then found for the dual. On the basis ofthis solution, the original 
primal L.P. is modified and this modified problem is used to create a new 
feasible solution to the dual with an improved value. The process continues 
in this manner, examining solutions to the dual and a modified primal 
alternately until the optimal dual solution is produced. (Convergence must 
take place.) Loosely speaking the successive solutions to the dual correspond 
to primal solutions which are successively less infeasible for the primal, until 
the optimal dual solution corresponds to a primal solution which is not 
only feasible but optimal. 

The algorithm is fully described in Hadley (1962) and Dantzig (1963). 

3.5 Dantzig-Wolfe Decomposition 

3.5.1 Background 

Nearly all real-world L.P. problems have far more variables and constraints 
than the small problems concocted for illustrative purposes so far in this 
book. In fact some industrial problems are so large that it is not very practical 
to consider solving them by the methods presented up to this point. One 
line of approach is to ask what special structure an L.P. must possess in 
order for it to be possible to break it up into a number of smaller, hopefully 
easier subproblems. The idea is to somehow combine the solutions of the 
subproblems in order to find the solution for the original problem. 

It has been found that many realistic L.P. problems possess a matrix A 
of l.h.s. coefficients which has the property called block angular structure. 
What this structure is will be described a little later. The point is that block 
angular L.P. problems can be decomposed into smaller subproblems. By 
solving these in a special way it is possible to identify an optimal solution 
to the original problem. This is achieved by Dantzig-Wolfe decomposition, 
which is due to Dantzig and Wolfe (1960). Their method is now introduced 
by means of a numerical example. This section requires a more thorough 
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understanding of matrix theory. The unprepared reader is referred to the 
Appendix. 

3.5.2 Numerical Example 

We shall now consider an expanded version of the coal mining problem 
which was introduced at the beginning of the previous chapter. Suppose 
now that the coal mine mentioned earlier (mine No.1) is taken over by 
another company which already owns a mine (No.2). Thus the company 
now has two mines. For simplicity, constraints generated by screening the 
coal are neglected. However the company is anxious to maintain good 
labour relations with its new miners, and so maintains the same restriction 
of 12 and 8 hours of cutting and washing, respectively, per day, with unit 
consumption being 2 and 1 hour for lignite and 1 hour for anthracite for 
both cutting and washing. A restriction of 24 and 14 hours per day of cutting 
and washing are in force at mine 2. Electricity and gas are purchased by the 
company and supplied to its mines. Because the mines employ different 
processes, the same type of coal in different mines requires different amounts 
of electricity and gas to produce the same quantity. Thus, to produce one 
ton oflignite and anthracite requires 2 and 3 units of electricity, respectively, 
in mine 1 and 4 and 1 units, respectively, in mine 2. The corresponding 
figures for gas consumption are it t~, 6, and 8. Due to energy shortages 
the company is allocated a maximum of 20 and 30 units daily of electricity 
and gas, respectively. The unit profit for mine 1 lignite and anthracite was 
$4 and $3, respectively (in hundreds of dollars), and this can be maintained. 
Because of increased shipping costs, as mine 2 is in a remote area, unit 
profit for mine 2 lignite and anthracite is $i~ and $;~ respectively. Let 

Xl = daily production of mine 1 lignite in tons 
X2 = daily production of mine 1 anthracite in tons 
X3 = daily production of mine 2 lignite in tons 
X4 = daily production of mine 2 anthracite in tons. 

Then the problem can be expressed as follows: 

Maximize: 4Xl + 3X2 + HX3 + ;~X4 = Xo 

2Xl + 3X2 + 4X3 + X4 :s; 20 

subject to: t~Xl + t~X2 + 6X3 + 8x4 :s; 30 

3xl + 4X2 :s; 12 

4Xl + 2X2 :S;8 

2X3 + x4 :s; 24 

X3 + X4 :s; 14 

Xt.X2,X3,X4 Z o. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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Matrix A for this problem is 

2 3 I 4 1 
I 

1~ 1~ I 6 8 ______ ..1 ____ _ 

3 4 1 0 0 
4 2 1 0 0 
--------t-----
o 0 1 2 1 
o 0 1 1 1 

Now, letting 

A1 = (:6 :6)' 
19 19 

A can be expressed as 

where 0 is a 2 x 2 matrix of zeros. In general, a matrix which can be expressed 
as 

A1 A2 AN 

AN+ 1 0 0 
0 AN+ 2 0 

0 0 A2N 

is termed block angular. Let Xi be the vector of variables corresponding to 
the columns of submatrix Ai' The constraints: 

N 

I Aixi S bo 
i= 1 

are called global constraints. The constraints: 

are called local constraints. 
Block angular matrices appear in L.P. problems when, as in the present 

example, the total operation can be divided into groups of activities, each 
with its own exclusive resources, and there are further resources which 
must be shared by all activities. Thus, apart from the gas and electricity 
constraints the problem can be considered as two separate L.P. problems, 
one for each mine. These subproblems are: 
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Maximize: 

subject to: 

Mine 1 

4Xl + 3X2 

3x1 + 4X2 ::::;; 12 

4Xl + 2X2 ::::;; 8 

Xl,X2 ;:::: O. 

Maximize: 

subject to: 

Mine 2 

nX 3 + i~X4 
2X3 + X4::::;; 24 

X3 + X4::::;; 14 

X3,X4;::::O. 

In the general case there will be N subproblems of the form: 

Maximize: 

subject to: 

T 
CjXj 

AN+jxj::::;;bj , forj=1,2, ... ,N, 

Xj;:::: 0 
where 

C = (c1 C2 

X = (Xl X2 

b = (bi bI 

CN)T = the vector of objective function coefficients. 

xNf = the vector of decision variables. 

b~f = the vector of r.h.s. constants. 
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Now suppose the constraints (3.14) and (3.15) are temporarily ignored. Then 
if the optimal solutions to the two subproblems are feasible for these con­
straints, their combination represents an optimal solution to the original 
problem. Hence it appears worthwhile to attempt to solve the original 
problem by analyzing the subproblems. Of course, there must be some 
modification to the strategy of simply solving the subproblems, as their 
combined solutions will seldom satisfy the global constraints (3.14) and 
(3.15). A technique called the method of decomposition developed by Dantzig 
and Wolfe will now be explained by using it to solve the example problem. 
The simplified version of the method assumes that each subproblem has a 
set of feasible solutions which is bounded, i.e., no variable can take on an 
infinite feasible value. We make that assumption here. 

The assumption of boundedness implies that the set of feasible solutions 
for each subproblem has a finite number of extreme points. Furthermore, 
any point in such a set can be expressed as a convex combination of these 
extreme points. More precisely, if subproblem j, j = 1, 2, ... , N, has mj 
extreme points, denoted by x~, k = 1, 2, ... , mj, then any feasible solution 
Xj to the subproblemj can be expressed as: 

where 
mj 

L Q(~ = 1 
k=l 

k = 1,2, ... , nj. 

Also, no point outside the set can be expressed in this way. 
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For example, in subproblem 1, Figure 2.1 reveals that there are four 
extreme points: 

X~ = (0,0), xi = (2,0), xi = (0,3), 

So ml = 4. Thus any point, Xl in the feasible region satisfies 

where 

k = 1,2,3,4. 

A similar expression for subproblem 2 can be found which also involves 
four extreme points: 

Xl = (=~) = (~~xl + ~ixi + ~ixi + ~ixi) 
4 

(3.21) 

= L ~~x1 
k= I 

and 

Xz = G:) = ( ~~x~ + ~~x~ + ~~x~ + ~ixi) 
4 

(3.22) 

= L ~~x~. 
k=l 

Now problem (3.13)-(3.20) can be written in matrix form as follows: 

Maximize: (4,3)(:J + GjJ~)G:) 

subject to: (3.23) 

(3.24) 

(3.25) 

Xi 20, i = 1,2, 3,4. (3.26) 

Now if (3.21) and (3.22) are used to eliminate Xl' Xz, x 3, and X4 from this 
formulation, (3.24), (3.25), and (3.26) are no longer needed, as they are 
implicitly satisfied in (3.21) and (3.22). Making this substitution, the problem 
becomes: 

4 4 

Maximize: (4,3) L ~~x~ + m,;~) L !X~x~ (3.27) 
k=l k=l 
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subject to: (2 3) ~ k k (4 
46 46 L... O(lX l + 6 
19 19 k=l 

O(J + O(J + O(j + O() = 1, 
O(J ~ 0, j = 1,2 

1) ~ k k [20J 
8 k~l 0(2X 2:-S; 30 

j = 1,2 

k = 1,2,3,4. 
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(3.28) 

(3.29) 

The x~ and x~ are constant. The decision variables are the 0(7. However, 
the formulation has fewer constraints and should be easier to solve. 

It would appear that it is necessary to find all the extreme points of the 
subproblems before the solving process can be started. This is a substantial 
task and would negate the gains made by the reduction in the number of 
constraints. Fortunately, it is unnecessary to find all the extreme points 
first; they can be found one at a time as needed. The basis for achieving 
this is the revised simplex method. 

We begin by introducing slack variables into (3.28): 

(2 3) ~ k k (4 1) ~ k k (xs) (20) 
tg tg k~l O(lX l + 6 8 k~l 0(2X 2 + X6 = 30 . 

Define the actual variable values at the extreme points as follows: 

1 (x~) 
Xl = X~ , 

2 (xi) 
Xl = X~ , 

3 (xi) 
Xl = X~ , 

4 (xt) 
Xl = X~ , 

1 (x~) 
X2 = xl ' 2 (x~) 

X2 = xi ' 3 (x~) 
X 2 = xl ' 4 (x~) 

X 2 = x! . 

On substituting these into problem (3.27)-(3.29), we obtain the following 
problem: 

Maximize: 

subject to: 1 Xl 2 Xl 3 Xl 4 Xl 
( 

2 3 
) { ( 1) ( 2) ( 3) ( 4)} 

tg tg 0(1 X~ + 0(1 X~ + 0(1 X~ + 0(1 X~ 

1 X3 2 X3 3 X3 4 X3 (4 1){ ( 1) ( 2) ( 3) ( 4)} + 6 8 0(2 xl + 0(2 xi + 0(2 xl + 0(2 X! 

+ (::) = G~) 
O(~ + O(i + O(i + O(t = 1 

O(~ + O(~ + O(~ + O(~ = 1 

O(J ~ 0, for all j, k. 
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On rearrangement, this becomes 

Maximize: 

subject to: 

(4x~ + 3x~)cd + (4xi + 3x~)Cti + (4xI + 3x~)CtI 
+ (4xi + 3xi)Cti + mx~ + nxi)Ct~ + mx~ + i~xl)Ct~ (3.30) 

+ mx~ + ;~x~)Ct~ + mx~ + i~x!)Cti 
(2x~ + 3x~)Ct~ + (2xi + 3x~)Cti + (2xI + 3x~)Cti 
+ (2xi + 3xi)Cti + (4x~ + xi)Ct1 + (4x~ + xl)Ct~ 
+ (4x~ + x~)Ct~ + (4x~ + x!)Cti + Xs = 20 

(nx~ + nx~)Ct~ + (i~xi + i~x~)Cti + mXI + i~x~)Cti 

(3.31 ) 

+ (nxi + i~xi)ai + (6x~ + 8xi)Ct1 + (6x~ + 8xl)Ct~ (3.32) 

+ (6x~ + 8xl)Ct~ + (6x~ + 8xl)Cti + X6 = 30 

a~ + Cti + Cti + ai = 1 

c.:1 + c.:~ + a~ + ai = 1 

aJ ;:::: 0, for all j, k. 

Now on examining the subproblems it can be seen that (0, of is an extreme 
point for both problems. Let 

and 

(:1) = (~) 

(:D = (~} 
These points are associated with a~ and aL respectively. These values of 
xl, x~, x1, and xi, cause a~ and a~ to drop out of (3.31) and (3.32). Thus a 
suitable initial basis is 

Hence, in terms of the revised simplex method, 

B=(~ ~ ~ ~)= -1 ° ° lOB , 

° ° ° 1 
xB = [20,30,1,1]T 

CB = [0,0,0, Oy. 
The subscript of the B, denoting the iteration number, has been dropped, 
as we shall use it for another purpose soon. 

We must now decide whether or not this solution is optimal. This is done 
in the revised simplex method by examining the sign of the minimum 
element in the Xo row. Let cjk be the xo-row coefficient of aJ. Now the 
evaluation of the Cjk depends upon the extreme points xJ. However, rather 
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than determining all extreme points one can simply find the extreme point 
for each subproblemj which yields the smallest Cjk' Now remember that the 
x~ are the extreme points for subproblem j, which has the following feasible 
region: 

AN+jXj::S; bj 

Xj ~ o. 
Thus the problem of finding the extreme point for each subproblemj yielding 
the smallest Cjk reduces to solving a number of L.P.'s of the following form: 

Minimize: 

subject to: 

Cjk 

AN+jxj::S; bj 

Xj ~ O. 

(3.33) 

At any iteration of the revised simplex method, an expression for the Cjk 

can be found as follows. Recall that the xo-row coefficient Cj of each nonbasic 
variable Xj in an ordinary problem is found by 

where 

C j = the original coefficient of x j 

Cj = the jth column of A 

1ti = C~B-1, the current simplex multipliers. 

Now for our original problem let p be the number of global constraints. In 
the present example, let 

(B- 1)P = the first p columns of B- 1 

Bj 1 = the jth column of B-1, considered as a vector. 

Then 
- T(B-1)PA k + TB-1 T k Cjk=CB j'xj CB p+j-CjkXj 

_ ( T(B-1)PA T) k TB-1 - CB j - cjk Xj + CB p+ j' 

This expression can be substituted into (3.33) to produce the following for­
mulation: 

Minimize: 

subject to: 
(C~(B-1)PAj - c~)Xj + c~B;.!j 
AN+jxj::S; bj 

Xj ~O. 

The optimal (minimal) solution value of this L.P. corresponds to the mini­
mum xo-row coefficient in the original problem. If it is negative, the optimal 
solution to (3.33) corresponds to the extreme point we are trying to find. 

Thus an L.P. of the form of (3.33) must be solved for each subproblem. 
If all solution values are nonnegative, no further iterations are required. 
Returning to the example problem, the L.P. of the form (3.33) for the first 
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subproblem is 

Minimize ((0,0,0, 0) (~ ~) G !;)-(4, 3)) (::) +(0, 0, 0, 0) W-xi 

subject to: (! ~)(::) ~ C~) 

GJ 2 (~} 
This problem can be solved graphically by examining Figure 2.1. More gen­
eral problems can be solved by the simplex method. The optimal solution is 

and 

xt = 

x~ = 

4 
5 

12 
5 

(X6)* = -V· 
This corresponds to an extreme point of subproblem 1, say xi. Therefore 

X 2 _ [± ll]T 
1 - 5, 5 

and 
C12 = -5l < o. 

Hence optimality has not been reached. 
The L.P. associated with the second subproblem is 

Minimize: 

subject to: 

This problem can also be solved graphically to yield the following optimal 
solution: 

x~ = 0 

x: = 14 

x~* = _1~~4. 

Let this solution correspond to the solution x~ of subproblem 2. 

x~ = [x~,xI] = [1O,4Y and C22 = _1~~4 < o. 
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As this value e22 represents the minimum xo-row coefficient, and it is nega­
tive, its variable oc~ enters the basis. Following the steps ofthe revised simplex 
method we next calculate the oc~ column in the tableau. On looking at (3.31) 
and (3.32) it can be seen that this column is. 

[4x~ + xi,6x~ + 8x!,0, 1Y = [14,112,0, 1Y 
The r.h.s. column is (20,30,1, ). On taking the ratios: 

it can be seen that the minimum corresponds to variable X6, which now 
leaves the basis. Therefore, 

and 
CB = (0, 1064, 0, O)T. 

B- 1 is now updated and becomes 

B-' ~ (~ 
1 0 

~) 
-8 

1 0 TI2 

0 1 
1 0 -TI2 

We must now test whether P2 corresponds to an optimal solution. The 
L.P. for subproblem 1 is: 

Minimize: 

subject to: 

Now 

-:t2)( 2 3) 
O 46 46 

19 19 -lt2 
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The optimal solution to this problem is 

and 

xt= 
x! = 

4 
5 
12 
5 

xA* = _356. 

As xA* is negative, the optima} solution has not been reached. The L.P. 
problem for subproblem 2 is 

( 38 (4 1) 57 76 )(X3) 1064 (~) 2 (0) Minimize: (0'92) 6 8 -(23'23) X 4 + (0,----r3, 0, 0) ~ =Xo= ° 

subject to: G ~)(::) ~ G:) 
G:) ~ (~} 

Hence the minimum solution is provided by subproblem 1, and corresponds 
to the extreme point 

xi = [xi,xn = [O,oy 
and 

(;12 = 0. 

The corresponding variable (Xi enters the basis. We next calculate the (Xi 
column in the tableau, which is 

Cl+ 3Xl) ( 
1 

° 0)("') ("~) 
-8 

46 2 46 2 1 

° ° 736 46 

B-' '"XT'X' ~ ~ IT2 95 665 

° 1 ° 1 = 1 . 
1 

° 1 ° -14665 -IT2 

The r.h.s. column is 

B-'b, ~ (~ 
1 

° ~)(~){) 
8 

1 

° IT2 

° 1 

-m ° 
On taking the ratios: 

(~~~~, ~~~~, t,-) 

it can be seen that the minimum corresponds to variable (XL which now 
leaves the basis. Therefore 
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B- 1 is now updated and becomes: 

1 
-8 

_1_ 
112 

o 
1 

-TTI 

744 
-"95 

46 
-665 

1 
46 

665 

l33 

We now test whether f33 corresponds to an optimal solution. The L.P. 
for subproblem 1 is 

Now 

Minimize: 

subject to: 

=~) (2 3) o 46 46 
19 19 

-1}2 

( 
744) 

-(4,3)C:) + (O,'~;', 'f,O) ~' 

(! ~)GJ~C~) 
GJ~o. 

-665 

xb = (O,H)(~ !~) - (4,3»)GJ + 356 

= -3Xl - 2X2 + 356, 

and the optimal solution is 
x! =! 
x~ = V 

xb* = O. 

The L.P. problem for subproblem 2 is 

Minimize: 

subject to: 
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Hence the minimum solution is provided by subproblem 1. We have arrived 
at an optimum as none of the xo-row coefficients are negative. 

The optimal solution is 

@~B-'b'~(~ 
1 744 

°)0 Ct
) 

-8 -95 
1 46 o 30 _ ~~~ ITI -665 

0 1 o 1 - 1 
1 46 1 1 ~~g -112 665 

Therefore 

xi = (X!) = i (X~x~ = 0 + 1 x (t) + 0 + 0 = (t) 
X2 k= 1 5 5 

* _ (Xj) _ ~ k k _ 609 (0) 151 ( 0 ) _ ( 0 ) x2 - xl - /~'t (X2X 2 - 760 0 + 760 14 + 0 + 0 - 13~5ri 

X~= 3Nt 
(X~* = ~~6 
(Xi* = 1 

(X~* = ~~g 
x~ = 0 

380 
151 

X* = [0 1064 52 0] 760 = 2253 '" 1959 l3199l o ,23 , 5 '1 115 - . . 

609 
760 

The objective function hyperplane is parallel to that representing the con­
straint on the gas: 

As this contraint is binding at the optimum (x~ = 0), multiple optima exist. 
The complete set of solutions is given by: 

where 

and 

x~ = 2ltl 
xi =! 
xi = V 

3xj + 4xl = 19~7, 
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3.5.3 Summary of the Decomposition Algorithm 

Given an L.P. in the following form: 

Maximize: cTX 

Al A2 

A N+ I 0 
subject to: 0 A N+2 

o o 
X~o. 

Let 
( T T T)T 

C = CI'C2,···, CN 

X = (X I ,X2,"', xNf 

and 
b = (b~,br. ... , b~f. 

Define a set of feasible points Xj satisfying 
AN+jxj ::;; bj 

Xj~ O. 
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Let the jth such set have nj extreme points xj, x;, ... , xy. Then any point 
Xj in the jth set can be expressed as 

k = 1,2, ... , nj • 

The given problem can now be reformulated with the introduction of a 
vector Xs of slack variables: 

Maximize: 

N nj 

subject to: L L (Ajx')tX' + Xs = bo 
j= I k= I 

nj 

L tX' = 1, j = 1, 2, ... , N, 
k=l 

tX' ~ 0, j = 1, 2, ... , N, 

k = 1, 2, ... , nj. 

This formation is then solved using the revised simplex method. 
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In order to calculate the minimum xo-row coefficient, N linear program­
ming problems of the form 

Minimize: 

subject to: AN+jxj ~ bj 

Xj ~ 0 

are solved, where the terms above have been defined in the previous section. 
The minimum solution value obtained in solving the above problems is 
equal to the minimum xo-row coefficient. If it is nonnegative, the optimal 
solution has been found. Otherwise, a substitution in the set of basic vari­
ables is made in the usual way. 

3.6 Parametric Programming 

3.6.1 Background 

In Section 2.6 the sensitivity of the optimal solution of an L.P. problem to 
changes in its coefficients was discussed. It was assumed that these changes 
were made one at a time. We now look at the possibility of analyzing the 
effects of simultaneous changes. Only changes in objective function coeffi­
cients and r.h.s. constants will be dealt with here. The approach is to develop 
techniques whereby the investigation can take place in an efficient manner, 
as opposed to solving the whole problem from scratch with the new values 
inserted. The techniques are collectively called parametric linear programming, 
although the term linear will be dropped, as it is understood that we are 
dealing solely with L.P. problems. Such methods are useful in situations in 
which, because of the effects of some predictable process, many of the L.P. 
parameters vary at constant rates. For example, profits or costs could vary 
as a result of inflation, or daily consumption of resources may have to be 
steadily reduced as the supply of raw materials dwindles. It will be assumed 
that the coefficients vary linearly with time. 

3.6.2 Numerical Example 

3.6.2.1 Changes in the Objective Function Coefficients 

Consider again problem 2.1. 

Maximize: 

subject to: 

4Xl + 3X2 

3x1 + 4X2 + X3 

3x1 + 3X2 

4Xl + 2X2 

= Xo 

= 12 

+ X 4 = 10 

+ Xs = 8 

Xi~ 0, i = 1,2, ... , 5. 
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Suppose that the xo-row coefficients, 4 and 3, are changing at the rates of 2 
and 3 units per unit of time, respectively. Then if e is defined as the amount 
of elapsed time, after e units of time have elapsed Xo becomes 

Xo = (4 + 2e)Xl + (3 + 3e)xz. (3.34) 

Given a particular value of e, it is possible to determine the optimal solu­
tion and its value. This has already been done for the case e = o. We now 
address ourselves to the task of using this solution to find the solution for 
any other positive e in a way which requires less work than solving the new 
problem from the beginning using the simplex method. 

The optimal solution to the problem when e = 0 is given Table 2.8, re­
peated here for convenience. When e is given any nonnegative real value, 
the only change in Problem 2.1 occurs in the objective function. Hence the 
solution in Table 2.8 will be feasible for the problem corresponding to any 
e. As e is increased from zero to a relatively small positive value it is likely 
that the present solution will remain optimal. However, it may be that as 
e is progressively increased in value there will occur a critical point at which 
the present solution is no longer optimal. A new optimal solution can be 
established and e increased further. Later a new critical point may be estab­
lished. We shall now establish the ranges for e for which the various possible 
bases are optimal. 

Table 2.8 

Constraints Xl X 2 X3 X4 X5 r.h.s. 

(2.11 ) 0 1 2 0 3 12 
5 TO ""5 

(2.12) 0 0 3 1 3 2 
5 -TO 5 

(2.13) 0 1 0 2 4 
5 5 5 

Xo 0 0 2 0 7 52 
5 TO ""5 

Suppose Problem 2.1 has its objective function replaced by (3.34). If the 
manipulations carried out in Tables (2.1)-(2.8) are applied to this new prob­
lem, the final tableau will be as shown in Table 3.10. Transforming this to 

Table 3.10 

Constraints Xl X 2 X3 X4 X5 r.h.s. 

(2.11 ) 0 1 2 0 3 12 
5 -TO ""5 

(2.12) 0 0 3 1 3 2 
-5 -TO 5 

(2.13) 1 0 1 0 2 4 
-5 5 5 

Xo -2IJ -3IJ 2 0 7 52 
5 TO ""5 
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canonical form, we get Table 3.11. Thus it can be seen that for the present 
basis to remain optimal all the xo-row coefficients must be nonnegative, i.e., 

and 

2 +40 
-->0 5 -

7-0 
-->0 10 - . 

As it has been assumed that 0 is nonnegative, 

0$7. 

So setting 0 = 7 we have reached the first critical point. 

Table 3.11 

Constraints Xl X2 X3 X4 Xs 

(2.11) 0 t 0 3 -TO 

(2.12) 0 0 3 3 -s -TO 

(2.13) 1 0 1 0 t -s 

0 0 
2+40 

0 
7-0 

Xo 
5 10 

r.h.s. 

12 
""5 

2 
S 
4 
S 

52 + 440 
5 

Substituting this value into Table 3.11, we obtain Table 3.12. This, of 
course, corresponds to a situation with mUltiple optimal solutions. The ob­
jective function for this value of 0 is: 

Xo = (4 + 2(7»Xl + (3 + 3(7»X2 = 18xl + 24x2. 

It can be seen from Figure 3.1 that the increase in 0 from 0 to 7 has changed 
the slope of the objective function to a point where it is now parallel to (2.11). 

Table 3.12 

Constraints Xl X2 X3 X4 Xs r.h.s. Ratio 

(2.11) 0 ~ 0 3 II s -TO 

(2.12) 0 0 3 1 3 t -s -TO 

(2.13) 0 1 0 ~ ! ~ -s S 1 

Xo 0 0 6 0 0 72 
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Xo with 8 = 7 

Xo with 8 = 0 

(2.13) 

Figure 3.1. Parametric programming with xo-row coefficient changes. 

Table 3.l3 

Constraints Xl X z X3 X4 Xs r.h.s. 

(2.11) ;> 1 I 0 0 3 4 4 

(2.12) 3 0 3 1 0 1 4 -4 

(2.13) s 0 I 0 2 2 -2 

2 + 48 7-8 52 + 448 
Xo 0 0 -- 0 --

5 10 5 

l39 

Bringing Xs into the basis at the expense of Xl in Table 3.11 produces 
Table 3.13. Now as it has been assumed that () is nonnegative, all that is 
required is that 

() ";::. 7. 

For any values of () no less than 7 the present basis remains optimal. Thus 
there is only one critical point. These results are summarized in Table 3.14. 
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Table 3.14. Results of a 
Change in the Objective 
Function coefficients. 

o~ ()~ 7 7~(} 

4 ~ C 1 ~ 18 18 ~ C 1 

3 ~ C2 ~ 24 24 ~ C2 

x* 
52 + 448 47 + 458 

0 5 5 

x* 4 0 1 "5 

xi 12 3 ""5 

x! 0 0 

x* 2 
4 "5 

x* 5 0 2 

3.6.2.2 Changes in the r.h.s. Constants 

Suppose now that the r.h.s. constants in Problem 2.1 are increasing from 
12, 10, and 8 at the rates of 2, 2, and 3 units per unit of time, respectively. 
Then after e units of time have elapsed, these r.h.s. constants are, respectively, 

12 + 2e, 10 + 2e, and 8 + 3e. 

Once again we wish to identify the optimal solution and its value for in­
creasing e. The optimal solution when e = 0 is given in Table 2.8. Now 
suppose the new r.h.s. constants for a given positive value of the e are intro­
duced to the problem and this new problem has the same simplex iterations 
applied to it as produced Table 2.8. Then if the methods of Section 2.6.2.2 
are used repeatedly for each r.h.s. constant, the new tableau will be as shown 
in Table 3.15. For this basis to remain feasible, all r.h.s. values must be 
nonnegative. Therefore 

and 

i.e., 

II + (% - loW;:?: 0 

t + ( - ~ + 2 - lo)e ;:?: 0 

e::;; 4. 

So the first critical point occurs at e = 4. Substituting this value into 
Table 3.15, we obtain Table 3.16. If e is increased beyond 4 the solution in 
Table 3.16 will become infeasible, as X 4 will become negative. Thus X 4 

should leave the basis. This is done using the dual simplex method, which is 
explained in Section 3.3. 
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Table 3.15 

Constraints Xl x 2 X3 X4 Xs r.h.s. 

(2.11) 0 1 2 0 3 V + (t(2) + 0(2) - lo(3))O 5 -TO 

(2.12) 0 0 3 1 3 t + (-t(2) + 1(2) - 130(3))8 -5 -TO 

(2.13) 0 1 0 2 ! + (-!(2) + 0(2) + t(3))O -5 5 

Xo 0 0 t 0 7 
sl + (t(2) + 0(2) + /0(3))8 TO 

Table 3.16 

Constraints Xl X 2 X3 X4 Xs r.h.s. 

(2.11) 0 ~ 0 3 2 5 -TO 

(2.12) 0 0 3 3 0 -5 -TO 

(2.13) 1 0 1 0 ~ 4 -5 5 

Xo 0 0 ~ 0 /0 22 5 

Thus X3 enters the basis in Table 3.15 at the expense of X4' producing 
Table 3.17. This basis will remain feasible if all the r.h.s. values are 
nonnegative: 

i.e., 

Table 3.17 

(2.11) o 

(2.12) o 

(2.13) 1 

o 

16 - 0 
-->0 6 -

0-4 
-->0 6 -

4: 50 ;;::0, 

o 

o 1 

o o 

o o 

2 
"3 

-t 

-t 

2 
"3 

r.h.s. 

16 - 8 

6 

8-4 
6 

4+ 58 
6 

64 + 178 

6 
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Table 3.18 

Constraints XI X 2 X3 X4 Xs r.h.s. 

(2.11) 0 -2 0 4 8 -16 
-3 

3 

(2.12) 0 -1 0 2 

(2.13) 0 t 0 
10 + 28 

3 

0 0 4 0 
40+ 88 

Xo 3 3 

So the second critical point occurs at () = 16. If () is increased beyond 16 the 
solution in Table 3.17 will become infeasible, as X2 will become negative. 
Thus X 2 should leave the basis. 

Now Xs enters the basis at the expense of x 2 , producing Table 3.18. This 
basis will remain feasible if all r.h.s. values are nonnegative: 

i.e., 

() - 16 
-->0 3 -

10+ 2() 0 
3 ~, 

() ~ 16. 

For any value of () no less than 16 the present basis remains feasible. Thus 
there are two critical points. These results are summarized in Table 3.19. 

Changing r.h.s. constants in an L.P. problem is equivalent to changing 
objective function coefficients in the dual. Hence let us resolve the problem 
just analyzed by examining its dual. The dual of the problem is 

Minimize: 

subject to: 
12Yl + lOYz + 8Y3 = Yo 

3Yl + 3Y2 + 4Y3 - Y4 = 4 

4Yl + 3Yz + 2Y3 - Y6 = 3 

Yl, Y2, Y3' Y4, Y6 ~ o. 
Changing the r.h.s. constants of the primal by 2, 2, and 3 units per unit of 
time corresponds to changing the dual Yo row coefficients by the same 
amounts. The optimal solution to the above problem is given in Table 3.20. 

Following the ideas of Section 3.6.2.1, when () is introduced the objective 
becomes 

Minimize: (12 + 2())Yl + (10 + 2())Y2 + (8 + 3())Y3, 
i.e., 

Maximize: y~ = -(12 + 2())Yl - (10 + 2())Y2 - (8 + 3())Y3. (3.35) 
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Table 3.19. Results of Changes in the r.h.s. 
Constants. 

O~(J ~4 4 ~ (J ~ 16 16 ~ (J 

12 ~ b 1 ~ 20 20 ~ b1 ~ 44 44 ~ b1 

10 ~ b2 ~ 18 18 ~ b2 ~ 42 42 ~ b2 

8 ~ b3 ~ 20 20~ b3 ~ 56 56 ~ b3 

x~ 
104 + 29(J 64 + 17(J 40 + 8(J 

--
10 6 3 

8-(J 4 + 5(J 10 + 2(J 
xi -- --

10 6 3 

x~ 
24 - (J 16 - (J 

0 
10 6 

(J-4 
x! 0 2 

6 

x: 
2 + 4(J 

0 0 --
5 

x~ 0 0 
(J - 16 

3 

Table 3.20 

Constraints Y1 Y2 Y3 Y4 Y6 r.h.s. 

(3.09) 0 130 1 2 3 7 -5 TO 10 

(3.10) 1 d 0 1 2 ~ 5 5 -5 

Y~ 0 ~ 0 4 .li 52 
5 5 -5 
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When the manipulations applied to the dual to produce Table 3.20 are 
applied to the problem with (3.35) as an objective function, Table 3.21 is 
produced. Transforming this into canonical form, we obtain Table 3.22. 
Hence for the present basis to remain optimal all the y~-row coefficients 

Table 3.21 

Constraints Y1 Y2 Y3 Y4 Y6 r.h.s. 

(3.09) 0 130 
2 3 7 

-5 10 TO 

(3.10) 1 d 0 1. 2 ~ 5 5 -5 

Y~ 2(J ~+ 2(J 3(J 4 12 -5l 5 5 
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Table 3.22 

Constraints Yl Y2 

(3.09) 0 ?o 
(3.10) 1 CD 

2 0 
Y~ 0 

5 10 

must be nonnegative: 

and 

i.e., 
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Y3 Y4 

1 2 -5 

0 t 
4 40 

0 -+-
5 5 

2 () 
--->0 
5 10-

4 4() 
5+5~0 

() :$; 4. 

12 
5 

Y6 r.h.s. 

3 7 
TO TO 

2 1. -5 5 

0 52 29 
----0 

10 5 10 

Thus () = 4 is the first critical point. When () > 4 the objective function 
of Y2 is negative, so Y2 enters the basis, as in Table 3.23. For this basis to 
remain optimal all the xo-row coefficients must be nonnegative: 

i.e., 

Table 3.23 

Constraints Yl Y2 

(3.09) 1 0 -2 

(3.10) t 
0-4 

Y~ 6 
0 

()-4 
-->0 6 -

4 + 5() > 0 
6 -

16 - () 
-6-~0, 

16 ~ () ~ 4. 

Y3 Y4 

1 1 -2 

0 t 

0 
4+ 50 

6 

Y6 r.h.s. 

!. t 2 
2 t -3 

16 - 0 64 + 170 
6 6 
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Table 3.24 

Constraints Yl Y2 Y3 Y4 Y6 r.h.s. 

(3.09) -1 0 2 -1 1 1 
(3.10) 1 ! 1 0 ! -'3 

Y~ 2 0 
8 -16 

3 

10+ 28 
4 

40+ 88 
3 3 

Thus () = 16 is the second critical point. When () > 16 the objective function 
coefficient of Y6 is negative, so Y6 enters the basis, as in Table 3.24. For this 
basis to remain optimal all the y~-row coefficients must be nonnegative, 
which is certainly true for () ~ 16. Thus there are only two critical points, 
at 4 and 16. These results confirm what was discovered by analyzing the 
primal earlier in this section. 

3.6.3 Summary of Parametric Programming 

3.6.3.1 Changes in the Objective Function Coefficients 

Given an L.P. in the following form: 

Maximize: 

subject to: 

n 

Xo = L CiXi 
i= 1 

n 

L AijXi ~ bj , 
i= 1 

Xi~O, 

j = 1,2, ... , m 

i = 1,2, ... , n. 

(3.36) 

(3.37) 

Suppose that the xo-row coefficients Ci' i = 1, 2, ... , n, are changing at the 
rate of bi units per unit of time. Then after () units of time, Xo becomes 

n 

Xo = L (Ci + bi()Xi' 
i= 1 

It is obvious that x~ is a function of (). It may be desirable to find x~«() and 
to find ranges for () for which the various possible bases are optimal. As () 
represents elapsed time it is assumed that () ~ O. 

First the problem is solved for () = O. Then () at the positive level is 
introduced. As the only change in the problem comes about in the objective 
function, the present solution (found when () = 0) will still be feasible for the 
problem when () > O. Thus if the same manipulations used in solving the 
problem when () = 0 are applied to the problem when () > 0, only changes 
in the xo-row will occur. The new Xo row can be obtained by subtracting 
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t5;f} from the xo-row coefficient of Xi' and then transforming the tableau into 
canonical form, as explained in Section 2.5.2. 

If all the new xo-row coefficients are nonnegative, the present solution is 
still optimal. Hence the maximum value for 0, say 01> for which nonnega­
tivity of all the coefficients occurs can be found; 01 is called the first critical 
value. This value is substituted into the xo-row, producing at least one 
nonbasic coefficient with value zero. A variable corresponding to this zero 
is brought into the basis in the usual manner, and 0 is introduced once 
more. The process is repeated to produce further critical values until it is 
obvious that the increases in the value of 0 will not create a situation in 
which the current basis is suboptimal. Successive tableaux can be examined 
to find the ranges for 0 and their corresponding solutions and values. 

3.6.3.2 Changes in the r.h.s. Constants 

Given an L.P. in the form of(3.36) and (3.37), suppose that the r.h.s. constants 
b j, j = 1, 2, ... , m, are changing at the rate of t5 j units per unit of time. Then 
after 0 units of time the constraints (3.37) become 

n 

L aijxi ~ bj + t5 j O, j = 1,2, ... , m. 
i= 1 

First the problem is solved for 0 = O. Then 0 at the positive level is introduced. 
If the present solution, found when 0 = 0, is still feasible it will still be optimal. 
The final tableau, produced by applying the manipulations that created the 
original optimum to the new problem with 0 > 0, is now be deduced. 

This final tableau can be obtained from the original optimal tableau by 
repeatedly using the considerations of Section 2.6.2.2 for each r.h.s. constant. 
For this new tableau to represent an optimal solution, all the entries in the 
r.h.s. column must be nonnegative. As they are functions of 0, an upper 
bound on 0 can be obtained. That is, a value 01 can be found such that if 

at least one r.h.s. entry will be negative. 01 is the first critical value. The 
solution and its value, as functions of 0, can be found from the tableau for 

01 is substituted into the tableau, creating at least one zero entry in the 
r.h.s. column. The dual simplex method of Section 3.3 is now applied to 
effect a change of basis, with a basic variable with present value of zero 
departing. When a nondegenerate basis has been found, the above procedure 
is repeated and a second critical point is identified. 

The process is repeated until a basis is found with the property that 
further increases in the value of 0 will not lead to the basis being suboptimal. 
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This analysis could also be carried out by taking the dual of the problem, 
which is 

Minimize: 

subject to: 

m 

I (h j + 8c5)Yj 
j= 1 

m 

I ajiYj ~ ci, 
j= 1 

i = 1,2, ... , n 

j = 1,2, ... , m. 

Then the procedure of Section 3.6.3.1 can be used. 

3.7 Exercises 

1. Solve the following problems using the revised simplex method. 

(a) Maximize: 

subject to: 

(b) Maximize: 

subject to: 

(c) Maximize: 

subject to: 

(d) Maximize: 

subject to: 

3x I + 2xz + X3 + 2X4 

3x I + Xz + X3 + 2X4 ::;; 9 

Xl + 2xz + X3 + 4X4 ::;; 12 

2XI + Xz + 3X3 + x 4 ::;; 8 

3x I + 3xz + 2X3 + x4 ::;; 10 

Xi ::::: 0, i = 1, 2, 3, 4. 

2XI - 3xz + 2X3 + 4X4 

2XI + 5xz + 3X3 + 3x4 ::;; 20 

2XI + 4xz + X3 + 6x4 ::;; 20 

2XI + 2xz + 2X3 + 3x4 ::;; 12 

Xl + 2xz + 2X3 + 4X4 ::;; 16 

i = 1,2,3,4. 

Xl + 2xz + 3X3 - X4 

Xl + X z - X3 + x 4 ::;; 3 

2XI + 3X3 ::;; 6 

3x I + Xz + 2X3 - 2X4 ::;; 10 

2xz + 3X3 + 2X4 ::;; 8 

i = 1,2,3,4. 

4XI + 2X2 + 3X3 - X4 

Xl + 2X2 + X4 ::;; 8 

3xI + 2X3 + X 4 ::;; 12 

2XI + x 2 + 3X3 ::;; 20 

2X2 + 2X3 + x 4 ::;; 10 

i = 1,2,3,4. 
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2. Solve the problems of Exercise 1 by the regular simplex method. Compare the amount 
of computational effort required with that required by the revised simplex method. 

3. Solve the duals of the following problems by the dual simplex method. 

(a) Maximize: 

subject to: 

(b) Maximize: 

subject to: 

(c) Maximize: 

subject to: 

(d) Minimize: 

subject to: 

3Xl + 2xz + X3 + 2X4 

Xl + 2xz + X3 + 3x4 :'0: 6 

3x l + 4xz + 2X3 + x4 :'O: 8 

2Xl + 3xz + 3X3 + x 4 :'O: 9 

2Xl + Xz + 2X3 + 2X4 :'0: 12 

Xi ~ 0, i = 1,2,3,4. 

2Xl + 4xz + X3 + 3x4 

2Xl - Xz + X3 + 2X4 :'0: 6 

2xz - x4 :'O: 1 

Xl + Xz + 2X4 :'0: 4 

3x l + 2xz + 2X3 + x4 :'O: 9 

Xi ~ 0, i = 1,2,3,4. 

2Xl + Xz + X3 + X4 

Xl - 2xz + X3 + X4 :'0: 11 

-4XI - Xz + 2X3 :'0: 4 

2Xl - 2X3 + X4 :'0: 1 

- X3 + X4 ~ 2 

i = 1,2,3,4. 

Xl + 4xz 

Xl + 2xz - X3 + X4 ~ 3 

-2XI- XZ+4X3+X4~2 

Xl + 2xz + X3 :'0: 11 

2xz + 2X3 + x4 ~ 8 

i = 1,2,3,4. 

4. Solve the problems of Exercise 3 by using the regular simplex method on the duals. 
Compare the computation step by step for each problem. 

5. Solve the following parametric programming problems where the xo-row coefficient 
Xi is changing at the rate of Si units per unit of time, where S = (Sl, Sz, S3)' 

(a) Maximize: 

subject to: 

3x l + Xz + 2X3 

2Xl + Xz + 4X3 :'0: 10 

Xl + 2xz + x3 :'O: 4 

3x l - 2xz + X3:'O: 6 

Xi ~ 0, i = 1,2,3 

S = (1, 2, 3). 
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(b) Minimize: 

subject to: 

(c) Maximize: 

subject to: 

(d) Maximize: 

subject to: 

XI + 4X2 + X3 

XI + 2X2 - X3 2 3 

- 2xI - x2 + 4X3 2 1 

XI + 2X2 + X3 ~ 11 

Xi 2 0, i = 1,2,3 

S = (1, 6, 1). 

XI + 2X2 + 2X3 

2xI + 2X2 - X3 ~ 8 

2xI - X2 + X3 ~ 2 

i = 1,2,3 

s = (2, -2,1). 

3xI + 2X2 + X3 

3x I + X2 + X3 ~ 9 

XI + 2X2 + X3 ~ 12 

2xI + X2 + 3X3 ~ 8 

Xi 2 0, i = 1,2,3 

S = (2,3,4). 
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6. Solve each of the problems of Exercise 5 by taking the dual and using postoptimal 
analysis on the r.h.s. parameters. 

7. Solve each of the parametric programming problems in Exercise 5 when the r.h.s. 
parameters bi increase with time at the rate of Ai units per unit of time, A = (AI' A2, A3)' 
(a) A = (2, 1, 3) 
(b) A = (1, -2,3) 
(c) A = (-5,1,1) 
(d) A = (2, - 3, 3). 



Chapter 4 

Integer Programming 

4.1 A Simple Integer Programming Problem 

The Speed of Light Freight Company has just secured a contract from a 
corporation which wants its big crates of machine parts periodically shipped 
from its factory to its new mineral exploration site. There are two types of 
crate; A and B, weighing 3 and 4 units, with volume 4 and 2 units, respectively. 
The company has one aircraft with a capacity of 12 and 9 units of weight 
and volume, respectively. The company gains revenue of 4 and 3 units (in 
hundreds of dollars), respectively, for each crate of A and B flown to the site. 
As the revenue for road transport is much lower, the company would like 
to make maximum revenue from its one aircraft, the remaining goods being 
trucked. We can formulate this problem mathematically as follows. Let 

Xl = the number of crates of type A flown 
X2 = the number of crates of type B flown. 

As 4 units are gained for one A crate flown, the revenue for Xl crates is 
4x l . Similarly, 3X2 is gained for X 2 B crates. Thus the total return for a 
policy of flying Xl A crates and X2 B crates is 4XI + 3X2, which we denote 
by Xo. Now as one A crate weighs 3 units, Xl A crates will weigh 3x l . 

Similarly X2 B crates weigh 4X2' Thus the total weight flown by the policy 
is 3x I + 4X2, which must be less than or equal to 12 units. By similar rea­
soning we can formulate a constraint for volume: 

4XI + 2X2 :s; 9. 

We are now in a position to define the problem mathematically. 

Maximize: (4.1) 
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subject to: 3x l + 4X2 ::; 12 

41 + 2X2 ::; 9 

X l ,X2 ~ ° 
Xl' x2 integers. 
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(4.2) 

(4.3) 

4.4) 

(4.5) 

This problem is an example of an integer programming problem. It would 
be a linear programming problem if it were not for (4.5). Before going on to 
develop methods which will solve this problem, let us define the general 
area of combinatorial optimization of which integer programming is a part. 

4.2 Combinatorial Optimization 

A combinatorial optimization problem is defined as that of assigning discrete 
numerical values (from a finite set of values) to a finite set of variables X so 
as to maximize some functionf(X) while satisfying a given set of constraints 
on the values the variables can assume. Some problems of this type have 
already been considered: the transportation problem of Section 2.7.1 and 
the assignment problem of Section 2.7.2. Stated formally the combinatorial 
optimization problem is 

Maximize: f(X) 

subject to: gj(X) = 0, 

h;(X) ::; 0, 

j = 1,2, ... , m, 

i = 1,2, ... , k, 

X a vector of integer values. 

Note that there are no restrictions on the functions f, gj' j = 1,2, ... , m, 
and hi, i = 1,2, ... , k. These functions may be nonlinear, discontinuous, or 
implicit. This general problem is difficult to solve, and so we confine our 
attention to a drastic simplification, which is a linear programming problem 
in which at least one specified variable must have an integer value in any 
feasible solution. 

Let n be the number of decision variables. Without loss of generality, 
suppose that the first q (1 ::; q ::; m) variables are constrained to be integer. 
Consider the following problem: 

Maximize: CTX (4.6) 

subject to: AX=B, (4.7) 

X~O (4.8) 

X l 'X2 ' ... , Xq integer, (4.9) 

where X = (XtoX2,"" xq , •.• , xnf and C is n x 1, B is m x 1, and A is m x n. 
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If 
q = n, 

the problem is termed an integer linear programming problem. Our air freight 
problem comes into this category. 

If 
l~q<n, 

the problem is termed a mixed integer linear programming problem. 
If (4.9) is replaced by 

Xi = 0 or 1, i = 1,2, ... , n, 

then the problem is termed a zero-one linear programming problem. 
Of course, if 

q = 0, 

(4.9) ceases to be relevant and the problem becomes an ordinary linear 
programming problem. 

The transportation problem is an integer linear programming problem 
and the assignment problem is a zero-one linear programming problem. 
Further examples of integer linear programming problems will be given 
later. Because only linear problems will be considered, we will simply refer 
to an integer program (I.P.). 

The formulation (4.6)-(4.9) is identical to an L.P. except for the presence 
of (4.9). Because the simplex method is a very efficient way of solving an 
L.P., it seems natural to ask whether this method might not be used on the 
I.P., solving it by ignoring (4.9). If the solution obtained satisfies (4.9) it is 
optimal. However, suppose the solution contained, for at least one i, 1 ~ i ~ q, 

where bi is noninteger. In this case the L.P. solution is infeasible as an I.P. 
solution. The value for each such Xi could be rounded either up or down as 

Xi = [b;] or Xi = [b;] + 1 

to achieve feasibility, where [b;] denotes the integer part of bi • Sometimes 
this approach yields a satisfactory solution. There are, however, problems. 

Consider, for example, Figure 4.1, where the constraints for the following 
smalll.P. problem have been drawn: 

Maximize: 

subject to: 
Xo = Xl + X 2 

2Xl + 12x2 ~ 39 

4X2 ~ 9 

Xl,X2 ~ 0 

Xl' X2 integer. 
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Figure 4.1. An example showing the failure to obtain a feasible I.P. solution by 
rounding an L.P. solution. 

It can be seen in Figure 4.1 that the L.P. solution is 

xi = 6 

x! =t;, 

which is infeasible for the above I.P. The rounding of X2, either up or down, 
does not produce a feasible solution. In fact the optimal I.P. solution, as 
shown, is not at all close, relatively speaking, to the L.P. solution. 

This example points up the pitfalls of rounding L.P. solutions to obtain 
I.P. solutions. No combination of rounding either up or down of the non­
integer variables may be feasible, let alone optimal. Even when rounding 
does produce feasibility, the solution may be far from optimal. 

It is obvious that more sophisticated methods need to be developed if 
we are to guarantee an optimal solution to an I.P. problem. Some such 
methods are described in the next two sections. 
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4.3 Enumerative Techniques 

Theoretically any I.P. problem can be solved by simply listing all possible 
feasible solutions, finding the value of each one and choosing the best. Such 
a technique is called exhaustive enumeration. However even for zero-one 
problems, in which there are just two possibilities for each variable, as the 
number of variables increases the number of possibilities quickly becomes 
very large: 2" for n variables. The situation is far worse for general problems. 
Hence it is impractical to solve anything other than trivial problems in 
this way. 

What can be done, however, is to examine the set of all possible solutions 
in such a way that whole sets of solutions can be discarded without specific 
evaluation of all the solutions in each of these sets. Thus the enumeration is 
carried out implicitly, and this approach is termed implicit enumeration. 
Dynamic programming, which will be covered in Chapter 6, is an example 
of implicit enumeration. An implicit enumeration technique designed espe­
cially for integer programming problems, called branch and bound enumera­
tion, will be described next. 

4.3.1 Branch and Bound Enumeration 

Branch and bound enumeration is a sequential technique for solving com­
binatorial optimization problems. Its use on such problems produces a 
decision tree. The first iteration produces the point at which the tree is 
rooted. Any subsequent iteration produces a number of new points which 
are connected to the existing tree by lines which all emanate from one 
existing point. A set of decisions concerning the values that the variables 
can assume is associated with each point along with a bound. The bound 
represents a value which is at least as good as that which could be attained 
by any feasible solution obeying the set of decisions of that point. The 
process begins by creating the root of the decision tree, which represents 
all feasible solutions to the problem. A bounding routine calculates a bound 
for this point, i.e., a bound on the optimal value. If the solution associated 
with this bound is feasible it is optimal and the procedure is terminated. If 
not, a partitioning routine partitions the set of feasible solutions into a 
number of subsets, each represented by a distinct point in the decision tree, 
all connected by lines to the parent point. The bounding routine then cal­
culates a bound for each of these points. An elimination routine discards a 
point from the tree ifit can be shown that no solution in its set can be optimal. 
This would occur, for example, if its bound is worse than the value of a 
known feasible solution. The process continues generating new points at 
each iteration. Termination occurs when finally the optimal solution or 
evidence that no such solution exists has been obtained. 
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4.3.1.1 Solving the Numerical Example by Dakin's Method 

Land and Doig (1960) presented a branch and bound algorithm for solving 
I.P. or mixed I.P. problems. It was found to be very difficult to program 
a computer to implement it efficiently. However, Dakin (1965) introduced 
a modification of their algorithm which overcome this restriction. The 
latter algorithm will be explained here. 

The branch and bound decision tree built up in applying Dakin's method 
to problem (4.1)-(4.5) is shown in Figure 4.2. The algorithm begins by 
solving (4.1)-(4.4) as an L.P. This has the following optimal solution: 

x! = t6 
x~ = n 
x~ = \V. 

If this first optimal solution had satisfied (4.5), it would have been optimal 
for the I.P. and the method would have been terminated. However, as this is 
not the case, we proceed. The bound of V~ is associated with the highest 
point of the decision tree, labelled aJ.s. (which means that it represents the 
set of all feasible solutions). Any feasible solution for the I.P. cannot have 
a value greater than this bound. As this solution is infeasible with regard 
to (4.5), one of the variables with a non integer value is arbitrarily chosen, 
say X2' The integer part of its value is identified. That is, we find the greatest 
integer less than or equal to the current value (i6) of X2' As 

n = 2 + lo, 
this integer part is 2. Now, as X2 must be integral in any feasible solution, 
either 

x2 S 2 (4.10) 
or 

X2 2': 3. (4.11) 

aJ.s. 11n, 

(1) 11 (2) 9 

(3) 10 (4) 

Figure 4.2. A decision tree for Dakin's method. 
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We now create two new L.P. problems, I and II: 

I: (4.1), (4.2), (4.3), (4.4), and (4.10) 
II: (4.1), (4.2), (4.3), (4.4), and (4.11), 

that is: 

PROBLEM I 

PROBLEM II 

Maximize: 

subject to: 

Maximize: 

subject to: 

4Xl + 3x2 

3x1 + 4x2 ::;; 12 

4Xl + 2x2 ::;; 9 

x 2 ::;; 2 

Xb X 22':O. 

4Xl + 3X2 

3Xl + 4x2 ::;; 12 

4Xl + 2X2::;; 9 

X 2 2': 3 

Xl,X2 2': O. 

4 Integer Programming 

We have in effect partitioned the set of feasible solutions to the original 
I.P. into two disjoint subsets: one comprising all the solutions where X 2 ::;; 

2, and the other all solutions where X2 ~ 3. Consequently, two new points 
representing these two sets of solutions are added to the decision tree in 
Figure 4.2. Problems I and II are now solved. Problem I has optimal solution 

xf =i 
x! = 2 

x~ = II. 

Problem II has an optimal solution 

xf =0 

x! = 3 

x~ = 9. 

The solution to II satisfies (4.5) and is thus stored as the best solution 
found so far for the I.P., with value 9. However the bound 11 is associated 
with point 1 in the tree. Thus the possibility remains that there may be a 
better I.P. solution lurking in its set. We choose Xl as the noninteger valued 
variable with yalue i. As the integer part of this value is 1, we create two 
constraints, 

Xl::;; 1 and x 2 ~ 2. 
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We create two new L.P.'s: 

PROBLEM III 

PROBLEM IV 

Maximize: 

subject to: 

Maximize: 

subject to: 

4Xl + 3x2 

3Xl + 4x2 :::;; 12 

4Xl + 2X2 :::;; 9 

X2:::;; 2 

Xl :::;; 1 

X\>X2;;::: O. 

4Xl + 3X2 

3x l + 4X2 :::;; 12 

4Xl + 2X2 :::;; 9 

x 2 :::;; 2 

Xl;;::: 2 

X I 'X2 ;;:::O. 

These problems are now solved. Problem III has an optimal solution: 

xt = 1 

x! = 2 

x~ = 10. 
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As this satisfies (4.5) and its value exceeds that of the best solution found so 
far, it is stored as our best solution. Problem IV has value 9t, which is less 
than the value of present incumbent. We have found a solution whose value 
exceeds the bound for any other set of feasible solutions. This solution must 
be optimal. 

We have discovered that the company should fly one A crate and two 
B crates on each trip for a maximum return of 10 units. 

4.3.1.2 Dakin's Method in General 

Dakin's method begins to solve a problem of the form of (4.6)-(4.9) by first 
ignoring (4.9) and solving the problem as an L.P. using the simplex method. 
The value of the solution thus found is the bound assigned to the first point 
of the decision tree, representing all feasible solutions to the original I.P. 
problem. This makes sense, as (4.6)-(4.9) can be thought of as the equivalent 
L.P. with the added constraint of(4.9). Hence it cannot have an optimal solu­
tion better than the equivalent L.P. If the optimal L.P. solution has integer 
values for the first q variables, it is optimal for the I.P. and the method ter­
minates. However, suppose at least one variable, Xi (l :::;;; i :::;;; q) has a non­
integer value 

xi = Oi' 0i noninteger. 
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Now as Xi is constrained to be an integer, values in the range 

[0;] < Xi < [0;] + 1, 

are infeasible. Hence Xi must obey exactly one of the following constraints: 

Xi :s; [0;] 

or 
Xi ~ [0;] + 1. 

Two new L.P. problems are now created: 

I: (4.6), (4.7), (4.8), and xi:S; [b;] 
II: (4.6), (4.7), (4.8), and Xi ~ [b;] + 1. 

Note that problems I and II differ from the original problem only in the fact 
that one more constraint has been added. It is thus possible to deduce the 
optimal solutions to these amended problems with relatively little extra 
computational effort using the ideas of Section 2.6.2.5 and the dual simplex 
method of Section 3.3. Constraints of the type Xi :s; [b;] and Xl ~ [b;] + 1 
are called Dakin cuts. Notice that it is no longer possible for Xi to take on 
the offending value 0i in either problem I or II. Two new points are created 
in the decision tree, both joined by lines to the original point. The first 
represents all feasible solutions to problem I, the second to problem II. The 
optimal solution to the originall.P. (if such a solution exists) must lie in one 
of these sets. In fact the set, S of feasible solutions to (4.6)-(4.9) has been 
partitioned into these two sets S, and S" in the sense that 

S, u S" = S 

and 
S, n S" = 0, the empty set. 

Both L.P. problems I and II are solved. Their optimal solution values are 
bounds assigned to the corresponding points in the decision tree. The better 
of the two bounds is identified. As the objective is one of maximization the 
larger bound will be selected. Ties can be settled arbitrarily. If this better 
bound corresponds to a feasible solution to (4.6)-(4.9) this solution is de­
clared optimal and the procedure is terminated. If it corresponds to an 
infeasible solution another of the variables constrained to be integral with a 
noninteger value is identified. Two more cuts are defined based on this 
variable. The partitioning (branching) routine is repeated, creating two more 
decision tree points. 

The algorithm is continued until either (a) a feasible solution with value 
no less than that for any other bound is found (this solution is then pro­
nounced optimal), or (b) it is found that no feasible solution exists (all points 
have been eliminated from the tree). When a solution is found to be feasible, 
its point is never selected for branching, and the point is said to be fathomed. 
The point is eliminated unless it is the best feasible solution so far found, in 
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which case it is recorded as the incumbent. Of course any point with a bound 
worse than that of the incumbent is eliminated. 

4.3.1.3 The Zero-One Method of Balas 

We now examine the zero-one programming problem and a method for 
its solution. Although the model assumes that each variable is binary it is 
still useful, as many I.P. problems are formulated this way. Often the vari­
ables represent decisions as to whether to adopt a particular policy or 
not, i.e. 

X. = {I, if policy i is adopted 
• 0, otherwise. 

Further, any I.P. can be converted into a zero-one problem by redefining 
each nonbinary variable Xj as follows. 

Let Uj be the largest possible integer value that Xj could possibly assume 
in any feasible solution. This bound Uj is usually deduced by examining the 
constraints. 

Let Nj be the smallest integer such that 

2Nj +1 > uj . 

Then Xj can be expressed in terms of the binary variables yL rl, Y1v j +l as 
Nj+l 

Xj = L (2i - 1)yf· 
i= 1 

Examples of this conversion will be given in the next section. 
Balas (1965) has developed a method for solving zero-one problems which 

involves branch and bound enumeration. His approach differs from that of 
Dakin's in that it does not require the simplex method as a subroutine. 
Balas describes the method as "additive," as it requires only the addition 
and not the multiplication of numbers. The method is applicable only to 
problems with nonnegative objective function coefficients. Any zero-one 
programme can be converted into this form by replacing any variable Xi 

with negative Ci by Xi = (1 - Xi)' 
The method partitions the variables into three sets: 

W: the set of variables which have been assigned a value 1 
V: the set of variables which have been assigned a value ° 
F: the set of unassigned (free) variables. 

Initially all variables are assigned to F. For maximization problems all 
variables in F are next temporarily assigned a value of 1. If this solution is 
feasible it is clearly optimal, as Ci ~ 0, i = 1, 2, ... n. If this solution is 
infeasible an upper bound on the value of the optimal solution can be 
obtained. This bound is equal to the sum of the Ci> neglecting the minimum 
Ci' for all Xi E F. After this first iteration, a bound can be found for any 
partition of the variables among W, V, and F as follows. 
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The bound is equal to the sum of the Ci for all Xi E W plus the sum of 
c;, neglecting the minimum c;, for all Xi E F, i.e., 

L Ci + L Ci - min {ci}· 
~EW ~EF ~EF 

When a solution is found to be infeasible its corresponding point in the 
decision tree sprouts two new points, effecting the branching step. Suppose 
W, V, and F denote the partition at the parent point and the variable cor­
responding to the minimum Ci among variables in F is Xi' Then the partition 
at one of the new points is: 

F becomes F\ {Xi}, W becomes W u {Xi}, V remains the same 

and at the other new point: 

F becomes F\{Xi}' W remains the same, V becomes V u {xJ 

Bounds are then calculated for these two new nodes as just described. 
When the partition of a particular point cannot possibly lead to an optimal 
solution, the point is eliminated from the tree. When the partition of a par­
ticular point corresponds to a feasible solution the point is fathomed and 
no further branching takes place from it. When a point corresponds to a 
feasible solution and has a value no less than that for any other node, this 
solution is declared optimal. 

4.3.1.4 Numerical Example 

The method will be illustrated using the problem (4.1)-(4.5). First upper 
bounds on Xl and X2 must be found, as they are not binary: 

Therefore 

Let 

U1 = min {[bi/ali]} = min {[In, [£]} = 2 
i= 1,2 

U2 = min {[bi/a2J} = min {[1f], [!]} = 3. 
i= 1,2 

Xl = 2°y~ + 21y~ 
X2 = 2°yi + 21y~. 

Then the problem becomes 

Maximize: Xo = 4(y~ + 2y~) + 3(yi + 2y~) = 4y~ + 8y~ + 3yi + 6y~ 
subject to: 3(y~ + 2y~) + 4(yi + 2y~) ~ 12 

4(y~ + 2y~) + 2(yi + 2y~) ~ 9 

y~, y~, yi, y~ = 0 or 1. 

The decision tree built up by the method is shown in Figure 4.3. The 
method begins by partitioning the variables into 

W=0, V=0, F { 1 1 2 2} = Y1, Y2, Y1, Y2 . 
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Next all the variables in F are temporarily assigned a value 1. This is obvi­
ously infeasible. The bound on the first point is calculated as 4 + 8 + 6 = 18, 
the sum of all Ci of the variables in F except the minimum, which is 3, cor­
responding to yi. Branching now takes place and yi is transferred to W in 
point (2) and V in point (3). Bounds are calculated for these nodes as ex­
plained earlier. For instance, the bound for point (2) is arrived at by setting 
all the variables in F, y~' yi, y~, equal to 1. This is infeasible, as yi = 1 
because it is in W. Hence the variable with the minimum coefficient in F, 
yi, is discounted when calculating the bound, which is 8 + 6 plus the 3 
from yi For point (3) all the free variables are set equal to 1, but this is 
infeasible. The variable discarded is y~ (yi is unavailable, as it is in V) and 
the bound is 8 + 6. 

As we are maximizing we branch from point (2) because it has the higher 
bound. This produces points (4) and (5). Branching from point (4) produces 
points (6) and (7). However, point (6) cannot represent any feasible solutions, 
as yi, yi, and y~ cannot all be equal to 1, so it is eliminated. (Hence the 
"- 00" symbol.) 

At this stage point (3) has the largest bound. This eventually produces 
point (10) with a bound of 10 which represents a feasible solution. All points 
with inferior bounds can be eliminated. This leaves point (5), which spawns 
points (12) and (13) both with bounds less than 10. 

Therefore point (10) is declared optimal, with the solution 

yi,y~ = 1 

yi,yi = 0 

X6 = 10. 

This solution corresponds to that found by Dakin's method: 

x! = 2°(1) + 21(0) = 1 

x! = 2°(0) + 21(1) = 2. 

4.4 Cutting Plane Methods 

Gomory (1958) developed cutting plane algorithms for solving all-integer 
and mixed-integer programming problems. He proved that these methods 
will produce an optimal solution in a finite number of iterations when 
applied to problems with rational data. The methods revolve around the 
idea of introducing new constraints (or cuts) to the problem. These cuts 
slice away noninteger optimal solutions to the associated L.P. problem, but 
leave all feasible integer solutions untouched. This is similar to what is done 
in Dakin's method, but there are fundamental differences between the two 
approaches. In cutting plane methods successive constraints are added to 
just one problem, whereas in branch and bound methods many different 
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(linear programming) problems may be created. Thus in cutting plane 
methods the original feasible region for the associated L.P. problem is grad­
ually reduced as extra constraints are added. In contrast, in branch and 
bound methods the original feasible region is often broken up into discon­
nected subregions. In Dakin's method cuts are parallel to the axes; this 
seldom happens in cutting plane methods. Finally, cutting plane methods 
always preserve all feasible integer solutions, while some feasible integer 
solutions are usually eliminated from some of the problems created by the 
branch and bound method. 

The all-integer and mixed-integer methods will be explained in the next 
two sections. 

4.4.1 Gomory's All-Integer I.P. Method 

The way in which the Gomory all-integer cutting plane algorithm solves 
(4.6)-(4.9) will now be explained. It will be assumed that all variables are 
constrained to be integers in (4.6)-(4.9): 

q = n. 

The outline of the algorithm is as follows. Problem (4.6)-(4.8) is solved by 
the simplex method. If the optimal solution is all-integer the problem is 
solved and the algorithm is terminated. If at least one variable is noninteger 
a new constraint is added to the problem. This constraint is derived by 
choosing a noninteger valued variable and examining the tableau row in 
which it appears. The problem is then resolved with this new constraint. 

It has been assumed that all variables, including slack variables, are to 
be integer in any feasible solution. This assumption can be made workable 
by clearing fractions from the constraint coefficients before introducing the 
slack variables. That is, if one is confronted with a constraint like 

one can multiply the constraint by the lowest common denominator of the 
coefficients (99) to obtain 

Once this has been done for all necessary constraints the initial L.P. problem 
is then solved by the simplex method. 

The way in which a new constraint is constructed from a noninteger 
tableau will now be explained. Suppose the associated L.P. problem has 
been solved and at least one variable, say, Xi has a noninteger value. The 
row in the optimal tableau in which Xi has a unit entry is found, say the 
jth row. Let it correspond to the equation 

(4.12) 
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where Yk> k = 1,2, ... ,p, are the nonbasic variables, ajk, k = 1,2, ... ,p is 
the coefficient of Yk in this jth row; and ]jj is the value of Xi. Now (4.12) 
is solved for Xi: 

(4.13) 

For any a E R, let [a] denote the largest integer no greater than a. Then 

a = [a] + a', 

where a' is the fractional part of a; for example, 

a = 3~ => [a] = 3 and a' = ~ 

a = - % => [a] = - 1 and a' = ~ 

a = 2 => [a] = 2 and a' = O. 

(4.14) 

Each rational number in the r.h.s. of (4.13) can be expressed in the fol­
lowing format: 

On collecting integer terms, this becomes 

Xi = {[]jj] - [ajl ] Yl - ... - [ajp]Yp} + {]jj - ajlYl - ... - ajpYp}. 

Now the first part: 
{[]jj] - [ajl]Yl - ... - [ajp]Yp} 

will be an integer if all the variables Yb Y2, ... , Yp are integers, which is 
true by assumption. Hence for Xi to be an integer, the second part: 

must be an integer. But 
O<]jj < 1, 

as]j was assumed to be noninteger. Also 

o :s; aji < 1, i = 1,2, ... ,p 

(4.15) 

because of the definition (4.14). Hence, as the Yb Y2, . .. ,Yp are constrained 
to be nonnegative integers, (4.15) cannot be a positive integer. Hence (4.15) 
must be a non positive integer. So the constraint: 

]jj - ajlYl - ... - ajpYp :s; 0 

must hold in any feasible integer solution. 
Let the slack variable Xr be introduced into (4.16): 

(4.16) 

(4.17) 

As (4.15) must be an integer, then Xr must of necessity be an integer also. 
This constraint (4.17) is now added to the final simplex tableau and an 
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optimal solution to the amended L.P. solution is found using the dual 
simplex method of Section 3.3. 

The constraint (4.16) represents a Gomory cut. The process is repeated 
until the dual simplex method either produces an all-integer solution (which 
will be an optimal solution for the original J.P. problem) or evidence that 
no feasible solution exists (in which there are no feasible all-integer solu­
tions). The algorithm will now be illustrated by solving a numerical example. 

4.4.1.1 Numerical Example 

The method will be illustrated on the problem (4.1)-(4.5). The problem is 
first solved by the simplex method, ignoring (4.5). This produces Table 4.1, 
where X3 and X4 are the slack variables introduced in (4.2) and (4.3). 

Table 4.1 

Constraints XI X2 X3 X4 r.h.s. 

(4.19) 0 1. 3 n 5 -TO 

(4.20) 0 I t !i -5 5 

Xo 0 0 t 170 ?J 

This solution is noninteger, so we must introduce a cut. Consider the 
second row in Table 4.1, corresponding to the noninteger-valued variable 
Xl' This row corresponds to the equation: 

Xl - !X3 + ~X4 = !. 
Therefore 

Xl =! - (-!)X3 - ~X4 

= (1 + !) - ( - 1 + ~)X3 - (0 + ~)X4' 
The fractional part of this expression is 

which cannot be a positive integer; hence 

! - ~X3 - ~X4 ~ O. (4.18) 

As the problem has only two structural variables, it is instructive to 
follow the progress ofthe method graphically. Figure 4.4 shows the graphical 
solution to the original L.P. problem. Using the equations 

3Xl + 4X2 + X3 = 12 

4Xl + 2X2 + X4 = 9, 

one can substitute for X3 and X4 in (4.18), producing 

4Xl + 4X2 ~ 13, 

(4.19) 

(4.20) 

(4.21) 
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Xz 

2 --------

Figure 4.4. Graphical solution to the example problem using Gomory's method. 

which is shown in Figure 4.4. Note that this solution cuts away part of the 
feasible region, including the optimal solution to the present, but leaves all 
feasible integer solutions still in the region. This will always happen. 

On adding a slack variable Xs to (4.18) and taking the constant to the 
r.h.s., we have 

(4.22) 

This constraint is added to Table 4.1, and the dual simplex method is used 
to produce a new optimum, given in Table 4.2. 
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Table 4.2 

Constraints Xl X2 X3 X4 X5 r.h.s. 

(4.19) 0 1 0 I I 2 -2 2 

(4.20) 0 0 t I i -4 

(4.22) 0 0 1 t -i I 
4 

Xo 0 0 0 I I 11 2 2 

As can be seen in Table 4.2, X3 has a noninteger value. Hence the equation 

X3 + !x4 - i-xs = ! 
is expressed in terms of X3 with integer and noninteger parts: 

X3 = (0 +!) - (0 + !)X4 - (-2 + i)xs' 

So the new cut is: 
(4.23) 

As an aside, we can use (4.19), (4.20), and (4.22) to show that (4.23) is equiva­
lent to 

5Xl + 4X2 ::s; 14. 

This constraint is plotted in Figure 4.4. On adding the slack variable X6 to 
(4.23) we have 

(4.24) 

(4.24) is added to Table 4.2 and the dual simplex method is used to produce 
the optimal tableau shown in Table 4.3. 

Table 4.3 

Constraints Xl X2 X3 X4 X5 X6 r.h.s. 

