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Preface

“If you’re teaching a class, you can think about elementary things
that you know very well. These things are kind of fun and delightful.

It doesn’t do any harm to think them over again. Is there a better way
to present them? Are there any new problems associated with them?

Are there any new thoughts you can make about them?”
Richard P. Feynman (1918–1988)

Why This Book?

This textbook aims for a rigorous, precise, and transparent presentation of math-
ematics before the advent of calculus. In developing naïve and axiomatic theories
alike, and with geometry and algebra hand in hand, the text takes a new and fresh
look at many a mathematical concept, never losing sight of the importance of
intuition, and the ultimate quest for mathematical rigor.

Every experienced instructor knows that curious students always ask many
questions. This book is written for them, the inquisitive and demanding readers who
are seeking real challenge. Questions should always be encouraged and welcomed;
as Francis Bacon (1561–1616) put it, “Who questions much, shall learn much,
and retain much.” In this book we answer many: What are the foundations of
mathematics? Why did the Sumerians and the Babylonians chose sexagesimal
arithmetic? What is a real number? What is the meaning of irrational powers? What
is metric geometry? Why is the Pythagorean Theorem important in Archimedes’
approximation of π? How much did the ancient Greeks know about conics? Why
do we have different approaches to exponentiation?
One of the primary goals of this book is to offer an honest and in-depth text for the
readers. Its appeal rests in the clarity of the gradually and carefully built up material
and the transparency of the explanations; the emphasis on interconnections among
seemingly unrelated topics (in algebra, geometry, number theory, etc.); correct and
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viii Preface

unglossed answers to many fundamental questions that the student may ask; and
intriguing historical notes based on most recent scholarship.
Throughout the entire book we insist on elementary approach, and leisurely pace,
taking many side tours when opportunities arise. The text is sprinkled with a variety
of thought-provoking examples, often inspired by problems posed in mathematical
contests around the world.
There are over 150 challenging exercises at the end of the sections. A solutions
manual can be found in the author’s website:

https://math.camden.rutgers.edu/faculty/gabor-toth/

Audience

This book is intended to serve: (1) talented high school students in training for
regional, national, and international mathematical contests; (2) college seniors
with a certain level of mathematical maturity to better prepare them to graduate
school; and (3) leaders of mathematical circles who wish to enrich and deepen
their student’s knowledge and understanding of mathematics beyond the standard
textbooks.

(1) Various parts of this book have been used by the author in his mathematics
contest-training course for high school students in the Princeton Campus of
the Art of Problem Solving Academy. A contest preparation course for these
students should cover only parts of Sections 1.3, 2.1–2.3, 3.1–3.4 and 6.2–
6.7, 7.4–7.5, and should focus on problem solving strategies without much
theoretical material or proofs. Within the main text in these sections, there are
a total of 123 worked out and challenging examples, and, in addition, these
sections end with 71 additional exercises. These should provide enough material
for a one-semester course.

(2) The latter part of the book can also be adopted for a senior capstone course in
mathematics for advanced undergraduate students. In this capacity, the author
used various parts of the text in the last 30 years as material for the capstone unit
Mathematics Seminar at Rutgers University–Camden for graduating seniors.
A typical college course should essentially cover Chapters 10–11 along with
some preliminary material in Chapters 5 and 8, and with a nice balance
between the theoretical material and various specific applications expounded
in the exercises. Although mathematics seniors are expected to master basic
precalculus concepts and understand how to work with limits, the instructor
will need to spend time on recalling some preliminary material contained in
Sections 5.2–5.5, and especially Sections 8.2–8.4 and 5.9 as preparatory to
trigonometry in Chapter 11. The technically demanding Sections 10.2 and 11.7
could be bypassed and included only for exceptionally strong classes. The
exercises in Chapters 10–11 are written for college seniors.

https://math.camden.rutgers.edu/faculty/gabor-toth/


Preface ix

(3) The material for mathematical circles can be used for individual lectures
highlighting topics of exceptional beauty. Assuming weekly sessions in an
ordinary 14-week college semester, the lectures may cover Sections 2.4, 5.9,
9.5–9.6, 10.2, 11.7–11.8, and a specific session on the famous problem #6 in
the International Mathematical Olympiad in 1988 with two solutions (along
with background material in Section 8.4) in Examples 6.6.8 and 8.4.1.

The Historical Context

“The history of mathematics is one of the large windows
through which the philosophic eye looks into the past ages

and traces the line of intellectual development.”
Florian Cajori (1859–1930)

It is fashionable to scatter historical notes throughout a book to place the material
in historical context and to enlighten the text. To the surprise of the author,
most of these books swarm with historical inaccuracies, fashionable but unverified
anecdotes, and hearsay. For example, analyzing the writings of Cicero, Plutarch,
and others, scholars nowadays have serious doubts whether Pythagoras of Samos
ever did any mathematics, let alone discovered the theorem that is often named
after him. Note, in contrast, that the biographer Diogenes Laërtius (3rd century
CE), quoting Apollodorus, explicitly attributes the Pythagorean Theorem to him,
but his credibility is disputed as he notoriously relied on information that he
failed to examine critically. Moreover, in many books it is usually and erroneously
stated that René Descartes (1596–1650) invented Cartesian coordinates and analytic
geometry. The origins of the use of coordinate systems can actually be traced
back to antiquities, to Archimedes of Syracuse and Apollonius of Perga, and the
invention of modern analytic geometry is due to Pierre de Fermat (posthumously
published). Books often attribute the Pascal triangle to Blaise Pascal, but there is
abundant evidence that it was known by the Indian mathematician Pingala well
over 2000 years ago in the Vedic period (and independently by Al-Karajı̄ and Omar
Khayyám in Persia and Jia Xian and Yang Hui in China several centuries before
Pascal). Moreover, references (by Nilakantha Somayaji in his Tantrasanghara) to
the lost works of the Indian mathematician Mādhava, the founder of the Kerala
School of Astronomy and Mathematics, point to the fact that he could expand certain
transcendental functions into power series, predating James Gregory, Brook Taylor,
and Colin Maclaurin for more than two centuries. Last but not least, in books the
role of Sir Isaac Newton and Leonhard Euler are often confused about the discovery
of the properties of the natural exponential function; it is a little known fact that
Newton considered (and explicitly stated that) calculus is an algebraic counterpart
of arithmetic that deals with infinite decimals.

One of the special features of our book is that it is a myth breaker; it sets the
historical records straight and gives precise references.
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In Closing: Gelfand’s Teaching Legacy

“From my long experience with young students
all over the world, I know that they are curious
and inquisitive and I believe if they have some

clear material presented in a simple form, they
will prefer this to all artificial means of attracting
their attention - much as one buys books for their

content and not for their dazzling jacket designs that
engage only for the moment. The most important

thing a student can get from the study of mathematics
is the attainment of a higher intellectual level.”

Israel M. Gelfand (1913–2009)

The four booklets of I.M. Gelfand and his collaborators, Algebra, The Method
of Coordinates, Functions and Graphs, and Trigonometry (Birkhäuser, 2001, 2003,
Dover 2002, 2011), are beautiful expositions on precalculus concepts. Gelfand’s
fifth and final book Geometry (Birkhäuser, 2020) in this sequence covers the
classical geometries. These were conceived in the early 1960s to satisfy the need for
improved mathematics education in high schools and colleges. Gelfand’s brilliant
exposition served as a benchmark throughout this book. In addition to his elegant
writing style, many of his ideas play fundamental and influential roles here. For
example, the author adopted his point of view on placing pivotal role on the
AM-GM inequality in many extremal problems, and also using continuity of
the exponential functions over the rationals to establish real exponentiation. The
unfortunate drawback of Gelfand’s booklets is that, even when put together, they
cannot be adopted as a (continuous) text for an undergraduate college course. They
are separate “gems” in mathematics, and can be viewed individually. His fifth book
is well suited for a geometric course, but the content is separate from our present
book.

Camden, NJ, USA Gabor Toth
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Chapter 0
Preliminaries: Sets, Relations, Maps

“A set is a gathering together into
a whole of definite, distinct objects
of our perception or of our thought
- which are called elements of the set.”
Georg Cantor (1845–1918)

In this chapter we give an account on the foundations of mathematics: naïve and
axiomatic set theory. We introduce here several concepts that will play principal
roles later: The Least Upper Bound Property for ordered sets, relations, maps,
infinite sequences, the principle of inclusion-exclusion, cardinality, and classes vs.
sets. The reader familiar with these basic concepts may skip this chapter altogether
as the primary goal here is to “set the stage” by introducing some fairly standard
notations and recalling a few well-known facts. This chapter ends with a short
optional1 introduction to the Zermelo–Fraenkel axiom system. This is not intended
to be a thorough exposition in axiomatic set theory; only to provide a glimpse into
how set theory can be put onto a rigorous foundation.2

In general, naïve theory in mathematics is a term referring to a mathematical
theory that employs natural language to describe its objects of study. Many terms in
a naïve theory are not defined with mathematical rigor, and thus the theory is prone
to “excesses,” possibly leading to inconsistencies.

A naïve theory is not necessarily inconsistent, however. A naïve theory may
be recast into an axiomatic theory3 in which some loosely defined concepts
turn into undefined terms or primitives whose existence and basic properties are
postulated by axioms. Axioms are statements or assertions without any justification.

1Sections marked with asterisk contain some more challenging (and therefore optional) material
than the main text.
2For a classical text on set theory including recent major advances, see Jech, T. Set Theory, 3rd ed.
Springer, New York, 2002. Note that, for readers wishing to go deeper in some topics, additional
recommended material is listed in the “Further Reading” at the end of the book.
3For contrast, a naïve theory is also called a non-axiomatic theory.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Toth, Elements of Mathematics, Undergraduate Texts in Mathematics,
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In axiomatic theory, every subsequent assertion about primitives, called theorems,4

must be proved as rigorous and logical consequences of the axioms and previously
proved theorems. Other loosely defined notions of a naïve theory turn into formal
definitions. These establish new object names for complex combinations of primi-
tives and previously formally defined terms.

0.1 Sets

In naïve set theory the concept of a set is undefined. A set is “described” as a
collection of “definite, distinct objects.”5 (See the epitaph of this chapter.) Sets are
usually denoted by uppercase letters of the English alphabet.6

Naïve set theory postulates a fundamental relation between an object and a set. If
this relation exists between an object x and a set X , then we say that x is an element,
or a member, of the set X , or that x belongs to the set X , and write x ∈ X . Thus,
the objects that belong to a set are called the elements, or members, of the set.

Whenever feasible, a generic element of a set will be denoted by the correspond-
ing lowercase letter. Thus, as above, x is an element of a set X , and a is an element
of a set A, and so on.

The negation of the relation x ∈ X , x is not an element of X (or x does not
belong to X , etc.), is denoted by x /∈ X .

History
The German word “Menge,” translated as “set,” or “aggregate,” in English, appeared first in The
Paradoxes of the Infinite (German Paradoxien des Unendlichen) of the Bohemian mathematician
Bernard Bolzano (1781 – 1848). As many of his works, this was published posthumously in 1851
by Frantis̆ek Pr̆ihonský, Bolzano’s student and friend.
The special mathematical symbol ∈ was introduced by Giuseppe Peano (1858 – 1932) in 1889 as
the first letter of the Greek word εστ ι for “is.” Typographically, it is a derivation, not the same as
the Greek epsilon ε or its variant ε.

Specific sets that play fundamental roles in mathematics are denoted by special
letters or symbols. The sets of all natural numbers, integers, rational numbers,
and real numbers are denoted, respectively, by N (from the word “natural,” or the
German “natürlich”), Z (from the German “Zahl,” number), Q (from the Italian
“quoziente” by Peano in 1895), and R (from the word “real”), respectively. In
this chapter we first discuss these number sets naïvely, and in the next chapter
axiomatically.

History
Modern set theory was initiated in the 1870s by Georg Cantor (1845 – 1918) and Richard Dedekind
(1831 – 1916). Cantor was aware of some of the inconsistencies and paradoxes of his naïve set

4Or propositions, lemmas, etc.
5The words “collection,” “family,” “ensemble,” “system” are only synonyms of the word “set;”
therefore none of them serve as precise definitions.
6Not the Latin alphabet in which there are no separate letters for J, U or V.
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theory but did not believe that they were serious. Due to these inconsistencies and paradoxes, a
need for axiomatization of naïve set theory became more and more apparent. The first axiomatic
system was put forward by the German mathematician Ernst Zermelo (1871 – 1953) in 1908.
Subsequently, the German-Israeli mathematician Abraham Adolf Fraenkel (1891 – 1965) and the
Norwegian Thoralf Albert Skolem (1887 – 1963) initiated some revisions of the Zermelo axioms,
and added a new axiom. This new revised system became known as the Zermelo–Fraenkel set
theory, ZF for short. We give a short account of the Zermelo–Fraenkel set theory in Section 0.5.

A set X is a subset of a set Y if every element that belongs to X also belongs to
Y . The “inclusion” symbol⊂ is used to designate that a set is a subset of another. In
other words, X ⊂ Y means: z ∈ X ⇒ z ∈ Y .

Clearly, the inclusion as a (binary) relation7 is reflexive in the sense that X ⊂ X
for any set X ; that is, any set is a subset of itself. The inclusion is also transitive in
the sense that X ⊂ Y and Y ⊂ Z imply X ⊂ Z .

As a specific example, we have N ⊂ Z ⊂ Q ⊂ R for the number sets above in
increasing generality.

We define two sets X and Y to be equal if they have the same elements.
Therefore, a set is uniquely determined by its elements. Using the inclusion relation,
X = Y means that X ⊂ Y and Y ⊂ X ; in other words, z ∈ X ⇔ z ∈ Y . Thus, the
inclusion as a relation is antisymmetric: X ⊂ Y and Y ⊂ X imply X = Y .

Remark As noted above, a subset may be equal to the set itself. Some authors use
X � Y instead of X ⊂ Y , and specify X � Y if X is a proper subset of Y , where
proper means X �= Y . This notation is somewhat cumbersome for our purposes; in
cases of ambiguity we will explicitly indicate if a respective subset is proper.

In naïve set theory sets can be described extensionally, by “listing” their
elements in braces (or curly brackets), or intensionally, that is, specifying a set
of attributes for the elements.

The sets of natural numbers and integers (in decimal, base ten, representation)
can be described extensionally as

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .},

and

Z = {0,±1,±2,±3, . . .}.

These definitions are naïve because of the use of the ambiguous ellipsis . . . which
meant to indicate the continuation of the list in an “obvious way.”

Continuing, the set of rational numbers is described as

Q =
{

a

b

∣∣∣∣ a, b ∈ Z and b �= 0

}
.

7Relations will be discussed in detail in Section 0.2.
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Remark Some mathematicians count the integer 0 as a natural number, in view
of providing a slightly more convenient setting for the Peano Axioms for N to be
discussed in Section 1.1. We will occasionally adopt this and define

N0 = {0, 1, 2, 3, . . .}.

Given a set X , a predicate on X is a Boolean-valued function on X ; that is, P
is a statement concerning the elements of X which may be true or false depending
on the elements of X . We write a predicate on X as a map8 P : X → {true, false}
with P(x), x ∈ X , referred to as the (true-false) statement on the element x , the
placeholder of the predicate P .

Given a predicate P on X , the set of elements x ∈ X such that P(x) is true is
described intensionally as

{x ∈ X | P(x)}.

The predicate P on X is usually a Boolean expression, a logical statement which
is either true or false on the elements of X . The predicate P may also spell out the
ambient set X in which case X is omitted.

History
In his first proposed axiomatic set theory in 1908 Zermelo called the predicate P on X defining
the set {x ∈ X | P(x)} the “definite property” of the elements of X . The operational meaning
of this concept is ambiguous. As noted above, Fraenkel and Skolem (independently) put forward
a replacement of this term by introducing the concept of a well-formed formula. This will be
discussed in detail in Section 0.5.

Example 0.1.1 For the set of integers Z, let P(x) = (x > 0), x ∈ Z. Then we have

N = {n ∈ Z | n > 0}.

Similarly, for P0(x) = (x ≥ 0), x ∈ Z, we obtain

N0 = {n ∈ Z | n ≥ 0}.

A set that contains no elements is called the empty set, and it is denoted by ∅.
Thus, the empty set ∅ is a set such that, for all x , we have x /∈ ∅. The empty set is
the subset of any set: ∅ ⊂ X for any set X .

History
In some axiomatic treatments, the existence of the empty set is postulated. In other treatments the
existence (and uniqueness) of the empty set follows from other axioms. (See Section 0.5 again.)

Given a set X , the power set of X , denoted by P(X), is the set of all subsets
of X . It is described as

8For maps, see Section 0.3.
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P(X) = {Z | Z ⊂ X}.

Equivalently: Z ∈ P(X)⇔ Z ⊂ X .

Example 0.1.2 We have P(∅) = {∅}.9
The operations of union and intersection on two sets X and Y are defined,

respectively, as

X ∪ Y = {z | z ∈ X or z ∈ Y } and X ∩ Y = {z | z ∈ X and z ∈ Y }.

They satisfy the following identities (with obvious proofs):

X ∪ X = X ∩ X = X (idempotence)

X ∪ Y = Y ∪ X (commutativity of the union)

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z (associativity of the union)

X ∩ Y = Y ∩ X (commutativity of the intersection)

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z (associativity of the intersection)

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) (distributivity of union over intersection)

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z) (distributivity of intersection over union)

Example 0.1.3 Let 
[A, B, C] be a (non-degenerate) triangle10 in the plane with
(non-collinear) vertices A, B, C . Let SA, SB , SC be the sides of the triangle opposite
to the respective vertices A, B, C . Then, we have SA ∩ SB = {C}, SB ∩ SC = {A},
SC ∩ SA = {B}, and SA ∩ SB ∩ SC = ∅.

Two sets X and Y are called disjoint if X ∩ Y = ∅.
The empty set is the additive identity with respect to the union, and it plays the

role of the “zero” for the intersection; that is, for any set X , we have

X ∪ ∅ = X and X ∩ ∅ = ∅.

The (set-theoretic) difference of two sets X and Y is the set

X \ Y = {z | z ∈ X and z /∈ Y }.

The operation of difference satisfies the following properties:

9Note that ∅ is different from {∅}. The former is the set with no elements; the latter is non-empty;
it is the set whose only element is ∅.
10Real analytic plane geometry will be studied axiomatically (Birkhoff metric geometry) in
Chapter 5.
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X \ X = ∅ and X \ (X \ Y ) = X ∩ Y,

for any sets X and Y .

Example 0.1.4 For any two sets X and Y , the following are equivalent:

X ⊂ Y ⇐⇒ X ∩ Y = X ⇐⇒ X ∪ Y = Y ⇐⇒ X \ Y = ∅.

Let U be a fixed set which we declare to be universal in the sense that, in a
specific study, all sets considered are subsets of U . Equivalently, we restrict our
study to elements of P(U ). We define the complement of a set X ∈ P(U ) as the
difference Xc = U\X ∈ P(U ) (with respect to U ). Clearly, (Xc)c = X , X ∈ P(U ),
and X ⊂ Y implies Y c ⊂ Xc, X, Y ∈ P(U ). In addition, the complement satisfies
De Morgan’s identities with respect to union and intersection:

(X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c, X, Y ∈ P(U ).

History
De Morgan’s identities can be traced back to Archimedes of Syracuse (c. 287 – 212 BCE), and can
also be found in the works of the English Franciscan friar William of Ockham (c. 1287 – 1347), and
the French philosopher Jean Buridan (c. 1300 – c. 1358/61). Augustus De Morgan (1806 – 1871)
formulated these laws in terms of propositional (zeroth order) logic as valid rules of inference.

The operations of union and intersection can be extended to arbitrary collections
of sets. Let X be a set of sets. Then we define the union and intersection of X by

⋃
X = {x | x ∈ X for some X ∈ X }

⋂
X = {x | x ∈ X for all X ∈ X }.

Clearly, we have
⋃ P(X) = X and

⋂ P(X) = ∅ for any set X .
The set of sets X can be given as a labelled family X = {Xa | a ∈ A}, where A

is a so-called index set. In this case we write

⋃
X =

⋃
{Xa | a ∈ A} =

⋃
a∈A

Xa

⋂
X =

⋂
{Xa | a ∈ A} =

⋂
a∈A

Xa .

Returning to the complement (with respect to a universal set U ), if Xa ∈ P(U )

for all a ∈ A, then we have De Morgan’s identities

(⋃
a∈A

Xa

)c

=
⋂
a∈A

Xc
a and

(⋂
a∈A

Xa

)c

=
⋃
a∈A

Xc
a .
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The Cartesian product of two sets X and Y is defined as

X × Y = {(x, y) | x ∈ X and y ∈ Y }.

As the notation indicates, (x, y) is the ordered pair of x (first) and y (second),
as opposed to the unordered pair {x, y} = {y, x} as a set. (In particular, in the
Cartesian product X× X , the elements (x, y) and (y, x) are different unless x = y.)
In axiomatic set theory the existence of unordered and ordered pairs is guaranteed
by an axiom; see Section 0.5.

History
“Cartesius” is “Renatus Cartesius,” the Latinized name of René Descartes. Based on an appendix
La géométrie of his famous work Discours de la méthode (published in 1637), it is usually and
erroneously believed that he invented the coordinate system on the plane R

2 = R × R as well
as analytic geometry. The origins of the use of coordinate systems can actually be traced back
to antiquities, to Archimedes and Apollonius of Perga (c. 262 – c. 190 BCE). Modern analytic
geometry was inaugurated by Pierre de Fermat (1601 – 1655) in his Introduction to Plane and
Solid Loci, a work written in 1629 but not published in Fermat’s lifetime.

Example 0.1.5 For X = {a, b, c, d, e, f, g, h} and Y = {1, 2, 3, 4, 5, 6, 7, 8}, the
Cartesian product X × Y consists of 64 ordered pairs

(a, 1), (a, 2), . . . , (a, 8),

(b, 1), (b, 2), . . . , (b, 8),

. . .

(h, 1), (h, 2), . . . , (h, 8).

This set is used to describe the possible positions (squares) on a chessboard.

Example 0.1.6 Let X = {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K , A} and Y =
{♣,♦,♥,♠}. The Cartesian product X × Y is consists of the 13× 4 = 52 standard
playing cards; X is the set of 13 ranks, and Y is the set of 4 suits:

(2,♣), (3,♣), . . . , (9,♣), (10,♣), (J,♣), (Q,♣), (K ,♣), (A,♣),

(2,♦), (3,♦), . . . , (9,♦), (10,♦), (J,♦), (Q,♦), (K ,♦), (A,♦),

(2,♥), (3,♥), . . . , (9,♥), (10,♥), (J,♥), (Q,♥), (K ,♥), (A,♥),

(2,♠), (3,♠), . . . , (9,♠), (10,♠), (J,♠), (Q,♠), (K ,♠), (A,♠).

Example 0.1.7 For any set X , the Cartesian product X×∅ is the empty set. Thus, in
general, the equality X × Z = Y × Z does not imply X = Y unless Z is non-empty.

The Cartesian product satisfies the following properties:

X × (Y ∪ Z) = (X × Y ) ∪ (X × Z) and X × (Y ∩ Z) = (X × Y ) ∩ (X × Z).
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In an ordered pair (x, y) ∈ X × Y , x is called the first element and y the second
element. In a Cartesian product X × Y , a coordinate system can be defined in the
usual way. The choice of an element (x0, y0) ∈ X × Y specifies the origin, and the
subsets

X × {y0} = {(x, y0) | x ∈ X} and {x0} × Y = {(x0, y) | y ∈ Y }

serve as the first and second coordinate axes. With respect to this coordinate
system, an element (x, y) ∈ X×Y has first coordinate (x, y0) and second coordinate
(x0, y).

The operation of Cartesian product can be naturally extended to finitely many
sets X1, X2, . . . Xn , n ∈ N. By definition, the elements of the Cartesian product
X1 × X2 × · · · × Xn are ordered n-tuples (x1, x2, . . . , xn) such that x1 ∈ X1, x2 ∈
X2, . . . , xn ∈ Xn .11

Exercises

0.1.1. Find a set A such that A �⊂ P(A).
0.1.2. Give an example of three sets A, B, and C such that A ∈ B, B ⊂ C but

A �⊂ C .

0.2 Relations

Let X and Y be (non-empty) sets. A (binary) relation R from X to Y is a subset of
the Cartesian product X ×Y , that is R ⊂ X ×Y .12 If (x, y) ∈ R, then we say that x
is R-related to y, and write x Ry. If (x, y) /∈ R, then we say that x is not R-related
to y, and we write x �R y. If X = Y , then we say that R is a relation on X .

Still in naïve set theory, in this section we assemble a few facts about relations
on a given set X . In the next section we will discuss the most prominent class of
relations from a set X to a set Y , called maps or functions.

Relations with special properties play paramount roles in mathematics. Let X be
a set and R ⊂ X × X be a relation on X . The specific properties that R may have
(and used throughout this book) are given in the following list:

Reflexivity: For any x ∈ X , we have x Rx ;
Symmetry: For x, y ∈ X , x Ry implies y Rx ;
Transitivity: For x, y, z ∈ X , x Ry and y Rz imply x Rz;

11Axiomatically, this definition requires Peano’s Axiom of Induction; see Section 1.1.
12Let X1, . . . Xn , n ∈ N, be sets. An nary relation R is a subset R ⊂ X1 × · · · × Xn . We will not
need this concept.
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Trichotomy: For any x, y ∈ X , exactly one of the following is true: x Ry, x = y,
y Rx ;

Antisymmetry: For x, y ∈ X , x Ry and y Rx imply x = y;
Totality: For any x, y ∈ X , either x Ry or y Rx .

Example 0.2.1 As noted in Section 0.1, the inclusion relation on the set of all
subsets of a fixed set13 is reflexive, antisymmetric and transitive.

An equivalence relation on a non-empty set X is a reflexive, symmetric and
transitive relation on X . An equivalence relation on X is usually denoted by ∼.

Let ∼ be an equivalence relation on X . For x ∈ X , we define the equivalence
class of x as [x]∼ = {y ∈ X | x ∼ y}. We say that x is a representative of the
equivalence class [x]∼. By the properties of the equivalence relation, for x, y ∈ X ,
we have [x]∼ ∩ [y]∼ �= ∅ if and only if x ∼ y if and only if [x]∼ = [y]∼. Indeed,
if z ∈ [x]∼ ∩ [y]∼, then x ∼ z and y ∼ z so that, by symmetry, (x ∼)z ∼ y, and,
by transitivity, x ∼ y. If x ∼ y, x, y ∈ X , then z ∈ [x]∼ implies x ∼ z, so that, by
symmetry, y ∼ x(∼ z), and, by transitivity, y ∼ z. This means that z ∈ [y]∼, and
we obtain [x]∼ ⊂ [y]∼. Reversing the roles of x and y (by symmetry), we arrive at
[x]∼ = [y]∼.

It follows that the equivalence classes partition the set X into mutually disjoint
subsets. The set of equivalence classes is denoted by X/∼, and it is called the
quotient of X by the equivalence relation ∼.

Example 0.2.2 In plane geometry the relation being “parallel” (equal or disjoint)
on the set of all lines is an equivalence relation. An equivalence class is called a
pencil of parallel lines. In projective plane geometry a projective point is a point
of the plane R

2, or a pencil of parallel lines; the latter is also called an ideal point.
A projective line is either a line in the plane R

2 plus the ideal point (the pencil of
parallel lines) that the line participates in, or the ideal line consisting of all ideal
points. Incidence is defined by set membership. Clearly, in projective geometry any
two distinct projective points are incident to a unique projective line; and every
two distinct projective lines are incident to a unique projective point. Therefore, in
projective plane geometry, (projective) points and lines play dual roles. Note finally
that in projective plane geometry there are no parallel (projective) lines.

Example 0.2.3 The relations “similarity” and “congruence” on the set of all
triangles in the plane are equivalence relations.

Example 0.2.4 On the set of integers Z having the same “parity” (even-odd) is an
equivalence relation ∼. Here a, b ∈ Z have the same parity if and only if a − b is
even. There are two equivalence classes: the set of all even integers, [0]∼, and the
set of all odd integers [1]∼.

A strict total order on a non-empty set X is a transitive, irreflexive,14 and
trichotomous binary relation on X . A strict total order on X is usually denoted by <

13Or on the class of all sets; see Section 0.5.
14To rule out “=” as a relation. Note also that the prefix ir- is a variant of the Latin negative prefix
in- by assimilation for words that begin with “r” such as ir-rational, ir-reducible, ir-regular, etc.
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(or >). A total order on a non-empty set X is a transitive, antisymmetric and total
binary relation on X . A total order on X is usually denoted by ≤ (or ≥).

Let < be a strict total order on X . We define a binary relation ≤ on X as follows:
For x, y ∈ X , let x ≤ y if x = y or x < y. It follows that ≤ is a total order on X .

Conversely, let ≤ be a total order on X . We define a binary relation < on X as
follows: For x, y ∈ X , let x < y if x �= y and x ≤ y. It follows that < is a strict
total order on X .

Thus, a strict total order and a total order mutually determine each other. In what
follows, we will use these terms alternatively. If X has a (strict) total order, then we
say that X is a totally ordered set.

Example 0.2.5 On the sets of natural numbers N, integers Z, rational numbers Q

and real numbers R, the usual strict order < and order15 ≤ are strict total order and
total order relations, respectively.

Let X be a totally ordered set and A ⊂ X a non-empty subset. An upper bound
of A is an element z ∈ X such that, for any a ∈ A, we have a ≤ z. We say that A
is bounded above if A has an upper bound. If A is bounded above, a least upper
bound or supremum of A, denoted by sup A, is an upper bound of A such that, for
any upper bound z of A, we have sup A ≤ z. Clearly, the supremum may or may
not exist. If the supremum exists, then it is unique (trichotomy), but it may not be
attained in A; that is, sup A ∈ A may not hold.

Example 0.2.6 The set

A = {1− 1/n | n ∈ N} = {0, 1/2, 2/3, 3/4, . . .}

of rational numbers has sup A = 1 /∈ A. Indeed, 1 is clearly an upper bound for A.
Assume that a/b ∈ Q, a, b ∈ N, is an upper bound of A less than 1, that is, we have
0 < a < b. This means that 1 − 1/n < a/b for all n ∈ N. Rearranging, we obtain
n(b − a) < b for all n ∈ N. That this is impossible (since b − a > 0) is intuitively
obvious, and, rigorously, it is the consequence of the Archimedean Property of the
natural numbers discussed at the end of Section 1.1.

In a similar vein, a lower bound of A ⊂ X is an element y ∈ X such that, for
any a ∈ A, we have a ≥ y. We say that A is bounded below if A has a lower bound.
If A is bounded below, a greatest lower bound or infimum of A, denoted by inf A,
is a lower bound of A such that, for any lower bound y of A, we have inf A ≥ y.
As before, the infimum may or may not exist. If inf A exists, then it is unique, but
it may not be attained in A, that is, inf A ∈ A may not hold. Finally, we say that a
non-empty set A ⊂ X is bounded if it is bounded above and below.

Remark Let X be a totally ordered set. If a subset A ⊂ X is defined by a predicate
P on X , A = {x ∈ X | P(x)}, as in Section 0.1, then we will write the supremum
and infimum of A as

15These order relations will be defined axiomatically in the forthcoming sections.
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sup A = sup{x ∈ X | P(x)} = sup
P(x)

x and inf A = inf{x ∈ X | P(x)} = inf
P(x)

x .

Proposition 0.2.1 Let X be a totally ordered set. Then the following are equiva-
lent:

I. For any non-empty subset A ⊂ X which is bounded above, sup A exists in X.
II. For any non-empty subset A ⊂ X which is bounded below, inf A exists in X.

Proof We will show that I implies I I ; the converse is analogous. Assume I holds.
Let A ⊂ X be non-empty and bounded below.

Let B ⊂ X be the set of all lower bounds of A. By assumption, B is non-empty,
and, by definition, it is bounded above, since any element in A is an upper bound of
B. Thus, by I, sup B exists in X . We claim that sup B is the greatest lower bound
of A.

First, if b < sup B for some b ∈ X , then b is not an upper bound of B so that b
cannot be an element of A. Hence, for all a ∈ A, we have a ≥ sup B. This means
that sup B is a lower bound of A.

Second, if b ∈ X is a lower bound of A, then b ∈ B, and consequently, we have
b ≤ sup B. Thus, sup B is the greatest lower bound of A. The proposition follows.

A totally ordered set X is said to have the Least Upper Bound Property if I (or
II) of Proposition 0.2.1 holds. As we will see in Section 2.1, with respect to their
natural orders, the set of rational numbers Q does not have the Least Upper Bound
Property, while the set of real numbers R does.

Finally, as a much more restrictive property, a totally ordered set X is said to be
well-ordered if, for any non-empty subset A ⊂ X , the infimum inf A exists and
belongs to A.

As we will see in Section 1.1, the set of natural numbers N is well-ordered with
respect to its natural total order. On the other hand, Z, Q and R are not well-ordered
with respect to their natural total orders.

Remark The Well-Ordering Theorem or Zermelo’s Theorem states that every set
can be well-ordered. This is, in fact, equivalent to the Axiom of Choice: Given a set
A, for every collection of non-empty sets {Xa | a ∈ A}, there exists a set {xa | a ∈ A}
such that xa ∈ Xa , for every a ∈ A.

Exercise

0.2.1. Let A be a set of at least two elements. Show that the inclusion relation ⊂ is
not a total order on P(A).

0.3 Maps and Real Functions

A prominent class of relations is comprised by maps. We first introduce the relevant
auxiliary concepts.
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Let X and Y be sets, and consider a (binary) relation R ⊂ X × Y from X to Y .
We define the domain of R as

X R = {x ∈ X | x Ry for some y ∈ Y }.

Clearly, we have R ⊂ X R × Y ⊂ X × Y ; in fact, X R is the smallest subset of X
such that R ⊂ X R × Y . Oftentimes, it is convenient to restrict a relation R to its
domain, and replace X with X R .

The range of R is defined by

YR = {y ∈ Y | x Ry for some x ∈ X}.

The relation is called surjective if YR = Y . We have R ⊂ X ×YR ⊂ X ×Y ; in fact,
YR is the smallest subset of Y such that R ⊂ X × YR . As before, we can replace Y
by YR , and with this R becomes surjective.

A relation R ⊂ X×Y satisfies the vertical intersection property if R intersects
every subset {x} × Y , x ∈ X , at most once (exactly once if X R = X ). A relation
R ⊂ X × Y is called functional if X R = X and R satisfies the vertical intersection
property.

Functionality of R can be reformulated by saying that, for any x ∈ X , there is a
unique y ∈ Y such that x Ry. To express the unique dependency of y ∈ Y on x ∈ X
with x Ry, we write x �→ y. This way R becomes a map16 between the sets X and
Y , that is, a specific relation that relates to each element x ∈ X a unique element
y ∈ Y . The map x �→ y, x ∈ X , y ∈ Y , associated with a functional relation R is
symbolically denoted by f : X → Y , with the element y ∈ Y R-related to x ∈ X
written as y = f (x).

At times it will be convenient to relax the condition X = X R in functionality,
and define a map f : X → Y with domain D f ⊂ X . Here D f is the domain X R

of the relation R corresponding to f . In this more general case a map f : X → Y
is called total if D f = X ; otherwise we have a partial map whose domain D f is
a proper subset of X . As for relations, oftentimes it is convenient to restrict a map
f : X → Y to its domain and thereby obtain a total map. From now on, unless
stated otherwise, we will tacitly assume that our maps are total.

The range of the map f : X → Y , the range YR of the corresponding relation
R, is denoted by

f (X) = {y ∈ Y | y = f (x) for some x ∈ X} = { f (x) | x ∈ X} ⊂ Y.

The element x ∈ X is unspecified and unconstrained within X , hence it is
considered as an independent variable in X , also customarily called the domain
variable. On the other hand, the range variable y ∈ Y depends on x through f ;
hence it is called the dependent variable. This dependence is made explicit by the

16Some authors use the term function instead of map. Following widespread practice, we reserve
the former only for maps whose range is a subset of the set of real numbers R.
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traditional notation y = f (x), read “y is equal to f of x .” We also say that y = f (x)

is the value of f at x .
For a map, the notation y = f (x) with the dependence on x explicitly indicated

has the clear advantage of being more specific than the symbolic f : X → Y . On
the other hand, the traditional notation y = f (x) often does not indicate the relevant
domain, and hence it either needs to be specified or determined.17

The functional relation R can be recovered from the respective map f : X → Y
since

R = {(x, y) ∈ X × Y | y = f (x)} = {(x, f (x)) | x ∈ X}.

In this context R is called the graph of the map f : X → Y , and it is denoted by
G f = R.

An important (binary) operation on maps is composition. Given maps f : X →
Y and g : Y → Z , the composition18 g ◦ f : X → Z is defined by (g ◦ f )(x) =
g( f (x)), x ∈ X .

The identity map idX : X → X given by idX (x) = x , x ∈ X , is a right-identity
under composition; that is, we have f ◦ idX = f for any map f : X → Y . Similarly,
the identity map idY : Y → Y is a left-identity under composition; that is, we have
idY ◦ f = f for any map f : X → Y .

We call a map f : X → Y surjective (or onto) if the corresponding relation R
is surjective. Thus f is surjective if and only if f (X) = Y .

A map f : X → Y is called injective (or one-to-one) if f (x) = f (x ′), x, x ′ ∈ X ,
implies x = x ′. A map is injective if and only if the corresponding functional
relation R satisfies the horizontal intersection property: The graph G f = R
intersects every subset X×{y}, y ∈ Y , at most once (exactly once if f is surjective).

Finally, a map is called bijective (or a bijection) if it is injective and surjective.
A bijective map f : X → Y is also called a one-to-one correspondence between
X and Y .

Given a map f : X → Y , an inverse of f is a map g : Y → X such that
g ◦ f = idX and f ◦ g = idY hold.

An inverse of f : X → Y exists if an only if f is bijective. Indeed, if an inverse
g : Y → X exists, then, for x, x ′ ∈ X , f (x) = f (x ′) implies x = g( f (x)) =
g( f (x ′)) = x ′, so that f must be injective. Moreover, if y ∈ Y , then x = g(y) ∈ X
satisfies f (x) = f (g(y)) = y, so that f must be surjective. Thus, if the inverse of
f exists, then f must be bijective.

Conversely, let f : X → Y be bijective. We define the map g : Y → X as
follows. For y ∈ Y let g(y) ∈ X be an element x such that f (x) = y. Since f is
surjective, x = g(y) exists. Since f is injective, x is unique. Thus, g : Y → X is

17Some authors use the combined notation X � x �→ y = f (x) ∈ Y . We will not need this.
18There is a more general concept of composition of relations (called relative multiplication).
Given sets X, Y, Z and relations R ⊂ X × Y and S ⊂ Y × Z , the composition S ◦ R ⊂ X × Z ,
a relation from X to Z , is defined as follows: (x, z) ∈ S ◦ R, x ∈ X , z ∈ Z , if there exists y ∈ Y
such that (x, y) ∈ R and (y, z) ∈ S. We will not need this concept.
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well-defined. With this, for x ∈ X and y ∈ Y , we have f (x) = y if and only if
g(y) = x , and we obtain g ◦ f = idX and f ◦ g = idY .

The inverse of a map f : X → Y (if it exists) is uniquely determined by f .
Clearly, if g : Y → X is the inverse of f : X → Y , then f is also the inverse of g.
Henceforth, we denote the inverse of a map f : X → Y by f −1 : Y → X . With
this we have ( f −1)−1 = f .

If f : X → Y is a bijective map, then the graphs G f ⊂ X×Y and G f −1 ⊂ Y×X
can be obtained from each other by the map X × Y → Y × X that swaps the
coordinates,19 that is, (x, y) �→ (y, x), x ∈ X , y ∈ Y .

Example 0.3.1 Let X be a non-empty set and Y = X × {0, 1}. Define the maps
f : X → Y , by f (x) = (x, 0), x ∈ X , and g : Y → X by g(x, y) = x , x ∈ X ,
y = 0, 1. Then we have g ◦ f = idX but f ◦ g �= idY .

On the other hand, if X and Y are finite sets with the same number of elements,
and f : X → Y and g : Y → X such that g ◦ f = idX , then we have f ◦ g = idY .
Indeed, as above, g ◦ f = idX implies that f : X → Y is injective. Since X and
Y have the same number of elements, f : X → Y must be surjective.20 Hence, f
is a bijection, and its inverse f −1 : Y → X exists. With this, we have f ◦ g =
f ◦ (g ◦ f ) ◦ f −1 = f ◦ f −1 = idY .

A map f : X → R whose range is a set of real numbers is called a real(-valued)
function. If the domain is also a set of real numbers, then f is called a single-
variable real function. It is usually given by an equation y = f (x), where f (x) is
a (real-valued) expression depending on the real indeterminate x ∈ X ⊂ R. If the
domain of a real function f : X → R is a subset of the plane R

2, the 3-space R
3,

etc., then f is called a multivariate real function. It is usually given by equations
z = f (x, y), w = f (x, y, z), etc., where all the variables are real, and f (x, y),
f (x, y, z), etc. are multivariate expressions in (x, y), (x, y, z), etc. in X .

For simplicity (and brevity) we will call all these real functions.
If a real function is given by equations y = f (x), z = f (x, y), etc., then the

domain of definition of f is the domain of the expressions f (x), f (x, y), etc., that
is, the largest set of real numbers x ∈ R, points (x, y) ∈ R

2 in the plane, etc. for
which the expression f is defined.

History
One may contemplate that Hipparchus of Nicaea (c. 190 – c. 120 BCE), the first compiler of a
trigonometric table, already had an implicit notion of what about eighteen centuries later in 1692
Gottfried Wilhelm Leibniz (1646 – 1716) called a “function.” Credit should be given to Leibniz not
only because in his works the concept of function appears explicitly but also because he used this
term in many geometric settings.

In many examples maps and their variables are “named” using (uppercase and
lowercase) letters from the English alphabet ( f , g, F , G, r , v, t , etc.). This is
convenient not only for referencing purposes but also in instances when the map or
its variable(s) carry specific (usually geometric or physical) meaning. For example,

19This is the key property to define the inverse of a relation R ⊂ X × Y as R−1 ⊂ Y × X where
y R−1x , x ∈ X , y ∈ Y , if x Ry. Once again, we will not need this.
20Albeit intuitively obvious, this will be shown rigorously as an easy application of Peano’s
Principle of Induction in Section 1.3; see Example 1.3.2.
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L may denote the arc length of a circle depending on the domain variable r > 0,
the radius of the circle, and v usually stands for the velocity of a point-mass moving
along a line depending on the domain variable t , the time.

Once the concept of relation, and hence the concept of map, are defined, the
intensional definition of a set {x | P(x)} using a predicate P on X (Section 0.1) can
be replaced by the concept of indicator function on X . This is the subject of the
next example.

Example 0.3.2 Let X be a set. Consider a function χ : X → {0, 1} with range
the two-element set {0, 1}. Clearly, χ determines and is determined by the subset
A ⊂ X consisting of those elements x ∈ X for which χ(x) = 1. To indicate this,
we set 1A = χ . We call 1A the indicator function (or characteristic function) of
the subset A ⊂ X . To put this into a somewhat wider scope, we see that the map
associating to a subset A ⊂ X its indicator function 1A : X → {0, 1} establishes a
one-to-one correspondence between the power set P (X) and the set of all functions
χ : X → {0, 1}.

This correspondence behaves well under intersection and union of subsets of X :
If A, B ⊂ X , then we have21

1A∩B = min (1A, 1B) = 1A · 1B and 1A∪B = max (1A, 1B) = 1A + 1B − 1A · 1B .

Moreover, for A ⊂ X , we have 1X\A = 1− 1A.
If X is a finite set consisting of n ∈ N elements, then the power set P (X) consists

of 2n elements. Indeed, this is because the number of functions χ : X → {0, 1} is
2n since, for each x ∈ X , the value χ(x) has two choices, 0 or 1.

Amongst the infinite sets, the indicator function 1Q : R→ R of the set of rational
numbers within R plays a prominent role. It is called the Dirichlet function:

1Q(x) =
{

1 if x ∈ Q

0 if x ∈ R \Q.

Example 0.3.3 Given a set X , a map P : {1, 2} → X (with domain the two-element
set {1, 2}) is defined by specifying its two values P(1) and P(2). These are elements
of X , and the order how they are listed is determined by the domain variable: P(1)

comes first, and P(2) is the second. We thus have the ordered pair (P(1), P(2)) in
the Cartesian product X×X . Conversely, an ordered pair (x1, x2) ∈ X×X uniquely
determines a map P : {1, 2} → X by setting P(1) = x1 and P(2) = x2.

In summary, to give a map P : {1, 2} → X amounts to specifying a point
(P(1), P(2)) in the Cartesian product X × X . In particular, for X = R, a function
P : {1, 2} → R can be viewed as a point in the plane R

2, the point being
(P(1), P(2)).

21The notation here indicates that arithmetic operations in R, such as addition, multiplication, etc.,
naturally carry over to the corresponding operations on real(-valued) functions; so that we can add,
multiply, etc. real(-valued) functions.
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Example 0.3.4 The previous example can be generalized to demonstrate that an
infinite sequence of points in a set X can be interpreted as a map. Indeed, let a :
N → X be a map with domain N, the set of natural numbers, and range X . We
list the values of this map in the form of an (ordered) infinite sequence (an)n∈N =
(a(1), a(2), a(3), . . .) of points in X . This sequence uniquely determines the map
a : N → X . Conversely, if an infinite sequence (a1, a2, a3, . . .) of points in X is
given, then a : N→ X can be constructed by setting a(n) = an , n ∈ N.

For the next example, note that the cube function f : R→ R, f (x) = x3, x ∈ R,
is a strictly increasing and surjective real function, and thereby has an inverse, the
cube root function given by f −1(x) = 3

√
x , x ∈ R, which is also strictly increasing

and surjective.22 Although the strictly monotonic (and surjective) functions provide
a large family of functions with inverses, there are many examples of invertible
non-monotonic functions. The next example is an extreme case of this.

Example 0.3.5 Define the function g : R→ R by

g(x) =
{

x3 if x ∈ Q

−x3 if x ∈ R \Q.

We claim that g has an inverse.
To show injectivity, let x, x ′ ∈ R, and assume g(x) = g(x ′). If x, x ′ ∈ Q, then

x3 = x ′3 implies x = x ′. Similarly, if x, x ′ ∈ R \ Q, then −x3 = −x ′3 implies
x = x ′. Finally, if x ∈ Q and x ′ ∈ R \ Q, then x3 = −x ′3 = (−x ′)3 implies
x = −x ′. This cannot happen. Thus g is injective.

To show surjectivity, let y ∈ R. Then 3
√

y ∈ R. If 3
√

y ∈ Q, then g( 3
√

y) =
( 3
√

y)3 = y. If 3
√

y ∈ R \Q, then g(− 3
√

y) = −(− 3
√

y)3 = y. Surjectivity follows.
We conclude that g is bijective and therefore has an inverse.

Exercises

0.3.1. Let A and B be sets. Use the Axiom of Choice to show that there exists
an injective map f : A → B if and only if there exists a surjective map
g : B → A.

0.3.2. Let A be a set. Show that an equivalence relation on A which is functional
must be the identity idA as a function.

0.3.3. Let A and B be finite sets. If B has 56 more subsets than A, then how many
elements are in A and B?

22A function f : X → R with X ⊂ R, is increasing if, for x, x ′ ∈ X , x < x ′ implies
f (x) ≤ f (x ′). Replacing the last inequality sign with strict inequality we obtain the notion of
strictly increasing function. The function f is (strictly) decreasing if its negative− f is (strictly)
increasing. Finally, f is called (strictly) monotonic if it is (strictly) increasing or decreasing. Note
also that we treat here the cube root naïvely; it will be treated rigorously in Section 3.2.
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0.4 Cardinality

We “identify” two sets via one-to-one correspondence. More precisely, we say
that the set X has the same cardinality as the set Y if there is a one-to-one
correspondence (bijection) f : X → Y . The relation of having the same cardinality
is an equivalence relation amongst sets.23 Indeed, X has the same cardinality as
itself via the identity map idX : X → X . If X has the same cardinality as Y via
f : X → Y , then Y also has the same cardinality as X via the inverse f −1 : Y → X .
Finally, if X has the same cardinality as Y via f : X → Y , and Y has the same
cardinality as Z via g : Y → Z , then X has the same cardinality as Z via the
composition g ◦ f : X → Z .

We write |X | = |Y | if X and Y have the same cardinality.

Remark A well-known example is the spectacle of a cavalry passing by. In a large
crowd it may be hard to count exactly how many horses or horsemen are there, but
there is a clear one-to-one correspondence between the set of horses and the set
of horsemen; to each horseman there corresponds the respective horse. Clearly, the
one-to-one correspondence no longer holds if there is horseman walking alone, or
in an unlikely scenario of a stray horse.

A simple example for one-to-one correspondence between infinite sets, and
thereby having the same cardinality, is furnished by writing the natural numbers
as Hindu-Arabic and Roman numerals. Recall the set of Roman numerals

{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, . . .},

where I=1, V=5, X=10, L=50, C=100, D=500, M=1000. Note also that, to
avoid four identical Roman numerals to pile up (up to 4000), a subtractive
notation is used; for example, IX= 10 − 1 = 9 (instead of VIIII), XC=
100 − 10 = 90 (instead of LXXXX), etc.) For example, the natural number
48 corresponds to XLVIII and 2021, our Gregorian calendar year, corresponds to
MMXXI.

History
Leonardo Pisano Bigollo (c. 1175 – c. 1250), an Italian mathematician, is credited for advocating
the Hindu-Arabic numeral system (notably the use of 0, 1, 2, . . . , 9 as digits and place value) in
medieval Europe (as opposed to the clumsy Roman numeral system). During his extensive travels
around the Mediterranean coast, meetings with many merchants, and learning about their systems
of doing arithmetic, he realized the many advantages of the Hindu-Arabic numeral system. In 1202,
he completed his book Liber Abaci (Book of Abacus or Book of Calculation) which popularized
the Hindu-Arabic numerals in Europe. Leonardo Pisano Bigollo is known to us by the name
“Fibonacci” (an abbreviated version of filius Bonacci, son of Bonacci), the latter name concocted
in 1838 by the Franco-Italian historian Guillaume Libri.

If X and Y are finite sets (as in the example of the cavalry above), then |X | = |Y |
if and only if they have the same number of elements.24

23More precisely, on the class of all sets; see Section 0.5.
24The proof of this a simple application of Peano’s Principle of Induction; see Section 1.3.
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Example 0.4.1 Let X and Y be finite sets; |X | = m and |Y | = n, m, n ∈ N. How
many maps X → Y are there? How many injective maps X → Y are there?25

Clearly, the number of maps X → Y is nm since each element in X can be
mapped to any element of Y (a choice of n).26

To count the number of injective maps X → Y we select a (first) element in X .
This element can be mapped to any element in Y , a choice of n. Once this is done,
we select a (second) element. Due to injectivity, this can be mapped to another
element, a choice of n − 1. Thus, so far, the number of choices made is n(n − 1).
Continuing this way, the number of injective maps is n(n−1)(n−2) · · · (n−m+1).
In particular, we must have m ≤ n.

Example 0.4.2 Let X be a finite set of n ∈ N elements. A permutation of X is a
bijective map X → X . Determine the number of permutations of X .

As noted in Example 0.3.1, an injective map f : X → X must be surjective,
therefore it must be a permutation. By the second part of the previous example, we
see that the number of injective maps X → X is n(n − 1)(n − 2) · · · 2 · 1.

Based on this, we define the factorial of a natural number n ∈ N, denoted by n!,
as the product of all natural numbers less than equal to n. We conclude that there
are n! permutations of a set X of n elements.

Remark The sequence of factorials increases very rapidly. Here are the first few:

1! = 1, 8! = 40, 320, 15! = 1, 307, 674, 368, 000,

2! = 2, 9! = 362, 880, 16! = 20, 922, 789, 888, 000,

3! = 6, 10! = 3, 628, 800, 17! = 355, 687, 428, 096, 000,

4! = 24, 11! = 39, 916, 800, 18! = 6, 402, 373, 705, 728, 000,

5! = 120, 12! = 479, 001, 600, 19! = 121, 645, 100, 408, 832, 000,

6! = 720, 13! = 6, 227, 020, 800, 20! = 2, 432, 902, 008, 176, 640, 000,

7! = 5, 040, 14! = 87, 178, 291, 200, 21! = 51, 090, 942, 171, 709, 440, 000.

Example 0.4.3 Let n ∈ N, and write

(n!)!
n
= M · N !, M, N ∈ N,

where N is as large as possible. Find M + N .27

We have

(n!)!
n
= n! · (n! − 1)!

n
= (n − 1)! · (n! − 1)!

25In Section 6.3 (Example 6.3.7) we will determine the number of surjective maps X → Y , |X | =
m and |Y | = n, m, n ∈ N.
26For this reason, the set of all maps X → Y is usually denoted by Y X . Note the special case
P(X) = 2X as discussed in Section 0.3.
27A special case (n = 3! = 6) was a problem in the American Invitational Mathematics
Examination, 2003.
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This gives M = (n − 1)! and N = n! − 1 with sum M + N = n! + (n − 1)! − 1.

In the next example we return to the indicator function (Example 0.3.2).

Example 0.4.4 (Principle of Inclusion-Exclusion) We saw that the indicator func-
tion satisfies the equality

1A∪B = 1A + 1B − 1A · 1B, A, B ⊂ X.

We generalize this to a (finite) collection of subsets {Ai | i = 1, . . . , n}, n ∈ N, of a
given set X . We claim28

1⋃n
i=1 Ai

=
∑

∅�=J⊂{1,...,n}
(−1)|J |+11⋂

j∈J A j .

To show this, we consider the product
∏n

i=1

(
1− 1Ai

)
. This is a function on X

with values 0, 1. The i th factor of this product vanishes (precisely) on Ai , so that
the entire product vanishes (precisely) on the union

⋃n
i=1 Ai . We obtain that this

product is the indicator function

n∏
i=1

(
1− 1Ai

) = 1X\⋃n
i=1 Ai

= 1− 1⋃n
i=1 Ai

.

On the other hand, expanding the product, each term in the expansion is a product
obtained by choosing, for each i = 1, . . . , n, in the i th factor either 1 or −1Ai . For
a specific term, let J ⊂ {1, . . . , n} be the subset consisting of those indices j for
which we choose −1A j . This term then can be written as

(−1)|J |
∏
j∈J

1A j = (−1)|J |1⋂
j∈J A j .

The product above is the sum of these terms

n∏
i=1

(
1− 1Ai

) = ∑
J⊂{1,...,n}

(−1)|J |1⋂
j∈J A j .

Since J = ∅ corresponds to the term 1, putting everything together, we finally obtain

1⋃n
i=1 Ai

= 1−
n∏

i=1

(
1− 1Ai

) = ∑
∅�=J⊂{1,...,n}

(−1)|J |+11⋂
j∈J A j .

The claim follows.

28Here we use the usual summation notation: If I is a finite set and A = {ai | i ∈ I } ⊂ R is a
finite set of real numbers, then

∑
i∈I ai stands for the sum of all elements in A. In particular, if I =

{m, m+1, . . . , n} ⊂ Z, m ≤ n, then we set
∑n

i=m ai =∑i∈I ai = am+am+1+· · ·+an . Replacing
the sum with product, we will also use the notation

∏
i∈I ai for the product of all elements in A;

and
∏n

i=m ai =∏i∈I ai = am · am+1 · · · · · an .



20 0 Preliminaries: Sets, Relations, Maps

In terms of subsets that the indicator functions correspond to, counting the
number of elements in each subset, we obtain the following

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅�=J⊂{1,...,n}
(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

A j

∣∣∣∣∣∣ .

This is called the Principle of Inclusion-Exclusion, and it is of paramount impor-
tance in combinatorics.

A simple application of the Principle of Inclusion-Exclusion is the following:

Example 0.4.5 How many positive integers ≤ 120 are multiples of 2, 3, or 5?
Let A1, A2, resp. A3 be the set of positive integers ≤ 120 that are multiples of

2, 3, resp. 5. We need to find |A1 ∪ A2 ∪ A3|. We have |A1| = 60, |A2| = 40,
|A3| = 24. Moreover, the sets A1 ∩ A2, A2 ∩ A3, resp. A3 ∩ A1, are the sets of
multiples of 6, 15, resp. 10, so that we have |A1 ∩ A2| = 20, |A2 ∩ A3| = 8, and
|A3 ∩ A1| = 12. Finally, A1 ∩ A2 ∩ A3 is the set of multiples of 30, so that we have
|A1 ∩ A2 ∩ A3| = 4. Using the Principle of Inclusion-Exclusion, we obtain

|A1 ∪ A2 ∪ A3| = (60+ 40+ 24)− (20+ 12+ 8)+ 4 = 88.

Returning to the main line, for sets with infinitely many elements the situation is
markedly different.

For example, the set of natural numbers N has the same cardinality as the set of
non-negative integers N0, even though the former is a proper subset of the latter. A
one-to-one correspondence that establishes this is f : N → N0 given by f (n) =
n − 1, n ∈ N. We thus have |N| = |N0|.

Moreover, we also have |N| = |Z|. The one-to-one correspondence f : N→ Z

that establishes this is defined, for n ∈ N, by

f (n) =
{

n/2 if n is even

(1− n)/2 if n is odd.

Diagrammatically

1 2 3 4 5 6 7 . . . 2n 2n + 1
� � � � � � � � �
0 1 −1 2 −2 3 −3 . . . n −n

A set X is called countable if |X | = |N|. By the above, we have |N| = |N0| =
|Z|; that is, N0 and Z are countable sets. In general, any infinite subset of a countable
set is countable. Indeed, let X ⊂ N be an infinite subset. Since X consist of natural
numbers, its elements can be listed in an increasing order as n1, n2, n3, . . . , nk, . . ..
We let f : X → N be defined as f (nk) = k, k ∈ N. Then f is the desired one-to-
one correspondence between X and N.
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We now turn to Cartesian products of countable sets. The Cantor pairing is a
map C : N0 × N0 → N0 defined by

C(m, n) = (m + n)(m + n + 1)

2
+ m, m, n ∈ N0.

Using (m, n) ∈ N0 × N0 as row-column indices, the first few values of C are as
follows:

0 1 3 6 10 . . .

2 4 7 11 . . .

5 8 12 . . .

9 13 . . .

14 . . .

We claim that C is a one-to-one correspondence, so that we have |N0 × N0| =
|N0|.

To get a better insight into the properties of C we introduce the triangular
numbers. For n ∈ N0, the nth triangular number is defined by Tn = n(n+1)/2. The
name comes from the fact that an isosceles triangular array of dots with n ∈ N dots
in the base, n − 1 dots in the next level, n − 2 dots in the next level, etc. and 1 dot
in the top (n − 1)st level, have the total number of dots equal to Tn ; that is, we have

Tn =
n∑

i=1

i = 1+ 2+ · · · + n = n(n + 1)

2
, n ∈ N.

For a “Greek proof ” of this, stack up rectangles of base lengths n, n−1, . . . , 2, 1
and constant height 1 in a staircase pattern with total height n and (cross-sectional)
area 1+ 2+ · · · + n. Two of these staircases can be joined along their jagged edges
to form a rectangle of base length n + 1 and height n. The formula follows.

Another proof is based on writing the sum 1 + 2 + · · · + n backwards as n +
(n − 1) + · · · + 1 and adding. Pairing the numbers in the same position we obtain
(1 + n) + (2 + (n − 1)) + · · · + (n + 1), the sum of n copies of (n + 1), that is,
n(n + 1).

History
At the age of seven, Carl Friedrich Gauss (1777 – 1855) started elementary school. His teacher,
Büttner, and his assistant, Martin Bartels, realized his talent for mathematics early on. One of his
early achievements was to discover the (second) proof above in summing up the first 100 natural
numbers by doubling and realizing that the sum was 50 pairs of numbers with each pair adding up
to 101.

Remark For m, n ∈ N, the triangular numbers satisfy the following29

Tm+n = Tm + Tn + m · n

29A numerical special case of the first (T12) was a problem in the American Mathematics
Competitions, 2002.
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Tm·n = Tm · Tn + Tm−1 · Tn−1,

both of which can easily be checked by inspection or computation.

Example 0.4.6 Determine the 1000th term of the sequence 1, 2, 2, 3, 3, 3,

4, 4, 4, 4, 5, . . ..
The last time the natural number n ∈ N appears in this sequence is Tn = n(n +

1)/2. For n = 44 we have T44 = 990 and T45 = 1035. Thus, the 1000th term is 45.

Example 0.4.7 What is the smallest n ∈ N such that the sum of 10 consecutive
integers starting with n is a perfect square?

We have n+ (n+ 1)+ (n+ 2)+ · · · + (n+ 9) = 10n + 9 · 10/2 = 10n + 45 =
5(2n + 9) = m2 for some m ∈ N. Hence we must have 2n + 9 = 5k2 for some
k ∈ N odd. The smallest odd number to realize this is k = 3. This gives n = 18.

Returning to our Cantor pairing, we thus have

C(m, n) = Tm+n + m, m, n ∈ N0.

We now show that C is injective. To do this, we first claim that m + n < m′ + n′
implies C(m, n) < C(m′, n′). Letting k = m+ n and k′ = m′ + n′, k < k′, we have

max
k=m+n

C(m, n) = C(k, 0) = k(k + 1)

2
+ k <

k(k + 1)

2
+ k + 1

= (k + 1)(k + 2)

2
≤ k′(k′ + 1)

2
= min

k′=m+n
C(m, n).

The claim follows.
Thus, C(m, n) = C(m′, n′) implies m + n = m′ + n′. But then m = m′ and

therefore n = n′ also follows. Hence C is injective.
Next we show that C is surjective. Let t ∈ N0 and let Tk be the largest triangular

number not exceeding t . Let m = t − Tk ∈ N0 and n = k − m.
We first claim that n ∈ N0, that is, m = t − Tk ≤ k. Assume not. If t − Tk > k,

then t > Tk + k = k(k + 1)/2 + k = (k + 1)(k + 2)/2 = Tk+1. This means that
Tk is not the largest triangular number not exceeding t , a contradiction. The claim
follows.

With these choices we have C(m, n) = Tk + m = t , k = m + n. Surjectivity
follows.

Summarizing, we obtain that C : N0×N0 → N0 is a one-to-one correspondence;
that is, we have |N0 ×N0| = |N0|. It follows that, for any countable set X , we have
|X | = |N0| = |N0 × N0| = |X × X |; that is, the Cartesian product X × X is also
countable.

As another consequence, we also have |N| = |Q|. Indeed, any non-zero rational
number 0 �= q ∈ Q can be uniquely written as an irreducible (or reduced) fraction
q = a/b, a, b ∈ Z, a, b �= 0, where a and b have no common divisors. This gives
an injective map f : Q→ Z× N, f (±a/b) = (±a, b), a, b ∈ N with no common
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divisors; and f (0) = (0, 1). Since f is a one-to-one correspondence between Q and
its range in Z× N, and |Z× N| = |N|, we see that the set of rational numbers Q is
countable.

Returning to the general setting, let X and Y be sets. We say that X has cardinality
less than or equal than the cardinality of Y if there is an injective map f : X → Y .
We write this as |X | ≤ |Y |. If, in addition, there is no surjective map g : X → Y ,
then we say that X has cardinality strictly less than the cardinality of Y , and write
|X | < |Y |.

The Cantor–Schröder–Bernstein Theorem below states that the relation ≤ is
“antisymmetric” with respect to cardinality30 in the sense that, for any two sets
X and Y , the inequalities |X | ≤ |Y | and |Y | ≤ |X | imply |X | = |Y |.
Cantor-Schröder-Bernstein Theorem Let X and Y be sets. If there exist injective
maps f : X → Y and g : Y → X, then there is also a bijective map h : X → Y .

Proof We first prove this statement when Y ⊂ X and the map g : Y → X is the
inclusion. In this special case we have the injective composition f : X → Y ⊂ X
(also denoted by f ) which can be iterated. More precisely, we define the nfold

composition f n =
n︷ ︸︸ ︷

f ◦ f ◦ . . . ◦ f : X → X , n ∈ N, ( f 1 = f ).31 We also set
f 0 = idX : X → X , the identity on X , so that f n is defined for all n ∈ N0.

We now let

A =
⋃

n∈N0

f n(X \ Y ).

An important property of the subset A ⊂ X is that x ∈ A implies f (x) ∈ A. In
addition, for n = 0 in the union above, we have X \ Y ⊂ A. Hence x /∈ A implies
x ∈ Y .
With these we now define the map h : X → Y by

h(x) =
{

f (x) if x ∈ A

x if x /∈ A.

We claim that h is bijective.
First, we show injectivity. Assume x, x ′ ∈ X such that h(x) = h(x ′). If x, x ′ ∈

A, then we have f (x) = h(x) = h(x ′) = f (x ′). Since f is injective, we obtain
x = x ′. If x, x ′ /∈ A, then x = h(x) = h(x ′) = x ′ automatically. Finally, if x ∈ A
and x ′ /∈ A, then f (x) ∈ A so that h(x) = f (x) �= x ′ = h(x ′), a contradiction.
Injectivity follows.

30As noted above, having the same cardinality is an equivalence relation on the class of all sets.
31Strictly speaking, we need here Peano’s Principle of Induction; see Section 1.3.
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Second, we show surjectivity. Let y ∈ Y . If y ∈ A, then y ∈ f n(X \ Y ) for some
n ∈ N (n �= 0). Hence, there exists x ∈ f n−1(X \ Y ) such that y = f (x) = h(x). If
y /∈ A, then, by definition, we have y = h(y). Surjectivity follows.

Summarizing, we proved the theorem for the special case of an injective map
f : X → Y ⊂ X .

Returning to the general setting, let f : X → Y and g : Y → X be injective
maps. Since the composition of injective maps is injective, we see that g ◦ f : X →
g(Y ) is injective. Since g(Y ) ⊂ X , by what we proved above, we have a bijective
map h : X → g(Y ). On the other hand, restricted to its range, g : Y → g(Y ) is
certainly bijective, and therefore the inverse g−1 : g(Y ) → Y exists and is also
bijective. Now, the composition g−1 ◦ h : X → Y is a bijective map.

History
The Cantor–Schröder–Bernstein Theorem has a long and interesting history. In 1887 Cantor
published the theorem without proof. Around this time Dedekind proved the theorem, but did
not publish it, and his proof was discovered only in 1908 by Zermelo (who then published his own
proof). In 1896 Ernst Schröder (1841 – 1902) announced the theorem with a sketch proof which
was shown to be incorrect. In 1897, Felix Bernstein (1878 – 1956), then a student, presented his
proof in Cantor’s seminar, and almost simultaneously, Schröder found another proof. Subsequently,
Cantor worked on simplifying the proof for years, but always gave full credit to Bernstein. Shortly
afterwards, Dedekind, after a visit to Bernstein, came up with his second proof. Finally, note that
there is also yet another beautiful proof by the Hungarian mathematician Gyula König (1849 –
1913) published in 1906.

Another quick proof of the countability of Q using the Cantor–Schröder–
Bernstein Theorem is as follows: As before, write every non-zero rational number as
an irreducible fraction q = ±a/b, with a, b ∈ N having no common divisors. With
this, define a map f : Q → Z by f (±a/b) = ±2a · 3b; and f (0) = 0. Clearly, f
is injective. Letting g : Z→ Q to be the inclusion, the Cantor–Schröder–Bernstein
Theorem implies |Q| = |Z|.
Remark It is natural to ask whether trichotomy holds for the relation ≤; that is, if,
for any two sets X and Y , we have |X | ≤ |Y | or |Y | ≤ |X |. The answer is “yes,” and
trichotomy, in fact, is equivalent to the Axiom of Choice.

Given a set X with power set P(X), we have |X | ≤ |P(X)| since the map g :
X → P(X) that associates to any x ∈ X the one-element subset {x} ∈ P(X) is
injective. We now prove a result of Cantor which asserts that |X | < |P(X)|.
Cantor Theorem For any set X, there is no surjective map f : X → P(X).

Proof Assume that f : X → P(X) is a surjective map for some set X . Define
Y = {x ∈ X | x /∈ f (x)}. Since Y ⊂ X , we have Y ∈ P(X). By the assumed
surjectivity of f , we have f (x0) = Y for some x0 ∈ X . By construction, we have
x0 ∈ Y if and only if x0 /∈ f (x0) = Y . This is a contradiction.

We will show later (Section 2.2) that the power set P(N) and the set of real
numbers R have the same cardinality. We thus have |N| < |P(N)| = |R|.
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Exercises

0.4.1. Let A be the set of all sequences N→ {0, 1}. Show that A is uncountable.
0.4.2. Show that the union of countably many sets is countable.
0.4.3. How many passwords of length 8 can be made from the letters a, b, and c

such that each occurs at least once?
0.4.4. Let m < n, m, n ∈ N. Determine the number of possible sums of the

elements in an m-element subset of {1, 2, . . . , n}.
0.4.5. Show that the set of all irrational numbers, R \Q, is uncountable.32

0.5 The Zermelo–Fraenkel Axiomatic Set Theory∗

We now turn to a brief account on how naïve set theory can be axiomatized.
In axiomatic set theory the precise meaning of sets and the set membership

relation are not addressed; they are primitives. The primary focus is on describing
the properties of sets and the set membership. This description is given by a set
of axioms and statements that can be deduced from the axioms by inference using
the rules of logic. The set of axioms should satisfy three criteria: (1) Consistency:
No statement and its negation are to be deduced; (2) Credibility: The axioms and
the derived statements should be in accord with the naïve set theory; (3) Richness:
Statements of the Cantor naïve set theory should be derived as theorems.

History
As noted previously, Cantor recognized that naïve set theory quickly gives birth to paradoxes. The
two best known are Cantor’s Paradox asserting that “the set of all sets” cannot exist; and Russell’s
Paradox (1899/1901) asserting that “the set of all sets that do not contain themselves” cannot exist.
Axiomatic set theory was created to avoid these paradoxes.

In the Zermelo–Fraenkel axiomatic set theory, termed ZF or ZFC (see the
discussion below), all sets are hereditary and well-founded.

A set is hereditary if all of its elements are also hereditary sets. (For example,
the so-called von Neumann ordinals33 ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, etc., are all
hereditary sets.) Thus, there is no difference between “objects” and “sets” as we had
in our naïve approach. Any element of a set is also a set, and consequently, there is
only one primitive, the set itself. This also implies that the single primitive relation
∈, the set membership, usually spelled out as “element/member of” is actually
a (binary) relation between sets. Thus, the Zermelo–Fraenkel set theory excludes
urelements,34 elements of sets that are not themselves sets.

32To show that R \ Q has the same cardinality as R is harder, and, by the Cantor–Schröder–
Bernstein Theorem, it amounts to construct an injective map of R to R \Q.
33More about this at the end of this section.
34Using the German prefix ur- “primordial.”
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To define the concept of well-founded sets, we need some preparation. A set
X is transitive if x ∈ X and y ∈ x implies y ∈ X . A set is transitive if and
only if

⋃
X ⊂ X , where

⋃
X is the union of all elements of X that are sets (see

Section 0.1).
The transitive closure of a set X is the smallest transitive set (with respect to the

inclusion relation) that contains X . The transitive closure T C(X) of a set X is the
union T C(X) =⋃n∈N0

Xn , where X0 = X and Xn+1 =⋃ Xn , n ∈ N0.35

Finally, a set X is well-founded if the set membership relation on every non-
empty subset of the transitive closure of T C(X) has a minimal element; that is, for
any ∅ �= Y ⊂ T C(X), there is y ∈ Y such that, for all z ∈ Y , we have z /∈ y. An
axiom in the Zermelo–Fraenkel system (the Axiom of Foundation/Regularity; see
below) guarantees that all sets are well-founded.

The Zermelo–Fraenkel set theory steers clear from Cantor’s and Russel’s
Paradoxes noted above. (The Axiom of Foundation/Regularity does not allow the
existence of a universal set (a set that contains all sets), and the Axiom Schema of
Specification/Comprehension avoids Russel’s Paradox; see below.)

Finally, typographically, to designate any set the typical practice is to use
lowercase letters. Uppercase letters will be used sparingly and mostly in specific
situations.

The Zermelo–Fraenkel axioms comprise a system of nine axioms. As we have
seen in Section 0.1, a number of constructions in naïve set theory use the vague
concept of “predicate” or “property” to be decidable (true or false) for the elements
of a given set, by means of which a subset of the set can be defined (consisting
of those elements for which the property holds). Zermelo called this property a
“definite formula” for all the elements of the given set. As noted above, Fraenkel
and Skolem made this vague concept more precise by what is known as a formula
of ZFC. Before stating the axioms, we briefly elaborate on this.

The language of axiomatic set theory in the framework of first-order pred-
icate calculus36 has two basic predicates (Boolean-valued functions with range
{true, false}); the equality predicate =, and the set membership predicate ∈.

The basic building blocks of formulas are the two atomic formulas: x = y and
x ∈ y, for any variables x and y.

The atomic formulas are used to build more complex formulas recursively by
means of connectives and quantifiers. Connectives can be used to derive from
formulas φ and ψ new ones as follows:

φ ∧ ψ (logical conjunction “and”)

φ ∨ ψ (logical disjunction “or”)

¬φ (logical negation “not”)

35This definition requires Peano’s Principle of Induction; see Section 1.3.
36First-order predicate calculus is an assembly of formal systems that allows to use quantified
variables over nonlogical objects and sentences that contain variables.
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φ �⇒ ψ (implication “implies”)

φ ⇐⇒ ψ (equivalence “if and only if”).

In addition, if x is a variable, then quantifiers can be used to derive new formulas:

∀ x φ (universal quantification “for all”)

∃ x φ (existential quantification “there exists”).

Formulas are constructed in finitely many steps starting with atomic formulas and
proceeding with the steps above.

In first-order predicate calculus formulas are allowed to have free variables. A
variable is free if it occurs in the formula at least once without being introduced
by any universal or existential quantifiers. A useful convention is to indicate all
free variables (or parameters) p1, . . . , pn of a formula by writing φ(p1, . . . , pn). A
formula with no free variables is called a sentence.

A formula φ(p1, . . . , pn) with free variables p1, . . . , pn is often called a condi-
tion on p1, . . . , pn . It attains a meaning only when a domain of interpretation is
provided which specifies the range of values of the variables and the membership
relation amongst them.

Any formula (in the language {∈}) φ(x, p1, . . . , pn) defines a class:

C = {x |φ(x, p1, . . . , pn)}.

A set x is a member of the class C if and only if φ(x, p1, . . . , pn).
We say that the class C above is definable from p1, . . . , pn ; and simply definable

if there are no parameters.
Sets are objects that satisfy the Zermelo–Fraenkel system of axioms expounded

below. Every set x is considered a class definable by the formula u ∈ x ; that is, x is
identified by the class {u | u ∈ x}. A class that is not a set is called a proper class.

For example, the universe, the class of all sets, is the definable class V =
{x | x = x}. Note that, by Cantor’s Paradox, V is a proper class (see below).

The classes C = {x |φ(x, p1, . . . , pn)} and D = {x |ψ(x, q1, . . . , qm)}, given
by the formulas φ(x, p1, . . . , pn) and ψ(x, q1, . . . , qm), are equal, C = D, if x ∈ C
if and only if x ∈ D, or equivalently

∀x (φ(x, p1, . . . , pn) ⇐⇒ ψ(x, q1, . . . , qm)).

The class C = {x |φ(x, p1, . . . , pn)} is a subclass of D = {x |ψ(x, q1, . . . , qm)},
that is, we have the inclusion C ⊂ D, if x ∈ C implies x ∈ D, or equivalently

∀x (φ(x, p1, . . . , pn) �⇒ ψ(x, q1, . . . , qm)).

The operations of union, intersection, and difference can be naturally defined on
classes as follows:

C ∪D = {x | x ∈ C ∨ x ∈ D}
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C ∩D = {x | x ∈ C ∧ x ∈ D}
C \D = {x | x ∈ C ∧ x /∈ D} /∈= ¬ ∈ .

Similarly, the union of a class C is defined as

⋃
C =

⋃
{C |C ∈ C} = {x | ∃C (x ∈ C ∧ C ∈ C}.

With these, not striving for minimality, the Zermelo–Fraenkel axioms are as
follows:

1. Axiom of Extensionality: If two sets have the same elements, then they are
equal. This axiom imparts the idea that a set is uniquely determined by its
members.

∀x ∀y [∀z (z ∈ x ⇐⇒ z ∈ y) �⇒ x = y ] .

The converse, that is, if two sets are equal, then they have the same elements, is
an axiom of predicate calculus. Putting these together gives

∀x ∀y [∀z (z ∈ x ⇐⇒ z ∈ y) ⇐⇒ x = y ] .

2. Axiom of (Unordered) Pairing:

∀x ∀y ∃z ∀u [u ∈ z ⇐⇒ (u = x ∨ u = y)].

By the Axiom of Extensionality, the set z is unique. We denote z = {x, y}.
The Axiom of Pairing applied to a set x gives the existence of the singleton

{x} = {x, x}. Applying the Axiom of Pairing again, this time to the sets {x} and
{x, y}, we see that {{x}, {x, y}} is also a set. Following Kazimierz Kuratowski
(1896–1980), the ordered pair (x, y) is defined as (x, y) = {{x}, {x, y}}. With
this, we have

(x, y) = (u, v) ⇐⇒ x = u ∧ y = v.

We define ordered triples, quadruples, quintuples, etc. by (x, y, z) =
((x, y), z), (x, y, u, v) = ((x, y, u), v), etc. In general, we define (x1, . . . , xn),
n ∈ N, inductively37 by

(x1, . . . , xn, xn+1) = ((x1, . . . , xn), xn+1).

As before, (x1, . . . , xn) = (y1, . . . , yn), n ∈ N, if and only if x1 = y1, . . . , xn =
yn .

37This needs Peano’s Principle of Induction; see Section 1.3.
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3. Axiom Schema of Specification/Comprehension: We have seen that in naïve
set theory a set y can be defined as a subset of a given set z with typical element
x satisfying a certain condition φ(x, p1, . . . , pn). As discussed above, in the
Zermelo–Fraenkel system of axioms properties are given by formulas.

Given a formula φ(x, p1, . . . , pn), we have

∀z ∀p1 . . . ∀pn ∃y ∀x [ x ∈ y ⇐⇒ ( x ∈ z ∧ ϕ(x, p1, . . . pn) ].

We denote y = {x ∈ z |φ(x, p1, . . . , pn)}.
Using classes, this axiom can be reformulated in the following form. Let C be

the class

C = {x |φ(x, p1, . . . , pn)}.

Then, we have

∀z ∃y (z ∩ C = y).

This means that the intersection of a class and a set is a set; in particular, a
subclass of a set is a set (called a subset).

A consequence of this is that the intersection and difference of two sets are
sets.

Another consequence is that the universe V is a proper class. Otherwise,
consider the set y = {z ∈ V | z /∈ z}. By definition, y ∈ y if and only if y ∈ V
and y /∈ y. Since V is universal, we have y ∈ V, and the last statement reduces
to y ∈ y if and only if y /∈ y. This is a contradiction.

Yet another consequence that we note here is that, given a non-empty class of
sets C, the intersection

⋂
C =

⋂
{C |C ∈ C} = {x | ∀C ∈ C (x ∈ C)}.

is a set.

Remark An axiom schema in mathematical logic generalizes the concept of an
axiom. It contains a schematic variable in which countably many subformulas
can be substituted. Therefore an axiom schema stands for countably many
axioms.

4. Axiom of Foundation/Regularity: Every non-empty set contains an element
which, as a set, is disjoint from the set itself:

∀x [x �= ∅ �⇒ ∃y ∈ x (y ∩ x = ∅)].

As noted above this axiom implies (almost verbatim) that all sets are well-
founded.
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In addition, this axiom also implies that there is no set x which is an element
of itself, x ∈ x , a property needed for defining the von Neumann ordinal rank in
the cumulative hierarchy of the universe (see below).

Indeed, let x be a set and consider the singleton {x}which exists by the Axiom
of Pairing above. The Axiom of Foundation applied to {x} says that this set has
an element disjoint from the set itself. But this set contains only one element, x ,
therefore, x , as a set, must be disjoint from {x}. In particular, x , the only element
of the set {x} cannot be contained in x . The statement follows.

5. Axiom of Union: For any set of sets X there exists a set X that contains all the
elements that are elements of some member of X :

∀X ∃X ∀Y ∀x [(x ∈ Y ∧ Y ∈ X ) �⇒ x ∈ X ].

Given X and the corresponding X whose existence is guaranteed by this
axiom, we use the Axiom of Specification to define

⋃
X = {x ∈ X | ∃Y (x ∈ Y ∧ Y ∈ X )}.

Let x and y be sets. By the Axiom of Pairing, {x, y} is a set, and, by the Axiom
of Union, we define the union x ∪ y =⋃{x, y} as a set.

Moreover, we define {x1, . . . , xn}, n ∈ N, inductively38 by {x1, . . . , xn, xn+1}
= {x1, . . . , xn} ∪ {xn+1}.

Finally, if x1, . . . , xn , n ∈ N, are sets, then we define the union

x1 ∪ . . . ∪ xn =
⋃
{x1, . . . , xn}

as a set.
6. Axiom of Infinity:

∃X [∅ ∈ X ∧ ∀x ∈ X (x ∪ {x} ∈ X)].

For a set x , we let S(x) = x ∪ {x}. For k ∈ N0, we define the set Sk(x)

inductively39 by S0(x) = x and Sk+1(x) = S(Sk(x)) = Sk(x) ∪ {Sk(x)}. We
claim that, for k �= l, k, l ∈ N, the sets Sk(x) and Sl(x) are different; in particular
X whose existence is postulated in the axiom above is infinite.40

Indeed, assuming k > l, and setting m = k − l ∈ N and y = Sl(x), we need
to show that y �= Sm(y).

First, y ⊂ Sn(y) for all n ∈ N0. Indeed, for n = 0 this is tautology; for
n = 1, we have y ⊂ y ∪ {y} = S(y), and, inductively, y ⊂ Sn(y) implies
y ⊂ Sn(y) ∪ {Sn(y)} = Sn+1(y).

38This needs Peano’s Principle of Induction; see Section 1.3.
39Once again, as noted above, we use Peano’s Principle of Induction here.
40 X satisfying the Axiom of Infinity above is usually called inductive.
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Finally, let z = Sm−1(y) and apply the Axiom of Foundation to the set {z}.
We obtain that {z} has an element disjoint from the set itself. But this set contains
only one element, z, therefore, z, as a set, must be disjoint from {z}. Returning
to z = Sm−1(y), we obtain Sm−1(y) ∩ {Sm−1(y)} = ∅. On the other hand,
y ⊂ Sm−1(y), so that we arrive at y ∩ {Sm−1(y)} = ∅. This shows that Sm(y) =
Sm−1(y) ∪ {Sm−1(y)} �⊂ y. We obtain y �= Sm(y). The claim follows.

Note also that this axiom guarantees that there exists at least one set, X . With
this the empty set can be defined by ∅ = {x ∈ X | (x ∈ x) ∧ (x /∈ x)}. This is
usually extracted as the so-called the Axiom of the Empty Set. Moreover, by the
Axiom of Extensionality, the empty set is unique.

Note finally that a minimal infinite set X is the von Neumann ordinal ω (see
below).

7. Axiom of the Power Set: We first define the concept of a subset:

(y ⊂ x) ⇐⇒ [∀z (z ∈ y �⇒ z ∈ x)].

With this the axiom is the following

∀x ∃y ∀z (z ∈ y ⇐⇒ z ⊂ x).

We denote y = P(x), the power set of x .
With these axioms in place, we can prove the existence of the Cartesian

product of two sets X and Y as follows. As noted above, the union X ∪ Y is
a set. Clearly, for x ∈ X and y ∈ Y , the ordered pair (x, y) = {x, {x, y}} ∈
P (P (X ∪ Y )). We define

X × Y = {u | ∃x ∃y (u = (x, y) ∧ x ∈ X ∧ y ∈ Y )}.

Finally, we define X1 × . . . × Xn = {(x1, . . . , xn) | x1 ∈ X1 ∧ . . . ∧ xn ∈ Xn}
inductively as

X1 × . . .× Xn × Xn+1 = (X1 × . . .× Xn)× Xn+1.

In particular, we have Xn =
n︷ ︸︸ ︷

X × . . .× X .
8. Axiom Schema of Replacement: A class R is called a (binary) relation if all

elements of R are ordered pairs (x, y), where x and y are sets. With the Cartesian
square of the universe V2 = {z | ∃x ∃y (z = (x, y) ∧ x ∈ V ∧ y ∈ V)}, we have
R ⊂ V2.

Any formula φ(x, y, p1, . . . , pn) defines a relation:

R = {(x, y) | (x, y) ∈ V2 ∧ φ(x, y, p1, . . . , pn)}.

A pair (x, y) is a member of the relation if (x, y) ∈ R.
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We say that the relation R above is definable from p1, . . . , pn ; and simply
definable if the parameters are absent.

The domain DR and the range of a relation are defined by

D = DR = {x | ∃y (x, y) ∈ R} and R = RR = {y | ∃x (x, y) ∈ R}.

A definable relation (defined by φ(x, y, p1, . . . , pn)) is a definable func-
tion41 f if

∀x ∀y ∀y′ ∀p1 . . . ∀pn [ϕ(x, y, p1, . . . , pn)∧ϕ(x, y′, p1, . . . , pn) �⇒ y = y′].

The unique y thereby associated with x by f via φ(x, y, p1, . . . , pn) is
denoted by f (x). Indicating the domain and the range, a definable function is
usually denoted by f : D f → R f .

The Axiom Schema of replacement says that, if a function f is definable by a
formula ϕ(x, y, p1, . . . , pn), then for any set A, there exists a set B = f (A) =
{ f (x) | x ∈ A}:

∀x ∀y ∀z ∀p1 . . . ∀pn [ϕ(x, y, p1, . . . , pn) ∧ ϕ(x, z, p1, . . . , pn) �⇒ y = z)

�⇒ ∀A ∃B ∀y (y ∈ B ⇐⇒ ∃x (x ∈ A ∧ ϕ(x, y, p1, . . . , pn))].

Remark The Axiom Schema of Replacement and the Axiom of the Empty Set
(which we did not include in the list of axioms) together imply the Axiom
Schema of Specification. Indeed, let φ(x, p1, . . . , pn) be a formula and z a set,
and define the function f such that f (x) = x if φ(x, p1, . . . , pn) is true and
f (x) = u if φ(x, p1, . . . , pn) is false, where u ∈ z such that φ(u, p1, . . . , pn)

is true. Then the set y guaranteed by the Axiom Schema of Replacement is
precisely the set y required in the Axiom Schema of Specification. If u does not
exist, then f (x) in the Axiom Schema of Specification is the empty set whose
existence is needed here.

Axioms 1–8 define the Zermelo–Fraenkel set theory, ZF, for short.

History
The Axiom Schema of Replacement was not part of the original Zermelo system of axioms
published in 1908. This axiom greatly extends the potential of ZF in providing proofs of
theorems as well as its strength in consistency. While it appeared around 1917 in the works
of the Russian mathematician Dmitry Mirimanoff (1861–1945), it was the publication in
1922 by Fraenkel (announced earlier in the 1921 Jena meeting of the German Mathematical
Society) when this axiom took its right place amongst what is now known as ZF, the
Zermelo–Fraenkel system of axioms. Skolem also realized the necessity of this axiom later
in the same year (announced in the 1922 Helsinki meeting of the Congress of Scandinavian
Mathematicians and published in 1930), and his augmented system of axioms also included the
von Neumann Axiom of Foundation. The term “replacement” (German “Ersetzungsaxiom”) is
due to Fraenkel. Originally this was only meant to be tentative until a final formalization of
Zermelo’s “definite property” could be obtained.

41Or a class function.
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9. Axiom of Choice: For any set of sets X there is a choice function with domain
X and range

⋃X that associates to any member x of X and element contained
in x .

∀X
[
∅ /∈ X �⇒ ∃ f

[
Func( f ) ∧D f=X ∧R f ⊂

⋃
X∧

(∀x ∈ X ) [ f (x) ∈ x]]] ,

where Func( f ) if and only if f is definable, D f , resp. R f , are the domain, resp.
range of f .

Adding this axiom to ZF defines ZFC, where C stands for the Axiom of Choice.

Remark Although nowadays most mathematicians accept it, there has been a
considerable scrutiny and reluctance to incorporate the Axiom of Choice, AC,
to the Zermelo–Fraenkel system. As noted earlier, AC is equivalent to the Well-
Ordering Theorem, that is, the statement that every set can be well-ordered. But
the construction leading to well ordering is non-canonical in the sense that well-
ordering cannot be explicitly constructed. For this reason, AC is considered as
non-constructive because it postulates the existence of a choice function without
actually asserting anything about how this function is to be constructed. In addition,
the Axiom of Choice leads to some highly counter-intuitive results.

It is known that the consistency of ZFC cannot be proved within ZFC itself
(unless it turns out to be inconsistent). Most mathematicians are confident, however,
that the ZFC is consistent since they believe that if the ZFC were inconsistent then it
would have been discovered by now. There has been a considerable amount of study
targeting independence of each axiom from the others; for example, the Axiom of
Foundation/Regularity is known to be independent from the rest of the axioms in
ZFC.

A (von Neumann) ordinal is a set α such that α is strictly well-ordered with
respect to set membership ∈, and every element of α is also a subset of α, that is, α

is transitive. For the strict well-order we will use interchangeably ∈ and the generic
order <.

The non-negative integers are ordinals. The first few are tabulated here:

0 = {} = ∅
1 = {0} = 0 ∪ {0} = {∅}
2 = {0, 1} = 1 ∪ {1} = {∅, {∅}}
3 = {0, 1, 2} = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}}
4 = {0, 1, 2, 3} = 3 ∪ {3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
5 = {0, 1, 2, 3, 4} = 4 ∪ {4}
= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}.



34 0 Preliminaries: Sets, Relations, Maps

In general, the successor of an ordinal number α is the ordinal number α ∪ {α}
denoted by α+1. The finite ordinal n ∈ N0 is therefore defined by {0, 1, 2, . . . , n−
1}, in which any element k = 0, 1, 2, . . . , n − 1 is identified with the ordinal
{0, 1, . . . , k}. The first infinite ordinal as a set is N0, and, as an ordinal, it is denoted
by ω. Its successor is the ordinal ω + 1 = {0, 1, 2, . . . , ω}. The successor of ω + 1
is ω + 2 = ω · 2 = {0, 1, 2, . . . , ω, ω + 1}. The ordinal ω + ω = 2 · ω is the
ordinal {0, 1, 2, . . . ;ω,ω + 1, ω + 2, . . .}. Then there comes 2 · ω + 1, 2 · ω + 2,
etc. 3 · ω. Continuing, we have 4 · ω, 5 · ω, etc. ω · ω = ω2. The latter is the ordinal
{n · ω + m |m, n ∈ N0}. Continuing further we obtain the ordinals ωω, ωωω

, etc.
(Note that ωω is still countable as a set.) The first uncountable ordinal, the ordinal
of all countable ordinals is denoted by ω1.

Returning to the main line, we first claim that every element of an ordinal is an
ordinal itself. Indeed, if α is an ordinal and β ∈ α, then, as a subset of α, we have
β = {γ ∈ α | γ ∈ β} = {γ ∈ α | γ < β}. In other words, an element β in an ordinal
α is the set of all elements of α that are (strictly) less than β. Cleary, this implies
that β is an ordinal itself.

Next, we claim that if α and β are ordinals, then β ∈ α if and only if β ⊂ α

and β �= α. Indeed, if β ∈ α, then, as we have seen above, β ⊂ α. Now, β = α

cannot happen because α ∈ α would contradict to the Zermelo–Fraenkel Axiom of
Foundation. For the converse, let α and β be ordinals and assume that β ⊂ α is a
proper subset. Let γ ∈ α be a minimal element in α \ β. Then we have {ξ ∈ α | ξ <

β} = {ξ ∈ α | ξ < γ }. On the one hand, this is β, and, on the other hand, this is γ .
Therefore β = γ ∈ α.

Finally, we claim that if α and β are ordinals, then either α ∈ β or β ∈ α

or α = β, so that trichotomy holds. The key fact here is that α ∩ β is an ordinal.
Clearly, α∩β ⊂ α and α∩β ⊂ β. Now, proper inclusion cannot be in both relations
since then, by the above, we would have α ∩ β ∈ α and α ∩ β ∈ β, and this would
imply α ∩ β ∈ α ∩ β, contradicting the Zermelo–Fraenkel Axiom of Foundation. If
α ∩ β = α, then α ⊂ β. Thus, either α = β or α ∈ β. If α ∩ β = β, then β ⊂ α.
Thus, either β = α or β ∈ α. Trichotomy follows.

As a corollary, we see that an ordinal α is a set whose elements are precisely
those ordinals that are strictly less than α itself.

Remark It can be proved that every strictly well-ordered set is order isomorphic to
one of the ordinals.

Recall the universe V, the class of all sets. In the so-called von Neumann
universe, V possesses a so-called cumulative hierarchy V = ⋃α Vα , where the
union is over all ordinals α. We call Vα stage α, the stage corresponding to the
ordinal number α. In stage 0 there are no sets, that is, we have V0 = {}. In stage 1
there is the empty set ∅, so that V1 = {∅}. At each stage of the hierarchy, a set is
added if all of its elements appear in previous stages. So, for example, as above in
stage 2, the set {∅} (with a single element, the empty set) is added, and we have V2 =
{∅, {∅}}. In general, stage α is defined by Vα = ⋃β<α P (Vβ). For stage 3, this
gives V3 = {∅, {∅}, {{∅}}, {∅, {∅}}}, in particular, |V3| = 4. Continuing, we have
|V4| = 24 = 16, |V5| = 216 = 65, 536, |V6| = 265,536 (19,729 decimal digits), etc.
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The collection of all sets obtained in this way forms a natural hierarchy. Each set
X possesses a unique stage rank, its so-called birthday, the smallest ordinal α such
that X ⊂ Vα .

Exercise

0.5.1. Determine the following sets: P({∅}), P({∅, {∅}}), P(P(∅)), and P(P({∅})).



Chapter 1
Natural, Integral, and Rational Numbers

“But I will try to show you by means of geometrical proofs,
which you will be able to follow, that, of the numbers named
by me and given in the work which I sent to Zeuxippus,
some exceed not only the number of the mass of sand equal
in magnitude to the Earth filled up in the way described, but
also that of the mass equal in magnitude to the universe.”
in The Sand Reckoner by Archimedes of Syracuse.

In this chapter we present a very detailed and slow-paced arithmetic exposition of
the natural, integral, and rational number systems. Natural numbers are introduced
using Peano’s system of axioms. Inherent in the last Peano axiom is his Principle
of Induction, one of the fundamental postulates of arithmetic on natural numbers.
Among the myriad of applications of this principle, we discuss here the Division
Algorithm for Integers along with the greatest common divisor and prime factoriza-
tion.

To mollify the complexity of the exposition, the longer and more demanding
passages are interrupted by reflections back to the past; how ancient Greeks
multiplied natural numbers by systematic doubling and halving; and why the
concept of negative numbers took almost a millennium, making a circuitous route
beginning with China, through the Hellenistic Alexandria, and India, and finally to
settle down in its permanent place in European mathematics.

1.1 Natural Numbers

Leopold Kronecker (1823–1891), the 19th century German mathematician, is often
quoted saying “God made the whole numbers, all else is the work of man.”
Deviating from the customary translation “natural numbers” of the original German
phrase “die ganzen Zahlen” (and not “natürlichen Zahlen”), we insisted here on the
literal rendering. This phrase may ambiguously refer to the set of natural numbers
N or to the larger set of integers Z. Kronecker asserts the divinity of these numbers,
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Fig. 1.1 The Egyptian God Heh on the back panel of a chair of the pharaoh Tutankhamun
(c. 1342 – c. 1325 BCE)

and it actually took over two millennia of “work of man” to gain full understanding
of them.

History
People of ancient times seldom dared to grasp the concept of infinity, a characteristic feature of
N (and also Z). Ancient Egyptians used the hieroglyph of the seated man looking at the stars in
the sky with upraised arms to designate their largest number customarily translated as “million.”
This sign is also used for “Heh,” the deification of infinity or eternity, literally “endlessness,” also
depicted as a god crouching on the gold-sign and holding a palm stem in each hand. The base of
the stem is usually continuously covered with notches whereby each notch represents one year and
the base of the stem may end in a “tadpole,” the Egyptian sign for 100,000. The literal meaning of
this composition is “millions of years,” an ambitious well-wish for long after-life of the king. (See
Figure 1.1 with the cartouche to the left of Heh enclosing Tutankhamun’s Son of Ra name: “The
living image of Amun.”)
Mathematicians in ancient India were familiar with large numbers; for example, there is an extant
religious sacrificial formula from the Vedic period (c. 800 – c. 500 BCE) invoking powers of ten
from 100 to 1,000,000,000,000.
The best recorded ancient treatise of very large numbers is “The Sand Reckoner” by Archimedes
who made a brilliant attempt to size up the whole world by counting the amount of grains of sand
that could fit into the universe. (See the epigraph above to this chapter.)

It was not until the 19th century, however, that mathematicians realized the need
of placing the set of natural numbers N (and thereby Z and Q, etc.) to axiomatic
foundation. The key feature of the set of natural numbers N is that it possesses a
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successor (or primitive recursion) which, for any natural number a ∈ N (however
large), provides its successor S(a) ∈ N. (As we will see below, for a ∈ N, the
successor S(a) also provides the initial step in defining addition in N by declaring
S(a) = a + 1.) As recognized by the German mathematician Hermann Grassmann
(1809 – 1877) and fully developed by the Italian mathematician Giuseppe Peano, the
existence of a successor S cannot be proved but has to be postulated as an axiom.

A triple (N,S, 1) is called a natural number system if N is a set, called the set
of natural numbers, S : N→ N is a self-map of N, called the successor, and 1 ∈ N

is a marked element, called “one.” The following axioms are required:

(P1) 1 is not in the range of S;
(P2) S : N→ N is injective;
(P3) Let A ⊂ N be a subset with the following properties: 1 ∈ A and whenever

a ∈ A, then S(a) ∈ A. Then A = N.

Axiom P3 is called Peano’s Principle of Induction. This is the most complex and
most frequently used axiom. We have already used this a few times in the previous
chapter, and it will recur below and in later chapters in various settings.

Remark Revisiting briefly the Zermelo–Fraenkel system of axioms, we recall the
first few von Neumann ordinals:

0 = {} = ∅,
1 = {0} = 0 ∪ {0} = {∅},
2 = {0, 1} = 1 ∪ {1} = {∅, {∅}},
3 = {0, 1, 2} = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}},
4 = {0, 1, 2, 3} = 3 ∪ {3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
5 = {0, 1, 2, 3, 4} = 4 ∪ {4},
= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}, etc.

We say that a set I is inductive if 0 ∈ I and, for every x ∈ I, the successor of x ,
S(x) = x ∪{x}, is also contained in I. Using this, we see that N0 must be contained
in all inductive sets. Hence, we can define N0 as the smallest inductive set:

N0 =
⋂

I inductive

I = {n | ∀ I inductive (n ∈ I)}.

The Axiom of Infinity asserts that there is at least one inductive set. By the Axiom
Schema of Specification, N0 (and hence N) is defined within ZF.

The first question we wish to settle is unicity of the natural number system.
Clearly, unicity can only be expected up to one-to-one correspondence since the
Roman numerals {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, . . .} or the binary num-
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ber system {1, 10, 11, 100, 101, 110, 111, 1000, . . .} and their declared successors
and distinguished elements I and 1 also serve as natural number systems.
With this, the unicity in question can be stated in the following:

Proposition 1.1.1 Let (N,S, 1) and (N′,S ′, 1′) be natural number systems. Then
there exists a one-to-one correspondence f : N → N

′ such that f (1) = 1′ and
f ◦ S = S ′ ◦ f .

Proof We define f as follows. Let f (1) = 1′, and, if f (a), a ∈ N, is defined,
then we define f (S(a)) = S ′( f (a)). If D ⊂ N is the domain of definition of f
(that is, D ⊂ N is the set of all natural numbers for which f is defined), then
1 ∈ D ( f (1) = 1′), and, by the above, a ∈ D ( f (a) exists) implies S(a) ∈ D
( f (S(a)) = S ′( f (a))). By P3, Peano’s Principle of Induction, we have D = N.
Therefore f : N→ N

′ is a map defined everywhere in N.
Switching the roles of N and N

′, we obtain a map g : N′ → N satisfying g(1′) =
1 and g(S ′(a′)) = S(g(a′)), a′ ∈ N

′.
Consider the composition g ◦ f : N → N. We have (g ◦ f )(1) = g( f (1)) =

g(1′) = 1, and

(g ◦ f )(S(a))=g( f (S(a)))=g(S ′( f (a)))=S(g( f (a)))=S((g ◦ f )(a)), a ∈ N.

Let I = {a ∈ N | (g ◦ f )(a) = a}. Then, we have 1 ∈ I , and, by the computation
above, a ∈ I ((g ◦ f )(a) = a) implies S(a) ∈ I ((g ◦ f )(S(a)) = S(a)). By
Peano’s Principle of Induction again, I = N. We obtain that the composition g ◦ f
is the identity on N. Similarly, f ◦ g is also the identity on N

′. Thus, f and g are
inverses of each other; in particular, f : N → N

′ is a one-to-one correspondence
with the stated properties. The proposition follows.

From now on we denote the set of natural numbers by N with 1 ∈ N and
successor S : N→ N.

By axiom P1, 1 is not in the range of S . It is natural to ask what the range of the
successor is. In fact, axioms P1-P3 imply that the range of S is precisely N \ {1}. In
other words, 1 is the only natural number which is not the successor of any natural
number; that is, if a ∈ N and a �= 1, then a = S(b) for some b ∈ N.

Indeed, consider the set

A = {a ∈ N | a = 1 or a = S(b) for some b ∈ N}.

Then, 1 ∈ A is a tautology. Letting a ∈ A, S(a) ∈ A is again a tautology. Thus, by
Peano’s Principle of Induction, A = N. This means that the range of S is N \ {1}.
History
The first complete and precisely formulated set of axioms for the natural number system was
published in 1889 by Peano in his Arithmetices principia, nova methodo exposita. As noted above,
about three decades earlier Grassmann already recognized the two key elements in this system:
The role of the successor and the Principle of Induction. Two precursors of Peano’s work were by
Charles Sanders Peirce (1839 – 1914) in 1881, and by Richard Dedekind in 1888.
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Theorem 1.1.1 The set of natural numbers N carries the operations of addition +
and multiplication ·, and they satisfy the following properties (for all a, b, c ∈ N):

a + (b + c) = (a + b)+ c (associativity of addition)

a + b = b + a (commutativity of addition)

a · (b · c) = (a · b) · c (associativity of multiplication)

a · b = b · a (commutativity of multiplication)

a · (b + c) = a · b + a · c (distributivity).

The proof of this theorem will be carried out in several steps.
We first define addition in N by the following:

a + 1 = S(a) and a + S(b) = S(a + b), a, b ∈ N.

To see that these indeed define addition on the entire set of natural numbers N,
consider the set

A = {b ∈ N | a + b is defined for all a ∈ N}.

The first part of the definition of addition above shows that 1 ∈ A, and the second
part shows that b ∈ A implies S(b) ∈ A. By Peano’s Principle of Induction, we
have A = N. Hence addition is defined for all natural numbers.

Next we define multiplication in N by the following:

a · 1 = a and a · S(b) = a · b + a, a, b ∈ N.

Using Peano’s Principle of Induction again, we see that multiplication is defined for
all natural numbers.

We now proceed to show that the operations of addition and multiplication in N

satisfy the properties listed in the theorem above. The proof will be broken up into
several propositions. Note that proper sequencing of the statements is important. We
begin with associativity of addition.

Proposition 1.1.2 The addition + is associative in N.

Proof We need to show that a+ (b+ c) = (a+ b)+ c holds for all a, b, c ∈ N. To
do this, we consider the set

A = {c ∈ N | a + (b + c) = (a + b)+ c for all a, b ∈ N}.

We first claim that 1 ∈ A. Indeed, using the definition of addition in three different
instances, we have

a + (b + 1) = a + S(b) = S(a + b) = (a + b)+ 1.
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We obtain 1 ∈ A.
Next, assuming c ∈ A, that is, a + (b + c) = (a + b) + c for all a, b ∈ N, we

claim that S(c) ∈ A. To show this, using the definition of addition three times, we
calculate

a+(b+S(c)) = a+S(b+c) = S(a+(b+c)) = S((a+b)+c) = (a+b)+S(c).

This shows that S(c) ∈ A. By Peano’s Principle of Induction, we have A = N. This
means that associativity holds throughout N. The proposition follows.

Next we show commutativity of addition. We begin with a special case.

Lemma We have a + 1 = 1+ a for all a ∈ N.

Proof Let C = {a ∈ N | a + 1 = 1+ a}. Note that 1 ∈ C is a tautology. Assuming
a ∈ C , that is, a + 1 = 1+ a, we want to show that S(a) ∈ C . We calculate

S(a)+ 1 = S(S(a)) = S(a + 1) = S(1+ a) = 1+ S(a),

where we used the definition of addition three times. This shows that S(a) ∈ C . By
Peano’s Principle of Induction, we have C = N. The lemma follows.

Proposition 1.1.3 The addition + is commutative in N.

Proof Let C = {b ∈ N | a + b = b + a for all a ∈ N}. By the lemma just proved,
we have 1 ∈ C . Assume b ∈ C , that is, a + b = b + a, for all a ∈ N. We calculate

a + S(b) = S(a + b) = S(b + a) = b + S(a)

= b + (a + 1) = b + (1+ a) = (b + 1)+ a = S(b)+ a,

where we used the definition of addition several times along with Propositions 1.1.2
and the lemma above. This shows that S(b) ∈ C . By Peano’s Principle of Induction,
we have C = N. Commutativity of addition follows.

We now interrupt the natural sequence above, and, instead of proving associa-
tivity and commutativity of the multiplication, we turn to distributivity. Since we
have not shown commutativity of the multiplication, we actually need to distinguish
between left- and right-distributivity as follows:

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c, a, b, c ∈ N.

Proposition 1.1.4 Left- and right-distributivity hold in N.

Proof For left-distributivity, we let

D = {c ∈ N | a · (b + c) = a · b + a · c for all a, b ∈ N}.

First, 1 ∈ D since
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a · (b + 1) = a · S(b) = a · b + a = a · b + a · 1.

Second, assume that c ∈ D, that is, a · (b + c) = a · b + a · c for all a, b ∈ N.
We claim that S(c) ∈ D. This is somewhat more complex compared to the previous
computations. We show all details as follows:

a · (b + S(c)) = a · S(b + c) (definition of addition)

= a · (b + c)+ a (definition of multiplication)

= (a · b + a · c)+ a (assumption)

= a · b + (a · c + a) (associativity of addition)

= a · b + (a · c + a · 1) (definition of multiplication)

= a · b + a · (c + 1) (1 ∈ D)

= a · b + a · S(c) (definition of addition).

This shows that S(c) ∈ D. By Peano’s Principle of Induction, D = N, and left-
distributivity follows.

The argument for right-distributivity is similar. We let

D = {c ∈ N | (a + b) · c = a · c + b · c for all a, b ∈ N}.

First, 1 ∈ D since

(a + b) · 1 = a + b = a · 1+ b · 1.

Second, assume that c ∈ D, that is, (a + b) · c = a · c + b · c for all a, b ∈ N. We
need to show that S(c) ∈ D. This time we give fewer details as follows:

(a + b) · S(c) = (a + b) · c + (a + b) = (a · c + b · c)+ (a + b)

= a · c + (b · c + a)+ b = a · c + (a + b · c)+ b

= (a · c + a)+ (b · c + b) = a · (c + 1)+ b · (c + 1)

= a · S(c)+ b · S(c).

Hence S(c) ∈ D. By Peano’s Principle of Induction, D = N. Right-distributivity
also follows.

After this detour, we return to the original sequence and show associativity of
multiplication.

Proposition 1.1.5 The multiplication · is associative in N.

Proof We need to show that a · (b · c) = (a · b) · c holds for all a, b, c ∈ N. As
usual, we let
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A = {c ∈ N | a · (b · c) = (a · b) · c for all a, b ∈ N}.

First, 1 ∈ A since

a · (b · 1) = a · b = (a · b) · 1.

Second, assume c ∈ A, that is, a · (b · c) = (a · b) · c for all a, b ∈ N. To show that
S(c) ∈ A, we use left-distributivity just proved and calculate

a · (b · S(c)) = a · (b · c + b) = a · (b · c)+ a · b
= (a · b) · c + (a · b) = (a · b) · S(c).

We obtain S(c) ∈ A. By Peano’s Principle of Induction, we have A = N.
Associativity of multiplication follows.

Finally, we show commutativity of multiplication. First we prove a special
case.

Lemma We have 1 · a = a for all a ∈ N.

Proof Let C = {a ∈ N | 1 · a = a}. Clearly, 1 ∈ C . Assuming a ∈ C , that is,
1 · a = a, using left-distributivity, we have

1 · S(a) = 1 · (a + 1) = 1 · a + 1 · 1 = a + 1 = S(a).

Thus, S(a) ∈ C . By Peano’s Principle of Induction, we have C = N. The lemma
follows.

Proposition 1.1.6 The multiplication · is commutative in N.

Proof We let C = {b ∈ N | a · b = b · a for all a ∈ N}. By the lemma just proved,
we have a · 1 = a = 1 · a, a ∈ N, so that 1 ∈ C . We now assume that b ∈ C , that
is, a · b = b · a for all a ∈ N, and show that S(b) ∈ C . We calculate

a · S(b) = a · b + a = b · a + a = b · a + 1 · a = (b + 1) · a = S(b) · a,

where we used the previous proposition and right-distributivity asserted by Propo-
sition 1.1.4. Thus, we have S(b) ∈ C . By Peano’s Principle of Induction, we have
C = N. The proposition follows.

Summarizing, we accomplished our aim; Propositions 1.1.2–1.1.6 show that
the addition and the multiplication are associative and commutative, and they are
connected through distributivity. Theorem 1.1.1 follows.

Next we turn to the cancellation law for addition.

Proposition 1.1.7 For a, b, c ∈ N, the equality a + c = b + c implies a = b.
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Proof Let

C = {c ∈ N | a + c = b + c for a, b ∈ N implies a = b}.

We first claim that 1 ∈ C . Indeed, if a + 1 = b + 1 for some a, b ∈ N, then
S(a) = S(b). By Axiom P2, injectivity of the successor S , we have a = b, and the
claim follows. Second, assume that c ∈ C , and show that S(c) ∈ C . Let a+S(c) =
b + S(c) for some a, b ∈ N. This means that a + (c + 1) = b + (c + 1). By
associativity of the addition, this rewrites as (a+ c)+1 = (b+ c)+1. Since 1 ∈ C ,
it follows that a + c = b + c. Now, by assumption, c ∈ C , so that a = b follows.

Remark It is natural to expect the cancellation law for multiplication: For a, b, c ∈
N, the equality a · c = b · c implies a = b. We defer the proof of this after the study
of the natural ordering on N.

Addition in N defines an ordering of the natural numbers: For a, b ∈ N, we
define a < b (or b > a) if b = a + c for some c ∈ N.

We claim that < is a strict total order on N.
Transitivity is a consequence of associativity of the addition. Indeed, if a < b

and b < c, then b = a + d and c = b + e for some d, e ∈ N. Therefore, we have
c = b + e = (a + d)+ e = a + (d + e), and a < c follows.

Trichotomy is asserted in the following:

Proposition 1.1.8 For any a, b ∈ N, exactly one of the following is true: a < b,
a = b, and a > b.

The proof is preceded by the following.

Lemma For any a, b ∈ N, we have a �= a + b.

Proof We let

A = {a ∈ N | a �= a + b for all b ∈ N}.

First, 1 ∈ A since, by P1, we have 1 �= S(b) = b + 1 = 1 + b for any b ∈ N.
Second, assume that a ∈ A, that is, we have a �= a + b for all b ∈ N. We claim that
S(a) ∈ A, that is, S(a) �= S(a) + b for all b ∈ N. Since S(a) + b = b + S(a) =
S(b+ a) = S(a + b), we need to show that S(a) �= S(a + b) for all b ∈ N. By P2,
this is equivalent to a �= a+ b for all b ∈ A, which was our assumption. The lemma
follows.

Corollary If ab = 1 for some a, b ∈ N, then a = b = 1.

Proof Assuming that this is false, there exist a, b ∈ N such that a �= 1 �= b and
ab = 1. Then a = S(c) and b = S(d) for some c, d ∈ N. Hence, we have

ab = S(c)S(d) = S(c)d + S(c) = S(S(c)d + c) = 1.

This contradicts to P1.
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With these preparations, we are now ready to prove trichotomy.

Proof of Proposition 1.1.8 The fact that the conditions a < b, a = b, and a > b,
a, b ∈ N, are mutually exclusive follows from the lemma above. Indeed, if a < b,
then a + c = b for some c ∈ N. This implies that a �= b (since otherwise we would
have a = b = a + c) and that a ≯ b (since otherwise a = b + d for some d ∈ N,
so that we would have a = b + d = (a + c) + d = a + (c + d)). The other cases
are similar.

It remains to prove that one of the conditions a < b, a = b, and a > b, a, b ∈ N,
always holds. To show this, we fix a ∈ N and define

Ta = {b ∈ N | a < b or a = b or a > b}.

First, 1 ∈ Ta . Indeed, if a = 1, then this is a tautology (1 = 1). If a �= 1, then a
is in the range of the successor S , so that a = S(c) for some c ∈ N. We thus have
a = S(c) = c + 1 = 1+ c. This gives 1 < a. Hence 1 ∈ Ta holds.

Second, let b ∈ Ta , so that a < b or a = b or a > b. Accordingly, we distinguish
three cases.
Case I. a < b. We have b = a + c for some c ∈ N. Using this, we calculate

S(b) = S(a + c) = a + S(c) so that a < S(b). This gives S(b) ∈ Ta .
Case II. a = b. We have S(b) = b + 1 = a + 1 so that a < S(b). This gives

S(b) ∈ Ta .
Case III. a > b. We have a = b+c for some c ∈ N. If c = 1, then a = b+1 = S(b),

so that S(b) ∈ Ta . If c �= 1, then c is in the range of the successor S , so that
c = S(d) for some d ∈ N. This gives

a = b+ c = b+S(d) = b+ (d + 1) = b+ (1+ d) = (b+ 1)+ d = S(b)+ d.

This means that S(b) < a, and in particular, we have S(b) ∈ Ta .
Summarizing, in all three cases, we have S(b) ∈ Ta . By Peano’s Principle of

Induction, we obtain Ta = N. Thus, for any a, b ∈ N, we have a < b or a = b or
a > b. The proposition follows.

The strict total ordering < defines a total ordering ≤ on N in the usual way:
a ≤ b (or b ≥ a), a, b ∈ N, if a = b or a < b. As discussed in Section 0.2, the total
ordering means that ≤ is transitive, antisymmetric, and total.

We now derive the cancellation law for multiplication. Actually, we can state
somewhat more as follows:

Proposition 1.1.9 Let a, b, c ∈ N. We have a < b if and only if a · c < b · c.

Proof Assume a < b. Then we have a+d = b for some d ∈ N. Using distributivity,
we obtain (a+d) ·c = a ·c+d ·c = b ·c. This gives a ·c < b ·c. Conversely, assume
a · c < b · c. By trichotomy, we have a < b or a = b or a > b. First, a = b cannot
hold since then a · c = b · c would follow, a contradiction. Second, a > b cannot
hold since, by what we just proved, a · c > b · c would follow, a contradiction. Thus,
we obtain a < b. The proposition follows.
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1 ∈ N is the multiplicative identity in the sense that 1 · a = a for all a ∈ N. It is
the unique natural number with this property; that is, if 1′ ∈ N such that 1′ ·a = a for
all (actually some) a ∈ N, then 1′ = 1. Indeed, this follows from Proposition 1.1.9
above. If 1′ ·a = a = 1 ·a, a ∈ N, then the cancellation law for multiplication gives
1′ = 1.

We now show that N is well-ordered with respect to ≤.

Theorem 1.1.2 Any non-empty set A ⊂ N has an infimum inf A ∈ A, a unique
least element with respect to the total ordering ≤.

Proof First, a least element of a non-empty subset of N must be unique. Indeed, if
a ∈ A and a′ ∈ A both are least elements, then we have simultaneously a ≤ a′ and
a′ ≤ a. Since N is totally ordered, a = a′ follows.

To show the existence of the least element, let

L = {a ∈ N | any subset A ⊂ N with a ∈ A has a least element}.

The statement of the theorem amounts to showing that L = N.
First, we claim that 1 is the least element of the whole N. This will imply 1 ∈ L .
Indeed, if 1 �= a ∈ N, then a = S(b) for some b ∈ N. By Proposition 1.1.8,

we have 1 < a or 1 > a. The second inequality is impossible since 1 > a = S(b)

implies 1 = S(b) + c = S(b + c) for some c ∈ N, and this contradicts to P1. The
claim follows.

Second, assume that a ∈ L , and show that S(a) ∈ L . Let A ⊂ N be such that
S(a) ∈ A. We need to show that A has a least element. We may assume that a /∈ A
since otherwise A has a least element by assumption (a ∈ L).

We now extend the set A to the set B = A ∪ {a} ⊂ N. Since a ∈ B (and a ∈ L),
B has a least element, b, say. Since a ∈ B, we have b ≤ a, or equivalently, we have
two cases: a > b and a = b.

The first case implies that a �= b (see the lemma after Proposition 1.1.8), so that
we have b ∈ A. Since b was a least element of B, we see that b is also a least
element of the smaller set A. In this case we are done.

We are left with the second case a = b. We claim that S(b) is a least element
of A. Letting c ∈ A be a general element, we need to show that S(b) ≤ c. Now,
in addition to a = b ≤ c, we also know that b = a /∈ A while c ∈ A. This
means that b �= c, and consequently, we have the sharp inequality b < c. Let
d ∈ N such that b + d = c. If d = 1, then b + 1 = S(b) = c (in particular,
S(b) ≤ c), and we are done. If d �= 1, then d = S(e) for some e ∈ N, and hence
b+S(e) = S(b+ e) = S(b)+ e = c. This gives S(b) < c, and we are done in this
case as well. Thus, S(b) is the least element of A.

Summarizing, we obtain that a ∈ L implies S(a) ∈ L . By Peano’s Principle of
Induction, L = N. The theorem follows.

Corollary Any non-empty set A ⊂ N which is bounded above has a supremum
sup A ∈ A, a unique greatest element with respect to the total ordering ≤.
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Proof Let ∅ �= A ⊂ N be bounded above. If A has an upper bound which belongs
to A, then it is the supremum of A and we are done. Otherwise, let B ⊂ N be the set
of all upper bounds of A which do not belong to A. By Theorem 1.1.2, b = inf B
exists and it is an element of B. Now, b �= 1 since A is non-empty (and 1 is the least
element of the whole N). Let a ∈ N such that S(a) = b. We claim that a is an upper
bound for A.

Indeed, if c ∈ A, then c < b so that c + d = b for some d ∈ N. If d = 1, then
S(c) = c + 1 = b = S(a), so that, by P2, we have c = a; in particular, c ≤ a. If
d �= 1, then d = S(e) for some e ∈ N. Then S(c + e) = c + S(e) = c + d = b =
S(a). By P2 again, we have c + e = a; in particular, c < a. The claim follows.

Now, if a /∈ A, then, by definition, a ∈ B. This cannot happen since S(a) = b =
inf B. Hence a ∈ A. Therefore, a = sup A, and the corollary follows.

Remark The existence of the least element in any subset of N, Theorem 1.1.2,
actually implies P3, Peano’s Principle of Induction, provided we assume that the
range of the successor is all N but 1.

Indeed, assume that any non-empty subset of N has a least element. Proceeding in
the contrapositive, assume that P3 fails; that is, there exists a proper subset A ⊂ N,
A �= N, such that 1 ∈ A, and whenever a ∈ A, then S(a) ∈ A. By assumption, the
(non-empty) complement B = N \ A has a least element b ∈ B, say. Since 1 ∈ A,
we have b �= 1; in particular, b is in the range of the successor, b = S(a) = a + 1
for some a ∈ N. Now, a /∈ B since a < b and b was a least element in B. Hence
a ∈ A. By assumption, S(a) = b ∈ A, which contradicts to b ∈ B.

Example 1.1.1 Let m ∈ N be even, and define

Am = {n ∈ N | n2 + 2m · n is a perfect square}.

We claim that Am is bounded above, and sup Am = (m/2)2 − m + 1.
Indeed, let n ∈ Am so that n2 + 2m · n = l2 for some l ∈ N, and let k =

n + m ∈ N. We have1 k2 = (n + m)2 = n2 + 2n · m + m2 = l2 + m2. Hence
(k − l)(k + l) = k2 − l2 = m2. Now, k − l and k + l have the same parity (since
they differ by the even number 2l) so that they both must be even (since m is even).
Thus, we have

k − l

2
· k + l

2
=
(m

2

)2
,

k − l

2
,

k + l

2
∈ N.

Combining this with

k = k − l

2
+ k + l

2
,

we see that the largest value of k (and hence the largest value of n = k − m ∈ Am)
occurs when (k − l)/2 = 1. This and (k + l)/2 = (m/2)2 give k = (m/2)2+ 1. We
obtain that n = (m/2)2 − m + 1 is the largest number within Am .

1Thus, (l, m, k) is a Pythagorean triple (see Section 5.7), but we will not need this fact.
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Another corollary of the fact that N is well-ordered is the Archimedean
Property as follows:

Corollary Let a, b ∈ N. Then there exists n ∈ N such that b ≤ na.

Proof Assume that, for some a, b ∈ N, we have b > na for all n ∈ N. We
reformulate this by saying that the set

A = {na | n ∈ N}

is bounded above (since b is an upper bound). By the previous corollary, Na =
sup A ∈ A for some N ∈ N. Then Na + a = (N + 1)a ∈ A, but Na + a > Na =
sup A, a contradiction.

History
The name “Archimedean Property” is a misnomer; it was attributed to Archimedes of Syracuse
by Otto Stolz (1842 – 1905) in the 1880s since it appears as Axiom V in Archimedes’ work
On the Sphere and Cylinder. This property also appears in Euclid’s Elements as Definition 4:
“Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one
another.” Archimedes himself attributed this property to Eudoxus of Cnidus (c. 390 – c. 337 BCE).

Returning to the main line, from now on, for our natural number system N, we
adopt the Hindu-Arabic numeral system, a positional decimal numerical system,
and abandon the use of the successor S that proved to be so useful in this section.
The term positional refers to the use of the same glyph for different orders of
magnitude, and decimal refers to base ten (or denary) arithmetic. The glyphs are
the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the base ten is written as 10. The orders
of magnitude are the powers of ten, and the notation uses specific positions for
each power: units, tens, hundreds, thousands, ten thousands, etc. The position of
each digit within a given number stands for the digit multiplied by the power of ten
corresponding to the position of the digit. The powers of ten are lined up sequentially
from right to left; each position is ten times the value of the position to its immediate
right. Displaying a natural number using positional decimals is called the decimal
representation of that number.

For example, on September 16, 2018, the US National Debt in decimal represen-
tation was

$ 21, 432, 542, 252, 109 = $ 2 · 1013 + 1 · 1012 + 4 · 1011 + 3 · 1010 + 2 · 109

+5 · 108 + 4 · 107 + 2 · 106 + 2 · 105 + 5 · 104 + 2 · 103 + 1 · 102 + 9.

Remark In the last expression, we used (the first time) powers of 10; for example,
102 = 100, 103 = 1,000, 104 = 10,000, 105 = 100,000, etc. Strictly speaking,
they are defined inductively (that is, using Peano’s Principle of Induction). We let
101 = 10, and, assuming that 10n , n ∈ N, is defined, we set 10n+1 = 10 · 10n . Note
that powers of other bases, such as 2 and 3 (see below), can be defined analogously.
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Fig. 1.2 A leaf from the Bakhshali manuscript showing 0 in the bottom register seventh from the
right; National Geographic.

History
The abstract mathematical concept of numbers should not be confused with numerals, symbols
that are used to represent them. The first ciphered numeral system was invented by the ancient
Egyptians who used strokes for units and different signs for 10 (hobble without cross-bar), 100 (coil
of rope), 1,000 (lotus plant), 10,000 (finger), 100,000 (tadpole), etc. The ancient Greeks used letters
from the Ionian and Doric alphabets to denote their numerals while the Romans used combinations
of letters from the Roman alphabet.
The Hindu-Arabic numeral system was originally invented by Indian mathematicians between the
1st and 4th centuries. The Indian mathematician Bhāskara I (c. 600 – c. 680 CE) wrote numbers
in the Hindu decimal system; and, in addition, he was also the first who used circle for zero.
Although disputed of its age (224 – 383 to 885 – 993 CE by carbon dating extremely fragile parts),
the allegedly oldest Indian document, the Bakhshali manuscript (written on 70 leaves of birch
barks), contains the sequence of Hindu numerals2 1–9 and also a small circle for zero. (See
Figure 1.2 of the leaf that contains the Hindu numerals.) Note that much earlier Archimedes of
Syracuse in “the Sand Reckoner” (see the epigraph to this chapter) invented a decimal positional
system which was based on 108. It is also worth noting that the Roman and Chinese numerals, even
though based on powers of ten, are non-positional numeral systems.
Around the 9th century the original Hindu numeral system was introduced to the Islamic world
by the Arabic mathematicians Muhammad ibn Mūsā Al-Khwārizmı̄ (c. 780 – 850) in his book On
the Calculation with Hindu Numerals (c. 825) and Al-Kindi (801 – 873) in his four-volume book
On the Use of the Hindu Numerals (c. 830). The Roman system dominated Europe until the late
Middle Ages (late 14th century) when it was replaced by the far superior Arabic numeral system.
The reason of superiority of the Arabic numerals lies in its positional nature with principal role
played by the symbol for zero.

2In contrast, for a theory advocating the Chinese origin of the Hindu-Arabic numerals, see the
works of Lam Lay Yong of the National University of Singapore.
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Finally, note that the ten glyphs of the Hindu-Arabic numerals were originally Brahmi numerals
(3rd century BCE); the glyphs 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 used today are Latin/Roman script numbers.
The exact origins of these glyphs are clear only for the first three: 1, 2, 3 (especially 3, for example,
on the Bakhshali manuscript) corresponding to the Roman I, I I, I I I and also the horizontal bars
of the Chinese versions.

Example 1.1.2 Fill in the following eight squares with the numbers 1, 2, 3, 4, 5, 6,

7, 8 as digits (each used only once) to obtain valid equations: �� = � × � and
�� = �×�. Show that the solution is essentially unique up to commutativity.

Notice first that, since there are four even numbers, at least one of the single
digits of the two double digit numbers must be even. Now, a simple inspection gives
12 = 3× 4 and 56 = 7× 8, as well as unicity.

We close this section by a brief description of how the ancient Greeks performed
multiplication by ingeniously halving and doubling the factors of a product.

Example 1.1.3 Suppose we want to multiply two natural numbers a and b. We will
do this by systematically halving a and, at the same time, doubling b. We define
the sequence a0, a1, a2, . . . as follows: a0 = a, a1 = [a0/2], a2 = [a1/2], . . .; in
general, an+1 = [an/2], n ∈ N0. (Here, for c ∈ R, [c] denotes the greatest integer
≤ c; that is, for n ≤ c < n + 1 with n ∈ N0, we have [c] = n.) Clearly, this
sequence has a last non-zero member where we stop. Now, the product ab is the
sum of those iterated doubles 2nb of b for which an is odd.

It is not difficult to see why this procedure gives the correct answer for the
product. At the nth stage of the process, if an is even, then an = 2[an/2] = 2an+1
so that transferring the 2 factor to b does not change the product from the nth stage
to the (n + 1)th: an · 2nb = an+1 · 2 · 2nb = an+1 · 2n+1b. If, on the other hand, an

is odd, then an = 2[an/2] + 1 = 2an+1 + 1 so that an · 2nb = (2an+1 + 1) · 2nb =
an+1 ·2 ·2nb+2nb = an+1 ·2n+1b+2nb. The extra terms 2nb that pile up for every
odd an (including the last one which is 1) therefore give the product.

As a specific example, let a = 18 and b = 27. We tabulate the halves of a and
the doubles of b as follows:

2n an 2nb
1 18 27
2 9 54
22 4 108
23 2 216
24 1 432

The odd a’s in the sequence are 9 and 1. The corresponding b’s are 54 and 432. The
sum of these, 54+ 432 = 486, is the product 18 · 27.

It is enlightening to observe3 that the powers 2n corresponding to the odd an add
up to a. In our example, 9 and 1 correspond to 2 and 24 with sum 2 + 24 = 18.

3The author is indebted to one of the reviewers for pointing this out.
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With this, we have 18 · 27 = (2 + 24) · 27 = 2 · 27 + 24 · 27 = 54 + 432 = 486.
Thus, in general, this method amounts to write a as a sum of powers of 2 and use
distributivity, along with systematic doubling, to obtain a · b.

Exercises

1.1.1. Let 2 ≤ n ∈ N. Define the successor S on the set Nn = {1, 2, . . . , n} by
S(m) = m + 1, 1 ≤ m < n, m ∈ Nn , and (a) S(n) = 1; (b) S(n) = 2; (c)
S(n) = n. Which Peano axiom(s) fail in (a)-(c)?

1.1.2. Given a ∈ N, show that there is no natural number b ∈ N such that a < b <

S(a) = a + 1.
1.1.3. Show that

1+ 3+ · · · + (2n − 1) = n2, n ∈ N.

1.2 Integers

Despite Kronecker’s assertion of divinity, the set of natural numbers N does not
have an additive identity, a specific number that, when added to a number, does not
change the number itself. This specific number is zero, 0, which belongs to the set
of integers Z but not to N. (This deficiency is the reason why some mathematicians
count 0 as a natural number.)

Still staying with addition, the set of integers Z possesses another useful property.
Any integer a has an additive inverse, a number that, when added to a, gives 0. The
additive inverse of a is its negative −a, and the stated property can be written as
a + (−a) = −a + a = 0.

History
Negative numbers appeared first in one of the earliest Chinese texts in mathematics, The Nine
Chapters on the Mathematical Art, composed by scholars during the 10th – 2nd century BCE.
Note that Chapter 8 of this work uses Gaussian elimination predating Carl Friedrich Gauss almost
two millennia. The positive and negative numbers are represented by red and black counting rods,
respectively. Using these methods the Chinese were able to solve simultaneous equations with
negative coefficients and negative roots.
An early theory of linear and quadratic equations was developed by the Hellenistic mathematician
Diophantus of Alexandria (c. 200/214 – 284/298 CE) and the Indian mathematician Brahmagupta
(597 – 668 CE); although in his Arithmetica, Diophantus claimed an equation equivalent to 4x +
20 = 0 as being absurd since it has negative solution.
In the 7th century CE, there was a widespread use of negative numbers in India to represent debt.
In his work Brahma–Sphuta–Siddhanta (c. 628 CE), Brahmagupta gave general rules of operations
involving zero and negative numbers.
Surprisingly, European mathematicians resisted using negative numbers; for example, in the study
of cubic equations contained in his Ars Magna, Gerolamo Cardano (1501 – 1576) refused to move
a (linear) term with positive coefficient to the other side of the equation.
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Finally, it was Gottfried Wilhelm Leibniz who considered the set of negative numbers as an
“integral” part of his infinitesimal calculus.

We now proceed to construct the set of integers Z from N. We represent each
integer by a pair (a, b) of natural numbers, an element of the Cartesian product
N × N. (Intuitively, we think of (a, b) as being “a − b.”) The pair (a, b) ∈ N × N

represents the same integer as the pair (a′, b′) ∈ N×N if and only if a+b′ = a′+b.
(Continuing with our intuition, the last equality is equivalent to “a − b = a′ − b′.”)
To put this into a precise framework, we define a relation ∼ on N×N such that, for
(a, b), (a′, b′) ∈ N× N, we have (a, b) ∼ (a′, b′) if a + b′ = a′ + b.

We first claim that ∼ is an equivalence relation on N × N. The properties of
reflexivity, (a, b) ∼ (a, b), (a, b) ∈ N × N, and symmetry, (a, b) ∼ (a′, b′)
implies (a′, b′) ∼ (a, b), (a, b), (a′, b′) ∈ N × N, are tautologies. Finally,
transitivity, (a, b) ∼ (a′, b′) and (a′, b′) ∼ (a′′, b′′) imply (a, b) ∼ (a′′, b′′),
(a, b), (a′, b′), (a′′, b′′) ∈ N × N, also follows since adding a + b′ = a′ + b
and a′ + b′′ = a′′ + b′ and using the cancellation law in N (Proposition 1.1.7 of
the previous section) along with commutativity and associativity of the addition,
a + a′ + b′ + b′′ = a′ + a′′ + b + b′ gives a + b′′ = a′′ + b.

The equivalence relation ∼ partitions N×N into equivalence classes. We define
the set of integers as the quotient Z = N× N/ ∼, the set of equivalence classes in
N × N by the equivalence relation ∼. In other words, by an integer, an element of
Z, we mean an equivalence class in N× N via ∼.

We now define the operations of addition + and multiplication · in Z in terms
of representatives as

(a, b)+(c, d)=(a+c, b+d) and (a, b) ·(c, d)=(ac+bd, ad+bc), a, b, c, d ∈ N.

We need to show that these operations are well-defined in Z; that
is, the definitions do not depend on the representatives chosen. We let
(a, b), (a′, b′), (c, d), (c′, d ′) ∈ N × N such that (a, b) ∼ (a′, b′) and (c, d) ∼
(c′, d ′). By the definition of the equivalence, these give the pair of equations
a+b′ = a′+b and c+d ′ = c′+d. Adding, we have a+c+b′+d ′ = a′+c′+b+d. We
rewrite this in terms of the equivalence relation∼ as (a+c, b+d) ∼ (a′+c′, b′+d ′)
and, in terms of the addition, as (a, b)+ (c, d) ∼ (a′, b′)+ (c′, d ′). Hence, addition
is well-defined in Z.

Returning to our pair of equations above, we have

(a+b′)c+(a′+b)d+a′(c+d ′)+b′(c′+d)=(a′+b)c+(a+b′)d+a′(c′+d)+b′(c+d ′).

Expanding (using distributivity in N) and using the cancellation law for addition
in N, the “hybrid terms” cancel, and we obtain ac + bd + a′d ′ + b′c′ = a′c′ +
b′d ′ + ad + bc. We rewrite this in terms of the equivalence relation ∼ as (ac +
bd, ad + bc) ∼ (a′c′ + b′d ′, a′d ′ + b′c′) and, in terms of the multiplication, as
(a, b) · (c, d) ∼ (a′, b′) · (c′, d ′).

Thus, multiplication in Z is well-defined.
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Next, we claim that the operations of addition and multiplication in Z satisfy
the same properties as those for N. In other words, we claim that the addition is
associative and commutative and the cancellation law holds, multiplication is
associative and commutative, and they are connected through distributivity.

Commutativity of addition and multiplication, the cancellation law for addition,
and associativity of addition follow immediately from the definitions even on the
level of representatives of the equivalence classes (in N × N). Distributivity and
associativity also follow by simple and direct computations (once again on the level
of representatives).

The structure of the quotient Z = N × N/ ∼ is actually fairly simple as each
equivalence class carries a unique representative. To get to this, we let (a, b) ∈
N × N be given and seek a unique representative within the equivalence class of
(a, b). Using trichotomy, we split the treatment into three cases: a > b, a = b, and
a < b.

If a > b, then a = b+ c for some c ∈ N. Then (c+ 1, 1) ∼ (a, b) and (c+ 1, 1)

is unique within the equivalence class as its second component is 1, the least natural
number. The entire equivalence class is {(c + d, d) ∈ N× N | d ∈ N}.

If a = b, then the unique representative of the corresponding equivalence class
is (1, 1), and the whole equivalence class is {(d, d) ∈ N× N | d ∈ N}.

If a < b, then a + c = b for some c ∈ N. Then (1, c + 1) ∼ (a, b) and
(1, c + 1) is unique within the equivalence class as its first component is 1. The
entire equivalence class is {(d, c + d) ∈ N× N | d ∈ N}.

We summarize these as follows:

(a, b) ∼

⎧⎪⎪⎨
⎪⎪⎩

(c + 1, 1) if a > b with a = b + c

(1, 1) if a = b

(1, c + 1) if a < b with a + c = b.

Thus, by trichotomy, {(c+1, 1) | c ∈ N}∪{(1, 1)}∪{(1, c+1) | c ∈ Z} is a complete
set of representatives of the equivalence classes.

Remark Although we have been pursuing here an algebraic approach, using the
plane R

2, the following simple geometric picture emerges (see Figure 1.3). The
set N × N is a positive integer lattice in R

2; the equivalence classes under ∼ are
equidistantly spaced along the lines y = x−c, c ∈ Z, and the unique representatives
above are equidistantly lined up in the “perimeter” of the lattice along the two half-
lines y = 1, x ≥ 1 and x = 1, y ≥ 1.

We now verify that Z is an extension of N. To do this, we define the map ι : N→ Z

such that, for c ∈ N, the range ι(c) is the equivalence class of (c+ 1, 1) in Z. Since,
for c �= d, c, d ∈ N, we have (c + 1, 1) �∼ (d + 1, 1), we immediately see that ι is
an injective map. Using the definitions of addition and multiplication, for c, d ∈ N,
we have

(c + 1, 1)+ (d + 1, 1) = (c + d + 2, 2) ∼ (c + d + 1, 1)
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Fig. 1.3 The integers as the
quotient N× N/ ∼.

(4, 1)(1, 1) (2, 1) (3, 1)

(1, 2)

(1, 3)

(1, 4)

(c + 1, 1) · (d + 1, 1) = ((c + 1)(d + 1)+ 1, (c + 1)+ (d + 1))

= (cd + c + d + 2, c + d + 2) ∼ (cd + 1, 1).

