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Preface 

This monograph is an introduction to optimal control theory for systems 
governed by vector ordinary differential equations. It is not intended as a 
state-of-the-art handbook for researchers. We have tried to keep two types 
of reader in mind: (1) mathematicians, graduate students, and advanced 
undergraduates in mathematics who want a concise introduction to a field 
which contains nontrivial interesting applications of mathematics (for 
example, weak convergence, convexity, and the theory of ordinary 
differential equations); (2) economists, applied scientists, and engineers who 
want to understand some of the mathematical foundations. of optimal 
control theory. 

In general, we have emphasized motivation and explanation, avoiding the 
"definition-axiom-theorem-proof" approach. We make use of a large 
number of examples, especially one simple canonical example which we 
carry through the entire book. In proving theorems, we often just prove the 
simplest case, then state the more general results which can be proved. Many 
of the more difficult topics are discussed in the "Notes" sections at the end of 
chapters and several major proofs are in the Appendices. We feel that a solid 
understanding of basic facts is best attained by at first avoiding excessive 
generality. 

We have not tried to give an exhaustive list of references, preferring to 
refer the reader to existing books or papers with extensive bibliographies. 
References are given by author's name and the year of publication, e.g., 
Waltman [1974]. 

Prerequisites for reading this monograph are basic courses in ordinary 
differential equations, linear algebra, and modem advanced calculus 
(including some Lebesgue integration). Some functional analysis is used, but 
the proofs involved may be treated as optional. We have summarized the 
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relevant facts from these areas in an Appendix. We also give references in 
this Appendix to standard texts in these areas. 

We would like to express our appreciation to: Professor Jim Yorke of the 
University of Maryland for providing several important and original proofs 
to simplify the presentation of difficult material; Dr. Stephen Lewis of the 
University of Alberta for providing several interesting examples from 
Economics; Ms. Peggy Gendron of the University of Minnesota and June 
Talpash and Laura Thompson of Edmonton, Alberta for their excellent 
typing work; the universities (and, ultimately, the relevant taxpayers) of 
Alberta, Maryland, and Minnesota - the first two for their direct financial 
support, and the last for providing facilities for J.W.M. while on sabbatical; 
The National Research Council of Canada, for its continuing support of 
J.W.M. 

Edmonton, Alberta 
August, 1980 
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Chapter I 

Introduction and Motivation 

1. Basic Concepts 

In control theory, one is interested in governing the state of a system by 
using controls. The best way to understand these three concepts is through 
examples. 

EXAMPLE I (A National Economy). The economy of a typical capitalistic 
nation is a system made up in part of the population (as consumers and as 
producers), companies, material goods, production facilities, cash and credit 
available, and so on. The state of the system can be thought of as a massive 
collection of data: wages and salaries, profits, losses, sales of goods and 
services, investment, unemployment, welfare costs, the inflation rate, gold 
and currency holdings, and foreign trade. The federal government can 
influence the state of this system by using several controls, notably the 
prime interest rate, taxation policy, and persuasion regarding wage and 
price settlements. 

EXAMPLE II (Water Storage and Supply). As early as the third century 
B.C., systems similar to that sketched in Figure 1 were being used in water 
storage tanks. As the water level rises, the float will restrict the inlet flow; 
all inlet flow will cease when the water reaches a certain height. If water 
is withdrawn from the outlet at a certain rate then the float will tend to 
adjust the inlet flow so as to maintain the water height in the tank. One 
can think of the water in the tank along with the float, inlet, and outlet, 
as a system. The control is the position of the float. The state at any instant 
is a vector, consisting of the height of the water in the tank, the inlet rate 
of flow and the outlet rate of flow. In this example, the state of the system 
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Inlet 

t 
h (t) 

L ...... ___________ ....... _Outlet 

Valve 

Figure 1 

(rather than an external observer) automatically sets the control (position 
of the float) - this is an example of a feedback control system - the state is 
"fed back" to the control mechanism, which adjusts without outside 
influence. 

We have chosen one example from economics and one from civil 
engineering. We could just as well have chosen examples from biology, 
economics, space flight, or several other fields, because the concepts of 
system, state, and control are so general. In the exercises at the end of the 
chapter we have given several more examples. 

The essence of these examples is that in control theory we have a system 
and we try to influence the state of the system through controls. The 
dynamics of the system, that is, the manner in which the state changes 
under the influence of the controls, can be very complicated in real-world 
examples. In the case of a national economy, the dynamics is still a matter 
of considerable research. Of course, there are many general principles for 
a national economy - for example, raising the prime rate (a control) gen­
erally increases unemployment - but a detailed, accurate picture of the 
dynamics of a national economy is very difficult. On the other hand, the 
dynamics of the water storage system is relatively easy to describe. We 
won't do it here, since we are going to deal with an even simpler example 
shortly. 

There are two remaining concepts to be described, namely the constraints 
on our controls, and the objective or target state(s) for our system. For a 
national economy, there are several obvious constraints on our controls, 
for example, taxation cannot be too excessive and the prime rate cannot 
be negative. There are also objective or target states - ideally a government 
wants a state of the economy with full employment, an inflation rate of 
0%, low interest rates, and low taxes. In fact, they may have to settle for 
a realistic target state with an unemployment rate less than 8%, inflation 
less than 10%, moderate interest rates, and realistic tax rates. Any state 
with these properties would do, so there are many target states. In fact, 
the set of target states might vary with time, reflecting political and social 
changes. 



1 Basic Concepts 3 

In the water tank example, the constraint on the position of the stopper 
is that it always floats at a fixed distance above the water level; also the 
velocity with which the stopper can move is tied directly to the rate of 
change of the water level height. The objective might be a pre-set water 
height. 

EXAMPLE 1 (The Rocket Car). This example will be used throughout this 
monograph to motivate and illustrate concepts and results. The car runs 
on rails on the level, has a mass of one, and is equipped with two rocket 
engines, one on each end (Figure 2). The problem is to move the car from 

I 
o 

[l,--"<:7"'"--~"""""~ 'd '(j 
I 

P (t) 

Figure 2 

.. p 

any given location to a fixed pre-assigned destination. For simplicity, we 
place the destination at the origin and denote the position of the center of 
the car by p(t). If the car is at a position Po at time t = 0, with velocity vo, 
we want to fire the two engines according to some recipe (pattern, program) 
which will have us arrive at p = 0 at rest (with velocity zero) at some instant 
t1 > O. We can take as our system the car plus its track; as the state we 
take the two-vector x(t) = (p(t), p(t»; the initial state (Po, vo) is assumed 
given. The physical reason for using a two-vector for the state is simple - we 
want to know where we are and how fast we are going. Our target state 
is (0, 0). A control u (t) is a real-valued function, representing the force on 
the car due to firing either engine at time t. If we fire the right engine at 
time t*, we will say the force is negative, if we fire the left engine we take 
the force positive. 

v (t*) ----+ 

I 
P (t*) 

I 
o 

Figure 3 (Moving to the Right) The Force Is to the Left When u(t*) < O. 

Then the dynamics of our system is given by Newton's law F = ma, 
which can be written as p(t) = u(t). This has the natural vector form 

[p(t)] 
x(t) = p(t) , i(t) = [~ ~]x(t) + u(t>[~]. 

There are constraints on the magnitude of u(t), based on the size of the 
rocket motors and the amount of acceleration stress allowed on the car. 
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A mathematically reasonable assumption is that u(t) is measurable and 
bounded, and we take our constraint to be lu(t)l:5 1 for simplicity. Since 
measurable functions can be quite pathological, we will often use classes 
that are physically more reasonable, e.g., piecewise constant controls. 

A given control function u (t) is a recipe for firing our engines. For 
example 

( )_{+1, 0:5t:51; 
u t - 1 

-2, 1<t:53; 

tells us to fire the left engine at full force for one unit of time, then fire 
the right engine at half force for two units of time. 

If (Po, vo) is the position of the car at t = 0, we can integrate the 
differential equation twice and then integrate by parts to get: 

p(t) = Po+ vot + L (t - r)u(r) dr, p(t) = Vo+ L u(r) dr. 

Thus each choice of control, u(·), generates a response x[t]=x(t; xo, u(· ». 
(We delete reference to the initial time to, since we always take it to be 
zero for simplicity. For systems not explicitly containing t, this is in fact 
not a restriction.) We use u(·) to refer to the function u(t), on its domain 
of definition, as an entity. If the response x(t; xo, u('» reaches the target 
(0,0) at some t1 > 0, then u(·) is a successful control. There might be no 
such control or many. When there are several successful controls, the choice 
of one over the other may be dictated by practicality, and/or by a cost or 
performance criterion. For example, later on we shall consider the criteria: 
(1) least time, (2) least energy expended, (3) least fuel expended. Our 
control problem will then become an Optimal Control Problem. 

2. Mathematical Formulation of the Control 
Problem 

We now give a precise mathematical formulation of the type of control 
problem we will be discussing. Let m, n be natural numbers, and let R 
stand for the real numbers. If x, yare column vectors in R n, we denote 
their ith components by Xl, yi respectively. We define xT to be the transpose 
of x, and introduce a dot product and two norms: 

n 

(x, y) = xT y= I: xiyi, 
i=l 

n . 

Ixl = I: Ix'l, 
i=1 



2 Mathematical Formulation of the Control Problem 5 

If we need to square a scalar-valued function q,(t), we will write [q,(t)]2, 
while x 2(t) will denote the second component of the vector-valued function 
x(t) - in context the distinction will always be obvious. Let 0 denote the 
unit cube in R m , i.e., 

O={c!ceR m , lei!s 1, i = 1, 2, ... , m}. 

For tl 2!: 0, define 

OUm[O, tl] = {u(· )!u(t) e 0 and u(· ) measurable on [0, td}, 

OUm = U't>o OUm[O, td. Unless explicitly stated otherwise, our controls u( .) 
will always be assumed to belong to OUm• This mildly cumbersome definition 
of our admissible controls allows each control u( . ) to have its own corres­
ponding interval of definition [0, tl(U)]. 

We assume that for each t 2!: ° we are given a target set fT(t) c R n where 
fT(t) is a closed set. For most of this monograph we will take fT(t) == ° e R n 

for simplicity. Nevertheless, general target sets are important, as we men­
tioned in the example of a national economy. 

We assume that the dynamics of the syst~m, that is, the evolution of 
the state x(t) under a given control u(t), is determined by a vector ordinary 
differential equation: 

(1) x(t) = f(t, x(t), u(t», 

We will always assume that f(t, x, u), al/ax i , al/auk are all continuous 
(i,j=l, ... ,n;k=l, ... ,m) on [O,oo)xRnxR m , although most results 
are valid under weaker conditions. This assumption guarantees local 
existence and uniqueness of the solution of (1) for a given u(·) e OUm• 

Because u(·) is only assumed measurable and bounded, the right side of 
the equation x = f(t, x, u(t)) is continuous in x but only measurable and 
bounded in t for each x. Therefore, solutions are understood to be absolutely 
continuous functions that satisfy (1) almost everywhere. The solution of 
(1) for a given u(·) will be called the response to u(·); we denote it by 
x[t]==x(t; Xo, u(·». The control problem is to determine those Xo and u(·) e 
OUm such that the associated response satisfies x[td e fT(tl) for some tl > 0; 
we then say that the control u( . ) steers Xo to the target. 

If the control u(· ) is defined on [0, tl) (tl s +(0), it is not assumed that 
the corresponding response extends to [0, tl); a given response x(t; Xo, u(·» 
may only exist on some subinterval of [0, tl)' For example, consider the 
scalar problem i = x 2 + u, xo = 1. For uo(t) == ° (tl = +(0), the response is 
x(t; 1, uo('» = 1/(1- t), which only exists on [0, 1). For linear equations, 

(2) x(t) = A (t)x(t) + B(t)u(t), 

with A(t) and B(t) continuous on [0, tl), solutions always extend to [0, tl)' 
Thus, our general control problem consists of a class of admissible 

controls OUm, a vector differential equation (1) describing the dynamics of 
our system, and a family of target sets fT(t). One basic problem is to describe 
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those initial states Xo ERn which can be steered to the target, that is, those 
states which are controllable. Also, if fT(t) is a closed, bounded set with 
non-empty interior, we want the response to penetrate fT(t) rather than 
graze fT(t) tangentially, otherwise perturbations that are always present in 
the real world might pull the response away from the target. This problem 
comes under the heading of transversality conditions: we want the trajectory 
to be non-tangential (transverse) to the boundary of fT(t). 

If we know that a given Xo can be steered to the target, another problem 
is one of synthesis - to describe at least one control which will do the job; 
more generally, to describe a method for constructing a successful control 
for each initial state which can be steered to the target. 

The term "synthesis" is most often used in the context of feedback 
controls. These are controls which do not depend explicitly on t, but instead 
depend only on the state of the system, as mentioned in the water storage 
example. 

There is also the problem of a practical control. With the rocket car, 
for example, it is conceivable that one successful control might be an infinite 
sequence of alternate bursts on the two engines, the alternate bursts causing 
us to overshoot the origin by less and less. This of course is not a very 
practical way to get to the origin with zero velocity. Therefore, we will 
need to consider special classes of controls. 

We will describe the mathematical formulation of controllability in the 
next section (Section 3). In Section 4, we will formulate the general optimal 
control problem. In Section 5, we will analyze these concepts in detail for 
the special case of the rocket car. In this last section, we will also deal with 
the problem of synthesis for the rocket car. 

3. Controllability 

Given a control problem: 

(3) :it = f(t, x, u), fT(t) given, 

we want to discuss the problem of controllability, that is, we wish to describe 
those initial states x(O) = Xo for which at least one successful control u(·) 
exists. We define the controllable set C€ = U't>o C€(tl), where 

is simply those states which can be steered to the target at time tl. 
Two major problems in controllability theory can now be formulated: 

(a) to describe C€; 
(b) to describe how C€ changes if we vary the control set 'Plm • 
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Consider a real-world process which has reached its target. The process 
may be continually subjected to small disturbances that randomly push it 
away from the target state. Therefore, real-world situations require that 
we be able to steer all nearby states to the target. It is thus essential that 
C€ contain a full neighborhood of the target. Of course, it would be 
even better if C€ = R n. We will consider these two questions in detail in 
Chapter II. 

Concerning special control classes, there are three subsets of OUm that 
we will consider: 

(a) OUpc[O, ttl = {u(· ) E OUm[O, t1] \ u(· ) piecewise constant on [0, ttl} 

where by u( . ) piecewise constant we mean that there exists a partition 
(depending on u(· » ° = So < S1 < ... < Sl = t1 such that u(t) is constant 
on each interval [Sk-1, Sk). From a practical point of view, OUpc = 
U'l>O OUpc[O, t1] contains controls which are much easier to use than 
a general control from OUm• 

(b) OU.[O, td = {u(· ) E OUm[O, td\u(·) absolutely continuous, u(O) = u(td = 0, 
\u(t)\ s 1 and \u(t)\ s e a.e. on [0, t1]}, 

where e > ° is fixed. OU. = U'l>O OU.[O, t1] is the class of smooth controls 
which do not change abruptly - an example is the steering of a car. 

(c) OUBB[O, ttl = {u(·) E OUm[O, t1]\\U i (t)\ == 1 on [0, t1], i = 1, ... , m}, 

is the class of "bang-bang" controls. Controls from the class OU BB = 
U'l>O OUBB[O, t1] use maximum allowable power (remember u(t) E 0) 
at all times. These controls might be easier to synthesize for our rocket 
car, for example, since our engines would only need two settings, "off" 
and "full power." We do not require that a function u(·) E OUBB be 
piecewise constant, therefore OUBB contains some rather pathological 
functions. The class of piecewise constant bang-bang controls on [0, ttl 
is denoted OUBBPdO, ttl and OUBBPC = U'l>O OUBBPc[O, t1]. 

We will discuss these special control classes in detail in Chapter II; for 
now we will deal only with OUm• 

To study controllability for a given initial state Xo, it is useful to define 
K(t; xo), the reachable set at time t, and RC(xo), the reachable cone. K(t; xo) 
is the set of states in R n which can be reached at time t, beginning from 
state Xo at time to = 0, using all possible admissible controls: 

K(t; xo) = {x(t; Xo, u(· »\U(')E OUm }; 

and 

RC (xo) = {(t, x(t; Xo, u(·» \ t ~ 0, u(·) E OUm} = U {t} x K(t;,xo). 
,~o 
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For simplicity, we have taken to = 0 (if we had allowed to to be arbitrary, 
then we would have to define K(t; to, xo), RC (to; xo) in the obvious way). 
Figure 4 is a hypothetical sketch of K(t; xo), RC (xo) for n = 2. Two 
responses have been sketched in, giving an idea of the boundary of RC (xo). 

r-~--~~~~--~------------~t 

K(t*;~) K(t**;~) 

Figure 4 

RC (xo) looks like a cone and K(t; xo) is a slice of the cone at time t. The 
sets K(t; xo) are in fact defined in (x\ x 2) space, so we should project them 
back onto the (x\ x2 ) plane, as sketched in Figure 5. We are then looking 
directly at the evolution of the reachable states as time passes (beginning 
always from Xo at to = 0). In Chapter II we will study the sets K(t; xo), 
RC (xo) in detail; in Section 5 of this chapter we will describe K(t; xo), 
RC (Xu) for the rocket car. 

________ ~----------------------------------~~X1 

Figure 5 
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4. Optimal Control 

The basic control problem may have associated with it a cost functional 
or performance criterion. We will only deal with cost functionals of the form 

C[u(· )] = L' f(x[t], u(t» dt, x[t] = x(t; Xo, u(· », 

where f is a given real-valued function. The optimal control problem is to 
steer Xo to a state in the target, using a control u( . ) from the appropriate 
class for the problem, in such a way that C[u(·)] is a minimum. More 
precisely, let the successful controls be denoted by A, i.e., 

A = {u(·) E OUm 13t1 ~ 0 such that X(t1; XO, u(·» E £Y"(t1)}. 

Then a control u*( . ) E 'Um is optimal if it is successful, i.e., u*( . ) E A, and 

C(u*(· » ~ C(u( . » for all u( . ) E A. 

In optimal control theory, there are two basic problems: 

(a) to prove the existence of an optimal control, and 
(b) to synthesize an optimal control, that is, give a recipe for steering to 

the target in an optimal manner. 

There are several other related problems, e.g., uniqueness of the optimal 
control and its practicality. Finally, there is the question of necessary 
conditions which an optimal control must satisfy. Here there is a strong 
analogy with the calculus of variations. In the calculus of variations, the 
real-valued function y(.) which minimizes the real-valued functional 
J! gO(t, y(t), y(t» dt, over (say) the class of continuously differentiable 
functions satisfying y(a) = y(b) = 0, must be a solution of the Euler­
Lagrange equation 

d [agO .] agO . 
dt ay (t, y(t), y(t» -ay- (t, y(t), y(t» = o. 

This turns out to be enormously useful in, searching for the minimizing 
function, since the solutions of the Euler-Lagrange equation are often easy 
to describe. In optimal control theory, the analogous necessary condition 
for an optimal control u( . ) is known as the Pontryagin Maximum Principle. 
Chapter V is devoted to a description and proof of this principle. In the 
case of linear control problems, for example, the maximum principle will 
show that, under reasonable restrictions, the optimal control is bang-bang 
and piecewise constant. The connections between optimal control theory 
and the calculus of variations are further discussed in the Notes at the end 
of this chapter. 
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5. The Rocket Car 

In this section we will work through the solution of the rocket car problem, 
to illustrate K(t; Xo), RC (xo), and the concepts of controllability, synthesis, 
and optimality. All of the theoretical results derived in this monograph 
will eventually be applied to this example. In addition, many of these results 
will be motivated by first showing their validity for the case of the rocket 
car. For example, we will show below that the class of bang-bang controls 
OUBB is as effective as the general class of controls OUm for the case of the 
rocket car, which (hopefully) motivates the general bang-bang principle to 
be presented in Chapter II. 

We will use (p(t), q(t)), the position and velocity, as our state vector 
coordinates rather than (x t , x 2), so the dynamics is described by 

(R) p(t) = q(t), q(t) = u(t), -1 s u(t)s 1, u ( . ) measurable, 

with (p(t), q(t)) specified as some (Po, qo) at t = O. Our target is fT(t) 55 (0,0); 
we want (p(tt), q(tt)) = (0, 0), where t1 > 0 is not specified. In defining an 
appropriate cost functional, there are several considerations we wish to 
keep in mind: 

(a) The entire process must take place within a reasonable (but not precisely 
specified) period of time. This "performance criterion" is measured by 
J~1 dt. (The upper limit tt is the time at which the particular response 
reaches the origin, and in general depends on u ( . ).) 

(b) The kinetic energy allowed in the system should be limited in order 
to control wear and tear on the machinery (e.g., bearings). One way 
to measure this is to use J~1 [q(t)y dt. 

(c) The expenditure of fuel must be kept within reasonable (but not 
precisely specified) limits. This might be measured by J~1 lu(t)1 dt 
(assuming fuel expended is proportional to force developed). 

To incorporate all of the above performance criteria, we define 

C[u(')]= (1 (A1+ A2[q(t)]2+ A3Iu(t)l)dt 

where Ak ~O (k = 1, 2, 3), At +A2+A3= 1. Each Ak represents the propor­
tional importance of the cost which it multiplies. The vector differential 
equation (R) is linear, so for each control u ( .) and initial state (Po, qo) 
there is a unique response, x[t], defined for all t ~ O. We first investigate 
the rocket car optimal control problem for u ( . ) E OUBBPC• The corresponding 
reachable set will be labelled KBBPC(t; xo), to distinguish it from the reach­
able set K(t; Xo) when we are allowed to use any control from OUt. 

If u (t) 55 1 on some time interval starting at t = 0, then 

(+) p=q, q=1~qq=p~[q(t)]2_q~=2[p(t)-Po]; 
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if u (t) == -1 on such an interval, then 

(-) p=q, q=-1~qq=-p~[q(t)f-q~=-2[p(t)-Po]. 

Therefore the corresponding responses move on the parabolas ±2p = l + a 
where a is a constant (Figure 6). (To emphasize the parabolas, we have 
sketched the untraversed parts with dotted lines.) 

q 

, , , , , , 
I , 

----------~-----+'--_r------~------------~~p 
" Po , , 

Figure 6 

If we alternately set u (t) equal to ± 1 on several successive intervals of 
time, we get trajectories (responses) as in Figures 7(a), (b). The sign of the 
corresponding control is in parentheses beside the trajectory. The points 
in (p, q)-space where we switch values of the control (switching points) are 
labelled by the symbol 0. We have sketched in the un travelled parts of 
some parabolas with dots to help visualize the various parabolic trajectories. 
Notice that when q = 0, then p = 0 and jj = q = ±1, so p will be a local min 
or maX. 

q q 

--~------~--r-----~~P -----+--+--=---+--t-----~ P 

(a) (b) 

Figure 7 
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The differential equation (R) is autonomous (does not explicitly involve 
t). Therefore, the response of the system to u(t) == + 1 (say) does not depend 
on the particular time when we switch to this control from u(t)==-l (the 
switching time); the response depends only on the state when we switch. 
In Figure 7(a), the state at the point labelled SI determines the subsequent 
path, and it does not matter whether the time when the system reaches SI 

is 108 or 10-8 • We have labelled the same state with the symbol SI in both 
Figures 7(a) and 7(b); the subsequent trajectories are identical. 

To describe the reachable set KBBPC(tI; xo), we fix tI> 0 and take Xo = 

(Po, 0) for simplicity. In Figure 8(a) we have sketched the two respective 
basic responses to u(t) == -Ion [0, td, and u(t) == + 1 on [0, td. In Figure 
8(b) we have sketched all those states which can be reached by switching 
once within a fixed time interval [0, tI]. Of course, the farther you go along 
a basic response from Figure 8(a) before switching, the less time you have 
to follow the new trajectory after the switch, thus the football shape. 

q 

--~~~--~--4-----~p 

(a) (b) 

Figure 8 

The boundary of the "football" in Figure 8(b) is the set of reachable 
points X(tl; Xo, u ( . », for one-switch controls. It turns out that K BBPC(tl; Xo) 
is exactly the entire closed region inside this boundary. We will show how 
to arrive at any interior point of the "football" at exactly time tt, using a 
piecewise constant bang-bang control, thus K BBPC(tl; xo) is at least the 
entire "football." We will not prove that responses to piecewise constant 
bang-bang controls always remain inside the "football," since at this stage 
it would be quite involved. 

To convince the reader that given any point z inside the "football," we 
can arrange to arrive at z at exactly the instant t = t 1 using piecewise constant 
bang-bang controls, we shall show how to "waste" arbitrary amounts of 
time. Referring to Figure 9, given the desired state z we go backwards in 
time along a (-) parabola until we hit the main (+) parabola. Because the 
system is autonomous, it takes a certain fixed amount of time (less than 
tl) to go from the state Xo = (Po, 0) "up" to the state 0 and "down" to the 
state z, so we need to waste some time. The idea is to initially run around 
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q 

--~~--~--~~------+-----~p 

Figure 9 

the loop Ie (in dots) until we have wasted just the right amount of time 
(ending up at Xc), then proceed to the state 0 and z. Since one can sketch 
in a continuum of loops (Ie) made up of pieces of (+) and (-) parabolas, 
one can always find a loop such that a finite number of trips around it will 
"waste" a given length of time. 

Surprisingly, the football shaped region of Figure 9 is also K(t1; Xc), 
that is, we get exactly the same reachable set for general controls from 
OU1[O, t1]. This is in fact a specific instance of the bang-bang principle, to 
be discussed in Chapter II. 

The description of K BBPC(t1; xo) for an initial state Xo = (Po, vo) with 
Vo ¥- 0 is only slightly more complicated, and we omit it. We turn instead 
to a description of the controllable set C(6BBPC for the rocket car, i.e., those 
initial states which can be steered to the zero state by bang-bang piecewise 
constant controls. 

C(6BBPC = {XcI3u(' ) E OUBBPC and t1 > 0 such that X(tlo Xo, u(· » = O}. 

We will show that C(6BBPC = R2, and in fact we will need at most one switch. 
Referring to Figure 10, we first sketch the response [q f = 2p to u (t) == + 1 

q 

" .!So , , , 
\ 

------------------~--------------~----------~p 

(+) 

Figure 10 (+) (-) Is the Switching Curve 
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for t E [0, 00) which passes through (0,0); similarly we sketch the response 
[q]2=_2p to u(t)==-1 for tE[O,oo). These two responses (labelled (+), 
(-), respectively, in Figure 10) of course pass through our target (0,0), so 
given any state Xo = (Po, qo), we simply try to steer to one of these two 
basic trajectories. This can always be done, as a little experimentation 
shows. Because the dynamics is governed by an autonomous differential 
equation, we can specify a synthesis that depends only on the state (a 
feedback control): if Xo is above the union of (+) and (-) from Figure 10, 
set u (t) == -1 until the state reaches the curve (+) (Sl in the sketch) then 
switch to u(t)==+1. If Xo is below the union of (+) and (-), set u(t)==+1 
until the state reaches the curve (-), then switch to u (t) == -1. Notice that 
in all cases, u(t) depends only on the state x(t). 

We have therefore shown that C€ BBPC = R 2, and we have a successful 
synthesis of a practical feedback control regime for the rocket car, which 
can be represented by a sketch in state-space (Figure 11). This need not 
be the only successful control scheme, however. 

------------------~~--------------------~p 

u (t>'" +1 

I 
Figure 11 Synthesis Recipe for the Rocket Car 

We will briefly discuss the optimal control problem for the rocket car. 
The cost functional is 

Ak ~ ° for k = 1, 2, 3, 

where we shall allow u ( . ) E OU 1. We know that a given initial state Xo can 
be steered to OE R2 using u(t) = ±1 with one switch. However, it isconceiv­
able that C[u ( .)] is a minimum for some other successful control from 
"Ill - for example, our one-switch control might waste fuel. Questions 
involving existence and synthesis of optimal controls can be quite difficult; 
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at this stage we will only intuitively discuss two special cases of the rocket 
car problem. We return to the complete problem in Chapters III and V. 

The Time Optimal Problem (A1 = 1, A2 = A3 = 0) 

Intuitively, it seems clear that we should use a bang-bang control in order 
to effect changes of state in minimum time, thus the synthesis developed 
above should be optimal. We will verify this in Chapter III. 

The Minimum Fuel Problem (A1 = A2 = 0, A3 = 1) 

Intuitively, it is easy to see that there should not be an optimal solution 
when q(O) = O. This stems from the fact that if the rocket starts at rest, 
then we can fire an arbitrarily short burst and impart to the car an 
arbitrarily low velocity toward the origin (requiring a correspondingly small 
braking burst as we approach). Such a regime requires a very long time as 
the duration of the burst gets small, and there is no minimizing u ( . ) - we 
can consume as little fuel as we please by taking a long time to reach the 
target. 

The reader might wish to verify the above analysis for initial state (Po, 0) 
with Po < 0 by setting u'" (t) = + 1 for O:s t:S a and u'" (t) = -1 for I(Pol a)1 :S 

t:sa+lpolal, with u(t)=O otherwise. The associated cost is C[u",(·)]= 
2a, so inflfll C[u(·)] = O. If uo(·) were an optimal control, then C[uo(·)] = 0, 
which would imply u(t) = 0 a.e. But then the equation of motion of the 
rocket car, p(t) = u(t), would imply that p(t) = Po, so such a control would 
not be successful. 

The above discussion shows that we should keep a time-optimal part in 
the cost function C[u(·)] (i.e'., take A1 > 0) to reject the long times required 
at low velocity. It is interesting to note that if the rocket is already moving 
toward the position p = 0, then there is an optimal control which minimizes 
fuel consumption (see Exercise 7). Finally, we should note that from a 
practical point of view, the above analysis does show how to keep fuel 
consumption low, depending on the time available. 

Exercises 

For Exercises 1 through 4, describe a possible interpretation of the words 
system, state and control. Describe a reasonable constraint set and target 
states. 

l. A home heating system (thermostat plus furnace). 
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2. A boat with an outboard motor. The motor may be set with its screw propeller 
at a range of depths, it has a throttle, and can be turned so as to turn the boat. 
(Hint: the state might be thought of as position and (vector) velocity on the 
two-dimensional surface of a lake.) 

3. An aircraft with one engine, ailerons on the back of the wings, horizontal 
elevators and a vertical rudder at the rear. The pilot has a throttle for the 
engine and controls for the deflections of the ailerons, elevators, and rudder. 
(Hint: the state of the aircraft might be a nine-dimensional vector: position (a 
three-vector), speed (a three-vector), rates of roll (r), yaw (y), and pitch (p).) 

4. A tumor inside a human body. The tumor gets nourishment through the blood 
supply. It is attacked (controlled) by radiation and by chemicals in the blood 
supply. (Hint: the state might be described by: mass, density or volume, rate 
of growth or decrease.) 

5. Sketch an example of the reachable set K(t; Xo) for the rocket car when the 
initial state is Xo = (Po, vol with Vo F O. 

6. Describe K(t; Xo) and RC (Xo) for the one-dimensional problem 

i(t) = bx(t) + u(t), .o/(t) e 0, 

for the two cases b > 0 and b < O. Can you solve the least-time problem for 
u(·)eOUpc? 

7. Show that if the rocket car has initial state (Po, vol with Po> 0, Vo < 0, then 
there is an optimal control which minimizes fuel consumption, if v~::s 2po. What 
happens if v~ > 2po? 

The following projects represent interesting areas of application of 
control theory. They can be treated as examples for perusal or exercises 
involving some outside reading. 

8. A Model for the Optimal Harvesting of Fish. (Reference: Clark [1976].) The 
population x(t) (measured as a mass in tons, for example) of a given type of 
fish is postulated to grow continuously in the absence of harvesting, according 
to the logistic equation. 
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-=rx 1-- =F(x) dx ( X) 
dt K 

where the constant r > 0 is the net proportional growth rate (excess of birth 
rate over death rate), and the constant K > 0 is the carrying capacity of the 
environment (if x(t) > K, dxl dt < 0). With a rate of harvesting h (t) (in tons per 
unit time, for example) the dynamics is described by 

dx 
-=F(x)-h(t), 
dt 

x(O) =Xo. 

Here h(t) is the control. One simple assumed form for h(t) might be h(t) = 
E(t)x(t), where E(t) is a combined "effort (by the fishermen) and catchability 
coefficient. " 

Show that if 

(*) h(t) = Ex(t), where E is constant and O<E < r, 

then the system has an equilibrium at x I = (KI r )(r - E). Thus we can maintain 
the population at XI under the harvest rate Y = EXI = KE(1- EI r). Show also 
that each response x(t; xo, h(·)) -+ XI as t-+ 00 (under (*) above). Make a graph 
of Y versus E for 0 < E < r (a yield-effort graph). Determine x(t) explicitly 
when (*) holds. 

A cost functional for this model (cf. p. 38 of Clark) is 

C[h(·)] = 1"" e-6t{p - c(x[t])x[t]}h(t) dt, 

where p is the (assumed constant) selling price of the fish per unit mass and 
c(x[t]) is the cost to catch a unit mass of the fish when the population is x(/). 
The constant 8 > 0 is a fixed discount rate which can be roughly thought of as 
representing the interest lost (when the integration is carried out) if the 
fishermen do not harvest all of the fish immediately and put the profits in a 
savings account. 

9. A Model for the Control of Epidemics. (Reference: Waltman [1974].) For models 
of certain diseases, one can divide the population into three disjoint classes of 
individuals; 

let): the infective class; those who can transmit the disease to others. 
Set): the susceptible class; those who are not infective, but who are capable 
of contracting the disease and becoming infective. 
R(t): the removed class; constituting (a) those who have had the disease and 
are dead (for any reason), (b) those who have had the disease and are now 
immune, and (c) those who are completely isolated from the rest of the 
population until recovery with permanent immunity (or death). 

Each of these three classes is expressed as a fraction, e.g., Set) = 0.5 means 
that half the population is susceptible. The population is treated as a continuum 
for convenience, and the "progress" of an individual can be thought of as 
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S -+ I -+ R. The dynamics are assumed given by 

S(t) = -rS(t)I(t), 

i(t) = rS(t)I(t) - yl(t), 

R(t) = yl(t), 

S(O)=So>O, 

1(0)=10 >0, 

R(O)=O, 

with So+lo= 1, S(t)+I(t)+R(t)= 1. 

The constant r> 0 is called the infection rate; 'Y > 0 the removal rate, and 
p = y/r the relative removal rate (note that by the last equation, all removals 
from the population are assumed infected). One can use R(t) as a control by 
introducing a quarantine, but a more realistic approach is to introduce a class 
V(t) of vaccinated individuals and define a(t) to be the vaccination rate. The 
dynamics are then assumed to be of the form: 

S(t)=-rlS-a, i(t)=rlS-yl 

R (t) = yl, V(t) = a, V(O) = O. 

What are some practical restrictions on a ( . )? What kind of cost function should 
be introduced? The following graph is a numerically obtained sketch of the 
progress of an epidemic, with and without vaccination. (From Figure 8.2 of 
Waltman.) 

0.4 

I (t) 

Among the many factors we have ignored in the above model are age 
dependence (e.g., elderly people are often more susceptible) and time delays 
(e.g., there is usually a time delay between exposure and infection). More 
complex models are presented in Frank Hoppensteadt's monograph, 
Mathematical Theories of Populations: Demographics, Genetics and Epidemics, 
Society for Industrial and Applied Math., Philadelphia, 1975. 

10. The Moon Landing Problem. (Reference: Fleming and Rishel [1975].) We 
consider a simplified model for the problem of making a soft landing on the 
moon, using a minimum amount of fuel. Let m denote the mass of the 
spacecraft, and h(t), q(t) the height and vertical velocity of the craft relative 
to the surface of the moon. The control u(t) will be the thrust of the spacecraft 
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engine. Taking the gravitational acceleration near the moon as a constant, 'Y, 

we can describe the dynamics: 

Ii(t) = q(t), h(O) = ho, 

1 
4(t) = -'Y + - u (t), q(O) =qo, 

m 

rit(t) = -ku(t), m(O)=mo+Fo, 0:5 u(t) :51, 

where mo is the weight of the craft without fuel, and Fo is the initial weight of 
the fuel on board. The target in (h, q, m )-space is 

.o/"(t) = {(O, 0, Z )jmo:5 z:5 mo+ Fo}. 

Study the responses and reachable set for u(·) E OU BBPC, with, for example, a 
single switch. If you have access to a large computer, check to see if it has a 
built in "Moon Landing Game." 

11. Neoclassical Economic Growth Model. (Reference: Intriligator [1971].) The 
tools of the calculus of variations and optimal control theory have been used 
to analyze many dynamic questions in economics. An early application of these 
tools to the topic of optimal economic growth was by Ramsey [1928]. Hadley 
and Kemp [1971] have summarized more recent work using modern control 
theory and integrating "Ramsey's Problem" into neoclassical analysis of 
economic growth. Intriligator is a good source for a general introduction to 
the use of control theory and related topics in economic analysis and for the 
problem developed below. (Intriligator [1971], pp. 398-435.) 

Let capital per unit of labor k(t) be determined by the differential equation 
k(t) = sf(k(t» - nk(t) where k(t) represents the rate of change in capital per 
unit of labor. The marginal propensity to save s satisfies 0 < s < 1. Labor grows 
at the constant proportional rate n. The aggregate production function deter­
mines output per unit of labor. It is assumed to be twice differentiable and to 
be a strictly concave, monotonic-increasing function satisfying the following 
conditions: 

f'(k(t» > 0, f'(k(t» < 0, 

f(O) = 0, f(oo) = 00, 

lim f'(k(t» = 00, lim f'(k(t» = O. 
k .... O k_oo 

Utility per unit of labor is given by a function U(c(t» where c(t) is consumption 
per unit of labor obtained from 0 < {c(t) = (1- s)f(k(t» - k(t) - nk(t}} < 00. The 
utility function is twice differentiable with the assumptions U'(c(t)) > 0, 
U"(c(t» < 0 representing positive but diminishing marginal utility. At different 
points in time utilities are assumed to be independent and additive. Present 
and future values of utility are compared by means of a discount factor e -s, 
where the discount rate is 8> O. 

