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Preface

Who is This Text’s Audience?

We have written this book for you, our inquisitive, delightful reader! Your dis-
cerning eye for mathematics, interest in numbers, willingness to explore, and desire
to understand underlying structures deeply are commendable. While this text
examines number systems from an algebraic lens, no previous exposure to abstract
algebra is assumed. We do, however, assume some familiarity with vector spaces
and basic proof techniques. Calculus: Multivariable by McCallum et al., and Proofs
and Fundamentals: A First Course in Abstract Mathematics by Ethan Bloch are
excellent references for the assumed background material.

To the Student:

Dear Student,
Welcome to the start of your journey! Consider this book as your official

companion guide—it is in some ways a traditional mathematics textbook (it has, for
example, lots of math in it), but deviates from standard practice in several notable
ways as well. First, it has multiple authors coming from a variety of backgrounds
and experiences within the general realm of algebra and number theory. You might
see sparks of more excited writing as one of us encountered a favorite piece of
number theory, for example, though we generally attempted to conform our writing
to a single voice1.

Second, and more importantly, we call particular attention to the existence of
“Explorations” sprinkled through the chapters. These worksheets are the manifes-
tations of the authors’ zeal for inquiry-based learning—the process of figuring out
mathematics for yourself like our mathematical forebears out in the unexplored

...wherein we welcome readers of all sorts to our journey.

1 Well, some of us did.
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wilderness. There are no solutions provided to the worksheets, as their point is not
typically to “get the answer” but rather to bring up questions that we’ll spend time
discussing in the following section. So don’t skip them! In fact, you might want to
photocopy those pages for repeated use. Or better yet, buy several copies of the
book, just to be safe.

To the Instructor:

Dear Instructor,
Phew! Now that the students have stopped reading, we can be frank. Two

adjectives that stand out as highly desirable when choosing a textbook are com-
prehensive and self-contained. This book does not attempt to achieve either of those
ambitions. In exchange, we stake a claim to the partially opposite adjectives of
being modern and flexible. As to comprehensiveness, the over-arching goal of the
text has been to hook the reader’s interests in the mystery of numbers, and it is the
opinion of the authors that no book this size can do justice to the vast wealth of
classical number-theoretic pearls while simultaneously working toward contem-
porary number theory. Consequently, our “to include or not to include” philosophy
has been to focus on developing a few core themes that persist through the study of
number theory at all levels:

• The study of Diophantine equations, partly for their own sake, but more typi-
cally as catalysts for introducing and developing bigger structural ideas.

• The notion of what a “number” is, and the premise that it takes familiarity in
quite a large variety of number systems to fully explore number theory.

• The use of abstract algebra in number theory, and in particular the extent to
which it provides the “Fundamental Theorem of Arithmetic” for various new
number systems.

In addition to the core themes, other aspects of modern number theory are present in
smaller but persistent threads woven through chapters and exercise sets, e.g., the
study of elliptic curves, the analogies between integer and polynomial arithmetic, p-
adic valuations, relationships between the spectrum of primes in various rings, etc.

The proper sequencing of number theory and abstract algebra is a conundrum we
have chosen to embrace. While an introduction to number theory provides a good
preparation for the study of abstract algebra, students who have had abstract algebra
are better able to fully grasp the concepts in an introductory number theory course.
Our solution is to develop and define algebraic concepts as needed to summarize
and formalize the patterns observed in various number systems. In this text, stu-
dents encounter groups, rings, fields, ideals, and more. While we have taken
uncharacteristic care to make the coverage of these concepts self-contained, it is
certainly not comprehensive. In our experience, the result is a text that simulta-
neously serves both students with and without any previous exposure to abstract
algebra. Students with little to no abstract algebra experience are able to grasp the
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salient details by applying the intuition and experience gained from the adjacent
number theory. These students gain a solid foundation on which to build in a
subsequent abstract algebra course. For students who have had a course in abstract
algebra, the pithy and targeted coverage of algebraic concepts is a good refresher
that helps them apply their algebraic knowledge to gain a deeper understanding
of the number theory content. For these students, the text provides not only an
introduction to number theory but also a strengthened appreciation for the power of
an algebraic perspective.

As to self-containedness more broadly, we have been content to assume some
reasonable prerequisites and avoid compulsively writing appendices to provide
basic familiarity with complex numbers, matrix algebra, and vector spaces. In
addition to directing students to good text sources for this background material, we
take advantage of a thoroughly modern approach, namely, the ability of readers to
go online and look things up. The skill of finding and processing mathematics
online is an increasingly crucial one and should be fostered rather than discouraged.
This philosophy makes itself explicit in the form of a section of each chapter’s
homework problems (“General Number Theory Awareness” problems) whose goal
is to get students to conduct research online on biographical information about
mathematicians and mathematical content that space prevented us from including,
or pieces of mathematical culture that don’t fit strictly in the traditional academic
view of what a mathematics textbook should cover. Exercises in these sections also
lead students to practice one of the most fundamental mathematical research skills:
seeing, upon making a mathematical discovery, if someone else has already done it.

The broader claim to modernity is an over-arching belief in inquiry-based
learning. In addition to these research-based homework questions, a second sub-
section of exercises has students numerically investigate conjectures and make their
own. Sometimes, the tools to prove these conjectures will be within a student’s
grasp, and sometimes they will be cutting-edge research questions to which
humanity does not know the answer. While we do not prescribe a programming
language for these numerical investigations, the book’s companion website has
Python worksheets designed to walk students with little to no programming
experience through those exercises. Finally, and perhaps most importantly,
inquiry-based learning is built into the text itself: exploration worksheets lovingly
placed throughout the chapters let students lead the way by coming up with the
pivotal ideas for the upcoming sections while simultaneously improving their flu-
ency in previously covered topics. The final chapter closely mirrors that of a purely
inquiry-based textbook, allowing students to work individually or in groups—
perhaps as a final project—through problem-driven sections covering material
begun in the main text (Fermat’s Last Theorem, quaternions, real quadratic units,
elliptic curves, cryptography, ideal theory). Exercises designed to pique students’
interest in these topics are interspersed throughout earlier chapters.

The pacing of the course is also rather flexible. The default approach, we believe,
should begin with the standard theoretical development of Z and Z=ðnÞ but using
the explicit language of groups and rings, rather than shunting this perspective off
as advanced material near the end of the course. Incorporating abstract algebra into

Preface vii



this process necessarily proceeds more slowly, but has the benefit of being quickly
generalizable: once you prove that Z½i� has a Euclidean algorithm, for example,
proving that it enjoys unique factorization is essentially a matter of copy–pasting
the argument from Z. Going quickly through Chapters 5 and 6 leaves enough time
to do both culminating chapters, on quadratic reciprocity and p-adic numbers, in a
single semester. On the other hand, an instructor who wanted to use the book to fill
two semesters covering both abstract algebra and number theory could easily do so
by using all of the in-class explorations, covering the details of abstract Euclidean
domains, and providing in-class time for student presentations from Chapter 9.

Finally, some closing remarks on the use of the book. As mentioned in the
student preface, we highly value the inclusion of the explorations appearing
throughout the book. They provide an inquiry-based break from the more tradi-
tional class structure during which an instructor can engage in informal formative
assessment of how the class is doing and allow students to engage in independent or
group discovery. Questions and answers to these problems are typically developed
more carefully in the sections that follow. Relatedly, the homework addresses a
variety of ways in which one becomes a master of number theory. There are
computational exercises to promote fluency in arithmetic calculations, proof-based
problems to develop theoretical understanding, the aforementioned online research
problems, and problems that lend themselves to computer-aided exploration.

Suggested Pacing and Content Coverage

A note on the use of explorations: we find that different classes take significantly
different amounts of time to work through the items on each exploration.
Accordingly, we do not necessarily recommend trying to get through a full
exploration in class. Parts could be omitted or assigned as additional homework as
needed.

For a 14-week semester, 3 hours per week, we suggest the following pacing:

• Week 1: Sections 1.1–2.3 (leaving most details for students to read),
Exploration A.

• Week 2: Section 3.1, Exploration B, and Section 3.2.
• Week 3: Exploration C, Sections 3.3 and 3.4, Exploration D, and Section 3.5.
• Week 4: Sections 4.1–4.3, Exploration E, and Section 4.4.
• Week 5: Exploration F, Section 4.5, Exploration G, and Section 4.6.
• Week 6: Exploration H, Sections 4.7 and 4.8.
• Week 7: Sections 5.1 and 5.2, Exploration I, Sections 5.3 and 5.4, and

Exploration J.
• Week 8: Section 5.5, Exam 1, and Section 5.6.
• Week 9: Sections 5.6–6.2, Exploration K, and Section 6.3.
• Week 10: Sections 6.3 and 6.4, Exploration L, and Sections 6.5 and 6.6.
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• Week 11: Sections 7.1 and 7.2, Exploration M, Sections 7.3 and 7.5.
• Week 12: Sections 7.5–7.7.
• Week 13: Chapter 9 topics.
• Week 14: Chapter 9 topics.

Flint, USA Cam McLeman
Salem, USA Erin McNicholas
Salem, USA Colin Starr
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1What is aNumber?

...wherein the Reader becomes acquainted with a familiar
cast of characters,we ask a silly question,andwe get a silly
answer.

1.1 Human conception of numbers

Roughly 37,000 years ago, for reasons not completely understood, one of the first
humans scratched 55 tallymarks into awolf bone (now called theLebombo bone after
the mountain range in which it was found). Perhaps they were tallying kills, marking
time as a primitive calendar, or merely expressing an early interest in number theory
as a hobby. Regardless of the intent, other bone artifacts from the Paleolithic era
show a clear progression of this system, moving from individual marks to groups of
marks organized in a way similar to the modern system of tallying in groups of five.

This progression from tally marks to groups is the first of countless small steps in
the evolution of human understanding of numbers. Further milestones tie inexorably
with the needs of culture, and interlace with other developmental breakthroughs in
society and technology. For example, agricultural advancements allowed the culti-
vation of much larger quantities of crops and the congregation of much larger pop-
ulations, which necessitated the ability to describe and record significantly larger
numbers than is feasible using tally marks. Imagine the thrill of the first intrepid
(perhaps literal) bean counter to recognize that instead of maintaining a pile of to-
kens to keep track of a client’s inventory they could employ cipherization, the use
of written symbols to represent specific numerical values. This breakthrough of the
fourth millennium BCE predates—and indeed, may have instigated [4]—the advent
of written language.

The Egyptian system for doing this, hieroglyphs, is an additive system, meaning
that each symbol represents a set value and a number is represented by a collection of
symbols whose sum has the desired value. By introducing new symbols for powers
of 10 as the need arose, they could abstractly express any natural number.
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2 1 What is a Number?

� Example 1.1.1 Some numeral hieroglyphs and their modern equivalents:

Hieroglyphic representation of 78, 557 = 7·10, 000+8·1, 000+5·100+5·10+7

Later number systems, like the Hindu-Arabic system we use today, often express
numbers using a finite number of symbols whose associated value is dependent
on their placement in the representation. These positional number systems were
first developed by the Ancient Mesopotamians around 3000 BCE. They employed
a sexagesimal system—not quite as exciting as it sounds—meaning that instead of
a shorthand based on sums of powers of 10 they used sums of powers of 60. That
is, whereas we would write 7389 as shorthand for the base-10 expansion 7 · 103+
3 · 102 + 8 · 101 + 9 · 100, they would write “239” for the same number, representing
the base-60 expansion 2 ·602+3 ·601+9 ·600. Except, of course, that they wouldn’t,
because they didn’t use the numerals 1, 2, 3, etc. Instead:

� Example 1.1.2 Cuneiform, the script of Ancient Mesopotamia, used the symbol
to represent 1 and to represent 10. To write down a number with multiple

“digits,” we leave a space between them (as opposed to writing them next to each
other — 7 3 8 9 vs. 7389). For example, the number 1513 = 25 · 60 + 13 would
have been written as follows:

Difficulties in using the Cuneiform system, still an early manifestation of human-
ity’s experimentation with place values, quickly become apparent. In particular, the
actual places (the specific powers of 60) were typically deduced implicitly from the
context and left ambiguous in the notation—the numbers 25 · 603 + 13 · 60 and
25 · 60+ 13 · 600 and 25 · 60−1 + 13 · 60−4 would have all had the same Cuneiform
representation as the one in the example. One explanation for this difficulty is that it
stems from an evolving notion of the number zero. With the inclusion of a numeral
0 and a convention that we write the base-60 expansion of a natural number in de-
scending powers of 60 with some notation to mark the 600 term, a sexagesimal
system is just as expressive as a decimal one.



1.1 Human conception of numbers 3

It is significant that these systems have hardwired into them the ambient world-
view that the only numbers that need to be described are all positive and rational. The
discovery, therefore, of the existence of irrational numbers, commonly attributed to
the fifth-century BCEGreek mathematician Hippasus of Metapontum, represented a
watershed moment in our historical understanding of numbers. Their mere existence
presented a notational and philosophical challenge to the Ancient Greeks, who had
no way of symbolically representing these “incommensurable” ratios. In response,
the Greeks considered numbers as being of one of two types: a number either repre-
sents a discrete quantity or a continuous quantity. Discrete entries, like tally marks,
were used to count things, whereas continuous quantities were endowed with geo-
metric meaning and thought to represent either lengths, areas, or volumes. In this
way, the ancient Greeks were able to geometrically represent and perform operations
on positive numbers both rational and irrational. This geometric perspective on num-
berhood permeates ancient Greekmathematics and largely explains why they did not
investigate polynomial relationships of degree four or higher (as such relationships
do not have a clear geometric representation in three-dimensional space).

And yet the journey through numberhood presses on. While negative numbers
were accepted and used in China as early as the third century CE, and in India in the
seventh century CE, they were still met with suspicion by European mathematicians
as late as the eighteenth century. Their acceptance in Europe coincided with a grow-
ing acceptance of complex numbers: numbers of the form a + b

√−1, where a and
b are real numbers. In 1545, Italian mathematician Gerolamo Cardano published his
treatise Ars Magna outlining solutions to cubic and quartic polynomial equations.
These techniques naturally led to the consideration of square roots of negative quan-
tities. While Cardano laid out the rules for working with negative numbers, he called
their square roots “truly imaginary since operations may not be performed with
[them] as with a pure negative number, nor as in other numbers.” It was almost 30
years later that Rafael Bombelli showed how arithmetic with imaginary numbers
could provide real roots of polynomials with real coefficients. It would be another
200 years before negative and complex numbers were fully accepted by the European
mathematical community.

This journey, from the humble beginnings of enumerating tally marks to the
solution of polynomial equations using complex roots, represents a radical expansion
of humanity’sworkingnotionof a number.Amodern encodingof this transformation,
and indeed the principal method of investigation used in this book, proceeds not
by the study of the individual numbers themselves, but rather by packaging them
into sets of numbers and then studying those sets. This algebraic approach to the
study of number, taken up in the next section, very cleanly encodes both the formal
mathematical objects and, progressing from one set to another, the evolution of
humanity’s conception of number described above.
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1.2 Algebraic Number Systems

The various types of numbers that humanity has considered can be categorized into
systems, many of which you’ll have become familiar with over your mathematical
career thus far. The algebraic approach to studying numbers is to observe that these
systems share many of the same abstract properties. These commonalities give us
great power: whatever we can prove for a general number system will immediately
apply to all similar number systems. We shall adopt the standard notations for the
most commonly encountered sets of numbers. Pay particular attention to how each
set compares to the previous ones:

Definition 1.2.1 (Commonly encountered sets of numbers)

N = {1, 2, 3, . . .}, the set of natural numbers. A case could be made for includ-
ing 0 as a natural number, but we’ll maintain the current definition for this book.
We’ll let you decide which convention is more morally defensible1 .
Z = {. . . , −3, −2,−1, 0, 1, 2, 3, . . .}, the set of integers, consisting of the nat-
ural numbers, their negatives, and zero. Note that the integers are closed under
subtraction (meaning that the difference of two integers is always an integer),
whereas the natural numbers are not. Visit the appendix for a brief look at an
axiomatic development of N and Z.
Q = { ab : a, b ∈ Z, b �= 0}, the set of rational numbers, or “the rationals,” as
their friends call them.Note that the rationals are closed under (non-zero) division,
whereas the integers are not.
R = {x : x is a real number}, the set of real numbers. Too circular? The definition
is improved by defining them as limits of convergent sequences of rationals, but
that is not particularly crucial to hash out now. As a consequence, the real numbers
are closed under taking appropriate limits, whereas the rationals are not.
C = {a + bi : a, b ∈ R}, where i = √−1, the set of complex numbers. We
will talk further about this mysterious entity i shortly. Note that, among other
things, the complex numbers are closed under taking square roots, whereas the
real numbers are not. �

All of these sets share some fundamental algebraic properties. For example, they
all come equipped with a notion of addition and multiplication of their elements,
and these operations are structurally quite similar: addition and multiplication are
commutative (a+b = b+a and ab = ba) and associative ((a+b)+c = a+(b+c)
and (ab)c = a(bc)), and multiplication distributes over addition (a(b + c) =
ab + ac). All these sets include the number 1 (a multiplicative identity: 1 · a =
a · 1 = a), and, except for the natural numbers, they all include 0 (an additive
identity: a + 0 = 0 + a = a) and an additive inverse for each element (for each
element a, there is an element b such that a + b = 0 = b + a). The existence of

1 SeeAppendix I for a formal construction of this set and amore nuanced discussion on the inclusion
of 0.
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additive inverses further endows the set with a notion of subtraction (by defining
a − b = a + (−b)).

At the same time, the descriptions of the sets highlight some substantial structural
differences. For example, in R, every element except 0 has a multiplicative inverse
(an element b is the multiplicative inverse of a if ab = ba = 1). In Z, only the
numbers ±1 have such an inverse. Distinguishing which algebraic properties are
satisfied by a number system (and the consequences of possessing those properties)
turns out to be a rather significant component of our story—a component that will
rise periodically to the forefront of our attention through the introduction of words
like rings and fields. These words typically play the lead roles in a course on abstract
algebra but will earn a “Best Supporting Idea” award for their role in this book in
helping us come to terms with new and increasingly exotic types of numbers.

1.3 New Numbers,NewWorlds

The synthesis of the previous two sections is that we have, on the one hand, an
intuitive but informal understanding of what a number is, and on the other, a formal
but thus far undeveloped notion of an algebraic structure. As with any instance of
trying to find the right definition of a term, it is the borderline cases that really test
our understanding. The role of a definition is to unilaterally mandate on which side
of the border various exceptional cases fall. Is zero a natural number? Is 1 prime? Is
the empty set connected? Do pants come in pairs? Is a hot dog a sandwich?2

In this vein, we close this preliminary chapter by introducing two potentially
borderline candidates for inclusion under the umbrella of numberhood, hopefully
highlighting the difficulty in delineating precisely the difference between numbers
and non-numbers. While you have likely met these candidates before, this quick
introduction might cast them in a new, unfamiliar, light. Don’t be alarmed if you end
the chapter feeling less confident in your knowledge of these familiar friends than
you were at the start. We will encounter these sets throughout the text, gaining a
deeper understanding of them as we go.

Candidate 1: An Imaginary Number?

We have already come into contact with the historically radical step of introducing
a new “number” called i whose square is −1. Of course, no such number exists in
R, so one might reasonably question whence this i comes, but we can nevertheless
treat it as a formal addition to our collection of numbers and extend algebraic rules
to do arithmetic with it. Insisting that we have the number i and also reasonable
rules of arithmetic in place forces the inclusion of yet more numbers. If we want

2 Discuss in small groups. Calmly.
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our set of numbers to be closed under multiplication, we will need to include ±1 (as
i · i = −1 and (−1) · (−1) = 1). The existence of new numbers quickly follows. For
example, it seems reasonable to insist that, if we add i to itself, we should get the
new number, 2i , and likewise for adding i and 7 to get, well, i + 7. We might further
insist that the commutative, associative, and distributive laws continue to hold, so
that, for example,

(2i) · (i + 7) = (2i) · (i) + (2i) · (7) = 2(i2) + (2 · 7)i = −2 + 14i.

Various sets of numbers of the form a + bi provide interesting new worlds to play
in. Particularly notable for this book will be the case where a and b are required to
be integers.

Definition 1.3.1 (Various types of numbers of the form a + bi )

The set of Gaussian integers, denoted Z[i], consists of the numbers of the form
a + bi where a and b are integers:

Z[i] = {a + bi : a, b ∈ Z, i2 = −1}.
Analogously, the Gaussian rationals, are the set

Q[i] = {a + bi : a, b ∈ Q, i2 = −1}.
Finally, taking a and b from R, we get what in principle could be called the
“Gaussian reals” but is instead called the set of complex numbers, denoted C:

C = R[i] = {a + bi : a, b ∈ R, i2 = −1}. �

It is notable that in contemporary mathematical circles, it is unquestioned that the
moniker “number” applies to elements of any of these sets—the complex numbers
simply build upon the real numbers by the inclusion of a handy missing element.
From an algebraic perspective, the introduction of i provides a root of the polynomial
x2 + 1, which previously had no roots, thereby plugging a hole in the world of real
numbers. While one could imagine that we might need to throw in a new number for
each polynomial without a real root (e.g., x2 + 2 or x4 − 2x3 + 4x + 12), the fact
is—the Fundamental Theorem of Algebra—that the buck stops atC: all polynomials
with real (or complex) coefficients have all of their roots in C, thereby solidifying
the complex numbers as a world of tremendous import.

Further, Z[i], Q[i], and C also enjoy all (or nearly all) of the formal algebraic
properties that we described in the last section. To review for later use, extending
our first example of multiplication above via the distributive law3 gives the standard
arithmetic definitions:

3 FOIL-ing, if you will.
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Definition 1.3.2 (Addition andmultiplication inC)

(a + bi) + (c + di) = (a + c) + (b + d)i

and

(a + bi)(c + di) = ac + adi + bic + bdi2 = (ac − bd) + (ad + bc)i. �

These two operations admit a particularly compelling geometric interpretation.
In Figure 1.1, we have the complex plane, where the real and imaginary axes have
replaced the standard xy-axes. We envision a complex number z = a+bi as located
where we usually put the point (a, b) in the Cartesian plane—the figure shows the
complex numbers z1 = 2+ i and z2 = 1− i depicted as the points (2, 1) and (1, −1)
in the plane. Note that Z[i], the collection of Gaussian integers, corresponds to the
square lattice of points with integer coordinates, marked as white dots in the figure.

The first of our operations, addition of complex numbers, is visualized fairly
trivially by adding component-wise, the same as in vector addition: the sum z1+z2 =
(2 + i) + (1 − i) = 3 + 0i corresponds to the sum (2, 1) + (1, −1) = (3, 0) in the
complex plane. Multiplication is only slightly more involved, and is best visualized

z1 = 2 + i

z2 = 1 − i

z1 + z2

Fig. 1.1 The Gaussian Integers inside C
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r1
=
√ 5

r2 = √
2

θ1

θ2

z1 = 2 + i

z2 = 1 − i z1z2 = 3 − i

Fig. 1.2 Polar coordinates for complex numbers

through our understanding of polar coordinates, which we briefly recall here: Given
z ∈ C, let r be defined as the length of the line segment from z to the origin in the
plane, and θ ∈ [0, 2π) be defined as the (counterclockwise) angle from the positive
R-axis to this segment. While we will not use this notation extensively, it is handy
to use the notation r ∠ θ to refer to the complex number with that value of r and θ
(including extending the notation by periodicity to all θ ∈ R).

Trigonometry provides the familiar dictionary between representations of a com-
plex number. Given the two representations z = a + bi and z = r∠θ of a complex
number, we have:

r2 = a2 + b2 a = r cos(θ)

θ = tan−1
(
b

a

)
b = r sin(θ),

when a > 0. When a ≤ 0, the relationship between a, b and θ is instead given by
θ = tan−1(b/a) ± π depending on the quadrant.

As a consequence, we can link together the polar and Cartesian descriptions of a
given complex number:

r ∠ θ = (r cos θ) + (r sin θ)i

Continuing with our example z1 and z2 from above, we can compute for z1 its
radius r1 = √

22 + 12 = √
5 and angle θ1 = tan−1(1/2), and similarly for z2, we

have r2 = √
2 and, since z2 is in the 4th quadrant, we have θ2 = tan−1(−1), as in

Figure 1.2.
The language of polar coordinates allows us to describemultiplication of complex

numbers with remarkable ease: If z1 = r1 ∠ θ1 and z2 = r2 ∠ θ2, then we can
compute their product using the angle sum formulas for sine and cosine:
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z1z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]
= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

That is,
(r1 ∠ θ1)(r2 ∠ θ2) = (r1r2) ∠ (θ1 + θ2).

In words, radii multiply, but angles add. A special case of particular relevance is the
squaring formula z2 = r2 ∠ (2θ), and the natural generalization

zn = rn ∠ (nθ).

One of the most famous equations in all of mathematics, easily verified by com-
paring the Taylor expansions of both sides, is Euler’s formula

eiθ = cos(θ) + i sin(θ).

This equality provides a commonly used alternative to the z = r∠θ or z =
r cos(θ) + ir sin(θ) notations for complex numbers, namely z = reiθ. Multipli-
cation of complex numbers has a particularly appealing form under this notation.

Theorem 1.3.3
Given complex numbers z = reiθ, z1 = r1eiθ1 , and z2 = r2eiθ2 , we have

z1z2 = r1r2e
i(θ1+θ2) and zn = rneinθ (n ∈ Z).

Wewill make important use of such identities once we reach our more substantial
investigation of complex numbers. For example, in Chapter 5, we use these identities
to verify that multiplying a complex number by i (= ei

π
2 ) is equivalent to rotating

the number through a right angle in the counterclockwise direction; and in Chapter

7, we note that the complex number z = 1ei
2π
n has the curious property that

zn = 1ne

(
i 2πn

)
n = 1ei2π = 1,

providing for each n ∈ Z a complex number whose nth-power is precisely 1.
Before moving on, we close with some standard jargon for complex numbers:

Definition 1.3.4

Given a complex number z = a+bi , a is the real part of z and b is the imaginary
part of z. Note that the imaginary part of z does not include the “i ,” so the
imaginary part of z is real. Two complex numbers z1 = a + bi and z2 = c + di
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are equal if they have the same real and imaginary parts (i.e., a = c and b = d).
The complex conjugate (or just conjugate) of z is denoted z and defined by
a + bi = a − bi. �

Geometrically, z is the point you get when you reflect z about the R-axis. We
will see that the complex conjugate often simplifies algebraic calculations in C.
As a first instance, consider division, which makes use of the observation that if
z = a + bi ∈ C, then zz = (a + bi)(a − bi) = a2 + b2 is a non-negative
real number, called the norm N (z) of z. To divide complex numbers, multiply the
numerator and denominator by the conjugate of the denominator to get an answer in
standard form:

a + bi

c + di
= a + bi

c + di
· c − di

c − di
= (ac + bd) + (bc − ad)i

c2 + d2
= ac + bd

c2 + d2
+ bc − ad

c2 + d2
i.

From this expression, we can see that the quotient of two complex numbers is always
a complex number (assuming the denominator isn’t zero), but the quotient of two
Gaussian integers may not itself be a Gaussian integer.

Finally, we must woefully observe that the terminology conflicts with the closely
related notion of the norm from complex analysis, defined as its radial coordinate

|z| = r =
√
a2 + b2 = √

N (z).

We will stick to using the word norm to reference N (z).
All told, the inclusion of i results in a reasonably robust number system. Once

we overcome the psychological hesitancy toward allowing square roots of negative
numbers, we find ourselves in a new world where meaningful new arithmetic flows
like water out of a pure mountain spring. Enlarging our notion of number to ac-
commodate this world seems a desirable step, and so, to take the metaphor clearly
too far, we slap a hydroelectric power plant onto our mountain spring to harness its
numerical potential. But why stop there?

Candidate 2: An Indeterminate Number?

A second candidate for a new “number,” again testing the line defining the property
of numberhood, is the indeterminate “x” of polynomial fame—the same x that graces
us with its presence in polynomial expressions like x4 − 2x3 + 4x + 12. As with i ,
the inclusion of x and some algebraic governance force the inclusion of many new
things—we can add x to itself to get 2x , or x to 7 to get, well, x + 7. Like with
complex numbers, we have a notion of polynomial addition and multiplication that
exhibits all of our standard algebraic operations, allowing arithmetic calculations
like

(2x) · (x + 7) = (2x) · (x) + (2x) · (7) = 2x2 + 14x .
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The one and only difference between this computation and the analogous compu-
tation with complex numbers is the absence of a rule concerning the square of x .
Instead, as we add and multiply expressions of this form, we simply get higher and
higher powers of x , leading to the set R[x] of all polynomials with real coefficients:

R[x] = {a0 + a1x + a2x
2 + · · · + anx

n : n ∈ Z≥0 and a0, a1, . . . , an ∈ R}.
To introduce some standard terminology, theai are the coefficients of the polynomial,
and the largest exponent n for which xn has a nonzero coefficient is its degree,
denoted for a polynomial f by deg( f ). In the case that f is the zero polynomial,
we set deg( f ) = −∞. Two polynomials are equal if and only if they have the same
degree and sequence of coefficients. As with the distinction between Z[i],Q[i], and
C, we can also vary the coefficients in this construction to produce Z[x], the set of
polynomials with coefficients in Z, and likewise for many other sets of coefficients
(e.g., Q[x], R[x], C[x], etc.).

You are likely familiarwith the standard operations on polynomials, so let’s phrase
them in a fashion slightly more sophisticated than necessary.

Definition 1.3.5 (Polynomial addition andmultiplication)

Given two polynomials f and g defined by the expressions

f = a0 + a1x + a2x
2 + . . . + amx

m =
m∑
i=0

ai x
i

g = b0 + b1x + b2x
2 + . . . + bnx

n =
n∑
j=0

b j x
j ,

we define their sum term by term:

f + g = (a0 + b0) + (a1 + b1)x + · · · + (aM + bM )xM =
M∑
i=0

(ai + bi )x
i ,

where M = max{m, n} and we take any missing coefficients to be zero as neces-
sary. Likewise, their product is defined via the distributive law4 ; i.e., f g is defined
as the polynomial

f g =
(

m∑
i=0

ai x
i

)⎛
⎝ n∑

j=0

b j x
j

⎞
⎠ =

m+n∑
k=0

(
k∑

�=0

a�bk−�

)
xk .

�

4 If you “FOIL” to multiply two complex numbers, don’t forget to “FMOMMMIML” two quadratic
polynomials!
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A consequence of this definition is that the degree of the product is m + n, which
shows that deg f g = deg f + deg g for non-zero polynomials f, g ∈ Z[x] (orQ[x],
R[x],C[x]). (What happens if either or both of f or g is the zero polynomial?) Notice
that unlike the real or complex numbers, but like the integers, most elements of R[x]
do not have multiplicative inverses. For example, x has no multiplicative inverse in
R[x] since the condition xg = 1 immediately leads to a contradiction (the left-hand
side has degree at least 1, while the right-hand side has degree 0).

The Conclusion,or Lack Thereof

All of this brings us to the question asked in the chapter title. You are likely far
enough along in your mathematical career to understand the pervasive role that
precise definitions play in the formulation of mathematics, so it may come as a bit
of a shock to realize that you likely lack a working definition for the fundamental
term “number.” This section has observed that the notion has not been historically
constant, with new and interesting additions appearing over time. But if you were to
propose an all-encompassing definition of your current understanding of the term,
how would you do it? What makes a mathematical object a number? Despite the
close parallels of their construction, why is it that 3 + 5i is commonly considered
a number but 3 + 5x is not? Are R[i] and R[x] really so different? Are imaginary
numbers so superior to indeterminate ones?

Though it sadly renders the section title rather clickbaity, we are neither willing
nor prepared to answer this question here5 . Instead, we hope the question serves
as an invisible ether through which the rest of the content of this book floats. As
you progress through this text, continuing to encounter newer and more enigmatic
number systems that may stretch your internal understanding of the term number,
take heart that as was the case for mathematicians before you, fluency in arithmetic
in these exotic realms develops with practice. Throughout the text, we will introduce
you to new number systems by showing ways in which they are natural extensions of
existing systems, theways inwhich their commonproperties allowus to piggybackon
intuition in one world to develop it in another, and the ways in which their differences
spurmathematical growth and excitement. But, lest we get too far ahead of ourselves,
there is no better place to begin than the beginning. Thus, it is fitting that the next
chapter launches our journey by exploring the natural numbers N = {1, 2, 3, . . .},
those quantities that our paleolithic forebears so fastidiously and revolutionarily
began to record.

5 You may have assumed that three people writing a text on the theory of “numbers” would know
what one is. Hopefully, by the end of the book, you will agree the answer is not as straightforward
as it first appears.
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1.4 Exercises

Calculation & Short Answer

Exercise 1.1 Perform the following operations. Give your answers in hieroglyphic
form.

a.
b.

Exercise 1.2 The ambiguity in place value in cuneiform makes it difficult to unam-
biguously perform symbolic arithmetic. Perform the following operations, noting
instances where there could be ambiguity. Give your answers in cuneiform script6 .

a. plus

b. times
c. times

Exercise 1.3 For z = 2 + 3i and w = 4 − 2i, calculate z + w, z − w, zw,
z

w
, z,

and |z|.
Exercise 1.4 What is i17? i35? i428347?

Exercise 1.5 Letω = −1+√
3i

2 . Findω2,ω, 1ω ,ω
3,ω3,ω428347.Comment on anything

noteworthy.

Exercise 1.6 Describe the solution sets to each of the following algebraic equations
(z ∈ C):

a. z = z

b. z = −z

c. z = 1
z

d. z = − 1
z

Exercise 1.7 In Ars Magna, Cardano gave the following equation for the root r of
a polynomial of the form x3 + mx = n :

r = 3

√√√√n

2
+

√
n2

4
+ m3

27
− 3

√√√√−n

2
+

√
n2

4
+ m3

27
.

a. Verify using graphing software (or by deducing via calculus) that the polynomial
x3 − 15x − 4 has three real roots.

b. Use the formula above to find a root of the polynomial x3 − 15x − 4 whose
expression involves complex number arithmetic.

6 Preferably imprinted on clay tablets, and submitted to your professor once dried.
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c. Show as Bombelli did, that if you entertain the idea of complex numbers, you
can recognize this root as a real number. It may help to first calculate (2 + i)3

and (−2 + i)3.

Exercise 1.8 Let f = 16t2 − 12 and g = 64t3 − 72t ∈ Z[t]. Compute the degrees
deg( f + g), deg( f g), deg( f 3), deg(g2), and deg(g2 − f 3).

Exercise 1.9 Determine which polynomials in R[x] have multiplicative inverses.
What about in Q[x] and Z[x]?
Exercise 1.10 Express an opinion as to whether 1 × 1 real matrices, like [7], are
numbers. Repeat for constant polynomials in R[x]. Then move on to 2× 2 matrices
and linear polynomials.

Exercise 1.11 One number system that extends the complex numbers is the set
R[i, j, k] of quaternions. These are numbers of the form a + bi + cj + dk, where
a, b, c, d ∈ R, andwe define operations on quaternions by component-wise addition,
setting the basic products

i2 = j2 = k2 = ijk = −1,

and calculating arbitrary products using the distributive law.

a. Assuming only associativity, use the relations above to fill in the following
multiplication table. For example,

ij = ij(kk)(−1) = (ijk)(−k) = (−1)(−k) = k.

· 1 i j k
1 1 i j k
i i −1 k
j j −1
k k −1

b. Is multiplication of quaternions commutative? Explain.
c. Perform the following quaternionic operations:

i. (5 + 3j + 3k) − (3 + 2i − 4j + k)

ii. (2j + 3k) · (5 + i − 2k)

Exercise 1.12 The symmetric difference is an operation defined on the set of all
subsets of a given set. Given two sets A and B, their symmetric difference, denoted
A�B, is defined as

A�B = (A − B) ∪ (B − A) = {x : x ∈ A and x /∈ B, or x ∈ B and x /∈ A}.

a. What set E acts as the�-identity? That is, what E has the property that A� E =
E � A = A for all sets A?



1.4 Exercises 15

b. Given a set A, must there be a �-inverse of A? That is, does there necessarily
exist a set B such that A�B = B�A = E, where E is the �-identity from the
previous part?

Formal Proofs

Exercise 1.13 Prove that if x and y are rational numbers, then so are xy and x + y.
Show that this statement is false if you replace “rational” with “irrational.”

The ancient Egyptians represented any unit fractions—that is, any fraction of the
form 1

n for some natural number n—by placing the symbol before the number.
Thus represented the quantity 1

3 , and represented 21 + 1
2 + 1

3
or 215

6 .

Exercise 1.14 An Egyptian fraction representation of a rational number r is an
expression for r as a sum of distinct unit fractions, e.g., 5

6 = 1
2 + 1

3 . Find Egyptian
fraction representations for each of

7

12

4

5

110

2701
.

Exercise 1.15 Let n ∈ N. Verify the identity

1

n
= 1

n + 1
+ 1

n(n + 1)

and use it to prove that every positive rational number has a Egyptian fraction rep-
resentation.

Exercise 1.16 The decimal representations of irrational numbers (and some rational
ones) require an infinite number of terms.

a. Find a rational number that has an infinite decimal expansion in our base-ten
system, but that can be represented by a finite number of symbols in cuneiform
script. Are there any numbers that have a finite decimal expansion in base 10,
but require infinitely many terms to express in cuneiform?

b. Prove that an irrational number can not be represented by a finite number of
terms in cuneiform script.

Exercise 1.17 Let w, z ∈ C. Prove that z + w = z + w and zw = z · w.

Exercise 1.18 Let w, z ∈ C. Prove or find a counterexample for each equation:

N (wz) = N (w)N (z) and N (w + z) = N (w) + N (z)

Exercise 1.19 Use induction and the previous exercise to prove the identity zn = zn

for n ∈ N.
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Exercise 1.20 Prove that if z is a complex root of a polynomial f ∈ R[x], then so
is z. What happens if instead f ∈ C[x]?
Exercise 1.21 Prove that addition of polynomials in R[x] is commutative and asso-
ciative.

Exercise 1.22 Prove that multiplication of polynomials in R[x] is commutative and
associative.

Exercise 1.23 The text suggests that i is quite special for generating the complex
numbers, but it is not unique in doing so. Prove that if we introduce to R the number
j = √−13 = √

13i and form the set

C
′ = {a + bj : a, b ∈ R},

then C = C
′. Then check that with the analogous construction, Z[i] �= Z[ j].

Exercise 1.24 Let � denote the symmetric difference (see Exercise 1.12).

a. Prove that the symmetric difference is associative on the set of all subsets of a
set S; i.e., for all sets A, B,C ⊆ S,

A� (B �C) = (A� B)�C.

b. Prove set intersection distributes over the symmetric difference, i.e., for all sets
A, B, and C,

A ∩ (B �C) = (A ∩ B) � (A ∩ C).

c. Does set union distribute over set difference? Prove it does or give a counterex-
ample.

Computation and Experimentation

Exercise 1.25 Get familiar with a programming language of your choice so that
you will be ready to tackle the exercises in later sections. The text website has an
introductoryworksheet for Python (“Getting to knowPython”) to help you get started
with that language if you so choose (or if your instructor so chooses).

Exercise 1.26 Write a short program to multiply quaternions.

Exercise 1.27 Write a short program to implement the cubic formula.

General Number Theory Awareness

Exercise 1.28 As alluded to in the opening paragraph of this chapter, human un-
derstanding of what it means to be “a number” has undergone a lengthy evolution.
A famous example is the reverberations in Pythagoras’ teaching academy when it
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was first proven to them that
√
2 is irrational. Find the famous story involving a

debateaufication7 and then do a fact-check: how much of it is currently believed to
be apocryphal?

Exercise 1.29 Repeat the previous problem for the historical significance and adop-
tion of the number i = √−1. Were cults involved? Witchcraft? Beans? Nicholas
Cage?

Exercise 1.30 Look up the history of Geralomo Cardano and his relationship with
Niccolò Fontana and Lodovico Ferrari. Who says mathematicians are boring!?

Exercise 1.31 As with most ancient history, much of our understanding of ancient
mathematics comes from a mix of historical documents and informed specula-
tion. Do some research on “Plimpton 322”—what do we definitively learn about
ancient mathematics from it? What are some of the more controversial claims it has
prompted?

Exercise 1.32 Research William Rowan Hamilton’s discovery of the quaternions.
Where did he scratch their defining relations? What are some applications of the
quaternions?

Exercise 1.33 What is our current state of understanding of Egyptian fraction repre-
sentations?What can you say about the length and sizes in the “best” representation?
Are there surprising representations of, say, 2?

Exercise 1.34 One of the most valuable tools for the experimenting number-theorist
is the On-Line Encyclopedia of Integer Sequences, a tool that allows you to input a
sequence of integers that you’ve come across, and the patternmatches it to previously
researched sequences. Try it out on the sequence

1, 1, 2, 3, 5

What famous sequence does theOEIS imagine you’re probably encountering?Report
back some interesting results from the page. Finally, repeat this process if in your
sequence the 5 was followed by a 7.

Exercise 1.35 Gaussian integers are named after a mathematician named Gauss,
which makes sense. Read up on Gauss’ exploits. Be sure to track down the correct
pronunciation so you don’t accidentally send your professor into conniptions8 .

7 Like a defenestration but for boats.
8 This is not meant to be a guide on intentionally sending your professor into conniptions.
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2AQuick Surveyof the LastTwo
Millennia

...wherein the reader meets the problems of Diophantus
of Alexandria and their many offspring.

2.1 Fermat,Wiles, andThe Father of Algebra

In 1994,mathematicianAndrewWiles, aided by his colleagueRichard Taylor, forged
the last link in an extensive chain of mathematical reasoning needed to resolve one
of the most infamously difficult problems in all of mathematics. The history of
this result, commonly referred to as Fermat’s Last Theorem after the seventeenth-
century French mathematician Pierre de Fermat, has all the hallmarks of an epic
tale: an arduous quest spanning centuries and continents taken on by a legion of
mathematicians; a resilient foe that bested many of the greatest minds for 300 years;
and the classic template of human anguish, redemption, and then ultimate triumph.
Wiles’ breakthrough garnered him fame and fortune: his proof was heralded across
the globe in newspaper headlines and TV reports, and he was even listed as one of
People Magazine’s “25 Most Intriguing People of the Year.”

It is tempting to imagine that a proof that merits such praise, and that confounded
mathematicians for centuries, must stem from an impenetrably intricate theorem. On
the contrary, it is a hallmark of number theory that some of the deepest and hardest-
to-prove results need little more than an elementary school education to understand,
and Fermat’s Last Theorem fits this mold perfectly. It says quite simply that if a, b,
and c are natural numbers, and n is a natural number greater than 2, then an+bn �= cn .
In Fermat’s own words (translated to English from its original French [2]):

It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers,
or in general, any power higher than the second, into two like powers. I have discovered a
truly marvelous proof of this, which this margin is too narrow to contain.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-030-98931-6_2.
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Fermat scrawled this statement in the margin of one of his books, but this
purported proof was never found, and the prevailing modern consensus is that
either he was unknowingly in possession of a flawed proof or that he was engag-
ing in a bit of cavalier mathematical bravado1 . Nevertheless, the tantalizing claim
of “a truly marvelous proof” succeeded in piquing the curiosity of mathematicians
for over three centuries. Mathematical legends like Leonhard Euler, Sophie Ger-
maine, Adrien-Marie Legendre, Johann Lejeune Dirichlet, Gabriel Lamé, Srinivasa
Ramanujan, and Ernst Kummer all took aim at the result, often proving special cases
along the way, but ultimately falling short of a complete proof.

It seems safe to hypothesize that the failure of these eminent historical figures
to solve this problem had an understandably chilling effect on its study by later
mathematicians. David Hilbert, a renowned mathematician of the early twentieth
century, once responded to why he had not tried his hand at the theorem by saying
[1], “Before beginning I should put in three years of intensive study, and I haven’t
that much time to squander on a probable failure.” By 1963, when 10-year-old
Andrew Wiles stumbled across a statement of the theorem in a library book and
found himself intrigued, most mathematicians had given up hope of finding a proof.
Indeed, up until 1995, Fermat’s Last Theorem held the Guinness World Record for
the longest standing open math problem. But filled with the curiosity and audacity
of youth, young Andrew dreamed of one day finding the proof and, 31 years later,
rose to vanquish his childhood foe.

Somewhat ironically, the result of Fermat’s Last Theorem is not a particularly
useful one, at least in terms of applicability to other problems or disciplines. So why
the big fuss? A second hallmark of number-theoretic investigations stems from a
dogged tenacity in the belief that true facts deserve proof, no matter the difficulty or
applicability. There is immense merit in this perspective—the aforementioned failed
attempts by mathematicians through the ages led to new insights into the realms
of algebra and number theory that transcended the single application for which
they were built. Indeed, the mathematical breakthroughs and extensions developed
in pursuit of a proof of Fermat’s Last Theorem have since become staples in vast
swaths of modern mathematics, including ties to the study of groups, cryptology,
elliptic curves, modular forms, and lots more fancy words besides.

Thus, the culminating argument put forward by Wiles and Taylor is the denoue-
ment of a centuries-long story of mathematical progress and understanding, one that
began long before even Fermat. We can trace the history of the question at least as far
back as the book in which Fermat wrote his famous margin note, the text Arithmetica
by the third-century Greek mathematician Diophantus of Alexandria. Diophantus is
often referred to as “the father of algebra” in recognition of his use of symbols to
represent variables, an easily overlooked revolution in the history of human thought.
Before Diophantus, equations were expressed entirely in words, as in the quote by
Fermat above—to see the revolutionary nature of such a step, imagine trying to set
up and solve even a simple calculus problem without using symbolic notation!

1 Classic Pierre.
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Diophantus’s text was concerned specifically with finding solutions to polynomial
equations, of which Fermat’s Last Theorem was just one of many examples. As we
begin our explorations in number theory, there is likely no better place to begin than
with those same questions that delighted Diophantus, fascinated Fermat, and wowed
Wiles. Along the way, we will see how the study of something as simple as quadratic
equations reveals hidden structures in numbers and stimulates the development of a
fantastic wealth of mathematics.

2.2 Quadratic Equations

A quick warm-up to get us started on solution sets of quadratic equations:

Question 2.2.1 What are the solutions to the equation x2 + y2 = 3? What about
x2 + y2 = 5?

Perhaps your first thought was to envision the circles in the plane of respective
radii

√
3 and

√
5. If this is the case, then you, the tragic hero of this story, have

fallen into the trap set by us, the duplicitous authors. Indeed, you’ve been tricked
into answering an ambiguous question, in that we have left unspecified where we
want our solutions to live.

A recurring theme of the course – and perhaps the theme of the course – is that the context
of which types of solutions you’re interested in will greatly affect the quantity and structure
of said solutions.

A relatively modern perspective is that you should think of an equation as an abstract
entity, which provides different solution sets upon being handed different solution
domains. That is, if we have an equation (e.g., x2 + y2 = 3), we can as usual think
of its real solutions as defining a curve in the plane (in this case, a circle), but could
also think of its solutions in a variety of number sets. Notationally, if we denote such
a “curve” by C , then its set of solutions with coordinates in Z is C(Z), its set of
rational solutions is C(Q), etc.

Table 2.1 shows some solution sets of the two curves from Question 2.2.1 over
different domains. The first row consists of the real solutions, visualized as circles
in the plane. The next two rows are easily justifiable by brute-force exhaustion (e.g.,

Table 2.1 Solutions to Two Curves over Varying Sets

Set \ Curve C x2 + y2 = 3 x2 + y2 = 5

C(R) Circle of radius
√
3 Circle of radius

√
5

C(N) None! (1, 2) and (2, 1).

C(Z) None! (±1,±2) and (±2,±1).

C(Q) None! Infinitely many!!!
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if either x or y were an integer with an absolute value bigger than 2, then x2 +
y2 > 5). But the last row, asking for rational solutions, exhibits a fairly remarkable
phenomenon. It claims (without justification—for now) that there are no rational
solutions at all to the equation x2 + y2 = 3, but that in contrast, there are infinitely
many such solutions for x2 + y2 = 5. A few rational solutions suggest themselves
immediately (e.g., (±1,±2)), but C(Q) also includes less obvious elements like

(
11

5
,
2

5

)
and

(
316378

172393
,
220231

172393

)
.

Given the similarity (both algebraic and geometric) of the two curves, the differ-
ence between the two columns is notable. Also relevant is the relationship between
the rows in a given column. For example, if there are no rational points on a curve,
then there aren’t any integer points either, for the simple reason that every integer
solution would also be a rational solution. Similarly, if there aren’t any real solutions,
there can’t be any rational solutions: the general observation is that if A ⊆ B, then
C(A) ⊆ C(B). An integral part of number theory is to pass between different do-
mains in search of answers to questions—maybe you would like to know C(Z), but
it’s easier to compute C(A) for some other set A, and knowledge of C(A) somehow
helps you understand C(Z) better, etc. This perspective requires determining which
sets lead to the best results for which problems and expanding our options for the
sets of numbers at our disposal. As a preview of things to come, we might also con-
sider (pending careful definitions of these terms) algebraic solutions, transcendental
solutions, complex solutions, irrational solutions, solutions modulo primes, or even
solutions in more exotic places (ooooh...).

To illustrate the power of being able to move between these worlds, let us tackle
a famous problem of antiquity, introducing a novel2 technique, due to Diophantus
himself, exploiting the presence of geometric techniques for real solutions for one
equation to find integral solutions to another.

The Diophantus ChordMethod

A first approach to systematically studying solution sets to equations like x2 +
y2 = 3 might be to do so geometrically, considering the geometric properties of the
corresponding circle in the plane. But there are also hints that this approachmight run
into trouble—after all, from the perspective of the Euclidean plane, our two circles
in Table 2.1 are geometrically “similar,” and consequently hard to distinguish using
geometric ideas. In particular, there is an easy bijection between their sets of real
solutions (the top row in Table 2.1), but certainly not, given the table, their rational
ones. Let’s use the unit circle to illustrate the process of translating between domains.

� Example 2.2.2 Find all rational solutions to x2 + y2 = 1.

2 As least, as of a couple of millennia ago
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The slick classical idea, the Diophantus chord method, that we employ to re-
solve this stalemate between algebra and geometry is a beautiful blend of the two
approaches.

Solution We have one obvious solution of (1, 0). Here’s the approach we pursue to
find more:

If we take a line through (1, 0) with a rational slope m, it intersects the circle in one other
point (a, b) – that point is another rational solution. Further, every rational solution arises
from such a line. That is, in Figure 2.1, the slope m is rational if and only if a and b are.

Let’s check the details: suppose m is a rational number. Then the equation for the
line through (1, 0) with slope m is given by y = m(x − 1). If (a, b) is the other
intersection point, then b = m(a−1), and substituting a = b+m

m for y in the equation

for the unit circle gives
( b+m

m

)2 + b2 = 1. Simple algebra converts this to

b((m2 + 1)b + 2m) = 0.

The trivial solution to this equation, b = 0, corresponds to the point (1, 0)we started
with. The other, b = − 2m

m2+1
, must thus represent the y-coordinate of our second

intersection point, and is rational whenever m is (Figure 2.1).
Likewise,

a = b + m

m
=

−2m
m2+1

+ m

m
= −2

m2 + 1
+ 1 = m2 − 1

m2 + 1

Fig. 2.1 A Hunt for Points

x

y

(1, 0)

(a, b)

y = m(x− 1)
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Fig. 2.2 These are a few of my favorite things...

is also rational. Finally, the rather trivial converse: if (a, b) is the second intersection
point of a line through (1, 0) and the circle x2+ y2 = 1 and a and b are both rational,
then so too is the slope m = b−0

a−1 of the line containing them. �

The conclusion of this discussion is thatwenowhave all of the rational solutions—
there is (1, 0), and then there is one additional point for every rational number m.
(Note the identical claim holds for real solutions and real slopes m). For example, if
m = − 3

7 , the example chosen to generate Figure 2.1, thenwe get (a, b) = (− 20
29 ,

21
29

)
.

As it turns out, the solution to this problem holds the key to one of the most signif-
icant classically solved problems in number theory: the identification of Pythagorean
triples.

Definition 2.2.3

APythagorean triple (a, b, c) consists of three natural numbers that can form the
side lengths of a right triangle (the last of which we assume to be the hypotenuse);
i.e., that are constrained by the Pythagorean Theorem to satisfy a2 + b2 = c2. �

It is amusing to contrast this equation with that of Fermat’s Last Theorem: while it
may be impossible to separate a cube into two cubes, and likewise, for higher powers,
it is very much possible to separate a square into two squares. In fact, you likely
already know some examples of Pythagorean triples: (3, 4, 5) is a big hit at parties,
and only slightly less known are triples like (5, 12, 13), (9, 40, 41), (8, 15, 17), and
so on. But this “and so on” is slightly unsatisfying—does the list continue forever?
Can we find as many as we want?

Right off the bat, there is a trivial way of constructing an infinite supply of
Pythagorean triples. Namely, if you take the (3, 4, 5) right triangle and scale each
side by a factor of 2, you get a similar right triangle with side lengths 6, 8, and 10,
giving rise to the new Pythagorean triple (6, 8, 10). Likewise, the triple (3k, 4k, 5k)
is a Pythagorean triple for every natural number k, and the same goes for the families
of triples (5k, 12k, 13k), (9k, 40k, 41k), (8k, 15k, 17k), etc. Nevertheless, we push
forward and ask not only for a mere infinitude of Pythagorean triples but also all of
them. Remarkably, we did most of the hard work already when we found all of the
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rational points on the unit circle. The key observation is the following: If (a, b, c)
is a Pythagorean triple, then after dividing by c2, the Pythagorean Theorem tells us
that (

a

c

)2

+
(
b

c

)2

= 1,

which says that
( a
c ,

b
c

)
is a rational point on the unit circle. Conversely, if we have a

rational point on the unit circle, then by clearing denominators we get a Pythagorean
triple, e.g., (

20

29

)2

+
(
21

29

)2

= 1 −→ 202 + 212 = 292.

The conclusion is that since Example 2.2.2 successfully parameterizes all of the
rational points on the unit circle, we have a corresponding parameterization of every
single Pythagorean triple. Note that this correspondence is not bijective: the pairs
(3/5, 4/5) and (6/10, 8/10) are the same point on the unit circle, but (3, 4, 5) and
(6, 8, 10) are different Pythagorean triples. So, any point on the unit circle gives, by
scaling, infinitely many different Pythagorean triangles. Let’s put this idea to use:

Theorem 2.2.4
For all u, v ∈ Nwith u > v, the triple (u2−v2, 2uv, u2+v2) is a Pythagorean
triple. Further, every Pythagorean triple (a, b, c) ∈ N

3 is a multiple of one of
this form.

Proof Start by verifying the identity

(u2 − v2)2 + (2uv)2 = (u2 + v2)2,

for any integers3 u, v. Now suppose (a, b, c) is a Pythagorean triple. Then, as above,
(a, b, c) corresponds to a rational solution (x, y) = ( ac ,

b
c ) of x

2 + y2 = 1. By the
solution to Example 2.2.2, we can write

(
a

c
,
b

c

)
=

(
m2 − 1

m2 + 1
,

−2m

m2 + 1

)
,

for some rational number m. Further, since this point is in the first quadrant, we can
take m to be negative (see Figure 2.1), and so write m = − u

v
for positive integers u

and v. Substituting gives

(
a

c
,
b

c

)
=

(( u
v

)2 − 1( u
v

)2 + 1
,

2
( u
v

)
( u
v

)2 + 1

)
=

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
.

3 Or indeed, as will be important in Exploration A, for any reasonable objects u, v at all!
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We conclude that for some integer k,

a = k(u2 − v2), b = k(2uv), and c = k(u2 + v2),

establishing the result. �

� Remark 2.2.5 In Chapter 3, once we have established some basic properties of
divisibility, primes, and common factors, we will be able to refine the parameter-
ization: every Pythagorean triple is a multiple of one coming from a pair (u, v)
with one of u, v even, one odd, and u and v having no factors in common.

Return to Quadratic Equations

Let us now reverse our chronology and imagine that we found ourselves in the situ-
ation, as Pythagoras did in 500 BCE, of having deduced the remarkable relationship
a2 + b2 = c2 among the sides of a right triangle, and wanting to exhaust the integer
solutions to this equation. By the previous section, all we need is a couple of centuries
of patience waiting for the mathematics of Euclid and Diophantus, and the concep-
tualization of a rational number. Then we need only combine two observations:

• The integer solutions to a2 + b2 = c2 are closely related to the rational solutions
to x2 + y2 = 1.

• The rational solutions of x2+y2 = 1 are a subset of the real solutions of x2+y2 =
1, which by virtue of being graphically represented as the unit circle, are subject
to study using the tools of geometry (the chord method).

As a result we arrive at Theorem 2.2.4, whose evident power raises our hopes that
we can systematically generate solutions to equations as we run across them. For
example, we can now generate new Pythagorean triples with ease: taking (u, v) =
(2, 1) gives the Pythagorean triple (a, b, c) = (3, 4, 5), the pair (3, 2) gives the triple
(5, 12, 13), the pair (4, 1) gives the triple (8, 15, 17), and the pair (u, v) = (4, 2)
gives the multiple (12, 16, 20) of (3, 4, 5). In Exercise 2.2, you will find the pair
(u, v) that rediscovers the Pythagorean identity

135002 + 127092 = 185412,

known to the Babylonians as early as 1800 BCE [3].
And indeed the technique does generalize nicely to an extent: there is nothing

particularly special about the specific curve x2 + y2 = 1, and we could repeat this
for any “conic” curve, as you’ll do for x2 + y2 = 5 in Exercise 2.3. Except...there
must be something special about these curves, aswe’ve already promised that the very
similar curve x2 + y2 = 3 not only doesn’t have infinitely many rational solutions
but also has precisely zero. As it turns out, the difference between zero and infinitely
many solutions for such curves is precisely the difference between zero and one
solution. That is, once we have found one rational solution point on the curve, we
can conclude there must be infinitely many. For x2 + y2 = 1, we had the point (1, 0)
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serve in this role of an initial rational solution; but for x2 + y2 = 3, there is no such
point (though again, we stress that this claim is not yet justified). The mechanism for
finding all rational solutions on conics with such a point is precisely the Diophantus
chord method that worked for the unit circle: given one solution, a line with rational
slope will hit precisely one more rational point on the conic, and as we vary over
all rational slopes, we get all of the rational points. Likewise, clearing denominators
allows us to find all integral solutions to the corresponding Diophantine equation.
In the case of the curve x2 + y2 = 1, the corresponding Diophantine equation
is the Pythagorean equation a2 + b2 = c2; for x2 + y2 = 5, it is the equation
a2 + b2 = 5c2.

Theorem 2.2.6
Suppose a, b, c are non-zero rational numbers. If the equation ax2 + by2 = c
has one rational solution, it has infinitelymany, and each such solution provides
an infinite family of integer solutions to the equation ax2 + by2 = cz2.

Proof The technique is entirely analogous to that applied to the pair x2 + y2 = 1
and x2 + y2 = z2. The details are left to Exercise 2.8. �

We see from this that the last remaining question for equations of this type is the
existence of even just one rational solution. We close this discussion by noting that
this is a pretty tough question. Indeed, the lack of integer solutions doesn’t preclude
the existence of a rational solution. For example, you can solve 43 = x2 + 26y2 for
x, y ∈ Q—e.g., by taking x = 1/7 and y = 9/7—but certainly not for x, y ∈ Z

(why? Hint: y?). We will return to this question in Chapter 8, only after we have
developed significantly more mathematical machinery.

Moving on, while it is the case that quadratic equations are well handled by the
theorem above, this represents only a small sliver of the possible types of equations
we might run across. Let us give a name to the generalization.

2.3 Diophantine Equations

Definition 2.3.1

A Diophantine equation is a polynomial equation with integer coefficients in
which the variables represent integers; i.e., where integer solutions are sought. �

Though the study of Diophantine equations is done largely with rather abstract
goals in mind (we will talk about applications to other branches of mathematics as
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we go), there is a certain comforting concreteness stemming from considering only
integer or natural number solutions. A somewhat famous example of a problem in
which only natural number solutions are sought is the so-called cannonball problem,
which can be modernized into a problem somewhat like this:

� Example 2.3.2 Vineas and Herb have a truly marvelous collection of rubber balls.
When Vineas takes possession of the balls, he arranges them in a perfect square
pyramid. When Herb takes possession of the balls, he arranges them in a perfect
flat square. How many balls are there?4

The problem seems at first glance to be woefully underspecified, but in fact, these
geometric constraints on the configurations of the balls turn out to be very restrictive.
For example, there could not be 14 balls, because 14 is not the square of a natural
number (Figure 2.3). Similarly, while 25 is indeed a perfect square, it is not possible
to arrange 25 balls into a perfect square pyramid, since such a pyramid with three
layers uses too few balls (1 + 4 + 9 = 14), and one with four layers uses too many
(1+4+9+16 = 30). So the number of balls, n, must be both a perfect square (n = b2

for some b ∈ N) and a “perfect square pyramidal number” (n = 1+4+9+· · ·+a2

for some a ∈ N). We will leave to Exercise 2.6 the induction proof of the identity
1 + 4 + 9 + · · · + a2 = a(a+1)(2a+1)

6 , but we will use it here in the meantime to
succinctly encode both of these conditions in one fell swoop: for the number n to be
expressible in both of these forms, we need there to exist natural numbers a and b
such that

6b2 = a(a + 1)(2a + 1), (2.1)

a particularly clean-looking Diophantine equation. Now, it is a remarkable fact that
there is, in the entirety of natural numbers, only one pair5 (a, b) that form a solution

Fig. 2.3 14 balls in a square pyramid, 25 balls in a square

4 I know what we’re gonna do today!
5 Ignoring the trivial solution a = 1, b = 1, which we feel is justifiably ruled out by the plural
“rubber balls” in the problem statement. “Look at this cool pyramid I made out of my one rubber
ball!” Come on. You’re better than this.
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to this Diophantine equation, and hence only one possible number n of rubber balls
that satisfy both Vineas’s and Herb’s needs. (Note that this differs from the quadratic
case: one solution does not imply infinitely many.)While the proof of the uniqueness
of this solution is somewhat challenging, we won’t spoil the surprise as to the exact
value—Exercise 2.12 has you cut your computational teeth on finding it.

As it turns out, equations, like (2.1), encompass an enormous swath of modern
mathematics, and we will be seeing them several times over the course of the book.
To name such curves early on:

Definition 2.3.3

An elliptic curve E over Q is an equation of the form

y2 = x3 + sx + t (s, t ∈ Q),

where the cubic polynomial x3 + sx + t has no repeated roots, or equivalently,
the discriminant 4s3 + 27t2 �= 0 (see Exercise 2.10). �

The change of variables x = 12a + 6, y = 72b transforms the equation 6b2 =
a(a+1)(2a+1) into the form y2 = x3−36x , the elliptic curve E with s = −36 and
t = 0. For example, corresponding to our trivial square pyramid solution (a, b) =
(1, 1) is the point (x, y) = (18, 72) on E . Note that the reverse change of variables
involves division and so can introduce denominators (though, notably, only divisors
of 72), so it is plausible that the elliptic curve has more integer points than the square
pyramid equation.

A less brute force solution to the square pyramid problem is then to find more
points on this elliptic curve, and specifically integer points (x, y) that correspond to
integer pairs (a, b). As it turns out, there is exactly one more ± pair of integer points
on E—howdowe find it? TheDiophantus Chordmethod just keeps on giving!While
it is not true that a line with a rational slope through a rational point on an elliptic
curve intersects only other rational points, the following variant is true: given a line
that intersects an elliptic curve in three points, two of which are rational, the third
must also be rational. For example, given any two of the points (−3, 9), (−2, 8), or
(6, 0) on y2 = x3 − 36x , we could find the third by simple algebra and could do
the same with combinations of points including (0, 0), (−6, 0), and any points we
demonstrate along the way. Our missing integer point happens to be the third point of
intersection of the elliptic curvewith the line through (−2, 8) and (−3,−9) (Exercise
2.5). The significance of elliptic curves in modern mathematics is largely thanks to
this process, taking two points on a curve and producing a third. The consequences of
this observation surpass even the classification of Pythagorean triples, with a notable
highlight being an entire cryptographic protocol based on the premise. We discuss
this remarkable application in Section 9.3.2.

While there is enough mathematics in studying our conics and cubic equations to
fill dozens of textbooks, we note that there is a rich and expansive world of evenmore
involved Diophantine equations that we will not have space to get to. For example,
one could also consider systems of Diophantine equations. One such system comes
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Fig. 2.4 The elliptic curve E defined by y2 = x3 − 36x

Fig. 2.5 An Euler Brick

from a natural generalization of Pythagorean triples in the study of Euler Bricks,
rectangular prisms in which the sides and the diagonals of each face are all integers.
Figure 2.5 shows an example, and in the exercises, you will construct infinitely many
more. Note that each side length of the prism is involved in two different Pythagorean
triples, leading to a Diophantine system.

Much like the raw equation 6b2 = a(a + 1)(2a + 1) inspires little insight as to
its potential uses for entertaining kids on summer vacation, so do most Diophantine
equations begin life looking rather innocuous—indeed, even the central equation of
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Fermat’s Last Theorem seems more a curiosity than an instigator for centuries of
mathematical progress.Weoffer onemore tantalizing taste: the equation x2+y2 = n,
or equivalently the question of which natural numbers can be written as the sum of
two squares—that 5 can but 3 can not—was of significance at the start of this chapter.
There is an obvious generalization to this question in the equation

x3 + y3 + z3 = n,

i.e., that ofwhich natural numbers can bewritten as the sumof three cubes.When n =
6, for example, we have the easy solution (2,−1,−1) since 23+(−1)3+(−1)3 = 6.
Some other values of n are equally easily dispatched, but then others prove more
challenging, even for nearby values for n. For example, n = 43 admits the easy
solution (3, 2, 2), and forn = 44, there is themuch less obvious solution (8,−7,−5),
whereas for n = 42, no solution was known until 2019 when, during the writing of
this very Guide to the Numberverse, mathematicians Andrew Booker and Andrew
Sutherland found [4] the solution

804357581458175153 + 126021232973356313 + (−80538738812075974)3 = 42.

This solution came from millions of hours of deep thought and computation on a
distributed network of idle computers across the globe, in what surely must be the
first instance in fact or fiction of the ultimate question of 42 being resolved by a
world-scale supercomputer.

This solution, and more generally the history of these types of problems, high-
lights well the nature of working with Diophantine equations. Given any specific
equation, a host of natural questions presents itself: are there any solutions? Can
we find them by brute-force search? By a more clever search? Are there finitely or
infinitely many? Can we count them? Describe them geometrically? Parameterize
them? Should we move to a different world of numbers and ask the question there?
In the notation introduced earlier, if C denotes the equation or system of equations,
then we can recode this as asking if C(Z) is empty, finite, infinite, etc., and then ask
the same questions for C(N), C(Q), C(R), etc., and for other worlds of numbers
beyond even these. If all this fails, can we deduce the abstract existence of solutions?
Or is it possible that the Diophantine equation is undecidable, i.e., that it could be
provably impossible to resolve the question of whether or not the equation has so-
lutions (see Exercise 2.19)? We stress once more that it is not always even the case
that the equation itself is of interest, but rather the mathematics to which its study
gives rise. Questions like the above have driven us to delve into the mysteries of
the integers, discover new and exotic number systems, and develop along the way
the mathematical structures that govern our modern electronic communications and
commerce. These questions have tantalized some of humanity’s greatest minds6 and
through their history form a link from the ancient civilizations to today.

6 And ours, too!



32 2 A Quick Survey of the Last Two Millennia

Exploration A

One Idea, Many Worlds �
The goal of this Exploration is to investigate the analogs of Pythagorean Triples

in other worlds. Just as important as seeing how different these various worlds are is
seeing how much they have in common. For example, the identity

(u2 − v2)2 + (2uv)2 = (u2 + v2)2

would seem to hold not only for integers u and v but also awhole host ofmathematical
constructions.

Gaussian Integers

A.1 Find a “Gausso-Pythagorean triple” in Z[i] that is not in Z. That is, find
α,β, γ ∈ Z[i], not all in Z, such that α2 + β2 = γ2.

A.2 Explore other Diophantine equations in the context of the Gaussian integers
(“Gaussophantine”?). For example, revisit x2 + y2 = 3 and x2 + y2 = 5: are there
new solutions to either?

A.3 Factor 2 in Z[i]. That is, find two Gaussian integers a + bi and c + di not in
Z such that (a + bi)(c + di) = 2. How many distinct factorizations can you find?
Repeat for factoring 3 and 5.

Producing Pythagorean Polynomials

A.4 Use the identity above to find some “Pythagonomial triples” of polynomials
(with at least two terms). That is, find interesting f, g, h ∈ R[x] such that f 2+g2 =
h2.

A.5 Recall from calculus that if a curve C is parameterized by r(t) = 〈x(t), y(t)〉
for t ∈ [a, b],where f and g have continuous derivatives on [a, b] andC is traversed
only once, then its length L can be computed by

L =
∫ b

a

√
(x ′(t))2 + (y′(t))2dt.

Such integrals are typically very hard to compute, but a clever choice of x(t) and
y(t) will leave a perfect square under the radical.

1. Make use of the polynomials f, g from the previous problem to write and solve
an arclength problem in which the integrand simplifies so that there is no radical.

2. Write and solve a non-trivial arc length problem in which f, g are not polyno-
mials and the integrand simplifies so that there is no radical.

In technical mathematical parlance, such problems are called “rigged.”
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2.4 Exercises

Calculation & Short Answer

Exercise 2.1 Find a Pythagorean triple that can not be written in the form (u2 −
v2, 2uv, u2 + v2) for any integers u, v.

Exercise 2.2 From Theorem 2.2.4, we learn that the Pythagorean triple (12709,
13500, 18541) known to the Babylonians must arise as a multiple of one having the
form given in that result. In fact, it equals (u2−v2, 2uv, u2+v2) for some u, v ∈ N.
Find the u and v that generate this triple, and more generally describe a process for
finding the u and v corresponding to a triple of that form.

Exercise 2.3 Returning to our opening Diophantine equation, use the chord method
to find all rational solutions to x2 + y2 = 5. You should have one solution for each
rational line m. Use this to find one non-obvious integer solution to the Diophantine
equation a2 + b2 = 5c2.

Exercise 2.4 Find an infinite family of integer solutions to the Diophantine equation
x2 + y2 = 2z2.

Exercise 2.5 Use algebra to find the third point on the dashed line in Figure 2.4 and
back-substitute to solve Example 2.3.2.

Formal Proofs

Exercise 2.6 Prove by induction that for every natural number a, we have

12 + 22 + · · · + a2 = a(a + 1)(2a + 1)

6
.

Exercise 2.7 Prove that for all natural numbers n, there is a Pythagorean triple with
leg lengths 2n + 1 and 2n2 + 2n. How can we see this as a special case of Theorem
2.2.4? Does this family account for all Pythagorean triples?

Exercise 2.8 Prove Theorem 2.2.6. Suppose a, b, c are non-zero rational numbers
and that (x0, y0) is one rational solution to the conic ax2 + by2 = c. Prove that this
equation has infinitely many rational solutions.

Exercise 2.9 Determine (with proof) whether the diagonals of an Euler brick (as
shown in Figure 2.5) can be a Pythagorean triple.

Exercise 2.10 Check that the polynomial x3 + sx + t ∈ R[x] has a repeated root
if and only if the discriminant 4s3 + 27t2 = 0. (Hint: Write x3 + sx + t = (x −
r1)(x − r2)(x − r3) and relate s, t to r1, r2, r3).
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Computation and Experimentation

Exercise 2.11 Build a Pythagorean triple generator based on Theorem 2.2.4. The
Python worksheet Pythagorean Triples is available on the text website.

Exercise 2.12 Write a program to deduce how many rubber balls Vineas and Herb
must have had in Example 2.3.2; i.e., find a natural number solution to the equation
6b2 = a(a + 1)(2a + 1). Sample code might begin

for a in range(1,1000):

for b in range(1,1000):

if ...

The Python worksheet Rubber Balls provides an outline for this exercise and the
next.

Exercise 2.13 Instead of organizing our rubber balls as both a square and a square
pyramid, we could try to arrange them into both a square and a tetrahedron (triangular
pyramid). For example, now n = 4 balls would work, arrangeable into either a 2-
by-2 square (2 · 2 = 4) or a tetrahedron with two layers (1+ 3 = 4). In fact, there is
only one other solution.

Find a Diophantine equation that governs numbers that represent both the number
of balls in a square and the number of balls in a tetrahedron. (This will involve
conjecturing a formula for the number of balls in a tetrahedron and proving your
formula by induction (or otherwise)). Do a computer search for solutions to your
derived equation.

Exercise 2.14 Find the side and diagonal lengths of an Euler Brick with the longest
face diagonal length equal to 3471. See Python worksheet “Euler Bricks.”

Exercise 2.15 The process of generalizing Diophantus’ chord method to a high-
er degree has led to some amazing mathematics. The next step up gives elliptic
curves, equations of the form y2 = a cubic polynomial in x . The following walks
you through an example of how the chord method generalizes. Use a computer al-
gebra system to aid in your calculations. Your goal is to find a rational point on
the curve y2 = x3 − 2 other than (3,±5). The Python worksheet “Elliptic Curves”
provides an outline for this problem.

1. Find an equation of the tangent line to the curve at the point (3, 5). Note this
line has a rational slope. Sound familiar?

2. Solve for the x-coordinate of the other point of intersection with the tangent line.

Exercise 2.16 Let s be the sum of the Pythagorean triple {a, b, c}. When s = 120,
there are exactly three solutions for {a, b, c}, namely {20, 48, 52}, {24, 45, 51}, and
{30, 40, 50}. For which value of s ≤ 1000, is the number of solutions maximized?
This is problem 38 from the Project Euler archives. If you would like to flex your
number theory and programmingmuscle, check out projecteuler.net. You can submit

https://projecteuler.net/
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your answer to this problem, see if you got it right, and compare your approach to
others’.

General Number Theory Awareness

Exercise 2.17 Who was Sophie Germain? Give a brief description of her life, ac-
complishments, and connection to Fermat’s Last Theorem.

Exercise 2.18 Find Diophantus’s solution to his Arithmetica Problem II.8, dividing
a given square into a sumof two squares.We approached this using the chordmethod,
but without Cartesian geometry at his disposal, Diophantus could not actually draw a
pictorial representation. How does his solution proceed without such a picture?Who
is responsible for the retconning of Diophantus’s solution to be a graphical one?

Exercise 2.19 The text refers to the possibility of an “undecidable” Diophantine
equation. Do some research. Is there an algorithm which inputs a Diophantine
equation and outputs its solution? Are there explicit Diophantine equations that are
undecidable?

Exercise 2.20 If Pythagorean triples are too passé for you, do some research about
Pythagorean quadruples. What is their geometric significance? Can we parameterize
them like Pythagorean triples? Find at least one unsolved problem involving them.

Exercise 2.21 Since its proof, Fermat’s Last Theorem can no longer be considered
the longest standing open math problem. What problem does the Guinness Book of
World Records cite in its place? Do you agree with their diagnosis?
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3NumberTheory inZBeginning

...wherein an obvious statement is rendered unobvious,
and the stage is set for our journey forward.

3.1 Algebraic Structures

One of the central tenets of the last chapter is that even if we are primarily interested
in a problem in Z, there is often benefit to thinking about a closely related problem
in a different number system. A flipped, and equally valuable, version of this per-
spective is that we understand arithmetic in Z well enough that we should attempt to
export this mastery to other systems. What makes a number system sufficiently “Z-
like” to do algebra in? The natural numbers, for example, do not form a particularly
robust algebraic system, as they lack additive inverses and hence an effective notion
of subtraction. As a sample consequence of this lack of structure, we had to insist on
conditions like u > v > 0 when parameterizing Pythagorean triples, as side lengths
in Pythagorean triples must be natural numbers. Working in Z would have permit-
ted a slightly crisper parameterization at the cost of allowing Pythagorean triples
like (−3, −4, 5) (from u = −1 and v = 2). Things go further awry if we work in
systems lacking other fundamental properties of integer arithmetic: in the world of
2×2 matrices, we cannot hope for the same (u, v)-parameterization of Pythagorean
triples, as even the identity

(U 2 − V 2)2 + (2U V )2 = (U 2 + V 2)2

fails to hold for matrices U and V except in the rare case that they commute
(U V = V U ). On the other hand, Exploration A showed that these identities do hold
in Z[i] and even R[x], providing (u, v)-parameterization of families of Pythagorean
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triples in these worlds as well. It behooves us, therefore, to try to write down exactly
what it is about Z (or Z[i], or R[x], etc.) that provides such an agreeable algebraic
system. The notion of a ring provides the baseline structure needed.

Definition 3.1.1

A ring is a non-empty set R with a pair of binary operations, + and ·, such that
the following laws hold for all elements a, b, c ∈ R:

(1) Closure: a + b ∈ R and a · b ∈ R.
(2) Associativity: a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.
(3) Commutativity of Addition: a + b = b + a.
(4) Distributivity: a · (b + c) = (a · b) + (a · c) = a · b + a · c.
(5) Additive Identity: there exists an element 0 ∈ R such that a +0 = a = 0+a

for all a ∈ R.
(6) Additive Inverses: for each a ∈ R, there is an element “−a” in R such that

a + (−a) = 0 = (−a) + a.

If multiplication is also commutative in R (i.e., a · b = b · a for all a, b ∈ R),
we say R is commutative ring; if there is a multiplicative identity element 1 ∈ R
such that a · 1 = a = 1 · a for all a ∈ R, we say R is a ring with unity. �

The prototypical rings, for which the above properties are all very familiar, are
sets of numbers like Z, Q, and R, equipped with the standard notions of addition
and multiplication (see Appendix I for a more formal approach to establishing these
properties).Wewill soon see plentymore examples, and in a course called something
like abstract algebra one encounters a whole host of non-number-like rings and even
considers non-standard operations on familiar sets (see Exercises 3.15 and 3.16).
Since such enjoyable detours are not in the purview of this text, we will ignore such
oddities, assuming in all cases that the implied notions of addition and multiplication
are the standard ones.Wewill also not feel tied to the dot notation · formultiplication,
using ab, a × b, a · b, etc., interchangeably as the context calls for.

The definition of a ring provides us with three of the four basic operations: addi-
tion, subtraction, andmultiplication. Division, always the slightly estrangedmember
of the operation family, does not come along for free with the others.Many rings, like
Z, do not even have a notion of division of arbitrary elements, and this ties ultimately
to the lack of multiplicative inverses. Rings in which every non-zero element has a
multiplicative inverse are special.

Definition 3.1.2

A field is a commutative ring F with unity in which every element except the
additive identity 0 has a multiplicative inverse; i.e., for each a �= 0 in F , there is
an element a−1 such that aa−1 = 1 = a−1a. �



3.1 Algebraic Structures 39

In the exercises you will prove that the element a−1 referenced in Definition 3.1.2
is unique, allowing us to unambiguously refer to it as the multiplicative inverse of a.
When working in general rings, it is typically safer to write a−1 than 1

a (assuming a

happens to have an inverse), since in a non-commutative context the expression b
a is

ambiguous as to whether it refers to ba−1 or a−1b, which may be different.
Note that, as we move through the terminology, we are being more and more

demandingof our structure, adding commutativity, then aunity, and then the existence
of multiplicative inverses. As we do, fewer and fewer of our favorite structures will
satisfy all of the axioms. It is important to keep track of where each of these structures
lies along this spectrum, so convince yourself of the veracity of the claims in the
following examples before moving on.

� Example 3.1.3 The sets Z, Z[i], and R[x] are commutative rings with unity but
are not fields.

� Example 3.1.4 The setN is not even a ring, as elements ofN lack additive inverses
(not to mention an additive identity).

� Example3.1.5 The set of n×n matriceswith real entries forms a non-commutative
ring with unity. Many elements of this ring do not have multiplicative inverses.

Definition 3.1.6

Given a ring R, a subset S ⊆ R forms a subring of R if and only if the set S forms
a ring under the same operations as R. Similarly, given a subset E of a field, F ,
E is a subfield of F if and only if E forms a field under the same operations as
F. �

� Example 3.1.7 The rings Q and R are both subfields of the field C, while Z and
Z[i] are merely subrings of C.

� Example 3.1.8 The set of odd integers has additive inverses1 but is not closed
under addition. The set

2Z = {2n : n ∈ Z}
of even integers is a commutative ring without unity and a subring of Z.

� Remark 3.1.9 The linguistically curious will wonder about the seemingly out-of-
place words “rings” and “fields” peppering the landscape of mathematical jargon.
There is no universal consensus as to the etymology, though it seems likely to have
come in part from unfaithful translations from French or German. For example,
the French word corps used for fields translates most literally as “body,” as in
“body of water” or one’s “body of knowledge” (much like, say, one’s “field of

1 At least, insofar as one can have additive inverses in the absence of an additive identity.
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vision”), and so it may have been a cultural difference in the use of those words
that provoked the change in metaphors2 .

Not all rings are created equal: doing algebra with real numbers is very different
from doing algebra with matrices, as in the former ring we can make use of (among
other things) commutativity and the fact that every non-zero element of R has a
multiplicative inverse. As a consequence, we can solve equations like x2 − x = 0 in
R very easily:

x2 − x = 0 =⇒ x(x − 1) = 0 =⇒ x = 0 or x − 1 = 0 =⇒ x ∈ {0, 1}.
But the analogous matrix equation M2 − M = 0 (where M is a square matrix) is
much more challenging (and indeed has infinitely many solutions!). Why? The key
step in the above calculation made use of the zero product property, that the only
way to have a zero product, ab = 0, is if one of a or b itself is zero. This property is
true in R but not true in every ring (again, matrices).

Definition 3.1.10

An integral domain is a commutative ring with unity in which the product of
non-zero elements is always non-zero; that is, for all a and b in the ring R, ab = 0
if and only if a = 0 or b = 0. �

That is, integral domains are rings in which we can use the zero product property
as needed, an important property given its pervasiveness in solving equations. One
would be forgiven at this point for panicking that we might introduce new types of
algebraic structures at an alarming rate, one for each algebraic property we might
encounter. Fortunately, this turns out to be an unfounded fear, as the notions of com-
mutative rings, integral domains, and fields are precisely the core structures needed
to do the fascinating number theory ahead of us. Also simplifying the landscape is
that not all properties are independent. For example, we can show that the existence
of multiplicative inverses in fact guarantees the zero product property:

Lemma 3.1.11

Every field is an integral domain, but not every integral domain is a field. �

Proof Suppose R is a field, and that a, b ∈ R satisfy ab = 0. We need to show that
either a or b is zero, i.e., that if a �= 0, then b = 0. If a �= 0, then since R is a field,
there exists a−1 ∈ R, and so

b = (a−1a)b = a−1(ab) = a−1 · 0 = 0.

2 A paper entitled “A study of bodies with no identity” would surely raise eyebrows in the English-
speaking world.
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Finally, Z is an integral domain that is not a field. �

As another example of statements of the form “if you’re in a sufficiently nice
ring, then algebra continues to work well,” we present a couple of easy results on
polynomial arithmetic. Much likeZ[x] andR[x] represent rings of polynomials with
respective coefficients in Z and R, we can likewise make the ring of polynomials
with coefficients in a general ring R.

Lemma 3.1.12

If R is an integral domain, then for non-zero polynomials f, g ∈ R[x], we have
the standard degree fact

deg( f g) = deg( f ) + deg(g).

�

Note that the result still holds if f or g is zero, recalling our convention that deg(0) =
−∞ and adopting the conventions −∞ + (−∞) = −∞ and −∞ + n = −∞ for
n ∈ N.

Proof If f = an xn + · · · + a0 and g = bm xm + · · · + b0 with ai , bi ∈ R, then

f g = anbm xn+m + · · · + a0b0.

This is a polynomial of degree m + n since anbm �= 0 by virtue of the fact that R is
an integral domain. �

Without the integral domain property on the coefficients, the result can fail. If
ab = 0 in R, then the product of the degree 1 polynomials f = ax + 1 and
g = bx − 1, for example, is f g = abx2 + bx − ax + 1 = (b − a)x + 1, again
of degree 1. Interesting rings in which this horror of algebra occurs naturally will
appear frequently in the next chapter.

A subtle point to remark upon is that polynomials have two roles in modern
mathematics. We have been treating them as elements f ∈ R[x], i.e., as formal
expressions with which we can do algebra. But as we all know from our calculus
sequence, they also admit an interpretation as functions into which we can input an
element a ∈ R and obtain an output f (a) ∈ R as a result. These dual perspectives
frequently cross paths, e.g., when we talk about the roots of a polynomial.

Lemma 3.1.13

Let R be an integral domain. Every non-zero polynomial f ∈ R[x] of degree d
has at most d roots in R. �
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Proof We proceed by induction on d, beginning with the d = 0 case3 , where f is
constant (and non-zero) so has no roots. Now fix d > 0 and suppose for the sake of
induction we know that all polynomials of degree d − 1 have at most d − 1 roots.
Let f = ad xd + · · · + a1x + a0 be a polynomial of degree d and let r be a root of
f (if no root exists, we are done). Then f (r) = 0, and we observe that

f (x) = f (x) − f (r) = ad(xd − rd) + ad−1(xd−1 − rd−1) + · · · + a1(x − r).

Combined with the polynomial identity

xk − rk = (x − r)(xk−1 + xk−2r + · · · + xrk−2 + rk−1),

we see that we can extract a factor of x − r from each summand and thus conclude
that

f (x) = (x − r)g(x)

for some g ∈ R[x] (which we could write down explicitly if we wanted to). By the
previous lemma, g has degree d − 1, so by the induction hypothesis it has at most
d − 1 roots. Between these d − 1 roots and our initial root r , we see that f has at
most d roots since f (x) can only be zero if x − r = 0 or g(x) = 0. �

Having dipped our toes in the waters of abstract ring theory, let us dry them off
and take steps back toward the questions of number theory. Of principal importance,
pervasive throughout the whole text, is the notion of divisibility.

Definition 3.1.14

Given elements a and b in a commutative ring R, we say that a divides b if there
exists an element c ∈ R such that ac = b. We write a | b to denote that a divides
b, and say that a is a divisor of b, or equivalently that b is a multiple of a. If a
does not divide b, we write a � b. �

To fend off a common source of confusion, note that unlike the numerical expres-
sions n÷d or n

d , the expression d | n is either true or false, and not a numerical value:
in the integers, 6 ÷ 3 = 2, but 3 | 6 is simply true. For the most part, when R = Z

the definition above reflects your previously internalized grade-school notions of
divisors, multiples, etc. For example, 7 is a divisor of 35 in Z (and 35 is a multiple of
7), since there exists an integer solution to the fill-in-the-blank problem 7 · = 35.
That said, there are some nuances to address: in grade school, one typically works in
N rather than Z, let alone rings like Z[i], R[x], etc. Particularly subtle is the prospect
that we could have numbers a, b such that a | b in one ring but a � b in another—a
disconcerting possibility, but such is the life of the mathematician. The upcoming
Exploration has us look into some of these subtleties.

3 Okay, okay, maybe there is occasionally merit in starting the natural numbers at 0...
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Exploration B:Divisibility and Linear Diophantine Equations

Divisibility in Z:

B.1 Does 3 divide 6? Does 6 divide 3? What are all the divisors of 12? Of 13?
Of −13? Of 1? Of −1? Of 0?

B.2 Which number(s) divide all other numbers? Which number(s) are divisible
by all other numbers?

B.3 Our definition of | implies that 0 | 0. Pro: 0 is indeed amultiple of 0. Con: 00 is
indeterminate. On a scale of 0–10, how morally reprehensible is this convention?
Does zero divide your score?

Divisibility in Other Rings

B.4 Explain why 3 | 7 in Q. Generally, what does divisibility look like in Q (or
R, or C)?

B.5 Show that (2 + i) | 10 in Z[i].
B.6 What are the divisors of 2x in Z[x]? In R[x]?
B.7 In R[x], verify that (x − 1) | (x2 − 1) but (x − 1) � (x2 − 4).

Linear Diophantine Equations

We have seen that solving quadratic Diophantine equations involves a rather large
amount of deep number theory, so let’s retreat to the linear case for now. Here is
a crucially important real-world application.

B.8 Suppose that Chicken O’Nuggets can be purchased in quantities of 6 or 9.
Then the possible numbers of Chicken O’Nuggets that could be purchased at once
are numbers of the form

6x + 9y

where x and y are non-negative integers.

1. What can you say about the possible numbers of Chicken O’Nuggets one can
buy? Can you buy 100 nuggets? 101? 102?

2. Repeat the previous problem in a store where you can also purchase nuggets
in 20-packs. Can you now get most natural numbers? Half? Or only special
amounts?

3. How would the answers to the previous two questions change if you were
allowed to sell boxes back to the store? For example, you could now net 3
nuggets by buying a 9-nugget box and selling back a 6-nugget box. This is
equivalent to taking x, y ∈ Z rather than x, y ∈ N.

4. What if we allowed x, y ∈ Q? Or in R? �
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3.2 Linear Diophantine Equations and the Euclidean Algorithm

The Chicken O’Nugget problem examined in Exploration B, along with its gen-
eralizations, encapsulate all of the central ideas behind solving linear Diophantine
equations. We consider the following generalization:

� Example 3.2.1 Suppose one can purchase boxes of O’Nuggets in boxes of either a
or b nuggets so that by buying x boxes with a nuggets and y boxes with b nuggets,
the possible numbers of Chicken O’Nuggets we can purchase are the numbers of
the form

ax + by.

What are the possible numbers of nuggets we can buy? That is, for which values
of c can we solve the linear equation

ax + by = c?

