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Preface

In 1924 the firm of Julius Springer published the first volume of Methods
of Mathematical Physics by Richard Courant and David Hilbert. In the
preface, Courant says this:

Since the seventeenth century, physical intuition has served as a vital
source for mathematical problems and methods. Recent trends and fashions
have, however, weakened the connection between mathematics and physics;
mathematicians, turning away from the roots of mathematics in intuition,
have concentrated on refinement and emphasized the postulational side of
mathematics, and at times have overlooked the unity of their science with
physics and other fields. In many cases, physicists have ceased to appreciate
the attitudes of mathematicians. This rift is unquestionably a serious threat to
science as a whole; the broad stream of scientific development may split into
smaller and smaller rivulets and dry out. It seems therefore important to direct
our efforts toward reuniting divergent trends by clarifying the common
features and interconnections of many distinct and diverse scientific facts.
Only thus can the student attain some mastery of the material and the basis
be prepared for further organic development of research.

The present work is designed to serve this purpose for the field of mathe-
matical physics. . . . Completeness is not attempted, but it is hoped that access
to a rich and important field will be facilitated by the book.

When I was a student, the book of Courant and Hilbert was my bible.
Not in a thousand years could anything I wrote rival a book written by
Courant, inspired by the teaching of Hilbert. But if imitation is the sincerest
form of flattery, I may be forgiven for imitating Courant-Hilbert.

This book relates to economics as Courant-Hilbert related to physics.
Courant—Hilbert is not about physics, and this book is not about economics;
both books are about mathematics. Each book presents some topics asso-
ciated with a single field of application; neither book aims for completeness.
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viii Preface

Though I hope some economists will read it, this book is mainly meant
to be a text for mathematics students. It is written for undergraduates and
first-year graduate students. The part on linear programming could easily
be taught to sophomores, and the rest of the book is not much harder.

When I was a student, it was fashionable to give courses called “Ele-
mentary Mathematics from a Higher Point of View.” That always seemed
to me the precise opposite of what was needed. What I needed was a few
courses on higher mathematics from an elementary point of view.

For instance, I wanted to understand the Brouwer fixed-point theorem.
That meant I had to take a course on topology, which was quite difficult and
time-consuming. The Brouwer theorem seemed to me a priceless jewel
guarded by a dragon called topology. Whenever 1 got near the jewel, the
dragon would breathe fire on me. It was frustrating. The statement of
Brouwer’s theorem was so simple. Why was the proof so hard? (I never did
take the course in topology.)

Later, as a post-doctoral fellow at the Courant Institute, I attended
lectures on nonlinear partial differential equations by Louis Nirenberg.
He made everything depend on some marvelous theorems of Leray and
Schauder. I was eager to learn them. What did I need to know first? The
Brouwer fixed-point theorem, of course. There it was again. No way. It was
becoming an obsession.

A decade later, my colleague Adriano Garsia taught me his easy proof
of the Brouwer theorem. I give it to you now in this book; it has never
before appeared in print. I give you also Milnor’s astonishing proof, which
appeared in a journal in late 1978. Milnor’s proof is almost too easy to
believe.

You may be surprised to see the Schauder theorem here, too. Doesn’t
that require your students to have a background in functional analysis?

Not really. I give them the Banach space of continuous functions with the
maximum norm. That takes five minutes to explain; maybe ten. That’s
enough functional analysis to start with. Later, if they ever take a course on
functional analysis, they’ll have no trouble extending what they know to
general Banach spaces. Schauder’s theorem is one of the very great achieve-
ments of science. It is a principal tool of modern nonlinear analysis, as one
sees, for instance, in the work of Felix Browder and his associates. So great
a result, so useful a tool, should be available to all mathematics students
with an absolute minimum of preparation.

In this preface I'm talking to you, my colleague, who will teach the course.
In all the rest of the book I talk directly to the student. I've tried to make
the writing plain, direct, and readable.

Pasadena, California Joel Franklin
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Linear Programming

1 Introduction to Linear Programming

I first heard about linear programming around 1958. I had just come to
Caltech as an associate professor. I was making a trip to New York with
my boss, Professor Gilbert McCann, who was the director of Caltech’s new
computing center. We were making a survey of large industrial computer
installations to find out what were the principal industrial uses of computers.
One of the companies we planned to visit was the Mobil Oil Corporation.

When we arrived at Mobil, a secretary told us that we would be meeting
with Dr. Albert Sokolov*.

Good heavens, I thought, that can’t be my old friend Al Sokolov from
NYU, canit? Al and I had been post-doctoral fellows at the Courant Institute
in New York University. I remembered him as a quiet fellow, with a pleasant
personality and a deep knowledge of mathematics.

After a short wait, another secretary came to take McCann and me to
Dr. Sokolov’s office. This was a long trip. We went through many corridors
and passed by many lesser offices before we arrived at the office of Dr. Sokolov.

Sokolov’s office seemed about the size of the Rose Bowl. In the distance,
behind a large desk, we saw Dr. Sokolov himself. After a long walk over thick
carpeting, we seated ourselves in front of his desk. It was Al.

“Al” I said, “you’ve come up in the world.”

“Oh, it’s nothing . . . nothing, really,” he said.

The shy manner was the same; only the surroundings were different. At
NYU Al and I had worked in small dusty offices with no air conditioning.

* “Albert Sokolov” is not his real name.
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After all, we were scholars; we were expected to be poor. But somehow Al had
not lived up to that expectation.

We had a nice chat about computers at Mobil. The company had a huge
new computing center. I knew it must have cost millions of dollars. Was it
worth it? I asked him:

“Al, you've got a huge installation here, millions of dollars worth. I know
oil companies have a lot of money, but they don’t like to waste it, either.
How long will it take the company to pay off your investment in computers?”

He thought for a moment, apparently making a rough mental calculation.
Then he answered:

“We paid it off in about two weeks.”

“That’s amazing,” I said. “What kind of problems do you do with this
computer?”

“Mainly linear programming.”

Al explained at length. Using linear programming, they were able to make
optimal production decisions that had formerly been made—not so well—by
vice presidents. The result was a great gain for the company. Other big oil
companies were doing the same; it was very good for business. It was also
good for the consumer, who was getting more of what he wanted at less cost.

Let me tell you what linear programming is about and show you a few
examples.

Linear programming is about linear inequalities. As you know, a linear
equation is something like this:

3x; —4x, +9x3=1T.
Well then, a linear inequality is something like this:
3x; —4x, + 9x3 < 7.

Linear algebra is the study of systems of linear equations, and linear pro-
gramming is the study of systems of linear inequalities.

In real linear algebra, all the constants and all the unknowns (variables)
are supposed real—positive, negative, or zero. The number of equations and
the number of unknowns are supposed finite. Likewise, in linear program-
ming all quantities are real and all systems are finite.

Linear programming is more general than real linear algebra. You see,
any real linear equation can be rewritten as two linear inequalities. For
instance, the equation x; — 2x, = 3 can be rewritten as the pair of inequalities
X, —2x, K3, x; —2x, 2 3.

That simple remark proves the importance of linear programming. You
already know how important linear algebra is. Nobody could make a com-
plete list of the applications of real linear algebra. Well, real linear algebra
is just a special case of linear programming. But the converse is false: you
can’t rewrite the linear inequality x, — 2x, < 3 asa system of linear equations.
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A linear programming problem has three parts:

(i) a finite collection of linear inequalities or equations in a finite number
of unknowns x,...,X,;
(ii) sign constraints x; = 0 on same subset of the unknowns—possibly all
or none of them;
(iii) a linear function to be minimized or maximized.

A solution x,...,x, of the first two conditions is called feasible; a
solution to all three conditions is called optimal. As you will see, the first
two conditions alone usually have infinitely many feasible solutions; but the
three conditions together usually have only one optimal solution.

ExaMPLE 1. Investment management. In 1972 Alfred Broaddus wrote an arti-
cle for the Monthly Review of the Federal Reserve Bank of Richmond. It was
called Linear Programming: A New Approach to Bank Portfolio Management.

Broaddus wanted to explain linear programming to bankers. During the
1960’s, the Bankers Trust Company had developed a complex linear pro-
gramming model to help the managers reach their investment decisions. The
model had proved useful, and so other bankers got interested.

To explain the idea, Broaddus used a much simplified example, which I
will show you now.

Suppose the bank has 100 million dollars. Part of this money will be put
into loans (L), and part into securities (S). Loans earn high interest. Securities
earn lower interest, but they have the advantage of liquidity: at any time,
they can be sold at market value.

In Broaddus’s example, money loaned out earns 10%,; money put into
securities earns 5%. Let L and S be the amounts of money in loans and
securities. Then the total rate of return is 0.10L + 0.05S. The bank wants to
maximize this rate subject to certain constraints.

Sign constraints. We must have

L>0 and S=0. (1)

Total-funds constraint. Assuming that the total amount available for
investment is 100 (in millions of dollars), we must have

L + S < 100. Q)

Liquidity constraint. For various reasons (Federal Reserve requirements,
etc.), the bank wishes to keep at least 25% of its invested funds liquid. This
means S > 0.25(L + S), or

L-35<0. 3

Loan-balance constraint. The bank has certain big customers it never
wants to disappoint. If they want loans, they shall have loans. The bank
expects its prime customers to ask for loans totaling $30 million, and so L
must be at least that big:

L = 30. 4)
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Those are all the constraints. If L and S satisfy all four constraints, then
L and S make up a feasible portfolio. If L and S are feasible, and if

0.10L + 0.05S = maximum, (5)

then L and S make up an optimal portfolio. Thus, an optimal portfolio
maximizes the total rate of return subject to the constraints.

We can solve the bank’s problem by drawing a picture. In the plane with
Cartesian coordinates L and S, the inequality L > 0 stands for the right
half-plane; the inequality S > 0 stands for the upper half-plane. The com-
bined constraint (1) stands for the intersection of these two half-planes,
namely, the first quadrant. The second constraint (L + S < 100) stands for
the half-plane below the line L + S = 100. The third constraint (L — 3§ < 0)
stands for the half-plane above the line L —3S = 0. The last constraint
(L = 30) stands for the half-plane to the right of the line L = 30.

The feasible points (L,S) must satisfy all the constraints. That means they
must lie in all of the corresponding half-planes. Then they must lie in the
intersection of all these half-planes. This intersection is the triangle in
Figure 1. This triangle gives the feasible solutions (L,S).

Which point in the triangle is optimal? To find out, we draw the lines of

constant return:
0.10L + 0.05S = constant.

These are the lines 2L + S = constant. On each of these lines all points (L,S)
give the same total rate of return. These lines all have slope —2, and so they
are parallel to each other.

Look at the feasible triangle in Figure 1. Draw the line with slope —2
through the vertex Q; do the same for the vertex P and for the vertex O. This
gives three parallel lines, with the least return on the line through Q and the
greatest return on the line through O. All other points of the triangle have
intermediate returns. The point O is the optimal solution.
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As a check, look at the Cartesian coordinates (L,S) for the vertices:
Q = (30,10), P =(30,70), O = (75,25).
The respective rates of return (0.10L + 0.05S) are
3.5<6.5<8.75.

Thus, the optimal portfolio has L = 75, § = 25, and it produces the annual
rate of return $8.75 million.

ExampLE 2. The diet problem. In 1945 George Stigler published a paper
called “The Cost of Subsistence.” This was no mere mathematical exercise;
it appeared in the Journal of Farm Economics. It presented a basic economic
problem of world food supply: What is the minimum cost of a nutritiopally
adequate diet?

Suppose we label the available foods 1,2, ... ,n. A daily diet for a single
individual is a set of components x; = 0,x, =0, ...,x, = 0. Thus, x; would
be the amount of the third food in the daily diet of one individual.

If one gram (or other unit) of food j costs c;, then the component x; costs
c;x;. The total cost of the diet is ) ¢;x;. That is what we’d like to minimize.

An adequate diet must provide at least the minimum daily requirements
of certain nutrients—calories, various vitamins, protein, fat, carbohydrate,
crude fiber, certain amino acids, minerals, etc. The available foods are known
to contain the required nutrients in various amounts.

Let a;; be the amount of nutrient i in one gram of food j. Then the com-
ponent x; contains the amount a;;x; of nutrient i. The total amount of nutrient
i provided by the diet x,, ..., x, is the sum a;,x; + - - + a;,X,.