The general optimal control problem is given by: 

Maximize the welfare function 

W = IT e-S'U(c(t» dt 
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subject to 

k(t) = sf(k(t» - nk(t), 

c(t) = (l-s)f(k(t))-k(t)-k(t), 

Os c(t) s f(k(t», 

k(O) = ko• 

Solve this problem under each of the following conditions: 

(a) T -+ 00, 

(b) T=tt and k(tt)<?kt. 
(c) Re-do (a) and (b) but let U(c(t)) = c(t). 

Notes for Chapter I 

1. We have described only a few situations which can be modelled as 
control problems. For additional material see Clark [1976] for management 
of renewable resources, Milhorn [1966] for applications to physiology, and 
Auslander, Takahashi, and Rabins [1974] for a wide range of models. The 
last reference has (on pp. 203-211) an analysis of the water-level regulator 
described as Example 2. For a historical discussion of feedback control, 
see Mayr [1970], and Bennett [1979]. 

2. Differential Equations. A summary of basic results can be found in the 
Mathematical Appendix. 

Existence and uniqueness results for the solution(s) of the initial value 
problem 

i=f(t, x), tel, x(t)eR", 

with I an interval containing to, can be found in any advanced textbook 
on ordinary differential equations, for example,. Chapters I and III of 
Coddington and Levinson [1955] or Chapters II and III of Hartman [1964]. 
Extendability of solutions is still a subject of research - the techniques used 
and results obtained depend very much on the particular form of the 
equation. Surveys of some techniques and results are given in Bellman 
[1953], Cesari [1963], Coppel [1965], Sansone and Conti [1964]. 

3. Game Theory. In certain areas of game theory one can find problems 
similar to our general control problem, but with the important exception 
that the behavior of the target fT(t) as a function of time is not known to 
us in advance - there is an opponent capable of influencing fT(t), who is 
trying to keep us from hitting the target. In other game theory problems, 
the opponent might be able to directly affect our state x(t; XQ, u(·)) and/or 
the control u(·) which we have chosen. We will not treat those types of 
problems here. For a complete discussion of the basic theory of differential 
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games, see Isaacs [1975]. On pp. 365-368, Isaacs shows how differential 
game theory can be applied to control theory. 

4. The Calculus of Variations. Optimal control theory is intimately con­
nected with the calculus of variations. We will give one simple example to 
illustrate this connection; for a thorough treatment see Hestenes [1966], 
and the survey by McShane [1978]. 

We use a simple form of the problem of Bolza from the calculus of 
variations. Let to < tl be given real numbers, and let g be the class of 
functions x(·): [to, td~ R, absolutely continuous on [to, td, that satisfy 
x (to) = 0, X(tl) = 1 and are such that 

f'l 
lex) = fO(t, x(t), x(t)) dt 

'0 
exists, 

where f: [to, tl] x R x R ~ R is a given continuous function. The problem 
of Bolza is to determine A = inf9'l(x) and to find x*(· ) E g that yields this 
minimum value (when A and x*(·) exist). To restate this problem as a 
control problem, we replace x(t) by a control u(t), and specify x(t) = u(t) 
as the dynamics of our system. Therefore, our optimal control problem is 
to determine u ( . ) so that the cost function 

f'l 
C[u(')] = f°Ct, x(t), u(t)) dt 

'0 
is minimized for the control problem: 

x(t) = u (t), x (to) = O. 

The constraint on u(· ) is: 

f'l 
u(t) dt = 1, 

'0 

which forces x(t1) = 1. Thus the target state .:r(t) == 1 is automatically hit 
because of the constraint on u(·). Alternatively, we could remove the 
constraint on u(·) and specify X(tl) = 1 (note that the time of hitting the 
target is also specified). 

Conversely, one can under certain conditions interpret a control problem 
as a Bolza problem. For a description of this interpretation, see the book 
of Hestenes referred to above, or pp. 34-38 of Berkovitz [1974]. 

5. Dynamic Programming. Dynamic programming was originally con­
ceived by R. Bellman as an effective computational method for dealing 
with optimal decision making in discrete-time processes. Later it was 
recognized that the same principles can be used in the treatment of con­
tinuous-time processes, including problems in the calculus of variations 
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and optimal control theory. A full description of the basic ideas can be 
found in Chapter 5 of Bellman [1967]. A thorough, rigorous treatment of 
the use of dynamic programming in optimal control theory can be found 
in Chapter IV of Fleming and Rishel [1975]. In Chapter V we give a simple 
dynamic programming proof of a restricted form of the Pontryagin 
Maximum Principle, and the relevant theory is developed there. 

6. Stochastic Effects. The dynamics of a system might be aftected by some 
random phenomena, for example "white noise" in communications theory 
or "random genetic drift" in genetics. The dynamics might then be described 
by a vector stochastic ordinary differential equation 

i(t) = f(t, x, u, E(' » 

where E(') is a probability distribution. The response x(·) must then be 
interpreted as an evolving probability distribution. For a thorough treat­
ment of this area, see Fleming and Rishel [1975], and Balakrishnan [1973]. 

7. Observables, Time Lags, Functional Equations. Sometimes we pick a 
state variable x(t) that cannot be observed directly - perhaps only certain 
components of x(t), or some function of x(t), is physically measurable. A 
simple example would be an electronic circuit containing micro-electronic 
devices, for which one of the state variable components, Xl (t), is the current 
in some part of a microscopic chip. These chips are so small that one cannot 
usually make current measurements in their constituent parts. Engineers 
have a simple way of distinguishing the state x(t) of a system (which may 
not be observable) from its observable output C(I) (something we can 
measure) by using a picture: 

Y (t) I----------:l-"'~ g(t) 

The state is inside the box, "out of sight." We can only "see;' C(I). 
Mathematically, we then must deal with the behavior of c(l) = F(x(t), t), 
where F is assumed known. In many cases, there is a matrix H such that 
c(l) = Hx(I). For a discussion of observability results, see Lee and Markus 
[1967]. 

There is also the question of time lags. In most real-world situations, 
reactions are not instantaneous. This means that the dynamics of a system 
may involve one or more time lags, for example, 

i(l) = f(l, x(t), x(1 - T), u(t - T », 
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or the system might in fact have a memory: 

x(t) = J t j\.{(t, s )f(s, x(s), u(s» ds. 
to 

This is presently an active area of research. The book of M. N. Oguztoreli 
[1966] treats this type of problem. 



Chapter II 

Controllability 

1. Introduction: Some Simple General Results 

The Mathematical Appendix at the end of the book contains most of the 
basic results from the areas of linear algebra, functional analysis, convexity, 
and differential equations which we will need in this chapter. 

Recall that cg is the controllable set, i.e., the set of all initial points Xo 
which can be steered to the target. We will prove some general results on 
the nature of the controllable set cg for both the general autonomous 
problem 

(NLA) x=f(x, u), x(t)eR", 

and the linear autonomous problem 

(LA) x=Ax+ Bu, A, B constant matrices, 

with target f1(t) == O. For simplicity we assume that f(O, 0) = 0 and that 
f(x, u) is continuously differentiable on R n x R m. Then for a given initial 
state xo, the response to a given control is unique. Because both (NLA) 
and (LA) are autonomous, if u(t) steers Xo to 0 on [0, ttl with response 
x[tJ, then u(t - to) steers Xo to 0 on [to, t1 + toJ with response x[t - toJ. 
Therefore our standard assumption that to = 0 involves no loss of generality. 
Also, our assumption f1(t) == 0 is for simplicity; any fixed target state Xl 

would do. 
Our main results for (LA) are as follows: 

In R n , the set Cfi is arcwise connected, symmetric, and convex. Also, 

Cfi is open ~ the target 0 E Int Cfi ~ rank M = n, 
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where the controllability matrix M is defined as 

M = {B, AB, ... , A "-lB}, 

and "Int" means interior. Finally, cg = R" if and only if rank M = nand 
no eigenvalue of A has positive real part. 

25 

For (NLA), we form the Taylor expansion f(x, u) = Ax + Bu + 0 (Ixl + lui), 
.. . k 

where aij = a/,/ ax', bik = a/,/ au , both evaluated at x = 0, u = 0, i, j = 
1, ... , n; k = 1, ... , m. We define Mr={B, AB, ... , An-IB}. 

Then for (NLA) 

rank M f = n ~ cg is open, 

but the converse is false. If rank M f = n and the trivial solution x[t] == 0 of 
i == f(x, 0) is globally asymptotically stable, then cg = R". 

Finally, we will show that some (but not all) of these results hold if, 
instead of being able to use any measurable control from 6iLm , we are restricted 
to special control classes: piecewise constant, or smooth, or bang-bang 
controls. 

For Xo E Cf6, Figure 1 illustrates a typical response path which starts at 
Xo == x[O] and ends at the target 0 = X[tI]. We will now show that for (NLA), 

--________ ~----~----~X1 

Figure 1 

any point x* = x[t*] on this path is also in Cf6. That is, there is a control o( . ) 
such that the solution of 

x= f(x, 0), 

arrives at the target 0 at some time t2. This result does not hold in general 
for systems in which t appears explicitly (non-autonomous systems). The 
reader is asked to work out an example in Exercise 3 at the end of this 
chapter. 
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Suppose Xo E l'€ and let x[t] = x(t; Xo, u(·)) be the response to the success­
ful control u( . ), with X[t1] = O. Let t* E [0, td: we must show that the point 
x* = x[t*] also belongs to l'€. Because the system is autonomous, the follow­
ing control is successful: 

with response i[t]==x[t+t*]. To see this, we write 

Therefore, x* E l'€. 
Before we discuss general controllability problems, we remind the reader 

that OUm is the class of measurable functions, u(·), each defined on some 
interval [0, t1] (t1 may depend on u(· )), with values u(t) E n, where n is 
the unit cube in Rm. The controllable set is defined by l'€==U,,>o l'€(t1), 
where 

l'€(t1) = {xo ERn 13u(· ) E OUm such that X(t1; Xo, u( . )) = O}. 

Because 1(0, 0) = 0, the target 0 is in l'€. (If Xo = 0, then u(t) == 0 is successful, 
with response x[t] == 0.) 

The basic questions in the area of controllability are 

(1) to describe l'€, 
(2) to show how l'€ is changed if we use special classes of controls. 

Two desirable properties of l'€ are: (a) 0 E Int l'€ and (b) l'€ = Rn. In case 
(b) the system is called completely controllable. 

The reason for wanting to know conditions under which l'€ = R n is 
obvious. There are several good reasons for wanting 0 E Int l'€, that is, for 
wanting some open ball about 0, of radius 8, inside l'€: 9?J(0; 8) C l'€. First, 
it is nice to know that we can steer to the target if we are close enough to 
begin with (regardless of direction). Second, a mathematical model is of 
course an idealization of some real-world system, and several (hopefully) 
small effects may have been neglected. These facts, plus our inability to 
carry out measurements with arbitrarily fine precision, force us to realize 
that even if we reach the target, there may be all kinds of effects tending 
to move us slightly off. It is reassuring to know that if these perturbations 
are small enough, we can always steer back to the target. It is also desirable 
that l'€ be open since real-world data concerning the initial state cannot 
be exact. 

Any results about l'€ or l'€(t1) which apply to all equations of the form 
(NLA) can be restated in terms of reachable sets. Notice that x(t) solves 
(NLA) with x(O) = Xo, and X(t1) = Xl. if and only if z(t) = X(t1 - t) solves the 
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time-reversed system 

z = -fez, ii), z(O) = Xl, ii(t) = U(tl - t). 

Notice that (*) is again a non linear autonomous equation. The two systems 
have the same curves as trajectories, traversed in opposite directions (Figure 
2). 

~ (OJ = 1\1 

______ ~~----+_----~X1 ______ ~+---:r----~Z1 

(NLA) 

Figure 2 

This means that the set ce(tI) of those states which can be steered to Xl 
at time tl under (NLA) is the same as the reachable set K-(tI; xd (those 
states which can be reached at time tl from Xl) for the time-reversed system. 
Thus when we assert "ce(tI) is symmetric for every equation (NLA)" we 
are also asserting "K(tI, xd is always symmetric." 

Recall that a set in R n is arcwise connected if any two points in the set 
can be joined by a path pet), which never leaves the set. 

Theorem 1. For the system (NLA) described above, ce is arcwise connected. ce is open if and only if 0 E Int ceo 
Proof. First notice that if XoE ce, then there is a path joining Xo to 0, namely 
the successful response x(t; Xo, u(· )). Furthermore, all points on this path 
belong to ce, as remarked earlier. If Xo, xo are both in ce, then they are 
joined to 0 by response paths, thus they are joined to each other by a path 
consisting of points from ~. 

If ~ is open, then since 0 E ce we conclude 0 E Int ceo 
Now suppose that 0 E Int ce so there exists an open ball9?Jo == 9?J (0, 50) c ceo 

Let x* E~. We want to show that there is an open ball 9?J(x*; 8) c ceo Now 
there exists a successful control u*(t) that steers x* to 0, that is, the solution 
of x = f(x, u*), x(O) = x* satisfiesx(tI; x*, u*(' )) = 0 for some tl > O. Since 
f(x, u) is differentiable, the solutions of (NLA) depend continuously on the 
initial value of x(O). Thus, for the fixed control u*{'), and the ball 9?Jo, 
there is a ball 9?J* = 9?J(x*; 5*) such that (Figure 3) 
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--------t.r---~~~--~----------------~~X1 

Figure 3 

Since x[ttl is in Cf6, there is a control o(t) that steers the point x[ttl to 0 
over the time interval [0, t2]. Then u( . ) defined by u(t) = u*(t) for O:s; t:s; tt, 
u(t) = o(t -It) for tl < t:s; tl + t2, steers Xo to O. Thus ~* c Cf6. 0 

2. The Linear Case 

To investigate Cf6 more deeply, it is worthwhile to investigate a system 
whose dynamics is described by a linear autonomous vector differential 
equation. We can then use the technique of linearization to study certain 
nonlinear cases. 

Therefore, we will study controllability problems for the linear 
autonomous system: 

(LA) x = Ax + Bu, A, B constant matrices. 

By the variation of parameters formula (cf. The Mathematical Appen­
dix), for a given u( . ) E OUm the solution of (LA) with initial state Xo at time 
t = 0 is given by the response formula 

(1) x[t]=x(t; xo, u(·» =X(t)X-\O)xo+ r X(t)X- 1(s)B(s)u(s) ds 

where X(t) is any fundamental matrix for the homogeneous equation 
i(t)=Ax(t). In particular, XoE Cf6(tl) (we hit the target ff(t)=O at time 
tl) if and only if there is a u( . ) E OUm such that 

J. " X(tl)X-1(0)xo+ ° X(tl)X-\s)B(s)u(s) ds =0. 
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Theorem 2. For the system (LA), the controllable set C€ c R n is symmetric 
and convex. 

Proof. Manipulating (*) we see that Xo E C€ (t 1) if and only if there is a t 1 > ° 
and a u( . ) E OUm[O, td such that 

(2) J. " xo=-X(O) 0 X- 1(s)B(s)u(s)ds. 

By (2), if XoE C€(tl) (using u(· )), then -XoE C€(t1) (using -u(·)), so C€ = 

U,,>o C€Ct1) is symmetric. 
Since integration is linear, and OUm[O, t1] is convex, it easily follows from 

(2) that C€(t1) is convex: if Xo E C€(t1) with control Do(') and X* E C€(tl) with 
control u*('), then [axo+(1-a)x*]EC€(t1) with control [aDo(')+ 
(1- a )u*( .)]. But the union C€ = U,,>o C€(t1) of convex sets may not be 
convex. To show that C€ is in fact convex, let XoE C€(t1), X*E C€(t*). Then 
(2) holds for Xo, and X* satisfies 

J'* X* = -X(O) 0 X- 1(s)B(s)u*(s) ds. 

Without loss of generality, assume tl < t*. 
If we define a new control uo(t) to be equal to u(t) from (2) on [0, t1], 

and 0 on (tl, t*], then (2) can be written with the upper limit t*: 

J'* 
Xo= -X(O) 0 X-l(s)B(s)uo(s) ds, 

which means Xo E C€(t*). Since C€(t*) is convex, any convex combination of 
X* and Xo belongs to C€(t*) c C€. 0 

Remarks 

1. The above theorem holds (with identical proof) for ACt), B(t) con­
tinuous, not necessarily constant, matrices. 

2. The above theorem is valid for any control class OU which is both 
symmetric and convex. Therefore, this theorem holds for the classes 
OUpc (piecewise constant controls) and OU. (smooth controls). We denote 
the corresponding controllable sets by C€pc and C€. respectively. 

3. The above proof will not work for the classes of bang-bang controls 
OUBB[O, t1] and OUBBPc[O, t1], since they are symmetric but not convex; 
the proof also used a control which takes the value 0, which is thus not 
in OUBB. We denote the controllable sets for OUBB[O, td, OUBBPc[O, td by 
C€BBCt1), C€BBPCCt1), respectively. In the Appendix to this chapter we will 
prove: 

For the linear autonomous system (LA), 'if?BB(tt) coincides with 'if?(tt); 
this set is compact, convex, and depends continuously (in the Hausdorff 
metric) on ft. 



30 II Controllability 

This implies that for (LA), ~ == U'l>O ~(t1) =U,1>0 ~BB(t1)== ~BB. Since 
~ is convex, it follows that ~BB is convex. In fact the following surprising 
result holds (see Lee and Markus [1967], pp. 155-168). 

The Bang-Bang Principle for 

x(t) =A(t)x+ B(t)u+ b(t) 

For the linear system above, suppose that our usual assumptions hold, except 
that the values of u(t) are only constrained to lie in some arbitrary fixed compact 
set qr c R m. Then the corresponding controllable set ~",(t1) is compact, convex, 
and depends continuously on t1. Moreover, if qr, qr * are compact subsets of R m 

with the same convex hull, then the corresponding controllable sets coincide. 

Bang-bang controls take their values (lui(t)1 = 1) on the vertices of the 
unit cube. Since the vertices of the unit cube n c: R m (or in general, the 
extreme points of any given convex set) have the same convex hull as n 
(namely n itself) it follows from the above theorem that ~BB(t1) = ~(t1) 
for all t1>0; thus the theorem we prove in the Appendix is a special case 
of the above result. 

Notice that the above proposition says nothing about the convexity of 
the controllable set ~",==U'l>O ~",(t1). If we use qr* to denote the convex 
hull of qr, and if 0 belongs to this convex hull, then in fact ~'" is convex. 
To see this, note that ~"'* is convex by the same proof as that of Theorem 
2, and also ~",*(t1) = ~",(t1) for all t1 by the Bang-Bang Principle. Thus 

~'" == U ~",(t1) = U ~",*(t1) == ~"'*' 
'1>0 11>0 

so ~'" is in fact convex. 

EXAMPLE 1 (~ May Not Contain a Neighborhood of the Target). Consider 
the two-dimensional system p = p + u, q = q + u, -1:S u(t):S 1, which is a 
linear system with 

[ p(t)] 
x(t) = q(t) , A =[~ ~], B=[!], 

n=2, m=1, .o/"(t) == O. 

The solution that satisfies the initial condition x(O) = Xo is 

x(t)=e'xo+{e' f e-·u(s)dS}[!]. 

If p(O) > 1 and q(O) > 1, then the differential equations imply p(t) > 0, 
q(t»O for all t. Clearly ~={(p,q)lp=q, Ipl<1, Iql<1}, so ~ does not 
contain a neighborhood of the origin (Figure 4). Dropping all restrictions 
on the range of u ( . ) will not change this conclusion. 
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q 

--~----~~---4------~P 

Figure 4 

The above example shows that we need some restrictions on the matrices 
A and B in the system (LA) to ensure that ~ contains a neighborhood of 
our target, O. The key to this problem is the n x (mn) controllability matrix 
M(A,B): 

M==[B,AB,A2B, ... , A n - 1B]. 

Theorem 3. For the linear autonomous system (LA), 

rank M = n¢>O E Int ~(¢> ~ is open, by Theorem 1). 

Proof. We will actually prove the equivalent statement O¢Int ~ ¢> 
rankM<n. 

For tl > 0, we recall from (2) thatxoE ~(tl) if and only if there is u(· ) E OUm , 

such that 

(3) 
(, 

Xo = - Jo e -AsBu(S) ds, 

using the fundamental matrix X(t) = eAt for (LA). 
First, suppose rank M < n. Then there is a unit vector y ERn, Ilyll = 1, 

perpendicular to every column of M, that is, the 1 x m row vector y T A k B = 0 
for k = 0, 1, ... , (n -1). If ~ (A.) == det (AI - A) is the characteristic poly­
nomial of A, then the Cayley-Hamilton Theorem implies that @>(A) = O. 
This in turn implies that A n can be written as a linear combination of the 
lower powers, An = f31A n-l + ... + f3n (*), and so 

MUltiplying (*) by yT A then gives yTA n+lB = 0, and continuing in this way, 
we see that yTAkB =0 for k =0,1,2, .... But 

-As ~ (_1)kA k k 
e = i.. S 

k=O k! ' 
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SO yT e -AsB = O. Thus for all Xo E C€(tl), yT Xo = ° by (3), and so C€(tl) lies in 
the hyperplane perpendicular to y, for all tl > 0. Since C€ is the union of 
the sets ~(tl)' it lies in the same hyperplane, and 0 f/. Int C€. 

Conversely, suppose 0.i Int C€. Then for all tl > 0, 0 ¢ Int C€(tl), since 
C€(tl) c C€. Now 0 E C€(tl) (set u(·) == 0), for all tlo and C€(tl) is convex, so 
for each tl there must exist a hyperplane through 0 such that C€(tl) lies on 
one side of this hyperplane, i.e., there is a non.trivial vector b(ft) such that 
for all XoE C€(tl), bT XosO. Then 

(4) f' bT e-ASBu(s) ds =_bT X020 for all u(· )EOUm and all XoE C€(tl). 

This implies (cf. the Lemma below) that (**) bT e-AsB ==Oon [0, tl]. Setting 
s = 0, we have bTB = o. Differentiating the identity (**) k times and setting 
s = 0, we obtain b T A kB = 0, k = 0, 1, 2, .... Thus b is orthogonal to the 
columns of M, and rank M < n. 0 

Remarks. We have actually proved that for (LA): 
1. rank M < n ~ 3 a fixed hyperplane which contains all ~(tl)' tl > 0; 
2. rankM=n ~OElnt~ Vt>O; 
3. rank M = n<:> Vb ¥- 0, bT-e-AtB ¥= 0 as a function of t. 

Systems for which bT e -AtB~ 0 for each b ~ 0, are called proper; for (LA) 
this is equivalent to rank M = n. This term will be defined in a later chapter 
for systems other than (LA), although we will not have such a nice algebraic 
characterization. 

The reason we have separated the following lemma from the text of the 
proof of Theorem 3 is that it is the only place where the structure of OUm 

enters directly. The structure of OUm also enters indirectly in our use of the 
convexity of C€. This means that if we can establish the convexity of C€, and 
the lemma, for other classes of controls, then Theorem 3 will hold for these 
classes. We will discuss the extension of this lemma immediately following 
its proof. 

Lemma. Assume that tl>O and bERm are given. If (4) holds for all 
u(·) E OUm[O, tl], then the (1 x m) row vector bT e-AsB == 0 for s E [0, tl]. 

Proof. Let v(s) E R m be the column vector whose transpose is the row vector 
bT e-AsB. If U(·)EOUm, then -U(·)EOUm • But replacing u(·) by -u(·) in 
(4) changes the sign of the integral, therefore, f~'VT(S)U(s)ds=O for all 
u( . ) E OUm• Suppose that for some So E [0, td, v(so) ~ 0 E R m. Then define 
u(s) to be OER m , except for s in a small neighborhood N of so. In N, let 
u(s) be the constant vector v(so). By the continuity of v(s), we can choose 
N so that f~' vT (s)u(s) ds = fNVT (s)v(so) ds >0, a contradiction. 0 

The above proof only required two properties of OUm : 

(i) u(·) E OUm ~ - u( . ) E OUm ; 
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(ii) given any So E [0, tl] and any fixed nonzero vector v(so) E R m, there is 
an admissible control uo(') such that vT (so)uo(s) is positive in some 
neighborhood of So and is zero outside this neighborhood. The classes 
of piecewise constant and smooth controls satisfy these requirements. 
Also, the unit cube n can be replaced by any symmetric compact subset 
'I' with OEInt '1'. 

Since controllability is a concept that is independent of the bases used 
in R", R m respectively, it must follow that if we make the changes of 
variables and controls y(t) = Px(t) and v(t) = Ou(t) where P, 0 are nonsin­
gular constant n x n, m x m matrices respectively, then the new system 

Y=PAP- 1y+PBO-1v=.Ay+Bv 

must have the same controllability properties (modulo transforming regions 
in R" and R m under the maps Px, Ou) as the original system (LA) x = 
A x + B u. This is easy to see algebraically, since 

rank {B, AB, A 2B, ... , A"-IB }= rankP{B, AB, A 2B, ... , A"-IB}O-I. 

We now turn to the important question of when Cfi = R" (complete 
controllability), that is, when can we steer every state Xo to the target 0 E R". 

EXAMPLE 2. Consider the one-dimensional problem i = x + u, -1:5 
u(t):51. Because of the constraints on u(t), i(t»O if x(t»l and 
i(t) < 0 if x(t) < -1. Therefore, Cfi c [ -1,1]. By equation (3), Xo E Cfi(tl) ~ 
Xo = - J~' e -su (s) ds, for some admissible control u ( '). Therefore, since 
lu(t)I:51, XoE Cfi(tl) implies that Ixol:5J~' e-s ds = 1-e- I':51. If in fact rxol:5 
1 - e -I" then it is easy to solve the equation and choose u (t) so that 
X(tl;XO,U(·»=O. In fact, one can choose u(t)=+l(xo<O) or u(t)= 
-l(xo>O) on some interval [0, t*], with u(t)=O on (t*, tl]. Therefore 
Cfi(tl) = {xollxol :51- e -I,}, and Cfi = {xollxol < 1} (see Figure 5). For this 

x 

-1 

Figure 5 (+) Indicates the Response Curve for u (t) == + 1 
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example, then, ~ ¢ R". The problem is that the homogeneous equation 
i(t) = x(t) has the origin x = 0 as an unstable equilibrium. 

Theorem 4. Suppose that rank M = n for the linear autonomous system (LA) 
i = Ax + Bu. If Re A < 0 for every eigenvalue A of A, then ~ = R". 

Proof. We know from Theorem 3 that the origin 0 E R" has a neighborhood 
~o==8?J(O; 8) with OE ~oc~. For any given xoER", we first set u(t) ==0, 
so that the dynamics of (LA) is determined by x = Ax. By standard results 
on the stability of linear differential equations (d. Mathematical Appendix), 
our assumption that Re A < 0 for all eigenvalues A of A implies that each 
solution of x = Ax eventually enters and stays in 8?Jo. Once in ~o, we are 
in ~, so we can switch to a control that will steer to the origin. 0 

The stability assumption in the above theorem is rather strong. For 
example, the rocket car has p(t) = u(t), or in system form 

x=[;J. x=[~ ~]x+u(t)[~J. -l~u(t)~+1, 
so A has the eigenvalue zero with multiplicity two. Theorem 4 is therefore 
of no use. The following result is much deeper, in that it does not require 
stability. 

Theorem 5. For the linear autonomous system (LA), recall that M = 
[B, AB, ... , A "-1 B]. Then 

~ = R" ¢:> rank M = nand Re A ~ 0 for each eigenvalue A of A. 

Proof. Suppose that rank M = nand Re A ~ 0 for each eigenvalue A of A. 
First we recall that ~ is convex (Theorem 2). If there were a state Wo e ~, 
then Wo could be separated from ~ by a hyperplane - that is, there would 
exist a fixed vector bE R" and a real number a such that 

(b, xo) == b T Xo ~ a for all Xo E ~. 

We will in fact show that for any nonzero vector b E R" and any real number 
a there is a vector Xo E ~ such that b T Xo > a. This contradiction will prove 
half of the theorem. 

Let b¢OER" be given. We want to prove that ~ contains vectors Xo 

such that b T Xo is arbitrarily large. Now Xo E ~ if and only if Xo = 
-J~l e -As Bu(s) ds for some t1 and some u( . ) E OUm , so we have to show that 
there is a u( . ) E OUm for which 

-fl bT e-ASBu(s) ds >a. 

For convenience, we define the (column) vector v(s)==(bT e-AsB{ in Rm. 
By the discussion below Theorem 3, our assumption that rank M = n 
implies that the system is proper, that is, v(s) ~O for s E [0, td. We choose 
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ui(s) = -sgn vl(s), i = 1, 2, ... ,m, with ul(s) = 0 when vi(s) = 0; then for 
any tl, with Xo = -J~' e -AsBu(S) ds, 

bT Xo= f'lv(s)1 ds, where as always, Ivl = i~l Ivll. 

Now some component of v(s), say v 1(s), is nonzero somewhere, say at so· 
By continuity, Vl(S) ~ 0 in a neighborhood of so. We will show that 
J: Iv 1(s)1 ds = +00. Suppose not, and let c/J(t) = J:x' Vl(S) ds. Note that c/J(t)-+ 
o as t -+ 00, and - Dc/J = V 1, where D = d/ dt. The matrix A satisfies its 
characteristic equation, g>(A) = 0, so 

g>( _ D)v(t)=g>( -D){bT e-AtB} = bT e-Atg>(A)B = O. 

Therefore c/J(t) is a solution of the constant coefficient equation 

Dg>( - D)c/J(t) = 0, c/J(t);eO, and limc/J(t)=O. 
t-+oo 

This means that c/J(t) is a linear combination of terms of the form p(t) eAt, 
where p(t) is a polynomial and A is a root of Ag>( -A) = O. These roots are 
all non-negative (the negatives of the eigenvalues of A, with A = 0 added), 
which contradicts our conclusion that limt-+oo c/J(t) = o. 

For the remaining half of the theorem, we consider the two possibilities: 
rank M < n, or Re A > 0 for some A. Suppose rank M < n. Then by the 
disc,ussion following Theorem 3, ~(t) is contained in a fixed hyperplane 
for all t>O, so ~(t)~Rn. 

Finally, suppose Re A 1 > 0 for some eigenvalue A 1 of A. We want to 
show ~ ~ Rn. There exists a real nonsingular matrix Q such that A = 
Q-1 AQ is in real canonical form (ct. the Mathematical Appendix) 

- J2 [

Jl 

A =diag 0 :.1 
where the form of the m, x m, matrix Jr depends on the eigenvalue of A 
to which it corresponds; 

[

Ak 

for " real, J, ~ : 
Ak 
1 .... 

. 1 
]. 

for A = ex + i~ (~~ 0), 

J'~[: ~ 1, :1 
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If we define x(t) = Oy(t) then (LA) becomes 

(RCF) 

Since lu(t)1 s 1, we have Iw(t)1 sK for some constant K. Without loss of 
generality, assume that Al appears in J1. If Al is real, then yl(t) = 
Alyl(t)+W l(t) is the first equation in (RCF). If yl(O»K/A h then yl(t) is 
always increasing, so y\t).,.O and y(t).,.O. 

When A 1 = a + i{3 with a > 0 and (3 ::;!: 0 the first two equations in (RCF) 
are 

)il = ayl-{3y2+ w\t), 

y2 = (3yl +ay2+ w\t) 

(superscripts denote components). Multiplying the first equation by yl(.), 
the second by y2(.), and adding, we get (recall that 11·11 stands for the 
euclidean norm) 

The Cauchy-Schwarz inequality implies that IZT w(t)\ s Ilzllllw(t)lI, and this 
combined with the last equation above implies d/ dtllz(t)11 ~ a Ilz(t)lI- K. 
Therefore, if Ilz(O)II> (K/ a), it follows that IIz(t)11 is always increasing and 
so again y(t).,. 0 as t -+ 00. 

Finally, since x(t) = Oy(t), in both of the above cases we have x(t)fo 0 
for the corresponding solution x(t) of (LA). 0 

EXAMPLE 3 (Controllability of the Rocket Car). For the rocket car, we have 

A =[~ ~], B = [~]. M=[B,AB]=[~ ~], 
so rank M = 2, and the system is proper, by the remarks following Theorem 
3. The only eigenvalue of A is A = O. By Theorem 5, C€ = R2, that is, for 
the rocket car, any initial state can be steered to 0 E R 2. 

It is interesting that Theorem 5 becomes considerably simpler for the 
case of unrestricted controls (u(t) E R m): 

Theorem 5'. For (LA) with unrestricted controls, C€ = R n ~ rank M = n. 

The reader is asked to prove this in Exercise 6 at the end of this chapter. 
We now prove a result on the generic nature of controllable systems, 

i.e., we show that "practically all" systems are controllable. To make this 
idea precise, we define the distance between two systems: 

(LA 1) 
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and 

(LA 2) 

to be IAI - A21 + IBI - B21. (Recall that IAI = L laiil.) This makes the set of 
all systems {i = Ax + BulA an n x n constant matrix, B an n x m constant 
matrix} into a metric space. The two systems (LA 1), (LA 2) are "close" 
in this sense if each entry in At. Bl is "close" to the corresponding entry 
in A 2 , B 2 • We distinguish between our usual restricted controls (u(t) E fi) 
and the case of unrestricted controls (u(t) E R m). 

Theorem 6. With unrestricted controls, the set of all completely controllable 
(i.e., C(j = Rn) linear autonomous systems is open and dense in the metric 
space of all linear autonomous systems. With restricted controls, the set of 
systems for which C(j ~ .#'(0) is open and dense; here .#'(0) denotes a neighbor­
hood of the origin which may depend on u(· ). 

Remarks. This theorem roughly states, first, that if a system is controllable, 
then so are all nearby systems (open-ness). This is important, since any 
model of a real world system is subject to imprecisions and perturbations. 
Second, the theorem roughly states that if a system is not controllable, 
then there are systems arbitrarily near it that are controllable (denseness), 
so lack of controllability is something of an accident. 

Proof. We treat only the case of unrestricted controls, using the criterion 
from Theorem 5' (for restricted controls, we would use the same proof, 
with the criterion from Theorem 3). By Theorem 5', a given system 
i = Ax + Bu is completely controllable with unrestricted controls if and 
only if 

rankM=rank{B,AB,A 2B, ... ,An- 1B}=n. 

This rank condition implies the determinantal condition (cf. the Mathemati­
cal Appendix): 

There exists N, an n x n submatrix of M, such that det N ~ O. 

If (A, B) is a fixed system close to (A, B), then each matrix 6 from the 
finite collection of n x n submatrices of M = {B, AB, ... ,An- 1 B} is close 
to the corresponding submatrix 0 of M. Also, if det 0 #- 0, then det 6 ~ 0 
for 10 - 61 sufficiently small. Thus for (A, B) sufficiently close to (A, B) 
we will have rank M = n, and so the controllable systems form an open set. 

Now suppose that the system i = Aox + Bou is not completely control­
lable, that is rank M < n. We need to find matrices (A, B) close to (A o, Bo) 

- - - -- - 1-such that det N#-O for some n x n submatrix of M = {B, AB, ... ,A n- B}. 
Det N, for an n x n submatrix N of M, can be thought of as a polynomial 

12k 2 - -g>( y ,Y , ... , y ), k = n + mn, in the entries of A and B. In the present 
situation g> vanishes when we use the entries of A o, Bo for y\ ... ,yk. 
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Since we only need det N '" 0 for some submatrix, we now need only show: 

Given a nontrivial polynomial gIl(y\ ..• , yk) in k variables which 
vanishes at Yo=(y~,y~, ... ,y~), there are vectors E=(~\e, ... ,~k) 
arbitrarily close to Yo such that gIl(E) ¢ o. 

But this is equivalent to the obvious fact that a nontrivial polynomial in 
k variables cannot vanish identically in any k-dimensional ball. (If it 
did, we could take enough partial derivatives to conclude all coefficients 
are zero.) 0 

3. Controllability for Nonlinear Autonomous 
Systems 

We will now investigate the nonlinear autonomous system 

(NLA) i=f(x, u), .o/"(t) == 0, 

with f(x, u) continuously differentiable in x, u, and f(O, 0) = 0 e R". Our 
assumption that f(O, 0) = 0 is not unreasonable, since it just means that 
when we arrive at the target OeR", we can stay there with u(t)==OeR m. 
For x(t) near 0 e R" we expect to be able to use small controls, so u(t) 
should be near OeRm. We therefore expand f(x, u) about x=O, u=O: 

[(x, u) =f,.(O, O)x+f.(O, O)u+o(\x\ +\u\), 

where f,,(·,·), f.(·,·) are the n x n, n x m Jacobian matrices [all axil, 
[allau i ], respectively. We expect the controllability of (NLA) near OeR" 
to be determined by the controllability of the (autonomous) linearization: 

(5) i = f,.(O, O)x +f.(0, O)u = Atx + B,u. 

Recall that the controllability matrix for (5) is 

{ A 2 A"-lB} M,= B" AtB" ,B" ... " , . 

Theorem 7. If rank M, = n, then 0 e Int ~ for (NLA). 

Before we prove this theorem, some comments are in order. The con­
verse is false, as Example 4 (following the proof) will show. In the proof, 
we will use the concept of time-reversal as discussed in the introduction. 
If x(t) solves (NLA) with x(O) = XQ, X(tl) = Xl, then z(t) = X(tl - t) solves 

(6) z = -f(z, 0), z(O) =Xh o(t) = U(tl - t). 
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Two Responses under (NLA) The Same Responses under (6) 
Figure 6 

Thus the response curves are identical for (NLA) and (6), but are traversed 
in opposite directions (Figure 6). It follows that Xo can be steered to 0 under 
(NLA) if and only if Xo is in the reachable set from 0 under (6). To say 
that any point in a neighborhood 00(0, 8) of OER n can be steered to 0 for 
(NLA) is equivalent to saying: "the fixed initial value 0 ERn can be success.­
fully steered under (6) to any point in 00(0; 8)." We used K(t1; xli<) to stand 
for the reachable set at time t1 from the initial state x* under (NLA), using 
all possible controls from GUm. We define K-(t1) to stand for the reachable 
set at time t1 starting from 0 ERn, under (6) (we omit reference to x* since 
x* = 0 always). 