Perhaps the most significant takeaway from the exploration is how greatly the
answer to this question depends on the world in which x and y are constrained to
live. Borrowing our observations from the Exploration, taking x, y ∈ Z provides
a very clean description of the solution set. When we restrict to natural or whole
numbers of boxes, we lose some of this structure and get a somewhat random-feeling
collection of small number of nuggets that we can buy, but then any large number
we want (depending on the box sizes). At the other extreme, taking x, y ∈ Q, it is
reasonably easy to see that you can purchase any number of nuggets (if you want 37
nuggets, buy 37

20 of a 20-pack).
An algebraic interpretation of this phenomenon is to point to the sets themselves

(N vs. Z vs. Q) having strikingly different algebraic properties. The existence of
multiplicative inverses in Q renders the problem trivial, whereas the lack of additive
inverses in N seems to reduce the amount of structure in the solution set. So Z

emerges as a local maximum of interestingness in that it has enough structure for a
pattern to emerge, but not so much as to make the problem trivial. We propose the
following summary:

Unless there’s an obvious reason why you
can’t get everything, you can get anything.

If allowed to purchase 3-packs and 7-packs of nuggets, for example, we could buy
any number of nuggets we want: To get 1 nugget, you buy a 7-pack of nuggets and
sell back4 two 3-packs. Then to buy any other number of nuggets, you repeat that
exchange that many times. For contrast, when allowed to purchase 6-packs and 9-
packs of nuggets, we have a problem that both 6 and 9 are multiples of 3, and adding

4 The authors do not recommend attempting this in person.
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and subtracting multiples of 3 seems to always leave us a multiple of 3. This gives
form to the “obvious reasons” that would prevent you from achieving any number
of nuggets you want: if all available box sizes are multiples of some common base,
then any linear combination of those two numbers will again be a multiple of that
base. Finding such obstructions is thus tantamount to determining whether there are
non-trivial (i.e., greater than 1) factors in common between a and b.

Definition 3.2.2

Let a and b be integers, not both equal to 0. A common divisor of a and b is an
integer d such that d | a and d | b. The largest integer that divides both a and b
is called the greatest common divisor of a and b, denoted gcd(a, b). Similarly,
a common multiple of a and b is an integer n such that a | n and b | n. The
smallest positive integer n satisfying a | n and b | n is called the least common
multiple of a and b, denoted lcm(a, b). We say that a and b are relatively prime
(or coprime) if

gcd(a, b) = 1. �

Again, you are likely used to interpreting these ideas inN, and so we should pause
and acclimate ourselves to interpreting these calculations in Z instead. Some cases
of interest are dealt with in the example below.

� Example 3.2.3 Be sure to convince yourself these results are what the definition
above mandates:

gcd(15, 10) = 5 gcd(3,−7) = 1 gcd(−15,−15) = 15

gcd(0, 12) = 12 gcd(0, 0) = undefined.

The remainder of the section is largely about the process of computing these gcds
and the theoretical significance that accompanies this discussion.

Lemma 3.2.4 (Linear Combination Lemma)

Suppose d is a common divisor of a and b (a, b, d ∈ Z). Then d | (ax + by) for
all x, y ∈ Z. �

Proof Since d | a and d | b, we can write a = dm and b = dn for some m, n ∈ Z.
Substituting, we find

ax + by = dmx + dny = d(mx + ny),

and thus ax + by is an integral multiple of d. �
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Corollary 3.2.5

If d divides any two of a, b, and a + b, it divides the third. �

It is worth pointing out that we have implicitly used algebraic properties of the
integers in the previous proof, namely distributivity and the fact that the integers are
closed under addition and multiplication.

Corollary 3.2.6

For a, b ∈ Z, we have the identities gcd(a, b) = gcd(b, a) and gcd(a, b) =
gcd(a, b − a). �

Proof The first is clear from the definition, and the second follows from the lemma
as every common divisor of a and b is also a common divisor of a and b − a, and,
conversely, a common divisor of a and b − a is also a common divisor of a and
(b − a) + a = b. Thus, the two pairs have exactly the same common divisors, so in
particular, they share the same greatest common divisor. �

This simple corollary is the source of an amazingly efficient tool for the compu-
tation of greatest common divisors called the Euclidean Algorithm. While we’ll for-
malize the process momentarily (after making an upgrade), let’s see it in action first:

� Example3.2.7 Wesystematically apply the identities inCorollary 3.2.6 to compute
the gcd of 52 and 91:

gcd(91, 52) = gcd(52, 91) = gcd(52, 91 − 52) = gcd(52, 39)

= gcd(39, 52) = gcd(39, 52 − 39) = gcd(39, 13) = 13.

In practice, oncewe reach a pairwhere the gcd is obvious,we can stop and evaluate
it. This technique has the potential for being tremendously more efficient than more
naive techniques for calculating the greatest common divisor of two numbers (e.g.,
systematically listing all divisors, or even prime factorization—a topic that we’ll
be turning to shortly). There is still room for improvement, however, as repeated
subtraction can often include an unreasonable number of steps:

� Example 3.2.8 Find the gcd of 93 and 7.

gcd(7, 93) = gcd(7, 93− 7) = gcd(7, 86) = gcd(7, 86− 7) = gcd(7, 79) = · · ·
Sigh.

We all see where this is heading—this process will end only after we have sub-
tracted from 93 as many 7s as we can before the result becomes negative. “But,” we
hear you cry, “we have a name for the resulting quantity already – this is precisely
the remainder when 93 is divided by 7.” As always, beloved reader, your insight is
downright Euclidean. Here are the words we’ll need:
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Theorem 3.2.9 (The Division Algorithm5 )
Given integers a and b with b > 0, there exist unique integers q and r (the
quotient and remainder, respectively) such that

a = bq + r

and 0 ≤ r < b.

The proof unfolds quickly by invoking what’s known as the Well-Ordering Prin-
ciple, the statement that any non-empty set of non-negative integers contains a least
element6 . Note that this claim is false if we change from the set of non-negative in-
tegers to the set of all integers, or the rationals, reals, complex numbers, etc. While it
isn’t always called out explicitly, theWell-Ordering Principle is a foundational result
in number theory, allowing the logical step “Well, if there are some non-negative in-
tegers with this property, there must be a smallest such number.” Being able to name
and reference that smallest number is a valuable tool in proofs. This leads to a note-
worthy proof template: after picking out the smallest number with a given property,
construct an even smaller number with that property, establishing a contradiction.

Proof (of Theorem 3.2.9) Let a and b be integers with b > 0, and consider the set
of non-negative integers

S = {a − bq : q ∈ Z and a − bq ≥ 0}.
We begin by observing that

(i) S consists of non-negative integers (by the a − bq ≥ 0 clause of its definition);
and

(ii) S is non-empty (since if a ≥ 0, then a − b(0) = a ∈ S, and if a < 0, then
a − b(a) = −a(b − 1) ∈ S).

Since S is a non-empty set of non-negative integers, theWell-Ordering Principle thus
tells us that there is a least element r of S. That is, r is the least non-negative integer
of the form r = a − bq for some q ∈ Z. Note that r < b since if r ≥ b, then r − b =
a−b(q+1) is an element of S smaller than r , contradicting the fact that r was the least
such number. This establishes the existence of the numbers q and r in the theorem.

Finally, we check that r and q are unique. Suppose to the contrary that we simul-
taneously had a = bq1+r1 and a = bq2+r2, where q1, q2, r1, r2 are all integers and

5 It is curious that this theorem is called an algorithm despite no actual algorithm in sight. Any of a
multitude of actual algorithms (e.g., “long division”) would supplement this result nicely, but it is
also true that we will frequently just need to guarantee the existence of the quotient and remainder.
6 See Appendix I for more on this fundamental principle.
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0 ≤ r1, r2 < b. Without loss of generality, suppose r1 ≤ r2. Thus 0 ≤ r2 − r1 < b.
Substituting, we find 0 ≤ (a − bq2) − (a − bq1) = b(q1 − q2) < b, which implies
0 ≤ q1 − q2 < 1 for integers q1 and q2. Thus, q1 = q2, and solving for r1 and r2
gives that r1 = r2. �

Note that uniqueness is a consequence of constraining r to live in the given range.
We can, for example, write 75 = 23q + r with q, r ∈ Z in many ways:

75 = 23 · 0 + 75 75 = 23 · 10 + (−155) 75 = 23 · (−2) + 121 . . .

but only one of these ways, 75 = 23 · 3 + 6, involves a value of r in the range
0 ≤ r < 23. This specific value of r , the unique remainder r provided by the
Division Algorithm, gets a special notation.

Definition 3.2.10

Leta, b, q, and r be as in the theorem.Wedefinea mod b byputting r = a mod b,
pronounced “a modulo b” or “a mod b.” Here we call the number b themodulus.
Note that

a | b ⇐⇒ b mod a = 0 ⇐⇒ b = ak (for some k ∈ Z),

a handy dictionary of equivalences for translating between different types of
statements in the middle of a proof. �

� Example 3.2.11 Verify each of the following using mental arithmetic:

37 mod 5 = 2 77 mod 7 = 0 12 mod 15 = 12

4 mod 1 = 0 − 3 mod 7 = 4 97 mod 23 = 5

What are the quotients q in each case?

The arithmetic of adding and multiplying remainders—“modular arithmetic”—
will occupy our near-exclusive attention in Chapter 4. For now, a mod b refers to
nothing more than the remainder of a upon division by b. Combining the observa-
tion made at the end of our gcd(93, 7) example with the remainder a mod b whose
existence is guaranteed by the Division Algorithm, we have the following vast im-
provement of Corollary 3.2.6 for use in the Euclidean algorithm.

Lemma 3.2.12 (Reduction Lemma)

For all a, b ∈ N, we have

gcd(a, b) = gcd(b, a mod b). �

Proof Let a and b be arbitrary natural numbers and let a = r mod b, so a = qb + r
for some q ∈ Z. By the Linear Combination Lemma (3.2.4), any common divisor
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of a and b is also a common divisor of a and a − bq = r . Similarly, any divisor of
b and r is also a common divisor of b and a = bq + r . Thus, since the finite set of
common divisors of a and b is equal to the finite set of common divisors of b and
r = a mod b, the greatest elements of the two sets must be equal. �

Of course, by symmetry, we could also have written gcd(a, b) = gcd(a, b mod a).
The version to apply is always clear in practice, as we only make progress if we
replace the larger of the two entries with its remainder when divided by the smaller.
It’s worth emphasizing the mental arithmetic component to computing a mod b. In
particular, note that in theReductionLemma, the value of the quotient q is completely
irrelevant. For example, to compute that 119 mod 5 = 4, we need only note that 119
is 4 more than some multiple of 5—we need not expend mental energy figuring out
which multiple of 5. Similarly, to compute 93 mod 7, we just have to eyeball that 91
is a multiple of 7 and that 93 is two more than that. We finish off our computation as
easily as

gcd(7, 93) = gcd(7, 2) = 1.

This process scales quite well to larger numbers:

� Example 3.2.13 Compute gcd(1914, 899).

Solution Noting that 1914 = 899 · 2 + 116, we begin with gcd(1914, 899) =
gcd(899, 116). Then continuing, we find

gcd(1914, 899) = gcd(899, 116) = gcd(116, 87) = gcd(87, 29) = 29

by repeated application of the Reduction Lemma. �

Theorem 3.2.14 (The Euclidean Algorithm)
For natural numbers a and b, let r−1 = a, r0 = b, and for i ≥ 0 set ri+1 =
ri−1 mod ri . Then for some n ≥ 1, the process terminates with rn = 0 and
rn−1 = gcd(a, b).

Proof To prove this process terminates, note that by the Division Algorithm we
have 0 ≤ ri+1 < ri for each i ≥ 0, and so the remainders form a strictly decreasing
sequence of integers bounded below by 0:

0 ≤ · · · < ri+1 < ri < · · · < r1 < r0.

Thus, we must have that rn = 0 for some n, and we obtain

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn−1, 0),

so gcd(a, b) = rn−1. �
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Corollary 3.2.15

For every integer k > 0, gcd(ka, kb) = k gcd(a, b). �

Proof The proof follows directly from the Euclidean Algorithm. Given for each
i > 0, ri−1 = ri qi+1 + ri+1, it follows that kri−1 = kri qi+1 + kri+1. Thus,

gcd(ka, kb) = gcd(kb, kr1) = · · · = gcd(krn−1, 0) = krn−1 = k gcd(a, b),

as desired. �

Recall that two integers are relatively prime if their gcd is 1.

Corollary 3.2.16

Suppose g = gcd(a, b) �= 0. Then a
g and b

g are relatively prime integers. �

Proof Since g | a and g | b, both a
g and b

g are integers. To check that they
are relatively prime, we observe that by Corollary 3.2.15, we have

g gcd

(
a

g
,

b

g

)
= gcd (a, b) = g,

and so dividing by g shows that a
g and b

g have a gcd of 1. �

� Remark 3.2.17 The previously mentioned efficiency of the Euclidean Algorithm
can be quantified explicitly. In what might be retroactively classified as one of the
first theorems in the branch of mathematics known as computational complexity
theory, Gabriel Lamé proved in 1844 that the Euclidean Algorithm never takes
more steps than five times the number of digits in the smaller of the two inputs
(Exercise 3.41).

We draw ever nearer to the punchline of our nugget problem.We recall that a com-
mon divisor to all of the box sizes presents a restriction as to what number of nuggets
we can purchase. A reasonable conjecture from here is that the greatest common divi-
sor is indeed the smallest linear combination you can get. The hardest part remaining
is to guarantee that we can actually obtain this value. Given that gcd(93, 7) = 1, does
this guarantee that we can purchase exactly 1 Chicken O’Nugget from boxes of size
93 and 7? The affirmative answer to this question is encapsulated in the following
remarkable theorem, named after French mathematician Étienne Bézout.
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Theorem 3.2.18 (Bézout’s Identity)
Fix a, b ∈ Z not both zero. Then there exist integers x and y such that
gcd(a, b) = ax + by; i.e., gcd(a, b) can be written as a linear combination of
a and b.

Proof Without loss of generality, suppose a and b are integers with a �= 0. Let S be
the set of positive linear combinations of a and b:

S = {ax + by : x, y ∈ Z and ax + by > 0}.
Then S is non-empty as ax +b(0) ∈ S for x = +1 or x = −1. By theWell-Ordering
Principle, since S is a non-empty subset of N, it has a smallest element d = ax + by
for some x, y ∈ Z. Let c be an arbitrary common divisor of a and b. By the Linear
Combination Lemma, c | d.

We employ a standard technique to show that d is a common divisor of a and b:
we divide each by d and show that the remainders are 0. By the Division Algorithm,
there exist integers q and r such that a = dq + r and 0 ≤ r < d. Since ax + by = d
it follows that axq + byq = dq = a − r and r = a(1 − qx) + b(−qy) ≥ 0. If
r were positive, then it would be a positive linear combination of a and b less than
d, contradicting our assumption that d was the least such linear combination. Thus,
r = 0 and d | a. A similar argument shows d | b. Since d is a common divisor
of a and b, and is itself divisible by every common divisor, it must be the greatest
common divisor of a and b. �

Toconsider the story complete,we should augment the existence claimofBézout’s
Identity with an explicit process for writing gcd(a, b) as a linear combination of a
and b. Fortunately, the Euclidean Algorithm contains all the data we need to do so.
The important observation is that as we perform the Euclidean Algorithm, the entries
that appear at any stage of the Euclidean Algorithm are linear combinations of the
initial pair of numbers. Let’s see a couple of small examples before we formalize:

� Example 3.2.19 To purchase one O’Nugget from boxes of size 7 and 93, we apply
the Euclidean algorithm and then flip it and reverse it:

93 = 7 · 13 + 2

7 = 2 · 3 + 1

1 = 7 + 2(−3)

= 7 + (93 + 7(−13))(−3)

= 7(40) + 93(−3)

Thus, we could buy 40 of the 7-piece boxes and sell back 3 of the 93-piece boxes
to get precisely one delicious, crispy, tender Chicken O’Nugget.
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� Example 3.2.20 The historically literate will recall that one of the most signifi-
cant applications of Bézout’s Identity took place in 1995, when NYPD Detective
Lieutenant John McClane was tasked with saving New York from the machina-
tions of terrorist SimonGruber. Here, a thoughtful application of Bézout’s identity
provided the expression

5 − (3 − (5 − 3)) = 2 · 5 − 2 · 3 = 4,

which had profound applications to the practice of bomb defusal. It is worth
taking the time (Exercise 3.42) to fully understand this piece of Americana and
its mathematical underpinnings.

This process of performing the Euclidean Algorithm while keeping track of the
DivisionAlgorithm steps employed is the basis of the extended Euclidean Algorithm,
which culminates in writing the gcd as a linear combination of the inputs. To enact
the process, we go through the Euclidean Algorithm as usual, but use a separate
column to keep track of the quotients and remainders. As a matter of practice, this is
facilitated by forgetting the values of a and b and just referring to them as placeholder
variables a and b. The example below shows a general schematic of the Extended
Euclidean Algorithm as well as how it applies to the specific example of calculating
the gcd of 273 and 429.

� Example 3.2.21 Find gcd(429, 273). Let a = 429 and b = 273.

Solution We first apply the Division Algorithm to reduce the gcds.

429 = 273 · 1 + 156 gcd(429, 273) = gcd(273, 156)
273 = 156 · 1 + 117 gcd(273, 156) = gcd(156, 117)
156 = 117 · 1 + 39 gcd(156, 117) = gcd(117, 39)
117 = 39 · 3 + 0 gcd(117, 39) = gcd(39, 0) = 39

Retracing the steps of the algorithm we can solve for the gcd(429, 273):

gcd(429, 273) = 39 = 156 − 117

= 156 − (273 − 156)

= (429 − 273) − (273 − (429 − 273))

= 2 · 429 − 3 · 273.
Thus, we can represent gcd(429, 273) as a linear combination of 429 and 273. Note
that we don’t simplify along the way (other than combining like remainders), as that
would simply unravel all our hard work! �

Thus, the Extended Euclidean Algorithm improves somewhat upon Bézout’s
Identity, which gives only the existence of a linear combination of a and b equal
to their greatest common divisor as opposed to an explicit construction. The general
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proof this works proceeds inductively: the algorithm terminates with rn−1, where
rn−3 = rn−2qn−1 + rn−1, so rn−1 = rn−3 − rn−2qn−1. Thus, we may express rn−1
(the gcd) in terms of the previous two remainders. In general, ri−1 = ri qi+1 + ri+1,

so ri+1 = ri−1 − ri qi+1. Inductively, then, we see that we can write rn−1 in terms
of first rn−2 and rn−3, and then rn−3 and rn−4, and so on, eventually arriving at an
expression for rn−1 in terms of r−1 and r0, or a and b. This construction in hand, we
can return to finish off our questions about linear Diophantine equations.

Theorem 3.2.22
For a, b, c ∈ Z, the equation ax + by = c has an integer solution if and only
if gcd(a, b) | c.

Bézout does most of the heavy lifting for us. The principal question that remains
is simple by comparison, as illustrated by the following dialogue:

Q: Okay, so I now believe that we can buy g = gcd(a, b) nuggets. But are we sure I couldn’t
buy fewer than g nuggets??

A: Yes, because g divides every linear combination of a and b, and g can’t divide a positive
number smaller than itself!

Q: Okay, so we can get g itself. How do we know we can we get every multiple of the gcd?

A: Because once you’ve figured out how to get g O’Nuggets from O’Donnell’s, you can
apply that algorithm n times to get ng nuggets.

Though the Socratic method may have sufficed for the ancient Greek philosophers,
let’s take the time to write this argument a little more carefully.

Proof We start by dispensing with the “only if” part of the statement. Let d =
gcd(a, b) and suppose ax + by = c for some integers x and y. Then by the Linear
Combination Lemma, d | c. Conversely, suppose d | c for some integer c, so there
exists an integer q such that dq = c. Using the extended Euclidean Algorithm, we
can find integer values for x ′ and y′ such that ax ′+by′ = d, and so a(x ′q)+b(y′q) =
dq = c. Thus, x = x ′q and y = y′q are integer solutions to the linear Diophantine
equation ax + by = c. �

One of the more stunning consequences of Bézout’s identity is a firm foundation
for more complicated divisibility statements in Z. The following lemma is the first
step along that path, and will also play an important role as we return to linear
Diophantine equations.
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Lemma 3.2.23 (Euclid’s Lemma)

For integers a, b, and c, if gcd(a, b) = 1 and a | bc, then a | c. �

Proof Given integers a, b with gcd(a, b) = 1, we know by Bézout’s Identity (The-
orem 3.2.18) that there exist integers x and y such that ax + by = 1. Thus,
cax + cby = c. Since a clearly divides ca, if a | cb as well, then by the Linear
Combination Lemma, a | c. �

Now, let us finish the linear Diophantine story. We’ve learned how to find one
solution to an equation like

17x + 13y = 1

via the Extended Euclidean Algorithm, in this case, obtaining x = −3 and y = 4.
How do we find the rest? Much like the chord method of Chapter 3, once we have
one, we can find them all, and some experimenting shows how. You need only figure
out the ways to buy 0 nuggets, and one cute answer emerges: buy 17 more 13-packs
and sell back 13 more 17-packs. The two contributions cancel each other out, and
you have the solution x = −16 and y = 21. You can repeat this process forever to get
infinitely many solutions. This turns out to be all of them, though it’s worth waiting
for one more example before we write this down formally. Consider the equation

15x + 33y = 48.

This has the trivial solution x = 1 and y = 1. Any more?Well, we can play the same
trick as before: increase x by 33 and decrease y by 15...but now there’s a little more.
Since 33 and 15 have a factor in common, there’s a smaller combination of 15 and
33 we can use to cancel out (a smaller lcm, if you will); namely, we can buy eleven
15-packs and sell back five 33-packs of O’Nuggets.

Theorem 3.2.24
If (x0, y0) is a solution to the linear Diophantine equation ax + by = c, then
for all integers t , another solution is given by

x = x0 − t

(
b

gcd(a, b)

)
y = y0 + t

(
a

gcd(a, b)

)

Furthermore, these are all of the solutions.

Proof We leave to the reader the verification that if (x0, y0) is a solution, so is the
(x, y) pair described in the theorem. To prove that this collection forms all solutions,
suppose (x, y) is an arbitrary second solution, so that ax +by = c. Subtracting from
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this the equation ax0 + by0 = c and then dividing by g = gcd(a, b) gives

a

g
(x0 − x) = b

g
(y − y0).

This last equality above shows that a
g | b

g (y − y0), and since a
g and b

g are relatively
prime byCorollary 3.2.16, Euclid’s Lemma shows that a

g | (y−y0).Writing y−y0 =
t ( a

g ) (which gives the desired parameterizaton of y), substitution into that last equality
gives

a

g
(x0 − x) = b

g

(
ta

g

)
,

which provides

x = x0 − t

(
b

g

)
= x0 − t

(
b

gcd(a, b)

)

after multiplying by g
a and then rearranging to solve for x . �

Depending on whom you ask7 , the actual process of solving linear Diophantine
equations is less exciting than the structural properties of integers we discover as a
byproduct of this discussion. Namely, we’ve learned that the gcd of any two integers,
which is defined completely in terms of multiplicative properties, also admits an
interpretation in terms of additive properties, namely linear combinations. Further,
this translation of language has a very curious effect: the word “greatest” in “greatest
common divisor” gets translated into “smallest” as in “smallest linear combination.”
This duality is remarkable, so let’s make it a theorem – nay, aFundamental Theorem:

Theorem 3.2.25 (Fundamental Theorem of GCDs)
For integers a and b not both 0:

The smallest positive linear
combination of a and b

= The largest integer
dividing both a and b

Weconcede that the name given is sadly not a standard one and that it is essentially
equivalent to Bézout’s Identity, but its memorable reformulation above deserves a
special place in your heart. It also plays a crucial role in the development of our big
story: we are quietly building toward the single most important structural result of
the integers, and the upcoming Exploration provides a segue, dissecting precisely
what makes the set {±1} such a special subset of the integers.

7 ...and we guess you’ve implicitly asked us, so...
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Exploration C:Units and Divisibility

Definition. Let R be a commutative ring with unity. An element u ∈ R is called
a unit if u | 1, i.e., if u has a multiplicative inverse in R.

C.1 What are the units of Z? Of Q? Of R[x]?
C.2 Prove that if a, b ∈ R are units, then so is ab.

Gaussian Units

The units of Z[i] are less quickly addressed. Recall that for z = a + bi ∈ Z[i],
we define z = a − bi and N (z) = zz = (a + bi)(a − bi) = a2 + b2.

C.3 Verify to your satisfaction the identities

z1 + z2 = z1 + z2 z1z2 = z1 · z2 N (z1z2) = N (z1)N (z2)

for z1, z2 ∈ Z[i] which will be of use below.
C.4 Prove that if z is a unit of Z[i], then z is also a unit. Conclude that z is a unit
if and only if N (z) = 1.

C.5 What are all the units of Z[i]?

To mirror some questions from the previous Exploration on divisibility in Z:

C.6 Which Gaussian integer(s) divide all other Gaussian integers? Which Gaus-
sian integer(s) are divisible by all other Gaussian integers?

C.7 What is the smallest number of divisors a non-unit z ∈ Z[i] can have?

Gaussian GCDs

To foreshadow some of the nuances of gcds in Z[i] that we will take up in Chap-
ter 5:

C.8 Propose a definition of “greatest common divisor” in Z[i]. What should
“greatest” mean here?

C.9 Check that 2+i is a common divisor of 3−i and 5. Find the 7 other common
divisors. Which is the “greatest”?

C.10 An aside on the necessity of unity: in the commutative ring 2Z of even
integers, compute:

gcd(2, 4) gcd(8, 12) gcd(12, 16) gcd(6, 24)

Be sure to check divisibility in 2Z carefully! �
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3.3 The Fundamental Theorem of Arithmetic

The history of the Fundamental Theorem of Arithmetic is strangely obscure. It is not too
much of an exaggeration to say that the result passed from being unknown to being obvious
without a proof passing through the head of any mathematician.

Agargün and Fletcher,
The Fundamental Theorem of Arithmetic Dissected

Unlike our typical process of discovering a result by systematic exploration, let’s
start this sectionwith one of the fundamental structural results of the natural numbers.
At some point in your mathematical career thus far, you’ve probably had someone
tell you that a prime number is a number whose divisors are only 1 and itself, and
explain to you that these numbers are used to find the factorization of any number,
culminating in a statement something like the following:

Non-Theorem 3.3.1 For every integer n, there is one and only way to write an
equation of the form

n = p1 p2 p3 · · · pk,

where each pk is prime.

This statement is eminently plausible at first glance. For example, 8 = 2 · 2 · 2,
84 = 2·2·3·7, and 5 = 5. Youmay even have internalized a procedure for coming up
with prime factorization (e.g., factor trees). But boy howdy is that a false statement,
and for quite a few reasons. Let’s collect some:

• The “one and only one” clause is a little ambiguous. For example, 15 = 3 · 5 and
15 = 5 ·3 are both factorizations of 15, and the theorem as written fails to account
for this.

• The theorem’s statement includes negative numbers, and it’s a little unclear what to
do with these. What do we do about−6 = 2 · (−3) = −2 ·3? Or 15 = (−3)(−5)?

• The case of n = 0 seems problematic. Likewise, for the cases n = ±1.
• There is some ambiguity as to the definition of prime numbers—is 1 a prime
number? After all, its positive divisors are merely 1 and itself....

The easiest and most common way to fix Theorem 3.3.1 is simply to throw out
all the problematic cases, stating the theorem only for natural numbers at least 2 and
insisting on prime factorizations being written, for example, in increasing order of
primes. But it’s more instructive to think about the structural implications at stake
here. Let’s begin at the bottom of the list, with the role of 1, where we note first
and foremost that this is solely a matter of definition. We can choose to either agree
that 1 is a prime by sneaking its way through the definition on a technicality or to
explicitly forbid it by insisting that to be prime you need exactly two distinct positive
divisors. But second, and even foremost, we stress that choosing the “right” definition
is one of the most important parts of setting up a field of study. If, for example, we
choose a definition which admits 1 as a prime number, then we have to deal with the



58 3 Number Theory in Z Beginning

consequences of our choice, and concede that we have the following infinitely many
violations of the “only one way” claim for prime factorization:

6 = 3 · 2 = 3 · 2 · 1 = 3 · 2 · 1 · 1 = 3 · 2 · 1 · 1 · 1 = · · ·
. Of course, we could change the theorem to say that every integer has infinitely
many prime factorizations, all differing in the number of 1’s tacked on at the end, but
I think we can all agree that the statement of this version lacks some of the punch of
the original. Nothing fundamentally breaks8 by the inclusion of 1 as a prime number,
but everything gets a little more cumbersome to state. A good way to proceed is to
see which option generalizes more nicely to other rings. To this end, let us consider
once more the Gaussian integers.

Mirroring the standard definition inN, we could try defining α ∈ Z[i] to be prime
if its only divisors are 1 and itself. As withZ, this still leaves 1 ambiguous, but it also
makes everything not prime, for the silly reason that, e.g., −3 | 3 and −1 | 3 as well.
Even taking into account negatives, we would have issues for Gaussian integers: For
any α ∈ Z[i], the identity i2 = −1 provides a multitude of factorizations of α:

α = α · 1 = (−α) · (−1) = (iα) · (−i) = (−iα) · i.

We conclude that any α ∈ Z[i] has at the very least the eight divisors ±α, ±iα, ±1,
±i . Measuring primeness by counting divisors seems arbitrary and obfuscating. The
problem seems to be that we have one trivial factorization, α = α · 1, and then all
the rest are obtained by messing around with units—we can remove or insert from
the factorization any factorization of 1. Numbers that divide 1 are thus a key set of
elements to identify in any ring.

Definition 3.3.2

In a ring R with unity, an element a ∈ R is a unit if a | 1; that is, if a has a
multiplicative inverse a−1 in R. Two non-zero elements c, d ∈ R are associates
if each is a unit times the other. �

� Example 3.3.3 As you may have discovered in Exploration C,

• the units of Z are precisely ±1,
• the units of Z[i] are {±1,±i},
• the units of R and Q (and any field) are everything except 0, and
• the units of R[x] are all non-zero constant polynomials

The units of a ring are of crucial importance in understanding its structure, es-
pecially its divisibility and factorization properties. In particular, the general phe-
nomenon is that units aren’t particularly well classified as either prime or composite.

8 passionate internet flame wars to the contrary notwithstanding
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Definition 3.3.4

Let p be an integer that is neither zero nor a unit. We say that p is prime if its
only divisors are units and associates of p; otherwise, p is composite. �

This definition of prime is more structural than the one given at the start of the
section and differs in how it treats negative numbers: 7 is prime since its divisors
(±1 and ±7) are all units or associates of 7, and −7 is prime for the same reason.

This presents an explicit partition of the integers into four categories, with every
integer belonging to one and only one category in this list:

• Zero: Unsurprisingly, this consists only of the integer 0.
• Units: The units are precisely ±1.
• Prime numbers: ±2, ±3, ±5, ±7, ±11, etc9 , appearing in associate (±) pairs.
• Composite numbers: By definition everything not yet addressed. This includes

±4, ±6, ±8, ±9, etc.

More importantly, we can now state a careful and explicit (and even better, true!)
version of Theorem 3.3.1:

Theorem 3.3.5 (Fundamental Theorem of Arithmetic)
Every non-zero integer n ∈ Z can be written in the form

n = up1 p2 . . . pk,

where k is a non-negative integer, u is a unit of Z, and each pk is a prime of
Z; moreover, this form is unique up to reordering and associates. Note that the
k = 0 case corresponds precisely to the units.

Now that’s a theorem! It takes care of all of our problem cases above, in that it
recognizes

15 = 3 · 5 = 5 · 3 = (−3) · (−5) = −1(3 · (−5))

all as factorizations of 15, and then dictates what flexibility we have in finding other
factorizations: we can only rearrange the placement of the units (in this case, just
±1) and the order of the factors. The language “unique up to order and units” for
this phenomenon will become a familiar refrain as we move forward. The theorem
also address the fringe cases we ran into before. For n = 1, we have the prime
factorization with k = 0 and u = 1, and likewise for n = −1 and u = −1. When

9 The contents of this “etc” and the patterns in the continuation of this list will be a motivating
source of mystery and a mysterious source of motivation.
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n = 0, the theorem says nothing, implicitly declaring that we will not attempt to
ascribe a prime factorization to zero.

Now, to return to the quote at the start of this section: isn’t this theorem
just...obvious10 ? After all, you’ve likely been using this result since grade school—
don’t you just keep pulling out prime factors until there’s nothing left?We argue to the
contrary that there’s quite a bit of meat in this result. First, it does not follow simply
from the ring axioms, as there are rings where unique factorization does not hold!

� Example 3.3.6 Consider again the ring of even integers, 2Z. We can still talk about
divisibility since, e.g., 10 | 20 (because 20 = 2 · 10). On the other hand, we now
have 2 � 6 since there is no k ∈ 2Z such that 2k = 6. In fact, 6 has no divisors in
this ring (not even itself!), making it vacuously prime, and likewise, for any even
number that is not a multiple of 4. But now consider the identity

2 · 30 = 60 = 6 · 10.
This provides twodistinct factorizations of 60 as the product of twoprime elements
of this ring!

So if unique factorization does not follow “for free” in an arbitrary ring, it must
be that there is some property of Z that provides it that not all rings have. Even in the
context of Z, the result has profound implications. As illustrative examples, ponder
for a moment whether or not the following equations are true:

2017 · 4973 ?= 2687 · 3733
1517 · 2021 ?= 1591 · 1927

There are certainly some tests to run before simply doing the multiplication, e.g.,
checking the last digit, or checking that they should have about the same size, etc.,
though neither of these attempts resolves these particular equations. Suppose we told
you that the numbers 2017, 4973, 2687, and 3733 were all prime. Would that help
resolve the first equation? Certainly! It tells us that if the first equation were true, then
this common product would have two distinct prime factorizations, contradicting the
Fundamental Theorem of Arithmetic.

For the second equation, note how quickly prime factorizations resolve the
question:

1517 · 2021 = (37 · 41) · (43 · 47) = (37 · 43) · (41 · 47) = 1591 · 1927.
The Fundamental Theorem of Arithmetic tells us this had to be true for the two
sides of this to be equal. The two factorizations of their product (3,065,857) must
necessarily come from two different partitions of its prime divisors into factors.

10 “Obvious” is the most dangerous word in mathematics. - E.T. Bell
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Returning to the first equation, suppose we knew only that 2017 were prime—
would this be sufficient to conclude that the equality was false? Certainly, neither
2687 nor 3733 is a multiple of 2017, so it’s hard to imagine how the prime factor-
izations could then work out to be the same. This application of the Fundamental
Theorem turns out to be the key insight in its proof. The first step along this path
is the Prime Divisor Property, whose proof, by way of Euclid’s Lemma, is a direct
consequence of Bézout’s identity.

Corollary 3.3.7 (The Prime Divisor Property)

For b, c ∈ Z, if p is a prime with p | bc, then p | b or p | c. �

Proof Suppose p | bc. If p | b we are done. If p � b, then gcd(p, b) = 1, so by
Euclid’s Lemma (Lemma 3.2.23), p | c. �

� Remark 3.3.8 In fact, the Prime Divisor Property provides a property of primes
that could have been used as the definition of a prime number. As it turns out, this
is precisely the definition we will take of a prime element in a more general ring
when we come to that stage in Chapter 6.

The contrapositive of this result is applied just as frequently: you can’t get a
multiple of a prime p by multiplying two non-multiples of p. The generalization to
n factors is a standard proof by induction.

Corollary 3.3.9

If a1, . . . , an ∈ Z and p is a prime with p | a1 · · · an , then p | ai for some
1 ≤ i ≤ n. �

Proof We induct on n, the number of factors. The base case of n = 2 is the previous
lemma. Now we assume that whenever p divides a product of n − 1 factors for
n > 2, it divides one of the n − 1 individual factors, and prove the analogous
statement for n. Suppose p | a1 · · · an = a1(a2 · · · an). By the previous lemma,
p | a1 or p | a2 · · · an . But by the induction hypothesis, the latter case implies that
p | ai for some 2 ≤ i ≤ n. In either case, p divides one of the ai and we are done. �

We will make use of this handy series of results extensively for the remainder of
the book. Here are several quick applications to get us started. For example, taking
all ai to be the same constant a, we arrive at the following:

Corollary 3.3.10

Let p be prime in Z. For n ∈ N, if p | an , then p | a. �
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In particular, we get a slick generalization of the standard even/odd argument that√
2 is irrational, now applying to any prime.

Corollary 3.3.11

If p is prime, then
√

p is irrational. �

Proof Suppose for the sake of contradiction that
√

p = a
b with gcd(a, b) = 1. Then

pb2 = a2, so p | a2, and thus p | a by the previous corollary. Write a = pc for
some c ∈ Z and substitute to get pb2 = p2c2, which gives b2 = pc2. From this,
we conclude that p | b2, so p | b. But now p is a common divisor of a and b,
contradicting that gcd(a, b) = 1. �

And, finally, the big one.

Theorem 3.3.12 (Fundamental Theorem of Arithmetic)
Every non-zero integer can be written in the form

n = up1 p2 . . . pk,

where u is a unit, k ≥ 0, and each pk is prime. Moreover, this form is unique
up to reordering and associates.

Proof Let n be a non-zero integer. First, let’s dispense with the case that n is a unit
(i.e., n = ±1). In this case, n = n is an expression for n in the form n = up1 p2 . . . pk,

where k = 0.
Notice that any non-zero integer n has a unique prime factorization up to re-

ordering and associates if and only if −n does, so for the remainder of the proof,
we consider the case n is positive, assume u = 1, and suppose that any prime p
appearing in the factorization is positive. We break the proof into the existence and
uniqueness of a factorization for such an integer.

First, we argue existence by strong induction. If n = 2, then n is prime, and
taking u = 1, k = 1, p1 = 2 provides a prime factorization. Now suppose t can
be written as a product of primes for all natural numbers 2 ≤ t < n, and consider
n itself. If n is prime we are done. If not, n = ab for some 2 ≤ a, b < n in N.
By our strong induction hypothesis, a and b can each be expressed as a product of
primes, a = p1 p2 · · · pl and b = q1q2 · · · qm . Thus, n = p1 p2 · · · plq1q2 · · · qm is
an expression for n as a product of primes.

It remains to prove uniqueness. We show that any time we have two prime fac-
torizations of an integer n ≥ 2 into a product of positive primes, then those two
products are in fact simply rearrangements of one another. That is, suppose that, for
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some positive primes pi and qi , we have

p1 · · · pk = q1 · · · q�.

After canceling off any factors in common to both sides, we can assume that no
pi is equal to any q j . Now pick any prime pi you want. The equality of the two
products implies pi | q1 · · · q�. Thus, by Corollary 3.3.9, we have pi | q j for some
j . However, the only divisors of q j are ±1 and ±q j , and we reach the contradiction
pi = q j for some j . �

3.4 Factors and Factorials

Teacher: How many times does 5 go into 75?
Student: Every single time I do it!
You: Lol.
- Anonymous Jokester

One of the most concise ways of seeing the power of the Fundamental Theorem
of Arithmetic is that we can unambiguously make sense of “the power of p that goes
into n.” This phrase is simultaneously bulky enough and important enough that it
merits some terminology and notation.

Definition 3.4.1

For a non-zero integer n and prime p, define the p-adic valuation of n, denoted
vp(n), to be the power of p appearing in the prime factorization of n. In other
words, vp(n) is the unique integer such that we can write

n = pvp(n)n′

for some integer n′ with p � n′. �

For n = 3500 = 22 · 53 · 7, we have v2(n) = 2, v5(n) = 3, and v7(n) = 1,
since these are precisely the powers of each of those primes showing up in its prime
factorization. The n′ in the definition is a catch-all for “the rest of the factorization,”
i.e., the part not involving the specific prime p (so for a given n, the value of n′
depends on p). The definition also makes sense for primes p not dividing n: since
3500 = 110 · 3500 and 11 � 3500, we conclude that v11(3500) = 0, and likewise for
every prime other than 2, 5, and 7.

Many of the observations about prime factorizations, relatively prime numbers,
gcds, perfect squares, etc., can be neatly encoded in terms of these valuations, and
often more easily proved in this language as well. Specifically, many are direct
consequences of the following rather trivial lemma.
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Lemma 3.4.2

For non-zero integers a and b, we have

vp(ab) = vp(a) + vp(b). �

Proof Let k = vp(a) and � = vp(b) so we can write a = pka′ and b = p�b′ with
p � a′ and p � b′. Then ab = pk+�a′b′, and by the contrapositive of the Prime
Divisor Lemma, p � a′b′, so vp(ab) = k + � = vp(a) + vp(b). �

The identity shows how similar vp is to the base-p logarithm function logp, and
in fact, the two functions give the same result on an input of the form pk . For other
integer inputs, they differ in that vp simply ignores the part of the input relatively
prime to p. As always, we take our new definition out for a test run before engaging
in any life-or-death street racing with it. How, for example, does it handle units?
Once you answer that question, it’s easy to see that the sign of n is inconsequential:
since −3500 = −1 ·22 ·53 ·7, the valuations vp(3500) and vp(−3500) are the same
for all primes p. Alternatively, since vp(−1) = 0 for all primes p, the result follows
from the lemma: vp(−n) = vp(−1) + vp(n) = vp(n). Next, what about 0? Since
we have not defined the prime factorization of 0, the official definition provides no
guidance, but if we let Lemma 3.4.2 lead the way, we find our hand forced! That is,
if we were to insist that

vp(0) = vp(0 · n) = vp(0) + vp(n)

hold for all n, then we are honor-bound to accept that vp(0) has the property that it
remains unchanged upon addition of any natural number! There is but one solution,
which is to adopt the convention that vp(0) = ∞! This rather unorthodox convention
protects the legitimacy of the lemma, but also bears some semblance of plausibility—
it is indeed the case that pk | 0 for every integer k, so if we adopt the stance that vp(0)
should be the highest power of p that divides zero, we are also led to the convention
of setting vp(0) = ∞. (This latter piece of reasoning also explains why we do not
choose vp(0) = −∞.)

Let us put these valuations to use. First, we spend some time rephrasing key
arithmetic concepts (divisibility, gcds, etc.) in the language of valuations, proofs of
which typically follow immediately from prime factorizations.

Lemma 3.4.3

Given non-zero integers a and b, we have a | b if and only if vp(a) ≤ vp(b) for
all primes p. In particular, we have vp(a) = vp(b) for all p if and only if a | b
and b | a; that is, a = ±b. �

This seemingly trivial lemma greatly facilitates computations of important
number-theoretic quantities in the case that the prime factorizations are available
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to us. For example, finding gcd(378675, 199875) would be tiresome by hand, even
with the Euclidean algorithm. But if we were in a context where we already knew
the prime factorizations 378675 = 34 · 52 · 11 · 17 and 199875 = 3 · 53 · 13 · 41,
computing their gcd is greatly simplified: we simply reason via the prime factoriza-
tion of the gcd of these two numbers. In particular, the gcd can’t have a 17 in its
prime factorization, since then it wouldn’t divide 199875 by the lemma. Similarly, it
can’t have a 13, lest it fails to divide 378675. More interestingly, we can also reason
that v5(gcd(378675, 199875)) = 2. If it were any smaller, we could multiply by
5 to find a larger common divisor, and if it were any larger, it would fail to divide
378675. Now we see that this value of 2 came from the smaller of the two exponents
of 5 in the two respective prime factorizations. With this observation, we arrive more
generally at the following lemma.

Lemma 3.4.4

For each prime p we have

vp(gcd(a, b)) = min{vp(a), vp(b)} and vp(lcm(a, b)) = max{vp(a), vp(b)}.

In particular, a and b are relatively prime if and only if for each prime p, either
vp(a) = 0 or vp(b) = 0 (or both). �

As an interesting consequence, we have the following algebraic identity:

Lemma 3.4.5

For all natural numbers a and b, we have

gcd(a, b) · lcm(a, b) = ab. �

Proof By Lemma 3.4.4, we have

vp(gcd(a, b) · lcm(a, b)) = min(vp(a), vp(b)) + max(vp(a), vp(b))

= vp(a) + vp(b) = vp(ab)

for all primes p, and so the result follows from Lemma 3.4.3. �

We note that above and for the next few lemmas we restrict our attention to natural
numbers rather than arbitrary integers. This stems from the asymmetry implicit in
the definition of gcd and lcm whereby they were taken by fiat to be positive. The
previous result would necessarily fail, for example, if ab were negative. Still, in some
sense, the spirit of the result is still true as all of the valuations work out correctly—so
while we skirt the issue, for now, addressing the matter of units in questions of this
type will require more care in upcoming chapters.
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From here on, we will drop the word “perfect” from “perfect square," making the
assumption that, like our readers, squares are inherently perfect.

Lemma 3.4.6

A natural number n is a square if and only if vp(n) is even for all primes p. �

Proof If n = k2, then for any prime p, we have by Lemma 3.4.4

vp(n) = vp(k
2) = vp(k) + vp(k) = 2vp(k)

which is even. Conversely, if each exponent in the prime factorization of n is even,
then we can write

n = p2a1
1 p2a2

2 · · · p2ak
k ,

and so evidently n = k2 for k = pa1
1 pa2

2 · · · pak
k . �

Compare the following to Corollary 3.3.11.

Corollary 3.4.7

If a natural number n is not a square, then
√

n is irrational. �

Proof Since n is not a square, there exists a prime p | n such that vp(n) is odd.
Now suppose

√
n = a

b were rational. Then nb2 = a2, but vp(a2) = 2vp(a) is even,
whereas vp(nb2) = vp(n) + 2vp(b) is odd, giving a contradiction. �

This result admits a vast generalization, the so-called Rational Root Test.

Theorem 3.4.8 (Rational Root Test)
If f (x) = an xn + an−1xn−1 + · · · + a0 has a rational root x = b

c , with
gcd(b, c) = 1, then b | a0 and c | an .

Proof Suppose x = b
c , with gcd(b, c) = 1, is a rational root of f (x). Then the

equation f
( b

c

) = 0 gives, after multiplying by cn , that

anbn + an−1bn−1c + · · · + a0cn = 0.

Organizing this equation as

−a0cn = b(anbn−1 + · · · + a1cn−1),
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we see that b | a0 (since gcd(b, c) = 1 implies gcd(b, cn) = 1). Similarly, organizing
the equation as

anbn = −c(an−1bn−1 + · · · + a0cn−1),

we see that c | an . �

Corollary 3.4.9

In particular, if f is monic (an = 1), then any root of f is either an integer or
irrational. �

Applied to the polynomial f (x) = x2−n, we see that any root (i.e.,±√
n) is either an

integer (if n is a square) or irrational (if not). This is where the “vast generalization”
we mentioned above comes into play. We can generalize easily to k-th powers like
5
√
2 or 3

√
17, and also to roots of other polynomials which are harder to write down.

For example, all roots to the polynomial

f (x) = x7 + 23x6 − 19x5 + 24x2 − 37x + 1

are irrational, since by the corollary the only possible rational numbers that could be
roots, ±1, are not (as neither f (1) nor f (−1) is zero).

Finally, we mention one more key result that follows from unique factorization
and admits a nice proof using valuations.

Lemma 3.4.10 (Power Lemma)

Let a and b be relatively prime natural numbers. If ab is a square, then a and b
are themselves squares. More generally, if ab is an n-th power, then so are a and
b. �

Proof Suppose ab = k2 with gcd(a, b) = 1. Then for any prime p, vp(a)+vp(b) =
vp(ab) = 2vp(k) is even, but either vp(a) = 0 or vp(b) = 0 since gcd(a, b) = 1,
so both must be even. That is, for each prime p, both vp(a) and vp(b) are even, so a
and b are squares by Lemma 3.4.6. For the general argument, we need only replace
“even” with “multiple of n.” �

We close the section with a return to Pythagorean triples, highlighting both how
far we’ve come and some tantalizing prospects for what lies ahead. When we last
left our heroes, we had observed that Pythagorean triples come in infinite families:
(3, 4, 5) and its multiples, (5, 12, 13) and its multiples, etc., and that (Theorem 2.2.4)
every Pythagorean triple was a multiple of one of the form

(a, b, c) = (u2 − v2, 2uv, u2 + v2)

for some u > v > 0. The mapping between pairs (u, v) and triples (a, b, c), along
with their multiples, is not particularly crisp. Not every Pythagorean triple can be
written in the form (u2 − v2, 2uv, u2 + v2), and not every (u, v) pair generates a
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triple that’s not a multiple of some smaller triple. The literature calls a Pythagorean
triple (a, b, c) primitive if no prime divides all three side lengths. We did not at the
time have the tools to precisely parameterize the primitive triples, but we’re much
better equipped now:

Corollary 3.4.11

The primitive Pythagorean triples are precisely those coming from pairs (u, v)

with u > v > 0, gcd(u, v) = 1, and u, v of opposite parity (that is, one odd and
one even). �

Proof First, suppose u and v satisfy all of the conditions. We show that (u2 −
v2, 2uv, u2 + v2) is primitive; i.e., no prime p divides all three side lengths. We can
rule out p = 2 since the even/odd hypothesis on u and v forces both of u2 ± v2 to
be odd. Next, suppose that an odd prime p divides u2 − v2 and u2 + v2, and thus
their sum and difference, 2u2 and 2v2, respectively. By the prime divisor property
and Corollary 3.3.10, we see that p also divides both u and v, contradicting that
gcd(u, v) = 1. For the converse, suppose (u2 − v2, 2uv, u2 + v2) is a primitive
Pythagorean triple. The only substantive check is that u and v are relatively prime.
If any prime p were to divide both u and v, it would also divide each of u2 − v2,
2uv, and u2 + v2, culminating in a non-primitive triple. �

Finally, we note that Pythagorean triples provide one of the more compelling
justifications for trying to develop number theory (and in particular, analogs of the
Fundamental Theorem of Arithmetic) in other rings. As a quick foreshadowing, let’s
revisit the Pythagorean Theorem yet again, but this time in a marvelous future where
we have developed an analog of gcds, Bézout’s Identity, etc., all the way up to the
Power Lemma for Z[i], the ring of Gaussian integers. In this ring, we can re-write
the Pythagorean identity as

c2 = a2 + b2 = a2 − (−bi)2 = (a + bi)(a − bi).

If we could assume that the Power Lemma (3.4.10) continues to hold in Z[i] and
that a + bi and a − bi are relatively prime (whatever that means...), then the lemma
guarantees that a + bi and a − bi are themselves squares:

a + bi = (u + vi)2 = (u2 − v2) + 2uvi

By equating real and imaginary parts, we get a = u2 − v2, b = 2uv, and from
a2+b2 = c2, we get c = u2+v2. This is the complete classification of Pythagorean
triples we found in Theorem 2.2.4 from the chord method, but from purely number-
theoretic techniques.
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Exploration D: Consequences of the Fundamental Theorem

Factorials

D.1 How do the prime factorizations of n! and (n + 1)! relate? Experiment by
writing down the prime factorizations of the first few factorials.

D.2 Compute v2(100!), v3(100!) and v53(100!).
D.3 Find the number of zeroes at the end of the decimal expansion of 125!.

D.4 Explain the following two important and pleasantly opposite facts:

• All prime divisors p of n! must satisfy p ≤ n.
• All prime divisors p of n! + 1 must satisfy p > n.

D.5 Use the previous problems to describe an algorithm for writing down the
prime factorization of n!. For those who prefer formulas to algorithms, you might
find the expression � n

pi 
 helpful (here �x
 denotes the floor of x , the greatest
integer less than or equal to x).

Divisor-Counting

While working inZ (allowing negative primes and whatnot) has some clear struc-
tural benefits, it does render some aspects of number theory cumbersome. For
example, each prime p now has four divisors (±1 and ±p) instead of just “1
and itself.” For the following counting problems, work in N and take all integers,
primes, divisors, etc., under consideration to be positive.

D.6 Suppose p, q , and r are primes. Howmany divisors does p3 have? p6? How
about p2q3? pqr?

D.7 Generalize: Find a formula for the number of divisors of n = pe1
1 · · · pek

k ,

where k ≥ 1, each pi is prime, and each ei is a non-negative integer.

D.8 It is a little-known fact that math professors do not actually read homeworks
in order to grade them. Given, say, 600 calculus problems to grade, we begin by
marking them all correct. Then, fearing this is too obvious, we go through and
change every second problem (all the even-numbered problems) to incorrect. Of
course, this is a pretty recognizable pattern as well, so we go through and change
every third problem (changing problems 3, 6, 9, etc. to correct if it was marked
incorrect, and vice versa), then change every 4th problem, then every 5th problem,
etc. On the 600th and last run-through, only the 600th problem is changed one last
time. Howmany problems ended up being marked correct? The previous problem
is relevant. �
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3.5 The Prime Archipelago

The topic of valuations shepherds inwith it an important philosophical perspective: to
understand one global question about integers (“Does a divide b?”) it often suffices to
resolve related questions one prime at a time (“For eachprime p, isvp(a) ≤ vp(b)?”).
The significance of this perspective will increase over time and is the explicit focus of
Chapter 8, but for now, we use it as motivation for moving away from how arithmetic
is governed by primes to a closer look at the set of primes itself.

We have thus far cavalierly thrown around numbers like 2, 3, 5, 7, 11, etc., as
examples of primes. How do we know these are primes? Presumably, because we’re
so well versed in our small-integer multiplication tables that we’re convinced that
no two natural numbers greater than 1 multiply together to give, for example, 11.
The mental hard-wiring of multiplication tables can only take us so far, though—for
4-digit primes, one would need to know the 100×100 multiplication table. But even
this observation, that 100 × 100 = 10000 is bigger than any 4-digit number, holds
some insight:

Lemma 3.5.1

Every composite n ∈ N has a prime divisor p with p ≤ √
n. �

Proof Since n is composite, we can write n = ab with a, b > 1. Now we couldn’t
have both a, b >

√
n, as this would imply ab >

√
n · √

n = n. Choose p to be any
prime divisor of whichever factor is at most

√
n. �

Most directly, this simplifies the brute-force test for primeness: we need not test
n for divisibility by all integers up to n, but instead only all primes up to

√
n. For

n = 119, for example, we can use the lemma to conclude primeness after testing
divisibility only by 2, 3, 5, and 7 (the primes less than

√
119). These four divisions

represent amazing time savings over dividing by all 117 integers from2up to 118.But
there is a second boon of the lemma which comes into play if we wish to enumerate
all primes up to n. The algorithm is known as the Sieve of Eratosthenes:

� Sieve 3.5.2 (Sieve of Eratosthenes) Fix n > 2. To find all primes p ≤ n:

• Begin with a list of the integers 2 ≤ k ≤ n. Initially, all numbers are neither
circled nor crossed out.

• Circle the smallest remaining number (that is, not circled and not crossed out)
and cross off all of its multiples in the list.

• Repeat the previous step until all numbers less than or equal to
√

n have been
circled or crossed out.

• Circle every remaining number on the list not yet crossed out. Now the circled
numbers are all prime, and all crossed-out numbers are composite.
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The argument that this procedure produces the primes up to n is simply the lemma:
the elements of the list that get crossed off are precisely the composite numbers up to
n with a prime factor at most

√
n. The sieve is vastly more efficient for producing all

primes up to n than simply testing each one in that range individually for primeness,
and so with very little work we can extend our initial list of primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, etc.

From a list of the integers up to 100, the 25 primes up to 100 can be enumerated in
a matter of seconds—we need only cross out the multiples of 2, 3, 5, and 7.

Still, the “etc” in that list of primes quietly conceals a profoundmystery—looking
out over the ocean of integers, islands of primes speckle the landscape. Aswe strain to
look further and further out, does this archipelago eventually end? Are there finitely
many primes or infinitely many? Is there a formula for the n-th term in that list,
like there is for the n-th triangular number, or a recursive formula like for the n-th
Fibonacci number? Is it true that the primes get sparser as we go further down the
number line? Could we even make a statement like that precise?

Noneof these questions are trivial to resolve.Atfirst glance, it’s quite plausible that
the list of primes might contain only finitely many terms. As a thought experiment,
consider that at least half the natural numbers are composite simply because they’re
even, and then a third of the remaining odd numbers are composite since they’re
multiples of three, then an extra fifth are multiples of 5, etc. For any given 100-digit
number to be prime, it would have to simultaneously avoid being a multiple of 2, and
avoid being a multiple of 3, and avoid being a multiple of 5, etc. So it is conceivable
there are only, say, fourteen trillion numbers which manage to beat the odds and
avoid being multiples of each smaller number. As it turns out, this is not the case:
one of the most celebrated pieces of mathematics from antiquity, with one of the
most elegant proofs ever written, is the denial of that possibility.

Theorem 3.5.3 (Euclid, 300 BCE)
There are infinitely many primes.

Proof We will show that given any finite set of primes, {p1, . . . , pk}, we can always
find another prime p not in the set. To do this, consider the number

N = p1 p2 · · · pk + 1,

and let p be the smallest prime divisor of N . Then none of the pi divide N (by its
form above, we can see that the remainder when N is divided by any of the pi is 1)
but p does, so p is distinct from each of the primes pi in the initial set. We conclude
that no finite set of primes can contain them all. �
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The proof is almost too elegant, in that it so quickly disposes of a profoundly
interesting question. We encourage the reader to ponder the approach carefully and
consider any number of follow-up questions that arise: is the number N constructed
in the proof always prime? Is the proof “constructive” in the sense that it provides
an explicit new prime? What if we didn’t choose the smallest prime divisor of N but
the largest? Could you generate all primes by repeating the procedure in the proof
over and over?

Knowing that there is an infinitude of primes is just a first step toward understand-
ing how the primes are distributed along the natural number line. In particular, a belief
that there are only finitely many primes can be defended with plausible reasoning,
even if it ultimately wrong. It is “harder” for a random large number to be prime than
a random small one, for the simple reason that there aremore potential prime divisors
it has to dodge. Making precise claims of this type falls most cleanly in a branch of
number theory called analytic number theory, as opposed to the algebraic number
theory that this book fawns over. We do not have space to do the topic justice here,
but nor could we neglect to at least inform you of the story. One way of attempting
to make precise claims about the decreasing density of primes as we progress down
the number line is to count all the primes up to an indeterminate value x , and then
see how that count evolves as x increases. This leads to the following definition.

Definition 3.5.4

For a positive real number n, the prime counting function π(n) is defined to be
the number of prime natural numbers p ≤ n. �

For example, since there are precisely four prime numbers less than 10 (namely,
2, 3, 5, and 7), we have π(10) = 4, and with the aid of a computer11 , we can
tabulate that π(1, 000, 000) = 78, 498. One of the success stories of nineteenth-
century number theory was a proof, independently completed by Jacques Hadamard
and Charles Jean de la Vallée Poussin, of an asymptotic growth rate for π(n). One
need only look at the name of the result, and the absence of words in its statement,
to get a sense of its significance.

Theorem 3.5.5 (The Prime Number Theorem)

lim
n→∞

π(n)

n/ ln(n)
= 1.

11 or a bevy of very well-trained chimpanzees
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The theorem presents some compelling information on how the primes are dis-
tributed. Namely, we should expect that for large n, we have π(n) ≈ n

ln(n)
, approxi-

mate in the sense that the ratio between the two sides should be close to 1, and gets
closer to 1 as n increases. For one, the prediction

π(1, 000, 000) ≈ 1, 000, 000

ln(1, 000, 000)
≈ 72, 382

is about 8% off from the correct answer given above, but much, much easier to eval-
uate. Further, since there are n natural numbers up to n, dividing the approximation
by n describes the proportion of numbers in this range which are prime. Loosely
re-interpreting this as a probability, we conclude that the probability that a number
up to n is prime is about 1

ln(n)
. Since this goes to 0 as n → ∞, we have successfully

put form to our prediction that the primes become sparser and sparser as we go. Still,
loads of questions remain: Are there exact formulas for π(n)? An error of 8% is
still reasonably large—can we find better approximations? Analytic number theory
focuses around questions of this type, and while not the focus of the current text, we
will endeavor to make references to these questions throughout.

To wrap up, let’s take a moment (or ten) of quiet introspection on the major
revelations which allowed us to reduce so much of the structure of Z to the study of
prime numbers. Especially relevant is diagnosing what obstacles lie ahead as we try
to replicate these arguments in other rings (e.g.Z[i],R[x]). If we trace backward, we
see the necessity of the Fundamental Theorem of Arithmetic, which in turn rested
upon The Fundamental Theorem of GCDs, which in turn rested on the notion of
divisibility, and in particular on the Division Algorithm. In a very real sense, which
we will formalize in the next chapter, the starting point of much of number theory
is trying to make sense of remainders upon division in some arbitrary ring. We’ve
already made reference to the notation of a mod n for these remainders, and we
will need to develop tools for doing arithmetic with them (“modular arithmetic”).
As per the central themes of this book, our approach to developing this arithmetic
takes a very algebraic bent—while we currently lack a ring structure on the set of
remainders, we will rectify this deficiency in the next chapter.

3.6 Exercises

Calculation & Short Answer

Exercise 3.1 Let G denote one googol: G = 10100. Compute gcd(G − 1, G + 1).
Repeat for G = 11111.

Exercise 3.2 Write down the prime factorization of 10!. Use the factorization to
explain why there are precisely 10! seconds in 6 weeks.

Exercise 3.3 Give the complete prime factorization of 20!.
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Exercise 3.4 How many zeroes are at the end of 117!?

Exercise 3.5 Show that there is no n such that n! ends with exactly 5 zeroes.

Exercise 3.6 What are the possible values of

gcd(7a + 12, 4a − 3)

for an integer a? Explain your reasoning and find a value of a that gives each of these
possible values.

Exercise 3.7 Perform the Extended Euclidean Algorithm to find a linear combina-
tion of the 10th and 11th Fibonacci numbers (55 and 89 respectively) equaling 1,
and then repeat for F9 = 34 and F10 = 55. Make some observations.

Exercise 3.8 Recall that for α, β inZ[i], we say α divides β (denoted α | β) if there
exists a Gaussian integer γ ∈ Z[i] such that αγ = β. Using this definition, decide
which of the following are true:

(a) 2 + 3i | 5 + 7i
(b) 3 + 0i | 5 + 0i.

(c) 2 + i | 7 + i .
(d) 2 + i | 10.

Exercise 3.9 Recall that for f, g in R[x], we say f divides g (denoted f | g) if
there exists h ∈ R[x] such that f h = g. Using this definition, decide which of the
following are true:

(a) x | x3 − 2x2 + 4x − 1
(b) x | x5 + x4 − x

(c) x − 1 | x3 + 7x2 − 13x + 5
(d) 2x2 + 6x | 3x3 + 2x2 − 6x .

Then answer these same four divisibility questions in Z[x].
Exercise 3.10 What are the divisors of 6x2 + 24 in R[x]? in Z[x]? Repeat both
questions for 6x2 − 24.

Exercise 3.11 Parameterize all integer solutions to each equation.

(a) 24x + 40y = 16
(b) 13x + 12y = 1
(c) 23x − 41y = 1.

Exercise 3.12 Find all rational roots of x7 − 3x5 − 4x4 + 2x3 + 12x2 − 8.

Exercise 3.13 Find all real roots of the polynomial 3x3 + 11x2 − x − 1.

Exercise 3.14 Begin with the set of primes S = {2} and enact the construction of
Euclid’s Proof in Theorem 3.5.3 to generate a new prime (the smallest divisor of
1 + ∏

p∈S p). Add this prime to S and repeat, recording the sequences of primes
generated, until you get the prime 5.
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Formal Proofs

Exercise 3.15 Let S be a set, and let P be the power set of S: P = {A : A ⊆ S}
(the set of all subsets of S). Define the symmetric difference Δ on P by AΔB =
(A ∪ B) − (A ∩ B) = (A − B) ∪ (B − A). Prove that P is a commutative ring with
unity with “addition” given by Δ and “multiplication” given by ∩.

Exercise 3.16 Define new operations ⊕ and ⊗ on Z by a ⊕ b = a + b + 1 and
a ⊗ b = ab + a + b. Prove that Z is a ring under these operations.

Exercise 3.17 What goes wrong in the proof of Corollary 3.3.11 if p = 6? How
could the argument be modified to make it work?

Exercise 3.18 Let R be a commutative ring and let a, b, c ∈ R. Prove that if a | b
and b | c, then a | c.

Exercise 3.19 Let R be a commutative ring and let a, b, c ∈ R. Prove that if a | b
and a | c, then a | (b + c) and a | (b − c).

Exercise 3.20 Let R be a commutative ring. Prove that for all a, b ∈ R, we have the
following three identities:

(−1) · a = −a (−a) · b = −(ab) (−a) · (−b) = ab.

Exercise 3.21 Prove that in any ring with unity:

• the product of two units is a unit
• the multiplicative inverse of a unit is a unit
• the additive inverse of a unit is a unit

Exercise 3.22 Prove that the multiplicative inverse of a unit u in a commutative ring
R is unique.

Exercise 3.23 Let R be a ring and 0 its additive identity. Prove that 0 cannot have a
multiplicative inverse.

Exercise 3.24 Prove that there are no integers between 0 and 1. [Hint: use the Well-
Ordering Principle.]

Exercise 3.25 We can extend the definition of p-adic valuations to rational numbers
by

vp

(a

b

)
= vp(a) − vp(b).

Prove that Lemma 3.4.2 continues to hold.What happens to Lemmas 3.4.3 and 3.4.4?

Exercise 3.26 Prove Lemma 3.4.4.
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Exercise 3.27 Euclid’s proof gives us our first analytic estimate for how small the
n-th prime pn could be. Deduce from Euclid’s proof that

pn ≤ p1 · · · pn−1 + 1 < 22
n
.

Use this to deduce a lower bound for π(n).

Exercise 3.28 Prove that if (a, b, c) is a Pythagorean triple and p is a prime dividing
any two of a, b, or c, then p must divide the third. Does the statement hold if we
replace p with an arbitrary integer n?

Exercise 3.29 Show, via a formal induction proof, that every pair of consecutive
Fibonacci numbers are relatively prime.

Exercise 3.30 Find and prove a formula for lcm(n, n + 1) for a natural number n.
Repeat for lcm(n, n + 3) (consider breaking into cases).

Exercise 3.31 For a natural number n, let σ0(n) be the number of natural number
divisors of n.

• Develop a formula for σ0(n) in terms of the p-adic valuations of n.
• Prove that if gcd(m, n) = 1, then σ0(mn) = σ0(m)σ0(n).

Exercise 3.32 Use Bézout’s identity to show that if a, b, and c are integers such that
c | ab, then c | gcd(a, c) gcd(b, c).

Exercise 3.33 A Mersenne prime is a prime number that is one less than a power of
2. A perfect number is a positive integer that is the sum of its positive proper divisors
(i.e., the positive divisors strictly less than the number itself). For example, 6 is a
perfect number since 6 = 1 + 2 + 3.

1. Find the first four Mersenne primes.
2. Given a prime p, show that if 2p −1 = q is prime (and hence a Mersenne prime),

then 2p−1q is perfect.
3. Show that 2n − 1 is never prime if n is composite.

Exercise 3.34 Let n ∈ Z. Use properties of the 2-adic valuation to prove that if
16 | n3 then 16 | n2.

Exercise 3.35 Let a and b be positive even integers. Prove that the gcd of a and b
in Z is never equal to the gcd of a and b in 2Z.

Exercise 3.36 Prove that log2(7) is irrational.

Exercise 3.37 Find all rational numbers that are 30 less than their 5th power. Repeat
for 31.
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Computation and Experimentation

Exercise 3.38 Use a computer algebra system to build the functions below. See the
Python worksheet “Chapter 3 Tools.”

1. Write a “prime checker”—a function that tests an input to see whether it is prime.
2. Write a function that implements the Euclidean Algorithm to find the gcd of two

inputs.
3. Write a function that factors a given integer into prime factors.
4. Write a function that counts the number of primes that are less than or equal to a

given integer.
5. Write a function that finds the p-adic valuation of the input n.

Exercise 3.39 Here we explore the Fermat numbers.

1. Write a function that outputs the nth Fermat number, Fn = 22
n + 1, given the

input n. Use it to verify that the third Fermat number is 257.
2. Find the first few Fermat numbers along with their prime factorizations.
3. Compute gcd(Fm, Fn) for all m, n ≤ 20 with m �= n. Then write down a clear

conjecture based on your observations.
4. Prove your conjecture and deduce as a corollary another proof that there are

infinitely many prime numbers.

Fermat conjectured that every Fermat number was prime. Research the current status
of this conjecture. Between this and his “proof” of Fermat’s Last Theorem... sheesh!

General Number Theory Awareness

Exercise 3.40 What’s the deal with “twin primes”? Give a brief status report on
what’s known about them.

Exercise 3.41 Do some research on the runtime and efficiency of the Euclidean
Algorithm. Just how good is it? Why do Fibonacci numbers make an appearance?

Exercise 3.42 The text makes reference (Example 3.2.20) of an application of the
Euclidean Algorithm (and/or Bézout’s Identity) to the genre of riddles in which one
uses jugs of a fixed size to measure out a specific volume. Sort out this general
connection and explain the equation given in that Example.

Exercise 3.43 Complete Exercise 3.14 first. Enter the first few primes you encounter
into the Online Encyclopedia of Integer Sequences, and use the information there as
a springboard to investigate what is known and not known about this and/or similar
sequence(s).
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Exercise 3.44 Learn about the difference in efficiency between checking that an in-
teger is prime and factoring it. About how long would it take on the fastest computers
in existence at the moment to:

• Check if a 400-digit number is prime?
• Factor a 400-digit number?

Exercise 3.45 The ABC conjecture is one of the most tantalizing open conjectures
in mathematics, relating the additive and multiplicative aspects of number theory.
Learn and understand what the conjecture says, and what some of the corollaries to
the conjecture would be. Without getting too bogged down, see what you can figure
out about the current status of a proof.

Exercise 3.46 Speaking of tantalizing conjectures, it’s hard to get more tantalizing
than the Riemann hypothesis, considered by many to be one of the most impor-
tant unproven propositions in mathematics. Look into this hypothesis and what it
says about the distribution of primes. Get a sense of why it inspires quotes like the
following from eminent mathematicians:

...that the distribution of prime numbers can be so accurately represented in a harmonic
analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a
secret harmony composed by the prime numbers.
– Enrico Bombieri

...that, despite their simple definition and role as the building blocks of the natural numbers,
the prime numbers belong to the most arbitrary and ornery objects studied by mathemati-
cians: they grow like weeds among the natural numbers, seeming to obey no other law than
that of chance, and nobody can predict where the next one will sprout.
The second fact is even more astonishing, for it states just the opposite: that the prime num-
bers exhibit stunning regularity, that there are laws governing their behaviour, and that they
obey these laws with almost military precision.
– Don Zagier



4NumberTheory in theMod-n Era

...wherein Carl FriedrichGauss’s theory of congruence sets
into motion a sequence of discoveries that revolutionizes
mathematics and leaves the world a slightly better place.

4.1 Equivalence Relations and the BinaryWorld

Consciously or not, many of us had our nascent interest in number theory ignited
at an early stage not by Fermat’s Last Theorem or the Fundamental Theorem of
Arithmetic, but by patterns in multiplication tables, divisibility tests, and even odd
observations like

the sum of two odd natural numbers is even,

a fact which one often casually abbreviates as “Odd + Odd = Even.” As it turns out,
almost all of these early patterns, tests, and observations trace their source back to the
Division Algorithm and reasoning with remainders. This chapter develops this type
of reasoning, moving from understanding “mod” as an operation on integers to the
bedrock of new number systems. The algebra of those number systems arises from
continuing the shorthand above, where we can collect a number of similar easily
verified observations:

Even + Even = Even Even × Even = Even
Even + Odd = Odd Even × Odd = Even
Odd + Even = Odd Odd × Even = Even
Odd + Odd = Even Odd × Odd = Odd
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In particular, note that for any x ∈ {Odd,Even}, we have the identities
Even + x = x and Odd × x = x .

That is, on the set {Odd,Even}, we have a notion of addition and multiplication, with
the element “Even” serving as an additive identity and “Odd” as amultiplicative iden-
tity. We have likely already hinted away the punchline: though we will temporarily
take these facts for granted, we will soon see that these new operations inherit from
the integers many basic algebraic properties (associativity, commutativity, distribu-
tivity, etc.) and thus this very small set of two elements actually forms a ring. For
the sake of foreshadowing and expedience of notation, let’s relabel “Even” as “[0]”
and “Odd” as “[1],” a nod to the fact that, when divided by 2, all even numbers leave
a remainder of 0 and all odd numbers leave a remainder of 1. The brackets are used
here to distinguish [0], the set of all even numbers, from the literal number 0.

Definition 4.1.1

The ring Z/(2) (pronounced “zee mod 2”) is the set {[0], [1]} with addition and
multiplication defined as follows:

+ [0] [1]
[0] [0] [1]
[1] [1] [0]

and
× [0] [1]
[0] [0] [0]
[1] [0] [1]

.

�

This is precisely the notion of binary arithmetic that permeates computer science.
As an intriguing aside, note that if we chose to identify [0] and [1] with “False”
and “True” rather than “Even” and “Odd,” then the two tables above are also the
respective truth tables for exclusive or and and, so in some sense the entirety of
manipulating logical expressions can be thought of as doing arithmetic in Z/(2).

Now, hoping that what you can do for one prime you can automatically do for
the rest, we might try to replace even/odd with, say, multiple of 3 vs. non-multiple
of 3. But this naive analogy ultimately fails, for if we add two “non-multiples of
2” we always get a multiple of 2, whereas if we add two “non-multiples of 3” we
may or may not get a multiple of 3. Instead, an appeal to the Division Algorithm
provides a more compelling analogy than the dichotomy 3 | n vs. 3 � n:We introduce
a trichotomy of possibilities corresponding to whether an integer is 0, 1, or 2 more
than a multiple of 3. Lacking English words for each of these three terms1 , let us
temporarily encode these classes with shapes and colors:

Integers that are multiples of 3 (n mod 3 = 0) are magenta squares, integers with
n mod 3 = 1 are blue triangles, and integerswith n mod 3 = 2 are orange circles.We

1 Though there is a certain ring to threven, thrwon, and thrwoo...
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mirror our even/odd discussion by consideringmagenta, blue, and orange, interpreted
as the sets of integers they represent, as objects in and of themselves. Again we
can convince ourselves (informally, for now) that we have a well-defined notion
of addition and multiplication here as well. For example, we have “Blue + Orange
= Magenta” in the same sense as before, in that if you add a blue number and an
orange number, you always get a magenta number. Why? Because blue numbers are
numbers one more than a multiple of 3 (i.e., expressible in the form 3k + 1), and
likewise orange numbers are expressible in the form 3�+2, so the sum of a blue and
an orange is always of the form of a magenta number:

(3k + 1) + (3� + 2) = 3k + 3� + 1 + 2 = 3(k + � + 1) + 0.

Multiplication similarly depends not on the specific numbers being multiplied, but
only their color. For example, we see “Orange × Orange = Blue,” since

(3k + 2)(3� + 2) = 9k� + 6k + 6� + 4 = 3(3k� + 2k + 2� + 1) + 1

is one more than a multiple of 3 and hence blue. In general, the color of the product
depends only on the color of the factors, not on the numbers themselves. This obser-
vation leads us to another small new ring. While it is tempting to develop a full range
of chromatic number theory, it is perhaps more sensible to abbreviate as before, each
color class being denoted by the mod-3 remainders they represent. If we denote by
[0] the set of all magenta numbers, and similarly [1] for blue and [2] for orange, then
we have the following ring.

Definition 4.1.2

The ring Z/(3) is the set {[0], [1], [2]} with addition and multiplication defined
by

+ [0] [1] [2]
[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

and

× [0] [1] [2]
[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]. �

Filling in these tables can be done in a number of ways. One is to reason as we
did above, using the general form of the elements in each set. Another technique,
somewhat easier and certainly worth mastering, is to “randomly” choose an element
of each type, add or multiply them in the integers, and then determine the type of
the result. For example, to compute [2] + [1] in Z/(3), we might randomly choose
8 ∈ [2] and 31 ∈ [1], and compute

8 + 31 = 39 ∈ [0] and 8 · 31 = 248 ∈ [2],
so [2] + [1] = [0] and [2] · [1] = [2]. For this approach to work, a critical point
to be checked in the next section is that the choice of the representatives 8 and 31
must be completely immaterial to the final result—having instead chosen 5 ∈ [2]
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and 7 ∈ [1] (or most easily, 2 ∈ [2] and 1 ∈ [1]) would have resulted in the same
sum and product types.

It is reasonably clear what we need to do to formalize and generalize these ideas
to an arbitrary modulus n. We will partition the integers into sets based upon each
integer’s remainder mod n, and then form the “ring of integers mod n” out of these
sets. This construction, making an algebraic structure out of subsets of another struc-
ture, is an odd mix of something completely familiar (e.g., the even/odd arithmetic)
and something bizarrely abstract (adding and multiplying subsets of the integers).
The formal version of this is the language of equivalence relations and equivalence
classes and will be of repeated interest both in this book and in algebra as a whole.

Definition 4.1.3 (Equivalence Relation)

Given a set S, an equivalence relationR on S is a set of ordered pairs of elements
of S having the following properties:

(i) (Reflexivity) For all a ∈ S, (a, a) ∈ R.
(ii) (Symmetry) If (a, b) ∈ R then (b, a) ∈ R.
(iii) (Transitivity) If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Given such an equivalence relation R, we say a is equivalent to b if and only if
(a, b) ∈ R. �

Equivalence relations are the quiet workhorses of themathematics industry. Every
time we encounter a new type of object, we invariably have a notion of when two
of those objects are considered “essentially the same,” and the formal notion of an
equivalence relation encodes this. That is, R consists of the pairs of elements of
S we want to consider equivalent. This idea subsumes many concepts in modern
mathematics, under a wide variety of names:

• Two Gaussian integers a + bi and c + di are equal if a = c and b = d.
• Two vectors v and w are equal if they have the same direction and length.
• Two polynomials f and g are equal if they have the same coefficients.
• Two fractions a

b and c
d are equivalent if ad = bc.

• Two triangles T and T ′ are congruent if there exists a rigid motion of the plane
taking T to T ′.

• Two square matrices A and B are similar if there exists an invertible matrix S such
that SAS−1 = B.

• Two square matrices A and B are congruent if there exists an invertible matrix S
such that SAST = B.

In each bullet, the italicized word defines an equivalence relation, and it’s worth
verifying that the three defining conditions in Definition 4.1.3 are satisfied. For
example, one checks that (i) every square matrix A is similar to itself; (ii) if A is
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similar to B, then B is similar to A; and (iii) that if A is similar to B and B is similar
to C , then A is similar to C .

Notions of equivalence greatly streamline our thinking about objects by lumping
together things we think of as being the same anyway. In such contexts, it becomes
useful to think of such lumps, the class of all objects equivalent to a given one (and
hence to each other), as objects in their own right.

Definition 4.1.4 (Equivalence Class)

Let R be an equivalence relation on a set S. Then for an element a ∈ S, the
equivalence class of a under the relation R is the set

[a] = {b ∈ S : (a, b) ∈ R},
that is, the set of elements to which a is equivalent under R. (In contexts with
multiple equivalence relations around, one might use [a]R to emphasize equiv-
alence under R specifically.) Any element of an equivalence class is called a
representative of that class. �

Continuing the examples above, the equivalence class of a vector consists of itself
and all of its translates, the equivalence class of a matrix consists of all matrices
similar to it or all matrices congruent to it, the equivalence class of a Gaussian
integer consists of only itself, and the equivalence class of 2

3 consists of all fractions
that reduce to it (e.g., 4

6 ,
−6
−9 , etc.). This last example is particularly compelling, as

the notion of a rational number can be (perhaps overly) formalized as an equivalence
class of fractions: the rational number 2

3 ∈ Q is the equivalence class of the fraction
2
3 . This perspective, making the objects of interest the equivalence classes of some
other objects, is what we did above when we partitioned the integers into the two
sets [0] and [1], based on a notion of equivalence determined by their remainders
mod 2. Eager to return to this context, we mention only one critical result about
equivalence classes in general, showing that this partitioning goes hand-in-hand
with the equivalence relation.

Lemma 4.1.5

LetR be an equivalence relation on a set S. Then:

(1) Any two equivalence classes of R are either equal or disjoint. Specifically,
for a, b ∈ S, we have [a] = [b] if (a, b) ∈ R, and [a] ∩ [b] = ∅ otherwise.

(2) The union of all of the equivalence classes of the relationR on S is S.

That is, the various equivalence classes form a partition of S, a collection of
non-empty mutually disjoint subsets of S whose union is equal to S. �



84 4 Number Theory in the Mod-n Era

Proof If [a] ∩ [b] �= ∅, choose any c ∈ [a] ∩ [b]. Then (a, c), (b, c) ∈ R and thus
(c, b) ∈ R by symmetry, and finally (a, b) ∈ R by transitivity. Transitivity further
implies that anything equivalent to a is equivalent to anything equivalent to b, and
vice versa, so [a] = [b]. For the second claim, we note that each element a ∈ S is
an element of its own equivalence class [a] (by reflexivity), so the union of all the
equivalence classes contains all elements of S. �

� Remark 4.1.6 It is also true that any partition of S can be used to define an equiv-
alence relation, namely, the equivalence relation which declares two elements to
be equivalent if and only if they are in the same part of the partition. Thus, the
two notions are roughly synonymous concepts, and we speak freely of taking a
set and “partitioning it into equivalence classes.”

4.2 The Ring of Integers Modulo n

In 1798, 21-year-old Carl Friedrich Gauss completed his landmark text Disquisi-
tiones Arithmeticae2 , revolutionizing the field of number theory by synthesizing the
work of Fermat, Euler, and others, and laying the groundwork for algebraic number
theory. Of particular interest here is that contained in Disquisitiones is an invitation
to explore the world of modular remainders. The story begins with Gauss’s notion
of modular congruence:

Definition 4.2.1 (Modular Congruence)

Given a natural number n, we say integers a and b are congruent modulo n, de-
noted a ≡ b (mod n), if a mod n = b mod n, i.e., they have the same remainder
when divided by n. The equivalence classes with respect to this relation are called
congruence classes and denoted

[a] = {b ∈ Z : a ≡ b (mod n)}.
It is common to use the notation [a]n in place of simply [a] when the modulus n
needs emphasizing, but the subscript is otherwise typically left off. We note the
equivalent statements

[a]n = [b]n ⇐⇒ a ≡ b (mod n) ⇐⇒ n | a − b. �

Gauss chose the symbol ≡ for modular congruence to emphasize the similarity
between modular congruence and equality, and modern mathematics formalizes this

2 Pronounced “Gauss’s book”
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as the statement that congruence, like equality, defines an equivalence relation on Z.
It is fairly straightforward to check the details: every number is congruent to itself
modulo n, congruence is clearly symmetric, and transitivity follows from a brief
calculation: if a ≡ b (mod n) and b ≡ c (mod n), then n | a − b and n | b − c,
so n | (a − b) + (b − c) = a − c. It was Gauss’s student Richard Dedekind who
embedded congruence into the language of equivalence relations and equivalence
classes. Having done so, the definitions and results of the last section thus come into
play, e.g., the results of Lemma 4.1.5 that these congruence classes are disjoint and
make up all of Z.

� Example 4.2.2 Consider congruence modulo 7 on Z, where two integers are con-
gruent if they have the same remainder when divided by 7. Since there are only
7 possible remainders when divided by 7, there are 7 disjoint equivalence classes
of Z under this equivalence relation: [0], [1], [2], [3], [4], [5], and [6], where
[a] consists of those integers n such that n mod 7 = a. The Division Algorithm
confirms the results of Lemma 4.1.5 in this case: every integer is in exactly one of
these 7 classes. Of course, we can refer to an equivalence class by any of its other
elements as well (other representatives of the equivalence class). For example,
we have

· · · = [−9] = [−2] = [5] = [12] = [19] = · · · .

Dedekind’s contribution of considering these equivalence classes as the appropri-
ate objects of study marks an important step in the development of the subject and
suggests that we should develop notions of arithmetic with them. Enter, once again,
the language of rings.

Definition 4.2.3

For an integer n > 1, the ring of integers modulo n, Z/(n), is defined3 by

Z/(n) = {[0], [1], . . . , [n − 1]},
where [a] denotes the equivalence class of a modulo n, i.e., the set of integers
that have the same remainder as a when divided by n. We define addition and
multiplication in this ring by setting

[a] + [b] = [(a + b) mod n]
and

[a] · [b] = [ab mod n]. �

3 Other notations for Z/(n) include Z/nZ, Z/n, and Zn . You may encounter these in other books,
or perhaps even in the current one, depending on our proof-reading skills.



86 4 Number Theory in the Mod-n Era

Before getting too comfortable, the cautious reader will note we have been pre-
sumptuous in calling this a ring, as there remain some details to check, and so we turn
to this now. First, a very important habit to develop when working with equivalence
classes is to make sure that any time you define something by choosing a repre-
sentative from an equivalence class, you wouldn’t have gotten a different answer
by choosing a different representative. Here, we need to check that the notions of
addition and multiplication defined above are well-defined, that is, when evaluating
[a] · [b] in Z/(n) by computing ab mod n, as directed by Definition 4.2.3, we could
have instead chosen any other other integer c ∈ [a] and d ∈ [b] and computed
cd mod n and obtained the same result (since in this case we have [a] = [c] and
[b] = [d]).

Lemma 4.2.4 (Well-definedness of Modular Arithmetic)

Let a, b, c, d be integers. If a ≡ c (mod n) and b ≡ d (mod n), then a+b ≡ c+
d (mod n), and ab ≡ cd (mod n). Equivalently, in the language of congruence
classes, if [a] = [c] and [b] = [d] in Z/(n), then

[a] + [b] = [c] + [d] and [a] · [b] = [c] · [d]. �

Proof If a ≡ c (mod n) and b ≡ d (mod n), then n | (c − a) and n | (d − b), so

n | (c − a) + (d − b) = (c + d) − (a + b),

showing that a + b ≡ c + d (mod n). Multiplication is similar (Exercise 4.30). �

Finally, it remains to check the ring axioms for Z/(n), and we deliberately do
not belabor the point here. We have the additive identity [0]; the multiplicative
identity [1]; additive inverses via −[a] = [−a]; and the associative, commutative,
and distributive laws all follow directly from the corresponding laws in Z, e.g.,

([a] + [b]) + [c] = [(a + b + c) mod n] = [a] + ([b] + [c]).
We will soon tackle the problem of doing algebra in these brand new rings, but

first a quick summary of where we stand. We have at least three equivalent ways of
saying that two integers a and b are “the same mod n”:

a mod n = b mod n ⇐⇒ a ≡ b (mod n) ⇐⇒ [a] = [b] in Z/(n).

Observe that each of these three formulations involves the word “mod” in a slightly
different way. In the first, “mod n” is used as a unary operator which inputs an integer
a and outputs its remainder upon division by n. In the second, mod is used as an
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equivalence relation through which we can decide if two integers are “the same”
enough for our purposes. Mirroring the distinction between divisibility and division,
note that 37 ≡ 17 (mod 20) is a true statement, whereas the expression −15 mod 4
equals 1. Finally, in Z/(n), the word “mod” appears in the name of the ring in which
we are working and encourages us to think of these congruence classes as a new
type of number operating with its own rules of arithmetic. Moving forward with our
arithmetic goals, fluency in switching back and forth between these perspectives,
both conceptually and notationally, will be of tremendous benefit.

Despite its rather lackluster appearance, Lemma 4.2.4 provides the single most
important property of modular arithmetic: in any calculation involving mod-n addi-
tion ormultiplication,we can replace any summandor factorwith anything congruent
to it mod n.

� Example 4.2.5 Compute 39 · 99 + 95 · 64 mod 19.

Solution First, observe that a naive solution technique certainly exists. We could
compute, in Z, the value of 39 · 99 + 95 · 64, and then use long division to find
the remainder when this result is divided by 19. Much more expedient is to employ
Lemma 4.1.5, which shows us that the answer to this question remains unchanged
if we replace any of 39, 99, 95, or 64 with any other congruent-mod-19 value. In
particular, mental arithmetic provides for us

39 ≡ 1 mod 19, 99 ≡ 4 mod 19, 95 ≡ 0 mod 19, and 64 ≡ 7 mod 19,

and so making these substitutions, we find

39 · 99 + 95 · 61 ≡ 1 · 4 + 0 · 7 ≡ 4 (mod 19).

We conclude that 39 · 99 + 95 · 64 mod 19 = 4. �
The general name of this process, where we perform arithmetic operations as

usual except that we are free to replace components with their values mod n (or
other congruent values), is referred to as modular arithmetic. The goal of modular
arithmetic is typically to reduce an integer mod n, i.e., to replace it with its remainder
modulo n. The example above could have instead asked us to reduce 39 ·99+95 ·64
modulo 19, or in the language of equivalence classes, to find the unique integer r ,
0 ≤ r < 19, such that [39·99+95·64] = [r ] inZ/(19). The latter, being excessively
cumbersome notationally, explains why we will typically work in Z/(n) using the
language of modular congruence as opposed to the language of equivalence classes.
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4.3 Reduce First and ask Questions Later

The single most important step in mastering modular arithmetic is observing that
when a problem depends only on the congruence classes of the inputs (e.g., when
we are asked for a mod-n remainder), we should as quickly as possible reduce the
allowable inputs modulo n. Remember this philosophy as you see fit, either as the
section title, or as the phrase reduce then compute4 :

� Example 4.3.1 The bread and butter calculations of modular arithmetic mirror
those of Example 4.2.5, involving only addition and multiplication of integers. A
streamlined version of this might look like

38 · 17 + 40 ≡ 3 · 3 + 5 ≡ 9 + 5 ≡ 2 + 5 ≡ 0 (mod 7),

which shows that 7 | 38 × 17 + 40.

� Example 4.3.2 Compute 173 mod 5.

Solution Since exponentiation is simply repeated multiplication, we find

173 ≡ 17 · 17 · 17 ≡ 2 · 2 · 2 ≡ 23 ≡ 3 (mod 5),

so 173 mod 5 = 3. �
This last example highlights how the technique generalizes cleanly from reducing

expressions involving only addition andmultiplication to any polynomial expression
with integer coefficients (as evaluating such a polynomial amounts to repeated ap-
plications of addition and multiplication).