Taking equivalence classes, these give

ι(c + d) = ι(c)+ ι(d) and ι(c · d) = ι(c) · ι(d), c, d ∈ N.

These show that the embedding ι can be used to identify N with its range in Z under
ι, and, under this identification, the arithmetic operations performed in N are the
same as those in Z. In what follows, for c ∈ N, the equivalence class of (c+1, 1) ∈ Z

will also be denoted by the single letter c. In other words, we identify N with its
range under ι in Z and write c ∈ N ⊂ Z in place of the equivalence class of (c+1, 1)

in Z.
Recall that a complete set of representatives of the equivalence classes in Z is

{(c+ 1, 1) | c ∈ N}∪ {(1, 1)}∪ {(1, c+ 1) | c ∈ N}. Continuing with simplifying the
notation, we denote by 0, the zero, the equivalence class of (1, 1), and, for c ∈ N,
we denote by −c, the negative of c, the equivalence class of (1, c + 1). With these,
we have

Z = {c | c ∈ N} ∪ {0} ∪ {−c | c ∈ N} = {0,±1,±2,±3, . . .}.

The justification for these notations is as follows.
First, for c ∈ N, we have (c+1, 1)+(1, 1) = (c+2, 2) ∼ (c+1, 1), and this gives

c + 0 = 0+ c = c, c ∈ N. Similarly, (1, c + 1)+ (1, 1) = (2, c + 2) ∼ (1, c + 1),
yielding −c + 0 = 0 + (−c) = −c. Since obviously 0 + 0 = 0, these can be
compactly expressed as

a + 0 = 0+ a = a, a ∈ Z,
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where we used the single letter a (= ±c, c ∈ N, or 0) as a generic integer in Z. This
shows that 0 is an additive identity in Z.

Remark The additive identity is unique. Indeed, if 0′ is another additive identity,
then we have 0 = 0+ 0′ = 0′ + 0 = 0′.

Second, according to our conventions, the equivalence class of (−1) is repre-
sented by (1, 2), and, for c ∈ N, we have (1, 2) · (c + 1, 1) = (c + 3, 2c + 3) ∼
(1, c + 1). Taking equivalence classes, we obtain −c = (−1) · c, c ∈ N. Since
(1, 2) · (1, 2) = (5, 4) ∼ (2, 1), we have (−1)2 = (−1) · (−1) = 1, so that
−(−c) = c, c ∈ N. We now define −a = (−1) · a, a ∈ Z, the negative of a. With
this we have −(−a) = a, a ∈ Z. Moreover, commutativity and associativity of the
multiplication in Z give

(−a) · b = a · (−b) = −(a · b), a, b ∈ Z.

Third, for c ∈ N, we have (c + 1, 1) + (1, c + 1) = (c + 2, c + 2) ∼ (1, 1) so
that c + (−c) = −c + c = 0, c ∈ N. Since −(−c) = c, c ∈ N, these give

a + (−a) = −a + a = 0, a ∈ Z.

We obtain that −a is an additive inverse of a ∈ Z.

Remark Since the cancellation law holds for addition, the additive inverse is unique.

Fourth, (c+1, 1) · (1, 1) = (c+2, c+2) ∼ (1, 1), c ∈ N, gives c ·0 = 0 · c = 0.
This immediately generalizes to

a · 0 = 0 · a = 0, a ∈ Z.

The converse of this also holds, and it is an important tool in factoring to be
discussed later. We have

a · b = 0, a, b ∈ Z ⇒ a = 0 or b = 0.

Indeed, for the contrapositive statement, we may assume a, b ∈ N, and then clearly
a · b ∈ N.

Remark The cancellation law for multiplication in Z says that, for a, b, c ∈ Z, if
a �= 0 and a · b = a · c, then b = c. This is the direct consequence of the property
above. The detailed steps of the proof are as follows:

a · b = a · c (assumption)

a · b + (−(a · c)) = 0 (additive inverse)

a · b + a · (−c) = 0 (multiplicative property)

a · (b + (−c)) = 0 (distributivity)
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b + (−c) = 0 (a �= 0)

b = c (additive inverse).

Fifth, since 1, represented by (2, 1), is the multiplicative identity in N, we also
have

a · 1 = 1 · a = a, a ∈ Z.

Recall from the beginning of this section that we intuitively thought of the pair
(a, b) ∈ N × N to represent “a − b.” To complete the circle, note that we have
(a, b) ∼ (a + 2, b + 2) = (a + 1, 1) + (1, b + 1), so that the equivalence class of
(a, b) is given by a + (−b) confirming our intuition. As a final simplification, from
now on, we denote a + (−b) by a − b, a, b ∈ Z.

A natural ordering < on the integers Z is given as follows: For a, b ∈ Z, we
define a < b (or b > a) if b − a ∈ N.

We quickly observe that the ordering < on Z is an extension on the ordering in
N. This is because, according to our earlier definition, a < b, a, b ∈ N, if a+ c = b
for some c ∈ N, and this is equivalent to (c =) b − a ∈ N.

As expected, the extension < remains a strict total order on the set of integers
Z.

Transitivity is clear. Trichotomy means that, for any a, b ∈ Z, exactly one of the
following holds: a < b, a = b, and a > b. Indeed, letting c = b − a ∈ Z, exactly
one of the following holds: c ∈ N, c = 0, and −c ∈ N. These three cases give
a < b, a = b, and a > b, respectively.

We call an integer c ∈ Z positive if c > 0 and negative if c < 0. Clearly, c ∈ Z is
positive if and only if c ∈ N, and c ∈ Z is negative if and only if−c ∈ N. Moreover,
in Z, the usual arithmetic properties hold: For any a, b, c ∈ Z, (1) a < b implies
−a > −b; (2) a < b implies a + c < b + c; (3) a < b implies ac < bc if c > 0;
(4) a < b implies ac > bc if c < 0; etc.

As usual, we also define a ≤ b (or b ≥ a), a, b ∈ Z, if a = b or a < b.
Equivalently, a ≤ b if and only if c = b − a is either a natural number or zero.

The set of integers Z with ≤ is a totally ordered set; it is transitive, antisymmet-
ric, and total.

Finally, Z has the Least Upper Bound Property (Section 0.2). A stronger
statement is the following:

Proposition 1.2.1 If a non-empty set A ⊂ Z is bounded above, then sup A exists,
and it is attained in A. If A is bounded below, then inf A exists, and it is attained in
A.

Proof It is enough to prove one of these statements. Assume that the non-empty
set A ⊂ Z is bounded below, and let b ∈ Z be a lower bound. Consider the set
B = {a − b + 1 | a ∈ A} ⊂ Z. For a ∈ A, we have a ≥ b so that a − b + 1 > 0.
We obtain B ⊂ N. Since N is well-ordered, we know that inf B ∈ B exists. Clearly,
inf A = inf B + b − 1.
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Remark Z is not well-ordered with respect to its natural ordering. Indeed, as a
consequence of the Archimedean Property, the set of all negative integers −N =
{−n ∈ Z | n ∈ N} does not have a lower bound.

We introduce the absolute value | · | : Z→ N0. For a ∈ Z, we define

|a| =
{

a if a ≥ 0,

−a if a < 0.

Proposition 1.2.2 Let c ∈ N. Then, for a ∈ Z, we have −c ≤ a ≤ c if and only if
|a| ≤ c. The same holds for strict inequalities.

Proof Let a ∈ N0, that is, a = |a|. Then, for c ∈ N, we have a ≤ c if and only if
|a| ≤ c, while −c ≤ a obviously holds.

Let −a ∈ N0, that is, −a = |a|. Then −c ≤ a if and only if −a ≤ c if and only
if |a| ≤ c, while a ≤ c obviously holds. The proposition follows.

Corollary We have

||a| − |b|| ≤ |a + b| ≤ |a| + |b|, a, b ∈ Z.

Remark The second inequality is usually called the triangle inequality based on
its generalization to R

2. We will discuss this later.

Proof We first show the second inequality. By the previous proposition, we have
−|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. Adding, we obtain −(|a| + |b|) ≤ a + b ≤
|a| + |b|. Again by this proposition, we have |a + b| ≤ |a| + |b|.

The first inequality is a special case of the second. Indeed, we have |a| = |(a +
b)− b| ≤ |a + b| + |b| and hence |a| − |b| ≤ |a + b|. Switching the roles of a and
b, Make a line space here.

Finally, note that the decimal representation of natural numbers naturally
extends to that of integers. For a negative integer a ∈ Z, we take the decimal
representation of the natural number −a ∈ N and insert a negative sign in front
of the representation. (The decimal representation of zero is 0 itself.)

Exercises

1.2.1. Derive the identity −(a − b) = b − a, a, b ∈ Z.
1.2.2. Show that the equation 1− a = a, a ∈ Z, has no solution.
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1.3 The Division Algorithm for Integers

The division algorithm for integers states that upon dividing an integer n ∈ Z by
a non-zero integer 0 �= d ∈ Z, we obtain an integral quotient q ∈ Z and an integral
remainder r ∈ Z:

n

d
= q + r

d
.

The remainder r is always non-negative and satisfies the inequality

0 ≤ r < |d|.

As we will see below, n and d uniquely determine the quotient q and the
remainder r . The number n that we start with is called the dividend, and the non-
zero number d that n is divided by is called the divisor. Since we wish to stay in the
realm of the integers, the equation above is usually written in the form of an equality
of integers.

Division Algorithm (Integers) For any n, d ∈ Z, d �= 0, there exist unique q, r ∈ Z

such that

n = q · d + r, 0 ≤ r < |d|.

Proof Let n, d ∈ Z, d �= 0.
We first show existence. By changing the sign of the quotient q if needed, we

may assume that the divisor d is positive. Let

A = {n − q · d | q ∈ Z such that n − q · d ≥ 0}.

For q = −|n| ∈ Z, we have n − qd = n + |n|d ≥ n + |n| ≥ 0 so that A �= ∅. Since
A is bounded below by zero, by Proposition 1.2.1, it has a unique infimum which is
attained: r = inf A ≥ 0 with r = n − qd for some q ∈ Z. We claim that r < d.
Indeed, if r ≥ d, then n− (q + 1)d = n− qd − d = r − d ≥ 0, and this contradicts
to the minimality of r . Existence follows.

It remains to show uniqueness of q, r . Assume n = qd + r = q ′d + r ′ with
0 ≤ r, r ′ < |d|. These give (q − q ′)d = r ′ − r . Assuming q �= q ′, we have
|d| ≤ |d||q − q ′| = |r ′ − r | < |d|, a contradiction. Hence q = q ′ and also r = r ′.

Given n ∈ Z and 0 �= d ∈ Z, we say that d divides n, written as d | n, if n = qd
for some q ∈ Z. In other words, d divides n if, upon division by d, we have zero
remainder, r = 0.

Let a, b ∈ Z with at least one of them non-zero. The greatest common divisor
of a and b, written as gcd(a, b), is a natural number d ∈ N such that (1) d | a and
d | b, and (2) e | a and e | b, e ∈ N, imply e | d.
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In other words, gcd(a, b) is a common divisor of a and b, and any common
divisor e ∈ N of a and b also divides gcd(a, b).

Example 1.3.1 Let a ∈ N0, and consider the infinite sequence (an)n∈N0 defined by
an = a2 + n2, n ∈ N.4 Letting dn = gcd(an, an+1), n ∈ N, show that maxn∈N dn =
4a2 + 1.

We have

dn = gcd(an, an+1) = gcd(a2 + n2, a2 + (n + 1)2)

= gcd(a2 + n2, a2 + n2 + 2n + 1) = gcd(a2 + n2, 2n + 1)

= gcd(4(a2 + n2), 2n + 1) = gcd(4a2 + 1+ 4n2 − 1, 2n + 1)

= gcd(4a2 + 1+ (2n − 1)(2n + 1), 2n + 1) = gcd(4a2 + 1, 2n + 1),

where multiplying by 4 is allowed since 2n + 1 is odd. The example follows.

Proposition 1.3.1 Let a, b ∈ Z with at least one of them non-zero. Then gcd(a, b)

is the unique infimum of the set

Aa,b = {m · a + n · b |m, n ∈ Z such that m · a + n · b > 0}.

In particular, gcd(a, b) exists, and it is also unique.

Proof Letting m = a and n = b, we have ma + nb = a2 + b2 > 0 since at least
one of a or b is non-zero. This shows that Aa,b is non-empty.

By Theorem 1.1.2, d = inf Aa,b exists, and it is attained in Aa,b; that is, we have
d = ma + nb for some m, n ∈ Z.

We first prove that d is a common divisor of a and b. Due to symmetry, we
only need to show d | a. Using the division algorithm, we have a = qd + r with
0 ≤ r < d. We calculate

r = a − qd = a − q(ma + nb) = (1− qm)a − qnb.

Since this is a remainder, we have r ≥ 0. If r > 0, then we have r ∈ Aa,b. This is a
contradiction since r < d and d is the infimum in Aa,b. Thus, r = 0 and so d | a.

Second, if e ∈ N is a common divisor of a and b, then it is clearly also a common
divisor of d = ma + nb. Existence of the greatest common divisor follows.

For unicity, assume that d ∈ N and d ′ ∈ N are both greatest common divisors of
a and b. Then, we have d | d ′ and d ′ | d; that is, we have d ′ = ed and d = e′d ′ for
some e, e′ ∈ N. These give d = e′d ′ = e′e′d so that, canceling, we obtain ee′ = 1.
By Corollary to Proposition 1.1.8, we get e = e′ = 1. Thus, d = d ′, and unicity
follows.

4A special case (a = 10) was a problem in the American Invitational Mathematics Examination,
1983.
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Two integers a and b with at least one of them non-zero are called relatively
prime if gcd(a, b) = 1. In other words, a and b have no common divisors (other
than ±1).

Corollary Let a, b, d ∈ Z, d �= 0. If d | ab and gcd(d, a) = 1 (d and a are
relatively prime), then d | b.

Proof The condition on the greatest common divisor implies that md + na = 1 for
some m, n ∈ Z. Multiplying through b, we obtain mdb + nab = b. Thus, if d | ab,
then d |mdb + nab = b. The corollary follows.

A natural number p ≥ 2 is called a prime if the only natural number that divides
p is 1 and the number p itself. We denote by � the set of all primes:

� = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89

97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, . . . ,

257,885,161 − 1, . . . , 274,207,281 − 1, . . . , 277,232,917 − 1, . . . , 282,589,933 − 1, . . .},

where we indicated the largest known primes as of January 2020 (the previous two
were discovered in 2014 and 2017, respectively).

An integer n ∈ Z, n �= 0,±1, is called a composite number if |n| is not a prime.
We now digress from the main line momentarily and introduce another form of

Peano’s Principle of Induction that we will need frequently in the sequel.
Let (Pn)n∈N = (P1, P2, P3, . . .) be an infinite sequence of statements. Assume

that P1 holds, and, for any n ∈ N, whenever Pn holds then so does Pn+1. Then the
Principle of Mathematical Induction asserts that Pn holds for all n ∈ N.

The Principle of Mathematical Induction is a simple consequence of Peano’s
Principle of Induction. Indeed, let A = {n ∈ N | Pn is valid}. Then the assumptions
on the sequence (P1, P2, P3, . . .) in the Principle of Mathematical Induction above
translate to the following: 1 ∈ A, and whenever n ∈ A, then we also have n+1 ∈ A.
By Peano’s Principle of Induction, we have A = N. This simply means that Pn is
valid for all n ∈ N.

We use the Principle of the Mathematical Induction, or induction, for short,
when we need to prove infinitely many statements P1, P2, P3, . . . at the same time.

The proof of P1 is called the initial step, and “Pn implies Pn+1,” n ∈ N, is called
the general induction step. In the latter, Pn is called the induction hypothesis, and
the general induction step is often written symbolically as n ⇒ n + 1.

Example 1.3.2 In Example 0.3.1, we claimed (without proof) that if f : X → Y
is an injective map between finite sets X and Y of the same cardinality, |X | = |Y |,
then f must be surjective. We now show this by induction on the number of elements
n = |X | = |Y |.

The initial step when both X and Y are singletons is clear. For the general
induction step n ⇒ n + 1, assume that the statement holds for n = |X | = |Y |.
Let f : X → Y be an injective map between sets X and Y with cardinality
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n + 1 = |X | = |Y |. Let x0 ∈ X , and denote y0 = f (x0) ∈ Y . Finally, let
X0 = X \ {x0} and Y0 = Y \ {y0}. Since f : X → Y is injective, there is no
other element in X than x0 that maps to y0. This means that f can be restricted to
an injective map f0 : X0 → Y0, f0(x) = f (x), x ∈ X0. Since |X0| = |Y0| = n, the
induction hypothesis applies, and we obtain that f0 : X0 → Y0 is surjective. Since
f (X) = f0(X0)∪{ f (x0)} = Y0∪{y0} = Y , we obtain that f : X → Y is surjective
as well. The statement follows.

In the Principle of Mathematical Induction, the general induction step may be
modified to the effect that whenever P1, P2, . . . , Pn hold then so does Pn+1. This
may be indicated in writing as 1, 2, . . . , n ⇒ n + 1. This is sometimes called
the strong form of the Principle of Mathematical Induction. This is a misnomer
since this variant is actually equivalent to the original form of the Principle of
Mathematical Induction. To see this, given an infinite sequence of statements
P1, P2, P3, . . ., one needs to define, for any n ∈ N, the statement Qn = P1 ∧
P2 ∧ · · · ∧ Pn , the logical conjunction of P1, P2,. . . , Pn (that is, Qn is true if and
only if P1, P2,. . . , Pn are all true).

Finally, note that the Principle of Mathematical Induction does not necessarily
have to start at n = 1 since the indices can be shifted so that the index of the initial
step becomes 1.

We motivate the next result by a simple question: What is the smallest n ∈ N such
that 120n is a perfect square? To answer this, we write 120 = 23 · 3 · 5 and realize
that we need to make the exponents even. With this, we have n = 2 · 3 · 5 = 30, so
that 120n = 24 · 32 · 52 = (22 · 3 · 5)2 = 602.

Fundamental Theorem of Arithmetic Any integer a ≥ 2 is either a prime number
itself, or it can be written as a product of primes uniquely up to order of the factors.

Proof This is an example for an induction which starts at a = 2. This initial step is
obviously true since a = 2 is a prime. To perform the general induction step, we use
the second version 2, 3, 4, . . . n ⇒ n + 1 as follows. Assume that the statement is
true for a = 2, 3, 4, . . . , n. Consider n + 1. If n + 1 is a prime, then we are done. If
n+1 is not a prime then, by definition, n has a divisor n1 satisfying 1 < n1 < n+1.
Then n + 1 = n1 · n2, where n2 = (n + 1)/n1 also satisfies 1 < n2 < n +
1. By the induction hypothesis, both n1 and n2 are primes or products of primes.
Thus, n + 1 = n1 · n2 is also a product of primes. Finally, unicity of the prime
factors follows directly from Corollary to Proposition 1.3.1 since distinct primes are
relatively prime.

Example 1.3.3 For what n ∈ N is the integer n4 − 360n2 + 400 a prime?
We will write this expression as a product of two integers.5 The crux is to use

400 = 202 to calculate

5Note that the typical trick of letting m = n2 does not work since, in terms of m, the expression
above gives m2 − 360m + 400 = (m − 180)2 − 32000, but the constant 32000 is not a perfect
square.
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n4 − 360n2 + 400 = n4 − 360n + 202 = (n2 + 20)2 − 400n2

= (n2 + 20)2 − (20n)2 = (n2 − 20n + 20)(n2 + 20n + 20).

Since the first factor on the right-hand side is smaller than the second, in order for
the original expression to be a prime, we must have n2 − 20n + 20 = 1. This gives

n2 − 20n + 19 = (n − 1)(n − 19) = 0.

Thus, we obtain n = 1 and n = 19. Finally, 14 − 360 · 12 + 400 = 41 and 194 −
360 · 192 + 400 = 3612 − 360 · 361+ 400 = 361+ 400 = 761, and both of these
are primes.

Example 1.3.4 Show that, for any n ∈ N, the numbers n3 + 2n and n4 + 3n2 + 1
are relatively prime.6

We have n3+2n = n(n2+2) and n4+3n2+1 = n2(n2+2)+n2+1. If a prime
p ∈ N divides both, then it would also divide n2 + 1. This, however, is relatively
prime to n(n2 + 2).

Beyond their obvious use in simple arithmetic in simplifying fractions, the
greatest common divisor plays a fundamental role in mathematics, notably in
number theory. Recall that, when dealing with fractions, we call a fraction a/b,
a, b ∈ Z, b �= 0, irreducible (or reduced) if a and b are relatively prime.

If the prime factorizations of a and b are known, then the greatest common
divisor gcd(a, b) is easy to obtain; we first collect only the common prime factors,
then raise each to the lower power that the prime factor participates in either of the
factorizations, and finally create a product with these prime powers.

For example, to calculate the greatest common divisor gcd(17640, 3300), we first
use the prime factorizations 17640 = 23 · 32 · 5 · 72 and 3300 = 22 · 3 · 52 · 11.
Comparing, we arrive at is gcd(17640, 3300) = 22 · 3 · 5 = 60. Thus, the fraction
3300/17640 can be divided through 60 to obtain the irreducible fraction 55/294.

Prime factorization works very well for small numbers, but it is very inefficient
for large values. In rare cases, some clever shortcuts sporadically show up in
mathematical contests as in the following:

Example 1.3.5 What is the prime factorization of the number 3, 374, 784?
Observe that 1503 = 3, 375, 000 so that 3, 374, 784 = 1503 − 63 = 63(253 − 1)

(or better yet, note that 3, 374, 784 is divisible by 23 ·33 = 63). In addition, we have
253 − 1 = (25 − 1)(252 + 25 + 1) = 24 · 651 = 23 · 32 · 7 · 31. Putting all these
together, we obtain 3, 374, 784 = 26 · 35 · 7 · 31.

A much more efficient method of finding the greatest common divisor is the
Euclidean algorithm. This is based on the principle that gcd(a, b) divides any
linear combination ma + nb with m, n ∈ Z.

6An equivalent version of this was a USSR Mathematics Olympiad problem.
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To perform the Euclidean algorithm, we may assume that a > b ≥ 0, start by
dividing a by b and obtain the first remainder r1. We then divide b by r1, and obtain
the second remainder r2 < r1. We continue this process until we obtain a zero
remainder. The last non-zero divisor is then equal to gcd(a, b). We tabulate this
process as follows:

a = bq1 + r1, 0 ≤ r1 < b

b = r1q2 + r2, 0 ≤ r2 < r1

r1 = r2q3 + r3, 0 ≤ r3 < r2

r2 = r3q4 + r4, 0 ≤ r4 < r3

· · · · · · · · ·
rn−3 = rn−2qn−1 + rn−1, 0 ≤ rn−1 < rn−2

rn−2 = rn−1qn .

We set the indices here such that rn = 0, so that gcd(a, b) = rn−1.
It is not difficult to see why the Euclidean algorithm gives the greatest common

divisor. Recall that gcd(a, b) is defined by the following: The greatest common
divisor is a common divisor of a and b, and any common divisor of a and b divides
gcd(a, b).
With this, we proceed as follows. By the last equation, rn−1 divides rn−2. Using
this and the next-to-last equation, we see that rn−1 also divides rn−3. Proceeding
inductively, and working backwards, we see that rn−1 divides both r2 and r1 and
hence also divides b (second equation), but then it must divide a (first equation).

Thus gcd(a, b) is a common divisor of a and b.
If d is a divisor of a and b, then, by the first equation, it must divide r1. By the

second equation, d then must divide r2. Proceeding inductively and moving forward,
we see that d must divide rn−1.

Thus rn−1 is the greatest common divisor of a and b.

Example 1.3.6 Let a, b ∈ N. Show that the fraction

a(b + 1)n + (b + 2)

abn + (b + 1)
, n ∈ N,

is irreducible.7

We use the Euclidean algorithm as follows:

a(b + 1)n + (b + 2) = (abn + (b + 1)) · 1+ (an + 1)

7Specific cases of this and other variants abound in various mathematical contests; see, for
example, the irreducibility of the fraction (21n + 4)/(14n + 3) (a = 7, b = 2) in the International
Mathematical Olympiad, 1959.
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abn + (b + 1) = (an + 1) · b + 1

an + 1 = 1 · (an + 1).

Thus, gcd(a(b + 1)n + (b + 2), abn + (b + 1)) = 1.

Example 1.3.7 For what prime numbers p do we have solutions a, b, c, d ∈ N of
the system of equations a5 = b4, c3 = d2, c − a = p?8

Assume we that have a solution a, b, c, d ∈ N for a prime p. By the Fundamental
Theorem of Arithmetic, in the prime factorization of the number a5 = b4, all
exponents are divisible by 4 and 5 and hence also divisible by 20 (since gcd (4, 5) =
1). This gives a5 = b4 = n20 for some n ∈ N. Similarly, c3 = d2 = m6 for some
m ∈ N. The solutions of the first two equations of the system can therefore be
written as a = n4, b = n5, c = m2, d = m3, m, n ∈ N. The third equation gives
c − a = m2 − n4 = (m − n2)(m + n2) = p. Since p is a prime, we must have
m − n2 = 1, and hence m + n2 = p. Solving these, we obtain m = (p + 1)/2 and
n2 = (p − 1)/2. The first equation gives p �= 2 (since every prime number beyond
2 is odd). The second equation gives p = 2n2 + 1, n ∈ N. Summarizing, we obtain
that there is a unique solution of the system if and only if the prime p is of the form
2n2 + 1 for some n ∈ N, and then the solution is a = n4, b = n5, c = (n2 + 1)2,
d = (n2 + 1)3.

Note that primes of the form p = 2n2 + 1 abound,9 e.g., 19, 73, 163, 883, 1153,

1459, 1801, 2179, 2593, 3529, 4051, 8713, 10369, 11251, 15139, 17299, 18433,

19603, etc.

We finish this section by a somewhat challenging and computational example.10

Example 1.3.8 Let fn = 1! + 2! + · · · + n!, n ∈ N. Find the smallest prime number
p such that p| f p−1 and p2 � | f p2−1.

Note that, for m ≤ n, m, n ∈ N, we obviously have m|n!. Hence, the inductive
definition fn = fn−1 + n!, 2 ≤ n ∈ N, shows that, for the prime p as above, we
have p| fn for p ≤ n ∈ N and p2 � | fn for p2 ≤ n ∈ N.

To begin with, we calculate the first few values as follows: f1 = 1, f2 = 3,
f3 = 32, f4 = 3 ·11, f5 = 32 ·17, f6 = 32 ·97, f7 = 34 ·73, f8 = 32 ·11 ·467, f9 =
32 · 131 · 347, f10 = 32 · 11 · 40787, where we displayed the prime decompositions.
Since fn , n ∈ N, is odd, the first possible prime is p = 3. Not only do we have 3| f2
but also 32| f8. For the next two primes, we have 5 � | f4 and 7 � | f6.

8A special numerical case of this problem (p = 19) was in the American Invitational Mathematics
Examination, 1985.
9It is a yet unsolved conjecture of Hardy that there are infinitely many primes of the form an2 +
bn+ c, where a, b, c ∈ N do not have common divisors, a > 0, (at least) one of the numbers a+ b
and c is odd, and b2 − 4ac is not a perfect square. See Hardy, G.H., Wright, E.M., An Introduction
to the Theory of Numbers, 5th ed. Oxford: Clarendon Press, New York, 1979.
10Our approach is elementary, and, for some computations, a computer algebra system is
recommended.
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For the next prime p = 11, we have 11| f10. Finally, the use of a computer algebra
system shows that 121 = 112 � | f120. (Note that the natural number f120/11 has 198
digits.) Thus, p = 11 is the smallest prime sought.

Actually, some more work gives a clearer picture. By the above, for 1 ≤ n <

11, we have 11| fn if and only if n = 4, 8, 10. As for the square, once again a
computer algebra system gives that, for 11 ≤ n < 112, we have 112| fn if and only
if n = 12, 20. Note that the prime decompositions of the these exceptional cases are
f12 = 32 · 112 · 23 · 20879 and f20 = 32 · 112 · 53 · 67 · 662348503367.

Remark A brief overview of the previous example shows that fn , n ∈ N, is a perfect
square if and only if n = 1, 3. (A perfect square cannot be (exactly) divisible by a
prime, that is, divisible by that prime but not divisible by its square.) This corollary
is, however, much simpler and follows directly by observing that the last (ones) digit
of fn , 4 ≤ n ∈ N, is 3 (since, for 5 ≤ n ∈ N, the factorial n! ends with 0), whereas
a square could only have possible last digits as 1, 4, 5, 6, 9, 0 with 3 missing.

Exercises

1.3.1. Find the smallest prime number that is the sum of two different prime
numbers and, at the same time, it is also the sum of three different prime
numbers.

1.3.2. Let p and q be primes with p > q ≥ 5. Show that 24 divides p2 − q2.
1.3.3. Find the largest prime factor of the number 218 − 64.
1.3.4. How many natural numbers ≤ 400 are relatively prime to 400?
1.3.5. Let n ∈ N and Dn be the set of positive divisors of n. Determine D8, D12,

D30 and D8 ∩ D12 and D12 ∩ D30.
1.3.6. Show the following properties of the greatest common divisor (with all

arguments in N):

gcd(na, nb) = gcd(a, b)

gcd(a + nb, b) = gcd(a, b)

gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)

gcd(a1, a1) = 1 ⇒ gcd(a1a2, b) = gcd(a1, b)gcd(a2, b)

gcd(a, bc) = 1 ⇔ gcd(a, b) = 1 and gcd(a, c) = 1.

1.4 Rational Numbers

The number 1 is natural and it is the multiplicative identity for both N and Z; that
is, when multiplied by another number, it leaves that number unchanged.



1.4 Rational Numbers 67

No other natural number ( �= 1) or integer ( �= ±1) has a multiplicative inverse,
a number that, when multiplied by the number, produces 1. (See Corollary to
Proposition 1.1.8.)

This deficiency is remedied by introducing the set Q of rational numbers as in
Section 0.1:

Q =
{

a

b

∣∣∣∣ a, b ∈ Z and b �= 0

}
.

The construction of Q is, in principle, similar to the construction of the set
of integers Z with focusing on the multiplicative structure instead of the additive
structure. The main idea is that a fraction a/b with a, b ∈ Z and b �= 0 is determined
by the pair (a, b) ∈ Z × Z consisting of the numerator and the denominator.
Obviously, for any c ∈ Z and c �= 0, the pair (ac, bc) represents the same fraction
as (a, b).

This gives the construction of the set of rational numbers Q from Z as follows.
We represent each rational number by a pair (a, b) of integers with b �= 0, an
element of the Cartesian product Z × Z

�, where Z
� = Z \ {0} is the set of non-

zero integers. The pair (a, b) represents the same rational number as (a′, b′) if and
only if a · b′ = a′ · b. We therefore introduce the relation ∼ on Z × Z

� by setting
(a, b) ∼ (a′, b′), (a, b), (a′, b′) ∈ Z× Z

�, if a · b′ = a′ · b.
We first claim that ∼ is an equivalence relation on Z× Z

�. Reflexivity, (a, b) ∼
(a, b), and symmetry, (a, b) ∼ (a′, b′) implies (a′, b′) ∼ (a, b), are tautologies.
Transitivity, (a, b) ∼ (a′, b′) and (a′, b′) ∼ (a′′, b′′) imply (a, b) ∼ (a′′, b′′), also
follows since a ·b′ = a′ ·b and a′ ·b′′ = a′′ ·b′ imply aa′ ·b′b′′ = a′a′′ ·b′b, and, by
the cancellation law for multiplication, we obtain a · b′′ = a′′ · b. (Note that a′ = 0
implies a = a′′ = 0.)

The equivalence relation∼ partitions Z×Z
� into equivalence classes. We define

the set of rational numbers as the quotient Q = Z×Z
�/ ∼, the set of equivalence

classes in Z× Z
� by the equivalence relation ∼.

We now define the operations of addition+ and multiplication · on Q in terms of
representatives as

(a, b)+(c, d) = (ad+bc, bd) and (a, b)·(c, d) = (ac, bd), a, c ∈ Z, b, d ∈ Z
�.

We first need to show that these operations are compatible with the
equivalence relation ∼, that is, if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d ′),
(a, b), (a′, b′), (c, d), (c′, d ′) ∈ Z × Z

�, then (a, b) + (c, d) ∼ (a′, b′) + (c′, d ′)
and (a, b) · (c, d) ∼ (a′, b′) · (c′, d ′). The assumptions translate into the pair of
equations ab′ = a′b and cd ′ = c′d. Multiplying the first equation by dd ′, the
second by bb′, and adding, we obtain (ad + bc)b′d ′ = (a′d ′ + b′c′)bd. This gives
(a, b) + (c, d) ∼ (a′, b′) + (c′, d ′) as stated. Returning to this pair of equations,
multiplying, we obtain acb′d ′ = a′c′bd. This gives (a, b) ·(c, d) ∼ (a′, b′) ·(c′, d ′).

Compatibility just proved means that the operations of addition+ and multiplica-
tion · given above define addition and multiplication on the quotient Q = Z×Z�/ ∼.
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The set of integers Z can naturally be embedded into Q via the injective map
ι : Z → Q defined by associating with the integer a ∈ Z the equivalence class of
(a, 1). For a, b ∈ Z, we have (a, 1)+(b, 1) = (a+b, 1) and (a, 1)·(b, 1) = (ab, 1).
This shows that the embedding ι is compatible with the additions and multiplications
in Z and Q. From now on, we identify Z with its range in Q under ι and say that the
set of rational numbers Q is an extension of Z.

Addition and multiplication of rational numbers are both associative and com-
mutative, and the two operations are connected through distributivity. The equiva-
lence class of (0, 1) (corresponding to 0 ∈ Z) is the additive identity. Any element
has an additive inverse; the additive inverse of the equivalence class of (a, b) ∈
Z × Z

� is the equivalence class of (−a, b) ∼ (a,−b) ∈ Z × Z
�. The equivalence

class of (1, 1) (corresponding to 1 ∈ Z) is a (unique) multiplicative identity. Every
non-zero equivalence class has a multiplicative inverse; the multiplicative inverse
of (a, b) ∈ Z

� × Z
� is the equivalence class of (b, a) ∈ Z

� × Z
�.

These statements follow directly from the definitions of the addition and
multiplication. We give the details for distributivity which is the least trivial. Letting
(a, b), (c, d), (e, f ) ∈ Z× Z

�, we calculate

(a, b) · ((c, d)+ (e, f )) = (a, b) · (c f + de, d f ) = (a(c f + de), bd f )

∼ ((ac)(b f )+ (bd)(ae),(bd)(b f )) = (ac, bd)+(ae, b f )

= (a, b) · (c, d)+ (a, b) · (e, f ).

Taking equivalence classes, distributivity follows.
The properties of addition and multiplication listed above are expressed com-

pactly by saying that the set of rational numbers forms a field.
The natural ordering < on the set of rational numbers Q is given as follows: Let

q, r ∈ Q and choose representatives (a, b) ∈ q, (c, d) ∈ r , (a, b), (c, d) ∈ Z× Z
�,

such that b, d > 0. (This can always be done since (a, b) ∼ (−a,−b) and (c, d) ∼
(−c,−d).) We then define (a, b) < (c, d) (or (c, d) > (a, b)) if ad < bc.

If (a′, b′) ∼ (a, b) and (c′, d ′) ∼ (c, d), (a′, b′), (c′, d ′) ∈ Z× Z
�, with b′, d ′ >

0, then multiplying ad < bc by b′d ′ > 0, we obtain (ab′)(dd ′) < (cd ′)(bb′).
Using ab′ = a′b and cd ′ = c′d, this gives (a′b)(dd ′) < (c′d)(bb′), or equivalently,
(a′d ′)(bd) < (b′c′)(bd). Canceling bd > 0, we obtain a′d ′ < b′c′. Thus, the
ordering < is well-defined on the equivalence classes, and thereby it defines an
ordering on Q.

Note that this ordering is clearly an extension of the earlier ordering < on Z since
(a, 1) < (b, 1), a, b ∈ Z, if and only if a < b.

The relation < is a strict total order on the set of rational numbers Q. To show
transitivity, let (a, b) < (c, d) and (c, d) < (e, f ) with b, d, f > 0. We have ad <

bc and c f < de. Hence, ad f < bc f < bde, so that a f < be, and (a, b) < (e, f )

follows.
For trichotomy, let q, r ∈ Q, and show that exactly one of the following holds:

q < r , q = r , and q > r . Indeed, as before, letting (a, b) ∈ q, (c, d) ∈ r ,
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(a, b), (c, d) ∈ Z × Z
�, such that b, d > 0; exactly one of the following holds:

ad < bc, ad = bc, and ad > bc. These give the respective cases.
We call a rational number q ∈ Q positive if q > 0 and negative if q < 0.

Clearly, q ∈ Q is positive if and only if −q ∈ Q is negative. Moreover, in Q, the
usual arithmetic properties hold: For any q, r, s ∈ Q, (1) q < r implies −q > −r ;
(2) q < r implies q + s < r + s; (3) q < r implies qs < rs if s > 0; (4) q < r
implies qs > rs if s < 0; etc.

In addition to the strict total order and cancellation law for addition, Q also has
the following property: q > 0 and r > 0, q, r ∈ Q, imply q · r > 0. We express
this by saying that the set of rational numbers Q is an ordered field with respect
to the order relation <. As direct consequences, we obtain the following: (1) The
cancellation law for multiplication for inequalities: q · s < r · s, q, r, s ∈ Q, implies
q < r if s > 0 and q > r if s < 0; (2) If q �= 0, q ∈ Q, then q2 > 0; in particular,
1 > 0; and (3) 0 < q < r implies 0 < 1/q < 1/r .

We also define q ≤ r (or r ≥ q), q, r ∈ Q, if q = r or q < r . Equivalently,
q ≤ r if and only if r − q is either positive or zero.

The set of rational numbers Q with ≤ is a totally ordered field; that is, ≤ is
transitive and antisymmetric and satisfies the property of totality. These are easy
consequences of the properties of the strict ordering < above.

From now on, we adopt the customary notation for rational numbers as fractions;
that is, we denote the equivalence class of (a, b) ∈ Z × Z

� by the fraction a/b
with the understanding that the fraction (ac)/(bc) is the same as a/b. As before, the
fraction a/1 then becomes a. Note that the multiplicative inverse is usually called
the reciprocal; that is, we have 1/(a/b) = b/a, a, b ∈ Z

�.

History
One of the earliest attestations of fractions is in the pair of Akhmin wooden tablets dated in
the early Middle Kingdom of ancient Egypt (c. 1950 BCE). It contains multiplication problems
involving reciprocals of integers such as 1/3, 1/7, 1/10, 1/11, 1/13. The fractions are written in
ancient Egyptian fashion using parts of the Eye of Horus. The best known ancient Egyptian record
of mathematics is the Rhind Mathematical Papyrus (dated c. 1550 – 1650 BCE) itself a copy
of an earlier Berlin Papyrus and other texts. It contains an extensive list of computations with
fractions including fractions of type 2/n, n = 3, 4, . . . , 101, and equations how to decompose
them into sums of reciprocals of natural numbers, such as 2/15 = 1/10 + 1/30, . . . , 2/101 =
1/101+1/202+1/303+1/606. In addition, it contains a list of how to multiply different fractions
by the expression 1+ 1/2+ 1/4 = 7/4.
The beginning of basic arithmetic involving integers and fractions can be found in the works of
the Indian mathematicians Aryabhatta (476 – 550 CE), Brahmagupta (c. 628 CE) and Bhāskara
II (1114 – c. 1185). For example, the Bakhshali document contains the so-called Rule of Three
(still used sporadically today in secondary education), the solution of the equation c/x = a/b as
x = bc/a.
Note finally that the horizontal fraction bar first appears in the works of the Muslim mathematician
Al-Hassār (12th century CE) from Fez, Morocco.

Example 1.4.1 A point (a, b) ∈ R
2 in the plane is called an integer point if (a, b) ∈

Z×Z. In this example, we consider integer points in the plane whose coordinates are
relatively prime:11 (a, b) ∈ Z× Z, (a, b) �= (0, 0), gcd(a, b) = 1.

11These are precisely the visible points (from the origin); that is, the line segment with end-points
(0, 0) and (a, b) contains no other integer points. We will not need this geometric interpretation.
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Fig. 1.4 The triangle �n .

(n, 0)

(0, n)
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l2
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n

(n, n)

Δ

Let n ∈ N. First, for (a, b) ∈ N0 × N0, with a + b = n, we have gcd(a, b) =
gcd(a, n) = gcd(n, b); in particular, we have

gcd(a, b) = 1 ⇔ gcd(a, n) = 1 and gcd(n, b) = 1.

Moreover, a + b = n also gives

1

a · b =
1

a · n +
1

b · n , (a, b) ∈ N× N.

Second, let l0 be the line segment with end-points (n, 0) and (0, n); and l1, resp.
l2, the line segments with end-points (n, n) and (0, n) resp. (n, 0). Summing up the
fractions in the identity above in the respective line segments, we obtain

∑
(a,b)∈l0

gcd(a,b)=1

1

a · b =
∑

(a,n)∈l1
gcd(a,n)=1

1

a · n +
∑

(n,b)∈l2
gcd(b,n)=1

1

b · n .

(We use here the one-to-one correspondences (a, b)↔ (a, n)↔ (n, b), a+ b = n,
a, b ∈ N0.)

Finally, let �n ⊂ R
2, n ∈ N, denote the (solid) triangle with vertices

(n, 0), (0, n), and (n, n) (see Figure 1.4). Clearly, the line segments l0, l1, and l2
are the sides of �n . We now agree that, for �n , the sides l1 and l2 are counted in,
but the side l0 is counted out. In other words, we define

�n = {(x, y) ∈ R
2 | 0 < x, y ≤ n < x + y}.

Note also that in this example, we will use some simple geometric concepts such as lines, line
segments, etc. For a detailed account on these, see Section 5.5.
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We now claim

∑
(a,b)∈�n

gcd(a,b)=1

1

a · b = 1,

independent of n ∈ N.
To prove this, let Sn , n ∈ N, denote the sum on the left-hand side. We proceed by

induction with respect to n ∈ N.
Clearly, S1 = 1. (The only point competing in the sum is (1, 1). Note also that, in

S2, the competing points are (1, 2) and (2, 1), giving 1/2+ 1/2 = 1; and, in S3, the
competing points are (1, 3), (2, 3), (3, 2), (3, 1), giving 1/3+1/6+1/6+1/3 = 1.)

For the general induction step n − 1 ⇒ n, 2 ≤ n ∈ N, comparing the triangles
�n−1 and �n , we have

Sn − Sn−1 =
∑

(a,n)∈l1
gcd(a,n)=1

1

a · n +
∑

(n,b)∈l2
gcd(b,n)=1

1

b · n −
∑

(a,b)∈l0
gcd(a,b)=1

1

a · b = 0,

where we used the result in the second step above. Hence Sn = 1 for all n ∈ N. The
claim follows.

The absolute value can naturally be extended from integers to rational numbers:
|a/b| = |a|/|b|, (a, b) ∈ Z × Z

�. The analogues of Proposition 1.2.2 and
the subsequent corollary at the end of Section 1.2 hold with almost verbatim
proofs.

Proposition 1.4.1 Let 0 ≤ q ∈ Q. For r ∈ Q, we have −q ≤ r ≤ q if and only if
|r | ≤ q. The same holds for strict inequalities.

Corollary We have

||q| − |r || ≤ |q + r | ≤ |q| + |r |, q, r ∈ Q.

Finally, we show that the Archimedean Property holds for rational numbers.

Proposition 1.4.2 Let 0 < q, r ∈ Q. Then there exists n ∈ N such that r ≤ nq.

Proof Taking common denominators, we can write q = a/c and r = b/c, a, b, c ∈
N. The Archimedean Property for natural numbers asserts the existence of n ∈ N

such that b ≤ na. Dividing by c, the proposition follows.

Corollary We have

inf

{
1

n

∣∣∣∣ n ∈ N

}
= 0.
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Proof Zero is obviously a lower bound for all 1/n, n ∈ N. We claim that it is the
greatest lower bound. Let 0 < ε ∈ Q. By the Archimedean Property above, there
exists n ∈ N such that 1/ε ≤ n, or equivalently, we have 1/n ≤ ε. Thus, no positive
ε ∈ Q can be a lower bound for all 1/n, n ∈ N. The corollary follows.

Exercises

1.4.1. Use Peano’s Principle of Induction to derive the formula

(
1− 1

4

)(
1− 1

9

)
· · ·
(

1− 1

n2

)
= n + 1

2n
, 2 ≤ n ∈ N.

1.4.2. In the Jade Mirror of the Four Unknowns written by Zhu Shijie (1249–1314),
the following equality is given without proof:

1+ 8+ 30+ 80+ · · · + n2(n + 1)(n + 2)

3!
= n(n + 1)(n + 2)(n + 3)(4n + 1)

5! , n ∈ N.

Prove this equality using Peano’s Principle of Induction.
1.4.3. Show that, for all n ∈ N, we have12

1

n + 1
+ 1

n + 2
+ · · · + 1

2n
≥ 1

2
.

1.4.4. Let 0 < a, b ∈ Q. Show that
√

a +√b ∈ Q implies
√

a,
√

b ∈ Q.
1.4.5. In 1637, Fermat jotted down the following in a margin of his copy of

Diophantus’ Arithmetica: “It is impossible to write a cube [of a natural
number] as a sum of two cubes [of natural numbers], a fourth power as a
sum of fourth powers, and, in general, any power beyond the second as a
sum of two similar powers.”13 Show that, for any rational number 0 < q < 1,
the number 3

√
1− q3 is not rational. Generalize this to an arbitrary exponent

n ≥ 3.

12In Example 10.5.2, we will show limn→∞
(

1
n+1 + 1

n+2 + · · · + 1
2n

)
= ln 2.

13An early proof of this for cubes was given by Euler using complex arithmetic. For any exponent,
this is the famous Fermat’s Last Theorem proved by Andrew Wiles in 1995.



Chapter 2
Real Numbers

“A person who can solve1 x2 − 92 · y2 = 1
within a year is a mathematician.”
in Brahma-Sphuta-Siddhanta
by Brahmagupta (c. 628 CE)

With the rational number system Q in place, leaning back to the past, we begin
this chapter by showing how the dialogue between Theaetetus and Socrates leads
naturally to Dedekind’s original proof of irrationality of the square root of a non-
square natural number. As an immediate byproduct, this implies that the Least Upper
Bound Property fails in Q. Another advantage of this proof is that it leads directly
to the concept of Dedekind cuts, and thereby to Dedekind’s construction of the real
number system. Using Dedekind cuts offers a quick and easy proof of the Least
Upper Bound Property in this model of the real number system.

Dedekind’s proof naturally raises the problem of rational approximations of the
square root of a non-square natural number. In view of later applications, we make
a short detour here to the related Pell’s equation and its solution by Brahmagupta’s
identity. We close our study of the Dedekind model of the real number system by
introducing exponentiation with integer exponents, and deriving the corresponding
Bernoulli inequality. This opens the first opportunity to present a whole cadre of
contest problems some of which are on Olympiad level.

Working with the Dedekind model of the real number system is cumbersome,
and not well suited to do analysis, however. We therefore build another model of
the real number system via Cauchy sequences. Once again, we choose a slow-
paced approach, and first treat the real numbers naïvely as infinite decimals.
Meshing well with this, we introduce and treat limits of (numerical) sequences
by the least strenuous path, through suprema and infima.2 Cauchy sequences also

1This is a specific Pell’s equation, and x and y are meant to be natural numbers. The smallest
solution turns out to be (x, y) = (1151, 120). See Section 2.1 for a quick solution.
2Plurals of supremum and infimum; note that the plurals “supremums” and “infimums” are also
widely used.
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open the way to introduce a few fundamental methods and ideas of analysis:
the Monotone Convergence Theorem and the Bolzano-Weierstrass Theorem. The
material here is developed enough to present many challenging problems inspired by
past mathematical Olympiads. As before, whenever an opportunity arises, we also
ease up the complexity of the presentation by showing, for example, irrationality of√

2 by origami.
At the end of this chapter, we take an optional short detour to discuss the

pigeonhole principle, the Dirichlet approximation, and an elementary proof of the
Equidistribution Theorem. This technically more demanding section can be skipped
at the first reading.

2.1 Real Numbers via Dedekind Cuts

In the previous chapter we constructed the rational number system Q, and showed
that it is a totally ordered field.

The next step is to investigate whether the Least Upper Bound Property holds in
Q. In other words, if a non-empty set A ⊂ Q is bounded above does sup A exist in
Q? As we have seen in Proposition 1.2.1, this holds for Z. We will show below that
the Least Upper Bound Property fails in Q. This is a major deficiency of the field of
rational numbers.

To begin with we derive the following elementary fact: Given n ∈ N, for a
positive rational number q ∈ Q, we have q2 = n if and only if n is a perfect
square; that is n = a2 for some a ∈ N (and q = a).

We first give a proof of this following Dedekind. The starting point of his proof
is based on a dialogue between Theaetetus and Socrates in Plato’s Theaetetus (650
BCE).

History
Excerpt from Plato’s Theaetetus:3

“Theaetetus: Theodorus was writing out for us something about roots, such as the roots of three
or five, showing that they are incommensurable by the unit: he selected other examples up to
seventeen - there he stopped. Now as there are innumerable roots, the notion occurred to us of
attempting to include them all under one name or class.
Socrates: And did you find such a class?
Theaetetus: I think that we did; but I should like to have your opinion.
Socrates: Let me hear.
Theaetetus: We divided all numbers into two classes: those which are made up of equal factors
multiplying into one another, which we compared to square figures and called square or equilateral
numbers; - that was one class.
Socrates: Very good.
Theaetetus: The intermediate numbers, such as three and five, and every other number which is
made up of unequal factors, either of a greater multiplied by a less, or of a less multiplied by a
greater, and when regarded as a figure, is contained in unequal sides; - all these we compared to
oblong figures, and called them oblong numbers.

3Translated by Benjamin Jowett.
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Socrates: Capital; and what followed?
Theaetetus: The lines, or sides, which have for their squares the equilateral plane numbers, were
called by us lengths or magnitudes; and the lines which are the roots of (or whose squares are
equal to) the oblong numbers, were called powers or roots; the reason of this latter name being,
that they are commensurable with the former i.e., with the so-called lengths or magnitudes not in
linear measurement, but in the value of the superficial content of their squares; and the same about
solids.”

Dedekind’s proof is to show that if n ∈ N is not a perfect square then there is no
positive rational number q ∈ Q such that q2 = n. It starts with assuming that n ∈ N

is an “oblong number” (as in the excerpt above), that is, n is not a perfect square.
The concept of an oblong number being “intermediate” is interpreted as follows:
There exists m ∈ N such that

m2 < n < (m + 1)2.

We need to show that n = q2 cannot hold for any rational number q ∈ Q. Let
q = a/b, a, b ∈ N, b �= 0, with a ∈ N minimal as the positive numerator in the
fractional representation of q. This gives

a2 − nb2 = 0.

We need to show that these two conditions lead to contradiction. We have

m2a2 < na2 = n2b2 < (m + 1)2a2

which gives

ma < nb < (m + 1)a.

Similarly, we have

m2b2 < nb2 = a2 < (m + 1)2b2

which gives

mb < a < (m + 1)b.

We now define a′ = nb−ma and b′ = a −mb. By the inequalities above, we have
0 < a′ < a and 0 < b′ < b. We now calculate

a′2 − nb′2 = (nb − ma)2 − n(a − mb)2

= n2b2 + m2a2 − na2 − nm2b2

= (m2 − n)(a2 − nb2) = 0.
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This gives n = q2 = (a′/b′)2, and hence q = a′/b′. This contradicts the minimality
of a since 0 < a′ < a. The statement follows.

Remark A simpler proof uses divisibility properties of the integers. As before, we
let q = a/b, a, b ∈ N, b �= 0, and assume that the fraction a/b is irreducible; that is
a and b are relatively prime.

The equation (a/b)2 = n gives nb = a2/b. Since the left-hand side is an integer,
we see that b divides a2. We claim that b = 1. If not then, by the Fundamental
Theorem of Arithmetic (Section 1.3), b must have a prime divisor p. Now, p divides
a2 so that it must also divide a itself (Corollary to Proposition 1.3.1). Hence p is a
common divisor of a and b which is a contradiction since we assumed that a/b was
irreducible. Thus b = 1, and the equality above reduces to n = a2. Our statement
follows again.

We now continue to follow Dedekind, and use this statement just proved to show
that the Least Upper Bound Property fails in Q.

Assume that n ∈ N is not a perfect square, and define

Rn = {q ∈ Q | q < 0 or q2 < n} and Sn = {q ∈ Q | q ≥ 0 and q2 > n}.

Since n is not a perfect square, by the above, q2 �= n, that is, q2 < n or q2 > n, for
all rational numbers q ∈ Q. This shows that, Rn ∪ Sn = Q and Rn ∩ Sn = ∅. It is
easy to see that any element in Rn is a lower bound for Sn , and any element in Sn is
an upper bound for Rn .

We now claim that neither sup Rn nor inf Sn exist within Q.
Let q ∈ Q, and define

q ′ = q(q2 + 3n)

3q2 + n
∈ Q.

We calculate

q ′ − q = q(q2 + 3n)

3q2 + n
− q = q

(
q2 + 3n

3q2 + n
− 1

)
= 2q(n − q2)

3q2 + n
.

Moreover, we have4

q ′2 − n = q2(q2 + 3n)2

(3q2 + n)2
− n = q2(q2 + 3n)2 − n(3q2 + n)2

(3q2 + n)2

= q6 − 3nq4 + 3n2q2 − n3

(3q2 + n)2 = (q2 − n)3

(3q2 + n)2 .

4As before, here and in the sequel we will use basic algebraic identities without explicit references.
These will be treated in detail in Chapter 6.
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Now, let 0 < q ∈ Q, and construct q ′ ∈ Q as above. We claim that q cannot be
the supremum of Rn nor the infimum of Sn .

Since Rn ∪ Sn = Q, we have q ∈ Rn or q ∈ Sn .
If q ∈ Rn then q2 < n. By the two computations above, we have q ′ − q > 0 and

q ′2 − n < 0. These give q ′ > q and q ′ ∈ Rn . Thus, q cannot be the supremum of
Rn , and obviously it cannot be the infimum of Sn (as it does not belong to Sn).

If q ∈ Sn then q2 > n. By the two computations above, we have q ′ − q < 0 and
q ′2 − n > 0. These give q ′ < q and q ′ ∈ Sn . Thus, q cannot be the infimum of Sn ,
and it cannot be the supremum of Rn .

We conclude that no rational number can be sup Rn or inf Sn ; these do not exist
in Q. Hence, Q does not have the Least Upper Bound Property.

The subset Rn ⊂ Q (or the pair (Rn, Sn)), n ∈ N, is called a Dedekind cut.
In Dedekind’s approach the square root

√
n, for n ∈ N not a perfect square, as an

“irrational number” is (given by) the Dedekind cut Rn . This is the starting point of
Dedekind’s constructive approach to the real number system R.

We are now ready to introduce the general concept of a Dedekind cut:
A proper subset R ⊂ Q, ∅ �= R �= Q, is called a Dedekind cut if it satisfies the

following properties:

(D1) For every q ∈ R and q ′ ∈ Rc = Q \ R, we have q < q ′;
(D2) For every q ∈ R, there exists q ′ ∈ R such that q < q ′.

We will also use use the equivalent forms of (D1) and (D2) as follows:
(D3) If q ∈ R and q ′ < q, q ′ ∈ Q, then q ′ ∈ R;
(D4) If q ∈ Q is such that q ′ < q for all q ′ ∈ R then q ∈ Rc.

Remark Here and below the complement is always taken with respect to the
universal set Q, the set of rational numbers. Oftentimes, in particular in Dedekind’s
original work, a Dedekind cut is defined as a pair (R, Rc) of complementary subsets
of Q. Some authors define the Dedekind cuts using (D3) and (D4).

A Dedekind cut is called a real number. The set of real numbers is denoted
by R. Henceforth we will use the terms “R is a Dedekind cut” and “R ∈ R”
alternatively.

History
The term “real number” as an antonym to “imaginary number” is due to Descartes who introduced
them to describe real roots of polynomials as opposed to imaginary ones.

Given a rational number q ∈ Q, we let

Qq = {q ′ ∈ Q | q ′ < q}.

The proper subset Qq ⊂ Q, q ∈ Q, satisfies (D1), and also (D2) (for q ′ < q we
have q ′ < (q + q ′)/2 < q, q ′ ∈ Q). Hence Qq , q ∈ Q, is a Dedekind cut. Clearly,
sup Qq = q. We call Qq , q ∈ Q, the rational Dedekind cut defined by q.
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Conversely, if R ∈ R is a Dedekind cut such that sup R = q ∈ Q exists then
R = Qq . (Indeed, by (D2), we have q /∈ R, and, by (D3), we have Qq ⊂ R. Since
sup R = q, by (D1), we obtain Qq = R.)

Associating to q ∈ Q the rational Dedekind cut Qq ∈ R gives rise to an
embedding of the set of rational numbers Q into R.

Due to its frequent occurrence, the Dedekind cut Q0, the set of all negative
rational numbers, will be denoted by O .

If a Dedekind cut R ⊂ Q does not have a supremum in Q then R �= Qq for all
q ∈ Q. In this case R ∈ R is called an irrational number. The example at the end
of the previous section shows that, for n ∈ N, the Dedekind cut Rn is rational if and
only if n is a perfect square. Since there are infinitely many natural numbers that are
not perfect squares (such as primes) we obtain infinitely many irrational numbers.

A natural ordering < on the set of Dedekind cuts R is given setting R < S,
R, S ∈ R, if R ⊂ S and R �= S. Note that this ordering is an extension of the strict
total order < on the set of rational numbers Q since Qq ′ < Qq if and only if q ′ < q,
q, q ′ ∈ Q.

We now claim that < is a strict total order on R.
Transitivity is obvious. For trichotomy, let R, S ∈ R such that R �= S. Then, one

of the differences, R \ S or S \ R, is non-empty. Without loss of generality, we may
assume R \ S �= ∅ (since otherwise we interchange R and S). Let q ∈ R \ S. Since
q ∈ R, by (D3), we have Qq ⊂ R. Since q ∈ Sc, by (D1), q is an upper bound for
S, and hence S ⊂ Qq . These give S ⊂ R and S �= R. We obtain S < R. Trichotomy
follows.

We can also define R ≤ S (or S ≥ R), R, S ∈ R, if R ⊂ S. The set of real
numbers R with ≤ is a totally ordered set, that is, ≤ is transitive, antisymmetric
and total (see Section 0.2).

We now show that, unlike its rational predecessor Q, the set of real numbers
R has the Least Upper Bound Property; that is, a subset bounded above has a
supremum in R.

Theorem 2.1.1 If a non-empty set R ⊂ R is bounded above then supR exists in
R.

Proof Consider the set

⋃
R =

⋃
R∈R

R ⊂ Q,

the union of all Dedekind cuts in R. If a Dedekind cut S ∈ R is an upper bound for
R ⊂ R then R ⊂ S for all R ∈ R, so that we have

⋃R ⊂ S. Since this holds for
all upper bounds S ∈ R of R, the union

⋃R will be the least upper bound once we
show that it is a Dedekind cut.
Clearly,

⋃R is non-empty, and also proper since the complement Sc of any upper
bound S of R is disjoint from

⋃R.
For (D1), let q ∈ ⋃R and q ′ ∈ (

⋃R)c. The first relation means that q ∈ R for
a specific R ∈ R. Since (

⋃R)c =⋂R′∈R(R′)c (De Morgan’s identity), the second
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relation means that q ′ ∈ (R′)c for all R′ ∈ R; in particular, q ′ ∈ Rc. Since R is a
Dedekind cut, we obtain q < q ′.

For (D2), let q ∈⋃R. As before, we have q ∈ R for a specific R ∈ R. Since R
is a Dedekind cut, there exists q ′ ∈ R such that q < q ′. Since R ⊂ ⋃R, we obtain
q ′ ∈⋃R. Thus (D2) holds. We obtain that

⋃R is a Dedekind cut.
The theorem follows.

It is customary to extend the real number system R by the symbols ±∞ with
the understanding that −∞ < R < ∞ for any real number R ∈ R. With this, if a
non-empty set A ⊂ R is not bounded above then we write supA = ∞, and if A is
not bounded below then we write infA = −∞.

We now turn to the arithmetic properties of R. We define the operation of
addition by setting

R + S = {q + r | q ∈ R, r ∈ S}, R, S ∈ R.

We proceed to show that R + S, R, S ∈ R, is a Dedekind cut, so that the operation
of addition is well-defined on R.

Let R, S ∈ R. Clearly, R + S ⊂ Q is non-empty, and it is also proper since the
sum of upper bounds for R and S is an upper bound for R + S.

For (D1), let q + r ∈ R + S, q ∈ R, r ∈ S, and s ∈ (R + S)c. Since s �= q + r ,
we have s < q + r or s > q + r . We claim that the first inequality cannot happen.
Indeed, s < q+r implies s−q < r so that s−q ∈ S. Thus, s = q+(s−q) ∈ R+S,
a contradiction. Thus, q + r < s, and (D1) follows.

For (D2), let q ∈ R and r ∈ S. By (D2) applied to R and S resp., there exist q ′ ∈
R and r ′ ∈ S such that q < q ′ and r < r ′. Hence, we have q+ r < q ′ + r ′ ∈ R+ S,
and (D2) follows. Thus, R + S is a Dedekind cut.

Note that the operation of addition on Dedekind cuts is an extension of the
addition in Q since Qq + Qr = Qq+r , q, r ∈ Q.

It is clear that the operation of addition is commutative and associative.
We now claim that O = Q0 is the additive identity:

R + O = R, R ∈ R.

Indeed, recalling that O is the set of negative rational numbers, for q ∈ R and
q ′ ∈ O , we have q + q ′ < q, so that, by (D1), q + q ′ ∈ R. This gives the inclusion
R + O ⊂ R. For the reverse inclusion, let q ∈ R. By (D2), there exists q ′ ∈ R such
that q < q ′. We have q = q ′ + (q − q ′) ∈ R + O . This gives R ⊂ R + O . The
claim follows.

Remark Note that O as an additive identity is unique. Indeed, if O ′ ∈ R is any
additive identity then we have O ′ = O ′ + O = O + O ′ = O .

Before we proceed any further, we show an important and crucial property of the
Dedekind cut to be used in the sequel:
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Proposition 2.1.1 Let R ∈ R be a Dedekind cut. (a) For every 0 < ε ∈ Q there
exists q ∈ R such that q+ ε ∈ Rc. (b) Let R > O. Then, for every 1 < a ∈ Q, there
exists 0 < q ∈ R such that q · a ∈ Rc.

Proof Assume that part (a) of the proposition is false. This means that there exists
0 < ε ∈ Q such that, for any q ∈ R, we have q + ε ∈ R. A simple use of Peano’s
Principle of Induction shows that q + nε ∈ R for any n ∈ N. (Indeed, the general
induction step is given by q + (n+ 1)ε = (q + nε)+ ε.) Now let q ∈ R and r ∈ Rc

so that q < r . By the Archimedean Property of Q (Proposition 1.4.2), there exists
n ∈ N such that 0 < r − q < nε. This gives r < q + nε ∈ R. This contradicts to
(D1). Part (a) of the proposition follows.

Assume that part (b) of the proposition is false. This means that there exists
1 < a ∈ Q such that, for any 0 < q ∈ R we have q · a ∈ R. Once again a
simple use of Peano’s Principle of Induction shows that q · an ∈ R for any n ∈ N.
Now let 0 < q ∈ R (q exists since R > O), and r ∈ Rc so that q < r . By the
Archimedean Property of Q again, there exists n ∈ N such that 0 < r/q < an . This
gives r < q · an ∈ R. This contradicts to (D1). Part (b) of the proposition follows.

We now introduce the negative of a Dedekind cut R ∈ R as

−R = {q ∈ Q | − q > r for some r ∈ Rc}.

We claim that, for R ∈ R, −R ⊂ Q is a Dedekind cut. Since Rc is non-empty, so
is −R. The complement (−R)c is the set of all rational numbers q ′ ∈ Q such that
−q ′ ≤ r ′ for all r ′ ∈ Rc. Since Rc is bounded below (by any element in R), we see
that (−R)c s also non-empty.

For (D1), let q ∈ −R and q ′ ∈ (−R)c. Then −q > r for some r ∈ Rc, and
−q ′ ≤ r ′ for all r ′ ∈ Rc. Hence, we have −q > r ≥ −q ′ so that q < q ′.

For (D2), let q ∈ −R with −q > r ∈ Rc. Let q ′ = (q − r)/2 ∈ Q. We have
−q ′ = (r − q)/2 > r so that q ′ ∈ −R. We also have q < (q − r)/2 = q ′, so that
(D2) follows.

Summarizing, we obtain that the negative is well defined in R.
For rational Dedekind cuts, we have

−Qq = Q−q , q ∈ Q.

Indeed, using the fact that Qc
q is the set of rational numbers ≥ q, we calculate

−Qq = {q ′ ∈ Q | − q ′ > r for some r ∈ Qc
q}

= {q ′ ∈ Q | − q ′ > q}
= {q ′ ∈ Q | q ′ < −q} = Q−q .

We now claim that the negative is the additive inverse:

R + (−R) = O, R ∈ R.
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To show this, we first note that q ∈ R and q ′ ∈ −R with −q ′ > r ∈ Rc

imply q + q ′ < q − r < 0, so that R + (−R) ⊂ O . Conversely, let s ∈ O , a
negative rational number. We apply Proposition 2.1.1 above to 0 < ε = −s/2 ∈ Q

to obtain q ∈ R such that q + ε = q − s/2 ∈ Rc. Letting q ′ = s − q ∈ Q,
we have −q ′ = q − s > q − s/2 ∈ Rc so that q ′ ∈ −R. With this, we have
q + q ′ = q + (s − q) = s ∈ O . Thus, we have O ⊂ R + (−R), and the claim
follows.

Remark The additive inverse is unique. Indeed, if R+ R′ = O , R, R′ ∈ R, then we
have R′ = R′ + O = R′ + (R+ (−R)) = (R′ + R)+ (−R) = (R+ R′)+ (−R) =
O + (−R) = −R.

Using the additive inverse property just proved, we obtain the cancellation law
for addition: A + C = B + C , A, B, C ∈ R, implies A = B. (Indeed, add −C
to both sides of the first equation and use associativity.) This, in turn, also gives
−(−A) = A, A ∈ R (since A + (−A) = (−A)+ (−(−A)) = O).

The sum and the negative satisfy the usual properties with respect to the order
relation: A < B implies −B < −A and A + C < B + C for any C ∈ R. In
particular, we call A ∈ R positive if A > O , and this holds if and only if −A is
negative, that is, −A < O .

Before turning to the multiplicative structure of R, we introduce the absolute
value of a Dedekind cut R ∈ R as

|R| =
{

R if R ≥ 0,

−R if R < 0.

As before (Section 1.4), we have the usual properties of the absolute value. For
R ∈ R, we have | − R| = |R| and R ≤ |R|. In addition, if 0 ≤ C ∈ R then
−C ≤ R ≤ C if and only if |R| ≤ C . Consequently, the triangle inequality holds:

||R| − |S|| ≤ |R + S| ≤ |R| + |S|, R, S ∈ R.

We now procceed to discuss the multiplicative structure of R. We first define the
product of non-negative Dedekind cuts R, S ≥ 0 as

R · S = {q · r | 0 ≤ q ∈ R, 0 ≤ r ∈ S} ∪ O.

Note that, if R = O or S = O then R · S = O (since the first set in the union
above is empty). To show that R · S is a Dedekind cut we may therefore assume that
R, S > 0, that is, we have O ⊂ R ∩ S and R �= O �= S.

Clearly, R · S is non-empty (since it contains O). Let q ′ ∈ Rc and r ′ ∈ Sc.
Then, by (D1) (applied to R and S), for any 0 ≤ q ∈ R and 0 ≤ r ∈ S, we have
0 ≤ q < q ′ and 0 ≤ r < r ′, so that 0 ≤ q ·r < q ′ ·r ′. Hence we have q ′ ·r ′ ∈ (R ·S)c;
in particular, (R · S)c is non-empty.
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For (D1), let s ∈ (R · S)c. Then, s > 0, and we need to show that q · r < s
for all 0 < q ∈ R and 0 < r ∈ S. Assume not. If 0 < s ≤ q · r for some
0 < q ∈ R and 0 < r ∈ S then 0 < s/q ≤ r , so that, by (D3), 0 < s/q ∈ S. Hence
s = q · s/q ∈ R · S, a contradiction. Thus (D1) follows.

For (D2), we let 0 ≤ q ∈ R and 0 ≤ r ∈ S and find 0 ≤ q ′ ∈ R and 0 ≤ r ′ ∈ S
such that q < q ′ and r < r ′. Then we have q · r < q ′ · r ′ and (D2) follows.

We conclude that the product R · S, R, S ∈ R, is a Dedekind cut.
As a byproduct, we also obtain that R, S ≥ O , R, S ∈ R, imply R · S ≥ O with

R · S = O if and only if R = O or S = O .
We now extend the definition of the product to all Dedekind cuts R, S ∈ R using

the absolute value as

R · S =

⎧⎪⎪⎨
⎪⎪⎩
−(R · |S|) if R ≥ O and S < O

−(|R| · S) if R < O and S ≥ O

|R| · |S| if R, S < O.

It follows immediately that the product of any Dedekind cuts is a Dedekind cut, so
that multiplication is well-defined in R.

Commutativity and associativity of the multiplication and distributivity follow
directly from the definitions, first for non-negative Dedekind cuts, and then extended
to all Dedekind cuts via the identity −(−R) = R, R ∈ R, established earlier.

The fact that Q1 = {q ∈ Q | q < 1}, henceforth denoted by I , is the
multiplicative identity also follows directly from the definitions:

R · I = R, R ∈ R.

The existence of multiplicative inverse needs some elaboration.
First, for R > O , R ∈ R, we define the multiplicative inverse of R by

R−1 = {0 < q ∈ Q | 1/q > r for some r ∈ Rc} ∪ O ∪ {0}.

For R < O , we define

R−1 = −|R|−1.

By trichotomy, R−1 is now defined for all Dedekind cuts R �= O .

Remark The definition of R−1 is analogous to that of −R replacing the additive
structure with the multiplicative structure.

Given O �= R ∈ R, we now need to show that R−1 is a Dedekind cut. We may
assume R > O . Clearly R−1 is non-empty. The complement (R−1)c consists of all
positive rational numbers 0 < q ′ ∈ Q such that 1/q ′ ≤ r ′ for all r ′ ∈ Rc. Since Rc

is bounded below (by any element in R), we see that (−R)c is also non-empty.
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For (D1), let q ∈ R−1 and q ′ ∈ (R−1)c. If q ≤ 0 then q < q ′ holds automatically
since q ′ > 0. If q > 0 then 1/q > r for some r ∈ Rc. Since 1/q ′ ≤ r ′ for all
r ′ ∈ Rc, we have 1/q > r ≥ 1/q ′, so that q < q ′. (D1) follows.

For (D2), let q ∈ R−1. We may assume q > 0 since R > O . We have 1/q > r
for some r ∈ Rc. Let q ′ ∈ Q be defined by q ′ = 2/(r + 1/q). We have 1/q ′ =
(r + 1/q)/2 > r so that q ′ ∈ R−1. We also have q < 2/(r + 1/q) = q ′, so that
(D2) follows.

Thus, R−1 is a Dedekind cut, and we conclude that the multiplicative inverse is
well-defined in R. Note also that R > 0 implies R−1 > 0.

As an easy consequence of the definitions, for rational Dedekind cuts, we have

Q−1
q = Q1/q , 0 �= q ∈ Q.

Finally, we need to show that the multiplicative inverse of a non-zero Dedekind
cut R ∈ R, R �= O , is R−1 defined above; that is, we have

R · R−1 = I, R ∈ R.

First, let R > O . Combining the definitions of the product and the multiplicative
inverse, we have

R · R−1={q · q ′ | 0 < q ∈ R, 0 < q ′ ∈ Q such that 1/q ′ > r for some r ∈ Rc} ∪ O ∪ {0}.

To begin with, we note that 0 < q ∈ R and 0 < q ′ ∈ Q with 1/q ′ > r ∈ Rc imply
q · q ′ < q/r < 1 since, by (D1), we have q < r . Thus, we have R · R−1 ⊂ I .

Conversely, let 0 < s ∈ I , that is, s ∈ Q is a rational number with 0 < s < 1. We
now apply part (b) of Proposition 2.1.1 for a = 2/(s + 1) > 1 to obtain 0 < q ∈ R
such that qa ∈ Rc. Let q ′ = s/q ∈ Q. We then have 1/q ′ = q/s > 2q/(s + 1) =
qa ∈ Rc. Therefore q · q ′ = s ∈ R · R−1. We obtain I ⊂ R · R−1.

Combining these, we obtain that R−1 is the multiplicative inverse of R.
For R < O , we have R−1 = −|R|−1 < 0. Using this we compute

R · R−1 = |R| · |R−1| = |R| · |R|−1 = I,

where the last equality is by the previous step. The multiplicative inverse property
above now follows in general.

Simple consequences of the existence of the multiplicative inverse are: (1) The
cancellation law for multiplication: R · T = S · T , R, S, T ∈ R, T �= O , implies
R = S; (2) Uniqueness of the multiplicative inverse: R · R′ = I , R, R′ ∈ R, implies
R′ = R−1; (3) (R−1)−1 = R, R ∈ R; (4) No zero divisors: R �= O �= S imply
R · S �= O .

With this we finished proving that the set of Dedekind cuts R forms a field, and
it is the extension of the field of rational numbers Q.



84 2 Real Numbers

In addition, R is a totally ordered field with respect to the order relation <

extended from that of Q; that is, < is a strict total order on R with cancellation
law for addition, and R > O and S > O , R, S ∈ R, imply R · S > O . As
direct consequences, we obtain: (1) The cancellation law for multiplication for
inequalities: R · T < S · T implies R < S if T > O , and R > S if T < O;
(2) If R �= O , R ∈ R, then R2 > O; in particular, I > O; (3) O < R < S imply
O < S−1 < R−1.

Note that the symbols ±∞ introduced previously conform with the usual
arithmetic properties; for example, we have r ±∞ = ±∞, r ∈ R; r · (±∞) = ±∞
if 0 < r ∈ R, r · (±∞) = ∓∞ if 0 > r ∈ R, etc.

As shown earlier, R also has the Least Upper Bound Property: A subset bounded
above, resp. below, has supremum, resp. infimum, attained in R. We briefly refer to
this property as (Dedekind) completeness of R. We also say that R is a complete
ordered field.

Dedekind’s construction at the beginning of this section shows that, for n ∈ N

not a perfect square, Rn = {q ∈ Q | q < 0 or q2 < n} is a Dedekind cut. Moreover,
we claim

R2
n = Rn · Rn = {q · r | 0 ≤ q, r ∈ Q, q2 < n, r2 < n} ∪ O = Qn,

where Qn = {q ∈ Q | q < n} is the Dedekind cut corresponding to the rational
(actually natural) number n ∈ N.

Indeed, if q2 < n and r2 < n, 0 ≤ q, r ∈ Q, then we have (q ·r)2 = q2 ·r2 < n2.
This gives q ·r < n. We obtain R2

n ⊂ Qn . For the converse, assume 0 < s ∈ Qn ; that
is, we have 0 < s < n, s ∈ Q. We let 0 < ε = (n− s)/(2n+ 1) ∈ Q and apply part
(a) of Proposition 2.1.1 to obtain q ∈ Rn such that q + ε ∈ Rc

n = Sn . We thus have
q2 < n < (q+ ε)2 = q2+2qε+ ε2. Since ε = (n− s)/(2n+1) < n/(2n+1) < 1
and q < n (as q2 < n ≤ n2), we obtain

0 < n − q2 < 2qε + ε2 < 2qε + ε = (2q + 1)ε = (2q + 1)
n − s

2n + 1
< n − s.

This gives s < q2 ∈ R2
n . Since R2

n is a Dedekind cut, we obtain s ∈ R2
n . Thus,

Qn ⊂ R2
n , and the claim follows.

In what follows we will usually denote generic real numbers, the elements of
R, by lower case letters of the English alphabet.5 We also think of the natural
embedding of Q to R as identification, and write q ∈ Q for the Dedekind cut Qq . In
addition, we write 0 (zero) for O , and 1 (one) for I . Finally, in R we use customary
notations such as r − s for r + (−s), 1/r for r−1, etc.

By the discussion above, for n ∈ N not a perfect square, we denote
√

n = Rn ∈
R, and then we have (

√
n)2 = n. If n = a2, a ∈ N0, is a perfect square then we

define
√

n = √a2 = a. (This includes
√

0 = 0.) With this, the square root of any
non-negative integer is defined in R. This can easily be extended to square roots of

5We will also use Greek letters especially in trigonometry; see Chapter 11.
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non-negative rational numbers, and with some additional work, to square roots of
non-negative real numbers. We do not pursue this approach here as more advanced
methods will be given later to define the mth root, m ∈ N, of real numbers.

For future purposes, we now briefly digress from the main line of our study, and
venture out to a related subject: rational approximations of square roots of natural
numbers. To motivate this, we return to triangular numbers Tn = ∑n

i=1 i = n(n +
1)/2, n ∈ N, introduced in Section 0.4. We ask the following question: When is a
triangular number a perfect square?

A quick inspection shows that the first four perfect square triangular numbers are
T1 = 12, T8 = 62, T49 = 352, and T288 = 2042.

The key to understand how to construct these numbers lies in Pell’s equation

x2 − d · y2 = 1.

Here d ∈ N is a given non-square natural number, and the solution amounts to
finding all pairs (x, y) ∈ N × N (for this common d) such that the equation is
satisfied.

History
The history of Pell’s equation is circuitous and goes back to antiquities, due to the fact that the ratio
x/y of a solution is a rational approximation of

√
d. The special case d = 2 was well-known

to the Pythagoreans (c. 600 – 500 BCE). Later Archimedes posed and studied problems essentially
equivalent to solving Pell’s equation for d = 3, e.g. he found the rational approximation 1351/780
of
√

3.
The first breakthrough in solving Pell’s equation appeared in Brahmagupta’s Brahma-Sphuta-
Siddhanta (Chapter 18). (See the epitaph of this chapter.) He found an inductive method of
constructing an infinite sequence of solutions starting from a given one (or two). His method is
based on the so-called Brahmagupta identity; see below. The first general method of solving Pell’s
equation was given by Bhāskara II around 1150.
In the Western hemisphere, Pell’s equation has been rediscovered in the 17th century by Fermat
and the English mathematicians John Wallis (1616 – 1703) and Lord William Brounckner (1620 –
1684). Finally, Lord Brounckner’s solution was mistakenly attributed by the famous Swiss
mathematician Leonhard Euler (1707 – 1783) to John Pell (1611 – 1685) who translated an algebra
book from German to English with a discussion on this solution.

The Brahmagupta identity alluded to above is the following

(x2 − d · y2)(u2 − d · v2) = (ux + dvy)2 − d · (vx + uy)2.

The validity of this identity is a straightforward computation.6 Its significance lies
in the simple consequence that if (x, y) and (u, v) are two (not necessarily distinct)
solutions of Pell’s equation (for a given d) then a new solution is (ux+dvy, vx+uy)

(for the same d).
More precisely, given d ∈ N, a pair (u, v) ∈ N × N is called the fundamental
solution for Pell’s equation if it is a solution with the smallest u ∈ N. Then all
solutions of Pell’s equation form an infinite sequence of pairs (xk, yk) ∈ N × N,

6Here and in the sequel we assume familiarity with basic algebraic computations, and defer a
thorough treatment to Chapter 6.
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k ∈ N0, which, starting with (x0, y0) = (u, v), is defined inductively (k ⇒ k + 1)7

by

(xk+1, yk+1) = (uxk + dvyk, vxk + uyk), k ∈ N0.

Remark We briefly indicate how to solve Brahmagupta’s equation x2 − 92 · y2 = 1
in the epitaph for this chapter above. First, we reduce the equation to x2−23·z2 = 1,
with z = 2y ∈ N even. The fundamental solution (u, v) = (24, 5) (with v = z = 5
odd) of this latter equation can be quickly found since 242 − 23 · 52 = 242 − (24−
1)(24+ 1) = 242 − (242 − 1) = 1. Now, we use the inductive formula above with
(x0, y0) = (u, v) = (24, 5) to obtain (x1, y1) = (24 ·24+23 ·5 ·5, 5 ·24+24 ·5) =
(1151, 240). This gives8 (x, y) = (1151, 120).

Returning to our triangular numbers, assume Tn = m2, for some m, n ∈ N.
Hence n(n + 1) = 2m2, or equivalently, (2n + 1)2 − 2 · (2m)2 = 1. We see that
Tn = m2, m, n ∈ N, if and only if (x, y) = (2n + 1, 2m) is a solution to Pell’s
equation (d = 2)

x2 − 2 · y2 = 1.

Since (3, 2) is obviously the fundamental solution, the discussion above (with u = 3
and v = 2) gives all solutions in the form of the infinite sequence of pairs (xk, yk) ∈
N× N, k ∈ N0, (x0, y0) = (3, 2), defined inductively by

(xk+1, yk+1) = (3xk + 4yk, 2xk + 3yk), k ∈ N0.

The first four tems of this sequence9 are (3, 2), (17, 12), (99, 70), (577, 408).
Note that a simple induction shows that the first coordinate xk is always odd, and
the second yk is even.
Finally, since x = 2n + 1, we see that if Tn , n ∈ N, is a perfect square then the next
is T3n+1+√8n(n+1). This gives all the triangular numbers that are perfect squares in
the form of the infinite sequence {Tnk }k∈N0 , Tn0 = 1, defined inductively by

7This statement can be proved by considering the convergents (initial segments) of the continued
fraction expansion for the irrational number

√
d. This goes beyond the scope of our discussion,

and, in specific examples in the sequel, we will always tacitly assume that the infinite sequence we
obtain from the fundamental solution by induction gives all the solutions.
8The reader versed in number theory may observe the continued fraction expansion

√
23 = 4 +

1
1+ 1

3+ 1
1+ 1

8+ 1
1+ 1

3+ 1
1+···

with period four in 1, 3, 1, 8. The 8th convergent 4 + 1
1+ 1

3+ 1
1+ 1

8+ 1
1+ 1

3+ 1
1+0

is

1151/240.
9Note the continued fraction expansion

√
2 = 1 + 1

2+ 1
2+ 1

2+ 1
2+···

and its convergents

1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, . . ..



2.1 Real Numbers via Dedekind Cuts 87

nk+1 = 3nk + 1+√8nk(nk + 1), k ∈ N0.

Using this, a more extended initial list of perfect square triangular numbers is:
T1 = 12, T8 = 62, T49 = 352, T288 = 2042, T1681 = 11892, T9800 = 69302,
T57121 = 403912, T332928 = 2354162, etc.

We now return to the main line, and note that completeness of R implies that the
Archimedean property holds in R:

Theorem 2.1.2 Let 0 < r, s ∈ R. Then there exists n ∈ N such that s ≤ nr.

Proof Assume the Archimedean Property fails. This means that there exist 0 <

r, s ∈ R such that nr ≤ s for all n ∈ N. The set A = {nr | n ∈ N} is therefore
bounded above (with s as an upper bound). Let s0 = sup A ∈ R. Since s0 is the
least upper bound for A, the real number s0 − r < s0 is not an upper bound for A.
This means that nr > s0 − r holds for some n ∈ N. Thus, we have s0 < (n + 1)r , a
contradiction.

We now turn to the definition and properties of non-negative integral exponents
of real numbers.

Let 0 �= a ∈ R. We define the powers an , n ∈ N0, inductively as follows. For
n = 0, we set a0 = 1. Assuming that an is defined for n ∈ N0, we let an+1 = a ·an .
By Peano’s Principle of Induction, an is defined for all n ∈ N0.

For m, n ∈ N0 and 0 �= a, b ∈ R, counting factors in strings in various
exponential expressions, we obtain the following identities:

am+n = am · an, (an)m = am·n, (a · b)n = an · bn .

These identities can be established by simple induction. We prove the first
formula by induction with respect to m ∈ N0. The formula obviously holds for
m = 0. For the general induction step m ⇒ m + 1, we calculate

am+1 · an = (a · am) · an = a · (am · an) = a · am+n = am+n+1.

The first formula follows.
Similarly, the second formula obviously holds for m = 0, and, for the general

induction step m ⇒ m + 1, we calculate

(an)m+1 = an · (an)m = an · amn = an+mn = an(m+1).

The proof of the last formula is simple.

Example 2.1.1 Let 2 ≤ n ∈ N. Show that the number 22(2n−1) + 1 is composite.
We add and subtract a suitable power of 2 and calculate as follows

22(2n−1) + 1 = 22(2n−1) + 2 · 22n−1 + 1− 22n

=
(

22n−1 + 1
)2 − (2n)2
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=
(

22n−1 − 2n + 1
) (

22n−1 + 2n + 1
)

.

The example follows.

For n = 2, 3, 4, 5, 6, the example above gives

26 + 1 = (23 − 22 + 1)(23 + 22 + 1) = 5 · 13

210 + 1 = (25 − 23 + 1)(25 + 23 + 1) = 52 · 41

214 + 1 = (27 − 24 + 1)(27 + 24 + 1) = 5 · 29 · 113

218 + 1 = (29 − 25 + 1)(29 + 25 + 1) = 5 · 13 · 37 · 109

222 + 1 = (211 − 26 + 1)(211 + 26 + 1) = 5 · 397 · 2113,

where the final equalities are the prime factorizations.10

Example 2.1.2 Which is bigger 3317 or 1520?
We first notice that 33 > 25 and 15 < 24. With these we calculate

3317 > (25)17 = 285,

whereas

1520 < 1620 = (24)20 = 280.

Thus, we have 3317 > 1520.

Example 2.1.3 For n ∈ N, which is bigger, n2 or 2n?
We begin to evaluate a few cases: 12 < 21 (n = 1), 22 = 22 (n = 2), 32 > 23

(n = 3), 42 = 24 (n = 4), and 52 < 25 (n = 5). Based on these, we claim

n2 < 2n, 5 ≤ n ∈ N.

We show this by induction11 with respect to 5 ≤ n ∈ N. The case n = 5 has just
been listed above. For the general induction step n ⇒ n + 1, we calculate

2n+1 = 2 · 2n > 2n2 > n2 + 2n + 1 = (n + 1)2,

where the last inequality is because n2 > 2n + 1, 3 ≤ n ∈ N. The claim follows.

A somewhat more involved estimate (to be used in the sequel) is contained in the
following:

10The factorization of 222 + 1 was a problem in the M A� National Convention, 1991.
11This is an example for an induction that starts at n = 5.
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Example 2.1.4 We have

nn+1 > (n + 1)n, 3 ≤ n ∈ N.

To show this we use induction with respect to 3 ≤ n ∈ N. For n = 3, we have
34 = 81 > 64 = 43. (Note that the inequality fails for n = 1, 2.) For the general
induction step n − 1⇒ n, we assume that

(n − 1)n > nn−1

holds for some 4 ≤ n ∈ N. (The shift in the value of n to n − 1 is of technical
convenience.) In the next steps we will use all the identities of exponentiation above.
We multiply both sides by n(n + 1)n , and obtain

n(n − 1)n(n + 1)n = n(n2 − 1)n > nn(n + 1)n,

where we used (n − 1)(n + 1) = n2 − 1. This gives

n2n+1 = n · (n2)n > n(n2 − 1)n > nn(n + 1)n .

Dividing by nn , we obtain the desired inequality stated above. The induction is
complete and the inequality follows.

Example 2.1.5 For n ∈ N, define the finite sequence an inductively as follows.
Let a1 = (1, 1), and construct an+1 from an by inserting the sum between any
two consecutive terms in an as a new term. We thus have a2 = (1, 2, 1), a3 =
(1, 3, 2, 3, 1), a4 = (1, 4, 3, 5, 2, 5, 3, 2, 1), etc. Let tn , resp. sn , n ∈ N, be the
number of terms, resp., the sum of all terms of an . Determine tn and sn , n ∈ N.

We have t1 = 2 and tn+1 = tn + (tn − 1) = 2tn − 1, n ∈ N (as there are tn − 1
“gaps” between the consecutive terms in the sequence an). Letting t ′n = tn − 1,
n ∈ N, we obtain t ′1 = 1 and t ′n+1 = 2t ′n , n ∈ N. This is the inductive formula for
the powers of 2 (with the exponent shifted), so that we obtain t ′n = 2n−1, n ∈ N.
Playing this back to the original sequence, we get tn = 2n−1 + 1, n ∈ N. As for the
sum, we have s1 = 2 and sn+1 = sn+(2sn−2) = 3sn−2, n ∈ N (as each term in the
sequence an has two neighbors except the two 1’s at the end). Letting s′n = sn − 1,
n ∈ N, we obtain s′1 = 1 and s′n+1 = 3s′n , n ∈ N. This is the inductive formula for
the powers of 3 (with the exponent shifted), so that we obtain s′n = 3n−1, n ∈ N.
Playing this back to the original sequence, we get sn = 3n−1 + 1, n ∈ N.

Example 2.1.6 Find all natural numbers a, b, c ∈ N, a < b, such that 2a + 2b and
2a + 2b + 2c are both perfect squares.12

12The special case 28 + 211 = 482 and finding c ∈ N was a problem in the Hungarian Olympiad,
1981. (See the case k = 4 above.)
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Setting 2a + 2b = u2 and 2a + 2b + 2c = v2, u, v ∈ N, we have 2c = v2− u2 =
(v − u)(v + u). This gives

v − u = 2k+1 and v + u = 2l+1, k < l, k, l ∈ N,

where c = k + l + 2. (Note that k = −1, 0 cannot happen.) Solving, we obtain

v = 2l + 2k and u = 2l − 2k .

Returning to the beginning of the problem, using a < b, we obtain

2a + 2b = 2a
(

2b−a + 1
)
= u2 =

(
2l − 2k

)2 = 22l − 2 · 2l · 2k + 22k

= 22k
(

22(l−k) − 2l−k+1 + 1
)

.

Comparing, we obtain a = 2k, and hence

2b−a = 22(l−k) − 2l−k+1 = 2l−k+1
(

2l−k−1 − 1
)

.

This holds if and only if l − k − 1 = 1, or equivalently, l = k + 2. With this we also
obtain b − a = l − k + 1 = 3.

Summarizing, we obtain

a = 2k, b = 2k + 3, c = 2k + 4, k ∈ N.

Note the first few cases, k = 1, 2, 3, 4, as follows

22 + 25 = 62 22 + 25 + 26 = 102

24 + 27 = 122 24 + 27 + 28 = 122

26 + 29 = 242 26 + 29 + 210 = 402

28 + 211 = 482 28 + 211 + 212 = 802.

The concept of power an , n ∈ N0, can be extended to negative integral exponents
in a straightforward manner requiring that the identities should hold in the extended
range. Setting m + n = 0 in the first exponentiation identity, and using a0 = 1, we
see that we must define

a−m = 1

am
, m ∈ N.

It is an easy case-by-case verification that the identities above hold for the extended
range m, n ∈ Z. In addition, we also have the new identity
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am−n = am

an
, m, n ∈ Z.

In the next example we briefly return to base 10 arithmetic.

Example 2.1.7 Show that, for n ∈ N, we have

n︷ ︸︸ ︷
11 . . . 1

n︷ ︸︸ ︷
22 . . . 2 =

n︷ ︸︸ ︷
33 . . . 3(

n︷ ︸︸ ︷
33 . . . 3+1).

where the overbraces indicate the number of occurrences of the respective digits.
The crux is to write the number with n repeated digits d ∈ {1, 2, . . . , 9} as

n︷ ︸︸ ︷
dd . . . d = d

10n − 1

9
.

With this, we have

n︷ ︸︸ ︷
11 . . . 1

n︷ ︸︸ ︷
22 . . . 2 = 10n − 1

9
· 10n + 2

10n − 1

9
= 10n − 1

3
· 10n + 2

3

= 10n − 1

3
·
(

10n − 1

3
+ 1

)
=

n︷ ︸︸ ︷
33 . . . 3(

n︷ ︸︸ ︷
33 . . . 3+1).

The example follows.

History
The term power that we use nowadays is attributed to Euclid of Alexandria (c. 300 BCE). The
power a2 is called the square of a because it represents the area of a square with side length
a. Similarly, a3, the cube of a, represents the volume of a cube with edge length a. The first
recorded use of the identities of natural exponents was by Archimedes who established the identity
10m+n = 10m · 10n , m, n ∈ N. The term exponent is attributed to Michael Stifel (1487 – 1567)
in 1544. The term theory of indices (the theory of exponentiation) had a long and widespread use
since its introduction by Samuel Jeake (1623 – 1690). The first modern notation for exponents was
introduced by Descartes in his work La géometrie (published in 1637). It is an interesting fact that
Isaac Newton (1642 – 1727) and some of his contemporaries used Descartes’ power notation only
for exponents greater than or equal to 3. For quadratic terms such as a2 and b2 they wrote a · a and
b · b.

Example 2.1.8 For n = 1, 2, 3, 4, calculate the number

22n + 1.

What can be conjectured about these numbers?
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We have

221 + 1 = 22 + 1 = 5,

222 + 1 = 24 + 1 = 17,

223 + 1 = 28 + 1 = 257,

224 + 1 = 216 + 1 = 65, 537.

We notice that 5, 17, and 257 are primes. It turns out that 65, 537 is also a prime.
For this we need only to make sure that it has no prime divisors up to 257 (since
2572 = 66, 049 > 65, 537). See Section 1.3 for a list of primes up to 257.

History
Fermat conjectured that the numbers 22n + 1 are primes for all n ∈ N. Because of this, they are
called Fermat numbers. In 1732 Euler discovered that the number

225 + 1 = 232 + 1 = 4, 294, 967, 297 = 641 · 6, 700, 417

is composite.
Beyond the ones given above, it is not known how many Fermat numbers are primes. This is an
important problem not only in number theory but also in geometry, since Gauss showed that, for p
a prime, a regular p-sided polygon is constructible by straightedge (unmarked ruler) and compass
if and only if the pth Fermat number 22p + 1 is a prime.

The next two problems are of related genre, still concerning large powers of small
numbers.

Example 2.1.9 13 Determine the prime factorization of the number 218 + 1.
We have

218 + 1 =
(

29
)2 + 2 · 29 + 1− 2 · 29 =

(
29 + 1

)2 −
(

25
)2

=
(

29 + 25 + 1
) (

29 − 25 + 1
)
= 545 · 481.

Now, a simple inspection gives 545 = 5 · 109 and 481 = 13 · 37. With these, we
finally arrive at 218 + 1 = 5 · 13 · 37 · 109.

Example 2.1.10 What is the largest exponent m ∈ N such that 2m divides 3218 − 1?
We have

3218 − 1 = 32·217 − 1 =
(

3217
)2 − 1 =

(
3217 + 1

) (
3217 − 1

)
.

This factorization can be repeated inductively, and we obtain

13Many variants of this are used in mathematical contests and preparations; see for example the
prime factorization of the number 222 + 1 in the M A� National Convention, 1991.
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3218 − 1 =
(

3217 + 1
) (

3216 + 1
)
· · ·
(

322 + 1
) (

32 + 1
)

(3+ 1) · 2.

We now use the simple fact that, for any odd number a ∈ N, the square a2 + 1 is
2 times an odd number. (Indeed, writing a = 2k + 1, k ∈ N0, we have a2 + 1 =
(2k + 1)2 + 1 = 4k2 + 4k + 2 = 2(2k(k + 1)+ 1).) We apply this to each factor of
the product above with a = 32l

, l = 0, 1, 2, . . . , 16, except the last two, and obtain
that each is a single multiple of 2 (times an odd number). Counting all the 2’s, we
get m = 17+ 2+ 1 = 20.

We close this section with the Bernoulli inequality. It will be of paramount
importance in our subsequent study.

Bernoulli Inequality (Integral Exponent) Let −1 < r ∈ R. Then, for any n ∈
N0, we have

(1+ r)n ≥ 1+ nr.

Sharp inequality holds for r �= 0 and n ≥ 2.

Proof We use induction with respect to n ∈ N0.
The initial step is obvious, since, by definition, we have (1+ r)0 = 1.
For the general induction step n ⇒ n + 1, we assume that the inequality above

holds, and show that it also holds for n + 1. We calculate

(1+ r)n+1 = (1+ r)(1+ r)n ≥ (1+ r)(1+ nr)

≥ 1+ (n + 1)r + nr2 ≥ 1+ (n + 1)r.

The induction is complete, and the inequality follows. The sharp inequality is clear
for r �= 0 and n = 2, and therefore, by induction, for n ≥ 2.

History
The inequality above appeared in the treatise Positiones Arithmeticae de Seriebus Infinitis
published in 1689 by Jacob Bernoulli (1655–1705), and it was subsequently named after him. The
primary authorship is disputed by J.E. Hofman who states the following: “Bernoulli ist durchaus
nicht der Erfinder dieser Ungleichung, hat sie jedoch vermutlich nicht direkt aus Sluse, sondern auf
dem Umweg über I. Barrow (1630–1677).” (See Formula (4,12) on p. 177 in Über die Exercitatio
Geometrica des M. A. Ricci, Centaurus, Vol. 9, Issue 3 (1963) 139–193.) The inequality is then
somewhat older and is probably due to René-François de Sluse (1622–1685) published in his 1668
work Mesolabum, Chapter IV De maximis & minimis.

Corollary 1 Let 1 < a ∈ R and 0 < s ∈ R. Then there exists n ∈ N such that
s ≤ an.

Proof By the Archimedean Property for real numbers, Theorem 2.1.2, we have
s ≤ n(a − 1) for some n ∈ N. We now use the Bernoulli inequality (for a = s + 1)
as follows:

s ≤ n(a − 1) < 1+ n(a − 1) ≤ an .
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The corollary follows.

Corollary 2 For 1 < a ∈ R, we have

inf

{
1

an

∣∣∣∣ n ∈ N

}
= 0.

Remark According to the synthetic approach, the real number system is defined as a
complete ordered field via a set of axioms. By what we discussed above, this means
that the real number system is a set R equipped with two (binary) operations, called
addition + and multiplication ·, and a (binary) relation ≤ with respect to which R is
a totally ordered field. In addition, R must be complete.

These axioms are categorical in the sense that there is an explicitly constructible
model for these axioms (usually, but not always, from Q, like in our case as the
set of Dedekind cuts), and the axioms can be proved as theorems in these models.
Moreover, any two such models are isomorphic; that is, there is a one-to-one
correspondence between them which respects the field operations and the order.

While the axioms for an ordered field are fairly transparent (and have been
discussed for Q and R), the axiom of completeness takes various, sometimes
inequivalent, forms. In our construction of real numbers via Dedekind cuts we used
the Least Upper Bound Property which, in synthetic approach, takes the form of
an axiom. In Section 2.3 we will introduce another concept of completeness via
Cauchy sequences.

Exercises

2.1.1. Solve for x ∈ R:

(
x + |x |

2

)2

+
(

x − |x |
2

)2

= x2.

2.1.2. Solve the inequality x ≤ |x − x2|, x ∈ R.
2.1.3. Let r1, r2, . . . , r2n ∈ R, n ∈ N, be 2n real numbers such that r1 ≤ r2 ≤

. . . ≤ r2n . For what r ∈ R do we have the least value of the expression

|r − r1| + |r − r2| + · · · + |r − r2n|?

2.1.4. Which is bigger
√

101−√100 or 1/20?
2.1.5. Derive the following identity:

√
a + b + 2

√
ab = √a +√b, 0 ≤ a, b ∈ R.
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2.1.6. Let a, b ∈ N, 1 ≤ a ≤ b ≤ 100. For what values of a, b is
√√

a +√b
integral?

2.1.7. Arrange the numbers
√

2, 3
√

3, and 4
√

4 in increasing order.
2.1.8. Let n ∈ N. Calculate

[(√
2+ 1

)n +
(√

2− 1
)n]2 −

[(√
2+ 1

)n −
(√

2− 1
)n]2

.

2.1.9. For n ∈ N, derive the following divisibility properties (a) 3 | 22n − 1; (b)
9 | 43n − 1.

2.1.10. Let am = bn , a, b ∈ N, with m, n ∈ N relatively prime, gcd (m, n) = 1.
Show that a = un and b = um for some u ∈ N.

2.1.11. Let 0 < a, b ∈ R. Show that

an + bn

2
≥
(

a + b

2

)n

, n ∈ N.

2.1.12. Solve Pell’s equation x2 − d · y2 = 1 if d + 2 is a perfect square. (Note the
special case d = 23 in Section 2.1.)

2.1.13. Find all n ∈ N such that 5n > n!.

2.2 Infinite Decimals as Real Numbers

In the previous section we constructed the field of real numbers R as the set of
Dedekind cuts of the set of rational numbers Q. We showed that R is an extension
field of Q, and that it is a (Dedekind) complete ordered field with respect to its
natural order <. The latter means that it has the Least Upper Bound Property: Any
subset bounded above, resp. below, assumes its supremum, resp. infimum, in R.

Although representing real numbers by Dedekind cuts is elegant and unique (that
is, by definition, to any real number there corresponds a unique Dedekind cut), in
computations they are oftentimes cumbersome; consider, for example, the definition
of the square root of an integer given at the previous section.

The question therefore naturally arises: How to represent a real number in a
simpler and more transparent, preferably algebraic way? The key to this is to
consider the decimal representation of rational numbers.

The decimal representation of integers naturally extends to decimal repre-
sentation of rational numbers by introducing the concept of decimal fraction.
A decimal fraction is a quotient of two integers in which the denominator is a
power of 10. Even though they are quotients of integers, decimal fractions are
written in decimal notation rather than as fractions. This is done by discarding the
denominator and retaining the numerator only, inserting the decimal separator into
the numerator at the position from the right corresponding to the exponent of the
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power of ten of the denominator, and filling the possible gap with zeros if necessary.
The decimal separator is the dot “.” in the US, and the comma “,” in Europe.

For example, the universal gravitational constant can be written (in SI units)
as

G = 667408(31)

1018

m3

kg · s2
= 0.0000000000667408(31)

m3

kg · s2

with standard uncertanity in parentheses.

History
The earliest appearance of decimal fractions were in China at the end of the 4th century BCE. The
Chinese also compiled the first decimal multiplication table made from bamboo strips around 305
BCE. The use of the decimal numbers then spread to the Middle East and subsequently to Europe.

If the denominator of a rational number q = a/b, a, b ∈ Z, b �= 0, has only
2 and 5 as prime divisors then the conversion of q to a decimal representation is
particularly simple. Letting b = 2k · 5l , 0 ≤ k, l ∈ Z, we have

q = a

b
= a

2k · 5l
= 2l · 5k · a

10k+l
.

As specific examples, we have

1

2
= 0.5,

1

5
= 0.2,

1

4
= 0.25,

1

25
= 0.04, etc.

In these cases the rational number can be written as a single decimal fraction.
In general, converting a rational number into decimal representation is done by

the long division algorithm.
If q = a/b is a positive rational number with a, b ∈ N then, dividing a by b, each

decimal in the decimal representation of q is obtained by multiplying the remainder
of the previous step by 10 and dividing it by b to get the new remainder. (Here and
in what follows, for simplicity, may restrict ourselves to positive rational numbers
since the decimal representation of a negative rational number q ∈ Q is the negative
of the decimal representation of −q.)

During the conversion we may end up with an infinite sequence of nonzero
remainders, and therefore the corresponding rational number is written as a sum
of infinitely many decimal fractions, or an infinite decimal representation. The
simplest example is

1

3
= 3

10
+ 3

102 +
3

103 + · · · = 0.333 . . .

During the long division of a by b the remainders are between 0 and b − 1, and
therefore this process necessarily repeats itself. We conclude that a rational number
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q = a/b has a decimal representation which ends with a string of decimals (which
may be a single zero) repeated indefinitely. (For this reason this string of decimals
is sometimes called the repetend.)

Summarizing, the decimal representation of a rational number either repeats
(infinitely) or terminates (by zero). Clearly, the latter happens if and only if the
denominator b of the rational number q = a/b has only 2 and 5 as prime divisors.

The converse of the statement above is also true: If an infinite decimal repre-
sentation ends with a string of decimals repeated indefinitely then this represents a
rational number.

To show this, we start with an infinite repeating decimal representation. As
always, it starts with an integer (which may be zero), and, by assumption, after
a string of “irregular decimals,” it ends with a repetend, a string of decimals
d1d2 . . . dk with k ≥ 1, repeated indefinitely.

To simplify matters, we make two adjustments. First, we can multiply the
decimal representation by a suitable power of 10 to move the irregular string to the
left of the decimal point after which the repetition pattern would start immediately:

a.d1d2 . . . dkd1d2 . . . dkd1d2 . . . dk . . . = a.d1d2 . . . dk .

Here we used the customary notation of placing a bar over the repetend, the group
of k digits d1d2 . . . dk which are repeated indefinitely. Since we want to deduce that
this number is rational, the initial multiplication by a power of 10 does not change
this. Second, we can also make the “integral part” zero by subtracting a.0 since,
once again, rationality is not affected by subtracting an integer such as a.

All in all, we can now study the reduced form

0.d1d2 . . . dkd1d2 . . . dkd1d2 . . . dk . . . = 0.d1d2 . . . dk .

The crux is to understand what fractions create repeating decimal patterns. The
simplest repeating pattern is easy to find:

1

9
= 0.1111111111 . . . = 0.1

If we multiply both sides by a single digit integer d1 ∈ {1, 2, . . . , 8, 9} then we
obtain the repeating pattern

d1

9
= 0.d1d1d1d1d1d1 . . . = 0.d1

Remark Letting d1 = 9, we obtain 1 = 0.999999 . . . = 0.9. On the other
hand, 1 has the obvious decimal representation 1 = 1.000000 . . .. We see that
the decimal representation of rational numbers is not unique. More generally, a
decimal representation of a rational number with a tail of infinitely repeating nines
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represents the same rational number as the finite decimal representation obtained by
deleting this tail and moving up the digit before the tail by one unit. Note finally
that this is the only exception; otherwise each rational number has a unique decimal
representation.

Next, the simplest double digit pattern is

10

99
= 0.1010101010 . . . = 0.10

As before, multiplying both sides with a double digit integer, we obtain

d1d2

99
= 0.d1d2d1d2d1d2 . . . = 0.d1d2

The general case now follows easily. We have

d1d2 . . . dk

10k − 1
= 0.d1d2 . . . dkd1d2 . . . dkd1d2 . . . dk . . . = 0.d1d2 . . . dk

where we replaced the string of k digits of 9 with 10k − 1.
Notice that we not only obtained our original statement, but also found a

constructive way to obtain any rational number from its decimal representation.

Example 2.2.1 14 Consider the repeating decimal

0.c1 . . . c j d1 . . . dkd1d2 . . . dkd1d2 . . . dk . . . = 0.c1 . . . c j d1 · · · dk

where j ≥ 1; that is, there is at least one decimal digit before the repeating part.
Represent this as a simple fraction a/b, where a and b have no common divisors.
Show that b is divisible by 2 or 5 (or both).

Using our formula for the reduced repeating decimal above, we calculate

0.c1 . . . c j d1 . . . dkd1d2 . . . dk . . . = 0.c1 . . . c j + 0.

j︷ ︸︸ ︷
00 . . . 0 d1 . . . dk

= c1 . . . c j

10 j
+ 0.d1 . . . dk

10 j
= c1 . . . c j

10 j
+ d1 . . . dk

10 j (10k − 1)

= c1 . . . c j (10k − 1)+ d1 . . . dk

10 j (10k − 1)
= c1 . . . c j 10k + d1 . . . dk − c1 . . . c j

10 j (10k − 1)

= c1 . . . c j d1 . . . dk − c1 . . . c j

10 j (10k − 1)
.

14Although fairly well-known, this problem was in the USA Mathematical Olympiad, 1988, with
the specific illustrative example 0.01136363636 . . . = 1/88.
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The decimal representation of the numerator in the last fraction cannot end with
j consecutive zeros since c1 . . . c j is different from the repeating group d1 · · · dk .
Hence, upon reducing this fraction to a simple fraction, in the denominator a factor
of 2 or 5 survives. The example follows.

We now return to our original question of algebraic representation of real
numbers. We consider a Dedekind cut r ∈ R which we assume to be positive r > 0.
This means that 0 ⊂ r is a proper subset. (Recall that we identified 0 with the
Dedekind cut of all negative rational numbers.) We now define an infinite sequence
of rational numbers all contained in r in the following form:

r0 = a

r1 = a + d1

10

r2 = a + d1

10
+ d2

102

. . .

rn = a + d1

10
+ d2

102 +
d3

103 + · · · +
dn

10n
. . .

where d1, d2, d3, . . . , dn, . . . ∈ {0, 1, 2, . . . , 9}. We choose the first member a ∈ N0
to be the largest non-negative integer contained in r . Proceeding inductively,
assume that rn in the form above has been chosen. Then choose rn+1 = rn +
dn+1/10n+1 with the largest dn+1 ∈ {0, 1, 2, . . . , 9} contained in r . By Peano’s
Principle of Induction, rn is defined for all n ∈ N0.

The partial sums above form an infinite sequence of rational numbers which is
increasing:

r0 ≤ r1 ≤ r2 ≤ r3 ≤ · · · ≤ rn ≤ · · · ≤ r.

We want to estimate how close the individual members of this sequence are to each
other. Letting 1 ≤ m < n first, we have

rn − rm = dm+1

10m+1 + · · · +
dn

10n
≤ 9

10m+1 + · · · +
9

10n
= 10− 1

10m+1 + · · · +
10− 1

10n

=
(

1

10m
− 1

10m+1

)
+ · · · +

(
1

10n−1 −
1

10n

)
= 1

10m
− 1

10n
<

1

10m

since in the last sum all but the first and last terms cancel.15 This gives the general
estimate

15These sums are called telescopic. More about them later.
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|rn − rm | ≤ 1

10min(m,n)
, m, n ∈ N0.

An important second sequence is the following

s0 = r0 + 1, s1 = r1 + 1

10
, s2 = r2 + 1

102 , . . . sn = rn + 1

10n
, . . .

Here sn is obtained from rn by increasing the last digit by 1. By construction, all
members of this sequence belong to the complement rc of the Dedekind cut r ∈ R.

This infinite sequence is decreasing

r ≤ · · · ≤ sn ≤ · · · ≤ s3 ≤ s2 ≤ s1 ≤ s0.

Putting these two sequences together, we obtain

r0 ≤ r1 ≤ r2 ≤ r3 ≤ · · · ≤ rn ≤ · · · ≤ r ≤ · · · ≤ sn ≤ · · · ≤ s3 ≤ s2 ≤ s1 ≤ s0.

The crux is that we have

sn − rn = 1

10n
, n ∈ N0,

so that, by monotonicity, in general, we have the estimate

0 ≤ sn − rm ≤ 1

10min(m,n)
, n, m ∈ N0.

Since rm ≤ sn for all m, n ∈ N0, we have supm∈N0
rm ≤ infn∈N0 sn . We claim

that equality holds. Otherwise, we let ε = infn∈N0 sn − supm∈N0
rm > 0. Using

Corollary 2 to the Bernoulli Inequality in the previous section, we can choose k ∈
N0 such that 1/10k < ε. This contradicts to the estimate above for k = min(m, n).
The claim follows.

We obtain

sup
m∈N0

rm = r = inf
n∈N0

sn .

As a byproduct, we see that, for q ∈ Q, we have q < r if and only if there exists
n ∈ N0 such that q ≤ rn . Thus, the infinite sequence (r0, r1, r2, . . .) recovers the
Dedekind cut r uniquely. Since the sequences (r0, r1, r2, . . .) and (s0, s1, s2, . . .)

mutually determine each other, the latter sequence also recovers r .
The entire sequence (r0, r1, r2, . . .) can be compactly expressed as the infinite

decimal

a.d1d2d3 . . . ,
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where a ∈ N0 and d1, d2, d3, . . . are the decimal digits, each ranging from 0 to
9. We now declare this to be our algebraic representation of the Dedekind cut r as
a real number. Finally, recall that r was assumed to be positive; otherwise we can
perform the analysis above for −r and revert to the original r at the end.

Using powers of 10, the decimal representation of the real number r can be
written as the infinite sum

r = a + d1

10
+ d2

102 +
d3

103 + · · · +
dn

10n
+ · · · , 0 ≤ dn ≤ 9, n = 0, 1, 2, 3, . . .

This way, we can recover the sequence r0, r1, r2, . . . as partial sums of the infinite
sequence.

Example 2.2.2 For r = 1, we have rn = (10n−1)/10n = 1−1/10n and sn = 1, n ∈
N0. In decimal representation, the first sequence is (0, 0.9, 0.99, 0.999, 0.9999, . . .),
and the second is the constant sequence (1, 1, 1, . . .). They both determine the
number 1.

We now take a short detour and discuss the ancient example of the irrational
number

√
2 that arises in geometry.

In ancient times mathematicians defined
√

2 geometrically (and naïvely) as
the side length of a square whose area is equal to 2. For a more explicit and
geometrically equivalent interpretation, they also knew that

√
2 was also the

diagonal of the unit square.
For a geometric proof of this equivalence due to the Babylonians (and simpler

than using the Pythagorean Theorem) take a square of side length 2, and inscribe
into this another (diamond shaped) square whose vertices are the midpoints of the
sides. Since the entire square has side length of 2, its area is equal to 4. By cutting
off the four corners, this square is reduced to half. It follows that the area of the
(diamond shaped) middle square is 2, and therefore its side length must be

√
2. But

each of the four sides is also the diagonal of one of the four unit squares that make
up the entire square.

Arithmetically (and again naïvely),
√

2 can be defined as the number whose
square is 2. This definition is naïve because the ancients did not define what kind of
a number

√
2 was, let alone how to multiply it by itself.

History
A Babylonian clay tablet (c. 1800 – c. 1600 BCE) shows an approximation of

√
2 as 1; 24, 51, 10 =

1+24/60+51/602+10/603 in sexagesimal arithmetic (which the Babylonians used) which in base
10 arithmetic corresponds to 30547/21600 = 1.41421296296. (See Figure 2.1.) This is correct up
to 5 decimal places. In the figure this number is in the middle row. The side length of the square in
the tablet is chosen to be the sexagesimal 30. This, multiplied by the approximation of

√
2 above

gives 30 · (1 + 24/60 + 51/602 + 10/603) = 42 + 25/60 + 35/602. This latter number is in the
bottom register given in sexagesimal digits as 42; 25, 35.
As shown in the Rhind Mathematical Papyrus, the ancient Egyptians extracted square roots by an
inverse proportion method. In ancient India square root of two is first attested in the Baudhayana
Sulba Sutra (c. 800 – c. 500 BCE) from the Vedic period as

√
2 = 1+1/3+1/(3·4)−1/(3·4·34) =

1.4142156 correct up to 5 decimal places. The ancient Greeks who associated algebraic terms
to geometric objects, such as length, perimeter, area, etc., and have thereby created Geometric
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Fig. 2.1 Babylonian Clay Tablet showing an approximation of
√

2 in sexagesimal digits, Yale
Babylonian Collection, YBC 7289.

Algebra, had no difficulty in accepting
√

2 as a number. The trouble or the shock (as some say)
came when they tried to incorporate this number into what has been hitherto their number system,
the set of rational numbers Q. It is quite possible that the discovery of irrationality of

√
2 was

made by one of the Pythagoreans. It is widely held but strongly disputed that it was Hippasus of
Metapontum who was subsequently drowned at sea as a punishment from gods for revealing this
secret. The handful of ancient texts that relate this story either do not mention Hippasus’ name,
or they say that the discovery revealed was something else (how to inscribe a dodecahedron into a
sphere). Very little is known about Hippasus’ life in general.

There is a simple but somewhat unusual proof of irrationality of
√

2 by playing
origami as follows. (See Figure 2.2.) Assume

√
2 = a

b
,

where a, b ∈ N. This means that a2 = 2b2 so that, by the Pythagorean Theorem,
a square paper of side length b has diagonal length a. Fold a corner of the square
along the angular bisector of a side and the adjacent diagonal. The right angle at the
corner is folded to another right angle with one side being part of the diagonal. The
adjacent right angle on this diagonal is the right angle in an isosceles triangle with
side lengths a − b and hypotenuse b − (a − b) = 2b − a.
Applying the Pythagorean Theorem again, we have

√
2 = 2b − a

a − b
.

Since a > b, we have a > 2b − a > 0 (and also b > a − b). This folding process
now can be repeated for the square paper of side length a − b and diagonal length



2.2 Infinite Decimals as Real Numbers 103

Fig. 2.2 Irrationality of
√

2
by origami.

2b
-a

a-b

b

b

a-b

2b − a. Since the lengths are natural numbers and strictly decreasing, repeating
this process indefinitely, we obtain a strictly decreasing sequence of infinitely many
natural numbers. This contradicts to the fact that N is well-ordered. Thus

√
2 is

irrational.
There is a simple arithmetic process, called the shifting square root algorithm,

that constructs the infinite decimal representation of
√

2 digit-by-digit. The first
60 digits of the decimal representation of

√
2 are:

√
2=1.414213562373095048801688724209698078569671875376948073176679 . . .

Remark The shifting square root algorithm, at least in principle, is akin to the long
division of polynomials. It is very cumbersome, and will not be discussed here. On
the other hand, there are several much more efficient computational methods, such
as Newton’s Method (which, in this case, reduces to the so-called Babylonian
Method), that provide fast algorithms to find inductively an infinite sequence of
rational numbers whose members approximate the square root of a natural number
(in particular

√
2) to arbitrary precision. For example, depending on the computer

and the algorithm that we use, we can calculate a large (but finite) number of
decimals in the decimal representation of

√
2. (A record of 200,000,000,000 digits

was achieved by Shigeru Kondo in 2006.) We will give a detailed account on the
Babylonian Method in Section 5.4.

There is no repeating pattern in the decimal representation of
√

2 above as it is
irrational. Due to the irregularity in the decimal representation, beyond the inductive
algorithms noted above, there is no known explicit formula that gives all the decimal
digits of

√
2 instantaneously. Note, however, that, in view of Peano’s Principle of

Induction, an inductive algorithm is all that we need for the existence of
√

2 as a
real number.

We finish this section by returning to cardinality, and show what we claimed
at the end of Section 0.4 without proof: The set of real numbers R has the same
cardinality as the power set P(N); that is, we have |R| = |P(N)|.
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By the Cantor-Schröder-Bernstein Theorem (Section 0.4) it is enough to con-
struct injective maps R→ P(N) and P(N)→ R.

To construct the first injective map, note that the representation of real numbers
as Dedekind cuts (wich are subsets of Q) automatically gives an injective map R→
P(Q). Moreover, we have |Q| = |N|, and hence |P(Q)| = |P(N)|. Composing this
injective map with a bijection P(Q) → P(N) gives the desired first injective map
R→ P(N).

To construct the second injective map, we first note that, according to our
discussion in Section 0.3, there is a natural bijection between the power set P(N)

and the set of all indicator functions χ : N→ {0, 2} (where we moved up the range
value 1 to 2 for technical convenience). To an indicator function χ : N → {0, 2}
on N we associate the unique real number in the interval [0, 1] in ternary (base 3)
expansion

∑∞
n=1 χ(n)/3n . (The missing 1 in the range of the indicator function, and

base 3 are chosen to avoid non-uniqueness with expansions terminating in an infinite
string of 2’s.) This association clearly gives rise to an injective map P(N)→ R. Our
claim now follows.

Exercises

2.2.1. Find the rational number as a fraction of two integers from the given decimal
representations:

(a) 0.27272727 . . . = 0.27

(b) 879.561561561561 . . . = 879.561

(c) 923.51510832832832832 . . . = 923.51510832.

2.2.2. Calculate
√

0.000244140625.
2.2.3. For what exponent n ∈ N do we have 1.001n > 50?

2.3 Real Numbers via Cauchy Sequences

The sequences of rational numbers (r0, r1, r2, r3, . . .) and (s0, s1, s2, s3, . . .) that
define the Dedekind cut r ∈ R through a common infinite decimal introduced in
the previous section are sequences with special properties. In this section we define
and study their common generalization, the concept of Cauchy sequence. We start
with a bit more general setting than necessary and introduce some terminology and
notation to be used in the sequel.

Let A be a set. A sequence (of elements) in A is a map a : N0 → A. Letting
an = a(n), n ∈ N0, the entire sequence a can be depicted by listing the values in
sequential order
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a = (a0, a1, a2, a2, . . .) = (an)n∈N0 = (an)∞n=0,

where the last two are customary notations. Note that N0 can be replaced by N, or
by any countable set. (See also Example 0.3.4.)

Our main interest in this section will be real sequences a : N0 → R, sequences
of real numbers (with A = R). If the range of a real sequence a is contained in the
set of rational numbers Q then we say that a : N0 → Q is a rational sequence.

A real sequence a is bounded above (resp. bounded below) if the range of a (in
R) is bounded above (resp. bounded below). The sequence a is called bounded, if
it is bounded above and below, or equivalently, if the range of a is contained in a
finite interval, [−c, c], c > 0, say; or equivalently, a : N0 → [−c, c] ⊂ R, that is
|an| ≤ c for all n ∈ N0.

Note that the sum and product of real sequences are defined using the addition
and multiplication in the range R. More specifically, if a, b : N0 → R are real
sequences then we define the sum a + b : N0 → R, resp. product a · b : N0 → R,
by (a+b)n = an+bn , resp. (a ·b)n = anbn , n ∈ N0. Note that the sum and product
of rational sequences are rational.

For c ∈ R, the constant sequence c : N0 → R is the sequence whose elements
are all equal to c; that is, cn = c for all n ∈ N0. By the above, the product of a
constant sequence c and a real sequence a is ca, the constant multiple of a by c. In
particular, the negative of a is defined by −a = (−1)a.

An interesting simple example of sequences with repeating pattern is the
following:

Example 2.3.1 16 Let (an)n∈N0 be a sequence of positive real numbers such that any
non-initial member is the product of its two neighbors. Show that the sequence is
repeating with period six.

For n ∈ N, we calculate

an+3 = an+2

an+1
= an+1/an

an+1
= 1

an

and hence

an+6 = 1

an+3
= 1

1/an
= an .

Periodicity with period six follows.

The principal definition of this section is the following:
A real sequence a : N0 → R is called a Cauchy sequence if

inf
N∈N0

sup
m,n≥N

|an − am | = 0.

16This is a well-known problem in mathematical contest preparation. A special numerical case of
this was a problem in the American Mathematics Competitions, 2006.
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This definition holds in a model of real number system with the Least Upper
Bound Property (such as our Dedekind complete R) since we used the concepts
of infimum and supremum. In this definition of a (rational) Cauchy sequence the
infimum being zero means that for any 0 < ε(∈ Q) there exists N ∈ N such that
supm,n≥N |an − am | < ε (that is, no positive ε can be a lower bound). Equivalently:

For any 0 < ε(∈ Q), there exists N ∈ N0 such that |an − am | < ε for all
n, m ≥ N .

This is the customary definition of a (rational) Cauchy sequence. Albeit less
compact, this equivalent formulation does not need the Least Upper Bound Property,
the existence of suprema and infima, and is thereby sometimes preferable.

First, we show that Cauchy sequences must be bounded (without the use of the
Least Upper Bound Property).

Indeed, for ε = 1, there exists N ∈ N0 such that |an − am | < 1 for all m, n ≥ N .
Thus, by the triangle inequality, we have

|an| − |am | ≤ ||an| − |am || ≤ |an − am | < 1, m, n ≥ N .

Setting m = N , this gives

|an| ≤ 1+ |aN |, n ≥ N .

Joining the first N terms of the sequence, we obtain

|an| ≤ max(|a0|, |a1|, . . . , |aN−1|, 1+ |aN |), n ∈ N0.

Since the right-hand side of this inequality is a fixed number c (independent of n ∈
N0), the entire Cauchy sequence is contained in the interval [−c, c]. Boundedness
follows.

Notice that if a : N0 → Q is a rational Cauchy sequence then the upper bound c
above is also rational.

Remark By boundedness and the triangle inequality again, the suprema in the
definition of Cauchy sequence are all attained. Indeed, for all N ∈ N0, we have

sup
n,m≥N

|an − am | ≤ sup
n,m≥N

(|an| + |am |) ≤ 2c.

Second, we observe the obvious fact that the suprema supm,n≥N |an − am | are
decreasing with respect to N ∈ N0, that is, we have

sup
m,n≥M

|an − am | ≥ sup
m,n≥N

|an − am |, M < N , M, N ∈ N0.

In particular, for any M ∈ N0, we have

inf
N≥M

sup
m,n≥N

|an − am | = inf
N∈N0

sup
m,n≥N

|an − am |.
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As a byproduct, we see that a Cauchy sequence stays Cauchy if finitely many
members are altered or deleted.

The defining condition for a Cauchy sequence cannot be replaced by the
condition infN∈N0 supn≥N |an+1 − an| = 0. In other words it is not enough to
require that the consecutive members of the sequence get progressively small. The
following example shows this.

Example 2.3.2 Let a : N0 → R be the real sequence defined by an = √n, n ∈ N0.
We calculate

|an+1 − an| =
√

n + 1−√n = (
√

n + 1−√n)(
√

n + 1+√n)√
n + 1+√n

= (n + 1)− n√
n + 1+√n

= 1√
n + 1+√n

<
2√
n
,

where in the last inequality we need to restrict to n ∈ N. With this, we have

0 ≤ inf
N∈N0

sup
n≥N
|an+1 − an| ≤ inf

N∈N sup
n≥N

(2/
√

n) = 2 inf
N∈N(1/

√
N ) = 0,

where, in the last equality, we used the Archimedean Property. (If, for some 0 < ε,
we had 1/

√
N ≥ ε for all N ∈ N, then we would have N ≤ 1/ε2 for all N ∈ N, a

contradiction.)
On the other hand, this sequence a cannot be Cauchy since it is not bounded.

This is yet another application of the Archimedean Property.

We now return to infinite decimals discussed in the previous section, and make
the crucial observation that the sequence of partial sums (rn)n∈N0 of an infinite
decimal r is a rational Cauchy sequence. Using the notations there, this follows as

0 ≤ inf
N∈N0

sup
m,n≥N

|rn − rm | ≤ inf
N∈N0

sup
m,n≥N

1

10min(m,n)
= inf

N∈N0

1

10N
= 0,

where, in the last equality, we used the second corollary to the Bernoulli inequality
for a = 10 (Section 2.1).

In the previous section we also saw that, for the sequence of partial sums (rn)n∈N0

constructed from a Dedekind cut r ∈ R, we have supn∈N0
rn = r . We now generalize

this to (Cauchy) sequences by introducing the concept of limit.
Let a : N0 → R be a bounded real sequence. The limit inferior, resp. limit

superior, of the sequence a are defined as

lim inf
n→∞ an = sup

N∈N0

inf
n≥N

an, resp. lim sup
n→∞

an = inf
N∈N0

sup
n≥N

an .
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For any M, N ∈ N0 with K = max(M, N ), we have

inf
n≥M

an ≤ inf
n≥K

an ≤ sup
n≥K

an ≤ sup
n≥N

an .

Taking the supremum for M ∈ N0 (resp. infimum for N ∈ N0) of the left-hand side
(resp. right-hand side), we obtain

lim inf
n→∞ an ≤ lim sup

n→∞
an .

If equality holds with common value L then we say that the real sequence a
converges to the limit L , and we write

lim
n→∞ an = L .

It follows directly from the definitions that, for 0 �= c ∈ R, we have

lim sup
n→∞

(can) = c lim sup
n→∞

an, c > 0;

lim inf
n→∞ (can) = c lim inf

n→∞ an, c > 0;
lim sup

n→∞
(can) = c lim inf

n→∞ an, c < 0,

and therefore

lim
n→∞(can) = c lim

n→∞ an, c ∈ R,

provided that the limits exist.17

Another direct consequence is monotonicity of the limit superior and limit
inferior, and therefore also the limit:

If a, b : N0 → R are real sequences such that an ≤ bn for all n ∈ N0, then we
have

lim inf
n→∞ an ≤ lim inf

n→∞ bn and lim sup
n→∞

an ≤ lim sup
n→∞

bn,

and therefore

lim
n→∞ an ≤ lim

n→∞ bn,

provided that the limits exist.
It is customary to extend the definition of limit superior and limit inferior to

unbounded real sequences. If a real sequence a : N0 → R is not bounded above
then we set lim supn→∞ an = ∞. If a : N0 → R is not bounded below then we set

17The existence of the limit on one side implies the existence of the other.
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lim infn→∞ an = −∞. For consistency, we adjoin ±∞ to R to form the extended
real number system R = R ∪ {±∞}.
Example 2.3.3 Let b, c ∈ R, and define the real sequence a : N0 → R by

an = b + c

2
+ (−1)n b − c

2
, n ∈ N0.

This sequence is alternating between the two values b and c; that is, we have
a = (b, c, b, c, . . .). We obtain lim supn→∞ an = max(b, c) and lim infn→∞ an =
min(b, c). The sequence is converges if and only if b = c (to this common value).

For the next example, recall from Section 0.4 that the factorial of a natural
number n ∈ N, denoted by n!, is the product of all natural numbers less than
equal to n. The inductive definition of the factorial is as follows: 1! = 1 and
(n + 1)! = (n + 1) · n!, n ∈ N. We also set 0! = 1 and this defines the factorial of
all non-negative integers.

Example 2.3.4 Let pn denote the nth prime number (Section 1.3). We claim

lim sup
n→∞

(pn+1 − pn) = ∞.

Indeed, this follows directly from the fact that, for any 2 ≤ k ∈ N, the k − 1
consecutive natural numbers k! + 2, k! + 3, . . . , k! + k are all composite numbers
(by the definition of the factorial).

Example 2.3.5 A pair (p, p′) ∈ N × N consisting of two prime numbers p, p′,
p < p′, is called a twin prime if p′ − p = 2. For example

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73),

(101, 103), (107, 109), (137, 139), . . .

(2996863034895 · 21290000 − 1, 2996863034895 · 21290000 + 1), . . .

are twin primes (where the last twin prime in the list was discovered in September,
2016). The twin primes become increasingly rare.

The yet unsolved twin prime conjecture states that there are infinitely many
twin primes. Using the limit inferior, the twin prime conjecture can be stated as

lim inf
n→∞ (pn+1 − pn) = 2.

A deep result of number theory asserts18 that

lim inf
n→∞ (pn+1 − pn) ≤ 246.

18For the original article, see Yitang Zhang, Bounded gaps between primes, Annals of Mathemat-
ics, 179 (3) (2014), 1121–1174. For an introduction, see Lin, T., After prime proof, an unlikely star
rises, Quanta Magazine, April 2 (2015).
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Remark How many “triplet primes” are there? To be precise, a triplet (p, p′, p′′) ∈
N × N × N consisting of three prime numbers p, p′, p′′, p < p′ < p′′, is called a
triplet prime if p′ − p = p′′ − p′ = 2.

Clearly (3, 5, 7) is a triplet prime. We claim that there are no more triplet primes.
Indeed, if (p, p′, p′′) is a triplet prime other than (3, 5, 7) then p = 3n + 1 or
p = 3n + 2 for some n ∈ N. In the first case p′ = 3n + 3 = 3(n + 1), and in the
second p′′ = 3n + 6 = 3(n + 2), both composite numbers.

Our definition of convergence has the obvious advantage that we do not need to
know a priori the value of the limit L of a convergent sequence (an)n∈N0 ; we
simply need to calculate the limit inferior and the limit superior (which may not be
finite) and compare. Nevertheless, there is an equivalent formulation of convergence
which, albeit involves the value of the limit explicitly, is useful in many instances in
calculations.

We state this as a follows:

Proposition 2.3.1 A real sequence (an)n∈N0 is convergent to L ∈ R if and only if
we have

inf
N∈N0

sup
n≥N
|an − L| = 0.

Proof Denote L = lim infn→∞ an and L = lim supn→∞ an . We have L ≤ L with
equality if and only if (an)n∈N0 is convergent to the common value. Consider first

L = lim inf
n→∞ an = sup

N∈N0

inf
n≥N

an .

By definition, for any ε > 0, the real number L − ε cannot be an upper bound
for all the infima on the right-hand side, so that there exists M ∈ N0 such that
infn≥M an > L − ε. Similarly, for the limit superior, for the given ε > 0, there
exists N ∈ N0 such that supn≥N an < L+ ε. Setting K = max(M, N ), we combine
these as

L − ε < inf
n≥M

an ≤ inf
n≥K

an ≤ sup
n≥K

an ≤ sup
n≥N

an < L + ε.

Assume now that the limit exists: L = L = L . Then, by the above, for every ε > 0,
there exists K ∈ N0 such that

L − ε < inf
n≥K

an ≤ sup
n≥K

an < L + ε,

or equivalently, we have L − ε < an < L + ε, n ≥ K . We rewrite these inequalities
as supn≥K |an − L| < ε. Since ε > 0 is arbitrary, this gives

inf
K∈N0

sup
n≥K
|an − L| = 0.

The converse follows by retracing the steps above.
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The condition of convergence in Proposition 2.3.1 is a compact reformulation of
the customary definition of convergence; namely, limn→∞ an = L if:

For every 0 < ε there exists N ∈ N0 such that |an − L| < ε for all n ≥ N .
Note that this definition does not use the Least Upper Bound Property, the

existence of suprema and infima. Notice also that this definition can be restricted
to rational sequences verbatim with 0 < ε ∈ Q and L ∈ Q.

In our study a primary role will be played by null-sequences, (real or rational)
sequences that converge to zero. For now, we only need the following simple facts:
(1) The sum of two null-sequences is a null-sequence; and (2) The product of a
null-sequence and a bounded sequence is a null-sequence.

Indeed, let u, v : N0 → R be null-sequences and a : N0 → [−c, c] ⊂ R a
bounded sequence (with bound c > 0). Given 0 < ε, choose M, N ∈ N0 such that
|un| < ε/2 for n ≥ M , and |vn| < ε/2 for n ≥ N . Then, by the triangle inequality,
for n ≥ max(M, N ), we have |un + vn| ≤ |un| + |vn| < ε/2 + ε/2 = ε, and the
first statement follows. For the second statement, given 0 < ε, choose N ∈ N0 such
that |un| < ε/c for n ≥ N . Then, for n ≥ N again, we have |anun| ≤ c · ε/c = ε ,
and the second statement also follows.

Finally, for a real sequence a : N0 → R, we define the absolute value |a| :
N0 → R by |a|n = |an|, n ∈ N0. As a consequence of the triangle inequality,
the absolute value of a Cauchy sequence is a Cauchy sequence. Moreover, we have
the obvious fact that a real sequence u is a null-sequence if and only if |u| is a
null-sequence.

We now discuss the special case of monotonic sequences. A real sequence a :
N0 → R is called increasing (resp. decreasing) if m < n, m, n ∈ N0, implies
am ≤ an (resp. am ≥ an). The sequence a is called monotonic if it is increasing
or decreasing. Replacing the inequality signs by strict inequalities, we obtain the
concepts of strictly increasing and strictly decreasing sequences.

Next, we discuss two classical monotonic sequences.
A real sequence a : N0 → R is called arithmetic if there exists d ∈ R such

that an+1 = an + d for all n ∈ N0. The real number d is called the difference of
the arithmetic sequence. By induction, the general term of an arithmetic sequence is
an = a0 + nd, n ∈ N0.

Example 2.3.6 19 Let a : N → R be an arithmetic sequence with difference 1.
(Note the change in the index.) Given n ∈ N, if a1 + a2 + a3 + · · · + a2n = A find
a2 + a4 + a6 + · · · + a2n in terms of A.

We have a2n−1 = a2n − 1, n ∈ N. Using this, we have

A = a1 + a2 + a3 + a4 + · · · + a2n−1 + a2n

= (a2 − 1)+ a2 + (a4 − 1)+ a4 + · · · + (a2n − 1)+ a2n

= 2(a2 + a4 + · · · + a2n)− n.

This gives a2 + a4 + · · · + a2n = (A + n)/2.

19A special case of this problem was in the American Invitational Mathematics Examination, 1984.
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Example 2.3.7 20 Let a : N → R be an arithmetic sequence with difference d.
Given n ∈ N, if a1+a2+a3+· · ·+an = A and an+1+an+2+an+3+· · ·+a2n = B,
find d in terms of A and B.

Taking the difference of the two equations, after grouping, we find

(an+1 − a1)+ (an+2 − a2)+ (an+3 − a3)+ · · · + (a2n − an) = B − A.

Now, notice that each difference in the parentheses on the left-hand side is equal to
nd. We obtain n2d = B − A, and hence d = (B − A)/n2.

In Section 2.1 we showed that, for n ∈ N, the square root
√

n is a rational number
if and only if n is a perfect square. We use this in the following:

Example 2.3.8 Let n1, n2, n3 ∈ N distinct, and asssume that the linear relation

c1
√

n1 + c2
√

n2 + c3
√

n3 = 0

holds for some non-zero rational coefficients 0 �= c1, c2, c3 ∈ Q. Then the products
n1n2, n2n3, and n3n1 must be perfect squares.

The equality above holds if
√

n1,
√

n2,
√

n3 are members of an arithmetic
sequence; and thereby the same conclusion holds. In particular, the square roots
of three distinct primes cannot participate in an arithmetic sequence.

By symmetry, it is enough to show that n1n2, say, is a perfect square. Rearranging
and squaring, we get

c2
1n1 + c2

2n2 + 2c1c2
√

n1n2 = c2
3n3.

This gives

√
n1n2 = c2

3n3 − c2
1n1 − c2

2n2

2c1c2
∈ Q,

a rational number. By the above, n1n2 must be a perfect square. The first statement
follows.

To show the second statement, assume that
√

n1,
√

n2,
√

n3 participate in an
arithmetic sequence with difference d ∈ R. Then we have

√
n1 = √n3 + a1d and

√
n2 = √n3 + a2d, a1 �= a2, 0 �= a1, a2 ∈ Z.