(4.19) 0 0 5 0 t Ii -6 

(4.20) 0 0 t 0 I 4 
-3 3 

(4.22) 0 0 4 0 5 2 
3 -3 3 

(4.24) 0 0 0 t 4 t -3 

Xo 0 0 0 i 0 2 65 
3 6 

Now all the basic variables have noninteger values. The reader who thinks 
we are chasing our tails is asked not to despair. The "optimal" solution value 
is steadily being reduced at each iteration: from an initial \V to 11 to 6i. 
The Gomory cuts are slicing away nonoptimal parts of the original feasible 
region, as can be seen in Figure 4.4. Applying the technique to row (4.19) in 
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Table 4.3 produces 

X2 = V - (-i-)X4 - !X6 

= (1 + i-) - ( - 1 + i)X4 - ( - 1 + !)X6· 
Therefore 

(4.25) 
which corresponds to 

shown in Figure 4.4. 
Adding the slack variable X7 to (4.25), which is then added to Table 4.3, 

allows the dual simplex method to produce the optimal tableau shown in 
Table 4.4. Applying the technique to (4.20) in Table 4.4 produces 

Xl = i: - iX4 - (-t)X7 

= (l + i) - (0 + i)X4 - (-1 + !)X7· 
Therefore 

(4.26) 
which corresponds to 

shown in Figure 4.4. 
Adding the slack variable Xs to (4.26), which is then added to Table 4.4, 

allows the dual simplex method to produce Table 4.5, which displays the 

Table 4.4 

Constraints Xl X2 X3 X4 Xs X6 X7 r.h.s. 

(4.19) 0 0 -1 0 0 

(4.20) 0 0 ! 0 0 1 i -z 
(4.22) 0 0 1 i 0 0 5 1f -2 

(4.24) 0 0 0 0 -2 2 

(4.25) 0 0 0 t 0 1 3 5 
-2 4 

Xo 0 0 0 0 0 0 660 

Table 4.5 

Constraints Xl X2 X3 X4 Xs X6 X7 Xs r.h.s. 

(4.19) 0 0 0 0 0 5 4 2 3 -"3 

(4.20) 0 0 0 0 0 -1 

(4.22) 0 0 0 0 0 11 ! -3 

(4.24) 0 0 0 0 1 0 s t -3 

(4.25) 0 0 0 0 0 5 t -"3 

(4.26) 0 0 0 0 0 t 4 
-3 

Xo 0 0 0 0 0 0 0 660 
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optimal solution to the original problem, (4.1)-(4.5): 

x! = 1 

x! = 2 

x~ = 10. 

4.4.2 Gomory's Mixed-Integer I.P. Algorithm 
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Consider now a mixed-integer programming problem, i.e., some but not all 
of the variables are constrained to be integer. In terms of (4.6)-(4.9), 

O<q<n. 

Gomory's mixed-integer I.P. algorithm follows the same initial pattern as 
the all-integer algorithm. Suppose the initial simplex solution contains a 
noninteger-valued variable Xj which is one of those which is constrained to 
be integer. Then its tableau equation (4.12) can be rewritten as 

p 

[oJ + oj - Xj = L "iijkYk· (4.27) 
k=l 

At this point the analysis takes a different path from that of Section 4.4.1, 
because not all of the variables Yk> k = 1, ... ,p may be constrained to be 
integer. Let 

Then (4.27) can be written as 

S+={k:"iijk~O} 

S_ = {k: "iijk < O}. 

[OJ] + oj - Xj = L "iijkYk + L "iijkYk· 
keS+ keS-

Case I. Assume 

[oJ + oj - Xj < O. 

(4.28) 

As [OJ] is an integer, x j is constrained to be an integer in any feasible solution, 
and oj is a nonnegative fraction. Hence 

[OJ] - Xj 

must be a negative integer, say - u. Therefore 

[OJ + oj - Xj = oj - u, 

where u E {1,2, 3, ... }. Substituting this into (4.28) produces 

oj - u = L "iijkYk + L "iijkYk· 
keS+ keS_ 

Now, since 
u ~ 1, 
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we have 
5j - 1 ~ L ajkYk + L ajkYk, 

keS+ keS-

And, from the definition of S + and the fact that Yk ~ 0 for all k, 

5j - 1 ~ L ajkYk' 
keS_ 

Now, as 
5j - 1 < 0, 

we have 
1 ~ (5j - 1)-1 L ajkYk' 

keS_ 

Multiplying both sides by 5j, we obtain 

LI. < Lt.(LI. _ 1) - 1 '" -UJ - UJ UJ L... ajkYk· 
keS_ 

Case II. Assume 
[5 j] + 5j - x j ~ O. 

As Xj is constrained to be an integer in any feasible solution, we have 

[5 j ] + 5j - Xj = 5j + v 

(4.29) 

for some v, where v E {O, 1,2, 3, ... }. Substituting this into (4.28), we get 

5j + v = L ajkYk + L ajkYk' 
keS+ keS_ 

Now, since 
v~O, 

we have 

and, from the definition of S _ and the fact that Yk ~ ° for all k 

5j ~ L ajkYk-
keS+ 

Combining (4.29) and (4.30), we obtain 

Lt. < LI.(Lt. _ 1) - 1 '" - + '" -UJ - UJ UJ L... ajkYk L... ajkYk· 
keS- keS+ 

(4.30) 

(4.31) 

This inequality must be satisfied if Xj is to be an integer. The constraint (4.31) 
is the Gomory cut, which is introduced into the final tableau. 

A slack variable Xr is now added to (4.31): 

5j=5j(5j-1)-1 L ajkYk+ L ajkYk-xr • (4.32) 
keS_ keS+ 

Now, as 
Yk = 0, k = 1,2, ... , p 

we have 
Xr = -5j, 
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which is infeasible. The dual simplex method is used to remedy this situation. 
The above process is repeated until either: 

1. A tableau is produced in which Xi' i = 1,2, ... , q are integer, in which 
case the corresponding solution is optimal; or 

2. The use of the dual simplex method leads to the concl usion that no feasible 
solution exists, in which case one can conclude that the original mixed­
integer problem has no feasible solution. 

4.4.2.1 Numerical Example 

The method will be illustrated on the problem (4.1)-(4.4), with the following 
additional constraint: 

X 1 must be an integer, 

i.e., 
q = 1. 

On examining Table 4.1 it can be seen that Xl is noninteger and can be 
expressed as 

Therefore, in terms of (4.27), 

Also, 

Letting 

[bJ = 1 

bj = t 
j=2 

i = 1 

p=2 
- 1 
ajl = -S 
- 2 aj2 ="3 

Yl = X3 

Y2 = X4' 

S+ = {4} 
S_ = {3}. 

in terms of (4.32) the cut becomes 

t = t(t - l)-l( -t)x3 + ~X4 - X5' (4.33) 

Adding the negative of this constraint to Table 4.1 yields Table 4.6. The 
application of the dual simplex method to Table 4.6 yields Table 4.7, which 
displays the optimal solution to the problem, as Xl is now integer-valued. 
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Table 4.6 

Constraints XI X2 X3 X4 X5 r.h.s. 

(4.19) 0 1 2 3 0 n 5 -TO 

(4.20) 0 I ~ 0 ! -5 

(4.33) 0 0 I 2 1 I 
-20 -5 -5 

Xo 0 0 2 7 0 \V 5 TO 

Table 4.7 

Constraints XI X2 X3 X4 X5 r.h.s. 

(4.19) 0 ~6 0 3 £ -4 

(4.20) 1 0 -fo 0 

(4.33) 0 0 t 5 t -"2 

Xo 0 0 67 0 7 4f 80 4 

This solution is 
x! = I 

x~ = * 
x* - 43 0- 4' 

4.5 Applications of Integer Programming 

In the sections that follow we shall outline some real-world problems that 
can be formulated in terms of integer programming. There is quite an art in 
this. On the surface it does not seem possible to describe many of the problems 
as integer programs. However with imaginative definition of variables 
and construction of constraints it can be done. Once it has been recognized 
that a problem is amenable to J.P. formulation there is a great deal to the 
task of making the formulation efficient. That is, it is one matter to be able 
to formulate a problem, it is another matter to endow the formulation with a 
structure or size that can be solved efficiently. 

4.5.1 The Travelling Salesman Problem 

The travelling salesman problem is one of the classical problems of com­
binatorial optimization. It is concerned with a salesman who must visit a 
number of cities once each and return to the city from whence he started. The 
problem is to assign an itinerary to the salesman which minimizes the total 
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distance travelled in order to accomplish this circuit. It is assumed that the 
distance travelled in proceeding directly from one city to any other is known 
for all pairs of cities. Note that it is not assumed that the distance from city 
i to city j is necessarily the same as the distance from city j to city i. These 
two distances may differ for example when the "cities" are intersections in a 
one-way street network. When all such i, j-pairs of distances are equal the 
problem is called the symmetric travelling salesman problem (T.S.P.), other­
wise it is called the asymmetric travelling salesman problem. 
The T.S.P. can be formulated as a zero-one I.P. problem. Let 

n = the number of cities, 
cij = the cost of travelling from city i to city j. 

Note that if one does not wish the salesman to travel directly from a certain 
town to another one can assign a prohibitively large value (denoted by "00") 
to the appropriate cij value. This will ensure that such a path is never selected 
in any optimal solution. For instance, one sets 

Cii = 00, 1 = 1,2, ... , n. 
Let 

{
I if the salesman is to proceed directly from city i to city j 

xij = 0: otherwise. 

Because each city i must be left exactly once, 
n 

L xij = 1, 
j= 1 

i = 1,2, ... , n. 

Also, because each city j must be visited exactly once, 

" L xij = 1, j = 1,2, ... , n. 
i= 1 

For any given circuit defined by xij the objective is to 
n n 

Minimize: L L cijxij. 
i= 1 j= 1 

(4.34) 

(4.35) 

(4.36) 

The reader will recognize that minimizing (4.36) subject to (4.34) and (4.35) 
is the assignment problem of Section 2.72. Unfortunately, extra constraints 
are needed in order to formulate the T.S.P. This is because (4.34), (4.35), (4.36) 
do not exclude the possibility of subtours being formed. 

For instance, in a six-city problem one might make the assignments X12 = 
X23 = X31 = X45 = X56 = X64 = 1, all other xij = O. That is, the "circuit" is 
1 --+ 2 --+ 3 --+ 1 and then 4 --+ 5 --+ 6 --+ 4. This is a feasible solution for (4.34) 
and (4.35), as each city is left once and arrived at once. However, it represents 
two disjoint subtours. (A subtour is a circuit which does not involve all cities). 
Hence such a solution is not feasible for the T.S.P. Hence we need an extra 
family of constraints which prevent subtours from being formed. In order to 



174 4 Integer Programming 

develop this, we notice that there is a partition T, T' of the set of cities N: 

T = {1,2,3}, and T = N - T = {4,5,6} 

such that xij = 0 for all i E Tand allj E T. This occurs ifand only ifsubtours 
exist. Thus the following constraint will prevent subtours: 

L L xij ~ 1, for all proper partitions T, T' of N. (4.37) 
i"T j"T' 

(A proper partition T, T' of N is a partition such that T =1= 0 or N.) Thus the 
T.S.P. can be expressed as the following zero-one I.P.: minimize (4.36) 
subject to (4.34), (4.35), and (4.37). 

Of course, (4.37) involves a relatively large number of constraints for non­
trivial n. Hence it is not practical to use the above formulation on anything 
other than very small problems. However before the reader despairs, one can 
consider solving the problem ignoring (4.37). If the resulting solution is a 
feasible circuit it is optimal; if not, its value represents a valid lower bound 
on the value ofthe optimal T.S.P. solution. This suggests that one could use a 
branch and bound approach calculating bounds in this way. This has indeed 
been done initially by Little et al (1963) and Eastman (1958). There have been 
a number of improvements to this approach, including those by Bellmore 
and Malone (1971), which have been adopted by Garfinkel and Nemhauser 
(1972). 

4.5.2 The Vehicle Scheduling Problem 

The travelling salesman problem ofthe previous section can be extended in a 
number of ways. Suppose that there are now a number of salesmen, all 
op~rating from one base, which is one ofthe cities. All ofthe other cities must 
be visited by one salesman who delivers a quantity of goods. Each city has a 
known demand for the goods and each salesman has a capacity for carrying 
goods. The problem is to assign each salesman a circuit of cities, starting and 
ending at the base where total demand on a circuit must not exceed the 
salesman's capacity. All cities must have their demand met and the total 
co;t of travel is to be minimized. 

This problem can be made more realistic by thinking ofthe "salesmen" as 
representing vehicles (say delivery vans) and the "cities" as demand points 
within one city. This problem has a number of important applications, such 
as school bus scheduling (F oulds et al. 1977 a), milk tanker scheduling (Foulds 
et al. 1977b), municipal waste collection (Beltrami and Bodin 1974), fuel oil 
delivery (Garvin et al. 1957) and newspaper distribution (Golden et al. 1975). 
Surveys ofliterature on the problem have been carried out by Turner, Ghare, 
and Foulds (1974) and Watson-Gandy and Foulds (1981), 

The problem will now be formulated in terms of integer programming. 
The first formulation is due to Balinski and Quandt (1964). First all feasible 
circuits which begin and end at the base are identified. This may be an 
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extremely difficult task for problems with 20 or more demand points. How­
ever, the formulation is still useful as a conceptual tool. Let 

m = the total number of feasible circuits 

(j .. = {l, ifthejth demand point is on the ith feasible circuit 
'1 0, otherwise 

Ci = the total cost of travelling the ith feasible circuit 

x. = {I, if the feasible circuit i is chosen 
, 0, otherwise. 

Then the problem is to 
m 

Minimize: L Ci X i 
i=1 

m 

subject to: L (jijXi = 1, j = 1,2, ... , n 
i= 1 

Xi = 0 or 1, i = 1,2, ... , m. 

The following formulation, due to Garvin et al. (1957), is more explicit 
and is far more amenable to integer programming techniques. Let 

Pk = the demand at point k 

C = the capacity of each vehicle (assumed to be identical for 
all vehicles) 

dij = the cost of travelling from point i to pointj 

Yijk = the quantity shipped from point i to point j which is destined 
for point k 

x .. = {I, if a vehicle travels directly from point i to pointj 
'1 0, otherwise. 

The base shall be denoted by the subscript O. 
Consider two distinct demand points, j and k. Then Yijk denotes the 

quantity arriving at point j from point i which is destined for point k. Thus 

LYijk 
i 

denotes the total quantity arriving at point j destined for point k. Also, 
Yjrk denotes the quantity leaving point j for point r which is destined for 
point k. Thus 

denotes the total quantity leaving point j for point r which is destined for 
point k. Now because all goods arriving at point j, destined for point k, 
should leave pointj, we have: 

LYijk = L Yjrk, for all pointsj, k,j =F k. (4.38) 
i 



176 4 Integer Programming 

Also, Yikk denotes the quantity arriving at point k from point i which is 
destined for point k. Thus 

LYikk 
i 

denotes the total quantity arriving at point k which is destined for point k. 
Now because this total quantity must equal the demand of point k, we have: 

L Yikk = Pk' for all points k. (4.39) 
i 

Also, YOjk denotes the quantity leaving the base for pointj which is destined 
for point k. Thus 

LYOjk 
j 

denotes the total quantity leaving the base destined for point k and 

L LYOjk 
j k 

denotes the total quantity leaving the base. Also 

Lqk 
k 

denotes the total demand. Now, as the total quantity leaving the base must 
equal the total demand, we have: 

(4.40) 

It is usually assumed in formulating vehicle scheduling models that only 
one vehicle will visit each point. The problem of having points with demand 
greater than vehicle capacity can be overcome by distributing the demand 
of such a point between a number of artificial points all at the same location, 
one vehicle visiting each. The assumption implies that only one vehicle will 
leave each point. Thus we have: 

L Xij = L Xjr = 1, for all pointsj. (4.41) 
i 

Also 
LYijk 
k 

denotes the total quantity carried by the vehicle (if any) which leaves point i 
for point j. This quantity cannot exceed vehicle capacity, and if no vehicle 
travels on this segment, the quantity is zero. Thus we have: 

L Yijk ~ xijC, for all points i, j, i #- j. 
k 

Of course it is implicit that 
Yijk ~ 0 

(4.42) 
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and 
Xij = 0 or 1, for all points i, j, k. (4.43) 

Then the objective is to 

Minimize: (4.44) 

which is the total cost of all travel. 
Thus it can be seen that the problem of minimizing (4.44) subject to 

(4.38)-(4.43) is a mixed 0-1 programming problem. It would be difficult to 
solve such problems when there are more than about 10 points, as the 
number of constraints would be prohibitive. What is usually done is to solve 
realistically sized vehicle scheduling problems by heuristic techniques, such 
as those of Clarke and Wright (1964), or Foster and Ryan (1976). A heuristic 
technique is a solution procedure represented by a series of rules which, 
although not guaranteed to find the optimum, usually produce relatively 
good solutions. Techniques guaranteed to produce the optimal solution, 
such as branch and bound enumeration, can at present be used only on 
small problems because of the amounts of computer time and storage they 
require. Hence most people studying the vehicle scheduling problem prefer 
to concentrate on heuristic techniques. The heuristic of Foster and Ryan 
mentioned above does actually use an integer programming formulation. 

4.5.3 Political Redistricting 

Consider the problem of finding a just method of assigning the census tracts 
of a region to a number of electorates (voting districts) for the purposes of 
voting. The assignment must satisfy a number of criteria, including approxi­
mate population equality between electorates and connectedness and com­
pactness of electorates. Each tract is indivisible in the sense that all of it 
must be included in exactly one electorate. The number of electorates 
created must be equal to the given number of members of parliament 
(congressmen) for the region. Each electorate should be connected in the 
sense that it is possible to travel between any two points of the electorate 
without leaving the electorate. Each electorate should be relatively compact 
in the sense that its physical shape should be somewhat circular or square 
rather than long and thin. 

Some of the above criteria will now be expressed in mathematical form. 
Let 

m = the number of tracts in the region, 

n = the number of electorates to be created, 

x .. = {I, if tract i is assigned to electorate j, 
I) 0, otherwise, 

Pi = the population of tract i. 
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Let 
1 m 

V=- L Pi 
ni=1 

be the mean electorate population. In any true democratic system each 
electorate should have a population V to ensure voting equality. However, 
this is usually impossible because of the indivisibility of each tract. 

The population of electorate j is 
m 

L PiXij' 
i=1 

Let its deviation from V be defined as 

Then one might attempt to make the maximum deviation over all electorates 
as small as possible: 

Minimize: Max dj . (4.45) 
j=1,2, ...• n 

Each tract i must belong to precisely one electorate: 
n 

L xij = 1, i = 1,2, ... ,m. (4.46) 
j= 1 

Also, there must be exactly n electorates created. That is, each electorate 
must have at least one tract assigned to it: 

m 

L xij 2:: 1, j = 1,2, ... , n. (4.47) 
i= 1 

As 
Xij = 0 or 1, i = 1,2, ... , m 

j = 1,2, ... , n, 
(4.48) 

(4.45)-(4.48) would be a zero-one I.P. except for the form of(4.45). However, 
all is not lost, as one can convert the problem into a standard zero-one 
I.P. as follows. Let 

v = Max dj , 
j=1,2, .... n 

i.e., 

j = 1,2, ... , n. 
Hence 

I.f PiXij - vi :s; v, 
,= 1 

j = 1,2, ... , n, 
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and therefore 

m ) 
L PiXij - P:::;; V 
i= 1 

f PiXij-P~-V 
i= 1 

Now the problem becomes 

Minimize: 

subject to: 

which is a straightforward I.P. 
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j = 1,2, ... , n. (4.49) 

v 

(4.46)-(4.49), 

One can introduce the concept of tract area and develop further con­
straints concerning the connectedness and compactness of the electorates. 
This has been done by Smith, Foulds, and Read (1976) and others, including 
Garfinkel and Nemhauser (1970); Hess et al. (1965); and Wagner (1968), 
who used integer programming to solve his model. 

4.5.4 The Fixed Charge Problem 

Consider the problem of a factory which must produce at least M units of a 
certain commodity and there are n machines available. Let 

Pi = the unit cost of producing one article on machine i, i = 1,2, ... ,n 

Fi = the positive fixed cost of setting up machine i for production i = 
1,2, ... , n 

Xi = the number of units produced on machine i, i = 1,2, ... , n. 

Then the production cost for producing Xi units on machine i is 

if Xi> 0 
otherwise, 

where we have assumed that production costs for each article are additive. 
The problem is to minimize the total production cost: 

n 

Minimize: L Ci(Xi)' (4.50) 
i= 1 

At least M units must be produced, hence 
n 

L Xi~M. (4.51) 
i-I 

Also, 
Xi is a nonnegative integer, i = 1,2, ... , n. (4.52) 
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Now (4.50), (4.51), (4.52) would be an I.P. apart from the nonlinearity of 
(4.50). However, this nonlinearity can be overcome by defining 

Also, let 

if machine i is set up 
otherwise. 

Ui = the maximum possible number of units that machine i could 
possibly produce. 

Then 
i = 1,2, ... , n. 

So (4.50) becomes 
n n 

Minimize: L Pi Xi + L FiYi' (4.53) 
i= 1 i= 1 

Some extra constraints need to be added: 

i = 1,2, ... , n. (4.54) 

(4.54) ensures that 
Xi> 0 = Yi = 1 

and 
Xi = 0 = Yi = 0, 

the latter implication arising from the facts that (4.53) has the objective of 
minimization and all Fi > O. So, with the proviso 

Yi = 0 or 1, i = 1,2, ... , n, (4.55) 

the problem (4.51)-(4.55) is a mixed integer programming problem. 

4.5.5 Capital Budgeting 

Consider a company which has the opportunity to initiate a number of 
projects. Let 

n = the number of projects available 

m = the number of time periods, during which funds will have to be 
injected into the projects 

Pi = the ultimate profit of project i 

hj = the level of funds that needs to be allocated to project i in time 
periodj 

Cj = the total capital available for distribution in time periodj 

x. = {l, if project i is selected, 
, 0, otherwise. 
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Then the objective is to maximize ultimate profit, i.e., 

Maximize: 

subject to the fact that the total capital available in each period j: 

cannot exceed the amount available, i.e., 
n 

I Iijx i S Cj ' j = 1,2, ... , m. 
i= 1 

Also 
Xi = 0 or 1, i = 1,2, ... , n. 

Problem (4.56)-(4.58) is a standard zero-one I.P. If 

m = 1, 

the variables can be redefined as follows: 

Ii! = /;, i = 1,2, ... , n 

C1 = C. 
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(4.56) 

(4.57) 

(4.58) 

Consider now the problem of deciding which items to take on a hiking trip. 
Let 

n = the number of different types of possessions to be taken 

Pi = the value assigned to an item of type i 

/; = the weight of an item of type i 

C = the total weight that can be carried 

Xi = the number of items of type i to be taken. 

Then let us assume the objective of maximizing the total value of all posses­
sions taken, i.e., 

Maximize: (4.59) 

The total weight of all items: 

cannot exceed the total allowable weight, i.e., 

n 

I /;Xi S C. (4.60) 
i= 1 
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Of course, only integer quantities of each item can be taken along: 

Xi = a nonnegative integer, i = 1,2, ... , n. (4.61) 

Problem (4.59), (4.60), (4.61) is called the knapsack problem for obvious 
reasons, and will be further examined in Chapter 6. 

4.6 Exercises 

(I) Computational 

1. Solve the following integer programming problems by Dakin's method. 

(a) Maximize: 3x l + 5X2 + 4X3 

subject to: 2Xl + 6X2 + 3X3 ::0:; 8 

5x l + 4X2 + 4X3 ::0:; 7 

6x l + X2 + X3::O:; 12 

Xl, X2, X3 nonnegative integers. 

(b) Maximize: 4Xl + 3X2 + 3X3 

subject to: 4Xl + 2X2 + x 3 ::o:; 10 

3Xl + 4X2 + 2X3 ::0:; 14 

2Xl + X2 + 3X3::O:; 7 

X l ,X2,X3 nonnegative integers. 

(c) Maximize: 2Xl + 4X2 + 5X3 

subject to: Xl + X2 + 2X3::O:; 9 
2Xl + X2 + 3X3::O:; 13 

3Xl + 2X2 + x 3 ::o:; 11 

Xl' X2, X3 nonnegative integers. 

(d) Maximize: 5x l + 4X2 + 3X3 

subject to: 3Xl + 4X2 + X3::O:; 12 

4Xl + 2X2 + X3::O:; 9 

2Xl + 3X2 + 2X3 ::0:; 15 

Xl> X2, X3 nonnegative integers. 

(e) Maximize: 4Xl + 6x2 + X3 

subject to: 2Xl + X2 + 2X3 ::0:; 16 

Xl + 2X2 + X3::O:; 10 

3x l + X2 + X3::O:; 13 

Xl, X2, X3 nonnegative integers. 
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(f) A food factory produces three types of fruit salad: A, B, C. Each type requires 
a different amount of three varieties of fruits: peaches, pears, and apples as 
summarized in Table 4.8. No more than 5, 4, and 6 pounds of pears, peaches, 
and apples can be used in producing a can. How many of each type of can 
should be produced in order to maximize profits? 

Table 4.8. Data for Exercise I (f). 

Type 

A 
B 
C 

(g) Maximize: 

subject to: 

(h) Maximize: 

subject to: 

(i) Maximize: 

subject to: 

Weight in pounds: 

Pears Peaches Apples 

2 3 4 
2 2 4 
3 3 2 

Xl + 2X2 + X3 

2XI + X2 + 3X3 ~ 12 

Xl + 4X2 + 2X3 ~ 10 

Xl + 3x2 + X3 ~ 14 

XI>X2,X3 nonnegative integers. 

Xl + 3X2 + 2X3 

Xl + 2X2 + 2X3 ~ 9 

2XI + X2 + X3 ~ 18 

2XI + 2X2 + X3 ~ 20 

XI> X2, X3 nonnegative integers. 

Xl + 3X2 + 2X3 

2XI + 4X2 + X3 ~ 7 

3XI + 2X2 + 2X3 ~ 5 

Xl + X2 + 3X3 ~ 6 

XI>X2,X3 nonnegative integers. 

(j) Maximize: 

subject to: 

Xl + 2X2 + 3X3 

3x I + 2X2 + X3 ~ 5 

4XI + 3X3 ~ 7 

2XI + 4X2 + X3 ~ 4 

X I> X 2, X 3 nonnegative integers. 

(k) Maximize: 

subject to: 

3XI + 4X2 + X3 

Xl + X2 + X3 ~ 8 

Xl + 3X2 + 4X3 ~ 15 

X2 + 2X3 ~ 12 

XI>X2,X3 nonnegative integers. 

Profit per can 

6 
5 
4 
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(I) Maximize: 

subject to: 

(m) Maximize: 

subject to: 

(n) Maximize: 

subject to: 

(0) Maximize: 

subject to: 

(p) Maximize: 

subject to: 

3x I + 4X2 + X3 

XI + 2X2 - 2X3 :5: 9 

2xI - X2 + 4X3 :5: 15 

3xI + 3x2 - x3:5: 0 

XJ,X2,X3 nonnegative integers. 

2xI + 2xz + 4X3 

Xl + Xz + x3:5: 9 

3XI + 4xz + 2X3 :5: 10 

-2XI + 4xz + 4X3 :5: 8 

XJ, X 2 , X3 nonnegative integers. 

3x I + 5x2 + 2X3 

2XI + X2 + 5X3 :5: 12 

Xl + 3xz + x3:5: 8 

5x I + 2X2 + 3X3 :5: 9 

XI, X2, X3 nonnegative integers. 

5xI + 7X2 + 4X3 

XI + X2 - x3:5: 0 

2xI + X2 + 4X3 :5: 32 

6x I + 9x2 :5: 50 

X I, X 2, X 3 nonnegative integers. 

2XI + 4X2 + 5X3 

XI + X2 + 2X3 :5: 9 

2xI + Xz + 3X3 :5: 13 

3xI + 2X2 + x3:5: 11 

Xl, XZ, X3 nonnegative integers. 

4 Integer Programming 

(q) A surfboard manufacturer wants to know how many of each type of surfboard 
he should make per week in order to maximize profits. He makes three types 
of board: the knee board (K), the beacher (B), and the cruiser (C), which are 
4,6, and 8 feet long, respectively, but he can blow only 50 feet offoam per week. 
The profits are $40, $60, and $30 for K, B, and C, and they require 10, 15, and 
25 feet of fibreglass cloth respectively. He has 140 feet of cloth available per 
week, and 70 pounds of resin per week. K, B, and C need 6,10, and 14 pounds 
of resin each, respectively. 

(r) Maximize: 

subject to: 

XI + 2xz + 3X3 

X 2 + 2X3 :5: 6 

XI + X2 + x3:5: 5 

3xI + 2X2 :5: 4 

XI, X2, X3 nonnegative integers. 
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(s) Maximize: 

subject to: 

16xl + IOx2 + 12x3 

2Xl + 3x2 + 4X3::5: 10 

4Xl + 3X2 + 2X3::5: 12 

Xl + 2X2 + 3X3::5: 6 

Xl> X2, X3 nonnegative integers. 
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(t) A hobbyist making cane baskets (B), trays (T), and plant holders (P), makes a 
profit of $10 on each item, and incorporates three colours: white (W), red (R), 
and yellow (Y). He has a maximum of 6,9, and 10 yards of W, R, and Y cane 
per week respectively. B, T, and P require 2, I, I; I, 3, I; and I, 2, 2 of W, R, 
and Y cane, respectively. How many items of each type of product should he 
make per week in order to maximize profit? 

(u) Maximize: 

subject to: 

(v) Maximize: 

subject to: 

2Xl + 3X2 + X3 

Xl+2x2+ x3::5:17 

3Xl + X2 ::5: 15 

X2 + 4X3 ::5: 12 

X l ,X2 ,X3 nonnegative integers. 

Xl + X2 + 2X3 

tXl + tX2 + tX3 ::5: II 
tXl + tX2 + t X3 ::5: V 
iXl + tX2 + tX3 ::5: 1/ 

Xl>X 2,X3 nonnegative integers. 

(w) Maximize: 

subject to: 

(x) Maximize: 

subject to: 

2Xl + 4X2 + 6X3 

2Xl + X2 + x3::5: 3 

Xl - 2X3 ::5: 6 

4X2 + 6X3 ::5: 10 

Xl> X 2 , X3 nonnegative integers. 

6Xl + 5X2 + 4X3 

5Xl + 4X2 + 2X3 ::5: 40 

3xl + 3X2 + 4X3 ::5: 30 

2Xl + 3X2 + 3X3 ::5: 20 

Xl> XZ, X3 nonnegative integers. 

(y) A jeweller makes three types of silver rings. Ring A takes 3 hours, 20 g of silver 
and I hour of polishing. These quantities are 3, 10, and 3; 1,20, and I for rings 
Band C, respectively. The polishing machine is available to him for 2 hours 
per day and he can work for another II hours per day and can afford to buy 
60 g of silver per day. Profits are $30, $20, and $10 for A, B, and C rings, respec­
tively. How many of each type of ring should he make per day in order to maxi­
mize profit? 
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(z) Maximize: 

subject to: 

lOx1 + 12x2 + 16x3 

2Xl + 3X2 + 4X3:S; 20 

3X1 + 3X2 + 4X3:S; 30 

4X1 + 3X2 + 2X3:S; 25 

X[, X 2 , X3 nonnegative integers. 

2. Assume for each problem in Exercise 1 that 

4 Integer Programming 

Find the new optimal solution for each problem using the method of Balas. 

3. By converting to zero-one variables solve each problem in Exercise I by the method 
of Balas. 

4. Solve each problem in Exercise I by the Gomory cutting plane method. 

5. Solve each problem in Exercise I, assuming that only X2 must be integral, by the 
Gomory mixed integer method. 

(II) Theoretical 

6. Formulate the N-city travelling salesman problem as an I.P. in a way that requires 
fewer constraints than the formulation given in Section 4.4.1. 

7. Construct a branch and bound algorithm for the travelling salesman problem along 
the lines of the approach suggested at the end of Section 4.4.1. 

8. List at least three realistic applications for the vehicle scheduling problem not 
listed in Section 4.4.2. 

9. Construct a branch and bound algorithm for the vehicle scheduling problem. 

10. Construct a branch and bound algorithm for the fixed charge problem. 

II. Construct a branch and bound algorithm for the knapsack problem. 

12. Construct a branch and bound algorithm for the assignment problem of Chapter 2. 

13. Solve each of the problems of Exercise 2 by exhaustive enumeration. Compare the 
amount of computation involved with that required by the method of Balas. 



Chapter 5 

Network Analysis 

5.1 The Importance of Network Models 

Many important decision-making problems can be described in terms of 
networks. Some obvious examples are concerned with traffic and the ship­
ment of goods. However, there are many other examples with less obvious 
links with network modelling such as production planning, capital budgeting, 
machine replacement, and project scheduling. 

One ofthe basic network optimization problems is concerned with finding 
the shortest path between two given points in a network, the shortest path 
problem. A second problem arises in connection with finding a subset of 
links of the network which has the property that there is a path between 
every pair of points in the network and the total length of the links in the 
subset is minimal. This problem is called the minimal spanning tree problem. 
A third problem is connected with maximizing the flow of some commodity 
through the links of a network from a given origin to a given destination 
where each link has a capacity of flow. This is the maximal flow problem. 
A fourth problem is related to minimizing the cost of transporting a given 
quantity of a commodity from a given origin to a given destination: the 
minimum cost flow problem. A fifth problem, critical path scheduling, is 
concerned with scheduling the activities of a project. 

Because these and other basic network problems can be modelled as 
L.P. problems requiring integer solutions, network analysis has strong links 
with integer programming. In the next section the basic mathematical 
notions necessary to study networks are introduced. The underlying mathe­
matical subject is called graph theory. 
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5.2 An Introduction to Graph Theory 

What most people normally think of as a network (as in road, communica­
tion, or telephone networks) is a special example of a mathematical entity 
called a graph. In order to analyze network problems efficiently it is neces­
sary to master some graph theoretic concepts, which are presented in this 
section. The discussion here is chiefly for reference that is, the reader should 
proceed directly to section 5.3, returning to this section for clarification of 
terminology when needed. The interested reader who wishes a more 
detailed exposition of graph theory is directed to any of a number of excellent 
texts on graph theory, including Busacker and Saaty (1965), Deo (1974), 
and Harary (1969). 

We begin by defining the term graph, and we use the terminology of the 
Harary. 

A graph G = (P, L) is an ordered pair where P is a nonempty set of points 
(sometimes called vertices, nodes, or junctions) and L is a set of unordered 
pairs of distinct points of P, called lines (sometimes also called links, edges, 
or branches). Although a graph is an abstract mathematical concept, it is 
usual to represent a graph by a picture. For instance, the graph G = (P, L) 
where 

P = {PbP2,P3,P4} 

L = {{PI,P2,}, {P2,P3}, {P3,P4,}, {PbP4,}, {P3,Pb}} 

is represented in Figure 5.1. It is important to realise that pictures like 
Figure 5.1 are only diagrams of graphs, not the graphs themselves, which 
are defined abstractly by the specification of P and L. A similar relationship 
holds between Venn diagrams and formally defined sets. 

Pl~------------------~P2 

P4~------------------~P3 

Figure 5.1. A graph. 

Further terminology is now introduced. 
A walk is an alternating sequence of points and lines of the form: 

Po, {po,pd, PI' {PbPJ, P2'···' {Pn-I,Pn}, P .. 

For example, the sequence 

Pb {PI,P4}, P4, {P4,P3}, P3, {P3,pd, PI> {PI,P4}, P4 
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is a walk for the graph in Figure 5.1. A walk is termed closed if 

Po = Pn 

and open if 
Po =F Pn' 

The sample walk above is open, but if the last two elements-{PhP4}, 
P4-are removed it becomes closed. 

A trail is a walk in which all the lines are distinct. Hence the walk 

Pi> {Pl,P4}, P4, {P4,P3}, P3, {P3,Pl}, Pi> {Pl,P2} P2 

in Figure 5.1 is a trail. A path is a trail in which all the points are distinct. 
Hence the trail 

Pl, {Pl, P4}' P4, {P4, P3}, P3, {P3, P2}, P2 

in Figure 5.1 is a path. Of course if all the points are distinct in any trail, 
all its lines are also distinct. A cycle is a closed walk of at least three points 
with all its points distinct except that the first and the last are the same. 
Hence the walk 

in Figure 5.1 is a cycle. A graph is said to be connected if there exists a path 
between every pair of points. The graph is Figure 5.1 is certainly connected. 
However, if lines {Pl,P2} and {P2,P3} are removed the graph is no longer 
connected, as there are no paths from P2 to any of the other points. 

A tree is a connected graph without any cycles. If the lines {Pl, P2} and 
{P3,P4} are removed from the graph in Figure 5.1 it becomes a tree. The 
concept ofa tree is one of the most important in graph theory. We can make 
some interesting observations about trees. If a graph G = (P, L) is a tree then 

1. Every two distinct points of G are joined by exactly one path. 
2. The number of lines in L is one less than the number of points in P. 
3. If a line not present in L is added to G, then exactly one cycle is created. 

The reader should construct a number of trees according to the definition 
and verify that these properties are true for those trees. 

A graph G' is said to be a subgraph of a graph G if G' has all its points 
and lines in G and G' is a graph. Hence the graph (Pi, L') defined by 

pi = {{Pl, P2}, {P2, P3}, {Pl' P3}} 

is a subgraph of the graph in Figure 5.1. A subgraph (Pi, L') is said to span 
a graph (P, L) if 

pl=p, 

Le., all the points of the graph are part of the spanning subgraph. A graph 
that is a tree and a spanning subgraph of some graph (P, L) is said to be a 
spanning tree (of(P,L)). 
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In some applications it is desirable to orient each line of a graph with a 
direction. Graphs with directed lines are called digraphs (short for directed 
graphs). Pictures of digraphs are drawn in the same manner as those of 
graphs, except that each line has an arrow attached to it to signify its direc­
tion. For example, Figure 5.2 depicts a digraph obtained from the graph in 
Figure 5.1 by orienting its lines. 

Pl~---------~----------'P2 

Figure 5.2. A digraph. 

More formally, a digraph D = (P, A) is an ordered pair where P is a 
nonempty set of points and A is a set of ordered pairs of distinct points of 
P, called arcs (sometimes called directed lines). The digraph in Figure 5.2 
can be expressed formally as follows: 

P = {PI,P2,P3,P4} 

A = {(PbP2), (P2,P3), (PI,P3), (P3,P4), (P4,PI)}' 

Many of the concepts of graphs can be defined in an analogous fashion 
for digraphs. A directed walk is an alternating sequence of points and arcs 
of the form: 

Po, (Po, PI), Pb (PI' P2), P2, ... , (Pn-l, Pn), Pn­

For example, the sequence: 

Pb (PI,P2), P2, (P2,P3), P3, (P3,P4), P4, (P4,PI), PI' (PbP3), P3 

in Figure 5.2 is a directed walk. A directed path is a directed walk in which 
all the points are distinct. As an example the directed walk 

is a directed path A cycle is a directed walk of at least two points with all 
its points distinct except that the first and the last are the same. Hence the 
directed walk: 

PI' (PI,P2), P2, (P2,P3), P3, (P3,P4), P4, (P4,PI), PI 
is a cycle. 

If Pi and Pj are points in a digraph D and there is a directed walk from 
Pi to Pj in D, then Pj is said to be reachable from Pi' A network is a digraph 
with at least one point a (called the source) such that every point is reachable 
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from it, and another point w (called the sink) which is reachable from every 
other point. It is usual to associate flows of some commodity with the arcs 
of a network. 

5.3 The Shortest Path Problem 

Consider a digraph D in which each arc has a given traversal cost, i.e., for 
each arc (i,j) in Diet cij be the cost oftravelling from point i to pointj along 
arc (i,j). This traversal cost may be in terms of distance, time, money, or 
some other optimality criterion. Graphs or digraphs ofthis nature are called 
weighted. Figure 5.3 shows a weighted digraph. 

PI 

28 

27 

P8~~--------~~----------~P4 
7 

Figure 5.3. A weighted digraph. 

The cost of a path in a digraph is defined to be the sum of the costs of the 
arcs of the path. In the shortest path problem one must find the path of least 
cost which joins one given point to another given point. The cost Cij of a 
point pair i,j for which there is no arc (i,j) in A is set equal to a prohibitively 
large number. 

5.3.1 Dijkstra's Method 

Suppose one is given a weighted digraph and a source-sink pair of points 
such that it is desired to find the shortest path from the source to the sink. 
At each iteration Dijkstra's method identifies a new point which is the 
closest to the source among all those points which are currently not yet 
identified. The length of the path from the source to this point is calculated 
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and associated with the point. The method builds up a series of shortest 
paths from the source to successive points until the sink is included in this 
set, at which stage the problem is solved. All that remains is to find the actual 
arcs making up this shortest path by a backtracking process. The procedure 
can be continued until all points have been identified if it is desired to find 
shortest paths from the origin to all other points. 

The method will now be illustrated by finding the shortest path from 
point Pl to point Ps in the digraph in Figure 5.3. We begin by partitioning 
the set of points into two sets: A containing the origin and B containing all 
other points. So 

In the course of the method some of the points are going to be labeled, a 
label of d(i) for point Pi representing the shortest distance from the source 
to point Pi. First the origin is assigned a label d(l) = O. Next the point in 
B which is closest to the origin is found. We require 

Min {d(i) + cij}. 
iE A 

jEB. 

The point, j in B satisfying the minimization is the point required. It has 
its label dU) set equal to the minimum quantity found. In the present example 
this minimum is 

(I) d(1) + C1S = 0 + 1 = 1. 

Then the point, j in B found is removed from B and placed in A. So in the 
present example: 

A = {Pl,PS}' 

B = {PZ,P3,P4,P6,P7'PS} 

and 
d(5) = 1. 

This series of steps is now repeated until the sink (in the present example, 
P s) is transferred from B to A. These steps are now carried out 

(II) Min {d(i) + cd = d(l) + C13 = 0 + 2 = 2 

i E A 

jEB 

A = {PbP3,PS}' 

B = {pz, P4, P6, P7, Ps}· 

d(3) = 2; 
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(III) 

(IV) 

(V) 

Min {d(i) + cij} = d(5) + CS2 = 1 + 8 = 9 

i E A 

jEB 

A = {PbP2,P3,PS}, 

B = {P4,P6,P7,PS} 

d(2) = 9; 

Min {d(i) + cij} = d(2) + C24 = 9 + 9 = 18 

iE A 

jE B 

A = {PbP2,P3,P4,PS}, 

B = {P6,P7,PS} 

d(4) = 18; 

Min {d(i) + cij} = d(4) + C4S = 18 + 7 = 25 

i E A 

jE B 

A = {PbP2,P3,P4,PS,PS} 

B = {P6,P7} 

d(8) = 25. 
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Now as Ps, the sink, is included in A the repetition of the above series of 
steps in terminated (If the shortest paths from the origin to all points were 
required the steps would be repeated until all points were in A.) To find 
the sequence(s) arcs making up the shortest path(s) from source to sink 
we must work backwards (backtrack) through the digraph as follows. One 
forms a list of values of the form 

d(j) - cij - d(i), 

where Pj is the sink and Pi are labelled points connected directly to Pj. 
Now 

d(8) - C3S - d(3) = 25 - 27 - 2 ¥- 0, 

hence arc (P3, Ps) is not on the shortest path. However 

d(8) - C4S - d(4) = 25 - 7 - 18 = 0, 
so arc (P4, Ps) is. 

(5.1) 

Next replace Ps in (5.1) by P4, the point just found to be on the shortest 
path. A new list of values of the form of (5.1) is found. 

d(4) - C24 - d(2) = 18 - 9 - 9 = ° 
so arc (P2, P4) is on the shortest path. Also 

d(2) - CS2 - d(15) = 9 - 8 - 1 = ° 
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and 
d(5) - CIS - d(1) = 1 - 1 - 0=0, 

so arcs (Ps, P2) and (PI, Ps) are also on the shortest path. Unravelling this 
information we conclude that the shortest path is 

(PloPS), (PS,P2), (P2,P4), (P4,PS), with a length of d(8) which is 25. 

There are a number of related shortest path problems including that of 
finding a shortest path between each pair of points. The above procedure 
(Dijkstra (1959)) could, in theory, be used to solve this problem, however 
more efficient procedures have been developed; see for example Floyd 
(1962) and Murchland (1967). 

5.4 The Minimal Spanning Tree Problem 

The following problem is somewhat similar to the shortest path problem 
however it is concerned with graphs rather than digraphs. Given a weighted 
graph one desires to find among all its subgraphs a spanning tree (see section 
5.1) of minimum total weight. In other words we wish to find a subset of 
lines forming a tree which spans the graph and which has a sum ofthe weights 
of the individual lines which is a minimum among all such spanning trees. 
This problem is called the minimal spanning tree problem. 

There are many applications of the problem. Examples are transportation 
planning problems where the points represent cities or distribution centres 
and the lines represent air lanes, railway lines, or roads. In these cases one 
is trying to design a system in which it is possible for travel between all 
pairs of centres at minimum total outlay. A less direct application arises in 
finding a lower bound for the length of a travelling salesman's circuit (see 
section 4.41). One can represent symmetric T.S.P.'s by weighted graphs. 
In solving such problems by branch and bound enumeration (see section 
4.2) one needs the minimum distance the salesman would be required to 
travel given that certain lines must be used and others must not. The weight 
of a minimum spanning tree incorporating such decisions provides this 
information. Other applications occur in project planning and communica­
tions network design. 

5.4.1 Kruskal's Algorithm 

Given a weighted, connected graph, suppose it is desired to find a spanning 
tree of minimum total weight. Kruskal (1956) showed that the following 
algorithm always produces such a tree. One begins by ordering all the lines 
in the graph in order of nondecreasing weight, i.e., least weight first. Each 
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P3 P2 

4 4 6 7 8 

Ps 
P6 9 9 

P4 

4 8 10 

P7 
Figure 5.4. A weighted graph. 

line is then examined in this order in turn. When a line is examined it is 
accepted as part of the spanning tree unless it would form a cycle with those 
lines already accepted, in which case it is rejected and the next line is ex­
amined. The examination process is terminated when all the accepted lines 
form a spanning tree. This tree constitutes a minimal spanning tree. 

As an example, consider the weighted graph in Figure 5.4. The minimal 
spanning tree is found for this graph using Kruskal's algorithm as follows. 
The order of lines is: 

{Pl,PS}, {P3,PS}, {P2,PS}, {Pl,P3}, {Pl>P2}, {P6,PS}, {P6,P7}, {P3,P6}, 
{Ps,Ps}, {P4,PS}, {P2,P4}, {P4,PS}, {PS,P6}, {P4,P7}, {PS,P7}' 

The lines with weight 4-{pl> P3}, {Pb P2}, {P3, P6}, {P6, Ps}, and {P6, P7}­
have been assembled in arbitrary order. We now start building the tree by 
examining each line in this order. Lines {Pl,PS}, {P3,PS}, and {P2,PS} are 
all accepted. Next, {Pl,P3} is rejected, as it would create a cycle with {Pl,PS} 
and {P3,PS}' Then {PbP2} is rejected as it would create a cycle with {Pl,PS} 
and {P2,PS}' Moving on, {P6,PS} is accepted and {P3,P6} is rejected. Then 
{Ps,Ps} and {P4,PS} are accepted. At this point a spanning tree has been 
created and the examination process stops. The minimal spanning tree, 
with weight 

1 + 2 + 3 + 4 + 4 + 6 + 7 = 27 

is shown in Figure 5.5. 
It is true that a graph with n points will result in a spanning tree with n - 1 

lines. Thus, once n - 1 lines, creating no circuits, been accepted, the mini­
mal spanning tree algorithm has constructed a spanning tree. 
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PI 

T 

2 Ps 3 
p3.---------~~---------P2 

4 6 7 

Ps 

4 

P7 

Figure 5.5. A minimal spanning tree found by Kruskal's algorithm. 

5.4.2 Prim's Algorithm 

We now consider a second algorithm, due to Prim (1957), which also guar­
antees to find a minimal spanning tree in any connected, weighted graph. 
Despite refinements to increase efficiency in Kruskal's algorithm, Prim's 
approach is superior for all but very sparse (few lines) graphs. 

Prim's algorithm does not require that the lines of the graph are ordered 
in advance. It builds up a single connected component (which is actually a 
tree) until this component spans the original graph. This component then 
represents a minimal spanning tree. One begins by selecting the line of least 
weight say {Ph pJ. This line and its two incident points forms the initial 
component. One then finds the line of minimum weight among all those that 
connect a point in the component to a point that is not. This line and its 
noncomponent point then become part of the component. 

Both Kruskal's and Prim's algorithms involve making the best (in this 
case least weight) decision at each stage with little regard to previous deci­
sions. Combinational optimization procedures with this philosophy are 
termed greedy. Greedy procedures seldom guarantee optimal solutions as 
they do in the two algorithms for the minimal spanning tree problem. How­
ever, a greedy procedure is often used to find relatively good (near optimal) 
solutions with little computational effort for many combinatorial optimi­
zation problems. 

In order to illustrate Prim's algorithm, let us apply it to the graph in 
Figure 5.4. The least-weight line is {PI' Ps} with weight 1. So the initial com­
ponent is [PI' Ps; {PI' Ps}]. We now look for points which are directly con­
nected to the component. There are two: pz and P3· The lines {Ps, P3}' {Ps, pz}, 
{PbPZ}' and {PI,P3} connect them to the component, {PS,P3} being the 
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smallest. Hence this and P3 are added to the component, which becomes 
[PbP8,P3; {Pl,PS}, {PS,P3}]. Now P2 and P6 are directly connected to the 
component. The least-weight line is {PS,P2} which is added, along with P2, 
to the component. Now P4, Ps, and P6 are directly connected to the compo­
nent. However, there is a tie among the weights of the connecting lines: 
{P3,P6} and {PS,P6} are both of weight 4. Let us arbitrarily choose {P3,P6}, 
which is added to the component, along with P6. Next {P6,P7} and P7 are 
added to the component, then {Ps,Ps} and Ps, and finally {PS,P4} and P4· 
The component is now: 

[Pl, Ps, P3, P2, P6, P7, Ps, P4; {Pl, Ps}, {Ps, P3}, {Ps, P2}' {P3, P6}' 

{P6, P7}' {Ps,Ps}, {Ps, P4}]. 

The component now contains all the points of the graph and hence rep­
resents a minimal spanning tree. The minimal spanning tree is given by the 
lines present in the component. This tree is shown in Figure 5.6. 

2 Ps 3 
P3~--------~---------'P2 

4 6 7 

Ps 

4 

P7 
Figure 5.6. A minimal spanning tree found by Prim's algorithm. 

Although this tree has a different set oflines from that found by Kruskal's 
algorithm, it has the same weight (27). Differences between the two trees are 
due only to the way in which ties between line weights were settled. Indeed, 
both algorithms are capable of producing both trees. 

5.5 Flow Networks 
Recall that in Section 5.2 a network was defined as a digraph with a source 
and a sink. Many flow network problems are concerned with optimizing 
some parameter of a network system where there is a flow of material or 
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goods from its source to its sink. A network of pipes carrying crude petro­
leum from an oil field to a port is an example. It is assumed that there is no 
loss of the commodity being transported at the intermediate points. This 
assumption is called conservation of flow. In effect it means that, for points 
other than the source and sink, the total flow travelling into each point is 
equal to the total flow travelling out of it. Associated with each arc is a 
capacity, which represents the maximum amount of flow that the arc can 
accommodate. Many flow networks are such that each oftheir arcs has a unit 
transportation cost representing the cost of shipping one unit of the com­
modity along the arc. 

Until now we have implicitly assumed that a network has exactly one 
source and exactly one sink, and the algorithms to be presented in the next 
two sections are designed for networks of this nature only. Any network 
with multiple sources and sinks can easily be converted into one with a 
single source and a single sink using the following artificial device. If more 
than one source is present, a supersource So is created and represented by a 
new point. This new point is connected to each source Si by an arc (so, sJ 

S7 

(a) 

S4 

(00,0) Ss 

S2 
So 

S13 (00,0) 
S6 

(00,0) 

S7 
SIO 

(b) 

Figure 5.7. The conversion from multiple sources and sinks (a) to a unique source 
and sink (b). 
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For networks with multiple sinks a supersink Sn+ 1 is created. Each sink Sj is 
connected to Sn+ 1 by an arc (Sj' Sn+ 1)' Arcs of the form (so, Si) and (Sj' Sn+ 1) in 
multisource-multisink networks are assigned zero unit transportation costs 
and infinite capacity. An example of the conversion from multisource to 
multisink network to a single source-single sink network is given in Figure 5.7. 
The capacity and unit transportation costs are given as an ordered pair for 
each new arc. In Figure 5.7(a) the sources are Sl, S2' and S3' and the sinks are 
Sl1 and S12' In Figure 5.7(b) the supersource is So and the supersink is S13' 

Once the conversion has been made and a solution to the problem has been 
found, arcs from So and to Sn + 1 are ignored. 

Two network flow problems and solution procedures for them are pre­
sented in the next few sections. In the maximal flow problem one must maxi­
mize the total rate of flow from source to sink neglecting unit transportation 
costs. In the minimal cost flow problem one must minimize the cost of ship­
ping a given quantity of a commodity from source to sink. 

5.5.1 The Maximal Flow Problem 

Consider a network with arc capacities but no unit transportation costs. 
The maximal flow problem is concerned with finding an assignment of flow 
to each arc so that the total flow from source to sink is maximized. The 
problem can be formulated in mathematical terms. Let 

n = the number of points in the network 

Cij = the capacity of arc (Pi> P j) 

k = the flow assigned to arc (Pi>Pj) 

P1 = the source 

Pn = the sink. 

Given a set of flow assignments iij' the flow out of point i is 

The flow into a point i is 

I iij· 
all arcs 
(Pi.Pj) 

I }ji' 
all arcs 
(pi-pil 

Hence the assumption of the conservation of flow implies: 

I k- I }ji =0, i =I 1, i =I n. 
all arcs all arcs 
(Pi,Pj) (Pi-Pi) 

(5.2) 

Note that the restriction on i in (5.2) is important. Conservation of flow 
does not hold for the source or sink. Let F denote the total amount of flow 
travelling through the network. This amount of flow F must leave the source 
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and arrive at the sink. Thus 

L fl j = L hn = F. 
all arcs all arcs 
(PI ,p j) (pi,PH) 

In the maximal flow problem one must 

Maximize: F 

subject to: { 
F, 

L hj - L jji = 0, 
all arcs 
(Pi,Pj) 

all arcs F 
(pj,pil - , 

5 Network Analysis 

if i = 1 
if i # 1, i # n 

ifi = n 

o :::; hj :::; cij , for all arcs (Pi> p). 

We turn now to developing methods for solving the maximal flow 
problem. Consider the network in Figure 5.8, where arc capacities are shown. 
If the arcs (P4,P6), (P3,P6), (PS,P6) were removed from the network it would 
be disconnected, in the sense that there would no longer be any paths from 
source, PI to sink, P6' A set of arcs with at least one element in every source­
sink path is called a cut. Thus the removal of the arcs in any cut disconnects 
every source-sink path. Hence the set C = {(P4,P6), (P3,P6), (PS,P6)} is a cut. 
The capacity of a cut is defined to be the sum of the capacities of the in­
dividual arcs in the cut. Thus the capacity of C is 

C46 + C36 + CS6 = 1 + 2 + 2 = 5. 

The cut with the smallest capacity is called the minimum cut. The reader 
should verify that C is the minimum cut for the network in Figure 5.8. 

P4 
0 

4 
4 

0 
PI P3 

2 
2 0 

P s 
2 

Figure 5.8. A minimum cut. 

The following important theorem is very useful in the designing of an 
algorithm to solve the maximal flow problem: 

Theorem 5.1 (The maximum-flow, minimum-cut theorem). In any network 
the value of the maximum flow from source to sink equals the capacity of 
the minimum cut. 
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This theorem was proved by Ford and Fulkerson (1962) in an excellent text 
which made a substantial contribution to the theory of network flows. The 
book deals with the maximal flow problem and many of the other topics 
of this chapter. 

When confronted with a maximal flow problem one can begin by iden­
tifying the minimum cut. The network can then be gradually loaded with 
flow that satisfies the assumption of conservation of flow. When the flow 
from source to sink has total volume equal to the capacity of the minimum 
cut, we know because of Theorem 5.1 that no further addition of flow is 
possible. Thus the loading can be stopped and the present assignment is 
optimal. The strategy by which the network is loaded is called the labelling 
method, and is due to Ford and Fulkerson (1962). This method is explained 
in the next section. 

5.5.2 The Labelling Method 

Consider the network in Figure 5.8. Flows in opposite directions in a single 
arc have their magnitudes subtracted to produce a single flow in the direction 
of the larger flow. For instance, if arc (3,4) had a flow of 5 from 3 to 4 and 
a flow of 4 from 4 to 3, the net result would be a flow of 1 from 3 to 4. In 
order to be able to change flows already assigned we allow the possibility of 
a notional flow in an arc in a direction in which it cannot receive further flow. 
This is brought about by the concept of excess capacity. The excess capacity 
eij of an arc (i,j) for a given assigned flow iij is initially defined as 

(5.3) 

i.e., the amount of extra flow that an arc could accommodate, over and 
above what it is now assigned. Suppose an arc (i,j), has a present flow of 
iij and a capacity of cij' If a further flow iii is assigned to it, its excess capacity 
is reduced by iii' but the excess capacity of arc (j, i) is increased by iii' This 
allows us the possibility of later changing our minds and reducing the flow 
in (i,j) by iii to get back to the original flow of iij' For example, suppose 
initially: 

Then 
e36 = 2 - 0 = 2 

e6 3 = 0 - 0 = O. 

Now suppose a flow of I unit is assigned to (3,6); then 

i36 = I 
e 36 = 1, 

but e63 is increased to 1. Although in reality it is impossible for arc (6,3) 
to accommodate any flow, this positive excess flow is a useful tool. It allows 
us to notionally assign a flow of 1 to arc (6,3) (since it has excess capacity 
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of 1). This unit of flow cancels with the unit flowing along (3,6), leaving no 
flow at all. Also, e63 is reduced to 0, e36 is increased to 2, and we are back 
where we started. 

Armed with the above ideas we shall now explain the labelling method 
by using it to solve the problem defined by the network in Figure 5.8. We 
begin by labelling the source with the symbol b l = 00, to indicate that it 
is theoretically the source of an infinite amount of flow as far as the method 
is concerned. All arcs are initially assigned an excess capacity as defined by 
(5.3), with /ij = O. Any unlabelled points directly connected to a labelled 
point by arcs with positive excess capacity are identified. Thus, if unlabelled 
point j is such that 

eij> 0 

for some arc (i,j) and some labelled point i, pointj is then labelled with the 
ordered pair (aj,b j), where 

aj = i, the starting point for (i,j) 

bj = min {eij , bJ, the maximum possible flow. 

This represents the fact that it is possible to find a path from the source 
to point j which can carry an extra bj units of flow. Thus points P2 and P4 
are unlabelled and connected to the labelled point Pl' Hence they are labelled 
(1,2) and (1,4), respectively. The labelled point with the smallest index which 
is connected to an unlabelled point is identified. This is point P2' connected 
to point P3' Thus point P3 is labelled (2,2). Next the sink is labelled (3,2) by 
the same reasoning. 

Once the sink has been labelled, breakthrough has been achieved. We 
have now discovered a path from source to sink which is capable of carrying 
bn additional units of flow; bn is the second label associated with the sink, 
point Pn' In the present case the path we have found is capable of carrying 
b6 = 2 extra units of flow. This path can be traced back to the source by 
examining the ai values of point labels. For instance, a6 = 3, hence the path 
proceeds P3 ~ P6; a3 = 2, hence the path is P2 ~ P3 ~ P6; and a2 = 1, hence 
the complete path is PI ~ P2 ~ P3 ~ P6' The flows in the arcs of this path 
are increased by bn (=2); i.e., /12 = /23 = /36 = 2. 

The excess capacity in these arcs is reduced by the amount of flow just 
assigned, i.e., 

e12 = 2 - 2 = 0 

e23 = 4 - 2 = 2 

e36 = 2 - 2 = O. 

The excess capacity of arcs in the opposite direction to those on the path 
have their excess capacities increased by the amount of flow just assigned, i.e., 

e21 = 0 + 2 = 2 

e32 = 0 + 2 = 2 

e36 = 0 + 2 = 2. 
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4 
5 

2 
2 (2) 

2 

(2) 
2 

Figure 5.9. An initial flow assignment. 

All labels except that of the source are then removed. This completes one 
iteration of the method. Figure 5.9 indicates the present flow assignment. 
Actual flows assigned are shown in parentheses, excess capacities without 
parentheses. 

The process is then repeated. This time only point P4 can be initially 
labelled from the source, as the arc connecting point P2 has zero excess 
capacity. It is once again labelled (1,4). Next points P3 and P6 can be labelled 
from point P4' The maximum amount of extra flow that can travel via the 
path P1 ~ P4 ~ P6 is the minimum of two quantities: the amount that can 
arrive at point P4 (4 units) and the excess capacity of arc (4,6), namely 1. 
Hence the points P3 and P6 are labelled (1,4) and (4, 1), respectively. Break­
through has once again been achieved. We have identified a path: P1 ~ P4 ~ 
P6 to which we can assign a flow of 1. We now perform the necessary book­
keeping tasks to keep track of present flow assignments: 

114 = 146 = 1 
e14 = 4 - 1 = 3 

e46 = 1 - 1 = 0 

e41 = 0 + 1 = 1 

e64 = 0 + 1 = 1. 

Figure 5.1 0 indicates the present flow assignments. It now looks as if we 
have reached a stalemate and cannot assign any further flows by this method. 
Arc (1,2) has zero excess capacity. Arc (1,4) has positive excess capacity (3), 
but arc (4,6) has zero excess capacity. Hence we would have to send any 
flow arriving at P4 from Pi on to P3' But arcs (3,6) has zero excess capacity 
so this flow would have to be sent along arcs (3, 2), (2, 5), and (5, 6). All the arcs 
on this path have excess capacity. Hence this path represents a possibility 
for increasing flow. We have already assigned a flow of 2 along arc (2,3). 
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Hence if we send any flow along arc (3,2), this flow along arc (2, 3) would be 
correspondingly reduced. This possibility allows us to change our minds 
and remove the allocation of 2 units along arc (2, 3). 

In practice, the next iteration of the labelling method achieves what we 
have just discussed: P4 is labelled (1, 3), P3 is labelled (4, 3), P2 is labelled (3, 2), 
P5 is labelled (2,2), and P6 is labelled (5,2). Breakthrough has been achieved. 
We have discovered the path Pi -+ P4 -+ P3 -+ P2 -+ P5 -+ P6 along which it is 
possible to send an extra 2 units. When we perform the necessary book­
keeping, what happens to arc (2,3)? The flow of 2 presently in arc (2,3) is 
cancelled with the flow of 2 presently in arc (3,2), leaving zero flow in both 
(2,3) and (3,2). The excess capacity of (2,3) is increased: 

e23 = 2 + 2 = 4 
and 

e32 = 2 - 2 = o. 
Hence we are back to the original situation of zero flow between points P2 

and P3. The rest of the bookkeeping is recorded: 

114 = 1 + 2 = 3, 

143 = 0 + 2 = 2, 

132 = 2 - 2 = 0 

123 = 2 - 2 = 0 

125 = 0 + 2 = 2, 

156 = 0 + 2 = 2, 

e14 = 3 - 2 = 1, 

e43 = 4 - 2 = 2, 

e 25 = 2 - 2 = 0, 

e56 = 2 - 2 = 0, 

e41 = 1 + 2 = 3 

e34 = 5 + 2 = 7 

e5 2 = 0 + 2 = 2 

e65 = 0 + 2 = 2. 

The present flow assignment is shown in Figure 5.11. 
When the next iteration is performed it is found that the sink cannot be 

labelled, as there are no arcs incident with the sink with positive excess 
capacity. When this occurs the present flow assignment is optimal. As the 
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3 
(3) 

(1) 

2 (2) 

2 
(2) 

2 

(2) (2) 
2 

Figure 5.11 

value of the present assignment is equal to the capacity of the minimum 
cut (5), we could have stopped before this last iteration, knowing the optimum 
was at hand by the maximum-flow, minimum-cut theorem. 

The labelling method in algorithmic form is given below. 

Labelling Method 

1. Label point PI, the source, bl = 00. Set 

hj = 0 

eij = cij' for all arcs (i,j). 

2. If there is no unlabelled point Pj connected to a labelled point Pi by an 
arc with positive excess capacity, terminate-the present assignment of 
flow is optimal. Otherwise go to step 3. 

3. Choose the smallest index i of those found in step 2. Set 

aj = i 

bj = min {eij,bi}. 

4. If the sink point Pn is unlabelled, go to step 2. Otherwise go to step 5. 

5. Identify a path of labelled points from source to sink. For each arc (i, j) 
on this path; let 

If hi = 0, let 

If hi > 0, let 

eij become eij - bn 

eji become eji + bn· 

hj become bn - hi} . 
lfb ';::-]; .. hi become 0 n}. 
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and 

fij become 0 }'f b f .. 
I n < JI' 

jj; become hi - bm 

6. Erase all point labels except that of the source. Go to step 2. 

5.5.3 The Minimal Cost Flow Problem 

Suppose now that a network has not only a capacity but also a unit cost 
associated with each arc. The minimal cost flow problem involves finding 
the flow assignment for transporting a given quantity F from source to sink 
at minimal cost. Using the terminology of Section 5.5.1, the problem can 
be formulated mathematically as follows: 

Minimize: I dijhi 
all arcs 

(i,i) 

subject to: 
{ 

F, if i = I 

I hi - I hi = 0, if i # I, i # n 
all arcs all arcs . f . 
(Pi,Pj) (Pj,p;) - F, I I = n 

o ::; hi ::; Cii, for all arcs (Pi> P j), 

where Pl corresponds to the source, Pn corresponds to the sink, and dij is 
the unit traversal cost of arc (Pi> P J 

A multiple-source, multiple-sink minimal cost flow problem with no 
intermediate nodes is the transportation problem studied in Chapter 2. Also, 
if 

F=l 
and 

Cij = I, for all arcs (Pi' p), 

then the minimal cost flow problem reduces to the shortest path problem 
of Section 5.3. 

5.5.4 An Algorithm for the Minimal Cost Flow Problem 

The following algorithm, due to Busacker and Gowan (1961) will be ex­
plained by using it to solve a minimal cost flow problem concerned with the 
network shown in Figure 5.12. Each arc has an ordered pair associated with 
it. The first entry in the ordered pair specifies the capacity of the arc, the 
second the unit cost. Suppose it is desired to assign a total flow of 5 from 
source to sink with minimal cost. 

Basically, the algorithm identifies at each iteration a least cost path which 
can accommodate further flow. The maximum possible flow is added to the 
path. This is repeated until the total flow from source to sink is built up to F. 



5.5 Flow Networks 207 

(4,3) (1,4) 

6 
(2, 1) 

(2,6) 

(2, 1) 

(2,5) 

Figure 5.12 

In calculating the cost of each path which can be assigned further flow one 
adds the cost of arcs oriented in the direction of the path and subtracts 
costs oriented in the opposite direction. 

The method begins with zero flow in each arc. The least cost path from 
source to sink for the network in Figure 5.12 is Pl --+ P2 --+ P3 --+ P6' The 
maximum flow which can be assigned to this path is the smallest arc ca­
pacity, namely 2, due to arcs (1,2) and (3,6). This flow is duly assigned. The 
capacity of the arcs involved is correspondingly reduced. Arcs with zero 
capacity are given a unit cost of 00. Arcs in the opposite direction to those 
on the path are assigned a capacity equal to that just assigned, and a unit 
cost equal to the negative of that originally belonging to that of the arc 
concerned. This is shown in Figure 5.13. The flows assigned are written 
without parentheses. 

(2, -1) 

(4,3) 

2 
(0, (0) 

(1,4) 

2 
~--~~--~~---1 6 

(0, (0) 

(2,6) 

(2,5) 

Figure 5.13 
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(3,3) (1, -4) 

(1, -3) (0, 00) 
1 

(2, -1) 2 

(0,00) 

(2, -1) (2,6) 
2 

(0, 00) 
(2,5) 

Figure 5.14 

The process is now repeated. This time the shortest path is Pl --+ P4 --+ P6. 

A flow of 1 can be assigned, as this is the minimum arc capacity belonging 
to (4,6). The arc labels are adjusted, and the result is shown in Figure 5.14. 

The next shortest path is Pl --+ P4 --+ P3 --+ P2 -+ Ps --+ P6' with a length of 

d14 + d43 + d2S + dS6 = 3 + 2 - 1 + 5 + 6 = 15. 

The maximum that can be assigned to this is 2 units. When this assignment 
is made, the 2 units assigned to (3,2) cancel with the 2 units assigned to arc 
(2, 3) to produce a label for (2,3) of (4, 1). Arc (2, 3) is now in the same state 
as it was originally. This has been brought about by the fact that we changed 
our minds about the assignment of the 2 units originally made to (2,3) and 
withdrew that allocation. The current assignments and arc labels are shown 
in Figure 5.15. 

(3, -3) 

(2, -1) 

(1, 3) 
3 

2 

(0,00) 

Figure 5.15 

(1, -4) 

1 
2 

(0, 00) 

(2, -1) (0,00) 
2(0,00) 

(2, -6) 
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The flow now assigned is 

1 unit on path 

2 units on path 

2 units on path 

P1 -P4-P6 

P1 - P4 - P3 - P6 

P1 - P2 - Ps - P6' 

which sums to the total of 5 units to be assigned. The cost is: 

1 x (cost of path P1 - P4 - P6) = 1 x (3 + 4) = 7 

+2 x (cost of path P1 - P4 - P3 - P6) = 2 x (3 + 2 + 1) = 12 

+2 x (cost of path P1 - P2 - Ps - P6) = 2 x (1 + 5 + 6) = 24 
43' 

209 

Note that if the flow to be assigned had been more than 5, the problem 
would have had no feasible solution, as there are no P1 - P6 paths of finite 
cost and positive excess capacity left. 

5.5.5 The Out-of-Kilter Method* 

The procedure of Section 5.5.4 requires the search for a source-to-sink path 
prior to labelling and flow assignment at each iteration. Thus the procedure 
is not very suitable for large networks. A more general algorithm has been 
developed Ford and Fulkerson (1962) and is efficient when applied to large 
networks. This algorithm, called the out-of kilter method, is presented in this 
section. 

As with the algorithm of the previous section, flow is progressively added 
to the network in the out-of-kilter method. Flow may be added to existing 
flow in an arc in the direction of the arc (termed forward flow) and this 
increases the flow in the arc. Flow may be added to existing flow in an arc 
in the opposite direction to the arc (termed backwardflow), and this decreases 
the flow in the arc. For instance, the arc (i,j) in Figure 5.l6(a) has 6 units of 
flow. An addition of 3 units of forward flow increases the flow in the i - j 
direction to 9, as shown in Figure 5.l6(b). An addition of 4 units of backward 
flow decreases the flow in the i - j direction to 2, as shown in Figure 5.l6(c). 

6 
• .. 

(a) 

• • 
9 
• 

(b) 

• • 

Figure 5.16. Forward and backward flow. 

2 
• • 
(c) 

It is assumed here that no arc can accomodate a positive flow in the 
direction opposite to its orientation. The out-of-kilter algorithm will handle 
the case where each arc (Pi,Pj) has a positive lower bound bij on the amount 
of flow it carries. 

* This section is based on pp. 132-145 of Plane and McMillan (1971). 
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The reader may have wondered about the unusual name of the method. 
It comes about as follows. During the course of the method each arc is 
assigned a definite state. The state of a particular arc may change from time 
to time. There are two possible states: in kilter, signifying that a change of 
flow in the arc will not bring about an improvement; and out of kilter, 
signifying that a change of flow in the arc will bring about an improvement. 
When all the arcs are in kilter, no further improvement is possible, and the 
optimal solution is at hand. 

In order to decide how to assign states to the arcs, modified costs are 
assigned to them. Recall that each arc has a unit transportation cost, 
representing the cost of shipping one unit of flow in the direction of the arc. 
These unit costs are modified by adding and subtracting tolls from them. 
Let t; be the toll for one unit arriving at point i. When a number of units 
arrives at point i, let us suppose that t; must be paid for each unit. When 
the units are shipped along arc (i,j), t; is charged for each unit. Because 
conservation of flow is assumed, this shipping causes no profit nor no loss. 
However, the total unit cost of shipping along arc (i,j), including tolls, is 
denoted by 

(5.4) 

Thus aij is the modified cost for each arc. The values assigned to the t; 

change from time to time during the course of the method, according to 
strict rules. These rules will be explained later. 