Let b; be the minimum daily requirement of nutrienti (i = 1,...,m). Then
an adequate diet x must satisfy these linear inequalities:

G;1X1 + QipXy + 00+ X, 2 by i=1,...,m (6)
x,20,x,20,...,x,20.
Under those constraints we wish to minimize the cost:

C1Xy + €%y + * * * + C,X, = minimum. @)

The diet problem is a perfect example of the standard minimum problem
of linear programming. In 1945, when Stigler’s paper appeared, there was
no good computer algorithm for solving large linear programs. In 1945 there
were no good computers, period.

Linear programming is a child of the computer age. A theoretical result
was published in 1902 by Julius Farkas, but he couldn’t have dreamed how
important his theorem would become. After all, the computations were
impossible. The Farkas theorem was just another beautiful curiosity of pure
mathematics. Then came the computer—and with it, the simplex method of
George Dantzig. The simplex method does for linear programming what
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Gauss’s method of elimination does for linear algebra: it gives you a way to
compute the answer. Dantzig’s method appeared in 1951, and suddenly linear
programming sprang to life.

ExampLE 3. The transportation problem. In this example the unknowns x;;
will have two subscripts. But that doesn’t matter; we will still be looking
for a finite number of unknowns satisfying linear inequalities and sign
constraints.

Suppose oil is produced at certain plants in different locations—Arabia,
Venezuela, Mexico, Alaska, . . .; let s; be the supply of oil at plant i. And
suppose oil is required at certain markets—New York, Tokyo, London, . . .;
let d; be the amount demanded at market j. We assume the total supply is
enough to meet the total demand: ) s; > Y d;.

Let c;; be the shipping cost per barrel for shipping from plant i to market j.
Let x;; be the number of barrels shipped from plant i to market j. Then the
total shipping cost is ) ) ¢;;x;;. We wish to minimize the total shipping cost
subject to the supply and demand constraints.

Let’s number the plants i = 1,...,m, the markets j = 1,...,n. The total
amount shipped out of plant i cannot exceed the supply s;:

All amounts x;; must be >0. We wish to minimize the total shipping cost:
m n
Y. Y c¢ijxi; = minimum.
i=1 j=1
The transportation problem has practical value and theoretical impor-
tance. Before long, you will know how to solve it.

ExAMPLE 4. Maximum return from resources. Suppose an oil company has
supplies sy, . . . , S,, of various crude products (resources). In the refineries, the
crude products can be used to make various refined products. The company
will be able to sell the refined products at current unit prices py, . . . ,p,. The
problem is to use the available crude products to make the collection of
refined products that will maximize the total selling price.

Suppose that one unit of refined product j requires the amount g;; of crude
product i. Suppose we will make the amount x; of refined product j; then
x; uses a;;x; of crude i. Summing over all j = 1,...,n, we get the total use
of crude i, and this must be <s;, which is the available supply:

a;1X1 +ai2x2+"'+ainx,,<s,- (l= 1,...,m).
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We require all x; > 0, and we want to maximize the total selling price:

PiX; + p2Xx, + -+ + p,X, = maximum.

Example 4 is standard maximum problem of linear programming. Before
long, you will know how to solve it—it is easier than the transportation
problem.

Example 4 assumes that the unit market prices p; are independent of the
produced quantities x;. That is a good assumption for a single company,
but a bad assumption for the economy of a whole nation. As the economists
would say, it is a good assumption for micro-economics, but a bad assump-
tion for macro-economics. That is typical for linear economic models. In all
applied mathematics, as a rule, linear models are adequate for small varia-
tions, but inadequate for large variations. Linear programming is a good
way to manage an oil refinery, but a bad way to manage a country.

EXAMPLE 5. Astronomy and Astrophysics is the name of the scientific journal
in which, in 1972, Harvard astronomer S. M. Faber published a paper called
“Quadratic Programming Applied to the Problem of Galaxy Population
Synthesis.” Got that?

Well, you and I may not understand astrophysics, but we can understand
Dr. Faber’s problem. She wanted to make a least-squares calculation. She’d
taken a lot of data, and she wanted to find out the numbers of stars in various
galaxies.

When she made the calculation, some of the galaxy populations came
out negative. Bad. Galaxy populations are never negative.

So she asked herself: What if T make a least-squares calculation with the
constraint that the unknowns must be nonnegative?

Now her problem looked something like this:

(@i1xy + -+ + a;x, — b;)* = minimum

M=

i=1

]

for x; 20,--.,x, > 0. (Here m is bigger than n: m is the number of data
points; n is the number of galaxies studied.)

Without the sign constraints (x; > 0) Faber’s problem would be an
example of classical least squares. Gauss gave the solution:

x = (ATA)"1ATh.

But with the sign constraints the problem is an example of quadratic pro-
gramming.

Quadratic programming is nonlinear programming. You have no right
to hope that a problem in quadratic programming can be solved by the
simplex method of linear programming. But it can; Philip Wolfe showed
how.
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Wolfe’s article appeared in the economics journal Econometrica. Qua-
dratic programming appeared as a method of mathematical economics, but
now it comes to the service of science. It makes short work of Dr. Faber’s
problem on galaxy populations. Using Wolfe’s method, the computations
are about as quick as the classical computations of Gauss.

And they are much more general. I didn’t tell you the full story about
Faber’s problem. In addition to the sign constraints (x; > 0), she wants to
require a bunch of other constraints, which look like this:

ai<6i1x1+"'+ci,,x,,<ﬁi (i=1,...,k).

No problem. Wolfe’s method can handle those, too. You’ll be surprised to
learn how easy it is.

In general, linear programming has shown a surprising ability to handle
nonlinear problems. A marvelous example is the problem of Chebyshev
approximation.

ExaMpLE 6. Chebyshev approximation. In his Introduction to Numerical
Analysis, Edward Stiefel shows how linear programming can be used to solve
this problem:

We are given an over-determined system of linear equations

;X1 + @ipXy + 70+ @ X, = by i=1,...,m).

We have many more equations than unknowns x;; we cannot expect to solve
the equations exactly.
Unavoidably, there will be errors:

g =b;— (@i xy + -+ a;,X,) i=1,...,m).

The errors ¢; will depend on our choice of the numbers x;. Let us define the
maximum absolute error:

p = max(feg], ea], - - -, |em))-

Problem. Choose the x; so as to make u as small as possible.

This problem appears in many contexts. In engineering it’s just what you
want for safety calculations. The worst error is the only one that counts.
That’s the one that breaks the bridge or blows up the nuclear reactor. In
numerical analysis the worst error is often the best measure of the error of
a subroutine.

The theory of Chebyshev approximation was well known; there were
plenty of existence-and-uniqueness theorems. But no one knew how to
compute the answers. Then, around 1960, comes Edward Stiefel, who says
in effect:

Look here, the maximum absolute error u satisfies

—u<sgsyu i=1,...,m).
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In other words, u satisfies these inequalities:

—pu<bh—apx;— = Xy S (i=1...,m).
The problem is to choose x,...,x, so that u can be as small as possible.
Define the new unknown x, = g. Then this is the problem: Find numbers
Xg,X1, ... ,X, satisfying the linear inequalities

Xo+ G %y + 0+ X, = b;
Xo = @inXy — ' — AiXp = — by,
with
X = minimum.
That is a problem in linear programming; you can compute the answers by

the simplex method.

Now let’s get to work.

Appendix: Vectors, Matrices, and Linear Algebra

I assume you already have some experience with sets of linear equations.
I’m not going to teach you linear algebra here—that is a basic subject that
deserves a separate course. Anyway, for this book you need only a small
part of linear algebra. What you will need to know I will summarize now.
In this book all numbers are real (positive, negative, or zero); we won'’t
need complex numbers. Real numbers will sometimes be called scalars.

A vector x is a finite, ordered collection of real numbers x,,...,x,. In
other words, X is a real-valued function (x;) defined on a finite set of integers
i=1,...,n The numbers x; are called the components of x.

If x and y both have n components, then their inner product is
X y=X1y1+ Xy + "+ XY
The Euclidian length of x is

x| =x %) = JxT + - + xD).

A vector x (in boldface) can be represented by a column vector x (not in
boldface) or by a row vector x”. For instance, if x has the two components
x; =7 and x, =9, then x can be represented by the column vector

f

or by the row vector x” = [7,9]. A column vector is a matrix with only one
column; a row vector is a matrix with only one row.
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An m x n matrix A is a rectangular array of numbers g;; with m rows
(i=1,...,mand ncolumns (j = 1,...,n). For example,if m = 2 and n = 3,

we have the matrix
9 —4 0
A= .
[ﬁ m l]
Here a,, = n,a,5; = 0.

The transpose of this matrix is

In general, if A = (a;;), then AT = (b;) with b;=a; (i=1,...,m;j=1,...,n).
The system of linear equations

zaux1=b, (i=1,...,m)
j=1

may be written in the compact form Ax = b, where A4 is a matrix, and where
x and b are column vectors.

If A has components g;;, then 14 has components Ag;;.

If A and B are both matrices with m rows and n columns, then 4 + B
is the matrix with components c;; = a;; + b;;.

If Ais a p x g matrix and B is a ¢ X r matrix, then AB is a p x r matrix

with components
q

Cij = Z ayby;-
k=1
For example, if xT is the 1 x 2 matrix [7,9], then

49 63
T, _ T _
x'x = (130), but xx |:63 81]'

The matrix product is associative, but not generally commutative:
(XY)Z = X(YZ), but XY # YX (usually).

If the vectors x!, . .., x* all have n components, then a linear combination
of them is a vector
y=cx' + - 4 oxk
with components

k
Yi= Z ij?)-
j=1

For example, using column vectors, we have

RN
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The vectors x1, ..., x* are called linearly independent if no one of them
is a linear combination of the others. That means

k
Y ¢x/=0 onlyifallc;=0.

The vectors x with n components constitute the real, n-dimensional vector
space R".

A linear subspace of R" is subset L that contains all the linear combinations
of all of its points. The vectors

b, ..., b

are a basis for L if they are linearly independent and if they spau L, so that
L={y:;y=cb'+ -+ b’}

A theorem says that every basis for L has the same number of vectors.
That number, d, is called the dimension of L. If L is a linear subspace of R",
then L has a dimension d in the range 0 < d < n. We say d = 0 if L consists
of the single vector x = 0.

Rank of a matrix. Let A be an m x n matrix. If A has r independent
columns, but doesn’t have r + 1 independent columns, then we say rank
A=r.

A theorem says rank A = rank AT,

If A is an n x n matrix, then the equation Ax = b has a unique solution x
for every b in R" if and only if A has independent columns (rank A = n).

If A is an m x n matrix, and if b lies in R™, then the equation Ax = b has
some solution x in R" if and only if the rank of A4 is not increased by adjoining
to A the vector b as a new column. For example, the equation

1 2 3] |4
2 4 6|7 |38
has a solution because

K 12 3 K 1 2 3 4
ran [2 4 6}‘”‘“ [2 4 6 8:|'
(Both ranks equal 1.)

Notation. For linear programming I use column vectors x and row vec-
tors x”. Subscripts denote different components x; of a single vector x, but
superscripts denote different vectors x’.

For nonlinear programming and for the fixed-point theorems I denote
vectors by boldface letters x. Thus, f(x) is a vector-valued function of a
vector, but g(x) (with g not in boldface) denotes a scalar-valued (real-valued)
function of a vector.

I denote matrices by capital letters, and I don’t use bold-face for matrices.



12 1 Linear Programming

In the discussion of the Schauder theorem, the boldface vector notation
x is used for points in Banach space. I do this to distinguish points of the
space from real constants. For instance, if x stands for the cosine function
cos t and y stands for the sine function sin ¢, then ax + by stands for some
linear combination like

ax + by = /2 cost — 89 sin t.

Here it is natural to think of x and y as generalized vectors.

2 Linear Programs and Their Duals

A linear program (or linear programming problem) looks like this: First, there
is a set of linear equations or inequalities. Second, there are sign constraints
x; = 0 on some or all of the unknowns. Third, there is a linear form to be
minimized or maximized.

ExAMPLE 1. Solve these equations:

Xy —2x, +x3=4

1
—x1 + 3x2 = 5. ( )

Require the unknowns to satisfy the sign constraints
x, 20, x,20, x3=20. (2

A vector x that satisfies conditions (1) and (2) is called a feasible solution.
Look for an optimal solution x, which makes

X; + 2x, + 3x3 = minimum. 3)

This is an example of a canonical minimum problem, which is the main
form of linear programming used in computer solution. In general, a canon-
ical minimum problem looks like this:

Ax=0b
x=20 (meaning all components x; = 0)
cTx = min.

