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Preface

This book is a condensed version of my Mathematics and Its History,
which has reached a third edition and is now too encyclopedic/overweight
to be covered in a single course. Since I feel strongly that a single course
overview of undergraduate mathematics is more desirable today than ever
before, I have decided to cut Mathematics and Its History down to size.
Hopefully, this will also make the book more cohesive, with everything
connected to everything else. What I said in the Preface to the first edition
still applies:

One of the disappointments experienced by most mathematics
students is that they never get a course on mathematics. They
get courses in calculus, algebra, topology, and so on, but the
division of labor in teaching seems to prevent these different
topics from being combined into a whole. In fact, some of the
most important and natural questions are stifled because they
fall on the wrong side of topic boundary lines. Algebraists do
not discuss the fundamental theorem of algebra because
“that’s analysis” and analysts do not discuss Riemann surfaces
because “that’s topology,” for example. Thus if students are to
feel they really know mathematics by the time they graduate,
there is a need to unify the subject.

This book aims to give a unified view of undergraduate math-
ematics by approaching the subject through its history. Since
readers should have had some mathematical experience, cer-
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tain basics are assumed and the mathematics is not developed
formally as in a standard text. On the other hand, the mathe-
matics is pursued more thoroughly than in most general histo-
ries of mathematics, because mathematics is our main goal and
history only the means of approaching it. Readers are assumed
to know basic calculus, algebra, and geometry, to understand
the language of set theory, and to have met some more ad-
vanced topics such as group theory, topology, and differential
equations. I have tried to pick out the dominant themes of this
body of mathematics, and to weave them together as strongly
as possible by tracing their historical development.

Some historians of mathematics may object to my anachro-
nistic use of modern notation and (fairly) modern interpreta-
tions of classical mathematics. This has certain risks, such as
making the mathematics look simpler than it really was in its
time, but the risk of obscuring ideas by cumbersome, unfamil-
iar notation is greater, in my opinion. Indeed, it is practically
a truism that mathematical ideas generally arise before there
is notation or language to express them clearly, and that ideas
are implicit before they become explicit. Thus the historian,
who is presumably trying to be both clear and explicit, often
has no choice but to be anachronistic when tracing the origins
of ideas.

Mathematicians may object to my choice of topics, since a
book of this size is necessarily incomplete. My preference has
been for topics with elementary roots and strong interconnec-
tions. The major themes are the concepts of number and space:
their initial separation in Greek mathematics, their union in the
geometry of Fermat and Descartes, and the fruits of this union
in calculus and analytic geometry. Certain important topics of
today, such as Lie groups and functional analysis, are omitted
on the grounds of their comparative remoteness from elemen-
tary roots. Others, such as probability theory, are mentioned
only briefly, as most of their development seems to have oc-
curred outside the mainstream. For any other omissions or
slights I can only plead personal taste and a desire to keep the
book within the bounds of a one- or two-semester course.
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I would only add that I am hoping in fact to stay within the bounds of
a one-semester course. Thus the content is now somewhat less than in the
first edition of Mathematics and Its History, or at least more compact. In
particular, I have dropped the biographical sketches that took up about 20%
of the book, since short mathematical biographies are now widely available
at sites such as

http://www-history.mcs.st-and.ac.uk/BiogIndex.html
On the other hand, there aremanymore exercises than in the first edition,

so instructors will have considerable freedom in assigning problems. Also,
many of the black-and-white line drawings from earlier editions have been
improved or completely replaced by new ones with color, and in many
cases with 3D modeling using the excellent free software POV-Ray. These
enhancements should make the diagrams easier to “read.”

Much of the material in this condensed version is taken from the full
Mathematics and Its History, Stillwell (2010a). However, most of Chapter
16 is new, and there are several new sections or subsections in other chap-
ters. In addition, hundreds of small changes and additions have been made
to improve clarity and to add new information.

As always, I thank my wife Elaine for her meticulous proofreading. I
also thank the anonymous referees for numerous corrections and improve-
ments, and Loretta Bartolini for expertly coordinating the production of the
book. Many thanks also go to Rossella Lupacchini for locating a crucial
picture in a Bombelli manuscript in Bologna.

John Stillwell
South Melbourne, June 2020

San Francisco, September 2019

Preface ix

http://www-history.mcs.st-and.ac.uk/BiogIndex.html


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 The Theorem of Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Arithmetic and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pythagorean Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Rational Points on the Circle . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Right-Angled Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Greek Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 The Deductive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The Regular Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Ruler and Compass Constructions . . . . . . . . . . . . . . . . . . 23
2.4 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Higher-Degree Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Greek Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 The Role of Number Theory . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Polygonal, Prime, and Perfect Numbers . . . . . . . . . . . . . . 36
3.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Pell’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 The Chord and Tangent Methods . . . . . . . . . . . . . . . . . . 47

xi



4 Infinity in Greek Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Fear of Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Eudoxus’s Theory of Proportions . . . . . . . . . . . . . . . . . . . 54
4.3 The Method of Exhaustion . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 The Area of a Parabolic Segment . . . . . . . . . . . . . . . . . . . 60

5 Polynomial Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Linear Equations and Elimination . . . . . . . . . . . . . . . . . . 65
5.3 Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Quadratic Irrationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 The Solution of the Cubic . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Angle Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Higher-Degree Equations . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.8 The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9 Fermat’s Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1 Steps Toward Algebraic Geometry . . . . . . . . . . . . . . . . . . 86
6.2 Fermat and Descartes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Algebraic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Newton’s Classification of Cubics . . . . . . . . . . . . . . . . . . 91
6.5 Construction of Equations, Bézout’s Theorem . . . . . . . . . 94
6.6 The Arithmetization of Geometry . . . . . . . . . . . . . . . . . . . 96

7 Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Anamorphosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 Desargues’s Projective Geometry . . . . . . . . . . . . . . . . . . . 105
7.4 The Projective View of Curves . . . . . . . . . . . . . . . . . . . . . 108
7.5 The Projective Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 The Projective Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.1 What Is Calculus? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Early Results on Areas and Volumes . . . . . . . . . . . . . . . . 125
8.3 Maxima, Minima, and Tangents . . . . . . . . . . . . . . . . . . . . 128

xii Contents



8.4 The Arithmetica Infinitorum of Wallis . . . . . . . . . . . . . . . 130
8.5 Newton’s Calculus of Series . . . . . . . . . . . . . . . . . . . . . . . 133
8.6 The Calculus of Leibniz . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1 Early Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2 From Pythagoras to Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.4 Fractional Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5 Summation of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.6 The Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Elliptic Curves and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.1 Fermat’s Last Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2 Rational Points on Cubics of Genus 0 . . . . . . . . . . . . . . . 162
10.3 Rational Points on Cubics of Genus 1 . . . . . . . . . . . . . . . 165
10.4 Elliptic and Circular Functions . . . . . . . . . . . . . . . . . . . . . 168
10.5 Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.6 Doubling the Arc of the Lemniscate . . . . . . . . . . . . . . . . 173
10.7 General Addition Theorems . . . . . . . . . . . . . . . . . . . . . . . 175
10.8 Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Complex Numbers and Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.1 Impossible Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.2 Cubic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.3 Angle Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.4 The Fundamental Theorem of Algebra . . . . . . . . . . . . . . . 189
11.5 Roots and Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.6 The Complex Projective Line . . . . . . . . . . . . . . . . . . . . . . 196
11.7 Branch Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.8 Topology of Complex Projective Curves . . . . . . . . . . . . . 201

12 Complex Numbers and Functions . . . . . . . . . . . . . . . . . . . . . . . . 205
12.1 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
12.2 Conformal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3 Cauchy’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Contents xiii



12.4 Double Periodicity of Elliptic Functions . . . . . . . . . . . . . 215
12.5 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.6 Uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

13 Non-Euclidean Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
13.1 Transcendental Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
13.2 Curvature of Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . 229
13.3 Curvature of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13.4 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.5 The Parallel Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.6 Spherical and Hyperbolic Geometry . . . . . . . . . . . . . . . . . 240
13.7 Geometry of Bolyai and Lobachevsky . . . . . . . . . . . . . . . 243
13.8 Beltrami’s Conformal Models . . . . . . . . . . . . . . . . . . . . . . 248
13.9 The Complex Interpretations . . . . . . . . . . . . . . . . . . . . . . 252

14 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
14.1 The Group Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
14.2 Subgroups and Quotients . . . . . . . . . . . . . . . . . . . . . . . . . 261
14.3 Permutations and Theory of Equations . . . . . . . . . . . . . . 263
14.4 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
14.5 Polyhedral Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
14.6 Groups and Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 272
14.7 Combinatorial Group Theory . . . . . . . . . . . . . . . . . . . . . . 275
14.8 Finite Simple Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

15 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
15.1 Geometry and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 284
15.2 Polyhedron Formulas of Descartes and Euler . . . . . . . . . 285
15.3 The Classification of Surfaces . . . . . . . . . . . . . . . . . . . . . . 287
15.4 Surfaces and Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
15.5 The Fundamental Group . . . . . . . . . . . . . . . . . . . . . . . . . . 294

16 Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
16.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
16.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
16.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
16.4 Algebraic Numbers and Algebraic Integers . . . . . . . . . . . 305
16.5 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

xiv Contents



16.6 Fields as Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
16.7 Fields of Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . 313
16.8 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
16.9 Ideal Prime Factorization . . . . . . . . . . . . . . . . . . . . . . . . . 318

17 Sets, Logic, and Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
17.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
17.2 Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
17.3 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
17.4 Axiom of Choice and Large Cardinals . . . . . . . . . . . . . . . 331
17.5 The Diagonal Argument . . . . . . . . . . . . . . . . . . . . . . . . . . 334
17.6 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
17.7 Logic and Gödel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 339
17.8 Provability and Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Image Credits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Contents xv



1

The Theorem of Pythagoras

Preview

The Pythagorean theorem is the most appropriate starting point for a book
on mathematics and its history. It is not only the oldest mathematical the-
orem, but also the source of three great streams of mathematical thought:
numbers, geometry, and infinity.

The number stream begins with Pythagorean triples; triples of inte-
gers (a, b, c) such that a2 + b2 = c2. The geometry stream begins with the
interpretation of a2, b2, and c2 as squares on the sides of a right-angled
triangle with sides a, b, and hypotenuse c. The infinity stream begins with
the discovery that

√
2, the hypotenuse of the right-angled triangle whose

other sides are of length 1, is an irrational number.
These three streams are followed separately through Greek mathemat-

ics in Chapters 2, 3, and 4. The geometry stream resurfaces in Chapter 6,
where it takes an algebraic turn. The basis of algebraic geometry is the
possibility of describing points by numbers—their coordinates—and the
bridge between coordinates and geometry is precisely the Pythagorean the-
orem, which defines length in terms of coordinates.

The Pythagorean theorem resurfaces in a new algebraic role in
Chapter 16. Here it appears in the guise of the inner product, which
introduces the concepts of length and angle into vector spaces.

© Springer Nature Switzerland AG 2020
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2 1 The Theorem of Pythagoras

1.1 Arithmetic and Geometry

If there is one theorem known to all mathematically educated people, it
is surely the theorem of Pythagoras. It will be recalled as a property of
right-angled triangles: the square of the hypotenuse equals the sum of the
squares of the other two sides (Figure 1.1). The “sum” is of course the sum
of areas and the area of a square of side l is l2, which is why we call it “l
squared.” Thus the Pythagorean theorem can also be expressed by

a2 + b2 = c2, (1)

where a, b, c are the side lengths of the red triangle in Figure 1.1.

a

b

c

Figure 1.1: The Pythagorean theorem

Conversely, a solution of (1) by positive numbers a, b, c can be realized
by a right-angled trianglewith sides a, b and hypotenuse c. It is clear that we
can draw perpendicular sides a, b for any given positive numbers a, b, and
then the hypotenuse c must be a solution of (1) to satisfy the Pythagorean
theorem. This converse view of the theorem becomes interesting when we
notice that (1) has some very simple solutions. For example,

(a, b, c) = (3, 4, 5), (32 + 42 = 9 + 16 = 25 = 52),
(a, b, c) = (5, 12, 13), (52 + 122 = 25 + 144 = 169 = 132).

It is thought that in ancient times such solutions may have been used for
the construction of right angles. For example, by stretching a closed rope
with 12 equally spaced knots one can obtain a (3, 4, 5) triangle with right
angle between the sides 3, 4, as seen in Figure 1.2.
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Figure 1.2: Right angle by rope stretching

Whether or not this is a practical method for constructing right angles,
the very existence of a geometrical interpretation of a purely arithmetical
fact like

32 + 42 = 52

is quite wonderful. At first sight, arithmetic and geometry seem to be com-
pletely unrelated realms. Arithmetic is based on counting, the epitome of a
discrete (or digital) process. The facts of arithmetic can be clearly under-
stood as outcomes of certain counting processes, and one does not expect
them to have anymeaning beyond this.Geometry, on the other hand, involves
continuous rather than discrete objects, such as lines, curves, and surfaces.
Continuous objects cannot be built from simple elements by discrete pro-
cesses, and one expects to see geometrical facts rather than arrive at them
by calculation.

The Pythagorean theoremwas the first hint of a hidden, deeper relation-
ship between arithmetic and geometry, and it has continued to hold a key
position between these two realms throughout the history of mathematics.
This has sometimes been a position of cooperation and sometimes one of
conflict, as followed the discovery that

√
2 is irrational (see Section 1.5). It

is often the case that new ideas emerge from such areas of tension, resolving
the conflict and allowing previously irreconcilable ideas to interact fruit-
fully. The tension between arithmetic and geometry is, without doubt, the
most profound in mathematics, and it has led to the most profound the-
orems. Since the Pythagorean theorem is the first of these, and the most
influential, it is a fitting subject for our first chapter.
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1.2 Pythagorean Triples

Pythagoras lived around 500 bce, but the story of the Pythagorean theorem
begins long before that, at least as far back as 1800 bce in Babylonia. The
evidence is a clay tablet, known as Plimpton 322, which systematically lists
a large number of integer pairs (a, c) for which there is an integer b satis-
fying

a2 + b2 = c2. (1)

A translation of this tablet, together with its interpretation and historical
background, was first published by Neugebauer and Sachs (1945). Inte-
ger triples (a, b, c) satisfying (1)—for example, (3, 4, 5), (5, 12, 13),
(8, 15, 17)—are now known as Pythagorean triples. Presumably the Baby-
lonians were interested in them because of their interpretation as sides of
right-angled triangles, though this is not known for certain. At any rate, the
problem of finding Pythagorean triples was considered interesting in other
ancient civilizations that are known to have possessed the Pythagorean the-
orem; van der Waerden (1983) gives examples from China (between 200
bce and 220 ce) and India (between 500 and 200 bce). The most complete
understanding of the problem in ancient times was achieved in Greekmath-
ematics, between Euclid (around 300 bce) and Diophantus (around 250 ce).

A general formula for generating Pythagorean triples is

a = (p2 − q2)r, b = 2qpr, c = (p2 + q2)r.

It is easy to see that a2+b2 = c2 when a, b, c are given by these formulas, and
of course a, b, cwill be integers if p, q, r are. Even though the Babylonians
did not have the advantage of our algebraic notation, it is plausible that this
formula, or the special case

a = p2 − q2, b = 2pq, c = p2 + q2

(which gives all solutions a, b, c, without common divisor and b even)
was the basis for the triples they listed. Less general formulas have been
attributed to Pythagoras himself (around 500 bce) and Plato (see Heath
(1921), Vol. 1, pp. 80–81); a solution equivalent to the general formula is
given in Euclid’s Elements, Book X (lemma following Prop. 28). As far as
we know, this is the first statement of the general solution and the first proof
that it is general. Euclid’s proof is essentially arithmetical, as one would
expect since the problem seems to belong to arithmetic.
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However, there is a far more striking solution, which uses the geomet-
ric interpretation of Pythagorean triples. This emerges from the work of
Diophantus, and it is described in the next section.

Exercises

The integer pairs (a, c) in Plimpton 322 are shown in Figure 1.3.

a c
119 169

3367 4825
4601 6649
12709 18541

65 97
319 481

2291 3541
799 1249
481 769

4961 8161
45 75

1679 2929
161 289

1771 3229
56 106

Figure 1.3: Pairs in Plimpton 322

1.2.1 For each pair (a, c) in the table, compute c2 − a2, and confirm that it is a
perfect square, b2. (Computer assistance is recommended.)

You should notice that in most cases b is a “rounder” number than a or c.

1.2.2 Show that most of the numbers b are divisible by 60, and that the rest are
divisible by 30 or 12.

Such numbers were in fact exceptionally “round” for the Babylonians, because 60
was the base for their system of numerals. It looks like they computed Pythagorean
triples starting with the “round” numbers b and that the column of b values later
broke off the tablet.

Euclid’s formula for Pythagorean triples comes out of his theory of divisibil-
ity, which we take up in Section 3.3. Divisibility is also involved in some basic
properties of Pythagorean triples, such as their evenness or oddness.

1.2.3 Show that any integer square leaves remainder 0 or 1 on division by 4.

1.2.4 Deduce from Exercise 1.2.3 that if (a, b, c) is a Pythagorean triple then a
and b cannot both be odd.
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1.3 Rational Points on the Circle

We know from Section 1.1 that a Pythagorean triple (a, b, c) can be realized
by a triangle with sides a, b and hypotenuse c. This in turn yields a triangle
with fractional (or rational) number sides x = a/c, y = b/c and hypotenuse
1. All such triangles can be fitted inside the circle of radius 1 as shown in
Figure 1.4. The sides x and y become what we now call the coordinates of

X
O

Y

x

y
1

P

Figure 1.4: The unit circle

the point P on the circle. The Greeks did not use this language, but they
could derive the relationship between x and y we call the equation of the
circle. Since

a2 + b2 = c2 (1)

we have

(a
c

)2
+

(
b
c

)2
= 1,

so the relationship between x = a/c and y = b/c is

x2 + y2 = 1. (2)

Consequently, finding integer solutions of (1) is equivalent to finding ratio-
nal solutions of (2), or finding rational points on the curve (2).
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Such problems are now calledDiophantine, after Diophantus, who was
the first to deal with them seriously and successfully. Diophantine equa-
tions have acquired the more special connotation of equations for which
integer solutions are sought, althoughDiophantus himself sought only ratio-
nal solutions. (There is an interesting open problem that turns on this dis-
tinction.Matiyasevich (1970) proved that there is no algorithm for deciding
which polynomial equations have integer solutions. It is not knownwhether
there is an algorithm for deciding which polynomial equations have ratio-
nal solutions.)

Most of the problems solved by Diophantus involve quadratic or cubic
equations, usually with one obvious trivial solution. Diophantus used the
obvious solution as a stepping stone to the nonobvious, but no account of his
method survived. It was ultimately reconstructed by Fermat and Newton in
the 17th century, and this chord and tangent constructionwill be considered
later. Here, we need it only for the equation x2 + y2 = 1, which is an ideal
showcase for the method in its simplest form (chord only).

X
O

Y

1Q

R

Figure 1.5: Construction of rational points

A trivial solution of this equation is x = −1, y = 0, which is the point Q
on the unit circle (Figure 1.5). After a moment’s thought, one realizes that
a line through Q, with rational slope t,

y = t(x + 1) (3)
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will meet the circle at a second rational pointR. This is because substitution
of y = t(x + 1) in x2 + y2 = 1 gives a quadratic equation with rational
coefficients and one rational solution (x = −1); hence the second solution
must also be a rational value of x. But then the y value of this point will
also be rational, since t and x will be rational in (3). Conversely, the chord
joining Q to any other rational point R on the circle will have a rational
slope. Thus by letting t run through all rational values, we find all rational
points R � Q on the unit circle.

What are these points? We find them by solving the equations just dis-
cussed. Substituting y = t(x + 1) in x2 + y2 = 1 gives

x2 + t2(x + 1)2 = 1,

or
x2(1 + t2) + 2t2x + (t2 − 1) = 0.

This quadratic equation in x has solutions −1 and (1 − t2)/(1 + t2). The
nontrivial solution x = (1 − t2)/(1 + t2), when substituted in (3), gives
y = 2t/(1 + t2).

Exercises

The parameter t in the pair
(
1−t2
1+t2 ,

2t
1+t2

)
runs through all rational numbers if

t = q/p and p, q run through all pairs of integers.

1.3.1 Deduce that if (a, b, c) is any Pythagorean triple then

a
c
=

p2 − q2
p2 + q2

,
b
c
=

2pq
p2 + q2

for some integers p and q.

1.3.2 UseExercise 1.3.1 to prove Euclid’s formula for Pythagorean triples, assum-
ing b even. (Remember, a and b are not both odd.)

The triples (a, b, c) in Plimpton 322 seem to have been computed to provide
right-angled triangles covering a range of shapes—their angles actually follow a
decreasing sequence in roughly equal steps. Figure 1.6 shows the lines with slope
a/b, ranging from the top value 119/120 for the top line in Plimpton 322, to 56/90
for the bottom line.

This raises the question, can the shape of any right-angled triangle be approx-
imated by a Pythagorean triple?

1.3.3 Show that any right-angled triangle with hypotenuse 1 may be approxi-
mated arbitrarily closely by one with rational sides.
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b a c a/ b
120 119 169 0.9917

3456 3367 4825 0.9742
4800 4601 6649 0.9585
13500 12709 18541 0.9414

72 65 97 0.9028
360 319 481 0.8861

2700 2291 3541 0.8485
960 799 1249 0.8323
600 481 769 0.8017

6480 4961 8161 0.7656
60 45 75 0.7500

2400 1679 2929 0.6996
240 161 289 0.6708

2700 1771 3229 0.6559
90 56 106 0.6222

b

a
c

Figure 1.6: Lines of slope a/b corresponding to entries in Plimpton 322

Some important trigonometry may be gleaned from Diophantus’s method if
we compare the angle atO in Figure 1.4 with the angle at Q in Figure 1.5. The two
angles are shown in Figure 1.7, and high school geometry shows that the angle at
Q is half the angle at O.

1.3.4 Why does the angle at Q equal θ/2? (Hint: consider angles in the red
triangle.)

1.3.5 Use Figure 1.7 to show that t = tan θ2 and

cos θ =
1 − t2
1 + t2

, sin θ =
2t

1 + t2
.
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X
O

Y

Q 1

t

/ 2

Figure 1.7: Angles in a circle

1.4 Right-Angled Triangles

It is high time we looked at the Pythagorean theorem from the traditional
point of view, as a theorem about right-angled triangles; however, we will
be rather brief about its proof. It is not known how the theorem was first
proved, but probably it was by simple manipulations of area, perhaps sug-
gested by rearrangement of floor tiles. Just how easy it can be to prove the
Pythagorean theorem is shown by Figure 1.8, given by Heath (1925) in his
edition of Euclid’s Elements, Vol. 1, p. 354. Each large square contains four
copies of the given right-angled triangle. Subtracting these four triangles
from the large square leaves, on the one hand (Figure 1.8, right), the sum
of the squares on the two sides of the triangle. On the other hand (left), it also
leaves the square on the hypotenuse. This proof, like the hundreds of others
that have been given for the Pythagorean theorem, rests on certain geomet-
ric assumptions. It is in fact possible to transcend geometric assumptions
by using numbers as the foundation for geometry, and the Pythagorean the-
orem then becomes true almost by definition, as an immediate consequence
of the definition of distance (see Section 1.5).

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we will see how this conflict arose.
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Figure 1.8: Proof of the Pythagorean theorem

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.9. (The dotted squares are not tiles;
they are a hint.)

Figure 1.9: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?

Euclid’s first proof of the Pythagorean theorem, in Book I of the Elements, is
also based on area. It depends only on the fact that triangles with the same base and
height have equal area, though it involves a rather complicated figure. In Book VI,
Proposition 31, he gives another proof, based on similar triangles (Figure 1.10).

1.4.2 Show that the three triangles in Figure 1.10 are similar, and hence prove
the Pythagorean theorem by equating ratios of corresponding sides.
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a b

c1 c2

Figure 1.10: Another proof of the Pythagorean theorem

1.5 Irrational Numbers

We have mentioned that the Babylonians, although probably aware of the
geometricmeaning of the Pythagorean theorem, devotedmost of their atten-
tion to the whole-number triples it had brought to light, the Pytha-
gorean triples. Pythagoras and his followers were even more devoted to
whole numbers. It was they who discovered the role of numbers in musical
harmony: dividing a vibrating string in two raises its pitch by an octave,
dividing in three raises the pitch another fifth, and so on. This great discov-
ery, the first clue that the physical world might have an underlying math-
ematical structure, inspired them to seek numerical patterns, which to them
meant whole-number patterns, everywhere. Imagine their consternation
when they found that the Pythagorean theorem led to quantities that were
not numerically computable. They found lengths that were incommensu-
rable, that is, not measurable as integermultiples of the same unit. The ratio
between such lengths is therefore not a ratio of whole numbers, hence in
the Greek view not a ratio at all, or irrational.

The incommensurable lengths discovered by the Pythagoreans were
the side and diagonal of the unit square. It follows immediately from the
Pythagorean theorem that

(diagonal)2 = 1 + 1 = 2.

Hence if the diagonal and side are in the ratio m/n (where m and n can be
assumed to have no common divisor), we have

m2/n2 = 2,

whence
m2 = 2n2.
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The Pythagoreans were interested in odd and even numbers, so they proba-
bly observed that the latter equation,which says thatm2 is even, also implies
that m is even, say m = 2p. But if

m = 2p,
then

2n2 = m2 = 4p2;

hence
n2 = 2p2,

which similarly implies that n is even, contrary to the hypothesis thatm and
n have no common divisor. (This proof is in Aristotle’s Prior Analytics. An
alternative, more geometric, proof is mentioned in Section 3.4.)

This discovery had profound consequences. Legend has it that the first
Pythagorean tomake the result publicwas drowned at sea (seeHeath (1921),
Vol. 1, pp. 65, 154). It led to a split between the theories of number and
space that was not healed until the 19th century (if then, some believe). The
Pythagoreans could not accept

√
2 as a number, but no one could deny that

it was the diagonal of the unit square. Consequently, geometrical quantities
had to be treated separately from numbers or, rather, without mentioning
any numbers except rationals. Greek geometers thus developed ingenious
techniques for precise handling of arbitrary lengths in terms of rationals,
known as the theory of proportions and the method of exhaustion.

As we will see in Chapter 4, these techniques made necessary use of
infinity—something that the Greeks were very reluctant to do.

The Reconciliation of Numbers with Geometry

As we now know, it is not necessary to deny that
√
2 is a number, or to do

geometry without applying the processes of arithmetic to lengths, areas,
and volumes. In the 1620s, Fermat and Descartes realized that, if lengths
are viewed as numbers, then each point P in the plane is given by an ordered
pair (x, y) of numbers, called the coordinates of P. The coordinates x and
y are respectively the horizontal and vertical distances of P from an origin
O. We tell the story of their discovery, and the reasons for its success, in
Chapter 6.

In coordinate geometry one can define the distance between any two
points, guided by none other than the Pythagorean theorem. If P1 = (x1, y1)
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and P2 = (x2, y2) then the line P1P2 from P1 to P2 is the hypotenuse of a
triangle with horizontal side x2 − x1 and vertical side y2 − y1 (Figure 1.11).

Figure 1.11: Distance via the Pythagorean theorem

Since the square of the hypotenuse is the sum of the squares on the other
two sides,

(x2 − x1)
2 + (y2 − y1)2,

we should define

length of P1P2 =

√
(x2 − x1)2 + (y2 − y1)2.

It follows, for example, that the points (x, y) at distance 1 from O satisfy
the equation x2 + y2 = 1, which we called the equation of the (unit) circle
in Section 1.3. The coordinate geometry of Fermat and Descartes is part of
what is now called algebraic geometry, a vast expansion of Greek geome-
try. Algebraic geometry was made possible by 16th century discoveries in
algebra, which brought the study of curves into alignment with the study
of polynomial equations.

A coordinate geometry closer in content to Greek geometry, particu-
larly that of Euclid, was developed by Grassmann in the 1840s. Grass-
mann’s geometry is part of what we now call linear algebra, and its key
concept—the inner product—is also inspired by the Pythagorean theorem.
For more on linear algebra and the inner product, see Section 16.2.
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Exercises

The crucial step in the proof that
√
2 is irrational is showing that m2 even

implies m is even or, equivalently, that m odd implies m2 odd. It is worth taking a
closer look at why this is true.

1.5.1 Writing an arbitrary odd number m in the form 2q + 1, for some integer q,
show that m2 also has the form 2r + 1, which shows that m2 is also odd.

You probably did some algebra like this in Exercise 1.2.3, but if not, here is
your chance:

1.5.2 Show that the square of 2q + 1 is in fact of the form 4s + 1, and hence
explain why every integer square leaves remainder 0 or 1 on division by 4.
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Greek Geometry

Preview

Geometry was the first branch of mathematics to become highly devel-
oped. The concepts of “theorem” and “proof” originated in geometry, and
most mathematicians until recent times were introduced to their subject
through the geometry in Euclid’s Elements.

In the Elements one finds the first system for deriving theorems from
supposedly self-evident statements called axioms. Euclid’s axioms are
incomplete and one of them, the so-called parallel axiom, is not as obvi-
ous as the others. Nevertheless, it took over 2000 years to produce a clearer
foundation for geometry.

The climax of the Elements is the investigation of the regular poly-
hedra, five symmetric figures in three-dimensional space. The five regular
polyhedra make several appearances in mathematical history, most impor-
tantly in the theory of symmetry—group theory—discussed in Chapter 14.

The Elements contains not only proofs but also many constructions,
by ruler and compass. However, three constructions are conspicuous by
their absence: duplication of the cube, trisection of the angle, and squaring
the circle. These problems were not properly understood until the 19th
century, when they were resolved (in the negative) by algebra and analysis.

The only curves in the Elements are circles, but the Greeks studied
many other curves, such as the conic sections. Again, many problems that
the Greeks could not solve were later clarified by algebra. In particular,
curves can be classified by degree, and the conic sections are the curves of
degree 2, as we will see in Chapter 6.
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2.1 The Deductive Method

He was 40 years old before he looked on Geometry; which
happened accidentally. Being in a Gentleman’s Library, Euclid’s
Elements lay open, and ’twas the 47 El. libri I. He read the
Proposition. By G—–sayd he (he would now and then sweare
an emphaticall Oath by way of emphasis) this is impossi-
ble! So he reads the Demonstration of it, which referred him
back to such a Proposition; which proposition he read. That
referred him back to another, which he also read . . . that at last
he was demonstratively convinced of that trueth. This made
him in love with Geometry.

This quotation about the philosopher Thomas Hobbes (1588–1679),
from Aubrey’s Brief Lives, beautifully captures the force of Greece’s most
important contribution to mathematics, the deductive method. (The propo-
sition mentioned, incidentally, is the Pythagorean theorem.)

We have seen that significant results were known before the period of
classical Greece, but the Greeks were the first to find results by deduction
from previously established results, resting ultimately on the most evident
possible statements, called axioms. Thales (624–547 bce) is thought to be
the originator of this method (see Heath (1921), p. 128), and by 300 bce

Euclid’s Elements set the standard for mathematical rigor until the 19th
century. But the Elements is difficult, so in time it was boiled down to
the simplest and driest propositions about lines, angles, and circles. These
propositions are based on the following axioms (in the translation of Heath
(1925), p. 154), which Euclid called postulates and common notions.

Postulates

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on that side on which are the angles less than the
two right angles.
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Common Notions

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

It appears that Euclid’s intention was to deduce geometric propositions
from visually evident statements (the postulates) using evident principles
of logic (the common notions). Actually, he often made unconscious use of
visually plausible assumptions that are not among his postulates. His very
first proposition used the unstated assumption that two circles meet if the
center of each is on the circumference of the other (Heath (1925), p. 242).
Nevertheless, such flaws were not noticed until the 19th century, and they
were rectified by Hilbert (1899). By themselves, they probably would not
have been enough to end the Elements’ run of 22 centuries as a leading
textbook. The Elements was overthrown by more serious mathematical
upheavals in the 19th century. The so-called non-Euclidean geometries,
using alternatives to Euclid’s fifth postulate (the parallel axiom), devel-
oped to the point where the old axioms could no longer be considered
self-evident (see Chapter 13). At the same time, the concept of number
matured to the point where irrational numbers became acceptable, and
indeed preferable to intuitive geometric concepts, in view of the doubts
about what the self-evident truths of geometry really were.

The outcome was a more adaptable language for geometry in which
“points,” “lines,” and so on, could be defined, usually in terms of numbers,
so as to suit the type of geometry under investigation. Such a develop-
ment was long overdue. Even in Euclid’s time the Greeks were investigat-
ing curves more complicated than circles, which did not fit conveniently
in Euclid’s system. Descartes (1637) introduced the coordinate method,
which gives a single framework for handling both Euclid’s geometry and
higher curves (see Chapter 6), but it was not at first realized that coordi-
nates allowed geometry to be entirely rebuilt on numerical foundations.

The comparatively trivial step (for us) of passing to axioms about num-
bers from axioms about points had to wait until the 19th century, when
geometric axioms about points lost authority and number-theoretic axioms
gained it. We say about these developments later (and of problems with the
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authority of axioms in general, which arose in the 20th century). For the
remainder of this chapter we will look at some important nonelementary
topics in Greek geometry, using the coordinate framework where conve-
nient.

Exercises

Euclid’s Common Notions 1 and 4 define what we now call an equivalence
relation, which is not necessarily the equality relation. In fact, the kind of relation
Euclid had in mind was equality in some geometric quantity such as length or
angle (but not necessarily equality in all respects—the latter is what he meant by
“coinciding”). An equivalence relation � is normally defined by three properties.
For any a, b and c:

a � a, (reflexive)

a � b ⇒ b � a, (symmetric)

a � b and b � c ⇒ a � c. (transitive)

2.1.1 Explain how Common Notions 1 and 4 may be interpreted as the transitive
and reflexive properties. Note that the natural way to write Common Notion
1 symbolically is slightly different from the statement of transitivity above.

2.1.2 Show that the symmetric property follows from Euclid’s Common Notions
1 and 4.

Hilbert (1899) took advantage of Euclid’s Common Notions 1 and 4 in his

rectification of Euclid’s axiom system. He defined equality of length by postulat-

ing a transitive and reflexive relation on line segments, and stated transitivity in

the style of Euclid, so that the symmetric property was a consequence.

2.2 The Regular Polyhedra

Greek geometry is virtually complete as far as the elementary properties of
plane figures are concerned. It is fair to say that only a handful of interest-
ing elementary propositions about triangles and circles have been discov-
ered since Euclid’s time. Solid geometry is much more challenging, even
today, so it is understandable that it was left in a less complete state by the
Greeks. Nevertheless, they made some very impressive discoveries and
managed to complete one of the most beautiful chapters in solid geom-
etry, the enumeration of the regular polyhedra. The five possible regular
polyhedra are shown in Figure 2.1. (Images courtesy of Wikimedia.)
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Figure 2.1: Tetrahedron, cube, octahedron, dodecahedron, icosahedron

Each polyhedron is convex and is bounded by a number of congruent
polygonal faces, the same number of faces meet at each vertex, and in each
face all the sides and angles are equal, hence the term regular polyhedron.
A regular polyhedron is a spatial figure analogous to a regular polygon in
the plane. But whereas there are regular polygons with any number n ≥ 3
of sides, there are only five regular polyhedra.

This fact is easily proved and may go back to the Pythagoreans (see,
for example Heath (1921), p. 159). One considers the possible polygons
that can occur as faces, their angles, and the numbers of them that can
occur at a vertex. For a 3-gon (triangle) the angle is π/3, so three, four, or
five can occur at a vertex, but six cannot, as this would give a total angle
2π and the vertex would be flat. For a 4-gon the angle is π/2, so three can
occur at a vertex, but not four. For a 5-gon the angle is 3π/5, so three can
occur at a vertex, but not four. For a 6-gon the angle is 2π/3, so not even
three can occur at a vertex. But at least three faces must meet at each ver-
tex of a polyhedron, so 6-gons (and, similarly, 7-gons, 8-gons, . . . ) cannot
occur as faces of a regular polyhedron. This leaves only the five possibili-
ties just listed, which correspond to the five known regular polyhedra.

But do these five really exist? There is no trouble constructing the
tetrahedron, cube, or octahedron, but it is not clear that, say, 20 equilateral
triangles will fit together to form a closed surface. Euclid found this prob-
lem difficult enough to be placed near the end of the Elements, and few
of his readers ever mastered his solution. A beautiful direct construction
was given by Luca Pacioli, a friend of Leonardo da Vinci’s, in his book De
divina proportione (1509). Pacioli’s construction uses three copies of the
golden rectangle, with sides 1 and (1 +

√
5)/2, interlocking as in Figure

2.2. The 12 vertices define 20 triangles such as ABC, and it suffices to
show that these are equilateral, that is, AB = 1. This is a straightforward
exercise in the Pythagorean theorem (Exercise 2.2.2).
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A

B

C

Figure 2.2: Pacioli’s construction of the icosahedron

The regular polyhedra will make another important appearance in yet
another 19th-century development, the theory of finite groups and Galois
theory. See Chapter 14. Before the regular polyhedra made this triumphant
comeback, they also took part in a famous fiasco: the Kepler (1596) the-
ory of planetary distances. Kepler’s theory is summarized by his famous
diagram (Figure 2.3) of the five polyhedra, nested in such a way as to pro-
duce six spheres of radii proportional to the distances of the six planets
then known. Unfortunately, although mathematics could not permit any
more regular polyhedra, nature could permit more planets, and Kepler’s
theory was ruined when Uranus was discovered in 1781.

Exercises

The ratios between successive radii in Kepler’s construction depend on what
may be called the inradius and circumradius of each polyhedron—the radii of the
spheres that touch it on the inside and the outside. It happens that the ratio

circumradius
inradius

is the same for the cube and the octahedron, and it is also the same for the dodec-
ahedron and the icosahedron. This implies that the cube and octahedron can be
exchanged in Kepler’s construction, as can the dodecahedron and the icosahe-
dron. Thus there are at least four different arrangements of the regular polyhedra
that yield the same sequence of radii.

It is easy to see why the cube and the octahedron are interchangeable.
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Figure 2.3: Kepler’s diagram of the polyhedra

2.2.1 Show that circumradius
inradius =

√
3 for both the cube and the octahedron.

To compute circumradius/inradius for the icosahedron and the dodecahedron
is quite difficult, and we will not pursue it further, other than verifying that Paci-
oli’s construction gives a figure bounded by equilateral triangles.

2.2.2 Check Pacioli’s construction: use the Pythagorean theorem to show that
AB = BC = CA in Figure 2.2. (It may help to use the additional fact that
τ = (1 +

√
5)/2 satisfies τ2 = τ + 1.)

2.3 Ruler and Compass Constructions

Greek geometers prided themselves on their logical purity; nevertheless,
they were guided by intuition about physical space. One aspect of Greek
geometry that was peculiarly influenced by physical considerations was
the theory of constructions. Much of the elementary geometry of straight
lines and circles can be viewed as the theory of constructions by ruler and
compass. (By a “ruler” we mean simply a straightedge; it is not assumed
to have any marks on it.) The very subject matter, lines and circles, reflects
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the instruments used to draw them. And many of the elementary problems
of geometry—for example, to bisect a line segment or angle, construct a
perpendicular, or draw a circle through three given points—can be solved
by ruler and compass constructions.

When coordinates are introduced, it is not hard to show that the points
constructible from points P1, . . . , Pn have coordinates in the set of numbers
generated from the coordinates of P1, . . . , Pn by the operations +, −, ×, ÷,
and
√

(see Moise (1963) or the exercises to Section 5.3). Square roots
arise, of course, because of the Pythagorean theorem: if points (a, b) and
(c, d) have been constructed, then so has the distance

√
(c − a)2 + (d − b)2

between them (Section 1.5). Conversely, it is possible to construct
√
l for

any given length l (Exercise 2.3.2).
Seen from this viewpoint, ruler and compass constructions look very

special and unlikely to yield numbers such as
3√
2, for example. Just this

number comes up in the classical Greek problem called duplication of the
cube, since doubling the volume of a cube amounts to multiplying its side
3√
2. Other notorious problems were trisection of the angle and squaring

the circle.1 The latter problem was to construct a square equal in area to
a given circle or to construct the number π, which amounts to the same
thing. They sought ruler and compass solutions, though the possibility of
a negative solution was admitted and solutions by less elementary means
were tolerated. We will see some of these in the next sections.

The impossibility of solving these problems by ruler and compass con-
structions was not proved until the 19th century. For the duplication of
the cube and trisection of the angle, impossibility was shown by Wantzel
(1837). Wantzel seldom receives credit for settling these problems, which
had baffled the best mathematicians for 2000 years, perhaps because his
methods were superseded by the more powerful theory of algebraic num-
bers (see Chapter 16).

The impossibility of squaring the circle was proved by Lindemann
(1882), in a very strong way. Not only is π undefinable by rational opera-
tions and square roots; it is also transcendental, that is, not the root of any
polynomial equation with rational coefficients. Like Wantzel’s work, this
was a rare example of a major result proved by a minor mathematician. In

1The term “squaring,” or its Latin equivalent “quadrature,” later became a general term
for finding the area of curved regions, particularly in the 17th century, when calculus solved
many such problems. Since ancient times the “squaring the circle” has been a popular
phrase for trying to do the impossible.
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Lindemann’s case the explanation is perhaps that a major step had already
been taken when Hermite (1873) proved the transcendence of e. Accessi-
ble proofs of both these results can be found in Klein (1924). Lindemann’s
subsequent career was mathematically undistinguished, even embarrass-
ing. In response to skeptics who thought his success with π had been a
fluke, he took aim at the most famous unsolved problem in mathematics,
“Fermat’s last theorem” (see Chapter 10 for the origin of this problem).
His efforts fizzled out in a series of inconclusive papers, each one correct-
ing an error in the one before. Fritsch (1984) has written an interesting
biographical article on Lindemann.

One ruler and compass problem is still open: which regular n-gons are
constructible? Gauss discovered in 1796 that the 17-gon is constructible
and then showed that a regular n-gon is constructible if and only if n =
2mp1p2 · · · pk, where the pi are distinct primes of the form 22

h
+ 1. (This

problem is also known as circle division, because it is equivalent to divid-
ing the circumference of a circle, or the angle 2π, into n equal parts.) The
proof of necessity was actually completed by Wantzel (1837). However, it
is still not explicitly known what these primes are, or even whether there
are infinitely many of them. The only ones known are for h = 0, 1, 2, 3, 4.

Exercises

Many of the constructions made by the Greeks are simplified by translating
them into algebra, where it turns out that constructible lengths are those that can
be built from known lengths by the operations of +, −, ×, ÷, and √. It is there-
fore enough to know constructions for these five basic operations. Addition and
subtraction are obvious, and the other operations are covered in the following
exercises, together with an example in which algebra is a distinct advantage.

2.3.1 Show, using similar triangles, that if lengths l1 and l2 are constructible, then
so are l1l2 and l1/l2.

2.3.2 Use similar triangles to explain why
√
l is the length shown in Figure 2.4,

and hence show that
√
l is constructible from l.

l

√l
1

Figure 2.4: Square root construction
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One of the finest ruler and compass constructions from ancient times is that of
the regular pentagon, which includes, yet again, the golden ratio τ = (1 +

√
5)/2.

Knowing (from the questions above) that this number is constructible, it becomes
easy for us to construct the pentagon itself.

2.3.3 By finding some parallels and similar triangles in Figure 2.5, show that the
diagonal x of the regular pentagon of side 1 satisfies x/1 = 1/(x − 1).

1
x

Figure 2.5: The regular pentagon

2.3.4 Deduce from Exercise 2.3.3 that the diagonal of the pentagon is (1+
√
5)/2

and hence that the regular pentagon is constructible.

2.4 Conic Sections

Conic sections are the curves obtained by cutting a circular cone by a
plane: ellipses (including circles), parabolas, and hyperbolas (Figure 2.6,
left to right). Today we know the conic sections better by their equations:

x2

a2
+
y2

b2
= 1, (ellipse)

y = ax2, (parabola)

x2

a2
− y

2

b2
= 1. (hyperbola)

More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

The names “ellipse,” “parabola”, and “hyperbola” come from the
Greek, meaning roughly “too little,” “alongside,” and “too much.” The
ellipse arises by cutting with a plane that slopes too little (to make an infi-
nite curve), the parabola from a plane parallel to one side of the cone, and
the hyperbola from a plane that slopes too much to avoid hitting the other
part of the cone, so it produces a curve with two branches.
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Figure 2.6: Ellipse, parabola, hyperbola

The invention of conic sections is attributed to Menaechmus (fourth
century bce), a contemporary of Alexander the Great. Alexander is said to
have asked Menaechmus for a crash course in geometry, but Menaechmus
refused, saying, “There is no royal road to geometry.” Menaechmus used
conic sections to give a very simple solution to the problem of duplicating
the cube. In algebraic notation, this can be described as finding the inter-
section of the parabola y = 1

2 x
2 with the hyperbola xy = 1. This yields

x
1
2
x2 = 1 or x3 = 2.

The theory and practice of conic sections finally came together when
Kepler (1609) found the orbits of the planets to be ellipses, and Newton
(1687) explained this fact by his law of gravitation. This wonderful vindi-
cation of the theory of conic sections has often been seen as basic research
receiving its long overdue reward, but perhaps one can also see it as a
rebuke to Greek disdain for applications. As for Kepler himself . . . to the
end of his days he was proudest of his theory explaining the distances of
the planets in terms of the five regular polyhedra (Section 2.2).



28 2 Greek Geometry

Exercises

A key feature of the ellipse for both geometry and astronomy is a point called
the focus. The term is the Latin word for fireplace, and it was introduced by
Kepler. The ellipse actually has two foci, and they have the geometric property
that the sum of the distances from the foci F1, F2 to any point P on the ellipse is
constant.

2.4.1 This property gives a way to draw an ellipse using two pins and piece of
string. Explain how.

2.4.2 By introducing suitable coordinate axes, show that a curve with the above
“constant sum” property indeed has an equation of the form

x2

a2
+
y2

b2
= 1.

(It is a good idea to start with the two square root terms, representing the
distances F1P and F2P, on opposite sides of the equation.) Show also that
any equation of this form is obtainable by suitable choice of F1, F2, and
F1P + F2P.

Another interesting property of the lines from the foci to a point P on the
ellipse is that they make equal angles with the tangent at P. It follows that a light
ray from F1 to P is reflected through F2. A simple proof of this can be based on
the shortest-path property of reflection, shown in Figure 2.7 and discovered by the
Greek scientist Heron around 100 ce.

L P

F1

P

F2

F2

Figure 2.7: The shortest-path property

Shortest-path property. The path F1PF2 of reflection in the line L from F1 to
F2 is shorter than any other path F1P′F2 from F1 to L to F2.

2.4.3 Prove the shortest-path property, by considering the two paths F1PF2 and
F1P′F2, where F2 is the reflection of the point F2 in the line L.
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Thus to prove that the lines F1P and F2Pmake equal angles with the tangent,
it is enough to show that F1PF2 is shorter than F1P′F2 for any other point P′ on
the tangent at P.

2.4.4 Prove this, using the fact that F1PF2 has the same length for all points P
on the ellipse.

Kepler’s great discovery was that the focus is also significant in astronomy.

One focus is the point occupied by the sun as the planet moves along its ellipse.

2.5 Higher-Degree Curves

The Greeks lacked a systematic theory of higher-degree curves, because
they lacked a systematic algebra. They could find what amounted to carte-
sian equations (in words) of individual curves—“symptoms,” as they called
them; see van der Waerden (1954), p. 241—but they did not consider equa-
tions in general or notice any of their properties relevant to the study of
curves, for example, the degree. Nevertheless, they studied many inter-
esting special curves, which Descartes and his followers cut their teeth on
when algebraic geometry finally emerged in the 17th century. An excellent
and well-illustrated account of these early investigations may be found in
Brieskorn and Knörrer (1981), Chapter 1.

In this section we must confine ourselves to brief remarks on a few
examples.

The Cissoid of Diocles (around 100 bce)
This curve is defined using an auxiliary circle, which for convenience

we take to be the unit circle, and vertical lines through x and −x. It consists
of all the points P seen in Figure 2.8.

The portion shown in red results from varying x between 0 and 1. It is
a cubic curve with cartesian equation

y2(1 + x) = (1 − x)3.

This equation shows that if (x, y) is a point on the curve, then so is (x,−y).
Hence one gets the complete picture of it by reflecting the portion shown
in Figure 2.8 in the x-axis. The result is a sharp point at R, a cusp, a
phenomenon that first arises with cubic curves. Diocles showed that the
cissoid could be used to duplicate the cube, which is plausible (though
still not obvious!) once one knows that this curve is cubic.
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X

Y

− x O x R

P

Figure 2.8: Construction of the cissoid

The Spiric Sections of Perseus (around 150 bce)
Apart from the sphere, cylinder, and cone—whose sections are all conic
sections—one of the few surfaces studied by the Greeks was the torus.
This surface, generated by rotating a circle about an axis outside the cir-
cle, but in the same plane, was called a spira by the Greeks—hence the
name spiric sections for the sections by planes parallel to the axis. These
sections, which were first studied by Perseus, have four qualitatively dis-
tinct forms (see Figure 2.9).

These forms—convex ovals, “squeezed” ovals, the figure 8, and pairs
of ovals—were rediscovered in the 17th century when analytic geometers
looked at curves of degree 4, of which the spiric sections are examples.
For suitable choice of torus, the figure 8 curve becomes the lemniscate
of Bernoulli and the convex ovals become Cassini ovals. Cassini (1625–
1712) was a distinguished astronomer but an opponent of Newton’s theory
of gravitation. He rejected Kepler’s ellipses and instead proposed Cassini
ovals as orbits for the planets.
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Figure 2.9: Spiric sections

The Epicycles of Ptolemy (140 ce)

These curves are known from a famous astronomical work, the Almagest
of Claudius Ptolemy. Ptolemy himself attributes the idea to Apollonius.
It seems almost certain that this is the Apollonius who mastered conic
sections, which is ironic, because epicycles were his candidates for the
planetary orbits, destined to be defeated by those very same conic sections.

An epicycle, in its simplest form, is the path traced by a point on a cir-
cle that rolls on another circle (Figure 2.10). More complicated epicycles
can be defined by having a third circle roll on the second, and so on. The
Greeks introduced these curves to try to reconcile the complicated move-
ments of the planets, relative to the fixed stars, with a geometry based on
the circle. In principle, this is possible! Lagrange (1772) showed that any
motion along the celestial equator can be approximated arbitrarily closely
by epicylic motion, and a more modern version of the result may be found
in Sternberg (1969). But Ptolemy’s mistake was to accept the apparent
complexity of the motions of the planets as actual in the first place. As we
now know, the motion becomes simple when one considers motion relative
to the sun rather than to the earth and allows orbits to be ellipses.



32 2 Greek Geometry

Figure 2.10: Generating an epicycle

Epicycles still have a role to play in engineering, and their mathemat-
ical properties are interesting. Some of them are closed curves and turn
out to be algebraic, that is, of the form p(x, y) = 0 for a polynomial p.
Others, such as those that result from rolling circles whose radii have an
irrational ratio, lie densely in a certain region of the plane and hence can-
not be algebraic; an algebraic curve p(x, y) = 0 can meet a straight line
y = mx + c in only a finite number of points, corresponding to roots of the
polynomial equation p(x,mx + c) = 0, and the dense epicycles meet some
lines infinitely often.

An obvious relative of the epicycles is the cycloid, the curve traced by
a point on a circle that rolls on a straight line. The cycloid does not seem to
have been studied by the Greeks, but it became a favorite of 17th-century
mathematicians. As we will see in Chapter 13, spectacular properties of
the cycloid were revealed by the methods of calculus.

Exercises

The equation of the cissoid is derivable as follows.

2.5.1 Using X and Y for the horizontal and vertical coordinates, show that the
straight line RP in Figure 2.8 has equation

Y =

√
1 − x2

1 + x
(X − 1).

2.5.2 Deduce the equation of the cissoid from Exercise 2.5.1.
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The simplest epicyclic curve is the cardioid (“heart-shape”), which results
from a circle rolling on a fixed circle of the same size.

2.5.3 Sketch a picture of the cardioid, confirming that it is heart-shaped (sort of).

2.5.4 Show that if both circles have radius 1, and we follow the point on the
rolling circle initially at (1, 0), then the cardioid it traces out has parametric
equations

x = 2 cos θ − cos 2θ,
y = 2 sin θ − sin 2θ.

The cardioid is an algebraic curve. Its cartesian equation may be hard to dis-
cover, but it is easy to verify, especially if one has a computer algebra system.

2.5.5 Check that the point (x, y) on the cardioid satisfies

(x2 + y2 − 1)2 = 4((x − 1)2 + y2).
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Greek Number Theory

Preview

Number theory is the second large field of mathematics that comes to us
from the Pythagoreans via Euclid. The Pythagorean theorem led mathe-
maticians to the study of squares and sums of squares; Euclid drew atten-
tion to the primes by proving that there are infinitely many of them.

His investigations were based on the Euclidean algorithm, a method
for finding the greatest common divisor of two natural numbers. Common
divisors are the key to basic results about prime numbers, in particular
unique prime factorization, which says that each natural number factors
into primes in exactly one way.

Another discovery of the Pythagoreans, the irrationality of
√
2, has

consequences for natural numbers. Since
√
2 � m/n for any natural num-

bers m, n, there is no integer solution of the equation x2 − 2y2 = 0. But
there are integer solutions of x2 − 2y2 = 1, and in fact infinitely many of
them. The same is true of the equation x2 − Ny2 = 1 for any nonsquare
natural number N.

The latter equation, called Pell’s equation, is perhaps second in fame
only to the Pythagorean equation x2 + y2 = z2, among equations for which
integer solutions are sought. Equations for which integer or rational solu-
tions are sought are called Diophantine, after Diophantus. The methods he
used to solve quadratic and cubic Diophantine equations are still of inter-
est. We study his method for cubics in this chapter, and take it up again in
Chapter 10.
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3.1 The Role of Number Theory

In Chapter 1 we saw that number theory has been part of mathematics
for at least as long as geometry, and from a foundational point of view it
may be more important. Despite this, number theory resists a systematic
treatment like that undergone by elementary geometry in Euclid’s Ele-
ments. At all stages in its development, number theory has had glaring gaps
because of the intractability of elementary problems. Most of the really
old unsolved problems in mathematics, in fact, are simple questions about
the natural numbers 1, 2, 3, . . . . The nonexistence of a general method for
solving Diophantine equations (Section 1.3) and the problem of identify-
ing the primes of the form 22

h
+ 1 (Section 2.3) have been noted. Other

unsolved number theory problems will come up in the sections below.
As a consequence, the role of number theory in the history of mathe-

matics has been quite different from that of geometry. Geometry has played
a stabilizing and unifying role, to the point of retarding further develop-
ment at times and creating the popular impression that mathematics is a
static subject. Number theory has been a spur to progress and change.
Before 1800, only a handful of mathematicians contributed to advances
in number theory, but they include some of the greats—Diophantus, Fer-
mat, Euler, Lagrange, and Gauss. This book stresses advances in number
theory that sprang from its connections with other parts of mathematics,
particularly algebra and geometry, since these were the most significant for
mathematics as a whole. For this reason we have no other chapter devoted
purely to number theory, but there will be frequent excursions into number
theory when we discuss algebra and what are called elliptic curves.

3.2 Polygonal, Prime, and Perfect Numbers

The polygonal numbers, which were studied by the Pythagoreans, result
from a naive transfer of geometric ideas to number theory. From Figure 3.1
it is easy to calculate an expression for the mth n-gonal number as the sum
of a certain arithmetic series (Exercise 3.2.3) and to show, for example, that
a square is the sum of two triangular numbers. Apart from Diophantus’s
work, which contains impressive results on sums of squares, Greek results
on polygonal numbers were of this elementary type.

On the whole, the Greeks seem to have been mistaken in attaching
much importance to polygonal numbers. There are nomajor theorems about
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Triangular numbers

1 3 6 10

Square numbers

1 4 9 16

Pentagonal numbers

1 5 12 22

Figure 3.1: Polygonal numbers

them, except perhaps the following two. The first is the theorem conjec-
tured by Bachet deMéziriac (1621) that every positive integer is the sum of
four integer squares. This was proved by Lagrange (1770). A generaliza-
tion, which Fermat (1670) stated without proof, is that every positive inte-
ger is the sum of n n-agonal numbers. This was proved by Cauchy (1813)
but, somewhat disappointingly, all but four of the numbers can be 0 or 1.
A short proof of Cauchy’s theorem has been given by Nathanson (1987).
The other remarkable theorem about polygonal numbers is the formula

∞∏

n=1

(1 − xn) = 1 +
∞∑

k=1

(−1)k(x(3k2−k)/2 + x(3k2+k)/2)

proved by Euler (1750) and known as Euler’s pentagonal number theorem,
since the exponents (3k2 − k)/2 are pentagonal numbers. For a proof see
Hall (1967), p. 33.
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The four-square theorem and the pentagonal number theorem were
both absorbed around 1830 into Jacobi’s theory of theta functions, a much
larger theory. Theta functions are related to the elliptic functions that we
study in Chapter 10.

The prime numbers were also considered within the geometric frame-
work, as the numbers with no rectangular representation. A prime number,
having no divisors apart from itself and 1, has only a “linear” representa-
tion. Of course this is merely a restatement of the definition of prime, and
most theorems about prime numbers require much more powerful ideas;
however, the Greeks did come up with one gem. This is the proof that there
are infinitely many primes, in Book IX of Euclid’s Elements.

Given any finite collection of primes p1, p2, . . . , pn, we can find another
by considering p = p1p2 · · · pn + 1.

This number is not divisible by p1, p2, . . . , pn (each leaves remainder 1).
Hence either p itself is a prime, and p > p1, p2, . . . , pn, or else it has a
prime divisor � p1, p2, . . . , pn.

A perfect number is one that equals the sum of its divisors (including
1 but excluding itself). For example, 6 = 1 + 2 + 3 is a perfect number, as
is 28 = 1 + 2 + 4 + 7 + 14. The concept goes back to the Pythagoreans,
but only two notable theorems about perfect numbers are known. Euclid
concludes Book IX of the Elements by proving that if 2n−1 is prime, then
2n−1(2n−1) is perfect (Exercise 3.2.5). These perfect numbers are of course
even, and Euler (1849) (a posthumous publication) proved that every even
perfect number is of Euclid’s form. Euler’s surprisingly simple proof may
be found in Burton (1985), p. 504. It is unknown whether odd perfect num-
bers exist—this may be the oldest open problem in mathematics.

In view of Euler’s theorem, all even perfect numbers arise from primes
of the form 2n − 1. These are known as Mersenne primes, after Marin
Mersenne (1588–1648), who first drew attention to the problem of find-
ing primes of this form. It is not known whether there are infinitely many
Mersenne primes, though larger and larger ones seem to be found quite reg-
ularly. In recent years each new world-record prime has been a Mersenne
prime, giving a corresponding world-record perfect number.

Exercises

Infinitely many natural numbers are not sums of three (or fewer) squares.
The smallest of them is 7, and it can be shown as follows that no number of the
form 8n + 7 is a sum of three squares.
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3.2.1 Show that any square leaves remainder 0, 1, or 4 on division by 8.

3.2.2 Deduce that a sum of three squares leaves remainder 0, 1, 2, 3, 4, 5, or 6
on division by 8.

One reason polygonal numbers play only a small role in mathematics is that
questions about them are basically questions about squares—hence the focus is
on problems about squares.

3.2.3 Show that the kth pentagonal number is (3k2 − k)/2.

3.2.4 Show that each square is the sum of two consecutive triangular numbers.

Euclid’s theorem about perfect numbers depends on the prime divisor prop-
erty, which will be proved in the next section. Assuming this for the moment, it
follows that if 2n−1 is a prime p, then the proper divisors of 2n−1p (those unequal
to 2n−1p itself) are

1, 2, 22, . . . , 2n−1 and p, 2p, 22p . . . , 2n−2p.

3.2.5 Given that the divisors of 2n−1p are those just listed, show that 2n−1p is
perfect when p = 2n − 1 is prime.

3.3 The Euclidean Algorithm

This algorithm is named after Euclid because its earliest known appear-
ance is in Book VII of the Elements. However, in the opinion of many
historians (for example, Heath (1921), p. 399) the algorithm and some of
its consequences were probably known earlier. At the very least, Euclid
deserves credit for a masterly presentation of the fundamentals of number
theory, based on this algorithm.

The Euclidean algorithm is used to find the greatest common divisor
(gcd) of two positive integers a, b. The first step is to construct the pair
(a1, b1), where

a1 = max(a, b) −min(a, b),

b1 = min(a, b),

and then one simply repeats this operation of subtracting the smaller num-
ber from the larger. That is, if the pair constructed at step i is (ai, bi), then
the pair constructed at step i + 1 is

ai+1 = max(ai, bi) −min(ai, bi),

bi+1 = min(ai, bi).
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The algorithm terminates at the first stage when ai+1 = bi+1, and this com-
mon value is gcd(a, b). This is because taking differences preserves any
common divisors; hence when ai+1 = bi+1 we have

gcd(a, b) = gcd(a1, b1) = · · · = gcd(ai+1, bi+1) = ai+1 = bi+1.

The sheer simplicity of the algorithmmakes it easy to draw some important
consequences. Euclid of course did not use our notation, but nevertheless
he had results close to the following.

1. If gcd(a, b) = 1, then there are integers m, n such that ma + nb = 1.

The equations

a1 = max(a, b) −min(a, b),

b1 = min(a, b),
...

ai+1 = max(ai, bi) −min(ai, bi),

bi+1 = min(ai, bi)

show first that a1, b1 are integral linear combinations, ma+ nb, of a
and b, hence so are a2, b2, hence so are a3, b3, . . ., and finally this is
true of ai+1 = bi+1. But ai+1 = bi+1 = 1, since gcd(a, b) = 1; hence
1 = ma + nb for some integers m, n.

2. If p is a prime number that divides ab, then p divides a or b (the
prime divisor property).

To see this, suppose p does not divide a. Then, since p has no other
divisors except 1, we have gcd(p, a) = 1. Hence by the previous
result we get integers m, n such that

ma + np = 1.

Multiplying each side by b gives

mab + nbp = b.

By hypothesis, p divides ab; hence p divides both terms on the left-
hand side, and therefore p divides the right-hand side b.
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3. Each positive integer has a unique factorization into primes (the fun-
damental theorem of arithmetic).

Suppose on the contrary that some integer n has two different prime
factorizations:

n = p1p2 · · · p j = q1q2 · · · qk.

By removing common factors, if necessary, we can assume that there
is a pi that is not among the q’s. But this contradicts the previous
result, because pi divides n = q1q2 · · · qk, yet it does not divide any
of q1, q2, . . . , qk individually, since these are prime numbers � pi.

Induction

In this and the previous section we have glossed over an important point
that Euclid was aware of but mentioned only briefly—the principle that
an infinite decreasing sequence of positive integers is impossible. In the
present section this infinite descent principle guarantees termination of the
Euclidean algorithm, necessarily with the number gcd(a, b), for any pair
of positive integers a, b. This is because the repeated subtraction process
produces steadily decreasing numbers.

In the previous section infinite descent played a hidden role in Euclid’s
proof that there are infinitely many prime numbers: namely, in the assump-
tion that some prime number divides p1p2 · · · pn + 1. In Proposition 31 of
Book VII of his Elements, Euclid proves existence of a prime divisor of
any number N by repeatedly splitting N into smaller factors. If this pro-
cess does not arrive at a prime factor then we get an infinite sequence of
positive integers, each smaller than the one before. As Euclid says, this is
“impossible in numbers.”

Today, the impossibility of infinite descent is one way of stating math-
ematical induction (also known as complete induction), a method of proof
that reflects the nature of positive integers as numbers that arise from 1 by
repeatedly adding 1. On the one hand, this property implies that we arrive
at 1 from any positive integer by stepping downward only finitely often.
On the other hand, it implies that any positive integer can be reached from
1 by finitely often adding 1. In particular, a property P can be proved to
hold for all positive integers by proving

1. P holds for the number 1 (the base step),

2. If P holds for n, then P holds for n + 1 (the induction step).
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“Base step, induction step” is often considered the standard form of proof
by induction, but it is perfectly fair to say that proofs by infinite descent,
such as Euclid’s, are also proofs by induction.

Moreover, it is not generally appreciated that number theory needs
induction as much as Euclid needed the parallel axiom in his geometry.
The first to appreciate this fact was Grassmann (1861), who showed that
all the basic algebraic properties of positive integers, such as a+b = b+a
and ab = ba, can be proved by induction. Even then, Grassmann’s break-
through was buried in a school textbook, and not brought into general
mathematical consciousness until the 1880s, when Peano (1889) formu-
lated an axiom system for arithmetic with an induction axiom at its core.
This system, called Peano arithmetic or PA, is an important part of the
foundations of mathematics, as we will see in Chapter 17.

Exercises

We can now fill the gap in the proof of Euclid’s theorem on perfect numbers
(previous exercise set), using the prime divisor property.

3.3.1 Use the prime divisor property to show that the proper divisors of 2n−1p,
for any odd prime p, are 1, 2, 22, . . . , 2n−1 and p, 2p, 22p . . . , 2n−2p.

The result that if gcd(a, b) = 1 then 1 = ma + nb for some integers m and n
is a special case of the following way to represent the gcd.

3.3.2 Show that, for any integers a and b, there are integers m and n such that
gcd(a, b) = ma + nb.

This in turn gives a general way to find integer solutions of linear equations.

3.3.3 Deduce from Exercise 3.3.2 that the equation ax + by = c with integer
coefficients a, b, and c has an integer solution x, y if gcd(a, b) divides c.

The converse of this result is also valid, as one discovers when considering
a necessary condition for ax + by = c to have an integer solution.

3.3.4 The equation 12x + 15y = 1 has no integer solution. Why?

3.3.5 (Solution of linear Diophantine equations) Give a test to decide, for any
given integers a, b, c, whether there are integers x, y such that

ax + by = c.
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3.4 Pell’s Equation

The Diophantine equation x2 − Ny2 = 1, where N is a nonsquare integer,
is known as Pell’s equation because Euler mistakenly attributed a solution
of it to the 17th-century English mathematician Pell (it should have been
attributed to Brouncker). Pell’s equation is probably the best-known Dio-
phantine equation after the equation a2 + b2 = c2 for Pythagorean triples,
and in some ways it is more important. Solving Pell’s equation is the main
step in the solution of the general quadratic Diophantine equation in two
variables (see, for example, Gelfond (1961)), and also a key tool in prov-
ing the theorem of Matiyasevich mentioned in Section 1.3 that there is no
algorithm for solving all Diophantine equations (see, for example, Davis
(1973) or Jones and Matiyasevich (1991)). In view of this, it is fitting that
Pell’s equation should make its first appearance in Greek mathematics, and
it is impressive to see how well the Greeks understood it.

The simplest instance of Pell’s equation,

x2 − 2y2 = 1,

was studied by the Pythagoreans in connection with
√
2. If x, y are large

solutions to this equation, then x/y ≈ √2, and the Pythagoreans found
they could generate larger and larger solutions by the recurrence relations

xn+1 = xn + 2yn,

yn+1 = xn + yn.

A short calculation shows that

x2n+1 − 2y2n+1 = −(x2n − 2y2n),
so if (xn, yn) satisfies x2−2y2 = ±1, then (xn+1, yn+1) satisfies x2−2y2 = ∓1.
Starting with the trivial solution (x0, y0) = (1, 0) of x2 − 2y2 = 1, we get
successively larger solutions (x2, y2), (x4, y4), . . . of x2−2y2 = 1. (The pairs
(xn, yn) were known as side and diagonal numbers because the ratio yn/xn

tends to that of the side and diagonal in a square.)
But how might these recurrence relations have been discovered in the

first place? Van der Waerden (1976) and Fowler (1980, 1982) suggest that
the key is the Euclidean algorithm applied to line segments, an operation
the Greeks called anthyphairesis. Given any two lengths a, b, one can
define the sequence (a1, b1), (a2, b2), . . ., as in Section 3.2, by repeated sub-
traction of the smaller length from the larger. If a, b are integer multiples
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of some unit, then the process terminates as in Section 3.3, but if b/a is
irrational, it continues forever.

We canwell imagine the Pythagoreans would have applied anthyphaire-
sis to a = 1, b =

√
2. Here is what happens. If a, b are sides of a rectan-

gle, each subtraction of the smaller number from the larger is represented
by cutting off the square on the shorter side (Figure 3.2). We notice that
the rectangle remaining after step 2, with sides

√
2 − 1 and 2 − √2 =√

2(
√
2 − 1), is the same shape as the original, though the long side is

now vertical instead of horizontal. It follows that similar steps will recur
forever—which is another proof that

√
2 is irrational, incidentally.

Figure 3.2: The Euclidean algorithm on
√
2 and 1

Now, however, we are interested in the relation between successive
similar rectangles. If we let the long and short sides of successive similar
rectangles be xn+1, yn+1 and xn, yn, we can derive recurrence relations for
xn+1, yn+1 from Figure 3.3:

xn+1 = xn + 2yn,

yn+1 = xn + yn.

Exactly the relations of the Pythagoreans! The difference is that our xn, yn

are not integers, and they satisfy x2 − 2y2 = 0, not x2 − 2y2 = 1.
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Figure 3.3: The recurrence relation

Nevertheless, one feels that Figure 3.3 gives the most natural interpre-
tation of these relations. The discovery that the same relations generate
solutions of x2 − 2y2 = 1 possibly arose from wishing that the Euclidean
algorithm terminated with x1 = y1 = 1. If the Pythagoreans started with
x1 = y1 = 1 and applied the recurrence relations, then they may well have
found that (xn, yn) satisfies x2 − 2y2 = (−1)n, as we did earlier.

Many other instances of the Pell equation x2−Ny2 = 1 occur in Greek
mathematics. In the seventh century ce the Indian mathematician Brah-
magupta gave a procedure for generating larger solutions of x2 − Ny2 = 1
from known solutions. But existence of a solution, for any non-square N,
was rigorously proved only in 1768 by Lagrange. The later European work
on Pell’s equation, which began in the 17th century with Brouncker and
others, was based on the continued fraction for

√
N, though this amounts

to the same thing as anthyphairesis (see exercises). A short but detailed
history of Pell’s equation is in Dickson (1920), pp. 341–400.

An interesting aspect of the theory is the very irregular relationship
between N and the number of steps before a rectangle proportional to the
original recurs. If the number of steps is large, the smallest nontrivial solu-
tion of x2 − Ny2 = 1 is enormous. A famous example is what is called the
cattle problem of Archimedes (287–212 bce), which leads to the equation

x2 − 4729494y2 = 1.

Its smallest solution was found by Krummbiegel and Amthor (1880) to
have 206,545 digits!

A recent paper on the cattle problem, Lenstra (2002), gives a strikingly
condensed form of solution: “for the first time in history, all infinitely many
solutions to the cattle problem are displayed in a handy little table.”
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Exercises

The continued fraction of a real number α > 0 is written

α = n1 +
1

n2 +
1

n3 +
1

n4 +
1

. . .

,

where n1, n2, n3, n4, . . . are integers obtained by the following algorithm. Let

n1 = integer part of α.

Then α − n1 < 1 and α1 = 1/(α − n1) > 1, so we can take

n2 = integer part of α1.

Then α1 − n2 < 1 and α2 = 1/(α1 − n2) > 1, so we can take

n3 = integer part of α2, and so on.

3.4.1 Apply the above algorithm to the number α = 157/68, and hence show
that

157
68
= 2 +

1

3 +
1

4 +
1
5

.

You may notice that what happens is essentially the Euclidean algorithm applied
to the pair (157, 68), except that repeated operations of subtraction are replaced
by division with remainder. The integers 2, 3, 4, 5 are the successive quotients
obtained in these divisions: 157 divided by 68 gives quotient 2 and remainder
21, 68 divided by 21 gives quotient 3 and remainder 5, and so on.

Thus the Euclidean algorithm on integers a, b yields results that may be
encoded by the (finite) continued fraction for a/b. This idea was introduced by
Euler, and it became the preferred approach to the Euclidean algorithm for some
mathematicians. Gauss (1801), in particular, always speaks of the Euclidean algo-
rithm as the “continued fraction algorithm.”

The Euclidean algorithm on a pair (α, 1), where α is irrational, is indeed
better known as the continued fraction algorithm.

3.4.2 Interpret the operations in the continued fraction algorithm—detaching the
integer part and taking the reciprocal of the remainder—in terms of anthy-
phairesis.
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3.4.3 Show that

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

. . .

.

Exercise 3.4.3 implies that
√
2 + 1 is the periodic continued fraction

2 +
1

2 +
1

2 +
1

2 +
1

. . .

.

3.4.4 Show that
√
3+1 also has a periodic continued fraction, and hence derive

the continued fraction for
√
3.

3.5 The Chord and Tangent Methods

In Section 1.3 we used a method of Diophantus to find all rational points on
the circle. If p(x, y) = 0 is any quadratic equation in x and y with rational
coefficients, and if the equation has one rational solution x = r1, y = s1,
then we can find any rational solution by drawing a rational line y = mx+c
through the point r1, s1 and finding its other intersection with the curve
p(x, y) = 0. The two intersections with the curve, x = r1, r2, say, are given
by the roots r1, r2 of the equation

p(x,mx + c) = 0.

This means that p(x,mx+c) = k(x−r1)(x−r2), and since all coefficients on
the left-hand side are rational and r1 is rational, then k and r2 must also be
rational. The y value when x = r2, y = s2 = mr2+c, is rational since m and
c are; hence (r2, s2) is another rational point on p(x, y) = 0. Conversely,
any line (or chord) through two rational points is rational, and hence all
rational points are found in this way.

Now if p(x, y) = 0 is a curve of degree 3, its intersections with a line
y = mx+c are given by the roots of the cubic equation p(x,mx+c) = 0. If
we know two rational points on the curve, then the line through them will
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be rational, and its third intersection with the curve will also be rational, by
an argument like the preceding one. This fact becomes more useful when
one realizes that the two known rational points can be taken to coincide,
in which case the line is the tangent through the known rational point.
Thus from one rational solution we can generate another by the tangent
construction, and from two we can construct a third by taking the chord
between the two.