Eliminating d, we obtain the linear relation

a2
√

n1 − a1
√

n2 + (a1 − a2)
√

n3 = 0

with non-zero with integer cofficients. The second statement follows.

20A special numerical case of this problem was in the American Mathematics Competition, 2002.
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A real sequence a : N0 → R is called geometric if there exists r ∈ R such that
an+1 = r · an for all n ∈ N0. The real number r is called the quotient or ratio of
the geometric sequence. By induction, the general term of a geometric sequence is
an = a0 · rn , n ∈ N0.

For the question of convergence we can discard the initial term and set a0 = 1.
For r ∈ R, we thus consider the geometric sequence (rn)n∈N.

We first let r ≥ 0. Since rn+1−rn = rn(r−1), n ∈ N, the sequence is decreasing
for 0 ≤ r < 1, and increasing for r > 1 (and constant 1 for r = 1). By the two
corollaries of the Bernoulli inequality in Section 2.1, we have

lim
n→∞ rn =

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ r < 1

1, if r = 1

∞, if r > 1.

For r < 0, we have

rn = (−|r |)n = (−1)n|r |n, n ∈ N.

Splitting the sequence into two subsequences according to the parity of n ∈ N

(even-odd), we obtain

lim inf
n→∞ rn = − lim

n→∞ |r |
n =

⎧⎪⎪⎨
⎪⎪⎩

0, if − 1 < r < 0

−1, if r = −1

−∞, if r < −1.

and

lim sup
n→∞

rn = lim
n→∞ |r |

n =

⎧⎪⎪⎨
⎪⎪⎩

0, if − 1 < r < 0

1, if r = −1

∞, if r < −1.

We conclude that, the sequence is not convergent for r ≤ −1. Putting together the
remaining case (−1 < r < 0) with the case of positive quotient (0 ≤ r < 1), we
obtain

lim
n→∞ rn = 0, |r | < 1.

Example 2.3.9 21 In an increasing sequence of four positive integers, the first three
terms form an arithmetic sequence with difference d, the last three terms form a
geometric sequence, and the first and fourth terms differ by �. Show that �/4 <

d < �/3.

21This example is inspired by a problem in the American Invitational Mathematics Examination,
2003.
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According to the conditions, the four positive integers are

a, a + d, a + 2d,
(a + 2d)2

a + d
, a, d ∈ N.

We have

(a + 2d)2

a + d
− a = �.

Eliminating the denominator, expanding, and simplifying, this last condition gives
3ad + 4d2 = �a +�d, or equivalently

d(4d −�) = a(�− 3d).

This shows that 4d −� and �− 3d must have the same sign. Clearly, the negative
sign is not realized. Therefore, we have 4d − � > 0 and � − 3d > 0. These give
�/4 < d < �/3.

Example 2.3.10 Find a positive integer M ∈ N such that the sum of the arithmetic
sequence 12, 14, 16, . . . , M is a perfect square.

The general element of the sequence is ak = 12+2(k−1) = 2k+10, k ∈ N (since
the difference d = 2). The sum of the first n ∈ N elements is

∑n
k=1(2k + 10) =

n(n+1)+10n = n2+11n, where we used
∑n

k=1 k = n(n+1)/2 (Section 0.4). For
this to be a perfect square, we need n2 + 11n = m2 to hold for some m ∈ N. Since
this does not factor well among the integers, we use the standard trick22 to multiply
through by 4. We obtain 4n2 + 44n = 4m2, and hence (2n + 11)2 = 4m2 + 121.
Equivalently, we have (2n+11)2− (2m)2 = (2n+2m+11)(2n−2m+11) = 121.
Since 121 = 112, the only way the last factorization could hold is 2n + 2m + 11 =
121 and 2n − 2m + 11 = 1. Solving, we obtain n = 25, m = 30, and hence
M = 2n + 10 = 60.

The following important result is a consequence of the Least Upper Bound
Property of the real number system R:

Monotone Convergence Theorem If a : N0 → R is an increasing (resp.
decreasing) sequence which is bounded above (resp. below) then

lim
n→∞ an = sup

n∈N0

an resp. lim
n→∞ an = inf

n∈N0
an .

Proof It is enough to prove the first statement. Letting supn∈N0
an = L , since a is

increasing, we have supn≥N an = L for all N ∈ N0. Thus, for the limit superior,
we obtain lim supn→∞ an = infN∈N0 L = L . For the limit inferior, again since a is

22There are several mathematical contest problems that center around this trick, e.g. to solve n2 +
p ·n = m2, m, n ∈ N (and also for Z), where 3 ≤ p ∈ N is a given prime. The method above gives
n = ((p − 1)/2)2.
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increasing, we have lim infn→∞ an = supN∈N0
infn≥N an = supN∈N0

aN = L . The
theorem follows.

Remark As the proof above shows, the Monotone Convergence Property (the
statement in the theorem above) is a special case of the Least Upper Bound Property.
Actually the two properties can be shown to be equivalent. This means that, in
an axiomatic development of the real number system, the Monotone Convergence
Property can be used as an axiom, and the Least Upper Bound Property and thereby
completeness of R follow from this.

As an immediate application, the sequence of partial sums (rn)n∈N0 of a
Dedekind cut r (and also the sequence (sn)n∈N0 ) are convergent: limn→∞ rn =
limn→∞ sn = r .

To what extent are monotonic sequences special among all real sequences? To
answer this question we define the concept of subsequence of a real sequence.
Let a : N0 → R be a real sequence. A real sequence b : N0 → R is called a
subsequence of a if there exists a strictly increasing map ι : N0 → N0 such that
b = a ◦ ι. Given a = (a0, a1, a2, a3, . . .) = (an)n∈N0 = (an)∞n=0, letting nk = ι(k),
k ∈ N0, we have bk = ank , k ∈ N0, and we obtain

b = (bk)k∈N0 = (b0, b1, b2, b3, . . .) = (an0, an1 , an2 , an3 , . . .) = (ank )k∈N0 .

We now state a simple but important property of real sequences:

Proposition 2.3.2 Any real sequence has a monotonic subsequence.

Proof We present here the classical proof. Let a : N0 → R be a real sequence. We
call an element am , m ∈ N0, a peak if, for all m ≤ n, we have am ≥ an .

If a has infinitely many peaks, an0 , an1 , an2 , · · · , say, then, by definition, we
have an0 ≥ an1 ≥ an2 ≥ · · · . Therefore, the sequence of peaks forms an infinite
decreasing subsequence of a.

We may therefore assume that a has only finitely many (possibly no) peaks. Let
n0 ∈ N0 be such that an is not a peak for all n ≥ n0. Since an0 is not a peak, for
some n1 > n0 we have an0 < an1 . Proceeding inductively, assume that we have
n0 < n1 < · · · < nk such that an0 < an1 < an2 < · · · < ank . Since ank is not a
peak, for some nk+1 > nk we have ank < ank+1 . By Peano’s Principle of Induction,
the (strictly) increasing subsequence (ank )k∈N0 has been defined. The proposition
follows.

If a : N0 → R is a bounded real sequence then, by the above, it has
a monotonic subsequence. Being part of the original bounded sequence, it is
necessarity bounded. By the Monotone Convergence Theorem, it then converges.
We obtain the following:

Bolzano–Weierstrass Theorem Any bounded real sequence subconverges; that is,
it has a monotonic subsequence.
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Remark In axiomatic development of the real number system the Bolzano-
Weierstrass Property stated above is equivalent to the Monotone Convergence
Property, and thereby to the Least Upper Bound Property.

History
The Bolzano-Weierstrass Theorem was first proved by Bolzano in 1817 as a preparatory lemma
to his proof of the Intermediate Value Theorem (to be treated here later). As noted previously,
Bolzano’s results were not known in mathematical circles; in fact, most were published posthu-
mously in 1851. Around 1867, Karl Weierstrass (1815 – 1897), recognizing the significance of this
result, proved this theorem again.

Remark If a real sequence is monotonic and subconverges then the sequence
itself converges. Indeed, assume that (an)n∈N is increasing, and has a convergent
subsequence (ank )k∈N with limk→∞ ank = L . We need to show that supn∈N an ≤ L .
Assume not. Then there exists N ∈ N such that an > L for n ≥ N . By monotonicity,
ank > L for nk ≥ N . Since this holds for infinitely many values of k ∈ N, this is a
contradiction.

We have now come to the main point of our discussion of Cauchy sequences in
our model of the real number system R via Dedekind cuts. Completeness of R (the
Least Upper Bound Property) implies the following:

Proposition 2.3.3 A real sequence is Cauchy if and only if it is convergent.

Proof First, assume that a : N0 → R is convergent: limn→∞ an = L . By the
triangle inequality, we have

|an − am | = |(an − L)− (am − L)| ≤ |an − L| + |am − L|, m, n ∈ N0.

Let M, N ∈ N0 with K = max(M, N ). The inequality above gives

sup
m,n≥K

|an − am | ≤ sup
n≥N
|an − L| + sup

m≥M
|am − L|.

Taking the infimum on the left-hand side we obtain

0 ≤ inf
K∈N0

sup
m,n≥K

|an − am | ≤ sup
n≥N
|an − L| + sup

m≥M
|am − L|.

The infimum on the left-hand side is now constant, independent of M and N , so that
we can take the infima of the two terms on the right-hand side separately as

0 ≤ inf
K∈N0

sup
m,n≥K

|an − am | ≤ inf
N∈N0

sup
n≥N
|an − L| + inf

M∈N0
sup

m≥M
|am − L|.

By Proposition 2.3.1 of this section, the two terms on the right-hand side vanish.
Hence the left-hand side must also vanish. Thus, a is a Cauchy sequence.

To prove the converse statement, assume that a : N0 → R is a Cauchy sequence.
Since a is bounded, by the Bolzano-Weierstrass Theorem, it has a subsequence
(bk)k∈N0 = (ank )k∈N0 convergent to a limit L , say; that is, we have limk→∞ bk =
limk→∞ ank = L .
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We now claim that L is also the limit of the original Cauchy sequence a.
To begin with, for n, k ∈ N0, the triangle inequality gives

|an − L| ≤ |an − ank | + |ank − L|.

Let M, N ∈ N0 with K = max(M, N ). The inequality above gives

0 ≤ inf
K∈N0

sup
n≥K
|an − L| ≤ sup

n≥K
|an − L| ≤ sup

n,nk≥N
|an − ank | + sup

nk≥M
|ank − L|.

The infimum on the left-hand side does not depend on M and N , so that we can take
the infima on M and N separately, and obtain

0 ≤ inf
K∈N0

sup
n≥K
|an − L| ≤ inf

N∈N0
sup

n,nk≥N
|an − ank | + inf

M∈N0
sup

nk≥M
|ank − L|.

Since the sequence a is Cauchy, we have

inf
N∈N0

sup
n,nk≥N

|an − ank | ≤ inf
N∈N0

sup
m,n≥N

|an − am | = 0.

Since the subsequence (bk)k∈N0 = (ank )k∈N0 converges to L , we also have

inf
M∈N0

sup
nk≥M

|ank − L| = 0.

These give

inf
K∈N0

sup
n≥K
|an − L| = 0.

Thus, limn→∞ an = L , and the proposition follows.

Remark Note that Cauchy Completeness (the property that every Cauchy sequence
is convergent) is implied by but not equivalent to the Bolzano-Weierstrass Property,
the Least Upper Bound Property, etc. The two properties become equivalent if we
assume the Archimedean Property.

Our construction of the real number system was based on Dedekind cuts of the
set of rational numbers Q. With this R is Dedekind complete; that is, it satisfies the
Least Upper Bound Property or any other equivalents, as noted above.

Another model of R, due to Georg Cantor, is based on extending Q by adjoining
“limits” interpreted as rational Cauchy sequences. With this Q will have a Cauchy
complete extension R, another model of the real number system, in which any real
Cauchy sequence converges.

In what follows, we now give a detailed account on Cantor’s construction.
First, we need to recall the customary definition of a Cauchy sequence (without

the use of the Least Upper Bound Property):
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A rational sequence a : N0 → Q is a Cauchy sequence if, for every rational
0 < ε ∈ Q, there exists N ∈ N0 such that |an − am | < ε for m, n ≥ N .

Staying within Q, note also that a rational sequence a : N0 → Q is said to
converge to a rational number L ∈ Q if, for every rational 0 < ε ∈ Q, there exists
N ∈ N0 such that |an − L| < ε for n ≥ N . In particular, for L = 0, the concept of
rational null-sequence is defined.

We let C denote the set of all rational Cauchy sequences.
Since we have seen that the (monotonic) Cauchy sequence (rn)n∈N0 uniquely

defines the Dedekind cut r ∈ R, we would like to define a real number r as the
rational Cauchy sequence (rn)n∈N0 . An immediate problem in this approach is non-
uniqueness; for example, the sequence (sn)n∈N0 (and many others) also “define” the
same Dedekind cut r ∈ R.

Example 2.3.11 The sequences r, s : N0 → R defined by rn = (10n−1)/10n = 1−
1/10n and sn = 1, n ∈ N0 are rational Cauchy sequences. In decimal representation,
the first sequence is (0, 0.9, 0.99, 0.999, 0.9999, . . .), and the second is the constant
sequence (1, 1, 1, 1, . . .). They both converge to the number 1. In particular, s − r
is a null-sequence.

We therefore need to partition C into classes of Cauchy sequences in which every
class consists of Cauchy sequences that define the same “limit.”

This is done by introducing a relation ∼ on C as follows: For a, a′ ∈ C, we let
a ∼ a′ if a − a′ is a (rational) null-sequence.

A simple consequence of the Cauchy property and the definition of the relation
∼ is the following: For a ∈ C, let a′ ∈ C be obtained from a by altering or deleting
finitely many elements. Then, we have a ∼ a′.

Indeed, if a′ is obtained from a by altering finitely many elements then there
exists N ∈ N0 such that an = a′n for n ≥ N . Hence, an − a′n = 0 for n ≥ N ; and
a − a′ is obviously a null-sequence.

If a′ is obtained from a by deleting finitely many elements then there exist
k, N ∈ N0 such that a′n = an+k , n ≥ N . Since a is a Cauchy sequence, we have
limn→∞ |an − a′n| = limn→∞ |an − an+k | = 0. Thus, a ∼ a′ follows.

We now claim that ∼ is an equivalence relation on C, and thereby partitions C
into the desired equivalence classes.

Reflexivity: For a ∈ C, a − a = 0 is the constant zero sequence, thereby a
null-sequence. Symmetry: For a, a′ ∈ C, if a − a′, is a null-sequence then so is
a′ − a = −(a − a′). Transitivity: For a, a′, a′′ ∈ C, if a − a′ and a′ − a′′ are
null-sequences then so is their sum a − a′′ = (a − a′)+ (a′ − a′′).

The equivalence relation ∼ on C partitions C into mutually disjoint equivalence
classes. An equivalence class is called a real number. The quotient R = C/ ∼ is
Cantor’s definition of the set of real numbers.

To keep the notation simple we will not introduce a specific notation for the
equivalence classes, and we will state most of the properties of the quotient R =
C/ ∼ in terms of representatives of the equivalence classes (making sure that the
statements themselves are valid up to the equivalence relation ∼).
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We now claim that the addition and the multiplication of sequences in C are
compatible with the equivalence relation, and thereby give rise to the operations of
addition and multiplication in R = C/ ∼.

We need to show that, for a, a′, b, b′ ∈ C, the relations a ∼ a′ and b ∼ b′ imply
a + b ∼ a′ + b′ and a · b ∼ a′ · b′.

Indeed, for addition, we have

(a + b)− (a′ + b′) = (a − a′)+ (b − b′).

The right-hand side is the sum of two null-sequences, and therefore it is a null-
sequence. Thus, a + b ∼ a′ + b′ follows.

For multiplication, we first write

(a · b)− (a′ · b′) = (a − a′)b + a′(b − b′).

Now recall that b and a′ are bounded since they are Cauchy sequences. As the
product of a bounded sequence and a null-sequence is a null-sequence, on the right-
hand side we have the sum of two null-sequences; therefore the sum itself is also a
null-sequence. Thus, a · b ∼ a′ · b′ follows.

We conclude that the addition and the multiplication are well-defined in R =
C/ ∼.

Since addition and multiplication are both associative and commutative and
they are connected through distributivity even on the level of rational Cauchy
sequences, it follows that these rules hold in R = C/ ∼.

For q ∈ Q, the constant rational sequence q = (q, q, q, . . .) is obviously
a (rational) Cauchy sequence: q ∈ C. Moreover, if q �= q ′, q, q ′ ∈ Q, the
constant rational sequences q and q ′ are inequivalent: q �∼ q ′. Associating to
a rational number the equivalence class of its constant sequence gives rise to an
embedding of Q into R. Clearly, this embedding respects the operations of addition
and multiplication. From now on we identify Q with its range in R, the field of
rational numbers Q.

By definition, the equivalence class of the constant zero sequence 0 ∈ C consists
of all (rational) null-sequences, and it is the additive identity: For a ∈ C, we have
a + 0 = a. For a rational Cauchy sequence a ∈ C, the additive inverse or negative
of the equivalence class of a is given by the equivalence class of −a = (−1)a ∈ C:
For a ∈ C, we have a + (−a) = 0.

Similarly, the equivalence class of the constant sequence 1 ∈ C is the multiplica-
tive identity: For a ∈ C, we have 1 · a = a.

The multiplicative inverse (of non-zero real numbers) needs some elaboration.
We first introduce a convenient terminology. We say that a rational Cauchy sequence
a ∈ C is bounded away from zero if:

There exists 0 < ε ∈ Q and N ∈ N0 such that an > ε for n ≥ N .
We first claim that this property is additive in the sense that if a, b ∈ C are both

bounded away from zero then so is their sum a + b ∈ C.
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Indeed, we have 0 < δ, ε ∈ Q and M, N ∈ N0 such that an > δ for n ≥ M , and
bn > ε for n ≥ N . Then, for n ≥ max(M, N ), we have an + bn > δ+ ε. The claim
follows.

Next, we note that the property of bounded away from zero remains unchanged
if we add a null-sequence. Indeed, let a ∈ C be a rational Cauchy sequence bounded
away from zero, and b ∈ C a null sequence. Let 0 < ε ∈ Q and N ∈ N0 such that
an > ε for n ≥ N . Then, choose M ∈ N0 such that |bn| < ε/2 for n ≥ M . Then,
for n ≥ max(M, N ), we have

an + bn ≥ an − |bn| > ε − ε/2 = ε/2.

Thus, the sequence a + b is bounded away from zero, and the statement follows.
The importance of this concept is shown by the following: For a rational Cauchy

sequence a ∈ C, we have a �∼ 0 if and only if |a| is bounded away from zero.
The “if” part is clear (since a rational Cauchy sequence whose absolute value

is bounded away from zero cannot be a null-sequence). For the “only if” part, first
note that a rational Cauchy sequence a ∈ C does not converge to zero if there exists
0 < ε ∈ Q such that, for all k ∈ N0, we have some nk ≥ k with |ank | ≥ ε.
On the other hand, since a is a Cauchy sequence, there exists N ∈ N0 such that
|am −an| < ε/2 for m, n ≥ N . Since limk→∞ nk = ∞, we can choose k0 ∈ N such
that nk0 ≥ N . For n ≥ N , we calculate

|an| = |ank0
− (ank0

− an)| ≥ |ank0
| − |ank0

− an| > ε − ε/2 = ε/2.

The “only if” part now follows.
Let a ∈ C be a rational Cauchy sequence, and assume that the equivalence class

of a in R = C/ ∼ is non-zero. On the level of sequences this means that a �∼ 0.
By the above, |a| is bounded away from zero, and hence there exist 0 < ε ∈ Q and
N ∈ N0 such that |an| > ε for n ≥ N .

Define the sequence a−1 = 1/a : N0 → Q such that (a−1)n = 1/an if an �= 0,
and (a−1)n = an = 0 otherwise. By definition, for n ≥ N , we have an �= 0, and
therefore (a · a−1)n = 1. We see that a · a−1 is in the same equivalence class as
the multiplicative identity 1 since it differs from the constant sequence (1, 1, 1, . . .)

only in the first N terms.
We need to show that this construction of the multiplicative inverse depends only

on the equivalence classes; that is, for a, a′ ∈ C, the relations a ∼ a′ and a, a′ �∼ 0
imply a−1 ∼ a′−1.

Indeed, choose 0 < ε, ε′ ∈ Q and N , N ′ ∈ N0 such that |an| > ε for n ≥ N , and
|a′n| > ε′ for n ≥ N ′. We then have

0 ≤ lim sup
n→∞

|a−1
n − a′−1

n | = lim sup
n→∞

|an − a′n|
|an||a′n|

≤ lim supn→∞ |an − a′n|
εε′

,

where we used the monotonicity property of the limit superior. If a ∼ a′ then the
right-hand side is zero, and a−1 ∼ a′−1 follows.
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With this we define the multiplicative inverse of the (non-zero) equivalence class
of a ∈ C, a �∼ 0, as the equivalence class of a−1 = 1/a ∈ C. With the additive
and multiplicative inverses now in place, it now follows that C = R is a field (with
respect to the operations of addition and multiplication).

A natural order in R = C/ ∼ is given as follows. For rational sequences a, b :
Q→ Q, we define a < b if b − a is bounded away from zero.

Once again, we need to show that < gives rise to a relation on the equivalence
classes; that is, for a′ ∼ a and b′ ∼ b, the relation a < b implies a′ < b′. This,
however, follows writing

b′ − a′ = (b′ − b)+ (b − a)+ (a − a′)

and noting that (adding) the null-sequences a − a′ and b′ − b do not change the
property of b − a being bounded away from zero.

We conclude that < depends on the equivalence classes only, and thereby defines
a relation < on R. As usual, we call the equivalence class of a ∈ C positive if a > 0
(a is bounded away from zero) and negative if −a > 0 (−a is bounded away from
zero).

We claim that < is a strict total order; that is < is transitive and trichotomous.
For transitivity, we let a, b, c ∈ C be three rational Cauchy sequences such that

a < b and b < c. These mean that b − a and c − b are bounded away from zero.
Hence the sum (c − b) + (b − a) = c − a is also bounded away from zero. Thus,
a < c, and transitivity follows.

For trichotomy, assume that a ∈ C is a rational Cauchy sequence representing
a non-zero equivalence class: a �∼ 0. This means the existence of 0 < ε ∈ Q and
N ∈ N0 such that |an| > ε for n ≥ N . On the other hand, since a is Cauchy, there
exists M ∈ N0 such that |an − am | < ε for n ≥ M . Putting these together, we either
have an > ε for all n ≥ max(M, N ), or−an > ε for all n ≥ max(M, N ). In the first
case the equivalence class of a is positive, in the second, it is negative. Trichotomy
follows.

We conclude that < is a strict total order on R.
Finally, it is routine to check that the cancellation laws for inequalities hold. With

these, it follows that R is a totally ordered field.
In the next step we show that the Archimedean Property holds in R.23 As usual,

we formulate this in terms of (rational) Cauchy sequences, representatives of the
respective equivalence classes.

Proposition 2.3.4 Let 0 < a, b ∈ C. Then there exists m ∈ N(⊂ Q) such that
b < ma.

Proof Since a > 0, there exists 0 < ε0 ∈ Q and N0 ∈ N0 such that ε0 < an for
n ≥ N0. Since b is a Cauchy sequence, it is bounded with a rational upper bound
0 < q0 ∈ Q; that is, we have bn ≤ q0 for all n ∈ N0.

23Strictly speaking, we do not need this as it will follow from the Least Upper Bound Property to
be proved below. For completeness, we include this here as a separate proposition, however.
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Applying the Archimedean Property in Q, for 0 < ε0, q0 ∈ Q, we have
q0 ≤ (m0 − 1)ε0 for some m0 ∈ N. (The shift in the multiple of ε0 is of technical
convenience.)

The Archimedean Property to be proved (in R) states that 0 < ma − b for some
m ∈ N, that is, the Cauchy sequence ma − b is bounded away from zero.

Assume that the Archimedean Property does not hold for 0 < a, b ∈ C. This
means that, for every m ∈ N, for every 0 < ε ∈ Q and for every k ∈ N0, there exists
nk ≥ k such that mank − bnk ≤ ε.

Now letting m = m0 and ε = ε0, for nk ≥ k, k ∈ N0, we calculate

m0ank ≤ bnk + ε0 ≤ q0 + ε0 ≤ m0ε0.

Thus, ank ≤ ε0 for k ∈ N0. Since limk→∞ nk = ∞, this contradicts to ε0 < an for
n ≥ N0. The proposition follows.

The Archimedean Property for R has an important consequence usually termed
as the density of the rational numbers among the reals:

Corollary Given a, b ∈ C such that a < b, there exists q ∈ Q such that a < q < b.

Proof We may assume a > 0 since the remaining cases can be treated similarly.
Since 0 < b − a, there exist 0 < ε ∈ Q and N ∈ N0 such that ε < bn − an for
n ≥ N . Letting q0 = ε/2 ∈ Q, we have 0 < ε/2 < b − a − q0 for n ≥ N . This
gives q0 < b − a.

Let A = {n ∈ N | a < nq0}. By the Archimedean Property of R just proved,
the set A is non-empty. Since N is well-ordered, there exists n0 = inf A. We have
a < n0q0 and n0 is the smallest natural number with this property.

We claim that n0q0 < b. Assume not: n0q0 ≥ b. Combining this with q0 < b−a,
we have

a = b + (a − b) < b − q0 ≤ n0q0 − q0 = (n0 − 1)q0.

This contradicts to the minimal choice of n0 as the infimum of the set A. Letting
q = n0q0 ∈ Q, the corollary follows.

As the final task to finish the construction of the Cauchy real number system
R = C/ ∼ we need to show the Least Upper Bound Property.

Proposition 2.3.5 In R = C/ ∼ the Least Upper Bound Property holds.

Proof Let A ⊂ R be a non-empty subset, and assume that it is bounded above by
the equivalence class of a rational Cauchy sequence c ∈ C. Since c, as a sequence,
is bounded, there is a (constant) rational sequence q0 ∈ Q such that c < q0. This
means that the equivalence class of q0 is also an upper bound for A.

Let a ∈ C such that the equivalence class of a belongs to A. (Since A is
non-empty, a exists.) Since a is a rational Cauchy sequence, it is bounded from
below. Choose a (constant) rational sequence p0 ∈ Q such that p0 < a. Then the
equivalence class of p0 is not an upper bound for A.
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Proceeding inductively, assume that, for n ∈ N0, the (constant) rational
sequences pn, qn ∈ Q have been chosen such that the equivalence class of qn is
an upper bound for A while the equivalence class of pn is not.

Consider the (constant) rational sequence mn = (pn +qn)/2 ∈ Q, the arithmetic
mean of pn and qn . If the equivalence class of mn is an upper bound for A then we
define pn+1 = pn and qn+1 = mn . If the equivalence class of mn is not an upper
bound for A then we define pn+1 = mn and qn+1 = qn . By Peano’s Principle of
Induction, pn, qn ∈ Q are defined for all n ∈ N0. Again by induction, (pn)n∈N0

is an increasing sequence of rational numbers whose equivalence classes are not
upper bounds for A, and (qn)n∈N0 is a decreasing sequence of rational numbers
whose equivalence classes are upper bounds for A. In addition, pn < qn , n ∈ N0
(since the equivalence class of qn is an upper bound for A while that of pn is not),
and we have

qn+1 − pn+1 = qn − pn

2
> 0, n ∈ N0.

As an easy induction shows, we have

qn − pn = q0 − p0

2n
, n ∈ N0.

We claim that (pn)n∈N0 and (qn)n∈N0 are (rational) Cauchy sequences.
To show this, we first note that, by construction, we have

pn+1 − pn ≤ qn − pn

2
= q0 − p0

2n+1 , n ∈ N0.

We now claim that, for m ≤ n (m, n ∈ N0), we have

pn − pm ≤ (q0 − p0)

(
1

2m
− 1

2n

)
.

We show this by induction with respect to n (≥ m). For n = m both sides of the
inequality are zero. For the general induction step (m ≤) n ⇒ n + 1, we calculate

pn+1 − pm ≤ (pn+1 − pn)+ (pn − pm) ≤ q0 − p0

2n+1
+ (q0 − p0)

(
1

2m
− 1

2n

)

= (q0 − p0)

(
1

2m
− 1

2n
+ 1

2n+1

)
= (q0 − p0)

(
1

2m
− 1

2n+1

)
.

The claim follows.
Now, let 0 < ε ∈ Q. We use the second corollary to the Bernoulli inequality

(Section 2.1) to find N ∈ N0 such that
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1

2N
<

ε

2(q0 − p0)
.

With this, for m, n ≥ N , we have

|pn − pm | ≤ (q0 − p0)

∣∣∣∣ 1

2m
− 1

2n

∣∣∣∣ ≤ (q0 − p0)
2

2min(m,n)
≤ (q0 − p0)

2

2N
< ε.

Thus, (pn)n∈N0 is a (rational) Cauchy sequence. We denote this by r = (pn)n∈N0 ∈
C.

Similar computation show that (qn)n∈N0 is also a Cauchy sequence, denoted by
s = (qn)n∈N0 ∈ C. Now the difference s − r is the null-sequence (qn − pn)n∈N0 =
((q0 − p0)/2n)n∈N0 . We obtain r ∼ s, so that, in R = C/ ∼ they define the same
equivalence class. We claim that this equivalence class is the least upper bound of
A.

First, we show that the equivalence class of the decreasing sequence s =
(qn)n∈N0 is an upper bound for A. Assume not. Then there exists a ∈ C whose
equivalence class is an element of A such that s < a. This means that a − s is
bounded away from zero, that is, there exist 0 < ε ∈ Q and N ∈ N0 such that
ε < an − qn for n ≥ N .

Now, s ∈ C is a Cauchy sequence, so (for our ε) there exists M ∈ N0 such that
|qm − qn| < ε for m, n ≥ M . Combining these, we have

qm − qn ≤ |qm − qn| < ε < an − qn, m, n ≥ K = max(M, N ).

This gives qm < an , m, n ≥ K . Now, we fix m ≥ K , consider qm ∈ Q ⊂ C
as the constant (rational) sequence, and compare it with the Cauchy sequence a ∈
C. By the inequality above, a < qm cannot happen. On the other hand, qm < a
cannot happen either since the equivalence class of qm is an upper bound for A. By
trichotomy, we obtain qm ∼ a.

Since s is a decreasing sequence it therefore must become constant after the K th
term. (Otherwise, for some k ∈ N, we would have qm+k < qm < an for n ≥ K , and
this (with 0 < ε = qm − qm+k) would imply qm+k < a, a contradiction again.) We
obtain s ∼ qm ∼ a, a contradiction again to the original assumption s < a.
Summarizing, we obtain that the equivalence class of s is an upper bound for A.

Second, we need to show that the equivalence class of the increasing sequence
r = (pn)n∈N0(∼ s) is the least upper bound for A. The argument is similar to the
above in the use of r (instead of s). Assume not. Then there exists t ∈ C whose
equivalence class is an upper bound for A such that t < r . This means that r − t
is bounded away from zero, that is, there exist 0 < ε ∈ Q and N ∈ N0 such that
ε < pn − tn for n ≥ N .

Now, r ∈ C is a Cauchy sequence, so (for our ε) there exists M ∈ N0 such that
|pn − pm | < ε for m, n ≥ M . Combining these, we have

pn − pm ≤ |pn − pm | < ε < pn − tn, m, n ≥ K = max(M, N ).
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This gives tn < pm , m, n ≥ K . Now, we fix m ≥ K , consider pm ∈ Q ⊂ C as
the constant (rational) sequence, and compare it with the Cauchy sequence t ∈ C.
By the inequality above, pm < t cannot happen. On the other hand, t < pm cannot
happen either since the equivalence class of pm is not an upper bound for A (and
that of t is). By trichotomy, we obtain pm ∼ t .

Since r is an increasing sequence it therefore must become constant after the K th
term. (Otherwise, for some k ∈ N, we would have tn < pm < pm+k for n ≥ K , and
this (with 0 < ε = pm+k − pm) would imply t < pm+k , a contradiction again.) We
obtain r ∼ pm ∼ t , a contradiction to the original assumption t < r .

Thus, the equivalence class of r ∼ s is the least upper bound for A, and the
theorem follows.

This completes Cantor’s construction of the real number system by Cauchy
sequences. Since this model is a complete ordered field containing Q as a subfield,
all the statements at the beginning of this section apply. More specifically, in
this model the Least Upper Bound Property holds, and therefore a sequence is
convergent (to a real number) if and only if it is a Cauchy sequence, and the
Monotone Convergence Theorem and the Bolzano-Weierstrass Theorem are valid.

The Cantor model RC and Dedekind model RD of the real number system
are isomorphic in the sense that there is a one-to-one correspondence between
them which respects the field operations and the order. (Here we used subscript
to distinguish between the two models.) As alluded to above, the isomorphism is
given by associating to a Dedekind cut, an element of RD , the equivalence class of
either of the rational Cauchy sequences (rn)n∈N0 ∈ C or (sn)n∈N0 ∈ C (constructed
in Section 2.2) up to null-sequences.

Exercises

2.3.1. For a real sequence a, define A ⊂ R to be the set of limits of all convergent
subsequences of a. Show that lim supn→∞ an = sup A and lim infn→∞ an =
inf A.

2.3.2. Let (an)n∈N be a sequence of positive terms. Show that

lim inf
n→∞

1

an
= 1

lim supn→∞ an
.

2.3.3. Let (an)n∈N0 be a sequence defined inductively by a0 = 1 and an =
√

1+ an−1, n ∈ N. (Thus, we have an =
√

1+
√

1+ · · ·
√

1+√2 with
n nested square roots.) Use the Monotone Convergence Theorem to show
that limn→∞ an = (1 + √5)/2. (Note that τ = (1 + √5)/2 is the golden
number; see Example 3.1.2.)
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2.3.4. Let (an)n∈N be a sequence such that {an | n ∈ N} = (0, 1) ∩ Q (as
sets). ((an)n∈N exists since Q is countable.) Find lim infn→∞ an and
lim supn→∞ an .

2.3.5. Let (an)n∈N be a bounded real sequence. Show that there exist con-
vergent subsequences (amk )k∈N and (anl )l∈N such that limk→∞ amk =
lim infn→∞ an and liml→∞ anl = lim supn→∞ an .

2.4 Dirichlet Approximation and Equidistribution∗

We have seen that the set of rational numbers Q is a dense subset of the set of real
numbers R (Corollary to Proposition 2.3.4). In other words, any irrational number
can be approximated by rational numbers up to arbitrary precision.

In this section we will look at this approximation more closely, find approximat-
ing fractions in specific forms, and give a quantitative measure of the density of the
approximating rationals through the Equidistibution Theorem.

For the next theorem, recall from Example 1.1.3 that, for a ∈ R, [a] denotes the
greatest integer≤ a. In addition, we introduce here the fractional part {a} of a ∈ R

defined by {a} = a − [a]. The definitions imply 0 ≤ {a} < 1 and {a + n} = {a},
a ∈ R, n ∈ Z. Moreover, we have

{a} + {−a} =
{

0 if a ∈ Z,

1 if a /∈ Z.

Dirichlet Approximation Theorem Let α ∈ R and n ∈ N. Then there exist p ∈ Z

and q ∈ N, q < n, such that

|qα − p| < 1

n
.

Proof We may assume 0 < α ∈ R. Consider the n + 1 numbers

{kα} ∈ [0, 1), k = 0, 1, . . . , n.

Subdivide the interval [0, 1) into n disjoint subintervals as

[0, 1) =
n⋃

m=1

[
m − 1

n
,

m

n

)
.

By the Pigeonhole Principle there must be two numbers {iα} and { jα}, i > j , say,
in the same subinterval [(m − 1)/n, m/n), say. Since the length of each subinterval
is 1/n, we obtain
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|{iα} − { jα}| < 1

n
, i > j.

Using the definition of the fractional part and rearranging, this gives

|(i − j)α − ([iα] − [ jα])| < 1

n
, i > j.

Letting p = [iα] − [ jα] ∈ Z and q = i − j ∈ N, q < n, the theorem follows.

History
Johann Peter Gustav Lejeune Dirichlet (1805 – 1859) used the pigeonhole principle first around
1834 as a counting argument (as in the proof above) to prove the approximation theorem named
after him. This principle, termed by him as “Schubfachprinzip” (in German) or “Principe de
tiroirs” (in French) (drawer/shelf principle) has many interpretations, and curious applications.
For example, it has been noted that, since the average number of hairs on a person’s head is less
than the total population of London, there must be at least two people there with the same number
of hairs on their heads. Since Dirichlet’s father was a postmaster the term pigeonhole principe
may even be historically accurate alluding to a post office having furniture with many pigeonholes
bulging with sorted letters.

A simple application of the pigeonhole principle is the following:

Example 2.4.1 Show that, among five distinct real numbers, there are always two a
and b, say, that satisfy the inequality |a − b| < |1+ ab|.

To prove this, subdivide the set of real numbers into four intervals as follows

R = (−∞,−1] ∪ (−1, 0) ∪ [0, 1) ∪ [1,∞).

By the pigeonhole principle, among the five given real numbers, there are two, a
and b, say, that are contained in one of the four intervals above. Since the inequality
stays the same by taking the opposites −a and −b, there are only two cases to
consider: a, b ∈ [0, 1) and a, b ∈ [1,∞). Since the inequality is unchanged by
taking non-zero reciprocals 1/a and 1/b, (|1/a − 1/b| < |1/a · 1/b − 1|), we may
assume that a, b ∈ [0, 1) or a, b ∈ (0, 1]. This final case, however, is obvious since
|a − b| < 1 ≤ |1+ ab|.

We now make a short detour here, and give a brief description of yet another
model of the real number systems, the Eudoxus reals RE .

Our starting point is Euclid’s Elements:24

History
Excerpt from Euclid’s Elements (Book V, Definition 5):25

“Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth,

24The material here follows closely the beginning of the paper: Athan, R.D., (2004) The Eudoxus
Real Numbers, arXiv:math/0405454.
25The excerpt quoted here is from the translation by Sir Thomas L. Heath of the Greek text of J.L.
Heiberg (1854 – 1928) and H. Menge, from Euclidis opera omnia, 8 vols & supplement, in Greek,
Teubner, Leipzig, 1883–1916. Edited by J.L. Heiberg and H. Menge.
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when, if any equimultiples whatever are taken of the first and third, and any equimultiples whatever
of the second and the fourth, the former equimultiples alike exceed, are alike equal to, or alike fall
short of, the latter equimultiples respectively taken in corresponding order.”

As widely accepted, Euclid describes here the work of Eudoxus of Cnidus, and
asserts that two ratios a ÷ b and c ÷ d are equal if, for all m, n ∈ N, the relations
ma > nb and mc > nd are simultaneously true or false, and similarly for equalities
and for reverse inequalities.

History
De Morgan’s interpretation26 of Eudoxus above is as follows:
Consider an infinite equidistantly spaced railings of a fence in front of another infinite equidistant
colonnade. If the distance between consecutive railings is 0 < α ∈ R, and the distance between
consecutive columns is unity, then, riding along the fence27 and counting columns, for k ∈ N, we
denote the number of columns to the left or aligned to the kth railing by ck ∈ N, the sequence
(ck)k∈N will “represent” the real number α.

De Morgan’s interpretation of the real number 0 < α ∈ R simply means that
kα = ck + {kα} with the greatest integer ck = [kα] ∈ N0, and the fractional part
0 ≤ {kα} < 1, k ∈ N.

The Dirichlet Approximation Theorem above asserts that the positive integral
multiples kα get arbitrarily close to integers (that is, to columns).

For the construction of the Eudoxus reals, we are interested in the arithmetic
properties of the sequence of integers ck = [kα], k ∈ N.

A simple computation gives

c j+k = c j + ck + { jα} + {kα} − {( j + k)α}, j, k ∈ N.

Note that, if α ∈ N then the three fractional parts on the right-hand side are zero.
This motivates the following definition: A slope28 is a map c : Z → Z, ck =

c(k), k ∈ Z, such that the set {c j+k − c j − ck | j, k ∈ Z} is finite. We denote the set
of slopes by S.

The operation of addition + on S is defined naturally by (c + c′)k = ck + c′k ,
k ∈ Z, where c, c′ ∈ S. Similarly, the operation of multiplication · on S is given
by composition: (c · c′)k = (c ◦ c′)(k) = cc′k , k ∈ Z, where c, c′ ∈ S.

Finally, two slopes c, c′ ∈ S are called equivalent, written as c ∼ c′, if the set
{ck − c′k | k ∈ Z} is finite.

With these definitions in place, it can be proved that ∼ is an equivalence relation
on S, and it is compatible with the addition and multiplication.

Finally, with a considerably more work,29 it can be shown that the quotient space
S/ ∼ is a complete totally ordered field (with respect to a natural oder). This is the

26See the commentary by Heath ibid.
27As we are in the 19th century.
28Also called almost homomorphism (of Z).
29See Athan, R.D. ibid.
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Eudoxus real number system RE . Note the special feature of this model that it is
constructed directly from the integers, bypassing the rational numbers.

We now return to the main line, and note a direct consequence of the Dirichlet
Approximation Theorem.

Corollary Given α ∈ R, there exists a rational number p/q ∈ Q, p ∈ Z, q ∈ N,
such that

∣∣∣∣α − p

q

∣∣∣∣ < 1

q2 .

We call the rational number p/q ∈ Q, p ∈ Z, q ∈ N, in the corollary a Dirichlet
approximation of α. Clearly, we may assume that p/q is an irreducible fraction,
that is, p and q have no common divisors. We denote by Dα , α ∈ R, the set of all
Dirichlet approximations p/q ∈ Q, p ∈ Z, q ∈ N, of α.

Assume that α ∈ R has Dirichlet approximations p/q, p′/q ∈ Dα with the same
denominator. We claim that p′ = p if q �= 1, and p′ = p or p′ = p ± 1, if q = 1.

Indeed, we have

− 1

q2 < α − p

q
<

1

q2 and − 1

q2 <
p′

q
− α <

1

q2 .

Adding, and simplifying, we obtain

|p′ − p| < 2

q
.

If 2 ≤ q ∈ N then p′ = p holds. If q = 1 then |p′ − p| ≤ 1, and hence p′ = p or
p′ = p ± 1. The claim follows. In all cases, there are at most two possibilities for a
Dirichlet approximation with the same denominator.

Proposition 2.4.1 A rational number has only finitely many Dirichlet approxima-
tions. An irrational number has infinitely many Dirichlet approximations.

Proof First, in the rational case, we may assume 0 < α = a/b ∈ Q, a, b ∈ N.
Assuming p/q ∈ Da/b such that p/q �= a/b, we have

1

bq
≤ |aq − bp|

bq
=
∣∣∣∣ab −

p

q

∣∣∣∣ < 1

q2
.

This gives (0 <)q < b. This means that, for Dirichlet approximations, there are at
most b − 1 available denominators. Since each denominator can have at most two
numerators, we get |Da/b| ≤ 2(b−1)+1 = 2b−1 (including p/q = a/b ∈ Da/b).
The first statement of the theorem follows.

Let α ∈ R \ Q be irrational, and assume that Dα is finite. Since α is irrational
and Dα is finite, we have a positive minimum 0 < minp/q∈Dα |qα − p| (which
is attained). Let n ∈ N such that 1/n < minp/q∈Dα |qα − p|. By the Dirichlet
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Approximation Theorem, there exist p0 ∈ Z and q0 ∈ N, q0 < n, such that |q0α −
p0| < 1/n. Hence

∣∣∣∣α − p0

q0

∣∣∣∣ < 1

nq0
<

1

q2
0

,

and we obtain p0/q0 ∈ Dα . This contradicts to the minimal choice of n ∈ N. Thus,
Dα cannot be finite.

Since there are only two choices for a denominator of a Dirichlet approximation,
it follows that, for α ∈ R is irrational, there are Dirichlet approximations p/q ∈ Dα

with p and q relatively prime such that the denominator q is arbitrarily large.

Equidistribution Theorem Let α ∈ R \ Q be irrational, and 0 ≤ a < b ≤ 1.
Then, we have

lim
n→∞

|{0 ≤ j < n | { jα} ∈ [a, b]}|
n

= b − a,

where the numerator of the fraction counts the number of times when { jα}, j =
0, 1, . . . , n − 1, falls into the interval [a, b].
History
The Equidistribution Theorem was proved independently by Hermann Weyl, Wacław Sierpiński
and Piers Bohn in 1909–1910. Many variants have been derived since then, and it is still a very
active area of research.

We begin the proof with the following:

Lemma Let α ∈ R\Q be irrational, and assume that p/q ∈ Dα (p and q relatively
prime) is a Dirichlet approximation of α. Then, for every integer 0 ≤ i < q, there
exits a unique integer 0 ≤ j < q such that

{ jα} ∈
(

i

q
,

i + 1

q

]
.

Proof We may assume α > p/q. (If α < p/q then −α > (−p)/q and { j (−α)} =
1− { jα}, j ∈ Z.)

Since 0 < α − p/q < 1/q2, we have

0 < jα − j p

q
<

1

q
, 0 ≤ j < q.

The division algorithm gives j p = q j · q + r j , 0 ≤ r j < q. Substituting and
rearranging, we obtain

r j

q
< [ jα] − q j + { jα} < r j + 1

q
, 0 ≤ r j < q.
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Since [ jα] − q j is an integer, it must be zero. We finally get

r j

q
< { jα} < r j + 1

q
, 0 ≤ r j < q, 0 ≤ j < n.

The correspondence j �→ r j , j = 0, . . . , q − 1, defines a self-map of the set
{0, . . . , q − 1}. Once we show that this map is a bijection, the lemma follows.
Since the ambient set is finite, it is enough to show injectivity. (See Example 1.3.2.)
Assume r j = rk , 0 ≤ j ≤ k < q. Going back to the division algorithm,
j p = q j q + r j and kp = qkq + rk give (k − j)p = (qk − q j )q. In particular,
q divides (k − j)p. Since p and q are relatively prime, q must divide k − j . Since
0 ≤ k − j < q this is possible only if j = k. Thus, injectivity, and therefore
surjectivity hold. The proof is complete.

Proof of the Equidistribution Theorem Let α ∈ R \Q be irrational.
Let 0 < ε ∈ R, and choose a Dirichlet approximation p/q ∈ Dα with p and

q (≥ 2) relatively prime, such that 2/q < ε/3. (This choice is possible since, as a
consequence of the Dirichlet Approximation Theorem, for α irrational, there exist
Dirichlet approximations of aribitrarily large denominators.) Let N ∈ N such that
q/N < ε/3. Finally, using the division algorithm, let n = vq + r with 0 ≤ r < q.

As a first step, we clearly have

|{0 ≤ j < n | { jα} ∈ [a, b]}| ≥
v∑

u=1

∣∣{(u − 1)q ≤ k < uq
∣∣ {kα} ∈ [a, b]}∣∣ .

We claim

∣∣{(u − 1)q ≤ k < uq
∣∣ {kα} ∈ [a, b]}∣∣ ≥ q(b − a)− 2, u = 1, . . . , v.

First, we show this for u = 1:

∣∣{0 ≤ j < q
∣∣ { jα} ∈ [a, b]}∣∣ ≥ q(b − a)− 2

(we switched back to j from k).
This is a direct consequence of the previous lemma. Split the interval [0, 1) into q
disjoint subintervals

[0, 1) =
q−1⋃
i=0

[
i

q
,

i + 1

q

)
.

According to the lemma, the numbers { jα}, 0 ≤ j < q, are equidistributed in
this splitting; each subinterval contains exactly one of these numbers. The interval
[a, b] completely contains at least q(b − a) − 2 of these subintervals, and the
deduction of 2 corresponds to the mismatch of the end-points of [a, b] with those of
the subintervals. Thus, the lower estimate follows for u = 1.
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We now let u = 1, . . . , v be arbitrary. We let k = j + (u − 1)q, 0 ≤ j < q, so
that (u − 1)q ≤ k < uq. With these, we calculate

{kα} = {( j + (u − 1)q)α} = { jα + (u − 1)qα}
= jα + (u − 1)qα − [ jα + (u − 1)qα]
= { jα} + (u − 1)qα + [ jα] − [ jα + (u − 1)qα]
= {{ jα} + (u − 1)qα}.

By the previous lemma, we see that the numbers {kα}, (u − 1)q ≤ k < uq, are
equidistributed in the splitting of [0, 1) into the subintervals [i/q, (i + 1)/q), i =
0, . . . , q − 1, translated by the constant (u − 1)qα (and with the interval falling
to the end-points of [0, 1) possibly split). As before, the interval [a, b] completely
contains at least q(b − a)− 2 of these subintervals, so that we have the same lower
estimate claimed above.

Continuing our lower estimate, we have

|{0 ≤ j < n | { jα} ∈ [a, b]}| ≥
v∑

u=1

∣∣{(u − 1)q ≤ k < uq
∣∣ {kα} ∈ [a, b]}∣∣

≥
v∑

u=1

(q(b − a)− 2) = v(q(b − a)− 2)

= n(b − a)− r(b − a)− 2v.

Due to our choices, for n ≥ N , we have r/n < q/n ≤ q/N < ε/3 and 2v/n ≤
2/q < ε/3. Since b − a < 1, we thus obtain

|{0 ≤ j < n | { jα} ∈ [a, b]}|
n

≥ b − a − 2ε

3
≥ b − a − ε.

The upper estimate is similar. Since n = vq + r < (v + 1)q, we have

|{0 ≤ j < n | { jα} ∈ [a, b]}| ≤
v+1∑
u=1

∣∣{(u − 1)q ≤ k < uq
∣∣ {kα} ∈ [a, b]}∣∣

≤
v+1∑
u=1

(q(b − a)+ 2) = (v + 1)(q(b − a)+ 2)

= n(b − a)+ (q − r)(b − a)+ 2(v + 1).

We have (q − r)(b − a)/n ≤ q/N < ε/3 and 2(v + 1)/n = 2v/n + 2/n ≤
2/q + 2/N ≤ 2/q + q/N < ε/3+ ε/3 = 2ε/3. With these, we obtain
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|{0 ≤ j < n | { jα} ∈ [a, b]}|
n

< b − a + ε.

Summarizing, we obtain that, for every 0 < ε ∈ R, there exists N ∈ N such that,
for n ≥ N , we have

∣∣∣∣ |{0 ≤ j < n | { jα} ∈ [a, b]}|
n

− (b − a)

∣∣∣∣ < ε.

The Equidistribution Theorem follows.

Exercises

2.4.1. Let α ∈ R \Q be irrational. Show that

lim sup
n→∞

{nα} = 1 and lim inf
n→∞ {nα} = 0,

where {·} denotes the fractional part.
2.4.2. Let n ∈ N and 
 ⊂ R

2 an equilateral triangle with side length n. Show that
if a subset A ⊂ 
 consists of more than n2 elements then there are (at least)
two points in A with distance ≤ 1.



Chapter 3
Rational and Real Exponentiation

“The sum of an infinite series
whose final term vanishes (meaning that
limn→∞ an = 0 for a series

∑∞
n=0 an) is

perhaps infinite, perhaps finite.”
in the Ars Conjectandi by
Jacob Bernoulli (1655–1705)

The main purpose of this chapter is to give a detailed treatise on powers with rational
and real exponents. We begin with a preparatory section on the arithmetic properties
of the limit inferior and limit superior and (thereby) the limit. The Fibonacci
sequence, the geometric and p-series, and some of their contest level offsprings
serve here as illustrations. The core material of this chapter proves the existence
of roots of (positive) real numbers paving the way to rational exponentiation
and the Bernoulli inequality for rational exponents. The latter is then used to
establish (the existence of) powers with real exponents and thereby the extension
of the Bernoulli inequality to real exponents. The text is accompanied here with
a large variety of illustrative examples of classical limits. From the myriad topics
on powers, we discuss linear independence of fractional exponents of integers
due to Besicovitch, the Young inequality, some sharp estimates on the p-series,
equiconvergence through the Cauchy condensation test, power sums, and the lesser
known method of (arithmetic) means. A short section on logarithms along with a few
contest level problems is followed by a final section on the Stolz–Cesàro Theorems.
These tools complete an arsenal to tackle a large number of sophisticated limits.
Several methods developed here will recur later in more complex settings.

3.1 Arithmetic Properties of the Limit

In this preparatory section, we return to our real sequences. The limit superior and
limit inferior have simple arithmetic properties. For a, b : N0 → R, we have

lim inf
n→∞ an+lim inf

n→∞ bn ≤ lim inf
n→∞ (an+bn) ≤ lim sup

n→∞
(an+bn) ≤ lim sup

n→∞
an+lim sup

n→∞
bn .
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Example 3.1.1 Let 0 < r ∈ R. Given a sequence c : N0 → R, we define the
sequence cr : N0 → R by

cr
0 = c0 and cr

n = cn − r · cn−1, n ∈ N.

Clearly, if c is a null-sequence, then, for any r ∈ R, the sequence cr is also null.
We are interested in the converse. We note first that if 1 < r ∈ R, then the

geometric sequence given by cn = rn , n ∈ N0, diverges whereas cr
n = rn−r ·rn−1 =

0, n ∈ N. Moreover, we have seen (Example 2.3.2) that, even though the sequence
given by cn = √n, n ∈ N0 is divergent, we have limn→∞

(√
n −√n − 1

) = 0
(r = 1).

These examples show that the converse that we seek cannot hold for r ≥ 1.
We now claim that, given 0 < r < 1, for every real sequence c, we have

lim
n→∞ cr

n = lim
n→∞ (cn − r · cn−1) = 0 ⇒ lim

n→∞ cn = 0.

To show this, let c be a real sequence, and set

L = lim inf
n→∞ cn ≤ lim sup

n→∞
cn = L.

Assume that we have

lim
n→∞ (cn − r · cn−1) = 0.

We calculate

L = lim sup
n→∞

cn = lim sup
n→∞

((cn − r · cn−1)+ r · cn−1)

≤ lim sup
n→∞

(cn − r · cn−1)+ lim sup
n→∞

(r · cn−1) = r L.

Since 0 < r < 1, we obtain L ≤ 0.
On the other hand, we have

L = lim inf
n→∞ cn = lim inf

n→∞ ((cn − r · cn−1)+ r · cn−1)

≥ lim inf
n→∞ (cn − r · cn−1)+ lim inf

n→∞ (r · cn−1) = r L.

Since 0 < r < 1, we obtain L ≥ 0.
Combining these, we obtain

0 ≤ L ≤ L ≤ 0.

This gives L = L = 0. The example follows.
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Proposition 3.1.1 Let a, b : N0 → R be real sequences, and assume that a is
bounded and limn→∞ bn exists. Then, we have

lim sup
n→∞

(an+bn)= lim sup
n→∞

an+ lim
n→∞ bn and lim inf

n→∞ (an+bn)= lim inf
n→∞ an+ lim

n→∞ bn .

In particular, if limn→∞ an and limn→∞ bn both exist, then so does limn→∞(an +
bn), and we have

lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn .

Proof First, since the sequence b is convergent, we have

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn = lim sup
n→∞

an + lim
n→∞ bn .

Second, writing a = (a + b)− b, we have

lim sup
n→∞

an = lim sup
n→∞

((an + bn)− bn) ≤ lim sup
n→∞

(an + bn)+ lim sup
n→∞

(−bn)

= lim sup
n→∞

(an + bn)+ lim
n→∞(−bn) = lim sup

n→∞
(an + bn)− lim

n→∞ bn .

Hence

lim sup
n→∞

an + lim
n→∞ bn ≤ lim sup

n→∞
(an + bn).

The first formula in the proposition follows. The proof of the second formula is
analogous.

Proposition 3.1.2 Let a, b : N0 → R be real sequences, and assume that a is
bounded and limn→∞ bn exists and is non-negative. Then we have

lim sup
n→∞

(an ·bn) = lim sup
n→∞

an · lim
n→∞ bn and lim inf

n→∞ (an ·bn) = lim inf
n→∞ an · lim

n→∞ bn .

In particular, if limn→∞ an and limn→∞ bn both exist, then so does limn→∞(an ·bn),
and we have

lim
n→∞(an · bn) = lim

n→∞ an · lim
n→∞ bn .

Proof If limn→∞ bn = 0, then b is a null-sequence. In the previous section we
showed, that the product of a bounded sequence and a null-sequence is a null-
sequence. Thus, a · b is a null-sequence, and the two formulas obviously hold.

We may therefore assume that c = limn→∞ bn > 0. We write a·b = ca+a(b−c)
and observe that b − c is a null-sequence. Therefore, by boundedness of a, the
product a(b − c) is also a null-sequence. We now use Proposition 3.1.1 to obtain
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lim sup
n→∞

(anbn) = lim sup
n→∞

(can + an(bn − c)) = lim sup
n→∞

(can)

= c lim sup
n→∞

an = lim sup
n→∞

an · lim
n→∞ bn .

The first formula in the proposition follows. The proof of the second formula is
analogous.

Remark By simple induction, we have

lim
n→∞ am

n =
(

lim
n→∞ an

)m
, m ∈ N,

provided that limn→∞ an exists.

Proposition 3.1.3 Let a, b : N0 → R be real sequences. Assume that limn→∞ an

exists, the sequence b consists of non-zero elements, and limn→∞ bn exists and is
non-zero. Then, we have

lim
n→∞

an

bn
= limn→∞ an

limn→∞ bn
.

Proof We first claim that the sequence 1/b = (1/bn)n∈N0 is bounded.
Since b is not a null-sequence, |b| is bounded away from zero, that is, there exists

0 < ε and N ∈ N0 such that ε < |bn| for n ≥ N . Thus, we have |1/bn| < 1/ε for
n ≥ N . Adjoining the first N elements, we obtain

|1/bn| ≤ max (|1/b0| , |1/b1| , . . . , |1/bN−1| , 1/ε) , n ∈ N0.

Boundedness of the sequence 1/b follows.
Since a convergent sequence is bounded (as it is Cauchy) and the product of

bounded sequences is bounded, we obtain that the sequence a/b is also bounded.
We now apply Proposition 3.1.2 to the product a = (a/b) · b. We have

lim
n→∞ an = lim

n→∞((an/bn) · bn) = lim sup
n→∞

((an/bn) · bn) = lim sup
n→∞

(an/bn) · lim
n→∞ bn .

The same holds if lim sup is replaced by lim inf. The proposition follows.
Proposition 2.3.2 asserts that every real sequence has a monotonic subsequence.

Non-monotonic (convergent) sequences, however, arise naturally. Going beyond
trivial examples such as ((−1)n/n)n∈N, we introduce here the Fibonacci sequence
whose consecutive ratios form a rational sequence. As we will see below, this latter
sequence splits into an increasing and a decreasing subsequence both converging to
the same irrational number.

Example 3.1.2 The sequence of Fibonacci numbers is defined inductively as

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1, for n ∈ N.
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History
We noted previously the Italian mathematician Leonardo Pisano Bigollo, “Fibonacci” for short. He
is best known for the sequence above named after him; this sequence is contained in his book Liber
Abaci (1202). Note, however, that the Fibonacci sequence was known to Indian mathematicians
around the 6th century. Fibonacci introduced this sequence as the pattern of growth of a population
of pairs of rabbits. He assumed that every time a new pair (male and female) of rabbits is born,
they mature in a month and then produce another pair of rabbits. If no rabbits ever die, he asked:
How many pairs of rabbits will there be after a year?
The inductive definition of the sequence can clearly be seen here. If Fn is the number of pairs of
rabbits at the end of the nth month, then Fn+1 is equal to the new pairs Fn−1 plus Fn , the number
of pairs existing at the end of the nth month.

The Fibonacci numbers satisfy many identities. (See the exercises at the end of
this section.) For our purposes, we only need Cassini’s Identity

Fn+1 Fn−1 − F2
n = (−1)n, n ∈ N.

We show this by using Peano’s Principle of Induction with respect to n ∈ N.
For the initial step, n = 1, we have F2 F0 − F2

1 = −1 and the identity holds.
For the general induction step n ⇒ n + 1, we assume that Cassini’s identity is

valid for n, start with this, and calculate

Fn+1 Fn−1 − F2
n = (−1)n

Fn+1(Fn+1 − Fn)− F2
n = (−1)n

F2
n+1 − Fn+1 Fn − F2

n = (−1)n

F2
n+1 − Fn(Fn+1 + Fn) = (−1)n

F2
n+1 − Fn Fn+2 = (−1)n

Fn+2 Fn − F2
n+1 = (−1)n+1.

The last equality is Cassini’s identity for n + 1. The general induction step is
completed, and the identity follows.

Cassini’s identity has many interesting consequences. First, we define the ratio

rn = Fn+1

Fn
, n ∈ N.

Dividing both sides of Cassini’s identity (for n) by Fn−1 Fn , we obtain the 1-step
difference formula

rn − rn−1 = (−1)n

Fn−1 Fn
.

Moving up the value of n by one, we have

rn+1 − rn = (−1)n+1

Fn Fn+1
.
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Adding these two, we obtain the 2-step difference formula

rn+1 − rn−1 = (−1)n

Fn

(
1

Fn−1
− 1

Fn+1

)
= (−1)n

Fn

Fn+1 − Fn−1

Fn−1 Fn+1
= (−1)n

Fn−1 Fn+1
,

where we used the defining equation Fn+1 = Fn + Fn−1.
For n = 2k even, this gives r2k+1 − r2k−1 = 1/(F2k−1 F2k+1) > 0, and hence

r2k−1 < r2k+1. For n = 2k + 1 odd, we have r2k+2 − r2k = −1/(F2k F2k+2) < 0,
and hence r2k+2 < r2k . Returning to the original 1-step difference formula above,
n = 2k + 2 gives r2k+2 − r2k+1 = 1/(F2k+1 F2k+2) > 0.

Putting all these together, we arrive at

r2k−1 < r2k+1 < r2k+2 < r2k, k ∈ N.

We conclude that the odd-member subsequence (r1, r3, r5, . . .) is strictly increasing
and the even-member subsequence (r2, r4, r6, . . .) is strictly decreasing. Finally, by
completeness of R, these two subsequences approach a unique real number τ , since,
by the above, the even-odd differences approach zero (since the Fibonacci sequence
is unbounded).

It is easy to find the value of the limit τ . Dividing through the defining equation
Fn+1 = Fn + Fn−1 by Fn−1, we have

Fn+1

Fn−1
= Fn+1

Fn
· Fn

Fn−1
= Fn

Fn−1
+ 1,

or equivalently,

rn · rn−1 = rn−1 + 1, 2 ≤ n ∈ N.

Now, taking the limit on both sides as n → ∞, and using Proposition 3.1.2 along
with the fact that limn→∞ rn−1 = limn→∞ rn = τ , we obtain

τ 2 = τ + 1.

In other words, τ is the unique positive solution of the quadratic equation x2 − x −
1 = 0. The Quadratic Formula1 now gives

τ = 1+√5

2
.

This is the famous golden number2 (or golden ratio or Euclid’s extreme and mean
ratio) of Greek antiquity.

1Here we use the well-known formula (−b ± √b2 − 4ac)/(2a) giving the two zeros of the
quadratic polynomial ax2 + bx + c. A full analysis of this is in Section 6.6.
2For a thorough discussion on the golden number, see the author’s Glimpses of Algebra and
Geometry, 2nd ed. Springer, New York, 2002.
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History
The German mathematician and astronomer Johannes Kepler (1571–1630) noted that the ratio of
consecutive Fibonacci numbers is “ as 5 to 8 so is 8 to 13, practically, and as 8 is to 13, so is
13 to 21 almost,” finally concluding that the ratios get closer and closer to the golden number.
Note the vagueness of the concept of convergence predating the precise definition about two
centuries.

The next example shows the interesting fact that, given an arithmetic sequence
with integral difference, the square root of a natural number gets arbitrarily close to
one of the members of the sequence.

Example 3.1.3 Let 0 < ε ∈ R and d ∈ N. Show that

ε <
∣∣√m − d · n∣∣ < 2ε

for some m, n ∈ N.3

The proof is “ad hoc” and involves several careful choices. First, the expression
within the absolute value above will be compared to a choice of a rational number
a/b ∈ Q, a, b ∈ N (comparable to ε/2) as 2ε < a/b < 4ε. We let k ∈ N (eventually
large) and define n = kb and m = (dkb)2 + dka. With these choices, we need to
estimate 0 <

√
m − dn = √(dkb)2 + dka − dkb as k →∞. We now “rationalize

the last radical expression” as

0 <
√

m − dn =
√

(dkb)2 + dka − dkb = dkb

(√
1+ a

dkb2 − 1

)

= dkb
a

dkb2√
1+ a

dkb2 + 1
= a

b

1√
1+ a

dkb2 + 1
<

a

2b
< 2ε.

The stated upper estimate follows. Since

lim
k→∞

1√
1+ a

dkb2 + 1
= 1

2
,

for k large enough, the lower estimate also follows.

We now return to the geometric sequence studied in Section 2.3. Let |r | < 1,
r ∈ R. We claim

lim
n→∞

n∑
k=0

rk = lim
n→∞(1+ r + r2 + · · · + rn) = 1

1− r
.

3This was a problem in the Duke 2012 William Lowell Putnam Mathematical Competition
Preparation.
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To do this, we first state the Finite Geometric Series Formula:

n∑
k=0

rk = 1+ r + r2 + · · · + rn = 1− rn+1

1− r
, r �= 1.

There are several classical proofs of this; the quickest is by induction.
For n = 0, the formula is obvious. For the general induction step n ⇒ n + 1, we

calculate

1+ r + r2 + · · · + rn + rn+1 = 1− rn+1

1− r
+ rn+1 = 1− rn+2

1− r
.

The formula follows.
According to our study of the geometric sequence in Section 2.3, for |r | < 1, we

have limn→∞ rn = limn→∞ rn+1 = 0. Using this in the Finite Geometric Series
Formula, the stated limit relation above follows.

This limit is usually written in an infinite series form4 called the Infinite
Geometric Series Formula:

∞∑
n=0

rn = 1+ r + r2 + · · · + rn + · · · = 1

1− r
, |r | < 1.

Remark The Finite Geometric Series Formula also shows that, if r ≥ 1, then

∞∑
n=0

rn = 1+ r + r2 + · · · + rn + · · · = ∞.

History
According to legends, a king gave the inventor of chess (possibly the ancient Indian Brahmin
mathematician Sessa) the right to name his prize for the new game who then asked for an amount
of grains of wheat (or rice) as follows. Place 1 grain of wheat on one square of a chess board, 2 on
another, then 4, etc. each time the double amount of what has been placed on a previous square.
Unaware of geometric progression, the king readily agreed. On an 8 × 8 chessboard, there are 64
squares so that the amount of grain requested by the inventor was

1+ 2+ 4+ 8+ · · · + 263 = 864 − 1 = 18, 446, 744, 073, 709, 551, 615,

where we used the Finite Geometric Series Formula above. Taking 25 mg as the average weight
of a grain of wheat, this amounts to approximately 461,168,601,842.73 metric tons of wheat. For
comparison, this is almost 971 times the world rice production in 2014/2015 (approximately 475.04
million metric tons).

4If (an)n∈N0 is a sequence, then we write
∑∞

n=0 an = limn→∞(a0 + a1 + · · · + an).
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Borrowing a term in music, the next example should be considered as a “variation
on the theme.”

Example 3.1.4 Let |r |, |s| < 1, r, s ∈ R. Calculate the limit

lim
n→∞

1+ r + r2 + · · · + rn

1+ s + s2 + · · · + sn
.

Using the Finite Geometric Series above, we have

lim
n→∞

1+ r + r2 + · · · + rn

1+ s + s2 + · · · + sn
= lim

n→∞

1−rn+1

1−r
1−sn+1

1−s

= 1− s

1− r
.

We now briefly revisit the infinite decimal representation of a real number in
Section 2.2. As noted there, a real number can be represented as an infinite sum:

a.d1d2d3 . . . = a + d1

10
+ d2

102 +
d3

103 + · · · ,

where the decimal digits d1, d2, d3, . . . range from 0 to 9.
We showed that a real number is rational if and only if its infinite decimal

representation ends with a repeating pattern or if it terminates. As an application of
the previous example, we now derive this in a less ad hoc manner. As in Section 2.2,
we may start with the reduced repeating pattern

0.d1d2 . . . dk=d1d2 . . . dk

(
1

10k
+ 1

102k
+ · · ·

)
=d1d2 . . . dk

10k

(
1+ 1

10k
+
(

1

10k

)2
+ · · ·

)
.

Since 1/10k < 1, the Infinite Geometric Series Formula applies. We obtain

0.d1d2 · · · dk = d1d2 · · · dk

10k

(
1+ 1

10k
+
(

1

10k

)2

+ · · ·
)

= d1d2 . . . dk

10k

1

1− 1
10k

= d1d2 . . . dk

10k

10k

10k − 1
= d1d2 . . . dk

10k − 1
.

This is the formula that we arrived at in Section 2.2 using ad hoc methods.

Example 3.1.5 We have

∞∑
n=1

nrn = r

(1− r)2
, |r | < 1.
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We calculate

∞∑
n=1

nrn =
∞∑

n=1

n︷ ︸︸ ︷
(rn + · · · + rn)

= r + (r2 + r2)+ (r3 + r3 + r3)+ · · · + (rn + rn + · · · + rn)+ · · ·

=
∞∑

n=1

∞∑
k=n

rk =
∞∑

n=1

rn

1− r
= 1

1− r

∞∑
n=1

rn = 1

1− r

r

1− r
= r

(1− r)2 .

Remark Once we know that the sum
∑∞

n=1 nrn , |r | < 1, is finite, there is a simpler
way to determine its value. Letting S(r) denote this sum, we calculate

S(r) =
∞∑

n=1

nrn =
∞∑

n=1

rn +
∞∑

n=2

(n − 1)rn = r

1− r
+ r

∞∑
n=2

(n − 1)rn−1

= r

1− r
+ r

∞∑
n=1

nrn = r

1− r
+ r S(r),

where we used the Finite Geometric Series Formula. Rearranging, we obtain S(r) =
r/(1− r)2.

Example 3.1.6 For n ∈ N, we let

Hn = 1+ 1

2
+ 1

3
+ · · · + 1

n
.

We claim

∞∑
n=1

1

n
= lim

n→∞ Hn = ∞.

To show this, we first note that the sequence (Hn)n∈N is strictly increasing so that
it is either convergent to a finite limit or unbounded. For n ∈ N, we calculate

H2n+1 − H2n = 1

2n + 1
+ 1

2n + 2
+ · · · + 1

2n+1 > 2n 1

2n+1 =
1

2
,

where we estimated the 2n+1 − 2n = 2n terms by the last (smallest) term 1/2n+1.
Thus, for n ∈ N, we have

H2n = (H2n − H2n−1)+ (H2n−1 − H2n−2)+ · · · + (H2 − H1)+ H1 ≥ n
1

2
+ 1.
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By monotonicity of the limit, we obtain

lim
n→∞ Hn = lim

n→∞ H2n ≥ lim
n→∞

(n

2
+ 1
)
= ∞.

The claim follows.

The infinite series
∞∑

n=1

1

n
= ∞

in the example above is called the harmonic series.

Remark The partial sums of the harmonic series increase very slowly; for example,
we have H106 = 14.39272672 . . . and H109 = 21.30048150 . . ..

A variation on the theme is the following:

Example 3.1.7 For 2 ≤ n ∈ N, find a formula for the sum

1

[√1] +
1

[√2] +
1

[√3] + · · · +
1

[√n2 − 1] ,

in terms of Hn , n ∈ N, where [x], x ∈ R, is the greatest integer ≤ x .
As we showed in Section 2.1, for k ∈ N, the square root

√
k is a natural number

if and only if k = m2, the square of a natural number m ∈ N. By the definition of
the greatest integer function and monotonicity of the square root, the value [√k] is
the constant m ∈ N precisely when m2 ≤ k ≤ (m + 1)2 − 1. This happens exactly
(m + 1)2 − 1−m2 + 1 = 2m + 1 times, and therefore these terms contribute to the
sum (2m + 1)/m. Since 1 ≤ m ≤ n − 1, we obtain that the sum above is equal to

3

1
+ 5

2
+ 7

3
+ · · · + 2n − 1

n − 1
.

We obtain

1

[√1] +
1

[√2] +
1

[√3] + · · · +
1

[√n2 − 1] = 2(n − 1)+ Hn−1, 2 ≤ n ∈ N.

Example 3.1.8 For each non-empty subset A ⊂ {1, 2, . . . , n}, n ∈ N, consider the
ratio �A/�A, where �A = �a∈Aa, resp. �A = �a∈Aa, is the sum, resp. product,
of the elements in A.5 Determine the following sums:

Sn =
∑

∅�=A⊂{1,...,n}

�A

�A
and Pn =

∑
∅�=A⊂{1,...,n}

1

�A

5The first part of this problem with explicit final formulas was in the USA Mathematics Olympiad,
1991.
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S∧n =
∑

∅�=A⊂{1,...,n}
(−1)|A|�A

�A
and P∧n =

∑
∅�=A⊂{1,...,n}

(−1)|A| 1

�A
.

First, we determine Pn and P∧n , n ∈ N. Clearly, we have P1 = 1 and P∧1 = −1,
since the only non-empty subset of the set {1} is the whole set itself.

We now notice that

Pn =
(

1+ 1

1

)
·
(

1+ 1

2

)
· · ·
(

1+ 1

n

)
−1 = 2

1
· 3
2
· · · n + 1

n
−1 = (n+1)−1 = n.

This is because, expanding the parentheses, we obtain 1 = 1 · 1 · · · 1 corresponding
to the empty set ∅ (which is deducted) and products of the form

1

i1 · i2 · · · ik
, 1 ≤ i1 < i2 < . . . < ik ≤ n, k = 1, 2, . . . , n,

corresponding to the non-empty subset A = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}.
Similarly, for the alternating sum, we have

P∧n =
(

1− 1

1

)
·
(

1− 1

2

)
· · ·
(

1− 1

n

)
− 1 = −1,

since, upon expanding, we obtain 1 and products of the form

(−1)k

i1 · i2 · · · ik
, 1 ≤ i1 < i2 < . . . < ik ≤ n, k = 1, 2, . . . , n,

corresponding to the non-empty subset A = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}.
Second, we derive inductive formulas for Sn and S∧n , n ∈ N. Clearly, we have

S1 = 1 and S∧1 = −1, since the only non-empty subset of the set {1} is the whole
set itself. We claim

Sn+1 =
(

1+ 1

n + 1

)
Sn + n + 1 and S∧n+1 =

(
1− 1

n + 1

)
S∧n , n ∈ N.

There are three types of non-empty subsets in {1, . . . , n, n + 1}, n ∈ N. If
the subset does not contain the element n + 1, then it is a non-empty subset
A ⊂ {1, . . . , n}. If it contains the element n+1, then it can be of the form A∪{n+1},
where A ⊂ {1, . . . , n} is non-empty, or it can be the singleton A = {n + 1}.

The respective ratios of the first type of subsets add up to Sn . The ratio of the
second type of subset A ∪ {n + 1}, ∅ �= A ⊂ {1, . . . , n}, is calculated as

�A∪{n+1}
�A∪{n+1}

= �A + (n + 1)

�A · (n + 1)
= �A

�A
· 1

n + 1
+ 1

�A
.
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The sum of these ratios gives Sn/(n + 1) + Pn . Finally, the ratio corresponding to
the third type of subset A = {n + 1} is equal to (n + 1)/(n + 1) = 1. Adding these,
we obtain

Sn+1 = Sn + Sn

n + 1
+ n + 1, n ∈ N,

where we used that Pn = n. The first inductive formula follows.
The proof of the second inductive formula is similar. For the second type of

subset A ∪ {n + 1}, ∅ �= A ⊂ {1, . . . , n}, we have

(−1)|A|+1 �A∪{n+1}
�A∪{n+1}

=(−1)|A|+1 �A+(n+1)

�A · (n + 1)
=−(−1)|A|�A

�A
· 1

n+1
−(−1)|A| 1

�A
.

The sum of these ratios gives −S∧n /(n + 1)− P∧n . Adding these, we obtain

S∧n+1 = S∧n −
S∧n

n + 1
, n ∈ N,

where we used that P∧n = −1. The second inductive formula follows.
To solve the first inductive formula (for Sn , n ∈ N), we claim

Hn = n + 1− Sn + 1

n + 1
, n ∈ N.

Clearly, H1 = 2− 2/2 = 1. Moreover, we have

Hn+1 = n + 2− Sn+1 + 1

n + 2
= n + 2−

n+2
n+1 Sn + n + 2

n + 2
= n + 1− Sn

n + 1

= n + 1− Sn + 1

n + 1
+ 1

n + 1
= Hn + 1

n + 1
,

and the claim now follows by simple induction. Playing this back to Sn , we finally
obtain

Sn = n2 + 2n − (n + 1)Hn, n ∈ N.

The solution to the second recurrence formula is simpler. After rearranging, we
obtain

(n + 1)S∧n+1 = nS∧n , n ∈ N.

This means that the expression on either side is constant and therefore equal to
S∧1 = −1. We get
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S∧n = −
1

n
.

The example follows.

We now leave the harmonic series and consider the sum of squares of reciprocals
of positive integers. In contrast to the harmonic series, we have the following:

Example 3.1.9 We have

∞∑
n=1

1

n2 = lim
n→∞

(
1+ 1

22 +
1

32 + · · · +
1

n2

)
≤ 2.

First, the sequence under the limit is strictly increasing, and so, like in the
previous case, the limit is either finite or infinite. We claim that it is finite.

Indeed, we estimate the terms using the following:

1

k2 <
1

k(k − 1)
= 1

k − 1
− 1

k
, 2 ≤ k ∈ N.

Using this for each term, we have

1+ 1

22 +
1

32 +· · ·+
1

n2 < 1+
(

1− 1

2

)
+
(

1

2
− 1

3

)
+· · ·+

(
1

n − 1
− 1

n

)
= 2− 1

n
.

Monotonicity of the limit now gives

lim
n→∞

(
1+ 1

22
+ 1

32
+ · · · + 1

n2

)
≤ lim

n→∞

(
2− 1

n

)
= 2.

Remark 1 In Example 2.3.2, we noted that the defining condition for a Cauchy
sequence cannot be replaced by the condition infN∈N0 supn≥N |an+1 − an| = 0.
On the other hand, if we impose the condition |an+1 − an| ≤ 1/n2, n ∈ N, then
the sequence (an)n∈N becomes convergent. This follows from the estimate in the
example above. Indeed, for m ≥ n ≥ 2, m, n ∈ N, we calculate

|am+1 − an| ≤ |am+1 − am | + |am − am−1| + · · · + |an+1 − an|
≤ 1

m2
+ 1

(m − 1)2
+ · · · + 1

n2

≤
(

1

m − 1
− 1

m

)
+
(

1

m − 2
− 1

m − 1

)
+ · · · +

(
1

n − 1
− 1

n

)
= 1

n − 1
− 1

m
.

This shows that the sequence (an)n∈N is Cauchy, thereby convergent.
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Remark 2 In 1735, Euler announced6 that

∞∑
n=1

1

n2 =
π2

6
.

We will give an elementary proof of this in Section 11.7.

History
Calculating the exact value of this sum was first posed by Pietro Mengoli in 1644. It has baffled
the leading mathematicians of the time, such as the Bernoulli family, for almost a century. It has
brought international fame to the 28-year old Euler, and his solution was read in 1735 in the Saint
Petersburg Academy of Sciences. Euler used some methods that were not justified at the time, but
within six years he was able to provide a rigorous proof. This problem was subsequently named
after his hometown (and that of the Bernoulli’s) as the Basel problem.

As a straightforward generalization (in the use of the monotonicity of the limit),
for 2 ≤ p ∈ N, the infinite series

∞∑
n=1

1

n p
= lim

n→∞

(
1+ 1

2p
+ 1

3p
+ · · · + 1

n p

)

converges. This is called the p-series.
In the next section, we will show that the p-series converges for any real 1 <

p ∈ R. At present, analogously to the previous example, we show that the special
case p = 3/2 can be done by simple estimates.

Example 3.1.10 We have

1+ 1

2
√

2
+ · · · + 1

n
√

n
≤ 3− 2√

n
, n ∈ N.

As a consequence, we have

∞∑
n=1

1

n
√

n
≤ 3.

To derive this inequality, we use Peano’s Principle of Induction. For n = 1,
the equality holds. For the general induction step n ⇒ n + 1, by the induction
hypothesis, we have

1+ 1

2
√

2
+ · · · + 1

n
√

n
+ 1

(n + 1)
√

n + 1
≤ 3− 2√

n
+ 1

(n + 1)
√

n + 1

6Unlike the harmonic series, this series converges fast; for example, the first one thousand terms
differ from π2/6 by an error of 0.0009995001667.
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Hence, it is enough to show that

3− 2√
n
+ 1

(n + 1)
√

n + 1
≤ 3− 2√

n + 1
.

Rearranging, we obtain

2n + 3

2n + 2
≤
√

n + 1

n
.

Squaring and eliminating the denominators, the inequality easily follows.

A (much simpler) variation on the theme is the following:

Example 3.1.11 Show that

∞∑
n=1

1

(n + 1)
√

n + n
√

n + 1
= 1.

For n ∈ N, we have

1

(n + 1)
√

n + n
√

n + 1
= 1√

n(n + 1)
(√

n + 1+√n
)=
√

n + 1−√n√
n(n + 1)

= 1√
n
− 1√

n + 1
.

Hence the partial (finite) sums are telescopic, and we obtain

N∑
n=1

1

(n + 1)
√

n + n
√

n + 1
= 1− 1√

N + 1
, N ∈ N.

Letting N →∞, the example follows.

Exercises

3.1.1. Let (an)n∈N and (bn)n∈N be real sequences such that limn→∞(an+bn) = 2
and limn→∞(an · bn) = 1. Show that limn→∞ an = limn→∞ bn = 1.

3.1.2. Let (an)n∈N be a sequence with positive terms. Show that (a)
∑∞

n=1 an finite
implies that

∑∞
n=1
√

anan+1 is also finite, but (b) the converse is false.
3.1.3. Let (an)n∈N0 be an arithmetic sequence with difference d ∈ R and (bn)n∈N0

a geometric sequence with ratio r ∈ R such that |r | < 1. Show that

∞∑
n=0

anbn = a0b0

1− r
+ db0r

(1− r)2 .
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3.1.4. Let a0, a1 ∈ R and 0 < t < 1, t ∈ R, and define the real sequence (an)n∈N0

inductively by an+1 = (1− t)an + tan−1, n ∈ N. Show that

lim
n→∞ an = ta0 + a1

t + 1
.

3.1.5. Let n ∈ N. Determine the number of subsets of the set {1, 2, . . . , 2n} with
the property that the sum of the smallest and largest elements is equal to
2n + 1.

3.1.6. Show that, for appropriate ranges m, n ∈ N, the Fibonacci numbers
(Example 3.1.2) satisfy the following identities:

i.
n∑

k=1

Fk = Fn+2 − 1

ii.
n−1∑
k=0

F2k+1 = F2n

iii.
n∑

k=1

F2k = F2n+1 − 1

iv.

n∑
k=1

F2
k = Fn Fn+1

v. F2
n − Fn+m Fn−m = (−1)n−m F2

m

vi. F3n = F3
n+1 + F3

n − F3
n−1

vii. F3n+1 = F3
n+1 + 3Fn+1 F2

n − F3
n

viii. F3n+2 = F3
n+1 + 3F2

n+1 Fn + F3
n

3.1.7. Given n ∈ N, show that the number of ways to split n as a sum of 1’s and
2’s is Fn+1. (For example, we have 1+ 1+ 1 = 3, 1+ 2 = 3, 2+ 1 = 3
giving F4 = 3.)

3.1.8. Show that Fn , n ∈ N, is the number of n-digit binary integers7 that have no
consecutive zeros.

3.1.9. Derive Binet’s formula

Fn = τ n − (−1)n(1/τ)n

τ + 1/τ
,

where τ is the golden number (see Example 3.1.2).

7Sequences of n digits of 0’s and 1’s, starting with 1.
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3.1.10. Derive the identity

Fm+n+1 = Fm+1 Fn+1 + Fm Fn, m, n ≥ 0, m, n ∈ Z.

As special cases, obtain the identities

F2n+1 = F2
n+1 + F2

n and F2n = F2
n+1 − F2

n−1.

3.1.11. Show that (a) Fm |Fmn , m, n ∈ N, (b) gcd(Fn, Fn+1) = 1, n ∈ N, and (c)
gcd(Fm, Fn) = F gcd(m,n), m, n ∈ N.

3.1.12. Derive a closed formula for the sum Sn = 1 + 11 + 111 + · · · +
n︷ ︸︸ ︷

11 . . . 1
using the Finite Geometric Series Formula.

3.1.13. Show that Hn is not an integer for 2 ≤ n ∈ N.

3.2 Roots, Rational and Real Exponents

Let m ∈ N. In this section we will show that if 0 < a ∈ R is a positive real number,
then there exists a unique positive real number 0 < b ∈ R such that bm = a. In
this case, b is called the mth root of a, and it is denoted by b = m

√
a. We call m the

degree of the root. This concept clearly extends to zero; the mth root of zero is zero
itself.

If m is odd, then bm = a, 0 < a, b ∈ R, implies (−b)m = −a. This shows
that, for m odd, any real number a ∈ R has a unique mth root, and m

√
a = − m

√−a
defines the mth root of a negative real number.

If m is even and bm = a, 0 < a, b ∈ R, then bm ≥ 0 so that we must have a ≥ 0.
We see that negative real numbers do not have even degree roots. On the other hand,
for m even, bm = a, 0 < a, b ∈ R, implies (−b)m = a so that, besides m

√
a, we

can also define the negative mth root − m
√

a. With this, for m even, the mth roots of
0 < a ∈ R are ± m

√
a.

For 0 < a ∈ R and any m (regardless the parity), the mth root m
√

a > 0 is usually
called the principal mth root of a.

For a ≥ 0,
√

a is referred to as the square root of a. (The degree 2 is not
indicated explicitly.) For a ∈ R, 3

√
a is called the cube root of a. For specific n ≥ 4,

the nth root is referred to by the respective ordinal number; for example, 4
√

2 is the
fourth root of 2, 5

√
3 is the fifth root of 3, etc.

History
According to Eratosthenes of Cyrene (c. 276–190 BCE), the citizens of the island of Delos, stricken
by the plague around 430 BCE, consulted the oracle of Apollo for aid. The oracle’s answer was
that the Delians should build an altar of Apollo of the same cubic shape as the original altar but
twice the volume. The Delians later asked Plato to clarify the meaning of this, and his answer was
that “the oracle meant, not that the god wanted an altar of double the size, but that he wished, in
setting them the task, to shame the Greeks for their neglect of mathematics and their contempt
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of geometry.” This came down to us as the Delian problem, and it essentially asks to construct
(using a straightedge (unmarked ruler) and a compass, or other means, see later) a line segment
with length 3

√
2. (See also the epitaph to Chapter 8 as well as a note to the solution of the Delian

problem by conics.)
Bhāskara II treated roots extensively in his work Bijaganita; he was also the first to recognize that
a positive number has two square roots.√

or √ is the radical sign, and a is the radicand. (The radical sign always stretches over the

radicand even if the latter is long; for example, we write
√

365 and not
√

365.) A symbol for
the square root was depicted as an intricate R by Regiomontanus (1436–1476). In Cardano’s
Ars Magna a variant of R was also used for Radix (base), a Latin word for “root,” to indicate
square roots. The symbol

√
used today first appeared in print in 1525 by Cristoph Rudolff’s book

of computing entitled Behend und hübsch Rechnung durch die kunstreichen regeln Algebre so
gemeinicklich die Coss genent werden (Nimble and beautiful calculation via the artful rules of
algebra [which] are commonly called “coss” 8). It is probable but not universally accepted that he
invented this symbol to resemble the lowercase “r” for radix.

Remark The shifting mth root algorithm extracts the mth root of a positive
real number digit-by-digit and thereby produces a real number in infinite decimal
representation. The existence of the mth root of a real number also follows from
Newton’s Method (applied to the polynomial equation xm = a), which, in this case,
requires a minor modification of the Babylonian Method.

We now show that the mth root of a positive real number exists.

Proposition 3.2.1 Let 0 < a ∈ R and m ∈ N. Then there exists a unique 0 < b ∈ R

such that bm = a.

Proof We first show existence. Let 0 < a ∈ R, and consider the set

A = {0 < r ∈ R | rm > a}.

By the Bernoulli inequality, we have

(1+ a)m ≥ 1+ ma > a,

so that 1+ a ∈ A. In particular, A is non-empty.
Since 0 is an obvious lower bound for A, completeness of R implies that the

infimum of A exists. We let 0 ≤ b = inf A. We claim that b is the desired mth root
of a, so that bm = a holds. This will also give b > 0 (as b = 0 cannot happen).

For every n ∈ N, b + 1/n is not a lower bound for A, and hence there exists
rn ∈ A such that (b ≤)rn < b + 1/n, n ∈ N. By monotonicity of the limit, we
obtain limn→∞ rn = b. Raising both sides to the mth power, we have

lim
n→∞ rm

n =
(

lim
n→∞ rn

)m = bm .

8Islamic mathematicians such as Muhammad ibn Mūsā Al-Khwārizmı̄ used the word “shai”
(thing) for the indeterminate/variable. This in Latin gave rise to the word “res,” and in Italian
“cosa” (thing). Algebra in Italy became “l’arte della cosa,” in England “cossike arte” (the rule of
coss), and in Germany “die Coss.”
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On the other hand, since rn ∈ A, we have a < rm
n , n ∈ N, and again monotonicity

of the limit gives a ≤ limn→∞ rm
n . Combining these, we obtain a ≤ bm . As a

byproduct, we have b > 0.
To finish the proof of the existence, we claim that a ≥ bm holds. Assume not.

Since 0 < a/bm < 1, we can choose

0 < δ <
b

m

(
1− a

bm

)
.

We calculate

(b − δ)m >

(
b− b

m

(
1− a

bm

))m

=bm
(

1− 1

m

(
1− a

bm

))m

≥ bm
(

1−
(

1− a

bm

))
=a,

where in the last estimate we used the Bernoulli inequality with −(1/m)(1 −
a/bm) ≥ −1). This shows that b − δ ∈ A, a contradiction, since b = inf A. Thus,
we have a ≥ bm . Existence follows.

For unicity, let 0 < b, c ∈ R such that bm = cm = a. We may assume b ≤ c
(since otherwise we would swap b and c). We have bm ≤ cm so that equalities must
hold. Unicity holds.

Remark Unicity also follows from the identity9

xm − ym = (x − y)(xm−1 + xm−2 y + · · · + xym−2 + ym−1), x, y ∈ R.

The mth root satisfies several identities, and they are simple consequences of
unicity and the analogous identities for integral exponents. For m, n,∈ N, we have
the following

m
√

ab = m
√

a m
√

b, 0 ≤ a, b ∈ R;
m

√
a

b
=

m
√

a
m
√

b
, 0 ≤ a ∈ R, 0 < b ∈ R;

n
√

m
√

a = mn
√

a, 0 ≤ a ∈ R.

The roots of real numbers can be nicely incorporated into our exponential
notations. From now on we assume that the base is non-zero. Recall the identity
(bm)n = bm·n, b ∈ R, where m, n ∈ Z. Now, if b is an mth root of a, then a = bm ,
and the identity above (for m · n = 1) suggests that we should define m

√
a = a1/m .

Taking integral powers of both sides would give us exponentiation with rational
exponents. We make this more precise as follows. We represent a positive rational
number 0 < q ∈ Q as a fraction q = m/n, m, n ∈ N and define

aq = am/n = n
√

am, 0 < a ∈ R.

9Identities will be treated in Chapter 6.
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We claim that this definition does not depend on the specific representation of the
rational number as a fraction; that is, for q = m/n = m′/n′, m, m′, n, n′ ∈ N, we

have n
√

am = n′√
am′ . By unicity, raising both sides to the exponent mn′ = m′n, we

must have equality

(
n
√

am)m′n = ((
n
√

am)n)m′ = amm′ = ((
n′√

am′)n′)m = (
n′√

am′)mn′,

which is indeed the case. Thus, positive rational exponents are well-defined.
Extension to negative exponents is straightforward requiring

a−q = 1

aq
, 0 < q ∈ Q.

This, along with a0 = 1, 0 < a ∈ R, defines the extension to rational exponents.
For 0 < a, b ∈ R and p, q ∈ Q, we have the following Identities:

a p+q = a p · aq , a p−q = a p

aq
, (a p)q = a pq , (ab)p = a p · bp.

These identities can be established in a straightforward manner using the analogous
identities for integral exponents and the properties of the roots.

Rational exponents exhibit monotonicity properties that are useful in computa-
tions. For 1 < a ∈ R, the power aq is strictly increasing in q ∈ Q. Similarly, for
0 < a < 1, the power aq is strictly decreasing in q ∈ Q. These follow directly from
the first and second identities.

Example 3.2.1 Let 0 < a, b, c ∈ R, and define u = ab, v = bc, and w = ca.10

Express a, b, c in terms of u, v, w.
We have uvw = a2b2b2 so that abc = √uvw. With this, we have

a = abc

bc
=
√

uvw

v
=
√

uw

v
.

Similarly, we obtain

b = abc

ac
=
√

uvw

w
=
√

uv

w
and c = abc

ab
=
√

uvw

u
=
√

vw

u
.

In Section 2.1, we showed that, for n ∈ N, the square root
√

n is a rational
number if and only if n is a perfect square. Using similar technique, we can show
that the mth root m

√
n of a natural number n ∈ N is a rational number if and only if

n is a power of m, that is, n = am for some a ∈ N.

10There are many ways to solve this problem. All involve fractional exponents and their respective
identities.
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Indeed, assume that m
√

n, m, n ∈ N, is a rational number a/b, a, b ∈ N,
gcd(a, b) = 1. By definition, we have (a/b)m = n. This gives am/b = nbm−1 ∈
N. We conclude that b divides am . Since gcd(a, b) = 1, by the corollary of
Proposition 1.3.1, b must divide a. This is a contradiction unless b = 1. Thus,
we have m

√
n = a, and the claim follows.

A variation on the theme in Example 2.3.8 is the following:

Example 3.2.2 Let n1, n2, n3 ∈ N be distinct, and assume that the linear relation

c1
3
√

n1 + c2
3
√

n2 + c3
3
√

n3 = 0

holds for some non-zero rational coefficients 0 �= c1, c2, c3 ∈ Q. Then the product
n1n2n3 must be a perfect cube.

As a special case, the linear relation above holds if 3
√

n1, 3
√

n2, 3
√

n3 are members
of an arithmetic sequence; thereby, the same conclusion holds. In particular, the
cube roots of three distinct primes cannot participate in an arithmetic sequence.11

By assumption, we have

c1n1/3
1 + c2n1/3

2 = −c3n1/3
3 ,

where we used fractional exponents. We take the cube of both sides and use the
well-known identity12

(x + y)3 = x3 + 3x2 y + 3xy2 + y3, x, y ∈ R.

We obtain

3c2
1c2n2/3

1 n1/3
2 + 3c1c2

2n1/3
1 n2/3

2 = −c3
1n1 − c3

2n2 − c3
3n3,

or equivalently,

3c1c2n1/3
1 n1/3

2

(
c1n1/3

1 + c2n1/3
2

)
= −c3

1n1 − c3
2n2 − c3

3n3.

Replacing the expression in parentheses by the original linear relation, we get

3c1c2c3n1/3
1 n1/3

2 n1/3
3 = c3

1n1 + c3
2n2 + c3

3n3.

This gives

(n1n2n3)
1/3 = c3

1n1 + c3
2n2 + c3

3n3

3c1c2c3
∈ Q,

a rational number. By the above, n1n2n3 must be a perfect cube.

11This special case was a problem in the USA Mathematical Olympiad, 1972.
12As noted previously, identities will be treated in Chapter 6.
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For the special case, if 3
√

n1, 3
√

n2, 3
√

n3 participate in an arithmetic sequence with
difference d, then we have

3
√

n1 = 3
√

n3 + a1d and 3
√

n2 = 3
√

n3 + a2d, a1 �= a2, 0 �= a1, a2 ∈ Z.

Eliminating d, we obtain the linear relation

a2
3
√

n1 − a1
3
√

n2 + (a1 − a2)
3
√

n3 = 0

with non-zero integer coefficients. The example follows.

Remark The corollary in the example above (concerning the cube roots of three
distinct primes) is a special case of a well-known and general result concerning nth
roots of primes. In 1940, Besicovitch proved the following theorem:13

Let p1, p2, . . . , pl , 2 ≤ l ∈ N, be distinct primes, and q1, q2, . . . , ql ∈
N such that each qi , i = 1, 2, . . . , l, is relatively prime to the product p1 ·
p2 · · · pl . Moreover, let 2 ≤ m1, m2, . . . , ml ∈ N, and consider the positive roots
mi√pi · qi , i = 1, 2, . . . , l. Finally, let p(x1, x2, . . . , xl) be a polynomial14 in l

indeterminates with rational coefficients such that, for i = 1, 2, . . . , l, the degree
of p(x1, x2, . . . , xl) in xi is ≤ mi − 1. Then

p(
m1√p1q1,

m2√p2q2, . . . ,
ml√plql) = 0

implies that p(x1, x2, . . . , xl) is identically zero; that is, all the coefficients of p
vanish.

Now, this result along with the proof of the second statement of Example 3.2.2
implies that no roots m1√p1,

m2√p2,
m3√p3, 2 ≤ m1, m2, m3 ∈ N, of distinct primes

p1, p2, p3 can participate in an arithmetic sequence.
Indeed, replacing the cube roots with the respective roots above, after eliminating

the difference of the arithmetic sequence, we obtain

a2
m1√p1 − a1

m2√p2 + (a1 − a2)
m3√p3 = 0.

The theorem of Besicovitch above applied to the polynomial p(x1, x2, x3) = a2x1−
a1x2 + (a1 − a2)x3 (of degree 1 in each indeterminate) implies that a1 = a2 = 0.
This is a contradiction.

The proof of the theorem of Besicovitch is elementary but complex, and it is
beyond the scope of this book.

Example 3.2.3 Let 1 ≤ a ∈ Q.15 We have

lim
n→∞

(
a
√

a · a2√
a2 · · · an√

an
)
≤ aa/(a−1)2

.

13Besicovitch, A.S., On the linear independence of fractional powers of integers, J. London Math.
Soc. 15 (1940), 3-6.
14Polynomials will be treated in detail in Chapters 6–7.
15A special case (a = 2) was a problem in the Irish Mathematical Olympiad, 1997. Note also that
actually equality holds by sequential continuity of the exponentiation, see Section 4.2.
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Indeed, the general term in the parentheses can be written as a single exponent:

a1/a+2/a2+···+n/an
.

Using Example 3.1.5 (with r = 1/a), for the limit of the exponent as n → ∞, we
have

∞∑
n=1

n

an
=
∞∑

n=1

n

(
1

a

)n

= 1/a

(1− 1/a)2 =
a

(a − 1)2 .

The limit relation follows since the terms of the series are positive.

Remark Exponentiation of the zero as a base with positive exponent is usually
defined to be zero: 0q = 0 with q > 0. On the other hand, 00 is undefined.
Exponentiation of a negative base and real exponents cannot be defined consis-
tently. For example, we have −1 = (−1)1 = (−1)2/2 �= 2

√
(−1)2 = 1. As

another problem, for k ∈ N, we have (−1)
2k

2k+1 = 2k+1
√

(−1)2k = 2k+1
√

1 = 1.

On the other hand, limk→∞(−1)
2k

2k+1 = (−1)1 = −1, since limk→∞ 2k/(2k+ 1) =
limk→∞ 1/(1+ 1/(2k)) = 1.

Example 3.2.4 Let (an)n∈N be a real sequence such that 0 < an < 1, n ∈ N. Does
this condition imply that limn→∞ an

n = 0?
The answer is “no:” Take, for example, an = 1/

n
√

2, n ∈ N.

Example 3.2.5 We have limn→∞ n
√

a = 1, 0 < a ∈ R.
To show this, first let a > 1. The sequence ( n

√
a)n∈N is strictly decreasing:

n+1
√

a < n
√

a, n ∈ N. In addition, we have the lower bound 1 < n
√

a, n ∈ N.
(By the Monotone Convergence Theorem, limn→∞ n

√
a ≥ 1 exists, but we will not

need this fact.)
We let 0 < bn = n

√
a − 1 ∈ R, n ∈ N. By the Bernoulli inequality, we have

a = (1+ bn)n ≥ 1+ nbn, n ∈ N.

This gives

0 < n
√

a − 1 = bn ≤ a − 1

n
n ∈ N.

Using monotonicity of the limit, we obtain limn→∞( n
√

a−1) = 0. The limit follows
in this case.

For 0 < a < 1,16 we have limn→∞ 1/ n
√

a = limn→∞ n
√

1/a = 1 so that the limit
follows again.

Remark If limn→∞ n
√

a = L is assumed (as it follows from the Monotone
Convergence Theorem), then, taking the subsequence of the even terms ( 2m

√
a)m∈N

16The case a = 1 is obvious.
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that also converges to L , we have

L2 =
(

lim
n→∞

n
√

a
)2 =

(
lim

m→∞
2m
√

a
)2 = lim

m→∞( 2m
√

a)2 = lim
m→∞

m
√

a = L .

Since 1 ≤ L = L2, this gives L = 1.
A non-trivial variation on the theme is the following:

Example 3.2.6 We have

lim
n→∞

n
√

an + bn = max(a, b), 0 < a, b ∈ R.

First, if a = b, then n
√

an + bn = n
√

2an = n
√

2 · a. By the previous example,
limn→∞ n

√
2 = 1. Thus, in this case, our limit formula follows.

If a �= b, we may assume a > b since otherwise we would switch a and b.
First Solution. We perform a reduction step. We write n

√
an + bn = b n

√
1+ (a/b)n .

Letting c = a/b > 1, our limit formula reduces to the following:

lim
n→∞

n
√

1+ cn = c, 1 < c ∈ R.

We define an = n
√

1+ cn − c > 0, n ∈ N. We need to show that (an)n∈N is a
null-sequence. We have

1+ cn = (c + an)n = cn
(

1+ an

c

)n ≥ cn
(

1+ n
an

c

)
,

where in the last step we used the Bernoulli inequality. Dividing by cn and
simplifying, this gives nan/c ≤ 1/cn . Equivalently, we have

0 < an ≤ 1

ncn−1 .

By monotonicity of the limit, we have 0 ≤ limn→∞ an ≤ limn→∞ 1/(ncn−1) = 0,
where the last limit is zero because c > 1.
Second Solution. A much shorter proof can be obtained if we use Example 3.2.5.
Assuming a ≤ b, we have

b = lim
n→∞

n
√

bn ≤ lim
n→∞

n
√

an + bn ≤ lim
n→∞

n
√

2bn = lim
n→∞

n
√

2 lim
n→∞

n
√

bn = b.

Remark Example 3.2.6 can be generalized in two ways.
First, if (an)n∈N and (bn)n∈N are sequences with positive members and

lim
n→∞ an = a > 0 and lim

n→∞ bn = b > 0,



160 3 Rational and Real Exponentiation

then we have

lim
n→∞

n
√

an
n + bn

n = max(a, b).

The proof is analogous to the one above replacing the constant c with cn = an/bn ,
n ∈ N.

Second, if a1, . . . , aN , 2 ≤ N ∈ N, are positive real numbers, then we have

lim
n→∞

n
√

an
1 + · · · + an

N = max(a1, . . . , aN ).

Indeed, this follows by Peano’s Principle of Induction with respect to 2 ≤ N ∈ N.
For the general induction step N ⇒ N + 1, we use the first generalization above
and calculate

lim
n→∞

n
√

an
1 + · · · + an

N + an
N+1 = lim

n→∞
n

√(
n
√

an
1 + · · · + an

N

)n
+ an

N+1

= max(max(a1, . . . , aN ), aN+1) = max(a1 . . . , aN+1).

The following crucial proposition is a substantial generalization of Exam-
ple 3.2.5.

Proposition 3.2.2 For any rational null-sequence q : N0 → Q, q =
(q0, q1, q2, . . .), we have

lim
n→∞ aqn = 1, 0 < a ∈ R.

Before getting to the proof, we generalize the Bernoulli inequality for rational
exponents as follows.
Bernoulli Inequality (Rational Exponent). For −1 < r �= 0, r ∈ R, we have

(1+ r)q > 1+ qr, 1 < q ∈ Q.

The Bernoulli inequality has an interesting symmetry. The simultaneous inter-
change of the indeterminates q ↔ 1/q and r ↔ qr (and raising both sides to the
power q) transforms the inequality into itself with the inequality sign reversed:

(1+ r)q < 1+ qr, 0 < q < 1, q ∈ Q, −1 < r �= 0, r ∈ R.

We derive this second (equivalent) inequality.
It is convenient as well as instructive to reformulate this inequality in terms of a

certain monotonicity property of the sequence17

17This sequence will be of paramount importance in Euler’s treatment of the exponential function
in Section 10.5.
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e∗n(s) =
(

1+ s

n

)n
, s ∈ R, n ∈ N.

The monotonicity property in question is the following:

e∗n(s) < e∗n+1(s), 0 �= s > −n, n ∈ N,

and we claim that this is equivalent to the Bernoulli inequality for rational
exponents above.18

First, substituting q = n/(n + 1) and r = s/n, 0 �= s > −n, into the Bernoulli
inequality, the monotonicity property holds.

Second, assume that the monotonicity property holds. Let q = m/n ∈ Q, m < n,
m, n ∈ N. By simple induction, for −m < s �= 0, s ∈ R, we have e∗m(s) < e∗n(s).
Substituting s = mr , −1 < r �= 0, r ∈ R, we obtain

(1+ r)m <
(

1+ m

n
r
)n

.

Taking the nth root of both sides, the Bernoulli inequality follows.
Finally, it remains to show that the monotonicity property above holds for e∗n(s).
We calculate

e∗n+1(s)

e∗n(s)
=
(

1+ s
n+1

)n+1

(
1+ s

n

)n =
(

n

n + s

)n+1 (
1+ s

n + 1

)n+1 (
1+ s

n

)

=
(

1− s

(n + s)(n + 1)

)n+1 (
1+ s

n

)
>

(
1− s

n + s

)(
1+ s

n

)
= 1,

where, in the last estimate, we used the Bernoulli inequality for natural exponents
(n + 1 ≥ 2). (Note that s/((n + s)(n + 1)) < 1 since s > −n.)

Summarizing, we derived the Bernoulli inequality for rational exponents.
The simple substitution, 0 < a (= r + 1) �= 1, a ∈ R, gives the equivalent form

of the Bernoulli inequality

aq < 1+ q(a − 1), 0 < q < 1, q ∈ Q.

We need another version of this for negative exponents. Taking the reciprocals of
both sides, we have

a−q >
1

1+ q(a − 1)
= 1− q(a − 1)

1− q2(a − 1)2
> 1− q(a − 1), 0 < q < 1, q ∈ Q.

18In this equivalence we assume that the Bernoulli inequality holds for integral exponents. This
we have already shown by simple induction at the end of Section 2.1.
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We now assume 1 < a ∈ R and combine the two inequalities to obtain

1− q(a − 1) ≤ a−q ≤ aq ≤ 1+ q(a − 1), 0 ≤ q < 1.

Summarizing, for 1 < a ∈ R, we have

|aq − 1| ≤ |q|(a − 1), |q| < 1, q ∈ Q.

Proof of Proposition 3.2.2 First, assume 1 < a ∈ R. Let q : N0 → R,
q = (q0, q1, q2, . . .), be a rational null-sequence. By the inequality above and
monotonicity of the limit superior, we have

0 ≤ lim sup
n→∞

|aqn − 1| ≤ (a − 1) lim sup
n→∞

|qn| = (a − 1) lim
n→∞ |qn| = 0.

The proposition follows in this case.
Second, assume 0 < a < 1, a ∈ R. (The case a = 1 is trivial.) By what we just

proved, we have limn→∞(1/a)qn = 1. Using Proposition 3.1.3, we have

lim
n→∞ aqn = lim

n→∞
1

(1/a)qn
= 1

limn→∞(1/a)qn
= 1.

The proposition follows.

Our first application of the Bernoulli inequality for rational exponents is the
following:

Example 3.2.7 For 0 ≤ q ∈ Q and 1 < a ∈ R, we have

lim
n→∞

nq

an
= 0.

Indeed, for q + 1 < n ∈ N, we have

nq

an
= nq

(
an/(q+1)

)q+1
<

nq

(
1+ n

q+1 (a − 1)
)q+1

<
nq

(
n

q+1 (a−1)
)q+1

=1

n

(
q + 1

a−1

)q+1

,

where we used the Bernoulli inequality for the rational exponent 1 < n/(q+1) ∈ Q.
Using this, we have

0 ≤ lim
n→∞

nq

an
≤
(

q + 1

a − 1

)q+1

lim
n→∞

1

n
= 0.

The example follows.
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Note the important consequence: For any 1 < a ∈ R and m ∈ N0, there exists
N ∈ N such that

an > nm, n ≥ N .

Another simple application is the following stronger statement than the limit in
Example 3.2.5.

Example 3.2.8 We have

lim
n→∞

n
√

n = 1.

We first claim that the sequence ( n
√

n)n∈N is strictly decreasing for 3 ≤ n ∈ N.
Indeed, by Example 2.1.4, we have

nn+1 > (n + 1)n, 3 ≤ n ∈ N.

Taking the n(n + 1)th root of both sides, we obtain

n
√

n >
n+1
√

n + 1, 3 ≤ n ∈ N.

The claim follows. Since 1 is an obvious lower bound of the sequence, the Monotone
Convergence Theorem implies that ( n

√
n)n∈N is convergent to a limit L ≥ 1.

To determine L , we take the subsequence (
2n√

2n)n∈N (which, necessarily, must
converge to the same limit). We have

lim
n→∞

2n√
2n = lim

n→∞
(
2n)1/2n = lim

n→∞ 2n/2n
.

On the other hand, by the previous example, (n/2n)n∈N is a null-sequence. Applying
Proposition 3.2.2, we obtain

lim
n→∞ 2n/2n = 1.

Thus, L = 1, and the example follows.

Remark The second part of Example 3.2.8 can also be completed (without the
recourse to Proposition 3.2.2) as follows:

L2 = lim
n→∞( n

√
n)2 = lim

m→∞(
2m
√

2m)2 = lim
m→∞

m
√

2m

= lim
m→∞(

m
√

2 m
√

m) = lim
m→∞

m
√

2 lim
m→∞

m
√

m = L ,

where we used Example 3.2.5. Now 1 ≤ L = L2 so that L = 1 follows.

We finish this cadre of examples by the following:

Example 3.2.9 We have limn→∞ n
√

n! = ∞.
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We first claim that (k + 1)(n − k) ≥ n, 0 ≤ k < n. Indeed, we have

(k+1)(n−k)−n=(k+1)n−k(k+1)−n=kn−k(k+1)=k(n−k−1) ≥ 0, 0 ≤ k < n,

and the claim follows. Using this, we estimate

(n!)2 = (1 · n)(2 · (n − 1)) · (3 · (n − 2)) · . . . · (n · 1) ≥ nn .

Taking the (2n)th root, we obtain n
√

n! = 2n
√

(n!)2 ≥ 2n
√

nn = √n. By monotonicity
of the limit, we finally arrive at ∞ = limn→∞

√
n ≤ limn→∞ n

√
n!. The example

follows.

Remark 1 An alternative proof can be given as follows.
First, notice that the sequence (

n
√

n!)n∈N is strictly increasing. To show this, let
n ∈ N. Multiplying both sides of the obvious inequality n! < (n + 1)n by (n!)n , we
obtain (n!)n+1 < ((n+1)n!)n = (n+1)!n . Taking the n(n+1)th root of both sides,
strict monotonicity follows.

Thus, limn→∞ n
√

n! is either finite or infinite. It is enough to check this on a
subsequence. Letting n = 2m even, we have

(2m)! = m!(m + 1)(m + 2) · . . . · (m + m) ≥ mm .

This gives 2m
√

(2m)! ≥ √m. By monotonicity of the limit again, we obtain
limn→∞ n

√
n! = limm→∞ 2m

√
(2m)! ≥ limm→∞

√
m = ∞.

Remark 2 A (2-step) refinement of Example 3.2.9 will yield the well-known
Stirling formula; see the remark after Example 10.3.4.

Let 0 < a ∈ R. We define the power ar ∈ R with real exponent r ∈ R as
follows. Let q : N0 → Q, q = (q0, q1, q2, . . .), be a rational sequence such that
limn→∞ qn = r . Then we define

ar = lim
n→∞ aqn .

We need to show that the limit exists, and it does not depend on the rational
sequence chosen for the exponent.

We first assume 1 < a ∈ R. We claim that (aqn )n∈N0 is a Cauchy sequence
(thereby convergent by Proposition 2.3.3).

We start by observing that the convergent rational sequence q is bounded: |qn| ≤
c, n ∈ N0, for some 0 < c ∈ Q. Thus, by monotonicity for rational exponents, we
have |aqn | ≤ ac, n ∈ N0. Moreover, since q is a (rational) Cauchy sequence, for
(any) given 0 < ε ∈ Q, there exists N ∈ N0 such that

|qn − qm | < min

(
ε

ac(a − 1)
, 1

)
, m, n ≥ N .
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We now use the identities for rational exponentiation along with the Bernoulli
estimate above (for |q| = |qn − qm | < 1). For m, n ≥ N , we have

|aqn − aqm | = |aqm (aqn−qm − 1)| = |aqm ||aqn−qm − 1| ≤ ac|qn − qm |(a − 1) < ε.

The claim follows.
Second, if 0 < a < 1, then, by what we just proved, for a rational convergent

sequence q : N0 → Q, q = (q0, q1, q2, . . .), the sequence ((1/a)qn )n∈N0 is
convergent. Using Proposition 3.1.3, the sequence (aqn )n∈N0 is also convergent.

Next, we claim that the real power ar is well-defined; that is, it does not depend
on the choice of the rational sequence q : N0 → Q, q = (q0, q1, q2, . . .), convergent
to r ∈ R.

Indeed, let q ′ : N0 → Q, q ′ = (q ′0, q ′1, q ′2, . . .), be another rational sequence
with limit r . Since q and q ′ have the same limit, q − q ′ is a null-sequence. (In
Cantor’s construction of the real numbers discussed above, we have q ∼ q ′.) By
Proposition 3.2.2, we have limn→∞ aqn−q ′n = 1. Therefore, using the identities for
rational exponentiation, we obtain

lim
n→∞ aqn = lim

n→∞
(

aqn−q ′n · aq ′n
)
= lim

n→∞ aqn−q ′n lim
n→∞ aq ′n = lim

n→∞ aq ′n .

The claim follows. (Instead of this proof of the second part, alternatively, we can
construct the sequence (q0, q ′0, q1, q ′1, . . .) and appeal to the first part of the proof
above.)

Exponentiation with positive base and real exponent satisfies the same identities
as those with rational exponent. For 0 < a, b ∈ R and r, s ∈ R, we have the
following Identities:

ar+s = ar · as, ar−s = ar

as
, (ar )s = ars, (ab)r = ar · br .

These identities can be established in a straightforward manner taking the limits of
the analogous identities for rational exponents.

In addition, we also have the following monotonicity properties. For 1 < a ∈ R,
the power ar is strictly increasing in r ∈ R. Similarly, for 0 < a < 1, the power ar

is strictly decreasing in r ∈ R.
Finally, to complete the circle, the Bernoulli inequality holds for real exponents

(taking again the limit of the respective inequality for rational exponents).
Bernoulli Inequality (Real Exponent). For 0 < a �= 1, a ∈ R, we have

ar < 1+ r(a − 1), 0 < r < 1, r ∈ R and ar > 1+ r(a − 1), 1 < r ∈ R.

As above, for 1 < a ∈ R, we can combine the two estimates and obtain

|ar − 1| ≤ |r | · (a − 1), |r | < 1, r ∈ R.
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Remark As a simple consequence, note that Example 3.2.7 holds for real exponent
0 ≤ q ∈ R.

We now show a simple but important consequence of the Bernoulli inequality for
real exponents.

Example (Young’s Inequality) Let 0 < p, q ∈ R such that 1/p + 1/q = 1. Then,
we have

xy ≤ x p

p
+ yq

q
, 0 < x, y ∈ R,

with equality if and only if x p = yq .
If x p = yq , then the equality clearly holds. We assume x p �= yq , substitute

u = x p and v = yq , and rewrite the (sharp) inequality in the equivalent form

u1/p · v1/q <
u

p
+ v

q
, u �= v, 0 < u, v ∈ R.

We “dehomogenize” by setting a = u/v, 0 < a �= 1, a ∈ R, in yet another
equivalent form

a1/p <
a

p
+ 1

q
= 1+ 1

p
(a − 1).

This, however, is the Bernoulli inequality for the exponent 0 < r = 1/p < 1. The
Young inequality follows.

Example 3.2.10 Determine the infimum inf0<r,s∈R (rs + sr ).
For either 1 ≤ r ∈ R or 1 ≤ s ∈ R, we have rs + sr > 1, and

inf1≤r,s∈R (rs + sr ) = 1. Thus, we may assume that 0 < r, s < 1. The Bernoulli
inequality then gives

r

rs
= r1−s = (1+ (r − 1))1−s ≤ 1+ (r − 1)(1− s) = r + s − rs,

or equivalently,

rs ≥ r

r + s − rs
.

Swapping r and s and adding, we obtain

rs + sr ≥ r

r + s − rs
+ s

r + s − rs
= r + s

r + s − rs
> 1.

Thus the value of the infimum is 1.
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Now that we have the Bernoulli inequality for real exponents in place we return
to the question of convergence for the p-series

∑∞
n=1 1/n p for 1 < p ∈ R.

First, we give an elementary approach and seek an upper bound for the partial
sum

n∑
k=1

1

k p
= 1+ 1

2p
+ · · · + 1

n p
.

In the previous section, using Peano’s Principle of Induction, we showed that, for
p = 2, an upper bound is 2− 1/n, and, for p = 3/2, an upper bound is 3− 2/n1/2.
As an easy generalization of this, we now claim

n∑
k=1

1

k p
= 1+ 1

2p
+ · · · + 1

n p
≤ p

p − 1
− 1

p − 1
· 1

n p−1 , n ∈ N, 1 < p ∈ R.

Note that this implies that the p-series
∑∞

n=1 1/n p converges for 1 < p ∈ R.

Remark The reader versed in elementary calculus would notice that the upper bound
here also comes from the integral estimate

1+ 1

2p
+ · · · + 1

n p
< 1+

∫ n

1

dt

t p
= 1+ 1− 1/n p−1

p − 1
.

As noted above, we use induction with respect to n ∈ N to prove this claim.
Throughout, we assume 1 < p ∈ R.

The initial case n = 1 is clear. For the general induction step n ⇒ n + 1, we
assume that the inequality above holds. Using this as the induction hypothesis, we
calculate

1+ 1

2p
+ · · · + 1

n p
+ 1

(n + 1)p
≤ p

p − 1
− 1

p − 1
· 1

n p−1
+ 1

(n + 1)p
.

We need to show

p

p − 1
− 1

p − 1
· 1

n p−1
+ 1

(n + 1)p
≤ p

p − 1
− 1

p − 1
· 1

(n + 1)p−1
,

or equivalently,

1

(n + 1)p

(
1+ n + 1

p − 1

)
≤ 1

p − 1
· 1

n p−1 .

After simplification and elimination of the denominators, this becomes

(n + 1)p ≥ (n + p)n p−1 = n p + pn p−1.
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Dividing through by n p, this becomes equivalent to

(
1+ 1

n

)p

≥ 1+ p

n
.

This, however, is the Bernoulli inequality for the real exponent 1 < p ∈ R. The
claim follows.

Second, there is a much more powerful method to settle this and many other
convergence and divergence questions. This is called the Cauchy Condensation
Test, and it is very useful in the study of infinite series.

We begin with a decreasing sequence (an)n∈N of infinite series of non-negative
real numbers, 0 ≤ an+1 ≤ an , n ∈ N, and form the infinite series

∑∞
k=1 ak =

a1+a2+· · ·+an+· · · . By definition, this series converges if the sequence of partial
sums (sn)n∈N, sn = a1+a2+· · ·+an , n ∈ N, has a (finite) limit. Since an ≥ 0, n ∈
N, the sequence (sn)n∈N is increasing. Therefore, by the Monotone Convergence
Theorem, our original infinite series converges if and only if (any subsequence of)
(sn)n∈N is bounded.

The crux is to compare our infinite series with the “condensed” series

a1 + 2a2 + 22a22 + · · · + 2na2n + · · ·

Since this series also has non-negative terms, it is convergent if and only if its partial
sums are bounded.

Now, the Cauchy Condensation Test states that the two series equiconverge; that
is, one is convergent if and only if the other is convergent.

Remark An illustrative example to motivate “condensation” is the (divergent)
harmonic series

∑∞
k=1 1/k in Example 3.1.6 (along with the estimates there). Its

condensed series is
∑∞

k=1 2k · 1/2k =∑∞k=1 1 = 1+ 1+ 1+ · · · = ∞.
To derive the stated equiconvergence, we first compare the subsequence

(s2n )n∈N0 of partial sums of our original series with those of the condensed series
as follows. For n ∈ N0, we have

s2n+1 − s2n = a2n+1 + a2n+2 + · · · + a2n+1 ≥ 2n · a2n+1 = 2n+1 · a2n+1

2
,

where we used the assumption that the sequence (an)n∈N is decreasing. This gives

s2n = (s2n − s2n−1)+ (s2n−1 − s2n−2)+ · · · + (s2 − s1)+ a1

≥ 1

2

(
2na2n + 2n−1a2n−1 + · · · + 2a2 + a1

)
, n ∈ N.

Thus, boundedness of the sequence of partial sums (s2n )n∈N0 of our original series
implies boundedness of the partial sums of the condensed series.
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For the converse, we compare the subsequence (s2n−1)n∈N of partial sums of our
original series with those of the condensed series as follows. For n ∈ N, we have

s2n+1−1 − s2n−1 = a2n + a2n+1 + · · · + a2n+1−1 ≤ 2n · a2n ,

where we used again the assumption that the sequence (an)n∈N is decreasing.
This gives

s2n−1 = (s2n−1 − s2n−1−1)+ (s2n−1−1 − s2n−2−1)+ · · · + (s3 − s1)+ a1

≤ 2n−1a2n−1 + 2n−2a2n−2 + · · · + 2a2 + a1, n ∈ N.

Thus, boundedness of the partial sums of the condensed series implies boundedness
of the sequence of partial sums (s2n−1)n∈N0 of our original series.

The Cauchy Condensation Test follows. Note that we also obtained the following
estimates for our infinite series:

1

2

(
a1 + 2a2 + 22a22 + · · ·

)
≤ a1 + a2 + a3 + · · · ≤ a1 + 2a2 + 22a22 + · · ·

Example 3.2.11 Once again, consider the p-series

∞∑
k=1

1

k p
= 1+ 1

2p
+ 1

3p
+ · · · + 1

n p
+ · · ·

for 0 < p ∈ R real. We make use of the Cauchy Condensation Test. For n ∈ N, we
have

2n 1

(2n)p =
1

2n(p−1)
=
(

1

2p−1

)n

.

Hence, the condensed series is geometric

1+ 1

2p−1 +
(

1

2p−1

)2

+ · · · +
(

1

2p−1

)n

+ · · · ,

and this converges if p > 1 and diverges if (0 <)p ≤ 1. The same therefore holds
for the p-series. We recover our earlier result.

As the opposite case of the example above, for p > 0, it is natural to study the
sequence with nth term19

sp(n) = 1p + 2p + · · · + (n − 1)p, 2 ≤ n ∈ N.

19The shift in the base from n to n − 1 is a technical convenience.
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For p = 1, 2, 3, the general term of the sequence has the following form:

1+ 2+ · · · + (n − 1) = n(n − 1)

2
= 1

2
n2 − 1

2
n

12 + 22 + · · · + (n − 1)2 = n(n − 1)(2n − 1)

6
= 1

3
n3 − 1

2
n2 + 1

6
n

13 + 23 + · · · + (n − 1)3 =
(

n(n − 1)

2

)2

= 1

4
n4 − 1

2
n3 + 1

4
n2

These can easily be shown by induction. As we will discuss later, the coefficients
can be expressed in terms of the so-called Bernoulli numbers. At present, we are
interested in the principal term, as the following example shows.

Example 3.2.12 For 0 < p ∈ R, we have

1

p + 1
− 1

n
<

sp(n)

n p+1
<

1

p + 1
, 2 ≤ n ∈ N.

In particular, we have the limit

lim
n→∞

sp(n)

n p+1
= 1

p + 1
, 0 < p ∈ R.

To derive these inequalities, we employ the Bernoulli inequality

ar > 1+ r(a − 1), 1 < r ∈ R, 0 < a �= 1, a ∈ R.

First, let a = (k + 1)/k, k = 1, . . . , n − 1. We have

(
k + 1

k

)r

> 1+ r

(
k + 1

k
− 1

)
= 1+ r

k
, k = 1, . . . , n − 1.

Simplifying, this gives (k + 1)r − kr > rkr−1, k = 0, . . . , n− 1. Summing up with
respect to k = 0, . . . , n − 1, we obtain

nr > r(1r−1 + 2r−1 + · · · + (n − 1)r−1).

Substituting 0 < p = r − 1 ∈ R, we arrive at the following:

sp(n)

n p+1
<

1

p + 1
, 2 ≤ n ∈ N.

The upper estimate above follows.



3.2 Roots, Rational and Real Exponents 171

Second, let a = k/(k + 1), k = 0, . . . , n − 1. We have

(
k

k + 1

)r

> 1+ r

(
k

k + 1
− 1

)
= 1− r

k + 1
, k = 0, . . . , n − 1.

Simplifying, this gives (k + 1)r − kr < r(k + 1)r−1, k = 0, . . . , n − 1. Summing
up with respect to k = 0, . . . , n − 1, we obtain

nr < r(1r−1 + 2r−1 + · · · + nr−1).

Substituting 0 < p = r − 1 ∈ R, we arrive at the following:

1

p + 1
<

sp(n)+ n p

n p+1
, 2 ≤ n ∈ N.

The lower estimate above follows. The proof is complete.

The previous example can be put in a more general framework that will be useful
in the sequel.

Let a < b, a, b ∈ R, and f : [a, b] → R be a real function. For n ∈ N, we
subdivide the domain interval [a, b] into n equal parts

a < a + b − a

n
< a + 2

b − a

n
< · · · < a + (n − 1)

b − a

n
< a + n

b − a

n
= b

and define the arithmetic mean

A f (n, a, b) = 1

n

n∑
k=1

f

(
a + k

b − a

n

)
.

Finally, we define the mean of f by the limit

A f (a, b) = lim
n→∞A f (n, a, b),

where we tacitly assume that the limit exists.20

The mean is clearly linear, that is, for f, g : [a, b] → R and c ∈ R, we have

A f+g = A f +Ag and Ac· f = c ·A f ,

where we suppressed the dependence on the interval [a, b].
The mean is also monotonic in the sense that if f, g : [a, b] → R are real

functions such that f (x) ≤ g(x), a ≤ x ≤ b, then we have A f ≤ Ag .

20The general theory of means is expounded in Hardy, G.H., Littlewood, J.E., and Pólya, G.,
Inequalities, 2nd ed. Cambridge University Press, 1988.
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For 0 < p ∈ R, we define the power function pp by pp(x) = x p, x ∈ R.
For fixed 0 < x ∈ R, we now calculate the mean of pp over the interval [0, x] as
follows:

App (n, x) = 1

n

n∑
k=1

(
k

x

n

)p = x p ·
∑n

k=1 k p

n p+1 = x p · sp(n + 1)

n p+1 ,

where we suppressed 0, the initial end-point of the interval [0, x]. Taking the limit,
we obtain

App (x) = lim
n→∞ x p · sp(n + 1)

n p+1 = x p · lim
n→∞

sp(n + 1)

(n + 1)p+1

(
1+ 1

n

)p+1

= x p

p + 1
.

Remark The reader versed in calculus will no doubt recognize the (right-)Riemann
sum21 and the Riemann integral as its limit as follows:

∫ x

0
t pdt= lim

n→∞

(
n∑

k=1

(
k

x

n

)p · x

n

)
= lim

n→∞
sp(n+1)x p+1

n p+1
= x p+1

p+1
, 0 < p ∈ R.

Returning to the main line, we close this section by a simple observation on
powers. In rare instances, an irrational number raised to an irrational exponent
can be a rational number. A non-constructive proof is as follows.

Let a ∈ N be a natural number which is not a square. Then
√

a is an irrational

number. Consider this as the base of the real exponent
√

a
√

2. Now, if this is a
rational number, then we are done (since

√
2 is also irrational). If it is an irrational

number, then we take this as a new base of the iterated exponent

r =
(√

a
√

2
)√2

.

Using an exponentiation identity, we calculate

r = √a
√

2·√2 = √a
2 = a.

Since this is a natural number, the claim follows.

History
In 1900, the German mathematician David Hilbert (1862–1943) posed 23 main problems in
mathematics. Part of the seventh problem is concerned with irrationality of rational numbers raised
to exponents that are square roots of integers. (More precisely, he posed the problem whether an

21Let a < b, a, b ∈ R, and n ∈ N. Given a subdivision a = x0 < x1 < . . . < xn = b of the closed
interval [a, b] and a function f : [a, b] → R, we define the left-Riemann sum of f (corresponding
to this subdivision) by

∑n
k=1 f (xk−1)(xk − xk−1). The right-Riemann sum is defined by replacing

f (xk−1) by f (xk) in the sum.
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algebraic number �= 0, 1 raised to an algebraic irrational exponent is transcendental. Here a real
number is algebraic if it is a root of a polynomial with rational coefficients; otherwise it is called
transcendental.) As a special case he posed the problem of irrationality (transcendentality) of the
real number

2
√

2 = 2.66514414269022518865029724987 . . .

which was subsequently named after him. (Although this problem was positively resolved in
1930 by the Russian mathematician Rodion Kuzmin (1891–1949), this number is also called the
Gelfond–Schneider number named after Aleksandr Gelfond (1906–1968) and Theodor Schneider
(1911–1988), two major contributors to this problem and its generalizations.)

Exercises

3.2.1. Determine
√

1616x2 , x ∈ R.
3.2.2. Derive the inequalities

2
√

n + 1− 2 < 1+ 1√
2
+ · · · + 1√

n
< 2
√

n, 2 ≤ n ∈ N.

(Note the obvious consequence
∑∞

n=1 1/
√

n = ∞, the p-series for p = 1/2.
More precisely, we have

2

√
n + 1− 1√

n
<

1+ 1√
2
+ · · · + 1√

n√
n

< 2,

which gives the limit

lim
n→∞

1+ 1√
2
+ · · · + 1√

n√
n

= 2,

as in Example 3.4.2.)
3.2.3. In this exercise, we outline a direct proof of the Bernoulli inequality for real

exponents.22 Let

A = {q ∈ Q | 0 < q < 1, (1+ r)q < 1+ qr, −1 < r �= 0}.

Show that A is dense in (0, 1) using the following steps: (1) 1/2 ∈ A, (2)
q ∈ A implies 1− q ∈ A, (3) q, q ′ ∈ A implies q · q ′, (q + q ′)/2 ∈ A, and
(4)
∑n

k=1 ak2−k ∈ A, a1, . . . , an ∈ {0, 1}. Finally, use density of A to show
that A = (0, 1).

22See Yuan-Chuan Li, Cheh-Chih Yeh, Some Equivalent Forms of the Bernoulli’s Inequality: A
Survey, Applied Mathematics, Vol. 4, No 7 (2013) 1070–1093; https://doi.org/10.4236/am.2013.
47146.

https://doi.org/10.4236/am.2013.47146
https://doi.org/10.4236/am.2013.47146
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3.3 Logarithms

Our starting point is the following fundamental result.

Proposition 3.3.1 Let 1 < r ∈ R and 0 < t ∈ R. Then there exists a unique s ∈ R

such that r s = t .

The exponent s ∈ R in the proposition above is called the logarithm of t to the
base r or the base r -logarithm of t , and it is denoted by s = logr t .

Proof Unicity follows directly from monotonicity of the exponentiation: For 1 <

r ∈ R, if s < s′, then rs < rs′ .
Turning to the proof of existence, for 1 < r ∈ R and 0 < t ∈ R, we define

A = {u ∈ R | ru < t}.

Since limn→∞ 1/rn = 0, we have rn > t for large n ∈ N. Hence the set A is
bounded above. We let s = sup A. We claim that rs = t holds.

Assume rs < t . We denote 1 < v = t/rs ∈ R and choose 2 ≤ n ∈ N such that
n > (r − 1)/(v − 1). The Bernoulli inequality gives

r1/n < 1+ 1

n
(r − 1) < v = t/rs .

Using the exponential identities, this gives rs+1/n < t . By the definition of A, this
gives s + 1/n ∈ A. We obtain that s cannot be the supremum of A, a contradiction.
We thus have rs ≥ t .

The argument to show rs ≤ t is standard. For n ∈ N, the number s − 1/n cannot
be an upper bound for A, and so there exists un ∈ A such that s − 1/n < un(≤ s).
We choose a rational number qn ∈ Q such that s − 1/n < qn < un ≤ s, n ∈ N.
By monotonicity of the limit, we have limn→∞ qn = s. Since rqn < run ≤ t ,
again by monotonicity of the limit and the definition of the real exponent, we have
rs = limn→∞ rqn ≤ t . The proposition follows.

The logarithm defined by the proposition above can immediately be extended to
bases 0 < r < 1, r ∈ R, by setting

logr s = − log1/r s.

With this, for 0 < r ∈ R, r �= 1, and 0 < t ∈ R, we have

rs = t if and only if s = logr t.

(Logarithm with base 1 is not defined.) From now on, the base is always understood
to be a positive real number, not equal to one.

Clearly, we have logr 1 = 0 and logr r = 1. In addition, by the above, we have

r logr t = t, 0 < t ∈ R.
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The logarithm satisfies several identities that mirror those of the exponentiation.
For 0 < u, v ∈ R, we have

logr (uv)= logr (u)+ logr (v), logr

(u

v

)
= logr (u)− logr (v), logr (u

v)=v logr (u).

We first derive the last identity. For 0 < u, v ∈ R, logr (u
v) is the unique real

number s such that rs = uv . By the above, we have

uv =
(

r logr u
)v = rv logr u .

Hence, logr (u
v) = s = v logr (u), and the last identity follows.

For the first identity, for 0 < u, v ∈ R, we have

logr (uv) = logr (r
logr ur logr v) = logr (r

logr u+logr v) = logr u + logr v.

The proof of the second identity is analogous.

Example 3.3.1 Which is bigger 5log7 3 or 3log7 5?
They are equal since

log7

(
5log7 3

)
= log7 3 · log7 5 = log7

(
3log7 5

)
.

Example 3.3.2 Solve the following system of equations:

2u + 3v = 5, 8u + 9v = 17.

Clearly, u = v = 1 is a solution. To see if there are other solutions, we first set x =
2u and y = 3v . The exponential identities give 8u = 23u = x3 and 9v = 32v = y2.
In terms of x, y, the system of equations can be written as

x + y = 5, x3 + y2 = 17.

Eliminating y, we obtain

x3 + (5− x)2 − 17 = (x − 1)(x − 2)(x + 4) = 0.

For x = 1, we have y = 4, and these give u = 0 and v = log3 4 = 2 log3 2. For
x = 2, we have y = 3, and these give u = 1 and v = 1. Finally, x = −4 is not
realized.

Returning to the main line, we have the Change of Base Formula

logr t = logr r ′ · logr ′ t, 0 < t ∈ R.
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This follows from the earlier identities as

r logr r ′·logr ′ t =
(

r logr r ′
)logr ′ t = r ′ logr ′ t = t = r logr t .

Example 3.3.3 We have

logr t = logr2 t2 = logr3 t3 = . . . , 0 < t ∈ R.

Indeed, using the Change of Base Formula and the logarithmic identities, for
n ∈ N, we have

logrn tn = logr tn

logr rn
= n logr t

n logr r
= logr t.

The idea in the previous example can be used in the following:

Example 3.3.4 Solve the system of equations23

log8(x)+ log4(y2) = 5, log8(y)+ log4(x2) = 7.

Clearly, 0 < x, y ∈ R. We have

log8(x)+ log4(y2)= log23(
3√x)3+ log22(y2)= log2

(
3√x
)+ log2(y)= log2

(
3√x y

) = 5.

This gives 3
√

x y = 25. Similarly, we have log8(y) + log4(x2) = log2
(
x 3
√

y
) = 7,

or equivalently, x 3
√

y = 27. The system of equations above therefore reduces to

xy3 = 215 and x3 y = 221.

Eliminating y, we calculate x8 = (221)3/215 = 248. We obtain x = 26 = 64 and
y = 23 = 8. The example follows.

Example 3.3.5 Determine

(
log2 3

) (
log3 4

) · · · (log2n−1(2
n)
)
.

A simple induction in the use of the Change of Base formula shows that this
expression is equal to log2(2

n) = n log2 2 = n.

Example 3.3.6 Write the following expression as a single logarithm:24

23The problem of calculating the product xy was in the American Invitational Mathematics
Examination, 1984.
24The special case n = 5 was in the American High School Mathematics Examination, 1978.



3.3 Logarithms 177

1

log2 x
+ 1

log3 x
+ · · · + 1

logn x
, 0 < x �= 1, x ∈ R.

A special case of the Change of Base Formula is the following:

1

logb a
= loga b, 0 < a, b �= 1, a, b ∈ R.

Using this, the expression above is rewritten as

logx 2+ logx 3+ · · · + logx n = logx (n!).

The logarithm is monotonic. For r > 1, the logarithm logr t is strictly increasing
in t ∈ R; that is, 0 < t < t ′, t, t ′ ∈ R, implies logr t < logr t ′. For 0 < r < 1, the
logarithm logr t is strictly decreasing in t ∈ R; that is, 0 < t < t ′, t, t ′ ∈ R, implies
logr t > logr t ′.