In our example, we have the matrix

1 -2 1
A=[_1 ; 0]. @

x=|x,]. (5)

The unknown vector x is
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b= [2] (6)

e’ =[1,23] (7)

ExAMPLE 2. Solve these inequalities:

The given requirement vector is

The cost vector is

yi—y2<1
=2y, + 3y, <2 (®)
y1 <3

The unknowns y,, y, may be any real numbers—here there are no sign
constraints. A vector y that satisfies the inequalities (4) is called a feasible
solution. Look for an optimal solution y, which also satisfies

4y, + 5y, = maximum. )]

This program looks different from the first. In the first program there
were equations (1); here there are inequalities (8). In the first program there
were sign constraints; here there are none. The first program was a minimum
problem (3); this one is a maximum problem (9).

We can state this problem using matrices and vectors. Here we have the
unknown vector

y'=[yral (10)
The inequalities become
yra<e, ®)

and the maximum condition is
y'h = maximum. 9)

As it happens, the matrix 4 and the vectors b and ¢* came from the pre-
ceding example; they were defined in formulas (4), (6), and (7). But here they
appear in different ways. Before, A was multiplied on the right by the un-
known column x; now A4 is multiplied on the left by the unknown row y”.
Before, b was a requirement vector; now it is a price vector. Before, ¢ was a
cost vector; now it is a requirement vector.

The program
yra<c’, y'h = max. (11)

is called the dual of the program

Ax=b, x=0, ¢'x=min. (12)
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You're going to be hearing a lot about duals and the duality principle. 1
won’t give you the full story now, but here is a sample:
The two optimal values are equal:

min ¢ x for primal = max y”b for dual (13)

But more of that later. Now we are just handling some matters of form.

ExampLE 3. Solve these inequalities:

X, —2x,+x324 (14
—X; + 3x, =5
with the sign constraints
x;20, x,20, x3=0. (15)
Look for an optimal solution satisfying
Xx; + 2x, + 3x; = minimum. (16)

This is the same as Example 1 except that the equations have been re-
placed by inequalities. With the matrix and vectors of Example 1, our new
program has this form:

Ax=b, x=0, cTx=min. 17

A vector x satisfying Ax = b, x = 0 is called a feasible solution; a feasible
solution that minimizes cx is called an optimal solution.

(We never speak of an “optimal solution” unless it is also feasible. Strictly
speaking, we shouldn’t say “optimal solution” at all, but just “solution”,
since a linear programming problem is a problem of optimization. But the
redundant phrase optimal solution is common usage, and we will follow it.)

A program with the form (17) is called a standard minimum problem. Its
dual has the following form:

yTA< T, y=0, yTh = max. (18)

This is the same as the dual (11) except that now we have the sign con-
straints y > 0.

The general linear program and its dual. The primal problem looks like
this: We require certain inequalities and equations:

a;x; = b, foriinI
j; i ' (19)

= b; foriin I,,
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where I, and I, are disjoint sets of integers whose union is the set
I=1,0l,={12,...,m}. (20)
We require certain sign constraints:
x; =20 forjin J,, 21)
where J is a specified subset of indices
JieJ={12,...,n}. (22)

(If J, is empty, there are no sign constraints; if J, = J, we require all x; > 0.)
A feasible solution x solves (19) and (21); an optimal solution x is a feasible
solution minimizing a given linear form:

Y. ¢;x; = minimum. (23)
i=1

The corresponding dual problem looks like this: We look for a vector y
with component y,, . .., y,. We require

i < C; forjinJ
PR S (24)
for jin J,,

where J, is the subset mentioned in (22), and where J, is the complement
J, =J — J,. For sign constraints, we require

y; =20 foriinI,. (25)

For optimality we require

'21 y:b; = maximum. (26)

ExaMPLE 4. Look back at Example 1 and its dual, Example 2. What are the
index sets? They are

I={12}; J={123}
L=g, L=I, Ji=J, J,=(,

where & stands for the empty set. Now Example 1 becomes a case of the
general primal, and Example 2 becomes a case of the general dual.
ExampLE 5. Look back at Example 3. The index sets are

I={12}; J={123}
1=I’ 12=®’ J1=J’ J2=®
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The next example will show how to handle inequalities and sign con-
straints that go the wrong way.

EXAMPLE 6. Let us try to state the following linear program as a general
minimum problem:

Xy —2x, + x3<4
—X1+3X2 =5
Xy + x3=10

x,20,x3<0
X; + 2x, + 3x3 = maximum.

The first inequality goes the wrong way, so we multiply it by — 1, which gives
~—-x1 + 2x2 - X3 >4

The constraint x; < 0 goes the wrong way, so we define the new unknown
x5 = —x5 = 0. Finally, we change the maximum problem into a minimum
problem by multiplying the thing to be optimized by —1.

The result of all this is the following restatement of the original maximum
problem:

X1 +2x, + x3=2 —4
—x; + 3x, =5
X4 — x53=10

x;20,x3520
—X; — 2x, + 3x%5 = minimum.
This takes the form of a general minimum problem. The index sets are
I={123}; J=1{123}
I ={12}, L={3}; J,={13}, J,={2

In the last example we restated a maximum problem as a minimum prob-
lem. This brings up an interesting general question: Can we restate the
general dual problem as an equivalent problem in primal form?

Of course we can. Look at the general dual problem (24)—(26). First we
restate (24) as follows:

Z (—a)y; = —¢; forjinlJ,

= —¢; forjin J,. (24)

We use the sign constraints unchanged:

y;i =20 foriin I,. (25"
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Finally, we get a minimum problem by replacing b by —b:
Y (—b,)y; = minimum. (26
i=1

The dual of the dual is the primal. The last three formulas state the dual
in the form of primal. The original primal problem was defined by a matrix
A, by vectors b and ¢, and by index sets I, and J; this problem appears in
formulas (19), (21), and (23). Let’s denote this primal problem by

P(A;b,c;1,,J,). 27

(We don’t need to mention the sets I, and J,, since they are just the com-
plements of I; and J,.) Using this notation, we can denote the problem
(24), (25)), (26) by

P(—A";—c,—b;J 1)) (28)

The effect of taking the dual was to replace 4 by — AT, b by —c, ¢ by —b,

I, by J,,and J, by I;.

ExaMPLE 7. Suppose the primal is the canonical minimum problem
Ax=b, x>0, c'x=min. (29)

Using the notation (27), we can denote this préblem by P(A;b,c; J,J), where
& is the null set and J = {1,...,n}. Let us now form the new primal (28).
Calling the new unknown y, we get the new primal P(—A”;c,b;J,2):

—A"y> —c, —bTy = min. (30)
Sure enough, this is equivalent to
yTA<c’, yTh = max, (31)

which is the dual of the original primal.

In general, if P is the primal and DP is its dual, we have found
DP(A;bc;1,,J,) = P(—A"; —c,—bJ 1) (32)

In other words, the dual of the primal is the new primal obtained from these
interchanges:
Ao —AT bl o J,. (33)

If you apply these interchanges twice, you get back where you started. For
instance, if you take minus the transpose twice, you get back the original
matrix. Thus, if we apply the operator D twice, we get

D - DP(4;b,c;1y,J1) = DP(— AT —c,~b;J 1))
= P(4;b,c;11,J1).
In other words, the dual of the dual is the primal.

(34
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The general problem in canonical form. The canonical minimum problem is
Ax=b, x>20, ¢'x= min. (35)

Here there are no inequalities (I; = (¥), and we require all x; > 0 (J, = J).
This is the problem P(A;b,c;,J). It looks less general than the general
problem P(A4;b,c;1,,J,), which may require some inequalities—

Y aigx; = b, (iel), (36)

and which may leave some unknowns free—
~00 < X; < © (jeJl) 37

But we can put the general problem in canonical form. All we have to do
is define some new unknowns.

For every inequality (36) we define the slack variable z; > 0, and we write
(36) as an equation:

2": a;;x; —z;=b; (iel,). (36"

And for every free x; we write
x;=u;j—v; (jely), 37
requiting u; > 0 and v; > 0. This depends on the deep truth that every real
number is the difference of two positive numbers. Now we have a problem

with all equations and with all unknowns >0; the general problem has
become canonical.

ExampLE 8. Here is a general problem:

Xy +2x,23
4x, + 5x, =6
X1 2 (38)
x, 20, —o00<x, <00,
7xy + 8x, = min.
This is equivalent to the canonical problem
x1+2u2-—202-—21=3
4x1 + 5“2 - 51]2 = 6 (38’)
x, 20, u; 20, v,20, 2z, 20
Tx, + 8u, — 8v, = min.

Later we'll spend a long time discussing computer methods for linear
program in canonical form. Now you understand why these methods will
apply to linear programs of every form.

I haven’t yet shown you why the dual is so important, but as you will see
before long, duality is the heart of linear programming.
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PROBLEMS

1. State this problem as a canonical minimum problem:

3x;, —4x, 20
5x1 +2.X3<0
6XZ +7X3=0

x,20, x320; x,=max.
. State the dual of Problem 1.
. State Problem 1 as a standard minimum problem.

. State the dual of the problem in Example 6.

wm A W N

. Consider the linear system
Ax=b, x=0,

with nothing to be optimized. Show how to state this system as a canonical minimum
problem by the right choice for the cost vector c.

6. State the linear system Ax = b as a canonical minimum problem. What is the
dual program?

7. Solve this linear program graphically:

8. State the dual of Problem 7 and solve it graphically. Verify that the maximum for
the primal equals the minimum for the dual.

9. A Chebyshev minimum problem (see Section 1): State the following problem as a
linear program:

|3x; +4x, — 7| <e
|2x; + 3%, — 5| < ¢
| <

|—x; +4x,— 9

&= min.

&

10. State the dual of Problem 9.

11. Consider the system of strict inequalities

ainj>0 (i=1,...,m).
=1

J

Show how this system is equivalent to the following:

n
Y oau=1 (=1,...,m)
ji=1
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12. Solve this problem:
3x 1 + 4x2 < 12

4x, + 5x, <20
x20; 5x; + 6x, = max.
13. State and solve the dual of Problem 12. Verify the equality of the primal and dual
optima.
14. State the following problem as a linear program:
5-|3xy +4x, — 7| + 2+ |2%; + 3x, — 5| + 8+ |—x; + 4x; — 9| = min.

15. Find the dual program for Problem 14.
16. Find the dual of this linear program:

—d<Ax—-b<d

x=20; ¢"x=min.

3 How the Dual Indicates Optimality

You’ve seen that every linear programming problem can be put in canonical

form:
Ax=b, x>0 1)

¢Tx = minimum. )

If a vector x satisfies (1), it’s called a feasible solution; if it satisfies (1) and
(2), it’s called an optimal solution.
Some linear programs have no feasible solution. For example, this one
has none:
x,=—1, x;,20; 3x;=min (3)

Some linear programs have feasible solutions but no optimal solution.
Look at this:
x;—x, =0, x=0; —2x;=min. 4

If we set x; =x, =4 and let A —» + o0, we can drive the cost down to
—o0(—24 — —o0). Since no single feasible solution produces minimum
cost, we say there is no optimal solution.

If an optimal solution exists, it need not be unique. Look at this program:

x1+x,=1, x=0; x;+ x, =min. ()

Here all x are optimal on the segment connecting (1,0) with (0,1).
Mathematicians love pathological cases, and you have just seen three.

The normal case is this: A linear program has many feasible solutions, and

one of them is the unique optimal solution. Here is a normal example:
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ExaMPLE 1.
2x; +x, —x3=4, x=0, (6)

3x; + 5x, = minimum. @)

If you regard x, as a slack variable, the requirement (6) becomes an inequality
in 2 dimensions:

2x; +x,>4, x>0 (69

The feasible solutions (x,,x,) appear in Figure 1. The slack x, doesn’t appear
in Figure 1, but it equals 2x; + x, —4 > 0.

Figure 1 shows infinitely many feasible solutions. Where is the optimal
solution?
The lines of constant cost are the lines

3x; + 5x, = constant.

A few of these lines appear in Figure 2. Now I want you to imagine Figure 2
superimposed on Figure 1. Can you see which feasible solution has the least
cost?

Constant-cost lines
3x; + 5x, = const.

Figure 2
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It is the unique optimal solution
(x1,x5) = (2,0).

At this point one of the constant-cost lines just touches the feasible set. The
line that does this is labeled cost = 6 in Figure 2. None of the lower-cost
lines hits the feasible set. Using the slack x;, we get the unique optimal

solution
(x1,%2,x3) = (2,0,0). ®)

The minimum cost equals 6.