We also need the following technical lemma, which states that if we can 
cover a neighborhood of Xo = 0 under the time-reversed system (6), then 
we can in fact specify our time of arrival at certain state vectors. 

Lemma. Suppose that the time-reversed linear autonomous system 

(7) x=-Ax-Bu, x(O) =0, 

can steer OER n to any point in a ball 00(0; 8). Then given a set of scalar 
multiples of the canonical basis vectors 

S = {aelo ae2, ... , aen } with a> 0 sufficiently small, 

we can find controls U1(·), ... , un(·) in GUm such that under Uj(·) we hit aej 
at t = 1: 

j= 1, ... , n. 

The proof is outlined in Exercise 1 at the end of this chapter. 

Proof of Theorem 7. We will prove that OE R n can be steered to any point 
in some open ball 8?lo = 00(0; 8)cRn under the time-reversed system (6); 
in fact we will show that K.-(1):::> 000 for some 8> 0, so the time of arrival 
at each point of 000 can be specified as t = 1. 
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We cannot be sure that solutions of (6) with x(O) = 0 extend to 0::;; t::;; 1. 
However, because f(x, u) is differentiable, it follows that for SUP[O.l] !u(t)! 
sufficiently small the response x(t; 0, u(·» will exist on [0, 1]. To see this, 
note that x[t] == 0 E R n is the unique response to u(t) == 0, and this response 
certainly exists on [0, 2]. Therefore, since the response to u(t) == 0 exists 
on [0,2], it follows that there exists e > 0 such that (cf. the Mathematical 
Appendix): 

sup !u(t)! < e ~ x(t; 0, u(·» exists on [0, 1]. 
[0.1] 

By Theorem 3, 0 E Int r6 for the linear system (5); therefore under the 
linear time-reversed system (7), the origin 0 ERn can be steered to any 
point in some fixed neighborhood of 0 ERn. Then, by the lemma above, 
for some a>O there are controls U1(·), ... ,un (·) such that xk[I]== 
x(l; 0, Uk('» = aek, (k = 1, ... , n) under the linear time-reversed system 
(7). Unfortunately, SUP[O.l] !u(t)! may exceed the extendability restriction 
in (*) above. To deal with this problem, we define a parametrized family 
of controls 

u(t, c) = c 1U1 (t) + ... + c nUn (t), 

where cERn is restricted by Ilell==n:ac if)1 /2<e/n. Then each c i satisfies 
Ici!<e/n, and since !uk(t)!::;;I, we have !u(t, e)!<e, O::;;t::;;1. 

We now consider the family of responses to the controls u(t; c): 

z(t; 0, u(t; c» 

under the nonlinear time-reversed system (6), 0::;; t::;; 1. We define a function 
gee): 

g(.): OOo==9?J(O; e/n)-+Rn by g(e)=z(l, c), 

i.e., the point in R n reached at t = 1 by the response to u(', c) under (6). 
Clearly g(O) =z(l, 0) =0 (the response under (6) to u(t) ==0 is x[t] ==0, since 
Xo=O). If we can show that the Jacobian matrix J=gc(O) is nonsingular, 
then g(.) will map open sets into open sets, in particular, the image of 9?J0 

will contain a neighborhood 9?J 1 of g(O) = 0 ERn. This will imply that the 
set of points reached at t = 1 by the responses under (6) to the family of 
controls {u(t, c)!c E 9?J0 } contains a neighborhood of 0 (see Figure 7). 

To complete the proof then, we need to show that J is nonsingular. We 
have by definition 

(**) z(t, c) = -fez, u(t, c», z(O, c) =0. 

Let the n x n matrix N(t) be defined by 

N(t) = zcCt, e)!c=o, so J = N(I). 
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Figure 7 Each Point c E 9110 Defines a Control u(t, c). This Control in Turn Generates 
a Nonlinear Response z[t], and g(c) = z[l] 

Then N(O) = 0, and we can take partial derivatives with respect to the c i 

in (**) to see that N satisfies the linear system 

N(t) = -f,.(O, O)N(t) -fu(O, O)Uc(t, c)lc=o, 

i.e., 

N(t) = -1,.(0, O)N(t) -fu~O, 0)[U1(t), U2(t), ... , Un (t)]. 

Then each column Rj(t) of N(t) satisfies (7): 
I 

Rj(t) = - AfRj(t) - ~fUj(t), Rj(O) = 0, 

and therefore coincides with the response z(t; 0, Uj(')) to Uj(') under the 
linear time-reversed system (7). But for this system Uj(') steers 0 to aej at 
t = 1, therefore Rj(l) = aejoj = 1, ... , n. Thus N(1) = aI and so zc(l, c)lc=o = 
N(l) is nonsingular. 0 

EXAMPLE 4. As promised, we show that 0 E Int C€ for (6) does not imply 
rank M f = n. Consider the following two-dimensional system with scalar 
control: p = -p+u, q = -q _[p(t)]3, or in vector form 

First we show that OElnt C€. We restrict our attention to the domain 
Ip(t)ls 1, Iq(t)\s 1. If we set u(t)==-l, responses within this domain move 
towards the equilibrium point (-1,1) as sketched in Figure 8. For xJ' = 
(Po, qo) = (1, 1), the response to u (t) == -1 successfully reaches the target 
(0,0), and the part of this trajectory from (1, 1) to (0,0) we denote by r_. 

For u(t) == + 1, a dual analysis applies, as sketched in Figure 9. In this 
case we have a single successful response, r +, from (-1, -1) to (0,0). 

We will show that we can steer any initial state in some small disc about 
the origin so as to hit one of the trajectories r + or r _. Once we hit r + or 
r _, we can steer to the target 0 by using u(t) == + lor u(t) == -1 respectively. 
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II Controllability 

As a first step, we claim that if Xo lies above r + U r _ with IIXoIi < 1 and 
Po< 0, then we can choose u(t) == + 1 and have p(t) positive before Ilx(t)11 
exceeds 1. Thus responses with sufficiently small initial states will remain 
in the disc D of radius 1 at least until p(t) becomes positive. To see this, 
we write p = -p+ 1, q = -q _[p]3, and set r(t) = {[p(t)]2 + [q(t)]2}1/2. Then 

rf = pp + qq = -[r(t)]2 + p _q[p ]3. 

As long as p(t)sO, we have rh:;;-[r]2+1/2{[qf+[pt} (using the 
inequality 2abs[a]2+[bf), thus ;rs-[r]2+1/2[rf+l/2[r]6. So as long 
as p(t) s 0 and r(t) < 1, we have p(t) ~ 1 and ;(t) sO. Therefore, p(t) will 
b'e positive before t* = 2lpol, yet for 0 s t s t* 

r(t) s r(O) < 1. 
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Therefore, if Xo is sufficiently close to (0, 0) and lies above r + U r -, we 
can set u (t) == + 1 and still remain in D, until the response reaches a state 
(PI. qI) with PI> O. We then set u (t) == PI. so p(t) = 0, 4(t) = -q(t) - [ptJ3. 
The trajectory therefore will move straight down until it intersects r -, at 
which instant we switch to u (t) == -1; the response will then move to (0,0) 
(Figure 10). A dual argument works for Xo below r + U r_. 

q 

Figure 10 

Thus the controllable set C€ for (NLA) contains a neighborhood of (0, 0). 
However, the linearized problem is p = -P + u, 4 = -q, so 

[-1 0] 
A f = 0 -1' 

[1 -1] 
Mf==[Bf> AfBr] = 0 0' 

and rank Mr = 1. 

Theorem 8. For the nonlinear system (NLA) , suppose rank Mr = n. If the 
solution x(t) == 0 of the free system x = f(x, 0) is globally asymptotically 
stable, then r6 = R n for (NLA). 

Proof. The previous theorem guarantees the existence of S > 0 such that 
00(0; S) c: r6 for (NLA). Global asymptotic stability of the free (u(t) == 0) 
equation means that limt_oox(t; xo, 0) = 0 for any Xo ERn, thus each solution 
can be "steered" (using u(t) == 0) to inside 00 (0; S) within a finite time. 
Because the system is autonomous, we can then use the fact that 00(0; S) c: r6 
to steer to 0 in a finite time. 0 

EXAMPLE 5 (Application to a Nonlinear Damped Spring). Consider the 
scalar equation p(t)+g(p,p)p(t)+h(p)=u(t), -1::s; u(t)::s; 1, with g(.,.) 
and h(·) continuously differentiable (so solutions to initial value problems 
are unique). This is equivalent to the following two-dimensional system 
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with scalar control: 

(8) [ pet)] 
x(t) = q(t) , 

. [0 x= 

° The linearized system is 

(9) . [ ° x= -h'(O) 

and 

M f = [°1 1] - g(O, 0) , 
rankMf =2. 

Therefore, under any conditions which will imply that (8) with u(t) == ° 
is globally asymptotically stable (g.a.s.) it will follow that 'fl = R2 for (8). 
~or exa~ple, if g(p, q) > ° for all (~, q), ph (p) > ° for p rf 0, and 
hmlpl .... oo So h(s) ds = +00, then the system IS g.a.s. We sketch a proof, using 
a Liapunov function. Define 

V(p,q)=~2 +H(p), whereH(p)= r h(s)ds. 

Then 

Yep, q) > ° for all (p, q) rf (0, 0), lim Yep, q) = +00, 
Ix I .... "" 

and along free (u(t) == 0) solutions of (8), 

. d 
Yep, q) == dt V(p(t), q(t» = qq + h(p)p = _q2g(p, q) < 0. 

Then standard results from stability theory (Hahn [1967], Theorem 26.2, 
p. 108) imply that (8) is g.a.s. 

4. Special Controls 

In the preceding sections we established basic results for both linear and 
nonlinear systems when u( . ) E OUm , that is, when u( . ) is measurable on some 
interval [0, td with range u(t) E n, the unit cube in R m. Such functions can 
be quite pathological from the practical point of view, and therefore difficult 
(or impossible) to synthesize. It is an important problem, therefore, to 
establish controllability results when the set of admissible controls is one 
of the classes OUpc, OU., OUBB, OUBBPC introduced in Chapter I. We define 
the corresponding controllable sets 'flpc, 'fl., 'flBB' 'flBBPC• 
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For convenience, we briefly summarize our principal results for (LA) 
and (NLA) when u(· ) e dUm. Recall that (LA) is proper if b T e -AtB ¥= 0 for 
any b ¥= 0; this is equivalent to rank [B, AB, ... ,A n-l B] = n. 

Theorem 1. For (NLA), r:e is arcwise connected, and r:e is open ~ Oe Int r:e. 

Theorem 2. For (LA), r:e is symmetric and convex. 

Theorem 3. For (LA), 

(i) rank M < n ~ r:e{tl) is contained in a hyperplane. 
(ii) rank M = n ~ 0 e Int r:e. 

Theorem 5. (LA) is proper and Re A sO for all eigenvalues of A ~ r:e = R n. 

Theorem 7. For (NLA), rank M, = n ~ 0 e Int r:e. 

Theorem 8. For (NLA), if the free (u(t) == 0) system is globally asymptotically 
stable, and rank Mf = n then rc = R". 

We can then summarize what is known about the extension of each 
theorem to the cases when our control classes are dUpc, dU .. dUBB, dUBBPc. 

Theorems 1, 2, 3(i), 5, and 8 are valid for all of the classes r:epc, r:eg , 

r:eBB, r:eBBPC. The extensions are direct, paralleling the given proofs, for all 
but Theorem 2. Theorem 2 is a special case of the theorem from Lee and 
Markus which was stated just after the proof of Theorem 2. 

Theorem 3(ii) holds for r:eg and r:epc. Our proof of Theorem 3{ii) fails 
to extend to the class dUBB, because we needed to use a control which takes 
the value zero. 

In Example 3, we showed that rank M = n, and Re A. ~ 0 for all eigenvalues 
of A, for the rocket car. Therefore, rc. = rcpc = R2 for the rocket car, by 
Theorems 3 and 5. This means, for example, that for the rocket car we can 
steer to 0 from any initial state, using a control which changes values smoothly 
and as slowly as we wish. 

Theorem 7 holds with any class of controls for which we can prove the 
associated lemma. The proof of this lemma is outlined for dUm in Exercise 
1. Theorem 7 fails for dUBB, as the following example shows. 

EXAMPLE 6 (Linearization Does Not Give Full Information About r:eBB). 
Consider the scalar (n = m = 1) equation i(t) = u{t) + [U(t)]2, with -1 s 
u{t)s 1. Then 

A, = fAo, 0) = 0, B,=iu(O, 0)= 1, M,=1 

so rank M, = 1 = n. Thus 0 lies in the interior of r:epc, r:eg , and r:e (Theorem 
7). But u(·)edUBB implies that u(t)+[U{t)]2 is either 0 or 2, so i(t)~O. 
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Thus ° rI. Int C€BB since no point xo> ° can be steered to 0. 
There is a close relationship between C€pc and C€, as the following results 

show. Note that the system (NLA) contains (LA) as a special case. 

Theorem 9. For (NLA) , if OE Int C€pc then C€pc = C€. In other words, if 
o E Int ~pc, then anything you can accomplish with measurable controls 
can, in fact, be accomplished with piecewise constant controls. 

Proof. Let Xo E C€ and choose u(· ) E OUm steering Xo to 0 on [0, t1]' We must 
show that there is a uo( . ) E OUpc that steers Xo to O. Choose 5> ° so small 
that the ball gJo= gJ(O; 5) c C€pc in Rn. Define (the shaded region in Figure 
11) the 5- tube 

}fa = {x E Rnl inf Ix-x(t; xo, u(· »1:5 5}, 
[0,1,] 

and }f = }fax ncR n+m. The idea is to approximate u(· ) by a uo(· ) E OUpc 
so closely that the resulting response x(t; xo, uo(·» stays in}fa and is pulled 
into the ball gJoc C€pc. 

II (t;lSo' y (.) 

----------~~------~~--------~~~1_----------~~~ 

Figure 11 

Because f(x, u) and the entries of the Jacobian matrix f,.ex, u) are (uni­
formly) continuous on the compact set}f, there are constants K > 0, A ~ 0, 
P > ° such that on }f, 

If(x, y)1 :5 K, If(x, u)-f(y, u)1 <Alx-yl, 

and 

5 e-All 

lu - vi < p ~ If(x, u) - f(x, v)1 < -4-' 
t1 

If S is a Lebesgue measurable set of real numbers, then lsi will denote the 
Lebesgue measure of S. Now OUpc[O, td is L 1-dense in OUm[O, td, which 
implies that it is dense in measure. This means that there is a measurable 
set S c [0, td and a ua(' ) E OUpc such that lsi < 5 e -All 18K, and 

lu(t)-ua(t)I<p iftEQ=[0,t1]nS c• 
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We use X.(t) to denote the characteristic function of a set S. We can use 
(NLA) plus some judicious additions and subtractions to measure the 
difference between the ~pc-response X/I[t]=x(t; XQ, U/I(' n and the ~m­
response x[t]=x(t; xo, u(· »: 

IX/I[t]-x[t]1 s r If(x/I[r], u/I(r»-f(x/I[r], u(rnl[xo(r) + Xs(r)] dr 

+ r If(x/I[r], u(r» -f(x[r], u(r»1 dr 

s-e_+2KISI+A IX8[r]-x[r]1 dr. 
15 -Att J. t 

4 0 

Using Gronwall's inequality (Hartman [1964], p. 24) we find that 

[15 -Att ] [15 e -Att] 
IX8[t]-x[t]ls T+2KISI e Att < -2- eAtt <15. 

Therefore X/I(tl) E 9lI0 C ~pc. This means that there is a control ii(· ) E Oitpc, 
defined on [0, i] that steers X/I(tl) to 0, that is, the response i[t]= 
x(t; X/I(tl), ii(·» satisfies i(i) = O. Because our system is autonomous, the 
following control from Oitpc will then steer Xo to 0: 

() { us(t), OStStl; 
Uo t = ~ • 

u(t - tl), tl < t s tl + t. 

The associated response is X/I[t], 0 s t s tlo i(t - tl) on (tl, tl + 1]. 0 

The above proof is of course valid for any class ~ of controls that is 

(1) dense in measure in ~m' and satisfies 
(2) for Ul(') E ~[O, tl], U2 E ~[O, t2] the juxtaposition 

( ) _ {Ul(t), Os ts tl; 
U3 t -

U2(.t-tl), tl<tSt2+tl 

is in ~. For example, the theorem holds if ~pc is replaced by ~ = 
Utt>o ~[O, tl], where ~[O, tl] is the class of C«> functions which vanish, 
along with all derivatives, at 0 and tl. 

We now turn to controllability problems for OitBB• This class is symmetric, 
but not convex, and since many of our proofs have depended heavily on 
convexity this class does not look promising. However, physical intuition 
tells us that OitBB should be effective, since we are using all available power. 
This intuition is correct for linear problems, as we have already mentioned 
in the discussion following the proof of Theorem 2. To conclude this 
chapter, we now re-state our special case of the Bang-Bang Principle. We 
give a proof based on ideas of Jim Yorke in the appendix to this chapter. 
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Proofs of the Bang-Bang Principle usually involve either a theorem of 
Liapunov on the range of a vector measure, or the Krein-Milman Theorem 
from functional analysis (cf., for example, H. Hermes and J. P. LaSaiIe 
[1969]). Our proof is long, but does not use such powerful tools. 

Theorem 10 (The Bang-Bang Principle). For (LA), we have ceBB(tI) = ce(tl) 
for all tl > 0; this set is compact, convex, and depends continuously on tl. 

Exercises 

Remark: Unless stated otherwise, we always assume that lui(t)1 < 1, i = 1, ... , m. 

1. (A proof of the lemma used in the proof of Theorem 7.) Consider the time­
reversed autonomous system x = -Ax - Bo. Suppose that 0 can be steered to 
any point in a fixed ball gJo = gJ(O; 8). Then, given a set of scalar multiples of 
the canonical basis vectors, 

with a > 0 sufficiently small, there are controls 0\ ( • ), U2( • ), ••. , Un ( .) which 
respectively steer 0 to aelo ... , aen at t\ = 1, i.e., 

j = 1, 2, ... ,n. 

2. Consider the system (n = 2, m = 1): 

~(t)=O, 

a slight modification of the rocket car (compare the 2 x 1 matrices B). Use one 
of the theorems in this chapter to show that re ¥- R 2. Find re by direct integration. 

3. (For XoE re, the states lying on the successful response curve from Xo may not 
be in re.) 

Consider the system p = -(1- t)q, q = (1- t)p for O:S t < 1, with P = 0, 
q = [u(t)-2](t -1) for 1:s t < 00. 

Show that for O:S t < 1, responses move counterclockwise on circles in the 
(p, q) plane, while for t> 1 responses move vertically downward. Describe re, 
and sketch a typical successful response from reo Show that no state on a 
successful response, except the initial state, is in reo 

4. (Although re(t\) = reBB(t\), the number of switches required may be infinite.) 
For the scalar problem i = [t3 sin (1/t)]u(t), -1:s u(t):S 1, ~(t)=O, show 

that re(1) = [ - a, a], where 

Show that a is only attained by a control with an infinite number of switches. 
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5. Investigate the controllable set (with flU) == 0) for the following systems. 

[0 -1 1] [-1 1] 
(a) x= 2 -3 1 X+ 0 2 u 1 -1 -1 1 3 (m = 2, n =3) 

[ 
-p+3[qf+rq J [-ae 13 + f3] 

(b) x= -q-3pq-rp + a 2 +2f3 , 
-r[pf-r[qf-[r]3 ea +e 313 

with 

6. Prove Theorem 5'. 
Hint: It might be helpful to compare the controllable set for u(t) E 11 with the 
controllable set for u(t) E k11, k > 1, k11 == {kvlvE 11}. 

7. Consider the system (m = 1, n = 3): 

~JX+U(t)b. 
-1 

For which constant vectors b is Cf5 = R n? 

8. Consider the nonlinear system (m = n = 2): 

Ii = qe P - p - u t, 

Show that Cf5 ~ R2. 

9. Let (r, cf» be polar coordinates in the plane, and consider the control problem 

;= ur, ¢=-u, 

with cf>(0) = 0, reO) = 1. Show that the reachable set in the plane is not convex. 
(It is a spiral.) 

10. Let (r, cf» be polar coordinates in the plane and consider the control problem 

with initial state reO) = 1, cf>(0) = O. Show that K(rr; xo) is not convex. (It is an 
annulus.) 
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Appendix to Chapter II: Proof of the Bang-Bang 
Principle 

The proof is long, so we have broken it down into a series of propositions. 
First we need a general compactness result. 

Proposition 1 (Weak Sequential Compactness of OUm[O, td in L 2[0, td). If 
{un(·)}e OUm[O, tlJ is given (n = 1, 2, ... ), then there exists a subsequence 
{unk (·)} and a u*(·) E OUm[O, tlJ, such that for all n x m matrices yet) whose 
entries are in L 2[0, td, we have 

Proof. The sequence of first components {u~(· )}~=I is a sequence in L 2[0, td, 
since u ~ ( . ) is measurable and satisfies I u ~ (t)1 :S 1. Also if 11·lb is the L 2[0, tlJ 
norm, then 

{ ['I }1/2 
Ilu~(· )Ib = Jo [U~(t)]2 dt :S d12• 

Now the ball in L 2[0, tlJ about the origin of radius d/2 is weakly compact 
(cf. the Mathematical Appendix), therefore, there is a subsequence 
{u~;(· )}~I and a u~ (. ) E L 2[0, tlJ such that for all real-valuedf(·) E L 2[0, tlJ, 

lim (, f(t)U~i(t) dt= [', f(t)u~(t) dt. 
i-+oo Jo Jo 

We throwaway the original sequence {Un (. )} e OUm and work with the new 
subsequence {Un; ( • )} e OUm , and for simplicity we relabel these functions 
{un (·)}. Beginning with this relabelled sequence, we now repeat the above 
procedure for the second component, then for the third, and so on. The 
end result is a subsequence {Uk(·)} e OUm and a u*(·) E L 2[0, tlJ such that 

J. I, J. I, 
lim f(t)un(t) dt = f(t)u*(t) dt, 
k~oo 0 0 

for all real-valued f(· ) E L 2[0, tlJ, where we integrate componentwise. 
We claim that u*(·) E OUm , i.e., lu~ (t)I:s 1 on [0, td for j = 1, 2, ... , m. 

Let ~={tl3j, u~(t»l}. If ~ has Lebesgue measure zero, 1~1=0, then 
we can redefine u*(t) to be zero on ~ without affecting anything, and thus 
U*(·)E OUm • So assume 1~1>0 and for definiteness assume ~1 ={tlu~(t» 1} 
has positive measure. Then if X(t) is the characteristic function of ~J, we 
have (recall Uk(·) E OUm ~ luk(t)I:s 1): 

ft' ft' ft' 1*'11 < X(t)u!.(t) dt = lim x(t)uHt) dt:::;; x(t) dt = l*'tI, 
o k .... oo 0 0 

a contradiction. Thus u*( . ) E OUm. If yet) is any n x m matrix with entries 
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Yij( . ) E L 2[0, ttl, then Y(t)Uk(t) is a vector whose ith component [Y(t)Uk(t)]i 

satisfies 

J. 'l J.'l ( m ) m J.'l . lim [Y(t)Uk(t)]i dt = lim L YijuL dt = L lim YijU~ dt 
k ... "" 0 k ... "" 0 j=l j=l k ... "" 0 

m J. tl J. t
l = L YijU~ dt = [Y(t)U*(t)]i dt. 

j=l 0 0 
o 

To continue with the proof of Theorem 10, we set m = 1, that is, u(t) 
real-valued (the extension to m> 1 is easy, working with each entry of 
u(· ». Recall 

"iL 1[0, tl] = {u(· )\-1:s u(t):S 1, u(· ) measurable on [0, ttl}, 

OUBB[O, tl) = {u(· ) E OU 1[0, ttlllu(t)\ = 1 for all t E [0, ttl}. 

Our system is (LA) i=Ax+Bu, Ban n x 1 matrix, and 

~(tl) ={XoER n \3u(')E OU 1[0, ttl steeringXo to O}, 

~BB(tl) = {XoE R"\3u(·) E OUBB[O, ttl steering Xo to O}. 

We want to show that ~(tl) = ~BB(It), and that both sets are compact and 
convex. Now by Equation (3), 

XoE ~(tl) ~xo= - 1'1 e-ABBu(s) ds for some U(')E "iL1[0, tl], 

Xo E ~BB(tl) ~ Xo = - 1'1 e -ABBu(S) ds for some u(· ) E OUBB[O, tl]' 

Therefore, if T is the mapping from "iL 1[0, tl] into R" defined by 

rt1 

(10) T(u(·» = Jo y(s)u(s) ds, y(s)=e-ASB (recall that B is n xl), 

then we need to prove that 

(11) 

The remaining propositions are devoted to the proof of (11). Notice that 
QBB c Q always, since "iLBB c OIl. For simplicity we set tl = 1. 

Proposition 2. The mapping T defined in (10) maps convex sets into convex 
sets, and weakly compact sets in L2[O, 1] into compact sets in Rn. (In 
particular, by Proposition 1, Q is convex and compact.) 

Proof. T is linear, so the convexity assertion is immediate. 
It is a standard result in functional analysis that a mapping which takes 

weakly convergent sequences into strongly convergent sequences will map 
weakly (sequentially) compact sets into (sequentially) compact sets (cf. 
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Mathematical Appendix). Since OUm[O, 1] is weakly compact by Proposition 
1, we need only show that the mapping T[u(·)] has the above property. 
Let {Un (. )} c OU 1[0, 1] converge weakly to u(·) E OU 1[0, 1], that is, for all 
fEL 2[0,1], 

lim r 1 f(t)Un (t) dt = ( f(t)u(t) dt. 
n~ooJo Jo 

Then by looking at components we see that T(un)~ T(u). Thus Q = 

T(OU 1[0, 1]) is compact. 0 

We now come to the heart of the proof of the Bang-Bang Principle. For 
G, H disjoint measurable subsets of [0, 1] (G u H need not be [0, 1]) we 
define the special control classes (Figure 12): 

OU(G, H) =={u(·) E OU 1[0, l]!u(t) = -1 on G, u(t) = +1 on H}, 

OUBB(G, H)== OUBB[O, l]n OU(G, H). 

G 

-1~-.J 

H 

Figure 12 Example of u(·) E f1/L(G, H) 

Notice that if G uH = [0,1], then OU(G, H) is a single bang-bang control, 
while if G = H = 0 (the empty set) then OU(0, 0) = OU 1[0, 1]. The basic 
idea of the proof is to start with G = H = 0, in which case 

T[OU(0, 0)] = {( y(s)u(s) ds!y(s) = e -AsB , u(· ) E OU 1[0, 1]} == Q. 

Now if pE Q = T[OU(0, 0)], we will systematically choose larger and larger 
sets G, H so that p remains in the convex set T[OU(G, H)] (cl. Figure 13), 
but the dimension of T[ OU (G, H)] drops. Eventually we get p E T[ OU (G, H)] 
with dim T[OU(G, H)] = 0. Since T[OU(G, H)] is convex, it must be a single 
point, so {p} = T[OU(G, H)] => T[OUBB(G, H)] # 0. Thus p = T[OUBB(G, H)], 
so pE QBB. 
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I 

x1 

I 

/ 
I 

I 

Figure 13 dimQ=3,dim T['YL(G,H)]=1 

Proposition 3. T['U(G, H)] is always compact and convex in Rn. 

Proof 

53 

(i) 'U(G, H) is convex and T[·] is linear on 'U(G, H), so T['U(G, H)] is 
convex. 

(ii) 'U 1[O, 1] is weakly compact (Proposition 1) and T[·] maps weakly 
convergent sequences into strongly convergent sequences. If we can 
show that OU(G, H) e 'U1[0, 1] is always weakly closed, then it will 
follow from standard results (cf. Mathematical Appendix) that 'U( G, H) 
is weakly compact and T['U(G, H)]iscompact. To this end, let {un ( .)}e 
OU(G, H). Then we may assume that this sequence converges weakly 
(in L 2[0,1]) to u(·) E 'U 1[0, 1]. We want to show that u(·) E 'U(G, H), 
i.e., that u (t) E -1 on G, u (t) E + 1 on H. Suppose that there is a subset 
E e G, \E\ > ° such that u (t) ,c -1 on all E (if \E\ = 0, we can redefine 
u(t) to be -1 on E without affecting the response). Since u(·) E 

'U 1[0, 1], we have u(t»-1 on E, so 

-\E\ < IE u(t) dt = r XE(t)U(t) dt. 

Now Un ( • ) E 'U (G, H) for each n, so Un (t) E -1 on E, therefore as n ~ 00, 

-\E\ = r XE(t)Un (t) dt ~ r XE(t)U (t) > -\E\. 

This contradiction shows that 'U (G, H) is weakly closed and so 
T['U(G, H)] is compact. 0 

To finish the proof, we need to establish two final propositions. We state 
them here, and immediately use them to finish the proof of the Bang-Bang 
Principle. Their proofs are given after. Recall that for a convex set KeRn, 
dim K is the dimension of the smallest hyperplane containing K. 

Proposition 4. If P E Int T[OU (G, H)], then there exist disjoint measurable 
subsets of [0,1], G* => G, H* =>H such that pE aT['U(G*, H*)]. 
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Proposition s. If pE aT[OU(G*, H*)], then there are disjoint measurable 
subsets of [0,1], G**:::> G*, H**:::> H* such that p E T[OU(H**, G**)] and 

dim T[OU(G**, H**)] < dim T[OU(G*, H*)]. 

To complete the proof of the Bang-Bang Principle using these results, 
let pE Q = T(OUI[O, 1]) = T[OU(0, 0)] be arbitrary. Applying Propositions 
4 and 5 alternately, starting with HI = GI = 0, we obtain increasing sequen­
ces of sets 0 = G I c: G2 c: ... , 0 = HI c: H2 c: ... with 

n 2: dim T[OU(Gk , H k )]> dim T[OU(Gk + h H k + I )], 

so dim T[OU(Gk , H k )] drops by at least one at each step. After at most n 
such steps, we will have two disjoint measurable sets G, H such that 
dim T[OU(G, H)] = ° and pE T[OU(G, H)]. But T[OU(G, H)] is convex, 
therefore T[OU(G, H)] = {pl. Also OUBB(G, H) is nonempty and contained 
in OU(G,H), so 0#=T[OUBB(G,H)]c:T[OU(G,H)]={p}. Thus {p}= 
T[OUBB(G, H)] c: T(OUBB[O, 1]) == QBB. This shows that Q c: QBB, so QBB = 
Q. 0 

Proof of Proposition 4. Fix G and H in [0,1], GnH= 0. Let pE 
Int T[OU(G, H)]. For s E [0,1], define 

Gs =Gu{[O, s]-H}, Hs=H, 

(so that we can "increase G smoothly without hitting H"). Since 
T[OU(G., Hs)] is a compact subset of R n , we can use the Hausdorff metric 
on the family of sets {T[OU(G., Hs)]O:s; s:s; 1} in R". For fixed sets 
G, H, we claim that the set-valued map 

W(·): s -+ T[OU(G., Hs)] 

is continuous on [0, 1]. To see this, let s, t E [0, 1], and without loss of 
generality let s:s; t, so Gs c: G, (as always, H = Hs = H,). Then W(s) s; W(t) 
and the Hausdorff distance can be computed by 

h(W(s), W(t»= sup d(p, W(t», 
pEW(S) 

where d(p, W(t»=infqEw(t)lp-ql. We will show that for any PE W(s), 
there is a q E W(t) such that Ip - ql < Kit - sl, for some fixed constant K > 0, 
and therefore h(W(s), W(t» < K(t - s) and the continuity of W(·) follows. 
Given P E W(s), i.e., 

I 

p= fo Y(T)us(T)dT forsomeus(·)EOU(G.,Hs), 

where Y(T) = e-ATB, we define U,(·) E OU(G" H,): 

onG" 
onH,=H, 
on (G,uHt. 
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Then Us(T) ~ U/(T) only for T E (G/- Gs) C [s, I], and so 

If 1 y(r)u.(r) d1: - fl y(1:)ut (1:) d1:1 :::;; 2 (max IY(1:)I) It - sl· 
o 0 [0,1] 

Therefore W(s) = T[OU(G., Hs)] is a continuous map from [0,1] into the 
subsets of Rn. 

Given pElnt T[OU(G, H)], we define 0'=sup{sE[0,1]lpE 
T[OU(G., Hs)]}. This set of numbers is nonempty (s = 0 belongs), so 0' exists. 
From continuity and the definition of (1, p¢lnt T[OlI(G." H.,)J. On the other 
hand, because T[OlI(G .. H.)] is continuous in s, p¢Int T[OlI(G." H.,)]. Thus 
pEoT[OlI(G." H.,)]. 0 

Proof of Proposition 5. This proof is similar to the proof of Pontryagin's 
Maximum Principle for general linear systems. Recall that XE T[OU(G, H)] 
means 

1 

x= 1 y(s)u(s)ds forsomeu(')EOU(G,H), 

i.e., u(· )=-1 on G, u(· )=+1 on H. Let pEilT[OU(G, H)]; by Proposition 
3, pE T[OU(G, H)], so p = J~ y(T)Up(T) dT for some up(') E OU(G, H). Since 
T[ OU (G, H)] is convex, there exists a unit vector q E R \ Iql = 1 such that 
(cf. Mathematical Appendix) r qT Y(T)Up(T) dT=qT P=SUp{qT XIXE T[OU(G,H)]} 

(12) =sup {f qT Y(T)V(T) dTlv(·) E OU(G, H)}, 

Y(T) = e-ATB. 

Now to maximize J~ qT Y(T)V(T) dT, we want sgn V(T) = sgn qT Y(T) on [0, 1]. 
With this in mind, we define 

G* = Gu ({II qT y(/)<O}-H), H* =Hu({/1 qT y(/»O}-G), 

D ={XE T[OU(G, H)]I qT X=qT pl. 

The set D is the intersection in Rk of the k-dimensional set T[OU(G, H)] 
with the hyperplane {xlq T (x - p) = O}. This hyperplane in turn is a translate 
of the subspace {xlq T x = O} which has dimension k -1. Thus dim D s k - 1, 
i.e., dim D < dim T[OU(G, H)]. 

We will show that D = T[OU(G*, H*)]. The fact that D::::> T[OU(G*, H*)] 
is easy to verify. If Xo E D c T[ OU (G, H)], then 

1 

qT Xo = fa qT Y(T)Uo(T) dT for some uo(·) E OU(G, H). 
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We will show that uo(·)EOU(O*,H*). From the definition of D and (12) 
we have 

1 1 

(13) t qT Y(T)Uo(T) dT=qT Xo = sup {t qT Y(T)V(T) dTlv(')E OU(O, H)}. 

Clearly, then, sgn UO(T) = sgn qT Y(T), so uo(·) E OU(O*, H*). Thus xoED ~ 
XoE T[OU(O*, H*)] so D = T[OU(O*, H*)]. 0 

The extension of the above proofs to the case m > 1 is relatively straight­
forward. In this case we have a continuous matrix Y(T)=e-A'TB defined 
on [0, 1], and T[· ]: OUm[O, 1] ~ R n is defined by 

T[u(· )] = r Y(s )u(s) ds. 

For two families of subsets of [0,1], G = {O\ 0 2 , ••• ,Om}, H = 

{H\ H2, ... ,Hm}, with Oi nHi = 0, i = 1, 2, ... , m, we define 

OU(G, H) ={u(·) E OUm[O, 1]1 ui(t) = -1 on Oi, ui(t) = +1 on Hi, 
i=1,2, ... ,m}, 

and we "extend G without hitting H" by defining 

i = 1, 2, ... , m. 

Finally, we set 0' = sup {sl pE T[OU(G., H s )]}, and if the i lh column of Y(t) 
is denoted Yi(t), we define 

O~ =oiu({tlqTYi(t)<O}-H\H~ =Hiu{tlqTyi(t»O}. 0 



Chapter III 

Linear Autonomous Time-Optimal 
Control Problems 

1. Introduction: Summary of Results 

In this chapter we will give a complete treatment of the linear optimal 
control problem: 

(LA) i(t) = Ax(t) + Bu(t), U(t)E fie R m , 

with A, B constant n x nand n x m matrices, u(·) E 6lim , target fT(t) == 0, 
and cost function 

C[u( . )] = L' 1 dt = ft, 

where t1 is the time of arrival at the target O. A successful control and its 
response are time-optimal if there is no successful control which gives a 
smaller value of t1. There may be many time-optimal controls for a given 
initial state. 

We assume throughout this chapter that 

no column of B consists entirely of zeros. 

This assumption involves no loss of generality. If, for example, the first 
column of B is all zeros, then the first component u 1(.) of u(·) is irrelevant 
in (LA). Therefore, we may replace the m-vector u(·) by the (m -1)-vector 
[U2('), U3(·), . .. , um (· )f. This eliminates the first column of B in (LA) 
without changing the problem. 

Many results from this chapter are true for the general linear system 

i(t) = A (t)x(t) + B (t)u(t) + c(t), 

and we have summarized these extensions in the final section. We are 



58 III Linear Autonomous Time-Optimal Control Problems 

devoting an entire chapter to the specific problem (LA) because the 
geometry of the situation is much more clear than in the case of a general 
optimal control problem. The intuition gained from an understanding of 
this geometry should help in Chapters IV and V. 

First we give an outline of the results to be proved in this chapter. To 
do this, recall that n is the unit cube in R m: 

that K(t; xo) is the reachable set from Xo at time t: 

K(t; Xo) = {x(t; Xo, u(· ))Iu(· ) e DUm}; 

that RC = UtzO {t} x K(t; xo) is the reachable cone, and that a bang-bang 
control u(·) always satisfies lui(t)1 = 1, i = 1, 2, ... , m. Notice that K(t; Xo) 
is a subset of R n and RC is a subset of R n + 1 (cf. Figures 4 and 5 of 
Chapter I). 

K(t, Xo) and RC may be imbedded in hyperplanes of minimal dimension 
in R n and R n +1 respectively. Then IntK, iJK, etc., are all taken relative to 
the appropriate hyperplane. For the autonomous system (LA), given an 
initial state Xo eRn, suppose that there exists a successful control from DUm 
steering Xo to 0 (not necessarily time-optimal). Then the following proposi­
tions hold: 

(a) There exists at least one bang-bang time-optimal control in DUm (not 
necessarily piecewise constant). 