It is enough to show the first statement. Let r > 1. If 0 < t < t ′, t, t ′ ∈ R, then
we have

t = r logr t < r logr t ′ = t ′.

By monotonicity of the exponentiation, this holds if and only if logr t < logr t ′. The
claim follows.

Example 3.3.7 Let 0 < r < 1 be a real number chosen at random. What are the
odds25 that the integer [log2 r ] is even?

For 0 < r < 1, the logarithm log2 r is negative. We write an even negative integer
in the form −2n, n ∈ N. By the definition of the greatest integer, the condition
[log2 r ] = −2n amounts to −2n ≤ log2 r < −2n + 1, or equivalently, 2−2n ≤ r <

2−2n+1, n ∈ N. The length of this interval is 2−2n+1 − 2−2n = 2−2n . Summing up
with respect to n ∈ N, the probability that [log2 r ], 0 < r < 1, is an even integer is∑∞

n=1 2−2n . This, however, is a geometric series, and the Infinite Geometric Series
Formula gives

∞∑
n=1

2−2n =
∞∑

n=1

1

22n
=
∞∑

n=1

(
1

4

)n

= 1/4

1− 1/4
= 1

3
.

Returning to the main line, the Bernoulli inequality has a logarithmic counterpart.
Recall that, for 0 < a �= 1, a ∈ R, we have

ar < 1+ r(a − 1), 0 < r < 1, r ∈ R and ar > 1+ r(a − 1), 1 < r ∈ R.

25That is, “what is the probability. . . ” The author could not help rewording this well-known contest
preparation problem for the sake of making a pun.
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Letting a = 2 and taking the base 2 logarithm of both sides, we obtain

r < log2(1+ r), 0 < r < 1, r ∈ R and r > log2(1+ r), 1 < r ∈ R.

Example 3.3.8 Let 1 < r, t ∈ R. Then logr t is a rational number if and only
if rm = tn for some m, n ∈ N. In particular, if r, t > 1 are integers, then
rationality of logr t implies that r and t must have the same prime divisors. Hence,
log2(3), log2(5), . . . , log3(2), etc. are irrational numbers.

Letting s = logr t > 0, we have rs = t . The number s is rational if and only if
s = m/n for some m, n ∈ N. We thus have n

√
rm = t , or equivalently, rm = tn .

Example 3.3.9 (Revisited) Recall, from Example 3.2.5 that, for 1 < a ∈ R and
2 ≤ n ∈ N, we have

0 < n
√

a − 1 <
a − 1

n
.

We let a = 2 and rewrite this as

2
1
n < 1+ 1

n
.

Taking the base 2 logarithm of both sides and simplifying, we obtain

1

n
< log2

(
1+ 1

n

)
= log2

(
n + 1

n

)
= log2(n + 1)− log2(n).

This gives

1

n
− log2(n + 1) < − log2(n), 2 ≤ n ∈ N.

We now recall the partial sum of reciprocals (of the harmonic series):

Hn = 1+ 1

2
+ · · · + 1

n
, n ∈ N.

Adding Hn−1, 2 ≤ n ∈ N, to both sides, we obtain

Hn − log2(n + 1) < Hn−1 − log2(n), 2 ≤ n ∈ N.

We obtain that the sequence (Hn − log2(n + 1))n∈N is strictly decreasing. Since
H1 − log2(2) = 0, we arrive at the important inequality

Hn = 1+ 1

2
+ · · · + 1

n
< log2(n + 1), 2 ≤ n ∈ N.

(Note that equality holds for n = 1.)
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Example 3.3.10 As a generalization of the p-series, for 0 < p, q ∈ R, we consider
the infinite series

∞∑
n=2

1

n p · (logr n)q
.

By the Cauchy Condensation Test, this series equiconverges with the infinite series

∞∑
m=1

2m

(2m)p · (logr 2m)q
= 1

(logr 2)q

∞∑
m=1

(21−p)m

mq
.

If p = 1, then, up to the constant multiple in front of the summation, this
becomes the q-series, which is convergent for q > 1 and divergent for 0 < q ≤ 1.

If p > 1 (and q > 0 is arbitrary), then we have

∞∑
m=1

(21−p)m

mq
=
∞∑

m=1

1

(2p−1)mmq
≤
∞∑

m=1

1

(2p−1)m
.

The last sum is geometric with ratio 0 < 1/2p−1 < 1, and hence it is convergent.
If p < 1, then, letting a = 21−p > 1, we have

lim
m→∞

(21−p)m

mq
= lim

m→∞
am

mq
= ∞,

where, in the last equality, we used Example 3.2.7.

Exercises

3.3.1. Let 0 �= a, b, c ∈ R, and 1 < x, y, z ∈ R and 0 < w ∈ R such that
logx w = a, logy w = b, and logxyz w = c. Find26 logz w in terms of a, b, c.

3.3.2. Let 2 ≤ n ∈ N. Solve [logn(x)] = logn[x] for 1 ≤ x ∈ R.

3.4 The Stolz–Cesàro Theorems

In this section, we discuss a powerful criterion for convergence of sequences due
to Otto Stolz (published in 1885) and Ernesto Cesàro (1859–1906) (published in
1888).

26A special (numerical) case was a problem in the American Invitational Mathematics Examina-
tion, 1983.



180 3 Rational and Real Exponentiation

Stolz–Cesàro Theorem. Let (an)n∈N and (bn)n∈N be real sequences such that
(bn)n∈N is strictly increasing with limn→∞ bn = ∞. Then, we have

lim inf
n→∞

an − an−1

bn − bn−1
≤ lim inf

n→∞
an

bn
≤ lim sup

n→∞
an

bn
≤ lim sup

n→∞
an − an−1

bn − bn−1
.

In particular,

lim
n→∞

an − an−1

bn − bn−1
= lim

n→∞
an

bn
,

provided that the limit on the left-hand side exists.

Proof It is enough to prove the inequality for the limit superior. Let c ∈ R such that

lim sup
n→∞

an − an−1

bn − bn−1
< c.

Then there exists N ∈ N0 such that

an − an−1

bn − bn−1
< c, n > N .

Thus, for n > N , we have

aN+1 − aN < c (bN+1 − bN )

aN+2 − aN+1 < c (bN+2 − bN+1)

· · · · · ·
an−1 − an−2 < c (bn−1 − bn−2)

an − an−1 < c (bn − bn−1) .

Adding, we obtain

an − aN < c(bn − bN ),

or equivalently

an

bn
< c + aN − cbN

bn
, n > N .

Using this, we have

lim sup
n→∞

an

bn
≤ c + lim sup

n→∞
aN − cbN

bn
= c,

where we used limn→∞ bn = ∞.
The inequality and thereby the theorem follow.
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Stolz–Cesàro Theorem (Equivalent Formulation). Let (an)n∈N and (bn)n∈N be
real sequences such that bn > 0, n ∈ N, and limn→∞ bn = ∞. Then, we have

lim inf
n→∞

an

bn
≤ lim inf

n→∞
a1 + · · · + an

b1 + · · · + bn
≤ lim sup

n→∞
a1 + · · · + an

b1 + · · · + bn
≤ lim sup

n→∞
an

bn
.

In particular,

lim
n→∞

an

bn
= lim

n→∞
a1 + · · · + an

b1 + · · · + bn
,

provided that the limit on the left-hand side exists.

Proof This follows directly from the previous by the substitution an �→ a1+· · ·+an

and bn �→ b1 + · · · + bn , n ∈ N.
Letting bn = n (or bn = 1), n ∈ N, we obtain the following special cases valid

for any real sequence (an)n∈N:

lim inf
n→∞ (an − an−1) ≤ lim inf

n→∞
an

n
≤ lim sup

n→∞
an

n
≤ lim sup

n→∞
(an − an−1),

and

lim inf
n→∞ an ≤ lim inf

n→∞
a1 + · · · + an

n
≤ lim sup

n→∞
a1 + · · · + an

n
≤ lim sup

n→∞
an .

In particular,

lim
n→∞(an − an−1) = lim

n→∞
an

n
,

and

lim
n→∞ an = lim

n→∞
a1 + · · · + an

n
,

provided that the limits on the left-hand sides exist. We call these the additive Stolz–
Cesàro formulas.

Let (an)n∈N be a real sequence with positive members. For n ∈ N, let bn =
log2(an), or equivalently, an = 2bn . Applying the exponential identities, we obtain

2
b1+···+bn

n = n
√

a1 · · · an .

Using monotonicity of the exponentiation and the Stolz–Cesàro limit formulas
above for the sequence (bn)n∈N, we obtain

lim inf
n→∞ an ≤ lim inf

n→∞
n
√

a1 · · · an ≤ lim sup
n→∞

n
√

a1 · · · an ≤ lim sup
n→∞

an,
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and

lim inf
n→∞

an

an−1
≤ lim inf

n→∞
n
√

an ≤ lim sup
n→∞

n
√

an ≤ lim sup
n→∞

an

an−1
.

In particular,

lim
n→∞ an = lim

n→∞
n
√

a1 · · · an,

and

lim
n→∞

an

an−1
= lim

n→∞
n
√

an,

provided that the limits on the left-hand sides exist. We call these the multiplicative
Stolz–Cesàro formulas.

Using the Stolz–Cesàro formulas, several of our earlier limits (derived using
estimates with the Bernoulli inequality) can be obtained in a simple and direct way.

In particular, Examples 3.2.5, 3.2.8–3.2.9 follow using the multiplicative Stolz–
Cesàro formula:

lim
n→∞

n
√

a = lim
n→∞

a

a
= 1, an = a, 0 < a ∈ R;

lim
n→∞

n
√

n = lim
n→∞

n

n − 1
= 1, an = n, 2 ≤ n ∈ N;

lim
n→∞

n
√

n! = lim
n→∞

n!
(n − 1)! = lim

n→∞ n = ∞.

Moreover, for Example 3.2.6, assuming 0 < a < b, a, b ∈ R, we calculate

lim
n→∞

n
√

an + bn = lim
n→∞

an + bn

an−1 + bn−1
= b lim

n→∞
1+ (a/b)n

1+ (a/b)n−1
= b = max(a, b),

where the geometric sequence ((a/b)n)n∈N with ratio converges to zero since 0 <

a/b < 1. The two extensions of this limit can be treated in the same way.

Remark The root test and the ratio test are simple criteria for the convergence
of an infinite series

∑∞
n=1 an with positive terms 0 < an ∈ R, n ∈ N. By the

Monotone Convergence Theorem,
∑∞

n=1 an can have only two cases; it is either
finite (convergence) or infinite.

The root test states that

lim sup
n→∞

n
√

an < 1

implies that
∑∞

n=1 an is finite.
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Indeed, assume that lim supn→∞ n
√

an < r for some 0 < r < 1, r ∈ R. This
means that there exists N ∈ N such that n

√
an < r for n ≥ N . Hence, an < rn for

n ≥ N . We obtain

∞∑
n=1

an =
N−1∑
n=1

an +
∞∑

n=N

an <

N−1∑
n=1

an +
∞∑

n=N

rn =
N−1∑
n=1

an + r N

1− r
,

where we used the Infinite Geometric Series Formula. (For N = 1, the finite sum is
absent.) The root test follows.

The ratio test states that

lim sup
n→∞

an

an−1
< 1

implies that
∑∞

n=1 an is finite.
By the multiplicative Stolz–Cesàro Theorem above, the latter limit superior does

not exceed the former, so that the ratio test is a direct consequence of the root test.27

In a similar vein, if

lim inf
n→∞

n
√

an > 1 or lim inf
n→∞

an

an−1
> 1,

then
∑∞

n=1 an = ∞.
We now return to the main line and give new applications of the Stolz–Cesàro

Theorems.

Example 3.4.1 Let (an)n∈N be a real sequence. We have

lim
n→∞

a1 + · · · + an

n p+1 = 1

p + 1
lim

n→∞
an

n p
, −1 < p ∈ R.

Indeed, by the first Stolz–Cesàro formula, we have

lim
n→∞

a1 + · · · + an

n p+1
= lim

n→∞
an

n p+1 − (n − 1)p+1
= lim

n→∞
an

n p · lim
n→∞

n p

n p+1 − (n − 1)p+1
.

We calculate the reciprocal of the last limit as

lim
n→∞

n p+1 − (n − 1)p+1

n p = lim
n→∞

n p + n p−1(n − 1)+ · · · + n(n − 1)p−1 + (n − 1)p

n p

= lim
n→∞

(
1+

(
1− 1

n

)
+ · · · +

(
1− 1

n

)p−1
+
(

1− 1

n

)p
)
= p + 1,

27It is a bit of irony that the root test implies the ratio test, yet, in specific examples, the ratio test
is far more useful.
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where we used the identity

u p+1 − v p+1 = (u − v)
(

u p + u p−1v + · · · + uv p−1 + v p
)

.

The example follows.
As a special case, letting an = n p, n ∈ N, we obtain

lim
n→∞

sp(n)

n p+1
= lim

n→∞
sp(n + 1)

n p+1
= 1

p + 1
, −1 < p ∈ R,

where

sp(n) = 1p + 2p + · · · + (n − 1)p, 2 ≤ n ∈ N.

We recover the limit in Example 3.2.12 (Note the slightly extended range−1 < p ∈
R.)

Example 3.4.2 Show that

lim
n→∞

1+ 1√
2
+ · · · + 1√

n√
n

= 2.

(Note that Exercise 3.2.2 at the end of Section 3.2 gives precise lower and upper
bounds for 1+ 1√

2
+ · · · + 1√

n
and thereby provides an alternative derivation of the

limit above.)
Letting an = 1 + 1√

2
+ · · · + 1√

n
and bn = √n, we use the first Stolz–Cesàro

limit relation and calculate

lim
n→∞

1+ 1√
2
+ · · · + 1√

n√
n

= lim
n→∞

1√
n√

n −√n − 1
= lim

n→∞

√
n +√n − 1√

n
= 2.

Example 3.4.3 Show that

lim
n→∞

n
√

Hn = lim
n→∞

n

√
1+ 1

2
+ · · · + 1

n
= 1.

Recall from Example 3.1.6 that limn→∞ Hn = ∞. We now use the multiplicative
Stolz–Cesàro formula to obtain

lim
n→∞

n
√

Hn = lim
n→∞

Hn

Hn−1
= lim

n→∞

(
1+ 1/n

1+ 1/2+ · · · + 1/(n − 1)

)
= 1.

Example 3.4.4 Let (an)n∈N be a real sequence with limit limn→∞ an = a. Show
that

lim
n→∞

na1 + (n − 1)a2 + · · · + 2an−1 + an

n2 = a

2
.
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We use the first Stolz–Cesàro limit relation twice with obvious roles as follows:

lim
n→∞

na1 + (n − 1)a2 + · · · + 2an−1 + an

n2
= lim

n→∞
a1 + · · · + an

n2 − (n − 1)2

= lim
n→∞

a1 + · · · + an

2n − 1
= lim

n→∞
an

2
= a

2
.

Exercises

3.4.1. Find the limit

lim
n→∞

log2(n!)
n log2(n)

.

3.4.2. Let (an)n∈N be a real sequence with positive terms such that limn→∞ an/n =
∞. Show that

lim
n→∞

1√
n

n∑
k=1

1√
ak
= 0.



Chapter 4
Limits of Real Functions

“Nothing takes place in the world
whose meaning is not that of
some maximum or minimum.
Leonhard Euler (1707–1783)

The principal aim of this chapter is to give a short introduction to the limit
inferior and limit superior and (thereby) the limit for functions. Many (arithmetic
and analytic) properties of these functional limits can be derived by establishing
their link with sequential limits. In our largely classical approach, continuity and
differentiability of real functions are also introduced and treated here as special
limits (stopping short of fully developed advanced differential calculus) mainly
because the derivative as a limit is an indispensable tool for later developments.
For future purposes, we also give quick proofs of the Extreme Values Theorem, the
Intermediate Value Theorem, and the Fermat Principle.

4.1 Limit Inferior and Limit Superior

Let D be a set and f : D → R a function with domain D. Given a subset C ⊂ D,
we define the supremum of the function f on C by

sup
C

f = sup
x∈C

f (x) = sup{ f (x) | x ∈ C},

where the first equality is notation and the last is the definition. If the supremum
exists, then we say that the function f is bounded above on C and write supC f <

∞. If the supremum does not exist, then we say that the function f is unbounded
above on C and write supC f = ∞.
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Similarly, the infimum of f over C is

inf
C

f = inf
x∈C

f (x) = inf{ f (x) | x ∈ C}.

If the infimum exists, then the function f is bounded below on C, infC f > −∞;
if it does not exist, then f is unbounded below, infC f = −∞.
Finally, f is bounded if it is bounded above and below, or equivalently, we have
supC | f | <∞.

Remark We have | supC f | ≤ supC | f |; in particular, boundedness of f on C implies
| supC f | <∞. The converse, however, fails, that is, | supC f | <∞ does not imply
boundedness of f on C. (Let f : (−∞, 0)→ R be defined by f (x) = 1/x , x < 0.
Then, we have sup(−∞,0) f = 0, but f is not bounded on (−∞, 0).)

Let f : D → R be a real function, that is, the domain of definition D ⊂ R is a
set of real numbers. Let c ∈ R, and assume that, for some 0 < d ∈ R, the function
f is defined on the deleted open interval

(c − d, c + d)◦ = (c − d, c + d) \ {c} = (c − d, c) ∪ (c, c + d) ⊂ D.

For 0 < δ ≤ d, we consider

S̄(δ) = sup
(c−δ,c+δ)\{c}

f = sup
0<|x−c|<δ

f (x).

The function S̄ : δ ∈ (0, d] → R (depending on f and c) is increasing; for 0 <

δ′′ ≤ δ′ ≤ d, we have S̄(δ′′) ≤ S̄(δ′) (since (c − δ′′, c + δ′′) ⊂ (c − δ′, c + δ′)).
With this, we define the limit superior of f at c as the infimum of S̄ over (0, d],
that is, we set

lim sup
x→c

f (x) = inf
0<δ≤d

S̄(δ) = inf
0<δ≤d

sup
0<|x−c|<δ

f (x).

Similarly, to define the limit inferior of f at c, for 0 < δ ≤ d, we consider

S(δ) = inf
(c−δ,c+δ)\{c} f = inf

0<|x−c|<δ
f (x).

The function S : δ ∈ (0, d] → R (depending on f and c) is decreasing; for
0 < δ′′ ≤ δ′ ≤ d, we have S(δ′′) ≥ S(δ′).
With this, we define the limit inferior of f at c as the supremum of S over (0, d],
that is, we set

lim inf
x→c

f (x) = sup
0<δ≤d

S(δ) = sup
0<δ≤d

inf
0<|x−c|<δ

f (x).
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Remark The limit superior and limit inferior are often indicated by overline and
underline:

lim
x→c

f (x) = lim sup
x→c

f (x) and lim
x→c

f (x) = lim inf
x→c

f (x).

Since multiplying both sides of an inequality by a negative number reverses the
inequality sign, we have

lim sup
x→c

f (x) = − lim inf
x→c

(− f (x)).

The connection with the concept of limit superior and limit inferior of sequences
is as follows:

Proposition 4.1.1 Let c ∈ R and f : D→ R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R, a
bounded real function. Then, for any convergent real sequence (xn)n∈N, 0 < |xn −
c| < d, n ∈ N, with limit limn→∞ xn = c, we have

lim inf
x→c

f (x) ≤ lim inf
n→∞ f (xn) ≤ lim sup

n→∞
f (xn) ≤ lim sup

x→c
f (x).

Moreover, there exist convergent real sequences (x̄n)n∈N, 0 < |x̄n − c| < d, n ∈ N,
and (xn)n∈N, 0 < |xn − c| < d, n ∈ N, with limit

lim
n→∞ xn = lim

n→∞ x̄n = c

such that

lim inf
x→c

f (x) = lim
n→∞ f (xn) ≤ lim

n→∞ f (x̄n) = lim sup
x→c

f (x).

Proof Since taking opposites interchanges the limit superior and limit inferior for
both sequences and functions, it is enough to prove the proposition for the limit
superior.

Let (xn)n∈N, 0 < |xn − c| < d, n ∈ N, be a convergent real sequence with limit
limn→∞ xn = c. By convergence, for any 0 < δ ≤ d, there exists N ∈ N, such that
|xn − c| < δ for n ≥ N . This gives

lim sup
n→∞

f (xn) = inf
N∈N sup

n≥N
f (xn) ≤ inf

0<δ≤d
sup

0<|x−c|<δ

f (x) = lim sup
x→c

f (x).

The first statement of the proposition follows.
Once again, it is enough to prove the second statement for the limit superior. Let

L̄ = lim sup
x→c

f (x) = inf
0<δ≤d

sup
0<|x−c|<δ

f (x).
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Let n ∈ N. The definition of the limit superior implies that there exists 0 < δn ≤ d
such that for all 0 < δ ≤ δn , we have

L̄ − 1

n
< sup

0<|x−c|<δ

f (x) < L̄ + 1

n
.

We may choose δn , n ∈ N, such that limn→∞ δn = 0. By the estimate above, for
every n ∈ N, there exists x̄n such that |x̄n − c| < δn , and

L̄ − 1

n
< f (x̄n) < L̄ + 1

n
.

This gives limn→∞ f (x̄n) = L̄ . The second statement follows.
As a simple corollary, we have

lim inf
x→c

f (x) ≤ lim sup
x→c

f (x).

We define the limit limx→c f (x) if equality holds, and, in this case, the limit is
equal to the common value of the limit superior and the limit inferior.

As an immediate corollary to the proposition above, we obtain the following:

Corollary Let c ∈ R and f : D → R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R,
be a real function. Then limx→c f (x) = L if and only if, for any convergent real
sequence (xn)n∈N, 0 < |xn − c| < d, n ∈ N, with limit limn→∞ xn = c, we have
limn→∞ f (xn) = L.

Remark As for sequences, for a real function f : D → R, (c − d, c + d)◦ ⊂ D,
c ∈ R, 0 < d ∈ R, we have limx→c f (x) = L if and only if

inf
0<δ≤d

sup
0<|x−c|<δ

| f (x)− L| = 0.

This is a compact reformulation of the usual definition of the limit
limx→c f (x) = L .

For every 0 < ε, there exists 0 < δ ≤ d such that 0 < |x − c| < δ implies
| f (x)− L| < ε.

History
This so-called ε-δ definition of the limit goes back to Bolzano in 1817, but, as noted previously, it
was published posthumously. The modern formulation and notation above is due to Weierstrass.

Given a real function f : D → R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R, we define
the infinite limit limx→c f (x) = ∞ as

lim inf
x→c

f (x) = sup
0<δ≤d

inf
0<|x−c|<δ

f (x) = ∞.



4.1 Limit Inferior and Limit Superior 191

Once again, this is a compact reformulation of the customary definition of the
infinite limit limx→c f (x) = ∞.

For every 0 < M ∈ R, there exists 0 < δ ≤ d such that 0 < |x − c| < δ implies
M ≤ f (x).

In a similar vein, we define the infinite limit limx→c f (x) = −∞ if

lim sup
x→c

f (x) = inf
0<δ≤d

sup
0<|x−c|<δ

f (x) = −∞,

or equivalently:
For every 0 < M ∈ R, there exists 0 < δ ≤ d such that 0 < |x − c| < δ implies

f (x) ≤ −M .
Note that the corollary above holds with L replaced by ±∞.
Returning to the main line, the proposition above also allows to transplant our

previous results on the limit superior and limit inferior of sequences to those of
functions. For arithmetic properties of the limit superior and limit inferior, we have

lim inf
x→c

f (x)+ lim inf
x→c

g(x) ≤ lim inf
x→c

( f (x)+ g(x))

≤ lim sup
x→c

( f (x)+ g(x)) ≤ lim sup
x→c

f (x)+ lim sup
x→c

g(x).

Proposition 4.1.1 combined with our earlier results on sequences in Section 3.1
has several consequences.

First, Proposition 3.1.1 gives the following:

Proposition 4.1.2 Let f, g : D → R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R, be real
functions, and assume that f is bounded and limx→c g(x) exists. Then, we have

lim sup
x→c

( f (x)+ g(x)) = lim sup
x→c

f (x)+ lim
x→c

g(x)

lim inf
x→c

( f (x)+ g(x)) = lim inf
x→c

f (x)+ lim
x→c

g(x).

In particular, if limx→c f (x) and limx→c g(x) both exist, then so does
limx→c( f (x)+ g(x)), and we have

lim
x→c

( f (x)+ g(x)) = lim
x→c

f (x)+ lim
x→c

g(x).

Second, Proposition 3.1.2 gives the following:

Proposition 4.1.3 Let f, g : D → R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R, be real
functions, and assume that f is bounded, and limx→c g(x) exists and non-negative.
Then we have

lim sup
x→c

( f (x) · g(x)) = lim sup
x→c

f (x) · lim
x→c

g(x)
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lim inf
x→c

( f (x) · g(x)) = lim inf
x→c

f (x) · lim
x→c

g(x).

In particular, if limx→c f (x) and limx→c g(x) both exist, then so does
limx→c( f (x) · g(x)), and we have

lim
x→c

( f (x) · g(x)) = lim
x→c

f (x) · lim
x→c

g(x).

By a simple induction, we have

lim
x→c

f (x)m =
(

lim
x→c

f (x)
)m

, m ∈ N,

provided that limx→c f (x) exists.
Third, Proposition 3.1.3 gives the following:

Proposition 4.1.4 Let f, g : D → R, (c − d, c + d)◦ ⊂ D, 0 < d ∈ R, be real
functions. Assume that limx→c f (x) exists, g(x) is nowhere zero, and limx→c g(x)

exists and is non-zero. Then, we have

lim
x→c

f (x)

g(x)
= limx→c f (x)

limx→c g(x)
.

Sometimes a function is only defined or considered on an interval (c, c + d),
0 < d ∈ R, and we wish to know the limiting properties of f as x ∈ (c, c + d)

approaches c. Replacing the deleted neighborhood (c − δ, c + δ)◦ with the interval
(c, c + δ), 0 < δ ≤ d, we arrive at the concept of the right-sided limit superior
and inferior:

lim sup
x→c+

f (x) = inf
0<δ≤d

sup
0<x−c<δ

f (x) and lim inf
x→c+

f (x) = sup
0<δ≤d

inf
0<x−c<δ

f (x),

and the right-sided limit limx→c+ f (x) when lim infx→c+ f (x) = lim supx→c+
f (x) with the limit being equal to this common value.

In a similar vein, replacing the deleted neighborhood (c − δ, c + δ)◦ with the
interval (c − δ, c), 0 < δ ≤ d, we have the left-sided limit superior and limit
inferior

lim sup
x→c−

f (x) = inf
0<δ≤d

sup
0<c−x<δ

f (x) and lim inf
x→c−

f (x) = sup
0<δ≤d

inf
0<c−x<δ

f (x),

and the left-sided limit limx→c− f (x) when lim infx→c− f (x) = lim supx→c− f (x)

with the limit being equal to this common value.
All the previous statements hold for one-sided limits with appropriate modifica-

tions.
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Remark We note that, for a function f : D→ R, (c, c+d) ⊂ D, c ∈ R, 0 < d ∈ R,
we have limx→c+ f (x) = L if and only if, for every 0 < ε ∈ R, there exists
0 < δ ≤ d such that 0 < x − c < δ implies | f (x)− L| < ε.

Similarly, for a function f : D → R, (c − d, c) ⊂ D, c ∈ R, 0 < d ∈ R, we
have limx→c− f (x) = L if and only if, for every 0 < ε ∈ R, there exists 0 < δ ≤ δ0
such that 0 < c − x < δ implies | f (x)− L| < ε.

One-sided limits are often used to evaluate regular (two-sided) limits. This
is based on the obvious statement that limx→c f (x) exists if and only if
limx→c+ f (x) = limx→c− f (x), and, in this case, the limit is equal to this common
value.

Next, we define the limit at infinity. Let 0 < K0 ∈ R and f : (K0,∞)→ R be
a real function. We define the limit superior and limit inferior at infinity of f by

lim sup
x→∞

f (x) = lim sup
u→0+

f (1/u) and lim inf
x→∞ f (x) = lim inf

u→0+
f (1/u).

The limit at infinity limx→∞ f (x) exists if lim supx→∞ f (x) = lim infx→∞ f (x),
and, in this case, the limit is equal to this common value. The limit relation
limx→∞ f (x) = L means that, for every 0 < ε ∈ R, there exists K0 ≤ K ∈ R such
that K ≤ x implies | f (x)− L| < ε.

Finally, we define limx→∞ f (x) = ∞ by lim infx→∞ f (x) = ∞. This means
that, for every 0 < M ∈ R, there exists K0 ≤ K ∈ R such that K ≤ x implies
M ≤ f (x).

The limit superior and limit inferior at negative infinity are defined by taking
opposites in an obvious way.

Exercise

4.1.1. Let f : D→ R, (c−d, c+d)◦ ⊂ D, 0 < d ∈ R, be a positive real function.
Show that

lim inf
x→c

1

f (x)
= 1

lim supx→c f (x)
.

4.2 Continuity

Let c ∈ R and 0 < d ∈ R. A real function f : D→ R, (c − d, c + d) ⊂ D, is said
to be continuous at c if

lim
x→c

f (x) = f (c).
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We call f : D → R, [c, c + d) ⊂ D, right-continuous at c if limx→c+ f (x) =
f (c). Similarly, f : D → R, (c − d, c] ⊂ D, is left-continuous at c if
limx→c− f (x) = f (c). Clearly, f : D→ R, (c− d, c+ d) ⊂ D, is continuous at c
if it is right-continuous and left-continuous at c.

Let a < b, a, b ∈ R. A real function f : (a, b)→ R is continuous on (a, b) if it
is continuous at any c ∈ (a, b). If f is defined on the half-closed interval [a, b), resp.
(a, b], then, for continuity on [a, b), resp. (a, b], we require continuity on (a, b)

and right-continuity of f at a, resp. left-continuity at b. Finally, f : [a, b] → R

is continuous on [a, b] if it is continuous on (a, b), right-continuous at a, and left-
continuous at b.

By the proposition of the previous section, a real function f : (c−d, c+d)→ R,
c ∈ R, 0 < d ∈ R, is continuous at c if and only if for any convergent real sequence
(xn)n∈N, n ∈ N, with limit limn→∞ xn = c, we have limn→∞ f (xn) = f (c).1

Similar statements hold for right- and left-continuity by restricting the sequence to
the respective sides.
Extreme Values Theorem. Let a < b, a, b ∈ R, and f : [a, b] → R

be a continuous function. Then supx∈[a,b] f (x) and infx∈[a,b] f (x) are finite and
attained; that is, we have f (c) = supx∈[a,b] f (x) and f (d) = infx∈[a,b] f (x) for
some c, d ∈ [a, b].
Proof It is enough to treat the supremum. Let supx∈[a,b] f (x) = L ≤ ∞. By the
definition of the supremum, there exists a real sequence (xn)n∈N, xn ∈ [a, b], n ∈ N,
such that limn→∞ f (xn) = L . By the Bolzano–Weierstrass Theorem, (xn)n∈N has a
convergent subsequence (xnk )k∈N with limit limk→∞ xnk = c ∈ [a, b], say. Clearly,
we have limk→∞ f (xnk ) = L . By Corollary to Proposition 4.1.1 and the definition
of continuity, L = f (c). Hence L is finite and it is attained.

The theorem follows.

A direct consequence of Propositions 4.1.2–4.1.3 of the previous section is the
following:

Proposition 4.2.1 Let c ∈ R and 0 < d ∈ R. Let f, g : (c− d, c+ d)→ R be real
functions, and assume that f and g are continuous at c. Then the functions f + g
and f · g are continuous at c.

An obvious consequence of continuity is the following: If f, g : D → R, (c −
d, c + d) ⊂ D, c ∈ R, 0 < d ∈ R, are continuous functions at c such that f (c) <

g(c), then there exists 0 < δ ≤ d such that f (x) < g(x) for |x − c| < δ.
To show this, we first note that f − g is continuous at c.2 Let 0 < ε = (g(c) −

f (c))/2, and choose 0 < δ ≤ d such that

|x − c| < δ ⇒ |(g(x)− f (x))− (g(c)− f (c))| < ε = g(c)− f (c)

2
.

1This property is termed sequential continuity. In our case of single-variable (and also multivari-
ate) real functions, this is equivalent to continuity.
2By Proposition 4.2.1 since constant functions (such as −1) are obviously continuous.
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The last inequality implies

0 <
g(c)− f (c)

2
< g(x)− f (x), |x − c| < δ.

The statement follows.
What we just proved clearly holds for right- or left-continuity with appropriate

modifications.
Proposition 4.1.4 gives the following:

Proposition 4.2.2 Let c ∈ R and 0 < d ∈ R. Let f, g : (c − d, c + d) → R be
real functions, and assume that f and g are continuous at c. If g(c) �= 0, then f/g
is also continuous3 at c.

Since limx→c 1 = 1 and limx→c x = c, c ∈ R, are (near) tautologies,
Proposition 4.1.1 along with a simple induction implies that limx→c xn = cn ,
n ∈ N. As we will see in Section 6.1, the integral powers xn , n ∈ N0, are
the basic building blocks of polynomials and rational functions. More precisely,
a polynomial is a finite sum of powers xn , n ∈ N0, multiplied by real numbers, and
rational functions are quotients of polynomials. It follows that every polynomial is
continuous everywhere, and every rational function is continuous on its domain.
Intermediate Value Theorem. Let a < b, a, b ∈ R, and f : [a, b] → R

be a continuous function. Let M ∈ R be between f (a) and f (b), that is,
min( f (a), f (b)) < M < max( f (a), f (b)). Then, we have f (c) = M for some
c ∈ (a, b).

Proof We may assume f (a) < f (b), so that f (a) < M < f (b). Let

A = {x ∈ [a, b] | f (x) ≤ M}.

Clearly, A is non-empty (since a ∈ A). Let c = sup A ∈ [a, b]. We claim that
c ∈ (a, b). Indeed, since f is right-continuous at a and f (a) < M , we have a < c.
Since f is left-continuous at b and M < f (b), we have c < b. These give c ∈ (a, b).

Let 0 < ε ∈ R. By continuity of f at c, there exists 0 < δ ≤ d, d = min(b −
c, c − a), such that |x − c| < δ implies f (x)− ε < f (c) < f (x)+ ε.

By the definition of the supremum, there exists c′ ∈ (c − δ, c] such that c′ ∈ A;
that is, f (c′) ≤ M . This and the continuity above give f (c) < f (c′)+ ε ≤ M + ε.

Again by the definition of the supremum, there exists c′′ ∈ (c, c + δ) such that
c′′ /∈ A; that is, f (c′′) > M . This and the continuity above give M−ε < f (c′′)−ε <

f (c).
Combining these, we obtain M − ε < f (c) < M + ε. Since 0 < ε ∈ R was

arbitrary, f (c) = M follows.

3Since g(c) �= 0, we also have g(x) �= 0 for |x − c| < δ with 0 < δ ∈ R small enough.
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Example 4.2.1 Let f : [0, 1] → [0, 1] be a continuous function. Then there exists
c ∈ [0, 1] such that4 f (c) = c. Indeed, we may assume that f (0) �= 0 and f (1) �= 1
(since otherwise there is nothing to prove). Consider the function g : [0, 1] → R

defined by g(x) = f (x) − x , x ∈ [0, 1]. We have g(0) = f (0) > 0 and g(1) =
f (1) − 1 < 0. By the Intermediate Value Theorem, we have g(c) = 0 for some
c ∈ [0, 1]. This gives f (c) = c as claimed.

Corollary Let f : D → R be a real function. If f is continuous and injective on
an interval I ⊂ D, then it is strictly monotonic on I.

Proof Let a < b, a, b ∈ I. Since f is injective on I, we have f (a) �= f (b). We
may assume that f (a) < f (b).

We claim that f is strictly increasing on the interval [a, b]. Assume not. There
exist x < x ′, x, x ′ ∈ [a, b], such that f (x ′) < f (x). ( f (x) �= f (x ′) by injectivity
again.)

We first claim that f (a) ≤ f (x ′). Indeed, otherwise we have f (x ′) < f (a) <

f (b) with a < x ′ < b (x ′ = b cannot happen by injectivity), and, by the
Intermediate Value Theorem, we have f (c) = f (a) for some c ∈ [x ′, b],
contradicting injectivity.

Second, we have f (x) ≤ f (b), since otherwise f (a) < f (b) < f (x) with
a < x < b. By the Intermediate Value Theorem again, we have f (c) = f (b),
c ∈ [a, x], contradicting injectivity again.

Summarizing, we have a < x < x ′ < b and f (a) < f (x ′) < f (x) < f (b) (with
strict inequalities throughout). By the Intermediate Value Theorem again, there
exists c ∈ [x ′, b] such that f (c) = f (x), once again contradicting to injectivity.
The corollary follows.

Remark The assumption on continuity in the corollary above is essential; the
function in Example 0.3.5 is injective but neither monotonic nor continuous (except
at 0).

We have seen that arithmetic operations of functions preserve continuity. The
next proposition states that continuity is also preserved by composition of functions.
It is a direct consequence of (sequential) continuity of the participating functions.

Proposition 4.2.3 Let f : D → R, (c − d, c + d) ⊂ D, c ∈ R, 0 < d ∈ R, and
g : E → R, ( f (c) − e, f (c) + e) ⊂ E , 0 < e ∈ R, be real functions. Assume that
f is continuous at c and g is continuous at f (c). Then the composition g ◦ f is
continuous at c.

Example 4.2.2 The converse of the previous proposition is obviously false; for
example, let f : R → R be any real function and g : R → R the identically
zero function. For a less trivial example, let f, g : R→ R be defined by f (x) = x2

and

4This statement also holds with [0, 1] replaced by an arbitrary closed interval [a, b]. In this form,
it is often termed as the 1-dimensional Brouwer fixed point theorem, even though the latter (in
dimensions ≥ 2) is more subtle.
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g(x) =
{

1, if x ≥ 0

0, if x < 0.

Then, f is continuous everywhere, and g ◦ f , being the constant function 1, is also
continuous everywhere, but g is discontinuous at 0.

We now extend the definition of the power function pr : D → R, pr (x) = xr ,
x ∈ D ⊂ R (Section 3.2) to any real exponent r ∈ R as follows:

For zero exponent r = 0, the domain D of the power function p0 is D = R\{0},
and we have p0(x) = x0 = 1, 0 �= x ∈ R. (Recall that 00 is undefined.)5

For a positive rational exponent r = m/n ∈ Q, m, n ∈ N, the domain D of the
power function pr is D = {0 ≤ x ∈ R} if n is even and D = R if n is odd.

For a negative rational exponent r = −m/n ∈ Q, m, n ∈ N, the domain D of
the power function pr is D = {0 < x ∈ R} if n is even and D = R \ {0} if n is odd.

For a positive irrational exponent 0 < r ∈ R \ Q, the domain D of the power
function pr is D = {0 ≤ x ∈ R}.

For a negative irrational exponent 0 < r ∈ R \Q, the domain D of the power
function pr is D = {0 < x ∈ R}.

We now proceed to show that the power function pr : D → R is continuous on
its domain D. Since the set of positive real numbers is included in D in all cases, we
first show continuity of pr at 0 < c ∈ R.

We claim that

lim
x→c

xr = cr , 0 < c ∈ R, r ∈ R.

Replacing the variable x by x/c, the limit above reduces to the following:

lim
x→1

xr = 1, r ∈ R.

First assume that |r | < 1. By the combined Bernoulli inequality, we have

|xr − 1| ≤ |r | · |x − 1|, 1 < x ∈ R.

By monotonicity of the right-limit, we obtain

0 ≤ lim
x→1+

|xr − 1| ≤ |r | lim
x→1+

|x − 1| = |r | lim
x→1
|x − 1| = 0.

For the left-limit, we calculate

lim
x→1−

xr = lim
x→1−

1

1/xr
= lim

x→1−
1

(1/x)r
= lim

x→1+
1

xr
= 1

limx→1+ xr
= 1,

5Clearly, limx→0 x0 = 1. This is one of the reasons why sometimes 00 is defined as 1.
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where we changed the variable 0 < x < 1 to 1 < 1/x . The limit relation above and
hence continuity follow in this case.

For 1 < |r |, let n ∈ N such that |r | < n. Then we have |r/n| < 1, and the limit
relation above holds for the exponent n/r . We have

lim
x→1

xr = lim
x→1

(
xr/n)n =

(
lim
x→1

xr/n
)n

= 1n = 1.

The limit relation and thereby continuity at 0 < c ∈ R follow in general.
The case of rational exponents r = ±m/n ∈ Q, m, n ∈ N, can be reduced

to exponents that are reciprocals of (non-zero) integers since pm/n(x) = xm/n =
(x1/n)m = (p1/n(x))m , x ∈ D. Indeed, for n ∈ N odd and 0 < c ∈ R, we have

lim
x→−c

x1/n = lim
x→c

n
√−x = − lim

x→c
n
√

x = −c1/n = − n
√

c = (−c)1/n,

where we used continuity of the power function at 0 < c ∈ R.
Finally, the (possibly only right-)continuity at c = 0 follows from simple

applications of the exponential identities.

Remark Let 2 ≤ n ∈ N and 0 < c ∈ R. Choose m ∈ N such that c < mn . Consider
the power function pn(x) = xn , restricted to x ∈ [0, m]. We have p(0) = 0 and
p(m) = mn . Since pn is continuous and 0 < c < mn , the Intermediate Value
Theorem implies that there exists 0 < a < m, a ∈ R, such that pn(a) = an = c.
This establishes the existence of the nth root a = n

√
c. This was treated in Section 3.2

using different methods.

Exercise

4.2.1. Define the real function f : R→ R as follows. For 0 �= x ∈ Q rational, let
f (x) = 1/b, where x = a/b, gcd(a, b) = 1, a ∈ Z, b ∈ N; f (0) = 1, and,
for x ∈ R \ Q irrational, let f (x) = 0. Show that f is continuous at every
irrational point and discontinuous at every rational point.

4.3 Differentiability

Of particular importance is the difference quotient of a function. Given c ∈ R,
assume that the domain of a single-variable real function f contains the interval
(c − d, c + d), where 0 < d ∈ R. Then the difference quotient of f at c is defined
by

m f (x, c) = f (x)− f (c)

x − c
, 0 < |x − c| < d.
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Of paramount importance in differential calculus is the limit

lim
x→c

m f (x, c) = lim
x→c

f (x)− f (c)

x − c
.

We call f differentiable at c if this limit exists, and the actual value of the limit,
called the derivative of f at c, will be denoted by f ′(c).
History
There is compelling evidence that some of the basic properties of the derivative and therefore those
of differential calculus were discovered by Bhāskara II, predating Newton and Leibniz about 500
years. He used these properties for astronomical calculations. Finally, note that the notation f ′(c)
for the derivative of a function f at c (although sometimes erroneously attributed to Newton) is
due to Joseph-Louis Lagrange (1736–1813).

The importance of this limit is easily understood by the following interpretation
of the derivative. We consider all the linear functions that take the same value at c
as the function f and select the one whose values “best approximate” the values of
f . A linear function that takes the same value as f at c has the general equation
y = f (c) + m(x − c) with m ∈ R as an indeterminate. Best approximation is
interpreted as the infimum

inf
m∈R lim

x→c

∣∣∣∣ f (x)− ( f (c)+ m(x − c))

x − c

∣∣∣∣ .
This, however, can be written as

inf
m∈R lim

x→c

∣∣∣∣ f (x)− f (c)

x − c
− m

∣∣∣∣ ,

and the zero infimum is clearly attained by m = f ′(c), the derivative (assuming that
it exists).

Let c ∈ R and f : D → R, (c − d, c + d) ⊂ D, 0 < d ∈ R, be a real
function, and assume that f is differentiable at c. The line given by the equation
y = f (c)+ f ′(c)(x−c) is called the tangent line to the graph G( f ) of the function
f at c.

Taking the right- and left-limits in the definition of the difference quotient,
we arrive at the concept of right- and left-derivatives. More precisely, for a real
function f : D→ R, [c, c + d) ⊂ D, resp., (c − d, c] ⊂ D, c ∈ R, 0 < d ∈ R, we
define the right-, resp., left-derivatives at c ∈ R by

f ′+(c) = lim
x→c+

m f (x, c) = lim
x→c+

f (x)− f (c)

x − c
,

f ′−(c) = lim
x→c−

m f (x, c) = lim
x→c−

f (x)− f (c)

x − c
.
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As for limits, the derivative f ′(c) exists if and only if the right- and left-derivatives
f ′+(c) and f ′−(c) exist and they are equal.

There are natural instances when one of the one-sided derivatives or both exist.

Example 4.3.1 Recall that a real function f : (−d, d)→ R, 0 < d ≤ ∞, is called
even, resp., odd, if f (−x) = f (x), resp., f (−x) = − f (x), |x | < d.
Assuming that f is even and that the one-sided derivatives exist, we calculate

f ′+(c)= lim
x→0+

f (x)− f (0)

x
= lim

x→0−
f (−x)− f (0)

−x
=− lim

x→0−
f (x)− f (0)

x
=− f ′−(c).

This shows that, if the derivative of an even function at 0 exists, then it must be
zero. For example, for the absolute value function f (x) = |x |, x ∈ R, the left- and
right-derivatives are f ′± = ±1, and the derivative at 0 does not exist.

Assuming that f is odd and that the one-sided derivatives exist, then clearly
f (0) = 0, and we have

f ′−(c) = lim
x→0+

f (x)

x
= lim

x→0−
f (−x)

−x
= lim

x→0−
f (x)

x
= f ′−(c).

This shows that, if the left- and right-derivatives at 0 of an odd function exist, then
they must be equal, and therefore the (two-sided) derivative at 0 also exists.

Let f : D→ R, (c − d, c + d) ⊂ D, 0 < d ∈ R, be a real function. We call c a
critical point of f if either f is not differentiable at c or f ′(c) = 0.

The importance of critical points lies in the Fermat Principle: If f : D → R,
(c − d, c + d) ⊂ D, 0 < d ∈ R, assumes its supremum or infimum at c, then c is a
critical point of f .

Indeed, assume that f assumes its supremum at c; that is, we have f (x) ≤ f (c)
for all |x − c| < d. If f is not differentiable at c, then we are done. Assume that
f ′(c) exists. For 0 < x − c < d, we have

m f (x, c) = f (x)− f (c)

x − c
≤ 0.

Therefore, for the right-derivative, we have f ′+(c) = limx→c+ m f (x, c) ≤ 0.
Similarly, For 0 < c − x < d, we have

m f (x, c) = f (x)− f (c)

x − c
≥ 0.

Therefore, for the left-derivative, we have f ′−(c) = limx→c− m f (x, c) ≥ 0. Since
we assume that f ′(c) exists, the right- and left-limits must coincide. We obtain
f ′(c) = 0. The Fermat Principle follows.
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An important consequence of the Fermat Principle is the following: Assume that
f : I → R is a continuous function on an interval I ⊂ R. If f has no critical point
on I, then f is strictly monotonic on I.

Since f is continuous, injectivity implies strict monotonicity. (See the corollary
to the Intermediate Value Theorem above.) Assume, on the contrary, that f fails to
be injective on I. This means that there exist x ′ < x ′′, x ′, x ′′ ∈ I, such that

f (x ′) = f (x ′′).

We restrict f to the closed interval [x ′, x ′′] ⊂ I. Since f is continuous, by the
Extreme Values Theorem, it assumes its supremum or infimum at a point c of
the open interval (x ′, x ′′). By the Fermat Principle, c is a critical point of f , a
contradiction.

We now note the simple fact that differentiability implies continuity. Indeed,
assume that the real function f : (c − d, c + d) → R, 0 < d, c, d ∈ R, is
differentiable at c. Using the formula

f (x) = f (c)+m f (x, c) · (x − c), |x − c| < d,

we obtain

lim
x→c

f (x) = f (c)+ lim
x→c

(
m f (x, c) · (x − c)

) = f (c)+ f ′(c) · 0 = f (c).

Continuity follows.

Example 4.3.2 Define the function f : R→ R by

f (x) =
{

x2 if x ∈ Q

−x2 if x ∈ R \Q.

Where is f differentiable?
For c �= 0, f is not continuous at c. To show this, let (xn)n∈N be a ratio-

nal sequence and (x ′n)n∈N an irrational sequence (a sequence whose members
are irrational numbers) such that limn→∞ xn = limn→∞ x ′n = c. We have
limn→∞ f (xn) = c2 and limn→∞ f (x ′n) = −c2. Since c �= 0, f is not continuous
at c. As such, f is not differentiable at c either.

For c = 0, we have

lim
x→0

m f (x, 0) = lim
x→0

f (x)

x
= lim

x→0

±x2

x
= lim

x→0
(±x) = 0.

Hence f is differentiable (only) at 0.

The difference quotient has important arithmetic properties. Letting f, g : (c −
d, c + d)→ R, c ∈ R, 0 < d ∈ R, be real functions, for |x − c| < d, we have
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m f+g(x, c) = m f (x, c)+mg(x, c)

m f ·g(x, c) = m f (x, c) · g(c)+ f (c) ·mg(x, c)+m f (x, c) ·mg(x, c) · (x − c)

m f/g(x, c) = m f (x, c) · g(c)− f (c) ·mg(x, c)

g(c)2 + g(c) ·mg(x, c) · (x − c)
,

where in the last formula we assume g(x) �= 0 for |x − c| < d.
Indeed, we calculate

m f+g(x, c) = ( f (x)+ g(x))− ( f (c)+ g(c))

x − c

= f (x)− f (c)

x − c
+ g(x)− g(c)

x − c
= m f (x, c)+mg(x, c);

m f ·g(x, c) = f (x) · g(x)− f (c) · g(c)

x − c

= f (x)− f (c)

x − c
· g(c)+ f (c) · g(x)− g(c)

x − c
+ f (x)− f (c)

x − c
· g(x)− g(c)

x − c
· (x − c)

= m f (x, c) · g(c)+ f (c) ·mg(x, c)+m f (x, c) ·mg(x, c) · (x − c);

m f/g(x, c) = f (x)/g(x)− f (c)/g(c)

x − c
= f (x) · g(c)− f (c) · g(x)

g(c)g(x)(x − c)

=
(
m f (x, c)(x − c)+ f (c)

)
g(c)− f (c)

(
mg(x, c)(x − c)+ g(c)

)
g(c)

(
g(c)+mg(x, c)(x − c)

)
(x − c)

= m f (x, c) · g(c)− f (c) ·mg(x, c)

g(c)2 + g(c) ·mg(x, c) · (x − c)
.

Assuming that f and g are differentiable at c, taking the limits as x → c, we obtain
the following differentiation formulas:

( f + g)′ = f ′ + g′

( f · g)′ = f ′ · g + f · g′(
f

g

)′
= f ′ · g − f · g′

g2 ,

where the dependence on c has been suppressed.
As a generalization of the second (product) formula, a simple induction gives

( f n)′ = n( f n−1) · f ′, n ∈ N.
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To close this section, we claim that the derivative of the power function pr :
D→ R, r ∈ R, pr (x) = xr , x ∈ D, is the following:

p′r (c) = lim
x→c

xr − cr

x − c
= rcr−1, 0 < c ∈ R.

Dividing by cr−1, this limit simplifies to

lim
x→1

xr − 1

x − 1
= r, r ∈ R.

To derive this limit, we first make two reduction steps. First, the limit clearly
holds for r = 0. Since

x−r − 1

x − 1
= − 1

xr
· xr − 1

x − 1
, 1 �= x ∈ R,

it is enough to prove the limit above for 0 < r ∈ R. Second, for 0 < x �= 1, x ∈ R,
we have

xr − 1

x − 1
=

1
1/xr − 1

1
1/x − 1

=
(

1

x

)1−r

· (1/x)r − 1

(1/x)− 1
.

This shows that it is enough to derive the right-limit

lim
x→1+

xr − 1

x − 1
= r, 0 < r ∈ R.

After these reductions, we first consider the case when the exponent r ∈ Q is
rational; r = m/n, m, n ∈ N. We have

lim
x→1

xm/n − 1

x − 1
= lim

x→1

xm − 1

xn − 1
,

where we changed the variable from x to x1/n and used limx→1 x1/n = 1. We now
use the Finite Geometric Series Formula twice

lim
x→1

xm − 1

xn − 1
= lim

x→1

(x − 1)(xm−1 + xm−2 + · · · + x + 1)

(x − 1)(xn−1 + xn−2 + · · · + x + 1)

= lim
x→1

xm−1 + xm−2 + · · · + x + 1

xn−1 + xn−2 + · · · + x + 1
= m

n
.

The limit relation above follows for rational exponents.
We now turn to the case of general exponent 0 < r ∈ R. Let (qn)n∈N be a rational

sequence with limit limn→∞ qn = r . We may assume that |r − qn| < 1, n ∈ N. For
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0 < x �= 1, x ∈ R, we calculate

∣∣∣∣ x
r − 1

x − 1
− r

∣∣∣∣ =
∣∣∣∣xqn · xr−qn − 1

x − 1
+
(

xqn − 1

x − 1
− qn

)
− (r − qn)

∣∣∣∣
≤ ∣∣xqn

∣∣ ·
∣∣∣∣ x

r−qn − 1

x − 1

∣∣∣∣+
∣∣∣∣ x

qn − 1

x − 1
− qn

∣∣∣∣+ |r − qn| .

We will calculate the right-limit of this, so that, from now on, we may assume 1 <

x ∈ R. Since |r − qn| < 1, n ∈ N, the combined Bernoulli inequality gives

∣∣∣∣ x
r−qn − 1

x − 1

∣∣∣∣ ≤ |r − qn|.

Using this, our estimate above reduces to

∣∣∣∣ x
r − 1

x − 1
− r

∣∣∣∣ ≤ (∣∣xqn
∣∣+ 1

) · |r − qn| +
∣∣∣∣ x

qn − 1

x − 1
− qn

∣∣∣∣ .
Again by the Bernoulli inequality, we have

∣∣xqn
∣∣ ≤ 1+ |qn||x − 1| ≤ 1+ (1+ r)(x − 1), 1 < x,

since

|qn| − |r | ≤ |r − qn| < 1.

Putting everything together, we arrive at the estimate

∣∣∣∣ x
r − 1

x − 1
− r

∣∣∣∣ ≤ (2+ (1+ r)(x − 1)) · |r − qn| +
∣∣∣∣ x

qn − 1

x − 1
− qn

∣∣∣∣ .
Let 0 < ε ∈ R. Since limn→∞ qn = r , we can choose N ∈ N such that

|r − qn| < ε

2(3+ r)
, n ≥ N .

Fix n ≥ N . By the case of rational exponents above, there exists 0 < δ < 1 such
that, for 0 < |x − 1| < δ, we have

∣∣∣∣ x
qn − 1

x − 1
− qn

∣∣∣∣ < ε/2.

With these choices, we have
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∣∣∣∣ x
r − 1

x − 1
− r

∣∣∣∣ ≤ (2+ (1+ r)(x − 1)) · |r − qn| +
∣∣∣∣ x

qn − 1

x − 1
− qn

∣∣∣∣
< (2+ (1+ r))

ε

2(3+ r)
+ ε

2
= ε.

The limit relation above and hence the claimed differentiation formula for the power
function follow.

Remark We have seen in the previous section that, for rational exponents r =
±m/n, m, n ∈ N, with n odd, the domain of the power function pm/n includes
all negative real numbers. For n odd, we have pm/n(−x) = (−1)mpm/n(x), x ∈ R.
Using this, a simple computation shows that, for 0 �= c ∈ R, the differentiation
formula for the power function still holds.
It remains to consider the case c = 0. For positive (rational or irrational) exponents,
the power function pr is defined (at least) for non-negative real numbers. For the
right-derivative, we have

(pr )
′+(0) = lim

x→0+
xr

x
= lim

x→0+
xr−1 =

⎧⎪⎪⎨
⎪⎪⎩

0 if 1 < r

1 if r = 1

∞ if 0 < r < 1.

The left-derivative is defined only for positive rational exponents r = m/n, m, n ∈
N, with n odd. In this case, we have

(pm/n)′−(0)= lim
x→0−

x (m−n)/n = (−1)m+1 lim
x→0+

xm/n−1=

⎧⎪⎪⎨
⎪⎪⎩

0 if 1 < m/n

1 if m/n = 1

±∞ if 0 < m/n < 1.

As a byproduct, we see that the (two-sided) derivative exists if and only if r =
m/n ≥ 1, in particular, if r = m ∈ N (n = 1).

We now return to the main line. Using the derivative of the power function above,
for natural exponents n ∈ N, we have

p′n = npn−1, n ∈ N.

By the differentiation formulas above, we recover the earlier result to the effect
that every polynomial is differentiable everywhere, and every rational function, that
is, the quotient of two polynomials, is differentiable on its domain. This is not the
case for algebraic functions, however.6 For example, the cube root function p1/3 is
defined everywhere, but its derivative does not exist at 0.

6Algebraic functions will be treated in detail in Section 9.
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Example 4.3.3 Show that

lim
x→1

(1− x)(1−√x)(1− 3
√

x) · · · (1− n
√

x)

(1− x)n
= 1

n! .

We write the expression in the limit as the product of n factors

1− k
√

x

1− x
, k = 1, . . . , n.

The limit of the kth factor is calculated as

lim
x→1

1− k
√

x

1− x
= lim

x→1

x1/k − 1

x − 1
= 1

k
.

Taking the product for k = 1, . . . , n, the example follows.

Exercises

4.3.1. Define the sequence of functions fn : [−1, 1] → R, where n ∈ N0,
inductively as f0(x) = |x |, fn(x) = | fn−1(x)−1/2n |, n ∈ N. Determine the
set of points where fn is not differentiable.

4.3.2. Give an example of a function g : R → R, which is discontinuous
everywhere except at 0 where it is differentiable and g′(0) = 1.



Chapter 5
Real Analytic Plane Geometry

“Let it have been postulated
1. To draw a straight-line from any point to any point.
2. And to produce a finite straight-line continuously in
a straight-line. 3. And to draw a circle with any center
and radius. 4. And that all right-angles are equal to one
another. 5. And that if a straight-line falling across two
(other) straight-lines makes internal angles on the same
side (of itself whose sum is) less than two right-angles,
then the two (other) straight-lines, being produced to
infinity, meet on that side (of the original straight-line)
that the (sum of the internal angles) is less than two
right-angles (and do not meet on the other side).”
The five postulates in Euclid’s Elements, translated by Richard
Fitzpatrick.

Among the few choices of systems of axioms to construct a geometric model
of the plane (for example, via Euclid or Hilbert), we take the least strenuous
path; and, in making use of the real number system already in place, we develop
real analytic plane geometry using Birkhoff’s axioms of metric geometry. One
of the main purposes of this chapter is to explain what is classically known as
the Cantor–Dedekind Axiom: The real number system is order isomorphic to the
linear continuum of geometry. This is the root of one of the faults of Euclid’s
axioms (as the ancient Greeks had no way of knowing the real number system),
and this is resolved by the Birkhoff Postulate of Line Measure. But, unlike the
original approaches of Hilbert and Birkhoff, we are working here in a concrete
model, R2, built from the real number system R of Chapter 2. Verifying that the
Birkhoff postulates hold in our concrete model is much less demanding than the
synthetic (purely axiomatic) approach. Nevertheless, our model-oriented exposition
still encounters some struggle, as in Sections 5.6–5.7, where the existence and
properties of the circular arc length are shown using purely metric tools and paving
the way to trigonometry (Chapter 11). This also gives a precise answer to the
question: “What is π?” Once again, this relies on the Least Upper Bound Property
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of the real number system, the main common thread with the first two chapters.
A natural offspring of this technical passage is concluded with an optional section
on the (often neglected) Principle of Shortest Distance, given here in full detail.
This can be skipped (at least at the first reading), since it is used only for deriving
the reflection properties of some of the conics in Chapter 8.

To ease up the complexity of the material, we make frequent side tours to develop
metric properties of many geometric configurations. We determine all Pythagorean
triples not by elementary number theory but via analytic geometry: the method of
rational slopes. We introduce here additional important tools that will play pivotal
roles in the sequel: the Cauchy–Schwarz inequality, the AM-GM inequality, and
their offsprings. Finally, still in this chapter, we present Archimedes’ duplication
method to approximate π , once again with a view to algebraic formulas for many
special angles given subsequently in trigonometry in Chapter 11.

5.1 The Birkhoff Metric Geometry

Recall that an axiomatic system contains a set of primitives or, more pointedly,
undefined terms and basic assumptions or axioms.

Once the set of primitives and the set of axioms are given, any subsequent state-
ments, called propositions, lemmas, or theorems, must be logical consequences
of the axioms and previously proved theorems. In an axiomatic system, there
are also definitions, which baptize previously undefined entities that are (usually)
combinations of primitives and previously defined terms.

A model is an interpretation of the primitives in which the axioms become true
statements.

Euclidean geometry, the geometry of the plane, has been axiomatized in the
Elements (Books I-IV and VI) by Euclid.

History
Book I of the Elements begins with 23 definitions; a few are as follows:1

“1. A point is that of which there is no part.2

2. And a line is a length without breadth.
3. And the extremities of a line are points.
4. A straight-line is (any) one which lies evenly with points on itself. . . .
8. And a plane angle is the inclination of the lines to one another, when two lines in a plane meet

one another, and are not lying in a straight-line.
9. And when the lines containing the angle are straight then the angle is called rectilinear.

10. And when a straight-line stood upon (another) straight-line makes adjacent angles (which are)
equal to one another, each of the equal angles is a right-angle, and the former straight-line is
called a perpendicular to that upon which it stands.

1The excerpts quoted here are from the English edition and translation by Richard Fitzpatrick of the
Greek text of J.L. Heiberg from Euclidis Elementa, edidit et Latine interpretatus est J.L. Heiberg,
in aedibus B.G. Teubneri, 1883–1885.
2The numbering follows the original translation.
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11. An obtuse angle is one greater than a right-angle.
12. And an acute angle (is) one less than a right-angle. . . .
15. A circle is a plane figure contained by a single line [which is called a circumference], (such

that) all of the straight-lines radiating toward [the circumference] from one point among those
lying inside the figure are equal to one another.

16. And the point is called the center of the circle.
17. And a diameter of the circle is any straight-line, being drawn through the center, and

terminated in each direction by the circumference of the circle. (And) any such (straight-line)
also cuts the circle in half.

18. And a semi-circle is the figure contained by the diameter and the circumference cuts off by
it. And the center of the semi-circle is the same (point) as (the center of) the circle.. . .

20. And of the trilateral figures: an equilateral triangle is that having three equal sides, an
isosceles (triangle) that having only two equal sides, and a scalene (triangle) that having
three unequal sides.

21. And further of the trilateral figures: a right-angled triangle is that having a right-angle, an
obtuse-angled (triangle) that having an obtuse angle, and an acute-angled (triangle) that
having three acute angles.

22. And of the quadrilateral figures: a square is that which is right-angled and equilateral, a
rectangle that which is right-angled but not equilateral, a rhombus that which is equilateral
but not right-angled, and a rhomboid that having opposite sides and angles equal to one
another which is neither right-angled nor equilateral. And let quadrilateral figures besides
these be called trapezia.

23. Parallel lines are straight-lines which, being in the same plane, and being produced to infinity
in each direction, meet with one another in neither (of these directions).”

Euclid divided the set of basic assumptions into postulates and common notions. The postulates
are related to geometry and the common notions referred to logic (or common sense).
The 5 postulates are as in the epithet for this chapter above.
There are 5 common notions as follows:

“1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then the wholes are equal.
3. And if equal things are subtracted from equal things then the remainders are equal.
4. And things coinciding with one another are equal to one another.
5. And the whole [is] greater than the part.”

Euclid’s axioms have subtle faults.3 The first, and most obvious, is that he did
not recognize the need of undefined terms or primitives; instead, he tried to define
them. (See, for example, Definitions 1 and 2 above.) The second, and more serious,
is that he relied on unpostulated preconceptions that he thought to be too obvious
to justify. As an illustration to this, we consider the very first statement, Proposition
1 in Book I, where he proves the existence of an equilateral triangle with a given
side (and therefore with given two end-points) by constructing the third vertex as an
intersection point of two circles. There is no axiom that guarantees that these two
circles intersect at all. This needs to be remedied by either adding this as a “circle-
circle” axiom or adding axioms from which this would follow as a “circle-circle”
proposition. Moreover, once this problem is fixed, there is, once again, no guarantee
that this third intersection point is non-collinear with the first two (the end-points of

3For a somewhat overly critical account on Euclid, see Russell, B., The Teaching of Euclid, The
Mathematical Gazette, 2 (33) (1902) 165–167.
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the given line segment). If it is collinear, then one of the points would be between
the other two, and this violates the fifth common notion as above.

After critical examination of Euclid’s axioms, David Hilbert in his book Grund-
lagen der Geometrie (published in 1899) set forth a more complex and more
comprehensive system of axioms. For plane geometry, in Hilbert’s system, the
primitives are point and line and three primitive relations: (1) incidence (con-
tainment), two binary relations linking points and lines, (2) order (betweenness),
a ternary relation between points, and (3) congruence, two binary relations, one
linking segments, and another linking angles. Hilbert barely mentions circles, but,
for example, the circle-circle statement above follows from his Axiom of Continuity
(the latter mimicking the Dedekind cuts). We will not need a detailed discussion on
this as we will work with yet another system of axioms.

In 1932, George D. Birkhoff (1884–1944) introduced a new set of four postulates
for plane Euclidean geometry, often referred to as the Birkhoff axioms. The
Birkhoff system created what is called metric geometry. Metric geometry has
axioms for distance and angle measure. Betweenness and congruence are defined
in terms of distance and angle measure. The Birkhoff postulates are based on the
use of the scale and the protractor. Since this system is built upon the ordered field
of real numbers R, it is particularly well suited to us.

The primitives in the Birkhoff system are (1) point, (2) line, a set of points,
(3) distance, a real number d(A, B) ∈ R associated with any two points A and B,
and (4) angle, formed by any three ordered points A, O, B, A �= O �= B, denoted
by � AO B (with O being the vertex of the angle), possessing an angle measure
μ( � AO B) ∈ R, a real number determined mod 2π , that is, up to (addition of) an
integer multiple of 2π .

The set of all points is called the plane, and it is denoted by P. We tacitly assume
that P has at least two points.4

An initial set of definitions in the Birkhoff system are as follows:
Parallel Lines: Two lines �′ and �′′ are parallel if, as sets of points, they are

equal, � = �′, or disjoint, �′ ∩ �′′ = ∅.
Betweenness:5 If A, B, C are three distinct points, then we say that C is between

A and B, written as A ∗ C ∗ B, if d(A, C)+ d(C, B) = d(A, B).
Line Segment: Given two points A and B, the line segment [A, B] is the set of

points C such that A ∗ C ∗ B together with the end-points A and B.
Half-line or Ray, End-Point: The half-line �′ with end-point O is defined by

two distinct points O and A in a line � as the set of points B of � such that O is not
between A and B.

Triangle: If A, B, C are three distinct points, the line segments [A, B], [B, C],
[C, A] are said to form a triangle 
[A, B, C] with sides as these line segments and

4Strictly speaking, the concept of plane is a definition, and the assumption that it has at least two
points is a postulate.
5This corresponds to Hilbert’s order relation.



5.1 The Birkhoff Metric Geometry 211

vertices A, B, C . If A, B, C are collinear, then we say that the triangle 
[A, B, C]
is degenerate.

The Birkhoff postulates are as follows:
I. Point-Line Postulate: For any two distinct points A and B, there is a unique line
� such that A, B ∈ �.
II. Postulate of Line Measure: For every line �, there is a one-to-one correspon-
dence c� : � → R, called a metric coordinate function of �, such that, for every
A, B ∈ �, we have |c�(A)− c�(B)| = d(A, B).

Remark The first two postulates have many implications. Since P contains at
least two points, it also contains a line (through them), and by the Postulate of
Line Measure, it must contain infinitely many points (corresponding to all real
numbers and therefore of cardinality of R). In addition, the distance must be non-
negative and symmetric since, for any two points A and B in a line �, we have
d(A, B) = |c�(A) − c�(B)| = |c�(B) − c�(A)| = d(B, A) ≥ 0. Moreover, since
c� is one-to-one, d(A, B) > 0 if and only if A �= B. (If A = B, then � can be
chosen to be any line containing this point and another point C distinct from this.)
For a distance, it is also usually required that it satisfies the Triangle Inequality;
that is, for any three points A, B, C , we have d(A, C) ≤ d(A, B)+ d(B, C). This,
however, follows from the additional postulates below. Finally, note that symmetry
of the distance implies that, for any three distinct points A, B, C , we have A ∗C ∗ B
if and only if B ∗C ∗ A. In addition, among three distinct points A, B, C there is at
most one that is between the other two.6

III. Postulate of Angle Measure: For every point O , there is a one-to-one
correspondence αO between the set of all half-lines with end-point O and the set
of real numbers R (mod 2π) such that, for every two half-lines �′ and �′′ with end-
point O , we have7 αO(�′′)− αO(�′) = μ( � A′O A′′), where A′ ∈ �′ and A′′ ∈ �′′.

Remark Note that this postulate implies that μ(� AO B) = μ( � A′O B ′) if A, A′
and B, B ′ are one the same half-lines with end-point O .
IV. Postulate of Similarity: Given two triangles 
[A, B, C] and 
[A′, B ′, C ′]
and 0 < k ∈ R such that d(C ′, A′) = kd(C, A), d(C ′, B ′) = kd(C, B), and
μ( � A′C ′B ′) = μ( � AC B), then d(A′, B ′) = kd(A, B), μ( � B ′A′C ′) = μ( � B AC),
and μ( � C ′B ′A′) = μ( � C B A).

Remark The triangles 
[A, B, C] and 
[A′, B ′, C ′] in the Postulate of Similarity
above are called similar and congruent if k = 1.

Instead of pursuing the axiomatic approach,8 in the next section, we follow a
more rapid course by creating a model for the Birkhoff plane P, called the Cartesian
plane.

6These are axioms of the Hilbert system.
7As sets of real numbers (mod 2π).
8See Birkhoff, G.D., A Set of Postulates for Plane Geometry, Based on Scale and Protractor,
Annals of Mathematics, Second Series, Vol. 33, No. 2 (1932) 329–345.
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Exercise

5.1.1. The following is Lemma XXIII in Book I of Newton’s “Principia”:9 “If two
given right lines, as AC , B D, terminating in given points A, B, are in a given
ratio one to the other, and the right line C D, by which the indeterminate
points C , D are joined is cut in K in a given ratio: I say, that the point K
will be placed in a given right line.” Using modern language, we let �0 and
�1 be two non-collinear half-lines with common end-point O , say, and with
two points A ∈ �0 and B ∈ �1, A �= O �= B. Given 0 < r, s ∈ R, we
want to find the set of points K ∈ [C, D], A �= C ∈ �0, B �= D ∈ �1,
such that A ∈ [O, C] and B ∈ [O, D] and d(B, D)/d(A, C) = r and
d(C, K ) = d(D, K ) = s.10

5.2 The Cartesian Model of the Birkhoff Plane

We define the Cartesian plane as the Cartesian product R2 = R×R and its elements
as the points. Each point P is represented by a pair (x, y) ∈ R

2 of real numbers; x
is the first and y is the second coordinate of P .

Whenever convenient, we will use the additive structure11 in R
2 and write P +

P ′ = (x + x ′, y + y′) for the sum of points P = (x, y) and P ′ = (x ′, y′), and also
write cP = (cx, cy) for the constant multiple, c ∈ R, of the point P = (x, y).

Note also that in R
2, the two axes divide the plane into four (closed) quadrants:

I = {(x, y) ∈ R
2 | x ≥ 0 and y ≥ 0}

I I = {(x, y) ∈ R
2 | x ≤ 0 and y ≥ 0}

I I I = {(x, y) ∈ R
2 | x ≤ 0 and y ≤ 0}

I V = {(x, y) ∈ R
2 | x ≥ 0 and y ≤ 0}.

We define a line � in R
2 as a set of points given by a linear equation ax−by = c,

where the coefficients are real numbers, a, b, c ∈ R. We tacitly assume that the
coefficients a and b of the linear terms do not vanish simultaneously, that is, we
have a2 + b2 > 0. Thus, a line � is defined as

9The quote is Florian Cajori’s edition of Andrew Motte’s English translation in 1729 of Sir Isaac
Newton’s Philosophiae Naturalis Principia Mathematica, published in 1687.
10Newton used this lemma to show that “if two points proceed with a uniform motion in right lines,
and their distance be divided in a given ratio, the dividing point will be either at rest or proceed
uniformly in a right line.”
11We will not use the vector space structure of R2, nor the usual geometric concepts such as the
dot product, etc.
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� = {(x, y) ∈ R
2 | ax − by = c}, a2 + b2 > 0, a, b, c ∈ R.

It follows from the definition that any line has infinitely many points.
If the coefficients a, b, c ∈ R define �, then, for any 0 �= t ∈ R, the coefficients

ta, tb, tc ∈ R obviously define the same line �.

Remark If b �= 0, it is customary to call the ratio m = a/b the slope (steepness)
of the line � given by the equation ax − by = c. If, in addition, P = (x0, y0) is a
point on �, then we have ax − by = ax0 − by0. Dividing through b, we obtain the
so-called point-slope form of the equation of the line y − y0 = m(x − x0).

Recall that two lines � and �′ are called parallel if they are equal or if they are
disjoint. We will now derive algebraic criteria for these in terms of the coefficients
of the equations that define the lines.

Let � be given by the equation ax − by = c (a2 + b2 > 0) and �′ given by
a′x − b′y = c′ (a′2+ b′2 > 0). We put these together to form a system of equations

ax − by = c and a′x − b′y = c′.

Eliminating the indeterminates y and x gives the following reduced system:

(ab′ − a′b)x = b′c − bc′ and (ab′ − a′b)y = a′c − ac′.

I. First, we claim that if � and �′ contain at least two distinct common points, then

a′ = ta, b′ = tb, c′ = tc,

for some 0 �= t ∈ R; and consequently, the two lines � and �′ are equal.
Indeed, since the reduced system above has at least two solutions, we must have

ab′ − a′b = 0 (since otherwise we would have a unique solution). This implies
b′c − bc′ = 0 and a′c − ac′ = 0. We now put these together as a system

ab′ = a′b, b′c = bc′, a′c = ac′.

If a, b, c are all non-zero, then we have

a′

a
= b′

b
= c′

c
.

Setting this equal to t ∈ R, the claim follows.
If a = 0, then b �= 0 (since a2+ b2 > 0), so that a′ = 0 and b′ �= 0 (since, again,

a′2+b′2 > 0). If, in addition, c = 0, then c′ = 0, and b′/b = t ∈ R, and the claim
follows again. If c �= 0, then c′ �= 0, and we have b′/b = c′/c = t ∈ R, and the
claim follows again. The remaining cases are similar.
II. Second, if the distinct parallel lines � and �′ are given by the linear equations
above, the corresponding reduced system of equations has no solution, and we must
have
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ab′ = a′b, b′c �= bc′, a′c �= ac′.

With a reasoning similar to the one above, we obtain that two distinct lines � and
�′ are parallel if and only if, for some 0 �= t ∈ R, we have

a′ = ta, b′ = tb, c′ �= tc.

Combining these two cases, as a byproduct, we see that the relation of being
“parallel” is an equivalence relation on the set of all lines. We call an equivalence
class a pencil of parallel lines. Thus, a pencil consists of all lines that are parallel to
one another. The discussion above also yields that a pencil of parallel lines is given
by the equations ax − by = c, a2 + b2 > 0, where c ∈ R varies through all real
numbers.

As another application, we now show that the Axiom of Parallelism or Playfair
Axiom (equivalent to Postulate 5 of Euclid as in the epitaph of this chapter) holds:
Given a line � and a point P0 not on the line, there exists a unique line �′ that
contains the point P0 and is parallel to �.

History
The Greek philosopher Proclus Lycaeus (412–485), in his commentary about Euclid’s Proposition
31 in Book 1, states what is now named after the Scottish mathematician John Playfair (1748–
1819), the Playfair Axiom. The critical part of the axiom is unicity. In his Elements of Geometry
(published in 1795), Playfair himself stated this part of the axiom as “Two intersecting straight
lines cannot be both parallel to the same straight line.” Playfair acknowledged that he borrowed
this from the same statement made ten years earlier by the English mathematician and clergyman
William Ludlam (1680–1728).

Let � be given by ax − by = c and P0 = (x0, y0). Since P0 /∈ �, we have
ax0 − by0 �= c. We define the line �′ by ax − by = ax0 − by0. By construction,
P0 ∈ �′, and, by the above, � and �′ are parallel. Existence follows.

For unicity, let �′ and �′′ be two lines parallel to � and containing P0. Since
being parallel is an equivalence relation, �′ and �′′ are parallel. Since they have the
common point P0, they must be equal. Unicity follows.

The Point-Line Postulate of Birkhoff asserts the existence and uniqueness of a
line containing two distinct points. We now show that this postulate holds in our
model R2.

Given two distinct points P0 = (x0, y0) and P1 = (x1, y1), an equation of a line
containing these points is given by

(y1 − y0)x − (x1 − x0)y = x0 y1 − x1 y0.

Indeed, simple substitution shows that the coordinates of P0 and P1 both satisfy
this equation. In addition, this equation is clearly linear with a = y1 − y0 and b =
x1−x0 and c = x0 y1−x1 y0, and we also have a2+b2 = (x1−x0)

2+(y1− y0)
2 > 0

(as P0 �= P1). We conclude that this is an equation of a line containing the given
points P0 and P1.
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Unicity is clear since we have proved that two lines that have at least two common
points must coincide.

The Point-Line Postulate follows.

Remark The equation above for the line containing two points P0 = (x0, y0) and
P1 = (x1, y1) can be written in the following compact form:

(x0 − x)(y − y1)− (x − x1)(y0 − y) = 0.

Although we will not need it in the future, we note that, with the variable point
Q = (x, y), the left-hand side is the (signed) area of the parallelogram with vertices
at the origin, P0 − Q, Q − P1, and P0 − P1. It expresses the fact that Q is on the
line containing the points P0 and P1 if and only if the parallelogram is degenerate
(has area zero), that is, its four vertices are collinear.

To derive the Postulate of Line Measure, we introduce the affine (or convex)
parametrization for a line.

Assume that the line � contains two distinct points P0 = (x0, y0) and P1 =
(x1, y1). For t ∈ R, we define the point

Pt = (1− t)P0 + t P1 = ((1− t)x0 + t x1, (1− t)y0 + t y1).

We claim that � = {Pt | t ∈ R}. The indeterminate t ∈ R is called an affine
parameter of the line �.

First, for t ∈ R, we have Pt ∈ � since

(y1 − y0) ((1− t)x0 + t x1)− (x1 − x0) ((1− t)y0 + t y1)

= (1− t) ((y1 − y0)x0 − (x1 − x0)y0)+ t ((y1 − y0)x1 − (x1 − x0)y1)

= (1− t)(x0 y1 − x1 y0)+ t (x0 y1 − x1 y0) = x0 y1 − x1 y0.

We need to show the converse. If x0 �= x1, then we let t = (x − x0)/(x1 − x0),
or equivalently, x = (1 − t)x0 + t x1. Substituting this into the equation of the
line, a simple computation gives y = (1 − t)y0 + t y1. If y0 �= y1, then we let
t = (y − y0)/(y1 − y0), or equivalently, y = (1− t)y0 + t y1. Substituting this into
the equation of the line again, we obtain x = (1− t)x0+ t x1. The converse follows.

In the Birkhoff plane, the concept of betweenness and the derived concepts of a
line segment and half-line are defined in terms of the distance (yet to be introduced
here). We now adopt a different definition for betweenness and will show later that
this definition coincides with Birkhoff’s definition (in terms of the distance).

Given three points A, B, C , we say that C is between A and B, written as A ∗
C ∗ B, if, setting A = P0 and B = P1, we have C = Pt for some 0 < t < 1.

With this, we define the line segment with end-points A and B by

[A, B] = {Pt | 0 ≤ t ≤ 1}, A = P0, B = P1.
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In particular, the line segment [A, B] is part of the line � that contains the points A
and B.

Finally, we claim that the half-line �′ defined by two distinct points O (the end-
point of �′) and A ∈ �′ is given by

�′ = {Pt | t ≥ 0}, O = P0, A = P1.

Arguing by contradiction, we need to see for what points B = Pt , t ∈ R, (on the
line � containing �′) is the point O between A and B. This condition holds if, for
some 0 < s < 1, s ∈ R, we have

O = (1− s)A + s B = (1− s)P1 + s Pt

= (1− s)P1 + s((1− t)P0 + t P1)

= s(1− t)P0 + (1− s(1− t))P1.

Since O = P0, this gives s(1 − t) = 1, or equivalently, t = 1 − 1/s. This shows
that 0 < s < 1 if and only if t < 0. The claim follows.

Exercises

5.2.1. A triangular array of points is given by T = {(a, b) ∈ N0 × N0 | 0 ≤ b ≤
a, a+b ≤ 6, a+b even}. How many non-degenerate triangles can be formed
with vertices chosen as points of T ?

5.2.2. Show that if a, b : N0 → R are arithmetic sequences with differences d and
e, then the points (an, bn) ∈ R

2, n ∈ N0, are on the same line in R
2.

5.2.3. Given two parallel lines by the equations y = mx + b1 and y = mx + b2,
show that the distance (the length of a perpendicular line segment with end-
points on each) is equal to

|b1 − b2|√
m2 + 1

.

5.2.4. Let A = ⋃r∈[0,1][(r, 0), (0, 1 − r)], the union of all line segments (in the
first quadrant I of R2) with end-points (r, 0) and (0, 1− r), r ∈ [0, 1]. Show
that A is given by the inequality

√
x +√y ≤ 1, (x, y) ∈ I.

5.3 The Cartesian Distance

We now introduce the Cartesian distance d : R2 → R as follows: Given two points
P0 = (x0, y0) and P1 = (x1, y1), we define
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d(P0, P1) =
√

(x0 − x1)2 + (y0 − y1)2.

Example 5.3.1 As a simple application of the Cartesian distance formula, we ask
the following question: What kind of numbers can arise as the distance between two
points A and B in R

2 whose coordinates are integers?
Letting P0 = (x0, y0) and P1 = (x1, y1), our assumption is x0, x1, y0, y1 ∈ Z.

In particular, a = x0 − x1 and b = y0 − y1 are also integers. Using the Cartesian
distance formula, the problem can be reformulated as follows: Given two integers
a, b ∈ Z, what kind of number is

√
a2 + b2?

Since a2 + b2 is a natural number (discarding the case when a = b = 0, that
is, when the two points P0 and P1 coincide), we know from our earlier study that√

a2 + b2 is an irrational if and only if a2+b2 is not a square, that is, there does not
exist c ∈ N satisfying a2 + b2 = c2. Thus, we see that

√
a2 + b2 is either irrational

or a non-negative integer c satisfying a2 + b2 = c2. A triple (a, b, c), a, b, c ∈ N,
satisfying a2 + b2 = c2 is called Pythagorean triple, and we will study them in
Section 5.7. Note, in particular, the interesting consequence that a (genuine) positive
fraction (with non-zero denominator) cannot be the distance between two points
with integral coordinates.

Before getting into the detailed study of the distance, we show that the Postulate
of Line Measure holds in our model R2.

We let a line � be given by two of its (distinct) points P0 = (x0, y0) and P1 =
(x1, y1), and let c : �→ R, c(Pt ) = t , t ∈ R, be the corresponding affine coordinate
function. For s, t ∈ R, we calculate the distance d(Ps, Pt ) as follows:

d(Ps, Pt ) =
√

((t − s)(x0 − x1))2 + ((t − s)(y0 − y1))2 = |t − s|d(P0, P1).

For s = 0, this gives d(P0, Pt ) = |t |d(P0, P1), t ∈ R. We now let t0 =
d(P0, P1) > 0, discard the old P1, and replace it with the new P̄1 = P1/t0 to obtain
a new affine parametrization c̄� of the line � with P̄0 = P0 and the new P̄1(= P1/t0).
With respect to this new parametrization, we have d(P̄0, P̄1) = d(P0, P1/t0) =
d(P0, P1)/t0 = 1. With this, by the computation above, we have d(P̄s, P̄t ) = |t−s|,
s, t ∈ R. Finally, we set c̄�(P̄t ) = t , t ∈ R. Clearly, c̄� is a metric coordinate
function since |c̄�(P̄t ) − c̄�(P̄s)| = |t − s| = d(P̄s, P̄t ), s, t ∈ R. The Postulate of
Line Measure follows.

We now turn to the properties of the Cartesian distance d:

1. Non-negativity: d(P0, P1) ≥ 0 for all P0, P1 ∈ R
2, and d(P0, P1) = 0 if and

only if P0 = P1.
2. Symmetry: d(P0, P1) = d(P1, P0) for all P0, P1 ∈ R

2.
3. (Strict) Triangle Inequality: d(P0, P1) ≤ d(P0, Q) + d(Q, P1) for all

P0, P1, Q ∈ R
2. The triangle inequality is strict in the sense that equality

holds if and only if Q ∈ [P0, P1].
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Remark Strictness of the triangle inequality above (the second statement in 3)
shows that our definition of betweenness is equivalent to Birkhoff’s.

Non-negativity and symmetry follow from the Postulate of Line Measure (as
noted above). We only need to show the triangle inequality.

We let P0 = (x0, y0), P1 = (x1, y1), and Q = (x2, y2) and denote a = x0 − x2,
b = x2 − x1, and c = y0 − y2, d = y2 − y1, so that, we have a + b = x0 − x1 and
c + d = y0 − y1.

For the triangle inequality, we need to show

√
(a + b)2 + (c + d)2 ≤

√
a2 + c2 +

√
b2 + d2.

Squaring both sides, we have

(a + b)2 + (c + d)2 ≤ a2 + b2 + c2 + d2 + 2
√

a2 + c2
√

b2 + d2.

Expanding and simplifying, we obtain

ab + cd ≤
√

a2 + c2
√

b2 + d2.

Squaring both sides again, we arrive at the Cauchy–Schwarz inequality:

(ab + cd)2 ≤ (a2 + c2)(b2 + d2).

Since the steps that we made are reversible, we obtain that the triangle inequality
is equivalent to the Cauchy–Schwarz inequality above.

The latter, however, is a direct consequence of the identity

(ab + cd)2 + (ad − bc)2 = (a2 + c2)(b2 + d2),

which can be verified by expanding all parentheses. (On the left-hand side, the
“hybrid terms” abcd cancel, and the “biquadratic terms” a2b2, etc. on both sides
are the same.)

Thus, the Cauchy–Schwarz inequality and thereby the triangle inequality follow.

Remark The identity above is a special case of Brahmagupta’s identity (d = −1)
discussed in Section 2.1. Note also that, for a, b, c, d ∈ N, this identity gives the
following interesting fact: If m, n ∈ N are sums of squares of integers, then so is the
product m · n.

Finally, we now turn to the proof of strictness of the triangle inequality: For
P0, P1, Q ∈ R, we have Q ∈ [P0, P1] if and only if d(P0, P1) = d(P0, Q) +
d(Q, P1).

We use the notations as above: P0 = (x0, y0), P1 = (x1, y1), and Q = (x2, y2).
For the “if” part, assuming that equality holds in the triangle inequality, and thereby
in the Cauchy–Schwarz inequality, the identity above implies
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ad − bc = (x0 − x2)(y2 − y1)− (x2 − x1)(y0 − y2) = 0.

As in the remark (for x = x2 and y = y2) before the proof of the Postulate of Line
Measure (Section 5.2), this means that Q is on the line � containing the points P0
and P1. Let c� : � → R be the affine coordinate function associated with P0 and
P1. Since Q ∈ �, we have Q = Pt for some t ∈ R. With this, we have d(P0, Q) =
d(P0, Pt ) = |t |d(P0, P1) and d(Q, P1) = d(Pt , P1) = |1 − t |d(P0, P1). Hence
|t | + |1− t | = 1 holds. This means that 0 < t < 1 so that Q = Pt ∈ [P0, P1]. The
claim follows.

The “only if” part is obvious since Q ∈ [P0, P1] implies Q = Pt for some
0 ≤ t ≤ 1, and thus d(P0, Q)+ d(Q, P1) = d(P0, Pt )+ d(Pt , P1) = td(P0, P1)+
(1− t)d(P0, P1) = d(P0, P1).

Example 5.3.2 Given A, B ∈ R
2, the midpoint between A and B is a point M ∈

R
2 such that d(A, M) = d(B, M) = d(A, B)/2. By the above, the midpoint is

unique, and it is given by M = (1/2)A + (1/2)B. In terms of an affine parameter
with A = P0 and B = P1, we have M = P1/2.

The considerations above lead to the important concept of orientation in our
model R2. We have seen above that if P0 = (x0, y0), P1 = (x1, y1), and P2 =
(x2, y2)(= Q) are three non-collinear points, then12

ω(P0, P1, P2) = (x2 − x0)(y2 − y1)− (x2 − x1)(y2 − y0) �= 0.

If ω(P0, P1, P2) > 0, then we say that the ordered triple (P0, P1, P2) is positively
oriented; otherwise (ω(P0, P1, P2) < 0), we say that (P0, P1, P2) is negatively
oriented. Clearly, if (P0, P1, P2) is positively oriented, then so are the triples
(P1, P2, P0) and (P2, P0, P1); and any other triples, such as (P0, P2, P1), are
negatively oriented.

The origin of our coordinate system in R
2, a point in the positive first axis, and a

point in the positive second axis (in this order) form a positively oriented triple.

Remark We usually list the vertices of a non-degenerate triangle 
[A, B, C] such
that (A, B, C) is positively oriented, ω(A, B, C) > 0 (that is, they correspond to
the uppercase letters of the English alphabet in increasing order).

Exercise

5.3.1. Let Pn , 3 ≤ n ∈ N, be the perimeter of a regular n-sided polygon such that
its sides are tangent to a given circle. Show that the sequence (P2n )2≤n∈N is
strictly decreasing.

12We changed the sign to match with the customary positive orientation of R2.
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5.4 The Triangle Inequality

The triangle inequality gets its name from its application to the side lengths of
a triangle 
[A, B, C]. We denote the side lengths as follows: a = d(B, C),
b = d(C, A), and c = d(A, B). Then, for a non-degenerate triangle, the triangle
inequality states the following three inequalities:

a < b + c, b < c + a, c < a + b.

These inequalities are difficult to work with. Introducing, however, the new
indeterminates

u = b + c − a

2
, v = c + a − b

2
, w = a + b − c

2
,

the triangle inequalities simply translate into u, v, w > 0. The system above can
easily be inverted to obtain a = v+w, b = w+u, c = u+v. We will give a simple
geometric interpretation of this in the next section.

Remark This substitution is often termed as the “Ravi Substitution.” It is an old
problem solving strategy.13

In the applications, we need a simple but fundamental inequality as follows.

Example 5.4.1 For all x, y ∈ R, we have 4xy ≤ (x+ y)2. Moreover, equality holds
if and only if x = y.

Indeed, expanding and simplifying, the inequality gives 0 ≤ x2 − 2xy + y2,
or equivalently, 0 ≤ (x − y)2. Since the steps are reversible, the stated inequality
follows. Note that equality holds if and only if x = y.

The geometric mean of two non-negative numbers 0 ≤ x, y ∈ R is defined as√
xy, while the arithmetic mean is (x + y)/2. For x, y ≥ 0, taking the square root

on both sides of the inequality in the example above, we obtain

√
xy ≤ x + y

2
.

This asserts that the geometric mean is always less than or equal to the arithmetic
mean. It is usually called the AM-GM inequality. This, and its extensions to several
variables, will play a paramount importance later.

Remark Let x, y > 0, and assume that they appear (anywhere) in a geometric
sequence with a middle term between them. Then this middle term is equal to the
geometric mean

√
xy. Indeed, in the geometric sequence x, z, y, the consecutive

ratios are z/x = y/z. Thus, we have z2 = xy, so that z = √xy.

13See, for example, Engel, A., Problem solving strategies, Springer, Berlin, 1997.
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There are literally hundreds of problems in mathematical contests that reduce to
a version of the AM-GM inequality. Herewith we give a few.

Example 5.4.2 For any 0 < u, v, w ∈ R, we have

(u + v)(v + w)(w + u) ≥ 8uvw.

Indeed, by the AM-GM inequality, we have u + v ≥ 2
√

uv. Applying this to all
pairs in u, v, w, we obtain

(u + v)(v + w)(w + u) ≥ 8
√

uv
√

vw
√

wu = 8uvw.

The inequality follows.

The inequality just derived implies that, for any 0 < a, b, c ∈ R, we have

abc ≥ (a + b − c)(b + c − a)(c + a − b).

To show this, first note that only at most one of the factors on the right-hand
side can be negative or zero. Indeed, if a + b − c ≤ 0 and b + c − a ≤ 0, say,
then, adding, we obtain 2b ≤ 0, a contradiction. In addition, if exactly one of the
factors on the right-hand side is negative or zero, then we are done since the left-
hand side is positive. Thus, we may assume that all factors in the right-had side are
positive. This means that a, b, c can be thought of as the side lengths of a triangle.
Applying the substitution above, our inequality is transformed into the inequality of
Example 5.4.2.

Example 5.4.3 For 0 < u, v, w ∈ R, we have

√
2(
√

u +√v +√w) ≤ √u + v +√v + w +√w + u, u, v, w > 0.

Indeed, squaring both sides and simplifying, this inequality reduces to

2(
√

uv +√vw +√wu)

≤ √(u + v)(v + w)+√(v + w)(w + u)+√(w + u)(u + v).

We now claim that

√
uv +√vw ≤ √(u + v)(v + w).

Once this is proved, performing the cyclic permutation u �→ v �→ w �→ u twice,
and adding the corresponding inequalities, our inequality follows. Thus, it remains
to show this last inequality. Squaring again and simplifying, we have 2

√
uv2w ≤

uw + v2. But this is just another form of the AM-GM inequality.
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Note that, by the substitution above, if a, b, c are the side lengths of a triangle,
the inequality of Example 5.4.3 above gives14

√
a + b − c +√b + c − a +√c + a − b ≤ √a +√b +√c.

Example 5.4.4 Show that, for 0 ≤ x1, . . . , xn ∈ R, 2 ≤ n ∈ N, we have

∑
1≤i< j≤n

xi x j ·
n∑

k=1

x2
k ≤

1

8

(
n∑

k=1

xk

)4

.

Indeed, using the AM-GM inequality as in Example 5.4.1, we calculate

(
n∑

k=1

xk

)4

=
⎛
⎝ n∑

k=1

x2
k + 2

∑
1≤i< j≤n

xi x j

⎞
⎠

2

≥ 4

(
n∑

k=1

x2
k

)⎛
⎝2

∑
1≤i< j≤n

xi x j

⎞
⎠ = 8

∑
1≤i< j≤n

xi x j ·
n∑

k=1

x2
k

The inequality now follows.

We complete this cadre of examples by one that shows how the AM-GM
inequality can sometimes be used to solve a system of non-linear equations.

Example 5.4.5 Solve the following system of equations for x, y, z ∈ R:

x + y = 2, xy − z2 = 1.

First, xy = 1+ z2 ≥ 1, so that, by the first equality, we obviously have x, y > 0.
Now, the AM-GM inequality gives 2 = x + y ≥ 2

√
xy. Hence xy ≤ 1. Combining

this with the previous inequality, we obtain xy = 1, and consequently x = y = 1.
Finally, the second equality gives z = 0.

We finish this section by another application of the AM-GM inequality: The
Babylonian Method on how to approximate the square root of a natural number
a ∈ N by rational numbers.

We assume that a ∈ N is not a perfect square. We let 0 < q0 ∈ Q and define the
sequence (qn)n∈N0 inductively by

qn+1 = 1

2

(
qn + a

qn

)
, n ≥ 0.

14This was a problem in the Asian Pacific Mathematical Competition, 1996.
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Remark We will give a geometric interpretation of this formula in Section 8.2. This
can be substantially generalized to what is known as Newton’s Method, and it goes
far beyond our rational approximations of the square root of a natural number. This
particular case was also known to the ancient Babylonians, and this is why it carries
the name “Babylonian Method.”

Clearly, (qn)n∈N0 is a sequence of rational numbers. We claim that it is decreasing
from the first term q1 onward, and limn→∞ qn = √a.

By our initial choice, we have q0 > 0. Assuming qn > 0, n ∈ N0, a quick look at
the inductive formula above gives qn+1 > 0. It now follows from Peano’s Principle
of Induction that qn > 0 for all n ∈ N0.
We can actually say more. The AM-GM inequality gives

0 < a = qn · a

qn
<

1

4

(
qn + a

qn

)2

= q2
n+1.

Note the sharp inequality in the middle as qn �= a/qn (since otherwise we would
have q2

n = a, and a would be a perfect square). We thus obtain q2
n+1 > a for all

n ∈ N0.
Rearranging this last inequality, we have

qn+1 >
1

2

(
qn+1 + a

qn+1

)
= qn+2, n ∈ N0.

We see that the sequence (qn)n∈N is strictly decreasing and bounded from below.
By (Cauchy) completeness of R, we have limn→∞ qn = r ∈ R, and, in addition,
we also have r2 ≥ a. Letting n → ∞ in the inductive definition of the sequence
(qn)n∈N above, we obtain

r = 1

2

(
r + a

r

)
.

Rearranging, we obtain r2 = a. This finally gives15 r = √a.
To find the rate of convergence, we introduce the relative error

δn = qn√
a
− 1 > −1, n ∈ N0.

Clearly, δn �= 0 since
√

a is irrational. We rewrite this as qn = √a(δn + 1), n ∈ N0.
We now claim that the following inductive relation holds for the relative error:

δn+1 = δ2
n

2(δn + 1)
, n ∈ N0.

15Note that this can also serve as a definition of
√

a as the equivalence class of the rational Cauchy
sequence (qn)n∈N.
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Note that this implies δn > 0 for n ∈ N. (The initial δ0 may be negative.) We now
calculate

δn+1 = qn+1√
a
− 1 = qn + a/qn

2
√

a
− 1 = q2

n + a

2
√

aqn
− 1

= a(1+ δn)
2 + a

2
√

a
√

a(1+ δ2
n)
− 1 = (1+ δn)2 + 1

2(δn + 1)
− 1 = δ2

n

2(δn + 1)
.

The inductive formula for the relative error above follows.
Since δn > 0 for n ∈ N, this implies

δn+1 = δn

δn + 1
· δn

2
≤ δn

2
and δn+1 = 1

δn + 1
· δ

2
n

2
≤ δ2

n

2
.

(The first estimate is better than the second for δn > 1, which may happen for some
initial values of the indices n ∈ N.) Putting these together, we obtain

0 < δn+1 ≤ min

(
δn

2
,
δ2

n

2

)
, n ∈ N.

The first estimate implies δ2 ≤ δ1/2 (n = 1), δ3 ≤ δ2/2 ≤ δ1/22 (n = 2), δ4 ≤
δ3/2 ≤ δ1/23 (n = 3), etc. In general, we have 0 < δn+1 ≤ δ1/2n , n ∈ N. In
particular, we obtain limn→∞ δn = 0. The Babylonian approximation method is
established.

The following table depicts the first 5 iterates of the Babylonian Method for
√

2
starting with q0 = 1:

n qn δn

0 1 −2.92893218 · 10−1

1 3
2 = 1.5 6.06601778 · 10−2

2 17
12 = 1.416 . . . 1.73460668 · 10−3

3 577
408 = 1.4142156862745098039 . . . 1.50182509 · 10−6

4 665857
470832 ≈ 1.414213562374689910626296 1.12773761 · 10−12

5 886731088897
627013566048 ≈ 1.414213562373095048802 6.35896059 · 10−25

Exercise

5.4.1. A triangle with side lengths that form three consecutive terms in a geometric
sequence exists if and only if the ratio q of the geometric sequence satisfies
1/τ < q < τ , where τ is the golden number.
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5.5 Lines and Circles

We now return to our Cartesian distance d and study its invariance properties under
some transformations (self-maps) of the plane R

2.
For W ∈ R

2, we define the translation by W as the map TW : R2 → R
2 given

by TW (P) = P +W , P ∈ R
2. In coordinates, if W = (u, v) ∈ R

2, then we have

TW (P) = P +W = (x + u, y + v), P = (x, y) ∈ R
2.

The Cartesian distance d is invariant (unchanged) under translations; that is, for
W ∈ R

2, we have

d(TW (P0), TW (P1)) = d(P0, P1), P0, P1 ∈ R
2.

Indeed, this is obvious since, in the definition of the Cartesian distance, we take
differences of the respective coordinates of P0 and P1, and thus the coordinates u
and v of W cancel.

Another type of transformation of the plane R
2 that we will utilize is the

(positive) quarter-turn. We define the (positive) quarter-turn S0 : R
2 → R

2

about the origin by S0(P) = S0(x, y) = (−y, x), P = (x, y) ∈ R
2. Its square

S2
0 = S0 ◦ S0 : R2 → R

2 (by composition) is the negative of the identity − idR2 ,
the half-turn about the origin, given by S2

0(x, y) = (−x,−y), P = (x, y) ∈ R
2.

The (positive) quarter-turn about any point O ∈ R
2 is defined by the composition

SO = TO ◦ S0 ◦ T−O . Once again, the square S2
O is the half-turn about the point O .

We call O the center of SO .
Once again, it follows easily that the Cartesian distance d is invariant under a

quarter-turn about any center.
These transformations are affine in the sense that they map lines to lines

preserving the respective affine coordinate functions. (This follows immediately
from the strict triangle inequality or by direct computation.) In particular, for
P0, P1 ∈ R

2, we have TW ([P0, P1]) = [TW (P0), TW (P1)], W ∈ R
2, and

SO([P0, P1]) = [SO(P0), SO(P1)], O ∈ R
2. In addition, these transformations

preserve the relation being parallel, that is, they send pencils of parallel lines to
pencils of parallel lines.

A translation sends a line to a parallel line. Indeed, if a line � is given by the
equation ax − by = c, a2 + b2 > 0, then a translation TW with W = (u, v) ∈ R

2

sends � into a line with equation a(x − u) − b(y − v) = c, that is, ax − by =
c + au − bv.

A half-turn sends a line to a parallel line. Indeed, since translations do the same
(by the above), it is enough to show this for the half-turn about the origin, the
negative of the identity map. Now, if a line � is given by the equation ax − by = c,
a2 + b2 > 0, then the half-turn about the origin sends � to the line with equation
−ax + by = c, that is, ax − by = −c.
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Finally note that these transformations preserve ω, and therefore they are
orientation preserving in the sense that if (P0, P1, P2) is a positively oriented
triple, then so are the corresponding transformed triples.

Remark The adjective “positive” for the quarter-turn SO about a point O ∈ R
2 is

due to the fact that, for any P ∈ R
2, P �= O , the triple (O, P, SO(P)) is positively

oriented. Indeed, since translations are orientation preserving, it is enough to show
this for the quarter-turn about the origin. Now, if P = (x, y), x2 + y2 > 0, then we
have ω((0, 0), (x, y), (−y, x)) = x2 + y2 > 0.

We say that two lines are perpendicular if one is obtained from the other by
a quarter-turn. As simple computation shows, if a line � is given by the equation
ax−by = c, a2+b2 > 0, then, for O = (u, v) ∈ R

2, the transformed perpendicular
line SO(�) is given by the equation bx + ay = c + a(v − u)+ b(v + u).

On the other hand, as noted above, a pencil of parallel lines is given by the
equation ax − by = c, where the constant c ∈ R varies over all real numbers.
It follows that the relation of being perpendicular depends only on the pencils of
parallel lines that each of the two perpendicular lines is participating in. In other
words, if two lines are perpendicular, then so are any two lines in the respective
pencils of parallel lines.

Since every pencil of parallel lines contains a unique representative through
the origin, and S2

0 = − id, it also follows that the relation being perpendicular is
symmetric.

Finally, if two lines � and �′ are intersected by another line perpendicular to both,
then � and �′ are parallel.

Example 5.5.1 (Perpendicular Bisector) Determine the set of points that are
equidistant from two given distinct points P0 and P1 on the plane R

2.
I. Algebraic Solution. Let P0 = (x0, y0) and P1 = (x1, y1), P0 �= P1. A variable
point P = (x, y) is equidistant from P0 and P1 if and only if d(P, P0) = d(P, P1).
Using the distance formula, after squaring, we calculate

(x − x0)
2 + (y − y0)

2 = (x − x1)
2 + (y − y1)

2

2(x0 − x1)x + 2(y0 − y1)y = x2
0 − x2

1 + y2
0 − y2

1

2(x0 − x1)x + 2(y0 − y1)y = (x0 − x1)(x0 + x1)+ (y0 − y1)(y0 + y1).

A final rearrangement and grouping the multiples of (x0 − x1) and (y0 − y1) give
the symmetric form

(x1 − x0)

(
x − x0 + x1

2

)
+ (y1 − y0)

(
y − y0 + y1

2

)
= 0.

First, this equation is linear (since (x0 − x1)
2 + (y0 − y1)

2 > 0), and hence it
must represent a line. Second, it is also clear (by substituting x = (x0 + x1)/2 and
y = (y0+ y1)/2) that this line contains the midpoint M of the line segment [P0, P1]
(Example 5.3.2) since
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M =
(

x0 + x1

2
,

y0 + y1

2

)
.

Finally, as shown above, an equation of the line containing the points P0 = (x0, y0)

and P1 = (x1, y1) is given by

(y1 − y0)x − (x1 − x0)y = x0 y1 − x1 y0.

Comparing the equations of these lines, we see that they are perpendicular.
We conclude that the set of points equidistant from two distinct points P0 and

P1 is the perpendicular bisector of the line segment [P0, P1] that contains their
midpoint M . As a byproduct, we also recover the midpoint formula for M above
(Example 5.3.2 again).
II. Geometric Solution After Euclid.16 Let P be a point such that d(P, P0) =
d(P, P1). Then the triangle 
[P, P0, P1] is isosceles. Thus, by the Theorem on
Isosceles Triangles in Euclid’s Elements (Book I, Proposition 5), the angles at P0
and P1 are congruent. Consider the midpoint M of the line segment [P0, P1]. Then
the sub-triangles 
[P, P0, M] and 
[P, P1, M] are congruent.17 Thus, these sub-
triangles must have right angle at M . We obtain that P is on the perpendicular
bisector of the line segment [P0, P1].
History
In the discussion above we used the Theorem on Isosceles Triangles: The angles opposite to
the equal sides of an isosceles triangle are equal. It is also called the pons asinorum, “bridge of
donkeys” in Latin. It is either a somewhat derogatory phrase pointing to and challenging the reader
to tackle this first non-trivial proposition in the Elements and pass this bridge to get to harder ones,
or the isosceles triangle depicts an actual pointed bridge that only a brave and sure-footed donkey
can pass.

We now introduce another fundamental concept of Greek geometry, the concept
of a circle. Given a point O ∈ R

2 and a positive real number 0 < r ∈ R, we define
the circle of radius r and center at O as the set18

SO,r = {P ∈ R
2 | d(P, O) = r}.

Letting O = (u, v) and P = (x, y), the Cartesian distance formula gives the
equation of the circle SO,r as

(x − u)2 + (y − v)2 = r2,

16This geometric solution can be reworded to become a simple consequence of Birkhoff’s
Postulates of Angle Measure and Similarity. The validity of these postulates in our model will
be proved in Section 5.7. Hence, for a change, we give here a proof based on Euclid’s Elements.
17Warning: Congruence of the triangles 
[P, P0, M] and 
[P, P1, M] also follows from the
observation that the lengths of the three pairs of sides of these triangles are equal, but in the
Elements, this occurs after Proposition 5 of Book I.
18Compare this with primitive #15 in the Elements as stated at the beginning of this chapter.
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where we squared both sides to eliminate the square root. If the center of the circle
is the origin 0, then we write Sr = S0,r . Similarly, if the circle has a unit radius
(r = 1), then we write SO = SO,1. Finally, S denotes the unit radius circle with
center at the origin.

As a simple application of the perpendicular bisector and the concept of a circle,
consider three distinct points A, B, C ∈ R

2 on the plane. We ask the following
question: Is there any point on the plane which is equidistant from all these three
points?

If A, B, C are collinear, then the answer is no. Indeed, the set of points
equidistant from A and B is the perpendicular bisector of the line segment [A, B],
and the set of points equidistant from B and C is the perpendicular bisector of
[B, C]. These bisectors are distinct and perpendicular to the line that passes through
A, B, C . Thus, they are parallel and have no common intersection.

Assume now that A, B, C are not collinear. Consider the perpendicular bisectors
�a , �b, �c of the line segments [B, C], [C, A], [A, B]. By the previous step, each pair
of bisectors intersects in a point. We claim that these (three) points are the same.
Indeed if O is the common intersection of �a and �b, then d(O, B) = d(O, C)

and d(O, C) = d(O, A). Therefore, d(O, A) = d(O, B) so that O is equidistant
from A and B, and hence it is on the bisector �c. We obtain that if A, B, C are not
collinear, then there is a unique point equidistant from all these three points.

This conclusion can be put into a familiar framework if we consider the points
A, B, C , the vertices of the triangle 
[A, B, C]. Since d(O, A) = d(O, B) =
d(O, C) = R, say, we see that the circle with center O and radius R contains the
points A, B, C . This is the unique circle circumscribed about the triangle. We call
this the circumcircle and its radius the circumradius R of the triangle.

We now return to the main line and study the possible configurations of a circle
and a line. We claim that there are three possibilities; namely, the circle and the line
may be disjoint, meet at one point, or meet at two points. When a circle meets a line
at exactly one point, we say that the line is tangent to the circle. A line is secant to
a circle if they intersect at exactly two points.19

Discarding the case when the circle and the line are disjoint, we assume that the
circle SO,r and the line � intersect at least in one point P0 ∈ SO,r ∩�. For simplicity,
we translate the entire configuration such that the center of the circle is at the origin.
The equation of the circle Sr above reduces to

x2 + y2 = r2.

We let P0 = (x0, y0), so that x2
0 + y2

0 = r2. As usual, we write the equation of the
line � through P0 as

ax − by = ax0 − by0, a2 + b2 > 0.

19The words “tangent” and “secant” are derived from “tangere” and “secare,” respectively, which
in Latin mean “to touch” and “to cut.”
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After simplification and factoring, we obtain that any intersection point P =
(x, y) ∈ Sr ∩ � satisfies the system of equations

(x − x0)(x + x0) + (y − y0)(y + y0) = 0

a(x − x0) = b(y − y0).

Assuming P �= P0, that is, discarding the solution x = x0 and y = y0, we obtain
b(x + x0)+ a(y + y0) = 0. A simple computation now gives

x = x0 − 2b
bx0 + ay0

a2 + b2
and y = y0 − 2a

bx0 + ay0

a2 + b2
.

This is a solution different from x = x0 and y = y0 (which has been discarded) if
and only if bx0 + ay0 �= 0.

Turning the question around, we see that the circle Sr and the line � have a unique
intersection point P0 = (x0, y0) if and only if bx0 + ay0 = 0. By the discussion at
the beginning of this section, bx + ay = 0 is an equation of a line perpendicular
to the tangent line �, and the latter has the equation ax − by = ax0 − by0.

As a final note, we claim that the entire tangent line � with the exception of the
point of tangency P0 lies in the exterior of the circle Sr .

Indeed, letting Pt = (x0 + tb, y0 + at), t ∈ R, the equation of the tangent line �

in the form a(x − x0) = b(y − y0) above clearly shows that � = {Pt | t ∈ R}. We
now calculate the distance as

d(Pt , Pt )
2 = (x0 + tb)2 + (y0 + ta)2 = x2

0 + y2
0 + 2t (bx0 + ay0)+ t2(a2 + b2)

= r2 + t2(a2 + b2) ≥ r2

with equality if and only if t = 0, that is, at the point of tangency P0. The claim
follows.

Summarizing, we obtain that through any point P0 of a circle SO,r (with center
O), there is a unique line � that is tangent to SO,r , and it is characterized by the
property that it is perpendicular to the radial line containing P0 and the center O
of the circle. Any other line through P0 is a secant to SO,r , that is, it intersects the
circle in two distinct points. Finally, the entire tangent line lies in the exterior of the
circle SO,r , except the point of tangency P0.

History
The ancient Greek mathematicians elevated the study of geometric configurations to the discipline
of Geometry. These include lines, polygons, circles, parabolas, ellipses, hyperbolas, their metric
properties and mutual relationships, such as tangents, secants, intersections, etc. As noted
previously, the ancient Greeks also created Geometric Algebra, which associated algebraic terms
with geometric objects, such as length, perimeter, area, etc. Algebra as a discipline separate
from Geometry (and Arithmetic) was established by Muhammad ibn Mūsā al-Khwārizmı̄. To a
large extent it was an early theory of equations that studied solutions of linear and quadratic
equations. This theory had different developments by Diophantus of Alexandria and the Indian
mathematician Brahmagupta. Throughout the Middle Ages Arabic scholars raised this discipline
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to new heights. The modern symbolic representation of variables and constants, introduced by
the French mathematician François Viète (Latin Vieta) (1540–1603) and subsequently brought
to perfection by Descartes, put algebra on a solid foundation. But it was the introduction and
systematic use of coordinate systems that revolutionized mathematics by establishing a bridge
between geometry and algebra.

As an application, we introduce the concept of distance of a point from a line.
Let O be a point and � a line. By definition, the distance of O from � is

d(O, �) = inf{d(O, P) | P ∈ �}.

If O ∈ �, then d(O, �) = 0. We may therefore assume that O /∈ �.
We claim that there is a unique circle with center at O and with � as a tangent

line to the circle.
Indeed, by what we proved above, this circle is obtained by taking the line �′

through O perpendicular to �, and the radius of the circle is the distance of the
intersection point P0 = � ∩ �′ from the center O .

Since � is tangent to the circle, all the points on � except P0 are in the exterior of
the circle. Thus, the radius of the circle realizes the infimum above, and therefore it
is the distance d(O, �).

To obtain an explicit formula, let � be given by the equation ax − by = c, a2 +
b2 > 0, and let O = (u, v) ∈ R

2. The equation of �′ through O and perpendicular
to � is given by bx + ay = bu + av. Putting these two equations together, a short
computation gives the intersection point P0 = � ∩ �′ as

P0 =
(

b(bu + av)+ ac

a2 + b2
,

a(bu + av)− bc

a2 + b2

)
.

By a short computation, we arrive at the distance of P0 from O = (u, v) as

d(O, �) = |au − bv − c|√
a2 + b2

.

Example 5.5.2 (Angular Bisector) Determine the set of points that are equidistant
from two given distinct lines �0 and �1 on the plane R

2.
If �0 and �1 are parallel, then the set of points equidistant from both lines is the

parallel line midway between �0 and �1.
Assume now that �0 and �1 intersect in a point C . The intersecting lines �0 and

�1 split the plane into four angular sectors. Let P be a point such that d(P, �0) =
d(P, �1). We may assume that P �= C (since C is clearly equidistant from both
lines with zero distance) and also that P is not on any of these two lines. Thus, P is
contained in one of the open angular sectors. Let P0 ∈ �0 and P1 ∈ �1 be such that
d(P, P0) = d(P, �0) = d(P, �1) = d(P, P1). The two right triangles 
[P, P0, C]
and
[P, P1, C] are congruent since they have two equal sides, and they also have a
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Fig. 5.1 The incircle of a
triangle.
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common side.20 Thus their angles at C are equal. We obtain that P is on the bisector
of the angular sector that contains P . We conclude that the set of points equidistant
from two intersecting lines is the pair of perpendicular angular bisectors.

As an application, consider three lines �0, �1, and �2 that are the extensions of the
sides of a (non-degenerate) triangle 
[P0, P1, P2]. This triangle is the intersection
of three angular sectors, one from each vertex (see Figure 5.1). The bisectors
corresponding to each angular sector intersect in a point C . This is the unique point
equidistant from all the three lines. We obtain that C is the center of the unique
inscribed circle touching each line at the points where the distance of C and the
lines are realized. We call this the incircle and its radius the inradius of the triangle.

Remark If 
[A, B, C] is a (non-degenerate) triangle, then its incircle touches each
side of the triangle at a specific point, P ∈ [A, B], Q ∈ [B, C], R ∈ [C, A],
say. Clearly, we have d(A, P) = d(A, R), d(B, P) = d(B, Q), and d(C, Q) =
d(C, R). Denoting these distances by u, v, and w, we obtain the substitution

a = v + w, b = w + u, c = u + v.

This gives the geometric interpretation of the substitution at the beginning of the
previous section.
We now turn to study secant lines. Let P0, P1 ∈ SO,r be two distinct points on
the circle. Once again we translate the entire configuration so that the center of the
circle Sr is at the origin, and thereby it has the equation x2 + y2 = r2. By the strict
triangle inequality, we have d(P0, P1) ≤ d(0, P0)+ d(0, P1) = 2r with equality if
and only if 0 ∈ [P0, P1].

20In this example we assume Birkhoff’s Postulates of Angle Measure and Similarity and, conse-
quently, the Pythagorean Theorem, whose validity, in our model, will be proved in Section 5.7.
This is pedagogically justified since this example is a perfect fit for our present line of argument.
Alternatively, one can also refer here to Euclid’s Elements.
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Letting P0 = (x0, y0), x2
0 + y2

0 = r2, and P1 = (x1, y1), x2
1 + y2

1 = r2, we
calculate

d(P0, P1)
2 = (x0 − x1)

2 + (y0 − y1)
2 = x2

0 + y2
0 + x2

1 + y2
1 − 2x0x1 − 2y0 y1

= 2r2 − 2(x0x1 + y0 y1).

Now recall the affine coordinate function that parametrizes the line through P0
and P1 under which the point Pt = (1 − t)P0 + t P1 corresponds to the parameter
t ∈ R.

Using the result of the previous computation, we have

d(0, Pt )
2 = ((1− t)x0 + t x1)

2 + ((1− t)y0 + t y1)
2

= (1− t)2r2 + t2r2 + 2t (1− t)(x0x1 − y0 y1)

= (1− t)2r2 + t2r2 + t (1− t)(2r2 − d(P0, P1)
2)

= r2 − t (1− t)d(P0, P1)
2.

In particular, we see that, for t ∈ [0, 1], we have d(0, Pt ) ≤ r with equality if
and only if t = 0, 1.

Summarizing, given two distinct points P0 and P1 on a circle SO,r , for t ∈ [0, 1],
we have d(Pt , O) ≤ r (with equality if and only if t = 0, 1), that is, the line segment
[P0, P1] is contained in the interior of the circle SO,r . Similarly, for t /∈ [0, 1], we
have d(Pt , O) > r .

Exercises

5.5.1. Calculate the length of the hypotenuse of the right triangle
[A, B, C] with
right angle at C , where d(A, C) = d(A, M) = 1 and M is the midpoint of
the hypotenuse [A, B].

5.5.2. Use the pons asinorum to prove Thales’ Theorem: If A, B, C are distinct
points on a circle SO,r and O ∈ [A, B] (that is, [A, B] is a diameter), then
� AC B is a right angle. Generalize this to the case when [A, B] is a chord of
the circle, O /∈ [A, B]; the Central Angle Theorem: If C is on the longer
circular arc of SO,r with end-points A, B, then μ( � AO B) = 2μ( � AC B);
and if C is on the shorter circular arc of SO,r with end-points A, B, then
μ( � AO B) = 2(π − μ(� BC A)).

5.5.3. The power pS(P) of a point P ∈ R
2 with respect to a circle S = SO,r is

defined as pS(P) = d(P, O)2 − r2. (Note that the power is zero for points
on the circle, negative for points inside the circle, and positive for points
outside the circle.) (a) Prove the Intersecting Chords Theorem: Let P be
outside S. Show that any line through P that meets S in the points A, B ∈ S;
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Fig. 5.2 An occurrence of
the golden number τ .
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we have pS(P) = d(P, A) · d(P, B). (Note that, for a line tangent to S, the
point of tangency is A = B so that we have pS(P) = d(P, A)2, and the
circle with center at P and radius d(P, A) is orthogonal to S.) (b) Extend
(a) to the case when P is inside S. (c) Let S1 = SO1,r1 and S2 = SO2,r2

be two disjoint circles. Show that the set of points in P ∈ R
2 that have

the same power with respect to S1 and S2 is a line, the so-called radical
line. (d) Generalize the radical line to the case of intersecting circles or two
circles with one inside the other. (e) Prove Monge’s Theorem: Given three
disjoint circles (with non-parallel radical axes), there is a circle orthogonal
to all three.

5.5.4. Let 
[A, B, C] be an equilateral triangle and S the incircle. Let

[A′, B ′, C ′] be an equilateral triangle inscribed in S, that is, A′, B ′, C ′ ∈
S, such that the line extensions of the sides of this triangle pass through the
vertices of 
[A, B, C]; that is, A′ ∈ [B, B ′], B ′ ∈ [C, C ′], C ′ ∈ [A, A′].
Show that the ratio d(A′, C ′)/d(A, C ′) is the golden number τ (see
Figure 5.2).

5.5.5. Given a line segment [A, B] on the plane R
2, determine the set of points

C ∈ R
2 such that the non-degenerate triangle 
[A, B, C] has obtuse angle

at C .
5.5.6. Let A and B be two points on the plane unit distance apart, and 0 < q < 1,

q ∈ R. Show that the set {P ∈ R
2 | d(P, A) = q · d(P, B)} is a circle, and

determine its center and radius (in terms of q).
5.5.7. In a triangle 
[A, B, C], let the angular bisector of the (interior) angle at

the vertex A intersect the opposite side at the point D ∈ [B, C]. Prove the
Angle Bisector Theorem d(A, B)/d(A, C) = d(B, D)/d(C, D).

5.5.8. Consider two parallel chords of a circle S with lengths a and b which are d
distance apart.21 Let a third parallel chord of length c be in the midway of
the first two. Express c in terms of a, b, d.

21Generalization of a problem in the American High School Mathematics Examination, 1995.
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5.5.9. Three circles of common radius 0 < r ∈ R are mutually and externally
tangent. (a) If they are also internally tangent to a larger circle of radius
0 < R ∈ R, then find R/r . (b) Find the perimeter of the triangle whose
sides are tangent to each pair of the three circles.

5.5.10. The vertices of a square of side length 2 are the centers of four circles of
radius 1. Find the radius of the smaller circle externally tangent to these
four circles whose center is the center of the square.

5.5.11. Two tangents are drawn from a point A to a circle of radius 0 < r ∈ R and
center O . Another tangent to the circle meets the two tangent lines at points
B and C such that the triangle 
[A, B, C] is disjoint from the circle. Find
the perimeter of the triangle in terms of d(A, O) and r .

5.5.12. A circle touches all four sides of an isosceles trapezoid. Find the radius
r of the circle in terms of the parallel side lengths (bases) a and c of the
trapezoid.

5.6 Arc Length on the Unit Circle

In this section we make a detailed and rigorous study of the arc length of circular
arcs of a unit radius circle SO with center O ∈ R

2. The material presented
here is technically demanding, and the readers who have only marginal interest in
axiomatic developments may skip it. The results of this section will only be used
for the establishment of the Birkhoff angle measure in the next section and for the
proof of the Law of Cosines in trigonometry discussed in the last chapter of this
book.

Let P0, P1 ∈ SO be distinct points. The secant line through P0 and P1 divides
the circle SO into two circular arcs with end-points P0 and P1. These two circular
arcs can be obtained from the equation of the line through the points P0 = (x0, y0)

and P1 = (x1, y1) by intersecting the circle SO with the two half-planes

(y1 − y0)x − (x1 − x0)y � x0 y1 − x1 y0

defined by the equation of the (common boundary) line.
If d(P0, P1) = 2, then, by the strict triangle inequality, O ∈ [P0, P1], and the two

circular arcs are called semi-circles.22 They are congruent via the half-turn about the
center O . A line through O and perpendicular to the line extension of [P0, P1] splits
these two semi-circles into four quarter-circles. These quarter-circles are permuted
(cyclically) by the quarter-turn SO .

Assume now that d(P0, P1) < 2 so that, by the strict triangle inequality, O /∈
[P0, P1]. Unless stated otherwise, we will always denote by C ⊂ SO the circular
arc,23 which is in the opposite side of the line extension of [P0, P1] to the center O .

22Compare this with definition #18 in the Elements at the beginning of this chapter.
23As we will see below, C is the shorter (arc length) circular arc with end-points P0 and P1.
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Fig. 5.3 Parametrization of a
circular arc.

P1 = Q1

Pt

Qt

P0 = Q0O

The other circular arc24 will be denoted by Cc and will be called the complement
of C. For uniformity, for d(P0, P1) = 2, C (and Cc) will denote either of the semi-
circles with end-points P0 and P1.

Once again, recall the affine coordinate function that parametrizes the line
through P0 and P1 under which the point Pt = (1 − t)P0 + t P1 corresponds to
the parameter t ∈ R.

By the computations at the end of the previous section, we have

d(O, Pt )
2 = 1− t (1− t)d(P0, P1)

2.

For t ∈ [0, 1], we define25

Qt = 1

d(O, Pt )
Pt +

(
1− 1

d(O, Pt )

)
O, Q0 = P0, Q1 = P1.

Clearly, we have d(O, Qt ) = d(O, Pt )/d(O, Pt ) = 1, or equivalently, Qt ∈ SO ,
t ∈ [0, 1] (see Figure 5.3). By the first formula defining the half-planes above, we
see that the points Qt , t ∈ [0, 1], are in the half-plane that does not contain the point
O . This gives

C = {Qt | 0 ≤ t ≤ 1}.

(If Q ∈ C, then [O, Q] and [P0, P1] must intersect in a point Pt , t ∈ [0, 1], say, so
that Q = Qt holds.)

With this preparation, we now define the arc length of C.
A partition of the interval [0, 1] is a finite strictly increasing sequence:

(t0, t1, . . . , tn−1, tn), 0 = t0 < t1 < · · · < tn−1 < tn = 1, n ∈ N.

24The circular arc Cc is not the set-theoretic complement of C with respect to the whole circle SO
because C and Cc overlap in the two common end-points P0 and P1.
25Geometrically, the point Qt ∈ C is obtained from Pt by radial projection from the center O .
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We denote by � the set of all partitions of [0, 1] (for all n ∈ N). A
partition (t0, t1, . . . , tn−1, tn) ∈ � of [0, 1] defines an open polygonal path
of C connecting Q0(= P0) and Q1(= P1) with consecutive vertices Q0 =
Qt0 , Qt1 , . . . , Qtn−1 , Qtn = Q1 ∈ C with union

⋃n
i=1[Qti−1, Qti ]. The length of

a polygonal path is
∑n

i=1 d(Qti−1 , Qti ), the sum of the lengths of the participating
line segments.

We now define the arc length of the circular arc C ⊂ SO by

LC = sup

{
n∑

i=1

d(Qti−1 , Qti )

∣∣∣∣ (t0, t1, . . . , tn−1, tn) ∈ �

}
.

We need to show that the arc length LC is a (finite) real number; that is, the set
of lengths of all polygonal paths of C is bounded above.

Let �0, resp. �1, denote the half-line with end-point O and containing P0, resp.
P1 (For the notations introduced here and below, refer to Figure 5.4.). Let m0, resp.
m1, be the tangent line to C through the point Q0 = P0, resp. Q1 = P1. By the
results of the previous section, m0, resp. m1, is perpendicular to the line extension
of �0, resp. �1. The lines m0 and m1 cannot be parallel since O /∈ [P0, P1]. Let M
be the intersection point of m0 and m1.

We claim that

LC ≤ d(Q0, M)+ d(Q1, M).

Consider a polygonal path
⋃n

i=1[Qti−1, Qti ]with vertices Q0=Qt0, Qt1 , . . . , Qtn−1 ,

Qtn = Q1 ∈ C corresponding to a partition (t0, t1, . . . , tn−1, tn) ∈ � of [0, 1] (see
again Figure 5.4). For i = 0, 1, 2, . . . , n, let hi , resp. ki , be the line through Qti
and parallel to m1, resp. m0. Let hi and m0 meet at the point Ri , i = 0, . . . , n; in
particular, R0 = Q0 and Rn = M . Similarly, let ki and m1 meet at the point Si ,
i = 0, . . . , n; in particular, S0 = M and Sn = Q1. Finally, for i = 1, . . . , n, let hi

and ki−1 meet at the point Ti .
With these notations, by the triangle inequality, we have

d(Qti−1 , Qti ) ≤ d(Qti−1 , Ti )+ d(Qti , Ti ), i = 1, . . . , n.

On the other hand, d(Qti−1 , Ti ) = d(Ri−1, Ri ) and d(Qti , Ti ) = d(Si−1, Si ), i =
1, . . . , n, as the respective points are vertices of parallelograms.26

The next lemma will imply that Ri−1 ∗ Ri ∗ Ri+1 and Si−1 ∗ Si ∗ Si+1,
i = 1, . . . , n − 1. Once this is proved, it will follow that

∑n
i=1 d(Ri−1, Ri ) =

d(R0, Rn) = d(Q0, M) and
∑n

i=1 d(Si−1, Si ) = d(S0, Sn) = d(Q1, M), so that
the stated upper bound above holds, and the supremum defining the arc length is
finite.

26The opposite sides of a parallelogram have equal lengths. This follows from translation
invariance of the distance as shown at the beginning of Section 5.5.
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Fig. 5.4 Upper bound for the
arc length.
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In the lemma, without loss of generality, we assume that the center of the ambient
circle is at the origin.

Lemma Let S be the unit circle with center at the origin and P0, P1 ∈ S two
distinct points with d(P0, P1) < 2. For t ∈ [0, 1], let Qt = Pt/d(0, Pt ) ∈ S,
Pt = (1 − t)P0 + t P1; and let s P0, s ∈ R, be the intersection of the radial line
extension of [0, P0] and the line through Qt perpendicular to this radial line. Then
we have

s = 2− td2

2
√

t2d2 − td2 + 1
, d = d(P0, P1).

In particular, s, as a function of t ∈ [0, 1], is strictly decreasing for 0 ≤ t ≤
min(2/d2, 1) and strictly increasing27 for min(2/d2, 1) ≤ t ≤ 1 (see Figure 5.5).

Proof We let P0 = (x0, y0), x2
0 + y2

0 = 1, and P1 = (x1, y1), x2
1 + y2

1 = 1.
Setting d = d(P0, P1), the computations at the end of the previous section give
d2 = 2− 2(x0x1 − y0 y1) and d(0, Pt )

2 = t2d2 − td2 + 1.
Since d < 2, for t ∈ [0, 1], we have

d(0, Pt )
2 = t2d2 − td2 + 1 = (t − 1/2)2d2 + 1− d2/4 > 0.

This gives

d(0, Pt ) =
√

t2d2 − td2 + 1, t ∈ [0, 1].

27Monotonicity changes only if d2 > 2, and then it does across s = 0, that is, when the sign of s
changes from positive to negative; s = 0 corresponds to Q2/d2 and P2/d2 being perpendicular to
P0.
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Fig. 5.5 Illustration for the
monotonicity lemma.
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The equation of the line extension of the radial line segment [0, P0] is of the form
y0x − x0 y = 0. The pencil of parallel lines perpendicular to this are described by
the equations x0x + y0 y = c, where c ∈ R. Now, the value of the constant c is
determined by the constraint that the perpendicular line must pass through the point
Qt = Pt/d(0, Pt ). This gives

c = x0((1− t)x0 + t x1)+ y0((1− t)y0 + t y1)√
t2d2 − td2 + 1

= 1− t + t (x0x1 + y0 y1)√
t2d2 − td2 + 1

= 1− t + t (1− d2/2)√
t2d2 − td2 + 1

= 2− td2

2
√

t2d2 − td2 + 1
.

On the other hand, by definition, the point s P0 = (sx0, sy0) must be contained in
this perpendicular line. This gives s = s(x2

0 + y2
0) = c. Putting everything together,

we obtain

s = 2− td2

2
√

t2d2 − td2 + 1
.

It remains to show the last statement of the lemma, the monotonicity properties
of s with respect to t .

First, let 0 ≤ t ≤ min(2/d2, 1). Since in this range s ≥ 0, it is enough to show
that s2 is strictly decreasing. Now, a simple computation gives

s2 = d2

4
+
(

1− d2

4

)
1− td2

t2d2 − td2 + 1
.

Since d < 2, we need to show that, for 0 ≤ t < t ′ ≤ min(2/d2, 1), we have

1− td2

t2d2 − td2 + 1
>

1− t ′d2

t ′2d2 − t ′d2 + 1
.
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Eliminating the denominators, simplifying and factoring, this becomes

(t ′ − t)(td2 + t ′d2 − (td2)(t ′d2)) > 0.

This, however, clearly follows28 since 0 ≤ td2 < t ′d2 ≤ 2. The claimed
monotonicity is proved.

Second, for min(2/d2, 1) ≤ t ≤ 1, we have s ≤ 0. Squaring again, the same
argument gives the opposite monotonicity property. The lemma follows.

To establish the existence of (an upper bound of) the arc length for a circular arc
C ⊂ SO , we followed a geometric method. We now describe another essentially
analytic method to obtain the same result.

First, we derive a geometric formula that will be used several times in the future.
Consider a (non-degenerate) triangle 
[A, B, C] with (non-collinear) vertices
A, B, C . We let

A0 = 1

d(C, A)
A +

(
1− 1

d(C, A)

)
C

B0 = 1

d(C, B)
B +

(
1− 1

d(C, B)

)
C

In other words, A0, and respectively B0, is the point at unit distance from C on the
half-line with end-point C and containing A, and respectively B. We then have the
following important formula:29

d(A0, B0)
2 = 2+ d(A, B)2 − d(C, A)2 − d(C, B)2

d(C, A)d(C, B)
.

Indeed, using A0−C = (A−C)/d(C, A) and B0−C = (B−C)/d(C, B), and
translation invariance of the distance multiple times, we calculate30

d(A0, B0)
2 = d(A0 − C, B0 − C)2 = d

(
A − C

d(A, C)
,

B − C

d(B, C)

)2

= d

(
A − C

d(A, C)
− B − C

d(B, C)
, 0

)2

= d

(
A − C

d(A, C)
, 0

)2

+
(

B − C

d(B, C)
, 0

)2

280 < a, b ≤ 2 implies (a + b)/(ab) = 1/a + 1/b ≥ 1/2+ 1/2 = 1.
29In different (non-axiomatic) developments, this formula is equivalent to the so-called Law of
Cosines.
30It is customary to set |P| = d(P, 0), the distance of a point P from the origin. Algebraically,
|P|2 is then the sum of squares of the two coordinates of P . Translation invariance then gives
d(P, Q)2 = d(P−Q, 0)2 = |P−Q|2. Using the fact that this is a quadratic form in the coordinates
of the points P and Q, the computations above become more familiar.
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+ 1

d(A, C)d(B, C)

(
d(A − B, 0)2 − d(A − C, 0)2 − d(B − C, 0)2

)

= d(C, A0)
2 + d(C, B0)

2 + d(A, B)2 − d(C, A)2 − d(C, B)2

d(C, A)d(C, B)
.

Since d(C, A0) = d(C, B0) = 1, the formula follows.
Returning to the main line, recall that we use the affine parametrization Pt =

(1 − t)P0 + t P1, t ∈ [0, 1], for the line segment [P0, P1], and the parametrization
Qt , t ∈ [0, 1], for the circular arc C. For t, t ′ ∈ [0, 1], letting Pt = A, Pt ′ = B,
O = C , so that Qt = A0, Qt ′ = B0, the formula above is rewritten as

d(Qt , Qt ′)
2 = 2+ d(Pt , Pt ′)2 − d(O, Pt )

2 − d(O, Pt ′)2

d(O, Pt )d(O, Pt ′)

For future reference, we include here a useful equivalent form of this as

d(Qt , Qt ′)
2 = 2− 2− (t + t ′ − 2t t ′)d2

√
t2d2 − td2 + 1

√
t ′2d2 − t ′d2 + 1

, d = d(P0, P1),

where we used d(Pt , Pt ′)2 = (t − t ′)2d2, d(O, Pt ) =
√

t2d2 − td2 + 1 and
d(O, Pt ′) =

√
t ′2d2 − t ′d2 + 1.

We rewrite the original formula and estimate

d(Qt , Qt ′)
2 = d(Pt , Pt ′)2 − (d(O, Pt )− d(O, Pt ′))2

d(O, Pt )d(O, Pt ′)
≤ d(Pt , Pt ′)2

d(O, Pt )d(O, Pt ′)

Setting, as usual, d = d(P0, P1) < 2, for the denominator, we have

d(O, Pt )
2 = t2d2 − td2 + 1 =

(
t − 1

2

)2

d2 + 1− d2

4
≥ 1− d2

4
.

With this, we arrive at

d(Qt , Qt ′) ≤ d√
1− d2/4

|t − t ′|, t, t ′ ∈ [0, 1], d = d(P0, P1) < 2.

We express this by saying that the map Q : [0, 1] → R
2, Q(t) = Qt , t ∈ [0, 1],

satisfies the Lipschitz condition with Lipschitz constant d/
√

1− d2/4.
Applying this to a partition (t0, t1, . . . , tn−1, tn) ∈ � of [0, 1], we see that the

length of the corresponding polygonal path

n∑
i=1

d(Qti−1 , Qti ) ≤
d√

1− d2/4

n∑
i=1

(ti − ti−1) = d√
1− d2/4

.
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Taking the supremum for all polygonal paths, we finally obtain

LC ≤ d√
1− d2/4

, d = d(P0, P1) < 2.

(Note that, as a simple computation shows, this upper estimate is the same as the
one we obtained above by our geometric method).

We now explore the properties of the arc length of circular arcs in SO . We say
that additivity holds in a circular arc if whenever it is split into two circular arcs C1
and C2 (by a common end-point), then we have

LC1∪C2 = LC1 + LC2 .

We first claim that additivity holds in a circular arc C ⊂ SO with end-points P0
and P1 satisfying d(P0, P1) < 2 (and C and O are in opposite sides of the line
extension of [P0, P1]).

Let Q ∈ C, P0 �= Q �= P1. Let C1 ⊂ C, resp. C2 ⊂ C, be the circular arc with
end-points P0 and Q, resp. P1 and Q. We have C = C1 ∪ C2. We claim that

LC = LC1 + LC2 .