Lemma 4.3.3

If f ∈ Z[x] and a ∈ Z, then

f (a mod n) ≡ f (a) (mod n) �

As always, there are several equivalent ways of writing this relationship, including
[ f (x)] = [ f (x) mod n] or f (x) mod n = f (x mod n) mod n. The case f (x) = xk

generalizes the content of Example 4.3.2, showing that we can reduce the base of
an exponential before computing, furthering the scope of the “reduce then compute”
mantra. For example, this shows that 10n ≡ 1 mod 9 for any n, and this one simple
trick5 is responsible for the famous mod-9 divisibility phenomenon.

4Mod then multiply? arithmetical fluency from modular congruency? Invent your own!
5Which, contrary to popular belief, mathematicians absolutely do want you to know!
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� Example 4.3.4 To compute 71,423 mod 9, we note

71,423 = 7 · 104 + 1 · 103 + 4 · 102 + 2 · 101 + 3

≡ 7 · 14 + 1 · 13 + 4 · 12 + 2 · 11 + 3

≡ 7 + 1 + 4 + 2 + 3

≡ 17

≡ 8 (mod 9).

In words, any natural number is congruent mod 9 to the sum of its digits. The
proof is so concise that it fits within the statement of the theorem.

Theorem 4.3.5 (Divisibility-by-9 Test)
If n = akak−1 · · · a2a1a0 is the base-10 representation of n, then mod 9 we
have

n = ak10
k + ak−110

k−1 + · · · + a210
2 + a110 + a0

≡ ak1
k + ak−11

k−1 + · · · + a21
2 + a11 + a0

≡ ak + ak−1 + · · · + a2 + a1 + a0 (mod 9).

In particular, 9 | n if and only if 9 divides the sum of its digits!

� Remark 4.3.6 Since 10k ≡ 1 (mod 3), the analogous test works for divisibility
by 3 as well. In fact, it’s not hard to see that such a divisibility-by-n test exists
if and only if 10 ≡ 1 (mod n). In turn, this holds if and only if n | 10 − 1, i.e.,
only when n = 3 or n = 9 (fine, fine, and n = 1). One more clean divisibility
test is worth mentioning (Exercise 4.2), coming from the observation that 10k ≡
(−1)k mod 11.

A potent use of modular arithmetic is to take an expression and reduce it modulo
various bases, i.e., to think of the modulus n as a variable and see how the reductions
change as n varies. As a first example of this, recall from Chapter 2 that the Diophan-
tine equation x2 + y2 = 5 has several integer solutions, whereas x2 + y2 = 3 does
not. While we could deduce the latter statement by exhaustive search, this technique
would certainly be too burdensome for an equation like x2 + y2 = 10000003. On
the other hand, it is completely resolved by a mod-4 calculation.

Lemma 4.3.7

The Diophantine equation a2 + b2 = n has no solutions if n ≡ 3 (mod 4). �



90 4 Number Theory in the Mod-n Era

Proof We consider the possible values of a2 + b2 mod 4, which in turn are con-
strained by the possible value of any square mod 4. We compute

[0]2 = [0] [1]2 = [1] [2]2 = [0] [3]2 = [1],
which shows, since any integer is in one of those four congruence classes, that
any integer squared is congruent to either 0 or 1 mod 4. Thus, since a2 mod 4 and
b2 mod 4 are both either 0 or 1, it could not be that a2 + b2 ≡ 3 mod 4. �

With practice, impossibility arguments for Diophantine equations become fluent
dismissals: “The equation x2 + y2 = 10000003 has no solutions since it reduces
mod 4 to x2 + y2 ≡ 3, which has no solutions since the squares mod 4 are 0 and 1.”
It is easy to generate a slew of Diophantine equations with no solutions using this
technique:

• The equation 2x2 + 4y2 = n has no solutions in Z if n is odd.
• The equation x2 + 2y2 = n has no solutions in Z if n ≡ 5 (mod 8).
• The equation x3 + 7y5 = n has no solutions in Z if n ≡ 4 (mod 7).

We can verify these claims by reducing the equationsmod 2, 8, and 7, respectively,
and considering the possible values of each term with respect to those moduli. For
example, when n ≡ 4 (mod 7), the equation x3 + 7y5 = n reduces modulo 7 to
x3 + 0y5 ≡ 4 (mod 7), and we can check by hand that no element [x] of Z/(7)
satisfies [x]3 = [4].

The culmination of this line of thinking is given in the following.

Definition 4.3.8

Given a polynomial f ∈ Z[x], we obtain themod-n reduction of that polynomial
f ∈ Z/(n)[x] by reducing all of its coefficients modulo n. �

By convention, when we reduce a polynomial mod n we often suppress the formal
equivalence class notation for its coefficients. For example, taking f (x) = x3 +
12x + 9, since 12 mod 5 = 2 and 9 mod 5 = 4, the reduction of f mod 5 is written
f (x) = x3 + 2x + 4 (rather than x3 + [2]x + [4]). Note that we can perform this
process analogously for polynomials in any number of variables, so we can generally
make sense of “reducing a Diophantine equation modulo n.”

� Example 4.3.9 If E is the elliptic curve y2 = x3 + 16x − 22, reducing E mod 7
gives us the reduced curve y2 = x3 + 2x + 6. In looking for the set of solutions
E(Z/(7)), we start by examining the possible values of y2 ∈ Z/(7),

[0]2 = [0], [1]2 = [6]2 = [1], [2]2 = [5]2 = [4], and [3]2 = [4]2 = [2].
Thus, we need to find values of x ∈ Z/(7) such that x3 + [2]x + [6] ∈
{[0], [1], [2], [4]}. Since Z/(7) is pretty small, we can just work our way through
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the possibilities. For x = [0], [1], . . . , [6], we get x3 + [2]x + [6] is equal to
[6], [2], [4], [4], [1], [1], and [3], respectively. Matching these outputs with val-
ues of y2 we find there are no solutions with x = [0] or [6], and all other values of
x yield two solution points (x, y) ∈ E(Z/(7)) = {([1], [3]), ([1], [4]), ([2], [2]),
([2], [5]), ([3], [2]), ([3], [5]), ([4], [1]), ([4], [6]), ([5], [1]), ([5], [6])} for a
total of 10 points (out of 49 possible in Z/(7) × Z/(7)).

By Lemma 4.3.3, the existence of a solution to a Diophantine equation implies
the existence of a solution to each of its mod-n reductions, and so we end up with an
elegant and powerful test for Diophantine equations:

Theorem 4.3.10 (Mod-n Root Test)
If a Diophantine equation has a solution in Z, then it has a solution in Z/(n)

for each n ∈ N. The contrapositive is even more striking: if there exists even
one n ∈ N for which the reduced equation has no solution in Z/(n), then the
equation has no integer solutions.

The converse, however, eludes our grasp. It is not true that having a solution to
a reduced equation mod n guarantees us the existence of a solution to the original
equation in Z. It is not even true that having a solution to an equation modulo every
natural number n guarantees us such a solution. We will have to work diligently to
resolve this state of affairs over the upcoming chapters, with some milestone results
in this direction occurring in Chapter 8. In the meantime, the power of “reducing
equations mod n” suggests that it is in our interest to better understand the solving
of equations (or the impossibility thereof) in the ring Z/(n). As such, the remainder
of the chapter largely focuses on expanding our understanding of the operations
of arithmetic in the setting of Z/(n) beyond those of addition and multiplication,
namely, to include those of division, exponentiation, and factorials.
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Exploration E

Units Mod n �

The Python worksheet “Units mod n” provides an outline for this Exploration and is
available from the companion website. Pending theoretical developments that will
answer questions like those below for all n, for small values of n we can proceed by
brute-force calculation.

Recall that an element [a] ∈ Z/(n) is a unit if and only if [a] | [1], i.e., if we can
solve the equation

ax ≡ 1 mod n.

E.1 Find the units of Z/(5), Z/(6), Z/(7), Z/(8), Z/(9), and Z/(10).

E.2 Make a conjecture about which elements of Z/(n) are units. For which values
of n would your conjecture imply that Z/(n) a field? Prove that your conjecture is
correct if you replace “field” with “integral domain.”

E.3 For 2 ≤ n ≤ 8, divide the elements of Z/(n) into zero, units, primes, and
composites. Come up with some conjectures.

E.4 For 3 ≤ n ≤ 8, what is the sum of all the elements in Z/(n)? Document and
explain any patterns you notice.

E.5 For 3 ≤ n ≤ 8, what is the product of all the non-zero elements ofZ/(n)?What
patterns do you notice?
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4.4 Division, Exponentiation, and Factorials in Z/(n)

The ubiquity of division, exponentiation, and exclamation marks largely excuses
us from having to justify the study of their modular analogs, but the behavior of
these operations in the world of modular arithmetic is bizarre enough for us to cover
them in some detail. This section is, therefore, an exploration of various ways that
things work differently in the modular world, and the adjustments we need to make
to acclimate to this setting. We begin with the notion of modular division, a concept
necessary to solve linear congruences like the one below.

� Example 4.4.1 Solve 3x ≡ 5 (mod 11).

As always, we see that the setting of the problem is crucial. If this were an equality
of real numbers for us to solve, we would solve for x by dividing both sides by 3 to
get x = 5

3 . At the other extreme, if we consider the same equation 3x = 5 in the ring
of integers, we see there is no solution, as there is no integer x that when multiplied
by 3 gives 5. Thus we can’t divide by 3 to solve for x in Z. This raises the question
of division in an arbitrary ring, a question which we’ve fortunately already prepared
ourselves to answer. Instead of “dividing by 3,” we multiply both sides by 3−1, the
multiplicative inverse of 3. In general, we interpret division as just multiplication by
the multiplicative inverse of an element when such an inverse exists, and not defined
otherwise.

� Remark 4.4.2 Note that if the ring is non-commutative, we must take care to
multiply on the same side: ax = b implies a−1ax = a−1b, not a−1ax = ba−1.

The non-commutative case will not occupy much of our attention, but serves as
explanation for the decision to consistently write “a−1b” instead of “ ba ” in most
ring settings, as the fraction notation gives us the heebie-jeebies in a general ring.

Elements of rings with multiplicative inverses, and hence the elements we can
divide by, are precisely the units of the ring. If [3] is a unit in Z/(11) we can mirror
the technique used for real numbers to solve 3x ≡ 5 (mod 11). As it turns out,
[3] is indeed a unit in this setting since 3 · 4 ≡ 1 (mod 11), and thus [4] is the
multiplicative inverse of [3]. We can now proceed.

Solution (to Example 4.4.1) Multiplying both sides of 3x ≡ 5 (mod 11) by 4, as
[3]−1 = [4] in Z/(11), solves the congruence much as we solved it in R:

3x ≡ 5

4 · 3x ≡ 4 · 5
1x ≡ 4 · 5
x ≡ 20 ≡ 9 (mod 11).

And indeed, we verify that 3 · 9 ≡ 5 (mod 11). Note that we can phrase our answer
either in the language of Z/(11)—that x = [9] is the unique element of Z/(11)
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satisfying [3]x = [5]—or in the language of Z, that the integers x such that 3x mod
11 = 5 are those satisfying x mod 11 = 9. �

Which elements are units in themodularworld?We’ve already noted two extremes
on this front: units in Z and Z[i] are few and far between, whereas units comprise
almost the entirety ofQ andR (see the discussion after Definition 3.3.2).Where does
the ring Z/(n) fall along this spectrum? The experimentation begun on Exploration
E leads to a natural conjecture, which we’ll now prove with a little help from the
Fundamental Theorem of GCDs (Theorem 3.2.25).

Theorem 4.4.3
The element [a] ∈ Z/(n) has a multiplicative inverse if and only if
gcd(a, n)=1.

Proof ByBézout’s Identity, if gcd(a, n) = 1, there exist x and y so that ax+ny = 1,
and reducing this equation mod n gives ax ≡ 1 (mod n). That is, [x] = [a]−1

provides a multiplicative inverse. Conversely, if ax ≡ 1 (mod n), then by definition
of modular congruence n | 1 − ax , and so 1 − ax = ny for some y ∈ Z, giving
ax + ny = 1. Thus by the Fundamental Theorem of GCDs, gcd(a, n) = 1. �

The proof of Theorem4.4.3, in addition to proving the existence of amultiplicative
inverse, also provides a recipe for finding one: finding [a]−1 amounts to solving the
linear Diophantine equation ax + ny = 1 and then taking [a]−1 = [x] in Z/(n).
Happily, the Extended Euclidean Algorithm already provides us a very efficient
means for doing just this.

� Example 4.4.4 Find [7]−1 in Z/(93).

In Example 3.2.19, an application of the Extended Euclidean Algorithm provided
that gcd(93, 7) = 1 with the explicit linear combination 1 = 40 ·7+ (−3) ·93. Thus
40 · 7 ≡ 1 (mod 93), and so [7]−1 = [40].

On the spectrum fromZ and Z[i] (having almost no units) to Q andR (comprised
almost exclusively of units), Theorem 4.4.3 places a generic Z/(n) somewhere in
between, and it is intriguing to see how this placement varies with n. In Z/(8), for
example, precisely half of the elements ([1], [3], [5], and [7]) have multiplicative
inverses, whereas in Z/(11), every non-zero element has a multiplicative inverse,
since all of the integers in the set {1, 2, . . . , 10} are relatively prime to 11. This
extreme case, that every non-zero element is a unit, is captured in the following
corollary.
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Corollary 4.4.5

For a natural number n > 1, the following statements are equivalent:

(i) n is prime.
(ii) Z/(n) is a field.
(iii) Z/(n) is an integral domain. �

Proof The implication (i) =⇒ (ii) is a direct consequence of Theorem 4.4.3: if n is
prime, any non-zero [a] ∈ Z/(n) is represented by an integer a, 1 ≤ a < n, which is
necessarily relatively prime to n, and so is a unit. The implication (ii) =⇒ (iii) follows
for any ring (Lemma 3.1.11), and for (iii) =⇒ (i), proceeding via the contrapositive,
if n were not prime, then n = ab for some a, b < n, and so [a][b] = 0 ∈ Z/(n). �

� Remark 4.4.6 Also in Lemma 3.1.11 is the observation that not every integral
domain is a field (e.g., R = Z). However, while we do not prove it here, it is true
that for rings with finitely many elements, the two notions are equivalent, and the
above Corollary is a special case of this result.

Next, a quick appetizer question before the main course:

� Question 4.4.7 What is the sum of all of the elements of Z/(n)?

Experimentation (like that done in Problem E.4) quickly gives a result of [0]when
n is odd and [n/2] if n is even. This is readily explained by the fact that each element
in Z/(n) pairs with its additive inverse to contribute [0] to the sum, except for the
term [n/2] in Z/(n) when n is even. This element is its own additive inverse, and
thus it is left unpaired, leaving it to contribute [n/2] to the sum. While the additive
version of this problem reveals no deep secrets, the multiplicative analog is much
more intriguing.

� Question 4.4.8 What is the product of all of the non-zero elements in Z/(n)?

Let us first restrict our attention to the case where n = p is a prime (the composite
case, Exercise 4.49, being somewhat less interesting). In this case, we can employ
the same trick we did with additive inverses: since each element of Z/(p) has a
multiplicative inverse, we can multiply them in pairs, with the one caveat that, just as
in addition, we have to know in advance which elements are their own multiplicative
inverse. A quick lemma dispatches this issue entirely.
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Lemma 4.4.9

Let p be prime. Then if a ∈ Z satisfies [a] = [a]−1 ∈ Z/(p), then a ≡ ±1
(mod p). �

Proof Given a ∈ Z, suppose [a] = [a]−1, or in other words, [a]2 = [1]. Casting this
equality in terms of modular congruence and rearranging, we have 0 ≡ a2 − 1 ≡
(a + 1)(a − 1) (mod p). Thus p | (a + 1)(a − 1), and so by the Prime Divisor
Property, either p | a + 1 or p | a − 1; i.e., a ≡ ±1 mod p. �

� Remark 4.4.10 Alternative proof:±1 are clearly solutions to x2−1 ≡ 0 (mod p).
Further, sinceZ/(p) is an integral domain, the polynomial x2−1 ∈ Z/(p)[x] has
at most two roots by Lemma 3.1.13, so [1] and [−1] are the only two solutions in
Z/(p).

Aswithmany results of this ilk, the previous lemma fails horribly (or wonderfully,
depending on your perspective) when n is not prime. In Z/(8), for example, all of 1,
3, 5, and 7 satisfy x2 ≡ 1 (mod 8), and thus are each their own inverse. This also
finally provides a good counter-example to Lemma3.1.13 in the case the ring is not an
integral domain (asZ/(8) is not) since the degree-two polynomial x2−1 ∈ Z/(8)[x]
has four roots.

The ability to pair off elements when n is prime allows us to answer Question
4.4.8, which we can interpret as a statement about factorials mod p.

Theorem 4.4.11 (Wilson’s Theorem)
Let p be a prime number. Then

(p − 1)! ≡ −1 (mod p).

Proof By Lemma 4.4.9 and Corollary 4.4.5, every element in the product

(p − 1)! ≡ 1 · 2 · 3 · · · (p − 1) mod p

has a multiplicative inverse that also appears elsewhere in the product except for 1
and (p−1), which are their own inverses. Thus, the factors cancel in pairs with their
inverses and we are left with 1 · (p − 1) ≡ −1 (mod p). �

It is occasionally worth pausing to observe how far we’ve come. For example,
it is now a trivial calculation for us that the number 100!—an unfathomably large
number—is just one less than a multiple of 101 by Wilson’s Theorem. Let’s take
stock of where we stand with respect to doing modular arithmetic with exponents.



4.4 Division, Exponentiation, and Factorials in Z/(n) 97

� Example 4.4.12 Reduce 1162 mod 5.

We can multiply either before or after reducing mod 5, so could either:

(a) Compute the decimal expansion of 1162 first, and then do long division to com-
pute its remainder when divided by 5 or

(b) Remember to reduce first and ask questions later, in which case we note 1162 ≡
162 ≡ 1 (mod 5).

Other solution trajectories might exist for such problems, and the method one
chooses is often, efficiency aside, a matter of personal taste. Troubling, however,
is that option (a) above exists for any exponent computation, whereas option (b)
depended heavily on a happy coincidence between the base of the expression and
the modulus, namely, that the base was one more than a multiple of the modulus. So
the existence of option (b) provides little relief in the case that we are faced with a
similar expression in which no such coincidence occurs.

� Example 4.4.13 Reduce 1162 mod 37.

Let’s discuss some solution options, sorted from most exhausting to most inspired6

and consider how long they would take to work through by hand.

• Compute the integer 1162 and then divide by 37, finding the remainder.
Estimated time to complete: Several hours.

• We could prevent the appearance of astronomical numbers by iteratively multi-
plying together 62 factors of 11 and reducing mod 37 after each one:

n 11n mod 37
1 11
2 112 = 121 ≡ 10
3 113 = 112 · 11 ≡ 10 · 11 ≡ 36
4 114 = 113 · 11 ≡ 36 · 11 ≡ 26

62 1162 = 1161 · 11 ≡
Estimated time to complete: The better7 part of an hour.

• Even better, we realize we don’t need all of the 11n for 1 ≤ n ≤ 62: To minimize
the number of such products needed, we could just keep squaring, computing in
turn 112, 114, 118, etc., then we could just observe that

1162 = 1132 · 1116 · 118 · 114 · 112

6 From clueless to clueful? inept to outept?
7 Or really, worse
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and compute this product mod 37. This is known as the binary exponentiation
method (“binary” since we have used the binary expansion 62 = 25 + 24 + 23 +
22 + 21), and in general it requires relatively few multiplications.
Estimated time to complete: Probably less time than it took to understand the
method in the first place.

• Finally, even better, we note by hook or by crook that 116 ≡ 1 (mod 37), and
then reason that

1162 ≡ (116)10 · 112 ≡ 110 · 10 ≡ 10 (mod 37).

Estimated time to complete: Literally already done, so about negative five seconds
at this point.

We’re left with the problem of trying to jump directly to that last, most inspired,
approach. Where did that magical number 6 come from? In fact, we weren’t far
off in one of our more naive attempts: in our table above we had calculated that
113 ≡ 36 mod 37, but had neglected at the time to notice that 36 ≡ (−1) (mod 37),
and thus that 113 ≡ −1 (mod 37). Squaring both sides of this gives the magic
number, 116 ≡ (−1)2 ≡ 1 mod 37. Indeed, had we gone through just a couple more
rows in that table, we would have seen this number appear without any “magic”
needed at all. The goal now becomes clear: we need a mechanism for predicting in
advance, with as little computation as possible, when and how thesemagic exponents
will arise. It is to this topic we turn next.
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Exploration F

Units, Exponents, and Orders �

For [a] ∈ Z/(n), the least positive exponent k such that ak ≡ 1 mod n is called
the order of a mod n (if such a k exists).

F.1 Find the order of each element of Z/(7).

F.2 Explain why if [a] ∈ Z/(n) has an order, then [a] must be a unit. Find the order
of each unit of Z/(n) for each n, 4 ≤ n ≤ 10.

F.3 Use the previous problem for the following computations:

276 mod 7 540 mod 9 3215 mod 8.

Finally, find the last digit of 7169.

F.4 Find the order of [2] ∈ Z/(17) and compute 2165 mod 17.

F.5 Let ϕ(n) denote the number of units in Z/(n). Compute ϕ(n) for 4 ≤ n ≤ 10.
What is ϕ(p) for a prime p? How could we compute ϕ(p2)? ϕ(p3)? ϕ(pq) for
distinct primes p and q?

Given the importance of the equation ak ≡ 1 mod n, it is worth considering the
analogous equation for the additive identity: an element [a] ∈ Z/(n) is nilpotent
if ak ≡ 0 mod n for some k ∈ Z. For example, [9] is nilpotent in Z/(27) since
92 ≡ 0 mod 27.

F.6 Find all nilpotent elements of Z/(8), of Z/(7), and of Z/(12). For which n do
there exist nilpotent elements in Z/(n)? How do you find them? Could a unit be
nilpotent?
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4.5 GroupTheory and the Ring of Integers Modulo n

As we saw in the last section, finding a positive integer k such that xk ≡ 1 (mod n)

allows us to performmodular exponentiation very efficiently. But does such a number
k always exist, and when it does, how do we find it? The key to this question lies,
once again, in the underlying algebraic structure. Sadly, the set of units of a ring
do not themselves form a ring, for while it is true that the product of two units is a
unit, it is not true that the sum of two units is a unit (e.g., in Z, one can verify that
1+1 = 2). Instead, we introduce another algebraic structure, this one requiring only
one working operation.

Definition 4.5.1

A group is a set G with a single binary operation · (or +, ∗, ×, etc.) that satisfies
the following properties:

(1) Closure: for all g, h ∈ G, g · h ∈ G.
(2) Associativity: g · (h · k) = (g · h) · k for all g, h, k ∈ G.
(3) Identity: there is an identity element e ∈ G satisfying e · g = g · e = g for all

g ∈ G.
(4) Inverses: for each g ∈ G, there is an inverse element g−1 such that g · g−1 =

g−1 · g = e.

If, in addition, the operation is commutative (i.e., g · h = h · g for all g, h ∈ G),
then we call the group abelian8 . The number of elements in the set G is called
the order of the group and is denoted |G|. �

As with rings, it will take some time to get used to working in groups, though our
experience with rings will surely speed things up a little. For example, a ring could
be thought of as an abelian group under the operation + that just happens to also
have an associative multiplication that distributes over addition. Similarly, a field is
precisely a commutative ring in which the non-zero elements form an abelian group
under multiplication (Exercise 4.52). The principal difference between groups and
rings lies in the number of operations, and a notational subtlety arises depending on
whether we think of that one operation as an additive one or a multiplicative one. If
additive, we would use the notation+ for the operation and adopt the symbols e = 0
for the identity and −a for the inverse of a. If multiplicative, we use × or · for the
operation and the symbols e = 1 for the identity and a−1 for the inverse of a. While
we encounter additive groups periodically, our principal groups of interest (units
in a ring) are all multiplicative, so we will adopt the multiplicative conventions for
dealing with groups generally and encourage readers to think through the additively
written analogs on your own.

8 This unusual word stems from the name of 19th-century Norwegian mathematician Niels Abel, a
pioneer of group theory. It has been remarked that it is among the highest of mathematical honors
to have one’s name terminologically enshrined as a lower-case adjective.
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Theorem 4.5.2
Let R be a ring with unity. Then the set of units forms a multiplicative group
called the group of units of R, denoted R×.

We spent much of Chapter 3 reasoning through the units in various rings, so we
have a handy supply of groups at our fingertips.

� Example 4.5.3 We have the following groups of units:

• R
× = R − {0}

• Q
× = Q − {0}

• C
× = C − {0},

• Z
× = {±1}.

• Z[i]× = {±1,±i}.
• R[x]× = {non-zero constants}.

But before we get too far ahead of ourselves, let’s prove Theorem 4.5.2 that these
sets of units form multiplicative groups.

Proof Let R be a ring with unity, with multiplicative identity 1, and let R× be the
set of units of R. We show that R is a group (using the multiplication of R as its
operation). First, 1 ∈ R× and is clearly the identity of R×. Multiplication in R× is
associative because R is a ring (and one of the axioms of a ring is associativity of
multiplication). The inverse of a unit of R is also a unit of R, and so R× contains a
multiplicative inverse for each element. All that remains to show is closure, that the
product of two units in R is again a unit in R. Given units u1, u2 of R, we claim that
u1u2 is again a unit, with inverse u−1

2 u−1
1 . Indeed we compute, using associativity,

that
(u1u2)(u

−1
2 u−1

1 ) = u1(u2u
−1
2 )u−1

1 = u11u
−1
1 = u1u

−1
1 = 1,

and likewise (u−1
2 u−1

1 )(u1u2) = 1. Thus, u1u2 is a unit and an element of R×, and
we conclude that R× is a group. �

Most important for our purposes, with the specific goal of mastering modular
exponentiation in mind, will be the group Z/(n)×.

� Example 4.5.4 By Theorem 4.4.3, Z/(n)× consists of those [a] ∈ Z/(n) with
gcd(a, n) = 1. For example:

Z/(6)× = {[1], [5]} Z/(7)× = {[1], [2], [3], [4], [5], [6]}
Z/(10)× = {[1], [3], [7], [9]} Z/(11)× = {[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]}.

To see how our modular arithmetic questions are housed naturally in the lan-
guage of group theory, we note that we can make sense of exponentiation in any
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(multiplicatively written) group G by defining

gn = g · g · · · g
︸ ︷︷ ︸

n times

for positive n, g0 = 1, and for negative n,

gn = g−1 · g−1 · · · g−1
︸ ︷︷ ︸

|n| times

.

One readily checks that most standard rules of exponentiation hold, e.g.,

gm · gn = gm+n and (gm)n = gmn

for any m, n ∈ Z. This allows for the following lemma generalizing the key step in
our cleverest approach to modular exponentiation.

Lemma 4.5.5

Let G be a group and let g ∈ G. If gb = 1 for some positive integer b, then for
any integer k we have

gk = gk mod b. �

Proof By the Division Algorithm we can write k = bq + r with 0 ≤ r < b; thus
r = k mod b. Then

gk = gbq+r = (gb)q · gr = 1q · gr = gk mod b,

as desired. �

While our focus is on the group of units Z/(n)×, it is worth emphasizing that this
lemma highlights the importance ofmodular arithmetic in doing algebraic operations
in any group.

� Example 4.5.6 Since i4 = 1 and (−1)2 = 1, Lemma 4.5.5 provides our well-
known rules

i k = i k mod 4 and (−1)k = (−1)k mod 2

in the group Z[i]×. The lemma can be viewed as a vast generalization of these
patterns.

Note that Lemma 4.5.5 refers to any positive integer b such that gb = 1. The
minimal such exponent, the “magic number” of the previous section, is called the
order of g.
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Definition 4.5.7

Let G be a group. The order of an element g ∈ G, denoted |g|, is the smallest
positive integer k such that gk = 1. If no such element exists, we say g has infinite
order and write |g| = ∞. �

The use of “order” for both the number of elements in a group and a parameter
defined for each element of the group is less questionable9 than it seems at first
glance, as we’ll see in Section 4.6.

Note that if there exists any natural number exponent b such that gb = 1 then any
multiple of b also has this property (and thus there must exist infinitely many such
exponents). The converse of this is true as well, in that all exponents such that gb = 1
are multiples of the smallest one, which must exist by the Well-Ordering Principle.

Lemma 4.5.8

Given a groupG and an element g ∈ G, suppose gb = 1 for some positive integer
b. Then b is a multiple of |g|. �

Proof It is clear that |g| ≤ b since |g| is by definition the least positive exponent such
that g|g| = 1. For divisibility, we observe that gb mod |g| = 1 by Lemma 4.5.5, which
contradicts that |g| was the smallest positive such exponent unless b mod |g| = 0.
A slightly more general version of the lemma is left to Exercise 4.41. �

This brings up an interesting analogy between the ringsZ/(n) andC. Our intuitive
response to the goal of solving ab = 1, formed from many years of exposure to the
real numbers, would have us do something like “take log base a of both sides.” In
the real setting, we would find b = loga(1) = 0, and that is indeed the unique
value of b for which that equation holds. Typically, one of the major upheavals in
your understanding of the mathematical universe is that this argument becomesmore
intricate in the world of the complex numbers. For example, solving the equation
ex = 1 (with e ≈ 2.718 . . . representing the base of the natural logarithm) gives
not only x = 0, but an infinitude of complex solutions: x = 2kπi for all k ∈ Z.
In this sense, exponentiation in Z/(n) is much more like exponentiation in C than
exponentiation inR—in fact, one perspective from this discussion is that it is the real
numbers that are the “odd ring out” when it comes to exponentiation being injective.

Creeping back toward modular exponentiation, we have argued in Exploration F
that elements of Z/(n) that have a finite order must be units (since xk = 1 implies
x · xk−1 = 1, providing the inverse x−1 = xk−1). The converse, that every unit has
finite order, is a property of every finite group (and so, in particular, of eachZ/(n)×).

9 Not not questionable, just less questionable.
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Lemma 4.5.9

In a finite group G, every element has finite order. �

Proof Let g ∈ G and consider the sequence

1, g, g2, g3, . . .

Since G is both closed under the group operation and finite, this infinite list of
elements of G can’t all be different, so there must be some gm = gn with m > n.
Multiplying both sides by g−n gives gm−n = 1, so g has order at most m − n. �

With sufficient group-theoretic background now at our disposal, we can return
to the exclusive context of modular arithmetic, i.e., working in the family of groups
Z/(n)×. We have quite a few outstanding questions about such groups, and perhaps
nonemore obviously lacking an answer than that of figuring out how big these groups
are. While a complete computation for |Z/(n)×| is still pending, we note that we
have already come across notation for this exact quantity in Exploration F, with some
special cases already resolved.

Definition 4.5.10

Euler’s totient10 function is defined for integers n > 1 by ϕ(n) = |Z/(n)×|,
that is, the number of units of Z/(n). We also take ϕ(1) = 1. �

Of course, by Theorem 4.4.3, this is just the number of integers 0 ≤ a < n with
gcd(a, n) = 1. The totient function is also often referred to as the Euler ϕ-function
(Euler phi function).

� Example 4.5.11 FromExample 4.5.4, we see thatϕ(6) = 2,ϕ(7) = 6,ϕ(10) = 4,
and ϕ(11) = 10. In general, for a prime p, by Theorem 4.4.3 we have ϕ(p) =
p − 1.

More generally, we compute the following.

Lemma 4.5.12

Consider distinct primes p and q , and an integer k ≥ 1. Then

(i) ϕ(pk) = pk − pk−1;
(ii) ϕ(pq) = (p − 1)(q − 1). �

10 The word “totient” is an archaic one, but is a relative of “totting” and “totalling,” as in “After
totting up all the units mod n, we found there were ϕ(n) of them.”
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Table 4.1 Unit Fractions and Orders of 10 in Z/(n)×

n 3 7 9 11 13 17
1
n 0.3 0.142857 0.1 0.09 0.076923 0.0588235294117647

|[10]| 1 6 1 2 6 16

Proof Since gcd(a, pk) = 1 if and only if gcd(a, p) = 1, computingϕ(pk) involves
counting the number of integers from 0 to pk − 1 that are not multiples of p. Since
there are precisely pk−1 numbers in that range that aremultiples of p, the answer is
pk − pk−1. Similarly, to compute ϕ(pq), we begin with the list of integers from 0
to pq − 1 from which we must remove the multiples of p and of q . We first remove
the p multiples of q in that range and then remove the remaining (q − 1) multiples
of p (only q − 1 since we have already removed the multiple 0p = 0), leaving

ϕ(pq) = pq − p − (q − 1) = pq − p − q + 1 = (p − 1)(q − 1)

elements in the list. �

We will continue to work on evaluating ϕ(n), but the second major outstanding
question about the groups Z/(n)× is the orders of their elements. Quite generally,
given a and n we can ask for the order of a mod n. While we typically fix n and
consider the orders of the various elements [a] ∈ Z/(n)×, there is a noteworthy
aside that emerges from fixing a = 10 and considering the order of [10] in Z/(n)×
for various n relatively prime to 10. To get started, consider Table 4.1, showing the
decimal expansions of the first few unit fractions 1

n (for gcd(10, n) = 1) and the
order of [10] in Z/(n)×.

One (of many!) striking patterns about decimal expansions can be explained in the
language of orders and group theory. Let’s use the phrase period length of a rational
number for the number of digits in the repeating block of its decimal expansion
(called the repetend). The following theorem explains this emergent phenomenon.

Theorem 4.5.13
Let n ∈ N with gcd(n, 10) = 1. Then the period length of the decimal expan-
sion of 1

n is precisely the order of [10] in Z/(n)×.

Proof We leave it to the reader to argue that if gcd(n,10)=1, then there is no pre-
periodic part of the decimal expansion of 1/n. So write 1

n = 0.a1...ak , where k is
the period length, so that 10k(1/n) = a1...ak .a1...ak and thus (10k − 1)(1/n) =
a1...ak ∈ Z. This shows that n divides 10k − 1, so 10k ≡ 1 (mod n). As k is the
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Table 4.2 Tables of modular orders

least power of 10 for which (10k −1)/n would be an integer, it is precisely the order
of 10 mod n. �

To finish off this story, we consider the case that gcd(10, n) �= 1. Here, we write
n = 2v2(n)5v5(n)n′ where n′ is relatively prime to both 2 and 5. Then the period
length of n′ determines the period length of n, and the factors of 2 and 5 affect only
the number of pre-periodic digits. See Exercise 4.64.

The reverse scenario, fixing n and trying to find a practical method for finding
orders of units in Z/(n)×, is our principal quest moving forward. To summarize,
we know that there exists a positive integer k such that ak ≡ 1 (mod n) if and
only if [a] is a unit in Z/(n), which happens if and only if a and n are relatively
prime, and Euler’s totient function ϕ(n) lets us know how many such elements there
are. Lagrange’s Theorem, the upcoming group-theoretic result, reveals a miraculous
relationship between the orders of units in Z/(n) and the number of units in Z/(n).
Table 4.2 displays several groups of units, showing the size of the group, and the
orders of each of its elements.
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Exploration G

Equivalence Relations and Equivalence Classes �

The upcoming proof of Lagrange’s Theorem, tying together orders of elements
and the order of the group they live in, hinges on partitioning sets into equivalence
classes. This is the process we employed in Section 4.2 to construct Z/(n), using the
equivalence relation of congruence mod n to partition Z. Here we get some practice
with other examples.

G.1 Consider the groupG = (Z/11)× under multiplication, and let H be the subset
{[1], [3], [4], [5], [9]} of G.

1. Check that H is a group under multiplication modulo 11.
2. Check that the relation defined for g1, g2 ∈ G by

g1 ≡ g2 ⇐⇒ g−1
2 g1 ∈ H

defines an equivalence relation on G.
3. Find the distinct equivalence classes for this relation. How many elements does

each have? How would you define multiplication of these equivalence classes?

G.2 Consider the group G = R[x] under addition, and let H be the subset of G
consisting of all multiples of x2 + 1. Define a relation by p(x) ≡ q(x) if x2 +
1|(p(x) − q(x)).

1. Quick checks: H is itself a group, and ≡ is an equivalence relation on G.
2. Show that every element of R[x] is congruent to a constant or linear polynomial,

i.e., every equivalence class can be expressed in the form [a + bx] for some
a, b ∈ R.

3. Let C be the collection of equivalence classes. Check that the definition

[a + bx] + [c + dx] = [(a + c) + (b + d)x]
equips C with the structure of an additive group.

4. In fact, in this case C can further be made into a ring. How should we complete
the following formula with a linear polynomial to give a reasonable notion of
multiplication in C?

[a + bx] · [c + dx] = [???].
5. Use your definition to compute [2 + 3x] · [1 − 2x]. Find a solution in C to the

equation y2 = −1. Perhaps at this point the ringC starts to feel familiar. Discuss.
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4.6 Lagrange’s Theorem and the Euler Totient Function

The order of a group is related to the order of its elements by Lagrange’s Theorem.
Exploration G set up the principal tool for us to prove this result by applying our
knowledge of equivalence relations in the setting of an abstract group. As in Explo-
ration G, we start by considering equivalence relations defined by membership in a
special subset of the group.

Definition 4.6.1

Given a group G, a subset H ⊆ G forms a subgroup of G if and only if the set
H forms a group under the same operation as G. �

It is typically quite routine to decide if a subset is a subgroup. For example,
associativity in H comes for free from associativity in G, and if H is closed under
inversion and the group operation, it must also contain the identity (since h ·h−1 = e).
It is even briefer for finite groups, since every element has a finite order: If h has
order k, then its inverse is hk−1, so if H is closed under the group operation, then it
is closed under inversion, and hence a subgroup.

� Example 4.6.2 Inside G = Z/(11)×, the subset H = {[1], [3], [5]} is not a
subgroup since it is not closed under multiplication (or inverses), but since
H1 = {[1], [3], [4], [5], [9]} and H2 = {[1]} and H3 = {[1], [10]} are closed
under multiplication, they are subgroups.

A large swath of subgroups of any group can be produced simply by taking a
single element of the group and considering the set of all of its powers.

Theorem 4.6.3
Given a group G and an element g ∈ G, the set of elements 〈g〉 = {gk : k ∈ Z}
forms a subgroup of G called the cyclic subgroup generated by g.

Proof Associativity in 〈g〉 is inherited from the larger group G, we have the identity
g0 = 1 ∈ 〈g〉, and we also have inverses since (gk)−1 = g−k . Finally, closure under
multiplication follows from gm · gn = gm+n . �
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� Example 4.6.4 Inside Z/(7)×, we have the cyclic subgroups

〈[1]〉 = {[1]}
〈[2]〉 = {[2], [4], [1]}
〈[3]〉 = {[3], [2], [6], [4], [5], [1]}

〈[4]〉 = {[4], [2], [1]}
〈[5]〉 = {[5], [4], [6], [2], [3], [1]}
〈[6]〉 = {[6], [1]}.

Though the ordering of the elements in a set is irrelevant, they are ordered above
in ascending powers of the generator.

The powering-up process stops when we reach 1 (since at this point the pattern
of powers will begin to loop back to the beginning). Here we see a close relationship
between the two uses of the word order: the order |G| of a group and the order |g|
of one of its elements. (Note the unfortunate similarity in notation between the order
of the element g and the absolute value function. We will need to remain alert for
context to discern which interpretation to use.) If the group in question is 〈g〉, the
cyclic subgroup is generated by the element g, then the two uses are synonymous
(compare the previous example to the order data for Z/(7)× in Table 4.2).

Corollary 4.6.5

Suppose g ∈ G has finite order. Then the order of the cyclic subgroup generated
by g is equal to the order of g in G, i.e., |〈g〉| = |g|. �

Proof Exercise 4.40. �

Definition 4.6.6

LetG be a group and H a subgroup ofG. For a, b ∈ G we say a is (left) congruent
to b mod H if a−1b ∈ H and write

a ≡ b mod H. �

Theorem 4.6.7
Given a group G and a subgroup H , congruence mod H is an equivalence
relation on the set G.
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Proof To check reflexivity,we have for all a ∈ G that a ≡ a mod H since a−1a = e,
and e ∈ H since H is a subgroup of G. For symmetry, suppose a ≡ b mod H . Then
a−1b ∈ H , and since H is closed under inverses, (a−1b)−1 = b−1a ∈ H , so b ≡
a mod H . Finally, for transitivity, suppose that a ≡ b mod H and b ≡ c mod H .
Then a−1b ∈ H and b−1c ∈ H , so their product a−1bb−1c = a−1c is also in H ,
giving a ≡ c mod H . �

For a given element a ∈ G, the equivalence class of a under congruence mod H
is just the set of elements in G congruent to a, {g ∈ G : a−1g ∈ H}. However, if
a−1g = h for some h ∈ H , then g = ah. Thus, the equivalence class of a is just the
set {ah : h ∈ H}. These sets have a special name and role in group theory.

Definition 4.6.8

Given a group G with element a and subgroup H , the set aH = {ah : h ∈ H} is
called the left coset of H containing a. �

Right cosets11 can be similarly defined via Ha = {ha : h ∈ H}, and while in
general aH �= Ha, in abelian groups (including all the Z/(n)×), there is no dis-
tinction between left and right cosets, and we arbitrarily choose to continue working
with left cosets.

� Example 4.6.9 ConsiderG = Z/(14)× = {[1], [3], [5], [9], [11], [13]}.Weverify
that the subset H = {[1], [9], [11]} is in fact a subgroup of G, and construct the
cosets:

[1]H = {[1], [9], [11]}
[9]H = {[9], [11], [1]}

[3]H = {[3], [13], [5]}
[11]H = {[11], [1], [9]}

[5]H = {[5], [3], [13]}
[13]H = {[13], [5], [3]}

We see that there are in fact only two distinct left cosets, [1]H = {[1], [9], [11]}
and [3]H = {[3], [13], [5]} and that they partition all of G. Furthermore, we can
read off congruence from the partitions: 3 ≡ 5 mod H since they appear in the
same coset, or, equivalently, since [3]−1 · [5] = [25] = [11] ∈ H.

� Example 4.6.10 Consider G = R
× = R − {0} (under multiplication), and H the

subgroup of positive real numbers. The two distinct left cosets are H and −1H ,
the set of negative real numbers.

11 Corresponding to the equivalence classes of right congruence mod H , the equivalence relation
defined as a ≡ b mod H if and only if ba−1 ∈ H
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Up to this point we have defined subgroups and cosets in the setting ofmultiplica-
tive groups. We could just as easily have used the context of an additive group, as
Exercise 4.18 and the example below show.

� Example 4.6.11 Consider the group formed byZ under addition, and the the cyclic
subgroup H = 〈6〉. As Z is an additive group, the cyclic subgroup generated by 6
contains all multiples of 6 (corresponding to repeated addition of 6 or its additive
inverse−6) rather than all powers of 6 (corresponding to repeatedmultiplication).
For this reason, as a subgroup of Z, 〈6〉 = 6Z = {6x |x ∈ Z}. In additive notation,
“a and b are congruent mod H” means (−a) + b ∈ H, and we write the coset of
H containing a as a + H. In this case, (−a) + b ∈ 〈6〉 means that 6|b − a, so
congruence mod 〈6〉 is just standard congruence mod 6. Since we already know
how this partitions the integers, we find that the cosets are

0 + 〈6〉 = [0]
1 + 〈6〉 = [1]

2 + 〈6〉 = [2]
3 + 〈6〉 = [3]

4 + 〈6〉 = [4]
5 + 〈6〉 = [5]

Of course, we can choose any element of a coset to represent it. For example,
3 + 〈6〉 = 9 + 〈6〉 = 603 + 〈6〉.

� Example 4.6.12 The set H of all multiples of x2 + 1 in R[x] forms a subgroup
of R[x] (see Exploration G and/or Exercise 4.36). By polynomial long division,
for every polynomial p(x) ∈ R[x] there exist polynomials q(x) and r(x) in R[x]
such that p(x) = (x2 + 1)q(x) + r(x) with deg r(x) < 2. Thus, p(x) − r(x) =
(x2 + 1)q(x) ∈ H , and under congruence mod H , p(x) ≡ r(x) mod H . This
means that every polynomial in R[x] is congruent to a polynomial of the form
r(x) = ax +b, and so the cosets of H can all be represented in the form [ax +b]
for a, b ∈ R.

� Remark 4.6.13 While the emphasis here is on groups, the last couple of examples
hint at how we might analogously define congruence in a ring modulo a certain
type of subring. For both groups and rings, under suitable conditions the set of
congruence classes under these relations can themselves be given the structures
of groups and rings (as when we constructed Z/(n) using congruence mod n). In
the congruence mod multiples of (x2 + 1) example above, one can check that if
f (x) ≡ a+bx and g(x) ≡ c+dx , then f (x)g(x) ≡ (ac−bd)+ (ad +bc)x , an
operation strikingly similar to multiplication in C (the field constructed expressly
to allow x2+1 to have a solution!). See Exercise 4.68 for more on these “quotient
rings.”
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Lemma 4.6.14

Let G be a finite group and H a subgroup of G. Then for all a ∈ G, we have

|aH | = |H |.
That is, all left cosets of H have the same size as H . �

If you take all the elements of H and multiply each by a, then intuitively you have
the same number of elements as when you started—unless of course you don’t.What
if some of the elements in this new set aH are duplicates? If you take each element of
Z/(4) and multiply by two, for example, you only end up with two distinct elements.
What we need is a more precise version of the argument showing that multiplication
by a is a bijection.

Proof We show that the function f : H → aH defined by f (h) = ah for all
h ∈ H is a bijection. Since surjectivity follows for free from the definition of aH ,
we need only show injectivity. Suppose f (h1) = f (h2) for some h1, h2 in H . Thus
ah1 = ah2. Multiplying both sides by a−1 on the left gives

a−1(ah1) = a−1(ah2)

(a−1a)h1 = (a−1a)h2

h1 = h2,

so f is injective, and hence a bijection, so |H | = |aH |. �

(Note that the Z/(4) example doesn’t contradict this lemma since Z/(4) is not
a group under multiplication. If we add [2] to each element of Z/(4) you do find
|Z/(4)| = |[2] + Z/(4)|.)

We now have all the parts we need to conclude one of the most powerful theorems
of finite group theory.

Theorem 4.6.15 (Lagrange’s Theorem)
If H is a subgroup of a finite group G, then the number of elements in H
divides the number of elements in G, i.e., |H |∣∣|G|.

We will try to minimize the frequency of the aesthetic unpleasantness of using
| · | for orders juxtaposed with | for divides, but there’s a cautionary tale to be told
here about the necessity of good handwriting12 .

12 For example, if your 1 looks too much like a �, then writing that the cyclic subgroup generated
by 11 is a subgroup of that generated by 1 ends up looking something like |〈��〉| | |〈�〉|
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Proof As the left cosets of H are the equivalence classes under congruence modulo
H , by Lemma 4.1.5 they partition the set:

G = a1H ∪ a2H ∪ · · · ∪ ak H,

where a1H, . . . , ak H represent the distinct, and therefore disjoint, cosets. It follows
from the previous lemma that

|G| = |a1H | + |a2H | + · · · + |ak H | = |H | + |H | + · · · + |H | = k|H |.
Thus |H | divides |G|. �

In the proof above, k represents the number of distinct cosets of H . This value,
k = |G|

|H | , is referred to as the index of H in G and denoted [G : H ].

Where does this leave us in our quest to simplify exponentiation in Z/(n)×? We
know for all [a] ∈ Z/(n)×, 〈[a]〉 is a subgroup of Z/(n)× and that |[a]| = |〈[a]〉|.
Alongside Lagrange’s Theorem, these observations provide the following incredibly
useful theorem. Recall Euler’s totient function, ϕ(n) = |Z/(n)×|, which gives the
number of positive integers less than or equal to n that are relatively prime to n.

Theorem 4.6.16 (Euler’s Theorem)
For all n ∈ N and a ∈ Z with gcd(a, n) = 1, we have

aϕ(n) ≡ 1 mod n.

Proof The hypotheses imply that [a] ∈ Z/(n)×. In this groupwe have |[a]| = |〈[a]〉|
by Corollary 4.6.5, and so by Lagrange’s Theorem, |[a]| divides |Z/(n)×| = ϕ(n).
Write ϕ(n) = |[a]|k for some k ∈ Z, and now

[a]ϕ(n) = ([a]|[a]|)k = [1]k = [1],
as desired. �

While we have not solved all of the mysteries of Euler’s ϕ-function, there are
some special caseswhere the resultmakes for an evenmore pristine version of Euler’s
Theorem; for example, the following corollary typically attributed to Fermat.
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Corollary 4.6.17 (Fermat’s Little Theorem)

For p prime, if gcd(a, p) = 1, then a p−1 ≡ 1 (mod p). For all a ∈ Z, a p ≡
a mod p. �

Proof The first claim is a special case of Euler’s Theorem with ϕ(p) = p − 1.
Multiplying both sides by a gives a p ≡ a mod p, and this identity holds for a ≡
0 mod p as well. �

Corollary 4.6.18

If [a] ∈ Z/(n)×, then |[a]| | ϕ(n). �

Proof This gem comes directly from the proof of Euler’s Theorem. �

At long last, we have the key to modular exponentiation calculations. Combining
Euler’s Theorem with Lemma 4.5.5, we deduce the remarkable corollary.

Corollary 4.6.19

For all a ∈ Z, if gcd(a, n) = 1, then

ak ≡ ak mod ϕ(n) mod n. �

� Example 4.6.20 To compute 1580 mod 41, we compute ϕ(41) = 40 since 41 is
prime, and so

1580 ≡ 1580 mod 40 = 150 = 1 (mod 41).

� Example 4.6.21 To compute 7183 mod 34, we compute ϕ(34) = 16 by Lemma
4.5.12(ii) and note 71 mod 34 = 3, so

7183 ≡ 383 mod 16 = 33 = 27 (mod 34).

� Example 4.6.22 To compute 13359 mod 27, we compute ϕ(27) = 18 by Lemma
4.5.12(i) and note 133 mod 27 = 25, so

13359 ≡ 2559 mod 18 ≡ (−2)5 = −32 ≡ 22 (mod 27).

� Remark 4.6.23 One normally has to be careful putting footnotes on mathematical
expressions, as they can be confused with exponents, but the following footnote
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shows that sometimes things work out fine regardless, e.g., that modulo 13 we
have 749 ≡ 7.13

Finally, we note that the ability to reason through orders of elements has benefits
not only for explicit computation, but also in clarifying algebraic properties of the
modular worlds. For example, in solving Diophantine equations by working mod n,
we saw that not every element ofZ/(n) is a square (for example, only [0], [1] ∈ Z/(4)
were squares). In fact, for every n, there must be at least one element of Z/(n) that
is not a square since in the list [0]2, [1]2, [2]2, . . . [n−1]2 there are many repeats (as
[a]2 = [−a]2), and so we could not get all n possible outputs. The following result
stands in stark contrast.

Corollary 4.6.24

If p is a prime with p mod 3 = 2, then every element of the ring Z/(p) is a cube.
�

Proof Define ϕ : Z/(p) → Z/(p) by ϕ(x) = x3. We claim that ϕ is a bijection,
for which it suffices, since Z/(p) is finite, to show it is an injection. Suppose a, b ∈
Z/(p) satisfy a3 = b3. Since Z/(p) is a field (and hence has no zero divisors), if
a3 = b3 = [0], then a = b = [0]. More interestingly, if a3 = b3 �= [0], then
a, b �= [0] and so each is a unit mod p, and we can write

(ab−1)3 = [1].
Now if a �= b, then ab−1 has order 3, and so Lagrange’s Theorem implies that
3 | |Z/(p)| = p − 1. But this contradicts that p ≡ 2 mod 3. So a = b, proving
injectivity, hence bijectivity, hence surjectivity. �

A second structural consequence is a striking analog of the Binomial Theorem in
the mod-p world. Recall that for real numbers x, y and a natural number n, we have

(x + y)n = xn +
(

n

1

)

xn−1y1 +
(

n

2

)

xn−2y2 + · · · +
(

n

n − 1

)

x1yn−1 + yn,

where the coefficients
(n
k

)

are defined by Pascal’s Triangle and the combinatorial

formula
(n
k

) = n!
k!(n−k)! . For contrast, mod p we have the following remarkable

result, which we lovingly refer to as the n∅∅b’s Binomial Theorem, or perhaps the
n∅∅binomial Theorem, in honor of that point in all of our mathematical trajectories
where we lost points on an exam for trying to get away with identities like (x+ y)3 =

13 Since a13 ≡ a mod 13 for any integer a, by Fermat’s Little Theorem.
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x3 + y3. Little did we know that we needed only work mod 3 for our claims to be
vindicated14 .

Theorem 4.6.25 (The n ∅∅ b’s Binomial Theorem)
For any x, y ∈ Z and p a prime, we have

(x + y)p ≡ x p + y p (mod p).

Proof Fermat’s Little Theorem tells us that a p ≡ a (mod p) for every a in Z, so
applying this to each of x + y, x , and y, we learn

(x + y)p ≡ x + y ≡ x p + y p (mod p).

� Remark 4.6.26 A second common proof of this theorem follows from the usual
Binomial Theorem. When p is prime, each of the binomial coefficients

(

p

k

)

= p!
k!(p − k)! ,

for 1 ≤ k ≤ p−1, is a multiple of p since p divides the numerator of this fraction
but not the denominator. When we reduce the Binomial Theoremmod p, the only
terms that remain are thus x p and y p.

14We suggest revisiting your calculus instructor and demanding those exam points back for being
unclear as to which ring you were supposed to do your calculus in.
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Exploration H

Mixed Modulus Musings �

Our focus so far has been for fixedn to consider theworldZ/(n) and investigate the
reductions of various integers a modulo n. Below we consider a somewhat reversed
perspective, that is, for fixed a, the relationship between the quantities a mod n for
various n.

H.1 Suppose a ≡ 1 (mod 5). What can you say about a mod 10? a mod 25?
a mod 3?

H.2 Suppose a ≡ 7 (mod 30). What can you say about a mod 2? a mod 3?
a mod 5? a mod 7?

Let’s adopt a new temporary notation for keeping track of two moduli at once.
We write

k ≡ (a, b) (mod (m, n))

to mean k ≡ a (mod m) and k ≡ b (mod n). For example,

41 ≡ (2, 1) (mod (3, 5))

since 41 ≡ 2 (mod 3) and 41 ≡ 1 (mod 5).

A series of mixed-modulus problems using the above notation:

H.3 Find n mod (3, 4) for all [n] ∈ Z/(12). Use your results to prove the following
claim: that if n ≡ 1 (mod 3) and n ≡ 1 (mod 4), then n ≡ 1 (mod 12) (and
likewise if we replace each 1 with −1).

H.4 A slightly less brute-force approach to the same problem. Suppose n = 3k + 1
and n = 4� + 1, and see if you can deduce a “mod 12 condition” by writing n in the
form n = 12 + .

H.5 Prove that if a ≡ ±1 (mod m) and a ≡ ±1 (mod n) with gcd(m, n) = 1,
then a ≡ ±1 (mod mn).

H.6 There is promise that this type of argument will work much more generally. If
a = 11k + 4 and a = 5� + 3, deduce the value of a mod 55.
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Table 4.3 Mixed modulus data

x mod
12

0 1 2 3 4 5 6 7 8 9 10 11

x mod
(3, 4)

(0,0) (1,1) (2,2) (0,3) (1,0) (2,1) (0,2) (1,3) (2,0) (0,1) (1,2) (2,3)

4.7 Sunzi’s Remainder Theorem andϕ(n)

Having nigh on mastered modular arithmetic for a fixed modulus, there is significant
merit in studying what happens when varying from one modulus to another: given
a ∈ Z, what are the relationships between a mod m and a mod n as m, n vary? Our
first case is when one of the two divides the other, say m | n with n = mk. Now, for
example, if x ≡ 5 mod n, then it must be that x ≡ 5 mod m as well as

x = qn + 5 =⇒ x = (qk)m + 5.

The following lemma generalizes this observation.

Lemma 4.7.1

If m | n and x ≡ a mod n, then x ≡ a mod m. �

More interestingly, ifm and n are relatively prime, it seems there is little relation-
ship between x mod m and x mod n. One interpretation of the results in this section
is a provable version of this statement—the values of x mod m and x mod n are
completely independent when gcd(m, n) = 1. As in Exploration H, we introduce
an ad hoc notational device for simultaneously keeping track of both x mod m and
x mod n, writing

x ≡ (a, b) (mod (m, n))

to mean that x ≡ a (mod m) and x ≡ b (mod n). Summarizing one of the results
from Exploration H, we found that knowing the value of x mod 12 was equivalent
to knowing both x mod 3 and x mod 4 (see Table 4.3).

More explicitly, we note that every element of Z/(12) corresponds to a distinct
ordered pair (a, b) with a ∈ Z/(3) and b ∈ Z/(4). Further, every possible such
pair appears, i.e., every pair corresponds to precisely one element of Z/(12). These
statements imply that we have a bijection between the ringZ/(12) and this collection
of ordered pairs. This link is strengthened further by the realization that this collection
of ordered pairs can also be viewed as a ring in a natural way.

Theorem 4.7.2
Let A and B be rings, with operations+ and ·. TheCartesian product A×B =
{(a, b) : a ∈ A, b ∈ B} is also a ring with the component-wise defined
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operations

(a, b) + (c, d) = (a + c, b + d)

(a, b) · (c, d) = (a · c, b · d),

where the operations within first and second entries are the respective opera-
tions of the rings A and B.

Proof Almost all properties follow from A and B themselves being rings. For ex-
ample, the additive identity of A × B is (0A, 0B) where 0A is the additive identity
of A and 0B is the additive identity of B. We leave the details to Exercise 4.38. �

Our immediate goal is to determinewhen this function [x] → ([x mod m], [x mod
n]) from Z/(mn) to Z/(m) × Z/(n) is a bijection. For m and n much larger than
3 or 4, the process of listing all the possible values becomes cumbersome, so we
will need a more systematic approach. We begin by re-examining the connection
between Z/(12) and Z/(3) × Z/(4). Suppose x ≡ 1 (mod 3) and x ≡ 1 (mod 4).
How might we determine x mod 12? Given our assumed congruences modulo 3 and
4 we know that x = 3k + 1 and x = 4� + 1 for some k, � ∈ Z. Here’s a sneaky way
of deducing x mod 12 from these two pieces of information:

x = 4x − 3x = 4(3k + 1) − 3(4� + 1) = 12k + 4 − 12� − 3 = 12(k − �) + 1,

so x mod 12 = 1. This example was chosen to be particularly simple (and to allow
our sneaky idea), but the general process is only one degree of difficulty higher.

� Example 4.7.3 If x ≡ 4 (mod 11) and x ≡ 3 (mod 5), find x mod 55.

Solution Write x = 11k+4 and x = 5�+3. Then 5x = 55k+20 and 11x = 55�+33.
We can deduce that

x = 11x − 10x = (55� + 33) − 2(55k + 20) = 55(� − 2k) − 7 ≡ 48 (mod 55)

by writing x as a linear combination of 11x and 5x (x = 11x + (−2)5x). �
The key to the process is slowly being revealed. Knowing x mod 11 and x mod 5

we can find representations of x in terms of multiples of 11 and 5, respectively. By
multiplying each of these representations of x by the opposite modulus (x = 11k+4
by 5 and x = 5� + 3 by 11), we find expressions for 5x and 11x in terms of the
desired common modulus (in this case 55). Then, finding a linear combination of
these expressions equalling x—or, equivalently, a linear combination of 5 and 11
equal to 1—we were able to write x in terms of the common modulus. By Bézout’s
Identity, this can be done if and only if 5 and 11 are relatively prime (which they
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are!). When m and n are not relatively prime, we should thus expect our approach
to fail, as the following example illustrates.

� Example 4.7.4 Suppose x ≡ 1 (mod 4) and x ≡ 4 (mod 6). Find x mod 24.

Solution ...or lack thereof! Not only does our procedure fail, but it is moreover
impossible to find any x ∈ Z that satisfies x ≡ 1 (mod 4) and x ≡ 4 (mod 6), as
the first congruence would force x to be odd, and the second would force x to be
even. �

Note that regardless of whether m and n are relatively prime, there is a bijection
from Z/(mn) to Z/(m) × Z(n)—they are both, after all, finite sets with the same
number of elements—but there may be no bijection whose definition is particularly
natural, and none that preserve the algebraic structure. For example, Z/(16) and
Z/(4)×Z/(4) both have 16 elements, but the two rings are structurally quite different,
as evidenced, for example, by the observation that for any r ∈ Z/(4) × Z/(4) we
have that 4r = 0, whereas this is not true for an arbitrary element of Z/(16).

When gcd(m, n) = 1, however, there is a natural bijection, stemming from Table
4.3. Take, for example, the elements [7] and [11] in Z/(12), and note that 7 and 11
are paired in the table with (1, 3) and (2, 3), respectively. Now two pleasant things
happen: first, consider the sum [7]+[11] = [6]. From the table, we see 6 corresponds
to (0, 2), a convenient result since this is precisely the sum

(1, 3) + (2, 3) ≡ (0, 2) (mod (3, 4)).

Similarly for their product [7] · [11] = [77] = [5] ∈ Z/(12), we find 5 corresponds
to (2, 1) and the corresponding multiplicative miracle also occurs as given below:

(1, 3) · (2, 3) ≡ (2, 1) (mod (3, 4)).

Sunzi’s Remainder Theorem is the generalization of this result to any pair of rela-
tively prime moduli. If one were to build analogous tables, with rows for Z/(mn)

and Z/(m) × Z/(n), then this preservation of structure always occurs—adding or
multiplying the elements in the top row mod mn, or performing the same operation
on the corresponding elements in the bottom row mod (m, n) gives corresponding
results.

Theorem 4.7.5 ( Sunzi’s Remainder Theorem)
Suppose m, n ∈ N are relatively prime. Then the function

ψ : Z/(mn) −→ Z/(m) × Z/(n)
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defined by ψ([x]) = ([x mod m], [x mod n]) is a well-defined bijection that
preserves the ring operations: for [x], [y] ∈ Z/(mn), we have

ψ([x] + [y]) = ψ([x]) + ψ([y])
and

ψ([x] · [y]) = ψ([x]) · ψ([y]).

Proof Since both m and n divide mn, ψ is well defined by Lemma 4.7.1. We then
verify

ψ([x] + [y]) = ([x + y mod m], [x + y mod n])
= ([x mod m] + [y mod m], [x mod n] + [y mod n])
= ([x mod m], [x mod n]) + ([y mod m], [y mod n])
= ψ([x]) + ψ([y])

by the definition of the ring operations in Cartesian products (Theorem 4.7.2) and
using Lemma 4.2.4. Verifying the result for multiplication follows similarly.

Next, to establish that ψ is a bijection, it’s clear that Z/(mn) and Z/(m) × Z/(n)

have the same number of elements (namely, mn), and so to show that our function
is a bijection it suffices to show it is surjective. To this end, suppose ([a], [b]) ∈
Z/(m) × Z/(n). Since gcd(m, n) = 1, we can write

sm + tn = 1

for some s, t ∈ Z. Let x = bsm+atn. Then x ≡ 0+atn ≡ a(1) ≡ a (mod m) and
x ≡ bsm + 0 ≡ b(1) + 0 ≡ b (mod n). Thus, by definition ψ([x]) = ([a], [b]), as
desired. Since ([a], [b]) was arbitrary, we conclude ψ is surjective. �

� Remark 4.7.6 This theorem frequently goes by the name of The Chinese Remain-
der Theorem, but it has been remarked that this is somewhat like referencing the
Pythagorean Theorem as The Greek Triangle Theorem or Fermat’s Little Theo-
rem as The French Power Postulate. In the interest of giving credit where credit is
due, we include it here with the name of the 3rd-century Chinese mathematician,
Sunzi, to whom the result is often attributed.

� Remark 4.7.7 An algebraic perspective on Sunzi’s Remainder Theorem is that
when gcd(m, n) = 1, the rings Z/(mn) and Z/(m) × Z/(n) are essentially “the
same.” Namely, if every time someone mentioned Z/(12) you secretly thought
of the corresponding elements of Z/(3)× Z/(4), no one would ever be the wiser.
While wewill not introduce the phrase as a term of art, the algebraic way of saying
this is that the rings Z/(mn) and Z/(m)×Z/(n) are isomorphic (from the Greek:
iso (same) and morph (form)), and the bijection that demonstrates this—in this



122 4 Number Theory in the Mod-n Era

case, the one described in Sunzi’s Remainder Theorem—is called an isomorphism
from one ring to the other.

While the theorem is phrased abstractly as a relationship between rings, the proof
reveals how to interpret it as a computational tool, and the principal step is (yet
again!) Bézout’s Identity, finding s, t ∈ Z such that sm + tn = 1. To find an integer
solution x to the system

x ≡ a mod m

x ≡ b mod n,

we take
x = bsm + atn

where s and t are integers such that [s] = [m]−1 ∈ Z/(n) and [t] = [n]−1 ∈ Z/(m).
In this form, the result generalizes by induction to systems with even more relatively
prime moduli. Suppose we seek an integer solution x to the system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

x ≡ a3 (mod n3)

... ≡ ...

x ≡ ak (mod nk),with each gcd(ni , n j ) = 1, 1 ≤ i < j ≤ k. Then the more general version of Sunzi’s
Remainder Theorem says that such a solution exists and can be found as follows:
Let N = n1 · · · nk , and set

x = a1s1
N
n1

+ a2s2
N
n2

+ · · · + ansn
N
nk

,

where [si ] =
[

N
ni

]−1
in Z/(ni ). As in the proof above, we can verify the solution by

simply reducing this expression for x modulo ni : almost every term is a multiple of
ni , with only the one exception N

ni
. Hence

x ≡ ai si
N
ni

≡ ai (mod ni ),

by choice of si .

� Example 4.7.8 Solve the system

x ≡ 3 (mod 7)

x ≡ 2 (mod 9)

x ≡ 4 (mod 11).

Solution We first embed the problem in the notation above. We have n1=7, n2=9,
and n3 = 11. Let N = 7 · 9 · 11 = 693. We compute the requisite inverses: s1 is any
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integer such that

[s1] =
[

693

7

]−1

= [99]−1 = [1]−1 = [1] in Z/(7),

so we can take s1 = 1. A similar process gives s2 = 2 and s3 = 7. This gives

x = 3(1)(99) + 2(2)(77) + 4(7)(63) = 2369 ≡ 290 (mod 693).

The bijection in (the general form of) Sunzi’s Remainder Theorem implies [290] is
the unique congruence class in Z/(693) that satisfies these equations, so the set of
integer solutions to this system is {x ∈ Z : x mod 693 = 290}. �

Returning to the motivation for Sunzi’s Remainder Theorem, we consider the
question of inverses in Z/(m) × Z/(n). Since multiplication is defined component-
wise, elements ([a], [b]) and ([c], [d]) in Z/(m)× Z/(n) are multiplicative inverses
if

(a, b) × (c, d) ≡ (1, 1) (mod (m, n)),

which justmeans that ac ≡ 1 (mod m) and bd ≡ 1 (mod n). That is, ([a], [b])−1 =
([a]−1, [b]−1), assuming a is invertible mod m and b is invertible mod n. This gives
us an easy count of the number of units of the ring Z/(m) × Z/(n).

Corollary 4.7.9

Suppose gcd(m, n) = 1. Then an element [x] ∈ Z/(mn) is a unit if and only if
x mod m and x mod n are unitsmodm and n, respectively. That is, the bijection of
Sunzi’sRemainderTheoremalso provides a bijection fromZ/(mn)× toZ/(m)××
Z/(n)×. Consequently, we have

ϕ(mn) = ϕ(m)ϕ(n). �

� Remark 4.7.10 If f : Z → Z is a function such that f (mn) = f (m) f (n) when-
ever gcd(m, n) = 1, we say that f is a multiplicative function. We have argued
previously that the “number of divisors” function is multiplicative, and Corol-
lary 4.7.9 provides ϕ as a second example. We will explore other multiplicative
functions in the exercises.

Again, an induction argument extends the result to products of several relatively
prime moduli, and in conjunction with Lemma 4.5.12(i) thereby gives a complete
formula for evaluating ϕ(n) for all n ∈ N.

Corollary 4.7.11

If n = ∏

paii , then

ϕ(n) =
∏

ϕ(paii ) =
∏

pai−1
i (pi − 1) =

∏

(paii − pai−1
i ). �
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� Example 4.7.12

ϕ(1512) = ϕ(23 ·33 ·7) = ϕ(23)ϕ(33)ϕ(7) = (23 −22)(33 −32)(7−1) = 432.

At long last, combined with Euler’s Theorem, we now have a complete picture of
how to expedite modular exponentiation.

� Example 4.7.13 Compute 11100 mod 90.

Solution By the corollary, we have ϕ(90) = ϕ(2)ϕ(32)ϕ(5) = 1 · 6 · 4 = 24, and so
we can reduce exponents in a mod 90 calculation mod 24:

11100 ≡ 11100 mod 24 ≡ 114 ≡ 1212 ≡ 312 ≡ 61 mod 90.

�
A very significant interpretation of Sunzi’s Remainder Theorem is that to deduce

a mod n it suffices to compute a mod pvp(n) for each of the finitely many primes
dividing n. As an aside, this has practical application in distributed computing: to
determine the integer solution a to a suitable problem, one might employ many
parallel processors, each computing a mod k for one small k, and then piece that
information together to find a itself via Sunzi’s Remainder Theorem. Amore theme-
fitting application of this perspective is that Sunzi’s Remainder Theorem offers a
way of raising arbitrary elements of Z/(n) to powers, not just units.

� Example 4.7.14 Compute 1471 mod 120.

Solution Since 120 = 23 · 3 · 5, it suffices to find the values of 1471 modulo 8, 3, and
5, and put them together using Sunzi’s Theorem. Since 14 is not a unit modulo 120,
we cannot simply apply Corollary 4.6.19, but working modulo prime powers offers
a second method using nilpotency. Since v2(14) = 1, we have v2(1471) = 71 > 3,
and so 23 | 1471. The other two moduli are relatively straightforward and we collect

1471 ≡ 0 mod 8

1471 ≡ (−1)71 ≡ 2 mod 3

1471 ≡ (−1)71 ≡ 4 mod 5.

Applying the formula coming from Sunzi’s Remainder Theorem provides the unique
element [104] ∈ Z/(120) satisfying these three congruence conditions, and we
conclude 1471 mod 120 = 104. �
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Table 4.4 Powers of 3 mod 7

k 1 2 3 4 5 6

3k mod 7 3 2 6 4 5 1

Table 4.5 Powers of 2 mod 7

k 1 2 3 4 5 6

2k mod 7 2 4 1 2 4 1

4.8 Phis, Polynomials, and Primitive Roots

In some sense, the natural culmination of the study of modular exponentiation would
be the study of modular logarithms. While we will not embrace the language of
logarithms outside of this introductory thought experiment, we can at least ask the
question: What should we mean by the value of log[3]([5]) in Z/(7)? The answer,
following the obvious analog with standard logarithms, should be an integer k such
that [3]k = [5] ∈ Z/(7), or equivalently such that 3k ≡ 5 mod 7. Since there are
many such k as soon as there is at least one, we will follow our conventions for
orders and find the least positive such power. Table 4.4 shows that log[3]([5]) = 5.
The table shows further that every element of Z/(7)× can be log-base-three’d, as
every element of Z/(7)× has a representative appearing somewhere in the bottom
row as a power of 3. And again, as with standard logarithms, the base-[3] logarithm
is the inverse to base-[3] exponentiation.

On the other hand, the idea of log[2] is a significantly weaker notion in this group.
Table 4.5 shows that no power of 2 is equal to 5, so we would have to begrudgingly
agree that like ln(−3) in R, log[2]([5]) doesn’t exist in Z/(7).

What special property did 3 possess that 2 did not? It is precisely its order that
matters: since [3] had order 6 in Z/(7), its first 6 powers necessarily ran through all
6 elements of Z/(7)×, whereas since [2] had order 3, the first 6 powers of [2] started
repeating before they had a chance to obtain all the different values. We encode this
special property in a definition.

Definition 4.8.1

An element g ∈ Z/(p)× is a primitive rootmod p if has order p−1, i.e., if every
element of Z/(p)× is a power of g. We also say that an integer g is a primitive
root mod p if its reduction mod p is. �

Our example above showed that since [3] has order 6 in Z/(7), the number 3 is a
primitive root mod 7, and making the analogous tables (or just order computations)
shows that 5 is also a primitive root mod 7. On the other hand, 1, 2, 4, and 6 are
not primitive roots mod 7 as they have orders strictly less than 6. One computational
benefit of finding a primitive root, which we do not pursue in detail here, is that it
admits efficient modular arithmetic algorithms. In contexts with very large numbers,
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it may be computationally expensive (relatively speaking) to repeatedly compute the
product of arbitrary elements a, b ∈ Z/(n). On the other hand, if we pre-compute
a list of each element’s base-g logarithm, then multiplication is very fast: We know
a = gi and b = g j for some i, j , and so ab = gi+ j can be read off the list. That is,
we can make use of the important properties of standard logarithm functions, e.g.,

logg(ab) = logg(a) + logg(b),

but here interpreted modulo p − 1.
We turn to the principal theoretical result of this section that there is a primitive

root mod p for each prime p. The argument is very simple in spirit, but requires a
reasonable amount of checking to prove completely. We illustrate it with an example
before generalizing.

� Example 4.8.2 Show that there must be a primitive root mod 11.

Solution We show there must be an element of Z/(11)× of order 10. By Euler’s
Theorem, each of that group’s 10 elements has order 1, 2, 5, or 10. The elements of
order 5 are precisely the roots of the mod 11 polynomial x5 − 1 ∈ Z/(11)[x], of
which there are at most 5 (Lemma 3.1.13). Likewise, there is at most 1 element of
order 1 and 2 elements of order 2. Since at most 8 of the 10 elements have orders 1,
2, or 5, there must be at least one element remaining of order 10 (in fact, at least 2).

�
Towrite down a proof generalizing the example requires only a counting argument

showing that the total number of elements of order other than p − 1 is always less
than p − 1, leaving at least one element of Z/(p)× to have order exactly p − 1. The
principal counting mechanism is the following combinatorial identity.

Theorem 4.8.3
For a natural number n, we have

∑

d|n
ϕ(d) = n,

where the sum runs over all divisors d of n.

Proof Wepartition the integers from 1 to n into sets Sd defined, for each d | n, by k ∈
Sd if and only if gcd(k, n) = d. Then since gcd(k, n) = d ⇐⇒ gcd(k/d, n/d)=1,
we see that Sd has the same number of elements as integers up to n

d that are relatively
prime to n

d , that is, |Sd | = ϕ(n/d). Since the sets Sd partition {1, . . . , n}, the union
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of the Sd contains exactly n elements, so

n =
∑

d|n
ϕ

(n

d

)

=
∑

d|n
ϕ(d),

the last equality following since n
d runs through all divisors of n as d does. �

� Example4.8.4 Weconsider the partition described in the proof for the case n = 20.
Our sets are

S1 = {1, 3, 7, 9, 11, 13, 17, 19}, |S1| = 8 = ϕ(20/1) = ϕ(20)
S2 = {2, 6, 14, 18}, |S2| = 4 = ϕ(20/2) = ϕ(10)
S4 = {4, 8, 12, 16}, |S4| = 4 = ϕ(20/4) = ϕ(5)
S5 = {5, 15}, |S5| = 2 = ϕ(20/5) = ϕ(4)
S10 = {10}, |S10| = 1 = ϕ(20/10) = ϕ(2)
S20 = {20}, |S20| = 1 = ϕ(20/20) = ϕ(1)

Note the total of the cardinalities is 20 as the sets Sd partition {1, . . . , 20}.

This remarkable combinatorial identity allows us to deduce that there are not
enough non-primitive elements of Z/(p)× to account for the whole group. The
proof below, slightly modernized, is essentially due to Gauss.

Theorem 4.8.5 (Primitive Root Theorem)
Let p be prime. For a divisor d of p − 1, the number of elements of order d
in Z/(p)× is ϕ(d). In particular, there are ϕ(p− 1) primitive roots (so at least
one!) modulo each prime p.

Proof Let d be a divisor of p − 1, let Td be the set of elements of Z/(p)× of order
d. Since every element of Z/(p)× has order dividing p− 1 (Corollary 4.6.18), these
sets partition Z/(p)×. The set Td is a subset of the elements x ∈ Z/(p) satisfying
xd = [1], and by Lemma 3.1.13, there are at most d such elements since Z/(p)
is an integral domain. If a is any element of Td , then since a has order d the set
{a, a2, . . . , ad} consists of exactly d distinct elements of Z/(p)× that satisfy the
equation xd = [1], so must represent all such solutions. This implies that Td must
consist entirely of powers ak of a, and in particular the ones with order exactly d—
those with gcd(k, d) = 1 (Exercise 4.44). Since there areϕ(d) of these, we conclude
that |Td | is either 0 (if no such a existed) or ϕ(d) (if there is at least one such a). To
deduce the statement of the theorem, we have left to show that |Td | is never zero, for
which we employ Theorem 4.8.3: since the Td partition Z/(p)× and |Td | ≤ ϕ(d)
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for each d | n, the chain
p − 1 =

∑

d|p−1

|Td | ≤
∑

d|p−1

ϕ(d) = p − 1

implies that each summand on the left of the middle inequality must in fact be equal
to its corresponding summand on the right, and so |Td | = ϕ(d) for each d | n. �

Righteous closing

While this text does not focus heavily on applications of number theory outside of
its own hallowed halls, the content of this chapter provides the foundation for one
of the most important advances of the 20th century. If you are curious to see how
the algebraic structures covered in this chapter have revolutionized cryptography,
computing, and commerce, you may want to dive into Sections 9.3.1 and 9.3.2 now.
The applications explored in these sections are provocative examples of the ways
mathematics plays a critical role in modern society and will likely continue to do so
for some time to come. Calculus and continuous mathematics may rule the world
of classical physics and engineering, but in the digital age, number theory reigns
supreme!

4.9 Exercises

Calculation and Short Answer

Exercise 4.1 Discuss the possibilities for the value p mod 6 for p a prime number.
Use this to classify all “triple primes,” instances of three consecutive odd numbers
that are all prime.

Exercise 4.2 Devise divisibility-by-11 and reduction-mod-11 tests analogous to
those we have for the modulus 9 (see Remark 4.3.6).

Exercise 4.3 Use your test from the previous problem to verify that each of the
following is divisible by 11.

7777 178 1234554321 1234512345.

Come up with another interesting family of examples of multiples of 11.

Exercise 4.4 For an integer n, what are the possible values of n2 mod 10? Explain
how this allows you to instantly deduce that the number 71,415,258,713 is not a
square (in Z).

Exercise 4.5 Find requirements on n mod 3 for there to exist integers x and y such
that n = x2 + 3y2.
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Exercise 4.6 Reason mod 4 to show that the sum of two odd squares cannot be a
square.

Exercise 4.7 Compute the following reductions (efficiently!):

(a) 1024 · 3728 + 11112 mod 10;
(b) 210000 mod 3;

(c) 342 mod 7;
(d)

∑100
n=1 n! mod 12.

Exercise 4.8 Compute
∑100

n=1 n! mod 100.

Exercise 4.9 Oh, the perils of rendering fabulous homework! Your glitter gel pen
ink smudged and you can’t read a digit in the following equation:

512 · 19?3125 = 1000000000.

You don’t have a calculator on hand so you can’t simply divide 1000000000 by 512.
Fix the smudged digit. (Hint: Work mod 9.)

Exercise 4.10 Make a table of inverses for Z/(11). For each [a] ∈ Z/(11)×, solve
the equation ax ≡ 5 mod 11.

Exercise 4.11 Use the Extended Euclidean Algorithm to find the inverse of [52] in
Z/(77). Use this to solve the equation

52x ≡ 3 (mod 77).

Exercise 4.12 Use Sunzi’s Remainder Theorem to solve each system of congru-
ences.

(a) x ≡ 3 (mod 5), x ≡ 7 (mod 9);
(b) x mod 4 = 3, x mod 7 = 2, and x mod 11 = 4;
(c) [x] = [1] in Z/(3), [x] = [2] in Z/(5), [x] = [4] in Z/(7), and [x] = [3] in

Z/(11).

Exercise 4.13 Suppose a department of 17 professors is dividing up the grading of
a bunch of exam problems (say somewhere between 2 and 6, 000 problems). When
they attempt to divide the number of problems evenly among them, they find there
are three problems left over. In the subsequent bickering over who would grade the
extra problems, one of the professors resigned (we are a delicate bunch). Again they
tried to divide the problems evenly, only to find that now ten problems were left
unassigned, and again a professor resigned amid the tumult. Happily, the remaining
professors found that the problems could now be evenly divided.

How many problems were there?

Exercise 4.14 Compute ϕ(n) for each n ∈ {30, 144, 143, 108}.
Exercise 4.15 Find all solutions n to the following equations:

1. ϕ(2n) = ϕ(n);
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2. ϕ(2n) = 2ϕ(n);
3. ϕ(3n) = ϕ(n);
4. ϕ(3n) = 2ϕ(n);
5. ϕ(3n) = 3ϕ(n).

Exercise 4.16 Compute the following:

(a) 327 mod 7;
(b) 8426 mod 11;

(c) 12682 mod 55;
(d) 18735417 mod 187.

Exercise 4.17 Write down the analog of Lemma 4.5.5 for a group written in additive
notation.

Exercise 4.18 Write down the definition of 〈g〉, the cyclic subgroup generated by g,
for a group written in additive notation. Translate the proof of Theorem 4.6.3 to the
additive setting.

Exercise 4.19 Determine with justification whether each subset is a subgroup of the
indicated additive group.

(a) {[1], [3], [5], [7]} in Z/(8);
(b) {[0], [2], [4], [6]} in Z/(8);
(c) {[0], [2], [4], [6]} in Z/(9).

Exercise 4.20 Determine with justification whether each subset is a subgroup of the
indicated multiplicative group.

(a) {[1], [2], [4]} in Z/(7)×;
(b) {[1], [2], [4]} in Z/(5)×;
(c) {[1], [4], [9], [16]} in Z/(17)×.

Exercise 4.21 The sets H1 and H2 given below are subgroups ofZ/(31)×. For each,
write down the partition of Z/(31)× consisting of the cosets of those subgroups.

H1 = {[1], [2], [4], [8], [16]} H2 = {[1], [5], [6], [25], [26], [30]}.
Exercise 4.22 Let us say that a ∈ Z/(n)× is a square if there exists b ∈ Z/(n)×
with b2 = a. Find the squares ofZ/(17)× and show that the set of squares inZ/(n)×
always forms a subgroup.

Exercise 4.23 Find the order of each element of Z/(13)×.

Exercise 4.24 Find all of the cyclic subgroups of Z/(24)×. Find a subgroup of
Z/(24)× that is not cyclic (i.e., is not the cyclic subgroup generated by any element
of Z/(24)×).

In the following exercises, we make use of the idea of reducing a polynomial mod
n. Recall that for f ∈ Z[x], its reduction mod n is the polynomial f ∈ Z/(n)[x]
obtained by reducing all the coefficients of f modulo n.
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Exercise 4.25 Let f (x) ∈ Z[x] and a ∈ Z. Write down a formal interpretation of
the loose claim “Plugging a into f and then reducing the value mod n gives the same
answer as if I plugged a mod n into f .”

Exercise 4.26 Consider, for p an odd prime, the polynomial f (x) = x p − x . This
polynomial has three integer roots. How many roots does its reduction f have mod
p? Deduce from this the factorization of f in Z/(p)[x].
Exercise 4.27 Find counter-examples to each of the following claims about degrees
of reductions:

(a) deg( f ) = deg( f ).
(b) If deg( f ) = deg( f ) and deg(g) = deg(g), then deg( f g) = deg( f g).
(c) If f and g have the same number of roots, then deg( f ) = deg(g).

Exercise 4.28 Find all roots of the polynomial x2 + x + 1 in Z/(2) and then in
Z/(3).

Exercise 4.29 Find all points in Z/(11) × Z/(11) that lie on the elliptic curve y2 =
x3 − 8x .

Formal Proofs

Exercise 4.30 Verify from first principles that if a ≡ b (mod n) and c ≡ d
(mod n), then ac ≡ bd (mod n).

Exercise 4.31 Prove that for all primes p > 3, we have 24 | p2 − 1.

Exercise 4.32 Prove that for all a ∈ Z, if 7 � a then 7 divides a3 + 1 or 7 divides
a3 − 1.

Exercise 4.33 Prove that for all a ∈ Z, if p is prime then p | a p + (p − 1)!a.
Exercise 4.34 Prove that for all a ∈ Z, we have a7 ≡ a mod 42.

Exercise 4.35 Prove that for all n ∈ N, the sequence of mod-n Fibonacci numbers,
Fk mod n, is periodic.

Exercise 4.36 Consider the set H of polynomial multiples of x2 + 1 in R[x]. Prove
that H is a subgroup of R[x] under addition.
Exercise 4.37 The congruence relation defined in Definition 4.6.6 is often called left
congruence. Given a groupG and a subgroup H ofG, we define the right congruence
relation by setting a ∼ b if and only if ba−1 ∈ H , for all a, b ∈ G. Prove that this
relation is an equivalence relation on the set of elements in G.

Exercise 4.38 Prove Theorem 4.7.2 that the Cartesian product of two rings is itself
a ring using the component-wise operations.
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Exercise 4.39 Prove that a finite group with a prime number of elements must be
cyclic (i.e., is the cyclic subgroup generated by one of its elements).

For Exercises 4.40 through 4.43, recall that |〈g〉| denotes the order (number of
elements in) the group 〈g〉, while |g| is the order (least positive power k giving
gk = 1) of the element g.

Exercise 4.40 Prove Corollary 4.6.5: Given g ∈ G of finite order, prove that |〈g〉| =
|g|.
Exercise 4.41 Suppose g ∈ G and a, b ∈ Z. Show that if ga = 1 and gb = 1, then
ggcd(a,b) = 1. Conclude that

gn = 1 ⇐⇒ |g| | n.

Exercise 4.42 Prove that if a, b ∈ Z/(n)× and gcd(|a|, |b|) = 1, then |ab| = |a||b|.
Find a counter-example in the case gcd(|a|, |b|) �= 1. (Here, |a| denotes the order of
the element a in Z/(n)× and not an absolute value, and similarly for |b| and |ab|.)
Exercise 4.43 Given an element a of an arbitrary group G, let |a| = d. Prove that
|ak | = d if and only if gcd(k, d) = 1.

Exercise 4.44 Generalizing the previous problem, show that if the order of a is d,

then the order of ak is
d

gcd(d, k)
.

Exercise 4.45 Prove that for all d, n ∈ N, if d | n then ϕ(d) | ϕ(n). Is the converse
true?

Exercise 4.46 Show that if a ∈ Z/(n) is nilpotent (see Problem F.6), then a is not
a unit.

Exercise 4.47 Prove that in every Pythagorean triple, at least one side length is a
multiple of 5.

Exercise 4.48 Prove that there are no solutions to the Diophantine equation x3 +
117y3 = 5.

Exercise 4.49 Prove the inverse of Wilson’s Theorem: if n is not prime, then

(n − 1)! �≡ −1 (mod n).

Find a formula for (n − 1)! mod n.

Exercise 4.50 Use the previous problem to deduce the following exact formula for
the prime-counting function:

π(n) =
n

∑

j=2

⌊

cos2
(

π · ( j − 1)! + 1

j

)⌋

.



4.9 Exercises 133

Note the two different uses of the letter π in this problem—the one on the left is the
obviously important one, but the one on the right does have some applications to
circles or something.

Exercise 4.51 Define an equivalence relation on Z[i] by
α ≡ β ⇐⇒ (2 + i) | (α − β).

1. Verify that 4 + 3i ≡ 9 − 2i , but 4 + 3i �≡ 12 + 10i .
2. Show that every element of Z[i] is congruent to one of 0, 1, 2, i , or 1 + i .

Exercise 4.52 Prove that a field is a commutative ring with unity in which the non-
zero elements form an abelian group under multiplication.

Remark 4.7.10 provided a couple of examples of multiplicative functions. The
following exercise provides another.

Exercise 4.53 For a natural number n, let σ(n) be the sum of all the positive divisors
of n.

(i) Show that if gcd(m, n) = 1, every divisor ofmn can be written uniquely in the
form m′n′ with m′ | m and n′ | n.

(ii) Show that σ is multiplicative.
(iii) For a prime power pk , find and prove a formula for σ(pk).
(iv) Use the previous part to find a formula for σ(n) given the prime factorization

of n.
(v) Compute σ(28) and σ(496) and comment on anything interesting.

Exercise 4.54 For n ∈ N, theMöbius μ function μ(n) is defined as follows:

• If vp(n) > 1 for some prime p, then μ(n) = 0.
• Otherwise, n is a product of k distinct primes, and we set μ(n) = (−1)k .

Prove that μ is multiplicative.

Exercise 4.55 Prove that the product of two multiplicative functions is multiplica-
tive. Conclude that for all k ∈ N, the function

σk(n) =
∑

d|n
dk

is multiplicative.
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Computation and Experimentation

Exercise 4.56 Write a program to compute the Euler totient function, ϕ(n). The
Python worksheet “Euler Totient Function” provides an outline.

Exercise 4.57 Lagrange’s Polynomial Congruence Theorem says that if f ∈ Z[x]
is a polynomial of degree n and p is prime, then f (x) ≡ 0 (mod p) has at most n
solutions mod p. Use a computer algebra system to perform the calculations below.
The Python worksheet “Lagrange’s Polynomial Congruence” provides an outline.

1. Check that x = 52, x = 82, and x = 107 make up three solutions to the degree-
2 equation x2 − 2x − 4 ≡ 0 (mod 11). Why doesn’t this violate Lagrange’s
Polynomial Congruence Theorem?

2. Demonstrate that the “at most” clause is needed by giving a degree-3 polynomial
f (x) and a prime p such that f (x) ≡ 0 (mod p) has fewer than 3 solutions.

3. Demonstrate that p being prime is crucial in the statement of the theorem by
finding a degree-2 polynomial with more than 2 roots in Z/(21).