Given a set of modified costs and flows for the arcs, one is in a position 
to discover how the flows might be rearranged in order to save costs. For 
instance, if a modified cost is negative, the flow in the appropriate arc should 
be increased until it reaches capacity or until the modified cost becomes 
zero. An arc with a negative modified cost will be out of kilter unless its 
flow is at capacity. Also, if a modified cost is positive, the flow in the appro­
priate arc should be reduced until it becomes equal to the lower bound b;j. 

Once all arcs are in kilter, no more savings can be made and an optimal 
solution has been found. 

One can also ascertain whether it is possible to add forward flow, back­
ward flow, both or neither to a particular arc. We associate with the arcs 
the following symbols, 

I ~ in-kilter, 
o ~ out-of-kilter, 
F ~ forward flow possible, 
B ~ backward flow possible, 

depending upon its status. An arc will be endowed with either an I or 0 
depending upon whether it is in or out of kilter, and with either F, B, FB, 
or no further symbol depending upon whether forward flow, backward flow, 
both or neither is capable of being assigned. The particular mix of symbols 
assigned to an arc depends upon its current level of flow relative to its 
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Table 5.1. Assignment rules for out of kilter method 

Flow Level 

Modified 
cost Iij < bij Iij = bij bij < Iij < Cij iij = Cij Iij> Cij 

aij > 0 OF OB OB OB 
aij = 0 OF IF IFB IB OB 
aij < 0 OF OF OF OB 

capacity and its modified cost. The rules of assignment are summarized in 
Table 5.1. An explanation of how some of the symbols in the table are 
arrived at has been given. The reader should satisfy himself that, in view of 
the previous discussion, the other entries in the table make sense. 

Before stating the complete method in algorithmic form we shall outline 
the out-of-kilter method in general terms. As with the previous methods in 
Section 5.5, we usually begin with all flow assignments set at zero. (However, 
if a feasible set of flow assignments is known this could be used instead.) All 
point tolls ti are initially set at zero, and then the modified costs aij can be 
calculated using (5.4). One can then assign a state to each arc according to 
Table 5.1. Next, a path of labelled points is built up. Once breakthrough is 
achieved, additional flow is added to the labelled path. Point tolls are 
adjusted, all labels are removed, modified costs are recalculated, and the 
states of certain arcs may be altered. The process then begins all over again, 
building up a new labelled path. When all arcs are in kilter the method is 
terminated. 

Let us take each of the processes of the method in turn, beginning with 
the labelling of the points. 

The Labelling Process 

To begin the labelling process, when all points are unlabelled, one arbitrarily 
chooses an arc (P;,Pi) that is out of kilter: point Pi is labelled ifforward flow 
is possible in the arc; point Pi is labelled if backward flow is possible in the 
arc. Having done this one searches for other points to be labelled. A point 
Pi can be labelled if it is either: 

1. Directly connected by an arc (Pi'P) to a labelled point Pi and backward 
flow is possible in (Pi,Pi); or 

2. Directly connected by an arc (Pi' Pi) to a labelled point Pi and forward 
flow is possible in (Pi' p;). 

A label for point Pi connected to labelled point Pi is of the form: 

[r,A;], 
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where 

(X = {+' if extra forward flow is possible in arc (Pi' p), 
-, if extra backward flow is possible in arc (Pi, P j) 

and Ai is the maximum amount of flow (either forward or backward) that 
can be added to the arc joining Pi and Pj which arrives at Pi from Pj' Thus 
Ai will be the smaller of the following two amounts: 

Ll. Aj, the value which is part of the label of point Pj' 
L2. (a) bij - k, ifaij > 0 and iij < bij; 

(b) iij - Cij' ifaij < 0 and iij > cij; 
(c) cij - k, ifforward flow is possible and neither (a) nor (b); 
(d) iij - bij, if backward flow is possible and neither (a) nor (b). 

When the very first point at each iteration is labelled, no other points will 
have been labelled. In this case Ai is assigned a value according to the second 
alternative. 

It may be that no further labelling of points can be carried out but some 
arcs are still out of kilter. When this occurs all the tolls of unlabelled points 
must be adjusted. This means that some modifled costs must be recomputed. 
This leads to a change of state of at least one arc, making either forward or 
backward flow possible. Thus further labelling will be possible. This toll 
adjustment is carried out as follows. 

Toll Adjustment 

Tl. Identify all arcs which connect a labelled point and an unlabelled point. 
T2. Among all such arcs found in Tl, identify those arcs (Pi'P) such that: 

(a) aij> 0, Pi is labelled, and iij ::;; cij ' or 
(b) aij < 0, Pi is not labelled, and J;j ;;::: bij' 
If no arc meets conditions (a) or (b), the problem has no feasible solution. 

T3. Among all arcs identified in T2, find the one with minimum laijl (abso­
lute value of aij)' 

T4. Increase tolls of all unlabelled points by the amount found in T3. 

The out-of-kilter method operates by considering circulation flows, rather 
than source-to-sink flows. A circulation flow is one in which flow travels 
round a cycle in the network, returning to the point from which it started 
out. In order to be able to use the method on a minimal cost flow problem, 
we have to make a minor addition' to the network concerned. A sink-to­
source arc (PI> Ps) is added, where Pt is the sink and Ps is the source. The arc 
is assigned unit cost dts = 0 (so as to not affect the cost of the final solution) 
and bounds bts = Cts = F, the amount of source-to-sink flow required. Be­
cause of conservation of flow, any feasible solution must allow F units to 
flow from Ps to Pt (and back via (Pt,ps)') 
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The out-of-kilter method is now stated in algorithmic form. 

1. Add arc (Pt, P.) to network with dt. = 0, ht• = Ct. = F, where s is the 
source and t is the sink. Set 

ti = 0, for all points Pi in the network 

ii j = 0, for all arcs (Pi> P j) in the network. 

2. Calculate aij = dij + ti - tj , for all arcs. Assign a state to each arc. 
3. If all arcs are in kilter, go to step 13; otherwise, continue. 
4. Choose arbitrarily an arc (Pi' Pj) which is out of kilter, and label Pi and 

Pj according to the point labelling procedure. 
5. If there is a path of labelled points including the arc (Pi'P) found in 

step 4, go to step 11; otherwise, continue. 
6. If another point can be labelled, label it according to the point labelling 

procedure and go to step 5; otherwise, continue. 
7. Change the tolls according to the toll adjustment procedure. If no tolls 

can be adjusted, no feasible solution exists; terminate. 
8. Calculate new modified costs according to (5.4), for all arcs with only 

one unlabelled point. 
9. Assign new states for arcs where necessary. 

10. If all arcs are in kilter, go to step 13; otherwise, go to step 6. 
11. Adjust the flow in each arc on the path found in step 5 by the minimum 

Ai among its point labels. 
12. Remove all labels and arc states and go to step 2. 
13. The present flow assigmpent is optimal. Terminate the algorithm. 

5.5.6 Numerical Example Illustrating the Out-of Kilter Method 

We shall now solve again the minimal cost flow problem of Figure 5.12 using 
the out-of-kilter method. The out-of-kilter method has a rather elaborate 
mechanism, and its use on such a relatively small problem is rather like 
using a sledgehammer to crack a peanut. The method is designed for large 
problems; we use it on a small one only so that the explanation will be brief. 

Following the algorithm, we begin in step 1 by setting all tolls and flows 
equal to zero. Thus each modified cost calculated in step 2 will equal the 
corresponding unit cost. These modified costs and the arc states are shown 
in Figure 5.l7(a), as well as the source-to-sink arc (P6, PI) with capacity and 
lower bound 5. (Variables with current value zero are not shown in the 
figures accompanying this discussion.) 

All arcs are found to be in state I except (P6,PI), which is in state OF. 
This arc is chosen as in step 4, and point PI is labelled [6 +,5], indicating 
that a forward flow of 5 is possible from P6 to PI according to part L2(c) of 
the point labelling process. No further labelling can take place, as neither 
of the arcs out of PI-(Pl> P4) and (PI,P2) - have forward flow possible. But 
we have not been able to find a path of labelled points including (P6,PI), 
the original out-of-kilter arc. Hence, according to step 6, we go to step 7 
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(4,3) 

(2, 1) 

J 12 = I 

OF (5,0) J6l = 0 b6l = 5 

Figure 5.17(a). Applying the out-of-kilter method. 

and adjust the tolls. Arcs connecting a labelled point to an unlabelled point 
are (Pl,P4) and (Pl,P2)' Hence, according to T2(a), both arcs can be iden­
tified and the tolls of unlabelled points should be increased by 1£1 nI = 1. 
New modified costs and states are computed as in steps 8 and 9, and this is 
shown in Figure 5.l7(b). 

J l4 = 2 

(4,3) 

IF 

(2, I) 

al2 = 0 

(1,4) 

J46 = 4 

(2, I) J36 = I 

JS6 = 6 

J2S = 5 
(2,6) 

Ps 
(2.5) 

ts = I t2 = I 

OF (5,0) J6l = I b6l = 5 

Figure 5.l7(b) 
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Going back to step 6, we can now label point P2' as forward flow is possible 
in arc(pb P2)' The label is [1 +, 2J, where A2 = 2 = min {Al' e12} = min {5, 2}. 
Once again no further labelling can take place, so the tolls are adjusted. Arcs 
connecting a labelled point to an unlabelled one are (Pb P4), (P2, P3), (P6, pd, 
and (P2, Ps). The tolls of unlabelled points are increased by lad = 1. New 
modified costs and states are computed as in steps 8 and 9, and this is shown 
in Figure 5.l7(c). 

al4 = 1 

(4,3) 

PI t3 = 2 

[6+,5] 

(2,1) 

al2 = 0 
IF 

(1,4) 

I 

(2, 1) a36 = 1 

a2S = 4 
)---------( P s 

(2,6) 

(2, 5) I 
ts = 2 

OF (5,0) a61 = 2 b61 = 5 

Figure 5.l7(c) 

Going back to step 6, we can now label point P3, as forward flow is 
possible in arc (P2, P3)' Once again no further labelling can take place, so 
the tolls are adjusted. Arcs connecting a labelled point to an unlabelled one 
are (Pl, P4), (P2, Ps), and (P3' P6)' The tolls of unlabelled points are increased 
by la361 = 1. New modified costs and states are computed as in steps 8 and 
9 and this is shown in Figure 5.l7(d). 

Going back to step 6, we can now label points P4 and P6, as forward 
flow is possible in arcs (Pl,P4) and (P3,P6)' We have now created a cycle of 
labelled points <Pl,P2,P3,P6,Pl), as required in step 5. Going to step 11, 
the flow in the arcs of this path is adjusted by the minimum Ai among the 
labels of the points on the path, namely A6 = 2. All arc states and point 
labels are removed, as in step 12. States are calculated as in step 2. These 
are shown in Figure 5.l7(e). 

The only arc out of kilter is arc (P6,Pl)' This arc is chosen as in step 4, 
and point Pl is labelled. Next point P4 is labelled, as it is connected by arc 
(Pl,P4) in which forward flow is possible. As no further labelling is possible, 
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al4 = 0 

(4,3) 

PI 

[6 +, 5] 

(2, 1) 

al2 = 0 

JI4 = 0 

(4,3) 

[1 + , 4] 

IF 

IF 

IF 

(1,4) 

a46 = 4 

a36 = 0 

a2S = 3 
Ps 

ts = 3 

OF (5,0) b61 = 5 a61 = 3 

Figure 5.17( d) 

(1,4) 

5 Network Analysis 

t6 = 3 

IF 
P6 

[3 +,2] 

aS6 = 6 

(2,6) 

PI 

t6 = 3 a36 = 0 
r-----------{ P6 

a12 = 0 (2, 1) f36 = 2 IB 

(2, 1) 

f12 = 2 

IB 

ts = 3 

fl6 = 2 OF (5,0) a61 = 3 b61 = 5 

Figure 5.17(e) 

the tolls of unlabelled points are increased by la431 = 3. New modified costs 
and states are computed and are shown in Figure 5.17(f). 

It is now possible to label point P3 and then P2' Once again the tolls of 
unlabelled points are adjusted. This time they are increased by Id46 1 = 1. New 
modified costs and states are computed and are shown in Figure 5.l7(g). 
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[l +,3] 

IF (1,4) 

ill4 = 0 il46 = 1 

(4,3) 

il36 = 0 
t3 = 5 

136 = 2 

112 = 2 
ill2 = -3 illS = 3 

il14 = 0 

(4,3) 

I 
t5 = 6 

OF 161 = 2 (5,0) il61 = 6 b61 = 5 

Figure 5.17(f) 

I 

ilS6 = 6 

ilS6 = 6 
(2,6) 

OF 161 = 2 (5,0) il61 = 7 b61 = 5 

Figure 5.17(g) 
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t6 = 6 

It is now possible to label point P6' We have now created a path oflabelled 
points (Pl,P4,P6,Pl), as required in step 5. Going to step 11, the flow in 
the arcs of this path is increased by the minimum Ai = A6 = 1. All arc states 
and point labels are removed as in step 12. New modified costs and states are 
calculated as in step 2, and are shown in Figure 5.17(h}. 
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al4 = 0 

fl4 = 1 

(4,3) 
IFB 

I 
(2, 1) 

f12 = 2 
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(1,4) 

f36 = 2 IB 

al2 = -3 

[3-,2] (2,5) 
t2 = 4 

OF (5,0) f61 = 3 a61 = 7 b61 = 5 

Figure 5.l7(h) 

[1 +,2] 

al4 = 0 

fl4 = 1 

(4,3) 
IFB 

I 
(2, 1) 

f12 = 2 
al2 = -3 

(1,4) 

f46 = 1 
a46 = -2 

I (6 = 9 

IF 

OF (5,0) f61 = 3 a61 = 9 b61 = 5 

Figure 5.17(i) 
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The only out-of-kilter arc is (P6,PI)' This arc is chosen as in step 4, and 
point PI is labelled. Next point P4 is labelled, as it is connected to PI by arc 
(PbP4) in which forward flow is possible. Then point P3 is labelled, as it is 
connected to P4 by arc(P4, P3)' Then point P2 can be labelled, as it is connected 
to the labelled point P3 by arc (P2,P3) in which backward flow is possible. We 
cannot label any more points, so the tolls of unlabelled points are changed. 
They are increased by 1£125 1 = 2. New modified costs and states are computed 
and are shown in Figure 5.17(i). 

IFB 
al4 = 0 

114 = 1 
(4,3) 

PI 

[6+,2] I 
(2,1) 

112 = 2 

al2 = -3 

(2,1) 136 = 2 

(2,5) IF 

OF (5,0) 161 = 3 a61 = 15 b61 = 5 

Figure 5.17(j) 

It is now possible to label point P5, but no further labels can be attached. 
Once again the tolls of unlabelled points are adjusted, and are increased by 
1£1561 = 6. New modified costs and states are computed and are shown in 
Figure 5.l7(j). 

It is nOW possible to label P6' We have created a path points <PI,P4,P3, 
P2,PS, P6,PI) as required in step 5. Going to step 11, the flow in the arcs of 
this path are adjusted by the minimum Ai = A6 = 2. All arc states and point 
labels are removed as in step 12. New modified costs and states are calculated 
as in step 2. These are shown in Figure 5.l7(k). 

The final solution, as shown in Figure 5.l7(k) is identical to that found in 
section 5.5.4, as the arc (P6, PI) can now be ignored. It will be noticed that 
once an arc was in kilter, it never became out of kilter. This is no coincidence 
and will always happen. In fact, the method adopts the strategy of changing 
the status of out of kilter arcs to in kilter, while keeping the status of all in 
kilter arcs unchanged. 
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IFB 
al4 = 0 

fl4 = 3 
(4,3) 

(2,1) 

f12 = 2 

al2 = -3 
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f46 = 1 

a46 = -8 

(2,1) f36=2 

a23 = 0 

IB a25 = 0 

(2,5) f25 = 2 
t2 = 4 t5 = 9 

I t6 = 15 

IB 

(5,0) f61 = 5 a61 = 16 b61 = 5 

Figure 5.l7(k) 

5.6 Critical Path Scheduling 

The reader has no doubt come across industrial or other real-life projects 
which on analysis can be seen to be made up of a number of individual 
activities, many of which may possibly be carried out simultaneously, assum­
ing sufficient resources. Usually there are certain pairs of activities {a;, aj} 
with the property that aj cannot be started before ai is completed. For 
example, in the project of building a house it may not be wise to lay the carpet 
before the interior walls are painted. 

It is often desirable to represent the interrelationships between the activi­
ties by a network, that is, a digraph with a source and a sink. In order to see 
how this can be done we need to develop the notion of precedence. We say 
that activity ai precedes aj if ai must be completed before aj can begin. Of 
course, certain activities may be preceded by more than one other. We concern 
ourselves only with direct precedence. If ai precedes aj and aj precedes ak 
then strictly speaking ai also precedes ak; however, in the construction of a 
network to represent the project we shall not take notice of this last fact: the 
ai-aj and arak precedences imply the ai-ak precedence. 

We associate with each activity ai a duration time ti, which is the estimated 
time to complete ai' The network for a given project is constructed as follows. 
Each activity is represented by a point in the network. There is also a unique 
source 0(, which represents the start of the project and a unique sink co, which 
represents the completion of the project. It is assumed that the activity 0( 
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precedes any activities with no other precedents. Also the activity co is pre­
ceded by any activities which precede no other activities. The duration time 
of the activities represented by 0( and co are defined to be zero. Whenever 
activity ai precedes activity aj,join point ai to point aj by arc (ai' aJ Associate 
with each point the duration time of its activity. It should be noted that the 
network will not possess any cycles, for if it did, no activity on a cycle could 
ever be started. 

In any project there will be a number of activities with the following 
property: If the start of the activity is delayed any later than it strictly has to 
be, or if the duration time of the activity is prolonged, then the completion 
time of the whole project will be extended. Such activities are termed critical. 
Because of the nature of the precedence relationships and the way we have 
constructed the network, there will be at least one source-to-sink path of 
critical activities-the longest path from source to sink (in terms of the sum 
of the duration times of its points) in the network. The aim of our analysis is 
to identify all such critical paths. Then a schedule can be devised giving the 
recommended starting and finishing times for each activity. Then if &n activity 
looks like it is falling behind, extra resources may possibly be channelled into 
it from other activities with a comfortable margin. 

There is another approach to modelling projects of this sort by digraphs. 
This uses arcs to represent activities and the points represent events that 
certain activities has been completed. Coverage ofthis approach is beyond the 
scope of this book and the interested reader is referred to Taha (1976). That 
author also covers the case where the duration time estimates are probabi­
listic in nature; in this case a technique called PERT (Program Evaluation 
and Review Technique) is explained. We confine ourselves in this chapter to 
constant, given duration times and present what is called the Critical Path 
Method (C.P.M.) which will find all critical paths. 

We shall explain C.P.M. by using it on a numerical example which has 
been streamlined in a rather simple-minded way for expository purposes. Let 
us construct the network for the project of building a house with the activities 
shown in Table 5.2. Activities 1 and 2 have no precedents, so we create arcs 
(0(, 1) and (0(,2) as in Figure 5.18. Then we see that activities 3 and 4 are 
preceded by these two, and that 3 precedes 4. Thus arcs (2, 3), (1, 3), (1,4), and 
(3,4) are created. Proceeding in this way, as 5, 7, 8, and 11 depend upon 3 and 
4, arcs (3,11), (3, 7), (3, 8), and (4, 5) are drawn. No arcs are drawn between any 
pair of 5, 7, 8, and 11, as they are not related. The next iteration creates arcs 
(11,12), (7, 14), (8,9), (8, 10), and (5, 6). Then arcs (12, 13) and (6, 14) are drawn. 
Then arcs (13,14) and (13,15) come into being, where the points of arc (13,14) 
were already present. Finally points 14 and 15 are connected to co, as they do 
not precede any activities. 

We shall now find all critical paths in the network, whose length represents 
the minimum possible completion time of the project. Secondly we shall 
discover for each activity the earliest start time it could possibly be begun and 
the latest finish time it could possibly be finished if the whole project is to be 
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Table 5.2. House Building Projects 

Activity 

1. Excavate to prepare for foundations 
2. Establish driveway 
3. Deliver building materials 
4. Establish foundations 
5. Build walls and interior 
6. Build roof 
7. Build separate garage 
8. Hook up power supply 
9. Reticulate house with water, gas and electricity 

10. Wallpaper interior 
11. Fence property 
12. Landscape section 
13. Build swimming pool 
14. Spray paint inside and out 
15. Plant garden 

5 Network Analysis 

Precedence 

1,2 
1,3 

4 
5 
3 
3 
8 
8 
3 

11 
12 

6,7,9,10,13 
13 

Time (days) 

10 
2 
3 

15 
40 
10 
10 
1 
5 
2 
2 
5 
4 
8 
2 

Figure 5.18. An activity network. 
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completed at the earliest possible instant. Naturally, a critical activity will 
have its earliest start time plus its duration time equal to its latest finish time, 
as there is no leeway. Let 

eSj = earliest start time for activity aj 

II; = latest finish time for activity aj 

tj = duration time of activity aj. 

Then 
eSj + tj = II;, if aj is critical. 

However, if aj is not critical, 
eSj + tj < 1/;. 

The actual leeway is called the total float tl; for aj: 

tl; = I/; - tj - eSj. 

(5.5) 

(5.6) 

(5.7) 

Thus a critical activity has zero total float. Given the possibility of re­
allocating manpower to speed up ailing activities, it is desirable to define 
two further variables for each activity aj: 

ISj = latest start time of a j if project is to be completed on time 

el; = earliest possible finish time of aj given its precedence. 

For each activity aj, 

Therefore, 

el; = eSj + tj 
II; = ISj + t j. 

tl; = ISj - eSj = I/; - ek 

(5.8) 

(5.9) 

(5.10) 

We associate eSj, 1/;, ISj, el;, and tj with each point aj in the network, as 
shown in Figure 5.19. We fill in the four numbers in the interior of each circle 
by a two-pass process. 

tj 

eSj 

Figure 5.19. Labelling point aj. 
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PASS I 

(a) Define esa. = 0, the earliest start time of the source. 
(b) e/; is defined by (5.8). 

(e) eS j = max {e/;}, 
(ai,aj) 

5 Network Analysis 

where this maximum is taken over all e/; where arc (ai,a) exists. 

Using (a), (b), and (c), eSi and e/; can be calculated for all points in the net­
work. We now illustrate pass I on our example, calculating the top two 
numbers in each circle in Figure 5.20. 

(a) 

(b) 

(c) 

(b) 

2 

Effi) 810 
2 

IX 

esa. = O. 

efa. =0, by (5.8). 

eSt = 0 

eS2 = O. 

eft = 0 + 2 = 2 

ef2 = 0 + lO = 10. 

4 

40 

.@ 28 68 

5 
Figure 5.20. Calculating start and finish times. 

10 

6 
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(c) 

(b) 

eS3 = max {e!l' e!2} 
= max{2, to} 
= 10. 

e!3 = 10 + 3 = 13. 

Proceeding in this way, we eventually calculate 

efr. = 86. 

225 

This establishes that the earliest possible finish time for building the house 
is 86 days. 

We now make a backwards pass through the network, filling in the bottom 
two numbers in each circle. This is done as follows: 

PASS II 

(d) Define 

(e) lSi is defined by (5.9), i.e., 

lSi = IJ; - ti 

(f) if; = min {lSi} 
(ai,aj) 

is taken over all lSi where arc (ai,a) exists. 

Using (d), (e), and (f), lSi and IJ; can be calculated for all points in the 
network. For our example, as shown in Figure 5.20, 

(d) 

(e) 

(f) 

(e) 

(e) 

lfm = e!m = 86. 

ISm = lfm - tw = 86, by (5.9). 

lf14= 86 

l!lS = 86. 

IS 14 = 86 - 8 = 78 

Is 15 = 86 - 2 = 84 

1!4 = min {IS 14, IslS } = min {78, 84} = 78. 

Is4 = 78 - 4 = 74. 

Proceeding in this way we eventually calaculate 

Is" = lj",. = 0, (5.11 ) 

which must be true for any network. In fact, (5.11) is a good check on the 
accuracy of one's arithmetric. Having calculated the four numbers in each 
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point it can be seen, for i = (1, 1, 3,4, 5,6,8, w, whether 

eSi = lSi (5.12) 
and 

eh = lh· (5.13) 

Points for which (5.12) and (5.13) hold are critical. Thus the critical path is 
<(1,1,3,4,5,6,8, w). 

We can calculate the total float for each activity using (5.10); the results 
are shown in Table 5.3. For example, the total float of a2 is 8 days. This 
means that as long as activity 2 is started within 8 days ofthe earliest possible 
time it can be started (day 0), and there are no other critical delays, then the 
whole project will still be completed on time. 

Table 5.3. 

Activity Precedence ti eSi lSi el; II; tl; 1[; 

IX 0 0 0 0 0 0 0 
1 10 0 0 10 10 0 0 
2 2 0 8 2 10 8 8 
3 1,2 3 10 10 13 13 0 0 
4 1,3 15 13 13 28 28 0 0 
5 4 40 28 28 68 68 0 0 
6 5 10 68 68 78 78 0 0 
7 3 10 13 68 23 78 55 55 
8 3 1 13 72 14 73 59 0 
9 8 5 14 73 19 78 59 59 

10 8 2 14 76 16 78 62 62 
11 3 2 13 67 15 69 54 0 
12 11 5 15 69 20 74 54 0 
13 12 4 20 74 24 78 54 0 
14 6,7,9, 10, 13 8 78 78 86 86 0 0 
15 13 2 24 84 26 86 60 60 
OJ 14,15 0 86 86 86 86 0 0 

There is another type of float called free float. Total float is a global 
concept, in the sense that it defines the leeway in getting an activity started 
with regard to the project as a whole. Free float is a local concept, in the 
sense that it defines the leeway in getting an activity started with regard 
only to the activities it precedes. For example, consider activity 8 with total 
float 58. Assume we wish to start the activities which as precedes (a g and 
alO) as early as possible. Activities 9 and 10 both have earliest start times of 
14. As the earliest finish time of as is 14, it cannot be delayed. In this case 
the free float of as is zero. However consider activity 2. Its earliest finish time 
is 2 but the earliest start time of the only project it precedes (a3) is 10. Thus 
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az could be delayed 10 - 2 = 8 days and project 3 would still be started as 
early as possible. In this case the free float of az is 8. In general we define 
free float.f[; for activity ai to be 

.f[; = min {esj - eJ;}, 
(ai,aj) 

where the minimum is taken over all eSj - eJ; where arc (ai' aj) exists. The 
free floats for all activities are also listed in Table 5.3. 

5.7 Exercises 

(I) Computational 

1. Solve the following shortest path problems using Dijkstra's method. The entry 
i,j in each matrix is the cost oftraversing arc (i,}1; a dash or a blank space indicates 
the fact that there is no arc present. In all caSeS the i, j and j, i entries are equal. 
(a) From 1 to 11. 

2 3 4 5 6 7 8 9 10 11 

12 12 
2 12 6 11 
3 12 3 9 
4 6 3 5 
5 11 9 10 
6 5 9 6 12 
7 9 6 11 
8 10 8 7 
9 12 8 9 12 

10 II 9 10 
11 7 12 10 

(b) From 1 to 10. 

2 3 4 5 6 7 8 9 10 

I 25 14 
2 7 2 8 
3 
4 12 
5 18 13 
6 20 
7 16 7 
8 4 
9 6 
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(c) From 1 to 11. 

2 3 4 5 6 7 8 9 10 11 

1 6 2 3 
2 6 7 
3 7 8 2 
4 6 
5 5 8 
6 7 1 
7 4 
8 5 4 
9 4 

10 5 

(d) From 1 to 10. 

2 3 4 5 6 7 8 9 10 

1 21 
2 5 8 
3 16 17 24 
4 13 
5 10 
6 12 
7 18 
8 20 
9 19 

10 

(e) From 1 to 12. 

2 3 4 5 6 7 8 9 10 11 12 

1 3 2 
2 5 6 
3 6 7 
4 7 7 5 
5 2 4 
6 1 3 
7 4 3 2 
8 6 
9 9 4 

10 5 
11 

2. Find a minimal spanning tree for each of the problems in Exercise 1 using the 
method of Prim. 

3. Find a minimal spanning tree for each of the problems in Exercise 1 using the 
method of Kruskal. 
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4. In the following maximum flow problems, the source is point I and the sink is the 
point with the largest number as its label. The i, j entry in each matrix represents 
the capacity of arc (i,j). Find the minimum source-sink cut. 

(a) 2 3 4 5 6 7 8 

7 12 
2 6 4 
3 3 3 
4 8 
5 9 5 
6 2 3 4 
7 5 
8 

(b) 2 3 4 5 6 7 8 9 10 

I aJ aJ 

2 7 
3 5 
4 6 
5 7 4 
6 5 8 2 
7 4 
8 
9 4 

10 

(c) 2 3 4 5 6 7 8 

2 3 
2 4 8 
3 2 
4 2 6 
5 5 4 
6 8 
7 9 
8 

(d) 2 3 4 5 6 7 8 9 

4 
2 3 
3 3 2 .5 
4 2 2 
5 5 4 
6 4 I 
7 3 
8 2 1 1 
9 3 3 
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(e) 2 3 4 5 6 7 8 

3 2 
2 
3 2 2 
4 I 
5 3 
6 2 
7 5 
8 

(f) 2 3 4 5 6 7 8 

2 
2 3 
3 3 2 2 2 
4 2 
5 2 4 
6 2 2 
7 2 
8 4 2 

(g) 2 3 4 5 6 7 8 

I 2 
2 3 2 
3 2 I 2 
4 3 I 2 
5 2 2 3 4 
6 2 3 
7 4 
8 

(h) 2 3 4 5 6 7 8 

I 3 3 
2 3 5 3 
3 5 2 2 3 
4 3 2 4 4 
5 4 2 
6 2 2 
7 3 2 4 
8 2 I 4 

5. Solve each of the problems in Exercise 4 by the labelling method. 

6. Solve each of the following minimal cost flow problems using the out of kilter 
method. The networks with their arc capacities are given in Exercise 4. Each matrix 
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below indicates the arc costs. Assume that the amount of flow to be transported 
is the maximum amount possible, as found in Exercise 4. 

(a) 2 3 4 5 6 7 8 

1 5 3 
2 3 3 
3 8 
4 7 
5 2 3 
6 2 6 4 
7 5 
8 

(b) 2 3 4 5 6 7 8 9 10 

2 5 7 
2 
3 2 
4 2 
5 7 
6 10 
7 
8 6 
9 5 

10 

(c) 2 3 4 5 6 7 8 

1 
2 2 3 
3 4 
4 2 4 
5 4 
6 
7 

(d) 2 3 4 5 6 7 8 9 

2 
3 2 
4 2 
5 2 
6 1 
7 2 
8 
9 
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(e) 2 3 4 5 6 7 8 

2 
2 
3 2 3 
4 I 
5 2 
6 2 
7 2 
8 

(f) 2 3 4 5 6 7 8 

4 3 3 
2 4 6 
3 3 6 6 7 
4 3 
6 3 7 2 
7 2 5 
8 2 5 

(g) 2 3 4 5 6 7 8 

2 
2 2 2 
3 2 2 
4 2 2 2 
5 2 2 2 2 
6 2 
7 2 2 
8 

(h) 2 3 4 5 6 7 8 

2 4 
2 2 8 9 
3 6 I I 
4 4 6 5 3 
5 5 7 
6 3 2 
7 9 3 
8 7 2 3 

7. For each of the following projects identify critical activities, earliest completion 
time and activity float. 
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(a) Activity Precedence Duration time 

1 14,16,13 3 
2 16 7 
3 1,2 9 
4 9,10,3 4 
5 9,10,3 6 
6 4,5 1 
7 1 
8 7 8 
9 8 7 

10 8,12 4 
11 7 5 
12 7 2 
13 12 3 
14 11,15 16 
15 12 20 
16 17 11 
17 11 19 

(b) Activity Precedence Duration time 

1 5 
2 10 
3 8 
4 6 
5 1 12 
6 2,4 7 
7 3 4 
8 5,6,7 6 
9 3 10 

(c) Activity Precedence Duration time 

1 6 
2 4 
3 2 5 
4 2 6 
5 2 4 
6 3 3 
7 4,5 10 
8 7 12 
9 6,8 4 

8. Consider Exercise 7(c). Suppose the duration time of activity 4 is reduced from 6 
to 4 units. How does this affect the outcome? 
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9. Consider the project of painting the exerior of a house with two coats of paint. 
Assume a team of three men is to carry out the task. Construct a list of about 10 
activities with their duration times. Analyze the project using critical path sched­
uling. 

10. Carry out critical path scheduling on each of the following tasks: making jam, 
bottling fruit, making a cup of coffee, laying a concrete path. 

II. Critical path scheduling assumes there is sufficient manpower to do as many activ­
ities simultaneously as is necessary. Examine the solutions obtained to exercise 10 
to determine the smallest number of people necessary to carry out task in mini­
mum time. 

(II) Theoretical 

12. Prove observations 1-3 of Section 5.2. 

13. A graph is termed simple if it has no loops (lines of the form {Pb Pi}) or parallel lines 
(lines connecting the same pair of points). Show that a simple graph with n points 
can have no more than n(n - 1)/2 lines. 

14. Prove that a simple graph (see Exercise 13) with n vertices must be connected if it 
has more than (n - I)(n - 2)/2 lines. 

IS. Prove that if Gland G 2 are the two subgraphs resulting from any decomposition of 
a connected graph G, that there must be a least one point which is in both G1 and G2 . 

16. Prove that a line in a graph G belongs to at least one circuit in G if and only if G 
remains connected after the removal of the line. 

17. Prove that all trees are simple (see Exercise 13). 

18. Suppose that it is desired to find the shortest tour for a travelling salesman in a 
connected, weighted graph G. Prove that the weight of a minimal spanning tree 
of G is a lower bound on the weight of the minimal tour. 

19. Two distributors, A and B, have 6 and 4 units, respectively of a commodity on 
hand. Warehouses C and D require 3 and 4 units, respectively. Unit shipping costs 
to supply C and D from A are $1.00 and $2.00, respectively, and from Bare $4.00 
and $3.00 respectively. 
(a) Devise a network representation of this situation, regarded as a minimal cost 

flow problem. Add a supersource So, a supers ink S;, and an arc (Si, So) to the 
network, taking care to label all arcs as is necessary for implementation of the 
out-of-kilter algorithm. 

(b) Implement the out-of-kilter algorithm on the problem until toll adjustment 
occurs for the first time. 

(c) State why it is no longer possible to proceed with the implementation of the 
algorithm. 

(d) Devise a new network formulation with a single node representing both Si and 
So, making it possible to solve the problem using the out-of-kilter algorithm. 

(e) Implement the algorithm on the new network up to and including the first toll 
adjustment. 

(f) State the difference in conditions between the situations reached for (b) and 
(e), and explain why it is possible to proceed with the algorithm from the former 
situation. 



Chapter 6 

Dynamic Programming 

6.1 Introduction 

Dynamic programming is a technique for formulating problems in which 
decisions are to be made in stages-a multistage decision problem. This 
represents a departure from the types of problems we have analyzed so far, 
where it has been assumed that all decisions are made at one time. It is not 
difficult to think of real world scenarios which are multistage decision 
problems. Many construction projects can be divided up into stages cor­
responding to the completion of events. However, there are also many such 
problems in which different stages are not identified with different time 
periods. For instance, many problems involving the investment of funds to 
maximize return can be formulated with the different investment options 
being represented by different stages. 

Dynamic programming (D.P.) has been used to solve successfully problems 
from a wide variety of areas including all branches of engineering, operations 
research, and business. It is an implicit enumeration approach (as was 
branch and bound enumeration, presented in Chapter 4) and can be very 
useful in reducing the computational effort required to solve a problem by 
other means. However, before the reader begins to think that he has found 
the answer to all his planning problems let us sound a note of caution. 
There are weaknesses with the D.P. approach, including the large number 
of intermediate calculations that have to be recorded. This is summed up as 
"the curse of dimensionality," which will be referred to later in this chapter. 

The name of the technique was coined by Richard Bellman (1957), who 
developed D.P. and also wrote the first book on the subject. Since that time 
many books on D.P. have appeared, including those by Bellman and Dreyfus 
(1962), Hadley (1964), Nemhauser (1966) and White (1969). This vast and 

235 
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ever expanding field could not be explained in any depth in a single chapter 
of a book of the present size. Hence all that is attempted here is to introduce 
some of the basic D.P. ideas with view to stimulating the reader to attempt 
some of the more specialized texts mentioned earlier. In particular Hadley's 
book is recommended for techniques and White's for the mathematical 
theory of D.P. A knowledge of the calculus is required to comprehend the 
remainder of this book. The unprepared reader is referred to the appendix. 

6.2 A Simple D.P. Problem 

Consider a tramper who wishes to walk from a national park hut to the 
coast. On studying the map of the area he finds that there is quite a network 
of paths linking the intermediate huts one day's walk apart. He rates each 
path with a number which represents the enjoyment to be gained by walking 
along it, based upon scenery, the likely number of users, and travel time. 
He wishes to select a route with maximum enjoyment. The network is shown 
in Figure 6.1, where point 1 represents his present hut and points 8,9, and 
10 each represent coastal huts. The rating for each path is shown alongside 

0.3 0.6 

0.2 0.4 0.7 1.0 

0.8 0.5 0.9 

5 7 

0.8 0.4 0.1 0.1 

0.8 0.2 0.6 

8 10 

Figure 6.1. The network for the tramper's problem. 
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its arc. The problem is to find the longest path from point 1 to any of points 
8,9, or 10. 

As in most combinatorial optimization problems, it is theoretically 
possible to evaluate all solutions to this problem and select the best; this is 
exhaustive enumeration, as discussed in Chapter 4. As more points are 
introduced into the network, however, the amount of computational effort 
required quickly becomes enormous. Clearly, a method which reduces the 
number of calculations required for exhaustive enumeration must be 
employed for networks with a reasonably large number of points. Dynamic 
programming offers such a reduction and will now be applied to the present 
problem. 

It can be seen from Figure 6.1 that the tramper must pass through exactly 
one of the points from each of the following sets: 

{l} 
{2,3,4} 
{5,6,7} 
{8,9,10} 

(stage 0) 
(stage 1) 
(stage 2) 
(stage 3). 

When the tramper is currently at a point in one of these sets he is at a parti­
cular stage of his journey. The stages are numbered so that the number of 
a stage represents the number of paths walked to get to it from point 1. 
When the tramper is at a particular stage he will be in a particular state 
(apart from probably being cold, wet, tired, or hungry!), defined to be the 
particular point of that stage at which he is located. Associated with each 
state there is a return, which represents the maximum possible enjoyment the 
tramper could have experienced so far in arriving at that point. These 
concepts will now be used to solve the problem. 

Initially the tramper leaves point 1 (stage 0), walks to one of points 
2, 3, or 4, and finds himself at stage 1. He is now in either state 2, with a 
return of 0.3; state 3, with a return of 0.9; or state 4, with a return of 0.6. 
He now leaves stage 1 and proceeds to stage 2, ending up in one of states 
5,6, or 7. If he proceeds to state 5, which route is best in the sense of affording 
maximum enjoyment? He could have come from state 2, with cumulative 
enjoyment of 1.1 (0.3 + 0.8); or from state 3, with cumulative enjoyment of 
1.3 (0.4 + 0.9). Thus the return at state 5 is the maximum of these two, 
which is 1.3. By the same reasoning, the return at state 6 is the maximum 
of (0.2 + 0.3), (0.5 + 0.9), and (0.6 + 1.0), which is 1.6. Similarly, the return 
at state 7 is the maximum of (0.7 + 0.9) and (0.9 + 0.6), which is 1.6. In sum, 
the returns at states 5, 6, and 7 are 1.3, 1.6, and 1.6, respectively. 

The tramper now leaves stage 2 and arrives in stage 3 in one of states 
8, 9, or 10. The return at state 8 can be calculated by adding the returns for 
states from which state 8 is accessible to the gains incurred in making the 
transition to state 8. For instance, ifthe tramper arrived to state 8 from state 
5, the maximum enjoyment would be the return at state 5 (1.3) plus 0.8, 
i.e., 2.1. Note that one does not need to know how the return of 1.3 for 
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state 5 was arrived at. It is sufficient to know that the state 5 return is 1.3. 
This fact embodies a very important assumption made in the problems to 
be solved by D.P. in this chapter. This assumption is that the return for a 
state depends only upon the optimal path to that state from a previous 
state and the previous state. If the tramper arrived at state 8 from state 6 
the maximum enjoyment would be the return at state 6 plus 0.4, i.e., 1.6 + 
0.4. Thus the return at state 8 is the maximum of 1.3 + 0.8 and 1.6 + 0.4, 
i.e., 2.1. Similarly the return at state 9 is the maximum of 1.3 + 0.8, 1.6 + 0.2, 
and 1.6 + 0.1, i.e., 2.1. The return at state 10 is the maximum of 1.6 + 0.1 
and 1.6 + 0.6, i.e., 2.2. 

So state 10 has the largest return, and we now know that this return of 
2.2 represents the maximum enjoyment that can be attained. The actual path 
to be traversed in attaining this maximum can be found by unravelling the 
information contained in the state returns. To begin with it was the return 
at state 7 (1.6) plus the gain from the state 7 to state 10 transition (0.6) that 
produced the return of 2.2 at state 10. Hence point 7 and arc (7,10) is on 
the longest path. By the same token it was the return at state 3 (0.9) plus the 
gain from the state 3 to state 7 transition (0.7) that produced the return of 
1.6 at state 7. Hence point 3 and arc (3,7) is on the path. Thus arc (1,3) must 
also be included. The optimal path is then 

(1,3,7,10). 

There are 17 paths from point 1 to points 8,9, and 10. We could have 
evaluated them all and chosen the longest. The above approach involves 
less calculation and benefits become more and more apparent as the net­
work size increases. The solution procedure just unfolded contains the basic 
approach of dynamic programming. The next section sets the stage in a 
more general fashion. 

6.3 Basic D.P. Structure 
The longest path problem of the previous section has the following property: 
In finding the return at a particular point Pj by arriving from a given point 
Pi> all one needed to know was the return at Pi and the gain in the Pi to Pj 
transition. This latter return was independent of the way in which the system 
arrived at Pi- Systems with this property are called serial systems. Thus a 
serial system is one in which the return at a stage i of the system depends 
only upon the returns at the stage (i - 1) immediately preceding it and the 
gains in transforming the system from stage (i - 1) into stage i. 

In nonserial systems this property is not present and feedback loops or 
dependence upon earlier stages may occur. D.P. can be extended to analyze 
these problems; the resulting theory is related to another area called optimal 
control. This topic is outside the scope of the present book. We shall deal 
with only serial systems. 
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As can be seen by the example problem, in a serial system one is required 
to make a number of sequential, interrelated decisions. A complete set of 
decisions for a serial system problem, representing a solution to the problem, 
is called a policy. A single decision of how to transform the system from one 
stage to the next is called a policy choice. And a set of policy choices which 
transform the system from some intermediate stage to the final stage is 
called a subpolicy. 

We now introduce notation which will allow us to express the D.P. 
approach to the example problem in general terms. Let 

N = the number of the last stage in the problem 

Sn = the state of the system at the nth stage 

cij = the benefit gained in transforming the system from state i to state j 

f,.(s) = the return when the system is in state s at the nth stage 

(i.e., f,.(s) is the optimal benefit gained in transforming the system from the 
initial stage to state s at the nth stage). Let us now explain this notation in 
terms of the longest path problem. We wish to find the longest path from 
stage 0 to stage 3. That is, we require a path of arcs of the form 

whose total benefit 

is a maximum. 

«so, S1), (Sh S2), (S2, S3) 

N 

L CSi-1Si' 
;=1 

N=3 

We will begin to solve the problem by using the above machinery. Initially 
the system is in state 1 at stage 0, having accrued no benefit so far. Thus 

So = I 

and 
lo(so) = O. 

The returns at the next stage are calculated as simple additions: the return 
at stage I in state 2 is 

11(2) = 10(1) + C12 = 0 + 0.3 = 0.3. 
Similarly, 

11(3) = 0.9 
and 

11(4) = 0.6. 

Let us now calculate the return at stage 2, state 6. The tramper can 
arrive at state 6 from one of states 2, 3, or 4. The respective benefits are 

11(2) + C26 

11(3) + C36 

11(4) + C46' 
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The return at stage 2, state 6 (f2(6)) is the maximum of these. Thus 

f2(6) = max {J1(sd + Cs,6} 
s,; 2.3,4 

= max {(0.3 + 0.2), (0.9 + 0.5), (0.6 + 1.0)} = 1.6. 

The other returns at stage 2, f2(5) and f2(7), can be found in the same way. 
Having calculated the three stage 2 returns, we can then use them to 

find the stage 3 returns. In general the return for stage n, state s is: 

fn(s) = max {.f(n-1)(Sn-1) + C(n-1)s}, n = 1,2, . . . (6.1) 
Sn-l 

We can now use (6.1) to solve the longest path problem: 

fo(1) = 0 

f1(2) = 0.3, f1(3) = 0.9, 

s, ;2,3 

f2(6) = 1.6, as found before 

f2(7) = max {J1(Sl) + Cs,7} = max {(0.9 + 0.7),(0.6 + 0.9)} = 1.6. 
s,; 3,4 

Using these values in (6.1) recursively, we can calculate the stage 3 returns: 

f3(8) = max {J2(S2) + CS2 8} = max {(1.3 + 0.8), (1.6 + 0.4)} = 2.1 
S2; 5,6 

f3(9) = max {J2(S2) + CS2 9} = max {(1.3 + 0.8),(1.6 + 0.2), (1.6 + 0.1)} = 2.1 
s2;5,6,7 

f3(10) = max {J2(S2) + Cs2 1O} = max {(1.6 + 0.1), (1.6 + 0.6)} = 2.2. 
S2; 6,7 

Thus the optimal solution has value 2.2, with the actual longest path being 
< 1,3,7,10), as found before. 

Equations of the form of (6.1) are called recursive equations. Such equa­
tions, in one form or another, are usually used in solving a problem by 
dynamic programming. The family of equations in (6.1) underline the key 
fact that an optimal subpolicy at any stage of a multistage decision problem 
depends upon the state at that stage, and does not depend upon policy 
choices made at earlier stages. This can be started as follows: 

The Dynamic Programming Principle of Optimality. When a system is at a 
given stage, the decisions of the optimal policy for future stages will con­
stitute an optimal subpolicy regardless of how the system entered that stage. 

Any system optimization problem for which the above principle is true 
can be attacked using D.P. Such systems are the serial systems, as described 
earlier. 

We now examine some of the implications of this principle. In the longest 
path problem, when the tramper left stage 2 and walked to one of points, 
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8,9, or 10 (stage 3), the return at each state of stage 3 was calculated without 
regard to states prior to stage 2. This allowed us to solve the problem one 
stage at a time. For example, we could temporarily "forget" about earlier 
decisions and find the best returns for the stage 3 states by examining only 
the stage 2 state returns and the stage 2 to stage benefits. 

In the example problem the returns at each stage were calculated by 
finding the maximum among sums of pairs of numbers. In other uses of 
D.P. different ways of calculating optima must be used. How this is done is 
not part of the D.P. approach in itself. The user of D.P. is very much alone 
in finding returns and must use what ingenuity and knowledge of the partic­
ular system that he has. 

6.4 Multiplicative and More General 
Recursive Relationships 

As was stated in the previous section, the returns at each stage were cal­
culated by finding the maximum among sums of pairs of numbers. Dynamic 
programming can also be applied to serial problems in which returns are 
calculated in other ways. Such a problem will now be presented. 

Consider once again the network of Figure 6.1, but suppose it represents 
a different scenario. We now have a spy who wishes to send a confidential 
document from his present station (point 1) to any of the three receiving 
stations in his home base (points 8,9, and 10). The number cij attached to 
the arc (Pi'P) in the network represents the probability that the document 
will be safely transmitted from the station represented by Pi to the station 
represented by Pj without falling into enemy hands. The problem is to find 
the route from Pl to one of PS,P9' and Pl0 which affords the highest prob­
ability of a safe trip. 

Using the notation of the previous section, we wish to find a path of 
arcs of the form: 

whose total probability 

is a maximum. 

N 

n CSi-1Si' 
i= 1 

N=3 

Notice here that we are multiplying relevant Cij values together, rather 
than adding them as we did in the longest path problem. This is because 
of a basic property of probability theory: If events A and B are independent 
with probabilities p(A) and p(B), then the probability of both A and B 
occurring is p(A)p(B). Thus (6.1) has a different form for this problem, namely 

f,,(s) = max U(n-lisn-l) x c(n-l) x C(n-l)s}, n = I, 2, ... , (6.2) 
5n -1 
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where 

10(1) = 1.0. (6.3) 

Note that (6.3) is true because the system begins in state 1 with probability 
one. 

The only difference between (6.1) and (6.2) occurs in the replacement of 
the" +" in (6.1) by the" x" in (6.2). It is conceivable that other operations 
may be involved in the interaction between f(n-l)(Sn-l) and c(n-l)s> such as 

In(s) = max {f(n-l)(S(n-l» ± "/C(n-l)s}, n = 1,2, ... 
S}1-1 

Hence the general recursive equation (forward form) is: 

In(s) = optimum {f(n-l)(Sn-l) EB C(n-l)s}, n = 1,2, ... , (6.4) 
Sn-1 

where "EB" is an operation on f(n-l)(Sn-l) and c(n-1)s depending upon the 
particular system being analyzed, and the objective may be one of maximi­
zation or minimization. 

The problem of the spy will now be solved using (6.2) and (6.3): 

11 (2) = 1.0 x 0.3 = 0.3 

11 (3) = 1.0 x 0.9 = 0.9 

11(4) = 1.0 x 0.6 = 0.6 

12(5) = max {fl(Sl) x Cs ,5} = max {«0.3) x (0.8»,«0.9) x (0.4»} = 0.36 
s, =2,3 

12(6) = max {fl(Sl) x Cs,6} 
s, = 2,3,4 

= max {«0.3) x (0.2»,«0.9) x (0.5»,«0.6) x (1.0))} = 0.6 

12(7) = max {fl (S 1) X CSt 7} = max {( (0.9) x (0.7», «0.6) x (0.9))} = 0.63. 
s,=3,4 

Using these values in (6.2) we can calculate the stage 3 returns: 

13(8) = max {f2(S2) x CS28 } = max {«0.36) x (0.8»,«0.6) x (0.4))} = 0.288 
S2 = 5,6 

13(9) = max {f2(S2) x Cs29} 
s2=5,6,7 

= max {( (0.36) x (0.8», «0.6) x (0.2», «0.63) x (OJ))} = 0.288 

13(10) = max {f2(S2) x CS210 } = max {«0.6) x (0.1»,«0.63) x (0.6»} = 0.378. 
S2 = 6,7 

Thus the optimal solution has probability 0.378. (Let's hope it isn't vital 
that the documents arrive safely, as the chances aren't too high!) The actual 
route is 

<1,3,7,10). 
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6.5 Continuous State Problems 

In the problems analyzed so far the state and decision variables have been 
allowed to assume only values from a finite, discrete set. In this section this 
assumption is relaxed, and we allow the variables to assume any feasible 
real value: the continuous state serial system problems. Such a problem is 
presented below: 

N 

Maximize: Xo= I ~ (6.5) 
i= 1 

N 

subject to: I Xi = d, a positive real constant (6.6) 
i= 1 

Xi> 0, i = 1,2, ... , N. (6.7) 

That is, it is desired to subdivide a given positive real number d into N 
positive parts, Xl' X 2 , ••• ,XN (N being given), so that the sum of the square 
roots of the parts is a maximum. We now approach this problem with 
dynamic programming. 

The problem can be looked upon as a serial system problem in which it 
is desired to assign a value to each Xi one at a time in the order Xl> X2, ... ,XN . 

Thus the problem has N stages. When the system is at the nth stage, the 
state of the system Sn is defined to be the amount of the number d which 
has been assigned to Xb X2, ... , Xn so far, i.e., 

sn = Xl + X 2 + ... + X n , n = 1,2, ... , N. (6.8) 

Because the only restrictions on the decision variables, Xi are those of (6.6) 
and (6.7), there is an infinite number of possibilities at each stage. 

It so happens, because of the addition of the terms ~ in (6.4), that the 
recursive relationship is additive. So (6.5) becomes 

n = 2, 3, ... , N. 

But, from (6.8), 
n = 2, 3, ... , N. 

Thus 

!,,(sn) = max U(n-l)(Sn - xn) + Fr.}, n = 2, 3, ... , N (6.9) 

and 
(6.10) 

Now, from (6.8), 

so that, from (6.10), 
(6.11 ) 
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Setting n = 2 in (6.9), we obtain 

12(S2) = max {Jl(S2 - X2) + JX;.}. 
X2 

o < X2'::::; S2 

By (6.11), 

12(S2) = max {.../S2 - X2 + JX;.}. 
X2 

o <x 2,:5; Sz 

Thus, in order to findI2(s2) we must find the maximum value of(.../s2 -X2 + 
JX;.), where X2 can range between ° and S2' To do this we use basic differential 
calculus. Let 

Then 

of 2 = !(S2 _ X2)-1/2( -1) + !X21/2. 
OX2 

For a stationary point, 

Hence 

Therefore 
x! = S2/2, 

which is certainly in the range (0, S2]. Also, 

o2F2(s2/2) _ [_1.( _ )-3/2 _1. -3/2J 
:1 - 4 S2 X2 4X2 X2= '2/2 
uX2 

= -i(s2/2)-3/2 - i(s2/2)-1/3 < 0, 

indicating a maximum. Thus 

12(S2) = .../S2 - (s2/2) + .../S2/2 =.j'fS;. 

Now, setting n = 3 in (6.9), 

13(S3) = max {J2(S3 - X3) + JX;}. 

By (6.12), 
13(S3) = max {.../2(S3 - X3) + ~}. 

X3 
o <X3 '::::;S3 

We repeat the calculus technique just used in order to find 13(S3)' Let 

F 3(X3) = .../2(S3 - X3) + JX; 

of 3 = ![2(S3 _ X 3)] -1/2( _ 2) + !X3"1/2. 
OX3 

(6.12) 
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For a stationary point, 

hence 

Therefore 
X~ = S3/3, 

which is certainly in the range (0, S3J. Also, 

°2F3(S3/3) _ [-1.[2( _ )]-3/2(4) _1. -3/2] 
:'1 2 - 4 S3 X3 4X 3 X3=S3/3 
VX3 

= -H2(S3 - (S3/3))]-3/2(4) - HS3/3)-3/2 < 0, 

indicating a maximum. Thus 

f3(S3) = ,J2(S3 - (S3/3)) + ,J S3/3 = .J3S;. 
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(6.13) 

Let us now review what has been achieved so far by way of temporarily 
setting N = 3. In this case the problem has been solved, and 

S3 = Xl + X2 + X3 = d 
x~ = S3/3 = d/3, by (6.13). 

Thus 
X! + x! = S2 = 2d/3, 

hence 

and therefore 
x! = d/3. 

Also, 
fn(sn) = Jni:., n = 1,2, 3 

and the optimal solution has value f3(S3) = J3d,. 
The reader has no doubt suspected by now that the above results are true 

for general N. That this is so will be proved by induction: 

x: = din, n = 1,2,3, ... , N 

f,.(sn) = Jni:., n = 1, 2, 3, ... , N. 

(6.14) 

(6.15) 

Now (6.14) and (6.15) are certainly true for n = 1,2, and 3. Assume that they 
are true for n = k, i.e., 

By (6.9), 

xt = d/k 

h(Sk) = Jki,.. 

max 
Xk+ 1 

O<Xk+lSSk+l 

max {.jk(Sk+1 - Xk+l) + ,JXk+l}' 
Xk+ 1 

o <Xk+ 1 SSk+ 1 
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Let 
Fk+l(Xk+d = .jk(Sk+l - Xk+l) + .jXk+l. 

For a stationary point, 

hence 
1 [k( )] -1/2( k) 1 -1/2 ° "2 Sk+l - Xk+1 - + "2Xk+l = . 

Therefore 
xt+ 1 = Sk+ d(k + 1), 

which is certainly in the range (0, Sk+ 1]. Also, 

a2Fk+l ° ---< 
aX~+l 

indicating a maximum: 

Sk+ 1 at X k + 1 =--, 
k+1 

fk+l(Sk+l) = .jk(Sk+l - sk+d(k + 1)) + .jsk+d(k + 1) 

= .j(k + l)Sk+l 

which completes the proof that (6.14) and (6.15) are true. The solution to 
the problem is 

x: = din, 
and the optimal solution value is 

n = 1,2, ... , N 

JIUi. 

6.6 The Direction of Computations 

The problems solved so far in this chapter have all been approached by 
finding values for the return functions 1;, in the order fl' f2' ... ,fN. This is 
called forward recursion. In terms of the longest path problem and the spy 
problem this approach seems logical. However, there exist some serial 
systems for which the reverse order is more straightforward. That is, it is 
sometimes desirable to calculate the I; in the order fN, fN _ 1, ... ,fl. This is 
called backward recursion, and it involves "working back" through the 
problem in the opposite direction to the actual sequence of events as they 
will take place when a feasible solution is implemented. 

Let us approach the longest path problem using backward recursion. 
First we redefine fn(s) as follows: 

fis) is the return (optimal benefit to be gained) from the remaining stages, 
(n + 1), (n + 2), ... , N, given that the system is in state S at the nth stage. 
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This represents a departure from the definition of lis) in Section 6.3, where 
f,,(s) was the return gained so lar from the previous stages, 1,2, ... , n given 
that the system is in state s at the nth stage. 

In terms of the longest path problem, we know that there is no further 
benefit to be gained once the system is in any of states 8, 9, or 10 at stage 3. 
Thus 

Suppose the system is in state 6, stage 2. What further benefit can the 
tramper look forward to? If he proceeds to state 8, 9, or 10, the extra benefits 
are 0.4, 0.2, and 0.1, respectively. Thus the extra benefit to be gained in 
leaving state 6 and arriving at the coast is (/3(8) + 0.4), (/3(9) + 0.2), or 
(/3(10) + 0.1), depending upon which choice is made. However, each first 
term in these expressions is zero; thus the maximum addition benefit to be 
had in leaving state 6 is 0.4: 

12(6) = max {f3(S3) + C6S3 } = 13(8) + 0.4 = 0.4. 
S3 = 8.9,10 

The state returns can be similarly calculated for each other stage 2 state. 
In general the backward recursive equations for this problem are 

f,,(s) = max {f,,+ l(Sn+ 1) + CS(sn+ 1l}' n = 0,1,2 (6.16) 
Sn+ 1 

where 
(6.17) 

The reader may find it instructive to actually use (6.16) and (6.17) to verify 
that this approach produces the same optimal solution as is obtained by 
forward recursion. 

There is no difference in the computational effort required to solve the 
problem by forward or backward recursion. This is because the benefit cij 
gained from transforming the system from state i to state j is a given constant 
which is simply added to the return of the present state (state i for forward 
recursion and state j for backward recursion). However, not all serial systems 
rejoice in such simplicity. Indeed, for problems with more complicated state 
transformations there may be a very marked difference in the amount of 
computational effort required depending upon whether forward or backward 
recursion is used. In fact some problems can be solved in only one direction. 
For instance, serial systems in which the state variable at each stage is 
random can be solved only by backward recursion. 

We end this section by stating the general recursive equation (backward 
form): 

f,,(s) = optimum {fn+ l(Sn+ 1) EB Cs(n+ 1)}' 
Sn+ 1 
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6.7 Tabular Form 

In the problems examined so far it has been a relatively easy matter to keep 
track of all the intermediate information necessary to use the recursive 
equations, as in each case there have not been many stages. For problems 
with many more stages and many possibilities at each stage one needs an 
efficient way of recording state returns, such as in tables. We illustrate this 
now on the following problem. 

The Easy Tread shoe company has received an order for 20 truckloads 
of its biggest seller, the Won't Get Wet Tennis Shoe. The warehouse wishes 
to receive the total order all at one time. As the company can make at most 
5 truckloads in anyone production period, production must be scheduled 
over a number of periods. In fact, production costs vary over the next 6 
periods, the time during which the order must be filled or it will be lost. 
Table 6.1 gives the total production cost for different numbers of truckloads 
produced in the different periods, 1,2, ... , 6. In addition to production 
costs there also storage (inventory) costs of $1.00 per truckload stored per 
period. These inventory costs are incurred for complete periods only. Thus 
if 3 loads are produced in period 5 they incur only the cost of storage in 
period 6, i.e. $(3 x 1). The problem is to schedule production over the 
6 periods so as to guarantee that the 20 loads are ready at the end of the 
sixth period and the total costs (production and inventory) are minimized. 

Table 6.1. 

Cost in period 
Production 
number 2 3 4 5 6 

0 3 2 4 5 2 
1 4 6 6 7 11 6 
2 9 11 11 12 12 9 
3 16 15 12 19 14 10 
4 19 18 14 27 19 15 
5 20 21 20 32 23 20 

This problem will now be formulated as a serial system and solved by 
D.P. Each production period will constitute a stage. At the nth stage, the 
state variable Sn is defined as the total number of loads produced so far by 
the end of that stage. Thus, assuming the system starts out at stage 0, 

So = o. 
Suppose, for instance, that three loads were produced in the first period; 
then 
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As 20 loads must be produced by the end of the sixth period, 

8 6 = 20. 

Setting the problem up in general terms, let 

N = the number of the last stage (in this case, N = 6) 

cij = the production cost if i loads are produced in period j 

Xi = the number of loads produced in period i 
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fn(8) = the return (minimum cost that can be incurred) when the system 
is in state 8 at the nth stage. 

Assume that after n - 1 periods 8n-l loads have been produced, i.e., 

Xl + X2 + ... + X n - 1 = 8n - b 

and the return for the system to be in state 8n - 1 at the (n - 1)th stage is 
known, i.e., 1(n- d8n-l) has been calculated. Suppose now that it is decided 
to produce Xn loads in period n. The costs involved are cx"n for production 
and 1.0(xn)(N - n) for inventory. (We have assumed forward recursion is to 
be adopted.) Thus the complete cost involved in this decision is 

1(n-l)(Sn - xn) + cx"n + 1.0(xn)(N - n), 
as 

Thus 

fn(8n) = min {1(n-l)(8n - xn) + cx"n + 1.0xn(N - n)}, 

where 

and 

O~xn::;;: 5 
xn::;;:sn 

80 = O. 

n = 1,2,3, ... , N 

(6.18) 

(6.19) 

We now use (6.18) and (6.19) to solve the problem, storing information 
calculated in tables. We begin by creating a table of inventory costs, where 
the entry in the ith row, jth column represents the total inventory cost if i 
loads are produced in the jth period. (See Table 6.2.) Using (6.18), (6.19) and 
Tables 6.1 and 6.2 we can calculate the stage 1 returns f1(8 1) for each possible 
state, 8 1 = 0, 1,2, ... ,5. For instance, if nothing is produced at stage 1, 
Sl = O. The contribution from Table 6.1 is COl = 3 and the contribution 
from Table 6.2 is zero, i.e., 

However, if one load is produced at stage 1, then 8 1 = 1. The production 
cost is C11 = 4 and the inventory cost of Table 6.2 is 5, i.e., 

f1(1) = 9. 

The complete set of values is given in Table 6.3. 
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Table 6.2 

Cost in period: 

Number 2 3 4 5 6 

0 0 0 0 0 0 0 
1 5 4 3 2 1 0 
2 10 8 6 4 2 0 
3 15 12 9 6 3 0 
4 20 16 12 8 4 0 
5 25 20 15 10 5 0 

Table 6.3 

SI XI II(sl) 

0 0 3 
1 9 
2 2 19 
3 3 31 
4 4 39 
5 5 45 

We now calculate the stage 2 returns. Recall that 

As 

then 

Suppose, for instance, that 

O:-S; XI :-s; 5 

o :-s; x 2 :-s; 5, 

O:-S; S2 :-s; 10. 

S2 = 6. 

The (Xl> x 2) pairs which result in this value of S2 are: (1,5), (2,4), (3,3), (4,2), 
(5,1). Using (6.18) and Table 6.3, we obtain the following costs: 

Xl = 1, x 2 = 5: cost = fl(1) + 20 + 21 = 50 

Xl = 2, X 2 = 4: 

x l =3,x2 =3: 

x 1 =4,x2 =2: 

Xl = 5, x 2 = I: 

cost = f1(2) + 16 + 18 = 53 

cost = fl(3) + 12 + 15 = 58 

cost = f1(4) + 8 + 11 = 58 

cost=fl(5)+ 4+ 6=55. 

Taking the minimum of these costs, we obtain 

f2(6) = 50. 
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Table 6.4 

X2 

S2 0 2 3 4 5 x~ f2(S2) 

0 5 0 5 
1 11 13 0 11 
2 21 19 22 1 19 
3 33 29 28 30 2 28 
4 41 41 38 36 37 3 36 
5 47 49 50 46 43 44 4 43 
6 55 58 58 53 50 5 50 
7 64 66 65 60 5 60 
8 72 73 72 3,5 72 
9 79 80 4 79 

10 86 5 86 

We now layout the calculations for all possible stage 2 states and their 
returns in Table 6.4. As 20 loads have to be produced by stage 6, at least 
20 - 5(6 - n) loads have to be produced by stage n, where n = 3,4, 5, 6. 
Hence at least 5 loads must be produced by stage 3, i.e., 

5 ::;; S3 ::;; 15. 

The stage 3 returns are calculated as shown in Table 6.5 by the previous 
method, the stage 4 returns are calculated in Table 6.6, remembering that 
10 ::;; S4 ::;; 20; the stage 5 returns are calculated in Table 6.7, remembering 
that 15 ::;; S5 ::;; 20; and the stage 6 returns, where S6 = 20, are shown in 
Table 6.8. 

The optimal solution is xi = 1, xi = 3, x; = 4, xt = 4, x~ = 3, x~ = 5, 
with minimum cost $124. 

Table 6.5 

S3 0 2 3 4 5 x~ f3(S3) 

5 47 45 45 40 37 40 4 37 
6 54 52 53 49 45 46 4 45 
7 64 59 60 57 54 54 4,5 54 
8 76 69 67 64 62 63 4 62 
9 83 81 87 71 69 71 4 69 

10 90 88 89 81 76 78 4 76 
11 96 93 86 85 5 85 
12 103 100 98 95 5 95 
13 116 105 107 4 105 
14 112 114 4 112 
15 121 5 121 
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Table 6.6 

X4 

S4 0 2 3 4 5 x! 

10 77 78 78 79 80 79 0 
11 86 85 85 89 89 87 1,2 
12 96 94 92 94 87 96 4 
l3 106 104 101 101 94 104 4 
14 113 114 111 110 101 111 4 
15 122 121 121 120 120 118 5 
16 l30 128 l30 l30 127 5 
17 l37 l37 140 l37 2,3,5 
18 146 147 147 3 
19 156 154 5 
20 163 5 

Table 6.7. 

Xs 

Ss 0 2 3 4 5 x! 

15 123 113 108 104 108 105 3 
16 132 l30 115 111 110 113 4 
17 142 l39 l32 118 117 115 5 
18 151 149 141 135 124 122 5 
19 159 158 151 144 141 129 5 
20 168 175 160 154 150 146 5 

Table 6.8 

X6 

S6 0 2 3 4 5 x~ 

20 148 l35 l31 125 125 124 5 

6.8 Multi-state Variable Problems and the 
Limitations of D.P. 

f4(S4) 

77 
85 
87 
94 

101 
118 
127 
l37 
146 
154 
163 

fs(ss) 

104 
110 
115 
122 
129 
146 

f6(S6) 

124 

The dynamic programming formulation of each serial system problem 
examined so far has the property of possessing just one state variable at 
each stage. Many problems cannot be adequately formulated without de-
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fining two or more state variables per stage. (There are techniques available 
to reduce the number of state variables. See, for example, Bellman and 
Dreyfus (1962). Coverage ofthese is, however, beyond the scope ofthis book.) 

Although such problems can in theory be solved by dynamic program­
ming, in practice the amount of computational effort is often enormous. For 
example, consider a 5-stage serial system with a single state variable, capable 
of assuming 10 different states at each stage. At each stage no more than 
10 calculations are necessary to evaluate the return for each state, i.e., there 
are 102 calculations per stage. Thus a maximum of 5 x 102 calculations are 
needed to solve the problem. Suppose now that a new state variable is added 
at each stage, which also is capable of assuming 10 states at each stage. A 
maximum of 103 calculations are necessary per stage and thus 5 x 103 cal­
culations may be necessary to solve the problem. Thus the number of 
calculations has increased by a factor of 10. For problems with more possi­
bilities per stage, the increases are enormous, hence the term "the curse of 
dimensionality," coined by R. Bellman (1957) for this problem. This is a 
severe limitation to the ability of dynamic programming to solve realistic 
serial system problems. 

We now present and formulate a two-state variable serial system problem 
with dynamic programming. 

The Quick As A Flash freight company carries cargo in its aircraft 
between two cities. Each aircraft has 1,000 cubic feet of capacity and can 
carry 5,500 Ib of freight. The company accepts three commodities for car­
riage, Cb C2 , and C3 , with unit volumes of 100,200, and 50 cu. ft, respectively, 
and unit weights of 1,000, 500, and 1,500 lb, respectively. The profits for 
transporting one item of each of C1, C2, and C3 are $90, $100, and $150, 
respectively. The problem is to decide how many of each of Cb C2, and C3 
will be flown per trip in order to maximize profit. 

The decision variable is X n , the number of Ci accepted, and the stages 
correspond to an allocation of each of the three commodities, Cb C2 , C3' 

Since the problem has two constraints (volume and weight) at each stage 
the system will be in two states, Sn and tn, corresponding to the total volume 
and weight, respectively, which has been allocated to the nth stage. Let 
fn(sn' tn) be the return at the nth stage when the system is in states Sn and tn' 
The problem can be stated as: 

Maximize: 

subject to: 

90Xl + 100x2 + 150x3 = Xo 

100Xl + 2OOX2 + 50X3 s 1000 

1000x1 + 5OOX2 + 1500x3 S 5500 

Xl,X2,X3 nonnegative integers. 

This is, of course, an integer programming problem and could be solved by 
the methods of Chapter 4. This particular scenario, of deciding how many 
of a number of commodities to select subject to various restrictions, is an­
other example of the knapsack problem, also called the fly-away kit problem. 
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Assume that at the nth stage Sn and tn units of volume and weight, respec­
tively, have been allocated: 

and 

where 

and 

n 

L ViXi = Sn 
i= 1 

n 

L WiXi = tn 
i= 1 

i = 1,2 

i = 1,2, 

(Wi> W2, W3) = (1000,500,1500). 

We shall adopt forward recursion. Suppose that the return of the system 
in states Sn and tn is known, i.e., 1n(sn' tn) has been calculated. Suppose now 
that it has been decided to allocate X n+l of cn+1• The profit at the (n + I)th 
stage is then 

where 

Thus the return at the (n + l)th stage is 

X n + 1 

X n + 1 

(6.20) 

where x n + 1 is an integer such that 

[ lOOOJ o ~ xn+l ~ --
Vn + 1 

(6.21) 

and 

(6.22) 

where [a] is the integer part ofreal number a. 
Ifthe reader solves this problem using (6.20) and (6.21) he will become 

convinced that the addition of the extra constraint (6.22) has created a great 
deal of extra computation. If further constraints of the form of (6.21) and 
(6.22) were added to the problem, it would become increasingly unattractive 
to solve it using dynamic programming. 



6.9 Exercises 

The optimal solution to problem (6.20), (6.21), (6.22) is 

with value 

6.9 Exercises 

x! = 0 

x! = 4 

x! = 2 

X6 = 700. 
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I. Find the shortest path from the point with the lowest index number to the point 
with the highest index number in the networks in Exercise I, Chapter 5, using 
dynamic programming. 