This example is typical, and you can learn a lot from it. Note that the
optimal vector (8) has only one non-zero component. The matrix 4 in (6)
consists of only one row:

A=[21,-1]. )

The vector (8) is called a basic optimal solution; it has r non-zero compo-
nents as A has r independent rows. We'll discuss basic solutions later.

In this simple example, you could draw pictures and visualize the answer.
If the matrix A had been a 10 x 30 matrix instead of a 1 x 3 matrix, you
would have had a hard time drawing and visualizing. What we need is an
analytic technique.

How about calculus? After all, our problem is a constrained minimum
problem. Isn’t that what Lagrange multipliers are for?

In calculus, we learned how to solve constrained minimum problems.
Suppose we have one constraint and three unknowns:

@(x1,X2,x3) = min.;  Y(xy,x2,X3) = const.

The method was to form the Lagrange function ¢ — Ay and set the deriva-
tives equal to zero:

J .
—&i [(P(xl,xbx3) - A‘p(xl’xl,xﬁ)] = 0 (J = 1’2,3)

J
But Example 1 is a constrained minimum problem:
2%y + X, — x3=4; 3x; + 5x, = min.

Let’s form the Lagrange equations for this example:

3-21=0
5-4=0
A=0.

Evidently, the Lagrange multiplier must equal 3, 5, and 0.

What went wrong? If you look back at (6), you see we have sign con-
straints x; > 0. In 3 dimensions, the points x that satisfy the full constraint
(6) constitute the intersection of a plane with the orthant x > 0. The unique
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optimal point (2,0,0) lies on the boundary. And now we remember: Calculus
works when the optimal point lies in the interior.

If you want a simple example, try this one: Minimize the single function
3x + 5 for x = 0. Setting the derivative equal to zero, we get the equation
3 =0, which we don’t believe.

In general, calculus fails in linear programming because the optimal x
occurs on the boundary of the feasible set. To compute the optimal x, we
shall need a numerical method; but first we need an answer to this question:
How can we know an optimal solution when we see one? We need a sufficient
condition for x to be an optimal solution of the linear program

Ax=b, x>0, ¢x=min. (10)
Bounds from the dual. The dual program is
yTA <", yTh = max. (11)

If x is any feasible solution for the primal, and if y is any feasible solution of
the dual, then
T — 4T — T
y Ax =y (Ax)=y'b (12)
and
yTAx = (yTA)x < "x. (13)
Thus, cTx > y7b.

ExaMpLE 2. The dual of Example 1 is the program
yl[zala—l] < [355’0]’ 4y1 = max. (14)

Pick any feasible solution for the dual, say y, = 1. Then y"b = 4, and we
conclude
x=z4 for all feasible x. (15)

Indeed, we know that is true because we found min ¢’x = 6.

In general, any y that is feasible for the dual gives a lower bound for the
required minimum value of ¢"x for the primal.
Now suppose we find a pair of feasible solutions X and y that produce
equality:
s =7b. (16)

Then we are in luck. As you will now see, X must then be optimal for the primal.
And by the way, j is optimal for the dual.

Proof? Easy. Let x be any competing feasible solution of the primal. Then
we know cTx > $Th because  is feasible for the dual. Now the assumption
of equality (16) implies

x> 97h = "%, 17)

and this must hold for every feasible x. In short, £ minimizes ¢"x over all
feasible x.
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Similarly, for every y that is feasible for the dual, the equality (16) implies

yTb < % = 770, (18)
Done.

EXAMPLE 3. Suppose we had chosen §, = $ instead of y, = 1 in Example 2.
This would give
=3 -@=6

Example 2 is the dual of Example 1. If we call X the feasible solution of the
primal with components 2,0, 0, we get
% =3%, + 5%, + 0%; = 6.

Since b = ¢"%, we conclude that £ is optimal for the primal, and j is
optimal for the dual.

In general, as we have proved, the equality $7b = c'% is a sufficient con-
dition for optimality.

Is it also a necessary condition? If X is optimal for the primal, must there
be some  feasible for the dual satisfying 7b = c¢T£? The answer is yes, but
that is harder to prove. That is the duality theorem, which we will prove later.

The equilibrium theorem. If x is feasible for the primal, it satisfies

i aijxj=b,- i=1,...,m (19)

>0 (j=1,...,n). (20)

(With no loss of generality, we consider linear programming in the canonical
form.) If y is feasible for the dual, it satisfies

Y yag<c  (i=1...,m). (21)
i=1

We have found a condition for optimality:

n

Y yibi= Y cx;. 22
i=1 j=1
How does this equality happen? The answer appears in the following

theorem.

Theorem 1. Let x be feasible for the primal canonical program, and let y be
feasible for the dual. Then
yTh < Tx. (23)

Equality occurs if and only if the equilibrium condition holds:

if x;>0 (24)

J

m
Yidi; = Cj
e

13
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This says, if the jth component of x is positive, then the jth dual inequality
(21) must be achieved as an equation.
PrOOF. By the sign constraints (20) and by the dual inequalities (21), we have

n

> xj(%‘“ D yiaij> =0, (25)
i=1

=1

and now the primal equations (19) give

M=

xjc;= Y yibi 20, (26)
1 i=1

Jj

which is the required inequality x"c — yTb > 0.

Equality occurs iff equality occurs in (25). In the sum (25) each term is
20; the component x; is >0 by (20), and the factor (...) is >0 by (21).
Therefore, the sum equals zero only if every single term equals zero, which
means this: If x; is positive, its factor (c; — }'; y;a;;) must be zero. That is the
equilibrium condition (24). d

ExAMPLE 4. In Example 3 we have the feasible pair
2
x=10], y=0)
0

Here the component x, is positive, and we have the corresponding equilib-
rium equation
yia11 = 3)Q) =3 =c;.
At once, we conclude x and y are optimal. (By the way, according to (14),
the other two dual inequalities are
yi-1<5, yi (=1 <0,
and they are both satisfied strictly.)

ExaMpLE 5. Let’s take a harder example—one that we couldn’t solve by
drawing pictures. Here’s the primal:
le e 6x2 + 4X3 - 2X4 = 0
X;— X3 +6x34+ 9x,=16
x=0
X; + 5x5 + 2x3 + 13x, = minimum.
Here we have 2 equations in 4 unknowns. We can try to solve the equa-

tions with just 2 non-zero components. For instance, let’s use x, and x.

This gives the numbers
X, =2, Xx3=3,
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Good luck: they turned out positive. Setting x, = x, = 0, we have a feasible
solution x for the primal.
Is x optimal ? That’s easy to check. The dual inequalities are
5y1+y2<1
—6y; — ¥,
4y, + 6y,
—2y; + 9y, <

y/

NN

5
2
1

A

3.

Since our primal x has positive second and third components, the equilib-

rium condition requires that the second and third dual inequalities be

satisfied as equations. The unique solution of these two equations is
ni=-1 y,=1

The negative number y, doesn’t bother us, since the dual problem has
no sign constraints. But we must always verify that our equilibrium solution
y satisfies the other dual inequalities. In this example, we must verify the first
and fourth inequalities:

Sy +y.<1, =2y, +9y,<13.

Again we have good luck. We have verified that our equilibrium solution
y solves all the dual inequalities. Now the equilibrium theorem says
cTx = yTb, and so x is optimal for the primal and y is optimal for the dual.

Example 5 was not as contrived as you might think. The solution x was
what we will call a basic solution. As you will see, if a canonical program
has any feasible solution, it has a basic feasible solution; and if it has any
optimal solution, it has a basic optimal solution.

PROBLEMS
1. Draw the set of feasible solutions to this problem:
x;+2x,<4, x=20, cyx; + cyx, = max.

2. For Problem 1, locate all the optimal solutions for these values of (cy,¢,): (2,1); (1,3);
(50,100); (= 1,0); (0,— 1); (= 6,—7).

3. For the following primal, write the dual and use it to find one or two lower bounds for
the primal value:

1 23 1 .
6 5 4 x= 5 | x20, x{+ x,+ x3=min.

4. Consider this problem:

2<x +2x, 4937, x=0,
—Txy + 9x, + 16x; = max.

Write the dual, and get an upper bound for the primal maximum.
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5. Consider this problem:
2<% +2x,+9%3 <7, x=0,
—7x; + 9x, + 16x3; = min.
Write the dual, and get a lower bound for the primal minimum.
6. Write the equilibrium conditions for Problem 3.

7. Find the optimal solution for Problem 3 as follows: Compute the feasible solutions
with only two positive components; then check the equilibrium conditions.

8. Write the program in Problem 4 as a canonical minimum problem. What are the
equilibrium conditions?

4 Basic Solutions

We define a basic solution x as follows. Suppose x solves Ax = b. If x # 0,
then x has some non-zero components, say X,,Xg, . ... Then we can write
Ax as a linear combination of the corresponding columns of A4:

Ax = x,a* + xga® + -+ =b. (1)

The solution x is said to depend on the columns a*,a?, ... If the columns
a*,a®, ... are linearly independent, then x is called a basic solution.
This covers the usual case, b # 0. For the case b = 0 we define the basic
solution x = 0. (In this case x depends on the null subset of columns of 4.)
Remember that vectors a%a®, ... are called linearly independent iff the
equation

0,8 + 0pgaf +---=0 2
implies that all the coefficients 6,,6;, . . . are zero. Equivalently, the vectors

a*,a®, ... are independent iff none of them is a linear combination of the
others.

ExampLE 1. Define the matrix
1 -1 -1
A= [ L, 3]. 3)
We label the columns a',a? a®. The three columns are dependent, because

they all lie in a 2-dimensional space. But every two of the columns are inde-
pendent. For example, these two columns are independent:

[} [}



28 1 Linear Programming

ExampPLE 2. For the matrix (3) let’s compute all the basic solutions of

1 -1 =17 o )
12 =317 @
X3
First, there’s a basic solution that depends on columns a! and a®. We get

this solution by solving
I EA L
1 2||x,| |1]

We compute x; = 3§, x, = §. Setting x; = 0, we get a basic solution of (4):

1
3
x=|3 | )
0
Next, there’s a basic solution that depends on columns a! and a®. We get
it by solving
1 —1ffxy] |0
1 =3|{xs| |1
obtaining x, = —3, x3 = —3. This gives another basic solution of (4):
e
2
x'=| 0f. (6)
[ —3]
In the same way, we compute the third basic solution of (4):
- o
X'=| 35| (7)
_1
L 5_

which depends on the independent columns a?, a>.

There are no other basic solutions. Why? Because the only other sets of
independent columns consist of only one column or of the null set, and none of
these sets spans a solution.

But there are millions of non-basic solutions. All of them have the form

0,x + 0,x" + 6;x", 8)
where 6, + 6, + 05 = 1, where x, x', x” are the three basic solutions; for then
AO1x + 0, + 03x") = 6,b+ 6,b + 03b =b.

For instance, here is a non-basic solution:
12

18x — 12x' — 5x" =1 5.
7
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Plug it into (4) and you’ll see that it works. It is non-basic because it depends
on the dependent columns a!,a?, a>.
If you want a more exotic example, take nx + ex’ + (1 — n — ¢)x”.

You get the idea: If the matrix A has more columns than rows, the equation
Ax = b typically has infinitely many solutions x. But A has only a finite
number of subsets of independent columns, and so the equation Ax = b has
only a finite number of basic solutions.

You'll see this is just what we need for linear programming: it cuts down
the number of possibilities from infinity to a finite number.

Theorem. Consider the canonical linear program
Ax=b, x20, c'x=min. &)

First, if there is any feasible solution, then there is a basic feasible solution.
Second, if there is any optimal solution, then there is a basic optimal solution.

Proor. First, suppose there is any feasible solution. Let x be a feasible
solution with the fewes: positive components (if there is more than one such
feasible solution, pick any one of them).

If x has no positive components, then x = 0, and x is basic by definition.
Otherwise, let x,, x4, . . . be the positive components. We will prove that the
columns @ a®, . . . are independent.

Suppose they are dependent. Then there is a linear combination

0,0+ 0ga® + -+ =0, (10)

where at least one of the coefficients, say 6,, is non-zero. We may assume 0,
is positive, for otherwise we make it positive by multiplying the equation (10)
by —1.