In short, the rings Z/(p) for a prime p are very congenial places to work: everything
has an inverse, and polynomial equations have an eminently reasonable number of
solutions.

Exercise 4.58 Let us return to the elliptic curve y2 = x3 − 8x , but this time over
Z/(101). Write a program that finds all points (x, y) ∈ Z/(101) × Z(101) that lie
on this elliptic curve. The Python worksheet “Elliptic Curves mod n” provides an
outline.

Exercise 4.59 Write a program that finds primitive roots mod a prime p.The Python
worksheet “Primitive Roots” provides an outline.

Exercise 4.60 Write a program that implements the Extended Euclidean Algorithm
(writing the gcd of a and b as a linear combination of a and b). If youwrote a program
earlier to implement the Euclidean Algorithm, you may wish to build on that. The
Python worksheet “Extended Euclidean Algorithm” provides an outline.

General Number Theory Awareness

Exercise 4.61 Explore how one could potentially use Fermat’s Little Theorem as a
primality test. Look up the definitions for pseudoprimes and Carmichael numbers.
Explain how the existence of suchnumbers ruins your otherwise reasonable-sounding
primality test.

Exercise 4.62 Look into the life of Carl Friedrich Gauss. When was his talent first
recognized? What summation formula is he said to have discovered in class as a
child? (Give another proof of the answer to Question 4.4.7 using this formula). Do
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spend some time making yourself feel better about your accomplishments to date by
recalling that Gauss had no Internet access, and thus much more free time.

Exercise 4.63 The door to the math club’s secret candy stash can be equipped with a
password. To prevent the rampant corruption and candy laundering in a typical math
club leadership, no one member can be entrusted with the password, but we would
like it to be that any three members can collectively deduce the password and extract
confectionery bliss. Research how Sunzi’s Remainder Theorem (usually under the
name Chinese Remainder Theorem) can be used to share a secret password in such
a way.

Exercise 4.64 Explore more about decimal expansions: how does the period length
of 1

n relate to the Euler ϕ function? Given the prime factorization of n, how do you
determine the period length and the number of pre-periodic digits of 1

n ? What are
some extremal values of the order of 10 mod n?

Exercise 4.65 Look into what happens when the moduli in Sunzi’s Remainder The-
orem are not relatively prime. Can anything be salvaged?What are some applications
of the results?

Exercise 4.66 The section covers divisibility tests by 3, 9, and 11. Divisibility tests
for 2, 4, and 8 (and other powers of 2) are relatively easy, and for 5 is even easier.
Explore: What else is out there? Why do we not need a separate divisibility test for
6 or 22 or 36? Is there a divisibility-by-7 test analogous to the ones for 9 and 11?

Exercise 4.67 State and proveLucas’s Theorem.Discuss combinatorial applications
and relations to theorems of this section.

Exercise 4.68 Follow-up on the thought experiment begun in Remark 4.6.13. What
is the relationship between the congruence classes of R[x] modulo the multiples of
x2 + 1 and the field of complex numbers?

Exercise 4.69 A somewhat whimsical application of modular arithmetic is to be
able to deduce the day of the week of any date, past or present. Look into how these
algorithms employmodular arithmetic (and/or get good at implementing itmentally).
Work out your day of birth without referencing a calendar.

Exercise 4.70 A second whimsical application is to the magic of card tricks. Re-
search the “21 card trick” and explain it using the language of modular arithmetic.
Generalize the trick to more cards and/or columns.

Exercise 4.71 A more significant application is to checksums, an application of
modular arithmetic to the branch of mathematics known as coding theory. Look up
how modular arithmetic is used in codes like UPCs, ISBNs, etc.



5GaussianNumberTheory:Z[i]of the
Storm

...wherein we prepare ourselves for the upcoming
hurricane.

5.1 The Calm Before

Wehave in ourmidst a veritablemaelstromof pedagogical threads:what is a number?
How do we solve Diophantine equations? How do the Fundamental Theorem of
Arithmetic and surrounding notions generalize to more exotic number systems?
What role does modular arithmetic have to play? The ring Z[i], recurring in every
chapter thus far, turns out to be the eye of this storm, providing us shelter to collect
our thoughts on all of these fronts before we venture out into the awe-inspiring wild.

With the usual caveat that any given Diophantine equation is usually just a con-
venient placeholder for the study of something deeper, let us choose to focus for the
time being on the Diophantine equations

x2 + y2 = n

for various integers n, asking which numbers n can be written as the sum of two
integer squares (and how to do so). We argued in the last chapter that the equation
has no solutions if n ≡ 3 mod 4, as reducing the equationmod 4 returns x2+ y2 ≡ 3,
impossible since x2 and y2 can each only be either 0 or 1 mod 4. But if n ≡ 1 mod 4,
this technique gives us nothing (save the observation that one of x, y must be even,
the other odd). This is an important and inherent limitation to the whole idea of using
modular arithmetic to solve Diophantine equations—the technique can only provide
impossibility statements, not guarantee the existence of solutions. For example, it’s
easy to see there are no solutions to the Diophantine equation

24x2 + 36y2 = 12,

but literally any integers x and y form a solution to this equation when reduced
modulo 4.
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As it turns out (spoiler alert!), this phenomenon does not occur for theDiophantine
equation x2 + y2 = p when p is prime: if we can solve the equation modulo 4, then
we can solve it in the integers.Most excitingly, to attain this result we eschew passing
to the smaller ring Z/(4) and instead work in the bigger ring Z[i]. Moreover, the
basic idea is quite simple: since a2 + b2 can be factored in Z[i] as the expression
(a+bi)(a−bi), being able towrite a number as a sumof two squares is closely related
towhetherwe can factor it inZ[i]. For example, since 13 = (3+2i)(3−2i), we obtain
the representation 13 = 32 + 22 as a sum of two squares. We are left, therefore, with
a need to understand in Z[i] that same infrastructure of Z which we have spent the
several previous chapters mastering: what are the primes in Z[i]? How do we factor
Gaussian integers into primes? What could expressions like (13 + 2i) mod (5 + i)
possibly mean?

Finally, to return to the opening metaphor of this section, we mention that de-
veloping these ideas for Z[i] will be the forerunner to developing them for a much
larger class of rings in the subsequent chapters. We encourage the reader to pay
special attention to the process of abstraction. Beginning with a fixed idea in Z (e.g.,
the notion of a prime), what stays the same as we try to conceptualize that idea in
the context of Z[i]? What changes? How do we accommodate these changes? In
particular, if we wish to mirror the development of the Fundamental Theorem of
Arithmetic in Z[i], we should pay careful attention to its development in Z.

5.2 Gaussian Divisibility

The process of replicating The Path (Figure 5.1) for Z[i] amounts to documenting
what aspects of arithmetic in Z continue to hold in Z[i], and which instead need
updating. The first major theme is that much of the basic arithmetic ofZ holds in any
commutative ring (see, e.g., Explorations A and G, and Section 3.3), and so while
we will be interested specifically in Z[i] for this chapter, we may as well adopt the
more general approach for later use. Recall Definition 3.1.14.

Definition 5.2.1

Given a commutative ring R and elements α, β ∈ R, we say that α divides β,
and write α | β, if there exists γ ∈ R such that β = αγ. �
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Fig. 5.1 The Path to Unique Factorization in Z

� Example 5.2.2 Since 1+ 13i = (3+ 5i)(2+ i), we have 3+ 5i | 1+ 13i in Z[i].
Note that 3 � 1 and 5 � 13, so Gaussian divisibility is not as direct as checking the
divisibility of real and imaginary parts.

As was the case in Z, to check for divisibility in Z[i] we can simply perform the
division β

α , as long as α �= 0, and see if the quotient is a Gaussian integer.

� Example 5.2.3 Since 7 + 4i = (1 + 2i)(3 − 2i), we have 3 − 2i | 7 + 4i . Does
3 + 2i | 7 + 4i? No, since we compute

7 + 4i

3 + 2i
= (7 + 4i)(3 − 2i)

(3 + 2i)(3 − 2i)
= 29 − 2i

13
= 29

13
− 2

13
i /∈ Z[i].

� Example 5.2.4 Recall that the units of Z[i] are Z[i]× = {±1,±i}. Since ±1,±i
are units, they divide everything in Z[i]. As in Z, the Gaussian integer 0 divides
only itself, and all Gaussian integers divide 0.

� Remark 5.2.5 A reasonable concern is that we now in principle have two different
definitions of the symbol 3 | 6, depending on whether we parse it as “Does 3
divide 6 in Z?” or “Does 3 divide 6 in Z[i]?” Fortunately, the two questions are
equivalent (see Exercises 5.17 and 5.18), so we need not be concerned. . . for now.
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It is instructive to revisit proofs of the basic arithmetical results from Z and see
how they carry over nearly verbatim to a general ring. For example, the following
result precisely mirrors the analogous one (Lemma 3.2.4) in Z, and we reuse the
name.

Lemma 5.2.6 (Linear Combination Lemma)

Let R be a commutative ring, and take α,β, μ, ν, δ ∈ R. If δ | α and δ | β, then
δ | (αμ ± βν). �

We emphasize that proofs for these generalized results are often not merely anal-
ogous to those for the corresponding results in Z, but essentially verbatim the same.
We will thus often omit derivations for basic divisibility results like this one (e.g.,
that if α | β and β | γ, then α | γ). For results that do not carry directly forward
to Z[i], we have a second major theme: the norm function from Z[i] to Z allows us
to bootstrap theorems and concepts from Z to construct analogs in Z[i]. For this,
we recall that the norm is multiplicative (N (z1)N (z2) = N (z1z2)), that the only
Gaussian integer of norm 0 is z = 0, and that the only Gaussian integers of norm 1
are the units of Z[i]. Here is a first result along these lines.

Lemma 5.2.7

If α | β in Z[i], then N (α) | N (β) in Z. �

Proof Write β = αγ, take the norm of both sides, and use multiplicativity to get
N (β) = N (α)N (γ), so N (α) | N (β). �

The lemma’s contrapositive provides a quick way to verify non-divisibility.

� Example 5.2.8 Does (5+ 2i) | (7+ 5i)? No, as N (5+ 2i) = 29, which does not
divide N (7 + 5i) = 74.

� Example5.2.9 Note, however, that the converse to the lemma is false. For example,
we have already seen that 3 + 2i � 4i + 7, but we do have divisibility of their
respective norms: 13 | 65.

Of fundamental import in Z was thinking of the prime numbers as the building
blocks of the rest of the integers via prime factorization. As we begin this discussion
in theGaussian realm, note that the notion of prime inZ andZ[i] are not synonymous.
The integer 5 is prime in Z, but the factorization 5 = (2+ i)(2− i) will show, once
the terms have been properly defined, that 5 is not prime in Z[i]. On the other hand,
we will see that 7 is prime in bothZ andZ[i]. In cases when the extra clarity is called
for, we will distinguish these two statements by saying that 5 is a rational prime but
not a Gaussian prime, whereas 7 is both a rational prime and a Gaussian prime. The
adjective “rational” here references that 5 is also an element of Q.
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Definition 5.2.10

Let π ∈ Z[i] be a Gaussian integer that is neither zero nor a unit. We say π is
prime (and hence a Gaussian prime) if its only divisors are units and associates
of π; otherwise, π is composite. �

Equivalently, π is prime if and only if whenever π = αβ for some α,β ∈ Z[i],
either α or β must be a unit. Note that by norm multiplicativity, associates always
have the same norm. Analogous to the classification of integers (see the list before
Definition 3.2.2), we have a classification of Gaussian integers into exactly one of
the following four types:

• Zero: Again, only 0 is 0.
• Units: The units are precisely {±1, ±i}.
• Prime numbers: 1 + 2i , 7, 3 + 2i , etc.1 .
• Composite numbers: By definition everything not yet addressed.

How do we decide if a Gaussian integer is prime? For Z we had the sieve of
Eratosthenes as an efficient algorithm for mechanically checking primality, but the
generalization toZ[i] is less clear. Again, the normmap helps save the day, providing
a test for primeness in Z[i] via primeness in Z.

Theorem 5.2.11
Let π ∈ Z[i]. If N (π) is prime in Z, then π is prime in Z[i].

Proof Let π be an arbitrary Gaussian integer such that N (π) is a rational prime p,
and suppose α | π. Then π = αβ for some β ∈ Z[i], and taking norms of both
sides gives N (α)N (β) = N (π) = p. Now since p is prime in Z, one of N (α) or
N (β) must equal p, and the other must equal 1. Thus α is either a unit or associate
of π, and since α was an arbitrary divisor of π, we conclude that π is a Gaussian
prime. �

1 The contents of this list and, in particular, this “etc.” are at least as mysterious as the analogous
list for Z, and will be where we turn our focus now.
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This justifies the inclusion of two of the examples of primes in our list above:
1 + 2i and 3 + 2i have prime norms in Z, so the theorem tells us they are both
themselves prime in Z[i]. The converse of Theorem 5.2.11 is highly non-true2 as,
among many other examples, 7 is a Gaussian prime but N (7) = 49 is not a rational
prime. So to decide whether a rational prime p “stays prime” in Z[i], we will need
to do something more nuanced than simply taking norms. Fortunately this ties in
precisely to the Diophantine equations that started the chapter.

Theorem 5.2.12
The rational prime p ∈ Z is a Gaussian prime if and only if p �= a2 + b2 for
all a, b ∈ Z.

Proof Suppose p ∈ Z is not the sum of two squares, and suppose that α is a divisor
of p in Z[i]. Then taking norms, we see N (α) | N (p) = p2, so N (α) = 1, p, or p2.
We show the middle case is impossible: if N (α) = p then writing α = a +bi shows
that a2+b2 = p, contradicting our assumption that p could not bewritten as a sumof
squares. Thus, it must be the case that N (α) = 1 or p2. This shows that an arbitrary
divisor α of p is either a unit or an associate of p in Z[i], and thus p is by definition
a Gaussian prime. Finally, for the converse, if p = a2 + b2 = (a + bi)(a − bi), then
a + bi is a divisor of p with norm p and thus is neither a unit nor an associate of p,
so p is not prime. �

Combining this result with Lemma 4.3.7 gives the following.

Corollary 5.2.13

Given a rational prime p ∈ Z, if p ≡ 3 mod 4, then p is a Gaussian prime. �

We now have an ample source of Gaussian primes—for example, in addition to
the Gaussian prime 7 given above, there is also 11. This gives us a starting point to
think about what primes look like in the Gaussian integers by describing precisely
which rational primes stay prime when viewed as Gaussian integers, but this is only
a partial answer. To complete the story we will need to start making inroads on The
Path described in 5.1. Before doing so, it is very helpful to develop a more geometric
visualization of Gaussian integers and their arithmetic properties.

2 Technically, something is either true or false, without levels of non-trueness. But boy howdy is
this not true.
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Exploration I

The Gaussian Lattice �

The standard visualization of the Gaussian lattice is the points of the complex
plane with integer coordinates, with the point (a, b) representing the number a + bi .

I.1 Plot the set of Z[i]-multiples of 1 + i , enough to get a feel for the geometry of
these multiples.

I.2 Repeat, on the same grid but in a different color, for the multiples of 2 + i .
Are there any common multiples of 1 + i and 2 + i? Any rational integer common
multiples?
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Fig. 5.2 Multiples of 3 in Z

5.3 GaussianModular Arithmetic

As will happen googolplexes3 of times in the upcoming chapters, we make progress
on a Gaussian version of a concept by mirroring the integer version of it. We begin
by revisiting our construction of modular arithmetic in Z.

Pay particular attention to the dashed lines added on to the picture. These dashed
lines partition the number line Z into a repeating geometric pattern, dividing it up
into translates of the interval [0, 3). The set of integer points in this region serves as
a natural system of coset representatives mod 3 as well, leading to the group

Z/(3) = {[0], [1], [2]},
an integer n being in [x] if n is x more than a multiple of 3. Particularly important
for the upcoming discussion is the observation that these representatives were not
inevitable. By shifting the dashed lines one unit to the left, we could have alternatively
selected representatives of −1, 0, 1, reflecting that each integer is either a multiple
of 3, one more than a multiple of 3, or one less than a multiple of 3.

Moving toZ[i], we replace our number line with the integer lattice in the complex
plane, as shown in Figure 5.3. The multiples of 3 are now much more plentiful: we
have all of the previous integer multiples of 3 (indeed, the entirety of Figure 5.2 is
contained in the horizontal axis of Figure 5.3), but also multiples like 3i , 6i , 9i , etc.,
on the vertical axis, and further a full rectangular lattice of them including multiples
like 3(1 + i) = 3 + 3i . Also as shown in Figure 5.2, we include dashed lines to
divide the complex plane into repeating geometric patterns. Each square contains
precisely one black dot, representing a Gaussian multiple of 3, and eight white dots
representing possible positions relative to such a multiple. For example, to the right
of the black dot in each square is a Gaussian integer that is one more than a multiple
of 3, above each black dot is a Gaussian integer that is i more than a multiple of 3,
above-right of each dot is a Gaussian that is 1 + i more than a multiple of 3, and so
on for each of the dots in the square.

We conclude that while the standard mod-3 equivalence relation

m ≡ n ⇐⇒ 3 | (m − n)

gives rise to the three elements of Z/(3) = {[0], [1], [2]}, the Gaussian analog of the
identical equivalence relation would have nine equivalence classes:

Z[i]/(3) = {[0], [1], [2], [i], [i + 1], [i + 2], [2i], [2i + 1], [2i + 2]},

3More or less. Probably less.
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3

3i 3 + 3i

Fig. 5.3 Multiples of 3 in Z[i]

one per dot in the square. As before, these equivalence classes form a partition of
Z[i]. We formalize this construction below.

Definition 5.3.1

Given β �= 0 ∈ Z[i], define the equivalence relation congruence mod β on Z[i]
as follows: for μ, ν ∈ Z[i], we have

μ ≡ ν mod β ⇐⇒ β | (μ − ν).

A system of coset representatives modulo β is a choice of one element from
each equivalence class. Given such a system, for μ ∈ Z[i] the symbol μ mod β
denotes the unique element of this system to which μ is congruent. �

Directly mirroring the arguments of Section 4.2 (see upcoming Exploration J),
we can show that addition and multiplication of mod-β equivalence classes is well
defined and hence these equivalence classes can be made into a ring completely
analogous to Z/(n).

Definition 5.3.2

For β ∈ Z[i], we define the ring Z[i]/(β) to be the set of equivalence classes of
the mod-β congruence relation on Z[i]. �
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β

2βiβ

(1 + i)β

−β

(−1 + i)β

(−1− i)β

(1− i)β

2iβ

−2iβ

−iβ

(2− i)β

(−2 + i)β

−2β

(−2− i)β

(1 +2 i)β

(1− 2i)β

Fig. 5.4 The square lattice and fundamental domain for β = 2 + i

Geometrically, Z/(β) can be visualized as the collection of points in what we
call a fundamental domain for β, a region of the complex plane whose translates
tile the plane and contain precisely one representative from each mod-β equivalence
class (that is, each element of Z/(β)). Any of the squares in Figure 5.3 could serve
as a fundamental domain modulo 3 in Z[i]. Or, like we did for the multiples of 3 in
Z, we could shift all of the dashed lines one unit down and left, and then choosing
the square centered at the origin to be the fundamental domain, giving the system of
mod-3 coset representatives {0,±1, ± i,±1 ± i}.

Unlike Z/(n), though, where we always have the natural set {0, 1, . . . , n − 1}
of coset representatives, it is less clear how to systematically enumerate such a list
modulo an arbitrary β ∈ Z[i]. Let’s explore a more complicated example.

In Figure 5.4 we plot the multiples of 2 + i , choose the shaded square as a
fundamental domain, see thatZ[i]/(2+i) consists of five elements (the four elements
interior to the fundamental domain and any one corner), and identify a system of
coset representatives modulo 2 + i :

Z[i]/(2 + i) = {[0], [i], [1 + i], [2i], [1 + 2i]}.
To reiterate, by translating the shaded square in Figure 5.4, we can cover the entire
plane in such a way that every Gaussian integer is in the same position within a
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translated square as one of {0, i, 1+ i, 2i, 1+2i}, our choice of coset representatives.
We can find from Figure 5.4 that, for example,

2 + 2i ≡ i mod 2 + i, −1 − i ≡ 1 mod 2 + i, and 2 − 4i ≡ 0 mod 2 + i .

Or, usingour selected systemof coset representatives,write (2+2i) mod (2 + i) = i ,
etc.

Establishing this framework represents a major landmark on our journey down
The Path, as all of the number-theoretic benefits of modular arithmetic are now at
our disposal for understanding the structure of the Gaussian integers.

5.4 Gaussian Division Algorithm:The Geometry of Numbers

Mathematicians use the phrase the geometry of numbers to describe the general
use of a picture like that below, a lattice sitting inside of the complex plane (or a
higher dimensional analog), to better understand its algebraic structure. For example,
a closer look at the fundamental domain lends some insight as to the number of
equivalence classes modulo a Gaussian integer.

To begin, we have been somewhat glib using a picture as a proxy for a formal
argument, so let’s pause to establish some facts that we took for granted in the last
section—namely, that the multiples of β form a lattice within Z[i], and that the
fundamental domain generated by any β (not just β = 2 + i) is indeed always a
square. The justification hinges on the geometric interpretation of complex number
arithmetic begun in Section 1.3. Namely, if β ∈ Z[i], then the real integer multiples
2β, 3β, etc. appear as equally spaced lattice points on the line through the origin
and β. Further, taking β = a + bi , since iβ = i(a + bi) = −b + ia is the
rotation of β by 90 degrees counter-clockwise around the origin, the imaginary-
integer multiples of β comprise a second line of lattice points perpendicular to the
first. Finally, any Gaussian multiple of β is a sum of integer multiples of β and iβ
since (c + id)β = cβ + diβ, and so the collection of all multiples of β is a square
lattice (much like Z[i] itself). Indeed, the multiples βZ[i] of β in Z[i] can be viewed
as a sublattice of Z[i] obtained by stretching and rotating the full lattice.

Now to extract something from this picture: again writing β = a +bi , we see that
the distance from β to the origin is

√
a2 + b2, the square root of N (β) = a2 + b2

(Figure 5.5). We conclude that the fundamental domain has area N (β). As it turns
out, this is precisely the number of equivalence classes in the fundamental domain—
we have N (3) = |Z[i]/(3)| = 9 and N (2 + i) = |Z[i]/(2 + i)| = 5. This is more
or less clear when β is a rational integer since the fundamental domain is a square
with sides parallel to the axes, and likewise when β is prime, as then the only lattice
points on the boundary of the fundamental domain are the vertices of the square.
The general claim can be argued in several ways, and we refer the interested reader
to Pick’s Theorem, an elementary counting tool in geometry, for a complete answer
(Exercise 5.29).

Finally, the real punchline of this section: not only can we write down an explicit
list of representatives for the mod-β congruence classes, but we’re offered an upper
bound on how far away an arbitrary Gaussian integer can be from a multiple of any
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β

N(β)

Fig. 5.5 A fundamental domain

given β. Namely, since the fundamental domain is a square (of side length
√

N (β)),
an upper bound for how far any α ∈ Z[i] could be from a lattice point is half the
length of the diagonal of the fundamental domain, 1

2

√
2N (β), as shown in Figure

5.6.
We conclude that the difference, α − χβ, between α and the closest multiple χβ

of β must be a Gaussian integer ρ such that

√
N (ρ) ≤ 1

2

√
2N (β) <

√
N (β) ≤ N (β).

We arrive at our desired result:

Theorem 5.4.1 (Gaussian Division Algorithm)
If α,β ∈ Z[i] with β �= 0, then there exist Gaussian integers χ and ρ with
0 ≤ N (ρ) < N (β) and4

α = χβ + ρ.

Equivalently, for all β �= 0, there exists a system of coset representatives mod
β where each representative has norm less than N (β).

Before we prove this, let’s pause to compare this theorem to its analog in Z,
Theorem 3.2.9. The statement there provided us with (a) a definitive list of possible
remainders (namely, from 0 to one less than the dividend) and (b) a unique value
of the quotient and remainder. We have discussed in Section 5.3 the situation of
remainders—it is easy to choose a set of remainders, but there is no clear, universally
accepted choice of them. After making such a choice, we can evaluate expressions

4 The ideal Gaussian analog to the notation a = qb + r would require the sadly non-existent Greek
analog of the letter q . There is an ancient Greek letter Ϙ (“koppa”) serving that role, but since it
would be a pain to typeset the symbolϘ in LaTEX, we use χ instead.
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√
2N(β)

α

√
N(β)

Fig. 5.6 Off the grid

of the type α mod β. We do not, alas, have uniqueness (Exercise 5.4). As we will
see in the next section, neither of these complications impedes progress. All that is
crucial is the guarantee of the theorem that upon applying the Division Algorithm
the norm of the remainder is less than the norm of the divisor. This guarantees that
a Euclidean Algorithm analog for the Gaussian integers will necessarily terminate.

Proof (of Theorem 5.4.1) By analogy with the proof in Z, we define S = {α − χβ :
χ ∈ Z[i]}, and let N = {N (z) : z ∈ S}. Note that N is a non-empty set of non-
negative integers, so has a least element r by the Well-Ordering Principle. Thus we
can write r = N (ρ), where ρ ∈ S, and so there exists some χ such that ρ = α−χβ,
which implies α = χβ + ρ. Now, if N (ρ) ≥ N (β), then the distance between α and
χβ is at least the side length of the square fundamental domain for β. This implies
that some vertex χ′β in that lattice is nearer to α than is χβ, which contradicts the
minimality of r. Thus N (ρ) < N (β). �

The careful formulation of the result also produces a second more computational
approach to finding quotients and remainders. We note that for χ, ρ ∈ Z[i], we have
α = χβ + ρ with N (ρ) < N (β) if and only if

α

β
= χ + ρ

β
with N

(
ρ

β

)
< 1.

Thus, as long as we know that any
α

β
∈ Q[i] is within 1 unit of some χ ∈ Z[i],

there will be an appropriate χ and ρ in Z[i] to satisfy the conclusion of the Division
Algorithm. To achieve this in practice we divide and round, that is, we compute the
quotient α

β in Q[i] and obtain χ by rounding the real and imaginary parts to a nearest
integer.

� Example 5.4.2 To enact the Division Algorithm forα = 7+4i and β = 3+2i , we
recall from Example 5.2.3 that 7+4i

3+2i = 29
13 − 2

13 i and round the real and imaginary
parts to the nearest integers to obtain χ. We get χ = 2 − 0i = 2, and then
ρ = α − βχ = 1.
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Exploration J

Gaussian Miscellany �

J.1 Earlier we gave the set {0, i, 1+ i, 2i, 1+ 2i} as a system of representatives for
Z[i]/(2+ i). While a valid system, this does not satisfy the requirements of Theorem
5.4.1. Find one that does. How small can you force N (ρ) to be?

J.2 How many equivalence classes are there modulo 1 + i? Find a set of represen-
tatives modulo 1+ i satisfying the requirements of the Division Algorithm. Finally,
propose a “divisibility-by-(1 + i)” test for Gaussian integers.

J.3 Choose a system of representatives modulo 3 + i that satisfy the conditions
of the Division Algorithm. Then, using that system, reduce the following Gaussian
integers mod 3 + i :

24 − 2i 42 + 17i 300 + 101i.

J.4 Propose a definition of the gcd for two Gaussian integers and what it should
mean for two Gaussian integers to be relatively prime.

J.5 Consider the claim that for each β �= 0 in Z[i], the set Z[i]/(β) is a ring. Which
ring axioms are obvious?Which steps of the proof are completely analogous to those
for Z/(n)? Is there anything that requires extra care?
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5.5 A Gausso-Euclidean Algorithm

We’re well on our way to a Euclidean algorithm for Gaussian integers, which has
been the cornerstone of most of our mathematical discoveries, including the next
step on The Path, Bézout’s Identity. A caution is in order here when defining gcds:
if γ divides both α and β, then so do iγ, −γ, and −iγ, all of equal norm. As we
have already confronted this phenomenon before, labeling these four elements as
associates of one another, we have a straightforward solution to the problem: we
acknowledge that gcds are non-unique, and use the phrase “unique up to units” or
“unique up to associates” to encapsulate this ambiguity.

Definition 5.5.1

Givenα,β ∈ Z[i] (not both zero), we define a greatest common divisor ofα and
β to be any of the common divisors of α and β of greatest norm. As a slight abuse
of notation, we use gcd(α, β) to refer to any one of these choices, all of which are
associates of one another (Exercise 5.22). We say α and β are relatively prime
if their only common divisors are units, or equivalently, when N (gcd(α,β)) = 1
(or just gcd(α, β) = 1). �

One of the principal benefits of abstraction in mathematics is that the more en-
compassing a definition becomes, the more becomes proved with each new proof
idea. For example, Lemma 5.2.6 shows that divisibility is preserved upon taking
linear combinations in any ring, and so in particular this holds in Z[i]. The proofs of
the following theorems are nearly verbatim copies of their integer counterparts, and
we largely leave the fleshing out of details to the reader5 .

For example, a direct application of Lemma 5.2.6 is to simplify gcd computations
by subtracting off multiples. Section 5.3 primed us for this by showing that we can
interpret the expression α mod β as a Gaussian integer ρ of norm less than N (β)

that is obtainable by subtracting from α a multiple of β.

Lemma 5.5.2 (The Reduction Lemma)

For α, β ∈ Z[i], let ρ be any remainder guaranteed by the Division Algorithm
(Theorem 5.4.1). Then

gcd(α, β) = gcd(β, ρ). �

Theorem 5.5.3 (The Euclidean Algorithm for Gaussian Integers)
For all α,β ∈ Z[i], β �= 0, set ρ−1 = α and ρ0 = β. For each j ≥ 0,
recursively define ρ j+1 = ρ j−1 mod ρ j , a remainder as given by the Gaussian

5 Yeah, yeah, we know, we know. When you inevitably write your own textbook, you can do this
too. It’s quite liberating.
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Fig. 5.7 The Gausso-Euclidean Algorithm

Division Algorithm. Then for some n ≥ 1 the process terminates with ρn = 0
and ρn−1 equal to a greatest common divisor of α and β.

The following example illustrates the process, almost completely analogous to
our calculations of gcd’s in the rational integers.

� Example 5.5.4 Find gcd(11 + 3i, 1 + 8i).

Solution As with Z, we systematically reduce the larger Gaussian integer (as mea-
sured by norms) modulo the other, as shown in Figure 5.7. We conclude that
gcd(11 + 3i, 1 + 8i) = −1 + 2i . In general, the gcd will be the last non-zero
remainder in this process. Further, retracing our steps and solving for ρ j at the j th

step, we can find a linear combination of α and β giving this gcd.

−1 + 2i = (3 + 4i) + i(−2 + 4i)

= (3 + 4i) + i((1 + 8i) − 1(3 + 4i))

= (1 − i)(3 + 4i) + i(1 + 8i)

= (1 − i)((11 + 3i) + i(1 + 8i)) + i(1 + 8i)

= (1 − i)(11 + 3i) + (1 + 2i)(1 + 8i).

Thus (1 − i)(11 + 3i) + (1 + 2i)(1 + 8i) = −1 + 2i . �

As before, the process of performing the Euclidean algorithmwhile keeping track
of the steps used to get there, thereby writing the greatest common divisor as a linear
combination of the two initial Gaussian integers, is called the extended Euclidean
Algorithm and leads to Bézout’s Identity in Z[i].
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Theorem 5.5.5 (Bézout’s Identity)
Let α,β ∈ Z[i], not both zero, and let γ be a gcd of α and β. Then there exist
μ, ν ∈ Z[i] such that

αμ + βν = γ.

Proof Let S = {γ = μα+νβ �= 0 : μ, ν ∈ Z[i]}. The set N (S) = {N (γ) : γ ∈ S} is
a non-empty subset of N, and by the Well-Ordering Principle there exists a smallest
element d ∈ N (S). Let δ be any element of S with N (δ) = d. By definition of S,
we have δ = ασ + βτ for some σ, τ ∈ Z[i]. By the Division Algorithm, there exist
Gaussian integers χ and ρ, with N (ρ) < N (δ), such that α = χδ + ρ, and so

ρ = α − χδ = α − χ(ασ + βτ ) = α(1 − χσ) + β(−χτ ).

This shows that ρ ∈ S if N (ρ) > 0, which would contradict the fact that δ had
minimal norm (since N (ρ) < N (δ)). It follows that N (ρ) = 0, so ρ = 0, and thus
δ | α. An analogous argument proves that δ | β, and so δ | γ as well (recalling that
γ is the given gcd of α and β we seek to write as a linear combination of α and β).
Write γ = φδ. We get

γ = φδ = φ(ασ + βτ ) = α(φσ) + β(φτ ),

as desired. �

Corollary 5.5.6

If a, b ∈ Z have gcd(a, b) = 1 in Z, then we have gcd(a, b) = 1 in Z[i] as well.
�

Proof If am + bn = 1 in Z, then am + bn = 1 in Z[i], too! �

A caveat is in order here. In general, if d is a linear combination of a and b, that
does not mean that d is the gcd of a and b: all we know is that gcd(a, b)|d.However,
1 is special: if 1 is a linear combination of a and b, then since their gcd must then
divide 1, their gcd is 1.

As before, Bézout’s Identity leads to Euclid’s lemma and the Prime Divisor Prop-
erty.

Lemma 5.5.7 (Euclid’s Lemma)

Given Gaussian integers α,β and γ, if α and β are relatively prime and α | βγ,
then α | γ. �
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Lemma 5.5.8 (Gaussian Prime Divisor Property)

If π ∈ Z[i] is a Gaussian prime and π | βγ, then π | β or π | γ. More generally,
if π | β1β2 · · · βn , then π | β j for some 1 ≤ j ≤ n. �

As was the case with Bézout’s Identity and the Euclidean Algorithm, the proofs
of these lemmas are directly analogous to their counterparts for the integers. At long
last, we reach home.

Theorem 5.5.9 (Fundamental Theorem of Gaussian Arithmetic)
Every non-zero Gaussian integer can be written in the form

α = επ1 · · · πk,

where ε is a unit, k ≥ 0, and each π j a Gaussian prime. Moreover, this form
is unique up to reordering and associates.

Proof (sketch) Recall that the proof of the Fundamental Theorem of Arithmetic in
Z has two parts: an existence proof and a uniqueness proof. As was the case in Z we
can use strong induction to prove the existence of a prime factorization into Gaussian
primes. This time, rather than inducting on the natural number a, we induct on N (α).

The crux of the uniqueness proof in Z was the Prime Divisor Property, and it
is again in Z[i]. Suppose we had two distinct factorizations of α as the product of
Gaussian primes:

επ1 · · ·πk = ε′τ1 · · · τ�.

Canceling any like or associate factors from both sides, what remains is an equality
between two products

π1π2 · · · πs = τ1τ2 · · · τt .

Let π j be a prime appearing in the product on the left. Then π j | τ1τ2 · · · τt and
so by Lemma 5.5.8, π j | τk for some 1 ≤ k ≤ �, which implies that π j and τk

are associates. This contradicts the statement that π j and τk are primes that remain
after canceling all like or associate factors appearing in both factorizations. Thus,
the original factorizations must not have been distinct up to associates. �

Much as the theorems are phrased analogously for both Z and Z[i], so do we
repeat ourselves with our cautions about their interpretation. For example,

(2 + i)(2 − i) = 5 = (1 + 2i)(1 − 2i)

is not a counter-example to unique factorization in Z[i], since the identities 2+ i =
(1 − 2i)i and 2 − i = (1 + 2i)(−i) reveal the two factorizations to be associate
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to one another. Calling these different factorizations would be as silly as calling
6 = (2)(3) = (−3)(−2) different factorizations.

5.6 Gaussian Primes and Prime Factorizations

As with Z, unique factorization makes much of number theory vastly simpler—
for example, finding a greatest common divisor from prime factorizations is even
simpler than the efficient process of performing the Euclidean algorithm. Thus one
immediate goal is being able to factor Gaussian integers into the product of Gaussian
primes, a process which has as a prerequisite the ability to recognize primes in Z[i].

We began this process in Theorem 5.2.12, where we saw that the Diophantine
equation a2+b2 = p lies at the heart of which rational primes p remain prime when
viewed as elements of Z[i]. By reducing mod 4, we saw that when p is a rational
prime congruent to 3 mod 4 the Diophantine Equation

a2 + b2 = p

has no integer solutions. When p ≡ 1 mod 4, there is no such mod-4 obstruction,
and indeed it’s not hard (dare we say fun?) to write such primes as a sum of two
squares:

5 = 22 + 12 13 = 32 + 22 17 = 42 + 12 29 = 52 + 22 · · ·
We recall from the chapter introduction that given such a representation, we

are also given a factorization of p in Z[i] demonstrating non-primeness, e.g., 5 =
(2 + i)(2 − i), 13 = (3 + 2i)(3 − 2i), 17 = (4 + i)(4 − i), 29 = (5 + 2i)(5 − 2i),
etc. Thus a demonstration that every prime p ≡ 1 mod 4 can be written as a sum of
two squares will satisfactorily close this line of inquiry.

Theorem 5.6.1 (Fermat’s Two-Square Lemma)
For every prime p ≡ 1 (mod 4), there exist unique (up to sign and ordering)
a, b ∈ Z such that p = a2 + b2.

The key lemma for the upcoming proof of Theorem 5.6.1 is the following.

Theorem 5.6.2 (Lagrange’s Lemma)
For every prime p ≡ 1 (mod 4), there exists an m ∈ Z such that p | m2 + 1.



156 5 Gaussian Number Theory: Z[i] of the Storm

Fig. 5.8 Factorizations of Numbers of the form m2 + 1

Though fairly uninspiring at first glance, this is a rather remarkable discovery. As
motivation for this claim, consider this table of factorizations of the first few integers
of the form m2 + 1 (see Fig. 5.8).

There are no obvious patterns in these factorizations, and yet the lemmamakes the
bold claim that every single prime of the form 4k +1 eventually appears somewhere
in the bottom row of the table in Fig. 5.8. Further, as we will soon see, no prime of
the form 4k + 3 appears in the factorization, so “dividing an m2 + 1” turns out to
be a multiplicative litmus test for odd primes to be 1 mod 4. The proof is a pleas-
ingly unexpected application of Wilson’s Theorem (Theorem 4.4.11), particularly
remarkable given how difficult it seems to be to use modular arithmetic to positively
solve equations in Z. Furthermore, the proof is delightfully constructive (see, e.g.,
Exercise 5.16).

Proof (of Lagrange’s Lemma)Wewrite p = 4k+1 and then applyWilson’sTheorem
to get

−1 ≡ 1 · 2 · · · 4k (mod p)

≡ (1 · 2 · · · 2k) · ((−2k) · · · (−2) · (−1)) (mod p)

= (1 · 2 · · · 2k)2 · (−1)2k (mod p)

≡ ((2k)!)2 (mod p).

Setting m = (2k)!, we have m2 ≡ −1 (mod p) and so p | m2 + 1. �

This combines with the Gaussian Prime Divisor Property (Lemma 5.5.8) to prove
Fermat’s 2-square Lemma.

Proof (Of Fermat’s 2-square Lemma) Suppose p is a rational prime congruent to 1
(mod 4). We show that p is not a Gaussian prime. By Lagrange’s Lemma, we can
choose m so that p | m2 + 1. In Z[i], we factor

m2 + 1 = (m + i)(m − i).

Suppose p were a Gaussian prime. Then by the Prime Divisor Property inZ[i], since
p | m2 + 1, either p | m + i or p | m − i . However, p does not divide either of
these since m

p ± 1
p /∈ Z[i]. Thus p is not a Gaussian prime, so by Theorem 5.2.12,

p = a2 + b2 for some a, b ∈ Z.
To prove uniqueness, suppose p = a2+b2 = c2+d2. It follows that (a+bi)(a−

bi) = (c + di)(c − di) in Z[i]. Since all four of these factors have norm p, they are
all prime, and hence by unique factorization in Z[i], must be associates of one of
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another. Running through the units we find (a, b) = (±c, ±d) or (a, b) = (∓d, ±c).
In all cases, {a2, b2} = {c2, d2}. �

This is a good point to pause and consider the success story of moving between
worlds. We’ve observed that to answer the question in Z about representability as
a sum of squares, we pass to the smaller ring Z/(4) to deduce that p cannot be
written as a sum of two squares, and to Z[i] to deduce that it can, depending on its
equivalence class modulo 4. One further observation strengthens the ties between
the worlds: note that Lagrange’s Lemma can be interpreted as providing a solution
to the equation m2 ≡ −1 (mod p), that is, a square root of negative one mod p.
The existence of such a square root—an interpretation of i mod p—is yet another
decisive split between primes that are 1 versus 3 modulo 4.

Lemma 5.6.3

If p is a prime such that p ≡ 3 (mod 4), then x2 ≡ −1 (mod p) has no solutions.
�

Proof By way of contradiction, suppose there exists an x ∈ Z such that x2 ≡ −1
(mod p) for some prime p of the form 4n +3. Raising both sides to the power 2n +1
gives

−1 ≡ (−1)2n+1 ≡ (x2)2n+1 ≡ x4n+2 ≡ x p−1 (mod p),

which contradicts Fermat’s Little Theorem. �

It would be risky to get in the habit of writing
√−1 for an element whose square

is −1 in Z/(p), but temporarily suspending notational sanity permits a salient ob-
servation: we have deduced that

p factors in Z[√−1] ⇐⇒ √−1 ∈ Z/(p).

That is, the existence of a factor of p whenwe adjoin a square root of−1 is equivalent
to the existence of a square root of −1 modulo p. In fact, we now have several ways
of interpreting the divide between two classes of primes.

Theorem 5.6.4
The following are equivalent for all rational primes p:

(i) p ≡ 1 or 2 (mod 4);
(ii) p = a2 + b2 for some unique a, b ∈ Z (up to sign and order);
(iii)

√−1 ∈ Z/(p);
(iv) p factors in Z[i], i.e., p is not a Gaussian prime.
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It is noteworthy that each of the statements takes place in a different ring: Z/(4),
Z, Z/(p), and Z[i], respectively. Before moving on from this sublime result, allow
yourself a second to applaud in the comfort of your own reading environment, to
give your eyes a chance to stop twinkling with delight, and to wipe away the tear
falling unheeded down your cheek. Back? Wonderful, we have more great things
ahead. In particular, it may seem we have spent an inordinately long time figuring
out which rational primes stay prime, rather than the broader question of which
Gaussian integers are prime. The following lemma shows us that we have already
done the work.

Lemma 5.6.5

If α ∈ Z[i] is a Gaussian prime, then α divides some rational prime p. �

Proof Write α = a + bi . Then

α | (a + bi)(a − bi) = a2 + b2.

By unique factorization inZ, a2+b2 can be factored into a product of rational primes
p1 p2 · · · pr . By the Gaussian Prime Divisor Property, α must divide one of these
rational prime factors. �

The punchline of this is a drastic simplification of our search for Gaussian primes:
we get all the primes ofZ[i] by factoring all the primes ofZ inZ[i].We already know
that the rational primes that are 3 mod 4 stay prime in Z[i], and all that remain are
the Gaussian prime factors of the other rational primes. For primes p ≡ 1 (mod 4),
we can write

p = a2 + b2 = (a + bi)(a − bi),

and both of these factors must be prime by taking norms: N (a + bi) = a2 + b2 = p
and likewise for N (a − bi). As always, p = 2 is a little weird:

2 = (1 + i)(1 − i) = (1 + i)(−i)(1 + i) = −i(1 + i)2.

So the rational prime 2 is actually a Gaussian square up to units.

Theorem 5.6.6
The primes of Z[i] are, up to associates, precisely:

• The prime (1 + i).
• The rational primes p that are congruent to 3 mod 4.
• The primes a + bi and a − bi , where a2 + b2 = p ≡ 1 (mod 4) and p is a
rational prime.
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Fig. 5.9 The primes of Z and Z[i]

The situation is encoded graphically in Figure 5.9. As one progresses through
algebraic number theory (and especially toward algebraic geometry) it becomes
handy to visualize any relationships between the primes in any two given rings.
Here, the picture conveys that rational primes congruent to 1 mod 4 factor in Z[i]
(fancy word: they split), while primes congruent to 3 mod 4 stay prime inZ[i] (fancy
word: they are inert). Finally there is the always obstinate prime 2 as a special case
in that it factors in Z[i], but not into two distinct primes of Z[i] like the split primes,
but into a single prime of multiplicity 2 (fancy word: 2 is ramified). Note that, caring
only about the algebraic structure, the primes in Figure 5.9 are not spaced to scale,
and even the depiction of Z[i] as a linear set is questionable. Nevertheless, every
prime of Z[i] would appear in the top row as we continued to expand the picture.

We conclude the section by noting that we now have all the tools to compute
explicit prime factorizations of Gaussian integers. We use the following idea: if a
Gaussian prime π divides N (α) = αα, then by the Prime Divisor Property π must
divide either α or α (or both). Further, whichever one π divides, π must divide the
other, as it is easy to check that π | β if and only if π | β. So to factor a Gaussian
integer α, we factor N (α) in Z[i] using our knowledge of primes above, and then
figure out which of those factors belong to α and which to α.

� Example 5.6.7 Factor 7 + 5i in Z[i].

Solution We have

7 + 5i | N (7 + 5i) = 74 = 37 · 2 = −i(1 + i)2(6 + i)(6 − i),

and so each Gaussian prime factor of 7 + 5i must come from the factorization on
the right, and the product of those factors must have norm 74. Since 6± i each have
norm 37 and i +1 has norm 2, it must be that one of (6+ i)(1+ i) and (6− i)(1+ i) is
(7+5i) and the other is (7−5i), up to units. We quickly find 7+5i = (1+ i)(6− i).

�

� Example 5.6.8 Factor z = −2 + 9i in Z[i].
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Solution Since z | N (z) = 81 + 4 = 85 = 5 · 17 = (2 + i)(2 − i)(4 + i)(4 − i),
to get a factor of norm 85 = 5 · 17, we have to take one of the factors of 5 and one
of the factors of 17. Luckily there are only four possibilities (before we figure out
units):

(2 + i)(4 + i) = 7 + 6i . . . nope.

(2 − i)(4 + i) = 9 − 2i . . . nope.

(2 + i)(4 − i) = 9 + 2i . . .Ta-dah!

and just for completion’s sake...

(2 − i)(4 − i) = 7 − 6i . . . nope.

We can stop when we’ve found the associate 9 + 2i of −2 + 9i , giving

−2 + 9i = i(9 + 2i) = i(2 + i)(4 − i)

as the desired factorization. �

We close with the observation that along with all the other goodies, unique fac-
torization provides us with a well-defined notion of valuations for Gaussian integers
(compare to Definition 3.4.1):

Definition 5.6.9

For non-zero α ∈ Z[i] and Gaussian prime π, define the π-adic valuation of α,
denoted vπ(α), to be the power of π that appears in the prime factorization of α.
In other words, vπ(α) is the unique integer such that we can write

α = πvπ(α)α′

for some α′ ∈ Z[i] with π � α′. �

� Example 5.6.10 From Example 5.6.7, we see that

v1+i (74) = 2, v6+i (74) = v6−i (74) = 1, and v3+2i (74) = 0.

5.7 Applications to Diophantine Equations

Application 1: Sums of Squares

We have satisfactorily solved the Diophantine equation

a2 + b2 = n
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in the case that n is prime. Part of this argument continues to hold when n is not
prime, as when n ≡ 3 mod 4 there are still no solutions. But this is not the whole
story, as the case of n = 21 = 3 · 7 shows: We have 21 ≡ 1 mod 4 but 21 is not the
sum of two squares. The statement for arbitrary n is as follows.

Theorem 5.7.1
An integer n can be written as a sum of two integer squares if and only if vp(n)

is even for every prime p ≡ 3 mod 4.

That is, primes that are 3mod4 formsomething of a toggle switch: they themselves
cannot be written as a sum of two squares (7 �= a2 + b2), but surely their squares
can (72 = 72 + 02). Since being expressible as a sum of two squares is equivalent to
being expressible as a norm of a Gaussian integer, we can use the multiplicativity of
the norm to complete the solution.

Proof Write n = ∏
i pei

i

∏
j q

f j
j where the pi are the prime divisors of n congruent

to 1 or 2 mod 4, and the q j are 3 mod 4. Then each pi and q2
j is a norm of an element

of Z[i], and so if each f j is even, n is the norm of the product of those elements,
and thus is itself a sum of two squares. For the reverse direction, we proceed nearly
identically to the prime case: suppose n = a2 + b2 and that n has at least one prime
divisor q ≡ 3 mod 4 for which vq(n) is odd. If q divides both a and b, then an even
power of q divides both sides of the equation n = a2 + b2, and canceling as many
powers from q as possible from both sides gives a new equation n′ = (a′)2 + (b′)2
where q | n′ (since vq(n) was odd) but q � a′, b′. Reducing this equation mod q
gives 0 ≡ (a′)2 + (b′)2, so −1 ≡ (a′/b′)2 (mod q). But −1 being a square modulo
q contradicts that q ≡ 3 mod 4. �

As an interesting consequence, we can return to topics begun in Chapter 2 asking
about the difference between the Euclidean circles x2+ y2 = 3 and x2+ y2 = 5 from
the rational perspective. It’s clear by search that the former has no integer solutions
whereas the latter does. But searching is a pretty ineffective tool for finding rational
points on this circle, so the following result is a pleasant bonus.

Corollary 5.7.2

An integer n can be written as a sum of two rational squares if and only if vp(n)

is even for every prime p ≡ 3 mod 4. �

Proof We show that n is a sum of integer squares if and only if it is a sum of rational
squares, after which Theorem 5.7.1 provides the result.
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As a sum of integer squares is evidently a sum of rational squares, one direction
is immediately covered by the theorem. It remains to show that any number that can
be written as a sum of rational squares is also a sum of integer squares, so suppose
n = ( a

b

)2 + ( c
d

)2. Clearing denominators gives the equality of integers

nb2d2 = (ad)2 + (bc)2.

Now since nb2d2 is a sum of integer squares, for any q ≡ 3 mod 4 we must have

vq(nb2d2) = vq(n) + 2vq(b) + 2vq(d)

is even, and hence vq(n) is even. Thus n is a sum of two squares. �

It is remarkable, and quite rare for equations of this type, that the conditions on
n for the equation x2 + y2 = n to have either integer solutions or rational solutions
are identical. We have a lot of ground to cover before returning to this relationship
for a general Diophantine equation in Chapter 8.

Unique factorization in Z[i] provides still more additional interesting facets to
our story. Let us take, for example, n = 65. Factoring n in Z[i], we have

65 = 5 · 13 = (2 + i)(2 − i)(3 + 2i)(3 − 2i)

factoring into a product of 4 Gaussian primes. Note that if we take either factor of
norm 5, multiplied by either factor of norm 13, the result is a Gaussian integer of
norm 65, and hence a way of writing 65 as a sum of two squares. So, on one hand,
we could write

65 = (2 + i)(3 + 2i) · (2 − i)(3 − 2i) = (4 + 7i)(4 − 7i) = 42 + 72,

but, on the other hand,

65 = (2 + i)(3 − 2i) · (2 − i)(3 + 2i) = (8 − i)(8 + i) = 82 + 12.

That is, we get different ways of writing n as a sum of two squares by rearranging
the factors of n into different products of two complex conjugates. The exercises will
have you explore some consequences of this observation.

Application 2: PythagoreanTriples

The next result should look familiar from Chapter 2. We will tackle the classification
of Pythagorean triples again through an algebraic lens, replacing the use of the
Diophantus Chord method with the Fundamental Theorem of Gaussian Arithmetic.
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Theorem 5.7.3 (Classification of Pythagorean Triples)
Every primitive Pythagorean triple (a, b, c) (with a, b, c > 0) has the form
(u2 − v2, 2uv, u2 + v2) for some u > v ∈ N with gcd(u, v) = 1.

First, a preliminary philosophical remark. Why do Gaussian integers have any-
thing to do with Pythagorean triples? We have previously mentioned a connection
through the factorization a2 + b2 = (a + bi)(a − bi), but it’s not immediately clear
how that helps matters. One argument is that it replaces an additive relationship with
a multiplicative one, at the expense of having to work in Z[i] instead of Z, and this
meanswe can bring the notions of primes and unique factorization into play. Oncewe
have the Fundamental Theorem of Gaussian Arithmetic under our belts, we know
number theory works in Z[i] the way it’s supposed to, and the solution becomes
almost routine.

The super-brief sketch of the proof is that given c2 = (a+bi)(a−bi), we can show
that (a + bi) and (a − bi) are relatively prime, and whenever a product of relatively
prime factors is a square, each factor is itself a square. Writing a + bi = (u + iv)2

gives the result. Let us first formally prove that intermediate step, the analog of
Lemma 3.4.10 for Z[i].

Lemma 5.7.4 (Gaussian Power Lemma)

Let α and β be relatively prime Gaussian integers. If αβ is an n-th power in Z[i],
then α and β are themselves n-th powers (up to units) in Z[i]. If n is odd, then α
and β are themselves n-th powers in Z[i]. �

Proof If αβ is an n-th power, then

αβ = (επa1
1 · · ·πak

k )n = εnπna1
1 πna2

2 · · · πnak
k ,

where ε ∈ Z[i]× = {±1, ±i} and eachπ j is a Gaussian prime. Given our assumption
that α and β are relatively prime, each π

na j
j divides either α or β but not both. Thus

α and β take the form α = ε1π
na j1
j1

· · · πna jl
jl

and β = ε2π
nak1
k1

· · · πnakm
km

, where
ε1, ε2 ∈ Z[i]×. Thus α and β are n-th powers up to units. When n is odd, each unit
of Z[i] is itself an n-th power in Z[i], so we can drop the “up to units” clause.

�

Note that the “up to units” qualifier is needed in Z as well: 36 = (−4)(−9) is
an example of two relatively prime numbers multiplying to give a square, neither of
which is a square. Now, on to the classification:
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Proof If (a, b, c) is a primitive Pythagorean triple, then no prime p can divide any
two of the three (since then by a2+b2 = c2, it would also divide the third). Therefore,
we can assume gcd(a, b) = 1, and taking p = 2, we see we can assume that a is
odd and b is even without loss of generality. This also forces c to be odd.

We claim that the Gaussian integers a + bi and a − bi are necessarily relatively
prime. Indeed, letting γ = gcd(a + bi, a − bi), we see that γ also divides their
sum, 2a, and their difference, 2bi . That γ is a unit (and hence that α and β are
relatively prime) will then follow from the claim that gcd(γ, 2) = 1, as then Euclid’s
Lemma shows that γ | a and γ | b, but gcd(a, b) = 1 (see Corollary 5.5.6). To
check that gcd(γ, 2) = 1, we note that if the only Gaussian prime divisor of 2,
namely, 1 + i , were to divide γ, then γ would have to have even norm (in Z). But
N (γ) | N (a + bi) = a2 + b2 = c2 and c2 is odd, giving a contradiction.

We can now deduce from Lemma 5.7.4 that a +bi is a square inZ[i] (up to units),
i.e.,

a + bi = ε(u + vi)2 = ε
(
(u2 − v2) + 2uvi

)

for some u, v ∈ Z and unit ε ∈ Z[i]. If we restrict our attention to positive solutions
for a and b and recall that we assumed a to be odd, the only possible values for ε
are ±1 (Exercise 5.10). Equating real and imaginary parts gives a = ±(u2 − v2),
b = ±2uv, and the identity a2 + b2 = c2 finishes the result. (We may choose u > v

and ε = 1, and note that u and v must be relatively prime, else (a, b, c) would not
be primitive.) �

Application 3:Tackling an Elliptic Curve

The technique of usingZ[i] to factor Diophantine equations is not limited to the case
of Pythagorean triples, as any sum of two squares admits a factorization in Z[i]. For
example, consider the question

Are there any cubes in Z that are one more than a square?

Translating to an algebraic expression, we are asking for the set E(Z) of integer-
coordinate points on the elliptic curve E defined by y2 + 1 = x3. Immediately
re-writing the equation as

x3 = y2 + 1 = (y + i)(y − i)

yet again thrusts us toward Z[i] in search of solutions. And indeed, the technique is
almost identical to before. We check (Exercise 5.9) that (y + i) and (y − i) must
be relatively prime, so by Lemma 5.7.4, both y + i and y − i are cubes. Writing
y + i = (u + vi)3 and collecting real and imaginary parts gives

y = u3 − 3uv2 = u(u2 − 3v2) and 1 = 3u2v − v3 = v(3u2 − v2).
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Thus v is an integer divisor of 1, implying v = ±1. If v = 1, then 1 = 3u2 − 1,
which is impossible for u ∈ Z. If v = −1, then 1 = −(3u2 − 1), so u = 0, and
indeed the pair (u, v) = (0, −1)works! Re-substituting, we find y = u3−2uv2 = 0
and x3 = y2 + 1 = 1, giving the unique solution (x, y) = (1, 0).

Theorem 5.7.5
In Z, the only cube which is one more than a square is 1 (being one more
than 0).

5.8 Exercises

Calculation and Short Answer

Exercise 5.1 Pause and reflect on what happened in this chapter. What parts of
moving from Z to Z[i] seem easy to you? Which seem hard? Find some questions
that you have and ask your instructor. With any luck, they won’t know the answer,
and you’ll know you really do get what’s going on.

Exercise 5.2 Factor 17 and 53 into products of Gaussian primes.

Exercise 5.3 Give a factorization of 37 + 3i into a product of Gaussian primes.

Exercise 5.4 In the context of the Division Algorithm for Z[i], describe geomet-
rically how it could be that the quotient and remainder could fail to be unique (as
they are in Z), even after fixing a system of coset representatives. Give an explicit
example of an α and a β with N (β) > 2 such that we can write α = χβ + ρ with
N (ρ) < N (β) in two different ways.

Exercise 5.5 Find a complete set of representatives modulo each given Gaussian
integer. Choose representatives that will satisfy the conditions of the Division Algo-
rithm.

(a) 4 + 2i,
(b) 2 + 4i,

(c) 3 − i,
(d) −2 + 5i.

Exercise 5.6 For each modulus, find a complete set of representatives compatible
with the Division Algorithm, and then compute the reductions:

(a) 6 − 3i mod 2 − i,
(b) 4 + 7i mod 3 + 2i,
(c) 37 − 14i mod 1 + i .
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Exercise 5.7 Prove that a rational number c
d is a sum of two rational squares if and

only if cd is. Use this and the results of the chapter to decide which of the following
rational numbers are a sum of two rational squares:

5

7

13

29

43

39
.

Choose one that is and write it as the sum of two rational squares.

Exercise 5.8 The Extended Euclidean Algorithm in Z[i]:

(a) Find a gcd δ of 11 + 3i and 1 + 8i .
(b) Suppose one can purchase Chicken i’Nuggets in boxes of either 11+3i or 1+8i

nuggets. Show that you can purchase δ (from above) i’Nuggets, assuming that
you are allowed to buy and sell Gaussian integer numbers of boxes. That is, find
Gaussian integers μ and ν satisfying

μ(11 + 3i) + ν(1 + 8i) = δ.

Exercise 5.9 Work mod 8 to show that if x, y ∈ Z satisfy x3 = y2 + 1, then y must
be even. Now fill in the missing step in the proof of Theorem 5.7.5 by showing that
(up to associates), we have

gcd(y + i, y − i) =
{
1 + i if y is odd

1 if y is even.

Exercise 5.10 Finish the missing step in the classification of Pythagorean triples: if
a + bi = ε(u + vi)2 with the conventions on a, b in the theorem, then ε = ±1.

Exercise 5.11 Gaussian integer True/False. See how little work you can do to justify
each answer:

(a) 5 + 3i | 15 + 9i ,
(b) 5 + 13i | 5 + 14i ,
(c) i | 7,

(d) 7 − 2i | 37 − 3i ,
(e) 7 + 2i | 37 − 3i ,
(f) 3 + 2i | 65.

Exercise 5.12 Generalize Example 5.2.9. That is, find a way of constructing exam-
ples of Gaussian integers α,β such that N (α) | N (β) but α � β.

Exercise 5.13 Find an integer that is a sum of two squares in at least four different
ways and describe a procedure for finding an integer that is a sum of two squares in
at least 2n different ways.

Exercise 5.14 Building off the previous problem, given an integer k ≥ 1, construct
a number that can be expressed as a sum of squares in exactly k different ways.
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Exercise 5.15 Fermat conjectured that all numbers of the form 22
n + 1 were prime.

The first four are indeed prime, but the identity

22
5 + 1 = 622642 + 204492,

discovered by Euler, implies that it is not. How?

Exercise 5.16 Follow the proof of Lagrange’s Theorem to find α and β in Z[i] such
that 101 | αβ but 101 � α and 101 � β.

Formal Proofs

Exercise 5.17 Prove that for a, b ∈ Z, we have a | b in Z if and only if a | b in
Z[i]. Further, for all n ∈ N, a ≡ b in Z/(n) if and only if a ≡ b in Z[i]/(n).

Exercise 5.18 Let S be a subring of a ring R. Prove that for all a, b ∈ S, if a | b in
S then a | b in R. Find an example of a ring R and subring S showing the converse
is not generally true: there exist a, b ∈ S such that a | b in R but a � b in S.

Exercise 5.19 Prove that for α,β ∈ Z[i], we have
α | β ⇐⇒ α | β.

Deduce that for n ∈ Z and α ∈ Z[i], α | n ⇐⇒ α | n.

Exercise 5.20 Prove that if (a + bi) is a Gaussian prime, then so too are (a −
bi), (−a + bi), and (−a − bi).

Exercise 5.21 Let α,β ∈ Z[i]. Show that δ is a gcd of α and β if and only if (1) δ
is a common divisor of α and β and (2) for all γ ∈ Z[i], if γ is a common divisor of
α and β, then γ | δ.

Exercise 5.22 Prove that if γ and δ are both gcds of α and β, then γ and δ are
associates.

Exercise 5.23 Give both an algebraic and a geometric proof of the following: For
a, b ∈ Z, we have (1 + i) | (a + ib) if and only if a and b are both even or both
odd. Because of the “2-like” properties of 1 + i, we may refer to multiples of 1 + i
as “iven” numbers.

Exercise 5.24 Prove Euclid’s Lemma in Z[i]: Given α,β, γ ∈ Z[i], if α | βγ and
α and β are relatively prime, then α | γ.

Exercise 5.25 Prove that if π is a Gaussian prime, then for all α ∈ Z[i] with π � α
we have gcd(α, π) = 1. Conclude that there exists a Gaussian integer β such that
αβ ≡ 1 mod π, i.e., that α is a unit mod π.



168 5 Gaussian Number Theory: Z[i] of the Storm

Computation and Experimentation

Exercise 5.26 Out of the first million natural numbers, how many satisfy the con-
ditions of Theorem 5.7.1 and can hence be written as a sum of two squares?

As we move to more sophisticated algebraic structures, it becomes increasingly
desirable to move from raw programming languages like Python to a full computer
algebra system. The system SageMath, in particular, allows for work in the Gaussian
integers in a way that generalizes nicely to rings we will see in the upcoming chapter.

Exercise 5.27 SageMath uses the notation ZZ[i] for the Gaussian integers. Try
running the following code in SageMath:

z=ZZ[i](5)

z.is_prime().

The code above sets z to be the Gaussian integer 5 (as opposed to the integer 5—
while they are the same number, whether or not it is prime depends on the ambient
ring). Experiment with other functions you can do with Gaussian integers—norms,
factorizations, conjugates, etc.

Out of the first 100 natural numbers n, for how many such n is the Gaussian
integer n + 0i prime? Compare your observations to the theoretical results of the
section.

Exercise 5.28 Figure out how to find the gcd of two Gaussian integers in Sage-
Math. Generate a large number of “random” Gaussian integers using the com-
mand ZZ[i].random_element() and approximate the probability that two
randomly chosen Gaussian integers are relatively prime. Compare the result to the
similar problem for randomly chosen integers. It may be worth researching the
algorithm SageMath uses to generate random elements, and/or repeating with a
different algorithm.

General Number Theory Awareness

Exercise 5.29 Look up Pick’s Theorem for counting lattice points inside of a poly-
gon. Apply Pick’s Theorem to the fundamental domain defined by the multiples of
β to compute |Z[i]/(β)|.
Exercise 5.30 Propose a definition for the Euler totient φ(β) of a non-zero Gaussian
integer β. How would you compute it for a prime β? Make a prediction for a general
formula forφ(β) given a prime factorization.Make a prediction for aGaussian analog
of Euler’s Theorem.
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Exercise 5.31 Look up Gauss’ circle problem. What is it? How would you rephrase
the question in terms of norms ofGaussian integers?What is the status of the problem
(i.e., what solutions are known, are all solutions known, etc.)?

Exercise 5.32 Howmany Gaussian primes are there with norm up to 100? Of these,
how many are of each of the three types from Theorem 5.6.6? How does this obser-
vation influence the Prime Number Theorem for Gaussian primes? And what of the
“Gaussian Moat”?

Exercise 5.33 In Exercise 4.68 we argued that R[x]/(x2 + 1) and C had essen-
tially the same algebraic structure. Algebraists would say that these two rings
are isomorphic, and write R[x]/(x2 + 1) ∼= C. One can argue similarly that
Z[x]/(x2 + 1) ∼= Z[i], and the modular version is even more striking:

Z/(p)[x]/(x2 + 1) ∼= Z[i]/(p)

since both are isomorphic to (Z[x]/(x2 +1))/(p). Explore how much of the chapter
can be explained by these relationships, e.g., the number of elements of Z[i]/(p),
and the distinction between primes that are 1 or 3 mod 4.

Exercise 5.34 Setting aside p = 2, the chapter has largely focused on the distinction
between primes that are 1 mod 4 versus primes that are 3 mod 4. Are there the
same number of each? Look up prime races, and Dirichlet’s Theorem on Arithmetic
Progressions.
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...wherein i realizes it’s not all that special.

6.1 From−1 to−d

Despite the central role it has played in the book thus far, the seemingly unique
significance of the number i = √−1 is somewhat illusory. For example, consider
the closing success of the last chapter, using the arithmetic ofZ[i] to find the integral
points E(Z) of the elliptic curve E defined by

x3 = y2 + 1,

via the factorization y2 + 1 = (y + i)(y − i). While this seems at first glance a
miracle special to Z[i] we can just as well tackle the generalMordell equation

x3 = y2 + d

via the factorization y2+d = (y+√−d)(y−√−d) in the analogous ringZ[√−d] =
{a + b

√−d : a, b ∈ Z}. There is much to verify here, including the claim that this
is indeed a ring. But for this introductory section, let’s assume everything will work
out nicely and take a stab at a second Mordell equation. Here’s one that could arise
via the question “What numbers, if any, are one more than a square and one less
than a cube?” Since such an instance would necessitate the cube being precisely two
more than the square, we can rephrase this question as the following Diophantine
equation.

� Example 6.1.1 Find all integer solutions to x3 = y2 + 2.

We hope to mirror the argument for x3 = y2 + 1, i.e., factor

x3 = (y + √−2)(y − √−2),
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and then use arithmetic in Z[√−2] to show that (y + √−2) and (y − √−2) must
be relatively prime. From this we conclude by an analog of Lemma 5.7.4 that each
of these factors is itself a cube in Z[√−2], allowing us to write

y + √−2 = (m + n
√−2)3

= m3 + 3m2n
√−2 + 3m(−2n2) − 2n3

√−2

= (m3 − 6mn2) + n(3m2 − 2n2)
√−2.

This shows that y = m3 − 6mn2 and 1 = n(3m2 − 2n2), forcing n = ±1. From
here, it is elementary to finish off the solution: if n = −1, our equation becomes
3m2 − 2 = −1, which has no integer solutions. Thus, n = 1 and m = ±1, in turn
providing y = ±5 and x = 3; a quick check shows that these are indeed solutions.
The number 26, between the square 25 and the cube 27, is thus the only positive
integer which is one more than a square and one less than a cube.

In spite of our many assumptions, we have indeed found all integer solutions
for x3 = y2 + 2. Score one for reckless abandon! Number theory is easier than we
thought! Emboldened by our swashbuckling success, let’s tackle yet anotherMordell
equation.

� Example 6.1.2 Find all integer solutions to x3 = y2 + 26.

Let us mindlessly copy the argument: write

x3 = y2 + 26 = (y + √−26)(y − √−26)

in the ring Z[√−26], check again that the two factors are relatively prime and hence
must be cubes, and calculate

y + √−26 = (m + n
√−26)3 = (m3 − 78mn2) + (3m2n − 26n3)

√−26.

Equating real and imaginary parts, we get y = m3−78mn2 and 1 = n(3m2−26n2),
again giving n = ±1. Since −1 = (3m2 − 26) has no solutions, n must equal 1.
We solve to find m = ±3 and substitute to then get y = m3 − 78mn2 = ±207
and x3 = 2072 + 26 = 42875 = 353. We conclude that there are two and only two
solutions, (35, ±207), to the equation x3 = y2 + 26.
Fantastic! ...

...pausing for dramatic effect...

...but...wait. We have indeed found two solutions (and pleasantly non-obvious so-
lutions, at that) to this equation, but our proof technique claims to have found all
the solutions, as it did for the previous two examples. And yet, there is an obvious
solution that we missed: 27 is a cube which is 26 more than the square 1, so we have
somehow missed the solutions (3, ±1). Worse than merely an incompleteness of the
process, there must be a fatal theoretical error somewhere along the way, and indeed
there is.
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So what happened? Before reading on, it is worth reading through the purported
solution again, pondering in which of the many unjustified steps the error could lie.
We offer reassurances for some previously unchecked facts:

• The set Z[√−26] is indeed a ring.
• The two elements y ± √−26 are indeed relatively prime.
• The algebra after naming m and n is all correct.

Where else could our error be hiding? There’s not much left! The culprit is the claim
that a product of two relatively prime factors producing a cube implies that each of the
factors is itself a cube. This was a theorem in Z[i] (and, as we’ll see, in Z[√−2]),
but is not a theorem in Z[√−26]. Indeed, our missing solution (x, y) = (3, ±1)
furnishes explicit counter-examples: the numbers 1 ± √−26 can be shown to be
relatively prime, and are not themselves cubes, but their product is:

(1 + √−26)(1 − √−26) = 27 = 33.

In fact, arithmetic in Z[√−26] is all kinds of messed up, as the above formula also
represents a failure of our holy grail of unique factorization: the number 27 has the
prime factorization 27 = (1+ √−26)(1− √−26) and a completely separate prime
factorization 27 = 33. All of these claims require checking, and we will develop
tools to do so in this chapter.

To diagnose where things started going awry in Z[√−26], it will help to recall
The Path to unique factorization in Z and Z[i] (Figure6.1). The principal goal of
this chapter is to codify this path as a theorem, which we dub the Fundamental
Meta-Theorem of Arithmetic, and explore rings to which it applies (and to which it
doesn’t!). Assuming the steps of the path, we can work backward to see what must
have gone wrong in Z[√−26].

Fig. 6.1 The Path to Unique Factorization in Z and Z[i]
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In Z[i], the Fundamental Theorem (Theorem 5.5.9) was in turn a consequence of
the prime divisor property (Lemma 5.5.8), and hence of Euclid’s Lemma (Lemma
5.5.7), and hence of Bézout’s Identity (Theorem 5.5.5), and hence of the Euclidean
Algorithm (Theorem 5.5.3), and hence, finally, of the Division Algorithm (Theo-
rem 5.4.1). And so the remarkable synthesis of this story is that the failure of our
approach to correctly solve x3 = y2 + 26 can trace its way back to the lack of a
functioning Division Algorithm in Z[√−26]. The failure of unique factorization in
rings of the form Z[√d] is potentially demoralizing, and it’s okay if you need to go
look at pictures of puppies before moving forward. Indeed, the history of mathemat-
ics has notable examples (see Exercise 6.36) in which Diophantine equations were
erroneously thought solved before someone kindly (or unkindly) pointed out that the
purported proof had inappropriately relied on unique factorization in some ring.

The goal of this chapter is now clear: we need to establish that The Path holds
at a level of generality more than just Z and Z[i]. In particular, Z[√−2] seems a
promising candidate—are there others? To be explicit, we hope to state and prove a
more precise version of the following critical result1 :

Theorem 6.1.3 (The Fundamental Meta-Theorem of Arithmetic)
A ring with a Division Algorithm has a Fundamental Theorem of Arithmetic.

The precise “non-meta” version of this is the upcoming Theorem 6.5.3.

6.2 Algebraic Numbers and Rings of Integers

To generalize from Z[i] to other worlds of numbers, it will be useful to identify
the properties of i that made Z[i] a convenient home for doing number theory. A
first observation involves a notational subtlety—the reader may have noticed that the
square brackets in Z[x] and Z[i] seem to do very different things to the ring Z:

Z[x] = {a0 + a1 + · · · + anx
n : ak ∈ Z} vs. Z[i] = {a0 + a1i : ak ∈ Z}.

Why does Z[x] involve arbitrary sums of powers of x whereas we limit Z[i] to only
linear expressions? The answer, and thus the relevant property of i , is that i satisfies
the clean algebraic relation i2 + 1 = 0. This means that an expanded definition
of Z[i] where you incorporate arbitrary “polynomials in i ,” we would not actually

1 One author wanted to call this the “Funda-Meta Theorem of Arithmetic,” but the other authors
would not allow it. This footnote is the resulting compromise. Strangely, we all claim to be the one
author.
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change Z[i], as all higher degree terms collapse, e.g.

3i3+4i2+5i+5 = 3i(i2+1)+4(i2+1)+2i+1 = 3i(0)+4(0)+2i+1 = 2i+1.

It is this property, that i satisfies a polynomial algebraic relationship, that merits
generalization. Recall that a polynomial f ∈ Q[x] is said to be monic if its leading
coefficient is 1.

Definition 6.2.1

A number α ∈ C is algebraic if there exists a monic polynomial f ∈ Q[x] such
that f (α) = 0. The degree of an algebraic number is the smallest degree of any
such polynomial, which is called a minimal polynomial for α. A number that is
not algebraic is called transcendental. �

For example, i is algebraic of degree 2 since it is a root of the degree 2 monic
polynomial x2+1 ∈ Q[x] (and is not the root of any degree 1 polynomial f ∈ Q[x]).
One preliminary observation before further examples:

Lemma 6.2.2

If α ∈ C is an algebraic number, then its minimal polynomial is unique, so we
can reference the minimal polynomial of α. �

Proof Supposeα is of degree d, and suppose f and g are distinct monic polynomials
of degree d such that f (α) = g(α) = 0. Let h = f − g, a non-zero polynomial of
degree less than d such that h(α) = 0. Dividing h by its leading coefficient provides
a monic polynomial of degree less than d of which α is a root, contradicting that α
was of degree d. �

� Example6.2.3 Every rational number is algebraic of degree 1. For example,α = 7
5

is a root of the monic polynomial x − 7
5 ∈ Q[x].

� Example 6.2.4 Radical expressions:
√−3 and

√
2 are algebraic of degree 2 with

respective minimal polynomials x2 + 3 and x2 − 2. The number 3
√
5 is algebraic,

using f (x) = x3 − 5, and is of degree 3 since the output of the quadratic formula
shows there is no polynomial of degree 2 or smaller for which 3

√
5 is a root. Of

course,
√
49 and 3

√
27 are algebraic of degree 1, using the obvious polynomials

x − 7 and x − 3, but in general, if an integer n has no k-th power divisors, then
k
√
n is algebraic of degree k via the polynomial f (x) = xk − n.

Our discussion of algebraic numbers will continue to focus on degree 2 examples,
so we will not pause to prove carefully statements about higher degree numbers (like
the last sentence in the previous example), but higher degree examples do motivate
some interesting discussion points.
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� Example 6.2.5 Let α be the largest real root of the polynomial f (x) = x5 −
x + 1 (the polynomial is of odd degree, so has at least one real root, and hence a
well-defined largest one). Despite being perfectly well-defined, it is hard2 to write
α down in terms of radical and standard arithmetic operations—there is no formula
like the quadratic formula for expressing roots of fifth-degree polynomials as sums
and products of fifth roots. And yet, the number is tautologically algebraic, as f
is its minimal polynomial.

� Remark6.2.6 Aphilosophical point tomake is thatwehave anunhealthy obsession
with trying to write down exact formulas for solutions to equations, often without
benefit. For example, to work with the number α in the preceding example, even
if a complicated expression in terms of radicals existed, it would likely be just as
easy to leave it simply as “α” and make use of its defining algebraic expression
when possible. After all, we pretend we have solved a calculus problem when
we write down that the answer to a problem is

√
2, but we could just as well be

answering that we don’t know the answer3 but know that it is positive and satisfies
the polynomial x2 − 2 = 0.

� Example 6.2.7 The numbers
√
2 and

√
3 are algebraic, but what about the number

α = √
2 + √

3? It is fun to try to come up with a minimal polynomial for α as,
unlike the numbers in Example 6.2.4, no power of α is an integer. Here is a nifty
approach: We begin by observing that

α2 = (
√
2 + √

3)(
√
2 + √

3) = 2 + 2
√
6 + 3 = 5 + 2

√
6.

This shows that α2 − 5 = 2
√
6, so (α2 − 5)2 = 24. Taking

f (x) = (x2 − 5)2 − 24 = x4 − 10x2 + 1 ∈ Q[x]
thus provides a minimal polynomial for α of degree at most 4 (in fact exactly 4,
although verifying that there is no lower-degree monic polynomial for

√
2 + √

3
requires a further check).

You may have begun to wonder if there even exist transcendental numbers; i.e.,
complex numbers that are not the root of any polynomial with rational coefficients.
An appealingly indirect approach to this question makes use of infinite cardinali-
ties: one argues that there are countably many algebraic numbers (there are only
countably many polynomials inQ[x] of which they could be roots, each with finitely
many roots), whereas there are uncountably many complex numbers. So somewhat
ironically, while most of the numbers we encounter are algebraic, transcendental
numbers vastly outnumber the algebraic ones—and yet, it is quite difficult to explic-
itly point out even one of them! We mention three examples without proof, starting

2 Technically, literally impossible, but we argue that still counts as “hard.”
3 Answering “Solve x2 − 2 = 0” with “x = ±√

2” feels particularly circular in this sense.
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with one of historical significance as the first number explicitly demonstrated to be
transcendental. The other two examples are also of periodic interest.

Theorem 6.2.8 (Liouville, 1844)
The number

0.1010010000001000000000000000000000000100 . . . ,

whose decimal expansion is formed by interspersing n! zeroes after the n-th
one, is transcendental.

Theorem 6.2.9 (Hermite, 1873)
The number e is transcendental.

Theorem 6.2.10 (Lindemann, 1882)
The number π is transcendental.

That we are able to say with certainty that there is no polynomial with rational
coefficients having π as a root is not only remarkable, it is key to solving several
famous geometry problems fromGreek antiquity, e.g., that it is impossible to “square
the circle.”

Now, moving on to integers: the phrase “Rings of Integers” in the section header
might induce some eyebrow-raising—after all, isn’t there the one and only Z, the
ring of integers? An important perspective to begin adopting is that being an integer
(being “integral”) is a property that a number can either possess or not possess, much
like a number can be even, or prime, or greater than 7, or a square, etc. The viewpoint
that emerges is that starting with the rational numbers, Q, the set Z (the integers) is
simply “the set of elements of Q that are integral.” We would like to generalize this
to other contexts, so that it will make sense to say things like “Z[i] consists of the
integral elements of Q[i].”

What sort of definition would bring this dream to fruition? A tempting but ulti-
mately fruitless answer is to say that “integers are rational numbers with a denomi-
nator of 1.” There are plenty of mundane objections to this answer (Should we allow
a denominator of −1 as well? What about i or other units? What if we run into a
non-reduced fraction?) that are easily rectified by a more precise version of the state-
ment, but the general objection is that an arbitrary algebraic number has no notion of
its denominator. As a particularly compelling argument, consider the number α from
Example 6.2.5. What is its denominator? Is it 1? Is it even a meaningful question?
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Fortunately, an elegant fix to this suggestion exists, making use of the fact that we
have already identified Z as an important subset of Q.

Definition 6.2.11

An algebraic number α is an algebraic integer (or is integral) if its minimal
polynomial has all integer coefficients. �

For example,
3√7
5 is an algebraic number that is not an algebraic integer since

its minimal polynomial x3 − 7
125 does not have all integer coefficients. Thus this

definition catches something of our “has a denominator” intuition while enabling
the study of numbers beyond the comfort of our intuitive understanding. We will
experiment with this idea in the upcoming Exploration, but first a brief discussion
of these new worlds.

Theorem 6.2.12
The set Q of all algebraic numbers forms a field. The set Z of all algebraic
integers forms a ring.

Since bothZ andQ are subsets ofC, most of the ring and field axioms (associativ-
ity, distributivity, etc.) are inherited from those properties inC. The more substantive
claims of the theorem are that if α and β are algebraic, then so are α ± β, αβ, and
α
β (for β �= 0), and likewise that sums and products of algebraic integers are again
algebraic integers. A full proof of this theorem would be formalized through a some-
what lengthy detour into linear algebra, but we have seen and will continue to see
the main ingredients in special cases. For example, a proof that α + β is algebraic
when both α and β are of degree 2 would look much like Example 6.2.7, and an
illustrative example where α and β are of different degrees is taken up in Exercise
6.33, where you use linear algebra to find a minimal polynomial for

√
3 + 3

√
2. We

will prove special cases of Theorem 6.2.12 for families of algebraic numbers of
particular interest as we encounter them.

� Remark 6.2.13 A principal theme of recent sections has been to extend Z by the
adjoining of algebraic integers like i and

√−2. Armed with the new ring Z, it
is initially tempting to bypass such “small” extensions Z[i] and Z[√−2] and try
to work directly in Z. But it is worth noting that Z and Q really are quite exotic
worlds to work in. For example, it is not hard to show that if α ∈ Z, then

√
α ∈ Z

as well (Exercise 6.28), so the identity

α = √
α · √

α = 4
√

α · 4
√

α · 4
√

α · 4
√

α = · · ·
shows that there are no prime elements at all in Z, and hence no notion of a prime
factorization.
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Exploration K

Algebraic Integers and their Homes �

One of the most significant implications of the algebraic approach to number
theory is that we should take care when choosing which ring to work in. If we need
to work with i , for example, we need to enlarge from Z to a ring that includes i , but
not all the way to C, where notions of primeness and factorization are essentially
vacuous. The ring Z[i] arises as a perfect compromise. For other algebraic numbers,
it is a little less clear what that perfect home ring should be. Let’s explore.

K.1 Find minimal polynomials for each of the following and decide if they are
algebraic integers:

1 + √
5 1 + √

7
1 + √

5

2

1 + √
7

2

1 + √
5

4

1 + √
7

4
.

For a number α ∈ C we can consider the ring

Z[α] = {a0 + a1α + a2α
2 + · · · + anα

n : ak ∈ Z, n ≥ 0}.
We have seen that for α = i , we have more simply Z[α] = {a + bα : a, b ∈ Z}.

K.2 For each of the following rings, decide whether Z[α] = {a + bα : a, b ∈ Z}:

Z

[√−3
]

Z

[
1 + √−3

2

]
Z

[
1 + √−3

4

]
.

Begin by computing α2 and α3 for each of the above.

K.3 Much like Z[i], the elements of Z[√−3] = {a + b
√−3 : a, b ∈ Z} form a

rectangular lattice in the complex plane (though no longer a square lattice). Give
rough sketches of each of the following sets inside C:

Z

[√−3
]

Z

[
1 + √−3

2

]
Z

[
1 + √−3

4

]
.

Explore any connections with your answers to the previous exercise.

K.4 Taking α = π provides a curious example. Get a feel for doing algebra in the
ring Z[π]. It should feel pretty similar to doing algebra in another ring. Which one?
Why?
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6.3 Quadratic Fields: Integers,Norms, and Units

The realization that the infamous golden ratio of ancient Greek mathematics,

ϕ = 1 + √
5

2
,

is an algebraic integer (being the root of the integer polynomial x2−x−1),
despite “having a denominator,” calls into question some of our deep-seated preju-
dices about which numbers should be considered an (algebraic) integer and further
demonstrates why a “no denominators” rule is not the way to go. Instead, we be-
gin by allowing any and all denominators (that is, we choose to work in a field),
and then prove theorems that describe the integral elements in that field. For ex-
ample, we will prove that the algebraic integers in the field Q are precisely Z, and
the algebraic integers in the field Q[i] are precisely Z[i]. In other examples, e.g.,

Q[√5] = {a + b
√
5 : a, b ∈ Q}, we are forced to admit elements like 1+√

5
2 .

To set up a general statement, we introduce the notion of a quadratic field and then
pose the question of determining the ring of integers of that field. One precaution
about introducing rings of the form Q[√d] is that we should be slightly picky about
which d we allow—for example,

Q[√4] = {a + b
√
4 : a, b ∈ Q} = {a + 2b : a, b ∈ Q} = Q,

and similarly,Q[√12] = Q[√3],Q[√−25] = Q[i], etc. In general, if d = a2b, then
Q[√d] = Q[√b], and so it is often convenient to suppose that d has no non-trivial
square factors. We say that an integer d is square-free if for all primes p we have
p2 � d (or equivalently, vp(d) ≤ 1 for all primes p). Only one special case leaves us
in a bit of a pickle:

Pickle 6.3.1

Should 1 be considered square-free? If so, is it the unique square-free square? If
not, why not? What about 0? Choose a side and pick a fight with someone on
these very topics4 . �

Definition 6.3.2

A quadratic field is a field of the form

Q[√d] = {a + b
√
d : a, b ∈ Q}

for some square-free integer d ∈ Z (d �= 0, 1). We say K is a complex quadratic
field if d < 0 and a real quadratic field if d > 0. �

4 or have a lovely reasoned conversation over coffee.
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We have already had experience with complex quadratic fields (taking d = −1
gives Q[i]) and can leverage this understanding when exploring new examples. First
and foremost, it is routine to verify that the definition of Q[√d] above does indeed
agree with its definition as “Q[x] with x = √

d plugged in” and that this set defines
a field. Only the calculation that every non-zero element has a multiplicative inverse
merits spelling out, and that follows from the identity

1

a + b
√
d

= 1

a + b
√
d

· a − b
√
d

a − b
√
d

= a

a2 − db2
+ −b

a2 − db2
√
d ∈ Q[√d].

Here, note that the denominator a2 − db2 is never zero, as a2 − db2 = 0 would
imply that d = a2

b2
was a square, contradicting its square-freeness.

Definition 6.3.3

Given a quadratic field5 Q[√d], if α = a + b
√
d ∈ Q[√d], then the conjugate

of α is
α = a + b

√
d = a − b

√
d,

and its norm is given by

N (α) = αα = (a + b
√
d)(a − b

√
d) = a2 − db2. �

Again, when d = −1, we recover the norm function studied extensively in the
previous chapter, and in general, for d < 0, this is just the complex norm—it gives
the square of the distance from the element to 0 in the complex plane. When d > 0,
however, this represents a new construction. In Q[√2], for example, the norm of the
element 7 + 5

√
2 is given by

N (7 + 5
√
2) = (7 + 5

√
2)(7 − 5

√
2) = 49 − 50 = −1. (6.1)

This norm of −1 for this element certainly doesn’t reflect the distance from 7+5
√
2

to the origin in either the real line or the complex plane, and it is hard to interpret this
number as a key geometric property of any sort. On the other hand, however, from
an algebraic perspective this norm continues to exhibit many of the nice properties
that the complex norm did in our study of the Gaussian integers (recall that the norm
was our principal tool for finding primes in Z[i]). To generalize this to an arbitrary
quadratic field, we will need to finish the story started by the Golden Ratio above to
characterize the algebraic integers in a quadratic field.

5 The notation Q[√d] will for us always reference a quadratic field. In particular, we assume d is a
square-free integer and d �= 0, 1.
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Definition 6.3.4

The ring of integers of a quadratic field is the subset of elements of the field that
are algebraic integers. �

Of course, you can’t define a set into being a ring. That these sets are rings is a small
part of the following theorem, which gives an explicit description of the algebraic
integers of a quadratic field.

Theorem 6.3.5
Let d �= 0, 1 be a square-free integer. Then:

• If d �≡ 1 (mod 4), then the ring of integers of Q[√d] is
Z[√d] = {a + b

√
d : a, b ∈ Z}

• If d ≡ 1 (mod 4), then the ring of integers of Q[√d] is

Z

[
1 + √

d

2

]
=

{
a + b

(
1+√

d
2

)
: a, b ∈ Z

}

Proof First, it is routine to verify that the described numbers are algebraic integers in
both cases: the quadratic formula verifies that the number a + b

√
d has the minimal

polynomial

(x − (a + b
√
d))(x − (a − b

√
d)) = x2 − 2ax + (a2 − db2) ∈ Z[x],

and the number a + b
(
1+√

d
2

)
has minimal polynomial

x2 − (2a + b)x + a2 + ab − b2
(
d − 1

4

)
,

which is in Z[x] since d ≡ 1 mod 4.
It remains to show the reverse direction, that if α ∈ Q[√d] is an algebraic integer

then it is in Z[ 1+
√
d

2 ] when d ≡ 1 (mod 4) and is in Z[√d] otherwise.
Supposeα = a+b

√
d ∈ Q[√d] is an algebraic integer, so itsminimal polynomial

x2 −2ax + (a2 −db2) has integer coefficients. Let e = 2a and f = a2 −db2. Write
b = m

n for m, n ∈ Z with gcd(m, n) = 1. Then substituting a = e
2 and b = m

n into
the expression for f and clearing denominators gives

e2n2 − 4dm2 = 4 f n2. (∗)
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This shows that e2n2 must be a multiple of 4, and so at least one of e or n is even.
We break into these two cases.

First, if e is even, then a = e
2 is an integer, and hence a2 − f = db2 = dm2

n2
must

be an integer as well, so n2 | dm2. Since gcd(m, n) = 1, Euclid’s Lemma shows that
n2 | d, which since d is square-free implies that n = ±1. Since b = m

n , this shows
that b, along with a, must be an integer.

Otherwise e is odd and n is even, and since gcd(m, n) = 1, m must be odd.
Substituting n = 2t into (∗) and canceling a factor of 4 gives

e2t2 − dm2 = 4 f t2.