Diophantus found rational solutions to cubic equations in what seems
to have been essentially this way. The surviving works of Diophantus reveal
little of his methods, but a plausible reconstruction—an algebraic version
of the tangent and chord constructions—has been given by Bashmakova
(1981). Probably the first to understand Diophantus’s methods was Fermat,
in the 17th century, and the first to give the tangent and chord interpretation
was Newton (1670s).

x

y

Figure 3.4: Cubic curve y2 = x3 − 3x2 + 3x + 1 and tangent

In contrast to the quadratic case, we have no choice in the slope of the
rational line for cubics. Thus it is unclear whether this method will give all
rational points on a cubic. A remarkable theorem, conjectured by Poincaré
(1901) and proved by Mordell (1922), says that all rational points can
be generated by tangent and chord constructions applied to finitely many
points. However, it is still not known whether there is an algorithm for
finding a finite set of such rational generators on each cubic curve.
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Exercises

3.5.1 Explain the solution x = 21/4, y = 71/8 to x3 − 3x2 + 3x+ 1 = y2 given by
Diophantus (Heath (1910), p. 242) by constructing the tangent through the
obvious rational point on this curve (Figure 3.4).

3.5.2 Rederive the following rational point construction of Viète (1593), p. 145.
Given the rational point (a, b) on x3 − y3 = a3 − b3, show that the tangent
at (a, b) is

y =
a2

b2
(x − a) + b,

and that the other intersection of the tangent with the curve is the rational
point

x = a
a3 − 2b3

a3 + b3
, y = b

b3 − 2a3

a3 + b3
.
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Infinity in Greek Mathematics

Preview

Perhaps the most interesting—and most modern—feature of Greek math-
ematics is its treatment of infinity. The Greeks feared infinity and tried to
avoid it, but in doing so they laid the foundations for a rigorous treatment
of infinite processes in 19th century calculus.

The most original contributions to the theory of infinity in ancient
times were the theory of proportions and the method of exhaustion. Both
were due to Eudoxus and expounded in Books V and XII of Euclid’s Ele-
ments.

The theory of proportions develops the idea that a “quantity” λ (what
we would now call a real number) can be known by its position among the
rational numbers. That is, λ is known if we know the rational numbers less
than λ and the rational numbers greater than λ. In a sense, the space less
than λ can be “exhausted” by rational numbers.

The method of exhaustion generalizes this idea from quantities to regions
of the plane or space. A region becomes known (in area or volume) when
its position among known areas or volumes is known. For example, we
know the area of a circle when we know the areas of the polygons inside
it and the areas of polygons outside it; we know the volume of a pyramid
when we know the volumes of stacks of prisms inside it and outside it.

Using this method, Euclid found that the volume of a tetrahedron
equals 1/3 of its base area times its height, and Archimedes found the area
of a parabolic segment. Both of them relied on an infinite process that is
fundamental to many calculations of area and volume: the summation of
an infinite geometric series.
© Springer Nature Switzerland AG 2020
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4.1 Fear of Infinity

Reasoning about infinity is one of the characteristic features of mathemat-
ics as well as its main source of conflict. In Chapter 1 we saw the conflict
that arose from the discovery of irrationals, and in this chapter we will see
that the Greeks rejected not only irrational numbers but infinite processes
in general. In fact, until the late 19th century most mathematicians were
reluctant to accept infinity as more than “potential.” The infinitude of a
process, collection, or magnitude was understood as the possibility of its
indefinite continuation, and no more—certainly not the possibility of com-
pletion. For example, the natural numbers 1, 2, 3, . . ., can be accepted as a
potential infinity—generated from 1 by the process of repeatedly adding
1—without accepting that there is a completed totality {1, 2, 3, . . .}. The
same goes for any sequence x1, x2, x3, . . . (of rational numbers, say), where
xn+1 is obtained from xn by a definite rule.

And yet a beguiling possibility arises when xn tends to a limit x. If we
already accept x—for geometric reasons, say—then it is tempting to view
x as some kind of completion of the sequence x1, x2, x3, . . . . It seems that
the Greeks were afraid to draw such conclusions. According to tradition,
they were frightened off by the paradoxes of Zeno, around 450 bce.

We know of Zeno’s arguments only through Aristotle, who quotes them
in his Physics in order to refute them, and it is not clear what Zeno himself
wished to achieve. Was there, for example, a tendency toward speculation
about infinity that he disapproved of? His arguments are so extreme they
could almost be parodies of loose arguments about infinity he heard among
his contemporaries. Consider his first paradox, the dichotomy:

There is no motion because that which is moved must arrive
at the middle (of its course) before it arrives at the end.

Aristotle, Physics, Book VI, Ch. 9

The full argument presumably is that before getting anywhere one must
first get half way, and before that a quarter of the way, and before that one
eighth of the way, ad infinitum. The completion of this infinite sequence
of steps no longer seems impossible to most mathematicians, since it rep-
resents nothing more than an infinite set of points within a finite interval.
It must have frightened the Greeks though, because in all their proofs they
were very careful to avoid completed infinities and limits.
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The first mathematical processes we would recognize as infinite may
be due to the Pythagoreans, for example, the recurrence relations

xn+1 = xn + 2yn,

yn+1 = xn + yn

for generating integer solutions of the equations x2 − 2y2 = ±1. We saw
in Section 3.4 why it is likely that these relations arose from an attempt to
understand

√
2, and it is easy for us to see that xn/yn →

√
2 as n→ ∞.

However, it is unlikely that the Pythagoreans would have viewed
√

2
as a limit or seen the sequence as a meaningful object. The most we can say
is that, by stating a recurrence, the Pythagoreans implied a sequence with
limit

√
2. Only a much later generation of mathematicians could accept

the infinite sequence as such and appreciate its ability to define a limit.
In a problem where we would reach a solution α by a limiting process,

the Greeks would instead eliminate any solution but α. They would show
that any number <α was too small, and any number >α was too large, to
be the solution. We will study some examples of this style of proof below
and see how it ultimately bore fruit in the foundations of mathematics. As
a method of solving problems, however, it was sterile: how does one guess
the number α in the first place? When mathematicians returned to problems
of finding limits in the 17th century, they were in too much of a hurry for
the rigorous methods of the Greeks. Their dubious, but efficient, methods
of infinitesimals were criticized by the Zeno of the time, Bishop Berkeley,
but little was done to meet his objections until much later. It was Dedekind,
Weierstrass, and others in the 19th century who eventually restored Greek
standards of rigor.

The story of rigor lost and rigor regained took an amazing turn when
a previously unknown manuscript of Archimedes, The Method, was dis-
covered in 1906. In it he reveals that his deepest results were found using
dubious infinitary arguments, and only later proved rigorously. Because,
as he says, “It is of course easier to supply the proof when we have previ-
ously acquired some knowledge of the questions by the method, than it is
to find it without any previous knowledge.”

The importance of this statement goes beyond its revelation that infin-
ity can be used to discover results that are not initially accessible to logic.
Archimedes was probably the first mathematician candid enough to explain
that there is a difference between the way theorems are discovered and the
way they are proved.
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4.2 Eudoxus’s Theory of Proportions

The theory of proportions is credited to Eudoxus (around 400–350 bce) and
is expounded in Book V of Euclid’s Elements. Its purpose is to let lengths
(and other geometric quantities) be treated as precisely as numbers, while
admitting only the use of rational numbers. We saw the motivation for this
in Section 1.5: the Greeks could not accept irrational numbers, but they
accepted irrational geometric quantities such as the diagonal of the unit
square. To simplify the exposition of the theory, let us call lengths rational
if they are rational multiples of a fixed length.

The idea of Eudoxus was to say that a length λ is determined by those
rational lengths less than it and those greater than it. To be precise, he says
λ1 = λ2 if any rational length <λ1 is also <λ2, and vice versa. Likewise
λ1 < λ2 if there is a rational length >λ1 but <λ2. This definition uses the
rationals to give an infinitely sharp notion of length while avoiding any
overt use of infinity. Of course the infinite set of rational lengths <λ is
present in spirit, but Eudoxus avoids mentioning it by speaking of an arbi-
trary rational length <λ.

The theory of proportions was so successful that it delayed the develop-
ment of a theory of real numbers for 2000 years. This was ironic, because
the theory of proportions can be used to define irrational numbers just as
well as lengths. It was understandable though, because the common irra-
tional lengths, such as the diagonal of the unit square, arise from construc-
tions that are intuitively clear and finite from the geometric point of view.
Any arithmetic approach to

√
2, whether by sequences, decimals, or con-

tinued fractions, is infinite and therefore less intuitive. Until the 19th cen-
tury this seemed a good reason for considering geometry to be a better
foundation for mathematics than arithmetic. Then the problems of geom-
etry came to a head, and mathematicians began to fear geometric intu-
ition as much as they had previously feared infinity. There was a purge of
geometric reasoning from the textbooks and industrious reconstruction of
mathematics on the basis of numbers and sets of numbers. Set theory is
discussed further in Chapter 17. Suffice to say, for the moment, that set
theory depends on the acceptance of completed infinities.

The beauty of the theory of proportions was its adaptability to this new
climate. Instead of rational lengths, take rational numbers. Instead of com-
paring existing irrational lengths by means of rational lengths, construct
irrational numbers from scratch using sets of rationals! The length

√
2 is
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determined by the two sets of positive rationals

L√2 = {r : r2 < 2}, U√2 = {r : r2 > 2}.
Dedekind (1872) decided in effect to let

√
2 be this pair of sets! In gen-

eral, let any partition of the positive rationals into sets L,U such that any
member of L is less than any member of U be a positive real number. This
idea, now known as a Dedekind cut, is more than just a twist of Eudoxus;
it gives a complete and uniform construction of all real numbers, or points
on the line, using just the rationals. In short, it is an explanation of the
continuous in terms of the discrete, finally resolving the fundamental con-
flict in Greek mathematics. Dedekind was understandably pleased with his
achievement. He wrote

The statement is so frequently made that the differential calcu-
lus deals with continuous magnitude, and yet an explanation
of this continuity is nowhere given. . . . It then only remained
to discover its true origin in the elements of arithmetic and
thus at the same time secure a real definition of the essence of
continuity. I succeeded Nov. 24 1858.

Dedekind (1872), p. 2

Exercises

There is only one Dedekind cut (L,U) corresponding to an irrational number
α, but there are two cuts corresponding to a rational number a:

L = {r : r ≤ a}, U = {r : r > a}
and

L = {r : r < a}, U = {r : r ≥ a}.
To unify the theory of all reals we choose the latter cut, call it

La = {r : r < a}, Ua = {r : r ≥ a},
as the standard way to represent a rational a. We can then say, whether x is rational
or irrational, that the lower set for x is

Lx = {r : r < x}.
Now we use lower sets to define x+y and xy for positive reals x and y as follows:

Lx+y = {r + s : r < x and s < y, where r, s are rational}
Lxy = {rs : r < x and s < y, where r, s are rational}.
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4.2.1 Show that these are valid definitions of x + y and xy when x and y are
rational.

The test of these definitions, as Dedekind realized, is that they allow rigorous
proofs of results like

√
2
√

3 =
√

6 that (in Dedekind’s opinion) had never been
rigorously proved before. Proofs using Dedekind’s definitions are possible, but
not trivial. Even to prove that

√
2
√

2 = 2 one has to prove the next two results.

4.2.2 If r2 < 2 and s2 < 2, show that rs < 2.

4.2.3 If a rational t < 2, show that t = rs for some rationals r, s with r2 < 2,
s2 < 2. (Hint: Choose r with t ≤ r2 < 2.)

4.2.4 Why do Exercises 4.2.2 and 4.2.3 show that
√

2
√

2 = 2?

4.2.5 Give a similar proof that
√

2
√

3 =
√

6.

4.3 TheMethod of Exhaustion

The method of exhaustion, also credited to Eudoxus, is a generalization
of his theory of proportions. Just as an irrational length is determined by
the rational lengths on either side of it, more general unknown quantities
become determined by arbitrarily close approximations using known fig-
ures. Examples given by Eudoxus (and expounded in Book XII of Euclid’s
Elements) are an approximation of the circle by inner and outer polygons
(Figure 4.1) and an approximation of a tetrahedron by stacks of prisms
(Figure 4.2, which shows the most obvious approximation, not the cun-
ning one used by Euclid, which is shown in Figure 4.5). In both cases the
approximating figures are known quantities, on the basis of the theory of
proportions and the theorem that area of triangle = 1/2 base × height.

Figure 4.1: Approximating a circle
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Figure 4.2: Approximating a tetrahedron

The polygonal approximations are used to show that the area of any
circle is proportional to the square on its radius, as follows. Suppose P1 ⊂
P2 ⊂ P3 ⊂ · · · are the inner polygons and Q1 ⊃ Q2 ⊃ Q3 ⊃ · · · are the
outer polygons. Each polygon is obtained from its predecessor by bisect-
ing the arcs between its vertices, as shown in Figure 4.1. It can then be
shown, by elementary geometry, that the area difference Qi − Pi can be
made arbitrarily small, and hence Pi approximates the area C of the circle
arbitrarily closely.

On the other hand, elementary geometry also shows that the area Pi is
proportional to the square, R2, of the radius. Writing the area as Pi(R) and
using the theory of proportions to handle ratios of areas, we have

Pi(R) : Pi(R
′) = R2 : R′2. (1)

Now let C(R) denote the area of the circle of radius R, and suppose

C(R) : C(R′) < R2 : R′2. (2)

By choosing a Pi that approximates C sufficiently closely we also get

Pi(R) : Pi(R
′) < R2 : R′2,

which contradicts (1). Hence the < sign in (2) is incorrect, and we can
similarly show that > is incorrect. Thus the only possibility is

C(R) : C(R′) = R2 : R′2,

that is, the area of a circle is proportional to the square of its radius. That
is, the constant of proportionality π in the formula πR2 for the area of the
circle is independent of the radius R.
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Notice that “exhaustion” does not mean using an infinite sequence of
steps to show that area is proportional to the square of the radius. Rather,
one refutes any disproportionality in a finite number of steps (by going to
a suitable Pi). This is typical of the way in which exhaustion arguments
avoid mention of limits and infinity.

It is interesting that Euclid does not need the method of exhaustion in
the theory of area for polygons. It can be done entirely by dissection argu-
ments such as that showing area of triangle =1/2 base×height (Figure 4.3).
In fact, it was shown by Farkas Bolyai (1832a) that any polygons P, Q of
equal area can be cut into polygonal pieces P1, . . . , Pn and Q1, . . . ,Qn such
that Pi is congruent to Qi. Thus we can define polygons to be equal in area
if they possess dissections into such correspondingly congruent pieces.

Figure 4.3: Area of a triangle

In Hilbert’s famous list of mathematical problems, Hilbert (1900a), the
third was to decide whether an analogous definition was possible for poly-
hedra. Dehn (1900) showed that it was not; in fact, a tetrahedron and a cube
of equal volume cannot be dissected into corresponding congruent polyhe-
dral pieces. Hence infinite processes of some kind, such as the method of
exhaustion, are needed to define equality of volume. A readable account
of Dehn’s theorem and related results may be found in Boltyansky (1978).

Exercises

Another approach to the volume of the tetrahedron by exhaustion is in Euclid
(see Heath (1925), Book XII, Proposition 4). He dissected the tetrahedron into
two smaller tetrahedra and two prisms as shown in Figure 4.4, with vertices at
the edge midpoints of the original tetrahedron. (There is a “front” prism, with
triangles left and right, and a “back” prism, with triangles top and bottom.)

4.3.1 Show that the two prisms occupy more than half of the tetrahedron. (Hence,
by iterating the construction in the smaller tetrahedra, the volume of the
tetrahedron may be approximated arbitrarily closely by prisms.)
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Figure 4.4: Euclid’s dissection of the tetrahedron

4.3.2 Show that the volume of the two prisms in Figure 4.4 is 1/4 base × height
(the base and height of the tetrahedron, that is).

By computing the volumes of the corresponding prisms in the smaller tetra-
hedra (Figure 4.5), and repeating, we find the volume of the original tetrahedron
as a sum of a geometric series.

Figure 4.5: Repeated dissection of the tetrahedron

4.3.3 Show that the total volume of the prisms is

(
1
4
+

1
42
+

1
43
+ · · ·

)
base × height = 1/3 base × height.

In the next section we study a construction of Archimedes that is curiously

similar to this one of Euclid. Each step cuts pieces out of the leftovers from

the previous step and leads to a similar geometric series. While it is convenient

for us to view the process as summing an infinite geometric series, both Euclid

and Archimedes applied an exhaustion argument to finite (but arbitrarily long)

geometric series.
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4.4 The Area of a Parabolic Segment

The method of exhaustion was brought to full maturity by Archimedes
(287–212 bce). Among his most famous results are the volume and sur-
face area of the sphere and the area of a parabolic segment. As mentioned
in Section 4.1, Archimedes first discovered these results by nonrigorous
methods, later confirming them by the method of exhaustion. Perhaps the
most interesting and natural of his exhaustion proofs is the one for the area
of the parabolic segment. The segment is exhausted by polygons similarly
to Eudoxus’ exhaustion of the circle, but the area is obtained outright and
not merely in proportion to another figure.

To simplify the construction slightly we assume that the segment is
cut off by a chord perpendicular to the axis of symmetry of the parabola.
Archimedes divides the parabolic segment into triangles Δ1,Δ2,Δ3, . . ., as
shown in Figure 4.6 (labeled by their subscripts). The middle vertex of
each triangle lies on the parabola halfway between the other two (measured
horizontally). These triangles clearly exhaust the parabolic segment, and
so it remains to compute their area. Quite surprisingly, this turns into a
geometric series.

1

2 3

4

5 6

7

Figure 4.6: The parabolic segment

We indicate how this comes about by looking at Δ3 (Figure 4.7).
Since OP = 1

2OX, PQ = 1
4PS by definition of the parabola. On the

other hand, SR = 1
2PS , so QR = 1

4PS . Now Δ3 is the sum of the triangles
RQZ and OQR, which have the same base RQ and height OP = PX, hence
equal area. We have just seen that RQZ has half the base of SRZ and it
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1

2 3

O X

Y Z

P

S

Q

R

Figure 4.7: A triangle in the segment

has the same height; hence (calling figures equal when they have the same
area)

Δ3 = SRZ =
1
4
OYZ =

1
8
Δ1.

By symmetry, Δ2 = Δ3, so Δ2 + Δ3 =
1
4Δ1.

A similar argument shows that

Δ4 + Δ5 + Δ6 + Δ7 =
1
16
Δ1

and so on, each new chain of triangles having one-fourth the area of the
previous chain. Consequently,

area of parabolic segment = Δ1

⎛⎜⎜⎜⎜⎜⎝1 + 1
4
+

(
1
4

)2
+ · · ·

⎞⎟⎟⎟⎟⎟⎠
=

4
3
Δ1.

Of course, Archimedes does not use the infinite series but uses exhaustion,
showing that any area < 4

3Δ1 can be exceeded by taking sufficiently many
of the triangles Δi. The sum of the finite geometric series needed for this
was known from Euclid’s Elements, Book IX, where Euclid used it for the
theorem about perfect numbers (Section 3.2).



62 4 Infinity in Greek Mathematics

Exercises

Archimedes’ method of approximation by triangles was a brilliant success
on the parabolic segment, but not suited to many other curves. A more generally
useful method is approximation by rectangles, probably known to you from cal-
culus. The area of a parabolic segment can also be computed in this way, though
less gracefully, and indeed Archimedes did this too. We look at other curved areas
that can be evaluated by rectangle approximation in Section 8.2.

Probably the simplest area that cannot be found by this method is the area
under the hyperbola y = 1/x, from x = 1 to x = t. This is because the area
in question is log t, and the logarithm function cannot be defined by elementary
means. But if instead one takes the area to be log t by definition, then it is possible
to derive the basic property of the logarithm—

log ab = log a + log b

—and by means Archimedes would have understood.

4.4.1 Suppose we approximate the area log a under y = 1/x from 1 to a by n
rectangles of equal width, as shown in Figure 4.8.

Figure 4.8: Rectangle approximation to log a

Show that the corresponding approximation to the area under y = 1/x from
b to ab by n rectangles has exactly the same area. (In fact, corresponding
rectangles have equal area.)

4.4.2 Deduce from Exercise 4.4.1, by the method of exhaustion, that the area
under y = 1/x from 1 to a equals the area under y = 1/x from b to ab.

4.4.3 Deduce from Exercise 4.4.2, and the above definition of log, that

log ab = log a + log b.
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Polynomial Equations

Preview

The first phase in the history of algebra was the search for solutions of
polynomial equations. The “degree of difficulty” of an equation corre-
sponds rather well to the degree of the corresponding polynomial.

Linear equations are easily solved, and 2000 years ago the Chinese
were even able to solve n linear equations in n unknowns by the method
we now call “Gaussian elimination.”

Quadratic equations are harder to solve, because they generally require
the square root operation. But the solution—essentially the same as that
taught in high schools today—was discovered independently in many cul-
tures more than 1000 years ago.

The first really hard case is the cubic equation, whose solution requires
both square roots and cube roots. Its discovery by Italian mathematicians
in the early 16th century was a decisive breakthrough, and equations quickly
became the language of virtually all mathematics then known (See, for
example, algebraic geometry in Chapter 6 and calculus in Chapter 8.)

Despite this breakthrough, the problem of polynomial equations was
far from solved. The obstacle is the quintic equation—the general equation
of degree 5. In the 1820s it finally became clear that the quintic equation
is not solvable in the sense that equations of lower degree are solvable.
But explaining why this is so requires a new, and more abstract, concept
of algebra (see Chapter 14).

A rather special, but important, thread in the history of algebra is the
binomial theorem. Here we sketch its origins and how they led to early
developments in combinatorics, probability, and number theory.
© Springer Nature Switzerland AG 2020
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5.1 Algebra

The word “algebra” comes from the Arabic word al-jabr meaning “restor-
ing.” It passed into mathematics through the book Al-jabr w’al mûqabala
(Science of restoring and opposition) of al-Khwārizmı̄ in 830 ce, a work on
the solution of equations. In this context, “restoring” meant adding equal
terms to both sides and “opposition” meant setting the two sides equal. For
centuries, al-jabr more commonly meant the resetting of broken bones, and
the surgical meaning accompanied the mathematical one when “al-jabr”
became “algebra” in Spanish, Italian, and English. Even today the surgi-
cal meaning is included in the Oxford English Dictionary. Al-Khwārizmı̄’s
own name has given us the word “algorithm,” so his work has had a lasting
impact on mathematics, even though its content was quite elementary.

His algebra went no further than the solution of quadratic equations,
which had already been understood by the Babylonians, presented from the
geometric viewpoint by Euclid, and reduced to a formula by Brahmagupta
(628) (see Section 5.3). Brahmagupta’swork, the high point of Indianmath-
ematics to that time, was more advanced than al-Khwārizmı̄’s in several
respects—notation, admission of negative numbers, and the treatment of
Diophantine equations—even though it predated al-Khwārizmı̄ and was
very likely known to him. Indian mathematics had spread to the Muslim
world with the general promotion of culture by the eighth-century caliphs
of Baghdad, and Muslim mathematicians acknowledged the Indian origin
of certain ideas, such as decimal numerals. Why then did al-Khwārizmı̄’s
work rather than Brahmagupta’s become the definitive “algebra”?

Perhaps the time was ripe for the idea of algebra to be cultivated, and
the simple algebra of al-Khwārizmı̄ served this purpose better than those
of his more sophisticated predecessors. In Indian mathematics, algebra was
inseparable fromnumber theory. InGreekmathematics, algebrawas hidden
by geometry. Other possible sources of algebra, Babylonia and China, were
lost or cut off from the West until it was too late for them to be influential.
The concept of algebra that emerged from al-Khwārizmı̄—the theory of
polynomial equations—lasted for 1000 years. Only in the 19th century did
algebra grow beyond these bounds, and this was a time when most fields
of mathematics were outgrowing their established habitats. For a detailed
history of algebra, which emphasizes the tradition of solving equations, see
Katz and Parshall (2014). For the new developments from the 19th century
onward see Gray (2018).



5.1 Algebra 65

The early algebraicmethodswere essentially geometricmethods, as we
will see in the case of quadratic equations in Section 5.3. Algebraicmethods
for solving equations became distinct from, and superior to, the geometric
only with new manipulative techniques and efficient notation in the 16th
century (Section 5.5). Algebra did not break away from geometry, how-
ever, but actually gave it a new lease on life, thanks to the development of
algebraic geometry by Fermat and Descartes around 1630. This reunion of
algebra and geometry at a higher level is discussed in Chapter 6.

The story of algebraic geometry unfolds alongwith the story of polyno-
mial equations, becoming entwined with many other mathematical threads
in the process. One we have already seen is Diophantus’s chord and tangent
method for finding rational solutions of equations (Section 3.5). Another
relevant event, though not historically connected with Western mathemat-
ics, was the method of elimination developed by Chinese mathematicians
between the early Christian era and the Middle Ages. Since this method
concerns equations of the lowest degree, it is logical to discuss it first.

5.2 Linear Equations and Elimination

The Chinese discovered a method for solving linear equations in any num-
ber of unknowns during the Han dynasty (206 bce–220 ce). It appears in the
famous book Jiuzhang suanshu (Nine Chapters of Mathematical Art; see
Shen et al. (1999)), which survives today in a third-century version with a
commentary byLiuHui. Themethodwas essentiallywhatwe callGaussian
elimination, systematically eliminating terms in a system

a11x1 + a12x2 + · · · + a1nxn = b1

...

an1x1 + an2x2 + · · · + annxn = bn

by subtracting a suitable multiple of each equation from the one below it
until a triangular system is obtained:

a′11x1 + a′12x2 + · · · + a′1nxn = b′1
a′22x2 + · · · + a′2nxn = b′2

. . .
...

a′nnxn = b′n
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then solving for xn, xn−1, . . . , x1 in turn by successive substitutions. Such
calculations were particularly well suited to a Chinese device called the
counting board, which held the array of coefficients and allowed “row
operations” like those we perform with matrices. For further details, see
Li and Du (1987) or Martzloff (2006).

Around the 12th century, Chinese mathematicians found that elimi-
nation could be adapted to simultaneous polynomial equations in two or
more variables. For example, one can eliminate y between the pair of equa-
tions

a0(x)y
m + a1(x)y

m−1 + · · · + am(x) = 0, (1)
b0(x)y

m + b1(x)y
m−1 + · · · + bm(x) = 0, (2)

where the ai(x), b j(x) are polynomials in x. The ym term can be eliminated
by forming the equation b0(x) × (1) − a0(x) × (2), say,

c0(x)y
m−1 + c1(x)y

m−2 + · · · + cm−1(x) = 0. (3)

We can form a second equation of degree m− 1 in y by multiplying (3) by
y, then again eliminating ym between (3) × y and (1), giving, say,

d0(x)y
m−1 + d1(x)y

m−2 + · · · + dm−1(x) = 0. (4)

The problem is now reduced to eliminating y between the equations (3)
and (4), which are of lower degree in y than (1) and (2). Thus one can
continue inductively until an equation in x alone is obtained. This method
was extended to four variables in the work of Zhū Shijié (1303) entitled
Siyuan yujian (Jade Mirror of Four Unknowns).

As we will see in Chapter 6, the two-variable polynomial problem
arose in the West in the 17th century, in the context of finding intersec-
tions of curves. This led first to a rediscovery of the method of elimination
for polynomials; only later was this method based on an understanding
of linear equations (and determinants, see Chapter 16). The well-known
Cramer’s rule for solving linear equations using determinants was named
after its appearance in a book on algebraic curves, Cramer (1750).

Exercises

The first interesting case of elimination between two-variable polynomials
occurs when the polynomials have degree 2. Geometrically, this amounts to find-
ing the intersections of two conic sections.
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5.2.1 Derive an equation that is linear in y from the two equations

x2 + xy + y2 = 1,

4x2 + 3xy + 2y2 = 3,

and hence show that y = (1 − 2x2)/x.

5.2.2 Deduce that the intersections of the two curves in Exercise 5.2.1 occur
where x satisfies 3x4 − 4x2 + 1 = 0.

This example, where the two equations of degree 2 yield a single equation of
degree 4 (= 2×2), illustrates a general phenomenon where degrees are multiplied.
We will observe other instances, and study it more deeply, as the book progresses.

The present example is not a typical equation of degree 4, since it is quadratic
in x2 = z. However, this makes it a lot easier to solve.

5.2.3 Solve 3z2 − 4z + 1 = 0 for z = x2 by factorizing the left-hand side, and
hence find four solutions for x.

Give geometric reasons why you would expect two curves of degree 2 to
have up to four intersections. Could they have more than four?

The Jade Mirror of Four Unknowns does not go beyond four equations in
four unknowns (hence the name). The idea is quite general, but it becomes hard
to implement on the counting board when there are more than four unknowns. An
amusing problem in three unknowns from the Jade Mirror, which does not require
the full strength of the elimination method, is given in the exercises below.

5.2.4 Problem 2 in the Jade Mirror (see Hoe (1977), p. 135) is to find the side a
of a right-angled triangle (a, b, c) such that

a2 − (b + c − a) = ab,

b2 + (a + c − b) = bc.

The Jade Mirror suggests choosing the unknowns x = a and y = b + c.
Using a2 = c2 − b2, show that this implies

b = (y − x2/y)/2,

c = (y + x2/y)/2.

5.2.5 Deduce that the first two equations in Exercise 5.2.4 are equivalent, respec-
tively, to

(−2 − x)y2 + (2x + 2x2)y + x3 = 0,

(2 − x)y2 + 2xy + x3 = 0.

5.2.6 By subtracting one equation in Exercise 5.2.5 from the other, deduce that
y = x2/2. Substitute this back to obtain a quadratic equation for x, with
solution x = a = 4. What are the values of b and c?
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5.3 Quadratic Equations

As early as 2000 bce, the Babylonians could solve a pair of simultaneous
equations of the form

x + y = p,

xy = q,

which are equivalent to the quadratic equation

x2 + q = px.

The original pair was solved by a method that gave the two roots of the
quadratic,

x, y =
p
2
±
√( p

2

)2
− q,

when both were positive (the Babylonians did not admit negative num-
bers). The steps in the method were as follows:

(i) Form x+y
2 .

(ii) Form
(

x+y
2

)2
.

(iii) Form
(

x+y
2

)2 − xy.

(iv) Form
√(

x+y
2

)2 − xy = x−y
2 .

(v) Find x, y by inspection of the values in (i), (iv).

(See Boyer (1968), p. 34, for an actual example.) Of course, these steps
were not expressed in symbols but only applied to specific numbers. Nev-
ertheless, a general method is implicit in the many specific cases solved.

An explicit general method, expressed as a formula in words, was
given by Brahmagupta (628):

To the absolute number multiplied by four times the [coeffi-
cient of the] square, add the square of the [coefficient of the]
middle term; the square root of the same, less the [coefficient
of the] middle term, being divided by twice the [coefficient of
the] square is the value.

Colebrooke (1817), p. 346
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This is the solution

x =

√
4ac + b2 − b

2a

of the equation

ax2 + bx = c,

yet one wonders whether Brahmagupta understood it quite this way when,
a few lines later, he gives another rule that is trivially equivalent to the first
when expressed in our notation:

x =

√
ac + (b/2)2 − (b/2)

a
.

The methods of the Babylonians and Brahmagupta clearly give correct
solutions, but their basis is not clear. Themeaning of square roots, for exam-
ple, was not questioned as it was by Greeks. A rigorous basis for the solu-
tion of quadratic equations can be found in Euclid’s Elements, Book VI.
His Proposition 28 can be viewed as a solution of the general quadratic
equation in the case where there is a positive root, as Heath (1925), Vol. 2,
p. 263 explains. However, the algebraic interpretation is far from obvious
even when one specializes the proposition, which is about parallelograms,
to one about rectangles. It seems unlikely that Euclid was aware of the alge-
bra, or he would have expressed it by much simpler geometry.

The transition from geometry to algebra can be seen in al-Khwārizmı̄’s
solution of a quadratic equation (Figure 5.1). The solution is still expressed
in geometric language, but now the geometry is a direct embodiment of the
algebra. It is really the standard algebraic solution, but with “squares” and
“products” understood literally as geometric squares and rectangles. To
solve x2 + 10x = 39, represent x2 by a square of side x, and 10x by two
5 × x rectangles as in Figure 5.1. The extra square of area 25 “completes
the square” of side x+ 5 to one of area 25+ 39, since 39 is the given value
of x2 + 10x. Thus the big square has area 64, hence its side x + 5 equals 8.
This gives the solution x = 3.

Euclid and al-Khwārizmı̄ did not admit negative lengths, so the solu-
tion x = −13 to x2 + 10x = 39 does not appear. This is quite natural, since
geometry admits only one square with area 64. Avoiding negative coeffi-
cients, however, causes algebraic complications. There is not one general
quadratic equation, but three, corresponding to the different ways of dis-
tributing positive terms between the two sides: x2 + ax = b, x2 = ax + b,
x2 + b = ax.
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25 5x

5x x2

5 x

x

5

Figure 5.1: Solving a quadratic equation

Exercises

Quadratic equations arise frequently in geometry because distance is gov-
erned by a quadratic equation (ultimately, by the Pythagorean theorem). In fact,
the points created from rational points by any ruler and compass construction can
be found by solving a series of linear or quadratic equations, which is why they
can be expressed by rational operations and square roots. This result, which was
claimed in Section 2.3, can be proved as follows.

5.3.1 Show that the line through two rational points has an equation with rational
coefficients.

5.3.2 Show that a circle whose center is a rational point and whose radius is
rational has an equation with rational coefficients.

Your proof should show, more generally, that a line or circle constructed from
any points has an equation with coefficients obtainable from the coordinates of
the given points by rational operations. It then suffices to show that intersections
of lines and circles can be obtained from the coefficients of their equations by
rational operations and square roots.

5.3.3 Show that the intersection of two lines can be computed by rational opera-
tions.

5.3.4 Show that the intersection of a line and a circle can be computed by rational
operations and a square root (because it depends on solving a quadratic
equation).

The last, and hardest, case is finding the intersection of two circles. Fortu-
nately, it is easy to reduce these two quadratic equations to the case just handled
in Exercise 5.3.4.
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5.3.5 The equations of any two circles can be written in the form

(x − a)2 + (y − b)2 = r2,

(x − c)2 + (y − d)2 = s2.

Explain why. Now subtract one of these equations from the other, and
hence show that their common solutions can be found by rational oper-
ations and square roots.

When a sequence of quadratic equations is solved, the solution may involve

nested square roots, such as
√
(5 +

√
5)/2. This very number, in fact, occurs in

the icosahedron, as one sees from Pacioli’s construction in Section 2.2.

5.3.6 Show that the diagonal of a golden rectangle (which is also the diameter of

an icosahedron of edge length 1) is
√
(5 +

√
5)/2.

5.4 Quadratic Irrationals

The roots of quadratic equations with rational coefficients are numbers
of the form a +

√
b, where a, b are rational. Euclid took the theory of

irrationals further in Book X of the Elements with a very detailed study

of numbers of the form
√√

a ± √b, where a, b are rational. Book X is
the longest book in the Elements and it is not clear why Euclid devoted
so much space to this topic: perhaps because some of it is needed for the
study of regular polyhedra in Book XIII (see Section 2.2 and Exercise
5.3.6), perhaps simply because it was Euclid’s favorite topic, or perhaps it
was one in which he had some original contributions to show off. It is said
that Apollonius took the theory of irrationals further, but unfortunately his
work on the subject is lost.

After this, there seems to have been no progress in the theory of irra-
tionals until the Renaissance, except for a remarkable isolated result by
Fibonacci (1225). Fibonacci showed that the roots of x3 + 2x2 + 10x = 20
are not any of Euclid’s irrationals. This is not a proof, as some historians
have thought, that the roots cannot be constructed by ruler and compass.
Fibonacci did not rule out all expressions built from rationals and square
roots; nevertheless, it was the first step into the world of irrationals beyond
Euclid.

At this point it is worth asking how difficult it is to show that a spe-
cific number, say,

3√
2, cannot be constructed from rational numbers by
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square roots. The answer will depend on how well the reader manages
the following exercises. The manipulation required would certainly not
have been beyond the 16th-century algebraists. The subtle part is finding a
suitable classification of expressions according to complexity—extending
Euclid’s classification to expressions in which radical signs are nested to
arbitrary depth—and using induction on the level of complexity. This type
of thinking did not emerge until the 1820s, hence the relatively late proof
that

3√
2 is not constructible by ruler and compass, by Wantzel (1837). A

few decades later, the proof became a routine part of the theory of fields
and vector spaces, as we will see in Chapter 16.

Exercises

An elementary proof that
3√
2 is not constructible was found by the number

theorist Edmund Landau (1877–1938) when he was still a student. It is broken
down to easy steps below. But first we should check that

3√
2 is actually irrational.

5.4.1 Show that the assumption
3√
2 = m/n, where m and n are integers, leads to

a contradiction.

Landau’s proof now organizes all numbers involved in a construction into sets
F0, F1, F2, . . ., according to the depth of nesting of square roots.

5.4.2 Let

F0 = {rationals}, Fk+1 = {a + b
√

ck : a, b, ck ∈ Fk} for some ck ∈ Fk.

Show that each Fk is a field, that is, if x, y are in Fk, then so are x+y, x−y,
xy, and x/y (for y � 0).

We know from Exercise 5.4.1 that
3√
2 is not in F0, but if it is constructible it

will occur in some Fk+1. A contradiction now ensues by considering (hypotheti-
cally) the first such Fk+1.

5.4.3 Show that if a, b, c ∈ Fk but
√

c � Fk, then a + b
√

c = 0 ⇔ a = b = 0.
(For k = 0 this is in the Elements, Book X, Prop. 79.)

5.4.4 Suppose
3√
2 = a+b

√
c, where a, b, c ∈ Fk, but that

3√
2 � Fk. (We know that

3√
2 � F0 from Exercise 5.4.1.) Cube both sides and deduce from Exercise

5.4.3 that

2 = a3 + 3ab2c and 0 = 3a2b + b3c.

5.4.5 Deduce from Exercise 5.4.4 that
3√
2 = a − b

√
c also, and explain why this

is a contradiction.
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5.5 The Solution of the Cubic

In our own days Scipione del Ferro of Bologna has solved
the case of the cube and first power equal to a constant, a
very elegant and admirable accomplishment. Since this art
surpasses all human subtlety and the perspicuity of mortal
talent and is a truly celestial gift and a very clear test of the
capacity of men’s minds, whoever applies himself to it will
believe that there is nothing that he cannot understand. In
emulation of him, my friend Niccolò Tartaglia of Brescia,
wanting not to be outdone, solved the same case when he got
into a contest with his [Scipione’s] pupil, Antonio Maria Fior,
and, moved by my many entreaties, gave it to me . . . having
received Tartaglia’s solution and seeking a proof of it, I came
to understand that there were a great many other things that
could also be had. Pursuing this thought and with increased
confidence, I discovered these others, partly by myself and
partly through Lodovico Ferrari, formerly my pupil.

Cardano (1545), p. 8

The solution of cubic equations in the early 16th century was the first
clear advance in mathematics since the time of the Greeks. It revealed the
power of algebra that the Greeks had not been able to harness, power that
was soon to clear a new path to geometry, which was virtually a royal
road (algebraic geometry and calculus). Cardano’s elation at the discovery
was well-founded. Even in the 20th century, personally discovering the
solution of the cubic equation has been the inspiration for at least one
distinguished mathematical career—see Kac (1984).

As for the history of the original discovery, we know little more than
Cardano tells us. Scipione del Ferro died in 1526, so the first solution was
known before then. Tartaglia discovered his solution on February 12, 1535,
probably independently, because he solved all problems in the contest with
del Ferro’s pupil Fior, while Fior did not. Cardano has been accused by
almost everyone, from Tartaglia on, of stealing Tartaglia’s solution, but his
own account seems to distribute credit quite fairly. For more background,
see the introduction and preface to Cardano (1545) and Crossley (1987).

Cardano presents algebra in the geometric style of al-Khwārizmı̄ (whom
he describes as the originator of algebra at the beginning of the book), with
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the case distinctions caused by avoiding negative coefficients. Ignoring
these complications, his solution can be described as follows. The cubic
equation x3+ax2+bx+c = 0 is first transformed into one with no quadratic
term by a linear change of variable, x = y − a/3. One then has, say,

y3 = py + q.

By setting y = u + v, the left-hand side becomes

(u3 + v3) + 3uv(u + v) = 3uvy + (u3 + v3),

which equals the previous right-hand side if

3uv = p,

u3 + v3 = q.

Eliminating v gives a quadratic in u3,

u3 +

( p
3u

)3
= q,

with roots

q
2
±
√(q

2

)2
−
( p
3

)3
.

By symmetry, we obtain the same values for v3. And since u3 + v3 = q, if
one of the roots is taken to be u3, the other is v3. Without loss of generality
we can take

u3 =
q
2
+

√(q
2

)2
−
( p
3

)3
,

v3 =
q
2
−
√(q

2

)2
−
( p
3

)3
,

and hence

y = u + v =
3

√
q
2
+

√(q
2

)2
−
( p
3

)3
+

3

√
q
2
−
√(q

2

)2
−
( p
3

)3
.

Exercises

The two equations 3uv = p, u3 + v3 = q provide another instance of the
phenomenon noted in Exercise 5.2.2: when a variable is eliminated between two
equations, the degrees of the equations are multiplied.
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5.5.1 The equation 3uv = p is of degree 2 in u and v, and u3 + v3 = q is of degree
3. What about the equation obtained by eliminating v?

The Cardano formula produces some surprising results, which we look at
again in Section 11.2. But first let us test it on a really simple cubic equation.

5.5.2 Use Cardano’s formula to solve y3 = 2. Do you get the obvious solution?

Now try one where the solution is less obvious.

5.5.3 Use Cardano’s formula to solve y3 = 6y + 6, and check your answer by
substitution.

5.6 Angle Division

Another important contributor to algebra in the 16th century was Viète
(1540–1603). He helped emancipate algebra from the geometric style of
proof by introducing letters for unknowns and using plus and minus signs
to facilitate manipulation. Yet at the same time he strengthened its ties
with geometry at a higher level by relating algebra to trigonometry. A case
in point is his solution of the cubic by circular functions (Viète (1591),
Ch. VI, Theorem 3), which shows that solving the cubic is equivalent to
trisecting an arbitrary angle.

Namely, if we take the cubic in the form

x3 + ax + b = 0,

we can reduce it to an equation

4y3 − 3y = c

with just one parameter, by setting x = ky and choosing k so that

k3

ak
=
−4
3
, or k =

√
−4a
3
.

The point of the expression 4y3 − 3y is that
4 cos3 θ − 3 cos θ = cos 3θ;

so by setting y = cos θ we obtain

cos 3θ = c.
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If we are given c, then we can construct a triangle with angle cos−1 c = 3θ.
Trisection of this angle gives us the solution y = cos θ of the equation.
Conversely, the problem of trisecting an angle with cosine c is equivalent
to solving the cubic equation 4y3 − 3y = c.

Of course, there is a problem with trigonometric interpretation when
|c| > 1, which requires complex numbers for its resolution. Complex num-
bers are also involved in Cardano’s formula, since the expression under the
square root sign, (q/2)2 − (p/3)3, can be negative. In fact, Viète’s method
requires complex numbers only when Cardano’s does not, so between the
two of them, complex numbers are avoided. Nevertheless, cubic equations
are the birthplace of complex numbers, as we will see in Chapter 11.

Astonishingly, the problem of dividing an angle into any odd number
of equal parts has an algebraic solution analogous to the algebraic solu-
tion of the cubic. Viète (1579) himself took the problem as far as finding
expressions for cos nθ and sin nθ as polynomials in cos θ and sin θ, at least
for certain values of n. Newton read Viète in 1663–4 and found the equa-
tion

y = nx − n(n2 − 1)
3!

x3 +
n(n2 − 1)(n2 − 32)

5!
x5 + · · ·

relating y = sin nθ and x = sin θ (see Newton (1676a) in Turnbull (1960)).
He asserted this result for arbitrary n, but we are interested in the case
of odd integral n, when it reduces to a polynomial equation of degree n.
The surprise is that Newton’s equation then has a solution by nth roots
analogous to the Cardano formula for cubics,

x =
1
2

n

√
y +

√
y2 − 1 + 1

2

n

√
y −
√
y2 − 1, (1)

although only for n of the form 4m + 1. This formula appears out of the
blue in de Moivre (1707).1 He does not explain how he found it, but it is
comprehensible to us as

sin θ =
1
2

n√
sin nθ + i cos nθ +

1
2

n√
sin nθ − i cos nθ, (2)

a consequence of our version of de Moivre’s formula

(cos θ + i sin θ)n = cos nθ + i sin nθ (3)

1It also appears in the unpublished Leibniz (1675), though without the restriction on n.
See Schneider (1968), pp. 224–228.
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when n = 4m + 1. (See Exercises 5.6.2 and 5.6.3.)
Viète himself came remarkably close to (3) in a posthumously pub-

lished work, Viète (1615). He observed that the products of sin θ, cos θ
that occur in cos nθ, sin nθ are the alternate terms in the expansion of
(cos θ + sin θ)n, except for certain minus signs. He failed only to notice
that the signs could be explained by giving sin θ the coefficient i. In any
case, such an explanation would not have seemed natural to his contempo-
raries, who were far more comfortable with Cardano’s formula than they
were with i. In Section 12.1 we will see how de Moivre’s formula evolved
with the development of complex numbers.

Exercises

A good use of de Moivre’s formula is to prove the formula for cos 3θ involved
in Viète’s solution of the cubic.

5.6.1 Use (cos θ + i sin θ)3 = cos 3θ + i sin 3θ to find a formula for cos 3θ.

The reasons why (1) and (2) hold only for certain integer values, while (3) holds
for all, can be understood by actually working out (sin θ + i cos θ)n.

5.6.2 Use (3) and sinα = cos(π/2 − α), cosα = sin(π/2 − α) to show that

(sin θ + i cos θ)n =

{
sin nθ + i cos nθ when n = 4m + 1
− sin nθ − i cos nθ when n = 4m + 3.

5.6.3 Deduce from Exercise 5.6.2 that (2) is correct for n = 4m + 1 and false for
n = 4m + 3, and hence that (1) is a correct relation between y = sin nθ and
x = sin θ only when n = 4m + 1.

5.6.4 Show that (1) is a correct relation between y = cos nθ and x = cos θ for all
n (de Moivre (1730)).

5.7 Higher-Degree Equations

The general fourth–degree, or quartic, equation

x4 + ax3 + bx2 + cx + d = 0

was solved by Cardano’s student Ferrari, and the solution was published
in Cardano (1545), p. 237. A linear transformation reduces the equation to
the form

x4 + px2 + qx + r = 0,
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or

(x2 + p)2 = px2 − qx + p2 − r.

Then for any y,

(x2 + p + y)2 = (px2 − qx + p2 − r) + 2y(x2 + p) + y2

= (p + 2y)x2 − qx + (p2 − r + 2py + y2).

The quadratic Ax2 + Bx + C on the right-hand side will be a square if
B2 − 4AC = 0, which is a cubic equation for y. We can therefore solve for
y and take the square root of both sides of the equation for x, which then
becomes quadratic and hence also solvable. The final result is a formula for
x using just square and cube roots of rational functions of the coefficients.

This impressive bonus to the solution of cubic equations raised hopes
that higher-degree equations could also be solved by formulas built from
the coefficients by rational operations and roots, and solution by radicals,
as it was called, became a major goal of algebra for the next 250 years.
However, all such efforts to solve the general equation of fifth degree
(quintic) failed. The most that could be done was to reduce it to the form

x5 − x − A = 0

with only one parameter. This was done by Bring (1786), and a sketch of
his method may be seen in Pierpont (1895). Bring’s result appeared in a
very obscure publication and went unnoticed for 50 years, or it might have
rekindled hopes for the solution of the quintic by radicals. As it happened,
Ruffini (1799) offered the first proof that this is impossible. Ruffini’s proof
was not completely convincing, but he was vindicated when a satisfac-
tory proof was given by Abel (1826), and again with the beautiful general
theory of equations of Galois (1831b).

A positive outcome of Bring’s result was the analytic solution of the
quintic by Hermite (1858). Reduction to an equation with one parame-
ter opened the way to a solution by transcendental functions, like Viète’s
solution of the cubic by circular functions. Suitable functions, the ellip-
tic modular functions, had been discovered by Gauss, Abel, and Jacobi,
and Galois (1831a) had hinted at their relation to quintic equations. This
extraordinary confluence of ideas was the subject of Klein (1884).

In view of the difficulties with the quintic, there was naturally very
little progress with the general equation of degree n. However, two simple
but important contributions were made by Descartes (1637). The first was
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the superscript notation for powers we now use: x3, x4, x5, and so on.
(Though not x2, oddly enough. The square of x continued to be written xx
until well into the next century.) The second was the theorem of Descartes
(1637), p. 159, that a polynomial p(x) with value 0 when x = a has a
factor (x − a). Since division of a polynomial p(x) of degree n by (x − a)
leaves a polynomial of degree n−1, Descartes’s theorem raised the hope of
factorizing each nth-degree polynomial into n linear factors. As Chapter 11
shows, this hope was fulfilled with the development of complex numbers.

Exercises

The main steps in the proof of Descartes’s theorem go as follows. If the first
step does not seem sufficiently easy, begin with a = 1.

5.7.1 Show that xn − an has a factor x− a. What is the quotient (xn − an)/(x− a)?
(And what does this have to do with geometric series?)

5.7.2 If p(x) = ak xk + ak−1xk−1 + · · · + a1x + a0, use Exercise 5.7.1 to show that
p(x) − p(a) has a factor x − a.

5.7.3 Deduce Descartes’s theorem from Exercise 5.7.2.

5.8 The Binomial Theorem

Some important results in algebra/number theory were discovered in the
Middle Ages, though they failed to take root until they were rediscovered
in the 17th century or later. Among these were the discovery of
“Pascal’s triangle” by Chinese mathematicians, and formulas for permu-
tations and combinations by Levi ben Gershon (1321). Pascal’s triangle
began to flourish in the 17th century after a long dormancy, so it is of inter-
est to see what was known of it in medieval times and what Pascal did to
revive it.

The Chinese used Pascal’s triangle to generate and tabulate the bino-
mial coefficients, that is, the coefficients in the formulas

(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

(a + b)7 = a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7
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and so on. When the binomial coefficients are tabulated as follows (with a
trivial row 1 added at the top, corresponding to the power 0 of a + b),

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

and so on, the kth element
(

n
k

)
of the nth row is the sum

(
n−1
k−1
)
+
(

n−1
k

)
of the

two elements above it in the (n − 1)th row, as follows from the formula
(Exercise 5.8.1)

(a + b)n = (a + b)n−1a + (a + b)n−1b.

The triangle appears to a depth of six in Yáng Huı́ (1261) and to a depth
of eight in Zhū Shijié (1303) (Figure 5.2). Yáng Huı́ attributes the triangle
to Jia Xiàn, who lived in the 11th century.

The number
(

n
k

)
appears in medieval Hebrew writings as the number of

combinations of n things taken k at a time. Levi ben Gershon (1321) gives
the formula (

n
k

)
=

n!
(n − k)!k!

together with the fact that there are n! permutations of n elements.
In view of these excellent results, why do we call the table of bino-

mial coefficients Pascal’s triangle? It is of course not the only instance
of a mathematical concept being named after a rediscoverer rather than a
discoverer, but in any case Pascal deserves credit for more than just redis-
covery. In his Traité du triangle arithmétique, Pascal (1654) united the
algebraic and combinatorial theories by showing that the elements of the
arithmetic triangle could be interpreted in two ways: as the coefficients of
an−kbk in (a + b)n and as the number of combinations of n things taken
k at a time. As an application, he founded the mathematical theory of
probability by solving the problem of division of stakes (Exercise 5.8.2),
and as a method of proof he consciously used mathematical induction (in
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Figure 5.2: Chinese Pascal’s triangle

the “base step, induction step” format) for the first time. Altogether, quite
some progress!

Exercises

The basic properties of the binomial coefficients, for example the fact that
each is the sum of the two above it in Pascal’s triangle, follow easily from their
interpretation as the coefficients in the expansion of (a + b)n.

5.8.1 Use the identity

(a + b)n = (a + b)n−1a + (a + b)n−1b

to prove the sum property of binomial coefficients:
(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.
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This property gives an easy way to calculate Pascal’s triangle to any depth,
and hence compute a fair division of stakes in a game that has to be called off
with n plays remaining. We suppose that players I and II have an equal chance of
winning each play, and that I needs to win k of the remaining n plays to carry off
the stakes.

5.8.2 Show that the ratio of I’s winning the stakes to that of II’s winning is

(
n
n

)
+

(
n

n − 1
)
+ · · · +

(
n
k

)
:

(
n

k − 1
)
+

(
n

k − 2
)
+ · · · +

(
n
0

)
.

The sum property of the binomial coefficients also explains the presence of
some interesting numbers in Pascal’s triangle.

5.8.3 Explain why the third diagonal from the left in the triangle, namely 1, 3, 6,
10, 15, 21, . . . , consists of the triangular numbers.

5.8.4 The numbers on the next diagonal, namely 1, 4, 10, 20, 35. . . , can be called
tetrahedral numbers. Why is this an apt description?

5.9 Fermat’s Little Theorem

The algebra of binomial coefficients also led to a famous theorem of num-
ber theory due to Fermat (1640). It is known as his “little” or “lesser”
theorem to distinguish it from his “last” or “great” theorem (Section 10.1).
Fermat’s little theorem is the following.

If p is prime and gcd(n, p) = 1, then np−1 − 1 is divisible by p or,
equivalently, np − n is divisible by p.

The equivalence holds because np − n = n(np−1 − 1) is divisible by p
if and only if np−1 − 1 is, since p is prime and does not divide n.

Fermat’s little theorem has recently become indispensable in areas of
applied mathematics, such as cryptography, so it is thought-provoking to
learn that it originated in one of the least applied problems in mathemat-
ics, the construction of perfect numbers. As we saw in Section 3.2, this
depends on the construction of prime numbers of the form 2m − 1, and it
was initially for this reason that Fermat became interested in conditions for
2m−1 to have divisors. At the same time (mid-1630s) he was investigating
the binomial coefficients, and the combination of these two interests very
likely led to the discovery of his little theorem, for n = 2.

His actual proof is unknown, but various authors (for example, Weil
(1984), p. 56) have pointed out that the theorem follows immediately from
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the fact that
(

p
1

)
,
(

p
2

)
, . . . ,

(
p

p−1
)
, for p prime, are divisible by p:

2p = (1 + 1)p = 1 +

(
p
1

)
+

(
p
2

)
+ · · · +

(
p

p − 1
)
+ 1,

hence

2p − 2 =
(
p
1

)
+

(
p
2

)
+ · · · +

(
p

p − 1
)

is divisible by p, and therefore so is 2p−1 − 1.
But how does one prove that

(
p
1

)
,
(

p
2

)
, . . . ,

(
p

p−1
)
are divisible by p? This

follows easily from the Levi ben Gershon formula(
p
k

)
=

p!
(p − k)!k!

,

which shows that the prime p is a factor of the numerator but not of the
denominator. The denominator nevertheless divides the numerator, since(

p
k

)
is an integer, so (by unique prime factorization) the factor p must

remain after the division has taken place. Fermat may not have had pre-
cisely this result, since he did not yet have Pascal’s combinatorial interpre-
tation of the binomial coefficients, but he did have the formula

n

(
n + m − 1

m − 1
)
= m

(
n + m − 1

m

)
,

which implies it and from which the divisibility property may be extracted
(see Weil (1984), p. 47).

Thus far we have a proof of Fermat’s little theorem for n = 2. Weil
(1984) suggests two possible routes to the general theorem from this point.
One is by iteration of the binomial theorem, a method that was used in the
first published proof of Fermat’s theorem by Euler (1736). The other is by
direct application of the multinomial theorem, the method of the earliest
known proof, which is in an unpublished paper of Leibniz from the late
1670s (see Weil (1984), p. 56).

Just as

coefficient of ap−kbk in (a + b)p = p!/(p − k)!k!,

coefficient of aq1
1 aq2

2 · · · aqn
n in (a1 + a2 + · · · + an)

p = p!/q1!q2! · · · qn!,
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where q1+q2+· · ·+qn = p (Exercise 5.9.4). This multinomial coefficient is
divisible by p, by the same argument as before, provided no qi = p. Thus
the coefficients of all but ap

1 , a
p
2 , . . . , a

p
n in (a1 + a2 + · · ·+ an)p are divisible

by the prime p. It follows, by replacing each of the n terms a1, a2, . . . , an

by 1, that

(1 + 1 + · · · + 1)p = 1p + 1p + · · · + 1p + terms divisible by p,

that is, np − n is divisible by p. Then if n itself is relatively prime to p
(hence not divisible by p), we have np−1 − 1 divisible by p, or the general
Fermat little theorem.

Exercises

The binomial theoremmay be iterated to show that p divides np−n as follows.

5.9.1 Use the result 2p = (1 + 1)p = 2 + terms divisible byp, and its method of
proof, to show that

3p = (2 + 1)p = 3 + terms divisible byp.

5.9.2 Build on the idea of Exercise 5.9.1 to show that np − n is divisible by p for
any positive integer n.

5.9.3 Observe the terms divisible by p in the first few rows of Pascal’s triangle,
computed in the previous section.

Like the binomial theorem, the multinomial theorem can be proved combinato-
rially by considering the number of ways a term aq1

1 aq2
2 · · · aqn

n can arise from the
factors of (a1 + a2 + · · · + an)p.

5.9.4 Prove the formula for the multinomial coefficient given above by observing
that the coefficient equals the number of ways of partitioning p things into
disjoint subsets of sizes q1, q2, . . . , qn.
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Algebraic Geometry

Preview

The first field of mathematics to benefit from the new language of equa-
tions was geometry. Around 1630, both Fermat and Descartes realized that
geometric problems could be translated into algebra by means of coordi-
nates, and that many problems could then be routinely solved by algebraic
manipulation.

The language of equations also provides a simple but natural classifi-
cation of curves by degree. The curves of degree 1 are the straight lines;
the curves of degree 2 are the conic sections; so the first “new” curves are
those of degree 3, the cubic curves.

Cubic curves exhibit new geometric features—cusps, inflections, and
self-intersections—so they are considerably more complicated than the
conic sections. Nevertheless, Newton attempted to classify them, and in
doing so he discovered that cubic curves, when properly viewed, are not
as complicated as they seem.

We will find our way to the “right” viewpoint in Chapters 7 and 11.
In the meantime we discuss another theorem that depends on the “right”
viewpoint: Bézout’s theorem, according to which a curve of degree m
always meets a curve of degree n in mn points.
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6.1 Steps Toward Algebraic Geometry

The basic idea of algebraic geometry is the representation of curves by
equations, but this is not the whole idea. If it were, then the Greeks would
be considered the first algebraic geometers. Menaechmus was perhaps the
first to discover (what we would call) equations of curves, along with
his discovery of the conic sections. We have seen how equations explain
how he obtained

3√
2 as the intersection of a parabola and a hyperbola

(Section 2.4). Apollonius’ study of conics involved equations, but they
were arrived at by geometric arguments.

What was lacking in Greek mathematics was both the inclination and
the technique to manipulate equations to obtain information about curves.
The Greeks used curves to study algebra rather than the other way around.
Menaechmus’s construction of

3√
2 is a fine example of this: extraction of

roots was not a given algebraic operation but one achieved by geometric
construction. Similarly, an equation was not an entity in its own right but a
property of a curve that could be discovered after the curve had been con-
structed geometrically. This was natural as long as equations were written
in words. When, as in Apollonius, an equation takes half a page to write
out, it is difficult to form a general concept of equation, function, or curve.
Hence the lack of a general concept of curve in Greek mathematics—it
was just too complicated to handle in their language.

Also lacking was an appreciation of coordinates in geometry. Coordi-
nates had been used in astronomy and geography since Hipparchus (around
150 bce); but they were not used to describe functions or curves until the
Middle Ages, in the work of Oresme (around 1323–1382). Oresme still
called the coordinates “longitude” and “latitude,” but he used them to rep-
resent functions such as velocity as a function of time. Setting up the coor-
dinate system before determining the curve was Oresme’s step beyond the
Greeks, but he too lacked the algebra to go further.

The step that finally made algebraic geometry feasible was the solution
of equations and the improvement of notation in the 16th century, which
we discussed in the previous chapter. This step made it possible to consider
equations, and hence curves, in some generality and to manipulate them
fluently. As we will see in the next section, the two founders of algebraic
geometry, Fermat and Descartes, both exploited these developments.

For more on the early history of algebraic geometry, see the book
Boyer (1956) and the first chapter of Brieskorn and Knörrer (1981).
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It may be worth mentioning, at this point, that this kind of geome-
try has traditionally been called “analytic” rather than “algebraic.” We are
calling the geometry “algebraic” to emphasize that its objects are alge-
braically defined (by polynomial equations) and that they are investigated
by methods of algebra. This is also in line with modern use of the term
“algebraic geometry.” The methods of analysis come into play only later,
particularly for curves defined by nonalgebraic means, which Descartes
called “mechanical.” The term “analytic geometry” is better employed for
the latter, more general, kind of geometry.

Exercise

6.1.1 Generalize the idea of Menaechmus to show that any cubic equation

ax3 + bx2 + cx + d = 0 with d � 0

may be solved by intersecting the hyperbola xy = 1 with a parabola.

6.2 Fermat and Descartes

There have been several occasions in the history of mathematics when an
important discovery was made independently and almost simultaneously
by two individuals: non-Euclidean geometry by Bolyai and Lobachevsky,
elliptic functions by Abel and Jacobi, the calculus by Newton and Leibniz,
for example. To the extent that we can rationally explain these remark-
able events, it is on the basis of ideas already “in the air,” and condi-
tions becoming favorable for their precipitation. As I tried to show in
the previous section, conditions were favorable for algebraic geometry at
the beginning of the 17th century. So it is not completely surprising that
the subject was independently discovered by Fermat (1629) and Descartes
(1637). (Descartes’s work La Géométrie may in fact have been started in
the 1620s. In any case it is independent of Fermat, whose work was not
published until 1679.)

It is surprising, however, that both Fermat and Descartes began with an
algebraic solution of the same classical geometric problem, the so-called
“four-line problem” of Apollonius, and that the main discovery of each
was that second-degree equations correspond to conic sections. Up to this
stage Fermat was more systematic than Descartes, but that was as far as
he went. He was content to leave his work in a “simple and crude” state,
confident that it would grow in stature when nourished by new inventions.
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Descartes, on the other hand, treated many higher-degree curves and
clearly understood the power of algebraic methods in geometry. He wanted
to withhold this power from his contemporaries, however, particularly the
rival mathematician Roberval, as he admitted in a letter to Mersenne (see
Boyer (1956), p. 104). La Géométrie was written to boast about his dis-
coveries, not to explain them. There is little systematic development, and
proofs are frequently omitted with a sarcastic remark such as, “I shall not
stop to explain this in more detail, because I should deprive you of the plea-
sure of mastering it yourself” (p. 10). Descartes’s conceit is so great that
it is a pleasure to see him come a cropper occasionally, as on p. 91: “The
ratios between straight and curved lines are not known, and I believe can-
not be discovered by human minds.” He was referring to the then-unsolved
problem of determining the length of curves, but he spoke too soon, for in
1657 Neil and van Heuraet found the length of an arc of the semicubi-
cal parabola y2 = x3, and the calculus soon made such problems routine.
(A full and interesting account of the story of arc length may be found in
Hofmann (1974), Ch. 8.)

Exercises

As we now know, all conic sections may be given by the following standard
form equations (from Section 2.4):

x2

a2
+
y2

b2
= 1 (ellipse), y = ax2 (parabola),

x2

a2
− y

2

b2
= 1 (hyperbola).

The reduction of an arbitrary quadratic equation in x and y to one of these forms
depends on suitable choice of origin and axes, as Fermat and Descartes discov-
ered. The main steps are outlined in the following exercises.

6.2.1 Show that a quadratic form ax2 + bxy + cy2 may be converted to a form
a′x′2 + b′y′2 by suitable choice of θ in the substitution

x = x′ cos θ − y′ sin θ,
y = x′ sin θ + y′ cos θ,

by checking that the coefficient of x′y′ is (c − a) sin 2θ + b cos 2θ.

6.2.2 Deduce from Exercise 6.2.1 that, by suitable rotation of axes, any quadratic
curve may be expressed in the form a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0.

6.2.3 If b′ = 0, but a′ � 0, show that the substitution x′ = x′′ + f gives either a
standard-form parabola, or the “double line” x′′2 = 0.

(Why is this called a “double line,” and is it a section of a cone?)

6.2.4 If both a′ and b′ are nonzero, show that a shift of origin gives the standard
form for either an ellipse or a hyperbola, or else a pair of lines.
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6.3 Algebraic Curves

I could give here several other ways of tracing and conceiving
a series of curved lines, each curve more complex than any
preceding one, but I think the best way to group together all
such curves and then classify them in order is by recogniz-
ing the fact that all points of those curves which we may call
“geometric,” that is, those which admit of precise and exact
measurement, must bear a definite relation to all points of a
straight line, and that this relation must be expressed by means
of a single equation.

Descartes (1637), p. 48

In this passage Descartes speaks of what we now call algebraic curves.
The fact that he calls them “geometric” shows his attachment to the Greek
idea that curves are the product of geometric constructions. He is using the
notation of equations not to define curves directly but to restrict the notion
of geometric construction more severely than the Greeks did, thereby
restricting the concept of curve. As we saw in Section 2.5, the Greeks con-
sidered some constructions, such as rolling one circle on another, that can
produce transcendental curves. Descartes called such curves “mechani-
cal” and found a way to exclude them by his restriction to curves “expressed
by means of a single equation.” It becomes clear in the lines following the
preceding quotation that he means polynomial equations, since he gives a
classification of equations by degree.

Descartes’s rejection of transcendental curves was short-sighted, since
the calculus soon provided techniques to handle them, but nevertheless it
was fruitful to concentrate on algebraic curves. The notion of degree, in
particular, was a useful measure of complexity. First-degree curves are the
simplest possible, namely, straight lines. Those of second degree are the
next simplest, conic sections. With third-degree curves one sees the new
phenomena of inflections, double points, and cusps. Inflection and cusp
are familiar from y = x3 and y2 = x3, respectively; we also saw a cusp
on the cissoid (Section 2.5). A classical example of a cubic with a double
point is the folium (leaf) of Descartes (1638),

x3 + y3 = 3axy.

The “leaf” is the closed portion in the positive quadrant; Descartes missed
the rest of the curve by ignoring negative coordinates. The complete shape
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of the folium was first given by Huygens (1692). Figure 6.1 is Huygens’s
drawing, which also shows the asymptote to the curve. (A more accurate
picture of the folium is Figure 10.2.)

Figure 6.1: Huygens’s drawing of the folium

An excellent account of the early history of curves can be found in
Brieskorn and Knörrer (1981), Chapter 1. Many individual curves, with
diagrams, equations, and historical notes, can be found in Gomes Teixeira
(1995a,b,c). The development of Descartes’s concept of curve has been
studied by Bos (1981).

Exercises

The folium is a cubic curve to which Diophantus’s chord method (Section 3.5)
applies. One takes the line y = tx through the “obvious” rational point (0, 0) on
the curve, and finds its other point of intersection. This construction also enables
us to express an arbitrary point (x, y) on the curve in terms of the parameter t.

6.3.1 Show that the folium of Descartes has parametric equations

x =
3at
1 + t3

, y =
3at2

1 + t3

and use these equations to show that it is tangential to the axes at 0.

6.3.2 Show that the equation x3 + y3 = 3axy of the folium may be written in the
form

x + y =
3a

x
y
+
y
x − 1

.

6.3.3 Show that x/y and y/x tend to −1 as x → ±∞ on the folium, and hence
deduce the equation of its asymptote from Exercise 6.3.2.
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A whole family of “multileaved” curves was studied by Grandi (1723).

6.3.4 The roses of Grandi are given by the polar equations

r = a cos nθ

for integer values of n. Figure 6.2 shows some of these curves, as given by
Grandi (1723). Show that the roses of Grandi are algebraic.

Figure 6.2: Roses of Grandi

6.3.5 Show that the “rose” for n = 1 is a circle and that the “rose” for n = 2 has
cartesian equation

(x2 + y2)3 = a2(x2 − y2)2.

6.4 Newton’s Classification of Cubics

Since first- and second-degree curves are straight lines and conics, they
were well understood before the advent of algebraic geometry. Up to the
end of the 18th century most mathematicians considered them as clear as
could be, and hence an unsuitable subject for the new methods. A famous
example is the Greek-style treatment of planetary orbits in Newton’s Prin-
cipia (1687). The classical attitude to low-degree curves was summed up
by d’Alembert in his article on geometry in the great French Encyclopédie
(p. 637 of volume 7, 1757):

Algebraic calculation is not to be applied to the propositions
of elementary geometry because it is not necessary to use this
calculus to facilitate demonstrations, and it appears that there
are no demonstrations which can really be facilitated by this
calculus except for the solution of problems of second degree
by the line and circle.
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Thus the first new problem opened up by algebraic geometry, and also
the first considered properly to belong to the subject, was the investigation
of cubic curves. These curves were classified, more or less completely, by
Newton (1695) (see Ball (1890) for a commentary).

Newton (1667) began this work with the general cubic in x and y,

ay3 + bxy2 + cx2y + dx3 + ey2 + f xy + gx2 + hy + kx + l = 0,

made a general transformation of axes—which gives an equation with 84
terms (!)—then showed that the equation could be reduced to one of the
forms

Axy2 + By = Cx3 + Dx2 + Ex + F,
xy = Ax3 + Bx2 +Cx + D,
y2 = Ax3 + Bx2 +Cx + D,
y = Ax3 + Bx2 +Cx + D.

Newton then divided the curves into species according to the roots of the
right-hand side, obtaining 72 species (and overlooking 6). His paper lacks
detailed proofs; these were supplied by Stirling (1717), along with four
of the species Newton missed. Newton’s classification was criticized by
some later mathematicians, such as Euler, for lacking a general organizing
principle. But such a principle was already implicit in one of Newton’s
passing remarks, Section 29, “On the Genesis of Curves by Shadows.”
This principle, which will be explained in the next chapter, reduces cubics
to the five types seen in Figure 6.3 (taken from an English translation of
Newton’s paper in Harris (1708); see Whiteside (1964), p. 158).

The reader may wonder where the most familiar cubic, y = x3, appears
among these five. The answer is that it is equivalent to the one with a cusp,
in Newton’s Figure 75. This is explained in the next chapter.

Exercises

The cubic curves that Newton called “cuspidate” and “nodated” are alge-
braically simpler than the others. In particular, they can be parameterized by ratio-
nal functions.

6.4.1 Find a parameterization x = p(t), y = q(t) of the semicubical parabola
y2 = x3 by polynomials p and q, (i) by inspection, (ii) by finding the second
intersection point of the line y = tx through the cusp (0, 0).

6.4.2 Find rational functions x = r(t), y = s(t) that parameterize y2 = x2(x + 1),
by finding the second intersection of the line y = tx through the double
point of the curve.



6.4 Newton’s Classification of Cubics 93

Figure 6.3: Newton’s classification of cubic curves
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6.5 Construction of Equations, Bézout’s Theorem

In Sections 6.1, 6.2, and 6.3 the development of algebraic geometry is
outlined from the first observations of equations as properties of curves
to the full realization that equations define curves and that the concept of
(polynomial) equation is the key to the concept of (algebraic) curve. With
hindsight, we can say that Descartes’s La Géométrie (1637) was a major
step in the maturation of the subject, but the book does not conclusively
establish what algebraic geometry is. In fact, it is largely devoted to two
transitional topics in the development of the subject: the 16th-century the-
ory of equations and the now almost forgotten discipline called “construc-
tion of equations.”

The paradigm for construction of an equation was Menaechmus’s con-
struction of

3√
2 by intersecting a parabola and hyperbola. From a geo-

metric point of view, one is using familiar curves (parabola and hyper-
bola) to construct a less familiar length (

3√
2). This becomes sharper when

expressed algebraically: curves of degree 2 are being used to solve an
equation of degree 3, x3 = 2. In the 1620s Descartes discovered some-
thing more general: a method of solving any third- or fourth-degree equa-
tion by intersecting curves of degree 2, a parabola and a circle. His friend
Beeckman (1628) reported in a note that “M. Descartes made so much
of this invention that he confessed never to have found anything superior
himself and even that nobody else had ever found anything better” (trans-
lation by Bos (1981), p. 330). Descartes was not as superior as he thought,
since Fermat (1629) independently made the same discovery in an unpub-
lished work, strengthening the already extraordinary coincidence between
his work and that of Descartes. However, Fermat apparently did not pursue
the idea further, and Descartes did.

In La Géométrie Descartes found a particular cubic curve, the so-
called cartesian parabola, whose intersections with a suitable circle yield
the solution of any given fifth- or sixth-degree equation. Descartes con-
cludes the book with this result, blithely telling the reader that

it is only necessary to follow the same method to construct
all problems, more and more complex, ad infinitum; for in the
case of a mathematical progression, whenever the first two or
three terms are given, it is easy to find the rest.

Descartes (1637), p. 240
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In reality it was not easy, and efforts to find a satisfactory general construc-
tion for nth-degree equations petered out around 1750. The story of the rise
and fall of this field of mathematics has been told by Bos (1981, 1984).

In their search for a general construction, mathematicians had casually
assumed that a curve of degree m meets a curve of degree n in mn points.
The first statement of this principle, which became known as Bézout’s
theorem, seems to have been made by Newton on May 30, 1665:

For ye number of points in wch two lines may intersect can
never bee greater yn ye rectangle of ye numbers of their dimen-
sions. And they always intersect in soe many points, excepting
those wch are imaginarie onely.

Newton (1665b), p. 498

Bézout’s theorem leads one to hope that solutions of an equation r(x) = 0
of degree k = m · n might result from the intersections of a degree m curve
with a degree n curve. In algebraic terms, one seeks equations

p(x, y) = 0, (1)

q(x, y) = 0 (2)

of degrees m, n respectively, which yield the given equation

r(x) = 0 (3)

as “resultant” by elimination of y. This is how mathematicians in the West
first encountered the problem of elimination, which the Chinese had solved
some centuries earlier (Section 5.2).