2. Solve the following problem by dynamic programming using (a) forward recursion 
and (b) backward recursion, and compare the computational effort involved in the 
two approaches. 

Given a total resource of 8 units and a benefit of txn - nx~ at stage n (n = 1,2, 
3,4), where Xn is the allocation made at the nth stage, find the optimal allocation 
policy to maximize total return if all 8 units must be allocated. Assume that each 
X n , n = 1,2, ... , 4, is a nonnegative real number. 

3. Solve Exercise 2 if Xn must be a nonnegative integer, n = 1, 2, 3, 4. 

4. A production process produces integer numbers of units of a single commodity 
over 4 periods I, II, III, and IV, where the maximum number produced in any 
period is 6. There is a storage cost of $1.00 per unit per complete period. Table 6.9 
gives the production cost for different numbers of units in the different periods. 
Find the minimum total cost of production and storage if 19 units must be produced 
by the end of period IV. Solve this problem by dynamic programming. 

Table 6.9. Data for Exercise 4. 

Cost in period: 
Number 
produced II III IV 

0 2 6 5 4 
I 4 7 8 5 
2 8 9 11 9 
3 9 11 15 13 
4 II IS 16 IS 
5 12 19 17 17 
6 14 20 20 22 
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5. Solve the following problem by dynamic programming: 

Maximize: 

subject to: 

Xo = XIX2 X 3X4 

Xl + X2 + X3 + X4 = 9 
i = 1,2,3,4. 

6. Solve the following problem by dynamic programming: 

Minimize: 

subject to: 

xf + x~ + x~ + x~ + x~ 
XIX2X3X4XS = 11 

i = 1,2,3,4, 5. 

7. Solve the following linear integer programming problem by dynamic program­
ming: 

Minimize: 

subject to: 

Xl + X2 

3x I + 4X2 ~ 12 

X 1> X 2 nonnegative integers. 

8. Solve the following nonlinear integer programming problem by dynamic program­
ming using (a) forward recursion and (b) backward recursion. Compare the amount 
of computational difficulty involved in the two approaches. 

Maximize: 

subject to: 

8xf + 4x~ - 3XI - 4X2 

3XI + 4X2 ~ 24 

4XI + 5x2 ~ 20 

X I, X2 nonnegative integers. 

9. (A knapsack problem.) A burglar is confronted with seven objects with respective 
weights and values (40,50,30,10, 10,40,30) and (40,60,10,10,3,20,60). He can 
carry away 100 units in weight. Solve by dynamic programming the problem of 
determining which objects he should remove given an objective of maximum value 
and that only one item of each object is available. 

10. Solve Exercise 9 with the extra proviso that each object is now also assigned a 
volume of (25, 50, 25, 25, 50,0,75), respectively, and the total volume that the bur­
glar can remove is 100 units. 

II. Solve the problem posed in Section 6.8. 

12. (The farmer's problem.) At the beginning of a certain year a farmer has 20 tons of 
seed potatoes. In five years' time he is going to sell all the potatoes, if any, that he 
then has. If he keeps a ton of seed potatoes it will produce 3 tons of seed potatoes in 
a year's time. He estimates that the selling price of a ton of seed potatoes over the 
next five years is going to be 400,330,44, 15, and 5 units, respectively. The problem 
is to decide how many tons of seed to keep and plant each year and how many to 
sell. Formulate and solve this problem using dynamic programming, assuming 
that only integer numbers of tons of potatoes are considered. 



Chapter 7 

Classical Optimization 

7.1 Introduction 

Until now we have considered the optimization of a linear function subject 
to linear constraints. This assumption of linearity is now relaxed and we 
examine the complex problems of optimizing a function which is not nec­
essarily linear which may possibly be subject to constraints which are also 
not necessarily linear. This present chapter is concerned with the calculus 
necessary to identify the optimal points of a continuous function or a func­
tional. This is often called classical optimization, even though many of the 
results are of relatively recent origin. Occasionally these methods can be 
used to solve real-world problems. However, it is usual that too many vari­
ables are present for the methods to be at all efficient from the point of view 
of numerical computation. In these cases nonlinear programming algorithms 
must be developed and some of these are presented in the next chapter. 
However, most of these algorithms rely on the theoretical development of 
the present chapter. 

7.2 Optimization of Functions of One Variable 

7.2.1 Definitions 

Consider a continuous function, 

J:I-+R, 
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where I = (a, b) is some open interval on the real line and R is the set of real 
numbers. We now present some definitions concerning properties of the 
values that f(x}, x E I can assume. 

Definition 7.1. f has a global minimum at Xl E I if 

f(x l} :$; f(x} for all x E I. 

(A global minimum is sometimes called an absolute minimum.) 

Definition 7.2. f has a global maximum at Xl E I if 

f(Xl} ~ f(x} for all x E I. 

(A global maximum is sometimes called an absolute maximum.) 

Definition 7.3. f has a global extremum at Xl E I if f has either a global mini­
mum or a global maximum at Xl. (A global extremum is sometimes called 
an absolute extremum.) 

Definition 7.4. f has a local minimum at Xl E I if there exists a DE R + such 
that 

for all x E I satisfying 
f(x l} :$; f(x} 

Ix-xll<D. 

(A local minimum is sometimes called a relative minimum.) 

Definition 7.5. f has a local maximum at Xl E I if there exists a DE R + such 
that 

for all x E I satisfying 
Ix - xli < D. 

(A local maximum is sometimes called a relative maximum.) 

Definition 7.6. f has a local extremum at Xl E I if f has either a local mini­
mum or a local maximum at Xl. (A local extremum is sometimes called a 
relative extremum.) 

Figure 7.1 serves to illustrate the concepts just defined. 

Definition 7.7. f has a stationary point at Xl E I if f is differentiable at Xl and 

f'(xd = O. 

(A stationary point is called a critical point by some authors.) 

There may be points which are local or even global extrema of f but 
which are not stationary points. Such a point is X6 in Figure 7.1, where f is 
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f 

a Xl X2 X3 X4 Xs X6 X7 b X 

Figure 7.1. Points Xl' x 3 , and Xs are local maxima. Point X3 is a global maximum. 
Points X 2 , X 4 , and X6 are local minima. Point X6 is a global minimum. 

not differentiable. Further if f is defined on the closed interval, [a, b], defi­
nitions 7.4 and 7.5 have to be modified for the special cases Xl = a or Xl = b. 
In these cases the neighbourhoods IXI - xl < 15 are defined as 

IXI - xl < 15, Xl "# a or b 

0< X - Xl < 15, if Xl = a, 

0< Xl - X < 15, if Xl = b. 

It is possible that Xl = a or Xl = b are global extrema even though f does 
not have a stationary point at either. 

7.2.2 A Necessary Condition for Local Extrema 

Given a function f: 1-+ R with I open, it is often of interest to find the global 
extrema of f. Unfortunately it is not easy to find the global extrema directly. 
Thus we set our sights a little lower and develop ways of finding all local 
extrema. 

Theorem 7.1. If f: 1-+ R is differentiable at Xl, in an open interval I, then f 
has a local extremum at Xl E I = !'(XI) = O. 

PROOF. Suppose Xl E I is a local minimum. By assumption !'(XI) exists, and 

lim f(XI + Llx) - f(XI) = lim f(x i + Llx) - f(x l ) = !'(x I ). (7.1) 
Llx-+O+ Llx Llx-+O- Llx 

But, as Xl is a local minimum, there exists abE R + such that, for all Llx 
where ILlxl ~ 15, 

f(XI + Llx) - f(xd 0 
ILlxl ~ . 
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Hence the first limit in (7.1) is nonnegative. However, if 

Llx < 0, 

as it is in the middle expression in (7.1), we have 

f(XI + Llx) - f(x l ) < O. 
Llx -

7 Classical Optimization 

Hence the second limit in (7.1) is nonpositive. As f'(x l ) must equal both of 
these limits, one nonnegative and one nonpositive, they must both be zero. 
Hence f'(x l ) = O. 

The proof when Xl is a local maximum is similar. D 

The necessary condition for a local extremum is not sufficient, as evi­
denced by point X 7 in Figure 7.1, where 

but X7 is not a local extremum. Indeed X 7 is a point of inflection which is 
defined as follows. 

Definition 7.S. f has a point of inflection at Xl if f has a stationary point at 
Xl but f does not have a local extremum at Xl and I' has a local extremum 
at Xl' 

This leads to a distinction between the stationary points of f: 

Definition 7.9. f has a critical point at X I iff has a stationary point at X I and 
Xl is a local extremum for f but not for 1'. 

Thus points of inflection are stationary points which are not critical points. 

7.2.3 Sufficient Conditions for Local Extrema 

In view of Theorem 7.1, it is desirable to develop sufficient conditions for 
local extrema to exist. Then the stationary points found can be examined to 
see if any of them are local extrema. To this end, consider the Taylor series 
expansion about a point Xl E I (see Section 9.2 of the Appendix): 

f(x i + h) = f(x l ) + hf'(Xl) 

h2 

+ 2 !,,(eX I + (l - e)(Xl + h)), for some e, 0< e < 1, (7.2) 

where it is assumed that 
(Xl + h) E I, 
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and I has first and second derivatives 1', f" for all points in I. Suppose that 
I has a stationary point at Xl' Then, by Theorem 7.1, 

Then (7.2) can be rearranged as: 

h2 

l(x 1 + h) - I(xd = 2 f"(8X l + (l - 8)(Xj + h), 

Assume 
f"(X I) > O. 

o < 8 < 1. (7.3) 

Now if Iff is continuous on I, at all points sufficiently near Xl' Iff will have 
the same sign as it does at Xl' i.e., positive. Thus, for all h sufficiently small in 
magnitude, 

h2 

2 f"(8x I + (1 - 8)(XI + h)) > O. 

Using this result in (7.3), we obtain 

I(xj + h) - I(XI) > O. 
We conclude that if 

f'(xd = 0, 

and Iff is continuous in a neighbourhood of Xl> then 

f"(xd> 0 

is a sufficient condition for Xl to be a local minimum. 
It can be shown analogously that if 

f'(x l ) = 0, 

and Iff is continuous in a neighbourhood of Xl> then 

f"(x l ) < 0 

is a sufficient condition for Xl to be a local maximum. 
The preceding deductions cannot be used to come to any conclusions 

about the character of Xl if 

Indeed, it may be that 

pn)(xd = 0, n = 1,2, ... , k 

for some integer k > 2. The following theorem settles such cases. 

Theorem 7.2. II 
n = 1,2, ... , k, 

and 
(7.4) 

(7.5) 
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and pk + 1) is continuous in a neighbourhood of x b then f has a local extremum 
at x 1 if and only if (k + 1) is even. If 

pH l)(Xl) > 0, 
Xl is a local minimum. If 

X 1 is a local maximum. 

PROOF. Sufficient condition. We assume the hypothesis of Theorem 7.2. We 
wish to show that f has a local extremum at Xl. Taylor's theorem about 
point Xl yields 

hHl 
+ (k + l)! PH1)(8x l + (1 - 8)(Xl + h)), 

for some 8, 0 s 8 s 1. Using (7.4) and rearranging, this becomes 

hk+ I 

f(XI + h) - f(XI) = (k + l)! pH 1)(8x l + (1 - 8)(Xl + h)), Os 8 s 1. (7.6) 

It is assumed that PHI) is continuous at Xl. This fact can be used to show 
that at all points sufficiently near Xl' p k + 1) will have the same sign as 
PH1)(Xl). Hence if h is sufficiently small, P H1 )(8x I + (1 - 8)(Xl + h)) will 
have the same sign as p k + 1)(Xl). In view of this, on examining (7.6) we can 
see that for odd k + 1 and sufficiently small positive h, f(x l + h) - f(XI) 
will have the same sign as f(H l)(X l). However, for sufficiently small negative 
h, f(x l + h) - f(x l ) has the opposite sign to pH l)(xd. Hence, for odd 
k + 1, Xl is not a local extremum. However if k + 1 is assumed to be even, 
f(Xl + h) - f(x l) has the same sign as pH l)(XI), independently of the sign 
of h. If 

then 

for all h sufficiently small in magnitude, and thus Xl is a local minimum. If 

p k + l)(Xl) < 0 
then 

for all h sufficiently small in magnitude and thus Xl is a local maximum. 
Necessary condition. We assume (7.4) and (7.5) and that f has a local 

extremum at Xl. We wish to show that k + 1 is even. Let us suppose for de­
finiteness that f has a local minimum at Xl> i.e., 

f(x l + h) - f(xd > 0 



7.2 Optimization of Functions of One Variable 263 

for all h sufficiently small in magnitude. Using (7.6), we obtain 

hk+l 

(k + I)! j<k+ll(eXI + (1 - e)(XI + h)) > 0, 0< e < 1, (7.7) 

i.e., the expression on the left-hand side of (7.7) is of constant sign, namely 
positive. However, from the arguments mounted earlier in the proof, 
j<k+ll(eXI + (1 - e)(XI + h)) will have constant sign (it cannot be zero if 
(7.7) is to hold) for h sufficiently small in magnitude. Now when h is negative 
the expression in (7.7) can have constant sign only if k + 1 is even. 

A similar argument follows when f has a local maximum at Xl' This 
completes the proof. D 

7.2.4 Examples 

Consider 

f(x) = X3 - 9X2 + 27x - 27. 

We use the previous results to find the extrema of this function. The first 
derivative is 

f'(X) = 3X2 - 18x + 27, 

which has a unique zero at Xl = 3, which, by Theorem 7.1, is the only 
candidate for an extremum. However, 

f"(X) = 6x - 18, 
so that 

1"(3) = 0. 
Now 

j<3l(X) = 6 i= 0, 

but, as k + 1 = 3 is odd, X I = 3 is not an extremum. Indeed, f has a point 
of inflection at X I = 3. 

Consider 

f(x) = X4 - 8X3 + 24x2 - 32x + 16. 

The first derivative is 

f'(X) = 4X3 - 24x2 + 48x - 32, 

which has a unique zero at Xl = 2, which is thus the only candidate for an 
extremum. 

However, 
f"(X) = 12x2 - 48x + 48 

and 
1"(2) = 0. 
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Also, 
J<3)(X) = 24x - 48 

and 

But 

Hence 

Now as 
(k + 1) = 4, which is even, hence 

by theorem 7.02 
X I = 2 is a local extremum. 

As 

is a local minimum. 

7.2.5 The Solution of Nonlinear Equations 

It can be seen in the previous example that in order to locate the extrema of 
a function f it is necessary to find the roots of 

f'(X) = O. (7.8) 

This is often a difficult task when f is of high order. There are many nu­
merical methods which exist for locating the roots. Some of these are pre­
sented in Conte and de Boor (1972). We present one simple method here; 
the interested reader should seek further advice if he suspects his function 
is ill-behaved. The method presented here is called Newton's method and is 
motivated as follows. 

We assume that f has continuous second derivatives and that some esti­
mate Xl of a solution to (7.8) is available. If no such estimate is known, Xl 

is chosen at random. If Xl is a reasonably good estimate, the Taylor series 
expansion of f' about X I can be approximated as: 

f'(X) = f'(x l ) + (x - XI)f"(XI)' 

Hence if X is a solution to (7.8), 

0= f'(x l ) + (x - XI)f"(X I ) 

X = Xl - f'(x1)/f"(xd· (7.9) 

Now unless f is a quadratic, X will not in general be an exact solution to 
(7.8). However, X can be used as an improved estimate. Indeed, (7.9) can be 
looked upon as the first equation in a family which generates successive 
improved estimates of a solution to (7.8). The family has the following 
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general form: 

n = 1,2, .... (7.10) 

Once an estimate is finally found which is sufficiently close to a root, a new 
starting point can be selected in an effort to find a new root. This procedure 
is repeated until all roots are found. However there is no guarantee that 
this method will be successful. The reader is referred to Himmelblau (1972) 
for a more complete treatment of this problem. 

7.2.6 Global Extrema 

Let us now return to the classical optimization of a function of one variable. 
As was explained in Section 7.2.2, if I is an open interval Theorem 7.1 is used 
to identify local extrema. However, if I is closed the possibility exists that 
a global extremum occurs at one or both of the endpoints of I. Hence when 
I is closed its endpoints must be considered candidates for global extrema. 
This possibility will occur when f has no critical points in the interior of I. 

For example, let 

f(x) = X3 - 9X2 + 24x + 1, x E I = (0,3). 

Then 
f'(X) = 3X2 - 18x + 24, 

which has zeros at Xl = 2 and 4. By Theorem 7.1, as I is open, these points 
are the only candidates for extrema. However, 4 if: (0,3), hence Xl = 4 can 
be disregarded. Now, 

1"(X) = 6x - 18. 

Therefore 
1"(2) = -6 < 0. 

Thus Xl = 2 is a local maximum. No local (or global) minimum exists within 
I. This is because, as ° is approached from the right, values of f become 
successively lower, without ever attaining the limit of f(O). 

However, if I is redefined as 

1=[0,6], 

it is now closed and the endpoints Xl = ° and Xl = 6 must be checked. 
Indeed, 

But 

f(O) = 1 

f(6) = 37. 

f(2) = 21 

f(4) = 17. 
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Hence 

Thus 
f(O) < f(4) < f(2) < f(6). 

Xl = 0 is the global minimum 

Xl = 4 is a local minimum 

X I = 2 is a local maximum 

Xl = 6 is the global maximum. 

7 Classical Optimization 

7.2.7 Concave and Convex Functions 

It was pointed out in Section 7.2.2 that the necessary condition of Theo­
rem 7.1 is not always sufficient. However, there are two classes of functions 
for which the condition is sufficient. These are concave and convex functions, 
which are defined next. 

Definition 7.10. A function, f defined on a closed interval, I is said to be 
concave on I if for all r:J. E R, 0 :-s; r:J. :-s; 1, and for all Xl> X2 E I, 

(7.11 ) 

Definition 7.11. A function f defined on a closed interval I is said to be 
convex on I if - f is concave on I. 

Some examples of concave and convex functions are given in Figures 7.2(a) 
and (b), respectively. 

We now build up a series of results which amount to a somewhat stronger 
result than the converse of Theorem 7.1. This is that, for f concave (convex), 

(a) concave functions 

(b) convex functions 

Figure 7.2. Concave and convex functions. 
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f'(x*) = 0 is sufficient for x* to be a global maximum (minimum). We begin 
with: 

Theorem 7.3. If f is concave on a closed interval I with a local maximum at 
x* E I, then f must have a global maximum at x*. 

PROOF. As f has a local maximum at x* there exists /) E R + such that for 
all x E I satisfying 

we have 
/x* - xl < /), 

f(x*) ;;::: f(x). 

(7.12) 

(7.13) 

Hence if we can show for all x E I that (7.13) holds we have shown that x* 
is a global maximum. We prove this by contradiction. Let Xl E I be such that 

f(x*) < f(XI)· 

Now, as f is concave, we can invoke (7.11), with 

X2 = x*. 

That is, for all a ER, 0 S a S 1, 

(7.14) 

f(ax i + (l - a)x*) ;;::: af(xI) + (1 - a)f(x*). (7.15) 

By taking a sufficiently close to 0, i.e., 0 < a < /)/(/x* - XI/), the point 
(axi + (l - a)x*) will satisfy (7.13), that is, 

f(x*) ;;::: f(axi + (1 - a)x*). (7.16) 

Then by (7.15), we have 

f(x*) ;;::: af(xI) + (1 - a)f(x*), 

which contradicts (7.14). Thus no point Xl E I can be found for which (7.14) 
holds. Thus 

f(x*) ;;::: f(x) for all X E I. 

That is, f has a global maximum at x*. o 
One can prove an analogous theorem for convex functions, as follows: 

Theorem 7.4. If f is convex on closed interval, I with a local minimum at 
x* E I then f must have a global minimum at x*. 

We leave the proof of Theorem 7.4 as an exercise for the reader. We now 
prove a theorem which leads to Theorem 7.7, the main result of this section. 

Theorem 7.5. Iff is concave on a closed interval I and there exists a neighbour­
hood, N(XI) of an interior point Xl E I such that f' is continuous in N(XI), then 

f(x) s f(x l ) + f'(XI)[X - Xl] for all X E I. 
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PROOF. Let x be a point in I. Then as f is concave on I, by (7.11) we have 

f(r:t.x + (l - r:t.)xd ~ r:t.f(x) + (1 - r:t.)f(XI) for all r:t. E R, 0 ::; r:t. ::; 1. 

On rearranging, we obtain 

f(XI + r:t.(x - Xl» - f(XI) ~ r:t.(f(x) - f(xd). (7.17) 

By Taylor's theorem (see Section 9.2 in the Appendix), with 

h = r:t.(x - Xl), 

we have 

f(XI + r:t.(x - Xl» - f(XI) 

= r:t.f'(XI + 8r:t.(x - XI»(X - Xl), for some 8,0 < 8 < 1. 

hence 

Therefore, 

lim f'(XI + 8r:t.(x - XI»(X - xd = f'(XI)(X - Xl) ~ f(x) - f(x l ), 

and 

as required. o 
The corresponding theorem for convex functions is left for the reader to 

prove. 

Theorem 7.6. If f is convex on a closed interval I and is differentiable at a 
point Xl in I, then 

f(x) ~ f(XI) + f'(XI)(X - Xl) for all X E I. 

We leave the proof of Theorem 7.6 as an exercise for the reader. We are 
now in a position to prove the following theorem: 

Theorem 7.7. If f is concave on a closed interval I and there exists a point 
x* E I such that 

f'(x*) = 0, 

then f has a global maximum at x*. 

PROOF. Let N be a neighbourhood of x* contained in 1. Let x be any point 
point in N. Then, by Theorem 7.5, we have 

f(x) ::; f(x*) + f'(x*)(x - x*) 
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which reduces to 
f(x) ~ f(x*). 

Thus f has a local maximum at x*. Hence by Theorem 7.3 f has a global 
maximum at x*. 0 

The sequel for convex functions is 

Theorem 7.S. If f is convex on a closed interval I and there exists a point x* 
in I such that 

f'(x*) = 0, 

then f has a global minimum at x*. 

We now turn our attention to the minimization of a concave function. 
Of course no minima may exist for such a function defined on interval I 
where I = R or where I is bounded but open. However, if I is bounded the 
global minimum will occur at an endpoint. This is now stated and proven 
formally. 

Theorem 7.9. If f is concave on a closed interval I = [a, b], then f will have 
a global minimum at a or b or both. 

PROOF. This proof is by contradiction. Suppose that there exists a point x* 
in the interior of I which is a global minimum and a and b are not global 
minima, i.e., 

f(x*) < f(a), f(x*) < f(b). 

Then, as a < x* < b, there exists IX E R, ° < IX < 1 such that 

x* = lXa + (1 - lX)b. 

Now from Definition 7.10, with Xl = a and X2 = b, we have 

f(x*) ~ IXf(a) + (1 - lX)f(b), 

and, by (7.18), 
f(x*) > IXf(x*) + (1 - lX)f(x*), 

which is a contradiction. 

(7.18) 

o 

For completeness we state the equivalent result for convex functions. We 
leave the proof as an exercise for the reader. 

Theorem 7.10. If f is convex on a closed interval I = [a, b], then f will have 
a global maximum at a or b or both. 
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7.3 Optimization of Unconstrained Functions 
of Several Variables 

Of course many models of real-world problems involve functions of many 
variables. In this section we study the classical mathematics required for 
the optimization of such functions and generalize the results obtained in 
the earlier sections of this chapter. 

7.3.1 Background 

As in earlier chapters we denote a vector of n variables by X = (Xl> X2, ... , 

xnf. Consider a function, f: S --+ R where S is a region in n-dimensional 
Euclidean space. Then Definitions 7.1-7.11 hold for multidimensional func­
tions with X replacing x. 

7.3.2 A Necessary Condition for Local Extrema 

As in the single-variable, case we develop a necessary condition for the 
existence of local extrema. 

Theorem 7.11. If of(X)/oxj exists for all XES and for all j = 1,2, ... , n, 
and if f has a local extremum at X* in the interior of S, then 

j = 1,2, ... , n. 

PROOF. Suppose that the conditions of the theorem hold. Let 

X* = (xr,x~, ... , x:f. 

Consider the points in S which are generated when all the variables Xi except 
for Xj are held fixed at Xi = xt, i = 1,2, ... ,j - 1, j + 1, ... ,n for some j, 
1 ~j ~ n. Now define 

f(Xj) = f(xr,x~, ... , xj-l>Xj,xj+l> ... , x!). 

As f has a local extremum at X*, J must have a local extremum at Xj. Thus, 
by Theorem (7.1), we have 

l'(X) = o. 
But as 

we have 
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Thus, as j was chosen arbitrarily, we have 

j = 1,2, ... , n. D 

7.3.3 A Sufficient Condition for Local Extrema 

As with the single-variable case, it is desirable to develop sufficient condi­
tions for a local extrema to exist. Then any points identified by an application 
of the result of Theorem 7.11 can be examined to see if they are local extrema. 
Theorem 7.12 provides the desired conditions. We assume that the second 
partial derivatives not only exist but are continuous in some neighbourhood 
of any point X* for which the condition of Theorem 7.11 holds. 

Theorem 7.12. If 
of(X*) = 0 

oX j , 
j = 1,2, ... , n, 

for some X* in the interior of S, and if H(X*), the Hessian matrix of f evaluated 
at X*, is negative definite, then f has a local maximum at X*. 

PROOF. Consider the Taylor series expansion of f about X* (see Section 
9.2 of the Appendix), where it is assumed that the first and second deriva­
tives of f exist in S: 

f(X* + h) = f(X*) + Vf(X*fh 

+thTH(()X* + (1- ())(X* + h))h, for some (), 0 <() < 1. (7.19) 

In view of the hypothesis, we have 

17'f(X*) = (Of(X*) of(X*) Of(X*))T = 0 
~ ox! ' OX2 , ... , oXn • 

Hence (7.19) can be rearranged to become 

f(X* + h) - f(X*) = thTH(()X* + (l - ())(X* + h))h, o < () < 1. (7.20) 

Let us now consider the sign of the right-hand side of (7.20). As the second 
partial derivatives of f are continuous in some neighbourhood of X*, for 
h sufficiently small, the entries of H(()X* + (1 - ())(X* + h)) will have the 
same sign as the corresponding entries of H(X*). Now, as H(X*) is negative 
definite, H(()X* + (1 - ())(X* + h)) will be negative definite. Thus hTH(()X* 
+ (1 - ())(X + h))h will be negative (see Section 9.2 on quadratic forms). 0 

We have shown, using (7.20), that, for all X* + h in a neighbourhood of 
X* , 

f(X* + h) - f(X*) < 0, 
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i.e., f has a local maximum at X*. One can prove the following theorem 
in an analogous fashion: 

Theorem 7.13. If 

of(X*) = 0, 
OXj 

j = 1,2, ... , n, 

for some X* in the interior of Sand H(X*) is positive definite then f has a 
local minimum at X*. 

We leave the proof of Theorem 7.13 as an exercise for the reader. 

7.3.4 Illustrative Examples 

Find the extreme points of 

f(X) = -xi - 6x~ - 4Xl + 8X2 + 143, 

Using the result of Theorem 7.11, we have 

of 
- = - 2Xl - 4 = 0 ~ Xl = - 2 
oX l 

of 
- = -12x2 + 8 = 0 ~ X 2 = i, 
OX2 

Thus X 0 = ( - 2,~) is the only candidate for an extreme point. Now 

H(X) = (-~ -1~). 
which is negative definite. Thus, by Theorem 7.12, X 0 is a local maximum. 
As X 0 is the only maximum point, f has a global maximum at X 0, with value 

f(Xo) = 149l 

Let us now consider an example that is a little more challenging. Find the 
extreme points of 

f(X)=xi+x~ +x~ +XlX2 +XlX3 +X2X3 -7Xl -8X2 -9X3 + 101, X E R3. 

Using the result of Theorem 7.11, we have 
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Solving these three equations simultaneously yields the unique solution 
X 0 = (1,2,3), which is thus the only candidate for an extreme point. Now 

(2 1 1) 
H(X) = 1 2 1 , 

112 

which is positive definite. Thus, by Theorem 7.12, Xo is a local minimum. 
As X 0 is the only minimum point, f has a global minimum at X 0, with value 

f(Xo) = 76. 

7.3.5 Discussion 

Lest the reader begin to believe that the above procedure is always as straight­
forward as in analyzing the examples of Section 7.3.4, a few words of cau­
tion are in order. First, a system of equations derived from 

j = 1,2, ... , n (7.21) 

must be solved in order to find the stationary points. The system of equa­
tions will be nonlinear if f has terms of cubic or higher powers. This can 
sometimes be achieved using what is known as Newton's method for systems. 
However, this usually requires a great deal of computational effort, and unless 
there is some information available about the likely location of roots, the 
method may fail to converge. The reader is referred to Henrici (1964) for 
a more full discussion of this problem. Of course it is possible that the system 
(7.21) may be inconsistent in the sense that it has no solutions. In this case 
f has no extreme points. 

Even if it is possible to locate the possible candidates for extrema by 
finding all solutions X 0 to (7.21), one still has to establish the definiteness 
of H(X 0)' For nontrivial systems this is often a difficult task. In fact, for 
systems arising from most real-world problems it is usually far more efficient 
to try and establish the nature of X 0 by examining the behaviour of f in 
the neighbourhood of X 0 directly. 

As has been seen in Theorems 7.12 and 7.13, if (7.21) holds and H(X*) 
is negative (positive) definite then f has a local maximum (minimum) at 
X*. However, if hTH(X*)h changes sign for different h, then X* is not a 
local extremum. The reader will note that nothing has been said about the 
cases where H(X*) is negative semidefinite or positive semidefinite. These 
are equivalent to the single-variable situations covered in Theorem 7.2. The 
multivariable situation, however, is complicated and will not be examined 
here. The reader is referred to Hancock (1960) for a detailed treatment. 
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In the previous paragraph we alluded to the single-variable case. It is 
easily seen that this is merely a special case of the theory developed in Sec­
tion 7.3. 

7.3.6 Global Extrema 

In the examples in Section 7.3.4 S, the domain of I, was defined to be R2. 
When S is thus unrestricted, the point satisfying (7.21) which yields the 
highest (lowest) value of 1 will be the global maximum (minimum). As in 
Section 7.2.6, if the domain of 1 is closed, the possibility exists that the global 
extrema occur on the boundary. This will certainly happen if no interior 
points of S satisfy (7.21). 

For example, consider the first function given in Section 7.3.4, with S 
redefined as the rectangle: 

S = {(Xl,X2): -3:::;; Xl:::;; 0,0:::;; X2:::;; I}. 

Then, as X 0 = ( - 2, ~), the only candidate for a local extremum, belongs to 
S, it is still the global maximum. However, if we redefine S as the square: 

S = {(XbX2): 0:::;; Xl:::;; 1,0:::;; X2:::;; I}, 

then X 0 ¢ S. Thus we must examine the boundaries of S, which are 

Bl = {IX(O,O) + (1 - IX)(O, 1): 0:::;; IX:::;; I} 

B2 = {IX(O, 1) + (1 - 1X)(I, 1): 0:::;; IX:::;; I} 

B3 = {1X(l, 1) + (l - 1X){l, 0): 0:::;; IX:::;; I} 

B4 = {1X{l, 0) + (1 - IX)(O,O): 0:::;; IX:::;; I}. 

We now find the extrema of! on each boundary Bi , = i = 1,2, ... , n. The 
value of 1 at any point on a Bi can be expressed as a function of one variable 
in IX. Starting with B l , let 

g(lX) = 1(0, 1 - IX) = -6(1 - 1X)2 + 8(1 - IX) + 143. 

Using the methods of Section 7.2, we obtain 

g'(IX) = -12(1 - IX)( -1) - 8, 

which has a unique zero at 
IX* =!. 

Also, we have 
g"(IX*) < 0, 

indicating that IX* corresponds to a maximum. As the interval over which g 
is defined is closed we must also check the endponts: 

g(O) = 145 

g(l) = 143 

gH) = 145~. 
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Thus the maximum value of Ion B 1 occurs at (0, t), with value 1451, and the 
minimum at (0, 1) with value 143. 

A complete display of this analysis for all four boundaries is given in 
Figure 7.3, with values of I given. It can be seen that I has a global maximum 
at (O,t) with value 1451 and a global minimum at (1,0) with value 138. 

(0, 1) .-:--:-.,,--____ ... (1, 1) 
145 140 

(O,t) 145j l40j (I,!) 

143 138 
(0,0) (1,0) 

Figure 7.3. Examining boundaries for global extrema. 

7.3.7 Concave and Convex Functions 

The definitions for concave and convex functions of a single variable can be 
generalized for functions of several variables. 

Definition 7.12. A function I defined on S, a simply connected region in n­
dimensional Euclidean space, is said to be concave on S if for all oc E R, 
0::;; oc ::;; 1, and for all Xl, X 2 E S, 

Definition 7.13. A function I defined on S, a simply connected region in n­
dimensional Euclidean space, is said to be convex on S if -lis concave on S. 

As with the one-dimensional case, we can prove far stronger results for 
concave and convex functions than for more general functions. We begin by 
generalizing Theorem 7.3. The proof of Theorem 7.14 follows along the lines 
of that for theorem 7.3. 

Theorem 7.14. II I is concave on a simply connected region S s; Rn with a 
local maximum X* E S then I has a global maximum at X*. 

PROOF. As I has a local maximum at X* there exists a (j-neighbourhood about 
X* such that I at X* is no less than at any other point in the neighbourhood. 
That is, there exists (j E R + such that, for all XES such that IIX* - XII < D, 
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we have 
f(X*) ~ f(X). (7.23) 

Hence if we can show for all XES that (7.23) holds we have shown that X* 
is a global maximum. This is done by contradiction. Suppose (7.23) does not 
hold for all XES, i.e., there exists Xl E S such that 

f(X*) < f(X 1)· (7.24) 

Now, as f is concave, we have 

f(aX 1 + (1 - a)X*) ~ af(X d + (1 - a)f(X*) for all a, ° ~ a ~ 1. (7.25) 

By taking a to within b/(IIX* - X liD of 0, i.e., 

0< a < b/(IIX* - Xii), 

the point aX 1 + (1 - a)X* will satisfy (7.23); that is, 

f(X*) ~ f(aX 1 + (1 - IX)X*). 

Then, by (7.25), we have 

f(X*) ~ af(X 1) + (1 - lX)f(x*), 

which contradicts (7.24). Thus 

f(X*) ~ f(X) for all XES. 

That is, f has a global maximum at X*. 

(7.26) 

(7.27). 

D 

The proof of the analogous theorem for convex functions is left to the 
reader. 

Theorem 7.15. If f is concave on a simply connected region S £; Rn with a 
local minimum X* E S, then f has a global minimum at X*. 

7.4 Optimization of Constrained Functions 
of Several Variables 

Feasible solutions to many realistic optimization problems are constrained 
to be within a subset of n-dimensional Euclidean space. As examples, a 
company may not be able to invest more funds than it possesses, time allo­
cated to a machine must be nonnegative, and pollution laws may require 
values of a certain variables to be less than a given level. When this is the 
case, as it is in nearly all real-world problems, one must maximize the ob­
jective function subject to a number of constraints on its variables. These 
constraints are usually expressed in the form of equations or inequalities. We 
begin with the case where all the constraints are equations. 
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7.4.1 Multidimensional Optimization with Equality Constraints 

This problem can be stated in general as follows: 

where 

Maximize: 

subject to: 

f(X) 

giX) = 0, j = 1,2, ... , m 

(7.28) 

(7.29) 

A typical numerical example of such a problem is given in the next section. 
One obvious approach is to use the equations to eliminate some of the 
variables from the problem. For example consider the following problem: 

As 

Maximize: 

subject to: 

f(X) = xi + 2(X2 - 4)2 + 8 

Xl - x~ + 4 = o. 

we are left with the following unconstrained problem in one dimension: 

Maximize: 

which is easier to solve. Of course, this approach of elimination will be 
successful in reducing the number of variables in the problem only if it is 
possible to express a solution for one or more of the variables explicitly. 
Often, however, this cannot be done. 

It can be shown that when the variables of the objective function must 
satisfy constraints which are equations, the optimal point must lie on the 
boundary of the feasible region F. There are a number of methods available 
for locating optima which lie in the interior of F. We now present the Jacobian 
method and Lagrange's method, which both transform such a problem into 
one with its optima all lying in the interior of F. 

7.4.1.1 The Jacobian Method 

We now present a method which solves the problem (7.28), (7.29). It is as­
sumed thatf and gj,j = 1,2, ... , m have continuous second derivatives. The 
strategy is to find a suitable expression for the first derivatives of f at all 
points which satisfy (7.29). The feasible stationary points of f are the ones 
among these for which 

of = 0, 
ox; 

i = 1,2, ... , n. (7.30) 

The maximum points are identified among those satisfying (7.30) by using 
Theorem 7.12. 

These ideas are now placed on a firm mathematical basis. Consider any 
point X which satisfies (7.29). In any neighbourhood of X there will exist at 
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least one point X + h which satisfies (7.29), because X is on the boundary of 
the region defined by (7.29). Expanding f and gj,j = 1,2, ... , m, in a Taylor 
series about X, we get 

f(X +h)= f(X) + Vf(Xfh+thH f(OX +(1-0)(X +h))h, 

gj(X +h)=giX) + Vgj(Xfh+thHgj(OX +(1- O)(X +h»h, 

for some 0, 0 < 0 < 1. As X + h approaches X, we get 

f(X + h) ~ f(X) + Vf(Xfh 

j=1,2, ... ,m, 

j = 1,2, ... , m. 

Therefore 

of (X) ~ Vf(XfoX 

ogj(X) ~ Vgj(XfoX, 

Using (7.29), we get 

j = 1,2, ... , m. 

j = 1,2, ... , m. 

Thus we can state, to within a first order approximation, 

j = 1,2, ... , m. (7.31) 

Now as Vf(X) and Vgj(X), j = 1,2, ... , m, consist of known constants, 
(7.31) constitutes a set of(m + 1) linear equations in (n + 1) unknowns, ox!> 
OX2, ... , oXm of (X). If the equations are linearly dependent one discards the 
smallest number whose removal leaves an independent set. Hence we can 
assume that there are no more equations than variables, i.e., 

m:::;;n. 
Now 

leads to the unique solution 

oX=o, 

which implies that there are no feasible points other than X in any neighbour­
hood of X. That is, the set of feasible points is discrete. Hence we can assume 
that 

m<n. 

(7.32) 

The variables Wi' i = 1, 2, ... , m are called state variables and the variables 
Yb i = 1,2, ... , (n - m) are called decision variables. Now (7.31) can be re-
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written using (7.32), as follows: 

f of (X) OWi + nim of (X) 0Yi = of (X) 
i=l OWi i=l 0Yi 

(7.33) 

j = 1,2, ... , m. (7.34) 

Suppose now that the 0Yi, i = 1, 2, ... , (n - m) are given arbitrary values. 
When these are substituted into (7.34) unique values for the OWi, i = 
1, 2, ... , m can be found which keep X + h inside the feasible region. One 
can then use all these values in (7.33) to see if 

of (X) > 0, 

i.e., the new point X + h is an improvement over X. 
We now state the explicit steps needed to carry this out using vector 

notation. The matrix 
Ogl Ogl Ogl 
OWl OW2 OWm 

Og2 Og2 Og2 
OWl OW2 OWm 

ogm ogm ogm 
OWl OW2 OWm 

is called the Jacobian matrix, and the matrix 

Ogl Ogl Ogl 

°Yl OY2 °Yn-m 
Og2 092 Og2 

c= °Yl OYz °Yn-m 

ogm ogm ogm 

°Yl OYz °Yn-m 
is called the control matrix. It is important in defining the state and decision 
variables that the left-hand sums in (7.33) and (7.34) be linearly independent. 
It is always possible to make a choice of which x/s become state variables, 
so this happens because we have assumed that the equations in (7.31) are 
linearly independent. The implication of this is that J is nonsingular. Now 
let 

W = (Wl' W2, ... , wmf 
Y.= (Yl, Y2' ... , Yn_m)T. 
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Then (7.33) and (7.34) become 

V wfTaw + VyfTay = af(w, Y) (7.35) 

and 
Jaw + Cay= 0, 

respectively. As J is nonsingular, we can multiply (7.36) by J- l : 

aw= -FlCay. 

(7.36) 

(7.37) 

It can be seen, as was stated earlier, that if the elements in ay are given 
values, aw can be calculated using (7.37). Substituting this into (7.35) yields 

(7.38) 

From (7.38) we can form what is known as the constrained gradient of f 
with respect to y, which is 

VCf = a'j(w,y) = V fT - V fTJ-lC 
y aCy y w • (7.39) 

Each element of V~f, namely a'jlaCy;. i = 1, 2, ... , (n - m), is called a con­
trained derivative. It represents the rate of change of f resulting from per­
turbing Xi from Yi (all other x;'s being held constant) to feasible points. 

When constrained derivatives are used one can show that Theorem 7.11 
is applicable, i.e., if X* is a feasible maximum it is necessary that 

V~f(X*) = o. (7.40) 

Equation (7.40) can be used to identify all the stationary points; it remains 
to find which one is the global maximum. To do this we use Theorem 7.12, 
with the modification that H is the matrix of constrained second derivatives 
with respect to the independent variables Yl' Y2, ... ,Yn-m only, and not 
WI' W2' •.. , W m • The complete method will be illustrated with a numerical 
example. 

7.4.1.2 Numerical Example 

Consider the following problem: 

Maximize: f(X) = f«XlX2X3)) = -2xi - x~ - 3x~ 

subject to: gl(X) = Xl + 2X2 + X3 - 1 = 0 

g2(X) = 4Xl + 3X2 + 2X3 - 2 = o. 
Here m = 2, n = 3, and we define 

w = (WI' w2f = (XhX2)T 

y = (Yl) = (X3) 

V wf = (-4Xh -2X2)T 

Vyf = (- 6X3) 
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J = (! ~) 

c=G)' 
Now, by (7.39), we have 

V~f(X) = Vyf - V wFr lC 

= - 6X3 - (-4Xl' -2X2)( -; -DG) 
= -6x3 + !x l + !X2 

= 0, by (7.40). 

Combining this equation with the two original constraints, we have 

!Xl + !X2 - 6X3 = ° 
Xl + 2X2 + X3 = I 

4Xl + 3X2 + 2X3 = 2, 

which have a unique solution: 

X* = U\, ~~, l7f, 
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which is a stationary point. It is now determined whether this is a maximum 
point by using Theorem 7.12: 

Therefore 
V~ = !x l + !X2 - 6X3 

oe2f 4 dX l 4 dX2 6 
--2 =--+--- . 
OYl 5 dX3 5 dX3 

Now, from (7.37), we have 

( 
3 -s 

= - ! -DG) 
-(-!) - 2' 

-S 

(7.41) 
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Substituting these values into (7.41) yields 

~2cf 

°a 2 = (!)( -!) + (!)( -~) - 6 < O. 
Yl 

Thus X* is indeed a maximum point. 

7.4.1.3 The Method of Lagrange 

7 Classical Optimization 

The following method was developed by Lagrange in 176l. From the argu­
ment that was used to develop (7.31) it can be said that 

af(W, y) = V wfTaw + VyfTay, 

ag = JaW + cay, 

(7.42) 

(7.43) 

where g = (gl,g2,' .. ,gmf, the vector of constraint functions. Eliminating 
aw from (7.42) and (7.43) produces 

Jaf(W, Y) - VwfTag = VyfTJay - VwfTCay. 

Therefore 

and from (7.39), 

af(W, Y) = vwfTrlag + V~fTay. (7.44) 

Now, if X*T = (W*T, y*T) is a local maximum, then 

VU(X*) = O. 
So, from (7.44), we have 

af(w*, Y*) = vwfTr1ag, 
hence 

af(w*, Y*) = V fTJ-l 
ag w . 

(7.45) 

Equation (7.45) is useful in allowing one to analyze the rate at which 
f(W*, Y*), the optimal value, changes when g is perturbed. The individual 
components of this vector are called sensitivity coefficients for this reason. 

These sensitivity coefficients (which are constant, as can be seen from 
(7.45)) are now introduced into (7.29). Let 

From (7.46) we have 
af(w*, Y*) = Aag. (7.47) 

Define F, the Lagrangian, as 

F(X,J,) = f(X) - Ag. 
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Then the system of equations (7.29) and (7.47) correspond to 

of 
ok =0, 

J 

of =0, 
OXi 

j = 1,2, ... , m 

i = 1,2, ... , n. 
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(7.48) 

(7.49) 

It is necessary that any stationary point satisfies (7.48) and (7.49), which 
constitute a system of m + n equations in m + n unknowns, Ai> A2, ... , Am, 
Xi> X2, ... , Xn • Any stationary point will produce a unique set of values for 
the elements of A, as long as (7.48) and (7.49) are independent. Hence these 
values are independent of which members of X are assigned to Wand 
which to Y. We now illustrate these ideas by using the method to solve the 
previous numerical example. 

7.4.1.4 Numerical Example 

Now 

This yields 

Maximize: f(X) = -2xI - x~ - 3x~ 

subject to: gl(X) = Xl + 2X2 + X3 - 1 = 0 

g2(X) = 4Xl + 3X2 + 2X3 - 2 = o. 

F(X, A) = F(xl, X2, X3, Al , A2) 

= -2xI - x~ - 3x~ - Al(Xl + 2X2 + X3 - 1) 

- A2(4xl + 3x2 + 2X3 - 2) 

of 
- = - 6X3 - Al - 2A2 = 0 
OX3 

of 
OA l = -(Xl + 2X2 + X3 - 1) = 0 

of 
OA2 = -(4Xl + 3X2 + 2X3 - 2) = o. 

xt = 17 
xi = ~~ 
xt = l7 
At = - 247 

Ai = - 247' 
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which is of course the same optimal solution as that produced by the Jacobian 
method. 

7.4.2 Multidimensional Optimization with Inequality Constraints 

This problem can be stated in general as follows: 

Maximize: 

subject to: j = 1,2, ... , m. 

(7.50) 

(7.51 ) 

Necessary (and in some cases, sufficient) conditions for X to be a stationary 
point for (7.50), (7.51) were developed by Kuhn and Tucker (1951). Many of 
the algorithms for solving the above problem are based on these conditions, 
and termination criteria concerned with recognizing when a stationary point 
has been reached are derived from them. Wilde and Beightler (1967) presented 
a development of the conditions based on constrained derivatives. The 
nonrigorous formulation given here uses the Lagrangian. 

7.4.2.1 The Kuhn- Tucker Conditions 

Consider problem (7.50), (7.51). Adding nonnegative slack variables Sj to the 
left-hand side of (7.51) produces the following equations: 

j = 1,2, ... , m (7.52) 

Sj ~ 0, j = 1, 2, ... , m. (7.53) 

Apart from (7.53), we are now confronted with a problem in equality con­
straints and can use one of the methods of Section 7.4.1. In particular, we 
use the method of Lagrange and form the Lagrangian: 

m 

F(X,A) = f(X) - L Aj(gj(X) + sJ 

From (7.46), we have 

of 
Aj =-;-, 

ugj 

j= 1 

j = 1,2, ... , m. 

(7.54) 

That is, Aj is the rate of change of f with respect to gj' the jth constraint 
function. Now, if 

becomes 
g/X) ::; 0 

gj(X) ::; 8, 

where 8 is a relatively small positive number, the set of feasible solutions for 
the original problem is no smaller. Hence f(X*), the optimal solution value, 
will be no less than what it is for (7.50), (7.51). Hence 

(7.55) 
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Following the method of Lagrange, for any local maximum X*, with corre­
sponding value s = s* and .1= .1*, we have 

and, by (7.55), 

that is, 

of(X*) 
~=O, 

of(X*) 
0.1 = 0, 

j = 1,2, ... , m 

m 

Vf(X*) - L AFgj(X*) = ° 
j= 1 

g(X*) + S* = ° 
.1* ~ 0, 

where S is the vector (SbS2, . .. ,smf. 
Now if Aj > 0, by (7.46) we have 

of 
-;- > 0, 
ugj 

that is, the jth constraint is tight and s j = 0. Hence 

giX*) = 0. 

However, if gj(X*) < 0, then Sj> ° and the jth constraint is not tight. In 
this case 

Therefore 

Recapitulating, we have 

Therefore 

Aj> 0= giX*) = ° 
giX*) < ° = Aj = 0. 

j = 1,2, ... , m. 

We have given an intuitive, nonrigorous outline ofthe following theorem: 

Theorem 7.16. If f has a local maximum X* in the feasible region R of the 
problem: 

maximize: f(X) 

subject to: j = 1,2, ... , m, 
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where f and gj' j = 1,2, ... , m have continuous first derivatives, and R is 
well-behaved at its boundary, then it is necessary that 

m 

Vf(X*) - I ).jVgj(X*) = ° 
j= 1 

g(X*) S ° 
Ajgj(X*) = 0, j = 1,2, ... , m 

Aj:::::O, j=1,2, ... ,m 

for some set of real numbers A* = (Ai),!, ... , ),~). 

(7.56) 

(7.57) 

(7.58) 

(7.59) 

The phrase "R is well-behaved at its boundary" needs some explanation. 
When Kuhn and Tucker developed the above theory they found that for 
certain feasible regions their theorem did not hold. This occurred when it 
was possible to find a point X in such a region R with the following property. 
There does not exist a continuous, differentiable curve C beginning at X 
such that one can travel along C from X for a positive distance and remain 
in R. This situation is thankfully rare in practice and occurs when X is at 
the vertex of a cusp in R. Kuhn and Tucker therefore qualified the conditions 
of their theorem by stating that it must be possible to find such a curve C 
for any point X in R. This is called the constraint qualification. 

The values ),* = (Ai,),!' ... , ).~) are called generalized Lagrange multi­
pliers for obvious reasons. Of course (7.57) represents the fact that X* must 
be a feasible point for the original set of constraints. (7.56), (7.57), (7.59) are 
termed the Kuhn- Tucker conditions. 

For completeness we state the analogous theorem for the problem with 
a minimization objective. We leave the proof as an exercise for the reader. 

Theorem 7.17. If f has a local minimum X* in the feasible region R of the 
problem: 

Minimize: f(X) 

subject to: j = 1,2, ... , m, 

where f and gj' j = 1,2, ... , m have continuous first derivatives and the con­
straint qualification is satisfied, then it is necessary that 

m 

Vf(X*) - I ).jVgj(X*) = ° 
j= 1 

gj(X*) S ° 
AjgiX*) = 0, j = 1,2, ... , m 

Aj sO, j = 1,2, ... , m 

for some set of real numbers J. * = (}.i ,).!, ... , ).~). 

(7.60) 

(7.61 ) 

(7.62) 

(7.63) 



7.4 Optimization of Constrained Functions of Several Variables 287 

Note that in (7.63) the inequality signs have the opposite sense to those 
in (7.59). 

7.4.2.1.1 When the Kuhn-Tucker Conditions are Sufficient. In previous 
sections in this chapter we have shown that the necessary conditions for 
f to have a local maximum (minimum) at X* are sufficient if f is concave 
(convex). This is also true for Theorem 7.16 if the feasible region R defined 
by (7.51) is convex. When will R be convex? A sufficient condition is given 
by Theorem 7.18. 

Theorem 7.18 The region R defined by 

g/X)::::; 0, j = 1,2, ... , m 

will be convex if g j is convex for all j = 1, 2, ... , m. 

PROOF. Consider two distinct points X b X 2 E R. Then for all j, j = 1, 
2, ... ,m, 

gj(X 1 )::::; 0 

g/X2 )::::; O. 

Also for all a E R, 0 ::::; a ::::; 1, 

Hence 

Therefore 

g j(aX 1 + (1 - a)X 2) ::::; ag iX 1) + (1 - a)g j(X 2) 

::::; aO + (l - a)O. 

o 
Before stating the main result of this section we first prove two lemmas 
which are needed in the proof of Theorem 7.2.1. The lemmas (Theorem 7.19 
and 7.20) are an n-dimensional generalization of Theorem 7.5. 

Theorem 7.19. If f is convex on a convex region R c Rn with continuous 
first partial derivatives within R, thenfor any two points X, X + hER, 

f(X + h) - f(X) ~ Vf(X)Th. 

PROOF. As f is convex, we have 

f(a(X + h) + (1 - a)X) ::::; af(X + h) + (1 - a)f(X), for all a E R, 0 ::::; a ::::; 1. 

On rearranging, we obtain 

f(X + ah) - f(X)::::; a(f(X + h) - f(X)). (7.64) 
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Making a first-order expansion of the Taylor series of the left-hand side 
of (7.64), we obtain 

and 

Vf(X + eahf ah ~ a(f(X + h) - f(X), for some e, 0 < e < 1 

Vf(X + eahfh ~ f(x + h) - f(X), for a > 0 

lim Vf(X + eah)Th = Vf(X)Th ~ f(X + h) - f(X). 0 

We also need the analogous result for concave functions: 

Theorem 7.20. If f is concave on a convex region R with continuous 
partial derivatives within R, thenfor any two points X, X + hER, 

f(X + h) - f(X) ~ Vf(Xfh. 

We leave the proof of Theorem 7.20 as an exercise for the reader. 
We come now to the main result of this section: the sufficiency of Kuhn­

Tucker conditions for concave functions. 

Theorem 7.21. If, in the problem: 

Maximize: f(X), 

subject to: j = 1,2, ... ,m, 

f is concave and gj is convex for j = 1,2, ... , m and there exist X* and 
A * = (At, A!, ... , A!) which satisfy (7.56)-(7.59), then f has a global maximum 
at X*. 

PROOF. As f is concave, by Theorem 7.19 we have 

Vf(x*fh ~ f(X* + h) - f(X*), 

and by (7.56) we have 
m 

L AjVgj(X*fh ~ f(X* + h) - f(X*). 
j= 1 

(7.65) 

Now using the result of Theorem 7.19 in the left-hand side of (7.65) as gj 
is convex and (7.59), we obtain 

m 

L Aj[giX * + h) - giX *)] ~ f(X* + h) - f(X*), 
j= 1 

which by (7.58) becomes 
m 

L AjgiX * + h) ~ f(X* + h) - f(X*). (7.66) 
j= 1 

Now if (X* + h) is a feasible solution to the problem, then 

j = 1,2, ... , m. 
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Hence, by (7.59), we have 

Ajgj(X* + h) :$; 0 

Therefore, from (7.66), we have 

j = 1,2, ... , m. 

O?: f(X* + h) - f(X*), 
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for all feasible X* + h. That is, f has a global maximum at X*. 0 

We state the analogous result for the problem with a minimization 
objective; we leave the proof as an exercise for the reader. 

Theorem 7.22. If, in the problem 

Minimize: f(X) 

subject to: j = 1,2, ... , m, 

f and gj,j = 1,2, ... , m are convex and there exist X* and A* = (A!, A!, ... , 
A!) which satisfy (7.60)-(7.63), then f has a global minimum at X*. 

7.4.2.1.2 Numerical Example. Let us return to the numerical example of 
Section 7.4.1.2 and relax the equality constraints so that the problem be-
comes 

Maximize: f(X) = 2xi - x~ - 3x~ 

subject to: gl(X) = Xl + 2X2 + X3 - 1 :$; 0 

g2(X) = 4XI + 3x 2 + 2X3 - 2 :$; O. 

It can be shown that the feasible region defined by gl(X) and g2(X) obeys 
the constraint qualification and so we can apply the result of theorem 7.16. 
Let X* = (x!, x!, x!) be a local maximum, then: 

(-4x!, -2x!, -6x!) - A!(i,2" 1) - A!(4,3,2) = 0 

x! + 2x! + x! - 1 :$; 0 

4x! + 3x! + 2x! - 2 :$; 0 

At( x! + 2x! + x! - 1) = 0 

A!(4x! + 3x! + 2x! - 2) = 0 

(7.56), 

(7.57)' 

(7.58)' 

A! ?: 0, A! ?: O. (7.59), 

From (7.56)' and (7.58)' we have the following system of five equations in 
five unknowns: 

-4x! - A! - 4A! = 0 

-2x! - 2A! - 3A! = 0 

-6x! - A! - 2A! = 0 

A!X! + 2A!X! + A!X! = A! 

4A!X! + 3A!X! + 2A!X! = 2A!, 
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which has the following solution: 

(xT,x!,x~) = (0,0,0), 

(AT, A!) = (0,0). 

7 Classical Optimization 

Hence X* = 0 is a local maximum. However, as f is concave and gj, and 
g2 are convex, we can apply Theorem 7.21 and need look no further for other 
local maxima. X* = 0 is a unique local maximum and hence is the global 
maximum. 

7.5 The Calculus of Variations 

The calculus of variations is the branch of mathematics which is concerned 
with the optimization offunctionals. A functional is a special kind off unction 
which has as its domain a set of functions and as its range the set of real 
numbers. The calculus of variations has applications in many areas: astro­
nautics, economics, business management, the physical sciences, engineering, 
and others. As will be seen in the next section, some of the problems of this 
subject have been studied since the dawn of mathematics. 

7.5.1 Historical Background 

One of the earliest recorded problems on this topic is concerned with the 
finding of a curve of fixed length which encloses the greatest area with a 
given straight line. It is said that this problem was solved intuitively by the 
Phoenician queen Dido in approximately 850 B.c. According to Virgil she 
persuaded a North African chieftain to allow her to have as much of his 
land as she could enclose within the hide of a bull. She apparently had the 
hide cut up into very thin strips which were joined together to form a single 
length. This she laid out in semicircle with the Mediterranean coast as 
diameter. The piece of land enclosed, which has the maximum possible area 
for the given length, was used to found the city of Carthage. 

The calculus of variations received a large impetus in the seventeenth 
and eighteenth centuries when some of the great mathematicians of those 
times studied some of its problems. Many tasks were undertaken, such as 
finding the shape of an object which caused least resistance when propelled 
at constant velocity through a fluid. One of the most famous problems has 
already been discussed in Chapter I-the brachistochrone. Newton also 
considered a related problem: that of finding the shape of a tunnel through 
the earth joining two points on the surface which would cause a bead on a 
frictionless wire in the tunnel to travel between the two points in minimum 
time when falling under gravity. Contrary to the intuitive feeling of some 
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people, the solution turns out to be not a straight line joining the two points, 
but a hypocycloid. 

150 years later the German mathematician Zermelo solved the following 
problem. Find the path of a boat crossing a river in minimum time from a 
given point on one bank to a given point on the other. The river current is 
known at all points and it is assumed that the boat has constant power. 

In 1962 an isoperimetric problem similar to Queen Dido's was solved 
by the Soviet mathematician Chaplygin. The problem was to find the course 
of an aeroplane which encloses the greatest area in a given time while a 
constant wind blows. It is assumed that the aeroplane has constant power. 
The solution is an ellipse, which tends to a circle as the wind velocity tends 
to zero. 

7.5.2 Modern Applications 

As was mentioned earlier there are numerous applications of the calculus 
of variations to diverse areas, a few of which will be detailed now. One 
of the main applications is concerned with problems in rocket control. For 
example, designers often wish to find the minimum amount of fuel required 
for a rocket of given specifications to achieve a given height above the earth's 
surface while it experiences atmospheric resistance; or a designer may wish 
to find the minimum time required for a rocket to reach the height when it 
has only a given amount of fuel. Other applications occur in the financial 
planning of both companies and individuals. For instance, a manager may 
wish to discover how to maximize the production of certain commodities 
within a fixed budget where costs are due to storage, machine set up, pro­
duction runs, and inflation. 

7.5.3 A Simple Variational Problem 

In this section we introduce a simple general problem of the calculus of 
variations. Unfortunately problems of this type cannot be solved by the 
methods of elementary calculus. Hence we extend the theory so that such 
problems can be tackled. 

Definition 7.14. A functional J is a function: 

J: D -+ R, 

where D is a set of real-valued functions each of which is defined on a real 
interval. 

Note that in all the optimization problems studied so far in this book 
we have wished to optimize a function f whose domain is some subset S 
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ofRn (n ~ 1). That is, we have searched for a vector X = (X l,X2,··· ,xnf. 
such that f(X) is a maximum or minimum among all vectors in S. In this 
section we consider the optimization of a functional rather than a function. 
That is, we search for a function f (rather than a vector) such that J(f) is a 
maximum or minimum among all functions in D. The mathematics necessary 
to optimize functionals is known as the calculus of variations. 

Let D be defined by: 

D = {J: f(x) = sin nx, Xo ::; x ::; Xl' n = 0,1,2, ... } 

where xo, Xl are two given real numbers. Let J be defined by 

J(f) = min {J(xn. 

Then a typical variational problem is to find f* E D such that 

J(f*) = max {J(f)}. 
JED 

7.5.3.1 Necessary and Sufficient Conditions for a Local Optimum 

As can be seen from the description of the historical problems given earlier, 
often in the calculus of variations one wishes to optimize some functional 
of time, distance, area, or volume. In many such cases J is of the form: 

iX! 

J(f) = F(x,f,f') dx, 
Xo 

where D is the set of continuous bounded functions defined on [xo,x l] with 
continuous second derivatives. D is called the set of admissable curves. F is 
a continuous three-variable function with continuous partial derivatives. We 
assume J is of this form throughout this section, and we further assume that 
any f E S obeys boundary conditions. That is, there exists Yo, Yl E R such that 

f(xo) = Yo} 
f( ) - for all fED. 

Xl - Yl 

What we wish to do is to find an f* E D which optimizes J. In some varia­
tional problems, 

J(f*) = max {J(fn, 
JED 

while in others, 
J(f*) = min {J(fn. 

JED 

J is said to have a local maximum of f* E D if there exists a positive real 
number f3 such that 

for all fED, such that 
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Since all fED are bounded there exist m, MER such that 

We now address ourselves to the task of developing necessary conditions 
for J to have a local maximum at f*. It is possible to find a positive real 
number (j such that 

Let fED be a function within the (j-neighbourhood of f*, i.e., 

(7.67) 

Then we can represent f as follows. 
Let IX be an arbitrary real-valued function with domain [xo, x 1J and con­

tinuous second derivative such that 

IX(XO) = IX(X 1) = O. (7.68) 

Then it is possible to find a small number S such that 

f(x) = f*(x) + SIX (x), (7.69) 

The function SIX is called the variation of f*. We now define the variation 
of J as follows: 

,1J = fXl F(x,J,J') dx - fXl F(x,J*,J~) dx. (7.70) Jxo Jxo 
As it has been assumed that J has a local maximum at f*, for all fED 

satisfying (7.67) we have 
,1J ::; 0 

for sufficiently small (j. Substituting (7.69) in (7.70), we get 

,1J = fXl F(x,J* + SIX,J~ + sIX')dx - fXl F(x,J*,J~)dx Jxo Jxo 

= fXl {F(x,J* + SIX,J~ + SIX') - F(x,J*,J~)} dx. (7.71) Jxo 
We can form the Taylor series of the integrand of (7.71) about (x,J*,J~) to 
obtain. 

,1 _ fXl {OF of, 102F 2 2 02F , 
J - Jxo of* SIX + of~ SIX +"2 of! S IX + of* of~ S!X.8IX 

102F } + -- (IX')2S2 + ... dx 
2 of~ 

fXl {OF OF,} S2 fXl{02 F 2 02 F , 
= S Jxo of* IX + of~ IX dx + "2 Jxo of! IX + 2 of * of' IXIX 

(7.72) 

02F , 2} 3 + of~ (IX) dx + O(s ). 
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The expression to the right of the first integral in (7.72), 0(83 ), can be ne­
glected if 8 is small in magnitude. Thus we have 

fXl {OF of '} 
LJJ = 8 Jxo of*!Y. + of~!Y. dx. 

Now there is no restriction on the sign of 8, so that 

and 

and 8 > 0) => LJJ ~ 0 
and 8 < 0) => LJJ ~ 0 

But we must have 
LJJ ~ O. 

Hence 

fXl {OF of '} Jxo of*!Y. + of~!Y. dx = O. 

Therefore 
fX10F fx, of 

Jxo of* !Y. dx + Jxo of~ !y" dx = 0, 

which becomes, on integrating the second expression by parts, 

fX, of [OF JXl fXl d of 
Jxo of* !Y.dx + of~!Y. Xo - Jxo !Y. dx of~ dx = O. 

On rearranging, we obtain 

fX, (OF d OF) [OF JXI 
Jxo !Y. of* - dx of~ dx + of~!Y. Xo = O. 

Because of (7.68) the term to the right of the integral vanishes. Hence 

fX, (OF d OF) 
Jxo !Y. of* - dx of~ dx = O. 

Now suppose there exists at least one x E [XO,Xl] for which 

of d of 

of* dx of~ 

(7.73) 

(7.74) 

is nonzero. As !Y. is arbitrary, it is possible to define !Y.(x) to have the same sign 
as (7.74). Thus 
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will be positive everywhere it is nonzero, and there is at least one point x 
where this occurs. This contradicts (7.73). Thus 

is a necessary condition for J to have a local maximum at f*. The proof for 
the case of a local minimum is analogous. We have proven a result known 
as the Euler-Lagrange lemma, which is now stated formally: 

Theorem 7.23. (The Euler-Lagrange lemma.) If J has a local extremum at 
f* it is necessary that 

(7.75) 

Of course, the result in Theorem 7.23 is only necessary and not sufficient. 
One strategy that may be considered to identify the global extremum is to 
find all local extrema using the lemma (if there are not too many) and then 
choose the best. A sufficient condition for the existence of an extremum has 
been provided by Elsgolc (1961): If J has a local extremum atf* a sufficient 
condition for f* to be a local maximum (minimum) is 

iYF 
a(f~)2 ~ 0 (~O). 

The reader will have noticed the strong similarity between the results on 
the optimization of functions in the calculus of variations and the optimi­
zation of functions in elementary calculus. We now apply the result of 
theorem 7.23 to some examples. 

7.5.3.2 Applications of the Euler-Lagrange Lemma 

(i) The Shortest Length Problem. Consider the problem of joining two 
given points (xo, Yo), (Xl> Yl) E R2 with the curve of shortest length. A curve 
f joining the points has arc length 

i X
! ~l + (f'(xW dx, Jxo 

where 
(7.76) 

In the context of the general problem, we have 

F(x,f,f') = ~l + (f'(x)? 

and 

J(f) = iX! ~l + (f'(x)? dx. Jxo 
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Applying the Euler-Lagrange lemma, we obtain 

of 
of = 0 

~; = f'(1 + (f')2) -1/2 

~ (OF) = f"(l + (f')2)-1/2 _ (f')2f"(1 + (f,)2)-3/2 
dx of' . 

Substituting these results into (7.75) produces 

Hence 

and therefore 
f~(x) = ° 
f~(x) = a, a constant 

f*(x) = ax + b, b a constant. 

This is the curve of a straight line with (7.76) uniquely determining a and b. 
Hence we have shown that the shortest distance between two points is a 
straight line. 

(ii) The Problem of Least Surface Area of Rotation. Consider once again 
a curve f joining two points (xo, Yo), (Xb Y1) E R2. Suppose now that f is 
rotated about the x-axis. The surface described by this rotation has area: 

J(f) = 2n f~' f(x))l + (f'(x))2dx. 

The problem is to find the curve f which describes least surface area, that is, 
minimizes J(f). Now 

of = (1 + (f')2)1/2 
of 

~; = ff'(1 + (f,)2) - 1/2 

~ of = (f,)2(1 + (fy)-1/2 + ff"(1 + (f')2)-1/2 - f(f,)2f"(1 + (f,)2) 
dx of' . 

Applying the Euler-Lagrange lemma, we obtain 

(1 + (f,?)1/2 - {(f~)2 + f*f~}(l + (f~?)-1/2 + f*(f~)2 f~(1 + (f~)2)- 3/2 = 0, 

hence 
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and therefore 

or 
I + (f~)2 - f*f~ = O. 

The solution of this differential equation is a curve f* called a catenary: 

x+b 
f*(x) = a cosh --, 

a 

where a and b can be determined uniquely by (7.76). 

(iii) The Brachistochrone. This problem was described in Chapter 1. It 
involves finding a curve f joining points (xo, Yo), (Xl> Yl) E R2 which, if made 
of frictionless wire, would cause a bead to slide under gravity from one point 
to the other in least time. Thus the problem is to find the curve f* which 
minimizes 

I + (f'(X) )2 d 
2gf(x) X, 

J(f) = IX! 
Xo 

where g is the acceleration due to gravity. In order to solve this problem 
the following theorem is useful. 

Theorem 7.24. If F does not depend upon x, thenf*, the solution to (7.75), obeys. 

F(f*J~) - f~F f*(f*J~) = c, 

where c is a constant. 

PROOF. Consider the expression 

F(fJ') - f' F J'(fJ'). 

Upon differentiation, this gives 

~ {F(fJ') - f'FJ'(fJ')} = Ff(fJ')f' + FJ'(fJ')f" 

Now, setting 

- f" F J'(fJ') - f' ~ F J'(fJ') 

= f' {F f(fJ') - :x F J'(fJI)}. 

f=f*, 

and using the Euler-Lagrange lemma, we get 
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Therefore 

Returning to the brachistochrone, F is defined by: 

F(XJJ') = F(fJ') = 
{I + (f')2} 

2gf 

7 Classical Optimization 

D 

which is not directly dependent upon x. Hence, on using Theorem 2.24, we 
obtain 

Hence 
1 + (1')2 - (1')2 
f1/2(1 + (1')2)1/2 = (J2g)c, 

and therefore 
f(1 + (1')2) = a, 

where 

Therefore 

f '( ) = Ja - f(x) 
x f(x)' 

The solution to this differential equation can be expressed in parametric 
form as follows: 

x = Xo + ~ (t - sin t) 

a 
f(x) = -- (1 - cos t) 

2 
(7.77) 

where it has been assumed that f(xo) = 0, and to, t 1 correspond to the end­
points ofthe wire, (xo, Yo), (Xl> Y1)' (7.77) describes a curve known as a cycloid. 

7.5.4 The Relationship Between C.V. and D.P. 

The calculus of variations (C.V.) and dynamic programming (D.P.) (intro­
duced in the previous chapter) have a great deal in common as branches of 
mathematics. We now present one instance of how D.P. can be used to solve 
a simple, general variational problem. 

Suppose it is wished to find the curve f* satisfying (7.76) which minimizes 
some functional J, where iX! 

J(f) = F(xJ,f')dx. 
Xo 

Consider now an intermediate point (x', y') on f*. Then, as f* is optimal, the 
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part of the curve from (x', y') to (Xl' Yl) must also be optimal for the problem: 

Minimize: D' F(x,f,f')dx. 

The reasoning behind this statement is embodied in the principle of opti­
mality stated in Chapter 6. We can look upon the problem as one of D.P. 
in which there is an infinite number of stages-points along the x-axis from 
Xo to Xl> each point x' corresponding to a state (x',f(x')). 

Suppose f* is the optimal curve for [XO,XI - Llx] and is arbitrary on 
[Xl - Llx, Xl]' except that 

Then 

I Xl F(x,f*,f~)dx = IXl-AXF(x,f*,f~)dx + I Xl F(x,f*,f~)dx. Jxo Jxo JXl -Ax 

Now define a two-variable function dependent upon (x, y) by 

S(x, y) = min IX F(x,f,f')dx. 
JED Jxo 

As f* is taken to be optimal from Xo to Xl - Llx, 

S(XI - LlX,f*(XI - Llx)) = I Xl -
AX F(x,f*,f~)dx. Jxo 

Expanding f*(XI - Llx) in a Taylor series, we obtain 

S(XI - LlX,f*(XI) - f~(XI)Llx + O(LlX2)) = I Xl -
Ax F(x,f*,f~)dx. Jxo 

Also, it can be shown that 

I Xl - Ax F(x,f,f')dx = F(x,f,f')Llx + O(LlX2). Jxo 
Putting these results together, we have 

min I Xl F(x,f,f')dx = I Xl - Ax F(x,f*,f~)dx + min IXl_ F(x,f*,f~)dx 
JED Jxo Jxo JED JXl Ax 

Now, as Llx -... 0, 

= S(XI - LlX,f*(XI) - f~(XI)LlX + O(Llx2)) 

+ min {F(x,f,f')Llx + O(Llx2)} 
JED 

as as, 2 
= S(XI,f*(XI)) - aXI Llx - af* f *(xI)Llx + O(Llx ) 

+ min {F(x,f,f')Llx + O(LlX2)}. 
JED 

0= min {F(X,f,f') - aas - !'(xl) aas}. 
JED X X 

This is the basic partial differential equation of D.P. 
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However, the use of D.P. to solve C.V. problems which have simple 
analytical solutions is like using a sledge hammer to crack a peanut. The 
approach is most appropriate when f is so complicated that it has to be 
approximated by numerical methods. 