Indeed, since a partition of [P0, Q] and a partition of [P1, Q] can be united to
define a partition of [P0, P1], taking suprema, we see that LC ≥ LC1 + LC2 . On the
other hand, letting 0 < ε ∈ R, we can choose a polygonal path

⋃n
i=1[Qti−1, Qti ]

such that

LC − ε ≤
n∑

i=1

d(Qti−1 , Qti ).

By the triangle inequality, adding Q ∈ C to a polygonal path for C increases its
length. If Q participates in a polygonal path for C, then this path can be split into the
union of two polygonal paths, one for C1 and the other for C2. Once again, taking
suprema, we obtain LC − ε ≤ LC1 + LC2 . Since this is true for all 0 < ε ∈ R, we
obtain LC ≤ LC1 + LC2 . Additivity in the circular arc C follows.

Remark The arc length LC of a circular arc C with end-points P0 and P1 depends
only on the distance d(P0, P1) < 2. This means that, if C′ is another circular arc
with end-points P ′0 and P ′1 such that d(P ′0, P ′1) = d(P0, P1) < 2, then we have
LC = LC′ . Indeed, a partition of the interval [0, 1] induces a partition of [P0, P1]
and [P ′0, P ′1], and the associated polygonal paths have the same lengths because, by
the formula above, the distance d(Qt , Qt ′) depends only on d(P ′0, P ′1) = d(P0, P1)

and the parameters t, t ′ ∈ [0, 1]. These equal lengths contribute the same amount
to the suprema that define the arc lengths LC and LC′ , which thereby must be
equal.



242 5 Real Analytic Plane Geometry

Finally, note an important special case. Let C be a circular arc with the end-
points P0 and P1. We claim that d(P0, P1) =

√
2 if and only if the line extensions

of the half-lines �0 and �1 (from the center O to the respective end-points) are
perpendicular.

Indeed, assuming (for simplicity) that the center is at the origin, the equa-
tion of the line extension of the half-line �0 through P0 is y0x − x0 y = 0.
The quarter-turn S0 sends this line to the perpendicular line with the equation
x0x + y0 y = 0. This line contains the point P1 = (x1, y1) if and only if
x0x1 + y0 y1 = 0. Since d(P0, P1)

2 = 2 − 2(x0x1 + y0 y1) (see the end
of the previous section), this is equivalent to d(P0, P1)

2 = 2. The claim fol-
lows.

With this, we can introduce the positive real number π ∈ R such that, for
d(P0, P1) =

√
2, we have LC = π/2. By the remark above, the arc length of

a circular arc depends only on the distance between its end-points, so that π is
well-defined.

We now extend the definition of the arc length to any circular arc of SO using
additivity.

If d(P0, P1) < 2, then the arc length of the circular arc C with end-points P0
and P1 has been defined above as the supremum of the lengths of its polygonal
paths. In particular, for any quarter-circle C (d(P0, P1) =

√
2), we have LC =

π/2.
If d(P0, P1) = 2, then, by the sharp triangle inequality, the points P0 and

P1 are collinear, and the center O is at the midpoint of the line segment
[P0, P1]. We define LC = LCc = π for either of the semi-circles C or Cc

with end-points P0 and P1. (Note that they are congruent via the half-turn
S2

O .)
If d(P0, P1) < 2, then we define the arc length of the circular arc Cc

complementary to C by LCc = 2π − LC .
Finally, we define the arc length of the entire circle SO to be 2π .
We note that the arc length, being defined in terms of the Cartesian distance, is

preserved under translations and half-turns.
We now claim that additivity holds in any circular arc of SO .
First, we show additivity in a semi-circle C. Let C have end-points P0 and P1,

and Q ∈ C with P0 �= Q �= P1. Then Q splits C into two circular arcs: C1 with end-
points P0 and Q and C2 with end-points P1 and Q. We claim that LC = LC1 + LC2= π .

Indeed, either C1 or C2 contains a quarter-circle. Assume, without loss of
generality, that the first does. If C1 is itself a quarter-circle, then so is C2 and
the statement holds. Otherwise, split C1 into a quarter circle with one end-
point at P0 and a circular arc C′1 with one end-point at Q. Then, by additivity
in C1 already shown, we have LC1 = π/2 + LC′1 . Since C′1 and C2 join to
form another quarter-circle, again by additivity in quarter-circles already shown,
we also have LC′1 + LC2 = π/2. Putting these together, we obtain LC1 +
LC2 = (π/2 + LC′1) + (π/2 − LC′1) = π = LC . Additivity in semi-circles
follows.
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Next, we need to show additivity in a circular arc of the form Cc

complementary to the circular arc C with end-points P0 and P1 such
that d(P0, P1) < 2. Let Q ∈ Cc distinct from P0 and P1. Then Q
splits Cc into two circular arcs: C1 with one end-point at P0 and another
circular arc C2 with one end-point at P1. We need to show LCc = LC1 +
LC2 .

First, assume that either C1 or C2 contains a half-circle. Without loss of
generality, we may assume that C1 does. We have LC1 = L(C∪C2)

c = 2π −
LC∪C2 = 2π − (LC + LC2), where we used additivity in C ∪ C2 (including
the case when C ∪ C2 is a semi-circle). On the other hand, we have LCc =
2π − LC = 2π − (2π − (LC1 + LC2)) = LC1 + LC2 . Additivity follows in this
case.

Second, assume neither C1 nor C2 contains a semi-circle. Let P2 ∈ SO be the
opposite to P0 with respect to O . Since neither C nor C1 contains semi-circles, we
have P2 ∈ C2, P1 �= P2 �= Q. Then P2 splits C2 into two circular arcs: C′2 with
one end-point at P1 and another C′′2 with one end-point at Q. Clearly, C1 ∪ C′′2 is
a semi-circle, so that, by the previous case, we have LCc = LC1∪C′′2 + LC′2 . On
the other hand, by additivity in semi-circles, we also have LC1∪C′′2 = LC1 + LC′′1 .
Putting these together, we obtain LCc = LC1∪C′′2 + LC′2 = LC1 + LC′′1 + LC′2 =LC1 +LC2 . This finishes the second case. Additivity in complementary circular arcs
follows.

Finally, note that additivity in the entire circle SO follows from the definitions as
any split consists of complementary pairs of circular arcs.

The proof of the additivity of the arc length in general is now com-
plete.

Remark In view of the additivity and the forthcoming discussion, it is convenient to
define the arc length of a single point on SO to be zero.

As the final task in this section, we claim that any given number 0 ≤ r ≤ 2π

arises as the arc length of a circular arc C ⊂ SO , that is, we have LC = r .
By additivity, it is enough to show this for 0 < r < π/2. Let �0 and �1 be
perpendicular half-lines with common end-point O such that, for P0 ∈ �0 and
P1 ∈ �1, d(O, P0) = d(O, P1) = 1, and hence d(P0, P1) =

√
2. The unit interval

[0, 1] parametrizes the line segment [P0, P1] by the affine coordinate function
Pt = (1 − t)P0 + t P1, t ∈ [0, 1], and the quarter-circle with end-points P0 and
P1 by Qt = Pt/d(O, Pt ) ∈ SO , t ∈ [0, 1].

For t ∈ [0, 1], we denote by Ct ⊂ SO the circular arc with end-points Q0(= P0)

and Qt . The quarter-circle itself is then equal to C1, and we have

LC0 = 0 and LC1 = π/2.

We first study the properties of the arc length LCt as a function of t ∈ [0, 1]. Since
d = d(P0, P1) =

√
2, we have d/

√
1− d2/4 = 2, so that the previous Lipschitz

estimate gives
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d(Qt , Qt ′) ≤ 2|t − t ′|, t, t ′ ∈ [0, 1].

On the other hand, the explicit formula for this distance specializes to

d(Qt , Qt ′)
2 = 2− 2− 2(t + t ′ − 2t t ′)√

2t2 − 2t + 1
√

2t ′2 − 2t ′ + 1

= 2− 2(1− t)(1− t ′)√
2t2 − 2t + 1

√
2t ′2 − 2t ′ + 1

, t, t ′ ∈ [0, 1].

This gives

max
t,t ′∈[0,1]

d(Qt , Qt ′) =
√

2.

We now let t, t ′ ∈ [0, 1] and consider the circular arc Ct,t ′ ⊂ SO with end-points
Qt and Qt ′ . The general upper estimate derived earlier for the arc length gives

LCt,t ′ ≤
d(Qt , Qt ′)√

1− d(Qt , Qt ′)2/4
≤ 2
√

2|t − t ′|, t, t ′ ∈ [0, 1],

where we used the Lipschitz estimate and the maximum above. Finally, by
additivity, the arc length of the path Ct,t ′ is equal to LCt,t ′ = |LCt − LCt ′ |. Putting
these together, we obtain

|LCt − LCt ′ | ≤ 2
√

2|t − t ′|, t, t ′ ∈ [0, 1].

This means that the arc length LCt as a function of t ∈ [0, 1] satisfies the Lipschitz
property with Lipschitz constant 2

√
2.

We now note the simple fact that the Lipschitz property above implies continuity
of the function t �→ LCt , t ∈ [0, 1]. (Indeed, for any 0 < ε ∈ R, we can choose δ =
ε/(2
√

2), universally.) Hence, by the Intermediate Value Theorem (Section 4.2), for
any given 0 ≤ r ≤ 2π , there exists t ∈ [0, 1] such that LCt = r . The claim follows.

Remark The arc length LC of a circular arc C with end-points P0 and P1 depends
only on the distance d(P0, P1) < 2. We now make the additional claim that the
correspondence that associates with the arc length LC of a circular arc C with end-
points P0 and P1 and the distance d(P0, P1) is strictly increasing in the sense that
if C′ and C′′ are circular arcs, then LC′ < LC′′ if and only if d(P ′0, P ′1) < d(P ′′0 , P ′′1 )

for the corresponding end-points.
Indeed, let C be a circular arc with end-points P0 and P1, d(P0, P1) < 2, such that
max(LC′ ,LC′′) < LC . Then, by the above, there exist C′0 ⊂ C with one end-point at
P0 and congruent to C′ and C′′0 ⊂ C with one end-point at P0 and congruent to C′′.
Now the claim is equivalent to monotonicity of the distance d(Qt , Q0) in t ∈ [0, 1].
As for this, first note that, as a special case of the general formula derived earlier,
we have
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d(Qt , Q0) = 2− 2− td2

√
t2d2 + td2 + 1

, d = d(P0, P1).

Now, monotonicity follows from the proof of the lemma above.

Exercise

5.6.1. Let 
[A, B, C] be a triangle with vertices A, B, C ∈ R
2 and side lengths

a, b, c ∈ R. Let 0 < r ∈ R such that 2r < min(a, b, c). Consider the
configuration of three circles with centers A, B, C and radius r . What is the
shortest length of a band that stretches around the outside of the three circles?

5.7 The Birkhoff Angle Measure

We now turn to the concept of angle measure μ for angles in the Birkhoff Postulate
of Angle Measure (Section 5.1) in our model R2.

We first define the angle measure for angles in our model R2. Let � AO B be
an angle formed by the ordered triple (O, A, B), A �= O �= B. Let SO be the unit
radius circle with center O .

If (O, A, B) is a positively oriented triple, then we define the angle measure
as the arc length μ( � AO B) = LC (mod 2π), where C ⊂ SO is the circular arc
with end-points A0 and B0, the points at unit distance from O on the half-line with
end-point O and containing A and B.31

If A, O, B are collinear, then we define μ( � AO B) = 0 (mod 2π) if O is not
between A and B, and μ(� AO B) = π (mod 2π) if O is between A and B.

If (O, A, B) is a negatively oriented triple, then we define the angle measure as
μ( � AO B) = −LC (mod 2π), where C ⊂ SO is the circular arc with end-points
A0 and B0 as above.

Note that the angle measure μ( � AO B) depends only on the half-lines �0
and �1 with end-point O containing A and B, respectively. Thus, we can write
μ( � �0 O�1) = μ( � AO B).

To derive the Birkhoff Postulate of Angle Measure, for O ∈ R
2, we need to

define the function αO on the set of all half-lines with end-point O to the real
numbers modulo 2π . For O at the origin 0, we let α0(�) = μ( � �+0�), where � is
any half-line with end-point 0 and �+ is the positive first axis. With this, we define
αO by translating all the geometric entities from O to the origin 0.

31Note that the triple (O, A0, B0) is also positively oriented. Recall also that, according to our
conventions, C is the shorter arc length circular arc with end-points A0 and B0.
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Fig. 5.6 The sum of angles
in a triangle is π .
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First, according to our last result in the previous section, all real numbers in
[0, 2π ] arise as arc lengths of circular arcs in SO . This implies that αO is a surjective
map onto all real numbers mod 2π .

To show that αO is an injective map, it is enough to derive the characteristic
property of the angle measure: For every two half-lines �0 and �1 with common
end-point O , we have

αO(�1)− αO(�0) = μ( � �0 O�1) (mod 2π).

This, however, is a direct consequence of the additivity of the arc length derived in
the last section. The Birkhoff Postulate of Angle Measure follows.

The angle measure being in place, we now derive some basic metric properties
of triangles.

First, we claim that the sum of the measures of the interior angles in a triangle

[A, B, C] is equal to π . We introduce the customary notation for triangles as
follows. The vertices A, B, C of a triangle are arranged such that the triple (A, B, C)

is positively oriented. We denote the side lengths as follows: a = d(B, C),
b = d(C, A), c = d(A, B). For the angle measures of the three interior angles
corresponding to the vertices A, B, C , we use the first three letters of the Greek
alphabet: α = μ( � B AC), β = μ(� C B A), and γ = μ( � AC B) (see Figure 5.6).

We now claim that

α + β + γ = π.

To show this, let � be the line through A and B. Let �′ be the image of � under the
half-turn about the midpoint of the line segment [A, C]. Then �′ is a line parallel to
� through the vertex C . Let B ′ ∈ �′ be the image of B under this half-turn. Then the
angles � B AC and � B ′C A are congruent under this half-turn and the side [A, C] is
shared by one of the half-lines in both angles. Hence, we have α = μ(� B AC) =
μ(� B ′C A). Similarly, the half-turn about the midpoint of [B, C] brings � to a line
�′′ through C parallel to �. By unicity of parallel lines through the same point, we
obtain �′ = �′′. Let A′ be the image of A under this second half-turn. As before,
the angles � C B A and � BC A′ are congruent and the line segment [B, C] is shared
by one of the half-lines in both angles. Hence β = μ(� C B A) = μ( � BC A′). The
three angles � B ′C A, � AC B, � BC A′ can be joined (by deleting the shared rays) to
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Fig. 5.7 Proof of Birkhoff’s
Postulate of Similarity.
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form a straight angle � B ′C A′ with angle measure π . Finally, since α = μ(� B ′C A),
γ = μ(� AC B), β = μ(� BC A′), the claim follows.

We are now ready to derive the Birkhoff Postulate of Similarity: Given two
triangles 
[A, B, C] and 
[A′, B ′, C ′] and 0 < k ∈ R such that d(C ′, A′) =
kd(C, A), d(C ′, B ′) = kd(C, B), and μ( � A′C ′B ′) = μ( � AC B), then d(A′, B ′) =
kd(A, B), μ( � B ′A′C ′) = μ( � B AC), and μ( � C ′B ′A′) = μ( � C B A).

We start with a (non-degenerate) triangle 
[A, B, C] with (non-collinear)
vertices A, B, C . Recall the fundamental formula

d(A0, B0)
2 = 2+ d(A, B)2 − d(C, A)2 − d(C, B)2

d(C, A)d(C, B)

derived in the previous section (Figure 5.7). Here the point A0 is on the half-line
with end-point C and containing A such that d(A0, C) = 1. Similarly, the point
B0 is on the half-line with end-point C and containing B such that d(B0, C) = 1.
Therefore, we have A0, B0 ∈ SC , the unit circle with center at C .

Recall that the arc length of the circular arc C ∈ SC with end-points A0 and B0
uniquely determines and is uniquely determined by the distance d(A0, B0) between
its end-points. Since this arc length is, by definition, the angle measure μ(� AC B),
the same holds for the angle measure μ(� AC B) and the distance d(A0, B0).

Now let 
[A′, B ′, C ′] be another triangle, and assume that, for some 0 < k ∈
R, we have d(C ′, A′) = kd(C, A), d(C ′, B ′) = kd(C, B), and μ( � A′C ′B ′) =
μ(� AC B). Applying the formula above for 
[A′, B ′, C ′], we have

d(A′0, B ′0)2 = 2+ d(A′, B ′)2 − d(C ′, A′)2 − d(C ′, B ′)2

d(C ′, A′)d(C ′, B ′)

= 2+ d(A′, B ′)2 − k2d(C, A)2 − k2d(C, B)2

k2d(C, A)d(C, B)
.

By what we said above, the assumption μ(� A′C ′B ′) = μ( � AC B) implies
d(A′0, B ′0) = d(A0, B0). Comparing the two formulas above, we obtain d(A′, B ′) =
kd(A, B).
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Now that all the three respective side lengths of the two triangles 
[A, B, C]
and 
[A′, B ′, C ′] are a constant (k > 0) multiple of each other, we can write down
the formula above with the vertices permuted cyclically (A, B, C) �→ (B, C, A) �→
(C, A, B). The right-hand sides of these formulas are the same for the corresponding
triangles. Using the same reasoning as above, we see that the left-hand sides give
μ( � B ′A′C ′) = μ( � B AC) and μ( � C ′B ′A′) = μ( � C B A).

The Birkhoff Postulate of Similarity follows.

Remark The following version of Birkhoff’s Postulate of Similarity easily follows
from the original postulate: Given two triangles 
[A, B, C] and 
[A′, B ′, C ′] such
that μ(� A′C ′B ′) = μ( � AC B) and μ( � C ′B ′A′) = μ( � C B A) (and consequently
μ(� B ′A′C ′) = μ( � B AC)), there is 0 < k ∈ R such that d(C ′, A′) = kd(C, A),
d(C ′, B ′) = kd(C, B), and d(A′, B ′) = kd(A, B).

The Pythagorean Theorem is a direct consequence of the fundamental formula
above.

We denote the side lengths of our (non-degenerate) triangle 
[A, B, C] as
follows: a = d(B, C), b = d(C, A), c = d(A, B). We also let �0 be the line
extension of the side [C, A] and �1 the line extension of the side [C, B].

The Pythagorean Theorem states that a2 + b2 = c2, if and only if �0 and �1 are
perpendicular.

Let A0 and B0 be as in the proof above. The formula above gives

d(A0, B0)
2 = 2+ c2 − a2 − b2

ab
.

On the other hand, we showed that �0 and �1 are perpendicular if and only if
d(A0, B0) =

√
2. The Pythagorean Theorem follows.

Remark Clearly, the postulated Cartesian distance formula is actually equivalent to
the Pythagorean Theorem.

As an application, we finish this section by solving the classical problem of
determining all right triangles with integral side lengths.

A triple (a, b, c) consisting of natural numbers a, b, c ∈ N is called Pythagorean
if it satisfies the equation

a2 + b2 = c2.

The name comes from the Pythagorean Theorem as discussed above: If a right
triangle has integral side lengths a, b, and c (the hypotenuse), then the triple (a, b, c)
is Pythagorean. We will now derive the complete list of Pythagorean triples.

History
All Pythagorean triples have been known since antiquity. The Babylonian clay tablet, Plimpton
322 32 (c. 1900–1600 BCE, about 1000 years before Pythagoras) contains a list of Pythagorean

32The numeral refers to the G.A. Plimpton Collection in Columbia University.



5.7 The Birkhoff Angle Measure 249

triples which includes (4961,6480,8161). More about the trigonometric interpretation of this tablet
will be given in Section 11.2.
It is widely held that the ancients used ropes with equally spaced knots bent over a triangle to
survey land and to construct temples. In ancient Egypt the “stretching the cord” ceremony (with
invoking Seshat, the goddess of wisdom, measurement, and writing) marked the inauguration of
a temple project (see, for example, the middle of the third register of the Palermo Stone, 5th
Dynasty, c. 2392–2283 BCE). Note that this method of forming a right angle is still used today
in architecture.
For the rope to form a right triangle using a Pythagorean triple (a, b, c), there had to be a+b+c−1
knots. Interestingly, an often overlooked fact is that this construction of a right triangle uses the
converse of the Pythagorean Theorem: If the triple (a, b, c) satisfies the Pythagorean equation
above, then the triangle with side lengths a, b, and c has a right angle (opposite to the side of
length c).
The first infinite sequence of Pythagorean triples was discovered by the Pythagoreans: (a, b, c) =
(n, (n2− 1)/2, (n2+ 1)/2), where 3 ≤ n ∈ N is odd. (Note that b and c are consecutive numbers.)
Plato discovered another sequence (a, b, c) = (4n, 4n2−1, 4n2+1) with n ∈ N. Finally, Euclid in
Book X of the Elements derived the full list of Pythagorean triples but attempted no proof that the
list was complete. The list of all Pythagorean triples is also expounded in the third century work
Arithmetica by Diophantus.
The Pythagorean theorem and Pythagorean triples were known in India in the Vedic period. The
Sulba Sutras (c. 800–c. 500 BCE) contain an elaborate list of rules to construct altars for fire sac-
rifice, and this involves the Pythagorean theorem. The Baudhayana Sulba Sutra has the following
sequence of Pythagorean triples: (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (12, 35, 37).

If (a, b, c) is Pythagorean, then so is (ka, kb, kc) for any natural number k ∈ N

(since the Pythagorean equation above can be multiplied through by k2). Conversely,
if a, b, and c have a common divisor k, then we can divide through the Pythagorean
equation by k2 and conclude that (a/k, b/k, c/k) is also Pythagorean. The integers
in this last triple have no common divisor.

A Pythagorean triple is called primitive if the numbers a, b, and c are relatively
prime; that is, if the only natural number that divides all three of them is 1. We now
claim that this is the case if and only if any of the three pairs (a, b), (b, c), or (a, c)
is relatively prime. Indeed, if, for example, a and b have a common divisor k > 1,
then they also have a common prime divisor p. Since p divides both a and b, it also
divides a2+ b2 = c2. Being a prime, p then divides c. Thus, p is a common divisor
of a, b, and c. Based on this, from now on, we may restrict ourselves to finding all
primitive Pythagorean triples.

Dividing both sides of the Pythagorean equation above by c2, we obtain

(a

c

)2 +
(

b

c

)2

= 1.

Equivalently, the positive rational numbers x = a/c and y = b/c satisfy the
equation x2 + y2 = 1. Notice that the pairs (a, c) and (b, c) are relatively prime
and this property is equivalent to having irreducible fractions a/c and b/c in which
all common factors are canceled. In other words, the positive fractions a/c and b/c
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satisfying the equation above represent the Pythagorean triple (a, b, c) along with
all the multiples (ka, kb, kc) with k ∈ N.

The equation x2 + y2 = 1 is the equation of the unit circle S. We call a point
P = (x, y) on the plane R

2 rational if both x and y are rational numbers. We see
that, for a Pythagorean triple (a, b, c), the point (a/c, b/c) is a rational point on the
unit circle S. Note that, by construction, both a/c and b/c are positive so that the
point (a/c, b/c) is in the interior of the first quadrant I of R2 (that is, the boundary
points on the positive first and second axes are excluded).

We now turn the question around and seek to describe all rational points on the
open quarter unit circle connecting the points (1, 0) and (0, 1) (where openness
means that the end-points (1, 0) and (0, 1) are excluded).

We consider a point (rational or not) on this quarter-circle as the second
intersection point of S with a secant line that contains (0, 1) (as the first intersection
point). The general equation of a line33 ax − by = c through (0, 1) reduces to
ax − by = −b.

In Section 5.5, we determined the second intersection point of a secant line and
the unit circle S with first common point P0 = (x0, y0) in general. In our case
(x0 = 0 and y0 = 1), this second intersection point specializes to

(
− 2ab

a2 + b2
,−a2 − b2

a2 + b2

)
.

This point is contained in the open first quadrant if and only if ab < 0 and a2−b2 <

0. In terms of the slope m = a/b, the equation of the line can be rewritten as
y = mx + 1. The second intersection point is

(
− 2m

1+ m2 ,
1− m2

1+ m2

)
,

where the slope m is contained in the open interval (−1, 0). (Zero slope corresponds
to the horizontal line across (0, 1) tangent to S, and the line with slope−1 intersects
S at (1, 0).)

Now the crux is that this point is a rational point if and only if the slope m is
rational. Thus, for all values m ∈ (−1, 0) ∩ Q, we obtain all rational points on
the open quarter-circle. Letting m = −a/b, a, b ∈ N, we obtain all Pythagorean
triples as

(
2ab, b2 − a2, a2 + b2

)
, a < b, a, b ∈ N.

The following table shows a few values:

33We use here the letters a, b, and c for the coefficients in the typical equation of a line, not to be
confused with the same letters occurring in the Pythagorean triples above.
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a b 2ab b2 − a2 b2 + a2

1 2 4 3 5
1 3 6 8 10
1 4 8 15 17
1 5 10 24 26
1 6 12 35 37
2 3 12 5 13
2 4 16 12 20
2 5 20 21 29
3 4 24 7 25
3 5 30 16 34
4 5 40 9 41
· · · · · · · · · · · · · · ·
40 81 6480 4961 8161

We included the five triplets from Baudhayana Sulba Sutra. Note also the last line
from the Babylonian tablet.

Example 5.7.1 Find all n < 200, n ∈ N, such that n2+(n+1)2 is a perfect square.34

The problem is equivalent to finding all Pythagorean triples (n, n+ 1, m), where
n < 200 and m ∈ N.

By the above, we have two cases:

I. n = 2ab, n + 1 = b2 − a2, m = a2 + b2, a < b, a, b ∈ N.
II. n = b2 − a2, n + 1 = 2ab, m = a2 + b2, a < b, a, b ∈ N.

In Case I, we have 2ab+ 1 = b2− a2, or equivalently, b2− 2ab− (a2+ 1) = 0.
Solving this as a quadratic equation in b in terms of a, we obtain b = a±√2a2 + 1.
Only the positive square root is realized. In addition, 2a2 + 1 must be a perfect
square. Since a2 < ab < 100, we have a < 10. The cases a = 1, 2, . . . , 9 give only
a = 2 as a solution. Hence b = 5, and n = 2ab = 20. This gives the Pythagorean
triple (20, 21, 29).

Case II is analogous. We have b2 − 2ab − (a2 − 1) = 0 so that b = a ±√
2a2 − 1. This gives a = 1, 5. The corresponding Pythagorean triples are (3, 4, 5)

and (5, 12, 13).

Exercises

5.7.1. Let R be a rectangle with vertices A, B, C, D with the right angle at the
vertex A trisected by two half-lines �′ and �′′. Assume that these half-lines
meet the opposite sides at interior points: E ′ = �′∩ ∈ [B, C] and E ′′ =

34This was a problem in the Nordic Mathematical Contests, 1998. Note, however, that the general
solution without the upper bound is contained in Sierpiński, W., Elementary Theory of Numbers,
2nd ed. North Holland, 1985.
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Fig. 5.8 Illustration to
Exercise 5.7.3.

1

2

3

�′′∩ ∈ [C, D]. Express the side lengths d(A, B) and d(B, C) in terms of the
distances d(B, E ′) and d(C, E ′′).

5.7.2. Two congruent (but distinct) rectangles overlap and share the longer (com-
mon) diagonal. If the side lengths of the rectangles are 0 < b < a ∈ R, then
show that the overlap is a rhombus, and find its side length.

5.7.3. Three circles stacked up fit snugly in a rectangle (see Figure 5.8). The bottom,
middle, and top circles have radii 1, 3 and 2, respectively. Each circle touches
the left-side of the rectangle. The middle (largest) circle touches both vertical
sides of the rectangle. Calculate the height of the rectangle.

5.7.4. For m ∈ N0, let Sm = S(0,2m),1. (The unit circles Sm , m ∈ N0, are lined
up along the first axis.) Fix 2 ≤ n ∈ N, and let � be the line through the
origin (0, 0) and tangent to Sn . Let An, Bn ∈ S1 be the intersection points of
� secant to S1. Calculate d(An, Bn).

5.7.5. The Fibonacci numbers can be used to construct Pythagorean triples. Show
that, for n ≥ 3, the triple (2Fn Fn−1, F2

n − F2
n−1, F2n−1) is Pythagorean.

5.7.6. Show that two angles with perpendicular sides are either equal or supple-
mentary (that is, they together make a straight angle).

5.7.7. Show that a right triangle has side lengths that form three consecutive terms
in an arithmetic sequence if and only if the side lengths are 3d, 4d, and 5d,
where d is the difference of the arithmetic sequence.

5.7.8. A right triangle has the property that the length of the hypothenuse is twice
the length of the altitude from the vertex corresponding to the right angle.
Show that the triangle is isosceles.

5.8 The Principle of Shortest Distance∗

Since we can measure the distance between points in our model of the Cartesian
plane R

2, it is natural to ask the question: What is the shortest path between two
(distinct) points P0 and P1 on the plane?
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First, a polygonal path connecting P0 and P1 is an (open) polygon with end-
points P0 and P1; that is, a union

⋃n
i=1[Qi−1, Qi ] such that Q0 = P0 and Qn = P1.

The length of a polygonal path is defined as
∑n

i=1 d(Qi−1, Qi ), the sum of the
lengths of the participating line segments in the polygonal path.

We now claim that the shortest polygonal path connecting P0 and P1 is the
straight-line segment [P0, P1] between P0 and P1, that is, in which Qi ∈ [P0, P1]
for all i = 0, 1, . . . , n. We show this by Peano’s Principle of Induction with respect
to n ∈ N.

For n = 1, there is nothing to prove. Assume that the statement holds for
n ∈ N, and let

∑n+1
i=1 d(Qi−1, Qi ) be a polygonal path with end-points P0 and P1

consisting of n + 1 line segments. By the strict triangle inequality, for (any) given
i = 1, . . . , n, we have d(Qi−1, Qi+1) ≤ d(Qi−1, Qi )+d(Qi , Qi+1) with equality
if and only if Qi ∈ [Qi−1, Qi+1]. Since our path is the shortest, it follows that Qi ∈
[Qi−1, Qi+1]. We now replace the two line segments [Qi−1, Qi ] and [Qi , Qi+1]
by the single line segment [Qi−1, Qi+1] without altering the overall length of the
polygonal path. The new polygonal path consists of n line segments, so that the
induction hypothesis applies. We obtain Q1, . . . , Qi−1, Qi+1, . . . , Qn ∈ [P0, P1].
Since Qi ∈ [Qi−1, Qi+1], we also have Qi ∈ [P0, P1]. The claim follows.

We now extend this to more general paths. We say that a subset C ⊂ R
2 with two

specified points P0, P1 ∈ C, P0 �= P1, is a (simple) rectifiable curve if there exists
a one-to-one35 Lipschitz map Q : [0, 1] → R

2 such that the range of Q is C and
Q(0) = P0 and Q(1) = P1. The map Q is usually called a parametrization of C.
The Lipschitz property means that, for some (Lipschitz) constant L ∈ R, we have

d(Q(t), Q(t ′)) ≤ L|t − t ′|, t, t ′ ∈ [0, 1].

With this, we define the arc length of C by

LC = sup

{
n∑

i=1

d(Q(ti−1), Q(ti ))

∣∣∣∣ (t0, t1, . . . , tn−1, tn) ∈ �

}
,

where the supremum is over the set � of all partitions

(t0, t1, . . . , tn−1, tn) ∈ �, 0 = t0 < t1 < · · · < tn−1 < tn = 1, n ∈ N.

We need to show that the arc length LC is a finite (real) number, or equivalently,
the lengths of polygonal paths of C (in the supremum above) induced by all
partitions of [0, 1] are bounded above. This is guaranteed by the Lipschitz property,
since, for any partition (t0, t1, . . . , tn−1, tn) ∈ �, we have

35The property of being simple, that is, one-to-one, excludes “self-intersections.” As we consider
here only open curves and minimize the arc length, imposing this does not restrict the generality.
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n∑
i=1

d(Q(ti−1), Q(ti )) ≤ L
n∑

i=1

(ti − ti−1) = L .

Thus, the arc length LC exists.
The next example shows that some parametrization of a rectifiable curve may not

be Lipschitz.36

Example 5.8.1 Consider the set C = {(x,
√

x) | x ∈ [0, 1]} ⊂ R
2 with specified

points P0 = (0, 0) and P1 = (1, 1).
First, we let Q : [0, 1] → R

2 be the map defined by Q(t) = (t,
√

t), t ∈ [0, 1].
Clearly, the range of Q is C, and Q(0) = P0 and Q(1) = P1.

We claim that Q does not have the Lipschitz property.
Assuming the contrary, there exists a Lipschitz constant L ∈ R such that

d(Q(t), Q(t ′)) =
√

(t − t ′)2 + (
√

t −√t ′)2 ≤ L|t − t ′|, t, t ′ ∈ [0, 1].

Squaring, we see that L ≥ 1, and we have |√t − √t ′| ≤ √L2 − 1|t − t ′|, t, t ′ ∈
[0, 1]. Setting t ′ = 0, this gives

√
t ≤ Mt , t ∈ [0, 1], where M = √L2 − 1. This,

however, is a contradiction since 1 ≤ M
√

t cannot hold for 0 < t < 1, t ∈ R, small
enough.

Second, we let Q′ : [0, 1] → R
2 be the map defined by Q′(t) = (t2, t), t ∈

[0, 1]. As before, the range of Q′ is C, and Q′(0) = P0 and Q′(1) = P1.
We claim that Q′ is a Lipschitz map with Lipshitz constant L = √5; that is, we

have

d(Q′(t), Q′(t ′)) =
√

(t2 − t ′2)2 + (t − t ′)2 ≤ √5|t − t ′|, t, t ′ ∈ [0, 1].

Squaring, and simplifying, we obtain (t2−t ′2)2 ≤ 4(t−t ′)2, t, t ′ ∈ [0, 1]. Factoring
and simplifying again, this reduces to |t+t ′| ≤ 2, t, t ′ ∈ [0, 1]. This obviously holds.
The Lipschitz property holds as claimed.

Returning to the main line, we need to show unicity of the arc length; that is,
the definition of the arc length LC of a rectifiable curve C does not depend on the
parametrization (as long as it is Lipschitz). Let C be a rectifiable curve with specified
points P0, P1 ∈ C. If Q, Q′ : [0, 1] → R

2 are both one-to-one Lipschitz maps with
common range C and Q(0) = Q′(0) = P0 and Q′(1) = Q′(1) = P1, then we claim
that the arc lengths defined by Q and Q′ are equal.

First, for t ∈ [0, 1], we let s(t) ∈ [0, 1] be the unique real number such that
Q(t) = Q′(s(t)). This defines a function s : [0, 1] → [0, 1], s(0) = 0, s(1) = 1,
which is clearly bijective, that is, one-to-one and onto.

36In somewhat more generality, a curve on the plane is called rectifiable if it has bounded variation,
that is, if the supremum above is finite. It can be shown that for a curve of bounded variation, there
is always a Lipschitz parametrization as above.
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Lemma The function s is strictly increasing.

Proof Since s is one-to-one, it is enough to show that it is continuous. (See
Corollary to the Intermediate Value Theorem in Section 4.2.) We show sequential
continuity of s. Let (tn)n∈N be a sequence in [0, 1] such that limn→∞ tn = t0. We
need to prove that the corresponding sequence (s(tn))n∈N is convergent and has limit
s(t0). First, let lim infn→∞ s(tn) = L . Choose a convergent subsequence (s(tnk ))k∈N
such that limk→∞ s(tnk ) = L . (The existence of this subsequence follows easily
from the definition of the limit inferior.) Since Q′ is continuous (as it is Lipschitz),
we have limk→∞ Q′(s(tnk )) = Q′(L). Since Q(t) = Q′(s(t)), t ∈ [0, 1], this
gives limk→∞ Q(tnk ) = Q′(L). On the other hand, by continuity of Q, this limit
is Q(t0). Thus, we have Q′(L) = Q(t0). Second, let lim supn→∞ s(tn) = L .
Repeating the previous argument (almost verbatim), we obtain Q′(L) = Q(t0).
Hence Q′(L) = Q′(L). Since Q′ is one-to-one, we obtain L = L(= L , say), and
we conclude that the sequence (s(tn))n∈N is convergent to this common value L .
Finally, we have Q′(L) = Q(t0) = Q′(s(t0)), and, once again since Q′ is one-to-
one, we arrive at limn→∞ s(tn) = L = s(t0). The lemma follows.

We now return to our rectifiable curve C ⊂ R
2. Let LC and L′C denote the arc

length of C with respect to Q and Q′, respectively. We claim that LC = L′C .
Let 0 < ε ∈ R. The interval [0, 1] has a partition (t0, t1, . . . , tn) ∈ �, t0 = 0

and tn = 1, such that, for the associated polygonal path
⋃n

i=1[Q(ti−1), Q(ti )] with
Q(0) = P0 and Q(1) = P1, we have

LC − ε <

n∑
i=1

d(Q(ti−1), Q(ti )).

For i = 1, . . . , n, we let si = s(ti ) ∈ [0, 1], so that Q(ti ) = Q′(si ). Now the
crux is that, according to the lemma above, the finite sequence (s0, s1, . . . , sn) is
monotonic with s0 = 0 and sn = 1, and thereby it forms a partition of [0, 1]. Hence,
we have

n∑
i=1

d(Q′(si−1), Q′(si )) ≤ L′C .

Putting these together, we obtain LC − ε < L′C . Since ε was arbitrary, we arrive
at LC ≤ L′C . Reversing the roles of Q and Q′, we obtain L′C = LC as claimed.
Independence of the arc length from parametrization follows.

We are now able to show that the shortest path between two points is the straight-
line segment. Let C be a rectifiable path with specified points P0, P1 ∈ C, and let
Q : [0, 1] → R

2 be a Lipschitz map with range C and Q(0) = P0 and Q(1) =
P1. Given any polygonal path

⋃n
i=1[Qi−1, Qi ], Q0 = P0 and Qn = P1, by the

discussion above, we have
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d(P0, P1) ≤
n∑

i=1

d(Q(ti−1), Q(ti )) ≤ LC .

If LC is minimal, then equalities hold. It follows that the polygonal path is the
line segment [P0, P1]. Since this holds for all polygonal paths contributing to the
supremum that defines the arc length LC , we obtain that C = [P0, P1]. Thus, the
shortest path between two points is the straight-line segment.

As an application, we derive the Principle of Least Distance: A light ray
reflected in a mirror has the same angle of incidence as the angle of reflection.
(The angle of incidence is the angle that a ray makes with the perpendicular line to
the surface at the point of incidence, and the angle of reflection is the angle made by
a reflected ray with the same perpendicular line.)

The connection of this to the discussion on arc length above is physics: The light
ray always travels along a path of shortest length.

To be specific, let A and B be two points on the same side of a line � in the plane
R

2. The line � represents the mirror; the light ray is emitted at A, reflected in �, and
detected at B. From A, the ray reaches � in the shortest possible path, a straight-line
segment, and after bouncing off from � at a point C , once again, it reaches B in a
straight-line segment. Thus, we can now ask the more precise question:

At what point C of � is the sum of distances d(A, C)+ d(C, B) minimal?37

In what follows, we will describe a simple solution that employs the concept of
reflection in a line. Given a line � in R

2, we define the reflection ρ� : R2 → R
2

in � as follows: Let P ∈ R
2, and consider the line �′ through P perpendicular to �.

Let Q ∈ � ∩ �′ be the intersection point of these two lines. Now, let P ′ ∈ �′ be the
unique point such that Q is the midpoint of P and P ′. We define ρ�(P) = P ′. (Note
that P = P ′ if and only if P ∈ �. In other words, the points on the line � are the
fixed points of ρ�.)

We claim that ρ� is distance preserving; that is, we have d(ρ�(A), ρ�(B)) =
d(A, B) for all A, B ∈ R

2. For simplicity, we let A′ = ρ�(A) and B ′ = ρ�(B). We
also let Q = (1/2)(A + A′) ∈ � and R = (1/2)(B + B ′) ∈ �. We may assume that
A /∈ � and B /∈ � since otherwise the proof is much simpler.

The triangles 
[A, Q, R] and 
[A′, R, Q] are congruent since they have a
common side [Q, R], right angles at the vertex Q, and congruent sides [Q, A]
and [Q, A′], that is, we have d(Q, A) = d(Q, A′). By the Birkhoff Postulate
of Similarity, we have d(R, A) = d(R, A′), and the angles � ARQ and � Q R A′
at the common vertex R are congruent. Now, consider the triangles 
[A, R, B]
and 
[A′, B ′, R]. Their angles � B R A and � A′RB ′ at the common vertex R are
congruent since μ(� ARQ) + μ( � B R A) = π/2 and μ( � A′RB ′) + μ( � Q R A′) =
π/2. In addition, by the definition of ρ�, we have d(R, B) = d(R, B ′), and, as
noted above, d(R, A) = d(R, A′). Thus, by the Birkhoff Postulate of Similarity, we

37The Principle of Least Distance asserts that at C , the angle of incidence and the angle of reflection
are equal. This determines the point C uniquely. This principle is usually proved in calculus using
a minimization technique. In reality, it is much simpler.
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obtain d(A, B) = d(A′, B ′). Thus, ρ� preserves distances. Note that, ρ� changes
the angle measure to the opposite sign.

Now, we return to the Principle of Least Distance. Let B ′ = ρ�(B). Since
reflection preserves distances, we have d(C, B) = d(C, B ′) so that d(A, C) +
d(C, B) = d(A, C)+d(C, B ′). As we have shown above, the shortest path between
the points A and B ′ is the straight-line segment. Hence the light ray bounces off at
the point C , the intersection of � and the line segment [A, B ′]. At C the opposite
angles between the line perpendicular to � and the line segment connecting A and
B ′ are equal. One of the angles is the angle of incidence of the light ray. The other
angle is equal to the angle of reflection of the light ray since reflection in a line
preserves angles. The Principle of Least Distance follows.

Exercises

5.8.1. Let � �′O�′′ be an angle in R
2 formed by two half-lines �′ and �′′ meeting

at O , and assume that it is acute; that is, the angle measure μ(� �′O�′′) ∈
(0, π/2). Let A be a point in the corresponding (open) acute angular sector.
Find B ∈ �′ and C ∈ �′′ such that the (possibly degenerate) triangle

[A, B, C] has the least perimeter.

5.8.2. Use the proof of the Lemma following Example 5.8.1 to show that the inverse
of a continuous bijection f : I → J between closed intervals I and J is
continuous.

5.9 π According to Archimedes∗

Attempts to approximate π , the ratio of the circumference and the diameter of a
circle, can be found in virtually all ancient societies.38 Archimedes devised the first
rigorous (inductive) procedure to obtain rational approximations of π .

His method started with two regular hexagons, one inscribed and the other cir-
cumscribed about the unit circle SO with center at a point O . The induction consists
of systematically doubling the sides (while keeping the resulting polygons inscribed
and circumscribed). Archimedes stopped at the 96-sided polygons. Approximating
at each stage the various radical expressions by ingeniously chosen fractions, he
finally arrived at the estimate

3
10

71
< π < 3

1

7
.

38For a short history of π , see the author’s Glimpses of Algebra and Geometry, 2nd ed. Springer,
New York, 2002.
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Fig. 5.9 Archimedes’
duplication; inscribed
polygon.
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In this section we discuss Archimedes’ method focusing on the relevant radical
expressions rather than their approximating fractions.

Let Pn and Qn , n ≥ 3, be regular n-sided polygon inscribed and, respectively,
circumscribed about SO . The vertices of Pn lie (equidistantly spaced) on SO , and
the midpoints of the sides of Qn are (equidistantly spaced) points of tangency of the
sides to SO . Let ln and Ln denote half of the side length of Pnand Qn , respectively.

Since Pn and Qn have n sides, we have nln < π < nLn , n ≥ 3.
Archimedes established the following inductive formulas:

l2n =
√

1−√1− l2
n

2
and L2n =

√
1

L2
n
+ 1− 1

Ln
.

To show the first, let [A, B] be a side of Pn and consider the triangle
[A, B, O],
where O is the center of SO (see Figure 5.9). Let the bisector of the angle � AO B of
angle measure 2π/n intersect [A, B] at the midpoint M and further the unit circle
at the point D.

Since 
[O, A, M] is a right triangle with right angle at M and d(A, M) = ln ,
the Pythagorean Theorem gives d(O, M) = √

1− l2
n . Since 1 = d(O, D) =

d(O, M) + d(M, D), the triangle 
[A, D, M] is also a right triangle with right
angle at M , and d(A, D) = 2l2n , the Pythagorean Theorem once again gives

(
1−

√
1− l2

n

)2

+ l2
n = 4l2

2n .

Expanding and simplifying, we obtain 1− 2l2
2n =

√
1− l2

n . This gives

l2
2n =

1−√1− l2
n

2
.

Taking square roots on both sides, our first formula follows.
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Fig. 5.10 Archimedes’
duplication; circumscribed
polygon.
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For the second relation, let [A, B] be a side of Qn with midpoint M , the point of
tangency of this side with SO (for the notations here and below, see Figure 5.10).
Let C be the intersection of the radial line segment [O, A] with SO , and D, resp. E ,
the intersections of the angular bisector of the angle � AO M of measure π/n with
the circle, resp. the line segment [A, M]. We have d(A, M) = d(B, M) = Ln and
d(C, E) = d(M, E) = L2n .

The hypotenuse [O, A] of the right triangle 
[O, A, M] has length
√

1+ L2
n so

that the length of [A, C] is
√

1+ L2
n − 1. Finally, the triangles 
[O, A, M] and


[A, C, E] are similar, so that we have

Ln =
√

1+ L2
n − 1

L2n
.

Rearranging, our second formula follows.
Since the hexagon is made up by six equilateral triangles, a simple geometric

consideration gives 2l6 = 1 and L6 = 1/
√

3. We now iterate the relations above
(starting with n = 6). It is somewhat easier to iterate the first on the doubles

2l2n =
√

2−
√

4− (2ln)2.

For half of the perimeters (nln), starting with 6l6 = 3, a simple computation gives

12l12 = 6

√
2−√3 ≈ 3.1058285412

24l24 = 12

√
2−

√
2+√3 ≈ 3.1326286132
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48l48 = 24

√
2−

√
2+

√
2+√3 ≈ 3.1393502030

96l96 = 48

√√√√
2−

√
2+

√
2+

√
2+√3 ≈ 3.1410319508

These are lower bounds for π with increasing accuracy.
For the circumscribed polygons, using repeated elimination of the square roots in

the denominators (by the difference of squares identity), starting with L6 = 1/
√

3,
we have

L12 =
√

3+ 1−√3 = 2−√3

L24 =
√

1

(2−√3)2
+ 1− 1

2−√3
=
√

(2+√3)2 + 1− (2+√3)

= 2

√
2+√3− (2+√3) = (

√
6+√2)− (2+√3) = (

√
3−√2)(

√
2− 1)

L48 =
√

1

(
√

3−√2)2(
√

2− 1)2
+ 1− 1

(
√

3−√2)(
√

2− 1)

=
√

(
√

3+√2)2(
√

2+ 1)2 + 1− (
√

3+√2)(
√

2+ 1)

L96 =
√(√

(
√

3+√2)2(
√

2+ 1)2 + 1+ (
√

3+√2)(
√

2+ 1)

)2

+ 1

−
(√

(
√

3+√2)2(
√

2+ 1)2 + 1+ (
√

3+√2)(
√

2+ 1)

)
.

For half of the perimeters (nLn), starting with 6L6 = 2
√

3 ≈ 3.4641016151, we
obtain

12L12 = 12(2−√3) ≈ 3.2153903091

24L24 = 24(
√

3−√2)(
√

2− 1) ≈ 3.1596599420

48l48 ≈ 3.1460862151

96l96 ≈ 3.1427145996.

These are upper bounds for π with increasing accuracy.
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Using the inductive formulas above, we see that ln and Ln can be written as
nested square roots; therefore, as lengths of line segments, they are constructible
by straightedge and compass. The sequence (6l6, 12l12, 24l24, 48l48, . . .) is strictly
increasing and the sequence (6L6, 12L12, 24L24, 48L48, . . .) is strictly decreas-
ing. Moreover, the (positive) differences 6(L6 − l6), 12(L12 − l12), 24(L24 −
l24), 48(L48 − l48), . . . decrease to zero. By the Monotone Convergence Theorem,
there is a unique real number between these two sequences. This is the number π .

Example 5.9.1 Is 5π2 − 31π + 48 positive or negative?
We have 5π2 − 31π + 48 = (π − 3)(5π − 16) = 5(π − 3)(π − 32/10) < 0.

Exercise

5.9.1. Using a straightedge and a compass, construct a regular octagon (8 sides) and
a regular dodecagon (12 sides).



Chapter 6
Polynomial Expressions

“Of course I had progressed far beyond Vulgar Fractions
and the Decimal System. We were arrived in an
‘Alice-in-Wonderland’ world, at the portals of which stood
‘A Quadratic Equation.’ This with a strange grimace pointed
the way to the Theory of Indices, which again handed
on the intruder to the full rigors of the Binomial Theorem.”
in My Early Life by Sir Winston Churchill (1874–1965)

In this chapter we begin our study of the simplest mathematical expressions,
the polynomials. We start with the simplest case: The binomial formula. It is
presented here with full arithmetic and historical details, with many identities, and
along with its principal, mostly combinatorial, applications including Bernoulli’s
derangements. The Division Algorithm for Integers discussed in Section 1.3 leads
directly to its polynomial analogue, the Division Algorithm for Polynomials, or
polynomial long division, and its offspring, the synthetic division. They reveal a
great deal of information about the behavior of polynomials. We accompany these
with many examples of (sometimes highly technical) polynomial factorizations.
These exhibit beautiful interplays with divisibility properties of integers. Turning to
a somewhat more advanced level, we derive the fundamental theorem on symmetric
polynomials (leading to a very simple but non-standard derivation of the quadratic
formula), the Viète relations, and the Newton–Girard formulas for power sums.
Amongst the many applications of the Viète relations, we give an arithmetic
proof of the allegedly most challenging problem ever posted on the International
Mathematical Olympiad, in 1988. Finally, we briefly return to the Cauchy–Schwarz
inequality, introduced in Section 5.3, in a multivariate setting accompanied by the
Chebyshev sum inequality.
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6.1 Polynomials

A polynomial is constructed from an indeterminate (variable, parameter, etc.) x
(or t, u, etc.) and (real) numbers under the operations of addition and multi-
plication. The indeterminate x follows the usual rules of arithmetic, including
exponentiation:

xn =
n factors︷ ︸︸ ︷

x · x · x · · · x, n ∈ N.

Exponentiation is defined inductively by setting x0 = 1, and xn+1 = x · xn , n ∈ N0.
A polynomial with x as an indeterminate is usually denoted by p(x).
Examples for polynomials (in the indeterminate x) are

ax2+bx+c, a, b, c ∈ R;
(

1+ x

365

)365 ; 1+x+ x2

2! +
x3

3! +· · ·+
xn

n! , n ∈ N.

History
In his work La géometrie, Descartes made a widespread use of letters to denote numbers (from the
beginning of the alphabet such as a, b, c, etc.), and indeterminates (from the end of the alphabet
such as x, y, z, t, u, v, etc). He used first superscripts to denote exponents.

More generally, when the role of the indeterminate1 is played by a mathematical
entity E (such as another expression, function, etc.) then we arrive at the concept
of polynomial expression. Emphasizing the role of the entity, it is also called a
polynomial in E .

Examples for polynomial expressions are

√
2

5 +√2+ 1; d1d2 . . . dk

10k

(
1+ 1

10k
+
(

1

10k

)2

+ · · · +
(

1

10k

)n
)

.

The first is a polynomial expression in
√

2, and the second is a polynomial
expression in 1/10k .

These definitions can be naturally extended to polynomials in several indetermi-
nates x, y, z . . ., and x1, x2, x3, . . . , xn , n ∈ N, etc., and to polynomial expressions
in finitely many entities E1, E2, . . . , En . In these cases the respective polynomials
are usually denoted by p(x, y), p(x, y, z), p(x1, x2, . . . , xn), etc.

Polynomials can be evaluated on numbers by substitution; that is, by performing
the operations that the polynomial is made up on numbers instead of indeterminates.
A polynomial p(x) evaluated on a specific number c is denoted by p(c), a
polynomial p(x, y) evaluated on (a, b) is denoted by p(a, b), etc.

1According to modern terminology, the unknown quantity or quantities within a polynomial
(regarded as an expression) are called indeterminates, and they are called variables only when
the polynomial is considered as a function. It is, however, widespread to retain the classical
terminology and use the word “variable” in both expressions and functions.
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History
In the ancient Near East, during the so-called cradle of civilization (4th millennium BCE), people
used a soft and malleable metal, copper, to make tools, weapons, and armor. One “day” (the time
varies according to regions) they discovered that even a small amount of arsenic and later tin added
to liquid copper not only makes the alloy better in casting, but it also makes the final product
much stronger. The Bronze Age began. Although “historical bronzes” show a great variety in
composition (which largely depended on availability), a typical bronze consists of 88% copper
and 12% tin. Ancient bronze-smiths were well aware of this. Using B, C , and T for the amount of
bronze, copper, and tin in a metal alloy, we can express this as B = C+T , C = 0.88·B, T = 0.12·
B. However simple, these are one of the oldest equations people seem to have used, at least empir-
ically. The right-hand sides are polynomial (linear) expressions in the indeterminates B, C , and T .

Using arithmetic operations (applied to both numbers and indeterminates), a
polynomial can be brought to a finite sum of monomials. A monomial is the product
of a (real) number and indeterminates raised to integral powers. The number in the
monomial is called its coefficient, and the sum of the (integral) exponents is the
degree of the monomial.

The degree of a polynomial p(x), p(x, y), etc., denoted by deg p(x),
deg p(x, y), etc., is the maximum of the degrees of the monomials contained

in p(x), p(x, y), etc. In case of several indeterminates, the degree may be attained
by several monomials within the polynomial. Oftentimes a monomial expression is
referred to as a term, and like terms are monomials with the same indeterminates
raised to the same natural exponents. For example, x2 y and xy2 are unlike terms,
whereas

√
2x2 y2 and

√
3x2 y2 are like terms.

A binomial is a polynomial expression which can be written as the sum of two
monomials. In a similar vein, a trinomial is the sum of three monomials. We will
discuss binomials and trinomials in the forthcoming sections.

Remark The identically zero expression is considered as a polynomial with no
degree. Unless stated explicitly, we always tacitly assume that the polynomials in
our study are non-zero.

For a given polynomial p(x), the equation p(x) = 0 is called a polynomial
equation. Any solution of a polynomial equation is called a root of the polynomial.
Finding a root (or roots) of a polynomial is one of the oldest problems in
mathematics.

Remark The term root is traditional. It refers to the fact that low degree polynomial
equations are usually solved by extraction of roots of certain expressions in the
coefficients.2

Turning to polynomials of several indeterminates, the sets

{(x, y) ∈ R
2 | p(x, y) = 0}

{(x, y, z) ∈ R
3 | p(x, y, z) = 0}

{(x1, x2, . . . , xn) ∈ R
n | p(x1, x2, . . . , xn) = 0}

2The modern terminology applied to the much wider class of functions calls a solution of the
functional equation f (x) = 0 the zero of the function f .
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etc. are called the zero-sets of the respective polynomials. The cases of two and
three variables are especially important as they offer visual images in R

2 and R
3.

Examples for polynomials in the indeterminates x, y are

ax − by − c; 3 x2

a2
+ y2

b2
− 1; 4 x2 − d · y2 − 1, d ∈ N; 5 (x + y)n, n ∈ N; 6

and examples for polynomials in the indeterminates x, y, z are

x3 + y3 + z3 − 3xyz; 7 xn + yn − zn, n ∈ N.8

An example for a polynomial expression in the entities
√

2,
√

3 is (
√

2+√3)6.
Although conceptually different, a polynomial can be transformed into a poly-

nomial expression by replacing its indeterminates by entities, and vice versa, a
polynomial expression can be reduced to a polynomial in the reverse way.

For example, the polynomial expression
√

2
5 + √2 + 1 can be turned into the

polynomial x5 + x + 1, and the polynomial ax2 + bx + c, a, b, c ∈ R, above can

be turned into the polynomial expression a
√

3
2 + b

√
3+ c in the entity

√
3.

As far as the general theory is concerned, it is therefore sufficient to consider
polynomials only.

On the other hand, polynomial expressions arise naturally in various branches of
mathematics; for example, in trigonometry, polynomial expressions in trigonometric
functions, the so-called trigonometric polynomials, play significant roles. (See
Section 11.3.) Similarly, in linear algebra, polynomial expressions in matrix entities,
the so-called matrix polynomials, are objects of primary interest.

The Point-Line Postulate of Birkhoff’s Geometry9 says that, for any two
distinct points, there is a unique line passing through them. Since lines are
given by linear equations (Section 5.2), this implies that, given any two distinct
real numbers x1, x2 ∈ R, x1 �= x2, and y1, y2 ∈ R, there exists a linear
(degree ≤ 1) polynomial p(x) such that p(x1) = y1 and p(x2) = y2. The
concept of Lagrange (interpolation) polynomial generalizes this observation as
follows.

Example 6.1.1 Let x1, x2, . . . , xn ∈ R, 2 ≤ n ∈ N, be distinct, and y1, y2, . . . , yn ∈
R. Then there exists a unique polynomial �(x) of degree < n such that �(xi ) = yi ,
i = 1, 2, . . . , n.

3The zero-set ax − by − c = 0 is the generic equation of a line discussed in Section 5.2.
4The zero-set is the ellipse in normal form to be discussed in Section 8.3.
5x2 − d · y2 − 1 = 0 is Pell’s equation discussed in Section 2.1.
6The expansion of this is the Binomial Formula to be discussed in Section 6.3.
7This polynomial is related to the AM-GM inequality in three indeterminates.
8The zero-set of this polynomial is the so-called Fermat curve related to Fermat’s Last Theorem.
9The first postulate of Euclid’s Elements; see Section 5.1.
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The existence is given by the so-called Lagrange form

�(x) =
n∑

i=1

yi�i (x),

where

�i (x) =
n∏

j=1
j �=i

x − x j

xi − x j
, i = 1, 2, . . . , n.

Clearly, for i = 1, 2, . . . , n, we have �i (xi ) = 1, and �i (x j ) = 0 if j �= i ,
j = 1, 2, . . . , n. It is also clear that the degree of �(x) is less than n.

Finally, note that unicity is a direct consequence of the Factor Theorem (to be
discussed in Section 6.5) since a non-zero polynomial of degree < n cannot have n
distinct roots.

History
The concept of Lagrange polynomial was discovered by the British mathematician Edward Waring
(1736–1798). It must have been known to Euler (as it is a direct consequence of one of his
formulas published a few years later). In 1795 Lagrange published the formula above, and it was
subsequently named after him.

We now discuss some famous examples for evaluating polynomials on integers.

Example 6.1.2 The polynomial p(x) = x2 + x + 41 evaluated at 40 gives

p(40) = 402 + 40+ 41 = 402 + 2 · 40+ 1 = 412 = 1681,

a square, in particular, a composite number. On the other hand, it is an amazing
fact, discovered by Euler in 1772, that the values of p(x) on all the first 40 integers
starting with 0 are prime numbers. They are

p(0) = 41, p(1) = 43, p(2) = 47, p(3) = 53, p(4) = 61, p(5) = 71, p(6) = 83,

p(7) = 97, p(8) = 113, p(9) = 131, p(10) = 151, p(11) = 173, p(12) = 197,

p(13) = 223, p(14) = 251, p(15) = 281, p(16) = 313, p(17) = 347, p(18) = 383,

p(19) = 421, p(20) = 461, p(21) = 503, p(22) = 547, p(23) = 593, p(24) = 641,

p(25) = 691, p(26) = 743, p(27) = 797, p(28) = 853, p(29) = 911, p(30) = 971,

p(31) = 1033, p(32) = 1097, p(33) = 1163, p(34) = 1231, p(35) = 1301,

p(36) = 1373, p(37) = 1447, p(38) = 1523, p(39) = 1601.

A similar example is provided by the polynomial

q(x) = x2 − 79x + 1601 = (x − 40)2 + (x − 40)+ 41,

for which q(n) is prime for n = 1, 2, 3, . . . , 79 (with each prime repeated twice).
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In contrast, an “opposite example” is given by the following:

Example 6.1.3 For the polynomial p(x) = x6 + 1091, the values p(n) with n =
1, 2, . . . , 3905 are composite numbers but

p(3906) = 3, 551, 349, 655, 007, 944, 406, 147

is a prime.
This example needs a computer algebra system. First, for n ∈ N odd, p(n) is

clearly even, so that we need to calculate p(n) only when n = 2m, m ∈ N, is even.
The first ten values are

m (2m)6 + 1091 prime factorization
1 1155 3 · 5 · 7 · 11
2 5187 3 · 7 · 13 · 19
3 47747 7 · 19 · 359
4 263235 3 · 5 · 7 · 23 · 109
5 1001091 3 · 7 · 13 · 19 · 193
6 2987075 52 · 7 · 132 · 101
7 7530627 3 · 13 · 193093
8 1677830 3 · 7 · 13 · 41 · 1499
9 34013315 5 · 7 · 353 · 2753
10 64001091 3 · 7 · 11 · 461 · 601

For the last composite number, we have

p(3905) = 22 · 3 · 72 · 19 · 1133850409 · 279923617.

Turning to the next example, you may have wondered what was the role of the
number of (non-leap) years 365 in the polynomial (1 + x/365)365 noted at the
beginning of this section. The next example is to clarify this.

Example 6.1.4 Suppose we have an initial deposit P in a checking account in a
bank that gives x interest compounded daily. How much will our principal and
interest be after one year?

For a moment, we keep the number n of compounding periods within a year
an indeterminate. After the first period the bank adds P times x/n amount to our
principal, and we end up with the amount

P + P · x

n
= P

(
1+ x

n

)
.

This is our new principal at the beginning of the second period. Thus, after the
second period, we have
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P
(

1+ x

n

) (
1+ x

n

)
= P

(
1+ x

n

)2
.

Assume now that we wait t years. Since there are n · t compounding periods in
t years, we arrive at the Compound Interest Formula giving the compounded
amount (our principal plus interest after t years), the so-called Future Value, as

P
(

1+ x

n

)n·t
.

This is a polynomial in the indeterminate x of degree n · t assuming that the latter is
an integer. (Observe that t can be any (rational) number.)

Finally, the polynomial (1 + x/365)365 gives the future value of a deposit of
P = $1 after one year, t = 1, with daily compounding n = 365.

History
In studying compounded interest, it was Jacob Bernoulli who first considered (1+ 1/n)n for large
n. (This is the idealized situation with principal $1 and 100% interest.) We will see later that, as n
increases indefinitely, this expression approaches the number e.

Returning to the main line, applying the laws of arithmetic, a polynomial p(x)

can be brought to the form

p(x) = an xn + an−1xn−1 + · · · + a1x + a0

as a finite sum of monomials in descending order. Here an , the leading coefficient,
is tacitly assumed to be non-zero so that the degree of p(x) is n. A polynomial p(x)

with leading coefficient 1 is called monic.
As we will see later, the large-scale behavior of a polynomial p(x) is determined

by its leading coefficient. The descending order above is to emphasize this.
Low degree polynomials have specific names and notation.
Polynomials of degree ≤ 1 are called linear,10 and they can be brought to the

point-slope form

p(x) = y0 + m(x − x0).

A degree two polynomial is called quadratic, and it is usually written as a
trinomial

p(x) = ax2 + bx + c.

Polynomials of degree 3, 4, 5, 6, etc. are called cubic, quartic, quintic, sextic,
etc.

Remark 1 The expanded form of a polynomial is not always the most convenient to
reveal its structure; see, for example, (1+ x/365)365 as above.

10Also including constant polynomials.
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Remark 2 At times it is more convenient to write p(x) in ascending order

p(x) = a0 + a1x + · · · + an−1xn−1 + an xn .

This is the preferred form for a general expression of the product of two polynomials
(as we will see shortly), and also when the polynomial is a finite portion of an infinite
power series.

Exercises

6.1.1. Let p(x) = x3− 3x − 2. Determine the polynomial whose roots are those of
p(x) plus 1.

6.1.2. Find all integer solutions of the equation x3 = 2y3 + 4z3.
6.1.3. Let a, b ∈ Z with a �= 0 such that a does not divide b. Show that the

quadratic polynomial ax2 + bx + b − a has no root amongst the natural
numbers.

6.2 Arithmetic Operations on Polynomials

Arithmetic operations such as addition, subtraction, multiplication, and division can
be applied to polynomials.

In this section we discuss the first three of these operations. (Division of
polynomials is more complex, and it is deferred to Section 6.5.) As before, we will
treat polynomials of a single indeterminate in detail with occasional examples of
polynomials in several indeterminates.

Since indeterminates of polynomials obey the same laws of arithmetic as
(real) numbers, addition, subtraction, and multiplication of polynomials are defined
naturally.

The sum of two polynomials is obtained by adding up all the monomials in each
of the polynomials. When adding two polynomials of the same degree, the degree of
the sum is less than or equal to the degree of the polynomials. If the two polynomials
have different degrees, then the degree of the sum is the larger of the degrees of the
participating polynomials.

Subtraction of a polynomial from another is the same as addition of the negative
(in which all monomials changed to their negatives).

Multiplying polynomials follows the distributive law applied repeatedly. The
product of two polynomials is the sum of all possible products of pairs of
monomials that participate in their respective polynomials. The degree of the
product is the sum of the degrees of the participating polynomials.
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More specifically, in the single indeterminate case, consider two polynomials

p(x) = a0 + a1x + a2x2 + · · · + an xn

and

q(x) = b0 + b1x + b2x2 + · · · + bm xm

of degrees n and m, where we used ascending order for convenience.
The sum p(x)+q(x) is the polynomial of degree less than or equal to max(m, n)

whose monomials are the sums of all monomials in p(x) and q(x). The coefficient
ck of the monomial ck xk , 0 ≤ k ≤ max(m, n), in the sum is equal to ak + bk , where
we tacitly assume that undefined coefficients are set to be zero.

To form the product p(x)q(x) of two polynomials p(x) and q(x) as above, each
monomial in p(x) has to be multiplied with each monomial in q(x), and then these
products have to be added. The product p(x)q(x) is a polynomial of degree n + m
written as

p(x)q(x) = c0 + c1x + c2x2 + · · · + cn+m xn+m .

Forming the coefficients ck , 0 ≤ k ≤ n+m, follows the so-called Cauchy Product
Rule (named after Augustin–Louise Cauchy (1789–1857)): The k-th coefficient ck

is the sum of the terms ai b j with i + j = k and 0 ≤ i ≤ n, 0 ≤ j ≤ m. (This
is because the corresponding product of monomials is (ai xi )(b j x j ) = ai b j xi+ j =
ai b j xk .)

Thus, we have

p(x)q(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · + anbm xn+m .

Example 6.2.1 In multiplying polynomials, does the product p(x)q(x) contain at
least as many monomials as p(x) or q(x)?

The answer is no. For example, consider the product (x2−√2x+1)(x2+√2x+
1). Using the Cauchy Product Rule, we multiply each monomial and obtain

(1−√2x + x2)(1+√2x + x2) = 1+ (
√

2−√2)x + (1−√2
2 + 1)x2

+ (
√

2−√2)x3 + x4 = 1+ x4.

We see that the product contains fewer monomials than each of the factors.

Example 6.2.2 Show that, for n ∈ N, we have

(1+ x)(1+ x2)(1+ x4) · · · (1+ x2n
) = 1+ x + x2 + x3 + · · · + x2n+1−1.

This is a simple induction with respect to n ∈ N. For n = 1, we have

(1+ x)(1+ x2) = 1+ x + x2 + x3 = 1+ x + x2 + x22−1.
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For the general induction step n ⇒ n + 1 we use the induction hypothesis and
calculate

(1+ x)(1+ x2)(1+ x4) · · · (1+ x2n
)(1+ x2n+1

)

= (1+ x + x2 + x3 + · · · + x2n+1−1)(1+ x2n+1
)

= (1+ x + x2 + x3 + · · · + x2n+1−1)+ x2n+1
(1+ x + x2 + x3 + · · · + x2n+1−1)

= 1+ x + x2 + x3 + · · · + x2n+1−1 + x2n+1 + x2n+1+1 + · · · + x2n+2−1.

The identity follows.

We continue with examples of polynomials in several indeterminates.

Example 6.2.3 Derive the identity

(−x + y + z)2 + (x − y + z)2 + (x + y − z)2 + (x + y + z)2 = 4(x2 + y2 + z2).

By the Cauchy Product Rule, we have

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx,

and the other three terms can be obtained by replacing x , y, z by their negatives. The
crux is that in the sum of the four terms above all hybrid terms xy, yz, zx cancel.
Hence, counting the pure quadratic terms, we obtain 4(x2 + y2 + z2). The example
follows.

For the next step, recall from Section 3.1 the Finite Geometric Series Formula

1− rn = (1− r)(1+ r + r2 + · · · + rn−1),

where we multiplied out with 1− r and shifted the exponent n down to n − 1.
We now homogenize this formula by substituting r = y/x and multiplying out

by xn . We obtain the following important identity

xn − yn = (x − y)(xn−1 + xn−2 y + · · · + xyn−2 + yn−1), 2 ≤ n ∈ N.

The frequently occurring cases n = 2, 3 are

x2 − y2 = (x − y)(x + y)

x3 − y3 = (x − y)(x2 + xy + y2).

We call these the difference of squares, and the difference of cubes identities.
For n ∈ N odd, replacing y by its negative, we obtain

xn+yn=(x + y)(xn−1 − xn−2 y + · · · − xyn−2 + yn−1), 3 ≤ n ∈ N, n odd.
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In particular, for n = 3, we have

x3 + y3 = (x + y)(x2 − xy + y2).

Remark In Example 6.2.1 above we may have proceeded as

(x2−√2x+1)(x2+√2x+1)=(x2+1−√2x)(x2+1+√2x)=(x2+1)2−(
√

2x)2=x4+1.

An important consequence of the identities above is the following: For any
polynomial p(x) with integer coefficients, and a, b ∈ Z distinct, we have

a − b | p(a)− p(b).

This follows from the identity above. Indeed, letting

p(x) = cn xn + cn−1xn−1 + · · · + c1x + c0, c0, c1, . . . , cn−1, cn ∈ Z,

we have

p(a)− p(b) = cn(an − bn)+ cn−1(a
n−1 − bn−1)+ · · · + c1(a − b).

On the other hand, by the identity above, for each k = 1, . . . , n, we have

ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1).

In particular, we have a − b|ak − bk , and thus a − b|p(a)− p(b).

Example 6.2.4 Let p(x) be a polynomial with integer coefficients.11 If, for n
integers a1, a2, a3, . . . , an ∈ Z, we have p(a1) = a2, p(a2) = a3, . . . , p(an−1) =
an, p(an) = a1 then |a1 − a2| = |a2 − a3| = . . . = |an−1 − an| = |an − a1|.

By the discussion before this example, the conditions on p(x) give

a1 − a2|p(a1)− p(a2) = a2 − a3|p(a2)− p(a3) = . . .

= an−1 − an|p(an−1)− p(an) = an − a1|p(an)− p(a1) = a1 − a2.

The statement follows.

Exercises

6.2.1. Consider the polynomial

p(x) = x5

5
+ x3

3
+ 7x

15
.

Show that p(n) ∈ Z for n ∈ Z.

11A special case (n = 3) was part of a problem in the USA Mathematical Olympiad, 1974.
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6.2.2. Determine 9993.
6.2.3. Solve (1+ x2)(1+ x4) = 4x3.
6.2.4. Let a ∈ R. Solve (x + y)2 = (x − a)(y + a) for x, y.

6.3 The Binomial Formula

In this section we develop a general binomial formula for the expansion of the power
(x + y)n for any natural exponent n ∈ N.

The special cases of quadratic and cubic binomial formulas (n = 2, 3)

(x + y)2 = x2 + 2xy + y2 and (x + y)3 = x3 + 3x2 y + 3xy2 + y3

are well-known and can easily be derived.

Example 6.3.1 Factor the polynomial x2 + 2xy + y2 − z2.
We recognize that the first three terms match with the quadratic binomial formula

above. Using this, we calculate

x2 + 2xy + y2 − z2 = (x + y)2 − z2 = (x + y − z)(x + y + z),

where, in the last step, we used the difference of squares identity.

Example 6.3.2 Show that, for every m ∈ N, there exists n ∈ N such that m + n + 1
is a perfect square, and mn + 1 is a perfect cube.

From the cubic binomial formula above, the second condition is easily satisfied
with n = m2 + 3m + 3 since mn+ 1 = m3 + 3m2 + 3m + 1 = (m + 1)3. This also
works for the first condition since m + n + 1 = m2 + 4m + 4 = (m + 2)2.

To begin with the study of the binomial formula, we take a closer look at how the
quadratic and cubic binomial formulas are derived.

In the quadratic case, we have

(x + y)2 = (x + y)(x + y) = xx + xy + yx + yy.

Combining the middle like terms, we obtain x2 + 2xy + y2.
In the cubic case we have a similar pattern

(x+y)3 = (x+y)(x+y)(x+y) = xxx+xxy+xyx+yxx+xyy+yxy+yyx+yyy.

Combining, we arrive at x3 + 3x2 y + 3xy2 + y3.
One common feature of these expansions is that all the terms have the same

degree. Thus, expanding (x + y)n , all terms have to be of the form xn−k yk , k =
0, . . . , n. Therefore the possible terms are

xn, xn−1 y, xn−2 y2, . . . , x2 yn−2, xyn−1, yn .
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Another common feature of these expansions is that each term comes with unit
coefficient, so that, after combining, the coefficient of each monomial is a natural
number. In the expansion of the power (x+y)n we let Cn

k ∈ N denote the coefficient
of the monomial xn−k yk , k = 0, 1, 2, . . . , n.

Summarizing, so far we have the following

(x + y)n =
n∑

k=0

Cn
k xn−k yk = Cn

0 xn + Cn
1 xn−1 y + · · · + Cn

n−1xyn−1 + Cn
n yn .

Thus, it remains to determine the coefficients Cn
k for all k = 0, 1, 2, . . . , n. To do

this we take a look at the detailed chart:

(x + y)0 = 1
↙ ↘

(x + y)1 = 1x + 1y

↙ ↘ ↙ ↘
(x + y)2 = 1x2 + 2xy + 1y2

↙ ↘ ↙ ↘ ↙ ↘
(x + y)3 = 1x3 + 3x2 y + 3xy2 + 1y3

↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘
(x + y)4 = 1x4 + 4x3 y + 6x2 y2 + 4xy3 + 1y4

↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘
(x + y)5 =1x5 + 5x4 y + 10x3 y2 + 10x2 y3 + 5xy4 + 1y5

. . . . . . . . . . . . . . . . . .

Since we are after the coefficients, we highlighted them by using boldface
(even for the coefficient 1). This is called the Pascal Triangle after the French
mathematician and philosopher Blaise Pascal (1623–1662).

History
The Binomial Formula and the Pascal Triangle were known about two millennia before Pascal
first published them in the Western world. The earliest known record for the general Binomial
Formula (with any power) is from the Indian mathematician Pingala (around 200 BCE) from the
Vedic period. Another Indian mathematician Halayudha (around the 10-th century CE) wrote a
commentary on Pingala’s work which contains the description of the Pascal Triangle. The next
few centuries have witnessed several independent discoveries of these in Persia (Al-Karajı̄ (953–
c. 1029) and Omar Khayyám (1048–1131)) and in China (Jia Xian (c. 1010–1070) and Yang Hui
(1238–1298)).

After a quick glance we realize that along the two sides of the triangle the
coefficients are always 1, that is we have Cn

0 = Cn
n = 1. More importantly, in

the interior of the triangle, at each location of a monomial, the coefficient is the
sum of the coefficients of its top two neighbors in the row above. For example,
the coefficient 10 of the monomial 10x3 y2 is the sum of the coefficients of the
two neighbors above, 4x3 y and 6x2 y2. This is indicated by arrows pointing in
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the southeastern and southwestern directions. The arrows actually carry another
meaning; the southwestern arrow always means multiplication by x , and the
southeastern arrow means multiplication by y.

It is easy to see why this is true if we take a look at the general pattern at an
interior location:

(x + y)n = . . . Cn
k−1xn−(k−1)yk−1 + Cn

k xn−k yk

↘ ↙
(x + y)n+1 = . . . Cn+1

k x (n+1)−k yk

The binomial (x + y)n+1 is obtained from the previous binomial (x + y)n via
multiplication by (x + y):

(x + y)n+1 = (x + y)n(x + y) = (x + y)n x + (x + y)n y.

Thus, the monomials in the expansion of (x + y)n+1 are obtained from the
monomials in the expansion of (x + y)n via multiplications by x and y (and
combining like terms). To obtain the monomial Cn+1

k x (n+1)−k yk , the monomial
Cn

k xn−k yk needs to be multiplied by x (southwestern arrow), and the monomial
Cn

k−1xn−(k−1)yk−1 needs to be multiplied by y (southeastern arrow). There are no
other sources in the top row to contribute to the monomial in the bottom.

As a byproduct, we also see the inductive relation

Cn+1
k = Cn

k + Cn
k−1.

This understanding of the coefficients of the Pascal Triangle is useful for low
values of n. To obtain a better (non-inductive) formula for Cn

k , we need to go back
to our original expansion

(x + y)n =
1︷ ︸︸ ︷

(x + y)

2︷ ︸︸ ︷
(x + y)

3︷ ︸︸ ︷
(x + y) · · ·

n︷ ︸︸ ︷
(x + y) .

On the right-hand side there are n parentheses. To form a term in the expansion,
within each bracket we need to choose an x or a y. The term obtained this way
contributes to Cn

k if and only if we choose y exactly k times, and consequently x
exactly (n − k) times. Thus Cn

k is the number of ways k elements (the y’s) can
be selected out of n elements (the brackets). If we mark the brackets by the first n
positive integers 1, 2, 3, . . . , n as above, then Cn

k is the number of k-element subsets
of the set {1, 2, 3, . . . , n}. Because of this interpretation, the binomial coefficient Cn

k
is usually spelled as “n choose k” and denoted by

Cn
k =

(
n

k

)
, k = 0, 1, 2, . . . , n.

Notice that, in particular, we have
(n

0

) = (nn) = 1.
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History
The notation Cn

k reflects the combinatorial meaning, “combinations” or “choices.” The symbol
(n

k

)
is due to the Austrian mathematician and physicists Andreas Freiherr von Ettingshausen (1796–
1878) used in his book Die combinatorische Analysis als Vorebereitungslehre der theoretischen
höhern Mathematik published in 1826.

With this, our Binomial Formula takes the final form

(x+y)n =
n∑

k=0

(
n

k

)
xn−k yk =

(
n

0

)
xn+

(
n

1

)
xn−1 y+· · ·+

(
n

n − 1

)
xyn−1+

(
n

n

)
yn .

Replacing the indeterminate y by its negative in the Binomial Formula above, we
obtain

(x − y)n =
(

n

0

)
xn −

(
n

1

)
xn−1 y +

(
n

2

)
xn−2 y2 − · · · + (−1)n

(
n

n

)
yn .

Remark In the future, it will be convenient to define
(n

k

) = 0 if k > n or k < 0.
With this,

(n
k

)
is defined for all integers k, n ∈ Z.

There are several immediate properties of the binomial coefficients. First of all,
if we select a k-element subset from {1, 2, 3, . . . , n} then, automatically, the (n −
k)-element complement, the set of elements that have not been selected, becomes
well-defined. Thus, the number of k-element subsets and the number of (n − k)-
element subsets are the same:

(
n

k

)
=
(

n

n − k

)
, k = 0, 1, 2, . . . , n.

Looking back at the Pascal Triangle, we see that this means that it is symmetric with
respect to its middle vertical axis.

With our new notation, the inductive relation above for the coefficients takes the
form

(
n + 1

k

)
=
(

n

k

)
+
(

n

k − 1

)
.

Actually, this also follows easily from our new interpretation of the binomial
coefficients. The binomial coefficient on the left-hand side is the number of ways a
k-element subset can be selected from a set of n+1 elements {1, 2, 3, . . . , n, n+1},
say. There are two kinds of k-element subsets here. First, there are those which do
not contain the last element n+1. The number of this kind of subsets is

(n
k

)
. Second,

there are those which contain n + 1. The number of this kind of subsets is
( n

k−1

)
since, once n + 1 is selected, we need to select only k − 1 additional elements. The
inductive formula follows.

We now tackle our basic question: Is there a non-inductive formula for the
binomial coefficients?
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To answer this question we need to take a more careful look at the selection
process. As before, we let our base set be {1, 2, 3, . . . , n}. To obtain a k-element
subset we need to select the first element. This can be done n ways. Next, we select
the second element. This can be done n − 1 ways since the selection of the first
element reduced the amount of choices by one. These selections are independent so
that the number of ways to select the first element and then the second is n(n − 1).
We continue this way up to k elements, k = 1, 2, . . . , n, and realize that the number
of possible selections is

n(n − 1)(n − 2) · · · (n−k+1)=n(n−1) · · · (n − k + 1)(n − k) · · · 2 · 1
(n − k) · · · 2 · 1 = n!

(n − k)! ,

where we used the factorial notation (Example 0.4.2).
We now realize that this is not exactly what we want since the selection process

was carried out in an order; that is, we know which element was the first, the second,
etc. and the k-th. In other words, this product is the number of ordered sequences of
k-elements of the set {1, 2, 3, . . . , n}. Thus, each k-element subset (with no order) is
over-counted by k! times, the number of permutations of a k-element set. We obtain(

n

k

)
= n!

k!(n − k)! , k = 0, 1, . . . , n,

where, for consistency, we must have 0! = 1.

Remark The quartic binomial formula

(x − y)4 = x4 − 4x3 y + 6x2 y2 − 4xy3 + y4, x, y ∈ R,

(with−y in place of y) gives a (somewhat lesser known) sharpening of the AM-GM
inequality

a + b

2
−√ab ≥ (a − b)2

4(a + b)
, 0 < a, b ∈ R.

Indeed, eliminating the denominator and simplifying, this is equivalent to

a2 + 6ab + b2 ≥ 4(a + b)
√

ab, 0 < a, b ∈ R.

Now, the substitution a = x2 and b = y2 reduces this to (x − y)4 ≥ 0.

Example 6.3.3 How many ways can n one dollar bills be distributed amongst k
people so that each person receives at least one dollar?

We line up the n one dollar bills in a row, and partition them by placing k − 1
separators between them.12 Since there are n − 1 gaps between the adjacent bills

12The graphical interpretation of this and similar combinatorial problems is usually termed as
“stars and bars,” as advocated by the Croatian-American mathematician Willibald Srećko Feller
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that can receive separators, the number of ways to distribute the money amongst k
people is

(n−1
k−1

)
.

Three variations on the theme are as follows:

Example 6.3.4 Given n ∈ N0, find the number of solutions x1, x2, . . . , xk ∈ N0 to
the equation x1 + x2 + · · · + xk = n.

We move up the values of the indeterminates by one, x ′i = xi + 1 ∈ N, i =
1, 2, . . . , k, and realize that the modified equation x ′1 + x ′2 + · · · + x ′k = n + k

patterns the previous example. The number of solutions is therefore
(n+k−1

k−1

)
.

Example 6.3.5 How many distinct monomials do we get when we expand (x1 +
x2 + · · · + xk)

n?
Every term in the expansion is of the form xa1

1 xa2
2 · · · xak

k , where a1, a2, . . . , an ∈
N0 with a1+a2+· · ·+an = n. The previous example gives the answer as

(n+k−1
k−1

)
.

Example 6.3.6 Let k, n ∈ N. How many natural numbers x1, x2, . . . , xk ∈ N satisfy
the equation x1 · x2 · · · xk = 10n?

The factors must have the form xi = 2ai · 5bi , ai , bi ∈ N0, i = 1, 2, . . . , k. The
exponents must satisfy the equations a1+a2+· · ·+ak = n and b1+b2+· · ·+ck = n.

The previous example gives the number of solutions as
(n+k−1

k−1

)2
.

We now briefly return to maps between finite sets. Recall that in Example 0.4.1
we determined the number of injective maps X → Y , |X | = m and |Y | = n, m ≤ n,
m, n ∈ N, as

n(n − 1) · · · (n − m + 1) = n!
(n − m)! =

(
n

m

)
m!,

where we used the binomial coefficient formula above.13

Example 6.3.7 The number of surjective maps X → Y , |X | = m and |Y | = n,
m ≥ n, m, n ∈ N, is

n−1∑
k=0

(−1)k
(

n

k

)
(n − k)m .

The number of all maps X → Y is nm (Example 0.4.1). (This corresponds to
k = 0 in the sum above.) To derive the stated formula, we will count the number of
maps X → Y that are not surjective.

Letting Y = {1, 2, . . . , n}, for i = 1, 2, . . . , n, we denote by Ai the set of
maps X → Y that miss i ∈ Y (that is, i is not in the range). The set of all

(1907–1970). In our case, the n one dollar bills are represented by stars, and the separators are the
bars.
13We also reverted to m instead of k for consistency.
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non-surjective maps X → Y is therefore
⋃n

i=1 Ai . By the Principle of Inclusion-
Exclusion (Example 0.4.4), we have

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅�=J⊂{1,...,n}
(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

A j

∣∣∣∣∣∣ .

Now, for ∅ �= J ⊂ {1, . . . , n}, the intersection
⋂

j∈J A j is the set of all maps
that miss the subset J . These maps therefore must map into the complement Y \ J .

The number of maps X → Y \ J is (n − |J |)m =
∣∣∣⋂ j∈J A j

∣∣∣. By the discussion

on the binomial coefficient above, for each k = 1, . . . , n, the number of k-element
subsets J ⊂ Y , |J | = k, is

(n
k

)
. Putting everything back into the sum above, we

obtain

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n−1∑
k=1

(−1)k+1
(

n

k

)
(n − k)m .

(Note that the term corresponding to k = n vanishes.) Subtracting this from nm

(k = 0), the stated formula follows.

Example 6.3.8 Let n ∈ N. How many distinct monomials do we get when we
expand

(x1 + x2 + x3 + x4 + · · · + x2n−1 + x2n)(x1 − x2 + x3 − x4 + · · · + x2n−1 − x2n)?

Using the difference of squares identity, this expression can be written as

((x1 + x3 + · · · + x2n−1)+ (x2 + x4 + · · · + x2n))

×((x1 + x3 + · · · + x2n−1)− (x2 + x4 + · · · + x2n))

= (x1 + x3 + · · · + x2n−1)
2 − (x2 + x4 + · · · + x2n)2.

Expanded, each square on the right-hand side contains n perfect squares of the
respective indeterminates, and

(n
2

) = n(n − 1)/2 hybrid products of two distinct
indeterminates. Since the two sets of indeterminates in the two squares are disjoint,
we obtain the total of 2(n + n(n − 1)/2) = n(n + 1) monomials.

Example 6.3.9 (Revisited) We return to the limit limn→∞ n
√

n = 1 of Exam-
ple 3.2.8 and give a new proof by the Binomial Formula.

Let an = n
√

n − 1, n ∈ N. Note that, for n ≥ 2, an is positive. We need to show
that limn→∞ an = 0.

By the Binomial Formula, we have

n = (1+ an)n =
n∑

k=0

(
n

k

)
ak

n >

(
n

2

)
a2

n =
n(n − 1)

2
a2

n, 2 ≤ n ∈ N.
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Rewriting this, we obtain

0 < an <

√
2

n − 1
, 2 ≤ n ∈ N.

By the monotonicity of the limit, we have

0 ≤ lim
n→∞ an ≤ lim

n→∞

√
2

n − 1
= 0.

The example follows.

The binomial formula has some interesting special cases.
Letting x = y = 1, we obtain

2n =
n∑

j=0

(
n

j

)
=
(

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

n − 1

)
+
(

n

n

)
.

Actually, this can be seen directly as follows. The right-hand side is the sum of
k-element subsets of the set {1, 2, 3, . . . , n} for all k = 0, 1, 2, . . . , n. This sum is
then the number of all subsets of {1, 2, 3, . . . , n} (regardless the number of elements
in the subsets). On the other hand, selecting a subset from {1, 2, 3, . . . , n} amounts
to make n decisions: Choose 1 or not, choose 2 or not, etc. choose n or not (for this
subset). Each decision has two outcomes, “yes” or “no,” so that the total number of

decisions to select a subset is

n times︷ ︸︸ ︷
2 · 2 · 2 · · · 2 = 2n . This is the number on the left-hand

side.
Another substitution, x = 1 and y = −1, gives the alternating sum

0 =
n∑

j=0

(−1) j
(

n

j

)
=
(

n

0

)
−
(

n

1

)
+
(

n

2

)
− · · · + (−1)n−1

(
n

n − 1

)
+ (−1)n

(
n

n

)
.

The binomial coefficients satisfy many identities; some of these we defer to the
exercises at the end of this chapter.

Example 6.3.10 Let X be a set of n ∈ N elements. Recall that a relation R on X is
a subset R ⊂ X × X . How many relations are there of the form R = A× B, where
A ⊂ B ⊂ X?
We need to count the pairs (A, B) of subsets of X such that A ⊂ B. Let |B| = k,
k = 0, 1, . . . , n. The number of subsets B of X is

(n
k

)
. Once B is chosen, the number

of subsets A of B is 2k . With this, we obtain that the number of pairs (A, B) with
A ⊂ B is

∑n
k=0

(n
k

) · 2k . By the Binomial Formula (x = 1 and y = 2), this is equal
to 3n .
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Example 6.3.11 (Derangements) A permutation f : X → X of a set X of n
elements, 2 ≤ n ∈ N, is called a derangement if no element in X stays fixed
under f ; that is, we have f (x) �= x for all x ∈ X . Determine the number Dn of
derangements of X .

For x ∈ X , let Ax denote the set of permutations that fix the element x . The total
number of derangements is then

Dn = n! −
∣∣∣∣∣
⋃
x∈X

Ax

∣∣∣∣∣ ,

since the number of all permutations of X is n! (Example 0.4.2). On the other hand,
by the Principle of Inclusion-Exclusion (Example 0.4.4), we have

∣∣∣∣∣
⋃
x∈X

Ax

∣∣∣∣∣ =
∑
∅�=J⊂X

(−1)|J |+1

∣∣∣∣∣
⋂
z∈J

Az

∣∣∣∣∣ .

For a given ∅ �= J ⊂ X , the set
⋂

z∈J Az consists of all permutations that fix the
elements in J (and permute the rest of the elements in X \ J ). Hence

∣∣∣∣∣
⋂
z∈J

Az

∣∣∣∣∣ = (n − |J |)!

Since, for a given i = 1, . . . , n, the number of subsets J ⊂ X having i = |J |
elements is

(n
i

)
, we obtain

∣∣∣∣∣
⋃
x∈X

Ax

∣∣∣∣∣ =
n∑

i=1

(−1)i+1
(

n

i

)
(n − i)!

Finally, subtracting this from n! as above, we arrive at the total number of
derangements of X as

Dn =
n∑

i=0

(−1)i
(

n

i

)
(n − i)! = n!

n∑
i=0

(−1)i

i ! .

History
The study of derangements originated in the the work Essay d’analyse sur les jeux de hazard
by Pierre Rémond de Montmort (1678–1719) published in 1708. He determined the number of
derangements in 1713, and so did his friend Nicholas Bernoulli (1687–1759) around the same
time.
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Exercises

6.3.1. Derive the identities (with appropriate ranges of the indeterminates):

i.
(

n − 1

k

)
−
(

n − 1

k − 1

)
= n − 2k

n

(
n

k

)

ii.
(

n

j

)(
n − j

k

)
=
(

n

k

)(
n − k

j

)

iii.
(

n

k

)(
k

l

)
=
(

n

l

)(
n − l

k − l

)

6.3.2. Derive the identities (with appropriate ranges of the indeterminates):14

i.
n∑

j=0

j

(
n

j

)
= n2n−1

ii.
n∑

j=0

j2
(

n

j

)
= (n + n2)2n−2

iii.
k∑

j=0

(
m

j

)(
n − m

k − j

)
=
(

n

k

)

iv.

n∑
j=0

(
n

j

)2

=
(

2n

n

)

v.

n∑
m= j

(
m

j

)(
n − m

k − j

)
=
(

n + 1

k + 1

)

vi.
n∑

m= j

(
m

j

)
=
(

n + 1

j + 1

)

vii.
n∑

j=0

(
m + j

j

)
=
(

m + n + 1

n

)

14These identities are referred to by various names. Some reflect the author, some the location of
the entries in the Pascal Triangle. For example, iii. is called the Vandermonde-convolution, vi. is
the column-sum property, vii. is the SE-diagonal sum property, and viii. is the NW-diagonal sum
property. Note, finally, that these identities are interrelated, for example, iii. implies iv., v. implies
vi., etc.
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viii.
m∑

j=0

(
n − j

m − j

)
=
(

n + 1

m

)

ix.

n∑
j=k

(
n

j

)(
j

k

)
= 2n−k

(
n

k

)

x.

k∑
j=0

(−1) j
(

n

j

)
= (−1)k

(
n − 1

k

)
.

6.3.3. Show that, for any polynomial p(x) of degree ≤ n, n ∈ N, we have

n∑
j=0

(−1) j
(

n

j

)
p( j) = 0.

6.3.4. Show that

[n/2]∑
j=0

(
n − j

j

)
= Fn+1,

where Fn is the nth Fibonacci number.
6.3.5. Use the Binomial Formula to show 1 < a1/n < 1+ a/n, 1 < a ∈ R, n ∈ N.

Conclude that limn→∞ n
√

a = 1, 0 < a ∈ R.
6.3.6. How many arrangements can seven cards have from a deck of standard

playing cards (Example 0.1.6) with strictly increasing rank such that the
fourth card is a 7, and no consecutive cards have the same suite?

6.3.7. Derive the following inductive formula for the number of derangements Dn

(Example 6.3.11):

Dn = (n − 1) (Dn−1 + Dn−2) , 2 ≤ n ∈ N, D0 = 1, D1 = 0.

6.3.8. Let X be a set of n ∈ N elements. Show that the number of ordered pairs
(A, B) of subsets of X with A ⊂ B is 3n .

6.4 Factoring Polynomials

Factoring a polynomial is the reverse of the process of expanding polynomials;
factoring a polynomial amounts to express it as a product of polynomials of lesser
degree. The polynomials appearing in the product are called factors. A factor is
always understood to be non-constant; a polynomial of positive degree.
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We call a polynomial reducible if it can be factored, and irreducible if it cannot
be factored. A simple application of Peano’s Principle of Induction is that every
polynomial possesses a complete factorization; that is, it can be written as a
product of irreducible factors.

Since the complexity of polynomials increases very quickly with the degree,
factorization is a very important technique in the study of polynomials. For example,
if factorization is available then the problem of finding the roots of a polynomial of
a single indeterminate is reduced to that of the factors.

The somewhat crude definition of factorization above is riddled with more
subtle issues. For example, we have seen (Example 6.2.1) that the simple quartic
binomial x4 + 1 has the factorization (x2 − √2x + 1)(x2 + √2x + 1). The
original quartic polynomial has integer coefficients, but, in the factors, the irrational
number

√
2 appeared. This means that even if we started with a polynomial with

integral coefficients, or rational coefficients if we insist on a field, at the end we
obtained polynomial factors whose coefficients are not integral, in fact, not even
rational numbers. We see that if we allow only rational coefficients then the quartic
polynomial above is irreducible, but if we allow real coefficients then it is reducible.

We say that our polynomial is irreducible over Q and reducible over R. What
we learned from this example is that whether a polynomial is reducible or irreducible
depends on the field that the coefficients reside in.

Remark The quadratic polynomial x2 + 1 is irreducible over R since if it were
reducible then it would have linear factors, and any linear factor would have a real
root. This root would also be a root of the original quadratic polynomial which is
impossible since x2+1 ≥ 1 for all x ∈ R. On the other hand, it is possible to extend
R to a larger field, the so-called field of complex numbers C, and if we allow our
coefficients to venture out from R to C then we do have the (complete) factorization
x2 + 1 = (x + i)(x − i), where i is the complex unit satisfying i2 = −1. (The
factorization above actually points to the way to define the field C.)

As an interesting byproduct, we see that, unlike the factorization x2 − y2 =
(x − y)(x + y), the polynomial x2 + y2 is irreducible over R. Indeed, if x2 + y2

were reducible then, substituting y = 1 in the factorization, x2 + 1 would also be
reducible; a contradiction.

We just touched upon a fundamental question of algebra: When factoring, how
much flexibility do we allow for the coefficients to change (fields)?

We agree that all factorizations will take place in the real number field R. The
study of factorizations over the complex field (notably the so-called Fundamental
Theorem of Algebra), and, more generally, the study of how the fields change under
factorizations belongs to Galois Theory.15

There are many beautiful methods and tricks in polynomial factorization. In this
section we discuss some basic factoring methods.

15For a much more detailed account, see the author’s Glimpses of Algebra and Geometry, 2nd ed.
Springer, New York, 2002.
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History
Polynomial factorization using modern symbolism (representing indeterminates and constants by
symbols) could not possibly have come into existence before the 17th century. The first algorithm
for factoring polynomials is due to the German mathematician Hermann Schubert (1848–1911).
Kronecker not only rediscovered the original algorithm of Schubert, but also extended it to
polynomials with several indeterminates. Kronecker also realized that for factorization the field
for the coefficients often needs to be extended.

Example 6.4.1 Factor the polynomial x4 − 20x2 + 4 over the integers Z.
The idea is to use the quadratic binomial formula to write this as the difference

of squares:

x4 − 20x2 + 4 = x4 − 4x2 + 4− 16x2 = (x2 − 2)2 − (4x)2

= (x2 − 4x − 2)(x2 + 4x − 2).

An interesting byproduct of this is the fact that, for all n ∈ N, the number n4 −
20n2 + 4 is always composite.16 Indeed, by the above, we have

n4 − 20n2 + 4 = (n2 + 4n − 2)(n2 − 4n − 2),

and neither factors are equal to±1. (n2±4n−2 = ±1 would mean n(n±4) = 2±1,
which are impossible for n ∈ N.)

The simplest factoring techniques include identifying common multiples and
grouping monomials within the polynomial. We begin here with a simple example
as follows:

Example 6.4.2 Factor the cubic polynomial x3 − x2 + x − 1.

First Solution. We pair the first two terms and the last two terms. This gives x2(x−
1)+1(x−1). Hence (x−1) is a common factor, and we arrive at x3−x2+x−1 =
(x − 1)(x2 + 1).

Second Solution. We write this polynomial as −(1 − x + x2 − x3) and recognize
a finite geometric series with ratio −x (in the parentheses). After simplification,
the Finite Geometric Series Formula gives x4−1 = (x+1)(x3− x2+ x−1). On
the other hand, the polynomial on the left-hand side can be written as a difference
of squares

x4 − 1 = (x2)2 − 1 = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).

Finally, we cancel the initial factor (x + 1), and arrive at the factorization x3 −
x2 + x − 1 = (x − 1)(x2 + 1).

Example 6.4.3 Show that 4x − x4 ≤ 3, x ∈ R.
The crux here is to factor the quartic polynomial p(x) = x4 − 4x + 3 by adding

and subtracting suitable terms

16See also the Crux Mathematicorum (Canadian Mathematical Society), June/July 1978.
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p(x) = x4− 4x + 3 = x4− 2x2+ 1+ 2x2− 4x + 2 = (x2− 1)2+ 2(x − 1)2 ≥ 0.

The example follows.

The next example is somewhat subtle and will be important later:

Example 6.4.4 Factor the quintic polynomial x5 + x − 1.
This polynomial does not have monomials of degrees 2, 3, and 4. We insert them

in opposite pairs

x5 + x − 1 = x5 − x4 + x3 + x4 − x3 + x2 − x2 + x − 1.

We now group and factor

x5 + x − 1 = (x5 − x4 + x3)+ (x4 − x3 + x2)− (x2 − x + 1)

= x3(x2 − x + 1)+ x2(x2 − x + 1)− (x2 − x + 1)

= (x3 + x2 − 1)(x2 − x + 1).

Remark We may wonder if the last product is the complete factorization of the
quintic x5 + x − 1. It is not. While the (second) quadratic factor is irreducible
(over R), the (first) cubic factor can further be split into a linear factor and another
quadratic factor. We will discuss this later in more details.

For polynomials of several indeterminates, we sporadically encounter factoriza-
tion problems where we can use our basic identities above. Here we assemble a few
illustrative examples.

Example 6.4.5 Factor the polynomial x4 − y4.
We use the difference of squares identity as follows:

x4 − y4 = (x2)2 − (y2)2 = (x2 − y2)(x2 + y2) = (x − y)(x + y)(x2 + y2).

A more illuminating example is the following:

Example 6.4.6 Factor the quartic polynomial x4 + y4.
We may initially be discouraged by noticing that, with the substitutions a = x2

and b = y2, our polynomial can be written as x4 + y4 = (x2)2 + (y2)2 = a2 + b2,
and we have seen above that a2 + b2 is irreducible.

To introduce a different idea, we add and subtract the term 2x2 y2, group, and use
our basic identities:

x4 + y4 = x4 + 2x2 y2 + y4 − 2x2 y2 = (x2)2 + 2x2 y2 + (y2)2 − 2x2 y2

= (x2 + y2)2 − (
√

2xy)2 = (x2 + y2 −√2xy)(x2 + y2 +√2xy).
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Factoring polynomials of higher degree with simple structure is based on
reducing their monomials to lower degrees.

Example 6.4.7 Factor the sextic polynomial x6 − y6.
We calculate

x6 − y6 = (x3)2 − (y3)2 = (x3 − y3)(x3 + y3)

= (x − y)(x2 + xy + y2)(x + y)(x2 − xy + y2),

where in the last step we used our basic cubic identities.

Example 6.4.8 Factor the quartic polynomial x4 + x2 y2 + y4.
We can use the method of Example 6.4.6 as follows:

x4 + x2 y2 + y4 = (x2 + y2)2 − x2 y2 = (x2 + xy + y2)(x2 − xy + y2).

A different method is the following. Substituting a = x2 and b = y2, our
polynomial becomes x4+ x2 y2+ y4 = a2+ ab+ b2. This is the quadratic factor in
the identity a3−b3 = (a−b)(a2+ab+b2). Returning to our original indeterminates
x and y, we thus have

x6 − y6 = (x2 − y2)(x4 + x2 y2 + y4) = (x − y)(x + y)(x4 + x2 y2 + y4).

On the other hand, by the previous example, we have

x6 − y6 = (x − y)(x2 + xy + y2)(x + y)(x2 − xy + y2).

Comparing these two results, we arrive at the factorization

x4 + x2 y2 + y4 = (x2 + xy + y2)(x2 − xy + y2).

Factorization is an indispensable tool in solving equations with several indeter-
minates. The following example illustrates this.

Example 6.4.9 Find all integer solutions x, y, z ∈ Z of the equation17

x3 − y3 + z3 = (x − y + z)3.

We rewrite this as

x3 − y3 = (x − y + z)3 − z3

17A variant of this problem is in the Crux Mathematicorum (Canadian Mathematical Society),
April 1979.
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and factor

(x − y)(x2 + xy + y2) = (x − y)((x − y + z)2 + (x − y + z)z + z2).

This gives x = y, and

x2 + xy + y2 = (x − y + z)2 + (x − y + z)z + z2.

Expanding and simplifying, the equation reduces to (z−y)(z+x) = 0. We conclude
that the general solution is x = y, or y = z, or x = −z, and the missing variable is
arbitrary.

Example 6.4.10 Given that x2 + y2 + z2 = 1, x, y, z ∈ R, what is the minimum
value of xy + yz + zx?18

We have

0 ≤ (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 1+ 2(xy + yz + zx).

Hence the minimum value is −1/2.

Exercises

6.4.1. Factor the polynomial x3 y3 − x3 − y3 + 1.
6.4.2. For a given a ∈ R, solve (x + 1)(x + a)(x + a + 2)(x + 2a + 1) = a2.

6.5 The Division Algorithm for Polynomials

In Section 1.3 we introduced and studied the division algorithm for integers. There
is also a division algorithm for polynomials.

Division Algorithm19 (Polynomials). For any polynomials n(x) and d(x) �= 0,
there exist unique polynomials q(x) and r(x) such that

n(x) = q(x) · d(x)+ r(x),

18This example is usually treated in multivariate calculus as a simple example of the Lagrange
multipliers method. It was also posed as a problem (without the use of calculus) in the M A�

National Convention, 1987.
19Sometimes called “Euclidean Division.” Since the proof captures the pivotal step of the
associated computational algorithm, usually termed as the “Long Division Algorithm,” and also
due to the close analogy with integers, we kept the term “Division Algorithm” for polynomials as
well.
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where

r(x) = 0 or deg r(x) < deg d(x).

Remark The polynomial n(x) is the dividend and the non-zero polynomial d(x)

is the divisor. Upon division we obtain the quotient q(x) and the remainder r(x)

satisfying the division algorithm formula above.

Proof We may assume that deg d(x) > 0. The proof of existence is by induction
with respect to the degree of the dividend n(x). (If n(x) = 0 then q(x) = r(x) = 0.)

If deg n(x) = 0, n(x) �= 0, then q(x) = 0 and r(x) = n(x), and the division
algorithm formula follows.

For the general induction step 0, 1, 2, . . . , n − 1 ⇒ n assume that the division
algorithm formula holds for all polynomials n(x) with deg n(x) < n, n ∈ N.

Let n(x) be a polynomial of degree n. We set

n(x) = an xn + an−1xn−1 + · · · + a0, an �= 0,

and

d(x) = bm xm + bm−1xm−1 + · · · + b0, bm �= 0.

If n < m, then q(x) = 0 and n(x) = r(x) satisfy the division algorithm formula.
Thus, we may assume n ≥ m.

We have

an

bm
xn−md(x) = an xn + lower order terms

Since the leading term of this polynomial is the same as that of n(x), the polynomial

n(x)− an

bm
xn−md(x)

has degree less than n. The induction hypothesis applies, and we have

n(x)− an

bm
xn−md(x) = q ′(x) · d(x)+ r(x),

where either r(x) = 0 or deg r(x) < deg d(x). Rearranging, we obtain

n(x) =
(

an

bm
xn−m + q ′(x)

)
d(x)+ r(x).

Existence of the division algorithm follows with

q(x) = an

bm
xn−m + q ′(x).
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To show unicity, assume that

n(x) = q(x) · d(x)+ r(x) = q ′(x) · d(x)+ r ′(x),

where r(x) and r ′(x) are either zero or have degrees less than the degree of d(x).
These give

(q(x)− q ′(x))d(x) = r ′(x)− r(x).

The degree of the polynomial on the right-hand side is less than the degree of d(x).
The only way this is possible is that q(x) = q ′(x). This implies r(x) = r ′(x).
Unicity of the division algorithm follows.

Starting with a dividend n(x) and a divisor d(x), the process that results in the
quotient q(x) and remainder r(x) is via the well-known Long Division Algorithm.
This algorithm is based on progressively matching the leading terms of n(x) and its
successors with the leading term of d(x), and it is essentially contained in the main
induction step of the proof above.

Example 6.5.1 What is the sum of all n ∈ Z such that n2 + 2n + 2 divides n3 +
4n2 + 4n − 14?

We replace n by the real indeterminate x ∈ R to obtain polynomials. We divide
the polynomial x3 + 4x2 + 4x − 14 by x2 + 2x + 2 using long division:

x + 2

x2 + 2x + 2
)

x3 + 4x2 + 4x − 14
− x3 − 2x2 − 2x

2x2 + 2x − 14
− 2x2 − 4x − 4

− 2x − 18

In terms of the original n ∈ Z, this gives

n3 + 4n2 + 4n − 14 = (n2 + 2n + 2)(n + 2)− (2n + 18), n ∈ Z.

The divisibility requirement implies n2 + 2n + 2|2n + 18, and hence |2n + 18| ≥
|n2 + 2n + 2| or 2n + 18 = 0. Since n2 + 2n + 2 = (n + 1)2 + 1 > 0, the
inequality reduces to ±(2n + 18) > n2 + 2n + 1. The negative sign is clearly not
realized, so that (with the positive sign) we end up with−4 ≤ n ≤ 4. Of these values
the divisibility condition gives n = −4,−2,−1, 0, 1, 4. In addition, 2n + 18 = 0
gives n = −9, and this also satisfies the divisibility condition. With these the sum
is −11.
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Example 6.5.2 Perform the multiplication in the shortest20 possible way in expand-
ing the product:

(1+ x + x2 + x3 + x4 + x5)(1− x + x2 − x3 + x4 − x5).

We use the Finite Geometric Series Formula as follows:

1+x+x2+x3+x4+x5 = x6 − 1

x − 1
and 1−x+x2−x3+x4−x5 = − x6 − 1

x + 1
,

where the second formula is obtained from the first by replacing x with its negative
−x . Multiplying, we obtain

(1+x+x2+x3+x4+x5)(1−x+x2−x3+x4−x5)=− (x6 − 1)2

x2 − 1
=− x12 − 2x6 + 1

x2 − 1
.

We divide x12 − 2x6 + 1 by x2 − 1 using long division, and get

x12 − 2x6 + 1 = (x2 − 1)(x10 + x8 + x6 − x4 − x2 − 1).

Since we have a zero remainder, we arrive at

(1+x+x2+x3+x4+x5)(1−x+x2−x3+x4−x5) = −x10−x8−x6+x4+x2+1.

The special case of the Long Division Algorithm when the divisor is linear is
of great interest. In this case the process can be compressed into a much shorter
algorithm called Synthetic Division.

If d(x) = x − c, c ∈ R, then, for a given dividend n(x) of degree n, the Division
Algorithm gives

n(x) = (x − c)q(x)+ r,

where the remainder r ∈ R must be a constant (since the divisor is linear).
We now let n(x) = an xn + an−1xn−1 + · · · + a1x + a0 and q(x) = bn−1xn−1 +

bn−2xn−2 + · · · + b1x + b0 and calculate

an xn + an−1xn−1 + · · · + a1x + a0

= (x − c)(bn−1xn−1 + bn−2xn−2 + · · · + b1x + b0)+ r

= bn−1xn + (bn−2 − cbn−1)xn−1 + · · · + (b0 − cb1)x + (r − cb0).

20Expanding and using the Cauchy Product Rule would amount to work out 36 terms.
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A simple comparison of coefficients gives

an = bn−1

an−1

. . .

a1 = b0 − cb1

a0 = r − cb0.

Inverting, we obtain

bn−1 = an

bn−2 = an−1 + cbn−1

. . .

b0 = a1 + cb1

r = a0 + cb0.

The whole process with all these data can be conveniently tabulated as follows:

an an−1 an−2 · · · a1 a0

+ ↓ + ↓ · · · + ↓ + ↓
c ↓ cbn−1 cbn−2 · · · cb1 cb0

bn−1 ↗ bn−2 ↗ bn−3 · · · b0 ↗ r

The quotient can then be reconstructed from the bottom register as q(x) =
bn−1xn−1 + bn−2xn−2 + · · · + b1x + b0 while the remainder r appears as the last
entry.

Example 6.5.3 What is the largest n ∈ N such that n3− 100 is divisible by n− 10?
Once again we replace n ∈ N by the real indeterminate x ∈ R. We use synthetic

division to divide the cubic polynomial x3 − 100 by x − 10. We obtain21

1 0 0 − 100
10 10 100 1000

1 10 100 900

This gives

x3 − 100

x − 10
= x2 + 10x + 100+ 900

x − 10
.

Going back to x = n ∈ N, we see that n = 910.

21Note the somewhat different layout of the synthetic division in LaTex.
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A polynomial p(x) can be evaluated at a number c ∈ R by substitution to obtain
p(c). The polynomial p(x) can also be divided by x − c, and the remainder r will
be a constant (since the divisor is linear). By the Remainder Theorem, these two
numbers are equal.
Remainder Theorem. Let c ∈ R. When a polynomial p(x) is divided by the linear
polynomial x − c, then the remainder of the division is equal to p(c).

Proof This is an immediate consequence of the Division Algorithm

p(x) = (x − c)q(x)+ r.

Substituting x = c, we obtain r = p(c).
A typical application of the Remainder Theorem is to obtain the value of a

polynomial at a number by performing a usually faster synthetic division.

Example 6.5.4 (Revisited) In Example 6.1.2 we can use synthetic division to obtain
the values of the polynomial x2 + x + 41 at c = 38, 39, 40 as follows:

1 1 41
38 38 1482

1 39 1523

1 1 41
39 39 1560

1 40 1601

1 1 41
40 40 1640

1 41 1681

In the special case when the remainder is zero, r = p(c) = 0, then the divisor
x − c becomes a factor of p(x). This, the so-called Factor Theorem, is of great
importance since it provides a link between the roots of a polynomial and its linear
factors.
Factor Theorem. A number c ∈ R is a root of a polynomial p(x) if and only if
x − c divides p(x).

The Factor Theorem along with synthetic division can be used to obtain some of
our earlier identities. To illustrate this we return to Example 6.4.2:

Example 6.5.5 (Revisited) Derive the complete factorization of the cubic polyno-
mial x3 − x2 + x − 1.

Clearly, x = 1 is a root since 13−12+1−1 = 0. We now use synthetic division
as follows

1 − 1 1 − 1
1 1 0 1

1 0 1 0

The coefficients of the quotient are displayed in the bottom register, q(x) = x2 + 1,
and the remainder is zero. This gives the factorization

x3 − x2 + x − 1 = (x − 1)(x2 + 1).
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As for another simple example, 1 is clearly a root of the polynomial p(x) =
xn − 1. Performing synthetic division

1 0 0 · · · 0 −1
1 1 1 · · · 1 1

1 1 1 · · · 1 0

we obtain the quotient q(x) = xn−1+xn−2+· · ·+x+1. All these can be compactly
expressed via the factorization

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1).

Dividing by x − 1 (assuming x �= 1) and moving up the value of n by one, we
rediscover the Finite Geometric Series Formula

1+ x + x2 + · · · + xn−1 + xn = 1− xn+1

1− x
.

As demonstrated previously, this formula has many beautiful applications. As
another illustrative example, a quick look gives the following identity

(x + 1)(1+ x2+ x4+· · ·+ x2n−2) = (xn + 1)(1+ x + x2+· · ·+ xn−1), n ∈ N.

Indeed, multiplication by x in the first factor on the left-hand side gives the odd
power terms, while multiplication by xn in the first factor on the right-hand side
gives the portion of the geometric sequence from the exponents n to 2n − 1.

This identity can also be obtained by a less ad hoc way as follows. The Finite
Geometric Series Formula gives

xn − 1 = (x − 1)(1+ x + x2 + · · · + xn−1).

Replacing x by x2, we also have

x2n − 1 = (x2)n − 1 = (x2 − 1)(1+ x2 + (x2)2 + · · · + (x2)n−1)

= (x2 − 1)(1+ x2 + x4 + · · · + x2n−2).

Combining these with x2n − 1 = (xn − 1)(xn + 1) and x2 − 1 = (x − 1)(x + 1),
the identity above follows.

The next example is a direct consequence of this:22

Example 6.5.6 For what n ∈ N (if any) is 1 + x + x2 + · · · + xn−1 a factor of
1+ x2 + x4 + · · · + x2n−2?

22See also the Mathematical Olympiad Program, 1997.
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By the identity above, 1 + x2 + x4 + · · · + x2n−2 is divisible by 1 + x + x2 +
· · · + xn−1 if and only if −1 is a root of xn + 1 if and only if n ∈ N is odd.

An immediate and important consequence of the Factor Theorem is that a degree
n polynomial p(x) can have at most n (real) roots.

Before showing this we introduce the following definition. A root c of a
polynomial p(x) has multiplicity m ∈ N if

p(x) = (x − c)mq(x) and q(c) �= 0.

By the Factor Theorem, m ∈ N is the largest integer such that (x−c)m divides p(x)

(with zero remainder). Clearly, the quotient polynomial q(x) has degree n − m.
The process of dividing the polynomial by the root factor can be performed

inductively. If c1 is a root of p(x) with multiplicity m1, then we have

p(x) = (x − c1)
m1 p1(x),

where the quotient p1(x) (renamed) has degree n − m1. Now, if c2 is another root
of p(x) (different from c1), then we have

p(c2) = (c2 − c1)
m1 p1(c2) = 0.

Since c1 �= c2 we see that c2 is a root of p1(x). If c2 is of multiplicity m2 (as a root
of p1(x) and hence also as a root of p(x)) then, dividing by the corresponding root
factor, we obtain

p(x) = (x − c1)
m1(x − c2)

m2 p2(x),

where the quotient p2(x) is of degree n − m1 − m2. This process must end after
finitely many steps, and we obtain

p(x) = (x − c1)
m1(x − c2)

m2 · · · (x − ck)
mk q(x),

where q(x) has no real roots. Since the degree of q(x) is n−m1−m2−· · ·−mk ≥ 0,
we obtain

m1 + m2 + · · · + mk ≤ n.

This is actually a stronger statement than the one we made above: A degree n
polynomial has at most n roots counted with multiplicity.

An illustrative example for roots with multiplicity is as follows:

Example 6.5.7 For n ∈ N, consider the degree n + 1 polynomial p(x) = xn+1 −
(n+ 1)x + n. Clearly, c = 1 is a root. We perform synthetic division of p(x) by the
corresponding root factor x − 1:
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1 0 0 · · · 0 −(n + 1) n
1 1 1 · · · 1 1 −n

1 1 1 · · · 1 −n 0

We obtain

p(x) = xn+1 − (n + 1)x + n = (x − 1)(xn + xn−1 + · · · + x − n).

We see that the quotient still has c = 1 as a root.
Performing yet another synthetic division, we obtain

1 1 1 · · · 1 1 −n
1 1 2 · · · n − 2 n − 1 n

1 2 3 · · · n − 1 n 0

We arrive at the factorization

p(x) = xn+1−(n+1)x+n = (x−1)2(xn−1+2xn−2+3xn−3+· · ·+(n−1)x+n).

Since c = 1 is not a root of the quotient, we conclude that it is a root of p(x) with
multiplicity 2.

As an interesting consequence, we obtain

lim
x→1

xn+1 − (n + 1)x + n

(x − 1)2 = 1+ 2+ · · · + n = Tn = n(n + 1)

2
,

where Tn , n ∈ N, is the nth triangular number discussed in Section 0.4.

A somewhat more involved variation on the theme (of the last limit) is the
following:

Example 6.5.8 Given m < n, m, n ∈ N, calculate the limit

lim
x→1

(
m

xm − 1
− n

xn − 1

)
.

We rewrite the expression in the limit as follows

m

xm − 1
− n

xn − 1
= m(xn − 1)− n(xm − 1)

(xn − 1)(xm − 1)

m(xn − 1)− n(xm − 1)

(x − 1)2(xn−1 + xn−2 + · · · + x + 1)(xm−1 + xm−2 + · · · + x + 1)
.

The crux is that the polynomial numerator m(xn−1)−n(xm−1) has x = 1 as a
root with multiplicity 2. First, we use the Finite Geometric Series Formula to divide
the numerator by x − 1 and obtain
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m

xm − 1
− n

xn − 1

= m(xn−1 + xn−2 + · · · + x + 1)− n(xm−1 + xm−2 + · · · + x + 1)

(x − 1)(xn−1 + xn−2 + · · · + x + 1)(xm−1 + xm−2 + · · · + x + 1)

= m(xn−1 + xn−2 + · · · + xm)− (n − m)(xm−1 + xm−2 + · · · + x + 1)

(x − 1)(xn−1 + xn−2 + · · · + x + 1)(xm−1 + xm−2 + · · · + x + 1)

Second, we use synthetic division to divide the numerator of the last expression by
x − 1 and obtain the quotient

mxn−2 + 2mxn−3 + · · · + (n − m)mxm−1

+(n − m)(m − 1)xm−2 + (n − m)(m − 2)xm−3 + · · · + (n − m).

This, and the factor (xn−1 + xn−2 + · · · + x + 1)(xm−1 + xm−2 + · · · + x + 1) in
the denominator in the last expression are non-zero at x = 1. We obtain

lim
x→1

(
m

xm − 1
− n

xn − 1

)

= m(1++2+ · · · + (n − m))+ (n − m)((m − 1)+ (m − 2)+ · · · + 1)

nm
.

We now use the formula 1+ 2+ · · ·+ k = k(k+ 1)/2, k ∈ N, for the nth triangular
number Tn in two instances (Section 0.4), for k = n−m and k = m− 1, and finally
obtain

lim
x→1

(
m

xm − 1
− n

xn − 1

)
= m · (n−m)(n−m+1)

2 + (n − m) · (m−1)m
2

nm
= n − m

2
.

There are many problems in mathematical contests involving some given values
of a polynomial and asking to find the value of the polynomial in yet another
value. Although this seems to relate to the Lagrange interpolation polynomial in
Example 6.1.1, the solution is often effected by constructing another polynomial.
The following example illustrates this.

Example 6.5.9 Let a, b ∈ R, and p(x) a degree n polynomial such that p(1) =
p(2) = · · · = p(n) = a and p(n + 1) = b. Find p(0).

By the first condition, 1, 2, . . . , n are roots of the polynomial q(x) = p(x) − a.
Since q(x) also has degree n, we have q(x) = c(x−1)(x−2) · · · (x−n), where c ∈
R is the leading coefficient of q(x). Evaluating q(x) at n+ 1, we obtain q(n+ 1) =
c · n! = b, and hence c = b/n!. This gives q(x) = (b/n!)(x − 1)(x − 2) · · · (x − n).
Finally, we arrive at p(0) = a+q(0) = a+b(−1)(−2) · · · (−n)/n! = a+(−1)n ·b.
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Example 6.5.10 Determine a, b ∈ R such that the quartic polynomial p(x) = x4−
24x3 + 54x2 + ax + b has two double roots.23

Letting r, s ∈ R denote the double roots, by assumption, we have

p(x) = x4−24x3+54x2+ax+b = (x−r)2(x−s)2 = (x2−2r x+r2)(x2−2sx+s2).

Expanding and comparing coefficients, we obtain

r + s = 12 and r2 + 4rs + s2 = 54.

Subtracting the square of the first equation from the second, we get rs = −45. This,
along with the first equation, give r = 15 and s = −3 (or r = −3 and s = 15).
Thus, our polynomial rewrites as

p(x)=x4−24x3+54x2+ax+b = (x−15)2(x+3)2=(x2−30x+225)(x2+6x+9).

Once again, expanding and comparing coefficients, we obtain

a = −30 · 9+ 225 · 6 = 1080 and b = 225 · 9 = 2025.

As a simple application of the Division Algorithm, we now claim that, for any
polynomial n0(x) of degree ≤ k − 1 and c ∈ R, there exist A1, A2, . . . , Ak ∈ R

such that

n0(x)

(x − c)k
= A1

x − c
+ A2

(x − c)2
+ · · · + Ak

(x − c)k
.

This is a special case of the partial fraction decomposition to be discussed in
Section 9.2.

For the proof, we eliminate the fractions by multiplying both sides by (x − c)k ,
and obtain the equivalent form

n0(x) = A1(x − c)k−1 + A2(x − c)k−2 + · · · + Ak−1(x − c)+ Ak .

Now, it is clear that the coefficients A1, A2, . . . , Ak ∈ R are those of the expansion
of the polynomial n0(x + c) into powers of x . The claim follows.

Exercises

6.5.1. Find all real roots of the sextic polynomial

p(x) = x6 − x5 − 3x4 + 2x3 + 3x2 − x − 1.

23A similar problem (to calculate only a + b) was in the M A� National Convention, 1991.
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6.5.2. Find all natural numbers n ∈ N such that n + 5 divides n2 + 15.
6.5.3. For n ∈ N, let

p(x) = xn+2 + xn+1 − (n + 1)2x2 + (2n(n + 1)− 1)x − n2.

Show that p(x) = (x − 1)3q(x) where

q(x) = 12 · xn−1 + 22 · xn−2 + · · · + (n − 1)2 · x + n2.

In particular

lim
x→1

xn+2 + xn+1 − (n + 1)2x2 + (2n(n + 1)− 1)x − n2

(x − 1)3

= 12 + 22 + · · · + (n − 1)2 + n2 = n(n + 1)(2n + 1)

6
.

6.5.4. Factor the polynomial x10 + x5 + 1 into a product of two factors.

6.6 Symmetric Polynomials

Polynomials can be composed to form other polynomials. In general, if

p1(x1, . . . , xn), p2(x1, . . . , xn), pm(x1, . . . , xn),

are polynomials in the indeterminates x1, . . . , xn , and q(u1, . . . , um) is a polyno-
mial in the indeterminates u1, . . . , um , then we can form the composition

q(p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)).

This composition is a polynomial is the indeterminates x1, . . . , xn .
We have already seen simple examples of this. For n ∈ N, the polynomial (x +

y)n (in the binomial formula) is the composition of the linear polynomial p(x) =
x + y and the power function pn(u) = un . In another example, the polynomial
(1+ x/365)365 is the composition of the linear polynomial p(x) = 1+ x/365 and
the power function p365(u) = u365. In this section we will discuss an important
application for symmetric polynomials.

A polynomial p(x1, . . . , xn) is called symmetric if it remains the same under any
permutation of the indeterminates; that is, if p(xπ(1), . . . , xπ(n)) = p(x1, . . . , xn),
for any permutation π : {1, . . . , n} → {1, . . . , n}.
Example 6.6.1 The polynomial (x + y)n , n ∈ N, is symmetric. The polynomial
x2/a2 + y2/b2 − 1 is symmetric if and only if a = b. In three indeterminates, the
polynomial x3 + y3 + z3 − 3xyz is symmetric while xn + yn − zn , n ∈ N, is not.
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We define the elementary symmetric polynomials sk(x1, . . . , xn), k =
1, . . . , n, in the n indeterminates x1, . . . , xn by

sk(x1, . . . , xn) =
∑

1≤ j1<···< jk≤n

x j1 · · · x jk .

(The sum is over all products of k-element subsets of the indeterminates x1, . . . , xn .)
More explicitly, we have

s1(x1, . . . , xn) =
n∑

j=1

x j = x1 + · · · + xn

s2(x1, . . . , xn) =
∑

1≤ j<k≤n

x j xk = x1x2 + · · · + xn−1xn

· · · · · ·
sn(x1, . . . , xn) = x1 · · · xn,

and we add the constant polynomial s0(x1, . . . , xn) = 1 for completeness.
We now introduce the concept of homogeneity for polynomials that will be useful

in many instances in the future. A polynomial p(x1, . . . , xn) is called homogeneous
of degree d ∈ N0 if

p(t x1, . . . , t xn) = td p(x1, . . . , xn), t ∈ R.

Clearly, for k = 0, 1, . . . , n, the elementary symmetric polynomial
sk(x1, . . . , xn) is homogeneous of degree k.

It is also clear that any polynomial p(x1, . . . , xn) can be written uniquely as
the sum of homogeneous polynomials (of different degrees). We call these the
homogeneous components of p(x1, . . . , xn). The degree d homogeneous compo-
nent of a polynomial p(x1, . . . , xn) is simply the sum of all degree d monomials in
p(x1, . . . , xn).

Finally, since permuting the indeterminates in a monomial does not change
its degree, in the decomposition of a symmetric polynomial p(x1, . . . , xn) into
homogeneous components, each homogeneous component is also symmetric.

Fundamental Theorem on Symmetric Polynomials. Let p(x1, . . . , xn) be a
symmetric polynomial. Then there exists a unique polynomial q(u1, . . . , un) such
that

p(x1, . . . , xn) = q(s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)).

Proof By the observation above, without loss of generality, we may restrict
ourselves to homogeneous symmetric polynomials.
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The proof is by Peano’s Principle of Induction with respect to both the number of
variables n ∈ N and the degree d ∈ N (of homogeneity). The theorem clearly holds
for n = 1 and any degree d ∈ N0, and also for any n ∈ N and degrees d = 0, 1.

Assume that the theorem holds for all homogeneous symmetric polynomials of
degree less than d, 2 ≤ d ∈ N, and having less than n, 2 ≤ n ∈ N, indeterminates.

Let p(x1, . . . , xn) be a degree d homogeneous symmetric polynomial. We first
split the polynomial as

p(x1, . . . , xn) = p0(x1, . . . , xn)+ x1 · · · xn · p1(x1, . . . , xn),

where p0(x1, . . . , xn) is the sum of those monomials in p(x1, . . . , xn) that have
at least one indeterminate from {x1, . . . , xn} missing. We call p0(x1, . . . , xn) the
lacunary part of p(x1, . . . , xn). Since the rest of the monomials have all the
indeterminates x1, . . . , xn present, these monomials are multiples of the product
x1 · · · xn . Thus, the splitting above follows. Note that if d < n then p1 = 0.

Clearly, the lacunary part p0(x1, . . . , xn) is itself symmetric, and hence so is
p1(x1, . . . , xn).

Moreover, the sum of the monomials in the lacunary part p0(x1, . . . , xn) in which
the indeterminate xn is missing is the polynomial p(x1, . . . , xn−1, 0).

It is an important fact that the polynomial p(x1, . . . , xn−1, 0) uniquely deter-
mines the lacunary part p0(x1, . . . , xn). In other words, if p′(x1, . . . , xn) is another
symmetric homogeneous polynomial (of degree d) such that p(x1, . . . , xn−1, 0) =
p′(x1, . . . , xn−1, 0), then we have p0(x1, . . . , xn) = p′0(x1, . . . , xn). This follows
from symmetry. Indeed, consider any monomial in p0(x1, . . . , xn). It has (at
least) one of the indeterminates missing, xi , i = 1, . . . , n, say, and therefore
any permutation that carries i to n, also carries the respective monomial to
one of the monomials in p(x1, . . . , xn−1, 0). Now, since p(x1, . . . , xn−1, 0) =
p′(x1, . . . , xn−1, 0), this transformed monomial also appears in p′(x1, . . . , xn−1, 0).
The inverse of the permutation carries this back to the original monomial, and we
see that this monomial is also in p′0(x1, . . . , xn). The claim follows.

Since the polynomial p0(x1, . . . , xn−1, 0) contains only n − 1 indeterminates,
the induction hypothesis applies. Thus, we have

p0(x1, . . . , xn−1, 0) = q0(s1(x1, . . . , xn−1), . . . , sn−1(x1, . . . , xn−1))

for some polynomial q0(v1, . . . , vn−1).
Consider now the polynomial

r(x1, . . . , xn) = q0(s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn))

in the indeterminates x1, . . . , xn , where we moved up the number of variables
in the elementary symmetric polynomials. This polynomial is symmetric and
homogeneous of degree d. Moreover, we have

r(x1, . . . , xn−1, 0) = p(x1, . . . , xn−1, 0),
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since sk(x1, . . . , xn−1) = sk(x1, . . . , xn−1, 0), k = 0, . . . , n − 1. As shown above,
this implies that the lacunary part r0(x1, . . . , xn) of r(x1, . . . , xn) is equal to
p0(x1, . . . , xn). Hence, the difference p(x1, . . . , xn)−r(x1, . . . , xn) has no lacunary
part, and thereby it is a multiple of x1 · · · xn . By the induction hypothesis, this
implies that p(x1, . . . , xn) − r(x1, . . . , xn) is a polynomial of the elementary
symmetric polynomials in the indeterminates x1, . . . , xn . Since r(x1, . . . , xn) is
a polynomial of the elementary symmetric polynomials, so is p(x1, . . . , xn). The
general induction step is complete.

The theorem follows.
Viète Relations. If r1, r2, . . . , rn ∈ R are the roots24 (with multiplicity) of a
polynomial p(x) = an xn + an−1xn−1 + · · · + a1x + a0, then we have

sk(r1, r2, . . . , rn) = (−1)k an−k

an
, k = 1, 2, . . . , n.

Proof We use the Factor Theorem to write p(x)/an as

xn + an−1

an
xn−1 + · · · + ak

an
xk + · · · + a1

an
x + a0

an
= (x − r1)(x − r2) · · · (x − rn).

We now expand the right-hand side as follows. We first number each pair of
parentheses

1︷ ︸︸ ︷
(x − r1)

2︷ ︸︸ ︷
(x − r2) · · ·

n︷ ︸︸ ︷
(x − rn),

thus forming n brackets. To make a term in the expansion, from each bracket, we
need to choose the indeterminate x or the negative of the respective root, and then
multiply these choices together. The term obtained this way is of the form

(−1)n−kr j1 · · · r jn−k xk,

where 1 ≤ j1 < · · · < jn−k ≤ n mark those brackets from which the
corresponding root is chosen (and thereby the indeterminate x is chosen from the
complementary brackets). For fixed k = 0, . . . , n, the sum of these coefficients is
exactly (−1)n−ksn−k(r1, . . . , rn) = ak/an . Swapping k and n−k, the Viète relations
follow.

There are literally hundreds of mathematical contest problems centered around
the Viète relations. Some, in addition, exploit the simple fact that, if 0 �= r ∈ R is a
root of a polynomial p(x) = an xn + an−1xn−1+ · · ·+ a1x + a0 then the reciprocal
1/r is a root of the polynomial xn p(1/x) = an + an−1x + · · · + a1xn−1 + a0xn .
The next example illustrates this.

24The statement holds for complex roots as well.
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Example 6.6.2 Find all real solutions x, y, z, w ∈ R of the system25

x + y = z + w and
1

x
+ 1

y
= 1

z
+ 1

w
.

Consider the cubic polynomial p(t) = t3 + at2 + bt + c, a, b, c ∈ R, with roots
x, y,−z. The Factor Theorem gives

p(t) = (t − x)(t − y)(t + z).

By the first Viète relation, we have

x + y − z = w = −a.

Using the remark above, the reciprocals 1/x, 1/y,−1/z are roots of the cubic
polynomial t3 p(1/t) = ct3 + bt2 + at + 1. The first Viète relation now gives

1

x
+ 1

y
− 1

z
= 1

w
= −b

c
.

Using these, our original polynomial becomes

p(t) = t3 − wt2 + bt − bw = t2(t − w)+ b(t − w) = (t − w)(t2 + b).

This shows that the only solution to the system is w for one of quantities x, y,−z
while the other two are the opposites ±√−b. The example follows.

We now introduce the power sums

pk(x1, . . . , xn) = xk
1 + · · · + xk

n , k ∈ N.

These are homogeneous symmetric polynomials in the indeterminates x1, . . . , xn ,
and, by the Fundamental Theorem on Symmetric Polynomials above, they can be
expressed as polynomials in the elementary symmetric polynomials as indetermi-
nates. The precise statement is the following:

Newton–Girard Formulas. Let k, n ∈ N. For k ≤ n, we have

pk(x1, . . . , xn)=(−1)k−1ksk(x1, . . . , xn)+
k−1∑
i=1

(−1)k−i−1sk−i (x1, . . . , xn)pi (x1, . . . , xn),

25A similar problem was in the William Lowell Putnam Mathematical Competition, May 1977. An
elementary solution (simpler than the one given in the text) is to realize that xy = zw, and make
various quadratic expressions in the use of the first equation.
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and, for k > n, we have

pk(x1, . . . , xn) =
k−1∑

i=k−n

(−1)k−i−1sk−i (x1, . . . , xn)pi (x1, . . . , xn).

Proof Let k ∈ N. Consider the monic degree k polynomial p(x) (in the single
indeterminate x) with roots r1 = x1, . . . , rk = xk . By the Factor Theorem and the
Viète Relations, we have

p(x) = (x − x1) · · · (x − xk) =
k∑

i=0

(−1)k−i sk−i (x1, . . . , xk)xi .

Substituting x = x j , j = 1, . . . , k, we obtain

0 =
k∑

i=0

(−1)k−i sk−i (x1, . . . , xk)xi
j .

Now, summing up with respect to j = 1, . . . , k gives

0 = (−1)kksk(x1, . . . , xk)+
k∑

i=1

(−1)k−i sk−i (x1, . . . , xk)pi (x1, . . . , xk).

(Note that p0 is not defined.)
Splitting off the kth term pk(x1, . . . , xk) in the sum, and rearranging, we arrive

at the Newton–Girard formula for k = n:

pk(x1, . . . , xk) = (−1)k−1ksk(x1, . . . , xk)+
k−1∑
i=1

(−1)k−i−1sk−i (x1, . . . , xk)pi (x1, . . . , xk).

This identity immediately gives the second Newton–Girard formula for n < k (n
indeterminates x1, . . . , xn and kth power) by simply setting xn+1 = . . . = xk = 0
because then sk−i (x1, . . . , xn) = 0 for n < k − i .

The first Newton–Girard formula also follows from this by showing that the
coefficients of the respective monomials in each side of the formula match. This
matching follows because, for k ≤ n, every monomial appearing it the formula
contains at most k indeterminates, and, setting n− k complementary indeterminates
to be zero, the respective coefficient can be extracted from the formula for the
reduced number of (k) indeterminates. The theorem follows.

Using the Newton–Girard formulas recursively, the power sums pk(x1, . . . , xn)

can be expressed as polynomials in the elementary symmetric polynomials. Sup-
pressing the indeterminates, the first few cases are as follows:
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p1 = s1

p2 = s2
1 − 2s2

p3 = s3
1 − 3s2s1 + 3s3

p4 = s4
1 − 4s2s2

1 + 4s3s1 + 2s2
2 − 4s4

p5 = s5
1 − 5s2s3

1 + 5s3s2
1 + 5s2

2 s1 − 5s4s1 − 5s3s2 + 5s5.

History
As the name suggests, the Viète relations were discovered by the French mathematician François
Viète (for positive coefficients) and then Albert Girard (1595–1632) in general. The Newton–
Gerard identities above have been discovered by Newton around 1666. He was apparently unaware
of the earlier work by Girard, who discovered in 1629 the first four formulas for pk , k = 1, 2, 3, 4,
as above.

Example 6.6.3 Let x, y, z ∈ R such that26

x + y + z = 1, x2 + y2 + z2 = 3, x3 + y3 + z3 = 7.