However, quite apart from the fact that construction of equations was
inverse to elimination, and much harder, two more facts about elimination
itself were needed: first, that elimination between equations of degrees m
and n gave a resultant of degree mn; second, that an equation of degree mn
has mn roots. The second statement, as mentioned in Section 5.7, becomes
a fact only when complex numbers are admitted. The first becomes a fact
only when “points at infinity” are admitted. If, for example, (1) and (2) are
equations of parallel lines, then (3) is of “degree 0” and has no solutions.
However, one can say that parallel lines meet “at infinity,” and the geomet-
ric framework for this idea, projective geometry, developed at about the
same time as algebraic geometry. Unfortunately, it was not realized until
the 19th century that projective geometry and algebraic geometry needed
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each other. Until then, projective geometry developed without coordinates,
and all attempts to prove Bézout’s theorem—notably byMaclaurin (1720),
Euler (1748b), Cramer (1750), and Bézout (1779)—foundered for want of
a proper method for counting points at infinity. As a result, Bézout’s the-
orem, which turned out to be the main achievement of the theory of con-
struction of equations, was not properly proved until long after the theory
itself had been abandoned.

The origins of projective geometry, and the fruits of its merger with
algebraic geometry, are discussed in Chapter 7.

Exercises

We know from Section 5.7 that an arbitrary quartic equation is equivalent to
one of the form

x4 + px2 + qx + r = 0.

6.5.1 Show that any such equation may be solved by finding the intersection
of the parabola y = x2 with another quadratic curve (hence with a conic
section).

6.5.2 Find two parabolas whose intersections give the solutions of x4 = x + 1,
and hence show that this quartic equation has two real roots.

6.6 The Arithmetization of Geometry

We have stressed that early algebraic geometers—Descartes in particular—
did not accept that geometry could be based on numbers or algebra, even
though their work led eventually to this conclusion. Perhaps the first to
take the idea of arithmetizing geometry seriously was Wallis (1616–1703).
Wallis (1657), Chs. XXIII and XXV, gave the first arithmetic treatment of
Euclid’s Books II and V, and Wallis (1655b) had earlier given the first
purely algebraic treatment of conic sections. He initially derived equa-
tions from the classical definitions by sections of the cone but then pro-
ceeded conversely to derive their properties from the equations, “without
the embranglings of the cone,” as he put it.

Wallis was ahead of this time. Thomas Hobbes, introduced at the begin-
ning of Chapter 2, described Wallis’s treatise on conics as a “scab of sym-
bols” and denounced “the whole herd of them who apply their algebra of
geometry” (Hobbes (1656), p. 316, and Hobbes (1672), p. 447). The exam-
ple and authority of Newton probably reinforced the opinion that algebra
was inappropriate in the geometry of lines or conic sections; we saw in
Section 6.4 how this remained the accepted view until at least 1750.
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Algebra did not catch on in elementary geometry until it was taken up
by Lagrange and supported by influential textbooks of Monge and Lacroix
around 1800. But by the time elementary geometry had been brought into
the theory of equations, higher geometry had broken out, depending more
and more on calculus and the emerging theories of complex functions,
abstract algebra, and topology, which bloomed in the 19th century. Higher
geometry broke away to form the separate fields of differential geometry
and algebraic geometry, leaving the elementary residue we call “analytic
geometry” today.

Despite its lowly status, analytic geometry was given an important
foundational role by Hilbert (1899). Hilbert took Wallis’s arithmetization
to its logical conclusion by assuming only the real numbers and sets as
given and constructing Euclidean geometry from them.

Thus from the set R of reals, one constructs the Euclidean plane as
the set of ordered pairs (x, y) (“points”) where x, y ∈ R. A straight line
is a set of points (x, y) in the plane such that ax + by + c = 0 for some
constants a, b, c. Lines are parallel if their x and y coefficients are propor-
tional. The distance between points (x1, y1) and (x2, y2) is defined to be√
(x2 − x1)2 + (y2 − y1)2. This definition is motivated by the Pythagorean

theorem, which is the keystone in the bridge from arithmetic to geometry.
With these definitions, all axioms and propositions of Euclid’s geome-

try become provable propositions about equations. For example, the axiom
that nonparallel lines have a point in common corresponds to the theorem
that linear equations

a1x + b1y + c1 = 0,

a2x + b2y + c2 = 0

have a solution when a1b2 − b1a2 � 0.
Hilbert did not believe, any more than Newton did, that numbers were

the true subject matter of geometry. He supported geometric intuition as a
method of discovery, as the book Hilbert and Cohn-Vossen (1932) makes
clear. The purpose of arithmetization was to give a secure logical foun-
dation to geometry after the 19th-century developments that discredited
geometry and installed arithmetic as the ultimate authority in mathemat-
ics. This foundation is no longer quite as secure as it seemed in 1900,
as we will see in Chapter 17; nevertheless, it is still the most secure and
convenient foundation for the many branches of geometry and analysis.
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Projective Geometry

Preview

At about the same time as the algebraic revolution in classical geometry,
a new kind of geometry also came to light: projective geometry. Based on
the idea of projecting objects from space to a plane, or from one plane
to another, projective geometry was initially the concern of artists. In the
17th century, only a handful of mathematicians were interested in it, and
their discoveries were not seen to be important until the 19th century.

The fundamental quantities of classical geometry, such as length and
angle, are not preserved by projection, so they have no meaning in pro-
jective geometry. Projective geometry can discuss only things that are pre-
served by projection, such as points and lines.

Surprisingly, there are nontrivial theorems about points and lines. One
was discovered by the Greek geometer Pappus around 300 ce, and another
by the French mathematician Desargues around 1640.

Even more surprisingly, there is a numerical quantity preserved by pro-
jection. It is a “ratio of ratios” of lengths called the cross-ratio. In projec-
tive geometry, the cross-ratio plays a role similar to that played by length
in classical geometry.

One of the virtues of projective geometry is that it simplifies the clas-
sification of curves. All conic sections, for example, are “projectively the
same,” and there are only five types of cubic curve.

The projective viewpoint also removes some apparent exceptions to
the theorem of Bézout. For example, a line (curve of degree 1) always
meets another line in exactly one point, because in projective geometry
even parallel lines meet.
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7.1 Perspective

Perspective may be simply described as the realistic representation of spa-
tial scenes on a plane. This of course has been a concern of painters since
ancient times, and some Roman artists seem to have achieved correct per-
spective by the first century bce; an impressive example is shown in Wright
(1983), p. 38. However, the vast majority of ancient paintings show in-
correct perspective. If there was ever a classical theory of perspective, it
was well and truly lost during the Dark Ages. Medieval artists made some
charming attempts at perspective but always got it wrong. See Figure 7.1,
for example, which is in The Lives of Sts. Edmund and Fremund by John
Lydgate, from around 1434, now in the British Library.

Figure 7.1: Errors in perspective

The first correct perspective method is usually attributed to the Floren-
tine painter–architect Brunelleschi (1377–1446), around 1420. The first
published method appears in the treatise On Painting by Alberti (1436).
The latter method, which became known as Alberti’s veil, used a piece
of transparent cloth fixed in front of the scene to be painted. Then, view-
ing the scene with one eye, in a fixed position, one could trace the scene
directly onto the veil. Figure 7.2 shows this method, with a peephole to
maintain a fixed eye position, as depicted by Dürer (1525).
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Figure 7.2: Dürer’s depiction of Alberti’s veil

Alberti’s veil was fine for painting actual scenes, but to paint an imag-
inary scene in perspective some theory was required. The basic principles
Renaissance artists used were the following:

(i) A straight line in perspective remains straight.

(ii) Parallel lines either remain parallel or converge to a single point
(their vanishing point).

These principles suffice to solve a problem artists frequently encountered:
the perspective depiction of a square-tiled floor. Alberti (1436) solved the
special case of this problem in which one set of floor lines is horizontal,
that is, parallel to the horizon. Alberti’s method is shown in simplified
form in Figure 7.3. The receding floor lines begin at points equally spaced
along the base line (imagined to touch the floor) and end at a vanishing
point on the horizon. The horizontal floor lines are then determined by
choosing one of them arbitrarily, thus determining one tile in the floor, and
then producing the diagonal of this tile to the horizon. The intersections
of this diagonal with the receding lines are the points through which the
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horizontal lines pass. This is certainly true on the actual floor (Figure 7.4);
hence it remains true in the perspective view.

Figure 7.3: Alberti’s method

Figure 7.4: The actual floor

Exercises

In almost all paintings of tiled floors, one set of lines is parallel to the horizon.
However, the principles (i) and (ii) suffice to generate a perspective view of a
tiled floor given an arbitrarily situated tile, and they show that no measurement is
needed to achieve correct spacing along the base line in Alberti’s method.

7.1.1 Use the lines shown in Figure 7.5 to determine all lines in a pavement gen-
erated by the given tile one by one. (Hint: All the diagonals are parallel.)

Figure 7.5: Tiled floor with arbitrary orientation
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7.1.2 By using diagonals as in Exercise 7.1.1, show how to generate the lines in
the tiling when the baseline is parallel to the horizon, without making any
measurements.

7.2 Anamorphosis

It is clear from the Alberti veil construction that a perspective view will
not look absolutely correct except when seen from the artist’s viewpoint.
Experience shows, however, that distortion is not noticeable except from
extreme viewing positions. Following the mastery of perspective by the
Italian artists, an interesting variation developed, in which the picture looks
right from only one, extreme, viewpoint. The first known example of this
style, known as anamorphosis, is an undated drawing by Leonardo da
Vinci from the Codex Atlanticus (compiled between 1483 and 1518).
Figure 7.6 shows part of this drawing, a child’s face which looks correct
when viewed with the eye near the right-hand edge of the page.

Figure 7.6: Leonardo’s drawing of a face

The idea was taken up by German artists around 1530, famously in
Holbein’s painting The Two Ambassadors from 1533. A mysterious streak
across the bottom of the picture becomes a skull when viewed from near
the picture’s edge (Figure 7.7). For more on history of anamorphosis, see
Baltrušaitis (1977) and Wright (1983), pp. 146–156. The art of anamor-
phosis reached its technically most advanced form in France in the early
17th century. It seems no coincidence that this was also the time and place
of the birth of projective geometry. In fact, key figures in the two fields,
Niceron and Desargues, were well aware of each other’s work.

Niceron (1613–1646) was a student of Mersenne and, like him, a monk
in the order of Minims. He executed some extraordinary anamorphic wall
paintings, up to 55 meters long, and also explained the theory in La per-
spective curieuse (1638). Figure 7.8 is his illustration of anamorphosis of
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Figure 7.7: Skull in Holbein’s “Two Ambassadors” and its perspective
view. (Pictures courtesy of Wikimedia)

a chair (for other examples, see Baltrušaitis (1977)). Viewed normally, the
chair is like none ever seen, yet from a suitably extreme point one sees an
ordinary chair in perspective. Thus the ordinary view is a perspective view
of the extraordinary view.

Figure 7.8: Niceron’s chair

This example exposes an important mathematical fact: the inverse of a
perspective view is not in general a perspective view. Iteration and inver-
sion of perspective views gives what we now call a projective view, and
Niceron’s chair shows that projectivity is a broader concept than perspec-
tivity. As a consequence, projective geometry, which studies properties
invariant under projection, is broader than the theory of perspective. Per-
spective itself became a mathematical theory, called descriptive geometry,
only at the end of the 18th century.
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7.3 Desargues’s Projective Geometry

The mathematical setting in which one can understand Alberti’s veil is the
family of lines (“light rays”) through a point (the “eye”), together with
a plane V (the “veil”) (Figure 7.9). In this setting, the problems of per-
spective and anamorphosis were not very difficult, but the concepts were
interesting and a challenge to traditional geometric thought. Contrary to
Euclid, one had the following:

(i) Points at infinity (“vanishing points”) where parallels met.

(ii) Transformations that changed lengths and angles (projections).

V

Figure 7.9: Seeing through Alberti’s veil

The first to construct a mathematical theory incorporating these ideas
was Desargues (1591–1661), although the idea of points at infinity had
already been used by Kepler (1604), p. 93. The book of Desargues (1639),
Brouillon projet d’une atteinte aux événemens des rencontres du cône avec
un plan (Schematic Sketch of What Happens When a Cone Meets a Plane),
suffered an extreme case of delayed recognition, being completely lost
for 200 years. Fortunately, his two most important theorems, the so-called
Desargues’s theorem and the invariance of the cross-ratio, were published
in a book on perspective, Bosse (1648). The text of Desargues (1639) and
a portion of Bosse (1648) containing Desargues’s theorem may be found
in Taton (1951). An English translation, with an extensive historical and
mathematical analysis, is in Field and Gray (1987).
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Kepler and Desargues both postulated one point at infinity on each
line, closing the line to a “circle of infinite radius.” All the lines in a family
of parallels share the same point at infinity. Nonparallel lines, having a
finite point in common, do not have the same point at infinity. Thus any
two distinct lines have exactly one point in common—a simpler axiom
than Euclid’s. Strangely enough, the line at infinity was only introduced
into the theory by Poncelet (1822), even though it is the most obvious
line in perspective drawing, the horizon. Desargues made extensive use of
projections in the Brouillon projet; he was the first to use them to prove
theorems about conic sections.

Desargues’s theorem is a property of triangles in perspective illustrated
by Figure 7.10. The theorem states that the points X, Y , Z at the intersec-
tions of corresponding sides lie on a line. This is obvious if the triangles
are in space, since the line is the intersection of the planes containing them.
The theorem in the plane is subtly but fundamentally different and requires
a separate proof, as Desargues realized. In fact, Desargues’s theorem was
shown to play a key role in the foundations of projective geometry by
Hilbert (1899).

X
Y

Z

Figure 7.10: Desargues’s theorem

The second theorem of Desargues, invariance of the cross-ratio, was
already known to the Greek mathematician Pappus, around 300 ce. It is
Proposition 129 in his Collection Book VII, available in English transla-
tion in Pappus (1986). The theorem was rediscovered by Desargues and
it answers a natural question about perspective raised by Alberti: since
length and angle are not preserved by projection, what is?

No property of three points on a line can be invariant because any
three points on a line can be projected to any three others (Exercise 7.3.1).



7.3 Desargues’s Projective Geometry 107

At least four points are therefore needed, and the cross-ratio is indeed a
projective invariant of four points. If A, B,C, D are four points on a line (in
that order) then their cross-ratio (ABCD) is CA

CB/
DA
DB . Its invariance is most

simply seen by reexpressing it in terms of angles using Figure 7.11.

O

A B C D

h

O

A B C D

A B C D

Figure 7.11: Evaluating the cross-ratio

Let O be any point outside the line and consider the areas of the tri-
angles OCA, OCB, ODA, and ODB. First compute them from bases on
AB and height h, then recompute using OA and OB as bases and heights
expressed in terms of the sines of angles at O:

1
2

h ·CA = area OCA =
1
2

OA · OC sin ∠COA,

1
2

h ·CB = area OCB =
1
2

OB · OC sin ∠COB,

1
2

h · DA = area ODA =
1
2

OA · OD sin ∠DOA,

1
2

h · DB = area ODB =
1
2

OB · OD sin ∠DOB.

Substituting the values of CA, CB, DA, and DB from these equations we
find, following Möbius (1827), the cross-ratio in terms of angles at O:

CA
CB

/
DA
DB
=

sin ∠COA
sin ∠COB

/
sin ∠DOA
sin ∠DOB

.

Any four points A′, B′, C′, D′ in perspective with A, B, C, D from a point
O have the same angles (Figure 7.11); hence they will have the same cross-
ratio. But then so will any four points A′′, B′′, C′′, D′′ projectively related
to A, B, C, D, since a projectivity is by definition the product of a sequence
of perspectivities.
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Exercises

As mentioned above, we cannot hope for an invariant that is simpler than the
cross-ratio, because any three points in a line are projectively related to any other.

7.3.1 Show that any three points on a line can be sent to any other three points
on a line by projection. (You may move the lines to a convenient position.)

7.4 The Projective View of Curves

The first works in projective geometry, by Desargues (1639) and Pascal
(1640), used the language of classical geometry, even though the language
of equations was available from Descartes (1637). At that time the ad-
vantages of the projective method were more clearly seen in a classical
setting. Desargues and Pascal confined themselves to straight lines and
conic sections, showing how projective geometry could easily reach and
surpass the results obtained by the Greeks. Moreover, the projective view-
point gave something else that would have been incomprehensible to the
Greeks: a clear account of the behavior of curves at infinity.

For example, Desargues (1639) (in Taton (1951), p. 137) distinguished
the ellipse, parabola, and hyperbola by their numbers of points at infinity:
0, 1, and 2, respectively. The points at infinity on the parabola and hyper-
bola can be seen quite plainly by tilting the ordinary views of them into
perspective views (Figures 7.12 and 7.13). The parabola has just one point
at infinity because it crosses each ray through 0, except the y-axis, at one
other point.

x x

Figure 7.12: The parabola: direct and perspective view
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As for the hyperbola, its two points at infinity are where it touches
its asymptotes, as seen in Figure 7.13. The continuation of the hyperbola
above the horizon results from projecting the lower branch through the
same center of projection (Figure 7.14).

x x

Figure 7.13: The hyperbola: direct and perspective view

Figure 7.14: Branches of the hyperbola

Projective geometry goes beyond describing the behavior of curves at
infinity. The line at infinity is no different from any other line and can
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be deprived of its special status. Then all projective views of a curve are
equally valid and one can say, for example, that all conic sections are el-
lipses when suitably viewed. This is no surprise if one thinks of conic sec-
tions not as second-degree curves but as sections of the cone. Of course
they all look the same from the vertex of the cone!

Cubic Curves

More surprisingly, a great simplification of cubic curves also occurs when
they are viewed projectively. As mentioned in Section 6.4, Newton (1695)
classified cubic curves into 72 types (and missed 6). However, in his
Section 29, “On the Genesis of Curves by Shadows,” Newton claimed that
each cubic curve can be projected onto one of just five types. As mentioned
in Section 6.4, this includes the result that y = x3 can be projected onto
y2 = x3. The proof of this is an easy calculation when coordinates are in-
troduced (see Exercise 7.7.2), but one already gets an inkling of it from the
perspective view of y = x3. See Figure 7.15. The lower half of the cusp is
the view of y = x3 below the horizon; the upper half comes from projecting
the view behind one’s head through the eye to the picture plane in front.

x

Figure 7.15: Perspective view of y = x3

Conversely, y2 = x3 has an inflection at infinity. Newton’s projective
classification comes from studying the behavior at infinity of all cubics and
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observing that each has characteristics already possessed, not necessarily
at infinity, by curves of the form

y2 = Ax3 + Bx2 +Cx + D.

Newton had already divided these into five types in his analytic classifica-
tion. They are the five shown in Figure 6.3. Newton’s result was improved
only in the 19th century, when projective classification over the complex
numbers reduced the number of types of cubics to just three. We discuss
this later in connection with complex numbers (Section 12.5).

Exercises

As suggested above, the points at infinity of a curve may be counted by con-
sidering intersections of the curve with lines through the origin, and observing
where they tend to infinity.

7.4.1 Use this method to explain why

• the hyperbola xy = 1 has two points at infinity,

• the curve y = x3 has one point at infinity.

Figures 7.12 and 7.13 were made by taking Alberti’s veil to be the (x, z)-
plane in (x, y, z)-space, with the “eye” at (0,−4, 4) viewing the (x, y)-plane tiled
with unit squares.

7.4.2 Find the parametric equations of the line from (0,−4, 4) to (x′, y′, 0), and
hence show that this line meets the veil where

x =
4x′

y′ + 4
, z =

4y′

y′ + 4
.

7.4.3 Renaming the coordinates x, z in the veil as X, Y respectively, show that

x′ =
4X

4 − Y
, y′ =

4Y
4 − Y

.

7.4.4 Deduce from Exercise 7.4.3 that the points (x′, y′) on the parabola y = x2

have image on the veil

X2 +
(Y − 2)2

4
= 1,

and check that this is the ellipse shown in Figure 7.12.
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7.5 The Projective Plane

The way projective geometry puts infinity on the same footing as the finite
points of the plane is intuitively clear when one thinks of the horizon in a
picture, which is a line like any other. But what, mathematically speaking,
is this line we see? To model the situation we take the plane in view to be
the plane z = −1 in the three-dimensional space with coordinates (x, y, z),
and place our eye at the origin O = (0, 0, 0), as in Figure 7.16.

1

P1

2

P2

3

P3

z

x

Figure 7.16: Viewing the plane

Points P1, P2, P3, . . . in the plane lie on “lines of sight” L1,L2,L3, . . .

through O, and as the point Pn tends to infinity its line of sight Ln tends to
horizontal. Therefore, it is natural to interpret each horizontal line through
O, which does not correspond to an actual point of the plane, as the line
of sight to a “point at infinity” of the plane. More boldly, we can define
the lines through O to be the points of a projective plane, called the real
projective plane RP2, and the planes through O to be the lines of RP2—the
so-called projective lines.

Modeling the points of the plane z = −1 by the non-horizontal lines
through O enables us to complete this ordinary plane to a projective plane
by using the remaining lines through O (which are not called “horizontal”
for nothing!) to model the points on its horizon. Moreover, the horizontal
plane through O models the horizon line, reinforcing our intuition that the
horizon is a line like any other.
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This model of the projective plane is geometrically as natural as one
could wish, and it answers certain questions that are confusing for vision
alone. For example, we can see why it is proper for a lineM in the ordinary
plane to have only one point at infinity: because there is only one line
through O to which the lines through P1, P2, P3, . . . tend as Pn tends to
infinity, namely, the parallel toM through O. Thus, Kepler and Desargues
were not far wrong in thinking of a projective line as a circle. The two
“ends” of the line are joined by its single point at infinity.

While a projective line is essentially a circle, a projective plane is not
essentially a sphere, but something more peculiar, as was noticed by Klein
(1874). RP2 is essentially a sphere with antipodal points identified, where
antipodal points P, P′ are pairs such as those shown in Figure 7.17: the
diametrically opposite points at which a line through O meets the unit
sphere with center O. “Identifying” the points P, P′ means treating the pair
(P, P′) as a single point. This is appropriate since the pair corresponds to a
single line through O, that is, to a single point of RP2.

Figure 7.17: Antipodal point pair

The surface RP
2 modeled by the pairs (P, P′) is strikingly different

from the sphere of individual points P. For example, on a sphere, any
simple closed curve separates the surface into two parts. A “small” closed
curve in RP

2—that is, one strictly contained in a hemisphere of the model—
also separates it, but a “large” one may not. The equator, for instance,
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does not separate the upper hemisphere from the lower, because the hemi-
spheres are the same place under antipodal point identification! A less
paradoxical view of this is seen by going back to the model of RP2 whose
elements are lines through O. The lines through the equator do not separate
the lines through the upper hemisphere from the lines through the lower
hemisphere, because these are the same lines.

Exercises

The model of the projective plane whose points are lines through O and whose
lines are planes through O also helps in visualizing other basic properties of pro-
jective lines.

7.5.1 Use this interpretation of projective lines to show that all lines in a family
of parallels have the same point at infinity.

7.5.2 Likewise, show that any two projective lines meet in exactly one point.

Now let us return to the interpretation of the projective plane as a surface, the
sphere with antipodal points identified. The following result shows another way
in which the projective plane differs from a sphere.

7.5.3 Show that a strip of the projective plane surrounding a projective line is a
Möbius band (Figure 7.18).

Figure 7.18: A Möbius band

7.5.4 Why is the Möbius band not a part of the sphere?
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7.6 The Projective Line

As we have seen, projective geometry arose from efforts to understand the
relationship between two and three dimensions. But the idea arising from
these efforts—that of projection or projective transformations—is interest-
ing even in one dimension. In this section we make a more detailed study
of projection from a line to a line, and use it to present a more sophisticated
concept of projective line. In the process, we meet the concept of linear
fractional transformation, which plays a key role in many later develop-
ments. In particular, we will show how linear fractional transformations
give a new insight into the invariance of the cross-ratio.

We start by viewing the line as the number line R, and study how the
numerical values of points are related when we project one line onto an-
other. The simplest kind of projection is parallel projection (or projection
from infinity) of a line onto a parallel line, as shown in Figure 7.19.

1

2

0

0+l

1

1+l

2

2+l

3

3+l

Figure 7.19: Projection from infinity

Clearly, when we make the natural choice of coordinates on the two
lines, parallel projection sends x on L1 to x+ l on L2, for some constant l.
We abbreviate this mapping of coordinates by x �→ x + l.

If we project from a point P at a finite distance, then it is likewise clear
from Figure 7.20 (where we align the zero point on each line with P) that
x on L1 is sent to kx on L2 for some nonzero constant k. We abbreviate
this mapping of coordinates by x �→ kx (k � 0).

A more remarkable case is shown in Figure 7.21, where we project a
line L1 onto a perpendicular line L2 from a point not on either line, but
equidistant from both. Then, with suitable choice of coordinates, x on L1

is sent to 1/x on L2.
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1

2

P

0 kx

0 x

Figure 7.20: Projection from a finite point

1

2

O

−1 0 x

1/ x

0

Figure 7.21: Projection of a line onto a perpendicular line

This makesL2 a highly distorted image ofL1, with the equally spaced
points 1, 2, 3, 4, . . . on L1 going to the points 1, 1/2, 1/3, 1/4, . . . on L2.
These image points tend to the point 0 on L2, which is not the projection
of any point on L1. However, if we extend L1 by an extra point ∞—its
point at infinity—then it seems right to view 0 on L2 as the projection of
∞ on the extended line L1 ∪ {∞}. It likewise seems right to extend L2 by
its point∞ at infinity, and to view this point as the projection of 0 on L1.
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If we still claim that this map sends x to 1/x, then we must admit that

1/0 = ∞ and 1/∞ = 0.

We have legalized division by zero! Is this valid? In this limited setting,
yes. Each line L through O is marked with two symbols: x and 1/x. If
L is neither vertical nor horizontal, then x and 1/x are the intersections
of L with L1 and L2 respectively; if L is vertical, then x = 0 is its real
intersection with L1 and 1/0 = ∞ is its “intersection at infinity” with its
parallel L2; if L is horizontal, then 1/x = 1/∞ = 0 is its real intersection
with L2 and∞ is its “intersection at infinity” with its parallel L1.

Actually, division by zero is valid in the more general and interesting
setting of linear fractional transformations:

f (x) =
ax + b
cx + d

, where ad − bc � 0.

These are precisely the functions obtainable as combinations of the func-
tions x �→ x + l, x �→ kx for k � 0, and x �→ 1/x, and they correspond
to arbitrary projections of one projective line onto another. To be precise,
each linear fractional function gives a well-defined and one-to-one map of
R ∪ {∞} to itself, and these maps realize all projections of the projective
line. See the exercises below. Because of this, we call R ∪ {∞}, together
with its linear fractional functions, the real projective line RP

1.
The linear fractional functions give RP

1 its “projective” nature. RP1

has no concept of length, because length is not preserved by linear frac-
tional functions. Not even the ratio of lengths is preserved, as one can see
with the function x �→ 1/x. However, the cross-ratio is preserved by linear
fractional functions, and hence by projections.

To see why, consider four points A, B,C, D on a line. If we view these
points as numbers, then their cross-ratio (defined in Section 7.3) becomes

CA · DB
CB · DA

=
(C − A)(D − B)
(C − B)(D − A)

.

The function x �→ x + l, which adds l to each of A, B,C, D, obviously
does not change the cross-ratio. Neither does the function x �→ kx for
k � 0, which multiplies each of A, B,C, D by k. It is less obvious that the
cross-ratio is preserved by the function x �→ 1/x, but a simple calculation
confirms this. Thus the cross-ratio is preserved by all combinations of x �→
x + l, x �→ kx for k � 0, and hence by all linear fractional functions.
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Exercises

We can see why each linear fractional function is a combination of functions
of the forms x �→ x + l, x �→ kx for k � 0, and x �→ 1/x by a suitable breakdown
of the fraction ax+b

cx+d .

7.6.1 Show that ax+b
cx+d =

a
c +

bc−ad
c(cx+d) if c � 0.

7.6.2 Deduce from Exercise 7.6.1 that the function x �→ ax+b
cx+d is a combination of

functions x �→ x + l, x �→ kx, and x �→ 1/x when c � 0. What if c = 0?

7.6.3 What property of ax+b
cx+d is controlled by the condition ad − bc � 0?

7.6.4 Verify that the cross-ratio (C−A)(D−B)
(C−B)(D−A) remains unchanged when each of the

points A, B,C, D is replaced by its reciprocal.

It follows that the cross-ratio is preserved by any linear fractional function. It
remains to show that projections are realized by linear fractional functions. We
have already done this for projection of a line onto a parallel line. Hence it remains
to study projection of a line, say the x-axis, onto a line that intersects it, say y = cx.

7.6.5 Show that projection from the point (a, b) sends the point x = t on the
x-axis to the point on the line y = cx for which

x =
bt

ct + b − ca
,

which is a linear fractional function of t.

7.7 Homogeneous Coordinates

Representing the points of the projective plane RP
2 by lines through O

gives coordinates to RP
2 via the coordinates (x, y, z) of three-dimensional

space. Such coordinates were invented by Möbius (1827) and Plücker
(1830), and they are called homogeneous because each algebraic curve
in RP

2 is expressed by a homogeneous polynomial equation p(x, y, z) = 0.
The simplest case is that of a projective line, which, as we saw in Section
7.5, is represented by a plane through O. Its equation therefore has the
form

ax + by + cz = 0, for some constants a, b, c, not all zero.

Such an equation is called homogeneous of degree 1, because each nonzero
term is of degree 1 in the variables x, y, z.

The homogeneous coordinates of a point P in RP
2 are simply the coor-

dinates of all points on the line through O that represents P. It follows that
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if (x, y, z) is one coordinate triple for P, so is (tx, ty, tz) for any real number
t. And if p(x, y, z) = 0 is the equation of a curve in RP

2, the polynomial p
must be such that

p(tx, ty, tz) = 0 for all real numbers t.

It follows that p(tx, ty, tz) = tn p(x, y, z) for some n, called the degree of p.

A typical example is the equation

x2 − yz = 0,

which is homogeneous of degree 2. To see what this curve looks like in an
ordinary plane, such as z = 1, we substitute for the appropriate variable.
With z = 1 we obtain

y = x2,

which is the equation of a parabola in the plane z = 1. Thus x2 − yz = 0
is the projective completion of a parabola, with a point at infinity added
(namely, the y-axis, where x = z = 0).

But x2 − yz = 0 is also the projective completion of a hyperbola. We
see this by intersecting the projective curve with the plane x = 1, obtaining
the hyperbola yz = 1. Surprising as this seems at first, it reflects a fact we
already know from Section 7.4—that all conic sections are projectively the
same.

Homogeneous coordinates also make it easy to show that certain cubic
curves have the same projective completion (see Exercise 7.7.2).

Bézout’s Theorem Revisited

As we saw in Section 6.5, to obtain Bézout’s theorem that a curve of de-
gree m meets a curve of degree n in mn points we need a precise account
of points at infinity. Homogeneous coordinates simplify this problem by
changing it to one about homogeneous polynomials. If Cm is a curve with
homogeneous equation of degree m,

pm(x, y, z) = 0, (1)

and if Cn is a curve with homogeneous equation of degree n,

pn(x, y, z) = 0, (2)



120 7 Projective Geometry

one wishes to show that the equation

rmn(x, y) = 0, (3)

which results from eliminating z between (1) and (2), is homogeneous of
degree mn. This is not hard to do (see exercises), but it seems that a homo-
geneous formulation of Bézout’s theorem, with a rigorous proof that the
resultant rmn has degree mn, was not given until the late 1800s. According
to Kline (1972), p. 553, the “proper count of multiplicities” was first made
by Halphen in 1873.

An obvious condition must be included in the hypothesis of Bézout’s
theorem: that the curves Cm and Cn have no common component. The
algebraic equivalent of this condition is that the polynomials pm, pn have
no nonconstant common factor. Then the form of Bézout’s theorem that
can be proved with the help of homogeneous coordinates is curves Cm, Cn

with homogeneous equations pm(x, y, z) = 0, pn(x, y, z) = 0 of degrees m,
n and no common component have intersections given by the solutions of
a homogeneous equation rmn(x, y) = 0 of degree mn.

Exercises

7.7.1 We know that the hyperbola yz = 1 has two points at infinity. To which lines
through O do they correspond in the projective completion x2 − yz = 0?

7.7.2 By considering the homogeneous polynomial equation x3 − y2z = 0, show
that the cubic curves y = x3 and y2 = x3 have the same projective comple-
tion.

As the Chinese discovered (see Section 5.2), the problem of elimination belongs
to linear algebra. In the case of Bézout’s theorem, this includes the criterion that
determinant = 0 for a set of homogeneous equations to have a nonzero solution,
and it leads to an expression for the resultant rmn as a determinant.

7.7.3 Suppose that

pm(x, y, z) = a0zm + a1zm−1 + · · · + am,

pn(x, y, z) = b0zn + b1zn−1 + · · · + bn

are homogeneous polynomials of degrees m, n. Thus ai(x, y) is homoge-
neous of degree i and bj(x, y) is homogeneous of degree j. By multiplying
pm and pn by suitable powers of z, show that the equations

pm = 0 and pn = 0
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are equivalent to a system of m + n homogeneous linear equations in the
variables zm+n−1, . . . , z2, z1, z0, which in turn is equivalent to

rmn(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · am 0 · · · 0
0 a0 a1 · · · am 0 · · · 0
...

. . .
. . .

. . .

0
0 · · · 0 a0 · · · am

b0 b1 · · · bn 0 · · · 0

0 b0 b1 · · · bn
...

...
. . .

. . . 0
0 · · · 0 b0 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

7.7.4 Show that a polynomial p(x, y) is homogeneous of degree k ⇔ p(tx, ty) =
tk p(x, y).

7.7.5 Show that rmn(tx, ty) = tmnrmn(x, y). Hint: Multiply the rows of rmn(tx, ty)
by suitable powers of t to arrange that each element in any column contains
the same power of t. Then remove these factors from the columns so that
rmn(x, y) remains.
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Calculus

Preview

The shift towards algebraic thinking was not only a revolution in
geometry. It was decisive in the second and greatest mathematical revo-
lution of the 17th century: the invention of calculus. It is true that some
results we now obtain by calculus were known to the ancients; for exam-
ple, the area of the parabolic segment was found by Archimedes. But the
systematic computation of areas, volumes, and tangents became possible
only when symbolic computation—that is, algebra—became available.

The dependence of calculus on algebra is particularly clear in the work
of Newton, whose calculus is essentially the algebra of infinite polynomi-
als (power series). Moreover, Newton’s starting point was a basic theorem
about the polynomial (1 + x)n, the binomial theorem, which he extended
to fractional values of n.

The calculus of Leibniz was likewise based on algebra—in his case
the algebra of infinitesimals. Despite doubts about the meaning and exis-
tence of infinitesimals, Leibniz and his followers obtained correct results
by computing with them.

Results that we now obtain through a combination of algebra and limit
processes were obtained by Leibniz through the algebra of infinitesimals.
Our derivative dy/dx was, for Leibniz, literally the quotient of the in-
finitesimal dx by the infinitesimal dy. And our integral

∫
f (x) dx was, for

Leibniz, literally the sum of the infinitesimals f (x) dx (hence the symbol∫
, which is an elongated S for “sum”).
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8.1 What Is Calculus?

Calculus emerged in the 17th century as a system of shortcuts to results
obtained by the method of exhaustion and as a method for discovering
such results. The types of problem suited to calculus were finding lengths,
areas, and volumes of curved figures and determining local properties such
as tangents, normals, and curvature—in short, what we now recognize as
problems of integration and differentiation. Equivalent problems of course
arise in mechanics, where one of the dimensions is time instead of dis-
tance; hence calculus also made mathematical physics possible. In addi-
tion, calculus was intimately connected with the theory of infinite series,
initiating developments that became fundamental in number theory, com-
binatorics, and probability theory.

The extraordinary success of calculus was possible, in the first in-
stance, because it replaced long and subtle exhaustion arguments by short
routine calculations. As the name suggests, calculus consists of rules for
calculating results, not their logical justification. Mathematicians of the
17th century were familiar with the method of exhaustion and assumed
they could always fall back on it if their results were challenged, but the
flood of new results became so great that there was seldom time to do so.
As Huygens (1659), p. 337, wrote,

Mathematicians will never have enough time to read all the
discoveries in Geometry (a quantity which is increasing from
day to day and seems likely in this scientific age to develop
to enormous proportions) if they continue to be presented in a
rigorous form according to the manner of the ancients.

The progress in geometry when Huygens wrote was indeed impres-
sive, considering the very simple system of calculus then available. Virtu-
ally all that was known was the differentiation and integration of powers
of x (possibly fractional) and implicit differentiation of polynomials in x
and y. However, when allied with algebra and analytic geometry, this was
sufficient to find tangents, maxima, and minima for all algebraic curves.
And when allied with Newton’s calculus of infinite series, discovered in
the 1660s, the rules for powers of x formed a complete system for differ-
entiation and integration of all functions expressible in power series.

The subsequent development of calculus is a puzzling exception to
the normal process of simplification in mathematics. Nowadays we have a
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much less elegant system, which downplays the use of infinite series and
complicates the system of rules for differentiation and integration. The
rules for differentiation are still complete, given a sensible set of opera-
tions for constructing functions, but the rules for integration are patheti-
cally incomplete. They do not suffice to integrate simple algebraic func-
tions like

√
1 + x3, or even rational functions with undetermined constants

like 1/(x5 − x − A). Moreover, it is only in recent decades that we have
been able to tell which algebraic functions are integrable by our rules.
(This little-known result is expounded by Davenport (1981).)

The conclusion seems to be that, apart from streamlining the language
slightly, we cannot make calculus any simpler than it was in the 17th cen-
tury! It is certainly easier to present the history of the subject if we refrain
from imposing modern ideas. This approach also has the advantage of em-
phasizing the computational nature of calculus—it is about calculation,
after all.

Much has been written on the history of calculus, and some useful
books are Boyer (1959), Baron (1969), Edwards (1979), and Bressoud
(2019). The earlier historians are inclined to harp on the question of logical
justification and to spend a disproportionate amount of time on the way
it was handled in the 19th century. This tends to obscure the boldness
and vigor of early calculus, and can be dogmatic about the way in which
calculus should be justified. Apart from the justification already available
in the 17th century (the method of exhaustion), there is also a 20th-century
justification (the new theory of infinitesimals of Robinson (1966)). The
sheer diversity of foundations for calculus suggests that we have not yet
got to the bottom of it.

8.2 Early Results on Areas and Volumes

The idea of integration is often introduced by approximating the area under
curves y = xk by rectangles (Figure 8.1), say, from 0 to 1. If the base of the
region is divided into n equal parts, then the heights of the rectangles are
(1/n)k, (2/n)k, . . . , (n/n)k, and the area occupied by the rectangles depends
on the series 1k + 2k + · · · + nk. If the curve is revolved around the x-axis,
then the rectangles sweep out cylinders of cross-sectional area πr2, where
r = (1/n)k, (2/n)k, . . . , (n/n)k, whose sum depends on 12k + 22k + · · ·+ n2k.

After the time of Archimedes, the first new results on areas and vol-
umes were in fact based on summing these series. The Arab mathematician
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= xk

O 1
n

2
n

3
n

· · · n−1
n

n
n

Figure 8.1: Approximating an area by rectangles

al-Haytham (around 965–1039) summed the series 1k + 2k + · · · + nk for
k = 1, 2, 3, 4, and used the result to find the volume of the solid obtained by
rotating the parabola about its base. See Baron (1969), p. 70, or Edwards
(1979), p. 84, for al-Haytham’s method.

Cavalieri (1635) extended these results up to k = 9, using them to
obtain the equivalent of

∫ a

0
xk dx =

ak+1

k + 1

and conjecturing this formula for all positive integers k. This result was
proved in the 1630s by Fermat, Descartes, and Roberval. Fermat even
obtained the result for fractional k (see Baron (1969), pp. 129, 185, and
Edwards (1979), p. 116). Cavalieri is best known for his method of indivis-
ibles, an early method of discovery that divided areas into infinitely thin
strips and volumes into infinitely thin slices. Archimedes’ Method used
similar ideas but, as mentioned in Section 4.1, this was not known until
the 20th century. Remarkably, Cavalieri’s contemporary Torricelli (the in-
ventor of the barometer) speculated that such a method may have been
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used by the Greeks. One of Torricelli’s own discoveries, which caused as-
tonishment at the time, was that the infinite solid obtained by revolving
y = 1/x about the x axis from 1 to ∞ has finite volume (Torricelli (1643)
and Exercise 8.2.3). The philosopher Hobbes (1672) wrote of Torricelli’s
result that “to understand this for sense, it is not required that a man should
be a geometrician or logician, but that he should be mad.”

Exercises

8.2.1 Find 1 + 2 + · · · + n by summing the identity (m + 1)2 −m2 = 2m + 1 from
m = 1 to n. Similarly find 12 + 22 + · · · + n2 using the identity

(m + 1)3 − m3 = 3m2 + 3m + 1

together with the previous result. Likewise, find 13 + 23 + · · ·+ n3 using the
identity

(m + 1)4 − m4 = 4m3 + 6m2 + 4m + 1

and so on.

8.2.2 Show that the approximation to the area under y = x2 by rectangles in
Figure 8.1 has value (2n + 1)n(n + 1)/6n3, and deduce that the area under
the curve is 1/3.

8.2.3 Show that the volume of the solid obtained by rotating the portion of y =
1/x from x = 1 to ∞ about the x-axis is finite. Show, on the other hand,
that its surface area is infinite.

Cavalieri’s most elegant application of his method of indivisibles was to prove
Archimedes’ formula for the volume of a sphere. His argument is simpler than that
of Archimedes, and it goes as follows.

8.2.4 Show that the slice z = c of the sphere x2 + y2 + z2 = 1 has the same area
as the slice z = c of the cylinder x2 + y2 = 1 outside the cone x2 + y2 = z2

(Figure 8.2).

Figure 8.2: Slices considered by Cavalieri

8.2.5 Deduce from Exercise 8.2.4, and the known volume of the cone, that the
volume of the sphere is 2/3 the volume of the circumscribing cylinder.
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8.3 Maxima, Minima, and Tangents

The idea of differentiation is now considered to be simpler than integra-
tion, but historically it developed later. Apart from the construction of the
tangent to the spiral r = aθ by Archimedes, no examples of the character-
istic limiting process

lim
Δx→0

f (x + Δx) − f (x)
Δx

appeared until it was introduced by Fermat in 1629 for polynomials f and
used to find maxima, minima, and tangents. Fermat’s work, like his dis-
covery of analytic geometry, was not published until 1679, but it became
known to other mathematicians through correspondence after a more com-
plicated tangent method was published by Descartes (1637).

Fermat’s calculations involve a sleight of hand also used by Newton
and others: introduction of a “small” or “infinitesimal” element E at the
beginning, dividing by E to simplify, then omitting E at the end as if it
were zero. For example, to find the slope of the tangent to y = x2 at any
value x, consider the chord between the points (x, x2) and (x+ E, (x+ E)2)
on it:

slope =
(x + E)2 − x2

E

=
2xE + E2

E
= 2x + E.

We now get the slope of the tangent by neglecting E. By seeming to claim
that 2x + E = 2x and at the same time E � 0, this procedure enraged
philosophers such as Hobbes. We know it is only necessary to claim that
limE→0(2x + E) = 2x, but 17th-century mathematicians did not know how
to say this. In any case, they were too carried away with the power of the
method to worry about such criticisms (and it was hard to take philoso-
phers seriously when they were as obstinate as Hobbes; see previous sec-
tion). Fermat’s method applies to all polynomials p(x), since the highest-
degree term in p(x + E) is always canceled by the highest-degree term in
p(x), leaving terms divisible by E. Fermat also extended it to curves given
by polynomial equations p(x, y) = 0. He did this in 1638 when Descartes,
hoping to stump him, proposed finding the tangent to the folium.



8.3 Maxima, Minima, and Tangents 129

The generality of Fermat’s method entitles him to be regarded as one
of the founders of calculus. He could certainly find tangents to all curves
given by polynomial equations y = p(x) and probably to all algebraic
curves p(x, y) = 0. A completely explicit rule for the latter problem was
found by Sluse about 1655 (but not published until Sluse (1673)) and by
Hudde in 1657 (published in the 1659 edition of Descartes’s La Géométrie,
Schooten (1659)). In our notation, if

p(x, y) =
∑

ai jx
iy j = 0,

then
dy
dx
= −
∑
iai jxi−1y j

∑
jai jxiy j−1

.

Nowadays, this result is easily obtained by implicit differentiation (see the
exercises below), but it can also be obtained by direct manipulation of
polynomials.

Exercises

For evidence that tangents to algebraic curves may be found without calculus,
it is enough to look more closely at what we called Diophantus’s tangent method
in Section 3.5. In his Arithmetica, Problem 18, Book VI (previously mentioned in
Exercise 3.5.1), Diophantus finds the tangent y = 3x

2 + 1 to y2 = x3 − 3x2 + 3x+ 1
at the point (0, 1), apparently by inspection. Without mentioning its geometric
interpretation, he simply substitutes 3x

2 + 1 for y in y2 = x3 − 3x2 + 3x + 1.

8.3.1 Check that this substitution gives the equation

x3 − 21
4
x2 = 0.

What is the geometric interpretation of the double root x = 0?

8.3.2 What would you substitute for y to find the tangent at (0, 1) to the curve
y2 = x3 − 3x2 + 5x + 1?

These examples show how tangents can be found by looking for double roots,
though it requires some foresight to make the right substitution. With calculus,
the process is more mechanical.

8.3.3 Derive the formula of Hudde and Sluse by differentiating
∑
ai jxiy j = 0

with respect to x.

8.3.4 Use differentiation to find the tangent to the folium x3 + y3 = 3axy at the
point (b, c).
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8.4 The Arithmetica Infinitorum of Wallis

Wallis’s efforts to arithmetize geometry were noted in Section 6.6. In his
Arithmetica Infinitorum, Wallis (1655a) made a similar attempt to arithme-
tize the theory of areas and volumes of curved figures. Some of his results
were, understandably, equivalent to results already known. For example,
he gave a proof that ∫ 1

0
xp dx =

1
p + 1

for positive integers p by showing that

0p + 1p + 2p + · · · + np
np + np + np + · · · + np →

1
p + 1

as n→ ∞.

However, he made a new approach to fractional powers, finding
∫ 1

0
xm/n dx

directly rather than by consideration of the curve yn = xm, as Fermat
had done. He first found

∫ 1

0
x1/2 dx,

∫ 1

0
x1/3 dx, . . . by considering the ar-

eas complementary to those under y = x2, y = x3, . . . (Figure 8.3), then
guessed the results for other fractional powers by analogy with those
already obtained.

x

x

1
0 x2 dx = 1

3 = 1
0 x1/2 dx = 2

3

Figure 8.3: Areas used by Wallis

Like other early contributors to calculus, Wallis was ambivalent about
quantities that tended to zero, treating them as nonzero one minute and
zero the next. For this he received a ferocious blast from his arch-enemy
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Thomas Hobbes: “Your scurvy book of Arithmetica infinitorum; where
your indivisibles have nothing to do, but as they are supposed to have
quantity, that is to say, to be divisibles” (Hobbes (1656), p. 301). Leaving
aside this fault, which is easily remedied by limit arguments, the reasoning
of Wallis is extremely incomplete by today’s standards. Observing a pat-
tern in formulas for p = 1, 2, 3, for example, he will immediately claim a
formula for all positive integers p “by induction” and for fractional p “by
interpolation.” His boldness reached new heights toward the end of the
Arithmetica infinitorum in deriving his famous infinite product formula,

π

4
=

2
3
· 4

3
· 4

5
· 6

5
· 6

7
· · · ·

An exposition of his reasoning may be found in Edwards (1979), pp. 171–
176, where it is described as “one of the more audacious investigations by
analogy and intuition that has ever yielded a correct result.”

However, we must bear in mind that Wallis was offering primarily a
method of discovery, and what a discovery he made! His infinite product
for π was not the first ever given, since Viète (1593) had discovered

2
π
= cos

π

4
cos
π

8
cos
π

16
· · ·

=

√
1
2
·
√√

1
2

⎛
⎜⎜⎜⎜⎜⎝1 +

√
1
2

⎞
⎟⎟⎟⎟⎟⎠ ·

√√√√√
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +

√√
1
2

⎛
⎜⎜⎜⎜⎜⎝1 +

√
1
2

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ · · · ·

However, the formula of Viète is based on a clever but simple trick (see
exercises), whereas that of Wallis is of deeper significance. By relating π to
the integers through a sequence of rational operations, Wallis uncovered
a sequence of fractions, obtained by terminating the product at the nth
factor, that he called hypergeometric. Similar sequences were later found
to occur as coefficients in series expansions of many functions, which led
to a broad class of functions being called hypergeometric by Gauss. Also,
Wallis’s product was closely related to two other beautiful formulas for π
based on sequences of rational operations:

4
π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + · · ·
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and
π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · · .

The continued fraction was obtained by Brouncker from Wallis’s product
and also published in Wallis (1655b). The series is a special case of the
series

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · ·

discovered by the Indian mathematician Mādhava in the 15th century (see
Section 9.2) and rediscovered by Newton, Gregory, and Leibniz. Euler
(1748a), p. 311, gave a direct transformation of the series for π/4 into
Brouncker’s continued fraction. Besides setting off this spectacular chain
reaction, Wallis’s method of interpolation had important consequences in
the work of Newton, who used it to discover the binomial theorem for frac-
tional powers p (Section 9.3), where (1 + x)p becomes an infinite series.

Exercises

8.4.1 Use the identity sin x = 2 sin(x/2) cos(x/2) to show that

sin x
2n sin(x/2n)

= cos
x
2

cos
x

22
· · · cos

x
2n
,

whence sin x
x
= cos

x
2

cos
x

22
cos

x
23
· · · .

8.4.2 Deduce Viète’s product by substituting x = π/2.

The equation relating the series for π/4 to the continued fraction for 4/π,
namely

1 − 1
3
+

1
5
− 1

7
+ · · · = 1

1 +
12

2 +
32

2 +
52

2 +
72

2 + · · ·
follows immediately from a more general equation

1
A
− 1

B
+

1
C
− 1

D
+ · · · = 1

A +
A2

B − A +
B2

C − B +
C2

D −C + · · ·
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proved by Euler (1748a), p. 311. The following exercises give a proof of Euler’s
result.

8.4.3 Check that
1
A
− 1

B
=

1

A +
A2

B − A

.

8.4.4 When 1
B on the left side in Exercise 8.4.3 is replaced by 1

B− 1
C , which equals

1

B+ B2
C−B

by Exercise 8.4.3, show that B on the right should be replaced by

B + B2

C−B . Hence show that

1
A
− 1

B
+

1
C
=

1

A +
A2

B − A +
B2

C − B

.

Thus when we modify the tail end of the series (replacing 1
B by 1

B − 1
C ), only

the tail end of the continued fraction is affected. This situation continues:

8.4.5 Generalize your argument in Exercise 8.4.4 to obtain a continued fraction
for a series with n terms, and hence prove Euler’s equation.

8.5 Newton’s Calculus of Series

Newton made many of his most important discoveries in 1665/6, after
studying the works of Descartes, Viète, and Wallis. In Schooten’s edition
of La Géométrie he encountered Hudde’s rule for tangents to algebraic
curves, which was virtually a complete differential calculus from New-
ton’s viewpoint. Although Newton made contributions to differentiation
that are useful to us—the chain rule, for example—differentiation was a
minor part of his calculus, which depended mainly on the manipulation of
infinite series. Thus it is misleading to describe Newton as a founder of
calculus unless one understands calculus, as he did, as an algebra of infi-
nite series. In this calculus, differentiation and integration are carried out
term by term on powers of x and hence are comparatively trivial.

At the beginning of his main work on calculus, A Treatise of the Meth-
ods of Series and Fluxions (also known by its abbreviated Latin name of
De methodis), Newton likens the role of infinite series to the role of infinite
decimals:
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Since the operations of computing in numbers and with vari-
ables are closely similar . . . I am amazed that it has occurred
to no one (if you except N. Mercator with his quadrature of
the hyperbola) to fit the doctrine recently established for dec-
imal numbers in similar fashion to variables, especially since
the way is then open to more striking consequences. For since
this doctrine in species has the same relationship to Algebra
that the doctrine in decimal numbers has to common Arith-
metic, its operations of Addition, Subtraction, Multiplication,
Division and Root extraction may be easily learnt from the
latter’s.

Newton (1671), pp. 33–35

The quadrature (area determination) of the hyperbola mentioned by
Newton was the result that we would write as

∫ x

0

dt
1 + t

= x − x2

2
+

x3

3
− x4

4
+ · · · ,

first published in Mercator (1668). Newton had discovered the same result
in 1665, and it was partly his dismay in losing priority that led him to
write De methodis and an earlier work De analysi (Newton (1669); the full
title in English is On Analysis by Equations Unlimited in Their Number of
Terms). Newton also independently discovered the series for tan−1 x, sin x,
and cos x in De analysi, without knowing that all three series had already
been discovered by Indian mathematicians. See Section 9.2.

Newton rediscovered the Mercator and Indian results by the method of
expanding a geometric series and integrating term by term. In our notation,

∫ x

0

dt
1 + t

=

∫ x

0
(1 − t + t2 − t3 + · · · ) dt

= x − x2

2
+

x3

3
− x4

4
+ · · ·

and

tan−1 x =
∫ x

0

dt
1 + t2

=

∫ x

0
(1 − t2 + t4 − t6 + · · · ) dt

= x − x3

3
+

x5

5
− x7

7
+ · · · .
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He routinely used these methods in De analysi and Demethodis, but greatly
extended their scope by algebraic manipulation. Not only did he find sums,
products, quotients, and roots, as foreshadowed in his introduction to De
methodis, but his root extractions also extended to the general construction
of inverse functions by the new idea of inverting infinite series. For exam-
ple, after Newton (1671), p. 61, found the series x − (x2/2) + (x3/3) − · · · ,
for
∫ x

0
dt/(1 + t), which is log(1 + x), he set

y = x − x2

2
+

x3

3
− · · · (1)

and solved (1) for x (which we recognize to be the exponential function
ey, minus 1). His method amounts to setting x = a0 + a1y + a2y

2 + · · · ,
substituting in the right-hand side of (1), and determining a0, a1, a2, . . .

in succession by comparing with the coefficients on the left-hand side.
Newton found the first few terms,

x = y +
1
2
y2 +

1
6
y3 +

1
24
y4 +

1
120
y5 + · · · ,

then confidently guessed that an = 1/n! in the manner of Wallis. As he put
it, “Now after the roots have been extracted to a suitable period, they may
sometimes be extended at pleasure by observing the analogy of the series.”

De Moivre (1698) gave a formula for inverting series that justifies such
conclusions; Newton astonishes us by finding such an elegant result by
such a forbidding method. His discovery of the sine series (Newton (1669),
pp. 233, 237) is even more amazing. First he used the binomial series

(1 + a)p = 1 + pa +
p(p − 1)

2!
a2 +

p(p − 1)(p − 2)
3!

a3 + · · ·

(though not with the natural choice a = −x2, p = − 1
2 ) to obtain

sin−1 x = z = x +
1
2
x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · ·

by term-by-term integration, and then casually stated “I extract the root,
which will be

x = z − 1
6
z3 +

1
120

z5 − 1
5040

z7 +
1

362880
z9 − · · · ”

adding a few lines later that the coefficient of z2n+1 is 1/(2n + 1)!.
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Exercises

Newton inverted series by a tabular method like the following, which shows
the coefficients of 1, y, y2, y3, . . . in x and its powers.

1 y y2 y3 . . .

x a0 a1 a2 a3 . . .

x2 a2
0 2a0a1 2a0a2 + a2

1 2a0a3 + 2a1a2 . . .

8.5.1 Use the rows shown to substitute series in powers of y for x and x2 in
y = x − x2

2 + · · · , and hence show that a0 = 0, a1 = 1, and a2 = 1/2 in turn,
by comparing coefficients on the two sides of the equation.

8.5.2 Compute the first few entries in the third row of the table (the coefficients
of x3), and hence show that a3 = 1/6.

This shows why the inverse function x = ey − 1 has a power series that begins

y +
1
2
y2 +

1
6
y3 + · · · .

8.5.3 Show that the binomial series gives

1√
1 − t2

= 1 +
1
2
t2 +

1 · 3
2 · 4 t

4 +
1 · 3 · 5
2 · 4 · 6 t

6 + · · · .

8.5.4 Use Exercise 8.5.3 and sin−1 x =
∫ x

0
dt/
√

1 − t2 to derive Newton’s series

for sin−1 x.

8.6 The Calculus of Leibniz

Newton’s epoch-making works (1669, 1671) were circulated among some
of his contemporaries but, incredible as it now seems, were not published
at the time. The reasons seem complicated—see Westfall (1980), p. 231—
but at any rate, the first published paper on calculus was not by Newton but
by Leibniz (1684). This led to Leibniz’s initially receiving credit for the
calculus and later to a bitter dispute with Newton and his followers over
the question of priority for the discovery.

There is no doubt that Leibniz discovered calculus independently, that
he had a better notation, and that his followers contributed more to the
spread of calculus than did Newton’s. Leibniz’s work lacked the depth
and virtuosity of Newton’s, but then Leibniz was a librarian, a philoso-
pher, and a diplomat with only a part-time interest in mathematics. His
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Nova methodus (1684) is a relatively slight paper, though it does lay down
some important fundamentals—the sum, product, and quotient rules for
differentiation—and it introduces the dy/dx notation we now use. How-
ever, dy/dx was not just a symbol for Leibniz, as it is for us, but literally a
quotient of infinitesimals dy and dx, which he viewed as differences (hence
the symbol d) between neighboring values of y and x, respectively.

He also introduced the integral sign,
∫

, in his De geometria (1686) and
proved the fundamental theorem of calculus, that integration is the inverse
of differentiation. This result was known to Newton and even, in a geo-
metric form, to Newton’s teacher Barrow, but it became more transparent
in Leibniz’s formalism. For Leibniz,

∫
meant “sum,” and

∫
f (x) dx was

literally a sum of terms f (x)dx, representing infinitesimal areas of height
f (x) and width dx. The difference operator d yields the last term f (x) dx
in the sum, and dividing by the infinitesimal dx yields f (x). So voila!

d
dx

∫
f (x) dx = f (x)

—the fundamental theorem of calculus.
The Leibniz fundamental theorem can be viewed as infinitesimal ge-

ometry by interpreting
∫
f (x) dx as the area A(x) under the curve y = f (t)

between t = a to t = x (Figure 8.4). Then an infinitesimal increase in t
from x to x+ dx increases A(x) by an infinitesimal amount dA(x), the area
of an infinitesimal rectangle of width dx and height f (x).

O a x

A(x) f (x) dA(x)

x + dx
t

Figure 8.4: Fundamental theorem of calculus as infinitesimal geometry
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Thus A(x) is an antiderivative1 of f (x):

dA(x) = f (x) dx, and therefore
dA(x)
dx

= f (x).

Leibniz’s strength lay in the identification of important concepts, rather
than in their technical development. He introduced the word “function”
and was the first to begin thinking in function terms. He made the dis-
tinction between algebraic and transcendental functions and, in contrast to
Newton, preferred “closed-form” expressions to infinite series. Thus the
evaluation of

∫
f (x) dx for Leibniz was the problem of finding a known

function whose derivative was f (x), whereas for Newton it was the prob-
lem of expanding f (x) in series, after which integration was trivial.

The search for closed forms was a wild goose chase but, like many
efforts to solve intractable problems, it led to worthwhile results in other
directions. Attempts to integrate rational functions raised the problem of
factorization of polynomials and led ultimately to the fundamental theo-
rem of algebra (see Chapter 11). Attempts to integrate 1/

√
1 − x4 led to

the theory of elliptic functions (Chapter 10).
As mentioned in Section 8.1, the problem of deciding which algebraic

functions may be integrated in closed form has been solved only recently,
though not in a way suitable for calculus textbooks, which have basically
not advanced much further than Leibniz. (One thing that has changed: it is
now much easier to publish a calculus book than it was for Newton!)

Exercises

Leibniz (1702) was stymied by the integral
∫

dx
x4+1 , because he did not spot

the factorization of x4 + 1 into real quadratic factors.

8.6.1 Writing x4 + 1 = x4 + 2x2 + 1 − 2x2 or otherwise, split x4 + 1 into real
quadratic factors.

8.6.2 Use the factors in Exercise 8.6.1 to express 1
x4+1 in the partial fraction form

x +
√

2
q1(x)

+
x − √2
q2(x)

,

where q1(x) and q2(x) are real quadratic polynomials.

8.6.3 Without working out all the details, explain how the partial fractions in
Exercise 8.6.2 can be integrated in terms of rational functions and the tan−1

function.
1The fundamental theorem says that in calculus you only have to know differentiation—

but you have to know it backwards.
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Infinite Series

Preview

As we saw in the previous chapter, many calculus problems have a solution
that can be expressed as an infinite series. It is therefore useful to be able
to recognize important individual series and to understand their general
properties and capabilities. This is the aim of the present chapter.

Starting with the infinite geometric series, already known to Euclid, we
discuss the handful of examples known before the invention of calculus.
These include the harmonic series 1 + 1/2 + 1/3 + 1/4 + · · · , studied by
Oresme around 1350, and the stunning series for the inverse tangent, sine,
and cosine, discovered by Indian mathematicians in the 15th century.

The invention of calculus in the 17th century released a flood of new
series, mostly of the form a0 + a1x + a2x2 + · · · (called power series), but
also some variations, such as generalizations of the harmonic series.

Euler (1748a) introduced the generalization

1 + 1/2s + 1/3s + 1/4s + · · · ,
whose value for s = 2, he had already shown to be π2/6. He also showed
that, for s > 1, the series equals the infinite product

(1 − 1/2s)−1(1 − 1/3s)−1(1 − 1/5s)−1 · · · (1 − 1/ps)−1 · · ·
over all the prime numbers p. This discovery of Euler’s opened a new path
to the secrets of the primes, exploration of which continues to this day.

The book Euler (1748a), whose full title is Introduction to the Analysis
of the Infinite, was intended by Euler to be preparation for calculus. Infinite
sums and products were the “pre-calculus” of the 18th century!
© Springer Nature Switzerland AG 2020
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9.1 Early Results

Infinite series were present in Greek mathematics, though the Greeks tried
to deal with them as finitely as possibly by working with arbitrary finite
sums a1 + a2 + · · · + an instead of infinite sums a1 + a2 + · · · . However,
this is just the difference between potential and actual infinity. There is no
question that Zeno’s paradox of the dichotomy (Section 4.1), for example,
concerns the decomposition of the number 1 into the infinite series

1
2
+

1
22
+

1
23
+

1
24
+ · · ·

and that Archimedes found the area of the parabolic segment (Section 4.4)
essentially by summing the infinite series

1 +
1
4
+

1
42
+

1
43
+ · · · = 4

3
.

Both these examples are special cases of the result we express as summa-
tion of a geometric series

a + ar + ar2 + ar3 + · · · = a
1 − r when |r| < 1.

The first examples of infinite series other than geometric series
appeared in the Middle Ages. In a book from around 1350, called the Liber
calculationum, Richard Suiseth (or Swineshead, known as the Calculator)
used a very lengthy verbal argument to show that

1
2
+

2
22
+

3
23
+

4
24
+ · · · = 2.

The argument is reproduced in Boyer (1959), p. 78. At about the same
time, Oresme (1350b), pp. 413–421, summed this and similar series by
geometric decomposition as in Figure 9.1, showing that

2 =
1
2
+

2
22
+

3
23
+

4
24
+ · · · .

Actually Oresme gives only the last picture in the figure, but it seems
likely he arrived at it by cutting up an area of two square units as shown,
judging from his opening remark: “A finite surface can be made as long
as we wish, or as high, by varying the extension without increasing the
size.” The region constructed by Oresme, incidentally, is perhaps the first
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1

1

1

1
2

1
4

1
8

1
2

1
4

1
8

1
4

1
8

1
8

Figure 9.1: Oresme’s summation

example of the phenomenon encountered by Torricelli (Section 8.2) in his
hyperbolic solid of revolution—infinite extent but finite content.

Another important discovery of Oresme (1350a) was the divergence of
the harmonic series

1 +
1
2
+
1
3
+
1
4
+
1
5
+ · · · .

His proof was by an elementary argument that is now standard:

1 +

(
1
2

)
+

(
1
3
+
1
4

)
+

(
1
5
+
1
6
+
1
7
+
1
8

)
+ · · ·

> 1 +

(
1
2

)
+

(
1
4
+
1
4

)
+

(
1
8
+
1
8
+
1
8
+
1
8

)
+ · · ·

= 1 +
1
2
+
1
2
+
1
2
+ · · · .

Thus by repeatedly doubling the number of terms collected in succes-
sive groups, we can indefinitely obtain groups of sum > 1

2 , enabling the
sum to grow beyond all bounds.

Exercises

Oresme’s proof by partitioning the harmonic series into

1 +

(
1
2

)
+

(
1
3
+
1
4

)
+

(
1
5
+
1
6
+
1
7
+
1
8

)
+ · · ·

has the following geometric counterpart.
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x
O 1 2 3 4 n n + 1

Figure 9.2: Comparing 1 + 1
2 +

1
3 + · · · + 1

n with an area

9.1.1 By referring to Figure 9.2, show that

1 +
1
2
+
1
3
+ · · · + 1

n
> area under y = 1

x between x = 1 and x = n + 1.

9.1.2 Now partition this area under y = 1/x into the pieces between x = 1 and
x = 2, x = 2 and x = 4, x = 4 and x = 8, . . ., and show that all these pieces
have the same area. (This can even be done without using calculus, if you
use the argument of Exercises 4.4.1 and 4.4.2.)

9.1.3 Deduce from Exercise 9.1.2 that the area from x = 1 to x = n, and hence
the sum 1 + 1

2 +
1
3 + · · · + 1

n , tends to infinity.

The area under y = 1/x from x = 1 to x = n + 1 is of course log(n + 1), so Figure
9.2 shows that 1 + 1

2 +
1
3 + · · · + 1

n > log(n + 1). As n → ∞, these two functions
of n remain about the same size.

9.1.4 By comparing the curved area with suitable rectangles beneath the curve,
show that

1
2
+
1
3
+ · · · + 1

n
< log(n + 1),

and hence that 0 < 1 + 1
2 +

1
3 + · · · + 1

n − log(n + 1) < 1.

9.1.5 Also show, by a geometric argument, that 1 + 1
2 +

1
3 + · · · + 1

n − log(n + 1)
increases as n increases, so that it has a finite limit < 1.

The value of the limit is known as Euler’s constant γ, and γ is approximately

0.577. However, little is known about the nature of γ—not even whether it is

irrational.
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9.2 From Pythagoras to Pi

As mentioned in Section 8.4, the Indian mathematician Mādhava found
the series

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · ·

with its important special case

π

4
= 1 − 1

3
+
1
5
− 1
7
+ · · ·

in the 15th century. The series for π was the first satisfactory answer to
the classical problem of squaring the circle, for although the expression is
infinite (as it must be, by Lindemann’s theorem on the transcendence of
π), the rule producing successive terms is as finite and transparent as could
be. Sadly, the Indian series became known in the West too late to have
any influence or even to become well known until recently. Rajagopal and
Rangachari (1977, 1986) showed that the series for tan−1 x, sin x, and cos x
were known in the Kerala school of Mādhava before 1540, and probably
before 1500. For more recent information on the Kerala school, in the con-
text of trigonometry and of Indian mathematics in general, see Van Brum-
melen (2009) and Plofker (2009) respectively.

In this section we give a streamlined derivation of the Mādhava series
for π, bypassing the trigonometry and using only a little calculus. Our
starting point is the pair of equations found in Section 1.3:

x =
1 − t2
1 + t2

, y =
2t

1 + t2
.

There, we used these equations only for rational values of t, in order to find
all rational points (x, y) on the unit circle and hence all Pythagorean triples.
Here, we use them for all real values of t to describe the whole circle,
except for the point (−1, 0), by two rational functions of t. The beauty
of this description is that it is amenable to basic calculus—in particular,
differentiation of rational functions.

For any curve given parametrically by x = f (t), y = g(t) the distance
Δs between points with parameter values t and t + Δt is

Δs =

√(
Δx
Δt

)2
+

(
Δy

Δt

)2
Δt,
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where Δx = f (t + Δt) − f (t),Δy = g(t + Δt) − g(t). This is because of the
Pythagorean theorem, which says that the distance Δs between the points
(x, y) and (x + Δx, y + Δy) is given (see Figure 9.3) by

(Δs)2 = (Δx)2 + (Δy)2.

Δx

ΔΔs

Figure 9.3: Approaching arc length via the Pythagorean theorem

It follows, by letting Δt → 0, that the arc length of the circle between
parameter values t = a and t = b is the integral

∫ b

a

√(
dx
dt

)2
+

(
dy
dt

)2
dt. (*)

Now, differentiating the equations x = 1−t2
1+t2 , y =

2t
1+t2 gives

dx
dt
= − 4t

(1 + t2)2
= − 2y

1 + t2
and

dy
dt
=

2 − 2t2
(1 + t2)2

=
2x

1 + t2
.

When these expressions are substituted in the arc length integral (*) we
get, thanks to the fact that x2 + y2 = 1,

∫ b

a

2 dt
1 + t2

.

It is also clear, since t is the slope of the line through (−1, 0) in Section
1.3, that we get one quarter of the circle as t runs from 0 to 1. So, defining
π to be the length of the semicircle, we have

π

2
=

∫ 1

0

2 dt
1 + t2

, or, equivalently,
π

4
=

∫ 1

0

dt
1 + t2

.

The latter is the integral usually found by trigonometric considerations,
such as tan−1 1 = π/4. We now conclude in the usual way, expanding 1

1+t2
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as the geometric series 1 − t2 + t4 − t6 + · · · :
π

4
=

∫ 1

0

dt
1 + t2

=

∫ 1

0
(1 − t2 + t4 − t6 + · · · ) dt

=

[
t − t3

3
+
t5

5
− t7

7
+ · · ·

]1
0

= 1 − 1
3
+
1
5
− 1
7
+ · · · .

Exercises

The proof above skates over one delicate point: the infinite geometric series
expansion

1
1 + t2

= 1 − t2 + t4 − t6 + · · · .

This expansion is valid only for |t| < 1, whereas we allowed t = 1 in the integra-
tion. This problem can be fixed by considering finite geometric series, which can
be integrated without fear.

9.2.1 Show that 1 + a + a2 + · · · + an = 1−an+1
1−a for a � 1 and hence that

1
1 − a = 1 + a + a2 + · · · + an + an+1

1 − a for a � 1.

9.2.2 Conclude from Exercise 9.2.1 that

1
1 + t2

= 1 − t2 + t4 − · · · + (−1)nt2n + (−1)n+1 t2n+2

1 + t2
for all t.

9.2.3 Replacing 1
1+t2 in the integral by 1 − t2 + t4 − · · · + (−1)nt2n + (−1)n+1 t2n+21+t2 ,

show that

π

4
−
[
1 − 1

3
+
1
5
− · · · + (−1)n 1

2n + 1

]
= ±
∫ 1

0

t2n+2

1 + t2
dt.

9.2.4 Explain why
∫ 1
0

t2n+2

1+t2 dt ≤ ∫ 1
0
t2n+2dt = 1

2n+3 , and hence that

π

4
= 1 − 1

3
+
1
5
− 1
7
+ · · · .
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9.3 Power Series

The Indian series for tan−1 x was the first example, apart from geometric
series such as 1 + x + x2 + x3 + · · · = 1/(1 − x), of a power series, that is,
the expansion of a function f (x) in powers of x. The idea of power series
turned out to be fruitful not only in the representation of functions but even
in the study of numerical series. Most of the interesting numerical series
turned out to be instances of power series for particular values of x, for
example, the series for π/4 is the x = 1 instance of the series for tan−1 x.

The theory began with the series published by Mercator (1668):

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · .

As we have seen, this was obtained by integrating the geometric series

1
1 + x

= 1 − x + x2 − x3 + · · ·

term by term. Now the most important transcendental functions—logs,
exponentials, and the related circular and hyperbolic functions—are
obtained by integration and inversion from algebraic functions, and fairly
simple algebraic functions at that. For example, ey is the inverse function
of y = log x, and

log(1 + x) =
∫ x

0

dt
1 + t

,

sin y is the inverse function of y = sin−1 x and

sin−1 x =
∫ x

0

dt√
1 − t2

, tan−1 x =
∫ x

0

dt
1 + t2

,

and so on. Thus the key to finding power series is finding series expansions
of simple algebraic functions. Once this is done, term-by-term integration
and Newton’s method of series inversion (Section 8.5) yield power series
for most of the common functions.

Rational functions, such as 1/(1+t2), can be expanded using geometric
series. Newton (1665a) made a crucial advance when he discovered the
general binomial theorem,

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)
3!

x3 + · · · ,
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yielding the expansion of functions such as 1/
√
1 − t2 = (1 − t2)−1/2. This

theoremwas also discovered independently by Gregory (1670). Both New-
ton and Gregory were inspired by the loose heuristic method of interpola-
tion used by Wallis (1655a), but they refined it into a result now known as
the Gregory–Newton interpolation formula:

f (a + h) = f (a) +
h
b
Δ f (a) +

(h/b)(h/b − 1)
2!

Δ2 f (a) + · · · , (1)

where

Δ f (a) = f (a + b) − f (a),

Δ2 f (a) = Δ f (a + b) − Δ f (a) = f (a + 2b) − 2 f (a + b) + f (a),

Δ3 f (a) = Δ2 f (a + b) − Δ2 f (a) = f (a + 3b) − 3 f (a + 2b) + 3 f (a + b) − f (a),

...

This wonderful formula finds the value of f at an arbitrary point a+h from
the values at an infinite arithmetic sequence of points a, a + b, a + 2b, . . . .