(b) The response to any time-optimal control lies on the boundary of 
K(t; xo) for all t, i.e., if x[t]=x(t; Xo, u(·» is time-optimal, then x[t]e 
iJK(t; Xo) (equivalently, (t, x[t])eiJRC) for Os ts t1. 

(c) A time-optimal control u(t) satisfies the maximum principle: there is 
a constant vector h:l- 0 such that 

h T e -AtBu(t) = sup h T e -AtBv, 
veO 

equivalently, 

ui(t) = sgn (hT e-AtB)i, i = 1,2, ... , m, 

whenever (h T e -AtB)i :I- o. 
(d) Under a certain normality condition, the time-optimal control is unique, 

bang-bang, and piecewise constant. 
(e) If the normality condition holds, then the converse of (c) is valid: any 

successful control which satisfies the maximum principle is in fact 
time-optimal (hence, by (d), unique, bang-bang, and piecewise con­
stant). 

Remark. We will also show that the number of switches depends in certain 
cases on the eigenvalues of A. 
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To begin, we need to make some preliminary observations. Recall that 
the Bang-Bang Principle (Theorem 10 from Chapter II) states that for any 
linear autonomous system, ~BB(t) = ~(t) for all t > 0, where ~(t) (~BB(t» 
is the set of initial states for which there exists a successful control from 
OUm (OUBB) steering the system to the target state O. Note also that we choose 
5"(t)!!!5 0 for convenience - any fixed point in R n could be the target. We 
claim that the Bang-Bang Principle is equivalent to the following statement 
about the reachable set: 

For (LA), K(t; xo) = KBB(t; xo)for all t 2: 0, and all Xo. 

That is, the states which can be reached from a given Xo at a given time 
are the same whether we use general controls from OUm[O, t], or bang-bang 
controls. 

This follows from the idea of time-reversal discussed in Chapter II. 
Recall that x(t) solves (LA) with x(O) = Xo if and only if z(t) = X(tl - t) solves 
the time-reversed system 

i=-Az-Bu, 

Therefore the two systems have the same curves as trajectories, traversed 
in opposite directions. The time-reversed system is again linear and 
autonomous, so the Bang-Bang Principle asserts that ~BB(tl) = ~(tl) for 
( * ) - that is, the states steerable to Xo under (*) are the same for bang-bang 
as for general controls. But Xl can be steered to Xo under (*) if and only 
if Xo can be steered to Xl under (LA) (Figure 1). Thus Xl is in the controllable 
set for (*) if and only if it is in the reachable set for (LA). Therefore the 
Bang-Bang Principle implies that KBB(tl; xo) = K (tl; Xo) for (LA). 

~(tl) for (LA) (with target Xo) 

Figure 1 

We also need the following technical lemma, which is just the remainder 
of the statement of the Bang-Bang Principle (Theorem 10) from Chapter 
II. 
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Lemma. For (LA), K(t; xo) is always convex and compact; if Xo = 0 it is also 
symmetric. Furthermore, the set-valued mapping 

Os; t < 00, 

is continuous (using the Hausdorff metric in the range). 

Proof. The response formula for (LA) is (compare Equation (1) from 
Chapter II) 

x(t; xo, u(·)) = eAtxo + ( eA(t-')Bu(s) ds == eAtxo + Q[u]. 

Therefore YE K(t; xo)ifand only ify = eAtxo + Q[u] for some u(· )E~m[O, t]. 
For t fixed, the convexity of K(t; xo) (and the symmetry of K(t, 0)) follow 
immediately from the linearity of Q and the fact that ~m[O, t] is symmetric 
and convex. Proposition 1 ofthe Appendix to Chapter II states that ~m[O, t] 
is weakly sequentially compact in L 2 [0, t], and Proposition 2 of that Appen­
dix shows that for each t, the set 

.@(t) = {I: e -ASBu(S) dslu( . ) E OUm[O, t]} 

is compact in R". The set K(t, xo) is obtained from this set by multiplying 
each element by eAt and adding the fixed vector by eAtxo (both continuous 
operations), hence K(t, xo) is compact in R". 

Finally, we will show that the map t --. .@(t) is continuous. For fixed tl 

and any a > 0, we must show that there is a o(a) > 0 such that It. - td < 0 
implies that .@(t1 ), .@(t.) are each contained in an a-sack about the other. 
Let us agree that 0 < 1, and set T = tl + 1, M = max[O,Tl le-A'BI. We will 
show that .@(t.) is contained in an a-sack about .@(td for It. - til < aiM. 
Let y. E.@(t.), i.e., y. = J; e-AsBu.(s) ds for some u.(· )E~m[O, t.]. Extend 
u.(s) to [0, T] by setting it equal to zero on (t., T], then define Yo = 
J~ e-AsBu.(s) ds. Clearly YoE.@(t1 ) and Iy. - Yol :::; IS:: M dsl < a. Thus Y. is 
in the a-sack about .@(td. D 

2. The Existence of a Time-Optimal Control; 
Extremal Controls; the Bang-Bang Principle 

Theorem 1. If there exists a successful control steering Xo to 0 under (LA) 
then there exists a time-optimal control. 

Proof. Our assumption that there is a successful control means that 0 E 
K(t*; Xo) for some t*. Let 

tl = inf {t ~ 010 E K (t; Xo)}. 
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This set is non-empty and bounded below, so the infimum exists. We claim 
OEK(t1; xo), which will imply that there is a control in OUm steering Xo to 
o in the minimal time t1. 

Suppose OeK(t1;xO)' Since K(t1;xO) is closed there is a ball aJ(O;p) 
aboutOE R n such that 9?J(0; p)nK(t1; xo) = 0. SinceK(t; xo) is continuous 
in t, we can preserve this empty intersection for t near t1 if we shrink 
9?J(0; p), i.e., there is a 8> 0 such that 

9?J(0; p/2) nK(t; xo) = 0 for t1:S t:S t1 + 8. 

This says that 0 ERn is not reachable for t1:S t:S t1 + 8, contradicting the 
definition of t1. 0 

Corollary. If there exists a successful control from Oflm steering Xo to 0, then 
there exists a bang-bang time-optimal control. 

Proof. By the Bang-Bang Principle, KBB(t; xo) = K(t; xo) for each t 2':: O. 0 

Definition (Figure 2). A control u(') defined on [0, t*] is extremal if the 
associated response lies on the boundary of Re, i.e., 

(1) x(t; Xo, u(· » E aK(t; xo), 

An extremal control mayor may not be successful, and if successful, it 
mayor may not be optimal. 

~ .. ~","- (n) 

(e) 

Figure 2 The Curve (e) Is Extremal, (n) Is Not 

Theorem 2. If w( . ) is a time-optimal control for (LA), then w(· ) is extremal. 

Proof. The proof is in two parts. First, we will show that if w(·) is opti­
mal, then at the instant t1 of arrival at 0, the response will lie on 
oK(t 1 ; xo). Second, we will show that if a response lies on oK(t.; xo) at 
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any fixed instant t*, then (1) holds for 0 s t s t*. (In other words, a response 
can never move from the interior of RC to the boundary, aRC.) 

For the first part of the proof, assume that w(· ) is an optimal control, 
steering Xo to 0 in time tlo i.e., 

X[td==X(t1; Xo, w(·» =0, 

and suppose that x[t 1] = 0 is not on aK (t 1; Xo). Then there is a ball 00 (0; p) e 
K(t~; Xo). Because K(t1; Xo) is a continuous function of t, we can vary t and 
still preserve the above inclusion if we shrink the ball, i.e., there is a 8> 0 
such that 00(0; p/2) eK(t; xo) for t1 -8 sts t1. Then 0 would be attainable 
at time t1 - 8, contradicting the optimality of t1. Therefore, 0 = X[t1] E 

aK(t1; Xo). 
Turning to the second part of the proof, suppose that x* == x[t*] E 

IntK(t*;Xo) for some O<t*<tlo where x[t] is the response to w(·). We 
must show that x[t]E Int K(t; Xo) for all t> t*. Since x* E Int K(t*; Xo), there 
is a ball B==B(x*;8)eK(t*;Xo). Thus each state xoEB can be reached 
from Xo at time t*, using some admissible control ii(·). We consider the 
new problem 

y=Ay+Bw, 

with fixed control w(·). Note that for Xo = x*, we have yEt] == x[t]. The 
solution of this problem can be written 

yEt] = eA(/-I·)io + J I eA(/-s) Bw(s) ds = R (t)xo + e(t). 
I. 

This one-to-one linear map from B into K(t; xo) takes open sets into open 
sets, thus the image of the open sphere B lies in Int K(t; xo). Thus the 
image of x*, which is just x[t], lies in IntK(t; Xo). 0 

Exercise 1 at the end of this chapter shows that th,e converse of Theorem 
2 is false - we need a "normality" condition for the converse. Since extremal 
controls give responses which lie on a boundary, it is not surprising that 
they are in fact intimately related to bang-bang controls, representing the 
maximum use of available power. This is the content of the following 
theorem, which states that "normally," extremal controls are bang-bang 
controls. 

Theorem 3. Let u( . ) E i.Um[O, t*]. Then u( . ) is extremal for (LA) if and only 
if there is a nonzero constant vector h such that for 0 s t s t*, 

(2a) ui(t) = sgn{hT e-AIB}i, i = 1, ... , m. 

Furthermore, for each t, 0 s t s t*, 

(2b) h T e -AIBo(t) = sup h T e -AIBv. 
"eO 
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Proof. Suppose that Ue(t) is extremal on [O,t*], so xe[t]=x(t;xo,Ue('))E 
aK(t; xo), 0:5 t:5 t*. Since K(t*; Xo) is convex, there is a supporting hyper­
plane P through xe[t*] (Figure 3) such that K(t*; Xo) lies on one side of 
P. Let n be such that (d. the Mathematical Appendix) 

(3) 

Figure 3 

By the response formula, x E K (t*; xo) if and only if 

so (3) is equivalent to the following (the terms involving Xo cancel): 

(4) 

nT J:* eA(,*-s)Bue(s) ds = sup {nT J:* eA(t*-s)Bu(s) dslu(·) E OUm[O, t*]}. 

Define hT =nTe A1*, and Y(s)=e-ASB. Then 

(*) L* hTy(s)ue(s) ds = sup {J:* hTy(S)U(s) dslu(·) E OUm}, 

and h ¥- 0 since eA1* is non-singular. Since 

f* hTy(s)u(s) ds = i~l J:* {hTY(S)}iUi(S) ds, 

it follows that the sup in (*) is attained for u~(s)=sgn{hTY(s)}i, i= 
1, ... ,m, O:5t:5t*, and then hTe-AsBue(s)=suPveohTe-AsBv. Con­
versely, if we choose u. ( . ) according to (2a), and define n by n T = h T e -AI*, 

then (4) holds, which is equivalent to (3). But (3) implies that xe[t*] must 
lie on the boundary of K(t*; Xo) (d. the Mathematical Appendix). 
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Corollary (The Maximum Principle for (LA)). If u(·) is optimal then there 
exists an h ¥- 0 such that (2a) holds, and 

hT e-AtBu(t)=suphT e-AtBv. 
VEO 

Remark. Each component of h T e -AtB is an analytic function of t; therefore 
on a compact interval [0, td it is either identically zero, or vanishes at most 
a finite number of times. Therefore, the right side of Equation (2) either 
makes sense for all t, except for a finite (and unimportant) set of values of 
t, or it is undefined for all t. In this second case, the theorem tells us nothing 
about the corresponding component of u(t). 

EXAMPLE 1 (The Rocket Car). The dynamics is given by p(t) = q(t), 4(t) = 
u(t) (q = velocity, p = position). In system form, 

A=[~ ~], B = [~]. 
-At [1 

e =I-At= ° 

By our previous work (Example 3 of Chapter II), C(5 = R2. If hT = [a, In 
then hT e -AtB = (3 - at. 

The corollary above says that any optimal control u(t) must satisfy 
u(t) = sgn({3 - at) where a, {3 are not both zero. Thus the optimal control 
from any initial state is bang-bang with at most one switch. 

EXAMPLE 2 (The Linearized Pendulum). The angular displacement O(t) of 
a free pendulum from the vertical satisfies 8(t) + sin O(t) = 0. If we linearize 
about O(t) == 0, and also add a forcing term, we have 8 + 0 = u. Our target 
is O(tl) = fl(tl) = 0, i.e., we want to bring the pendulum to rest. In system 
form, 

Then 

[ O(t)] 
x(t) = fl(t) , 

-At [COS t e = 
sin t 

If hT = [a, {3], then 

-sin t], 
cos t 

-At [-Sin t] e B= . 
cos t 

hT e -AtB = {3 cos t - a sin t = P sin (t + 8), 
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where p = [a2+~2]1~2>0, 8 = arccos (-alp). So an optimal control u(t) 
satisfies u (t) = sgn [sin (t + 8)], which means that it is bang-bang and peri­
odic with period 'TT'. We will see later that the optimal control does not 
always strictly oppose the motion of the pendulum. 

3. Normality and the Uniqueness of the Optimal 
Control 

EXAMPLE 3 (An Indefinite Case). Consider the two-dimensional system 
i(t) = u(t) (m = n = 2). Then 

A =[~ ~]. B=[~ ~]. e-At =1, 

U l(t) = sgn a, 

If either of a, ~ is zero, then (*) does not tell us anything about the 
corresponding component of u(t). In the preceding two examples, we didn't 
have to know hT in order to reach certain qualitative conclusions; in this 
example we need more information. 

To study this example more closely, consider the initial point (-1,0) 
(Figure 4). This state can be steered to the target (0,0) on the darkly 
sketched curve by the control 

,..-.-"'" ____ ~--~--~-------.x1 
(-1,0) 

Figure 4 

in the optimal time tl = 1. The time is optimal because we cover the shortest 
distance using maximum velocity. This is not a bang-bang control, and we 
must have in this case a > 0, ~ = O. Actually there are infinitely many 
optimal controls steering from (-1,0) to (0,0), e.g., u 1(t)= 1, and 

{
I, Ostsa, 

u2(t)= 0, a<t<l-a, 
-1, l-aSts1. 
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(The response is the dashed curve in Figure 4.) The idea is to "bump" 
x 2(t), and then bring it back to zero. This control will be bang-bang in 
exactly one case (a = }). Interestingly, there are infinitely many optimal 
bang-bang controls - just keep bumping x 2(t) up and down, instead of 
leaving it constant for a < t < 1 - a. 

Analytically, in this example the difficulty stems from the fact that 
hT e -AtB has a component identically zero; geometrically, the problem is 
that K(t, xo) has "flat spots" on its boundary (cf. Exercise 2). 

Definition. We call (LA) normal if for each constant vector h ¥- 0, no 
component of h T e -AtB can vanish on a set of positive measure 
(equivalently, no component can vanish identically). 

Of course this definition is of little practical use. We will eventually 
show that (LA) is normal if and only if the vectors {bi> Abi> ... ,A n-1bj } 

are linearly independent for j = 1, 2, ... , m, where b j is the j'h column of 
B. This is an analytical characterization. Geometrically, (LA) is normal if 
and only if K (t; xo) is strictly convex for all t, for one (hence all) Xo. (The 
response formula (1) from Chapter II: 

YEK(t; xo)~Y= eAtxo+ L eA(t-s)Bu(s) ds 

for some u(· ) E Um , shows that the convexity of K(t, xo) is independent of 
xo.) 

Theorem 4. If (LA) is normal, and if there exists a successful control (steering 
Xo to 0), then there exists a unique time-optimal control, which is bang-bang 
and piecewise constant. 

Proof. Existence follows from Theorem 1. By Theorem 3, normality implies 
that any optimal control must be bang-bang. If u(t) and vet) were two 
distinct time-optimal bang-bang controls, then (because (LA) is linear) 
wet) = }[u(t)+v(t)] would also be time-optimal, but not bang-bang. This 
contradiction to Theorem 3 implies that the optimal control is unique. 
Finally, the unique time-optimal bang-bang control is piecewise constant, 
since each of its components can only change sign when the corresponding 
component of h T e -AtB is zero - as remarked earlier, each of these com­
ponents is analytic in t, so it can only vanish a finite number of times for 
0:5t:5t1. 0 

EXAMPLE 4. (Uniqueness Does Not Imply Normality). Consider the two­
dimensional system 

x(t) = G !]u(t), A =[~ ~]. B=[! !J. 
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We compute 

e-A1B = [! ~l b=[;l 
Thus u let) == u\t) == sgn (a + (3), by Theorem 3, and so if a + (3 ¥- 0, there 
will be at least one optimal control which is bang-bang. Notice that the 
problem is not normal (e.g., hT = [1, -1]). 

We can use Theorem 3 of Chapter II - we compute the controllability 
matrix: 

M=[B,AB]= [~ 1 ° OJ. 
100 

Rank M = 1, so the controllable set C€ is not all of R2. Actually, a direct 
(and straightforward) investigation of the differential equation involved 
shows that C€={(x\x 2 )lx l =X2}. Consider the initial state xo=d-l,-I). 
For this xo, K (t; xo) is a line segment of length 4t, centered ate -1, -1), 
on the line C€ (Figure 5). Note that any vector hT = (a, (3) normal to K(t; xo) 
has a + (3 = O. Clearly, the optimal time is tl = 1, with optimal control 
u let) == u 2(t) == 1. This optimal control is clearly unique, and it is bang-bang, 
in spite of the fact that the problem is not normal. 

e 

K(t; ~o)~---I'" ~ 

Figure 5 

Note that in this example, K(t; xo) is contained in a one-dimensional 
hyperplane, so aK and Int K are taken relative to this hyperplane: 

Int K = {(p, p)I-I-2t <p < -1 +2t}, 

aK = (-1-2t, -1-2t) u (-1 +2t, -1 +2t). 

In the preceding example, we had uniqueness of the optimal control in 
spite of non-normality. Notice that the target is an extreme point of K(t; xo) 
at the optimal time t =!. Exercise 2 (a continuation of Example 3) shows 
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that when 0 is not an extreme point, the optimal control may not be unique. 
Theorem 5 below shows that this is no accident. In order to prove this 
theorem, we first must investigate the uniqueness of successful responses. 
It often happens that there are many controls steering from Xo to the target. 
However the associated responses may all coincide. 

Definition. Let Xo be given. We say that the response from Xo to a point y 
in K(t*; xo) is unique if every control which steers from Xo to Y in time t* 
generates the same response function, i.e., if u(·), v(·) are successful 
controls for 0 s t s t*, then x(t; Xo, u(· )) == x(t; xo, v(· )) on [0, t*]. 

There are two types of uniqueness we need to keep in mind. The type 
defined above says that there may be many time-optimal controls, but they 
all.generate the same response function. Then there is the idea of a unique 
time-optimal control, which of course would generate a single response. 
The lemma below shows that these concepts are identical: we have a unique 
response function if and only if we have a unique time-optimal control 
steering Xo to y. 

EXAMPLE 5. With m = n = 2, we consider the system from Example 4. 
Then u(t)==[1, of and v(t)=[O, 1]T both steer the state (-1, -1) to 0 at 
the time 11 = 1, with the same response: x[t] = (-1 + t)[i]. A consequence 
of the following lemma is that in this case there must be a third control 
which steers (-1, -1) to 0 in unit time with a different response function. 
For example (Figure 6): 

{ GJ, 
w(t)= [=!]. i<tsl. 

Figure 6 

The proof of this lemma is the first place we need our (nonrestrictive) 
assumption that b j ;6. 0 for all columns b j of B. 
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Lemma. Assume that B does npt contain a column of zeros. Let Y E K (t*; xo). 
Then the control steering Xo to y at time t* is unique if and only if the response 
function from Xo to y in time t* is unique. 

Proof. If the successful control is unique, then of course there is only one 
response. 

On the other hand, suppose there are two controls 01(· ), 02(· ) which 
steer Xo to y in time t*. Without loss of generality assume U1 (x) is bang-bang. 
We will show that there are at least two distinct response functions. One (or 
more) of the three controls 

U1(·), U2(·), 1[U1(·) +U2(·)] 

is not bang-bang - call it oo(t). Then (since (LA) is linear), uo( . ) steers Xo 
to y in time t* and some fixed component ub(t) satisfies IUb(t)I<l on a 
set S c [0, t*] of positive measure. The response formula (Equation (1) 
from Chapter II) for (LA) states that 

(5) y = eAt*{xo + (* e-ASBuo(s) dS}. 

Now Y is attained at time t*, i.e., (5) holds, with uo(·) replaced by U1 (.), 

so 

f~* e-ASBuo(s) ds = (* e-ASBu1(S) ds. 

But this is not quite good enough for our purposes, so we have to be a bit 
more subtle. We claim that there is a scalar bang-bang function c/J(.) such 
that 

(6) 

where bi is the lh column of B. This stems directly from the response 
formula and the Bang-Bang Principle in one (control) dimension, applied 
to the following control problem: 

i(t) = Ax(t) + bju(t) + e(t) (m = 1), e(t) = Biio(t) 

where the n x (m - 1) matrix B is obtained from B by removing the ph 
column bj , and iio(t) is the fixed (m - 1)-vector uo(t) with u6(t) removed. 
The forcing term e(t) doesn't affect the validity of the Bang-Bang Principle 
and the response formula will change in an obvious way. 

All of the above is a precise but complicated way of. describing the 
control problem obtained from (LA) by fixing each component of u(·), 
except the lh, to be the corresponding (given) component of uo(·), thus 
leaving u i (.) as our control, and reducing the dimension of the control 
space to one. Then the response formula and the Bang-Bang Principle (for 
a one-dimension control source) give us (6). 
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We now define a new m-dimensional control w(·) for our original 
problem by fixing Wi(t) = u~(t) for i ¥:- j, and using wi(t) = cf>(t) as control. 
Then w( . ) steers Xo to y in time t*. 

We will show that the response functions x(t; XQ, uo(')) and x(t; xo, w(· )), 
Os t s t*, are not identical. We suppose that 

x(t; XQ, w(· )) = x(t; XQ, uo(' )), 

and look for a contradiction. This equality implies that 

and so B[ w(t) - uo(t)] = 0 a.e. on [0, t*] (Exercise 5). But w(t) - uo(t) has 
only the t h component nonzero, so bi[cf>(t) - uh(t)] = 0 a.e. But 1cf>(t)1 = 1 
for all t, while luh(t)1 < 1 on a set of positive measure, hence bi = 0, a 
contradiction to our basic assumption that B does not have any column 
of zeros. 0 

Theorem 5. Suppose that yeK(t*; xo). Then the control steering from Xo to 
y at time t* is unique if and only if y is an extreme point of K(t*; XQ). 

Proof. Suppose that there are two controls Ul ( . ), U2( . ) steering XQ to Y in 
time t* with distinct responses, i.e., for at least one te, 0 < te < t*, 

i =1, 2. 

We "cut, interchange, and splice" Ul(') and U2(') to form new controls 

We will show that the states p=x(t*; XQ, v(·)) and q=x(t*; XQ, w(·)) are 
distinct and y=!(p+q), hence y is not an extreme point of K(t*; XQ). 

Now 

AI A(I -S) I. ,* y= e *XO+ 0 e * BUi(S) ds, i= 1, 2, 

and also 

i =1,2. 
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Therefore 

ft* = eA(t*-tclzl + e AU*-slBu2(S) ds = eA(t*-tclzl +Y- eA(t*-tclz2 

tc 

= y + eA(t* -tcl(ZI - Z2). 

Similarly, q = y + eA(t* -tcl (Z2 - Zl), and so p:j:. q, with y = !(p + q). 
Conversely, suppose that y is not an extreme point of K(t*; xo), so 

y = ![Yl +Y2] where YI and Y2 belong to K(t*; Xo). By the Bang-Bang 
Principle there are bang-bang controls UI('), U2(' ) steering Xo to YI and Y2 
respectively. Then u(t) = ![UI(t) +U2(t)] steers Xo to Y and is not bang-bang. 
But the Bang-Bang Principle insists that there is a bang-bang control 
steering Xo to y. Thus there is more than one control steering Xo to y. By 
the preceding lemma, the response from Xo to y is not unique as well. 0 

Recall that a set is strictly convex if the boundary consists only of extreme 
points; equivalently, if two points belong to the set, then the open segment 
between them lies in the interior of the set. (See the Mathematical 
Appendix.) 

Theorem 6 (A Geometric Characterization of Normality). (LA) is normal 
on [0, t*]~K(t*; xo) is strictly convex for one (hence all) Xo. 

Proof. Suppose that (LA) is normal and that y E aK (t*; Xo) (t* may not be 
the optimal time for y). We want to show that y is an extreme point of 
aK(t*; Xo). The second part of the proof of Theorem 2 shows that all 
responses from Xo to y at time t* must be extremal (lie on aK(t; xo) for all 
O:S t :S t*) and Theorem 3 states that the associated controls must all be 
bang-bang (here is where we use normality). But if there were two bang­
bang controls steering from Xo to Y at time t*, their average - which is not 
bang-bang - would also steer from Xo to y at time t*. Thus there is exactly 
one control steering Xo to y (and it is bang-bang). By Theorem 5, this 
implies that y is an extreme point. 

Conversely, let K(t*; Xo) be strictly convex. Suppose that (LA) is not 
normal. Then there is a nonzero vector h such that some component, say 
the t\ of the row vector h T e -AtB vanishes identically on [0, t*]. Then 
h T e -Athj = 0 where bj is as usual the th column of B. 

Define the (column) vector n by nT = hT e-At*, and choose qEaK(t*; xo) 
such that n is normal to the support hyperplane through q (this can be 
done by starting with an arbitrary plane P through K(t*; Xo) normal to n, 
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and translating P parallel to n until the last point q of contact with the 
strictly convexsetK(t*; xo)). Let u(· ) E IJIim be chosen so thatx(t*; xo, u(·)) = 
q. By the proof of Theorem 3, 

i= 1, ... , m. 

Let v( . ) E IJIim be defined by Vi (t) = U i (t) for i ~ j, and v j (t) ~ u j (t) on all of 
[0, t*]. Since q is an extreme point of K(t*; xo), Theorem 5 implies that 
the response from Xo to q is unique. Then by the lemma preceding Theorem 
5, we can conclude that the control steering Xo to q is unique. Therefore, 
since u(t) ¢ v(t), 

ButnT q =nT x(t*; xo, u(·)) =nT x(t*; xo, v(· )),since by the response formula 
(4), the definitionof n, and the fact that hT e -Asbj = 0, 

r '* nT q = n T x(t*; xo, u(· )) = nT eA'*xo+nT Jo eA(,*-s)Bu(s) ds 

= hT xo+ f* i~l hT e-ASbivi(S) ds 

= nT x(t*; xo, v(·)). 

Thus nT[q-x(t*; XQ, v(· ))] = 0, so the line segment from q to x(t*; xo,v(')) 
lies in the hyperplane P. But K(t*; xo) is convex, so each point on this 
segment is also in K(t*; xo), thus K(t*; xo) is not strictly convex - a contra­
diction. 0 

We can now give an analytic characterization of normality. 

Theorem 7. (LA) is normal on [0, t*] if and only if {bi> Abi>' .. , A n-1bj } 

is a linearly independent set of vectors in R n for each column vector b j of 
B, j = 1, 2, ... , m. 

Proof. Suppose that for some j, {bi> Abi> ... ,A n-1bj } is dependent. Then 
there is a vector d ~ 0, such that 
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Now the n x n matrix A satisfies its own characteristic equation so we can 
write 

(6) 

and therefore dT A nbj = o. Multiplying (6) successively by A, A 2, ••• , we 
conclude that d T A kbj = 0 for all integers k 2: O. This implies in turn that 
d T e -A'bj == 0 on [0, t*]. Thus (LA) is not normal. 

Conversely, suppose there is a d f:. 0 in R n and a column bj of B such 
that dT e -A'b j == 0 on [0, t*]. Setting t = 0 we get dTbj = o. Differentiating 
and then setting t = 0, we get d T Abj = o. Continuing, we conclude that 
d T A hbj = 0 for h = 0,1, ... , n -1. Therefore d is perpendicular to all 
of the vectors {bj, Abj, ... ,A n-1bj } and this set is linearly dependent. 0 

The above proof is very similar to the proof of Theorem 3 in Chapter 
II, in which we proved: "rank M = n if and only if 0 E Int C€," where 
M = {B, AB, ... ,A n-l B} is the controllability matrix. There is in fact an 
obvious connection between the controllability matrix and the criterion for 
normality contained in Theorem 7: 

(LA) normal::::} rank M = n. 

Then, by Theorem 5 of Chapter II: 

(LA) normal and Re A :5 0 for all eigenvalues A of A ::::} C€ = R n. 

EXAMPLE 6 (Rank M = n Need Not Imply Normality). Let m = n = 2, and 
i = u. Then rank M = rank {B, AB} = 2. But {bj, Abj } is 

{[~]. [~]} (j = 1), or {[~]. [~]} (j = 2), 

therefore the system is not normal. Geometrically the general situation is 
as follows when K(t; xo) is not a single point: 

rank M = n ¢:>K(t; xo) has nonempty interior 

{t- {t-
(LA) normal ¢:>K(t; xo) is strictly convex. 

Corollary. Let (LA) be normal. Then there is a neighborhood N of the origin 
such that every point of N can be steered to 0 by a unique time-optimal 
control which is bang-bang and piecewise constant. If Re (A) :5 0 for each 
eigenvalue A of A, then N = R n. 

The proof immediately follows from the preceding theorem and Theorem 
5 of Chapter II. 
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4. Applications 

EXAMPLE 7 (The Rocket Car (Continuing Example 1». We now apply the 
preceding results to the rocket car: 

(R) i=[~ ~]X+[~]u, B =[~], AB=[~] (n =2, m = 1). 

It is easy to see that this is a normal system, and the only eigenvalue of A 
is A = O. The above corollary then applies. From the analysis in Example 
1 of this chapter, we know that a time-optimal control must satisfy sgn u(t) = 
sgn (a - Pt), so the time-optimal control has either no switch or one switch 
(Figure 7), exactly as our intuitive analysis showed in Chapter I. 

--~r-------~----~------~~------~--~P 

Figure 7 

EXAMPLE 8 (The Linearized Pendulum (Continuing Example 2». We have 
(w(t) = 8(t»: 

= [8(t)] 
x w(t) , 

(m = 1, n = 2). 

The set {blo Ab1} is linearly independent, so the problem is normal, and 
the eigenvalues of A are ±i, so the above corollary applies. Thus for each 
initial state Xc E R 2, there exists a unique time-optimal control, which is 
bang-bang, steering Xc to (0,0). We showed in Example 2 that any time­
optimal control satisfies u(t) = sgn sin (t + 8), so u(t) changes sign with 
period 1T'. To give a complete synthesis for this problem, we find the 
responses to u(t)=+1 and u(t)=-1. In the case u(t)=+1 the system 
becomes 

8=w, cd =-8+1. 

Letting p(t) = 8(t) -1, we have v = w, Ii> = -v which represents clockwise 
motion around a circle centered at w = p = O. In the original state space, 
we have clockwise motion around a circle centered at 8 = + 1, w = 0, and 
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each response traverses its circle in 27T units of time (Figure 8a).1f u(t) == --: 1, 
we can use a similar argument to show that the responses move clockwIse 
around a circle centered at () = -1, (J) = 0 (Figure 8b), traversing the circle 
in time 27T. 

(J) 
w 

---+--4-~------~~O --~----_+--+--+--~O 

(a) u(t)==+1. (b) u(t)""'-1 

Figure 8 

There is only one trajectory in each case which hits the target 0 (Figures 
9a,9b). 

w 

-----+-+--t--~O 
2 

(a) Successful Response for u (t) == + 1 

w 

--+--+--t---~ 0 

(b) Successful Response for u(t) ==-1 

Figure 9 

Clearly, we must get onto one of these to reach the target with a 
bang-bang control. Now u(t) must change sign every 7T units of time, and 
7T units of time is required to traverse a semicircle. Therefore, if we use 
the response in Figure 9a, for example, we must hit the lower semicircle 
in order to reach the origin (the upper semicircle is too far away from 0 
in time). To hit this semicircle, we must have traversed a semicircle centered 
on fJ = -1, (J) = 0 (Figure lOa). 

The easiest way to get an exact semicircle, ending at the switching state 
A, is to draw in the dashed semicircle and start the trajectory (-) at the 
obvious switching point O. The time to get from state 0 to state A is 7T, 

so we must have switched from a u(t)==+l response at 0 (Figure lOb), 
that is, from a circle centered on () = 1, (J) = O. In order to get exact 
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w 
w 

(+) 

(a) (b) 

Figure 10 

semicircles, we have sketched in "switching semicircles" on the positive 
x-axis. Continuing this analysis, we obtain a complete synthesis for the 
linearized pendulum (Figure 11). We switch control values whenever our 
response intersects the curve formed by the semicircles. Below this curve 
we use u(t)=+I, above it we use u(t)=-l. One response is drawn in. 

w 

(+) 

Figure 11 

Notice that on three parts of the trajectory in Figure 11 (the darker 
segments) the control does not oppose the motion of the pendulum (u and 
8 = w have the same sign). In contrast to the rocket car, the number of 
switches for the pendulum depends on how close the initial state is to the 
target 0 - the farther away we start, the more switches. The following 
theorem gives us some general information on the number of switches in 
one special case. 
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Theorem 8. Suppose that (LA) is normal and that every eigenvalue of A is 
real. Then each component of any time-optimal control has at most (n -1) 

switches. 

Proof. Since sgn ui(t) = sgn hT e-A'bi, i = 1,2, ... , m, we need only show 
that h T e -A'bi has at most (n -1) sign changes. We assume that the eigen­
values A 10 ••• ,An of A are distinct. This is no restriction, since if not, we 
could perturb the entries of A by an arbitrarily small amount (preserving 
the number of sign changes for h T e -A'bi ) to obtain a matrix A with distinct 
eigenvalues. Now since e-Atbi solves i = -Ax, we have e-Atbi = L~=l cke-Akt, 
and 

Since (LA) is normal, fn (t) is nontrivial- at least one aj is non-zero. We 
will show by induction on n that any such function can vanish at most n -1 
times on R. For n = 1 this is clear. Suppose it is true for any such function 
fn-l(t). If there were a function fn(t) with n (or more) zeros on R, then 
gn(t) =- eAn'tn(t) = al e(An-A,), + ... + an would also have n zeros. Therefore 
fn-l(t) =- g~(t) would have (n -1) zeros, a contradiction. 0 

5. The Converse of the Maximum Principle 

The following theorem provides us with a partial converse to the maximum 
principle (corollary to Theorem 3). If (LA) is normal, then the hypothesis 
of Theorem 9 (that (LA) is proper) holds. 

Theorem 9. Suppose that (LA) is proper, that is rank M = n where M is the 
control matrix {B, AB, ... ,A n-l B}. Then any successful control u(') which 
satisfies the maximum principle: for some h,c 0: h T e -A'Bu(t) = 
SUPVEO h T e -A'Bv, 0 s t s t*, is time-optimal on [0, t*]. 

Proof. Suppose that u*( . ) satisfies the maximum principle for some hER n, 
on [0, t*] and assume that x*[t] =- x(t; xo, u*( . » satisfies x*[t*] = O. Assume 
that there is a control u#(') which steers Xo to 0 at time t# < t* via the 
response x#[· ]. We wish to derive a contradiction. By the response formula, 

(7) 



78 III Linear Autonomous Time-Optimal Control Problems 

Using the response formula for u*( . ), we get 

where the inequality follows from the fact that u.(t) maximizes hT e-A.·Bv 
over all ve n. Now an easy differentiation shows that 

d [hT -At []] T -At dt e x* t =h e Bu.(t). 

Since h T e -At*X.[t.] = 0 (u( . ) is successful at time t.), we have 

(8) 

But u.(s) maximizes hT e-AsBv for ven, and since V=O is in n, this 
maximum is non-negative, i.e., hT e-ASBu.(s) 2: 0 on [t"., t*]. Since t".<t*, 
this means that the last integral in (8) is nonpositive, which implies that 
(8) collapses to equalities throughout, so 

Since the integrand is non-negative, this in turn implies that 
hT e-AsBu*(s) = Oa.e.on[t"., t.]. ThushT e-AsBvsOforallvenon[t"., t.], 
and if in fact h T e -AsBv < 0 for some ve n, then we would have 
hT e-ASB(-v»O. Since -ven, this would be a contradiction. Therefore, 
h T e -AtBv = 0 for all ve n, t". s t st •. For each t and each v the expression 
q,(t)=hT e-AtBv is an analytic function of t, which must vanish identically 
since it vanishes on [t"., t.]. Therefore q,(0) = q,'(O) = ... = q, (n-1)(O) = 0, 
which reduces to 

hTBv=hTABv='" =hTAn-1Bv=0 

for all ve n. This implies that: 

hTB =hTAB = ... =hTA"-lB =0, 

which implies that h is perpendicular to every column of M, contradicting 
our assumption that rank M = n. 0 
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6. Extensions to More General Problems 

First of all, we consider the system 

(9) x=Ax+Bu+c(t), 

where c(t) is a given continuous function from [0, (0) into Rn. The Bang­
Bang Principle holds for this system, in fact as mentioned in Chapter II, 
it holds when A and B are continuous functions of t (Lee and Markus 
[1967], p. 164). The response formula for (9) is 

x[t] = eAt( xo+ L e-Asc(s) dS) +eAt L e-ASBu(s) ds. 

For fixed t, introducing c(t) has just translated the response, so clearly the 
geometry and continuity of K(t; Xo) are unchanged. Also, any convex 
combination of two responses is again a response - in fact, to the same 
convex combination of the corresponding controls. Using these observa­
tions, one can simply parallel the proofs in the preceding sections to show 
that, with the exception of the corollary to Theorem 7, every single result 
from this chapter holds for (9). 