Find the value of the 5th power sum x5 + y5 + z5.
The indeterminates are x, y, z so that n = 3. The system of equations above give

p1 = 1, p2 = 3, p3 = 7. We need to find p5.
The first three identities above can be solved for the elementary symmetric

polynomials. We obtain s1 = 1, s2 = −1, s3 = 1. (In particular, by the Viète
Relations, x, y, x are roots of the cubic polynomial t3 − t2 − t − 1, but we do not
need this fact.) Now the second Newton–Girard formula can be used recursively
for k = 4, 5 to obtain p4 = s3 p1 − s2 p2 + s1 p3 = 1 + 3 + 7 = 11, and
p5 = s3 p2 − s2 p3 + s1 p4 = 3+ 7+ 11 = 21.
The example follows.

Returning to the Viète Relations, as a simple application, we now derive27 the
Quadratic Formula which gives the roots of the quadratic equation ax2+bx+c = 0,
a �= 0, in terms of the coefficients a, b, c ∈ R.

We begin by assuming that the quadratic polynomial p(x) = ax2 + bx + c has
two real roots r1 and r2 (which may coincide). By the Viète relations, we have

s1(r1, r2) = r1 + r2 = −b

a
and s2(r1, r2) = r1r2 = c

a
.

By the Fundamental Theorem on Symmetric Polynomials, any symmetric polyno-
mial can be written as a polynomial in s1(x1, x2) and s2(x1, x2). We try this for the
symmetric polynomial (x1 − x2)

2. We calculate

26A similar problem was in the USA Mathematical Olympiad in 1973.
27The typical proof uses the completing the square technique.
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(x1 − x2)
2 = x2

1 − 2x1x2 + x2
2 = x2

1 + 2x1x2 + x2
2 − 4x1x2

= (x1 + x2)
2 − 4x1x2 = s1(x1, x2)

2 − 4s2(x1, x2).

Substituting x1 = r1 and x2 = r2, the Viète relations now give

(r1 − r2)
2 = s1(r1, r2)

2 − 4s2(r1, r2) =
(
−b

a

)2

− 4
c

a
= b2 − 4ac

a2
.

Taking the square root of both sides we obtain

r1 − r2 = ±
√

b2 − 4ac

a
.

Combining this with the first Viète relation, we arrive at the Quadratic Formula

r1, r2 = −b ±√b2 − 4ac

2a
.

In this formula the expression b2−4ac is called the discriminant of the quadratic
equation ax2 + bx + c = 0, and it is usually denoted by D. Its name comes from
the fact that it determines the number of real solutions to the quadratic equation as

D > 0 if and only if there are two real solutions;

D = 0 if and only if there is one real solution;

D < 0 if and only if there are no real solutions.

Remark If D = b2 − 4ac < 0 then the Quadratic Formula gives

r1, r2 = −b ± i
√

4ac − b2

2a

as complex conjugate roots.
For the next beautiful (and somewhat striking) example we need the fact that,

over the reals R, an irreducible polynomial is either linear or quadratic. This can
be shown using basic complex arithmetic. By the above, a quadratic polynomial is
irreducible if and only if its discriminant is negative. Thus, by the Factor Theorem,
every polynomial over the reals R is the product of linear and irreducible quadratic
factors.

Example 6.6.4 Assume that p(x) is a polynomial such that p(x) ≥ 0 for all x ∈ R.
Then, we have p(x) = a(x)2 + b(x)2 for some polynomials a(x) and b(x).

We write the complete decomposition of p(x) into distinct powers of irreducible
factors as
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p(x) = (x − c1)
m1 · · · (x − ck)

mk · (x2 + p1x + q1)
n1 · · · (x2 + pl x + ql)

nl .

As for the linear factors, we observe that p(x) ≥ 0, x ∈ R, implies that all the
exponents m1, . . . , mk are even numbers. Mimicking the desired pattern a(x)2 +
b(x)2, for i = 1, . . . , k, we write

(x − ci )
mi = ((x − ci )

2 + 02)mi /2.

As for the quadratic factors, since they are all irreducible, their respective
discriminants are negative. For j = 1, . . . , l, we have28

x2 + p j x + q j =
(

x + p j

2

)2 + 4q j − p2
j

4
=
(

x + p j

2

)2 +
⎛
⎝
√

4q j − p2
j

2

⎞
⎠

2

,

where the square root is defined since the discriminant p2
j − 4q j < 0.

Finally, each pair of products of sum of squares can be written as a single sum of
squares using the identity

(a2 + c2)(b2 + d2) = (ab + cd)2 + (ad − bc)2.

(See also Section 5.3.) Using this repeatedly, the entire factored p(x) can be turned
into a single sum of squares. The example follows.

In the following example we return to the Monotone Convergence Theorem. We
use it for an inductively defined sequence via a quadratic polynomial.

Example 6.6.5 Let 0 < c ∈ R, and (an)n∈N0 a real sequence defined by a0 = 0,
and an = c + a2

n−1, n ∈ N. Show that limn→∞ an exists if and only if c ≤ 1/4.
Assume first that limn→∞ an = L exists. Taking the limit in the inductive

definition of the sequence we obtain L = c + L2. This is a quadratic equation in L ,
so that L exists (as a real number) if and only if the discriminant D = 1 − 4c ≥ 0.
This gives c ≤ 1/4.

Conversely, assume that 0 < c ≤ 1/4. We show, by induction with respect
to n ∈ N, that the sequence (an)n∈N0 is (strictly) increasing and bounded above.
(Clearly, an > 0, n ∈ N.) Indeed, a1 − a0 = c > 0, and, for the general induction
step n ⇒ n + 1, we have an+1 − an = a2

n − a2
n−1 = (an − an−1)(an + an−1) > 0,

n ∈ N. For boundedness, we claim an ≤ 1/2, n ∈ N0. For the general induction
step n ⇒ n + 1, we have an+1 = c + a2

n ≤ 1/4+ (1/2)2 = 1/2, n ∈ N. The claim
follows.

By the Monotone Convergence Theorem, the limit limn→∞ an exists.

28This is the so-called completing the square technique; equivalent to the Quadratic Formula.
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Example 6.6.6 Let m, n ∈ N, and assume that n is odd.29 If both roots of the
quadratic polynomial p(x) = x2 − nx + m are prime numbers, then show that
n − 2 must be a prime and m = 2(n − 2).

Denoting the roots by r, s, we have p(x) = x2−nx+m = (x−r)(x−s). Hence
r + s = n and rs = m. The crux is that n is odd so that one of the prime roots, s,
say, must be even. Thus, s = 2. This gives n = r + 2, and hence n − 2 must be a
prime. Finally, we have m = rs = 2(n − 2). The example follows.

Example 6.6.7 Show that there are no positive integer solutions a, b ∈ N for the
equation

a2 + 2a = b2 + b.

We treat this as a quadratic equation in a. The Quadratic Formula gives

a = −2±√4+ 4(b2 + b)

2
= −1±

√
1+ b + b2.

The crux is that b <
√

1+ b + b2 < b + 1, so that, for b ∈ N, the square root√
1+ b + b2 cannot be an integer.

The next example is sometimes termed as the most challenging problem ever cre-
ated for mathematical contests. It was Problem #6 in the International Mathematical
Olympiad in 1988. The usual technique to solve this problem, presented below, is
sometimes (and recently) called Viète jumping or root flipping. It actually belongs
to the reduction theory of quadratic forms, and has been known at least since the
late eighteenth century. We will give another geometric solution to this problem in
Section 8.4 using hyperbolas.

Example 6.6.8 Let 0 < a, b ∈ N such that ab − 1 divides a2 + b2. Show that

a2 + b2

ab + 1

is a perfect square. (For example, a = 8 and b = 2.)
Assume not. Then there exist a, b ∈ N such that

c = a2 + b2

ab + 1
∈ N

is not a square. For this c ∈ N, consider the set

Ac =
{

u + v

∣∣∣∣ c = u2 + v2

uv + 1
∈ N, u, v ∈ N

}

By the above, a + b ∈ Ac, in particular, Ac is non-empty.

29A special case (n = 63) was a problem in the American Mathematics Competitions, 2002.



310 6 Polynomial Expressions

By assumption c �= 1. In addition, if c = 2 then a2 + b2 = 2ab + 2 gives
(a − b)2 = 2. This cannot happen since

√
2 is not an integer.

Thus, from now on we may assume 3 ≤ c ∈ N.
Let a0 + b0 = inf Ac, a0, b0 ∈ N. Without loss of generality, we may assume

a0 < b0. (Note that a0 �= b0 since otherwise we would have 2a2
0 − ca2

0 − c = 0, and
this cannot happen since c ≥ 3.)

We now replace b0 in the equation

c = a2
0 + b2

0

a0b0 + 1

by the indeterminate y. Multiplying out by the denominator, it follows that this
modified equation is equivalent to the condition that y = b0 is a root of the quadratic
polynomial30

p(y) = y2 − ca0 y + (a2
0 − c).

If b′0 ∈ R is the other root, then the Viète relations give

b0 + b′0 = ca0 and b0b′0 = a2
0 − c,

or equivalently

b′0 = ca0 − b0 and b′0 =
a2

0 − c

b0
.

By the first equation, b′0 ∈ Z, and, by the second, b′0 �= 0 (since c is not a perfect
square). Since

p(b′0) = b′02 − ca0b′0 + a2
0 − c = b′02 − c(a0b′0 + 1)+ a2

0 = 0,

it also follows that b′0 > 0. (If b′0 < 0 then a0b′0 + 1 ≤ 0, and we would have
a0 = b′0 = 0.)

Summarizing, b′0 ∈ N, and we obtain a0 + b′0 ∈ Ac.
Finally, by a0 < b0 and the second Viète relation, we have

b′0 =
a2

0 − c

b0
<

a2
0

b0
< b0.

This gives a0 + b′0 < a0 + b0; a contradiction to the minimality of a0 + b0. The
claim follows.

30Although a and b play symmetric roles, the choice of the indeterminate y (and not x) is justified
by the geometric content of the problem to be discussed in Section 8.4.
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Remark With somewhat more involved calculations one can derive an inductive
formula for a sequence (an)n∈N0 of natural numbers such that the consecutive terms
satisfy the equation

a2
n + a2

n+1

anan+1 + 1
= g2, g = gcd(an, an+1), n ∈ N0.

This can be solved, and we obtain

an =
n/2∑
i=0

(−1)i+n/2
(

n/2+ i

n/2− i

)
g4i+1, if n is even

an =
(n−1)/2∑

i=0

(−1)i+(n−1)/2
(

1+ (n − 1)/2+ i

(n − 1)/2− i

)
g4i+3, if n is odd.

The first few values are tabulated as follows:

n an

0 g
1 g3

2 g5 − g
3 g7 − 2g3

4 g9 − 3g5 + g
5 g11 − 4g7 + 3g3

6 g13 − 5g9 + 6g5 − g

Example 6.6.9 Find all integers a, b ∈ Z satisfying31

(a2 − b)(a − b2) = (a − b)3.

First, if a = 0 then b3 = (−b)3, so that b = 0 as well. If b = 0, then all a ∈ Z

satisfy the equation. Thus, from now on, we may assume a �= 0 �= b.
Expanding and factoring the difference of the left-hand and right-hand sides, we

obtain

(a2 − b)(a − b2)− (a − b)3 = b(2b2 − a2b − 3ab + 3a2 − a).

Since b �= 0, our equation reduces to

2b2 − a2b − 3ab + 3a2 − a = 2b2 − a(a + 3)b + a(3a − 1) = 0,

31A similar problem was in the USA Mathematical Olympiad, 1987.
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where we rearranged the terms to obtain a quadratic polynomial in the indeterminate
b (with coefficients in the indeterminate a). The Quadratic Formula gives

b = a(a + 3)±√D(a)

4
,

with discriminant

D(a) = a2(a + 3)2 − 8a(3a − 1) = a(a3 + 6a2 − 15a + 8).

Now, the crux is that for integral solution, D(a) must be a perfect square. We now
observe that the sum of the coefficients of the cubic polynomial in the parentheses is
zero. Therefore a = 1 is a root, and a − 1 is a factor. Preforming synthetic division,
we have

1 6 − 15 8
1 1 7 − 8

1 7 − 8 0

This gives

D(a) = a(a − 1)(a2 + 7a − 8) = a(a − 1)2(a + 8),

where the last factoring is either by another synthetic division or by simple
inspection. Discarding the perfect square (a − 1)2, we obtain that, for integral
solutions, we must have a(a + 8) = c2, c ∈ Z. Since a(a + 8) = a2 + 8a =
(a + 4)2 − 42 = c2, this is equivalent to (a + c + 4)(a − c + 4) = 16. In addition,
for integral b, the quadratic formula above gives 4|a(a + 3)± (a − 1)c.

By divisibility, the possible cases are easy to enumerate. The possible pairs (a +
c+4, a−c+4) are±(1, 16),±(2, 8),±(4, 4),±(8, 2),±(16, 1). The first and last
cannot happen. The remaining cases are tabulated as follows:

(a + c + 4, a − c + 4) a b c
(2, 8) 1 2 −3

(−2,−8)) −9 12, 42 3
(4, 4) 0 0 0

(−4,−4) −8 20 0
(8, 2) 1 2 3

(−8,−2) −9 42, 12 −3

Exercises

6.6.1. Solve the system

x3 + y3 = 1 and x4 + y4 = 1.
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6.6.2. Solve the system of equations32

x + y + z = 3, x2 + y2 + z2 = 3, x3 + y3 + z3 = 3.

6.6.3. A quadratic polynomial with integer coefficients has one rational root. Show
that the other root is also rational. Give an example of a cubic polynomial for
which this is not true.

6.6.4. Define the discriminant D of the reduced cubic polynomial p(x) = x3 +
px + q as

D = (r1 − r2)
2(r2 − r3)

2(r3 − r1)
2.

where r1, r2, r3 are the roots of p(x).33 Derive the formula

D = −4(r1r2 + r2r3 + r3r1)
3 − 27(r1r2r3)

2

= −4p3 − 27q2 = −108

(( p

3

)3 +
(q

2

)2
)

.

6.6.5. Let p(x) = ax2 − bx + c be a quadratic polynomial with 0 < a ∈ R,
and b, c ∈ R (note the sign change), and assume that the roots are real and
distinct. Then the roots are contained in the interval (0, 1) if and only if
b, c > 0, b < 2a, c < a, and 4ac < b2 < (a + c)2. (Notice that the last
inequality means that b/2 is strictly between the geometric and arithmetic
means of a and c.)

6.6.6. For what c ∈ R does the cubic polynomial p(x) = x3 + cx2 + 2cx + c2 − 1
have exactly one real root?

6.7 The Cauchy–Schwarz Inequality

As a prominent application of the Quadratic Formula, we now derive the general
Cauchy–Schwarz inequality:

(a1b1 + a2b2 + · · · + anbn)2 ≤ (a2
1 + a2

2 + · · · + a2
n)(b2

1 + b2
2 + · · · + b2

n)

valid for any a1, a2, . . . , an, b1, b2, . . . , bn ∈ R, n ∈ N. (Note that the special case
n = 2 has already been derived in Section 5.3.)

32This was a problem in the USA Mathematical Olympiad, 1973; a straightforward solution uses
the Newton–Girard formulas.
33For analogy, the discriminant D of the quadratic polynomial x2 + px + q is D = (r1 − r2)

2 =
p2 − 4q, where r1, r2 are the roots.
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For a proof, consider the quadratic polynomial

p(x) = (a1 + b1x)2 + (a2 + b2x)2 + · · · + (an + bn x)2.

Note that p(x) is non-negative and can have at most one root. Consequently, the
discriminant D of p(x) is non-positive. Expanding and grouping the like terms, we
obtain

p(x) = (b2
1+b2

2+· · ·+b2
n)x2+2(a1b1+a2b2+· · ·+anbn)x+(a2

1+a2
2+· · ·+a2

n).

Therefore the discriminant is

D = 4(a1b1+a2b2+· · ·+anbn)2−4(a2
1+a2

2+· · ·+a2
n)(b2

1+b2
2+· · ·+b2

n) ≤ 0.

Rearranging, the Cauchy–Schwarz inequality follows.

Remark The proof above also shows that equality holds in the Cauchy–Schwarz
inequality if and only if there exists x0 ∈ R such that a1 + b1x0 = a2 + b2x0 =
. . . = an + bn x0 = 0.

History
The inequality above was discovered by Cauchy in 1821. It has been generalized to an inequality
for integrals by the Russian mathematician Viktor Bunyakovsky (1804–1889) in 1859, and sub-
sequently this generalization was rediscovered by the German mathematician Hermann Amandus
Schwarz (1843–1921) in 1888. Because of this, it is sometimes called the Cauchy–Bunyakovsky–
Schwarz inequality.

There are literally hundreds of applications of the Cauchy–Schwarz inequality.
We give a few examples.

Example 6.7.1 Let A, B, C ∈ R satisfying34 AC = B2. Assume 0 <

a1, a2, . . . , an ∈ R, n ∈ N, such that

n∑
i=1

ai = A,

n∑
i=1

a2
i = B,

n∑
i=1

a3
i = C.

We then have n = A2/B and a1 = . . . = an = B/A.
Indeed, the Cauchy–Schwarz inequality gives

(
n∑

i=1

ai

)(
n∑

i=1

a3
i

)
≥
(

n∑
i=1

a2
i

)2

(since
√

ai

√
a3

i = a2
i , i = 1, . . . , n). Now, by condition, AC = B2, so that equality

holds. We obtain
√

a1 + x0
√

a1
3 = . . . = √an + x0

√
an

3 = 0,

34This is a generalization of a problem in the Iranian Mathematics Competition, 1997.
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for some x0 ∈ R. This gives a1 = . . . = an = a, where a = −1/x0. With this, we
have A = na, B = na2, and C = na3. Hence a = B/A and n = A2/B.

In the next example the Viète relations are combined with the Cauchy–Schwarz
inequality:

Example 6.7.2 Show that if all the roots of the monic polynomial35

p(x) = xn + an−1xn−1 + an−2xn−2 + · · · + a1x + a0, a0, a1, . . . , an−1 ∈ R,

are real then

an−2 ≤ n − 1

2n
a2

n−1.

Let r j ∈ R, 1 ≤ j ≤ n, be the roots of p(x). We need the first two Viète relations

an−1 = −
n∑

j=1

r j and an−2 =
∑

1≤ j<k≤n

r j rk .

We calculate

2an−2 = 2
∑

1≤ j<k≤n

r j rk =
⎛
⎝ n∑

j=1

r j

⎞
⎠

2

−
⎛
⎝ n∑

j=1

r2
j

⎞
⎠

= a2
n−1 −

1

n
(1+ 1+ · · · + 1)

(
r2

1 + r2
2 + · · · + r2

n

)

≤ a2
n−1 −

1

n
(r1 + r2 + · · · + rn)2 = n − 1

n
a2

n−1,

where we used the Cauchy–Schwarz inequality.36 The claim follows.

Example 6.7.3 Let p(x) be a polynomial with positive coefficients. Show that if

p

(
1

x

)
≥ 1

p(x)

holds for x = 1 then it also holds for all 0 < x ∈ R.
Let

p(x) = an xn + · · · + a1x + a0, 0 < a0, a1, . . . , an ∈ R.

35The special case n = 5 was a problem in the USA Mathematical Olympiad, 1983.
36In the second equality we can also use the Newton–Girard formula p2(r1, . . . , rn) = a2

n−1 −
2an−2 along with the Viète relations.
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Substituting x = 1 gives p(1) ≥ 1. Using our condition and the Cauchy–
Schwarz inequality, for 0 < x ∈ R, we calculate

p(x)p

(
1

x

)
= (an xn + · · · + a1x + a0)

(an

xn
+ · · · + a1

x
+ a0

)

≥ (an + · · · + a1 + a0)
2 = p(1)2 ≥ 1.

The example follows.

Example 6.7.4 (Nesbitt Inequality) For 0 < a, b, c ∈ R, we have

a

b + c
+ b

c + a
+ c

a + b
≥ 3

2

with equality if and only if a = b = c.
To derive this, we first add 1 to each fraction, and obtain the equivalent form

a + b + c

b + c
+ a + b + c

c + a
+ a + b + c

a + b
≥ 9

2
.

This can be written as

2(a + b + c)

(
1

b + c
+ 1

c + a
+ 1

a + b

)
≥ 9,

or equivalently

((b + c)+ (c + a)+ (a + b))

(
1

b + c
+ 1

c + a
+ 1

a + b

)
≥ 9.

Now, letting a1 =
√

b + c, a2 = √c + a, a3 =
√

a + b, and b1 = 1/a1 =
1/
√

b + c, b2 = 1/a2 = 1/
√

c + a, b3 = 1/a3 = 1/
√

a + b, this last inequality
turns into the Cauchy–Schwarz inequality for n = 3.

Example 6.7.5 For a, b, c ∈ R, show that 2a2 + 3b2 + 6c2 ≥ (a + b + c)2.
Indeed, since 1/2+ 1/3+ 1/6 = 1, we have

2a2 + 3b2 + 6c2 =
(

1

2
+ 1

3
+ 1

6

)
(2a2 + 3b2 + 6c2) ≥ (a + b + c)2;

yet another form of the Cauchy–Schwarz inequality (with a1 = 1/
√

2, a2 = 1/
√

3,
a3 = 1/

√
6, and b1 =

√
2a, b2 =

√
3b, b3 =

√
6c).
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Remark The following inequality is a trivial consequence of the Cauchy–Schwarz
inequality:37

For positive real numbers 0 < x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R, n ∈ N, we
have

x2
1

y1
+ x2

2

y2
+ · · · + x2

n

yn
≥ (x1 + x2 + · · · + xn)2

y1 + y2 + · · · + yn
.

Indeed, this follows by the substitution ai = xi/
√

yi and bi = √yi , i =
1, 2, . . . , n, into the Cauchy–Schwarz inequality.

We close this section by a brief note on the Chebyshev sum inequality due to
the Russian mathematician Pafnuty Chebyshev (1821–1894):

Given real numbers a1, a2, . . . , an, b1, b2, . . . , bn ∈ R, n ∈ N, such that

a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn,

then we have

a1b1 + a2b2 + · · · + anbn

n
≥ a1 + a2 + · · · + an

n
· b1 + b2 + · · · + bn

n
.

Remark If the inequality signs are reversed in one sequence of inequalities in the
assumptions, then the reverse inequality sign holds in the Chebyshev sum inequality.
This is clear; if, for example, a1 ≤ a2 ≤ · · · ≤ an but b1 ≥ b2 ≥ · · · ≥ bn , then we
apply the Chebyshev sum inequality to −a1 ≥ −a2 ≥ · · · ≥ −an , etc.

The proof of the Chebyshev sum inequality is simple. We have

0 ≤
n∑

j=1

n∑
k=1

(a j − ak)(b j − bk) = 2n
n∑

j=1

a j b j − 2
n∑

j=1

a j

n∑
k=1

bk .

The initial double sum on the left-hand side is non-negative since, for each 1 ≤
j, k ≤ n, the factors a j −ak and b j −bk (if non-zero) are simultaneously positive or
negative. Expanding, we arrive at the right-hand side. Rearranging, the Chebyshev
sum inequality follows.

Example 6.7.6 A trivial consequence of the Chebyshev sum inequality (ai = bi ,
i = 1, 2, . . . , n) is the following:

a2
1 + a2

2 + · · · + a2
n ≥

(a1 + a2 + · · · + an)2

n
, 0 < a1, a2, . . . , an ∈ R.

37Due to its usefulness in some mathematical contest problems, this is sometimes called the
Titu–Engel–Sedrakyan inequality after Titu Andreescu (1965 –), Arthur Engel (1928 –), and Nairi
Sedrakyan (1961 –).
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Setting ai = x2k

i , 0 < xi ∈ R, i = 1, 2, . . . , n, in the inequality above, we obtain

p2k+1(x1, x2, . . . , xn) ≥ p2
2k (x1, x2, . . . , xn)

n
, k ∈ N0,

where pl(x1, x2, . . . , xn) = xl
1 + xl

2 + · · · + xl
n , l ∈ N, is the lth power sum.

A simple induction with respect to k ∈ N gives

p2k (x1, x2, . . . , xn) ≥ p2k

1 (x1, x2, . . . , xn)

n2k−1
, k ∈ N.

In terms of 0 < x1, x2, . . . , xn ∈ R, this rewrites as

x2k

1 + x2k

2 + · · · + x2k

n ≥
(x1 + x2 + · · · + xn)2k

n2k−1
, k ∈ N.

An often quoted special case is n = k = 2:

x4 + y4 ≥ (x + y)4

8
, 0 < x, y ∈ R.

Exercises

6.7.1. Derive the following generalization of the Nesbitt inequality (Exam-
ple 6.7.4).

Let 0 < a1, a2, . . . , an ∈ R, n ∈ N, and s = a1 + a2 + · · · + an . We have

a1

s − a1
+ a2

s − a2
+ · · · + an

s − an
≥ n

n − 1
.

6.7.2. For 0 < a, b, c ∈ R, derive the inequality

(
a + 1

b

)(
b + 1

c

)(
c + 1

a

)
≥ 8

with equality if and only if a = b = c = 1.
6.7.3. Show that, for 0 < a, b, c ∈ R, we have

a2

b2 +
b2

c2 +
c2

a2 ≥
b

a
+ c

b
+ a

c
,

with equality if and only if a = b = c.



Chapter 7
Polynomial Functions

“In our days Scipione del Ferro of Bologna has solved
the case of the cube and first power equal to a constant,
a very elegant and admirable accomplishment. . . .
In emulation of him, my friend Niccolò Tartaglia of Brescia,
wanting not to be outdone, solved the same case when he got
into a contest with his [Scipione’s] pupil, Antonio Maria Fior,
and, moved by my many entreaties, gave it to me.”
in Ars Magna by Gerolamo Cardano (1501–1576)

In this chapter we enrich our algebraic point of view of polynomials by considering
them as functions. We develop first order analysis (critical points and monotonicity)
for graphs of polynomial functions using synthetic division applied to difference
quotients. We treat the difference quotient of a polynomial as a rational function
with a removable singularity at the point where the quotient is taken. Removing
the singularity then takes us directly to the concept of the derivative without
taking limits. We discuss the special case of cubic polynomials in great details.
In the second half of this chapter we return to algebra and study the roots of
polynomials, once again with full details of the cubic case. We finish this chapter by
the somewhat more advanced topic of multivariate factoring. Some of the material
here is also preparatory to the general AM-GM inequality to be discussed in
Section 9.5.

7.1 Polynomials as Functions

Recall that a polynomial p(x) with indeterminate x ∈ R defines a polynomial
function p : R → R with variable x ∈ R. Using classical terminology, we write
y = p(x) with x ∈ R. In this section we assemble a few important facts about
polynomial functions.

First, any polynomial function is defined everywhere; that is, the domain of
definition is always R.
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Let p : R→ R be a degree n polynomial function given by

y = p(x) =
n∑

k=0

ak xk = an xn+an−1xn−1+· · ·+a1x+a0, a0, a1, . . . , an ∈ R, an �= 0,

where in the expanded form we used descending powers.
We first claim

lim
x→∞ p(x) = ±∞,

where the choice of ± depends on the sign of the leading coefficient an .
Indeed, first recall

lim
x→∞ p(x) = lim

u→0+
p

(
1

u

)
.

Using this, we calculate

lim
u→0+

p

(
1

u

)
= lim

u→0+

(an

un
+ an−1

un−1 + · · · +
a1

u
+ a0

)

= lim
u→0+

1

un
lim

u→0+
(an + uan−1 + · · · + un−1a1 + una0)

= an lim
u→0+

1

un
= ±∞.

The claim follows.
The limit at negative infinity can be obtained by taking opposites:

lim
x→−∞ p(x) = lim

x→∞ p(−x) = ±∞.

Next, recall the difference quotient from Section 4.3:

mp(x, c) = p(x)− p(c)

x − c
, x �= c, x, c ∈ R.

The difference quotient is a rational expression in the indeterminate x with
domain of definition being all real numbers except c.

We claim that, away from c, it is actually a polynomial. Indeed, pairing up the
kth monomials in p(x) and in p(c) with k = 1, 2, . . . , n, and factoring, for x �= c,
we calculate

mp(x, c) =
n∑

k=0

ak xk − akck

x − c
=

n∑
k=0

ak
xk − ck

x − c
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=
n∑

k=1

ak
(x − c)(xk−1 + xk−2c + · · · + xck−2 + ck−1)

x − c

=
n∑

k=1

ak(xk−1 + xk−2c + · · · + xck−2 + ck−1).

The claim follows.
The crux of this computation is that, although the difference quotient is undefined

at x = c, the right-hand side, being a polynomial in x , can be evaluated at x = c.
Evaluating the right-hand side at x = c amounts to taking the limit of the difference
quotient and obtain the derivative:

p′(c)= lim
x→c

mp(x, c)=
n∑

k=1

ak lim
x→c

(xk−1+xk−2c+ · · ·+xck−2+ck−1)=
n∑

k=1

kakck−1.

We can therefore extend the definition of the difference quotient and define

mp(c, c) =
n∑

k=1

kakck−1 = nancn−1 + (n − 1)an−1cn−2 + · · · + 2a2c + a1.

With this, the difference quotient mp becomes a polynomial in the indeterminates
x and c. As a byproduct, we also see that mp(c, c) is the derivative p′(c) of the
polynomial function p at c.

Remark The tangent line to the unit parabola y = x2 has the property that it is
the unique non-vertical line that meets the parabola only at the point (c, c2). This
geometric condition gives the slope of the tangent line as 2c. Indeed, combining the
equation of the line y − c2 = m(x − c) through (c, c2) with y = x2, we obtain
x2 − c2 = (x − c)(x + c) = m(x − c), and it follows that the unique intersection
requires m = 2c. Note that the tangent line meets the first axis at c/2, the midpoint
of the first coordinate of the point of tangency (c, c2), and the origin.

For y = p(x) = x2, our formula above also gives p′(c) = 2c. Therefore
these two concepts coincide. We can arrive at the same conclusion about tangent
lines drawn to ellipses and hyperbolas which we can use to derive their reflective
properties. More about this in Chapter 8.

We now return to our polynomial function p. Recall that c is a critical point of
p if p′(c) = 0. Geometrically this means that the tangent line is horizontal. Since
p′(x) is a degree n − 1 polynomial in the indeterminate x , the Factor Theorem
implies that p has at most n − 1 critical points.

Let c be a critical point of p. By definition, c is a root of the difference quotient
mp(x, c) viewed as a polynomial in the indeterminate x . Thus, by the Factor
Theorem, (x − c) is a factor of mp(x, c), and we have mp(x, c) = (x − c)q(x).
Here the quotient q(x) is a degree n − 2 polynomial (with the dependence on c
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suppressed). Using the definition of mp(x, c) above, this can be written as

p(x)− p(c)

x − c
= (x − c)q(x).

Multiplying out and rearranging, we arrive at

p(x) = q(x)(x − c)2 + p(c).

Retracing our steps, we see that the converse also holds; that is, c is a critical point
of p if and only if this equality holds (for some polynomial function q).

Assuming q(c) �= 0, the equation y = q(c)(x − c)2 + p(c) is the equation of a
parabola.1 We have

lim
x→c

∣∣∣∣ p(x)− (q(c)(x − c)2 + p(c))

(x − c)2

∣∣∣∣ = lim
x→c
|q(x)− q(c)| = 0.

We obtain that this parabola “best approximates” the graph G(p) at (c, p(c)).
We have now come to the fundamental problem of understanding the large-scale

behavior of polynomials. The graph of a linear function (degree one polynomial) is
a line. A linear function with non-zero slope is automatically one-to-one, thereby
it always has an inverse. The graph of a quadratic (degree two) polynomial is
a parabola which fails the horizontal intersection property, thereby a quadratic
polynomial function is not one-to-one, and has no inverse. If we restrict the parabola
to one of its branches, then a single branch does satisfy the horizontal intersection
property, and thereby the corresponding function has an inverse.

We now ask the following general question: To what extent does the one-to-
one property fail for polynomials, and how can we analyze this failure to obtain a
geometric description of the graph?

To answer this question we start again with our polynomial p (of degree n ≥ 2),
and assume that p fails to be injective. This means that is there exist x ′ < x ′′
such that p(x ′) = p(x ′′). We restrict p to the closed interval [x ′, x ′′]. Since p is
continuous, it assumes its supremum (infimum) at a point c of the open interval
(x ′, x ′′):

p(x) ≤ p(c) for all x ∈ [x ′, x ′′].

(For infimum, the inequality sign is reversed.)
By the Fermat Principle, c is a critical point of p.

Remark Alternatively, we can also use polynomial division; we can divide p(x) by
(x − c)2 and obtain p(x) = (x − c)2q(x)+mx + b, with the remainder mx + b of

1A parabola with vertical symmetry axis is defined as the graph of the polynomial function y =
ax2 + bx + c, 0 �= a, b, c ∈ R. See Section 8.2.
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degree ≤ 1. We claim that m = 0 and b = p(c), so that, by the above, c is a critical
point of p. Indeed, since at c the polynomial p assumes its supremum, we have

p(x) = (x − c)2q(x)+ mx + b ≤ mc + b = p(c), for all x ∈ (x ′, x ′′).

Rearranging and simplifying, we obtain (x − c) [(x − c)q(x)+ m] ≤ 0. Now,
assuming m �= 0, since limx→c(x − c)q(x) = 0, for x close enough to c, the
expression in the square brackets will have the same sign (positive or negative) as
m. On the other hand, depending on which side of c is x , the difference x − c is
positive or negative. Thus, the left-hand side of the inequality above can be made
positive or negative with x arbitrarily close to c. We see that the inequality above
cannot hold for m �= 0. Hence p(x) = (x−c)2q(x)+b. Finally, substituting x = c,
we obtain p(c) = b. The claim follows.

In summary, we see that between x ′ < x ′′ with p(x ′) = p(x ′′) there is a critical
point c at which p assumes an extremum on the closed interval [x ′, x ′′].

Now let x ′ and x ′′ be consecutive critical points of p. The polynomial function
p restricted to the interval [x ′, x ′′] must be one-to-one since otherwise, by the
construction above, there would be a critical point in the open interval (x ′, x ′′),
and x ′ and x ′′ would not be consecutive. Since p is one-to-one, it must be strictly
monotonic. The same argument applies for the infinite closed intervals before the
first and after the last critical points of p. The following transparent picture of
the graph G(p) of p emerges: At the critical points the graph G(p) has horizontal
tangents. Between consecutive critical points and before the first and after the last
critical points the polynomial function p is strictly increasing or decreasing.

Example 7.1.1 An important sequence {en}n∈N0 of polynomial functions, playing a
paramount importance in Newton’s treatment of the natural exponential function, is
defined by

en(x) =
n∑

k=0

xk

k! = 1+ x

1! +
x2

2! + · · · +
xn

n! , x ∈ R, n ∈ N.

By definition, 0! = 1, and with this we set e0(x) = x0/0! = 1, x ∈ R. Clearly, en(x)

is a polynomial of degree n ∈ N0. Taking the derivative, we obtain the characteristic
property of en :

e′n(c) = en−1(c), c ∈ R, n ∈ N.

In this example we show the following: (1) For n ∈ N odd, en has no critical points.
Moreover, en is strictly increasing and has a unique negative root; (2) For n ∈ N

even, en has a unique critical point c < 0 at which it attains its absolute minimum.
Moreover, en(c) = cn/n! > 0, so that en is everywhere positive.
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We will use Peano’s Principle of Induction to prove (1)-(2). For n ∈ N odd, we
let n = 2k − 1, k ∈ N, and, for n ∈ N even, we let n = 2k, k ∈ N. We will proceed
with a two-step induction with respect to k ∈ N to derive (1)–(2).

Let k = 1. Then e1(x) = 1 + x , x ∈ R, is linear, and therefore has no critical
points; it is strictly increasing, and has a unique negative root at −1.

Let k = 2. Then e2(x) = 1 + x + x2/2, x ∈ R, is quadratic, and has a
unique critical point at c = −1 at which it attains its absolute minimum. Moreover,
e2(−1) = (−1)2/2 = 1/2 > 0, so that e2 is everywhere positive. The initial step of
the induction is complete.

We now turn to the general induction step k − 1⇒ k.
(1) First, consider e2k−1. As noted above, we have e′2k−1 = e2k−2. By the

induction hypothesis, e2k−2 = e2(k−1) is everywhere positive, and hence so is e′2k−1.
In particular, e2k−1 cannot have critical points, and so it must be strictly monotonic.
Moreover, since e2k−1 is an odd degree polynomial with positive leading coefficient
1/(2k − 1)!, we have limx→±∞ e2k−1(x) = ±∞. We conclude that e2k−1 is strictly
increasing. By the Intermediate Value Theorem, e2k−1 must have a root which, by
strict monotonicity, must be unique. Finally, since 0 < e2k−1(x) for 0 ≤ x ∈ R, we
see that this root must be negative. The induction is complete in this case.

(2) Second, consider e2k . We have e′2k = e2k−1. By the previous case, e2k−1
has a unique root at c < 0, say, and it is the unique critical point of e2k . Since
e2k is an even degree polynomial with positive leading coefficient 1/(2k)!, we have
limx→±∞ e2k(x) = ∞. Since there are no critical points on the intervals (−∞, c)
and (c,∞), the limit relation implies that e2k is strictly decreasing on (−∞, c), and
strictly increasing on (c,∞). It follows that e2k assumes its absolute minimum at
c. Since c is a critical point of e2k , we have e′2k(c) = e2k−1(c) = 0, and hence
e2k(c) = e2k−1(c) + c2k/(2k)! = c2k/(2k)! > 0. We obtain that e2k is everywhere
positive.
The general induction step is complete. The example follows.

We close this section by discussing the critical points in more detail for cubic
polynomials.

Example 7.1.2 Let a cubic polynomial function be given by2

y = p(x) = x3 + px2 + qx + r,

where, for simplicity and without loss of generality, we assume that the leading
coefficient is one. In degree three there are at most two critical points. As discussed
above, for each critical point c, we have

p(x) = x3 + px2 + qx + r = (x − c)2(x − s)+ p(c),

where the linear quotient takes the form q(x) = x − s for some s ∈ R. There
are three equations connecting the unknown s with the coefficients of p(x) and c.

2Note the unfortunate double appearance of the symbol p. We will keep the polynomial p(x) and
the coefficient p separate.
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We only need p = −2c − s, and this can be obtained by expanding the right-hand
side of the equation above (and comparing the coefficients for the quadratic terms
involving x2). The critical points are solutions of the quadratic equation p′(c) =
3c2 + 2pc + q = 0. The two values of c can be obtained by the Quadratic Formula

c = −p ±√p2 − 3q

3
.

We are primarily interested in the case when there are exactly two roots; that is,
when the discriminant is positive: p2 > 3q. For each of the two values of c we can
estimate the location of s relative to c. First, let c be the smaller root. Using the
formula for s obtained above, we calculate

s − c = −p − 3c = −p + p +
√

p2 − 3q =
√

p2 − 3q > 0.

Thus, we have c < s. Looking back to the original factorization of p(x), we see
that, as long as x < s, we have p(x) − p(c) = (x − c)2(x − s) ≤ 0 with sharp
inequality for x �= c only.

Summarizing, we see that on the interval (−∞, s) which includes c we have
p(x) ≤ p(c), with sharp inequality for x �= c only. We conclude that p(x), restricted
to (−∞, s) has a (unique) maximum at c. The horizontal line given by y = p(c) is
tangent to the graph of p.

The case of the larger root c is similar. We obtain that our cubic polynomial,
restricted to the interval (s,∞) (with s corresponding to this larger root c) has a
unique minimum at c. The horizontal line given by y = p(c) is tangent to the
graph of p.

The quadratic equation for c above has a unique solution if and only if the
discriminant is zero: p2 = 3q. In this case c = −p/3, so that we have s =
−p − 2c = −p + 2p/3 = −p/3 = c. We see that in this case our cubic reduces to

p(x) = x3 + px2 + qx + r = (x − c)3 + p(c).

Geometrically, this means that the graph of our cubic is obtained from the graph of
the third power function p3 by translation.

Finally, there are no critical points if and only if p2 < 3q. By the discussion
above, it follows that our cubic polynomial is strictly monotonic with no horizontal
tangent line.

Exercises

7.1.1. Analyze the graphs of the cubic polynomial functions:

(a) y = x3−6x2+4; (b) y = x3−3x2+3x+1; (c) y = x3−x+1.
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7.2 Roots of Cubic Polynomials

The general cubic polynomial is of the form a3x3 + a2x2 + a1x + a0 with
a0, a1, a2, a3 ∈ R and a3 �= 0. Setting this polynomial equal to zero and dividing
by a3, we obtain the equation for the general monic cubic:

p(x) = x3 + ax2 + bx + c = 0,

where we renamed the coefficients as a, b, c ∈ R.
In this section we discuss real solutions of cubic equations.

By the Factor Theorem, a cubic polynomial has at most three roots. In addition, there
must be at least one real root. This is a direct consequence of the Intermediate Value
Theorem, since limx→±∞ p(x) = ±∞. Algebraically, as noted previously, this
also follows from the fact that, over the real numbers R, the irreducible polynomials
have degree one or two, so that any cubic polynomial must have a linear factor, and
thereby a real root. Once this root is obtained we can use the Factor Theorem to
divide by the corresponding root factor and reduce our cubic equation to a quadratic
equation whose solutions we already analyzed via the Quadratic Formula.

Returning to the general cubic above, we use the substitution x �→ x − a/3 and
calculate

(
x − a

3

)3 + a
(

x − a

3

)2 + b
(

x − a

3

)
+ c

= x3 − ax2 + a2

3
x − a3

27
+ ax2 − 2a2

3
x + a3

9
+ bx − ab

3
+ c

= x3 +
(

b − a2

3

)
x + 2a3

27
− ab

3
+ c.

Letting

p = b − a2

3
and q = 2a3

27
− ab

3
+ c,

we obtain the so-called reduced cubic equation

x3 + px + q = 0.

The trivial case x3 = 0 can obviously be excluded so that we may assume that p
and q do not vanish simultaneously. Moreover, if p = 0, then x = 3

√−q is a root,
and if q = 0, then x = 0 is a root. Thus, from now on we may assume that p and q
do not vanish.

The crux to solve the reduced cubic equation is to write the sum of the first two
terms x3+ px as the product x(x2+ p) and match it with the factors of the left-hand
side of the cubic identity
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(u + v)(u2 − uv + v2) = u3 + v3.

This gives

x = u + v and x2 + p = u2 − uv + v2.

We now eliminate x by squaring both sides of the first equation and substituting the
result into the second. After simplification, we arrive at 3uv + p = 0.
Based on this, we introduce two indeterminates u and v satisfying

x = u + v and 3uv = −p.

Since u and v play symmetric roles, these amount to the so-called Viète substitution

x = w − p

3w
,

where w is either u or v. (Note that w does not vanish since uv = −p/3 �= 0.
On the other hand, returning to our matching above, the reduced cubic can be written
as

u3 + v3 + q = 0.

In terms of the single indeterminate w, our reduced cubic takes the form

w3 −
( p

3

)3 1

w3 + q = 0.

Multiplying by w3 and rearranging we arrive at the sextic equation

w6 + qw3 −
( p

3

)3 = 0.

This is a quadratic equation in w3. The Quadratic Formula gives

w3 = −q ±√q2 + 4(p/3)3

2
= −q

2
±
√(q

2

)2 +
( p

3

)3
.

At this point, in order to stay within real numbers R, we assume

(q

2

)2 +
( p

3

)3 ≥ 0.
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Taking the cube root, we have

w = 3

√
−q

2
±
√(q

2

)2 +
( p

3

)3
.

Since u and v play symmetric roles, swapping them if necessary, we obtain

u = 3

√
−q

2
−
√(q

2

)2 +
( p

3

)3
and v = 3

√
−q

2
+
√(q

2

)2 +
( p

3

)3
.

Finally, using x = u + v, we arrive at the Cubic Formula giving a solution of the
cubic equation:

x = 3

√
−q

2
−
√(q

2

)2 +
( p

3

)3 + 3

√
−q

2
+
√(q

2

)2 +
( p

3

)3
.

Equivalently, using the Viète substitution

x = 3

√
−q

2
−
√(q

2

)2 +
( p

3

)3 − p

3
3

√
− q

2 −
√( q

2

)2 + ( p
3

)3 .

Note that the equivalency of these formulas also follows from rationalizing the
denominator in the last algebraic fraction.

Example 7.2.1 Is there a real number whose cube is 1 more than the number itself?
(For square instead of cube, this is the golden number and its negative reciprocal;
see Example 3.1.2.)

The number x must satisfy the equation x3 = x + 1, and it is therefore a root of
the cubic equation

x3 − x − 1 = 0.

We have p = −1 and q = −1 so that
(q

2

)2 +
( p

3

)3 = 1

22 −
1

33 =
23

108
= 69

182 .

Using this in the Cubic Formula above, we obtain

x = 3

√
1

2
−
√

69

18
+ 3

√
1

2
+
√

69

18
= 1

6
3
√

108− 12
√

69+ 1

6
3
√

108+ 12
√

69.

Returning to the main line, the computations above were performed with the
understanding that the critical expression
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(q

2

)2 +
( p

3

)3

is non-negative.
If this expression is positive, then the Cubic Formula gives one real root as above.
As noted previously, once a real root is found, the remaining two roots are given
by the Quadratic Formula. It can be shown that, in this case, the other two roots are
complex.
If this expression is zero, then, once again, the Cubic Formula gives w = 3

√−q/2 =
− 3
√

q/2, and hence the real root −2 3
√

q/2. Moreover, in this case, 3
√

q/2 is another
root of multiplicity two. (Indeed, for w = − 3

√
q/2, we have (x − 2w)(x + w)2 =

x3 − 3w2x − 2w3 = x3 + px + q.)
The following example shows that the expression provided by the Cubic Formula

may not be of the simplest form.

Example 7.2.2 3 Show that

3
√

5
√

2+ 7− 3
√

5
√

2− 7 = 2.

A simple matching shows that the left-hand side is the Cubic Formula for p = 3
and q = −14. Thus, it is a (real) root of the cubic equation x3 + 3x − 14. A simple
check shows that x = 2 is a root of this polynomial. Since (q/2)2 + (p/3)3 =
72 + 1 = 50 > 0, this is the only real root. The equality follows.

Alternatively, synthetic division with x − 2 gives

1 0 3 − 14
2 2 4 14

1 2 7 0

Hence, we have the factorization x3 + 3x − 14 = (x − 2)(x2 + 2x + 7). The
discriminant of the quadratic factor is 4− 28 = −24 < 0. This means that x = 2 is
the only real root.

Example 7.2.3 Solve the cubic equations:

(a) x3 + 3x − 1 = 0; (b) x3 − 27x + 54 = 0; (c) x3 − x2 + 1 = 0.

In (a), p = 3 and q = −1, so that we have

√(q

2

)2 +
( p

3

)3 =
√

1

4
+ 1 =

√
5

4
=
√

5

2
.

3Inspired by a problem in the Kettering University Mathematics Olympiad, 2007. Similar problems
abound in mathematical contests.
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Using the Cubic Formula we obtain the real root

3

√
1−√5

2
+ 3

√
1+√5

2
.

The other two roots are complex.
In (b), we have p = −27 and q = 54 and hence

(q

2

)2 +
( p

3

)3 = 272 − 93 = (33)2 − (32)3 = 0.

The Cubic Formula gives the real root

2 3

√
−54

2
= −2 3

√
27 = −6.

By the above, 3 is another real root of multiplicity two.
In (c), we first realize that the cubic polynomial is not in a reduced form. The

substitution x �→ x + 1/3 reduces our equation to the form

x3 − 1

3
x + 25

27
= 0.

(The original coefficients a = −1, b = 0, c = 1 transform into p = b − a2/3 =
−1/3 and q = 2a3/27− ab/3+ c = −2/27+ 1 = 25/27.) We have

√(q

2

)2 +
( p

3

)3 =
√

54 − 22

2 · 33 =
√

69

18
.

Continuing our computations, we have

3

√
−q

2
±
√(q

2

)2 +
( p

3

)3 = 3

√
− 52

2 · 33
±
√

69

2 · 32
= 3

√
−52 ± 3

√
69

2 · 33
=

3
√
−100± 12

√
69

6
.

Finally, substituting this into the Cubic Formula, we obtain that the real root of our
original cubic polynomial is

1

3
− 1

6
3
√

100+ 12
√

69− 1

6
3
√

100− 12
√

69.

The other two roots are complex.

History
The history of solving cubic equations is very complex and can be traced back to ancient times
in Babylonia, Egypt, Greece, India, and China. In addition, the Persian mathematician and poet
Omar Khayyàm found geometric solutions by intersecting hyperbolas and parabolas with a circle.
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The Italian mathematician Scipione del Ferro (1465–1526) discovered an algebraic method to
solve cubic equations (for p > 0 and q < 0) but nurtured it as a secret right before his death
when he revealed it to his student, Antonio Fior. Shortly afterwards in about 1530, upon learning
that another Italian mathematician, Niccolò Tartaglia (1500–1557) claimed to have solved the
problem, Fiore challenged him to a contest. When Fiore was defeated, Tartaglia became well-
known in mathematical circles in Italy. This drew the attention of yet another Italian mathematician,
Gerolamo Cardano, who eventually persuaded Tartaglia to reveal the solution to him provided that
he would not publish it. About six years later, upon having seen del Ferro’s solution predating
Tartaglia’s, in 1545 Cardano did publish it in his Ars Magna giving credit to both del Ferro
and Tartaglia. (See the epitaph of this chapter above.) The solution above, using the auxiliary
indeterminates u and v, is the one in his book. The single substitution with the indeterminate w

above is due to François Viète.

Remark Finally, we briefly discuss the case

(q

2

)2 +
( p

3

)3
< 0.

Taking the square root, we obtain the purely imaginary complex number as

√(q

2

)2 +
( p

3

)3 = i

√
−
(q

2

)2 −
( p

3

)3
,

where i is the complex unit, and the radical expression is real since the radicand is
now positive. With this, so far we have

−q

2
± i

√
−
(q

2

)2 −
( p

3

)3
.

Now, one needs to take the cubic root of these as complex numbers. Complex
arithmetic shows that there are actually three distinct cubic roots of a single non-
zero complex number. Corresponding to the two signs ±, we thus have the total of
six cubic roots. Finally, it turns out that these six complex numbers are paired up to
obtain three distinct real roots in this case.

History
The apparent subtlety in the Cubic Formula is that in the three distinct real root case we have to
recourse to complex arithmetic to recover the roots. In the 16th century complex numbers were
unknown. Although the Ars Magna implicitly contains an example of the use of square roots of
negative numbers, namely (5+√−15)(5−√−15) = 40, Cardano himself never applied the Cubic
Formula in this case.

The Cubic Formula obtained in this section provides a real root of a reduced
cubic in an explicit algebraic expression (involving square and cubic roots) in
the coefficients. As it has been recognized by Viète, another cubic formula can
be obtained using the sine and the inverse sine functions. Although this is a
transcendental (non-algebraic) method, the advantage of this formula is that in the
case of three real roots it gives all of them in a single formula without having to
recourse to complex arithmetic. We will discuss this in Section 11.3.
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Exercises

7.2.1. Solve x3 − 2x2 + 3x − 1.
7.2.2. Simplify

3

√
5
√

33− 27

18
− 3

√
5
√

33+ 27

18
.

7.3 Roots of Quartic and Quintic Polynomials

In Sections 6.6 and 7.2 we demonstrated that quadratic and cubic equations can
be solved by root formulas, algebraic expressions with the coefficients of the
polynomials as indeterminates.

The question naturally arises: Is there a root formula for polynomials of higher
degree?

History
Even in the early 16th century, contemporaneously with del Ferro, Tartaglia, and Cardano, there
have been attempts to solve quartic (degree four) polynomial equations. In fact, working as a
servant in Cardano’s household and soon recognized for his brilliance in mathematics, Lodovico
Ferrari (1522–1565) found a general solution for quartic equations. In yet another public contest
he defeated Tartaglia, and his solution of the quartics found its way to Cardano’s Ars Magna
along with the del Ferro-Tartaglia solution of cubics. Ferrari’s solution relies heavily on the Cubic
Formula. In fact, to any quartic polynomial one can associate a cubic polynomial, the so-called
cubic resolvent, and, using the roots of this resolvent, a simple algebraic trick gives the roots of
the original quartic equation.
Although there is a closed formula for the roots of quartic equations, it is long and complex. Since
the algebraic tools to discuss this are best done over the complex number field (not known in
Ferrari’s lifetime), we will not pursue this path any further.4

During the next two and a half centuries finding the root formula for quintic (degree five)
polynomials eluded the mathematicians. Finally, in 1823 Niels Henrik Abel (1802–1829) gave
a proof that no such formula exists. This result is usually called the Ruffini-Abel Theorem
in recognition of an earlier, but incomplete, attempt by Paolo Ruffini (1765–1822). The key
understanding of the break from degree four to five was provided by Évariste Galois (1811–1832),
and the corresponding theory (solving many other classical problems) is known as Galois Theory.

As noted above, there is a root formula for quartic equations. In special cases,
however, it is often easier to look for a splitting the quartic polynomial into two
quadratic factors. The following example illustrates this.

Example 7.3.1 Show that the quartic polynomial p(x) = x(x + 1)(x + 2)(x +
3) + 1 is the square of a quadratic polynomial and has two real roots each with
multiplicity 2.

4See the author’s Glimpses of Algebra and Geometry, 2nd ed. Springer, New York, 2002.
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We calculate

p(x)=x(x+1)(x+2)(x+3)+1=x(x+3) · (x+1)(x+2)+1=(x2+3x) · (x2+3x+2)+1.

Letting u = x2 + 3x + 1, we have

p(x) = (u − 1)(u + 1)+ 1 = u2 − 1+ 1 = u2 =
(

x2 + 3x + 1
)2

.

The Quadratic Formula gives the two real roots (−3±√5)/2, each of multiplicity 2.

Remark A simple consequence of the example above is that the numbers

n(n + 1)(n + 2)(n + 3)+ 1, n ∈ N,

are perfect squares.
One may ask5 whether this holds if the number of consecutive factors is other than
four; that is, for what 2 ≤ m ∈ N is n(n + 1)(n + 2) · · · (n + m) + 1 is a perfect
square for all (or some) n ∈ N.
For m = 2 the answer is “no;” that is, no number of the form n(n + 1)+ 1, n ∈ N,
is a perfect square. Indeed, letting n(n + 1)+ 1 = a2, a ∈ N, we have n(n + 1) =
a2 − 1 = (a − 1)(a + 1). This gives (a − 1)a < n(n + 1), and hence a − 1 < n.
Moreover, n(n + 1) < a(a + 1), and hence n < a. Combining these, we obtain
a − 1 < n < a, which is impossible.
For m = 3, we have 2 ·3 ·4+1 = 52, 4 ·5 ·6+1 = 112, and 55 ·56 ·57+1 = 4192.
It turns out that these are the only cases with perfect squares, but the proof of this is
beyond the scope of this book.6

For m = 4, the answer is “no” up to n ≤ 104.
A related problem is to ask for what n ∈ N is the number n!+1 a perfect square. This
is called the Brocard problem dating from 1876–1885. The pairs (n, m), n, m ∈ N,
satisfying n! + 1 = m2 are called Brown pairs. Up until 2019, there were only three
Brown pairs known: (4, 5), (5, 11) and (7, 71). Paul Erdös and others conjectured
that these are the only Brown pairs. At present this problem is unsolved. Up to
n ≤ 1015 the conjecture is true.

Returning to the main line, given a (monic) degree n polynomial equation

xn + an−1xn−1 + an−2xn−2 + · · · + a1x + a0 = 0,

the initial substitution

x �→ x − an−1

n

5The author is indebted to one of the reviewers for raising this question.
6This problem can be reformulated to finding the integer points on the elliptic curve y2 = x3−x+1
(with x = n − 1).
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has the effect of eliminating the second highest degree monomial. We used this for
n = 3 to obtain the reduced cubic, and, for n = 2, this is also the content of the
completing the square technique for quadratic equations.

This substitution is the first of the so-called Tschirnhaus transformations which
meant to reduce the original polynomial into a simpler form in which one or
several coefficients vanish. The construction of Tschirnhaus transformations that
eliminate lower degree monomials requires advanced tools of algebra, and they are
of “exponentially” increasing complexity.

History
The original intention of Ehrenfried Walther von Tschirnhaus (1651–1708) in 1683 about the
transformations that were named after him was to obtain solutions of polynomial equations by
reducing them to simple ones in which all but a few coefficients vanish. Tschirnhaus himself
believed (erroneously) that with these transformations any degree polynomial equations can be
solved.

Although there is no root formula for quintic polynomials, using Tschirnhaus
transformations, one can reduce a general quintic polynomial equation to the form

x5 + px + q = 0.

This is the so-called Bring-Jerrard form. It is named after Erland Bring (1736–
1798), and George Jerrard (1804–1863) (who was reluctant to accept Abel’s
negative resolution of the problem of quintic equations). They showed indepen-
dently that this reduction is possible.

Employing yet another scaling (a suitable constant multiple of the indeterminate
x), the Bring-Jerrard form can further be reduced to the form

x5 + x − c = 0.

A root of this polynomial is called an ultraradical, denoted by ∗√c. Thus, the result
of Bring and Jerrard can be concisely stated that the general quintic equation can be
solved by root formulas that include ultraradicals.

Note that some specific ultraradicals can be expressed by root formulas. The
following example illustrates this.

Example 7.3.2 We have

∗√
1 = −1

3
+ 1

6
3
√

100+ 12
√

69+ 1

6
3
√

100− 12
√

69.

Recall from Example 6.4.4 the factorization

x5 + x − 1 = (x3 + x2 − 1)(x2 − x + 1).

According to Example 7.2.3 (c) (with−x in place of x) the first cubic factor has the
given root. The claim follows.
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Exercise

7.3.1. Under what condition on a, b, c ∈ R can the quartic polynomial

p(x) = ax4 + bx3 + cx2 + bx + a

be factored? Note the symmetry in the sequence of the coefficients
a, b, c, b, a.

7.4 Polynomials with Rational Coefficients

In most of the previous examples the polynomial p(x) in question had a rational
(or even integral) root c ∈ Q, and, using synthetic division, we found a factorization
p(x) = (x − c)q(x). The question arises whether there is a simple (arithmetical)
test to find rational roots of a polynomial with rational (or even integer) coefficients.

A solution to this problem was provided by Gauss:

Rational Root Theorem If c = a/b ∈ Q with a, b ∈ Z, b �= 0, is a rational root
of a degree n polynomial

p(x) = an xn + an−1xn−1 + · · · + a1x + a0

with integer coefficients a0, a1, . . . , an ∈ Z, an �= 0, then a divides a0 and b divides
an .

Proof We may assume that the fraction a/b is irreducible; that is, gcd (a, b) = 1.
We substitute a/b into the equation p(x) = 0 and obtain

an

(a

b

)n + an−1

(a

b

)n−1 + · · · + a1
a

b
+ a0 = 0.

Multiplying through by bn−1 we have

an
an

b
+ an−1an−1 + · · · + a1abn−2 + a0bn−1 = 0.

This shows that anan/b must be an integer. Therefore b divides anan . Since
a and b are relatively prime, we obtain that b divides an . (See Corollary to
Proposition 1.3.1.)
Returning to our numerical equation above, we multiply through bn/a and obtain

anan−1 + an−1an−2b + · · · + a1bn−1 + a0
bn

a
= 0.
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This shows that a0bn/a is an integer so that a divides a0bn . Since gcd (a, b) = 1,
we obtain that a divides a0. The Rational Root Theorem follows.

Example 7.4.1 Factor the quintic polynomial completely:

6x5 − 17x4 − x3 + 26x2 − 17x + 3.

By the Rational Root Theorem, if r = a/b ∈ Q, a, b ∈ Z, (a, b) = 1, is a
rational root, then a|3 and b|6. These give the following possibilities:

r = a

b
= ±1,±3,±1

2
,±2

3
,±1

3
,±1

6
.

First, we immediately see that r = 1 is a root (since the sum of the coefficients
is zero). Performing synthetic division, we obtain

p(x) = (x − 1)(6x4 − 11x3 − 12x2 + 14x − 3).

Second, synthetic divisions reveal that r = 1/2 and r = 1/3 are roots. Performing
them consecutively, we obtain

6 − 11 − 12 14 − 3
1
2 3 − 4 − 8 3

6 − 8 − 16 6 0
and then

3 − 4 − 8 3
1
3 1 − 1 − 3

3 − 3 − 9 0
.

Summarizing, we have so far the following:

p(x) = (x−1)(2x−1)(x−1/3)(3x2−3x−9) = (x−1)(2x−1)(3x−1)(x2−x−3).

For the last quadratic quotient, the Quadratic Formula gives the two roots as r =
(1 ± √13)/2, both irrational numbers. With these the complete factorization is as
follows:

p(x) = (x − 1)(2x − 1)(3x − 1)

(
x − 1+√13

2

)(
x − 1−√13

2

)
.

Example 7.4.2 7 Let p(x) be a polynomial with integer coefficients. Show that if
p(0) and p(1) are odd numbers, then p(x) has no integral root.

Let

p(x) = an xn + an−1xn−1 + · · · + a1x + a0, a0, a1, . . . , an−1, an ∈ Z.

7This was a problem in the Canadian Mathematical Olympiad, 1971.



7.4 Polynomials with Rational Coefficients 337

By assumption, p(0) = a0 and p(1) = a0+a1+· · ·+an are odd numbers. This
implies that a1 + · · · + an is an even number.

Assume, on the contrary, that m is an integral root of p(x); that is, we have
p(m) = anmn + an−1mn−1 + · · · + a1m + a0 = 0. By the Rational Root Theorem,
m|a0 so that m must be an odd number (since a0 is odd). Since a1+· · ·+an is even,
there must be an even number of coefficients ak , k = 1, . . . , n, that are odd. Since
m is odd, this implies that there must also be an even number of odd terms in the
sum anmn + an−1mn−1 + · · · + a1m. Therefore this sum is an even number. This
sum, however, is equal to −a0, an odd number. This is a contradiction.

It is important to emphasize that, in solving (reduced) cubics with integer
coefficients and with three real roots (discussed at the end of Section 7.2), we first
should look for rational roots, and apply the Rational Root Theorem. If there is a
rational root, then, by synthetic division, we can bypass the often tedious arithmetic
of the Cubic Formula. The following example illustrates this point.

Example 7.4.3 Solve the cubic equation x3 − 2x − 1 = 0.
We have p = −2 and q = −1 so that

(q

2

)2 +
( p

3

)3 = 1

4
− 8

27
= − 5

108
< 0.

Instead of getting into complex arithmetic, the Rational Root Theorem gives ±1 as
the only candidates for rational roots. Substituting, we see that −1 is indeed a root.
Performing synthetic division, we obtain the factorization

x3 − 2x − 1 = (x + 1)(x2 − x − 1).

The roots of the quadratic factor are the golden number τ and −1/τ . (See
Example 3.1.2.) With these, we have the complete factorization

x3 − 2x − 1 = (x + 1) (x − τ) (x + 1/τ) .

We now return to the original setting and discuss a special case; factorization of
a quadratic polynomial with integer coefficients:

ax2 + bx + c, a �= 0, a, b, c ∈ Z.

We assume that our trinomial can be factored as

ax2 + bx + c = (ax)2 + abx + ac

a
= (ax + s)(ax + t)

a
,

where s, t are integers. Expanding the last numerator, we see that this factorization
is possible if and only if s and t satisfy the equations

st = ac and s + t = b.
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Since all ingredients here are integers, the first equation says that s and t divide
ac. Since any integer has only finitely many divisors, we can compile the list
of admissible pairs (s, t). As s and t play a symmetric role, we may assume
|s| ≤ |t |. (Note that s and t may well be negative integers.) Once this list is
compiled, it is a simple matter to check which one satisfies the second linear
constraint.

This technique, relying on the divisors of ac, is also called the AC method.
A natural question is the following: Under what condition (on the trinomial) does

the AC method work?
First, if it works, then, by the factorization above, −s/a and −t/a are roots of

our trinomial. Since they are rational numbers, we see that a necessary condition for
the AC method to work is that the trinomial has rational roots.

We now claim that the converse is also true: If the original quadratic equation has
rational roots, then s, t ∈ Z exist and the AC method works.

This follows from the Quadratic Formula. Indeed, if the roots are rational, then
the square root of the discriminant,

√
D, must also be rational. But the discriminant

D = b2 − 4ac is a non-negative integer, and we showed in Section 2.1 that the
square root of a non-negative integer is rational if and only if the integer itself is a
perfect square. Thus, we have D = b2 − 4ac = d2 for some d ∈ N0. Rearranging,
we have 4ac = b2 − d2 = (b − d)(b + d). The crux is that this equality implies
that 4 divides (b − d)(b + d), so that one of the factors and hence both b − d and
b + d have to be even numbers. (b − d is even if and only if b + d = (b − d)+ 2d
is even.) Now the Quadratic Formula gives the roots as

r = −b ±√b2 − 4ac

2a
= −b ±√d2

2a
= −b ± d

2a
.

By what we concluded above, the numerators −(b − d) and −(b + d) are even
integers. Dividing by 2, we conclude that the roots are −s/a and −t/a, where s =
(b − d)/2 and t = (b + d)/2 are integers. Therefore the AC method works. (Note
that, in terms of s, t , the discriminant is D = b2 − 4ac = (s + t)2 − 4st = (s − t)2

so that d = |s − t |.)8

Example 7.4.4 Factor 12x2 + 7x − 10 using the AC method.
Since ac = −120 has many divisors, we first compile the list of all positive

divisors of 120:

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

Thus we have the following table for the pairs (s, t) with st = −120 and |s| ≤ |t |:

8The AC method is tedious and has very limited applicability. (It is unclear why this method plays
such a paramount role in teaching basic algebra in schools.) Not only do the coefficients a, b, c
have to be integers (or rational numbers at worst), but the AC method works if and only if the roots
are rational numbers.
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(±1,∓120) (±2,∓60) (±3,∓40) (±4,∓30)

(±5,∓24) (±6,∓20) (±8,∓15) (±10,∓12).

The only pair which satisfies s + t = 7 is (−8, 15). We split the linear term 7x and
group

12x2 + 7x − 10 = 12x2 − 8x + 15x − 10 = (12x2 − 8x)+ (15x − 10)

= 4x(3x − 2)+ 5(3x − 2) = (4x + 5)(3x − 2).

The factorization is complete.

A famous negative case is the content of the following:

Example 7.4.5 Show that the cubic polynomial p(x) = 8x3−6x−1 has no rational
roots.

As before, the possible rational roots r = a/b are

±1,±1

2
,±1

4
,±1

8
.

Now synthetic division shows that none of these are roots of p(x).

Remark The significance of this example lies in the fact that cos(π/9) is a root of
this polynomial. (See Section 11.3.) This will imply that π/3 cannot be trisected by
straightedge and compass.

Exercises

7.4.1. The equation x3 = 15x + 4 appears in the 1570 edition of the Ars Magna.
Find all three roots.

7.4.2. Find a real root of the cubic equation x3 + 6x − 20 = 0.

7.5 Factoring Multivariate Polynomials

Factoring multivariate polynomials is often more difficult then factoring polynomi-
als of a single indeterminate. In this section we assemble a sequence of examples
starting with simple and ending with complex factoring. Whenever instructive, we
will determine the zero-set of the respective polynomial.

Example 7.5.1 Factor the quartic polynomial

p(x, y) = x3 y − xy3.
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Clearly xy is a common factor of the two monomials. We thus have

p(x, y) = xy(x2 − y2) = xy(x − y)(x + y).

Since the factors are linear they are irreducible, so that this is the complete
decomposition of p(x, y) into irreducible components.

The corresponding polynomial equation p(x, y) = 0 has a simple geometric
interpretation on R

2. The vanishing of each factor is represented by a line in R
2.

The equations y = 0 and x = 0 describe the first and second coordinate axes. The
equations x ± y = 0 correspond to the two perpendicular lines that meet at the
origin and have slopes ±1. Altogether, the entire zero-set is the union of four lines
arranged in a symmetric pattern.

Example 7.5.2 Factor the quartic polynomial

p(x, y) = x2 y2 − x2 − y2 + 1.

This polynomial is biquadratic, a quadratic polynomial in the indeterminates
x2 and y2. This motivates us to set a = x2 and b = y2 and factor the quadratic
polynomial in a and b as ab−a−b+1 = (a−1)(b−1). Returning to our original
indeterminates, we obtain the complete factorization

p(x, y) = (x2 − 1)(y2 − 1) = (x − 1)(x + 1)(y − 1)(y + 1).

The equation p(x, y) = 0 on R
2 is represented by four lines, the extensions of

the four sides of the square with vertices (±1,±1).

Example 7.5.3 Factor the biquadratic polynomial

p(x, y) = x4 + y4 − 2x2 y2 − 2x2 − 2y2 + 1.

First Solution. As in the previous example, setting a = x2 and b = y2, we need to
factor the expression

a2 + b2 − 2ab − 2a − 2b + 1.

One is tempted to use the binomial identity (a − b)2 = a2 − 2ab+ b2 but this does
not match the linear terms −2a − 2b = −2(a + b). Insisting on the presence of the
expression a + b, we split the term −2ab into 2ab − 4ab, rearrange, and rewrite
this as

a2+2ab+b2−2(a+b)+1−4ab = (a+b)2−2(a+b)+1−4ab = (a+b−1)2−4ab.

We can factor this at the expense of introducing the square roots of a and b, and
appealing to the difference of squares identity. Instead, we now go back to our
original indeterminates x and y and calculate
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p(x, y) = (x2 + y2 − 1)2 − 4x2 y2 = (x2 + y2 − 1)2 − (2xy)2

= (x2 + y2 − 2xy − 1)(x2 + y2 + 2xy − 1) = ((x − y)2 − 1)((x + y)2 − 1)

= (x − y − 1)(x − y + 1)(x + y − 1)(x + y + 1).

Second Solution. This time we let a = x + y and b = x − y. Squaring, we have

a2 = x2 + y2 + 2xy and b2 = x2 + y2 − 2xy.

We calculate

a2b2 = (x2+ y2+2xy)(x2+ y2−2xy) = (x2+ y2)2−4x2 y2 = x4+ y4−2x2 y2,

and

a2 + b2 = 2x2 + 2y2.

Using these the original polynomial rewrites as

p(x, y) = a2b2 − a2 − b2 + 1.

We now notice that this is precisely the polynomial of the previous example (in the
indeterminates a and b). We thus have

p(x, y) = (a−1)(a+1)(b−1)(b+1) = (x+y−1)(x+y+1)(x−y−1)(x−y+1).

In both cases the equation p(x, y) = 0 is geometrically represented in R
2 as the

line extensions of the four sides of the square with vertices (±1, 0) and (0,±1).

Example 7.5.4 Factor the biquadratic polynomial

p(x, y, z) = x4 + y4 + z4 − 2x2 y2 − 2y2z2 − 2z2x2.

First Solution. We first notice that p(x, y, z) is homogeneous since all monomials
have degree 4. A simple method to reduce the number of indeterminates is to
“dehomogenize” p(x, y, z) by dividing by z4, say, and changing to the new
indeterminates u = x/z and v = y/z. We obtain

p(x, y, z)

z4 = p(u, v, 1) = u4 + v4 − 2u2v2 − 2u2 − 2v2 + 1.

By the previous example, this factors as

u4+ v4− 2u2v2− 2u2− 2v2+ 1 = (u− v− 1)(u− v+ 1)(u+ v− 1)(u+ v+ 1).
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Reverting to the original indeterminates and multiplying through by z4, we obtain

p(x, y, z) = (x − y − z)(x − y + z)(x + y − z)(x + y + z).

Second Solution. A direct solution is based on breaking the cyclic symmetry x �→
y �→ z �→ x as follows:

p(x, y, z) = x4 + y4 + z4 − 2x2 y2 + 2y2z2 − 2z2x2 − 4y2z2

= (x2 − y2 − z2)2 − 4y2z2

= (x2 − y2 − z2 − 2yz)(x2 − y2 − z2 + 2yz)

= (x2 − (y + z)2)(x2 − (y − z)2)

= (x − y − z)(x + y + z)(x − y + z)(x + y − z).

Factorization may be a critical tool in deriving inequalities. The following simple
example illustrates this:

Example 7.5.5 Show that, for 0 < a, b ∈ R, we have

a3 + b3 ≥ ab(a + b).

Indeed, this holds because of the factorization

a3 + b3 − ab(a + b) = (a − b)2(a + b) ≥ 0.

Example 7.5.6 Factor the cubic polynomial

p(x, y) = 2x3 − 6xy2 − 3x2 − 3y2 + 1.

We first isolate the terms that contain the indeterminate y:

p(x, y) = 2x3 − 3x2 + 1− 3(2x + 1)y2.

Next, we notice that the cubic polynomial formed by the first three monomials has
−1/2 as a root. Hence (2x + 1) is a common factor:

p(x, y) = (2x + 1)(x2 − 2x + 1− 3y2).

We now have

p(x, y) = (2x + 1)((x − 1)2 − 3y2) = (2x + 1)(x −√3y − 1)(x +√3y − 1).

Although the presence of the “irrationality”9
√

3 may indicate some complexity,
the geometric characterization of the zero-set p(x, y) = 0 is simple and elegant. The

9As a nineteenth century mathematician would call it.
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zero-set is represented by three lines; the vertical line given by x = −1/2, and two
additional lines given by y = ±1/

√
3(x − 1) and meeting at the point (1, 0). The

vertical line cuts out two additional intersection points (−1/2,±√3/2). Calculating
distances, we realize that these three points are the vertices of an equilateral triangle
inscribed into the unit circle S. We conclude that p(x, y) = 0 represents the union
of three lines which are the extensions of the sides of this triangle.

Example 7.5.7 Factor the quartic polynomial

p(x, y) = x2 y2 + 2x2 y + 2xy2 + x2 + 2xy + y2.

First Solution. We group various terms and calculate

p(x, y) = x2 y2 + 2x2 y + 2xy2 + x2 + 2xy + y2 = x2(y2 + 2y + 1)+ 2xy2 + 2xy + y2

= x2(y + 1)2 + 2xy(y + 1)+ y2 = (x(y + 1)+ y)2 = (xy + x + y)2.

Second Solution. For a less “ad hoc” approach, we notice that p(x, y) is symmetric,
so that the Fundamental Theorem on Symmetric Polynomials applies. Using the
elementary symmetric polynomials s1(x, y) = x + y and s2(x, y) = xy, we obtain

p(x, y) = x2 y2 + 2xy(x + y)+ (x + y)2 = s2
2 + 2s2s1 + s2

1 = (s2 + s1)
2.

Returning to our original indeterminates x, y, we arrive at p(x, y) = (xy+ x+ y)2.

We now turn to more complex cubic polynomials:

Example 7.5.8 Factor the cubic polynomial

p(x, y, z) = x3 + y3 + z3 − 3xyz.

First Solution. This polynomial is homogeneous of degree three; that is, for
t ∈ R, we have p(t x, t y, t z) = t3 p(x, y, z), and symmetric. This indicates
that the factors, if any, should have similar properties. The simplest symmetric
homogeneous expressions (up to degree two) in the indeterminates x, y, z are

x + y + z, x2 + y2 + z2, xy + yz + zx .

To form cubic expressions, we calculate

(x + y + z)(x2 + y2 + z2) = x3 + y3 + z3 + xy2 + yx2 + yz2 + zy2 + zx2 + xz2,

and

(x + y + z)(xy + yz + zx) = 3xyz + xy2 + yx2 + yz2 + zy2 + zx2 + xz2.
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Subtracting, we obtain

(x + y + z)(x2 + y2 + z2)− (x + y + z)(xy + yz + zx) = x3 + y3 + z3 − 3xyz.

Since x + y + z is a common factor, we arrive at the factorization

p(x, y, z) = x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx).

Second Solution. Once again a less “ad hoc” method is to observe that our
polynomial p(x, y, z) is symmetric, and apply the Fundamental Theorem of
Symmetric Polynomials. In three indeterminates x, y, z it says that any symmetric
polynomial p(x, y, z) can be uniquely written as a polynomial of the elementary
symmetric polynomials s1, s2, s3 as indeterminates, where

s1(x, y, z) = x + y + z; s2(x, y, z) = xy + yz + zx; s3(x, y, z) = xyz.

For our cubic, by homogeneity, the only possibility is

p(x, y, z) = As3
1(x, y, z)+ Bs1(x, y, z)s2(x, y, z)+ Cs3(x, y, z)

with appropriate constants A, B, C ∈ R. Comparing coefficients, we find that A =
1, B = −3, and C = 0. With these, we have

p(x, y, z) = s3
1(x, y, z)− 3s1(x, y, z)s2(x, y, z)

= s1(x, y, z)(s1(x, y, z)2 − 3s2(x, y, z))

= (x + y + z)((x + y + z)2 − 3(xy + yz + zx))

= (x + y + z)(x2 + y2 + z2 − xy − yz − zx).

The (double of the) last quadratic factor in the previous example can be written
in another symmetric form:

2(x2 + y2 + z2 − xy − yz − zx)

= (x2 − 2xy + y2)+ (y2 − 2yz + z2)+ (z2 − 2zx + x2)

= (x − y)2 + (y − z)2 + (z − x)2.

This is the sum of three squares so that it is non-negative. In particular, it is zero if
and only if x = y = z.

Using this in the example above, for x, y, z ≥ 0, we obtain

x3 + y3 + z3 − 3xyz ≥ 0,
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or equivalently

xyz ≤ x3 + y3 + z3

3
,

with equality if and only if x = y = z. Finally, letting x = 3
√

a, y = 3
√

b, z = 3
√

c,
we arrive at the following:

3
√

abc ≤ a + b + c

3
, a, b, c ≥ 0.

Equality holds if and only if a = b = c. This is the AM-GM inequality in three
indeterminates.

A variation on the theme is the following:

Example 7.5.9 Factor the cubic polynomial

p(x, y, z) = (x − y)3 + (y − z)3 + (z − x)3.

The form of p(x, y, z) suggests to introduce the new indeterminates a = x − y,
b = y − z and c = z − x . Their sum automatically vanishes:

a + b + c = (x − y)+ (y − z)+ (z − x) = 0.

According to the factorization in Example 7.5.8 above, we have

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

In terms of our original indeterminates x, y, z, this then gives

(x − y)3 + (y − z)3 + (z − x)3 − 3(x − y)(y − z)(z − x) = 0.

With this we arrive at the factorization

p(x, y, z) = (x − y)3 + (y − z)3 + (z − x)3 = 3(x − y)(y − z)(z − x).

There are several beautiful applications of the factorization of the cubic polyno-
mial x3 + y3 + z3 − 3xyz in Example 7.5.8. We give here two:

Example 7.5.10 Let 0 �= r ∈ R such that 3
√

r+1/ 3
√

r = a ∈ R. Calculate r3+1/r3

in terms of a.
Letting x = 3

√
r , y = 1/ 3

√
r , z = −a, we have x+y+z = 0 so that Example 7.5.8

gives

( 3
√

r)3 + 1/( 3
√

r)3 + (−a)3 = 3 · 3
√

r · 1/ 3
√

r · (−a) = −3a.
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We obtain r + 1/r = a3 − 3a. Applying the same identity again, we have

r3 + 1

r3 + (−a3 + 3a)3 = 3 · r · 1

r
· (−a3 + 3a) = −3a3 + 9a.

This gives

r3 + 1/r3 = (a3 − 3a)3 − 3a(a2 − 3) = a(a2 − 3)(a2(a2 − 3)2 − 3).

Example 7.5.11 Let a, b, c ∈ R be such that a + b + c = 0. Solve the following
equation for t ∈ R:

3
√

t − a + 3
√

t − b + 3
√

t − c = 0.

Using the identity above for x = 3
√

t − a, y = 3
√

t − b, z = 3
√

t − c, the equation
to be solved is equivalent to

(t − a)+ (t − b)+ (t − c)− 3 3
√

(t − a)(t − b)(t − c) = 0.

Since a + b + c = 0, this gives t = 3
√

(t − a)(t − b)(t − c). Taking the cube of
both sides, we obtain t3 = (t−a)(t−b)(t− c). Expanding, the cubic and quadratic
terms cancel, and we arrive at t (ab + bc + ca) = abc. If ab + bc + ca �= 0, then
the unique solution is t = abc/(ab + bc + ca). If ab + bc + ca = 0, then there is
no solution if abc �= 0, and all real numbers are solutions if abc = 0. The example
follows.

Example 7.5.12 Factor the cubic polynomial

p(x, y, z) = x3 + y3 + z3 − (x + y + z)3.

Since p(x, y, z) is symmetric, as a first step, using the result of the second
solution of Example 7.5.8, we can write it in terms of the elementary symmetric
polynomials s1, s2, s3 as

p(x, y, z) = −3(s1(x, y, z)s2(x, y, z)− s3(x, y, z)).

We now calculate (by breaking the symmetry):

s1(x, y, z)s2(x, y, z)− s3(x, y, z) = (x + y + z)(xy + yz + zx)− xyz

= (x + y)(xy + yz + zx)+ z(xy + yz + zx)− xyz

= (x + y)(xy + yz + zx)+ (x + y)z2

= (x + y)(xy + yz + zx + z2) = (x + y)(y + z)(z + x).
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With this we finally arrive at the factorization

p(x, y, z) = x3 + y3 + z3 − (x + y + z)3 = −3(x + y)(y + z)(z + x).

To finish this section we return to the AM-GM inequality in three indeterminates,
and show two simple applications:

Example 7.5.13 Show that, for 0 < a, b, c ∈ R, we have

a

b
+ b

c
+ c

a
≥ 3.

Indeed, we have

a

b
+ b

c
+ c

a
≥ 3 3

√
a

b

b

c

c

a
= 3.

Example 7.5.14 Show that, for 0 < a, b, c ∈ R, we have

(a2b + b2c + c2a)(ab2 + bc2 + ca2) ≥ 9a2b2c2.

We use the AM-GM inequality for each factor on the left-hand side as follows

(a2b + b2c + c2a)(ab2 + bc2 + ca2) ≥ (3
3
√

a3b3c3)(3
3
√

a3b3c3) = 9a2b2c2.

The example follows.

Exercises

7.5.1. Factor the binomial x10 − y10.
7.5.2. Find the number of solutions of integral quadruples (a, b, c, d), a, b, c, d ∈

Z, satisfying ab + cd = ac + bd = ad + bc = −2.

7.6 The Greatest Common Factor

The greatest common factor (gcf) of two polynomials a(x) and b(x), at least one
of which is non-zero, is the polynomial of largest degree that divides both a(x) and
b(x). It is usually denoted10 by gcf (a(x), b(x)). It is uniquely determined by a(x)

10When discussing gcf (a(x), b(x)), we always tacitly assume that at least one of the polynomials
a(x) or b(x) is non-zero.
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and b(x) up to a non-zero constant multiple. Alternatively, adding the requirement
that the gcf must be monic (with leading coefficient 1) it becomes unique.

Remark The greatest common divisor of two integers is sometimes called the
greatest common factor. For clarity, we keep the two concepts separate, so that the
greatest common factor applies only for polynomials.

The Euclidean Algorithm for integers (and its proof) (Section 1.3) can be
transplanted almost verbatim to obtain the Euclidean Algorithm to find the gcf of
two polynomials. The only change is that, instead of keeping track of the numerical
values of the remainders, we need to keep track of their degrees. With this, the
Euclidean algorithm to find gcf (a(x), b(x)) for two polynomials a(x) and b(x)

with deg a(x) ≥ deg b(x) is as follows:

a(x) = b(x)q1(x)+ r1(x), deg r1(x) < deg b(x)

b(x) = r1(x)q2(x)+ r2(x), deg r2(x) < deg r1(x)

r1(x) = r2(x)q3(x)+ r3(x), deg r3(x) < deg r2(x)

r2(x) = r3(x)q4(x)+ r4(x), deg r4(x) < deg r3(x)

· · · · · · · · ·
rn−3(x) = rn−2(x)qn−1(x)+ rn−1(x), deg rn−1(x) < deg rn−2(x)

rn−2(x) = rn−1(x)qn(x).

As before, we set the indices such that rn(x) = 0. Thus, we have

gcf (a(x), b(x)) = rn−1(x).

Example 7.6.1 Find gcf (x3 − 3x2 + 3x − 2, x2 − 5x + 6).
Using long divisions, a straightforward computation gives

x3 − 3x2 + 3x − 2 = (x2 − 5x + 6)(x + 2)+ 7x − 14

x2 − 5x + 6 = (7x − 14)

(
1

7
x − 3

4

)
.

Hence gcf (x3 − 3x2 + 3x − 2, x2 − 5x + 6) = 7x − 14.

A final general remark. As before, systematic elimination of the intermediate
remainders r1(x), r2(x), . . . , rn−2(x) gives the following: There exist polynomials
k(x) and l(x) such that we have

gcf (a(x), b(x)) = k(x) · a(x)+ l(x) · b(x).

Example 7.6.2 If an irreducible polynomial p(x) divides a product a(x) · b(x) of
two polynomials, then p(x) divides a(x) or b(x).
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Assume that p(x) does not divide a(x). Since p(x) is irreducible,
gcf (p(x), a(x)) = 1. By the remark above, there exist polynomials k(x) and

l(x) such that 1 = gcf (p(x), a(x)) = k(x)p(x) + l(x)a(x). Multiplying through
by b(x), we get b(x) = k(x)p(x)b(x) + l(x)a(x)b(x). Now, since p(x) divides
a(x)b(x), it must divide the sum on the right-hand side, and hence b(x). The
example follows.

Exercise

7.6.1. Calculate

(a) gcf (x4 − x3 + 7x2 − 6x + 6, x5 − x4 + x3 + 3x2 − 3x + 3);
(b) gcf (x5−5x4+x3+6x2−30x+6, x6 − 5x5 + x4 + 3x2 − 15x + 3).



Chapter 8
Conics

“Eratosthenes, in his work entitled Platonicus relates that,
when the god proclaimed to the Delians through the oracle that,
in order to get rid of a plague, they should construct an altar
double that of the existing one, their craftsmen fell into great
perplexity in their efforts to discover how a solid could be made
the double of the similar solid. . . ”
Theon of Smyrna (c. 70–c. 135) quoting Eratosthenes

In this short chapter, we give a complete and elementary classification of conics
without using linear algebraic tools. We derive many classical properties of them
with applications and full historical details. We show how parabolas can be used
to give a geometric interpretation of the Babylonian method of extracting square
roots. Finally, we use symmetry properties of hyperbolas to present a geometric
proof of the famous 1988 International Mathematical Olympiad problem discussed
in Chapter 6 (Example 6.6.8).

8.1 The General Conic

Conics, or quadratic curves, are important examples of plane curves possessing
many elegant geometric properties. The classical (geometric) term “conic (section)”
is because these curves are intersections of the surface of a right circular double
cone with a plane. The (algebraic) term “quadratic curve” is due to the fact that
they can be represented as the zero-set {(x, y) ∈ R

2 | p(x, y) = 0} of a quadratic
polynomial p(x, y) in two indeterminates x and y. Although we pursue here an
algebraic approach we retain the geometric term “conic.”

A conic is non-degenerate if the representing quadratic polynomial p(x, y) is
irreducible; that is, if it does not factor into a product of two linear factors. A
degenerate conic is a pair of intersecting or parallel lines (including the case when
the two lines coincide). In addition, the single point, and the empty set are also
considered degenerate conics.
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Example 8.1.1 The zero-set of the polynomial (ax − by− c)(a′x − b′y− c′), a2+
b2 > 0, a′2 + b′2 > 0 is a pair of lines (with various incidence properties discussed
in Section 5.2). The zero-set of the polynomial x2+ y2 consists of the origin 0 only.
Finally, the zero-sets of the polynomials x2+ 1 and y2+ 1 are the empty set. These
are all degenerate conics.

Remark Over the complex number field C, a quadratic polynomial p(x, y) (with
real coefficients) is called absolutely irreducible if it does not factor into complex
linear factors. A conic is called non-degenerate if the associated polynomial is
absolutely irreducible. In the examples above the conics are all reducible over C:
x2 + y2 = (x + iy)(x − iy), x2 + 1 = (x + i)(x − i) and y2 + 1 = (y + i)(y − i).
Staying within the real number system, we will not use this terminology.

We now begin the study of non-degenerate conics. We split a general quadratic
polynomial p(x, y) in two indeterminates x, y into homogeneous components as

p(x, y) = p2(x, y)+ p1(x, y)+ p0, p0 ∈ R,

where the subscripts stand for the degree. Expanding, we have

p2(x, y) = Ax2 + By2 + Cxy, p1(x, y) = U x + V y, p0 = K .

where A, B, C, U, V, K ∈ R and A, B, C do not vanish simultaneously.

To reduce the complexity of the polynomial p(x, y) we will perform several
substitutions.

First, we let (a0, b0) ∈ R
2 such that a2

0 + b2
0 = 1, and introduce the change of

variables

x �→ a0x − b0 y and y �→ b0x + a0 y.

We pause here to discuss the geometric meaning of this. By assumption, the point
Q = (a0, b0) is on the unit radius circle S (with center at the origin 0). The point
Q is uniquely determined by the angle measure θ = α0(�), where � is the half-
line with end-point at 0 and containing Q. (Recall that α0(�) = μ( � �+0�), where
�+ is the positive first axis.) We view the substitution above as a transformation
Rθ : R2 → R

2 given by

Rθ (P) = (a0x − b0 y, b0x + a0 y), P = (x, y) ∈ R
2.

We claim that Rθ preserves the Cartesian distance d; that is, we have

d(Rθ (P0), Rθ (P1)) = d(P0, P1), P0, P1 ∈ R
2.
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Indeed, for P0 = (x0, y0) and P1 = (x1, y1), we calculate

d(Rθ (P0), Rθ (P1))
2

= ((a0x0 − b0 y0)− (a0x1 − b0 y1))
2 + ((b0x0 + a0 y0)− (b0x1 + a0 y1))

2

= (a0(x0 − x1)− b0(y0 − y1))
2 + (b0(x0 − x1)+ a0(y0 − y1))

2

= a2
0(x0 − x1)

2 + b2
0(y0 − y1)

2 + b2
0(x0 − x1)

2 + a2
0(y0 − y1)

2

= (x0 − x1)
2 + (y0 − y1)

2 = d(P0, P1)
2.

The claim follows.
Clearly, Rθ fixes the origin: Rθ (0) = 0. Next, we claim that Rθ preserves the

orientation; in fact, we have

ω(0, Rθ (P0), Rθ (P1)) = ω(0, P0, P1), P0, P1 ∈ R
2.

Using the previous notations, we calculate

ω(0, Rθ (P0), Rθ (P1)) = (a0x0 − b0 y0)(b0x1 + a0 y1)−(a0x1−b0 y1)(b0x0+a0 y0)

= a2
0 x0 y1 − b2

0x1 y0 − (a2
0 x1 y0 − b2

0x0 y1)

= x0 y1 − x1 y0 = ω(0, P0, P1).

The positive first axis �+ is sent by Rθ to the half-line � with end-point 0 and
containing Q. Since Rθ preserves distances and orientation, it follows easily from
the Birkhoff Postulate of Similarity that Rθ is the (positive) rotation with angle θ

about the origin 0. We also see that Rπ/2 = S0 is the (positive) quarter-turn about
the origin 0.

Remark Rotation about any point O with angle θ can be obtained as the composi-
tion1 Rθ,O = TO ◦ Rθ ◦ T−O .

We now return to our conics, and apply the substitution above (algebraically), or
perform the rotation Rθ (geometrically). Since the components of the substitution
are homogeneous of degree 1, it follows that the homogeneous components of
p(x, y) are transformed independently.

More specifically, for the degree 2 component, we have

p2(a0x − b0 y, b0x + a0 y) =
= A(a0x − b0 y)2 + B(b0x + a0 y)2 + C(a0x − b0 y)(b0x + a0 y)

= (Aa2
0 + Bb2

0 + Ca0b0)x2 + (Ba2
0 + Ab2

0 − Ca0b0)y2

+
(

C(a2
0 − b2

0)− 2(A − B)a0b0

)
xy.

1It is a simple fact that any transformation in the plane that preserves distances and the orientation
is either a rotation or a translation. We will not need this.
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We claim that the quantity C2 − 4AB is unchanged by this substitution.2 This
can be shown by direct computation:

(
C(a2

0−b2
0)−2(A − B)a0b0

)2−4(Aa2
0+Bb2

0+Ca0b0)(Ba2
0 + Ab2

0 − Ca0b0)

= C2(a2
0 − b2

0)
2 − 8ABa2

0b2
0 − 4AB(a4

0 + b4
0)+ 4C2a2

0b2
0

= C2(a2
0 + b2

0)
2 − 4AB(a2

0 + b2
0)

2 = C2 − 4AB.

For the degree 1 component, we have

p1(a0x − b0 y, b0x + a0 y) = U (a0x − b0 y)+ V (b0x + a0 y)

= (Ua0 + V b0)x + (V a0 −Ub0)y.

We claim that the quantity U 2 + V 2 is unchanged by this substitution. Indeed,
we have

(Ua0 + V b0)
2 + (V a0 −Ub0)

2 = U 2(a2
0 + b2

0)+ V 2(a2
0 + b2

0) = U 2 + V 2.

Finally, the degree 0 component p0 = K clearly stays the same.
We use this substitution to eliminate the hybrid term Cxy in p2(x, y). By the

computation above, this term vanishes if and only if

2(A − B)a0b0 = C(a2
0 − b2

0).

Squaring both sides and adding

4(A − B)2a2
0b2

0 = C2(a2
0 − b2

0)
2 = C2(a2

0 + b2
0)

2 − 4C2a2
0b2

0 = C2 − 4C2a2
0b2

0.

This gives

C2 = 4
(
(A − B)2 + C2

)
a2

0b2
0.

We may assume C �= 0 since otherwise there is no hybrid term in the original
polynomial. (If C = 0 and A = B( �= 0), then, as we will see later, the original
equation p(x, y) = A(x2 + y2)+U x + V y + K = 0 gives either a circle, a point,
or the empty set. If C = 0 and A �= B, then a0b0 = 0, and therefore θ is an integer
multiple of π/2.)

2 AB − (C/2)2 is the determinant of the quadratic form p2(x, y). With somewhat more linear
algebra, its invariance under linear isometries follows from general facts about quadratic forms. As
always, we prefer to give an elementary proof.
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We obtain

a0b0 = ± |C |
2
√

(A − B)2 + C2
.

This gives

2|a0b0| ≤ 1

with equality if and only if A = B.
Since a2

0 + b2
0 = 1, the individual values of a0 and b0 can be recovered from the

value of a0b0 as above via the equations

(a0 + b0)
2 = 1+ 2a0b0, (a0 − b0)

2 = 1− 2a0b0.

We have

a0 + b0 = ±
√

1+ 2a0b0, a0 − b0 = ±
√

1− 2a0b0,

and hence

a0 = ±
√

1+ 2a0b0 ±√1− 2a0b0

2
, b0 = ±

√
1+ 2a0b0 ∓√1− 2a0b0

2
.

From now on, we assume that this substitution has been performed and the hybrid
term has been eliminated. We now rename the new coefficients by reverting to the
original notation and restart our study with the (transformed) conic given by the
zero-set of the polynomial

p(x, y) = Ax2+ By2+U x + V y+ K = 0, A2+ B2 > 0, A, B, U, V, K ∈ R,

where Ax2 + By2 and U x + V y stand for the transformed (and renamed) degree 2
and degree 1 components.

We now split our treatment into three cases according to whether AB is zero,
positive, or negative.

Case I AB = 0. We may assume B = 0, since otherwise we swap the
indeterminates x ↔ y (corresponding geometrically to reflection in the line given
by the equation x − y = 0).

Since A �= 0, we can write the polynomial as

p(x, y) = Ax2 +U x + V y + K = A

(
x + U

2A

)2

+ V y +
(

K − U 2

4A

)
.

We now perform another substitution, x �→ x + U/(2A), corresponding to
the translation TZ , Z = (U/(2A), 0) ∈ R

2, and rename the constant K �→
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K −U 2/(4A). With these, we arrive at the following transformed equation

Ax2 + V y + K = 0.

We claim that V = 0 leads to degeneracy. Indeed, if V = 0, then x2 = −K/A
and we have three cases: (a) K/A = 0, the single line given by x = 0 (the second
coordinate axis); (b) K/A < 0, parallel lines given by x = ±√−K/A; (c) K/A >

0, the empty set.
Thus, we have V �= 0. Our equation now takes the form x2 + (V/A)(y +

K/V ) = 0. We perform now the final substitution y �→ y + K/V corresponding
to the translation TW , W = (0, K/V ) ∈ R

2, and introduce the new constant
d = −V/(4A) �= 0.

With these we arrive at the normal form of the parabola

y = 1

4d
x2.

Finally, note that d > 0 can be assumed since otherwise we perform the
substitution y �→ −y corresponding to reflection in the first coordinate axis.

Summarizing, and going back to the beginning of our study, we obtain that, up
to rotations, translations, and reflections, a non-degenerate conic given by p(x, y)

above with p2(x, y) = Ax2 + By2 + Cxy and satisfying C2 − 4AB = 0 has the
normal form of a parabola. Since all these transformations preserve the Cartesian
distance, the metric properties, that is, properties that can be expressed in terms of
the distance, will remain unchanged.

Cases II–III AB �= 0. We can write the polynomial as

p(x, y) = Ax2 + By2 +U x + V y + K

= A

(
x + U

2A

)2

+ B

(
x + V

2B

)2

+
(

K − U 2

4A
− V 2

4B

)
.

We now perform the substitution x �→ x + U/(2A) and y �→ y + V/(2B)

corresponding to the translation TW , W = (U/(2A), V/(2B)) ∈ R
2, and rename

the constant K �→ K −U 2/(4A)− V 2/(4B).
With these, we arrive at the following transformed equation:

Ax2 + By2 + K = 0, A, B �= 0.

Case II AB > 0. We may assume A, B > 0 since otherwise we change all
coefficients to their negatives.

We claim that K ≥ 0 leads to degeneracy. Indeed, if K = 0, then the conic
reduces to the origin, and if K > 0, then it is the empty set. Both are degenerate
cases.
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Thus, we have K < 0. We now introduce the new constants a = √−K/A and
b = √−K/B. With these, the equation becomes

x2

a2 +
y2

b2 = 1.

This is the normal form of the ellipse. For a = b = r , it is the equation of the circle
with radius r (and center at the origin 0). Otherwise, it is customary to assume a > b
since in the opposite case we can perform the simultaneous swapping x ↔ y and
a ↔ b.

Summarizing, and going back to the beginning of our study, we obtain that, up
to rotations, translations, and reflections, a non-degenerate conic given by p(x, y)

above with p2(x, y) = Ax2 + By2 + Cxy and satisfying C2 − 4AB < 0 has the
normal form of an ellipse. Once again, since all these transformations preserve the
Cartesian distance, the metric properties will remain unchanged.

Case III AB < 0. We may assume A > 0 > B since otherwise we change all
coefficients to their negatives.

We now introduce the new constants a = √|K |/A and b = √−|K |/B. As
before, K = 0 leads to degeneracy, so that we may assume a �= 0 �= b. With these,
the equation becomes

x2

a2
− y2

b2
= ±1.

This is the normal form of the hyperbola. It is customary to eliminate the ambiguity
of ±1 on the right-hand side (due to the sign of K ) and assume that it is 1, since
otherwise we perform the simultaneous swapping x ↔ y and a ↔ b.

Summarizing, and going back to the beginning of our study, we obtain that, up
to rotations, translations, and reflections, a non-degenerate conic given by p(x, y)

above with p2(x, y) = Ax2 + By2 + Cxy and satisfying C2 − 4AB > 0 has the
normal form of a hyperbola. Once again, since all these transformations preserve
the Cartesian distance, the metric properties will remain unchanged.

This finishes our classification of (non-degenerate) conics.

History
Hippocrates of Chios (c. 470–410 BCE) was the first to discover that the Delian problem of
doubling the cube (of the altar of Apollo) noted in Section 3.2 (and also in the epitaph of this
chapter) can be reformulated to solving two mean proportions between the original, a, and the
doubled, 2a, volumes (of the altars). In other words, one needs to solve simultaneously any two of
the equations a/x = x/y = y/(2a).
According to ancient sources, Menaechmus (380–320 BCE) of Thracian Chersonese, a Greek
mathematician and geometer, a friend of Plato and student of Eudoxus, was the discoverer of
the conic sections and the use of the parabola and the hyperbola to solve the Delian problem
of doubling the cube. More specifically, Hippocrates’ mean proportions give rise to the system
x2 = ay, y2 = 2ax , xy = 2a2. Geometrically, this amounts to intersect any two of the parabolas
or the hyperbola given by these equations. Solving these, we obtain x = 3

√
2 · a and y = 3

√
4 · a.

This is equivalent to construct geometrically a line segment of length 3
√

2.
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Archimedes in his Quadrature of the Parabola determined the area of a parabolic sector made by a
chord of a parabola. In another work he demonstrated how to use conic sections to split the sphere
into two spherical sections with given volume ratio.
Apollonius in his only surviving work of the Conics (in eight volumes) made an extensive study
of conic sections. Most of Apollonius’ work survived in Arabic translations. As noted previously
(Section 7.2), the Persian mathematician and poet Omar Khayyàm studied the intersections of
hyperbolas and parabolas with a circle.

Exercise

8.1.1. Assume that p > 0 and q �= 0 in the cubic equation x3 + px + q = 0.
Consider the parabola and the circle given by y = x2/

√
p and y2 + x(x +

q/p) = 0. The parabola and the circle clearly intersect at the origin (0, 0)

and at another point. Show that the first coordinate of the second intersection
is a root of the cubic equation.

8.2 Parabolas

A characteristic geometric property of the parabola is that it is the set of points
equidistant to a line � and a point F /∈ �. We call � the directrix and F the
focus of the parabola. The line through F and perpendicular to � is the axis of the
parabola.

Reflection to the axis fixes F and carries � to itself. Points equidistant to F and
� are carried to equidistant points. It follows that this reflection carries the parabola
to itself, therefore it is the symmetry axis of the parabola. Finally, the midpoint
between F and the intersection point of � and the axis is called the vertex of the
parabola.

Letting d(F,�) = 2d, 0 < d ∈ R, up to a rotation and a translation, we may
arrange that the directrix � is given by the equation y = −d, and the focus F is
given by F = (0, d). With this, the symmetry axis is the second axis, and the vertex
is at the origin. (See Figure 8.1.)
Now, using the distance formula between a point and a line, a point P = (x, y) is
equidistant to � and F if and only if we have

√
x2 + (y − d)2 = y + d,

or equivalently, x2 + (y − d)2 = (y + d)2. Expanding and simplifying, we obtain
the normal equation of the parabola

y = 1

4d
x2, d > 0.
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Fig. 8.1 The focus-directrix
property of the parabola.

F = ( 0, d )
P = (x, y)

y = -dΔ

This matches with the equation of the parabola obtained in the previous section
algebraically.

History
The term “parabola” (meaning “application (to areas)”) is due to Apollonius.

Example 8.2.1 Let 
[A, B, C] be a (non-degenerate) triangle with vertices
A, B, C , and � a line not parallel to any of the sides of the triangle. Show that
there is a unique parabola passing through the vertices A, B, C whose symmetry
axis is parallel to �.

We can perform a rotation on the entire configuration such that the
rotated � will become vertical. Let the vertices of the rotated triangle be
(x1, y1), (x2, y2), (x3, y3) ∈ R

2. Clearly, x1, x2, x3 are all distinct. Therefore, the
Lagrange interpolation polynomial in Example 6.1.1 for these (non-collinear) points
is a quadratic polynomial. The graph of the corresponding polynomial function is a
parabola which solves the problem.

Parabolas appear in a myriad of applications, and it is convenient to introduce yet
two additional equations for them.

First, translating the normal parabola by a translation TW , W = (u, v), the
normal equation transforms into the following

y − v = 1

4d
(x − u)2, d > 0.

This is the equation of the parabola with vertical symmetry axis (given by x = u)
and vertex at W = (u, v). Here we also allow d to be negative (by reflecting first
the normal parabola to the first axis).

Second, expanding and simplifying, we obtain the equation

y = ax2 + bx + c, a �= 0, a, b, c ∈ R.

This equation of the parabola (with vertical axis) connects the parabola as a
geometric object with polynomial algebra as the right-hand side is the general form



360 8 Conics

of a quadratic polynomial. Comparing coefficients, it follows that

d = 1

4a
u = − b

2a
v = 4ac − b2

4a
.

This gives the vertex W = (u, v) in terms of the coefficients a, b, c as

W =
(
− b

2a
,

4ac − b2

4a

)
.

This shows that, for a > 0, resp. a < 0, the minimum, resp. maximum, occurs at
x = −b/(2a) and the minimum, resp. maximum, value is y = (4ac − b2)/(4a).

The Quadratic Formula

r = −b ±√b2 − 4ac

2a

gives the first coordinates of the (possible) intersection of the parabola with the first
axis.

Example 8.2.2 3 Suppose that a parabola has vertex (u, v) ∈ Q × Q (with u, v

rational), u �= 1, v < 0, and equation y = ax2 + bx + c, a, b, c ∈ R, where a > 0
and a + b + c ∈ Z. Show that for the minimum possible value of a + b + c the
number a must be rational. Find a in terms of u and v.

By the formulas above, we have u = −b/2a and v = (4ac − b2)/(4a). These
can be solved easily for b and c, and we obtain

b = −2au and c = b2

4a
+ v = au2 + v.

Hence

a + b + c = a − 2au + au2 + v = a(1− 2u + u2)+ v = a(1− u)2 + v ∈ Z.

By assumption, this is an integer, so that a ∈ Q (since u, v ∈ Q and u �= 1). In
addition, since a > 0, the minimum value of the fraction on the right-hand side
occurs when it is equal to [v], the greatest integer of v. This gives a = ([v] − v)

/(1− u2).

Returning to the main line, performing the linear change of indeterminates
x �→ 4dx , y �→ 4dy, the standard equation of the parabola is transformed into
the equation of the unit parabola y = x2.

3A special case of this was a problem in the American Invitational Mathematics Examination,
2011.
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This transformation preserves the distance only up to scaling with scaling factor
4d, but it preserves all geometric quantities that we are going to discuss here such as
angles, midpoints, tangents, etc. Therefore the proof of any statement about metric
properties of the parabola can immediately be reduced to the special case of the unit
parabola.

As a first application, note that given a point P0 on a parabola, there is a unique
line �0 not parallel to the axis that meets the parabola only at P0. This line �0 is
called the tangent line to the parabola at P0. Moreover, �0 is uniquely determined
by the fact that it intersects the tangent line � to the vertex at the midpoint of the
vertex itself and the projection of P0 to � along the axis. Finally, a simple byproduct
is that any line not parallel to the axis and not tangent to the parabola must be a
secant (unless it avoids the parabola altogether); that is, it intersects the parabola at
exactly two points.

Recall now that this has been remarked in Section 7.1 for the unit parabola
given by y = x2. Since the transformations above preserve all metric properties,
including tangency, it follows that the same statements hold in the case of an
arbitrary parabola.

Next, we derive the reflective property of the parabola: If a light ray parallel
to the axis hits the parabola, then it is reflected to the focus.

To make this statement more precise we need to define how a parabola reflects
light. By definition, if a light ray hits the parabola at a point P , then it reflects the
ray according to the Principle of Shortest Distance with respect to the tangent line
to the parabola at P .

For a change, we give a geometric proof of the reflective property for the unit
parabola given by y = x2. Let the vertical light ray hit the parabola at the point P .
We let F be the focus of the parabola, and D, resp. Q, the (vertical) projections of
P to the first axis, resp. to the directrix. As we have seen above, the tangent line
to the parabola at P meets the first axis at the midpoint M of the origin 0 and the
projected point D. (See Figure 8.2.)

Consider now the triangle 
[P, F, Q]. By the characteristic property of the
parabola above, this triangle is isosceles since d(P, F) = d(P, Q). Moreover, by

Fig. 8.2 Reflective property
of the parabola.

F

P 

Q 
M D

Δ
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Fig. 8.3 The
two-points-two-tangents
property.

l1

l0

P0

m0

Q1

Q0

m1

P1

the position of the parabola, the distance of the points F and Q from the first axis is
the same. Thus, M is also the midpoint of the side [F, Q] of the triangle opposite to
P . By the pons asinorum (Section 5.5), the tangent line is the altitude line of this
triangle since it meets this side at the midpoint M , and this altitude line also bisects
the angle at P . But the congruent two halves of these angles (and their opposites)
are the angles at which the tangent line meets the (incident) vertical line, and the line
extension of the line segment [P, F]. Thus, by the Principle of Shortest Distance,
the reflected ray passes along this line extension, and thereby it must pass through
the focus F . The reflective property of the parabola follows.

As noted above, the parabola has many interesting metric properties. We only
discuss here the so-called two-points-two-tangents property: Given two points P0
and P1 on a parabola, let �0, resp. �1 be the tangent lines containing P0, resp. P1.
(See Figure 8.3.) Moreover, let m0, resp. m1, be the lines parallel to the axis of the
parabola through P0, resp. P1. Finally, let Q0 = �0 ∩ m1 and Q1 = �1 ∩ m0. Then
the secant line through P0 and P1 is parallel to the line through Q0 and Q1.

As before, it is enough to show this for the unit parabola given by y = x2.
We let P0 = (x0, x2

0) and P1 = (x1, x2
1). The equation of the line m0 is x = x0,

and that of m1 is x = x1. As shown above, the equation of the tangent line at
P0 is y = x2

0 + 2x0(x − x0), and the equation of the tangent line at P1 is y =
x2

1 + 2x1(x − x1). Intersecting, we obtain Q0 = (x1, x2
0 + 2x0(x1 − x0)) and Q1 =

(x0, x2
1 + 2x1(x0 − x1)).

With these, we calculate the slope through Q0 and Q1 as

x2
1 + 2x1(x0 − x1)− x2

0 − 2x0(x1 − x0)

x0 − x1
= x2

0 − x2
1

x0 − x1
= x0 + x1.

This is the slope through P0 and P1. The claim follows.
We now return to an old problem of extracting square roots from positive

integers.
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Remark (Geometric Interpretation of the Babylonian Method) Recall that in Sec-
tion 5.4 we described the Babylonian Method on how to approximate the square
root of a natural number a ∈ N by rational numbers. Here we give a geometric
interpretation of this.

Our starting point is that
√

a is the positive solution of the polynomial equation
x2 = a. Geometrically, this solution is obtained by considering the graph of the
unit parabola y = x2, intersecting it with the horizontal line y = a, and taking the
first coordinate of the intersection point in the first quadrant. To avoid the trivial
case, from now on we assume that a ∈ N is not a square, so that

√
a is an irrational

number.
We construct an infinite sequence of positive rational numbers (qn)n∈N0 such that

the points (qn, a), n ∈ N0, approach the intersection point (
√

a, a) as follows. We
first choose q0 > 0 arbitrarily. Then q1, q2, . . . , qn, . . . will be given inductively in
the sense that given the nth term qn with n ≥ 0, we will derive a formula for the
next member qn+1 in terms of qn .

Thus, assume that the positive rational number qn is given. We draw a tangent
line to the unit parabola y = x2 at (qn, q2

n ) and intersect it with the horizontal line
y = a. By definition, the first coordinate of the intersection is qn+1.

The equation of the tangent line to the unit parabola through (qn, q2
n ) is y =

q2
n + 2qn(x − qn). Intersecting this tangent line with the horizontal line given by

y = a amounts to substitute y = a to this equation and solve for x to obtain
qn+1. An easy computation gives qn+1 = (1/2)(qn + a/qn), n ∈ N0. This is the
Babylonian recurrence formula postulated and studied in Section 5.4.

Returning to the main line, sometimes the solution of a geometric problem relies
on simple factoring as in the following:

Example 8.2.3 What is the radius of the largest disk that can be dropped inside (the
graph of) the unit parabola such that the disk touches the vertex?

The unit parabola is given by the graph of the equation y = x2 in the Cartesian
plane R2. By symmetry, we may assume that the center of the disk is on the positive
second axis. Letting r > 0 to be its radius, the boundary circle of the disk contains
the origin (the vertex of the parabola), and hence its center must be at (0, r). Thus
this circle is given by the equation x2 + (y − r)2 = r2. Substituting y = x2, and
expanding and simplifying, we obtain y2 + (1 − 2r)y = 0. Factoring, we arrive at
y(y − (2r − 1)) = 0. This shows that y = 0 is a solution. This we already know
since the circle contains the origin. Now the crux is that this is the only solution of
this equation since the circle touches the parabola only at the origin. Thus, we have
2r − 1 = 0, and the radius is r = 1/2.

Exercises

8.2.1. Let � be the set of intersection points of any tangent line to a parabola and
the perpendicular line through the focus to the tangent line. Use the reflective
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property of the parabola to show that � is the tangent line through the vertex
of the parabola.

8.2.2. Derive the four-points property of the parabola: Let P1 = (x1, y1), P2 =
(x2, y2), P3 = (x3, y3), P4 = (x4, y4) be four points on a parabola given by
y = ax2 + bx + c, a �= 0, a, b, c ∈ R. Let Q1 be the intersection of the
secant line through P2 and P3 with the line given by x = x1, and similarly,
let Q2 be the intersection of the secant line through P1 and P4 with the line
given by x = x2. Prove that the line through Q1 and Q2 is parallel to the
secant line through P3 and P4.

8.2.3. Show that if two tangent lines to a parabola are perpendicular, then their
intersection point lies on the directrix.

8.2.4. Prove that the midpoints of parallel chords of a parabola fill a half-line
parallel to the axis of the parabola.

8.2.5. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on a parabola given by
y = ax2+bx+c such that the midpoint of P1 and P2 is the origin. Determine
the coordinates x1, x2, y1, y2 of P1 and P2 in terms of a, b, c.

8.3 Ellipses

A characteristic metric property of the ellipse is that it is the set of all points the
sum of whose distances from two fixed points, called the foci, is constant.4 More
precisely, let the (not necessarily distinct) foci be F± ∈ R

2. Given a positive real
number greater than d(F+, F−), the distance between the foci, consider the set of
points P on the plane whose sum of distances d(P, F+) + d(P, F−) is equal to
this number. This set is called the ellipse with foci F±. (When the foci coincide the
ellipse becomes a circle.)

The line containing the two foci is called the focal axis. The midpoint of the
foci is the center of the ellipse. The line perpendicular to the focal axis and passing
through the center is called the conjugate axis. The focal and conjugate axes are
symmetry axes of the ellipse. These axes intersect the ellipse in two antipodal pairs
of vertices. As a slight misnomer, the distance of a vertex on the focal axis from the
center is called the semimajor axis, and the distance of a vertex on the conjugate
axis is the semiminor axis. (See Figure 8.4.)

Letting the distance between the foci as 2c with 0 < c ∈ R, we derive a the
normal equation of the ellipse when the foci are symmetrically placed on the first
axis, F± = (±c, 0), and the sum of the distances of the variable point P = (x, y)

from the foci is 2a with c < a ∈ R. Using the Cartesian distance formula, the

4This so-called pins-and-string method is simple and instructive. Take a wooden board with two
pins, and attach a string to the pins hanging loosely between them. Tighten the string with a marker
to form a wedge, slide it along (keeping the string tight) tracing and marking a curve on the board.
This way we obtain an ellipse with foci at the two pins.
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Fig. 8.4 The pin-and-string
property of the ellipse.

F = (-c, 0)

P = (x, y)(0, b)

(a, 0)(-a, 0)

(0, -b)

F+ = (c, 0)

defining equality d(P, F+)+ d(P, F−) = 2a is

√
(x − c)2 + y2 +

√
(x + c)2 + y2 = 2a.

We now calculate as follows:
√

(x + c)2 + y2 = 2a −
√

(x − c)2 + y2

(x + c)2 + y2 = 4a2 − 4a
√

(x − c)2 + y2 + (x − c)2 + y2

a
√

(x − c)2 + y2 = a2 − cx

a2((x − c)2 + y2) = (a2 − cx)2

a2x2 + a2c2 + a2 y2 = a4 + c2x2

(a2 − c2)x2 + a2 y2 = a2(a2 − c2)

x2

a2 +
y2

a2 − c2 = 1.

Since a > c, we can let b = √a2 − c2 > 0. With this we arrive at the normal
equation of the ellipse

x2

a2 +
y2

b2 = 1, F± = (±c, 0), a2 = b2 + c2.

This matches with the normal form of the ellipse obtained in the previous section
algebraically. For an ellipse in normal position as above, the focal axis is the
first axis (and the conjugate axis is the second), a is the semimajor axis, b is the
semiminor axis, and we have a > b. The center of the ellipse is at the origin.
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If in the normal equation above we have a < b, then the focal axis is the second
axis and all the roles are reversed. For a = b = r , the ellipse reduces to the circle
with radius r and center at the origin.

Note that, using a translation, the equation of the ellipse with center at O = (u, v)

and symmetry axes parallel to the coordinate axes is given by

(x − u)2

a2 + (y − v)2

b2 = 1.

History
The term “ellipse” (meaning “omission” in applications of areas as noted above) is due to
Apollonius. In the post ancient Greek era ellipses came into primary focus in 1609 when Johannes
Kepler derived his first law of planetary motion: A planet orbits around the Sun in an elliptical
orbit with the Sun in one of the foci.

Example 8.3.1 5 Let S1 and S2 be the circles such that S2 is contained in the interior
of S1. Show that the set E of the centers of the circles internally tangent to S1 and
externally tangent to S2 is an ellipse.

Let S1, resp. S2, have centers and radii (u1, v1) and r1, resp. (u2, v2) and r2, so
that they are given by the equations

(x − u1)
2 + (y − v1)

2 = r2
1 , resp. (x − u2)

2 + (y − v2)
2 = r2

2 .

Let S be a circle internally tangent to S1 and externally tangent to S2. If (u, v) ∈ E
is the center and r is the radius of S, then the tangency conditions give6

√
(u − u1)2 + (v − v1)2 = r1 − r and

√
(u − u2)2 + (v − v2)2 = r − r2.

Squaring and subtracting, we obtain

2u(u2 − u1)+ 2v(v2 − v1)+ u2
1 − u2

2 + v2
1 − v2

2 = 2r(r2 − r1)+ r2
1 − r2

2 .

The crux is that this is a linear equation in the indeterminates r and u, v (with
u1, u2, v1, v2, r1, r2 being constants). Hence, expressing r in terms of u, v and
substituting into the square of the first tangency condition

(u − u1)
2 + (v − v1)

2 = (r1 − r)2,

we obtain a quadratic equation in u and v. Thus, E is a conic. (It is possible to
write down this explicit equation for E but we will not need this.) This conic is non-

5This example generalizes the first part of a numerical problem in the American Invitational
Mathematics Examination, 2005.
6Clearly, a common tangent line of two circles is perpendicular to the line passing through the
centers of the circles, and hence the point of tangency and the two centers are collinear; see
Section 5.5.
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degenerate (as it clearly has at least two points), and it is bounded (as it is contained
in the interior of S1). In view of the classification of the conics in Section 8.1, we
see that E must be an ellipse.

We now fix a point P0 on the ellipse in normal position and claim that there
is a unique line that meets the ellipse only at this point. This line is called the
tangent line to the ellipse at P0. More precisely, for P0 = (x0, y0), we claim that
the equation of this tangent line is

x0

a2 x + y0

b2 y = 1.

All these statements follow from the corresponding statements for the special case
of the unit circle (a = b = 1). Indeed, the linear change of the indeterminates
x �→ ax , y �→ by transforms the normal equation of the ellipse to the equation
of the unit circle. It preserves lines and the tangency condition, and, along with
x0 �→ ax0, y0 �→ by0, it transforms the equation of the tangent line above to the
equation x0x + y0 y = 1. This, however, is the equation of the tangent line to the
unit circle at the point (x0, y0) as was derived in Section 5.5. The claim follows.

The reflective property of the ellipse states that a light ray emitted at one of the
foci is reflected to the other. Unlike the case of the parabola, this is much simpler
to show, and follows from the Principle of Shortest Distance. One only needs to
observe that for an ellipse in normal position as above, the interior of the ellipse
consists of those points P for which the sum of distances d(P, F+) + d(P, F−) <

2a, and the exterior of the ellipse consists of those points P for which the sum of
distances d(P, F+) + d(P, F−) > 2a. Now, if the light ray emitted at F+ hits the
ellipse at a point P , then d(P, F+)+ d(P, F−) = 2a, and for any other point Q on
the tangent line, being in the exterior of the ellipse, we have d(Q, F+)+d(Q, F−) >

2a. Thus, by the Principle of Shortest Distance, the angle of incidence and the angle
of reflection at P with respect to the tangent line are equal. The reflective property
of the ellipse follows.

History
The so-called “whisper galleries” are large elliptical rooms in which a person, standing at one
of the foci, can hear the conversation of other people near the other focus. The most prominent
example is the National Statuary Hall in the US Capitol, where Quincy Adams allegedly used this
to eavesdrop political conversations.

Example 8.3.2 Given an ellipse, show that the product of the distances of the two
foci from any tangent line to the ellipse is equal to the square of the semiminor axis;
in particular, this product is a constant (that is, it does not depend on the choice of
the tangent line).

We may assume that the ellipse is given by the normal equation x2/a2+ y2/b2 =
1 with foci F± = (±c, 0), a2 = b2 + c2. Let � be a tangent line to the ellipse at a
point P0 = (x0, y0) given by the equation (x0/a2)x + (y0/b2)y = 1 as above. We
now use the formula of the distance of a point from a line (Section 5.5) as
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d(F±, �) =
∣∣±(x0/a2)c − 1

∣∣√
x2

0/a4 + y2
0/b4

.

Using this, and x2
0/a2 + y2

0/b2 = 1, we now calculate

d(F+, �)d(F−, �) = 1− (x2
0/a4)c2

x2
0/a4 + y2

0/b4
= 1− (x2

0/a4)(a2 − b2)

x2
0/a4 + (1− x2

0/a2)/b2
= b2.

The example follows. (A more illuminating solution will be given in Section 11.3.)

Example 8.3.3 7 An ellipse is tangent to the first axis. Express the length of the
semimajor axis in terms of the foci F±.

Let P0 be the point of tangency on the first axis. By the Principle of Shortest
Distance, for P any point in the first axis, the sum of distances d(P, F−)+d(P, F+)

is minimal for P = P0. This means that, reflecting F+ to the first axis to obtain F ′+,
we have P0 ∈ [F−, F ′+]. Hence, for the length of the semimajor axis, we have

2a = d(F−, P0)+ d(P0, F+) = d(F−, P0)+ d(P0, F ′+) = d(F−, F ′+).

Returning to the main line, the ellipse possesses two directrices �±; they form
a pair of parallel lines perpendicular to the focal axis and having distance a2/c
from the center, where 2c is the distance between the foci, and 2a is the sum of the
distances of a generic point on the ellipse to the foci. Each directrix has the property
that the ellipse is the set of points P such that

d(P, F±)

d(P,�±)
= e,

where e = c/a < 1 is the eccentricity of the ellipse, the position of the focus as
a fraction to the semimajor axis. Thus, the parabola can be viewed as a conic with
eccentricity e = 1 while the ellipse has eccentricity e < 1.

As usual, it is enough to show this for the ellipse in normal position as above. The
equation of the directrices is x = ±a2/c. By symmetry, we can restrict ourselves to
the directrix �+. For P = (x, y) ∈ R

2, we have

d(P, F+)2 = (x − c)2 + y2 and d(P,�+)2 =
(

x − a2

c

)2

.

We write the square of the eccentricity ratio above as

d(P, F+)2 − c2

a2 d(P,�+)2 = 0.

7This example is inspired by a numerical special case of the American Invitational Mathematics
Examination, 1985.
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Substituting, we obtain

(x − c)2 + y2 − c2

a2

(
x − a2

c

)2

= 0.

Expanding and simplifying, we arrive at

(
1− c2

a2

)
x2 + y2 + c2 − a2 = 0.

Finally, using c2 = a2 − b2, the equation of the normal ellipse follows.

Example 8.3.4 In this example we derive the trammel construction for the ellipse:
If the end-points of a segment are moved along two intersecting lines, a fixed point
on the segment traces an arc of an ellipse.

We first make a reduction step. Recall that an ellipse in general position is given
by the zero-set of a quadratic polynomial p(x, y) such that the coefficients of the
degree two homogeneous component Ax2 + By2 + Cxy satisfies C2 − AB < 0.

For given r, s ∈ R, r �= s, we perform the substitution x �→ r x and y �→ sy. The
degree two homogeneous component of the transformed polynomial p(r x, sy) has
the form A(r x)2+ B(sy)2+C(r x)(sy) = r2 Ax2+ s2 By2+ rsCxy. The condition
for the ellipse becomes (rsC)2 − (r2 A)(s2 B) = r2s2(C2 − AB) < 0. It follows
that this change of variables transforms an ellipse into another ellipse. Being linear,
this transformation8 sends lines to lines. Moreover, as simple computation shows, it
preserves the affine parametrization; in particular, it preserves the ratio of distances
along a line.

We now turn to the trammel construction. By performing a translation and a
rotation, we may assume that the intersecting lines are given by y = ±mx with
slope 0 < m ∈ R. Performing the substitution above, we obtain the lines y =
±(r/s)mx . Now, we choose s/r = m so that the transformed intersecting lines
become perpendicular. Since ellipses transform to ellipses, it follows that we may
assume that the intersecting lines are perpendicular. Finally, performing yet another
rotation, we may assume that these lines are the first and second axes, and movement
of the line segment takes place in the first quadrant.

In an intermediate position the line segment is the hypotenuse of a right triangle
with horizontal and vertical sides. The point P = (x, y) on the line segment in
an intermediate position splits the hypotenuse into two line segments that are the
hypotenuses of two similar right triangles. Assuming that P splits the line segment
of length a + b, 0 < a, b ∈ R, in the ratio a ÷ b, the Pythagorean Theorem along
with the Birkhoff Postulate on Similarity gives

√
a2 − x2/a = y/b. Squaring and

simplifying, the normal equation of the ellipse follows.

8These are called affine transformations, and the geometry based on these is called affine geometry.
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Exercises

8.3.1. Show that, for the normal ellipse given by x2/a2 + y2/b2 = 1, a > b, the
intersection points of perpendicular pairs of tangent lines lie on the circle
x2 + y2 = a2 + b2.

8.3.2. Show that the midpoints of parallel chords of an ellipse lie on a diameter, a
chord through the center.

8.4 Hyperbolas

As in the case of ellipses, we start with two distinct points F± which we call foci.
Given a positive real number less than d(F+, F−), consider the set of points P on the
plane whose absolute value of the difference of distances, |d(P, F+)− d(P, F−)|,
is equal to this number. This set is called the hyperbola with foci F±. The line
containing the two foci is called the focal axis. The midpoint of the foci is the center
of the hyperbola. The line perpendicular to the focal axis through the center is the
conjugate axis. The focal and conjugate axes are symmetry axes of the hyperbola.
The hyperbola meets the focal axis in two points. The conjugate axis is disjoint
from the hyperbola and it separates the hyperbola into two branches. It is possible
to obtain a more precise description of the metric properties of the hyperbola in this
general setting, but it will be much simpler to work these out for the hyperbola in a
specific position.

We set the distance between the foci to be 2c, c > 0. Applying a translation and
a rotation, we set the foci on the first axis in a symmetric position: F± = (±c, 0).
We derive an equation of the hyperbola in this normal position. For a hyperbola in
normal position, the focal axis is the first axis and the conjugate axis is the second.
The center of the hyperbola is at the origin.

We let a < c such that |d(P, F+)−d(P, F−)| = 2a. Using the Cartesian distance
formula with P = (x, y), this condition gives

√
(x − c)2 + y2 −

√
(x + c)2 + y2 = ±2a.

By a minor modification in the computation for the ellipse, we obtain

x2

a2 −
y2

c2 − a2 = 1.

Since a < c, we can let 0 < b = √c2 − a2. With this, we arrive at the normal
equation of the hyperbola

x2

a2
− y2

b2
= 1, a2 + b2 = c2.
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The left-hand side of the equation of the hyperbola can be factored

( x

a
− y

b

) ( x

a
+ y

b

)
= 1.

The factors vanish on a pair of lines �± intersecting at the origin. They are given by
the equations

x

a
± y

b
= 0.

We arrange the signs so that �± has slope ±b/a.
These two lines split the plane R

2 into four angular regions. These regions are
given by any two of the four inequalities x/a ± y/b � 0. Each angular region
contains exactly one of the positive or negative coordinate axes. For example, the
region that contains the positive first axis is given by x/a ± y/b ≥ 0, and the
angular region that contains the negative first axis is given by x/a± y/b ≤ 0. Since
the equation of the hyperbola implies (x/a + y/b)(x/a − y/b) > 0, it follows that
the hyperbola is in the interior of the opposite pair of angular regions that contain
the positive and negative first axes.

Consider the rectangle R with vertices (±a,±b). The two lines �± pass through
the two antipodal pairs of vertices of R. By the equation of the hyperbola, we have
x2/a2 − 1 = y2/b2 ≥ 0. This gives x2 ≥ a2, or equivalently, x ≥ a or x ≤ −a.
It follows that the hyperbola meets R only at the two boundary points (±a, 0). (See
Figure 8.5.)

Our present goal is to describe the relationship between the hyperbola and the
two lines �±. To do this, we first construct a “parametrization” of the hyperbola
via the affine parametrization on �+ given by the points P0 = (0, 0), the origin,
and P1 = (a, b), the northeast corner of the rectangle R. Recall that this affine
parametrization is defined by Pt = (1 − t)P0 + t P1 ↔ t , t ∈ R. In our case, we
have Pt = (at, bt), t ∈ R.

We consider the pencil of parallel lines containing �−. Since each member of this
pencil meets �+ at a unique point, the pencil itself can be parametrized by the affine

Fig. 8.5 The hyperbola in
normal position.

(a, b)

(a, 0)(-a, 0) R

0

l+

l-

(a, -b)(-a, -b)

(-a, b)
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Fig. 8.6 Parametrization of
the hyperbola.

(a, b)

(a, 0)

l+

l-

Pt

Qt

coordinate on �+. More specifically, the line in this pencil with parameter t ∈ R

meets �+ in Pt = (at, bt), and it is given by the equation

x

a
+ y

b
= 2t.

Now, the crux is that, for t �= 0, this line meets the hyperbola at exactly one point
Qt , say. (See Figure 8.6.) By the factored form of the hyperbola above, this point
can be obtained by solving the system

x

a
+ y

b
= 2t and

x

a
− y

b
= 1

2t
.

Solving for x and y, we obtain the coordinates of Qt as follows9

x = a

2

(
2t + 1

2t

)
and y = b

2

(
2t − 1

2t

)
.

Clearly, the converse also holds: Any point on the hyperbola is the intersection of a
member of the pencil with a non-zero parameter. Hence this is a parametrization
of the hyperbola. The positive parameters describe the branch of the hyperbola
contained in the quadrants I∪ I V , while the negative parameters describe the branch
in I I ∪ I I I .

Finally, we calculate the distance between points of the same parameter on the
line �+ and on the hyperbola. For 0 �= t ∈ R, we have

9These formulas show that the hyperbola can be conveniently parametrized by the hyperbolic
cosine and sine functions. See the set of exercises after Exercise 10.3.3 at the end of Section 10.3.
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d(Pt , Qt )
2=
(

at−a

2

(
2t+ 1

2t

))2

+
(

bt − b

2

(
2t − 1

2t

))2

= a2 + b2

16t2 = c2

16t2 .

Hence, we obtain d(Pt , Qt ) = c/(4|t |), 0 �= t ∈ R.
At this point we introduce the concept of asymptote. We need some preparations.
First, given a set E ∈ R

2 and a point P ∈ R
2, we define the distance between P

and E as the infimum d(P, E) = inf{d(P, Q) | Q ∈ E}. Second, let � be a half-line
with end-point P0. Choose another point P1 ∈ �, and let Pt = (1 − t)P0 + t P1,
0 ≤ t ∈ R, be the corresponding affine parametrization of �.

With these, we say that the half-line � is an asymptote of E if limt→∞ d(Pt , E) =
0. Clearly, this concept does not depend on the choice of P1 ∈ �.

History
The term “asymptote” was introduced by Apollonius, and its literal meaning is a derivative of the
negative infinitive “not falling together.” Note that in our definition the asymptote can intersect the
curve itself (as is often the case for horizontal and oblique asymptotes of functions).

Returning to our hyperbola in normal position, we denote by H the hyperbola as
a subset of the plane R

2.
We claim that the half-line �′+ ⊂ I of �+ with end-point at the origin is an

asymptote of the hyperbola. Indeed, by our computation above, we have

0 ≤ lim
t→∞ d(Pt , H) ≤ lim

t→∞
c

4t
= 0.

The claim follows.
By the fourfold symmetry of the hyperbola, we obtain that all four half-lines of

�± (with common end-point at the origin) are asymptotes of the hyperbola.
Since all properties above are metric, our entire description can be transplanted

to a hyperbola in general position.
We now fix a point P0 = (x0, y0) on the hyperbola in normal position, and, in

analogy with the equation of the tangent line to the ellipse, we consider the line
given by the equation

x0

a2 x − y0

b2 y = 1.

Clearly, P0 is on this line. We claim that P0 is the only intersection point of this line
and the hyperbola, and that the branch of the hyperbola through P0 is on one side
of this line. We call this the tangent line to the hyperbola at the point P0.

To prove the claim, assume that P = (x, y) is an arbitrary point on the hyperbola
on the same branch as P0. We let p±0 = x0/a ± y0/b and p± = x/a ± y/b. Since
P0 and P are on the hyperbola, we have p−0 p+0 = 1 and p− p+ = 1. In addition, we
have

p−0 p++ p+0 p−=
(x0

a
− y0

b

) (x

a
+ y

b

)
+
( x0

a
+ y0

b

) ( x

a
− y

b

)
= 2

( x0

a2
x − y0

b2
y
)

.
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By symmetry, we can now restrict ourselves to the “right” branch of the
hyperbola (contained in the angular sector given by x/a ± y/b > 0). This gives
p±0 > 0 and p± > 0. We can now use the AM-GM-inequality:

x0

a2 x − y0

b2 y = p−0 p+ + p+0 p−

2
≥
√

p−0 p+ p+0 p− = 1

with equality if and only if p−0 p+ = p+0 p−, that is, if and only if p+0 = p+ and
p−0 = p−, and finally, if and only if P0 = P .

This gives us two conclusions. First, the tangent line meets the hyperbola at one
point (P0) only. Second, the right branch of the hyperbola is on one side of the
tangent line. The claim follows.

Continuing the analogy with parabolas and ellipses, we now note the reflective
property of the hyperbola. It states that a light ray toward a focus reflects off toward
the other focus. This is clearly equivalent to saying that, at an arbitrary point P0 of
the hyperbola, the tangent line through P0 bisects the angle formed by the half-lines
through the foci F± with common end-point P0.

As usual, we may restrict ourselves to the hyperbola in normal position with
2c being the distance between the foci, and 2a the difference of the distances of a
generic point on the hyperbola to the foci.
By symmetry, we may assume that P0 ∈ I . We let �0 denote the angular bisector of
the angle � F+P0 F− and show that �0 is tangent to the hyperbola; that is, if P ′0 ∈ �0,
P ′0 �= P0, then P ′0 cannot be on the hyperbola.

Let Q ∈ [F−, P0] such that d(F−, Q) = 2a. Since d(P0, F−) − d(P0, F+) =
2a, the point Q exists, and we also have d(P0, Q) = d(P0, F+). By the triangle
inequality, we have

d(P ′0, F−) < d(P ′0, Q)+ d(Q, F−) = d(P ′0, Q)+ 2a = d(P ′0, F+)+ 2a,

where the sharp inequality holds because the points F−, Q, P ′0 are not collinear,
and, in the last equality, we used the Birkhoff Postulate on Similarity applied to the
triangles 
P0 Q P ′0 and 
P0 F+P ′0. This gives d(P ′0, F−)− d(P ′0, F+) < 2a. Hence
the point P ′0 cannot be on the hyperbola. The reflective property of the hyperbola
follows.

Just like the ellipse, the hyperbola also possesses two directrices �±; they form
a pair of parallel lines perpendicular to the focal axis and having distance a2/c from
the center, where 2c is the distance between the foci, and 2a is the difference of
the distances of a generic point on the hyperbola to the foci. Each directrix has the
property that the hyperbola is the set of points P such that

d(P, F±)

d(P,�±)
= e,

where e = c/a > 1 is the eccentricity of the hyperbola.



8.4 Hyperbolas 375

As usual, it is enough to show this for the hyperbola in normal position as
above. The proof is almost verbatim to the case of the ellipse. The equation of the
directrices is x = ±a2/c. By symmetry, we can restrict ourselves to the directrix
�+. For P = (x, y) ∈ R

2, we have

d(P, F+)2 = (x − c)2 + y2 and d(P,�+)2 =
(

x − a2

c

)2

.

We write the square of the eccentricity ratio above as

d(P, F+)2 − c2

a2
d(P,�+)2 = 0.

Substituting, we obtain

(x − c)2 + y2 − c2

a2

(
x − a2

c

)2

= 0.

Expanding and simplifying, we arrive at

(
1− c2

a2

)
x2 + y2 + c2 − a2 = 0.

Finally, using c2 = a2 + b2, the equation of the normal hyperbola follows.

Remark The three non-degenerate conics, the parabola, ellipse, and hyperbola, can
be united by the eccentricity as follows. We let F = ( f, 0) be a focal point, and
assume that the conic with eccentricity e > 0 contains the origin. We let a directrix
� be given by the equation x = − f/e. Then, the set of points P = (x, y) ∈ R

2

satisfying d(P, F) = e · d(P,�) is the following

(x − f )2 + y2 = e2
(

x + f

e

)2

= (ex + f )2.

Simplifying, we obtain x2(e2 − 1)+ 2 f (e+ 1)x − y2 = 0. For e = 1 this gives the
parabola; for e < 1, the ellipse; and for e > 1, the hyperbola. In the last two cases
the center is at ( f/(1− e), 0).