Since e and m are odd, we have e2 ≡ m2 ≡ 1 mod 4 and so reducing this equation
mod 4 gives t2 ≡ d mod 4. Since d is a square mod 4, d is either 0 or 1 mod 4,
but since d is square-free, we know 4 � d and hence d ≡ 1 mod 4. Substituting
m = nb = 2tb into e2t2 − dm2 = 4 f t2, we find e2t2 − d(2tb)2 = 4 f t2, so we see
that t2 | d(2tb)2. Say d(2tb)2 = t2k. (We stress that b is not necessarily an integer,
but 2tb is.)

Since d is square-free, it must be the case that t2 | (2tb)2, and so (2b)2 ∈ Z. It
thus makes sense to cancel a t2 and reduce mod 4:

e2t2 − d(2tb)2 = 4 f t2

e2 − d(2b)2 = 4 f

1 − 1(2b)2 ≡ 0 mod 4,

showing that 2b must be odd.
Combining the two cases, we conclude that for a + b

√
d (a, b ∈ Q) to be an

algebraic integer we must either have a and b both integers, or 2a and 2b both odd
integers and d ≡ 1 mod 4. That is, if d �≡ 1 (mod 4), then a + b

√
d is an algebraic

integer if and only if a, b ∈ Z. If d ≡ 1 (mod 4), then those same numbers are
algebraic integers, and so are the a + b

√
d for which a and b are both half-integers.

Finally, given our explicit descriptions of these sets, it is easy to verify that they
are rings. The only ring axioms that need checking are that the two sets are closed
under addition and multiplication. Of these, addition is trivial and multiplication
follows from the identities

(a + b
√
d)(m + n

√
d) = (am + bdn) + (an + bm)

√
d ∈ Z[√d]

and, writing γ = 1+√
d

2 when d ≡ 1 mod 4,

(a + bγ) (m + nγ) =
(
am + bn · d − 1

4

)
+ (an + bn + bm)γ ∈ Z

[
1 + √

d

2

]
,

both verifiable via direct computation. �
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The conclusion of this train of thought is worth pausing to appreciate. While we
may have been taken aback by the appearance of “denominators” in our algebraic
integers, Theorem 6.3.5 spells out exactly how far this can go. So as we temper any
adverse reactions to denominators, we stress that it is the ring of integers of Q[√d]
(as opposed to always using Z[√d]) that is the “right” place to develop number
theory for that field.

Let us connect the notions of norms and integers. For an algebraic integer of the
form α = a + b

√
d, it’s clear that its norm N (α) = a2 − db2 is also an integer.

When d ≡ 1 mod 4, however, we need the further computation

N

(
a + b

(
1 + √

d

2

))
=

(
a + b

2
+ b

2

√
d

) (
a + b

2
− b

2

√
d

)

=
(
a + b

2

)2

−
(
b
√
d

2

)2

= a2 + ab + b2
(
1 − d

4

)
.

Since a, b, d ∈ Z and d ≡ 1 (mod 4), we see that N (α) is still an integer. As with
the Gaussian integers, we can now piggyback on our understanding of Z to develop
number theory in these larger rings of integers.

Lemma 6.3.6

Let R be the ring of integers of Q[√d] and let α,β, γ ∈ R. Then N (αβ) =
N (α)N (β), and thus if α | γ in R, then N (α) | N (γ) in Z. �

Proof For the first claim, we compute

N (αβ) = (αβ)(αβ) = ααββ = N (α)N (β).

For the second claim, if α | γ, then γ = αβ for some β ∈ R, so N (α)N (β) = N (γ)

by the first claim. Thus N (α) | N (γ) in Z. �

Lemma 6.3.7

Let R be the ring of integers of Q[√d]. Then for all μ ∈ R, μ is a unit in R if and
only if N (μ) is a unit in Z. That is,

μ ∈ R× ⇐⇒ N (μ) ∈ Z
×. �

Proof Suppose μ ∈ R is a unit. Then there exists ν ∈ R such that μν = 1. Then by
Lemma 6.3.6,

1 = N (1) = N (μν) = N (μ)N (ν),
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and since N (μ) and N (ν) are integers that multiply to 1, we see they must be units.
Conversely, if N (μ) is a unit, then N (u) = μμ = ±1, so either μ or −μ is a
multiplicative inverse of μ in R. (Note that from the explicit form given in Theorem
6.3.5, μ is an algebraic integer if and only if μ is.) �

For complex quadratic fields, the story of units is particularly simple. Namely,
we already know that when d = −1, we have units of {±1, ±i}, and there is only
one other case, d = −3 (of sufficient significance that we will deal with it again in
Section 6.6), with units other than ±1.

Corollary 6.3.8

Let d < 0, and let R be the ring of integers of Q[√d]. Then with the exceptions
of d = −1 and d = −3, we have R× = {±1}.
For d = −1 we have R× = {±1, ±i}, and for d = −3, R× = {±1,± 1±√−3

2 }. �

Proof By Lemma 6.3.7, an element μ ∈ R is a unit if and only if it has norm±1, but
norms of complex numbers are always positive, so we need only solve the equation
N (μ) = +1. If d �≡ 1 mod 4, this is the equation

1 = a2 − db2.

If d = −1, we quickly find the only solutions to be (a, b) = (±1, 0) and (a, b) =
(0,±1), corresponding to the units ±1 and ±i respectively. When d < −1, the term
−db2 is greater than 1 unless b = 0, so has no other solutions than (a, b) = (±1, 0),
corresponding to the units μ = ±1.

For the d ≡ 1 mod 4 case, we need to solve the Diophantine equation

1 = a2 + ab + b2
(
1 − d

4

)
,

or after a little algebra, the equivalent equation

(2a + b)2 − db2 = 4.

Again, both (2a+ b)2 and −db2 are positive. If b = 0, then a = ±1 and we retrieve
the units μ = ±1 for any d. Now we look for any extra solutions: if d = −3, we
find (a, b) = (0,±1), ±(1, −1) corresponding to the units

μ = ±
(
1

2
±

√−3

2

)
,

But for any other d ≡ 1 mod 4, d is at most −7, and so −db2 > 4 whenever b �= 0,
providing no more solutions. �
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For real quadratic fields, the situation is significantly wilder, as units can now have
norm±1, and can be vastly greater in number. InQ[√2], for example, Equation (6.1)
provides the unit μ = 7+5

√
2 of norm−1. Recalling that the product of two units in

any ring is again necessarily a unit, it must be that μ2 is also a unit, and a computation
gives

(7 + 5
√
2)2 = 99 + 70

√
2

as another unit (check: 992 − 2 · 702 = 9801 − 9800 = 1). In fact, μ too is of this
form, as it turns out to be the cube of another unit: 7 + 5

√
2 = (1 + √

2)3.

Corollary 6.3.9

The ring Z[√2] has infinitely many units, including at least the family (1+√
2)n

for each n ∈ Z, and their negatives. �

Though the example highlights the general phenomenon, we will take up a more
nuanced discussion of the units of real quadratic fields in Section 9.4.

6.4 Euclidean Domains

Recall the goal of this chapter: to follow The Path and prove the Fundamental Meta-
Theorem of Arithmetic, that rings having some notion of a Division Algorithm also
have unique factorization into primes. As we uncover in Exploration L, the presence
of zero divisors is enough to dash our hopes of unique factorization, so we start by
limiting our attention to integral domains, i.e., commutative rings with unity in which
the product of non-zero elements is always non-zero.

Most of the rings we have encountered (e.g., Z, Q, R, C, Z[i], R[x]) are integral
domains, since in none of these rings is it possible to multiply two non-zero elements
and get zero. The modular rings Z/(n) make an enlightening set of contrasting ex-
amples. Here, if n is composite, then Z/(n) is not an integral domain—for example,
in Z/(6) we have [2] · [3] = [0]. If n is prime, on the other hand, we have seen that
Z/(n) is always an integral domain (and in fact, a field). Among integral domains,
the ones in which we have hope of defining a Division Algorithm are precisely those
where we have some notion of the size of an element, allowing us to make sense of
the claim that the remainder is “smaller” than the divisor.

Definition 6.4.1

A Euclidean Domain is an integral domain R with a Euclidean norm, which is
a function N from R − {0} to the non-negative integers satisfying the following
two properties:

(i) For all a, b ∈ R − {0}, if a | b then N (a) ≤ N (b).
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(ii) For all a, b ∈ R − {0}, there exist elements q, r ∈ R such that a = bq + r
and either r = 0 or N (r) < N (b). �

In principle, it is possible to have many different Euclidean norms on a given
integral domain, so an integral domain can be a Euclidean domain in multiple ways.
In addition, it may be difficult in principle to decide if an integral domain is Euclidean
or not, as it’s difficult to rule out the existence of a possibly complicated Euclidean
norm function defined on it. That said, we will be almost exclusively focused on
viewing rings as Euclidean domains under reasonably standard norm maps. Finally,
note that we do not insist on giving 0 ∈ R a norm, though in most of our examples,
it will be clear how to define N (0) as well.

� Example 6.4.2 The ring Z is a Euclidean domain via the absolute value function
N (n) = |n|.

� Example 6.4.3 The ring Z[i] is a Euclidean domain via the norm functionN (a +
bi) = a2 + b2.

� Example6.4.4 The ringR[x] is a Euclidean domain via the norm functionN ( f ) =
deg( f ).

The proofs of these three claims follow from the existence of aDivisionAlgorithm
in these rings, with the remainder guaranteed to have a smaller value than the divisor
under the given norm.

� Example 6.4.5 Any field (e.g., Q or R or C) is a Euclidean domain via the trivial
function N (x) = 1 (Exercise 6.24).

The previous section on rings of integers in quadratic fields provided another
potentially rich source of Euclidean domains. For now, let us see how much the
number theorywe developed inZ andZ[i] continues to hold in an arbitrary Euclidean
ring (spoiler alert: like all of it).

Definition 6.4.6

Given elements a, b, not both 0, of a Euclidean domain R with Euclidean norm
N , a gcd of a and b is an element g ∈ R such that:

• g | a and g | b; and
• If d | a and d | b, then N (d) ≤ N (g).

That is, g is a common divisor of a and b of greatest Euclidean norm. If 1 is a gcd
of a and b, we write gcd(a, b) = 1 and say a and b are relatively prime. �
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Note that both definitions extend their counterparts from Chapter 3.

Lemma 6.4.7

Let R be a Euclidean domainwith Euclidean normN and a �= 0 ∈ R. IfN (a)=0,
then a ∈ R×. �

Proof Suppose that N (a) = 0. Then applying the Division Algorithm to divide 1
by a, we find q, r ∈ R such that 1 = aq + r with r = 0 or N (r) < N (a). Since
N (a) = 0, it must be the case that r = 0, so aq = 1, and thus a is a unit. �

This is a goodmoment to check your close mathematical reading skills. How does
Lemma 6.4.7 not contradict Lemma 6.3.7? Continuing along The Path, our next step
is to give Bézout a clearly deserved promotion.

Theorem 6.4.8 (General Bézout Identity)
Suppose R is a Euclidean domain with Euclidean norm N . Let a, b ∈ R not
both be zero, and let g be any gcd of a and b. Then there exist m, n ∈ R such
that

am + bn = g.

Proof This is trivial if a is a unit, since then a(a−1g)+b(0) = g, so assume without
loss of generality that a is not a unit. Then N (a) > 0 by the lemma, and we mimic
prior proofs of Bézout’s Identity: let S = {as + bt : s, t ∈ R andN (as + bt) > 0},
and let c = as + bt ∈ S be any element of least norm (since a = a(1) + b(0) ∈ S,
S is non-empty). We will show c | g, which is enough to imply g also lies in S.

By the Division Algorithm, we can write a = qc + r with either r = 0 or
N (r) < N (c). But since

r = a − qc = a − q(as + bt) = a(1 − qs) + b(−qt)

is a linear combination of a and b, r ∈ S unless r = 0; thus we cannot have
N (r) < N (c) by minimality of N (c). Hence r = 0 and so c | a. The analogous
argument proves that c | b.

Now write g = cq ′ + r ′ for some q ′, r ′ ∈ R with r ′ = 0 or N (r ′) < N (c). Then
r ′ = g − cq ′ = g − (as + bt)q ′, and since g divides g, a, and b, g | r ′ as well, which
in turn implies N (g) ≤ N (r ′). But N (r ′) < N (c) ≤ N (g) since g is a gcd of a and
b, so we have a contradiction unless r ′ = 0. Therefore, c | g, as desired. �

To reach the culmination of our path—a statement about unique prime
factorizations—we need to identify the prime elements in an arbitrary Euclidean
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domain. An interesting dichotomy presents itself here. In the integers, we have two
fundamental properties of primeness: the intuitive “no non-trivial divisors” charac-
terization, and the Prime Divisor Property, that if p is a prime dividing a product,
then p must divide one of the factors. For primes of Z (and Z[i]), these two notions
are equivalent. Moving forward, we will see this is not always the case, and thus we
need more precise terminology to distinguish these properties.

Definition 6.4.9

Let R be a ring and let p ∈ R be neither 0 nor a unit.

• We say p is irreducible if and only if its only divisors are units and associates
of p.

• We say p is prime if and only if for all a, b ∈ R, if p | ab, then p | a or p | b.

�

Many of the consequences of irreducibility/primeness in Z extend to other rings,
even ones where the two notions do not coincide. As an example of this, the induction
argument from Z generalizes to show that if p ∈ R is prime and p | a1 · · · ak , then
p | a j for some 1 ≤ j ≤ k.

Turning to quadratic rings, we again find the one-way irreducibility test (Theorem
5.2.11) we had for Z[i]:

Lemma 6.4.10

Suppose R is the ring of integers of Q[√d] and α ∈ R. If N (α) is irreducible in
Z, then α is irreducible in R. �

Proof This follows immediately from Lemma 6.3.6. �

As the following lemmaattests,we can specify the relationship betweenprimeness
and irreducibility for a general class of algebraic structures.

Lemma 6.4.11

In any integral domain, every prime element is irreducible. �

Proof Suppose that p is a prime element of the integral domain R, and suppose that
p = ab for some a, b ∈ R. Then p | ab, so p | a or p | b by the definition of
prime. Without loss of generality, suppose p | a, so a = pc for some c ∈ R. Now
p = ab = pcb, so p(1 − cb) = 0 and since R is an integral domain, this implies
that 1 = cb, proving that b is a unit. �
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The Prime Divisor Property in Z and Z[i] (Lemmas 3.3.7 and 5.5.8, respectively)
shows the converse, that irreducible elements are always prime in these two rings,
but crucially, this is not in general true. Let’s explore.

As in so many other instances, the norm map is a principal tool in establishing
primeness and irreducibility for algebraic integers. As an illustrative example, let’s
return to the aforefactored

33 = 27 = (1 + √−26)(1 − √−26).

First, we claim that both 3 and 1 ± √−26 are irreducible in the ring Z[√−26].
Indeed, suppose 1 + √−26 = αβ for non-units α, β ∈ Z[√−26]. Then taking
norms of both sides, we get N (α)N (β) = 27, and by Lemma 6.3.7, it must be that
one of these two factors has norm 3 and the other has norm 9. But there are no
elements of Z[√−26] of norm 3 since the Diophantine equation a2 + 26b2 = 3 has
no solutions, and so no such factorization can exist. Nearly identical arguments work
for both 3 and 1− √−26. On the other hand, none of these elements are prime: We
have 1 + √−26 | 3 · 3 · 3, but 1 + √−26 � 3 (again by considering norms).

That primes and irreducibles become distinct concepts in certain rings of integers
is a curious phenomenon and, echoing our discussion from Chapter 3, reinforces
the assertion that the Fundamental Theorem of Arithmetic is not as trivial as it may
first seem. Indeed, we will soon see that the analog of the Fundamental Theorem
of Arithmetic cannot hold in rings where primes and irreducible elements are not
one and the same, so any claim that unique factorization is obvious contains the
subclaim that in Z, the notions of primeness and irreducibility coincide. Regardless,
our inexorable march down The Path continues.

Theorem 6.4.12 (Euclid’s Lemma in Euclidean Domains)
Let R be a EuclideanDomain, and a, b, c ∈ R satisfy a | bc and gcd(a, b) = 1.
Then a | c.

Proof Once again, the proof completely mirrors that of Z, making use of the general
Bézout Identity. We leave the details to Exercise 6.30. �

Corollary 6.4.13 (Prime Divisor Property in a Euclidean Domain)

In a Euclidean domain R, every irreducible element is prime. �

Proof Suppose p is irreducible and p | bc for some b, c ∈ R. If p | b, we’re done,
so suppose p � b. A common divisor of p and b cannot then be an associate of p,
so since p is irreducible, must be a unit, giving gcd(p, b) = 1. By Euclid’s Lemma
above, p | c, showing that p is prime. �
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Exploration L

Euclidean Norms �

L.1 Let’s examine why the “integral domain” condition is necessary for a sensible
notion of unique factorization. Which elements of the ring Z/(6) are prime? Which
are irreducible? Show by example that you can factor elements of Z/(6) into distinct
products of primes; that is, express an element as a product of primes in at least two
different ways that differ by more than ordering and associates.

L.2 Show that R[x] is indeed a Euclidean domain using the degree function as its
Euclidean norm. This norm differs from those we are used to: for Z and Z[i], we
have N (ab) = N (a)N (b), and N (u) = 1 if and only if u is a unit. Show that both
of these properties fail for the degree norm on R[x].

A key tool in proofs involving a general Euclidean domain is to divide elements
(often units) by other elements and examine the quotient and remainder that appear
from the Division Algorithm. The next exercise gives some practice with this idea,
and “fixes” the observation about units in the previous exercise.

L.3 Suppose R is a Euclidean domain with norm N , and let

d = min{N (r) : r ∈ R}.
Prove that

N (r) = d ⇐⇒ r is a unit.

Keep in mind that all you have to work with are the two properties defining a
Euclidean norm.

L.4 The argument that R[x] is a Euclidean domain generalizes to the ring F[x]
for any field F . However, this is not true for a general integral domain. Show that
the degree function does not define a Euclidean norm on Z[x]. In fact, only slightly
harder is to show that Z[x] is not a Euclidean domain. Why is that second sentence
not redundant with the first?
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6.5 Unique Factorization Domains

Euclid’s Lemma and the Prime Divisor Property, established for general Euclidean
domains in the previous section, are the penultimate step along The Path to unique
factorization. All that remains is to formally define that last step and show the impli-
cation. As we saw in Z and Z[i] it takes some care to properly state what we mean
by “unique factorization.”

Definition 6.5.1

A Unique Factorization Domain (or UFD for short) is an integral domain in
which every non-zero element can be written uniquely, up to ordering and asso-
ciates, as a product of irreducible elements. �

Chapter 3 showed that Z is a UFD, and Chapter 5 likewise for Z[i]. But we know
thatZ[√−26] is not aUFD fromour recurring factorization of 27 in that ring into two
different products of irreducibles, 27 = (1+√−26)(1−√−26) = 3·3·3, which we
showed differ by more than ordering and associates. Recall that as a consequence,
our attempt to find integral points on the elliptic curve x3 = y2 + 27 went awry. In
short, the recognition that a ring is a UFD often drastically simplifies the practice
of doing number theory in that ring. As an example, we show that the equivalence
of primeness and irreducibility that we found in Euclidean Domains via clever use
of the General Bézout Identity admits a much more succinct proof when we have
unique factorization at our disposal.

Theorem 6.5.2
An element of a UFD is prime if and only if it is irreducible.

Proof Since UFDs are integral domains, we already know that prime elements are
irreducible, so it only remains to show that irreducible elements are also prime.
Accordingly, assume that p is irreducible, and suppose that p | ab for some a, b ∈ R.

Then there exists some c ∈ R such that pc = ab, and since R is a UFD, the elements
a and b have unique factorizations into irreducible elements: say

a = a1 · · · ak and b = b1 · · · b�.

Then pc = ab = a1 · · · akb1 · · · b�. Because p is irreducible and the factor-
ization is unique, p (or an associate of p) must appear among the irreducibles
a1, . . . , ak, b1, . . . , b�. That is, εp = a j or εp = b j for some unit ε and some
j. Therefore, either p | a or p | b, so p is prime. �
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Other consequences of unique factorization abound, as is illustrated by the number
of times we appeal to the existence of the prime factorization of an element of Z in
order to solve a problem. For example, we can find the gcd of two elements in a UFD
by the analog of Lemma 3.4.4, simply comparing powers appearing in the prime
factorizations of those elements. Most significantly for elliptic curve problems, like
those at the start of this chapter, is the analog of the Power Lemma. In either case, it
behooves us to streamline the process of demonstrating a ring is a UFD, and so our
principal goal is the following.

Theorem 6.5.3 (The Fundamental Meta-Theorem of Arithmetic)
Every Euclidean Domain is a Unique Factorization Domain.

We establish two lemmas first, based on the intuitive understanding gained in
Exploration L. For both lemmas, suppose that R is a Euclidean domain with Eu-
clidean norm N .

Lemma 6.5.4

If u is a unit of R, then N (u) = N (1). If d is a non-zero non-unit of R, then
N (d) > N (1). �

Proof Let u be a unit of R, so uv = 1 for some v ∈ R. Then u | 1, soN (u) ≤ N (1).
Of course, 1 | u as well, so N (1) ≤ N (u), and thus N (u) = N (1). Now let d be a
non-zero non-unit of R, and divide 1 by it: there exist q, r ∈ R such that 1 = dq+r ,
where r = 0 or N (r) < N (d). Since d is not a unit, r �= 0, so we must have
N (r) < N (d). But as 1 | r, N (1) ≤ N (r) < N (d), as desired. �

Lemma 6.5.5

If d = ab is non-zero and a is not a unit, then N (b) < N (d). �

Proof Dividing b by d, there exist q, r ∈ R such that b = dq + r and r = 0 or
N (r) < N (d). If r = 0, we find b = dq = (ab)q =⇒ aq = 1, contradicting the
assumption that a is not a unit. Thus r �= 0, andN (r) < N (d). Now b = dq + r, so
b = abq + r. Thus b | r (by the Linear Combination Lemma), so N (b) ≤ N (r) <

N (d), again as desired. �

Proof (of Theorem 6.5.3) We prove existence and uniqueness of factorizations into
irreducibles. For existence, note that any unit can bewritten in the desired form (using
that unit and an empty product of irreducibles), and every unit has the same norm
as 1. Now we proceed as in Z or Z[i], by strong induction on the Euclidean norm:
Fix n > N (1) and suppose each element of R with Euclidean norm less than n is
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expressible as a product of irreducible elements. Now suppose d ∈ R has Euclidean
norm N (d) = n. We need to show that d can be written as a product of irreducible
elements. If d is irreducible, then we are done. Else, d = ab with neither a nor b
a unit. By Lemma 6.5.5, we have N (a) < n and N (b) < n, so by the induction
hypothesis, both a and b can be written as products of irreducibles. Multiplying these
products together shows that d can be so written as well.

For uniqueness, we proceed identically to Theorem 5.5.9. Suppose

a1 · · · ak = d = b1 · · · b�

are two factorizations of an element of d into irreducibles a1, . . . ak and b1, . . . , b�.
Since R is a Euclidean Domain, the Prime Divisor Property (Theorem 6.4.12) tells
us that each of the ai and b j is also a prime element. Since each ai divides the product
b1 · · · b�, we must have ai | b j for some j , and since b j is irreducible, it must be that
ai and b j are associates. This shows that, up to associates, the irreducibles in each
of the two factorizations are the same. �

� Remark 6.5.6 Since the notions of prime and irreducible are synonymous inUFDs,
we can interchangeably speak either of unique prime factorizations or of unique
factorizations into irreducibles.

And there we have it, our long-awaited, hard-won, and much-deserved prize: the
FundamentalMeta-Theorem of Arithmetic. It is worth pausing for a moment to men-
tion the principles of mathematical practice that historically served to develop the
theory we’ve just pursued. While no doubt the actual content of the Fundamental
Theorem of Arithmetic for Z was known well before even Euclid, the first proofs of
this statement that stand up to modern scrutiny only came thousands of years later.
But if we knew the theorem for thousands of years, what can really be said about
the significance of having a formal proof? Beyond the obvious (we are sometimes
mistaken about things “everyone knows”), we have just uncovered a second tremen-
dous benefit. The analysis of any proof reveals how and when each hypothesis of
the theorem was used. In the case of the Theorem “If R = Z, then R is a UFD,” the
hypothesis that R = Z—that the elements of R are literally the standard integers—is
never used! Rather it is the existence of a Division Algorithm that does all the heavy
lifting. Once this has been identified, we realize that a vast generalization is at hand,
and that any ring with a Division Algorithm is destined to enjoy unique factorization
as well.

� Example 6.5.7 By Exploration H.2, the rings R[x] and C[x] are Euclidean do-
mains and hence, by Theorem 6.5.3, unique factorization domains. This, along
with a description of the primes in these rings—linear polynomials or quadratic
polynomials inR[x]with no real roots—is precisely the Fundamental Theorem of
Algebra, providing an interesting connection between these two “Fundamental”
Theorems. Note that an analogous description classifying all the primes in Z is
completely missing!
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As a consequence of our hard-earned victory, while we don’t pause to call each
of them out explicitly, we can now make use of any corollary of unique factorization
(e.g., the existence of well-defined valuations as in Definitions 5.6.9 and 3.4.1, the
analogous Power Lemma, etc.) when working in any Euclidean Domain. As our
victory lap in celebration of this result, let’s return to Euclidean Rings to see what
we’ve won.

6.6 Euclidean Rings of Integers

We now have an idea of how to approach any particular Diophantine equation whose
solution necessitates the existence of a number

√
d. We move to the quadratic field

Q[√d], find its ring of integers, and attempt to prove that this ring is a UFD. While
this won’t typically be the case, in this section, we tackle in turn three explicit case
studies where we can make progress, namely those of d = −2, d = 2, and d = −3.

Case Study 1: d = −2

We began the chapter (Example 6.1.1) by finding the integral points on the elliptic
curve defined by

y2 = x3 − 2,

assuming some calculations that relied on the ring Z[√−2] being a Unique Factor-
ization Domain (though we did not use that language at the time). Our milestone
result, Theorem 6.5.3, shows that to demonstrate Z[√−2] is a UFD, we need only
demonstrate the existence of a Euclidean norm on Z[√−2]. To do so, we recall what
worked so well forZ[i]. Here we used the geometry of the latticeZ[i] in the complex
plane to reinterpret the division algorithm as a statement about diagonals of squares.
We approach Z[√−2] in a similar fashion, with the adjustment that this lattice in
the complex plane is comprised not of squares, but rather of 1-by-

√
2 rectangles.

For example, the analog of Figure 5.4 in Z[√−2] is Figure 6.2, consisting of the
(arbitrarily chosen) number β = 2 + √−2 and all of its Z[√−2]-multiples.

Again, the norm on Z[√−2] (which, again, is just the complex norm) plays an
important geometric role in this diagram, as for β ∈ Z[√−2], the integer N (β)

reflects the square of the distance from 0 to β in the complex plane. We get a
rectangular lattice since β and

√−2β are perpendicular: if β = a + b
√−2 =

(a, b
√
2), then

√−2β = −2b + a
√−2 = (−2b, a

√
2), and the dot product of the

vector representations is 0. Reusing the concept from Section 5.3 of the fundamental
domain for the shaded rectangle with vertices at 0, β,

√−2β, and (1 + √−2)β,
we see that for any given β ∈ Z[√−2], the complex plane can be partitioned into
translates of that fundamental domain. That is, every element of Z[√−2] can be
represented as the sum of a multiple of any given β plus a remainder term. The
condition for this norm to be Euclidean is precisely the claim that this remainder can
always be chosen to have norm smaller than N (β).
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β

√
N(β)

2β
√−2β

(1 +
√−2)β

(1 +2
√−2)β

−β

(−1 +
√−2)β

(1 − √−2)β

−√−2β

2
√−2β

−2β

Fig. 6.2 The rectangular lattice and fundamental domain for β = 2 + √−2

Theorem 6.6.1
The complex norm N (a + b

√−2) = a2 + 2b2 on Z[√−2] is a Euclidean
norm, so Z[√−2] is a Euclidean domain, and hence a UFD.

Proof From Definition 6.4.1, we have two things to check. First is that whenever
α | β, we must have N (α) ≤ N (β), but this is an immediate consequence of Lemma
6.3.6, as N (α) and N (β) are positive integers with N (α) | N (β).

The second thing to check is the Division Algorithm: for all α, β ∈ Z[√−2],
there exist χ, ρ ∈ Z[√−2], with 0 ≤ N (ρ) < N (β), such that α = χβ + ρ. The
lattice reduces this to a geometric argument: given a rectangle of side lengths

√
N

and
√
2N units, no point in the interior is farther than

√
3N
2 (the length of half a

diagonal) away from one of the vertices. Applying this to the fundamental domain
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generated by β, this says that every number α ∈ Z[√−2] is within
√
3N (β)
2 of some

multiple χβ of β. Thus, if we let ρ = α − χβ, then since the norm is the square
of the distance, N (ρ) ≤ 3

4N (β) < N (β), showing that our norm N satisfies both
conditions required to be a Euclidean norm.

To clean up shop a little, let’s complete our solution to x3 = y2 + 2 by proving
that (y + √−2) and (y − √−2) are relatively prime. The rest of our argument in
Section 5.7 then holds.

� Example 6.6.2 As elements of the ring Z[√−2], the numbers (y + √−2) and
(y − √−2) are relatively prime.

Solution We begin by noting that if y is even then x3 = y2 + 2 ≡ 2 (mod 4).
However 2 is not a cube in Z/(4). Thus, y must be odd and so must x . Suppose δ is
a gcd of (y + √−2) and (y − √−2). By the Linear Combination Lemma, δ divides
their difference 2

√−2, and so N (δ) | N (2
√−2) = 8. If N (δ) �= 1 then it must be

even. However, since δ | (y +√−2) it also divides x3 and thus N (δ) | N (x3) = x6,
which is odd since x is. Thus N (δ) cannot be even and must be 1. It follows that δ
is a unit. �

Thereby completing our original argument, we definitively conclude that the only
integer solutions for (x, y) satisfying x3 = y2 + 2 are (3,±5). This solution was
observed by Diophantus, and Fermat claimed there were no other natural number
solutions (though naturally did not write that proof down anywhere). A proof was
finally given by Euler a little over 100 years later, though his proof assumed unique
factorization without remark.

Case Study 2: d = 2

The difference between real quadratic fields and complex quadratic fields is probably
nowheremore clear than in the geometric significance of its norm.Forα = a+b

√
2 ∈

Z[√2], the norm N (α) = a2 −2b2 has no obvious interpretation as a distance in the
complex plane—in fact, the value of this norm is just as often negative as positive.
One profound consequence of this observation occurred in our discussion of units:
when d < 0, the positivity of the norm forced there to be finitely many units, as
there are only finitely many lattice points within one unit from the origin. But in real
quadratic fields, the divorce from any geometric significance permitted the existence
of infinitely many units, as in Corollary 6.3.9. Nevertheless, we can develop unique
factorization in these rings with this norm (or rather, its absolute value):
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Theorem 6.6.3
The function |N | defined by

|N (a + b
√
2)| = |a2 − 2b2|

is a Euclidean norm, so Z[√2] is a Euclidean Domain and hence a UFD.

Proof Weproceed as in the other cases. First, note that the norm |N | ismultiplicative,
so ifα | β, then |N (α)| | |N (β)| and thus |N (α)| ≤ |N (β)|.Nowweneed to consider
division. Let α = a + b

√
2 and β = c + d

√
2, so

α

β
= a + b

√
2

c + d
√
2

· c − d
√
2

c − d
√
2

= ac − 2bd

c2 − 2d2
+ bc − ad

c2 − 2d2
√
2.

Like any real number, both
ac − 2bd

c2 − 2d2
and

bc − ad

c2 − 2d2
are within 1

2 of an integer, say

r and s, respectively. Let γ = r + s
√
2, and let ρ = α − βγ. Then

ρ

β
= α

β
− γ =

(
ac − 2bd

c2 − 2d2
− r

)
+

(
bc − ad

c2 − 2d2
− s

) √
2.

Therefore, by the triangle inequality,

∣∣∣∣N
(

ρ

β

)∣∣∣∣ =
∣∣∣∣∣
(
ac − 2bd

c2 − 2d2
− r

)2

− 2

(
bc − ad

c2 − 2d2
− s

)2
∣∣∣∣∣ ≤ 1

4
+ 2 · 1

4
< 1.

Thus |N (ρ)| < |N (β)|, as desired. �

The integral points on the elliptic curve y2 = x3 + 2 can now be tackled via the
factorization x3 = (y + √

2)(y − √
2) and using the full range of number theory

following from unique factorization. See Exercise 6.2.

Case Study 3: d = −3

The case d = −3 turns out to be of significant interest in the story we are developing
so far, as we have already learned that the ringZ[√−3] is not the full ring of integers
of Q[√−3]. Let’s see what happens if we try the same thing we did for d = −2.
We have N (a + b

√−3) = a2 + 3b2, the square of the distance from a + b
√−3 to

the origin in the complex plane. As always, we can consider the rectangular lattice
generated by an algebraic integer β and ask whether it is necessarily the case that
every element of Z[√−3] is close enough to a vertex of the fundamental domain to
make the division algorithmwork. In Figure 6.36.36, we see the analog of Figure 5.6,
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√
N(β)

√
N(β)

√
3N(β)

Fig. 6.3 A diagonal too long

used for theGaussian integers. Therewe showed that every lattice pointwas a distance
less than

√
N (β) from a vertex of the fundamental domain, since every point in the

entire plane is within
√
N (β) from one of these vertices.

This argument fails for Z[√−3] since the half-diagonal (the distance from β to
the center of the fundamental domain) has length

√(√
N (β)

2

)2

+
(√

3N (β)

2

)2

= √
N (β).

In terms of the Division Algorithm, this tells us that we cannot guarantee ourselves
that the remainder when a number α ∈ Z[√−3] is divided by β will have a strictly
smaller norm than β has, as they may be equal. This prevents the Euclidean Algo-
rithm from functioning as we cannot guarantee that the remainders of the successive
divisions will have norms tending toward zero. It is tempting to declare in light of
this calculation that Z[√−3] is not a Euclidean domain, but two impediments stand
in our way:

• Youmay object that the center of the rectangle in Figure 6.3 is not actually a lattice
point, and in fact every lattice point in that Figure is indeed with

√
N (β) of one

of the four vertices.
• You may also object that while this norm is not a Euclidean norm, that does not
prove that there is no norm on Z[√−3] that shows it to be a Euclidean domain.

The first objection is dealt with in Exercise 6.8, where you will argue that using
β = 2 + 2

√−3 provides us a suitable counter-example (i.e., the center of a funda-
mental domain is a lattice point). The second objection is excellent, and you should



200 6 Number Theory, fromWhereWe R to Across the C

be proud of thinking of it! It is possible for a ring of integers to be a Euclidean
Domain via a norm other than the natural one! But this is not the case here, as we can
prove by showing that Z[√−3] is not a UFD, and hence not a Euclidean Domain by
Theorem 6.5.3.

We proceed similarly to our argument about Z[√−26] at the end of Section 6.4.
Consider the following identity in Z[√−3]:

2 · 2 = (1 + √−3)(1 − √−3).

Wewill show that the number 2 is irreducible but not prime in this ring, which implies
by Theorem 6.5.2 that Z[√−3] is not a UFD. First we check that 2 is irreducible:
Indeed, recalling that N (a + b

√−3) = a2 + 3b2, we see that 2 has norm 4, and so
any non-trivial factorization of 2 would be as a product of two elements of norm 2.
But since a2 + 3b2 = 2 has no integer solutions, the ring Z[√−3] has no elements
of norm 2, and hence no such factors can exist. Last, it is easy to check that 2 is not
prime, i.e., that we can have 2 | ab without either 2 | a or 2 | b. The factorization
above furnishes the requisite example; we have 2 | (1 + √−3)(1 − √−3), but 2

divides neither of the individual factors as we know 1±√−3
2 /∈ Z[√−3].

This is, intriguingly, the second appearance of the number 1+√−3
2 in this chapter.

Indeed, if we recall some of the lessons learned earlier in this chapter, then we
shouldn’t have been investigating unique factorization in the ring Z[√−3] in the
first place—for d = −3, the rightful home of number theory is instead the full
ring of integers of Q[√−3]. Working here instead, as it turns out, restores unique
factorization.We also use this opportunity to give this specific quadratic ring a name.

Theorem 6.6.4
Under the complex norm, the ring of Eisenstein integers Z

[
1+√−3

2

]
is a

Euclidean Domain and hence a UFD.

Before completing this argument, let us recall from Section 6.3 some facts about
the Eisenstein integers, abbreviating

γ = 1 + √−3

2
.

We recall that the complex norm is given by N (a + bγ) = a2 + ab + b2 and that
the units of this ring (the elements of norm 1) are the six elements {±1, ±γ,±γ}.

It is reasonable to be skeptical that moving to the full ring of integers will fix
anything. In particular, don’t we still have the following two distinct factorizations
of 4 into irreducible components?

(1 + √−3)(1 − √−3) = 2 · 2.
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γ

1
0

β

γβ

(1 + γ)β

Fig. 6.4 The Eisenstein Lattice and fundamental domain for β = −2 + 3γ

The algebraic identity itself is still valid, of course, but recall that the precise
statement of “unique factorization” is careful to point out that factorizations are

unique only up to rearrangements and associates. And here is the point: Since 1+√−3
2

is a unit of our ring, the identity

1 + √−3 = 1 + √−3

2
· 2

shows that the numbers 1+√−3 and 2 are in fact associates in the Eisenstein integers
(even though they are not in Z[√−3]!). It is a subtle but important realization—
inserting more units into a ring connects more elements as associates. In this case,
working in the full ring of integers has clarified the situation—the factorization above
is not two distinct factorizations, but rather the same one twice, disguised by units.
Of course, we still need to prove that no other failures of unique factorization arise
in the Eisenstein integers, and we turn to this now. The key change is the geometric
shape of the lattice from rectangular to parallelogramular.

The white dots in Figure 6.4 represent the elements a+bγ for a, b ∈ Z. The black
dots represent the Z[γ]-multiples of β = −2 + 3γ, and the shaded parallelogram is
a fundamental domain. We see that every element of Z[γ] is either a multiple of β
or is in one of six other possible congruence classes modulo β: Every α ∈ Z[γ] is ρ
“more” than some multiple of β for some

ρ ∈ {0,±1, ±2,±γ}.
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(Exercise: Which dots correspond to which representative?). Similar to the Gaussian
integer case, there are precisely

N (β) = N (−2 + 3γ) = (−2)2 + (−2)(3) + 32 = 7

congruence classes modulo β.

Proof (of Theorem 6.6.4) Let α,β ∈ Z[γ] with β �= 0. We need to show that we can
write

α = χβ + ρ

with N (ρ) < N (β). As with our previous geometric proofs, we need only argue
that every element α ∈ Z[γ] is sufficiently close to a lattice point. Subdividing
the fundamental domain using the diagonal from β to γβ results in two equilateral
triangles with side length

√
N (β), and any α must be in one of the two triangles.

Elementary geometry shows that the center of an equilateral triangle with side

length
√
N (β) is within

√
3N (β)
4 of a vertex (Figure 6.5), which is less than

√
N (β).

Thus any point in the plane, and in particular any lattice point α, is within
√
N (β) of

a multiple of β. In our standard arithmetic language, this says that the remainder ρ
(the difference betweenα and the nearest multiple χβ of β) has norm N (ρ) < N (β).

�

This case of d = −3 is significant in one more surprising aspect that will play
a major role in the next chapter, obtained by considering the powers of γ. Since
the group Z[γ]× of units of Z[γ] has finitely many units, and γ is one of them
(N (γ) = 1), some power of γ must equal 1. Indeed, we compute

√
N(β)

3N(β)
4

β

γβ

Fig. 6.5 Shaded: a fundamental half-domain in Z[ 1+
√−3
2 ]
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γ = 1 + √−3

2
γ4 = −γ

γ2 = −1 + √−3

2
γ5 = −γ2

γ3 = −1

γ6 = 1

In the words of the next chapter, γ is a 6-th root of unity, since its sixth power is 1.
We will eventually label this number ζ6 for this reason, and likewise label its square

ζ3 = γ2 = −1 + √−3

2

as a third root of unity ζ3 as it satisfies ζ33 = 1. (Note we have already discovered
a 4-th root of unity in the number i .) Viewing certain elements as powers of roots
of unity helps simplify calculation, e.g., that ζ23 is the conjugate of ζ3. In fact, since
Z[γ] = Z[ζ3] (Exercise 6.23), this point is compelling enough that it is much more
common to describe this ring as Z[ζ3] instead of Z[γ].

A word of caution is in order: we have changed from Z[γ] to Z[ζ3]. While these
are the same ring, we observe that N (a + bγ) = a2 + ab+ b2, while N (a + bζ3) =
a2 − ab + b2. (check this!).

� Example 6.6.5 Use the Division Algorithm to divide −2 + 2ζ3 by 1 + 3ζ3.

Solution We can use divide and round:

−2 + 2ζ3
1 + 3ζ3

= −2 + 2ζ3
1 + 3ζ3

· 1 + 3ζ23
1 + 3ζ23

= 10 + 8ζ3
7

= 10

7
+ 8

7
ζ3.

Rounding gives a nearest Eisenstein integer χ = 1 + ζ3, and a remainder of

ρ = −2 + 2ζ3 − (1 + ζ3)(1 + 3ζ3) = ζ3,

which is admissible since N (ζ3) = 1 is less than N (1 + 3ζ3) = 7. �

As we saw for Z[i], since every α

β
∈ Q[ζ3] is within 1 unit of some χ ∈ Z[ζ3],

there will be an appropriate χ and ρ in Z[ζ3] to satisfy the conclusion of the Division
Algorithm. In essence, the question of whether the usual complex norm gives a
Euclidean norm for our ring of integers becomes the question of whether its lattice
is “tightly packed” enough. If all complex numbers are within one unit of a lattice
point, the complex norm gives us a Euclidean domain.

Finally, we see that working in the full ring of integers, rectifying unique fac-
torization at the cost of introducing “denominators,” allows us to solve Diophantine
equations via the traditional path.

� Example 6.6.6 Find all integer solutions to x3 = y2 + 3.
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Solution Suppose that x and y are integers such that x3 = y2 + 3. If y is odd, then
x3 ≡ 4 (mod 8), which has no solutions, so y must be even, which makes x odd.
We now factor in Z[ζ3], using that

√−3 = 1 + 2ζ3:

x3 = y2 + 3 = (y + √−3)(y − √−3) = (y + (1 + 2ζ3))(y − (1 + 2ζ3)).

We claim these factors are relatively prime: suppose δ | (y± (1+2ζ3)) is a common
prime divisor (and thus also a divisor of x). Then δ divides their sum, 2y, and their
difference, 2(1+ 2ζ3). Now N (1+ 2ζ3) = 12 − 1 · 2+ 22 = 3, so 1+ 2ζ3 = √−3
is prime in Z[ζ3]. By considering norms, we see that 2 is also prime (a nontrivial
factor of 2 would be an element of Z[ζ3] of norm 2, none of which exist). Thus δ | 2
or δ | (1+ 2ζ3). The first case would imply that δ is an associate of 2, which would
imply that x is even—a contradiction. Therefore, we must have δ | (1 + 2ζ3), so δ
is an associate of

√−3 and has norm 3, and δ | y (since δ | 2y and δ � 2). Taking
norms gives 3 | N (y) = y2 and so 3 | y2 + 3 = x3. Recall that x and y are integers,
and so since 3 is prime in Z, it follows that 3 divides both x and y. Write y = 3z and
x = 3w. Then

x3 = y2 + 3 =⇒ 27w3 = 9z2 + 3 =⇒ 9w3 = 3z2 + 1,

but this is impossible since 3 divides the left-hand side but not the right-hand side.
Thus y± (1+2ζ3) are relatively prime, and since Z[ζ3] is a UFD, the Power Lemma
tells us that y + (1 + 2ζ3) must be a cube:

(y + 1) + 2ζ3 = (a + bζ3)
3

= a3 + 3a2bζ3 + 3ab2ζ23 + b3ζ33

= (a3 + b3 − 3ab2) + 3ab(a − b)ζ3.

This forces 2 = 3ab(a − b), which is impossible for integers a and b. Thus, the
equation x3 = y2 + 3 has no solutions in integers. �

A final application of our newfound ability to work in this ring comes from an
unlikely place, the Law of Cosines. Recall that our classification of Pythagorean
Triples was redone in the context of the Gaussian integers via the norm function
N (a + bi) = a2 + b2. An Eisensteinian analog occurs if we consider triangles not
with a right angle, but an angle of 60 degrees. Since cos(60) = 1

2 , the Law of Cosines
relates the side lengths a, b, c of such a triangle by the formula

c2 = a2 + b2 − ab,

and the right-hand side of the expression is precisely N (a+ bζ3). If we call (a, b, c)
an Eisensteinian triple whenever it satisfies that identity, then we can find all Eisen-
steinian triangles by our knowledge of primes and factorization in Z[ζ3]. For exam-
ple, we computed above that N (1 + 3ζ3) = 7, so (1 + 3ζ3)2 = −8 − 3ζ3 has norm
72 = 49, i.e.,

82 − (−3)(−8) + 32 = 72.
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There thus exists an Eisensteinian triangle with side lengths (3, 8, 7). See Exercise
6.40 for the rest of this story.

6.7 Exercises

Calculation & Short Answer

Exercise 6.1 Show that 3 ∈ Z[√10] is irreducible but not prime.

Exercise 6.2 Use that Z[√2] is a UFD to show that there are no integer points on
the elliptic curve y2 = x3 + 2.

Exercise 6.3 Find a simple formula for N (a + bζ3). Use your formula to show that
5 − 4ζ3 is prime.

Exercise 6.4 Find some rational primes p that remain prime in Z[ζ3] and some
rational primes p that factor in Z[ζ3]. What happens for p = 3?

Exercise 6.5 Use the Eisenstein Lattice to find a quotient q and remainder r for the
division of 5 − ζ3 by 3 + 2ζ3.

Exercise 6.6 Show that if ω = −1+√−5
2 , the set {a + bω : a, b ∈ Z} isn’t even a

ring (under the usual operations).

Exercise 6.7 Show that if ω = m+n
√
d

3 , where m, n ∈ Z, n �= 0, m and n are not
both multiples of 3, and d is square-free, then {a + bω : a, b ∈ Z} is never a ring
(under the usual operations).

Exercise 6.8 Consider the ring R = Z[√−3] with its natural norm function N . Use
a visual argument to show that for the element β = 2+2

√−3, there exists an α ∈ R
for which the Division Algorithm fails to provide any remainder of norm smaller
than N (β).

Exercise 6.9 For d = −3, we used the lattice Z[ 1+
√
d

2 ] to show that the Eisenstein
integers form a UFD. What is the least d ≡ 1 mod 4 for which that same distance
argument works?

Exercise 6.10 For each of the following numbers α, decide if it is an algebraic
number and/or algebraic integer, and if so, find a minimal polynomial for α.

• √
13

• 5+7
√
13

2

• 5+6
√
13

2
• 1

7

• 3
√
17

• 1+√
7

2

• √
5 + √

7
• The largest root of x5 − x − 1
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Exercise 6.11 Use factorization in the ring of integers of Q[√−67] to find a pair of
integer points on the elliptic curve y2 = x3 − 67.

Exercise 6.12 By factoring the left-hand side of x2 − y2 = 1, show that it has only
two integer solutions. Then tackle x2 − y2 = 57.

For d > 1 square-free, Brahmagupta-Bhaskara’s Equation is the equation x2 −
dy2 = 1, for which we are trying to find integer solutions.

Exercise 6.13 Show that x2 − ny2 = 1 has only two integer solutions when n is a
square positive integer.

Exercise 6.14 Find eight units of Z[√17]: Two are±1; find one more by inspection
of the norm equation, and then think structurally to find some more.

Exercise 6.15 Find four positive integer solutions to x2 − 122y2 = 1.

Exercise 6.16 Generalize the previous two exercises. What’s special about 17 and
122 that makes this calculation easier?

Exercise 6.17 Find three non-trivial solutions of x2 − 7y2 = 1 with both x and y
positive integers.

Exercise 6.18 Find three non-trivial solutions of x2 − 37y2 = 1 with both x and y
positive integers.

Exercise 6.19 Provide solutions to Brahmagupta-Bhaskara’s equation for the fol-
lowing special values of d:

• d = n2 + 1. • d = n2 − 1. • d = n(n + 1).

Exercise 6.20 Show that for d ≤ −3, the element 2 ∈ Z[√d] is irreducible but not
prime, and hence Z[√−d] is neither a UFD nor a Euclidean Domain.

Exercise 6.21 A common tool for prime factorization in early grades is the use of
“factor trees.” Explore using factor trees for prime factorization in non-UFDs.

Exercise 6.22 A divide-and-round method, introduced in Chapter 5 for Z[i], would
propose to enact theDivisionAlgorithm forα,β ∈ Z[√−2]bywriting α

β ∈ Q[√−2]
in the form a+b

√−2 and then rounding the rational numbers a and b to the nearest
integers to find the quotient. Why does this work?Why doesn’t it work forZ[√−3]?

Formal Proofs

Exercise 6.23 With the notation as before Example 6.6.5, verify that ζ3 = γ − 1.
Use this to prove that

Z[γ] = Z[ζ3].



6.7 Exercises 207

Exercise 6.24 Prove that the function N (x) = 1 is a Euclidean norm on any field.

Exercise 6.25 For d square-free and R = Z or Q, consider the ring

R(
√
d) =

{
a + b

√
d

m + n
√
d

: a, b,m, n ∈ R,m + n
√
d �= 0

}
.

Prove that Q[√d] = Q(
√
d) but that Z[√d] �= Z(

√
d).

Exercise 6.26 For d > 0 an integer, prove that if there are at least three solutions to
x2 − dy2 = 1, then there are infinitely many.

Exercise 6.27 Find all integer points on the elliptic curve

y2 = x3 + 4

with x, y ∈ Z. Hint: Assume x is odd first.

Exercise 6.28 Prove that if α ∈ C is an algebraic number, then so is
√

α, and
likewise for being an algebraic integer.

Exercise 6.29 The ring of integers of Q[√−67] is a UFD. Use this to prove that the
two points found in Exercise 6.11 are the only integer points on that elliptic curve.

Exercise 6.30 Prove Theorem 6.4.12, that Euclid’s Lemma holds in an arbitrary
Euclidean ring.

Exercise 6.31 Let R be an integral domain, and let a ∈ R. Define congruence
modulo a by x ≡ y (mod a) if and only if x − y = az for some z ∈ R.

1. Prove that congruence modulo a is an equivalence relation on R.

2. Prove that addition andmultiplication of equivalence classes (as defined inZ/(n))
is well defined for this equivalence relation on R. Conclude that it is reasonable
to talk about the ring R/(a).

3. Describe the set of equivalence classes R/(a) for R = Z[ζ3] and a = √−3.

Exercise 6.32 Prove that the set of units with norm equal to +1 in Z[√d] for a
square-free integer d forms a subgroup of the group of units, but that this is false for
units with norm equal to −1.

Computation and Experimentation

Exercise 6.33 Find a minimal polynomial for α = √
3 + 3

√
2. To achieve this, for

each 0 ≤ n ≤ 6, write (
√
3 + 3

√
2)n in the form

a + b
√
3 + c

3
√
2 + d

3
√
4 + e

√
3 3
√
2 + f

√
3 3
√
4.
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Then use SageMath to set up and solve a system of equations in the variables
c0, . . . , c6 representing the identity

c0 + c1α + c2α
2 + · · · + c6α

6 = 0.

Exercise 6.34 A powerful generalization of the previous exercise is to have Sage-
Math do the first step as well. Find out how to ask SageMath to describemore general
algebraic numbers and compute their minimal polynomials.

In addition to the Gaussian Integers, SageMath has built-in functions for defining
the Eisenstein integers.

Exercise 6.35 Begin with the following code for establishing 7 as an Eisenstein
integer and asking for its prime factorization.

R=EisensteinIntegers()

z=R(7)

z.factor()

Experiment with this construction and make some conjecture about Eisensteinian
primality.

General Number Theory Awareness

Exercise 6.36 Unique factorization was not always addressed as conscientiously as
we do today. Find some places in history where unjustified assumptions about unique
factorization led to some faulty proofs. As is often the case, a good place to start is
Fermat’s Last Theorem.

Exercise 6.37 The chapter provides some explicit examples of transcendental num-
bers.Describe our current state of understanding—canweprove thatmost “obviously
transcendental” numbers like πe are transcendental? For results that aren’t known,
what are the leading conjectures in this area?

Exercise 6.38 Look up theGelfond–Schneider theoremonWikipedia.Use the result
to write down a transcendental number that no one has likely ever written down
before.

Exercise 6.39 In the rings of integers considered in this chapter, it has always been
the function N (x+y

√
d) = x2−dy2 that has served as our candidate for a Euclidean

norm. It happens, however, that a ring of integers could fail to be a Euclidean domain
using this norm but still be a Euclidean domain via some other norm. Investigate.

Exercise 6.40 Replicate for Eisensteinian triples all the principal results we de-
veloped in the previous chapter for Pythagorean triples. To the extent possible,
connect to prime factorization in Z[ζ3] and culminate in a complete classifica-
tion/parameterization of such triples.
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Reciprocity

...wherein we take minding our p’s and q ’s to its logical
limit.

7.1 Introduction

One of the biggest remaining generalizations in moving from the Gaussian integers
to arbitrary quadratic fields is the series of results that concluded Chapter 5, and in
particular Section 5.6, in which we classified the Gaussian primes and how rational
primes p behave in Z[i]. We recall Theorem 5.6.4:

Theorem 7.1.1 (aka Theorem 5.6.4)
The following are equivalent for all rational primes p:

(i) p factors in Z[i]; i.e., p is not a Gaussian prime.
(ii) p = a2 + b2 for (essentially unique) integers a, b.
(iii) −1 is a square modulo p.
(iv) p ≡ 1 or 2 (mod 4).

Candidates for how to generalize some of these bullets are relatively easy to come
by. To replace the p = a2 + b2 condition, for example, we recognize the close
tie between the primes that factor in Z[√d] and the primes expressible in the form
p = a2 − db2 through the norm identity

p = a2 − db2 = (a + b
√

d)(a − b
√

d) = N (a + b
√

d).
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We saw expressions of this type repeatedly in the previous chapter. In particular, if
Z[√d] is a UFD, then the above will represent the unique prime factorization of p
in this ring, and the analog of the equivalence (i) ⇐⇒ (ii) will carry over. Similarly,
if p = a2 − db2, then reduction mod p gives

a2 − db2 ≡ 0 mod p,

and so d is a square mod p (one shows that we can take b �≡ 0 mod p and then
d ≡ (ab−1)2). In the context of the Gaussian integers, where d = −1, this is
precisely condition (iii) that −1 is a square mod p.

This brings us to the last bullet. Whereas bullets (i)–(iii) represent the properties
of a prime that are of tremendous interest but are hard to mentally evaluate from
first principles, bullet (iv) permits an almost trivial calculation. It is not much of an
overstatement to say that the inclusion of bullet (iv) in that list, that such a direct
method exists for testing if a prime satisfies any of (i)–(iii), is the true meat of the
theorem. In the case of Gaussian integers, we used Lagrange’s Lemma and Fermat’s
Two-Square Lemma to deduce that the condition that −1 is a square mod p is
equivalent to p ≡ 1 or 2 mod 4. These methods were somewhat ad hoc, and so it
is this final part of the story that we aim to generalize in this chapter. Can we find
something as simple as a congruence condition to generalize bullet (iv) from the list?
That is, can we find a list of modular arithmetic conditions on a prime p that will
dictate whether or not d is a square mod p?We motivate the ensuing discussion with
the following questions about primes p and q:

• For fixed q , for which p does x2 ≡ p mod q have a solution?
• For fixed p, for which q does x2 ≡ p mod q have a solution?

Despite differing in only one single character, there is a world of difference between
these two questions. The first of them, when q is fixed, can be answered by brute
force: we square all the values mod q and the results are the equivalence classes mod
q that have a square root. The second question, on the other hand, is in principle an
infinite calculation.

The remarkable punchline of this story is a completely algorithmic approach to
figuring out which numbers have square roots modulo which other numbers. The
upcoming Law of Quadratic Reciprocity tells us that despite all appearances, the two
questions above are of exactly the same difficulty—anyone capable of efficiently
answering the first question can also efficiently answer the second, and vice versa.

In proving this theorem, we will find cause to depart substantially from the world
of quadratic fields to peek at algebraic numbers of higher degree. The equation

xn = 1

is rather innocuous as far as equations go, but its solutions (in any ring) are of
fundamental importance. In particular, its solutions in the complex plane are the
n-th roots of unity, and they have already manifested themselves several times in
the book. When n = 2, the solutions are ±1, numbers of such significance as not
to need introduction. The solutions for the cases n = 3 and n = 4, respectively,
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give rise to the Eisenstein and Gaussian integers. We can chalk up to Gauss the
realization that a more methodical study of these numbers is needed for all n. We
will alternate between developing these two seemingly disparate studies—the study
of square roots in Z/(p) and the study of p-th roots of unity in C—before arriving
at Gauss’s conclusion that the two are inextricably linked.

7.2 Quadratic Residues and Legendre Symbols

Definition 7.2.1

A quadratic residue modulo n is an integer a ∈ Z (or sometimes [a] ∈ Z/(n))
for which the equation x2 ≡ a (mod n) has a solution. If there is no solution, we
say a is a quadratic non-residue modulo n. �

Theword “residue” here is a near-synonym for “remainder” (an amount left over),
and so a quadratic residue mod n is an integer whose remainder mod n (or rather,
its congruence class) is a square in Z/(n). We will continue our use of slightly less
formal language, saying that a is (or is not) “a square mod n.” For example, we have
already seen that the squares mod 4 are 0 and 1, as we can find solutions to x2 ≡ 0
(mod 4) and x2 ≡ 1 (mod 4), but not to x2 ≡ 2 (mod 4) or x2 ≡ 3 (mod 4).
There is a straight-forward algorithm for identifying the squares mod n—we simply
compute [x]2 for each [x] ∈ Z/(n)—and looking for patterns in the results while
doing so consumed countless hours for generations of pre-Gaussian mathematicians.
As primes will be of primary interest in our investigation, let us focus on the case
where n is prime.

� Example 7.2.2 List all of the quadratic residues modulo 3, 5, and 7.

Solution We simply square all of the elements in Z/(p).

Fig. 7.1 Our hopes and dreams made manifest: the quadratic residues modulo 11 and 13



212 7 Cyclotomic Number Theory: Roots and Reciprocity

(a) Modulo 3, we have 02 = 0, 12 = 1, and 22 = 4 ≡ 1 (mod 3).
Thus the squares in Z/(3) are [0] and [1].

(b) The squares modulo 5 are 02 = 0, 12 = 1, 22 = 4, 32 = 9 ≡ 4, and 42 = 16 ≡ 1
(mod 5). Thus in Z/(5), we have the squares [0], [1], and [4].

(c) Modulo 7, we have 02 = 0, 12 = 1, 22 = 4, 32 ≡ 2, 42 ≡ 2, 52 ≡ 4, and 62 ≡ 1
(mod 7). Thus in Z/(7), [0], [1], [2], and [4] are the only squares. �

The following notational convention is not only a convenient shorthand for dis-
cussion but also sets up the “right” way of thinking about modular square roots.

Definition 7.2.3

For a ∈ Z and an odd prime p, we define the Legendre symbol
(

a
p

)
by

(
a

p

)
=

⎧
⎪⎨
⎪⎩

0 if p | a.

+1 if a is a non-zero square mod p.

−1 if a is not a square mod p. �

Be sure not to interpret a Legendre symbol as a fraction—the symbol
( ·

·
)
is a

function of two variables which spits out ±1 (or 0) according to whether the top
input is a square modulo the bottom input. That said, as a matter of convenience and
maybe a pinch of masochism, we will typically make reference to the “numerator”
and “denominator” of the Legendre symbol instead of the awkward terms “top input”
and “bottom input.” It is not obvious yet why we should have to pull out the case
p | a as a special case in the definition, but for now note that the case that a ≡ 0
(mod p) is the case that a has only one square root modulo p, whereas there will
always be two solutions (if any) when a �≡ 0 (mod p) (since p is odd, square roots
come in distinct ± pairs; see Exercise 7.14).

Example 7.2.2(b) can be encoded in this notation as follows:
(
0

5

)
= 0,

(
1

5

)
=

(
4

5

)
= 1, and

(
2

5

)
=

(
3

5

)
= −1.

We promise opportunities to explore patterns in Legendre symbols momentarily,
but first an aside: there is probably no more evocative use of the word ring for our
beloved algebraic structures than the organization of Z/(n) in a circular diagram.
As it turns out, this picture also sheds a little geometric light on our search for
patterns among Legendre symbols. We begin our journey with the following pair of
diagrams, consisting of the rings Z/(11) and Z/(13), arranged ringularly, in which
each element has been circled once for each square root it has in that ring (Figure
7.1).

What conjectures do these tantalizing images elicit? What shrouded symmetries
seethe secretly sub the seemingly serene surface? All in good time, dear readers, all
in good time.
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Exploration M

Collecting Quadratic Data �

1 Some preliminary experimentation with Legendre symbols:

M.1 Solve the following two problems:

• Find the first five primes p satisfying

(
p

3

)
= 1.

• Find the first five primes p satisfying

(
3

p

)
= 1.

Then discuss the relative difficulty of the two problems.

M.2 Fill in the following tables with the data and look for patterns.

p 3 7 11 13 17(
5

p

)

(
p

5

)

p 3 7 11 17(
13

p

)

(
p

13

)

p 3 7 13 17(
11

p

)

(
p

11

)

M.3 Step back and discern patterns both (a) within and (b) among the tables for 5,
13, and 11. Make some predictions for what might emerge in the analogous

(17
p

)
or(19

p

)
tables.

1 See the Python worksheet “Legendre Symbols” for a programming approach.
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7.3 Quadratic Residues and Non-Residues Mod p

We will soon see that the heart of the matter lies in focusing on Legendre symbols(a
p

)
for p a positive odd prime and a an arbitrary integer. Currently, our approach to

evaluating any particular one of these symbols is via exhaustion. For example, we can
compute that

(11
17

) = −1 by squaring each element ofZ/(17) and observing that none
of the results are 11. But this algorithm does not scale well to larger denominators
and, ultimately, it feels somewhat disappointing to have an algorithm rather than a
formula. Fortunately, we can rectify both of these dilemmas at once.

Recall from Section 4.8 that a primitive root modulo p is an element g ∈ Z/(p)×
of order p − 1 and that Theorem 4.8.5 guarantees the existence of such an element
modulo any prime. A pleasant consequence of the existence of a primitive root is a
systematic organization of the elements of Z/(p)× as increasing powers of such a
root. For example, 2 is a primitive root mod 13, and the first 12 powers of 2 arrange
the elements of Z/(13)× as

(20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211) ≡ (1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7) mod 13.

Choosing a different primitive root will produce a different ordering, and so the
ordering itself is not particularly special. Indeed, 6 is another primitive root mod 13,
and arranging Z/(13)× as powers of 6 provides the ordering

(60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 610, 611) ≡ (1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11) mod 13.

While the specific ordering isn’t of particular significance, there is a potent com-
monality between the two orderings: we can identify the squares in (Z/13)× very
quickly from either list! The observation is simply that regardless of their reduction
mod 13, the elements {20, 22, 24, 26, 28, 210} are clearly all squares mod 13 (being
the respective squares of 20 through 25), and likewise for the even powers of 6. In the
lists above, this manifests as the observation that the set of values in the even-indexed
slots are the same in both lists—{1, 4, 3, 12, 9, 10} vs {1, 10, 9, 12, 3, 4}—and are
all squares mod 13. Proving that this is the complete set of squares modulo 13 is not
difficult.

Lemma 7.3.1

Let g be a primitive root mod p. Then the non-zero quadratic residues mod p are
precisely the even powers of g. �
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Proof We begin by observing that g itself is a non-square modulo p. Indeed, if g =
h2, then by Fermat’s Little Theorem, 1 ≡ h p−1 ≡ g(p−1)/2 mod p, contradicting
the fact that g has order p − 1. Now, every a ∈ Z/(p)× can be written in the form
gk for some 1 ≤ k ≤ p − 1. We show that a is a square if and only if k is even. First,
if k = 2� is even, then a = gk = g2� = (g�)2 is a square. Second, if k = 2� + 1 is
odd and a = b2 were a square, then b2 ≡ (g�)2 · g, so g ≡ (bg−�)2 is a square, a
contradiction. �

Corollary 7.3.2

For p odd, exactly half of the non-zero elements of Z/(p) are squares, and half
are non-squares. �

The lemma leads to a succinct algebraic encoding of the question of whether a is
a square mod p, called Euler’s Criterion. It is interesting to note that while it makes
use of the above lemma, and thus hinges on the existence of a primitive root, it is not
necessary to actually find one in order to use it to compute Legendre symbols.

Theorem 7.3.3 (Euler’s Criterion)
For all a ∈ Z, (

a

p

)
≡ a(p−1)/2 (mod p).

Proof If p | a, both sides of the equation are 0. Otherwise, let g be a primitive root
mod p. If

(a
p

) = 1, then by Lemma 7.3.1, a = g2� for some �, and then

a(p−1)/2 ≡
(

g2�
)(p−1)/2 ≡ (

g p−1)� ≡ 1� ≡ 1 mod p

by Fermat’s Little Theorem, so both sides of the claimed equality agree. Similarly,
if

(a
p

) = −1, then a = g2�+1 for some �, and then

a(p−1)/2 ≡ (
g p−1)� · g(p−1)/2 ≡ 1� · (−1) mod p.

Here we have used that h = g(p−1)/2 is either ±1 since h2 ≡ g p−1 ≡ 1, but h is not
1 since g has order p − 1 (and not (p − 1)/2). �

It is hard to overstate how valuable an algebraic resolution to the question of the
existence of square roots is. As a first example, we see that the Legendre symbols is
multiplicative in its top input.
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Corollary 7.3.4

For all integers a and b and any odd prime p, we have
(

ab

p

)
=

(
a

p

) (
b

p

)
.

�

Proof If p divides either a or b, both sides are zero. Otherwise,
(

ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

) (
b

p

)
(mod p).

Since both sides of this expression are integers equal to ±1 and p is odd, they must
be equal. �

It is remarkable how closely this situation mirrors that ofR. In the context of non-
zero real numbers, note that the notions of being positive and of being a square are
completely synonymous: the non-zero real numbers with square roots are precisely
the positive ones and it is thus not unreasonable to say, as in Corollary 7.3.2, that
half of real numbers are squares, and half are non-squares. In R, the product of
two negative real numbers is a positive real number, i.e., the product of two non-
squares is a square, much like Corollary 7.3.4. This provides some validation that
the notation

(·
·
)
is more than just a convenient shorthand, but actually clarifies the

structure—being a quadratic residue or non-residue is analogous to being positive
or negative in the reals, so associating these characteristics with the values ±1 is
eminently reasonable.

7.4 Application: Counting Points on Curves

We will use the algebraification of quadratic residueness to study algebraic curves,
specifically for counting the number of points on such a curve defined over Z/(p).
We conclude the section with one concrete computation which will provide a crucial
step in our eventual proof of the main result of the chapter, the Quadratic Reciprocity
Law.

We consider an elliptic curve E defined over Z/(p); that is, an equation of the
form y2 = f (x) = x3 + sx + t where s, t ∈ Z/(p) and 4s3 − 27t2 �= 0 (Definition
2.3.3). We would like to know how many points are on this curve, i.e., the number
|E(Z/(p))| of pairs (x, y) ∈ Z/(p) × Z/(p) that satisfy the given equation. Figure
7.2 shows the curve y2 = x3 + x + 1 (so s = t = 1) over each of Z/(13) and
Z/(101). Note that we need to quite drastically update our expectation as to what a
“curve” should look like in this setting!

The graphs reveal several tantalizing patterns. Perhaps most glaring is the appar-
ent horizontal line of symmetry halfway up the y-axis— this is explained by the
observation that (p − y)2 ≡ y2 mod p. That is, whenever (x, y) is on the curve, so
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Fig. 7.2 The Elliptic Curve y2 = x3 + x + 1 over Z/(13) and over Z/(101)

is (x, p − y). In fact, if we had chosen coset representatives for our y-axis to range
from −6 to 6 instead of 0 to 12 in the first graph, we would have seen a horizontal
line of symmetry precisely at the x-axis, much like it is for our standard pictures of
elliptic curves drawn in R

2 (e.g., Figure 2.4). A second observation pertains more
directly to counting points: as with the picture over R, any vertical line x = a for
a ∈ Z/(p) intersects the curve in 0, 1, or 2 points. How many? It depends on the
Legendre symbol

( f (a)
p

)
!

• If f (a) is a non-zero square mod p — say, f (a) = b2 —then both (a, b) and
(a, −b) satisfy the equation y2 = f (x).

• If f (a) is a non-square mod p, then y2 = f (a) is unsolvable and so there is no
point on E with x-coordinate a.

• Finally, each time f (a) is 0, we get the single point (a, 0) on the curve.

This observation permits a remarkable approach to counting the total number of
points on the curve:We simply run from a = 0 up to a = p−1 and add up 1+( f (a)

p

)
,

an expression which contributes a summand of 2 if f (a) is a square, 1 if f (a) = 0,
and 0 if f (a) is a non-square. That is,

|E(Fp)| =
p−1∑
a=0

1 +
(

f (a)

p

)
= p +

p−1∑
a=0

(
f (a)

p

)
.

In addition to being a remarkably concise formula, this also permits a relatively
easy first estimate for its value. Recall that by Corollary 7.3.2, half of the non-zero
elements of Z/(p) are squares and half are non-squares. It is reasonable to predict
that the summands in the right-most expression above are thus +1 for about half the
possible values of a and−1 for the other about-half of the possible values of a (there
are at most 3 values of a for which f (a) = 0, so let’s neglect them for estimation
purposes). Adding roughly the same number of +1’s and −1’s in a sum is like not
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having them at all, and so
|E(Fp)| ≈ p. (*)

Of course, nothing forces the values of f (x) to take on square values precisely half
the time. However, while its proof lies beyond the scope of this book, we mention
in passing the renowned Hasse-Weil Theorem, a remarkable theorem of arithmetic
geometry that says while any given f (x)might skew towards square (or non-square)
values more often than a strict 50/50 split, they can’t stray too far. Specifically, the
estimate (∗) can be off by at most roughly 2

√
p. For example, given the elliptic

curve E defined by y2 = x3 + x + 1 and p = 15, 485, 863 (the one millionth prime
number), the theorem gives that

15, 477, 992 < |E(Fp)| < 15, 493, 734.

This is a remarkably tight range given the Herculean task2 of enumerating all such
points3 . We refer the reader to Exercise 7.30 to find a more precise statement of the
theorem.

Conics and the Return of Diophantus

While the arguments above to count points on elliptic curves lead to some pretty
high-end algebraic geometry, the exact same arguments provide fruitful, concrete
results when applied nearly verbatim to conics. Let us consider a curve C of the
form

y2 = f (x) = x2 + sx + t, s, t ∈ Z/(p).

Using the same reasoning as for elliptic curves, the number of points on C over
Z/(p) is given by

|C(Z/(p))| =
p−1∑
a=0

1 +
(

f (a)

p

)
= p +

p−1∑
a=0

(
f (a)

p

)
.

Now unlike the case of elliptic curves, for these conics, we can obtain an exact
count of the number of points using simple factorization.

Theorem 7.4.1
Let p be an odd prime, and f (x) = x2 + sx + t a quadratic polynomial over
Z/(p) with non-zero discriminant (s2 − 4t �= 0). Then the conic y2 = f (x)

has precisely p − 1 points on it.

2 Counting points on elliptic curves is one of his lesser-known labors.
3 In case it was going to keep you awake at night, there are exactly 15,486,474 of them.
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Proof First, since p is odd, 2 is invertiblemodulo p, so we can “complete the square”
to re-write the conic as

y2 = x2 + sx + t =
(

x + s

2

)2 + u

where u = t − s2
4 = 4t−s2

4 �= 0 by the discriminant hypothesis. (Note that we are
writing s

2 as a shorthand for s · 2−1). Rearranging gives

u = y2 −
(

x + s

2

)2 =
(

y − x − s

2

) (
y + x + s

2

)
.

Thus every point on the conic provides a factorization of u in Z/(p). Conversely,
given a factorization u = u1u2, then the system

u1 = y − x − s

2

u2 = y + x + s

2

provides the following solution to the conic:

x = u2 − u1 − s

2
y = u1 + u2

2
.

We thus have a bijection between points on the conic and (ordered) factorizations of
u into two factors u = u1u2 in Z/(p). This establishes the result, as there are exactly
p − 1 such factorizations: for any u1 �= 0 in Z/(p), there is a unique u2, namely
u2 = uu−1

1 , that gives a factorization. �

It is intriguing to think of this proof as a multiplicative analog of the Diophantus
Chord Method of Chapter 2. Recall that given a point (x0, y0) on a conic over Q, we
found all other points by intersecting the conic with the lines y = m(x − x0) + y0
as m varied over all rational slopes. Similarly, the above proof has us enumerate the
factorizations u = u1 ·u2 of a given non-zero u ∈ Z/(p). To do so, we begin with the
initial solution (u1, u2) = (u, 1) and form every other factorization as (u ·m, 1·m−1)

as m varies over all non-zero elements of Z/(p).
In fact, even the regular version of the chord method (that is, not a multiplicative

analog) canbemade towork for conics overZ/(p), a factmade all themore surprising
since the geometric nature of that proof seems to crumble under the discreteness of
modular geometry (e.g., Figure 7.2). A counting argument (Exercise 7.17) shows
that every conic over Z/(p) has at least one point and that, roughly speaking, one
can account for every other point on the conic as above, by intersecting it with the
appropriate line of slope m. Pursuing this approach carefully, however, would take
us far afield into the world of projective geometry and modular algebraic geometry
(Pickle: what, for example, do “tangent lines” look like mod p?), and so we will
leave this as a tantalizing avenue for exploration, except to note that Exercise 7.18
presents a case where everything works rather nicely.
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Corollary 7.4.2

For f as in Theorem 7.4.1, we have

p−1∑
a=0

(
f (a)

p

)
= −1.

�

Proof Let C be the curve y2 = f (x). Then by the theorem,

p − 1 = |C(Fp)| =
p−1∑
a=0

(
1 +

(
f (a)

p

))
= p +

p−1∑
a=0

(
f (a)

p

)
,

giving the result. �

7.5 The Quadratic Reciprocity Law: Statement and Use

The key problem remaining is the efficient computation of Legendre symbols. While
we have several feasible algorithms (brute-force squaring, organizingZ/(p) as pow-
ers of a primitive root, or computation using Euler’s Criterion), these all pale in ef-
ficiency when compared with the one example we’ve developed a complete answer
for. When a = −1, Theorem 7.1.1 shows that computing

(a
p

)
is as simple as re-

ducing p mod 4. Of course, this also follows by Euler’s Criterion, as the expression
(−1)(p−1)/2 is very easily evaluated. This special case will continue to be a special
case for some time, and we view it as a supplement to the upcoming main law:

Theorem 7.5.1 (Quadratic Reciprocity, Supplemental Law #1)

For all odd primes p, we have

(−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

The goal is now to complete the process that this preliminary result begins,
systematically evaluating the symbols

(a
p

)
. The proofs of these results will require

developing a reasonable amount of new machinery, so the current section serves as
an appetizer, establishing the significance of said results and developing fluency in
their use. We begin with the other special case, determining when a = 2 is a square
mod p:
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Theorem 7.5.2 (Quadratic Reciprocity, Supplemental Law #2)

For all odd primes p, we have

(
2

p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

The proof of the first equality in the theorem statement is the bulk of the claim and
will be addressed in Section 7.7 in tandemwith the proof of theQuadratic Reciprocity
Law. The second equality is simply casework: any odd prime p is congruent to one
of 1, 3, 5, or 7 mod 8, and each one of these four values squares to be congruent to 1

mod 8, so p2−1
8 is always an integer. We verify by hand that (−1)(p2−1)/8 evaluates

to +1 when p ≡ ±1 mod 8 and −1 when p ≡ ±3 mod 8.
Now, moving on to arbitrary numerators, the multiplicativity of the Legendre

symbol (Corollary 7.3.4) allows us to reduce the calculation of any Legendre symbol
to one in which all of the numerators are prime (or−1). For example, if we wanted to
decide if−90were a squaremodulo a prime q > 5, the factorization−90 = −2·32 ·5
implies that (−90

q

)
=

(−1

q

)(
2

q

)(
3

q

)2(5

q

)
.

Of these four factors, the first two are handled by the two Supplemental Laws above,
and the third is trivially +1 (as regardless of the value of

(3
q

)
, its square is +1). This

leaves only the problem of evaluating the Legendre symbol
(5

q

)
, and more generally

the Legendre symbols
(p

q

)
for two odd primes p and q . The Quadratic Reciprocity

Law provides a remarkable mechanism for evaluating these symbols efficiently.

Theorem 7.5.3 (Quadratic Reciprocity Law)
For odd primes p and q,

(
p

q

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
(

q

p

)
if either p or q ≡ 1 (mod 4)

−
(

q

p

)
if both p and q ≡ 3 (mod 4).
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There are several equivalent reformulations of this result that one might find in the
literature, e.g., that (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

We refer the reader to the exercises for this and several other equivalencies.
The surprising consequence of the Quadratic Reciprocity Law is that the question

of whether p is a square mod q appears to be inexorably tied to that of whether q
is a square mod p. Why should those two questions have anything to do with one
another?Surprisingly enough,we learn from the theorem that if at least oneof p orq is
congruent to 1modulo 4, then not only are the two answers to these questions related,
they’re the same! And if both are 3 mod 4, the answers are opposite. The patterns
in Exploration M provide further corroboration on the relationship articulated by
the theorem, and we take some time now to develop the mechanics of applying the
theorem to calculate Legendre symbols. The calculations of

(a
p

)
below all proceed

by way of well-timed application of some collection of the following operations:

(1) Applying the Quadratic Reciprocity Law.
(2) Applying one of the Supplemental Laws in case a = −1 or a = 2.
(3) Using the multiplicativity of the Legendre symbol.
(4) Removing square factors of a (since

(c2
p

) = (c
p

)2 = 1 whenever p � c).

(5) Modular reduction: By definition, we have
(a

p

) = (a mod p
p

)
.

� Example 7.5.4 Is 41 a square mod 103? Yes, since
(
41

103

)
=

(
103

41

)
=

(
21

41

)
=

(
3

41

)(
7

41

)
=

(
41

3

)(
41

7

)
=

(−1

3

)(−1

7

)
= (−1) · (−1) = 1.

� Example 7.5.5 Is 79 a square mod 101? Yes, since
(
79

101

)
=

(
101

79

)
=

(
22

79

)
=

(
2

79

)(
11

79

)
= 1 ·

(
11

79

)
= −

(
79

11

)
= −

(
2

11

)
= −(−1) = 1.

Of course, both of the above examples could be in principal done by brute force,
squaring all the elements of Z/(103) and Z/(101) and seeing if we ever got out 41
or 79, respectively. A more substantial application of quadratic reciprocity allows
us to fix the numerator and vary the denominator of the Legendre symbol, in which
case a brute-force search is no longer possible.

� Example 7.5.6 For which odd primes p is 5 a square mod p? By Quadratic Reci-
procity,

(5
p

) = (p
5

)
, so for odd primes p,

(
5

p

)
= 1 ⇐⇒

(
p

5

)
= 1 ⇐⇒ p ≡ 1 or 4 mod 5.



7.6 Some Unexpected Helpers: Roots of Unity 223

� Example 7.5.7 For which odd primes p is 7 a square mod p? This problem differs
from the previous example in that the relationship between

(7
p

)
and

(p
7

)
depends

on the value of p mod 4 so we need to break into these two cases. First, if p ≡ 1
(mod 4), then

(7
p

) = (p
7

)
, which is 1 if and only if p ≡ 1, 2, or 4 (mod 7). And

if p ≡ 3 (mod 4), then
(7

p

) = −(p
7

)
, which is 1 if and only if p ≡ 3, 5, or 6

(mod 7). So, in summary, for odd primes p we have

(
7

p

)
= 1 ⇐⇒

(p ≡ 1 mod 4) and (p ≡ 1, 2, 4 mod 7)

or

(p ≡ 3 mod 4) and (p ≡ 3, 5, 6 mod 7)

.

In principal, we can stop our answer here, though it’s often preferable to report
an answer as a single modular congruence rather than a system of congruences
with different moduli. Since 4 and 7 are relatively prime, an application of Sunzi’s
Theorem (Theorem 4.7.5) converts each possible pair into a single condition mod
28. We conclude that for odd primes p,

(
7

p

)
= 1 ⇐⇒ p ≡ ±1,±3, or ± 9 (mod 28).

As a culminating calculation of this type, we leave it as an exercise (Exercise 7.4)
to finish the problem started in the section, finding all primes q for which −90 is a
square mod q .

7.6 Some Unexpected Helpers: Roots of Unity

Much of our focus in this book has dealt with “quadratic phenomena,” e.g., quadratic
Diophantine equations and quadratic fields, and in this chapter an obsession with
square roots mod p. It may come as a surprise (or perhaps a welcome respite) that
we nowdrastically shift gears—from square roots to n-th roots, and from themodular
world to the complex one. Explicitly, despite seeming to have little connection to
our Legendre symbols, we will move toward considering n-th roots of the number 1
in the complex plane, which are solutions to the equation

zn = 1, z ∈ C.

Fortunately, we have a lot of experience with such numbers, at least for small n: the
cases n = 1 and n = 2 have solution sets of {1} and {±1}, respectively. When n = 3,

the solution set {1,− 1
2 ±

√−3
2 } led us to the Eisenstein integers, and when n = 4

our solutions {±1, ±i} led to the Gaussian integers.
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Definition 7.6.1

Given a natural number n, an n-th root of unity is a complex number z such that
zn = 1. An n-th root of unity z is primitive if zm �= 1 for all natural numbers
m < n. �

That is, a primitive n-th root of unity is an n-th root of unity that isn’t an m-th
root of unity for any m < n. For example, each element of {±1,±i} is a 4th root
of unity, but only ±i are primitive 4th roots of unity since 11 = 1 and (−1)2 = 1.
We remark that the tools of Section 1.3 show that at least one primitive n-th root of
unity exists for any n: as mentioned in that section, if z = 1∠ θ, then zn = 1∠ (nθ).
Indeed, using complex exponential notation, substituting z = reiθ into zn = 1 gives

rneinθ = 1 = 1ei2π,

showing that the n-th roots of unity must have r = 1 and nθ = 2π, and so we
obtain n distinct solutions by taking θ = 2kπ/n for any 0 ≤ k ≤ n − 1. Taking
k = 1 guarantees that the root is primitive, as its powers run through all of the
other solutions before returning to 1. The linear combinations of these powers form
another interesting ring.

Definition 7.6.2

For a natural number n, we denote by ζn the primitive n-th root of unity ζn =
e2πi/n , or just ζ when the n is fixed or unambiguous. The n-th ring of cyclotomic
integers is the ring

Z[ζn] = {a0 + a1ζn + a2ζ
2
n + · · · + anζn−1

n : ai ∈ Z, 0 ≤ i ≤ n − 1}. �

The word “integer” in the definition needs some justification.

Theorem 7.6.3
Every element of Z[ζn] is an algebraic integer.

This follows trivially from the observation (Theorem 6.2.12) that sums and prod-
ucts of algebraic integers are again algebraic integers, but since we did not fully
justify that claim back in Chapter 6, let us give a careful proof for this special case.

Proof Abbreviate ζ = ζn and take some z ∈ Z[ζ]. Our task is to find a monic
polynomial f ∈ Z[x] for which f (z) = 0. Observe that for any 0 ≤ j ≤ n − 1, the
number zζ j is also in Z[ζ], and so expressible in the form

zζ j =
n−1∑
k=0

a jkζ
k
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for some integers a jk , providing a system of equations:

a00 + a01ζ + · · · + a0,n−1ζ
n−1 = z

a10 + a11ζ + · · · + a1,n−1ζ
n−1 = zζ

...
...

...
...

an−1,0 + an−1,1ζ + · · · + an−1,n−1ζ
n−1 = zζn−1.

Write this system as the matrix equation
⎡
⎢⎢⎢⎣

a00 a01 . . . a0,n−1
a10 a11 . . . a1,n−1
...

...
. . .

...

an−1,0 an−1,1 . . . an−1,n−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
ζ
...

ζn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z
zζ
...

zζn−1

⎤
⎥⎥⎥⎦ ,

or just Av = zv, where A is the coefficient matrix on the left and v is the vector
whose entries are the powers of ζ. This is all we need: this says that z is an eigenvalue
of A corresponding to the eigenvector ζ; i.e., z is a root of the monic polynomial
f (λ) = det(λI − A). �

The definition of ζn above as e2πi/n is one of the last references to explicit complex
exponentials in the book. All that will typically matter is that we set ζn to be any
one particular primitive n-th root of unity, and not e2πi/n specifically4 . In fact, while
for select values of n we can express ζn in terms of concise algebraic expressions

involving radicals (e.g., ζ3 = −1+√−3
2 ), these are the exception rather than the rule.

Instead, for most values of n, to do arithmetic with ζn we need only invoke its
principal property, that it is a root of the polynomial xn − 1 = 0. As an exercise in
this philosophy, let us deduce some key arithmetic properties of n-th roots of unity
directly from the algebraic definition, foreshadowing our goal of finding relationships
between n-th roots of 1 and square roots of n.

Here goes. Let ζ be a primitive n-th root of unity (n > 1). Then ζn = 1, and
by taking conjugates, ζ

n = 1 as well. Thus N (ζ) = ζζ is a positive real number
satisfying (ζζ)n = 1, and so ζζ = 1. We conclude that ζ = ζ−1 and thus that
ζk = ζ−k = ζn−k for all k ∈ Z. Since the equation xn = 1 has the n complex
solutions ζa (0 ≤ a ≤ n − 1), including the real solution x = 1, we have the
factorization

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1)

= (x − 1)(x − ζ)(x − ζ2) · · · (x − ζn−1).

4 This brings up an interesting philosophical point: For n = 4, for example, this is the statement
that we could have developed all of Gaussian arithmetic using −i instead of +i . In fact, how do
you know which of the two complex solutions to z2 = −1 is the one that should be called +i and
which should be called −i? Answer: You don’t. You can’t!
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Since C[x] is a Unique Factorization Domain (see Example 6.5.7), we can cancel
x − 1 from both factorizations to arrive at

xn−1 + xn−2 + · · · + x2 + x + 1 = (x − ζ)(x − ζ2) · · · (x − ζn−1).

Evaluating both sides of this identity at different values of x provides useful numerical
relationships: first, evaluating at x = ζ gives the identity

1 + ζ + ζ2 + · · · + ζn−1 = 0,

and second, evaluating at x = 1 gives

n = (1 − ζ)(1 − ζ2) · · · (1 − ζn−1),

a factorization of the integer n in the ring Z[ζ].
Assume for simplicity that n is odd (indeed, we mostly care about the case that n

is an odd prime), so that n−1
2 is an integer. Then splitting the above factorization at

the half-way point allows us to write

n = (1 − ζ)(1 − ζ2) · · · (1 − ζ
n−1
2 )(1 − ζ

n+1
2 ) · · · (1 − ζn−2)(1 − ζn−1)

= (1 − ζ)(1 − ζ2) · · · (1 − ζ
n−1
2 )(1 − ζ

n−1
2 ) · · · (1 − ζ2)(1 − ζ)

= N ((1 − ζ)(1 − ζ2) · · · (1 − ζ
n−1
2 )).

That is, the element u = (1 − ζ)(1 − ζ2) · · · (1 − ζ
n−1
2 ) ∈ Z[ζ] has N (u) = n and

|u| = √
N (u) = √

n. This bodes well for our desired connection between Z[ζn]
and square roots of n. Foreshadowing accomplished! As it turns out, u is in general
neither

√
n nor

√−n (try it for n = 3). And yet, it offers the tantalizing possibility
that some other arithmetic combination of ζ’s might succeed in demonstrating for
us that

√
n or

√−n is itself in Z[ζ], so that the arithmetic of roots of unity could be
brought to bear upon understanding Diophantine equations like p = x2 − ny2. The
following exploration continues this quest, attempting to find hints of a

√
n appearing

in this exotic cyclotomic world. For ease of reference in doing so, we collect below
the most important of the identities deduced above.

Theorem 7.6.4
Let n ∈ N and let ζ ∈ C be an n-th root of unity. Then ζ = ζ−1 and for any
k ∈ Z, we have ζk = ζk mod n . Further, we have

1 + ζ + ζ2 + · · · + ζn−1 = 0.
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Exploration N

Playing with 5th Roots of Unity �

Let us explore some basic (or at least, basic-looking) sums in Z[ζ], where ζ = ζ5
is our chosen primitive 5-th root of unity. The powers of ζ are displayed in the
complex plane below.

N.1 Mentally place each of the following quantities in the complex plane.

ζ6 ζ1234 ζ−37 ζ + ζ4 ζ + ζ2 + ζ3 + ζ4

Prompted by our quest for
√

n, we turn our attention to sums of the form

Gε = ε1ζ
1 + ε2ζ

2 + ε3ζ
3 + ε4ζ

4

where each εi = ±1 and ε = (ε1, ε2, ε3, ε4).

N.2 Use Figure 7.3 to decide if there are choices for ε so that Gε is:

• real and positive • real and negative • imaginary

N.3 Use Theorem 7.6.4 (and that ε2i = 1) to find a simple expression for

G2
ε = (

ε1ζ
1 + ε2ζ

2 + ε3ζ
3 + ε4ζ

4)2 .

N.4 Use your results of Problem N.3 to corroborate and further your findings in
Problem N.2. In particular, to find the positive real Gε, figure out how to choose ε
so that your expression for G2

ε is real.