We have assumed

Ax = x,a" + xga® + - = b, (11)
where x, > 0, x; > 0,. ... Form the equation (11) —4 - (10):
(x, — 40)a* + (x; — AB)a® + - - =b. (12)
If A is not too big, we still have a feasible solution, with components
Xy — 40,20, x5 —40;>0,.... (13)

Butif Ais too big, we no longer have a feasible solution, since we get a negative
component
X, — A0, <0 if A>x,/6,

Choose 4 as large as you can, keeping all components >0 in (13). If 6, is
<0, then x; — Af; remains positive for all A > 0; but if 0, is >0, we must
require 4 < x;/6;. Since 4 must be < all these quotients, we choose

A = min{x;/6;: x; > 0 and 6, > 0}. (14)
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If the minimum quotient occurs for i = p, then x, — 46, =0 in (13).
Now the identity (12) shows that we have found a new feasible solution that
has fewer positive components than x has; the new uth component is zero
whereas the old uth component x, was positive. This contradicts our as-
sumption that x was a feasible solution with the fewest possible positive
components. Therefore, the columns a% a?, . . . couldn’t have been dependent,
as in (10).

Conclusion: the feasible solution x is basic. That finishes the first half of
the proof; the second half goes much the same way:

Assume x is an optimal solution of the canonical linear program (9).
Some optimal solutions may have more positive components than others;
assume our optimal x has the fewest possible positive components. We will
show that x is basic.

If x = 0, then x is basic by definition. If x s 0, call the positive components
Xy Xg, - - .. Again we must prove that the matrix columns aab, ... are
independent. We will show that if they are dependent, then we can construct
a new optimal solution with fewer positive components.

Suppose a a’, . .. are dependent. Let

0,0 + 0ga® + -+ =0, (15)
where we may assume some coefficient is positive, say §, > 0. Then we assert
Baca + BﬂCﬂ + = 0, (16)

where c is the given cost vector.
Proof of (16): We know Ax = b, which says

X4 + xga® + - =b. 17

Form the equation (17) —A - (15):
(%, — 40,)a* + (x5 — A0p)a® + - - - =b. (18)

Since x, > 0, x5 > 0, ..., we have
Xg— A0, 20, x3—40,20,... (19)

for small |; then the components (19) give a new feasible solution. The
new cost is

Ca(Xy — 28,) + chlxg — A8p) + - - - = old cost — A(f,c, + Opcs + -+ +).  (20)

If (16) were false, we could decrease the cost by letting A be some small positive
or negative number. Then x would not be optimal. Contradiction; (16) is
now proved.

Let A start at zero and slowly increase. As long as the new components
(19) remain >0, they give a new optimal solution, since (16) implies new cost =
old cost in (20).

Assuming 8, > 0, we see that the component x, — A0, becomes negative
if A is too big. Take A as large as possible, keeping all the new components
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(19) = 0; set
A = min{x;/6;: x; > 0 and 6, > 0}. (21)

If the minimum quotient occurs for i = p, then x, — 10, = 0in (19), and
so the new optimal solution has fewer positive components than the old
optimal solution x. This contradicts our assumption.

Conclusion: the columns a* @”, . . . are independent, and so the optimal so-
lutjon x is basic. This finishes the proof of the theorem on basic solutions. [J

Armed with this theorem, we are ready to attack the problem of numerical
computation.

PROBLEMS

1. For the matrix in formula (3) there are 6 non-empty sets of independent columns.

What are they?
10 -1 0 -1
A= .
[1 0 20 - 3:|

2. Let
What are the non-empty subsets of independent columns?

3. For the matrix in Problem 2 find all the basic solutions of

e[}

Using the basic solutions, represent the non-basic solutions. (See Example 1.)

4. Find all the basic solutions of

1 3
4 6(x=1]3
7 8 9] 6]
5. Find all the basic solutions of
1 2 37 (0]
4 5 6|x=}3]|
(7 0 1] | 6 |

Why do Problems 4 and 5 have different numbers of basic solutions?

1 -
[ 0 1jlx:b, x=0.
11 1

Find all the basic feasible solutions x for these values of b:

ol G LB B 3 ) 1)

Draw a picture of the set of all b if x is feasible.

6. Consider the equation
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7. Find the optimal basic solution x for

1 0 -1 0 .
{1 1x= 7P x20, x;—x3=min

8. Same as last problem, but now require x; + x3; = min.

9. Write the standard program

1 2 6 .
3 4 x> 5| x20, x;4+ Xx,=min.

in canonical form by introducing two slack variables x; and x,. Find all the basic
feasible solutions; find the basic optimal solution. (The new matrix will have four
columns. Draw them as vectors in the plane, and draw the vector with components
6,5.)

10. Find all feasible solutions x for

1 -1 -1 0
X = , x=0.
b Sl

Which feasible solution is basic?

11. Prove or disprove this assertion: Let x!, . .. ,x" be all the basic feasible solutions of
Ax = b, x = 0; then x is a feasible solution if it is a convex combination

x=0;x"+ -+ 0" (6;20,%0,=1).

12. Prove or disprove the converse of the preceding assertion (using only if instead of
if).
13. Let A be an m x n matrix with m < n. Suppose at most r columns of 4 are indepen-

dent (4 has rank <r). At most how many basic solutions can Ax = b have if b is
fixed?

5 The Idea of the Simplex Method

Most computer algorithms for linear programming come from the simplex
method of George Dantzig. Because the applications of linear programming
are so numerous and important, we will later discuss several simplex al-
gorithms. But now I just want to give you the idea of the method, the bare
bones; we'll put the flesh on later.

We take the linear programming problem in canonical form:

Ax=b, x>0, c"x=min. (1)

We'll make a couple of simplifying assumptions, which are almost always
satisfied.

Assumptions of non-degeneracy. Let A have m rows and n columns; we
have fewer equations than unknowns, so we have m < n.
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(i) We assume that the m rows of A are linearly independent. From linear
algebra, we know this is equivalent to assuming that A has m independent
columns. (Usually A will have several sets of m independent columns.)

(ii) We assume that b is not a linear combination of fewer than m columns
of A. In other words, if

Ax =xa' + xa* + -+ x,a" = b, 2

we must know that at least m of the components x; are non-zero.

The first assumption implies that the equation Ax = b has a solution x
for every b. That is because the columns of 4 span the whole m-dimensional
space in which the vector b lies.

If assumption (i) is false, the m rows of A are dependent, which means that
the m equations ) a;;x; = b; are dependent or, worse, inconsistent. For

instance, if
1 23
= 3
A [2 4 6], )

its rows are dependent. Then Ax = b gives the equations
x1 + 2x2 + 3X3 = bl
2X1 + 4X2 + 6X3 = bz,
which are dependent if b, = 2b,, or inconsistent if b, # 2b,.
In practice, if equations are dependent, one or more of them should be
erased. If the equations are inconsistent, they should be forgotten—or at

least reconsidered.
What does the assumption (ii) mean?

12 37 Te A
2 4 || 2|72 4
X3
Here the matrix 4 has independent rows, so assumption (i) is OK. But as-
sumption (ii) is false here, because the vector b on the right is a multiple of

just one column:
2a3—23 _|® =b (5
R
while 4 has two rows.

This kind of problem creates an annoying technical difficulty for the
simplex method. But please note how fragile it is: the slightest perturbation
will destroy it. Suppose b is replaced by

AT
b_[2+s]’ ©)

ExaMpLE 1. Look at this:
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where 6 and ¢ are small errors; for instance, 4 and ¢ could be digital-computer
roundoff errors, or they could be data-measurement errors. Then the slightly
perturbed vector b’ satisfies assumption (ii)—unless by some incredible bad
luck ¢ equals 3e.

This example is typical. If assumption (ii) is not satisfied then a random
perturbation of the vector b satisfies assumption (ii) almost surely. (In fact, the
degenerate vectors b lie in the finite union of the linear subspaces spanned by
subsets of m — 1 columns of A4; all these subspaces have dimensions less than
m, and so a random perturbation of b in m dimensions almost surely lies
outside their union.)

And so we will make the two assumptions of non-degeneracy. Now the
simplex method works without a hitch. The method has two phases:

Phase 1 finds a first basic feasible solution of Ax = b, x > 0. Or if the
problem has no feasible solution, Phase I proves that fact.

Phase 11 starts with a first basic feasible solution and ends with a basic
optimal solution. Or if the problem has no optimal solution, Phase II proves
that fact, and it shows you how to construct feasible solutions x that drive
the cost xc down to minus infinity.

Both phases work in finite numbers of steps. We get exact answers, except
for the inevitable computer roundoff errors. We shall not have to rely on
infinite convergent sequences; a finite number of steps will give a precise
answer. The simplex method plays the same role in linear programming that
Gaussian elimination plays in linear algebra.

How to do Phase 1. Assume you already know how to do Phase II; then
I can show you how to do Phase I. Let’s write out the equations:

a

e

xj=bi (i=1,...,m). (7)

ij

j=1

We are looking for a feasible solution, x, with m positive components. We
assume all b; are positive; if any b, is negative, multiply the ith equation by — 1.

We can state Phase I as a minimum problem for which we already have
a first basic feasible solution. We state this problem:

®

x120...,x,20, z,20,...,2,20
zy + -+ + 2, = minimum.
This is a canonical minimum problem with m equations and n + m un-

knowns. We assume this problem is non-degenerate.
Here is a first basic solution:

x1=0 (]=1,,n), Zi=bi (l=1,.,m). (9)
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This is a basic solution; it contains only m positive components. The matrix
in the preliminary problem (8) has the n + m columns a', . . . ,a", e!, ..., e";
the first n columns come from A, and the last m columns come from the
m x m identity matrix. Using composite matrices and vectors, we could

write (8) in the form
X
[4 I] [Z:I =b

x>0, z20, Yz =min

(&)

Our basic feasible solution (9) depends on the m independent columns
e',...,e" The cost of this solution is Y z; = ¥'b, > 0.

Now carry out a Phase II calculation on the preliminary minimum prob-
lem (8). When you’re done, there are two possibilities:

Case 1: min ) z; = 0. In this case the final z equals zero, and so the basic
optimal solution of the preliminary problem satisfies

Ax=b, x=0. (10)

Then x is a basic feasible solution of the original problem.

Case 2: min ) z; > 0. In this case the original has no feasible solution.
For if x were a feasible solution of the original problem, then x along with
z =0 would give a zero-cost solution of the preliminary problem (8).

ExaMmPLE 2. Suppose the original feasibility problem is
—x;—2%,=3, x,20, x,=0. (11)
Then the preliminary minimum problem is

—x;, —2x,+2z, =3
x;20, x,20, 2,20

z; = minimum.

(12)

The unique solution of this problem is x; =0, x, = 0, z; = 3. Since the
preliminary minimum cost is positive, the original problem (11) has no
feasible solution.
ExAMPLE 3. Suppose the original feasibility problem is

xl + 2X2 = 3, x1 > 0, x2 > 0- (13)
Then the preliminary minimum problem is

X 1 + 2x2 + z 1= 3
x120, x,20, z;>20

z, = minimum.

(14)

The first feasible solution is x, = 0, x, = 0, z, = 3; a basic optimal solution
is x; = 3, x, =0, z; = 0. This gives a feasible solution for (13).
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Before we discuss Phase II, I want to prove something that we’ll need:

Lemma on Non-Degeneracy. Assume this problem is non-degenerate:
Ax=b, x>0, xTc=min,

where A has m rows. Then x is a basic feasible solution iff x is a feasible
solution with exactly m positive components.

Proor. If x is a basic feasible solution, it cannot have more than m positive
components; for then it would depend on a dependent subset of columns
of A. Nor can x have fewer than m positive components; for then b would
be a linear combination of fewer than m columns of A. This would violate
assumption (ii).

Conversely, if x is any feasible solution with exactly m positive com-
ponents, we can show that x must be basic. For instance, suppose
x;>0,...,x,>0and x; =0 for j > m. Then

Ax =xa' + -+ x,a" =b.
Suppose the columns a’, ... ,a™ were dependent:
00+ +0,a" =0,
with some 6; > 0. Then
(x; — A0)a + -+ (x,, — A, )a" = b,
and we could make one or more coeflicients zero by setting
A = min{x;/6;: 6; > 0}.

Then b would be a combination of fewer than m columns of A. This violates
assumption (ii); therefore the columns a?,...,a™ are independent, and the
feasible solution x is basic. O

How to do Phase 11. Let x be a given basic feasible solution of the non-
degenerate canonical program

Ax=b, x>0, c'x=min.