History
The focus-directrix property of the parabola, ellipse, and hyperbola is due to Pappus of Alexandria
(c. 290–c. 350 BCE).

Example 8.4.1 (Revisited) Recall Example 6.6.8: Let 0 < a, b ∈ N such that ab−1
divides a2 + b2. Show that (a2 + b2)/(ab + 1) is a perfect square.

We now give a geometric solution to this problem.
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Let

a2 + b2

ab + 1
= c ∈ N.

Our method is to find a, b ∈ N in terms of the (fixed) natural number c.
Multiplying out, we obtain a2 + b2 − cab − c = 0. As before, we may assume
that c ≥ 3. We introduce two indeterminates, x and y, and consider the conic

x2 + y2 − cxy − c = 0, 3 ≤ c ∈ N.

The problem is to study the positive integral points (a, b) ∈ N×N on this conic
in the first quadrant I .

Since C2 − AB = c2 − 1 > 0 and c ≥ 3, the conic is a (non-degenerate)
hyperbola H . (Notice that, for c = 2, the conic reduces to a pair of parallel lines,
a degenerate conic.) Note that, due to symmetry with respect to the interchange
x ↔ y, the equation x − y = 0 gives the conjugate axis, and therefore x + y = 0
gives the focal axis. Therefore, the “upper branch” H+ of the hyperbola is contained
in the half-plane given by y > x , whereas the “lower branch” H− is contained in
the half-plane given by y < x .

The change of variables

x �→ y + x√
2

and y �→ y − x√
2

,

(corresponding to rotation by angle π/4) transforms this conic to

(
1

2
+ 1

c

)
x2 −

(
1

2
− 1

c

)
y2 = 1.

This is a hyperbola in normal form. The asymptotes of this hyperbola are given by
the equations

√
1

2
+ 1

c
· x ±

√
1

2
− 1

c
· y = 0.

Hence, inverting the change of variables above, the asymptotes of our original
quartic are given by

(√
1

2
+ 1

c
±
√

1

2
− 1

c

)
· x −

(√
1

2
+ 1

c
∓
√

1

2
− 1

c

)
· y = 0.

This shows an important feature that the asymptotes are contained in the union of
the first and the third quadrants.
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As before, we start with a positive integral point (a0, b0) ∈ N × N in the first
quadrant I . By symmetry, we may assume a0 < b0, that is, we have (a0, b0) ∈ H+,
the upper branch of the hyperbola H . Replacing b0 by the indeterminate y, we
consider the quadratic equation

y2 − ca0 y + a2
0 − c = 0.

By construction, b0 is a solution. The first Viète relation gives another solution b′0 =
ca0 − b0 ∈ Z. Since (a0, b0) ∈ H+ and (a0, b′0) ∈ H , we must have (a0, b′0) ∈ H−,
the lower branch of H .

We claim that either the integral point (a0, b′0) is in the interior of the first
quadrant (b′0 > 0), or c is a perfect square.

Indeed, assume b′0 ≤ 0. Then we have

b′20 − c(a0b′0 + 1)+ a2
0 = 0.

Clearly, b′0 < 0 cannot happen. Thus, b′0 = 0, and this gives c = a2
0 , a perfect

square. The claim follows.
If c is a perfect square, then we are done. Otherwise, by the above, (a0, b′0) is in

the interior of the first quadrant I . We can now perform reflection to the line given
by y = x . This reflection swaps the two branches of the hyperbola H (and maps the
interior of the first quadrant to itself). Since (a0, b′0) ∈ H− we obtain (b′0, a0) ∈ H+,
still in the interior of the first quadrant I . Since a0 < b0 this point (b′0, a0) has a
smaller second coordinate than (a0, b0).

Since these points have positive integral coordinates, repeating this, the process
must end in finitely many steps, and we obtain that c is a perfect square. The example
follows.

Remark In Section 2.1 we discussed Pell’s equation x2−d · y2 = 1, where d ∈ N is
a non-square integer. We showed that Brahmagupta’s identity provides an inductive
method to obtain all positive integral solutions in the form of an infinite sequence of
pairs (xk, yk) ∈ N× N, k ∈ N0, starting from the fundamental solution (x0, y0). In
our present geometric terms, Pell’s equation defines a hyperbola, and the solutions
in the first quadrant are integral points on this hyperbola.

Exercises

8.4.1. Show that, for the normal hyperbola given by x2/a2 − y2/b2 = 1, a > b,
the intersection points of perpendicular pairs of tangent lines lie on the circle
x2 + y2 = a2 − b2.

8.4.2. Show that the midpoints of parallel chords of a hyperbola lie on a line through
the center.
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8.4.3. A hyperbola given by the equation y = a/(x − b) + c, a �= 0, is uniquely
determined by three points Pi = (xi , yi ), i = 1, 2, 3 with different first and
second coordinates: xi �= x j , yi �= y j , i �= j , i, j = 1, 2, 3. Show that an
equation of the hyperbola through these three points is

y − y1

x − x1
· x − x2

y − y2
= y3 − y1

x3 − x1
· x3 − x2

y3 − y2
.

8.4.4. Let P0 be a point on the normal hyperbola given by x2/a2 − y2/b2 = 1.
Assume that the line segment [O, P0] with O , the center of the hyperbola,
is a diagonal of a parallelogram whose other two vertices P ′0 and P ′′0 lie on
the asymptotes. Show that the tangent line through P0 is parallel to the other
diagonal [P ′0, P ′′0 ].

8.4.5. Derive the following analogue of Example 8.3.1 for hyperbolas: Let C1 and
C2 be two disjoint circles on the plane R

2. Then the set of centers of circles
that are externally tangent to C1 and C2 comprise a branch of a hyperbola.

8.4.6. Find an equilateral triangle whose vertices are on the graph of the hyperbola
y = 1/x .



Chapter 9
Rational and Algebraic Expressions
and Functions

“‘Every minute dies a man, Every minute one is born;’
I need hardly point out to you that this calculation would
tend to keep the sum total of the world’s population in a
state of perpetual equipoise, whereas it is a well-known
fact that the said sum total is constantly on the increase.
I would therefore take the liberty of suggesting that in the
next edition of your excellent poem the erroneous calculation
to which I refer should be corrected as follows: ‘Every moment
dies a man, And one and a sixteenth is born.’ I may add
that the exact figures are 1.067, but something must,
of course, be conceded to the laws of metre.”
Charles Babbage, from a letter to Alfred, Lord Tennyson.

As a natural continuation of the study of polynomials, in this chapter we introduce
and discuss rational and algebraic expressions in a wide variety of settings. One of
the main objectives of this chapter is to present the partial fraction decomposition
in complete details; this is accompanied by a few Olympiad level problems.
Asymptotes, briefly alluded to in treating hyperbolas in Section 8.4, are fully and
rigorously developed here. Another main objective of this chapter is to extend
the AM-GM inequality (Sections 5.4, 7.5) to the multivariate harmonic-geometric-
arithmetic-quadratic mean inequalities.

As pointed out by Gelfand, the AM-GM inequality along with its extensions is a
cornerstone of analysis. It has a beautiful geometry which was known to the ancient
Greeks, and it appears in a myriad problem such as multivariate extremal problems,
factorization problems, etc. Amongst the literally hundreds of mathematical contest
problems involving these means we chose a representative sample to demonstrate
the principal methods. The lesser known permutation (arrangement) inequality is
also introduced here pointing out that it implies all the other classical inequalities
such as the AM-GM, Cauchy–Schwarz (Sections 5.3, 6.7), and Chebyshev (Sec-
tion 6.7) inequalities. Finally, we give a detailed (and somewhat more advanced)
account on the greatest integer function along with some of Ramanujan’s formulas,
and the Hermite identity.
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9.1 Rational Expressions and Rational Functions

A mathematical expression constructed from real numbers and an indeterminate x
using the operations of addition, multiplication, and division is called a rational
expression. Any rational expression can be transformed into a rational fraction,
a fraction with polynomial numerator and denominator. The typical notation for a
rational expression in the indeterminate x is q(x). With this, a rational fraction is of
the form q(x) = n(x)/d(x), where n(x) is the polynomial numerator, and d(x) is
the polynomial denominator.

The definition of rational expression can be naturally extended to expressions in
several indeterminates x, y, z . . ., and x1, x2, x3, . . . , xn with n ∈ N, etc., and we
obtain rational expressions q(x, y), q(x, y, z), q(x1, x2, x3, . . . , xn), etc.

Remark The terminology for rational expressions is somewhat different from that
of polynomial expressions. This is because in rational expressions the replacement
of the indeterminate by an entity is rare, and, if needed, it can be specified at its
occurrence.

Rational expressions can be evaluated on (real) numbers by substitution; that is,
by performing the operations that the rational expression is made up on numbers
instead of indeterminates. Rational expressions q(x), q(x, y), etc. evaluated on
specific numbers a, b ∈ R are denoted by q(a), q(a, b), etc.

Since division by zero is undefined, unlike the case of polynomial expressions,
rational expressions may not be defined for all (real) values of the indeterminates.
The domain of definition of a rational expression is the (maximal) set of values
of the indeterminates for which the rational expression is defined. In particular, the
domain of definition of a rational fraction is the set of values of the indeterminates
for which the denominator does not vanish. The domain of definition of a rational
expression q(x), q(x, y), etc. is denoted by D(q(x)), D(q(x, y)), etc.

A rational function is a function of the form y = q(x), z = q(x, y), etc., where
q(x), q(x, y), etc. are rational expressions. The domain of a rational function is
the domain of definition of the corresponding rational expression. Functionally, we
denote a rational function by q : R→ R, q : R2 → R, etc., even though the domain
of q may not be the whole R, R2, etc.

The domain of definition applies only to the specific form of the rational
expression. It may change when the rational expression undergoes algebraic
manipulations.

Example 9.1.1 Consider the rational expression

q(x) = x5 + x4 + x3 + x2 + x + 1

x + 1

with domain of definition D(q(x)) = {x ∈ R | x �= −1}.
Using the Finite Geometric Series Formula, we may be tempted to reduce the

complexity of q(x) as
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x5+x4+x3+x2+x+1

x+1
= (x−1)(x5+x4+x3+x2+x+1)

(x−1)(x+1)
= x6−1

x2−1
.

However, simple, the final rational expression is not equal to q(x) since its domain
of definition is {x ∈ R | x �= ±1}. Restricting to this latter domain, however, the two
rational expressions become equal.

Example 9.1.2 (The Fibonacci Sequence via Continued Fractions) Consider the
sequence of (finite) continued fractions

q1(x) = 1+ 1

x
, q2(x) = 1+ 1

1+ 1
x

, q3(x) = 1+ 1

1+ 1
1+ 1

x

, q4(x) = 1+ 1

1+ 1
1+ 1

1+ 1
x

, . . .

The pattern of this sequence is that any term can be obtained from the previous
by the inductive formula

qn+1(x) = qn

(
1+ 1

x

)
, n ∈ N.

Writing the members of this sequence as rational fractions, we have

q1(x) = x + 1

x
, q2(x) = 2x + 1

x + 1
, q3(x) = 3x + 2

2x + 1
, q4(x) = 5x + 3

3x + 2
, q5(x) = 8x + 5

5x + 3
, . . .

The general pattern of the coefficients of these rational fractions is easy to
recognize. The coefficients are members of the sequence 0, 1, 1, 2, 3, 5, 8, . . ., and
every member of this sequence is obtained as the sum of the previous two. This is
the Fibonacci sequence discussed previously in Example 3.1.2. Our observation on
the coefficients of the rational fractions can be written as

qn(x) = Fn+1x + Fn

Fn x + Fn−1
, n ∈ N.

Indeed, we can verify that this is correct using Peano’s Principle of Induction.
For the initial step n = 1, we have

q1(x) = F2x + F1

F1x + F0
= x + 1

x
,

and the formula holds. For the general induction step n ⇒ n + 1, we assume that
the formula is valid for n, n ∈ N. We calculate

qn+1(x) = qn

(
1+ 1

x

)
=

Fn+1

(
1+ 1

x

)
+ Fn

Fn

(
1+ 1

x

)
+ Fn−1

= Fn+1(x + 1)+ Fn x

Fn(x + 1)+ Fn−1x
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= (Fn+1 + Fn)x + Fn+1

(Fn + Fn−1)x + Fn
= Fn+2x + Fn+1

Fn+1x + Fn
.

The general induction step is completed, and the formula follows.
Dividing the numerator and denominator by Fn , and using the ratios rn =

Fn+1/Fn , we obtain

qn(x) = rn x + 1

x + rn − 1
.

Since limn→∞ rn = τ , the golden number, we anticipate that

lim
n→∞ qn(x) = τ x + 1

x + τ − 1
= τ,

where we used τ − 1 = 1/τ . We claim that this holds for x �= 1− τ .

Remark Note that, for x = 1− τ , we have

qn(1−τ) = qn(−1/τ) = Fn+1(−1/τ)+ Fn

Fn(1− τ)+ Fn−1
= Fn+1(−1/τ)+ Fn

Fn+1 − τ Fn
= −1

τ
= 1−τ.

To show the claim, let x �= 1 − τ . Setting δ = |x + τ − 1| > 0, we choose
N ∈ N such that, for n ≥ N , we have |x + rn − 1| > δ/2. (This is possible since
limn→∞ rn = τ .)

For n ≥ N , we now calculate

|qn(x)− τ | =
∣∣∣∣ rn x + 1

x + rn − 1
− τ x + 1

x + τ − 1

∣∣∣∣
= |(rn x + 1)(x + τ − 1)− (τ x + 1)(x + rn − 1)|

|x + rn − 1| |x + τ − 1|
≤ 2

δ2τ
|τ x + 1||x − τ ||rn − τ |.

This gives

lim
n→∞ |qn(x)− τ | ≤ 2

δ2τ
|τ x + 1||x − τ | lim

n→∞ |rn − τ | = 0.

The claim follows.
Recalling now the original definition of qn(x), we arrive at the so-called (infinite)

continued fraction

τ = 1+ 1

1+ 1

1+. . .

.
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We now turn to examples of rational expressions with several indeterminates:

Example 9.1.3 Show that, for 0 < x, y ∈ R, we have

(x + y)

(
1

x
+ 1

y

)
≥ 4.

Indeed, multiplying both sides by xy, after simplification, we obtain (x + y)2 ≥
4xy, or equivalently (x − y)2 ≥ 0. The inequality follows.

We define the harmonic mean (HM) of two positive real numbers x and y by

2
1
x + 1

y

.

The example above can be paraphrased by saying that the harmonic mean is always
less than or equal to the arithmetic mean:

2
1
x + 1

y

≤ x + y

2
.

Using the AM-GM inequality (Section 5.4), we can actually derive a stronger
statement. For x, y > 0, we have the GM-HM Inequality

2
1
x + 1

y

≤ √xy.

Indeed, reducing the complex fraction and taking the reciprocal of both sides, this
becomes the AM-GM inequality.

We conclude this section by two somewhat more involved examples of rational
fractions in three indeterminates:

Example 9.1.4 Simplify the following rational expression

(x − a)(x − b)

(c − a)(c − b)
+ (x − b)(x − c)

(a − b)(a − c)
+ (x − c)(x − a)

(b − c)(b − a)
,

where a, b, c ∈ R are distinct.
Notice that, under the cyclic permutation a �→ b �→ c �→ a, the three terms

transform into each other cyclically, and the sum remains the same. Keeping a, b, c
fixed, this is a quadratic polynomial. The leading coefficient is

1

(c − a)(c − b)
+ 1

(a − b)(a − c)
+ 1

(b − c)(b − a)
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=− a − b

(a − b)(b − c)(c − a)
− b − c

(a − b)(b − c)(c − a)
− c − a

(a − b)(b − c)(c − a)
=0.

Thus, this expression is either linear or constant. On the other hand, substituting
x = a, x = b, and x = c, we invariably get 1. We conclude that the original rational
expression is identically 1.

Example 9.1.51 If 1 �= x, y, z ∈ R such that xyz = 1, then show that

(
1+ 1

x − 1

)2

+
(

1+ 1

y − 1

)2

+
(

1+ 1

z − 1

)2

≥ 1.

As in previous examples, it is convenient to homogenize the rational fractions on
the left-hand side by the substitutions

x = a2

bc
, y = b2

ca
, z = c2

ab
, abc �= 0,

such that a2 �= bc, b2 �= ca, c2 �= ab. (Note that with this substitution xyz = 1 is
automatically satisfied.) After simplification, we obtain

a4

(a2 − bc)2
+ b4

(b2 − ca)2
+ c4

(c2 − ab)2
≥ 1.

The Cauchy–Schwarz inequality gives

(a2 + b2 + c2)2 ≤
(
(a2 − bc)2 + (b2 − ca)2 + (c2 − ab)2

)

×
(

a4

(a2 − bc)2
+ b4

(b2 − ca)2
+ c4

(c2 − ab)2

)
.

With this, it remains to show that

(a2 + b2 + c2)2 ≥ (a2 − bc)2 + (b2 − ca)2 + (c2 − ab)2.

Simplifying and rearranging, we obtain

a2(b + c)2 + 2abc(b + c)+ b2c2 ≥ 0.

This holds, however, since the left-hand side is a monic quadratic polynomial in the
expression a(b + c) with discriminant (2bc)2 − 4b2c2 = 0.

1An equivalent problem was in the International Mathematical Olympiad, 2008. There are many
solutions to this problem.
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Exercises

9.1.1. Simplify the fraction2

(x + 1)4 + 4x4

x2 + (2x + 1)2 .

9.1.2. Let f (x) = 1/(1− x), x �= 1. Show that f ( f ( f (x))) = x , x �= 0, 1.
9.1.3. Recall from Example 4.3.1 that a function f : X → R is even if whenever

x ∈ X then we also have −x ∈ X and f (−x) = f (x). The function f is
odd if whenever x ∈ X then we also have−x ∈ X and f (−x) = − f (x). (a)
Show that a polynomial p : R → R is even if and only if p(x) consists of
even degree monomials only, and it is odd if and only p(x) consists of odd
degree monomials only. (b) Show that any real function f : X → R with
X ⊂ R can be written as the sum of even and odd functions f = f0 + f1,
where

f0(x) = f (x)+ f (−x)

2
and f1(x) = f (x)− f (−x)

2
.

Here the common domain of definition of f0 and f1 is the set X ∩ (−X),
where −X = {−x | x ∈ X}. (c) Write the rational functions 1/(1 + x) and
1/(x4 + x) as sums of even and odd functions.

9.2 The Partial Fraction Decomposition

We start with rational fractions, n1(x)/d1(x) and n2(x)/d2(x), whose denominators
d1(x) and d2(x) are relatively prime, that is, they have no common factors. (As
before, a factor is understood to be a non-constant polynomial.) For simplicity, we
will assume that the necessary polynomial divisions have been performed, and the
quotients have been discarded, so that n1(x)/d1(x) and n2(x)/d2(x) are proper:3

deg n1(x) < deg d1(x) and deg n2(x) < deg d2(x). We can write

n1(x)

d1(x)
+ n2(x)

d2(x)
= n1(x)d2(x)+ n2(x)d1(x)

d1(x)d2(x)
.

After adding, the rational fraction on the right-hand side is also proper.
The partial fraction decomposition is the exact opposite of this. We start with

a proper rational fraction n(x)/d(x), deg n(x) < deg d(x), and assume that the

2A special numerical case x = 2013 was part of a problem in the 2013 British Math Olympiad.
3As usual, deg denotes the degree of the respective polynomial.
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denominator d(x) splits into a product of two relatively prime polynomials: d(x) =
d1(x) · d2(x), gcf (d1(x), d2(x)) = 1, deg d1(x), deg d2(x) < deg d(x). We then
seek polynomials n1(x) and n2(x) such that

n(x)

d(x)
= n1(x)

d1(x)
+ n2(x)

d2(x)
, deg n1(x) < deg d1(x), deg n2(x) < deg d2(x).

We claim that n1(x) and n2(x) exist.
As we noted at the end of Section 7.6, as a consequence of the Euclidean

Algorithm for polynomials, there exist polynomials m1(x) and m2(x) such that

m1(x)d1(x)+ m2(x)d2(x) = gcf (d1(x), d2(x)) = 1,

where we used that d1(x) and d2(x) are relatively prime. (Note that the gcf is
determined up a non-zero constant multiple.)

Multiplying through by n(x)/d(x), we obtain

n(x)m1(x)d1(x)

d(x)
+ n(x)m2(x)d2(x)

d(x)
= n(x)

d(x)
.

Using d(x) = d1(x)d2(x), and canceling the common factors, we arrive at

n(x)m2(x)

d1(x)
+ n(x)m1(x)

d2(x)
= n(x)

d(x)
.

We now perform polynomial divisions. We divide n(x)m2(x) by d1(x) to obtain
a quotient q1(x) and a remainder n1(x). Similarly, we divide n(x)m1(x) by d2(x) to
obtain a quotient q2(x) and a remainder n2(x). By the Division Algorithm, we have

q1(x)+ n1(x)

d1(x)
+ q2(x)+ n2(x)

d2(x)
= n(x)

d(x)

with

deg n1(x) < deg d1(x) and deg n2(x) < deg d2(x).

Now the crux is that all rational fractions are proper so that the polynomial sum
q1(x)+ q2(x) must be zero. We obtain

n1(x)

d1(x)
+ n2(x)

d2(x)
= n(x)

d(x)
.

This concludes the proof that the partial fraction decomposition holds.
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Example 9.2.1 Let a, b, m ∈ N. Reduce the infinite sum

∞∑
n=1

n(bm − am)+ mbm

n(n + m)

an

bn

to a finite sum.
The crux is to decompose the rational fraction

x(bm − am)+ mbm

x(x + m)

into partial fractions. Since gcf (x, x + m) = 1, m ∈ N, the only possible partial
fractions are of the form A/x and B/(x + m), where A, B ∈ R. We therefore write

x(bm − am)+ mbm

x(x + m)
= A

x
+ B

x + m
.

Eliminating the denominators, we obtain

x(bm − am)+ mbm = A(x + m)+ Bx .

Since this holds for any value of the indeterminate x , we have

A + B = bm − am and m A = mbm .

This is easily resolved yielding A = bm and B = −am . Returning to our rational
fraction, we thus have

x(bm − am)+ mbm

x(x + m)
= bm

x
− am

x + m
.

For x = n, n ∈ N, we substitute this into the infinite sum and calculate

∞∑
n=1

n(bm − am)+ mbm

n(n + m)

an

bn
=
∞∑

n=1

(
bm

n
− am

n + m

)
an

bn

=
∞∑

n=1

1

n

an

bn−m
−
∞∑

n=1

1

n + m

an+m

bn
=
∞∑

n=1

1

n

an

bn−m
−

∞∑
n=m+1

1

n

an

bn−m

=
m∑

n=1

1

n

an

bn−m
= bm

m∑
n=1

1

n

(a

b

)n = bm
(

a

b
+ 1

2

(a

b

)2 + · · · + 1

m

(a

b

)m
)

,

a finite sum.
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Remark A reader well-versed in calculus will no doubt realize that the last sum in
the parentheses is a partial sum of the power series expansion (at zero) of the natural
logarithm − ln(1− x) for x = a/b.

Returning to the main line, the partial fraction decomposition above generalizes
to decompositions with finitely many partial fractions in a straightforward manner
using Peano’s Principle of Induction.

More specifically, given a proper rational fraction n(x)/d(x), we can split the
denominator d(x) into a product of maximum number of mutually relatively prime
factors

d(x) = d1(x)d2(x) · · · dk(x), deg d1(x), deg d2(x), . . . , deg dk(x) < deg n(x),

(assuming that there are at least two), and obtain the partial fraction decomposition

n(x)

d(x)
= n1(x)

d1(x)
+ n2(x)

d2(x)
+ · · · + nk(x)

dk(x)
,

where the partial fractions on the right-hand side are all proper.
The next question that we need to answer is the following: What are

the possible (general) forms of the mutually relatively prime denominators
d1(x), d2(x), . . . , dk(x)?

The answer depends on the field that the coefficients of the polynomials reside
in. In our case, this is the field of real numbers R. To answer this question we first
consider the finer splitting of d(x) into irreducible factors (as opposed to splitting
d(x) into relatively prime factors). For simplicity, from now on we assume that d(x)

is monic (has leading coefficient equal to 1) as are the factors in any decompositions
of d(x) into products. (A non-unit leading coefficient can always be absorbed into
the numerator n(x) of the fraction n(x)/d(x).)

We now recall that the irreducible polynomials with real coefficients are either
linear or quadratic. By our assumption, they are also monic so that they must be of
the form x − c with c ∈ R, or x2+ px + q with p, q ∈ R such that the discriminant
p2 − 4q < 0.

Returning to our denominator d(x) and its decomposition into relatively prime
factors, we see that, corresponding to these two cases, the relatively prime factors
must be powers of the irreducible factors:

(x − c)m and (x2 + px + q)n, p2 − 4q < 0, m, n ∈ N.

We call m and n the multiplicity of the respective irreducible factor.
We first discuss the multiplicity one cases. Since partial fractions must be proper,

we obtain that, corresponding to these two cases, in multiplicity 1 they must be of
the form

A

x − c
and

Ax + B

x2 + px + q
, A, B ∈ R.
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Example 9.2.2 Find the infinite sum

∞∑
n=2

1

n(n2 − 1)
.

We view the general term of the series as a rational function in the indeterminate
x (instead of n), and decompose it into partial fractions:

1

x(x2 − 1)
= 1

(x − 1)x(x + 1)
= A

x − 1
+ B

x
+ C

x + 1
.

Eliminating the denominators, we obtain

1 = Ax(x + 1)+ B(x2 − 1)+ Cx(x − 1).

This gives

A + B + C = 0, A − C = 0, B = −1.

This can be easily resolved to obtain A = 1/2, B = −1, C = 1/2. We thus have

1

x(x2 − 1)
= 1

2(x − 1)
− 1

x
+ 1

2(x + 1)
.

We substitute this into the series and expand4

∞∑
n=2

2

n(n2 − 1)
=
∞∑

n=2

(
1

n − 1
− 2

n
+ 1

n + 1

)
.

The crux is that the middle term −2/n in the nth parentheses cancels the third
term 1/((n−1)+1) in the previous parentheses, and the first term 1/((n+1)−1) in
the next parentheses. Hence everything cancels in this sum5 except three surviving
terms 1− 1+ 1/2 = 1/2. Thus, we obtain

∞∑
n=2

1

n(n2 − 1)
= 1

4
.

Remark When the denominator splits into a product of mutually relatively prime
(irreducible) linear factors there is a simpler method to find the coefficients. After
we arrive at the equation 1 = Ax(x+1)+ B(x2−1)+Cx(x−1), letting x = 1 we

4For technical convenience, we doubled the sum.
5Sums with this property are called telescopic.
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find A = 1/2, letting x = 0 we find B = −1, and letting x = −1 we find C = 1/2.
We see that, by letting x equal to the roots of the irreducible factors, we can solve
for the remaining coefficients. This process, however, starts losing its effectiveness
when the linear factors of the denominator have multiplicity greater than 1.

For the case of linear (irreducible) factors, what we have done so far can be
summarized in the following general setting. Assume that the denominator of a
proper rational fraction n(x)/d(x) splits into a product of distinct linear factors

d(x) = (x − c1)(x − c2) · · · (x − ck)

with all roots c1, c2, . . . , ck ∈ R distinct. Then we have the partial fraction
decomposition

n(x)

d(x)
= n(x)

(x − c1)(x − c2) · · · (x − ck)
= A1

x − c1
+ A2

x − c2
+ · · ·+ Ak

x − ck
,

where A1, A2, . . . , Ak ∈ R.

Remark 6 Recall the Lagrange interpolation polynomial �(x) introduced in Exam-
ple 6.1.1. It is a polynomial of degree < n uniquely defined by n distinct numbers
x1, x2, . . . , xn ∈ R, 2 ≤ n ∈ N, and yi ∈ R, i = 1, 2, . . . , n, such that �(xi ) = yi ,
i = 1, 2, . . . , n. The definition of �(x) can be paraphrased in terms of the partial
fraction decomposition as

�(x)

(x − x1)(x − x2) · · · (x − xn)
= y1/z1

x − x1
+ y2/z2

x − x2
+ · · · + yn/zn

x − xn
,

where

zi =
n∏

j=1
j �=i

(xi − x j ).

Returning to the main line, we now discuss the case of quadratic irreducible
factors.

Example 9.2.3 Determine the partial fraction decomposition of the rational fraction

2x3

x4 + x2 + 1
.

According to Example 6.4.8 (for y = 1) the denominator decomposes as

x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1).

6The reader is indebted to one of the reviewers for having this pointed out.
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Note that both quadratic factors are irreducible since their (common) discriminant
is 1− 4 = −3 < 0. The partial fraction decomposition is

2x3

x4 + x2 + 1
= 2x3

(x2 + x + 1)(x2 − x + 1)
= Ax + B

x2 + x + 1
+ Cx + D

x2 − x + 1
.

As usual, we eliminate all denominators and obtain

2x3 = (Ax + B)(x2 − x + 1)+ (Cx + D)(x2 + x + 1)

= (A + C)x3 + (−A + B + C + D)x2 + (A − B + C + D)x + (B + D).

This gives

A + C = 2, −A + B + C + D = 0, A − B + C + D = 0, B + D = 0.

This system of linear equations is easily solved, and we obtain A = B = C = 1 and
D = −1. Substituting these back to the original decomposition, we finally arrive at
the following:

2x3

x4 + x2 + 1
= x + 1

x2 + x + 1
+ x − 1

x2 − x + 1
.

In retrospect, this partial fraction decomposition is also clear form the identity x3±
1 = (x ± 1)(x2 ∓ x + 1).

Finally, an illustrative example for the “hybrid case” is as follows:

Example 9.2.4 Determine the partial fraction decomposition of the rational fraction

x2 − 2

x3 + 2x2 + 2x + 1
.

We factor the denominator by grouping

x3+2x2+2x+1 = (x3+1)+(2x2+2x) = (x+1)(x2−x+1)+2x(x+1) = (x+1)(x2+x+1).

The quadratic factor is irreducible (over R) since its discriminant is 1−4 = −3 < 0.
The partial fraction decomposition is

x2 − 2

x3 + 2x2 + 2x + 1
= A

x + 1
+ Bx + C

x2 + x + 1
, A, B, C ∈ R.

The usual computations give

A + B = 1, A + B + C = 0, A + C = −2,
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and finally we obtain A = −1, B = 2, C = −1. Hence, we have

x2 − 2

x3 + 2x2 + 2x + 1
= − 1

x + 1
+ 2x − 1

x2 + x + 1
.

We summarize the multiplicity one case as follows. Assume that the denominator
of a proper rational fraction n(x)/d(x) splits into a product of distinct linear and
distinct quadratic factors

d(x) = (x − c1)(x − c2) · · · (x − ck)

×(x2 + p1x + q1)(x2 + p2x + q2) · · · (x2 + pl x + ql),

where the roots c1, c2, . . . , ck ∈ R and the pairs (p1, q1), (p2, q2), . . . , (pl , ql) ∈
R

2 are distinct, and the discriminants of the quadratic factors are all negative:

p2
1 − 4q1 < 0, p2

2 − 4q2 < 0, . . . p2
l − 4ql < 0.

Then we have the partial fraction decomposition

n(x)

d(x)
= n(x)

(x − c1)(x − c2) · · · (x − ck)(x2 + p1x + q1)(x2 + p2x + q2) · · · (x2 + pl x + ql )

= A1

x − c1
+ A2

x − c2
+ · · · + Ak

x − ck

+ B1x + C1

x2 + p1x + q1
+ B2x + C2

x2 + p2x + q2
+ · · · + Bl x + Cl

x2 + pl x + ql
,

where A1, A2, . . . , Ak, B1, B2, . . . , Bl , C1, C2, . . . , Cl ∈ R.
It remains to discuss the higher multiplicity cases of repeated linear and

quadratic factors. If (x − c)k with 2 ≤ k ∈ N is a relatively prime factor
in the factorization of d(x), then, in the partial fraction decomposition of the
proper rational fraction n(x)/d(x), the corresponding partial fraction should be
n0(x)/(x − c)k , where n0(x) is a polynomial of degree ≤ k − 1. Independent of the
partial fraction decomposition, we write this as another sum of “partial fractions” as

n0(x)

(x − c)k
= A1

x − c
+ A2

(x − c)2 + · · · +
Ak

(x − c)k
,

where A1, A2, . . . , Ak ∈ R.
We gave a proof of this decomposition at the end of Section 6.5 as an application

of the Division Algorithm for Polynomials.

Example 9.2.5 We have the partial fraction decomposition of the rational fraction

x

x2 − 2x + 1
= x

(x − 1)2 =
1

x − 1
+ 1

(x − 1)2 ,
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where the last equality is by simple inspection.

If (x2 + px + q)k with p2 − 4q < 0, 2 ≤ k ∈ N, is a relatively prime
factor in the factorization of d(x), then, in the partial fraction decomposition of
the proper rational fraction n(x)/d(x), the corresponding partial fraction should be
n0(x)/(x2 + px + q)k , where n0(x) is a polynomial of degree ≤ 2k − 1.

Independent of the partial fraction decomposition, we write this as another sum
of “partial fractions” as

n0(x)

(x2 + px + q)k
= A1x + B1

x2 + px + q
+ A2x + B2

(x2 + px + q)2 + · · · +
Ak x + Bk

(x2 + px + q)k
,

where A1, . . . , Ak, B1, . . . , Bk ∈ R.
Multiplying through (x2 + px + q)k , this is equivalent to

n0(x) = (A1x+B1)(x2+px+q)k−1+(A2x+B2)(x2+px+q)k−2+· · ·+(Ak x+Bk).

To show the validity of the partial fraction decomposition above, we claim that,
for any polynomial n0(x) of degree≤ 2k−1, there exist A1, . . . , Ak, B1, . . . , Bk ∈
R such that this equality holds.

Once again, this is an application of the Division Algorithm. We use Peano’s
Principle of Induction with respect to k ∈ N.

For k = 1, the polynomial is linear or a constant, and the claim clearly holds.
For the general induction step 1, 2, . . . , k − 1 ⇒ k, we assume that the claim

holds for any polynomial of degree ≤ 2k − 3.
Let n0(x) be a polynomial of degree ≤ 2k − 1. Dividing n0(x) by the degree

2k − 2 polynomial (x2 + px + q)k−1, we obtain a linear quotient A1x + B1 and a
remainder n1(x) which is of degree ≤ 2k − 3 or zero:

n0(x) = (A1x + B1)(x2 + px + q)k−1 + n1(x).

The induction hypothesis applies to n1(x), and we have

n1(x) = (A2x + B2)(x2 + px + q)k−2 + · · · + (Ak x + Bk).

The induction is complete and the claim follows.

Example 9.2.6 Determine the partial fraction decomposition of the rational fraction

x3 + x

x4 + 2x3 + 3x2 + 2x + 1
.

The symmetric sequence of coefficients in the denominator is suggestive for the
grouping
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x4 + 2x3 + 3x2 + 2x + 1 = (x4 + x3 + x2)+ (x3 + x2 + x)+ (x2 + x + 1)

= x2(x2 + x + 1)+ x(x2 + x + 1)+ (x2 + x + 1)

= (x2 + x + 1)2.

Thus, we have the partial fraction decomposition

x3 + x

x4 + 2x3 + 3x2 + 2x + 1
= A1x + B1

x2 + x + 1
+ A2x + B2

(x2 + x + 1)2 .

Eliminating the denominators, we have

x3 + x = (A1x + B1)(x2 + x + 1)+ A2x + B2

= A1x3 + (A1 + B1)x2 + (A1 + B1 + A2)x + (B1 + B2).

Comparing coefficients, we have

A1 = 1, A1 + B1 = 0, A1 + B1 + A2 = 1, B1 + B2 = 0.

This can be easily solved giving A1 = A2 = B2 = 1 and B1 = −1. Finally, we
arrive at the following partial fraction decomposition

x3 + x

x4 + 2x3 + 3x2 + 2x + 1
= x − 1

x2 + x + 1
+ x + 1

(x2 + x + 1)2 .

Remark To obtain the coefficients in the partial fraction decomposition we used
the brute force “method of undetermined coefficients.” Other approaches, notably
the so-called Heaviside Cover-Up Method, and, using differential calculus, yet
another method, reminiscent to the Lagrange Interpolation, are also available.

Exercises

9.2.1. Perform the partial fraction decomposition for the following:

(a)
6x2 − 7x − 25

x3 + 2x2 − 5x − 6
; (b)

x2 − x + 1

x3 − 3x2 + 3x − 1
; (c)

4x3 + 3x2 + 6x

(x2 + x + 1)(x2 + 1)
.

9.2.2. Use the method of Example 9.2.3 to show that

n∑
k=1

k

k4 + k2 + 1
= 1

2

(
1− 1

n2 + n + 1

)
.
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Conclude that we have

∞∑
n=1

n

n4 + n2 + 1
= 1

2
.

9.3 Asymptotes of Rational Functions

Recall that a rational function q : R → R is defined by a rational expression
q(x) in the indeterminate x via y = q(x). The rational expression q(x) can be
brought into a rational fraction q(x) = n(x)/d(x), where n(x) (the numerator) and
d(x) (the denominator) are polynomials. The domain of definition of q(x) is the
set of real numbers for which the denominator d(x) does not vanish. Since d(x)

is a polynomial, it vanishes only at its roots. By the Factor Theorem, the number
of roots of d(x) cannot exceed the degree, deg d(x). We conclude that a rational
function q : R→ R, y = q(x) = n(x)/d(x), is defined for all real numbers except
at the finitely many roots of the denominator d(x). We call these points the singular
points of the rational function.

Recall that a rational function is continuous everywhere in its domain; that is, it
is continuous at every non-singular point.

In this section we discuss possible asymptotes of graphs of rational functions.
Recall from Section 8.4 that an asymptote to a set E ∈ R

2 (in our case the
graph of a rational function) is a half-line � with end-point P0 which satisfies the
following: Given another point P1 ∈ � with associated affine parametrization Pt =
(1− t)P0 + t P1, 0 ≤ t ∈ R, we have limt→∞ d(Pt , E) = 0.

First, we discuss vertical asymptotes, that is, half-line asymptotes given by x =
c, c ∈ R, y � 0.

For our rational function q : R → R given by the fractional representation
q(x) = n(x)/d(x), a vertical asymptote cannot happen at a non-singular point c ∈
R since at a non-singular point we have d(c) �= 0, so that limx→c n(x)/d(x) =
n(c)/d(c) exists.

It remains to consider the case when c ∈ R is a singular point of q(x) =
n(x)/d(x), that is, we have d(c) = 0.

Assume that c ∈ R is a root of the denominator d(x) of multiplicity k0 ∈ N, so
that we have

d(x) = (x − c)k0 d0(x), d0(c) �= 0.

Let l0 ∈ N0 be the highest power of the root factor (x−c) that divides the numerator
n(x), that is

n(x) = (x − c)l0 n0(x), n0(c) �= 0.
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(The case n = 0 corresponds to n(c) �= 0.) We then have

q(x) = n(x)

d(x)
= (x − c)l0 n0(x)

(x − c)k0 d0(x)
, n0(c) �= 0 �= d0(c).

Case I k0 ≤ l0. In this case, we have

q(x) = n(x)

d(x)
= (x − c)l0−k0

n0(x)

d0(x)
.

Since n0(c) �= 0 �= d0(c), we have

lim
x→c

n(x)

d(x)
=
{

0, if k0 < l0

n0(c)/d0(c), if k0 = l0.

We can define q at c by setting q(c) = limx→c q(x). With this the extended q
becomes continuous at c. We call c a removable singular point for q.

Clearly, in this case, neither of the two vertical half-lines at c can be a vertical
asymptote for q.

Remark Let p : R→ R be a polynomial function and c ∈ R. Recall the difference
quotient (Section 4.3)

mp(x, c) = p(x)− p(c)

x − c
, x �= c.

It is a rational function in the variable x , and its only singular point is c. Since
the numerator p(x) − p(c) vanishes at c, this singular point is removable. The
construction of the derivative p′(c) amounts to “remove” this singularity, and define
mp(x, c) across c. We thus see that taking the derivative of a polynomial is the same
as removing the singularity of the corresponding difference quotient.

Example 9.3.1 (Revisited) The rational function q : R→ R given by

q(x) = xm − 1

xn − 1
, m, n ∈ N,

has a removable singular point at c = 1, since

lim
x→1

xm − 1

xn − 1
= m

n
.

(See Section 4.3.)
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Case II k0 > l0. In this case, we have

q(x) = n(x)

d(x)
= 1

(x − c)k0−l0

n0(x)

d0(x)
, n0(c) �= 0 �= d0(c).

If k0 − l0 ∈ N is even, then we have

lim
x→c

q(x) = lim
x→c

n(x)

d(x)
= ±∞,

where the sign ± is according to whether n0(c)/d0(c) ≷ 0.
If k0 − l0 ∈ N is odd, then we have the one-sided limits

lim
x→c±

q(x) = lim
x→c±

n(x)

d(x)
= ±∞,

where, for the right-limit, the sign ± is according to whether n0(c)/d0(c) ≷ 0; and,
for the left-limit, the sign ∓ is according to whether n0(c)/d0(c) ≷ 0.

We now claim that the vertical half-line given by x = c, y � 0, is a vertical
asymptote for q if and only if, for any of the one-sided limits, we have

lim
x→c±

q(x) = ±∞.

By the above, it is enough to show that limx→c± q(x) = ∞ (with either choice
of the sign) implies that the half-line given by x = c, y ≥ 0, is an asymptote for q.

Letting P0 = (c, 0) and P1 = (c, 1), we parametrize the vertical half-line by
y �→ Py = (1− y)P0 + y P1 = (c, y), y ≥ 0. We now estimate the distance of the
graph Gq of q from this vertical half-line as follows:

0 ≤ lim
y→∞ d(Gq , Py) = lim

x→c±
d(Gq , Pq(x)) = lim

x→c±
d(Gq , (c, q(x)))

≤ lim
x→c±

d((x, q(x)), (c, q(x))) = lim
x→c±

|x − c| = 0.

The claim follows.
Second, we discuss the existence of horizontal and oblique asymptotes. A

horizontal asymptote is a half-line given by y = b, b ∈ R, and x � 0. An oblique

asymptote is a half-line given by y = mx + b, m �= 0, m, b ∈ R, and x � 0.
In both cases (allowing m = 0) we let P0 = (0, b) and P1 = (±1,±m + b).

With this, we have the parametrization Px = (1− x)P0 + x P1 = (±x,±mx + b),
x ≥ 0.

The existence of these asymptotes depends on the degree of the numerator n(x)

and the degree of the denominator d(x) in the fractional representation q(x) =
n(x)/d(x).

We write the numerator and denominator in descending order
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n(x) = al x
l + al−1xl−1 + · · · a1x + a0, al �= 0, a0, a1, . . . , al ∈ R,

and

d(x) = bk xk + bk−1xk−1 + · · · b1x + b0, bk �= 0, b0, b1, . . . , bk ∈ R,

where deg n(x) = l and deg d(x) = k.

Case I Assume deg n(x) = l < k = deg d(x).
Dividing both the numerator and the denominator by xl , we obtain

q(x) = al xl + al−1xl−1 + · · · a1x + a0

bk xk + bk−1xk−1 + · · · b1x + b0
=

al + al−1
1
x + · · · a1

1
xl−1 + a0

1
xl

xk−l
(

bk + bk−1
1
x + · · · b1

1
xk−1 + b0

1
xk

) .

Hence, we have

lim
x→±∞ q(x) = lim

x→±∞
al + al−1

1
x + · · · a1

1
xl−1 + a0

1
xl

xk−l
(

bk + bk−1
1
x + · · · b1

1
xk−1 + b0

1
xk

) = lim
x→±∞

al

xk−l bk
= 0.

This is because k − l > 0, and limx→±∞ 1/xm = 0, for m ∈ N.
In this case the positive and negative first axes given by y = 0, x � 0, are

horizontal asymptotes. Indeed, we have

0 ≤ lim
x→∞ d(Gq , Px ) ≤ lim

x→∞ d((±x, q(±x)), (±x, 0)) = lim
x→±∞ |q(x)| = 0.

Case II Assume deg n(x) = l ≥ k = deg d(x).
Performing polynomial division we obtain

q(x) = n(x)

d(x)
= q0(x)+ r(x)

d(x)
,

where deg q0 = l − k ≥ 0 and deg r(x) < deg d(x) or r(x) is zero.
By Case I, we have

lim
x→±∞

r(x)

d(x)
= 0.

If l = k, then, by the division algorithm, q0(x) = al/bk , constant. In this case we
have the horizontal asymptotes given by y = b = al/bk , x � 0. Indeed, as before,
we have

0 ≤ lim
x→∞ d(Gq , Px ) ≤ lim

x→∞ d((±x, q(±x)), (±x, b))

= lim
x→±∞ |q(x)− b| = lim

x→±∞ |r(x)/d(x)| = 0.
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If l = k + 1, then, again by the division algorithm, q0(x) = mx + b is linear
with slope m = al/bk �= 0. In this case we have oblique asymptotes given by
y = mx + b, x � 0. Indeed, as before, we have

0 ≤ lim
x→∞ d(Gq , Px ) ≤ lim

x→∞ d((±x, q(±x)), (±x,±mx + b)))

= lim
x→±∞ |q(x)− (mx + b)| = lim

x→±∞ |r(x)/d(x)| = 0.

Finally, if l ≥ k+ 2, then q0(x) is a polynomial of degree l − k ≥ 2. In this case,
we claim that there is no asymptote.

Clearly, there cannot be any horizontal asymptote since

lim
x→±∞ q(x) = lim

x→±∞ q0(x) = ±∞.

Assume now that a half-line � is an oblique asymptote. We may assume that the
leading coefficient of q0 is positive (that is limx→∞ q(x) = limx→∞ q0(x) = ∞),
and that � is given by y = mx + b, x ≥ 0, where m > 0 (since the other cases can
be treated analogously). Let �′ be a half-line given by y = m′x + b, x ≥ 0, where
m′ > m.

Since deg q0(x) ≥ 2, by the previous case, we have

lim
x→∞

m′x + b

q(x)
= lim

x→∞
m′x + b

q0(x)
= 0.

Let 0 < R ∈ R be such that, for x ≥ R, we have mx + b > 0, q(x) > 0 and

m′x + b

q(x)
< 1.

We write this last inequality as

(mx + b <)m′x + b < q(x), x ≥ R.

The parametrization of the half-line � is given by x �→ Px = (1− x)P0+ x P1 =
(x, mx + b), x ≥ 0. Using the inequality above and the formula for the distance of
a point to a line (Section 5.5), we estimate

lim
x→∞ d(Gq , Px ) ≥ lim

x→∞ d(�′, Px )= lim
x→∞

|m′x − (mx + b)+b|√
m′2+1

= lim
x→∞

(m′ − m)|x |√
m′2+1

=∞.

Thus, � cannot be an asymptote. The claim follows.

Example 9.3.2 Determine the asymptotes of the rational function

q(x) = x7 + 3x4 − x3 − 1

x6 − x2 .
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We first perform polynomial division and obtain

q(x) = x + 3x4 − 1

x6 − x2 .

We factor the denominator as

x6 − x2 = x2(x4 − 1) = x2(x2 − 1)(x2 + 1) = x2(x + 1)(x − 1)(x2 + 1).

Substituting this into the expression above, we obtain

q(x) = x + 3x4 − 1

x2(x + 1)(x − 1)(x2 + 1)
.

Partial fraction decomposition gives

q(x) = x+ 3x4 − 1

x2(x + 1)(x − 1)(x2 + 1)
= x+ 1

x2
+ 1

2(x − 1)
− 1

2(x + 1)
+ 1

x2 + 1
.

Clearly, q has vertical asymptotes at c = 0,±1, and an oblique asymptote given
by y = x . (The last fraction does not contribute to the asymptotic behavior.) At the
vertical asymptotes, we have

lim
x→0

q(x) = ∞ lim
x→1±

q(x) = ±∞ lim
x→−1±

q(x) = ∓∞.

Exercises

9.3.1. Find the asymptotes of the following rational function y = (1+2x−x2)/(1−
x2).

9.3.2. Construct the graphs of the rational functions

(a) y = x + 1

x2 − 2x + 1
; (b) y = 1− x

x3 − 4x
; (c) y = 1

x3
+ 1

x2
.

9.4 Algebraic Expressions and Functions, Rationalization

An algebraic expression is a mathematical expression f (x) constructed from
numbers and an indeterminate x under the operations of addition, multiplication,
division, and exponentiation by rational exponents.

A complex algebraic fraction is a fraction whose numerator and denominator
are both algebraic expressions. A complex algebraic fraction can be brought to
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a simple algebraic fraction whose numerator and denominators do not contain
division involving the indeterminate.

The definition of algebraic expression can be naturally extended to expressions
f (x, y), f (x, y, z), f (x1, x2, . . . , xn), etc., in several indeterminates x, y, z . . . and
x1, x2, . . . , xn , n ∈ N.

A single-variable algebraic function is defined by an algebraic expression f (x)

in the indeterminate x via y = f (x). A multivariate algebraic function is given
by z = f (x, y), w = f (x, y, z), etc., where f (x, y), f (x, y, z) are algebraic
expressions.

Example 9.4.1 Derive the following algebraic limit

lim
x→∞

(√
x −√x −√x

)
= −1

2
.

We calculate

lim
x→∞

(√
x −√x −√x

)
= lim

x→∞
√

x

(√
1− 1/

√
x − 1

)

= lim
x→∞

√
x

(1− 1/
√

x)− 1√
1− 1/

√
x + 1

= − lim
x→∞

1√
1− 1/

√
x + 1

= −1

2
.

Example 9.4.2 Determine the value of the algebraic expression

√(q

2

)2 +
( p

3

)3

when p = −1/3 and q = 25/27.
Whenever possible we write all natural numbers as products of primes. We

substitute p = −1/3 and q = 52/33, and calculate

(q

2

)2 +
( p

3

)3 =
(

52

2 · 33

)2

+
(
− 1

32

)3

= 54

22 · 36 −
1

36

= 54 − 22

22 · 36
= (52 − 2)(52 + 2)

22 · 36
= 23

22 · 33
.

Taking the square root, we obtain

√(q

2

)2 +
( p

3

)3 =
√

23

6
√

3
.

The final answer in the last example is not the simplified (simplest) form of a
radical expression. When simplifying a radical expression it is common to abide
by the following rules: (1) The nth root of an expression is considered to be in
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simplified form if no factors of the radicand are perfect nth powers; (2) The radicand
is not a fraction; and (3) The denominator of a fraction has no radicals.

Root rationalization is a process by which one or several radicals in the
denominator of a simple algebraic fraction are eliminated. Although there is a wide
range of situations, the majority fall under a few cases.

The simplest case is when the numerator r(x) is an algebraic expression, and the
denominator is the radical expression n

√
p(x) with p(x) a polynomial.

In this case the rationalization is achieved thorough multiplying the numerator
and the denominator by n

√
p(x)n−1 as follows

r(x)
n
√

p(x)
= r(x)

n
√

p(x)
·

n
√

p(x)n−1

n
√

p(x)n−1
= r(x)

p(x)
· n
√

p(x)n−1.

Example 9.4.3 Rationalize the algebraic expression 1/
3
√

x2 + x + 1.
We calculate

1
3
√

x2 + x + 1
= 1

3
√

x2 + x + 1

3
√

x2 + x + 1 2

3
√

x2 + x + 1 2
=

3
√

x2 + x + 1 2

x2 + x + 1
.

Another case is when the denominator is the binomial of the form n
√

p(x) −
n
√

q(x), where p(x) and q(x) are polynomials. In this case, the polynomial identity

un − vn = (u − v)(un−1 + un−2v + · · · + uvn−2 + vn−1)

is employed with u = n
√

p(x) and v = n
√

q(x). (Note that this also covers the case
n
√

p(x)+ n
√

q(x) with n odd since n
√

p(x)+ n
√

q(x) = n
√

p(x)− n
√−q(x).)

The rationalization follows the pattern:

r(x)
n
√

p(x)− n
√

q(x)
= r(x)

p(x)− q(x)
·
(

n
√

p(x) n−1 + n
√

p(x) n−2 n
√

q(x)+ · · ·

+ n
√

p(x) n
√

q(x) n−2 + n
√

q(x) n−1
)

.

Example 9.4.4 Rationalize the algebraic expression 1/
(
(1+ x)

(√
1+ x2 −√x

))
.

We have

1

(1+ x)
(√

1+ x2 −√x
) =

√
1+ x2 +√x

(x + 1)(x2 − x + 1)
=
√

1+ x2 +√x

x3 − 1
.

At times we may encounter a trinomial or a more complex expression to
rationalize:

Example 9.4.5 Rationalize the simple algebraic fraction 1/(1−√x +√x + 1).
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The trick is to use the difference of squares formula in the following setting:

(1−√x +√x + 1)(1−√x −√x + 1) = (1−√x)2 −√x + 1
2

= 1− 2
√

x + x − (x + 1) = −2
√

x .

Using this we now calculate

1

1−√x +√x + 1
= 1−√x −√x + 1

(1−√x +√x + 1)(1−√x −√x + 1)

= −1−√x −√x + 1

2
√

x
= −√x

1−√x −√x + 1

2x
.

The domain of definition of an algebraic expression is the (maximal) set of
values of the indeterminates for which the algebraic expression is defined. Thus,
the domain of definition of a simple algebraic fraction is the set of values of the
indeterminates for which the denominator does not vanish, and all the radicands
under even radical signs are non-negative. As in the case of rational expressions, the
domain of definition may change during simplification processes.

Example 9.4.6 Determine the domain of definition of the following algebraic
expression and simplify:

√√
x + 1√
x − 1

−
√√

x − 1√
x + 1

.

First, due to the presence of the radical
√

x , we must have x ≥ 0. In addition,√
x �= 1 so that x �= 1. Finally,

√
x − 1 > 0, or equivalently, x > 1. Taking the

intersection of these intervals, we see that the domain of definition is the infinite
interval (1,∞). We now calculate

√√
x + 1√
x − 1

−
√√

x − 1√
x + 1

=
√

(
√

x + 1)2

(
√

x − 1)(
√

x + 1)
−
√

(
√

x − 1)2

(
√

x + 1)(
√

x − 1)

=
√

x + 1√
x − 1

−
√

x − 1√
x − 1

= 2√
x − 1

.

Exercises

9.4.1. Simplify

x
√

y
√

z y
√

z
√

x

z
√

yz
√

xz
.
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9.4.2. Factor x3/2 − y3/2.
9.4.3. Rationalize the algebraic fraction 1/(1−√2+√3).

9.5 Harmonic, Geometric, Arithmetic, Quadratic Means

Just as in the case of rational expressions, algebraic expressions naturally appear in
various inequalities.

Example 9.5.1 For x, y > 0, we have

√
x +√y√

2
≤ √x + y <

√
x +√y.

Indeed, squaring, and using the binomial formula, we obtain

x + 2
√

xy + y

2
≤ x + y < x + 2

√
xy + y.

Canceling the common terms, the first inequality reduces to the AM-GM inequality.
The second inequality is obvious.

Example 9.5.2 For x, y ∈ R, we have

x + y

2
≤
√

x2 + y2

2
.

We may assume x, y > 0. Then the inequality follows from the previous example
by a simple substitution. For a change, we also derive this inequality using geometry.

First, notice that all the expressions are positively homogeneous (that is,
replacing the indeterminates x and y by t x and t y with t > 0, both sides of the
inequality get multiplied by t).

Therefore, we may assume that x2+ y2 = 2. This is the equation of the circle on
the plane R

2 with center at the origin and radius
√

2. The tangent line to this circle
at the point (1, 1) is given by the linear equation x+ y = 2. (See Section 5.5.) Since
the circle is on one side of its tangent line, we obtain that any point P = (x, y) on
this circle, satisfying x2 + y2 = 2, also satisfies x + y ≤ 2. Equivalently, we have

√
x2 + y2

2
= 1 ⇒ x + y

2
≤ 1.

The inequality follows.



9.5 Harmonic, Geometric, Arithmetic, Quadratic Means 405

For x, y ∈ R, the quantity
√

(x2 + y2)/2 is called the Quadratic Mean (or
Root Mean Square or RMS). The inequality just derived nicely fits into the chain
of inequalities that we obtained previously for the various other means (Sections 5.4
and 9.1) as follows:

2
1
x + 1

y

≤ √xy ≤ x + y

2
≤
√

x2 + y2

2
, x, y > 0.

In words

Harmonic Mean ≤ Geometric Mean ≤ Arithmetic Mean ≤ Quadratic Mean.

The chain of inequalities above has another beautiful geometric interpretation.
(See Figure 9.1.) As before, notice that every mean of two numbers x and y is
positively homogeneous. To derive the chain of inequalities above, we can therefore
consider inclusion relations amongst the regions X = {(x, y) ∈ I | X M(x, y) ≤ 1}
on the plane, where I is the (open) first quadrant, and X M(x, y) stands for the
harmonic, geometric, arithmetic, and quadratic means of x and y. More specifically,
we see that the inequalities above are equivalent to Q ⊂ A ⊂ G ⊂ H .

Now, the defining inequality of Q is
√

(x2 + y2)/2 ≤ 1, or equivalently, x2 +
y2 ≤ 2. Restricted to the first quadrant I , Q is a quarter disk with center at the origin
and radius

√
2. In particular, the point (1, 1) is on its boundary.

Next, A is a right triangle (with right angle at the origin) since its boundary line
segment is given by the equation x + y = 2. As noted in the previous example, this
line segment is tangent to the boundary circle of Q at (1, 1) so that Q ⊂ A follows.

G is a “hyperbolic region” in the first quadrant I bounded by the branch of the
hyperbola in I given by the equation xy = 1. Our discussion of this hyperbola in

Fig. 9.1 Comparison of
Means.

( 0, √2 )

(0,1/2)

(0,2)

(1,1)

(2,0)(1/2,0) (√2, 0)

x = 1/2

x = 1/2
Q A G H
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Section 8.4 implies that the line given by the equation x + y = 2 is tangent to the
hyperbola at (1, 1), so that A ⊂ G follows.

The region H in the first quadrant I is bounded by a curve given by the equation
1/x + 1/y ≥ 2. We rewrite this as (2x − 1)(2y − 1) ≤ 1. With respect to the new
variables u = 2x − 1 and v = 2y− 1, we have uv ≤ 1. The boundary curve uv = 1
is a hyperbola with center at (0, 0) in the (u, v) variables, and therefore with center
at (1/2, 1/2) in the (x, y) variables. The asymptotes are x = 1/2 and y = 1/2. The
line x + y = 2 is a common tangent to this hyperbola and xy = 1. Clearly G ⊂ H .

The chain of inequalities for the means follows.
Returning to the main line, recall that, as a byproduct of a cubic factoring

problem, in Section 7.5 we obtained the AM-GM inequality in three indeterminates

3
√

x · y · z ≤ x + y + z

3
, x, y, z ≥ 0,

with equality if and only if x = y = z.
This indicates that the AM-GM inequality should hold for any number of

indeterminates.
The precise statement is as follows. We have

n
√

x1 · x2 · · · xn ≤ x1 + x2 + · · · + xn

n
, x1, . . . , xn ≥ 0,

and equality holds if and only if x1 = x2 = . . . = xn .
We prove the general AM-GM inequality using Peano’s Principle of Induction.
For n = 1 the AM-GM inequality is trivial. (Actually, even for n = 2, 3, we

proved the AM-GM inequality previously.)
It remains to perform the general induction step n ⇒ n+1. To do this, we assume

that the AM-GM inequality holds for n as stated above (for any x1, x2, . . . , xn ≥ 0).
We need to show that, for any x1, x2, . . . , xn, xn+1 ≥ 0, we have

x1 · x2 · · · xn · xn+1 ≤
(

x1 + x2 + · · · + xn + xn+1

n + 1

)n+1

,

with equality if and only if x1 = x2 = . . . = xn = xn+1.
Let A denote the arithmetic mean in the parentheses on the right-hand side, that is

(n + 1)A = x1 + x2 + · · · + xn + xn+1.

Without loss of generality we may assume that not all the numbers
x1, x2, . . . , xn+1 are equal since otherwise the AM-GM inequality obviously holds.
(In particular, we have A > 0.) Then one of these numbers is larger than A and one
is smaller than A. Changing the indices, we may assume xn > A and xn+1 < A.
Rearranging the defining formula for A above, we have

n A = x1 + x2 + · · · + xn−1 + (xn + xn+1 − A) = x1 + x2 + · · · + xn−1 + x∗n ,
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where

x∗n = xn + xn+1 − A ≥ xn − A > 0.

Notice the key fact that A is also the arithmetic mean of the n numbers
x1, x2, . . . , xn−1, x∗n .

We now apply the induction hypothesis, the AM-GM inequality, for these
numbers as

An+1 = An · A ≥ x1 · x2 · · · xn−1 · x∗n · A,

where we multiplied through by A. We estimate the product of the last two factors as

x∗n · A − xn · xn+1 = (xn + xn+1 − A)A − xn · xn+1 = (xn − A)(A − xn+1) > 0,

where the positivity of the factors in the last product is due to our choices of xn and
xn+1 above. Replacing x∗n · A by the smaller product xn · xn+1, we obtain

An+1 = An · A > x1 · x2 · · · xn−1 · xn · xn+1.

This is the AM-GM inequality for n + 1.
Finally, recall that we assumed that x1, x2, . . . , xn, xn+1 are not all equal and we

obtained here sharp inequality. This means that the equality case is also covered.
The proof of the general AM-GM inequality is complete.

Remark The general AM-GM inequality has another elementary proof. For com-
pleteness, we briefly outline this here as follows.

In the following x1, x2, . . . are non-negative indeterminates. For 0 ≤ x1, x2 ∈ R,
we have

x1x2 =
(

x1 + x2

2

)2

−
(

x1 − x2

2

)2

<

(
x1 + x2

2

)2

unless x1 = x2. Using this and adding 0 ≤ x3, x4 ∈ R, we have

x1x2x3x4 <

(
x1 + x2

2

)2 ( x3 + x4

2

)2

<

(
x1 + x2 + x3 + x4

4

)4

,

unless x1 = x2 = x3 = x4.
Now, for 0 ≤ x1, x2, . . . , x2m ∈ R, m ∈ N, by Peano’s Principle of Induction

x1x2 · · · x2m <

(
x1 + x2 + · · · + x2m

2m

)2m

,

unless x1 = x2 = . . . = x2m .



408 9 Rational and Algebraic Expressions and Functions

Finally, given 0 ≤ x1, . . . , xn ∈ R, n ∈ N, choose m ∈ N such that n < 2m . Let
0 ≤ x ′k = xk , k = 1, . . . , n, and 0 ≤ x ′l = A = (x1+· · ·+xn)/n, l = n+1, . . . , 2m .
With these, we have

x1 · · · xn · A2m−n = x ′1 · · · x ′2m <

(
x ′1 + · · · + x ′2m

2m

)2m

=
(

n A + (2m − n)A

2m

)2m

= A2m
,

unless x1 = x2 = . . . = xn . Simplifying, the general AM-GM inequality,
n
√

x1 · · · xn ≤ A = (x1 + · · · + xn)/n, follows.
We now briefly return to the Bernoulli inequality for rational exponents discussed

in Section 3.2. Recall that we showed there that the Bernoulli inequality for rational
exponents is equivalent to the monotonicity property of the sequence

e∗n(s) =
(

1+ s

n

)n
, n ∈ N,

given by

e∗n(s) < e∗n+1(s), 0 �= s > −n, n ∈ N.

We now show that the AM-GM-inequality actually implies both the Bernoulli
inequality for rational exponents and the monotonicity property above.

First, note that the AM-GM inequality can be interpreted as a maximum principle
for products: The product of n non-negative numbers x1, x2, . . . , xn with a given
sum is the largest if and only if x1 = x2 = · · · = xn .

With this, we show the monotonicity property above:

(
1+ s

n

)n
<

(
1+ s

n + 1

)n+1

, 0 �= s > −n, n ∈ N.

Indeed, consider n copies of the non-negative number 1 + s/n, 0 �= s > −n,
n ∈ N, and one copy of the number 1( �= 1+ s/n). These are n + 1 numbers. Their
product is the left-hand side of the inequality above. Their sum is equal to n+s+1.
Now consider n+1 copies of the non-negative number 1+s/(n+1). Their product
is the right-hand side of the inequality above. Their sum is equal to n + 1 + s. By
the maximum principle for products above, the monotonicity property follows.

Second, we derive the Bernoulli inequality with rational exponent q ∈ Q, 0 <

q < 1, from the AM-GM inequality. We let q = m/n with 0 < m < n. In the
AM-GM inequality we set x1 = . . . = xm = 1 + r , −1 < r �= 0, r ∈ R, and
xm+1 = . . . = xn = 1, and calculate

(1+ r)q = (1+ r)
m
n = n

√
(1+ r)m =

n

√
m︷ ︸︸ ︷

(1+ r) · · · (1+ r) ·
n−m︷ ︸︸ ︷

1 · · · 1

<
m(1+ r)+ (n − m)

n
= 1+ m

n
r = 1+ qr.

The Bernoulli inequality follows.
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In what follows we assemble a few examples of applications of the AM-GM
inequality in several indeterminates.

Example 9.5.3 7 Show that

n
(

n
√

n − 1
)

< Hn = 1+ 1

2
+ · · · + 1

n
, 2 ≤ n ∈ N.

This inequality is a simple application of the AM-GM inequality. We calculate

1+ Hn

n
= n + Hn

n
= (1+ 1)+ (1+ 1/2)+ (1+ 1/3)+ · · · + (1+ 1/n)

n

> n
√

(1+ 1)(1+ 1/2)(1+ 1/3) · · · (1+ 1/n)

= n
√

2 · (3/2) · (4/3) · · · (n + 1)/n = n
√

n + 1,

where we used the AM-GM inequality, and noticed that the last product is
telescopic. Moving the value of the radicand n+ 1 down by 1, the example follows.

Example 9.5.4 Find all monic polynomials p(x) all of whose coefficients are ±1
and all of whose roots are real.

We let

p(x) = xn+an−1xn−1+an−2xn−2+· · ·+a1x+a0, ai = ±1, i = 0 . . . , n−1.

Recall the estimate in Example 6.7.2

an−2 ≤ n − 1

2n
a2

n−1

which holds for any monic polynomial of degree n with real roots.
On the other hand, denoting the roots by r1, r2, . . . , rn , the Viète relations, the

AM-GM inequality, and the Newton-Girard formula p2 = s2
1 − 2s2 (Section 6.6),

imply

n
√

a2
0 = n

√
r2

1 . . . r2
n ≤

r2
1 + · · · r2

n

n
= a2

n−1 − 2an−2

n
.

Our conditions on the coefficients now give a2
n−1 = 1, so that, by the first inequality,

we have an−2 = −1. On the other hand, a2
0 = 1 so that the second inequality gives

n ≤ 3.
For n = 3, equality holds in the AM-GM inequality above. Thus, p(x) is a cubic

polynomial with r2
1 = r2

2 = r2
3 = 1; that is, the roots are ±1. A simple enumeration

7In Section 10.3 we will derive much more precise estimates for these expressions, including the
fact that both sides of this inequality grow logarithmically.
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gives two possibilities p(x) = x3 ± x2 − x ∓ 1. For n = 2 and n = 1, we obtain
p(x) = x2 ± x − 1 and p(x) = x ± 1. The example follows.

Returning to the main line, we previously augmented the AM-GM inequality
(in two indeterminates) by the harmonic and quadratic means into a chain of
inequalities. The generalization to several indeterminates x1, x2, . . . , xn > 0 is the
following:

n
1
x1
+ 1

x2
+ · · ·+ 1

xn

≤ n
√

x1 · x2 · · · xn ≤ x1+x2+ · · ·+xn

n
≤
√

x2
1+x2

2+ · · · x2
n

n

with equalities throughout if and only if x1 = x2 = . . . = xn . We call this the
general QM-AM-GM-HM inequality.

The first (new) inequality is an easy application of the general (middle) AM-GM
inequality applied to the n indeterminates

x1 · x2 · · · xn

x1
,

x1 · x2 · · · xn

x2
, . . . ,

x1 · x2 · · · xn

xn
.

The last inequality is an easy application of the Cauchy–Schwarz inequality of
Section 6.7 (applied to a1=x1, a2=x2, . . . , an=xn and b1=b2 = . . . = bn=1).

Example 9.5.5 8 When is the quadratic mean Qn , n ∈ N, of the first n natural
numbers an integer?

We have Qn =
√

(12 + 22 + · · · + n2)/n = √(n + 1)(2n + 1)/6, where we
used the formula for the sum of squares of the first n integers (before Exam-
ple 3.2.12). We write this as

6Q2
n = (n + 1)(2n + 1)

and assume, from now on, that Qn ∈ N is an integer. We first observe that n+1 and
2n+1 are relatively prime. Indeed, we have gcd(n+1, 2n+1) = gcd(n+1, n) =
gcd(1, n) = 1.

Since n + 1 and 2n + 1 have no common prime divisors, in view of the equation
above, and apart from 2 or 3, for any prime divisor of either number, the square of
this prime also divides the number. Finally, multiplying all the prime divisors of the
respective numbers to form squares, since 2n + 1 is always odd, we are left with
only two cases to consider: (I) n + 1 = 2a2, 2n + 1 = 3b2; (II) n + 1 = 6a2,
2n + 1 = b2, for some a, b ∈ N.
We can quickly rule out Case II as follows. In this case b is odd, b = 2c + 1,
c ∈ N, say. Substituting, this gives 2n + 1 = (2c + 1)2 = 4c2 + 4c + 1, and hence
n = 2c2+2c = 2(c2+c). In particular, n is even, and n+1 is odd. This contradicts
to n + 1 = 6a2. Case II is not realized.

8Inspired by a problem in the USA Mathematical Olympiad, 1986.
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Eliminating n in Case I, we obtain (2a)2 − 3 · b2 = 1. This shows that the pair
(x, y) = (2a, b) ∈ N× N satisfies Pell’s equation

x2 − 3 · y2 = 1,

with d = 3 (see Section 2.1). Since (2, 1) is obviously the fundamental solution, the
discussion in Section 2.1 gives all solutions in the form of the infinite sequence of
pairs (xk, yk) ∈ N× N, k ∈ N0, (x0, y0) = (2, 1), defined inductively by

(xk+1, yk+1) = (2xk + 3yk, xk + 2yk), k ∈ N0.

The first few terms of this sequence are9

(2, 1), (7, 4), (26, 15), (97, 56), (362, 209), (1351, 780), (5042, 2911).

Working backward to our original problem of integrality of Qn , n ∈ N, we need to
extract from this sequence the terms with even first coordinate (x = 2a). A simple
induction shows that, passing from one solution to the next, the coordinates switch
parity (even to odd, and odd to even). This shows that every even term has even first
coordinate.
Summarizing, we obtain that Qn , n ∈ N, is integral for the infinite sequence
{nk}k∈N0 , given by nk = x2

2k/2−1, k ∈ N0 (since n+1 = 2a2 = x2/2). The first few
integral quadratic means are Q1 = 1, Q337 = 195, Q65521 = 37829, Q12710881 =
7338631.

We now turn to a lesser known nonetheless important Permutation Inequality.10

Recall from Example 0.4.2 that a permutation on the set {1, 2, . . . , n}, n ∈ N, of the
first n natural numbers is a bijection σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

The permutation inequality states that for any two sets of n real numbers

x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn,

and for any permutation σ on {1, 2, . . . , n}, we have

xn y1+xn−1 y2+ · · ·+x1 yn ≤ xσ(1)y1+xσ(2)y2+ · · ·+xσ(n)yn ≤ x1 y1+x2 y2+ · · ·+xn yn .

This chain of inequalities can best be interpreted in terms of permutations on
x1, x2, . . . , xn , as follows. The permutation on the sum on the left-hand side that

9Note the continued fraction expansion
√

3 = 1 + 1
1+ 1

2+ 1
1+ 1

2+···

and its convergents 1, 2, 5/3,

7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, . . ..
10Also called Rearrangement Inequality.
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minimizes the permuted sums in the middle reverses the order: i �→ n− i + 1, i =
1, 2, . . . , n; and the permutation on the sum on the right-hand side that maximizes
the permuted sums in the middle is the identity: i �→ i , i = 1, 2, . . . , n.

Finally, if strict inequalities hold

x1 < x2 < · · · < xn and y1 < y2 < · · · < yn,

then the order reversing permutation that minimizes all the permuted sums, and the
identity permutation that maximizes all the permuted sums are both unique.

Remark As in the case of the Chebyshev sum inequality (Section 6.7), if the
inequality signs are reversed in one sequence of inequalities (x1 ≤ x2 ≤ · · · ≤ xn

or y1 ≤ y2 ≤ · · · ≤ yn), then the reverse inequality signs hold in the permutation
inequality.

Turning to the proof, once the upper bound is proved, the lower bound follows
by applying the upper bound x1 ≤ x2 ≤ · · · ≤ xn replaced by −xn ≤ −xn−1 ≤
· · · ≤ −x1. Thus, it is enough to derive the upper bound. The simplest proof is by
contradiction.

Let σ be a permutation on {1, 2, . . . , n} such that xσ(1)y1+xσ(2)y2+· · ·+xσ(n)yn

is maximal; and also assume that σ has the largest number of fixed points amongst
all maximal sums. Assume that σ is not the identity permutation.

Let 1 ≤ j < n be the first index for which σ( j) �= j . Hence, σ is the identity
permutation on {1, 2, . . . , j − 1}. (In particular, j = n cannot hold since then σ

would be the identity permutation on {1, 2, . . . , n − 1}, and therefore it would also
fix n.)
Clearly, we have j < σ( j), and there exists j < k ≤ n such that j = σ(k). With
these, we have the implications

j < σ( j) ⇒ x j ≤ xσ( j) and j < k ⇒ y j ≤ yk .

Expanding the product

0 ≤ (xσ( j) − x j )(yk − y j ),

we obtain

xσ( j)y j + x j yk ≤ x j y j + xσ( j)yk .

We now define the permutation τ on {1, 2, . . . , } as follows.
τ = σ on {1, 2, . . . , n} \ { j, k}; and τ( j) = σ(k) = j and τ(k) = σ( j).
Clearly, τ has one more fixed point, j , than σ , and, by the inequality above,

the permuted sum corresponding to τ is at least as large as that of σ . This is a
contradiction. The permutation inequality follows.

Finally, note that the last statement on sharp inequalities follows along the same
lines replacing the inequalities by sharp ones.
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Remark 1 The AM-GM inequality is a consequence of the permutation inequality.
Indeed, for 0 < x1, x2, . . . , xn ∈ R, let c = n

√
x1x2 · · · xn , and define

a1 = x1

c
, a2 = x1x2

c2 , · · · , an = x1x2 · · · xn

cn
= 1.

Finally, we let bi = 1/ai , i = 1, 2, . . . , n. We apply the permutation inequality to
the sequences a1, a2, . . . , an and b1, b2, . . . , bn . If we arrange the first sequence
in increasing order (by some permutation), then the second sequence (similarly
rearranged) will be reversely oriented. Thus, in the permutation inequality, the
opposite inequality signs hold. We obtain

n = a1b1 + a2b2 + · · · + anbn ≤ a1bn + a2b1 + · · · + anbn−1,

where we used the permutation that maps 1, 2, . . . , n to n, 1, 2, . . . , n − 1. For the
terms on the right-hand side, we have

a1bn = a1

an
= x1

c
, a2b1 = a2

a1
= x2

c
· · · anbn−1 = an

an−1
= xn

c
.

We obtain

n ≤ x1 + x2 + · · · + xn

c
.

The AM-GM inequality follows.

Remark 2 The Chebyshev sum inequality (Section 6.7) is a direct consequence of
the permutation inequality.

Indeed, let

a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn,

and use the permutation inequalities (for cyclic permutations on {1, 2, . . . , n}) as
follows:

a1b1 + a2b2 + · · · + anbn ≤ a1b1 + a2b2 + · · · + anbn

a2b1 + a3b2 + · · · + a1bn ≤ a1b1 + a2b2 + · · · + anbn

· · · · · ·
anb1 + a1b2 + · · · + an−1bn ≤ a1b1 + a2b2 + · · · + anbn .

Adding, and factoring, we obtain

(a1 + a2 + · · · + an)(b1 + b2 + · · · + bn) ≤ n(a1b1 + a2b2 + · · · + anbn).

The Chebyshev sum inequality follows.
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Example 9.5.6 11 Let (an)n∈N be real sequence of positive numbers such that

n∑
j=1

a j = a1 + · · · + an ≤ C · n2, n ∈ N,

for some constant 0 < C ∈ R. Show that

∞∑
n=1

1

an
= lim

n→∞

(
1

a1
+ · · · + 1

an

)
= ∞.

First notice that the sequence of partial sums in the limit is strictly increasing.
Therefore, it is enough to show that it is unbounded.

For k ∈ N, we have

ak+1 + · · · + a2k < a1 + · · · + a2k ≤ 4Ck2.

Moreover, the AM-(GM)-HM inequality gives

k
1

ak+1
+ · · · + 1

a2k

≤ ak+1 + · · · + a2k

k
< 4Ck.

This gives

1

4C
<

1

ak+1
+ · · · + 1

a2k

for all k ∈ N. Applying this for k = 2n , n ∈ N0, and summing up, the example
follows.

As a simple application, letting an = n, n ∈ N, we have

n∑
j=1

a j = a1 + · · · + an = 1+ · · · + n = n(n + 1)

2
≤ n2.

The divergence of the harmonic series,
∑∞

n=1 1/n = ∞, follows again.

Example 9.5.7 12 Let 0 < a, b, c ∈ R such that abc = 1. Show that

a + b + c ≤ a2 + b2 + c2.

11Inspired by a problem in the Balkan Mathematical Olympiad, 2008.
12This and several other examples can be treated in multivariate calculus as simple examples of the
Lagrange Multipliers Method.
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We make the left-hand side of the inequality homogeneous of degree 2 by
multiplying by 3

√
abc = 1. Using fractional exponents, we obtain

a4/3b1/3c1/3 + a1/3b4/3c1/3 + a1/3b1/3c4/3 ≤ a2 + b2 + c2.

Now both sides of the inequality are homogeneous of degree 2, so that it should be
valid for all a, b, c ∈ R.

We now write the right-hand side as

a2 + b2 + c2 =
(

2a2

3
+ b2

6
+ c2

6

)
+
(

a2

6
+ 2b2

3
+ c2

6

)
+
(

a2

6
+ b2

6
+ 2c2

3

)
,

and use the AM-GM inequality for each term. We have

2a2

3
+ b2

6
+ c2

6
= 1

6
(a2 + a2 + a2 + a2 + b2 + c2) ≥ 6

√
a8b2c2 = a4/3b1/3c1/3,

and analogously with the other two terms. The inequality follows.

Example 9.5.8 13 Given 0 < a, b, c ∈ R, show that

a√
a2 + 8bc

+ b√
b2 + 8ca

+ c√
c2 + 8ab

≥ 1.

We first notice that the fractions are homogeneous in (a, b, c) (of degree 0); that
is, they remain unchanged if (a, b, c) is replaced by (ka, kb, kc), k > 0.
This means that we can assume abc = 1/8, so that the inequality above reduces to

a√
a2 + 1

a

+ b√
b2 + 1

b

+ c√
c2 + 1

c

= 1√
1+ 1

a3

+ 1√
1+ 1

b3

+ 1√
1+ 1

c3

≥ 1.

By monotonicity (of the three fractions on the left-hand side), we need to show that
this holds if abc ≥ 1/8.

We now change the variables as

x = a√
a2 + 1

a

, y = b√
b2 + 1

b

, z = c√
c2 + 1

c

.

With these, we need to show

x + y + z < 1 ⇒ x2 y2z2

(1− x2)(1− y2)(1− z2)
<

1

83
,

13This is a problem by Hojoo Lee; see also the International Mathematical Olympiad, 2001.
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where we changed into the contrapositive statement. We now use the AM-GM
inequality (in eight indeterminates) as

1−x2 > (x+y+z)2−x2 = y2+z2+xy+xy+yz+yz+zx+zx ≥ 8 8
√

y2z2xyxyyzyzzxzx .

Simplifying, we obtain

1− x2 > 8x1/2 y3/4z3/4.

Applying this to the other two variables, the inequality follows.

Exercises

9.5.1. In this exercise we give a geometric interpretation of the QM-AM-GM-HM
inequality. (See Figure 9.2.) Let 0 < x, y ∈ R, and consider a line segment
[A, B] with d(A, B) = x + y and division point D ∈ [A, B] such that
d(A, D) = x and d(B, D) = y. Construct a semi-circle with diameter
[A, B] and center O = (A + B)/2, and let C be the intersection of this
semi-circle with the line through D and perpendicular to the line extension
of [A, B]. (a) Show that d(C, D) is the geometric mean of x = d(A, D)

and y = d(B, D), and explain why this gives the AM-GM inequality. (b)
Let [D, E], E ∈ [O, C], be the altitude line of the triangle
[O, C, D] from
vertex D. Show that d(C, E) is the harmonic mean of x = d(A, D) and
y = d(B, D), and explain why this gives the HM-GM inequality. (c) Let F
be the midpoint of the semi-circle (with endpoints A and B) cut out by the
radial segment perpendicular to the diameter [A, B] at the midpoint O . Show
that d(D, F) is the quadratic mean of x = d(A, D) and y = d(B, D), and
explain why this gives the QM-AM inequality.

A

F
C

E

O D B

Fig. 9.2 Geometric Interpretation of the Means.
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9.5.2. Let m, n ∈ N. Use the general AM-GM inequality to show that the minimum
of the function f (x) = xm + 1/xn , 0 < x ∈ R, is attained at x = m+n

√
n/m.

9.5.3. Derive the following relations amongst the means X M(x, y), 0 < x, y ∈ R,
where X = H, G, A, Q:

(1) AM(x, y) = QM(
√

x,
√

y)2;
(2) G M(x, y)2 = 2AM(x, y) · H M(x, y);
(3) AM(AM(x, y), G M(x, y)) = AM(

√
x,
√

y)2;
(4) G M(AM(x, y), H M(x, y)) = G M(x, y)/

√
2;

(5) QM(QM(x, y), G M(x, y)) = AM(x, y).

9.6 The Greatest Integer Function

In a few instances we previously encountered the notation [x] for the greatest integer
less than or equal to x ∈ R. The greatest integer [x] is actually an expression
depending on the indeterminate x ∈ R.

History
In his celebrated Quadratic Reciprocity Theorem Gauss introduced the square bracket notation
above for the greatest integer. For any real x one can also define the smallest integer not less than
x . This is usually called the ceiling of x denoted by )x*. Because of this duality, the Canadian
computer scientist Kenneth Iverson (1820–2004) renamed the greatest integer [x] of x as the floor
with new notation ,x-. In European textbooks one also finds the name entier which is “integer” in
French, in honor of the French mathematician Adrien-Marie Legendre (1752–1833) who used this
concept first in 1798. Finally, note that our ordinary rounding of a positive number x in everyday
life can be expressed as [x + 0.5].

We now proceed to show that [x] is not an algebraic expression.
The usual definition of a real algebraic expression is actually wider than the one

we adopted previously: An expression f (x1, . . . , xn) in n indeterminates x1, . . . , xn

is called algebraic if it satisfies an equation F( f (x1, . . . , xn), x1, . . . , xn) = 0,
where F(x0, x1, . . . , xn) is an irreducible polynomial in the n + 1 indeterminates
x0, x1, . . . , xn . This definition includes polynomials (F(x0, x1, . . . , xn) =
x0 − p(x1, . . . , xn) with p(x1, . . . , xn) a polynomial), rational expressions
(F(x0, x1, . . . , xn) = d(x1, . . . , xn) · x0 − n(x1, . . . , xn) with n(x1, . . . , xn)

/d(x1, . . . , xn) a rational expression), root expressions (F(x0, x1, . . . , xn) =
xn

0 − g(x1, . . . , xn)), etc., and, in general, any algebraic expression (constructed
from indeterminates x1, . . . , xn , and numbers under the operations of addition,
multiplication, division, and exponentiation by rational exponents).

The main difference between this and our more restrictive definition is that the
former includes roots of polynomials of degree ≥5 for which, according to Galois
theory, there is no general root formula.

Assume now that [x] is algebraic. According to this more general definition, this
means that there exists a non-zero polynomial F(x, y) such that F(x, [x]) = 0.
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Expanding F , we obtain

pn(x)[x]n + pn−1[x]n−1 + · · · + p1(x)[x] + p0(x) = 0,

where p0(x), p1(x), . . . , pn(x) are polynomials.
The principal property of the greatest integer we use here is that, for any integer

a ∈ Z, we have [x] = a if and only if a ≤ x < a + 1, x ∈ R.
Thus, for a given a ∈ Z, we have

pn(x)an + pn−1(x)an−1 + · · · + p1(x)a + p0(x) = 0,

for any x ∈ [a, a+ 1). Since the left-hand side is a polynomial in the indeterminate
x (and thereby has only finitely many roots unless identically zero), it follows that
the equation above holds for all x ∈ R (and thereby, for all a ∈ Z).

We now fix x ∈ R and consider this equation for all a ∈ Z. Since it is a
polynomial of degree ≤ n in the indeterminate a, it has finitely many roots, so
once again, this is possible only if p0(x) = p1(x) = . . . = pn(x) = 0. This is a
contradiction, and the claim follows.

We now proceed to explore the properties of the greatest integer.
Clearly, we have [[x]] = [x] and [n + x] = [x] + n for all n ∈ Z and x ∈ R.
In general, for addition, we have

[x] + [y] ≤ [x + y] ≤ [x] + [y] + 1, x, y ∈ R.

For multiplication and division, we have

[x] · [y] ≤ [x · y], 0 ≤ x, y ∈ R,

and

[ x

n

]
=
[ [x]

n

]
, n ∈ N, x ∈ R.

Example 9.6.1 For what n ∈ N is [n2/3] a prime?
By the Division Algorithm, we have n = 3q + r , r = 0, 1, 2, q, r ∈ N. For

r = 0, we have [n2/3] = [9q2/3] = 3q2. This is a prime only if q = 1, and so
n = 3. For r = 1, we have [n2/3] = [(3q + 1)2/3] = [(9q2 + 6q + 1)/3] =
3q2 + 2q = q(3q + 2). This is a prime if q = 1, and so n = 4. For r = 2, we have
[n2/3] = [(3q+2)2/3] = [(9q2+12q+4)/3] = 3q2+4q+1 = (q+1)(3q+1).
This is never a prime. Summarizing, we obtain n = 3, 4.

Example 9.6.2 14 Solve the system of equations

[x] + [y] = 1 and x · |x | + y · |y| = 1.

14This and many variants are standard problems for the greatest integer; see also The Olympiad
Corner, April, 1999.
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We proceed to find the sets of points in the plane R
2 defined by each of the

equations.
It is clear that the first equation gives a doubly infinite sequence of squares

[a, a + 1)× [1− a, 2− a), a ∈ Z.

The second equation gives the quarter unit circle in the (closed) first quadrant
I given by x2 + y2 = 1, x, y ≥ 0; a half-branch of the hyperbola in the second
quadrant II given by −x2 + y2 = 1, x ≤ 0 ≤ y; the empty set in the third quadrant
III; and a half-branch of the hyperbola given by x2 − y2 = 1, y ≤ 0 ≤ x in the
fourth quadrant IV.

Clearly, the only intersection of these two sets is (1, 0) and (0, 1).

Example 9.6.3 15 Show that, for n ∈ N, we have

[√
n +√n + 1

]
=
[√

4n + 2
]
.

For n ∈ N, squaring, we obtain

(√
n +√n + 1

)2 = 2n + 1+ 2
√

n2 + n.

Since

n2 < n2 + n < n2 + n + 1

4
=
(

n + 1

2

)2

,

we get

4n + 1 <
(√

n +√n + 1
)2

< 4n + 2.

Taking square roots, we arrive at the following

√
4n + 1 <

√
n +√n + 1 <

√
4n + 2.

This gives

[√
4n + 1

]
≤
[√

n +√n + 1
]
≤
[√

4n + 2
]
.

15This is the third (and last) in the list of Ramanujan’s Question 723, Papers 332, submitted to the
Journal of the Indian Mathematical Society 7, p. 240; 10 pp. 357–358. It was also a problem in the
William Lowell Putnam Exam, 1948. Note that Ramanujan (1887–1920) also proved that, for all

n ∈ N, we have
[ n

3

]+ [ n+2
6

]
+
[

n+4
6

]
= [ n

2

]+ [ n+3
6

]
and

[
1
2 +

√
n + 1

2

]
=
[

1
2 +

√
n + 1

4

]
.



420 9 Rational and Algebraic Expressions and Functions

We finally claim that equalities hold here. If not, then there would exist m ∈ N such
that

√
4n + 1 < m ≤ √4n + 2,

or equivalently

4n + 1 < m2 ≤ 4n + 2.

This is impossible: If m = 2k, k ∈ N, is even, then m2 = 4k2; and if m = 2k + 1,
k ∈ N, is odd, then m2 = (2k + 1)2 = 4(k2 + k)+ 1.

Example 9.6.4 16 Show that, for 0 < x ∈ R and n ∈ N, we have

n∑
k=1

[kx]
k
≤ [nx].

We use induction with respect to n ∈ N (and fixed 0 < x ∈ R). For n = 1, the
inequality is a tautology. For n = 2, the stated inequality is equivalent to 2[x] ≤
[2x], and this holds by the general estimate on the greatest integer above.

The general induction step 1, 2, . . . , n ⇒ n+ 1 is an elaborate rearrangement of
the left-hand side of the inequality as follows.

By the induction hypothesis, we have

n∑
k=1

(
k∑

l=1

[lx]
l

)
≤

n∑
k=1

[kx], k = 1, 2, . . . , n.

The double sum can be rearranged as

n∑
k=1

(
k∑

l=1

[lx]
l

)
=

n∑
k=1

(n − k + 1)
[kx]

k
= (n + 1)

n∑
k=1

[kx]
k
−

n∑
k=1

[kx]

= (n + 1)

n∑
k=1

[kx]
k
−

n∑
k=1

[(n − k + 1)x].

Returning to the induction hypothesis, we obtain

(n + 1)

n∑
k=1

[kx]
k
≤

n∑
k=1

([kx] + [(n − k + 1)x]) ≤
n∑

k=1

[(n + 1)x] = n[(n + 1)x].

Dividing and rearranging again, the inequality follows for n + 1. The induction is
complete, and the inequality follows.

16This was a problem in the USA Mathematical Olympiad, 1981.
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Example 9.6.5 Derive the Hermite identity:17

[nx] =
n−1∑
k=0

[
x + k

n

]
, n ∈ N, x ∈ R.

Let [x] = m ∈ Z. By definition, we have m ≤ x < m + 1, so that

nm ≤ nx < nm + n.

Hence, there exists a unique integer 0 ≤ j < n such that [nx] = nm + j .
Equivalently

m + j

n
≤ x < m + j + 1

n
.

We now introduce the integer variable 0 ≤ k ≤ n − 1, k ∈ N0.
First, for 0 ≤ k < n − j , we have

m + j + k

n
≤ x + k

n
< m + j + k + 1

n
.

Since ( j + k)/n < 1, this gives

m ≤ x + k

n
< m + 1,

or equivalently, [
x + k

n

]
= m = [x].

Second, for n − j ≤ k < n, we have

m + j + k

n
≤ x + k

n
< m + j + k + 1

n
.

This gives

m + 1 ≤ x + k

n
< m + 2,

or equivalently,

[
x + k

n

]
= m + 1 = [x] + 1.

17Due to the French mathematician Charles Hermite (1822–1911).
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We now calculate

n−1∑
k=0

[
x + k

n

]
=

n− j−1∑
k=0

[
x + k

n

]
+

n−1∑
k=n− j

[
x + k

n

]

= (n − j)[x] + j ([x] + 1) = n[x] + j = nm + j = [nx].

The Hermite identity follows.

Exercises

9.6.1. Find all natural numbers n ∈ N such that [n/2] + [n/3] + [n/6] = n.
9.6.2. Solve for x ∈ R:

[√[√[x]]
]
= 1.



Chapter 10
Exponential and Logarithmic Functions

“A Scottish baron has started up, his name
I cannot remember,1 but he has put forth
some wonderful mode by which all necessity
of multiplications and divisions are commuted
to mere additions and subtractions.”
Johannes Kepler, from a letter to Wilhelm Schickard,2

upon having seen a copy of Napier’s
Mirifici Logarithmorum Canonis Descriptio
(Description of the Admirable Cannon of Logarithms).

Exponential and logarithmic functions (and in general all transcendental functions)
can be analyzed by developing inequalities that compare them with polynomial and
rational functions. This method lies in the heart of calculus as advocated by Euler,
Newton, Leibniz, the Bernoulli brothers, Taylor, and others.

The most prominent applications of these inequalities are the existence and
convexity properties of the exponential and logarithmic functions. We present here
the two principal approaches, Newton’s and Euler’s, with full details. We use the
method of means (Section 3.2) to derive the power series expansion of the natural
exponential function without calculus. An optional section derives explicit formulas
for all power sums (introduced in Section 3.2) in terms of the Bernoulli numbers.
This chapter is concluded by presenting sharp estimates on the sum of reciprocals
of the first n natural numbers, and a large variety of sophisticated but lesser-known
limits involving natural exponents and logarithms.

10.1 The Natural Exponential Function According to Newton

In Section 3.2 we defined the power ar for a real base 0 < a ∈ R and real exponent
r ∈ R. We now study the resulting exponential function y = ax with domain
variable x ∈ R.

1John Napier of Merchiston (1550–1617).
2In 1617, the year of Napier’s death.
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In this chapter we begin to pursue Newton’s circuitous path to real exponentiation
by introducing first the natural exponential function y = ex . We will follow this in
later sections by taking the inverse, the natural logarithm y = ln(x), and, finally, the
general exponential function y = ax with an arbitrary (positive) base a along with
its inverse, y = loga(x).

Recall from Example 7.1.1 the polynomials

en(x) = 1+ x

1! +
x2

2! + · · · +
xn

n! , x ∈ R, n ∈ N,

with e0(x) = 1. Clearly, en(x) has degree n (in the indeterminate x ∈ R), and
(rapidly decreasing) positive leading coefficient 1/n!.

We first assume x > 0. Since

en(x) = 1+ x

1! +
x2

2! + · · · +
xn−1

(n − 1)! +
xn

n! = en−1(x)+ xn

n! ,

we have

en(x)− en−1(x) = xn

n! > 0, n ∈ N.

Thus, the sequence (e1(x), e2(x), . . . , en(x), . . .) is strictly increasing.
Keeping x > 0 fixed, we are interested in the growth rate of the leading term

xn/n! of en(x) as n→∞.
Let m ∈ N be a natural number such that x < m. For n ≥ m, we have

n! = (m − 1)! ·
n−m+1 factors︷ ︸︸ ︷

m(m + 1)(m + 2) · · · n ≥ (m − 1)! · mn−m+1,

where in the middle product we replaced each factor m + 1, m + 2, . . . , n by m.
Using this, for n ≥ m, we estimate

xn

n! ≤
xn

(m − 1)! · mn−m+1 =
mm−1

(m − 1)!
xn

mn
= mm−1

(m − 1)!
( x

m

)n
, 0 < x < m.

We see that, for n ≥ m, up to the constant multiple mm−1/(m − 1)!, the final upper
estimate is the general member of the geometric sequence with quotient 0 < x/m <

1. Adding up, for n ≥ m, we arrive at the estimate

en(x) = em−1(x)+ xm

m! +
xm+1

(m + 1)! + · · · +
xn

n!

≤ em−1(x)+ mm−1

(m − 1)!
(( x

m

)m +
( x

m

)m+1 + · · · +
( x

m

)n
)

= em−1(x)+ xm

m!
(

1+ x

m
+
( x

m

)2 + · · · +
( x

m

)n−m
)

, 0 < x < m.
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In the last parentheses we have a finite geometric series with quotient 0 < x/m < 1.
Replacing it with the infinite geometric series, and applying the Infinite Geometric
Series Formula, we obtain

en(x) ≤ em−1(x)+ xm

m!
(

1+ x

m
+
( x

m

)2 + · · ·
)

= em−1(x)+ xm

m!
1

1− x/m
= em−1(x)+ xm

(m − 1)!
1

m − x
, 0 < x < m.

Since the upper bound is independent from n ≥ m, we conclude that the sequence
(e1(x), e2(x), . . . , en(x), . . .) is bounded above. Since this sequence is strictly
increasing, by the Monotone Convergence Theorem, the limit limn→∞ en(x) exists.
We denote this limit by

exp(x) =
∞∑

n=0

xn

n! = 1+ x

1! +
x2

2! + · · · +
xn

n! + · · · , x > 0.

Note that exp(x) > 1, x > 0.

History
We will see below that this is the expansion of the natural exponential function y = ex into
an infinite series. This approach is due to Newton in his De analysi per aequationes numero
terminorum infinitas written in 1665. The notation exp(x) for ex is widespread especially for in-
line formulas with complex arguments x , and in generalizations of the exponential function in
more general settings.

For future applications, we record here that, as a byproduct of our previous
computations, we have the following lower and upper estimates

em(x) < exp(x) ≤ em−1(x)+ xm

(m − 1)!
1

m − x
, 0 < x < m, m ∈ N.

Now that exp(x) is defined for all x > 0 we claim that the following fundamental
property holds:

exp(x + y) = exp(x) · exp(y), x, y > 0.

To show this, we consider the general term of the series exp(x + y) (on the left-
hand side):

(x + y)n

n! .

We expand this using the general Binomial Formula (as in Section 6.3). We
obtain

(x + y)n

n! =
(n

0

)
xn + (n1)xn−1 y + · · · + (nk)xn−k yk + · · · + ( n

n−1

)
xyn−1 + (nn)yn

n! ,
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with the binomial coefficients(
n

k

)
= n!

k!(n − k)! , k = 0, 1, 2, . . . , n.

Note that we have
(n

0

) = (nn) = 1,
(n

1

) = ( n
n−1

) = n, etc., but we kept the binomial
coefficients for uniformity. The general term in this binomial expansion is

1

n!
(

n

k

)
xn−k yk = 1

n!
n!

k!(n − k)! x
n−k yk = xn−k

(n − k)!
yk

k! , k = 0, 1, 2, . . . , n.

Substituting this into our binomial expansion, we obtain

(x + y)n

n! = xn

n! +
xn−1

(n − 1)!
y

1! + · · · +
xn−k

(n − k)!
yk

k! + · · · +
x

1!
yn−1

(n − 1)! +
yn

n! .

The right-hand side here patterns precisely the Cauchy Product Rule for the degree
n term in the polynomial product en(x) · en(y). (See Section 6.2.) Since in our
original infinite series n is unbounded, the fundamental property follows.

We now relax the condition on positivity of the indeterminate x . In fact, our
definition of exp(x) immediately implies that exp(0) = 1, and, for consistency of
the fundamental property we just derived, for x < 0, we must define

exp(x) = 1

exp(−x)
.

Note that this implies that 0 < exp(x) < 1 for x < 0.
A quick check of the previous computation leading to the fundamental property

shows that we have not used any sign restrictions on the indeterminates. Therefore,
in general, we have

exp(x + y) = exp(x) · exp(y), x, y ∈ R.

(In particular, we may also keep the original definition of en(x) as a degree n
polynomial for all negative values of x .)
For m = 1 (e1(x) = x + 1), our upper and lower estimates above give

(0 ≤)x ≤ exp(x)− 1 ≤ x

1− x
, 0 ≤ x < 1.

In particular, for any real null-sequence (rn)n∈N with 0 ≤ rn ∈ R, n ∈ N, we have

0 = lim
n→∞ rn ≤ lim

n→∞ (exp(rr )− 1) ≤ lim
n→∞

rn

1− rn
= 0.

Thus, we obtain

lim
n→∞ exp(rn) = 1.

Since exp(−x) = 1/ exp(x), this holds for any real null-sequence (rn)n∈N.
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Finally, if (rn)n∈N is any convergent real sequence with limn→∞ rn = r ∈ R,
then we have

lim
n→∞ exp(rn) = lim

n→∞ exp((rn − r)+ r) = exp(r) lim
n→∞ exp(rn − r) = exp(r).

According to the corollary to Proposition 4.1.1, this proves continuity of the
function exp : R→ R.

We define the natural exponential base as e = exp(1); that is, we set

e = 1+ 1

1! +
1

2! + · · · +
1

n! + · · ·

Using our estimates for exp(x), for m = 2, we have

e2(x) = 1+ x + x2

2
< exp(x) ≤ e1(x)+ x2

1!
1

2− x
= 1+ x + x2

2− x

= 2+ x

2− x
, 0 < x < 2.

Substituting x = 1, we obtain 5/2 < e < 3. Refining our estimates, in the next step,
for m = 3, we have

1+ 1

1! +
1

2! +
1

3! < e < 1+ 1

1! +
1

2! +
13

2!
1

3− 1
.

This gives 8/3 < e < 11/4. Continuing this way, approximations of e up to any
number of digits can be obtained; here are the first fifty:

2.7182818284590452353602874713526624977572470936999 . . .

History
In 1873 Hermite proved that e is a transcendental number; that is, e is not a root of any
polynomial with rational coefficients. The weaker statement of irrationality of e is much simpler
and can be proved using basic calculus.3 Hermite’s proof was considerably simplified by Hilbert
in 1902.

Using the fundamental property of exp(x) repeatedly, for n ∈ N, we obtain

exp(n) = exp(

n︷ ︸︸ ︷
1+ 1+ · · · + 1) = exp(1) · exp(1) · · · exp(1) = e · e · · · e = en,

where each factor is repeated n times. Moreover, we have exp(−n) = 1/ exp(n) =
1/en = e−n , n ∈ N. Thus, for all integer values, we have en = exp(n), n ∈ Z.

3For two different proofs, see the author’s Glimpses of Algebra and Geometry, 2nd ed. Springer,
New York, 2002.
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We claim that this formula extends to all rational numbers. We first calculate

e = exp(1) = exp

(
n · 1

n

)
= exp

( n︷ ︸︸ ︷
1

n
+ 1

n
+ · · · + 1

n

)
= exp

(
1

n

)n

.

Since exp(1/n) > 0, this means that exp(1/n) = e1/n = n
√

e. Finally, for m ∈ N,
we have

exp
(m

n

)
= exp

( m︷ ︸︸ ︷
1

n
+ · · · + 1

n

)
= exp

(
1

n

)m

= e
m
n = ( n

√
e)m .

Extending this to negative fractions m/n in a straightforward way, we obtain

eq = exp(q), q ∈ Q.

Recall now from Section 3.2 sequential continuity of the exponentiation; that is,
for any convergent rational sequence (qn)n∈N with limn→∞ qn = r , we have

lim
n→∞ eqn = er .

Since exp is also sequentially continuous, and ex and exp(x) are equal for x ∈ Q,
we obtain that, for any real number x , we have

ex = exp(x), x ∈ R.

With this, the fundamental relation takes the familiar form

ex+y = ex · ey, x, y ∈ R.

We will use the notation exp : R → R for the function y = ex , x ∈ R, and call it
the natural exponential function.

A few properties of the natural exponential function exp are obvious. Its domain
is the set of all real numbers R, it is strictly increasing, and its range is (0,∞), the
set of all positive real numbers. Since limx→∞ ex = ∞, we have limx→−∞ ex =
limx→∞ e−x = 0, so that the negative first axis is a horizontal asymptote.

Some of the analytical properties of the natural exponential function follow
directly from the definition. For x ≥ 0, we automatically have

en(x) = 1+ x

1! +
x2

2! + · · · +
xn

n! ≤ ex , n ∈ N.

More explicitly, we have the lower estimates

1+ x ≤ ex , 1+ x + x2

2
≤ ex , 1+ x + x2

2
+ x3

6
≤ ex , x ≥ 0, etc.
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The lower estimates above show, in particular, that there is no polynomial upper
estimate for ex valid for all x ≥ 0. Indeed, by the above, we have

xn+1

(n + 1)! ≤ ex , x ≥ 0,

so that

lim
x→∞

ex

xn
= ∞.

On the other hand, for a bounded range of the variable, we derived the rational
upper estimates

ex ≤ 1+ x

1! +
x2

2! + · · · +
xn−1

(n − 1)! +
xn

(n − 1)!
1

n − x
, 0 < x < n, n ∈ N.

More explicitly, we have the upper estimates

ex ≤ 1+ x

1− x
= 1

1− x
, 0 < x < 1,

ex ≤ 1+ x + x2

2− x
= 2+ x

2− x
, 0 < x < 2,

ex ≤ 1+ x + x2

2
+ x3

2(3− x)
= 6+ 4x + x2

2(3− x)
, 0 < x < 3, etc.

Replacing x by −x in the lower estimates, and taking reciprocals, we obtain

ex ≤ 1

1− x
, ex ≤ 1

1− x + x2/2
, ex ≤ 1

1− x + x2/2− x3/6
, x ≤ 0, etc.

With the first upper estimate above, we arrive at

ex ≤ 1

1− x
, x < 1.

For the corresponding lower estimate, we have

1+ x ≤ ex , x ∈ R.

Indeed, for x ≥ 0, this is the first lower estimate; for −1 < x < 0, this is the
consequence of the first upper estimate (with x replaced by −x); and, for x ≤ −1,
this is automatic since 1+ x ≤ 0.

We combine these two estimates to arrive at the fundamental estimate of the
natural exponential function
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Fig. 10.1 Fundamental
estimate of the natural
exponential function.

(-1,0)

(0,1)

(1,0)

y = x +1

(0,0)

y = 1
1-x y = ex

x ≤ ex − 1 ≤ x

1− x
, x < 1.

(See Figure 10.1.)
As an illustration, we now discuss the following example due to Jacob Steiner

(1796–1863).

Example 10.1.1 For x > 0, the expression
x√

x takes its maximum at x = e.
To show this we apply the previous lower bound for the natural exponential

function for the number (x − e)/e. We have

x

e
= 1+ x − e

e
≤ e(x−e)/e = ex/e

e

with equality if and only if x = e. After canceling e, we obtain x ≤ ex/e. Raising
both sides to the 1/x power, we have

x√
x = x1/x ≤ (ex/e)1/x = e1/e = e√

e.

The example follows.

Returning to the main line, we now claim that the derivative of exp at 0 is

exp′(0) = lim
x→0

ex − 1

x
= 1.

Indeed, for 0 < x < 1, the fundamental estimate above gives

1 ≤ ex − 1

x
≤ 1

1− x
, 0 < x < 1.
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This gives the estimate for the right-limit:

1 ≤ lim
x→0+

ex − 1

x
≤ lim

x→0+
1

1− x
= 1,

and we arrive at the right-derivative

exp′+(0) = lim
x→0+

ex − 1

x
= 1.

Similarly, for x < 0 we get

1 ≥ ex − 1

x
≥ 1

1− x
, x < 0,

giving the left-derivative

exp′−(0) = lim
x→0−

ex − 1

x
= 1,

the claim follows.
Finally, for any c ∈ R, we have

exp′(c) = lim
x→c

ex − ec

x − c
= lim

x→c

ex−cec − ec

x − c
= ec lim

x→c

ex−c − 1

x − c
= ec,

where, in the last equality, we used the previous limit.
We obtain that the natural exponential function is differentiable (at any point),

and we have

exp′(c) = exp(c), c ∈ R.

Let 0 < x ∈ R and n ∈ N. We wish to calculate the mean (see Section 3.2)
of the exponential function exp corresponding to the (equidistant) subdivision 0 =
x0 < x1 < · · · < xn−1 < xn = x of the interval [0, x], xk = kx/n, k = 0, 1, . . . , n.

We have

Aexp(n, x) = 1

n

n∑
k=1

ek·x/n = 1

n

n∑
k=1

(
ex/n)k

= ex/n

n

(
1+ ex/n + (ex/n)2 + · · · + (ex/n)n−1

)

= ex/n

n
·
(
ex/n

)n − 1

ex/n − 1
= (ex − 1) · ex/n/n

ex/n − 1
,
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where we used the Finite Geometric Series formula. Taking the limit, we calculate

Aexp(x) = (ex − 1) lim
n→∞

ex/n/n

ex/n − 1
= ex − 1

x
lim

n→∞ ex/n · x/n

ex/n − 1

= ex − 1

x
lim
h→0

h

eh − 1
= ex − 1

x

1

exp′(0)
= ex − 1

x
.

Remark 1 The reader versed in calculus will no doubt recognize the Riemann sum
and Riemann integral above

∫ x

0
et dt = lim

n→∞

n∑
k=1

ek·x/n · x

n
= x ·Aexp(x) = ex − 1.

Remark 2 To complete the circle, for n ∈ N0, the inequalities

en(x) = 1+ x

1! +
x2

2! + · · · +
xn

n! ≤ ex , 0 ≤ x ∈ R

can be derived by induction from the obvious (n = 0) inequality 1 ≤ ex , 0 ≤
x ∈ R, by repeated application of the mean above. For the general induction step
n ⇒ n + 1, we assume en(x) ≤ ex , 0 ≤ x ∈ R, use linearity and monotonicity of
the mean, and calculate

Aen (x) =
n∑

k=0

Apk (x)

k! =
n∑

k=0

xk

k! · (k + 1)
=

n∑
k=0

xk

(k + 1)! ≤ Aexp(x) = ex − 1

x
.

We used here Apk (x) = xk/(k + 1), k ∈ N0, as was shown in Section 3.2.
Rearranging, we obtain en+1(x) ≤ ex , 0 ≤ x ∈ R. The induction is complete,
and the claim follows.

Returning to the main line, the calculation above for the mean of exp can be
repeated almost verbatim for the reciprocal 1/ exp by replacing 0 < x ∈ R with the
opposite −x < 0 as follows

A1/ exp(n, x) = 1− e−x

x
· x/n

ex/n − 1
, 0 < x ∈ R,

and the limit

A1/ exp(x) = 1− e−x

x
, 0 < x ∈ R.

We now claim that the following estimate holds

1− x

1! +
x2

2! − · · · −
x2n−1

(2n − 1)! < e−x < 1− x

1! +
x2

2! − · · · +
x2n

(2n)! , 0 < x ∈ R.
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The proof is by induction carried out by repeated application of the mean
(compare with Remark 2 above), using its linearity and monotonicity for the
respective functions over the interval [0, x], 0 < x ∈ R, and finally, using the
formula Apk (x) = xk/(k + 1), 0 < x ∈ R, for the mean of the power function
pk(x) = xk , x ∈ R, derived at the end of Section 3.2.

We begin with the obvious inequality

e−x < 1, 0 < x ∈ R.

Applying the mean of both sides, we obtain

1− e−x

x
< 1,

or equivalently 1 − x < e−x , 0 < x ∈ R. Applying the mean of both sides again,
we obtain

1− x

2
<

1− e−x

x
,

or equivalently

e−x < 1− x + x2

2
, 0 < x ∈ R.

These complete the initial step in the induction.
To perform the general induction step n ⇒ n + 1, we assume that the chain of

inequalities as above hold. We take the mean of all functions as follows

1− x

2! +
x2

3! − · · · −
x2n−1

(2n)! <
1− e−x

x
< 1− x

2! +
x2

3! − · · · +
x2n

(2n + 1)! .

Rearranging, we obtain the first of the chain of inequalities for n + 1. Repeating
this, the second inequality also follows. The induction is complete and the formula
follows.

The chain of inequalities just derived gives
∣∣∣∣e−x −

(
1− x

1! +
x2

2! − · · · −
x2n−1

(2n − 1)!
)∣∣∣∣ < x2n

(2n)! , 0 < x ∈ R.

Since

lim
n→∞

xn

n! = 0, x ∈ R,

this shows that, for all 0 < x ∈ R, we have

e−x =
∞∑

n=0

(−1)n xn

n! .
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Combining this with our previous expansion for 0 < x ∈ R, we obtain

ex =
∞∑

n=0

xn

n! , x ∈ R.

Example 10.1.2 4 Find a rational number that approximates 1/
√

e up to 10 decimal
precision.

Since 1/
√

e = e−1/2, by the estimate above, we need to find n ∈ N such that

(1/2)2n

(2n)! ≤ 10−10,

or equivalently 1010 ≤ 22n · (2n)!. Simple computation shows that n = 6 is the
minimal value:

10, 000, 000, 000 < 212 · (12)! = 1, 961, 990, 553, 600.

The approximating rational numbers is

11∑
n=0

(−1)n (1/2)n

n! = 49583642701

81749606400

= 0.6065306597121426629890171556838223504890.

Exercises

10.1.1. Derive the estimate

en(1) < e < en(1)+ 1

n · n! , n ∈ N.

Use this to obtain approximations of e for n = 1, 2, 3, 4.
10.1.2. Derive the inequality

enx + n(1− ex ) ≥ 1, x ∈ R, n ∈ Z.

10.1.3. Prove the following:

n∑
k=1

k

(k + 1)! =
1

2! +
2

3! + · · · +
n

(n + 1)! = 1− 1

(n + 1)! , n ∈ N.

4This example needs a computer algebra system.



10.2 The Bernoulli Numbers∗ 435

10.1.4. Let Pn , n ∈ N, be the probability that a permutation on an n element set is
a derangement. Show that limn→∞ Pn = 1/e.

10.2 The Bernoulli Numbers∗

In this section we return to the problem of the pth power sum

sp(n) =
n−1∑
k=1

k p = 1p + 2p + · · · + (n − 1)p, p ∈ N0, 2 ≤ n ∈ N,

and show that it is a polynomial of degree n + 1 (Section 3.2). The so-called
Bernoulli numbers Bk , k ∈ N0, will appear naturally in the coefficients of this
polynomial.

The main idea is to expand the exponential function into power series, and use
the exponential identities along with the Finite Geometric Series Formula to obtain
an expression for sp(n), p ∈ N0. This will then lead to a natural introduction to the
Bernoulli numbers through a generating function.

We start with the power series expansions

ekx=
∞∑

p=0

k p x p

p! =1+k
x

1!+k2 x2

2! + · · · + k p x p

p! + · · · , k=0, 1, . . . , n − 1, 2 ≤ n ∈ N.

We sum up these with respect to k = 0, 1, . . . , n − 1 and obtain

n−1∑
k=0

ekx = 1+
n−1∑
k=1

∞∑
p=0

k p x p

p! = 1+
∞∑

p=0

(
n−1∑
k=1

k p

)
x p

p! = 1+
∞∑

p=0

sp(n)
x p

p! .

On the other hand, the exponential sum on the left-hand side can be evaluated by
the Finite Geometric Series Formula as follows

n−1∑
k=0

ekx =
n−1∑
k=0

(
ex)k = enx − 1

ex − 1
.

We write the last fraction as

enx − 1

ex − 1
= enx − 1

x

x

ex − 1
.

The first factor on the right-hand side has the power series expansion

enx − 1

x
=
∞∑

l=1

nl xl−1

l! .



436 10 Exponential and Logarithmic Functions

Now, the crux is to expand the second fraction x/(ex − 1) on the right-hand side
into a power series

x

ex − 1
=
∞∑

k=0

Bk
xk

k! ,

with coefficients Bk , k ∈ N0, the Bernoulli numbers, to be determined.

Remark Note that in all our manipulations we use the power series formally, that is,
disregarding convergence. In the previous section we concluded, however, that the
singularity of the fraction (ex − 1)/x at x = 0 is removable with exp′(0) = 1, and
its power series expansion is convergent for all x ∈ R. Therefore, the power series
expansion of the reciprocal function x/(ex − 1) is also convergent for all x ∈ R.

Putting everything together, we obtain

1+
∞∑

p=0

sp(n)
x p

p! =
∞∑

l=1

nl xl−1

l! ·
∞∑

k=0

Bk
xk

k! .

We now compare coefficients. The constant terms (p = 0, l = 1, k = 0) give
1+ s0(n) = 1+ (n − 1) = n = nB0, that is, we have B0 = 1.

For p ∈ N, the coefficients of the pth power (p = l + k − 1) give

sp(n)

p! =
p∑

k=0

Bk

(p − k + 1)!k!n
p−k+1.

Multiplying through by p! and converting the factorials to binomial coefficients, we
obtain

sp(n) = 1

p + 1

p∑
k=0

(
p + 1

k

)
Bkn p−k+1, p ∈ N.

This proves that the power sum sp(n) = 1p + 22 + · · · + (n − 1)p is a polynomial
of degree p + 1.

To obtain an inductive formula for the Bernoulli numbers we return to their
definition as the coefficients in the power series expansion of the fraction x/(ex−1).
Multiplying out by the denominator, we have

x =
∞∑

l=1

xl

l!
∞∑

k=0

Bk
xk

k! .

The coefficients of the linear term once again give B0 = 1. For m ∈ N, the
coefficients of the xm+1 term on the right-hand side are obtained by setting l + k =
m + 1, k = 0, 1, . . . , m, and multiplying the respective terms of the two sums. We
obtain
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m∑
k=0

Bk

k!(m − k + 1)! = 0.

Multiplying through by (m + 1)! allows to convert the factorials into binomials. We
write the resulting equality as

Bm = − 1

m + 1

m−1∑
k=0

(
m + 1

k

)
Bk, m ∈ N.

Starting with B0 = 1, this equation determines the entire sequence (Bk)k∈N0

inductively.
Note that, as a byproduct, it follows that all Bernoulli numbers are rational.
Another simple fact is that, with the exception of B1 = −1/2, the odd Bernoulli

numbers B2k+1 are zero for k ∈ N. Indeed, this follows from the fact that the
function x/(ex − 1)+ x/2 is even:

−x

e−x − 1
− x

2
= xex

ex − 1
− x

2
= x

ex − 1
+ x

2
.

The first few Bernoulli numbers are tabulated as follows:

k Bk k Bk

0 1 12 −691/2730
1 −1/2 14 7/6
2 1/6 16 −3617/510
4 −1/30 18 43867/798
6 1/42 20 −174611/330
8 −1/30 22 854513/138
10 5/66 24 −236364091/2730

Calculating the respective binomial coefficients, these give

s1(n) = 1

2
n2 − 1

2
n

s2(n) = 1

3
n3 − 1

2
n2 + 1

6
n

s3(n) = 1

4
n4 − 1

2
n3 + 1

4
n2

s4(n) = 1

5
n5 − 1

2
n4 + 1

3
n3 − 1

30
n

s5(n) = 1

6
n6 − 1

2
n5 + 5

12
n4 +− 1

12
n2
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s6(n) = 1

7
n7 − 1

2
n6 + 1

2
n5 − 1

6
n3 + 1

42
n

s7(n) = 1

8
n8 − 1

2
n7 + 7

12
n6 − 7

24
n4 + 1

12
n2

s8(n) = 1

9
n9 − 1

2
n8 + 2

3
n7 − 7

15
n5 + 2

9
n3 − 1

30
n

s9(n) = 1

10
n10 − 1

2
n9 + 3

4
n8 − 7

10
n6 + 1

2
n4 − 3

20
n2

s10(n) = 1

11
n11 − 1

2
n10 + 5

6
n9 − n7 + n5 − 1

2
n3 + 5

66
n

s11(n) = 1

12
n12 − 1

2
n11 + 11

12
n10 − 11

8
n8 + 11

6
n6 − 11

8
n4 + 5

12
n2

s12(n) = 1

13
n13 − 1

2
n12 + n11 − 11

6
n9 + 22

7
n7 − 33

10
n5 + 5

3
n3 − 691

2730
n.

History
Most likely it was the English mathematician and astronomer Thomas Harriot (1560–1621) who
first developed symbolic formulas for sums of powers, but he did so only up to the fourth powers.
In his Academia Algebrae published in 1631, the German mathematician Johann Faulhaber (1580–
1635) derived these formulas up to the seventeenth power but he did not obtain a general pattern.
Finally, Jakob Bernoulli realized that a uniform formula can be obtained by introducing a single
sequence of numbers (Bk)k∈N0 , and the latter therefore was named after him. We quote here his
well-known comment upon the moment of discovery as follows: “With the help of this table, it
took me less than half of a quarter of an hour to find that the tenth powers of the first 1000 numbers
being added together5 will yield the sum 91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.”

Exercise

10.2.1. Define the Bernoulli polynomials Bn(y), n ∈ N, by

Bn(y) =
n∑

k=0

(
n

k

)
Bk yn−k .

Use the Cauchy product rule to derive the formula

xexy

ex − 1
=
∞∑

k=0

Bk(y)xk

k! .

Show the following: (a) B0(y) = 1; for n ∈ N (b) Bn(0) = Bn ; (c) B ′n(y) =
nB ′n−1(y).

5This is our s10(1001).
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10.3 The Natural Logarithm

By the results of Section 10.1, the natural exponential function exp : R → R

is strictly increasing onto its range (0,∞). Therefore its inverse, the natural
logarithm function ln : (0,∞) → R is well-defined, strictly increasing, and has
range R. In addition, the negative second axis is the vertical asymptote of the graph.
Clearly, we have limx→0+ ln(x) = −∞ and limx→∞ ln(x) = ∞.

By the definition of the inverse, we have

eln(x) = x, x > 0,

and

ln(ex ) = x, x ∈ R.

In particular, we have

ln(1) = ln(e0) = 0 and ln(e) = ln(e1) = 1.

By definition, both the natural exponential and the natural logarithm functions
are one-to-one; that is, they satisfy the property: ex = ey if and only if x = y, and
ln(x) = ln(y) if and only if x = y.

History
In 1899 the British physicist Ernest Rutherford (1871–1937) discovered that thorium, a naturally
occurring radioactive chemical element, while spontaneously emanating a radioactive gas, decays
into half of its size in the same fixed time, the so-called half-life τ(≈ 11.5 minutes), regardless
the original amount.
If Q(t) is the amount of thorium at time t ≥ 0, with Q0 = Q(0), the original amount, then this
observation gives Q(τ ) = Q0/2, Q(2τ) = Q0/4, Q(3τ) = Q0/8, etc. By a simple induction, we
thus have Q(nτ) = Q0/2n = Q0 ·2−n , n ∈ N. Changing to a real variable t ≥ 0 (with the discrete
values corresponding to t = nτ ), we obtain Q(t) = Q0 · 2−t/τ = Q0 · e−t ·ln(2)/τ , t ≥ 0. We write
this as Q(t) = Q0 · e−λ·t , t ≥ 0, where the half-life τ and the exponential decay constant λ are
related by τ · λ = ln(2).
All living organisms, through consumption, contain non-radioactive carbon C12 and a tiny amount
of the radioactive isotope C14. The ratio of the amounts of C14 and C12 is approximately 10−12.
When the organism dies, C14 is no longer replenished and follows exponential decay while C12,
being non-radioactive, stays constant. The half-life of C14 is approximately 5, 730 years.
Measuring the ratio of the amounts of C14 and C12 in an organism dead for a long time, one can
calculate the approximate time when the organism lived. This is carbon dating, invented by the
American chemist and Nobel laureate Willard Libby (1908–1980).
As a famous example, the Tollund man, the naturally mummified corpse of an executed man buried
in a Danish bog, had 75.7% of the atmospheric ratio of C12 and C14. Carbon dating tells the
approximate age of the Tollund man as follows. Let λ be the exponential decay constant of C14. We
have λ = ln(2)/τ = ln(2)/5730 = 0.00012096 . . .. Hence, we have 0.757 = e−0.00012096·t . This
finally gives t = − ln(0.757)/0.00012096 ≈ 2300 years. Note that, due to errors in measuring the
amount of C14, this calculation has an error of about ±40 years.
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The natural logarithm satisfies the following identities:

ln(x · y) = ln(x)+ ln(y) and ln

(
x

y

)
= ln(x)− ln(y), x, y > 0.

Indeed, we have

eln(x ·y) = x · y = eln(x) · eln(y) = eln(x)+ln(y), x, y > 0.

Taking the natural logarithm of both sides, the first identity follows. The proof of
the second identity is similar.

Remark A simple induction gives the following extension of the first of the two
identities above:

ln(xn) = ln(

n︷ ︸︸ ︷
x · x · · · x) =

n︷ ︸︸ ︷
ln(x)+ ln(x)+ · · · + ln(x) = n ln(x), n ∈ N.

History
Hailed by Pierre Simon Laplace (1749–1827) as an “admirable artifice which, by reducing to a few
days the labour of many months, doubles the life of the astronomer,” the logarithm was invented
in 1614 by John Napier. (See also the epitaph of this chapter.) His “method of logarithms,” and the
logarithmic tables, the first of which was published three years later by Henry Briggs (1561–1630),
was designed to reduce massive computations, especially in astronomy.

We now return to the main line and derive another characterization of the natural
logarithm, due to Euler6 as follows:

Example 10.3.1 Show that limn→∞ n · ( n
√

x − 1) = ln x , 0 < x ∈ R.
We may assume x �= 1, since otherwise both sides of the equality are zero. The

crux is to rewrite the limit in terms of the new variable h = ln(x)/n as follows:

1

ln x
lim

n→∞ n · ( n
√

x − 1) = lim
n→∞

eln x/n − 1

ln x/n
= lim

h→0

eh − 1

h
= exp′(0) = e0 = 1.

The example follows.

In Section 10.1 we showed that the derivative of the natural exponential function
exp at c is equal to exp′(c) = exp(c) = ec. The derivative is the slope of the
tangent line to the graph G(exp) at (c, ec). Now, the graph of the inverse, the natural
logarithm function ln, is obtained by reflecting the graph G(exp) to the line given
by y = x . Upon reflection, the first and second coordinates interchange, and tangent
lines of one graph map to tangent lines of the other. In particular, the slope of the
reflected tangent line is the reciprocal of the slope of the original tangent line.
We see that the slope of the (reflected) tangent line to the graph G(ln) at (ec, c) is

6See also History in Section 10.5.
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1/ec. Reverting to the first coordinates, we obtain that the derivative of the natural
logarithm function ln at c is 1/c:

ln′(c) = 1

c
, 0 < c ∈ R.

The next example is a generalization of Example 2.1.4.

Example 10.3.2 Let e ≤ b < c. Show that bc > cb.
To compare bc ≷ cb is the same as to compare their natural logarithms c ln b ≷

b ln c. This, in turn, amounts to compare ln b/b ≷ ln c/c.
The crux in this example is to show that the function f (x) = ln x/x , 0 < x ∈ R,
is strictly decreasing for e ≤ x ∈ R. This will give ln b/b > ln c/c, resulting in
bc > cb.
For the claimed monotonicity, we first show that f has no critical points on (e,∞).
Clearly, f is differentiable on its domain (0,∞). The derivative can be obtained by
the differentiation formula for the quotient (Section 4.3) as follows

f ′(c) = (1/c) · c − ln c

c2
= 1− ln c

c2
, 0 < c ∈ R,

where we used our result ln′(c) = 1/c, 0 < c ∈ R, above. This shows that f has
only one critical point at c = e.

As a consequence of the Fermat Principle in Section 4.3, f must be injective on
(e,∞), and, being continuous, it must be strictly monotonic. On the other hand, we
have

lim
x→∞ f (x) = lim

x→∞
ln x

x
= lim

u→∞
u

eu
= 0.

It follows that f must be strictly decreasing on [e,∞). The example follows.

Remark 1 As a particular case of the example above, we have mn > nm , 3 ≤ m <

n, m, n ∈ N. (This is clearly equivalent to the fact that the sequence ( n
√

n)n∈N is
strictly decreasing for 3 ≤ n ∈ N, already shown in Example 3.2.8.)
For what distinct natural numbers m, n ∈ N do we have equality7 mn = nm?
Assuming 1 ≤ m < n, by the above, this can (possibly) happen only for m = 2.
(Clearly, m = 1 does not compete.) But, by Example 2.1.3, we have 2n > n2,
5 ≤ n ∈ N. This leaves us n = 3, 4. Since 8 = 23 < 32 = 9, we finally end up with
n = 4, where 24 = 42. Summarizing, the only pair (m, n) ∈ N × N, m < n, for
which mn = nm is (2, 4).

Remark 2 As an application, and as a glimpse to integral calculus, we now calculate
a (left-)Riemann sum of the function f (x) = 1/x , 0 �= x ∈ R over the interval
[1, a], 1 < a ∈ R. We let the subdivision 1 = x0 < x1 < . . . < xn−1 < xn = a
given by xk = ek·ln a/n , k = 0, . . . , n. We have

7This was also a problem (including negative integers) in the William Lowell Putnam Exam, 1960.
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n∑
k=1

1

e(k−1)·ln a/n

(
ek·ln a/n − e(k−1)·ln a/n

)
=

n∑
k=1

(
ek·ln a/n−(k−1)·ln a/n − 1

)

=
n∑

k=1

(
eln a/n − 1

)
= n · ( n

√
a − 1).

The reader versed in calculus will here recognize the limit

∫ a

1

dx

x
= lim

n→∞ n · ( n
√

a − 1) = ln a, 1 < a ∈ R,

where we used the limit in Example 10.3.1.
We now return to our estimates. Substituting ln(x) for x in our earlier lower

estimate 1+ x ≤ ex with x ∈ R, and rearranging, we obtain

ln(x) ≤ x − 1, x > 0.

This shows that the graphs G(exp) and G(ln) are separated by a strip whose
boundary consists of the tangent lines at (1, 0) and (0, 1) with slope 1.

The fundamental estimate for the natural logarithm is the following

x

1+ x
≤ ln(1+ x) ≤ x, −1 < x ∈ R.

The upper estimate here is just a reformulation of the upper estimate above
(replacing x by 1+ x). The lower estimate follows by inverting simultaneously both
sides of the previous estimate ex ≤ 1/(1− x), x < 1. This gives ln(x) ≥ (x −1)/x ,
x > 0. Replacing x by x + 1 as before, the lower estimate follows.

Remark An immediate byproduct is the limit limx→1 ln(x) = limx→0 ln(1+x) = 0.
This, in turn, gives another proof of continuity of the natural logarithm. Indeed, let
(rn)n∈N be a convergent positive real sequence, 0 < rn ∈ R, n ∈ N, with positive
limit limn→∞ rn = r , 0 < r ∈ R. Then we have

lim
n→∞ ln(rn) = lim

n→∞ ln
(rn

r
· r
)
= lim

n→∞ ln
(rn

r

)
+ ln(r) = ln(r).

Continuity of ln follows.
For the positive range of the natural logarithm, a sharper upper bound can be

obtained using the quadratic lower estimate 1 + x + x2/2 ≤ ex with x ≥ 0. We
substitute ln(x) for x , rearrange and obtain

ln(x)+ ln(x)2

2
≤ x − 1, x ≥ 1.
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Completing the square, and rearranging we have

(ln(x)+ 1)2 ≤ 2x − 1, x ≥ 1.

This gives the sharper upper bound ln(x) ≤ √2x − 1− 1, x ≥ 1, or equivalently

ln(1+ x) ≤ √2x + 1− 1, x ≥ 0.

For the next example, we let

en = en(1) = 1+ 1

1! +
1

2! + · · · +
1

n! , e0 = 1,

and recall from Section 10.1 that this is the nth partial sum of the infinite sum that
defines e:

lim
n→∞ en = lim

n→∞

(
1+ 1

1! +
1

2! + · · · +
1

n!
)
=
∞∑

n=0

1

n! = e.

Clearly, en < e, n ∈ N0, and limn→∞(e − en) = 0.

Example 10.3.3 8 Show that

lim
n→∞(1+ e − en)n! = 1 and lim

n→∞(1+ e − en)(n+1)! = e.

We derive the first limit relation only, the second is entirely analogous. We use
the fundamental estimate of the natural logarithm for 0 < e − en as

e − en

1+ e − en
< ln(1+ e − en) < e − en, n ∈ N0.

We now use continuity of the natural logarithm function, and calculate

0 ≤ ln
(

lim
n→∞(1+ e − en)n!) = lim

n→∞ n! · ln(1+ e − en) ≤ lim
n→∞ n! · (e − en)

= lim
n→∞

e − en

1/n! ,

where we used the fundamental estimate above. We now employ the additive Stolz–
Cesàro Theorem (Section 3.4), and continue

lim
n→∞

e − en

1/n! = lim
n→∞

en − en+1

1/(n + 1)! − 1/n! = lim
n→∞

−1/(n + 1)!
−n/(n + 1)! = lim

n→∞
1

n
= 0.

8This is due to Virgil Nicula.
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Putting everything together, we obtain

ln
(

lim
n→∞(1+ e − en)n!) = 0.

The first limit follows.

Returning to the main line, we rewrite the fundamental estimate as

1

1+ x
≤ ln(1+ x)

x
≤ 1, −1 < x �= 0.

We now take the limit

lim
x→0

ln(1+ x)

x
= ln′(1) = 1.

We write this as

lim
x→0

ln
(
(1+ x)1/x

)
= 1.

By continuity of the natural logarithm established above, we have

lim
x→0

ln
(
(1+ x)1/x

)
= ln

(
lim
x→0

(1+ x)1/x
)
= 1.

Taking exponents, we arrive at Euler’s famous limit9

lim
x→0

(1+ x)1/x = e.

Replacing x by x/n, n ∈ N, with fixed 0 �= x ∈ R, we obtain the following discrete
version

lim
n→∞

(
1+ x

n

)n = ex .

We pause here briefly to derive a significant improvement of the limit in
Example 3.2.9 as follows:

Example 10.3.4 Show that

lim
n→∞

n
n
√

n! = e.

Letting an = n!/nn , n ∈ N, we calculate

9We will treat this is more detail in Section 10.5.
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lim
n→∞

an+1

an
= lim

n→∞
(n + 1)!

(n + 1)n+1 ·
nn

n! = lim
n→∞

nn

(n + 1)n
= lim

n→∞
1

(1+ 1/n)n
= 1

e
,

where we used Euler’s limit above. Now, the multiplicative Stolz–Cesàro theorem
(Section 3.4) gives

lim
n→∞ a1/n

n = lim
n→∞

n
√

n!
n
= 1

e
.

The example follows.

Remark This limit is usually expressed as the asymptotic relation10

n
√

n! ∼ n

e
as n→∞.

This can still be improved to give the well-known Stirling formula

n! ∼ √2πn
(n

e

)n
as n→∞,

usually derived in integral calculus.
Returning to the main line, replacing x by 1/n, n ∈ N, in our fundamental

estimate of the natural logarithm, we get

1

n + 1
< ln

(
1+ 1

n

)
<

1

n
, n ∈ N.

We write the middle term as

1

n + 1
< ln(n + 1)− ln(n) <

1

n
, n ∈ N.

Remark The reader versed in elementary calculus will no doubt recognize this
inequality as the trivial estimate of the integral

1

n + 1
<

∫ n+1

n

dx

x
= ln(n + 1)− ln(n) <

1

n
, n ∈ N.

Iterating this estimate over n = 1, 2, . . . , n − 1, 2 ≤ n ∈ N, and adding, we
obtain

1

2
+ 1

3
+ · · · + 1

n
< ln(n) < 1+ 1

2
+ · · · + 1

n − 1
.

10For two sequences (an)n∈N and (bn)n∈N with non-zero terms, we write an ∼ bn as n → ∞ if
limn→∞ an/bn = 1.
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We rewrite this using the sum of the reciprocals of the first n natural numbers
(Example 3.1.6)

Hn = 1+ 1

2
+ · · · + 1

n
, n ∈ N,

and obtain the following important inequalities

Hn − 1 < ln(n) < Hn−1, 2 ≤ n ∈ N.

Of importance is the sequence of differences (Hn − ln(n))n∈N.
First, this sequence is bounded below, since, by the second inequality above, 0 <

Hn−1 − ln(n), so that we have

0 <
1

n
≤ Hn − ln(n), n ∈ N.

(Equality holds only for n = 1.)
Second, we claim that this sequence is strictly decreasing. Indeed, using the
inequality for the difference ln(n + 1)− ln(n) above, we have

Hn+1−ln(n+1)=Hn−ln(n)+
(

1

n + 1
+ ln(n)− ln(n+1)

)
< Hn− ln(n), n ∈ N.

Finally, by the Monotone Convergence Theorem, this sequence is convergent

lim
n→∞ (Hn − ln(n)) = γ,

where the limit γ is called the Euler–Mascheroni constant.

Remark It is not known whether γ is rational or irrational. Due to the frequent
appearance of γ in various parts of analysis, this is an outstanding problem in
mathematics. Using continued fractions one can show that if γ is rational, then in
its simple fraction form the denominator must be at least 10242080.

Up to the first 60 digits, we have

γ = 0.577215664901532860606512090082402431042159335939923598805767 . . .

The next example is once again a significant improvement of the limit in
Example 3.2.8:

Example 10.3.5 Show that

ln n ≤ n
(

n
√

n − 1
) ≤ ln n · n

n + 1−√2n − 1
, n ∈ N,
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and consequently

lim
n→∞

(
n
(

n
√

n − 1
)− ln n

) = 0.

Writing n
√

n − 1 = eln n/n − 1, since ln n < n, n ∈ N, the fundamental estimate
for natural exponentiation (Section 10.1) gives

ln n

n
≤ n
√

n − 1 ≤ ln n

n
· 1

1− ln n/n
.

Rearranging and using the sharper upper bound for ln n derived earlier in this
section, we obtain

ln n ≤ n
(

n
√

n − 1
) ≤ ln n · n

n − ln n
≤ ln n · n

n − (
√

2n − 1− 1)
.

The inequality stated above follows.
It remains to derive the associated limit. The estimate just proved gives

0 ≤ n
(

n
√

n − 1
)− ln n ≤ ln n ·

√
2n − 1− 1

n + 1−√2n − 1
.

We need to show that the right-hand side is a null-sequence. Simple algebra gives

ln n ·
√

2n − 1− 1

n + 1−√2n − 1
= 2

ln
√

n√
n

√
2− 1/n − 1/

√
n

1+ 1/n −√2/n − 1/n2
.

Since limx→∞ ln x/x = 0, the logarithmic factor on the right-hand side has zero
limit while the last factor has limit

√
2. The overall limit is therefore zero. The

example follows.

For the next example we now return to a previous topic. Recall from Exam-
ple 3.2.12 the limit formula11

lim
n→∞

sp(n + 1)

n p+1 = lim
n→∞

1p + 2p + · · · + n p

n p+1 = 1

p + 1
, −1 < p ∈ R.