For the general linear system 

(L) x = A(t)x+ B(t)u +c(t) 

with continuous coefficients, the response formula is 

x[t] = X(t)xo+ L X(t)X-t(s)[B(s)u(s) +c(s)] ds, 

where X(t) is the fundamental matrix for x = A(t)x with X(O) = 1. For an 
optimal control u( . ), the maximum principle can be written either as: 

there exists a constant vector ho, such that 

(10) 

or: there exists h(t) such that 

(11) h T (t)Bu(t) = max h T (t)Bv 
ven 

where h(t) is some solution of the adjoint system 

(12) Ii = -A T (t)h. 

These two formulations are equivalent, since [X T (t)]-t is a fundamen­
tal matrix for (12), and therefore h(t) = [X T (t)]-tho for some constant 
vector ho. 

The system (L) is defined to be normal if for all t > 0, no two distinct 
(ignoring sets of measure zero) controls Ut('), U2(') can steer an initial 



so III Linear Autonomous Time-Optimal Control Problems 

state Xo to the same state on iJK(t; xo). Normality is equivalent to the 
uniqueness of the function u(·) satisfying (10) (or (11) for any given solution 
of (12». Even with these modifications, not all of our theorems carryover; 
however, the propositions (a)-(e) stated at the beginning of this chapter 
do carryover to (L). For details, see Sections 2.2 and 2.5 of Lee and 
Markus [1967], and Sections V.7, V.S of Berkowitz [1974]. 

Exercises 

Remark: In these exercises, unless stated otherwise, lui(t)1 < 1, i = 1,2, ... , m. 

1. Consider the one-dimensional system (m = n = 1) i = u, Xo = -1 with ~tt) == o. 
Show that there is an extremal control which is not optimal. (Hint: Since the 
state space is one-dimensional, you can sketch the reachable cone RC. The 
lower boundary of RC is a trajectory which never reaches the target.) 

2. With m = n = 2, consider x = U with Xo = (-1, 0), ~(t) == O. Sketch the reachable 
cone RC in (x\ x 2 , t)-space. Show that K(t; xo) is always a square. Show that 
the control u I(t) == 1, u2(t) = q,(t) with q,(.) any function for which J~ q,(s) ds = 0 
is time optimal. Thus there are infinitely many bang-bang time optimal controls. 
Why does this not contradict Theorem 4 (compare also Theorems 5, 6, and 
7)? Show that if q is a corner of aK(t; xo) then the control steering to each q 
is unique, but the support hyperplane P and normal h are not unique. If q is 
not a corner point of aK(t; xo), show that the support hyperplane and normal 
are unique, but the path to q is not unique. 

3. Give a concise, precise proof that if Al >0, A2>O, Al +A2 = 1, and UI(·)' U2(-) 
are distinct bang-bang controls, then A lUI ( . ) + A2U2( .) is not a bang-bang 
control. 

4. Consider the system (m = n = 2) 

x(t) = [! ~]u(t), 
Sketch RC (it is two-dimensional in (t, Xl, x2)-space) and show that there are 
infinitely many support hyperplanes to any extreme point in K(t; xo). Show 
that tl = 1 is optimal. Show that there is an infinite number of optimal controls, 
but the response is unique. Why is the lemma preceding Theorem 5 not violated? 

5. (From the proof of the lemma preceding Theorem 5). Prove that if 
J~ e-ASB[w(s) -u(s)] ds = 0 for O:s t:S t*, then B[w(t) - u(t)] = 0 a.e. on [0, t*]. 
Here w(·) and u(·) are bounded measurable functions from [0, t*] into Rm. 

6. Carry through the proof of Theorem 5 for the more general system x = 
Ax+Bu+c(t), assuming Theorems 1-4 and their oorollaries are valid for this 
system. 

7. (Exercise 6 from Chapter I). Give a complete synthesis for the time-optimal 
control problem (m = n = 1) 

itt) = bx(t) + u(t), ~(t) == 0, b < O. 
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8. Refer to Section 5 of Chapter I and Example 1 of this chapter. Compute the 
optimal time for an initial point (Po. qo) above the switching curve (+) u (-) 
(cf. especially Figure 10 of Chapter I). 

9. Prove Theorems 1 and 2 for the case when ff(t) is a compact continuously 
varying set. 



Chapter IV 

Existence Theorems for Optimal 
Control Problems 

1. Introduction 

In this chapter we discuss sufficient conditions for the existence of an 
optimal control for the general problem: 

(1) x = f(t, x, U), x(o) =XO, 

with associated cost 

(2) it1 

C[U( . )] = ° f(t, X[t], U(t)) dt. 

Here, f, f are given continuous functions with values in R n and R, 
respectively, ff(t) == 0, and ft (which depends on u(· )) is the time at which 
the response arrives at the target. 

Our aim is to present a representative sample of theorems which assert 
that there exists at least one optimal control, that is, a control u*( . ) E OUm 

for which C[u*(')]:5 C[u(')] for all u(·) E OUm• In this chapter we are 
interested in sufficient conditions for at least one optimal control to exist, 
while in Chapter V w.e will deal with necessary conditions which an optimal 
control must satisfy. To understand the distinction, consider the calculus 
problem of finding the minimum of a real-valued function hex, y) of two 
variables, on a set CR in R2. One sufficient condition for h(·,·) to have a 
minimum is that cg be compact and h(·, .) be continuous (or at least lower 
semi-continuous). If h(', .) is twice continuously differentiable on CR, then 
a necessary condition for h(', .) to have a minimum at (x*, y*) inside CR 
is: hx = hy = 0, h~y - hxxhyy < 0, hxx > 0, at (x*, y*). 

The reader should notice that the above sufficient condition for h ( " . ) 
to have a minimum, while reassuring, is not at all useful in helping us find 
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the minimum. The necessary condition, on the other hand, gives a concrete 
method for searching - find the critical points (hx = hy = 0) and apply the 
second derivatives test at these points. The situation is similar in control 
theory. In this chapter, we present a reasonably broad survey of sufficient 
conditions for the existence of at least one optimal control, while Chapter 
V will be devoted to the most important necessary condition which an 
optimal control must satisfy - the Pontryagin Maximum Principle. 

The level of mathematical abstraction in the present chapter is quite 
high, and the results will not help us find the optimal control(s). The reader 
with little taste for mathematical abstraction should perhaps first read 
Sections 1 and 2, followed by the statements of Theorems 1-4 (omitting 
proofs) and all of our examples. 

An outline of the chapter is as follows: In Section 2 we describe the 
basic approach to existence proofs, and discuss several problems which can 
occur, thereby motivating certain basic assumptions. In Section 3 we state 
and prove a fairly straightforward existence theorem. In Section 4 we state 
and prove an existence theorem for the general system (1)(2) under a 
standard convexity condition, and describe generalizations. In Section 5 we 
state and prove an existence theorem for problems which are linear in the 
state. Finally, in Section 6 we apply our theorems to certain examples, 
including the rocket car. 

2. Three Discouraging Examples. An Outline of the 
Basic Approach to Existence Proofs 

Nonlinear differential equations can be very pathological. For example, 
the solution of the scalar initial-value problem 

dy 2 
dt = [y(t)] , y(O) = 1 

is y(t) = 1/(1- t), which is unbounded, and in fact undefined at t = 1. This 
equation (modulo a shift in coordinates) is the basis for the following 
example of a problem for which there is no optimal control because, roughly 
speaking, there is an unbounded sequence of responses which generates a 
decreasing sequence of costs. 

EXAMPLE 1. Consider the problem (n = 2, m = 1) 

p=1, .o/"(t) == 0, 

Itl 

C[u(')] = 0 f(t, x, u) dt, 
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where 
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f {l ifq<O; 
(t,x, u)= 1/(q+l)2 if q~O. 

Notice that tl = 2 for any successful response, since Ii = 1, p[O] = -2, and 
the target value of p[t] is O. For the extremal control u(t) == + 1, the 
(unsuccessful) response is p[t] = t - 2, q[t] = t/(I- t), which only exists for 
0:5: t < 1. To generate an unbounded increasing sequence of successful 
responses we define, for any constant 0 < a < 1, 

u'" (t) = { a for 0 :5: t :5: 1, 
-a for 1 < t :5: 2. 

The corresponding successful response is 

p",[t]=t-2, [] {at/(I-at), 0:5:t:5:1; 
q t = 

'" a(2-t)/[I-(2-t)a],I:5:t:5:2. 

As at!, q",[t] tends to a singular function (Figure 1). It is easy to see that 
C[u'" (.)]~ ~ as atl. Therefore, an optimal control u*(·) would have to 
satisfy C[u*( . )]:5:~. 

q 

________ ~~--~-4----~~~------~----~p=t-2 
-2 -1 

(I = 0) (I = 1) 

Figure 1 

But we can show as follows that every admissible control generates a 
cost strictly greater than ~. For a successful control, we must have q[O] = 
q[2] = 0, and the equation 4 = [q + Ifu, with the restriction -1:5: u(t):5: 1, 
implies that 

-[q + 1]2:5: 4[t]:5: [q + 1]2. 

The right-hand inequality implies that (i) I-t:5:1/(q[t]+I) for O:5:t<1 
(remember that q[O] = 0); the left inequality, integrated from t to 2 (with 
t> 1), implies that (ii) t-l:5: 1/(q[t]+I) for 1 <t:5:2 (remember that q[2] = 
0). But a successful response must be bounded, therefore we will have strict 
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inequality in (i) for t in some interval. Thus, 
1 2 

C[u(·)]> L (1-t)2dt+ { (t-1)2dt=~. 

Therefore our problem has no optimal control. 

The preceding example was linear in the control u(·), while a non­
linearity in the state variable created difficulties. The next example shows 
that even when the responses are bounded and the problem is linear in 
the state, a nonlinearity in u ( . ) can lead to the nonexistence of an optimal 
control. 

EXAMPLE 2. Consider the problem (n = 3, m = 1) 

[
sin 27TU l 

i= CO~~7TUj' 

with 5"(t) = 0, C[u (. )] = J~ {[p[t]f + [q[t]f} dt. The time of arrival at the 
target 0 is always 1, since f = -1, rEO] = 1. Every response x[t] satisfies 
li[t]1 s 3, so x[t] will satisfy the a priori bound Ix[t]1 s Ixol + 3t s 4 for 
o s t s 1. Suppose we could construct a sequence of controls {Uk ( . )} for 
which C[ud· )]-+ O. Since C[u(·)] 2: 0 always, any optimal control u*(·) 
would then have to give a cost C[u*(· )] = O. This would lead to a contradic­
tion, since C[u*(· )] = 0 implies p*[t] = q*[t] = 0 a.e., hence p*[t] = q*[t] = 0 
a.e., which is impossible, since p*[t] = sin 27TU*(t), q*[t] = cos 27TU*(t). 

The sequence of controls which will accomplish this is Uk(t) = kt - [kt], 
k = 1, 2, ... , where [.] means "integer part" (Figure 2). Then Uk(·) E 

OU 1[0, 1] and . 

sin 27TUk(t) = sin 27Tkt, 

The associated responses are 

cos 27TUk(t) = cos 27Tkt. 

Pk[t] = (1- cos 27Tkt)/21Tk, qk[t] = sin 27Tkt/27Tk, 

A direct evaluation shows that C[Uk(·)] = 1/27T2e -+ 0 as k -+ 00. 

The preceding examples should convince the reader that some fairly 
restrictive hypotheses are needed in order to prove a general existence 
theorem for the problem (1) (2). To describe these, we introduce some 
notation. Let a(T) be the class of all admissible controls which steer Xo to 
the target 0 in time tl, 0 < t1 sT. One basic assumption will be that for 
some T, a(T) is non-empty, a(T) ~ 0, since you can't have an optimal 
control without at least one successful control. We will also assume that 
successful responses on [0, T] satisfy an a priori bound: 

(3) Ix(t; Xo, u( . ))1 s ex for all u( . ) E a(T), 0 s t s tl, 

where a = a(T) is a constant depending only on T. This condition is implied 
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u (t) 

------~------~------~----_+------~t 
1/3 2/3 

by either of the following: 

(a) If(t, x, u)l:$ a Ixl +~, (Ixl = ~ Ixil)); 

(b) IxTf(t, x, u)1 :$allxI12+~, (11x112 = xT x); 

on [0, T] x R n x 0, where a, ~ are nonnegative constants depending only 
on T. For example, to show that (a) implies (3), we write: 

Ix[t]1 = IXo+ fa' (s, xEs], u(s» dsl :$IXoI + fa' alx[s]1 ds +~T. 
Applying Gronwall's inequality we obtain: 

Ix[t]l:$ (Ixol + ~T)eaT. 

Therefore all responses on [0, T] (successful or not) satisfy an a priori 
bound. That (b) implies (3) is Exercise 1 at the end of this chapter. Note 
that by the above argument, responses for the continuous linear system 
x = A(t, u)x + b(t, u) from a fixed initial state satisfy an a priori bound. 

Even with the assumptions described above, Example 2 shows that we 
need some assumptions about dependence on the control. We will either 
restrict our control class or make a convexity assumption: the endpoints 
of the set of vectors 

ht, x, 0) = {(f(t, x, v), fT (t, x, v» T\V EO} 

form a convex set in R n + 1 for each (t, x). 
Before we state and prove our existence theorems, we outline the general 

idea behind the proofs of such theorems. The problem (1) (2) is in essence 
a mapping 

C: u( . ) ~ C[u( . )] 

from OUm into the real numbers. This mapping can be extremely complicated 
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since the cost functional C[u(')] usually involves the response x[·]. In 
principle, most existence theorems ought to be reducible (via the correct 
topology on OUm ) to the statement: "a lower semicontinuous real-valued 
function on a compact set attains its minimum on that set." However, it 
is often less complicated to directly approach an existence proof as follows: 

(i) Show that C[u( . )] is bounded below, hence there exists a minimizing 
sequence {Uk(' )} with associated responses {Xk[' ]}. 

(ii) Show that {Xk[' ]} converges to a limit x*[· ] (not necessarily a response). 
(iii) Show that there is a u*(· ) E OUm for which x*[·] is a response. 

Notice that we make no claim about the convergence of {Uk(')} to u*(·). 
For problems linear in the control, we can first prove {Uk ( • )} -+ u*( . ), and 
then prove Xk[']-+X*['] (cf. Strauss [1968], p. 81), but in general this is 
not possible. The following example shows that we can have a minimizing 
sequence of controls which does not converge in any sense, even though 
the associated responses converge to an optimal response! 

EXAMPLE 3. Consider the problem (n = 2, m = 2) 

x=[:J. p=1-llu(t)112 , q=1, 

Xo = [~J, fi(f) = [~J, C[u(· )] = r [p(t)]2 dt. 

Notice that tl = 1 since q = 1 with q(O) = 0, q(td = 1. Any control 
u(')EiilIm[O, 1] with Ilu(t)112 == 1 is optimal, but notice that the optimal 
response pet) == 0, q(t) = t, is unique. Let 

( ) = [Sin ktJ 
Uk t k ' cos t 

k =0, 1,2, .... 

Then {ud' )} is a minimizing sequence, but {Uk(' )} does not converge in 
any usual sense to an optimal control. Obviously it does not converge 
pointwise. By the Riemann-Lebesgue Lemma, 

1 1 

lim J. <f>(t) sin ktdt = lim J. <f>(t) cos ktdt = 0, 
k-+oo 0 k ... c:o 0 

for any <f>(')EL2[0, 1]. So this sequence converges weakly to u*(t) ==0 in 
L 2[0, 1], but u*(t) == 0 is not successful. Notice that the associated responses 
Pk[t] == 0, qk[t] = t, do converge to an optimal response. 

As if all of the above weren't enough, we also must be careful to keep 
the process restricted to a compact time interval. This is demonstrated by 
the minimum fuel problem for the rocket car (p. 15). In this example, the 
cost function was the amount of fuel used to move the car from one fixed 
point to another (with initial and terminal velocities zero). We saw that we 
could use an arbitrarily small amount of fuel by using an increasingly long 
time, and for this reason there was no optimal control. 
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3. Existence for Special Control Classes 

As we mentioned above, existence theory is in essence a study of a 
continuous or lower semi continuous function C[u(')] on a compact set 
OUm[O, T]. For example, if OUm[O, T] is given the weak topology of L 2[0, T], 
then OUm[O, T] is (sequentially) compact - this is the content of Proposition 
1 in the Appendix to Chapter II. The requirements of the theorems of this 
chapter (e.g., I(t, x, 0) convex) are designed to imply that the function 
C[u(')] is lower semicontinuous in this weak topology. 

If we restrict our controls to take their values in certain special subsets 
of OUm[O, T], then it is possible to choose these subsets so they are compact 
in stronger topologies, e.g., in the sup norm. Then we can weaken our 
restrictions on f and f and still have C[u(' )] lower semicontinuous. This 
is the motivation behind the Theorem 1 below, which deals with two special 
classes of controls, OU}. and OUr. This first class is a compact subset of OUm 

in the sup norm, the second is compact in the L 1 norm. 
For a given A > 0, we define OU}. C OUm to be those controls which satisfy 

a Lipschitz condition on their interval of definition: 

For a given integer r;;:: 0, we define OUr C OUm to be those controls which 
are piecewise constant with at most r points of discontinuity on their interval 
of definition. 

Theorem 1. Let [0, T] be a fixed interval. Suppose that our usual control 
class OUm [0, T] is replaced by either OU}. [0, T] or OU,[O, T] for some fixed A > ° 
or integer r;;:: ° and assume aCT) ~ 0. Assume that f and f are continuous, 
and that successful responses satisfy an a priori bound (3). Then there exists 
an optimal control. 

Proof. The first part of the argument applies to both OU}. and OUr. Since 
Ix[t]l:5 a for any successful response, and f is continuous on the compact 
set [0, T] x [-a, a] X [-1, 1], it follows that f(t, x[t], u(t)) is uniformly 
bounded for all successful controls on [0, T]. Therefore, since we are 
restricted to [0, T], C[u(· )] is bounded below for u(· ) E aCT). Let {Uk(' )} 
be a minimizing sequence for C[u(·)] from the appropriate class, OU}. or 

OU" that is, 

C[Uk(' mc = inf C[u(· )], Uk(') defined on [0, t1(k)], 

where the infimum is taken over the control class being used, OU}. or OUr. 
Since the points {t1(k)} belong to [0, T], we may assume that t1(k) .... t1 E 

[0, T], We will show that both {Uk(')} and the associated response sequence 
{Xk[' ]} are uniformly bounded and equicontinuous families on [0, td, hence 
by passing to subsequences (again denoted {Uk}, {Xk}) we will have Uk(t) .... 
u*(t), Xk[t] .... x*[t] uniformly in t, for some continuous pair u*( .), x*[' ]. 
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But Xk[t] = xo+ J~ f{s, Xk[S], Uk{S)) ds, so by taking the limit as k -+ 00, we 
will have 

X*[t] = xo+ L f{s, x*[s], u*{s)) ds, 

Therefore, x*[·] will indeed be a response to u*{'), and u*{·) will be 
optimal, since {Uk{')} is minimizing Xk{') -+ x*{·) and Uk{') -+ u*{·) uni­
formly, and the cost function f is continuous. 

To complete the proof, then, we must prove that for both classes, OU). 
and OU" the sequences {Uk{')}, {Xk[']} are uniformly bounded and equicon­
tinuous. First we have to make a technical comment. Whenever ft (k) < tlo 
we extend Uk{') to [t1{k), t1] as the constant vector Uk{t1{k)), and we extend 
Xk['] as the constant Xk[t1{k)]. We cannot extend Xk[t] as a solution of 
:irk = f{t, Xk, Uk), because we might exceed our a priori bound. 

Suppose we are dealing with the class OU). [0, T]. Then the entire class is 
equicontinuous and uniformly bounded (u{t) EO), so certainly {Uk{')} is, 
also. The associated responses satisfy Xk = f{t, Xk, ud, x{O) = Xo on [0, t1 (k)], 
Xk = 0 on [t1 (k), td, and 

(t, Xk[t], udt)) E [0, T] x [-a, a] x [-1,1] on [0, t1]' 

Since f is continuous, it follows that {IXkl} is uniformly bounded, which 
implies that {Xk[']} is equicontinuous and uniformly bounded on [0, td. 
This completes the proof for the class OU).[O, T]. 

For the class OUr[O, T], we assume r = 2 for definiteness. Then for each 
u{· ) E OUr[O, td we have 

\

a, ° :5 t < U; 
u{t)= b, U<t<7; 

C, 7<t:5tlo 

where (a, b, c, U, 'T) depend on u{·). Of course, we may have U = 7 (one 
jump), or U = 7 = t1 (no jumps). If {ud')} is a minimizing sequence, with 
tl (k) -+ tlo then each Uk{' ) is described by as-tuple {ak, bk, Ck, (h, 7k). We 
may assume that each sequence converges: Uk -+ U *' 'Tk -+ 7*, ak -+ a*, bk -+ b*, 
Ck -+C*, since the vectors all belong to the unit cube in R m , while Uk, 7k 
belong to [0, td (we ignore the behavior of Uk{') beyond tl)' We define 
u*{t) on [0, tl] by (a*, b*, C*' U *,7 *). In fact Uk{ . ) -+ u*{· ) uniformly on the 
set (Figure 3) 

~ = [0, a* - e] u [a* + e, t* - e] u [t* + e, t 1 ] 

for e > ° small. (For U = 'T, etc., the proof is even simpler.) The responses 
{Xk[' ]} to {Uk(' )} are uniformly bounded and equicontinuous, by the same 
argument as for the class OU). (Xk[O] = xo, IXkl bounded), so a subsequence 
{again denoted {Xk[' ]}) converges uniformly to a limit x*{t) on [0, t 1]. If 9'~ 
is the complement of Y e in [0, tl], the fact that f{t, x[t], u{t)) is continuous 
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Figure 3 For k Large, Uk(') Is Uniformly Close to u*(·) Away from (J', 'T. 

and (t, Xk[t], Uk(t» lies in a compact set implies that S9'~ If(t, Xk[t], udt»1 dt 
can be made arbitrarily small by choosing e small. 

Since Uk(' ) ~ u*(· ) uniformlyonY'., andxk[t] = xo+ S~ f(s, Xk[S], uds» ds, 
we can let k ~ 00, then e ~ 0, to conclude that 

x*(t) = xo+ r f(s, x*[s], u*(s» ds. 

Therefore, x*[· ] is a response for u*(· ). 

Remarks 

o 

1. The optimal response might hit the target 0 before the time t1. It it does 
so, it must be at a higher or equal cost. 

2. Theorem 1 remains valid for fixed-endpoint problems, i.e., both initial 
time to and final time t1 fixed in advance. 

3. We can allow to to vary within [0, T]. 
4. We can drop the restriction to a fixed interval [0, T], if we penalize 

responses that go for too long, to prevent to and/or ft from becoming 
unbounded. For example, if to = 0 is fixed and t1 only restricted by t1 2: 0, 
then we need to assume f(t, x, v) 2: 1/ (t) for t large, with f'o 1/ (t) dt = +00. 
If to varies, we need the restriction f(t, x, v) 2: 1/(t) for t negative and 
large, with Loo 1/(t) dt = +00. (See Exercise 10 at the end of this chapter.) 

5. The proof of Theorem 1 goes through with no essential changes if all 
successful responses are required to take values in some specified com­
pact subset of Rn. This is sometimes called the "problem with restricted 
phase coordinates." For example, we could require an a priori bound plus 

i = 1, ... , r 

for some specified continuous functions hi. The important point is to 
keep (t, x(t), u(t», 0::5 t::5 t1. in a fixed compact set for all successful 
responses. 

6. The proof of Theorem 1 goes through with no essential changes if the 
unit cube n - the range space of admissible controls - is replaced by a 
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continuously varying compact set net, x). (The convexity of .0 is 
irrelevant.) 

7. One can add terms of the form q,(X[tl]) and max[to.t,] "'[x(t)] to the cost, 
with q" '" continuous. 

8. Both the initial state lito and the target state ff(t) == 0 may be replaced 
by continuously time-varying nonempty closed sets Xo(t), Xl(t) in Rn. 

4. Existence Theorems under Convexity 
Assumptions 

Theorem 2. Consider the problem (1) (2) on a fixed interval [0, T], with 
Xo given, ff(t) == 0 and f(t, lit, u),f(t, lit, u) continuous. Assume that .l(T) ¥- 0, 
and that successful responses satisfy an a priori bound (3). If, in addition, 
the set of points f(t, lit, .0) = {(f(t, lit, v), fT (t, lit, v» Tlv EO} is a convex set in 
Rn+t, then there exists an optimal control. 

Before we prove this theorem, we discuss the convexity hypothesis. The 
vector f is often called the extended velocity vector. 

EXAMPLE 4 (Examples of f(t, lit, .0». 

(a) Consider the scalar ,groblem i = lul lJ2, C[u(')] = J~' lu(s)l lJ2X(S) ds. 
Then f(t, x, 0) = {(Ivl l 2X , IvllJ2)1_1 s v s 1} is convex (Figure 4(a». 

(b) For the scalar system i = u, C[u(')] = J~' [u(s)f ds, f(t, x, .0) = 
{( V 2, v) 1-1 s v s 1} is not convex (Figure 4(b» even though f is linear 
and f is convex. 

(c) If f(t, lit, u) = A(t, lIt)u + get, lit), f(t, lit, u) = aCt, X)T u + gO(t, lit), 'with A an 
n x m matrix, g an n-vector, a an m-vector and gO real-valued then 
A TO. ' 
f(t, lit, .0) = {(a v + g , A v + g)lv EO} 1S convex. Therefore, Theorem 1 
covers the case when f and f are both linear in the control. 

f1 
f1 

(x. 1 ) 

--~r----+----~~fO 

----~----+-~~fO 
x 

(a) (x >0) (b) 

Figure 4 (t, lit, n) 
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The reader can see from Example 4 that the assumption "f(t, x, 0) is 
convex" is roughly a statement about the geometry of the relationship 
between f and f. This assumption does not imply that f and/or fo are 
convex functions of u (Example 4(a)), nor does the converse hold (Example 
4(b)). 

Proof. As we argued in the proof of Theorem 1, the cost functional C[u(· )] 
is bounded below on the set aCT) of successful responses. Therefore, 
c = infA C[u(· )] exists. Let {ud· )} be a minimizing sequence for C[u(· )]: 

C[Uk(· )] = Ck~C. 

For any control uC· ) E a(T) we define the extended response vector in 
R n + l : 

° x= [:], where iO = f(t, x, u), 

so that xO[t] = J~f(s, x[s], u(s)) ds, xO[ft] = C[u(· n. Each pair CUk(·), Xk[·]) 
is defined on some interval [0, tl(k)], and we may assume that tl(k) -+ t1 :S T. 
Whenever t1(k) < t1 we extend Xk[·] to [t1(k), td as the constant vector 
Xk[tl(k)]. 

The dynamics of our extended system is 

dx " 
dt = f(t, x, u), X[O] = [~J, where f= [~]. 

We will show that there is a response x*[t] for this system which satisfies 

which means that the associated control u*(·) is optimal. The proof is 
carried out by means of the following propositions: 

(i) The sequence {Xk[·]} is uniformly bounded and equicontinuous on 
[0, td so a subsequence (again denoted {Xk[·]}) converges uniformly 
to a continuous limit x*(t). Since xk[t1(k)] = (Ck, O)T, and t1(k)-+ tlo we 
will have X*(tl) =Cc, O)T. Therefore, if x*[·] is a response, then it is 
optimal. 

(ii) The function x*[t] is absolutely continuous and J.ol(dXk/ dt)-+ 
l,,(dx*/ dt) for any measurable subset sA. of [0, t1]. (Equivalently: 
dXk/ dt converges weakly in L 2[0, td to dx*/ dt, i.e., J~l c/J (t) dXk/ dt-+ 
J~l c/J(t) dx*/ dt for all c/J(. ) E L2[0, ti].) 

(iii) The function x*[t] satisfies the generalized differential equation 
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(iv) (Fillipov's Lemma). There exists a control u*( . ) E OiLm[O, td such that 
di*/ dt = I(t, x*, u*). Thus u*( . ) is optimal, with response x*[t]. 

Proof of (i). Since I is continuous, {dik/ dt} is uniformly bounded on 
[0, tl]' with ik[O] = (0, XO)T so {ik[']} is uniformly bounded and equicon­
tinuous. We select a subsequence (again denoted {ik[' ]}) which converges 
uniformly on [0, ttl to a continuous limit i*(·). As remarked above, 
i*(tl) = (c, O)T. 

Proof of (ii). Define 'k[s]=='k(s, Xk[S], Uk(S)) ds. Then, since ik[t] = 
io+I~lk[S]ds, we have IXk[t]-xk[t']lsllt-t'l where I is any constant 
satisfying II(t, x, u)1 == If(t, x, u)1 + If(t, x, u)1 s I on [0, T] x [-a, a] X 

[-1, 1]. Therefore x*(t) is absolutely continuous on [0, td, so di*/ dt exists 
a.e., and as k -+ 00 

ik[t]=io+ r 'k[s] ds -+x*(t)=xo+ f (di*/ds) ds. 

This means that I~lk[S] ds-+ I~ (di*/ds) ds for any Os t:StI. which in turn 
implies that IIlk -+ II di*/ ds for any interval Ie [0, tl]' This implies that 
I",(dxk/ dt) == J,.,lk -+ I.., di*/ ds for any measurable set de [0, td. 

Proof of (iii). Let S = {tl(dx*/ dt) ~ I(t, x*(t), n)}. We want to show that the 
measure A of Sis 0, lSI = 0. Assume the contrary, ISI>O. Since for each tE S, 
the set f(t, x*(t), n) is convex and compact, there is a vector bet) and a 
number a (t) such that the hyperplane pet) = {xl < b, x> = a} separates 
dx*/ dt from this set in RR+l (Figure 5). Therefore (see the Mathematical 
A d· ) AT A / ATA ppen IX b dx* dt> a, b f(t, x*(t), v) s a for v En, so 

Figure 5 (n = 2) 
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GT (t)(dx*/ dt) >max GT (t)f(t, x*(t), v) 
VEil 

(4) ~ lim sup GT (t)f(t, x*(t), Uj(t» 
j .... oo 

. AT" 
= hm sup b (t)f(t, Xj(t), Uj(t)) 

j ...... oo 

(since i is continuous and Xj[t] -+ ~*(t) uniformly). Because the inequality 
above is strict, we may assume bet) has rational entries. The set of all 
possible vectors 6(t) is thus denumerable, while lSI> 0, therefore a fixed 
yector 60 satisfies (4) in a set deS, Idl > 0. Then (remember dij/dt = 
f(t, Xi> Uj)) 

f Gr;(dx*/ dt) > f lim sup Gn(t, Xi> Uj) dt > lim sup f Gr; (dxj/ dt), 
.sil .sa j ...... OO j-+OO s4 

the last by Fatou's Lemma. But this contradicts the weak convergence of 
dx/ dt to dx*/ dt. Therefore, (dx*/ dt) E f(t, x*[t], 0) a.e., and so we can 
redefine dx*/ dt on a set of measure zero and drop the "a.e.". 

Finally, to prove (iv) we state and prove: 

Fillipov's Lemma. Let 0 c R rn be compact, get, u) a continuous function 
from R x 0 into Rn+l. Suppose t/.(.) is a bounded measurable function from 
R into R n+t, with t/.(t) E ~(t, 0). Then there is a measurable u(·) with 
u(t) EO for all t, such that t1J(t) = g(t, u(t)). 

Proposition (iv) follows by taking t/. = dx*/ dt, g(t, u) = f(t, x*(t), U). 

Proof of Fillipov's Lemma. For fixed t E [0, td, the set ~ = 

{vEOIt/.(t)= g(t, v)} is nonempty. Let ~1 be that subset of ~ for which VI 

is as small as possible. 0 is compact and g is continuous, therefore ~ is 
compact and ~1 is nonempty. Let iC2 be that subset of ~1 for which the 
second components v 2 are as small as possible. Continuing in this way, we 
obtain a non empty set ~rn. A moment's thought shows that ~rn is a single 
vector (compare any two vectors in iCrn), and we define u(t) to be this vector. 

We claim that the resulting function u(·) is measurable on [0, tl]. We 
prove this by showing that 2a ={tlu\t)s;a} is closed for any real a (an 
induction on the components completes the argument). First, we note that 
by Lusin's Theorem, for each integer k > 0, t/.(t) is continuous on a closed 
subset fiPk of [0, tl] with 1[0, tl]\fiPk 1< 1/2k. We will show that 2a n fiPk is 
closed for every a and any integer k > 0. Suppose not. Then there is a 
sequence {tj} c !l'«n~ converging to t¢2,.n~, u1(tj}:5: IX < u1(t). Since 
fiPk is closed, 7 E ~k' and since 0 is compact, we can assume that the sequence 
of vectors {u(tj)} converges to a limit v EO. Then u l(tj) -+ v t, 

v1s;a<u1(i). 
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so 
~(t)=iW", v), with v 1 sa<u 1(t). 

This contradicts our algorithm for constructing u( . ), so we must conclude 
that .2", II fJik is closed for any a and any k. 

Thus 5£", II fJik is measurable, and so U~=1 (.2", II fJik ) =.2", II (U~=l fJik ) 

is measurable. But U~=1 fJik differs from [0, tl] by a set of measure zero 
so.2", II (U~=1 fJik ) differs from.2", II [0, tl] =.2", by a measurable set, hence 
.2", is also measurable. 0 

The remarks following the proof of Theorem 1 carryover verbatim to 
Theorem 2. In most cases, the proofs of the extensions are straightforward. 
For a full discussion, see Lee and Markus [1967], pp. 259-281. 

The assumption in Theorem 2 that f(t, x, 0) is a convex subset of R n + 1 

implies that the sets f(t, x, 0) and f(t, x, 0) are convex in Rand R n , 

respectively. This is easily seen using an argument by contradiction. The 
following corollary to Theorem 2 shows that whenever f(t, x, 0) is convex, 
the reachable set K(t; xo) is convex, compact, and continuous as a function 
of t. This result was proved for linear autonomous systems as the Lemma 
of Section 1, Chapter III and used extensively in our analysis of time-optimal 
problems. This corollary establishes the result, in particular, for the general 
linear system x=A(t)x+B(t)u, and we can then extend many of the 
theorems of Chapter III to this system. 

Corollary. For problems (1) (2), under the assumptions of Theorem 2, the 
reachable set K(t; xo) is compact, and varies continuously with time. 

Proof. The convexity immediately follows from the response formula x[t] = 

xo+ J~f(s, x[s], u(s)) ds and the convexity of f(s, x[s], 0). 
Since resp~nses satisfy an a priori bound, the set K (t, xo) is bounded. 

To see that it is. closed, hence compact, let {xd c K (t, xo) with Xk ~ x* ERn. 
Then each Xk is the value of a response Xk[S] at s = t. We now repeat the 
proofs of propositions (i)-(iv) from the proof of the theorem word for word, 
with the "hats" removed - that is, working with x[t], f(t, x, u) rather than 
i[t], f(t, x, u). The conclusion is that the sequence of responses {Xk[S]} 
converges to a function x*(s) with x*(t) = x*, and x*(s) is indeed a response 
for some admissible control, i.e., x* E K (t; xo). 

To prove that K(t; Xo) is continuous, we must show that K(t; xo) is 
contained in an e -sack about K (t*; xo), and vice-versa, for It - t*1 small. 
Now for a given control we have 

Ix[t] - x[t*]1 s 1'*II(r, x[r], u(r))1 dr < e if It - t*1 < 5(e). 

(If the control only exists on the shorter of the intervals [0, t], [0, t*], we 
can extend it as 0 and still have Ix[t] - x[t*]1 < e for It - t*1 small.) Therefore 
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K(t; xo) is contained in an e-sack about K(t*; xo) for any t* close enough 
to t, and vice-versa. 0 

Finally, we state without proof an existence theorem far more general 
than Theorem 2. The difficulty of the proof makes it beyond the level of 
this mono~raph (cf. Berkovitz [1974], Theorem 5.1 of Chapter III). Instead 
of the set f(t, x, 0) we consider the "super-set" 

2l +(t, x) = {(yO, yT)1 for some VE 0, Y = f(t, x, v), y°?!f(t, x, v)}. 

EXAMPLE 5. Consider the scalar problem i = x + u, C[u(')] = J~t [U(S)]2 ds. 
Then (Figure 6) for any (t, x): 

2l +(t, x) = {(yO, y)ly = x + v, yO?! v 2 for some v EO}. 

Notice that (t, x, 0) is not convex while 2l + (t, x) is convex. 

----~~~~----~y 
-1 

--------~~~~-y 

(a) (b) 

Figure 6 ,2+(t, x) with (a) x = 0, (b) x = 1 

If (t, x, 0) is convex, then so is 2l + (t, x). As the above example shows, 
however, the converse is not true. Therefore, the following theorem is 
more general than Theorem 2. 

Theorem 3. Consider the problem (1) (2) on a fixed compact interval [0, T]. 
Assume that a(T) ~ 0 and that all successful responses x[·] satisfy an a 
priori bound (3). Assume that f is continuous, f is lower semicontinuous, 
and that 2l+(t, x) is convex for (t, x) E [0, T] x {lxl:5 a}. Then there exists an 
optimal control. 

This theorem can be substantially generalized, but a discussion of these 
generalizations would be a major digression. We refer the reader to 
Berkowitz [1974]. 
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As an example of a practical class of problems of considerable interest 
to which Theorem 3 applies, we have the linear plant with quadratic cost 
criterion: 

x = A(t)x+ B(t)u + bet), 

C[u(·)) = Al f' Ix[t] _y(t)12 dt+ A2 f' lu(t)12 dt, 

where yet) is given. The cost measures the mean square deviation of x[t] 
from a desired trajectory yet) as well as the "fuel consumption" (assumed 
proportional to lu(tW). Theorem 2 does not apply to this problem - the 
situation is essentially that of Example 4(b), in which f is quadratic, while 
f is linear in the control. However, Theorem 3 does apply to this problem. 

5. Existence for Systems Linear in the State 

In the following theorem, notice that there is no convexity assumption. 

Theorem 4. Consider the problem 

(5) x=A(t)x+b(t, u), C[u( . )]= f' {aT (t)x[t] + cP(t, u(tm dt, 

with A, b, a and cP continuous n x n, n x 1, n x 1 matrices and real-valued 
functions, respectively. As usual Xo is assumed fixed and fret) == o. If there 
exists a successful control (a ¥ 0) and if successful responses satisfy an a 
priori bound (3), then there exists an optimal control. 