7.5.5 Further Horizons of c.v. 

As the reader has no doubt gathered, the material presented so far in this 
chapter represents only a mere glimpse at the most elementary theory of 
the calculus of variations. While a detailed analysis of the more advanced 
ideas is beyond the scope of this book, we present a brief outline of the 
scope of the topic. 

7.5.5.1 Multivariable Functions 

Until now we have assumed that D, the domain of the functionals under 
consideration, comprises functions of a single variable. It is desirable to 
generalize this to functions of many variables as applications of this gener­
alization arise in many areas. So now we are considering functionals J where 

J:D--+R, 

and D is a set of functions such that if fED: 

f: Rn --+ R, n> 1. 

In this case the variational problem becomes 

Optimize: 
JeD 

where each fED must satisfy appropriate boundary conditions. If certain 
conditions are met Theorem 7.23 can be generalized as follows: 

Theorem 7.25. If f has continuous second partial derivatives and if J has a 
local extremum at f* it is necessary that 

PROOF. See Gelfand and Fomin (1963). 

7.5.5.2 Multivariable Functionals 

We can also make a different generalization to the case in which the func­
tional J is multivariable, that is, J depends upon, say n functions: 

J: Dn --+ R. 
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In this case the variational problem becomes 

optimize: 

where the functions h, i = I, 2, ... , n, are assumed to satisfy appropriate 
boundary conditions. Once again if certain conditions are met Theorem 7.23 
can be generalized: 

Theorem 7.26. If each h, i = 1,2, ... , n, has continuous second partial de­
rivatives and if J has a local extremum at (fl*' f2*, ... ,f,,*) then it is necessary 
that 

of d aF 
---~=O. 

ah* dx af:* 

PROOF. See Gelfand and Fomin (1963). 

7.5.5.3 Parametric Form 

The solution to the brachistochrone was expressed in parametric form in 
Section 7.5.3.2. Indeed, it is often convenient to express the curves of certain 
variational problems in parametric form. Consider the simple variational 
problem given at the beginning of Section 7.5.3.1 and suppose that x and f 
depend upon the parameter t. If 

x(to) = Xo and x(t l ) = Xl' 

then J becomes 

it 1 ( dfjdX) dx J(f) = Jro F x(t), f(t), dt dt dt dt 

l tl • 

= G(x,f,f, X, t) dt, 
to 

where I and x denote, respectively, the derivative of f and x with respect 
to t and G is the appropriate five-variable function. 

The following theorem provides a necessary condition for a local ex­
tremum for J. 

Theorem 7.27. If J has a local extremum at f* it is necessary that 

~~ -:tC~) = 0 

aG _ ~(aG) = 0 
af dt al . 

PROOF. See Gelfand and Fomin (1963). 

(7.78) 

(7.79) 

Equations (7.78) and (7.79) are not independent and are equivalent to 
(7.75). 
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7.5.5.4 Constrained Variational Problems 

In the simple variational problem of Section 7.5.3 the curves in D had to 
obey very few conditions. Namely, any such curve had to be bounded, have 
continuous second derivatives and obey boundary conditions. However it 
is necessary in any applications that the curves also obey additional con­
straints. These are usually of three types: integral, differential, or algebraic 
equations or inequalities. 

7.5.5.4.1 Integral Constraints. As an example of a problem with integral 
constraints we introduce the isoperimetric problem: 

Optimize: iXI J(f) = F(x,f,f') dx, 
Xo 

fED 

subject to: iXI K(f) = G(x,f,f') dx - q = 0, 
Xo 

(7.80) 

where F and G have continuous second derivatives and q is a given real 
constant. Applying the ideas of Section 7.4.1.3 we form the Lagrangian: 

J + 2K = Ix:1 {F(X,f,f') dx + 2 Ix:1 G(x,f,f') - q} dx 

= fXI {F(x,f,f') + 2G(x,f,f')} dx - 2q(XI - xo), Jxo 
which will have the same optimum as 

fXI {F(x,f,f') + 2G(x,f,f') dx. Jxo 
Applying Theorem 7.23 to this last expression produces the following neces­
sary condition for J to have a local extremum at f* : 

aF d aF (aG d aG) 
af - dx df' + 2 af - dx af' = O. (7.81) 

Equations (7.80) and (7.81) can be solved to find f* and 2. 

7.5.5.4.2 Differential Constraints. Let us now consider problems involving 
differential constraints. Consider the following problem of two functions, 
fl andf2: 

Optimize: 

subject to: 

where once again it is assumed that F and G have continuous second deriva­
tives. Here we do not form the Lagrangian, but instead the integral: 

I(fl,f2) = J + 2(x) fXI K dx Jxo 

= fXI {F(X,fl,f'1,f2,f2) + 2(X)G(X,fl,f'1,f2,f2)} dx. Jxo 
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It can be shown that if I has a local extremum at fl * and f2* then it is neces­
sary that 

d (8F 8G ) 8F 8G 
d 8if~ + A(X) 8if~ = 81". + A(X) 81". ' 

x '* ,* :Ji* :Ji* 

i = 1,2. (7.83) 

It can further be shown (see Gottfried and Weisman (1973)) that the appli­
cation of necessary conditions for the extremization of I is equivalent to the 
application of them for the original constrained problem (7.82). Hence (7.83) 
constitutes a set of necessary conditions for (7.82). 

7.5.5.4.3 Algebraic Constraints. The constraint in (7.82) involved f'l and 
f~ and hence was called a differential constraint. If these functions are not 
present, we are left with a variational problem with a solely algebraic 
constraint: 

Optimize: 

subject to: 

J(fl'/2) = ,X, F(X'/1'/2'/'1,/~)dx, Jxo 
K(fl'/2) = G(X'/1'/2) = o. 

Once again one can use the integral 

I(fl'/2) = J + A(X) ,X, K dx Jxo 
to develop necessary conditions for the existence of a local extremum. These 
are presented in the following theorem. 

Theorem 7.28. If J has a local extremum at (fl*'/2*) it is necessary that 

8F 8G d 8F 
8fl + A(X) 8fl - dx 8f'1 = 0 

and 
8F 8G d 8F 
8f2 + A(X) 8f2 - dx 8f~ = o. 

PROOF. See Gelfand and Fomin (1963). 

7.5.5.5 The Maximum Principle 

The topic of control theory or optimal control is concerned with the finding 
of a policy for the efficient operation of a physical system. Sometimes the 
state of the system can be described by a real vector x = (Xl' X2' ... , x m ), 

the elements of which vary with time as follows: 

dx· 
dt' = F;(Xl' X2' ... , Xn,fl,f2' ... ,fm), i = 1,2, ... , n. (7.84) 

Here fl' f2' ... ,fm are bounded, piecewise continuous real functions, depen­
dent on time, forming a vector f = (fl'/2, ... '/m), and the Fi are also 
continuous. 
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Now the Xi' i = 1,2, ... , n also depend upon t and it is assumed that a 
set of initial boundary conditions: 

i = 1,2, ... , n, (7.85) 

are satisfied for the beginning to ofthe time span [to, t 1] under consideration, 
where the ai are given constants. Consider now some measurement F o(x,f) 
(a differentiable function) of the performance of the system. Then for any 
solution fl' f2' ... ,fm to (7.84) we can calculate a real number J(f) where 

itl 
J(f) = F o(x,f) dt. 

to 

Let D = {f = (fl,f2, ... ,fm): /;, i = 1,2, ... ,m are continuous real func­
tions defined on [to, t 1], satisfying (7.84)}. D is called the set of admissable 
processes and sometimes has further restrictions placed upon it. Then J is 
said to have a local minimum at f* E D if 

J(f*) ::; J(f), for all fED. 

We now examine what conditions are necessary for J to have a local 
minimum atf*. To this end we introduce a new variable x o, where 

dxo at = F o(x,f), 

and define 

Integrating (7.86), we obtain 

Therefore 

ft l dxo = ft l (x,f) dt = J(f). 
Jto dt Jto 

J(f) = [xo(t)]:~ = xo(t1) - xo(to) 

= xo(t1), by (7.87). 

Hence the problem can be restated as follows: 

Minimize: xo(t1) 
feD 

subject to: 
dx· Tt = Fi(X,f), i = 0,1, ... , n 

i = 0,1, ... , n. 

(7.86) 

(7.87) 

(7.88) 

(7.89) 

Applying the necessary conditions of Section 7.5.5.4.2 to this problem, it 
is easy to show that, on ignoring the constraints in (7.88) and (7.89) corre-
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sponding to i = 0, we obtain 

and 

oFo _ ± A.k(t) oFk _ dA.i = 0, 
OXi k= I OXi dt 

oFo 
ofj 
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i = 1,2, ... ,n (7.90) 

j = 1,2, ... , m. (7.91) 

We now construct what is known as the Hamiltonian function H where 

n 

H(x,j, A.) = L A.i(t)Fi(x,j). (7.92) 
i=O 

Then (7.88) can be expressed as follows: 

oH dXi 

OA.i dt' i = 0, 2, ... ,n. (7.93) 

Taking the partial derivatives of H with respect to Xi' we obtain 

oH n oFk 
OA.i = k~O A.k(t) OXi' 

which, by (7.90), yields 

oH = A.o(t) of 0 + of 0 _ dA.i. 
OA.i OXi OXi dt 

Now, as (7.86), which is the first constraint in the family (7.88), is artificial, 
we can assign A.o(t) an arbitrary constant value for all t E [to, tIl Thus, let 

A.o(t) = -1, t E [to, tIl (7.94) 

Then we have 
oH 

dXi dt' 
i = 0, 1, 2, ... , n. 

Taking the partial derivative of H with respect to fj, we obtain 

oFo 
ofj 

o dxo 
ofj dt 

=0 

oH 
ofj = 0, 

by (7.91) 

by (7.86) 

j = 1,2, ... , m. 

(7.95) 

(7.96) 
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Thus we can replace the necessary conditions (7.90) and (7.91) by (7.93), 
(7.95), and (7.96), and state the following theorem: 

Theorem 7.29. (The maximum principle) If f* = (f!J~, ... J:) is optimal 
and x = (Xl> X2, ... , xn) obeys (7.84) and (7.85) then there exists ).(t) = (Ao(t), 
Al(t), ... , An(t» such that (7.93), (7.91), (7.95), and (7.96) are satisfied for H as 
defined in (7.92). 

These results have been known for many years. However, recently Pon­
tryagin et al. (1962) have extended this theory to cover the case when the 
functions fl, f2, ... , fm must also obey a family of inequality constraints. 
Their results have come to be known as the maximum principle. It is identical 
to Theorem 7.29 when the optimal vector f is in the interior of the region 
defined by the inequality constraints. 

7.6 Exercises 

1. Locate all extrema of the following functions and identify the nature of each, 
where x E R. 
(a) f(x) = x 3 + tx2 - 18x + 19 
(b) f(x) = 6x4 + 3x2 + 42 
(c) f(x) = x 2 + 4x - 8 
(d) f(x) = 6x2 + .J3X - 9 
(e) f(x) = X12 - 14xll + x lO + 90x9 + 8x8 + 6. 

2. Given that x E [ -tH find the global extrema of each function in Exercise 1. 

3. Prove that a function f: I --+ R is convex if and only if, for all IX E R, 0 ::;; IX ::;; 1 and 
for all Xl> X2 E I, 

4. Prove Theorem 7.4. 

5. Prove Theorem 7.6. 

6. Prove Theorem 7.8. 

7. Prove Theorem 7.10. 

8. Use the results of Section 7.2.7 to find the global extrema ofthe following functions, 
which are either concave, convex, or both. 
(a) f(x) = sin x, 0 ::;; x ::;; n. 
(b) f(x) = cos x, -n/2 ::;; x ::;; n. 
(c) f(x) = 4x - 2, - 6 ::;; x ::;; 9. 
(d) f(x) = 3x2 - 18x + 2, -3::;; x::;; 20. 

9. Prove Theorem 7.13. 
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10. Locate all extrema of the following functions and identify the nature of each, where 
XER2. 

(a) !(xt. X2) = XI - Xl + 3x~ + I8x2 + 14. 
(b) !(Xt.X2) = 3xI + 4x~ - 6Xl - 7X2 + 13X1X2 + 1. 
(c) !(Xl,X2) = xi - 6x l + x~ - I6x2 + 25. 

11. Given that 
-1 :s; Xl :s; 5 

-2:S;X2:s;6 

find the global extrema of each function in Exercise 10. 

12. Prove that a function!: S ..... R, S c R" is convex on S if and only if, for all IX E R, 
o :s; IX :s; 1 and for all X 1, X 2 E S, 

13. Prove Theorem 7.15. 

14. Solve the following problems using the Jacobian method. 

(a) Maximize: 

subject to: 

(b) Maximize: 

subject to: 

(c) Maximize: 

subject to: 

(d) Maximize: 

subject to: 

(e) Maximize: 

subject to: 

(f) Minimize: 

subject to: 

!(Xl,X2,X3,X4) = -4xi - 3x~ - 6x~ - X~ 

Xl + X 2 + X3 + X4 - 2 = 0 

3xl + 2X2 + 4X3 + X4 - 3 = 0 

Xl + 4X2 + 3X3 + X4 - 1 = 0 

[X* = (0.5752, -0.3856,0.0784,1.732)]. 

!(Xl,X2) = 6xi + 3x~ + 4X1X2 

X1X2 = 7. 

!(Xl ,X2) = 2xi + x~ + 3xl + 4X2 + 9 

xi + X2 + 3X1X2 = 11 

Xl + x~ + 4X1X2 = 12. 

!(Xl,X2,X3,X4) = -4xi - 2x~ - x~ - 2x~ 

2Xl + X2 + X3 + X4 - 2 = 0 

Xl + 2X2 + 2X3 + X4 - 1 = 0 

3x l + 3X2 + X3 + X4 = 0 

[X* = nt ig, - i~, 168)]. 

!(Xl,X2,X3,X4) = -xi - 2x; - 3x~ - 4x~ + 5 

Xl + X2 - X3 + X4 + 1 = 0 

2Xl + 3X2 - X3 + 2X4 - 2 = 0 

2Xl + X 2 + X3 + 3X4 - 1 = 0 

[X* = m,g,g, -m]. 

!(Xl,X2) = xI + X~ 
X 1X 2 = 8. 
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(g) Maximize: 

subject to: 

(h) Maximize: 

subject to: 

(i) Maximize: 

subject to: 

(j) Maximize: 

subject to: 

(k) Maximize: 

subject to: 

(1) Maximize: 

subject to: 

(m) Maximize: 

subject to: 

7 Classical Optimization 

!(X1,X2,X3,X4) = -xi + 2x~ + 4x~ - 3xi 

Xl + 3X2 + 4X3 - 2X4 = 0 

Xl + X2 + X3 + X4 = 0 

4X1 + 3X2 + 2X3 + X4 - I = 0 

[x* - (366, -168, -43, -155)]. 

!(XhX2,X3,X4) = -xi - 2x~ - 3x~ - xi 

Xl + X2 + X3 + X4 = 4 

Xl - X2 + 2X3 - X4 = 5 

3x1 + 2xx - X3 - 2X4 = 3 

[X* = eS430, - \S34 , -fJ,W)], 

!(x1, X2, X3, X4) = - 2xi - 3x~ - x~ - 3xi 

2X1 - X4 = 0 

X2 + X3 + 1 = 0 

X2 + 2X3 + X4 + 6 = 0 

[X* = ( - n, i~, - tL - It)]. 
!(XhX2,X3,X4) = 4X1 - xi - x~ - 2x~ - 3xi 

-4=0 

X2 + 2X3 + X4 + 2 = 0 

Xl + X3 - X4 - 3 = 0 

[x* = es4 , -!, -!, -~)]. 
!(X1,X2,X3,X4) = -3xi - x~ - 9x~ - 6xi 

Xl + 3X2 + X3 + 3X4 - I = 0 

3X2 + 4X3 + 2X4 - 2 = 0 

Xl + 6x2 + 4X3 + 3x4 - I = 0 

[X* = (-t -1.1.1)], 
!(X1,X2,X3,X4) = -xi - x~ - 3x~ - 2xi 

2X1 + 3X2 + 4X3 + X 4 = 5 

3X1 + 4X2 + X3 + 2X4 = 3 

Xl + X2 + X3 + X4 = I 

[X* = (-!s, U,l, -184)]' 

!(X1,X2,X3,X4) = -3xi - 4x~ - x~ - 2xi 

Xl + X2 + X3 + X4 - 3 = 0 

2X1 + X2 + 3X3 + X4 - 5 = 0 

4X1 + X2 + X3 + 3X4 - 4 = 0 

[x* = ( - 0.34, 1.16, 1.17, 1.04)]. 

IS. Solve the linear programming Problem 2.1 of Chapter 2 by the Jacobian method. 

16. Solve the linear programming Problem 2.1 of Chapter 2 by the method of Lagrange. 
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17. Solve the problems in Exercise 14 by the method of Lagrange. 

18. Suppose now that the right-hand side constants of each of the constraints in the 
problems in Ex,ercise 17 are increased by 0.01. Use the sensitivity coefficient of 
Section 7.4.1.3 to calculate the increase in the value of the optimal solution to each 
problem. 

19. Prove Theorem 7.17. 

20. Prove Theorem 7.20. 

21. Prove Theorem 7.22 

22. Develop the Kuhn-Tucker conditions for the following problem: 
Minimize: I(X) 

subject to: j = 1,2, ... , m. 

23. Replace each of the" =" signs by "::;;" signs in each of the problems in Exercise 17 
and present the Kuhn-Tucker conditions for each of the problems. 

24. Minimize: 
feD 

where D = {J: [0, 1] -+ R II has continuous derivatives, 

is bounded, 1(0) = 0,/(1) = I}. 

25. Find the curve joining points (0,0) and (4,4) whose arc length is 6, the area under 
which is a maximum. 

26. Prove that if 

I(x) = I(xt. X2, ... , xn) = };(Xi), 

where each};, i = 1,2, ... , n is concave (convex), then 1 is concave (convex). 



Chapter 8 

Nonlinear Programming 

8.1 Introduction 

This chapter is concerned with presenting algorithms for finding the optimal 
points of a continuous function. As was pointed out in the previous chapter, 
there exists a body of knowledge called classical optimization which provides 
an underlying theory for the solution of such problems. We now use that 
theory to develop methods which are designed to solve the large nonlinear 
optimization problems which occur in real-world applications. 

The general nonlinear programming problem (N.P.P.) is 

Maximize: 

subject to: 

f(X) = Xo 

gj(X) = 0, 

h)X) ~ 0, 

j = 1,2, ... , m 

j = 1,2, ... ,k 

(8.1) 

(8.2) 

(8.3) 

where X = (x1,XZ,"" xnf is an n-dimensional real vector, and f; gj,j = 

1,2, ... , m; hj' j = 1,2, ... , k, are real valued functions defined on Rn. 
Before dealing with the specific techniques we classify some of the special 

cases of the N.P.P. Iff is quadratic, the g/s are all linear and hj(X) = - x j ' 
j = 1, 2, ... , k, then the N.P.P. is said to be a quadratic programming problem. 
In this case the problem can be expressed as follows 

Maximize: Xo = CTX + XTDX 

subject to: AX = B 

X~O. 

If D is symmetric negative definite, Xo is concave, which guarantees that an 
optimum exists. 

310 
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If there are no equality constraints and Xo and the h /s are all convex 
then the N.P.P. is said to be a convex programming problem, which can be 
handled by Zoutendijk's method of feasible directions (see Section 8.3.1). 

If Xo can be expressed as 

Xo = f1(X1) + f2(X2) + ... + fn(xn), 

where the /;'S are all continuous functions of one variable, then the N.P.P. 
is said to be a separable programming problem. Unconstrained problems with 
this type of objective function can be attacked using pattern search (see 
Section 8.2.4.1). For constrained problems in which each constraint func­
tion is also separable, an approximate solution can be found by making a 
linear approximation of each function (including xo) and using linear pro­
gramming (see Section 8.3.4.2). 

If Xo and the constraint functions are of the form: 

where 
j = 1,2, ... , p, 

then the N.P.P. is said to be a geometric programming problem. Problems of 
this type have been solved by a recently developed technique due to Duffin, 
Petersen, and Zener (1967; see Section 8.3.6). 

Of course many N.P.P.'s belong to more than one of the above groups. 
Unfortunately, some N.P.P.'s belong to none. This chapter develops some 
of the more popular techniques for various nonlinear problems. Before be­
ginning with the unconstrained case, we mention two simple but important 
concepts, resolution and distinguishability. 

It may often happen when using the methods outlined in this chapter 
that the limit of precision to which numbers are calculated is exceeded. For 
example, a computer with 6 decimal place precision will not distinguish 
between the numbers 6.8913425 and 6.8913427, and the last digit is arbitrar­
ily chopped. This phenomenon may occur when an objective function f is 
being evaluated, and in this case it would be said that the distinguishability 
off is 10- 6 . Formally: 

Definition 8.1. The distinguishability of f is the minimum postive number y 
such that for all Xl, X 2 in the domain of f, if If(X 1) - f(X 2)1 ;;::: y, then it 
can be concluded that f(X 1) and f(X 2) are unequal. 

Hence if f is of distinguishability y and 

If(X 1) - f(X 2)1 < y, 

one cannot conclude that f(X 1) and f(X 2) are unequal. 
In the application of any numerical optimization technique there will be 

a practical limit on the accuracy with which one can deal with the values 
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of Xl' X2, •.. , X n . This accuracy may be governed by the conditions of an 
experiment or task which produces values of f. Readings on a gauge, the 
availability of only certain units of quantity of a commodity (for example, 
drugs with which to dose rats may be available only in 5 cc lots), or one's 
eyesight in reading a slide rule are examples. Hence if one is working with 
four-figure logarithm tables it may make little sense to attempt to consider a 
value of Xi of 4.0693. In this case we say the resolution of Xi is 0.001. Formally: 

Definition 8.2. The resolution of a variable Xi is the smallest positive number 
Si such that, for all pairs xl, xl of Xi' if Ixl - xli ~ Si, then it can be concluded 
that xl and xl are unequal. 

8.2 Unconstrained Optimization 

In this case there are no constraints of the form of (8.2) or (8.3) and one is 
confronted solely with maximizing a real-valued function with domain Rn. 
When such problems arise in practice first or second derivatives of the func­
tion are often difficult or impossible to compute and hence classical methods 
are usually unsuitable. Whether derivatives are available or not, the usual 
strategy is first to select a point in Rn which is thought to be the most likely 
place where the maximum exists. If there is no information available on 
which to base such a selection, a point is chosen at random. From this first 
point an attempt is made to construct a sequence of points, each of which 
yields an improved objective function value over its predecessor. The next 
point to be added to the sequence is chosen by analyzing the behaviour of 
the function at the previous points. This construction continues until some 
termination criterion is met. Methods based upon this strategy are called 
ascent methods. 

Thus ascent methods are ways to construct a sequence: Xl, X 2, X 3, ... , 

of n-dimensional real vectors, where f(X 1) < f(X 2) < f(X 3), .... In genera­
ting a new point X j+ 1 from the previous points Xl> X 2 , ••• , Xj' it is usual 
to express X j+! as some function of Xj' Hence it must be decided (i) in 
what direction X j + 1 lies from Xj and (ii) how far (in terms of the Euclidean 
metric) X j+ 1 is from Xj' So X j+ 1 can be expressed as follows: 

X j+ 1 = Xj + sjDj. 

The vector D j is called the jth direction vector, and the magnitude Is jl of the 
scalar Sj is called thejth step size. Thus we find the new point X j + 1 by"mov­
ing" Sj from Xj a distance in the direction Dj • 

There are a host of methods which arise from using the information 
gained about the behaviour of f at the previous points Xl, X 2, ... , Xj to 
specify Dj and Sj. Of course, in order to generate a new point Xj + sjDj 
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which will satisfy 
(8.4) 

it is usually necessary to have to consider only certain Sj' D j pairs. Indeed, 
some methods consider only D/s for which (8.4) holds for a small value of 
Sj' that is, f must yield improved values near Xj' 

Ascent methods can be classified according to the information about the 
behaviour of f that is required. Direct methods require only that the func­
tion be evaluated at each point. Gradient methods require the evaluation of 
first derivatives of f. Hessian methods require the evaluation of second de­
rivatives. Although Hessian methods usually require the least number of 
points to be generated in order to locate a local maximum (which is all that 
any ascent method aims to produce), these methods are not always the most 
efficient in terms of computational effort. In fact, there is no superior method 
for all problems, the efficiency of a method being very much dependent 
upon the function to be maximized. 

8.2.1 Univariate Search 

Many search methods for unconstrained problems require searches for the 
maximal point of f in a specified direction. Suppose it is necessary to find 
the maximal point of f along a direction dj from a point Xj' The feasible 
points can be expressed as 

SjER. 

(Negative values of Sj represent the possibility that the maximal point may 
lie in the - Dj direction from X;-) Thus the problem is to maximize a func­
tion ()( of Sj, where 

SjER, 

with Xi and Dj fixed. Because this type of problem has to be solved repeatedly 
in many direct, gradient, and Hessian search methods, it is important that 
these one-dimensional searches be performed efficiently. 

One crude technique is to first somehow find an interval I of the line 
X j + S;Dj in which the maximum is known to lie. One then evaluates ()( at 
equally spaced points along 1. Then I is replaced by a smaller interval l' 
which includes the best point found so far. The procedure is then repeated 
with l' replacing 1. It is not hard to construct simple examples for which this 
technique performs rather poorly. It is usually better to make just one func­
tion evaluation each time and to decide where to make the next on the basis 
of the outcome. This approach is still inefficient unless it is assumed that 
()( belongs to a restrictive class of functions of one variable called unimodal 
functions, which are described next. 

It will be assumed in this section that the global maximum of ()( is known 
to lie in a closed interval and that within this interval the maximum occurs 
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at a unique point. Thus IX must strictly increase in value as s (we shall drop 
the subscript i) increases until the maximum is attained. Then IX strictly de­
creases as s assumes values greater than the maximum. A function satisfying 
these properties is said to be unimodal. Hence, if IX is unimodal and 

So < Sl < s* or So > Sl > s*, 
then (8.5) 

where s* is the maximum of IX. 

If a function IX is unimodal and its unique maximum is known to lie within 
a closed interval [a, b], then when IX is evaluated at any pair of points Sl' S2 

where Sl > S2, such that either 

upon comparison of IX(Sl) and IX(S2), the interval in which the maximum s* 
lies can be reduced in length from b - a. This is because one of three events 
must occur: either 

or 

or 

so that, by (8.5), we have 

(8.6) => s* E (S2' b] 
(8.7) => s* E [a, s 1) 

(8.8) => s* E (S2' Sl). 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

A one-dimensional search procedure is termed adaptive if it uses the in­
formation gained about the behaviour of IX at the previous point to decide 
where to evaluate IX next. There are many adaptive procedures available 
which take advantage of (8.9). 

The above concepts will be illustrated by some examples. Consider the 
functions shown in Figure 8.1. It can readily be seen that IX is unimodal. 
It can be seen that 

s* = t. 
Now, 

i = So < Sl = t < s*, 
so that 

IX(SO) < IX(Sl) < IX(S*), 

as can be seen from Figure 8.1. Also, if 
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o 1 
8" 

1 
4 

Figure 8.1. A unimodal function. 

then 

as can be seen from Figure 8.1. 

315 

i S 

Now suppose that this diagram is unavailable and that information can 
be gained about the location of s* only by evaluating rx at selected points. 
The results of (8.9) will now be illustrated. Suppose So = i and S1 = tare 
evaluated. Then, as 

rx(so) < rx(S1)' 

the interval [0, iJ can be eliminated as shown in Figure 8.2(a). The same 
elimination could have occurred if any Si had been chosen instead of S1, 
as long as 

Suppose S1 = t and S3 = i are evaluated instead. Then, as 

rx(S1) > rx(S3)' 

the interval G, 1 J can be eliminated, as shown in Figure 8.2(b). The same 
elimination could have occurred if any Si had been chosen instead of S1, as 
long as 
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IX 

(a) 

IX 

(b) 

o 

IX 

(c) 

Figure 8.2. Interval elimination. 

Suppose S1 = * and S2 = i are evaluated instead. Then, as 

a{s1) = a(s2), 

1 S 

the intervals [0, t] and [i,l] can be eliminated, as shown in Figure 8.2(c). 
So far it has been assumed that the optimal point lies within a known 

closed interval [a, b]. There are many ways by which this initial interval 
can be found. One method is carried out as follows. Let the most likely 
location of the optimal point be a1. If no information is known about the 
likely whereabouts of the optimum the point a1 is chosen at random along 
the line. Next a positive real number {3 is chosen. The function is then eval­
uated at a1 and a 1 + {3. Three cases must be examined. 
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CASE I. lX(al) < lX(al + [3). IX is evaluated at al + 2[3, al + 4[3, ... , until a 
decrease occurs in the value of IX at, say, al + 2n[3. Then set 

[a,b] = [al + 2n- 2 [3, al + 2n[3]. 

CASE II. lX(al) > lX(al + [3). IX is evaluated at al - [3, al - 2[3, al - 4[3, ... , 
until no increase occurs in the value of IX at, say, a l - 2m[3. Then set 

CASE III. lX(al) = lX(al + [3). Set 

[a,b] = [al,al + [3]. 

Of course if two points a', b' are found such that 

1X(a') = lX(b' ), 
then set 

[a, b] = [a', b' ]. 

For example, let 

Now if 
[3=1. 

lX(al)= 1X(4) = -6 

lX(al + [3) = 1X(5) = -14, 

then we have case II. Suppose, then, that 

Then we have 

lX(al - [3) = 1X(3) = 0 

lX(al - 2[3) = 1X(2) = 4 

lX(al - 4[3) = IX(O) = 6 

lX(al - 8[3) = IX( - 4) = -14. 

[a,b] = [-4,2]' 

This is shown in Figure 8.3. 
One of the most efficient adaptive one-dimensional search procedures is 

called Fibonacci serach. It is described next. 

8.2.1.1 Fibonacci Search 

Fibonacci search depends upon the Fibonacci numbers Ao, At. A 2 , ... , 

defined as follows: 

Ao =0 

Al = 1 

Ai=Ai- 1 +Ai- 2 , i=2,3,4, .... 

The procedure is used to reduce the interval of uncertainty of a unimodal 
function IX. Suppose the initial interval is [at. b l ]. After a number of iterations 
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4 

Figure 8.3. Bounding the interval of search. 

the interval is reduced to [ai' bJ In order to make a further reduction two 
points Si and Si are generated by the following formula 

Si = ai + (bi - ai)An-dAn+2 - i } 
Si = ai + (bi - ai)An+l-dAn+2 - i 

i = 1, 2, ... , n - 1. (8.10) 

(Note that Si and Si are placed symmetrically within [ai> ba.) Here n is the 
number of function evaluations which must be made in order to achieve 
the desired interval reduction. 

Now r1. is evaluated at Si and Si' If 

r1.(Si) > r1.(Si), 

then the remaining interval [ai+1,bi+1] is defined as [ai,sJ If 

r1.(Si) ,< r1.(Si), 
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then the remaining interval is defined as [Si, b;]. If 

a(sJ = a(5i), 

then the remaining interval is defined as [Si,5;]. In this case only, the search 
is begun all over again, starting with this new interval [Si,s;], and a new 
number n of evaluations must be calculated. 

The last two points generated by the procedure as it stands would be 
placed at 

Sn-l = an- 1 + (bn- 1 - an- 1)Ar/A 3 = t(bn- 1 + an-I) 

5n- 1'= an- 1 + (bn- 1 - an- 1)A2/A 3 = t(bn- 1 + an-I)' 

This means that both points would be placed at the same spot, which would 
be of no advantage. Hence Sn-1 is to be placed in the position as defined 
above and 5n- 1 is placed as close as possible to the right of Sn-1 so as to 
guarantee that the points Sn-1 and 5n - 1 are distinguishable. This minimum 
distance of distinguishability is the resolution E: 

Sn-l = t(bn- 1 + an-I) 

5n- 1 =t(bn- 1 +an- 1 )+E. 

Then the interval [an - 1,bn - 1J is reduced as before. 

(i) If 

set 

(ii) If 

set 

(iii) If 

set 
[an,bnJ = [Sn-l,5n- 1]. 

The final interval will be of maximum length when (i) occurs. This maximum 
length is 

Hence 

and therefore 

bn - an = 5n- 1 - an- 1 

= t(bn- 1 + an-I) + E - an- 1 

= t(bn - 1 - an-I) + E. 
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by Theorem 8.1 (below). Thus we have 

In order to be certain of a reduction of at least the fraction r, that is, 

bn - an 
r> , 

- b1 - al 

in the least number of function evaluations, n must be the minimum integer 
satisfying 

e 1 
r~ + . 

b 1 - a 1 3An - 2 + 2An - 3 
(8.11) 

Thus the number An can be determined by (8.11). After the first iteration 
only one point, either Si or Si, needs to be calculated, as the other is already 
present. Kiefer (1957) has shown that for a given number of function evalua­
tions, Fibonacci search minimizes the maximum interval of uncertainty and 
in that sense is optimal. 

We now prove Theorem 8.1, which was used in the derivation of(8.11). 

Theorem 8.1 

PROOF. We present the proof of this theorem in outline only. Let 

i = 1, 2, ... , n - 1. 

In particular, 
11 = b1 - aI' 

the length of the initial interval. It can be shown that the lengths of successive 
intervals are related by: 

Therefore 

Hence 

i = 1, 2, ... , n - 3. 

11=12+13 

=(/3+ 14)+13 

= 213 + 14 

= 2(/4 + 15) + 14 

= 314+ 215 

= An- 21n- 2 + An- 31n- 1 

= An- 2(Yn-l) + An- 31n- 1 · 

D 



8.2 Unconstrained Optimization 321 

As an example of Fibonacci search, consider the reduction of the interval 
[ - 10, 10] to at most 10% of its present length. Let 

B = i. 
Then the number of evaluations can be found by (8.11): 

2 i 1 - ~ + ----,----
20 10 - (-10) 3An - 2 + 2An - 3 

Hence 
3 1 

- > for minimum n. 
32 - 3An - 2 + 2An - 3 ' 

Therefore 
n= 6. 

Thus 6 evaluations will be necessary. The first two points are placed at 

8 1 = -10+ (1O-(-10)h53 = -~g 
and 

81 = - 10 + (10 - ( - 10)) 183 = ~~. 
Suppose 

Then 

82 = 81 

82 = -~~ + (10 - (-~))i = {g. 
Suppose 

Then 

and therefore 
83 = - i~ + G~ - (- ~g)H = t~ 

83 = 82' 

Suppose 

Then 
[a4' b4] = [ - ~~, in 

Hence, 
84 = - ig + a~ - (- i~ - (-~))t· 

Therefore 

and 

Suppose 

Then 
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It can be seen that the point remaining in the interval [as, bsJ is at the 
centre of [as, bs]. Also 

Thus in order to place 55 symmetrically it must coincide with ss, which is 
of no advantage. Hence 55 is placed c to the right of ss: 

55 = !m - ig) + c 
-~ - 104' 

Suppose 

The final interval is: 

[a6,b 6 J = [_~g,t034J, 

which is only 8.3% as long as the original interval. 

8.2.1.2 Golden Section Search 

The Fibonacci search technique, although most efficient, requires that one 
know in advance how many points are going to be evaluated. Golden 
section search, although not quite as efficient, does not make such a require­
ment. Recall that we must know n, the number of evaluations in order to 
calculate the ratios 

in (8.10) in order to find Si and 5i at each iteration. Golden section search 
overcomes this problem by using an approximation of these ratios based on 

lim An - 1 = 3 - 15 
n~COAn+l 2 

lim ~ = J5 - 1 = 1 _ 3 - J5 . 
n~coAn+l 2 2 

Using these results at each step, (8.10) becomes 

3 - 15 
Si = ai + (hi - a;) 2 ' i = 0, 1, 2, ... 

_ 15-1 
Si = ai + (b i - a;) 2 ' i = 0, 1,2, .... 

With this strategy it can be shown that the ratio of the lengths of successive 
intervals found is a constant and 

bi - ai = b,-1 - ai - 1 = 1 + J5 = (J5 - 1)-1 
bi+ 1 - ai + 1 bi - ai 2 2 
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The method proceeds as in the previous section. Two initial evaluation 
points Si and Si are found, then at each successive step there will be one point 
present in the remaining interval, and the new point is placed symmetrically 
with respect to it. The procedure is therefore very similar to that of Fibonacci 
search, except that the initial points S1 and S1 would most likely differ. 
Hence all the remaining points Si and Si are likely to differ in the two proce­
dures for the same problem. Also, golden section does not have an automatic 
stopping point as does Fibonacci search. The search proceeds until some 
termination criterion is met: the interval is sufficiently reduced, or the next 
point is to be placed within the resolution distance of the last. 

The performance of golden section search on the problem of Section 
8.2.1.2 will be compared with that of Fibonacci search. The problem is now 
solved by golden section search. The first two points are placed at 

where 

So = -10 + (10 - ( -10»(2 - r) 

so= -10+00-(-10))(r-1), 

1 +J"S r=---:--,--
2 

is the ratio of the golden section of Greek geometry (hence the name of the 
method). Hence 

Now if 

So = 10(2 - J"S) 
So = 1O(J"S - 2). 

then the new interval becomes 

and 

Now if 

S1 = So 

S1 = 10(2 - J"S) + [10 - 10(2 - J"S)] 
= 50 - 20J"S. 

then the new interval becomes 

and 

Now if 

S2 = 10(2 - J"S) + (10(5 - 2J"S) - 10(2 - J"S))(2 - r) 

= 10(9 - 4J"S) 
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then the new interval becomes 

and 

Now if 

[a3' b3] = [10(2 - J5), 10(J5 - 2)] 

8 3 = 10(2 - J5) + (10(J5 - 2) - 10(2 - J5))(2 - r) 

= 10(4J5 - 9) 

then the new interval becomes 

and 

Now if 

84 = S3 

S4 = 10(4J5 - 9) + (10(J5 - 2) - 10(4J5 - 9))(r - 1) 

= 10(9J5 - 20). 

the final interval is 

[a5,b5] = [10(4J5 - 9),10(9J5 - 20)], 

which has length 10(5J5 - 11). This interval is a little over 9% of the 
original interval in length. This comparison is typical, and in general golden 
section search is not quite as efficient as Fibonacci search. 

8.2.1.3 The Method of Bolzano 

If first derivatives of the objective function are available, then the Bolzano 
technique for finding the root of a decreasing function in numerical analysis 
can be profitably modified. In using Bolzano's method (also called the 
method of successive bisection) one successively evaluates the function in 
the middle of the current interval of uncertainty. The right-hand or left-hand 
half of the interval is eliminated depending upon whether the derivative is 
negative or positive, respectively. 

In attempting to find the maximum of the objective function IX one is 
trying to find the unique root of the first derivative of IX. The root is unique 
because IX is assumed unimodal. So the Bolzano technique can be applied 
to IX' in order to find the maximum of IX. The modified technique will now 
be described in precise terms. Assume that the maximum is bounded by an 
initial interval [ao, bol Then 

,(ao + bo) 0 [ b] - [ao + bo b ] 
IX 2 > => a 1 , 1 - 2' ° 

and 
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The general step is 

I (ai + bi) ° [. b.] = [ai + bi b.] (X 2 > => a" ! 2' ! 

and 

( a. + b.) [ a· + b.] 
(x' Y < ° => [ab b;] = ai, Y . 

Of course, if 

(X' ( ai ; bi) = 0, 

the maximum has been found. 
It can readily be seen that at each step the remaining interval is halved. 

Thus after n steps, 
bn - an 

bo - ao 2n ' 

Thus the number of derivative evaluations required to achieve a specified 
reduction ratio is the minimum integer n satisfying: 

bn - an 1 
---->-
bo - ao - 2n ' 

Bolzano's method will also be tried on the example of Section 8.2.1.1. 
Recall that 

[ao, bo] = [ - 10, 10]. 
Let 

ai + bi 
si=-2-' 

If 
(X'(SO) > 0, 

then 
Cal' b l ] = [0,10]. 

If 
(X'(Sl) < 0, 

then 
[a2,b2] = [0,5]' 

If 
(X1(S2) < 0, 

then 
[a3,b 3] = [0,2.5]' 

If 
(X1(S3) < 0, 

then 
[a4,b4] = [0,1.25]' 

If 
(X1(S4) < 0, 
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then 

If 

then 
[a 6 ,b6 ] = [0.3125,0.625]' 

Hence after only six iterations the interval has been reduced to one of 
length 0.3125, or just 1.56% of the original length. This rapid decrease 
compared with the previous two procedures comes at the cost of calculating 
derivatives, which may be no easy task, if not impossible. 

8.2.1.4 Even Block Search 

A simplified version of the general even block search method will be pre­
sented in this section. When derivatives are unavailable, it is still possible 
to simulate the Bolzano method in the following way. The sign of the deriva­
tive of a function can be approximated at a point by making two distinct 
evaluations, each as close to the point as the resolution c; will allow. The 
points about which these evaluations are made are the same as those that 
would be used in the normal Bolzano method. 

Suppose that the first derivative of rt. is unavailable. Let [ao, bo] be the 
initial interval, bracketing the maximum. Thus the first evaluation would 
have been of rt.' at (ao + bo}/2. Instead, we approximate the sign of rt.'(so), 
denoted by O"(rt.'(so}, by 

In general, we have 

rt.(Si + 6} - rt.(sJ > ° => [ai+ I, bi+ I] = [Si' bJ 

rt.(Si + 6} - rt.(sJ < o=> [ai+bbi+l] = [absi + c;] 
rt.(Si + 6) - rt.(Si} = o=> [ai+l,bi+l ] = [SbSi + c;]. 

In the last case the procedure must be terminated, as no further observations 
can be made in the remaining interval. 

Neglecting resolution, this simple even block method will require twice 
as many evaluations as Bolzano's method. However, because it usually takes 
far less effort to evaluate a function than to calculate and evaluate its deriva­
tive, even block search is often more efficient. 

8.2.2 Hessian Methods 

Recall from the initial remarks of Section 8.2 that ascent methods generate 
a new point Xi + 1 by a calculation of the form: 
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In the case of gradient methods and Hessian methods this equation has the 
special form: 

X i+ 1 = Xi + SiBiVf(XJ 

The matrix Bi may be a constant matrix or may vary according to previous 
calculations. In the description of the methods ofthis section, Bi is a function 
of Hessian matrix H(XJ 

8.2.2.1 The Method of Newton and Raphson 

The following is a "classical" method and should be related to Section 7.3.3. 
In attempting to optimize an n-dimensional function we are attempting to 
find a root of 

Vf(X) = o. (8.12) 

In what follows it is necessary to assume that the Hessian matrix evaluated 
at each point Xi is nonsingular, i.e., H- 1(XJ exists. Now suppose we have 
found an estimate X i+ 1; the Taylor series of Vf(Xi+ 1) is expanded about 
Xi as follows: 

Vf(Xi+ d = Vf(XJ + H(X;}(Xi+ 1 - XJ 

Now if X i + 1 is an estimate of a root of (8.12) it is hoped that 

Vf(Xi+d ~ o. 
Hence 

and we have found an iterative method for generating X i + 1,Xi +Z,"" 

namely 
i = 1,2, .... 

8.2.2.2 Variable M etric Method 

The variable metric method does not require that the Hessian matrix of 
the function be calculated and inverted, as does the method of Newton and 
Raphson. Instead, the inverse of the Hessian matrix is estimated more and 
more accurately until the optimum is found. This means that the method is 
often the most efficient currently available when the gradient is available 
and when the Hessian matrix is not available, is expensive to calculate, or 
must be found by numerical methods. Apart from the initial step, the one­
dimensional searches performed in pursuit of the optimum are not usually 
in the direction of the gradient. They are carried out in a direction EiVf(Xi), 
where Xi is the current estimate of the optimum and Ei is a negative definite 
matrix. Thus the direction from each point Xi is "deflected" away from the 
gradient by matrix Ei • 

The method will be outlined with view to maximizing the following 
quadratic f, in which H is assumed negative definite: 

(8.13) 
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For a complete description of how the method maximizes a general function 
see Davidon (1959), or Fletcher and Powell (1963). Suppose it is desired to 
find the optimum X* to (8.13) from a present estimate X l' Note that 

Vf(X) = C + HX, 
hence 

Vf(X l ) = C + HXl. 
Therefore 

Xl = H-l(vf(Xd - c) 
and 

X* = H-l(vf(X*) - C). 
But 

Vf(X*) = O. 
Hence 

X* = -H-IC. 
Thus 

X* = Xl - H-lVf(X l). (8.14) 

Equation (8.14) shows why it is worthwhile to search along a direction which 
is different from the gradient direction. Thus when H is known, the optimum 
to (8.13) can be found in one step by using (8.14). Problems arise when, for 
one reason or another, H- l is not readily at hand. 

The method proceeds by calculating X i+l from Xi by using the relation: 

X i+l = Xi - SiEiVf(XJ, 

where Ei is a negative definite matrix and Si is the step size taken in the 
EiVf(X i ) direction. If fcontains n variables, then 

(8.15) 

The method generates the estimates of X*(X 2 ,X3 , ... , Xn+d in such a 
way that 

i = 1,2, ... , n. 
Now, as 

i = 1,2, ... , n 

are constructed to be linearly independent, from (8.16) it must be that 

Vf(Xn+d = O. 

Hence the optimum is found after n iterations if f is quadratic. 
The method begins by setting 

El = I, 

(8.16) 

where I is the identity matrix (for simplicity), unless the analyst has further 
information and can choose El such that E 1 Vf(Xd is a more promising 
direction than Vf(X 1)' This first step just turns out to be a basic gradient 
search, which will be explained in Section 8.2.3. 
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In general Ei is computed by the relation: 

Ei = Ei- 1 + Fi + Gi, 

where the matrices Fi and Gi are chosen so that 
n 

I Fi = H- 1 

i= 1 

and 
n 

I Gi = -E1 • 

i= 1 

Thus usually 
n 

I Gi = -1. 
i= 1 

329 

(8.17) 

Now at any iteration of the method Fi and Gi must be found from previous 
information, namely 

V!(X;), V!(Xi- 1), ... ,Xi' X i- b ... ,Ei- b Ei- 2 , •.. 

One possible choice for Fi and Gi is 

and 

G i = 

(X - X· l)(X, - X· l)T F· = ' ,- , ,-
, (Xi - X i- 1fW!(X;) - V!(Xi- 1)) 

Ei- 1W!(X;) - V!(Xi-1)fW!(Xi-d)Ei-1 

W!(X;) - V!(Xi_ dfEi- 1W!(Xi) - V!(Xi- 1))" 

This is the well-known D.F.P. formula (Davidon (1959), Fletcher and 
Rowell (1963)). However, recent numerical evidence supports the comple­
mentary D.F.P. formula, labelled B.F.G.S .. For this see Broyden (1970), 
Fletcher (1970), Goldfarb (1970), and Shanno (1970). 

8.2.3 Gradient Methods 

Recall that 

V! = (aa! 'a a! , ... 'aa!)T, 
Xl X 2 Xn 

a vector of first partial derivatives. Because this vector points in the direction 
of greatest slope of the function at any point, it is called the gradient. (For a 
proof of this fact see Theorem 9.7 in the Appendix.) 

Gradient methods for seeking a maximum for! involve evaluating the 
gradient at an initial point, moving along the gradient direction for a calcu­
lable distance, and repeating this process until the maximum is found. 

One of the problems of gradient methods is that they require V! and 
hence the first partial derivatives to be calculated. In many problems the 
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mathematical form of f is unknown and hence it is impossible to find deriv­
atives. In such cases gradients may be approximated by numerical proce­
dures. This introduces errors, which make the methods less attractive. 
Throughout this section it will be assumed that the necessary gradients are 
available either by direct computation or by approximation. 

In the basic gradient method first an initial point X 1 is selected. The 
gradient Vf(X 1) of f at Xl is computed. A line is then drawn through Xl in 
the gradient direction Vf(X 1)' The point on this line X 2 is then selected which 
yields the greatest value for f of all points on the line. Suppose the distance 
from Xl to X 2 is Sl' Then 

(8.18) 
and 

f(X 2) = max {J(X): X = Xl + Vf(X l)sd 
81 eR 

= max {J(X 1 + D1Sd}, 
51 eR 

where 
Dl = Vf(X 1)· 

The obvious task is to decide where along the line the best point for flies. 
That is, s 1 must be found. There are two ways of going about this. Whenever 
derivatives can be evaluated and f is well behaved, the best method is to 
substitute (8.18) into the equation for f and differentiate with respect to s. 
One can solve for the maximizing value of s, say S10 by setting the derivative 
equal to zero. The second method is to use one of the one-dimensional 
search methods explained in Section 8.2.l. 

Having found Sl and thus X 2, the procedure is repeated with X 2 replacing 
X l' The process continues until no improvement can be made. There are a 
number of variations on this process. One such variation, which requires 
considerably less effort, is to use a fixed step size Si at each step. This has the 
disadvantage of there being no way to predict a satisfactory step size for a 
given f. A relatively small step size will usually produce an improvement at 
each step but require a large number of steps. A relatively large step size may 
sometimes produce a decrease in objective function value from one step to 
another. 

Gradient methods were first introduced by Cauchy (1847) and were later 
used by Box and Wilson (1951) on problems in industrial statistics. 

8.2.3.1 Gradient Partan 

A specialized version of the gradient method will now be presented. It might 
have occurred to the reader that the maximization of a function of two vari­
ables has some aspects in common with climbing a mountain, the maximum 
being the peak. As everyone who has looked at a mountain knows, most 
mountains have ridges. Quite often these ridges lead to the summit. This 
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geological fact can sometimes be used to advantage in unconstrained 
optimization. 

The preceding idea was used by Forsythe and Motzkin (1951) to find the 
maximum of certain two-dimensional functions. Consider the objective 
function in Figure 8.4, which has ellipsoidal concentric contours. Unless 
the initial search point lies on an axis of the ellipses, the normal gradient 
search will proceed to the maximum X* as shown. It can be seen that the 
points 'in the search, X 1> X 2, ... , are bounded by two "ridges" which both 
pass through the maximum X*. Thus a short-cut could be made after three 
search points have been identified. When X 1> X 2, and X 3 have been found 
the next search should be made in the direction of the line through X 1 and 
X 3' If the contours of f are concentric ellipses then the maximum will be 
found immediately. 

Figure 8.4. Accelerated gradient search. 

This method can be generalized to maximize a function f of n variables. 
The method is most efficient when f is a negative definite quadratic (see the 
Appendix). Suppose that the initial starting point is X l' Let the best point 
found in the direction of the X 1 gradient be X 3 (rather than X 2)' The next 
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point found by the gradient method is X 4. The point X 5 is found by maxi­
mizing along the line through Xl and X 4. For n > 2 it is unlikely that X 5 

will be a maximum. 
The process can be described in general as follows. Once the process has 

"warmed up" and i > 3, Xi is found by gradient search from X i - 1 for i odd, 
and Xi is found by an accelerated step by maximizing over the line through 
X i - 1 and X i - 3 . It can be shown that the global maximum of a negative 
definite quadratic function of n variables can be found after 2n - 1 steps 
using this procedure. 

The above method requires the calculation of first derivatives. A similar 
method, due to Shah, Buehler, and Kempthorne (1964), does not involve 
such a restriction. Consider a function f of two variables whose contours are 
negative definite quadratics. It can be shown that the contours are concen­
tric ellipses. Let X* be the global maximum of f and Xl and X 2 two points 
lying on an arbitrary line through X*. It can be shown that the tangents to 
the contours at X 1 and X 2 are parallel. Conversely, it can be shown that if 
the situation of the previous sentence holds then Xl and X 2 are colinear 
with X*. It is also true that X 1 and X 2 represent optima for f along the lines 
corresponding to the respective tangents. 

The foregoing facts suggest an interesting method for locating X*. One 
begins by arbitrarily selecting two parallel lines and finds the maximum of 
f along each line. These two maxima are denoted by Xl and X 2. A line is 
then passed through these two points and a search is carried out along this 
line. The resulting point is X*. 

The method can be generalized to maximize ellipsoidal functions of any 
number of variables. The reader may very well have spotted that partan is an 
acronym for parallel tangents. 

8.2.3.2 Conjugate Directions 

This section and the next deal with methods which represent improvements 
on the basic gradient method of Section 8.2.3. The reader will recall from his 
study of linear algebra that vectors X and Y from n-dimensional Euclidean 
space are orthogonal if 

XTy=o. 

Now if the identity matrix with n rows is inserted into the expression, the 
equation still holds, i.e., 

XTIY= 0. 

Let us now replace I by any n-square matrix H. If 

XTHY= 0, 

X and Yare said to be H-conjugate. Thus orthogonality is a special case of 
conjugacy, in the sense that orthogonal vectors are I-conjugate. 

The methods of conjugate directions can be used to produce a sequence of 
points Xl' X 2, X 3, ... , which each yield improving values in maximizing 
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a quadratic 
f(X) = AX + !XTHX, 

where H is the Hessian matrix of f. The directions of search Di and Dk all 
obey the relationship 

DTHDk = 0, for all i, k, i =I k. 

The general method of conjugate directions can be implemented as fol­
lows. A point X 1 is chosen initially as the point most likely to be optimal. 
(A random choice is made if no relevant information is available.) A one­
dimensional search is carried out in the direction Db the first conjugate 
direction. This produces a new point X 2' Another one-dimensional search 
is carried out along D 2 , the next search direction, where 

DiHD2 = O. 

Here H is the Hessian matrix of f. In general, when point X i- 1 is found, Xi 
is found by a one-dimensional search along Di from Xi and 

j, k ~ i, j =I k. 

The maximum will be located in at most n steps. 
The trouble is that the sequence of conjugate directions D1, D2 , ••• is not 

known in advance. The usual method is to generate each new direction Di as 
it is needed. One way of doing this is to find the new conjugate direction Di 
from point Xi' using Vf(XJ Such directions are called conjugate gradient 
directions and are discussed in the next section. 

8.2.3.3 Conjugate Gradients 

The conjugate gradient method generates each new conjugate direction from 
the gradient at the point concerned in such a way that the direction is con­
jugate to all those previously generated. First a starting point, X 1 is chosen. 
A one-dimensional search is then performed in the gradient direction from 
X l' That is, to start the ball rolling the first direction is 

D1 = Vf(X 1)· 

The maximum point X 2 on this line is found. In general the direction Di is 
constructed from Vf(Xi) so as to make it conjugate to Di- 1. For this purpose 
define a scalar ai _ 1 such that 

(8.19) 
and 

DTHDi- 1 = o. (8.20) 

Here Q still represents the Hessian matrix of f. Now from (8.19) and (8.20) 
we have 
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Hence 

and therefore 
(Vf(XJ)THDi_ 1 

ai-l = - T 
Di-IHDi- 1 

8 Nonlinear Programming 

It can be shown by induction that the directions Di are mutually conjugate. 
When it comes to actual implementation the D/s can be calculated by a 

simple recurrence relation and only a few vectors and no matrices need be 
stored. In fact, storage requirements vary with dimensionality n rather than 
nZ as for the quasi-Newton methods (Fletcher and Reeves 1964). 

8.2.4 Direct Methods 

If the mathematical expression defining f is difficult to manipulate, its gra­
dient vector and Hessian matrix are likely to be complicated to calculate 
and evaluate. If the expression is unknown and hence unavailable these eval­
uations cannot be performed. When these situations arise, or when f has 
many local maxima, the following direct search approach is appropriate. It 
assumes that f can be evaluated at any point X = (Xl, Xz, ... , xnf E R by 
performing some task or experiment, or employing some algorithm with 
input the specific values of Xj, XZ' ••. , X n • 

8.2.4.1 Pattern Search 

The first direct search method to be examined is called pattern search and 
was developed by Hooke and Jeeves (1961). As with most direct search 
methods, pattern search begins by evaluating f at the point X I most likely 
to be maximal, or at a random point if all points are initially equally likely 
to be maximal. Exploration about X I now begins in order to find the best 
direction for improvement. A pre-defined step is taken in the increasing 
direction of the first variable. To make this more clear let Xa = X I = (Xii' 

Xl, ... , x~) and let the initial perturbation size for each variable, Xi be a 
given positive real number, ei' Then f is first evaluated at Xa and then at 
(Xii + ej, Xl, ... , x~) and the two values thus obtained are compared. If the 
second value is greater than the first, (an improvement over the original 
point has been found) the next variable, X z is increased from the new point. 
If no improvement was found Xl is decreased by ej, i.e. f is evaluated at 
(Xii - el,xl,'" ,x~). If this second value is greater than f(Xa) then Xz is 
increased from the new point. Otherwise Xz is increased from Xa' Note that 
if (Xii + el' Xl, ... , x~) corresponds to an improvement in f over Xa we don't 
bother to evaluate f at (Xii - ej, Xl, ... ,x~). The result of all this is that we 
end up with a point which is the best for f found so far, call it (Xii' Xl, ... , x~) 
where Xii is either Xii or Xii + el or Xii - e l . We now perturb Xz about this 
best point. We evaluate f at (Xii' Xl + ez, x~, ... , x~) and if this represents 
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an improvement we perturb X3 about it. If not we evaluate f about (XiI, 
Xl - e2'x~, . .. ,x~) and so on. This strategy is continued, perturbing (in­
creasing, and if necessary decreasing, each variable) about the best point 
found so far. When all the variables have been perturbed in this manner the 
final best point Xb is identified. The first direction vector DI is defined as 

The first step size S 1 is defined to be twice the Euclidean distance between 
Xb and Xa. Thus the new point X 2 is derived as 

X 2 = Xl + sID! = Xa + 2(Xb - Xa) 

= 2Xb - Xa· 

The process is now repeated with X 2 replacing X 1. Indeed each successive 
step size Sj+ 1 is twice its predecessor Sj unless no perturbations about Xj 

bring about an improvement. If this happens the pre-defined perturbation 
sizes ei are successively halved until the final best point represents an im­
provement over Xj. If no improvement in f is found before an ei becomes 
less than the corresponding resolution Bi for Xi then the process is terminated 
and Xj is declared the best point that could be found by the method. 

It can be seen that the search seeks a general trend or direction of improve­
ment. Hooke and Jeeves call this a pattern. If exploration about a point is 
unfruitful the perturbation size by which each variable is decreased and the 
process is repeated about this point. The method seems to reflect the saying: 
"nothing succeeds like success", for at each successful iteration the step size 
is doubled. However when the exploration process fails to yield further im­
provement the method begins over again and slowly builds up increasingly 
large steps once more. 

Pattern search often has excellent success because of its ability to follow 
a ridge of the geometric mountain it is trying to climb. Before the reader 
begins to regard pattern search as the ultimate in direct search methods 
there is a shortcoming. The method may fail to yield any further improve­
ment in a function with tightly curved ridges or sharp-cornered contours 
while still far from a local maximum. However the technique is often suc­
cessful on real applications and is easily programmed which can be seen 
by looking at the following algorithmic statement. 

Pattern Search Algorithm. Let 

ei = the initial perturbation size for Xi' i = 1, 2, ... , n, 

Xa = the current point about which perturbations are being made, 

X b = the current best point found so far while perturbations are being made, 

Xc = the best point found once all variables have been perturbed, 

Ki = the vector (0,0, ... , 0, 1,0, ... , 0) consisting of all zero entries except 
for a unit entry in the ith position, i = 1, 2, ... , n. 
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1. Initialization: set Xa = Xl, the initial point of the search, and setj = 1. 
2. An exploration is carried out about X a. 

(a) Set Xb = Xa and set i = 1. 
(b) If f(Xb + eiKi) > f(Xb), set Xb to become Xb + eiKi> go to step 2(c), 

otherwise continue. If f(Xb - eiKi) > f(Xb), set Xb to become Xb -
eiKi, otherwise continue. 

(c) Set i to become i + 1. If i < n go to step 2(b), otherwise continue. 
3. If any termination criterion is met go to step 6, otherwise continue. 
4. Iff(Xb)::; f(Xc)[j(Xb) = f(Xa) in the first iteration] go to step 5, otherwise 

continue. An extrapolation is made in the new search direction: (Xb - XJ 
Set Xa to become Xc + 2i(Xb - Xc) andj to becomej + 1 (Xa + 2(Xb-
Xa) in the first iteration). Set Xc = X b. Go to step 2. 

5. Set ei to become ed2 for i = 1,2, ... , nand j = 1. If there exists some i, 
1 ::; i::; n such that ei < ei> then set Xb = Xc (except for first iteration) 
and go to step 6. Otherwise, set Xa = Xc (except for first iteration) and 
go to step 2. 

6. The best point found was X b. 

Example. The following is an account of the use of pattern search in the 
maximization of a function f(X) = f(x b X2), x b X2 E R, using pattern search, 
where 

Xl = (0,0) 

e1 = e2 = 0.1 

e1 = e2 = 0.03. 

The pattern the search takes is shown in Figure 8.5. Following the algorithm, 

Xa = (0,0). 

Now we have 
f((O,O) + 0.1(1,0) < f(O,O). 

But 
f( (0,0) - 0.1(1,0)) > f(O,O). 

Hence 
Xb = (-0.1,0). 

Further, 
f(( -0.1,0) + 0.1(0,1)) > f( -0.1,0). 

So 
Xb = (-0.1,0.1). 

Proceeding to step 4, as this is the first iteration, Xa becomes 

Xa + 2(Xb - Xa) = (0,0) + 2(( -0.1,0.1) - (0,0)) 

= ( - 0.2, 0.2) ( = X 2) 

Xc= (-0.1,0.1). 
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Figure 8.5. An example of pattern search. 
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Returning to step 2, we now explore about X 2 : 

f« -0.2, 0.2) + 0.1(1,0)) < f( -0.2, 0.2). 

But 
f( ( - 0.2, 0.2) - 0.1(1,0)) > f( - 0.2,0.2). 

Hence 
Xb = (-0.3,0.2). 

Further, 
f« -0.3,0.2) + 0.1(0,1» > f( -0.3,0.2). 

So 
Xb = (-0.3,0.3). 

Proceeding to step 4, X a becomes 

Xc + 2(Xb - Xc) = (-0.1,0.1) + 2« -0.3,0.3) - (-0.1,0.1» 

= ( - 0.5, 0.5) ( = X 3) 

Xc= (-0.3,0.3). 

Returning to step 2, we now explore about X 3 : 

f«-0.5,0.5) + 0.1(1,0» > f(-0.5,0.5). 
So 

Xb = (-0.4,0.5). 
Further, 

f« -0.4,0.5) + 0.1(0,1)) > f( -0.4,0.5). 
Hence 

Xb = (-0.4,0.6). 

Proceeding to step 4, X a becomes 

Xc + 2(Xb - Xc) = (-0.3,0.3) + 2« -0.4,0.6) - (-0.3,0.3» 

= ( - 0.5, 0.9) ( = X 4) 

Xc= (-0.4,0.6). 

At this point it is interesting to note that the direction of search has changed 
slightly, as seen in Figure 8.5. 

Returning to step 2, we now explore about X 4: 

f« -0.5,0.9) + 0.1(1,0» < f( -0.5,0.9). 

But 
f« -0.5,0.9) - 0.1(1,0)) > f( -0.5,0.9). 

Hence 
Xb = (-0.6,0.9). 

Further, 
f« -0.6,0.9) + 0.1(0,1» > f( -0.6,0.9). 

So 
Xb = (-0.6,1.0). 
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Proceeding to step 4, X a becomes 

Xc + 2(Xb - Xc) = (-0.4,0.6) + 2« -0.6,1.0) - (-0.4,0.6)) 

= ( - 0.8, 1.4) ( = X 5) 

Xc= (-0.6,1.0). 

Returning to step 2 we now explore about X 5 : 

and 
f« -0.8,1.4) + 0.1(1,0)) < f( -0.8,1.4) 

f( ( - 0.8,1.4) - 0.1(1,0)) < f( - 0.8,1.4). 

Thus Xb remains at (-0.8,1.4). However, 

f( ( - 0.8,1.4) + 0.1(1,0)) > f( - 0.8,1.4). 
Hence 

Xb = (-0.8,1.5). 

Proceeding to step 4, X a becomes 

Xc + 2(Xb - Xc) = (-0.6,1.0) + 2« -0.8,1.5) - (-0.6,1.0)) 

= ( - 1.0,2.0) ( = X 6) 

Xc= (-0.8,1.5). 

Returning to step 2, we now explore about X 6: 

and 
f( ( -1.0, 2.0) + 0.1(1,0)) < f( -1.0, 2.0) 

f( ( -1.0,2.0) - 0.1(1,0)) < f( -1.0, 2.0). 

Thus X b remains at ( - 1.0,2.0). Further, 

f« -1.0,2.0) + 0.1(0,1)) < f( -1.0, 2.0) 

and 
f«-1.0,2.0) - 0.1(0,1)) <f(-1.0,2.0). 

Thus X b still remains at ( - 1.0,2.0). Proceeding to step 4, 

f( - 1.0,2.0) > f( - 0.8, 1.5). 
So X a becomes 

Xc + 2(Xb - Xc) = (-0.8,1.5) + 2« -1.0,2.0) - (-0.8,1.5)) 

= ( - 1.2, 2.5) ( = X 7) 

Xc = (-1.0,2.0). 

Returning to step 2, we now explore about X 7 : 

and 
f( ( -1.2,2.5) + 0.1(1,0)) < f( -1.2, 2.5) 

f« -1.2,2.5) - 0.1(1,0)) < f( -1.2,2.5). 
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Thus X b remains at ( -1.2, 2.5). Further, 

f( ( - 1.2,2.5) + 0.1(0, 1)) < f( - 1.2,2.5) 

and 
f( ( - 1.2,2.5) - 0.1(0, 1)) < f( - 1.2,2.5). 

Thus X b still remains at ( - 1.2,2.5). Proceeding to step 4, 

f( - 1.0,2.0) > f( - 1.2, 2.5). 

The extrapolation to X 7 has failed to yield an improvement over X 6 

and the pattern is destroyed. Proceeding to step 6, an attempt is made to 
find a new pattern by casting about near X 6: 

e1 = e2 = 0.05. 

As this exceeds the resolution, setting 

X a = Xc = ( - 1.0,2.0) 

and proceeding to step 2, we obtain 

f( ( - 1.0,2.0) + .05(1,0)) > f( -1.0, 2.0). 
Hence 

Xb = (-0.95,2.0). 
Further, 

f(( -0.95,2.0) + 0.05(0,1)) > f( -0.95,2.0). 
So 

X b = ( - 0.95,2.05). 

Proceeding to step 4, as 

f( - 0.95, 2.05) > f( - 1.0, 2.0), 

a new search direction has been formed. X a becomes 

Xc + 2(Xb - Xc) = (-1.0,2.0) + 2(( -0.95,2.05) - (-1.0,2.0)) 

=(-0.9,2.1) (=Xs) 

Xc = ( - 0.95, 2.05). 

As can be seen from Figure 8.5, the search took a new turn at X 7 and 
proceeded in the (0.1,0.1) direction. Returning to step 2, we now explore 
about Xs: 

and 
f((-0.9,2.1) + 0.05(1,0)) <f(-0.9,2.l) 

f((-0.9,2.1) - 0.05(1,0)) <f(-0.9,2.1). 

Thus Xb remains at (-0.9, 2.l). Further 

and 
f( ( - 0.9,2.1) + 0.05(1,0)) < f( - 0.9, 2.1) 

f(( -0.9,2.1) - 0.05(0,1)) < f( -0.9,2.1). 
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Thus X b still remains at ( - 0.9, 2.1). Proceeding to step 4, 

f( -0.9,2.1) < f( -0.95,2.05). 
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The extrapolation to X 8 has failed to yield an improvement over X 7 and 
the pattern is destroyed. Proceeding to step 6 an attempt is made to find 
a new pattern by casting about near X 7, 

e1 = e2 = .025. 

As these values do not exceed resolution, the search is terminated. Let 
X b = Xc = ( - 0.95,2.05), which is the best point found. 

8.2.4.2 One-at-a- Time Search 

One-at-a-time search, or sectioning, as it is often called, is a classical method 
of direct search. Given an initial estimate, 

Xl = (X'hX2,"" x~f, 

one first searches in the direction of the first variable x l' Suppose the maxi­
mum of f in this direction from X h lies at a distance 15 1 from Xi' This maxi­
mum point can be found by one of the one-dimensional search methods of 
Section 8.2.1. This yields a new estimate X 2, where 

Next one searches for a maximum in the X2 direction from X 2 • This yields 
X3 where 

Eventually X n + 1 is found, where 

Xn+ 1 = (Xl + b1,x2 + 15 2 " •• , x~ + bnf. 

The process is then repeated with X n + 1 replacing X l' The above steps are 
carried out until the steps bi , i = 1, 2, ... , n become less than the resolution. 

The rate of convergence of this method is usually painfully slow. Indeed, 
if the function has ridges which are far from parallel to any coordinate axis 
the method will probably grind to a halt far from the optimum. 

8.2.4.3 The Method of Rosenbrock 

One of the problems of the previously mentioned direct search strategies is 
that they often fail if they encounter a ridge. Rosenbrock (1960) tried to 
overcome this by developing a method which attempts to identify a ridge 
and then searches in the direction of the ridge. 

The method begins by making a first attempt at finding a ridge direction 
by using one-at-a-time search. Each variable direction is searched for the 
optimum about that direction, as in Section 8.2.4.2. Thus ifthe initial estimate 
is 
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let the result of this search be X 2, where 

X 2 = (Xl + bb X 2 + b2,·· ., Xn + bnf· 

Now instead of repeating the process for X 2, the method searches in the 
direction 

from X 2. Thus we replace the original point Xl by a new estimate X 2. 

The direction from X 1 to X 2 is given by (bb b2 , ••• , by, hence it seems 
a promising direction in which to search. This acceleration step is similar 
in idea to that mentioned in connection with the gradient method of Section 
8.2.3. 

Once the optimum is found in this direction the remaining search direc­
tions are chosen so that they are orthogonal to all previous directions. These 
remaining directions can be generated by Gram-Schmidt orthogonaliza­
tion (see Section 9.1 in the Appendix). Once each of these directions has 
been searched, an acceleration step is made in the direction of the line from 
the first point to the last point corresponding to these directions. This 
furnishes the first direction for the next orthogonalization process. This 
cycle of acceleration and orthogonalization is repeated until no significant 
improvement can be found, or some termination criterion is satisfied. Im­
proved procedures, requiring computational time of dimension n2 rather 
than n3 for the Gram-Schmidt process have been given by Powell (1968). 

8.2.4.4 The Method of Powell 

This method was developed by M. J. D. Powell (1964). It is similar to the 
method of conjugate directions of Section 8.2.3.2, except that derivatives 
are not required. The method is also similar to Rosenbrock's method of the 
previous section, except that each search is carried out along a conjugate 
direction. The directions become conjugate with respect to an approximation 
of the Hessian matrix. An algorithmic statement of the method is given next. 

Let X 0 be the initial estimate of the maximum point. Let d1, d2 , ... , dn 

be the search directions. 

1. Set db d2 , ••• , dn to be equal to the coordinate directions. 
2. Set i = 1. 
3. Find the maximum of f in the d i direction from Xi-I, at, say, X i- 1 + Sidi. 

4. Let 

If i < n, let i become i + 1, and go to step 3. If i = n, go to step 5. 
5. Let 

di = di + 1, i = 1,2, ... , n - 1 

dn = Xn - Xo· 
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6. Find the maximum of f in the d. direction from X n, at, say, Xn + s.d •. 
Let 

Xo = Xn + sndn· 

7. Return to (2) unless some termination criterion is met. 

It can be seen that the initial coordinate directions are gradually replaced 
by new directions, one per iteration. When the method is applied to a qua­
dratic function these new directions are usually mutually conjugate. This 
means that the method is likely to terminate after at most n iterations for a 
quadratic objective function. 