N.5 Much of our upcoming work centers around generalizing the previous problem.
Based on the ε you found there, make a prediction about how to assign values for
ε1, ε2, . . . , εp−1, each equal to ±1, so that

(
ε1ζp + ε2ζ

2
p + ε3ζ

3
p + · · · + εp−1ζ

p−1
p

)2
is real.
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Fig. 7.3 The Power(s) of
ζ = ζ5

1

ζ
ζ2

ζ3

ζ4

7.7 A Proof of Quadratic Reciprocity

Once per generation a mathematical theorem comes along encoding an observation
so breathtakingly beautiful, so eye-openingly insightful, that its proof seems to just
write itself. The Law of Quadratic Reciprocity, articulated by Euler and Legendre
after lifetimes of pattern-searching not dissimilar to what you yourself have done
over the course of this chapter, is not such a result. To be sure, reciprocity is highly
non-obvious, and your loving authors, in rare consensus, agree that this is one of
the most beautiful results in number theory, leading to its prominence as a hallmark
result in almost any number theory book. But the proof of quadratic reciprocity does
not simply fall out after the observation is made. Indeed, neither Euler nor Legendre
managed to put together a complete proof5 , leaving that trophy to be claimed by one
nineteen-year-old Carl Friedrich Gauss6 .

Before we move on, while we will not dwell on the history and evolution of the
result (though we encourage the readers to peruse some of the historically-oriented
research exercises), it is worth pausing for one comment on the interplay of history
and notation. The notationwe have used throughout the chapter, and indeed thewhole
book, has been shaped by centuries of a kind of notational natural selection: nota-
tion that elucidates key ideas gets picked up and used again by subsequent authors,
whereas notation that obscures patterns falls into disuse. Gauss, for example, did not
have at his disposal Legendre symbols, a piece of notation we have been positively
beaming about for several sections now. Likewise, Legendre did not have Gauss’
notation for modular congruence, and through modern eyes it is hard to imagine
getting this far in number theory without it. As a consequence, the proof we provide
below is significantly less complicated than Gauss’ original proof (to distinguish it
from the several other proofs he devised over his lifetime7 ) and other early proofs.
Finally, we note that the result is often cited as one of the “most proved” results of
mathematics, as measured by the number of different proofs, so our approach via
roots of unity is by no means the only one. In fact, it seems likely that a complete
understanding of the result necessitates processing quite a few different proofs, and

5 QED, we are all mere mortals.
6 Except maybe Gauss.
7 Sigh.
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so we again reference the curious reader to the exercises for more information on
alternate proofs.

Moving back into mathematics proper, the previous Exploration motivates further
investigation into sums of the form

ε1ζ + ε2ζ
2 + · · · + εp−1ζ

p−1

for ζ = ζp a primitive p-th root of unity (p odd) and each ε = ±1. For example,
when p = 5, we found that the assignment

ε1 = ε4 = +1 ε2 = ε3 = −1

gave an interesting value for the sum. While the sample size is still quite small, it is
intriguing that the coefficients that gave this value amounted to setting εa = 1 if a
was a square mod 5 (i.e., when a is 1 or 4) and −1 if not (i.e., when a is 2 or 3), that
is, εa = (a

p

)
. We are led to the following definition.

Definition 7.7.1

Let p be an odd prime and ζ a primitive p-th root of unity. Then the Gauss sum
for p is the sum

G = G p =
p−1∑
a=0

(
a

p

)
ζa .

�

While we will mostly approach this sum algebraically, it is worth keeping in mind
that for each p, the Gauss sum G for p is a specific complex number representing an
actual point in the complex plane. In fact, the geometry lends itself to some insight.

ζ11 ζ13

Fig. 7.4 The Non-Residue and Residue Powers of ζ11 and ζ13 in black and white
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Figure 7.4 shows the 11th and 13th roots of unity in the complex plane8 . A root
ζa is colored white when

(a
p

) = 1 and black when
(a

p

) = −1. One obvious pattern,
that the roots appear in conjugate pairs (symmetric over the real axis), is well-known
to us, as ζa = ζ−a . More tantalizing is the relationship between the colors within a
conjugate pair. In the first image, for p = 11, a node appears to be colored white if
and only if its conjugate is colored black, whereas in the second image, for p = 13,
conjugate pairs seem to always have the same color. The distinction is that of primes
being 1 vs. 3 modulo 4: by the first supplemental law of quadratic reciprocity, if
p ≡ 3 mod 4 then (−a

p

)
=

(−1

p

)(
a

p

)
= −

(
a

p

)
,

explaining the color switch after reflecting. If p ≡ 1 mod 4, then
(−a

p

) = (a
p

)
by the

same calculation, whence the symmetry.
The Gauss sum G is the complex number formed by adding the white dots and

then subtracting the black dots in the figure. We are interested in where the result
lands, and we begin this calculation with some familiar friends.

� Example 7.7.2 Let p = 3. Since 1 is a square mod 3 and 2 is not, we have

G3 = ζ3 − ζ23 = ζ3 − (−1 − ζ3) = 2ζ3 + 1 = √−3.

� Example 7.7.3 For p = 5, the residues are 1 and 4 and non-residues are 2 and 3,
so

G5 = ζ5 − ζ25 − ζ35 + ζ45

= (ζ5 + ζ−1
5 ) − (ζ25 + ζ−2

5 )

= (ζ5 + ζ−1
5 ) − (ζ5 + ζ−1

5 )2 + 2,

where we have used in the last step that (ζ5 + ζ−1
5 )2 = ζ25 + 2 + ζ−2

5 . Similarly,
and relevantly, we have (Theorem 7.6.4)

0 = 1 + ζ5 + ζ25 + ζ35 + ζ45 = (ζ5 + ζ−1
5 )2 + (ζ5 + ζ−1

5 ) − 1,

whence by the quadratic formula (of all things!) we get

ζ5 + ζ−1
5 = −1 + √

5

2
,

where we have chosen the +√
5 based on the geometry of ζ5 + ζ−1

5 , which we
know to be a positive real number.

8 Exercise to do literally right now: Compare Figure 7.4 to Figure 7.1. Do it. Go!
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Substituting this in to continue the above calculation gives

G5 =
(

−1 + √
5

2

)
−

(
−1 + √

5

2

)2

+ 2

=
(

−1 + √
5

2

)
−

(
1 − 2

√
5 + 5

4

)
+ 2 = √

5.

This relationship appears to be the much-ballyhooed relationship between p-th
roots of 1 and square roots of p. Moving forward, it seems foolhardy to attempt
(or even hope for) a generalization wherein we solve algebraically for ζp (or even
ζp+ζ−1

p ) first. Instead, we searchmore systematically for ways to reduce the algebra.
To this end, let us consider the case p = 7 and pretend that we are unable to evaluate
the Legendre symbols mod 7, so that (writing ζ for ζ7) we have

G7 =
(
1

7

)
ζ +

(
2

7

)
ζ2 +

(
3

7

)
ζ3 +

(
4

7

)
ζ4 +

(
5

7

)
ζ5 +

(
6

7

)
ζ6.

Now, squaring hexanomials is not everyone’s idea of a good time9 , and so to fore-
shadow the technique of the proof, let’s approachG2

7 one coefficient at time. Consider
the coefficient of ζ3 in the expansion of G2

7. Applying the distributive law pairs each(a
7

)
ζa from the first sum with a

(b
7

)
ζb from the second sum, and we get a contribution

to the ζ3 coefficient in the result whenever a + b ≡ 3 mod 7. That is, the coefficient
of ζ3 in G2

7 is given by

(
1

7

)(
2

7

)
+

(
2

7

)(
1

7

)
+

(
4

7

)(
6

7

)
+

(
5

7

)(
5

7

)
+

(
6

7

)(
4

7

)
.

Finally, note that since we can add on the convenient 0’s
(0
7

)(3
7

)
and

(3
7

)(0
7

)
, this is

precisely the sum

6∑
a=0

(
a

p

)(
3 − a

p

)
=

(−1

p

) 6∑
a=0

(
a2 − 3a

p

)
.

Fortunately, we have seen sums of this form before (do you remember where?), and
the following proof thus nicely dispenses of the whole calculation.

9 Can you believe it?
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Theorem 7.7.4
Let p be an odd prime. Then

G2
p =

(−1

p

)
p.

Proof Let ζ = ζp. Write G = G p = ∑p−1
a=1

(a
p

)
ζa , so

G2 =
p−1∑
a=0

(
a

p

)
ζa ·

p−1∑
b=0

(
b

p

)
ζb =

p−1∑
b=0

p−1∑
a=0

(
ab

p

)
ζa+b =

p−1∑
a=0

a+(p−1)∑
c=a

(
a(c − a)

p

)
ζc,

where the last step makes the substitution c = a + b. Note that in the last sum, the
inner summation takes c through each equivalence class modulo p exactly once, so
we can rewrite it as

p−1∑
a=0

p−1∑
c=0

(
a(c − a)

p

)
ζc =

p−1∑
c=0

p−1∑
a=0

(
a(c − a)

p

)
ζc.

Nowwe consider the coefficient
∑(a(c−a)

p

)
of ζc in this expansion. First, if c = 0

we get

p−1∑
a=0

(
a(0 − a)

p

)
=

p−1∑
a=0

(−1

p

)(
a2

p

)
=

p−1∑
a=1

(−1

p

)
=

(−1

p

)
(p − 1),

and if c �= 0, then by Corollary 7.4.2 we have

p−1∑
a=0

(
a(c − a)

p

)
=

p−1∑
a=0

(−1

p

)(
a2 − ca

p

)
=

(−1

p

) p−1∑
a=1

(
f (a)

p

)
= −

(−1

p

)
.

Now, plugging in these coefficients, we can continue our calculation of G2:

G2 =
p−1∑
c=0

p−1∑
a=0

(
a(c − a)

p

)
ζc

=
(−1

p

) (
(p − 1) − ζ − ζ2 − · · · − ζ p−1) =

(−1

p

)
p,

where the last equality follow from the identity ζ + ζ2 + · · · + ζ p−1 = −1. �
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Remarkable! We conclude that if p ≡ 1 mod 4, then G2 = p, and so G = ±√
p.

Since G ∈ Z[ζp] by definition, we conclude that √p ∈ Z[ζp]. When p ≡ 3 mod 4,
the same argument applies to

√−p, providing the following corollary.

Corollary 7.7.5

Let p∗ = (−1)(p−1)/2 p, so p∗ = p if p ≡ 1 mod 4 and p∗ = −p if p ≡
3 mod 4. Then

Z[√p∗] ⊆ Z[ζp] (and Q[√p∗] ⊆ Q[ζp]). �

This fundamental algebraic inclusion can be seen as the reason that the study of
cyclotomic integers is of any relevance in the study of quadratic ones, and to an
algebraic number theorist is often viewed as the most important interpretation of
quadratic reciprocity. Notice that we may recast the Law of Quadratic Reciprocity
as follows:

Theorem 7.7.6 (Law of Quadratic Reciprocity)
Let p and q be distinct odd primes. Then

(
q

p

)
=

(
G2

p

q

)
.

We will prove this version of the result, which is equivalent to the version stated
earlier (in Theorem 7.5.3) since

(−1
p

) = (−1)(p−1)/2, and so

(
G2

p

q

)
=

((−1
p

)
p

q

)
=

(−1

q

)(p−1)/2(p

q

)
= (−1)(p−1)(q−1)/4

(
p

q

)
.

But first, one important technical warning: a central calculation in the proof centers
around the quantity “Gq

p (mod q),” where we pause to emphasize that since Gq
p /∈ Z

this is necessarily a slightly new use of the word “mod.” In the upcoming proof, for
a, b ∈ Z[ζp] the notation a ≡ b mod q means that a − b is a multiple of q in Z[ζp],
that there exists z ∈ Z[ζp] such that (a − b) = qz. Note that since Z ⊆ Z[ζn], this
new usage of the term extends the usual use of mod, since if a − b = qn for some
n ∈ Z, then certainly a −b = qz for some z ∈ Z[ζp] (just taking z = n). We require
only one modular arithmetic tool in the proof, that the n∅∅b’s Binomial Theorem
(Theorem 4.6.25, and specifically that the proof in Remark 4.6.26) continues to hold
in this setting: for all x, y ∈ Z[ζp], we have the relation

(x + y)q ≡ xq + yq mod q.
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Proof The idea is to compute the number Gq
p mod q in twoways. First, using Euler’s

Criterion (7.3.3):

Gq
p = Gq−1

p G p = (G2
p)

q−1
2 G p ≡

(
G2

p

q

)
G p (mod q).

Second, we reduce mod q the sum G p =
p−1∑
k=0

(k
p

)
ζk

p raised to the q-th power by

applying Theorem 4.6.25:

Gq
p ≡

p−1∑
k=0

(
k

p

)q

ζ
qk
p ≡

p−1∑
k=0

(
k

p

)
ζ

qk
p ≡

(
q

p

) p−1∑
k=0

(
qk

p

)
ζ

qk
p ≡

(
q

p

)
G p (mod q),

where for the second congruence we used that q was odd and in the last step10 we
use that since gcd(q, p) = 1, as k runs over all values mod p, so does qk. Now,
setting these two expressions for Gq

p equivalent mod q gives

(
G2

p

q

)
G p ≡

(
q

p

)
G p (mod q) (∗)

in Z[ζp]. To show the equality
(G2

p
q

) = (q
p

)
, and not just a mod-q congruence in

Z[ζp], we suppose for the sake of contradiction that
(G2

p
q

) = −(q
p

)
. Then substituting

this into (∗) gives G p ≡ −G p mod q . Multiplying by another G p and rearranging

gives 2G2
p ≡ 0 mod q , so

2G2
p

q = z for some z ∈ Z[ζp]. Now

z = 2G2
p

q
=

(−1

p

)
2p

q

(by Theorem 7.7.4), which shows that z is a non-integer rational number and hence
not an algebraic integer, contradicting Theorem 7.6.3. This finishes the proof of the
theorem. �

Finally, to settle our tab, we still owe one proof of the Second Supplemental
Law. Much like every other encounter with the prime 2, the argument is similar but
requires a seemingly unpredictable appearance of a higher power of 2. We leave a
well-scaffolded proof of the result below, and encourage the readers to fill in the
arguments.

10Which leaves to you, our astute reader, the justification for the third step.
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Theorem 7.7.7 (Supplemental Law #2)
For p an odd prime, we have

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

Proof Wework not with ζ2 but ζ8. First, we claim that ζ = ζ8 =
√
2
2 +

√−2
2 is such a

primitive 8th root of unity, which mostly amounts to checking that ζ2 = i so indeed
ζ8 = 1. Rather than using the Gauss sums G2 or G8, the analogous concept for this
proof is G = ζ + ζ−1. Compute that G2 = 2, and so

G p+1 = G p−1 · G2 = 2(p−1)/2 · 2 ≡ 2

(
2

p

)
(mod p)

by Euler’s Criterion. As in the main proof, Theorem 4.6.25 gives the alternate com-
putation

G p+1 = G(ζ + ζ−1)p ≡ G(ζ p + ζ−p) (mod p).

Now if p ≡ ±1 (mod 8), then since ζ8 = 1 we get ζ p + ζ−p = ζ + ζ−1 = G, so
equating the two evaluations of G p+1 gives 2

(2
p

) ≡ G(G) ≡ 2 (mod p), so
(2

p

) = 1
(with the same argument about mod-p arithmetic in Z[ζ] as in the main proof). We
leave the remaining case of p ≡ ±3 (mod 8) to Exercise 7.19. �

Application:Quadratic Equations mod p

Our theme of investigating square roots of elements c ∈ Z/(p), can be alternatively
viewed as finding the Z/(p)-roots of the polynomial x2 − c. It is an instructive
application of abstraction to generalize this to the quadratic polynomial ax2+bx +c
(with a �= 0). Recall the standard derivation of the quadratic formula:

ax2 + bx + c = 0

x2 + b
a x + c

a = 0
(

x + b

2a

)2

+
(

c

a
− b2

4a2

)
= 0

(
x + b

2a

)2

= b2 − 4ac

4a2 ,

and so after rooting and subtracting,

x = −b ± √
b2 − 4ac

2a
,
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where we understand that if b2 − 4ac has no square roots, then no such x exists.
It is remarkable how many facts about algebra in R are used in this derivation. Of

course, we use the ring operations and axioms as we re-arrange and collect terms,
but we also use, for example, the commutative law (that b

2a x = x b
2a ), that every

non-zero a has a multiplicative inverse (to divide by a), and our understanding of
square roots (that when they exist, they come in ± pairs).

From an abstract algebra perspective, what this means is that we should be able
to get an analogous quadratic formula in any ring where all of these algebra rules
hold. For example:

� Example 7.7.8 Find a function f such that

sin(x) f (x)2 − 3x f (x) + ex = 0.

Solution The quadratic formula applies here to solve for f (x), using a = sin(x),
b = −3x , and c = ex to give

f (x) = 3x ± √
9x2 − 4 sin(x)ex

2 sin(x)
. �

While the implementation of the quadratic formula plays out differently in dif-
ferent rings, it works out well in the rings Z/(p) with p odd (see Exercise 7.13 for
p = 2). Here, for a polynomial ax2 + bx + c with a, b, c ∈ Z/(p), the condition
a �= 0 automatically implies that a is a unit, and since p is odd, 2 is also a unit (and
hence so is 2a). We have already observed that square roots behave somewhat like
square roots in R: a number a ∈ Z/(p) can have 0, 1, or 2 square roots in Z/(p)

depending on the Legendre symbol
(a

p

)
, much like a number a ∈ R has 0, 1, or 2

square roots depending on if it is positive, zero, or negative. Literally the same proof
as for the reals produces the following result:

Theorem 7.7.9 (Mod-p Quadratic Formula)
Let p be an odd prime and f (x) = ax2+bx +c ∈ Z/(p)[x], with discriminant
Δ = b2 − 4ac. Then

(i) If
(
Δ
p

) = −1, then f has no roots mod p.

(ii) If
(
Δ
p

) = 0, then f has the unique root x = − b
2a (i.e., x = −(2a)−1b).

(iii) If
(
Δ
p

) = +1, then f has two distinct mod-p roots, given by

x = (2a)−1(−b ± √
Δ),

where
√

Δ represents either of the two square roots of Δ in Z/(p).
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� Example 7.7.10 Let f (x) = 2x2 + x + 3. Find all mod-p solutions to f (x) = 0
for p = 19, 23, 29.

Solution We compute Δ = 12 − 4(2)(3) = −23. The for p = 19, we have

(−23

19

)
=

(−4

19

)
=

(−1

19

)(
2

19

)2

= −1,

so f has no roots mod 19. For p = 23, we have
(−23
23

) = 0, so f has a single root,
and since [4]−1 = [6] in Z/(23), this root occurs at

x = −(2a)−1(b) = −(4)−1(1) ≡ −6 mod 23.

Finally, in Z/(29),
(−23
29

) = 1, we compute [4]−1 = [−7], and find by brute-force
search the square root [8]2 = [−23]. The quadratic formula gives

x = (2a)−1(−b ± √
Δ) ≡ −7(−1 ± 8) ≡ −49 or 63 ≡ 9 or 5 mod 29,

so the only solutions are x = [5] and x = [9]. �

Finally, we observe that the situation is only slightly more complicated working
mod a composite n. There are more non-units mod n, and any given discriminant
might have more than two square roots (e.g, in Z/(8), where all four units are square
roots of 1). Theorem 7.7.9 continues to hold if we interpret

√
b2 − 4ac to mean that

we run through all square roots of the discriminant.

7.8 Quadratic UFDs

Quadratic Reciprocity provides the final tool needed to generalize our understanding
of Gaussian primes. Namely, whenever the ring of integers of Q[√d] is a UFD,
quadratic reciprocity will reveal the behavior of primes in this world. We work out
one more example in detail. Recall from Chapter 6 that we found Z[√2], the ring of
integers of Q[√2], to possess unique factorization. Compare the following result to
Theorem 7.1.1.

Theorem 7.8.1
The following are equivalent for all rational primes p:

(i) p = ±(a2 − 2b2)
(ii) p factors in Z[√2], i.e., p is not prime in Z[√2]
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(iii) 2 is a square modulo p
(iv) p ≡ ±1 mod 8.

The proof of Theorem 7.1.1 occupied the entirety of Chapter 5, so it is noteworthy
that we have now developed enough machinery to render problems of this type as
procedural exercises.

Proof In fact, the list in the theorem is a rather truncated list of statements nowknown
to us to be equivalent. Here is one cycle through a list of equivalent statements, which
contains all of the ones in the statement of the theorem:

p ≡ ±1 (mod 8) =⇒
(
2

p

)
= 1

=⇒ m2 ≡ 2 (mod p) for some m ∈ Z

=⇒ p | (m2 − 2) for some m ∈ Z

=⇒ p | (m + √
2)(m − √

2) in Z[√2]
=⇒ p is not prime in Z[√2]
=⇒ p is not irreducible in Z[√2]
=⇒ p = ±(a2 − 2b2)

from which it follows that p ≡ ±1 mod 8 just by computing that the expression
a2 − 2b2 is never congruent to ±3 in Z/(8). This completes the cycle and so shows
all of the conditions encountered along the way to be equivalent. �

It is a valuable practice to justify each step of that series of implications as a
consequence of a known (and typically rather significant!) theorem. That our work-
flow generalizes from Z[i] to Z[√2] (and to Z[√3] in the exercises) and beyond is
testimony to how far we have come. But, as always, it is equally important to keep
in mind how things differ. Unlike Z[i], for example, we saw in Corollary 6.3.9 that
the ring Z[√2] has infinitely many units, like 7 + 5

√
2. So we have in Z[√2] the

prime p = 3 (since p ≡ 3 mod 8), we also have its infinitely many associates

3(7 + 5
√
2) = 21 + 15

√
2, 3(7 + 5

√
2)2 = 297 + 210

√
2, etc.

We also have to contend with the presence of units of norm−1, whose primary effect
is the introduction of the ± term in part (i) of the Theorem.

Nevertheless, the phrase “up to associates” performs its usual job in suppressing
unit difficulties, and we can continue to develop prime number theory in Z[√2] like
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Z

Z[ 2]

2

2

3

3

5

5

7

1 + 2 2 1− 2 2

11

11

13

13

17

1 + 3 2 1− 3 2

Fig. 7.5 The primes of Z and Z[√2]

we did for Z[i]. For example, from the previous result and some norm arithmetic we
derive the analog of Theorem 5.6.6, classifying all of the primes of Z[√2].

Theorem 7.8.2
The primes of Z[√2] are, up to associates, precisely:

• The prime
√
2.

• The rational primes p that are congruent to 3 or 5 mod 8.
• The primes a + b

√
2 and a − b

√
2, where a2 − 2b2 = ±p ≡ ±1 (mod 8).

Diagrammatically, we can see the splitting behavior of the primes of Z as they
are imported to Z[√2] in Figure 7.5 just as we did for Z[i] in Figure 5.9.

The results of this section are in some sense the end of the story for factorization
in quadratic UFDs, but like most “ends of stories” in mathematics, it also serves
as the beginning of others. For example, there is still the question of the general
phenomenon of units, suppressed in the consideration of primes but still of crucial
importance in solving Diophantine equations (all infinitely many associates of 7 +
5
√
2 present solutions to x2−2y2 = ±1, for example). The topic of units, specifically

for real quadratic fields, is taken up in Section 9.4. Further, and more challenging,
is the topic of what to do when we don’t get unique factorization. We have ample
evidence that the ring of integers of Q[√d] fails to be a UFD at least as frequently as
not, and so number theory in these rings will require some new tools. These tools are
at the forefront of modern algebraic number theory, and we give a brief introduction
to these ideas in Section 9.5.

For the immediate future, however, we have a lingering but critical story left to
complete—how to find rational solutions to conic equations—and it is to this story,
and to the most exotic realms of numbers we’ve considered so far, that we turn next.
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7.9 Exercises

Calculation and Short Answer

Exercise 7.1 Compute each of
(
112

659

) (
5

160465489

) (−2

p

)

(You can assume that 659 and 160465489 are prime.)

Exercise 7.2 Compute each of the following:
(

3

97

) (
5

389

) (
2033

11

) (
5!
7

) (
6!
7

)
.

Generally for problems and discussions involving Legendre symbols, the phrase
“find all primes...” should be interpreted as specifying a list of modular congruence
conditions that such primes satisfy.

Exercise 7.3 Find all primes p for which
(13

p

) = 1. Repeat for
(19

p

)
.

Exercise 7.4 Find all primes q for which
(−90

q

) = 1.

Exercise 7.5 Find primes p such that
(
1

p

)
=

(
2

p

)
=

(
3

p

)
=

(
4

p

)
=

(
5

p

)
= +1.

What about (
1

p

)
=

(
2

p

)
=

(
3

p

)
=

(
4

p

)
=

(
5

p

)
= −1?

Exercise 7.6 Find all primes satisfying both
(
5

p

)
= −1 and

(−5

p

)
= +1.

Exercise 7.7 Explain why each of the following two identities are equivalent to the
main Law of Quadratic Reciprocity:

(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

and, with p∗ is as in Corollary 7.7.5,
(

p∗

q

)
=

(
q

p

)
.
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Exercise 7.8 Explore where things start to go awry with Legendre symbols modulo
composite n. Draw the analog of the rings in Figure 7.1 for Z/(16). Find examples
of results in the chapter that fail miserably if the modulus is not prime.

Exercise 7.9 Plot the line y = 2x over Z/(7) (that is, in the grid Z/(7) × Z/(7)).
Describe how plotting lines in this context would work in general.

Exercise 7.10 Consider the sum
(
1

p

)
+

(
2

p

)
+

(
3

p

)
+

(
4

p

)
+

(
5

p

)
+

(
6

p

)
.

Find with justification all possible values of the sum, and one prime that produces
each such value.

Exercise 7.11 For each p ∈ {5, 7, 13, 17, 19}, find all mod-p roots of the polyno-
mial

f (x) = 7x2 + 15x + 5.

Exercise 7.12 For which primes p does the polynomial x2 + x + 3 have 0, 1, and
2 roots mod p?

Exercise 7.13 The quadratic formula automatically fails for p = 2 since we cannot
divide by 2a. Fortunately, there are not many quadratic polynomials in Z/(2)[x].
List them all along with their roots—is there a nice way to categorize them?

Formal Proofs

Exercise 7.14 Let p be prime. Prove that if x2 ≡ y2 (mod p), then x ≡ ±y
(mod p). Show this can fail for p composite.

Exercise 7.15 Prove that the squares of Z/(p)× form a subgroup of index 2, pro-
viding an alternate proof of Corollary 7.3.2.

Exercise 7.16 Let ζ = ζp for p an odd prime. Suppose a, b ∈ Z are relatively prime
to p. Prove that for some c ∈ Z we have

1 − ζa

1 − ζb
= 1 + ζb + ζ2b + · · · + ζcb ∈ Z[ζ],

and use this identity to conclude that 1−ζa

1−ζb is a unit inZ[ζ]. Then use the factorization
of n in Z[ζn] to conclude that p = (1 − ζ)p−1u for some u ∈ Z[ζ]×.
Exercise 7.17 Let p be an odd prime, and let f (x) = x3+sx2+ t x +u ∈ Z/(p)[x].
Use a counting argument to show that there must be at least one value of x ∈ Z/(p)

such that f (x) is a quadratic residue mod p; i.e., that there is at least one solution
over Z/(p) to the conic

y2 = f (x).
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Exercise 7.18 Consider the conic y2 = (x − 1)(x − 2) over Z/(p) for an arbitrary
odd prime p, with the obvious point (1, 0). Adapt the Diophantus Chord Method
to show there are precisely p − 1 points on this conic (as in Theorem 7.4.1) by
intersecting the conic with the p lines y = m(x − 1) for m ∈ Z/(p) and then
cleaning up special cases.

Exercise 7.19 . Revisit the proof of the second supplemental law given as Theorem
7.7.7. List and finish any details that were skipped along the way. Include the case
p ≡ ±3 mod 8.

Exercise 7.20 Suppose that gcd(a, n) = 1, and let f be a function on the integers

mod n. Prove that
n∑

k=1

f (k) =
n∑

k=1

f (ak).

Exercise 7.21 Prove that p = ±(a2−3b2) for non-zero integers a and b if and only
if p ≡ ±1 (mod 12). (You may assume the true fact that Z[√3] is a UFD.)
Exercise 7.22 Find and prove congruence conditions on p equivalent to p being
expressible in the form ±(a2 − 7b2) for some a, b ∈ Z. (You may assume the true
fact that Z[√7] is a UFD.)
Exercise 7.23 Use quadratic reciprocity to show that if p, q ≡ 3 mod 4 for distinct
odd primes p and q , then there are no solutions to the Diophantine equation x2 −
qy2 = p.

Exercise 7.24 Give a careful proof that the quadratic formula continues to work
modulo an odd prime p, in that it provides the correct answers when the requisite
square roots exist mod p, and has no solutions if they don’t.

Computation and Experimentation

Exercise 7.25 Explore some sums of Legendre symbols. The Python worksheet
“Conjectures on Sums of Legendre Symbols” provides an outline.

a) Start by computing
(

0

271

)
+

(
1

271

)
+

(
2

271

)
+ · · · +

(
270

271

)
.

Choose one or two more three-digit primes and calculate
∑p−1

x=0

(
x
p

)
. Use your

results to formulate a conjecture about
∑p−1

x=0

(
x
p

)
. Give a brief argument as to

why your conjecture is correct.
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b) Choose a two- or three-digit prime p and a linear polynomial f (x) = ax + b ∈
Z[x] such that p � a. Calculate

p−1∑
x=0

(
f (x)

p

)
.

Repeat for another prime and another linear polynomial. Use your results to

conjecture a value for
∑p−1

x=0

(
f (x)

p

)
.

c) Repeat the previous experiment, but for a quadratic polynomial f (x) = ax2 +
bx + c such that p � a. Repeat for a couple of different values of p and f (x).
Compare the sum

p−1∑
x=0

(
f (x)

p

)

to the value of
(

a
p

)
. Try to formulate a conjecture for

∑p−1
x=0

(
f (x)

p

)
given

f (x) = ax2 + bx + c and p � a. In formulating your conjecture, note whether
p divides the discriminant b2 − 4ac.

Exercise 7.26 The command E=EllipticCurve(Integers(p),[s,t])
will construct in SageMath the elliptic curve y2 = x3 + sx + t over the ring Z/(p).
A slew of functions are available to call on E . For example E.order() will tell
you the number of points on the curve. Experiment with the number of points as you:

a) Fix p and vary s and t .
b) Fix s and t and vary p.

Make some observations and compare them with the results of the section.

General Number Theory Awareness

Exercise 7.27 What are cyclotomic polynomials? What are the first few? What are
their degrees? What do we know about their coefficients?

Exercise 7.28 Quadratic reciprocity decides the existence of square roots mod p,
but not their construction. Research and implement the Tonelli-Shanks algorithm for
doing just that.

Exercise 7.29 Theorem 7.6.3 shows that every element of Z[ζn] is an algebraic
integer, so that if R denotes the ring of algebraic integers contained in Q[ζn], we
have Z[ζn] ⊆ R. Are the two rings in fact equal? Find a reference with a proof or
counter-example.

Exercise 7.30 Find a careful statement of theHasse-Weil Theorem.Most statements
have the estimate for |E(Fp)| as about p +1 points, as opposed to our version which
gave about p points. What gives?
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Exercise 7.31 Application: What’s a quadratic residue sound diffuser?

Exercise 7.32 Find an alternative proof of the 2nd Supplemental Law for quadratic
reciprocity, one that mirrors the Wilson’s Theorem approach to constructing an ex-
plicit square root of −1 mod p (when it exists).

Exercise 7.33 Explore alternative proofs of the main statement of the Quadratic
Reciprocity Law. Is there a consensus on which is “best”?

Exercise 7.34 The Legendre symbol admits generalizations of various kinds, in-
cluding Jacobi symbols and Kronecker symbols. What are these symbols and what
do these extensions get us?



8NumberTheoryUnleashed:Release
Zp!

...wherein our cast of characters meets a new family.

8.1 The Analogy between Numbers and Polynomials

Consider the following all-too-common scene of frustration and despair.

narrator: We enter mid-scene. Desperate for acceptance, the young R[x] is
petitioning established aristocrat Z for membership in the upper ε’s of ring
society. It should all just be a matter of fitting in...

R[x]: and so, you see, using the degree as the size of one of my elements serves
to demonstrate the existence of a Division Algorithm...

Z: [aside] Degree? How very proletariat. Size should speak for itself!

R[x]: ...demonstrating the beloved property of Unique Factorization.

Z: Naturally. I hope you haven’t convened this meeting for the sake of that
revelation.

R[x]: [taken aback] I only mean to say that we have so much in common! We
associate (and commute and distribute) within the same circles, we admit
only the uniquest of factorizations, an infinitude of primes, andwe have only
a sliver’s worth of inverses...

[R[x] begins to pace with nervous energy]
R[x]: ...not to mention our fractions! Fields upon fields of rational numbers

and rational functions, and how well we can approximate fractions! One
quick trip to the Taylor, as they say, mends the rational function 1

1−x to the
approximation 1 + x + x2.

Z: [warily] Hm. Well, see, I don’t really do approximations....
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R[x]: And it doesn’t stop there! Even as unwieldy as a function like ex can be
tamed with the replacement 1 + x + x2

2 + x3
6 . It’s as good as new – take as

many terms as you like!

Z: [silently dejected] Well, of course, I know that e is between 2 and 3...

[Exeunt.]

No doubt we can all sympathize with Z. Once the epitome of rings, the one ring
to rule them all, our precious Z has rather fallen out of the limelight. Indeed, we
started Chapter 3 with an eye toward determining the algebraic structures which are
sufficiently “Z-like” to do algebra in, but it is now common to find that other rings
have their own equally enviable features. In particular, while unique factorization in
Z is a hallmark of classical number theory, we’ve now established this same property
in all kinds of rings. Examples include Z, Z[i], Z[√−2], Z[ζ3], etc., and R[x] is
yet another: given polynomials f and g, long division of polynomials guarantees the
existence of quotient and remainder polynomials q and r such that f = gq + r with
0 ≤ deg r < deg g. By Theorem 6.5.3, R[x] is a unique factorization domain whose
primes are simply the irreducible (unfactorable) polynomials, which by the Funda-
mental Theorem of Algebra is just the linear polynomials and quadratic polynomials
with no real roots. From an algebraic perspective, this puts Z and R[x] on a much
more even footing than one might have expected by looking at their elements. But, as
the scene above suggests, elements of the ringR[x] have auxiliary roles as functions,
and thus the tools of calculus shed light on this ring in a way that seeeeeems (wink
wink) to have no analogue in Z. We have learned a lot about Z by working in other
rings, e.g., modular rings and rings of integers. What does R[x] have to contribute
to the cause?

Let’s briefly review the relevant calculus. Suppose f : R → R is an everywhere
infinitely differentiable function, so that for any real number x it is meaningful to
talk about the nth derivative f (n)(x) at that point. Then at any point a ∈ R, the Taylor
series of f at x = a is the power series

∞∑

n=0

f (n)(a)

n! (x − a)n = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + · · · (8.1)

Thorny questions concerning the convergence of such a series and where a func-
tion equals its Taylor series are resolved, like most questions, in books not equal to
this one. Instead, we agree to restrict our attention to a rational function f , for which
given any a in the domain of f , its Taylor series converges and equals the value of
f for all x sufficiently close to a. For example, the Taylor series of f (x) = 1

1−x
centered at x = 0 exists and converges for all |x | < 1 and so once we deduce the
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pattern of derivatives f (n)(0) = n!, we obtain the equality
1

1 − x
= 1 + x + x2 + x3 + · · · for all |x | < 1,

better known as the formula for an infinite geometric series.

Table 8.1 Several Taylor expansions for f (x) = x3 − 3x2 + 4

a Taylor expansion of f (x) = x3 − 3x2 + 4 centered at a

0 f (x) = 4 + 0(x − 0) − 3(x − 0)2 + 1(x − 0)3

1 f (x) = 2 − 3(x − 1) + 0(x − 1)2 + 1(x − 1)3

−1 f (x) = 0 + 9(x + 1) − 6(x + 1)2 + 1(x + 1)3

2 f (x) = 0 + 0(x − 2) + 3(x − 2)2 + 1(x − 2)3

Underappreciated in the calculus version of this discussion is the power in choos-
ing a variety of a’s, and not just a = 0, producing a variety of Taylor series, even
just for polynomials. Table 8.1 shows the Taylor series of f (x) = x3 − 3x2 + 4
centered at four different centers a, each of which can be verified either by checking
the derivative calculations or simply by expanding each expression to see that they
all resolve identically.

Note that we have written the terms of the polynomials in ascending order of
degree, in contrast to the usual polynomial convention of writing the highest degree
term first, to mirror the general expression for a power series. The organization also
highlights some interesting data. For example, the value of f at each a can be easily
read off of the corresponding Taylor series, since either by evaluation or by (8.1),
f (a) is always the degree-0 term of the expansion. We see that f (0) = 4, f (1) = 2,
f (−1) = 0, and f (2) = 0. In particular, f has roots at x = −1 and x = 2. Further,
in the expansion around a = 2, we are missing both the constant and linear terms,
beginning only with the quadratic term (x − 2)2. This shows that (x − 2)2 divides
every term in the expansion, and hence f itself:

f (x) = 3(x − 2)2 + (x − 2)3 = (x − 2)2 (3 + (x − 2)) = (x − 2)2(x + 1).

In general, if the first (lowest-degree) term of the Taylor expansion of f at a is
(x − a)d , then (x − a)d | f (x). This close tie between expansions and divisibility
is the missing link on the integer side of the analogy between R[x] and Z. We have
studied divisibility questions throughout our consideration ofZ, but we lack a notion
of a Taylor expansion of an integer. Fortunately, an appropriate analogue is available.
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Table 8.2 Several base p expansions for n = 75

p Base p expansion of n = 75

2 75 = 1 + 1p + 0p2 + 1p3 + 0p4 + 0p5 + p6

3 75 = 0 + 1p + 2p2 + 2p3

5 75 = 0 + 0p + 3p2

7 75 = 5 + 3p + p2

Definition 8.1.1.

The base p expansion of a natural number n is the unique (Exercise 8.21) way
of writing n in the form

n = a0 + a1 p + a2 p
2 + · · · + ak p

k

for integer coefficients ai with 0 ≤ ai < p. �

In the analogy betweenR[x] andZ, irreducible polynomials correspond to primes,
and so expanding a polynomial as a finite sum of powers of (x −a) has as its natural
analogue expanding a natural number as a sum of powers of a prime p. Just as with
polynomials, varying p gives different shapes for the expansion, as in Table 8.2.

Wewill continue the practice ofwriting the expansionwith a placeholder symbol p
for the prime, even thoughwe know its exact value (e.g., wewrite 5+3p+ p2 instead
of 5 + 3 · 7 + 72 in the last row of the table). In addition to reducing the horizontal
space occupied by the expression, this convention has the benefits of providing a
visual distinction between the prime p and the coefficients, mirroring the distinction
between the variable x and the coefficients in the series expansion of a polynomial.
Again the table reveals much. We note that in both the base 3 expansion and base 5
expansion the coefficient of p0 is 0, and so each summand in those expansions is a
multiple of p. We deduce that 3 and 5 are divisors of 75, and again we see the role of
multiplicities of prime divisors in expansions: For p = 5, neither p0 nor p1 appears
in the expansion, and so p2 | 75. Generally, if the first (lowest power) term of the
base p expansion of n is pd , then pd | n.

The number of times a given linear factor or prime divides a polynomial or natural
number is an important metric to keep track of. Indeed we will soon use these
numbers to quantify how big or small a number or polynomial is with respect to
each of these factors. For polynomials, a long string of leading zero coefficients
(0 + 0x + 0x2 + 5x3 + 2x4 + x5) dictates the extent to which x plays a role in the
factorization of the polynomial. Similarly, a long string of leading zero coefficients
(0+ 0p + 0p2 + 5p3 + 2p4 + p5) dictates the extent to which p plays a role in the
factorization of a natural number. Fortunately, we already have encountered this idea
in Chapter 3 (specifically, Definition 3.4.1) under the name of p-adic valuations.
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Lemma 8.1.2

For a positive prime p, the p-adic valuation vp(n) of a natural number n is both:

• The largest power k of p such that pk | n.
• The smallest power k of p that appears in the base p expansion of n. �

Proof The first of these bullets is the definition of vp(n), so we need to show that
the two conditions are equivalent. Given p and n as in the definition, let k be the
smallest power appearing in the base p expansion of n, so that

n = ak p
k + ak+1 p

k+1 + · · · + am pm = pk
(
ak + ak+1 p + · · · + am pm−k

)

with ak �= 0. This immediately shows that pk | n. Further, pk+1
� n, as n

pk
mod p =

ak �= 0. We conclude that k = vp(n). �

Note that exactly the same equivalency can bemade for polynomials f : the largest
power k such that (x − a)k divides f is the smallest k such that (x − a)k appears in
its Taylor expansion at a (and so, by construction of the Taylor series, implies the
vanishing of the first k derivatives of f at x = a). For both numbers and polynomials,
fluency in alternating one’s thinking about valuations in these two contexts proves
to be very valuable.

8.2 The p-adicWorld: An Analogy Extended

The analogy between polynomials and integers would be cute but not breathtaking
if it were merely an observation that both types of rings enjoy similar structural
properties. The real power of any mathematical analogy is the hope that the special
properties of one spur us to investigate new ideas for the other. While using Taylor
series for polynomials is of only middling interest in calculus, they are much more
potent for studying rational functions. But on the integer side of analogy, it’s not
clear what we could even mean by the “base p expansion of a rational number.”
Let’s give it a shot.

Recall our example from the previous section that for |x | < 1 we have

1

1 − x
= 1 + x + x2 + x3 + · · · .

Even without a careful study of convergence of Taylor series, it is easy to see that the
hypothesis that |x | < 1 is crucial here. For example, naively evaluating the above at
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x = −5 gives us the identity

1

6
= 1

1 − (−5)
= 1 + (−5) + (−5)2 + (−5)3 + · · · = 1 − 5 + 25 − 125 + · · ·

But, as this latter series clearly diverges, this is simply nonsense, right?

...right?

Are you ready for a magic trick? First, we begin with the distraction, the sleight-
of-hand to distract your attention while we prepare to dazzle:

� Example 8.2.1 Find 6−1 mod 25, 125, 625, and 3125.

Solution The first couple of these can be dispatched of quickly: 6−1 ≡ −4 mod 25
since 6 × (−4) = −24 ≡ 1 mod 25 and 6−1 ≡ 21 mod 125 since 6 × 21 =
126 ≡ 1 mod 25. In general, though, computing inverses requires an application of
the extended Euclidean algorithm or Euler’s Theorem, and since these get laborious
by hand and we’re here for the magic show, let us just report to you that 6−1 ≡
−104 mod 625 and 6−1 ≡ 521 mod 3125. �

Now, observe—there is nothing up our sleeves—that these inverses are precisely
the partial sums of the “impossible” representation for 1

6 (= 6−1) as an infinite sum:

6−1 mod 51 = 1 = 1

6−1 mod 52 = − 4 = 1 − 5

6−1 mod 53 = 21 = 1 − 5 + 25

6−1 mod 54 = −104 = 1 − 5 + 25 − 125

6−1 mod 55 = 521 = 1 − 5 + 25 − 125 + 625

... = ... = . . .

Was that your card? Show the audience.Miraculously, the single infinite divergent
series

1 − 5 + 25 − 125 + 625 − · · ·
seems to know the inverse of 6 modulo every power of 5, simply by truncating the
series after more and more terms. As with other magic tricks, the awe diminishes
only slightly when you see how it is done, and it is indeed quite easy to prove that
it continues to work indefinitely (and for any other prime p in place of 5), using the
telescoping identity

(1 + 5)(1 − 5 + 52 − · · · ± 5n−1) = 1 + (5 − 5) + · · · + (5n−1 − 5n−1) ± 5n

≡ 1 (mod 5n).

It is hard to believe that this prospect, an extension of the notion of a base p
expansions to a comically divergent nonsense sum with infinitely many terms, is to
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be of any use to anyone. But these objects are not only non-nonsensical, they are of
such pervasive interest in modern number theory that they earn the most prestigious
moniker of them all – we dub them a new class of number.

Definition 8.2.2

For a prime p ∈ N, a p-adic (rational) number is an expression of the form

α = a−k p
−k + a−k+1 p

−k+1 + · · · + a−1 p
−1 + a0 + a1 p + a2 p

2 + · · · , (∗)
where k ∈ Z and each ai is an integer with 0 ≤ ai ≤ p − 1. The collection
of p-adic rational numbers is denoted Qp. The p-adic integers, Zp, consist of
those p-adic numbers with ai = 0 for all i < 0, that is, a p-adic number with no
negative powers of p appearing. �

� Example 8.2.3 The base p expansion of any natural number is a p-adic integer
(e.g., 47 = 2 · 1 + 4 · 5 + 1 · 52), and conversely any p-adic integer with finitely
many terms represents a natural number (e.g., 3 · 1 + 5 · 7 + 2 · 72 = 136).

� Example 8.2.4 Writing down an element of Zp is as simple as specifying a se-
quence of integers 0 ≤ ai ≤ p−1. For example, we could take the decimal digits
of π and produce an element of Z11:

3 + p + 4p2 + 1p3 + 5p4 + 9p5 + 2p6 + 6p7 + · · · ∈ Z11

Rational p-adics that aren’t p-adic integers include finitely many negative powers
of p; e.g.,

2p−2 + 7p−1 + 1 + 8p + 2p2 + 8p3 + 1p4 + · · · ∈ Z11

Again it is worth emphasizing the analogy. Though less studied in introductory
Calculus courses, the analogue of p-adic rational numbers in the world of calculus
is the notion of a Laurent series, a Taylor series in which we allow finitely many
negative powers of (x − a). For example, while we cannot take the Taylor series of

1
x2(1−x)

at x = 0 as the function is not defined there, it is perfectly sensible to write
the Laurent series

1

x2(1 − x)
= 1

x2
· 1

1 − x
= 1

x2
(1+ x+ x2+ x3+· · · ) = 1

x2
+ 1

x
+1+ x+ x2+· · ·

We will be occupied for some time with viewing more and more rational numbers
as p-adic expansions. So far we have only applied base p expansions to natural
numbers, but the Laurent series above shows howwemight vastly expand our scope.
As a first example, to find the 5-adic expansion of the rational number 697

125 , we can
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write (using p = 5)

697

125
= 2 + 4p + 2p2 + p4

p3
= 2p−3 + 4p−2 + 2p−1 + p.

The arithmetic of p-adic numbers will clearly take some getting used to, but as we
do so, it is worth remembering the hallmark of these expansions in the first place: they
are almost as simple to work with as the Taylor series that they analogize. Taylor
series are a phenomenal substitute for rational and even transcendental functions
because they behave algebraically just like polynomials. Likewise, doing arithmetic
in the p-adic world will not be so different from doing arithmetic with integers. In
fact, many of our basic notions of arithmetic generalize almost trivially.

Definition 8.2.5

Given a p-adic integer

α = a0 + a1 p + a2 p
2 + · · · ∈ Zp,

we define mod-p reduction of α by α mod p = a0 and more generally

α mod pk = a0 + a1 p + a2 p
2 + · · · + ak−1 p

k−1.

We will often abbreviate this, the truncation of α after k terms, as simply αk .
(Note that αk does not have a pk term.) As we will see, it is not unreasonable to
think of α as a limit, as in α = lim

k→∞ αk . �

Notice that this generalizes the usual notion ofmod-p reduction in the sense that if
the α ∈ Zp in question is actually the finite base-p expansion of a natural number n,
then the notions of α mod p and n mod p coincide. Since reducing a p-adic integer
modulo pk produces a regular integer, we can feel free to make use of our previous
understanding of congruence, e.g., that

α ≡ β mod pk

if and only if αk = βk . Finally, recall from Lemma 8.1.2 that the p-adic valuation
vp(n) of a natural number can be read off of its base p expansion as simply the least
power of p appearing.

Definition 8.2.6

For non-zero α ∈ Qp as in (∗), the p-adic valuation vp(α) = −k is the least
power of p appearing in its p-adic expansion. As in Lemma 8.1.2, we can al-
ternatively view it as the largest power of p dividing every term in the p-adic
expansion of α. By factoring it out, we can write any α ∈ Qp uniquely in the
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form

α = pvp(α)α′ (8.2)

where α′ ∈ Zp and vp(α
′) = 0 (i.e., α′ mod p �= 0). As we did in Z, define

vp(0) = ∞. Note the p-adic integers Zp are characterized precisely as those
p-adic numbers α with vp(α) ≥ 0. �

� Example 8.2.7 For any prime p (> 8), the element

α = 2p−2 + 7p−1 + 1 + 8p + 2p2 + 8p3 + 1p4 + · · ·
= p−2(2 + 7p + 1p2 + 8p3 + 2p4 + 8p5 + 1p6 + · · · )

has vp(α) = −2.
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Exploration O

p-adic Dot-Dot-Dots �

O.1 Suppose p = 7. Find the base p expansion of the sum

(3 + 4p + p4) + (5 + 2p + 6p2).

More generally, describe an algorithm for finding the base p expansion of the sum
of two-base p expansions of natural numbers.

Addition of p-adic numbers will be similar to the above but require an infinite
chain of computations.

O.2 Compute 68 + α in Q7, where

α = 2 + 4 · 7 + 5 · 72 + 6 · 73 + 6 · 74 + 6 · 75 + 6 · 76 + 6 · 77 + 6 · 78 + · · · ,

with the pattern of coefficients continuing as all 6’s. What does your result tell you
about how to interpret α?

O.3 Propose a p-adic expansion for −1 ∈ Zp. For −2?

Wewill develop formal rules for multiplication but for now let’s see what mileage
we can get out of assuming that the normal rules of arithmetic (in particular, the
distributive law) apply. As a first test, note that our early observation that 1

6 ∈ Z5 via
the identity

1

6
= 1 − 5 + 52 − 53 + · · ·

violates our definition of 5-adic integers by including coefficients of −1. We claim
the following version works just as well, using 4 in replace of −1:

1

6
= 1 + 4 · 5 + 52 + 4 · 53 + 54 + 4 · 55 + · · · ,

with coefficients alternating between 1 and 4.

O.4 Attempt to verify this claim by multiplying 6 by the expansion above. That is,
see if you can compute in Z5 that the product

(1 + p)(1 + 4p + p2 + 4p3 + p4 + · · · ) = 1.

Be mindful of any assumptions you make.

O.5 Starting with the 70 term and working upwards, compute terms of this 7-adic
square until you feel ready to make a conjecture about what it is:

(3 + 7 + 2 · 72 + 6 · 73 + 74 + 2 · 75 + 76 + 2 · 77 + 4 · 78 + 6 · 79 + · · · )2
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8.3 p-adic Arithmetic:Making a Ring

If we enjoy the set of p-adic numbers, then we really ought to endow it with an
algebraic structure by equipping it with notions of addition and multiplication1 .

Theorem 8.3.1
The set Zp is a ring.

As practiced in the previous exploration, this is not much more substantive than
the (admittedly unusual) process of adding and multiplying natural numbers by their
base p expansion. The point of this section will be to more formally establish the
well-definedness of these p-adic operations, and we begin with an example:

� Example 8.3.2 Evaluate 21 + 33 in Q5 and Q7.

Solution The answer should of course be 54 in either case, but the question for now is
what this addition looks like when done in terms of p-adic expansions. When p = 5,
we have 21 = 1 + 4p and 33 = 3 + p + p2, so

21+ 33 = (4p+ 1)+ (p2 + p+ 3) = 4+ p+ 4p+ p2 = 4+ 5p+ p2 = 4+ 2p2,

which upon substituting p = 5 gives 54. Similarly, when p = 7, we have

21 + 33 = 3p + (4p + 5) = 7p + 5 = p2 + 5 = 54. �
This problem displays the entire knack to p-adic addition, viewing p simultane-

ously as a placeholder for the expansion and a specific fixed prime value. This is in
stark contrast with polynomial addition, where the powers of x serve only as place-
holders for their coefficients. Of course, this more complicated process for doing
arithmetic with expansions is nothing new to elementary school students—addition
of natural numbers in decimal notation necessitates precisely the same “carrying the
1” as we just saw above. What about multiplication?

� Example 8.3.3 Evaluate 12 · 32 ∈ Q5:

1 Beyoncé. Single Ladies. Columbia Records, 2008. (paraphrased)
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SolutionWe take the 5-adic expansions 12 = 2+ 2p and 32 = 2+ p+ p2 and then
multiply the results as if polynomials in p:

12 · 32 = (2 + 2p) · (2 + p + p2)

= (4 + 2p + 2p2) + (4p + 2p2 + 2p3)

= 4 + 6p + 4p2 + 2p3

= 4 + p + 5p + 4p2 + 2p3

= 4 + p + p2 + 4p2 + 2p3

= 4 + p + 5p2 + 2p3

= 4 + p + p3 + 2p3

= 4 + p + 3p3.

The result is 384, achieved by both standard multiplications in Z and by evaluating
this last p-adic expansion by substituting p = 5. �

That these last couple of examples gave the correct result is not surprising—it
is just regular integer arithmetic intentionally obfuscated by re-writing numbers in
terms of their p-adic expansions. Nevertheless, we encourage the reader to work
through every step of that last solution carefully, as it contains the critical manip-
ulations needed to make progress. The validity of the corresponding additions and
multiplications will be less trivial when done with infinite expansions.

Exposure to a little bit of practice doing arithmetic in this new world is pretty
compelling evidence that everything can bemade towork, provided thatwe’rewilling
to sweep some · · · ’s under the rug. The p-adic world necessitates an infinite amount
of calculation to multiply two elements via their p-adic expansions, and while this
isn’t inherently scandalous (after all, we could in principal evaluate π + e from their
infinite decimal expansions), it does require some care. Addition and multiplication
of p-adic integers should look a lot like addition and multiplication of formal power
series:

(a0 + a1 p + a2 p
2 + · · · ) + (b0 + b1 p + b2 p

2 + · · · )
= (a0 + b0) + (a1 + b1)p + (a2 + b2)p

2 + · · ·
(a0 + a1 p + a2 p

2 + · · · ) · (b0 + b1 p + b2 p
2 + · · · )

= (a0b0) + (a1b0 + a0b1)p + (a2b0 + a1b1 + a0b2)p
2 + · · ·

Indeed, with x’s in place of p’s, this is precisely power series arithmetic, and it
continues to hold in the p-adic world with the caveat that one must “carry” powers of
p in order to re-write the result in standard form (e.g., as seen repeatedly in Example
8.3.3). The need to be careful about this is probably best exemplified by instances
where an infinite number of such carries are required. Consider for example the
following sum of two 5-adic integers:
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� Example 8.3.4 Compute in Z5 the sum of 1 and

α = 4 + 4p + 4p2 + · · · ,

the 4-adic integer with all coefficients equal to 4.

Solution As with the standard algorithm for long addition of natural numbers, we
compute the sum by starting from the “ones digit,” (here the p0 term) resolving any
carries, then the linear term (the p1 term), etc. The current sumwill involve infinitely
many carries, repeatedly using the relationship 5pk = pk+1 in Z5:

1 + α = 1 + (4 + 4p + 4p2 + 4p3 + 4p4 + · · · )
= 5 + 4p + 4p2 + 4p3 + 4p4 + · · ·
= p + 4p + 4p2 + 4p3 + 4p4 + · · ·
= 0 + 5p + 4p2 + 4p3 + 4p4 + · · ·
= 0 + p2 + 4p2 + 4p3 + 4p4 + · · ·
= 0 + 0p + 5p2 + 4p3 + 4p4 + · · ·
= 0 + 0p + 0p2 + 5p3 + 4p4 + 4p5 + · · ·
= 0 + 0p + 0p2 + 0p3 + 5p4 + 4p5 + 4p6 + · · ·
= ...

= 0 + 0p + 0p2 + 0p3 + 0p4 + 0p5 + 0p6 + · · ·
= 0. �

Whoa. Whoa, there. Did those
... stand as a placeholder for the “argument”

well, as we keep going all of the powers eventually go away, so after infinitely many steps
there’s nothing left, so the final answer is zero2 ? Or something?

Well, in short, yes. Indeed, there is a sense in which fluent p-adic reasoning looks
exactly like this. But in long, undoubtedly that egregious lack of precision raises your
mathematical hackles, and a formalization of this approach is to introduce notions
of convergence completely analogous to the way that we measure convergence of
sequences and series in calculus. Re-writing basic notions in the language of limits
is not difficult: if α, β ∈ Zp, recalling the notation of αn for the n-th truncation of
α, we have

α = β ⇐⇒ αn = βn for all n ≥ 1 ⇐⇒ lim
n→∞ vp(αn − βn) = ∞

2 Of course, we also try not to reason in run-on sentences, but if we’re being cavalier about the
mathematics anyway...
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(see Exercise 8.22 for the argument that p-adic expansions, and hence their trunca-
tions, are unique). This suggests that α and β are close to equal if vp(αn − βn) is
large, and generally that numbers with large p-adic valuation should be considered
to be p-adically small (close to zero). The analogous statement in R is that two deci-
mal expansions are close if their difference is small, i.e., begins with a long string of
0’s. The way we encode “size” in rings where our usual notions either do not apply
or seem to give the wrong answer is to define an absolute value on the ring. The
above provides us a perfect idea for how to measure size: the more leading 0s in your
p-adic expansion (i.e., the higher your p-adic valuation), the smaller you should be
considered. The following definition accomplished precisely this.

Definition 8.3.5

Define the p-adic absolute value | · |p for α ∈ Qp by

|α|p = p−vp(α).

(Interpret p−∞ = 0, so |0|p = 0 for all primes p). �

This definition starts to make the formal process of reasoning through “infinite
dot-dot-dot calculations” feel both a little more rigorous, and also more analogous
to the arguments one sees in a real analysis course. Continuing the above chain of
logical equivalences for testing equality, for example, we have

α = β ⇐⇒ lim
n→∞ vp(αn − βn) = ∞ ⇐⇒ lim

n→∞ |αn − βn|p = 0.

That is, much like convergence of infinite real sums, two p-adic numbers are equal if
and only if their sequence of partial sums approach each other p-adically. As a second
example, the off-handed comment in Definition 8.2.5 that α = lim

n→∞ αn is now seen

to be a precise and accurate statement, and we can also resolve the uncertainty of
convergence of calculations having infinitely many “carries.” For example, to see
that the α of Example 8.3.4 is indeed the additive inverse of 1 in Z5, we need only
verify that 1 + α = 0 by showing that vp(1 + αn) tends to infinity with n. This is a
quick exercise in reasoning with finite geometric series (note p = 5, so p − 1 = 4):

vp(1 + (4 + 4p + 4p2 + · · · + 4pn−1)) = vp
(
1 + 4(1 + p + p2 + · · · + pn−1)

)

= vp

(
1 + 4 · pn − 1

p − 1

)

= vp
(
pn

) = n → ∞.

Again, this is more formal that we typically intend to be with calculations of this
type, choosing instead to view this as the implicit rigorous justification underlying
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the somewhat more free-wheeling use of · · · ’s. Nevertheless, we can now close the
story and formally define p-adic arithmetic.

Definition 8.3.6

For α,β ∈ Zp, we define p-adic addition and multiplication by

α + β = lim
n→∞ αn + βn and α · β = lim

n→∞ αn · βn .

For p-adic rationals α,β ∈ Qp, we can bootstrap the definition of p-adic integer
addition by factoring out appropriate powers of p: If α = pkα′ and β = p�β′
with α′, β′ ∈ Zp and without loss of generality k ≥ �, then

αβ = pk+�(α′β′) and α + β = pkα′ + p�β′ = p�(pk−�α′ + β′),

where both concluding terms in parentheses are operations in Zp and hence
defined above. �

Finally, having established addition and multiplication as operations that do, in
fact, totally exist, it is worth recording for future use their interaction with the valu-
ation function.

Lemma 8.3.7

For α,β ∈ Qp, and n ∈ N, we have

(i) vp(αβ) = vp(α) + vp(β).
(ii) vp(α

n) = nvp(α).
(iii) vp(α + β) ≥ min{vp(α), vp(β)}. �

Proof First assume that α,β �= 0. Write α = pkα′ and b = p�β′ as in (8.2). Then
α′β′ mod p �= 0 since both α′,β′ �≡ 0 mod p, and so

vp(αβ) = vp(p
k+lα′β′) = k + � = vp(a) + vp(b).

The second bullet follows from the first by induction. For the final part, let’s assume
without loss of generality that k ≥ �. Then � = min{vp(α), vp(β)} and

vp(α + β) = vp(p
kα′ + p�β′) = vp(p

�(pk−�α′ + β′)) ≥ �.

When α = 0, we can see that the convention from Definition 8.2.6 that vp(0) = ∞
was hand-picked tomake these three properties hold.We leave the details for Exercise
8.30. �
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We wish to assure the reader that the p-adic absolute value absolutely has val-
ue beyond making things look more difficult than they seem. To the contrary, this
notion of absolute value is one of the most intriguing aspects of the p-adic world,
as it provides the segue to analogies with numerous other branches of mathematics.
Absolute values beget distances, distances beget lengths, and lengths beget—dunh
dunh dunh!—geometry.
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Exploration P

p-adic Geometry �

The first few questions are intended to explore the behavior of this new (and
counterintuitive) measurement of size. Train your mind to reinterpret all measure-
ment words as dependent on the absolute value in question: α being “5-adically
small” means that the real number |α|5 is small in the usual sense, and α and β being
“3-adically close” means that |α − β|3 is small in the usual sense.

P.1 What elements of Q5 are 5-adically big? Small?

P.2 How far apart can two elements of Z5 be? How close? What about Q5?

P.3 Find examples of integers that are 5-adically close but 7-adically far apart, and
vice versa.

P.4 Find pairs of numbers that are p-adically close for lots of p. All p?

P.5 Pick a prime p, and then choose three elements a, b, c in Zp (take natural
numbers to begin with) and compute |a − b|p, |a − c|p, and |b − c|p. Repeat for
several choices of a, b, and c, recording your results.

a b c |a − b|p |a − c|p |b − c|p

P.6 In R
2, one makes triangles by a similar process: a triangle in R

2 is formed from
three points A, B, and C , and its side lengths are given by |A − B|, |A − C |, and
|B − C |. The triangle inequality says that any of these three lengths is at most the
sum of the other two. Is there something analogous to the triangle inequality in Zp?
What else is remarkable about p-adic “triangles”?
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8.4 Which numbers are p-adic?

It is clear that every natural number has an interpretation as an element of Zp since
base-p expansions are just finite p-adic expansions. Further, the previous sections
show how to interpret −1 as an element of Zp:

−1 = (p − 1) + (p − 1)p + (p − 1)p2 + (p − 1)p3 + · · · ,

and the process is not much different for any negative integer. What about rational
numbers? We have already discovered (Exploration O.4) the identity

1

6
= 1 + 4p + p2 + 4p3 + p4 + · · · ∈ Z5,

but the source of this was a bit of a one-off idea coming from Taylor series. The
most naive of techniques for coming up for other such expansions turns out to be one
of the most effective. We employ the method of undetermined coefficients, a fancy
name for the mathematically pervasive technique of assuming that a solution exists
and then determining what its coefficients must have been, one at a time.

� Example 8.4.1 Decide if 3
8 ∈ Z7 and if so find the 7-adic expansion of 3

8 .

Note that by the statement 3
8 ∈ Z7 we mean the existence of an element α ∈ Z7 such

that 8α = 3.

Solution Since 8 = 1 + p ∈ Z7, we are attempting to solve for the sequence of ai ’s
in the equation

(1 + p)(a0 + a1 p + a2 p
2 + a3 p

3 + · · · ) = 3.

We distribute the product on the left, equate coefficients, and then solve for each ai
recursively to find them all. Equivalently, we work modulo pn for increasingly large
n. Equating

a0+(a0 + a1)p + (a1 + a2)p
2 + (a2 + a3)p

3 + · · · = 3 + 0p + 0p2 + 0p3+ · · ·
shows that we must have a0 = 3 for this equality to hold (the mod-p condition).
With this value in place, we have the equality

3 + (3 + a1)p + (a1 + a2)p
3 + (a2 + a3)p

3 + · · · = 3 + 0p + 0p2 + 0p3 + · · ·
For this to holdmod p2, we need for 3+(3+a1)p ≡ 3+0p mod p2, so (3+a1)p ≡
0 mod p2, so (3 + a1) ≡ 0 mod p. This forces a1 = 4. Substituting this choice in
we get

3 + (3 + 4)p + (4 + a2)p
2 + (a2 + a3)p

3 + · · · =
3 + (1 + 4 + a2)p

2 + (a2 + a3)p
3 + · · · = 3 + 0p + 0p2 + 0p3 + · · ·
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Reasoning identically mod p3 forces a2 = 2 (to give the p2 a coefficient of zero),
and then reasoningmod p4 gives the coefficient of p3 as (1+2+a3), forcing a3 = 4,
etc. With some pattern-deduction (more formally, an induction proof), we conclude
that

3

8
= 3 + 4p + 2p2 + 4p3 + 2p4 + 4p5 + 2p6 + 4p7 + · · · ∈ Z7,

with eventually periodic coefficients alternating between 2 and 4. �
This process generalizes nicely to finding p-adic representations of all sorts of

rational numbers. It is worth stressing that the somewhat involved notation of the
following proof is simply the formalization via induction of the pattern recognition
in the example just completed.

Lemma 8.4.2

The units Z
×
p of Zp are precisely those elements α ∈ Zp with vp(α) = 0. That

is, for α ∈ Zp, we have the equivalent conditions

α is a unit ⇐⇒ vp(α) = 0 ⇐⇒ |α|p = 1 ⇐⇒ α mod p �= 0. �

Proof The last three conditions are easily seen to be equivalent, so we focus our
attention on the first and last conditions, that α is a unit if and only if α mod p �= 0.
If α is a unit, then αβ = 1 for some β ∈ Zp, and so αβ mod p = 1, which would be
impossible if α mod p = 0. For the reverse direction, suppose α mod p = a0 �= 0.
Given the coefficients ai of α’s p-adic expansion, we wish to solve, for unknown
coefficients bi (0 ≤ bi ≤ p − 1), the equation

(a0+a1 p+a2 p
2+a3 p

3+· · · )(b0+b1 p+b2 p
2+b3 p

3+· · · ) = 1+0p+0p2+0p3+· · · .

We proceed inductively. Looking at the constant term, we need a0b0 ≡ 1 mod p, so
choose b0 to be the integer from 0 to p − 1 that is congruent to a−1

0 mod p (which
exists since a0 �≡ 0 mod p). Now suppose that we have computed b0, . . . , bn so that

(a0 + a1 p + · · · + an p
n)(b0 + b1 + · · · + bn p

n) ≡ 1 mod pn+1.

Consequently, this product on the left can be written as cn+1 pn+1 + 1 for some
cn+1 ∈ Z. We want to find the next term in the expansion, i.e., work modulo pn+2

and solve

1 ≡ (a0 + a1 p + · · · + an p
n + an+1 p

n+1)(b0 + b1 p + · · · + bn p
n + bn+1 p

n+1)

≡ (a0 + · · · + an p
n)(b0 + · · · + bn p

n) + an+1b0 p
n+1 + a0bn+1 p

n+1

≡ 1 + pn+1(cn+1 + an+1b0 + a0bn+1) (mod pn+2).

The last condition is equivalent to cn+1 + an+1b0 + a0bn+1 ≡ 0 mod p, so we can
take bn+1 to be the unique integer from 0 to p − 1 satisfying

bn+1 ≡ a−1
0 (−cn+1 − an+1b0) mod p.
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Having constructed its sequence of coefficients (bn) by induction, we now have the
p-adic number β such that αβ = 1. �

� Remark8.4.3 This againmirrors the situation in calculus. If f is a rational function
with f (a) �= 0 (that is, the constant term of f ’s Taylor expansion at a is not zero),
then 1

f is also a rational function with a Taylor expansion at a. But if f (a) = 0,

then 1
f is not defined at a and so does not have a Taylor expansion there, and we

must instead use a Laurent expansion.

Corollary 8.4.4

Every non-zero α ∈ Qp can be written uniquely as a power of p times a p-adic
unit, i.e., in the form

α = pvp(α)u (u ∈ Z
×
p ) �

Proof This is direct from Definition 8.2.6 and the lemma. �

Corollary 8.4.5

The ringZp is a unique factorization domainwith p its unique irreducible element
(up to associates). Further, Qp is a field, and equals the set of fractions of p-adic
integers. �

In algebraic jargon, the last claim is that Qp is the field of fractions of Zp.

Proof First, since we have not made the point explicitly yet, note that Zp and Qp

are both integral domains (neither the product of powers of p nor of two units can
be zero) and Qp is further a field (α−1 = p−vp(α)u−1). The irreducibility of p in Zp

follows from a valuation calculation: if p = αβ, then

1 = vp(p) = vp(αβ) = vp(α) + vp(β),

and since both vp(α) and vp(β) are non-negative integers, one of them must be 0,
making that factor a unit by Lemma 8.4.2. A similar argument shows p is also prime.
This also gives unique factorization: if α ∈ Zp, then since α = pvp(α)u for some
unit u, α can be written as a product of irreducibles in Zp, and uniquely so since the
valuation vp(α) is well-defined. Finally,

Qp =
{

α
β : α,β ∈ Zp, β �= 0

}

by mutual inclusion (Exercise 8.36). �

� Remark 8.4.6 Instead of directly invoking the factorization to show that Zp is a
UFD, we could invoke once more The Path: one checks (Exercise 8.31) that the
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p-adic valuation on Zp defines a Euclidean norm in the sense of Definition 6.4.1,
from which unique factorization follows by Theorem 6.5.3.

Now we return to Q. By prime factorization in Z, every rational number r ∈ Q

can be written in the form
r = pvp(r) a

b
,

where gcd(a, p) = gcd(b, p) = 1. Since a and b are integers relatively prime to p,
by Lemma 8.4.2, they are units in Zp, and thus so is the product ab−1. That is, every
rational number can be written in the form

r = pvp(r)u,

where u is a unit of Zp. Since Zp is characterized as the elements of Qp with
vp(r) ≥ 0, rational numbers with vp(r) ≥ 0 have a p-adic expansion that actually
lives in Zp.

Corollary 8.4.7

For any prime p, “Q ⊆ Qp.” �

The scare quotes on “Q ⊆ Qp” are there to emphasize that what we really mean
is that every rational number admits a p-adic expansion and so can be viewed as an
element of Qp. We will maintain this slight abuse of notation, writing, e.g., 3

8 ∈ Q7
instead of any of the more pedantic options. (Note one does not typically stress about
writing Q ⊆ R despite a similar setup.)

It may not be clear at this point thatQ and eachQp aren’t essentially the same ring
(or to reuse the fancy word from Remark 4.7.7, isomorphic). After all, for generic
elements r ∈ Q and α ∈ Qp we can compare the general forms

r = pvp(r) a

b
∈ Q versus α = pvp(α)u ∈ Qp

with u ∈ Z
×
p . Having learned that a

b ∈ Z
×
p as well, it is plausible to believe that we

could reverse the construction, and to each α ∈ Qp determine the rational number
that gives rise to it. As it turns out, this impression is quite false, as the vast majority
of elements of Qp are not the p-adic expansion of any rational number. We sketch
two arguments, both of which can be seen as direct analogues of the same arguments
for R. First is by explicit description of the elements: if we view a real number
as an infinite decimal expansion, then the rational numbers correspond to those
decimal expansions that are eventually periodic. Though not intuitively clear, the set
of eventually periodic expansions forms a rather thin subset ofR. By a near-verbatim
argument replacing decimal expansions with p-adic ones, the p-adic expansions that
represent rational numbers are those with eventually periodic coefficients. A second
argument proceeds set-theoretically: The same diagonalization argument that shows
R uncountable also shows that the collection of p-adic expansions Zp, Qp, and even
Z

×
p , are uncountable.
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The next reasonable-but-false thing to believe is that all of the Qp are essentially
the same. Of course, all the Qp’s are structurally very similar, and each contains all
of the rational numbers, so it is somewhere in those uncountably many “irrational”
elements of Qp that we will have to search for differences. The next section will
cover our principal tool for deducing the explicit presence of such elements.

8.5 Hensel’s Lemma

A natural starting place for exploring the massive gap between the countably many
rational elements of Q and the uncountably many elements of Qp is to explore ques-
tions of “algebraic” elements of Qp. Does Qp contains roots of integer-coefficient
polynomials that are not themselves rational? Exploring this question will also re-
solve the concluding question of the previous section, that despite their structural
similarities, the various Qp are genuinely quite different. The answer is generically
yes, but themore specific answer is thatwhich algebraic numbers are present depends
heavily on the choice of p! We only have to go as far as quadratic irrationals to see
our first example:

Claim 8.5.1

There is a square root of 7 in Q3 but not in Q5 or Q7. �

� Remark 8.5.2 As with real numbers, we might encode the first claim as the ex-
pression

√
7 ∈ Q3, though in this case only while grimacing slightly internally.

In R, the symbol
√
7 references “the unique positive real number whose square

is 7.” In Q3, without an obvious notion of positiveness, the
√
7 then somewhat

ambiguously refers to one of the two such elements. That will not stop us from
occasionally employing this abuse of notation for visual or dramatic effect. Just
don’t tell anyone.

Solution Consider the valuation of a purported solution of α2 = 7 in Qp for some
prime p. Taking the p-adic valuation of both sides gives

vp(α) = 1

2
vp(α

2) = 1

2
vp(7) =

{
0 if p �= 7
1
2 if p = 7.

This is already a contradiction if p = 7, so one of our three claims is disposed of
immediately. For p �= 7, we learn that vp(α) = 0, so can write

α = a0 + a1 p + a2 p
2 + a3 p

3 + · · · .

Determining the existence of such an α for a given p is equivalent to solving (or
demonstrating the inability to solve) via the method of undetermined coefficients the
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equation
(a0 + a1 p + a2 p

2 + a3 p
3 + · · · )2 = 7.

When p = 5, we write 7 = 2 + p and so need to solve the system of coefficients

a20 + (2a0a1)p + (a21 + 2a0a2)p
2 + · · · = 2 + 1p + 0p2 + 0p3 + · · ·

Beginning with the constant coefficient, we need a20 ≡ 2 mod 5, and from explo-
rations with squares mod p, we see that there is no such value for a0 (the Legendre
symbol

(2
5

) = −1). Thus there is no square root of 7 in Q5!
When p = 3, we write 7 = 1+ 2p and find that this time it appears we can solve

the system. Setting

a20 + (2a0a1)p + (a21 + 2a0a2)p
2 + · · · = 1 + 2p + 0p2 + 0p3 + · · · ,

we can choose a0 = 1, which then after mild arithmetic forces a1 = 1, then a2 = 1,
then a3 = 0, then a4 = 2, etc. We can verify our work

α2 = (1 + p + p2 + 2p4 + · · · )2
= 1 + 2p + 3p2 + 2p3 + 5p4 + 4p5 + · · ·
= 1 + 2p + 0p2 + 3p3 + 5p4 + 4p5 + · · ·
= 1 + 2p + 0p2 + 0p3 + 6p4 + 4p5 + · · ·
= ...

= 1 + 2p

= 7,

as long as we’re willing to believe that we can indefinitely continue the process of
finding the next coefficient to extend the streak of 0 coefficients. �

Thus the elephant in the example is, yet again, the tantalizingly oblique “etc”
or “· · · ” that we slide in so cavalierly as we go. Having established the first few
coefficients of the p-adic expansion of an ostensible

√
7 ∈ Q3, can we be sure that

the process can be continued indefinitely? After all, the search for
√
7 ∈ Q5 fell flat

on its face at the very first coefficient!
The answer is a resounding yes, both for finding square roots and the vastly more

general context of solving polynomial equations (recall that finding
√
7 ∈ Qp is

more precisely encoded as finding a root of the polynomial x2 − 7 in Qp). Roughly,
the mantra provided to us by the upcoming Hensel’s Lemma, a generalization of the
argument for producing multiplicative inverses, is that if you can start the method
of undetermined coefficients (find the a0 term), then you can finish it (find all ai ).
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Theorem 8.5.3 (Hensel’s Lemma)
Let f ∈ Zp[x], and suppose we have an integer a0, with 0 ≤ a0 ≤ p−1, such
that f (a0) ≡ 0 (mod p) and f ′(a0) �≡ 0 (mod p). Then there is a unique
α ∈ Zp such that f (α) = 0 and α mod p = a0.

The punchline of this remarkable result is that once we satisfy a mild condition on
the derivative3 of f , having a solution in Zp is equivalent to having one in Z/(p).
So if nothing else, Hensel’s Lemma is remarkable for replacing an uncountably
infinite solution space with a finite solution space which, at least in principal, could
be searched by systematically checking every element.

Proof Suppose f ∈ Zp[x] and a0 ∈ Z satisfy the conditions of the theorem. We
aim to find α ∈ Zp such that f (α) = 0 and α mod p = a0. Write

α = a0 + a1 p + a2 p
2 + · · ·

and let αn = a0 + · · · + an−1 pn−1 be its n-th truncation, so α1 = a0 and αn+1 =
αn + an pn . We show that we can inductively solve for an , with the hypothesis
f (α1) = f (a0) ≡ 0 mod p1 being the base case. Now suppose that we have found
the uniqueαn so that f (αn) ≡ 0 mod pn .Wemust find an so thatαn+1 = αn+an pn

satisfies f (αn+1) ≡ 0 mod pn+1.
Write f (x) = ∑

βk xk , so f ′(x) = ∑
kβk xk−1. We compute

f (αn+1) = f (αn + an p
n)

=
∑

βk(αn + an p
n)k

≡
∑

βk(α
k
n + kpnanα

k−1
n ) (mod pn+1),

where the last step employs the binomial theorem—in the expansion of an arbitrary
(a + bpn)k , all but two terms contain a factor of p2n and so vanish mod pn+1 for
n ≥ 1. Continuing, we note

∑
βk(α

k
n + kpnanα

k−1
n ) =

∑
βkα

k
n + an p

n
∑

kβkα
k−1
n

= f (αn) + an p
n f ′(αn).

For this expression above to reduce to 0 modulo pn+1 we need

f (αn) + an p
n f ′(αn) ≡ 0 mod pn+1.

3 Calculus has been pervasive in this chapter as an analogy, but in this instance appears as the literal
derivative of a polynomial. We the authors are wowed by this and would understand if you needed
to take a break to marvel – we’ll still be here when you get back.
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Dividing through by pn (and recalling f (αn) ≡ 0 (mod pn) by the induction hy-
pothesis), we can equivalently write this as

f (αn)

pn
+ an f

′(αn) ≡ 0 mod p

Since f ′(αn) ≡ f ′(a0) �≡ 0 mod p, we can divide and then solve for an : Let an be
the unique integer 0 ≤ an ≤ p − 1 such that

an ≡ − 1

f ′(αn)

f (αn)

pn
mod p,

completing the construction and demonstrating uniqueness. �

� Remark 8.5.4 Lifting is a convenient verb for the act of taking an element of
Z/(p) and finding an appropriate element of Zp (or sometimes Z) that reduces
to it mod p. In this language, Hensel’s Lemma provides conditions under which
we can lift a Z/(p)-root of a polynomial f to a Zp-root.

� Remark 8.5.5 Tracing through the proof, we find that the inductive procedure for
lifting a Z/(p)-root to a Zp-root is to first find α1 by working mod p, and then to
recursively use the formula

αn+1 ≡ αn − f (αn)

f ′(αn)
(mod pn+1).

Especially in light of our motivating analogy with polynomials, it is striking
that this is exactly the same formula as Newton’s method for finding roots of
a differentiable function! Newton’s method turns out not to always work, but
Hensel’s Lemma does.4

The question of which p-adic numbers have p-adic square roots is almost com-
pletely resolved by the lemma, and the resolution happily rests on something we are
quite familiar with, the completely analogous question about modular square roots.
With quadratic reciprocity at our disposal, the problem is essentially solved. The
bulk of the work is figuring out square roots of units, so we begin with this case.

Corollary 8.5.6

Suppose p is an odd prime, and let β ∈ Z
×
p . Then β has a square root in Zp if

and only if β mod p has a square root in Z/(p). �

Proof One direction is clear by looking at constant terms. If α2 = β in Zp, then
their leading coefficients satisfy a20 ≡ b0 (mod p). The converse is Hensel’s Lemma

4 p-adic analysis: 1, real analysis: 0. Take that, calculus!
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applied to the polynomial f (x) = x2 − β: assume that b0 ≡ a20 (mod p) for some
integer 0 ≤ a0 ≤ p − 1. Then since b0 �≡ 0 mod p (since β is a unit), it is also true
that a0 �≡ 0 mod p, and so f ′(a0) = 2a0 �≡ 0 mod p (recall p is odd). By Hensel’s
Lemma, there exists a unique α ∈ Zp such that f (α) = 0 and α ≡ a0 mod p. Such
an α is a p-adic square root of β. �

When p = 2, the situation is, again, slightly more complicated. But why? Why
must 2 always be such a nuisance? Loosely, the culprit is that the dual usages of 2
in this setting—the explicit 2 in working with the 2-adics and the implicit 2 when
talking about square roots—interfere with each other. For example, we can see the
coefficient of 2 and the placeholder p = 2 interact differently than for p odd in any
squaring computation:

(1 + a1 p)
2 =

{
1 + 2a1 p + a21 p

2 p �= 2

1 + (a1 + a21)p
2 p = 2

This shows, for example, that every odd square must have a zero coefficient in front
of 21, and in fact 22 as well, since a1 + a21 is always even. This already shows the
impossibility of a direct analogue ofCorollary 8.5.6. Takingβ = 5 = 1+22 ∈ Z2, for
example, we see that β mod 2 is a square inZ/(2), but β cannot be a square inZ2.We
can also seewhere the hypotheses ofHensel’s Lemma fail: if f (x) = x2−β ∈ Z2[x],
then for every α ∈ Zp we have f ′(α) = 2α ≡ 0 mod 2, violating the hypotheses
of Hensel’s Lemma. Sheesh! That pesky 2! Stronger forms of Hensel’s exist for this
purpose, but we can handle the case of square roots directly.

Lemma 8.5.7

Let β ∈ Z
×
2 . Then β has a square root in Z2 iff β ≡ 1 mod 8. �

Proof First, suppose α2 = β in Z2. Then since β ∈ Z
×
2 , we know β mod 2 = 1,

and so α mod 2 = 1 as well. This forces α mod 8 ∈ {1, 3, 5, 7}, and for any of these
choices we get β ≡ α2 ≡ 1 mod 8.

Conversely, supposeβ ≡ 1 mod 8.Weproceed as in theproof ofHensel’sLemma,
inductively computingmore andmore coefficients of the 2-adic expansion of a square
root. We will show that we can construct the sequence of coefficients an ∈ {0, 1}
so that αn = a0 + · · · + an−1 pn−1 satisfies α2

n ≡ β mod 2n+1 for5 all n ≥ 1. The
base case of n = 1 is handled by α1 = 1, since then both α2 and β are congruent
to 1 mod 21+1. Suppose for the sake of induction that we have found αn so that
α2
n ≡ β mod 2n+1 and so α2

n − β = cn2n+1 for some cn ∈ Z2. We wish to choose
an so that αn+1 = αn + an2n gives the next correct coefficient of β when squared:

5 The exponent of n + 1 here means that we check that the new an makes the next two coefficients
(the n-th and (n+ 1)-st) of α2

n work out correctly. This, as opposed to the n in the proof of Hensel’s
Lemma, is essentially the solution to the problem that p = 2 causes.
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α2
n+1 ≡ β mod 2n+2. We compute

α2
n+1 − β = α2

n + 2αnan2
n + a2n2

2n − β

≡ α2
n − β + anαn2

n+1

≡ 2n+1 (cn + anαn) (mod 2n+2)

For this to be zero, it suffices for the parenthetical to be even, which is equivalent to
simply choosing an = cn mod 2 since αn ≡ α1 ≡ 1 mod 2. �

� Example 8.5.8 Find all p for which
√
7 ∈ Zp.

Solution Since 7 �≡ 1 mod 8, there is no
√
7 ∈ Z2. For odd p,

√
7 ∈ Zp if and only if(7

p

) = 1, a problem which is solvable using quadratic reciprocity. Namely, we found
in Example 7.5.7 that this occurs if and only if p ≡ ±1,±3, or ± 9 (mod 28). �

Broadening our scope of square root inquiry from Z
×
p to Zp, and even Qp, does

not increase the difficulty, as the difference between these sets is just the allowable
p-adic valuations, and the meat of the square criterion comes instead from the unit
part.

Corollary 8.5.9 (Squares in Qp)

Suppose α ∈ Qp is written in the form

α = pvp(α)u (u ∈ Z
×
p ).

• For p odd, α is a square in Qp if and only if vp(α) is even and
(u mod p

p

) = 1.
• For p = 2, α is a square in Qp if and only if vp(α) is even and u ≡ 1 mod 8.

�

Proof If vp(α) is odd, α has no square roots by valuation considerations. If vp(α)

is even, then pvp(α) has the obvious square root pvp(α)/2 so α has a square root if
and only if u does. �

Generally speaking, Hensel’s Lemma reduces polynomial root-finding in Zp to
that of Z/(p), an uncountafold reduction in our search space. Quadratic reciprocity
picks up the torch for quadratic such equations, allowing us to quickly solve equations
for all p. While we have not discussed versions of quadratic reciprocity for higher
degree equations (which is not to say they don’t exist!), we still have a slew of
modular arithmetic tools that can be brought to bear.

� Example 8.5.10 Decide which elements of Q11 are cubes.
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Solution Let p = 11 and take α = pvp(α)u ∈ Qp. Then as in the proof of the
corollary, it is clearly necessary that 3 | vp(α), and if 3 | vp(α) then it is sufficient
to check that u is a cube. By Hensel’s Lemma, this will happen as long as u mod 11
is a cube, but since 11 ≡ 2 (mod 3), every element of Z/(11) is a cube (Corollary
4.6.24). Thus for α to be a cube in Q11 it is both necessary and sufficient for vp(α)

to be a multiple of 3. �

� Remark 8.5.11 The argument can be repeated nearly verbatim for any prime p ≡
2 mod 3 in place of 11. If p ≡ 1 (mod 3), then there are three cube roots of unity
mod p and only a third of the elements of Z/(p) will have cube roots. We would
need a “cubic reciprocity law” to streamline results in the same way as we did in
Example 8.5.8. Such laws exist but are beyond the scope of this book.

As a final example of copying rational algebra to p-adic algebra, in the last chapter
we fawned over another family of algebraic numbers, the roots of unity. Suppose
we were to ask the analogous p-adic question—can we find roots of unity in Zp?
Since such elements are precisely the roots of the polynomial xn − 1, our approach
is natural.

Pickle 8.5.12

Which roots of unity are in Zp? �

Solution Suppose p is odd andα is a primitive n-th root of unity. Thenα reducesmod
p to an element of order n in Z/(p), and Lagrange’s Theorem tells us the order of
any non-zero a ∈ Z/(p) divides |Z/(p)×| = p − 1. So primitive n-th roots of unity
can only exist for n dividing p−1, and since an n-th root of unity is also a (p−1)-st
root of unity when n | p − 1, it suffices to restrict our attention to those. But every
non-zero element a ∈ Z/(p)× satisfies a p−1 = 1, and the derivative condition

f ′(a) = (p − 1)a p−2 �≡ 0 (mod p)

is also clearly satisfied, so all (p − 1) of the (p − 1)-st roots of unity in Z/(p)×
lift to roots of unity in Zp. We conclude that Zp contains the primitive n-th roots of
unity if and only if n | p − 1. For p = 2, it’s clear that the 2nd roots of unity ±1 are
in Z2, and Exercise 8.27 will show that there are no others. �
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To close themotivating line of inquiry, the various fieldsQp, despite being similar
in description and structure, differ in arithmetically interestingways. Half of theQp’s
have a square root of 7 and half don’t, half have a square root of 11 and half don’t,
etc., and no two Qp’s contain precisely the same set of square roots (Exercise 8.35).

And, at the risk of waxing too metaphysical, it is this diversity of Qp’s that
provides their greatest strength.Much like the particle physicist’s process of studying
new particles by smashing all known particles into them and seeing what happens,
we will revisit classical number-theoretic questions and see what happens if we
smash all known primes into them, localizing our study on that prime in particular.
By seeing how the problem reacts to each prime, we gain insight into the overall
(global) solution to the problem.

8.6 The Local-Global Philosophy and the Infinite Prime

Chapter 2 introduced us to the idea that we can view a polynomial equation with
integer coefficients, like

x2 + y2 = z2, (∗)
as an interesting mathematical object of study independent of the ring in which
x, y, z reside. If C denotes such an equation, then we can ask about the set C(R)

of solutions in any of the rings R we’ve encountered6 . Diophantine analysis often
focuses on the set C(Z), but we have also had cause to explore sets like C(Z/(n)),
C(Q), C(R), C(Z[i]), C(C), C(Z/(pk)), C(Zp), C(Qp), etc. It seems fair to say
that the principal benefit to the algebraic approach to Diophantine equations is the
observation that these sets are often intimately related. For example, if (x, y, z) is a
point in C(Z), then (by Lemma 4.3.3), we have the point ([x], [y], [z]) ∈ C(Z/(n)).

We have made potent use of these relationships, even when we did not call them
out by name. For one, a consequence of the relationship above is that if C(Z) is
non-empty, then C(Z/(n)) must be non-empty as well. The contrapositive of this
implication allowed us to deduce, for example, that there are no integer points on the
curve

y2 = 5x3 + 7

as there are no solutions in Z/(5) (the equation reduces mod 5 to y2 = 2, but(2
5

) = −1). This is a powerful tool – we have infinitely many primes modulo which
to reduce, and if any one of these reductions results in a congruence with no solution,
then there is no integer solution to the original equation either.