This limit can be interpreted as

lim
n→∞

Ap(n)

n p
= 1

p + 1
, −1 < p ∈ R,

11Note the extended range of p as a special case of Example 3.4.1, and also the moved up value of
n to n + 1.
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where

Ap(n) = 1

n

n∑
k=1

k p = 1p + 2p + · · · + n p

n

is the arithmetic mean of the pth powers of the first n natural numbers.
In view of the AM-GM inequality, it is natural to consider the related problem in

which the arithmetic mean is replaced by the geometric mean:

Example 10.3.6 We have

lim
n→∞

Gp(n)

n p
= e−p, p ∈ R,

where

Gp(n) = n

√√√√ n∏
k=1

k p = n
√

1p · 2p · · · n p

is the geometric mean of the pth powers of the first n natural numbers.
We calculate

lim
n→∞

Gp(n)

n p
= lim

n→∞

n
√

1p · 2p · · · n p

n p
= lim

n→∞

(
n
√

n!
n

)p

= e−p,

where we used the result of Example 10.3.4.

Combining the limit relations with the arithmetic and geometric means, we
obtain12

(1 ≤ ) lim
n→∞

Ap(n)

Gp(n)
= lim

n→∞
(1p + 2p + · · · + n p)/n

n
√

1p · 2p · · · n p
= ep

p + 1
, −1 < p ∈ R.

A variation on the theme is the following:

Example 10.3.7 Let p(x) be a polynomial of degree m ∈ N. We define the
arithmetic and geometric means of p(x) by

Ap(x)(n) = 1

n

n∑
k=1

p(k) and Gp(x)(n) = n

√√√√ n∏
k=1

p(k), n ∈ N.

12See also Kubelka, R.P., Means to an end, Math. Mag. 74 (2001) 141–142, and Conway Xu, A
GM-AM ratio, Math. Mag. 83 (2010) 49–50.
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Show that

(1 ≤ ) lim
n→∞

Ap(x)(n)

Gp(x)(n)
= em

m + 1
.

We let

p(x) = am xm + am−1xm−1 + · · · + a1x + a0, am �= 0, a0, a1, · · · , am ∈ R.

We calculate

n ·Ap(x)(n) =
n∑

k=1

p(k) =
n∑

k=1

(
amkm + am−1km−1 + · · · + a1k + a0

)

= amsm(n + 1)+ am−1sm−1(n + 1)+ · · · + a1s1(n + 1)+ a0n.

Using the limit in Example 3.2.12, this gives

lim
n→∞

Ap(x)(n)

nm
= lim

n→∞

(
am

sm(n+1)

nm+1 +am−1
sm−1(n+1)

nm+1 + · · ·+a0
1

nm

)
= am

m + 1
.

For the geometric mean we work backwards. We use the multiplicative Stolz–
Cesàro limit relation, and calculate

am = lim
n→∞

p(n)

nm
= lim

n→∞
n

√
p(1)

1m
· p(2)

2m
· · · p(n)

nm
= lim

n→∞
n
√

p(1) · p(2) · · · p(n)
n
√

n!m

= lim
n→∞

n
√

p(1) · p(2) · · · p(n)

nm
lim

n→∞

(
n

n
√

n!
)m

= lim
n→∞

Gp(x)(n)

nm
· em,

where we used Example 10.3.4 above.
Putting these together, we obtain

lim
n→∞

Ap(x)(n)

Gp(x)(n)
= lim

n→∞
Ap(x)(n)

nm
· lim

n→∞
nm

Gp(x)(n)
= am

m + 1
· em

am
= em

m + 1
.

The example follows.

We finish this section by a cadre of interesting limits.

Example 10.3.8 13 Derive the limit

lim
n→∞

(
n+1
√

(n + 1)! − n
√

n!
)
= 1

e
.

13This is due to the Roumanian mathematician Traian Lalescu (1882–1929).
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This is an easy application of the Stolz–Cesàro theorem as follows:

lim
n→∞

(
n+1
√

(n + 1)! − n
√

n!
)
= lim

n→∞
n+1
√

(n + 1)! − n
√

n!
(n + 1)− n

= lim
n→∞

n
√

n!
n
= 1

e
,

where we used the limit in Example 10.3.4 again.

Example 10.3.9 14 Show that

lim
n→∞

(
(n + 1)2

n+1
√

(n + 1)! −
n2

n
√

n!
)
= e.

We will derive a generalization of this as follows:15 Let (an)n∈N be a real
sequence with positive terms. Then we have the implication

lim
n→∞

an+1 − an

n
= L > 0 ⇒ lim

n→∞

(
an+1

n+1
√

(n + 1)! −
an
n
√

n!
)
= e · L

2
.

To show this, we first use Example 10.3.4, and calculate

lim
n→∞

(
an+1

n+1
√

(n + 1)! −
an
n
√

n!
)
= lim

n→∞
an
n
√

n!

(
an+1

an

n
√

n!
n+1
√

(n + 1)! − 1

)

= lim
n→∞

n
n
√

n!
an

n2 n

(
an+1

an

n
√

n!
n+1
√

(n+1)!−1

)
=eL

2
lim

n→∞ n

(
an+1

an

n
√

n!
n+1
√

(n+1)!−1

)
,

where we used the limit in the previous example and the Stolz–Cesàro Theorem to
the effect that

lim
n→∞

an

n2 = lim
n→∞

an+1 − an

(n + 1)2 − n2 = lim
n→∞

an+1 − an

n

n

2n + 1
= L

2
.

As a byproduct of the last limit to be used below, we also have

lim
n→∞

an+1

an
= lim

n→∞
an+1

(n + 1)2
· n2

an
· (n + 1)2

n2
= L

2
· 2

L
= 1.

Returning to our main computation, it remains to show that

lim
n→∞ n (bn − 1) = 1,

14This is due to the Roumanian mathematician D.M. Bǎtineţu-Giurgiu (1936-).
15This generalization and the next example are due to Virgil Nicula.
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where

bn = an+1

an
·

n
√

n!
n+1
√

(n + 1)! .

First note that

lim
n→∞ bn = lim

n→∞
an+1

an
·

n
√

n!
n+1
√

(n + 1)!

= lim
n→∞

an+1

an
·

n
√

n!
n
· n + 1

n+1
√

(n + 1)! ·
n + 1

n

= 1 · 1

e
· e = 1,

where we used Example 10.3.4 again. By continuity of the natural logarithm
function, we obtain limn→∞ ln bn = 0.

Once again, returning to the main line, we have

lim
n→∞ n (bn − 1) = lim

n→∞ n
(

eln bn − 1
)
= lim

n→∞ n ln bn,

where the last equality follows from the fundamental estimate of the natural expo-
nential function in Section 10.1 applied to the null-sequence (ln bn)n∈N (provided
that the last limit exists). We now use the explicit formula for bn , n ∈ N and obtain

lim
n→∞ n ln bn = lim

n→∞ n ln

(
an+1

an
·

n
√

n!
n+1
√

(n + 1)!

)

= lim
n→∞ n

(
ln

an+1

an
+ ln n!

n
− ln(n + 1)!

n + 1

)
.

For the first term in the parentheses, we calculate

lim
n→∞ n ln

an+1

an
= lim

n→∞ n ln

((
an+1

an
− 1

)
+ 1

)

= lim
n→∞ n

(
an+1

an
− 1

)
= lim

n→∞
n2

an
· an+1 − an

n
= 2

L
· L = 2,

where we applied the fundamental estimate for the natural logarithm to the null-
sequence (an+1/an − 1)n∈N, and the previous limits.
For the remaining terms in the parentheses, we use the Stolz–Cesàro theorem again,
and calculate
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lim
n→∞ n

(
ln n!

n
− ln(n + 1)!

n + 1

)
= lim

n→∞
(n + 1) ln n! − n ln(n + 1)!

n + 1

= lim
n→∞

(n + 1)(ln 1+ ln 2+ · · · + ln n)− n(ln 1+ ln 2+ · · · + ln n + ln(n + 1))

n + 1

= lim
n→∞

ln n! − n ln(n + 1)

n + 1
= lim

n→∞
(ln(n + 1)! − (n + 1) ln(n + 2))− (ln n! − n ln(n + 1))

(n + 2)− (n + 1)

= lim
n→∞(n + 1) ln

n + 1

n + 2
= − ln

(
lim

n→∞

(
n + 2

n + 1

)n+1
)

= − ln

(
lim

n→∞

(
1+ 1

n + 1

)n+1
)
= − ln e = −1,

where we also used Euler’s limit.
Putting everything together, we obtain

lim
n→∞ n (bn − 1) = 2− 1 = 1.

The example follows.

Example 10.3.10 Let (an)n∈N0 be a sequence such that 0 < a0 < 1, and an+1 =
an − a2

n , n ∈ N0. Show that

(1) lim
n→∞ an = 0; (2) lim

n→∞ nan = 1; (3) lim
n→∞

n(1− nan)

ln n
= 1.

We first claim that an ∈ (0, 1), n ∈ N. By Peano’s Principle of Induction, we
need to perform only the general induction step n ⇒ n + 1. But this is clear since
an+1 = an(1− an) ∈ (0, 1).

Next, an+1 = an − a2
n < an , n ∈ N0, so that the sequence (an)n∈N0 is strictly

decreasing. By the Monotone Convergence Theorem, this sequence is convergent.
Let limn→∞ an = L ∈ [0, 1). By the recurrence relation, we have L = L − L2. We
obtain L = 0. Thus, (1) follows.

To show (2), we write

lim
n→∞ nan = lim

n→∞
n

1/an
,

and make use of the Stolz–Cesàro theorem (with n moved up to n + 1) as follows:

lim
n→∞

(n + 1)− n

1/an+1 − 1/an
= lim

n→∞
an · an+1

an − an+1
= lim

n→∞
an(an − a2

n)

a2
n

= lim
n→∞(1−an) = 1,

where the last equality is because of (1). Hence (2) follows.
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For (3), we write the limit as

lim
n→∞

n(1− nan)

ln n
= lim

n→∞
nan

ln n

(
1

an
− n

)
= lim

n→∞
1/an − n

ln n
,

where we used (2). Again, making use of the Stolz–Cesàro theorem, we calculate

lim
n→∞

(1/an+1 − (n + 1))− (1/an − n)

ln(n + 1)− ln(n)
= lim

n→∞
1/an+1 − 1/an − 1

ln(1+ 1/n)

= lim
n→∞ n

(
1

an+1
− 1

an
−1

)
= lim

n→∞ n

(
1

an(1− an)
− 1

an
−1

)
= lim

n→∞
n · an

1− an
=1,

where we used Euler’s limit limn→∞ n ln(1+ 1/n) = ln limn→∞(1+ 1/n)n = 1 as
well as (1) and (2). Now (3) follows.

Exercises

10.3.1. Use the exponential and logarithmic functions to show limn→∞ n
√

an + bn =
max(a, b), a, b > 0.

10.3.2. Derive the inequality

ln(x)+ ln(y)

2
≤ ln

(
x + y

2

)
, x, y > 0.

10.3.3. Calculate the derivatives of the general exponential and logarithmic func-
tions.

For the next set of exercises, define the cosine and sine hyperbolic functions
cosh : R→ R and sinh : R→ R as

cosh(x) = ex + e−x

2
and sinh(x) = ex − e−x

2
, x ∈ R.

10.3.4. Derive the identity cosh2(x)− sinh2(x) = 1, x ∈ R.
10.3.5. For x, y ∈ R, derive the addition formulas

cosh(x + y) = cosh(x) cosh(y)+ sinh(x) sinh(y);
sinh(x + y) = sinh(x) cosh(y)+ cosh(x) sinh(y).

10.3.6. Show that cosh′(c) = sinh(c) and sinh′(c) = cosh(c), c ∈ R.
10.3.7. Prove that, for q ∈ Q, the numbers sinh(ln q) and cosh(ln q) are rational

numbers. Calculate sinh(ln 2) and cosh(ln 2).
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10.3.8. For n ∈ N0, derive the lower estimates

1+ x2

2! +
x4

4! + · · · +
x2n

(2n)! < cosh(x), 0 < x ∈ R

and

x

1! +
x3

3! + · · · +
x2n+1

(2n + 1)! < sinh(x), 0 < x ∈ R.

10.3.9. Show that

cosh(x) =
∞∑

n=0

x2n

(2n)! and sinh(x) =
∞∑

n=0

x2n+1

(2n + 1)! , x ∈ R.

10.3.10. Use Exercise 10.3.8 to show the following:

ln(x) <
1

2

(
x − 1

x

)
, x > 1 and ln(x) >

1

2

(
x − 1

x

)
, 0 < x < 1;

| ln(x)| ≤
√

x + 1

x
− 2, x > 0;

| ln(x)| ≤
√√√√2

√
3

(
x + 1

x
+ 1

)
− 6, x > 0,

and in all the estimates equalities hold if and only if x = 1.
10.3.11. Determine the horizontal and vertical asymptotes of the functions

f (x) = 1

cosh(x)
and g(x) = 1

sinh(x)
, x ∈ R.

10.4 The General Exponential and Logarithmic Functions

For a given positive real base 0 < a ∈ R, we define

ax = ex ·ln(a), x ∈ R.
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Since the natural exponential function is differentiable, we see that the function
y = ax , x ∈ R, is differentiable (and hence continuous).

We claim that, for x integral or rational number, this new definition of the
exponentiation reverts back to our earlier definition in Section 3.2.

First, for n ∈ N, we have

an = en·ln(a) = e

n︷ ︸︸ ︷
ln(a)+ · · · + ln(a) =

n︷ ︸︸ ︷
eln(a) · · · eln(a) =

n︷ ︸︸ ︷
a · · · a .

Clearly, a0 = e0·ln(a) = e0 = 1. For n ∈ N, we also have

a−n = e−n ln(a) = 1

en ln(a)
= 1

an
.

Hence, for integral exponents, the two definitions are the same.
Second, recall from Section 3.2 that, for m/n ∈ Q with m, n ∈ Z and n �= 0, the

exponential am/n is defined as the unique positive real number for which

(
a

m
n

)n =
(

n
√

am
)n = am .

We now calculate

(
e

m
n ·ln(a)

)n = e
m
n ·ln(a) · e m

n ·ln(a) · · · e m
n ·ln(a) = en·mn ·ln(a) = em·ln(a) = am .

Setting q = m/n ∈ Q, we obtain

aq = eq·ln(a), q ∈ Q.

The claim follows.
Finally, (sequential) continuity of our new exponentiation implies that it coin-

cides with the old definition for real exponents.
Since the exponential and logarithmic functions (of the same base) are inverses

of each other, we have ln(x) = loge(x), 0 < x ∈ R. Moreover, the change of base
formula implies that the general logarithmic function is differentiable (and hence
continuous).

Example 10.4.1 16 Let 2 ≤ n ∈ N. For what value of 0 < a ∈ R do we have

n∑
k=2

1

logk a
= 1

log2 a
+ 1

log3 a
+ · · · + 1

logn a
= 1?

16A special case was a problem in the American Mathematics Competition, 2015.



456 10 Exponential and Logarithmic Functions

Using the change of base formula and the logarithmic identities (Section 3.3), we
obtain

n∑
k=2

1

logk a
=

n∑
k=2

loga k = loga

(
n∏

k=2

k

)
= loga(n!) = 1.

Hence, a = n!.
In addition to the natural base e, the base 10 logarithmic function, the so-called

common logarithm, is particularly well suited in computations when using the
decimal system. The base 10 of the common logarithm is often suppressed from
the notation, and we write log10(x) = log(x), x > 0.

As a simple illustration, we claim that, for n ∈ N, the greatest integer of the
common logarithm, [log(n)], is one less than the number of decimal digits in n.

Indeed, write n using decimal digits as

n = dkdk−1 . . . d1d0

with the digits d0, d1, . . . , dk−1, dk ranging from 0 to 9 and dk �= 0. We thus have

n = 10k+1 · 0.dkdk−1 . . . d1d0.

Taking the common logarithm of both sides and using the logarithmic identities, we
obtain

log(n) = log(10k+1 · 0.dkdk−1 . . . d1d0)

= log(10k+1)+ log(0.dkdk−1 . . . d1d0)

= k + 1+ log(0.dkdk−1 . . . d1d0).

Since dk ≥ 1, we have 1/10 ≤ 0.dkdk−1 . . . d1d0 < 1. Thus −1 ≤ log (1/10) ≤
log(0.dkdk−1 . . . d1d0) < log(1) = 0. With this, we have k ≤ log(n) < k + 1, and
the claim follows.

Example 10.4.2 To express 2100 in decimal notation, how many decimal digits are
needed?

We have log(2) ≈ 0.3010299957 so that

log(2100) ≈ 100 · 0.3010299957 = 30.10299957.

By the above, the decimal representation of 2100 has 31 digits. By the way, the
number itself is

2100 = 1267650600228229401496703205376.
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Exercise

10.4.1. As a generalization of the Bernoulli inequality in Section 3.2, show that the
exponential function y = ax with domain variable x ∈ R is convex, that is,
for x0 < x1 we have

a(1−x)x0+xx1 ≤ (1− x)ax0 + xax1 , 0 ≤ x ≤ 1.

What is the geometric meaning of this inequality?

10.5 The Natural Exponential Function According to Euler

In this section we start anew, and discuss Euler’s approach to the natural exponential
function. Recall from Section 3.2 our notation

e∗n(x) =
(

1+ x

n

)n
, x ∈ R, n ∈ N.

Note that we showed there the monotonicity property

e∗n(x) < e∗n+1(x), 0 �= x > −n, n ∈ N.

One of our purposes in the present section is to give a direct proof (without the
use of the natural logarithm function) of the limit formula

lim
n→∞ e∗n(x) = lim

n→∞
(

1+ x

n

)n = ex , x ∈ R.

(Following Newton, we derived this in Section 10.3 in a rather circuitous way.)

Remark 1 For completeness, we note here that, using the natural logarithm function
and its properties, a quick proof can be given as follows.

We may assume x �= 0. We have

ln
(

lim
n→∞ e∗n(x)

)
= lim

n→∞ ln e∗n(x) = lim
n→∞ n · ln

(
1+ x

n

)

= lim
h→0

x

h
· ln(1+ h) = x · lim

h→0

ln(1+ h)− ln 1

h
= x · ln′(1) = x .

Remark 2 Recall the Compound Interest Formula in Example 6.1.4. It gives the
future (compound) value V of a principal deposit P with x interest rate after t
years as

V = P
(

1+ x

n

)n·t
,
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assuming n compounding periods per year. Using our notations, this can be written
as V = P · e∗n(x)t . Taking the limit, and using the limit relation above (yet to be
discussed) along with continuity of exponentiation, we have

lim
n→∞ P · e∗n(x)t = P ·

(
lim

n→∞ e∗n(x)
)t = P · (ex )t = P · ex ·t .

This is called the Continuous Compound Interest Formula.

Although it is physically unrealistic, it reflects the future value, assuming
continuous compounding. For t relatively large (retirement accounts), it shows a
near exponential growth of an initial investment assuming stable average market
conditions for a long stretch of time.

History
As noted in Section 6.1, it was Jacob Bernoulli who, in studying compound interest, first tried
to find the actual value of e considering (1 + 1/n)n for large values of n ∈ N. Subsequently,
Johann Bernoulli (1667–1748) in 1697 studied the analytic properties of (1 + x/n)n for large n.
The number e was first used by Leibniz, but as the base of the natural logarithm, the inverse of
the natural exponentiation, it appeared first in the works of Euler. In particular, he noted the limits
limn→∞(1+ x/n)n = ex and limn→∞ n( n

√
x − 1) = ln(x).

Returning to the main line, recall the Bernoulli inequalities from Section 3.2: For
a > 0, we have

ax ≤ 1+ x(a − 1) for 0 < x < 1, and ax ≥ 1+ x(a − 1) for x > 1, x ∈ R.

Remark Having the exponential function in place, we can now give the simple
geometric interpretation of these inequalities. The line given by y = 1+ x(a− 1) is
a secant that cuts the graph of the exponential function y = ax at the points (0, 1)

and (1, a). The graph itself is “convex” in the sense that it is below the (finite) secant
segment cut out from the graph by the secant line, and above beyond.

As the first task, and as in the case of rational exponents, we claim that equality
holds in either of the inequalities above if and only if a = 1.

We show this for the first inequality; the argument for the second is analogous.
Given 0 < x < 1, x ∈ R, choose n ∈ N large enough such that

0 < x − 1

n
< x < x + 1

n
< 1.

By the first Bernoulli inequality applied to these modified values, we have

ax±1/n ≤ 1+
(

x ± 1

n

)
(a − 1).

Assume now that 1 �= a ∈ R. Then, we have ax−1/n �= ax+1/n since the exponential
function is strictly monotonic. We now use the (strict) AM-GM inequality (in two
indeterminates) with the previous inequality and calculate
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ax =
√

ax−1/n · ax+1/n <
ax−1/n + ax+1/n

2

≤ 1+ (x − 1/n) (a − 1)+ 1+ (x + 1/n) (a − 1)

2
= 1+ x(a − 1).

Our claim of strict inequality follows.

Of paramount importance in Euler’s study of the exponential function are the two
functions f, g : (0,∞)→ R defined by

f (x) =
(

1+ 1

x

)x

and g(x) =
(

1+ 1

x

)x+1

, 0 < x ∈ R.

Since x > 0, we have

f (x) < g(x), 0 < x ∈ R.

We now claim that f is (strictly) increasing and g is (strictly) decreasing. These
are consequences of the Bernoulli inequalities above.

Indeed, letting x ′ < x ′′, and substituting a = 1 + 1/x ′ and x = x ′/x ′′ into the
(first) Bernoulli inequality (since 0 < x ′/x ′′ < 1), we have

(
1+ 1

x ′

)x ′/x ′′

< 1+ x ′

x ′′
· 1

x ′
= 1+ 1

x ′′
.

Raising both sides to the exponent x ′′, we obtain

(
1+ 1

x ′

)x ′

<

(
1+ 1

x ′′

)x ′′

.

This gives f (x ′) < f (x ′′), 0 < x ′ < x ′′; and monotonicity of f follows. Similarly,
using the substitution a = 1− 1/(x ′ + 1) and x = (x ′ + 1)/(x ′′ + 1), we have

(
1− 1

x ′ + 1

)(x ′+1)/(x ′′+1)

< 1− 1

x ′′ + 1
.

Raising both sides to the exponent x ′′ + 1 and taking reciprocals, we obtain

(
1+ 1

x ′

)x ′+1

>

(
1+ 1

x ′′

)x ′′+1

.

This gives g(x ′) > g(x ′′), 0 < x ′ < x ′′; and monotonicity of g follows.
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Finally, we consider the difference

g(x)− f (x) =
(

1+ 1

x

)x+1

−
(

1+ 1

x

)x

=
(

1+ 1

x

)x

· 1

x
, x > 0.

This gives

lim
x→∞(g(x)− f (x)) = lim

x→∞

(
1+ 1

x

)x

· 1

x
= 0

since the first factor in the last product stays bounded while the second factor (1/x)
has limit zero.

By monotonicity just proved, we conclude

lim
x→∞ f (x) = lim

x→∞ g(x).

We now define the real number e∗ as the common value of these two limits.
By construction, for all 0 < x ∈ R, we have

f (x) =
(

1+ 1

x

)x

< e∗ <

(
1+ 1

x

)x+1

= g(x),

where we inserted the definitions of f and g.
We now claim that e∗ = e, where

e = lim
n→∞ en(1) = lim

n→∞

(
1+ 1

1! + · · · +
1

n!
)

,

as in Section 10.1.
To show this we choose the simplest sequence N = (n)n∈N. We have

f (n) = e∗n(1) =
(

1+ 1

n

)n

< e∗, n ∈ N,

with limit

lim
n→∞ f (n) = lim

n→∞ e∗n(1) = lim
n→∞

(
1+ 1

n

)n

= e∗.

We expand the power in the last limit by the Binomial Formula. For n ∈ N, we have

e∗n(1) =
(

1+ 1

n

)n

=
n∑

k=1

(
n

k

)
1

nk
=

n∑
k=0

1

k! ·
n(n − 1) · · · (n − k + 1)

nk

=
n∑

k=0

1

k!
(

1− 1

n

)
· · ·
(

1− k − 1

n

)
≤

n∑
k=0

1

k! = en(1).

Taking limits, we obtain e∗ = limn→∞ e∗n(1) ≤ limn→∞ en(1) = e.
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For the reverse inequality, we fix m ∈ N, let m < n ∈ N, and add up only the
first m + 1 binomial terms

1+ 1

1!+ · · · +
1

k!
(

1−1

n

)
· · ·
(

1−k − 1

n

)
+ · · ·+ 1

m!
(

1−1

n

)
· · ·
(

1−m − 1

n

)

≤
(

1+ 1

n

)n

< e∗.

Keeping m fixed and letting n → ∞, the left-hand side approaches em(1) (since
there are only m+ 1 terms). We obtain em(1) ≤ e∗. Finally, if we now take the limit
as m → ∞, the left-hand side approaches e while the right-hand side stays fixed.
We finally arrive at e = limm→∞ em(1) ≤ e∗. The reverse inequality, and hence the
claim follows.

Returning to the main line, using e∗ = e, we obtain

f (x) =
(

1+ 1

x

)x

< e <

(
1+ 1

x

)x+1

= g(x), 0 < x ∈ R,

and we recover Euler’s limit

lim
x→∞ f (x) = lim

x→∞ g(x) = lim
x→∞

(
1+ 1

x

)x

= e

already obtained in Section 10.3.

Example 10.5.1 For the functions f, g : (0,∞)→ R, we have the identity

f (x)g(x) = g(x) f (x), 0 < x ∈ R.

Indeed, using g(x) = (1+ 1/x) · f (x), 0 < x ∈ R, we calculate

f (x)g(x) = f (x)(1+1/x)· f (x) = f (x) f (x) · f (x) f (x)/x

= f (x) f (x) ·
(

1+ 1

x

) f (x)

=
(

f (x) ·
(

1+ 1

x

)) f (x)

= g(x) f (x),

where, in the third equality, we also used the definition of f .
The identity just proved shows that y = f (x) and z = g(x), 0 < x ∈ R, are (real)
solutions of the equation

yz = zy, 1 < y < z, y, z ∈ R.

(For an interesting contrast, see Remark 1 after Example 10.3.2.) Observe now that
this equation is equivalent to

eln(y)/y = eln(z)/z, 1 < y < z, y, z ∈ R.
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We know from Example 10.3.2 that the function x �→ ln(x)/x , 1 < x ∈ R, is
strictly increasing on (1, e] (actually on (0, e]) and strictly decreasing on [e,∞)

with absolute maximum at e and limx→∞ ln(x)/x = 0. It follows that, the (real)
solutions of the equation above are pairs (y, z) with 1 < y < e < z, y, z ∈ R,
where each component of (y, z) uniquely determines the other.
We are interested in finding the rational solutions of this equation; that is, pairs
(y, z) with y, z ∈ Q. Since, for n ∈ N, the numbers f (n) and g(n) are both rational,
by the above, we have an infinite sequence of pairs ( f (n), g(n)), n ∈ N, which are
rational solutions of our equation.
As a final task, we now show that these are the only rational solutions. To do this,
assume that the pair (y, z), 0 < y < e < z, is a rational solution; that is, y, z ∈ Q.
We let 1 < w = z/y ∈ Q. We substitute z = w · y into the equation and express y
in terms of w. We have

yw·y = (yw
)y = (w · y)y .

This gives yw = w · y, and hence

y = w
1

w−1 .

Letting w = m/n, m > n, gcd (m, n) = 1, m, n ∈ N, this gives

y =
(m

n

) n
m−n =

(m

n

) n
k
,

where k = m − n ∈ N.
If k = 1, then m = n + 1, and we have

y =
(

n + 1

n

)n

=
(

1+ 1

n

)n

= f (n),

and we arrive at the pair ( f (n), g(n)), n ∈ N.
It remains to show that k > 1 cannot happen. Assuming the contrary, we let y =
a/b, gcd (a, b) = 1, a, b ∈ N. With this the general expression of y above can be
written as

a

b
=
(

mn

nn

) 1
k

.

We claim that m and n are kth powers; that is, we have m = uk and n = vk for
some u, v ∈ N. Indeed, eliminating the denominators, the equation above takes the
form

ak · nn = bk · mn .
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By gcd (a, b) = gcd (m, n) = 1, this splits into two equations

mn = ak and nn = bk .

Since gcd (n, k) = gcd (n, m − n) = gcd (n, m) = 1, by Proposition 1.3.1, there
exists c, d ∈ Z such that c · n + d · k = 1. Using this, we obtain

m = mc·n+d·k = (mn)c · (md)k = (ak)c · (md)k = (ac · md)k .

Now, the rational number ac · md is actually a positive integer, u ∈ N, say, since its
kth power is m ∈ N. Thus, we have m = uk . The proof that n = vk for some v ∈ N

is analogous. Note that u > v as m > n.
With these, we have

k = m − n = uk − vk = (v + 1)k − vk ≥ vk + k · v + 1− vk = k · v + 1 ≥ k + 1,

where, in the first inequality, we used the Binomial Formula (Section 6.3) keeping
only the first two terms and the last. This is a contradiction. Our claim follows.
A final note. Taking reciprocals, our equation can be put into the equivalent form

(
1

y

)1/y

=
(

1

z

)1/z

, 0 < 1/z < 1/e < 1/y < 1.

Now, replacing the variables by their reciprocals and retaining the original notation,
this means that the equation

yy = zz, 0 < z < 1/e < y < 1,

has the pair (1/g(x), 1/ f (x)) as real solution for all 0 < x ∈ R; and the only
rational solutions17 are (1/ f (n), 1/g(n)), n ∈ N.

Remark There are many inequalities amongst the general powers yz , 0 < y, z ∈ R,
in various forms, and, although they are well-known, they abound in mathematical
contests. Using the Bernoulli inequality, in Example 3.2.10, we showed

yz + zy > 1, 0 < y, z ∈ R.

As another example, we have

(y · z) y+z
2 ≤

(
y + z

2

)y+z

≤ yy · zz, 0 < y, z ∈ R.

17This was Problem 5 in Round 1 and Year 32 of the USA Mathematical Talent Search; Academic
Year 2020/2021.
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The first inequality here is a simple application of the AM-GM inequality. The
second is equivalent to

y + z

2
· ln
(

y + z

2

)
≤ y ln y + z ln z

2
, 0 < y, z ∈ R,

and this, in turn, follows from convexity of the function x �→ x · ln x , 0 < x ∈ R

(usually derived by basic calculus).

Example 10.5.2 We have

lim
n→∞

(
1

n + 1
+ · · · + 1

2n

)
= lim

n→∞

2n∑
k=n+1

1

k
= ln 2.

(Note the lower bound 1/2 of the expression in parentheses in Exercise 1.4.3 at the
end of Section 1.4.)

To derive this limit we use the discrete version of the estimates just obtained
above as follows (

1+ 1

k

)k

< e <

(
1+ 1

k − 1

)k

, 2 ≤ k ∈ N.

We use monotonicity of the natural logarithm to rewrite this in the equivalent form

ln

(
1+ 1

k

)k

< 1 < ln

(
1+ 1

k − 1

)k

, 2 ≤ k ∈ N.

We now divide by k and sum up for k = n + 1, . . . , 2n, n ∈ N and obtain

2n∑
k=n+1

ln

(
1+ 1

k

)
<

2n∑
k=n+1

1

k
<

2n∑
k=n+1

ln

(
1+ 1

k − 1

)
, n ∈ N.

We calculate the lower bound as follows

2n∑
k=n+1

ln

(
1+ 1

k

)
= ln

2n∏
k=n+1

(
1+ 1

k

)
= ln

2n∏
k=n+1

(
k + 1

k

)

= ln

(
2n + 1

n + 1

)
= ln

(
2− 1

n + 1

)
.

The calculation for the upper bound is similar

2n∑
k=n+1

ln

(
1+ 1

k−1

)
= ln

2n∏
k=n+1

(
1+ 1

k − 1

)
= ln

2n∏
k=n+1

(
k

k−1

)
= ln

(
2n

n

)
= ln 2.
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Putting everything together, we obtain

ln

(
2− 1

n + 1

)
<

2n∑
k=n+1

1

k
< ln 2, n ∈ N.

Letting n→∞, the limit relation follows.

Returning to the main line, as in Section 10.3, we now replace the variable x by
n/x in Euler’s limit, where 0 < x ∈ R is fixed, and n ∈ N. We have

(
1+ x

n

)n/x
< e, n ∈ N,

and

lim
n→∞

(
1+ x

n

)n/x = e, 0 < x ∈ R.

Finally, raising the expressions to the exponent 0 < x ∈ R, we obtain

e∗n(x) =
(

1+ x

n

)n
< ex , n ∈ N,

and

lim
n→∞ e∗n(x) = lim

n→∞
(

1+ x

n

)n = ex , 0 < x ∈ R.

This is Euler’s representation of the natural exponential function for positive
exponents.

To extend this to negative exponents, using again e∗ = e, we recall

e <

(
1+ 1

x

)x+1

= g(x), x > 0,

and

lim
x→∞ g(x) = e.

We rework g(x) as

g(x) =
(

1+ 1

x

)x+1

=
(

x + 1

x

)x+1

=
(

x

x + 1

)−(x+1)

=
(

1− 1

x + 1

)−(x+1)

.

Taking reciprocals, we arrive at

(
1− 1

x + 1

)x+1

< e−1, 0 < x ∈ R.
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As before, replacing the variable x + 1 > 1 by n/x > 1 with a fixed x > 0 and
x < n, n ∈ N, and raising the expressions to the exponent 0 < x ∈ R, we obtain

e∗n(−x) =
(

1− x

n

)n
< e−x , 0 < x < n,

and

lim
n→∞ e∗n(−x) = lim

n→∞
(

1− x

n

)n = e−x , 0 < x ∈ R.

We conclude that Euler’s representation of the natural exponential function also
holds for negative exponents. Combining the two representations, we obtain

e∗n(x) =
(

1+ x

n

)n ≤ ex , x > −n, n ∈ N,

with equality if and only if x = 0, and

lim
n→∞ e∗n(x) = lim

n→∞
(

1+ x

n

)n = ex , x ∈ R.

Example 10.5.3 Show that

lim
n→∞

n∏
k=1

(
1− k

n2

)
= 1√

e
.

Using the fundamental estimate for the natural exponentiation function, for n ∈
N, we calculate

n∏
k=1

(
1− k

n2

)
≤

n∏
k=1

e−k/n2 = e−(1+2+···+n)/n2 = e−(n+1)/(2n),

where we used 1+ 2+ · · · + n = n(n + 1)/2.
For the lower bound, we have

(
n∏

k=1

(
1− k

n2

))2

=
n∏

k=1

(
1− k

n2

)(
1− n − k + 1

n2

)

=
n∏

k=1

(
1− n + 1

n2
+ k

n2

n − k + 1

n2

)

≥
n∏

k=1

(
1− n + 1

n2

)
=
(

1− n + 1

n2

)n

≥
(

1− n + 1

n2 − 1

)n

=
(

1− 1

n − 1

)n

,

where, after the last inequality, we assumed 2 ≤ n ∈ N.
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Putting these together, we obtain

(
1− 1

n − 1

)n/2

≤
n∏

k=1

(
1− k

n2

)
≤ e−(n+1)/(2n), 2 ≤ n ∈ N.

Finally, we have

lim
n→∞

(
1− 1

n − 1

)n/2

= lim
n→∞

(
1− 1

n − 1

)(n−1)/2 (
1− 1

n − 1

)1/2

= 1√
e
,

and

lim
n→∞ e−(n+1)/(2n) = e−1/2 = 1√

e
.

The example follows.

Remark For n ∈ N, the expression

e∗n(x) =
(

1+ x

n

)n

is a degree n polynomial. It has a single root at x = −n. The change of variable
x �→ −x − 2n results in the (−1)n multiple of the polynomial. We obtain that, for n
odd, the graph of the polynomial is symmetric with respect to the point (−n, 0), and,
for n even, it is symmetric with respect to the vertical line x = −n. In particular,
for n odd, the restriction x > −n of the lower bound for ex can be removed as the
polynomial is negative for x < −n.

As a byproduct, the estimates above give polynomial lower bounds for ex . For
example, for n = 1, we recover our earlier estimate 1+ x ≤ ex , and, for n = 2, we
have the new (extended) lower bound

1+ x + x2

4
≤ ex , x > −2.

Exercises

10.5.1. Derive the limit

lim
x→∞

(
1+ 1

x2

)x

= 1.

10.5.2. Show that

n
√

e
n

e
<

n
√

n! < n, n ∈ N.
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10.5.3. Let n ∈ N. The equation

(
1+ x

n

)n = ex

has the trivial solution x0 = 0. Show that, for n odd, this is the only solution,
and for n even, there is another solution x1 < −n.

10.5.4. Show directly that the only rational solutions of the equation yy = zz ,
0 < z < 1/e < y < 1 are the pairs (1/g(n), 1/ f (n)), n ∈ N.

10.5.5. Find all positive solutions 0 < x, y ∈ R of the equation ex+y = x/y.



Chapter 11
Trigonometry

“If a pyramid is 250 cubits high and the side
of its base 360 cubits long, what is its seqed?”
by Ahmes (c. 1680–1620 BCE)
The Rhind Mathematical Papyrus.

Note: The cubit is an ancient measurement of length; 1 cubit is
approximately 18 inches or 457 mm. (The Bible says that
Noah’s Ark was 300 cubits in length, 50 cubits in width, and
30 cubits in height.) The seqed is an ancient Egyptian term to
express the inclination of the triangular face of a pyramid; it is
proportional to our reciprocal of the slope or the cotangent of
the angle of inclination.

In this chapter we develop trigonometry, the circular analog of arithmetic on the
real line. Our treatment has many novel features: explicit algebraic formulas for a
large number of special angles using Archimedes’ duplication formula discussed
in Section 5.9; the Chebyshev polynomials that are used to derive trigonometric
identities involving multiple angles; and a thorough discussion on the geometry
of triangles, including the concepts of incircle, circumcircle, and Heron’s formula
(with an extremal property through the AM-GM inequality). One of the highlights
of this chapter is Newton’s lesser known elementary approach (using means) to
derive the power series of the sine and cosine functions well before the advent of
the Taylor series. Another highlight is an optional section that contains a complete
and (the only) elementary proof of Euler’s famous result solving the Basel problem
introduced in Section 3.1. Finally, Ptolemy’s theorem on cyclic quadrilaterals and
its applications finish this chapter.

11.1 The Unit Circle S vs. the Real Line R

In Section 5.5, we introduced the unit circle S in the Birkhoff plane R
2 as the set of

points that are at unit distance from the origin 0. Recall that, as a simple application
of the Cartesian distance formula, a point P = (x, y) is on S if and only if the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Toth, Elements of Mathematics, Undergraduate Texts in Mathematics,
https://doi.org/10.1007/978-3-030-75051-0_11

469

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75051-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-75051-0_11


470 11 Trigonometry

coordinates x and y of P satisfy the equation of the unit circle

x2 + y2 = 1, (x, y) ∈ R
2.

A point P = (x, y) on S determines and is uniquely determined by the angle
measure θ = μ(� E0P) of the angle � E0P , where E = (1, 0) ∈ S is on the
positive first axis, the initial half-line of the angle, and P is on the half-line with
end-point at the origin 0, the terminal half-line of the angle. We say that this angle
is in standard position.

Remark We define the positive orientation of the Birkhoff plane R
2 by setting

the positive right angle from the positive first axis to the positive second axis. This
corresponds to ω(0, E, E ′) = 1 > 0, E = (1, 0) and E ′ = (0, 1), as in Section 5.3.

As discussed in Section 5.7, the angle measure θ of an angle � E0P is the arc
length of the circular arc in S with end-points E = (1, 0) and P = (x, y). It is
customary to call this angle measure radian.

History
Another (classical) measurement of angle is the degree, denoted by ◦. It is defined by the
agreement that the full angle of 2π radians is 360◦. Thus, to convert degrees to radians amounts
to multiplication by π/180◦; in particular, we have 30◦ = π/6, 45◦ = π/4, 60◦ = π/3, 90◦ =
π/2, 180◦ = π , etc.
The origins of the use of degree as a measurement of angle go back to antiquity. It must relate to
the early astronomical discovery that the Sun advances every day approximately 1◦, giving a rough
approximation of the days of the year as 360. With some rare but notable exceptions, as the Persian
calendar, most ancient calendars realized that the number of days of the year is actually 365. For
example, the ancient Egyptian calendar consisted of 360 regular days (30 days in a month and 10
days in a week) plus five Epagomenal days.1

The oldest extant Vedic Sanskrit text, the Rigveda (c. 1500–c. 1200 BCE), provides a clear
evidence that the Indian mathematicians during the Vedic period used the 360 division of the circle:
“. . . one wheel. . . On it are placed together three hundred and sixty like pegs.”
The use of the degree may also be related to the Sumerian and Babylonian sexagesimal (base 60)
arithmetic, in that a chord of length equal to the radius of a circle is also the side length of an
equilateral triangle, six of which make up a hexagon inscribed into the circle. Dividing the central
angle of a participating triangle into 60 equal parts, one arrives at 1◦.
Starting with the early works of Aristarchus of Samos (c. 310–c. 230 BCE) and Hipparchus, the
first extant records of the use of degree appear in the works of Timocharis of Alexandria (c. 320–
c. 360 BCE), Aristillus (c. 261 BCE) of Timocharis’ School, and Archimedes.

We quickly note that an angle measure θ associated with a point P ∈ S is
determined only up to an additive integer multiple of 2π , that is, θ + 2nπ , n ∈ Z,
correspond to the same point P . These angles are called coterminal angles. This
non-uniqueness of the angle is also clear from the non-uniqueness of the circular
arc in S connecting E and P . In fact, depending on how many times and in
what direction we wind around S, there are infinitely many such circular arcs
parametrized by the set of integers.

Note that choosing the shortest among all these arcs does not solve the problem
of non-unicity for several reasons. For example, the shortest arc for P = (−1, 0)

1Also in the Coptic, pre-Columbian, etc. calendars.
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is not unique, and, in the third and fourth quadrants, the shortest circular arcs are
usually given by negative angle measures.

Some special or common angle measures recur in various fields of mathematics
and sciences. A few of these are π/6, π/4, π/3, π/2 and their multiples. These
angles in standard position intercept a circular arc on the unit circle from E = (1, 0)

to particular points P = (x, y). Simple geometry can be used to find the points P
associated with these angles.

For the angle π/3 in standard position, we first note that the triangle 
[0, E, P]
is equilateral. Thus, the perpendicular bisector through P bisects the opposite side
[0, E] at a point M . This immediately gives the first coordinate of P as 1/2. The
second can be obtained by the Pythagorean theorem applied to the right triangle

[0, M, P]. We obtain that the second coordinate of P is

√
1− (1/2)2 = √3/2.

With these, we have P = (1/2,
√

3/2). Finally, since the triangle 
[O, M, P] has
unit hypotenuse, as a byproduct, we also obtain that the point for the angle π/6 in
standard position is (

√
3/2, 1/2).

The terminal side of the angle π/4 in standard position is given by the equation
y = x . Therefore, we have 2x2 = 2y2 = 1 so that the associated point is
(
√

2/2,
√

2/2). Moreover, since the terminal side of the angle π/2 is the positive
second axis, the point corresponding to the right angle is (0, 1).

Exercise

11.1.1. Given a rectangle [A, B, C, D] with d(A, B)/d(B, C) = 2, we let E ∈
[A, B] such that μ( � BC E) = π/12. Show that the triangle 
[C, D, E] is
isosceles.

11.2 The Sine and Cosine Functions

As in the previous section, let θ be an angle measure associated with the point P ∈ S

on the unit circle. The coordinates x and y of P are functions of θ . We use these to
define the cosine and sine functions cos : R→ R and sin : R→ R by

x = cos(θ) and y = sin(θ).

This definition immediately implies that the range of both the cosine and sine
functions is the closed interval [−1, 1].
History
The earliest possible attestation of a trigonometric table is in the Babylonian clay tablet, Plimpton
322, already noted in Section 5.7 for its relation to Pythagorean triples. The tablet itself is a matrix
of four columns and fifteen rows filled with numeral entries in Babylonian sexagesimal notation
(see Figure 11.1). The numbers in the second column can be interpreted as the shortest sides of
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Fig. 11.1 The Plimpton 322 Babylonian clay tablet. G.A. Plimpton Collection of Columbia
University.

a right triangle, and the numbers in the third column may be the hypotenuses of the respective
triangles. A possible trigonometric explanation of the numbers in the first column is that they
are the squared secants or tangents of the respective angles opposite to the shortest sides. If this
is a valid interpretation, then the entries in the fifteen rows roughly correspond in one degree
increments 15 secants or tangents between 35◦ and 45◦.
Hipparchus is believed to be the first mathematician who had a “chord table,” a trigonometric table
of chords of a circle subtended by central angles. He used this table to calculate the eccentricity of
the orbits of the Moon and the Sun.
Aryabhatta (476–550 CE) was an Indian mathematician who composed what is known as the
Āryabhat.īya Sine Table. Actually, this is not a table arranged in a matrix form, rather a set of
24 numbers that represent the first differences of the values of trigonometric sines expressed
in arcminutes. A lesser known fact is that about a century later (in 629), in his commentary
Āryabhat.īyabhās.ya to the Āryabhat.īya, Bhāskara I gave very accurate rational approximations to
the sine function. (This latter work is also significant because it is one of the oldest extant works in
Sanskrit on mathematics and astronomy. Compare this with the historical note on the much older
Rigveda in the Vedic period above.)

Example 11.2.1 Find the sine and cosine of the angle measures π/6, π/4, π/3,
π/2.

Using the points found in the previous section, we have sin(π/6) = cos(π/3) =
1/2, sin(π/3) = cos(π/6) = √3/2, sin(π/4) = cos(π/4) = √2/2, and
sin(π/2) = 1, cos(π/2) = 0.

Since an angle measure is determined only up to an additive integer multiple of
2π , it follows from our definition that the cosine and sine functions are periodic
with period 2π :
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cos(θ + 2nπ) = cos(θ) and sin(θ + 2nπ) = sin(θ), n ∈ Z.

Reflecting the point P = (x, y) to the first axis, we obtain the point P ′ = (x,−y)

with the angle measure θ changing to its negative −θ . We thus obtain the so-called
even-odd identities

cos(−θ) = cos(θ) and sin(−θ) = − sin(θ), θ ∈ R.

The name comes from the fact that these identities assert that cosine is an even
function and sine is an odd function.

Note finally that the cosine and sine functions are not independent since the
equation of the unit circle x2 + y2 = 1 gives

cos2(θ)+ sin2(θ) = 1, θ ∈ R.

This is called the Pythagorean Identity for cosine and sine, since the equation of
the unit circle and, more generally, the Cartesian distance formula are equivalent to
the Pythagorean theorem.

An equivalent and more geometric definition of the cosine and sine functions is
to consider a right triangle 
[A, B, C] with (acute) angle measure θ at the vertex A
and right angle at the vertex C .2 Since the sum of the angle measures in any triangle
is π , the angle at B has complementary angle measure π/2 − θ . Letting a, b, c be
the side lengths of the sides opposite to A, B, C , we define3

cos(θ) = b

c
and sin(θ) = a

c
.

Now the crux is that these ratios depend only on θ (and not on the specific triangle
chosen) since any other triangle with the same angles is similar to this, and, by the
Birkhoff Postulate of Similarity, the ratios of the corresponding side lengths are
equal.

If the right triangle is constructed within the unit circle (with the length of
the hypotenuse equal to the radius) and with θ in standard position, then these
definitions reduce to the previous definition of sine and cosine.

Swapping the roles of A and B, we immediately obtain the identities for
complementary angles

cos(θ) = sin
(π

2
− θ
)

and sin(θ) = cos
(π

2
− θ
)

, θ ∈ R.

A slight drawback of the geometric definition above is that it defines the cosine
and sine functions only for an acute angle 0 < θ < π/2. There are several (analytic

2Here, by standard practice, we briefly abandon our convention to list the vertices of a (non-
degenerate) triangle 
[A, B, C] such that (A, B, C) is positively oriented.
3Recall our convention a = d(B, C), b = d(C, A), c = d(A, B).
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and geometric) ways to extend these definitions for all θ ∈ R. We have chosen our
initial definition to avoid this problem.

We now introduce a more powerful way of evaluating sine and cosine on specific
angles. Let Pn , n ≥ 3, be a regular n-sided polygon inscribed in S. Denote by ln
the half of the side length of Pn . Recall from Section 5.9 Archimedes’ duplication
formula:

l2n =
√

1−√1− l2
n

2
.

The central angle with vertex at the origin 0 subtended by a side of Pn is 2π/n.
We obtain that ln = sin(π/n). These formulas allow us to calculate the sine (and
cosine) of many special angles.

First, for n = 4, we have the square inscribed in S with diagonal length 2. The
Pythagorean theorem gives l4 = sin(π/4) = √2/2.

For n = 8, using the duplication formula, we calculate

l8 = sin
(π

8

)
=

√√√√1−
√

1− l2
4

2
=

√√√√1−
√

1− 1
2

2
=
√

1− 1√
2

2
=
√

2−√2

2
.

Continuing, a similar computation gives

l16 = sin
( π

16

)
=

√√√√1−
√

1− l2
8

2
=
√

2−
√

2+√2

2
.

We now see the general pattern as

l2n = sin
( π

2n

)
=

√
2−

√
2+

√
2+ · · · + √2

2

with n − 1 nested square roots.4

The Pythagorean identity gives the respective values of the cosine function

cos
( π

2n

)
=
√

1− sin2
( π

2n

)
=

√
2+

√
2+

√
2+ · · · + √2

2

4It is a standard problem for the use of the ratio test (Section 3.4) to sum the infinite series
√

2 +√
2−√2 +

√
2−

√
2+√2 + · · · (without mentioning the trigonometric formula above). This

series can then be written as 2
∑∞

n=2 sin(π/2n) < 2
∑∞

n=2 π/2n = π , where we used the standard
inequality for the sine function (Section 11.5) along with the Infinite Geometric Series Formula.
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with n − 1 nested square roots.5

Another sequence starts with n = 6. Since a hexagon is made up of six equilateral
triangles, we have

l6 = sin
(π

6

)
= cos

(π

3

)
= 1

2
,

where π/6 and π/3 are complementary angles. The duplication formula now gives

l12 = sin
( π

12

)
=
√

2−√3

2
.

Continuing this, we arrive at the general formula

l3·2n = sin
( π

3 · 2n

)
=

√
2−

√
2+

√
2+ · · · +

√
2+√3

2

with n nested square roots.
Once again the Pythagorean identity gives the respective values of the cosine

cos
( π

3 · 2n

)
=

√
2+

√
2+

√
2+ · · · +

√
2+√3

2

with n nested square roots.
We now turn to a geometric description of the graphs of the sine and cosine

functions.
The natural space for the graphs of the sine and cosine functions is the Cartesian

product S × R. This is a (vertical) cylinder in the 3-dimensional space R
3 since

S × R ⊂ R
2 × R = R

3. In terms of the Cartesian coordinates (x, y, z) ∈ R
3,

the equation z = x is the plane that subtends π/4 angle with the third axis and
intersects the coordinate plane spanned by the first two axes (given by z = 0) in the
second coordinate axis. This plane further intersects the cylinder in an ellipse. For
P = (x, y) = (cos(θ), sin(θ)) ∈ S, the point on this ellipse above P has elevation
z = x = cos(θ), so this ellipse is the graph of the cosine function in the cylinder
S× R.

In a similar vein, the plane z = y subtends π/4 angle with the third axis and cuts
an ellipse out of the cylinder S× R. This is the graph of the sine function.
Since these ellipses subtend π/4 angle with the third axis, we now see that the cosine
and sine functions play the same roles in trigonometry as the identity function y = x

5See this also in the Kettering University Mathematics Olympiad, 2009.
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for arithmetic on the real line R. In particular, akin to forming polynomials in the
indeterminate x , we can also form trigonometric polynomials in the indeterminates
cos(θ) and sin(θ).

A byproduct of these constructions is the pair of identities

sin
(
θ + π

2

)
= cos(θ) and cos

(
θ + π

2

)
= − sin(θ), θ ∈ R,

since the two ellipses can be rotated into each other by a quarter turn about the third
axis. (Note that replacing θ by−θ in our earlier “swapping” identities and appealing
to the even-odd properties of cosine and sine, the identities above also follow.)

Finally, note that rolling out the cylinder to the plane R
2 corresponds to the

transformation (cos(θ), sin(θ), z) �→ (θ, z), and the two ellipses are mapped to
the graphs of the cosine and sine functions on the plane R

2.
While the sine and cosine functions are not one-to-one on R, we can restrict them

to suitable domains to find inverses.
First, the cosine function is strictly decreasing on the closed interval [0, π ] and

gives a one-to-one correspondence cos : [0, π ] → [−1, 1]. We use this branch of
the cosine function to define the inverse cos−1 : [−1, 1] → [0, π ]. This inverse is
traditionally called the arccosine function and denoted by arccos.

Second, we can restrict the sine function to the interval [−π/2, π/2] on which it
is strictly increasing. We then obtain the inverse sine or arcsine function sin−1 =
arcsin : [−1, 1] → [−π/2, π/2].
Remark The names “arccosine” and “arcsine” come from the fact that the domain
variable for the cosine and sine functions is an angle, the length of the respective
circular arc on the unit circle. Inverting, this arc length becomes the range variable.

Example 11.2.2 Calculate arcsin and arccos of 1/2.
To determine arcsin(1/2), we need to find the angle θ ∈ [−π/2, π/2] such that

arcsin(1/2) = θ , that is, sin(θ) = 1/2. From our earlier computations, we find that
this angle is θ = π/6. Therefore, we have arcsin(1/2) = π/6. Similarly, solving
cos(θ) = 1/2 with θ ∈ [0, π ], we obtain arccos(1/2) = π/3.

Remark The domains and ranges of the inverse functions are restricted. For
example, while sin(5π/6) = 1/2, this does not mean that arcsin(1/2) = 5π/6
since 5π/6 is not in the range of the arcsine function.

Example 11.2.3 Determine the domains and algebraic representations of the com-
positions cos ◦ arcsin and sin ◦ arccos.

For the first composition cos ◦ arcsin, the domain of the cosine function is
R, but the arcsine function has a domain of [−1, 1]. Therefore the domain of
the composition cos ◦ arcsin is [−1, 1]. This is also the case for the composition
sin ◦ arccos.

Turning to the algebraic representation of cos ◦ arcsin, we let arcsin(x) = θ , or
equivalently, sin(θ) = x , with x ∈ [−1, 1] and θ ∈ [−π/2, π/2]. Since cosine is
an even function, we may assume that θ > 0, and therefore θ is an acute angle. We
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then construct a right triangle with angle θ , side length opposite to θ equal to x , and
hypotenuse equal to 1. The Pythagorean theorem gives the third side as

√
1− x2.

Thus, we have cos(θ) = √1− x2. We conclude that (cos ◦ arcsin)(x) = cos(θ) =√
1− x2.
A similar procedure gives (sin ◦ arccos)(x) = √1− x2 with x ∈ [−1, 1].

Exercises

11.2.1. Let S = S(a,b) be a unit circle with center (a, b) ∈ R
2 such that a2+b2 > 1

(that is, the origin (0, 0) is exterior to S). What is the shortest path from
(0, 0) to the point (2a, 2b) avoiding S?

11.2.2. Determine how to split the unit square into two rectangles such that one
can be inscribed into the other in a tilted position (with its vertices on the
respective sides of the other).

11.3 Principal Identities for Sine and Cosine

The pair of identities in the previous section raises the following question: Are there
general identities expressing the cosine and sine of the sum of two angles in terms
of the cosine and sine of the angles themselves? The answer is “yes,” and we now
proceed to derive these so-called trigonometric addition formulas.

Let α, β ∈ R. We denote P = (cos(α), sin(α)), Q = (cos(β), sin(β)), and
R = (cos(α−β), sin(α−β)), three points on S with respective angle measures α, β,
and α−β. By the Birkhoff Postulate of Similarity, the isosceles triangles
[0, P, Q]
and 
[0, E, R] with E = (1, 0) are congruent since their angle measures at 0 are
the same (α − β). Thus, we have d(P, Q)2 = d(E, R)2. The Cartesian distance
formula gives

(cos(α)− cos(β))2 + (sin(α)− sin(β))2 = (cos(α − β)− 1)2 + sin(α − β)2.

Expanding, and using the Pythagorean identity three times, we obtain

2− 2 cos(α) cos(β)− 2 sin(α) sin(β) = 2− 2 cos(α − β).

Simplifying, we arrive at the identity

cos(α − β) = cos(α) cos(β)+ sin(α) sin(β) α, β ∈ R.

Replacing β by its negative and using the even-odd identities, the identity above
immediately gives
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cos(α + β) = cos(α) cos(β)− sin(α) sin(β) α, β ∈ R.

Finally, translating by π/2, we calculate

sin(α + β) = − cos
(
α + β + π

2

)

= − cos
(
α + π

2

)
cos(β)+ sin

(
α + π

2

)
cos(β)

= sin(α) cos(β)+ cos(α) sin(β).

Once again replacing β by its negative, we obtain

sin(α − β) = sin(α) cos(β)− cos(α) sin(β).

We summarize that the addition formulas for sine and cosine are as follows:

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

cos(α − β) = cos(α) cos(β)+ sin(α) sin(β)

sin(α + β) = sin(α) cos(β)+ cos(α) sin(β)

sin(α − β) = sin(α) cos(β)− cos(α) sin(β).

The following example is a simple application of the addition formula for sine:

Example 11.3.1 Let a, b ∈ R, a2+b2 > 0. Write6 a sin α+b cos α as an expression
involving a single sine.

Let P = (a/
√

a2 + b2, b/
√

a2 + b2) ∈ R
2. Then P ∈ S so that P =

(cos β, sin β) for some β ∈ R. With this, we obtain

a sin α + b cos α =
√

a2 + b2 (sin α cos β + cos α sin β) =
√

a2 + b2 sin(α + β).

The Cauchy–Schwarz inequality can be combined with trigonometric identities
to obtain new trigonometric inequalities. The following is a simple example of this.

Example 11.3.2 For 0 < α, β < π/2, α, β ∈ R, show that

cos3 α

cos β
+ sin3 α

sin β
≥ 1

cos(α − β)
.

To show this, we first note that on the domain (0, π/2) both cosine and sine are
positive. The Cauchy–Schwarz inequality gives

6To simplify the notation, whenever convenient, we suppress the parentheses in sin(α) and cos(α),
etc.
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(
cos3 α

cos β
+ sin3 α

sin β

)
· (cos α cos β + sin α sin β) ≥

(
cos2 α + sin2 α

)2 = 1.

Using the addition formula for cosine, the inequality now follows.

Example 11.3.3 We have

arcsin x ± arcsin y = arcsin

(
x
√

1− y2 ± y
√

1− x2

)

arccos x ± arccos y = arccos

(
xy ∓

√
(1− x2)(1− y2)

)
.

These formulas are direct consequences of the addition formulas for the sine and
cosine functions. For the first formula, we calculate

sin(arcsin x ± arcsin y) = sin(arcsin x) cos(arcsin y)± cos(arcsin x) sin(arcsin y)

= x
√

1− y2 ± y
√

1− x2,

where we used the results of Example 11.2.3.
The second formula can be derived in a similar way.

Setting α = β in the addition formulas, we obtain the so-called double angle
formulas

cos(2α) = cos2(α)− sin2(α) = 1− 2 sin2(α) = 2 cos2(α)− 1

sin(2α) = 2 cos(α) sin(α),

where in the first equality we used the Pythagorean identity and gave two alterna-
tives.

The first equality gives the power reducing formulas

cos2(α) = 1+ cos(2α)

2
and sin2(α) = 1− cos(2α)

2
.

Replacing α by its half, we arrive at the half angle formulas

cos2
(α

2

)
= 1+ cos(α)

2
and sin2

(α

2

)
= 1− cos(α)

2
.

(We did not take the square roots of both sides on purpose as they depend on the
sign of the cosine and sine of the half angle. Note that these half angle formulas can
also be used instead of Archimedes’ duplication formula to obtain the root formulas
for the sine and cosine of the special angles in Section 11.2.)
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Fig. 11.2 The regular
pentagon and the golden
number.
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History
The addition formulas for sine and cosine were discovered by the Persian mathematician Abū
al-Wafā’ Būzjānı̄ (940–997/998 CE).

Example 11.3.4 (Regular Pentagon and the Golden Number) Consider a regular
pentagon with vertices P0, P1, P2, P3, P4 (see Figure 11.2). By scaling, we may
assume that the side length of the pentagon is unity. Let Q be the intersection of the
diagonal line segments [P1, P3] and [P2, P4]. Since a diagonal of a regular pentagon
is always parallel to one of its sides, we see that the quadrilateral with vertices
P0, P1, Q, P4 is a rhombus. Thus, we have d(P1, Q) = d(P4, Q) = 1. Define
τ = d(P1, P4). (We will see shortly that this is the golden number (Example 3.1.2),
so that this notation will be justified.) Clearly, the isosceles triangles 
[P1, Q, P4]
and 
[P2, Q, P3] are similar. By Birkhoff’s Postulate of Similarity, we have

d(P1, Q)

d(P3, Q)
= d(P1, P4)

d(P2, P3)
.

Substituting the known quantities, we obtain d(P3, Q) = 1/τ . On the other hand,
d(P1, P3) = d(P1, Q)+ d(Q, P3) so that τ = 1+ 1/τ . We see that τ is the golden
number τ = (1+√5)/2.

We now change the settings, and let O be the center of the pentagon. The
central angle � P0 O P1 has measure 2π/5. Since the sum of the (interior) angles
in a triangle is equal to π , we obtain α = μ(� P1 P0 O) = π/2 − π/5. Let the
radial segment [O, P0] intersect with the diagonal [P1, P4] at the point R. Then the
triangle
[P0, P1, R] has right angle at R and we obtain sin(α) = τ/2. Substituting
the value of α, we obtain

sin
(π

2
− π

5

)
= cos

(π

5

)
= τ

2
.
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The root formula for the golden number now gives

cos
(π

5

)
= 1+√5

4
.

Using the Pythagorean identity, we also obtain

sin
(π

5

)
=
√

10− 2
√

5

4
.

As an application, we derive a root formula for sin(π/10). Using the half angle
formula for sine, we calculate

sin2
( π

10

)
= 1− cos

(
π
5

)
2

= 1− 1+√5
4

2
= 3−√5

8
=
(√

5− 1

4

)2

.

Thus, we have

sin
( π

10

)
=
√

5− 1

4
.

A somewhat more advanced exercise using trigonometry developed so far is the
following:

Example 11.3.5 Let n ∈ N. Show that

n−1∏
j=0

cos(2 jα) = sin (2nα)

2n sin α
.

We proceed with Peano’s Principle of Induction with respect to n ∈ N. For n = 1,
we have

cos(α) = sin(2α)

2 sin α
.

This is the double angle formula for sine. For the general induction step n ⇒ n+ 1,
we use the induction hypothesis and calculate

n∏
j=0

cos(2 jα) =
n−1∏
j=0

cos(2 jα) · cos(2nα) = sin (2nα)

2n sin α
· cos(2nα)

= 2 sin(2nα) cos(2nα)

2n+1 sin α
= sin(2n+1α)

2n+1 sin α
,
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where we used the double angle formula for the sine. The induction is complete,
and the example follows.

Another direct consequence of the addition formulas for cosine and sine is the
set of so-called product to sum formulas:

2 cos α cos β = cos(α − β)+ cos(α + β)

2 sin α cos β = sin(α + β)+ sin(α − β)

2 sin α sin β = cos(α − β)− cos(α + β).

These come handy at times in computations as the following example shows:

Example 11.3.6 Let n ∈ N0. Show that

n∑
k=0

sin(α + kβ) = sin α + sin(α + β)+ · · · + sin(α + nβ) =
sin
(
α + nβ

2

)
sin (n+1)β

2

sin β
2

n∑
k=0

cos(α + kβ) = cos α + cos(α + β)+ · · · + cos(α + nβ) =
cos
(
α + nβ

2

)
sin (n+1)β

2

sin β
2

.

We derive only the first formula; the proof of the second formula is analogous.
We proceed by induction with respect to n ∈ N. The initial case n = 0 is a tautology.
Using the induction hypothesis in the general induction step n− 1⇒ n, we need to
show

sin

(
α + (n − 1)β

2

)
sin

nβ

2
+ sin(α + nβ) sin

β

2
= sin

(
α + nβ

2

)
sin

(n + 1)β

2
.

Using the last product to sum formula for each of the three products, all terms cancel,
so that equality holds. The example follows.

Since the cosine and sine functions play dual roles, we define a trigonometric
polynomial as an expression p(cos(θ), sin(θ)), where p(x, y) is a polynomial in
the indeterminates x and y.

For example, the right-hand sides in the double angle formulas are trigonometric
polynomials: 2x2 − 1 and 2xy with x = cos(α) and y = sin(α).
Using these, we derive the triple angle formulas for cosine and sine as follows:

cos(3α) = cos(2α + α) = cos(2α) cos(α)− sin(2α) sin(α)

= (2 cos2(α)− 1) cos(α)− 2 cos(α) sin2(α)

= 2 cos3(α)− cos(α)− 2 cos(α)(1− cos2(α)) = 4 cos3(α)− 3 cos(α).

In a similar vein, we calculate
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sin(3α) = sin(2α + α) = sin(2α) cos(α)+ cos(2α) sin(α)

= 2 cos2(α) sin(α)+ (2 cos2(α)− 1) sin(α)

= (4 cos2(α)− 1) sin(α) = −4 sin3(α)+ 3 sin(α),

where in the last equality we used the Pythagorean identity.
Summarizing, we have the triple angle formulas

cos(3α) = 4 cos3(α)− 3 cos(α) = 4x3 − 3x

sin(3α) = −4 sin3(α)+ 3 sin(α) = −4y3 + 3y.

Example 11.3.7 Derive the identity

sin(3α)

sin(α)
− cos(3α)

cos(α)
= 2, α �= k

π

2
, k ∈ Z.

Indeed, by the triple angle formulas, we have

sin(3α)

sin(α)
− cos(3α)

cos(α)
= −4 sin2(α)+ 3− 4 cos2(α)+ 3

= −4(sin2(α)+ cos2(α))+ 6 = −4+ 6 = 2,

where we used the Pythagorean identity.
Note that another way of solving this problem is to represent the trigonometric

expressions in α as polynomial expressions in x and y and use x2 + y2 = 1.

We now digress from the main line and show yet another application of the triple
angle formula for cosine, to find the roots of a cubic polynomial (Section 7.2). More
specifically, recall that if, for the critical expression, we have

(q

2

)2 +
( p

3

)3
< 0,

then the reduced cubic equation

x3 + px + q = 0

has three real roots, but our cubic formula gives them only in complex form.
The novel idea here, due to François Viète, is to compare the reduced cubic

equation with the triple angle formula written in the following form:

4 cos3(θ)− 3 cos(θ)− cos(3θ) = 0.

Letting x = u cos(θ) with u = 2
√−p/3 (note that, due to our assumption on the

critical expression, p < 0), our reduced cubic equation takes the form
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4 cos3(θ)− 3 cos(θ)+ 4q/u3 = 0,

since 4p/u2 = −3. For the constant term, we have

4q

u3 =
q

2
√
− ( p

3

)3 =
3q

2p

√
− 3

p
.

Matching this with the triple angle formula, we obtain

3θ = arccos

(
3q

2p

√
− 3

p

)
.

(Note that our assumption on the critical expression implies that the argument in
arccos is in [−1, 1], so that it is well-defined.) Since = u cos(θ), this gives the three
real solutions of our reduced cubic as follows:

x = 2

√
− p

3
cos

(
1

3
arccos

(
3q

2p

√
− 3

p

)
+ 2kπ

3

)
k = 0, 1, 2,

where we incorporated the periodicity with an integer multiple of 2π .

Remark As yet another application of the triple angle formula for cosine, letting
α = π/9, we have

cos
(π

3

)
= 4 cos3

(π

9

)
− 3 cos

(π

9

)
.

Since cos(π/3) = 1/2, we obtain that cos(π/9) is a root of the cubic equation

8x3 − 6x − 1 = 0.

We encountered this in Example 7.4.5. Recall that, according to the Rational
Root Theorem (Section 7.4), the possible rational roots are±1,±1/2,±1/4,±1/8.
Upon substituting, none of these solve the cubic equation. (In particular, this cubic
is irreducible over Q.) We conclude that cos(π/9) is an irrational number. Since
it is a root of an irreducible cubic polynomial, it follows by a somewhat advanced
algebraic reasoning that π/9 is not constructible (as the length of a line segment)
by straightedge and compass. Since this is 1/3 of the constructible π/6, we see
that there is no geometric construction by straightedge and compass to trisect an
arbitrary angle.

Example 11.3.8 Show that



11.3 Principal Identities for Sine and Cosine 485

8 · cos
(π

9

)
· cos

(
2π

9

)
· cos

(
4π

9

)
= 1.

We have seen in the previous example that cos(π/9) is an irrational root of the
polynomial equation 8x3 = 6x + 1. Letting x = cos(π/9) and using the double
angle formula for the cosine function, we have

cos

(
2π

9

)
= 2 cos

(π

9

)2 − 1 = 2x2 − 1

cos

(
4π

9

)
= 2 cos

(
2π

9

)2

− 1 = 2(2x2 − 1)2 − 1.

The triple product in question can be written as 8x(2x2 − 1)(2(2x2 − 1)2 − 1).
We expand this product while systematically reducing its degree using the cubic
equation for x above. We calculate

8x(2x2 − 1)(2(2x2 − 1)2 − 1) = 8(2x3 − x)(8x4 − 8x2 + 1)

= 8

(
6x + 1

4
− x

)(
x(6x + 1)− 8x2 + 1

)
= 2(2x + 1)(−2x2 + x + 1)

= 2(−4x3 + 3x + 1) = −8x3 + 6x + 2 = 1.

The example follows.

The following formulas, still due to François Viète, give the expansion of sin(nα)

and cos(nα), n ∈ N, as trigonometric polynomials in the indeterminates cos α and
sin α:

cos(nα) =
n∑

k=0

cos

(
kπ

2

)(
n

k

)
sink α cosn−k α

sin(nα) =
n∑

k=0

sin

(
kπ

2

)(
n

k

)
sink α cosn−k α.

Note that the coefficients cos(kπ/2) and sin(kπ/2) take values ±1 and 0, and half
of the terms in each sum above are zero.

These formulas can be derived simultaneously by Peano’s Principle of Induction.
The initial case n = 1 for both formulas is a tautology. We perform the general
induction step n ⇒ n = 1 for the second formula (for a change); the computations
for the first formula are analogous. We have

sin((n + 1)α) = sin(nα) cos α + cos(nα) sin α
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= cos α

(
n∑

k=0

sin

(
kπ

2

)(
n

k

)
sink α cosn−k α

)

+ sin α

(
n∑

k=0

cos

(
kπ

2

)(
n

k

)
sink α cosn−k α

)

=
n∑

k=0

sin

(
kπ

2

)(
n

k

)
sink α cos(n+1)−k α

+
n∑

k=0

cos

(
kπ

2

)(
n

k

)
sink+1 α cos(n+1)−(k+1) α.

Shifting the index in the second sum, it becomes

n+1∑
k=1

cos

(
(k − 1)π

2

)(
n

k − 1

)
sink α cos(n+1)−k α

=
n+1∑
k=1

sin

(
kπ

2

)(
n

k − 1

)
sink α cos(n+1)−k α.

Substituting this, noticing the vanishing of the initial term (k = 0), splitting off the
final term (k = n + 1), and joining the two sums, we calculate

sin((n + 1)α) = sin

(
(n + 1)π

2

)
sinn+1 α

+
n∑

k=1

sin

(
kπ

2

)((
n

k − 1

)
+
(

n

k

))
sink α cos(n+1)−k α

= sin

(
(n + 1)π

2

)
sinn+1 α

+
n∑

k=1

sin

(
kπ

2

)(
n + 1

k

)
sink α cos(n+1)−k α,

where we used the inductive binomial identity in Section 6.3. Finally, putting back
the initial (vanishing) term and the final term, we arrive at

sin((n + 1)α) =
n+1∑
k=0

sin

(
kπ

2

)(
n + 1

k

)
sink α cos(n+1)−k α.

The general induction step is complete, and the formula follows.
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Despite their compact appearance, the general multiple angle formulas for cosine
and sine are not very convenient to work with.

About three centuries later, another approach was put forward by Chebyshev. To
motivate this, we return to our double and triple angle formulas and observe that,
for n = 1, 2, 3, the expressions cos(nα) and sin(nα)/ sin(α) are polynomials in the
indeterminate cos(α).

This is true in general; in fact, we have

cos(nα) = Tn(cos(α)) and
sin(nα)

sin(α)
= Un−1(cos(α)), n ∈ N,

where Tn and Un are polynomials of degree n.
According to our computations, we have

T1(x) = x U0(x) = 1,

T2(x) = 2x2 − 1 U1(x) = 2x

T3(x) = 4x3 − 3x U2(x) = 4x2 − 1.

In general, Tn and Un satisfy the following inductive relations:

Tn+1(x) = xTn(x)− (1− x2)Un−1(x)

Un+1(x) = xUn(x)+ Tn+1(x).

Indeed, these relations are direct consequences of the addition formulas

cos((n + 1)α) = cos(nα) cos(α)− sin(nα) sin(α)

= cos(α) cos(nα)− (1− cos2(α))
sin(nα)

sin(α)

sin((n + 2)α) = sin((n + 1)α) cos(α)+ cos((n + 1)α) sin(α)

=
(

cos(α)
sin((n + 1)α)

sin(α)
+ cos((n + 1)α)

)
sin(α).

Now, a simple induction in the use of these recurrence formulas shows that Tn and
Un are polynomials of degree n. These are called Chebyshev polynomials.

Example 11.3.9 Use the Chebyshev inductive relations to derive the quadruple
angle formulas.

We calculate

T4(x) = xT3(x)−(1−x2)U2(x) = x(4x3−3x)−(1−x2)(4x2−1) = 8x4−8x2+1,



488 11 Trigonometry

and

U3(x) = xU2(x)+ T3(x) = x(4x2 − 1)+ 4x3 − 3x = 8x3 − 4x .

Thus, we have

cos(4α) = 8 cos4(α)− 8 cos2(α)+ 1

sin(4α) = 8 cos3(α) sin(α)− 4 cos(α) sin(α).

(Note that these formulas can also be obtained by applying twice the double angle
formulas.)

We close this section by deriving several important formulas pertaining to the
side lengths and angles of a general (non-degenerate) triangle 
[A, B, C] with
(non-collinear) vertices A, B, C . As usual, we denote the angle measures at the
vertices A, B, C by α, β, γ and the side lengths by a = d(B, C), b = d(C, A),
c = d(A, B). The metric quantities α, β, γ, a, b, c are not independent. We have
α+ β + γ = π . In particular, we see that the angles have the following restrictions:
α+ β < π , β + γ < π , γ + α < π . In addition, by the triangle inequality, we have
a < b+ c, b < c+ a, c < a + b. Apart from these, we claim that the choice of any
three independent quantities from a, b, c and α, β, γ (that is, with the exception of
choosing the three angles) determines the triangle 
[A, B, C] (up to congruence),
and thereby the rest of the quantities can be computed.

This can be shown by the Laws of Cosines and Sines, which we now proceed to
discuss.

We recall the following formula from Section 5.6:

d(A0, B0)
2 = 2+ c2 − a2 − b2

ab
,

where A0, and respectively B0, is the point at unit distance from the vertex C on
the half-line with end-point C and containing A, and respectively B. The triangle

[A0, B0, C] is isosceles (since d(A0, C) = d(B0, C) = 1). The altitude through
C splits this triangle into two congruent right triangles. We thus have sin(γ /2) =
d(A0, B0)/2. The half angle formula gives sin2(γ /2) = d(A0, B0)

2/4 = (1 −
cos γ )/2. Using this to eliminate d(A0, B0) in the formula above, after rearranging,
we arrive at the Law of Cosines

c2 = a2 + b2 − 2ab cos γ.

Remark Note that γ = π/2 gives the Pythagorean Theorem c2 = a2 + b2.
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History
Trigonometric functions were not known to the ancient Greeks mainly because of the notion of
function had not been developed at that time. On the other hand, they certainly knew that the ratios
of the respective side lengths of two similar triangles are equal. This, applied to right triangles,
immediately gives that the ratios of side lengths depend only on the (two acute) angles of the
right triangle. This implicitly leads to the fact that these ratios are functions depending only on
these angles. With this in mind, Propositions 12 and 13 in Book II of Euclid’s Elements give an
essentially equivalent formulation of the Law of Cosines.

In the following example, we return to origami, this time performed on an
equilateral triangle.

Example 11.3.10 Fold an equilateral triangle 
[A, B, C] of side length 1 along a
crease line segment [P, Q] with P ∈ [A, C] and Q ∈ [B, C] such that the vertex C
folds over to a point C ′ ∈ [A, B]. Assume that C ′ splits the side [A, B] in the ratio
p ÷ q, p + q = 1. Show that the length of the crease is

d(P, Q) =
√

(p2 − p + 1)2

(2− p)2 − (p2 − p + 1)(q2 − q + 1)

(2− p)(2− q)
+ (q2 − q + 1)2

(2− q)2 .

(Note the special case p = 1 and q = 0 (C ′ = B) giving d(P, Q) = √3/2, the
height of the equilateral triangle.)

Let x = d(C, P) = d(C ′, P) and y = d(C, Q) = d(C ′, Q). The Law of
Cosines applied to the triangles
[A, P, C ′] and
[B, Q, C ′] gives x2 = (1−x)2+
p2− p(1−x) and y2 = (1− y)2+q2−q(1− y), where we used that the side length
of our original triangle is unity and cos(π/3) = 1/2. Simplifying, and solving for x
and y, we obtain x = (p2− p+1)/(2− p) and y = (q2−q+1)/(2−q). Finally, we
apply the Law of Cosines to the triangle
[P, Q, C] to get d(P, Q)2 = x2+y2−xy.
Substituting, the claimed formula follows.

Example 11.3.11 We briefly revisit Example 8.3.2 here and give a more illuminat-
ing solution to the problem: In an ellipse, the product of the distances of the two
foci from any tangent line to the ellipse is equal to the square of the semiminor axis.

We let F± be the foci, P0 the point of tangency of the tangent line to the
ellipse, d(F−, F+) = 2c, d(F±, P0) = d±, d− + d+ = 2a, and, finally, G± the
perpendicular projections of F± to the tangent line �, d(F±, �) = d(F±, G±). By
the reflective property of the ellipse, we have α = μ(� G−P0 F−) = μ( � F+P0G+).

The Law of Cosines applied to the triangle 
[F−, P0, F+] can be written as

(2c)2 = d2− + d2+ − 2d−d+ cos(π − 2α).

This, combined with (2a)2 = (d− + d+)2 = d2− + d2+ + 2d−d+, gives

4b2 = 4(a2 − c2) = 2d−d+(1− cos(2α)) = 4d−d+ sin2 α.
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We arrive at

d(F−, �)d(F+, �) = d− sin α · d+ sin α = b2.

The example follows.

The Law of Cosines relates the three side lengths of a triangle to one of the angle
measures. Another formula, the so-called Law of Sines, relates two side lengths to
two angle measures. We now proceed to derive this.

Let C be the circumcircle of the triangle 
[A, B, C] with circumradius R.
(Recall from Section 5.5 that the circumcircle is the unique circle through the
three vertices A, B, C whose circumcenter O is the common meeting point of the
perpendicular bisectors of the three sides [A, B], [B, C], and [C, A].) We claim

sin γ = c

2R
.

We consider the side [A, B] as a chord of C. Let C0 ⊂ C be the circular arc with
end-points A and B containing C . We distinguish three cases.

I. The chord [A, B] is a diameter of the circumcircle C, and hence c = d(A, B) =
2R. By Thales’ Theorem,7 
[A, B, C] is a right triangle with right angle at C .
We thus have γ = π/2 and hence sin γ = 1. The claim follows in this case.

II. C0 is the longer circular arc of C with end-points A and B. In this case we
move the vertex C ∈ C0 to another point C ′ ∈ C0 such that O ∈ [B, C ′].
By the Central Angle Theorem, the angle measure at the vertex C ′ of the
triangle
[A, B, C ′] stays γ . Since [B, C ′] is a diameter of C, again by Thales’
Theorem, 
[A, B, C ′] is a right triangle (with right angle at the vertex A). The
claim follows in this case from the definition of sine.

III. C0 is the shorter circular arc of C with end-points A and B. In this case we move
C ∈ C0 to a point C ′ ∈ C \ C0. By the Central Angle Theorem again, the angle
measure γ changes to π − γ . But sin(π − γ ) = sin γ , and the previous case
applies. The claim follows.

Applying the formula to all sides of the triangle, we arrive at the Law of Sines8

sin α

a
= sin β

b
= sin γ

c
= 1

2R
.

In addition to their side lengths and angles, triangles have many more metric
characteristics such as perimeter, inradius, circumradius, etc. (For the last two, see

7Here and in what follows, we use Thales’ Theorem and its generalization, the Central Angle
Theorem. These can be derived as straightforward applications of the pons asinorum; see Exercise
5.5.2 at the end of Section 5.5.
8Note that another very simple proof of the first two equalities can be obtained by writing down
the definition of sine for the three angles with respect to the three lengths of the altitude lines of
the triangle.
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Section 5.5.) To close this section, we derive a few classical formulas for these in
terms of the sides a, b, c and angles α, β, γ of our triangle 
[A, B, C].

First, the Law of Cosines can be written as cos α = (b2+ c2− a2)/(2bc). Using
the Pythagorean identity, we replace the cosine by sine and calculate

sin α =
√

1− cos2(α) =
√

1−
(

b2 + c2 − a2

2bc

)2

=
√

(2bc)2 − (b2 + c2 − a2)

2bc

=
√

(2bc − b2 − c2 + a2)(2bc + b2 + c2 − a2)

2bc
=
√

(a2 − (b − c)2)((b + c)2 − a2)

2bc

=
√

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

2bc
= 2
√

s(s − a)(s − b)(s − c)

bc
,

where, in the last equality, we used the semiperimeter (half of the perimeter) s =
(a + b + c)/2 of the triangle 
[A, B, C]. Using the Law of Sines, we write the
formula above in a more symmetric form as

sin α

a
= sin β

b
= sin γ

c
= 2
√

s(s − a)(s − b)(s − c)

abc
= 1

2R
,

where we inserted the expression in the circumradius at the end.

Remark Although in this book we systematically avoided discussing areas (and
integrals), we see no harm noting that, taking the side [A, B] with length c as the
base, the height of the triangle
[A, B, C] is b sin α. Thus, the area of our triangle is
A = (1/2)bc sin α. Using our formula for sin α above, we finally arrive at Heron’s
formula

A = √s(s − a)(s − b)(s − c).

As a beautiful application, we show that, among the triangles of a given
perimeter, the equilateral triangle has the largest area.

Let s > 0 be the given semiperimeter. For a triangle with side lengths a, b, c, the
AM-GM inequality in the three variables s − a, s − b, s − c gives

(s − a)(s − b)(s − c) ≤
(

s − a + s − b + s − c

3

)3

=
( s

3

)3
.

Moreover, equality holds if and only if s − a = s − b = s − c, that is, if and only if
a = b = c. Now, by Heron’s formula, we have

A = √s(s − a)(s − b)(s − c) ≤
√

s
( s

3

)3 = s2

3
√

3
.
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Equality, maximum of A, holds if and only if a = b = c. Notice that, as a byproduct,
we also obtained the area of an equilateral triangle in terms of its semiperimeter.

As a second application of Heron’s formula, recall that the incircle is the
largest circle inscribed in the triangle. As such, it touches each side at a point of
tangency. By the characteristic property of the circle discussed in Section 5.5, the
line segments connecting the incenter (the center of the incircle) and these points of
tangency are perpendicular to the respective sides. Thus, the inradius r > 0 is the
height of the three sub-triangles that the original triangle is split by the three line
segments from the incenter to the vertices. The areas of these three sub-triangles
add up to the area A of our triangle. We have

A = ar

2
+ br

2
+ cr

2
= r

a + b + c

2
= rs.

Using Heron’s formula, we obtain

r = A
s
=
√

(s − a)(s − b)(s − c)

s
.

Combining our formulas for the inradius and circumradius, we obtain

r R = A
s
· abc

4A =
abc

4s
= abc

2(a + b + c)
.

Exercises

11.3.1. Derive the addition formulas for cosine and sine in the following geometric
way (for 0 < α, β, α + β < π/2) (see Figure 11.3). Let T1 be a right
triangle with an acute angle α and hypotenuse cos β and T2 a right triangle
with an acute angle β and hypotenuse 1. Paste T1 and T2 together along the
common length sides such that the acute angles α and β share a common
vertex. Finally, insert this configuration into a rectangle and calculate each
side length of the rectangle in two ways.

11.3.2. Let a2 + b2 = c2 + d2 = 1, a, b, c, d ∈ R. Show that |ac + bd| ≤ 1.
11.3.3. Let 0 < a, b ∈ R such that a2 + b2 = 1. Define the real sequence (cn)∞n=0

inductively by c0 = 0 and cn+1 = a · cn + b · √1− c2
n , n ∈ N0. Show

that 0 < cn ≤ 1, n ∈ N; in particular, the sequence (cn)∞n=0 is well-defined.
Prove that, for a ≤ √2/2, we have cn+2 = cn , n ∈ N; that is, the sequence
(cn)∞n=1 is periodic with period 2.

11.3.4. Derive the following identities:

sin3(α) = 3 sin(α)− sin(3α)

4
and sin4(α) = 3− 4 cos(2α)+ cos(4α)

8
.

Derive the similar identities for the powers of cosine.
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Fig. 11.3 Geometric proof of
the addition formulas for sine
and cosine.

cos α cos β
α
ββ

cos β

1
α

sin β
α + β

sin α cos β
cos α sin β

sin α sin βcos (α + β)

si
n 

(α
 +

 β
)

11.3.5. Derive the following identities:

sin2(α) cos2(α) = 1− cos(4α)

8
;

sin3(α) cos3(α) = 3 sin(2α)− sin(6α)

32
;

sin4(α) cos4(α) = 3− 4 cos(4α)+ cos(8α)

128
.

11.3.6. Show that arcsin(x)+ arccos(x) = π/2
11.3.7. Given α + β + γ = π , show that

sin(2α)+ sin(2β)+ sin(2γ ) = 4 sin α sin β sin γ.

11.3.8. Given α + β + γ = π , show that

tan(α)+ tan(β)+ tan(γ ) = tan(α) tan(β) tan(γ ).

11.3.9. Show that if n ∈ N is not divisible by 3, then a (given) angle with angle
measure π/n can be trisected by straightedge and compass.9 (Note the
contrast with the remark following Example 11.3.7.)

11.3.10. Show that the Chebyshev polynomials Tn(x) and Un−1 with n ∈ N satisfy
“Pell’s Equation”

T 2
n (x)− (x2 − 1)U 2

n−1(x) = 1.

11.3.11. Calculate Tn(±1) and Un−1(±1) for n ∈ N.

9Inspired by a problem in the USA Mathematical Olympiad, 1981.
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11.3.12. Derive the identity

2Tm(x)Tn(x) = Tm+n(x)+ Tm−n(x), m > n, m, n ∈ N.

11.3.13. Show that the Chebyshev polynomial Tn(x) restricted to the interval [−1, 1]
has n roots and has range [−1, 1].

11.3.14. Use induction with respect to n ∈ N to show

T ′n(c) = nUn−1(c) and (c2−1)U ′n(c)+cUn(c)=(n+1)Tn+1(c), c ∈ R.

11.3.15. Derive the sum to product formulas:

cos α + cos β = 2 sin
α + β

2
sin

α − β

2

cos α − cos β = −2 sin
α + β

2
sin

α − β

2

sin α + sin β = 2 sin
α + β

2
cos

α − β

2
.

11.3.16. Use Example 11.3.6 to derive the Lagrange identities:

n∑
k=1

sin(kα) = cos(α/2)− cos((n + 1/2)α)

2 sin(α/2)

n∑
k=1

cos(kα) = − sin(α/2)+ sin((n + 1/2)α)

2 sin(α/2)
.

11.4 Trigonometric Rational Functions

Just as rational functions can be constructed from polynomials by allowing divi-
sions, we can form trigonometric rational functions from trigonometric polynomi-
als.

The most basic trigonometric rational functions are the tangent and cotangent
functions tan : R→ R and cot : R→ R defined by

tan(θ) = y

x
= sin(θ)

cos(θ)
and cot(θ) = x

y
= cos(θ)

sin(θ)
.

The domain of the tangent function is the set of real numbers θ ∈ R

for which cos(θ) �= 0. Since the cosine function vanishes on the odd
multiples of π/2, we obtain that the tangent function is defined on the domain{
θ ∈ R

∣∣ θ �= (2n + 1)π/2, n ∈ Z
}
.
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Similarly, the cotangent function is defined away from the zero-set of the sine
function, the integer multiples of π . Therefore the domain of definition of the
cotangent function is

{
θ ∈ R

∣∣ θ �= nπ, n ∈ Z
}
.

By definition, the tangent and cotangent functions are connected through the
identity

tan(θ) · cot(θ) = 1, θ ∈ R.

(We use here our convention that the variable θ is unrestricted in R with the tacit
understanding that the respective functions may not be defined on the whole R.)

Since they are fractions of the cosine and sine functions, the tangent and
cotangent functions are automatically periodic with period 2π . In fact, their shorter
period is π . It is enough to show this for the tangent function:

tan(θ + nπ) = sin(θ + nπ)

cos(θ + nπ)
= sin(θ) cos(nπ)

cos(θ) cos(nπ)
= sin(θ)

cos(θ)
= tan(θ), n ∈ Z.

Since the cosine function is even and the sine function is odd, both the tangent
and cotangent functions are odd: tan(−θ) = − tan(θ) and cot(−θ) = − cot(θ).

Of lesser importance but sometimes useful are the secant and cosecant functions
sec : R→ R and csc : R→ R defined by

sec(θ) = 1

x
= 1

cos(θ)
and csc(θ) = 1

y
= 1

sin(θ)
.

The properties of the secant and cosecant functions are readily derived from those
of the cosine and sine functions.

Dividing the Pythagorean identity by the squares of cosine and sine functions,
we obtain the Pythagorean identities for the tangent and cotangent functions:

tan2(θ)+ 1 = sec2(θ) and cot2(θ)+ 1 = csc2(θ).

Returning to our right triangle 
[A, B, C] above, with angle θ ∈ (0, π/2) at A
and right angle at C , we have

tan(θ) = a

b
, cot(θ) = b

a
, sec(θ) = c

b
, csc(θ) = c

a
.

With these, we exhausted all possible ratios of the side lengths a, b, c.

Remark Note that the tangent of the angle measure θ that a line makes with the
positive first axis is the slope m of the line: m = tan(θ).

Swapping the roles of A and B above, we obtain the identities

cot(θ) = tan
(π

2
− θ
)

and csc(θ) = sec
(π

2
− θ
)

, θ ∈ R.
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Due to periodicity, the trigonometric rational functions above are not one-to-one
on their entire domains. Just like in the case of the sine and cosine functions, we
need to restrict them to obtain suitable inverses. To begin with, it follows directly
from the definition that the tangent function is strictly increasing on the interval
(−π/2, π/2) and its range is the whole R. The inverse tan−1 = arctan : R →
(π/2, π/2) is therefore defined on this branch. Similarly, the cotangent function is
strictly decreasing on the interval (0, π) with range R, and we obtain the inverse
cot−1 = arccot : R→ (0, π).

Using the same reasoning, we define sec−1 = arcsec : (−∞,−1] ∪ [1,∞) →
[0, π/2) ∪ (π/2, π ] and csc−1 = arccsc : (−∞,−1] ∪ [1,∞) → [−π/2, 0) ∪
(0, π/2].

Example 11.4.1 Determine the domain and the algebraic representation of the
composition cos ◦ arctan.

Both functions arctan and cos are defined on R; therefore, the domain of
the composition is also R. We let arctan(x) = θ , that is, tan(θ) = x with
θ ∈ (−π/2, π/2). Since the cosine function is even and the tangent function
is odd, we may assume that θ > 0, an acute angle. We now construct a right
triangle of angle θ with side length opposite to θ equal to x and adjacent side
length equal to 1. The Pythagorean Theorem gives the length of the hypotenuse
as
√

1+ x2. Moreover, from this triangle, we have cos(θ) = 1/
√

1+ x2. Therefore
(cos ◦ arctan)(x) = 1/

√
1+ x2, x ∈ R.

Addition formulas for our new trigonometric functions are readily obtained. We
give some details only for the tangent and cotangent functions. Using the addition
formulas for sine and cosine, we calculate

tan(α + β) = sin(α + β)

cos(α + β)
= sin(α) cos(β)+ cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)
= tan(α)+ tan(β)

1− tan(α) tan(β)
.

With this we obtain the addition formulas for the tangent function

tan(α ± β) = tan(α)± tan(β)

1∓ tan(α) tan(β)
.

Similarly (taking reciprocals), we have

cot(α ± β) = cot(α) cot(β)∓ 1

cot(α)± cot(β)
.

Example 11.4.2 Let �1 and �2 be two intersecting non-perpendicular (non-vertical)
lines in the plane forming a (positive) angle θ . Show that

tan(θ) = m2 − m1

1+ m1m2
,

where m1 and m2 are the slopes of �1 and �2.



11.4 Trigonometric Rational Functions 497

Letting m1 = tan(α1) and m2 = tan(α2) with −π/2 < α1 < α2 < π/2, we have
θ = α2 − α1. The addition formula for the tangent gives

tan(θ) = tan(α2 − α1) = tan(α2)− tan(α2)

1+ tan(α1) tan(α2)
= m2 − m1

1+ m1m2
.

Example 11.4.3 Show that

arctan
1

x
= arctan

1

x + y
+ arctan

y

x2 + xy + 1
.

Using the addition formula for tangent, we calculate

tan

(
arctan

1

x + y
+ arctan

y

x2 + xy + 1

)
=

1
x+y + y

x2+xy+1

1− 1
x+y · y

x2+xy+1

= (x + y)2 + 1

x((x + y)2 + 1)
= 1

x
.

The example follows.

This example can be readily generalized. In fact, just as in the case of the sine
and cosine functions, we have the following;

arctan x + arctan y = arctan

(
x + y

1− xy

)

arccot x + arccot y = arccot

(
xy − 1

x + y

)
.

Returning to the main line, setting α = β in the addition formulas above, we
obtain the double angle formulas for tangent and cotangent

tan(2α) = 2 tan(α)

1− tan2(α)
and cot(2α) = cot2(α)− 1

2 cot(α)
.

Similarly, we have

sec(2α) = sec2(α)

2− sec2(α)
and csc(2α) = sec(α) csc(α)

2
.

An interesting consequence of the double angle formula for the tangent function
is that all the six trigonometric functions can be expressed as rational functions of
the tangent of the respective half angle. These formulas are as follows:

sin(α) = 2 tan
(

α
2

)
1+ tan2

(
α
2

) cos(α) = 1− tan2
(

α
2

)
1+ tan2

(
α
2

)
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tan(α) = 2 tan
(

α
2

)
1− tan2

(
α
2

) cot(α) = 1− tan2
(

α
2

)
2 tan

(
α
2

)

sec(α) = 1+ tan2
(

α
2

)
1− tan2

(
α
2

) csc(α) = 1+ tan2
(

α
2

)
2 tan

(
α
2

) .

(Strictly speaking, these identities hold for angles that are not odd multiples of π ,
that is, α �= (2k + 1)π , k ∈ Z.)

To derive these formulas is straightforward. For example, we have

sin(α) = 2 cos
(α

2

)
sin
(α

2

)
= 2 cos

(
α
2

)
sin
(

α
2

)
cos2

(
α
2

)+ sin2 (α
2

) = 2 tan
(

α
2

)
1+ tan2

(
α
2

) ,

where, in the last step, we divided both the numerator and the denominator by
cos2(α/2).

Given a polynomial p(x, y) in the indeterminates x and y, the corresponding
trigonometric polynomial can be written as

p(cos(α), sin(α)) = p

(
1− tan2

(
α
2

)
1+ tan2

(
α
2

) , 2 tan
(

α
2

)
1+ tan2

(
α
2

)
)

.

The right-hand side is the rational function

p

(
1− z2

1+ z2 ,
2z

1+ z2

)

in the indeterminate z evaluated at tan(α/2). Thus, at the expense of getting a
rational function from a polynomial, the two indeterminates x and y are reduced to
the single indeterminate z. In deriving trigonometric identities, this is not as useful
as it may seem since the resulting rational function is often too complex.

Remark The substitution z = tan(α/2) and the formula above are used in integral
calculus to reduce a trigonometric (rational) integral to the integral of a rational
function (which can then be integrated by using the method of partial fractions).

Another application is also noteworthy. The Pythagorean identity for cosine and
sine gives p(x, y) = x2 + y2 = 1, for x = cos(α) and y = sin(α). Using this
substitution, we have

p

(
1− z2

1+ z2 ,
2z

1+ z2

)
=
(

1− z2

1+ z2

)2

+
(

2z

1+ z2

)2

= 1,

where z = tan(α/2). Multiplying out, we obtain
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(1− z2)2 + (2z)2 = (1+ z2)2.

Finally, substituting z = tan(α/2) = s/t , t > s > 0, s, t ∈ N, and simplifying, we
arrive at

(t2 − s2)2 + (2st)2 = (t2 + s2)2.

This gives all Pythagorean triples (a, b, c) = (t2−s2, 2st, t2+s2) as in Section 5.7.
As a last note, multiple angle formulas can be easily obtained from those of the

sine and cosine. The Viète formula for the tangent function is

tan(nα) =
∑n

k=0 sin
( kπ

2

) (n
k

)
tank α∑n

k=0 cos
( kπ

2

) (n
k

)
tank α

, n ∈ N.

Exercises

11.4.1. Given α + β + γ = π/2, show that

cot(α)+ cot(β)+ cot(γ ) = cot(α) cot(β) cot(γ ).

11.4.2. Let x = tan(α/2). Show that

sin(α) = 2x

1+ x2 and cos(α) = 1− x2

1+ x2 .

11.4.3. Derive the following triple angle formulas for the tangent and cotangent
functions:

tan(3α) = 3 tan(α)− tan3(α)

1− 3 tan2(α)
and cot(3α) = 3 cot(α)− cot3(α)

1− 3 cot2(α)
.

11.4.4. Use the identity cot(θ) − cot(2θ) = 1/ sin(2θ), θ �= mπ/2, m ∈ Z, to
derive the formula10

n∑
k=1

csc
( π

2k

)
= cot

( π

2n+1

)
.

11.4.5. Derive root formulas for the following: (a) cos(2π/3) and sin(2π/3), (b)
cos(3π/4) and sin(3π/4), and (c) cos(5π/12) and sin(5π/12).

10For a special numerical example using the idea of this exercise, see Problem 13 in the American
High School Mathematics Examination, 1988.
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11.4.6. Using the notations in Section 11.3, for the triangle 
[A, B, C], derive the
Law of Cotangents

cot(α/2)

s − a
= cot(β/2)

s − b
= cot(γ /2)

s − c
= 1

r
.

11.4.7. Use the Law of Cotangents and the triple angle formula for the cotangent
function to derive Heron’s formula.

11.4.8. In a triangle 
[A, B, C], the sequence cot α, cot β, cot γ is arithmetic.
Show that a2 + c2 = 2b2.

11.4.9. The first three terms of a geometric sequence are sin(α), cos(α), and tan(α),
for some α ∈ R. Find cos(α).

11.5 Trigonometric Limits

Although trigonometric functions are radically different from polynomials, there are
many inequalities among them. To incorporate trigonometry into our study, these
inequalities are of crucial importance.

To begin with, we recall the basic construction in Section 5.6, specified to
our case of the unit circle S with center at the origin 0. Let P0, P1 ∈ S with
0 < d(P0, P1) < 2, and denote by C ⊂ S the shorter circular arc with end-points
P0 and P1. Let m0, and respectively m1, be the tangent line to C through the point
P0, and respectively P1. Finally, let M be the intersection of m0 and m1. The main
result of Section 5.6 is

(d(P0, P1) <) LC < d(P0, M)+ d(P1, M),

where we inserted the first (trivial) inequality. Let 0 < x < π be the angle
measure of the angle � P00P1. (Due to our present purpose to compare trigonometric
functions with polynomials, we use x as a variable for an angle measure.) Then, by
definition of the Birkhoff angle measure, we have x = LC . In addition, the triangle

[0, P0, M] has right angle at the vertex P0 (by tangency), and the angle measure at
the origin (as a vertex) is x/2. Since d(0, P0) = 1, we obtain d(P0, M) = tan(x/2).
Since the triangles 
[0, P0, M] and 
[0, P1, M] are congruent, we also have
d(P1, M) = tan(x/2). Finally, splitting the triangle
[0, P0, P1] into two congruent
right triangles by the line segment [0, M], we obtain d(P0, P1) = 2 sin(x/2).
Substituting these into the inequality above, we obtain

2 sin
( x

2

)
< x < 2 tan

( x

2

)
, 0 < x < π.

This fundamental inequality has several applications. First, squaring and using
the half angle formulas, a simple computation gives
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x2

4

1+ cos(x)

2
<

1− cos(x)

2
<

x2

4
, 0 < x < π.

Rearranging, we obtain

1− x2

2
< cos(x) <

1− (x/2)2

1+ (x/2)2 =
2

1+ (x/2)2 − 1, 0 < x < π.

Notice that this also holds for−π < x < 0 (since the ingredients are even functions)
and that, at x = 0, equality holds throughout. (Note that the usual upper bound is
the constant 1 function, but here we preferred to give a much better approximation
of the cosine.)

Monotonicity of the limit now gives

1 = lim
x→0

(
1− x2

2

)
≤ lim

x→0
cos x ≤ lim

x→0

(
2

1+ (x/2)2 − 1

)
= 1.

This gives limx→0 cos x = 1.
The estimate for cosine above is refined enough to get an estimate for the

difference quotient of cosine at x = 0:

− x

2
< mcos(x, 0) = cos x − 1

x
< − x/2

1+ (x/2)2 , 0 < |x | < π.

This gives the derivative

cos′(0) = lim
x→0

cos x − 1

x
= 0.

To obtain an estimate for the difference quotient for the sine function, we return
to our fundamental inequality. Doubling x , we obtain

sin x < x < tan x, 0 < x <
π

2
.

Replacing tan(x) by sin(x)/ cos(x), and rearranging, we arrive at the following:

x cos x < sin x < x, 0 < x <
π

2
.

Notice that the opposite chain of inequalities holds for −π/2 < x < 0 since the
functions involved are here odd.

By monotonicity of the limit, we obtain

0 = lim
x→0+

x cos x ≤ lim
x→0+

sin x ≤ lim
x→0+

x = 0,
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and hence limx→0 sin x = 0.

Remark By the Pythagorean identity, we have

lim
x→0

sin2 x = lim
x→0

(
1− cos2 x

)
= 0,

and this also gives the last limit formula above.
The estimate for sine above is refined enough to get an estimate for the difference

quotient of sine at x = 0:

cos x < msin(x, 0) = sin x − sin 0

x
= sin x

x
< 1, 0 < |x | < π/2.

(Notice that this also holds for −π/2 < x < 0 since the functions involved are
even.) This gives

1 = lim
x→0

cos x ≤ lim
x→0

sin x

x
≤ 1,

and we obtain the derivative

sin′(0) = lim
x→0

sin x

x
= 1.

We now calculate the derivative of the cosine and sine functions at an arbitrary
c ∈ R. We claim that, for the difference quotients, we have the following:

mcos(x, c) = cos c ·mcos(x − c, 0)− sin c ·msin(x − c, 0)

msin(x, c) = cos c ·msin(x − c, 0)+ sin c ·mcos(x − c, 0).

Indeed, we calculate

mcos(x, c) = cos x − cos c

x − c
= cos((x − c)+ c)− cos c

x − c

= cos c · cos(x − c)− 1

x − c
− sin c · sin(x − c)

x − c

= cos c ·mcos(x − c, 0)− sin c ·msin(x − c, 0).

The first formula for cosine follows. The proof of the second formula for sine is
analogous.

Taking the limit x → c (or x − c→ 0), c ∈ R, we obtain

cos′(c) = cos c · cos′(0)− sin c · sin′(0) = − sin c

sin′(c) = cos c · sin′(0)+ sin c · cos′(0) = cos c.
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Finally, note that, since differentiable functions are continuous, as a byproduct, we
obtain that the sine and cosine functions are continuous everywhere.

History
In his work Siddhh̄anta Shiromani (Section III entitled Grahagan. ita) Bhāskara II arrived at the
following approximation:11 sin(x) − sin(c) ≈ (x − c) cos(c), where x ≈ c. This is essentially
the differentiation formula sin′(c) = cos(c) obtained above. As noted previously, he used this for
astronomical calculations.

For the tangent function, using our inequalities above, we have

x < tan(x) = sin(x)

cos(x)
<

x

1− x2/2
, 0 < x <

√
2.

The lower bound here is a direct consequence of the inequality x cos(x) < sin(x)

via dividing by the cosine function which is positive for 0 < x < π/2. For the
upper bound, we use sin(x) < x and 1 − x2/2 < cos(x). For the latter, we need
to restrict the variable to the shorter range 0 < x <

√
2 (< π/2) to make sure that

1− x2/2 > 0.
We now rearrange and calculate

0 < tan(x)−x <
x

1− x2/2
−x = x

(
1

1− x2/2
− 1

)
= x3/2

1− x2/2
, 0 < x <

√
2.

Dividing by x , we obtain

0 <
tan(x)

x
− 1 <

x2/2

1− x2/2
, 0 < |x | < √2.

Notice that mtan(x, 0) = tan(x)/x is the difference quotient for the tangent function
at 0. As a byproduct, taking limits, we obtain tan′(0) = 1. Next, the derivative of
the tangent function at an arbitrary c ∈ R, c �= π/2+ kπ , k ∈ Z, can be calculated
by first deriving the following formula for the difference quotient:

mtan(x, c) = mtan(x − c, 0) · 1+ tan2 c

1−mtan(x − c, 0) tan c · (x − c)
.

This can be shown using the addition formula for the tangent function along the
same lines as the analogous formulas for the cosine and sine functions. Letting x →
c (or x − c→ 0), we then obtain

tan′(c) = 1+ tan2 c = sec2 c, c �= π/2+ kπ, k ∈ Z.

Remark Alternatively, using the quotient rule of differentiation (Section 4.3), we
calculate

11Using modern notation.
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tan′(c)=
(

sin

cos

)′
(c)= sin′(c) · cos(c)− sin(c) · cos′(c)

cos2(c)
= cos2(c)+ sin2(c)

cos2(c)
=1+ tan2(c).

The tangent function has vertical asymptotes x = π/2+ kπ , k ∈ Z. We have

lim
x→π/2±

tan x = lim
x→π/2±

sin x

cos x
= ∓∞,

and, by periodicity, this also holds when any integer multiple of π is added.
We wish to obtain a more precise description of the “asymptotic behavior” of the

tangent function near the asymptotes.
Since cot(x) = tan(π/2− x), x �= kπ , k ∈ Z, it is more convenient to do this for

the cotangent function at 0.
Once again, for 0 < x < π/2, our earlier estimates give

1

x
− x

2
= 1− x2/2

x
<

cos x

sin x
= cot x <

1

x
.

Rearranging, we find

− x

2
< cot x − 1

x
< 0, 0 < x <

π

2
.

As before, for −π < x < 0, the inequality signs are reversed since the functions
are odd.

This gives

∣∣∣∣cot x − 1

x

∣∣∣∣ < |x |2 , 0 < |x | < π

2
,

showing that the cotangent function near 0 behaves like the rectangular hyperbola
given by y = 1/x .

Finally, since cot(x) = tan(π/2− x), for the asymptotic behavior of the tangent
function at π/2, we have

∣∣∣∣tan x + 1

x − π/2

∣∣∣∣ < |x − π/2|
2

, 0 < x < π, x �= π/2.

We finish this section with a set of examples that shed light on continuity, differ-
entiability, monotonicity, and critical points (Section 4.3) involving trigonometric
functions.

We begin with the simplest one.

Example 11.5.1 Show that limx→0 sin(1/x) does not exist.
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We define two null-sequences (an)n∈N0 and (bn)n∈N0 , which will also be useful
in the sequel. We let

an = 2

(4n + 1)π
and bn = 2

(4n + 3)π
, n ∈ N0.

Clearly, we have 0 < · · · < bn+1 < an+1 < bn < an < · · · < b0 < a0 and
limn→∞ an = limn→∞ bn = 0. On the other hand, we have sin(1/an) = 1 and
sin(1/bn) = −1, n ∈ N0. By Corollary to Proposition 4.1.1, the example follows.

Example 11.5.2 We have limx→0(x · sin(1/x)) = 0. In particular, the function

f (x) =
{

x · sin(1/x), if x �= 0

0, if x = 0

is continuous everywhere.
Since the range of the sine function is [−1, 1], for 0 �= x ∈ R, we have

−|x | ≤ x · sin
1

x
≤ |x |.

By monotonicity of the limit, we obtain

0 = − lim
x→0
|x | ≤ lim

x→0

(
x · sin

1

x

)
≤ lim

x→0
|x | = 0.

Since continuity away from 0 is clear, the example follows.

Example 11.5.3 Prove that the function f : R→ R defined by

f (x) =
{

x2 · sin(1/x), if x �= 0

0, if x = 0

is differentiable everywhere.
Differentiability away from 0 is clear. Therefore, we only need to consider the

difference quotient at 0 as follows:

m f (x, 0) = x2 · sin 1
x

x
= x · sin

1

x
, 0 �= x ∈ R.

By the previous example, we have

f ′(0) = lim
x→0

m f (x, 0) = lim
x→0

x · sin
1

x
= 0.

Differentiability at 0 follows.
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Example 11.5.4 Let the function f : R→ R be defined by

f (x) =
{

x + 2x2 · sin 1
x , if x �= 0

0, if x = 0.

Show that f ′(0) = 1, but, for any 0 < δ ∈ R, the function f is not monotonic on
the interval (−δ, δ). In particular, f has infinitely many critical points on (−δ, δ).

As the previous example shows, we have f ′(0) = 1. Note also that the second
statement follows from the first since a continuous function with no critical points
must be strictly monotonic (Section 4.3).

We now make use of the sequences (an)n∈N0 and (bn)n∈N0 defined in Exam-
ple 11.5.1 above. To show non-monotonicity, we claim

f (bn) < f (an) and f (bn) < f (an+1), n ∈ N0.

The first inequality is clear since

f (an)− f (bn) = an + 2a2
n − (bn − 2b2

n) = an − bn + 2(a2
n + b2

n) > 0, n ∈ N0.

For the second, using sin(1/an) = 1 and sin(1/bn) = −1, we calculate

f (bn)− f (an+1) = bn − 2b2
n − (an+1 + 2a2

n+1) = bn − an+1 − 2(b2
n + a2

n+1)

= 2

(4n + 3)π
− 2

(4n + 5)π
− 2

(
4

(4n + 3)2π2
+ 4

(4n + 5)2π2

)

= 4

(4n + 3)(4n + 5)π
− 8

(4n + 3)2 + (4n + 5)2

(4n + 3)2(4n + 5)2π2 .

This is negative if and only if

(4n + 3)(4n + 5)
π

2
< (4n + 3)2 + (4n + 5)2, n ∈ N0.

This, however, holds by the AM-GM inequality (since π/2 < 2).
The example follows.

Remark The reader versed in differential calculus will no doubt realize that the
derivative f ′, as a function, is

f ′(x) = 1+ 4x sin
1

x
+ 2x2 cos

1

x

(
− 1

x2

)
= 1+ 4x sin

1

x
− 2 cos

1

x
.

This has no limit at 0 since limx→0 cos(1/x) does not exist (even though f ′(0) = 1).
In particular, the derivative f ′ is not continuous at 0.
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Exercises

11.5.1. Let S be the unit circle with center at the origin. Given an angle 0 <

x < π , let d(x), and respectively �(x), denote the length of a chord, and
respectively the length of a circular arc, of S, both subtended by x as a
central angle at the origin. Calculate the limit

lim
x→0+

�(x)

d(x)
.

11.5.2. Let α ∈ (0, 2π) such that α/π is irrational. Use the Equidistribution
Theorem (Section 2.4) to derive the following: lim supn→∞ sin(nα) = 1
and lim infn→∞ sin(nα) = −1.

11.6 Cosine and Sine Series According to Newton

The series expansions of the cosine and sine functions can be obtained using limits
of their arithmetic means over equidistant subdivisions of the domain interval.

Recall from Section 3.2 the concept of arithmetic mean of a real function f :
[a, b] → R, a < b, a, b ∈ R:

A f (n, a, b) = 1

n

n∑
k=1

f

(
a + k

b − a

n

)
, n ∈ N,

and the mean of f :

A f (a, b) = lim
n→∞A f (n, a, b).

As noted there, the mean is linear and monotonic. Finally, we calculated the mean of
the power function pp(x) = x p, 0 < x ∈ R, 0 < p ∈ R, as App (x) = x p/(p + 1),
0 < x ∈ R, where the mean is taken over the interval [0, x] (with 0 suppressed).

We now calculate the mean of the cosine and sine functions on an interval [0, x],
where 0 < x ∈ R is a fixed positive real number.

For the cosine function, we use the summation formula in Example 11.3.6 (with
α = 0 and β = x/n). For n ∈ N, we calculate

Acos(n, x) = 1

n

n∑
k=1

cos
(

k
x

n

)
=

cos
( x

2

)
sin
(

(n+1)x
2n

)
n · sin

( x
2n

) − 1

n

= cos
( x

2

)
·

x
2n

sin
( x

2n

) · 2

x
· sin

( x

2
+ x

2n

)
− 1

n
,
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where the term 1/n corresponds to k = 0 in the summation. Taking the limit, we
obtain

Acos(x) = 2 sin
( x

2

)
cos
( x

2

)
x

= sin x

x
, 0 < x ∈ R,

where we used

lim
n→∞

x
2n

sin
( x

2n

) = lim
u→0

u

sin u
= 1.

The calculations for the mean of the sine function are entirely analogous in the
use of the summation formula for the sine in Example 11.3.6. We obtain

Asin(x) = 1− cos x

x
, 0 < x ∈ R.

Armed with these explicit formulas for the means, we are now ready to start with
the series expansions of cosine and sine. Throughout, we set 0 < x ∈ R.

We start with the inequality cos x ≤ 1. We take the means of both sides and have

sin x

x
= Acos(x) ≤ Ap0(x) = 1,

or equivalently, sin x ≤ x . Taking the means of both sides of this, we obtain

1− cos x

x
= Asin(x) ≤ Ap1(x) = x

2
.

Equivalently, 1− x2/2 ≤ cos x . Once again, taking the means of both sides, we get
1 − x2/3! ≤ sin x/x , or equivalently, x − x3/3! ≤ sin x . Taking the means again,
we obtain x/2− x3/4! ≤ (1− cos x)/x , or equivalently, cos x ≤ 1− x2/2!+ x4/4!.

The patterns emerging here can be readily generalized. We now claim that, for
n ∈ N0, we have

1− x2

2! +
x4

4! − · · · −
x4n+2

(4n + 2)! ≤ cos x ≤ 1− x2

2! + · · · +
x4n

(4n)!
and

x − x3

3! +
x5

5! − · · · −
x4n+3

(4n + 3)! ≤ sin x ≤ x − x3

3! + · · · +
x4n+1

(4n + 1)! .

We show these simultaneously by Peano’s Principle of Induction with respect to
n ∈ N.
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In view of the above, only the general induction step n ⇒ n + 1 needs to be
performed.

We take the first chain of inequalities and calculate the means of all terms. We
obtain

1− x2

3! +
x4

5! − · · · −
x4n+2

(4n + 3)! ≤
sin x

x
≤ 1− x2

3! + · · · +
x4n

(4n + 1)!
Multiplying through by x , we obtain the second inequality.

We now take the second chain of inequalities and calculate the means of all terms.
We obtain

x

2! −
x3

4! +
x5

6! − · · · −
x4n+3

(4n + 4)! ≤
1− cos x

x
≤ x

2! −
x3

4! + · · · +
x4n+1

(4n + 2)! .

Rearranging, we arrive at the first chain of inequalities with n moved up to n + 1.
The general induction step is complete, and the formulas follow.

As direct consequences of the formulas above, we have the following estimates:

∣∣∣∣cos x −
(

1− x2

2! + · · · +
x4n

(4n)!
)∣∣∣∣ ≤ |x |4n+2

(4n + 2)! , x ∈ R,

and

∣∣∣∣sin x −
(

x − x3

3! + · · · +
x4n+1

(4n + 1)!
)∣∣∣∣ ≤ |x |4n+3

(4n + 3)! , x ∈ R.

We now recall that, for fixed x ∈ R, we have limn→∞ xn/n! = 0. This means
that the general final term in each sum converges to zero as n →∞. This gives the
convergent infinite series expansion of cosine and sine as follows:

cos x =
∞∑

n=0

(−1)n x2n

(2n)! and sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)! .

Finally, note that these hold for negative x < 0 as well since the functions in
either side are even and, respectively, odd.

Example 11.6.1 Find a rational number that approximates cos(1/2) up to 15-
decimal digit precision.12

In view of the estimate for cosine above, we need to find n ∈ N such that

(1/2)4n+2

(4n + 2)! ≤ 10−15.

12This problem needs a computer algebra system.
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A check of the first few values of n ∈ N shows that n = 3 satisfies the inequality;
that is, we have

1, 000, 000, 000, 000, 000 = 1015 ≤ 21414! = 1, 428, 329, 123, 020, 800

The approximating fraction can be obtained by substituting x = 1/2 into the finite
series

1− x2

2! +
x4

4! −
x6

6! +
x8

8! −
x10

(10)! +
x12

12! .

The approximating fraction is

245, 972, 670, 919

280, 284, 364, 800
.

History
The power series expansions of the sine, cosine, and the inverse tangent functions can be traced
back to the Indian mathematician Mādhava (c. 1340–c. 1425), the founder of the Kerala School of
Astronomy and Mathematics. Most of his writings have been lost, but later Kerala scholars refer
to his results, among others, notably Nilakantha Somayaji (1444–1544) in his Tantrasanghara
(c. 1500).
In the West, first the Scottish mathematician and astronomer James Gregory (1638–1675) pub-
lished several power series expansions. The general method of constructing these series (including
the series expansions of sine and cosine) at an arbitrary point was developed by Brook Taylor
(1685–1731). Finally, the Scottish mathematician Colin Maclaurin (1698–1746) also developed
and extensively used power series expansions centered at zero; consequently, this special case of
Taylor series is often named after him as Maclaurin series.
In his work Tractatus de Methodis Serierum et Fluxionum dated in 1671 (but unpublished) Newton
calculated the power series expansion of the sine function (as well as the binomial expansion
and the series expansion of ln(1 + x) and the inverse sine function). We essentially followed his
calculations here; he considered calculus as the algebraic counterpart of arithmetic for infinite
decimals.

Exercise

11.6.1. Use the Cauchy Product Rule to find an infinite series expansion of the
function ex/ cos(x).

11.7 The Basel Problem of Euler∗

Recall the Basel problem from Section 3.1:
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∞∑
n=1

1

n2
= 1+ 1

22
+ 1

32
+ · · · = π2

6
.

In this section we will present an elementary proof of this formula using identities
involving the cotangent and cosecant functions.

History
All proofs of the Basel problem use advanced mathematical tools except the one given below. This
elementary proof goes back to Cauchy’s Course D’Analyse (Note VIII) published in 1821. This
proof also appeared in the twin Yaglom brother’s work Nonelementary Problems in an Elementary
Exposition published in 1954.

We begin by developing trigonometric formulas for the ratios cos(nα)/ sinn(α)

and sin(nα)/ sinn(α), n ∈ N.
Using multiple angle formulas (Section 11.3), the conversions cos(α)/ sin(α) =

cot(α) and 1/ sin(α) = csc(α), and the Pythagorean identity csc2(α) = 1+cot2(α),
α ∈ R (Section 11.4), for n = 1, 2, 3, 4, we easily obtain

cos(α)

sin(α)
= cot(α),

cos(2α)

sin2(α)
= cot2(α)− 1,

cos(3α)

sin3(α)
= 4 cot3(α)− 3 cot(α) csc2(α) = cot3(α)− 3 cot(α),

cos(4α)

sin4(α)
= 8 cot4(α)− 8 cot2(α) csc2(α)+ csc2(α) = cot4(α)− 6 cot2(α)+ 1.

Similarly, we have

sin(α)

sin(α)
= 1,

sin(2α)

sin2(α)
= 2 cot(α),

sin(3α)

sin3(α)
= −4+ 3 csc2(α) = 3 cot2(α)− 1,

sin(4α)

sin4(α)
= 8 cot4(α)− 8 cot2(α) csc2(α)+ csc4(α) = cot4(α)− 6 cot2(α)+ 1.

The pattern of the coefficients is binomial, and it is not hard to guess the general
formulas. For n ∈ N, we have



512 11 Trigonometry

cos(nα)

sinn(α)
=
[n/2]∑
k=0

(−1)k
(

n

2k

)
cotn−2k(α),

and

sin(nα)

sinn(α)
=
[(n−1)/2]∑

k=0

(−1)k
(

n

2k + 1

)
cotn−2k−1(α),

where [·] is the greatest integer function. We call these the cotangent expansion
formulas.

We now prove these simultaneously using induction with respect to n ∈ N. By
the above, we need only to perform the general induction step n ⇒ n + 1. We use
the Chebyshev inductive formulas (Section 11.3) as

cos((n + 1)α)

sinn+1(α)
= Tn+1(cos(α))

sinn+1(α)
= cos(α)Tn(cos(α))− (1− cos2(α))Un−1(cos(α))

sinn+1(α)

= cot(α)
Tn(cos(α))

sinn(α)
− Un−1(cos(α))

sinn−1(α)
,

and

sin((n + 1)α)

sinn+1(α)
= Un(cos(α))

sinn(α)
= cos(α)Un−1(cos(α))+ Tn(cos(α))

sinn(α)

= cot(α)
Un−1(cos(α))

sinn−1(α)
+ Tn(cos(α))

sinn(α)
.

By the induction hypothesis, we have

Tn(cos(α))

sinn(α)
= cos(nα)

sinn(α)
=
[n/2]∑
k=0

(−1)k
(

n

2k

)
cotn−2k(α)

and

Un−1(cos(α))

sinn−1(α)
= sin(nα)

sinn(α)
=
[(n−1)/2]∑

k=0

(−1)k
(

n

2k + 1

)
cotn−2k−1(α).

Substituting these into the formulas above, and using the binomial identity

(
n + 1

m

)
=
(

n

m

)
+
(

n

m − 1

)
, 0 ≤ m ≤ n, m, n ∈ N
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(for m = 2k and m = 2k + 1), and shifting the index within summations, the
cotangent expansion formulas follow for n + 1. The induction is complete.

Remark The cotangent expansion formulas above are usually derived using the de
Moivre formula. Since this involves some basic arithmetic in complex numbers,
we preferred to stay in the real field R and used induction instead.

We make use of the second cotangent expansion formula for n = 2m + 1 odd.
We write this in the expanded form

sin((2m + 1)α)

sin2m+1(α)
=
(

2m + 1

1

)
cot2m(α)−

(
2m + 1

3

)
cot2m−2(α)+· · ·+ (−1)m

(
2m + 1

2m + 1

)
.

We substitute for α the m numbers

αk = kπ

2m + 1
, k = 1, 2, . . . , m,

which are all zeros of the numerator sin((2m + 1)α). Letting tk = cot2(αk), k =
1, 2, . . . , m, we obtain

0 =
(

2m + 1

1

)
tm
k −

(
2m + 1

3

)
tm−1
k + · · · + (−1)m

(
2m + 1

2m + 1

)
.

We rephrase this by saying that tk , k = 1, 2, . . . , m, are roots of the polynomial

p(t) =
(

2m + 1

1

)
tm −

(
2m + 1

3

)
tm−1 + · · · + (−1)m

(
2m + 1

2m + 1

)
.

Now the crux is that the m numbers αk , k = 1, 2, . . . , m, are distinct. Moreover,
they are all contained in the interval (0, π/2) on which the cotangent (square) is
strictly decreasing. Hence, the m roots tk , k = 1, 2, . . . , m, of p(t) are also distinct.
Since the polynomial p(t) has degree m, these are all the roots. The Factor Theorem
gives the factorization

p(t) =
(

2m + 1

1

)
(t − t1)(t − t2) · · · (t − tm).

Using the first Viète formula to extract the coefficient of the tm−1 term, we obtain

t1 + t2 + · · · + tm =
(2m+1

3

)
(2m+1

1

) = 2m(2m − 1)

6
.

Returning to αk , k = 1, 2, . . . , m, this gives

cot2(α1)+ cot2(α2)+ · · · + cot2(αm) = 2m(2m − 1)

6
.
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We now use the Pythagorean identity to change the cotangents into cosecants:

csc2(α1)+ csc2(α2)+ · · · + csc2(αm) = 2m(2m − 1)

6
+ m = 2m(2m + 2)

6
.

For the final step, we use the estimates

cot2 α <
1

α2 < csc2 α, 0 < α <
π

2
,

which can be obtained from the estimate sin(α) < α < tan(α), 0 < α < π/2, in
Section 11.5, by taking reciprocals.

Combining these, we have

2m(2m − 1)

6
<

(
2m + 1

π

)2

+
(

2m + 1

2π

)2

+ · · · +
(

2m + 1

mπ

)2

<
2m(2m + 2)

6
.

Rearranging, we obtain

π2

6

2m(2m − 1)

(2m + 1)2
< 1+ 1

22
+ · · · + 1

m2
<

π2

6

2m(2m + 2)

(2m + 1)2
.

By the monotonicity of the limit, we have

π2

6
=π2

6
lim

m→∞
2m(2m − 1)

(2m + 1)2
≤ lim

m→∞

(
1+ 1

22
+ · · ·+ 1

m2

)
≤ π2

6
lim

m→∞
2m(2m + 2)

(2m + 1)2
=π2

6
.

Thus, we obtain

∞∑
n=1

1

n2 = lim
m→∞

(
1+ 1

22 + · · · +
1

m2

)
= π2

6
.

The Basel problem follows.

Exercise

11.7.1. Show that

∞∑
n=1

(−1)n+1

n2 = π2

12
.
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11.8 Ptolemy’s Theorem

We have seen that any triangle has a unique circumscribed circle (Section 5.5).
This clearly fails in general for quadrilaterals. The question arises: What condition
guarantees that the quadrilateral is cyclic; that is, it possesses a circumcircle?
The following beautiful result is due to the Greek mathematician and astronomer
Claudius Ptolemy (c. 100–170 CE): If a quadrilateral is cyclic, then the product of
its two diagonal lengths is equal to the sum of the products of its opposite side
lengths.

It this section we derive a somewhat more extended version of Ptolemy’s
Theorem and its converse.

Let A, B, C, D be the four vertices of the quadrilateral in positively oriented
cyclic order, and let α, β, γ, δ be the angle measures at the respective vertices. We
denote the side lengths as a = d(A, B), b = d(B, C), c = d(C, D), d = d(D, A),
and the two diagonals as u = d(A, C), v = d(B, D).

(Extended) Ptolemy Theorem A quadrilateral is cyclic if and only if

uv = ac + bd and u(ab + cd) = v(ad + bc).

Proof The Law of Cosines applied to the sub-triangles
[A, B, C] and
[C, D, A]
gives

2 cos β = a2 + b2 − u2

ab
and 2 cos δ = c2 + d2 − u2

cd
.

The quadrilateral is cyclic if and only if β + δ = π , or equivalently, if and only if
cos β + cos δ = 0. Adding the two equations above, we obtain that the quadrilateral
is cyclic if and only if

2(cos β + cos δ) = a2 + b2

ab
+ c2 + d2

cd
− u2

(
1

ab
+ 1

cd

)
= 0,

or equivalently, if and only if

u2 = (a2 + b2)cd + (c2 + d2)ab

ab + cd
= (ac + bd)(ad + bc)

ab + cd
,

where in the last equality we performed a simple factoring.
We perform the same procedure for the sub-triangles 
[B, C, D] and


[D, A, B] and obtain that the quadrilateral is cyclic if and only if

2(cos α + cos γ ) = a2 + d2

ad
+ b2 + c2

bc
− v2

(
1

ad
+ 1

bc

)
= 0,
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or equivalently, if and only if

v2 = (a2 + d2)bc + (b2 + c2)ad

ad + bc
= (ab + cd)(ac + bd)

ad + bc
.

The two equations for u2 and v2 above are clearly equivalent to the two conditions
given in the theorem. The proof is complete.

Remark The Law of Cosines was used in the proof above to derive Ptolemy’s
Theorem. Conversely, Ptolemy’s Theorem implies the Law of Cosines as a special
case.

In fact, any triangle 
[A, B, C] with its circumcircle C can be extended to a
cyclic (symmetric) trapezoid inscribed into the same circle by adding an extra vertex
D ∈ C such that the “base” [B, C] is parallel to the “top” [A, D]. Using the notations
above, by symmetry, we have d(A, B) = a = c = d(C, D). Again by symmetry,
the diagonal lengths are equal. Ptolemy’s Theorem gives u2 = a2+bd. On the other
hand, the base b and top d lengths are related by b = d + 2a cos β (by projecting
the top line segment [A, D] perpendicularly to the base [B, C] and applying the
definition of cosine to the two sub-triangles thus obtained). Eliminating d, we obtain
u2 = a2 + b(b − 2a cos β) = a2 + b2 − 2ab cos β. This is the Law of Cosines for
the triangle 
[A, B, C].

Ptolemy’s Theorem has many beautiful applications. We mention here a few as
follows:

Example 11.8.1 Consider an equilateral triangle inscribed in a circle. Then any
point of the circle has the following property: The distance of the point from the
farthest vertex of the triangle is equal to the sum of the distances from the other two
nearer vertices.

Indeed, if 
[A, B, C] is the equilateral triangle with circumcircle C and D ∈ C
is the additional point, then Ptolemy’s Theorem gives sd(D, B) = sd(D, A) +
sd(D, C), where s is the side length of the triangle. Canceling s, we obtain
d(D, B) = d(D, A)+ d(D, C).

Example 11.8.2 The ratio of a diagonal to the side length of a regular pentagon is
the golden number τ (see Examples 3.1.2 and 11.3.4).

Inscribe the pentagon into a circle. Let a be the side length and b the length of a
diagonal. Ptolemy’s Theorem (applied to a quadrilateral with omitting one vertex of
the pentagon) gives b2 = a2 + ab. Dividing, we obtain (b/a)2 = 1 + (b/a). This
gives the golden number τ (since it satisfies τ 2 = 1+ τ ).

Example 11.8.3 The side length of a regular decagon inscribed in a circle of radius
R is equal to R/τ , where τ is the golden number.

We construct the regular decagon by the Archimedean duplication from a regular
pentagon by taking perpendicular bisectors for each side. We apply Ptolemy’s
Theorem to the quadrilateral one of whose diagonals is a perpendicular bisector of
a side of the pentagon (as well as the diagonal of the circle), and two other vertices
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are the end-points of this side. Letting l denote the side length of the decagon, and
using the notations of the previous example, Ptolemy’s Theorem gives 2Ra = 2bl.
Hence, l = R(a/b) = R/τ as claimed.

History
Ptolemy’s Almagest was the most important and influential text on the motion of the planets and
stars in a geocentric model of the universe, until the introduction of the heliocentric model by
Copernicus (1473–1543). In the Almagest (Book I, chapter 11), Ptolemy compiled a “Table of
Chords,” which, using our modern notations, is essentially equivalent to a sine table. In creating
this table, Ptolemy used several geometric propositions of Euclid and the theorem on quadrilaterals
inscribed in a circle, the result that came down to us as Ptolemy’s Theorem.

Exercise

11.8.1. Prove Ptolemy’s Theorem

d(A, B) · d(C, D)+ d(B, C) · d(A, D) = d(A, C) · d(B, D),

by converting the side lengths to angles using the Law of Sines with the
diameter of the circumscribed circle.
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Sierpiński, W., 130
Sine

derivative, 502
series expansion, 509

Skolem, A., 3
Somayaji, N., 510√

2
Babylonian approximation, 101
Vedic approximation, 101

Stars and bars, 278
Stifel, M., 91
Stirling formula, 445
Stolz–Cesàro formula

additive, 181
multiplicative, 182

Stolz–Cesàro theorem, 179, 180
Stolz, O., 179
Strict total order, 9
Supremum, 10
Synthetic division, 292

T
Tangent, 228

derivative, 503
line, 199

Tartaglia, N., 331
Taylor, B., 510
Thales theorem, 232
Theorem on isosceles triangles, 227
Theory of indices, 91



Index 527

Timocharis, 470
Totally ordered field, 84
Total order, 10
Translation, 225
Triangle inequality, 58, 81, 220
Triangular number, 21, 85
Trinomial, 265
Tschirnhaus, E., 334
Tschirnhaus transformation, 334
Twin prime conjecture, 109

U
Ultraradical, 334
Unit circle, 234
Universal gravitational constant, 96

V
Vertical intersection property, 12
Viète

jumping, 309
relations, 303, 306
substitution, 327

Viète, F., 230, 331, 483, 485
von Neumann

ordinal, 25, 33
universe, 34

W
Wallis, J., 85
Waring, E., 267
Weierstrass, K., 116, 190
Well-formed formula, 4
Well-ordering theorem, 11, 33
Weyl, H., 130
William of Ockham, 6

Y
Yang Hui, 275
Young inequality, 166

Z
Zermelo, E., 3


	Preface
	Why This Book?
	Audience
	The Historical Context
	In Closing: Gelfand's Teaching Legacy

	Acknowledgment
	Contents
	0 Preliminaries: Sets, Relations, Maps
	0.1 Sets
	Exercises
	0.2 Relations
	Exercise
	0.3 Maps and Real Functions
	Exercises
	0.4 Cardinality
	Exercises
	0.5 The Zermelo–Fraenkel Axiomatic Set Theory*
	Exercise

	1 Natural, Integral, and Rational Numbers
	1.1 Natural Numbers
	Exercises
	1.2 Integers
	Exercises
	1.3 The Division Algorithm for Integers
	Exercises
	1.4 Rational Numbers
	Exercises

	2 Real Numbers
	2.1 Real Numbers via Dedekind Cuts
	Exercises
	2.2 Infinite Decimals as Real Numbers
	Exercises
	2.3 Real Numbers via Cauchy Sequences
	Exercises
	2.4 Dirichlet Approximation and Equidistribution*
	Exercises

	3 Rational and Real Exponentiation
	3.1 Arithmetic Properties of the Limit
	Exercises
	3.2 Roots, Rational and Real Exponents
	Exercises
	3.3 Logarithms
	Exercises
	3.4 The Stolz–Cesàro Theorems
	Exercises

	4 Limits of Real Functions
	4.1 Limit Inferior and Limit Superior
	Exercise
	4.2 Continuity
	Exercise
	4.3 Differentiability
	Exercises

	5 Real Analytic Plane Geometry
	5.1 The Birkhoff Metric Geometry
	Exercise
	5.2 The Cartesian Model of the Birkhoff Plane
	Exercises
	5.3 The Cartesian Distance
	Exercise
	5.4 The Triangle Inequality
	Exercise
	5.5 Lines and Circles
	Exercises
	5.6 Arc Length on the Unit Circle
	Exercise
	5.7 The Birkhoff Angle Measure
	Exercises
	5.8 The Principle of Shortest Distance*
	Exercises
	5.9 π According to Archimedes*
	Exercise

	6 Polynomial Expressions
	6.1 Polynomials
	Exercises
	6.2 Arithmetic Operations on Polynomials
	Exercises
	6.3 The Binomial Formula
	Exercises
	6.4 Factoring Polynomials
	Exercises
	6.5 The Division Algorithm for Polynomials
	Exercises
	6.6 Symmetric Polynomials
	Exercises
	6.7 The Cauchy–Schwarz Inequality
	Exercises

	7 Polynomial Functions
	7.1 Polynomials as Functions
	Exercises
	7.2 Roots of Cubic Polynomials
	Exercises
	7.3 Roots of Quartic and Quintic Polynomials
	Exercise
	7.4 Polynomials with Rational Coefficients
	Exercises
	7.5 Factoring Multivariate Polynomials
	Exercises
	7.6 The Greatest Common Factor
	Exercise

	8 Conics
	8.1 The General Conic
	Exercise
	8.2 Parabolas
	Exercises
	8.3 Ellipses
	Exercises
	8.4 Hyperbolas
	Exercises

	9 Rational and Algebraic Expressions and Functions
	9.1 Rational Expressions and Rational Functions
	Exercises
	9.2 The Partial Fraction Decomposition
	Exercises
	9.3 Asymptotes of Rational Functions
	Exercises
	9.4 Algebraic Expressions and Functions, Rationalization
	Exercises
	9.5 Harmonic, Geometric, Arithmetic, Quadratic Means
	Exercises
	9.6 The Greatest Integer Function
	Exercises

	10 Exponential and Logarithmic Functions
	10.1 The Natural Exponential Function According to Newton
	Exercises
	10.2 The Bernoulli Numbers*
	Exercise
	10.3 The Natural Logarithm
	Exercises
	10.4 The General Exponential and Logarithmic Functions
	Exercise
	10.5 The Natural Exponential Function According to Euler
	Exercises

	11 Trigonometry
	11.1 The Unit Circle S vs. the Real Line R
	Exercise
	11.2 The Sine and Cosine Functions
	Exercises
	11.3 Principal Identities for Sine and Cosine
	Exercises
	11.4 Trigonometric Rational Functions
	Exercises
	11.5 Trigonometric Limits
	Exercises
	11.6 Cosine and Sine Series According to Newton
	Exercise
	11.7 The Basel Problem of Euler*
	Exercise
	11.8 Ptolemy's Theorem
	Exercise

	Further Reading
	Index