8.2.4.5 Brent's Praxis Method 

There is a problem that may occur in the implementation of Powell's method, 
described in the previous section. That is, that even if f is quadratic, it may 
happen that 

for some i, 1 ::;; i ::;; n. 

That is, having some estimate Xi -1 of the optimum, the next estimate is 
calculated to be the same point. This occurs when the directions d1, d2 , •.. , 

dn become linearly dependent. When the method is implemented on a digital 
computer it is unlikely that the step size will ever become exactly zero 
(because of roundoff). However, it can come alarmingly close, and to avoid 
this problem a new direction Xn - Xo should replace one of the d/s so as 
to make the set linearly independent. While this modification has been found 
to be quite successful (Fletcher 1965; Box 1966), there is no longer any 
guarantee that for a quadratic function the set of directions will be mutually 
conjugate. This means that the method may not produce fast convergence 
to the optimum. 

Brent (1973) has suggested a different approach to the problem of avoiding 
linear dependence among the search directions. His modification of Powell's 
method is to periodically reset the search directions to be a set of orthogonal 
directions based on the original conjugate directions which are replaced. 
This results in faster convergence than would occur if the search directions 
were reset as the coordinate directions, as in that case information built up 
about the function is thrown away at each reset. 

The new set of normalized search directions a1> a2 , ••• , an are built up by 
assuming that the objective function f is a quadratic. Iff is indeed quadratic, 
the a1> a2 , •.. , an will be mutually conjugate. They can be assembled as 
column vectors into a matrix 

Then 
D = (a 1, a2 , ..• , am)· 

H = (DDT)-l 

will be the Hessian of f evaluated at the optimum. D is then replaced by an 
orthogonal matrix satisfying this last equation. This ensures fast convergence. 
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As the directions at> a2 , ..• , an are calculated to be orthogonal, they span 
R" and thus no potential optimum is overlooked. The computational details 
are given in Brent (1973), p. 129. 

8.2.4.6 The Method of Stewart 

As can be seen, the variable metric method of Section 8.2.2.2 requires that 
the partial derivatives of f be evaluated at successive points of the search. 
If it is difficult to perform these evaluations a natural question arises: Is it 
possible to estimate successfully the required values of the derivatives at 
the necessary points? Although the answer is often yes, difficulties may arise 
due to rounding and approximation errors in the computation of the 
estimates. 

Stewart (1957) followed this approach by estimating the value of each 
partial derivative by a difference quotient, i.e., 

af(X) f(X + L1iK;) - f(X) 
~~;:;:O ~~~~~~~-

aXi L1i 
i = 1,2, ... , n, (8.21) 

where L1 i , i = 1,2, ... , n is a small positive number (some suggestions for 
the choosing of which are given in Stewart's paper) and K;, i = 1, 2, ... , n 
is a vector with all zero entries except for a unit entry in the ith position. 

If the L1i are relatively small, rounding error will be relatively high and the 
error in (8.17) will be unacceptable. However, if the L1i are relatively large 
(8.21) does not provide a very accurate approximation. Stewart attempts to 
steer a middle course by choosing the L1i according to the curvature at X 
(requiring estimates of second derivatives). For greater accuracy, rather than 
using the forward difference formula (8.21) he uses a central difference 
formula: 

af(X) f(X + ! L1 iK ;) - f(X - !L1iKi) 
~~;:;:O ~~~~~~~~~~~-

aXi L1i 
i = 1,2, ... , n. 

Despite these precautions, it sometimes happens that the method fails to 
yield an improvement in f after reaching a particular point Xi' In this case, 
E i , the ith approximation of H- 1 , is reset to I, the identity matrix, i.e., the 
search once again sets off initially in the direction Vf(XJ 

8.2.5 A Comparison of Unconstrained Optimization Methods 

Having presented a large number of unconstrained optimization methods 
we must make some attempt to compare them. As would be expected, 
Hessian methods usually take fewer steps to converge to the maximum of a 
given problem than gradient methods. Also, the latter usually take fewer 
steps than direct search methods. However, because derivatives are often 
expensive to compute, it is not always true that direct search methods 
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require more overall computational effort than the more sophisticated 
methods. 

Whenever second derivatives are available a modified version of the 
Newton-Raphson method of Section 8.2.2.1 should be used. The modifica­
tion consists of using an acceleration step X n - X 0 as a direction of search 
after Xn has been found after n steps. (Further discussion is given in Jacoby, 
Kowalik, and Pizzo (1972}.) When the Hessian matrix is unavailable, vari­
able metric methods are generally the most powerful. (See especially the 
comment at the end of Section 8.2.2.2.) However when the objective function 
is known to be quadratic or near quadratic, the method of conjugate gradients 
(Section 8.2.3.3) is just as efficient. When derivatives are unavailable, Powell's 
method (Section 8.2.4.4) seems best on problems with a small number of 
variables. With problems with a larger number of variables, Stewart's method 
(Section 8.2.4.5) is often appropriate. Lill (1970) has modified the linear 
search in Stewart's algorithm to yield good results. However Himmelblau 
(1972) found Stewart's method with golden section search inferior to a 
modification of Powell's method (the modification being to include the 
method of Davies, Swann, and Campey, mentioned by Swann (1964), in 
both the linear search and iterative quadratic fitting.) 

8.3 Constrained Optimization 

Feasible solutions to many realistic optimization problems are constrained 
to lie within a subset of n-dimensional Euclidean space. These constraints 
are usually expressed as equalities or inequalities involving the decision 
variables, as outlined in Section 8.1. 

8.3.1 The Method of Zoutendijk 

The first method to be described for solving nonlinear optimization problems 
with inequality constraints is called the method of feasible directions, pre­
sented by Zoutendijk (1960). 

The method starts with a point X 1 which satisfies the inequalities (8.3). 
A feasible direction in which to move from X 1 is now determined. A feasible 
direction is one in which small steps produce points which are both improve­
ments over Xl (in magnitude of f) and satisfy (8.3). An obvious candidate 
would be the gradient direction, as this would yield the biggest improvement 
info If this direction is feasible it is chosen. However, suppose it is not feasible. 
Suppose also that Xl lies on the boundary of the feasible region (otherwise 
an unconstrained optimization strategy can be used until a constraint is 
met). The problem now is to find a direction which both increases the objec­
tive function and leads to points within the feasible region. 
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The feasible direction chosen is the one which in general makes the 
smallest angle (J with the gradient direction. There may be pitfalls however. 
If the "active" constraint (the constraint which forms the part of the boundary 
on which X 1 lies) is linear, everything is satisfactory and one of the two 
directions defined by this constraint is chosen. However, if the active con­
straint is nonlinear, it is possible that this procedure will produce a direction 
leading out of the feasible region. Having made such a step, one would then 
have to "jump" back into the feasible region. But there is no guarantee 
that such pairs of steps would not be performed repeatedly, causing an 
inefficient zig zag. To avoid these and other traps, it becomes increasingly 
obvious that we must choose a direction which moves decisively away from 
the boundary of the feasible region while also increasing the value of f. 
For this purpose the desirable direction d is found by solving the following 
program: 

Maximize: E 

subject to: for all i for which hi(X 1) = 0, 

0::;; ti ::;; 1 

Wf(X 1)fd::::-: E 

dT d = 1. 

The direction d* which is the solution to this problem is the most desir­
able direction to use. One proceeds in this direction as far as possible from 
X 1 until the function begins to decrease or a boundary of the feasible region 
is met. The process is then repeated until the maximum value for E is non­
positive. The process is then terminated. If all the functions in (8.3) are con­
cave the global maximum will have been found. The method often performs 
well on maximization problems when concavity is not present. 

8.3.2 The Gradient Projection Method 

Let X* be the optimal solution to the problem (8.1), (8.3). It is very likely that 
at this point some of the m constraints in (8.3) will be active. These active 
constraints form a subspace of the original feasible region. Thus if this sub­
space is examined using unconstrained optimization techniques, the opti­
mum will be found. The main problem is to identify the correct subspace 
from among the multitude of subspaces defined by combinations of the con­
straints. Rosen (1960) developed the gradient projection method which 
solves this problem efficiently if all the constraints are linear. Unlike Zout­
endijk's method, Rosen's method does not require the solution of a linear 
programming problem each time a new search direction is to be found. This 
decrease in computational effort has a price. At each iteration, the method 
does not search in the feasible direction which brings about the greatest 
objective function increase. Instead it chooses a direction which both in-
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creases the function value and ensures that a small step in this direction does 
not lead to an infeasible point. This direction is defined as the projection of 
the gradient vector onto the intersection of the hyperplanes associated with 
the active constraints. If there are no active constraints, the gradient direc­
tion is taken as the direction of search. 

In outlining the method here it will be assumed that all the functions hi, 
i = 1, 2, ... , m in (8.3) are linear. Specifically, assume that the method be­
gins with an estimate Xl of X*. Let X k = Xl' 

1. First calculate V!(X k ). 

2. Let Pk be the set of hyperplanes corresponding to active constraints at 
X k • 

3. Find the projection of V!(Xk) onto the intersection of the hyperplanes in 
Pk • (If there are no active constraints, X k is an interior point and Pk is 
empty. In this case the projection is V!(Xk).) 

4. Maximize along the direction of the projection, taking care to remain 
within the feasible region. 

5. This produces a new point X k+ l' 
6. (a) If P k was not empty in step 2, replace X k by Xk+ 1 and return to step 1. 

(b) If Pk was empty in step 2, then 

8! + t Ai 8hi = 0, 
8x i i=l 8x i 

where hl' h2' ... , hq are the functions which correspond to the hyper­
planes in Pk • If 

i = 1,2, ... , q, 

X k satisfies the Kuhn-Tucker conditions (see Chapter 7). Hence X k 

is a maximum. If at least one Ai is such that 

Ai> 0, (8.22) 

a plane corresponding to a function hi for which (8.22) holds is re­
moved from Pk• Return to step 2. 

The method is unlikely to be as efficient on problems with nonlinear con­
straints. In these cases the projections are made onto hyperplanes which are 
tangent to the constraint surfaces. Steps taken in these hyperplanes may very 
well move out of the feasible region. Thus jumps back into the feasible region 
are likely to be necessary. 

8.3.3 A Penalty Function Method 

Carroll (1961) presented a method for solving (8.1), (8.3) which generates a 
sequence X 1> X 2, ... , of successively better estimates of X*, each of which 
is feasible. Fiacco and McCormick (1968) refined the method and call their 
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modification SUMT (Sequential Unconstrained Minimization Technique). 
The method can just as easily accommodate maximization problems. 

The SUMT method creates a new objective function: 

k 1 
F(X,q) = f(X) - q Jl hi(X)' 

where q is negative as the objective is maximization. First an initial feasible 
starting point X 1 must be chosen. Then an initial search is carried out for 
the maximum of F having chosen a large value of q, say qo. The methods of 
Powell (Section 8.2.4.4) or Davidon (Section 8.2.2.2) appear to be two of the 
most appropriate for this search. Note that the maximum X 2 for F will not 
lie on the boundary of the feasible region, as, if 

for any i, i = 1, 2, ... , m, then F will become arbitrarily small. Hence X 2 will 
not be the maximum for the original problem if X* lies on the boundary. A 
more accurate approximation of X* is found by maximizing F by searching 
from X 2 after reducing the value of q. The above series of steps are repeated, 
with q being successively reduced at each iteration. The sequence of feasible 
points found approaches an optimum if certain assumptions are met. 

8.3.3.1 The Generalized Reduced Gradient Method 

Consider the nonlinear programming problem: 

Minimize: f(X) 

subject to: j = 1,2, ... , m 

i = 1,2, ... , n, 

where X = (Xl> X2, ... , xn) and the Li, Vi' i = 1,2, ... , n are given constants. 
We now outline a method due to Abadie and Carpentier (described in 
Fletcher (1969)) which solves this problem. Inequality constraints can be 
handled by this method by introducing nonnegative slack variables to force 
equality. To make this clear, suppose a problem contained the constraint: 

hj(X) :?: o. 
We introduce a new (slack) variable Sj' forcing equality: 

hj(X) - Sj = o. 
We set 

L j = 0 

Vj = 00, 

and thus the problem is now in the desired form. 
As in the simplex method (assuming nondegeneracy) one partitions the 

set of variables {X l ,X2' ... , xn} into two subsets: X B , comprising m basic 
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variables (one for each constraint), and X NB comprising n - m nonbasic 
variables. Now 

df(X) = VXNBf(XfdXNB + VxBf(XfdXB 
and 

df(X) T dXB 
dX = V XNBf(X) + V XNBf(X) -d-' 

NB XNB 
where 

V f(X) = (af(X) af(X) af(X»)T 
XB a 1 , dX 2 ' ••• , a m XB B XB 

and 

V f(X) = (af(X) af(X) ... af(X»)T. 
XNB a' a 2' , axn-m XNB XNB NB 

Now, as 
j = 1,2, ... , m, 

j = 1,2, ... , m 

we have 

where 

Thus 

dXB __ (~)-1 ~ 
dXNB - aXB aXNB · 

On substitution, we obtain 

df(X) T( ag )-1 ag 
dX = V XNBf(X) - V xBf(X) ax ax· 

NB B NB 

This last expression is called the generalized reduced gradient, and permits a 
reduction in the dimensionality of the problem. 

Now if f has a local minimum at X*, it is necessary that 

df(X*) = 0 
dXNB . 

The search for X* begins at point X 0 on the boundary of the feasible region. 
One then searches from X 0 along the boundary until 

df(X) = 0 
dXNB ' 

at which point a local minimum has been found. 
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8.3.4 Linear Approximation 

It must have been obvious to the reader who studied Chapter 2 that linear 
programming is a very powerful tool. Hence it seems fruitful to consider the 
possibility of converting nonlinear optimization problems into linear ones 
so that L.P. theory can be applied. 

One of the best known linearization methods is due to Wolfe (Abadie 
1967). The feasible region defined by the constraints in (8.3) is approximated 
by selecting a number of points called grid points and forming their convex 
hull. The r grid points Xl' X 2, ... , X, are chosen by methods described by 
Wolfe. The function f is approximated between a pair of grid points X j - 1, 

and X j by linear interpolation; i.e., if 

j = 2, 3, ... ,r, 0::;; Il( ::;; 1, 

then 
f(X) = f(Il(Xj - 1 + (1 - Il()X) 

, 
~ L Il(J(X), Il(j ~ 0, j = 1, 2, ... , r, 

j= 1 

where 

The grid points must be carefully selected so that only a small number ofthe 
Il(i are nonzero for the representation of any point within the convex hull. 

The constraint functions in (8.3) can also be approximated by linear in­
terpolation: 

, 
~ L Il(jhi(Xj), 

j= 1 

= 1,2, ... , k. 

Thus the original problem can now be replaced by an approximate linear 
programming problem: 

, 
Maximize: f= L Il(J(X) 

j= 1 

, 
subject to: L Il(jhi(X)::;; 0, i = 1, 2, ... , k 

j= 1 

j = 1,2, ... , r. 
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The expressions: 

f(X), hi(X), i = 1,2, ... , k; j = 1,2, ... , r 

are known constants and the decision variables in the L.P. are the rx/s. 
Of course many grid points and hence many rxj are needed for a good 

approximation of the nonlinear functions in (8.3). This is accomplished by 
allowing the simplex method to choose which new grid points are best by 
way of solving certain subproblems. Thus the approximation of (8.3) be­
comes increasingly more accurate as the optimum is approached. 

8.3.4.1 The Method of Griffith and Stewart 

Griffith and Stewart (1961) presented a linearization method which attacks 
a nonlinear programming problem by starting with a feasible solution and 
reducing each nonlinear function to a linear one by a Taylor series approxi­
mation. This produces a linear programming problem which is then solved to 
yield another solution to the original problem. The cycle continues and a 
sequence of L.P. problems are solved. 

Consider the following problem: 

Maximize: f(X) 

subject to: gi(X) = 0, 

° ::; Xi ::; Vi' 

j = 1,2, ... , m 

i = 1,2, ... , n. 

As in the generalized reduced gradient method, any inequality constraints can 
be converted into equations. It is assumed that all ofthe above functions have 
continuous first partial derivatives. Assume now that X 0 is a feasible solution. 
Then the first-order Taylor approximations of the above functions are: 

f(X 0 + h) = f(X 0) + Vf(X o)Th 

giXo + h) = giXo) + Vgj(Xofh = 0, j = 1,2, ... , m. 

Now we attempt to find h = (hl' h2' ... , hm ) such that X 0 + h represents an 
improvement over X 0, i.e., 

f(Xo + h) > f(Xo)· 

Ignoring the constant f(X 0) we 

Maximize: Vf(Xofh = i of(Xo) hi 
i=l OXi 

subject to: 
~ ogj(Xo) 
i~l OXi hi = -gj(Xo), j = 1,2, ... , m, 

which is a linear programming problem with variables hl' h2' ... ,hn • Of 
course, these are unrestricted in sign, so the technique for converting the 
problem to one with all nonnegative variables (given in Chapter 2) must be 
used. 
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The solution to the above L.P. may produce a new point X ° + h which is 
outside the feasible region of the original problem. Thus we must place 
restrictions on the magnitude that the h;'s can attain in the above L.P. to 
ensure that this does not happen. Hence we add to the above L.P. the follow­
ing constraints: 

i = 1,2, ... ,n. 

Thus the method proceeds by establishing a feasible point X 0, constructing 
an L.P. based on the Taylor approximations and the bounds on the h/s and 
then solving this L.P. to produce an improved point X ° + h. Once this new 
point is found, the process is repeated until the improvement in f from one 
iteration to the next falls below some given level or two successive solutions 
are sufficiently close together. The success of the method depends upon 
choosing efficient m;'s at each iteration. If the mi values are too large, the 
method may produce an infeasible solution. However, relatively small m/s 
lead to a large number of steps. 

8.3.4.2 Separable Programming 

Consider a special case of(8.01), (8.02), (8.03) in which 

where 

f(X) = L /;(x;) 

gi(X) = L gij(X;), 
i= 1 

h;(X) = -Xi, 

(i.e., Xi ;::: 0, 

i= 1 

j = 1,2, ... , m 

i = 1, 2, ... , k = n 

i = 1, 2, ... , n), 

That is, each function in the problem can be expressed as the sum of a 
number of functions of one variable. Such a problem is called a separable 
programming problem. 

In this section we develop a technique for approximating the above 
problem by a linear programming formulation. We then show that when 
f is concave and the constraint functions are all convex the approximating 
technique can be made more efficient. 

We begin by approximating each function by a piece-wise linear function 
as follows. First, we construct such an approximating function, ]; for each 
/;. Suppose that for a particular i, where 1 :-::; i:-::; n, /; can be represented by 
the graph in Figure 8.06. Suppose 

for any feasible solution. The values Ui must be calculated by examining the 
constraints. Suppose the interval over which Xi is defined, [0, uJ is divided 
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into Pi subintervals not necessarily of equal length : 

where 
X;o < Xi! < Xi2 < Xi3 < ... < XiPi_1 < XiPi 

and 
X;o = 0, 

XiPi = Ui' 

]; is defined over each subinterval [Xik-l, Xik], k = 1,2, ... , Pi by the line 
segment joining (Xik-l,/;(Xik-l)) and (Xik,/;(XiJ). That is ]; is shown in 
Figure 8.6 by the straight line segments approximating /;. Formally: 

(8.23) 

Now, as Xi E [Xik-l> Xik], Xi can be expressed as 

(8.24) 

o 
XiO 

Figure 8.6. A piecewise linear approximation of k 
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where 

and 

By (8.24) 

By (8.25) 

Thus (8.23) becomes 

JJxi) = h(Xik-l) + [h(Xik) - h(Xik-l)]Clik' 

By (8.25) 

In general 

where 

and 
k = 1, 2, ... , Pi' 

The family of Pi equations given by (8.27) can be combined as 

};(Xi) = CliOh(XiO) + CLilh(Xil) + ... + CLip,!(X ip,), 

where 
CLiO + CL il + ... + CLipi = 1 

CLik 2 0, k = 0, 1, ... , Pi' 

(8.25) 

(8.26) 

And for each i, 1 ~ i ~ n, at most two CLik'S can be positive, and if two are 
positive they must be adjacent. That is, if 

for some k E {O, 1, ... , pd, then at most one of 

(8.27a) 

holds and all other CLik'S are zero. 
We define the approximating functions for all of the functions in the 

problem in this way: 

Pi 

};(x;) = L CLikh(X ik), i = 1,2, ... , n, (8.28) 
k=O 

Pi 

gi(X;) = L CX ik9;j(x id, i = 1,2, ... , n, (8.29) 
k=O j = 1,2, ... , m. 
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We can now formulate an approximation of the original problem by 
substituting J; for /; and gij for gij using (8.28) and (8.29): 

Maximize: 

subject to: 

n Pi 

L L r:J.ikk(Xik) j = 1,2, ... , m, 
i=l k=O 

n Pi 

L L r:J.ikgiiXik) = 0, i = 1,2, ... , n, 
i=lk=O 

Xi ~ 0, i = 1, 2, ... , n, 

p, 

L r:J.ik = 1, i = 1, 2, ... , n, 
k=O 

r:J.ik ~ 0, k = 0, 1, ... , Pi' 

i = 1,2, ... , n. 

And constraint (8.27a) holds. 
This is a linear programming problem in which the j;(XiSS and the 

gij(XiSS are constants and the r:J.ik'S are the decision variables. (8.27a) poses 
a minor problem in that it imposes restrictions on which variables can enter 
the basis if the simplex method is used to solve it. This means that a check 
must be made at each iteration to ensure that 8.27a is not violated when a new 
variable is brought into the basis. If the selection criterion specifies that the 
variable to enter is such that 8.27a is violated, then that variable is ignored 
and the criterion is applied anew. This type of strategy will also appear in 
the quadratic programming technique of Section 8.3.5. 

Unfortunately there is no guarantee that the solution to the L.P. problem 
will be even feasible let alone optimal for the original problem. This is 
because the approximate feasible region may yield an optimal point which 
lies outside the original feasible region. Even if the optimal point for the 
L.P. is feasible it may be only a local maximum. 

When each /; is concave, j, being the sum of a number of convex functions 
is also concave. (The proof of this fact is left as an exercise.) Similarly, when 
each gij is convex, each gj is convex. Now the necessary conditions for a 
point to be a global maximum are sufficient when j is concave and the 
feasible region is convex. As the feasible region is defined by a set of convex 
functions it is convex. Thus if each /; is concave and gij is convex, any 
stationary point will be a global maximum. 

In this case the optimal solution to the approximating problem will be 
optimal for the original problem. To see why this is so we formulate a new 
approximating problem. Let 

where 
Xi = Yil + Yi2 + ... + Yip" 

h<k 
h=k 
h>k 

(8.30) 
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when 

As an example, if 

X iq = 2q, q = 0, 1,2, ... , 5, 
as in Figure 8.7: 

Pi = 5 
and 

Xi = 5.5, 
then 

k = 3, 

i.e., Xi lies in the 3rd interval. In this case 

Thus 

Consider };(x;) where 

By (8.23) 

Since 

The expression 

0 2 

X iO Xi! 

Yil = XiI - XiO = 2 - 0 = 2 

Yi2 = Xi2 - XiI = 4 - 2 = 2 

Yi3 = Xi - X i3 = 5.5 - 4 = 1.5 

Yi4 = Yi5 = o. 

Xi = Yil + Yi2 + Yi3 + Yi4 + Yi5 

= 2 + 2 + 1.5 + 0 + 0 = 5.5. 

h < k, 

h(Xir) - h(xir - 1) 
(X ir - X ir - 1 ) 

4 5.5 6 
I 

X i2 Xi X i3 

Figure 8.7 

8 Nonlinear Programming 

8 10 
I 

X i4 XiS 
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is an approximation of the slope of J; over the interval [Xir - 1, Xir], which 
we denote by J;r' Therefore 

Pi 

J:(Xi) = J;(XiO) + L J;rYir' 
r= 1 

Similar approximations can be constructed for each gij: 

Pi 

gij(Xi) = gij(XiO) + L gijrYi" 
r= 1 

where 

Summing all expressions of each type we have 
n n Pi 

j(x) = L J;(XiO) + L L J:rYir 
i=1 i=1 r=1 

n n Pi 

gj(Xi) = L gij(XiO) + L L gijrYir' 
i=1 i=1 r=1 

These expressions can be used to formulate a new linear programming 
problem: 

n Pi 

Maximize: L L J;rYir 
i= 1 r= 1 

n Pi n 

subject to: L L O'ijrYir:$; - L giixiO), j = 1,2, ... , m. 
i=1 r=1 i=1 

j = 1,2, ... , n 

r = 0, 1, ... , Pi' 

Note that the expression 
n 

L J;(XiO) 
i=1 

has been omitted as it is a constant. The terms: J;" O'ij" gij(XiO), Xir are all 
constants and the Yi;S are the decision variables. Conditions (8.30) have 
not been included in the above formulation as they are implicitly satisfied 
when f is concave and the g/s are convex. 

This is because for any i and r: 

J;r ~ J;., for all s < r, (8.31) 

as J; is concave. That is, the slope of J;(Xi) decreases as Xi increases by virtue 
of the nature of concavity. Therefore the objective function coefficients J;r 
are automatically assembled in nonincreasing order for each given i. How­
ever, by analogous reasoning, for any pair i and j 

O'ijr :$; O'irs for all s < r. (8.32) 
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Thus the technological coefficients, 9ij r are automatically assembled in 
nondecreasing order for each pair i and j. 

Equations (S.31) and (S.32) together imply that for a given i, the order 
preference of the variables is: Yil, YiZ, ... 'Yip,. Hence conditions (S.30) will 
be satisfied automatically. The very last family of constraints can be ignored, 
as f is concave and the g/s are convex. 

8.3.5 Quadratic Programming 

There exists a special class of nonlinear optimIzation problems called 
quadratic programming (Q.P.), for which a considerable amount of theory 
has been developed. The maximization version of the Q.P. problem is given 
below: 

Maximize: 

subject to: 

f(X) = CTX + XTDX 

AX:s::B 

X;::::O. 

x = (XI' Xz, ... , xn)T is the vector of decision variables, C is an n x 1 vector 
and B an m x 1 vector, both of given real numbers. A and D are real matrices 
of appropriate dimensions, and D is assumed symmetric negative definite. 
This last assumption means that f is strictly concave (see Section 9.1.6 
in the Appendix). As can be seen, f is a quadratic function subject to only 
linear constraints. The solution to this problem can be obtained by applying 
the Kuhn-Tucker conditions of Section 7.4.2.l. As f is strictly concave and 
the constraint set defines a convex region, satisfaction of the Kuhn-Tucker 
necessary conditions guarantees a global optimum. The constraints, in­
cluding the non negativity conditions, can be rewritten in a form compatible 
with Section 7.4.2.l: 

AX - B:s:: 0 

-X:s::O. 

(S.33a) 

(S.33b) 

Let AI, A2 , •.. , I'm be the Lagrange multipliers associated with (S.33a), where 
A is m x n. Let 6[,62 , ••• , 6n be the Lagrange multipliers associated with 
(S.33b). Then the Kuhn-Tucker conditions yield (on dropping the *'s): 

C + 2XT D - leA + 6 = 0 

AX - B:s:: 0 

-X:S::O 

X(AX - B) = 0 

6X = 0 

),;:::: 0 

6;:::: 0, 
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where 
A = (AbAz, ... , Am) 

6 = (6 b 6z, ... , 6n). 

Introducing slack variable Sl' Sz, ... 'Sm' where 

S = (Sl' SZ, ... , sm)T 

we obtain 
AX + S = B. 

The conditions can be rearranged as follows: 

- 2XT D + AA - 6 = C 

AX + S = B 

6X = 0 

AS= 0 

S 2:: 0, X 2:: O. 
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(S.34) 

(S.35) 

(S.36) 

(S.37) 

The problem is now to solve (S.34) and (S.35) while also satisfying (S.36) and 
(S.37). Because f is strictly concave and the feasible region is convex, the 
solution found must be optimal for the original problem. Thus it is enough 
to find a feasible solution to the system (S.34), (S.35) viewed as the constraint 
set of an L.P. problem. The only restrictions are (S.36) and (S.37), which 
imply that 6j and Xj or Ai and Si cannot both be simultaneously positive for 
any i or j. Restrictions of this type occurred in the separable programming 
method of Section S.3.4.2. 

The solution is found by using phase I of the two-phase method of Section 
2.5.4, making sure that (S.36) and (S.37) are never violated. In practice, this 
means that, if one of 6i and Xi or Aj and Sj are in the basis (assuming no 
degeneracy), then the other cannot enter the basis. When phase I has been 
completed, the optimal solution (if it exists) will have been found. As de­
scribed in Chapter 2, if all the artificial variables are zero on termination of 
phase I, the problem has a feasible solution; otherwise it has no feasible 
solution. 

S.3.5.1 Examples of Q.P. 

Consider the following problem: 

Maximize: 

subject to: 

f(X) = f(x 1, Xz) = 3x1 + 2xz - xi - X1XZ - X~, 

4X1 + 5X2 ::; 20 

Written in matrix form, the problem is: 

Maximize: (Xl) (-1 f(X) = (3,2) + (Xb XZ) 1. 
X z -2 

-t)(X1). 
-1 X z 
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Thus 

cT = (3,2) 

_(-1 -!) D - 1 
-2 -1 

A = (4,5) 

B = 20. 

8 Nonlinear Programming 

We need one Lagrange multiplier Al to be associated with the constraint 
and <5 1 and <5 2 to be associated with the nonnegativity conditions. 
Substituting all this into the rearranged Kuhn-Tucker conditions yields: 

=n + Al(4,5) - (<51><5 2) = (3,2), 

(4, 5)GJ + 83 = 20, 

where the vector of slack variables S consists of a single variable, say 83' 

Writing out the first two equations and introducing artificial variables 81 

and 82 in the first, we have: 

2Xl + X2 + 4Al - <5 1 + 81 = 3, 

Xl + 2X2 + SAl - <5 2 + 82 = 2, 

4Xl + 5x2 + 83 = 20. 

Recall that in the two-phase method the objective is to remove the artificial 
variables from the basis by minimizing their sum, i.e., 

Minimize 80 = 81 + 82' 

In tabular form the system is: 

Xl X2 Al <5 1 <5 2 81 82 83 r.h.s. 
2 1 4 -1 0 1 0 0 3 
1 2 5 0 -1 0 1 0 2 
4 5 0 0 0 0 0 1 20 

8 0 0 0 0 0 0 1 1 0 0 
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In canonical form: 

Xl X2 Al 15 1 152 Sl S2 S3 r.h.s. 
2 1 4 -1 0 1 0 0 3 
1 2 5 0 -1 0 1 0 2 
4 5 0 0 0 0 0 1 20 

So -3 -3 -9 1 1 0 0 0 -5 

We apply phase I to this tableau, taking care that none of the pairs: 151> Xl; 

15 2 , X2; Al , S3 are simultaneously positive. Al cannot enter the basis as S3 =f. O. 
But Xl can enter the basis as 15 1 = 0: 

Xl X2 A1 15 1 15 2 Sl S2 S3 r.h.s. 
1 1 2 1 0 1 0 0 3 

2 -2 2 2 

0 ~ 3 1 -1 1 1 0 1 
2 -2 2 

0 3 -8 2 0 -2 0 1 14 

So 0 3 -3 1 1 3 0 0 1 
-2 -2 2 -2 

Now X2 can enter the basis as 15 2 = 0: 

Xl X2 Al 15 1 15 2 Sl S2 S3 r.h.s. 
1 0 1 2 1 2 1 0 4 

-3 3 3 -3 3 

0 1 2 1 2 1 2 0 1 
3 -3 -3 3 3 

0 0 -14 1 2 -1 -2 1 13 

So 0 0 0 0 0 1 1 0 0 

Phase I has now been completed with So = O. Thus the original problem 
does have a feasible solution. Indeed the optimal solution to the original 
problem can be found from this tableau with 

and 

X! = 1, 
X! = 1, 

f(x!, x!) = l 

8.3.6 Geometric Programming 

Geometric programming is a technique developed in the late 1960's for 
solving a certain class of nonlinear programming problems. Although this 
class includes certain kinds of problems which have constraints, the only 
constraints we allow here are that the decision variables must all be strictly 
positive. For the general techniques the reader should refer to the book 
written by the inventors of the subject, Duffin, Peterson and Zener (1967) 
and to Beightler and Phillips (1976) for applications. 
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Geometric programming is concerned with the optimization of the class 
of functions of the form: 

Minimize: 

subject to: Xi>O, i = 1,2, ... , n, 

where 

j = 1,2, ... , m, 

and aij' i = 1, 2, ... , n;j = 1, 2, ... , m are arbitrary real numbers. Note that 
f(X) is not in general a polynomial as the aij's may possibly be negative. As 
the coefficients, Cj of the terms of f(X) must be positive, Duffin, Peterson, 
and Zener call f(X) a posynomial. 

Let X* be the optimal solution to the above problem. Then if we define 

n 

Pj(X) = Il xf'j, j = 1,2, ... , m, 
i= 1 

we can express f as 
m 

f(X) = L CjPj(X). 
j= 1 

As each Xi is constrained to be positive, each term CjpiX) must be positive 
when X = X*. Thus once we know the value of f(X*) we can calculate the 
fractional contribution Wj made to it by the ith term, that is 

Of course 

CjPj(X*) 
Wj = f(X*) , j = 1,2, ... , m. 

(8.38) is called the normality condition. Also 

° ~ Wj ~ 1, j = 1, 2, ... , m. 

The fractions Wj are called weights. 

(8.38) 

Applying the necessary conditions for f to have a minimum at X* we 
have 

where 

of(X*) 

OXk 

m n 

L Cjakj(Xt)(akr 1) Il (xna'j = 0, k = 1,2, ... , n, 
j=1 i*k 

X* = (xt,x~, .. . ,xn 
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Multiplying the kth equation by xt (> 0) these conditions reduce to 

or 

or 

m n 

L Cjakj n (x1)a ij = 0, 
j; 1 i; 1 

m 

L CjakjPj(X*) = 0, 
j; 1 

j; 1 

k = 1,2, ... , n 

k = 1,2, ... , n. 

k = 1,2, ... , n, 

k = 1,2, ... , n. 

(8.39) is called the set of orthogonality conditions. 
Now 

~ m 

f(X*) = {f(X*W = {f(X*)}j~l Wj = n {f(X*)}Wj 
j; 1 
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(8.39) 

As the c/s are given constants, once the weights are found we can compute 
f(X*). The w/s are found using (8.38) and (8.39) which represent a system of 
(n + 1) linear equations in m unknowns. When n + 1 = m the system can be 
solved by conventional methods (such as the Newton-Raphson method 
referenced earlier). When m exceeds (n + 1) special techniques must be 
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employed to find the optimal weights. Indeed the more m exceeds (n + 1), 
the harder the problem. This has led to the quantity m - (n + 1) being called 
the degree of difficulty of the problem. 

We now solve a problem with degree of difficulty zero: 

Minimize: 

subject to: 

Now 

Thus 

f(X) = f(x 1, x 2 , x 3 ) 

= 2X1X21 + 3X2X32 + 2X;-2X2X3 + x 1XZ 

X),X Z'X 3 > O. 

C = (c 1, Cz, C3, c4 ) = (2,3,2,1), 

P1(X) = X1X21X~, 

pz(X) = X?XZ X3 z, 

P3(X) = X;-ZX ZX3, 

P4(X) = X1X2X~, 

o 
1 

-2 

-2 
1 

The orthogonality and normality conditions are 

o -2 
1 

-2 1 
1 

Thus we have a system of four linear equations in four unknowns with zero 
degree of difficulty. This system has a unique solution: 

Thus 

and 

* _ (~)7/14 (~)Z/14 (~)4/14 (~)1/14 
f(X ) - 7 Z 4 1 

14 14 14 14 

= 6.50491068 

2X'j'(X!)-1 = 174(6.504)} x! = 0.869255252 
3x!(x!)-Z = /4(6.504) = x! = 0.534522483 

2(x!)-Zx!x! = 1~(6.504) x! = 1.213626700. 

Note that the final set of equations solved are nonlinear. However one can 
linearize these by taking logarithms. Further, it is interesting to note that 
the above derivation of (8.38) and (8.39) does not rely on the c/s. Thus 
the xts are independent of these values. Hence for the above problem, the 
solution found is optimal for any set of (positive) cj values. Of course the 
optimal solution value f(X*) will change as the c/s change. We end this 
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section with a brief guide of how to solve problems with positive degree of 
difficulty by solving a numerical example. 

Consider the following problem: 

Minimize: 

subject to: 

f(X) = f(xl>x 2 ) 

= 2X 1X21 + 3x2 + 2x12 + X1X23 

Xl>X2 > O. 

The orthogonality and normality conditions are: 

o -2 

1 0 

1 1 

As the number of unknowns is one more than the number of constraints, 
the degree of difficulty of the problem is one. Solving for the first three 
weights in terms of the fourth, we obtain 

Wi = ~(1 - ~W4) 

W2 = ~(1 + 3W4) 

W3 = t(1 - 2W4)' 

There is an infinite number of solutions to this system, and we now set about 
selecting the optimal one. Recall that 

f(X*) = Ii (Cj)Wj. 
j= 1 Wj 

Thus in this case 

* _ ( 2 )2/5(1 + 9/2 w 4) ( 3 )2/5(1 + 3W 4) 

f(X ) - 2 (1 9 ) 2 (1 3 ) 
5 - zW4 5 + W4 

X (1 2 )1/5(1- 2W4) (~)W4. 
5(1 - 2w4 ) W4 

Now Inf(X*) will be minimal when f(X*) is minimal. Taking logarithms of 
both sides, we get 

Inf(X*) = ~(1- ~w4)[ln 10 -In (2 - 9W4)] + ~(1 + 3w4)[ln 15 -In (2 + 6W4)] 

+ ~(1- 2w4) [In 10 -In (1 - 2w4)] + w4[ln 1 -In W4]. 

Employing the necessary conditions for Inf to have a minimum at X*, we 
get 

olnf(X*) o = -Hln 10 - In(2 - 9w4)] +! + Hln 15 - In(2 + 6w4)] 
W4 

- ~ - Hln 10 -In(1 - 2W4)] + ~ + [In 1 - In W4] - 1 

=0. 
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Hence 

!In(2 - 9w4 ) - ~ln(2 + 6w4 ) + ~ln(1 - 2w4 ) -In W4 = 1.81602693, 

so that 

Also 

Further 

so that 

W4 :::::; 0.07980696 

wi = 0.25634747 

wi = 0.49576835 

w! = 0.16807722. 

f(X)- - - - -* _ ( 2 )W~ ( 3 )W; ( 2 )W; ( 1 )w: 
wi wi w! W4 

= (1.69322)(2.44125)(1.51625)(1.22356) 

= 7.66869727. 

2(xi}-2 
w*--~-

3 - f(X*) 

w* _ 3xi 
2 - f(X*)' 

xi = 1.24566074 

xi = 1.26729914. 

8.4 Exercises 

(I) Computational 

1. Suppose it is wished to locate the maximum value of the following functions within 
the given interval I. Reduce the interval to within 10% of its original length using 
using Fibonacci search. 
(a) a(S) = - 2S2 + S + 4, I = ( - 5, 5), e = ~ 

[1* = (- /3, N7)]. 
(b) a(S) = _4S2 + 2S + 2, 1= (-6,6), e = lo 

[1* = ( - 0.46, 0.56)], 

(c) a(S) = S3 + 6S2 + 5S - 12, I = (- 5, - 2), e = lo 
[1* = (- 3.615, - 3.384)]. 

(d) a(S) = 2S - S2, 1= (0,3), e = 160 
[1* = m,H)]. 

(e) a(S) = S2 - S - 10, I = (-10,10), e = t 
[1* = (-1, ¥o)]. 

(f) a(S) = -(S + 6)2 + 4, I = (-10,10), e = t 
[1* = ( - 6.924, - 5.386)]. 
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(g) a(S) = 3S2 + 2S + 1, 1 = ( - 5, 5),8 = l2 
[1* = ( - 0.383, 0.467)]' 

(h) a(S) = - S2 + 4S + 4, 1 = ( - 5, 5), 8 = to 
[1* = m~,H)]' 

(i) a(S) = S3 - 2S2 + S - 4,1= (-tt), 8 = iz 
[1* = (t, t)]. 

(j) a(S) = - S2 + 4S - 3, 1 = (0,5), 8 = t 
[1* = (1j-, 187)]. 

(k) a(S) = S - S2 + 4, 1 = (0,2), 8 = lo 
[1* = (f.,-, ~6)]' 

(I) a(S) = S2 + 2S - 3, 1 = ( - 4, 6), 8 = t 
[1* = m,6)]. 

(m) a(S) = -2S2 +3S+6,1=(-3,5),8=i 
[1* = (0, ~)]. 

2. Repeat Exercise 1 using golden section search. 

3. Repeat Exercise 1 using Bolzano's method. 

4. Repeat Exercise 1 using even block search. 
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5. Attempt to maximize the following unconstrained functions using pattern search, 
given initial starting point X 0, el = e2 = 0.1, and resolution 81 = 82 = 0.001. 
(a) f(X) = -xi + X l X 2 - x~, Xo = (2,3) 

[X* = (0,0)]. 

(b) f(X) = 4Xl - xi - +2XlXl - 2x~, Xo = (1' 1) 
[X* = (2,4)]' 

(c) f(X) = 3xl - xi - 2x~ + 4X2 + 15, Xo = (0,0) 
[X* = (t 1)]. 

(d) f(X) = -(2X2 - xd2 - 4(Xl + W, XO = (0,0) 
[X* = (-3, -f)]. 

(e) f(X) = -xi-xlx2-x~,Xo=(5,5) 
[X* = (0,0)]. 

(f) f(X) = -xi - x~, Xo = (3, -4) 
[X* = (0,0)]. 

(g) f(X) = - (Xl - 1)2 - (X2 + 2)2, X 0 = (0,0) 
[X* = (1, -2)]. 

(h) f(X) = -(Xl - 2)2 - (X2 - W, XO = (0,0) 
[X* = (2,3)]. 

6. Repeat Exercise 5 using one-at-a-time search. 

7. Repeat Exercise 5 using Rosenbrock's method. 

8. Repeat Exercise 5 using Powell's method. 

9. Maximize the following unconstrained functions using the gradient method of Sec­
tion 8.2.3, with X 0 = (0,0,0). 
(a) f(X) = -3(Xl - 2)2 - 4(X2 - W - 2(X3 + 5)2 

[X* = (2,3, -5)]. 
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(b) f(X) = -2x l(X l - 4) - X2(X2 - 2) 
[X* = (2,1)]' 

(c) f(X) = X1X2 - 2x~ - X1X3 
[unbounded]. 

(d) f(X) = X1X2 - 2xI - 2X1X3 
[X* = (O,t!)]. 

(e) f(X) = (Xl - 3)2 - 4(X2 - 2)2 - x~ 
[X* = (3,2,0)]' 

(f) f(X) = -xi - (X2 - 2)2 - 2(X3 - W 
[X* = (0,2,3)]' 

(g) f(X) = X1X2 - XI - x~ - x~ 
[X* = (0,0,0)]. 

(h) f(X) = 5xI + x~ + xi - 4X1X2 - 2Xl - 6X3 
[X* = (1,2,3)]' 
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10. Solve the above problems by using the gradient partan method of Section 8.2.3.1 

11. Solve the above problems by using the conjugate gradient method of Section 8.2.3.3. 

12. Attempt to maximize the following functions using the method of Newton and 
Raphson of Section 8.2.2.1. 
(a) f(X) = -(Xl - W - (X2 - 4)2 + 1 

[X* = (3,4)]. 

(b) f(X) = -(Xl + 2)2 - (X2 - 1)2 
[X* = (-2,1)]. 

(c) f(X) = (Xl + 1)2 - X1X2 - 2x~ 
[X* = (0,2,0)]. 

(d) f(X) = -(Xl - 3)2 - 4(X2 - 6)3. 

(e) f(X) = - 5(X1X2 - W - 4XIX2 - 2(X1X2 - 1)3. 

(f) f(X) = (Xl - 2)2 + (X2 - W - 4xIx2· 

(g) f(X) = xi - 3XIX~, 

(h) f(X) = 4XI - (2X2 - 2xd2 + 4XIX2 + 3x2. 

(i) f(X) = 5xI + x~ + x~ - 4X1X2 - 2Xl - 6X3 
[X* = (1,2,3)]' 

13. Repeat Exercise 8.1.2 using the variable metric method of Section 8.2.2.2. 

14. Minimize the following functions using geometric programming. 

(a) f(X) = 3xix2x3 + XIX~X3 + 4xIx2X3 + 6xi5XZ5/2X32. 

(b) f(X) = 3X1Xz3X~ + 2xi2X2 + X~X3l 
[X* = (1.094,1.077,1.041)]' 

(c) f(X) = 4xi + 4xi2X~ + 5XZ4X~ + X3 3 

[X* = (0.9073,1.0561,0.8211)]' 

(d) f(X) = xix2x35 + 4xIx~/2X33 + 4X1XZ2X~ 
[X* = (2(1/4)1/4, (1/4)1/14, (1/4)- 1128)]. 
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(e) f(X) = 3XIX2 + 5x2x32 + xllx2"l + 2xllx~ 
[X* = (1.82,0.234, 1/.J2)]. 

(f) f(X) = 8X1X2 + 2X1X3 + 4x12x2"lx3 2 + x l l 

[X* = (1.5004,0.4992,3.9936)]' 

(g) f(X) = X~/2X2 + 2xIx~X32 + XllX3 l + 4x2"lx2 
[X* = (0.2878,2.3438,1.842)]. 

(h) f(X) = 3X~X3l + 6XIX2" 2 + 2xll + xllx2"2x~ 
[X* = (1.03,0.872, -1.05)]. 

(II) Theoretical 
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15. Show that the directions Dj , i = 1, 2, ... generated in Section 8.2.3.3 are mutually 
conjugate. 

16. Compare the performance of the methods used in Exercises 1-4 with the method 
outlined in Section 8.2.1 by using it to solve the problems in Exercise 1. 

17. Prove that the global maximum of a negative definite quadratic function of n vari­
ables can be found after 2n - 1 steps by the gradient partan method. 

18. Show that if a function of two variables has contours which are negative definite 
quadratics that these contours are concentric ellipses. 

19. If X* is a global maximum for the function described in Exercise 18 and Xl' X 2 E 

R2, prove tangents Tl and T2 to the contours of f at Xl and X 2 are parallel if and 
only if Xl and X 2 are collinear with X*. 

20. Prove that Xl in Exercise 19 is the maximum point for f along T l . 

21. Justify the formulae for F j and Gj in Section 8.2.2.2. 

22. Apply the Kuhn-Tucker conditions to the quadratic programming problem of 
Section 8.3.5. 



Chapter 9 

Appendix 

This appendix comprises two parts: an introduction to both linear algebra 
and basic calculus. We begin with linear algebra. 

9.1 Linear Algebra 

9.1.1 Matrices 

Definition. A matrix is a rectangular array of elements (often real numbers). 

If A is a matrix, we write 

(

all 

A = ~21 

am1 

... a ) 1n 

... a2n 

amn 

Here A is said to have m rows and n columns and the element in the ith row 
and jth column, 1 ::; i ::; m, 1 ::; j ::; n is called the i, j element, or aij' A is also 
denoted by (aij)m x n. 

Definition. A matrix is termed square if m = n. 

Definition. The identity matrix is a square matrix in which 

{
O, if i # j 

aij = 1, otherwise. 

370 
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The identity matrix with n columns (and rows) is denoted by In> or simply I 
if no confusion arises; it is of the form: 

n columns 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

I = n rows. n 

0 0 0 1 0 
0 0 0 0 1 

Definition. A matrix is termed a zero matrix if all its elements are zero, i.e. 

The zero matrix with m rows and n columns is denoted by Om x n' or simply 
o if no confusion arises, and is of the form: 

n columns 

o 0 ... 0 (~)t Om x n = 6 6 0 m rows. 

Definition. The transpose of a matrix A = (aij)m x n is a matrix with n rows and 
m columns with its i, j element aij defined by 

l~i~n,l~j~m. 

The transpose of A is denoted by A T and is obtained from A by making 
the ith row in A the jth column in AT, 1 ~ i ~ m. Note that for any matrix A, 

(ATV = A. 

Definition. Two matrices A = (aij)m x nand B = (bi)m x n are termed equal if, 
and only if, 

Note that equality is not defined if A and B do not have the same number 
of rows and of columns. 

9.1.2 Vectors 

Definition. A vector is a matrix which has either: 
a. exactly one row (m = 1), or 
b. exactly one column (n = 1). 
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It is usual to drop the first (second) subscript in case a (b). In case a the 
vector is often called a row vector and is denoted by: 

In case b the vector is often called a column vector and is denoted by 

A vector (either row or column) with n entries is called an n-vector. 

Definition. A finite set {X b X 2 , ..• ,Xq }, of n-vectors is said to be linearly 
independent if and only if 

q 

L (XiXi = 0, 
i= 1 

for (Xi' i = 1, 2, ... , q real numbers, implies that 

(Xi = 0, i = 1,2, ... , m. 

Definition. A finite set of n-vectors is said to be linearly dependent if it is not 
linearly independent. 

For example, the set of 3-vectors {X 1, X 2, X 3} given by 

X 1 =(1,0,0), X 2 = (0,1,0), X3 = (0,0,1) 

is linearly independent. However, if X 3 = (1,1,0) the set is linearly depen­
dent. 

9.1.3 Arithmetical Operations on Vectors and Matrices 

Unless otherwise mentioned, the following operations are defined for vec­
tors, which can be thought of as simply a special type of matrix. 

(i) Scalar Multiplication 

The scalar product of a matrix A = (ai)m x n and a real number (X is defined as 
a new matrix, denoted by (XA. The i, j element of (XA is defined by 

(Xaii' 1 ::;; i ::;; m, 1 ::;; j ::;; n. 

(ii) Addition 

Two matrices A = (ai)rn x nand B = (bi)rn x n can be added together to form a 
new matrix, called the sum of A and B, denoted by A + B. The i, j element of 
A + B is defined by 

1 ::;; i ::;; m, 1 ::;; j ::;; n. 
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Note that the sum of two matrices is not defined if they do not have both the 
same number of rows and of columns. 

(iii) Subtraction 

Two matrices A = (ai)mxn and B = (bi)mxn can be subtracted to form a new 
matrix, denoted by A - B. A - B is formed by forming the sum of A and the 
scalar product of -1 and B. Thus the i, j element of A - B is defined by 

1:::;; i:::;; m, 1 :::;;j:::;; n. 

Note that A - B is not defined if A and B do not have both the same number 
of rows and of columns. 

(iv) Multiplication 

Two matrices A = (aij)m x q and B = (bi)q x n can be multiplied to form a new 
matrix, C = (Ci)m x"' called the product of A and B. The i, j element of C is 
defined by 

q 

Cij = L aikbkj , 
k= 1 

l:::;;i:::;;m,l:::;;j:::;;n. 

C is denoted by AB. Note that the product AB is not defined unless A has the 
same number of columns as B has rows. Thus, although AB may be defined, 
for a given pair of matrices A and B, BA may not necessarily be defined, and 
even if it is, it is not necessarily so that 

AB=BA. 

Examples of this multiplication are given below: 

6) ~ (1 x 5 + 2 x 7 1 x 6 + 2 x 8) = (19 
8 3 x 5 + 4 x 7 3 x 6 + 4 x 8 43 

22) 
48 G ~)C 

(! ~ !)(: 10) 11 = (1 x 7 + 2 x 8 + 3 x 9 
12 4 x 7 + 5 x 8 + 6 x 9 

1 x 10 + 2 x 11 + 3 x 12) 
4 x 10 + 5 x 11 + 6 x 12 

( 50 68) 
= 122 167 

(1,2)G :) = (1 x 3 + 2 x 5 1 x 4 + 2 x 6) = (13,16) 

G :)G)=G: ~::: D=G~) 
(1, 2)(!) = (1 x 3 + 2 x 4) = (11). 

Note in the last example that the product of two vectors yields a scalar. 
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It is not difficult to prove some simple properties of the above operations. 
For all matrices A, B, C, D, and E with m rows and n columns, and all real 
numbers 1)(: 

A+O=O+A=A 

A+B=B+A 

A + (B + C) = (A + B) + C 
A - (B - C) = (A - B) - C 

(A+Bf=AT+BT 

(A - Bf = AT - BT 

I)((A + B) = I)(A + I)(B, 

and if all the necessary multiplication is compatible: 

(v) Vector Distance 

IA = AI = A 

A(DE) = (AD)E 

A(D + E) = AD + AE 

(D + E)A = DA + EA 

I)((AB) = (I)(A)B = A(I)(B). 

Definition. The distance between two n-dimensional vectors, X = (Xb X2, •.. , 

xmf and Y = (Yb Y2, ... , YY is \\X - Y\\' defined as follows: 

9.1.4 Determinants 

Any square matrix A whose entries are real numbers has associated with it a 
unique real number called its determinant, denoted by \A\ or det A. Rather 
than define \A\ explicitly, we will outline a method for calculating \A\ for any 
A. First we introduce some basic concepts. Associated with each element 
aij of A is a number which is the determinant of the matrix arrived at by 
deleting the ith row and jth column of A. This determinant is called the i, j 
minor and is denoted by Mij: 

all a12 a 1j-l alj+ 1 a 1n 

a21 a 22 a2j-l a2j+ 1 a 2n 

Mij= ai-ll a i - 12 ai-Ij-l ai-lj+ I ai-In 

a i + ll ai+ 12 ai+ Ij-l ai+ lj+ 1 a i + In 

amI a m2 a mj-l amj+l a mn 
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For example, if 

( 9 
7 

1~) 8 3 9 
A = 4 1 11 

2 6 12 20 

M" ~(~ 9 5) 
1 13, 
6 20 

where the inside parentheses are omitted by common convention. Asso­
ciated with each minor Mij is a cofactor Cij defined by 

(9.1) 

That is, each cofactor is either + 1 or -1 times the determinant of the 
associated minor. 

We can now begin to calculate IAI. Let A = (aij)nxn and r be such that 
1 :$; r :$; n. Then 

n 

IAI = L a,jCrj , (9.2) 
j=l 

Thus to calculate IAI we choose any row, say row r of A: 

We multiply each of these elements arj by the cofactor C rj and sum up all 
the products. Thus (9.2) reduces the problem of finding a determinant of an 
n x n matrix to n problems of calculating the determinant of an (n - 1) x 
(n - 1) matrix. Substituting (9.1) into (9.2) produces 

n 

IAI = L arj( -1)'+ jM'j' (9.3) 
r= 1 

We can now use (9.2) to reduce the problem of finding M rj from that of 
finding determinants of(n - 1) x (n - 1) matrices to that of finding (n - 2) x 
(n - 2) determinants. Eventually the problem is reduced to finding the de­
terminants of 2 x 2 matrices. We use the following definition in this case: 

IAI = l(aij}zx21 = l
alla12

1 = alla22 - a12a21' (9.4) 
a21a22 

We now illustrate this approach by finding the determinant of the matrix 
A given earlier in this section. Let r = 1 in (9.2) throughout the rest of this 
example. Then, by (9.3), we have 

IAI = all(-1)1+1Mll + a12(-1)1+2M12 
+ a13(-1)1+3M13 + a14(-1)1+4M14 

= 6Mll - 9M12 + 7M13 - 5M14· 

(9.5) 
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Now 

which, by (9.3), becomes 

395 
M ll = 1 11 13, 

6 12 20 

Mll=3(-1)1+11~~ ~~1+9(_1)1+21! ~~1+5(_1)1+31! ~~I' 

9 Appendix 

=3(11 x 20-13 x 12)-9(1 x 20-6 x 13)+5(1 x 12-6 x 11), by (9.4) 

=474. 

Similarly, 

M =8(_1)1+11 11 131+9(-1)1+214131+5(-1)1+314111 
12 12 20 2 20 2 12 

= 8(220 - 156) - 9(80 - 26) + 5(48 - 22) 

= 156 

M 13 =8(-1)1+11! ~~1+3(_1)1+21~ ~~1+5(_1)1+31~!1 
= 8(20 - 78) - 3(80 - 26) + 5(24 - 2) 

= -512 

M14 = 8(_a)1+11! ~~I + 3(_1)1+21~ ~~I + 9(_1)1+31~ !I 

= 8(12 - 66) - 3(48 - 22) + 9(24 - 2), 

= -312. 

Substituting all this information into (9.5) yields 

IAI = 6 x 474 - 9 x 156 + 7 x (-512) - 5 x (-312) 

= -584. 

The reader may like to verify that the following properties hold for some 
numerical examples and then prove them true in general. 

1. If A and B are two matrices which have the property that one can be 
obtained from the other by the interchange of two rows (or columns) then 

2. IAI = IATI for all matrices A. 
3. If a matrix A has a row (or column) of zeros, then 

IAI =0. 
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4. If B is a matrix which is obtained by adding a scalar multiple of a row 
(or column) to another row (or column) of another matrix A, then 

IBI = 1Ai-
From this and property 3 it follows that if two rows (or columns) of a 
matrix A are identical then 

IAI =0. 

5. (9.2) can be used to show that if a matrix B is obtained by multiplying by 
a scalar rJ. all the elements of a row (or column) of another matrix A, then 

6. If A = (ai). x. and B = (hi). x"' then the determinant of their product 
equals the product of their determinants, i.e., 

IABI = IAIIBI· 

Definition. The cofactor matrix A = (ai). x. of a matrix, A = (ai). x. is a 
matrix defined by 

where Cij is the cofactor defined in (9.1). 

Definition. The adjoint matrix, Aadj of a matrix, A = (ai). x n is a matrix 
defined by Aadj = AT, the transpose of the cofactor matrix. So 

C 
C21 

A . = C 12 C22 
ad) : 

C1• C2• 

9.1.5 The Matrix Inverse 

Definition. The inverse of a square matrix, A = (aij). x. is a matrix B = 
(hi). x. with the property that 

It is usual to denote B by A -1. 

Definition. A matrix A is termed nonsingular if 

IAI =F O. 
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The reader is encouraged to attempt to prove the following properties 
of the inverse. 

1. If A is a nonsingular square matrix, A -1 is unique. 
2. If A and B are both nonsingular square matrices with the same number 

of rows then 

3. A -1 A = I for all square, nonsingular matrices. 
4. If A is nonsingular and the given multiplications are defined, then AB = 

AC implies B = C. The inverse A -1 of a square, nonsingular matrix A 
may be computed using the following formula: 

-1 1 
A = W (Aadj). 

As an example, let us take the inverse of the matrix, A where 

A ~ (~ 
2 

~) 3 

1 
we have 

n 2 

-~) A= -2 
-6 

and 

n 1 

-~) Aadj = -2 
1 -5 

Further, 
IAI =4. 

Hence 

(
-3 

-1 1 1 
A = W (Aadj) = 4: ~ 

1 

-2 
1 

This can be verified as follows: 

(1 2 3~ (-i t i) (1 AA - 1 = 4 3 6 ! -! -1 = 0 

111 t t i 0 

o 0) 
1 0 = I. 

o 1 

(9.6) 

A second way in which the inverse of a matrix can be calculated is by 
Gauss-J ordan elimination. Suppose it is desired to calculate the inverse of 
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the square, nonsingular matrix A. We first form an appended matrix: 

B= [A I I], I 

where I is the identity matrix with as many rows as A. If the left-hand part of 
B is now transformed into I by adding scalar multiples of the rows of B to 
other rows, the right-hand part is transformed into A -1. As an example, we 
once again calculate the inverse of the matrix just displayed: 

B~ (; 
2 3 1 0 

~) 
R1 

3 6 0 1 R z 
1 1 0 0 R3 

becomes 

(~ 
2 3 1 0 

~) 
R1 

-5 -6 -4 1 R z - 4R1 

-1 -2 -1 0 R3 - R1 

(~ 
2 3 1 0 

~) 
R1 

1 6 4 1 R z/( - 5) 5 5 -5 

-1 -2 -1 0 R3 

(~ 
0 3 3 Z 

~ 
R1 - 2Rz '5 '5 5 

1 6 4 1 R z 5 5 -5 

0 4 1 1 R3 + R z '5 -5 -5 

(~ 
0 3 3 Z 

~) 
R1 '5 5 5 

1 6 4 1 R z 5 5 -5 

0 1 1 1 R3/( -!) 4 4 

(~ 
0 0 3 1 

') R1 - !R3 -4 4 -4 

1 0 1 1 

-1 R z - *R 3 2 -2 

0 1 1 1 R 3· 4 4 

Thus 

A -1 = right-hand part of B 

_ (-1 1 

-1) 4 
1 - z 2 -z , 

1 1 5 
'4 '4 4 

which is the same result as that obtained by the previous method. 



380 9 Appendix 

9.1.6 Quadratic Forms, Definiteness, and the Hessian 

A quadratic form is an expression of the type: 

f(X) = XTHX, 

where X is an n-dimensional vector and H is an n x n matrix. A quadratic 
form f(X) and its associated matrix H is said to be: 

negative definite if 

f(X) < 0, for all X =f. ° 
negative semidefinite if 

positive definite if 

f(X) ::; 0, for all X =f. ° 
f(X) = 0, for some X =f. ° 

f(X) > 0, for all X =f. ° 
positive semidefinite if 

indefinite if 

f(X) ~ 0, for all X =f. ° 
f(X) = 0, for some X =f. ° 

f(X) > 0, for some X 

f(X) < 0, for some X. 

The following rules can be invoked in order to determine the definiteness 
of any matrix H. 

1. H is negative (positive) definite if and only if all the eigenvalues of Hare 
negative (positive). (See Section 9.1. 7 for a discussion of eigenvalues.) 

2. H is negative (positive) semidefinite if and only if all the eigenvalues of H 
are nonpositive (negative) and at least one is zero. 

3. H is indefinite if and only if H has some positive and some negative 
eigenvalues. 

Thus the definiteness of H(X) can be discovered by examining the eigen­
values of H(X). This is often no trivial task. However the rules 1-3 require 
that only the signs of the eigenvalues be known, not the values themselves. 
These signs can be found by using Descarte's rule of signs. 
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Let us now examine the behavior of f at a critical point X*. That is, 

Vf(X*) = o. 
If: 

(a) H(X*) is negative definite, X* is a local maximum for f. 
(b) H(X*) is positive definite, X* is a local minimum for f. 
(c) H(X*) is indefinite, X* is a saddle point for f. 
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(d) H(X*) is either positive or negative semidefinite, nothing can be said 
about X*. 

9.1.7 Eigenvalues and Eigenvectors 

Given any n x n matrix H, the scalars AI, A2 , ... , An which are the zeros of 
the characteristic equation 

det(H - AI) = 0 

are called the eigenvalues of H. Here I is the n x n identity matrix. 
Corresponding to the n eigenvalues there are n eigenvectors X 1, X 2, ... , 

X no which satisfy 

Xi i: 0, i = 1,2, ... , n. 

It can be shown that all the eigenvectors of a real symmetric matrix are real. 
(Note that the Hessian matrix of a multivariable function with continuous 
second partial derivatives is symmetric.) Further, the eigenvectors which 
correspond to distinct eigenvalues are orthogonal, i.e., 

The relationship between the Hessian, the eigenvectors and eigenvalues can 
be expressed as 

H = ET /\E, (9.7) 
where 

and 
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if the eigenvectors X l' X 2, ... , Xn are replaced by unit vectors in the same 
direction. Now it can be shown that 

XTHXi = XTE T 1\ EXi , i = 1,2, .. , n, by (9.7), 

i = 1,2, ... , n. 

Hence it can be shown that a necessary and sufficient condition for H to be 
negative semidefinite is 

i = 1,2, ... , n. 

9.1.8 Gram-Schmidt Orthogonalization 

Given n linearly independent vectors d1, dz, ... ,dn , the Gram-Schmidt 
orthogonalization process can be used to construct from them n orthonormal 
vectors e1 , ez, ... , en- A set of vectors {eb ez, ... ,en} is termed orthonormal 
if 

e·e· = ' {
1 if i = j 

'J 0, otherwise. 

The process begins by setting, 

d1 

e 1 = ldJ 
so that (9.8) is satisfied for i = j = 1. Next choose 

ez = y1d1 + Y2dZ 

Now 

Hence 

and 

Therefore 

Let 

hence 

Now 

= 61e1 + 6zdz· 

e1(61e1 + 6zdz) = 61e1e1 + 62e1dz 

= 61 + 62e1d2 

=0 

e2 = 61e1 + 62d2 

= -62(e 1d2)e1 + 62d2 

= 62[d2 - (e 1d2)el]. 

(9.8) 
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Therefore 

Next choose 

Now 

and 

Therefore 

e3 = (Jld l + (J2 d2 + (J3d3 

= wle l + w2e2 + w3d3 • 

0= el(wlel + w2e2 + w3d3) = wlele l + w2ele2 + w3eld3 

0= e2(w le l + W2e2 + w3d3) = wl e2el + w2e2e2 + W3e2d3' 

Hence 

Therefore 

Let 

Hence 

Now 

Therefore 

0= w l + W3eld3 => wl = - w3eld3 

0= w2 + W3e2d3 => w2 = -W3e2d3' 

e3 = wl e l + W2 e2 + W3 d3 

= -w3(e ld3)el - w3(e2d3)e2 + W3 d3 

= w3[d3 - (e ld3)el - (e2 d3)e2J. 

g3 
e3 = jgJ' 

The process continues in this manner until en is constructed. 
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As an example, consider the orthogonalization of the following (row) 
vectors 

Now 

{d l ,d2,d3,d4} = {(0,2,0,0), (2,0,1,0), (0,0,1,1), (1,0,0,2)}. 

dl 

e l = ldJ 
= (0,1,0,0) 

g2 = d2 - (e ld2)e l 

= (2,0,1,0) - [(0,1,0,0)(2,0,1,0)](0,1,0,0) 

= (2,0,1,0). 
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Therefore 

Now 

Therefore 

Therefore 

gz 
ez = 19J 

1 
= 15 (2,0, 1,0). 

g3 = d3 - (e t d3)e t - (e Zd3)ez 

= (0,0,1,1) - [(0,1,0,0)(0,0,1,1)](0,1,0,0) 

-[Js (2,0, 1,0)(0,0,1, l)J(Js (2,9,1,0) 

= (to,t 1). 

g3 
e3=~ 

134 
= )2(5'0,5,1) 

g4 = d4 - (etd4)et - (e Zd4)ez - (e3 d4)e3 

= (1,0,0,2) - [(0,1,0,0)(1,0,0,2)](0,1,0,0) 

- [Js (2,0,1,0)(1,0,0, 2)J Js (2,0,1,0) 

1 
e4 = r'ifli'i ( - 29, 0, - 62,35). 
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9.2 Basic Calculus 

9.2.1 Functions of One Variable 

9 Appendix 

Definition. A real-valued function of one real variable f comprises a set D 
together with a rule for associating exactly one real number f(x) with each 
element x of D. 
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The set D is called the domain of f and the set {J(x): xED} is called the 
range of f. In this book the range is assumed to be a subset of R the set of 
real numbers, as is the domain (expect for the functionals of Chapter 7). 

We now turn to the concept of a limit of a function. 

Definition. The limiting value of f as XED tends to b is said to be d if and 
only if for all B > 0 there exists a (j > 0 such that 

o < Ix - bl < (j => If(x) - dl < B. 

The fact that f has a limiting value of d as x tends to b is denoted by: 

lim f(x) = d. 

Sometimes a function f is not defined for values of x that are either greater 
than a given value b or less than b. In these cases the above definition of a 
limit is invalid and we are lead to the concept of one-sided limits: 

Definition. The limiting value of f as XED tends to b from the right (left) 
is said to be d and only if for all B > 0 there exists a (j > 0 such that 

0< x - b < (j => If(x) - dl < B 

(0 < b - x < (j => If(x) - dl < B). 

These limits are denoted by; 

from the right: lim f(x) = d 
x-b+ 

and 
from the left: lim f(x) = d. 

x-b-

We come now to the concept of continuity of a function of one variable. 

Definition. A function f is said to be continuous at a point d E D if and only 
if for all B > 0, there exists a (j > 0 such that 

Ix - dl < (j => If(x) - f(d)1 < B. 

Note that, unlike the definition ofa limit, the above definition is such that 
there is no necessity that the left-hand quantity Ix - dl be positive. 

Definition. A function f is said to be differentiable at d E D if and only if the 
limit: 

lim f,,---,(_d _+----:h)_----=f'--'.(d--'-) 
h-O h 

exists. 
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If this limit does exist it is denoted by 1'(d), and is called the derivative 
of fat d. 

Definition. Iff is differentiable at x for all XED, f is said to be differentiable. 

The proof of the following theorem is left as an exercise for the reader: 

Theorem 9.1. If a function, f is differentiable at d E D, then f is continuous at d. 

One can attempt to find derivatives of 1'; if l' is differentiable then the 
derivative of l' at a point dE D is denoted by 1'(d). In general, when the 
process is repated k times, the final derivative is denoted by Pk)(d). 

9.2.2 Some Differential Theorems of Calculus 

Theorem 9.2 (Weierstrass' Theorem). If f is a continuous function on [XI. 

Xl + h] ~ D, then f attains both a maximum and a minimum value on [XI. 

Xi + h]. 

We omit proof of Theorem 9.2. Stated in other words, this theorem means 
that there exist x*, x* E [x I. X I + h] such that 

f(x):s:; f(x*) for all x E [XI,XI + h], 

f(x) ;;:: f(x*) for all x E [XI. Xl + h]. 

Theorem 9.3 (Rolle's Theorem). Iff is differentiable on (XI. Xl + h) ~ D and 
continuous on [Xl' Xl + h] and 

f(x l ) = f(x i + h) = 0, 

then there exists 8, ° < 8 < 1, such that 

1'(8XI + (1 - 8)(X1 + h)) = 0. 

PROOF. If 
f(x) = 0, for all X E [XI,XI + h], 

the result is true. If not, there exists X 2 E [XI,XI + h] such that 

f(x 2 ) -:f. 0. 
Assume 

f(X2) > 0. (9.9) 

(Iff is negative at this point an analogous prooffollows.) Since f is continuous 
we can invoke Weierstrass' theorem and state that f attains a maximum 
value on [XI,XI + h]. Thus there exists X*E [XI,XI + h] such that 

f(x):S:;f(x*), for all XE [XI,X I +h]. (9.10) 
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By (9.9), we have 

f(x*) > O. 
But as 

we have 
x* E (XbXI + h). 

Hence 1'(x*) exists, by assumption. Assume 

1'(x*) > O. 

Then there exists b > 0 such that 

f(x* - b) < f(x*) < f(x* + b). 

(Prove this.) But this contradicts (9.10). Assuming 

1'(x*) < 0 

leads to a similar contradiction. Thus 

1'(x*) = o. 
Define 0 to be such that 

x* = OX I + (1 - O)(XI + h). 

Then 0 < 0 < 1 and the theorem is proved. 
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o 

Theorem 9.4 (First Mean Value Theorem). Iff is differentiable on (Xb Xl + h) 
and continuous on [X b X I + h] s; D then there exists 0, 0 < 0 < 1 such that 

f(x i + h) = f(x l ) + h1'(Ox l + (1 - 8)(XI + h)). 

PROOF. Set 

{ X - Xl } g(x) = -h- (f(x i + h) - f(x l )) + f(XI) - f(x). 

Now 

and g is differentiable on (Xl> Xl + h) as f is. Thus, by Rolle's theorem there 
exists 8, 0 < 0 < 1, such that 

g'(OXI + (1 - 8)(x l + h)) = O. 
Hence 

0= (f(XI + h~ - f(x l )) _ 1'(8X I + (1 - 8)(XI + h)). 

Hence the result. o 
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9.2.3 Taylor's Theorem 

Let a function f with domain D be differentiable at x E [x I, X I + h Jin D. The 
first mean value theorem states that 

f(XI + h) = f(XI) + hf'«()XI + (1 - ())(XI + h), for some (), ° < () < 1. 