6 Aparticularly fancy viewpoint,which this notation encourages, is to view the equation as a function
that inputs a ring and outputs the corresponding set of solutions!
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But thus far, showing the lack of solutions to a Diophantine equation is the limit of
this technique, as the existence of a solution mod n does not guarantee the existence
of an integer solution. Indeed, an equation as simple as x2 = −1 clearly has no
integer solutions, but half of all primes p admit a solution to this equation mod p.
Worse, it is possible for a Diophantine equation to have a solution modulo every
prime p and yet still have no integer solutions:

� Example 8.6.1 Consider the polynomial equation f (x) = 0, where

f (x) = (x2 − 3)(x2 − 13)(x2 − 39).

Then the equation f (x) = 0 clearly has no integer solutions (its only real solutions
are±√

3,±√
13, and±√

39), but we claim it has a solution modulo any prime p.
Modulo 3 or 13,we can take x = 0, andmodulo any other prime p,multiplicativity
of the Legendre symbols tells us that

(
3

p

)(
13

p

)
=

(
39

p

)
.

Thus not all of 3, 13, and 39 can be non-squares modulo p, and so we can find a
solution x as a square root of whichever one is a square.

What a depressing situation! So imagine what a miracle it would be, then, to have
a method for reversing this process, of deducing the conclusive existence of integer
solutions to a Diophantine equation by working in a collection of simpler worlds. As
we’ve come to understand the word “miraculous” and “p-adic” as being essentially
synonymous, it will come as little shock that the p-adic worlds are precisely the
worlds to save the day, at least for some quadratic Diophantine equations.

First, let us fact-check the claim thatZp is “simple,” despite being a still-unfamiliar
place towork.We have commented before that fields are in some sense arithmetically
uninteresting because there are no primes at all. The other extreme is a ring like Z

with so many primes that we write full textbooks7 trying to understand them. The
rings Zp form a remarkable intermediate realm along this spectrum, with only one
solitary prime each (Corollary 8.4.5) on which to rest all of their arithmetic. Better
yet, the primes of the various Zp together comprise precisely all of the primes of Z,
and the perspective that naturally arises is that of a division of labor: to understand a
problem of arithmetic involving primes inZ, we try to understand that same problem
in each Zp in turn, where the scarcity of primes may be of great benefit.

Figure 8.1 represents this approach to studying classical number theory from a
p-adic viewpoint (we’ll be back to that ∞ in a minute!), that the überfield Q is
built up of many primes, and we can simplify many questions by studying them
one at a time. To focus on that one prime, we move to the corresponding p-adic
world, which removes all other primes from arithmetic significance. The common

7 ...well, certain poor souls do, anyway.
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Fig. 8.1 Studying Q through
its various completions
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metaphor, enshrined in the terminology, is to think of Q as a global field, from which
we can zoom in to any of the local fields Qp.

The cleanest statement of this phenomenon needs one more addendum, one more
“locality” in the global map of Q, shown at the far right of Figure 8.1. In terms of
their construction, both R and the various Qp can be thought of as being formed
from Q by the analytical process of completion: in both cases you begin with Q and
observe that certain limits that you’d like to exist simply do not. For example, while
the decimal truncations

1, 1.4, 1.41, 1.414, 1.4142, . . .

of
√
2 form a sequence of rational numbers that converges (|ai − a j | → 0 as

i, j → ∞), its limit is not rational. We expand from Q to R by including all limits of
convergent sequences of rational numbers. Likewise, while the sequence of p-adic
truncations

3, 3 + p, 3 + p + 2p2, 3 + p + 2p2 + 6p3, 3 + p + 2p2 + 6p3 + p4, . . .

of
√
2 ∈ Z7 form a sequence of rational numbers that p-adically converges (|ai −

a j |p → 0 as i, j → ∞), its limit is not rational. We expand from Q to Qp by
including limits of p-adically convergent sequences of rational numbers.

The strength of this analogy turns out to be rather staggering. The fields Qp and
R, though miles apart algebraically, are analytically very similar in construction, and
this similarity suggests that we should include R alongside all of the various Qp

in Figure 8.1. Lest the reader be concerned that we could continue coming up with
bizarre metrics, topologies, completions, etc., giving rise to more and more bizarre
worlds in which to do arithmetic, rest assured that this is not the case. A remarkable
result called Ostrowski’s Theorem states, roughly, that the fields in the figure (R and
the various Qp) are the only completions of Q (see Exercise 8.46).

To package this encompassing idea in compact notation, we adopt the convention
that Q∞ = R (and | · |∞ = | · |, the usual absolute value), completing the lastmost
column in Figure 8.1. Informally, then, a Local-Global Principle is a statement that
a certain problem submits to the type of resolution described above, that resolving it
in Q (the global solution) is equivalent to solving a related one in each Qp (a local
solution) for each “p ≤ ∞” (a shorthand for “for all regular primes p and the prime
at infinity”). Exploration Q takes us through some examples.
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Exploration Q

Local-Global Principles �

Q.1 Herewe explore theLocal-Global Product Formula relating the p-adic absolute
values | · |p for all p ≤ ∞. Choose some rational numbers r and compute |r |p for
each prime p ≤ ∞. Finally, for each such r compute

∏

p≤∞
|r |p.

What happens and why?

Q.2 Prove the Local-Global Principle for Units:
n ∈ Z is a unit if and only if n is a unit in Zp for all primes p ∈ N.

Q.3 Prove the Local-Global Principle for Divisibility:
For a, b ∈ Z, we have a | b in Z if and only if a | b in Zp for all p < ∞.

Note that divisibility in Zp is very peculiar: For example, 7 | 13 in Z5!

Q.4 Prove the Local-Global Principle for Cubeness:
a ∈ Q is a cube if and only if a is a cube in Qp for each p ≤ ∞.

Q.5 Explain why the following claim doesn’t makes sense:
α ∈ Qp is a cube if and only if it is a cube in Qq for all q �= p.

Q.6 Explain why the Local-to-Global Principle for Squareness is false if we neglect
to include the prime at infinity:

a ∈ Q is a square if and only if a is a square in Qp for all p < ∞, but is true if
we change it to “for all primes p ≤ ∞.”

Why is this change important for squares but unnecessary for cubes?

Q.7 The symbol ∞ does not, as one has to meticulously and repeatedly explain
to young children trying desperately to weaken your resolve with pleas of “I love
you times infinity,” represent an actual number. On the other hand, the defining
condition for being prime is that p | ab =⇒ p | a or p | b. Come up with reasonable
conventions for a divisibility notion in Z ∪ {∞} that would make ∞ a prime in this
world. Discuss: is this a reasonable thing to do, or has mathematics finally jumped
the shark?
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8.7 The Local-Global Principle for Quadratic Equations

While local-global principles arise in a variety of algebraic contexts, many of them
can be crisply encoded as statements about solutions of equations. The questions
“is a a square?”, “is a a cube?”, and “is a a unit?” from Exploration Q can all be
rephrased as the existence of solutions to the respective equations

x2 = a, x3 = a, and xa = 1.

That we have the prospect of resolving such questions by invoking local-global
principles is certainly a heart-warming thought, but any fledgling romantic is well
advised to accept both the good and the bad in their partner, and finding oneself with
a newfound love for local-global principles is no different. We note two potential red
flags. First is that local-global principles do not hold for every problem: Example
8.6.1 combines with Hensel’s Lemma to provide a polynomial equation with no
solution in Q but solutions in Qp for each p ≤ ∞ (Exercise 8.33). Nor is it true
that local-global principles are necessarily helpful! The examples on the Exploration
also highlight the second concern—even when a local-global principle exists, it is
not clear that it is of any practical use. For example, in most contexts it is certainly
much easier to say directly whether a given n ∈ Z is a unit than it is to export it into
infinitely many p-adic worlds and do work there.

The point of the current section is to discuss one of the more remarkable local-
global principles, that of solutions to quadraticDiophantine equations. The quadratic
world emerges as a perfect intermediate between the occasional mundanity of linear
affairs and the impenetrability of higher-degree analogues. Namely, it is not hard to
prove a local-global principle for linear Diophantine equations, that for a, b, c ∈ Z

the equation ax + by = c has a solution in Z if and only if it has one in each Zp

(Exercise 8.43). The quadratic analog, however, is much a more exhilarating version
of the local-global philosophy. Much like the case of linear Diophantine equations,
where a solution is constructed by the explicit Extended Euclidean Algorithm, the
proof of the following principle is algorithmic in nature. The algorithm itself is just
marginally outside the realm of plausibility for doing by hand, so we do not detail
all the steps here. The procedure has been implemented in various mathematical
software packages, and we refer the reader to Exercise 8.51 for details. We hope
to instead illustrate the significance of the corresponding principle and present a
perspective on how it unifies much of the work done in this course. Here is the
statement:

Theorem 8.7.1 (Hasse’s Local-Global Principle)
For fixed non-zero rational numbers a and b, there exists a rational solution to
the equation

ax2 + by2 = 1
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if and only if there exists a p-adic solution to this equation for all p ≤ ∞.

The form of the equation may at first glance appear rather restrictive, but we
will see that by employing change of variables, it is quite broad in scope. It is also
true that Hasse’s principle extends to quadratic equations in many variables, but the
two-variable case has sufficient meat to keep us entertained for the present.

Taking the Hasse principle as given, what remains is to address the analogous
question in each Qp: given a, b fixed, for which p does there exist a Qp solution to
ax2 + by2 = 1? We will proceed analogously to the one-variable case. There, we
determined the existence of solutions to the equation ax2 = 1 in Z/(p) (and hence
in Qp by Hensel’s Lemma for p odd) by calculations with Legendre symbols. There
exists a solution if and only if

(a
p

) = 1 (since x2 = 1/a is solvable if and only if

x2 = a is solvable). Themajor theorems in Chapter 7 provide us with an algorithm to
compute these symbols. Here for simplicity of exposition, wewill reverse the process
somewhat: the next definition is a calculational definition for a new symbol (a, b)p
that evaluates to either ±1, and we will soon show that it encodes the existence of
a p-adic solution to ax2 + by2 = 1 just as the Legendre symbol did for mod-p
solutions to x2 = a. As with many other such definitions, we will have to pull out
p = 2 and p = ∞ as special cases.

Definition 8.7.2

We define the p-adic Hilbert symbol (a, b)p for a, b ∈ Q
× (orQ

×
p ), and p ≤ ∞

a prime, as follows:

• For 2 < p < ∞, write i = vp(a) and j = vp(b), so a = piu and b = p jv

with u, v ∈ Z
×
p . Then set

(a, b)p =
(

(−1)i j u jvi

p

)
=

(−1

p

)i j(u

p

) j(
v

p

)i

= (−1)i j (p−1)/2
(
u

p

) j(
v

p

)i

• For p = 2, take i, j, u, v as above, and set

(a, b)2 = (−1)e where e = u − 1

2
· v − 1

2
+ j (u2 − 1)

8
+ i(v2 − 1)

8

• For p = ∞, define

(a, b)∞ =
{

+1 if a > 0 or b > 0

−1 if a < 0 and b < 0. �



8.7 The Local-Global Principle for Quadratic Equations 279

� Remark 8.7.3 Notational conventions: For u ∈ Z
×
p and p odd, the expression

(u
p

)

means the usual Legendre symbol
(u mod p

p

)
. By Lemma 4.3.3, this is equivalent

to asking if u is a square in Zp. In the second bullet we encounter a power of
(−1) to a 2-adic integer, and here for α ∈ Z2 we take (−1)α to mean (−1)α mod 2,
evaluating to +1 if 2 | α and −1 otherwise.

First, a word on the two special cases: The relative intricacy of the formula for
p = 2 is inherited from the difference between the two cases in Corollary 8.5.9 and
the fact that we have the convenient Legendre symbol to simplify the expression for
odd p. The p = ∞ case is a bit of a triviality, with the symbol (a, b)∞ succinctly
encoding the test for whether or not ax2 + by2 = 1 has any real solutions: If a
is positive, we can take the solution ( 1√

a
, 0), and likewise for (0, 1√

b
) when b is

positive. If a and b are both negative, then there can be no solution to ax2 +by2 = 1
since the left-hand side is negative.

� Example 8.7.4 Compute (9, 15)p for various p.

Solution Let’s start with p = 3. We have a = 9 = 32 · 1, so in the notation of the
definition, we have i = 2 and u = 1; and b = 15 = 31 ·5, so j = 1 and v = 5. Then

(9, 15)3 =
(

(−1)i j u jvi

3

)
=

(
25

3

)
=

(
1

3

)
= +1.

Similarly, to compute (9, 15)5, we write 9 = 50 · 9 and 15 = 51 · 3, so

(9, 15)5 =
(

(−1)0 · 91 · 30
5

)
=

(
9

5

)
=

(
4

5

)
= +1.

Next for p = 7, we have 9 = 70 · 9, so i = 0 and u = 9, and 15 = 70 · 15, so j = 0
and v = 15. Now

(9, 15)7 =
(

(−1)0 · 90 · 150
7

)
=

(
1

7

)
= +1.

The simplicity of this last example will in fact repeat for any odd prime p other than
3 and 5, as we will have i = j = 0 so (9, 15)p = +1. That leaves only the two
special cases: for p = ∞, the definition immediately provides (9, 15)∞ = 1, and
for p = 2 we have u = 9, v = 15, and i = j = 0, so

(9, 15)2 = (−1)(u−1)/2·(v−1)/2 = (−1)4·7 = +1.

We conclude that (9, 15)p = +1 for all p ≤ ∞. Intriguing... �
We saw in the example that the only primes that can possibly produce a −1 from

a Hilbert symbol calculation of (a, b)p are p = 2, p = ∞, and primes dividing
either a or b, as for any other prime we get i = j = 0, so (a, b)p = +1. So much
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like Legendre symbols, the calculation of Hilbert symbols is made remarkably more
efficient by use of symbolic manipulation and general deductions. We collect this
and other key properties below.

Lemma 8.7.5

Let a, b, c ∈ Q
×. Then for any prime p, we have the following properties of the

Hilbert Symbol:

(1) Irrelevant primes: If p �= 2,∞ and p � a, b, then (a, b)p = +1.
(2) Symmetry: (a, b)p = (b, a)p.
(3) Multiplicativity: (a, bc)p = (a, b)p(a, c)p and (ab, c)p = (a, c)p(b, c)p.
(4) Irrelevance of Squares: (a, b)p = (ac2, b)p
(5) (a, −a)p = 1.
(6) For all a �= 1, (a, 1 − a)p = 1. �

Proof Symmetry is clear from the definition for all three cases, and the rest of the
claims each require up to 3 separate proofs for the even, odd, and infinite cases. We
present here the arguments for p odd and leave p = 2 and p = ∞ to Exercise 8.37.

For multiplicativity, we piggyback on multiplicativity of the Legendre symbol:
write a = piu, b = p jv and c = pkw, so that bc = p j+kvw and

(a, bc)p =
(

(−1)i( j+k)u j+k(vw)i

p

)
=

(
(−1)i j u jvi

p

)(
(−1)ikukwi

p

)

= (a, b)p(a, c)p.

Multiplicativity in the first slot then follows by symmetry (or repeating this argu-
ment), and (4) follows immediately as a consequence, as

(ac2, b) = (a, b)(c2, b) = (a, b)(c, b)2 = (a, b)

since (c, b)2 = (±1)2 = +1. For (5), write a = piu. Then

(a, −a)p =
(

(−1)i ·i ui (−u)i

p

)
=

(
(−1)i(i+1)u2i

p

)
= +1

since both 2i and i(i + 1) are necessarily even.
Finally, for (6), we have a = piu and 1 − a = 1 − piu, so at least one of i or

j is zero, and if both are zero the Hilbert symbol is automatically +1. Otherwise, if
i = 0, then j > 0 and p | v = 1 − u. Thus u ≡ 1 mod p. If i > 0 and j = 0, then
v = 1 − piu ≡ 1 mod p. Thus each case evaluates to one of

(a, 1 − a)p =
(

(−1)i · j u jvi

p

)
=

(
1 j

p

)
= 1 or

(
(1 − piu)i

p

)
=

(
1

p

)
= 1. �
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We can nowmake the connection to quadratic Diophantine equations, after which
we will move to solving specific equations. We reiterate the punchline of the section,
that the symbols (a, b)p serve a function completely analogous to the symbols

(a
p

)
,

providing a calculable quantity that returns a yes/no answer to a question “Does
this equation have a solution?” By Theorem 8.7.1, to answer this question in Q is
equivalent to being able to answer it in eachQp, and so the following theorem neatly
decides the whole story.

Theorem 8.7.6
Fix a, b ∈ Q

×
p . Then there is a solution x, y ∈ Qp to

ax2 + by2 = 1

if and only if (a, b)p = +1.

The proof is surprisingly explicit, though requires breaking into several cases
depending on whether p is two, odd, or infinity, and then further depending on the
p-adic valuations of a and b. The case p = ∞ is immediate (there are no solutions
in R if and only if a, b < 0), and we leave the p = 2 case as Exercise 8.42, leaving
the case of an odd prime p. The difficulty before us is transitioning from abstract
knowledge of positive Hilbert symbols to an explicit solution to an equation.

Pickle 8.7.7

In Example 8.7.4 we found that (9, 15)p = +1 for all p. How do we go from this
to, say, a Q7-solution to

9x2 + 15y2 = 1? �

SolutionWe find a solution (x0, y0) mod 7 and then apply Hensel’s Lemma. A brute
force search finds the solution (x0, y0) = (3, 2):

9(3)2 + 15(2)2 ≡ 1 mod 7.

We will take y = 2 ∈ Z7. To find x , re-writing the above expression 32 ≡ (1 −
15(2)2)9−1 mod 7 shows that the 7-adic integer α = 1−15(22)

9 is congruent to a
square (namely, 32) modulo 7. By Corollary 8.5.6, α = x2 is thus itself a square
in Z7. Using the techniques of the previous section, we can work with explicit
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expansions whenever desired, and such calculations would produce8

α = 1 − 15(22)

9
= 2 + 5 · 7 + 3 · 72 + 73 + 6 · 74 + 3 · 75 + · · ·

= (3 + 3 · 7 + 72 + 3 · 74 + 3 · 75 + · · · )2 = x2 ∈ Z7

We have now constructed our solution, as

9x2 + 15y2 = 9 ·
(
1 − 15(22)

9

)
+ 15 · (2)2 = 1.

Note that since 7 divides neither 9 nor 15, the Hilbert symbol hypothesis (9, 15)7 =
+1 presented us with no extra information to use. For the finitely many but more
interesting examples where p divides a or b, the Hilbert symbol evaluating to +1
will be crucial. �

One remark on the solution above before we begin the proof in earnest: we man-
aged to brute force the solution (3, 2) to 9x2+15y2 ≡ 1 mod 7, but brute force is less
effective mid-proof. How do we know we are guaranteed to be able to find a mod-p
solution? One option is a slight modification of Theorem 7.4.1, which guarantees
in fact quite a number of points on the curve modulo p. Alternatively, a simpler
argument can guarantee the existence of at least one: as we run through squaring all
p values for each of x, y ∈ Z/(p), there are p+1

2 different values obtained by ax2

and p+1
2 obtained by 1 − by2, and since p+1

2 + p+1
2 > p = |Z/(p)|, at least one

value is hit by both expressions. That is, there must exist (x0, y0) ∈ Z/(p) such that
ax20 ≡ 1 − by20 .

Proof (of Theorem 8.7.6) We deal here with the case of p an odd prime (again,
the case p = ∞ is trivial and for p = 2, see Exercise 8.42). For the first direction,
assume that there exist x, y ∈ Qp such that ax2+by2 = 1.Then as long as x, y �= 0,
properties (4) and (6) in Lemma 8.7.5 give

(a, b)p = (ax2, b)p = (ax2, by2)p = (ax2, 1 − ax2)p = +1.

And if one of x or y is zero (let’s say x), then by2 = 1, so b = (y−1)2 and

(a, b)p = (a, y−1)2 = +1.

For the converse, we break into cases by vp(a) and vp(b). Note that neither
condition—either that (a, b)p = 1 or that ax2+by2 = 1 has a solution—-is affected
by multiplying nor dividing a or b by a square. This follows from the irrelevance of
squares property for the former and by absorbing squares into x or y for the latter. So

8We do not claim either of these coefficient patterns are obvious, only that we have developed
enough machinery to know that we could continue to compute them indefinitely.
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by multiplying by a suitable power of p2 we can without loss of generality assume
that vp(a) and vp(b) are both either 0 or 1.

The case vp(a) = vp(b) = 0 is the case where both a and b are p-adic units, and
we can proceed as in Pickle 8.7.7: find a mod-p solution (x0, y0) to ax20 + by20 ≡
1 mod p. First, if x0 ≡ 0 mod p, then 1 − by20 ≡ 0, so b−1 is a square mod
p, and hence in Zp. Let y be a square root of b−1 in Zp, giving us the solution
a(0) + by2 = a(0) + b · b−1 = 1. Next, if x0 �≡ 0, let y be any lift of y0 to Zp,
so that the p-adic integer (1 − by2)a−1 ≡ (1− by20 )a

−1 ≡ x20 mod p is a non-zero
square mod p. By Corollary 8.5.6, we can choose an x ∈ Zp to be a square root of
a−1(1 − by2) congruent to x0 mod p. Now (x, y) is a solution to ax2 + by2 = 1.

If one of vp(a) or vp(b) equals 1 (say vp(b)) and the other is 0, then the hypothesis
that (a, b)p = +1 gives us that

1 = (a, b)p =
(

(−1)0·1a1

p

)
=

(
a

p

)
,

so a is a square mod p. Hensel’s Lemma implies that a, and hence 1
a , is a square in

Qp. Let x ∈ Qp be a square root of 1
a . Then

ax2 + b(0)2 = a

(
1

a

)
+ b(02) = 1

provides the solution (x, 0). The final case where vp(a) = vp(b) = 1 reduces to the
previous cases by a substitution. See Exercise 8.41. �
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Exploration R

Hilbert Symbols �

The upcoming section will have us do a lot of Hilbert symbol calculations rather
quickly, so here’s our chance to build some fluency.

R.1 Compute (18, 3)p for all p ≤ ∞.

R.2 Explore/simplify the expressions (a, p)p, (a, 1)p, and (a, −1)p.

R.3 Deduce the identity
(a, a)p = (−1, a)p

in two different ways: First using the explicit definition of the Hilbert symbol, and
second, using properties of the Hilbert symbol.

R.4 Use properties of the Hilbert symbol to verify each step below:
(
12,−5

3

)

3
= (3, −15)3 = (3,−3)3(3, 5)3 = (3, 5)3 =

(
5

3

)
= −1.

R.5 Use properties of the Hilbert symbol to verify each step below:
(
3

7
,−5

9

)

p

(
3

7
,−5

)

p
= (3 · 7,−5)p = (21, −20)p = +1.

R.6 Using the prior problems as motivation (or not), come up with your own simpli-
fying property of Hilbert symbols. It need not be particularly deep, only a convenient
shorthand for an identity you could see yourself finding handy on occasion.

Our recent result, Theorem 8.7.6, shows it would have been logically equivalent
to make the following definition for the p-adic Hilbert symbol:

(a, b)p =
{

+1 if the equation ax2 + by2 = 1 has a solution (x, y) ∈ Qp

−1 if the equation ax2 + by2 = 1 has no solution (x, y) ∈ Qp

R.7 Using the above definition of (a, b)p, verify properties (2), (3), (5), and (6) of
Lemma 8.7.5.

R.8 We have thus far constantly insisted that the symbol (a, b)p requires a, b ∈ Q
×

or Q
×
p . Using the quadratic equation definition of Hilbert symbols, what if we allow

a or b to be zero? Are the resulting equations solvable? Do the properties of the
symbol continue to hold?
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8.8 Computations:Quadratic Equations Made Easy

The synthesis of the results of the previous section provides us a pleasantly easy-
to-use procedure for resolving quadratic equations:

Theorem 8.8.1
Fix a, b ∈ Q

×. There is a rational solution to

ax2 + by2 = 1

if and only if (a, b)p = +1 for p = 2, p = ∞, and for each prime p for which
either vp(a) or vp(b) is nonzero.

It is important to emphasize that this is a finite calculation.With prior local-global
principles, we occasionally bemoaned that passing to the myriad p-adic worlds was
of little benefit if we had to do computations in infinitely many of them. But Theorem
8.8.1 shows that for quadratic equations only the divisors of the coefficients and the
two special cases need checking. Even simpler, to check non-existence requires only
one lucky hit.

� Example 8.8.2 Show that there are no rational solutions to

7x2 + 11y2 = 1.

SolutionWe need only compute (a, b)p for p ∈ {2, 7, 11, ∞}, and can immediately
check off that (a, b)∞ = 1. Direct computation gives (7, 11)11 = ( 7

11

) = −1, which
proves the non-existence of a Q11 solution, and hence the non-existence of a rational
solution. �

Note we do not claim that Hilbert symbol calculations are the only way to make
these deductions, especially for non-existence answers. The previous example could
be replaced with a mod-11 argument if we were working with integer solutions, and
a similar argument applies to rational solutions if we clear denominators. Instead,
we claim they serve as a unifying system to tackle many seemingly disparate such
equations all at once.

� Example 8.8.3 Show there exist rational solutions to

15x2 − 126y2 = 1.

Solution For any prime p, we have

(15, −126)p = (15, 9)p(15, −14)p = (15, 3)2p(15, −14)p = 1 · (15, −14)p = +1
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by property (6) ofLemma8.7.5.Note howmuch fasterwe can proceed via the abstract
calculus of Hilbert symbols, compared to, say, our more explicit computations in
Example 8.7.4. �

Of course, demonstrating the existence of a solution can also be done by finding
one (for example, 15(12) − 126( 13 )

2 = 1), but there is no guarantee that explicit
solutions will be forthcoming, nor is it clear how to search for them efficiently. Next,
to fulfill an earlier promise, let us begin to document how much broader in scope the
technique is then merely tackling equations of the form ax2 + by2 = 1.

� Example 8.8.4 Decide if there are any rational points on the hyperbola

u2 + 12uv − v2 = 3.

Solution By completing the square, we can re-write the equation as

(u + 6v)2 − 37v2 = 3,

so the substitution x = u + 6v and y = v puts the equation in the form addressed
by Theorem 8.8.1:

1
3 x

2 − 37
3 y2 = 1

We can resolve the solution-existence problem with judicious use of irrelevance of
squares and other properties of Hilbert symbols:

(
1

3
,−37

3

)

p
= (3, −3 · 37)p = (3,−3)p(3, 37)p = (3, 37)p.

These symbols are trivially +1 for p /∈ {2, 3, 37, ∞}, and the Hilbert symbols
for these four special cases can be individually computed to be +1, so there is
indeed a rational solution. Two with small denominator are (x, y) = ( 72 ,

1
2 ) and

(x, y) = ( 83 ,
1
3 ), corresponding to (u, v) = ( 12 ,

1
2 ) and (u, v) = ( 23 ,

1
3 ). �

Completing the square can eliminate both cross-terms and linear terms, rendering
even the most generic quadratic equation

ax2 + bxy + cy2 + dx + ey = f

susceptible to this line of attack.
Another avenue of generalization is in application to Diophantine equations. Re-

call that finding rational points on the unit circle is essentially equivalent to the
Diophantine problem of finding Pythagorean Triples. Namely, by clearing denomi-
nators, any rational solution to x2+ y2 = 1 gives an integer solution to x2+ y2 = z2.

� Example 8.8.5 There are no solutions to the Diophantine equation

7a2 + 11b2 = c2
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since if there were, dividing through by c2 (and checking c = 0 separately)
would give the solution (x, y) = ( ac ,

b
c ) to the rational equation 7x

2 + 11y2 = 1,
contradicting our work in Example 8.8.2.

� Example 8.8.6 Diophantus, on a quest for right triangles whose area is a square
greater than one of its side lengths9 , comes across the equation

15x2 − 36 = y2

and argues that it has no integer solutions. In fact, there are no rational solutions
either, as we can see by re-writing the expression as

15

36
x2 − 1

36
y2 = 1,

and then computing (again repeatedly using Lemma 8.7.5)
(
15

36
,− 1

36

)

3
= (15,−1)3 = (3,−1)3 =

(−1

3

)
= −1. �

Before continuing, we have one more remarkable property of Hilbert symbols to
present, which will help simplify some of the calculations.

Theorem 8.8.7 (Hilbert Symbols Product Formula)
For all a, b ∈ Q, we have

∏

p≤∞
(a, b)p = +1.

Proof By multiplicativity, it suffices to check the formula when a and b are each
either 2, −1, or an odd prime. Let’s evaluate three of these cases, in each case noting
that the vast majority of terms in the product evaluate to be 1 (and switching to r for
our indexing prime for aesthetic reasons):

• Case I: If a = p and b = q are two odd primes: Then

∏

r≤∞
(a, b)r =

∏

r≤∞
(p, q)r = (p, q)p(p, q)q(p, q)2 =

(
q

p

)(
p

q

)
(−1)

p−1
2

q−1
2

9 Look, not all of his problems could be winners. You do you, Diophantus.
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• Case II: If a = p and b = −1, then

∏

r≤∞
(a, b)r =

∏

r≤∞
(p,−1)r = (p, −1)p(p,−1)2 =

(−1

p

)
· (−1)(p−1)/2

• Case III: If a = p and b = 2, then

∏

r≤∞
(a, b)r =

∏

r≤∞
(p, 2)r = (p, 2)p(p, 2)2 =

(
2

p

)
· (−1)(p

2−1)/8

The statement that these three products evaluate to +1 is precisely the statement
of quadratic reciprocity and its two supplemental laws. The remaining cases, where
both a, b ∈ {−1, 2} are much simpler by comparison and left to Exercise 8.40. �

The product formula could just as well be called Hilbert’s Reciprocity Law due
to its equivalence to the quadratic reciprocity law (including the two supplementary
laws). It is intriguing to think through a (pedagogically unwise) course on number
theory that begins with p-adic numbers, arrives at the product formula, and deduces
quadratic reciprocity as a consequence. In any case, while the product formula is
principally of import for its deep structural significance, it more practically has
computational utility:

Corollary 8.8.8

For all a, b ∈ Q
×, the number of primes p ≤ ∞ such that (a, b)p = −1 is even.

�

Proof Note that the number of such primes is finite by Property (1) of 8.7.5. Fur-
ther, this number is even by the product formula, as an odd number of primes with
(a, b)p = −1 would give a global product of −1. �

This provides aminor albeit pleasant simplification to Theorem8.8.1 as it shortens
the list of primes to check by one. It cannot be the case that exactly one prime p gives
(a, b)p = −1, so if all but one of them gives +1, we can conclude that they are all
+1. Moreover, the prime to be omitted can be chosen at will. Perhaps you never want
to run the p = 2 check ever again, or perhaps in a specific problem there’s one prime
that promises to be cumbersome to work with. The corollary allows you to skip it!
Let’s continue working on examples, occasionally making use of this revelation to
unearth new hidden mysteries of the universe.

� Example 8.8.9 There is at least one prime p < ∞ such the equation

x2 + y2 = −1
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has no solutions in Qp.

Proof The equivalent equation −x2 − y2 = 1 obviously has no real solutions, so
(−1, −1)∞ = −1. By Corollary 8.8.8, there must exist at least one other prime p
such that (−1, −1)p = −1. Done! In fact, since no prime divides a = −1 or b = −1,
the only remaining possibility is p = 2, and so it must be that (−1, −1)2 = −1. So
while −1 is only a square in half of the Qp’s, it is a sum of two squares in all but
two of them, Q2 and Q∞ = R. �

� Example 8.8.10 Is there an element of Q(
√−13) of norm 30?

Solution Since it’s been a while, remember that an element of Q(
√−13) takes the

form x + y
√−13, and its norm is given by

(x + y
√−13)(x − y

√−13) = x2 + 13y2.

We thus seek a rational solution to x2 + 13y2 = 30 and so are left to evaluate the
Hilbert symbols

( 1
30 ,

13
30

)
p = (30, 13 · 30)p = (30,−30)p(30, −13)p = (30, −13)p.

This can only be −1 for p ∈ {2, 3, 5, 13,∞}, and we find, for example, that
(30,−13)3 = −1. Thus there are no elements of Q(

√−13) of norm 30. �
The previous example hints at the tie-in from Hilbert symbols to the study of

algebraic number fields, and indeed the use of the p-adic worlds in this study. We
will not formally study extensions of p-adic fields, but analogous to the construction
of Q(

√−13) from Q, we can introduce fields like

Qp(
√−13) = {a + b

√−13 : a, b ∈ Qp}.
An interpretation of Example 8.8.10 is that 30 ∈ Q is not a norm from Q(

√−13)
because 30 ∈ Q3 is not a norm from Q3(

√−13) (where we again define N (a +
b
√−13) = a2 + 13b2). It is a theorem of Hilbert that a local-global principle holds

for this situation—roughly, a rational number r ∈ Q is a norm from Q(
√
d) if and

only if for all p ≤ ∞, the corresponding r ∈ Qp is a norm from Qp(
√
d). The

typical benefits of the p-adic worlds thus come into play as well. For example, since
d will already have a square root in many of the Qp, we have Qp(

√
d) = Qp.

Since our much-investigated example of writing numbers as sums of two squares
has already been seen as a question about norms (since N (x + yi) = x2 + y2), we
can use this as yet another perspective on this question. We can also introduce here
another source of interesting problems: quadratic equations in which one or both
of the coefficients contains a parameter, and we ask how changing the parameter
influences the existence of solutions. Here is one we tackled before in Chapter 5,
seen in a new light: the existence of rational solutions to x2 + y2 = p.
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� Example 8.8.11 For which primes p can we write p = x2 + y2 for x, y ∈ Q?

Solution Certainly, we have solutions for p = 2, so we assume that p is an odd
prime. Re-writing the equation as 1

p x
2 + 1

p y
2 = 1, we see that it is necessary and

sufficient to have for all primes q ≤ ∞ that

1 =
(
1

p
,
1

p

)

q
= (p, p)q

The only relevant primes are q ∈ {2, p,∞}, and since (p, p)∞ = +1 trivially and
we can skip q = 2 by the product formula10 , this only leaves q = p itself to check.
Directly from the definition we get

(p, p)p =
(−1

p

)
=

{
+1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

So by Hasse’s Local-Global Principle, p = x2 + y2 if and only if p ≡ 1 (mod 4).
The condition for rational solutions is identical to that for integer solutions! �

Exercise 8.28 has you repeat this exercise moving from prime p to arbitrary
integers n, repeating quickly what took us a deep understanding of arithmetic in Z[i]
to complete in Chapter 5 (Corollary 5.7.2).

8.9 Synthesis and Beyond:Moving BetweenWorlds

The problem of writing primes in the form x2 + y2, which consumed much of
our energy for much of the book, highlights well the amount of progress we’ve
made in understanding how to move between various mathematical worlds in order
to solve problems. We initially made progress on the equation x2 + y2 = p using
modular arithmetic.When p ≡ 3 mod 4, the lack of solutions to the reduced equation
x2+y2 ≡ 3 (mod 4) implies the non-existence of integer solutions as well.Modular
arithmetic is typically not sufficient, however, to guarantee the existence of a solution,
and we had to move to the world Z[i] of Gaussian integers to finish the problem:
primes that are congruent to 1 mod 4 factor as a product of two conjugate Gaussian
primes in Z[i], and writing such a prime as the norm of either Gaussian prime is
equivalent to writing it as a sum of two squares. The p-adic worlds shed further light
on the modular arithmetic approach: Hensel’s Lemma shows that the ability to find
solutions tomodular equations can inmany cases be lifted to construct corresponding
integer solutions, and Hasse’s principle allows us to glue all the conditions together,
providing a classification of which primes p can be written as a sum of rational

10 How awesome is that?!?
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squares. In this case, the conditions turn out to be the same as those for the integral
squares.

Much of the simplicity of this story, however, comes from the simplicity of the
form x2 + y2. In an attempt to illustrate both how much progress we have made and
how many mysteries still remain, let us undertake a case study of a similar question,
that of representability of primes p by the expression x2 + 11y2. Being freshest in
our memory, rational solutions will come first. Omitting p = 11 for now due to an
obvious such representation, the equation

x2 + 11y2 = p

has a rational solution if and only if
(
1

p
,
11

p

)

q
= (p, 11p)q = (p, −p)q(p, −11)q = (p,−11)q = +1

for all q ∈ {2, 11, p,∞}. These amount to the conditions

(p, −11)11 =
(
p

11

)
= +1 and (p,−11)p =

(−11

p

)
= +1,

two conditions that are equivalent by quadratic reciprocity. Thus

x2 + 11y2 = p has a rational solution ⇐⇒ p = 11 or

(
p

11

)
= 1

⇐⇒ p ≡ 0, 1, 3, 4, 5, 9 mod 11.

Picking a prime satisfying one of these congruences, say p = 23, provides us
with the conic

x2 + 11y2 = 23

now guaranteed to have at least one rational solution. But, as you no doubt recall(!),
this was the starting point for applying the Diophantus chord method from Chapter 3
(2.2.6) to deduce there are infinitely many solutions. Indeed, a principal point made
at the timewas “It’s often hard to tell if there are solutions, but if there is one solution,
then there are infinitely many.” But this particular dilemma has now been resolved,
and an explicit example can be found by the algorithmic form of the Local-Global
Principle. For this example, a brute force search gives a first rational solution of
(x, y) = (− 9

2 ,
1
2

)
, and then taking a line of any rational slope through this point

connects us to another. For example, taking m = − 1
2 gives the second solution

(− 19
30 , − 43

30 ).
As with Pythagorean triples, “clearing the denominator” shows that having ratio-

nal solutions to x2 + 11y2 = 23 provides us with integer solutions to x2 + 11y2 =
23z2, e.g.,

92 + 11 · 12 = 23 · 22 and 192 + 11 · 432 = 23 · 302



292 8 Number Theory Unleashed: Release Zp!

x

y
x2 +11 y2 =23

y = m x+ 9
2

)
+ 1

2
− 19

30 ,− 43
30

)

− 9
2 ,

1
2

)

Fig. 8.2 Remember this? From back in the day? Good times!

from the two displayed points in Figure 8.2. Running over all rational slopes m = u
v

parameterizes for us all solutions to this Diophantine equation.
Despite the positive progress, some tantalizing mysteries still remain. For exam-

ple, moving to integer solutions, we find that unlike x2+ y2 = p, there is a difference
between primes for which there exist integer solutions to x2 + 11y2 = p and ones
for which there exist rational solutions. For an integer solution to x2 + 11y2 = p
to exist, it is necessary that

( p
11

) = +1, as seen by reducing the equation mod 11.
This condition is the same as the one just derived above for rational solutions to this
equation, but it is no longer sufficient. For example, we can see by brute force testing
of small values of y that there are no integer solutions to

x2 + 11y2 = 23,

even though there are no mod-11 or mod-23 obstructions. This is true despite the
fact that there are not only Qp-solutions for each p ≤ ∞, but also Zp-solutions to
this equation for each finite p: the solution ( 92 ,

1
2 ) is a p-adic integer solution for all

p > 2, and for p = 2 we can find the solution (6
√−7, 5) (noting that

√−7 ∈ Z2 by
Corollary 8.5.7). (You should verify that these are solutions.) This shows that there
is no analogous “integral” version of the Local-Global Principle.

Turning back to the algebraic number theory side of things reveals the surprising
difficulty: it is our perpetual frenemy, the question of unique factorization. The “sum
of two squares” form x2+y2 is precisely the normof a generic element x+yi ∈ Z(i).
Our characterization of primes expressible in the form x2 + y2 hinged crucially on
the fact that Z[i] is a unique factorization domain. On the other hand, the form
x2 + 11y2 is the norm of an element from the quadratic field Q(

√−11), whose ring

of integers is not Z[√−11] but rather (Theorem 6.3.5) the ring Z

[
1+√−11

2

]
. While

this larger ring is a unique factorization domain, its subring Z[√−11] is not: We
have, for example,

22 · 3 = (1 + √−11)(1 − √−11)

with all of these factors being non-associate irreducibles. And while 23 was seen
above not the norm of an element of Z[√−11], it is the norm of an integral element
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of Q(
√−11):

23 = N
(
4 + 1+√−11

2

)
.

We will have to part ways before studying what happens when, like for n = 11,
the ring of integers ofQ[√−n] does not have unique factorization, except to tantalize
you with the answer that it is not that we have gone too far with our inclusion of new
numbers, but thatwe have not yet gone far enough!The study of quadratic phenomena
has scratched the surface of the vast array of higher-degree number theory left to
explore. Indeed, the solution to our x2 +11y2 integer-representability problem turns
out to be a cubic one. If we let α be the unique real root of x3 − x2 − x − 1 and
consider the field

K = Q(α) = {a + bα + cα2 : a, b, c,∈ Q}
and its ring of integers R, then for any prime p other than 11 we have

p = x2 + 11y2 (x, y ∈ Z) ⇐⇒ p = π1π2π3 (πi a prime in R)

⇐⇒ x3 − x2 − x − 1 has three roots modulo p.

We leave as amystery the question of whence came the polynomial x3−x2−x−1
other than to note that the resolution to such questions involves precisely the topicswe
have begun to study in this book: number fields and their rings of integers, algebraic
structures and unique factorization, p-adicworlds and their generalizations, and even
the study of elliptic curves and their points in various solution rings. Present-day
mathematicians constantly tackle problems that arise via this type of thinking, and
call upon arguments from this breathtakingly broad and deep pool of mathematics.
We hope the reader will consider diving in.

8.10 Exercises

Calculation & Short Answer

Exercise 8.1 Compute the Taylor series of f (x) = x3 − 11x2 + 35x − 25 centered
at x = a for each a ∈ {1, 2, 3, 4, 5}. Use your results to factor f (x).

Exercise 8.2 Find the base p expansion of n = 70 for each p ∈ {2, 3, 5, 7}.
Exercise 8.3 Find the base p expansion of n = 12 for every prime p.

Exercise 8.4 Find the 2-adic expansion of −3.

Exercise 8.5 Find the 11-adic expansion of −200.

Exercise 8.6 Find the 11-adic expansion of 1
3 .

Exercise 8.7 Show that the equation x3 = 2 has no solutions in Z7.
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Exercise 8.8 Show that there are no rational solutions to

7x2 + 10y2 = 1.

Exercise 8.9 Show that there are no integer solutions to the Diophantine equation

7x2 + 6y2 = z2.

Exercise 8.10 For α ∈ Zp and r a positive real number, define

Bp(α, r) = {x ∈ Zp : |x − α|p < r},
the open ball of radius r in Zp centered at α. Use congruence conditions to describe
the sets

B11(50, 1) B11(50, 0.1) B11(50, .01) B11(50, .001)

Exercise 8.11 For α ∈ Zp and r a positive real number, define

B p(α, r) = {x ∈ Zp : |x − α|p ≤ r},
the closed ball of radius r inZp centered atα. Use congruence conditions to describe
the sets

B7(5, 0.1) B7(47, 0.1) B7(−21, 0.1)

Comment on anything of interest.

Exercise 8.12 Find all primes p for which there exists a solution in Zp to

x2 − 5x + 3 = 0.

Exercise 8.13 Use properties of the Hilbert symbol to deduce the identity

(−ac, −bc)p = (−1, −1)p(−1, a)p(−1, b)p(−1, c)p(a, b)p(a, c)p(b, c)p.

Exercise 8.14 For which n and p do we have (n, n)p = +1?

Exercise 8.15 Provide simple formulas for (1, n)p and (−1, n)p.

Exercise 8.16 As withQ, we often adjoin missing elements toQp, e.g., considering
Qp[√p] = {a+b

√
p : a, b ∈ Qp}. Assuming that it is possible to extend the p-adic

absolute value to this ring, what would vp(
√
p) have to be?What about v5(x), where

x satisfies the polynomial equation

x3 + 50x2 + 25x + 35 = 0?

Exercise 8.17 Silently direct consternation toward someone who uses the notation
Zp tomeanZ/(p). (Optional: Repeat this exercisewithout the “silently” hypothesis.)
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Exercise 8.18 The ring Z/(p) × Z/(p2) × Z/(p3) × · · · consists of ∞-tuples

(x1, x2, x3, x4, . . .)

where xi ∈ Z/(pi ). Call an element of this ring coherent if xn mod pm = xm when-
ever m < n. Explain how specifying a coherent sequence is equivalent to specifying
a p-adic integer. What do natural numbers look like as coherent sequences?

Exercise 8.19 What is the probability that a randomly selected p-adic rational num-
ber will be a p-adic integer? (Caution: This question is nonsense. Can you come up
with justifications for different answers?)

Exercise 8.20 For p odd, suppose informally that you were to pick a “random”
element of Qp. What’s the probability that this element is a square in Qp? How does
this change if p = ∞? If p = 2?

Formal Proofs

Exercise 8.21 Let n be a natural number and p a (positive, rational) prime. Prove
by induction on n that n has a unique base-p expansion as described in Definition
8.1.1.

Exercise 8.22 Distinct infinite decimal expansions can converge to the same number
inR (e.g., 1.000 . . . = 0.999 . . .). Prove that this is not the case for p-adic expansions.
(Hint: Suppose two p-adic expansions first differ in the coefficient of pk . Use the
p-adic absolute value to show the corresponding p-adic numbers are not equal.)

Exercise 8.23 The so-called Harmonic numbers

Hn = 1 + 1

2
+ 1

3
+ 1

4
+ · · · + 1

n

tend to infinity with n, as the partial sums of the divergent harmonic series. Prove
that Hn is never an integer by considering v2(Hn).

Exercise 8.24 Prove any of the following three local-global principles from Explo-
ration Q that you didn’t get to at the time11 :

(a) Units (b) Divisibility (c) Cubes

Exercise 8.25 Verify that the set

Z(p) =
{a
b

: a, b ∈ Z, p � b
}

11 or really, whichever ones your instructor tells you to
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defines a subring of Q (called the localization of Z at p). Explain/prove the relation-
ship Zp ∩ Q = Z(p).

Exercise 8.26 Determine the units and primes of the ring Z(p) from the previous
problem.

Exercise 8.27 Finish up the p = 2 case for p-adic roots of unity begun in Pickle
8.5.12. Which roots of unity are in Z2? Consider working modulo 4 instead of 2.

Exercise 8.28 Use the Local-Global Principle to determine which (not necessarily
prime) integers n can be written as a sum of two rational squares. Your answer should
match the results of Chapter 5.

Exercise 8.29 Prove that a p-adic expansion represents a rational number if and
only if it is eventually periodic.

Exercise 8.30 Verify the properties of the p-adic valuation in Lemma 8.3.7 in the
case that α = 0.What arithmetic conventions about∞ do you have to adopt to make
everything work?

Exercise 8.31 Prove that the valuation vp is a Euclidean norm on Zp.

Exercise 8.32 Describe divisibility, gcds, and the Euclidean algorithm in Zp.

Exercise 8.33 Expanding on Example 8.6.1, use Hensel’s Lemma to show that the
Local-Global Principle fails for the polynomial equation f (x) = 0 with

f (x) = (x2 − 3)(x2 − 13)(x2 − 39).

That is, show that the equations have roots in Qp for each p ≤ ∞ despite having no
rational solutions.

Exercise 8.34 See Exercise 8.10 for a definition of the p-adic open ball. Prove the
(unsettling) observation that every element of a p-adic ball is a center of that ball.
That is, if x ∈ B(α, r), then B(α, r) = B(x, r).

Exercise 8.35 Show that given two natural primes p and q , there is a natural number
n that has a square root in both Qp and Qq .

Exercise 8.36 Complete the proof of Corollary 8.4.5 by verifying that

Qp =
{

α

β
: α,β ∈ Zp, β �= 0

}
.

Exercise 8.37 Prove the properties in Lemma 8.7.5 for p = 2 and p = ∞.

Exercise 8.38 For a, b, c ∈ Q
×
p , prove that there is a Qp-solution to

ax2 + by2 + cz2 = 0

if and only if (−1, −abc)p = (a, b)p(a, c)p(b, c)p.
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Exercise 8.39 Present with proof a classification of which elements of Qp can be
written as a sum of two squares.

Exercise 8.40 Finish the remaining cases in the proof of Theorem 8.8.7, thosewhere
both a, b ∈ {−1, 2}.
Exercise 8.41 Show that the substitution a → −ab−1 reduces the case of Theorem
8.7.6 where vp(a) = vp(b) = 1 to one we have already solved (vp(a)=0, vp(b)=1)
by showing:

• (a, b)p = +1 ⇐⇒ (−ab−1, b)p = +1
• ax2 + by2 = 1 has a solution in Qp if and only if −ab−1x2 + by2 = 1 does.

Exercise 8.42 Mirror the proof of the odd case ofTheorem8.7.6 tofinish the theorem
for p = 2. The principal task is to unpack the condition (a, b)2 = 1 in terms ofmod-8
congruence, and then use our knowledge of 2-adic squares.

Exercise 8.43 A Local-Global Principle for linear Diophantine equations might say
that for a, b, c ∈ Z, the equation ax + by = c has a solution in Z if and only if it
has one in each Zp, for each prime p ∈ N. Fill in the details of the following proof
of that result:

∃ x, y ∈ Z : ax + by = c ⇐⇒ gcd(a, b) | c
⇐⇒ vp(c) ≥ min{vp(a), vp(b)} for all p
⇐⇒ ∃ x, y ∈ Zp : ax + by = c for all p

Computation and Experimentation

SageMath can compute Hilbert symbols with the syntax

(a, b)p = hilbert_symbol(a,b,p)

using p = −1 for the prime at infinity.

Exercise 8.44 Verify experimentally that SageMath’s implementation of this sym-
bol agreeswith the definition in the section. Repeat for some of the section’s principal
theorems, e.g., the Local-Global product formula.

Exercise 8.45 We have primarily dealt with binary quadratic forms ax2 + by2, but
most of the theory of the section can be developed for arbitrary quadratic forms. The
Hasse-Minkowski invariant of the quadratic form

f = a1x
2
1 + a2x

2
2 + · · · + anx

2
n

is the constant
c f =

∏

1≤i< j≤n

(ai , a j )p.
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Write a function in SageMath to compute Hasse-Minkowski invariants and exper-
iment with them. Are they more frequently 1 or −1? Do some research into its
significance. Where does c f appear in the section?

General Number Theory Awareness

Exercise 8.46 Research and give a precise statement of Ostrowski’s Theorem (and
its ingredients). How does the theorem justify our claim that “the only completions
of Q are our Qp for p ≤ ∞”?

Exercise 8.47 In principle, there’s nothing that inherently goes wrong with defining
n-adics for an arbitrary (that is, not necessarily prime) integer n. Why aren’t they
as prevalent as p-adics in modern number theory? Possible starting points include
units, zero-divisors, or a p-adic Sunzi’s Theorem.

Exercise 8.48 Much like 0, negative numbers, imaginary numbers, etc., p-adic num-
bers had a rocky path to full acceptance by the mathematics community. Hensel him-
self inadvertently contributed to suspicion around their use as valid mathematical
objects via an erroneous proof of a famous mathematical theorem. What happened?

Exercise 8.49 A p-adic interpretation of Sunzi’sTheorem is thatwe canfind integers
satisfying any finite collection of local absolute value conditions. Make sense of this
claim, and then look up the “weak approximation theorem.” Find an understandable
versionof this result, and explain how it expands fromSunzi’sTheorem to incorporate
the prime at infinity.

Exercise 8.50 Predating Hilbert symbols for finding points on rational conics were
results of Gauss and Legendre phrased in terms of Legendre symbols. Explore the
history of these results and prove the equivalence of Legendre’s approach toHilbert’s.

Exercise 8.51 Describe the current status of the algorithmic approach to finding a
point on rational conics. Searchable terms include Holzer’s Theorem, or efficient
solution of rational conics. How much of this process has been incorporated into
current computer algebra systems?



9TheAdventureContinues

...wherein you embark on a mighty quest.

After conquering theFires of Euclidea (Figure9.1), your party disbanded and left you
without a guide. Having explored worlds heretofore unknown and having met some
of the most outlandish creatures the Numberverse has to offer, you had intended to
return to the safety of your home town1 of Z

rk
0 . Easily distracted, however, you can’t

help but feel the pull of several unexplored regions lying before you. It’s dangerous
to strike out on your own, but all the more rewarding to choose your own course...

You see paths heading North, East, South, and West.

> Your arch-nemesis blocks your way North. To charge
forward and take a stab at Fermat’s Last Theorem,
turn to Section 9.1.

Chapter 2 began with a historical discussion of Fermat’s Last Theorem. We now
have the tools (e.g., unique factorization in the Eisenstein integers) to mirror the
early days of the theory, when leading mathematicians would knock off special
cases of this theorem one n at a time.

> To head South down a square-covered path, turn to
Section 9.2.

Chapter 5 explored the question of which primes were expressible as a sum of
two squares. But more questions remain. The prime 31, for example, cannot be
written as a sum of two squares, nor can it be written as a sum of three squares.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-030-98931-6_9.

1 Section 9.6 welcomes you home with a moment to reflect on your hero’s journey. You could head
there now, but we warn you—it is not the paths taken in life that haunt you, but the paths not taken.

© Springer Nature Switzerland AG 2022
C.McLeman et al.,Explorations inNumber Theory, Undergraduate Texts inMathematics,
https://doi.org/10.1007/978-3-030-98931-6_9
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Fig. 9.1 The road stretches out before you.

The best we can do is 4, as in 31 = 52 + 22 + 12 + 12. Addressing the general
phenomenon leads us to introduce yet another new type of number, namely the
quaternions and their Hurwitz Integers.

> If it is secrecy you seek, brace yourself for some wild
curves and turn East via Section 9.3.

Beneath the electronic communications and commerce that permeate ourmodern
life lie many of the beautiful algebraic structures we have touched on in this
text. Not only do the modular fields of Chapter 4 play an important role, elliptic
curves (such as the Mordell Curves y2 = x3 + d for various d) have paramount
significance in securing information. Peek behind the veil of modern secrecy
…if you dare.

> To turn West, where things get real, see Section 9.4.

Chapter 6 highlighted briefly the distinction between real and complex quadrat-
ic fields, with a tantalizing sneak preview of one of the most significant
differences—their units. Characterizing the units of real quadratic fields fin-
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ishes off the basics of doing number theory in such fields and turns out to have
interesting applications to the study of rational numbers.

> Also tempting is to just dig into the field. To burrow
down into the depths of abstraction, turn to Section 9.5.

While we celebrate unique factorization in quadratic fields whose rings of inte-
gers are UFDs, we also shed tears for those fields for which there is no analog
of the Fundamental Theorem of Arithmetic. But despair not, for the failure
of unique factorization is not the end of the story but rather the beginning of
another. The notion of an ideal within the ring of integers turns out to save the
day, and becomes a central object of study.

9.1 Exploration: Fermat’s Last Theorem for Small n

The second chapter of this book recounts the origin and resolution of Fermat’s Last
Theorem, from Diophantus to Fermat to Wiles. But this cursory overview leaves out
a tremendous amount of mathematical history in the intervening years, an elaborate
story in which many of the mathematical superstars of history played a part. We first
recall the statement:

Theorem 9.1.1 (Fermat’s Last Theorem (1637))
Let n > 2 be a natural number. Then there are no positive integer solutions to
the equation

xn + yn = zn .

Fermat’s contributions to the proof of this theorem certainly fell shy of the full
result, but this is not to say that these contributions were negligible. In this section
you will prove the n = 3 and n = 4 cases of this theorem using two principal
ideas that Fermat applied to the problem. The first is the transition from an additive
problem to a multiplicative one by factorizations of the type seen in Section 7.6, and
in particular the identity

zn = xn + yn = (x + y)(x + ζ y)(x + ζ2y) · · · (x + ζn−1y)

for ζ = ζn a primitive n-th root of unity. That is, our approach2 will be to pass to the
ring Z[ζn] of cyclotomic integers and hope that arithmetic in that ring is sufficiently

2 Of course, Fermat would not have thought in these terms, nor do we know for sure what his
imagined proof of Fermat’s Last Theorem was.
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accommodating to rule out the existence of solutions. The prospect of applying the
Power Lemma is particularly enticing here, as it would give us a path toward proving
that each x + ζ i y is itself an n-th power, a condition often strong enough to deduce
a contradiction. But the Power Lemma does not come for free in a general ring, and
indeed hinges crucially on unique factorization. So for each n, the study of the ring
Z[ζn] is of increasing significance.

The second idea is Fermat’s proof technique of infinite descent, a mere stone’s
throw away from the principle of mathematical induction:

Lemma 9.1.2 (Principle of Infinite Descent)

If the existence of a natural number n that satisfies some set of properties au-
tomatically implies the existence of a smaller natural number n′ < n that also
satisfies the properties, then there cannot exist any natural number satisfying the
given properties. �

You have likely seen this principle in use even if not by name. For example, an
infinite descent argument for the irrationality of

√
2 argues that if

√
2 = a

b , then the
re-writing 2b2 = a2 eventually shows that a and bmust both be even, and so dividing
each by two gives a solution with smaller a and b. Since the (positive) integers a and
b could not possibly be made smaller and smaller indefinitely, the supposition that
there existed any such a and b must have been incorrect.

We begin with a proof of the n = 4 case, one of the few complete proofs we have
provided by Fermat himself. The proof will be somewhat historically authentic,
touching upon several problems that Fermat studied over his life. Afterward, we will
move to the case n = 3, where it fell to Euler to write up an essentially complete
proof. Following his argument will feel much more modern by comparison, making
arguments based on unique factorization in the ring of Eisenstein integers.

The case n = 4

A notion dating back to Diophantus is that of a congruum, a common difference
between a three-term arithmetic progression of integer squares. For example, 24 is a
congruum because we have the three-term arithmetic progression of squares 1, 25,
49 with common difference 24. If we expand our scope to arithmetic progressions
of rational squares, then we get the notion of a congruent number. For example, 6
is a congruent number since it is the common difference of the arithmetic sequence
( 1
2

)2
,
(
5
2

)2
,
( 7
2

)2
. At first glance, congruent numbers seem hard to come by, but as

we will prove momentarily, they are precisely those numbers equal to the areas of
right triangles with rational sides. For several different values of n, Table 9.1 gives
both a Pythagorean triple (a, b, c) corresponding to a triangle of area n and a triple
(x, y, z) of rational numbers whose squares form an arithmetic progression with
common difference n.
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Table 9.1 Congruent Numbers

n (a, b, c) (x, y, z)

6 (3, 4, 5)
(
1
2 , 5

2 , 7
2

)

24 (6, 8, 10) (1, 5, 7).

30 (5, 12, 13)
( 7
2 , 13

2 , 17
2

)
.

84 (7, 24, 25)
(
17
2 , 25

2 , 31
2

)
.

The proof of the following prompt is largely tantamount to pattern recognition,
deducing the relationship between the last two columns of the table. Given an
(a, b, c), how does one construct an (x, y, z), and vice versa?

� Prompt 9.1.3 Prove that n ∈ Q is a congruent number if and only if there exists a
right triangle with positive rational sides and area n.

Modern authors typically use the interpretation in terms of right triangles as the
definition of congruent numbers, and we shall feel free to move between the two as
needed.

� Prompt9.1.4 Prove using either interpretation that if n ∈ Q is a congruent number,
then so are nd2 and n

d2
for all non-zero d ∈ Q.

The combination of these two prompts provides us with a simple way to generate
lots of congruent numbers by leveraging our classification of Pythagorean triples
(see Corollary 3.4.11).

� Prompt 9.1.5 Find all primitive Pythagorean triples with u ≤ 5 in our standard
(u, v)-parameterization and, by computing the areas of the corresponding trian-
gles, give some examples of congruent numbers. Then use the previous prompt
to conclude that, less obviously, 5 and 21 are also congruent.

Fermat’s proof of His Last Theorem for exponent 4 comes down to the remarkably
simple fact that n = 1 is not a congruent number.

Theorem 9.1.6 (Fermat)
There does not exist a right triangle with positive rational side lengths and
area 1.



304 9 The Adventure Continues

� Prompt 9.1.7 Argue by clearing denominators that it suffices to prove that no
integer square is the area of a primitive Pythagorean triple3 .

Moving from rationals to integers allows us to (a) unambiguously use “square”
to mean “integer square,” but more importantly to (b) employ infinite descent: we
suppose for the sake of contradiction that we have a perfect square d2 that is the area
of a primitive Pythagorean triple, and subsequently argue that we can construct a
smaller such perfect square. The following few prompts achieve this, using yet again
our standard (u, v)-parameterization of all primitive Pythagorean triples.

� Prompt 9.1.8 Show that if d2 (for d ∈ N) is the area of a primitive (u, v)-
Pythagorean triple, then u, v, u + v, and u − v must all be perfect squares.

Thus, to continue, we may write u = j2, v = k2, u + v = �2, and u − v = m2.

� Prompt 9.1.9 Show that gcd(� − m, � + m) = 2 and that 2k2 = (� + m)(� − m)

to deduce that � + m and � − m must take the form 2s2 and 4t2 (in some order)
with s odd.

� Prompt 9.1.10 Prove that the triple (s2, 2t2, j) is a primitive Pythagorean triple
with a perfect square area less than d2, establishing the descent. Conclude that
d2, and hence 1, is not congruent.

Finally, back to Fermat’s Theorem:

� Prompt 9.1.11 Suppose we have a positive integer solution to x4+ y4 = z4. Show
that the Pythagorean triple parameterized by (u, v) = (z2, y2) has area a perfect
square, providing a contradiction.

� Prompt 9.1.12 In fact, the proof above also proves that there are no non-trivial
solutions to the Diophantine equation x4 + y4 = z2 as well. How?

Note that Fermat’s argument, as roughly paraphrased here, does not make explicit
use of the factorization

z4 = x4 + y4 = (x + y)(x − y)(x + iy)(x − iy),

but we can see all of the ingredients lurking in our Gaussian integer interpretation
of the classification of Pythagorean triples. Moving on to n = 3, we will not be able
to be so circumspect about working in other rings.

3 that is, the area of a triangle corresponding to a primitive Pythagorean triple
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The case n = 3

Euler’s 1770 proof of Fermat’s Last Theorem for n = 3 begins, like so many of our
problems, by embedding the problem in a different ring. We recall the ring

Z[ζ3] = {a + bζ3 : a, b ∈ Z} ζ3 = −1 + √−3

2

of Eisenstein integers, and in particular that we have shown that Z[ζ3] is a unique
factorization domain. Thus, arithmetic in this ring allows us to make sense of gcds
and relative primeness, to reason about factorization and valuations, and to apply
milestone results like the Power Lemma. Our goal, therefore, is to move to this ring,
use the properties above, and prove the following expanded result:

Theorem 9.1.13 (Euler, 1770)
There are no solutions to the equation

α3 + β3 + uω3 = 0 (∗)
with non-zero α,β,ω ∈ Z[ζ3] and u ∈ Z[ζ3]×.

This is certainly sufficient, as taking u = −1 implies Fermat’s Last Theorem for
n = 3 in the ring Z[ζ3], which contains Z. Thus, in particular, this result must hold
for integers α,β, ω ∈ Z. Note however that the generalization carries a little risk
since in principal by working in a larger ring and with more general coefficients, we
might have introduced solutions that weren’t in Z. You will show below that this
does not in fact happen. The remainder of the section should be considered a proof
of this theorem, with notation being kept consistent from one prompt to the next.

� Prompt 9.1.14 Argue that without loss of generality, in (∗) we can take α,β, and
ω to be pairwise relatively prime.

Our approach to infinite descent will be to show that given a solution (α, β,ω)

to (∗), we can factor out
√−3 from ω to get a new, smaller, solution. Since there

can’t be infinitely many
√−3’s to factor out of ω, this leads to a contradiction by

descent. We begin by showing that
√−3 must divide one of α, β,ω, and that we

can assume without loss of generality that
√−3 divides ω. (We will exploit this “no

loss of generality” several times—this is the point of allowing the unit u in Euler’s
extension of the problem).

� Prompt 9.1.15 Explore the congruence classes modulo
√−3 in Z[ζ3]: show that

ζ3 ≡ 1 (mod
√−3) and that the only congruence classes modulo

√−3 are
{0,±1}. What are the possible congruence classes of units?
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� Prompt 9.1.16 Prove that
√−3 is prime in Z[ζ3]. Deduce that if

√−3 | σ3 for
some σ ∈ Z[ζ3], then

√−3 | σ and thus 3
√−3 | σ3.

� Prompt 9.1.17 Determine the congruence classes of cubes mod 9: if σ ∈ Z[ζ3] is
not congruent to 0 mod

√−3, what can you deduce about σ3 mod 9? (Hint: Work
with congruence classes mod

√−3 and use the previous prompts. For example,
what if σ ≡ 1 (mod

√−3)?)

� Prompt 9.1.18 Conclude from the previous prompt that in every solution to (∗),
exactly one of α,β,ω is divisible by

√−3. Argue that without loss of generality
we can assume

√−3 | ω.

Now we begin ... the descent! Suppose a solution to (∗) exists. Then out of all
such solutions, choose one with the smallest possible

√−3-adic valuation v√
3(ω),

i.e., such thatω = √−3
k
δ for the smallest possible k. We will establish the existence

of a solution with a smaller such k, concluding the descent.

� Prompt 9.1.19 The previous prompt argues that v√−3(ω) ≥ 1. In fact, show we
must have v√−3(ω) ≥ 2. (Hint: Take (∗) mod 9.)

Though we have already been playing with
√−3 for some time now, it is the next

prompt, the ability to factor α3 + β3 in Z[ζ3], that retroactively justifies the insight
to work in Z[ζ3] in the first place.

� Prompt 9.1.20 Since
√−3

3 | uω3 = α3 + β3, the factorization at the start of the
section suggests factoring α3 + β3 as a product of three factors τ1, τ2, τ3 such
that

√−3 | τi for each i . Do so4 .

Next, the construction phase of the descent:

� Prompt 9.1.21 Show that τ1√−3
, τ2√−3

, and τ3√−3
are relatively prime5 and thus (up

to units) are cubes in Z[ζ3], say, of elements α′,β′,ω′. Argue without loss of
generality that we can choose ω′ to be the only one divisible by

√−3, and so have
0 < v√−3(ω

′) < v√−3(ω).

To summarize, we beganwith the equationα3+β3−uω3 = 0, factoredα3+β3 =
τ1τ2τ3, and realized that each τi must be divisible by

√−3 and that the quotient τi√−3

4We’re just calling them τi so as not to spoil the game for you. You’ll need to figure out what
elements of Z[ζ3] they actually are.
5 This technically requires three checks. We have used the “the other cases are similar” card suffi-
ciently many times on you that we feel you can use one back on us here.
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itself must be a cube (up to units). The three such cubes will be our smaller solution
for the purposes of descent. That is, we will conclude by showing that

(α′)3 + (β′)3 + u′(ω′)3 = 0 (∗∗)
for some unit u′ ∈ Z[ζ3].

� Prompt 9.1.22 Find a unit linear combination v1(α
′)3+v2(β

′)3+v3(ω
′)3 equal to

0, taking for coefficients the units 1, ζ3, ζ23 in some order (recall 1+ζ3 +ζ23 = 0).
It may help to do this for τ1, τ2, τ3 in place of the cubes first.

� Prompt 9.1.23 The linear combination v1(α
′)3 + v2(β

′)3 + v3(ω
′)3 = 0 of the

previous prompt nearly provides (∗∗). Note we can dispose of v1 by division.
Finally, argue we can dispose of the remaining unit coefficient v−1

1 v2 of (β′)3
using our previous work about congruence classes mod 9 and mod 3

√−3.

� Prompt 9.1.24 Synthesize your argument. Why are we now done? Finally, bask
in the glow of a job well done.

...and beyond

Proving Fermat’s Last Theorem for n = 3 and n = 4 could be glibly dismissed as
having merely proven the first two of infinitely many cases. Of course, there is some
punch to this criticism, as it certainly was not clear how to generalize these results
to other n. But, first note that some cases come along for free:

� Prompt 9.1.25 Argue that as a consequence of our work so far, we can quickly
deduce Fermat’s Last Theorem for n = 6, 8, and 9. Generalize.

But most importantly, there was meat enough in these two proofs of Fermat and
Euler to keep mathematicians busy for centuries with their generalizations.

� Prompt 9.1.26 Research: The previous prompt shows that only n = 5 and n = 7
remain as single-digit potential counterexamples to Fermat’s Last Theorem.When
were these two cases resolved? How? By whom?

� Prompt 9.1.27 Explore the development of Fermat’s Last Theorem between Fer-
mat and Wiles. When were early cases proved? Who were the main players? Pay
particular attention to false proofs and where they went wrong.

� Prompt 9.1.28 Research: For which n doesZ[ζn] have unique factorization?Most
n? Just a few? Chronicle the historical progress towards the answers to these
questions, and their current status.
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Finally, we note that questions surrounding this material remain at the forefront
of mathematical research even today. For example, we saw Fermat’s proof for n = 4
depended crucially on the argument that 1 is not a congruent number. To this day, we
still do not have a provably efficient algorithm for deciding if a given n is congruent.
As testimony to its difficulty, note that n = 23 is congruent thanks to the rational
Pythagorean triple

(a, b, c) =
(
80155

20748
,
41496

3485
,
905141617

72306780

)
.

Our most promising lead on this problem is to relate the question to one about
(surprise!?) elliptic curves.

� Prompt 9.1.29 Show that if n is a congruent integer, say from Pythagorean triple

(a, b, c), then the point (x, y) =
(
c
2 ,

c(a−b)(a+b)
8

)
defines a rational point on the

elliptic curve y2 = x3 − n2x .

In fact, by repeatedly using the chord/tangent method developed in Chapter 2,
we can construct infinitely many rational points on the elliptic curve corresponding
to a congruent n. Furthermore, the result is reversible—if the curve y2 = x3 − n2x
has infinitely many rational points, then n is congruent. Questions surrounding the
infinitude of rational solutions to an elliptic curve form a large research subdiscipline
within number theory.

� Prompt 9.1.30 Research challenge: What is known about the “fraction” of elliptic
curves that have infinitely many rational solutions? Look up Tunnell’s Theorem:
How does it imply the existence of an algorithmic check to decide whether a
number is congruent?

9.2 Exploration: Lagrange’s Four-Square Theorem

We have countless times expanded our notion of number to accommodate new ideas
arising in our attempts to solve problems. One of the first such instances was using
the Gaussian integers for problems involving sums of two squares, thanks to the
norm-factorization a2 + b2 = (a+ bi)(a− bi) = N (a+ bi). As a consequence, we
were able to classify in Theorem 5.7.1 precisely those integers that can be written
as a sum of two squares. For those that can’t, some require at least three squares
(6 = 22 +12 +12), while still others require four (7 = 22 +12 +12 +12). A natural
question is whether there is some maximum number of squares ever required or if
there are natural numbers that require arbitrarilymany.Rather thatmaintain excessive
suspense, we answer the question here, with the goal of getting more quickly to the
new class of numbers we will introduce to study the problem.
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Theorem 9.2.1 (Lagrange’s Four-Square Theorem)
Every natural number can be written as a sum of at most four squares of natural
numbers.

That is, alleviating ourworry of three sentences ago, there is no natural number that
requires more than four squares. Let’s outline our proof strategy, much of which will
seem familiar when compared to the analogous argument for sums of two squares.
We will introduce a new number system, the quaternions, and their ring of integers,
the Hurwitz integers. What norms of Gaussian integers did for sums of two squares,
norms of Hurwitz integers will do for sums of four squares. But unlike the Gaussian
integers, the Hurwitz integers form a non-commutative ring, and so the principal
theoretical track of the section revolves around replicating a version of The Path
(Figure 6.1) in this non-commutative setting. Namely, we’ll show that the Hurwitz
integers have a perfectly lovely Division Algorithm that gets them “close enough”
to being a Euclidean Domain, in that we’ll be able to show that for integer primes p
the notions of being “prime” and “irreducible” are equivalent in the ring of Hurwitz
integers (though not for non-integer primes). Proving this will require a Euclid’s
Lemma for the Hurwitz integers, which requires Bézout’s Identity, which requires
the Euclidean Algorithm, which requires our “perfectly lovely Division Algorithm,”
which requires a notion of divisibility, etc.

� Prompt 9.2.2 Show that for Theorem 9.2.1 it is sufficient to prove that:

• If m, n ∈ N can be written as a sum of four squares, then so can mn.
• Every odd (positive) prime can be written as a sum of four squares.

The multiplicativity of the problem, as shown in the above prompt, is our hint
that factorization and norm calculations might be of use again here. So we turn to
introducing these new numbers and their norms. It is convenient to embed some of
our discussions in the language of matrices. As a warm-up exercise, it is instructive
to see how we could view our standard arithmetic of complex numbers through the
lens of matrix arithmetic.

� Prompt 9.2.3 Define two 2 × 2 matrices, I and J , as follows:

I =
[
1 0
0 1

]
and J =

[
0 1

−1 0

]
.

Verify that J 2 = −I and that for a, b, c, d ∈ R we have the matrix identity

(aI + bJ )(cI + d J ) = (ac − bd)I + (ad + bc)J,

analogous to the standard complex result (a+bi)(c+di) = (ac−bd)+(ad+bc)i .



310 9 The Adventure Continues

This matrix interpretation of complex arithmetic permits the use of tools from linear
algebra. For example:

� Prompt 9.2.4 Take the determinant of both sides of the previous matrix identity
to deduce the “Two Square Identity” for a, b, c, d ∈ R:

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

We now look toward sums of four squares instead of two, so we would like to
have a four-dimensional analog of this identity.

Definition 9.2.5

Define 2 × 2 matrices 1, i, j, and k by

1 =
[
1 0
0 1

]
i =

[
i 0
0 −i

]
j =

[
0 1

−1 0

]
k =

[
0 i
i 0

]
.

We define the set of quaternions by

Q = R[i, j, k]
= {a1 + bi + cj + dk : a, b, c, d ∈ R}.
=

{[
z w

−w z

]
: z, w ∈ C

}
(writing z = a + bi and w = c + di)

�

The definition provides two ways of interpreting quaternions. The first, like com-
plex numbers, is an abstract expression of the form a + bi + cj + dk (where we
abbreviate a1 = a), and the second as an explicit 2 × 2 matrix. We typically adop-
t the language of the first perspective, calling such a representation the “standard
form” of the quaternion, and when we want to explicitly call attention to the matrix
itself, we will reference its “matrix representation.”

� Prompt 9.2.6 Let α = (3+ 2i− 4j+ k) and β = −6(2+ 3i− j− 3k). Compute
α − 6β and αβ. Report your result in both the standard form and the matrix
representation.

Let’s continue to get acquainted with this set.

� Prompt 9.2.7 Prove that the quaternions satisfy a non-commutative integral do-
main condition: if αβ = 0 for some α,β ∈ Q, then α = 0 or β = 0.

� Prompt 9.2.8 Prove that the quaternions form a vector space of dimension four
over R with basis {1, i, j,k}.
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� Prompt 9.2.9 Show that i2 = j2 = k2 = −1 and verify the products ij = k,
jk = i, and ki = j. Finally, show that reversing the order of the multiplication in
these last three products changes the sign of the result.

i

jk

These relationships are summarized neatly in the convenient diagram above:
multiplying two distinct elements of {i, j, k} in the order depicted by the arrows
(clockwise) gives the remaining element, and multiplying against the arrows (coun-
terclockwise) gives the negative of that same result.

� Prompt 9.2.10 Show (e.g., using matrix arithmetic) how to find a multiplicative
inverse of a quaternion.

� Prompt 9.2.11 Prove that Q forms a non-commutative ring with unity under
matrix addition andmultiplication, and all non-zero elements of Q have an inverse
under multiplication. (We call such a ring, one satisfying all the conditions of a
field except for commutativity, a division ring.)

The “squaring to −1” aspect of the quaternions is just the start of the analogies
between Q and C. For example, we can make sense of conjugates of quaternions,
flipping the signs of the non-real parts:

Definition 9.2.12

If α = a + bi + cj + dk, define

a + bi + cj + dk = a − bi − cj − dk. �

� Prompt 9.2.13 What does the conjugate of a quaternion look like when written in
its matrix representation?

� Prompt 9.2.14 Prove that αβ = βα for all α,β ∈ Q.

Definition 9.2.15

The norm of a quaternion α = a + bi + cj + dj is

N (α) = αα = a2 + b2 + c2 + d2. �
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� Prompt 9.2.16 Verify that the norm of a quaternion equals the determinant of its
2 × 2 matrix representation.

� Prompt 9.2.17 Prove that for α,β ∈ Q, we have N (αβ) = N (α)N (β).

This beautiful interpretation of the norm of a quaternion lays bare the application
to our sums of four squares problem. To complete the connection, and prove the first
of the two ingredients in Prompt 9.2.2, we need only restrict our attention to integer
coefficients.

Definition 9.2.18

The Lipschitz integers L are the quaternions with integer coefficients:

L = Z[i, j, k] = {a + bi + cj + dk : a, b, c, d ∈ Z}. �

We can now complete the first phase of the outline in Prompt 9.2.2:

� Prompt 9.2.19 Show that if integers m and n are each the sum of four (integer)
squares, then so is mn.

For the second phase of our plan, we will need to perform our standard structural
exploration of the new ring L: units, primes, factorizations, etc.

� Prompt 9.2.20 Show that L× = {±1,±i,±j,±k}.

� Prompt 9.2.21 Use norm arguments to find some irreducible elements of L .

The Lipschitz integers extend the Gaussian integers in the sense that Z[i] can be
thought of as consisting of the Lipschitz integers with c = d = 0. As with Gaussian
integers, the norm map serves a role greater than just forming expressions of sums
of squares. Indeed, the norm of a Gaussian integer represents its size, and played
a major role in generalizing the Division Algorithm from Z to Z[i] (and beyond).
Let’s see what we can do in L:

� Prompt 9.2.22 Experiment with a quaternionic Division Algorithm:

1. Let α = 4 + 7i + j + 8k and β = 1 − i + 2j + 2k. Calculate αβ−1.

2. Find a nearest Lipschitz integer to your quotient (i.e., round each coefficient
to an integer), and use that to find γ and ρ such that α = γβ + ρ.

3. Compute and then compare N (ρ) and N (β).

4. Use a different rounding to find a new γ and ρ and compare their norms.
5. What does this suggest about a Division Algorithm for the Lipschitz integers?
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Oh, dear! And it seemed like such a nice norm, too. But, alas, we can’t guarantee
a small enough remainder, which is the driving force behind the Division Algorithms
in Z, Z[i], Z[ζ3], etc. However, inspired by our success with the Eisenstein integers,
in which we exchanged the rectangular lattice geometry of Z[√−3] for the paral-
lelogrammatic structure of Z[ζ3], we might be tempted to try to adjust the lattice a
little so that the center of each cell is less than one unit away from any corner. The
major obstacle we have here is that most of us can’t visualize this lattice because it
is four dimensional! Or, at least, not with that attitude.

Accordingly, begin by imagining a 4-dimensional integer lattice. A smallest
“cube” would have a diagonal ranging from the origin (0, 0, 0, 0), say, to the point
(1, 1, 1, 1). The length of that diagonal would be

√
N (1, 1, 1, 1) = 2, so the center

is precisely 1 unit away from the vertices: it only just misses our goal! (Remember
that we need the distance to be strictly less than 1). As a consequence, this center
point is the only point that causes us a problem – so what if we include in our lattice
this one extra point ( 12 ,

1
2 ,

1
2 ,

1
2 ) (and its translated compatriots in the centers of other

“cubes,” of course)?

Definition 9.2.23

The Hurwitz integers are defined by

H = Z

[
1 + i + j + k

2
, i , j , k

]

= {a + bi + cj + dk : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1
2 }. �

That is, we expand from the Lipschitz integers to also include quaternions whose
coefficients are all 1

2 more than an integer.

� Example 9.2.24 Verify that 5
2 + 7

2 i− 9
2 j− 1

2k and 4− i+3j−6k are both Hurwitz
integers, but that 3 + 1

2 i + 3j − 1
2k and 3

2 i − 1
2 j + 7

2k are not.

� Prompt 9.2.25 Show the two definitions in Definition 9.2.23 are equivalent.

Structurally, H inherits most of its algebraic properties from Q — the principal
consideration is verifying that its somewhat unorthodox definition makes it a ring at
all.

� Prompt 9.2.26 Prove that H is a ring with unity, but not a division ring.

� Prompt 9.2.27 Prove that for all α ∈ H, we have N (α) ∈ Z. Deduce that the units
of H are precisely the elements of norm 1.

Now for the point:Hwas constructed as an extension of L for the express purpose
of making a Division Algorithm work well. Of course, since H is not commutative
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we cannot call it a Euclidean Domain, and in particular we don’t get for free all
the consequences of being a Euclidean Domain (e.g., being a UFD). Nevertheless,
we will see that the Division Algorithm we do get is good enough to make the
factorization arguments we need.

� Prompt 9.2.28 Mimic earlier Division Algorithm proofs to prove that H satisfies
a non-commutative version of the Division Algorithm: for α,β ∈ H with β 	= 0,
there exist χ, ρ ∈ H such that α = βχ + ρ and 0 ≤ N (ρ) < N (β).

The proof is nearly identical to all of our prior encounters with Division Algo-
rithms (consider αβ−1 ∈ Q and how close this element must be to an element of H),
but the lack of commutativity requires extra care in maintaining the order of multi-
plications. Similarly, we will have to be careful in our non-commutative versions of
divisibility (compare to Definition 3.1.14):

Definition 9.2.29

Given α,β ∈ H , we say that α left-divides β if there exists γ ∈ H such that
αγ = β, in which case we write α |L β. We say that α is a left-divisor of β. �

Though we will not use the analogous “right” notions6 , we would write α |R β
if we could write γα = β. In non-commutative rings, these are not necessarily
equivalent!

� Prompt 9.2.30 Show thatα = 1+i+2j+3k left-divides, but does not right-divide,
β = −16 + 5i + 13j.

Definition 9.2.31

A left gcd δ = lgcd(α,β) ofα,β ∈ H is a Hurwitz integer such that δ left-divides
both α and β and such that if γ is another left-divisor of both α and β, then γ
left-divides δ. An element π ∈ H is a (left) Hurwitz prime if π |L αβ implies
π |L α or π |L β. �

� Remark 9.2.32 We adopt the same conventions as in Chapter 6 with regard to
writing equalities like δ = lgcd(α,β) despite left gcds not being unique.

� Prompt 9.2.33 Prove that the definition of left gcd is equivalent to the following:
δ is a left gcd of α and β if and only if δ is a left divisor of both α and β and if γ
is a left divisor of both, then N (γ) ≤ N (δ).

6 Arguably, the left notion is the right notion.
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With divisibility and the Division Algorithm sorted out, we can progress down the
path: the Linear Combination Lemma (Lemma 3.2.4) holds without issue in any ring
as long aswe are consistent about which sidewe are dividing on. As a consequence of
this and the Division Algorithm, we get natural analogs of the Euclidean Algorithm
andBézout’s Identity.Mimic prior instances of these proofs for the following prompt.

� Prompt 9.2.34 Let α,β ∈ H. Prove that if α = βχ + ρ for some χ, ρ ∈ H,

then lgcd(α,β) = lgcd(β, ρ). Furthermore, if δ = lgcd(α,β), then there exist
μ, ν ∈ H such that δ = αμ + βν.

We keep insinuating that things go awry somewhere, and it’s time for the hammer
to drop—despite having a Division Algorithm, a Euclidean Algorithm, Bézout’s
Identity, and so on, it’s just not true that H forms a unique factorization domain
(even if the definition of UFD didn’t require commutativity). There is a weaker
notion of factorization that H does satisfy, but even better is that for our purposes,
we only care about factorizations involving integer primes p. In this case, we have
a very UFD-like result.

Theorem 9.2.35
Let p ∈ Z be an integer prime. Then theHurwitz integer p = p+0i+0j+0k ∈
H is irreducible (in H) if and only if it is prime (in H).

We split the proof into two prompts.

� Prompt 9.2.36 For the forward direction, assume p ∈ Z is irreducible in H and
suppose p |L αβ for some α,β ∈ H. Show that if p �L α, then p |L β. (The
proof is the same as that of the Prime Divisor Property, with extra care taken with
regard to order of multiplication).

� Prompt 9.2.37 Now assume that p ∈ Z is a Hurwitz prime and that p = αβ for
some α,β ∈ H. Show that if α is not a unit in H, then β must be. Conclude that
p is irreducible in H.

This equivalence sure makes it seems like we’re headed for the inevitable journey
of decidingwhich primes are irreducible inH andwhich are not, perhaps governed by
congruence conditions on p. But in the name of periodically subverting expectations,
we present the following plot twist:
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Theorem 9.2.38
For all integer primes p, the element p is reducible in H.

By Theorem 9.2.35, it suffices to show that an integer prime p is never a Hurwitz
prime. We will show that it is always possible to construct α,β ∈ H such that
p |L αβ, but p left-divides neither α nor β. This is typically not too difficult on a
case-by-case basis, as left-divisibility by p ∈ Z is straightforward.

� Prompt 9.2.39 Let p = 7. Find a, b, c, d ∈ Z such that p | (a2 + b2 + c2 + d2)
but p divides neither (a + bi + cj + dk) nor its conjugate. Conclude that 7 ∈ H

is not prime.

On the other hand, it is not clear how to systematize this process. We turn to
Lagrange’s simplification of this problem, showing that we can restrict our attention
to factorizations of the form 1 + b2 + c2 = (1 + bi + cj)(1 − bi − cj). Since p � 1
in Z, p does not divide either of the factors on the right, so it suffices to show that
for any prime p, there exist integers b and c such that p | 1 + b2 + c2.

� Prompt 9.2.40 A warm-up for the general proof, focused on p = 13: For each of
the 7 values of b and c in the range 0 ≤ b, c ≤ 6, compute −1 − b2 mod p and
c2 mod p. Which pairs (b, c) give 13 | 1 + b2 + c2?

� Prompt 9.2.41 Fix p an odd prime in Z. Show that there must exist integers b and
c such that c2 ≡ −1− b2 (mod p), and so p | 1+ b2 + c2. (It may help to prove
that the values of c2 must all be distinct for c in the range 0 ≤ c ≤ p−1

2 ).

� Prompt 9.2.42 Connect the dots and give a careful proof of Theorem 9.2.38.

This is precisely the information we need to write primes as sums of four squares.
In the Gaussian integers, we used that if we have a non-trivial factorization p = αβ,
then N (p) = p2 = N (α)N (β), and so N (α) = p. Since writing p as a norm from
Z[i] is equivalent to writing it as a sum of two squares, we’re done. To replicate this
argument for sums of four squares, we have one hurdle to jump: our recent structural
results are about H, but writing p as a sum of four integer squares is equivalent to
writing p as a norm from L . Fortunately, this hurdle is only knee-high.

� Prompt 9.2.43 Let p be an odd prime. Use the reducibility of p in H to show that
p must be the norm of some Hurwitz integer.

If p is the norm of a Hurwitz integer a + bi + cj + dk for a, b, c, d ∈ Z we
are done. To resolve the case for a, b, c, d ∈ Z + 1

2 , we introduce an algebraic
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technique showing that any sum of four half-integer squares is also a sum of four
integer squares. We begin with an illustrative example:

� Prompt 9.2.44 Consider the representation

29 =
(
3

2

)2

+
(
5

2

)2

+
(
9

2

)2

+
(
1

2

)2

.

=
(
1 + 1

2

)2

+
(
2 + 1

2

)2

+
(
4 + 1

2

)2

+
(
0 + 1

2

)2

Re-write each summand a + 1
2 in the form b ± 1

2 with b even and argue this can
be done in general.

The ±’s occurring in the coefficients of the above re-writing turn out to be of

relevance: Let ω be the Hurwitz integer of the form
±1 ± i ± j ± k

2
with signs

chosen to match those found in Prompt 9.2.44, and notice that since N (ω) = 1, we
know that ω is a unit. In fact, the sixteen such elements, in conjunction with the eight
units of L , comprise the 24 elements of H

×.

� Prompt 9.2.45 With ω as above, verify the following computation:

29 = (ω + (2 + 2i + 4j + 0k)) · ω · ω · (ω + (2 − 2i − 4j − 0k))

= (ωω + 2(1 + i + 2j)ω)(ωω + 2ω(1 − i − 2j))

= (1 + 2(1 + i + 2j)ω)(1 + 2ω(1 − i − 2j))

= (1 + 2ω(1 − i − 2j)(1 + 2ω(1 − i − 2j)),

showing that 29 is a norm of a Lipschitz integer. Which representation of 29 as a
sum of four squares do you get from this computation?

Our final step is to show that this construction works in general. The key trick is
the re-writing from Prompt 9.2.44.

� Prompt 9.2.46 Show that all Hurwitz integer of the form a + bi + cj + dk for
a, b, c, d ∈ Z + 1

2 can be written in the form

±1 ± i ± j ± k
2

+ (a′ + b′i + c′j + d ′k)

with a′, b′, c′, d ′ ∈ 2Z and some choice of ± signs.

� Prompt 9.2.47 Mirror the computations in the example to show that every integer
that is a norm from H is also a norm from L .
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We have at last reached the punchline. Every positive prime p is a norm from
L and so a sum of four squares. The following prompt should require nothing but
organizing all of the work we’ve done thus far.

� Prompt 9.2.48 Prove Theorem 9.2.1.

Finally, though we have this established as a theoretical result, there are still
questions about explicit representations as a sum of four squares. We leave the
following as an open-ended prompt to continue to investigate.

� Prompt 9.2.49 Verify and experiment with the following computation:

30 = 2 · 3 · 5
= (12 + 12)(12 + 12 + 12)(22 + 12)

= N (1 + i) N (1 + i + j) N (2 + i)

= det

([
1 + i 0
0 1 − i

] [
1 + i 1
−1 1 − i

] [
2 + i 0
0 2 − i

])

= det

[−2 + 4i 3 + i
−3 + i −2 − 4i

]

= 22 + 42 + 32 + 12.

Does this calculation suggest any results on the number of ways of writing 30 (or
more generally, n) as a sum of four squares?

Some parting thoughts:

� Prompt 9.2.50 Quaternions rose to prominence in applied disciplines for their role
in representing rotations in three dimensions. In this context, the unit quaternions
have special significance as versors. Explore!