Using the equilibrium equations (discussed in the last section), we will find
out if x is optimal.
Let B be the set of indices j for which x; is positive:

B={j:x;>0}. (16)

We will call B the basis. If A has m rows, then the set B contains m members,
and so we write |B| = m.

The basic solution x depends on the columns &’ for j in the basis B, that
is, for x; > 0. We may also call these columns the basis, which is a slight
misuse of language that will cause no trouble.
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The m columns in the basis constitute a matrix M with m columns and
m rows. This, too, we will call the basis when we feel like it; it would be better
to call it the basic matrix. Since its columns are independent, the square

matrix M has an inverse.
1 2 3 4
[4 5 6]" - [10]' a7

Suppose our given basic solution is x” = [1,0,1]. Then x; > 0 and x5 > 0,
so the basis is

ExaMPLE 4. Consider

B={1,3). (18)

The set B has two members: |B| = 2. The solution x depends on the basis
columns (the first and third), which constitute the basis matrix

1 3
M=|:4 6]. 19)

We won’t use the symbol B to designate the basis matrix; the symbol B will
always designate the index set.

Back to the general case. We have
Y xa' =b, (20)
B
where we sum over j in B. Since the basis columns constitute an invertible
matrix M, we can solve the m equilibrium equations
yTa’ = ¢, (j € B). (21)
Using the matrix M, we could write (21) in the form
y'M = ¢7, (22)
where the vector ¢ has the m components c; for j € B. The unique solution is
yr=e"M™1, 23)

We now have two possibilities:

Case 1. Suppose the equilibrium solution y is feasible for the dual. Then, as
you saw in the last section, x is optimal for the primal problem (15); and by
the way, y is optimal for the dual problem

yTA< T, yTh = max, (24)
with y7b = cTx.
How shall we know if y is feasible for the dual? That is easy. Feasibility
in (24) means y"A4 < cT; written out, this says

Vid<e  (=1,...,n). (25)
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By the equilibrium equations (21), these inequalities are satisfied as equa-
tions for j in B. So all we have to do is take the inner products of y with the
n — m non-basic columns @’ and check the inequalities (25) for j ¢ B.
Suppose the check fails. Then we are in
Case 2. Suppose, for some non-basic j = s,

yTa® > c,. (26)

Then the equilibrium solution y is infeasible for the dual, and we have proved
nothing.

You will now see that the wrong-way inequality (26) is telling us some-
thing: we can reduce our cost by bringing a° into the basis. Here’s how we
do it:

We first express the non-basic column ¢’ as a combination of the current
basic columns:

@ =y td 27
B
In terms of the basis matrix, this says
a@=Mt or t=M"1a (28)

If we multiply equation (27) by A and add the result to equation (20), we
get

A+ Y (x; — At))ad = b. (29)
B

If 4 is positive and small, all the m + 1 coefficients in (29) are positive, so we
have a new feasible solution of the primal. The new cost is

Aeg + Y (x; — Atje;, (30)
B
whereas the old cost was
xTe =Y xi;. (31)
B
Subtracting the new from the old, we get
old cost — new cost = A(z; — ¢), (32)
where we define
B

Remember, 4 must be positive because it is the coefficient of a*. Equation (32)
says we reduce our cost if

z,— ¢, > 0. (34)

But this inequality does hold in Case 2. Proof: The definition (33) says
z, = &'t; the equilibrium condition (22) says & = yTM. Therefore,
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But (28) says Mt = a°, and so
z, = yTd’, (35)

where y is the equilibrium solution. Now we recall that the wrong-way
inequality y”a® > c, defines Case 2, and so we do have z;, — ¢, > 0.

The new solution. According to (32), the bigger we make A, the more we
reduce the cost; so we will make A as big as we can. According to (29), if B
is the current basis, then 4 must satisfy these limitations:

A20, x;—At;=20 for j in B, (36)

so that the new solution will be feasible. Now we see that Case 2 has two
sub-cases:

Case 2a. Suppose all t; are <0, where (27) defines the ¢;. Then (36) says
we can make A as large as we wish. Now (32) says we can drive the cost to
minus infinity by making 4 — co. In this sub-case there is no optimal solu-
tion x to the original problem. Now the computation stops; equation (29)
shows how to construct a non-basic solution x(4) with arbitrarily low cost.

Case 2b. Suppose at least one t; is >0. Then (36) says that the biggest
value we can choose for A is

Any bigger value would produce a negative coefficient in (29).

If the minimum (37) is achieved for j = p, then the coefficient of a” becomes
zero in the equation (29). Therefore p is unique, for if more than one coefficient
became zero in (29), then b could be represented as a linear combination of
fewer than m columns of 4. That would violate non-degeneracy assump-
tion (ii).

So, if we choose the biggest admissible value A*, exactly one coefficient
becomes zero in the representation

o+ Y (x;— A*t)al = b. (38)
jeB
Now the lemma on non-degeneracy implies that this equation defines a new
basis:
B = {s} + B—{p}, (39)

formed by adding the index s to B and removing the unique index p.
Now we can write (38) in the form

Y. xjal = b, (40)

jeB
where the new coefficients are the m positive numbers
Xg=A% Xxj=x;—A*; (jeB,j#p) (41)

Non-degeneracy implies that all m coefficients x; are positive and that the
m columns ¢’ are independent for j in the new basis B'.
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Thus, in Case 2b, we compute a new basic feasible solution x'. Doing so,
we lower the cost by the positive amount A*(z, — ¢,). We now go back to
the beginning of Phase II, using the new x’ instead of the old x. This ends
the description of Phase II.

The computation has to stop after a finite number of iterations. Here’s why:

If we ever find that we are in Case 1, we stop because we have proved that
our basic feasible solution is optimal.

If we find we are in Case 2a, we stop because we have found that no
optimal solution exists.

If we find we are in Case 2b, we compute a new basic solution x’ with
lower cost. Therefore, we can only go through Case 2b a finite number of
times. That is because the matrix A has only a finite number of times. That
is because the matrix 4 has only a finite number of subsets of m columns,
and so the equation Ax = b has only a finite number of basic solutions. Now
suppose we pass through Case 2b many times, with a succession of basic
solutions x!, x2, x3, ... Since the cost decreases with each new basic solu-
tion, we have

Txt>c"x?2>cTx¥ > ... (42)

Therefore, all our basic solutions x!,x?, . . . are different; and so the number
of these solutions is finite.

And so the number of iterations is finite.

Using non-degeneracy, we proved that cycling is impossible: we never
return to a former basic solution in Case 2b. In a degenerate problem, in
practice cycling is unlikely, and luck will usually bring us through. But
cycling is possible in degenerate cases; this was proved in 1951 by A. J.
Hoffman. Later we’ll discuss the lexicographic simplex method, which makes
cycling impossible in every case.

Now let me give you some examples of Phase II calculations.

ExaMmpLE 5. Consider this problem:

12 —37|™ 4
X, | =
4 5 -9 13
X3
x=0
X; + X5 — 3x3 = min.
We start with the basic feasible solution

x1=2, XZ=1, X3=0

Here the basis matrix and its inverse are

1 2 1f-5 2
= M t==2 .
A
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If we compute M~ '), we get

| _1f-=5 21 =31 | -1
t,| 3] 4 —1|l-9| |-1]
To find out if we can decrease the cost by bringing in a®, we compute

23—63=tlcl+t202—63=_1—1+3=1>0.

Since z5 — c; is positive, we should bring in a®. We are in Case 2.
But look: Both ¢; are <0. Therefore we are in Case 2a. There is no limit
to how much a® we can bring in, and we can drive the cost to minus infinity.

Here we have
lad + (2 —At)at + (1 — Aty)a® = b,

with t;, =t, = —1, and so we get the family of non-basic feasible solutions
244
xA)=|{1+41]
A

The new cost is
cTx=3-1,

which goesto —oo as 4 —» + o0.

ExAMPLE 6. Look at this problem:

1 23 . 3
4 56| |9
x=0
3x1 + 3X2 + 2x3 = min.
I give you the basic feasible solution

x1=1, XZzl, X3=0.

You take it from there.
You first form the basis matrix and its inverse:

1 2 1| -5 2
M= , M™l== .
P
Then you compute
t -1
M 1g®=|"1|= .
o[-l

z3—c3=(—=3+6—2=1>0.

Next you compute

Since this is positive, you decide to bring in a®. Since one of the ¢, is positive,
you are in Case 2b.
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How much a> can you bring in? You have
Aa® + (x; — At))at + (x, — Aty)a’> = b,
where t; = —1 and t, = +2. Therefore you make A equal
=X/t =1,
obtaining the new basic solution
Xp=3% x3=0 x3=3
You have lowered the cost by this amount:
old cost — new cost = A¥(z; — c3) = 1.
In fact, the old cost was 6; the new cost is 3.
ExAMPLE 7. We continue the last example, starting with the computed basic
feasible solution
X, =3, x,=0, x3=3%.

Now the basis is B = {1,3}. The basis matrix and its inverse are

1 3 o, 1[-6 3
M‘[4 6]’ M 6| 4 —1]'

Applying M ~! to the non-basic column, a*, we get
M_ 1a2 = tl = i
ts) |3

22—02=tlcl+t3C3“"62=%—3<O.

f= N

from which we compute

Since z, — ¢, is <0 for all non-basic s (in this example there is only one),
we are in Case 1. We are done: our basic feasible solution is optimal.

The last two examples are typical: we iterate Case 2b until we end in
Case 1. The Case 2a seldom occurs, because costs seldom go to minus
infinity.

For large problems, like those in the petroleum industry, it would take a
lot of computer time if we had to invert a new basis matrix M with each new
iteration. As I'll show you later, when we discuss numerical methods, you
won’t have to do that. You can go from one iteration to the next and get the
new inverse M ™! very quickly; that’s what happens in the revised simplex
algorithm and in the dual simplex tableau algorithm. In one version of the
tableau algorithm no inverse M ! is computed; we go from basis to basis
with no explicit use of any inverse matrix.

But now let’s return to the theory, which tells us what all the numbers
mean.
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PROBLEMS

1. Consider the system Ax = b where

123
A=[3 6 9]'

For which vectors b is the system redundant? For which is it inconsistent?

1 23
[9 6 3j|x=b.

Which vectors b fail to satisfy the assumption (ii)? Draw these vectors in the plane.

2. Consider the system

3. In Phase I, in formula (8) we required all b; > 0. Why is Phase I degenerate if some
b; =07

4. By direct observation, find the three basic solutions of

10—1x_—1 >0
11 ol 1) TT”

and note which two of the basic solutions are feasible. As an exercise, compute one
of the basic feasible solutions by a Phase I calculation. (Remember to multiply the
first equation by —1; then start with x; = x, =x3=0,2, =z, = 1.

5. Continuing the last problem, use a Phase II calculation to compute the basic solution
minimizing x; + x, + X3.

6. Apply Phase I to this program:

XZ+ZX3=3
x1+2x2+3x3=4, x=0.

What does Phase I tell you?
7. Apply the simplex method to this program:

2 1—1x_1 >0
1 =2 2" [ T

X; — X, = min.
Find a feasible solution with cost x; — x, = —10°°,

8. Starting with the basic solution that depends on the first two columns, apply Phase I1

to this program:
-12 3] 1 50 - mi
s 3 1|¥=|s ¥=0 xz=min
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9. Choose the number w so that the following program has a solution. Then write
down the optimal solution,

10. Look at this program:

112_3+£ 50 .
211x— 3 , x=0, x,=min.

The program is degenerate if ¢ = 0. Solve the program for small ¢ > 0, and take the
limit as ¢ — 0.

6 Separating Planes for Convex Sets

To prove the duality theorem, I will use a standard theorem in the repertoire
of every professional mathematician. If you know it already, you should
skip this section or just look it over quickly.

I'll make the presentation brief. All we’ll need for the duality theorem is
the following Theorem 1. Much later, when we discuss nonlinear program-
ming, we’ll use Theorem 3.

Definition of convex set. Let C be a set in the real Euclidean N-dimensional
space. The set C is called convex if it contains the line segment connecting
every pair of its points. In other words, if C contains x and y, then C should
contain all the points

1-0x+0y (0O

(If C consists of only one point, we call C convex.)
Definition of closed set. The set F is called closed if it contains all its
limit points. In other words, if all the points x!, x%, x>, ... lie in F, and if

x® 5 x% as k- oo,

then x° should lie in F. (Here superscripts denote different points; subscripts
will denote different coordinates.)

ExaMPpLE. In 2 dimensions, the half-plane 3x, — 5x, < 7 is convex but not
closed.