The first n terms give an nth-degree polynomial in h taking the same
values as f at a, a+b, . . . , a+nb. Hence the formula is valid for any f that is
the limit of its own approximating polynomials. This means all functions
representable by power series, provided that the points a, a+ b, a+ 2b, . . .,
are sensibly chosen. (The points π, 2π, 3π, . . ., are a bad choice for sin x,
since the x-axis is a polynomial curve through all of them).

Newton discovered the formula (1) after his special investigations on
interpolation that led to the binomial theorem. Independently of Newton,
Gregory discovered the general formula first and derived the binomial the-
orem from it (see exercises below), It even appears that Gregory used the
interpolation theorem to discover Taylor’s theorem 44 years before Brook
Taylor. The Taylor series

f (a + h) = f (a) + h f ′(a) +
h2

2!
f ′′(a) + · · · (2)

is just the limiting case of (1) as b→ 0. Indeed, this is how it was derived
by Taylor (1715). The passage from (1) and (2) is simple if one assumes
plausible limiting behavior for the infinite sum. Notice that

Δ f (a)
b
=

f (a + b) − f (a)
b

→ f ′(a) as b→ 0
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and similarly

Δ2 f (a)
b2

→ f ′′(a),
Δ3 f (a)
b3

→ f ′′′(a),

and so on. We write (1) as

f (a + h) = f (a) + h
Δ f (a)
b
+
h(h − b)

2!
Δ2 f (a)
b2

+ · · ·

and observe that the nth term

h(h − b)(h − 2b) · · · (h − (n − 1)b)
n!

Δn f (a)
bn

→ hn

n!
f n(a) as b→ 0.

Assuming that the limit of the infinite sum is the sum of these limits, we
then get Taylor’s series (2) as the limit of (1) as b→ 0.

An Interpolation on Interpolation

The importance of interpolation in the development of calculus seems to
have been greatly underestimated. The topic rarely appears in calculus
books today, and then only as a numerical method. Yet three of the most
important founders of calculus, Newton, Gregory, and Leibniz, began their
work with interpolation, and we have seen how this led to two of their
most important results, the binomial theorem and Taylor’s theorem. (For
Leibniz’s work, see Hofmann (1974).) When interpolation is relegated to
numerical methods, this connection is lost. Of course, interpolation is a
numerical method in practice, when one uses only a few terms of the
Gregory–Newton series, but the full series is exact and hence much more
interesting. It was interest in infinite expansions per se that distinguished
Newton, Gregory, and Leibniz (as well as Wallis) from their predecessors
in interpolation.

Interpolation goes back to ancient times as a method for estimating the
values of functions between known values. But perhaps the first to glimpse
the possibility of exact interpolation were Thomas Harriot (1560–1621)
and Henry Briggs (1556–1630). A formula has been found in Harriot’s
papers that is equivalent to the first terms of the Gregory–Newton series;
see Lohne (1965). Lohne dates this work of Harriot at 1611. Briggs may
have learned something about interpolation from Harriot when the two
were at Oxford around 1620. Briggs’s Arithmetica logarithmica (1624),
which is concerned with the calculation of logarithms, uses series for
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interpolation, and in the process gives the first instance of the binomial
theorem for a fractional exponent

(1 + x)1/2 = 1 +
1
2
x − 1 · 1

2 · 4 x
2 +

1 · 1 · 3
2 · 4 · 6 x

3 − 1 · 1 · 3 · 5
2 · 4 · 6 · 8 x

4 + · · · .

Gregory knew of Briggs’s work, and Newton certainly could have known
of it, though no strong evidence that he did has yet been found. For more
information on the history of interpolation, seeWhiteside (1961) and Gold-
stine (1977).

Exercises

Here is how to derive the general binomial series from the Gregory–Newton
interpolation formula.

9.3.1 Show that

Δn f (a) =
n∑
i=0

(−1)n−i
(
n
i

)
f (a + ib),

where
(
n
i

)
is the ordinary binomial coefficient.

9.3.2 If a = 0, b = 1, and f (x) = (1 + k)x, show that Δn f (0) = kn using the finite
binomial series

(1 + h)n =
n∑
i=0

(
n
i

)
hi.

9.3.3 Deduce the general binomial series

(1 + k)x = 1 + xk +
x(x − 1)

2!
k2 +

x(x − 1)(x − 2)
3!

k3 + · · ·

using the Gregory–Newton interpolation formula.

9.4 Fractional Power Series

Power series helped to make mathematicians aware of the function con-
cept by revealing the generality of the expression a0 + a1x + a2x2 + · · · .
However, not every function f (x) is expressible as a0 + a1x + a2x2 + · · · .
This is obvious for functions that tend to infinity as x→ 0, since the power
series has value a0 when x = 0. For other functions, such as f (x) = x1/2,
the behavior at 0 disallows a power-series expansion for a more subtle rea-
son. These functions have branching behavior at 0; they are many-valued,
and hence they are not functions in the strict sense. The function x1/2, for
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example, is two-valued because each number has two square roots, one the
negative of the other.

Such behavior does not occur for a power series a0 + a1x+ a2x2 + · · · ,
which has only one value for each value of x. All fractional powers of
x are many-valued—x1/3 is three-valued, x1/4 is four-valued, and so on.
Many-valued behavior is typical of algebraic functions, where y is said
to be an algebraic function of x if x and y satisfy a polynomial equation
p(x, y) = 0. Since most polynomial equations are not solvable by radicals
(Section 5.7), most algebraic functions are not given by finite expressions
built from +,−,×,÷, and fractional powers.

However, it was the remarkable discovery of Newton (1671) that any
algebraic function y can be expressed as a fractional power series in x:

y = a0 + a1x
r1 + a2x

r2 + a3x
r3 + · · · ,

where r1, r2, r3, . . ., are rational numbers. Furthermore, the series can be
rewritten in the form

a0 + b1x
s1 (c00 + c01x + c02x

2 + · · · )
+ b2x

s2 (c10 + c11x + c12x
2 + · · · )

...

+ bnx
sn(cn0 + cn1x + cn2x

2 + · · · )
that is, as a finite sum of ordinary power series with fractional powers of x
as multipliers. Near x = 0, y behaves like a finite sum of fractional powers.

For example, if y2(1 + x)2 = x, we have

y =
x1/2

1 + x
= x1/2(1 − x + x2 − x3 + · · · ),

and near the origin, y has behavior similar to x1/2; in particular there
are two values of y for each x. Newton’s contribution was an ingenious
algorithm for obtaining the successive powers of x. The fractional pow-
ers themselves were not properly understood until the variables x and y
were taken to be complex. This was done in the 19th century, and on this
basis a more rigorous derivation of Newton’s series was given by Puiseux
(1850). For this reason, the fractional power-series expansions of algebraic
functions are now called Puiseux expansions.
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Exercise

The impossibility of an ordinary power series for x1/2 can be shown as fol-
lows.

9.4.1 Any ordinary power-series expansion of x1/2 would have to be of the form

x1/2 = a1x + a2x
2 + a3x

3 + · · ·
because x1/2 = 0 when x = 0. Now square both sides and deduce a contra-
diction.

9.5 Summation of Series

The results on infinite series seen so far are mostly decompositions or
expansions rather than summations. That is, a known quantity or function
is decomposed into an infinite series. Solutions of the converse problem,
finding the sum of a given series, were comparatively rare. Archimedes’
summation of 1+1/4+1/42+ · · · was one. Perhaps the next were of series
such as 1/1 · 2+ 1/2 · 3+ · · ·+ 1/n(n+ 1)+ · · · , given by Mengoli (1650).
The series

∑
1/n(n + 1) is easily summed because of the happy accident

that
1

n(n + 1)
=

1
n
− 1
n + 1

,

whence

1
1 · 2 +

1
2 · 3 + · · · +

1
n(n + 1)

=

(
1 − 1

2

)
+

(
1
2
− 1
3

)
+ · · · +

(
1
n
− 1
n + 1

)

= 1 − 1
n + 1

.

By letting n→ ∞ we then obtain the sum 1 for the infinite series.
The first really tough summation problem was 1 + 1/22 + 1/32 + · · · .

Mengoli tackled this without success, as did the brothers Jakob and Johann
Bernoulli in a series of papers (1704). The Bernoulli brothers were able to
sum similar series, rediscoveringMengoli’s

∑
1/n(n+1) and also summing∑

1/(n2−1), but for∑ 1/n2 itself they could obtain only trivial results such
as

1
22
+

1
42
+

1
62
+ · · · = 1

4

(
1 +

1
22
+

1
32
+ · · ·

)
.

The solution was finally obtained by Euler (1734), long after the death
of Jakob Bernoulli, and Johann Bernoulli exclaimed, “In this way my
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brother’s most ardent wish is satisfied . . . if only my brother were still
alive!” (Johann Bernoulli, Opera, Vol. 4, p. 22). In fact, after hearing
that the sum is π2/6, Johann Bernoulli himself discovered a proof, which
turned out to be the same as Euler’s.

Euler (1707–1783) was the greatest virtuoso of series manipulation,
and his first summation of 1 + 1/22 + 1/32 + · · · was one of his most
audacious. (Later he gave more rigorous proofs.) Consider the equation

sin
√
x√

x
= 1 − x

3!
+

x2

5!
− x3

7!
+ · · · = 0 , (1)

easily obtained from the sine series of Section 8.5. This equation has roots
x1 = π2, x2 = (2π)2, x3 = (3π)2, . . ., but not 0, because sin

√
x/
√
x→ 1 as

x→ 0. Now if a polynomial equation

1 + a1x + a2x
2 + · · · + anxn = 0

has roots x = x1, x2, . . . , xn, Descartes’s factor theorem (Section 5.7) gives

1 + a1x + · · · + anxn =
(
1 − x

x1

) (
1 − x

x2

)
· · ·
(
1 − x

xn

)
. (2)

Also
1
x1
+

1
x2
+ · · · + 1

xn
= −coefficient of x = −a1,

since each x term in the expansion of the right-hand side of (2) comes
from a term −x/xi in one factor multiplied by 1’s in all the other factors.
Assuming that this is also true of the “infinite polynomial” equation (1),
we get

1
x1
+

1
x2
+

1
x3
+ · · · = −coefficient of x = −

(
− 1
3!

)
,

that is,
1
π2
+

1
(2π)2

+
1

(3π)2
+ · · · = 1

6
.

Hence

1 +
1
22
+

1
32
+ · · · = π

2

6
. (Q.E.D.!)

The extraordinary and beautiful world of formulas revealed by Euler
is today somewhat neglected in mathematics instruction. For a history of
mathematics with an emphasis on infinite formulas, see Roy (2011).
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Exercises

Euler’s reasoning also leads to a correct infinite product formula for sin x,
which in turn gives the Wallis product for π/4 (Section 8.4).

9.5.1 Deduce an infinite product for sin
√
x√

x
from Euler’s reasoning, and hence

show that

sin x = x

(
1 − x2

π2

) (
1 − x2

22π2

) (
1 − x2

32π2

)
· · · .

9.5.2 By substituting x = π/2 in the infinite product for sin x, show that

2
π
=

1 · 3
2 · 2 ·

3 · 5
4 · 4 ·

5 · 7
6 · 6 · · · ,

and hence obtain Wallis’s product for π/4.

9.6 The Zeta Function

The sum 1 + 1
22 +

1
32 + · · · first drew Euler’s attention to the function now

known as the zeta function:

ζ(s) = 1 +
1
2s
+

1
3s
+

1
4s
+ · · ·

This function is well-defined for real values of s > 1, and Euler’s initial
discovery was that ζ(2) = π2/6. Later, he also found the values of ζ(s)
for s = 4, 6, 8, . . .. But his most spectacular discovery was the product
formula of Euler (1748a), p. 288, showing that ζ(s) encodes the sequence
2, 3, 5, 7, 11, . . ., of prime numbers. Euler’s formula is

1
(1 − 1/2s)

1
(1 − 1/3s)

1
(1 − 1/5s)

1
(1 − 1/7s)

1
(1 − 1/11s) · · ·

= 1 +
1
2s
+

1
3s
+

1
4s
+ · · · .

The factors on the left-hand side are (1 − 1/psn)
−1, where pn is the nth

prime. To see why these factors give the terms on the right-hand side we
expand each of them as a geometric series

1 +
1
psn
+

1

p2sn
+

1

p3sn
+ · · · .
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Multiplying all these series together, we get the reciprocal of each possible
product of primes, to the sth power, exactly once. That is, the left-hand side
is the sum

1 +
∑ 1

pm1s
1 pm2s

2 · · · pmrs
r
= 1 +

∑ 1
(pm1

1 pm2
2 · · · pmr

r )s
,

in which each product pm1
1 pm2

2 · · · pmr
r of primes occurs exactly once. But

each natural number ≥ 2 is expressible in just one way as a product of
primes (Section 3.3), hence the latter sum equals the right-hand side of
Euler’s formula

1 +
1
2s
+

1
3s
+

1
4s
+ · · · .

Initially the exponent s > 1 was there only to ensure convergence.
We saw in Section 9.1 that ζ(s) diverges when s = 1; it converges when
s > 1. Riemann (1859) discovered that ζ(s) becomes much more powerful
when s is taken to be a complex variable. In recognition of this, ζ(s) is
often called the Riemann zeta function. As mentioned above, the result
of Section 9.5 shows ζ(2) = π2/6. The values of ζ(4), ζ(6), ζ(8), . . .,
also found by Euler, turn out to be rational multiples of π4, π6, π8, . . .,
respectively. The values of ζ(3), ζ(5), . . . have no known relationship to π
or other standard constants, though Apéry (1981) showed that ζ(3) is irra-
tional. The most famous conjecture about ζ(s), and one of the most sought-
after results in mathematics today, is known as the Riemann hypothesis:
ζ(s) = 0 only when s has real part 1

2 (excluding the trivial zeros described
below).

Exercises

Although ζ(s) is not defined for s = 1 (because this gives the divergent series
1 + 1

2 +
1
3 +

1
4 + · · · ), this situation can be exploited to give a new proof that there

are infinitely many primes. (Thus the Euler product formula encapsulates two
apparently unrelated results—unique prime factorization, and the infinite number
of primes.)

9.6.1 (Euler) Show that if there are only finitely many primes p1, . . . , pn, then

1
1 − 1/p1 ·

1
1 − 1/p2 · · · · ·

1
1 − 1/pn = 1 +

1
2
+
1
3
+
1
4
+ · · · .

Deduce that there are infinitely many primes.

The statement of the Riemann hypothesis needs some qualification, because
ζ(s) can be defined for certain values of s for which the series 1+ 1

2s +
1
3s +

1
4s + · · ·
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is not meaningful. This follows from the formula

ζ(1 − s) = 2(2π)−s cos
sπ
2
Γ(s)ζ(s)

discovered by Riemann and called the functional equation for the zeta function.
The functional equation enables us to define ζ(1 − s) when ζ(s) is known, and it
also shows that there are certain trivial zeros of ζ(1− s), namely, where s satisfies
cos sπ

2 = 0.

9.6.2 Which s give a trivial zero of ζ(1 − s)?

The function Γ in the functional equation is the gamma function, introduced
by Euler to extend the factorial function, Γ(n) = (n − 1)!, to non-integer values
of n. An amusing consequence of the functional equation is that we can assign
values to certain divergent series, such as 1+ 2+ 3+ 4+ · · · , by interpreting them
as ζ(1 − s), then reinterpreting ζ(1 − s) by the functional equation.

9.6.3 By suitable reinterpretation, show that

1 + 2 + 3 + 4 + · · · = −1/12.

Euler (1770a), p. 157, found another trick for the zeta function: giving a natural
formula for the seemingly unnatural Euler constant γ. Recall from Exercise 9.1.5
that γ is defined to be the limit of 1 + 1

2 +
1
3 + · · · + 1

n − log(n + 1) as n→ ∞.
9.6.4 Using the Mercator series for log(1 + 1

k ), show that

1
k
− log(k + 1) + log(k) = 1

2k2
− 1
3k3
+

1
4k4
− · · · .

9.6.5 By adding the instances of the formula in Exercise 9.6.4 from k = 1 to
k = n, show that

(
1 +

1
2
+
1
3
+ · · · + 1

n

)
− log(n + 1) =

1
2

(
1
12
+

1
22
+ · · · + 1

n2

)
− 1
3

(
1
13
+

1
23
+ · · · + 1

n3

)
+
1
4

(
1
14
+

1
24
+ · · · + 1

n4

)
− · · · .

9.6.6 Deduce from Exercise 9.6.5 that γ = ζ(2)2 − ζ(3)3 + ζ(4)4 − ζ(5)5 + · · · .
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Preview

Number theory revived in Europe with the rediscovery of Diophantus by
Bombelli, and the publication of a new edition by Bachet de Méziriac
(1621). It was this book that inspired Fermat and launched number theory
as a modern mathematical discipline—one that draws on resources from
all parts of mathematics.

Fermat mastered and extended the techniques of Diophantus, such as
the chord and tangent method for finding rational points on cubic curves.
This was the beginning of the modern theory of elliptic curves, which take
their name, in a roundabout way, from what are called elliptic functions.

Elliptic functions, like many innovations in mathematics, arose as a
way around an impasse: that no “known” function f (x) has derivative
1/
√

1 − x4. Eventually, mathematicians accepted the fact that
∫ x

0
dt√
1−t4

is
a new function. It is one of a family called the elliptic integrals, because
one of them is the integral that defines the arc length of the ellipse.

Around 1800 Gauss realized that, rather than studying u =
∫ x

0
dt√
1−t4

,
one should study its inverse function x as a function of u (just as one
should study the sine function rather than the arcsine integral

∫ x

0
dt√
1−t2

).
Gauss wrote x = sl(u) and found that the function sl, like the sine, is
periodic; that is, sl(u + 2�) = sl(u), where � is a certain real number.

More surprisingly, sl has second period 2i�, so sl is better viewed as
a function of complex numbers. These results first became widely known
when they were rediscovered, published, and extended by Abel and Jacobi
in the 1820s.
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10.1 Fermat’s Last Theorem

On the other hand, it is impossible for a cube to be written as
a sum of two cubes or a fourth power to be written as a sum
of two fourth powers or, in general, for any number which
is a power higher than second to be written as a sum of two
like powers. I have a truly marvellous demonstration of this
proposition which this margin is too small to contain.

Fermat (1670), p. 241

This remark, written in the margin of his copy of Bachet’s Diophantus
when he was studying that work in the late 1630s, is the second item in Fer-
mat’s Observations on Diophantus, published posthumously in 1670. Fer-
mat was responding to Diophantus’s treatment of the problem of express-
ing a square as a sum of two squares. As we saw in Chapter 1, this is the
problem of finding Pythagorean triples (a, b, c) or, equivalently, of finding
the rational points (a/c, b/c) on the circle x2 + y2 = 1.

Fermat’s last theorem, the claim that there are no triples (a, b, c) of
positive integers such that

an + bn = cn, where n > 2 is an integer,

became the most famous problem in mathematics. It was finally proved by
Wiles (1995) and then only with a deep and unexpected intervention by the
theory of elliptic curves, which we introduce below in Section 10.5. As far
as we know, Fermat himself proved it only for n = 4. However, his proof
was interesting and fruitful enough to be worth describing here—not least
because it too touches on elliptic curves. It began with a problem about
right-angled triangles.

Rational Right-Angled Triangles

The area of a right-angled triangle the sides of which are ratio-
nal numbers cannot be a square number. This proposition,
which is my own discovery, I have at length succeeded in
proving, though not without much labour and hard thinking. I
give the proof here, as this method will enable extraordinary
developments to be made in the theory of numbers.

Fermat (1670), p. 271
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This is number 45 of Fermat’s Observations on Diophantus, responding
to a problem posed by Bachet: to find a right-angled triangle whose area
equals a given number. The observation is important not only for the the-
orem and the method announced, but also because it is followed by the
only reasonably complete proof left by Fermat in number theory. As a
bonus, the proof implicitly settles Fermat’s last theorem for n = 4 (see
exercises) and is an excellent illustration of his method of infinite descent,
which did indeed lead to extraordinary developments in the theory of num-
bers. In what follows, the statements that make up Fermat’s proof, appear-
ing indented like the quote above, are expanded and expressed in modern
notation following the reconstruction of Zeuthen (1903), p. 163. We use
the translation of Fermat given by Heath (1910), p. 293, in his version of
the reconstruction.

If the area of a right-angled triangle were a square, there would
exist two biquadrates the difference of which would be a square
number. Consequently there would exist two square numbers
the sum and difference of which would be squares.

By choosing a suitable unit of length, we can express the sides of a rational
right triangle as a Pythagorean triple of relatively prime integers p2 − q2,
2pq, p2 + q2, as noted in Section 1.2. Since their gcd is 1, gcd(p, q) = 1
also. Therefore, since 2pq is even, p2 − q2 and its factors p+ q, p− q must
be odd. Also, no two of p, q, p + q, p − q have a common prime divisor,
otherwise p, q would. Then if the area pq(p + q)(p − q) is a square, its
factors must all be squares:

p = r2, q = s2, p + q = r2 + s2 = t2, p − q = r2 − s2 = u2. (1)

Thus the sum and difference of the squares r2, s2 are also squares, so

r4 − s4 = (r2 + s2)(r2 − s2) = t2u2 = v2.

Therefore we should have a square number which would be
equal to the sum of a square and the double of another square,
while the squares of which this sum is made up would them-
selves have a square number for their sum.

From (1) we have

t2 − u2 = 2s2, that is, t2 = u2 + 2s2. (2)
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And also from (1),
u2 + s2 = r2.

But if a square is made up of a square and the double of
another square, its side, as I can very easily prove, is also
made up of a square and the double of another square.

Since (t + u)(t − u) = t2 − u2 = 2s2 from (2), (t + u)(t − u) is even. Then
one of t + u, t − u is even, and consequently so is the other. Put

t + u = 2w, t − u = 2x. (3)

Then
s2 = (t + u)(t − u)/2 = 2wx.

Tracing back through (3), (2), (1) we see that any common divisor of w, x
would also be common to t, u, to t2, u2, to r2, s2, and hence to p, q. Thus
w, x are relatively prime and therefore, since wx is twice a square, we have
either

w = y2, x = 2z2 or w = 2z2, x = y2.

In either case,
t = w + x = y2 + 2z2. (4)

From this we conclude that the said side is the sum of the
sides about the right angle in a right-angled triangle, and that
the simple square contained in the sum is the base, and the
double of the other square the perpendicular.

If we let y2, 2z2 be the sides of a right triangle, then the hypotenuse h
satisfies

h2 = (y2)2 + (2z2)2 =
1
2

(
(y2 + 2z2)2 + (y2 − 2z2)2

)

=
1
2

(t2 + u2) by (3) and (4)

= r2. by (1)

Hence h = r and the triangle is rational.

This right-angled triangle will thus be formed from two squares,
the sum and difference of which will be squares. But both
these squares can be shown to be smaller than the squares
originally assumed to be such that both their sum and their
difference are squares.
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The original squares with sum and difference equal to squares were
p = r2, q = s2, coming from the perpendicular sides p2 − q2 and 2pq of
the rational right triangle whose area was assumed to be a square. We now
have a rational (indeed integral) right triangle with perpendicular sides
y2, 2z2 whose area y2z2 is also a square. This triangle is smaller, since
its hypotenuse r is less than side 2pq of the original triangle, so it gives
a smaller pair of (integer) squares p′, q′, whose sum and difference are
squares.

Thus, if there exist two squares such that the sum and differ-
ence are both squares, there will also exist two other integer
squares which have the same property but a smaller sum. By
the same reasoning we find a sum still smaller than the last
found, and we can go on ad infinitum finding integer square
numbers smaller and smaller with the same property. This is,
however, impossible because there cannot be an infinite series
of numbers smaller than any given integer we please.

This contradiction means that the initial assumption of a rational right tri-
angle with square area is false. The versions of Zeuthen and Heath proceed
more directly to a contradiction than Fermat by observing that the descent
from the hypothetical initial triangle to the one with area y2z2 can be iter-
ated to give an infinite descending sequence of integer areas. Weil (1984),
p. 77, shortens the proof even further.

Exercises

Two of the propositions that arise in the descent from the hypothetical ratio-
nal right triangle with square area are of independent interest and are also false
because they imply the existence of such a triangle.

10.1.1 Show that the existence of squares r2 and s2 for which r2+ s2 and r2− s2 are
both squares implies the existence of a rational right triangle with square
area.

10.1.2 Show that a nonzero integer solution of r4 − s4 = v2 implies the existence
of a rational right triangle with square area. (Hint: It is the same triangle as
in Exercise 10.1.1.)

10.1.3 From Exercise 10.1.2, deduce Fermat’s last theorem for n = 4.

The impossibility of a nonzero integer solution r4− s4 = v2 can also be shown
by a more direct descent that avoids some of the steps used by Fermat. The main
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steps are as follows, assuming r, s, and hence v have no common prime divisor.

r4 − s4 = v2 ⇒ r2 = a2 + b2, s2 = 2ab, v = a2 − b2

for some nonzero integers a, b

⇒ a = c2 − d2, b = 2cd

for some nonzero integers c, d

⇒ c = e2, d = f 2and c2 − d2 are squares

because s2 = 4cd(c2 − d2)

and c, d, c2 − d2 have no common prime divisor

⇒ e4 − f 4 = g2

for an integer pair (e, f ) smaller than (r, s).

10.1.4 Justify the steps in this argument.

10.2 Rational Points on Cubics of Genus 0

It is doubtful that Fermat had a proof of Fermat’s last theorem because most
of his work deals with curves of low degree (≤ 4), and it is highly unlikely
that he could have foreseen what actually happened in the 1980s: a reduc-
tion of the nth-degree Fermat problem to a question about cubic curves.
Fermat did not even talk about rational points on curves. Nevertheless, this
is the most natural way to interpret his solutions of Diophantine equations
and to link them with earlier and later results in the same vein by Diophan-
tus and Euler, respectively. We have already described methods for finding
rational points on curves of degree 2 (in Section 1.3) and 3 (in Section 3.5).
Now we reexamine them from the point of view of genus, which becomes
increasingly important as curves of higher degree are considered.

We cannot define genus yet (for that, see Chapters 11 and 15) but
it measures the algebraic complexity of a curve. In particular, curves of
genus 0 are those that can be parameterized by rational functions.

One property of a curve C of degree 2 observed in Section 1.3 is that
a rational line L through a rational point P on C meets C in a second
rational point, provided the equation of C has rational coefficients. Also,
one obtains all rational points Q on C in this way by rotating L about C.
This construction has another important consequence, not depending on
the coefficients of C or L: expressing the x and y coordinates of Q in terms
of the slope t of L gives a parameterization of C by rational functions of t
(bear in mind that a rational function need not have rational coefficients).
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x
O

P

Q = t(x + 1)

Figure 10.1: Parameterizing the circle

For example, this construction on the circle x2 + y2 = 1 in Section 1.3
gave the parameterization

x =
1 − t2

1 + t2
, y =

2t
1 + t2

(Figure 10.1), which we used in Section 9.2 to find a formula for π. Genus
0 curves can be defined as those that admit parameterization by rational
functions. I will now show that genus 0 includes some cubic curves by
applying a similar construction to the folium of Descartes.

The folium was defined in Section 6.3 as the curve with equation

x3 + y3 = 3axy. (1)

The origin O is an obvious rational point on the folium; moreover, O is
a double point of the curve, as Figure 10.2 makes clear. The line y = tx
through O therefore meets the folium at one other point P, and varying t
gives all other points P on the curve. By finding the coordinates of P as
functions of t, we therefore obtain a parameterization.

To find P we substitute y = tx in (1), obtaining

x3 + t3x3 = 3axtx,

hence

x =
3at

1 + t3
, (2)
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x
O

P

= tx

Figure 10.2: Parameterizing the folium

and therefore

y =
3at2

1 + t3
. (3)

(This derivation was implicit in Exercise 6.3.1.) A similar construction
applies to any cubic with a double point, or more generally to any curve of
degree n + 1 with an n-tuple point; hence all such curves are of genus 0.

Exercises

It should be noted that a double point on a curve p(x, y) = 0 yields a double
root of the equation p(x,mx + c) = 0 for the intersections of a line y = mx + c
through the double point.

10.2.1 Observe the double root of the equation obtained by substituting y = tx in
equation (1) above.

10.2.2 Explain, using the general double root property, why a line of rational slope
through a rational double point on a cubic curve with rational coefficients
necessarily meets the curve at another rational point.

We note also that, as in the construction for quadratic curves, all rational
points on the folium are obtained by this method.

10.2.3 Show that if x and y are rational, then so is t in (2) and (3).

10.2.4 Deduce from Exercise 10.2.3 that the rational points on the folium are pre-
cisely those with rational t-values.
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10.3 Rational Points on Cubics of Genus 1

We cannot yet give a precise definition of genus 1, but it happens to be the
genus of all cubic curves that are not of genus 0. We know from Section
10.2 that cubics of genus 1 cannot have double points, and in fact they also
cannot have cusps because both these cases lead to rational parameteriza-
tions. (For one case of a cusp, see Exercise 6.4.1.) What we have yet to find
are functions that do parameterize cubics of genus 1. Such functions, the
elliptic functions, were not defined until the 19th century, and they were
first used by Clebsch (1864) to parameterize cubics.

Many clues to the existence of elliptic functions were known before
this, but at first they seemed to point in other directions. Initially, the mys-
tery was how Diophantus and Fermat generated solutions of Diophantine
equations. Newton’s (1670s) interpretation of their results by the chord–
tangent construction (Section 3.5) cleared up this first mystery—or would
have if anyone had noticed it at the time. But before mathematicians really
became conscious of the chord–tangent construction, they had to explain
some puzzling relations between integrals of functions such as
1/
√

ax3 + bx2 + cx + d, found by Fagnano (1718) and Euler (1768). Even-
tually Jacobi (1834) noticed that the chord–tangent construction explained
this mystery too. Jacobi’s explanation was cryptic, and, even though ellip-
tic functions were then known in connection with integrals, they were
not fully absorbed into number theory and the theory of curves until the
appearance of Poincaré (1901).

The analytic origins of elliptic functions will be explained in the next
sections. In this section we prepare to link up with this theory by deriving
the algebraic relation between collinear points on a cubic curve. A much
deeper treatment of the whole story appears in Weil (1984).

We start with the cubic curve equation in Newton’s form (Section 6.4):

y2 = ax3 + bx2 + cx + d. (1)

Figure 10.3 shows this curve when y = 0 for three distinct real values of x.
In Section 3.5 we found that if a, b, c, d are rational, and if P1, P2 are

rational points on the curve, then the straight line through P1, P2 meets the
curve at a third rational point P3. If the equation of this straight line is

y = tx + k, (2)
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x
P1

P2
P3

Figure 10.3: Collinear points on a cubic curve

then the result of substituting (2) in (1) is an equation

ax3 + bx2 + cx + d − (tx + k)2 = 0 (3)

for the x coordinates x1, x2, x3 of the three points P1, P2, P3. But if the
roots of (3) are x1, x2, x3 its left-hand side must have the form

a(x − x1)(x − x2)(x − x3).

In particular, the coefficient of x2 must be

−a(x1 + x2 + x3).

Comparing this with the actual coefficient of x2 in (3), we find

b − t2 = −a(x1 + x2 + x3);

hence

x3 = −(x1 + x2) − b − t2

a
. (4)

If P1 = (x1, y1), P2 = (x2, y2), then the slope t = (y2 − y1)/(x2 − x1), and
substituting this in (4) we finally obtain

x3 = −(x1 + x2) − b − [(y2 − y1)/(x2 − x1)]2

a
, (5)

giving x3 as an explicit rational combination of the coordinates of P1, P2.
If P1, P2 are rational points, then (5) shows that x3 (and hence y3 = tx3+k)
is also rational, as we already knew.
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What is unexpected is that (5) is also an addition theorem for elliptic
functions. This has the consequence that the curve can be parameterized by
elliptic functions x = f (u), y = g(u) such that (5) is precisely the equation
expressing x3 = f (u1 + u2) in terms of f (u1) = x1, f (u2) = x2, g(u1) = y1,
and g(u2) = y2. Thus the straight-line construction of x3 from x1 and x2

can also be interpreted as addition of parameter values, u1 and u2 of x1 and
x2. The first addition theorems were found by Fagnano (1718) and Euler
(1768) by means of transformation of integrals. Euler realized that there
was a connection between such transformations and number theory, but he
could never quite put his finger on it. Even earlier, Leibniz had suspected
such a connection when he wrote:

I . . . remember having suggested (what could seem strange to
some) that the progress in our integral calculus depended in
good part upon the development of that type of arithmetic
which, so far as we know, Diophantus has been the first to
treat systematically.

Leibniz (1702), as translated by Weil (1984)

Jacobi (1834) apparently saw the connection for the first time after
receiving a volume of Euler’s works on the transformation of integrals, but
considerable clarification of elliptic functions was needed before Jacobi’s
insight became generally available. We describe some of the main steps in
this process of clarification below and in Chapter 12.

Exercises

A proof that specific curves cannot be parameterized by rational functions
can be modeled on Fermat’s proof that r4 − s4 = v2 is impossible in positive
integers. (This is why we said in Section 10.1 that Fermat’s theorem touches on
elliptic curves.) The reason is that the behavior of rational functions is surprisingly
similar to that of rational numbers, with polynomials playing the role of integers,
and degree being the measure of size. The most convenient curve to illustrate the
idea is y2 = 1 − x4, which happens to be of genus 1, hence an elliptic curve.

10.3.1 Show that a parameterization of y2 = 1 − x4 by rational functions of u
implies that there are polynomials r(u), s(u), and v(u) with

r(u)4 − s(u)4 = v(u)2.

Now to imitate the rest of Fermat’s proof (or the simplified version in Exercise
10.1.4) one needs a theory of divisibility for polynomials. Like the theory for
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natural numbers, this can be based on the Euclidean algorithm. It follows the
same basic lines as in Section 3.3, so we omit it here, but see Section 16.5 for
more details.

One also needs the formula for “Pythagorean triples” of rational functions.
This can be found by the geometric method of Section 1.3, carried out in the
“rational function plane” where each “point” is an ordered pair (x(u), y(u)) of
rational functions.

10.3.2 Convince yourself that “lines” and “slope” make sense in the rational func-
tion plane, and hence show that each point � (0,−1) on the “unit circle”

x(u)2 + y(u)2 = 1

is of the form
x(u) =

1 − t(u)2

1 + t(u)2
, y(u) =

2t(u)
1 + t(u)2

for some rational function t(u).

10.3.3 Deduce from Exercise 10.3.2 a formula for “Pythagorean triples” of poly-
nomials, like Euclid’s formula for ordinary Pythagorean triples.

It is now possible to imitate Fermat’s proof, showing that r(u)4− s(u)4 = v(u)2

is impossible for polynomials, and hence that y2 = 1− x4 has no parameterization
by rational functions. It follows that the same is true of certain cubic curves.

10.3.4 Substitute x = (X + 1)/X and y = Y/X2 in y2 = 1 − x4, and hence show

Y2 = cubic polynomial in X.

Deduce that if this cubic curve in X, Y has a rational parameterization, then
so has y2 = 1 − x4.

10.4 Elliptic and Circular Functions

The story of elliptic functions is one of the most curious in the history of
mathematics, beginning with a complicated analytic idea—integrals of the
form

∫
R(t,
√

p(t)) dt, where R is a rational function and p is a polynomial
of degree 3 or 4—and reaching a climax with a simple geometric idea—
the torus surface. Perhaps the best way to understand it is to compare it
with a fictitious history of circular functions that begins with the integral∫

dt/
√

1 − t2 and ends with the discovery of the circle. Unlikely as this
fiction is, it was paralleled by the actual development of elliptic functions
between the 1650s and the 1850s.

The late recognition of the geometric nature of elliptic functions was
due to late recognition of the existence and geometric nature of complex
numbers. In fact, the later history of elliptic functions unfolds alongside
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the development of complex numbers, which is the subject of Chapter 12.
In the present chapter we are concerned mainly with the history up to 1800,
before complex numbers entered in a really essential way. However, there
are some subplots of the main story that do not require complex num-
bers for their understanding and nicely show the parallel with the fictitious
history of circular functions. It is convenient to relate one of these now,
because it illustrates the parallel in a simplified way and also ties up a
loose end from Section 10.3—the parameterization of cubic curves.

Parameterization of Cubic Curves

To see how to construct parameterizing functions for a cubic curve, we
first reconstruct the parameterizing functions

x = sin u,

y = cos u

for the circle x2 + y2 = 1, pretending that we do not know this curve
geometrically but only as an algebraic relation between x and y.

The sine function can be defined as the inverse f of f −1(x) = sin−1 x,
which in turn is definable as the integral

f −1(x) =
∫ x

0

dt√
1 − t2

.

Finally, the integral can be related to the equation y2 = 1− x2, because the
integrand 1/

√
1 − x2 is simply 1/y. Why do we use this integrand rather

than any other to define u = f −1(x) and hence obtain x as a function f (u)?
The answer is that we then obtain y as f ′(u); hence x, y are both functions
of the parameter u. This is confirmed by the calculations:

f ′(u) =
dx
du
= 1
/du
dx

and
du
dx
=

d
dx

∫ x

0

dt√
1 − t2

=
1√

1 − x2
=

1
y

;

so y = f ′(u) (which of course is cos u).
Exactly the same construction can be used to parameterize any relation

of the form y2 = p(x). We put

u = g−1(x) =
∫ x

0

dt
√

p(t)
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to get x = g(u), and then find that y = g′(u) by differentiation of u. Thus
in a sense it is trivial to parameterize curves of the form y2 = p(x) (which
we know from Section 7.4 to include all cubic curves, up to a projective
transformation of x and y). As we will see in the next section, the inte-
grals

∫
dt/
√

p(t) had been studied since the 1600s for p a polynomial of
degree 3 or 4; however, no one thought to invert them until about 1800.
Jacobi had a deep knowledge of both the integrals and inversion when he
wrote his cryptic paper, Jacobi (1834), pointing out the relation between
integrals and rational points on curves (Sections 10.3 and 10.7). Thus it
seems likely he understood the preceding parameterization, though such a
parameterization was first given explicitly by Clebsch (1864).

Exercises

It may happen that the integral
∫ x

0
dt/
√

p(t) does not converge because of

the behavior of 1/
√

p(t) at t = 0. But in that case one can use the parameter
u = f −1(x) =

∫ x

a
dt/
√

p(t) for some other value of a.

10.4.1 Check that y = f ′(u) remains true with this change of definition.

When the cubic curve is y2 = x3, which has a rational parameterization, the
parameterizing functions constructed above indeed turn out to be rational.

10.4.2 Given y = x3/2, find x = f (u) and y = f ′(u), where u = f −1(x) =
∫ x

a
dt

t3/2 .

10.5 Elliptic Integrals

Integrals of the form
∫

R(t,
√

p(t)) dt, where R is a rational function and p
is a polynomial of degree 3 or 4 without multiple factors, are called elliptic
integrals, because the first example occurs in the formula for the arc length
of the ellipse. (The functions obtained by inverting elliptic integrals are
called elliptic functions, and the curves that require elliptic functions for
their parameterization are called elliptic curves. This drift in the meaning
of “elliptic” is rather unfortunate because the ellipse, being parameteriz-
able by rational functions, is not an elliptic curve!)

Elliptic integrals arise in many important problems of geometry and
mechanics, for example, finding arc lengths of the ellipse and hyperbola,
period of the simple pendulum, and deflection of a thin elastic bar. See for
example, Melzak (1976), pp. 253–269. When these problems first arose in
the late 17th century they were the first obstacle to Leibniz’s program of
integration in “closed form” or “by elementary functions.” As mentioned
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in Section 8.6, Leibniz thought the proper solution of an integration prob-
lem
∫

f (x) dx was a known function g(x) with the property g′(x) = f (x).
The functions then “known,” and now called “elementary,” were those
composed from algebraic, circular, and exponential functions and their
inverses.

All efforts to express elliptic integrals in these terms failed, and as early
as 1694 Jakob Bernoulli conjectured that the task was impossible. The
conjecture was eventually confirmed by Liouville (1833), in the course of
showing that a large class of integrals is nonelementary. In the meantime,
mathematicians had discovered so many properties of elliptic integrals,
and the elliptic functions obtained from them by inversion, that they could
be considered known even if not elementary.

The key that unlocked many of the secrets of elliptic integrals was the
curve known as the lemniscate of Bernoulli (Figure 10.4). This curve was
mentioned briefly in Section 2.5 as one of the spiric sections of Perseus.

x

Figure 10.4: The lemniscate of Bernoulli

It has cartesian equation

(x2 + y2)2 = x2 − y2

and polar equation
r2 = cos 2θ.

The first to consider it in its own right was Jakob Bernoulli (1694). He
showed that its arc length is the elliptic integral

∫ x

0
dt/
√

1 − t4, later known
as the lemniscatic integral, thus giving this formal expression a concrete
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geometric interpretation. Many later developments in the theory of elliptic
integrals and functions grew from interplay between the lemniscate and
the lemniscatic integral. As the simplest elliptic integral, or at any rate the
most analogous to the arcsine integral

∫ x

0
dt/
√

1 − t2, the lemniscatic inte-

gral
∫ x

0
dt/
√

1 − t4 was the most amenable to manipulation. It was often
possible, after some property had been proved for the lemniscatic integral,
to extend the argument to more general elliptic integrals.

The most notable example of this methodology was in the discovery
of the addition theorems, which we discuss in the next section.

Exercises

The properties of the lemniscate mentioned above are easily proved by some
standard analytic geometry and calculus.

10.5.1 Deduce the cartesian equation of the lemniscate from its polar equation

r2 = cos 2θ.

10.5.2 Use the polar equation of the lemniscate and the formula for the element
of arc in polar coordinates,

ds =
√

(r dθ)2 + dr2

to deduce that arc length of the lemniscate is given by

s =
∫

dθ
r
.

10.5.3 Conclude, by changing the variable of integration to r, that the total length

of the lemniscate is 4
∫ 1

0
dr/
√

1 − r4.

Unlike the arcsine integrand 1/
√

1 − t2, which is rationalized by substituting
2v/(1 + v2) for t, the lemniscatic integrand 1/

√
1 − t4 cannot be rationalized by

replacing t by any rational function.

10.5.4 Explain how this follows from the exercises in Section 10.3.

It was this connection between the lemniscatic integral and Fermat’s theorem

on the impossibility of r4 − s4 = v2 in positive integers that led Jakob Bernoulli

to suspect the impossibility of evaluating the lemniscatic integral by known func-

tions.
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10.6 Doubling the Arc of the Lemniscate

An addition theorem is a formula expressing f (u1 + u2) in terms of f (u1)
and f (u2), and perhaps also f ′(u1) and f ′(u2). For example, the addition
theorem for the sine function is

sin(u1 + u2) = sin u1 cos u2 + sin u2 cos u1.

Since the derivative, cos u, of sin u equals
√

1 − sin2 u, we can also write
the addition theorem as

sin(u1 + u2) = sin u1

√
1 − sin2 u2 + sin u2

√
1 − sin2 u1,

showing that sin(u1 + u2) is an algebraic function of sin u1 and sin u2.
To simplify the comparison with elliptic functions we consider the fol-

lowing special case of the sine addition theorem:

sin 2u = 2 sin u
√

1 − sin2 u. (1)

If we let

u = sin−1 x =
∫ x

0

dt√
1 − t2

,

then

2u = 2
∫ x

0

dt√
1 − t2

.

But from (1) we also have

2u = sin−1(2x
√

1 − x2),

so

2
∫ x

0

dt√
1 − t2

=

∫ 2x
√

1−x2

0

dt√
1 − t2

. (2)

Bearing in mind that sin−1 x =
∫ x

0
dt/
√

1 − t2 represents the angle u seen in
Figure 10.5, equation (2) tells us that the angle (or arc length) u is doubled
by going from x to 2x

√
1 − x2. The latter number, since it is obtained from

x by rational operations and square roots, is constructible from x by ruler
and compass (confirming the geometrically obvious fact that an angle can
be duplicated by ruler and compass).
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O 1x

u

2x 1 − x2

Figure 10.5: Doubling a circular arc

All this has a remarkable parallel in the properties of the lemniscate
and its arc-length integral

∫ x

0
dt/
√

1 − t4. The discovery of a formula for
doubling the arc of the lemniscate by Fagnano (1718) showed that geomet-
ric information could be extracted from the previously intractable elliptic
integrals, and we can also view it as the first step toward the theory of
elliptic functions. In our notation, Fagnano’s formula is

2
∫ x

0

dt√
1 − t4

=

∫ 2x
√

1−x4/(1+x4)

0

dt√
1 − t4

. (3)

Since 2x
√

1 − x4/(1 + x4) is obtained from x by rational operations and
square roots, (3) shows, like (2), that the arc can be doubled by ruler and
compass construction.

Exercises

Fagnano derived his formula by two substitutions that, as Siegel (1969), p. 3,
points out, are analogous to a natural substitution for the arcsine integral. The
following exercises compare the effect of the substitution t = 2v/(1 + v2) in
dt/
√

1 − t2 with analogous substitutions for t2 in dt/
√

1 − t4.

10.6.1 Show that substituting t = 2v/(1+ v2) gives
√

1 − t2 = (1− v2)/(1+ v2) and
hence that dt/

√
1 − t2 = 2dv/(1 + v2).
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10.6.2 Show that t2 = 2v2/(1 + v4) gives
√

1 − t4 = (1 − v4)/(1 + v4) and hence

dt√
1 − t4

=
√

2
dv√

1 + v4
.

It follows that this change of variable corresponds to a certain relation between
integrals, which turns out to be half way to the Fagnano formula.

10.6.3 Deduce from Exercise 10.6.2 that

√
2
∫ x

0

dv√
1 + v4

=

∫ √
2x/
√

1+x4

0

dt√
1 − t4

.

To complete the journey to the Fagnano formula we make a second, similar,
substitution that recreates the lemniscatic integral.

10.6.4 Similarly show that the substitution v2 = 2w2/(1 − w4) gives

dv√
1 + v4

=
√

2
dw√

1 − w4
.

10.6.5 Check that the result of the substitutions in Exercises 10.6.2 and 10.6.4 is

t =
2w
√

1 − w4

1 + w4

and that the corresponding relation between integrals is the Fagnano dupli-
cation formula.

10.7 General Addition Theorems

The Fagnano duplication formula was a little-known curiosity until Euler
received a copy of Fagnano’s works on December 23, 1751, a date later
described by Jacobi as “the birth day of the theory of elliptic functions.”
Euler was the first to see that Fagnano’s substitution trick was not just a
curious fluke but a revelation of the behavior of elliptic integrals. With
his superb manipulative skill Euler was quickly able to extend it to very
general addition theorems; first to the addition theorem for the lemniscatic
integral,

∫ x

0

dt√
1 − t4

+

∫ y

0

dt√
1 − t4

=

∫ (x
√

1−y4+y
√

1−x4)/(1+x2y2)

0

dt√
1 − t4

;

then to
∫

dt/
√

p(t), where p(t) is an arbitrary polynomial of degree 4. An
ingenious reconstruction of Euler’s train of thought, by analogy with the
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arcsine addition theorem

∫ x

0

dt√
1 − t2

+

∫ y

0

dt√
1 − t2

=

∫ x
√

1−y2+y
√

1−x2

0

dt√
1 − t2

,

has been given by Siegel (1969), pp. 1–10. Of course, Euler was dealing
only with elliptic integrals, not with elliptic functions. But Jacobi could
see his results as addition theorems for elliptic functions as easily as we
can see that the arcsine addition theorem is really a theorem about sines!

It should be mentioned that Euler’s addition theorems do not cover all
kinds of elliptic integrals. The classical theory of elliptic integrals of the
different kinds, with their various addition and transformation theorems,
was systematized by Legendre (1825). Ironically, this was just before the
appearance of elliptic functions, which made much of Legendre’s work
obsolete.

These early investigations exploited some of the formal similarities
between

∫
dt/
√

p(t), where p is a polynomial of degree 4, and
∫

dt/
√

q(t),
where q is a quadratic. There is no real difference if p is of degree 3, as
an easy transformation shows (Exercise 10.7.1). This is why

∫
dt/
√

p(t) is
also called an elliptic integral when p is of degree 3. In fact, it eventually
turned out that the most convenient integral to use as a basis for the theory
of elliptic functions is

∫
dt/
√

4t3 − g2t − g3, whose inverse is known as
the Weierstrass ℘-function.

The addition theorem for this integral is
∫ x1

0

dt
√

4t3 − g2t − g3

+

∫ x2

0

dt
√

4t3 − g2t − g3

=

∫ x3

0

dt
√

4t3 − g2t − g3

,

where x3 is none other than the x-coordinate of the third point on

y2 = 4x3 − g2x − g3

of the straight line through (x1, y1) and (x2, y2) (see Section 10.3). Now that
we know, from Section 10.4, that this curve is parameterized by x = ℘(u),
y = ℘′(u), defined by inverting the integral, some connection between the
geometry of the curve and the addition theorem is understandable. But the
stunning simplicity of the relationship seems to demand a deeper explana-
tion. This lies in the realm of complex numbers, which we enter briefly in
the next section and more thoroughly in Chapter 12.
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Exercises

10.7.1 Show that the substitution t = 1/u transforms

dt√
(t − a)(t − b)(t − c)

into
−du√

u(1 − ua)(1 − ub)(1 − uc)
.

Conversely, we can transform quartic polynomials under the square root sign to
cubics, even in cases where the quartic is not of the form obtained in Exercise
10.5.1.

10.7.2 Transform
dt√

1 − t4
into

du
√

cubic polynomial in u

by making a suitable substitution for t.

10.8 Elliptic Functions

The idea of inverting elliptic integrals to obtain elliptic functions is due
to Gauss, Abel, and Jacobi. Gauss had the idea in the late 1790s but did
not publish it; Abel had the idea in 1823 and published it in 1827, inde-
pendently of Gauss. Jacobi seems to have been approaching the idea of
inversion in 1827, but was stung into action only by the appearance of
Abel’s paper. His ideas then developed at an explosive rate, and he pub-
lished the first book on elliptic functions, the Fundamenta nova theoriae
functionum ellipticarum, two years later (Jacobi (1829)).

Gauss first considered inverting an elliptic integral in 1796, in the case
of
∫

dt/
√

1 − t3. The next year he inverted the lemniscatic integral and
made more progress. Defining the lemniscatic sine function x = sl(u) by

u =
∫ x

0

dt√
1 − t4

,

he found that this function is periodic, like the sine, with period

2� = 4
∫ 1

0

dt√
1 − t4

.

He also noticed that sl(u) invites complex arguments, since i2 = −1 implies

d(it)
√

1 − (it)4
= i

dt√
1 − t4

;
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so sl(iu) = isl(u) and the lemniscatic sine has a second period 2i�. Thus
Gauss discovered double periodicity, a key property of the elliptic func-
tions, though at first he did not realize its significance. The scope and
importance of elliptic functions hit him on May 30, 1799, when he found
an extraordinary numerical coincidence. His diary entry of that day reads:

We have established that the arithmetic-geometric mean between
1 and

√
2 is π/� to 11 places; the demonstration of this fact

will surely open up an entirely new field of analysis.

Gauss had been fascinated by the arithmetic–geometric mean (agM)
since 1791, when he was 14. The agM(a, b) of two positive numbers a and
b is the common limit of the two sequences {an} and {bn} defined by

a0 = a, b0 = b,
an+1 =

an+bn

2 , bn+1 =
√

anbn.

For more information on its theory and history, see Cox (1984).
It is indeed true that agM(1,

√
2) = π/�, as Gauss soon proved, and

the “entirely new field of analysis” he created from the stew of these ideas
was extraordinarily rich. It encompassed elliptic functions in general, the
theta functions later rediscovered by Jacobi, and the modular functions
later rediscovered by Klein. The theory was not significantly improved
until the 1850s, when Riemann showed that double periodicity becomes
obvious when elliptic integrals are placed in a suitable geometric setting.

Unfortunately, Gauss released virtually none of his results on elliptic
functions. Apart from a formula for agM(a, b) as an elliptic integral (Gauss
(1818)), he published nothing until Abel’s results appeared in 1827—then
promptly claimed them as his own. He wrote to Bessel (Gauss (1828)):

I shall most likely not soon prepare my investigations on the
transcendental functions which I have had for many years—
since 1798. . . . Herr Abel has now, as I see, anticipated me
and relieved me of the burden in regard to one third of these
matters.

It was disingenuous of Gauss to claim he had more results than Abel,
because Abel also had results unknown to Gauss. True, Gauss had prior-
ity on the key ideas of inversion and double periodicity, but priority isn’t
everything, as Gauss himself perhaps knew. His own cherished discovery
of the relation between agM and elliptic integrals had not only been found
earlier, but even published by Lagrange (1785).
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A Postscript on the Lemniscate

The duplication of the arc of the lemniscate had some interesting conse-
quences for the lemniscate itself. Fagnano showed, by similar arguments,
that a quadrant of the lemniscate can be divided into two, three, or five
equal arcs by ruler and compass (see Ayoub (1984)). This raised a ques-
tion: for which n can the lemniscate be divided into n equal parts by ruler
and compass? Recall from Section 2.3 that the corresponding question for
the circle had been answered by Gauss (1801), Art. 366. As mentioned in
there, the answer is n = 2m p1 p2 · · · pk, where the pi are distinct primes of
the form 22h

+1. In the introduction to his theory (Art. 355), Gauss claims:

The principles of the theory which we are going to explain
actually extend much further than we will indicate. For they
can be applied not only to circular functions but just as well
to other transcendental functions, e.g. to those which depend
on the integral

∫
(1/
√

1 − x4) dx.

However, his surviving papers do not include any result on the lemnis-
cate as incisive as his result on the circle. There is only a diary entry of
March 21, 1797, stating divisibility of the lemniscate into five equal parts.

The answer to the problem of dividing the lemniscate into n equal
parts was found by Abel (1827), transforming Gauss’s obscurity into crys-
tal clarity: division by ruler and compass is possible for precisely the same
n as for the circle. This wonderful result serves, perhaps better than any
other, to underline the unifying role of elliptic functions in geometry, alge-
bra, and number theory. A modern proof of it may be found in Rosen
(1981).

Exercises

The following exercises show how the lemniscatic sine and its derivative are
quite analogous to the ordinary sine and its derivative, the cosine.

10.8.1 Show that sl′(u) =
√

1 − sl4(u).

10.8.2 Deduce from the Euler addition theorem (Section 10.7) that

sl(u + v) =
sl(u)sl′(v) + sl(v)sl′(u)

1 + sl2(u)sl2(v)
.
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Complex Numbers and
Curves

Preview

This chapter revisits polynomial equations and algebraic curves, observing
how these topics are simplified by introducing complex numbers. That’s
right: the so-called “complex” numbers actually make things simpler.

One of the reasons for the simplifying power of complex numbers is
their two-dimensional nature. The extra dimension gives more room for
solutions of equations to exist. For example, the equation xn = 1, which
has only one or two solutions in the real numbers, has n different solutions
in the complex numbers, equally spaced around the unit circle.

In fact, any equation of degree n has n complex solutions, when solu-
tions are properly counted. This is the fundamental theorem of algebra,
and it follows from intuitively simple properties of the plane and continu-
ous functions.

The fundamental theorem also enables us to get the “right” number
of intersections between a curve of degree m and a curve of degree n.
However, it is not enough to introduce complex coordinates: getting the
right count of intersections also requires us to adjust our viewpoint in two
other ways: by counting intersections according to their multiplicity, and
by counting points at infinity.

For these reasons, and others, algebraic geometry moved to the setting
of complex projective space in the 19th century. In this chapter we see how
this affects our view of algebraic curves: in short, they become surfaces.
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11.1 Impossible Numbers

In previous chapters it has often been claimed that certain mysteries—
de Moivre’s formula for sin nθ (Section 5.6), factorization of polynomials
(Section 5.7), classification of cubic curves (Section 7.4), and the behavior
of elliptic functions (Section 10.8)—are cleared up by the introduction of
complex numbers. That complex numbers do all this and more is one of
the miracles of mathematics. At the beginning of their history, complex
numbers a+b

√−1 were considered to be “impossible numbers,” tolerated
only because they seemed useful for solving cubic equations. But their
significance turned out to be geometric and ultimately led to the unification
of algebra with an enriched domain of geometry, including topology and
another “impossible” field, non-Euclidean geometry.

In this chapter we will see how complex numbers emerged from the
theory of equations and enabled its fundamental theorem to be proved—at
which point it became clear that complex numbers had meaning far beyond
algebra. Their impact on curves and function theory is described later in
this chapter and in the next. Non-Euclidean geometry had entirely different
origins but arrived at the same place as complex function theory in the
1880s, thanks to complex numbers. This unexpected meeting is described
in Chapter 13.

Quadratic Equations

In theory, mathematics first calls on complex numbers to solve certain
quadratic equations, such as the equation x2+1 = 0. However, this did not
happen when quadratic equations first appeared, since at that time there
was no need for all quadratic equations to have solutions. Many quadratic
equations are implicit in Greek geometry, but one does not demand that
every geometric problem have a solution. If one asks whether a particular
circle and line intersect, say, then the answer can be yes or no. If yes,
the quadratic equation for the intersection has a solution; if no, it has no
solution. An “imaginary solution” is uncalled for in this context.

Even when quadratic equations appeared in pure algebra, with Dio-
phantus and the Arab mathematicians, there was initially no reason for
complex solutions. One only wanted to know whether there were real solu-
tions, and if not the answer was simply—no solution. This is the appro-
priate answer when quadratics are solved by geometrically completing the
square (Section 5.3), as was done up to the time of Cardano. A square of
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negative area did not exist in geometry. The story might have been dif-
ferent had mathematicians used symbols more and dared to consider the
symbol

√−1 as an object in its own right, but this did not happen until
quadratics had been overtaken by cubics, at which stage complex numbers
became unavoidable, as we will now see.

11.2 Cubic Equations

The del Ferro–Tartaglia–Cardano solution of the cubic equation

y3 = py + q

is

y =
3

√
q
2
+

√(q
2

)2
−
( p
3

)3
+

3

√
q
2
−
√(q

2

)2
−
( p
3

)3
as we saw in Section 5.5. We notice that it involves complex numbers
when (q/2)2 − (p/3)3 < 0. However, one cannot dismiss this as a case
with no solution, because a cubic always has at least one real root (since
y3− py−q is positive for large positive y and negative for large negative y).
Thus the Cardano formula raises the problem of reconciling a real value,
found by inspection, say, with an expression of the form

3
√
a + b

√−1 + 3
√
a − b√−1

Cardano did not face up to this problem in his Ars magna (1545). He
did, it is true, once mention complex numbers, but in connection with a
quadratic equation and accompanied by the comment that these numbers
were “as subtle as they are useless” (Cardano (1545), Ch. 37, Rule II).

The first to take complex numbers seriously and use them to achieve
the necessary reconciliation was Bombelli (1572). Bombelli worked out
the formal algebra of complex numbers, with the particular aim of reduc-

ing expressions
3
√
a + b

√−1 to the form c + d
√−1. His method enabled

him to show the reality of some expressions resulting from Cardano’s for-
mula. For example, the solution of

x3 = 15x + 4

is

x =
3
√
2 + 11

√−1 + 3
√
2 − 11√−1
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according to the formula. On the other hand, inspection gives the solution
x = 4. Bombelli had the hunch that the two parts of x in the Cardano
formula were of the form 2 + n

√−1 and 2 − n√−1. He found, by cubing
these expressions formally [using (

√−1)2 = −1, and n = 1], that indeed

3
√
2 + 11

√−1 = 2 +
√−1,

3
√
2 − 11√−1 = 2 − √−1,

hence the Cardano formula also gives their sum x = 4.

Figure 11.1 is a facsimile of the manuscript page on which Bombelli
stated his result: Somma 4. The figure is from a 1569 version of Bombelli’s
L’Algebra: page 72 verso in codice B. 1569, which is in the Biblioteca
dell’ Archiginnasio in Bologna, and is used with their permission. It was
transcribed from Bombelli’s lectures by F. M. Salando.

Figure 11.1: Bombelli’s manuscript



11.2 Cubic Equations 185

He has placed the problem and its solution inside a decorative border.
It has the equation x3 = 15x + 4 at the top (in his notation, which does
not show the variable x—only its coefficients and, directly above them,
its exponents), and the conclusion (2 +

√−1) + (2 − √−1) = 4 at the
bottom. Bombelli includes the trivial calculations of 5 × 5 × 5 = 125 and
2 × 2 = 4, needed for the Cardano formula. But he does not include the
crucial calculation of (2 +

√−1)3 needed to remove the cube roots—he
simply removes them without explanation!

It is not hard to pick out the preceding expressions when one allows
for the notation and the fact that 11

√−1 is written as
√
0 − 121. Note in

particular the sign � for “root,” which today is still in use by pharmacists
(presumably because of the roots once common for medical purposes).

Much later, Hölder (1896) showed that any algebraic formula for the
solution of the cubic must involve square roots of quantities that become
negative for particular values of the coefficients. A proof of Hölder’s result
may be found in van der Waerden (1949), p. 180.

Exercises

11.2.1 Check that (2 +
√−1)3 = 2 + 11

√−1.
It is possible to work backwards and concoct a cubic equation with an obvious
solution that can be reconciled with the hideous solution in the Cardano formula.
Here is an example.

11.2.2 Check that (3 +
√−1)3 = 18 + 26

√−1.
11.2.3 Hence explain why

6 = (3 +
√−1) + (3 − √−1) = 3

√
18 + 26

√−1 + 3
√
18 − 26√−1.

11.2.4 Find p and q such that

18 =
q
2

and 26
√−1 =

√(q
2

)2
−
( p
3

)3
.

11.2.5 Check that 6 is a solution of the equation x3 = px + q for the values of p
and q found in Exercise 11.2.4.

11.3 Angle Division

In Section 5.6 we saw how Viète related angle trisection to the solution of
cubic equations, and how Leibniz (1675) and de Moivre (1707) solved the
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angle n-section equation by the Cardano-type formula

x =
1
2

n

√
y +

√
y2 − 1 + 1

2

n

√
y −
√
y2 − 1. (1)

We also saw how this and Viète’s formulas for cos nθ and sin nθ could
easily be explained by the formula

(cos θ + i sin θ)n = cos nθ + i sin nθ (2)

usually associated with de Moivre. Actually, de Moivre never stated (2)
explicitly. The closest he came was to give a formula for (cos θ+ i sin θ)1/n

in de Moivre (1730). (See Smith (1959) for a series of extracts from the
work of de Moivre on angle division). It seems that the clues in the algebra
of circular functions were not strong enough to reveal (2) until a deeper
reason for it had been brought to light by calculus.

Complex numbers made their entry into the theory of circular func-
tions in a paper on integration by Johann Bernoulli (1702). Observing that√−1 = i makes possible the partial fraction decomposition

1
1 + z2

=
1/2
1 + zi

+
1/2
1 − zi ,

Bernoulli saw that integration would give an expression for tan−1 z as an
imaginary logarithm, though he did not write down the expression in ques-
tion and was evidently puzzled as to what it could mean. In Section 12.1
we will see how Euler clarified Johann Bernoulli’s discovery and devel-
oped it into the beautiful theory of complex logarithms and exponentials.
What is relevant here is that Johann Bernoulli (1712) took up the idea
again, and this time he carried out the integration to obtain an algebraic
relation between tan nθ and tan θ. His argument is as follows. Given

y = tan nθ, x = tan θ,

we have
nθ = tan−1 y = n tan−1 x;

hence, taking differentials gives

dy
1 + y2

=
n dx
1 + x2

,
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or

dy

(
1
y + i

− 1
y − i
)
= n dx

(
1

x + i
− 1

x − i
)
.

Integration gives

log(y + i) − log(y − i) = n log(x + i) − n log(x − i),
that is,

log
y + i
y − i = log

( x + i
x − i
)n
,

whence
(x − i)n(y + i) = (x + i)n(y − i). (3)

This formula was the first of the de Moivre type actually to use i explic-
itly and the first example of a phenomenon later articulated by Hadamard
(1954), Chapter VIII:

the shortest and best way between two truths in the real domain
often passes through the imaginary one.

Solving (3) for y as a function of x expresses tan nθ as a rational function
of tan θ, which is difficult to obtain using real formulas alone. In fact, it is
easy to show from (3) that y is the quotient of the polynomials consisting
of alternate terms in (x + 1)n, provided with alternate + and − signs (see
exercises).

18th-century mathematicians had mixed feelings about
√−1. They

were willing to use it en route to results about real numbers but doubted
that it had a concrete meaning of its own. Cotes (1714) even used a+

√−1b
to represent the point (a, b) in the plane (as Euler did later), apparently
without noticing that (a, b) was a valid interpretation of a +

√−1b. Since
results about

√−1 were suspect, they were often left unstated when it was
possible to state an equivalent result about reals. This may explain why
de Moivre stated (1) but not (2). Another example of the avoidance of
results about

√−1 is the remarkable theorem on the regular n-gon discov-
ered by Cotes in 1716 and published posthumously in Cotes (1722):

If A0, . . . , An−1 are equally spaced points on the unit circle with center
O, and if P is a point on OA0 such that OP = x, then (Figure 11.2)

PA0 · PA1 · · · PAn−1 = 1 − xn.
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O
A0

2 n

A1

P

An 1

A2

An 2

Figure 11.2: Cotes’s theorem

This theorem not only relates the regular n-gon to the polynomial xn−1
but in fact geometrically realizes the factorization of xn−1 into real linear
and quadratic factors. By symmetry one has PA1 = PAn−1, . . ., so

PA0 · PA1 · · · PAn−1 =
{

PA0 · PA2
1 · PA2

2 · · · PA2
(n−1)/2 n odd,

PA0 · PA2
1 · PA2

2 · · · PA2
n/2−1PAn/2 n even.

PA0 = 1−x is a real linear factor, as is PAn/2 when n is even, and it follows
from the cosine rule in triangle OPAk that

PA2
k = 1 − 2x cos 2kπ

n
+ x2.

The easiest route from here to the theorem is by splitting PA2
k into complex

linear factors and using de Moivre’s theorem. We can only speculate that
this was Cotes’s method, since he stated his theorem without proof. The
theorem has a second half which similarly decomposes 1 + xn into real
linear and quadratic factors. These factorizations were needed to integrate
1/(1 ± xn) by resolution into partial fractions, which was Cotes’s main
objective. Such problems were then high on the mathematical agenda, and
they motivated research into the factorization of polynomials, in particular
the first attempts to prove the fundamental theorem of algebra.
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Exercises

Johann Bernoulli’s formula relating y = tan nθ to x = tan θ is false for some
values of n, because it neglects a possible constant of integration. The result of
integration should be

log(y + i) − log(y − i) = n log(x + i) − n log(x − i) +C,
for some C, leading to

y + i
y − i = D

(x + i)n

(x − i)n , (*)

for some constant D (equal to eC). Sometimes D = 1 gives the correct formula,
but sometimes we need D = −1.
11.3.1 Show that D = 1 gives the correct formula when n = 1.

11.3.2 Using formulas for sin 2θ and cos 2θ, or otherwise, show that

tan 2θ =
2 tan θ

1 − tan2 θ ,

and check that this follows from (*) for D = −1, but not for D = 1.

11.3.3 Use the formula in Exercise 11.3.2 to express tan 4θ in terms of tan 2θ, and
hence in terms of tan θ.

11.3.4 Letting y = tan 4θ and x = tan θ, express the result of Exercise 11.3.3 as

y =
4x − 4x3

x4 − 6x2 + 1 ,

and check that this follows from (*) when D = −1.

11.4 The Fundamental Theorem of Algebra

The fundamental theorem of algebra is the statement that every polynomial
equation p(z) = 0 has a solution in the complex numbers. As Descartes
observed (Section 5.7), a solution z = a implies that p(z) has a factor z−a.
The quotient q(z) = p(z)/(z − a) is then a polynomial of lower degree;
hence if every polynomial equation has a solution, we can also extract a
factor from q(z), and if p(z) has degree n, we can go on to factorize p(z)
into n linear factors. The existence of such a factorization is of course
another way to state the fundamental theorem.

Initially, interest was confined to polynomials p(z) with real coeffi-
cients, and in this case d’Alembert (1746) observed that if z = u + iv is a
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solution of p(z) = 0, then so is its conjugate z = u− iv. Thus the imaginary
linear factors of a real p(z) can always be combined in pairs to form real
quadratic factors:

(z − u − iv)(z − u + iv) = z2 − 2uz + (u2 + v2).
This gave another equivalent of the fundamental theorem: each (real) poly-
nomial p(z) can be expressed as a product of real linear and quadratic fac-
tors. The theorem was usually stated in this way during the 18th century,
when its main purpose was to make possible the integration of rational
functions (see previous section). This also avoided mention of

√−1.
It has often been said that attempts to prove the fundamental theorem

began with d’Alembert (1746), and that the first satisfactory proof was
given by Gauss (1799). This opinion should not be accepted without ques-
tion, since the source of it is Gauss himself. Gauss (1799) gave a critique of
proofs from d’Alembert on, showing that they all had serious weaknesses,
then offered a proof of his own. He wanted to convince readers that the new
proof was the first valid one, even though it used one unproved assumption
(which is discussed further in the next section). The opinion as to which of
two incomplete proofs is more convincing can of course change with time,
and I believe that Gauss (1799) might be judged differently today. We can
now fill the gaps in d’Alembert (1746) by appeal to standard methods and
theorems, whereas there is still no easy way to fill the gap in Gauss (1799).
This was first done by Ostrowski (1920).

Both proofs depend on the geometric properties of the complex num-
bers and the concept of continuity for their completion. The basic geo-
metrical insight—that the complex number x + iy can be identified with
the point (x, y) in the plane—mysteriously eluded all mathematicians until
the end of the 18th century. This was one of the reasons that d’Alembert’s
proof was unclear, and the use of this insight by Argand (1806) was an
important step in d’Alembert’s reinstatement. Gauss seems to have had the
same insight but concealed its role in his proof, perhaps believing that his
contemporaries were not ready to view the complex numbers as a plane.

As for the concept of continuity, neither Gauss nor d’Alembert under-
stood it very well. Gauss (1799) seriously understated the difficulties
involved in the unproved step, claiming that “no one, to my knowledge,
has ever doubted it. But if anybody desires it, then on another occasion
I intend to give a demonstration which will leave no doubt” (translation
from Struik (1969), p. 121). Perhaps seeing the difficulty on further reflec-
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tion, he gave a second proof, Gauss (1816), in which the role of continuity
was minimized. The second proof is purely algebraic except for the use
of a special case of the intermediate value theorem. Gauss assumed that a
polynomial function p(x) of a real variable x takes all values between p(a)
and p(b) as x runs from a to b (which implies that a polynomial of odd
degree takes the value 0).

The first to appreciate the importance of continuity for the fundamen-
tal theorem of algebra was Bolzano (1817), who proved the continuity of
polynomial functions and attempted a proof of the intermediate value the-
orem. The latter proof was unsatisfactory because Bolzano had no clear
concept of real number on which to base it, but it did point in the right
direction. When a definition of real numbers emerged in the 1870s (for
example, with Dedekind cuts; Section 4.2), Weierstrass (1874) rigorously
established the basic properties of continuous functions, such as the inter-
mediate value theorem and extreme value theorem. This completed not
only the second proof of Gauss but also the proof of d’Alembert, as we
will see in the next subsection.

The Idea of d’Alembert

The key to d’Alembert’s proof is a proposition now known as d’Alembert’s
lemma: if p(z) is a nonconstant polynomial function and p(z0) � 0, then
any neighborhood of z0 contains a point z1 such that |p(z1)| < |p(z0)|.

The proof of this lemma offered by d’Alembert depended on solving
the equation w = p(z) for z as a fractional power series in w. As mentioned
in Section 9.4, such a solution was claimed by Newton (1671), but it was
made clear and rigorous only by Puiseux (1850). Thus d’Alembert’s argu-
ment did not stand on solid ground, and in any case it was unnecessarily
complicated.

A simple elementary proof of d’Alembert’s lemma was given by
Argand (1806). Argand was one of the co-discoverers of the geometric
representation of complex numbers (probably the first was Wessel (1797),
but his work remained almost unknown for 100 years), and he offered the
following proof as an illustration of the effectiveness of the representation.

The value of p(z0) = x0 + iy0 is interpreted as the point (x0, y0) in the
plane, so that |p(z0)| is the distance of (x0, y0) from the origin. We wish to
find a Δz such that p(z0 + Δz) is nearer to the origin than p(z0). If

p(z) = a0z
n + a1z

n−1 + · · · + an,
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then

p(z0 + Δz) = a0(z0 + Δz)
n + a1(z0 + Δz)

n−1 + · · · + an
= a0z

n
0 + a1z

n−1
0 + · · · + an + A1Δz + A2(Δz)

2 + · · · + An(Δz)
n

for some constants Ai depending on z0, not all zero,

because p is not constant

= p(z0) + AΔz + ε,

where A = Ai(Δz)i contains the first nonzero Ai and |ε| is small compared
with |AΔz| when |Δz| is small (because ε contains higher powers of Δz).
It is then clear (Figure 11.3) that by choosing the direction of Δz so that
AΔz is opposite in direction to p(z0), we get |p(z0 + Δz)| < |p(z0)|. This
completes the proof of d’Alembert’s lemma.

Figure 11.3: Construction for d’Alembert’s lemma

To complete the proof of the fundamental theorem of algebra, take an
arbitrary polynomial p and consider the continuous function |p(z)|. Since
p(z) ≈ a0zn for |z| large, |p(z)| increases with |z| outside a sufficiently large
circle |z| = R. We now get a z for which |p(z)| = 0 from the extreme value
theorem of Weierstrass (1874); a continuous function on a closed bounded
set assumes maximum and minimum values. By this theorem, |p(z)| takes
a minimum value for |z| ≤ R. The minimum is ≥ 0 by definition, and if it
is > 0 we get a contradiction by d’Alembert’s lemma: either a point z with
|z| ≤ R where |p(z)| takes a value less than its minimum or a point z with
|z| > R where |p(z)| is less than its values on |z| = R. Thus there is a point z
where |p(z)| = 0 and hence p(z) = 0.
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From our present perspective, d’Alembert’s route to the fundamental
theorem of algebra seems basically easy because it proceeds through gen-
eral properties of continuous functions. The route of Gauss seems equally
easy from a distance, but it goes through the still-unfamiliar territory of
real algebraic curves. The intersections of real algebraic curves are harder
to understand than the intersections of complex algebraic curves, and in
retrospect they are harder to understand than the fundamental theorem of
algebra. Indeed, as we will see in the next section, the fundamental theo-
rem gives us Bézout’s theorem, which in turn settles the problem of count-
ing the intersections of complex algebraic curves.