Remark. We will only prove this theorem for the autonomous case: 

i=Ax+b(u), 
(, 

C[u( . )]= Jo {a TX[t] + cP[u(t)]} dt, 

with A, b and a constant. The proof for the non-autonomous case is 
essentially identical, except that it requires: 

1. The Bang-Bang Principle for non-autonomous problems as stated just 
before Example 1 in Section 2 of Chapter II. 

2. Certain of the extensions of Theorem 2 noted in the remarks following 
the proof of that theorem. 

In our proof of the autonomous version of Theorem 4, we will use the 
Bang-Bang Principle in the following form (see the Introduction to Chapter 
III): 

If g c R m is any set, in R n let K:At, Xo) denote the reachable set for the 
system 

(LA) x=Ax+Bv, x(O) =Xo, vet) E g, v( . ) measurable. 
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Then Ky(t, xo) = K co (9') (t, xo) where co (9') denotes the convex hull of 9'. 

Proof of Theorem 4. We will study the extended response yEt] for a slightly 
different system (we replace f/J(u), b(u) by linear terms): 

y=Ay+v(t), 

where v(t) is constrained to belong to the convex hull of 

n= f/J(O) xb(O) in Rn+l. 

The target is the set fJ"(t) = {[g]l~ E R} in R n+1, while xo = [~]. 
We will show that (5) satisfies the hypotheses of Theorem 2, with cost 

C[v(·)] = yO(tl). Since there is by assumption a successful control u(t) for 
the original problem (5), there is a successful control vT (t) = (f/J(u), bT(u» 
for (5). All !esponses yEt] starting at xo satisfy an a priori bound, since 
the system (5) is linear. The extended velocity set for (5) 

is convex, since (5) is linear in v and v(t) is restricted to a convex set. 
Theorem 1 (with the easily verified Remark 8 following the proof) 

therefore may be applied to the problem (5) with the given cost function 
C[v(·)]. We conclude that this problem has an optimal control, v.(t) E 

co (n) with optimal response x .. [t]. By the Bang-Bang Principle there 
exists a control v*(t) E O(t) with the same response, hence v*(t) is also 
optimal. Now v*(t) E f/J(O) x b(O) for 0 s t S ft, so Fillipov's Lemma implies 
that there is a u*(·) E OUm such. that v~ (t) = c/>[u*(t)], v(t) = b[u*(t)]. The 
control u*( . ) is easily seen to be optimal for (5). 0 

The extensions described in the Remarks following the proof of Theorem 
1 are also valid for Theorem 4. 

6. Applications 

The Rocket Car 

The most general optimal control problem formulated by us for the rocket 
car was: 

i=[~ ~]x+[~]u(t), 
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with Ai ~ 0, L~ Ai = 1. We already know that any initial state in R2 can be 
steered to the target 0, so for any fixed initial state, a(T) will be nonempty 
for T sufficiently large. Because the dynamical equations are linear in the 
state, all responses from a fixed initial state satisfy an a priori bound. 
Theorem 1 implies that there is an optimal control in each of the classes 
OU,,[O, T], OUr[O, T] for T sufficiently large. If A1 #- 0, then 

t(t, x, u) == A1 + A2[q(t)]2 + A31ul ~ A10 

and we can take 71 (t) == A 1 in Remark 4 to remove the restriction to [0, T]: 
there is an optimal control in each OU", OUr-

If A2 = 0, then Theorem 4 applies directly to yield the conclusion that 
there is an optimal control in OUm[O, T] for T large, and if A1 > ° then we 
can again drop the restriction to [0, T]. 

To see whether or not Theorems 2 and 3 apply to the rocket car, we 
must examine the sets (note that f(t, x, u) = [~]): 

and 

in R3. We can write 

[
A1 + A2[q(t)]2] 

c(t, x) = q(t) . 

° Therefore, in (t, l, l)-space, f(t, x, 0) is the translate by c(t, x) of the set 
{(A3Iul, 0, u)l-l Sus l} - this set lies in the (t, l) plane (Figure 7(a». 
~+(t,x) is just the translate by c(t,x) of the set {(v,0,u)lv~A3Iul,-ls 
US l} (Figure 7(b». 

(a) (b) 

Figure 7 (a) i(t, x, 0) Is the Broken Line Segment, with Slopes ±1/ A3 • (b) 2l +(t, x) 
Is the 2-Dimensional Shaded Strip 
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From the sketches, we see that I(t, x, 0) is only convex when A3 = 0, 
while !!2 + (t, x) is always convex. So Theorem 2 applies only when we ignore 
fuel consumption (A3 = 0), while Theorem 3 covers all cases. 

The Linearized Pendulum and the Physical Pendulum 

In Chapter III (Example 2) we treated the time-optimal problem for a 
linearized pendulum, jj + kp = u: 

(k >0), 1', 
C[u(·)]= 0 Idt=tl. 

Any of our theorems can be applied to assert the existence of an optimal 
control. We are not restricted to a compact interval, since f(t, x, u) 2: 1 and 
J'''' 1 = +00. 

The physical pendulum is actually governed by the nonlinear equation 
jj + 13ft + k sin p = u(t), with 13 > ° representing the damping, so the time­
optimal problem is: 

. [ q ] [0] x= + u 
- f3q - k sin pI' 

with C[u ( . )] as above. Responses are bounded on any compact interval, 
since f is bounded by a linear function: 

I(t, x, u)l:5 [Iql + If3q + k sin pl]+ lul:5 k*lxl + 1, k* = max (13, k, 1). 

In this case, I(t, x, 0) is convex, since it is just a line segment: 

f(t, x, 0) ={(l, q, -f3q - k sin p + ufl-l:5 u :5 I} 

= e(t, x) +{(O, 0, u)TI-l:5 u :51} 

where e(t, x) = (1, q, -f3q - k sin pf. Therefore, Theorem 2 applies if we 
can show that aCT) # ° for the given initial state and some T> 0. This is 
indeed possible for any initial state, but a proof would be too lengthy here 
(see Lee and Markus [1967], p. 446). 

Exercises 

1. Show that if IxTf(t,x,v)lsallxll2 +{3 for all OstsT, xER", vEil, then any 
solution of i = [(t, x, u(t)), u(· ) E OUm[O, T], with x(O) = Xo fixed, satisfies an a 
priori bound (3). (Hint: What is d(xTx)/dt?) 

2. In ExaIpple 2 we considered a particular system linear in the state, and showed 
that there was no optimal control. Explain why each of Theorems 2-4 does 
not apply. Explain why our presentation of this counterexample does not go 
through when we are restricted to the control classes OU" OUr (Theorem 1). 
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3. Consider the scalar problem i = u, x(O) = 0, with target f'f(t) ... 1, the control 
class {u(·) measurable, 0::5 u(t) < ro}, and cost C[u(·)] = J~I [x[s]Y ds. Show 
that there is no optimal control. (Hint: Show that the optimal cost is zero, by 
constructing {Uk(·)} for which C[ud· )]-+0). Explain why our theorems (includ­
ing the extensions noted in the remarks) do not apply. 

4. Consider the scalar problem i = u, x(O) = 0, f'f(t) ... 1, with the control class 
{u(·) measurable, 0::5 u(t) < I}, and cost C[u(·)] = tl = J~I dt. Show that there 
is no optimal control, and explain why our theorems don't apply. (Hint: Note 
that X(tl) = 1 = J~I u(t) dt. Show that the optimal time tl is 1.) 

5. Consider the scalar problem i = u, with x(O) = 0, the usual control class aum , 

the target set 

f'f(t) = {x 10 < X ::5 I}, 

and cost C[u(·)] = J~I (X[t])2 dt. Show that no optimal control exists, and explain 
why our theorems do not apply. (Hint: Let udt) ... 1/ k on 0::5 t::5 1.) 

6. Consider i = u, x(O) = 0, f'f(t) ... 1 with control class {u(·) measurable, 0::5 
u(t)::5 I}, and cost C[u(·)] = J~I [u(t) + 1] e- r dt. Show that there is no optimal 
control and explain why our theorems do not apply. (Hint: Let udt) = 1/ k on 
[0, k]). 

7. Consider the system (n = 3, m = 2) 

with 

.(O)~[ ~J 
We use our usual control class aum , and remind the reader that IlxI12=p2+q2+ ,2. 
Show that {Uk(t)} = {{sin 21Tkt, cos 21Tkt)T} is a minimizing sequence. Show that 
there is no optimal control, and explain why our theorems do not apply. 

8. Consider the problem (n = 2, m = 1) 

q=u 

with our usual control class aum , Xo = (0, O)T, 

f'f(t) = {(t, q )1-1::5 q s I}, 

ftl 

and C[u(·)] = 0 ds = t l • Sketch~+(t, X)inRl. Showthat,although~+ is convex, 

there is no successful control. 
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9. (Continuing problem (8) from Chapter I). Consider the scalar problem 

dx ( X) -=rx 1-- -u(t) 
dt k ' 

x(O) = xo 

on [0, T], with r, k constant and u(·) measurable, Osu(t)sl, and cost 
qu(·)] = J~ e-SI[p - c(.i[t])] dt where 8> 0, p > 0 are given constants and 
c(v) ~ 0 is continuous. Discuss conditions on c(·) under which the theorems 
of this chapter can be applied. Pay special attention to the control classes au" 
au,. 

10. Prove Remark 4, which follows the proof of Theorem 1. (Hint: If ~;6 0, then 
there is a successful control u( . ) with cost u. Show that for t1 sufficiently large, 
a successful tontrol which hits the target at time t1 will have a cost exceeding 
a.) 

11. (See the discussion following the statement of Theorem 3.) Show that for the 
linear plant with quadratic cost, Theorem 2 does not apply, while Theorem 3 
asserts the existence of an optimal control. 

Notes 

Theorem 1 for illlA is due to Lee and Markus; for illlr it is due to Strauss 
[1968]. Theorem 2 is due to Fillipov [1959] and Roxin [1962]. Theorem 
3 is due to Cesari - for a full discussion of this type of result, see Cesari 
[1971] and Berkovitz [1974]. 

Remark 4 following the proof of Theorem 1, to the effect that we can 
work on [0,00) or (-00,00) if we assume a high cost for controls which go 
on for too long, was first observed by Russell [1964]. He also used the 
interesting concept of a penalty function, associating high cost with leaving 
a prescribed (t, x, u)-set. 

Theorem 4 was first stated by Neustadt, and extended by Olech [1966] 
and Jacobs [1968]. For a full discussion of this theorem, see Section 6 of 
Chapter 4 of Berkovitz [1974]. 

For a survey of the state of existence theory as of 1978, see Berkovitz 
[1978]. 



Chapter V 

Necessary Conditions for Optimal 
Controls - The Pontryagin 
Maximum Principle 

1. Introduction 

In Chapter IV we described conditions which guarantee the existence of 
at least one optimal control- we call these sufficient conditions. However, 
these sufficient conditions are not very helpful in actually finding an optimal 
control. In this chapter we will describe one rather complicated set of 
conditions which any optimal control must necessarily satisfy. This set of 
necessary conditions is collectively known as the Pontryagin Maximum 
Principle (PMP). For many important problems, the conditions of the PMP 
will only be satisfied by a small subset of our control class (perhaps only 
by a single control). In this case there is a reasonable chance of our finding 
an optimal control if one exists. We emphasize that the PMP is a necessary 
set of conditions - there may be no optimal control, yet the PMP may 
delineate a nonempty class of candidates. To be sure that an optimal control 
actually exists, we must appeal to sufficiency theorems from Chapter IV. 

In Section 2 we describe the PMP for autonomous problems. Because 
a complete proof is very technical, we have placed ours in the Appendix 
to this chapter. Section 3 is entirely devoted to examples illustrating the 
application of the PMP. In Section 4 we give a heuristic proof of the PMP 
which shows how the concept of costate arises naturally, and in Section 5 
we give two important extensions, one to non-autonomous problems, and 
the other to problems involving sets as initial and target data: 

{x[to] = xo} 
X[td=Xl 

is replaced by 

where So and S 1 are specified sets. 
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Throughout this chapter we use measurable controls, the Lebesgue 
integral, and the phrase "almost everywhere" (a.e.) occurs frequently. The 
reader may use instead piecewise smooth or piecewise continuous controls 
with the Riemann integral. This involves replacing the phrase "a.e." by 
the phase "at all but a finite set of points." The proofs are easily modified - in 
fact, often simplified. 

2. The Pontryagin Maximum Principle for 
Autonomous Systems 

We consider the autonomous problem: 

(1) x=f(x, u), x[t]ER n , u(t) E R m 

with fixed initial instant and state x[to] = xo, fixed target state fI(t) == Xl. 

and cost 

C[u(· )] = 1" f(x[t], u(t)) dt. 
10 

Here tl is the unspecified time of arrival at the target state, x[t l ] = Xl' and 
fO is assumed given. We use the control set 

u( . ) E 'V m == {u( . )\u( . ) measurable, u(t) E qr for to:5 t :5 t*} 

where qr is a given bounded set in R m and t* depends on u(·). We will 
always assume that f and f are continuous in (x, u)- and continuously 
differentiable in x. Notice· that the set in which u(·) takes its values need 
not be convex (nor open, nor need 0 belong to the set). For example, 

is allowed. 
Before we can even state the PMP we need some notation and analysis. 

For a given control u(· ) and (any) associated response x[· ], we define the 
"dynamic cost" variable 

xO[t] = fl f(x[s], u(s)) ds. 
10 

If u(· ) is successful, then x[td = Xl for some tl ~ to, and the associated cost 
is xO[td. If u(· ) is optimal, then X°[tl] is as small as possible. 

We increase the dimension of our problem by defining the (n + l)-vector 
x[t] = (xo[t], XT[t])T. If we set I(t, x) = (f, fT{, then our original problem 
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can be restated as follows: 

Find an admissible control u(·) such that the (n + i)-dimensional solution 

of 

i[t) = f(x[t), u(t)) a.e., x[to) = [~J 
terminates at 

[ XO[tl)] . 
Xl (Xl the gIVen target state) 

with XO[tlJ as small as possible. Again we emphasize that t1 is not specified. 

In other words, we want the extended state vector i[t] to hit the line 

~(t) = {(~, xl)l~ real, Xl the given target} 

as far down the x ° -axis as possible. Figure 1 represents a two-dimensional 
problem (n = 2) extended to three dimensions. We can only require (i) 
to be satisfied a.e. because ((i, u(t)) is only measurable in t (cf. the 
Mathematical Appendix). 

Figure 1 The XO Axis Is Vertical for Clarity. If (u*('), x*[· )) Is Optimal Then No 
Extended Response Can Hit the Line ;t(t) Below g* 

Having extended the dimension of our original problem, we now turn 
to a rather complicated animal, the adjoint to the linearization of (1): 

For a given admissible control u( .) and associated (extended) response 
i['], we consider the (n + l)-dimensionallinear system 

...-
(Adj.) A() A [ TA W t = -fx(x t], u(t)) wet), a.e. 

The solutions of this system are called extended costates. Here 
(i(X[t], u(t)) = af / aii ; i, j = 0, 1, ... , n is the Jacobian matrix of ( with 



106 V Necessary Conditions for Optimal Controls 

respect to i. Because none of the f's involves x 0, this Jacobian has the form 

[

0 af/axl ... af/aX"] 
fi(X[t],u(t))=[:~]= ~ al/ax 1 

••• al/ax" . 

o a/"/ax 1 a/"/ax" 
Before we continue, we discuss for the reader's benefit a geometric 

interpretation of (Adj.) The details are outlined in Exercises 1 and 2 at 
the end of the chapter. For a given constant control u(·), any solution i[·] 
of i[t] =f(x[t], u(t)) is a curve in R"+1. If bo is a tangent vector to i[·] 
at i[to], then the solution bet) of the linearized equation: 

....-... J.. A " A A 

(Lin) bet) = ft(x[t], u(t»b(t), b(to) = bo u(t) constant, 

will be tangent to this curve at i[t] for all t. Thus the linearized equation 
describes the evolution of tangent vectors along the solution curves of the 
resulting autonomous equation (Figure 2). 

Figure 2 

EXAMPLE 1. For u(t) == + 1, the three-dimensional problem 

has response 

Then 

'(x, u) = [_:~o], 
u-1 

.1 0 x =-ux , i 2 = u-1, ~O)-m 

X l[t] = cos t, 

i,(x[t). u(t)) - [-~ ~ ~]=[-~ ~ ~J. 
o 0 0 0 0 
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Therefore the linearized equation is: 

G(t)~[ -~ 1 0] o 0 bet). 
o 0 

Clearly, the vector bo = (1, 0, O)T is tangent to x[· ] at ~[O] (Figure 3~ and 
the solution of the linearized equation with b(O) = bo is bet) = 
(cos t, -sin t, Of. Since x[t] is the radius vector of a circle, and bet) is 
perpendicular to x[t] for all t, it follows that bet) is always tangent to this 
circle. 

--+-------~~--------r---~XO 

Figure 3 

Now the significance of (AdI.) is that (w(t), bet)) == constant for any 
solutions of (AdD and (an.), respectively, (cf. Exercise 2). Thus, if b(t) 
is tangent to x[ . ] at x[t] for all t, and if w(to) is perpendicular to b(to), then wet) will be perpendicular to x[ . ] at x[t] for all t . 

..-..... 
Thus (Adj.) describes the evolution of vectors lying in the n-dimensional 
hyperplane pet) attached to the extended response curve i[·] (Figure 4). 

When o(t) is not identically constant, the situation is more com~cated, 
and we discuss it in the Appendix to this chapter. In this case, (Lin) does 
not in general describe the evolution of a tangent vector to x(')' Instead, 
it describes a first approximation to the evolution of perturbations in the 
state-if you perturb x[O] to xo+8, the response at a later time t is 
approximately changed from x[t] to x[t] + bet), where b(·) solves (Un) A ,, ___ 

with b(O) = 8. (Adj) will then describe the evolution of vectors in the 
hyperplane which moves along x[t] with normal b(t). 
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-----+------~~--------r_----~XO 

~ (t) 

Figure 4 

Before we state the PMP, we need one more concept. For a given control 
and (extended) response (x[·], u(· », we take any costate w(·) and form 
the real-valued function of time: 

(2) H(w, x, u)=(w, i) = i wi(t)/(x[t], u(t». 
i=O 

" -Then H is a Hamiltonian for (1) and (Adj.), i.e., we can write: 

(1) i = grad .. H(w, x, u) = (a~, a~, ... , a~)T, a.e.; 
aw c1W c1W 

-(Adj.) A (aH aH aH)T 
'" = -gradiH(w, X, u) = - axo, ax l "'" ax" ' a.e. 

The concept of Hamiltonian is from the science of mechanics (a discussion 
can be found in Pontryagin et al. [1964]). The function H does not depend 
on XO (since no / depends on xo), so we write H(w, x, u). 

We now look at H = I7=o wi/(x, v) as a function of arbitrary vectors W, 
x, and VE '1'. For fixed vectors XE R n and WE R n + l we define 

M(w, x) = sup H(w, x, v). 
ve'l' 

In plain English, M is the largest value of H you can get for the given 
vectors (w, x), using admissible values for v. And now, finally, 

Theorem 1 (The Pontryagin Maximum Principle). Consider the extended 
control problem (1) with measurable controls u(·) taking values in a fixed 



2 The Pontryagin Maximum Principle for Autonomous Systems 109 

bounded set 'I' c R m. Suppose (u(·), x[ .]) is an optimal control-resp'!J!!.e 
pair. Then there exists an absolutely continuous function w( . ) solving (Adj.) 
a.e. on [to, td, with 
(i) H(w(t), x[t], u(t)) = M(w(t), x[t]) a.e., 

(ii) 

(iii) 

M(w(t), x[t]) = 0 on [to, td, 

wO(t) = w°(to) ~ 0 and wet) '# 0 on [to, td. 

The principle says that if u(·) is optimal for (1), then there is an 
associated response-adjoint pair, (x[·], w(· )), such that for each instant t, 
H(w(t), x[t], v) ~ 0 for any v E '1', and equality is attained for v = u(t) (it 
may be attained for other values of v as well). It is this "maximum" part 
of the theorem that will often single out a small class of candidates for the 
optimal control. We emphasize there may be a nonempty set of candidates, 
yet no optimal control for a given problem - the Pontryagin Maximum 
Principle assumes that an optimal control exists. This is why we need the 
sufficient conditions of Chapter IV. 

Remark. Notice that the Pontryagin Maximum Principle applies to a 
minimization problem. If instead, one wishes to maximize a cost 

f. " 
J[u(·)]= ° g(x[s],u(s))ds, 

then one would apply the PMP to the problem of minimizing C[u(·)] = 
-J[u(·)], so f = -g. 

EXAMPLE 2. To help the reader become more familiar with the notation 
and concepts used in the PMP, we will work through some of the details 
of its application to the time-optimal problem for the Rocket Car: 

x=[:J. i~m, (' C[u(·)]= 1dt=th 
. ° 

iO= 1, p=q, q=u, i(., u)~ m 
i.~ [~ 

0 n ~~[:J. 0 
0 

*0=*1=0 ·2 1 , W =-w, 
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The PMP asserts that if u(·) is time-optimal, then there are numbers wi(O), 
i = 0, 1,2, such that H:s 0 for all v E '11, and H = 0 a.e. when v = u(t). For 
example if \}f = n == [ -1, 1], then clearly 

and this is clearly only attained for 

u (t) = sgn [w 2(0) - w \O)t]. 

Now the linear function W2(0) - w l(O)t is either identically zero, or vanishes 
exactly once; thus if a time-optimal control exists it is almost everywhere 
either identically zero or bang-bang. In fact, it cannot be identically zero, 
since ifitwere the case that Wl(O) = W2(0) = 0, then we would have wO(O)~ 0 
(w(t) can never vanish), which would imply H == wo(O) ~ 0 and so M = 
max"e'V H = wo(O) ~ 0 contradicting assertion (ii) of the PMP. Notice that 
all of the above conclusions were derived without knowing the explicit 
form of w(t). 

Before we further illustrate the use of the PMP, we need to reduce the 
nuisance caused by the "a.e." in part (i). 

Lemma 1. The equality (i) H(w(t), x[t], u(t)) =M(w(t), x[t]) (a.e.) from the 
PMP is valid at every point t for which there is a sequence tk -+ t with H = M 
at each tk and U(tk) -+ u(t). In particular, (i) holds at every point of left or 
right continuity of u(·). 

Proof. Choose tk -+ t with U(tk) -+ u(t) and H = M at each tk. For any v E \}f 

H(W(tk), X[tk], U(tk)) ~ H(W(tk), X[tk], v). 

Now w(') and x[·] are continuous, and H is a continuous function of 
(w, x, u), therefore we let tk -+ t to obtain 

H(w(t), x[t], u(t)) ~ H(w(t), x[t], v). 

Since v E \}f was arbitrary, the result follows. o 

Corollary. Consider the optimization problem described in the PMP, with 
u(.) restricted to the class 'Yps of piecewise smooth functions with values in 
\}f. If (u(·), i[·]) is an optimal pair, then there exists a continuous costate 
w( . ), never 0, with piecewise continuous derivative, such that 

~=-[ilfw 

holds except perhaps for finitely many points (and at those points, the 
one-sided limits of ~ and -[flf w exist and are equal). In addition, (i), 
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(ii), and (iii) of the PMP hold everywhere. The same conclusion holds if 
we replace "Vps by "VPCN, the piecewise continuous control functions with 

values in '1'. 

Proof. The only assertion which is not obvious is the claim that ~ = 
-[fif w at all but a finite number of points. This stems directly from the 
method for solving an equation of the form y = A(t)y with A(t) piecewise 
continuous. Specifying a value of y(to) = Yo for some to, this differential 
equation can be solved on each interval [am bn ] over which A(t) is con­
tinuous, using the value y(bn ) for the initial value on the next interval. This 
solution is clearly piecewise smooth, and y = A(t)y everywhere except at 
the discontinuities of A (where the one-sided limits are equal). 

To show that A(t) = -[fi(x[t], u(t))f is piecewise continuous, we need 
only show that x[· ] is piecewise continuous. But x[· ] solves i = f(x, u(t)) 
a.e., and the right-hand side is piecewise continuous in t (since f is con­
tinuous and u(·) is piecewise continuous), and so we can generate a 
piecewise continuous solution in the manner just outlined. 0 

3. Applying the Maximum Principle 

EXAMPLE 3. We return to the Rocket Car, continuing the discussion of 
Section 5 of Chapter I: 

p=q, q=u, 

with C[u(')]= J:~ [q[S]]2 ds (,\1=,\3=0, '\2= 1). We allow u(') to be any 
piecewise continuous function satisfying -1:s; u (t) :s; 1, (u ( . ) E "VPCN) and 
we specify position zero, velocity zero as target: .o/"(t) = (0, O)T. We will 
show that an optimal control exists only when the initial state "0 = (Po, qO)T 
lies on the "switching curve" (+) u (-) sketched in Figure 5. To refresh 
the reader's memory, (+) is the only response through the target when 
u(t)=+1; (-) is the only response through the target when u(t)=-1. In 
Chapter II we gave a synthesis (with no cost restriction) which would 
take the system from any initial state to the target in the simplest manner 
(Figure 6): 

(a) if Xo lies above (+)u(-), use u(t)=-1 until you hit (+), then switch 
tou(t)=+1. 

(b) if Xo lies below (+)u(-), use u(t)=+1 until you hit (-), then switch 
to u(t)=-1. 

Of course, this may not be the optimal way to do things when a cost 
function is involved. The PMP will tell us there is no optimal control unless 
we are on the curve (+) u (-). 
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q 

------------------~r_------------------~p 

(+): q=-hp, p~O (-): q=.J-2p, p~O 

Figure 5 

q 

.~~,~~) "'-1 

...... ... , , 
------~--~------~~----------------~\------~p 

'. '. 

Figure 6 Dashed Trajectory Is Case (a); Dotted Trajectory Is Case (b); Switching 
State Is Labelled 0 

To apply the PMP, we set to = 0 for notational convenience. Since the 
problem is autonomous, this involves no loss of generality. Our dynamic 
cost is xO[t] = J~ [q[s]f ds, and our extended state vector is i[t] = (xo[t], p[t], 
q[t])T. To keep superscripts to a minimum, we write 

(3) [a(t)~ wet) = (3(t) , 

yet) 

~(t) = -[ix(x[t], u (t))f wet), 

for any costate associated with a successful pair (x[·], u(·)). Equation (3) 
can be written out by components: 

[
0 0 0] 

fx(x, u) T = 0 0 0, 
2q 1 0 

eX =0= p, .y = -2qa - (3, 
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so a (t) == a (0), {3 (t) == (3 (0). Now 

H(w, x, v) = (w, I(x, u» = a[q]2 + {3q + 'YV. 

The PMP asserts that if (i['], u ( . » is optimal then there is a costate 
w(·) such that for each t in [0, t1], H == a (0)[q[t]]2 + {3 (O)q[t] + 'Y(t)v :$ 0 
for all numbers -1:$ v :$ + 1, and H = 0 for v = u(t). In general, our 
equations i = I(x, u) and (Adj.) would only be satisfied a.e., but since 
u( . ) is piecewise continuous, the corollary applies. By (iii) of the PMP, 

wO(t) == aCt) == a(O):5 O. 

Case 1. a (0) = O. Then 

a (t) == 0, {3 (t) == (3 (0), 'Y(t) = -(3(O)t + 'Y(O), 

H = (w, I) = {3 (O)q[t] + [ 'Y(O) - {3 (O)t]v, 

max H = M(w, x) = (3(O)q[t] + !'Y(O) - (3(O)t! == o. 
-l:svs+l 

We are using the control class aupc, so the corollary applies, and an optimal 
control must give H = M = 0 everywhere. Therefore, 

u(t) = sgn ['Y(O) - {3 (O)t], 

M == {3 (O)q[t] + !'Y(O) - {3 (O)t! == 0, 0:$ t:$ t1. 

Since a(O) = 0, by assumption, 'Y(O) - (3(O)t cannot vanish identically (w(t) ¥-
0). Thus u(·) is bang-bang with at most one switch. 

If 'Y(t) does not change sign, then either u (t) == + 1 or u (t) == -1. In either 
case, we can only reach the target by starting on (+) u (-). 

Now suppose 'Y(t) = 'Y(O) - {3 (O)t changes sign, say at t = 7' > O. Then 
'Y(O) ¥- 0 and (3(0) ¥- 0 and at 7', 

'Y(7') = 0, H = (3(O)q[7'] = M = O. 

Therefore q[7'] = O. Now u(t) made its single allowed switch at time 7', 

hence u (t) == + 1 or u (t) == -1 for t> 7'. Therefore, to hit the target at some 
t1 > 7', we must be on (+)u(-) at time 7'. But the only point on (+)u(-) 
with q [7' ] = 0 is the origin. Thus we had already arrived at the target at 
time 7', and switching was not necessary. But to have arrived at the target 
without switching, we must have originally started on (+) u (-). 

----Case 2. a (t) == a (0) < O. Since (Adj.) is linear, we can assume without 
loss of generality that a(t)==-1 (just multiply wet) by -1/a(0) to get a ----new solution to (Adj.) - this will not change max H = 0). 

H(w, x, v) = -[q[t]f + {3(O)q[t] + 'Y(t)v, 

max H = M = _[q[t]]2 + (3(O)q[t] + !'Y(t)!, 
VEn 
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so as before u(t) = sgn yet). The function yet) is in general no longer linear: 
.y(t) = 2q[t] -/3 (0). It is tempting to say that u (t) = sgn yet) is again bang­
bang, but unfortunately yet) might now vanish on large sets. We will show 
that yet) can only vanish on at most a single interval (or at a single point). 
On such an interval, we will show that u(t) == O. Thus our optimal control 
may not be "bang-bang" but instead "bang-coast-bang." Finally, we will 
show that this latter case cannot happen, in fact we cannot have u(t) switch 
from 0 or + 1 to -1, nor can it switch from -1 or 0 to + 1. Therefore no 
switching is possible, and u (t) == + 1 or u (t) == -1. This forces us to start on 
(+)u(-). 

Now to the details. We have 

.y(t) = 2q[t] -/3(0), ;; = 2u(t) = 2 sgn yet), 

where ;;( . ) is piecewise continuous. Therefore 

y( T) > O::::} yet) concave up near T, 

y( T) < O::::} yet) concave down near T. 

Figure 7 shows the eight possible local shapes for yet); the dot indicates 
(T, yeT»~. Notice that yet) cannot have two distinct zeros (try to sketch it). 
More precisely, if y(a) = y(b) = 0, then yet) == 0 on [a, b]. 

'Y (t) 

v J 

Figure 7 

Therefore, yet) can only vanish on a single interval. On such an interval 
I, y(t)==O which implies .y(t) ==0, therefore 

2q[t] -/3 (0) == O::::} q[t] == constant::::} ti[t] == O. 

But ti[t] = u (t), so u (t) == 0 on 1. 
Finally, we show that such a control cannot exist, in fact, no switching 

is possible. 
Suppose u(·) switches from 0 or + 1 to -1 at T. Now u(t) = sgn yet) so 

the continuous function yet) changes from non-negative to negative at T, 
and (as remarked above) cannot vanish again. Thus u(t)==-1 for t"2T and 
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(p[T],q[T]) must lie on (+)u(-). Since q[t]=u(t)==-l for t~T, and our 
target specifies q[tl]=O, we must have q[T]>O. Now Y(T)=O, so at t=T, 

H = -[q[ T ]]2 + {3 (O)q[ T] = O. 

But q[T]>O, so the above implies q[T] = (3(0). Since y(t) goes from non­
negative to negative at T, 

o ~ -y[ T] = 2q[ T] - (3 (0) = q[ T], 

contradicting q[ T] > O. Therefore no such switching point can exist for an 
optimal control. The argument for the case of switching from 0 or -1 to 
+ 1 is entirely analogous. 

To summarize, we have shown that no switching points are allowed for 
the optimal control problem we are treating in this example. Therefore, 
an optimal control can only exist for initial states on (+) u (-), and in this 
case either u(t) == + 1 or u (t) == -1 for the entire time interval [to, td. 

EXAMPLE 4. We again consider the Rocket Car, but with a different cost: 

1ltl 
C[u(')]=2" 0 (1+[q[t]]2)dt 

We will minimize 2C[u(')] for notational simplicity. The PMP gives us 

eX =0, 

(4) p=q, 
....-

(Adj.) t3 = 0, 

q=u, -y = -2qa - (3, 

with the Hamiltonian 

H = a(l + [q]2)+{3q +yv. 

M(w, x) = maxveoH = a(l + [q]2)+{3q + Iyl, so 

u (t) = sgn y(t). 

Note that a (t) == a (0). By exactly the same argument as in the previous 
example, if a(t)==a(O) =0, then Xo= (Po, qo)T lies on (+)u(-). 

Now suppose that a (0) < 0; as before we may assume without loss of 
generality that a (t) == a (0) = -1. In this case, we have 

(5) {3 (t) == (3 (0), -y(t) = 2q[t] - (3(0), 

and 

H = -(1 + [q ]2) + (3(O)q[t] + y(t)u (t). 

As before, ;; = 2u(t) = 2 sgn y(t), so y(t) can only have the local shapes 
sketched in Figure 7. Therefore, y(t) can vanish on at most a single interval 
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(or point) 1. Therefore, an optimal control u(·) is piecewise constant with 

{
+ 1 when yet) > 0, 

u(t) = 0 when yet) = 0, 
-1 when y(t)<O. 

We will show that there is an optimal control for any initial state xo, 
and we shall synthesize it. Suppose u(t) == 0 on an interval I, so yEt] == 0 on 
1. Then .y(t) == 0 and Equations (5) imply that on I, 2q[t] == f3 (0). Also 

H = -(1 + [q[t]]2) + P(O)q[t] == 0, 

so [q[t]]2 == 1 on 1. This means that if there is a time interval I on which 
u (t) == 0, then we are letting the Rocket Car coast with fixed velocity + 1 
or -1. 

We will show that the PMP selects a single candidate for an optimal 
control, for any initial state, and the synthesis is given by Figure 8. The 
fact that this control is in fact optimal follows from the discussion at the 
beginning of Section 6 of Chapter IV. 

q 

--~------~~----~~~~---4----------~--~P 

Figure 8 u(t) =0 on the Dashed Lines, u(t)= +1 on (+), u(t) = -1 on (-). u(t)=-1 
in Regions I, II, III, IV. u(t) = + 1 in Regions V, VI, VII, VIII 

Some typical optimal responses are sketched in Figure 9. The control for 
. Xo is "bang-off-bang" with qo < + 1. The control for xt is "bang-bang." 
The control for x~ is "bang-off-bang" with qo < -1. 

To show that the above synthesis is implied by the PMP, we first show 
that if u (t) = sgn yet) switches from 0 or + 1 to -1 at time T then 0 < q[ T ] S 1. 
At T, yeT) = 0 and for t;? T, yet) = u(t) = sgn y(t) = -1 since no more 
switches are allowed. Then q[t] = u(t) = -1 for t ~ T. Since the target state 
specifies q[td=O, we must have OSq[T]. But q[T]=O is impossible, since 

(6) H = -(1 +[q[T ]]2) + P(O)q(T) = O. 

Therefore q[T]>O, and (6) implies that both P(O) and q[T] are positive. 
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q 

~----------~~--~~------------------~p 

Figure 9 

Since yet) changed from non-negative to negative at T, 

02= yeT) = 2q[T]- (3(0). 

Equation (6) and the above imply that 

02=-1 + [q[T]]2, i.e., 12=[q[T]]2. 

Therefore 0 < q[T] ~ 1. A dual argument shows that if u(· ) switches from 
-lor 0 to +1 at T, then -1 ~q[T]<O. 

The constraints on q[ T] at a switching time T force us to switch if we 
hit the dashed lines in Figure 8 with a response that is moving away from 
the p-axis - we will never get another chance. A little experimentation 
shows that "bang-off-bang" is the only way to hit the origin for such a 
trajectory. (Remember we can only switch at most twice.) For trajectories 
that are moving toward the p-axis, the analysis is not difficult. From the 
state Xo in Figure 10, we can begin with u(t) = + 1 (dashed), u(t) = 0 (dotted) 
or u(t) = -1 (solid). However, from our earlier analysis we know that the 
dotted line ("coasting") can only happen if q[t] == + 1, so the dotted line is 
out. The dashed trajectory is out because 

(i) we cannot switch from + 1 to -1 unless -1 ~ q [T ] < O. Therefore we 
can never switch to a "falling" trajectory. 

(ii) Switching from + 1 to 0 would require q[ T] = 1 and we are always above 
q=1. 

Similar arguments cover the remaining cases. 
A study of Figure 8 and the cost function J~' (1 + [q ]2) dt leads to the 

following remarks: for small velocities, the integral of [qf is much smaller 
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q 

--------------~--------------~p 

than the integral of the constant term. Thus the strategy should be (and 
is) the time-optimal strategy. In fact, near the origin, the phase portrait is 
the same as the time-optimal phase portrait, given in Figure 7 of Chapter 
III. For large velocities, [q]2» 1, the strategy should be (and is) to decrease 
the velocity as quickly as possible. Similar analysis performed for the cost 
function 

A+(I-A)[q]2 

suggests that as A -+ 1, the optimal phase portrait should "approach" that 
of Figure 7 of Chapter III. This is indeed the case. 

4. A Dynamic Programming Approach to the 
Proof of the Maximum Principle 

In this section we present a proof of the PMP which is valid under certain 
smoothness assumptions. Unfortunately, as we shall show by example, 
these assumptions often do not hold, but this proof shows how the costate 
arises in a natural way. 

We consider the autonomous problem as stated in Section 2: 

i =f(x, u), ftl 

C[u( . )] = f(x[t], U(t)) dt 
to 

with to and x(to) = Xo specified. For this autonomous problem, we have a 
basic Principle of Optimality: 

Any piece of an optimal trajectory is optimal. 
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More precisely (Figure 11), let (u('), x[·]) be an optimal pair on [to, tl], 
steering state Xo to state Xl. 