ExampPLE. The half-plane 3x; — 5x, < 7 is convex and closed.

ExampLE. The annulus 1 < |x| < 2 is closed but not convex.
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ExampLE. In N dimensions, a convex polytope can be generated by any finite
set of points x?, . .., x. The polytope

1
xH .00, xP
consists of all the convex combinations

x=0x"+0,x*+ -+ 0,x
where

Every convex polytope is convex and closed.

Lemma. Let C be a closed convex set that does not contain the origin x = Q.
Then C contains a nearest point x°, with

|x°| = min{|x|: xe C} >0

(The assumption that C is convex is superfluous but useful. The assump-

tion that C is closed is necessary, as you see from this example: The convex
set x; > 5 contains no point that minimizes the distance to the origin.)

PRrOOF. Let § be the greatest lower bound of |x| for all x in C:
6 = inf{|x|: x e C}.
Let x!,x2, ... be a sequence of points in C such that
|x| > 6 as k- co. 1)

Then we can use convexity to prove that x* converges to the required nearest
point x°.
We use the parallelogram law of vector algebra:

P — X3 + [x? + x4 = 2xP[2 + 232, )
By convexity, the midpoint (x? + x9) must lie in C, and so we have

[3(x? + x9)| = 4.
Now (2) gives
|xP — x9? + (20)* < 2|x7|* + 2|x9%. 3)

As p and q tend to infinity, the right-hand side goes to 462, by (1). Now (3)
implies
Iim [xP — x| + 46° < 462,
p,q— 0

which says x? — x4 — 0, and so the sequence x* has a limit: x* — x°. Since
C is closed, the limit x° lies in C.

Since |x*| — 8, we find |x°| = 6. And so C does contain a point x° that
minimizes the distance to the origin.

Definition of separating plane. The equation of a plane in RY (real N-
dimensional space) is

a'x+pB=0 4
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provided that the constant vector a is non-zero. This plane is said to separate
the sets S; and S, if

0 for all x in S,
0 ©)

forall xin S,.

In the lenient definition (5), equalities may occur, so that the sets S, and S,
may have some points on the plane; the two sets may even have some points
in common. But if both inequalities are strict, this can’t happen. Then

a™x+B>0 forallxinS$,
a’™x+B<0 forallxinS$,.

(6)

In this case we say the plane strictly separates the two sets.
Even if the two sets are disjoint, they need not have a separating plane
An example appears in Figure 1.

Figure 1

But if both disjoint sets are convex, there must be a separating plane, as
we will prove. A typical example appears in Figure 2.

The main theorem is Theorem 1, in which one set is convex and closed
while the other set is a single point. In this case we get strict separation,
which is what we’ll later use to prove the duality theorem of linear pro-
gramming,.

Theorem 1. Let C be a closed convex set. Suppose the point b lies outside C.
Then there is a plane that strictly separates C from b.



6 Separating Planes for Convex Sets 47

PRrROOF. With no loss of generality, suppose b = 0; if b 3 0, make a pre-
liminary change of coordinates x’ = x — b.
According to the lemma, C contains a point x° that minimizes |x|:

0<|x%=6<|x| forallxinC. (7

Let u be the unit vector that points from the origin to the nearest point
on C:

u=75"1x° (8)

Let m be the midpoint 1x°. Define the plane
ul(x —m) = 0. )
(In formula (4) this makes a = u, f = —u"m.) We will now prove that this

plane strictly separates C from the origin, as in Figure 3.

For x = 0 we have
ul(x —m) =u’(—3x% = -1 <. (10)
But for all x in C we will prove
ul(x —m) =46 > 0. (11)

If x lies in C, then so does the convex combination (1 — 6)x° + 6Ox.
Therefore we have

X°P<]|0—-0x°+6x> (0<0<1).
Expanding the right-hand side, we get

[X° < |xOP + 20(x°)"(x — x% + 6%|x — x°?,

and
0 < 20(x9)T(x — x°% + 0(6?) 0<6<).

If you divide by 6 > 0 and let 6 » +0, you deduce
0<(x9T(x —x%  forall xin C. (12)
But x° = du, and x° = 2m; therefore (12) says

0< (06wT(x —m—m).
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Dividing by é > 0, we get
0<ul(x —m)—uTm,

which proves (11), since u'm = /2.

And so the theorem is proved. Note the crucial role played by the as-
sumption that C is closed: if a point b is not in a closed set, then the set
contains a point x° that is nearest to b, and the distance § is positive. If C
isn’t closed, we can’t say that.

You now know all you’ll need for linear programming. I suggest you
skip the rest of this section until you need it for nonlinear programming.

Lemma. In R", let S be any set of points. Then S contains a denumerable
subset that is dense in S.

PRrOOF. Let’s prove it for N = 1. Consider all the open intervals I that have
rational endpoints:

4
b

If S contains a point in I, pick exactly one such point:

<x< 2 (a,b,c,d = integers).

a c
5 < x(ab,c,d) < 7

These points are denumerable, and they constitute a subset S’< S. The
subset S’ is dense in S, because every point x, in S is the limit of rational
numbers a/b from below and of rational numbers ¢/d from above, and so

x(a,b,c,d) = xq.

For dimensions N > 1 the proof is the same; but now, instead of the
intervals I, we must use the N-dimensional rectangles whose vertices have
rational coordinates. O

In the next theorem, we’ll assume C is convex but not necessarily closed.
Then we still get a separating plane, but the separation may not be strict.

ExamMpLE. For N = 2 the open right half-plane x; > 0 as a convex set that
doesn’t contain the origin x = 0. There is no nearest point x°, and the
distance ¢ equals zero. The separating plane is the vertical axis x, = 0.

Theorem 2. Let C be any convex set that does not contain the origin x = 0.
Then there is a separating plane (5) with

a'™x+p=0 in C, a"x+B=p<0 for x=0, (13)

where the constant vector a is non-zero.
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PrOOF. By the lemma, we can choose a denumerable set of points x*, x?2, ...
that lie in S and that are dense in S. Using the first p points, we form the
convex polytope

C, =<{xtx2, o xP. (14)

Then
Cic Cie Gy cCy (15)

and as p — oo, every point in C is the limit of points in C,,.
The convex polytope C, is a subset of C, so C, doesn’t contain the origin
x = 0. Since C,, is closed, we can use Theorem 1. By formulas (10) and (11),
we have
u=uf, m=mf, 6=9,
such that
W) (x —m?) = =35, <0 (x=0)
>36,>0 (xeC,) (16)
Here u” 1s a unit vector; J,, is the distance from the origin to C,; and
m? = (5,/2)u’. (17)

If x lies in C,, the lower inequality (16) holds for all p > q.

The inclusions (15) imply é; > é, > ..., and so the positive numbers J,
tend to a limit §, = 0. The unit vectors u” need not converge, but they
must have a convergent subsequence, whose limit is some unit vector u°®
(see Problem 20). Now the last two formulas imply, in the limit as p — oo,

W) '(x-m® <0 for x=0
>0 for xeC, (18)
For each g, the second inequality holds for all x in C,. Since every x in C
is the limit of points in C, as g — oo, the second inequality (18) holds for
all x in C. This completes the proof.
It is now surprisingly easy to prove that there is a separating plane for

every disjoint pair of convex sets. (In Theorems 1 and 2 one of the pair
was a single point.)

Theorem 3. Let C; and C, be disjoint convex sets in RN. Then there is a

separating plane (5).

ProoF. Form the set of all differences:
C=C,—-Cy={x—y:xeCpyeC,}. (19)

Since C; and C, are disjoint, we have x # y, and so C doesn’t contain the
origin z = 0.
The set C is convex. For if z and z' lie in C, then we have

z=x—y and zZ=x"-—y,
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and so
(1=0)z+0z=x"—y, (20)
where
x'=1-0x+06xeC
y=(1-0y+0yeC
Therefore, the convex combination (20) also lies in C.
Now we apply Theorem 2 to the convex set C. From (13), we have

a’z+p>0 forallzinC, (21)

with B <0 and a # 0.
What does this say about C, and C,? It says

a'x—y)+ =0 with B<0,

o<o<.

and so
a™x>a"y forallxeC,,yeC,. (22)

Therefore, for x in C, and y in C,,
inf a”x > sup a”y. (23)

Now set y equal to either the inf or the sup in (23)—or to any number
between. Then both of these inequalities hold:

a:x —y20 forallx %n C, 249

ay—-y<0 for all y in C,.

And so we have found a separating plane.

PROBLEMS
1. Show that the half-plane 3x, — 5x, < 7 is convex but not closed.
2. Show that the half-plane 3x; — 5x, < 7 is convex and closed.
3. Show that the annulus 1 < |x| < 2 is closed but not convex.
4. Prove that every convex polytope is convex and closed.
5. Let C be the closed disk
i +32+ (-4 < 1.

Using the notation of the proof of Theorem 1, do these things:
(i) Evaluate the distance é to the point b = 0.

(i) Find the coordinates of x°, of u, and of m.

(ili) Write the equation of the separating plane (9).

6. For the last problem find the equations of all the planes (lines) that strictly separate
the disk from the origin.

7. Let C be the unbounded, closed, convex set

{x:xeR%, x<0,x,x, >1}.
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*9.

10.

1L

12.

*13.

14.

*15.

*16.

17.

(This is the convex hull of one branch of a hyperbola.) Do the three things that
Problem 5 asks for.

. Let F be the closed set

{x:xeR% x;2 1 —|xy}.

Show that F is not convex. Find the two points in F that are nearest to the origin
(at distance & = 4./2). Let x*,x?, ... be a sequence in F such that |x}| - . Show
that the sequence x* may diverge.

The Bolzano-Weierstrass theorem says every bounded sequence has a bounded
sequence (see Problem 20). Deduce that the sequence x* in Problem 8 must have a
convergent subsequence. Show that the limit lies in F and minimizes the distance to
the origin.

Let S be the set of irrational numbers. Show that the nonzero rational multiples
of \/2 are a denumerable dense subset of S.
In the plane, let C, be the open disk

Cy={x:(x; +3P+(x,— 4> < 1},
and let C, be the closed disk
C,={x:x} +x3 < 16}.

Show that these convex sets are disjoint, but that the distance between them is
0 = 0. Find the separating plane (line). Is the separation strict?

In the plane, let C, and C, be the disjoint sets

Cy={x:x;>0,xx,

>1},
Cy={x:x; <0,x;x, < —1}.
Show that both sets are convex and closed. Find the difference set C. Observe that

C is convex, but show that C is not closed. What is the distance é between C, and
C,? What is the separating plane? Is the separation strict?

Let C, and C, be convex, disjoint, and closed; let C; be bounded. Then prove that
the distance between the sets is positive, and prove there is a strictly separating
plane.

Let S by any set in R". Let C consist of all convex combinations
O,x' +---+6,x"  with§,>0,36,=1,x'eS.
The set C is called the convex hull of S. Prove that C is convex.

Let C be the convex hull just defined for a set S in RY. Prove that C consists of all
convex combinations of n points in S where it suffices to take n < N + 1. (For
example, if S lies in the plane R, then C consists of the convex combinations of
all subsets of three or fewer points.) For the proof, use the theorem on basic solutions.

(Continuation). Show that the convex hull of a set S is the intersection of all the
convex sets that include S.

In the plane, let S be any closed polygon that is not convex. Show that the convex
hull has greater area, but has smaller perimeter.



52 1 Linear Programming

*18. In RY, if a closed half-space a’x + § > 0 includes the set S, show that the half-space
includes the convex hull of S. Deduce that two sets in RY have a separating plane
if and only if their convex hulls have a separating plane.

*19. Generalize Problem 9: Let F be any non-empty closed set in R¥; let b lie outside F.
Prove that F contains a nearest point to b.

*20. Prove the Bolzano-Weirstrass theorem as follows: First look at R!. Let x; (i = 1,
2,...)lie between a, and by. Let my, = $(ao + by). Show that infinitely many x; lie in
[ao.m]. or inifinitely many lie in [mg,b,]; accordingly let [a,,b,] be one of those
two intervals. Similarly define [a,,b,]. Show that a,1,b,|,b, — a, — 0. Show that
there is a convergent subsequence x¥, where a, < x* < b,. Extend the result to R¥
by looking at the N coordinates separately, taking subsequences of subsequences.

7 Finite Cones and the Farkas Alternative

We have considered linear programming in the canonical form

Ax=b x=0 1)
¢Tx = minimum. )

We defined the feasible solutions as the vectors x satisfying (1). An optimal
solution is a feasible solution with minimum cost ¢’x.