Ifj<k) is continuous on [XbXI + hJ andj<HI)(x) exists for all x E (XI,XI + h) 
we can generalize this result as follows: 

Theorem 9.5 (Taylor's Theorem). If j<k) is continuous on [XbXI + hJ and 
j<k+ 1)(X) exists for all x E (Xb Xl + h) then 

h2 

f(x i + h) = f(XI) + hf'(XI) + 2 f"(x l ) + ... 

hk + l 

+ (k + I)! j<H 1)«()XI + (1 - ())(XI + h)), for some (), ° < () < 1. 

PROOF (By induction). For k = 1, the above hypothesis is the first mean 
value theorem. Assume the result holds for k. Let 

g(x) = f(x l ) + (x - XI)f'(XI) + (x -2 xd2 f"(x l ) + ... + (x ~!XI)k j<k)(XI) 

(x - Xl)k+l 
+ (k + I)! R, 

where R is such that 
g(XI + h) = f(XI + h). 

Now we wish to show that 

R = f(H 1)«()XI + (1 - ())(XI + h)), for some (), ° < () < 1. 
Let 

m(x) = f(x) - g(x), 
As 

m(XI) = m(xi + h) = 0, 

by Rolle's theorem we have 

m'«()lx I + (1 - ()1)(XI + h)) = 0, for some ()l, ° < () < 1. 

Therefore 

1'(1]) = f'(XI) + (1] - xdf"(xd + ... 

+ (1] ~tl)k j<k+I)«()2XI + (1 - ()2)1]), for some ()2, ° < ()2 < 1. 

Thus 



9.2 Basic Calculus 389 

Define () such that 

()x1 + (1 - ())(X 1 + h) = ()2Xl + (1 - ()2)11 

and the theorem is proven. D 

9.2.4 Functions of Severable Variables 

Many of the results of the previous sections can be generalized to functions 
of several variables. The definition of a function can be so generalized by 
simply defining D, the domain of f, to be a set of n-dimensional real vectors. 

The definition of the limiting value of f can be amended as follows: 

Definition. The limiting value off as XED tends to b is said to be d if and 
only if for all 8 > 0, there exists (j > 0 such that 

o < IIX - bll < (j =*" If(X) - dl < 8. 

The definition of continuity follows analogously: 

Definition. A function, f is said to be continuous at XED if and only if for 
all 8 > 0 there exists (j > 0 such that 

IIX - dll < (j =*" If(X) - f(d)1 < 8. 

Things are a little more complicated when it comes to generalizing 
differentiation: 

be two points in the domain D of a function f. Then f is said to be differen­
tiable with respect to X; if and only if the limit: 

exists. 

If this limit does exist, it is denoted by of (X o)/ox; and is called the first 
partial derivative off with respect to x;. 

Assuming that all the partial derivatives of(X)/ox;, i = 1, 2, ... , n, exist 
for all XED, each can be thought of as a function on D. Each of these 
functions may have partial derivatives, which are termed second partial 
derivatives of f. Thus if of/ox; has a partial derivative with respect to Xj 

at X, the derivative is denoted by o2f/oxj x;. This process can of course be 
repeated if the necessary limits exist. 
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The first partial derivatives of f at X can be assembled into a vector: 

called the gradient vector off at X, denoted by Vf(X). The set of second 
partial derivatives of f at X can be assembled into a matrix: 

(Pf o2f (Pf 
---

ox! ox! ox! oX2 ox! oXn 

o2f o2f o2f 

oX2 ox! OX2 0X2 ox2oxn 

o2f o2f o2f 

oxnox! oxnox2 oXnoxn 

called the Hessian matrix off at X, denoted by H(X) in hour of the German 
mathematician who discovered it, Hesse. 

Taylor's theorem can be extended to functions of several variables: 

Theorem 9.6 (Taylor's Theorem for Functions of Several Variables). If the 
second partial derivatives of f are continuous and X and X + h are two points 
in the domain of f, then 

f(X + h) = f(X) + Vf(Xfh + ~hTH(eX + (1 - e)(x + h»h, for some e, 

o<e<l. 

Another theorem involving the gradient is of some importance in 
optimization: 

Theorem 9.7 (Gradient Direction Theorem). The gradient 

Vf=(oOf 'oOf , .. "OOf)T 
x! X 2 Xn 

points in the direction of steepest slope of the hypersurface of f. 

PROOF. Construct an n-dimensional hypersphere of radius r about an arbi­
trary point XED. Let points on the sphere be of form: 

C + L1X, 
where 

Then 
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Now by using a first-order Taylor series approximation it can be shown that 

Af = f(X + AX) - f(X) = Vf(XfAX. 

Let us now attempt to find the point on the hypersphere for which Af is a 
maximum. We must form the Lagrangian: 

L(AC) = 17fT AX - A[(AXf(AX) - r2] 

(}L 
(}AX = Vf - 2AAX 

=0 

for a maximum. Therefore 

AX* =~ Vf 2A . 

Hence the vector AX* yielding the greatest improvement in f has the same 
direction as the gradient, Vf (as 1/2). is a scalar). D 

Theorem 9.8. If Xl' X 2 , •.. ,Xn are nonnegative numbers and Ai> A2 , •.. , ).n 

are positive numbers such that 

n 

I Ai = 1, 
i= 1 

then 
n n 

I AjXj ;:::: TI (9.11) 
j= 1 j= 1 

If 

j = 1,2, ... ,n, 

then the left- and right-hand sides of (9.11) are the arithmetic mean and the 
geometric mean of Xl> X 2 , ..• , X n , respectively. 

9.3 Further Reading 

The purpose of this section is to outline some of the texts that are available 
to the reader who wishes to pursue some of the topics of this book to a 
deeper level. We begin with general books on optimization and then cover, 
in order, linear programming, integer programming, network analysis, dyna­
mic programming, and finally nonlinear programming. In addition to those 
listed here, the reader should be aware of books in the fields of operations 
research, management science, industrial engineering, and computer science 
which sometimes contain substantial content of an optimization nature. 
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One of the most important general books on optimization is by Beightler, 
Phillips, and Wilde (1979) covering classical optimization; linear, integer, 
nonlinear, and dynamic programming; and optimal control, all at an 
advanced level. Some of the topics are also covered at a more elementary 
level by Wilde (1964). Another more elementary text covering linear pro­
gramming and a little nonlinear programming is Claycombe and Sullivan 
(1975). Mital (1976) covers most of the topics of this book, together with a 
chapter on game theory at an elementary level, as do Cooper and Steinberg 
(1970). Husain and Gangiah (1976) cover nonlinear programming and varia­
tional methods, with special emphasis on the techniques required for certain 
problems in chemical engineering. Sivazlian and Stanfel (1975) have written 
an undergraduate text covering the optimization techniques needed to solve 
many of the deterministic models of operations research. Gottfried and 
Weisman (1973) cover most of the optimization topics at a more advanced 
level than Sivazlian and Stanfel, and include a chapter on optimization 
under uncertainty and risk. Finally Geoffrion (1972) has edited a collection 
of expository papers covering a wide range of optimization topics at an 
advanced level. 

Dantzig (1963) is the most important early reference on linear program­
ming at an advanced level. Coverages at an elementary level include: Clay­
combe and Sullivan (1975), Daellenbach and Bell (1970) (with good sections 
on the formulation of L.P.'s and a computer code), Driebeek (1969) (with a 
good coverage of real-world applications), Campbell (1965) (covering the 
linear algebra underlying L.P.), and Fryer (1978). Intermediate level texts 
include: Hadley (1962), Spivey and Thrall (1970), Garvin (1960) (with some 
good applications of L.P.), Smythe and Johnson (1966), and Bazaraa and 
Jarvis (1977). Of the advanced texts on linear programming we mention: 
Gass (1969) and Simmonard (1966) (both requiring a mathematical back­
ground). Also Gal (1978) has written an advanced text covering postoptimal 
analysis and parametric programming. 

Recent publications in integer programming include Salkin (1974) (ad­
vanced level) and Taha (1978) (very readable). Of the earlier works, Plane 
and McMillan (1971) is easily accessible to those with little mathematical 
background, Garfinkel and Nemhauser (1972) is more advanced and Green­
berg (1971) is an intermediate text with interesting J.P. applications. A recent 
survey of integer programming articles published between 1976 and 1978 
was completed by Hausmann (1978). An earlier survey was published by 
Geoffrion and Marsten (1972). 

The best early reference on network analysis is Ford and Fulkerson (1962). 
Since then Busacker and Saaty (1965) have covered some aspects of network 
flow in a mathematically sophisticated fashion and Hu (1969) has given 
network flow problems a thorough examination at an advanced level. Geof­
frion (1972), mentioned earlier, contains articles on optimization in networks. 
Plane and McMillan (1971), already mentioned, contains a chapter covering 
most of the material in Chapter 5 which is accessible to those with little 
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background. Finally, Bazaraa and Jarvis (1977) cover the network flow and 
shortest path problems in a book that is very easy to read. 

As was mentioned in Chapter 6, Bellman (1957) wrote the first book on 
dynamic programming. It is an advanced-level treatise. Since then Bellman 
and Dreyfus (1962), Hadley (1964), Nemhauser (1966) and White (1969) have 
written books which are also somewhat advanced in level. Bellman and 
Dreyfus present many applications. Hadley contains, apart from two chapters 
on D.P., a great deal of useful material on classical optimization, stochastic, 
integer, and nonlinear programming. Nemhauser's book is difficult to read, 
while White concentrates on the mathematical aspects of D.P. For the 
reader with limited mathematics background, Dreyfus and Law (1977) is 
recommended. While Dreyfus and Law state their book is graduate-level, 
it concentrates on applications and numerical examples of D.P. 

Of the many books which specialize in classical optimization we mention 
Panik (1974). This book is intermediate in level and contains a great deal 
of mathematical background before covering classical optimization and 
many of its extensions. Panik does not cover variational problems and hence 
we cite the following, which cover the calculus of variations in increasing 
depth: Arthurs (1975), Craggs (1973), Young (1969), Smith (1974), Pars (1962), 
Ewing (1969). Well worth special mention are Hestenes (1966) and Gelfand 
and Fomin (1963). Hestenes covers introductory variational theory and also 
optimal control theory in some detail. Gelfand and Fomin slant their 
approach toward physical applications, and the proofs of many of the 
theorems of Chapter 7 of the present book can be found there. Finally, 
Blatt and Gray (1977) have provided an elementary derivation of Pontrya­
gin's maximum principle. Many of the books mentioned in the next para­
graph also contain sections on classical optimization. 

There is an enormous amount ofliterature on nonlinear programming and 
we mention only a relatively small number of references here. Among the 
general references, Wilde and Beightler (1967) was mentioned earlier; Abadie 
(1967) surveys many of the areas of nonlinear programming in a collection 
of expository papers; Luenberger (1969) contains an advanced coverage of 
the mathematical aspects of nonlinear programming; Zangwill (1969) has 
become something of a classic and represents one of the first attempts at 
unifying nonlinear programming theory; Pierre (1969) covers classical opti­
mization, the calculus of variations, linear and dynamic programming, the 
maximum principle, as well as many nonlinear programming techniques at 
the graduate level; Beveridge and Schechter (1970) constitutes a comprehen­
sive treatment of most of the theory of nonlinear programming as it was in 
1970 with, a valuable section on optimization in practice, at the senior/grad­
uate level; Aoki (1971) is an undergraduate level text written for an audience 
interested in the applications rather than the mathematical theory of N.L.P. 
and contains some applications to engineering; Martos (1975) sets out to 
give a systematic treatment of the most important aspects of N.L.P. with 
many numberical examples; and finally Simmons (1975) covers some classical 
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optimization but emphasises solution algorithms that have shown them­
selves to be of continuing importance and practical utility. Worthy of special 
mention is Himmelblau (1972) and Adby and Dempster (1974), which de­
scribe and compare in simple terms many of the N.L.P. methods which have 
proven to be effective. 

Nonlinear programming books of a more specialized nature include: 
Zoutendijk (1960), the original work on feasible directions; Hadley (1964), 
which includes advanced-level material on separable problems, the Kuhn­
Tucker conditions, quadratic programming, and gradient methods; Kunzi, 
Tzschach, and Zehnder (1968), which contains a list of FORTRAN and 
ALGOL computer codes for some N.L.P. algorithms; Kowalik and Osborne 
(1968), Fiacco and McCormick (1968), Murray (1972), (covering methods of 
computing optima of unconstrained problems); and Duffin, Peterson, and 
Zener (1967), the fathers of geometric programming, present the mathe­
matical theory of G.P. and its application to problems in engineering design. 
Also there is an excellent survey of unconstrained optimization methods by 
Powell in Geoffrion (1972). Though dated, the survey gives a good introduc­
tion to the area. 
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Solutions to Selected Exercises 

Chapter 2 

Section 2.8 

l(a). Let 

Xl = the number of chocolate cakes 

X2 = the number of banana cakes. 

Then the problem is to: 

Maximize: 

subject to: 
75xl + 60X2 

4Xl + 6X2::; 96 

2Xl + X2::; 24 
X l ,X2 ~ o. 

The optimum point can be found graphically (see Figure S.l) or by solving 
the two equations: 

4Xl + 6X2 = 96 

2Xl + X2 = 24 

=> 4X2 = 48. 

Thus the optimal solution is 

xT = 6, xi = 12. 

The value is 
6 x 0.75 + 12 x 0.60 = 11.7. 

400 



Solutions to Selected Exercises 

24 

16 

12 

12 

Figure S.1 

24 
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Hence the best profit the baker can hope to make is $11.70 by baking six 
chocolate cakes and twelve banana cakes a day. 

2(a). Let 

Xl = the number of trucks manufactured 

X2 = the number of automobiles manufactured 

X3 = the number of vans manufactured. 

Then the problem is (on dividing the profits by 1000) to: 

Maximize: 

subject to: 

6x l + 4X2 + 3X3 

4Xl + 5X2 + 3X3 ~ 12 

3x l + 4X2 + 2X3 ~ 10 

4Xl + 2X2 + X3 ~ 8 

X l ,X2,X3 ~ O. 

On introducing slack variables, the problem becomes 

Maximize: 

subject to: 

6Xl + 4X2 + 3x2 

4Xl + 5X2 + 3X3 + X4 = 12 

3Xl + 4X2 + 2X3 + Xs = 10 

4Xl + 2X2 + X3 + X6 = 8 

Xi ~ 0, i = 1, 2, 3, 4, 5, 6. 
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The problem can now be solved using the simplex method. 

XI X2 X3 X4 Xs X6 r.h.s Ratio 

4 5 3 0 0 12 12 
4 

3 4 2 0 0 10 10 
3""" 

@ 2 0 0 1 8 ~ 
Xo -6 -4 -3 0 0 0 0 

2 

XI X2 X3 X4 Xs X6 r.h.s Ratio 

0 3 2 0 -1 4 4 
2 

0 s i 0 1 3 4 16 
2 4 5 

1 I I 0 0 1 2 8 2 4 4 

Xo 0 -1 3 0 0 3 12 -2 2 

3 

XI X2 X3 X4 Xs X6 r.h.s. 

0 ~ I 0 I 2 2 -2 

0 s 0 S I 3 
8 -8 8 2 
I 0 1 0 3 3 
8 -8 8 2 

Xo 0 s 0 i 0 3 15 4 4 

Tableau 3 yields the optimal solution: 

xi = ~, xj = 2, x~ = ~, 

x! = xl = x~ = 0 x~ = 15,000. 

3(a). Let 

Xl = the number of pounds of chutney produced per week 

X2 = the number of pounds of sauce produce per week. 

Then, with the introduction of the slack variables X3, x 4 , and xs, and the 
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artificial variable X 6 , the problem is 

Maximize: 

subject to: 
= Xo 

3x I + 5x2 + X3 = 24 

4XI + 2X2 + X4 = 16 

Xl + X 2 - Xs + X6 = 3 

j = 1,2, ... ,6. 

403 

(1) 

(2) 

(3) 

This formulation will be solved by the big M method. The feasible region 
for the problem is shown in Figure S.2. 

Figure S.2 

The initial tableau for the problem is: 

Constraints Xl X2 X3 X4 Xs X6 r.h.s. 

(1) 3 5 0 0 0 24 

(2) 4 2 0 1 0 0 16 

(3) 1 CD 0 0 -1 3 

Xo -4 -5 0 0 0 M 0 

The initial basis is (X3, X4, X6). However, because the objective function co­
efficient of the basic variable X6 is nonzero, the tableau is not yet in canonical 
form. This is remedied by replacing the Xo row by the sum of the Xo row 
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and M times (3). This gives: 

2 

Constraints XI X2 X3 X4 X5 X6 r.h.s. Ratio 

(1) 3 5 1 0 0 0 24 254 

(2) 4 2 0 1 0 0 16 16 
2 

(3) 1 1 0 0 -1 3 t 
Xo -(M + 4) -(M + 5) 0 0 M 0 -3M 

The simplex iterations required to reach the optimal solutions are 

3 

Constraints XI X2 X3 X4 X5 X6 r.h.s. Ratio 

(1) -2 0 1 0 ~ -5 9 t 
(2) 2 0 0 2 -2 10 10 

2 

(3) 1 0 0 -1 1 3 

Xo 0 0 0 -5 (M + 5) 15 

4 

Constraints XI X2 X3 X4 X5 X6 r.h.s. 

(1) 2 0 I 0 1 -1 t -s s 
(2) 2~ 0 2 0 0 ~ -s 
(3) t t 0 0 0 4~ 
Xo -1 0 0 0 M 24 

5 

Constraints XI X2 X3 X4 X5 X6 r.h.s. 

(1) 0 0 t I -1 2~ 7 7 

(2) 0 I 
154 0 0 2, -7 

(3) 0 2 
-/4 0 0 3~ 7 

Xo 0 0 ~ 154 0 M 2~ 
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The optimal solution is 

xi = 2~, xi = 3t, x~ = 2i, 

x~ = x! = 0, X6 = 26~. 

Thus the housewife should make 2~ lbs chutney and 3t lbs sauce to obtain 
a maximum profit of $2.63. 

4(a). This problem can be expressed in mathematical terms. The variables 
are defined as follows. Let 

Xl = the number of classrooms constructed 

X 2 = the number of houses constructed. 

The problem can now be stated: 

Maximize: 

subject to: 

which converted to standard form is 

4Xl + 5X2 

4XI + 5X2 

4XI + 5x2 ::;; 32 

4Xl + 3x2 ::;; 24 

3Xl + 2X2 ::;; 20 

2XI + X2::;; 16 

Maximize: 

subject to: 4Xl + 5X2 + X3 

4Xl + 3X2 + X4 

= 32 

= 24 

+ X5 = 20 

+ X6 = 16. 

This problem can now be solved using the simplex method. 

Constraints Xl X2 X3 X4 X5 X6 r.h.s. 

(1) 4 G) 1 0 0 0 32 

(2) 4 3 0 0 0 24 

(3) 3 2 0 0 0 20 

(4) 2 0 0 0 1 16 

Xo -4 -5 0 0 0 0 0 

Ratio 

35 
2 
24 
"3 
20 
2 

\6 

(1) 

(2) 

(3) 

(4) 
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2 

Constraints XI X2 X3 X4 Xs X6 r.h.s. Ratio 

(1) 4 I 0 0 0 32 8 5 S ""5 

(2) CD 0 3 1 0 0 24 3 S ""5 

(3) 7 0 2 0 1 0 36 st S -s s 

(4) §. 0 I 0 0 1 4S8 8 s -s 
Xo 0 0 0 0 0 32 

The last tableau yields the optimal solution: 

x! = 3f, xl = 254 , X~ = 356, 

X~ = 458 , Xl = X~ = 0, X6 = 32. 

However, the nonbasic variable Xl' has a zero xo-row coefficient, indicating 
that the objective function value would remain unchanged if Xl was brought 
into the basis: 

3 

Constraints XI X2 X3 X4 Xs X6 r.h.s. 

(1) 0 I I 0 0 4 2 -2 

(2) 1 0 3 i 0 0 3 -8 

(3) 0 0 I 7 1 0 3 8 -8 

(4) 0 0 I 6 0 6 "4 -8 

Xo 0 0 1 0 0 0 32 

This tableau yields the optimal solution: 

xt = 3, x! =4, x~ = 3, x~ = 6, x~ = xl = 0, X6 = 32. 

Thus the builder should build 3 classrooms and 4 houses and maximize his 
profit at $32,000. 

The Xo row value of X4 is zero indicating that X4 could replace Xl in the 
basis at no change in objective function value. This would produce tableau 
2. Thus this problem has two basic optimal solutions. 

The problem is solved graphically in Figure S.3. When the objective func­
tion is drawn at the optimal level, it coincides with constraint line (1). This 
means that all points on the line from point (0, 6~) to (3,4) represent optimal 
solutions. This situation can be stated as follows: 

4xt + 5x! = 32, o ~ xt ~ 3, X6 = 32. 
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Xo = 32 
'­

'-
II s 

Figure S.3 

5(a). In mathematical form the problem is 

Maximize: 

subject to: 
3x1 + 2X2 + 4X3 + X 4 

8x1 + 2X2 + 5X3 + 4X4 ::;; 16 

6x1 + 4X2 + 3X3 + 2X4 ::;; 10 

3x1 + 3X2 + 2X3 + X4::;; 6t· 

In standard form the problem becomes 

Maximize:' 

subject to: 
3Xl + 2X2 + 4X3 + X4 

8x1 + 2X2 + 5X3 + 4X4 + Xs 

6Xl + 4X2 + 3X3 + 2X4 + X6 

= 16 

= 10 

3Xl + 3x2 + 2X3 + X4 + X7 = 6t 
Xi ~ 0, i = 1, 2, ... , 7. 

The final two tableaux required to solve the problem are displayed: 

2 

Xl X2 X3 X4 X5 X6 X7 r.h.s. Ratio 

1! 2 ! t 0 0 16 8 5 5 5 
6 ® 0 2 3 1 0 ~ t 5 -5 -5 
1 V 0 3 2 0 U 1 -'5 -5 -'5 "f 

Xo 
17 2 0 11 4 0 0 654 
5 -'5 5 '5 
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3 

Xl X2 X3 X4 X5 X6 X7 r.h.s. 

10 0 ~ 2 1 0 22 --.,- --; ---; --.,-
3 1 0 1 3 i.. 0 1 
--; ---; -14 14 --; 
8 0 0 2 1 11 1 0 ---; ---; 14 -14 

Xo 275 0 0 15 ~ I 0 90 --.,- --; --.,-

It can be seen that X 2 should enter the basis in tableau 2 but a tie occurs 
on forming the ratios to decide which variable leaves the basis. In the next 
iteration one of the basic variables is X7 = O. This basic feasible solution is 
called a degenerate solution. The optimum is reached at the first stage of 
degeneracy. 

The solution to the problem is that the farmer should cultivate t acre 
of barley and 3t acres of wheat. His profit would be $1285.71. 

6(a). The problem can be expressed in mathematical terms as follows. Let 

Xl = the units of cheese produced 

X 2 = the units of butter produced 

X3 = the units of milk powder produced 

X 4 = the units of yoghurt produced. 

The problem can now be restated: 

Maximize: 4XI + 3x2 + 2X3 + X4 

subject to: 2XI + 3X2 + 4X3 + 2X4 $; 8 

3x I + X2 + 4X3 + 2X4 $; 9 

3x I + 2X2 + 5X3 + X4 $; 9, 

which converted to standard form is 

Maximize: 

subject to: 
4XI + 3x2 + 2X3 + X4 

2XI + 3x2 + 4X3 + 2X4 + Xs =8 

3x I + X2 + 4X3 + 2X4 + X6 = 9 

3XI + 2X2 + 5X3 + X4 + X7 = 9. 

The problem can now be solved using the simplex method. 

XI X2 X3 X4 X5 X6 X 7 r.h.s. Ratio 

2 3 4 2 1 0 0 8 .!l. 
2 

3 1 4 2 0 1 0 9 9 
3' 

G) 2 5 1 0 0 1 9 9 
3' 

Xo -4 -3 -2 -1 0 0 0 0 
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2 

XI X2 X3 X4 Xs X6 X7 r.h.s. Ratio 

0 CD 2 4 0 2 2 .Q. 
3 3 -3 s 

0 -1 -1 0 1 -1 0 

1 i t 0 0 I 3 i 3 

Xo 0 14 I 0 0 t 12 ""3 3 

3 

XI X2 X3 X4 Xs X6 X7 r.h.s. 

0 2 ! 3 0 2 6 
S S -s s 

0 0 3 t 3 1 7 ! -s s -s 
1 0 7 I 2 0 3 V S -s -s s 

Xo 0 0 24 3 I 0 .Q. 12~ 5 s S s 

The optimal solution can be found from tableau 3: 

xi = V, xi =~, X6 =~, xi = 0, otherwise x~ = $1,240. 

Thus the dairy factory should produce ~ ton of cheese and V ton of butter 
daily to maximize profit at $1,240. 

Note that one of the basic feasible solutions produced by the simplex 
method was degenerate, as the variable X6 had zero value. However, there 
is no degeneracy in the tableau of the next iteration. This is because the 
entering variable X2 coefficient is negative in the X6 row. Thus no ratio is 
formed. 

7(a) 
Maximize: 4Xl + 3x2 

subject to: 3xl + 4X2 ::;; 12 (1) 

5xl + 2X2 ::;; 8 (2) 

Xl + X2 ~ 5 (3) 

Xl,X2 ~ O. 

When this problem is expressed graphically (Figure S.4) it can be seen that 
there does not exist a point which will satisfy all constraints simultaneously. 
Hence the problem does not have a feasible solution. 

Two-Phase Method 

Maximize: 

subject to: 

4Xl + 3x2 

3xl + 4X2 + X3 

5x l + 2X2 

Xl + X2 

= 12 

+x4 = 8 

+ X5 - X6 = 5. 
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X2 

XI 

Figure S.4 

Phase I 

XI X 2 X3 X4 Xs X6 r.h.s. 

3 4 1 0 0 0 12 
5 2 0 1 0 0 8 
1 0 0 1 -1 5 
0 0 0 0 1 0 0 

3 @) 1 0 0 0 12 
5 2 0 1 0 0 8 
1 1 0 0 1 -1 5 

-1 -1 0 0 0 -1 -5 

3 I 0 0 0 3 4 4 
7 0 I 0 0 2 2 -2 
I 0 I 0 -1 2 4 -4 
I 0 I 0 0 -1 -2 -4 4 

0 2.. 3 0 0 Il 14 -14 

1 0 I 2 0 0 4 -7 7 7 

0 0 3 I 1 -1 'l -14 -14 

0 0 3 I 0 13 
14 14 -7 

x~ > 0 => no feasible solution. 
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8(a). In mathematical form the problem is: 
Primal 

Maximize: 

subject to: 

5x 1 + 4xz = Xo 

3x1 + 4xz ~ 14 

4Xl + 2xz ~ 8 

2Xl + X z ~ 6 

x 1,Xz :2: 0. 
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Since the number of constraints is greater than the number of variables, the 
problem is more easily solved when its dual is created. The problem can 
be written as follows. 

Dual 

Minimize: 

subject to: 

In standard form the problem is 

14Yl + 8Yz + 6Y3 = y~ 

3Yl + 4yz + 2Y3 :2: 5 

4Yl + 2yz + Y3:2: 4 

Yl' Yz, Y3 :2: 0. 

Maximize: 

subject to: 
= Yo 

3Yl + 4yz + 2Y3 -

4Yl + 2Yz + Y3 

Yi :2: 0, 

Ys =5 

- Y6 + Y7 = 4 
i = 1,2, ... , 7. 

The tableaux required to solve the problem are displayed next. 

Yo 

YI 

3 

@) 
Yo -(7M - 14) 

3 
4 

14 

4 
2 
8 

Y2 

4 

2 

-(6M - 8) 

2 

6 

-1 
o 
o 

Y3 

2 

1 

-(3M - 6) 

Ys 

o 
M 

Y4 

-1 

0 

M 

o 
-1 

o 

Ys 

0 

0 

o 
1 

M 

Y6 

0 

-1 

M 

Y7 

0 

0 

r.h.s. 

5 
4 
o 

r.h.s. 

5 

4 

-9M 

Ratio 
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Yl Y2 Y3 Y4 Y5 Y6 Y7 r.h.s. Ratio 

0 CD i -1 i 3 2 4 
-4 "5 

! 1 0 0 1 

* 
2 4 -4 

-(~M -1) -tiM -~) -tiM - i) 
7M -14 

Yo 0 M 0 --- -(2M + 14) 
4 

Yl Y2 Y3 Y4 Ys Y6 Y7 r.h.s. 

0 1 2 ~ 10 3 4 
2" -5 -TO 5 

0 0 t 1 2 ~ ! -5 -5 

2 2 lOM-4 IS6 5M-8 74 
Yo 0 0 5 -5 

10 5 

Hence the solution to the original minimization problem is 

yt = t y! =!, 
yt = 0, otherwise 

Y6 = 754 = l4!. 

The solution to the primal problem can be found by observing the slack 
variables Y4 and Y6' in the objective function row. Thus xt has value % and x! 
value 156 • The vintner should produce % gallon of the medium white wine 
and 3! gallons of the dry white wine. He would then maximize his profit 
at $14.80. 

9(a). 

Maximize: 

subject to: 

5X1 + 4X2 

3x1 + 4X2 + X3 = 14 

4X1 + 2X2 + X 4 = 8 

2X1 + X 2 + X5 = 6 

Xi~ 0, i = 1,2, ... ,5. 

The problem is now solved using the simplex method. 

Xl X 2 X3 X4 Xs r.h.s. Ratio 

3 4 1 0 0 14 14 
""3 

® 2 0 0 8 8 
3" 

2 1 0 0 6 

Xo -5 -4 0 0 0 0 
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XI X2 X3 X4 Xs r.h.s. Ratio 

0 CD 3 0 8 s 
-4 "3 

1 ! 0 ± 0 2 4 

0 0 0 I 2 -z 
Xo 0 3 0 S 0 10 -z 4 

XI X2 X3 X4 Xs r.h.s. 

0 1 ~ 3 0 IS6 -TO 

0 I 2 0 ~ -s- s-
O 0 0 I 1 2 -z 

Xo 0 0 t 4 0 14! s-

Suppose C2 is changed from 4 to 4 + p. Then the initial simplex tableau 
for the problem becomes 

XI X2 X3 X4 Xs r.h.s. 

3 4 0 0 14 
4 2 0 0 8 
2 1 0 0 1 6 

Xo -5 -(4 + p) 0 0 0 0 

The corresponding tableau from this table would be 

XI X 2 X3 X4 Xs r.h.s. 

0 1 ~ 3 0 \6 -TO 

1 0 I ~ 0 ~ -s-
O 0 0 I 1 2 -z 

Xo 0 -p 3 4 0 14! s- s-

In order for the present basis to remain optimal, X2 must still be basic. 
Therefore the X 2 value in the Xo row must have zero value. This results in the 
following tableau. 

XI X 2 X3 X4 X5 r.h.s. 

0 2 3 0 16 s- -TO s-
O I ~ 0 ~ -s-

O 0 0 I 1 2 -z 
Xo 0 0 t+~p ! - 130p 0 754 + 156p 
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For the present basis to remain optimal all xo-row values must be non­
negative. Thus 

and 

This implies 

Hence the range for C2 is 
(4 - !,4 + i) = (~, 23°)· 

lO(a). Consider the problem: 

The final tableau is 

Xo 

Maximize: 

subject to: 

Xl X2 

0 1 

0 

0 0 

0 0 

X3 

t 
1 -5 

0 

t 

4X1 + 5x2 = X o 

3x1 + 4X2 ::;; 14 

4X1 + 2X2 ::;; 8 

2X1 + x2 ::;; 6. 

X4 Xs 

3 0 -TO 
2 0 5 
1 1 - 2 
4 0 5 

Lh.s. 

16 
""5 

2 
5 

2 

14! 

Suppose we change the r.h.s. constant of the first constraint from 14 to 
14 + y. Since X3 is the slack variable for this constraint, all the r.h.s. values 
in the final tableau will change to 

156 + h 
i-h· 

However, in order that the solution be feasible these values must be non­
negative. Thus 

156 + h ;?: 0 => y;?: - 8 

i - ty ;?: 0 => Y ::;; 2. 

y;?: - 8 implies that the r.h.s. constant must be greater than 6 and y ::;; 2 
implies that the r.h.s. constant must be smaller than 16 in order for the 
solution to be feasible. Thus the range is - 8 ::;; y ::;; 2, with a r.h.s. constant 
range of 6 to 16. This means that for the problem to have an optimal and 
feasible solution the number of boxes of graphs can be no less than 6 or no 
greater than 16. 
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11 (a). From 9(a), the tableau: 

3 
4 
2 

-5 

becomes at optimality: 

o 
1 

o 
o 

o 
o 
o 

4 1 
2 0 
1 0 

-4 0 

t 
-! 

o 

o 0 
1 0 
o 1 
o 0 

o 
o 

o 

r.h.s. 

14 
8 
6 
o 

r.h.s. 

74 
5" 

If a31 becomes 7! instead of 2, the same iterations produce: 

o 

¥ 
o 

o 
o 
o 

which in canonical form is 

o 
1 

o 
o 

o 
o 
o 

t 
1 -s 
o 

-?o 
t 

-n 
t 

o 
o 

o 

o 
o 
1 

o 

r.h.s. 

r.h.s. 

156 

2 
S 
1 

- S 
74 
5" 
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This is infeasible, as Xs < O. Using the dual simplex method, X4 replaces Xs 

in the basis (the only negative ratio): 

o 

o 
o 

o 
o 
o 

5 
TIl 
7 

-27 

-# 
# 

o 
o 

o 

- ! 
4 

TI 

-~ 
-fr 

r.h.s. 

29 
'"9 

~ 
2 
TI 

W 
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Thus the new optimal solution is 

12(a). Solving 5(b), let 

xf = ~~, 
xi = 2J1, 
x6 = 3N· 

Xl = the number of truckloads of A 

X2 = the number of truckloads of B 

X3 = the number of truckloads of C 

X4 = the number of truckloads of D. 

Then the problem is to 

maximize: 

subject to: 

2Xl + 3x2 + 4X3 + 7X4 = Xo ($100) 

16x l + 15x2 + 20x3 + 30x4 ::; 150 (Area) 

Xl + 9x2 + X3 + 2x4 ::; 10 (Manpower) 

Xi 2:: 0, i = 1,2,3,4. 

(I) In standard form, this is 

Maximize: 

subject to: 

Xo = 2Xl + 3x2 + 4X3 + 7X4 

16x l + 15x2 + 20x3 + 30X4 + Xs 

Xl + 9X2 + X3 + 2X4 

= 150 

+ X6 = 10 

Xi 2:: 0, i = 1,2,3,4. 

Table a 

XI X2 X3 X4 Xs X6 r.h.s. 

16 15 20 30 1 0 150 
1 9 1 CIl 0 1 10 

-2 -3 -4 -7 0 0 10 

t 5 0 -15 0 
I 9 ill 0 t 5 "2 -20 

3 3 I 0 0 7 35 2 20 -2 "2 

t ..1... 1 0 1. - 3 0 10 S 

t 130 0 I 2 5 -TO 

! 130 0 0 I 2 35 TO 

Table a shows the iterations to the optimal solution. 
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(II) Suppose a new variable X7 is introduced which represents the amount 
of the new product to be stored. The problem then becomes: 

Maximize: 

subject to: 

2Xl + 3X2 + 4X3 + 7X4 + 5X7 = Xo 

16xl + 15x2 + 20X3 + 30X4 + Xs + 2X7 = 150 

Xl + 9X2 + X3 + 2X4 + X6 + X7 = 10 

Xi ~ 0, i = 1, 2, ... , 7. 

The dual of this problem is 

Minimize: 

subject to: 
150Yl + IOY2 = Yo 

16Yl + Y2 ~ 2 

15Yl + 9Y2 ~ 3 

20Yl + Y2 ~ 4 

30Yl + 2Y2 ~ 7 

2Yl + Y2 ~ 5 

Yl,Y2 ~ O. 

The last constraint can be tested to see whether the present primal solution 
is optimal or not. Now 

Yl = Xs = /0' Y2 = X6 = 2 
and 

2(/0) + 2 < 5. 

Hence the present primal solution is suboptimal. If the new primal (II) had 
the same primal iterations applied to it as had (I) to produce Table a, the 
final tableau would be 

Xl X2 X3 X4 X5 X6 X7 r.h.s. 

1 
130 0 t -3 [(t)(2) + ( - 3)(1)] 0 5 

2 
130 0 1 2 [( -/0)(2) + (2)(1)] 5 5 -TO 

8 3 0 0 1 2 [ - 5 + (/0)(2) + (2)(1)] 35 5 TO -TO 

1 3 1 0 1 -3 -ll 0 5 TO 5 

! 3 0 1 2 t 5 TO -TO 

! 130 0 0 1 2 14 35 TO -5 

~ 11 V 1 1 0 65 
5 -18 -g 9 

2 1 0 5 1 10 1 25 
9 "6 9 18 9 9 

1,il50 23 0 14 1 496 0 ~ 30 9 -18 9 

14 656 18 26 1 -2 0 130 
9 2 0 10 TO 

3 3 3 0 5 0 50 "2 
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So the new profit is $5,000 and 
x~ = 10, 

xt = 0, i = 1,2,3,4. 

13(a). Production constraints for breweries 1,2,3,4 are 

XII + X12 + X13 + X 14 ::;; 20 

X21 + X22 + X 23 + X 24 ::;; 10 

X 31 + X32 + X33 + X34 ::;; 10 

X41 + X42 + X 43 + X44 ::;; 15. 

Demand constraints for hotels 1, 2, 3, 4 are 

X11 + X21 + X31 + X 41 :2: 15 

X12 + X22 + X32 + X42 ::;; 20 

X13 + X 23 + X33 + X 4 3 :2: 10 

X14 + X 24 + X 34 + X44 :2: 10. 

All quantities transported must be nonnegative. Thus 

i = 1,2,3,4 

j = 1,2,3,4. 

The objective was to find a supply schedule with minimum cost. The total 
cost is the sum of all costs from all breweries to all hotels. This cost Xo can 
be expressed as 

Xo = 8Xll + 14x12 + 12x13 + 17x14 + llX21 + 9X22 + 15x23 + 13x24 

+ 12x31 + 19x32 + 10x33 + 6X34 + 12x41 + 5X42 + 13x43 + 18x44· 

The problem can now be summarized in linear programming form: 

Minimize: 

subject to: 

Xo = 8x11 + 14x12 + 12x13 + 17x14 + llX21 + 9X22 

+ 15x23 + 13x24 + 12x31 + 19x32 + IOx33 + 6X34 

+ 12x41 + 5x42 + 13x43 + 18x44 

X 11 + X12 + X13 + X14 ::;; 20 

X 21 + X22 + X23 + X24 ::;; 10 

X31 + X32 + X33 + X 34 ::;; 10 

X41 + X42 + X43 + X44 ::;; 15 

X 11 + X21 + X31 + X41 :2: 15 

X12 + X 22 + X32 + X 42 :2: 20 

X13 + X23 + X33 + X 4 3 :2: 10 

X 14 + X24 + X34 + X44 :2: 10 

i = 1,2,3,4 

j = 1,2,3,4. 
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The tableau for the example problem is given below. 

2 3 4 Supply 

20 

2 10 

Breweries Hotels 

3 10 

4 15 

Demand 15 20 10 10 

Identification of initial feasible solution by the four required methods 
follows. 

(1) The Northwest Corner Method. The method starts by allocating as 
much as possible to the cell in the northwest corner of the tableau of the 
problem, cell 1, 1 or row 1, column 1. The maximum that can be allocated 
is 15 units, as the demand of hotel is 15 units. Column 1 is removed and cell 
1, 2 becomes the new northwest corner. A maximum of 5 units is allocated 
to this cell, all that remains in brewery 1. Row 1 is removed and cell 2, 3 

2 3 4 

~ ~ ~ ~ 
15 5 20 

~ ~ ~ ~ 
2 10 10 

Brewery 
~ ~ ~ ~ 

Hotel 

3 5 5 10 

~ ~ ~ ~ 
4 5 10 15 

15 20 10 10 
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becomes the new northwest corner. This procedure continues until all de­
mand is met. The tableau shows the feasible solution obtained. 

Conclusion 
Brewery 1 supplies 15 units to hotel 1 and 5 units to hotel 2. 
Brewery 2 supplies 10 units to hotel 2. 
Brewery 3 supplies 5 'units to hotel 2 and 5 units to hotel 3. 
Brewery 4 supplies 5 units to hotel 3 and 10 units to hotel 4. 

Total cost: 670 units. 

(2) The Least Cost Method. This method starts by allocating the largest 
possible amount to the cell in the tableau with the least unit cost. This means 
allocating 15 units to cell 4, 2, and row 4 is removed. The demand of hotel 
2 is reduced to 5 units. The cell with the next smallest cost is identified, i.e., 
cell 3,4 and 10 units are allocated to it removing row 3 and column 4. This 
procedure continues until all the demand is met. The following tableau 
illustrates the feasible solution which is obtained. 

2 3 4 

15 5 20 

2 10 

3 10 

4 15 15 

15 20 10 10 

Conclusion 
Brewery 1 supplies 15 units to hotel 1 and 5 units to hotel 3. 
Brewery 2 supplies 5 units to hotel 2 and 5 units to hotel 3. 
Brewery 3 supplies 10 units to hotel 4. 
Brewery 4 supplies 15 units to hotel 2. 

Total cost: 435 units. 
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(3) The Vogel Approximation Method. This method begins by first re­
ducing the matrix of unit costs. This reduction is achieved by subtracting 
the minimum quantity in each row from all elements in that row. This results 
in the following tableau: 

2 3 4 

0 6 4 9 (-8) 20 

2 2 0 6 4 (-9) 10 

3 6 13 4 0 (- 6) 10 

4 7 0 8 13 (- 5) 15 

15 20 10 10 

The costs are further reduced by carrying out this procedure on the columns 
of the new cost matrix: 

2 3 4 

0 6 0 9 

2 2 0 2 4 

3 6 13 0 0 

4 7 0 4 13 

(0) (0) (-4) (0) 

A penalty is then calculated for each cell which currently has zero unit 
cost. Each cell penalty is found by adding together the second smallest costs 
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of the row and column of the cell: 

2 3 4 

0 2 6 0 0 9 (0) 

2 2 0 2 2 4 (2) 

3 6 13 0 0 0 4 (0) 

4 7 0 4 4 13 (4) 

(2) (0) (0) (4) 

The penalties are shown in the top right-hand corner of each appropriate 
cell and the cell with the largest penalty is identified. The maximum amount 
possible is then allocated to this cell. Cell 3, 4 will be arbitrarily chosen and 
10 units are allocated to it. Row 3 and column 4 are removed from considera­
tion. A further reduction in the cost matrix and a recalculation of some 
penalties is necessary. This results in the following tableau: 

0 

2 

7 

15 
(2) 

2 

0 

6 

0 

0 

20 
(0) 

2 

4 

0 

2 

4 

10 
(2) 

2 20 (0) 

10 (2) 

10 

15 (4) 

Cell 4, 2 is chosen and 15 units are allocated to it. Row 4 is then removed 
from consideration. This process is repeated until all demand is met. 
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0 

2 

15 
(2) 

2 6 

0 

15 

20 
(6) 

0 

8 

0 

2 

10 
(2) 

423 

2 20 (0) 

10 (2) 

10 

Cell 2, 2 is chosen and 5 units are allocated to it, removing column 2 from 
consideration. 

0 

2 

15 
(2) 

2 

5 

15 

0 

2 

10 
(2) 

2 20 (0) 

10 (2) 

10 

Cell 1, 1 is arbitrarily chosen and 15 units are allocated to it, removing 
column 1. Cell 1, 3 must be allocated 5 units and cell 2, 3 5 units in order 
that all demand shall be met. 
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The final allocation is shown in the following tableau: 

2 3 4 

15 20 

2 10 

3 10 

4 15 15 

15 20 10 10 

Conclusion 
Brewery 1 supplies 15 units to hotel 1 and 5 units to hotel 3. 
Brewery 2 supplies 5 units to hotel 2 and 5 units to hotel 3. 
Brewery 3 supplies 10 units to hotel 4. 
Brewery 4 supplies 15 units to hotel 2. 

Total cost: 435 units. 

(4) Stepping Stone Algorithm. Consider the initial feasible solution found 
by the northwest corner method. 

2 3 4 

15 5 20 

2 10 

3 10 

4 5 10 15 

15 20 10 10 
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To determine whether this solution is optimal or not it is necessary to ask 
for each cell individually if the allocation of one unit to that cell would 
reduce the total cost. This is done for the cells which at present have no 
units assigned to them. 
Cell 4, 2 has the greatest decrease (17 units) and as much as possible, (5 units) 
is allocated to this cell. This means a decrease in cost of $(17 x 5) = $85. 

The new solution is displayed in the following tableau. 

~ ~ ~ ~ 
15 5 

~ ~ ~ ~ 
10 0 

~ ~ ~ ~ 
10 

~ ~ ~ ~ 
5 10 

The same procedure occurs-all empty cells in the new tableau are examined 
as before and the process is repeated. Since a basic feasible solution should 
contain (m + n - 1) basic variables, one ofthe empty cells is assigned a zero. 
Cell 2, 4 has the greatest decrease (19 units) and as much as possible (10 units) 
is allocated to this cell. This means a decrease in cost of $(19 x 5) = $95. 
The new solution is displayed. 

15 5 

o 

15 o 
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The process is repeated and cell 2, 3 with a decrease of 8 units is allocated 
5 units. This means a decrease in cost of $(8 x 5) = $40. The tableau is dis­
played next. 

2 3 4 

15 20 

2 10 

3 10 

4 15 o 15 

15 20 10 10 

The process is repeated, but there is no allocation which will cause a cost 
reduction. Thus the optimal solution has been found. 

Conclusion 
Brewery 1 supplies 15 units to hotel 1 and 5 units to hotel 3 
Brewery 2 supplies 5 units to hotel 2 and 5 units to hotel 3 
Brewery 3 supplies 10 units to hotel 4. 
Brewery 4 supplies 15 units to hote12. 

Total cost: 435 units. 
14(a) 

1 

1 7 
2 8 
3 2 

Students 
4 6 
5 4 
6 9 

( -2) 

2 3 4 

5 3 9 
6 1 4 
3 5 6 
8 1 3 
5 6 9 
2 3 5 

(-2) ( -1) (-3) 

5 6 

2 4 (-1) 
5 2 ( -0) 
8 9 (-0) 
7 2 (-0) 
4 7 (-2) 
1 8 (-0) 

( -1) (-2) 

Tasks 

(1) Subtract minimum quantity from each column and row of cij matrix 
to obtain: 
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2 4 3 7 7 

1 3 4 1 3 

(2) As the minimum number oflines is less than n, the minimum uncrossed 
number is subtracted from all the uncrossed numbers and added to all 
numbers with two lines passing through them to obtain: 

1 5 1 
" " v ~ v 

( 3 2 6 
" " " v v v 

2 3 ~ 2 
2 2 6 

(3) The process of (1) and (2) is repeated to obtain 

5 Z e 4 e e 
8 5 e I 5 e 
e e z I 6 5 
6 9- e e 9- e 
e e I z e I 
8 e I I e 5 

The solution for this problem is 

Student Task 

X13 = 1 i.e. 1 3 

X26 = 1 i.e. 2 6 

X31 = 1 i.e. 3 1 

X44 = 1 I.e. 4 4 

X 5 2 = 1 i.e. 5 2 

X65 = 1 i.e. 6 5. 

The value ofthis solution is equal to the total of the numbers subtracted, i.e., 

~=2+2+1+3+1+2+1+0+0+0+2+0+1+1=1~ 
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By inspecting the original cij matrix we also obtain 

x~ = 3 + 2 + 2 + 3 + 5 + 1 = 16. 

Chapter 3 

Section 3.7 

l(a) 

BI CB Bi l 1t1 b CI Ratio Entering Leaving 

X5 0 0 0 0 0 9 3 3 

X6 0 0 1 0 0 0 12 1 12 
X7 0 0 0 0 0 8 2 4 

Xs 0 0 0 0 1 0 10 3 3 
-CI -3 -2 -1 -2 0000 XI Xs 

B2 CB Bi l 1t2 b C2 Ratio 

XI -3 I 0 0 0 -1 3 t 9 3 

X6 0 I 1 0 0 0 9 t 27 
-3 ""5 

x 7 0 2 0 1 0 0 2 t 6 -3 

Xs 0 -1 0 0 1 0 1 2 I 
Z 

-C2 0 -1 0 0 000 

B3 CB B3 1 1t3 b C4 Ratio 

XI -3 I 0 0 I I 17 i- 17 
Z -6 -z "6 ""5 

X6 0 I 0 5 0 .4.2. .ll 49 
Z -6 6 6 TI 

X7 0 I 0 1 I 0 Ii I 
-2 -6 -6 

X2 -2 I 0 0 I I I I 
-2 Z -z z -z 

-C3 0 0 I I too I 
2 -2 Z 

B4 Cb B4 1 1t4 b 

XI -3 i I 0 0 i ! -s 
X4 -2 3 6 0 I 3 '1 TI TI -s -TI 

X7 0 12 is 1 I 0 5S4 
-TI -s 

X2 -2 II 
ls 0 i 2 37 

-TI -s TI 

-C4 00 n 0 ~~ !s 2 
S 
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xt =~, x* - 49 4 - 5, X* - 54 7 - 5 , x! =n, X~, x!, xt, x: = 0, 

X6 = eBb = 226l· 

2(a) 

Xl X 2 X3 X4 Xs X6 X7 Xs 

G) 1 2 1 0 0 0 
1 2 1 4 0 1 0 0 
2 3 1 0 0 1 0 
3 

3 
2 0 0 0 

-3 -2 -1 -2 0 0 0 0 

1 t 2 1 0 0 0 3 3 3 

0 i 2 130 1 0 0 3 -3 

O 1 t 1 2 0 0 3 -3 -3 

0 0 -1 -1 0 0 1 

0 -1 0 0 0 0 0 

1 0 1 i t 0 0 1 
"6 -"6 

O 0 1 ® t 1 0 5 
-"6 -"6 

0 0 13 1 1 0 1 1 
""6 -"6 -2 -"6 

0 1 1 1 0 0 1 
2 -2 -2 "2 

0 0 1 1 1 0 0 t 2 -2 "2 

0 1- 0 ~ 1 0 0 5 -s 
0 0 1 1 ...J... ~ 0 1 -15 25 25 -s 
0 0 M 0 12 i5 1 1 

25 -25 -s 
0 1 n 0 11 -Is 0 £ -15 5 

0 0 n 0 14 -Is 0 2 
15 s 

The solution and its value are as in l(a). 
3(a). Forming the dual: 

Minimize: 

subject to: 
6Yl + 8Y2 + 9Y3 + 12Y4 = Yo 

Yl + 3Y2 + 2Y3 + 2Y4;;::: 3 

2Yl + 4Y2 + 3Y3 + Y4;;::: 2 

Yl + 2Y2 + 3Y3 + 2Y4;;::: 1 

3Yl + Y2 + Y3 + 2Y4 > 2 

Yl' Y2' Y3' Y4 ;;::: 0. 

r.h.s. Ratio 

9 3 
12 12 
8 4 

10 10 
"3 

0 

3 9 

9 27 s-
2 6 

1 1 
2 

9 

167 17 s-
49 4/ ""6 

II 
1 
"2 

1i 

§. 
5 

49 
15 
54 
15 
37 
15 

226l 
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Introducing Ys, Y6' Y7' Ys as slack variables: 

YI Y2 Y3 Y4 Ys Y6 Y7 Ys r.h.s. 

1 3 2 2 -1 0 0 0 3 
2 4 3 1 0 -1 0 0 2 
1 2 3 2 0 0 -1 0 1 
3 1 1 2 0 0 0 -1 2 

Yo 6 8 9 12 0 0 0 0 0 

Multiplying each constraint by (-1): 

YI Y2 Y3 Y4 Ys Y6 Y7 Ys r.h.s. 

-1 Q) - 2 -2 1 0 0 0 - 3 
-2 -4 - 3 -1 0 1 0 0 - 2 
-1 -2 - 3 -2 0 0 1 0 - 1 
-3 -1 - 1 -2 0 0 0 1 - 2 

Yo 6 8 9 12 0 0 0 0 0 
ratios -6 8 9 -6 -3 - "2' 

I 1 t 2 I 0 0 0 1 3 3 -3 
2 0 I 1 4 0 0 2 -3 - 3 -3 
I 0 - i 2 2 0 0 -3 -3 -3 

ED 0 - )- 4 I 0 0 - 1 -3 -3 

Yo 130 0 11 20 S 0 0 0 - 8 ""3 ""3 3 

Ratios s -11 -5 -8 0 0 0 -4 

0 1 i t 3 0 0 i 7 
-8 8 

0 0 I 2 s 1 0 I * - 4 -4 -4 

0 0 13 I S 0 I 9 -8 -"2' -8 -8 8 
1 0 I I I 0 0 -i i 8 "2 8 

Yo 0 0 Ii 5 9 0 0 ~ 37 
4 4 -4' 

Hence 

yT = i, yi =i, yt =£, y~ =t, y* _ 37 
0- 4' 

x* _.2 1 - 4, x* - ~ 4 - 4, xi, x! = 0, x* - 37 0- 4' 

4(a) (The Two-Phase Method). Introducing artificial variables Y9' YIO' 

Yll' Y12: 
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Phase I 

Y1 Y2 Y3 Y4 Y5 Y9 Y6 Yio Y7 Y11 Ys Y12 r.h.s. 

Yo 

1 
2 
1 
3 
o 

3 
4 
2 
1 
o 

In canonical form: 

2 
3 
3 
1 
o 

2 -1 
1 0 
2 0 
2 0 
o 0 

1 0 
o -1 
o 0 
o 0 
1 0 

o 0 
1 0 
o -1 
o 0 
1 0 

o 0 
o 0 
1 0 
o -1 
1 0 

o 
o 
o 
1 
1 

3 
2 
1 
2 
o 

431 

Y1 Y2 Y3 Y4 Y5 Y9 Y6 YIO Y7 Y11 Ys Y12 r.h.s. Ratio 

3 2 2 -1 1 0 
2 4 3 1 0 0-1 

Q)3 2000 

o 0 
1 0 

o -1 

o 0 
o 

o 0 
o 0 

o 
o -1 

o 1 

o 3 

o 2 

o 
3 1 2 0 0 0 1 2 

o -8 Yo -7 -10 -9 -7 0 

1 
2" 

o 
t 
~ 

-2 

-t 
o 
t 
~ 
2 

Yo -2 
_176 

Yo 176 

_156 

-i 
J. 
5 
2 

-5 

Yo 0 

o -~ -1 -1 0 0 1 -1 0 0 1 
o -3 -3 0 0 -1 Q) -2 0 0 0 

1 

1 

3 

o 0 o 
o 

o -t 1 
2" o o t 

1 1 
o -3 

o -t 
o 6 

o 0 
1 0 

o t -t -1 

o -4 5 1 

o -t i-I 
o -1 -1 0 

1 1 t 0 

o t CD 0 
o 0 -3 1 

o -~ 
o -t 

o t 
o ~ 

o -1 

o 0 
o 0 
1 0 

o 

1 1-1 
o -t t 
o -t t 
o t-t 
o -1 2 

o t-t 
o -4 V 

o -i o -t t !-! 
o -~ ~ i-i 
o t -t -i i 
1 -! 

o -~ 
1 ! 
o -t 
o 0 o 0 0 1 

000 

1 -1 0 

000 

o 0-1 

o 1 

o 1 
o 0 

o t 
1 

o -3 

o 0 CD-~ 
1 -1 -~ ~ 

o 0 t-t 
o 0 -4 4 
o 1 -t V -~ 

o 0 
1 -1 

o 0 
o 0 
o 

1 -1 

o 0 
o 0 
o 0 
o 

t 
t 
2 

1 

o 

3 

2 

2 
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Phase II 

Minimize: 6Yl + 8Y2 + 9Y3 + 12Y4 = Yo· 

YI Y2 Y3 Y4 Y5 Y6 Y7 Ys r.h.s. 

_\6 0 -t 0 7 ± 0 t -5 s 
3 0 9 0 6 2 0 ~ -5 -5 -5 5 5 
J. 4 0 1. 2 0 0 I 
S 5 s -5 5 
2 0 I 4 3 0 0 §. -5 -5 -5 5 5 

Yo 6 8 9 12 0 0 0 0 0 

In canonical form: 

YI Y2 Y3 Y4 Ys Y6 Y7 Ys r.h.s. Ratio 

16 0 3 0 7 CD 0 1 t i -T -5 -5 
3 0 9 0 6 1. 1 0 ~ ! -5 -5 -5 s 5 

t 1 4 0 I 2 0 0 I 
5 5 -5 5 

2 0 I 1 4 J. 0 0 6 2 -5 -5 -5 s 5 

Yo 6 0 5 0 8 -4 0 0 -16 

-4 0 3 0 7 0 i i -"4 -"4 

0 3 0 I 0 1 I 3 3 
-2 -2 -2 2 2 

-1 1 i 0 I 0 0 i I 
-2 2 

(1) 0 t 1 1. 0 0 3 3 3 
4 -"4 "4 8 

Yo -10 0 2 0 0 0 5 -13 

0 0 I 2 s 0 I t -"4 -"4 -"4 

0 0 13 I 5 0 1 ~ -8 -2 -8 -8 

0 1 i i 3 0 0 t 7 
-8 8 

0 t i t 0 0 3 J. -8 s 

Yo 0 0 Ii 5 t 0 0 ~ 37 
4 -4 

5(a) 

XI X2 X3 X4 Xs X6 r.h.s. Ratio 

2 1 4 1 0 0 10 5 
1 2 1 0 1 0 4 4 

Q) -2 1 0 0 1 6 2 
-3 -1 -2 0 0 0 0 



Solutions to Selected Exercises 433 

Xl X2 X3 X4 Xs X6 r.h.s. Ratio 

0 ! \0 0 -t 6 178 

0 CD t 0 1 1 2 i -~ 

1 2 t 0 0 t 2 -3 

0 -3 -1 0 0 6 

0 0 W 7 3 12 17 -8" -8" IT 
0 1 0 i 1 ! 3 4 -8" 

1 0 t 0 

* 
1 1 5 4 

0 0 1 0 t i 31 -4 

0 0 1 4 7 3 n IT -n -22 

0 1 0 1 .i. 1 ..£ -IT 11 -IT 11 

0 0 2 
12 272 ~~ -IT 

0 0 0 It n n n 

Hence 
xt = ~~, x~ = 141' x!= n, xt, x;, x~ = 0, x~ =n. 

Let 

fJ = amount of elapsed time. 

Xo = (3 + fJ)Xl + (1 + 2fJ)X2 + (2 + 3fJ)X3· 
Then: 

Xl X2 X3 X4 Xs X6 r.h.s. 

0 0 4 7 3 n IT -n -22 

0 0 1 .i. 1 4 -IT 11 -IT IT 
1 0 0 2 

12 272 II -IT 11 

-0 -20 -30 ...L n II n 11 22 

In canonical form: 

Xl X2 X3 X4 Xs X6 r.h.s. 

0 0 141 
7 3 n -22 -22 

0 1 0 1 5 1 ..£ -IT IT -IT 11 

0 0 -11 
9 7 II n n 11 

0 0 0 
1 + 80 23 + 0 13 - 60 95 + 70 

11 22 22 11 
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The first critical point is e = ll. 

XI X 2 X3 X4 Xs X6 r.h.s. 

0 0 1 4 7 3 17 
IT -TI -22 IT 

0 0 I ~ 1 4 
-IT II -IT IT 

1 0 0 2 9 7 19 
IT 22 TI IT 

0 0 0 S 11 0 24 :1 6"" 

Replacing Xl by X6: 

XI X2 X3 X4 Xs X6 r.h.s. 

~ 0 2 1 0 16 
7 7 7 

2 1 0 1 4 0 6 
7 -7 7 7 

22 0 0 4 2- 378 
7 7 7 

0 0 0 s II 0 24 :1 6 

Searching for further critical points: 

Xl X2 X3 X4 Xs X6 r.h.s. 

~ 0 2 I 0 16 
7 -7 7 

2 0 1 4 0 ~ 7 7 7 
22 0 0 4 2- ;!Ji 
7 -7 7 7 

-8 -28 - 38 s II 0 24 :1 6"" 

In canonical form: 

XI X2 X3 X4 Xs X6 r.h.s. 

3 0 1 2 I 0 16 
7 7 -7 7 
2 0 1 4 0 6 
7 7 7 7 

22 0 0 4 9 1 38 
7 -7 7 7 

~8 0 0 i + 48 Ii + ~8 0 24 + 67°8 

For e > 0 this basis is optimal. Thus 

xi = ~i, X~ = 141' X~ = ~i. 
* 95 + 7e 

Xo = 11 
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0> ll: x* -Q 2 - 7, x* _li 
3 - 7' 

x* - 38 6 - 7, x~ = 24 + 67°0. 

6(a). Dual: 

Minimize: lOYl + 4Y2 + 6Y3 
subject to: 2Yl + Y2 + 3Y3 ~ 3 

Yl + 2Y2 - 2Y2 ~ 1 

4Yl + Y2 + Y3 ~ 2 

Yt, Y2' Y3 ~ O. 

Phase I 

Minimize: Ys + Y7 + Y9 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 t.h.s. Ratios 

2 3 -1 0 0 0 0 3 0 
1 2 -2 0 0 -1 0 0 1 20 
4 1 0 0 0 0 -1 1 2 30 
0 0 0 0 1 0 0 1 0 0 

2 1 3 -1 1 0 0 0 0 3 3 0 2 

1 2 -2 0 0 -1 0 0 1 20 
@) 1 0 0 0 0 -1 1 2 1 30 2 

-7 -4 0 1 0 1 0 -6 -60 

0 t t -1 1 0 0 1 1 2 4 -to 2 -2 

0 CD 9 0 0 -1 1 1 t , iO -4 4 -4 

! ! 0 0 0 0 1 ! 1 2 iO -4 2 

0 9 1 0 0 3 i 5 -iO -4 -4 -4 -2 

0 0 ® -1 , 2 ~ 3 V 13 -~O -7 -7 22 

0 1 9 0 0 4 4 1 1 , ~O -7 -7 7 7 -7 

1 0 4 0 0 1 1 2 , ~ J. 40 7 7 -7 -7 4 

0 0 22 1 0 2 t 3 17° -V ~O -7 -7 -7 

0 0 7 
272 /1 

1 
£2 

3 il 
- 1310 -22 -IT -22 22 

0 1 0 -i2 ...2... 5 i 272 
7 H 1410 22 -IT 11 -22 

0 0 ...L --fi /1 
1 4 

141 h 1810 11 -IT -22 

0 0 0 0 0 0 0 0 
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Phase II 

Minimize: lOYI + 4Y2 + 6Y3 

Yl Y2 Y3 Y4 Y5 Y6 Y7 Ys Y9 r.h.s. Ratios 

0 0 1 SiJ 1 -b 13 -fi8 IT 21 

0 0 9 5 7 23 
141 8 -21 -IT TI 21 

0 0 2 
/1 

4 fi- IS1 8 IT -n 
10 4 6 0 0 0 0 

In canonical form: 

Yl Y2 Y3 Y4 Y5 Y6 Y7 Ys Y9 r.h.s. Ratios 

0 0 7 1 l2 13 -fi8 -21 IT 21 

0 1 0 9 5 7 23 n8 -21 -IT 21 21 

1 0 0 ?1 /1 
4 1 

IS18 -IT IT 

0 0 0 li 4 17 95 -n8 IT IT -IT 

Y! = xt = 1\ x! = n 
Y! = x! = ~~ x! = 141 

y~ = x~ = g x~ = Ii by complementary slackness. 

yt = Y! = y~ = 0 

Y6 = n 

Yl Y2 Y3 Y4 Y6 Ys r.h.s. 

0 0 7 1 3 13-68 
-21 IT 21 ---

22 

0 0 9 5 7 23 + 88 
-21 -IT 21 ---

22 

0 0 fi 1 4 1 + 88 
IT -IT 

11 

0 0 0 19 4 Ii 
95 - 788 

IT IT 
11 

For r.h.s. entries to be nonnegative, 0 ~ e ~ Ii. Y4 enters the basis with 
II _ .il 
u - 6' 
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Y1 Y2 Y3 Y4 Y6 Y8 r.h.s. 

0 0 1 7 1 l2 0 -21 IT 

0 1 0 9 5 7 1i -22 -IT 21 
1 0 0 l1 -h 4 5 -IT 3" 

0 0 0 19 -±- 17 -24 IT 11 IT 

0 0 22 2 3 0 ~8 -7 -7 -7 

0 1 9 0 4 1 11 -A8 -7 -7 7 6 

1 0 4 0 1. 2 t 48 7 7 -7 

0 0 38 0 ~ 176 -24 -¥8 7 

yT = xt = i x* - 38 6 - 7 

yi = x~ = Ii xi = ~ 
yt = xT = ° x* - 1.§. 3 - 7 by complementary slackness. 

y! = yt = y: = ° 
Y6 = 24 

Y1 Y2 Y3 Y4 Y6 Y8 

0 0 22 2 3 o + ~8 -7 -7 -7 

0 9 0 4 1 1i + 1418 -7 -7 7 

0 4 0 + 2 t + 48 7 -7 

0 0 \8 0 ~ ¥ -24 - 6,'8 

As all r.h.s. entries are nonnegative for e ~ 0, no further critical points 
can be found. Thus the solution is as in 5(a). 

7(a). A = (2,1,3) 

Y1 Y2 Y3 Y4 Y6 Y8 r.h.s. 

0 0 7 
/1 

3 13 -21 21 TI 

0 0 9 5 7 23 -21 -IT 22 22 

1 0 0 /1 /1 
4 ...L -IT 11 

2,1, ,1, 3,1, }~ 141 
17 -if IT 

0 0 1 7 1 3 13 -21 IT TI TI 

0 1 0 9 5 7 n -TI -IT TI 

0 0 2 
/1 

4 1 
IT -IT IT 

0 0 0 tt +,1, 141 
17 -H - 3,1, IT 
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Basis remains optimal for Ie ~ 0. Therefore 

xi = ~i + Ie, x! = n, x!, x!, x~ = 0, x~ = ii + 31e. 

Chapter 4 

Section 4.6 

l(a). The decision tree for this problem is shown in Figure S.5. The 
optimal solution is 

xi, x! = 0, xi = 1, x~ = 5. 

To obtain the first node: 

Xl X2 X3 X4 X5 X6 r.h.s. Ratio 

2 ® 3 0 0 8 4 
3 

5 4 4 0 0 7 7 
4 

6 0 0 1 12 12 

-3 -5 -4 0 0 0 0 

1 1 1 0 0 4 8 
3 2 6 3 3 

11 0 Q) 2 0 5 5 
3" 3 3 6 
17 0 1 1 0 1 32 64 
3" 2 -6 3" 3" 

4 0 3 i 0 0 20 
-3 -2 3" 

7 1 0 1 1 0 11 -12 3 -4 12 
11 0 1 1 0 5 

" -3 2 6 
19 0 0 0 1 41 
4 -4 4 
17 0 0 1 3 0 95 
4 3 4 12 

The problem has an optimal (noninteger) solution: 

xi = g, x! =i, x* - .±.l 6 - 4, x~ = ii. 

To create nodes (I) and (II), examine xi = g and introduce 

X 2 sO, (I) 

X 2 ~ 1, (II). 
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-00 (IV) 

(XI) 1Q 
3 

4 5 -00 

(IX) (X) 

5 -00 

Figure S.5 

(I) Introducing a new constraint with slack variable X7: 

x2 + x7 = O. 

Xl X2 X3 X4 Xs X6 X7 r.h.s. 

7 0 1 1 0 0 11 -12 3 -4 IT 

II 0 1 1 0 0 i -3 "2 
19 0 0 0 1 1 0 41 
4" -4 4" 

0 1 0 0 0 0 0 
17 0 0 1 i 0 0 9S 
IT "3 IT 

In canonical form: 

Xl" X2 X3 X4 Xs X6 X7 r.h.s. 

7 0 1 1 0 0 11 -12 3 -4 IT 

II 0 1 t 0 0 .s. -3 6 
19 0 0 0 1 1 0 41 
4" -4 4" 

172 0 0 ED t 0 1 11 
-IT 

17 0 0 1 i 0 0 H 12 3 
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Applying the dual simplex method: 

Xl X 2 X3 X4 X5 X6 X7 r.h.s. 

0 0 0 0 0 0 0 
5 0 0 I 0 0 7 
4 4 4 

11 0 0 0 I 0 41 
-4 "4 

7 0 0 3 0 11 -4 -4 "4 

2 0 0 0 0 0 7 

This has solution 

xi =0 

(as expected as x2 ::; 0 and X2 Z 0), 

xj = i, x* - 1l. 4 - 4, X6 = 7. 

(II) Introducing a new constraint with slack variable xs: 

x2 - Xs = l. 

Xl X2 X3 X4 X5 X6 Xs r.h.s. 

7 0 1 1 0 0 11 
-12 3 4 12 

11 0 1 1 1 0 0 5 
"6 -3 "2 "6 

11 0 0 0 1 1 0 41 
-4 "4 

0 1 0 0 0 0 -1 
17 0 0 1 3 0 0 95 
12 3 4 12 

In canonical form: 

Xl X2 X3 X4 X5 X6 Xs r.h.s. 

7 0 1 1 0 0 11 
-12 3 -4 12 

11 0 1 1 0 0 i "6 -3 "2 
19 0 0 0 1 0 41 
"4 -4 "4 
7 0 0 1 0 1 1 

-12 -4 -12 
17 0 0 3 0 0 n 12 4 
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Applying the dual simplex method: 

Xl X2 X3 X4 X5 X6 Xs r.h.s. 

0 0 0 0 0 -1 

0 0 ~ 2 0 V 4 
7 -7 7 

0 0 0 19 16 1 V 677 
7 -7 

0 0 4 , 0 12 t -7 -7 

0 0 0 ~ 1 0 17 54 
7 7 7 

This has the solution: 

xt =t, x! = 1, x~ =4, 

(III) Introducing a new constraint with slack variable X9 : 

Xl + X9 = o. 

Xl X2 X3 X4 X5 X6 Xs X9 r.h.s. 

0 0 0 0 0 - 1 0 1 

0 0 1 ~ 2 0 22 0 4 - 7 7 

0 0 0 li -If 57 0 67 
7 T 

0 0 4 3 0 12 0 1 -7 7 -7 7 

0 0 0 0 0 0 0 
0 0 0 ~ t 0 17 0 574 

7 7 

In canonical form: 

Xl X2 X3 X4 X5 X6 Xs X9 r.h.s. 

0 1 0 0 0 0 - 1 0 1 
0 0 5 2 0 22 0 4 7 - 7 7 

0 0 0 li 16 .n 0 67 
-7 7 7 

0 0 4 , 0 12 0 t -7 -7 

0 0 0 4 8) 0 12 1 
7 -7 

0 0 0 ~ t 0 17 0 54 
7 7 
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Applying the dual simplex method: 

XI X2 X3 X4 X5 X6 Xs X9 r.h.s. 

0 1 0 0 0 0 -1 0 

0 0 1 I 0 0 2 2 2 
3 - 3 3 

0 0 0 I 0 1 -1 16 V -3 -3 

1 0 0 0 0 0 0 0 

0 0 0 4 0 -4 7 I -3 - 3 3 

0 0 0 4 0 0 3 I 23 
3 3 3 

which has the solution: 
x! = 0 

(as expected, as Xl ~ 0 and Xl :::;:; 0), 

X~ = 1, x~ =1, X! = t, X* - 1.1 6 - 3, 
X* _n 0- 3 . 

(IV) Introducing a new constraint with slack variable X 10 : 

Xl - XIO = 1. 

XI X2 X3 X4 X5 X6 Xs XIO r.h.s. 