� Prompt 9.2.51 We have explored quaternions over rings like Z and R, but could
just as well have considered rings like Z/(p)[i, j, k]. Explore the algebra of these
rings—are they division rings? Where are these rings used?

9.3 Exploration: Public Key Cryptography

It is certainly not a deep observation that much of today’s commerce occurs over
the internet. This is fairly remarkable in a number of ways, not the least of which
is the implication that a buyer and seller may be literally thousands of miles apart
but still can not only agree on the terms of the transaction, but also the method
of transaction. In particular, it is rare that such a transaction involves the physical
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exchange of money, either via check or cash sent through the mail. Instead, modern
financial transactions depend crucially on the principle of secrecy, that Person A
can send Person B their credit card number, allowing Person B to tell Person A’s
credit card company to dedicate a certain amount of funds to Person B’s store. A
crucial aspect of this discussion is the inherent security risks in this transaction— the
internet, being the series of tubes that it is, transmits that credit card number through
any number of waypoints, each of which provides an opportunity for an unwanted
eavesdropper7 to intercept the number and use it for their own nefarious purposes.

So here’s the big question: how do you secretly transmit numbers? It is tempting
to assume that these concerns should be left to the computer scientists, and while it is
true that they are a good and noble people who have much to say on this subject, even
they turn to usmathematicians for solutions here. To underscore how little technology
is needed, consider amore local example: suppose youwould like to transmit a secret
numerical message to a stranger on the other side of the room, using only your voice
to communicate. You have no prior shared memories to rely upon (no “the first
digit is the number of times we had spaghetti last week”), no shared phone numbers
through which you can communicate more privately, and, analogous to the general
insecurity of the internet, you have to be conscious of the fact that everyone in the
room can hear everything you have to say. Yelling “I’ve posted the information on
darkwebmathsecrets.com and the access password ishunter2, so go read it
there” would convey the information to your intended recipient, but also to everyone
else in the room.

� Prompt 9.3.1 How can we securely transmit our secret information across the
crowded room using only our voice?

With any luck, you have convinced yourself this is entirely impossible, in which
case you are in for a breathtakingly pleasant surprise. It is, without exaggeration,
completely and totally a miracle of mathematics that it is in fact possible to achieve
this task. A solution was first discovered in the twentieth century, though it rests
on mathematics developed centuries earlier. Until that point, all secure communi-
cations involved some shared secret key. Communicating parties had to privately
meet and agree upon this shared information. There was no way to conduct secure
communications without some a priori private communication.

The amazingly simple solution outlined below is the so-called RSA protocol,
acronymed after the mathematicians (Ronald Rivest, Adi Shamir, and Leonard Adle-
man) who in the 1970s first made a protocol of this type public. It is an example of a
public key cryptosystem, a cryptosystem based on a presumed one-way function—an
easy-to-compute invertible function whose inverse is difficult to compute, by which
wemean any algorithm that attempts to compute the inverse in a “reasonable” amount
of time (i.e., less than the age of the universe), will fail for all but a set of values
having measure zero in the space of all possible inputs. Public key cryptosystems are

7 Is there any other kind?
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based on one-way functions having some sort of trapdoor—additional information
which makes calculation of the inverse feasible. This trapdoor information is often
called the private key. Despite years of research, it is still not knownwhether one-way
functions exist. A proof of the existence of one-way functions would simultaneously
solve the famous P = NP problem from complexity theory.

9.3.1 Public Key Encryption: RSA

The presumed one-way function uponwhich RSA is built is modular exponentiation.
While there are algorithms that compute xm mod n efficiently, current methods for
calculating them-th root of a number mod n are computationally infeasible for many
large values of n, without knowing some additional trap door information about n.
Take a moment to review the various results of Chapter 4 used in the implementation
of RSA: the computation of the Euler ϕ function, our knowledge of units in modular
worlds, and Euler’s Theorem for computing modular exponentiation.

Definition 9.3.2

Suppose Alicia wants to send a secret numerical8 message M to Robert. We
assume that any information transmitted from Alicia to Robert is interceptable by
the public, or even by nefarious interloper Evelyn. The RSA protocol for doing
so is as follows:

1. SetUp:Alicia beginswith her secret integerM (theMessage).Robert chooses
two gigantic primes p and q and forms the number n = pq . Robert chooses
some e ∈ Z/(ϕ(n))× (e for “encryption”) and publishes n and e, but not the
primes p or q , in some public place that Alicia can access (as can Evelyn and
anyone else motivated to do so).

2. Encryption: Alicia encrypts her secret message M using modular exponen-
tiation. Assume gcd(M, n) = 1. If not, Alicia can always pad her message
M with irrelevant information (trailing digits) to make this the case. Let C
(for “code”) be defined by

C = Me mod n.

Alicia broadcasts C over public channels to Robert.
3. Decryption: Robert uses his trap door knowledge of p and q to compute a

secret decryption key d such that

Cd ≡ (Me)d ≡ M (mod n).

8 A text-based message could be converted to a numerical message in a variety of ways. Among
more sophisticated ways, we could simply translate A → 1, B → 2, C → 3, etc.
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Fig. 9.2 The RSA Cryptosystem in picture form

This uniquely determines the integer M assuming we have chosen p and q (and
hence n) to be sufficiently large. �

� Prompt 9.3.3 What is the decryption key d and what algorithm will Robert use to
compute it? (Hint:Consider corollaries toEuler’s Theorem.)Whywas it important
that gcd(M, n) = 1 and e ∈ Z/(ϕ(n))×? How will Robert calculate ϕ(n) and
find an e ∈ Z/(ϕ(n))×?

Figure 9.2 shows the steps, keeping track of who has access to which pieces of
information. Most importantly, anything that the protocol has us transmit between
Alicia and Robert becomes public information accessible to Evelyn.

The main discussion point is why this method is secure, and so in particular,
why Evelyn can’t deduce M from the information made public: n, C , and e. The
argument is as follows. Surely Evelyn could deduce M if she had access to d, the
same way that Robert did. Now in turn, Evelyn could compute d if she had access
to ϕ(n), which in turn she would have access to if she knew p and q . And herein
lies the proverbial rub: it is very difficult to factor n = pq into its two unknown
prime factors. This is true even if Evelyn knows precisely the protocol that Alicia
and Robert are employing – knowing that n is the product of two large primes does
not significantly help in deducing what those two primes are. We will discuss some
more implementation questions momentarily, but we first want to emphasize how
straightforward this process is to accomplish in practice. In the following prompt,
you will run through the steps with a couple of small, manageable primes.

� Prompt 9.3.4 Suppose Ben wants to send the secret message M = 15 to Jerry9 .
How should they proceed? Most of the work can be done up front by Jerry (and
indeed, can be reused for several secure communications). Suppose Jerry chooses
secret primes p = 31 and q = 43 and computes their product, n = 1333. Take it
from here.

9 Clearly M = 15 is the 15th ice cream prototype flavor, Euler’s Modular Mocha Mania.
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• Find a value of e ∈ Z/(ϕ(n))× and the corresponding decryption key d.

• What information will Jerry broadcast? What code C will Ben calculate?
• Go through the calculations Jerry will do to decrypt C .

� Prompt 9.3.5 Set up a more professional-grade RSA public encryption scheme
(in that it could not be done by hand or with a cheap calculator). You can start
from scratch or use the Chapter 9 Python worksheet “Prompt 9.3.5 RSA,” which
outlines the process.

• Pick two large-ish primes p and q, each on the order of 200-digits (the internet
can help you out here).

• With a computer, calculate n and find an encryption key e ∈ Z/(ϕ(n))×.

• Calculate the corresponding decryption key d. What algorithm have you (or
your computer) used to calculate d?

• Send n and e to your friend and instruct them to encrypt their phone number
M as C = Me mod n. Your friend might need some additional instruction on
how to carry out this calculation. What is an efficient algorithm for performing
modular exponentiation?

• Upon receipt of C, decrypt the number and give your friend a call!

Again, the security of the system seems to rest on the claim that factoring a
very large number n is very hard.10 Let’s consider some of the implementation
issues. The name of the game here is speed. No one would claim that breaking
such a system is impossible (outside of companies that sell this type of security,
perhaps), but rather only that it would require a prohibitively large amount of time
and computing power. More legitimately, the implicit claim is that the resources
demanded of Alicia and Robert (or Ben and Jerry) to complete this transaction are
far fewer than those required to break in from the outside. Thus a careful accounting
of implementation issues needs to address both the difficulty of cracking but also the
ease of implementing.

How big of a prime do we need? Are there enough?

Both technology and our theoretical understanding of prime factorization are con-
stantly improving, and with it the suggested sizes of the primes p and q to ensure
security. For the sake of this discussion, let us suppose that best practices dictate that
p and q be 500 digits long. It’s easy to be skeptical about the ubiquity of such primes
given our understanding that primes get sparser and sparser as we move down the
number line. But!

10 and that factoring a very very large number is very very hard, etc.
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� Prompt 9.3.6 Using the Prime Number Theorem (Theorem 3.5.5), show that our
fears are unfounded. Approximately how many 500-digit primes are there?

How dowe find our primes? How fast is setting up RSA?

The remaining elephant in the room is the finding of the primes p and q . It is likely
obvious that it is not best practice to set up your encryption system by first searching
“500-digit primes” on the internet. So how do we generate our primes p and q?

Most algorithms have us chose a random large number and then check it for
primeness. The odds of success can be improved by starting with a product of primes
and adding 1. Section 3.5 had us think through some algorithms for testing primeness,
and though we made great improvements over the “divide by everything” algorithm,
we still had nothing practicable on the scale of 500-digit numbers. And after all, if
we’re going to claim that Evelyn’s great hurdle is not being able to factor n into p
and q , then surely we can’t simultaneously claim that finding and testing p and q
for primeness is trivial.

As it turns out, testing for primeness and actually factoring are of significantly
different difficulty levels: there are much faster ways of testing whether a number is
prime than of finding an explicit factorization. Among many other ways, here’s one
of relevance to material covered in Chapter 4: we’ve seen that if p is prime, then by
Fermat’s Little Theorem,

2p−1 ≡ 1 (mod p).

Therefore, if we’re given n and we find that 2n−1 	≡ 1 (mod n), then n is not prime.
(Note that there are ways to compute 2n−1 mod n quickly, as in Example 4.4.13). If
it does work out to be 1, then we test 3n−1 ≡ 1 (mod n), and so on. None of these
individually guarantees primeness, but they detect most composites very quickly.
This test, called the Fermat primality test, ends up being a probabilistic primality
test in that after a given number of such modular computations evaluating to be 1,
we conclude with a very high probability that the number is prime. Still, the process
is non-trivial (we may have to run through many n’s before finding one that passes
all the tests), and not foolproof.

� Prompt 9.3.7 If you didn’t do it before, go back and complete Exercise 4.61.

� Prompt 9.3.8 Research the Miller-Rabin primality test, and other primality tests
commonly used in encryption protocols.

How hard is encryption for Alicia?
How hard is decryption for Robert?

Tremendously easy. As you have already surmised, finding d is just applying our
old friend, the well-known and efficient algorithm discussed in Section 3.2. Modular
exponentiation is similarly very fast using algorithms discussed in Chapter 4.
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How hard is decryption for an evil interloper?

This is the crux of the matter—factorization of gigantic numbers is much harder
than any other step addressed thus far. Some comments on this front: first, note that
factorization depends on more parameters than just the length of the number (what’s
the prime factorization of the gigantic number 21000)? Relatedly, since any naive
factorization attempt begins with trial division of small primes, a number with small
factors gets factored more quickly than a number of the same size with no small
prime factors. In some sense, then, the difficulty of factoring a number depends on
the size of its smallest prime factor. This explains the choice of the form of n in the
RSA protocol—of all the possible factorizations of a 1000-digit number n, the type
with the largest smallest prime factor is of the form n = pq with p and q being
500-digit primes. There is no known proof that factorization of such numbers is
hard, and indeed a revolutionarily fast algorithm to factor 1000-digit numbers would
undermine a good deal of existing encryption techniques (and likely win several
million dollars in prize money).

� Prompt 9.3.9 As practical testimony to the difficulty of factorization, look up
the current best results for the RSA Challenge, and the running times for the
best-known algorithms for factoring a k-digit number.

Are there other vulnerabilities?

This, of course, takes us to the broader realm of cryptography as a subject in its
own right, but there are a few quick thoughts particularly meriting discussion. For
example, we don’t know that cracking RSA is as difficult as factoring, even though
that does provide the one obvious way to break through the mathematical difficulties
of taking roots mod n. Another attack on RSA is not mathematical but social—what
if after Alicia and Robert completed their transaction, Evelyn were to pretend to be
Robert and solicit secrets from Alicia? Another use of the ideas in the section is in
the setting up of digital signatures to verify that the authors of documents (quotes,
payments, etc.) are indeed who they claim to be. One protocol works as follows: we
simply ask this “Robert” to send us, say, the value s = 2d mod n. It would be very
hard for Alicia, or Evelyn, to deduce d from this (important, as Robert would not
want to make d public), but it’s easy for Alicia to verify that the d value is correct
by computing se mod n, which should evaluate to 2 if the sender genuinely knew d.

Finally, we note that even given efficient implementation algorithms, it would
still be rather time-consuming to hold a complete secret conversation using an RSA
encryption protocol for each message sent. In practice, private key cryptosystems, in
which two parties communicate by using some common knowledge (say, a shared
secret password), are much more efficient. Typically one uses public key cryptogra-
phy to establish a shared secret key which is subsequently used in a more convenient
and efficient private key protocol. The following subsection covers such a public key
exchange system based on elliptic curves.
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9.3.2 Elliptic Curve Cryptography

Wehave encountered elliptic curves in awide variety of contexts thus far – in Chapter
2 in regard to a stacking problem, in Chapter 4 in the study of modular arithmetic,
in Chapters 5 and 6 as targets for applying our theory of unique factorization, and in
Chapter 7 as a crucial step in our proof of quadratic reciprocity. But in addition to
their role in developing this textbook’s principle themes, elliptic curves have many
applications outside the abstract study of number theory. The most significant of
these is an infrastructure for cryptographic protocols based on the arithmetic of
elliptic curves.

In 1985, Neal Koblitz and Victor Miller independently came up with the idea of
using elliptic curves to create public-key cryptosystems.EllipticCurveCryptography
(ECC) was born, based on the algebraic structure of elliptic curves over finite rings
like Z/(p). What the set Z/(p)× did for RSA the set E(Z/(p)) does for elliptic
curve cryptography, in that the size and algebraic structure of the set determines the
difficulty of breaking the overlying cryptosystem. It is believed that the same level
of security afforded by an RSA-based system with large p and q can be achieved
using a much smaller elliptic curve group. This reduces storage and transmission
requirements, making implementation of the public-key cryptosystemmore efficient
and less costly.

Addition on Elliptic Curves

In Section 2.3 we explored the idea of using two known rational points on an elliptic
curve to find a third such point. This process, generalizing the chord method of
Diophantus, leads us to a new notion of the sum of two points on an elliptic curve
and elevates the set of points on the curve from a simple set to a glorious group.
Before giving the formal definition, let us illustrate the process with an example
familiar from Section 2.3.

� Prompt 9.3.10 Let E be the elliptic curve in Figure 9.3, defined by

y2 = x3 − 36x .

Since it’s not entirely obvious from the picture, find both algebra-based and
calculus-based arguments that the dashed line through (−3, 9) and (−2,−8)
must intersect the curve in a third point.

� Prompt 9.3.11 Find the third point of intersection described by the previous
prompt. From this, find the sum P ⊕ Q of P = (−3, 9) and Q = (−2,−8),
defined to be the point obtained by reflecting this third point of intersection over
the x-axis. Why must that reflection also be on the curve?
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(6, 0)

(−2,−8)

(−3, 9)

E : y2 = x3 − 36x

x

y

Fig. 9.3 The elliptic curve E defined by y2 = x3 − 36x

There is much to say about this bizarre construction, and there are quite a few
special cases that need addressing. For one, it’s not clear from the above prompt how
to add a point to itself! For this operation to define a group law, we need to make
sure that the construction works for every pair of points, that there is some notion of
an identity point, and that for each point in the set there is an additive inverse also in
the set.

The good news is that all of these problems are handled by only two conventions—
the use of multiplicity of intersections, and the adoption of a point at infinity. The
latter of these is difficult to completely motivate without a substantive digression into
the language of projective geometry.We offer instead just a glimpse ofwhence comes
this idea. Recall our frequent interplay between rational points on the unit circle and
Pythagorean triples (the equations x2 + y2 = 1 and x2 + y2 = z2) obtained by
clearing or introducing denominators, and that any scalar multiple of a Pythagorean
triple corresponds to the same point on the unit circle.

� Prompt 9.3.12 Instead of solutions (x, y) to the equation y2 = x3−36x , consider
solutions (x, y, z) 	= (0, 0, 0) to the equation y2z = x3 − 36xz2. Show that for
every solution P0 = (x0, y0, z0) to the latter with z0 	= 0, the point P = ( x0z0

,
y0
z0

)

is a solution to the former, and that all non-zero scalar multiples of P0 correspond
to the same point P . Finally, when z0 = 0, show that up to scalar multiples, there
is precisely one extra solution to the second equation.
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The prompt suggests that to complete the picture of the points on E , we should
include one more point, something akin to ( 00 ,

1
0 ). Of course, this is nonsense as

written, but it suggests a solution to our problems, and boy does it deliver. We
consider every elliptic curve to possess one additional point at infinity, denoted O
and drawn somewhere high above the graph for visualization purposes. We adopt
the convention (also made sensible in terms of projective geometry) that O lies on
every vertical line (i.e., on every line of slope infinity).

We can now resolve all of our point-addition dilemmas. When P = Q, we
interpret “the line through P and Q” as the tangent line to the curve through P (the
line which intersects the curve at P with multiplicity 2), and then as before find the
third point of intersection and reflect over the x-axis. When P and Q are distinct but
share the same x-coordinate, the line through P and Q is a vertical line, and so by our
convention also contains the point O on the curve. In this case, we set P ⊕ Q = O
(with the convention that the reflection of O over the x-axis is O itself11 .

� Prompt 9.3.13 Explain how, with these conventions, O serves as an identity for
this operation; i.e., O ⊕ P = P ⊕ O = P for every point P . Explain the claim
that in Figure 9.4 we have Q = −P .

� Prompt 9.3.14 Find the coordinates of the point 2P in Figure 9.4. It is probably
wise to recall implicit differentiation to find the tangent line.

Before turning to an algebraic perspective on the same topic, convince yourself
that you know the conventions well enough to add any two points on an elliptic
curve. While one can be forgiven for thinking this construction seems awfully ad
hoc, rest assured that it becomes quite natural themore one learns about algebraic and
projective geometry. Here is one step toward amore natural geometric interpretation:

� Prompt9.3.15 Show that for all cases, our definition of point-addition is equivalent
to the following: We have P ⊕ Q ⊕ R = O if and only if P , Q, and R are the
three points of intersection (counting multiplicity) of some line with the curve.

While the geometric definition of addition on elliptic curves is visually pleasing,
it is difficult to implement on a computer. Fortunately, a combination of elementary
geometry and differential calculus provides explicit formulas for the addition of
elliptic curve points.

11 After all, who among us could dispute that
( 0
0 , 1

0

) = ( 0
0 ,− 1

0

)
?
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2P

P

Q

O

x

y

Fig. 9.4 The elliptic curve E defined by y2 = x3 − 36x

Theorem 9.3.16 (Point Addition Formulas)
Let E be the elliptic curve defined by y2 = x3 + sx + t , and let P1 = (x1, y1)
and P2 = (x2, y2) be two non-O points on E . We construct P1⊕P2 as follows:

• If P1 = −P2 then P1 ⊕ P2 = O.
• Otherwise, define λ by

λ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y2 − y1
x2 − x1

if P1 	= P2

3x21 + s

2y1
if P1 = P2

Then P1 ⊕ P2 = (x3, y3) where

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1.
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� Prompt 9.3.17 Show that the formulas in the theorem concur with the geometric
definition, i.e., that the point (x3, y3) is in each case the desired reflection of the
third point of intersection.

Perhaps the most remarkable aspect of the theorem is its ambiguity in what sorts
of numbers the coordinates x1, x2, y1, and y2 are (and for that matter, the values of
s and t). Since the geometric definition of point-addition agrees with the algebraic
one, and since the algebraic comes from polynomial arithmetic, we can conclude that
the formulas continue to hold in any ring for which they make sense. If P1 and P2
have rational coordinates, then so does P1 ⊕ P2, and likewise for real, complex, and
Z/(p) solutions (for odd prime p) . Looking at the formulas for λ in Theorem 9.3.16,
we must only take care to exclude rings in which (x2 − x1) might not be invertible
even if x1 	= x2 (for example, the sum of points in E(Z) or E(Z/(6)) would crash
the algorithm if x2 − x1 = 3), and likewise throwing out rings like Z/(2) where 2 is
not invertible. We synthesize the section so far with the following result:

� Prompt 9.3.18 Let F be a field in which 2 is invertible. Prove that the set
E(F) of points on an elliptic curve, together with the point at infinity, forms an
abelian group under ⊕. (Associativity is somewhat terrible, so we will settle for
a carefully-sketched diagram over R).

While our previous encounters with elliptic curves had us interested in integer or
rational solutions, we will focus now on solutions involving modular arithmetic. For
the rest of the section, p will be an odd prime and E an elliptic curve over the field
Z/(p). That is, we consider the group E(Z/(p)) where E is defined by an equation
of the form y2 = x3 + sx + t with s, t ∈ Z/(p) satisfying 4s3 + 27t2 	= 0 (see
Definition 2.3.3). One pleasant benefit of working over finite rings is that for any
given p and E , finding E(Z/(p)) is (among other solution trajectories) a simple
brute force search.

� Prompt 9.3.19 Consider the elliptic curve E over Z/(13) defined by y2 = x3 +
3x + 8. Find the 9 points of E(Z/(13)). (Hint: It may help to pre-compute the
Legendre symbols

( a
13

)
for a ∈ Z/(13) first. Don’t forget to count O!)

Again we marvel quickly at Theorem 9.3.16, permitting us to add points on this
elliptic curve without having the notions of implicit differentiation, tangent lines, or
even slopes in the world of modular arithmetic. Note that we can now make sense
of the notation nP for a point P on an elliptic curve: 2P is short for P ⊕ P , −3P is
the reflection of 3P = 2P ⊕ P , etc. We stress that the notation nP does not mean
to scalar multiply P’s coordinates by n.

� Prompt 9.3.20 With E as above, find (9, 7) ⊕ (1, 8), 2(9, 7), and −3(9, 7).
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� Prompt 9.3.21 Let P be a point on an elliptic curve defined over Z/(p). Show
that there exists a smallest positive integer n such that nP = O. Such an n is
called the order of P on E and denoted |P|.

Elliptic Curve Cryptosystems

Recall that the fundamental basis for the success of a public key cryptosystem rests
on some underlying presumed one-way function. In the context of elliptic curves,
the difficult inverse problem is the following:

Definition 9.3.22

Suppose E is an elliptic curve, P ∈ E(Z/(p)), and suppose Q = nP is an integer
multiple of P . The Elliptic Curve Discrete Logarithm Problem (ECDLP) is
the problem of finding n given P and Q. �

It is important to note that there will typically be infinitely many such n, since by
Prompt 9.3.21, if nP = Q, then for all k ∈ Z we have

(n + k|P|)P = nP ⊕ k|P|P = Q ⊕ O = Q.

We typically therefore ask for the smallest such n, or better, simply recognize that
we should be asking for this value mod |P|.

Definition 9.3.23

Let E be an elliptic curve E and let 〈P〉 be the cyclic subgroup of E(Z/(p))
generated by a point P ∈ E(Z/(p)). The Elliptic Curve Discrete Logarithm
Function (for E and P) is the function

logP : 〈P〉 → Z/(|P|)
defined by logP (nP) = [n] for each 0 ≤ n < |P|. �

� Prompt 9.3.24 Figure out what Definition 9.3.23 says, and prove the familiar log-
like rule that for all Q1, Q2 ∈ 〈P〉,

logP (Q1 ⊕ Q2) = logP (Q1) + logP (Q2).

Explain why this would be false if we took logP to have codomain Z.

� Prompt 9.3.25 Compute the cyclic subgroups generated by (1, 5) and (9, 6) inside
E(Z/(13)) for the curve of Prompt 9.3.19. Explain why log(1,5)(9, 6)makes sense
but log(9,6)(1, 5) doesn’t.
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� Prompt 9.3.26 Propose a definition for the discrete logarithm problem in an arbi-
trary finite abelian group G. Show that this problem is comparatively trivial for
the groups G = Z/(n).

Any claims of difficulty for the ECDLP are rendered moot if we cannot convince
ourselves of the ease of the “easy” direction, i.e., that the calculation of nP from n
and P is comparatively easy. Analogous to the modular exponentiation methods we
encountered in Example 4.4.13, a prominent algorithm here is to write n as a sum
or difference of powers of 2:

n = n0 + n1 · 2 + n2 · 22 + · · · + nr · 2r ,
with each ni ∈ {−1, 0, 1}. Then to compute nP one computes the quantities

Q0 = P, Q1 = 2Q0, Q2 = 2Q1, . . . Qr = 2Qr−1,

after which the desired value nP is

nP = n0Q0 ⊕ n1Q1 ⊕ · · · ⊕ nr Qr .

� Prompt 9.3.27 Suppose n = 349 and we want to compute nP for some point P
on an elliptic curve. Howmany point additions would you need to enact using the
binary expansion of n, i.e., writing n as

n = n0 + n1 · 2 + n2 · 22 + · · · + nr · 2r ,
with each ni ∈ {0, 1}? Can you express n as the sum or differences of powers of
2 (i.e., taking each ni from the set {−1, 0, 1}) in a way that leads to fewer point
additions in the calculation of nP?

� Prompt 9.3.28 Provide an estimate or upper bound for how many elliptic curve
point additions/doublings are generally necessary to compute nP using the algo-
rithm described above with ni ∈ {−1, 0, 1}.

� Prompt 9.3.29 Research: How long does it take for a computer to sum two points
on an elliptic curve? Does it depend on the curve? If so, how?What are the “best”
curves?

� Prompt 9.3.30 Consider the following thought experiment to convince yourself
of the relative difficulty of our two main calculations. Suppose n ≈ 106, and
compare the number of point additions needed to compute:

(a) Q = nP given n and P .
(b) kP for all 1 ≤ k ≤ n, in order to find n from P and Q.
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Elliptic Curve Diffie-Hellman Key Exchange

The following protocol allows two parties, named Alicia and Robert, to establish a
shared, secure, secret key while conducting all communication over insecure lines.

1. Alicia and Robert publicly agree upon a very large odd prime p, an elliptic curve
E over Z/(p), and a point P ∈ E(Z/(p)) of large order.

2. Alicia chooses a secret integer a and computes Qa = aP . Likewise, Robert
chooses a secret integer b and computes Qb = bP . The values a and b are
known as the private keys and are not public knowledge. Alicia and Robert then
transmit Qa and Qb to one another.

3. Upon receiving Qb, Alicia uses her private key to calculate K = aQb, and
Robert similarly computes K ′ = bQa . Now, these two points are the same, as

K = aQb = a(bP) = b(aP) = bQa = K ′.

Thus, Alicia and Robert share the secret key K . If they want a single number for
a key, they could agree to use its x-coordinate.

Figure 9.5 shows the steps, keeping track of who has access to which pieces of
information. Most importantly, anything that the protocol has us transmit between
Alicia and Robert becomes public information accessible to Evelyn.

As with our discussion of RSA, the principal concern is whether or not an eaves-
dropping Evelyn can also determine K . Evelyn has access to a lot of information!
She has p, P , E , Qa , and Qb all at her disposal. Yet the only obvious way for her
to proceed would be to solve the ECDLP. If Evelyn can solve the ECDLP, she can
deduce a from P and Qa and use it to calculate the shared secret key K = aQb.
While this is the most obvious approach, in principal there might be some other way
for Evelyn to discover K from the available information, and the Diffie-Hellman
problem is exactly that question.

Fig. 9.5 Elliptic Curve Diffie-Hellman Key Exchange in picture form
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Definition 9.3.31

Let E(Z/(p)) be an elliptic curve overZ/(p) and let P ∈ E(Z/(p)).TheElliptic
CurveDiffie-Hellman Problem (ECDHP) is the problem of computing the value
of abP from the known values of aP and bP. �

� Prompt 9.3.32 It is not unreasonable to wonder whether the problems ECDLP
and ECDHP are in fact equivalent. Research what is known about the relationship
between these two problems. What are the best-known algorithms for attempting
each?

The Elliptic Curve Diffie-Hellman Key Exchange does not replicate the encryp-
tion functionality of RSA. Whereas in Diffie-Hellman, Alicia and Robert work to-
gether to generate a new secret key from scratch, in RSA we took an existing secret
key ormessage and found away to securely transmit it over open channels. In Section
9.3.3 we take a look at an elliptic curve public key encryption scheme.

9.3.3 Elliptic ElGamal Public Key Cryptosystem

In the Elliptic ElGamal Public Key Cryptosystem, Alicia wants to convey a given
secret message to Robert who has set up and announced a public key. Alicia encrypts
her message using this public key and then transmits her encrypted message over
an open channel to Robert. Robert is able to decrypt the message using his secret
key, while an eavesdropper with access to Robert’s public key and Alicia’s encrypted
message cannot easily do so.

� Remark 9.3.33 In the following protocol, we will have Alicia convert her message
to a point on Robert’s elliptic curve. As with RSA, there is a logistical detail as
to how actually one does the conversion. If nothing else, Alicia could convert her
message to an integer, and use that as the x-coordinate of a point on the elliptic
curve – if no such point exists, she could tweak her message or ask Robert to
choose a new curve or prime.

Here is the protocol:

1. Robert selects and makes public a large prime p, an elliptic curve E over Z/(p),
and a point P ∈ E(Z/(p)). He then selects a private key a ∈ N and sends
Qa = aP (but not a) to Alicia.

2. Alicia begins with her secret message M ∈ E(Z/(p)) (see Remark 9.3.33).
She chooses an integer k and computes both C1 = kP and C2 = M ⊕ kQa ∈
E(Z/(p)) efficiently. She sends the pair (C1,C2) of points to Robert.
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Fig. 9.6 Elliptic Curve
ElGamal Public Key
Cryptosystem in picture form

3. To decrypt (C1,C2), since Robert possesses the integer a, he can easily compute
C2 ⊕ (−a)C1:

C2 ⊕ (−a)C1 = (M ⊕ kQa) ⊕ (−a)kP

= M ⊕ (kaP ⊕ −kaP)

= M ⊕ (ka − ka)P

= M,

which recovers the secret message M .

The process is depicted in Figure 9.6.
Again the secrecy hinges primarily on the inability of an eavesdropper to deduce

a from aP . Like with Diffie-Hellman, and indeed like RSA, there are no proofs of
the security of the elliptic curve discrete logarithm problem, and we instead rely on
the presumed difficulty of the problem. That said, ECC has recently gained in promi-
nence and was endorsed by the National Security Agency, making it a recommended
algorithm for protecting government information classified up to top secret.

One cannot help but feel impressed with the almost-mystical pervasiveness that
elliptic curves seem to have in modern mathematics, and we are left to wonder
the extent elliptic curves were necessary to make these protocols work. There are
protocols based on other families of curves (e.g., hyperelliptic curve cryptography),
but the setting is less natural and not particularly used in practice.

� Prompt 9.3.34 Hyperelliptic curves are generalizations of elliptic curves, with
the corresponding group structure given by the Jacobian. Research the definition
of the Jacobian for a hyperelliptic curve defined over a finite field. What is the
discrete logarithm problem in this setting?

� Prompt 9.3.35 Cryptosystems based on the discrete logarithm problem may be
vulnerable to certain attacks based on the order of the corresponding finite group.
Research the Pollard-ρ and Pohling-Hellman attacks. What type of group orders
are susceptible to these attacks?

� Prompt 9.3.36 An elliptic curve E over Z/(p) is called anomalous if the order
of the group |E(Z/(p))| is p. In such settings, the discrete logarithm problem
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can be solved by first lifting the curve to the p-adics, i.e., considering the group
E(Qp).Research this lifting.Research theSmartAnomalous attackon the discrete
logarithm problem.

9.4 Exploration:Units of Real Quadratic Fields

When d is a negative square-free integer the units of the ring of integers of Q(
√
d)

are easily dispatched, in that with the notable exceptions of d = −1 and d =
−3 (see Lemma 6.3.7), the units are simply ±1. When d is positive, however, the
situation can be pleasantly more intricate. Most notably, we have (by Corollary
6.3.9) infinitely many units in Z[√2]. Developing the full theory of real quadratic
units requires addressing several variants at once—we must decide if we want to
restrict our attention to positive units, or to units of norm 1, to consider units of
Z[√d] vs. the full ring of integers, etc. To make a semi-arbitrary set of such choices,
we will focus on trying to find all units of Z[√d] with norm 1, in order to cleanly
make a connection to a class of Diophantine equations, and periodically check on
how we would accommodate variant questions as we go. Assume that d is positive
and square-free for the entirety of this section, and as a starting point:

� Prompt 9.4.1 Show that x + y
√
d is a unit of Z[√d] if and only if

x2 − dy2 = ±1.

� Prompt 9.4.2 Let R = Z[√d] for d > 0. Show that the units R× of R form a
group under multiplication and that the following sets are subgroups of R×:

• The positive12 elements of R×.
• Elements of R× of norm 1.
• For each α ∈ R×, the elements {αn : n ∈ Z}.
• For each α ∈ R×, the elements {±αn : n ∈ Z}.

These two results combined provide the intriguing prospect that group theory
could have sway over the solutions to certain Diophantine equations. Once we have
found one solution (a, b), any element in the cyclic subgroup of units generated by
α = a + b

√
d ∈ Z[√d] will provide another solution.

� Prompt 9.4.3 Let α = 2 + √
3 ∈ Z[√3]. Show that α ∈ Z[√3]× and compute

αn for −2 ≤ n ≤ 4. Find 14 integer solutions to x2 − 3y2 = 1.

12 This may be the clearest benefit to working in real fields. Complex lattices are great and all, but
it sure feels nice to regain the use of the words positive and negative.
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Though prime factorization in real quadratic fields is not the focus of the section,
recall that units played a central role in any careful statement of a Fundamental
Theorem of Arithmetic.

� Prompt 9.4.4 The ring Z[√3] turns out to be a unique factorization domain. How
is it, then, that we can have such seemingly distinct factorizations as

(2
√
3 − 1)(2

√
3 + 1) = 11 = (250

√
3 + 433)(250

√
3 − 433)?

� Prompt 9.4.5 It seems plausible that as a novice number-theorist starting way
back in Chapter 1, you would have found it difficult to find many examples of a
square number that is 1 more than 15 times another square number. Find some
such examples now, enough that you feel convinced that your past self would be
suitably impressed.

It is striking that questions about real quadratic units can be rephrased as questions
about solutions to Diophantine equations, and this perspective allows us to view our
investigation in the broader historical context in which these equations were tackled.
Equations of the form x2 − dy2 = 1 have been studied for literally thousands of
years. Specific examples can be found in the works of Pythagoras and Archimedes,
and such equations were studied more systematically by the Indian mathematician
Brahmagupta in the seventh century and his intellectual descendant Bhaskara II in the
twelfth century. In the mid-seventeenth century William Brouncker became the first
European mathematician to find non-trivial solutions, having largely rediscovered
the ideas of Brahmagupta and Bhaskara. Euler’s contributions in the eighteenth-
century included a complete solution technique as well as giving these equations
the moniker “Pell equations”—likely misattributing the work of Brouncker13 . In
the spirit of correcting past mistakes, we refer to these equations as Brahmagupta-
Bhaskara-(Pell) equations14 .

� Prompt 9.4.6 Research: The most infamous of all Brahmagupta-Bhaskara equa-
tions is likely the Archimedes Cattle Problem. The problem illustrates both how
such problems can “naturally arise” and how surprising their solutions can be.
Describe the problem, its translation to a Brahmagupta-Bhaskara equation, and
the eventual resolution.

The early solutions to Brahmagupta-Bhaskara equations were phrased in Brah-
magupta’s language of composition:

13 and continuing the notorious tradition of mathematical naming practices
14 The “Pell” is silent.
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Theorem 9.4.7 (Brahmagupta’s Composition Formula)
If (x1, y1) is a solution to x2−dy2 = a and (x2, y2) is a solution to x2−dy2=b,
then (x3, y3) is a solution to x2 − dy2 = ab, where

(x3, y3) = (x1x2 + dy1y2, x1y2 + x2y1)

� Prompt 9.4.8 Find an integer solution to x2 − 6y2 = 57 by composing easily-
found solutions to x2 − 6y2 = 3 and x2 − 6y2 = 19.

In modern language, this is just expressing that the norm is multiplicative: The
product of an element of x1 + y1

√
d of norm a and an element x2 + y2

√
d of norm b

gives the element (x1x2 + dy1y2) + (x1y2 + x2y1)
√
d of norm ab. Of course, when

a = b = 1 we have the special case that a product of units of norm 1 is again a unit
of norm 1. Our first dip into units of norm equal to negative one provides another
instance:

� Prompt 9.4.9 Find an easy solution to x2 − 17y2 = −1 and use this to find a unit
of Z[√17] of norm 1.

The realization that studying x2 − dy2 = 1 can be studied by working with
x2 − dy2 = n for various n is a liberating one, and Brahmagupta himself put
it to good use, being the first to find a solution to x2 − 92y2 = 1. We rephrase
Brahmagupta’s ingenious composition solution in the language of modern algebraic
number theory.

� Prompt 9.4.10 Verify that α = 10 + √
92 ∈ Z[√92] has norm 8, so that α2

8 has
norm 1. This number is not an element of Z[√92], but its square is. Compute it
and thus provide a solution to x2 − 92y2 = 1.

Ancientmathematicianswere also interested inBrahmagupta-Bhaskara equations
for their role in understanding irrational numbers. The first proof of the existence of
irrational numbers is commonly attributed to the ancient Greek mathematician Hip-
pasus, where legend has it that the Pythagoreans were so incensed by the discovery
that they threw Hippasus from a boat and he drowned at sea. Whether or not this is
apocryphal, it’s certainly true that the ancient Greeks wanted to understand numbers
like

√
2 better15 . We begin by noting that the irrationality of

√
d is equivalent to

the non-existence of integral solutions to the equation x2 − dy2 = 0, as a solution

15 If for no other reason than to avoid being thrown off a boat.
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would give x
y = ±√

d. But the closely related Brahmagupta-Bhaskara equation,

x2 − dy2 = 1, seems to frequently have an infinitude of solutions.

� Prompt 9.4.11 Prove that if (xn, yn) is an infinite family of solutions to the
Brahmagupta-Bhaskara equation x2 − dy2 = 1 with yn → ∞ as n → ∞,
then lim

n→∞
xn
yn

= √
d .

So for example, finding more and more units of Z[√2] gives us better and better
rational approximations to

√
2, a pretty reasonable interpretation of the ancientGreek

goal of “understanding
√
2.”

� Prompt 9.4.12 For each of the solutions (x, y) you found in Prompt 9.4.3 (with
y 	= 0), compute the ratio x

y . Do you find any good approximations to
√
3? How

good? Can you do better?

� Prompt 9.4.13 Find a rational approximation to
√
92 accurate to 8 decimal places.

Note that the approach of Prompt 9.4.11 permits verifying the number of digits
of decimal accuracy even without the exact decimal expansion.

The key element in all of our calculations thus far has been to eyeball, or just be
given, one starting solution and thengenerate newonesby composition/multiplication.
To systematize the approach we return to structural results about the group Z[√d]×.
Continuing to focus on units of norm 1, note that we can restrict our attention to
positive such units, since u has norm 1 if and only if −u does. We have already
observed that such units form a group, and the major strengthening of this result is
that this group is always infinite and cyclic. First, the cyclicity result:

Theorem 9.4.14
The group of positive units in Z[√d] of norm 1 is cyclic.

� Prompt 9.4.15 Prove the theorem by establishing the following steps:

(a) Argue that if Z[d]× = {±1}, we are done. Else, show that...
(b) every positive unit x + y

√
d > 1 of norm 1 must have x, y > 0, and hence

there must be a smallest unit u > 1 of norm 1.
(c) Get a contradiction to (b) if there were a positive unit v not in 〈u〉.

The obvious solutions (x, y) = (±1, 0) to the Brahmagupta-Bhaskara equation
x2 − dy2 = 1 are called the trivial solutions. The existence of any non-trivial
solution (x, y) implies the existence of the unit ud = x + y

√
d ∈ Z[√d]× described
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in the prompt above (the smallest unit of norm 1 greater than 1 with x, y > 0),
which corresponds to the fundamental solution of the equation. So if any non-trivial
solution exists, the units of norm 1 are precisely±〈ud〉, and since ud > 1, this group
is infinite. In other words, if there is one non-trivial solution to the Brahmagupta-
Bhaskara equation, there are infinitely many. The remaining questions are whether
or not there always exists a non-trivial solution and how to find and recognize the
fundamental one. For example, in Example 9.4.3 we encountered the unit 2 + √

3,
and we can verify that neither of the smaller candidates,

√
3 nor 1 + √

3, are units.
So in the prior notation, u3 = 2+ √

3. More generally, we see that given an explicit
unit ofZ[√d], there is a finite algorithm for testing whether it is the unit ud promised
by the theorem (namely, brute force search over smaller positive coefficients). Now,
what if we don’t have an initial solution? This turns out to be harder than one might
have expected, as illustrated by the example d = 61, tackled first by Bhaskara II.
Here the smallest non-trivial solution to x2 − 61y2 = 1 was found to be

(x, y) = (1766319049, 226153980).

This example is indeed the fundamental solution, and so definitively refutes any
thought that there’s clearly always a non-trivial solution, or that they are easy to
find. As a starting point for our proof that non-trivial solutions always exist, the
following question shows that there’s mathematics of interest to the question even if
we temporarily move away from units.

� Prompt 9.4.16 What is the smallest positive element of Z[√d]?

Forα ∈ R, let’s adopt the notationα mod 1 = α−�α�, the decimal part ofα. For
example, 5

√
2 = 7.07106..., so 5

√
2 mod 1 = 5

√
2 − 7 ≈ 0.07106...., a smallish

positive element of Z[√2].

� Prompt 9.4.17 Use a computer to tabulate/experiment with the numbers n
√
2 mod

1. How do these numbers help address Prompt 9.4.16? How small of a positive
element of Z[√2] can you find?

The inevitable conclusion of any serious experimentation is a prediction that we
seem to be able to find arbitrary small elements of Z[√2] (and more generally,
Z[√d]). In fact, for any irrational number α, the values nα mod 1 densely permeate
the unit interval [0, 1]. As a specific consequence we will learn that between any
two distinct real numbers there exists an element of Z[√2]! We will establish the
claims of this paragraph and then show the link to the existence of a fundamental
solution when the irrational number in question is α = √

d. We need one more tool,
a fundamental ingredient to many combinatorial arguments:
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Theorem 9.4.18 (Dirichlet’s Pigeonhole Principle)

• If you have n + 1 objects of n possible types, there must be at least two
objects of the same type.

• Further, if you instead have infinitely many objects of finitely many types,
there must be an infinite subcollection of your objects that all have the same
type.

• Further still, if you have uncountably many objects of countably many types,
there must be an uncountable subcollection of your objects that all have the
same type.

Lejeune Dirichlet was certainly not the first human in history to havemade deduc-
tions of this kind, though he was one of the first to explicitly identify the argument
(and its myriad generalizations) as an essential tool of mathematical proof, and cer-
tainly the first to invoke pigeons to do so. The application of the theorem typically
takes the form of identifying what one’s “objects” are, what one’s “types” are, and
then concluding that two (or infinitely many) objects must be of the same type. Try
out this approach on some warm-up problems:

� Prompt 9.4.19 For each n ∈ N, show that among any n + 1 integers there must
exist two numbers whose difference is divisible by n.

� Prompt 9.4.20 Prove that for each n ∈ N, there is a multiple of n whose digits are
only 0s and 7s. (Hint: Apply the previous problem to the “objects” that are strings
of 7s).

� Prompt 9.4.21 Prove that if you choose any n + 1 distinct numbers from
{1, 2, 3, . . . , 2n} then at least one must divide another. (Hint: Let the “type” of k
be k/2v2(k)).

And now, the big one:

� Prompt 9.4.22 ProveDirichlet’s Approximation Theorem: given a positive integer
n and any irrational number α, there exist integers a, b with 0 < b < n such that

|a − bα| <
1

n
.

Hint: Consider the n + 1 objects kα mod 1 for 0 ≤ k ≤ n and “type” them
according to the location in the unit interval.
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Dirichlet’s Approximation Theorem has a number of interesting consequences
and applications beyond the proof of the existence of non-trivial solutions to the
Brahmagupta-Bhaskara equation. The following corollary and problem are just a
sample.

� Prompt9.4.23 Letα be an irrational number. Prove that between every two distinct
real numbers, there is an element of Z[α].

� Prompt9.4.24 Aparty trick sure to impress. Step 1:Have a party-goer tell you their
phone number. Step 2: Prove to them that there exists a power of 2 whose leading
digits are precisely their number. Step 3: Profit. (Hint: log10(2) is irrational).

More pertinently, Dirichlet’s Approximation Theorem, combined with a substan-
tial use of the Pigeonhole Principle, resolves our fundamental question about units.

Theorem 9.4.25
When d is a square-free positive integer, the Brahmagupta-Bhaskara equation
x2 − dy2 = 1 has a non-trivial solution (a, b).

� Prompt 9.4.26 Prove the theorem as follows:

(a) Use Dirichlet’s Approximation Theorem to show that there exist infinitely
many numbers a + b

√
d such that |a − b

√
d| < 1

b . These numbers will be
our “objects”.

(b) Let the “type” of an object α = a + b
√
d be the triple (N (α), a mod

N (α), b mod N (α)). Show there are only finitely many possible types for
our objects, and hence at least two of the same type.

(c) Show that the quotient of the two objects of the same type is a non-trivial unit
of Z[√d].

Consequently, every Z[√d] with d > 0 has infinitely many units. It is not quite
true, however, that every unit is a power of the one corresponding to the fundamental
solution of the Brahmagupta-Bhaskara equation, as we have lazily avoided dealing
with units of norm −1. For example, 3 + 2

√
2 is the smallest positive unit of norm

1 in Z[√2], but is itself the square of the smaller unit 1 + √
2 of norm −1. We can

continue our blissful ignorance of this hiccup for a little bit longer by imposing one
condition:

� Prompt 9.4.27 Suppose d is divisible by a prime p with p ≡ 3 mod 4. Then prove
that Z[√d] has no units of norm −1. (Hint: Work mod p).
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As a consequence, if for such a d we let ud be the unit provided by Prompt 9.4.15,
then it is reasonable to call this unit the fundamental unit of Z[√d], and we then
have the following.

Theorem 9.4.28
For d as in the previous prompt, let ud be the fundamental unit ofZ[√d]. Then

Z[√d]× = {±und : n ∈ Z}.

Finally, we close up shop by letting you close up shop. We leave two glaring
questions on the table for you to resolve by experimentation or research:

� Prompt 9.4.29 The negative Brahmagupta-Bhaskara equation x2−dy2 = −1 has
no solutions if d is divisible by any prime congruent to 3 mod 4. Is the converse
true? If not, what is known about the set of d’s for which there is a solution?

� Prompt 9.4.30 Even in the best cases, we have typically only proven the existence
of a fundamental unit. Since we can’t all have Bhaskara’s ingenuity, how do we
go about finding them with modern insights? What do continued fractions have
to do with anything?

9.5 Exploration: Ideals and Ideal Numbers

Our approach to solving Diophantine equations using algebraic number theory has
focused predominantly on the power of leveraging unique factorization. The theory
of Euclidean domains, of norms and primality, of units and associates, all went
to stating and proving a version of the Fundamental Theorem of Arithmetic that
would apply to increasingly exotic rings. These developments allowed us to classify
Pythagorean triples, find integer points on elliptic curves, and explore the behavior
of primes in larger rings of integers. Missing so far, however, has been the inevitable
follow-up question of what we’re supposed to do when we need to work in a ring that
does not provide the many fruits of the unique factorization tree. This Exploration
will crack open the door to the vast expanse of abstract mathematics that has been
developed in an attempt to tackle such problems.

Recall from Section 6.5 that the ring Z[√−26] is not a unique factorization
domain, and our attempts in Example 6.1.2 to solve the Diophantine equation x3 =
y2+26were consequently stymied.Recall too thatwe have fixed unique factorization
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once before. The apparent failure of unique factorization

(1 + √−3)(1 − √−3) = 4 = 2 · 2
inZ[√−3]was rectified by the observation that these factors are all associates of one
another once we move from Z[√−3] to the correct ring, the full ring of Eisenstein
integers. This approach fails for our current example, however, asZ[√−26] is already
the full ring of integers of Q[√−26] (Theorem 6.3.5). That is, we cannot rectify the
problematic factorizations

(1 + √−26)(1 − √−26) = 27 = 3 · 3 · 3

in the same fashion, as 1+√−26
3 is not an algebraic integer (and even if it were, it’s

not clear that this would help, as even the number of irreducible factors differs on
the two sides of this factorization).

One of the first attempts to address this situation comes from the mid-nineteenth
century German mathematician Ernst Kummer, who, much like how we formally
introduced a new number i when we need a square root of −1, introduced the
notion of new ideal numbers to better understand these multiple factorizations. If,
he postulated, we could construct from thin air numbers like gcd(3, 1 ± √−26) in
the ring Z[√−26], then we could use these to resolve multiple factorizations. This
is precisely how we proceed in Z, as whenever we have multiple factorizations of a
given number, e.g.,

4 · 6 = 24 = 3 · 8
there is an immediate explanation that the factors on each side have non-trivial gcd
with one another.

Kummer’s attempt did not prove sufficiently workable to become the mainstream
approach (though Kummer put it to great use resolving some cases of Fermat’s Last
Theorem), but has instead the more substantive legacy of serving as a springboard
for Dedekind to redevelop the theory into the language of ideals. These objects, the
focus of this section, have become a staple of modern algebra, and as we will see
through a series of heartfelt literary quotations have greatly inspired enthusiasts of
the language arts as well.

We must have ideals...life would be a sorry business without them.
– Lucy Maud Montgomery, Anne of Green Gables

Definition 9.5.1

Let R be a commutative ring with unity (hypotheses we shall assume about R for
the rest of the section). An ideal of R is a non-empty subset I of R that satisfies
the following two properties:

• For all a, b ∈ I , we have a − b ∈ I .
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• For all a ∈ I and r ∈ R, we have ra ∈ I .
�

These are rather minimalist axioms, though many other basic properties follow
as a consequence.

� Prompt 9.5.2 Argue that the set of multiples of 6 S = {6n : n ∈ Z} is an ideal in
Z but that the set T = {6n + 1 : n ∈ Z} is not.

� Prompt 9.5.3 Prove that an ideal must be closed under addition andmultiplication,
and must contain the additive identity 0 of the ring.

� Prompt 9.5.4 Prove that in any ring R, both R itself and the set {0} are ideals of
R. An ideal is proper if it not equal to R itself.

� Prompt 9.5.5 Prove that if I contains at least one unit of R, then I = R.

One collection of ideals is easy to come by in any ring.

� Prompt 9.5.6 Prove that for each element r ∈ R, the set

(r) = {ar : a ∈ R}
is an ideal of R, called the principal ideal generated by r . Any ideal of this form
is called principal. Note that R itself is the principal ideal (1).

That is, the set of all ring multiples of any fixed element of the ring forms an ideal.
Such sets are familiar to us from earlier chapters, e.g., as the evenly spaced multiples
of 6 in the number line representation of Z (and Prompt 9.5.2) and the lattice in Z[i]
consisting of multiples of 2 + i , and are of interest in every ring:

� Prompt 9.5.7 Prove that the set { f ∈ R[x] : f (3) = 0} is an ideal of R[x], and
decide if it is principal.

� Prompt 9.5.8 Prove that for r, r ′ ∈ R, we have (r) = (r ′) if and only if r and r ′
are associates in R. That is, ideal generators are only determined up to units.

� Prompt 9.5.9 Show that for all a, b ∈ R, we have

b | a ⇐⇒ a ∈ (b) ⇐⇒ (a) ⊆ (b).

To repeat a common mantra for this relationship, “to divide is to contain.”
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� Prompt 9.5.10 Prove that any ideal of Z that contains both 42 and 87 must also
contain 3, and hence must contain the principal ideal (3).

More generally:

� Prompt 9.5.11 Prove that every ideal in Z is principal; i.e., if I is an ideal of Z

then I = (a) for some a ∈ Z. (Hint: If I 	= (0), let a be the smallest positive
integer in I , and prove that I = (a).)

There is a clean generalization of this result: if we call R a Principal Ideal
Domain (or PID) whenever every ideal of R is principal, then a similar argument
to Prompt 9.5.11 shows that every Euclidean Domain is a Principal Ideal Domain.
One can also prove that every Principal Ideal Domain is a Unique Factorization
Domain, which provides an alternative approach to the Fundamental Meta-Theorem
of Arithmetic (Theorem 6.5.3), contrasting to our previous direct proof that every
Euclidean Domain is a UFD. Already having a perfectly good (better?) proof of this
result, however, let us move on.

The Arithmetic of Ideals

The pinnacle of happiness lies in finding the sum total of one’s ideals.

—Anonymous16

We define the sum of two ideals to be the set of sums of their elements:

Definition 9.5.12

If I and J are ideals, define their sum by

I + J = {i + j : i ∈ I, j ∈ J }. �

� Prompt 9.5.13 Prove that the sum of (finitely many) ideals of R is again an ideal
of R.

Adding together principal ideals provides a construction for potentially non-
principal ideals. Given a finite list of elements a1, . . . , an ∈ R, define the ideal
generated by a1, . . . , an as

(a1, a2, . . . , an) = (a1) + (a2) + · · · + (an).

16 Or at least, anonymous in the sense that we’re not telling you which one of us said this.
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� Remark 9.5.14 If one were to work in the ring Z of all algebraic integers, or oth-
er sufficiently exotic rings, one would eventually run across infinitely-generated
ideals. But, following the advice of legendary cowboy Will Rogers, we can for
the time being safely exclude such fantastical scenarios.17

� Prompt 9.5.15 Consider the principal ideals I = (2 + i) and J = (6 + 4i) of
R = Z[i]. Show that I + J = R.

Call two ideals I and J relatively prime if I + J = R. A pleasant bonus of
working with ideals is the ease with which they accommodate many of our existing
ideas:

� Prompt 9.5.16 For a, b ∈ Z, show that (a, b) = (gcd(a, b)). In particular, a and
b are relatively prime if and only if (a) and (b) are.

For those who write their integer gcds more succinctly as simply (a, b), their
analogous result would be the notationally amusing (a, b) = ((a, b)). In any case,
ideal generation and gcds are intimately linked.

� Prompt 9.5.17 Find and prove a result analogous to that of Prompt 9.5.16 for the
intersection (a) ∩ (b) of two ideals of Z.

� Prompt 9.5.18 Prove that the ideal (2, x) of Z[x] is not principal.

� Remark 9.5.19 Continuing our discussion of EuclideanDomains, PIDs, andUFD-
s, one can show that Z[x] is a UFD, but since it is not a PID, it is also not a
Euclidean Domain. Thus Z[x] furnishes a counter-example to the converse of the
Fundamental Meta-Theorem of Arithmetic.

Recall that the premise of Kummer’s notion of ideal numbers was to construct a
gcd of 3 and 1 + √−26 in a ring where no such element exists. Motivated by the
fact that (a, b) = (gcd(a, b)) for a, b ∈ Z, the ideal in the following prompt seems
of promising significance:

� Prompt 9.5.20 Show that (3, 1 + √−26) ⊂ Z[√−26] is a non-principal ideal.

And on this topic of factorization, next up is ideal multiplication:

17 “People love high ideals, but they got to be about 33-percent plausible.”—Will Rogers
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Definition 9.5.21

Given ideals I and J of R, we define their product by

I J = {a1b1 + a2b2 + · · · + anbn : ai ∈ I, bi ∈ J }.
In words, the product I J is the set of all (finite) sums of products of an element
in I with an element in J . �

� Prompt 9.5.22 Prove that the product as defined above is itself an ideal.

� Prompt 9.5.23 Prove that for a, b ∈ R, we have (a)(b) = (ab).

� Prompt 9.5.24 Let I and J be ideals of R. Prove that I J ⊆ I ∩ J and that if I
and J are relatively prime, then in fact I J = I ∩ J .

Once we have multiplication of ideals, we can talk about factoring, and once we
have factoring, we can talk about primeness, which we can adapt from the notion of
primeness of elements in rings. Recall that p is prime if whenever p | ab, we must
have p | a or p | b. In the language of ideals, this means p is prime if whenever
ab ∈ (p), we must have a ∈ (p) or b ∈ (p).

Definition 9.5.25

A proper ideal P of a ring R is prime if for all a, b ∈ R, whenever ab ∈ P it
must be that either a ∈ P or b ∈ P . �

� Prompt 9.5.26 Prove that a principal ideal (a) of Z is prime if and only if a is
prime in Z.

� Prompt 9.5.27 Prove that R is an integral domain if and only if the ideal (0) is
prime.

� Prompt 9.5.28 Prove that for a prime p ∈ Z, the ideal (p) cannot be written in
the form I J for proper ideals I and J of Z. Thus, the ideal (p) is “irreducible”
as well as prime.

The arguments above hold for prime ideals of Z[i], as well. This development
allows us to start thinking of prime factorization of ideals of a ring R, rather than
prime factorization of its elements.

� Prompt 9.5.29 Verify the identity of ideals in Z

(30) = (2)(3)(5),
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and likewise the following identity of ideals in Z[i]:
(74) = (1 + i)2(6 + i)(6 − i).

It is interesting to note that the first of these identities remains valid even if we
drop all the parentheses and think of it as a factorization of integers, whereas the
second is true only with the unit −i included in the factorization. This highlights a
pleasant feature of the ideal-theoretic approach—we can talk about factorization of
ideals into prime ideals without having to obsess over units (recall Prompt 9.5.8),
one of the major caveats we had to consider when articulating a precise Fundamental
Theorem of Arithmetic. Far better still, we will soon state a rather advanced result
(Theorem 9.5.34) that ideal factorization continues to work well even in cases we’ve
run in to where unique factorization fails. Let us recall what this looks like.

The Failure (?) of Unique Factorization in Z[√−26]

Failure comes only when we forget our ideals.
– Jawaharlal Nehru

Consider the ring Z[√−26], where we had the failure of unique factorization
(1 + √−26)(1 − √−26) = 27 = 3 · 3 · 3.

To briefly repeat ourselves, we consider this a failure of unique factorization
because despite working in the full ring of integers ofQ(

√−26), and having checked
carefully that both 3 and 1± √−26 are irreducible but not prime, and knowing that
their are no unit shenanigans at work (the units of Z[√−26] are just ±1), we have
two genuinely different factorizations of 27. Kummer had envisioned the existence
of a number gcd(3, 1 + √−26) to rescue us, but because these factors are each
irreducible, their only common divisors are units. Alas. But! As developed above,
it is reasonable to consider the ideal generated by any of these elements, and these
ideals often tend to behave like gcd.

� Prompt 9.5.30 Verify that in Z[√−26] we have
(3, 1 + √−26) = {3a + b(1 + √−26) : a, b ∈ Z}

(Since we are asking for a, b ∈ Z, this is not quite the definition of this ideal).

� Prompt 9.5.31 Prove that in the ring Z[√−26], the ideals I = (3, 1+√−26) and
J = (3, 1 − √−26) are both prime.
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� Prompt 9.5.32 With I and J as in the previous prompt, verify all of:

I J = (3) I 3 = (1 + √−26) J 3 = (1 − √−26)

� Prompt 9.5.33 With I and J as in the previous prompt, conclude that

(I J )3 = (27) = I 3 J 3,

and discuss the extent to which these calculations explain and resolve the failure
of the unique factorization of 27 in Z[√−26].

That we have the ability to diagnose and partially rectify a failure of unique
factorization using the language of ideals is a clarion call to continue to apply the
tools of abstract algebra to study these number systems. In the final section, we
peek ahead at the modern wonders of algebraic number theory and how they can be
brought to bear upon the types of problems we have been considering.

What Lies Ahead

Ideals are like stars; you will not succeed in touching them with your hands. But like the
seafaring man on the desert of waters, you choose them as your guides, and following them
you will reach your destiny.

– Carl Schurz

We close this Explorationwith a survey of the landscape ahead of us, summarizing
in broad strokes what a second course on algebra and number theory might provide
for us.We begin by stating a result promised in the previous section, and then apply it
to one final elliptic curve calculation that eludes our previous technique of exploiting
unique factorization.

Theorem 9.5.34
Let K be a quadratic field and R its ring of integers. Every non-zero proper
ideal of R can be written uniquely (up to order) as a product of non-zero prime
ideals.

Particularly remarkable is there is no Euclidean-ness requirement for our ring, so
the theorem applies even to rings for which unique factorization in the sense that
we’ve been studying fails. For example, in the ring Z[√−5], where the factorization

2 · 3 = 6 = (1 + √−5)(1 − √−5)
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Z

Z[
√−5]

(2)

(2, 1 +
√−5)2

(3)

(3, 1 ± √−5)

(5)

(
√−5)2

(7)

(7,
√−5 ± 4)

(13)

(13)

(11)

(11)

Fig. 9.7 The primes of Z and Z[√−5]

demonstrates a failure of unique factorization, we can turn to the gcd-like ideals
(2, 1 + √−5) and (3, 1 + √−5) for inspiration.

� Prompt 9.5.35 Verify the following equalities of ideals in Z[√−5]:
(2) = (2, 1 + √−5)2

(3) = (3, 1 + √−5)(3, 1 − √−5)

and hence the factorization of (6) in Z[√−5]:
(6) = (2, 1 + √−5)2(3, 1 + √−5)(3, 1 − √−5)

The prompt is suggestive of a general phenomenon, that if we can understand
how the prime ideals of Z factor in Z[√−5] then we will be able to compute prime
factorizations of ideals of Z[√−5], restoring both a sense of unique factorization
and how to accomplish it. Figure 9.7 shows the beginnings of a systematic inquiry
into how this picture would look if we continued the work of the previous prompt. As
it turns out, the prime ideals (2) and (5) in Z are the only ones that factor as perfect
squares in Z[√−5], with the rest of the primes either splitting into two factors (e.g.,
(3) and (7)) or remaining prime in Z[√−5] (e.g., (11) and (13). Also, as a final
curiosity, the big fuzzy dot on the left of each axis could be thought of the last
remaining prime ideal of each ring—the prime ideal (0)—adding substance to this
otherwise ornamental component of Figures 5.9 and 7.5.)

Today’s knowledgeof number theory includes a relatively complete understanding
of the patterns in Figure 9.7. We can describe precisely the pattern of which primes
(p) below split into two prime ideals above, and which remain prime in Z[√−5],
and the densities of those sets, all through the language of modular arithmetic and
quadratic reciprocity. Moreover, there is a further hidden layer of algebraic structure
to unmask:
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� Prompt 9.5.36 There are 5 non-principal ideals depicted in Figure 9.7. Verify for
a sample of possible products the product of any two of these 5 ideals is always
principal.

� Prompt 9.5.37 Challenge: Prove that for any non-principal ideal I of the ring
Z[√−5], the product I · (2, 1 + √−5) is principal. Deduce that if I and J are
both non-principal, then I J is principal.

This curious property about Z[√−5] does not hold for most other quadratic rings
(it fails in Z[√−26], for example), and illustrates that this particular ring is not so
far from being a UFD. The set of ideals of Z[√−5] manifests as a sort of Z/(2),
where half of the ideals are principal ideals (P), half are non-principal (N), and we
have a multiplicative structure as follows:

× P N
P P N
N N P

That is, much like the addition of even and odd integers, the product of two principal
or two non-principal ideals is principal, while the product of a principal and a non-
principal is again non-principal. In the ring Z[√−26], for contrast, the analogous
description would be that of a Z/(6) structure, where every ideal is one of 6 different
types. The interested reader should do a literature search for the class group and
class number of a quadratic field.

Application:One Final Elliptic Curve

We make one concrete use of the ideal-theoretic interpretation of affairs, and in
particular the recently-observed properties of Z[√−5], to improve our methods for
solving Diophantine equations. Recall, for example, that when the ring of integers of
Q[√d] is a unique factorization domain, we can successfully find all of the integer
points on the elliptic curve x3 = y2 +d. In the absence of unique factorization, such
efforts have proven ineffectual.

� Prompt 9.5.38 Find all integers point on the elliptic curve y2 = x3 − 5.

We’ve tackled several problems of this type before. But for this curve, wery early
on in our process we run into a problem: we can factor

x3 = y2 + 5 = (y + √−5)(y − √−5)

as before, but we cannot then apply the Power Lemma to conclude that y ± √−5
are themselves cubes, since we lack the luxury of unique factorization in Z[√−5].
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But! We can consider instead the corresponding identity of ideals,

(x)3 = (y + √−5)(y − √−5),

and use the results of our Exploration to salvage the argument:

� Prompt 9.5.39 Prove that the ideals I = (y + √−5) and I ′ = (y − √−5) are
relatively prime. Then use Theorem 9.5.34 to argue as in the Power Lemma that
I = J 3 for some ideal J . Finally, use the results of Prompt 9.5.37 to prove that
such a J must be principal.

� Prompt 9.5.40 Deduce from the previous problem that y + √−5 is the perfect
cube an element of Z[√−5] and then finish off the solution to the Diophantine
equation as in prior versions of this argument.

Full Circle: A Return to Fermat’s Last Theorem

Chapter 2 kicked off our study ofDiophantine equationswith a discussion of Fermat’s
Last Theorem, studying the infamous equation

x p + y p = z p.

Arguments like those employed in the previous section were a major advance in our
understanding of these equations. Working in the cyclotomic rings Z[ζp] rather than
quadratic ones, Kummer observed that a solution to the equation would allow an
ideal factorization

(z)p = (x p + y p) = (x + y)(x + ζp y)(x + ζ2p y) · · · (x + ζ
p−1
p y).

From this a suitable Power Lemma would guarantee that each (x + ζ ip y) was a p-th

power of an ideal, and that each number x + ζ
j
p y was a p-th power in Z[ζp]...as long

as we could be sure that it was impossible for the p-th power of a non-principal ideal
in Z[ζp] to be principal. Surprisingly, this property holds for some primes but not
others, and in 1850 Kummer proved Fermat’s Last Theorem for such primes (now
called regular primes).

� Prompt 9.5.41 What is currently known about regular primes? How many are
there? What are the first few? Are there infinitely many? Are there more regular
or irregular primes?

The story for quadratic fields is just as exciting as for cyclotomic ones. Despite our
hard-fought victories in earlier chapters showing that the ring of integers of Q[√d]
is a unique factorization domain for small negative values of d, it was conjectured by
Gauss in 1798 that the list of such values was finite. That is, for nearly all negative
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d, we lose unique factorization. The question remained unresolved until the 1950s–
1960s when the remarkable punchline was concluded:

Theorem 9.5.42 (Baker-Heegner-Stark Theorem)
For negative square-free integers d, the ring of integers in Q(

√
d) has unique

factorization if and only if

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

� Prompt 9.5.43 Explore the fascinating history of this conjecture and proof. Did
Gauss know the complete list? Who gave the first proof? The last proof? Who do
you think deserves the most credit?

� Prompt 9.5.44 The value 163 appearing at the end of the list ties to a remarkably
vast swath of modern mathematics, leading to some commentators dubbing it the
coolest number of all time. Explore.

Flipping signs, for positive values of d we know even less—dare we say embar-
rassingly less—than we do for negative d. The analogous, and remarkably different,
conjecture of Gauss for this case reads as follows:

� Conjecture 9.5.45 There are infinitely many integers d > 0 such that Z[√d] is a
unique factorization domain.

Amazingly, this conjecture remains wide open.

� Prompt 9.5.46 Exploremodern perspectives on this conjecture.What do computer
calculations suggest? Why should there be a difference between positive and
negative values of d?

9.6 Conclusion:The Numberverse,Redux

We asked in Chapter 1 for a definition of number, and we encourage the reader to see
how, if indeed at all, their perspective on this question has evolved over the course
of the book. It seems safe to say that outside the most abstract of mathematical cir-
cles, the notion of numberhood ends at the introduction of complex numbers (and
often before that). But in this text we have journeyed through quite a few potential
expansions of the notion, including Hamilton’s quaternions, Hensel’s p-adic num-
bers, Kummer’s ideal numbers, and perhaps even ideals, matrices, or polynomials.
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Further, there are ample notions of numberhood that extend beyond the reach of this
book, including such intriguing-sounding constructions as surreal numbers, or in-
finitesimals, or octonions, or transfinite numbers, etc. Or perhaps the truest numbers
are simply the friends we made along the way.

� Prompt 9.6.1 Reflect.
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I.1 Introduction

In Chapter 1we ask the question “What is a number?” and proceed to discuss increas-
ingly exotic classes of objects thatmight fall under that heading. This approach leaves
unaddressed, however, some rather deep questions about the nature of more funda-
mental classes of numbers, and in particular the natural numbers N = {1, 2, 3, . . .}.
Of course there is a sense in which we have understood these objects ever since early
childhood, but it was not until the 19th century that mathematicians attempted their
formal construction from axiomatic principles. Since number theory as a whole rests
on the foundation provided by N, we would be remiss if we did not include at least
some discussion of how one arrives at these fundamental objects.

The construction of the natural numbers occupies the first section of this appendix.
One of the most significant consequences of this formal construction is a clear jus-
tification for perhaps the most “natural” proof technique in number theory, that of
mathematical induction. Section I.3 explores the connections among the construction
of the natural numbers, induction, and the Well-Ordering Principle.

� Remark I.1.1 A note worth addressing before we begin: there is a rift in the mathe-
matical community, rending otherwise peaceable math departments in twain. The
cause of this tumultuous divide? Whether or not to consider 0 a natural number.
To the logicians attempting to axiomatize them, it is convenient to start with 0 so
that one doesn’t have to return and construct it later. To the number theorists, 0 is
a persistently special case that would constantly need to be excluded from state-
ments of the form “for all natural numbers n...” Now it is convenient to start with
1 to avoid this and use the phrase non-negative integers if one wants to include 0.
Moderate appeasers will attempt to assuage both sides by distinguishing natural
from whole numbers, but we have little time for such niceties here. For us, 0 will
be decidedly unnatural. But in a good way.
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I.2 Construction of the Natural Numbers

In 1889, Giuseppe Peano published Arithmetices principia, nova methodo exposita
(ThePrinciples ofArithmetic, Presentedby aNewMethod), simplifying an axiomatic
foundation for the natural numbers given by Richard Dedekind in his 1888 workWas
sind und was sollen die Zahlen? (What are numbers and what should they be?) The
goal behind such an axiomatization was to produce a list of postulates such that
any mathematical structure satisfying the postulates would in essence have to be the
natural numbers, and then to deduce all fundamental arithmetic laws solely from the
postulates. Peano’s solution to this problem consists of only four such postulates, now
called Peano’s Postulates, and one could say that they are the keys to constructing
the natural numbers (if one wished to speak in such black-and-white terms).

Definition I.2.1

Peano’s Postulates for a set N are the following:

1. There is an element 1 ∈ N .

2. There exists a one-to-one function σ : N → N .

3. The element 1 is not in the image of σ.
4. Suppose S is a subset of N with the following two properties:

• 1 ∈ S
• If n ∈ S, then σ(n) ∈ S.

Then S = N .

For reasons that will soon be clear, we will call σ the successor function, and the
last of these is the Principle of Mathematical Induction. �

Our intuitive understanding of the setN = {1, 2, 3, . . .} shows Peano’s Postulates
to be satisfied for this set when σ is taken to be the “next number” function. That is,
we define the symbol 2 to be the successor σ(1) of 1, and then 3 to be the next number
after 2, and so on. Here the postulates merely insist that 1 ∈ N, that no two distinct
natural numbers have the same next number, that 1 is not the next number after any
element of N, and finally, that induction works in N. This says that any subset of N

that contains 1 and is closed under taking successors must be all of N, and indeed if
1 ∈ S and S is closed under successors, then we must have σ(1) = 2 ∈ S, and then
σ(2) = 3 ∈ S, etc., filling up all of N.

It is a theorem of mathematical logic (difficult primarily only in figuring out ex-
actly what rules there are to prove things at this level of abstraction) due to Dedekind
that there is essentially a unique set that satisfies these postulates. Namely, ifN is any
set satisfying Peano’s postulates, then we have 1 ∈ N by the first postulate, and then
we could define the symbol 2 to mean the element σ(1) of N , then define 3 = σ(2)
and 4 = σ(3), etc. Applying induction shows that we can name all elements of
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N in this way, and so N differs from N in names only. Thus for the remainder of
the section we can continue using N = {1, 2, 3 . . .} as the set that satisfies Peano’s
Postulates.

� Remark I.2.2 A consequence of Dedekind’s uniqueness result is that no other set
of numbers can satisfy all four postulates. It is worth pausing to think of what
goes wrong for N ∪ {0}, Z, Q, the set {1, 2, 3, 4, 5}, etc.

We next show how the familiar rules of arithmetic in N follow directly from the
four basic postulates. We begin by observing that N must consist precisely of 1 and
its successors.

Theorem I.2.3
If n ∈ N and n �= 1, then n = σ(m) for some m ∈ N.

The proof, likemost in this section, will show something to be true for all elements
of n by invoking induction, showing that the set of elements with some property both
includes 1 and is closed under taking successors.

Proof Let S = {1} ∪ {n ∈ N : n = σ(m) for some m ∈ N}. By definition, we
have S ⊆ N, 1 ∈ S, and for any k ∈ S, it is also the case that σ(k) ∈ S. Thus, by
Postulate 4, S = N. That is, every element of N other than 1 is a successor of some
other element. �

This technique applies to definitions as well. For example, to define addition on
N, we will define “adding 1” as applying the successor function and then, by way
of induction, show how from a definition of “adding m” we can also define “adding
σ(m).” By the previous theorem, we will thus have defined adding n for all n ∈ N.

Definition I.2.4

Let a ∈ N. Then for n ∈ N we define the sum a + n as follows: if n = 1,
we set a + n = σ(a). Otherwise, n = σ(m) for some m ∈ N and then we set
a + n = σ(a + m). �

So adding 1 is the same as looking at the successor, and since 2 = σ(1) by
definition, we find that a + 2 = σ(a + 1) = (a + 1) + 1. Thus adding two is just
adding one twice, and generally, the definition just says that to addm+1, you simply
add m and then look at the next number. While it would be obscene to belabor the
point further, we note that the evaluation of the classical sum 2 + 2 is now a mere
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5-step derivation:

2 + 2 = 2 + σ(1) = σ(2 + 1) = σ(σ(2)) = σ(3) = 4.

Ta-da! We will not fully develop all of the standard laws of arithmetic here, but
as a sample derivation, let’s take a look at the associative law:

Lemma I.2.5

The associative law of addition: for any a, b, c ∈ N, we have

(a + b) + c = a + (b + c). �

Proof Again we invoke induction: let S be the set of all c ∈ N such that (a+b)+c =
a+(b+c) for alla, b ∈ N.Firstwe show that 1 ∈ S: observe that (a+b)+1 = σ(a+b)
from the definition of addition, and a + (b + 1) = a + σ(b) = σ(a + b) for the same
reason. Thus (a + b)+ 1 = a + (b + 1), so 1 ∈ S. Next we show that if c ∈ S, then
σ(c) ∈ S as well. We compute

(a + b) + σ(c) = σ((a + b) + c) definition of +
= σ(a + (b + c)) since c ∈ S

= a + σ(b + c) definition of +
= a + (b + σ(c)) definition of +,

showing that σ(c) ∈ S as well. This shows that S = N by induction, proving the
result. �

We will only prove one more fundamental arithmetic property in N, the commu-
tative law of addition. This will again be a fundamental application of induction, for
which the following lemma will serve as a base case.

Lemma I.2.6

For any a ∈ N, we have a + 1 = 1 + a. �

Proof Proof by induction left to the reader. �

Lemma I.2.7

For any a, b ∈ N, we have a + b = b + a. �

Proof Let S be the set of b ∈ N such that a + b = b + a for all a ∈ N.We know that
1 ∈ S by the previous lemma, so we need only show that if b ∈ S, then σ(b) ∈ S as
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well. We check that for any a ∈ N we have

a + σ(b) = a + (b + 1)

= (a + b) + 1

= (b + a) + 1

= b + (a + 1)

= b + (1 + a)

= (b + 1) + a

= σ(b) + a.

Thus σ(b) ∈ S whenever b ∈ S, and so S = N. �

Weleave it to the reader’s imagination the continuationof this exhilarating journey,
e.g., defining multiplication recursively by

m · 1 = m m · σ(n) = m · n + m

and then proving, for example, the commutative and associative laws of multiplica-
tion, the distributive law, etc. To fast forward slightly, however, let us next build Z

out of N. We first introduce a new symbol 0 and extend our operations by defining
a + 0 = 0 + a = a and a · 0 = 0 · a = 0, and then verifying that the various arith-
metic laws listed above continue to hold. We formally introduce new symbols −n
for n ∈ N and extend our operations in the usual way, including defining subtraction
by a − b = a + (−b). We then define the integers to be the union of these three
classes of numbers:

Z = N ∪ {0} ∪ −N.

This union permits one more crucial component of arithmetic in Z, the notion of
order. In particular, we note the Law of Trichotomy: for each n ∈ Z, exactly one of
the following holds: n ∈ N,n = 0, or −n ∈ N. We can then define the symbol> by
writing a > b if and only if a− b ∈ N, and analogous definitions for the symbols<,
≥, and ≤. Basic properties of ordering follow, e.g., that these symbols are transitive,
that σ(a) > a for any a ∈ N , etc.

I.3 Induction andWell-Ordering

The proofs in the prior section are fine examples of proof by induction, but are
phrased somewhat differently from proofs by induction one sees in an introductory
proofs course and in mainstream mathematical writing. In this section, we segue
slightly from the principle of induction to the typical process of proof by induction.
This will tie in with another major principle of integer reasoning, theWell-Ordering
Principle.
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First, a note on semantics: broadly speaking, deductive reasoning is reasoning
that follows a strict logical process (logic-based). Inductive reasoning is reasoning
that argues from what came before (evidence-based). Mathematical induction is in
the intersection of these: it is both logically sound and uses what came before to
determine what comes next.

Proof by Mathematical Induction:

LetP1,P2,P3, . . . ,Pn, . . . be a sequence of statements, one for each natural number.
Suppose that:

1. P1 is true.
2. If Pk is true for some k ≥ 1, then Pk+1 is also true.

Then Pn is true for all n ∈ N.

Note that this is really just a slight recasting of Postulate 4. IfS is the set of natural
numbers n for which Pn is true, then by checking that 1 ∈ S and that n ∈ S implies
(n + 1) ∈ S, we know that every natural number is in S. In practice, here are the
steps to organize a proof by mathematical induction:

1. Prove the base case: Prove that P1 is true.
2. Induction hypothesis: Assume that for some k ≥ 1, Pk is true.
3. Induction step: Prove that Pk+1 is true assuming Pk.
4. Conclusion: By induction, we deduce that Pn is true for all n ∈ N.

� Example I.3.1 Prove that for all n ≥ 1, we have

n∑

j=1

j3 = n2(n + 1)2

4
.

In practice, it is wise to verify the first few examples to better understand the claim,
so let’s check that the first few Pn (defined as the statement to be proved for a given
specific n) are indeed true statements:

13 = 12(1 + 1)2

4
, 13 + 23 = 22(2 + 1)2

4
, 13 + 23 + 33 = 32(3 + 1)2

4
,

and so on. Let’s do an example with a full walkthrough of the proof template.

Proof We proceed by induction. First, for the base case, we verify that P1 is true
(done above). Next, for the induction hypothesis, assume that for some k ≥ 1, Pk

is true:
k∑

j=1

j3 = k2(k + 1)2

4
.
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Now the induction step, showing that the statement Pk+1:

k+1∑

j=1

j3 = (k + 1)2((k + 1) + 1)2

4
= (k + 1)2(k + 2)2

4

is also true. Typically, an induction step showing Pk+1 will make critical use of Pk.
We compute

k+1∑

j=1

j3 = (k + 1)3 +
k∑

j=1

j3

= (k + 1)3 + k2(k + 1)2

4
(by the Induction Hypothesis)

= (k2 + 4k + 4)(k + 1)2

4
(wee bit o’ algebra)

= (k + 2)2(k + 1)2

4
.

Thus Pk+1 is true, and so we conclude that Pn is true for all n by the Principle of
Mathematical Induction. �

That fairly classic example of an induction proof highlights the core approach,
though several comments merit addressing. First, the distinction between k and n is
purely psychological, designed for the author/reader of a proof by induction to not
feel like they are assuming the thing they are supposed to prove. Induction proofs in
the wild may simply show that Pn =⇒ Pn+1, without reference to a separate index.
Second, several variations of the Principle of Mathematical Induction exist and lead
to different proof techniques that may be of value in different contexts. Consider the
following claims:

• If 1 ∈ S and n ∈ S implies (n + 1) ∈ S, then S = N .
• If k ∈ S, and n ∈ S implies (n + 1) ∈ S, then {n ∈ N : n ≥ k} ⊆ S.
• If for all n ≥ 1, {k ∈ N : k < n} ⊆ S implies n ∈ S, then S = N .

The first of these is the regular principle ofmathematical induction, and the second
is a sort of “delayed induction:” if S doesn’t have 1 ∈ S but is still closed under
the successor function, then by virtue of containing some number k, S must also
contain all natural numbers greater than k. Interestingly, we can also go the other
way: we can start our induction at 0, or −1, or −42, or any integer that makes sense
in the context of the problem. It merely shifts the starting point without changing the
inherent structure.

� Example I.3.2 Prove that for all n ∈ N such that n > 4, we have 2n > n2.
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Proof LetPn be the statement 2n > n2. We note that althoughP1 is true,P2 through
P4 are all false, but we can begin with our base case at n = 5, as 25 > 52. Next,
for the induction hypothesis, assume that 2k > k2 for some k > 4. Then we need to
show Pk+1, that 2k+1 > (k + 1)2. And indeed, using the induction hypothesis that
2k > k2, we have

2k+1 = 2k + 2k > k2 + k2 > k2 + 2k + 1 = (k + 1)2,

where we still have to verify the middle step that k2 > 2k + 1. For this, note that
k2 ≤ 2k+1 implies k2−2k+1 ≤ 2, so (k−1)2 ≤ 2. Solving gives k ≤ 1+√

2 < 2,
contradicting that k > 4. This shows that P5 is true and that Pk implies Pk+1 for
each k ≥ 5, proving that Pn is true for all n ≥ 5. �

� Example I.3.3 If m is any positive integer and n is a non-negative integer, then
mn ≥ 1.

Proof If n = 0, then mn = 1, so the theorem holds for n = 0. Now assume the
theorem holds for some n ≥ 0 and that m ∈ N. Then mn+1 = mn · m ≥ 1 · 1 = 1,
and the theorem holds for n + 1. �

The last bullet in the list before the examples is known as Strong Induction, with
a similar (but simpler) flowchart for an analogous proof technique. To prove Pn true
for all n ≥ 1, we assume that Pk is true for all k < n, and prove that Pn follows from
this assumption (as opposed to proving that Pn follows from Pn−1). If the Principle
of Induction feels like cheating, then that of Strong Induction will surely feel even
worse. But in fact, the two are logically equivalent, and our remaining goal for the
Appendix is to show both principles equivalent to yet onemore fundamental property
of the integers:

Definition I.3.4

The Well-Ordering Principle is the statement that for any non-empty S ⊆ N,
there is a least element of S. �

Despite being very different in appearance from either of the two principles of
induction, we have the following:

Theorem I.3.5
The following are equivalent.

1. The Principle of Mathematical Induction holds.
2. The Principle of Strong Induction holds.
3. The Well-Ordering Principle holds.
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Proof (1 =⇒ 2) Assume first the original Principle of Mathematical Induction (PMI)
holds: if S ⊆ N such that 1 ∈ S and n ∈ S implies (n + 1) ∈ S, then S = N. Now
let S be a subset of N satisfying the hypotheses for Strong Induction: 1 ∈ S and if
1, 2, . . . ,n ∈ S, then n + 1 ∈ S. We wish to use PMI to show that S = N.

By assumption 1 ∈ S. Suppose n ∈ S. If one of 1, 2, . . .n is missing from S,
then, since {1, 2, . . . ,n} is a finite set, there is a least element k ∈ {1, 2, . . .n} such
that k /∈ S. But then 1, 2, . . . , k − 1 ∈ S, so by our Strong Induction hypothesis,
k ∈ S, giving us a contradiction. Thus {1, 2, . . . ,n} ⊆ S, and by the hypothesis of
strong induction n + 1 ∈ S. Therefore, by PMI, since 1 ∈ S and we have shown
n ∈ S implies n + 1 ∈ S, S = N.

(2 =⇒ 3) Let S be a non-empty subset of N, and suppose that S does not have a
least element. Let T = N − S, the complement of S in N. Note that 1 ∈ T since 1 is
the least element of N and would therefore also be the least element of S if it were
in S.

Suppose that for some k ∈ N, if j ≤ k, then j ∈ T . (This is certainly true for
k = 1.) If k + 1 ∈ S, then k + 1 is the least element of S, which allegedly doesn’t
exist! Therefore, k + 1 ∈ T , so by Strong Induction, T = N, contradicting the
assumption that S is non-empty.

(3 =⇒ 1) Assume that N is well-ordered, and suppose that S ⊆ N such that 1 ∈ S
and if k ∈ S, then k + 1 ∈ S. If S �= N, then there is an element k ∈ T = N − S.
Thus T is a non-empty subset of N and therefore has a least element a. Since 1 ∈ S,
a �= 1, so a = b + 1 for some b ∈ N; and since b < a, b /∈ T . Thus b ∈ S, so
b + 1 ∈ S, a contradiction. Therefore T = N − S must be empty, so N ⊆ S, and
the Principle of Mathematical Induction holds. �

A consequence of this result is that we could have taken any of induction, strong
induction, or the Well-Ordering Principle as the 4th of Peano’s Postulates and ended
up with an equivalent system, and then proven the other two as theorems. In practice,
we don’t fuss too much about which one should be the foundational postulate.
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A
N–set of natural numbers, 4
Z–set of integers, 4
Q–set of rational numbers, 4
R–set of real numbers, 4
C–set of complex numbers, 4
Q[i]–set of Gaussian rationals, 6
|z|–the magnitude

√
a2 + b2 of a complex

number z = a + bi, 10
N(z)–the norm a2+b2 of a complex number

z = a + bi, 10
z–conjugate a complex number z, 10
R[x]–ring of polynomials in x with coeffi-

cients in R, 11
R[i, j, k]–ring of quaternions, 14, 310
A�B–symmetric difference of sets A and

B, 14
2Z–ring of even integers, 39
a | b–a divides b, 42
a � b–a does not divide b, 42
gcd(a, b)–greatest common divisor of a and

b, 45, 151, 187, 314
lcm(a, b)–least commonmultiple of a and b,

45
vp(n)–p-adic valuation of n, 63, 161, 249
π(n)–number of prime numbers between 1

and n, 72
[a] or [a]R–equivalence class of a under

equivalence relation R, 83
a ≡ b (mod n) –a is congruent to b modulo

n, 85
a mod b–the reduction of a modulo b, 48

a ≡ b (mod H) –a is congruent to bmodulo
H , 108

Z/(n)–ring of integers modulo n, 85
f–reduction of polynomial f modulo n, 90,

130
ϕ(n)–Euler totient function, giving the num-

ber of units mod n, 99, 104, 321
|G|–number of elements of (order of) a group

G, 100
R×–group of units of a ring R, 101
|g|–order of an element g in a group, 101
aH–left coset of H containing a, 110
[G : H]–index of a subgroup H of a group

G, 113
x ≡ (a, b)mod(m,n)–x is congruent to a

mod m and to b mod n, 117
σ(n)–sum of the divisors of n, 133
μ(n)–Möbius μ function of n, 133
Z[i]/(β)–ring of Gaussian integers modulo

β, 146
Q–field of algebraic numbers, 178
Z–ring of algebraic integers, 178
Q[√d]–the field of numbers of the form

a + b
√

d, 180
α–the conjugate a − b

√
d of a + b

√
d, 181

N(α)–the norm N(a+ b
√

d) = a2 − db2 of
an element of Q[√d], 181

N–a Euclidean norm on a ring, 186
UFD–Unique Factorization Domain, 192
ζn–the primitive n-th root of unity e2πi/n in

C, 203, 224, 301(
a
p

)
–Legendre symbol of a over p, 212
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Z[ζn]–n-th ring of cyclotomic integers, 224
Gp–Gauss sum of p-th roots of unity, 229
Qp–field of p-adic numbers, 251
Zp–ring of p-adic integers, 251
αk–the k-term truncation of α ∈ Zp, 252
|α|p–the p-adic absolute value of α ∈ Qp,

258
Q∞–a pleasantly erudite way of writing R,

275
p ≤ ∞–an indication that an index p runs

over both regular primes and p =
∞, 275

(a, b)p–the p-adic Hilbert symbol on Q or
Qp, 278

Bp(α, r)–the open p-adic ball centered at α
of radius r, 294

Bp(α, r)–the closed p-adic ball centered at
α of radius r, 294

Q–alternate notation for the ring of quater-
nions, 310

L–ring of Lipschitz integers, 312
H–ring of Hurwitz integers, 313
α |L β–α left-divides β, 314
P ⊕ Q–sum of two points P and Q on an

elliptic curve, 325
logP (Q)–elliptic curve discrete logarithm

function, 330
(a1, . . . , an)–ideal generated by a1, . . . , an,

344, 346
PID–Principal Ideal Domain, 345
I + J–sum of ideals I and J , 345
IJ–product of ideals I and J , 347
2–the successor of 1, 356
3–the successor of 2, 356
. . ., 356
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