Exercises

Complex roots of an equation with real coefficients occur in conjugate pairs
because of the fundamental properties of conjugates.

11.4.1 Show directly from the definition u + iv = u − iv that
z1 + z2 = z1 + z2 and z1 · z2 = z1 · z2

for any complex numbers z1, z2.

11.4.2 Deduce from Exercise 11.4.1 that p(z) = p(z) for any polynomial p(z) with
real coefficients, and hence that the complex roots of p(z) = 0 occur in
conjugate pairs.

The expression in d’Alembert’s lemma for p(z0+Δz) is an instance of Taylor’s
series, previously discussed in Section 9.3. When the function is a polynomial
p, as here, its Taylor series is finite because p has only finitely many nonzero
derivatives.

11.4.3 Show that A1 = na0zn−10 + (n − 1)a1zn−20 + · · · + an−1 and that the latter
expression is p′(z0).

11.4.4 Show that A2 =
n(n−1)

2 a0zn−20 +
(n−1)(n−2)

2 a1zn−30 + · · ·+an−2 and that the latter
expression is p′′(z0)/2.

11.4.5 Using the binomial theorem, show that Ak = p(k)(z0)/k!, and hence that

p(z0 + Δz) = a0z
n
0 + a1z

n−1
0 + · · · + an + A1Δz + A2(Δz)

2 + · · · + An(Δz)
n

is an instance of the Taylor series formula.

11.5 Roots and Intersections

There is a close connection between intersections of algebraic curves and
roots of polynomial equations, going back as far as Menaechmus’s con-
struction of

3√
2 (a root of the equation x3 = 2) by intersecting a parabola
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and a hyperbola (Section 2.4). The most direct connection, of course,
occurs in the case of a polynomial curve

y = p(x) (1)

whose intersections with the axis y = 0 are just the real roots of the equa-
tion

p(x) = 0. (2)

If (2) has k real roots, then the curve (1) has k intersections with the axis
y = 0. Here we must count intersections the same way we count roots,
according to multiplicity. A root r of (2) has multiplicity μ if the factor
(x − r) occurs μ times in p(x), and the root r is then counted μ times.

This way of counting is also geometrically natural because if, for exam-
ple, the curve y = p(x) meets the axis y = 0 with multiplicity 2 at 0, then a
line y = εx close to the axis meets the curve twice—once near the intersec-
tion with the axis and once precisely there. The intersection of y = x2 with
y = 0 (Figure 11.4) can therefore be considered as two coincident points
to which the distinct intersections with y = εx tend as ε→ 0. Likewise, an
intersection of multiplicity 3 can be explained as the limit of three distinct
intersections, for example, of y = εx with y = x3 (Figure 11.5)

Figure 11.4: Intersection of multiplicity 2

Figure 11.5: Intersection of multiplicity 3
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At first glance this idea seems to break down with multiplicity 4, since
y = εxmeets y = x4 at only two points, x = 0 and x = 3

√
ε. The explanation

is that there are also two complex roots in this case ( 3
√
ε times the two

complex cube roots of 1), hence we cannot neglect complex roots if we
want to get the geometrically correct number of intersections.

The fundamental theorem of algebra (previous section) gives us n roots
of an nth-degree equation (2) and hence n intersections of the polynomial
curve (1) with the axis y = 0. To get n roots, however, we have to admit
complex values of x, so we have to consider “curves” for which x and y
are complex in order to obtain n intersections. This, and other tidy conse-
quences of the fundamental theorem of algebra (for example, the “coinci-
dent point” interpretation of multiplicity; see Exercise 11.5.1), persuaded
18th-century mathematicians to admit complex numbers into the theory of
curves before complex numbers themselves were understood—and even
before the fundamental theorem of algebra was proved.

The most elegant consequence was Bézout’s theorem that a curve Cm

of degree m meets a curve Cn of degree n at mn points. As we saw in
Section 7.7, if homogeneous coordinates are used to take account of points
at infinity, then the intersections of Cm and Cn correspond to the solutions
of an equation rmn(x, y) = 0, which is homogeneous of degree mn. We can
now use the fundamental theorem of algebra to show that rmn(x, y) is the
product of mn linear factors as follows:

rmn(x, y) = y
mnrmn

(
x
y
, 1

)

= ymn
p∏
i=1

(
bi
x
y
− ai
)

for some p ≤ mn

by the fundamental theorem, since rmn(x/y, 1) is a polynomial of degree
p ≤ mn in the single variable x/y. But then

rmn(x, y) = y
mn−p

p∏
i=1

(bix − aiy)

=

mn∏
i=1

(bix − aiy)

since each factor y in front (if any) is trivially of the form bix − aiy.
It follows that the equation rmn(x, y) = 0 has mn solutions, and hence

there are mn intersections of Cm and Cn, counting multiplicities.
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Exercises

11.5.1 Show that y = εx meets y = xn in n distinct points when ε � 0, and list
them (for example, with the help of de Moivre’s theorem).

If a curve K has a double point at O, then a line y = tx may have double
contact with K at O even though nearby lines y = (t+ε)x do not meet K at nearby
points other than O. In this case the double contact may be explained as contact
with the two branches of the curve at O.

11.5.2 Consider the lines y = tx through the double point O of y2 = x2(x + 1).
Show that each such line has double contact with the curve at O, except
when t = ±1. How do you account for the multiplicities when t = ±1?

11.5.3 Show that y = tx also has double contact with y2 = x3 at its cusp point O.
Try to explain this by viewing y2 = x3 as the result of shrinking the loop of
y2 = x2(x + ε) (letting ε→ 0).

11.5.4 Show that the line y = tx has double contact at O with the lemniscate
(x2 + y2)2 = x2 − y2 except for two values of t, for which it has quadruple
contact.

11.5.5 Explain the multiplicities found in Exercise 11.5.4 with the help of the
known shape of the lemniscate (Figure 10.4).

11.6 The Complex Projective Line

We saw in Section 7.5 that adding a point at infinity to the real line R in
R ×R forms a closed curve that is qualitatively like a circle. Indeed, a real
projective line in the sphere model of the real projective plane RP

2 has
much the same geometric properties as a great circle on a sphere, after one
allows for the fact that antipodal points on the sphere are the same point on
RP

2. The situation with the complex “line” C is similar but more difficult
to visualize. C is already two-dimensional, as we saw in Gauss’s proof of
the fundamental theorem of algebra; hence the complex “plane” C × C is
four-dimensional and virtually impossible to visualize.

To avoid an excursion into four-dimensional space, we first revise our
approach to the real projective line. In Section 7.5 we considered ordinary
lines L, in a horizontal plane not passing through the origin, and extended
each to a projective line whose “points” are the lines through the origin
O, in the plane through O and L. The nonhorizontal lines in this family
correspond to points of L, and the horizontal line in the family to the point
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at infinity of L. We now use this construction again to demonstrate directly
the qualitative, or more precisely topological, equivalence between a pro-
jective line and a circle (Figure 11.6).

Figure 11.6: The real projective line

The origin N is taken to be the top point of a circle that, at its bottom
point, touches our line L = R. There is a continuous one-to-one correspon-
dence between lines through N and points of the circle. Each nonhorizon-
tal line corresponds to its intersection x′ � N with the circle, while the
horizontal line corresponds to N itself. Thus the projective completion of
R, which we now call RP1, is topologically the same as the circle, in the
sense that there is a continuous one-to-one correspondence between them.
Moreover, we can understand projective completion of R topologically as
a process of adding one “point” that is “approached” as one tends to infin-
ity, in either direction, along R, for as x tends to infinity in either direction,
x′ tends to the same point, N, on the circle.

We can now view projective completion of C in the same way using
Figure 11.7, which shows what is called stereographic projection of the
plane C into a sphere. Each point z ∈ C is projected to a point z′ on the
tangential sphere S by the ray through z and the north pole N of S . This
establishes a continuous one-to-one correspondence between points z of C
and points z′ � N on S . Moreover, as z tends to infinity in any direction,
z′ tends to N; hence the projective completion of CP1 of C is topologically
the same as the complete sphere S , with the point at∞ of C corresponding
to N.

Since one also wants to complete C by a point∞ in this way for com-
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Figure 11.7: The complex projective line

plex analysis, geometry and analysis are both served by passing from C

to CP
1. Gauss seems to have been the first to appreciate the advantages

of C ∪ {∞} over C; hence one often calls CP1 the Gauss sphere in analy-
sis. (Unfortunately, only a few unpublished, undated fragments of Gauss’s
work on this topic seem to have survived; see Gauss (1819).) Algebraic
geometers call CP1 the (complex) projective line, since it is the formal
equivalent of a real line, even though it is topologically a surface. Simi-
larly, complex curves are topologically surfaces, known to analysts as Rie-
mann surfaces, though algebraic geometers prefer to call them “curves.”

The “surface” viewpoint is helpful when studying intrinsic properties
of complex curves. For example, genus (introduced in connection with
parameterization in Sections 10.2 and 10.3) turns out to have a very simple
meaning in the topology of surfaces (see Section 15.3). On the other hand,
the “curve” viewpoint is helpful when studying intersections of curves and
their embedding inC×C or its projective completionCP2. Instead of trying
to imagine two planes meeting in a single point of C × C, for example, it
is better to imagine the intersection as analogous to that of real lines in a
real plane—as the single solution of two linear equations. After all, we are
working with C to remove anomalies that occur with R, not for the sake
of doing something different, and we expect that much of the behavior of
real curves will recur with complex ones.
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Exercises

Since addition and multiplication are continuous functions, it is quite easy to
find one-to-one continuous maps between certain complex algebraic curves and
the sphere.

11.6.1 Show that the projective completion of the curve Y = X2 is topologically a
sphere by considering its parameterization

X = t, Y = t2,

where t ranges over the sphere C ∪ {∞}. Namely, show that the mapping
t �→ (t, t2) is one-to-one and continuous.

11.6.2 Similarly show that the projective completion of Y2 = X3 is topologically
a sphere by considering its parameterization

X = t2, Y = t3

and the continuous mapping t �→ (t2, t3).

11.6.3 Consider the mapping of the t sphere onto the projective completion of
Y2 = X2(X + 1) defined by t �→ P(t), where P(t) is the third intersection of
the curve with the line Y = tX through the double point (found in Exercise
6.4.2).

Show that this mapping is continuous and that it is one-to-one except at
the points t = ±1, which are both mapped to the point O on the curve.
Conclude that the curve is topologically the same as a sphere with two
points identified (Figure 11.8).

Figure 11.8: A singular sphere
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11.7 Branch Points

The key to the topological form of a complex curve p(x, y) = 0 lies in
its branch points, the points α where the Newton–Puiseux expansion of y
begins with a fractional power of (x − α) (see Section 9.4). The nature of
branch points was first described by Riemann (1851) as part of a revolu-
tionary new geometric theory of complex functions. Riemann’s idea, one
of the most illuminating in the history of mathematics, was to represent
a relation p(x, y) = 0 between complex x and complex y by covering a
plane (or sphere) representing the x variable by a surface representing the
y variable, the point or points of the y surface over a given point x = α
being those values of y that satisfy p(α, y) = 0.

If the equation p(α, y) = 0 is of degree n in y, there will in general
be n distinct y values for a given α, consequently n sheets of the y surface
lying over the x-plane in the neighborhood of x = α. At finitely many
exceptional values of x, sheets merge due to concidence of roots, and the
Newton–Puiseux theory says that at such a point y behaves like a fractional
power of x at 0. Our main problem, therefore, is to understand the behavior
of the Riemann surface for y = xm/n in the neighborhood of 0.

The idea can be grasped sufficiently well from seeing the special case
y = x1/2. If we consider the unit disk in the y-plane and try to deform it
so that the points y = ±√x lie above the point x in the unit disk of the
x-plane, then the result is something like Figure 11.9.

The angles θ on the disk boundaries are the arguments of the corre-
sponding points eiθ = cos θ + i sin θ, as we explain in Section 12.1. If

x = eiθ = ei(θ+2π)

then
y = eiθ/2, ei(θ/2+π),

giving the values shown.
It should be noted that the awkward appearance of the branch point, in

particular the line of self-intersection, is a consequence of representing the
relation y2 = x in fewer dimensions than the four it really requires. If we
similarly attempt to represent the relation y2 = x between real x and y by
laying the y-axis along the x-axis so that y = ±√x are on top of x, then the
result is an awkward folded “branch point” at 0 (Figure 11.10). This is a
consequence of trying to represent the relation in one dimension. In reality,
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Figure 11.9: Branch point for the square root

as the second part of the figure shows, when viewed as a curve in the plane
the relation is just as smooth at 0 as anywhere else. (Notice, incidentally,
that the folded line in Figure 11.10, the real y-axis, corresponds to the
self-intersection line in Figure 11.9.)

11.8 Topology of Complex Projective Curves

To understand the complete structure of the complex projective curve
defined by y2 = x we need to know its behavior at infinity. At ∞ there
is another branch point like the one at 0 (just replace x by 1/u and y by 1/v
and notice that we are looking at v2 = u near y = 0, v = 0—the same situa-
tion as before). The topological nature of the relation between x and y can
then be captured by the model seen in Figure 11.11. The sphere of x values
is covered by two spheres (like skins of an onion), slit along a line from
0 to ∞ and cross-joined by pasting the red edges together and the purple
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Figure 11.10: Branch point in one dimension and two

edges together. The slit from 0 to ∞ is arbitrary, but the cross-joining is
needed to produce the branch point structure at 0 and∞.

Figure 11.11: Covering the sphere

The covering of the x sphere by this two-sheeted surface expresses
the covering projection map (x, y) �→ x from a general point on the curve
y2 = x to its x coordinate and shows that it is two-to-one except at the
branch points 0, ∞. The two-sheeted surface itself captures the intrinsic
topological structure of the curve, and this structure can be more readily
seen by separating the two skins from the x sphere and each other, then
joining the required edges (Figure 11.12). Edges to be joined are given the
same color, and we see that the resulting surface is topologically a sphere.

This result could have been obtained more directly by projecting each
point (x, y) on the curve to y, since this is a one-to-one continuous map
between the curve and the y-axis, which we know to be topologically a
sphere (when ∞ is included). The curve here was modeled by cutting and
joining sheets on the sphere because this method extends to all algebraic
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Figure 11.12: Joining the separated sheets

curves. The Newton–Puiseux theory implies that any algebraic relation
p(x, y) = 0 can be modeled by a finite-sheeted covering of the sphere,
with finitely many branch points. The most general branch point structure
is given by a prescription for cross-joining (permuting) the sheets, and by
slitting the sheets between branch points (or, if necessary, to an auxiliary
point) they can be rejoined to produce the prescribed branching behavior.

The most interesting case of this method is the cubic curve

y2 = x(x − α)(x − β).
This relation defines a covering in the x sphere that is two-sheeted, since
for each x there are + and − values for y, with branch points at 0, α, β,
and ∞. (The branch point at ∞ is explained in the exercises below.) Thus
if we slit the sheets from 0 to α and from β to∞, the required joining is by
pasting like-colored edges, as shown in Figure 11.13.

Figure 11.13: Joining the sheets of a cubic curve

We find, as Riemann did, that the surface is a torus, and hence not
topologically the same as a sphere. This discovery illuminated the theory
of cubic curves and elliptic functions, as we will see in the next chapter.
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One quickly sees that relations of the form

y2 = (x − α1)(x − α2) · · · (x − α2n)
yield Riemann surfaces of all the forms shown in Figure 11.14. These sur-
faces are distinguished topologically from each other by the number of
“holes”: 0 for the sphere, 1 for the torus, and so on. This simple topolog-
ical invariant turns out to be the genus, which also determines the type of
functions that can parameterize the corresponding complex curve. Other
geometric and analytic properties of genus will unfold over the next few
chapters. The topological importance of genus was established by Möbius
(1863), when he showed that any closed surface in ordinary space is topo-
logically equivalent to a sphere or one of the forms seen in Figure 11.14.
For more on genus, see Chapter 15.

Figure 11.14: Riemann surfaces of genus 1, 2, 3, . . .

Exercises
We can transfer the “one-dimensional branch point” (Figure 11.10) to infinity

to see the topology of the real projective curve y2 = x.

11.8.1 Explain why the real projective curve y2 = x has a branch point at infinity
like the one at 0, and hence conclude that this curve is topologically a
circle.

We can explain the branch point at infinity of a cubic curve as follows.

11.8.2 Use the substitution x = 1/u, y = 1/v to show that the curve

y2 = x(x − α)(x − β)
behaves at infinity as the curve

v2 = u3(1 − uα)−1(1 − uβ)−1
does at 0, which in turn is qualitatively like the behavior of

v = u3/2.

11.8.3 Show, by considering the points lying above u = eiθ, that v = u3/2 has a
branch point at 0 like that of v = u1/2.
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Complex Numbers and
Functions

Preview

The insight into algebraic curves afforded by complex coordinates—that a
complex curve is topologically a surface—has important implications for
functions defined as integrals of algebraic functions, such as the logarithm,
exponential, and elliptic functions.

The complex logarithm turns out to be many-valued, due to the differ-
ent paths of integration in the complex plane between the same endpoints.
It follows that its inverse function, the exponential function, is periodic. In
fact, the complex exponential function is a fusion of the real exponential
function with the sine and cosine: ex+iy = ex(cos y + i sin y).

The double periodicity of elliptic functions also becomes clear from
the complex viewpoint. The integrals that define them are taken over paths
on a torus surface, on which there are two independent closed paths.

The two-dimensional nature of complex numbers imposes interesting
and useful constraints on the nature of differentiable complex functions.
Such functions define conformal (angle-preserving) maps between sur-
faces. Also, their real and imaginary parts satisfy equations, called the
Cauchy–Riemann equations, that govern fluid flow. So complex functions
can be used to study the motion of fluids.

Finally, the Cauchy–Riemann equations imply Cauchy’s theorem. This
fundamental theorem guarantees that differentiable complex functions have
many good features, such as power series expansions.
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12.1 Complex Functions

When Bombelli (1572) introduced complex numbers, he implicitly intro-
duced complex functions as well. The solution y of the cubic equation
y3 = py + q,

y =
3

√
q
2
+

√(q
2

)2
−
( p

3

)3
+

3

√
q
2
−
√(q

2

)2
−
( p

3

)3
,

involves the cube root of a complex argument when (q/2)2 < (p/3)3.
It could have been a revelation to see that complex numbers explain the
coincidence of algebraic (Cardano) and geometric (Viète) solutions of the
cubic equation, and more generally the Leibniz–de Moivre theorem that

x =
1
2

n

√
y +

√
y2 − 1 +

1
2

n

√
y −
√
y2 − 1 ,

when x = sin θ and y = sin nθ (Section 5.6). In the case of the cubic, this
revelation can now be savored in Needham (1997), pp. 59–60. But math-
ematicians were not concerned about the meaning of these complex func-
tions as long as they produced results that could be checked by
algebra.

The need to understand complex functions became pressing only with
transcendental functions, particularly those defined by integration. A key
example is the logarithm function, which comes from integrating
dz/(1 + z). Once this function was understood, the reason for algebraic
miracles like the Leibniz–de Moivre theorem became much clearer.

Johann Bernoulli (1702) opened the story of the complex logarithm
when he noted that

dz
1 + z2

=
dz

2(1 + z
√−1)

+
dz

2(1 − z√−1)

and drew the conclusion that “imaginary logarithms express real circu-
lar sectors.” He did not actually perform the integration, but he may have
found

tan−1 z =
1
2i

log
i − z
i + z

,

since Euler gives him credit for a similar formula when writing to him
in Euler (1728b). However, this may have been the young Euler’s defer-
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ence to his former teacher, because Johann Bernoulli showed poor under-
standing of logarithms as the correspondence continued. He persistently
claimed that log(−x) = log(x) on the grounds that

d
dx

log(−x) =
1
x
=

d
dx

log(x)

despite a reminder from Euler (1728b) that equality of derivatives does
not imply equality of integrals. Euler went on to suggest that the complex
logarithm had infinitely many values.

In the meantime, Cotes (1714) had also discovered a relation between
complex logarithms and circular functions:

log(cos x + i sin x) = ix.

Recognizing the importance of this result, he entitled his work Harmonia
mensurarum (Harmony of measures). The “measures” in question were the
logarithm and inverse tangent functions, which measure the hyperbola and
the circle, respectively, via the integrals

∫
dx/(1 + x) and

∫
dx/(1 + x2). A

wide class of integrals had been reduced to these two types, but it was not
understood why two apparently unrelated “measures” should be required.
Cotes’s result was the first (apart from the near-miss of Johann Bernoulli)
to relate the two, showing that in the wider domain of complex functions
the logarithm and inverse circular functions are essentially the same.

The most compact statement of their relationship was reached around
1740, when Euler shifted attention from the logarithm function to its inverse,
the exponential function. The definitive formula

eix = cos x + i sin x

was first published by Euler (1748a), who derived it by comparing series
expansions of both sides. Euler’s formulation in terms of the single-valued
function eix gave a simple explanation of the many values of the loga-
rithm (which Cotes had missed) as a consequence of the periodicity of cos
and sin. A direct explanation, based on the definition of log as an inte-
gral, became possible when Gauss (1811) clarified the meaning of com-
plex integrals and pointed out their dependence on the path of integration
(see Section 12.3).

Euler’s formula also shows that

(cos x + i sin x)n = einx = cos nx + i sin nx
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and hence gives a deeper explanation of the Leibniz–de Moivre formula.
More generally, the addition theorems for cos and sin (Section 10.6) could
be seen as consequences of the much simpler addition formula for the
exponential function

eu+v = eu · ev.
The imaginary function eix was so much more coherent than its real con-
stituents cos x and sin x that it was difficult to do without it, and Euler’s for-
mula gave mathematicians a strong push toward the eventual acceptance
of complex numbers. A more detailed account of the role of the logarithm
and exponential functions in the development of complex numbers may be
found in Cajori (1913).

The Cauchy-Riemann Equations

At almost the same time that Euler elucidated cosine and sine, d’Alembert
found many real functions occurring naturally in pairs as the real and imag-
inary parts of complex functions. In hydrodynamics, d’Alembert (1752)
discovered that the equations

∂P
∂y
− ∂Q
∂x
= 0 and

∂P
∂x
+
∂Q
∂y
= 0

relate the velocity components P, Q in two-dimensional steady irrotational
fluid flow. These equations come from the requirements that Qdx + P dy
and P dx−Qdy be complete differentials, in which case another complete
differential is

Qdx + P dy + i(P dx − Qdy) = (Q + iP)

(
dx +

dy
i

)
= (Q + iP)d

(
x +
y

i

)
.

D’Alembert concluded that this means Q+ iP is a function f of x+ y/i, so
that Q = Re( f ) and P = Im( f ).

To feel the force of this result, one has to forget the modern definition
of function, under which u(x, y) + iv(x, y) is a function of x + iy for any
functions u, v. In the 18th-century context, a “function” f (x + iy) of x + iy
was calculable from x+iy by elementary operations; at worst, f (x+iy) was
a power series in x + iy. This imposes a strong constraint on u, v, namely
that

∂u
∂x
=
∂v

∂y
,
∂u
∂y
= − ∂v
∂x
.
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These were just the equations d’Alembert found in his hydrodynami-
cal investigations, but they came to be named the Cauchy–Riemann equa-
tions, because Cauchy and Riemann stressed their key role in the study of
complex functions. The concept of complex function was solidified when
Cauchy (1837) showed that a function f (z), where z = x + iy, merely had
to be differentiable in order to be expressible as a power series in z. Thus it
suffices to define a complex function f (z) as one that is differentiable with
respect to z in order to guarantee that f is defined with 18th-century strict-
ness. It follows, in particular, that the first derivative of f entails deriva-
tives of all orders and that the values of f in any neighborhood determine
its values everywhere. This rigidity in the notion of complex function is
enough of a constraint to enable nontrivial properties to be proved, but at
the same time it leaves enough flexibility—one might say “fluidity”—to
cover important general situations.

Exercises

Euler’s derivation of eix = cos x + i sin x is easy to explain using the power
series

ey = 1 +
y

1!
+
y2

2!
+
y3

3!
+ · · ·

and

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

found in Section 8.5.

12.1.1 Assuming that the series for ey is also valid for y = ix, show that

eix =

(
1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
+ i

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
.

12.1.2 Assuming it is valid to differentiate the sine series term by term, show that

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ,

and hence that eix = cos x + i sin x.

Another consequence of eix = cos x + i sin x is that i = cos π2 + i sin π2 = eiπ/2,
which allows us to evaluate the outlandish number ii.

12.1.3 Show that ii has a real value (Euler (1746)). What is it?

12.1.4 Using the fact that e2inπ = 1 for any integer n, give a formula for all values
of ii (Euler (1746)).
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12.2 Conformal Mapping

Another important general situation clarified by complex functions is the
problem of conformal mapping. Mapping a sphere (the earth’s surface)
onto a plane is a practical problem that has attracted the attention of math-
ematicians since ancient times. Before the 18th century, the most notable
mathematical contributions to mapping were stereographic projection
(Section 11.6), due to Ptolemy around 150 ce, and the Mercator projection
used by G. Mercator in 1569 (this Mercator was Gerard, not the Nicholas
who discovered the series for log(1 + x)). Both these projections were
conformal, that is, angle-preserving, or what 18th-century mathematicians
called “similar in the small.” This means that the image f (R) of any region
R tends toward an exact scale map of R as the size of R tends to 0. Since
“similarity in the large” is clearly impossible—for example, a great circle
cannot be mapped to a closed curve that divides the plane into two equal
parts—conformality is the best one can do to preserve the appearance of
regions on the sphere. Preservation of angles was intentional in the Merca-
tor projection, whose purpose was to assist navigation, and in the case of
stereographic projection conformality was first noticed by Harriot around
1590 (see Lohne (1979)).

Figure 12.1 illustrates the conformality of stereographic projection in
the case of spherical triangles. The sphere has been divided into trian-
gles with angles π/2, π/3, π/4, and every other triangle has been cut out to
allow a light to shine from inside the sphere and to cast shadows on the
plane. It can be seen that the shadow triangles indeed have the same angles
as their counterparts on the sphere. (This example shows another feature
of stereographic projection: it maps circles to circles.)

Advances in the theory of conformal mapping were made by Lambert
(1772), Euler (1777) (sphere onto plane), and Lagrange (1779) (general
surface of revolution onto plane). All these authors used complex numbers,
but Lagrange’s presentation is the clearest and most general. Using the
method of d’Alembert (1752), he combined a pair of differential equations
in two real variables into a single equation in one complex variable and
arrived at the result that any two conformal maps of a surface of revolution
onto the (x, y)-plane are related via a complex function f (x + iy) mapping
the plane onto itself. These results were crowned by the result of Gauss
(1822) generalizing Lagrange’s theorem to conformal maps of an arbitrary
surface onto the plane.
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Figure 12.1: Example of stereographic projection

Conversely, a complex function f (z) defines a map of the z plane into
itself, and it is easy to see that this map is conformal. In fact, this is a
consequence of the differentiability of f . To say that a nonzero limit

lim
δz→0

f (z0 + δz) − f (z0)
δz

exists is to say that the mapping of the disk {z : |z − z0| < |δz|} around z0 to
the region around f (z0) tends to a scale mapping as |δz| tends to 0. If the
derivative is expressed in polar form as

f ′(z0) = reiα,

then r is the scale factor of this limit mapping and α is the angle of rotation.
Riemann (1851) seems to have been the first to take the conformal map-
ping property as a basis for the theory of complex functions. His deepest
result in this direction was the Riemann mapping theorem, which states
that any region of the plane bounded by a simple closed curve can be
mapped onto the unit disk conformally, and hence by a complex function.
The proof of this theorem in Riemann (1851) depends on properties that
Riemann justified partly by an appeal to physical intuition that he called
Dirichlet’s principle. Such reasoning went against the growing tendency
toward rigor in 19th-century analysis, and stricter proofs were given by
Schwarz (1870) and Neumann (1870). However, Riemann’s faith in the
physical roots of complex function theory was eventually justified when
Hilbert (1900b) put Dirichlet’s principle on a sound basis.
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Exercises

The claim that differentiability of f (z) implies that f is a conformal mapping
must be qualified by the condition f ′(z) � 0, because if the scale factor tends to 0
then f cannot be said to be a scale mapping. At points where f ′(z) = 0 one may
find that angles are altered. Here is an example.

12.2.1 Show that f (z) = z2 defines a conformal mapping except at z = 0, where it
doubles angles.

This is no surprise because z �→ z2 is a two-sheeted covering of the plane C

(see Figure 11.9 in Section 11.7).

12.2.2 Show that the map z �→ z2 is two-to-one except at z = 0, and relate the
angle doubling at z = 0 to the branch point of the covering.

12.2.3 Similarly describe the behavior of the map z �→ z3 at z = 0.

12.3 Cauchy’s Theorem

We have seen that interesting complex functions arise from integration.
For example, the elliptic functions come from inversion of elliptic integrals
(Section 10.8). However, it is not at first clear what the integral

∫ z
z0
f (t) dt

means when z0, z are complex numbers. It is natural, and not technically
difficult, to define

∫ z
z0
f (t) dt as

∫
C f (t) dt, the integral of f along a curve

C from z0 to z; the problem is that
∫
C f (t) dt appears to depend on C and

hence may not be a function of z.
The first to recognize and resolve this problem seems to have been

Gauss. In a letter to Bessel, Gauss (1811) raised the problem and claimed
its resolution as follows:

Now how is one to think of
∫
Φ(z) dz for z = a + ib? Evi-

dently, if one wishes to start from clear concepts, one must
assume that z changes by infinitely small increments (each of
the form α + iβ) from that value for which the integral is to
be 0 to c = a + ib, and then sum all the φ(z) dz . . . But now
. . . continuous transition from one value of z to another a+ ib
takes place along a curve and hence is possible in infinitely
many ways. I now conjecture that the integral

∫ c
0
φ(z) dz will

always have the same value after two different transitions if
φ(z) never becomes infinite within the region enclosed by the
two curves representing the transitions.

Translation of Gauss (1811) in Birkhoff (1973), p. 31
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In the same letter, Gauss also observed that if φ(z) does become infinite
in the region, then in general

∫ c
0
φ(z) dz will take different values when

integrated along different curves. He saw in particular that the infinitely
many values of log c corresponded to the different ways a path from 1 to c
could wind around z = 0, the point where φ(z) = 1/z becomes infinite.

The theorem that
∫ z
z0
f (t) dt is independent of the path in a region where

f is finite (and differentiable, which went without saying for Gauss) is now
known as Cauchy’s theorem, since Cauchy was the first to offer a proof
and to develop the consequences of the theorem. An equivalent statement
is that

∫
C f (t) dt = 0 for any closed curve C in a region where f is dif-

ferentiable. Cauchy presented a proof to the Paris Academy in 1814 but
first published it later (Cauchy (1825)). In Cauchy (1846) he gave a more
transparent proof, based on the Cauchy–Riemann equations and the theo-
rem of Green (1828) and Ostrogradsky (1828), relating a line integral to a
surface integral. The latter theorem, usually known as Green’s theorem, is
a generalization of the fundamental theorem of calculus to real functions
g(x, y) of two variables and can be stated as follows: if C is a simple closed
curve bounding a region R and g is suitably smooth, then∫

C
g dx =

∫∫
R
∂g

∂y
dx dy, and

∫
C
g dy = −

∫∫
R
∂g

∂x
dx dy,

where
∫∫
R is the surface integral over R and

∫
C is the line integral around C

in the counterclockwise sense. (The difference in sign in the two formulas
reflects the different sense of C when x and y are interchanged.)

Cauchy’s theorem follows from Green’s by an easy calculation. If
f (t) = u(t) + iv(t)

is the decomposition of f into real and imaginary parts, and if we write

dt = dx + i dy,

then ∫
C
f (t) dt =

∫
C
(u + iv)(dx + i dy)

=

∫
C
(u dx − v dy) + i

∫
C
(v dx + u dy)

=

∫∫
R

(
∂u
∂y
+
∂v

∂x

)
dx dy + i

∫∫
R

(
∂v

∂y
− ∂u
∂x

)
dx dy,
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which equals 0 since

∂u
∂y
+
∂v

∂x
= 0 and

∂v

∂y
− ∂u
∂x
= 0

by the Cauchy–Riemann equations. This proof requires f to have a con-
tinuous first derivative in order to be able to apply Green’s theorem. The
restriction of continuity of f ′(t) in the proof was removed by Goursat
(1900). As it happens, if f ′ exists, it will have not only continuity but
also derivatives of all orders.

This follows from one of the remarkable consequences Cauchy (1837)
drew from the assumption

∫
C f (t) dt = 0, namely, that f has a power-series

expansion. By Goursat (1900), then, differentiability of a complex func-
tion is enough to guarantee a power-series expansion. A generalization of
this result to f that become infinite at isolated points was made by Lau-
rent (1843) ( f then has an expansion including negative powers, called the
Laurent expansion) and to many-valued f with branch points by Puiseux
(1850) ( f then has an expansion in fractional powers, the Newton–Puiseux
expansion).

Exercises

The Cauchy–Riemann equations follow easily from the existence of f ′(z),
that is, from the condition that

lim
δz→0

f (z + δz) − f (z)
δz

have the same value, regardless of the path along which δz→ 0.

12.3.1 Suppose f (z) = u(x, y) + iv(x, y) and δz = δx + iδy. By letting δz → 0
along the x-axis (δy = 0) and along the y-axis (δx = 0), and equating the
resulting values of f ′(z), show that

∂u
∂x
=
∂v

∂y
,
∂u
∂y
= − ∂v
∂x
.

These equations give a convenient test for a function u(x, y) + iv(x, y) to be a
differentiable function of z = x + iy.

12.3.2 Check that u(x, y) = x2 − y2 and v(x, y) = 2xy satisfy the Cauchy–Riemann
equations.

12.3.3 Express x2 − y2 + 2ixy as a function of z = x + iy.
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12.4 Double Periodicity of Elliptic Functions

The view of complex integration exposed by Cauchy’s theorem is one step
toward understanding elliptic integrals such as

∫ z
0
dt/
√
t(t − α)(t − β). The

other important step is the idea of a Riemann surface (Section 11.8), which
enables us to visualize the possible paths of integration from 0 to z. The
“function” 1/

√
t(t − α)(t − β) is of course two-valued and, by an argument

like that in Section 11.8, is represented by a two-sheeted covering of the
t sphere, with branch points at 0, α, β, ∞. Thus the paths of integration,
correctly viewed, are curves on this surface, which is topologically a torus
(again, as in Section 11.8).

Now a torus contains certain closed curves that do not bound a piece
of the surface, such as the red and blue curves, C1 and C2, shown in Figure
12.2. There is no region R bounded by C1 or C2; hence Green’s theorem
does not apply, and we in fact obtain nonzero values

ω1 =

∫
C1

dt√
t(t − α)(t − β) ,

ω2 =

∫
C2

dt√
t(t − α)(t − β) .

Consequently the integral

Φ−1(z) =
∫ z

0

dt√
t(t − α)(t − β)

will be ambiguous: for each valueΦ−1(z) = w obtained for a certain path C
from 0 to z we also obtain the values w+mω1+nω2 by adding to C a detour
that winds m times around C1 and n times around C2. (For topological
reasons, this is essentially the most general path of integration.)

It follows that the inverse relation Φ(w) = z, the elliptic function cor-
responding to the integral, satisfies

Φ(w) = Φ(w + mω1 + nω2)

for any integers m, n. That is, Φ is doubly periodic, with periods ω1, ω2.
This intuitive explanation of double periodicity is due to Riemann (1851),
who later (Riemann (1858a)) developed the theory of elliptic functions
from this standpoint.
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Figure 12.2: Nonbounding curves on the torus

Remarkable series expansions of elliptic functions, which exhibit the
double periodicity analytically, were discovered by Eisenstein (1847). The
precedents for Eisenstein’s series, as Eisenstein himself pointed out, were
partial fraction expansions of circular functions discovered by Euler, for
example

π cot πx =
∞∑

n=−∞

1
x + n

(Euler (1748a), p. 191). It is obvious (at least formally, though one has to
be a little careful about the meaning of this summation to ensure conver-
gence) that the sum is unchanged when x is replaced by x + 1; hence the
period 1 of π cot πx is exhibited directly by its series expansion. Eisenstein
showed that doubly periodic functions could be obtained by analogous
expressions, such as

∞∑
m,n=−∞

1
(z + mω1 + nω2)2

,

which again (with suitable interpretation to ensure convergence) are obvi-
ously unchanged when z is replaced by z+ω1 or z+ω2. Hence we obtain a
function with periods ω1, ω2. The function above is in fact identical (up to
a constant) with the Weierstrass ℘-function, mentioned in Section 10.7 as
the inverse to the integral

∫
dt/
√

4t3 − g2t − g3. Weierstrass (1863), p. 121,
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found the relations between g2, g3 and the periods ω1, ω2:

g2 = 60
∑ 1

(mω1 + nω2)4
,

g3 = 140
∑ 1

(mω1 + nω2)6
,

where the sums are over all pairs (m, n) � (0, 0). Elegant modern accounts
of the Eisenstein and Weierstrass theories may be found in Weil (1976)
and Robert (1973).

Exercises

The precise definition of the Weierstrass ℘-function is

℘(z) =
1
z2
+

∞∑
m,n�0,0

(
1

(z + mω1 + nω2)2
− 1

(mω1 + nω2)2

)
.

This series has better convergence than the Eisenstein series given above, but its
double periodicity is not quite so obvious. We can establish double periodicity by
differentiating and integrating as follows (which is valid because of the conver-
gence properties of the Weierstrass series).

12.4.1 By differentiating term by term, show that

℘′(z) = −2
∞∑

m,n=−∞

1
(z + mω1 + nω2)3

,

and conclude that ℘′(z + ω1) = ℘′(z) and ℘′(z + ω2) = ℘′(z).

12.4.2 By integrating the equations just obtained, show that

℘(z + ω1) − ℘(z) = c and ℘(z + ω2) − ℘(z) = d,

for some constants c and d.

12.4.3 Deduce from Exercise 12.4.2 that

℘
(
ω1

2

)
− ℘
(
−ω1

2

)
= c and ℘

(
ω2

2

)
− ℘
(
−ω2

2

)
= d.

12.4.4 But ℘(z) = ℘(−z) (why?); hence conclude that ℘ is doubly periodic.
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12.5 Elliptic Curves

We have seen that nonsingular cubic curves of the form

y2 = ax3 + bx2 + cx + d (1)

are important not only among the cubic curves themselves (see Newton’s
classification, Sections 6.4 and 7.4), but also in number theory (Section
10.3) and the theory of elliptic functions (Section 10.4). One of the great
achievements of 19th-century mathematics was finding a unified view of
all these aspects of cubic curves. The view was glimpsed by Jacobi (1834),
and it came more clearly into focus with the development of complex anal-
ysis between Riemann (1851) and Poincaré (1901). The theory of elliptic
curves, as the unified view is now known, continues to inspire researchers
today, since it seems to encompass some of the most fascinating problems
of number theory. We now know, for example, how to derive Fermat’s last
theorem (see Section 10.1) from properties of elliptic curves.

Jacobi saw, at least implicitly, that the curve (1) could be parameterized
as

x = f (z), y = f ′(z), (2)

where f and its derivative f ′ are elliptic functions. Knowing that f and
f ′ are doubly periodic, with the same periods ω1, ω2, say, he would have
seen that this gave a map of the z plane C onto the curve (1) for which the
preimage of a given point on (1) is a set of points in C of the form

z + Λ = {z + mω1 + nω2 : m, n ∈ Z},
where

Λ = {mω1 + nω2 : m, n ∈ Z}.
Λ is called the lattice of periods of f . The numbers z+mω1 + nω2 in z+Λ
are said to be equivalent with respect to Λ. One such equivalence class is
shown by asterisks inside parallelograms in Figure 12.3.

The parameterization (2) gives a one-to-one correspondence between
the points ( f (z), f ′(z)) of the curve and the equivalence classes z+Λ. Today
we say that the curve is isomorphic to the space C/Λ of these equivalence
classes. Jacobi might have seen, though it was probably not of interest to
him, that C/Λ is a torus. One sees this by taking one parallelogram in C,
which includes a representative of each equivalence class, and identifying
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Figure 12.3: Lattice-equivalent points

the equivalent points on its boundary (that is, pasting opposite sides together,
as in Figure 12.4). Of course, the torus form of (1) eventually came to light
through the Riemann surface construction given in Section 11.8.

Figure 12.4: Construction of torus by pasting
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Weierstrass (1863) elegantly showed both the double periodicity of
elliptic functions and the parameterization of cubic curves. Beginning with

∞∑
m,n=−∞

1
(z + mω1 + nω2)2

,

which is obviously double periodic, he defined the function

℘(z) =
1
z2
+

∞∑
m,n�0,0

(
1

(z + mω1 + nω2)2
− 1

(mω1 + nω2)2

)
,

which has better convergence properties and is also doubly periodic. He
then showed by simple computations with series that

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3,

where g2, g3 are the constants, depending on ω1, ω2, that were defined in
Section 12.4. It follows that the point (℘(z), ℘′(z)) lies on the curve

y2 = 4x3 − g2x − g3, (3)

and a little further checking shows that (3) is in fact isomorphic to C/Λ,
whereΛ is the lattice of periods of ℘. The parameterization of all curves (1)
by elliptic functions follows by making a linear transformation.

The reason for saying that the curve and C/Λ are isomorphic (which
comes from the Greek for “same form”) is not only because they both
have the form of a torus. They also have the same algebraic structure,
which comes to light when we consider their natural addition operation.

Once the curve (1) is parameterized as

x = f (z), y = f ′(z),

the “addition” of points on the curve is induced by adding their parameter
values. By the double periodicity of f and f ′, this “addition” is simply
ordinary addition in C, modulo Λ. In particular, it is immediate that addi-
tion of points has some properties of ordinary addition, such as commu-
tativity and associativity. However, as mentioned in Section 10.3, addition
of parameter values z is also reflected in the geometry of the curve. The
most concise statement of the relationship, due to Clebsch (1864), is that
if z1, z2, z3 are parameter values of three collinear points, then

z1 + z2 + z3 = 0 mod (ω1, ω2)
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(or z1+z2+z3 ∈ Λ). This means that addition of points also has an elemen-
tary geometric interpretation, for which, incidentally, the algebraic prop-
erties are far less obvious.

On the other hand, the straight-line interpretation of addition gives the
simplest explanation of the addition theorems for elliptic functions. As we
saw in Section 10.3, the value of f (z3) is easy to compute as a rational
function of f (z1), f ′(z1), f (z2), f ′(z2) when z1, z2, z3 are the parameter
values of collinear points. Originally, of course, the formula was obtained
by Euler, with great difficulty, by manipulating the integral inverse to f
(see Section 10.7).

Another reason to accept C/Λ as the “right” view of the curve is that
it answers the seemingly unrelated question of classification by projective
equivalence. Recall from Section 7.4 that Newton reduced cubics to the
cusp type, the double-point type, and three nonsingular types using real
projective transformations. All cubics with a cusp are, in fact, equivalent
to y2 = x3, and all with a double point are equivalent to y2 = x2(x + 1),
while the distinction between the nonsingular types disappears over the
complex numbers, where, as we now know, all are equivalent to tori C/Λ.
The problem that remains is to decide projective equivalence among the
nonsingular cubics. Salmon (1851) showed that this was determined by a
certain complex number τ, which can be computed from the equation of
the curve. He defined τ geometrically, so that its projective invariance was
obvious, with no thought of elliptic functions. But τ turned out to be noth-
ing but ω1/ω2, which means that two nonsingular cubics are projectively
equivalent if and only if their period lattices Λ have the same shape.

Exercises

Strictly speaking, the ratio τ = ω1/ω2 determines only the shape of the par-
allelogram with vertices 0, ω1, ω2, and ω1 + ω2.

12.5.1 Explain how both the angle between adjacent sides of this parallelogram,
and the ratio between their lengths, may be extracted from τ = ω1/ω2.

The lattice of periods

Λ = {mω1 + nω2 : m, n ∈ Z}
can be viewed as the set of vertices in a tiling of the plane by copies of this par-
allelogram, as in Figure 12.3. However, infinitely many differently shaped par-
allelograms give the same Λ. Thus the number τ alone should not be taken to
characterize the shape of Λ.
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12.5.2 Show that Λ may also be tiled by copies of a parallelogram with shape
given by τ + 1.

12.5.3 More generally, show that Λ may be generated by any two of its elements,
ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 provided ad − bc = ±1. Hint: Write
down a product of matrices transforming the column vector of (ω1, ω2) to
(ω′1, ω

′
2) and back to (ω1, ω2), and take its determinant.

12.5.4 Deduce from Exercise 12.5.3 that the lattice Λ = {mω1 + nω2 : m, n ∈ Z}
has shape characterized by the whole family of complex numbers

aτ + b
cτ + d

where τ =
ω1

ω2
and a, b, c, d are integers with ad − bc = ±1.

There are functions of the complex variable τ that depend only on the lattice
Λ, and hence take the same value for each number (aτ+b)/(cτ+d) characterizing
the lattice shape.

12.5.5 Consider g2 and g3 from Section 12.4, which are obviously functions g2(Λ)
and g3(Λ) of the lattice Λ. Show that g3

2/g
2
3 and g3

2/(g
3
2 − 27g2

3) are both
functions of τ.

The latter function is none other than the famous modular function mentioned

in Section 5.7 in connection with the solution of the quintic equation. For more

on its amazing properties, see McKean and Moll (1997).

12.6 Uniformization

The characteristic of nonsingular cubics that allows their parameterization
by elliptic functions is their topological form. The two periods correspond
to the two essentially different circuits around the torus (Figure 12.2).

A representation of the x and y values on a curve by simultaneous
functions of a single parameter z is sometimes called a uniform represen-
tation, and so the problem of parameterizing all algebraic curves in this
way came to be known as the uniformization problem. Once the elliptic
case was understood, it became clear that a solution of the uniformization
problem for arbitrary algebraic curves would depend on a better under-
standing of surfaces: their topology, the periodicities associated with their
closed curves, and the way these periodicities could be reflected in C.
These problems were first attacked by Poincaré and Klein in the 1880s,
and their work led to the eventual positive solution of the uniformization
problem by Poincaré (1907) and Koebe (1907).
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Even more important than the solution of this single problem, however,
was the amazing convergence of ideas in the preliminary work of Poincaré
and Klein. They discovered that multiple periodicities are reflected in C

by groups of transformations, and that the transformations in question are
of the simple type z �→ (az + b)/(cz + d), called linear fractional. We first
met these transformations, for a real variable, as transformations of the
projective line in Section 7.6.

Linear fractional transformations generalize the linear transformations
z �→ z + ω1, z �→ z + ω2 naturally associated with the periods of elliptic
functions. However, while the transformations z �→ z + ω1, z �→ z + ω2

are algebraically and geometrically transparent—they commute, and they
generate the general transformations z �→ z+mω1+nω2, which are simply
translations of the plane—the more general linear fractional transforma-
tions are not as easily understood. Linear fractional transformations do
not normally commute, and their mastery requires a simultaneous grasp of
algebraic, geometric, and topological aspects.

The simultaneous view was enormously fruitful in the development of
group theory and topology, as we will see in Chapters 14 and 15. Geometry
also got a new lease of life when Poincaré (1882) found that linear frac-
tional transformations give an interpretation of non-Euclidean geometry, a
field that until then had been a curiosity on the fringes of mathematics. In
the next chapter we look at the origins of non-Euclidean geometry and see
how the subject was transformed by Poincaré’s discovery.

Exercises

The first example, beyond the elliptic functions, of periodicity under linear
fractional transformations is seen in the modular function derived in the previous
exercise set. It turns out that the periodicity of the modular function can be gen-
erated by two transformations: z �→ z + 1 and z �→ −1/z. This periodicity can be
depicted by a pattern shown in Figure 13.20.

12.6.1 Check that z �→ z + 1 and z �→ −1/z are among the transformations

z �→ az + b
cz + d

, where a, b, c, d are integers with ad − bc = ±1.

12.6.2 Show that the transformations z �→ z + 1 and z �→ −1/z do not commute.

12.6.3 Show that both z �→ z + 1 and z �→ −1/z map the half-plane {Im z > 0}
onto itself, and that z �→ −1/z exchanges the inside and outside of the unit
circle.
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Non-Euclidean Geometries

Preview

One of the new frontiers in geometry opened up by calculus was the study
of curvature. The concept of curvature is particularly interesting for sur-
faces, because it can be defined intrinsically. The intrinsic curvature, or
Gaussian curvature as it is known, is unaltered by bending the surface, so
it can be defined without reference to the surrounding space.

This leads to the study of intrinsic surface geometry, in which distance,
“lines” (curves of shortest length), angles, areas, and so on, are defined by
measurements within the surface.

The question then arises, to what extent does the intrinsic geometry of
a curved surface resemble the classical geometry of the plane? For surfaces
of constant curvature, the difference is reflected in two of Euclid’s axioms:
the axiom that straight lines are infinite, and the parallel axiom.

On surfaces of constant positive curvature, such as the sphere, all lines
are finite and there are no parallels. On surfaces of zero curvature there
may also be finite straight lines; but if all straight lines are infinite the
parallel axiom holds. The most interesting case is constant negative curva-
ture because it leads to a realization of non-Euclidean geometry, found by
Beltrami (1868a).

Poincaré (1882) showed that some of Beltrami’s realizations arise nat-
urally in complex analysis. Papers had already been published with pic-
tures of patterns of non-Euclidean “lines,” most notably Schwarz (1872).
Thus, non-Euclidean geometry was actually a part of existing mathemat-
ics, but a part whose geometric nature had not previously been understood.
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13.1 Transcendental Curves

We saw in Chapter 8 that calculus in the 17th century was greatly stim-
ulated by problems in the geometry of curves. Differentiation grew from
methods for constructing tangents, and integration from attempts to find
areas and arc lengths. Not only did calculus unlock the secrets of the
classical curves and of the algebraic curves defined by Descartes; it also
extended the concept of curve itself. Once it became possible to handle
slopes, lengths, and areas with precision, it also became possible to use
these quantities to define new, nonalgebraic, curves. These were the curves
called “mechanical” by Descartes (Section 6.3) and “transcendental” by
Leibniz. In contrast to algebraic curves, which could be studied in some
depth by purely algebraic methods, transcendental curves were insepara-
ble from the methods of calculus. Hence it is not surprising that a new set
of geometric ideas, the ideas of “infinitesimal” or differential geometry,
emerged from the investigation of transcendental curves.

Among the new results on transcendental curves was the first solution
of the ancient problem of arc length. The problem was first posed for an
algebraic curve, the circle, by the Greeks and in this case it is equivalent
to an area problem (“squaring the circle”), since both area and arc length
of the circle depend on π. As we now know, π is a transcendental number
(Section 2.3), so the arc length problem for the circle has no solution by
the elementary means allowed by the Greeks. The first curve whose arc
length could be found by elementary means was discovered by Harriot
around 1590. It is the curve defined by the polar equation

r = ekθ

known as the logarithmic or equiangular spiral.

Harriot did not have the exponential function and knew the curve only
by its equiangular property, which is that the tangent makes a constant
angle α (depending on k) with the radius vector. The spiral turned up in his
researches on navigation and map projections (Section 12.2) as the plane
projection of a rhumb line on the sphere. A rhumb line is a curve that
meets the meridians at a constant angle; in practical terms, it represents
the course of a ship sailing in a fixed compass direction.

Not having the tools of calculus, Harriot relied on ingenious geometry
and a simple limit argument, which was brought to light by Lohne (1979).
The idea should be clear from Figure 13.1.
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Figure 13.1: Harriot’s construction of the equiangular spiral

An equilateral triangle with base angles α is cut into similar trapezoids
by lines parallel to its base. When each trapezoid is cut by its diagonal, the
resulting triangles can be reassembled into a kind of fan bounded by a
polygonal spiral consisting of pieces of the red sides of the original trian-
gle. The red spiral is equiangular in the sense that every other line from
the common apex of the triangles meets it at angle α.

When the construction is continued indefinitely, it is obvious that the
total length of the red spiral is the sum of the red sides of the triangle. This
is true independently of the height of the trapezoids. Now, if we let the
height of the trapezoids approach zero, the polygonal spiral approaches a
smooth equiangular spiral, whose length therefore equals the sum of the
red sides of the triangle.

Harriot’s work was not published, and the arc length of the equiangu-
lar spiral was rediscovered by Torricelli (1645). Gradually the problem of
arc length became understood more systematically as a problem of inte-
gration, though usually a rather intractable one. The first solution for an
algebraic curve was for the “semicubical parabola” y2 = x3, by Neil and
Heuraet in 1657. Soon after this Wren1 solved the problem for the cycloid,
the path traced by a point on a circle rolling on a line. His solution was

1This is none other than Sir Christopher Wren, famous for designing many churches in
London, such as St Paul’s cathedral.
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given by Wallis (1659). Wren found, remarkably, that the length of one
arch of the cycloid is a rational multiple (namely, 4) of the diameter of the
circle.

Other remarkable properties of the cycloid are related to mechanics,
and one of these will be seen geometrically in the next section. Another
among the first known transcendental curves is the tractrix of Newton
(1676b). Newton defined this curve by the property that the length of its
tangent from point of contact to the x-axis is constant (Figure 13.2).

a
a

Figure 13.2: The tractrix

It follows that the tractrix satisfies

dy
ds
=
y

a
,

where s denotes arc length. By using ds =
√
dx2 + dy2, this differential

equation can be solved to give

x = a log
a +
√
a2 − y2
y

−
√
a2 − y2,

the equation for the curve given, in more geometric language, by Huygens
(1693b). Huygens pointed out that the curve could be interpreted as the
path of a stone pulled by a string of length a (hence the name “tractrix”).
Thus the tractrix, too, has some mechanical significance. In fact it can be
constructed from a famous mechanical curve, the catenary, which is the
shape of a hanging chain. The method is described in the next section. But
the most important role of the tractrix is to generate the pseudosphere, a
surface of constant negative curvature discussed in Section 13.3.

Exercises

The arc length of y2 = x3 is today a fairly routine exercise with the arc length

integral
∫ √

1 +

(
dy
dx

)2
dx.
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13.1.1 Show that the arc length of y = x3/2 between O and x = a is

8
27

⎛
⎜⎜⎜⎜⎜⎝

(
1 +

9a
4

)3/2
− 1
⎞
⎟⎟⎟⎟⎟⎠ .

Likewise, it is easy for us to derive properties of the logarithmic spiral from
its polar equation and knowledge of the exponential function.

13.1.2 Show that the logarithmic spiral is self-similar. That is, magnifying r = ekθ

by a factor m to r = mekθ gives a curve that is congruent to the original (in
fact, it results from a rotation of the original).

Jakob Bernoulli was so impressed by this property of the logarithmic spi-
ral that he arranged to have the spiral engraved on his tombstone, with a motto:
Eadem mutata resurgo (“Though changed, I arise again the same”). (See Jakob
Bernoulli (1692) p. 213.)

13.1.3 Deduce the equiangular property of the logarithmic spiral from its self-
similarity.

The equation of the tractrix given above can be derived as follows.

13.1.4 Explain why the constant tangent property implies dy
ds =

y
a , then multiply

both sides of this equation by ds
dx =

√
1 + ( dydx )

2, and deduce that

dx
dy
= ±
√
a2 − y2
y

.

13.1.5 Check by differentiation that x = a log
a+
√

a2−y2
y

− √a2 − y2 satisfies the
differential equation found in Exercise 13.1.4, and also show that x has the
appropriate value when y = a.

13.2 Curvature of Plane Curves

As mentioned at the beginning of this chapter, curvature is one of the
most important ideas in differential geometry. The extension of this idea
from curves to surfaces and then to higher-dimensional spaces has had
many important consequences for mathematics and physics, among them
clarification of both the mathematical and physical meaning of “space,”
“space-time,” and “gravitation.” In this section we look at the beginnings
of the theory of curvature in the 17th-century theory of curves.

Just as the direction of a curveC at point P is determined by its straight-
line approximation, that is, tangent, at P, the curvature of C at P is deter-
mined by an approximating circle. Newton (1665c) was the first to single
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out the circle that defines the curvature: the circle through P whose center
R is the limiting position of the intersection of the normal through P and
the normal through a nearby point Q on the curve. R is called the center
of curvature, RP = ρ the radius of curvature, and 1/ρ = κ the curvature.
It follows that the circle of radius r has constant curvature 1/r. The only
other curve of constant curvature is the straight line, which has curvature 0.
This follows from the formula for curvature discovered by Newton (1671):

ρ =
[1 + (dy/dx)2]3/2

d2y/dx2
.

There is an interesting relationship between a curve C and the locus
C′ of the center of curvature of C. C is the so-called involute of C′, which,
intuitively speaking, is the path of the end of a piece of string as it is
unwound from C′ (Figure 13.3). It is intuitively clear that Q, the end of
the string, is instantaneously moving in a circle with center at P, the point
where the string is tangential to C′.

Huygens discovered that the involute of a cycloid is another cycloid—a
property used in Huygens (1673) to design clocks with a cycloidal pendu-
lum. (Thus if the blue curve above is replaced by a cycloid, a weight Q on
the end of a string PQ swings in a cycloidal path which, by another result
of Huygens, takes constant time.) Two other stunning results on involutes
are due to the Bernoulli brothers. Jakob Bernoulli (1692) found that the
involute of the logarithmic spiral is another logarithmic spiral, and Johann
Bernoulli (1691) found that the tractrix is the involute of the catenary,
y = cosh x.

Exercises

Despite the complexity of the Newton curvature formula, it is easy enough
to solve for y when the curvature κ is zero.

13.2.1 Use the formula to show that κ = 0 implies that y is a linear function of x.

13.2.2 Show that dθ/ds = 1/r for the circle of radius r, and deduce that dθ/ds = κ
for any curve.

The description of the tractrix as the involute of the catenary is convenient for
studying the pseudosphere. We therefore work out some steps in this approach
in the following exercises. The curve C′ in Figure 13.3 is now assumed to be the
catenary y = cosh x, which meets the y-axis at the point S where y = 1.

13.2.3 Using the arc length integral on the catenary y = cosh x between S = (0, 1)
and P = (σ, coshσ), show that

arc length PS = sinhσ = PQ.
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Figure 13.3: Construction of the involute

13.2.4 Also find the equation of the tangent at P, and use it to show that R =
(σ − cothσ, 0). Then use the value of PQ to show that

QR =
1

sinhσ
=

1
PQ
.

13.2.5 Finally, use the length of PQ again to show that Q = (σ− tanhσ, sechσ),
and show that the parametric equations of the tractrix C,

x = σ − tanhσ, y = sechσ,

imply the cartesian equation of the tractrix (with a = 1),

x = log
1 +
√
1 − y2
y

−
√
1 − y2.
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13.3 Curvature of Surfaces

The first approach to defining curvature at a point P of a surface S was to
express it in terms of the curvature of plane curves, by considering sections
of S by planes through the normal at P. Of course, different planes nor-
mal to the surface at P may cut the surface in quite different curves, with
different curvatures, as the example of the cylinder shows (Figure 13.4).

Figure 13.4: Sections of the cylinder

However, among these curves there will be one of maximum curvature
and one of minimum curvature (which may be negative, if we give a sign
to curvature according to the side on which the center of curvature lies).
Euler (1760) showed that these two curvatures κ1 and κ2, called the prin-
cipal curvatures, occur in perpendicular sections and that together they
determine the curvature κ in a section at angle α to one of the principal
sections by

κ = κ1 cos
2 α + κ2 sin

2 α.

This is where we are led when the curvature of surfaces is subordinated
to the curvature of curves. A deeper idea occurred to Gauss while he was
working in geodesy (surveying and mapmaking): curvature of a surface
may be detectable intrinsically, that is, by measurements entirely within
the surface. The curvature of the earth, for example, was known from mea-
surements made by explorers and surveyors, not (in the time of Gauss)
by viewing it from space. Gauss (1827) made the extraordinary discovery
that the quantity κ1κ2 can be defined intrinsically and hence can serve as an
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intrinsic measure of curvature. He was so proud of this result that he called
it the theorema egregium (excellent theorem). It follows in particular that
κ1κ2, which is called the Gaussian curvature, is unaffected by bending.

The plane, for example, has κ1 = κ2 = 0 and thus zero Gaussian cur-
vature. Hence so has any surface obtained by bending a plane, such as a
cylinder. We can verify the theorema egregium in this case, because one
of the principal curvatures of a cylinder is obviously zero.

Surfaces S 1, S 2 obtained from each other by bending are said to be
isometric. More precisely, S 1 and S 2 are isometric if there is a one-to-one
correspondence between points P1 of S 1 and points P2 of S 2 such that

distance between P1 and P′1 in S 1 = distance between P2 and P′2 in S 2,

where the distances are measured within the respective surfaces. A more
precise statement of the theorema egregium then is: if S 1, S 2 are isometric,
then S 1, S 2 have the same Gaussian curvature at corresponding points.

Surfaces of Constant Curvature

The simplest surface of constant positive curvature is the sphere of radius r,
which has curvature 1/r2 at all points. Other surfaces of curvature 1/r2 may
be obtained by bending portions of the sphere; however, all such surfaces
have either edges or points where they are not smooth, as was proved by
Hilbert (1901). The plane, as we have seen, has zero curvature, and so have
all surfaces obtained by bending the plane or portions of it.

It remains to investigate whether there are surfaces of constant negative
curvature. In ordinary space, such a surface has principal curvatures of
opposite sign at each point, so it looks locally like a saddle (Figure 13.5).

Several surfaces of constant negative curvature were given by Mind-
ing (1839). The most famous of them is the pseudosphere, the surface of
revolution obtained by rotating a tractrix about the x-axis (Figure 13.6).
This surface was investigated as early as 1693 by Huygens, who found its
surface area, which is finite, and the volume and center of mass of the solid
it encloses, which are also finite (Huygens (1693a)).

The pseudosphere, despite the “sphere” part of its name, is more like a
negative-curvature counterpart of the cylinder. So onemaywonder whether
a surface of constant negative curvature can be more like a plane. Hilbert
(1901) proved that no smooth unbounded surface of constant negative cur-
vature lies in ordinary space, so this rules out planelike surfaces and also
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Figure 13.5: A saddle

a
a

Figure 13.6: The tractrix and the pseudosphere

accounts for the “edge” on the pseudosphere (where, in fact, the curvature
of the tractrix becomes infinite). One can, however, make a “plane” of neg-
ative curvature by using a nonstandard notion of length in the Euclidean
plane. This discovery of Beltrami (1868a) is discussed in Section 13.7,
along with other implications of negative curvature for non-Euclidean
geometry.

These geometric implications can also be glimpsed if we ask whether
surfaces S 1, S 2 of equal curvature are isometric. Even with zero curva-
ture this is false, since a plane is not isometric to a cylinder. What is true,
though, is that any sufficiently small portion of the plane can be mapped
isometrically into any part of the cylinder. Minding (1839) showed that
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the same is true for any two surfaces S 1, S 2 of equal constant curvature.
Taking S 1 = S 2, this says that rigid motion is possible in S 1: a body in S 1

can be moved, without any shrinking or stretching, to any part of S 1 large
enough to contain it. The latter restriction is necessary, for example, for
the pseudosphere since it becomes arbitrarily narrow as x→ ∞.

The possibility of rigid motion was fundamental to Euclid’s geometry
of the plane, and with the discovery of curved surfaces that support rigid
motion, Euclid’s geometry could be seen as a special case—the zero cur-
vature case—of something broader. The broader notion of geometry on a
surface begins to take shape once one has an appropriate notion of “straight
line.” This is developed in the next section.

Exercises

The construction of the tractrix as the involute of the catenary in Section 13.2
gives a remarkable insight into the two principal curvatures of the pseudosphere,
enabling us to see why the pseudosphere has constant negative curvature.

13.3.1 Interpreting PQ in Figure 13.3 as the radius of curvature of the tractrix,
and hence as the curvature of a section of the pseudosphere, suggest an
interpretation of QR as a radius of curvature.

13.3.2 Assuming that PQ and QR are in fact principal radii of curvature, deduce
from Exercise 13.2.4 that

Gaussian curvature of the pseudosphere at any point = −1.

13.4 Geodesics

A “straight line” on a surface, or geodesic as it is called, can be defined
equivalently by a shortest-distance property or a zero-curvature property.
The shortest-distance definition has the drawback that a geodesic is not
necessarily the shortest path between two points. On a sphere, for exam-
ple, there are two geodesics between two nearby points P1, P2: the short
portion and the long portion of the great circle through P1, P2. What is
true is that the geodesic gives the shortest distance between any two of its
points that are sufficiently close together. Even so, it is generally hard to
find which curve between given points on a surface has minimum length.
Nevertheless, this is how geodesics were first defined, by Jakob and Johann
Bernoulli; and Euler (1728a) found a differential equation for geodesics
from this approach.



236 13 Non-Euclidean Geometries

A more elementary approach is to define the geodesic curvature κg at
P of a curve C on a surface S as the ordinary curvature of the orthogo-
nal projection of C in the tangent plane to S at P. As one might expect,
geodesic curvature can also be defined intrinsically, and κg was introduced
in this way by Gauss (1825). A geodesic is then a curve of zero geodesic
curvature. This is the definition of Bonnet (1848).

The latter definition immediately shows that great circles on the sphere
are geodesics, since their projections onto tangent planes are straight lines.
Other examples are the horizontal lines, vertical circles, and helices on the
cylinder (Figure 13.7). These all come from straight lines on the plane that
is rolled up to form the cylinder.

Figure 13.7: Geodesics on the cylinder

Geodesics on the pseudosphere, and other surfaces of negative curva-
ture, are not all so simple to describe. However, Section 13.8 shows that
they become simple when one maps the surface of constant negative cur-
vature suitably onto a plane.

Exercises

13.4.1 Are the circles on the pseudosphere, in planes perpendicular to its axis,
geodesics? Give a qualitative argument to support your answer.

It may be easier to answer this question if one first considers the cone, a
surface also obtained by bending the plane. To avoid worrying about the apex,
where the cone is not smooth, we omit this point.

13.4.2 Show that the circles on the cone, in planes perpendicular to its axis, are
not geodesics.

13.4.3 Show that there are nonsmooth geodesics on the cone, that is, curves of
geodesic curvature zero except at certain points where they have no
tangent.
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13.5 The Parallel Axiom

Until the 19th century, Euclid’s geometry enjoyed absolute authority, both
as an axiomatic system and as a description of physical space. Euclid’s
proofs were regarded as models of logical rigor, and his axioms were
accepted as correct statements about physical space. Even today, Euclidean
geometry is the simplest type of geometry, and it furnishes the simplest
description of physical space for everyday purposes. Beyond the every-
day world, however, lies a vast universe that can be understood only with
the help of an expanded geometry. The expansion of geometric concepts
began with doubts about one of Euclid’s axioms, the parallel axiom.

For our purposes, the most convenient statement of the parallel axiom
is as follows:

Axiom P1. For each straight line L and point P outside L there is exactly
one line through P that does not meet L.

There are many other equivalent statements of Axiom P1, some obvi-
ously fairly close to it, for example, Euclid’s own from Section 2.1:

That if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

Heath (1925), p. 202

Other equivalents of Axiom P1 are less obviously so. For example,

(i) The angle sum of a triangle = π (Euclid).

(ii) The locus of points equidistant from a straight line is a straight line.
(al-Haytham, around 1000 ce).

(iii) Similar triangles of different sizes exist (Wallis (1663); see Fauvel
and Gray (1988), p. 510).

Thus a denial of the parallel axiom entails denial of (i), (ii), and (iii). A
denial of (iii) means in particular that scale models are impossible, since
three points in the original object and the three corresponding points of a
scale model would define similar triangles of different sizes.
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Such unlikely consequences convinced many people that the parallel
axiom was a logically necessary property of straight lines, already implied
by the other axioms of Euclid, and so efforts were made to prove it outright.

The most tenacious attempt, entitled Euclides ab omni naevo vindica-
tus (Euclid cleared of every flaw), wasmade by Saccheri (1733). Saccheri’s
plan of attack began by subdividing the denial of the parallel axiom into
two alternatives:

Axiom P0. There is no line through P that does not meet L.

Axiom P2. There are at least two lines through P that do not meet L.

The next step was to destroy each alternative by deducing a contradiction
from it. He succeeded in deducing a contradiction from Axiom P0, using
other axioms of Euclid, such as the axiom that a straight line can be pro-
longed indefinitely. (Such additional assumptions are certainly necessary,
since great circles on the sphere have some properties of straight lines,
except that they are finite in length.)

Saccheri was less successful with Axiom P2. The consequences he
derived from it, hoping to obtain a contradiction, were as follows. Among
the lines M through P that do not meet L are two extremes, M+ or M−,
called parallels or asymptotic lines (Figure 13.8); any of these lines M
strictly between M+ and M− has a common perpendicular with L and,
moreover, the position of this perpendicular tends to infinity as M tends
to M+ or M−. Although curious, these consequences of Axiom P2 were
not contradictory and Saccheri, sensing that the contradiction was slipping
away from him, tried to overtake it by proceeding to infinity.

Figure 13.8: Asymptotic lines

He claimed that M+ would meet L at infinity and have a common per-
pendicular with it there. But this still was not a contradiction. Saccheri
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merely claimed that such a conclusion was “repugnant to the nature of the
straight line” (Saccheri (1733), p. 173), perhaps visualizing an intersec-
tion like Figure 13.9. But why should asymptotic lines not be tangential
at infinity? History was to show that this was an appropriate resolution
of Saccheri’s “contradiction” (see Section 13.8). Thus Saccheri’s results
were not, as he thought, steps toward a proof of the parallel axiom; they
were the first theorems of a non-Euclidean geometry in which Axiom P2

replaces the parallel axiom.

Figure 13.9: Hypothetical intersection at infinity

Exercises

The connection between the parallel axiom and the angle sum of a triangle
is very direct and elegant.

13.5.1 Deduce, from Euclid’s version of the parallel axiom, that a line falling on
two parallel lines makes interior angles that sum to π.

13.5.2 Use Exercise 13.5.1 and the construction in Figure 13.10 (in which CD is
parallel to AB) to show that α + β + γ = π.

Figure 13.10: The angle sum of a triangle

13.5.3 Deduce from Exercise 13.5.2 that the angle sum of any quadrilateral is 2π
and, in particular, that squares exist.

Thus theorems mentioning squares, such as the Pythagorean theorem, can

hold only when Euclid’s parallel axiom is assumed.
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13.6 Spherical and Hyperbolic Geometry

In rejecting P0 because of its incompatibility with infinite lines, Saccheri
ruled out the most natural geometry in which P0 holds, that of the sphere
with great circles as “lines.” Spherical geometry had been cultivated since
ancient times by astronomers and navigators, and formulas for the side
lengths and areas of spherical triangles were well known. For the history of
this now-neglected subject, see Van Brummelen (2013). But the sphere was
considered part of Euclid’s spatial geometry, so the axiomatic significance
of spherical geometry was initially ignored. However, spherical geometry
did guide the first explorations of Axiom P2.

Lambert (1766) made the striking discovery that Axiom P2 implies that
the area of a triangle with angles α, β, γ is proportional to π − (α + β + γ),
its angular defect. In other words,

area = −R2(α + β + γ − π)
for some positive constant R2. Having rediscovered the theorem (Exercise
13.6.5 below) that, for a triangle on the sphere of radius R,

area = R2(α + β + γ − π),
Lambert mused that one “could almost conclude that the new geometry
would be true on a sphere of imaginary radius.” What a sphere of radius
iR might be was unclear, but the idea that complex numbers can give the
formulas of a hypothetical geometry proved fruitful.

It was found that formulas implied by Axiom P2 are obtained from
the corresponding formulas of spherical geometry replacing R by iR. This
amounts to replacing circular functions by hyperbolic functions. For exam-
ple, Gauss (1831) deduced from Axiom P2 that the circumference of a cir-
cle of radius r is 2πR sinh r/R. The same expression follows by replacing
R by iR in 2πR sin r/R, which is the circumference of a circle of radius r
on the sphere of radius R (where, of course, r is measured on the spherical
surface; see the red circle in Figure 13.11 and Exercise 13.6.1).

Lambert (1766) introduced the hyperbolic functions and noted their
analogy with the circular functions, but he did not follow through with a
complete translation of spherical formulas into hyperbolic formulas. This
was first done by Taurinus (1826), one of a small circle who corresponded
with Gauss on geometric questions.
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The formulas gave the geometry of Axiom P2 a second leg to stand
on, but there was still nothing solid under its feet. Neither Gauss nor Taur-
inus seemed confident of finding an interpretation of the formulas. Gauss’s
student Minding (1840) even showed that the hyperbolic formulas for tri-
angles hold on the pseudosphere, but no one at that time commented on the
likely importance of this result. Perhaps it was clear that the pseudosphere
cannot serve as a “plane,” because it is infinite in only one direction.

Only in 1868, when Beltrami extended the pseudosphere to a true
“plane”—a surface locally isometric to the pseudosphere but infinite in all
directions—was the new geometry given a firm foundation. Klein (1871)
named the geometry of Axiom P2 hyperbolic geometry, and its “plane” is
now called the hyperbolic plane.

Exercises

13.6.1 Prove that the circumference of the circle C of radius r on the sphere of
radius R (Figure 13.11) is 2πR sin(r/R).

R

r

R sin
r
R

Figure 13.11: Radius and circumference on the sphere
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13.6.2 Show that both 2πR sin(r/R) and 2πR sinh(r/R) tend to 2πr as R→ ∞.

These results show how even non-Euclidean geometry is “Euclidean in the
small”—its formulas tend to the Euclidean formulas as size tends to zero. The
same is true of the angle-sum of a triangle, which has a surprising relationship
with the area of the triangle.