0 0 0 0 0 -1 0 

0 0 5 2 0 2l 0 4 
7 - 7 7 

0 0 0 19 16 1 57 0 67 
7 -7 7 7 

0 0 4 3 0 12 0 I 
-7 7 -7 7 

1 0 0 0 0 0 0 -1 
0 0 0 S I 0 17 0 54 

7 7 7 7 

In canonical form: 

XI X2 X3 X4 X5 X6 Xs XIO r.h.s. 

0 0 0 0 0 -1 0 

0 0 1 5 2 0 22 0 4 7 - 7 7 

0 0 0 19 16 57 0 67 
7 -7 7 7 

0 0 4 3 0 12 0 + -7 7 -7 

0 0 0 4 ;l 0 0}) 6 
-7 7 - 7 -7 

0 0 0 8 I 0 17 0 574 
7 7 7 

Applying the dual simplex method: 
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Xl X2 X3 X4 X5 X6 Xs XlO r.h.s. 

0 1 0 1 1 0 0 7 3 
"3" -4 -TI -,: 

0 0 1 1 0 0 11 -1 -"3" -,: b 

0 0 0 0 1 0 it H -4 

1 0 0 0 0 0 0 -1 1 
0 0 0 1 1 0 7 I 

"3" -4 -TI -,: 

0 0 0 1 3 0 0 17 13 
"3" 4 TI 2 

0 1 1 0 t 0 0 5 1 
"4 2" 

0 0 -3 1 3 0 0 11 3 --,: -2 

0 0 0 0 1 1 0 57 11 -4 TI 2 

0 0 0 0 0 0 -1 1 
0 0 0 1 0 1 i -t "4 

0 0 1 0 i 0 0 13 11 
"4 "2 

Note that this subproblem required two iterations. The final tableau 
indicates that it does not have a feasible solution. 

(V) Introducing a new constraint with slack variable XII: 

X3 + X11 = o. 

Xl X2 X3 X4 X5 X6 Xs Xg X11 r.h.s. 

0 1 0 0 0 0 -1 0 0 

0 0 1 0 0 2 - 1 0 t "3" 

0 0 0 1 0 1 -1 -¥ 0 31 
-"3" 3" 

0 0 0 0 0 0 1 0 0 

0 0 0 4 1 0 -4 7 0 1 
-"3" - 3 "3" 

0 0 1 0 0 0 0 0 0 

0 0 0 4 0 0 3 t 0 ¥ "3" 

In canonical form: 

Xl X2 X3 X4 X5 X6 Xs Xg X11 r.h.s. 

0 1 0 0 0 0 -1 0 0 1 
0 0 1 t 0 0 2 2 0 t - "3" 

0 0 0 1 0 -1 -¥ 0 ¥ -3 

1 0 0 0 0 0 0 1 0 0 
0 0 0 4 0 -4 7 0 1 -"3" - "3" "3" 

0 0 0 1 0 0 8> 2 t -"3" "3" 

0 0 0 4 0 0 3 t 0 23 
"3" 3" 
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Applying the dual simplex method: 

Xl X2 X3 X4 Xs X6 Xs X9 X11 r.h.s. 

0 1 0 I 0 0 0 I I 4 
"6 - 1" -2 1" 

0 0 1 0 0 0 0 0 1 0 

0 0 0 I 0 0 17 1 32 
-"6 -3 -2 3 

0 0 0 0 0 0 1 0 0 

0 0 0 2 1 0 0 11 -2 5 
1" -3 1" 

0 0 0 1 0 0 I 1 1 
6 - 3 -2 1" 

0 0 0 5 0 0 0 4 3 20 
6 1" 2 3 

which has solution: 

x!, xj = 0, (as expected), xi =4, x* -~ 5 - 3, 

x* - 32 6 - 3, x* - 1. 8 - 3, x* - 20 0- 3' 

(VI) Introducing a new constraint with slack variable X12: 

X3 - X12 = l. 

XI X2 X3 X4 Xs X6 Xs X9 X12 r.h.s. 

0 1 0 0 0 0 -1 0 0 

0 0 t 0 0 2 2 0 2 
-3 3 

0 0 0 1 0 -1 -¥ 0 31 -1" 3 

0 0 0 0 0 0 1 0 0 

0 0 0 4 0 -4 7 0 t -3 -3 

0 0 0 0 0 0 0 -1 

0 0 0 4 0 0 3 1 0 23 
1" 1" 3 

In canonical form: 

XI X2 X3 X4 Xs X6 Xs X9 X12 r.h.s. 

0 1 0 0 0 0 -1 0 0 

0 0 I 0 0 2 2 0 t 3 -3 

0 0 0 1 0 -1 16 0 31 -1" -3 3 

0 0 0 0 0 0 1 0 0 

0 0 0 4 1 0 -4 7 0 I -3 -3 3 

0 0 0 1 0 0 2 8) 1 1 
3 -"3 

0 0 0 4 0 0 3 t 0 ¥-3 



Solutions to Selected Exercises 445 

Applying the dual simplex method: 

XI X 2 X3 X4 X5 X6 Xs X9 X12 r.h.s. 

0 0 0 0 0 -1 0 0 

0 0 1 0 0 0 0 0 -1 

0 0 0 -3 0 -17 0 -8 13 

1 0 0 ! 0 0 3 0 3 -t 2" 

0 0 0 -1 0 11 0 7 3 
-2" 2" 

0 0 0 I 0 0 -3 3 I -2" -2" 2" 

0 0 0 J. 0 0 4 0 I 15 2 2" 

This does not have a feasible solution. 
(VII) Introducing a new constraint with slack variable X13: 

X3 + X13 = 1. 

XI X2 X3 X4 X5 X6 X 7 XI3 r.h.s. 

0 0 0 0 0 0 0 
5 0 1 0 t 0 -1 0 i 4 

19 0 0 0 I 0 0 4J "4 -4 
7 0 0 3 0 3 0 11 -4 -4 "4 

0 0 1 0 0 0 0 1 
2 0 0 0 0 0 7 

In canonical form: 

XI X2 X3 X4 X5 X6 X 7 XI3 r.h.s. 

0 0 0 0 0 0 0 

CD 0 1 0 I 0 -1 0 7 
4 4 

lj- 0 0 0 -t 0 0 41 
"4 

7 0 0 1 3 0 3 0 If -4 -4 

-i 0 0 0 I 0 1 1 -1 -4 

2 0 0 0 1 0 0 7 
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Applying the dual simplex method: 

XI X2 X3 X4 X5 X6 

0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 6 1 -5 

0 0 0 2 0 -5 

0 0 0 I 0 5 
0 0 0 0 3 0 5 

This has solution: 

x! =!, xi = 0 (as expected), x! = 1, 
x* _.!2 4 - 5, x* _ll 6 - 5, x* - 29 0- 5 . 

(VIII) Introducing a new constraint with slack variable X14: 

X3 - X 14 = 2. 

XI X2 X3 X4 X5 X6 X7 X I 4 r.h.s. 

0 0 0 0 0 0 0 
~ 0 1 0 I 0 -1 0 i 4 4 

19 0 0 0 I 0 0 41 
4 -4 4 

7 0 0 3 0 -3 0 .li -4 -4 4 

0 0 1 0 0 0 0 -1 20 

2 0 0 0 0 0 7 

In canonical form: 

XI X2 X3 X4 X5 X6 X7 XI4 r.h.s. 

0 1 0 0 0 0 1 0 0 

i 0 0 I 0 -1 0 7 
4 4 

19 0 0 0 I 1 0 0 41 
4 -4 4 

7 0 0 3 0 -3 0 Ii -4 -4 

i 0 0 0 i 0 ED 1 I 
-4 

2 0 0 0 0 0 7 
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Applying the dual simplex method: 

Xl X2 X3 X4 Xs X6 X7 X 14 r.h.s. 

i 1 0 0 1 0 0 1 1 
4 -4 

0 0 0 0 0 0 -1 2 
11 0 0 0 1 0 0 4f -4 
11 0 0 3 0 0 -3 ! -2 -2 
s 0 0 0 1 0 1 -1 1 

-4 -4 4 
If 0 0 0 i 0 0 1 2;; 

This does not have a feasible solution. 
(IX) Introducing a new constraint with slack variable x 15 : 

X2 + X 15 = l. 

Xl X2 X3 X4 Xs X6 Xs X9 X I1 X1S r.h.s. 

0 1 0 i 0 0 0 1 1 0 t -3 -2 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 17 1 0 3l -6 -3 -2 

0 0 0 0 0 0 0 0 0 

0 0 0 i 1 0 0 11 -2 0 s -3 3 

0 0 0 i 0 0 1 1 1 0 1 -3 -2 3 

0 0 0 0 0 0 0 0 1 
0 0 0 ~ 0 0 0 4 ! 0 20 

6 3 3 

In canonical form: 

Xl X2 X3 X4 Xs X6 Xs X9 XI1 X1S r.h.s. 

0 1 0 i 0 0 0 1 1 0 4 
-3 -2 3 

0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 17 1 0 32 -6 -3 -2 3 

0 0 0 0 0 0 0 0 0 
0 0 0 i 0 0 11 -2 0 s -3 3 

0 0 0 i 0 0 1 1 1 0 t -3 -2 

0 0 0 ED 0 0 0 t 1 I 4 
2 -3 

0 0 0 ~ 0 0 0 t J. 0 230 
6 2 
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Applying the dual simplex method: 

XI X2 X3 X4 Xs X6 Xs Xg Xli XIS r.h.s. 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 -6 -1 -1 11 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 7 0 4 I -3 3 

0 0 0 0 0 0 1 0 0 1 0 
0 0 0 0 0 0 -2 -3 -6 2 
0 0 0 0 0 0 0 3 4 5 5 

This has a feasible integral solution: 

x!, xj = 0, xi = 1, X6 = 5. 
This is the first incumbent. 

(X) Introducing a new constraint with slack variable X 16 : 

x2 - X 16 = 2. 

XI X2 X3 X4 Xs X6 Xs Xg Xli XI6 r.h.s. 

0 1 0 I 0 0 0 I I 0 4 
6 -3 -z 3 

0 0 0 0 0 0 0 0 0 

0 0 0 I 0 0 17 I 0 II -6 -3 Z 3 

0 0 0 0 0 0 0 0 0 

0 0 0 2 1 0 0 11 -2 0 i 3 3 

0 0 0 I 0 0 I I 0 1. 
6 -3 -z 3 

0 1 0 0 0 0 0 0 0 -1 2 
0 0 0 s 0 0 0 4 3 0 23° 6 3 Z 

In canonical form: 

XI X2 X3 X4 Xs X6 Xs Xg Xli XI6 r.h.s. 

0 0 I 0 0 0 I I 0 4 6 -3 -z 
0 0 0 0 0 0 0 0 0 

0 0 0 I 0 0 17 I 0 32 -6 -3 Z -3 

0 0 0 0 0 0 0 0 0 

0 0 0 2 0 0 ¥ -2 0 ~ 3 3 

0 0 0 I 0 0 1 I I 0 I 
6 -3 -z 3 

0 0 0 I 0 0 0 I ED 2 
6 -3 -3 

0 0 0 ~ 0 0 0 4 3 0 Zf 6 3 Z 
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Applying the dual simplex method: 

XI X2 X3 X4 X5 X6 Xs X9 XII XI6 r.h.s. 

0 0 0 0 0 0 0 0 -1 2 

0 0 1 I 0 0 0 ED 0 2 4 
3 -3 

0 0 0 I 0 0 16 0 -1 10 -3" "3 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 7 0 -4 12 -3" "3 

0 0 0 0 0 0 0 0 -1 1 

0 0 0 1 0 0 0 2 1 -2 1 -3" 3 

0 0 0 t 0 0 0 t 0 3 1/ 

Xl X2 X3 X4 X5 X6 Xs X9 XII X 16 r.h.s. 

0 0 0 0 0 0 0 0 -1 2 

0 0 3 1 0 0 0 0 -3 2 -2 -2 

0 0 8 7 0 0 0 0 15 2 
3 -3 

1 0 3 1 0 0 0 0 0 3 -2 2 2 

0 0 7 7 0 0 0 0 -11 9 -2 -6" 

0 0 0 0 0 0 1 0 0 -1 1 

0 0 1 0 0 0 0 0 0 0 

0 0 1 3 0 0 0 0 0 4 4 -2 

This does not have a feasible solution. 
(XI) Introducing a new constraint with slack variable X17: 

Xl + X l7 = o. 

Xl X2 X3 X4 X5 X6 X7 X13 X17 r.h.s. 

0 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 

0 0 0 0 -! 1 1/ 1/ 0 V 
0 0 0 1 2 0 22 27 0 1/ -s -s- -s-

O 0 0 t 0 4 4 0 t -s -s 
0 0 0 0 0 0 0 0 

0 0 0 0 t 0 Il t 0 ¥ 
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In canonical form: 

XI X2 X3 X4 Xs X6 X7 X13 X17 r.h.s. 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 6 ti It 0 37 -s s 5 

0 0 0 2 0 22 27 0 ti -s -5 -5 s 

1 0 0 0 t 0 4 4 0 J. -s -s s 

0 0 0 0 8) 0 ! 4 1 3 
S -s 

0 0 0 0 ! 0 Il ! 0 2t 

XI X2 X3 X4 Xs X6 X7 X I 3 X17 r.h.s. 

0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 1 0 1 
0 0 0 0 0 1 -1 -1 -6 11 
0 0 0 1 0 0 -6 -7 -2 5 
1 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 -4 -4 -5 3 
0 0 0 0 0 0 5 4 3 4 

This has a feasible integral solution: 

xT, xi = 0, x! = 1, x~ =4. 

This is less than the value of the incumbent, so it can be discarded as sub-
optimal. 

(XII) Introducing a new constraint with slack variable x1S : 

XI X2 X3 X4 Xs X6 X7 XI3 XIS r.h.s. 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 -! It It 0 37 
5 

0 0 0 1 2 0 22 7 0 It -5 -5 -s 
1 0 0 0 t 0 4 4 0 ! - s -s 

0 0 0 0 0 0 0 -1 

0 0 0 0 J. 0 IS3 ! 0 l.2. s s 
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In canonical form: 

Xl X 2 X3 X4 X5 X6 X7 X13 XIS r.h.s. 

0 0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 6 1 19 19 0 37 -s- 5 5 5 

0 0 0 1 2 0 22 7 0 II -s- -5 -s- 5 

0 0 0 1 0 4 4 0 ~ s- - s- -s-
O 0 0 0 t 0 4 8) 2 - s- -s-
O 0 0 0 3 0 V ! 0 2/ s-

Applying the dual simplex method: 

Xl X 2 X3 X4 X5 X6 X 7 X13 XIS r.h.s. 

0 0 0 0 0 1 0 0 0 

0 0 1 0 1 0 -1 0 i 1. 
4 2 

0 0 0 0 1 1 0 0 11 II -4 

0 0 0 3 0 3 0 7 ! -4 -4 

1 0 0 0 0 0 0 0 -1 

0 0 0 0 1 0 1 5 1 
-4 -4 "2 

0 0 0 0 0 0 2 5 

This has the solution: 

xi = 1, xi =0, x~ = t, x~ = 5, 

which is no better than the incumbent and can be ignored. 
Thus there is no node in the decision tree with bound greater than that of 

node (IV). As this represents a feasible solution it is optimal. Hence 

xi = x~ = 0, xi = 1, x~ = 5. 

2(a). The decision tree is shown in Figure S.6. The optimal solution is 

xi, x~ = 0, xi = 1, 

3(a). This has the same solution as 2(a). 
3(b) Xl = y~ + 2yi :::; 2 

x2 = y~ + 2YI :::; 3 

X3 = yg + 2y~ :::; 2. 

x~ = 5. 
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9 

8 5 

-00 3 4 5 
Figure S.6 

Hence the problem becomes 

4Y6 + 8Yi + 3y~ + 6yi + 3Y6 + 6YI Maximize: 

subject to: 3Y6 + 6Yi + 4y~ + 8yi + 2Y6 + 4YI ~ 14 

4Y6 + 8yi + 2y~ + 4yi + Y6 + 2YI ~ 10 

2Y6 + 4yi + y~ + 2Yi + 3Y6 + 6YI ~ 7 

y{ = ° or 1, i = 0, 1 

j = 1,2,3. 

The optimal solution is 

with value 13. 

Y6 = yi = Y6 = 1 

yi = y~ = YI = 0, 

4(a). From 1(a) the final tableau is 

Xl X2 X3 X4 X5 X6 

7 1 0 1 1 0 -12 3 -4 

V 0 1 t 0 -3 
19 0 0 0 1 
4"" -4 
17 0 0 1 i 0 12 3 

Now 
x2 - ?2 + tX4 - txs = g 

r.h.s. 

11 
12 

5 
"6 

41 
4"" 
95 
12 

x2 = g - (-1 + f-2)Xl - (0 + tx4 ) - (-1 + t)xs' 

Adding in slack variable x 7 , the constraint is 
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Introducing this into the above tableau: 

XI X2 X3 X4 Xs X6 X7 r.h.s. 

7 1 0 I -i 0 0 tt -12 3 
11 0 1 I t 0 0 i "6 -3 

11 0 0 0 I 1 0 4;f -4 
5 0 0 ED 3 0 -H -12 -4 

g 0 0 t 3 0 0 H 4 

Applying the dual simplex method: 

XI X2 X3 X4 Xs X6 X7 r.h.s. 

-1 0 0 -1 0 0 
9 0 1 0 .s. 0 -1 i 4 4 

19 0 0 0 -i 0 4;f "4 
5 0 0 .2. 0 -3 Ii 4 4 

1 0 0 0 0 0 7 

Therefore 

Adding in slack variable xs, the constraint is: 

Introducing this into the preceding tableau: 

XI X2 X3 X4 Xs X6 X7 Xs r.h.s. 

-1 1 0 0 -1 0 0 0 

1 0 1 0 i 0 -1 0 i 
19 0 0 0 I 1 0 0 4;f "4 -4 

5 0 0 1 9 0 -3 0 11 
4 4 "4 
I 0 0 0 8) 0 0 1 3 

-4 -4 

0 0 0 0 0 0 7 
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XI X2 X3 X4 X5 X6 X7 Xs r.h.s. 

0 1 0 0 0 0 -4 3 
0 1 0 0 0 -1 5 -2 

5 0 0 0 0 0 -1 11 

-1 0 0 1 0 0 8) 9 -4 
1 0 0 0 0 0 -4 3 

0 0 0 0 0 0 7 

I 1 0 I 0 0 0 -1 5 
-3 3 3 

4 0 8) 0 0 0 2 2 
3 -3 

5 0 0 0 0 0 -1 11 
I 0 0 I 0 0 1 -3 4 
3 -3 3 

0 0 0 0 0 -4 3 
2 0 0 I 0 0 0 3 17 
3 3 3 

1 0 0 0 0 1 1 
-4 0 -3 0 0 0 -6 2 

5 0 0 0 0 1 0 -1 11 
-1 0 -1 0 0 0 1 -5 2 

1 0 0 0 1 0 0 -4 3 
2 0 1 0 0 0 0 5 5 

The last tableau represents the optimal solution: 

xi, xj = 0, x~ = 1, x6 = 5. 

5(a). From l(a) the final tableau is 

XI X 2 X3 X4 X5 X6 r.h.s. 

7 1 0 I I 0 II -12 3 -4 12 
II 0 I I 0 5 
""6 3 2 " 19 0 0 0 I 41 
4" -4 4" 
17 0 0 I 3 0 95 
12 3 4 12 

Now substituting in: 

Df. = D'.(D'. - 1) - I 
J J J L ajkYk + L ajkYk - x, 

kE s_ k E s+ 

0+ g - X2 = - ?2XI + tX4 - txs 
II {llel 1)-I[ 7 I]} I 12 = 12 12 - -12xI - 4 XS + J"X4 - x 7 • 

Therefore 

g = iix i + 141XS + tX4 - x 7 • 
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Introducing this into the tableau: 

Xl X2 X3 X4 X5 X6 X7 r.h.s. 

7 0 1 1 0 0 11 -12 3 4 12 
11 0 1 1 .1 0 0 i 6"" 3 2 

19 0 0 0 1 1 0 4j 4 -4 

8J) 0 0 1 11 0 1 11 -12 -3 -4 -12 

g 0 0 .1 i 0 0 95 
3 12 

0 0 4 0 0 1 
IT -IT 

0 0 3 .£ 0 ~ ~ -7 7 

0 0 0 19 16 1 57 67 -77 ""7 77 ""7 

0 0 4 .J. 0 12 i -77 7 -77 

0 0 0 ~~ 2 0 17 54 
7 77 ""7 

Hence the optimal solution is 

xT =~, 
xi = 1 (which was constrained to be integral) 

Chapter 5 

Section 5.6 

l(a). The graph is shown in Figure S.7. The shortest path is <Pl,P2,PS, 
Ps, P 11) with a length of 40. 

[0] 

12 12 
[\5] 

6 3 

9 6 
[23] 

[33] 
8 9 

7 10 

[40] 

Figure S.7 
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12 

6 
I------------f 3 

3 

9 
)--------{ 7 

6 

)---8=-----f 9 )--------:9:------f 10 

7 

Figure S.8 

2(a) and 3(a). The graph is shown in Figure S.8. The order of inclusion 
of the lines for Kruskal's method is 

{P3,P4}, {P4,P6}' {P6,P7}' {P4,P2}, {PS,Pll}, {PS,P9}' {P6,PS}' 

{P9,P10} [reject: {P3,P7}' {Ps,Ps}] {Ps,Ps} [reject: {P10,Pll}, 

{P2'PS}' {P7,PlO}, {P6,P9}] {P1,P2}' 
The weight of the minimal spanning tree is 75. 

4(a). The minimum cut is {(P1,P2),(P6,P2),(P6,PS),(P7'PS)}, with a ca­
pacity of 18. The arc capacities are shown in Figure S.9. 

5(a). The optimal flow assignment is 

112 = 7, 115 = 11, 124 = 4, 123 = 5, 162 = 2, 

156 = 6, 

16S = 4, 

157 = 5, 

167 = 0, 

7 

2 

5 
8 

Figure S.9 
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6(a). The optimal solution is shown in Figure S.lO. The cost of this flow 
is 325. Note that it is different from the solution to 5(a). 

7(b) ti eSi lSi 

(J( 0 0 0 
1 5 0 0 
2 10 0 1 
3 8 0 6 
4 5 5 5 
5 12 5 6 
6 7 11 11 
7 4 8 14 
8 6 18 18 
9 10 8 14 
w 0 24 24 

7(c) ti eSi lSi 

0 0 0 0 
1 6 0 30 
2 4 0 0 
3 5 4 24 
4 6 4 4 
5 4 4 6 
6 3 9 29 
7 10 10 10 
8 12 20 20 
9 4 32 32 
w 0 36 36 

18 
Figure S.lO 

el; II; 

0 0 
5 5 

10 11 
8 14 

11 11 
17 18 
18 18 
12 18 
24 24 
18 24 
24 24 

el; II; 

0 0 
6 36 
4 4 
9 29 

10 10 
8 10 

12 32 
20 20 
32 32 
36 36 
36 36 

tl; ffi 

0 0 critical 
0 0 critical 
1 1 
6 0 
0 0 critical 
1 1 
0 0 critical 
6 6 
0 0 critical 
6 6 
0 0 critical 

tl; ffi 

0 0 critical 
30 30 
0 0 critical 

20 0 
0 0 critical 
2 2 

20 20 
0 0 critical 
0 0 critical 
0 0 critical 
0 0 critical 
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8. Activity 4 ceases to be critical. The new critical path is 

(IX, 2, 5, 7, 8,9, w). 

The earliest completion time is now 34. 

Chapter 6 

Section 6.9 

l(a). The solution is shown in Figure S.ll. The shortest path is 

(Ph P2, Ps, Ps, Pll) 
with a length of 40. 

2(a). Let f,,(s) be the return when s has been allocated to Xl' X2' Xm n = 
1, 2, 3, 4. Let 

Then 

[12] 

2 [23] 

3 [33] 

4 

5 

Sl = Xl 

11(Sl) = [7Xl - xDx,=s, 
= 7s 1 - sf, 

[0] 

Figure S.11 

n = 2, 3, 4 ... , 
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Let 

Then 

Therefore 

Also, 

12(S2) = max {Jl(S2 - x 2) + 7X2 - xD 
X2 

O:s: X2 :S;S2 

= max {7(S2 - x2) - (S2 - x2f + 7X2 - 2xD 
x2 

O:S:X2:S: S2 

13(S3) = 7s3 + ts~ + 383S~ - 343S~ 
= 7s3 - 161S~, 

S4 = x 4 + S3 = 8 

14(8) = max {J3(8 - x4) + 7X4 - 4xn 
X4 

0:;; X4:;; 8 

= max {7(8 - x4 ) - 161 (8 - x4f + 7x4 - 4xi} 
X4 

0:;;x4:;;8 

= max {2N + i~X4 - i~xn. 
X4 

0:;; X4:;; 8 

dF(xt) _ 96 1QQ * - ° 
--- - 11 - 11 x4 - . 

dX4 

xt = ~~ E [0,8]. 

d2 F(xt) __ 100 ° 
d 2 - 11 < , x4 

hence xt is a maximum point. Therefore 

{" (8) - 232 + (96)(24)2 _ 632 
)4 - 11 11 25 - 25 • 

Recapitulating: 

S4 = 8 ~ xt = ~~ 
S3 = 8 - ~~ = g~ ~ X3 = (ll)(g~) = ~; 
S2 = 12756 - n = 12454 ~ xi = me2454 ) = i~ 
SI = 12454 - i~ = ~~ ~ xT = ~~. 

The optimum is 6l52. 

459 
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2(b). Let fn(s) be the return when s has been allocated to X4, X3, ... , Xn· 
Let 

Then 

Let 

Then 

Therefore 

and 

n = 1,2,3,4. 

S4 = X4 

f4(S4) = [7X4 - 4xiJx4=.4 
= 7s4 - 4si, 

f3(S3) = max {f4(S3 - X3) + 7X3 - 3xn 
X3 

o ';;X3';;'3 

= max {7(S3 - x3) - 4(S3 - X3)2 + 7X3 - 3xn 
X3 

O:S;X3S S3 

= max {7s3 - 4s~ + 8S3X3 - 7xn. 
X3 

O';;X3';;'3 

hence x~ is a maximum point. Hence 

f3(S3) = 7s3 - 4s~ + 3ls~ - 176S~ 

= 7s3 - llsL 

f2(S2) = max {f3(S2 - x2) + 7X2 - 2xD 
X2 

O';;X2';;'2 

= max {7S2 - Vs~ + 274S2X2 - 276XD· 
X2 

O';;X2';;'2 
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Let 

Hence 

and 

Hence 

JF2(xi) _ 24 52 * - ° 
- 7 S2 - 7 X 2 -

JX2 

xi = 163S2 E [0, S2]. 

and xi is a maximum point. Therefore 

Now 

Let 

Hence 

and 

12(s2) = 7s2 - lls~ + 19414S~ - ~is~ 

= 7s2 - gis~. 

11(sl) = max {f2(8 - Xl) + 7X1 - xi} 
XI 

O";xI,,;8 

= max {7(8 - Xl) - gi(8 - xy + 7X1 - xi}. 
XI 

O,,;xI,,;8 

hence xi is a maximum point. Therefore 

11(sl) = 7(8 - ~~) - gi(8 - ~~)2 + 7(~~) _ (~~)2 
_ 632 
- 25 . 
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Recapitulating: 

Sl = 8 = xi = ~~ 

S2 = 8 - ~~ = IN = x! = (163W2054 ) = i~ 
S3 = 12°54 - i~ = ~~ = xj = (~)(~~) = ~; 
S4 = ~~ - n = ~~ = x! = ~~. 

The optimum is 6ll. 
There is slightly less effort involved in forward recursion. 
3. Let f,,(s) be the return when s has been allocated to Xl' X2, ... , Xno 

n = 1, 2, 3, 4. Let 

Then 
f,,(Sn) = max {fn-l(Sn - Xn) + txn - nx;}. 

Xn 
o ::::;xn::::;sn 

Now 
Sl = Xl 

11(Sl) = max {7Xl - xi}. 
XI 

Xl=Sl 

Sl 0 1 2 3 4 5 6 7 8 

11(Sl) 0 6 10 12 12 10 6 0 -8 

Now 

12(S2) = max {fl(Sl) + 7X2 - 2xD· 
X2 

O.s X2.s 82 

S2 0 2 3 4 5 6 7 8 x~ H S2) 

0 0 0 0 
1 6 5 1 6 
2 10 11 6 1 11 
3 12 15 12 3 15 
4 12 17 16 9 -4 1 17 
5 10 17 18 13 2 -15 2 18 
6 6 15 18 15 6 -9 -30 2 18 
7 0 11 16 15 8 -5 -24 -49 2 16 
8 -8 5 12 13 8 -3 -20 -43 -72 3 13 
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Now 

S3 0 

0 0 
1 1 4 
2 11 10 
3 15 15 
4 17 19 
5 18 21 
6 18 22 
7 16 22 
8 13 20 

Now 

S4 0 1 

8 20 25 

S3 = X3 + S2 

f3(S3) = max {f2(S2) + 7X3 - 3xn· 
X2 

O:S;X2;:5;S2 

X3 

2 3 4 5 6 7 

2 
8 -6 

13 0 -20 
17 5 -14 -40 
19 9 -10 -34 -66 
20 11 -8 -30 -60 -98 
20 12 -8 -28 -56 -92 

S4 = S3 + X4 = 8 

f4(S4) = max {f3(S3) + 7X4 - 4xn· 

2 3 

20 0 

X4 
0:s;x4:s;8 

x. 

4 5 6 7 

-17 -44 -80 -125 

S4 = 8 =>X4 = 1 

S3 = 8 - 1 = 7 => x! = 1 

S2 = 7 - 1 = 6 => xi = 2 

SI = 6 - 2 = 4 => xt = 4 

with an optimum of 25. 
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8 x~ f2(S3) 

0 0 
0 6 
0 11 

0,1 15 
1 19 
1 21 
1 22 
1 22 

-136 1,2 20 

8 xl f4(S4) 

-180 1 25 
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4. Let 

Xn = the number of units produced at stage. 

J..(s) = return when a total of s units have been produced by the end of 
stage n. 

Sn = Xl + X 2 + ... + X n • 

cx,j = production cost of Xi units in period j. 

J..(sn) = min {J.. -1 (Sn - Xn) + CXnn + (4 - n)Xn}, 

Now 

Therefore 

Now 

X4 
O,:=;;;xn~sn 

f1(S!) = min {cx .! + 3X1}. x. 
O:SX1:S S1 

o 1 2 3 4 

2 7 14 18 23 

S2 = Sl + X2 

n = 1,2,3,4. 

5 6 

27 32 

f2(S2) = min {J1(S2 - x2) + cx22 + 2x2}. 
x2,,6 

1 :::;X2:::;S2 
5"'2,,12 

The restrictions 1 :s; X 2 and 5 :s; S2 :s; 12 arise from the facts that 19 units 
must be produced but that no more than 6 can be produced per period. 

X2 

S2 1 2 3 4 5 6 x! f2(S2) 

7 41 40 40 41 43 39 2,3 39 
8 45 44 46 47 46 3 44 
9 49 50 52 50 3 49 

10 55 56 55 4,6 55 
11 61 59 6 59 
12 64 6 64 
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S3 = S2 + X3 

f3(S3) = min {f2(S3 - X3) + cx3 3 + X3}· 

S2 

13 73 
14 
15 
16 
17 
18 

l5x356 
135'3518 

x2 

2 3 

72 73 
77 77 

82 

4 

69 
75 
79 
84 

S4 = S3 + X3 = 19 

5 6 x! 

66 66 5,6 
71 70 6 
77 75 6 
81 81 5,6 
86 85 6 

90 6 

f4(S4) = min {f3(19 - x4) + CX44 }· 
l5x456 

1 2 3 4 

19 95 94 94 90 

The minimum cost is $87. Backtracking: 

xt = 5 or 

xj = 6 

xi = 3 

xi = 5 

5. Let 

5 

87 

xt = 6 

xj = 6 

xi = 6 

xi = 1. 

6 

87 5 

f3(s3) 

65 
70 
75 
81 
85 
90 

f..(S) = return when S has been allocated to Xl' X2' ... , xn 

Sn = Xl + x2 + ... + xn • 

Then 

Xn 
O<xn<sn 
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Let 

Hence 

and 

Also 

11(Sl) = max {xd = Sl 
XI 

Xl =SI 

Solutions to Selected Exercises 

12(S2) = max {f(S2 - X2)X2} 
X2 

o <X2 <52 

max {(S2 - X2)X2}. 
X2 

o <X2 <S2 

aF2(xf) _ * _ 0 
- S2 - sX2 -

aX2 

xi = S2/2 E [0, S2J. 

a2Fz{xi) = -2 0 a 2 < , 
X2 

hence xi is a maximum point. 

13(S3) = max {fz{S3 - X3)X3} 
x3 

o <X3 <S3 

Let 

Then 

and 
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hence S3/3 a maximum point, and 

a2F3(S3) 2 0 
::l 2 = S3> , 
uX3 

hence S3 is a minimum point. Therefore 

Hence 

Let 

Then 

and 

But as 0 < xt < 9, 

Backtracking: 

x~ = S3/3 

f3(S3) = i(s3/3)(S3 - (S3/3) f = (S3/3)3, 

f4(S4) = max {J3(9 - X4)X4} 
X4 

o <X4 < 9 

xt = 0, £, or 9. 

S4 = 9 = xt = £ 
S3 = 9 - xt = 247 = x~ = S3/3 = £ 
S2 = 247 - x~ = ~8 = x! = S2/2 = £ 
S I = II - xi = £ = xi = S I 

_2-
- 4· 

The value of the optimal solution is (£)4. 

6. Let 

/,,(S) = return when S has been allocated to Xl' x 2, ... , Xn 

Sn = Xl + X2 + ... + Xn • 
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Then 

Hence 

Let 

Then 

Therefore 

Also 

Xn 
o <Xn 

11(sd = min {xi} = sf 
Xl 

Xl =51 

Solutions to Selected Exercises 

12(S2) = min Ul(S2/X2) + xn 
X2 

o <Xl 

= min {(S2/X2)2 + xn. 
X2 

o <Xl 

a2 F2(xi) = 6s~ + 2 > 0 
ax~ (.js;f ' 

hence xi is a minimum point. Therefore 

12(S2) = 2s2, 

Hence 

Let 

Then 

Therefore 

13(S3) = min U2(S3/X3) + xD 
X3 

O<X3 

= min {2(S3/X3) + xD. 
X3 

o <X3 
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Also 

hence xj is a minimum point. Therefore 

13(S3) = 3s~/3, 

S3 = S4/X4' 

Hence 

Let 

Then 

Therefore 

Also 

14(S4) = min {J3(S4/X4) + xn 
X4 

0<X4 

= min {3(S4/X4)2/3 + xl}. 
X4 

0<X4 

iJ2F4(x:) lOsl/3 
() * = -3 2/3 + 2 > 0, X4 S4 

hence x: is a minimum point. Therefore 

Hence 

Let 

Then 

and 

Hence 

14(S4) = 3sl/3si 1/6 + si/2 = 4si/2 , 

S4 = ss/xs = 11/x5· 

Is(ss) = 15(11) = min {J4(11/xs) + xn 
x, 

o<x, 

= min {4(11/x S)1/2 + xn. 
x, 

o<x, 

'(11) = 4(11)1/2 + 112/5 = 5(11)2/5 
J. 11 1/10 . 

469 



470 Solutions to Selected Exercises 

Backtracking: 

S5 = 11 = x~ = 11 1/ 5 

S = ~ = 114/5 = x* = (114/5)1/4 = 11 1/5 
4 11 1/5 4 

114 / 5 
S = -- = 11 3/5 = x* = (113/5)1/3 = 11 1/5 

3 11 1/ 5 3 

11 3/ 5 
S = -- = 11 2/5 = x* = (112/5)1/2 = 11 1/5 

2 11 1/ 5 2 

11 2/ 5 
- - 11 1/5 

Sl - 11 1/5 - = x! = 111/5. 

7. Let In(s) be the return when s has been allocated to V1X1 + ... + VnXn, 
n = 1, 2, where 

Then 

hence 

Hence 

Therefore 

Hence 

Hence 

n 

Sn = L ViXi 
i= 1 

n = 2, 

11(Sl) = min {xd = sd3. 
XI 

o :0; XI :0;51/3 

x! = sd3, 

12(S2) = min {II (S2 - 4x2) + X2} 
X2 

o :O;X2:O; 52/4 
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and 

Therefore 

Recapitulating: 

f2(S2) = s2/4, 

S2 ~ 12. 

xi = 3, xt = o. 
8(a). Let f..(s, t) be the return when 

and 

where 

From the constraints, 

Therefore 

n 

L ViXi = Sn' 
i= 1 

n 

I WiXi = tn' 
i= 1 

n = 1,2 

n = 1,2 

(V 1, V 2 ) = (3,4) 

(W 1, W 2 ) = (4, - 5) 

S2 ::; 24 

t2 ::; 20. 

f..(sn, tn) = max {f..-1(Sn-1' tn- 1) + dnx;; + enxn}, n = 2 

where 
(d1 ,d2 ) = (8,4) 

(e 1,e2 ) = (-3, -4). 

SI t I XI fl(sj,tJ! 

0 0 0 0 
3 4 1 5 
6 8 2 26 
9 12 3 63 

12 16 4 116 
15 20 5 185 

f2(S2' t2) = max {I1 (S1' t1) + 4x~ - 4x2 } 
X2 

0,; X2'; 6 

S2 = S1 + 4X2 

t2 = t1 + 5x2· 

471 



472 Solutions to Selected Exercises 

Therefore 

fz(sz, tz) = max {fl(SZ - 4x 2 ,tZ - 5x2 ) + 4x~ - 4X 2}' 
X2 

O:$x2$6 

S2 t2 X2 fz(sz, t z) 

0 0 0 0 
3 4 0 5 
4 5 1 0 
6 8 0 26 
7 9 1 5 
8 10 2 8 
9 12 0 63 

10 13 1 26 
11 14 2 13 
12 16 0 116 
13 17 1 63 
14 18 2 34 
15 20 0 185 
16 20 4 116 

Hence the maximum value occurs when Sz = 15, t2 = 20, Xz = 0. Back­
tracking: 

and 

Then 

xi = 5, xi = 0, 

Let J..(s, t) be the return when 
z 
I DiXi = Sn' 
i=n 

2 

I WiX i = tn' 
i-n 

n = 1,2 

n = 1,2. 

X6 = 185. 

fl(Sl' t 1) = max {fz(sz, t z) + 8xi - 3xd· 
Xl 

Sz t z Xz fz(sz, t 2) 

0 0 0 0 
4 5 0 
8 10 2 8 

12 15 3 24 
16 20 4 48 
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SI t 1 Xl fl(sl, t l ) 

0 0 0 0 
3 4 1 5 
4 5 0 0 
6 8 0 26 
7 9 1 5 
8 10 0 8 
9 12 3 63 

10 13 2 26 
11 14 13 
12 15 0 24 
12 16 4 116 
13 17 3 63 
14 18 2 34 
15 20 5 185 
16 20 4 116 

Hence, as before, 

xi = 5, xi = 0, X6 = 185. 

9. Number the objects 1,2, ... ,7 in nonincreasing order of weight. Let 

X. = {I, if object i is taken 
! 0, otherwise 

Wi = weight of object i 

Vi = value of object i, i = 1,2, ... , 7 

n 

Sn = L WiXi, 
i= 1 

n = 1,2, ... , 7 

f,.(S) = return when the weight of the objects selected after the first n 
objects have been considered is s. 

Then 

f,.(sn) = max {f,. -1 (Sn - 1) + VnXn} 
Xn 

n r WiXi ~Sn 
i = 1 

s7:>100 

SI 0 50 
Xl 0 1 

11(SI) 0 60 

S2 0 40 50 90 
X 2 0 1 0 1 

12(S2) 0 40 60 100 
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o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

Backtracking: 

10. Let 

40 
o 

40 

30 
1 

10 

30 
1 

60 

10 
1 

10 

10 
o 

10 

50 
o 

60 

40 
o 

40 

40 
o 

40 

80 
1 

60 

50 
o 

60 

50 
o 

60 

30 40 
o 1 

60 70 

30 40 
o 0 

60 70 

x~ = 1, 

xj = 0, 

x~ = 1, 

x! = 0, 

Ui = volume of object i 

n 

90 
o 

100 

70 80 90 
1 1 0 

50 70 100 

70 80 90 
1 1 0 

100 120 100 

50 60 
o 0,1 

60 70 

50 60 
o 0 

60 70 

x~ = 1, 

xi = 1, 

70 
o 

100 

70 
o 

100 

80 
1 

110 

80 
o 

110 

xl = 0, 

x~ = 133. 

tn = L UiXi , 
i= 1 

n = 1,2, ... ,7 

t7 ::; 100 

90 
1 

130 

90 
o 

130 

100 
1 

110 

100 
1 

133 

gn(s, t) = return when the weight and volume of the objects selected after 
the first n objects have been considered in sand t, respectively. 

Sl 0 50 
tl 0 50 
Xl 0 1 

gl(Sl' t 1) 0 60 

S2 0 40 50 90 
t2 0 25 50 75 
X2 0 1 0 1 

g2(S2' t 2) 0 40 60 100 
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S3 0 40 40 50 80 90 90 
t3 0 0 25 50 25 75 50 
X3 0 1 0 0 1 0 1 

g3(S3, t 3) 0 20 40 60 60 100 80 

S4 0 30 40 40 50 70 70 80 80 90 90 
t4 0 25 0 25 50 25 50 75 25 75 50 
X 4 0 1 0 0 0 1 1 1 0 0 0 

g4(S4, t 4 ) 0 10 20 40 60 30 50 70 60 100 80 

S5 0 30 30 40 40 50 60 70 70 70 70 80 80 90 90 
t5 0 25 75 0 25 50 100 25 50 100 75 75 25 75 90 
X5 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 

g5(S5, t 5) 0 10 60 20 40 60 70 30 50 100 80 70 60 100 80 

S6 0 10 30 30 40 40 50 50 60 60 70 70 70 70 80 80 80 80 
t6 0 25 25 75 o 25 50 25 75 100 25 100 75 50 75 25 50 100 
X6 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 
g6 0 10 10 60 20 40 50 30 70 70 30 100 80 50 70 60 40 90 

S6 90 90 90 100 100 
t6 75 50 100 100 75 
X6 0 0 1 1 1 
g6 100 80 80 110 90 

S7 0 10 10 20 30 30 40 40 40 50 50 50 50 60 60 
t7 0 24 50 75 25 75 0 25 75 50 25 75 100 75 100 
X 7 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 
g7 0 10 3 13 10 60 20 40 13 60 30 43 63 70 70 

S7 60 70 70 70 70 80 80 80 80 90 90 90 100 100 
t7 50 25 100 75 50 75 25 50 100 75 50 100 100 75 
X 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
g7 63 30 100 80 70 70 60 40 90 100 80 80 110 90 

Backtracking: 

x~ = 0, x: = 1, x~ =0, xl = 0, 
x! =0, x! = 1, xt = 1, x~ = 110. 

11. First divide all constants by 10. 

Sl 0 10 20 30 40 50 
tl 0 100 200 300 400 500 
Xl 0 1 2 3 4 5 

11 (Sl' t 1) 0 9 18 27 36 45 
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82 0 10 20 20 30 30 40 40 40 50 
t2 0 100 50 200 150 300 100 250 400 200 
X2 0 0 1 0 1 0 2 1 0 2 

f2(82' t2) 0 9 10 18 19 27 20 28 36 29 

82 50 50 60 60 60 70 70 70 80 
t2 350 500 150 300 450 250 400 550 200 
X2 1 0 3 2 1 3 2 1 4 

f2(82 , t2) 37 45 30 38 46 39 47 55 40 

82 80 80 90 90 100 100 100 
t2 350 500 300 450 250 400 550 
X2 3 2 4 3 5 4 3 

f2(8 2, t2) 48 56 49 57 50 58 66 

83 0 5 10 10 15 15 20 20 25 25 25 30 
t3 0 150 100 300 250 450 50 400 200 350 550 150 
X3 0 1 0 2 1 3 0 2 1 1 3 0 

f3(83, t3) 0 15 9 30 24 45 10 39 25 33 54 19 

83 30 30 35 35 35 40 40 40 40 45 45 45 
t3 300 500 300 450 500 100 250 400 450 250 400 550 
X3 0 2 1 1 3 0 0 0 2 1 1 1 

f3(83' t3) 27 48 34 42 55 20 28 36 49 35 43 51 

83 50 50 50 50 50 55 55 55 60 60 60 60 
t3 200 350 400 500 550 350 500 550 150 300 450 500 
X3 0 0 2 0 2 1 1 3 0 0 0 2 

f3(8 3, t3) 29 37 50 45 58 44 52 65 30 38 46 59 

83 65 65 70 70 70 70 75 75 80 80 80 80 85 
t3 300 450 250 400 450 550 400 550 200 350 500 550 350 
X3 1 1 0 0 2 0 1 1 0 0 0 2 1 

f3(83 , t 3) 45 53 39 47 60 55 54 62 40 48 56 69 55 

83 85 90 90 90 95 100 100 100 
t3 500 300 450 500 450 250 400 550 
X3 1 0 0 2 1 0 0 0 

f3(83 , t3) 63 49 57 70 64 50 58 66 

Backtracking: 

x~ = 2, x! =4, xI =0 
x~ = 70, or 700 in terms of the original data. 
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12. Let 

Si = number of tons available at the end of year i 

Xi = number of tons sold at the end of year i, i = 1, 2, ... , 5 

n = 2, 3,4,5. 

Using backward recursion: Let 

Then 

where 

/,,(s) = the return that can be accrued from years n, n + 1, ... , 5 
given S tons are available at the end of year n. 

Xn 
O:S;XnSSn 

n = 1,2,3,4 

(dl>d2 , d3 , d4 , ds) = (400,330,44,15,5), 

Sl = 20. 

Hence 

Is(ss) = max {5xs} = 5ss, and x~ = Ss, 
x.=ss 

14(S4) = max {fS(3(S4 - x4» + 15x4} 
X4 

o :S;X4 :S;'4 

= 15s4, and xl = 0, 

13(S3) = max {f4(3(S3 - X3» + 44X3} 
X3 

0:S;X3:S;'3 

= max {45s3 - X3} 
X3 

O:s X3:S;'3 

= 45s3, and x! = 0, 

12(S2) = max {f3(3(S2 - X2» + 330X2} 
X2 

0:SX2:S'2 

= max {135s2 + 195x2} 
X2 

O:s X2:S;'2 

= 330s2, and xi = S2' 

11(Sl) = max {fi3(20 - Xl» + 400xd 
XI 

o :S;XI:S; 20 

= max = {990(20 - Xl) + 400Xd 
XI 

o :S;XI:S; 20 

= 19,800, and xT = o. 
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Backtracking: 
x! = 0, Sl = 20 

S2 = 3(Sl - 0) = 60 

x~ = 60 

S3 = 3(60 - 60) = ° 
Ss = ° 

Solutions to Selected Exercises 

Hence all potatoes should be sold at the end of the second year for a total 
profit of 19,800 units. 

Chapter 7 

Section 7.6 

l(a) 

If 

then 

f(x) = x 3 + ~X2 - 18x + 19 

f'(x) = 3x2 + 3x - 18 

f"(x) = 6x + 3. 

f'(x*) = 0, 

x* = -3 or 2, 

1"( -3) < 0, 

hence x* = - 3 is the global maximum; also, 

1"(2) > 0, 

hence x* = 2 is the global minimum. 
2(a). Referring to Exercise l(a), as -3 ¢ [ -1 .. i] the global maximum of 

f occurs at one of the endpoints of [ - 1, n As f( - 1) > fm, 

x* =-1 
is the global maximum, and 2 ¢ [ -1,n Therefore x* = 2 is still the global 
minimum. 

8 (a) 

If 

then 

Therefore 

f(x) = sin x 

f'(x) = cos x. 

f'(x*) = 0, 

cos x* = 0. 

x* = n12, x* E [0, nJ. 
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Hence as f is concave, by Theorem 7.7, 

x* = nl2 

is a global maximum. f has global minima at x = 0 and x = n. 
10(a) 

Hence 

Therefore 

Hence 

Therefore 

Therefore 

(Pf 
--=0 
OXIX2 

o2f 
----'-----=0 
OX2 0X l 

2xT - 1 = O. 

X* _l. 
1 - 2' 

6x! + 18 = O. 

x! = -3. 

Xo = (t, -3) 

is the only candidate for an extreme point. As 

H(X) = (~ ~) 
is positive definite, X 0 is a global minimum. 

f(Xo) = 52· 
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l1(a). From Exercise 10(a), 

But 
X* -1. 1 - 2, x! = -3. 

x! ¢ [ -2,6]' 

Hence the global minimum lies on the boundary of 

S = {(X l ,X2 ): -1::; Xl::; 5, -2::; x 2 ::; 6}. 

The boundaries of S are 

Bl = {tX( -1, -2) + (1 - tX)(5, -2): 0::; tX::; 1} 

B2 = {tX(5, - 2) + (1 - tX)(5, 6): 0 ::; tX ::; 1} 

B3 = {tX( -1,6) + (1 - tX)(5,6): 0::; tX::; 1} 

B4 = {tX( -1, -2) + (1 - tX)( -1,6): 0::; tX::; 1}. 

For B l . Let 

g(tX) = f(tX( -1, - 2) + (1 - tX)(5, - 2)), 

= f(5 - 6tX, -2) 

= (5 - 6tX)2 - (5 - 6tX) + 3( _2)2 + 18( -2) + 14. 
Then 

g'(tX) = 2(5 - 6tX)( -6) + 6, 

which is zero at tX*. Therefore 

tX* = i E [0,1] and g"(tX*) > 0, 

indicating a minimum. Therefore 

(x!,x!) = i( -1, -2) + *(5, -2) 
= (-t, -2) 

f(x!,x!) = _~l. 
For B2• Let 

Then 

g(tX) = f(tX(5, -2) + (1 - tX)(5,6)), 

= f(5, 6 - 8tX) 

= 52 - 5 + 3(6 - 8tX)2 + 18(6 - 8tX) + 14. 

which is zero at tX*. Therefore 

tX* = ! ¢ [0,1]' 

Hence the global minimum for f cannot lie on B2 • 

For B3• Let 

g(tX) = f(tX( -1, 6) + (1 - tX)(5,6)) 

= f(5 - 6tX,6) 

= (5 - 6tX)2 - (5 - 6tX) + (3)62 + 18(6) + 14. 
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Then 
g'(a) = 2(5 - 6a)( -6) + 6, 

which is zero at a*. Therefore 

a* = 1 E [0,1] and g"(a*) > 0, 

indicating a minimum. Therefore 

and 

(xt, x!) = 1( -1,6) + !(5, 6). 

= (t,6) 

f(xt, x!) = 2291. 
For B4 . Let 

Then 

g(a) = f(a( -1, -2) + (1 - a)( -1,6) 

= f( -1, 6 - 8a) 

= ( _1)2 - (-1) + 3(6 - 8a)2 + 18(6 - 8a) + 14. 

g'(a) = 6(6 - 8a)( - 8) - 8(18), 

which is zero at a*. Therefore 

a* = i ¢ [0, 1 J. 
Hence the global minimum for f cannot lie on B4 . 

As the lowest value for f occurs on the boundary of Bh we have 

14(a) 

Let 

X* = (t, -2) 

f(X*) = -¥-. 

hl(X) = Xl + X2 + X3 + X4 - 2 = 0 

h 2(X) = 3Xl + 2X2 + 4X3 + X4 - 3 = 0 

h3(X) = Xl + 4X2 + 3X3 + X4 - 1 = o. 

x = (Xl,X2,X3,X4) = (Wl, W2, W3, Yt) 

W = (Wl, W2, w3) 

Y=Yl 

J =(! ~ !) 
1 4 3 

J- l =( ; =: -;) 
-2 ~ 5 

K=(:) 
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Then 

af(W,Y) -1 ay = Vf(x4) - Vf(x l , X2, X3)J K 

= - 2X4 + (8x l , 6x2, 12x3)r 1 K 

= -2X4 + (8x l ,6x2 , 12x3) ( ~ 
-2 

= SS6 Xl + 2S4X2 - 7lx3 - 2X4 

= 0, for a stationary point. 

Solutions to Selected Exercises 

1 -S 
2 -S 
3 
S 

Combining this equation with the previous three, we get 

SS6 Xl + ~4X2 - 7lx3 - 2X4 = 0 

Xl + X2 + X3 + X4 = 2 

3Xl + 2X2 + 4X3 + X4 = 3 

Xl + 4X2 + 3X3 + X4 = 1, 

which can be solved to yield 

X* = (0.58, -0.39,0.08,1.73). 

This point is a maximum and 

15(a) 
f(X*) = -4.86. 

Maximize: 

subject to: 

4Xl + 3X2 = Xo 

3Xl + 4X2 + X3 = 12 

3xl + 3X2 + X4 = 10 

4Xl + 2X2 + Xs = 8 

i = 1,2, ... ,5. 

In order to guarantee that the nonnegativity conditions are satisfied we 
introduce squared slack variables: 

Maximize: 

subject to: 

4Xl + 3X2 = Xo 

3x l + 4X2 + x~ = 12 

3x l + 3x2 + xi = 10 

4Xl + 2X2 + x; = 8 

X l ,X2 ~ o. 
We must still guarantee that Xl and X2 are nonnegative. Hence we introduce 
the following constraints: 
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with squared slack variables: 

Xl - x~ = 0 

X 2 - x~ = o. 
Substituting for Xl and X2, we get 

Maximize: 

subject to: 

4x~ + 3x~ = Xo 

3x~ + 4x~ + x~ = 12 

3x~ + 3x~ + xi = 10 

4x~ + 2x~ + x; = 8. 
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(A) 

(B) 

(C) 

There is now no need for nonnegativity conditions and the problem is in a 
form which is amenable to solution by the Jacobian method. Hence 

m = 3, n = 5. 

We must choose which variables are assigned to Wand which to Y. In 
order to do this we calIon Theorem 7.12. If the Hessian matrix is negative 
definite at X*, then X* is a candidate for a local maximum for xo. 
Let 

Then 

and 

Therefore 

W = (WI' W2, W3) = (X3, X4 , xs) 

Y = (Yl, Y2) = (X6, X7)· 

Xo = 4x~ + 3x~ 

8xo = 8X6 
8X6 

82xo = 8 
8x~ 

8xo = 6X7 
8X7 

82xo = 6 
82X7 . 

Hy=G ~). 
which is positive definite, not negative definite. This choice will not lead to 
a local maximum. 

Now let 
W = (WI' W2, W3) = (x4 , X6, X7) 

Y = (Yl, Y2) = (X3'XS)· 
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By (A) and (C), we have 

and 

Therefore 

Therefore 

Therefore 

5x~ - x~ + 2x; = 4 

lOx~ + 4x~ - 3x; = 24. 

x~ = !(x~ - 2x; + 4) 

x~ = lo(3x; - 4x~ + 24) 

Xo = ~(x~ - 2x; + 4) + /0 (3x; - 4x~ + 24). 

oXo 4 
-= --X3 
OX3 5 

02XO 4 
ox~ = 5 

oXo 7 
-=--x 
oXs 5 S 

02xo 7 

ox; = 5 

Hy = (-t _~). 
which is negative definite. Proceeding with the Jacobian method: 

Vwxo = (O, 8X6, 6x7) 
Vc _( 4 7) yXO - -SX3, -sXs 

Therefore 

3 1 3 

lOx4 2X4 20X4 

}-1 = 1 
0 

1 

lOx6 5X6 

1 3 
0 

20X7 5x7 

ex, 0) c= 0 o . 
0 2xs 
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Now 

V~Xo = (0,0) - (0, 8X6' 6x7 ) 

3 

10x6 

1 

5X7 

_ (-16X3 12x3 16xs _ 18XS ) 

- 10 + 5 '5 10 

= (-~X3' -~xs), 

1 

o 

which is what we expect from D. Therefore 

V~Xo = 0 ~ x! = 0, xt =0. 

Hence the original constraints become 

This means that 

17(a). Let 

where 

Then 

3x~ + 4x~ = 12 

3x~ + 3x~ + xi = 10 

4x~ + 2x~ = 8. 

X~ = ~(=xt) 
x~ = II (=x!) 

x~ =~ 
Xo = sl· 

m 

F(X,A) = f(X) - L Ajhj(X), 
j= 1 

f(X) = -4xi - 3x~ - 6x~ - xi 

hl(X) = Xl + X2 + X3 + X4 - 2 

h2(X) = 3Xl + 2X2 + 4X3 + X4 - 3 

hiX) = Xl + 4X2 + 3X3 + X4 - 1. 

aF 
- = - 8Xl - Ai - 3A2 - A3 = 0 
aXl 

aF 
- = - 6X2 - Ai - 2A2 - 4A3 = 0 
aX2 
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of 
- = - 2X4 - A1 - A2 - A3 = 0 
oX4 

Solutions to Selected Exercises 

of 
OA

1 
= -(Xl + X2 + X3 + x4 - 2) = 0 

of 
OA2 = -(3X1 + 2X2 + 4X3 + x4 - 3) = 0 

of 
OA3 = -(Xl + 4X2 + 3X3 + X4 - 1) = 0, 

which can be solved to yield: 

Therefore 

xt = 0.58, 

At = -5.02, 

Chapter 8 

Section 8.4 

x! = -0.39, 

A! = -0.57, 

X~ = 0.08, 

A~ = 2.12. 

f(X*) = -4.86. 

The number of evaluations n must be such that 

xl = 1.74 

bm - a,.. e 1 
r '2:: = + -::-:----=-:--

b1 - a1 b1 - a1 3An - 2 + 2An - 3 

Therefore 

Therefore 

1 1. 1 
- > ~ + --::--:----=---
10 - 10 3An - 2 + 2An - 3 • 

n=6. 

Thus 6 evaluations will be necessary. The first two points are placed at 

81 = -5 + (5 - (-5»(A5/A7) 

Therefore 

81 = -5 + (5 - (-5»(A6/A7). 

81 = -5 + 10(153) = -~~ 
81 = -5 + 10(183) = g, 
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Hence the new interval becomes [a1 b1J = [ - ~ ~, 5J: 

S2 = 81 = B 
82 = - B + (5 - (- ~~))(A5/A6) 

= -g + (~~)(i) = iL 

I(S2) = -2m)2 + m) + 4 = -2.66 + 1.15 + 4 = 2.49 

1(82 ) = -2m)2 + (B) + 4 = 14.4 + 2.69 + 4 = -7.8, 

Hence the new interval becomes [a2b2J = [ - g, UJ: 

S3 = - g + (i~ - (- g))(A3/A 5) 

= - g + i~)(i) = -fJ 
83 = S2 = g, 

I(S3) = - 2(153f + (153) + 4 = 0.29 + 0.38 + 4 = 4.09 

1(83 ) = -2mf + 4 = -2.66 + 1.15 + 4 = 2.49, 

Hence the new interval becomes [a3,b3J = [ - g, ~~J: 

S4 = -B + m - (-W)(A 2 /A4 ) 

= -H + (mH) = -153 

84 = S3 = 153' 

487 

Hence the new interval becomes [a4, b4J = [ -153' ~n It can be seen that 
the point remaining in the interval [a4, b4J, namely, 84 = 153' is exactly at 
the centre of [a4,b4J. Also S5 = 84 , Thus in order to place 85 symmetrically 
it must coincide with S5' which is of no advantage. Hence 85 is placed e to 
the right of S5' Thus 

I(S5) = -2(153f + (153) + 4 = -0.29 + 0.38 + 4 = 4.09 

1(85) = -2(N7)2 + (N7) + 4 = -0.49 + 0.49 + 4 = 4, 
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Hence the final interval is [ - 153' if.r]. The length ofthe interval is t~~, which 
is only 8.8% as long as the original interval. 

The first two points are placed at 

So = -5 + (5 - (-5))e ~ y's) 

= 10 - 5y'S = 5(J2 - y's) 

80 = _5+(5_(_5))(y'S-1) 
2 

= 5J'S - 10 = 5(..)5 - 2), 

Hence the new interval becomes [a2,b2J = [10 - 5y'S,25 - lOy's]: 

S2 = 5(2 - y's) + [5(5 - 2J'S) - 5(2 - y's)] (3 -2 y's) 

= 45 - 20y'S = 5(9 - 4y'S) 

82 = S1 = 5y'S - 10, 

Hence the new interval becomes [a3,b3J = [10 - 5y'S,5y'S - 1OJ: 

S3 = 5(2 - y's) + [5(y'S - 2) - 5(2 - y'S)] e -2 y's) 

= -45 + 20y'S = 5(4y'S - 9) 

83 = S2 = 5(9 - 4y'S) = 45 - 20y'S, 

f(S3) < f(83)· 

Hence the new interval becomes [a4' b4J = [5(4y'S - 9), 5(y'S - 2)]. 

S5 = '84 = 45 - 20J'S 

'85 = 5(4y'S - 9) + [5(y'S - 2) - 5(4y'S - 9)J [ y's 2- 1] 

= 45y'S - 100 = 5(9y'S - 20), 
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Hence the final interval is [as,bsJ = [5(4.J5 - 9), 5(9.j5 - 20)]. This in­
terval has length 

5(915 - 20) - 5(4.J5 - 9) = 25.j5 - 55 

= 5(5.j5 - 11). 

The original interval is 10; this interval is a little over 9% of the original 
interval in length. 

3(a) 
f(S) = -252 + 5 + 4 and [ao,boJ = [-5,5]' 

Therefore 
I'(S) = -4S + 1. 

Let 

S. = aj + b j 

I 2· 

Then 

and 

I'(S 1) = 1'(2.5) < 0, so that [a2' b2J = [0,2.5]' 

I'(S2) = 1'(1.25) < 0 so that [a3' b3J = [0,1.25]' 

I'(S3) =1'(0.625) < 0 so that [a4,b4J = [0,0.625]. 

I'(S4) = 1'(0.3125) < 0 so that [as,bsJ = [0,0.3125]' 

I'(Ss) = 1'(0.15625) > 0 so that [a6' b6J = [0.15625,0.3125]' 

Hence, after only 6 iterations the interval has been reduced to one of length 
0.3125 - 0.15626. This is equal to 0.15625/10 or 1.5625% of the original 
length 

4(a). Refer to the solution to Exercise 3. 
5(a). X* = (0,0). 
(b). X* = (2,4). 
(c). X* = (!, 1). 
(d). X* = (- 3, -i). 
(e). X* = (0,0). 
(t). X* = (0,0). 
(g). X* = (1, -2). 
(h). X* = (2, 3). 

6. Refer to Exercise 5. 
7. Refer to Exercise 5. 
8. Refer to Exercise 5. 
9(a). Let 

then 
Xo = (0,0,0) 

f(Xo) = -98 
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and 

Therefore 

Hence 

and 

Solutions to Selected Exercises 

Vf = (- 6(X1 - 2), - 8(X2 - 3), -4(X3 + 5)) 

Vf(Xo) = (12,24, -20) 

Xl = Xo + sD 

= (0,0,0) + s(12,24, - 20). 

f(X 1) = - 3(12s - 2)2 - 4(24s - 3)2 - 2( - 20s + 5)2 

df~~ 1) = _ 6(12s _ 2)(12) - 8(24s - 3)(24) - 4( - 20s + 5)( - 20) 

which is zero at s*. Therefore 

s* = 0.158 and d2f(X 1) < 0 
ds2 

indicating a maximum. Therefore 

Therefore 

and 

Xl = (1.9,3.8, - 3.2) 

f(X 1 ) = -9.07> f(Xo) 

Vf(X 1 ) = (0.6, -6.4, -7.2), 

X 2 = (1.9,3.8, - 3.2) + 5(0.6, - 6.4, - 7.2). 

f(X2) = -9.07 - 2.68.6s2 + 96.16s 

which is zero at s*. Therefore 

s* = 0.173 
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indicating a maximum. Therefore 

Therefore 

and 

X 2 = (2,2.7, -4.4). 

f(X 2) = -1.08 > f(X 1) 

Vf(X 2) = (0,2.4, - 2.4), 

X3 = (2,2.7 + 2.4s, -4.4 - 2.4s). 

f(X 3) = -1.08 + 11.52s - 34.56s2 

df(X3 ) 
~ = 11.52 - 69.12s, 

which is zero at s*. Therefore 

d2f(X3) 0 
s* = 0.1666 and dT < , 

indicating a maximum. Therefore 

Therefore 

and 

X3 = (2.0,3.0, -4.8), f(X 3) > f(X2 ) 

Vf(X3 ) = (0,0, -0.8), 

X 4 = (2,3, - 4.8) + s(O,O, - 0.8) 

= (2, 3, - 4.8 - 0.8s). 

f(X 4) = -1.28s2 + O.64s - 0.08 

df(X 4) = _ 2.56s + 0.64, 
ds 

which is zero at s* Therefore 

s* = 0.25, 

indicating a maximum. Therefore 

Therefore 

X4 = (2,3, - 4.8) + (0,0, - 0.2) 

= (2,3, -5) 

f(X4 ) = 0 > f(X 3) 

Vf(X4 ) = o. 

X* = (2,3, -5) 

f(X*) = O. 
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lO(a). From 9(a), 

Xo = (0,0,0) 

X 2 = (2,2.7, -4.4). 
The search direction is 

X 2 - Xo = (-2, -2.7,4.4). 

Therefore 

X3= Xo + S(X2 - Xo) 

= (0,0,0) + s( -2, -2.7,4.4) 

so that 

f(X 3)= - 3(2s - 2)2 - 4(2.7s - 3)2 - 2( -4.4s + 5)2 

and 
df(X 3) 
~ = - 24s + 24 - 58.32s + 64.8 - 77.44s + 88, 

which is zero at s*. Therefore 

indicating a maximum. Therefore 

X 3 = (2.2,3.0, - 4.9) 

df 
-d = -6(2.2 - 2) = -1.2 

Xl 

df 
- = -8(3 - 3) = ° 
dX2 

df 
-d = -4( -4.9 + 5) = -0.4. 

X3 

Therefore 

X 4 = (2.2,3.0, - 4.9) + s( - 1.2,0, - 0.4), 

so that 

f(X 4) = - 3(2.2 - 1.2s - 2)2 - 4(3 - 3)2 - 2( - 4.9 - O.4s + S)2 

and 

df(X4) 
~ = - 6( -1.2s + .2)( -1.2) - 4(0.1 - 0.4s)( - 0.4), 
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which is zero at s*. Therefore 

indicating a maximum. Therefore 

X 4 = (2.0, 3.0, - 5.0), 

which is the maximum point of f from 9(a). 
l1(a) 

f(X) ~ (12,24, -20) (:} t(x"x" x,) n -~ ~)(~:) - 98 
-4 X3 

From 9(a), 

Xo=O 
Vf(X 0) = (12,24, - 20) 

df 
- = - 6(Xl - 2) = 12 at Xl = 0 
OXl 

of 
- = - 8(X2 - 3) = 24 at X2 = 0 
OX2 

of 
- = -- 4(X3 + 5) = - 20 at X3 = O. 
OX3 

Xl = (1.9,3.8, - 3.2) 

(-0.6,6.4,7.2) (-~ -~ ~) ( ~~) 
o 0 -4 -20 

ao= (-06 0 00) ( 2142) (12,24, -20) -8 
o 0 -4 -20 

= -0.2843 

Dl = Vf(X 1) + aoDo 

=(0.6, -6.4,7.2) - 0.2843(12,24, -20) 

= (- 2.8166, -13.2232, -1.514) 

X 2 =X1 + Sl Dl 

= (1.9,3.8, - 3.2) + s( - 2.8, -13.2, -1.5) 

f(X 2) = - 3(1.9 - 2.8s - 2)2 - 4(3.8 -13.2s - 3)2 - 2( - 3.2 -1.5s + 5)2 

493 

df(X2 ) 
~= -6( -2.8s-0.1)( -2.8)-8(0.8-13.2s)( -13.2)-4(1.8-1.5s)( -1.5), 
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which is zero at s*. Also 

indicating a maximum point. Therefore 

s* = 0.0645 

Solutions to Selected Exercises 

X 2 = (1.9,3.8, - 3.2) + 0.0645 ( - 2.8, -13.2, -1.5) 

= (1.7,2.9, -3.3) 

I7f(X 2) = ( - 6(1. 7 - 2), - 8(2.9 - 3), - 4(3.3 + 5)) 

= (1.8,0.8, - 6.06) 

( - 1.8, - 0.8,6.06) 0 - 8 0 - 13.22 (
-6 0 0) ( -2.81 ) 

o 0 -4 -1.514 

a l 
= (-6 0 0) ( -2.81) 

(-2.81, -13.22, -1.51) 0 -8 0 -13.22 
o 0 -4 -1.51 

= 0.538257 

D2 = I7f(X2) + alDl 
= (1.8,0.8, - 6.06) + O.0538257( - 2.8166, -13.2232, -1.514) 

= (1.648,0.088, - 6.141) 

X 3 =X2 +sD2 

= (1.7,2.9, -3.3) + s(1.648,0.088, -6.141) 

f(X 3) = - 3( -0.3 + 1.648s)2 - 4( -0.1 + 0.088s)2 - 2(1.7 - 6.141s)2 

df <:3) = -6( -0.3 + 1.648s)(1.648) - 8( -0.1 + 0.088s)(0.088) 

- 4(1.7 - 6.141s)( -6.141), 

which is zero at s*. Therefore 

d2f(X 3) 0 
s* = 0.4275 and ds2 <, 

indicating a maximum point. Therefore 

X3 = (1.7,2.9, -3.3) + 0.4275(1.648,0.088, -6.141) 

= (2.4,3.0, - 5.9). 

At the next iteration 
X 4 = (2.0, 3.0, - 5.0), 

which is the maximum point of f· 



Solutions to Selected Exercises 495 

12(a) 

Therefore 

Assume 

Xo= (0,0). 

Then 

Xl = Xo - H- l (Xo)l7f(Xo) 

= (0,0) _ (l~ _~)( -2~) 
= a~,4) 

H(X l ) = C~7 _~) 

Vf(X 1) = ( - ;7). 
Therefore 

=(H,4)-(m -t)(-~) 
= (1.73,4) 

Vf(X2 ) = (-~.83) 

H(X2)= (7.62 0). 
o -2 
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Therefore 

Therefore 

Therefore 

Eventually 

13(a) 

Solutions to Selected Exercises 

X3= X 2 - H- 1(X2W!(X2 ) 

= (1.73,4) - (0.~3 -~.5)( -~.83) 
= (2.36,4) 

V!(X 3) = ( - ~.23) 

H(X3) = e~4 _~) 
X 4 = X3 - H- 1(X3W!(X3) 

= (2.34,4) - (0.~6 -~.5)( - ~.23) 
= (2.75,4) 

V!(X4 ) = ( - ~8) 

( 1.5 0) 
H(X4)= 0 -2· 

Xs= X 4 - H- 1(X4W!(X4) 

= (2.75,4) - (0.~7 -~.5)( -~.l8) 
= (2.87,4) 

V!(X s) = (-~.06) 

H(Xs) = (0.~8 _~} 

X6= Xs - H- 1(X SW!(X s) 

= (2.87,4) - C·~8 -~.5)( -~.06) 
= (2.95,4) 

X* = (3,4), !(X*) = 1. 

X* = (3,4), !(X*) = 1. 
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13(b) 

13(c) 
X* = (-2,1). 

X* = (0,2,0). 

14(b). X* = (t, 0.4, 0.0182). 
(c). X* = (1.094, 1.077, 1.041). 
(d). X* = (0.9073,1.0561,0.8211). 
(e). X* = (2(i)1/4, (!)1/i4, (i)-1 /28). 
(f). X* = (1.82,0.234,j2/2). 
(g). X* = (1.5004,0.4992,3.9936). 
(h). X* = (0.2878,2.3438, 1.8420). 
(i). X* = (1.03,0.103,0.872, -1.05). 
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degenerate 17 
feasible 7 
maximal 7 
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nonexistant feasible 42 
optimal 7 
unbounded 45 
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Standard form 15 
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Stepping stone algorithm 77 
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Taylor's theorem 388 
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artificial 26 
basic 17 
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structural 16 
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