________ ~~----~--------------~X1 

Figure 11 The Optimal Response ,,*[t] 

If [0', T] c: [to, td, then u(') is an optimal control steering state x [0'] to state 
X[T]. 

Proof. Suppose u*( . ) is better than u( . ) for steering X2 = x[O'] to X3 = X[ 7]. 

This implies that the solution x*[t] of the problem 

i* = f(x*, u*), x*(O') = X2 

eventually reaches the state X3 = x[ 7] at some time 7' with 

(7) C[u*(· )]= J:' f(x*[s], u~(s» ds < J: f(x[s], u(s» ds. 

We can then piece together a better control than u(·) for the original 
problem: 

{
U(t) on [to, 0'], 

u"'(t) = u*(t) on (0', 7'), 

U(t-7'+7) on[7',tl+7'-7], 

with associated response: 

{
X[t] 

x"'[t] = x*[t] 
X[t-7'+7] 

on [to, 0'], 

on (0', 7'), 

on [7', t 1 + 7' - 7 ]. 

Because f and f are independent of t, this response satisfies i'" = f(x"', u"') 
a.e. on [to, tl +7' -7], and x"'[to] = Xo, X"'[tl +7' -7] =X[tl +7' -7-7' +7] = 
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X[ttl = Xl. The cost is lower than the cost for u(· ): 

C[u#(·)] = J1,+T'-T f(x#[s], u#(s)) ds 
10 

= J"" f(x[s], u(s)) ds 
10 

+ J:' f(x*[s], u*(s)) ds 

+ L'+T'-T f(x[s - T' + T], u(s - T' + T)) ds. 

A change of variable in the last term reduces it to S;' f(x[r], u[r]) dr. The 
middle term on the right is strictly less than J:f(x[s], u(s)) ds, by (7). Thus 
C[u#( . )] < C[u( . )], contradicting the optimality of u( . ). 0 

The above Optimality Principle is useful in a wide variety of situations. 
We will use it to prove: 

Theorem 2. Consider the optimal control problem stated at the beginning of 
Section 2. If for each initial state Xo in some neighborhood N of the target 
state Xl there is an optimal control u*(t, xo) with associated response x*[t] 
which stays in N, and if the associated minimum cost C[u*(t, xo)] is twice 
continuously differentiable with respect to xo, then for each Xo E N there is ..-..... 
an extended costate w(·) satisfying (Adj.) a.e., for whichH(w(t), x*[t], v) s 0 
for all v E 'I' and all t E [0, t1]; H(w(t), x*[t], u*(t, Xo)) = 0 a.e. in t. 

Proof. Let u*(t, '(0) always denote the optimal control from "0 E N. For 
simplicity we write C(xo) for C[u*(t, xo)], the lowest cost in getting from 
state Xo to the target state Xl. We choose an instant u near time 0, u > 0, 
and a constant vector v E '1', to form the perturbed control 

ii(t, xo) = {\( ) 
u t, "0, 

Os tS u, 

U<tstl. 

The associated response is denoted i[· ] (Figure 12). It is possible (in fact 
probable) that v will not be the optimal control for getting from state Xo 
to the state i[u]. In fact, for any t between 0 and u, 

C(xo) s r f(i[s], v) ds + C(i[t]). 

We rewrite this as 

C(i[O]) - C(i[t]) s r f(i[s], v) ds. 
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____ ~~~--------~~--~~----X2 
X' 

Figure 12 (U*(·), x*[· ]) Is Optimal 

Note that x[·] is continuously differentiable on [0, (7), since it solves 
i=f(x, v) on this interval. Therefore, f(x[s], v) is continuous in s, so 
dividing the above by t and letting t ~ 0, we get 

-~C(x[t])1 '5.f(xo,v) for all vE'I'. 
dt 1=0 

Under our smoothness assumptions we can write this in the form 

(8) -(gradx C(x), f(x, v»lx=xQ '5. f(xo, v), 

for all v E '1'. But Xo E N was arbitrary, hence this last equation holds with 
Xo replaced by any x E N. 

Given a fixed Xo EN, for the optimal pair (u*(t, Xo), x*[t]) we define an 
associated (n + I)-vector w(t) as follows: 

w(t) = [ -ld C()] I = -gradx (xo, C(x»lx=x*(t). 
-gra x X x=x*[tl 

Then (8) is equivalent to 

(w(t), f(x*[t], v» '5. 0, 

This is just the statement H(w(t), x*[t], v) '5. 0. To complete the proof, we 
must show that 

(1) H(w(t), x*[t], u*(t» = ° a.e., 
(2) w(t) solves (Ad]:) a.e. 
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To prove (1) we note that the Principle of Optimality implies that if 
u*(· ) optimally steers Xo to Xl. with response x*[· ], then 

C(xo) = It f(x*[s], u*(s» ds + C(x*[t]), 
to 

for to < t < ft. We can differentiate to obtain 

0= f(x*[t], u*(t» + (gradx C(x), f(x, u*(t»)\x=x*[t] 

a.e. in t. Therefore (1) holds. 
To prove (2), we first note that if t is fixed, then 

H(w, X, u) = -f(x, u)-(gradx C(x), f(x, u» 

is continuously differentiable with respect to X in N, and attains a maximum 
whenever we substitute (u*(t), x*[t]) for any t in [to, td (a.e.). Therefore, 
if we fix both t and u = u*(t), and let x vary, then 

gradx H(w(t), x, u*(t» = 0 at x = x*[t], a.e. in t. 

Now 
n aC . 

gradx H(w(t), x, u*(t» = -gradx f(x, u*(t» - gradx L -j t (x, u*(t)), 
j=l ax 

so gradx H(w(t), x, u*(t))\,,=,,*[t] = 0 implies 

of~ (x* [t], u*(t» + ~ 02C(~* [~]) P(x* [t], u*(t» 
ox' j=l ox'oxJ 

n oC(x*[t]) ofj(x*[t], u*(t» _ 0 
+L oj Oi -, j=l X X 

i = 1,2, ... , n, 

a.e. in t. With 

w(t) = [-;:d" C(x*[t])] 

this last implies that w( . ) satisfies 

wO(t) = 0 (in fact wO(t) == -1), 

k / af) af / A af) w (t) = \ -w, axk + axk = -\ w, axk a.e. 

for k = 1, ... , n, i.e., • = - [£t(x* [t], u*(t»y w a.e. 0 

Remarks 

(1) Notice that wO(t) ¥- 0 for all t, and that w(t) = -gradx C(x) is normal to 
the surfaces of constant cost, C(x) = constant. 

(2) The hypothesis that C(x) be twice differentiable is quite severe; as will 
be shown in Example 5 below, this hypothesis is false even for the 
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Rocket Car. One can eliminate this hypothesis by assuming some rather 
complicated conditions involving the dimension of the set where C(x) 
is not smooth. For the details, see Fleming and Rishel [1975], Chapter 
IV, Section 6. 

EXAMPLE 5 (C(x) is not always differentiable). As we showed intuitively 
in Section 5 of Chapter I, and verified in Examples 1 and 7 of Chapter III 
and Example 2 of this chapter, the Rocket Car problem has an unique 
time-optimal bang-bang control of the form u(t) = sgn (a - (3t). In fact 
(Figure 13) 

q 

.... ~ 
...... ... ... , 

",u(t) "'-1 , , , 
------------------~~------------~\------~p 

Figure 13 

We will first compute C(Xo) for Xo above (+)u(-), taking to=O. For 
u (t) .... -1, we can solve the equations of motion p = q, q = u to get [q[t]]2 = 
q~+2Po-2p[t]. The switching point (P., q.) occurs where this curve inter­
sects q2 = 2p, which gives (P., q.) = (!(2Po+q~), (Po+tq~)1/2), and the 
switching time is t. = qo - q.. After the switch, we can again solve the 
equations of motion to conclude that the elapsed time from switch to arrival 
at target is t1 - t. = t. - q. = qo - 2q. (note q. < 0). Therefore, for the time­
optimal problem, with Xo above (+) u (-), 

The same type of analysis for Xo below (+) u (-) gives t1 = 
-qo+v'2[qO]2_4po. Therefore 

C( )={ qo+(2[qo]2+4po)1/2 above (+)u(-), 
Xo -qo + (2[qO]2 - 4po) 1/2 below (+) u (_). 

This function is continuous but not differentiable on (+) u (-). 
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5. The PMP for More Complicated Problems 

We will treat two extensions of the PMP. The first is for the case when 
the initial and target states x[to] = xo, X[t1] = Xl are replaced by sets So, Sl. 
The second is to non-autonomous problems - this extension will make use 
of the first. 

Let So and Sl be smooth manifolds, of dimension 1 S ro< n, 1 S r1 < n 
respectively. The simplest way to define a smooth r-dimensional manifold 
in R n is as the intersection of surfaces defined by d implicit equations: 

i = 1, ... , d 

with lsdsn and rank[ClgijClxi]=n-r on an open set in R n containing 
the manifold. For example, the vertical line Lo = {(O, 0, e)le E R} can be 
thought of as the intersection of the two planes g 1 (x 1, x2 , X 3) == Xl = 0 and 
g2(X\X2,X3)==X2=0 (Figure 14). Here, 

. [1 0] rank[Clg'jClxi]=rank 0 1 =2, 

so it is a one-dimensional manifold. 

Figure 14 

Theorem 3. Consider the problem 

x=f(x, u), X[tO]E So, 

with cost C(u(·» = J:~ f(x[s], u(s» ds. If (u*(·), x*[·]) is an opti~ pair, 
then there exists a continuous (n + l)-vector function w(·) solving (Adj.) a.e. 
and satisfying conclusions (i), (ii) and (iii) of the PMP. Also, if To and T1 
are the tangent planes to So and Sl at x[to], x[td respectively, then we can 
select the vector function w(t) so that w(t) is perpendicular to To at time to 
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and perpendicular to T1 at time t1: 

(9) 

Remarks. The conditions (9) are called the transversality conditions; they 
assert that the vector w(t) (not the curve described by w(· » is perpendicular 
to So and Sl at times to and t1 respectively. For a proof of this theorem, 
see Lee and Markus [1967], Chapter 5. 

EXAMPLE 6. Consider the time-optimal problem for the Rocket Car: 

p=q, q=u, Il, 

C[U(·)]=t1-tO= ds, 
10 

with piecewise continuous controls satisfying -1 s u (t) s 1. Suppose that 
xo = (Po, qO)T is fixed, and the q-axis is the target: 

So = {xo}, Sl = {(O, ~)I~ real}. 

This means we want to steer to the zero position, p = 0, in minimum time 
without worrying about our terminal velocity. So is O-dimensional, so there 
is no transversality condition at x[to]. Theorem 3 asserts that: 

i O=f(x,u)=1 a=O, 

W~[~} --p=q, (Adj.) r3 = 0, 

q=u, l' = -p, 

H=a +pq+yv; (W(t1), b) = 0, w=[~], 

for any vector b tangent to Sl. Clearly such a vector has the form b = (0, ~) T, 

so the transversality condition becomes 0 = (w(t), b) = y(t1)~' Thus y(t1) = o. 
As in earlier examples, we can easily show that a(t)==a(O), P(t)==P(O), 
y(t) = y(O) - P(O)t and u(t) = sgn y(t). 

We claim y(t):F 0 on [0, t1)' If y(. ) had another zero, then 1'(t#) = 0 for 
some til" Then, since 1'=-P, we would have P(t)==P(O) =0. Then at tlo 
we would have H = a (0). But maxueo H = 0 would imply a (0) = 0, in which 
case W(t1) =0 contradicting the PMP. 

Therefore, y(t):F 0 on [to, t1)' Thus u (t) = sgn y(t) is either identically 
+ 1 or -1 on [to, t1)' Theorem 3 has given us the intuitively obvious solution 
"full power until you hit p = 0." 

There is a hitch, however. Referring to Figure 15, in state space regions 
Q1 and 03 we obviously use u == + 1, u == -1 respectively. But in the shaded 
regions 02 and 04, we can hit the q-axis (p = 0) using either u == + 1 or 
u == -1 (recall q = u, p = q); we have sketched the two possible trajectories 
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as dashed curves for one state Xo: 

0,: u(t) ... +1 

----------'\,-------_ P 
0 3 : u(t) ... -1 

,t+ . "".!.~ 
" , ..... 
" ~o /(-) 

Figure 15 

Here we can use the Principle of Optimality. Beginning in the state x~ 
in Q3, we use the optimal control u =-1, generating the dotted trajectory 
through Xo. By the Principle of Optimality, for each initial state on this 
trajectory, we use u(t) == -1. Since the region Q4 can be covered by such 
optimal trajectories (by varying x~), we conclude that u(t} = -1 is always 
optimal for Po>O. A dual argument shows u(t}=+1 is optimal for Po<O. 

We now turn to the PMP for non-autonomous problems. We consider 
the problem 

(NA) i = f(t, x, u}, itl 

C(u( . }} = f(t, x[t], u(t» dt 
to 

with Xo and .o/"(t} =X1 specified. We will use measurable controls taking 
values in a fixed bounded set. We assume that to is fixed, and as usual allow 
t1 to vary. We define a new coordinate x n +1 by 

i n +1 = 1, n+1[ ] x to = to, 

and we adjoin this initial value problem to (NA) to get the autonomous 
(n + 1}-dimensional problem: 

(10) {i[t] = f(x n +1
, x, u}} 

i n + 1[t]= 1 ' 
it\ 

C(u(' }} = f(x n +1[t], x[t], u(t}} dt, 
to 

with initial state (xo, to) and as target the line: 
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xn+1 (t) == t L 

'0 -----;r- -------:-::'I 

(l!o"o) ././ /' /' I 
---~ ./ 

___ ~~ ____ ~ ______________ ~~~ ____ ~ ____ ~x2 
/' 

1 / 
/ 

1/ 
--------¥" 

Figure 16 

/' 
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We can now use the autonomous version of the PMP with transversality 
to find necessary conditions for optimal controls and responses, in terms 
of the (n + 2)-dimensional vector (xo, x, x n + 1), where as always 

Using the fact that xn+l[t] == t, we may then rewrite these conditions in 
terms of the usual extended state vector i = (XO, x) and the usual Hamiltonian 
H as follows: 

Theorem 4. Assume that f(t, x, u) and f(t, x, u) are continuous in (t, x, u) 
and continuously differentiable with respect to (t, x). If (u(·), x[·]) is an 
optimal pair for (NA), then there exists a non-zero absolutely continuous 
(n + 1 )-vector function lV( . ) such that on [to, t 1] with H = <lV, f), 

"'(t) = - [fl(t, x[t], U(t))]T lV(t) a.e., 

H(lV(t), x[t], t, u(t)) = M(lV(t), x[t], t) a.e., 

ft n (} 

M(lV(t), x[t], t) == L Wk(S)~ fk(s, xEs], u(s)) ds + K (a constant). 
to k=O uS 

As always, M = maxve'i' H(lV(t), x[t], t, v), and H = (w, ,>. The analogues 
of Lemma 1 and its corollary also hold for (NA). 

EXAMPLE 7. In the appendix to Chapter III, we proved the autonomous 
version of the Bang-Bang Principle. Theorem 4 allows us to prove the 
time dependent version. 
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Let u(·) be an optimal control on [0, tl] for the problem: x = 
A(t)x+B(t)u+c(t), with C[u(·)]=tl-to, and measurable controls with 
values in the unit cube n. Then there is a non-zero vector bE R" such that 

i = 1, 2, ... , m, 

where X(t) is a fundamental matrix for x = A(t)x. 

The associated systems are 

(i) iO=f=1 
(11) (Adj.) 

(i) *°=0 
(ii) w = -A T (t)w (ii) x=A(t)x+B(t)u+c(t) 

with 

H = (w, f) = Wo +wTA(t)x+wTB(t)u+wT c. 

Clearly, M=maxYE'l1H=wo+wTA(t)x+wTc+maxYE'l1wTB(t)v. Now if 
X(t) is a fundamental matrix for x = A(t)x then [X-1(t)f is a fundamental 
matrix for (Adj.) (ii). Since w(· ) solves (Adj.) (ii), it must be of the form 
w(t) = [X-1(t)fb for some constant vector b. Then by Theorem 4, the 
optimal control u( . ) maximizes 

Clearly, this last is maximized for 

i=1, ... , m. 

Exercises 

Remark: Unless stated otherwise, the time of arrival at the target is not specified. 

1. For a given initial value problem in R", 

x=g(x), 

let x(t) be a fixed solution. Consider the associated linearized system 

b = gx(x(t))b 

Show that if bo is tangent to the curve x( . ) at x(to), then the solution b(t) that 
satisfies b(to) = bo will be tangent to x(·) for all t, to s t s tl. 

2. If b( . ) solves (Lin.) and w( . ) solves (Adj.), show that 

(w(t), b(t» ~ constant. 

3. In Example 3 of this chapter, we showed that the Rocket Car problem: 

p=q, Ii =u, C[u(')] = L [q(S)]2 ds 
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has no solution if (Po, qo) is off (+)u (-). Which conditions fail from Theorem 
3 of Chapter IV? (Cf. the discussion in Section 6 of Chapter IV.) 

4. (Continuing Example 2.) Consider the Rocket Car: p = q, 4 = u, with C[u(·)] = 
t\, :Y(t) = 0, and u(·) piecewise smooth with 0 ~ u(t) ~ 2. Describe the control­
lable set, prove that an optimal control exists for all Xo E C€, and use the PMP 
to synthesize the optimal control. 

5. (Continuing Exercise 1 from Chapter III.) Consider the scalar problem i = u 
with xo=-1, :Y(t)=0, -1~u(t)~+1 with u(·) piecewise continuous. If 
C[u(·)] = t\, form H and (Adj.), and synthesize the optimal control. 

6. Consider the linear system :i = Ax + Bu, g(t) = 0 with A, B constant, U(t)En 
and piecewise continuous, and 

.. ftl 

C[u(·)] = 0 Ju(t)J dt, Ju(t)J = L Jui(t)J. 
i=l 

Show that for an optimal control, u( . ), the expression 

n 

- L JviJ + vTBT w(t) + wT(t)Ax. 
i=l 

is maximized when v = u(t). Deduce from this that 

where the dead-zone sign function is defined by 

dez{~}={sgna, iflal~1, 
0, if lal< 1. 

7. (A Variation of Exercise 7.) We consider the same system as Exercise 7, except 
for a different cost function 

Show that an optimal control u( . ) must make 

-hT v+vTB T w(t) 

a maximum when v = u(t). Show that 

where the saturation function is defined by 

j = 1, ... ,m 

{} { a, iflal<1, 
sat a = 

sgn a, if lal ~ 1. 

8. Carry through the complete synthesis of the optimal control for (a) Exercise 
7, and (b) Exercise 8 when (n = 1, m = 2) 

A=1, B =[2, -1]. 
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9. (Much harder than Exercise 9.) Carry through the complete synthesis of the 
optimal control for Exercise 7 when (n = 2, m = 1) 

A=[l -1] 
o l' 

Sketch the switching curves: responses which go through (0,0) for 3 cases: 
u = 0, U = + 1, U = -1. 

10. (The PMP is not sufficient.) Consider the scalar problem i = U with 

C[U(' )] = r [u(t)J2{l- 2x[t]u(t) + t[u(t)J2} dt, 

Xo = 0, g(t) == O. We will use piecewise continuous controls with values u(t) 
unrestricted. Obviously, one can take u(t)==O, x[t]==O, which gives a cost of 
zero. Show that this solution satisfies the PMP with w°(t) == -1, w I(t) == O. Show 
that it is not optimal. (Hint: Let h > 0 and 

{ l/h, 
Uh(t)= -lj(1-h), 

O:St<h, 

h:St<l. 

Show that Iimh~O+ C[Uh(')] = -(0). Carry through a similar example when u(t) 
is restricted by u (t) E [-1, 1]. (Hint: C[uho(')] < 0, for some ho, and IUho(t)1 < K 
for some K. Now modify f and/or f.) 

11. (Continuing Exercise 2 from Chapter I.) A boat travels at velocity v(t), Iv(t)1 = 1, 
relative to a river whose current moves at velocity e. Use the PMP to decide 
how to steer from a specified Po to a specified PI (see figure), in minimum 
time. (Let lei = c.) For a steering angle of 'Y relative to e, derive 

i I = C + Ivl cos 'Y = c + cos 'Y 

i 2 = Ivl sin 'Y = sin 'Y. 

Let u(t) = [~f:.;J. Describe '1', form the Hamiltonian H. Show that w is constant. 
Find M(x, w) and show that M is attained for tan 'Y = constant. Find the 
constant. (Hint: M = 0). 

) 11< \ 
P, 

I 

Po ~tl! ! 
Figure E.12 
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12. (Continuing Exercise 12.) The situation is the same as in Exercise 12, except 
the target PI is replaced by a circle of radius r centered at (~t, e): 

fl(t) = {(x I, x 2)I[x 1_ ey + [x 2 - e]2 = r2}. 

Show that the time-optimal trajectory must be normal to the target circle, thus 
the optimal response moves on the straight line from Po to (e, e). 

13. (An example with tl specified, fl(t) = R".) The state of a servomechanism is 
described by 

x = f(x) + Bu, x[O] =xo, U(t)En 

with u(·) piecewise continuous, and tl specified, x[ttJ not specified (fl(t) == R".) 
Let the cost be measured by the deviation from a given fixed desired state x#[ . ]: 

It, 
C[u( . )] = 0 fo(x#[s] - x[s]) ds 

with f a given function from R" into R. For example, we might be dealing 
with a heating system in a large space station (or greenhouse), with u(·) a list 
of (time-varying) settings for various thermostats and x#[s] a given list of the 
desired temperatures at various locations. Then St could be the fixed period 
of time over which the spaceship would be operating. Show that transversality 
implies w(tt) = O. (Hint: St = R".) Form the Hamiltonian, and show that an 
optimal control must be bang-bang or some combination of coasting with 
bang-bang. However, to obtain the state and costate vectors, show that we 
must solve a two-point boundary value problem involving a system of 2n + 2 
differential equations. (A two-point boundary value problem is a system of 
ordinary differential equations on which some unknown functions are specified 
at t = 0, and the remaining unknowns are specified at t = tl. This type of problem 
is intrinsically much more difficult to solve than an initial value problem.) 

14. (Using change of variables in linear problems.) Consider the time-optimal 
control problem 

iH3p+2p=u(t) 

with p[O] and p[O] specified, lu(t)1 s1, u(·) piecewise continuous, and target 
p[ttJ = p[tt] = O. Write this as a system :i: = Az + Lu in the obvious way. Show 
that if 

then D = Q-IAQ is diagonal. Lety[·] = Q-IZ[' ]and derive the control problem 
for y[ . ]. Show that the resulting system is normal, and prove that there exists 
a time-optimal control. Derive the Hamiltonian and show that an optimal 
control must satisfy 

---Solve (Adj.). Solve the state equations for u(t)=+1 and u(t)==-l, and plot 
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the two responses, Q+ and Q_ (in y-space), which pass through O. Show that 
these are switching curves for optimal responses when Xo does not lie on 
Q+uQ_. 

15. (Change of Variable When A Cannot Be Diagonalized.) Consider the time­
optimal control problem 

(a 2> 0 a given constant), 

with lu(t)1 ~ 1, u(·) piecewise continuous. Let y = [p, p, fir, and write the 
problem as a system, Y = Ay + bu. If 

[
1 0 -~l 

Q= ~ ~ -~-} 
show that the change of variable z = Q-ly gives a system z = Jz + Q- 1bu with 
J in Jordan canonical form. If we define 

then derive the problem for x[·]' Form the Hamiltonian and show that an 
optimal control must satisfy 

--Solve (Adj.) and argue that u(·) switches at most twice. 

16. (The Rocket Car with a New Target.) 

(a) Use the PMP (with the transversality conditions) to solve the problem of 
bringing the rocket car to rest, i.e., f7(t) = {(x I, O)lx 1 E R}. 

(b) Same as (a) except f7(t) = {(x" O)llx II ~ d}, d given. 

17. (Singular Control Problem.) We say that an optimal control (or the problem 
from which it stems) is singular if maximizing the Hamiltonian does not 
explicitly determine u(t) as a single-valued function of x[t] and w(t). Consider 
the optimal control problem 

p=q, q = -t[qf+ u, 

with AI given, 0< AI < 2, iu(t)i ~ 1 and piecewise continuous. Form the Hamil­
tonian and the system (Adj.). Show that 

iw2(t)i < 1 => u(t) = 0, 

iw2(t)i > 1 => u(t) = sgn w2(t). 
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w 2 (t) = +1=>0:s u(t):S +1, 

W 2(t) = -1 =>-I:s u(t):SO. 
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Thus the problem is singular, since u(t) is not specified when Iw 2 (t)1 = 1. 
Supposing that I w2 (t)1 = 1 on some interval I, show that q[t] '" constant and 
u(t) = [q]3j3 on I. 

18. (How to Handle a Problem with a Fixed Time Interval.) Consider the scalar 
problem Ii = -u for O:St:S 1, with p[O]=O, p[I]=O both specified, 

C[U(·)]=f
1 
(u+l)dt, 

[) 

and u(t) E fl with u(·) piecewise continuous. 

(a) Show that any control for which J~ u(t) dt = 0 is optimal. Attempt to apply 
the PMP directly and derive w(t) == O. 

(b) To use the PMP on the above problem, introduce the new state variable 
q[.] with 

q = 1, q(O) = O. 

Then define 

x=[:l with x[O] = 0, X[tl]=[~J. 

Show that the new problem for x[ . ] is equivalent to the original problem 
for p[ .]. Use the PMP to synthesize the optimal control. 



Appendix to Chapter V: A Proof of 
the Pontryagin Maximum Principle 

We consider the problem 

i = f(x, U), x[O]= XO, U( . ) measurable, 

with x[t] ERn, u(t) E 'I' c R m with 'I' an arbitrary bounded set. We assume 
that f is continuous in (x, u) and continuously differentiable in x. Finally 
we assume a fixed target fI(t) == Xl and a cost function 

C[u( . )] = f' f(x[s], u(s)) ds 

with f bounded below on R n x '1', continuous in (x, u), and continuously 
differentiable in x. Here t1 is the (unspecified) time of arrival at the target. 

We define a regular point of a control u(·) as a point t at which 

1 JI " " lim -h [f(x[ T ], u( T)) - f(x[t], u(t))] dT = O. 
h .... O I-h 

Under our assumptions, almost all points are regular. 
The reader who prefers to avoid measure theory can assume piecewise 

constant controls, and use non-jump points as regular points. In either 
case, the set of non-regular points has measure zero, i.e., almost all points 
are regular. 

Given a particular control-response pair (i[t], u(t)) we can form ii[t] == 
[at/axil evaluated along (i[t], u(t)), i = 0,1,2, ... , n; j = 0, 1, ... ,n. We 
can then form the associated linear and adjoint systems: 

(Un.) y = ii[t]y, 

(M.) ~ = -{ii[t]}T w. , 1. 
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We can then define the Hamiltonian associated with any control-response 
pair and adjoint solution w(· ): 

.n'(w, X, D) = (w, I(x, D) = f wi(t)/(x[t], u(t)), 
i=O 

and its maximal function 

.Jt(w, x) = sup .n'(w, x, v). 
VE'I' 

Theorem. If (x*[ . ], D*( . )) is an optimal pair tor the control problem described 
above, then there exists a solution W(·) of (Ad!.) such that almost everywhere 

Furthermore, .Jt(w(t), x*[t])=O on [0, tIl 

Remarks 

(1) The extension to non-autonomous problems is relatively straightfor­
ward, if one introduces an additional state variable xn+1[. ], defined by 
Xn+1 = 0, Xn+l[O] = O. This imbeds t in the state vector, and the new 
problem is autonomous. This approach requires f(t, x, D) to be con­
tinuously differentiable in t in order to make the new system con­
tinuously differentiable in xn+1. One can prove the PMP under weaker 
assumptions by a direct attack on the non-autonomous problem - see 
Lee and Markus [1967], Chapter 5, or Berkovitz [1974], Chapter VI. 

(2) The statement and proof of the PMP is more complicated when the 
target g-(t) is a closed time-varying set. We will not deal with this case. 
The interested reader can find the details in Lee and Markus or 
Berkovitz (op cit.). 

Proof 

Our proof of the PMP will occupy most of the remainder of this appendix. 
At the end of this appendix, we describe other approaches to the proof. 
Our approach is essentially that of the original proof of Pontryagin et al. 
[1964]; the presenta.tion in Lee and Markus [1967] is based on this same 
approach. We follow in part the presentation in a paper of Diliberto which 
appears in Leitmann [1977), and the presentation in Lee and Markus. 

The key idea is to perturb an optimal control D*( . ) by changing its value 
to any admissible vector v over any small time interval (Figure 1): 

Here Ti is any instant in (to, t1), and c\ ki, are any non-negative constants. 
In Lemma 1 we show that if xe [ • ] is the response associated with De ( • ), then 
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ui 

I I 
I ....... --... ;-~ 
I I 
I I 
I I 

Figure 1 The ith Components of u*( . ) and u. ( . ) 

X.[TJ = X*[Ti]+ ecit + O(e), 

t = f(X*[T;], v) -f(x*[ T;], U*(Ti». 

In Lemma 2 we show that this perturbation in the response at Ti 

propagates to time t1 under (Un.). (The fact that x.[· ] exists on [0, ttl for 
e small follows from standard results): 

where Yet, Ti) is the fundamental matrix for (Un.) satisfying Y( Ti, T;) = I 
(thus i[t] = yet, Ti)t solves (Un.) with i[T;] = t). 

If we select a distinct set of times Ti: to < T1 < T2 < ... < T p < t 1, and 
perturb u*(· ) near each Ti by Vi as described above, then for any t> Tp the 
resulting response can be written 

where ti=f(x*[T;],Vi)-f(x*[T;],U*(Ti». Thus the effect at time t1 of all 
possible such perturbations is, to first order in e, a cone (recall c i ~ 0) 
formed from the elementary state perturbation vectors 

This leads to the following definitions: 

Vi E'I', P any natural number}, 
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Figure 2 

At a regular point t, the cone X(t) is only an approximation to the reachable 
set at time t, but it is adequate for our purposes. If (u*( . ), x*[ . ]) is optimal, 
then X(t) is either of dimension less than n + 1 and/or it does not contain 
any vertical downward vector d = f.L (1,0, ... ,0) T, f.L < 0, at x*[ttJ. This is 
the content of Lemma 3. This lemma is the most difficult part of the proof 
of the PMP, in that it requires a variant of Brouwer Fixed Point Theorem. 

As a consequence of Lemma 3, if tl is regular we can separate R n +1 

into two halfspaces by means of a support hyperplane at the vertex of 
X(tl). We choose a vector WI normal to this plane, pointing away from 
the cone X(tl). Then Wl'Z:50 for all ZEX(tl). We then define a solution 
of (Adj.) by W(tl) = WI. Then, almost everywhere 

wet] = {[ Yet, tl)f}-IW1 . 

(If tl is not regular, we replace it in the above argument by any regular 
point from (0, tl).) Here as usual Yet, r) is the matrix solution (as a function ---of t) of (Lin.) satisfying Y(r, r) = I. (Here we use the familiar fact that if 
Yet, r) is a fundamental matrix for (Un.), then [yTrl is a fundamental ---matrix for (Adj.).) 

Assuming the validity of the lemmas described above, we can complete 
the proof of the first part of the PMP as follows. At any regular instant t, 

~(w(t), x*[t], v) - ~(w(t), x*[t], u*(t» = (w(t), f(x*[t], v) -f(x*[t], u*(t») 

= ({[Y(t, tl)f}-IWI, t) 
= (WI, z) a.e., 

where t = [f(x*[t], v) -f(x*[t], u*(t))] E k(t), and Z = [Y(t, tl)]-It E X(tl). 
Therefore, (WI, z):5 0, i.e., 

~(w(t), x*[t], v):5 ~(w(t), x*[t], u*(t». 

Since v E 'It was arbitrary, this shows that 

~(w(t), x*[t], u*(t» =.Ai (w(t), x*[t]), a.e. 
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To see that At is in fact zero requires additional efforts, and these are 
described in detail in Lemmas 4 and 5, and the subsequent discussion. 

The reader should note that the PMP is valid for any extremal solution, 
that is, any solution which lies on the boundary of the attainable set at 
time t1 in the extended state space. 

Lemma 1. For positive constants k, c, and e, let De ( • ) be defined by 

De (t) = {u*(t), t E [a, (1) U [U2, T J, 
v, t E [U1, (2), 

where U1 = T-e(c +k), U2 = T-ek, VE '1'. 
1/ Xe [ • J is the corresponding response, then at all regular points 

(1) x*[tJ=x*[ud+(t-U1)f(x*[T], U*(T))+o(e), on [U1, TJ; 

(2) xe[tJ=Xe[U1J+(t-U1)f(xe[TJ, v)+o(e), on [U1, U2J; 

(3) xe [tJ = xe [U1J + ecf(x.[ T J, v) + (t - (2)I(x*[T J, D*( T)) + o(e) on [U2, T]; 

(4) xe[ud=X*[U1J; 

(5) Ixe[tJ-x*[tJIs;2(t-U1)M /ortE[u1,TJ; 

(6) Xe[T J-X*[T] = ec[l(x*[T], v)-f(x*[T], U*(T))]+o(e). 

Remarks 

(1) Equation (6) shows that the perturbation at time T is differentiable in 
e, even though lex, u) is only continuous in e. 

(2) Equation (1) holds for any response control pair; optimality does not 
playa role here. 

Proof. (4) is obvious. 
Since If I s; K* on R n xW, for any response we have 

Therefore, 

(i) Ix*[tJ - x*[udl s; K*(t - (1), 
(ii) Ixe[tJ-Xe[U1JIs;K*(t- U1), 

so 

IXe[t] -x*[tJI s; lie[t] - xe[u1]1 + Ix*[ud - x*[t]1 s; 2K*(t - (1) 

and (5) holds. 
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To establish (1), we write 

x*[t] = X*[U1]+ L f(x*[s], u*(s)) ds 

= X*[U1] + r f(X*[T],U*(T»ds 
0"1 

+ r [f(x*[s], u*(s)) - f(x*[ T ], u*(s))) ds 
0"1 

+ r [f(x*[ T ], u*(s)) - f(x*[ T ], U*( T))] ds 
0"1 

Since f is continuously differentiable with respect to x, it is locally 
Lipschitzian with respect to x, so 

1.111:$ L, Klx*[s]-X*[T]I dS:$ ( KI r f(x*[r], u*(r» drl ds 

:$ r KK*(T-S) ds :$KK*(T-U1)2= 0(8). 
0"1 

At a regular point T, 

which implies that .12 = 0(1)(T-U1) = 0(8). This proves (1). 
To establish (2) and (3), we write 

t.[t] = t.[ad + f, i(x.[s], u(s» ds 

= t.[ad + It i(x.[r], v) ds + It [i(x.[s], u.(s» 
a1 a1 

- f(Xe[T], u.(s))) ds + r [f(X.[T], u.(s» - f(x.[ T], v)] ds 
0"1 

for U1 :$ t:$ T. 

The last two integrals on the right side are 0 (8) by arguments exactly 
as above, so 

x.[t] = X[U1] + (t - (1)f(x.[T], v) + 0(8), 

In particular, 

(7) 
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If we now begin with x.[t] = X.[0"2] + S: (xe[s], Ue(S» ds, and parallel the 
2 

derivation of (1) and (2), we get 

xe[t] = Xe[0"2] + (t - 0"2)(Xe[ 'T], u( T» + o(e), 

and this combined with (7) gives (3). 
Finally, we obtain (6) as follows. From (1) and (3) we have: (recall 

x*[O"tJ = X.[O"l]) 

x*[ T ] = x*[O"tJ + dc + k )(x*[ T ], u*( T» + 0 (e) 

x.['t'] = x.[u1 ] + ecf(x.['t'], v) + ekf(x.['t'], u.('t')) + o(e). 

But from (5), we have X. [T ] = x*[ T ] + 0 (e), so we can replace xe [T ] by x*[ T ] 
on the right side of the last equation above to get 

X.[T] = X*[O"l] + ecf(x*[ T], v) + ekf(x*[ T], U*(T)) + o(e). 

Subtracting this from the first equation above, we obtain (6). o 

Lemma 2. Let u(· ) be any fixed admissible control, with response x[·] on 
[to, t1]. Suppose that X. [ . ] solves the same differential equation as x[ . ]: 

i. = (x., u(t)), on [T, ttJ 
with X.[T] = X[T] + et + o(e), t a fixed vector in Rn+1. Then 

x.[t] = x[t]+eY(t, T)t+o(e) 

where yet, T) is the fundamental matrix for (un.) which satisfies YeT, T) = I. 

Proof. This is a well-known folk theorem. The lemma asserts that for any 
t, the function x.[t] is differentiable with respect to e and at e = 0 this 
derivative is 

o A 

- (x.[t])!.=o = Yet, T)t. oe 
To see this, we use the standard result (Coddington and Levinson [1955], 

Chapter 2) that the solution yet; T, t) of the initial-value problem 

~=(y,u(t», Y(T)=t, T~t~tlo 

is differentiable with respect to its specified initial value y( T), and this 
derivative is 

Then, by the chain rule, 

OY 
---;;--( ) = Yet, T). oy T 

OYI = oy . OY(T)I = yet, T)t. 
oe .=0 0Y(T) oe e=O 

o 
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Lemma 3. If t is a regular point for the control-response pair (x[·], u( . )), if 
the associated perturbation cone J{(t) is such that dim J{(t) = n + 1 and the 
interior of J{(t) contains a vertical downward vector d = ~(1, 0, ... , O)T, 
~ < 0, then (i[·], u( . )) is not optimal. 

Proof. In Part A we show that if (i[· ], u(· )), (Y[.], v(· )) are control-response 
pairs and if for some instants T, T': 

X[T] = yET'], 

then (i[·], u( . )) cannot be optimal. In Part B we show that under our 
assumptions such a y[ . ] exists. 