Figure 13.12 shows a spherical triangle Δαβγ with angles α, β, γ and its sides
extended to three great circles. These great circles divide the sphere into eight
triangles, in four antipodal pairs. In particular, if the vertices of Δαβγ are A, B,C
as shown then their respective antipodal points A′, B′,C′ form a triangle equal to
Δαβγ.

Figure 13.12: Division of sphere by three great circles

The points B,C, A′ form a triangle Δα which, together with Δαβγ, makes a
“wedge” of the sphere with angle α (shown in Figure 13.13).

This wedge obviously makes up α
2π of the total area S of the sphere, so we

can write

Δαβγ + Δα =
α

2π
S .

13.6.3 If we likewise define spherical triangles Δβ = ACB′ and Δγ = ABC′ show
that

Δαβγ + Δβ =
β

2π
S ,

Δαβγ + Δγ =
γ

2π
S ,
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Figure 13.13: Wedge of sphere between two great circles

and hence that

3Δαβγ + Δα + Δβ + Δγ =
α + β + γ

2π
S .

13.6.4 Show also that
2(Δαβγ + Δα + Δβ + Δγ) = S .

13.6.5 Deduce from questions 13.6.3 and 13.6.4 that

Δαβγ =
S
4π

(α + β + γ − π),

so the area of a spherical triangle with angles α, β, γ is proportional to
α + β + γ − π. This formula was discovered by Thomas Harriot in 1603.

13.6.6 Deduce from Harriot’s area formula that the angle sum of a spherical tri-
angle tends to π as its size tends to zero.

13.7 Geometry of Bolyai and Lobachevsky

The most important contributors to hyperbolic geometry between Gauss
and Beltrami were Lobachevsky and Bolyai, who published independent
discoveries of the subject: Lobachevsky (1829) and János Bolyai (1832b).
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Because of their courage in advocating an unconventional geometry, Bolyai
and Lobachevsky have been justly admired. Nevertheless, the immediate
impact of their work was slight. Many of their results were already known
to Gauss and his circle and could have been picked up from existing publi-
cations and personal contacts. Lambert (1766) and Taurinus (1826) were in
print, and Bolyai’s father, F. Bolyai, was a lifelong friend of Gauss, as was
Lobachevsky’s teacher Bartels. In any case their work, though more sys-
tematic and convincing than previous attempts, attracted very little atten-
tion at first.We have seen how the possibility of using differential geometry
to justify hyperbolic geometry was overlooked until 1868. Up to that time,
there seemed no reason to take hyperbolic geometry seriously.

In retrospect, of course, the theorems of Bolyai and Lobachevsky can
be seen to unify the fragmentary results of their predecessors very nicely.
They cover the basic relations between sides and angles of triangles (hyper-
bolic trigonometry), the measure of polygonal areas by angular defect, and
formulas for circumference and area of circles. Lobachevsky (1836) broke
new ground by finding volumes of polyhedra, which turn out to be far from
elementary, involving the function

∫ θ
0
log 2| sin t| dt.

Both Bolyai and Lobachevsky considered a three-dimensional space
satisfying Axiom P2 and made extensive use of a surface peculiar to this
space, the horosphere. A horosphere is a “sphere with center at infinity,”
and it is not a hyperbolic plane. Wachter, a student of Gauss, observed in a
letter of 1816 (published in Stäckel (1901)) that the geometry of the horo-
sphere is in fact Euclidean. This astonishing result was rediscovered by
Bolyai and Lobachevsky, and they anticipated that it wouldmake Euclidean
geometry subordinate to hyperbolic. We will see in Section 13.8 how this
view was vindicated by the work of Beltrami.

Beltrami’s Projective Model

Interest in hyperbolic geometry was rekindled in the 1860s when unpub-
lished work of Gauss, who had died in 1855, came to light. Learning that
Gauss had taken hyperbolic geometry seriously, mathematicians became
more receptive to non-Euclidean ideas. The works of Bolyai and
Lobachevsky were rescued from obscurity and, approaching them from
the viewpoint of differential geometry, Beltrami (1868a) was able to give
them the concrete explanation that had eluded all his predecessors.
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Beltrami had studied the geometry of surfaces and found the surfaces
that can be mapped onto the plane in such a way that their geodesics go
to straight lines (Beltrami (1865)). They turn out to be just the surfaces
of constant curvature. In the case of positive curvature, the sphere, such a
mapping is central projection onto a tangent plane (Figure 13.14), though
of course this maps only half the sphere onto the whole plane.

Figure 13.14: Central projection

The mappings of surfaces of constant negative curvature, on the other
hand, take the whole surface onto only part of the plane. Figure 13.15,
from Klein (1928), shows some of these mappings (the middle one being
of the pseudosphere). The correspondence between the surfaces and their
maps is easier to see if one imagines each surface rotated 90◦ clockwise, so
that its geodesics point in roughly the same direction as the straight lines
on the map.

Each negatively curved surface S is mapped onto a portion of the unit
disk. Beltrami (1868a) realized that the disk can then be viewed as a natu-
ral extension of S to an “infinite plane,” thus avoiding the problem of find-
ing “planelike” surfaces of constant negative curvature in ordinary space.
Instead one takes the disk as the “plane,” line segments within it as “lines,”
and “distance” between two points of the disk as the distance between their
preimage points on the surface S . The function d(P,Q), giving “distance”
between points P, Q of the disk in this way, turns out to be meaningful for
all points inside the unit circle, so the notion of “distance” extends to the
whole open disk. As Q approaches the unit circle, d(P,Q) tends to infinity,
so the “plane,” and hence the “lines” in it, are indeed infinite with respect
to this nonstandard “distance.”
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Figure 13.15: Geodesic-preserving mappings

All the axioms of Euclid, except the parallel axiom, hold in the new
interpretation of “plane,” “line,” and “distance.” Instead of the parallel
axiom, one has of course Axiom P2, since there is more than one “line”
through a point P outside a given “line” L that does not meet L (Figure
13.16).

Beltrami also observed that the rigid motions of the “plane,” since they
map lines to lines, are necessarily projective transformations. They are
precisely those projective transformations of the plane that map the unit
circle onto itself. Consequently, this model of the hyperbolic plane is often
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L

P

Figure 13.16: Failure of the parallel axiom

called the projective model. Cayley (1859) had already observed that these
projective transformations could be used to define a “distance” d(P,Q) in
the unit disk—by saying d(P,Q) = d(P′,Q′) if a transformation preserving
the unit circle sends P to P′ and Q to Q′—but he had not realized that the
geometry obtained was that of Bolyai and Lobachevsky.

The pseudosphere is not entirely superseded by the projective model,
since it remains the source of “real” distances and angles, whereas those in
the projective model are necessarily distorted. One of the distinctive curves
of the hyperbolic plane, the horocycle, or circle with center at infinity, is
shown particularly clearly on the pseudosphere. If one imagines, following
Beltrami (1868a), the pseudosphere wrapped by infinitely many turns of
an infinitely thin covering, then the edge of this covering (along the rim
of the pseudosphere) is a horocycle. The middle picture of Figure 13.15
shows the image of one turn of the covering, drawn solidly, and horocycles
resulting from continued unwrapping are shown as dashed lines.

Exercises

Klein’s three pictures illustrate the three types of rigid motion of the hyper-
bolic plane.

1. Rotation, in which one point of the plane is fixed and all other points move
in hyperbolic circles about it. (A hyperbolic circle is the locus of a point
moving at constant “distance” from a fixed point.)

2. Limit rotation, in which a point at infinity is fixed and all points of the plane
move in horocycles centered on the fixed point at infinity.

3. Translation, in which a “line” moves along itself and the other points of the
plane move along its equidistant curves. (An equidistant curve is the locus
of a point moving at constant “distance” from a “line.”)
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13.7.1 Pick out hyperbolic circles and equidistant curves in the top and bottom
pictures in Figure 13.15.

13.7.2 If the center of rotation in the top picture were not at the center of the disk,
do you think the hyperbolic circles would be Euclidean circles?

13.7.3 Observe that equidistant curves at nonzero “distance” from the invariant
“line” are not “lines” (necessarily so, in view of al-Haytham’s equivalent
of axiom P1 mentioned in Section 13.5). Does the translation move a point
on an equidistant curve farther than a point on the invariant line?

13.7.4 Give an example of three points in the hyperbolic plane, not in a “line,”
that do not lie on a hyperbolic circle. (If this problem proves difficult, try it
again after reading the next section.)

13.8 Beltrami’s Conformal Models

The projective model of the hyperbolic plane distorts angles as well as
lengths. One can see this with the asymptotic geodesics on the pseudo-
sphere, which clearly tend to tangency at infinity yet are mapped onto lines
meeting at a nonzero angle at the boundary of the unit disk (Figure 13.15).
Beltrami (1868b) found that models with true angles—the so-called con-
formal models—can be obtained by sacrificing straightness of “lines.” His
basic conformal model is not, in fact, part of the plane but part of a hemi-
sphere. It is erected over the projective model and its “lines” are vertical
sections of the hemisphere (hence semicircles) over the “lines” of the pro-
jective model (Figure 13.17). The “distance” between points on the hemi-
sphere is defined to be the “distance” between the points beneath them in
the projective model. Later we will see that “distance” on the hemisphere
also has a simple direct definition.

Figure 13.17: From the projective disk model to the hemisphere

The hemisphere model gives two planar conformal models by stereo-
graphic projection onto the tangent plane opposite the point of projection.
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As we know from Section 12.2, stereographic projection preserves angles
and sends circles to circles. The first model is a disk (Figure 13.18) that,
by change of scale, can again be taken as the unit disk. (The lightbulb
represents the point of projection, at the top of the sphere whose bottom
hemisphere is shown.) The second (Figure 13.19) is a half-plane, which
we take to be the upper half-plane, y > 0. Since the “lines” in the hemi-
sphere model are circular and orthogonal to the equator, “lines” in the
planar conformal models are again circular, orthogonal to the boundary of
the disk and half-plane, respectively, or straight lines in exceptional cases.
To avoid continual mention of these exceptional cases—namely, line seg-
ments through the disk center and lines x = constant in the half-plane—we
consider lines to be circles of infinite radius.

Figure 13.18: From the hemisphere to the conformal disk model

One of the beauties of the conformal models is that other important
curves—hyperbolic “circles,” horocycles, and equidistant curves—are also
real circles. Each curve equidistant from a given “line” L is a circle through
the endpoints of L on the boundary. Horocycles are circles tangential to the
boundary and also, in the half-plane model, the lines y = constant. A cir-
cle not meeting the boundary is a hyperbolic “circle,” but its “center,” at
equal “distance” from all its points, is not at the Euclidean center. Figure
13.20 shows some of these curves. They are imprinted on a tessellation of
the half-plane by triangles with angles π/2, π/3, and 0, called the modular
tessellation because it depicts the periodicity of the modular function.

The triangles of the modular tessellation are bounded by “lines” and
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Figure 13.19: From the hemisphere to the half-plane model

they are in fact congruent in the sense of hyperbolic “distance.” This shows
again that the boundary is infinitely far away, because there are infinitely
many triangles below any point in the open half-plane. Note also that
asymptotic “lines” are tangential at “infinity” (the boundary) and that the
boundary is their common perpendicular, thus resolving the situation that
Saccheri (Section 13.5) thought to be contradictory.

“Distance” is particularly easy to express in the half-plane model. The
“distance” ds between neighboring points (x, y) and (x + dx, y + dy) is

ds =

√
dx2 + dy2

y
,

that is, the Euclidean distance divided by y. Thus “distance” → ∞ as a
point approaches the boundary y = 0 of the half-plane, as expected. For
constant x, integration along a vertical line shows that “distance” increases
exponentially relative to Euclidean distance as y decreases. For example,
when x = 0 and y = 1, 12 ,

1
4 , . . ., the “distances” between successive points

are equal. The formula for ds was first obtained by Liouville (1850) by
directly mapping the pseudosphere into the half-plane. The “distance” for-
mula for the conformal disk was also found before Beltrami, by Riemann
(1854b), but neither Liouville nor Riemann saw the hyperbolic geometry.

Beltrami (1868b) not only found these models, in a unified way, but
also extended the idea to n dimensions. For example, he gave a model of
the three-dimensional space considered by Bolyai and Lobachevsky as the
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“lines”

“equidistant curves”

“circle”

“horocycles”

Figure 13.20: Some curves in the half-plane model

upper half, z > 0, of ordinary (x, y, z)-space, with “distance”

ds =

√
dx2 + dy2 + dz2

z
.

“Lines” are then semicircles orthogonal to z = 0 and “planes” are hemi-
spheres orthogonal to z = 0. Restricting the “distance” function to such a
hemisphere turns out to give Beltrami’s hemisphere model. Thus the hemi-
sphere model can be viewed as a hyperbolic plane lying in hyperbolic 3-
space. The horospheres of the half-space model are spheres tangential to
z = 0, together with the planes z = constant. Beltrami (1868b) pointed out
that on z = constant we have

ds =

√
dx2 + dy2 + dz2

constant
,

that is, “distance” is proportional to Euclidean distance. Thus he had an
immediate proof of Wachter’s wonderful theorem that the geometry of the
horosphere is Euclidean.

Exercises

The mapping of the pseudosphere into the half-plane may be carried out as
follows, using the parametric equations for the tractrix found in Exercise 13.2.5:

x = σ − tanhσ, y = sechσ.
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First we replace the parameter σ by the arc length τ along the tractrix.

13.8.1 Show that τ =
∫ σ
0

√
1 +
(
dy
dx

)2
dx = log coshσ, and hence y = e−τ.

Now take τ and the angle X of rotation as the coordinates on the pseudosphere
obtained by rotating the tractrix about the x-axis.

13.8.2 Show that the length subtended by angle dX on a circular cross section of
the pseudosphere is

y dX = e−τdX,

and hence the distance between nearby points (X, τ) and (X + dX, τ + dτ)
on the pseudosphere is given by

ds2 = e−2τdX2 + dτ2.

13.8.3 Finally, introduce the variable Y = eτ and conclude that ds =
√
dX2+dY2

Y .

Thus the pseudosphere is mapped into the (X,Y)-plane with preservation of
distance, provided distance in the (X,Y) plane is defined by

ds =

√
dX2 + dY2

Y
.

It follows, from what was said above, that geodesics on the pseudosphere corre-
spond to semicircles with centers on the X-axis. This throws some light on the
problem raised in Section 13.4—describing geodesics on the pseudosphere.

13.8.4 Explain why the region of the (X,Y)-plane corresponding to the pseudo-
sphere is bounded by X = 0 and X = 2π and it lies above some Y =
constant > 0.

13.8.5 By considering a semicircle crossing the region described in Exercise 13.8.4,
show that there is no smooth closed geodesic on the pseudosphere.

13.9 The Complex Interpretations

One of the characteristics of the Euclidean plane is the existence of regu-
lar tessellations: tilings of the plane by regular polygons. There are three
such tilings, based on the square, equilateral triangle, and regular hexagon
(Figure 13.21).

Associated with each tiling is a group of rigid motions of the plane that
maps the tiling pattern onto itself. For example, the unit square pattern is
mapped onto itself by unit translations parallel to the x and y axes and by
the rotation of π/2 about the origin, and these three motions generate all
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Figure 13.21: Tessellations of the Euclidean plane

motions of the tessellation onto itself. If we write z = x + iy, then these
generating motions are given by the transformations

z �→ z + 1, z �→ z + i, z �→ zi.

The triangle and hexagon tessellations have a group generated by

z �→ z + 1, z �→ z + τ, z �→ zτ,

where τ = eiπ/3 is the third vertex of the equilateral triangle whose other
vertices are at 0, 1 (Figure 13.22). In fact, any motion of the Euclidean
plane can be composed from translations z �→ z+ a and rotations z �→ zeiθ.

Figure 13.22: Relation between the triangle and hexagon tessellations

The sphere also has a finite number of regular tessellations, obtained
by central projections of the regular polyhedra (Section 2.2). Figure 13.23
shows a tessellation corresponding to the icosahedron. (Each face has been
further subdivided into six congruent triangles.) The motions mapping
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such a tessellation onto itself can be expressed as complex transforma-
tions by interpreting the sphere as C ∪ {∞} via stereographic projection
(Section 11.6). Gauss (1819) found that any motion of the sphere can be
expressed by a transformation of the form

z �→ az + b

−bz + a ,

where a, b ∈ C and an overbar denotes the complex conjugate.

Figure 13.23: Icosahedral tessellation of the sphere

The conformal models of the hyperbolic plane can be regarded as parts
of C: the unit disk {z : |z| < 1} and the half-plane {z : Im(z) > 0}. Their
rigid motions, being conformal transformations, are complex functions,
and Poincaré (1882) made the beautiful discovery that they are of the form

z �→ az + b

bz + a
for the disk, and

z �→ αz + β
γz + δ

for the half plane,

where α, β, γ, δ ∈ R. Notice that the latter, with x in place of z, are the
transformations of the projective line studied in Section 7.6. Thus the “line
at infinity” of the hyperbolic plane is a projective line.

Infinitely many regular tessellations are possible, since the angles of a
polygon can be made arbitrarily small by increasing its area. For example,
there are tessellations by equilateral triangles in which n triangles meet at
each vertex, for each n ≥ 7, and similar variety occurs for other polygons
(see exercises). Some of these tessellations were known before Poincaré



13.9 The Complex Interpretations 255

(1882) gave the complex interpretation of hyperbolic geometry, and even
before models of hyperbolic geometry were known. Figure 13.24 shows a
tessellation by equilateral triangles of angle π/4 found in unpublished, and
unfortunately undated, work of Gauss (Werke, vol. VIII, p. 104).

Figure 13.24: The Gauss tessellation

Others arise from differential equations and were discovered in this
context by Riemann (1858b) and Schwarz (1872) (the first published exam-
ple, Figure 13.25). By explaining these tessellations in terms of hyperbolic
geometry, Poincaré (1882) showed that hyperbolic geometry was part of
existing mathematics.

Figure 13.25: The Schwarz tessellation

In a subsequent paper, Poincaré (1883) explained the geometric nature
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of linear fractional transformations,

z �→ az + b
cz + d

,

special cases of which, as we have just seen, express the rigid motions of
the two-dimensional Euclidean, spherical, and hyperbolic geometries. He
showed that each linear fractional transformation of the plane C is induced
by a hyperbolic motion of the three-dimensional half-space whose “plane
at infinity” is C; thus Poincaré’s theorem embraces those of Wachter and
Beltrami on the representation of two-dimensional Euclidean, spherical,
and hyperbolic geometry within three-dimensional hyperbolic geometry.

Exercises

13.9.1 Show that a triangle in the hyperbolic plane can have any angle sum < π.

13.9.2 Deduce that there are equilateral triangles with angle 2π/n for each n ≥ 7.

13.9.3 Also deduce that triangles with angle zero exist, in a certain sense, and that
their area is finite.

13.9.4 Find corresponding results for regular n-gons.



14

Group Theory

Preview

Group theory was the first branch of modern, or abstract, algebra to emerge
from the old algebra of equations. Group theory today is often described as
the theory of symmetry, and indeed groups have been inherent in symmet-
ric objects since ancient times. However, extracting algebra from a sym-
metric object is a highly abstract exercise, and groups first appeared in
situations where some algebra was already present.

One of the first nontrivial examples was the group of integers mod
p, for prime p, used by Euler (1758) to prove Fermat’s little theorem. Of
course, Euler had no idea that he was using a group. But he did use one of
the characteristic group properties, namely, the existence of inverses.

Likewise, Lagrange (1771) was not aware of the group concept when
he studied permutations of the roots of equations. But he was using the
group S n of permutations of n things, and some of its subgroups.

It was Galois (1831a) who first truly grasped the group concept, and he
used it brilliantly to explain what makes an equation solvable by radicals.
In particular, he was able to explain why the general quintic equation is
not solvable by radicals. These discoveries changed the face of algebra,
though few mathematicians realized it at first.

In the second half of the 19th century the group concept spread from
algebra to geometry, following the observation of Klein (1872) that each
geometry is characterized by a group of transformations.
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14.1 The Group Concept

The notion of group is one of the most important unifying ideas in math-
ematics. It draws together a wide range of mathematical structures for
which a notion of combination, or “product,” exists. Such products include
the ordinary arithmetical product of numbers, but a more typical example
is the product, or composition, of functions. If f and g are functions, then
fg is the function whose value for argument x is f (g(x)). (Thus fg means
“apply g, then f .” We have to pay attention to order because in general
g f � fg.)

A group G is defined formally to be a set with an operation, usually
called product and denoted by juxtaposition, a specific element called the
identity and written 1, and, for each g ∈ G, an element called the inverse
of g and written g−1, with the following properties:

(i) g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G (associative property)

(ii) g1 = 1g = g for all g ∈ G (identity property)

(iii) gg−1 = g−1g = 1 for all g ∈ G (inverse property)

These axioms emerged gradually in the course of experience with partic-
ular groups. The stories of some of these groups will be recounted below.
In practice, properties (i) and (ii) are usually evident, and it is more impor-
tant to ensure that the product operation is merely defined for all elements
of G. Many mathematical concepts have been created in response to the
desire, at first unconscious, for products to exist.

For example, we saw in Section 7.2 that a perspective view of a per-
spective view is not generally a perspective view. So if the “product” fg of
perspective transformations f and g means the result of performing g then
f , then fg does not always belong to the set of perspective transforma-
tions. The set of projective transformations is the smallest extension of the
set of perspective transformations to a set on which the product is always
defined, namely, the set of finite products of perspective transformations.

In other instances, concepts have arisen from the desire to have inverses.
Negative numbers, for example, can be viewed as extending the set
{0, 1, 2, 3, . . .} of natural numbers to the set Z of integers, in which each
element has an inverse under the + operation. (In cases like this one, where
the group operation is naturally written as +, the identity element is writ-
ten 0 and the inverse of g is written −g.) Another example is the extension
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of the line R to the real projective line RP
1 = R ∪ {∞}, which ensures

that each linear fractional function has an inverse. Likewise, extending the
plane by points at infinity ensures that each projective transformation has
an inverse, because points projected to infinity can be projected back again.

Inverses sometimes appear unintentionally, as it were, in finite situ-
ations where repeated application of the group operation eventually pro-
duces the identity element. The simplest example is the cyclic group Zn,
which consists of the numbers 0, 1, 2, . . . , n − 1 under addition modulo n,
where numbers are called congruent modulo nwhen they differ by a multi-
ple of n. Here the identity element is 0, and n−1 is the inverse of 1 because
their sum is congruent to 0, modulo n. Similarly, n − 2 is the inverse of 2,
n − 3 is the inverse of 3, and so on.

Perhaps the earliest nontrivial use of inverses occurs with multiplica-
tion modulo p, which Euler (1758) (and possibly Fermat before him) used
to give an essentially group-theoretic proof of Fermat’s little theorem. We
proved this theorem with the help of the binomial theorem (and without
using inverses) in Section 5.9. We now abbreviate “modulo” as “mod,”
and assume p is prime.

Since integers m and n are congruent mod p if they differ by an integer
multiple of p, b is an inverse of a under multiplication mod p if ab is
congruent to 1 modulo p, that is, if ab + kp = 1 for some integer k. Since
p is prime, such a b exists for each a not a multiple of p, by applying the
Euclidean algorithm to the relatively prime numbers a, p (Section 3.3).

Euler did not define a group in his proof, but it is easy for us to do so
(and to rephrase his proof accordingly; see exercises). The group elements
are the numbers 1,2, . . . , p − 1, and the product of a and b is defined to be
ab mod p, where

ab mod p =

the number among 1, 2, . . . , p − 1 that is congruent to ab, mod p.

Group properties (i) and (ii) follow from ordinary arithmetic; (iii), as we
have seen, follows from the Euclidean algorithm.

The preceding examples illustrate the influence of geometry and num-
ber theory on the group concept. An even more decisive influence was the
theory of equations, which we look at briefly in Section 14.3. But first we
need to understand a little about subgroups—the groups within a group—
and when a subgroup may be said to “divide” a group. For a more detailed
account of the development of the group concept, see Wussing (1984).
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Exercises

A good introduction to inverses under multiplication mod p may be had with
p = 5. There is no need to use the Euclidean algorithm to find these inverses—just
multiply by numbers < 5 until a product congruent to 1 (mod 5) is obtained.

14.1.1 Find the inverses of 2, 3, and 4 under multiplication mod 5.

Now here is the proof of Fermat’s little theorem using inverses mod p. Start with
the nonzero numbers, mod p,

1, 2, . . . , (p − 1),

and multiply them all by a nonzero a (mod p).

14.1.2 Notice that if we multiply again by the inverse of a (mod p) we get back
the numbers

1, 2, . . . , (p − 1).
Why does this show that the numbers

a · 1 mod p, a · 2 mod p, . . . , a(p − 1) mod p

are distinct and nonzero?

14.1.3 Deduce from Exercise 14.1.2 that if a is nonzero (mod p), then

{a · 1 mod p, a · 2 mod p, . . . , a(p − 1) mod p}

is the same set as

{1, 2, . . . , (p − 1)}.

14.1.4 Deduce from Exercise 14.1.3 that

ap−1 · 1 · 2 · · · · · (p − 1) mod p = 1 · 2 · · · · · · (p − 1) mod p.

14.1.5 Finally, deduce that

ap−1 mod p = 1 mod p,

that is,

ap−1 ≡ 1 (mod p)

(Fermat’s little theorem; the version in Section 5.9 results from multiplying
each side by a).
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14.2 Subgroups and Quotients

The group concept was implicit in mathematics for a long time before it
became explicit. The first substantial theorem of the subject, now known
as Lagrange’s theorem, also came before the formalization of the group
concept, but to state it we will take advantage of current terminology.

A subset H of a group G is called a subgroup of G if H is also a
group (under the same operation that makes G a group). For example, the
set Z of integers is a subgroup of the group R of real numbers, under the
addition operation. Lagrange’s theorem concerns the number of members
of a group H, which we call the order of H and denote by |H|. It states that:

If H is a subgroup of a finite group G, then |H| divides |G|.
Lagrange (1771) proved a special case. Jordan (1870) proved the gen-

eral case and generously named the theorem after Lagrange. The proof
depends on the notion of coset. For each g inG we have the left coset of H

gH = {gh1, gh2, . . . , ghk}, where H = {h1, h2, . . . , hk}.
In words, gH is the set that results from multiplying each member of H on
the left by g. (There are right cosets Hg defined similarly, but we do not
need them for this proof.) The key properties of cosets are:

1. Each coset gH has |H| members, because we can recover the mem-
bers of H by multiplying each member of gH on the left by g−1.

2. Any two different cosets g1H and g2H are disjoint. This is because,
if g1H and g2H have a common member g, we have

g = g1h1 = g2h2 for some h1, h2 in H.

But then

g1 = g2h2h
−1
1 (multiplying on the right by h−11 ),

whence
g1H = g2(h2h

−1
1 H) = g2H,

since h2h−11 is a member of H, and multiplying H by any one of its
members gives back H.

It follows from these two properties that G can be split into disjoint
sets gH, each of size |H|, so |H| divides |G|. �
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Under certain conditions, it makes sense to multiply cosets by the rule

g1H · g2H = g1g2H.
For this rule to make sense, we must get the same answer g′1g

′
2H = g1g2H

whenever g′1H = g1H and g′2H = g2H. This happens when gH = Hg for
each g in G because, under this condition,

g′1g
′
2H = g

′
1Hg

′
2 because g′2H = Hg′2,

= g1Hg
′
2 because g1H = g

′
1H,

= g1g
′
2H because g′2H = Hg′2,

= g1g2H because g′2H = g2H. �

We call H a normal subgroup of G if it satisfies the condition gH = Hg
for each g in G, and in this case the cosets form a group called G/H, the
quotient of G by H. The group properties are inherited from G, as is easy
to check (see exercises).

IfG has the property that gg′ = g′g for all g, g′ inG (in which case we
call G abelian, for reasons that will be explained in the next section), then
obviously gH = Hg for any subgroup H. This means that any subgroup
H of an abelian group G is normal, and we can form the quotient group
G/H. The concept of normal subgroup is therefore interesting only when
G is not an abelian group. In this case, the first step towards understanding
the structure of G is to look for normal subgroups.

All this was first understood and made explicit by Galois, whose work
we introduce in the next section.

Exercises

The group properties of G/H follow from the definition of the product of
cosets, g1H · g2H = g1g2H.

14.2.1 Show that

g1H(g2H ·g3H) = (g1H ·g2H) ·g3H if and only if g1(g2g3) = (g1g2)g3;

hence associativity in G/H follows from associativity in G.

14.2.2 Show that H = 1H is the identity element of G/H.

14.2.3 What is the inverse of gH in G/H? Explain your answer.
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Figure 14.1: The symmetries of the equilateral triangle

The smallest nonabelian group is a group of six elements that may be viewed as
the symmetries of the equilateral triangle. If we fix a position of the triangle, then
there are six motions of it (including the “motion” that does not change it at all)
leading to a position where it looks the same as it did before. These motions can
be distinguished by where they send the vertices A, B, and C (Figure 14.1).

The six motions form a group (called S 3 for reasons that will be given in the
next section) under the operation of combining motions. We combine motions by
viewing each motion as a function f (P) of points P in the triangle, so “do g, then
f ” means to form the function fg(P), as mentioned in Section 14.1.

14.2.4 Why are there only six motions leading to positions that look the same?
Why is this group not abelian?

14.2.5 A subgroup H of S 3 consists of three rotations, through 0◦, 120◦, and 240◦,
represented by the pictures in the top row.

14.2.6 The bottom row of the picture represents a coset gH for some g in S 3.
Describe the motion g, and verify that Hg is the same set as gH.

14.2.7 Show that any subgroup H with only two cosets in a group G is a normal
subgroup.

14.3 Permutations and Theory of Equations

We saw in Section 5.8 that, as early as 1321, Levi ben Gershon found
that there are n! permutations of n things. These permutations are invert-
ible functions that form a group S n (called the symmetric group) under
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composition, though their behavior under composition was not considered
until the 18th century. It was when the idea of permutation was applied to
the roots of polynomial equations, by Vandermonde (1771) and Lagrange
(1771), that the first truly group-theoretic properties of permutations came
to light. At the same time, Vandermonde and Lagrange found the key to
understanding the solution of equations by radicals.

They began with the observation that if an equation

xn + a1x
n−1 + · · · + an−1x + an = 0 (1)

has roots x1, x2, . . . , xn, then

xn + a1x
n−1 + · · · + an−1x + an = (x − x1)(x − x2) · · · (x − xn). (2)

By multiplying out the right-hand side and comparing coefficients one
finds that the ai are certain functions of x1, x2, . . . , xn. For example,

an = (−1)nx1x2 · · · xn,
a1 = −(x1 + x2 + · · · + xn).

These functions are symmetric, that is, unaltered by any permutation of
x1, x2, . . . , xn, since the right-hand side of (2) is unaltered by such permu-
tations. Consequently, any rational function of a1, a2, . . . , an is symmetric
as a function of x1, x2, . . . , xn. Now the object of solution by radicals is to
apply rational operations and radicals to a1, a2, . . . , an so as to obtain the
roots—which are the completely asymmetric functions xi.

Radicals must therefore reduce symmetry in some way, and one can
see how in the quadratic case. The roots of

x2 + a1x + a2 = (x − x1)(x − x2) = 0

are

x1, x2 =
−a1 ±

√
a21 − 4a2
2

=
(x1 + x2) ±

√
x21 − 2x1x2 + x22

2
,

and we notice that the symmetric functions x1 + x2 and x21 − 2x1x2 + x22
yield the two asymmetric functions x1, x2 when the two-valued radical

√
is introduced. In general, a radical p√ multiplies the number of values of
the function by p and divides symmetry by p, in the sense that the group
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of permutations leaving the function unaltered is reduced to 1/p of its
previous size.

Vandermonde and Lagrange found they could explain the previous
solutions of cubic and quartic equations in terms of such symmetry reduc-
tion in the corresponding permutation groups, S 3 and S 4. They also found
some properties of subgroups, such as Lagrange’s theorem mentioned in
the previous section. However, they did not understand the relation between
radicals and subgroups of S n well enough to handle equations of degree
≥ 5. Ruffini (1799) and Abel (1826) made enough progress with S 5 to be
able to prove the unsolvability of the quintic, but they did not get beyond
this. None of these authors were aware of the group concept, and it is only
with hindsight that we can interpret their results in group-theoretic terms.

The concept, and indeed the word “group,” is due to Galois (1831b).
Along with it, Galois introduced the concept of normal subgroup, which
finally unlocks the secret of solvability by radicals. Galois showed that
each equation E has a group GE consisting of the permutations of the
roots that leave rational functions of the coefficients unaltered, and that
the reduction of symmetry caused by introduction of a radical corresponds
to formation of a normal subgroup. More precisely, if E is an equation
solvable by radicals if and only if there is a chain of subgroups

GE = H1 ⊇ H2 ⊇ · · · ⊇ Hk = {1}
such that each Hi+1 is a normal subgroup of Hi and Hi/Hi+1 is cyclic.
(Moreover, if Hi/Hi+1 is cyclic of order n then the step from Hi to Hi+1

corresponds to introduction of an nth root.) Such a groupGE is now called
solvable because it signals solvability of the corresponding equation.

Examples of solvable groups are S 3 and S 4, as one would expect from
the known solvability of the corresponding equations. Also, it is easy to see
that all finite abelian groups are solvable, so each equation with an abelian
group is solvable by radicals—a result due to Abel (1829). This is why we
call such groups “abelian.” If E is the general equation of degree n, then
GE = S n and the theorem of Ruffini and Abel is recovered by showing that
S n is not solvable for n ≥ 5 (see, for example, Dickson (1903)).

This brief sketch of Galois’s ideas covers only a part of his theory.
Another part is his theory of fields, which is needed to clarify the notion
of rational function. We take up the theory of fields in Chapter . Group
theory and field theory make up what is currently known as Galois theory
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(see, for example, Edwards (1984)). What one might consider to be the
summit of Galois’s theory, the solution of equations by elliptic and related
functions, is currently a fairly remote specialty. It appears in earlier books
such as Jordan (1870) and Klein (1884), and more recently in McKean and
Moll (1997). The greatest triumph of this theory was the solution of the
general quintic equation by elliptic modular functions in Hermite (1858),
following a hint in Galois (1831a) (see also Section 14.8).

Exercises

The simplest type of permutation is a transposition, which swaps two things
and leaves the others fixed.

14.3.1 Show that any permutation is a product of transpositions, that is, any arrange-
ment of n things may be achieved by repeated swaps.

The group S n of all permutations of n things has an important subgroup An,
consisting of the even permutations. An even permutation f of {1, 2, . . . , n} is
one with an even number of inversions, that is, pairs (i, j) for which i < j and
f (i) > f ( j) (Cramer (1750), p. 658).

Evenness can be seen by placing the numbers 1, 2, . . . , n in two rows, one
above the other, and drawing a line from k in the top row to f (k) in the bottom
row. Figure 14.2 shows the permutation f (1) = 2, f (2) = 3, f (3) = 1 in this way.

1 2 3

1 2 3

Figure 14.2: A permutation diagram

14.3.2 Explain why a permutation is even if and only if its diagram has an even
number of crossings.

14.3.3 Show that the product of even permutations is even, so the even permuta-
tions of {1, 2, . . . , n} form a group An. (It is called the alternating group.)

14.3.4 Show that evenness does not depend on how the numbers 1, 2, . . . , n are
assigned to the n things. (Hint: if the numbers are permuted by g, show
that the permutation f is replaced by the permutation g−1 fg.)

14.3.5 If g is an odd permutation, that is, g ∈ S n − An, show that the set gAn =

{g f : f ∈ An} is all the odd permutations in S n; hence An contains exactly
half the members of S n.
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It follows from Exercise 14.3.5, and Exercise 14.2.7, that An is a normal sub-
group of S n; hence we can always form the cyclic quotient S n/An = Z2. Thus
the real problem in solving the general equation of degree n is to “solve” An by
finding normal subgroups inside it.

The group S 3 turns out to be solvable because its normal subgroup A3 is
already cyclic. This can be seen by studying the permutations in A3, but more
easily by interpreting S 3 geometrically.

14.3.6 Interpret the symmetry group of the equilateral triangle, discussed in the
previous exercise set, as the group S 3 of all permutations of three things.

14.3.7 Show that, under this interpretation, the cyclic subgroup of rotations is A3.

The interpretation we speak of here is an example of what is technically called
an isomorphism between the triangle symmetry group and S 3. An isomorphism
is a one-to-one correspondence between the two groups that preserves the group
operation, thus establishing that the groups have the “same form.” (We used this
expression in the same sense in Section 12.5.) In calling the rotation subgroup
cyclic we also imply an isomorphism, namely, the one that pairs the rotations
through 0◦, 120◦, 240◦ with the members 0, 1, 2 of Z3 respectively.

14.3.8 Show that there is an isomorphism between the symmetry group of the
regular tetrahedron and S 4. To which symmetries do the members of A4

correspond?

14.4 Permutation Groups

Galois understood “group” to mean a group of permutations of a finite
set, so his definition stated only that the product of two permutations in
the group must again be a member of the group. Associativity, identity,
and inverses were consequences of his assumptions, and indeed too obvi-
ous to be considered important from his point of view. Galois’s work was
published only in 1846, and by that time the theory of finite permutation
groups had been taken up and systematized by Cauchy (1844). Cauchy
likewise required only closure under product in his definition of group,
but he recognized the importance of identity and inverses by introducing
the notation of 1 for the identity and f −1 for the inverse of f .

Cayley (1854) was the first to consider the possibility of more abstract
group elements, and with it the need to postulate associativity. (Inciden-
tally, a group operation for which associativity is not obvious is that defined
by the chord construction on a cubic curve: see Sections 10.3 and 12.5.)
He took group elements to be simply “symbols,” with a “product” of A
and B written A · B and subject to the law A · (B · C) = (A · B) · C, and a
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unique element 1 subject to the laws A ·1 = 1 ·A = A. He still assumed that
each group was finite, however. This meant that the existence of inverses
did not have to be postulated, only the validity of cancellation.

The existence of inverses in a finite group G, as defined by Cayley,
follows from an argument used by Cauchy (1815) and developed more
fully in Cauchy (1844). If A ∈ G, then the powers A2, A3, . . . all belong to
G and hence they eventually include a recurrence of the same element:

Am = An where m < n.

Then, assuming that it is valid to cancel Am from both sides, An−m is the
identity element 1 and An−m−1 is the inverse of A.

The need to postulate inverses first arises with infinite groups, where
this argument no longer holds. Geometry was historically the most impor-
tant source of infinite groups, as we will see in Section 14.6. It was in
extending Cayley’s abstract group theory to cover the symmetry groups of
infinite tessellations that Dyck (1883) made the first mention of inverses in
the definition of groups. We return to Dyck’s concept of group in Section
14.7.

A theorem of Cayley (1878) shows that abstraction of the group con-
cept is, in a sense, empty, because every group is essentially the same as a
group of permutations. Cayley proved the theorem for finite groups only,
where it is more valuable, but the proof easily extends to arbitrary groups
(see exercises).

Exercises

The proof of Cayley’s theorem goes as follows. Given any groupG, associate
any g in G with the function ×g that sends each h ∈ G to hg.

14.4.1 Show that function ×g is a permutation ofG, by showing that its effect can
be undone by the function ×g−1.

14.4.2 Show that different group elements g1, g2 give different functions ×g1, ×g2,
and hence that there is a one-to-one correspondence between the elements
g in G and the permutations ×g of G.

14.4.3 Show that the permutation of G obtained by applying ×g1, then ×g2, is the
permutation obtained by applying ×g1g2.

Thus the group of permutations ×g is isomorphic to the groupG, in the sense
described in the previous exercise set. This is the precise way of saying that G is

essentially the same as a group of permutations.
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14.5 Polyhedral Groups

A beautiful illustration of Cayley’s theorem that every group is a permu-
tation group is provided by the regular polyhedra, whose rotation groups
turn out to be important subgroups of S 4 and S 5. If we imagine a polyhe-
dron P occupying a region R in space, the rotations of P can be viewed as
the different ways of fitting P into R.

We begin with the rotations of the tetrahedron T . T has four vertices,
V1,V2,V3,V4, so each rotation of T is determined by a permutation of the
four things V1,V2,V3,V4. There are 4×3 = 12 rotations, because V1 can be
put at any of the four vertices of R, after which three choices remain for the
remaining triangle of vertices V2,V3,V4. One can check, using the fact that
a permutation that leaves one element fixed and rotates the other three is
even, that all the symmetries of T are even permutations of V1,V2,V3,V4.
But the subgroup A4 of all even permutations in S 4 has 1

2×4! = 12 elements
by the exercises in Section 14.3, so the rotation group of T is precisely A4.

The full permutation group S 4 can be realized by the rotations of the
cube. The four elements of the cube that are permuted are the long diago-
nals (shown in red, yellow, blue, and green in Figure 14.3).

Figure 14.3: The cube and its diagonals

One has to check, first, that each permutation of the diagonals actually
occurs. While doing this, it becomes apparent that the position of the diag-
onals (bearing in mind that endpoints could be swapped) really determines
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the position of the cube (Exercise 14.5.1). S 4 is also the rotation group of
the octahedron, because of the dual relationship between cube and octahe-
dron seen in Figure 14.4. Each rotation of the cube is clearly a rotation of
its dual octahedron, and conversely.

Figure 14.4: Dual polyhedra

Likewise, the dual relationship between dodecahedron and icosahe-
dron (Figure 14.4) shows that they have the same rotation group. This
group turns out to be A5, the subgroup of even permutations in S 5. The
five elements of the dodecahedron whose even permutations determine
these rotations are tetrahedra formed from sets of four vertices (see Figure
14.5).

Figure 14.5: The tetrahedra in a dodecahedron
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More on the polyhedral groups is in the famous book of Klein (1884),
relating the theory of equations to the rotations of the regular polyhe-
dra and functions of a complex variable. The complex variable makes
its appearance when the regular polyhedra are replaced by regular tes-
sellations of the sphere C ∪ {∞}, and their rotations by linear fractional
transformations, as in Section 13.9. Klein (1876) showed that, with triv-
ial exceptions, all finite groups of linear fractional transformations come
from the rotations of the regular polyhedra in this way.

The regular polyhedra were also the source of another approach to
groups: presentation by generators and relations. Hamilton (1856) showed
that the icosahedral group can be generated by three elements ι, χ, λ sub-
ject to the relations

ι2 = χ3 = λ5 = 1, λ = ιχ. (1)

This means that any element of the icosahedral group is a product (possibly
with repetitions) of ι, χ, λ and that any relation between ι, χ, λ follows from
the relations (1). Dyck (1882) gave similar presentations of the cube and
tetrahedron groups, and for the groups of certain finite tessellations, as part
of the first general discussion of generators and relations. We return to this
in Section 14.7.

Exercises

14.5.1 Show that each permutation of the diagonals of a cube is realizable, for
example by showing that each transposition is realizable.

14.5.2 Show that a permutation of the diagonals uniquely determines the position
of the cube.

Now consider the following rotations of the cube:

ι = 180◦ rotation about a line through the midpoints of opposite edges,

χ = 120◦ rotation about a diagonal.

These obviously satisfy ι2 = χ3 = 1.

14.5.3 Show that ιχ = λ, where

λ = 90◦ rotation about a line through the centers of opposite faces,

where the lines are, for example, the blue, red, and green ones shown in
Figure 14.6 (these lines are fixed in space, not in the cube).

14.5.4 Deduce from Exercise 14.5.3 that ι2 = χ3 = (ιχ)4 = 1 for the cube.
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Figure 14.6: Rotation axes of the cube

14.5.5 Show that the analogous ι, χ for the tetrahedron satisfy
ι2 = χ3 = (ιχ)3 = 1,

and the analogous ι, χ for the dodecahedron satisfy
ι2 = χ3 = (ιχ)5 = 1.

14.6 Groups and Geometries

As the regular polyhedra show, geometric symmetry is fundamentally a
group-theoretic notion. More generally, many notions of equivalence in
geometry can be explained as properties preserved by certain groups of
transformations. However, some revision of classical notions was needed
before geometry could benefit from group-theoretic ideas.

The oldest notion of geometric equivalence is that of congruence. The
Greeks understood figures F1 and F2 to be congruent if there is a rigid
motion of F1 that carries it into F2. But this concept of motion had mean-
ing only for the individual figure. The “product” of motions of different
figures was meaningless, so one did not have a group of motions.
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The first step on the path to group theory in geometry was extend-
ing the idea of motion to the whole plane by Möbius (1827). This gave
meaning to the product of motions. In fact, Möbius considered the class
of all continuous transformations of the plane that preserve straightness
of lines, and he picked out several subclasses: those that preserve length
(congruences), shape (similarities), and parallelism (affinities). He showed
that the most general continuous transformations preserving straightness
are just the projective transformations, so in one stroke Möbius defined
the notions of congruence, similarity, affinity, and projective equivalence
as properties invariant under certain classes of transformations. That the
classes in question are groups was obvious as soon as one recognized the
concept of group. But the group concept was recognized only slowly: the
ideas of Möbius were first stated in terms of groups by Klein (1872).

Klein’s formulation became known as the Erlanger Programm because
he announced it at the University of Erlangen. He associated each geome-
try with a group of transformations that preserve its characteristic proper-
ties. Thus, characteristic properties show up as invariants of a group. For
example, the group of plane Euclidean geometry is the group of Euclidean
rigid motions—transformations of R2 that preserve the Euclidean distance√
(x2 − x1)2 + (y2 − y1)2 between points (x1, y1) and (x2, y2). Euclidean

distance is therefore an invariant, by the very definition of the group.
A more interesting example is the group of the real projective line

RP
1, studied in Section 7.6. Here we start with the group, the group of

real linear fractional transformations, and discover its invariant, the cross-
ratio, which is not at all obvious visually. Plane projective geometry is
similarly associated with the group of projective transformations of RP2,
and its fundamental invariant is likewise the cross-ratio.

Plane hyperbolic geometry, in view of the projective model, can be
defined by the group of projective transformations that map the unit circle
onto itself. An important influence on the Erlanger Programm was indeed
Cayley (1859), where this group was first shown to determine a geometry,
and the subsequent realization of Klein (1871) that the elements of this
group are the rigid motions of hyperbolic geometry. Not surprisingly, its
fundamental invariant is the hyperbolic distance, and this turns out to be a
function of the cross-ratio.

Poincaré (1882) discovered that the rigid motions of the half-plane
model are determined by projective transformations of its boundary—the
real projective line—as we saw in Section 13.9. So hyperbolic geome-
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try is also definable by the group of real linear fractional transformations,
by extending these transformations from the line to the half-plane. (For
an introduction to hyperbolic geometry based on this idea, see Stillwell
(2005).)

When geometry is reformulated in terms of groups, certain geomet-
ric questions become natural questions about groups. A regular tessella-
tion, for example, corresponds to a subgroup of the full group of motions,
consisting of those motions that map the tessellation onto itself. In the
case of hyperbolic geometry, where the problem of classifying tessella-
tions is formidable, the interplay between geometric and group-theoretic
ideas proved to be very fruitful. In the work of Poincaré (1882, 1883) and
Klein (1882b), group theory is the catalyst for a new synthesis of geomet-
ric, topological, and combinatorial ideas, which are described in Sections
14.7 and 15.5.

Exercises

If we view geometric objects (points, lines, curves, and so on) as subsets X of
a space S , then relations such as congruence arise from groups of transformations
of S in the following way. There is a group G of maps g : S → S , and each
geometric object X has a G-orbit {g(X) : g ∈ G}, consisting of the objects onto
which X is mapped by elements of G.

For example, if Δ is a triangle in the plane R2, and G consists of all transfor-
mations of R2 that preserve length, then {g(Δ) : g ∈ G} consists of all triangles
congruent to Δ. This example shows that members of the sameG-orbit are “equiv-
alent” in a sense that depends onG. In fact, we always get an equivalence relation
from a group in this way. Here is another example.

14.6.1 If G = {similarities of R2}, what is {g(Δ) : g ∈ G} for a triangle Δ?
For any group G of transformations, we define a relation X �G Y (“X is G-

equivalent to Y”) between subsets X, Y of S by

X �G Y ⇔ X is in the G-orbit of Y.

Then the group properties of G imply the following properties of the relation �G.

14.6.2 Show that the relation �G has the properties

X �G X (reflexive)
X �G Y ⇒ Y �G X (symmetric)

X �G Y and Y �G Z ⇒ X �G Z (transitive)

14.6.3 At which points does your solution of Exercise 14.6.2 involve the existence
of an identity, existence of inverses, and existence of products in G?



14.6 Groups and Geometries 275

The properties in Exercise 14.6.2 show that �G is an equivalence relation,
according to the definition in the exercises for Section 2.1. There it was also noted
that the reflexive and transitive properties actually imply symmetry, provided that
transitivity is stated in the manner of Euclid’s Common Notion 1: “Things equiv-
alent to the same thing are equivalent to each other.”

14.6.4 Prove Common Notion 1 for �G:

X �G Y and Z �G Y ⇒ X �G Z.

You will see that this proof involves inverses, which previously were needed
only to prove symmetry. This confirms that Euclid’s Common Notion 1 is in some
sense a combination of both transitivity and symmetry.

Returning to a particular group and its invariants, here is an example of the
way in which an invariant can throw light on its group.

14.6.5 Given three points A, B,C on RP
1, show that there is a unique fourth point

x such that the cross-ratio

(C − A)(x − B)
(C − B)(x − A)

has a given value y.

14.6.6 Deduce from Exercise 14.6.5 that each linear fractional transformation of
RP

1 is determined by its values on any three points A, B,C.

14.7 Combinatorial Group Theory

Asmentioned in Section 14.5, the groups of the regular polyhedra were the
first to be defined in terms of generators and relations. With finite groups
such as these, however, one is concerned mainly with the simplicity and
elegance of a presentation; the question of existence does not arise. For any
finite groupG one can trivially obtain a finite set of generators (namely, all
the elements g1, . . . , gn of G) and defining relations (namely, all equations
gig j = gk holding among the generators). Of course the same argument
gives an infinite set of generators and defining relations for an infinite
group, but this is also not interesting. The problem is to find finite sets
of generators and defining relations for infinite groups where possible.

This problem was first solved for the symmetry groups of certain reg-
ular tessellations, and such examples were the basis of the first systematic
study of generators and relations, by Klein’s student Dyck. Dyck’s papers
(1882, 1883) laid the foundations of this approach to group theory, now
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called combinatorial (and, more recently, geometric). For more technical
information, as well as detailed history of the development of combinato-
rial group theory, see Chandler and Magnus (1982).

Figure 14.7 illustrates how generators and relations arise naturally
from tessellations. This tessellation is based on the regular tessellation
of the Euclidean plane by unit squares, but each square has been subdi-
vided into black and white triangles to eliminate symmetries by rotation
and reflection. The symmetries that remain are generated by

1. horizontal translation of length 1

2. vertical translation of length 1

These generators are subject to the obvious relation

ab = ba,

which implies that any element of the group can be written in the form
ambn. If g = am1bn1 and h = am2bn2 , then g = h only if m1 = m2 and
n1 = n2, that is, only if g = h is a consequence of the relation ab = ba.
Thus all relations g = h in the group follow from ab = ba, which means
that the latter relation is a defining relation of the group.

Figure 14.7: A tessellation of the plane
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The obviousness of the defining relation in this case blinds us to a
fact that becomes more evident with tessellations of the hyperbolic plane:
the generators and relations can be read off the tessellation. Group ele-
ments correspond to cells in the tessellation, squares in the present exam-
ple. If we fix the square corresponding to the identity element 1, then the
square to which square 1 is sent by the group element g may be called
square g. The generators a±1, b±1 are the elements that send square 1 to
adjacent squares. They generate the group because square 1 can be sent
to any other square by a series of moves from square to adjacent square.
Relations correspond to equal sequences of moves or, what amounts to
the same thing, to sequences of moves that return square 1 to its starting
position. These sequences can all be derived from a circuit around a vertex
(Figure 14.8), that is, the sequence aba−1b−1. Thus all relations are derived
from aba−1b−1 = 1, or, equivalently, ab = ba.

a

b

a−1

b−1

Figure 14.8: Circuit around a vertex

Generalizing these ideas, Poincaré (1882) showed that the symmetry
groups of all regular tessellations, whether of the sphere, Euclidean plane,
or hyperbolic plane, can be represented by finitely many generators and
relations. Generators correspond to moves of the basic cell to adjacent
cells, and hence to the sides of the basic cell; defining relations corre-
spond to its circuits around its vertices. These results are also important
for topology, as we will see in Chapter 15.

The notion of group abstracted from such examples was expressed in
a somewhat technical way, involving normal subgroups, by Dyck (1882).
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The following, simpler, approach was worked out by Dehn and used by
Dehn’s student Magnus (1930). A group G is defined by a set {a1, a2, . . .}
of generators and a set {W1 = W′1,W2 = W′2, . . .} of defining relations.
Each generator ai is called a letter; ai has an inverse a−1i , and arbitrary
finite sequences (“products”) of letters and inverse letters are called words.

Words W, W ′ are called equivalent if W = W ′ is a consequence of the
defining relations, that is, if W may be converted to W ′ by a sequence of
replacements of subwords Wi by W′i (or vice versa) and cancellation (or
insertion) of subwords aia−1i , a−1i ai. The elements ofG are the equivalence
classes

[W] = {W ′ : W′ is equivalent toW},
and the product of elements [U], [V] is defined by

[U][V] = [UV],

where UV denotes the result of concatenating the words U, V . It has to be
checked that this product is well defined, but once this is done, the group
properties (i), (ii), and (iii) of Section 14.1 follow easily.

Exercises

Here is how one verifies that the classes [W] have the group properties.

14.7.1 If U is equivalent to U′, show that UV is equivalent to U′V . Conclude,
using this and a similar result for V ′, that the product [U][V] is independent
of the choice of representatives for [U], [V].

14.7.2 [U] ([V][W]) = ([U][V]) [W] is trivial. Why?

14.7.3 Show that 1 = equivalence class of the empty word.

14.7.4 Show that [W]−1 = [W−1], where W−1 is the result of writing W backward
and changing the sign of each exponent.

The smallest nonabelian group S 3 is also the smallest group with interesting
defining relations. We take S 3 to be the group of symmetries of the equilateral
triangle, as in the exercises to Section 14.2.

14.7.5 Show that S 3 is generated by a 120◦ rotation r about its center, and a 180◦
rotation s about the vertical axis of symmetry. Also show that r and s satisfy
the relations

r3 = s2 = 1, r2s = sr.

14.7.6 Deduce from Exercise 14.7.5 that each element of S 3 can be written in the
form

rmsn, where m = 0, 1, 2 and n = 0, 1.
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14.7.7 Conclude from Exercise 14.7.6 that r3 = s2 = 1 and r2s = sr are defining
relations for S 3.

14.7.8 By a similar argument, show the group of symmetries of a regular n-gon
has defining relations rn = s2 = 1, rn−1s = sr.

14.8 Finite Simple Groups

A group is called simple if it has no normal subgroups other than itself
and the group {1} whose only member is the identity element. The reason
for the name is that a simple group cannot be “simplified” by forming the
quotient G/H by a normal subgroup H. In this sense of simplicity, simple
groups are like prime numbers, which cannot be “simplified” by dividing
them by smaller integers. We do not claim that simple groups or prime
numbers are not complicated!

The most obvious examples of finite simple groups are in fact the
prime numbers, or more precisely the cyclic groups Zp for prime num-
bers p. Zp is simple because it has no subgroups whatever except itself
and {1} (thanks to Lagrange’s theorem that the size of a subgroup divides
the size of the group). In fact, these are the only abelian simple groups, and
we will ignore them from now on. The interesting simple groups are those
that are not abelian, and the first examples were discovered by Galois in
his study of polynomial equations.

The smallest nonabelian simple group is A5, the group of the 60 even
permutations of five things. The simplicity of A5 is the obstruction to the
solution of the quintic equation by radicals. As we saw in Section 14.3, the
group of the quintic equation is S 5, the group of all 120 permutations of
five things. Solving the quintic equation by radicals is equivalent to finding
a chain of subgroups

S 5 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ {1}
such that the quotient of each group by the next is cyclic. We can make a
first step,

S 5 ⊇ A5,

but we can go no further because S 5 has no other nontrivial normal sub-
group and A5 is simple.

The proof that A5 is simple (see exercises below) can be extended
to show that An is simple for all n ≥ 5, so Galois actually discovered a
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whole infinite family of simple groups. He also found three remarkable
simple groups in the study of modular equations, which arise in the the-
ory of elliptic functions. The starting point of these investigations was the
Fagnano (1718) formula for doubling the arc length of the lemniscate
(Section 10.6):

2
∫ x

0

dt√
1 − t4

=

∫ y
0

dt√
1 − t4

, where y =
2x
√
1 − x4

1 + x4
.

This gives the polynomial equation between x and y, of degree 2 in y:

y2(1 + x4)2 = 4x(1 − x4).

In the early 19th century, Fagnano’s discovery was generalized to other
elliptic integrals and to n-tupling instead of doubling, by Legendre, Gauss,
Abel, and Jacobi. Galois left only some cryptic remarks about multiplica-
tion by 5, 7, and 11 (implying that they yield equations of degree 5, 7, and
11) in a letter that he wrote just before his death.

It turns out that the modular equation of degree 5 is equivalent to the
general quintic equation, which is why Hermite (1858) was able to solve
the general quintic equation by elliptic modular functions. However, the
modular equations of degree 7 and 11 have groups of size 336 and 1320
respectively, so they are not symmetric groups S n. The nature of these new
groups was revealed by Jordan (1870). They can be viewed as (what we
would now call) transformation groups of finite projective lines.

What is a finite projective line? It is like the real projective line RP1 =
R ∪ {∞} discussed in Section 7.6, except that R is replaced by a finite
field. Finite fields were discovered by Galois, and we met some of them
in Section 14.1 when we discussed addition and multiplication mod p.
Since the latter operations have the same behavior as ordinary addition
and multiplication—in particular, each nonzero number has an inverse—
we can operate on the set Fp = {0, 1, 2, . . . , p − 1} as we normally do,
to solve equations and so on. Moroever, linear fractional functions make
sense on Fp ∪ {∞}, if we agree as usual that

1/0 = ∞ and 1/∞ = 0.

So we can view Fp ∪ {∞} as a finite projective line, and its linear frac-
tional functions as “projections.” Moreover, the cross-ratio makes sense
on Fp ∪ {∞}, and it is invariant under linear fractional functions by the
same argument as in Section 7.6.
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For this reason, the group of functions

x �→ ax + b
cx + d

, where a, b, c, d ∈ Fp and ad − bc � 0,

is called the projective general linear group, PGL(2, p). The reason for
the 2 is that the coefficients a, b, c, d behave like the 2 × 2 matrix

( a b
c d

)
.

It turns out that PGL(2, 5), PGL(2, 7), and PGL(2, 11) are the groups of
the modular equations of degree 5, 7, and 11 respectively. Moreover, each
of these groups PGL(2, p) contains a simple subgroup, called PSL(2, p),
which is half of its size. This was shown by Jordan (1870).

PSL(2, 5) is the same as A5, but PSL(2, 7) is a new simple group with
168 elements, and PSL(11) is a simple group with 660 elements. It also
happens that PSL(2, 7) is the smallest nonabelian simple group, other than
PSL(2, 5) = A5. PSL(2, 7) makes several other spectacular appearances in
geometry, which may be seen in the article Gray (1982).

These examples give only the tiniest glimpse of the world of simple
groups. Nevertheless, they hint at one of its most fascinating features—
there are meaningful finite analogues of infinite structures such as the real
projective line.

Exercises

A5 is simple for quite elementary reasons, which can be understood with only
slight knowledge of permutations. This includes the nature of even permutations,
explored in the exercises to Section 14.3, and the decomposition of permutations
into cycles, which we explore here.

We say that (a1, a2, . . . , ak) is a k-cycle of a permutation f of {1, 2, . . . , n} if

f (a1) = a2, f (a2) = a3, . . . , f (ak) = a1

for distinct numbers a1, a2, . . . , ak. Each number in {1, 2, . . . , n} belongs to some
k-cycle of f , so f is a product of disjoint cycles. For example, if f is

1

1

2

2

3

3

4

4

5

5

then f = (1, 2)(3, 4, 5). It follows from the Exercises in Section 14.3 that the only
even k-cycles among the even permutations of {1, 2, 3, 4, 5} are the 3-cycles and
the 5-cycles.
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14.8.1 Omitting 1-cycles from the cycle decomposition, show that the only pos-
sible types of cycle decomposition for (nonidentity) members of A5 are
(a, b, c), (a, b)(c, d), and (a, b, c, d, e).

14.8.2 Recalling that f · g means “g, then f ,” check that

(i) (1, 2, 3, 4, 5) · (2, 1, 4, 3, 5) = (1, 5, 3).

(ii) (1, 2)(3, 4) · (1, 2)(4, 5) = (3, 4, 5).

The preceding exercises show that a subgroup H of A5 with enough elements
of type (a, b)(c, d) or (a, b, c, d, e) also contains a 3-cycle. We now study what
happens when H is normal and not equal to {1}, and show that such an H contains
enough elements to ensure that 3-cycles are present.

Recall from Section 14.2 that a normal subgroup H of A5 satisfies gH = Hg
for each g in A5. It follows that gHg−1 = H, that is, if h is in H, so is ghg−1 for
any g in A5.

14.8.3 Show that if H contains a 5-cycle (a, b, c, d, e) then it also contains the
5-cycle (g(a), g(b), g(c), g(d), g(e)) for each g in A5.

14.8.4 Show that if H contains a product of 2-cycles (a, b)(c, d) then it also con-
tains the product of 2-cycles (g(a), g(b))(g(c), g(d)) for each g in A5.

14.8.5 Deduce from Exercises 14.8.3 and 14.8.4, and calculations like those in
Exercise 14.8.2, that H contains a 3-cycle.

14.8.6 Deduce from the preceding exercises that H contains all 3-cycles.

To prove that A5 is simple, it now remains to prove that the normal subgroup
H � {1} in fact contains all members of A5.

14.8.7 By using 3-cycles to produce other elements of A5, show that H = A5.
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Topology

Preview

In Chapter 11 we saw how Riemann found the topological concept of
genus to be important in the study of algebraic curves. In the present
chapter we will see how topology became a major field of mathematics,
with its own methods and problems.

Naturally, topology interacts with geometry, and it is common for topo-
logical ideas to be noticed first in geometry. An important example is the
Euler characteristic, which was originally observed as a characteristic of
polyhedra. Later it was seen to be meaningful for arbitrary closed surfaces.
Today, we tend to think that topology comes first, and that it controls what
can happen in geometry.

Topology also interacts with algebra. In this chapter we focus on the
fundamental group, a group that describes the ways in which flexible loops
can lie in a geometric object. On a sphere, all loops can be shrunk to a
point, so the fundamental group is trivial. On the torus there are many
nonshrinkable loops, but they are all combinations of two particular loops,
a and b, where ab = ba. The latter relation is equivalent to aba−1b−1 = 1,
meaning that the product aba−1b−1 of loops is shrinkable to a point.

Thus the fundamental group presents itself naturally with generators
(basic loops) and relations (shrinkable products of loops). This establishes
a connection between topology and combinatorial group theory, discussed
in Section 14.7. In fact, in a sense, topology contains all of combinatorial
group theory. This is both a blessing and a curse: it allows group theory to
be used in topology, but it infects topology with the hardest problems of
combinatorial group theory.
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15.1 Geometry and Topology

Topology deals with those properties that remain invariant under contin-
uous transformations. In Klein’s Erlanger Programm (where it is briefly
mentioned under its old name of analysis situs) topology is the “geometry”
of groups of continuous invertible transformations, or homeomorphisms.
The “spaces” to which transformations apply, and indeed the meaning of
“continuous,” remain somewhat open. When these terms are interpreted
in the most general way, as subject only to certain axioms (which do not
concern us here), one has general topology. The theorems of general topol-
ogy appear in fields ranging from set theory to analysis, but they are not
very geometric in flavor. Geometric topology, the subject of this chapter,
is obtained when the transformations are ordinary continuous functions
on R

n or on certain subsets of Rn. Examples are the “topological equiva-
lences” between surfaces we spoke about in Section 11.8.

Geometric topology is more recognizably “geometric” than general
topology, though one would expect the “geometry” to be of a discrete and
combinatorial kind. Ordinary geometric quantities—such as length, angle,
and curvature—admit continuous variation and hence cannot be invariant
under continuous transformations. Topologically invariant quantities are
things such as the number of “pieces” of a figure or the number of “holes”
in it. It turns out, though, that the discrete structures of topology are often
reflected by discrete structures in ordinary geometry, such as polyhedra
and tessellations. In surface topology, this geometric modeling of topo-
logical structure is so complete that topology becomes essentially a part
of ordinary geometry. “Ordinary” here means geometry with notions of
length, angle, and curvature—not necessarily Euclidean geometry. In fact,
the natural geometric models of most surfaces are hyperbolic.

It remains to be seen whether topology as a whole will ever be sub-
ordinate to ordinary geometry. This is so in three dimensions, and here
too hyperbolic geometry is the most important geometry (see Thurston
(1997) or Weeks (1985)). In this chapter we make a virtue of a necessity
by confining our discussion mainly to the topology of surfaces. This is the
only area that is sufficiently understandable and relevant when set against
the background of the rest of this book. Fortunately, this area is also rich
enough to illustrate some important topological ideas, while still being
mathematically tractable and visual. We begin the discussion of surface
topology at its historical starting point, the theory of polyhedra.
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15.2 Polyhedron Formulas of Descartes and Euler

The first topological property of polyhedra seems to have been discovered
by Descartes around 1630. Descartes’s short paper on the subject is lost,
but its contents are known from a copy made by Leibniz in 1676, discov-
ered among Leibniz’s papers in 1860 and published in Prouhet (1860). A
detailed study of this paper, including a translation and facsimile of the
Leibniz manuscript, has been published by Federico (1982).

The same property was rediscovered by Euler (1752), and it is now
known as the Euler characteristic. If a polyhedron has V vertices, E edges,
and F faces, then its Euler characteristic is V − E + F. Euler showed that
this quantity has certain invariance by showing

V − E + F = 2

for all convex polyhedra, a result now known as the Euler polyhedron for-
mula. Descartes already had the same result implicitly in the pair of for-
mulas

P = 2F + 2V − 4, P = 2E,

where P is the number of what Descartes called “plane angles”: corners
of faces determined by pairs of adjacent edges. The relation P = 2E then
follows from the observation that each edge participates in two corners. It
should be stressed that Descartes’s “plane angle” has nothing to do with
angle measure, and hence is just as topological a concept as Euler’s “edges.”
Thus Descartes’s result belongs to topology just as much as Euler’s does,
even though it fails to isolate the concept of Euler characteristic quite as
well. Some rather hairsplitting distinctions have been made between Euler
and Descartes in an effort to show that Euler invented topology and
Descartes did not (see Federico (1982) for a review of different opinions).

Actually, neither of these mathematicians understood the polyhedron
formula in a fully topological way. They both used nontopological con-
cepts, such as angle measure, in their proofs, and they did not realize that
“vertices,” “edges,” and “faces” are meaningful on any surface: edges need
not be straight and faces need not be flat. Other early proofs of the Euler
polyhedron formula also rely on angle measure and other ordinary geo-
metric quantities. For example, that of Legendre (1794) assumes that the
polyhedron can be projected onto the sphere, then uses the Harriot relation
between angular excess and area for spherical polygons (Exercises 13.6.5,
15.2.1, and 15.2.2).
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Probably the first to understand V − E + F purely topologically was
Poincaré (1895). In fact, Poincaré generalized the Euler characteristic to n-
dimensional figures, but in the case of polyhedra his essential observation
was this: a vertex divides an edge into two edges, and an edge divides a
face into two faces. It follows that any subdivision of edges or faces of a
polyhedron leaves V − E + F unchanged: if a new vertex is introduced on
an edge, V and E both increase by 1; if a new edge is introduced across a
face, E and F both increase by 1. The reverse processes of amalgamation,
where they make sense, likewise leave V − E + F unchanged.

The constancy of V − E + F over, say, the class of convex polyhedra
then follows if it can be shown that any polyhedron P1 in the class can be
converted to any other, P2, by subdivisions and amalgamations. A plau-
sible argument for this, due to Riemann (1851), is to view P1 and P2 as
subdivisions of the same surface, say a sphere. Assuming that the edges of
P1 and P2 meet only finitely often, superimposing P1 on P2 gives a com-
mon subdivision P3 whose V − E + F value is therefore the same as that
of P1 and P2. Hence the V − E + F values of P1 and P2 are equal. A more
general approach, which also yields the value of V−E+F for nonspherical
surfaces, is explained in the next section.

An engaging recent account of the Euler characteristic and its history
is Richeson (2008).

Exercises

Here is the proof of the Euler polyhedron formula by Legendre (1794).

15.2.1 Consider the projection of a convex polyhedron onto a sphere, whose faces
are therefore spherical polygons. Use the fact that

area of a spherical n-gon = angle sum − (n − 2)π
to conclude that

total area = 4π =
(∑

all angles
)
− π
(∑

all n
)
+ 2πF.

15.2.2 Show also that
∑

all n = 2E,
∑

all angles = 2πV,

whence
V − E + F = 2.

The invariance of the Euler characteristic gives a simple topological proof that
there are only five regular polyhedra. In fact, it shows that only five polyhedra
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are topologically regular in the following sense: for some m, n > 2 their “faces”
are topological m-gons on a topological sphere, n of which meet at each vertex.
We show as follows that V − E + F = 2 allows only the pairs

(m, n) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3),

corresponding to the known regular polyhedra (Section 2.2).

15.2.3 Given that there are F faces, deduce that E = mF/2 and V = mF/n.

15.2.4 Apply the formula V − E + F = 2 to conclude that 4n/(2m + 2n − mn) is
a positive integer.

15.2.5 Show that 2m+ 2n−mn > 0, that is, 2m
n + 2 > m, only for the above pairs

(m, n).

15.2.6 Also check that 2m + 2n − mn divides 4n for these pairs.

15.3 The Classification of Surfaces

Between the 1850s and the 1880s, several different lines of research led to
the demand for a topological classification of surfaces. One line, descend-
ing from Euler, was the classification of polyhedra. Another was the
Riemann surface representation of algebraic curves, coming fromRiemann
(1851, 1857). Related to this was the problem of classifying symmetry
groups of tessellations, considered by Poincaré (1882) and Klein (1882b)
(see Section 15.4). Finally, there was the problem of classifying smooth
closed surfaces in ordinary space (Möbius (1863)). These different lines
of research converged when it was realized that each “surface” could be
subdivided into “faces” by “edges” so as to become a generalized polyhe-
dron. The generalized polyhedra were traditionally called closed surfaces,
and are now described by topologists as compact and without boundary.

The subdivision argument for the invariance of the Euler characteristic
V − E + F applies to any such polyhedron, not just those homeomorphic
to the sphere and not just those with straight edges and flat faces. Var-
ious mathematicians, such as Riemann (1851) and Jordan (1866), came
to the conclusion that any closed surface is determined, up to homeomor-
phism, by its Euler characteristic. It also seemed that the different possible
Euler characteristics were realized by the “normal form” surfaces seen in
Figure 22.1, which were discovered by Möbius (1863). It is certainly plau-
sible that these forms are distinct, topologically, because of their different
numbers of “holes.” The main part of the proof is to show that any closed
surface is homeomorphic to one of them.
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The assumptions of Riemann (that the surface is a Riemann surface)
and Möbius (that the surface is smoothly embedded in R3) were a little too
special to yield a purely topological proof, and they also contained a hidden
assumption of orientability (“two-sidedness”). A rigorous proof, from an
axiomatic definition of generalized polyhedron, was given by Dehn and
Heegaard (1907). The closed orientable surfaces indeed turn out to be those
pictured in Figure 15.1, but in addition there are nonorientable surfaces,
which are not homeomorphic to orientable surfaces.

Figure 15.1: Surfaces of genus 0, 1, 2, 3, . . .

A nonorientable surface may be defined as one that contains aMöbius
band, a nonclosed surface discovered independently by Möbius and List-
ing in 1858 (Figure 15.2).

Figure 15.2: A Möbius band

Closed nonorientable surfaces cannot occur as Riemann surfaces, nor
can they lie in R

3 without crossing themselves; nevertheless, they include
some important surfaces, such as the projective plane (Exercise 7.5.3). The
nonorientable surfaces are also determined, up to homeomorphism, by the
Euler characteristic.

The Möbius forms of closed orientable surfaces were given standard
polyhedral structures by Klein (1882b). These are “minimal” subdivisions
with just one face and, except for the sphere, with just one vertex.When the
Klein subdivision of a surface is cut along its edges, one obtains a funda-
mental polygon, from which the surface may be reconstructed by pasting
suitable edges. Figure 15.3 shows how to cut a torus, which can then be
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flattened to a rectangle. (The process was shown in reverse in Figure 12.4.)

Figure 15.3: Cutting a torus

Figure 15.4 shows genus 2. The surface is cut open along a figure eight
curve on the top, then further cut through each “handle.” The cut surface
can then be spread out flat as an octagon whose eight corners are seen
coming apart in the middle of the picture.

Figure 15.4: Cutting a genus 2 surface

It is often more convenient to work with the polygon rather than the
surface or its polyhedral structure. For example, since Brahana (1921),
most proofs of the classification theorem have used polygons rather than
polyhedra, “cutting and pasting” them (instead of subdividing and amalga-
mating) until Klein’s fundamental polygons are obtained. The fundamen-
tal polygon gives a very easy calculation of the Euler characteristic χ and
Exercise 15.3.1 shows it to be related to the genus g (number of “holes”)
by

χ = 2 − 2g.
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Exercises

15.3.1 Show that the standard polyhedron for a surface of genus g ≥ 1 has V = 1,
E = 2g, F = 1, whence χ = 2 − 2g.

The standard polygon for the genus g surface has a boundary path of the form
a1b1a−11 b−11 a2b2a−12 b−12 · · · agbga−1g b−1g , where successive letters denote successive
edges and those with exponents −1 have oppositely directed arrows. Edges with
the same letter are pasted together, with arrows matching.

15.3.2 Each sequence aibia−1i b−1i is called a handle. Justify this term by drawing
the surface that results from pasting together the matching edges of the
polygon bounded by aibia−1i b−1i c. The result should be a “handle-shaped”
surface with boundary curve c.

Another fundamental polygon is the “2n-gon with opposite edges pasted
together,” that is, the polygon with boundary of the form a1a2 · · · ana−11 a−12 · · · a−1n .
15.3.3 Show that for both n = 2 and n = 3 the surface obtained from the polygon

a1a2 · · · ana−11 a−12 · · · a−1n is a torus.

15.3.4 Show that if n is even, the vertices of the polygon a1a2 · · · ana−11 a−12 · · · a−1n
become a single vertex after pasting, and if n is odd they become two.
Hence find the Euler characteristic of the surface for any n.

15.4 Surfaces and Planes

In Section 12.5 we noticed that an elliptic function maps a plane onto a
torus. Such mappings are also interesting in the topological context, where
they are called universal coverings. In general, a mapping ϕ : S̃ → S of a
surface S̃ onto a surface S is called a covering if it is a homeomorphism
locally, that is, when restricted to sufficiently small pieces of S̃ . The map-
ping of the plane onto the torus in Section 12.5 is a covering because it
is a homeomorphism when restricted to any region smaller than a period
parallelogram.

Another example we already know is the mapping of the sphere onto
the projective plane given by Klein (1874) (Section 7.5). This map sends
each pair of antipodal points of the sphere to the same point of the pro-
jective plane, and hence is a homeomorphism when restricted to any part
of the sphere smaller than a hemisphere. Yet another is Beltrami’s (1868a)
covering of the pseudosphere by a horocyclic sector (Section 13.7). Topo-
logically, this covering is the same as the covering of a half-cylinder by a
half-plane when the plane is “wrapped” around the cylinder.
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All these coverings are universal in the sense that the covering surface
S̃ (sphere or plane) can be covered only by S̃ itself.

Since the sphere is covered only by itself, the interesting coverings of
orientable surfaces are those for genus ≥ 1 (or Euler characteristic ≤ 0). All
of these surfaces can be covered by planes. Moreover, each nonorientable
surface can be doubly covered by an orientable surface in the same way
that the projective plane is covered by the sphere, so the main thing to
understand is the covering of orientable surfaces of genus ≥ 1 by planes.

The basic idea is due to Schwarz, and it became generally known
through a letter from Klein (1882a) to Poincaré. To construct the univer-
sal covering of a surface S , take infinitely many copies of a fundamental
polygon F for S and arrange them in the plane so that adjacent copies of
F meet in the same way that F meets itself on S . For example, the torus T
in Figure 15.5 has the rectangular fundamental polygon F shown, which
meets itself along the red and blue edges in T (where the arrows indicate
that edges must agree in direction as well as color).

Figure 15.5: From the torus to its fundamental polygon

If insteadwe take infinitelymany separate copies of F and join adjacent
red and blue edges, then we obtain a plane T̃ , tessellated as in Figure 15.6.
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The universal covering T̃ → T is then defined by mapping each copy of
the rectangle F in T̃ in the natural way onto the F in T .

Figure 15.6: Tessellation of the torus cover

The tessellation of Figure 15.6 can of course be realized by rectangles
in the Euclidean plane. We can therefore impose a Euclidean geometry on
the torus by defining the distance between (sufficiently close) points on the
torus to be the Euclidean distance between appropriate preimage points in
the plane. In particular, the “straight lines” (geodesics) on the torus are the
images of straight lines in the Euclidean plane. The torus geometry is not
quite the geometry of the plane, of course, since there are closed geodesics,
such as the images of the line segments a and b. However, it is Euclidean
when restricted to sufficiently small regions. For example, the angle sum
of each triangle on the torus is π.

For surfaces of genus >1—that is, of negative Euler characteristic—
the angle sum 2π of the fundamental polygon predicts negative curvature,
and hence the natural covering plane should be hyperbolic. This can also
be seen from the combinatorial nature of the tessellation on the universal
cover. For example, the fundamental polygon F of the surface S of genus
2 is an octagon, as we saw in Figure 15.4.

In the universal covering, eight of these octagons have to meet at each
vertex, since the eight corners of the single F meet on S . Such a tessellation
is impossible, by regular octagons, in the Euclidean plane, but it exists in
the hyperbolic plane, as Figure 15.7 shows.

In fact, this tessellation is obtained by amalgamating triangles in the
Gauss tessellation (Figure 13.24). The tessellations for general genus >1
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Figure 15.7: Tessellation of the genus-2 covering

can similarly be realized geometrically in the hyperbolic plane, and they
were among the hyperbolic tessellations considered by Poincaré (1882)
and Klein (1882b). The distance function, hence the curvature and local
geometry, can be transported from the covering plane to the surface as we
did above for the torus.

Exercises

When surfaces of genus >1 are realized as surfaces of constant negative cur-
vature, their genus can be read off from their area.

15.4.1 Show that the fundamental polygon for an orientable surface of genus p
is a 4p-gon with angle sum 2π.

15.4.2 Deduce that its Euler characteristic is proportional to its angular defect and
hence to its area.

15.4.3 Conclude, using Exercise 15.3.1, that the area determines the genus.
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15.5 The Fundamental Group

Another way to explore the meaning of the universal cover S̃ is to use it
to plot paths on the surface S . As a point P moves on S , each preimage P̃
of P moves “above it” on S̃ . This means in particular that as P crosses an
edge of the fundamental polygon on S , P̃ crosses from one polygon to its
neighbor on S̃ . So P̃ will not necessarily return to its starting point, even
when P does. In fact, the displacement of P̃ measures the extent to which
P winds around the surface S . Figure 15.8 shows an example. As P winds
once around the torus from O, more or less in the direction of the red loop,
P̃ wanders from one end Õ(1) to the other Õ(2) of a red segment on S̃ .

O

P
P̃

Õ(1) Õ(2)

Figure 15.8: Plotting on the covering surface

We say that closed paths p, p′ with initial point O on S “wind in the
same way,” or are homotopic, if p can be deformed into p′ with O fixed
and without leaving the surface. Now if the path p of P is deformed into
p′, with O fixed, then the path p̃ of P̃ is deformed into a p̃′ with the same
initial and final points, Õ(1) and Õ(2), as p̃. Hence each homotopy class cor-
responds simply to a displacement of the universal cover S̃ that moves Õ(1)

to Õ(2). The different preimages P̃ will of course start at different preim-
ages Õ(1) of O, but a single displacement of S̃ moves them all to their final
positions Õ(2). Moreover, the displacement moves the whole tessellation
of S̃ onto itself: it is a rigid motion of the tessellation.

Thus from the topological notion of homotopic closed paths we arrive
back in ordinary geometry. We also arrive at a group called the fundamen-
tal group of S . Geometrically, it is the group of motions of S̃ that map the
tessellation onto itself (mapping each edge to an edge with the same color
and direction). Topologically, it is the group of homotopy classes of closed
paths, with a common initial point O, on S . The product of homotopy
classes is defined by successive traversal of representative paths.
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The fundamental group was first defined by Poincaré (1895). Poincaré
defined it for much more general figures, whose universal covers are not so
apparent, so he did not generally view the fundamental group as a covering
motion group. However, Poincaré had already studied groups of motions of
tessellations in his (1882), using linear fractional transformations. Recon-
sidering these earlier results topologically in his (1904), he arrived at the
interpretation above. It includes, as we saw in Section 14.7, a presentation
of the group by generators and relations. This discovery was very influen-
tial on the later work of Dehn (1912) and Nielsen (1927), which led ulti-
mately to a recent surge of interest in hyperbolic geometry and geometric
group theory. For some of these developments, see Serre (2003) and Clay
and Margalit (2017).

The more general notion of fundamental group in Poincaré (1895) has
also been influential outside topology. It turns out, for example, that for any
“reasonably described” figure F it is possible to compute generators and
defining relations for the fundamental group ofF . The defining relations of
a fundamental group can be quite arbitrary (in fact, completely arbitrary, as
was shown by Dehn (1910) and Seifert and Threlfall (1934), p. 180). So the
question arises: can the properties of a group be determined from its defin-
ing relations? One would like to know, for example, when two different
sets of relations define the same group. The latter question was raised by
Tietze (1908) in the first paper to follow up Poincaré’s work. Tietze made
the remarkable conjecture—which could not even be precisely formulated
at the time—that the problem is unsolvable. The isomorphism problem
for groups, as it came to be known, was indeed shown to be unsolvable
by Adyan (1957). Adyan’s result was based on the theory of algorithms,
which will be outlined in Chapter 17.

By combining Adyan’s result with some of Tietze (1908) and the result
of Seifert and Threlfall mentioned above, Markov (1958) was able to show
the unsolvability of the homeomorphism problem. This is the problem of
deciding, given “reasonably described” figures F1 and F2, whether F1 is
homeomorphic to F2. The figures F1 and F2 can in fact be taken to be
4-dimensional “polyhedra.” (A complete proof of the unsolvability of the
isomorphism problem and homeomorphism problem may be found in
Stillwell (1993), and its history may be found in Stillwell (1982).) Thus
Poincaré’s construction of the fundamental group led in the end to a quite
unexpected conclusion: the basic problem of topology is unsolvable.
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Exercises

In the following exercises it will be helpful to view the fundamental group as
the group of motions of the universal covering plane, diagrammed in the previous
section. The diagram shows that any sequence of motions equal to the identity
corresponds to a closed path of edges in the diagram.

15.5.1 Explain why the fundamental group of the torus is generated by elements
a and b with defining relation

aba−1b−1 = 1.

15.5.2 Similarly, explain why the fundamental group of the surface of genus 2 is
generated by elements a1, b1, a2, b2 with defining relation

a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 = 1.

15.5.3 Show that the former group is commutative but the latter is not.
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Commutative Algebra

Preview

In modern algebra the first important concept to come to light was that
of groups, as we have seen in Chapter 14. The distinctive feature of most
groups, which sets them apart from traditional algebra, is noncommuta-
tive multiplication. In contrast, the key concepts of modern commutative
algebra—rings, fields, and vector spaces—came to light only later, per-
haps for the simple reason that at first they did not look different from
traditional algebra.

Indeed, the concepts of ring and field are exemplified by the ancient
concepts of integers and rational numbers. Their defining properties—the
axioms for rings and fields—seemmerely to encapsulate the common rules
for calculation. It was noticed only in the 19th century that the ring and
field properties are shared by systems quite different from the rational
numbers, so experience with rational numbers can be used in other mathe-
matical domains.

However, the domains that share the basic rules of calculation with
integers and rational numbers may differ in other respects, especially in
the nature of primes, where the very useful property of unique prime fac-
torization may be lost. This raises the problem of generalizing the concept
of prime, and finding conditions under which unique prime factorization
may be regained.

This problem, uncovered by Kummer in 1844, spurred much of the
development of commutative algebra in the 19th and early 20th centuries.
It is this development—called algebraic number theory—that we follow
in the later sections of this chapter.
© Springer Nature Switzerland AG 2020
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16.1 Linear Algebra

Linear algebra began with the problem of solving sets of linear equations
in several unknowns, which was solved by Chinese mathematicians about
2000 years ago by the method we now call Gaussian elimination. As men-
tioned in Section 5.2, the Chinese had a tool called the “counting board”
that was ideal for such calculations, since it displayed the coefficients of
the system in a square array, which could be operated upon just as we
operate on matrices.

A harder problem is finding a formula that expresses the solution of a
system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

as a function of the coefficients ai j and bi. The solution is given by the rule

xi =
det Ai

det A
,

where det A is the determinant of the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Ai is the matrix obtained from A by replacing its ith column by the
column of values b j.

This rule is commonly called Cramer’s rule because of its appearance
in the book Cramer (1750). However, it was known earlier. In a remark-
able instance of independent discovery, Leibniz and the Japanese math-
ematician Seki discovered determinants around 1680, and independently
developed their properties over the next few decades. Knobloch (2013)
reveals the extent of Leibniz’s results on determinants, which were not
published in his lifetime. Determinants also underlie the elimination pro-
cess for polynomial equations, special cases of which were discovered by
the Chinese, as we mentioned in Section 5.2.
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Determinants were rediscovered several times, and they became the
subject of a substantial theory in the 19th century. As late as 1960, deter-
minants were considered important enough to be the subject of the four-
volume history, Muir (1960). Their theory, well into the 20th century, com-
pletely overshadowed what we now call “linear algebra”; namely, the the-
ory of vector spaces.

In this chapter we will assume (as we already have in some earlier
chapters) that the reader knows the basic rules for calculating determi-
nants. The only theoretical property of determinants we require is that lin-
ear homogeneous equations have a nonzero solution only if their determi-
nant is zero. (This follows, for example, from Cramer’s rule and the prop-
erty that a determinant with a zero column is zero.) As for vector spaces,
we will develop their theory from scratch, because it is a simple but good
example of modern algebraic thinking.

16.2 Vector Spaces

Grassmann (1844) introduced a very general, and sophisticated, theory of
vector spaces, with inner and outer products. Because the idea was so new
and, alas, very poorly explained by Grassmann, it was not understood by
his contemporaries and went virtually unnoticed. Three years later, in an
essay competition on the subject of Leibniz’s ideas about symbolic geom-
etry, Grassmann (1847) made a second attempt. This time he emphasized
the inner product as an encapsulation of the Pythagorean theorem, which
makes a vector space “Euclidean.” Although Grassmann’s essay won the
prize, his ideas did not really catch on until Peano formalized the concept
of vector space (with due credit to Grassmann) in the 1880s.

The vector space axioms concern objects called vectors, denoted by
u, u,w, . . .which can be added and multiplied by numbers a, b, c, . . ., called
scalars in this context. The vectors include a zero vector 0 and, for each
vector u, its negative −u. Then the axioms are, first, axioms for addition:

u + u = u + u,

u + (u + w) = (u + u) + w,

u + 0 = u,

u + (−u) = 0.
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Then the following axioms for multiplication by scalars:

a(bu) = (ab)u,

1u = u,

a(u + u) = au + au,

(a + b)u = au + bu.

Since a, b, c, . . . are assumed to be real, these axioms of Peano are properly
called axioms for a real vector space.

Grassmann developed his theory with the aim of algebraically creating
a form of geometry, like Euclid’s but without restriction to two or three
dimensions. The concept of dimension of a vector space V arises from the
concept of basis, which formalizes the idea of coordinates in V . A set of
vectors i1, i2, . . . , in form a basis of V if:

• Each u ∈ V can be written in the form

u = u1i1 + u2i2 + · · · unin for some u1, u2, . . . , un ∈ R,
in which case we say that i1, i2, . . . , in span V .

• A vector of the form

a1i1 + a2i2 + · · · anin for a1, a2, . . . , an ∈ R,
equals 0 only if a1 = a2 = · · · = an = 0, in which case we say that
i1, i2, . . . , in are linearly independent.

It follows from these conditions that each vector u is uniquely expressible
in the form u1i1 + u1i1 + · · · u1in, so u1, u2, . . . , un serve as coordinates of
u with respect to the basis i1, i2, . . . , in. Grassmann proved that any two
bases of the same vector space V (assumed to have finite basis) are of the
same size, n, called the dimension of V .

Any real vector space of dimension n is essentially the same as the
space Rn of ordered n-tuples u = 〈u1, u2, . . . , un〉, where u1, u2, . . . , un are
real numbers called the components of u. In this realization, vectors are
added to each other, and multiplied by numbers, componentwise:

〈u1, u2, . . . , un〉 + 〈v1, v2, . . . , vn〉 = 〈u1 + v1, u2 + v2, . . . , un + vn〉,
a〈u1, u2, . . . , un〉 = 〈au1, au2, . . . , aun〉.
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The inner product u · u of vectors
u = 〈u1, u2, . . . , un〉 and u = 〈v1, v2, . . . , vn〉

is defined by
u · u = u1v1 + u2v2 + · · · + unvn.

The inner product captures the concept of length of a vector (given by the
Pythagorean theorem, first for n = 2, then inductively for larger n)

|u| =
√

u21 + u
2
2 + · · · + u2n,

because
u · u = u21 + u

2
2 + · · · + u2n = |u|2.

The inner product also captures the concept of angle because (less obvi-
ously)

u · u = |u||u| cos θ,
where θ is the angle between the lines from 0 to the points u and u respec-
tively. In particular, these lines are perpendicular when u · u = 0. Because
of this, many classical theorems about right angles have very slick proofs
using the inner product (see exercises below).

By the early 20th-century, Klein was ready to include a smattering of
Grassmann’s ideas in the geometry volume, Klein (1909), of his Elemen-
tary Mathematics From an Advanced Standpoint. However, by this time
algebraists had already extended the concept of vector space in a different
direction. They observed that the fundamental properties of vector spaces,
such as basis and dimension, do not require the scalars a, b, c, . . . to be real
numbers. The same ideas apply as long as the scalars form a field.

Exercises

The invariance of basis size, which leads to the concept of dimension, was
proved by Grassmann using the following lemma: if n vectors u1, . . . ,un span a
vector space V over a field F, then no n+ 1 vectors u1, . . . , un+1 are independent.
Supposing the contrary, the proof is by a process of exchanging vectors ui by u j,
one at a time, until all the ui are replaced. (The lemma is often called the “Steinitz
exchange lemma,” though it is actually due to Grassmann.)

16.2.1 Suppose we have replacedm−1 of the ui by u1, . . . , um−1, so that u1, . . . , um−1
and the remaining ui span V . In particular,

um = a1u1 + · · · + am−1um−1 + terms biui where the a j, bi ∈ F.
Deduce that some bk � 0, and hence that uk can be replaced by um in the
spanning set.
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16.2.2 Conclude that u1, . . . , un are also a spanning set, and show that this contra-
dicts the linear independence of u1, . . . , un+1.

A nice theorem that falls out of an inner product calculation is concurrence
of altitudes of a triangle. An altitude is the line though a vertex of a triangle
perpendicular to the opposite side. Figure 16.1 shows, in an example, that the
three altitudes have a common point. To prove this in general we let vertices of
the triangle be u, u,w, and choose the zero vector 0 to lie at the intersection of the
altitudes of u and u.

Figure 16.1: Altitudes of a triangle

16.2.3 Deduce from this choice of origin that u · (w − u) = 0 and u · (u − w) = 0.

16.2.4 Deduce in turn that w · (u−u) = 0, so that the altitude through w also passes
through 0.

16.3 Fields

A field is a collection of objects that are added, subtracted, multiplied, and
divided according to the rules of traditional algebra. These rules are now
known as the field axioms:

a + b = b + a ab = ba (commutative laws)
a + (b + c) = (a + b) + c a(bc) = (ab)c (associative laws)

a + (−a) = 0 a · a−1 = 1 for a � 0 (inverse laws)
a + 0 = 0 a · 1 = a (identity laws)

a(b + c) = ab + ac (distributive law)
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Thus it could be said that fields were the subject of all algebra up to the
19th century. Up to that time, the “laws of algebra” went without saying,
as did the subject of those laws.

In retrospect, we can say that the pre-modern algebraists actually worked
with several different fields:

• In basic arithmetic, the field Q of rational numbers.

• In more sophisticated arithmetic, where roots and logarithms are
present, the field R of real numbers (though real numbers were not
yet precisely defined).

• In solving polynomial equations, the field C of complex numbers.

• In the “Universal Arithmetic” of symbolic calculation in “unknowns”
x, y, z . . . one had fields of rational functions in several variables.

The concept of field gradually came to light in the 19th century, when
several new, and radically different, fields came to light:

• Finite fields, discovered by Galois in the 1820s. They include the
field Fp, for each prime p, of congruence classes of Z mod p.

• The algebraic number fields of Dedekind and Kronecker, which are
subfields of C consisting of algebraic numbers.

In particular, Dedekind (1871) viewed fields of algebraic numbers as vec-
tor spaces over Q, and singled out those of finite dimension. Kronecker
went so far as to claim that an algebraic number is properly realized by a
field, and that existence of these fields is the proper fundamental theorem
of algebra, as we will see in Section 16.6.

The existence of the finite fields Fp is an easy consequence of the
Euclidean algorithm in Z, which was touched on in Section 14.1. We
review the argument here because it is the prototype for the construction
of algebraic number fields, which we come back to in Section 16.6. The
path from Z, and a prime p, to the field Fp goes as follows.

1. The members of Fp are the classes [0], [1], [2], . . . , [p − 1] defined
by congruence mod p:

[a] = {n : n ≡ a (mod p)} = {. . . , a − p, a, a + p, a + 2p, . . .}.
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2. Congruence classes are added and multiplied by the rules

[a] + [b] = [a + b], [a][b] = [ab].

It must be checked that sum and product of congruence classes are
well-defined; that is, they do not depend on the numbers a, b chosen
to represent their congruence classes. But once this is done all the
field properties, except the existence of inverses, follow easily from
the corresponding properties of sum and product for integers.

3. If [a] � [0] we find an inverse of the class [a] by the Euclidean algo-
rithm. Since p is prime, gcd(a, p) = 1, and the Euclidean algorithm
then gives integers m and n such that

1 = gcd(a, p) = ma + np.

4. In other words, ma ≡ 1 (mod p), so

[m][a] = [1],

and hence [a] has the inverse [m].

Vector Spaces over a Field

If F is any field the definition of a vector space over F is identical with
the definition in Section 16.2, except that the scalars a, b, c, . . . now come
from F. In the next two sections we will be particularly interested in vector
spaces over the field Q of rational numbers.

Q, as remarked above, is the field of basic arithmetic, so the most con-
crete way to approach the irrational numbers arising from polynomial
equations is to view them in relation to rational numbers where possi-
ble. As we will see in the next section, this can be done for the num-
bers α that satisfy polynomial equations with rational coefficients—the
so-called algebraic numbers. In this case, α belongs to a vector space of
finite dimension over Q.

Exercises

16.3.1 Find the inverses of [1], [2], [3], [4] mod 5.

16.3.2 Explain why congruence classes mod 6 do not form a field under addition
and multiplication of congruence classes.
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16.4 Algebraic Numbers and Algebraic Integers

An algebraic number may be defined as one that satisfies a polynomial
equation p(x) = 0 with coefficients in Q. Without loss of generality we
can assume this equation is of the form

xn + an−1xn−1 + · · · + a1x + a0 = 0, where a0, a1, . . . , an−1 ∈ Q. (∗)
An algebraic number is said to be of degree n if it satisfies such a poly-
nomial equation of degree n but not one of lower degree. Thus

√
2, for

example, is of degree 2 because it satisfies the equation x2 − 2 = 0 but not
any equation of the form ax+b = 0 with a, b ∈ Q, since the latter equation
would imply that

√
2 is rational.

An algebraic number α satisfies only one polynomial equation of min-
imal degree and of the form (*). If there were two such equations their
difference would be of lower degree, yet also satisfied by α. We call p(x)
the minimal polynomial for α. The minimal polynomial p(x) is necessar-
ily prime, or irreducible, because any factors of p(x) would give a lower-
degree polynomial also satisfied by α.

This leads, as we will see in Section 16.6, to a close analogy between
integers modulo a prime p and polynomials modulo an irreducible p(x).
In particular, the analogy gives the existence of polynomial inverses mod
p(x), which clarifies the nature of inverses among the algebraic numbers.

Generating a Field from an Algebraic Number

Each algebraic number α gives rise to a field Q(α), which can be viewed
as the smallest field containing Q and the number α.

Q(α) consists of all quotients q(α)/r(α), where q and r are polynomials
with coefficients in Q. It follows that the sum, difference, product, and
quotient (with nonzero denominator) of any members of Q(α) is itself a
member of Q(α). It is also clear that all members belong to C, which has
the field properties, so Q(α) has them too. Thus Q(α) is a field, clearly
containing α and all members of Q. Conversely, any number obtainable
from α and members of Q by sums, differences, products, and quotients is
a member of Q(α). That is, any field containing α and Q contains Q(α). In
this sense, Q(α) is the “smallest” such field.

In Section 16.6 we will see that Q(α) may also be fruitfully viewed as
a vector space. In particular, Q(

√
2) is a vector space over Q with basis

elements 1 and
√
2, as can be checked in the exercises below.
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It is not obvious, at this stage, whether all members of Q(α) are alge-
braic numbers. Indeed it is not obvious whether α+β is an algebraic num-
ber when α and β are. The same question can be asked of the algebraic
integers to which we now turn.

Algebraic Integers

In analogy with the definition of algebraic number, we define an algebraic
integer to be a solution of an equation of the form (called monic because
the leading coefficient is 1)

xn + an−1xn−1 + · · · + a1x + a0 = 0, where a0, a1, . . . , an−1 ∈ Z. (∗∗)
This definition includes some numbers that look like integers, such as the
Gaussian integers a + b

√−1, where a, b ∈ Z, but also some that do not,
such as −1+

√−3
2 , which is a solution of x3 − 1 = 0. Nevertheless, it turns

out that algebraic integers are the right counterpart of ordinary integers
among the algebraic numbers. In particular, the algebraic integers among
the rational numbers are the ordinary integers. The definition (**) was
proposed by Dedekind (1871), in the light of extensive experience with
algebraic numbers. Another piece of evidence that supports (**) ) is the
result of Eisenstein (1850) that sums and products of numbers satisfying
(**) ) are also numbers of this form.

An interesting feature of Eisenstein’s result is the use of determinant
theory, from the hard core of Leibniz-era linear algebra that modern linear
algebra tries to avoid. For those familiar with determinants, the argument
is outlined in the exercises below. The corresponding result about sum and
product of algebraic numbers, as we will see in the next three sections, is
obtainable by softer methods.

Exercises

16.4.1 Show that the sum, difference, and product of numbers of the form a+b
√
2

are again of this form, and so is 1
a+b
√
2
.

16.4.2 Deduce from Exercise 16.4.1 that Q(
√
2) = {a + b√2 : a, b ∈ Q}.

16.4.3 Prove that x =
√
2+
√
3 is an algebraic integer by finding a suitable fourth-

degree polynomial satisfied by x.
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16.4.4 Suppose that x = r/s is a rational algebraic integer, so that
( r
s

)n
+ an−1

( r
s

)n−1
+ · · · + a1 rs + a0 = 0 where a0, a1, . . . , an−1 ∈ Z.

Deduce that rn is divisible by s.

16.4.5 Assuming now that gcd(r, s) = 1 in Exercise 16.4.4, conclude that s = 1,
and hence that x is an ordinary integer.

We now prove that the sum of algebraic integers is an algebraic integer. Suppose
α satisfies an equation αk+ak−1αk−1+ · · ·+a1α+a0 = 0, with a0, a1, . . . , ak−1 ∈ Z.
16.4.6 Observing that

αk = −ak−1αk−1 − · · · − a1α − a0,
αk+1 = −ak−1αk − · · · − a1α2 − a0α,
...

and so on, explain why every polynomial in α with integer coefficients is a
linear combination of 1, α, α2, . . . , αk−1 with coefficients in Z.

Similarly, if β satisfies a monic polynomial equation of degree l, any polynomial in
β is a linear combination of 1, β, . . . , βl−1 with integer coefficients. Consequently,
any polynomial in α and β is a linear combination of terms αiβ j, with 0 ≤ i ≤
k − 1 and 0 ≤ j ≤ l − 1, with integer coefficients.

Denoting the kl products αiβ j by ω1, . . . , ωkl conclude that we can write each
polynomial ω in α and β (such as α ± β or αβ) in the form

ω = n1ω1 + · · · + nklωkl where n1, . . . , nkl ∈ Z. (∗)
16.4.8 Deduce from (*) that ω satisfies kl equations in the kl unknowns ωm with

integer coefficients:

ωω1 = n′1ω1 + · · · + n′klωkl

ωω2 = n′′1ω1 + · · · + n′′klωkl

...

ωωkl = n(kl)1 ω1 + · · · + n(kl)kl ωkl.

16.4.9 Conclude that these equations have nonzero determinant, that is,

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n′1 − ω n′2 · · · n′kl
n′′1 n′′2 − ω · · · n′′kl
...

...

n(kl)1 n(kl)2 · · · n(kl)kl − ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Explain why this shows that ω is an algebraic integer.
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16.5 Rings

The ring axioms are modelled on the properties of the ordinary integers:

a + b = b + a ab = ba (commutative laws)
a + (b + c) = (a + b) + c a(bc) = (ab)c (associative laws)

a + (−a) = 0 (inverse law)
a + 0 = 0 a · 1 = a (identity laws)

a(b + c) = ab + ac (distributive law)

These ring axioms were formulated to capture the common proper-
ties of ordinary integers and the algebraic integers defined in Section 16.4.
Special cases of algebraic integers were first introduced by Euler and Gauss
to solve problems about ordinary integers.

For example, Euler (1770b) used “integers” of the form a+ b
√−2, for

ordinary integers a and b, to find the ordinary integer solutions of

y3 = x2 + 2.

His idea was to factorize the right hand side as (x+
√−2)(x− √−2) and to

argue that x+
√−2 and x−√−2 behave like relatively prime integers. Then,

assuming that unique prime factorization holds among the “integers” a +
b
√−2, it follows that both x +

√−2 and x − √−2 are cubes, and a simple
calculation leads to the single positive solution x = 5, y = 3. (See the
exercises below.)

This spectacular extension of classical arithmetic reasoning to new
kinds of “integer” prompts a broader definition of integers, and a study of
the primes among them. The ring axioms capture the fundamental proper-
ties of integers, but they do not imply unique prime factorization. Section
16.8 discusses how to refine the ring concept so as to ensure unique prime
factorization, but first we will deal with an important case where unique
prime factorization holds: a polynomial ring over a field, F[x].

Polynomial Rings

Polynomials have been studied since the invention of algebraic notation.
As early as 1585 Stevin observed that they behave like integers in an
important way: they enjoy “division with remainder” in the following sense.
If a(x) and b(x) � 0 are polynomials then there is a “quotient” polynomial
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q(x) and “remainder” polynomial r(x) such that

a(x) = b(x)q(x) + r(x),

and r(x) is “smaller” than b(x) in the sense of having lower degree (with
the special case that 0 is taken to have lower degree than a nonzero con-
stant).

To see why division property holds, suppose that

a(x) = anx
n + · · · + a1x + a0,

b(x) = bmx
m + · · · + b1x + b0

with m ≤ n (otherwise a(x) itself can serve as r(x), with q(x) = 0). In this
case a(x)−b(x) · anbm xn−m is a polynomial a′(x) of degree n′ < n, because the
subtraction removes the term anxn in a(x). Then if m ≤ n′ we can repeat
the process, eventually obtaining a polynomial r(x) of degree < m. The
various multipliers of b(x) used in this process add up to the quotient q(x).

Notice that we use only addition, subtraction, multiplication, and divi-
sion of coefficients, so the division property holds for polynomials with
coefficients from any field F. These polynomials form a ring called F[x].

Now that we have the division property for F[x], a Euclidean algorithm
follows, along with all its usual consequences:

• Any polynomials a(x) and b(x) have a divisor gcd(a(x), b(x)) which
is greatest in the sense that it is divisible by any other polynomial
dividing both a(x) and b(x).

• gcd(a(x), b(x)) = m(x)a(x)+n(x)b(x) for some polynomialsm(x), n(x)
in F[x].

• If p(x) is an irreducible polynomial, and a(x) does not divide p(x),
then gcd(a(x), p(x)) = 1 (or any other nonzero member of F, since
all of them divide 1).

• (Prime divisor property) If p(x) is an irreducible polynomial that
divides a(x)b(x), then p(x) divides a(x) or p(x) divides b(x).

• (Unique prime factorization) Any polynomial in F[x] has a factor-
ization into irreducibles, which is unique up to the order of factors
and nonzero factors from F.
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In particular, polynomials inQ[x] have factorization into irreducibles, which
is unique up to the order of factors and nonzero rational factors.

Exercises

Determining whether a polynomial in Q[x] is irreducible is often a difficult
problem, but in low-degree cases we can appeal to proofs that certain numbers are
irrational.

16.5.1 Prove that
3√
2 is irrational and deduce that x3 − 2 is irrreducible in Q[x].

Here is part of Euler’s solution of y3 = x2 + 2, using the integers a + b
√−2

and assuming their unique prime factorization.

16.5.2 Assuming x +
√−2 = (a + b

√−2)3 for a, b ∈ Z, equate real and imaginary
parts to find the only positive integer solution of y3 = x2 + 2.

Unique prime factorization in Z[
√−2] is proved, as in Z, by proving a division

property–which yields a Euclidean algorithm, prime divisor property, and hence
unique prime factorization. We illustrate the idea first with the Gaussian integers
Z[i], the smaller members of which are shown as dots in Figure 16.2. The figure
also shows the multiples of 3 + i among them as black dots, and the particular
Gaussian integer 5 + 3i as a gray dot.

0

3 + i

2(3 + i)

i(3 + i)

(1 + i)(3 + i)

(2 + i)(3 + i)

5 + 3i

Figure 16.2: Multiples of 3 + i near 5 + 3i
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16.5.3 Explain why the multiples of 3 + i form an array of squares, like the array
Z[i] itself but magnified and rotated.

16.5.4 Explain in general why the multiples μβ of a Gaussian integer β form an
array of squares, each of side length |β|.

16.5.5 Show also that any Gaussian integer α (such as 5 + 3i) lies at distance
|α − μβ| < |β| from the nearest multiple of β.

16.5.6 Deduce from Exercise 16.5.5 that, for any Gaussian integers α and β � 0,
there are Gaussian integers μ, ρ with the division property:

α = μβ + ρ, where |ρ| < |β|.

16.5.7 Show similarly that Z[
√−2] has the division property, and hence unique

prime factorization.

16.6 Fields as Vector Spaces

Now suppose that α is an algebraic number with minimal polynomial
p(x) = xn + an−1xn−1 + · · · + a1x + a0 of degree n. We notice that

αn = −an−1αn−1 − · · · − a1α + a0
and, more generally, any higher power of α is a linear combination of
1, α, α2, . . . , αn−1 with rational coefficients.

So the setQ[α] of all polynomials in αwith rational coefficients, which
is clearly a vector space, in fact equals the set of rational combinations
of 1, α, α2, . . . , αn−1, which is a vector space of dimension n over Q. We
have just seen that the elements 1, α, α2, . . . , αn−1 span Q[α], and they are
linearly independent because an equation

bn−1αn−1 + · · · + b1α + b0 = 0, with b0, b1, . . . , bn−1 ∈ Q not all zero,

contradicts the assumption that α has degree n.
Moreover, the vector space Q[α] is a field. It is clear that the sum,

difference, and product of any two members of Q[α] also belongs to Q[α].
Thus it remains to show that the inverse β−1 of any β ∈ Q[α] is also a
member. We do this in the same way we found inverses mod p in the
previous section, by considering the relation of congruence mod p(x) and
appealing to the Euclidean algorithm for polynomials.
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Congruence Modulo an Irreducible Polynomial

Instead of the ring Z and a prime p ∈ Z, we now take the ring Q[x]
of polynomials with rational coefficients and an irreducible polynomial
p(x) ∈ Q[x]. We introduce the notion of congruence mod p(x) by saying

a(x) ≡ b(x) (mod p(x))

if p(x) divides a(x) − b(x). This gives congruence classes of polynomials,
[a(x)], which can be added and multiplied by the rules

[a(x)] + [b(x)] = [a(x) + b(x)] and [a(x)] · [b(x)] = [a(x) · b(x)].
We verify, exactly as we did for congruence classes of numbers modulo a
prime in Section 16.3, that this sum and product are well defined and have
the ring properties.

Finally, and again by the same argument as in Section 16.3, using the
Euclidean algorithm, we find that each nonzero class [a(x)] has an inverse
class [m(x)], in the sense that

[m(x)][a(x)] = [1].

Thus the ring of congruence classes of polynomials in Q[x], modulo
an irreducible p(x), is a field. We now return to the vector space Q[α] to
claim that its members are essentially the same as congruence classes of
polynomials in Q[x] mod p(x), so Q[α] is also a field.

In fact, we get a one-to-one correspondence between the congruence
classes and elements ofQ[α] by letting each [r(x)] correspond to r(α). This
correspondence is one-to-one because, for any polynomial t(x) ∈ Q[x],

p(x) divides t(x)⇔ t(α) = 0.

The direction⇒ is clear because p(α) = 0. Conversely, suppose t(α) = 0
and consider the result of dividing t(x) by p(x). By the division property,

t(x) = q(x)p(x) + r(x),

where r(x) has lower degree than p(x). Then, since t(α) and p(α) are 0,
r(α) = 0 also. This contradicts the minimality of p(x), unless r(x) = 0, in
which case p(x) divides t(x). It follows now that, for any u(x), v(x) ∈ Q[x],

u(x) and v(x) are in the same class ⇔ p(x) divides u(x) − v(x)
⇔ u(α) − v(α) = 0

⇔ u(α) = v(α).

so congruence classes mod p(x) correspond to values in Q[α].
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Revisiting the Fundamental Theorem of Algebra

The proof above realizes the field Q[α], where α is typically irrational or
imaginary, by a concrete collection of rational objects; namely, polynomi-
als with rational coefficients. For example, the field Q(

√
2) involving the

irrational number
√
2 is, for all algebraic purposes, the same as the collec-

tion of linear polynomials ax + b, where a, b ∈ Q. These polynomials are
added and multiplied in the usual way with the proviso that x2 − 2 = 0,
and
√
2 itself corresponds to the congruence class of x.1

The general idea of replacing algebraic numbers, and the fields they
generate, by congruence classes of rational polynomials, was proposed by
Kronecker (1887). Kronecker was opposed to irrational numbers, to large
infinite totalities like R and C, and especially to pure existence proofs,
where objects were shown to exist without being constructed. For all these
reasons he objected to the fundamental theorem of algebra. He believed
that it should be replaced by what he called the “fundamental theorem of
general arithmetic,” an instance of which is the realization of Q(α) by the
field of congruence classes mod p(x) in Q[x].

This field, though infinite, can be constructed step by step using only
rational numbers, and it contains a solution to the polynomial equation
p(x) = 0, namely the equivalence class of x, mod p(x). Thus, if one prefers
a fundamental theorem in which roots of polynomial equations are con-
structed as simply as possible, congruence classes of rational polynomials
are the way to go. For more on Kronecker’s view of the fundamental the-
orem of algebra, see Edwards (2007).

Exercises

16.6.1 Prove that Q(21/3) = {a + b21/3 + c22/3 : a, b, c ∈ Q}.

16.7 Fields of Algebraic Numbers

As we mentioned in Section 16.4, it is not obvious that α+β is an algebraic
number when α and β are. One proof of this fact uses determinants, but
a simpler proof follows from a general theorem about the dimension of
vector spaces pointed out by Dedekind (1894).

1In a similar way the field of complex numbers is realized by real linear polynomials
a+bxwith the proviso that x2+1 = 0. The latter example was actually proposed by Cauchy
(1847) as a rigorous approach to complex numbers.
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Dimension Theorem. For fields D ⊆ E ⊆ F, with E of dimension m over
D and F of dimension n over E, F has dimension mn over D.

Proof. If e1, e2, . . . em is a basis for E over D, each e ∈ E can be written

e = d′1e1 + d
′
2e2 + · · · + d′mem for some d′1, d

′
2, . . . , d

′
m ∈ D.

Likewise, if f1, f2, . . . fn is a basis for F over E, each f ∈ F can be written

f = e′1 f1 + e
′
2 f2 + · · · + e′n fn for some e′1, e

′
2, . . . , e

′
n ∈ E.

These equations imply any f ∈ F can be written as a linear combination of
the elements ei f j with coefficients di j ∈ D.

Thus the mn elements ei f j span F over D. Also, they are linearly inde-
pendent. Supposing

0 = d11e1 f1 + d12e1 f2 + · · · + d1ne1 fn
+ d21e2 f1 + d22e2 f2 + · · · + d2ne2 fn
...

+ dm1em f1 + dm2em f2 + · · · + dmnem fn

it follows, since f1, f2, . . . , fn are linearly independent over E, that their
coefficients are zero. That is

0 = d11e1 + d21e2 + · · · + dm1em
0 = d12e1 + d22e2 + · · · + dm2em
...

0 = d1ne1 + d2ne2 + · · · + dmnem

which in turn implies each di j = 0, because e1, e2, . . . , em are linearly inde-
pendent over D. �

To apply this theorem we suppose α is an algebraic number of degree
m, so Q[α] is a vector space of dimension m over Q. Now if β is an alge-
braic number of degree n then the vector space

(Q[α])[β] = {polynomials in β with coefficients in Q[α]}
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has dimension at most n over the field Q[α] because βn is a linear combi-
nation of 1, β, β2, . . . , βn−1 with rational coefficients, hence certainly with
coefficients in Q[α]. The same applies to the higher powers βn+1, βn+2, . . .,
by the argument used in Section 16.6. Thus the elements 1, β, β2, . . . , βn−1

span (Q[α])[β], which therefore has dimension ≤ n as a vector space over
Q[α].

It follows, by the dimension theorem, that the dimension of (Q[α])[β]
over Q is at most mn. Now α + β clearly belongs to (Q[α])[β], so it is
algebraic, of degree ≤ mn, by the following simple theorem.

Field of finite dimension over Q. In a field of F dimension d over Q,
each element is an algebraic number of degree ≤ d.

Proof. If γ ∈ F, where F has dimension d over Q, the d + 1 elements
1, γ, γ2, . . . , γd cannot be linearly independent. Hence there are rational
numbers a0, a1, . . . , ad, not all zero, such that

a0 + a1γ + · · · + adγd = 0.

This equation shows that γ is algebraic, of degree ≤ d. �

This argument has consequences both for the “small” fields Q(α) of
Section 16.4, each generated by a single algebraic number, and the collec-
tion of all algebraic numbers.

Corollary 1 When α is an algebraic number, all members of Q(α) are
algebraic.

Proof. If α is of degree d, thenQ(α) equals the vector spaceQ[α] of dimen-
sion d over Q by the argument in Section 16.6. Then each member of Q(α)
is an algebraic number of degree ≤ d by the theorem above. �

Corollary 2 The set of all algebraic numbers is closed under the opera-
tions +,−,×, and ÷ (by nonzero elements), and hence is a field.

Proof. If α and β � 0 are algebraic numbers then not only α + β but also
α − β, αβ, and α/β belong to (Q[α])[β], which is of finite dimension over
Q. Hence they are algebraic by the theorem above. �

Exercises

An algebraic problem originating in Euclid’s geometry is the problem of con-
structible numbers. Geometrically speaking, a number is α constructible if the
corresponding length is constructible from the unit length by ruler and compass.
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With the arithmetization of geometry by Descartes (1637), we saw in the exer-
cises to Section 5.3 that an equivalent algebraic statement is that α is obtainable
from 1 by the rational operations +,−,×,÷ and the √ operation. We can now

revisit the question of whether
3√
2 is constructible, first solved in the exercises to

Section 5.4.

16.7.1 Explain why an equivalent question is whether there are fields
Q = F0 ⊆ F1 ⊆ · · · ⊆ Fk,

with each Fn+1 of dimension 2 over Fn and
3√
2 ∈ Fk.

16.7.2 Deduce from the dimension theorem that Q(α) has dimension 2k, for some
k ≥ 0, when α is a constructible number, and that α has degree 2k.

16.7.3 Conclude, with the help of Exercise 16.5.1, that
3√
2 is not constructible.

16.8 Ideals

As we saw in the exercises to Section 16.4, if α and β are algebraic inte-
gers, then so are α+ β, α− β, and αβ. Thus the set of all algebraic integers
is closed under the operations of +,−, and ×, and hence it is a ring. But
it is not a good ring for doing arithmetic, because it has no “primes”: if α
is an algebraic integer then so is

√
α, hence every algebraic integer has a

nontrivial factorization α =
√
α
√
α.

Dedekind (1871) found that the right setting for arguments about alge-
braic integers and primes, such as Euler’s solution of the equation y3 =
x2 + 2 mentioned in Section 16.5, is in fields of finite dimension over Q.
Euler’s solution uses the algebraic integers in the two-dimensional field
Q[
√−2], which happen to be precisely the numbers of the form a+b

√−2,
where a, b ∈ Z.

In this example, one can prove that unique prime factorization holds
in Q[

√−2] with the help of a measure of size for the integers a + b
√−2

called their norm:

norm(a + b
√−2) = a2 + 2b2

This norm is simply the square of the absolute value |a+b√−2|, and hence
it has the multiplicative property:

norm(αβ) = norm(α)norm(β).

We call an algebraic integer of Q[
√−2] prime if it has norm greater than

1 and is not the product of algebraic integers of smaller norm. The exis-
tence of prime factorization then follows as in Z. Since norms are ordinary
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positive integers, the process of splitting an integer into factors of smaller
norm must terminate—since positive integers cannot decrease forever—
necessarily in factors that are prime.

The situation is the same in any algebraic number field of finite dimen-
sion. Dedekind (1871) showed that each such field has a concept of norm,
which is multiplicative and integer-valued for algebraic integers, so primes
and prime factorizations exist. However, prime factorization is not always
unique. Euler (1770b) was lucky to pick Q[

√−2], because it does indeed
have unique prime factorization, as we showed in Exercise 16.5.7. On the
other hand, Q[

√−5] does not.
In Q[

√−5] the integers are the numbers of the form a + b
√−5, where

a, b ∈ Z, among which the integer 6 has the factorizations

6 = 2 · 3 = (1 +
√−5)(1 − √−5).

The norm of a+ b
√−5 is a2 + 5b2, and it can be checked that each of 2, 3,

1 +
√−5, 1 − √−5 is prime according to this norm, so the number 6 has

two distinct prime factorizations.
Failure of unique prime factorization among the algebraic integers was

first noticed by Kummer in the 1840s, and he realized that it is a serious
problem. He wrote:

It is greatly to be lamented that this virtue of the real num-
bers [that is, of the ordinary integers] to be decomposable
into prime factors, always the same ones for a given number,
does not also belong to the complex numbers [that is, the alge-
braic integers]; were this the case, the whole theory, which is
still laboring under such difficulties, could easily be brought
to a conclusion. For this reason, the complex numbers we
have been considering seem imperfect, and one may well ask
whether one ought not to look for another kind which would
preserve the analogy with the real numbers with respect to
such a fundamental property.

Translation by Weil (1975) from Kummer (1844)

Dedekind (1877) put himself in Kummer’s shoes as he described this
turning point in the history of algebra:

But the more hopeless one feels about the prospects of later
research on such numerical domains, the more one has to
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admire the steadfast efforts of Kummer, which were finally
rewarded by a truly great and fruitful discovery.

Dedekind (1877), p. 56.

Kummer found “another kind” of number that overcame the failure of
unique prime factorization, and he called them ideal numbers, though he
did not properly define them. Today we know them under the concept of
ideals, introduced by Dedekind (1871) to formalize Kummer’s idea, and
to generalize it to all rings of algebraic integers in algebraic number fields
of finite dimension. The idea, roughly speaking, is that a number may be
known by its set of multiples. Dedekind realized that a set I of multiples
in a ring R has two key properties:

• If α, β ∈ I then α + β ∈ I.
• If α ∈ I and ρ ∈ R then ρα ∈ I.

He made these the defining properties of an ideal I in a ring R.
Ideals first showed their fruitfulness in number theory, where they

allowed algebraic integers to be used freely while preserving the analogy
with ordinary integers. But ideals soon found other applications, starting
with their use by Dedekind andWeber (1882) in algebraic geometry, where
they are applied to fields of algebraic functions. Today, ideals are such a
fundamental part of ring theory that algebra books often introduce them
without explaining that the word “ideal” came from “ideal numbers.”

Exercises

16.8.1 Show that {4m : m ∈ Z} and {6n : n ∈ Z} are ideals in Z.
16.8.2 Show also that {4m + 6n : m, n ∈ Z} is an ideal, which equals {2k : k ∈ Z}.

16.9 Ideal Prime Factorization

To see how ideals of algebraic integers might preserve the analogy with
ordinary integers, we begin by rewriting the theory of divisibility and gcd
in Z in terms of ideals. This suggests appropriate definitions of divisor and
gcd for ideals of algebraic integers, and leads to the discovery that the two
factorizations

6 = 2 · 3 = (1 +
√−5)(1 − √−5)

arise from a single ideal prime factorization, as Kummer hoped.
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Ideals in Z

In Z we have the commonplace facts that

2 divides 6, 3 divides 6, gcd(2, 3) = 1.

These facts can be rewritten in terms of the sets

(2) = {multiples of 2}, (3) = {multiples of 3}, (6) = {multiples of 6},
which are examples of ideals. The equivalents of the first two facts are

(2) contains (6), (3) contains (6),

which may be summed up by the slogan to divide is to contain. To express
the third fact we consider another ideal, the sum of (2) and (3):

(2) + (3) = {a + b : a ∈ (2), b ∈ (3)}.
It is clear that gcd(2, 3) divides any member of the set (2)+ (3), and in fact
it is not hard to show that

(2) + (3) = {multiples of 1} = (1) = (gcd(2, 3)).

In general, for any a ∈ Z, the set (a) = {multiples of a} is obviously an
ideal, called the principal ideal generated by a. It is not hard to prove (see
the exercises below) that

• every ideal in Z is (a) for some a,

• a divides b⇔ (a) contains (b),

• (a) + (b) = (gcd(a, b)).

Since ideals in Z correspond to numbers in Z, the language of ideals tells
us nothing new about Z. However, the concept of ideal gives us new insight
into the ring Z[

√−5] = {a + b
√−5 : a, b ∈ Z}, where not every ideal is

principal.
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Ideals in Z[
√−5]

One such ideal is the sum I of the principal ideals (2) and (1 +
√−5),

{2μ + (1 + √−5)ν : μ, ν ∈ Z[√−5]}, which happens to equal
{2m + (1 + √−5)n : m, n ∈ Z}.

We expect (by analogy with Z) this ideal to be the gcd of the principal
ideals (2) and (1 +

√−5). In Kummer’s terms it is the set of multiples of
the “ideal number” gcd(2, 1 +

√−5). It can be seen from a picture of part
of I (the black dots in Figure 16.3) that I is not a principal ideal.

−5

0 1

Figure 16.3: Multiples of gcd(2, 1 +
√−5)

This is because a principal ideal (α) in Z[
√−5] is simply Z[

√−5] mul-
tiplied by α, so it looks like the rectangular array Z[

√−5], only magnified
by |α| and rotated by the argument of α. In particular, a principal ideal is
a rectangular array. But it is clear from Figure 16.3 that the black dots do
not form rectangles.

It can be seen similarly that the ideals
(3)+(1+

√−5)=
(
gcd(3, 1 +

√−5)
)

and (3)+(1−√−5) =
(
gcd(3, 1 − √−5)

)

are not principal ideals. But these ideals are plausible ideal factors of the
numbers 2, 3, 1 +

√−5, 1 − √−5 found in the two factorizations of 6. We
have only to explain what it means to multiply ideals.
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Product of Ideals

Dedekind (1871) defined the product of ideals A, B to consist of all finite
sums of products aibi, where ai ∈ A and bi ∈ B. Thus

AB = {a1b1 + · · · + anbn : a1, . . . , an ∈ A; b1, . . . , bn ∈ B}.
This concept of product agrees with the idea that “to divide is to contain”
because each aibi ∈ A and hence a1b1 + · · · + anbn ∈ A, so A ⊇ AB and
therefore A divides AB. Similarly, B divides AB.

The ideals

A = (2) + (1 +
√−5), B = (3) + (1 +

√−5), B = (3) + (1 − √−5),
provide interesting examples of products, namely

A2 = (2), AB = (1 +
√−5), AB = (1 − √−5), BB = (3),

which may be verified in the exercises below. It follows that the two fac-
torizations

6 = 2 · 3, 6 = (1 +
√−5)(1 − √−5)

can finally be reconciled—by splitting them further into the single factor-
ization of ideals

(6) = ABAB.

Also, the ideals A, B, B are prime because they are maximal; that is,
each is properly contained only in the ideal Z[

√−5] itself. The reason for
considering maximal ideals to be prime is that a prime ideal P is defined
as an ideal, not equal to the whole ring, with the prime divisor property:

If P divides AB then P divides A or P divides B.

Since “to divide is to contain,” an equivalent statement of this property is:

If P ⊇ AB then P ⊇ A or P ⊇ B.

It is easily checked, using the above definition of the product AB, that a
maximal ideal P satisfies this condition.

In Z[
√−5] it is quite easy to show that A, B, B are all maximal, so

(6) = ABAB

is a prime ideal factorization. Moreover, it can be shown to be unique.
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Dedekind (1871) showed unique prime ideal factorization holds not
only for the number 6 in Z[

√−5] but for any algebraic integer in the ring
of integers of a field of finite dimension over Q.

Dedekind’s breakthrough inspired Emmy Noether in the 1920s to
develop a general theory of rings and ideals, which became the foundation
of modern research in algebraic number theory and algebraic geometry.
Noether (1926) was able to describe precisely which rings admit unique
prime ideal factorization. Today they are called Dedekind rings.

Exercises

First, let us check two properties claimed above for ideals in Z.

16.9.1 If I ⊆ Z is a nonzero ideal, use the division property in Z to prove that
I = (a), where a is the smallest positive member of I.

16.9.2 Deduce from 16.9.1 that (a) + (b) = (gcd(a, b)).

Now we turn our attention to ideals in Z[
√−5].

16.9.3 Check that

(2) + (1 +
√−5) = {2μ + (1 + √−5)ν : μ, ν ∈ Z[√−5]}

= {2m + (1 + √−5)n : m, n ∈ Z}.

16.9.4 Letting A = {2m + (1 + √−5)n : m, n ∈ Z}, verify that each member of A2

is a multiple of 2.

16.9.5 Show in turn that 1 − √−5 ∈ A, 6 ∈ A2, and 4 ∈ A2. Deduce that 2 ∈ A2

and hence that A2 = (2).

16.9.6 Letting B = (3) + (1 +
√−5) and B = (3) + (1 − √−5), show similarly that

AB = (1 +
√−5), AB = (1 − √−5), and BB = (3).
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Sets, Logic, and Computation

Preview

In the 19th century, perennial concerns about the role of infinity in
mathematics were finally addressed by the development of set theory and
formal logic. Set theory was proposed as a mathematical theory of infinity
and formal logic was proposed as a mathematical theory of proof (partly
to avoid the paradoxes that seem to arise when reasoning about infinity).

In this chapter we discuss these two developments, whose interaction
led to mind-bending consequences in the 20th century. Both set theory and
logic throw completely new light on the question, “What is mathematics?”
But they turn out to be double-edged swords.

• Set theory brings remarkable clarity to the concept of infinity, but it
shows infinity to be unexpectedly complicated—in fact, more com-
plicated than set theory itself can describe.

• Formal logic encompasses all known methods of proof, but at the
same time it shows these methods to be incomplete. In particular,
any reasonably strong system of logic cannot prove its own consis-
tency.

• Formal logic is the origin of the concept of computability, which
gives a rigorous definition of an algorithmically solvable problem.
However, some important problems turn out to be unsolvable.
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17.1 Sets

Sets became part of mathematics in the late 19th century through attempts
to understand the real numbers. Our intuition of the real numbers—that
they form a line without gaps—is a mystery that mathematicians have
struggled to explain since ancient times. It underlies the concept of motion
that Zeno tried to challenge with his paradoxes; it resurfaced with calcu-
lus in the 17th century; and it intruded into algebra when Gauss used the
intermediate value theorem in his 1816 proof of the fundamental theorem
of algebra. As we mentioned in Section 11.4, Bolzano (1817) realized that
the intermediate value theorem demands a proof, but he did not have a
concept of real number on which a proof could be soundly based.

Bolzano did, however, realize the need for a completeness property of
R that expresses the absence of gaps. He identified the least upper bound
property, that every bounded set of real numbers has a least upper bound,
and the equivalent nested interval property, that if

a0 < a1 < a2 < · · · < b2 < b1 < b0

then there is a number x such that

a0 < a1 < a2 < · · · ≤ x ≤ · · · < b2 < b1 < b0.

To prove such properties, we have to answer the question, what is a real
number? Several equivalent answers were given around 1870, all involving
infinite sets or sequences. The simplest was that of Dedekind (1872), who
defined a real number to be a partition (or cut) of the rational numbers into
two sets, L and U, such that each member of L is less than all members of
U. If one has a preconceived notion of real number, such as a point x on
a line, then L and U are uniquely determined by x as the sets of rational
points to left and right of it, respectively. Thus if x is preconceived, then L
and U are no more than auxiliary concepts that enable x to be handled in
terms of rationals, as Eudoxus did (Section 4.2). Dedekind’s breakthrough
was to realize that no preconceived x is necessary: x is defined by the pair
(L,U). Thus the concept of sets of rationals became a basis for the concept
of real number.

Dedekind cuts give a precise model for the continuous number line R,
since they fill all the gaps in the rationals. Indeed, wherever there is a gap
in the rationals, the object that fills it is essentially the gap itself: the pair
of sets L,U to left and right of it. Other formulations of this completeness
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property of R are also easy consequences of Dedekind’s definition. For
example, each bounded set of reals (Li,Ui) has a least upper bound (L,U):
L is simply the union of the sets Li.

Dedekind seemed to have settled the ancient problem of explaining
the continuous in terms of the discrete, but in penetrating as far as he
did, he also uncovered deeper problems. The central problem is that the
completeness of R entails its uncountability, a phenomenon discovered
by Cantor (1874). The countable sets are those that can be put in one-
to-one correspondence with N = {0, 1, 2, . . .}. They include the set of
rationals and also the set of algebraic numbers, as Cantor learned from
Dedekind. But if R is countable, this means that all reals can be included
in a sequence x0, x1, x2, . . . . Cantor (1874) showed that this is impossi-
ble by selecting from each sequence {xm} of distinct reals a subsequence
a0, b0, a1, b1, a2, b2, . . ., such that

a0 < a1 < a2 < · · · < b2 < b1 < b0

and with each xm outside one of the nested intervals (a0, b0) ⊃ (a1, b1) ⊃
(a2, b2) ⊃ · · · . It follows that any common element of all the (an, bn) is a
real x � each xm. A common element obviously exists if the sequence of
intervals is finite, and if the sequence is infinite, it exists by completeness,
as the least upper bound of the an. The common element x is a “gap” in
the given sequence {xm}.

This method, though ingenious, is by no means the easiest way to
prove that R is uncountable. In Section 17.5 we will see a simpler method
that Cantor discovered later. Another simple method, using the concept of
measure, is in Section 17.3.

Exercises

Cantor’s 1874 proof of the uncountability of R is based on the following con-
struction. Given a sequence x0, x1, x2, . . . of distinct reals, he found a gap in them
by picking out a0, b0, a1, b1, . . . as follows:

a0 = x0,

b0 = first xm with a0 < xm,

a1 = first xm after b0 with a0 < xm < b0,

b1 = first xm after a1 with a1 < xm < b0,

a2 = first xm after b1 with a1 < xm < b1.

...
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17.1.1 Explain why the sequence a0, b0, a1, b1, a2, b2, . . . has the gap property
described above: each xm is outside one of the nested intervals (a0, b0) ⊃
(a1, b1) ⊃ (a2, b2) ⊃ · · · .

We now explore how far we can enlarge the set of natural numbers and still
have a countable set.

17.1.2 Give a rule for continuing the sequence

1
1
,

2
1
,

1
2
,

3
1
,

2
2
,

1
3
,

4
1
,

3
2
, . . .

so as to include all positive rationals.

17.1.3 How can one then conclude that the set of all rationals is countable?

17.1.4 The words on a fixed finite alphabet can be enumerated by listing first the
one-letter words, then the two-letter words, and so on. Use this observation
to show that the set of polynomial equations with integer coefficients is
countable and hence that the set of algebraic numbers is countable.

Cantor used the latter result to prove the existence of transcendental numbers.

Namely, let {xm} be the sequence of algebraic numbers; we know that these are

not all the real numbers, so any other real number is transcendental.

17.2 Ordinals

The uncountability ofR has been a great challenge to set theorists and logi-
cians ever since its discovery. The most successful response to this chal-
lenge has been the theory of ordinal numbers. This grew out of Cantor’s
(1872) investigation of trigonometric series, which leads to the problem
of analyzing the complexity of point sets. Cantor measured complexity by
the number of iterations of the prime operation (′) of taking the limit points
of a set. For example, if S = {0, 1/2, 3/4, 7/8, . . . , 1}, then the prime oper-
ation can be applied once, and S ′ = {1}. It can happen that S ′ itself has
limit points, so that S ′′ also exists. In fact, one can find a set S for which
S ′, S ′′, . . . , S (n), . . . exist for all finite n, so one can envisage iterating the
prime operation an infinite number of times. In the case where all the S (n)

exist, Cantor (1880) took their intersection, thereby defining

S∞ = ∩n=1,2,3,...S (n).

He viewed ∞ as the first infinite ordinal number. To avoid confusion with
higher infinite numbers soon to appear, I will use the modern notation ω
for the first infinite ordinal.
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Having made the leap to ω, it is easy to go further:
(
S (ω)
)′
= S (ω+1),(

S (ω+1)
)′
= S (ω+2), . . ., and the intersection of this new infinite sequence is

S ω·2, where ω ·2 is the first infinite number after ω, ω+1, ω+2, . . . . After
ω · 2, one has
ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , . . . , ω · ω, . . . .

All these ordinal numbers can actually be realized as numbers of iterations
of the prime operation on sets of reals. We can also investigate the ordinal
numbers independently of this realization, as an extension of the concept
of natural number.

Cantor (1883) viewed the ordinals as the result of two operations:

(i) Successor, which for each ordinal α gives the next ordinal, α + 1.

(ii) Least upper bound, which for each set {αi} of ordinals gives the least
ordinal ≥ each αi.

The most elegant formalization of these notions was given by von Neu-
mann (1923). The empty set ∅ (not considered by Cantor) is taken to be
the ordinal 0, the successor of α is α ∪ {α}, and the least upper bound of
{αi} is simply the union of the αi. Thus

0 = ∅,
1 = {0},
2 = {0, 1},
· · ·
ω = {0, 1, 2, . . . , n, . . .},

ω + 1 = {0, 1, 2, . . . , n, . . . , ω},
and so on. The natural ordering of the ordinals is then given by set mem-
bership, ∈, and, in particular, the members of an ordinal α are all ordinals
smaller than α.

Cantor’s principle (ii) generates ordinals of breathtaking size, since it
gives the power to transcend any set of ordinals already defined. In partic-
ular, an ordinal of uncountable size is on the horizon as soon as one thinks
of the concept of countable ordinal, as Cantor did (1883). He defined an
ordinal α to be countable (or, as he later put it, of cardinality or cardinal
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number ℵ0) if α could be put in one-to-one correspondence with N. For
example,

ω · 2 = {0, 1, 2 . . . , ω, ω + 1, ω + 2, . . .}
is countable because of its obvious correspondence with

N = {0, 2, 4, . . . , 1, 3, 5, . . .}.
The least upper bound of the countable ordinals is the least uncountable
ordinal, ω1. Sets in one-to-one correspondence with ω1 are of the next
cardinality, ℵ1. Ordinals of cardinality ℵ1 have a least upper bound ω2

of cardinality ℵ2, and so on. (ℵ is aleph, the first letter of the Hebrew
alphabet.)

Having found this orderly way of generating successive uncountable
cardinals, Cantor reconsidered the uncountable set R. Although no method
of generating members of R in the manner of ordinals was apparent, Can-
tor conjectured that the cardinality of R was ℵ1. This conjecture has since
become known as the continuum hypothesis. By 1900 it was recognized as
the outstanding open problem of set theory, and Hilbert (1900a) made it
number one on the famous list of problems he presented to the mathemati-
cal community. There have been two outstanding results on the continuum
problem since 1900, but together they seem to make it harder to know
whether the continuum hypothesis is true. Gödel (1938) showed that the
continuum hypothesis is consistent with standard axioms for set theory,
but Cohen (1963) showed that its negation is also consistent. Thus the
continuum hypothesis is independent of standard set theory, in the same
way that the parallel postulate is independent of Euclid’s other postulates.
Whether this means that the notion of “set” is open to different natural
interpretations, like the notion of “straight line,” is not yet clear.

Exercises

For each countable ordinal α there is a set of rationals in [0,1] with order type
α. For example, the set {0, 1/2, 3/4, 7/8, . . .} has order type ω.
17.2.1 Give an example of a set of rationals in [0,1] with order type ω · 2.
17.2.2 Give an example of a set of rationals in [0,1] with order type ω · ω.
17.2.3 Given sets of rationals in [0,1] with order types α1, α2, α3, . . ., explain how

to obtain a set of rationals in [0,1] with order type at least as large as the
least upper bound of {α1, α2, α3, . . .}.

17.2.4 Explain why there is a set of rationals in [0,1], with order type α, for each
countable ordinal α.
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17.3 Measure

Cantor’s reason for investigating sets of discontinuities in the theory of
trigonometric series goes back to the discovery of Fourier (1822) that these
series depend on integrals. Assuming that

f (x) =
1
2
a0 +

∞∑

n=1

(an cos nπx + bn sin nπx) ,

Fourier derived the formulas

an =
∫ 1

−1
f (x) cos nπx dx, bn =

∫ 1

−1
f (x) sin nπx dx.

Thus the existence of the series depends on the existence of the inte-
grals for an and bn, and this in turn depends on how discontinuous f is. It
was known (though not rigorously proved) that every continuous function
has an integral, so the next question was how the integral should, or could,
be defined for discontinuous functions. The first precise answer was the
Riemann (1854a) integral concept, familiar to all calculus students, and
based on approximating the integrand by step functions. Any bounded
function with a finite number of discontinuities has a Riemann integral,
and indeed so have certain functions with infinitely many discontinuities,
but not all. The classic function for which the Riemann integral does not
exist is the function of Dirichlet (1829):

f (x) =

{
1 if x is rational,
0 if x is irrational.

Eventually a more general integral, the Lebesgue integral, was intro-
duced to cope with such functions, but not until the focus of attention had
shifted from the problem of integration to the more fundamental problem
ofmeasure. Measure generalizes the concept of length (on the line R), area
(in the plane R2), and so on, to quite general point sets. Since an integral
can be viewed as the area under a graph, its dependence on the concept of
measure is clear, though it was not immediately realized that the measure
of sets on the line had to be clarified first.

The need for clarification arose from the discovery of Harnack (1885)
that any countable subset {x0, x1, x2, . . .} of R could be covered by a col-
lection of intervals of arbitrarily small total length. Namely, cover x0 by
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an interval of length ε/2, x1 by an interval of length ε/4, x2 by an interval
of length ε/8, . . . , so that the total length of intervals used is ≤ ε. (This is
another proof, by the way, that R is not a countable set.) This seemed to
show that countable sets were “small”—ofmeasure zero, as we now say—
but mathematicians were reluctant to say this of dense countable sets, like
the rationals. The first response, by Jordan (1892), was to define measure
analogously to the Riemann integral, using finite unions of intervals to
approximate subsets of R. Under this definition, “sparse” countable sets
like {0, 1/2, 3/4, 7/8, . . .} did have measure zero, but dense sets like the
rationals were not measurable at all.

The first to take the hint from Harnack’s result that countable unions
of intervals should be used to measure subsets of R was Borel (1898).
He defined the measure of any interval to be its length, and he extended
measurability to more and more complicated sets by complementation and
countable disjoint unions. That is, if a set S contained in an interval I has
measure μ(S ), then

μ(I − S ) = μ(I) − μ(S ),
and if S is a disjoint union of sets S n with measures μ (S n), then

μ(S ) =
∞∑

n=1

μ (S n) .

The sets that can be formed from intervals by complementation and count-
able unions are now called Borel sets. Borel’s idea was pushed to its log-
ical conclusion by Lebesgue (1902), who assigned measure zero to any
subset of a Borel set of measure zero. Since not all such sets are Borel,
this extended measurability to a larger class of sets: those that differ from
Borel’s by sets of measure zero. It can be proved that the class of Lebesgue
measurable sets has the same cardinality as the class of all subsets of R.
But whether the measurable sets are all subsets of R is an interesting ques-
tion to which we return shortly.

The distinctive property of Borel–Lebesgue measure is countable addi-
tivity: if S 0, S 1, S 2, . . . are disjoint measurable sets, then

μ (S 0 ∪ S 1 ∪ S 2 ∪ · · · ) = μ (S 0) + μ (S 1) + μ (S 2) + · · · .
This follows easily from Borel’s definition of measure for countable dis-
joint unions, because any countable union can be reassembled as a count-
able disjoint union.
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Lebesgue showed that countable additivity gives a concept of integral
that is better behaved with respect to limits than the Riemann integral. For
example, one has the monotone convergence property: if f0, f1, f2, . . . is
an increasing sequence of positive integrable functions, and fn → f as
n → ∞, then ∫ fn dx →

∫
f dx for the Lebesgue integral, whereas this is

not generally true for the Riemann integral (see Exercise 17.3.1).
It could be said that set theory paved the way for measure theory by

showing the uncountability of R, thus enabling countable subsets of R to
be regarded as “small.” On the other hand, measure theory itself shows
the uncountability of R (by Harnack’s result), and in fact measure theory’s
assessment of the smallness of countable sets greatly influenced the later
development of set theory.

“Measure theoretically desirable” axioms, such as the measurability
of all subsets of R, turned out to conflict with “set theoretically desirable”
axioms such as the continuum hypothesis, and efforts to resolve the con-
flict brought to light more fundamental questions about sets. These ques-
tions do not reduce to clear-cut alternatives—the way geometric questions
reduce to alternative parallel axioms, for example—but they do seem to
gravitate toward the choice and large cardinal axioms, discussed in the
next section.

Exercises

17.3.1 Show that a function fn that is zero at all but n points has Riemann inte-
gral zero over any interval and that the non-Riemann integrable function of
Dirichlet is a limit as n→ ∞ of such functions fn.

The complexity of Borel sets may be roughly measured by the number of count-
able unions and complements needed to define them. Here are a few of the simpler
ones.

17.3.2 Show that a single point is the complement of a countable union of intervals
and hence that any countable set is a Borel set.

17.3.3 Deduce that the set of irrational numbers is a Borel set.

17.3.4 What is the measure of the set of irrationals between 0 and 1?

17.4 Axiom of Choice and Large Cardinals

In its usual formulation, the axiom of choice states that any set S (of
nonempty sets) has a choice function f such that f (x) ∈ x for each x ∈ S .
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(Thus f “chooses” an element from each set x in S .) The axiom seems
so plausible that early set theorists used it almost unconsciously, and it
first attracted attention in Zermelo’s (1904) proof that any set S could be
well ordered (that is, put in one-to-one correspondence with an ordinal).
This looked like progress toward the continuum hypothesis. But Zermelo’s
proof gave no more than the existence of a well-ordering of S, given a
choice function for the set of subsets of S . There was still no sign of an
explicit well-ordering of R. And of course if one doubted the existence
of a well-ordering of R, this threw doubt on the axiom of choice. Further
doubts were raised when the axiom of choice was found to have incredible
consequences in measure theory.

The first of these, discovered by Vitali (1905), was that the circle can
be decomposed into countably many disjoint congruent sets. Since con-
gruent sets have the same Lebesgue measure, it easily follows that the
sets in question are not Lebesgue measurable (by countable additivity; see
Exercises 17.4.2–17.4.4).

Even more paradoxical decompositions were given by Hausdorff (1914)
(for the sphere) and Banach and Tarski (1924) (for the ball). The Banach–
Tarski theorem states that the unit ball can be decomposed into finitely
many sets that, when rigidly moved in space, form two unit balls! This
shows that not all subsets of the ball are measurable, even if one asks only
for finite, rather than countable, additivity. For an excellent discussion of
the paradoxical decompositions and their connections with other parts of
mathematics, see Wagon (1985).

The measure-theoretic consequences of the paradoxical decomposi-
tions follow from the geometrically natural assumption that congruent sets
have the same measure. If one drops this assumption and asks only for
countable additivity and nontriviality (that is, not all subsets have mea-
sure zero), then the conflict with the axiom of choice seems to disappear.
No contradiction has yet been derived from these assumptions, but Ulam
(1930) showed that any set possessing such a measure must be extraor-
dinarily large—as large, in fact, as a model of set theory itself, and in
particular larger than the cardinals ℵ1,ℵ2, . . . ,ℵω, . . . . Thus if R has a
nontrivial countably additive measure, then R must be far larger than ℵ1,
and we still have a conflict with the continuum hypothesis. (For more on
the “largeness” of models, see Section 17.8.)

A more desirable axiom than mere measurability would be Lebesgue
measurability of all subsets of R. This conflicts with the axiom of choice,
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by Vitali’s theorem, but it was nevertheless shown to be consistent with the
usual axioms of set theory by Solovay (1970), assuming the existence of a
large cardinal. Shelah (1984) showed that the large cardinal assumption is
necessary.

Thus measurability of all subsets of R is intimately connected with
the existence of sets large enough to model the whole of set theory. This
mind-boggling concept seems to be the answer to many fundamental ques-
tions. We will find ourselves drawn to it again in the next sections when
we explore the influence of set theory on logic. Meanwhile, for a longer
introduction to set theory, its history, and interactions with analysis, see
Stillwell (2013). For recent developments in the theory of large cardinals,
which some believe will throw new light on the continuum hypothesis, see
Kanamori (1994) and Woodin (1999).

Exercises

The axiom of choice turns up even in elementary analysis, when one attempts
to formalize the idea of a continuous function. A natural definition in terms of
infinite sequences is equivalent to the standard ε-δ definition only if we assume
the axiom of choice.

Call f sequentially continuous at a if, for any sequence {an} such that an → a,
we have f (an)→ f (a).

17.4.1 Show, assuming the axiom of choice, that if f is not continuous at a then f
is not sequentially continuous at a. (It is a consequence of Cohen (1966),
p. 138, that this result cannot be proved without the axiom of choice.
It turns on the fact that countably many choices are required to prove
that an infinite set contains a countable subset. The next exercise involves
uncountably many choices.)

Vitali’s decomposition of the circle is created as follows. For each θ between
0 and 2π let S (θ) be the set of points on the unit circle whose angle differs from
θ by a rational multiple of 2π. Thus S (θ) = S (φ) if θ − φ = 2π × a rational, and
S (θ) ∩ S (φ) = ∅ otherwise.
17.4.2 Let S be a set (existing by virtue of the axiom of choice) that contains

exactly one element from each distinct S (θ) and let

S + 2πr = {θ + 2πr : θ ∈ S } for each rational r.