Part A. Given the situation described above, with x[t13 = XI. we define 

Clearly, the response x#[t] == yEt] for 0 ~ t ~ T'. In particular, X#[T'] = yET'] = 

(yO(r'), x(rYf. 
We claim that x#[t] = x[t + T - T']+ (co, 0, ... ,O)T on [T', t1 + T' - T], 

where CO = l[ T'] - xO[ T] < o. This means that x#[· ] is successful at lower 
cost: 

A ° Recall first of all that f does not depend on x . Therefore the function 
X[t+T-T']+(Co, 0, ... , ol solves i=f(x, u). At t = T', 

i[T' + T -T']+(CO, 0, ... , ol = (l(T'), X(T)T)T. 

This is exactly the value specified for x#[ T'], and since solutions of initial­
value problems are unique, 

x#[t] == i[t + T - T']. 

Part B. Let (x[ . ], u( . )) be a control-response pair. According to (6), the 
control change that replaces u(t) by the admissible constant vector Vi on 
[Ti - dc i + k i), Ti - eki] changes X[Ti] by ti = ecti(x[Ti], Vi) -1(X[TJ, U(Ti))], 
(to first order in e). By Lemma 2, this change at Ti propagates to a later 
time r as 2; = Y(r, r;)~;. If we make a finite set of such perturbations at 
times 0 < T1 < T2 < ... < Tp < T, then for sufficiently small eo> 0, the corres­
ponding response satisfies 

p 

x.[T,c]=i[T]+e L cizi+o(e), 
i~l 

Now if dim J{(T) = n + 1 and de J{(T), then 

n+1 

d= L aizi' 
i~l 

O<e < eo. 
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for some independent set of vectors Zi E %( T). Since d is in the interior of 
%(T), all of the ai,s are positive. We want to show that there is an actual 
response ~[.] such that ~[r] = x[r] + d, for Band Jl sufficiently small. This will 
give the desired result. Now for every vector in the cone B = {eyly in the 
convex hull of Zl, Z2, ... , Zn+b 0:5 e :5 eo}, there is an associated attainable 
state X.[T]: 

. def t-
L c'2i 1-+ x.[r] - x[r] = n(e) 

w~ere X. [ . ] is generated by the perturbations ti at time Ti with earameters 
k' (arbitrary, but small) and c'. This defines a continuous map h of B into 
Rn+1. 

~2 

" ~3 

Figure 3 The Cone B 

Notice that for y E aB, 

Ily-dll~v>O. 

Thus for e sufficiently small and y E aB, 

A standard variant of the Brouwer Fixed-Point Theorem (Lee and Markus 
[1967], p. 251) implies that I1(B) covers d. Thus there is a response y[. ] 
such that Y[r] - x[r] = d. 0 

Remark. The time t1 may not be a regular point, but if %(t1) is of dimension 
(n + 1) and contains d, then %(T) will have the same property (using, say, 
!d in place of d) for T near t1. Since almost every point is regular, some 
such T will be regular, and we can apply the lemma to conclude (x[· ], u(· » 
is not optimal. 

The proof that ,re(w(t), x*[t], u*(t» =.J{ (w(t), x*[t]), a.e. now follows 
easily, as outlined earlier. 
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To show that Ai == 0, we need to enlarge our cone J(tl) to a new cone 
%(tl) by using additional perturbations. We define (Figure 4) 

%(tl) = J((tl)EBi(x*[tl], U*(tl», 

where AEBB = {a+pbiipi <Po, aEA, bEB}. 

Figure 4 X(tt) Is the Shaded Half-Space 

Lemma 4. Assume that tl is regular. Then for Po sufficiently small, each y 
in %(ft) represents an approximation to a reachable state at time th in the 
sense that there is a response xe[t] such that 

Xe[tl] = x*[td+ ey+ o(e). 

Proof. We need only show that vectors of the form py == pi(X*[tl], U*(tl» 
for 13 sufficiently small are attainable in the sense described. We will use 
formula (1) of Lemma 1. To get such a perturbation with 13 > 0, we use 
u*(t+e(c+k», starting at to=-e(c+k) rather than to=O. Because the 
system is autonomous, this time-shift will bring us to the target'xl at time 
tl-e(c+k). We now leave ue(t) constant at U*(tl) for tl-e(c+k)stStl. 
Then by (1) (applied to xe[·] rather than x*[· ]), 

Xe[tl] = xe[t - e (c + k)] + e (c + k )i(Xe[tl], U(tl» + o(e) 

= Xl + epi(xl, u*(ft» + o(e). 

To get the final equality we used the continuity of i to replace xe[td by 
x*[td. 

To obtain the perturbation with opposite sign, we start late, with uAt) = 
u*(t-e(c+k» starting at time to=e(c+k). This control will steer to Xl 
at time tl +e(c +k). If in formula (1) we take t = T = tl +e(c +k), 0"1 = tl, 
then 

which we can rewrite as 

o 
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LemmaS 

..4l (w(t), x*[t]) -= o. 
Proof. If tl is a regular point, then Lemma 4 shows that the vector 
pl(x ... [t1], u ... (ttl) is within 0(8) of being in the reachable set. Lemma 3 carries 
over verbatim with J(tl) replaced by J(tl). Thus if (i*[· ], u*(· » is optimal, 
then either dim X(tl) < n + 1 and/or X(tl) does not contain any vertical 

A T 
downward vector d = IL (1,0, ... ,0) . Therefore there is a hyperplane at 
the vertex of X(t1) which separates it from a half-space. As before, we 
choose a vector WI such that (WI. i) s 0 for all i E X(t1). Since 
Pf(X*[t1], U*(t1» E X(tl) for P both positive and negative, we conclude 
that (WI, f(X*[tl], U*(t1») = o. 

If ft is not a regular point, we can make the above argument at any 
regular point in (0, tl). In this way, we obtain a single regular point at 
which 'Jt = (WI. i> = O. We already know, from the discussion following 
the proof of Lemma 3, that at any regular point, 

'Jt(w(t), x*[t], u*(t» =..4l (w(t), i*[t]), 

'Jt(W(t), x*[t], u*(t» -= (w(t), f(x*[t], U*(tl») =..4l (w(t), i*[t]) = O. 

To complete the proof we will show that m(t) -=M(w(t), x*[t]) is 
absolutely continuous on [0, tl], and m (t) = 0, a.e. Since m (t) = 0 at one 
point we will be able to conclude m(t)-=O on [0, td. 

To show that m(,) is AC, we need to show: 

Given e > 0, 38> 0 such that for any finite set of intervals [tio t;], 
i=1, .. . ,N, 

N N 

L It,-t:l<8:::} L Im(t,)-m(tDI<e. 
i-I 1=1 

Because the inequalities are strict, we can use regular points ti, t:. Then 

m(ti) - m(tD = 'Jt(W(ti), i*[t;], U*(ti» - 'Jt(w(tD, x*[tn, u*(tD) 

~ 'Jt(W(ti), x*[t;], u*(tD) - 'Jt(w(tD, x[tn, u*(tD) 

= (W(ti), f(x*[t;], u*(tD) - (w(tD, f(x*[t;], u*(t:))) 

~ -K{lw(ti)-W(tDI +lx*[t;]-x*[t:JI}, 

since H(w, x, u) is continuously differentiable with respect to W, x. Similarly, 

m(ti)- m(tD s 'Jt(W(ti), X*[ti], U*(ti»- 'Jt(w(tD, x*[tD, U*(ti» 

S J({IW(ti) -w(tDI + IX*[ti] -x*[tnl}· 

But wand w* are absolutely continuous, and the absolute continuity of 
m(·) follows. 
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Now m (t') = Je(w(t'), x*[t'], D*(t')) == Je(t') when t' is regular, and m (t) 2: 

Je(t) for any t. Let us compute dm/ dt at a regular point t': 

m (t) - m (t') > Je(t) - Je(t') for t _ t' > 0, 
t - t' t - t' 

(8) 
m(t) - met') < Je(t) - Je(t') for t - t' < O. 

t- t' t- t' 

We write 

Je(t) - Je(t') _ ( ') Je(w(t'), x*[t'], D*(t)) - Je(w(t'), x*[t'], D*(t')) 
(9) , - Z t, t + , 

t-t t-t 

where 

(t - t')Z(t, t') = [crt'(w(t), x*[t], D*(t)) - Je(w(t'), x*[t], D*(t))] 

+ [crt'(w(t'), x*[t], D*(t)) - crt'(w(t'), x*[t'], D*(t))]. 

From (9) and the fact that v = D*(t') maximizes Je(w(t'), x*[t'], v), we see that 

Je(t) - Je(t'):> Z( ') , t, t 
t-t 

if t- t' <0, 

(10) 
_Je--,-( t-,-) -_crt'_( t....;..') < Z ( ') 

, t, t 
t-t 

if t-t'>O. 

A straightforward application of the chain rule shows that (recall that 
(w,f)=wTf=Fw) 

. , (acrt' A) (aJe A) lIm Z(t, t) = ----;;-, w + ----;;-, x 
HI' aw ax 

= (I, _[fx]T w)+([fxf w, i> = O. 

Therefore, letting t -+ t' from the left and right, respectively, we see from 
(8) and (10) that 

dm 
->0 dt - , 

dm 
-<0 dt - , 

respectively, for t = t'. Thus dm/ dt = 0 at any regular point. o 

In conclusion, we very briefly describe alternate methods of proof for 
the PMP. One can interpret the control problem as an abstract minimization 
problem, C[D(' )] = J~l f(x[s], D(S)) ds, on a function space, with constraints. 
Among the constraints are i = I(x, D), and x[ft] = Xl. One then obtains an 
abstract Lagrange multiplier problem; the Lagrange multiplier is exactly 
the costate w[· ]. This approach is used in Neustadt [1976], for example. 
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There is a very nice treatment in Craven [1978]. The advantage of this 
approach is that it extends quite readily to problems involving integro­
differential equations, equations with delay, and so on. Its disadvantage is 
that it is based on a considerable amount of sophisticated mathematics, 
and there are subtleties which can lead the beginner into mistakes. 

Another approach is that of convex analysis. This type of analysis tends 
to get very powerful results under minimal assumptions. This approach has 
led to one of the most general formulations of the PMP, with very weak 
hypotheses - cf. F. Clarke [1976]. Convex analysis also tends to cover a 
broad range of problems in optimization. 
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Control theory is an area of application of concepts from linear algebra, 
convexity, classical analysis, functional analysis, and differential equations. 
We present a selection of relevant information from each of these areas. 
We do not try to "survey the field," but instead concentrate on a direct, 
intuitive presentation of those facts which may not be familiar to all readers. 
In certain places we assume a familiarity with Lebesgue measure and the 
concept of a normed linear space. 

1. Linear Algebra (References: Finkbeiner [1978], Gantmacher 
[1964].) 

Let R denote the real numbers, let e denote the complex numbers, and 
let R n, en denote the corresponding spaces of n-tuples. 

If A = [aii] is an n x n matrix with entries from e, then a column vector 
x E en, x ¥ 0, is called an eigenvector of A if there exists a A E e such that 
Ax = A x. The number A is called an eigenvalue. Even if the entries of A 
are real, some or all of its eigenvalues and eigenvectors may be complex. 
For a given eigenvalue A, the associated eigenvectors form a vector space, 
called the eigenspace. The eigenvalues of A coincide with the roots of the 
characteristic equation @lA(A)=det(A!-A)=O, where "det" stands for 
determinant, and! stands for the n x n identity matrix. The characteristic 
polynomial ~ A (A) has degree n, and we can factor @I A (A) over e, 

~A(A) = (A -A1)"1(A -A2)"2 ... (A -Ap)"p. 

The (complex) numbers A}, ... , Ap(l sp s n) are the distinct eigenvalues 
of A, and the (natural) number Vi is the algebraic multiplicity of Ai' The 
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dimension dj of the eigenspace of Aj is called the geometric multiplicity of 
Ai> and dj S Vj. An n x n matrix A always satisfies its own characteristic 
equation, i.e., if we replace A in gp A (A) by the matrix A, the result is the 
zero matrix, gp A(A) = O. We write 0 for the real or complex number zero, 
o for a null vector, and Om" for a matrix with all entries zero. When the 
context makes the meaning clear, we will write 0 for Om"' 

Given an n x n matrix A whose distinct (complex) eigenvalues are 
{At. A2, •••. , Ap}, there exists a nonsingular matrix P such that P-1AP is in 
Jordan canonical form, i.e., p- 1 AP = J where J is block diagonal, i.e., 

J=[JI lz., 0], 
o ' Jk 

each matrix J( is square and has the form 

for some eigenvalue Ai of A. 

The matrices It. 1= 1, 2, ' .. , k, can vary in size from 1 x 1 to n x n, the 
same eigenvalue may appear in several It's, and each eigenvalue appears 
in at least one It. 

If A is an n x n matrix over R, that is, all entries aij E R, it might be the 
case that some entries in the matrix P and/or some eigenvalues of A are 
complex. We have no control over the eigenvalues of a given matrix A, 
but if we wish to avoid using complex entries in P, we can use the real 
canonical form of A: 

There exists a real nonsingular matrix P such that,j = p- 1 AP is block 
diagonal, exactly as in (*) above, except the form of JI is different. If the 
corresponding eigenvalue is real, then 

JI = [~k" Ak" 0] 
o '1 'Ak 

If the corresponding Ak = ak + i{3k (ak, 13k real, i = 0) is complex, then 

If A = [aij] is any (m x n) matrix, then AT = [ajJ is its n x m transpose, 
. "T (1 2 n) T ( 1 2 n) If x, yare column vectors 10 R ,x = x ,x , .. , ,x ,y = y ,y ,.,., y , 

then 
(x,y)=xTy= i xV, Ixl= i Ixjl, IIxll=(x,X)1/2. 

j~l j~l 

We say x is orthogonal (perpendicular) to y (xl..y) if (x, y) = O. 
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If :7 = {Xl, X2, ... ,X,} is a set of vectors in R", then:7 is linearly indepen­
dent over R if only the trivial linear combination can be zero: 

, 
L ajxj =0, 
j=l 

aj E R for j = 1, ... , r :::;> al = a2 = ... = ex, = O. 

If there is a nontrivial linear combination which yields the vector 0, then 
the set :7 is dependent. If a set :7 is dependent, then there is a nontrivial 
vector y 1.:7, i.e., (y, Xj) = 0 for j = 1, 2, ... , r. :7 is a maximal independent 
set in R n if and only if it is a basis for R" - every vector y ERn can be 
written in a unique way (y = L~=l akxk) as a linear combination of the 
vector in :7. Every basis for R n contains exactly n vectors. 

For any set :7 of vectors in R n and any fixed vectors Xo ERn, we define 
the translate of:7 by Xo: 

xo+:7 = {xo+yly E :7}. 

If XE R", yE R", then the Cauchy-Bunyakovskii-Schwarz inequality 
states 

I(x, y)1 oS IIxIiIlYII, 
where lex I denotes the absolute value of the real number ex. The matrix 
norm of any matrix A is 

IAI =L laijl· 
i.i 

There will only be a few instances where we will need to work with n-tuples 
of complex numbers, that is x = (x I, ... , x") TEen. The only changes in the 

T ".. above are: (1) to define (x, y) == x y* == Lj=l Xl (yl)*, where ( )* denotes 
complex conjugation; (2) to define lex + il3l as the modulus (ex 2 + 13 2//2; and 
(3) to allow the a/s to be complex in the definition of independence. 

If B is an (m x n) matrix, then its rank, rank B, is the number of vectors 
in any maximal set of linearly independent row vectors of B; rank B is 
also the maximal number of linearly independent column vectors in B. If 
rank B = r then there is a number e > 0 (depending on B) such that 

IA-BI<£:::;> rankA~r. 
Finally, rank B = r implies that at least one (r x r) submatrix C satisfies 
det C, ¢ 0, where the (r x r) matrices C, are formed by choosing any r rows 
i h i2 , ••• ,i, and any r columns, h, .. ,j" of B and forming C from the 
entries bikil, k = 1, ... ,r, 1= 1, ... ,r. 

2. Topology, Convexity, Hyperplanes (References: Eggleston 
[1958], Valentine [1964].) 

Given x E R" and 8 > 0, we define the ball of radius 8 centered at x 
by OO(x;8)={YIYER n , lIy-xll<8}. If [feRn is a subset of R n, then the 
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n -dimensional interior of Y is defined 

Int Y = {x E Y, 38> 0 such that B(x; 8) e Y} (8 may depend on x). 

Y is symmetric means x E Y ¢::> - X E Y. Y is open if every point of Y is it:! 
IntY. 

If X is a set in R", Xc will denote its complement. X is closed means 
Xc is open. 

If X eRn is a set, the boundary of X is defined by 

ax = {xix e Int X, x e Int XC}, 

and the closure of X is clX = X U aX. 
A set X eRn is convex if the entire line segment between any two points 

of X is contained in X, i.e., 

x,Y in X~{ax+(1-a)YI0<a<1}eX. 

X is strictly convex if 

x, y in X ~ {ax+(1-a)yI0< a < 1}e Int X. 

Intuitively, the line segment between any two points of X lies in the interior 
of X (except perhaps for its endpoints). 

Convex, but 
not strictly 

Convex, but 
not strictly 

Strictly convex 
(no line segments on 

the boundary) 

Given a finite set of points {Xl. ... , xp} eRn, any point of the form Lf=l ajxj> 
with aj 2: 0 for j = 1,2, ... ,p and L7=1 aj = 1, is called a convex combination 
of the points Xl. •.• , xp. Given a (finite or infinite) set of points XeR", 
the convex hull of X, co X, is the smallest convex set containing X. It is 
the intersection of all convex sets that contain X, and is also equal to the 
set of all convex combinations of finite numbers of points in X . 

• 
• • 

coX co,! 

The convex hull of a finite set of points is called a convex polytope (e.g., 
co X above). 
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A subspace of R n is any set of vectors closed under addition and 
multiplication by scalars. Every subspace is the solution set of a 
homogeneous system of equations, Ax = O. In R3 a subspace is either a 
plane or a line through the origin. A translate of a subspace 9' is 9' + c for 
some ceRn, i.e., {xlx=y+c, yeY'}. For example, the set {xI2xl_X2= 10} 
is the translate by c= (4, _2)T of the subspace 9'={xI2x 1 -X2=O}. (Sketch 
it!) 

An (n -1)-dimensional hyperplane P in R n is the solution set of a single 
linear equation 

P = {xlxe R n, (a, x) = a} 

where a is a given vector in R n, and a is a given real number. It is an 
affine space, i.e., a translate of the subspace {xl(a, x) = O}. This affine space 
is indeed a subspace of dimension n -1, and its normal is parallel to a. 

An (n -1)-dimensional hyperplane P defines two sets which are called 
half-spaces (they are not, unfortunately, subspaces), 

{xlxe R n, (8, x)- a sO}, {xlxe R n, (a, x) - a 2: O} 

and P is said to separate these sets. Given any two sets 9' and X in R n , 

P separates them if 9' lies in one half-space determined by P, and X 
lies in the other. Two bounded closed disjoint convex sets in R n can be 
separated by some hyperplane. 

For a set 9', the carrier plane of 9' is the affine space of lowest dimension 
which contains 9'. For example, the segment 9' = {(2, y )1-1 S y s1} has 
the affine space 2 + ro as a carrier, where ro = {(O, y)ly e R}. When discussing 
a9', Int 9'; etc., we are always referring to the relative topology in the carrier 
plane of 9'. For the above example, a9' = (2, -1), (2, 1), and Int 9' = 
{(2, y)I-1 < y < 1}. If we were to use the topology of R2 in which Y lies, 
then the boundary of 9' would be 9' itself, and 9' would have no interior. 
Intuitively, we work in the natural dimension of a given set rather than in 
the dimension of the space in which the set is given. 

Let Xc R n be convex and closed. An (n -1)-dimensional hyperplane 
P supports X at p e ax n P if X lies entirely in one half space defined by P. 

P' 

P 

P supports :J( at p 
P' does not support J{ at p 

-~~--P 

P and P' both support It at p 
P' supports It at q 

P" 

Through each p on the boundary of a closed convex set there passes at 
least one supporting (n -I)-dimensional hyperplane. 
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A point p is an extreme point of a convex set Xc R n if p does not lie on 
the line segment between any x, y in X with both x¥- p, Y ¥- p. Such a point 
necessarily lies on ax. A convex set X is the convex hull of its extreme 
points. Every supporting (n -1}-dimensional hyperplane of a compact 
convex set must contain at least one extreme point. 

Extreme points are 
labelled x, y, z 

All boundary points 
except the (open) top 

line are extreme 

All boundary 
points are 
extreme 

If X is closed and strictly convex then each supporting (n -1)­
dimensional hyperplane meets X in exactly one point. A closed strictly 
convex set containing more than one point must have a non empty interior, 
and every boundary point is extreme. 

If X is convex and compact (closed and bounded) in R n, and ye X, then 
y and X can be strictly separated by a hyperplane P = {zl(z, a) = a}: (a, x) :5 a 
for all x E X, and (a, y) > a. 

Finally we need to establish one special, but simple, result for convex 
sets. Let X be convex and p E aX. Then there is an (n -1}-dimensional 
supporting hyperplane P = {xl (a, x) = a} at p. In particular (a, p) = a. Since 
X lies on one side of P we have either (a, q) :5 a for q E X, or the opposite 
inequality throughout X. By using b = -a in the latter case and b = a in 
the first case, we can assert: 

For each p E ax there is a vector bE R n (depending on p) such that 

(b, p) = sup (b, q). 
qE!1{ 

Metric and Normed Spaces, the Hausdorff Metric, Weak Compactness 
(References: Yosida [1966], Goffman and Pedrick [1965], Royden 
[1963].) A metric space is any collection of objects X = {A, B, C, ... } with 
a (distance) function p :X xX ... R which has the following properties: For 
all A, B, C in X, 

(i) peA, B} ~ 0, and peA, B} = 0 ¢::> A = B. 
(ii) peA, B) = pCB, A). 

(iii) peA, B):5p(A, C)+p(C,B). 

R n is a metric space with either PI (x, y) = Ix - yl or P2(X, y) = Ilx - ylI, where 
as always, Izl = r~ IZil, liz 112 = r~ Izil2. 



Mathematical Appendix 153 

Let X be the collection of all closed subsets of R". For x E R", A EX, 
B e X, we define 

d(x, A) = inf {lix - yilly E A}, N(A; e) ={xlxER", d(x, A) <e}. 

Then we can define the extended Hausdorff metric on X: 

h(A, B)=inf{eIA cN(B; e), B cN(A; e)} . 

... -.. , ... , .. , .. 
I \ 
J \ 

"'~~Ii ' .... » Ii II , ... , , ... - --, , , 
;,... A I , 

, \ ' 
, ' I 

I .. , 

I ' , I 

I " I , 
\ , 
" " , "", 

' .... ---_ ... " 

A cN(B, e) but B¢N(A, e) 

For any two closed sets A, B in R n, h(A, B) is either a non-negative real 
number or +00. For example if A is a single point in R2 and B is the 
closed half space {(x 1, x 2)lx 1 :s OJ, then h (A, B) = +00. This extended metric 
will satisfy the distance axioms above if we adopt the usual convention 
00+00 = 00. If we choose X to be the closed and bounded subsets of R", 
then h(A, B) will be a metric. If we were to allow the target set fT(t) in 
control theory to be unbounded, then we would need the extended metric. 
One simple fact which we will need later for closed sets A, Bin R" is: 

A c B ~ h(A, B) = sup d(x, A) = sup inf Ilx-yll. 
xeB xeB yeA 

A set S in a metric space is sequentially compact, if any sequence from 
S contains a subsequence which converges to a limit in S. 

We will make considerable use of the normed linear spaces of R" -valued 
functions, L 2[0, t1] and L 1[0, ttl. For measurable functions f( . ) : [0, t] ~ R", 
we define the norms as, respectively, 

Ilf( . )Ih = tl Ilf( 1")11 d1", 

where 111(1")11 = [fT (1")f(1")]1/2. 
If S c [0, t1], then lsi will denote the Lebesgue measure of S, and Xs{t) 

is its characteristic function i.e., Xs(t) is + 1 on S, ° elsewhere. 
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If X is a normed linear space (NLS), with norm 11·11, then for x E X and 
8> ° we define the ball OO(x; 8) ={ylllx-yll< 8}. If Z c X, then the closure 
of Z is 

Z = {xEXIV8 >0, 3ZEZ, ZE 00 (x, 8)}. 

If Z = X then Z is dense in X. We will use the fact that OUpc[O, td is 
L 1-dense in OUm[O, t1]. This means that given any u(· ) E OUm[O, t1] and any 
8> 0, there is a U/l(') E OUpc[O, td (Le., a piecewise constant function) such 
that U/l(') E OO(u('); 8). In other words, 

fl Ilu/l(7") -u(7")11 d7" < 8. 

In fact OUpc[O, td is "dense in measure" in L 1[0, td, that is, U/l(' ) is "point­
wise close to u( . ) most of the time": For any 81> 0, 82> 0, 

3S c [0, td, with lsi < 81. such that Ilu/l (t) - u(t)1I < 82 on SC. 

For a full discussion of this, see Royden [1963]. 
We will need a few facts about weak convergence and weak compactness. 

In L 2[0, t1], a sequence {Vk ( .) (k = 1, 2, ... ) converges weakly to v(·), 
Vk(·r~~V(·); if 

Vg(·) EL2[0, td, 

A subset Z c L 2[0, t1] is sequentially weakly compact if any sequence 
{zn} C Z has a weakly convergent subsequence with limit in Z. If X. Yare 
normed linear spaces, and F(·) : X -+ Y is such that Xn ~ Xo ~ 

limk .... oo F(xn ) = F(xo) then F(·) maps weakly sequentially compact sets 
into sequentially compact sets. This is an analogue of the standard result 
that a continuous function maps compact sets into compact sets. 

In L 2[0, td, any closed bounded set (in particular, every closed ball 
cl OO(f(' )j8)) is weakly sequentially compact. 

Absolute Continuity; lacobians; the "0" -Symbol. A function f: R 1-+ R 1 
is absolutely continuous (AC) on an interval I if for each e > ° there exists a 
8 > ° such that 

N N 

L (Pi- a i)<8 ~ L If(~i)-f(ai)l<e, 
i=l i=l 

whenever (a1, ~1)' ... , (aN, ~N) are disjoint subintervals of I. If f(t) is AC, 
then j(t) exists, a.e., and f(t) = f(a) + J~ j(s) ds whenever [a, t] is in the 
domain of f. The extension to vector functions f( . ) : R 1 -+ R n is immediate, 
using components. 

The set of continuous functions possessing all partial derivatives up to 
and including the kth on a set Dc R will be denoted Ck(D; E), where E 
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is the range space (usually Rn). By a kth partial derivative of a function 
f(x) from R P to R m we mean one of: 

;It P 

L ks = k; j= 1, ... , n. 

The Jacobian matrix at Xo of a function f(x) in C 1(RP, Rq) is the 
(q x p)-matrix f,,(xo) == [oji/OXi] 1"="0' If p = q and det f,,(x) oF 0 on an open 
set g c RP, then f( . ) is an open map, i.e., for any open :K c g, 

f(X) ;: {f(x)jx E X} is open. 

If f(z) is a real or complex valued function of the vector variable z, then 
the statement "f(z) = o(jzj) as z~ 0" means 

. f(z) 
hm-j -j =0. 
z-+o z 

For example, for x real, f(x) = X4/3 is o(jxj), g(x) = Xl/3 is not. 

3. Theory of Ordinary Differential Equations (References: 
Coddington and Levinson [1955], Hartman [1964].) 

General Existence and Continuity Theorems (Coddington and Levinson 
[1955], Chapters 1 and 2.) The differential equation x=f(t,x), x(t)ER n, 
f(t, x) ERn, with specified initial condition x(to) = xo, will have a solution in 
some neighborhood of to if either 

(a) f(t, x) is continuous in its (n + 1) variables or 
(b) f(t, c) is a measurable function of t for any constant c in a neighborhood 

of xo, f(th x) is a continuous function of x for each t1 in a neighborhood 
of to, and jf(t, x)j:s m(t) near (to, xo), where m(t) is integrable. 

Of course, condition (a) is contained in (b), but (a) is easier for the novice 
to grasp. The conditions in (b) are called the Caratheodory conditions. In 
case (b), a solution is an absolutely continuous function which satisfies the 
differential equation almost everywhere. 

In either case, the solution will be unique if f(t, x) satisfies a Lipschitz 
condition in x: 

for some constant K, all t near to, and all XI. X2 near Xo. For more general 
uniqueness results see Hartman [1964], Chapters II and III. 

The equation x = x 2 with x(O) = 1, has the solution x(t) = 1/(1 - t), 
which only exists on (-00,1). This shows that even for simple equations, 
extendability can be a problem. 
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If the solution of the initial value problem (IVP) x = f(t, x), x(to) = Xo is 
unique and exists in [a, b], in either case (a) or case (b), then the solution 
of the "nearby" IVP y = f(t, y), y(tl) = Xl will exist on [a, b] for (tlo Xl) close 
to (to, xo) (it may not be unique). In addition, the solution yet; tl, Xl) depends 
continuously on (tlo Xl): as (tl, Xl) ~ (to, Xo), yet; tl, Xl) ~ x(t; to, xo) uniformly 
on [a, b]. Furthermore, if ((t, x) contains any parameters on which it depends 
continuously, then the solutions will depend continuously on these param­
eters. In fact, even the interval of existence of a solution will depend 
continuously on these parameters. 

Linear Equations. If A(t) is an n Xn matrix and b(t)ER n, for t on an 
interval Ie R, then any vector ordinary differential equation (o.d.e.) of 
the form 

(L) x(t) = A(t)x(t) + bet), tEIeR, 

is a linear o.d.e. If each entry in A(t), bet) is an integrable function on I, 
then the solution of the initial value problem (L), x(to) = Xo (given to E I, 
Xo ERn) is unique and exists on all of I. By a solution of (L) we mean an 
absolutely continuous function x(t) that satisfies (L) almost everywhere. If 
A(t), bet) are in fact continuous on I, then a solution will be differentiable 
throughout I and will satisfy (L) everywhere. We will assume throughout 
this section that A(t), bet) are continuous, to avoid repeating the phrase 
"almost everywhere." Associated with the nonhomogeneous system (L) is 
the homogeneous system 

(H) x(t) = A(t)x(t). 

Let XI(t), X2(t), ... , xn(t) be solutions of (H) on I. These functions yield 
linearly independent vectors at one to E I if and only if they give linearly 
independent vectors at every tEl (to is arbitrary). In this case, the set of 
solutions is called a fundamental solution set for (H), and the n x n nonsin­
gular matrix function 

XU) = [XI(t), xz(t), ... , Xn (t)], tEl 

is called a fundamental matrix. If X(t), yet) are two fundamental matrices 
for a given equation (H), then there exists a nonsingular n x n constant 
matrix C such that X(t) = Y(t)c. Given a fundamental matrix X(t) of (H), 
the entire solution set of (H) is {X(t)clc ERn}. 

The unique solution of the nonhomogeneous initial value problem (L), 
x(to) = xo, is given by the variation of parameters formula: 

x(t) = X(t)X- 1(to)xo+ X(t) f t X-l(s)b(s) ds, 
to 

where X(t) is any fundamental matrix for (H) (we integrate matrices and 
vectors component-wise). 
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Constant Coefficients. If A (t) == A is a constant matrix, then one fundamental 
matrix for the constant coefficient homogeneous equation 

(CCH) x=Ax 

is the matrix exponential X(t) = eAt == L~=o (A ktk/ k !). Each entry of eAt is 
a linear combination of terms of the form t k /'/, where {A 10 ••• , Ar} are the 
distinct eigenvalues of A, and for each j, k = 0,1,2, ... , mjo with mj;?: O. 
In particular, an application of the theory described above shows that the 
general solution of the constant coefficient scalar equation, L~=o akDky(t) = 
o (D == d/ dt), is a linear combination of terms of the form t j eAt, where A 
satisfies L~=o akA k = 0 and j is a non-negative integer. 

The nonhomogeneous constant-coefficient initial-value problem 

(CCNH) x(t) = Ax(t) + bet), x(to) = Xo 

has the unique solution 

t 

x(t) = eA(t-to)xo + eAt f e -Asb(s) ds. 
to 

Stability (References: Cesari [1963]; LaSalle and Lefschetz [1961], Hahn 
[1967]). Consider the initial value problem 

x(t) = f(t, x(t», x(to) = xo, fe C([to, (0) x R"). 

If x[t] == x(t; to, xo) is a solution of this problem, then x[t] is said to be 
Liapunov stable (to the right) if 

(1) x[t] extends to [to, (0), 
(2) there is a 81 > 0 such that all solutions x(t; to, xo) == x[t] with Ixo - xol < 8 

extend to [to; (0); 
(3) for any e >0 there is a 8 >0 such that xolxo-xol <8(e) ~ Ix[t]-x[t]1 < 

e, 0:5 t:s; +00. 

Briefly, x[· ] Liapunov stable means that solutions which start close to x[to] 
stay close to x[· ]. If in addition to (3) we require 

(4) there is a 8 > 0 such that for all xo, 

Ixo-xol < 8 ~ lim Ix[t]-x[t]1 = 0, 
t->oo 

then x[t] is asymptotically stable. This solution is globally asymptotically 
stable if it is stable and all solutions tend to it, i.e., we can choose 8 = +00 
in (4). Any solution satisfying (4) is called an attractor. An attractor need 
not be stable, a stable solution need not be an attractor. 
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One useful result for simple stability conclusions is Gronwall's 
Inequality: 

Iff(t), get), h(t) are continuous on [a, b], with h(t)?:O, and if 

x(t)sf(t)+g(t) r h(s)x(s)ds, astsb 

then 

x(t)sf(t)+ get) r h(s)f(s) ef~h(r)g(r)dr ds. 

Autonomous Equations. A system is called autonomous if there is no explicit 
appearance of t in it: 

(A) x = I(x). 

Notice that if x(t) solves (A), then so does x(t + a) for any a E R. Suppose 
x(t) solves (A) on [to, td and traces out the path sketched below. 

----------~----~----t_----------~X1 

Then yet) = x(t - to) also solves (A), and traces out the same path as t varies 
from 0 to tl + to, 0 s t s tl + to. Thus with an autonomous equation there is 
no loss of generality in setting to = O. 

A vector c such that I(c) = 0 is called an equilibrium point (rest point, 
critical point) of (A), since x(t) == c is then a solution. One can then discuss 
the stability of this equilibrium. 

Because the general solution of the linear autonomous system (LA) 
x = Ax, with A a constant matrix, is completely known in terms of the 
eigenvalues of A, the stability of the trivial solution x(t) == 0 of (LA) can 
be described in terms of these eigenvalues (below, Re z means "the real 
part of the complex number z"): 

The zero solution of (LA) is stable if and only if: Re Ai sO for each 
eigenvalue of A, and when Re Ak = 0, then Ak only occurs in 1 x 1 blocks 
in the Jordan form of A. This last is equivalent to saying that if Ak has 
multiplicity mk in the characteristic equation of A, then corresponding to Ak 
there are mk linearly independent eigenvectors. 

The zero solution of (LA) is asymptotically stable if and only if Re Ai < 0 
for each eigenvalue of A (and this solution is therefore globally 
asymptotically stable). 
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An analysis of the stability of a critical point &: for a system x = i = f(x) 
with f E C 2(D; R n), with &: ED and D open, can be carried out to a certain 
extent by using Taylor's expansion about &: (remember f(&:) = 0). One then 
gets the linearized system 

*(t) = [a/I axi]I,,=cX(t) + e(t, x), 

where e(·, .) is the remainder. Under reasonable conditions, the stability 
of the linear system (e (t, x) == 0) determines the stability of the original 
system. 
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Supporting hyperplane 151 
Symbols, list of ix 
Symmetric 150 
Synthesis 6, 9 
System 1 
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Target 2,5 
Time lags 22 
Time-optimal control 57 et seq. 
Translate 151 
Transpose 148 
Transversality 6, 125 

<¥IE 7,44 
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Variation of parameters 156 
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Lang: Calculus of Several Variables. Third edition. 
Lang: Introduction to Linear Algebra. Second edition. 
Lang: Linear Algebra. Third edition. 
Lang: Undergraduate Algebra. Second edition. 
Lang: Undergraduate Analysis. 
LaxlBursteinlLax: Calculus with Applications and Computing. Volume 1. 
LeCuyer: College Mathematics with APL. 
LidVPilz: Applied Abstract Algebra. 
Macki-Strauss: Introduction to Optimal Control Theory. 
Malitz: Introduction to Mathematical Logic. 
MarsdenIWeinstein: Calculus I, II, Ill. Second edition. 
Martin: The Foundations of Geometry and the Non-Euclidean Plane. 
Martin: Transformation Geometry: An Introduction to Symmetry. 
MillmanlParker: Geometry: A Metric Approach with Models. Second edition. 
Owen: A First Course in the Mathematical Foundations of Thermodynamics. 
Palka: An Introduction to Complex Function Theory. 
Pedrick: A First Course in Analysis. 
PeressinilSullivanlUhl: The Mathematics of Nonlinear Programming. 
PrenowitzlJantosciak: Join Geometries. 
Priestley: Calculus: An Historical Approach. 
Protter/Morrey: A First Course in Real Analysis. Second edition. 
Protter/Morrey: Intermediate Calculus. Second edition. 
Ross: Elementary Analysis: The Theory of Calculus. 
Samuel: Projective Geometry. 

Readings in Mathematics. 
Scharlau/Opolka: From Fermat to Minkowski. 
Sigler: Algebra. 
SilvermaulTate: Rational Points on Elliptic Curves. 
Simmonds: A Brief on Tensor Analysis. Second edition. 
Singerffhorpe: Lecture Notes on Elementary Topology and Geometry. 
Smith: Linear Algebra. Second edition. 
Smith: Primer of Modem Analysis. Second edition. 
StantonlWhite: Constructive Combinatorics. 
Stillwell: Elements of Algebra: Geometry, Numbers, Equations. 
Stillwell: Mathematics and Its History. 
Strayer: Linear Programming and Its Applications. 
Thorpe: Elementary Topics in Differential Geometry. 
Troutman: Variational Calculus with Elementary Convexity. 
Valenza: Linear Algebra: An Introduction to Abstract Mathematics. 
WhyburnlDuda: Dynamic Topology. 
Wilson: Much Ado About Calculus. 
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