(Thus S + 2πr is S rotated through the rational multiple 2πr of 2π.) Show
that any two of the sets S + 2πr are either identical or disjoint.

17.4.3 Show that the circle is a countable union of sets S + 2πr.

17.4.4 Show that both assumptions μ(S ) = 0 and μ(S ) > 0 lead to contradictions,
and hence conclude that S is nonmeasurable.
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17.5 The Diagonal Argument

The uncountability of R was shown again in a strikingly simple way by
Cantor (1891). His argument applies most directly to the set 2N of all sub-
sets of N, but there are variants that work similarly on the set NN of integer
functions and on R (which can be identified with a set of integer functions
in various ways). To show that there are uncountably many subsets of N
one shows that any countable collection S 0, S 1, S 2, . . . of sets S n ⊆ N is
incomplete, by constructing a new set S , different from each S n. S is the
diagonal set {n : n � S n}, which obviously differs from S n with respect to
the number n. Q.E.D.

The “diagonal” nature of S can be seen by visualizing a table of 0’s
and 1’s in which

mth entry in nth row =

{
0 if m � S n,

1 if m ∈ S n.

In other words, the nth row consists of the values of the characteristic func-
tion of S n. The characteristic function of S is simply the diagonal of the
table, with all values reversed. A sequence x0, x1, x2, . . . of real numbers
can be diagonalized similarly by forming the table whose nth row consists
of the decimal digits of xn. A suitable way to “reverse” the digits on the
diagonal is to change any 1 to a 2 and any other digit to a 1. (The resulting
sequence of 1’s and 2’s, after a decimal point, then defines a real number
x whose decimal expansion is unique. Hence x is not just different from
each xn in its decimal expansion but is definitely a different number.)

More generally, for any table of rows of integers, that is, any sequence
of integer functions fn, one can construct an integer function f unequal to
each fn by changing the values along the diagonal of the table. The diag-
onal argument was in fact first given in this context, by du Bois-Reymond
(1875), in order to construct an f with a greater rate of growth than all
functions in a sequence f0, f1, f2, . . . (Exercise 17.5.1). With hindsight, one
can even see a diagonal construction in Cantor’s first (1874) argument for
the uncountability of R (Exercise 17.5.2).

The diagonal argument is important in set theory because it readily
generalizes to show that every set has more subsets than elements (Exer-
cise 17.5.3), and hence that there is no largest set. What was not noticed
at first is that the diagonal argument also has consequences at a more con-
crete level. This is because the diagonal of a table is computable if the table
as a whole is computable. Hence the argument does not merely show how



17.5 The Diagonal Argument 335

to add a new function f to a list f0, f1, f2, . . .—it shows how to add a new
computable function to a computable list. In other words, it is impossible
to compute a list of all computable functions. And of course the same goes
for lists of computable real numbers. This remarkable result went unno-
ticed in the early days of the diagonal argument because computability
was not then regarded as an interesting concept, or indeed as a mathemat-
ical concept at all. The controversies over the axiom of choice, however,
helped to sharpen awareness of the difference between constructive and
nonconstructive functions. In the 1920s logicians began to investigate the
concept of computability more seriously, and by a “kind of miracle,” as
Gödel (1946) later expressed it, computability turned out to be a mathe-
matically precise notion.

Exercises

The diagonal construction is quite a natural way to construct a function or
real number “larger” than the members of a given countable set.

17.5.1 Given integer functions f0, f1, f2, . . ., define an integer function f such that
f (m)/ fn(m)→ ∞ as m→ ∞, for each n. Hint: Arrange that f (m) ≥ n fn(m)
for all m ≥ n.

17.5.2 Show that if a0 < a1 < a2 < · · · is a bounded sequence of real numbers,
then a = least upper bound of {a0, a1, a2, . . .} is a diagonal number of the
sequence in the following sense. There are integers k0 < k1 < k2 < · · ·
such that the decimal digits of a exceed those of an after the knth place.

The last exercise applies the diagonal construction to any set I, to show that I
has more subsets than members, so there is no largest set.

17.5.3 Let I be any set, and let {S i} be a collection of subsets of I in one-to-one
correspondence with the elements i of I. Show that the natural diagonal set
S of this collection is a subset of I unequal to each S i.

17.6 Computability

The notion of computability was first formalized by Turing (1936) and
Post (1936), who arrived independently at a definition of computing machine,
now called a Turing machine. A Turing machine M is given by two finite
sets, {q0, q1, . . . , qm} of internal states and {s0, s1, . . . , sn} of symbols, and
a transition function T that formalizes the behavior of M for pairs (qi, s j).
The machine M is visualized as having an infinite tape, divided into
squares, each of which can carry one of the symbols s j. (For most pur-
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poses, M is assumed to start on a tape with all but finitely many squares
blank: s0 is taken to denote the blank symbol.) Depending on its internal
state qi, M will make a transition: changing s j to sk, then moving one
square right or left and going into a new state ql. Thus the transition func-
tion is given by finitely many equations

T (qi, s j) = (m, sk, ql),

where m = ±1 indicates a move to right or left.

To use M to compute a function f : N → N, we need to adopt some
convention for inputs (arguments of f ) and outputs (values of f ). The sim-
plest is shown in Figure 17.1. M starts in state q0 on the leftmost 1 of a
block of n 1s, on an otherwise blank tape, and halts on the leftmost 1 of a
block of f (n) 1s, on an otherwise blank tape. M halts by virtue of entering
a halting state, that is, a state qh for which M has no transition from the
pair (qh, 1). A computable function f is one that can be represented in this
way by a Turing machine M.

Figure 17.1: Computing a function by Turing machine

It follows that there are only countably many computable functions f :
N→ N, since there are only countably many Turing machines. In fact, we
can compute a list of all Turing machines by first listing the finitely many
machines with one transition, then those with two transitions, and so forth.
This may seem to contradict the discovery from the previous section that a
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list of all computable functions cannot be computed, but, as Turing (1936)
realized, it does not. The catch is that not all machines define functions,
and it is impossible to pick out all of those that do. Of course, it is possible
to rule out any machine that halts in a situation unlike that in Figure 17.1;
the difficulty is in knowing whether halting is going to occur at all. It is
precisely this difficulty that prevents computation of the diagonal function.

If it could be decided, for each machine M and each input, whether M
eventually halts, then we could find the first machine to halt on input 1,
the next after that to halt on input 2, the next after that to halt on input 3,
and so on. By changing the corresponding outputs according to some rule
(say, adding 1 if the output is a number, and taking the value 1 otherwise),
we could compute a function different from each computable function.

This contradiction shows that the problem of deciding, given a machine
and an input, whether halting eventually occurs, is unsolvable. This prob-
lem is called the halting problem and its unsolvability means that no Tur-
ing machine can solve it. That is, if the questions “Does M on input n
eventually halt?” are written in some fixed finite alphabet, then there is no
machine that, given these questions as inputs, will give their answers as
outputs. The point is that, as far as we know, all possible rules or algo-
rithms for answering infinite sets of questions can be realized by Turing
machines. This is the “kind of miracle” referred to by Gödel (1946).

Now that computers are everywhere, it is taken for granted that the
word “computability” has a precise, absolute meaning—synonymous with
Turing machine computability. It is even a familiar fact that all computa-
tions can be done on a single, sufficiently powerful machine; this corre-
sponds to the discovery of Turing (1936) of a universal Turing machine.
However, these claims were surprising in the 1930s, particularly to Gödel,
who had shown (1931) that the related notion of “provability” is not abso-
lute. This will be discussed further in the next section. Briefly, the reason
for the difference is that new computable functions cannot be created by
diagonalization, whereas new theorems can.

Unsolvable Problems

The halting problem was of no obvious mathematical significance in 1936,
but it seemed no more difficult than other unsolved algorithmic problems
in mathematics. Thus for the first time it was reasonable to suspect that
some ordinary mathematical problems were unsolvable. Moreover, if it
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could be shown that a solution of a particular problem P implied a solu-
tion of the halting problem, then the unsolvability of P would be rigor-
ously established. This method was used to demonstrate the unsolvability
of some problems in formal logic by Turing (1936) and Church (1936).
Church (1938) also put forward a strong candidate for unsolvability in
ordinary mathematics: the word problem for groups.

This is the problem of deciding, given a finite set of defining relations
for a group G (Section 14.7) and a word w, whether w = 1 in G. There is
more than a superficial analogy between the word problem and the halting
problem. The groupG corresponds to a machineM, words inG correspond
to expressions on M’s tape, and w = 1 corresponds to halting. The defin-
ing relations of G roughly correspond to the transition function of M, but
unfortunately there is no machine equivalent of the cancellation of inverses
in G. This creates fierce technical difficulties, but they were overcome by
Novikov (1955). He succeeded in establishing the validity of the analogy
and hence the unsolvability of the word problem. This led to unsolvability
results for a host of significant mathematical problems, among them the
homeomorphism problem mentioned in Section 15.5 (The reference given
there, Stillwell (1993), also includes a proof of the unsolvability of the
word problem.)

Exercises

Turing (1936) actually discovered the unsolvability of the halting problem
by considering computable real numbers and applying the diagonal argument to
them. The argument is similar to the one above using computable functions, but a
little messier. Define a real number x to be computable if there is a Turing machine
M that represents x in the following manner.

• Starting on a blank tape, M prints the decimal digits of x on successive
squares of tape, eventually filling each square to the right of the square
initially scanned (if necessary, printing all 0s beyond a certain point).

• The squares to the left may be used, and reused, for preliminary compu-
tation, but squares to the right, once written, may not be rewritten.

17.6.1 Show that there is no algorithm for recognizing the Turing machines that
define real numbers in this way, since such an algorithm would give a way
to compute a number different from every computable number.

17.6.2 Explain informally how each Turing machine M may be converted to a
machine M′ such that M defines a computable number if and only if M′
does not halt.

17.6.3 Hence prove that no Turing machine can solve the halting problem.



17.7 Logic and Gödel’s Theorem 339

17.7 Logic and Gödel’s Theorem

Since the time of Leibniz, and perhaps earlier, attempts have been made
to mechanize mathematical reasoning. There was little success until the
late 19th century, when reduction of the many concepts of number, space,
function, and the like, to the single concept of set simplified the axioms
that seemed to be necessary for mathematics. At about the same time,
investigation of the principles of logic by Boole (1847), and particularly
Frege (1879), led to a system of rules by which all logical consequences
of a given set of axioms could be derived. These two lines of investigation
together offered the possibility of a complete, rigorous, and, in principle,
mechanical system for deriving all mathematics.

The Principia Mathematica of Whitehead and Russell (1910) was a
massive attempt to realize this possibility. Principia used axioms about
sets, together with simple rules of inference, to derive a large part of ordi-
nary mathematics in a completely formal language. When Whitehead and
Russell began writing the Principia in 1900, they believed that they were
about to reach the 19th-century goal of completeness and absolute rigor.
They did not know that the rigor of their system—the ability to check
proofs mechanically—was in fact incompatible with completeness. Gödel
(1931) found true sentences expressible in the language of Principia that
do not follow from its axioms. (Unless Principia is inconsistent, in which
case all sentences follow and the system is useless.)

Gödel’s theorem created a sensation when it first appeared. It shattered
previous conceptions of mathematics and logic, and its proof was of a new
and bewildering kind. Gödel exploited the mechanical nature of proof in
Principia to define the relation “the nth sentence of Principia is provable”
in the language of Principia itself. Using this, he was able to concoct a
sentence that says, in effect, “This sentence is not provable.” The Gödel
sentence, if true, is therefore not provable. And if false, it is provable, and
so Principia proves a false sentence. Either way, provability in Principia
is not the same as truth.

Gödel’s proof was very difficult for his contemporaries to understand.
Along with the novelty of treating sentences and proofs as mathemati-
cal objects was the near inconsistency of a sentence expressing its own
unprovability (a sentence that says “This sentence is not true” is inconsis-
tent). Post (1944) presented Gödel’s theorem less paradoxically, and tied
it to computability theory, by using the classical diagonal argument.
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Post’s Approach to Gödel’s Theorem

The key to Post’s approach is the concept of a computably enumerable set
(called recursively enumerable in Post’s time). A setW is computably enu-
merable if a list of its members can be computed, say by a Turing machine
that prints them on its tape. (Of course if W is infinite, the computation
runs forever.) A typical computably enumerable set is the set of theorems
of a formal system, such as Principia Mathematica. For such a system one
can list all sentences, then all finite sequences of sentences, and then, by
picking out those sequences that are proofs, make a list of all theorems—
since a theorem is simply the last line of a proof.

Post’s idea was to look at the theorems about computably enumerable
sets proved in a given system Σ and to compute a “diagonal sentence”
from them. Since computably enumerable sets are associated with Turing
machines, it is possible to enumerate the computably enumerable subsets
of N as W0,W1,W2, . . . by letting Wn be the set of numbers output by
the nth machine, under some reasonable convention. (Incidentally, there is
no problem of picking out suitable machines, as there is for computable
functions, since we do not mind ifWn is empty.) The diagonal set

D = {n : n � Wn},
being unequal to each Wn, is of course not computably enumerable, but
the following set is:

Pr(D) = {n : Σ proves “n � Wn”}.
This “provable part” of D is computably enumerable because we can list
the theorems of Σ and select those of the form “n � Wn.” Assuming that
Σ proves only correct sentences we have Pr(D) ⊆ D, but Pr(D) � D since
Pr(D) is computably enumerable and D is not. This shows immediately
that there is an n0 in D that is not in Pr(D), that is, an n0 � Wn0 for which
“n0 � Wn0” is not provable.

Better still, a specific n0 with this property is the index of the com-
putably enumerable set Pr(D). IfWn0 = Pr(D), then n0 ∈ Wn0 is equivalent
to n0 ∈ Pr(D), which means that “n0 � Wn0” is provable. But then it is true
that n0 � Wn0 , assuming that Σ proves only correct sentences, and we have
a contradiction. Thus n0 � Wn0 . This in turn is equivalent to n0 � Pr(D),
which means “n0 � Wn0” is not provable. (Notice, incidentally, that the last
part of this argument reveals “n0 � Wn0” to be a sentence that expresses its
own unprovability.)
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Post was aware of this approach to Gödel’s theorem in the 1920s,
before Gödel’s own proof appeared. However, Post’s more general view of
incompleteness as a property of arbitrary computably enumerable systems
held him up until he was satisfied that computability was a mathematically
definable concept. In December 1925 Post formulated a plan for proving
Principia Mathematica incomplete but, as he later wrote, “The plan, how-
ever, included prior calisthenics at other mathematical and logical work,
and did not count on the appearance of a Gödel!” (Post (1941), p. 418).

The Unprovability of Consistency

Gödel’s theorem comes from reflecting on the nature of proofs. An even
more devastating theorem, known as Gödel’s second theorem, comes from
reflecting on the proof of Gödel’s theorem itself. The latter proof, unusual
though it is, can be expressed in ordinary mathematical language.

We described Post’s proof of Gödel’s theorem in an informal language
of Turing machines. But with some effort it can be expressed in the system
for number theory called Peano arithmetic (PA), mentioned in Section 3.3.
Indeed, this arithmetization of syntaxwas one of Gödel’s greatest ideas. By
doing his proof in PA, he exposed the incompleteness of classical math-
ematics. Turing machines can be discussed in PA by encoding sequences
of symbols on the tape as numerals, so that machine operations become
operations on numbers. Under this encoding, “n0 � Wn0” and “Σ does not
prove ‘n0 � Wn0 ’ ” become sentences of PA.

Here it is important to recall the assumption about Σ used to prove
Gödel’s theorem: Σ proves only correct sentences. This assumption can-
not be dropped (since a false sentence implies all sentences), but it can be
weakened to the assumption that Σ does not prove the sentence “0 = 1.”
The latter assumption says that a certain number (the number of the sen-
tence “0 = 1”) is not in a certain computably enumerable set (the set of
theorems of Σ), so it can be expressed as a sentence of PA, call it Con(Σ).
In particular, PA expresses its own consistency by the sentence Con(PA).
Gödel’s theorem for Σ = PA then becomes the following sentence of PA:

Con(PA)⇒ PA does not prove “n0 � Wn0 .”

As we know, the sentence “n0 � Wn0” is equivalent to its own unprovabil-
ity, so an equivalent of the last sentence is simply

Con(PA)⇒ n0 � Wn0 .
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Now Gödel noticed that his proof could be carried out in PA. This hap-
pened after some prompting from von Neumann (1930), who noticed the
same thing. (The rather laborious verification was carried out by Hilbert
and Bernays (1939)). Consequently, if Con(PA) can be proved in PA, then
so can “n0 � Wn0 ,” by basic logic. But if PA is consistent, “n0 � Wn0”
cannot be proved in it, by Gödel’s theorem, hence neither can Con(PA).
(Gödel of course had a different unprovable sentence, but it was similarly
implied by Con(PA), and equivalent to its own unprovability.)

Thus the assertion Con(PA) that the axioms of PA are consistent is
in some way stronger than the axioms themselves. Similarly, if Σ is any
system that includes PA (such as Principia Mathematica and other systems
of set theory), then Con(Σ) cannot be proved in Σ, if Σ is consistent. This
is Gödel’s second theorem.

Exercises

It is instructive to spell out why the sentence “n0 � Wn0” expresses its own
unprovability, if this is not already obvious.

17.7.1 Fill in the gap so as to establish a chain of equivalences:

n0 � Wn0 ⇔ · · · ⇔ Σ does not prove “n0 � Wn0”.

A remarkable new form of Gödel’s theorem was discovered by Chaitin (1970).
Like Gödel’s own version, it is most easily explained in terms of computation.
Let us call a finite sequence σ of 0s and 1s computationally random if it cannot
be produced (from a blank tape) by a Turing machine whose description is shorter
than σ. To compare lengths fairly we assume that Turing machines are themselves
written as sequences of 0s and 1s. (This makes the definition of “computationally
random” dependent on the way we encode Turing machines, but never mind—the
proof of Chaitin’s theorem assumes only that the method of encoding is com-
putable.)

17.7.2 Give an informal argument to explain why the sequence of 10100 consecu-
tive 0s is not computationally random.

17.7.3 Show that at most 2n − 1 Turing machines have descriptions of length less
than n.

17.7.4 Deduce from Exercise 17.7.3 that there are infinitely many computationally
random sequences.

Despite the prevalence of computationally random sequences, they are very hard
to find. Chaitin’s incompleteness theorem states: any sound formal system proves
only finitely many theorems of the form “σ is computationally random.”
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To prove Chaitin’s theorem suppose, on the contrary, that there is a formal
system, and hence a Turing machine M, that generates infinitely many theorems
of the form “σ is computationally random,” and no false statements of this form.
Suppose, for example, that M has length 106.

17.7.5 Explain informally how to convert M to a machine M′ that finds the first
theorem of the form “σ is computationally random” output by M, where σ
has at least 10100 digits.

17.7.6 Also explain informally why the length of M′ is less than 10100.

17.7.7 Deduce from Exercise 17.7.6 that we have a contradiction; hence M does
not exist.

17.8 Provability and Truth

The previous section stressed that Gödel’s theorem is a statement of alter-
natives: a formal system Σ either fails to prove a true sentence or else
proves a false one. Gödel’s second theorem identifies a sentence, Con(Σ),
which is either true and unprovable or false and provable, but does not
say which alternative holds for a particular Σ, such as PA or Principia.
How could it, without violating Gödel’s theorem itself? Unless Σ actually
is inconsistent, there can be no proof in Σ that Con(Σ) is true!

Nevertheless, Gödel’s theorem tells us that we have nothing to lose
by adding Con(Σ) to the system Σ. If Σ is inconsistent, then it is already
worthless, and we are no worse off for having added Con(Σ). And if Σ is
consistent, we actually gain, because Con(Σ) is a new mathematical truth
not provable from Σ alone. In this way, Gödel’s theorem allows us to tran-
scend any given formal system. Knowing that Con(Σ) is beyond the scope
of Σ (if Σ is consistent) is of practical value to mathematicians, for it means
there is no point trying to prove any sentence that implies Con(Σ). If one
wants to use such a sentence, it should be taken as a new axiom.

Sentences of mathematical interest actually arise in this way, most sim-
ply in set theory, where consistency is implied by the existence of a “large
set.” The usual axioms of set theory (called the Zermelo–Fraenkel, or ZF,
axioms) say roughly that

(i) N is a set.

(ii) Further sets result from certain operations, the most important of
which are power (taking all subsets of a set) and replacement (taking
the range of a function whose domain is a set).
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Because of this, the axioms of ZF can be modeled by any set that contains
N and is closed under power and replacement. Such a set has to be very
large—larger than any set whose existence can be proved in ZF—but if
it exists then ZF must be consistent, since two contradictory sentences
cannot be true of an actually existing object. Thus the existence of a set
that is large in the above sense implies Con(ZF).

If ZF is consistent, then ZF + Con(ZF) is also consistent, but an even
larger set is required to satisfy the enlarged axiom system. These large-set
existence axioms are called axioms of infinity. Since they imply Con(ZF),
they cannot be proved in ZF. In particular, one cannot prove the exis-
tence of a nontrivial measure on all subsets of R since, as mentioned in
Section 17.3, this implies the existence of a large set. Gödel (1946) made
the interesting speculation that any true but unprovable proposition is a
consequence of some axiom of infinity.

More recently, some largeness properties in number theory have been
found to imply Con(PA). The first of these was found by Paris and Har-
rington (1977), using a modification of a combinatorial theorem of Ram-
sey (1929). Paris and Harrington found a sentence σ that says that for each
n ∈ N there is an m such that sets of size ≥ m have a certain combinatorial
property C(n). They showed that σ follows from a well-known theorem
on infinite sets, called Ramsey’s theorem, but that the function

f (n) = least m such that sets of size m have property C(n)

grows faster than any computable function whose existence can be proved
in PA. Thus σ in some sense asserts the existence of a large function. The
property C(n) is such that one can decide whether a finite set has it or not;
hence σ implies (very simply, and certainly in PA) that f is computable.
This shows immediately that σ cannot be proved in PA, but Paris and Har-
rington in fact proved the stronger result that σ implies Con(PA). For an
excellent introduction to Ramsey theory and the Paris-Harrington theorem,
see Katz and Reimann (2018).

Gödel’s theorem shows that something is missing in the formal view
of mathematics, and the axioms of infinity show that the missing elements
may be mathematically interesting and important. Despite this, it is com-
monly thought that mathematics consists in the formal deduction of theo-
rems from fixed axioms. As early as 1941 Post protested against this view:

It is to the writer’s continuing amazement that ten years after
Gödel’s remarkable achievement current views on the nature



17.8 Provability and Truth 345

of mathematics are thereby affected only to the point of seeing
the need of many formal systems, instead of a universal one.
Rather has it seemed to us to be inevitable that these develop-
ments will result in a reversal of the entire axiomatic trend of
the late 19th and early 20th centuries, with a return to meaning
and truth.

Post (1941), p. 345

Things have indeed not turned out as Post expected—the “axiomatic
trend” rolls on—but there has been a “reversal” of sorts. The last 40 years
have seen the development of reverse mathematics, the aim of which is to
find the “right” axioms to prove given theorems, in the sense given by the
seminal work of Friedman (1975):

When a theorem is proved from the right axioms, the axioms
can be proved from the theorem.

For example, Euclid’s parallel axiom is the right axiom to prove the theo-
rem of Pythagoras, the theorem that the angle sum of a triangle is π, and
many other geometric theorems, because it can be shown that these the-
orems imply the parallel axiom. More precisely, the parallel axiom can
be proved from them assuming only the other axioms of Euclid. These
implications were known long ago, but they became interesting only when
Beltrami (1868a) showed that the parallel axiom is not provable from
Euclid’s other axioms. Thus a reverse mathematics of Euclidean geometry
becomes possible with the discovery that the parallel axiom is independent
of Euclid’s other axioms.

Modern reverse mathematics begins with the discoveries of Post, Tur-
ing, and Gödel that certain real numbers are not computable. From this it
follows, using the relations they found between logic, computation, and
arithmetic, that certain axioms about infinite sets of natural numbers are
independent of basic axioms about the natural numbers. (The basics are,
roughly, PA plus an axiom stating the existence of computable sets). It
turns out, surprisingly, that a small number of these seemingly obscure
axioms about infinity are the “right” axioms to prove standard theorems
about real numbers and continuous functions.

Reverse mathematics today covers not only analysis, but also parts of
topology, combinatorics, and algebra. For an introduction, see Stillwell
(2018), and for a more encyclopedic treatment, see Simpson (2009).
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Exercises

An argument for the unprovability of “large” sets that does not assume the
unprovability of consistency was discovered by Zermelo in 1928 (Zermelo’s
announcement is mentioned in Baer (1928)). Since this was before Gödel’s own
work, it seems fair to call this Zermelo’s incompleteness theorem. It states that, if
“large” sets exist, then this fact is not provable in ZF.

To pave the way for Zermelo’s argument, we need to explain how ordinals
measure the “complexity level”—called the rank—of sets. The simplest set is the
empty set 0, which is assigned rank 0. For each ordinal α, the sets of rank ≤ α+ 1
are those of rank ≤ α, together with all subsets of the set of sets of rank ≤ α.
17.8.1 Show that 1 = {0} has rank 1, and more generally that n + 1 = {0, 1, . . . , n}

has rank n + 1.

If λ is an ordinal not of the form α + 1, the sets of rank ≤ λ are those of rank
α < λ, together with all subsets of the set of sets of rank < λ.

17.8.2 Show that the ordinal ω = {0, 1, 2, . . .} has rank ω.
17.8.3 More generally, show that any ordinal α has rank α.

It is essentially an axiom of ZF (the axiom of foundation) that every set has a rank.
An ordinal λ is called inaccessible if the sets of rank < λ are closed under the

power and replacement operations. Thus, if an inaccessible λ exists, the sets of
rank < λ form a model of ZF. Also, if inaccessible ordinals exist, there is a least
inaccessible, μ.

17.8.4 Show that the sets of rank < μ are a model of ZF plus the sentence “there
is no inaccessible ordinal.”

17.8.5 Deduce from Exercise 17.8.4 that, if inaccessible ordinals exist, this fact is
not provable in ZF.

For a wide-ranging introduction to the interplay between logic and infinity,

see Stillwell (2010b).
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Figure 7.8, from Nicéron (1638), p. 134.
https://archive.org/details/BIUSante 01737/page/n171/mode/2up

Figure 11.1, from a 1569 version of Bombelli, L’Algebra, p. 72 verso of
Codice B. 1569 in the Biblioteca communale dell’Archiginnasio, Bologna.
Used with their permission.

Figure 13.15, from Klein (1928), p. 286.
https://gdz.sub.uni-goettingen.de/id/PPN375534636?tify=%22pages%22:[298],%22view%22:

%22info%22

Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Vorlesungen über Nicht-Euklidische Geometrie by Felix
Klein, copyright 1928.

Figure 15.7, which is a grayscale version of an image by Anton Sherwood
from Wikimedia, in the public domain:
https://en.wikipedia.org/wiki/Uniform tilings in hyperbolic plane#/media/File:H2 tiling

288-1.png

https://commons.wikimedia.org/wiki/Category:Underweysung_der_Messung#/media/File:Duerer_Underweysung_der_Messung_180.jpg
https://commons.wikimedia.org/wiki/Category:Underweysung_der_Messung#/media/File:Duerer_Underweysung_der_Messung_180.jpg
http://www.codex-atlanticus.it/#/Detail?detail=98
https://en.wikipedia.org/wiki/The_Ambassadors_(Holbein)#/media/File:Hans_Holbein_the_Younger_-_The_Ambassadors_-Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Holbein_Skull.jpg
https://archive.org/details/BIUSante_01737/page/n171/mode/2up
https://gdz.sub.uni-goettingen.de/id/PPN375534636?tify=%22pages%22:[298],%22view%22:%22info%22
https://gdz.sub.uni-goettingen.de/id/PPN375534636?tify=%22pages%22:[298],%22view%22:%22info%22
https://en.wikipedia.org/wiki/Uniform_tilings_in_hyperbolic_plane#/media/File:H2_tiling_288-1.png
https://en.wikipedia.org/wiki/Uniform_tilings_in_hyperbolic_plane#/media/File:H2_tiling_288-1.png


Bibliography

Abel NH (1826) Démonstration de l’impossibilité de la résolution algébrique des
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Cauchy A-L (1815) Mémoire sur le nombre des valeurs qu’une fonction peut
acquerir, lorsqu’on y permute de toutes les manières possibles les quantités
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fermée. Comp Rend 23:251–255. In his Œuvres, ser 1, 10:70–74

Cauchy A-L (1847) Mémoire sur le théorie des équivalences algébriques, sub-
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physique mathématique, Tome 4

Cavalieri B (1635) Geometria indivisibilibus continuorum nova quadam ratione
promota. Clement Ferroni, Bononi

Cayley A (1854) On the theory of groups, as depending on the symbolic equation
θn = 1. Phil Mag 7:40–47. In his Collected Mathematical Papers 2:123–130

Cayley A (1859) A sixth memoir on quantics. Phil Trans Roy Soc 149:61–90. In
his Collected Mathematical Papers 2:561–592



354 Bibliography

Cayley A (1878) The theory of groups. Am J Math 1:50–52. In his Collected
Mathematical Papers 10:401–403

Chaitin GJ (1970) Computational complexity and Gödel’s incompleteness theo-
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356 Bibliography
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Wissenschaften, vol IIAB3, pp 153–220, Teubner, Leipzig

Desargues G (1639) Brouillon projet d’une atteinte aux évènements des rencon-
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Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsten
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Lagrange JL (1770) Demonstration d’un théorème d’arithmétique. Nouv Mém
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Legendre A-M (1825) Traité des fonctions elliptiques. Huzard-Courcier, Paris



366 Bibliography

Leibniz GW (1675) De bisectione laterum. See Schneider (1968)

Leibniz GW (1684) Nova methodus pro maximis et minimis. Acta Erud 3:467–
473. In his Mathematische Schriften 5:220–226. English translation in Struik
(1969)

Leibniz GW (1686) De geometria recondita et analysi indivisibilium atque infin-
itorum. Acta Erud 5:292–300. Also in Leibniz’s Mathematische Schriften
5:226–233

Leibniz GW (1702) Specimen novum analyseos pro scientia infiniti circa summas
et quadraturas. Acta Erud 21:210–219. In his Mathematische Schriften 5:350–
361

Lenstra HW (2002) Solving the Pell equation. Not Am Math Soc 49:182–192

Levi ben Gershon (1321) Maaser Hoshev. German translation by Gerson Lange:
Sefer Maasei Choscheb, Frankfurt 1909. English translation in Katz et al
(2016)

Li Y, Du SR (1987) Chinese mathematics: a concise history. The Clarendon Press,
Oxford University Press, New York. Translated from the Chinese and with
a preface by John N. Crossley and Anthony W.-C. Lun. With a foreword by
Joseph Needham
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Nicéron F (1638) La perspective curieuse. P. Billaine, Paris

Nielsen J (1927) Untersuchungen zur Topologie der geschlossenen zweiseitigen
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Schooten Fv (1659) Geometria à Renato Des Cartes. Louis and Daniel Elzevir,
Amsterdam
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von Neumann J (1930) Letter to Gödel, 20 November 1930, in ?, p 337

Wagon S (1985) The Banach-Tarski Paradox. Cambridge University Press, Cam-
bridge, With a foreword by Jan Mycielski

Wallis J (1655a) Arithmetica infinitorum. Opera 1:355–478. English translation
The Arithmetic of Infinitesimals by Jacqueline Stedall. Springer, New York,
2004

Wallis J (1655b) De sectionibus conicis. Opera 1:291–354

Wallis J (1657) Mathesis universalis. Opera 1:11–228

Wallis J (1659) Tractatus duo. Prior, de cycloide. Posterior, de cissoid. Opera
1:489–569

Wallis J (1663) De postulato quinto; et definitione quinta Lib. 6 Euclidis. Opera
2:669–678

Wantzel PL (1837) Recherches sur les moyens de reconnaitre si un problème de
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A
Abel

and abelian groups, 265
and elliptic functions, 157, 177
and modular functions, 78
and the quintic, 78
lemniscate division theorem, 179

addition of points
on elliptic curve, 220

addition theorem, 167, 173
and addition of points, 221
for arcsine integral, 176
for elliptic integral, 175
for exponential function, 208
for lemniscatic integral, 175
for lemniscatic sine, 179
for sine, 173

Adyan, 295
affinity, 273
al-Haytham, 126, 237, 248
al-Khwārizmı̄, 64

solution of quadratic, 69
Alberti, 100
aleph, 328
algebra, 64

abstract, 257
and algebraic geometry, 65
and polynomial equations, 64
commutative, 297
linear, 14, 298
origin of word, 64

algebraic
curve, 32, 89

real, 193

function, 125, 146
definition, 150
field, 318
fractional power series, 150
power series, 146

geometry, 14, 29
origin, 65

integer, 306
number, 304
number fields, 303
number theory, 297

and construction problems, 24
numbers

form countable set, 325, 326
algebraic geometry, 14, 86

and algebra, 65
and projective geometry, 95
discovery, 87

algorithm
Euclidean, 39
origin of word, 64
theory, 295, 323

analysis situs see topology, 284
analytic geometry, 87, 97

and foundations, 97
anamorphosis, 103
angle division, 75

and complex numbers, 185
de Moivre formula, 76
Leibniz formula, 76
Newton formula, 76
Viète formulas, 76

angular defect, 240
anthyphairesis, 43
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and continued fractions, 45
antiderivative, 138
Apéry, 154
Apollonius

and conic sections, 86
epicycles, 31
four-line problem, 87
theory of irrationals, 71

arc length, 88, 226
and elliptic integrals, 170
integral, 144, 228
of catenary, 230
of circle, 144
of cycloid, 227
of lemniscate, 171
of logarithmic spiral, 227
of semicubical parabola, 227

Archimedes
and geometric series, 140
and Pell’s equation, 45
and volume of sphere, 127
area of parabola, 51, 60, 123
cattle problem, 45
Method, 53, 126
results on the sphere, 60
spiral, 128

area
of circle, 57
of hyperbola, 62
of hyperbolic circle, 240
of parabola, 60
of polygons, 58
of sphere, 60
of triangle, 56
proportional to square, 57

Argand, 190
Aristotle

Prior Analytics, 13
version of Zeno, 52

arithmetic–geometric mean, 178
and Gauss, 178
and Lagrange, 178

arithmetization
of geometry, 96, 316

of syntax, 341
associative law, 258, 308
asymptotic lines, 238
axiom of choice, 331

and continuous functions, 333
implies well-ordering, 332
in measure theory, 332
statement, 331

axiom of foundation, 346
axioms, 17, 18

choice, 331
for groups, 258
in Euclid’s Elements, 18, 225
large cardinal, 331
of infinity, 344
of set theory, 328, 331, 343
parallel, 17, 225, 237

B
Bachet

Diophantus, 158
edition of Diophantus, 157
stated four-square theorem, 37

Banach, 332
Banach–Tarski theorem, 332
Beeckman, 94
Beltrami, 234

conformal models, 248
half-space model, 251
hyperbolic plane, 241

Berkeley, 53
Bernays, 342
Bernoulli

definition of geodesic, 235
Jakob

and elliptic integrals, 171
and logarithmic spiral, 229, 230
lemniscate, 30, 171

Johann
and
∑

1/n2, 152
and complex logarithms, 206
and complex numbers, 186
and tractrix, 230

Bessel, 178, 212
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Bézout’s theorem, 85, 94, 96, 99
and fundamental theorem

of algebra, 193, 195
homogeneous formulation, 120
stated by Newton, 95

binomial
coefficient, 79, 149

as number of combinations, 80
divisibility property, 83
sum property, 81

series, 149
theorem, 123, 132, 146

and Fermat’s little theorem, 83
and interpolation, 147

Bolyai hyperbolic geometry, 243
Bolzano, 191

intermediate value
theorem, 191, 324

Bombelli, 157, 183
Bonnet, 236
Boole, 339
Borel, 330
Bosse, 105
Brahana, 289
Brahmagupta

and Pell’s equation, 45
quadratic formula, 68

branch point, 200
Briggs, 148
Bring, 78
Brouncker, 132

and Pell’s equation, 43
continued fraction, 132

Brunelleschi, 100

C
calculus, 87, 123, 124

and differential geometry, 226
and interpolation, 148
and mechanics, 124
and method of exhaustion, 124
and tangents, 124
fundamental theorem, 137
of Leibniz, 136

of Newton, 124, 133
priority dispute, 136

Cantor
continuum hypothesis, 328
defined ℵ0,ℵ1,ℵ2, . . ., 328
discovered uncountability, 325
first uncountability proof, 325
limit point operation, 326
ordinal generating operations, 327
transcendental numbers, 326

Cardano, 73
and complex numbers, 76, 183
solution of cubic, 74

cardinality, 327
cardinals, 328
ℵ0,ℵ1,ℵ2, . . ., 328
large, 331, 332
uncountable, 328

cardioid, 33
Cassini, 30
Cassini oval, 30
catenary

and tractrix, 228, 230
arc length, 230

cattle problem, 45
Cauchy

and permutation groups, 267
integral theorem, 205, 212
notation for identity, 267
notation for inverse, 267
polygonal number theorem, 37

Cauchy–Riemann equations, 205, 209
and hydrodynamics, 208

Cavalieri
and volume of sphere, 127
integration formula, 126
method of indivisibles, 126

Cayley
abstract group concept, 267
and projective geometry, 273
permutation group theorem, 268
projective model, 247

Chaitin incompleteness theorem, 342
choice function, 331
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chord–tangent construction, 7,
47, 157, 165

Church, 338
circle division, 25, 179
circular functions

and complex logarithms, 206
and complex numbers, 186
and cubic equations, 75
and elliptic functions, 168
and the circle, 168
partial fraction series, 216

circumradius, 22
cissoid, 29

cusp, 89
classification

of surfaces, 287
Clebsch, 165, 170

addition of points, 220
Cohen, 328
combinatorics, 124
common notions, 19

and equivalence relations, 20,
275

commutative law, 308
complex curves

and Newton–Puiseux
theory, 203

as Riemann surfaces, 198
topology, 201

complex functions, 206
and differentiability, 209
and integration, 212
as power series, 209
real and imaginary parts, 208

complex numbers, 181
and angle division, 185
and circular functions, 186
and cubic equations, 76, 183
and elliptic functions, 168, 177
conjugate, 190
geometric properties, 190
geometric representation

by Argand, 191
by Cotes, 187

by Wessel, 191
composition of functions, 258
computability, 323, 335

and diagonal argument, 334
by Turing machine, 335
of functions, 336
of real numbers, 338

computably enumerable set, 340
computation, 323

and randomness, 342
conformal mapping, 205

and mapmaking, 210
conformal model, 248

as part of C, 254
disk, 249
half-plane, 249

distance, 250
hemisphere, 248

in half-space, 251
congruence

and groups of motions, 272
modulo n, 259
modulo an irreducible polynomial,

312
conic sections, 17, 26

attributed to Menaechmus, 27
in Descartes, 26
meaning of names, 26
projective view, 99, 110
second-degree equations, 85, 87

conjugates, 190
constructible

number, 26, 315
has degree 2k, 316

points, 70
polygons, 25

construction
of equations, 94
ruler and compass, 17, 23

of double circle arc, 173
of double lemniscate arc, 174

continued fraction
and Pell’s equation, 45
definition, 46
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for π, 132
periodic, 47

continuity, 190
and axiom of choice, 333

continuous
functions, 191

extreme value theorem, 191
intermediate value theorem,

191
magnitude, 55

Dedekind definition, 55
process, 3

continuum hypothesis, 328, 333
consistency, 328
independence, 328

coordinates, 1, 6, 13, 85
in Hipparchus, 86
in Oresme, 86
in vector space, 300

coset, 261
multiplication, 262

Cotes, 187
and complex logarithms, 207
and complex numbers, 187
Harmonia mensurarum, 207
theorem on n-gon, 187

countability, 325
countable additivity, 330
counting board, 66
covering, 200

of orientable surface, 291
of projective plane, 290
of pseudosphere, 290
of torus, 290
projection map, 202
sheets of, 200

and integration, 215
universal, 290

Cramer
and Bézout’s theorem, 96
and permutations, 266

Cramer’s rule, 66, 298
cross-ratio, 99

and hyperbolic distance, 273

as a group invariant, 273
in Desargues, 105
in Pappus, 106
invariance, 115, 117
Möbius invariance proof, 107
on finite projective line, 280

cryptography
and Fermat’s little theorem, 82

cube, 21
duplication of see duplication of the

cube, 24
rotation group, 269

cubic curves, 29, 85
as tori, 203
five types, 92, 99
geometric features, 85, 89
isomorphic to C/Λ, 218
Newton classification, 91
of genus 0, 163
parameterization, 165, 169
projective classification, 221
projective view, 110

cubic equations, 63, 73
and circular functions, 75
and complex functions, 206
and complex numbers, 76, 183
and trisection, 75
have real roots, 183
in Cardano, 74
in Viète, 75
solution, 73

curvature, 124
center of, 230
constant

surface of, 225, 245
Gaussian, 225, 233
geodesic, 236
intrinsic, 232
negative

and non-Euclidean geometry, 225,
234

surface of, 225, 233
Newton formula, 230
of plane curves, 229
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of surfaces, 232
principal, 232
radius of, 230

curve
algebraic, 32, 89, 193, 226
behavior at infinity, 108
cubic, 29, 91
degree, 89
equidistant, 247

in conformal model, 249
geometric, 89
mechanical, 87, 89, 226, 228
on projective plane, 113
projective, 108
transcendental, 89, 226

and differential geometry, 226
cusp, 85, 89

of cissoid, 29, 89
of semicubical parabola, 92

cycloid, 32
arc length, 227
is own involute, 230
pendulum, 230

D
d’Alembert

and complex functions, 208
and conjugate solutions, 190
fundamental theorem of

algebra, 190
lemma, 191
on algebra in geometry, 91

de Moivre
formula, 76
inversion formula, 135
solution by radicals, 76

Dedekind
and algebraic number fields, 303
cut, 55, 191, 324

for irrational, 55
for rational, 55

definition of
√

2, 55
definition of continuity, 55
definition of ideal, 318

dimension theorem, 313
rigor, 53
rings, 322
tribute to Kummer, 317

degree
of algebraic number, 305
of curve, 17, 85, 89

Dehn
and hyperbolic geometry, 295
combinatorial group theory, 278
solved Hilbert’s third problem, 58

Desargues, 103
and cross-ratio, 105
Brouillon projet, 105
projective geometry, 105
theorem, 99, 105

and foundations, 106
statement, 106

Descartes, 85
and algebraic geometry, 13, 87
coordinate method, 19
factor theorem, 79, 189
folium, 89
Géométrie, 87
integration formula, 126
notation for powers, 79
polyhedron formula, 285

descriptive geometry, 104
determinant, 66, 120, 298

theory, 299
and algebraic integers, 306

diagonal argument, 334
and computability, 334
and Gödel’s theorem, 339
and rate of growth, 334
for real numbers, 334
for sets, 334

differentiability, 205
differential equations

for geodesics, 235
differential geometry, 226

and calculus, 226
and curvature, 229
and hyperbolic geometry, 244
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differentiation, 124
dimension of vector space, 300,

314
and basis, 301
over Q, 304, 315

Diocles, 29
Diophantine

equations, 7, 35
cubic, 48
linear, 42
no algorithm, 7, 36
quadratic, 43
rational solutions, 7

problems, 7
Diophantus, 4, 35

and Diophantine problems, 7
and Pythagorean triples, 8
chord and tangent methods, 65,

157
chord method, 47, 48

on folium, 90
method, 7

and elliptic functions, 165
and Fermat, 7
and Newton, 7
geometric interpretation, 48

tangent method, 47, 48, 129
and Viète, 49

Dirichlet
function, 329, 331
principle

and Riemann mapping
theorem, 211

justified by Hilbert, 211
discrete process, 3
distance, 97

and Pythagorean theorem, 13
definition of, 97

distributive law, 308
divergence of harmonic series, 141
divisibility

and Pythagorean triples, 5
in Euclid, 5

division of stakes, 80

dodecahedron
rotation group, 270

double periodicity, 178
and complex integration, 215
and Riemann, 178, 215
of Weierstrass ℘-function, 217

double point, 89, 163
double root, 164
doubling the arc

of circle, 173
of lemniscate, 173, 174

du Bois-Reymond, 334
duplication of the cube, 17, 24

by cissoid, 29
by intersecting conics, 27
by Menaechmus, 27

Dürer, 100
Dyck

concept of group, 268
groups and tessellations, 271

E
e is transcendental, 25
Eisenstein

and algebraic integers, 306
series, 216

elastica, 170
elimination, 65, 95

and linear algebra, 120
and polynomial equations, 66
Gaussian, 65

ellipse, 26
arc length, 157, 170
as planetary orbit, 27

versus Cassini oval, 30
focus of, 28
not an elliptic curve, 170
string construction, 28

elliptic
curves, 36, 157, 167, 170, 218

addition of points, 220
and Fermat’s last theorem, 158,

218
isomorphic to C/Λ, 220



384 Index

parameterized by ℘, ℘′, 220
functions, 38, 87, 138, 157,

165, 170
addition theorem, 167
and complex numbers, 177,

205
and the torus, 203
birth day, 175
by inverting integrals, 177
double periodicity, 178, 215
series expansions, 216

integrals, 157, 170
addition theorem, 175
not elementary, 171

elliptic modular functions see
modular functions, 78

empty set, 327
epicycles, 31
equation

cubic, 73
solution, 73

Diophantine, 35
equation, 63
linear, 63, 65
modular, 280
Pell’s, 35, 43
polynomial, 64
quadratic, 63

Brahmagupta formula, 64
in Babylon, 64
in Euclid, 64

quartic, 77
quintic, 63, 78

equivalence relation, 20
defined by group, 275

Euclid, 4
Elements, 4, 17

Book V, 51, 54
common notions, 19, 275
postulates, 18

perfect number theorem, 38
and geometric series, 61

proofs of Pythagorean
theorem, 11

Pythagorean triples formula, 4
theory of divisibility, 5
theory of irrationals, 71
used induction, 41
view of quadratic equations, 64

Euclidean
algorithm, 35, 39

for Gaussian integers, 310
for polynomials, 168, 309

geometry, 97
on horosphere, 244
on torus, 292

plane, 97
rigid motions, 253
tessellations, 252

Eudoxus, 51
definition of equality, 54
method of exhaustion, 56
theory of proportions, 54

Euler
addition theorems, 167, 175
and Bézout’s theorem, 96
and chord–tangent construction, 165
and complex logarithms, 207
and conformal mapping, 210
characteristic, 283, 285

and genus, 289
Poincaré generalization, 286

constant, 142
and zeta function, 155

continued fraction formula, 133
cotangent series, 216
formula for eix, 207
geodesic differential equation, 235
pentagonal number theorem, 37
perfect number theorem, 38
polyhedron formula, 285

Legendre proof, 285
product formula, 153
proof of Fermat’s little theorem, 83,

257
summed

∑
1/n2, 151

used algebraic integers, 308
values of ζ(s), 154
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zeta function formula, 139, 153
exhaustion see method of exhaustion,

56
exponential function, 135

addition formula, 208
complex, 205, 207

periodicity, 205, 207
extreme value theorem, 191, 192

F
factor theorem, 79, 152
Fagnano, 165

addition theorem, 167
duplication formula, 174

and modular equations, 280
studied by Euler, 175

lemniscate division, 179
Fermat, 85, 157

and algebraic geometry, 13, 87
and Diophantus, 48
and Diophantus’s method, 7
and rational right triangles, 159
infinite descent, 159
integration formula, 126
last theorem, 158

and elliptic curves, 218
attempt by Lindemann, 25
for n = 4, 159

little theorem, 82, 257
proof using inverses, 260

Observations on Diophantus,
158

tangent method, 128
applied to folium, 128

Ferrari, 73
solution of quartic, 77

Fibonacci
and cubic irrationals, 71

field, 72, 265, 297
algebraic number, 303
and vector space, 301
as vector space, 303, 311
axioms, 302
finite, 280, 303

generated by algebraic number,
305

of algebraic functions, 318
of all algebraic numbers, 313
of congruence classes mod p, 303
of congruence classes mod p(x), 312
of finite dimension over Q, 315

Fior, 73
focus, 28

in astronomy, 29
folium

asymptote, 90
double point, 89
drawn by Huygens, 90
has genus 0, 163
of Descartes, 89
parameterization, 90
tangent of, 128

foundations
arithmetic and set-theoretic, 54
geometric, 54
of geometry, 106

four-square theorem, 37
Fourier, 329
Frege, 339
Friedman, 345
function

algebraic, 138, 146
choice, 331
computable, 336
continuous, 191
differentiable, 205
Dirichlet, 329, 331
elementary, 170
elliptic, 138
linear fractional, 259
many-valued, 149, 205, 214
modular, 78, 178
rational, 146
symmetric, 264
theta, 38, 178
transcendental, 138
zeta, 153

fundamental group, 283, 294
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as group of motions, 294
defined by Poincaré, 295
generators and relations, 283,

295
of sphere, 283
of torus, 283

fundamental polygon, 288
and universal covering, 291
for genus 2, 292
for torus, 291

fundamental theorem
of algebra, 181, 189

and Bézout’s theorem, 193,
195

and intersections, 195
d’Alembert proof, 190
Gauss proofs, 190
Kronecker version, 313
motivated by integration, 188
real version, 190

of arithmetic, 41
of calculus, 137

generalized, 213
in Leibniz formalism, 137

G
Galois

and modular equations, 280
and normal subgroups, 262, 265
and the quintic, 78, 266
discovered finite fields, 280, 303
discovered simple groups, 279
introduced group concept, 257,

265
theory, 265

and regular polyhedra, 22
theory of fields, 265

gamma function, 155
Gauss

and circle division, 25
and complex integration, 212
and conformal mapping, 210
and elliptic functions, 177
and lemniscate division, 179

and modular functions, 78, 178
and the agM, 178
area of hyperbolic circle, 240
construction of 17-gon, 25
curvature, 225, 233
formula for sphere motion, 254
fundamental theorem of algebra, 190
geodesic curvature, 236
geodesy, 232
sphere, 198
theorema egregium, 233
triangle tessellation, 255, 292
used algebraic integers, 308

Gaussian
curvature, 225, 233
elimination, 63, 65, 298

Gaussian integer, 306
Euclidean algorithm, 310
unique prime factorization, 310

generators and relations, 271, 275
and topology, 277
read off tessellation, 277

genus, 162
and Euler characteristic, 289
and rational functions, 163
as number of holes, 204
of algebraic curve, 204, 283
topological meaning, 198

geodesic, 235
curvature, 236
differential equation, 235
mapped to straight line, 245
on cone, 236
on cylinder, 236
on pseudosphere, 236
on sphere, 235

geometric series, 51, 134
and area of parabola, 60
and volume of tetrahedron, 59
in Euclid, 61, 139

geometry
algebraic, 14, 29, 63, 86
analytic, 87, 97
complex interpretation, 252
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descriptive, 104
differential, 226
foundations of, 106
hyperbolic, 241
infinitesimal, 137
non-Euclidean, 19, 87, 182,

225, 234
of surfaces, 245
projective, 95, 99, 104
spherical, 240

Gödel
and continuum hypothesis, 328
arithmetization, 341
incompleteness theorem, 339

and computability, 339
“miracle” of computability, 335
second theorem, 341

in Hilbert and Bernays, 342
golden ratio, 26
golden rectangle, 21

constructibility, 71
Goursat, 214
Grandi, 91
Grassmann

and vector spaces, 299
and induction, 42
and inner product, 14
and Steinitz exchange lemma,

301
Green, 213
Green’s theorem, 213

implies Cauchy’s theorem, 213
Gregory, 147

and interpolation, 148
and Taylor’s theorem, 147

Gregory–Newton formula, 147
group

abelian, 262
simple, 279

alternating, 266
associativity, 267
cancellation, 268
concept of Galois, 265
cyclic, 259

and radicals, 265
simple, 279

defining properties, 258
fundamental, 283, 294
identity, 258
inverse, 258
isomorphism, 267, 268
isomorphism problem, 295
of motions, 272
of permutations, 265
of real projective line, 273
of rigid motions, 252
of transformations, 257, 272
on a cubic curve, 267
polyhedral, 269

and theory of equations, 271
presentation, 271
quotient, 262
rotation, 269
S n, 263
simple, 279

smallest nonabelian, 279
smallest nonabelian, 278
solvable, 265
symmetric, 263
word problem, 338

group theory, 17, 223, 257
and theory of equations, 265
combinatorial, 275, 276
geometric, 276

H
Hadamard, 187
halting problem, 337
Hamilton

presented icosahedral group, 271
handle, 290
harmonic series, 139, 141
harmony

and integer ratios, 12
and Pythagoras, 12

Harnack, 329
Harriot

and interpolation, 148
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and logarithmic spiral, 226
and stereographic projection,

210
theorem on spherical area,

240, 243
Hausdorff, 332
Heath, 159
Hermite

followed Galois’s hint, 266
solution of quintic, 78, 280
transcendence of e, 25

Heron, 28
Heuraet, 227
Hilbert

foundations of geometry, 97, 106
justified Dirichlet principle, 211
problems, 58

first, 328
third, 58

rectified flaws in Euclid, 19
theorem on constant curvature,

233
Hipparchus, 86
Hobbes

denounced Wallis’s Conics, 96
in love with geometry, 18
on Arithmetica infinitorum, 131
on Torricelli’s result, 127

Holbein, 103
Hölder, 185
homeomorphism, 284

problem, 295, 338
homogeneous coordinates, 118
homotopic paths, 294
horocycle, 247

in conformal model, 249
horosphere, 244

in half-space model, 251
is Euclidean, 244

Hudde, 129
Huygens

and pseudosphere, 233
description of tractrix, 228
drew folium, 90

on discoveries in geometry, 124
hydrodynamics

and complex functions, 208
hyperbola, 26

arc length, 170
area of segment, 62
points at infinity, 108
quadrature of, 134

hyperbolic
circle, 247

in conformal model, 249
geometry, 241

and differential geometry, 244
complex interpretation, 255
conformal models, 248
named by Klein, 241

plane, 241
as covering, 292
rigid motions, 247
tessellations, 254

space, 250
rigid motions, 256

tessellation, 293
trigonometry, 241

hypergeometric, 131

I
icosahedron

constructibility, 71
Pacioli construction, 21
rotation group, 270
tessellation, 253

ideal numbers, 318
ideals, 318

containment and division, 319
definition of, 318
in Z, 319
in Z[

√−5], 320
in algebraic geometry, 318
maximal, 321
prime, 321
prime factorization of, 318
principal, 319
product of, 321
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sum of, 319
identity, 258
identity law, 308
incommensurable see irrational, 12
indivisibles, 126

in Arithmetica infinitorum, 131
induction, 41

and infinite descent, 41
as base step, induction step, 42
in Euclid, 41
in Grassmann, 42
in Pascal, 80
proof by, 42

infinite, 323
completed, 52

and limits, 52
and set theory, 54

descent, 159, 161
in Greek mathematics, 13, 51
potential, 52
processes, 51

for finding volume, 58
rejected by Greeks, 52

product, 131, 139, 153
reasoning about, 52
sequence, 52
set of points, 52

infinite series, 124, 139, 140
for algebraic functions, 146
for circular functions, 134, 139,

143
for log, 135
for π, 143
in Greek mathematics, 140
inversion, 135

by de Moivre, 135
Newton’s calculus of, 124

infinitesimals, 53, 123, 137
of Robinson, 125
quotient of, 123, 137
sum of, 123, 137

infinity
behavior of curves at, 108
inflection at, 110

line at, 106
point at, 105

infinity see infinite, 51
inflection, 85, 89, 110
inner product

and angle, 301
and length, 301
and Pythagorean theorem, 1, 14, 299
definition, 301

inradius, 22
integral

arcsine, 172
elliptic, 170
Lebesgue, 329
lemniscatic, 171
Riemann, 329

integration, 124
and arc length, 227
and partial fractions, 188
complex, 212

and Riemann surfaces, 215
in “closed form”, 138, 170
of algebraic functions, 125

intermediate value theorem, 191
interpolation, 147

and calculus, 148
and Taylor’s theorem, 147
Gregory–Newton formula, 147

intersections
and Bézout’s theorem, 95
and fundamental theorem of algebra,

195
and roots, 27, 94, 193
multiplicity, 194
of real algebraic curves, 193

inverse
Cauchy notation, 267
function, 135, 157
in group theory, 258, 268
mod p, 259
of algebraic number, 305

inverse law, 308
involute, 230
irrational, 1, 3, 12
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irrationality of
√

2, 1, 3, 35
irrationals

Dedekind construction, 54
Euclid’s theory, 71
quadratic, 71

isometric surfaces, 233
isomorphic groups, 220, 267, 268
isomorphism, 218, 267

preserves structure, 220

J
Jacobi

and chord–tangent construction,
165

and elliptic curves, 218
and elliptic functions, 157, 177
and modular functions, 78
Fundamenta nova, 177
theta functions, 38, 178

Jade Mirror, 66, 67
Jia Xiàn, 80
Jordan

and Lagrange’s theorem, 261
and simple groups, 280
book on group theory, 266
measure, 330

K
Kac, 73
Kepler

introduced term “focus”, 28
planetary spheres, 22

Klein
and modular functions, 178
and the quintic, 78
and uniformization, 222
Elementary Mathematics, 301
Erlanger Programm, 257, 273
hyperbolic tessellations, 293
named hyperbolic geometry, 241

Koebe, 222
Kronecker

and algebraic number fields, 303
fundamental theorem, 303, 313

Kummer, 297
and unique prime factorization, 317
ideal numbers, 318

L
Lagrange

and conformal mapping, 210
and epicycles, 31
and permutations, 257
and the agM, 178
four-square theorem, 37
subgroup theorem, 261
theorem on Pell’s equation, 45
theory of equations, 264

Lambert
and conformal mapping, 210
imaginary sphere, 240
introduced hyperbolic functions, 240
spherical geometry, 240

Landau, 72
large cardinals, 331
lattice of periods, 218

shape, 221
Laurent, 214
least upper bound

of ordinals, 327
property of R, 324, 325

Lebesgue, 329
Legendre

and elliptic integrals, 176
Leibniz

and determinants, 298
and formal logic, 339
and function concept, 138
and integral calculus, 167
and interpolation, 148
calculus, 123, 136
first publication on calculus, 136
integral sign, 137
proof of Fermat’s little theorem, 83
solution by radicals, 76

Leibniz–de Moivre formula, 76
and logarithms, 206

lemniscate
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arc length, 171
as spiric section, 30
division, 179

Abel’s theorem, 179
doubling the arc, 173
of Bernoulli, 171

lemniscatic
integral, 171

addition theorem, 175
sine, 177

addition theorem, 179
derivative, 179
period, 177

Leonardo, 103
Levi ben Gershon, 79

and permutations, 263
limit

and completed infinite, 52
of a sequence, 52
point, 326
rotation, 247

Lindemann, 24, 143
line at infinity, 106
linear

equations
Chinese method, 65
Cramer’s rule, 66
Diophantine, 42
Gaussian elimination, 65
in the Nine Chapters, 65

fractional transformations, 115,
117, 223

as rigid motions, 256
given by three values, 275
groups of, 271, 295
inverses of, 259
of finite projective line, 280
of hyperbolic plane, 274
realize projections, 117

independence, 300
linear algebra, 14, 298

as theory of vector spaces, 299
Liouville

and elliptic integrals, 171

and half-plane model, 250
Listing, 288
Liu Hui, 65
Lobachevsky

hyperbolic geometry, 243
hyperbolic volumes, 244

logarithm
basic property, 62
complex, 186, 205, 206

and circular functions, 206
infinitely many values, 207

geometric definition, 62
tables, 148

logic, 323

M
Maclaurin, 96
Mādhava, 132
Magnus, 278
Markov, 295
Matiyasevich, 7, 43
measure, 329

Borel, 330
countable additivity, 330
Jordan, 330
Lebesgue, 330
zero, 330

mechanics, 124, 170, 228
Menaechmus, 27

and conic sections, 27, 86
construction of

3√
2, 86

duplication of the cube, 27
Mengoli, 151
Mercator, 134

power series for log, 146, 155
projection, 210

Mercator, Gerard, 210
Mercator, Nicholas, 210
Mersenne, 103

primes, 38
method of exhaustion, 13, 51, 56

and approximation, 56
and area of parabola, 61
avoids limits, 58
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generalizes theory of
proportions, 56

in Euclid, 56
Minding, 233

hyperbolic trigonometry, 241
minimal polynomial, 305
Möbius

and cross-ratio, 107
and surface topology, 204
band, 114

and nonorientable surfaces,
288

classification of surfaces, 287
groups of transformations, 273

modular
equation, 280
function, 266
tessellation, 249

modular functions, 78, 178
and lattice shape, 222
and the quintic, 78
periodicity, 223, 249

Mordell theorem, 48
multinomial coefficient, 84
multinomial theorem, 83
multiplicity, 194

and Bézout’s theorem, 195

N
Neil, 88, 227
nested interval

property of R, 324
Neumann, 211
Newton

algebra of infinite series, 133
and Bézout’s theorem, 95
and Diophantus’s method, 7, 48
and fractional power series, 150
and interpolation, 148
calculus, 123, 124, 133
classification of cubics, 85, 91,

110
curvature formula, 230
De analysi, 134

De methodis, 133
defined tractrix, 228
formula for sin nθ, 76
law of gravitation, 27
Principia, 91
sine series, 135

Newton–Leibniz priority dispute, 136
Newton–Puiseux theory, 150

and algebraic curves, 203
and branch points, 200
and complex functions, 214

Niceron, 103
chair, 104

Nielsen, 295
Nine Chapters, 65
Noether, Emmy, 322
non-Euclidean geometry,

19, 87, 225
and linear fractional transformations,

223
and negative curvature, 234
and pseudosphere, 234
in Saccheri, 239

nonconstructibility
of

3√
2, 72, 316

due to Wantzel, 72
Landau proof, 72

norm, 316
normal subgroup, 262, 265
Novikov, 338
number

algebraic, 304
cardinal see cardinals, 328
complex, 157, 181
constructible, 26
ideal, 318
irrational, 1, 3, 12

and theory of proportions, 54
Dedekind construction, 54

ordinal see ordinals, 326
pentagonal, 37
perfect, 38, 82
polygonal, 36
prime, 38
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rational, 6, 51
real, 51, 191
tetrahedral, 82
transcendental, 24, 326
triangular, 36, 82

O
octahedron, 21

rotation group, 270
orbit, 274
order of a group, 261
ordinals, 326

and well-ordering, 332
generating operations, 327
inaccessible, 346
ordered by ∈, 327
uncountable, 327
von Neumann, 327

Oresme, 86, 139, 140
and harmonic series, 141
coordinates, 86
series summation, 140
velocity–time graph, 86

orientability, 288
Ostrogradsky, 213
Ostrowski, 190

P
PA see Peano arithmetic, 42
Pappus, 106
Pappus’s theorem, 99
parabola, 26

area of segment, 60
cartesian, 94
point at infinity, 108
semicubical, 88, 92, 227

parallel axiom, 17, 19, 237
alternatives, 238
and angle sum, 239
and Pythagorean theorem, 239
equivalents of, 237
Euclid’s version, 237
fails in negative curvature, 246

parameterization

by circular functions
of circle, 169

by elliptic functions
given by Clebsch, 170
known to Jacobi, 170
of cubic curves, 165, 169

by rational functions, 162
fails for y2 = 1 − x4, 167
of circle, 163
of folium, 163

of curves y2 = p(x), 170
Paris–Harrington theorem, 344
Pascal

triangle, 79, 80
in China, 79

Peano
vector space axioms, 299

Peano arithmetic, 42, 341
and reverse mathematics, 345

Pell’s equation, 35, 43
and Archimedes, 45
and Brahmagupta, 45
and Brouncker, 43
and continued fractions, 45
and Lagrange, 45

pendulum, 170
cycloidal

and involute, 230
pentagon construction, 26
periodicity, 157

double, 215
of complex exponential, 205, 207
of modular function, 223

permutation, 80, 263
cycles, 281
even, 266
group, 265

Cayley’s theorem, 268
permutations, 257
Perseus, 30
perspective, 100

Alberti’s veil method, 100
depiction of tiled floor, 101

℘-function, 176
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π, 24
Brouncker formula, 132
infinite series, 132
transcendence, 24, 143
Viète formula, 131
Wallis formula, 131

Plato, 4
Plimpton 322, 4, 5

and Pythagorean triples, 4
Poincaré

and elliptic curves, 218
and elliptic functions, 165
and Euler characteristic, 286
and non-Euclidean geometry, 223,

225
and rational points, 48
and uniformization, 222
defined fundamental group, 295
formulas for hyperbolic

motions, 254
group theory, 274
hyperbolic tessellations, 293

point
at infinity, 95, 105, 112

in Desargues, 105
in Kepler, 105
on projective line, 106

polygonal
number theorem, 37
numbers, 36

polyhedron
formulas, 285
regular, 17, 20

polynomial equations, 63
and elimination, 66

and intersections of curves, 66
in the Jade Mirror, 66

in several variables, 66
Poncelet, 106
Post, 335

on meaning and truth, 345
version of Gödel’s theorem, 339

before Gödel, 341
power series, 139, 146

and calculus, 124
for algebraic functions, 146
for complex functions, 205, 209

from Cauchy’s theorem, 214
for cosine, 209
for exponential function, 135, 209
for log, 146
for sine, 135
fractional, 149, 214
Laurent, 214

prime
algebraic integer, 316
divisor property, 39, 40

for Gaussian integers, 310
in polynomial ring, 309

factorization, 41
generalization of, 297
ideal, 321

primes, 38, 139
infinitely many, 35, 38, 154
Mersenne, 38

and perfect numbers, 38
of form 22h

+ 1, 36
Principia Mathematica, 339
probability theory

and Pascal’s triangle, 80
projective

completion
of C, 197
of R, 197

geometry, 95, 99, 104
and algebraic geometry, 95

line, 112, 115
as infinite circle, 106, 113
complex, 196
finite, 280
real, 117, 196, 259

model, 247
plane

curves on, 113
is nonorientable, 114, 288
real, 112
sphere model, 196

transformations, 115, 246, 258, 273
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pseudosphere, 228, 230
and horocycles, 247
by revolving tractrix, 233
constant negative curvature, 233
Gaussian curvature, 235
geodesics, 236, 252
has hyperbolic trigonometry, 241
mapped into half-plane, 251
principal curvatures, 235

Ptolemy, 31
Almagest, 31
epicycles, 31

Puiseux, 150
Pythagoras

and harmony, 12
theorem of, 2

Pythagorean equation, 35
Pythagorean theorem, 1, 2

and arc length, 144
and definition of distance, 13
and distance, 97
and Hobbes, 18
and inner product, 14, 299
and parallel axiom, 239
converse, 2
proof, 10
proof from “right axiom”, 345

Pythagorean triples, 1, 4
and divisibility, 5
formula, 4

in Diophantus, 8
in Euclid, 4

in Babylon, 4, 12
in Plimpton 322, 4
of rational functions, 168
rational, 6

Q
quadratic

equations, 68
in al-Khwārizmı̄, 69
in Babylon, 68
in Brahmagupta, 68
in Euclid, 69

forms, 88
formula, 64
irrationals, 71

quadrature, 24, 134
quartic equations, 77
quintic equations, 63, 78

and group theory, 257, 265
and simple groups, 279

R
R, 324

completeness property, 324, 325
least upper bound property, 324, 325
measurability of subsets, 331

implies large cardinals, 332
nested interval property, 324
uncountability, 325

measure theory proof, 331
well-ordering, 332

radical, 257, 264
Ramsey theorem, 344
rank, 346
rational

function
parameterization, 162

numbers, 6, 13
form countable set, 325

points, 6
on cubic curve, 48, 157
on curve of degree 2, 162
on curve of genus 0, 162
on curve of genus 1, 165
on the circle, 6
on the folium, 164

Pythagorean triples, 6
right triangles, 158
solutions, 7

recurrence relations
and
√

2, 43, 53
recursively enumerable set, 340
regular

polygon, 21
polyhedra, 20

and finite groups, 22
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and Galois theory, 22
rotation groups, 269

resultant, 95, 120
as a determinant, 120

reverse mathematics, 345
rhumb line, 226
Riemann

and double periodicity, 178, 215
and Euler characteristic, 286
and genus, 204, 283
distance formula, 250
functional equation for ζ(s), 155
hypothesis, 154
integral, 329
mapping theorem, 211
surface, 198, 204, 288

and complex integration, 215
is orientable, 288

tessellations, 255
theory of elliptic functions, 215
zeta function, 154

rigid motions, 235
as linear fractional transformations,

256
group of, 252
of Euclidean plane, 253
of hyperbolic plane, 246, 247,

273
of hyperbolic space, 256
of sphere, 253
of tessellation, 294

ring, 297, 308
axioms, 308
Dedekind, 322
polynomial, 308

Roberval, 88, 126
rope stretching, 2
roses of Grandi, 91
rotations, 247, 269

and groups, 269
of polyhedra, 269

Ruffini, 78
ruler and compass construction, 23

of points, 70

of regular 17-gon, 25
of regular pentagon, 26
of square root, 24

Russell, 339

S
Saccheri, 238
saddle, 233
Salmon, 221
Schwarz

and Riemann mapping theorem, 211
and universal covering, 291
tessellations, 225, 255

Scipione del Ferro, 73
Seifert and Threlfall, 295
Seki, 298
Set theory, 54, 323

and completed infinite, 54
and large cardinals, 332
history, 333

sets, 323
and mathematical objects, 339
and real numbers, 324
Borel, 330
computably enumerable, 340
countable, 325
nonmeasurable, 332
uncountable, 328

sheets, 200
side and diagonal numbers, 43
similarity, 273
Sluse, 129
solution by radicals, 78, 264
sphere

tessellations, 253
volume and area, 60

spherical geometry, 240
imaginary, 240
triangles, 240

spira, 30
spiral

equiangular, 226
logarithmic, 226

is own involute, 230
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self-similarity, 229
of Archimedes, 128

spiric sections, 30
squaring the circle, 17, 24, 143,

226
stereographic projection, 197

and conformal models, 248
conformality, 210

due to Harriot, 210
due to Ptolemy, 210
preserves circles, 210

Stevin, 308
Stirling, 92
subgroup, 259

normal, 262
Suiseth, 140
sums of squares, 36
surface

closed, 287
compact, 287
covering, 290
curvature, 232
nonorientable, 288
normal form, 287
of constant curvature, 225

Hilbert theorem, 233
orientable, 288
Riemann, 215, 288

symmetry, 264
geometric, 272
in equivalence relation, 20, 275
of tessellations, 268

T
tangent method

of Diophantus, 47, 129
of Fermat, 128
of Hudde and Sluse, 129

Tarski, 332
Tartaglia, 73
Taurinus, 240
Taylor series, 147
tessellations

groups of, 271, 275

of Euclidean plane, 252
of hyperbolic plane, 254
of sphere, 253, 271

tetrahedron, 21
Euclid’s dissection, 59
rotation group, 269
volume, 58

in Euclid, 51, 58
Thales, 18
theory of equations, 78, 263
theory of proportions, 13, 51, 54

and irrational numbers, 54
in Euclid, 54

theta functions, 38, 178
Thurston, 284
Tietze, 295
tiled floor, 101
topology, 182, 223, 283

and group theory, 277
and regular polyhedra, 286
combinatorial structures, 284
general, 284
geometric, 284
in Erlanger Programm, 284
of complex curves, 201
of surfaces, 204

Torricelli, 126
and logarithmic spiral, 227
infinite solid, 141

torus, 203
and cubic curves, 203
and elliptic functions, 168, 203, 205
and spiric sections, 30
as space of equivalence classes, 218
constructed by pasting, 219
Euclidean geometry, 292
fundamental group, 283
fundamental polygon, 291
integration on, 215
nonbounding curves, 215

tractrix, 228
constant tangent property, 228
is involute of catenary, 230
parametric equations, 231
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transcendence, 24
Cantor proof, 326
of e, 25
of π, 24, 143

transcendental
curve, 89
function, 138, 146
number, 24, 326

transformations
continuous, 273

invertible, 284
group of, 257, 272
in Möbius, 273
linear fractional see linear

fractional transformations,
115

projective, 105, 259
translation, 247
transposition, 266
trigonometric series, 326

and integrals, 329
trisection, 17, 24

and cubic equations, 75
Turing, 335, 338

machine, 335
universal, 337

unsolvability of halting problem,
337

U
Ulam, 332
uncountability, 325

of ordinals, 327
uniformization, 222
unique prime factorization, 35, 83,

154, 297
and Kummer, 317
failure in algebraic integers, 317
for Gaussian integers, 310
in polynomial ring, 309
of ideals, 322

unsolvability, 323, 337
in Diophantine equations, 7
in group theory, 295, 338

in logic, 338
in topology, 295

V
van Heuraet, 88
Vandermonde, 264
vanishing point, 101
vector space, 72, 297

axioms, 299
basis, 300
dimension, 300
Euclidean, 299
over a field, 304

velocity–time graph, 86
Viète, 75

and Diophantus, 49
formula for cos nθ, 76
product formula, 131
solution of cubic, 75

Vitali, 332
volume, 58

of sphere, 60, 127
of tetrahedron, 58

in Euclid, 58
von Neumann, 327

W
Wachter, 244
Wallis

and parallel axiom, 237
Arithmetica infinitorum, 130
arithmetized geometry, 96
infinite product formula, 131
product, 153

Wantzel, 24
and

3√
2, 72

Weierstrass
extreme value theorem, 191
intermediate value theorem, 191
℘-function, 176, 216

double periodicity, 217
rigor, 53

well-ordering, 332
Whitehead, 339
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word problem, 338
Wren, 227

Y
Yáng Huı́, 80

Z
Zeno

and infinite series, 140
paradoxes, 52, 324

Zermelo, 332
incompleteness theorem, 346

well-ordering theorem, 332
Zermelo–Fraenkel axioms, 343
zeta function, 153

Euler formula, 153
functional equation, 155
Riemann, 154
trivial zeros, 154, 155
values found by Euler, 154

Zeuthen, 159
Zhū Shijié, 66, 80
Zn, 259
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