A feasible solution x may not exist; that depends on the matrix 4 and
on the vector b. We will now give a geometric meaning to the condition of
feasibility (1).

Let A be an m x n matrix. Define the set of all linear combinations of
the columns of 4 with coefficients x; > 0:

C={x,a' + x,a* + - - + x,a": all x; > 0}. (3)

The set C is called the finite cone generated by the finite collection of vectors
al,a? ...,a" In terms of the matrix 4 and of vectors x = 0, the definition
(3) says
C={Ax:x>0}. 4)
This gives a geometric meaning to feasibility: The equation Ax = b has a
solution x = 0 if and only if b lies in the finite cone C.

ExampLE 1. Consider the equation Ax = b for x = 0, where A is the matrix
2 0 -1
A= . 5
[1 1 2:| ©)
For this matrix the finite cone C is the shaded set in Figure 1.

A feasible solution x > 0 exists iff b lies in the cone C. For instance, if
b = (1,0)7, then b lies outside the cone, so no feasible solution x exists. But
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if b=[—9,63]", then b lies in the shaded region between a* and 4> so a
feasible solution x does exist. (The 3-dimensional vectors x don’t appear in
Figure 1; only the 2-dimensional vectors Ax appear.)

The cone in Figure 1 is generated by the three columns of A. The same
cone is generated by just the first and third columns. It could not be gen-
erated by the first and second columns or by the second and third.

ExaMrLE 2. Let A be the matrix

21 -3
a-l 15 4l ©

The columns of this matrix appear in Figure 2.

c, c,

C;

Figure 2

What finite cone C do these three columns generate? They generate the
whole plane. Therefore, every equation Ax = b has a feasible solution x = 0.

Again each pair of columns is independent, but this time no single pair
generates the whole cone C. The pair a!,a? generates a sub-cone that we
will call a basic cone; so does the pair a2,a®; and so does the pair a3, a'.
The full cone C is the union of the basic cones. In Figure 2 we see

C=C,uC,uC,.
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Does that sound familiar? It is nothing but a geometrical restatement
of our theorem on basic feasible solutions. Let me explain:

Definition. If the vectors v, . . .,v* are independent, then we call their finite
cone a basic cone:

{pyv' + -+ pt:all p; > 0} (7
Theorem on Basic Cones. Let a',...,a" generate the finite cone C. Let

Cy, ..., C, be the basic cones generated by the subsets of independent vectors
a’. Then C is the union of the basic cones:

C=CiuCu---uC, (8)

PrOOF. Let 4 be the matrix with columns a',...,a" The cone C consists
of the vectors b = Ax with x > 0. In other words, Ax = b has a feasible
solution x > 0 iff b lies in C.
By the theorem on basic solutions (Section 4), if the equation Ax = b has
a feasible solution x > 0, then the equation has a basic feasible solution:
b= ) xd )
JjeB
where the columns a’ are independent for j e B, with all x> 0.
The subset of columns {a’} (j € B) generates one of the basic cones C,
in the union (8). And so the full cone C consists of those vectors b that lie
in one or more of the basic cones C,. ]

To prove the duality theorem of linear programming, we shall use the
strict separating-plane theorem for convex sets. But first we must prove that
finite cones are convex and closed.

Lemma. Every finite cone is convex and closed.

Proor. Convexity is easy. Let C be generated by the columns of 4, so C
is the set of points Ax with x > 0. Let Ax' and Ax? be two points in C.
Then

(1 — 0)Ax* + 0Ax? = A((1 — O)x* + 0x?),

where the vector in parentheses is >0 if 0 < 8 < 1. Therefore, C is convex.
Closedness is harder. First look at one of the basic cones C, in the
union (8). Let’s show that each C; is closed.
Let b',b?, ... lie in C,, and suppose

b¥ >b* as N - . (10)
We want to show that b* lies in C,. Using the formula (9), we write
V=Y xya (N=12...), (11)
jeB

where the independent columns {a’} (j € B) generate the basic cone Cy.
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By linear independence, we know

Yuja’#0  ifsome u; # 0.

B
Letting u lie on the unit sphere [u| = 1, we get a positive lower bound
2 ua’
B
Now by homogeneity we deduce
> vl
B

(This result would be false if the vectors a’ were dependent.)
Since we assume the bV converge in (11), we know that b¥ — b -0 as
N and M go to infinity. Then
BN —pM =y (xnj — xp)a’ >0 as N,M - oo. (14

jeB

2e>0 if Yul=1 (12)
B

Zep if Y v}=p? (13)
B

Now set xy; — xp; = v; in (13). Then (13) says
le - bM| 2 epyy  if Z (xn; — xMj)2 = Pim-
jeB
Dividing by & > 0, we find that py, — 0 as N - o0 and M — co. Therefore,
for each j € B there is a limit

¥> 0. (15)

hm xNj = xj

N-w
Using these limits in (11), we get

b* =) xtal,
B

which shows that the limit b* lies in C,. This proves that each basic cone
C, is closed.

It follows that the union C is closed. For suppose b" in C and suppose
bY — b* as N — 0. Since the number of basic cones C ; is finite, an infinite
subsequence of the convergent sequence b" must lie in some single basic
cone C,. Since the basic cone C, is closed, the limit b* must lie in C,. But
C, lies in C, and so the limit b* lies in C. O

Now comes the great theorem of Julius Farkas: the alternative of linear
programming. This plays the same role in linear programming that the
Fredholm alternative plays in linear algebra. By the way, we’ll show that
the Farkas alternative immediately implies the Fredholm alternative. But
most important for us is this: The Farkas theorem gives the duality theorem
of linear programming. That you will see in the next section.

Farkas proved his theorem in 1902. Just for fun, I looked up his paper
in the old journal where it was published. His proof is long and tedious;
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I never could quite understand it. As you know, the first proof of a great
theorem is ofteh long and tedious, like the first trip into a new territory.
But we no longer go from the east coast to the west by covered wagon,
and we need not prove Farkas’s theorem by Farkas’s method. We will use
the separating-plane theorem (Theorem 1 of the last section).

The Farkas Alternative. Either the equation
(i) Ax=0b has a solution x = 0
or (exclusive)

(i) yT™4=0, y"b<O0  has a solution y.

(Here the or is exclusive, meaning that one case must occur but both
cases cannot occur.)

ProoF. Both cases cannot occur, for if y74 > 0 and x > 0, then y"Ax > 0,
which says y"b > 0, and so (ii) is false.

It remains to show that one of the two cases must occur. Let us suppose
(i) is false and prove that then (ii) must be true.

If (i) is false then the point b lies outside the finite cone C generated by
the columns of the matrix 4. As we have proved, the cone C is convex and
closed. Therefore, there is a plane that strictly separates C from b:

a’z+pf>0 forzinC (16)
a’z4+ Bp<0 forz=5b (17)

In (16) set z = A(Ax) where x is any fixed vector >0, and where 4 is posi-

tive. This gives
aTAAx)+ >0 forx>=>0,1>0.

Dividing by A and letting 1 — + o0, we get
a"Ax>0 for x=0.
Since this holds for all x = 0, we deduce
a4 =0. (18)

Since the origin lies in C, we may set z = 0 in (16); this shows f > 0.
Now (17) says

ab=—-p<0. (19)
Done. All you do now is set y = a, and the last two formulas give Farkas’s
case (ii). O

ExaMpLE 3. As in Example 1, define

2 0 -1 1
[0 -]l -
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As we saw, the equation Ax = b has no solution x > 0. In other words,
Farkas (i) is false.

To get a vector y for Farkas (ii), look at Figure 1. Insert the vector b,
which points from the origin to the right. We want a vector y with a nega-
tive projection on b but with non-negative projections on all three of the a”.
If you look at the figure, you’ll see that the vector y must point somewhere
between a? and a3. For instance, this will do:

T =[—1,10].
Now we verify y"4 > 0, yTb < 0:
yTA =[81021], b= —1.

ExXAMPLE 4. The Fredholm alternative of linear algebra. Consider the assertion
Ax = b has a solution x. (19

This assertion may be true or false, depending on the given 4 and b. Let’s
state this assertion as a Farkas case (i) and get the alternative Farkas
case (ii).

Our assertion is not yet in the form (i), because it contains no sign con-
straint x = 0. So we use an old trick of linear programming: we set the
unconstrained x = u — v and require > 0 and v > 0. Now (1°) becomes

Aw—v)=>b  hasasolutionu>0,v= 0. (19
In partioned form, this says
[4,—A] [Z] —=b  hasasolution > 0. 1°)
Now we do have a Farkas case (i). What is the Farkas alternative? It is
this
y7[4,—A4] >0, y"™b <0  has a solution y. (ii)
If we unpack the first inequality, we find
y"A>0 and y"(—-A4)=0,
which means simply y”4 = 0. Now (ii) says
yTA=0, y"™h <0  hasasolution y. (i)

Here the sign of y”b is irrelevant, since we can replace y by —y. Thus (ii)
says this:
yTA=0, y™b#0  hasa solution y. 29

In other words, either we can solve Ax = b or (exclusive) we can find a
vector y that is orthogonal to all columns of A but not orthogonal to b.
The alternative cases (1°) and (2°) constitute the Fredholm alternative of
linear algebra, which Fredholm used in his theory of linear integral equations.
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EXAMPLE 5. Steady states of Markov processes. Suppose that a particle can
be in any one of states numbered 1,2, ..., n (think of a Mexican jumping
bean that can be in any one of n cups). If the particle is in state j, let p;;
be the probability of a transition (a jump) to state i. We require p;; > 0 and

=

py=1 (i=12...,n). @n

i=1

At a certain instant, let x; equal the probability that the particle is in
state j. Then

n
x;20 and ) x;=1 (22)
j=1
The vector x = (xy, . ..,X,)" is called the probability state vector, or just
state vector.
After a transition the particle will lie in state i with probability

Vi = PitX1 + DiaXa +** F PinXan (i=1,...,n). (23)

Evidently, all y; are >0, and the equations (21) and (22) guarantee Z y;i=1

By (23) the new state vector y is related to the old state vector x by the

equation y = Px, where P is the Markov matrix of transition probabilities.
A steady state is a state vector x that goes to itself:

x=Px, x>0, Yx;=1

For instance, if P is symmetric, we have the steady state

/11 1Y
- n,n9"-,n ’
for then,ifi=1,...,n,

" 1 1 1
j§=:1 pijsz;l'zj:pij—ﬁg,pji =u

But if the Markov matrix P is not symmetric, it is not so easy to prove there
is a steady state.

Farkas's theorem implies that every Markov matrix P has a steady state.
Here’s how:

We will express the steady-state condition as a Farkas case (i). Let 4 be
the matrix whose first n rows and columns are the square matrix P — I, and
let the n + 1st row of A consist of 1’s:

A =[P ;TI] with o =[11,...,1]. (24)

Thus, A has n + 1 rows and n columns. Then the Markov matrix P has a
steady state x iff

Ax=b has a solution x = 0, (1)
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where b is the vector
b1=0,...,bn=0; bn+1=1. (25)
Condition (i) just says this:
P—Dx=0 .
( T)x has a solution x > 0.
u'x=1

What is the Farkas alternative? It is this:
yTA >0, y"™h <0  hasa solution y. (i)
Here y must have n + 1 components. If we set

yT = [215 s ,Zn,—l] = [ZT’_A’]’
then (24) gives

yTA =[z7,- 4] [Pu_; I] =zI(P—-1)— ",

while (25) gives y"b = — 1. Now (ii) says
Zi(P-1)= ", 21>0  hasasolution z, A. (i)

If z and A satisfy (ii), then

Y zp—2z;=24>0 (=1,...,n). (26)
i=1
Let z,, = max z;. Then (21) implies

Y zpj<maxz;=z, (j=1,...,n).
i=1

Setting j equal to the special index m, we find

m

Z ZiPim — Zm < 0.
i=1

Setting j = m in (26), we get a contradiction; so Farkas (ii) is false.
Therefore, Farkas (i) is true: every Markov matrix has a steady state.

Ive given you this important application to probability theory to make
a point: the Farkas theorem has tremendous power, and its use should not
be confined to linear programming,.

Reference

J. Farkas, Uber die Theorie der einfachen Ungleichungen, J. Reine Angew. Math,
Vol. 124 (1902) pp. 1-24.
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PROBLEMS

1. If A is the matrix

draw the cone C = {Ax: x > 0}.

2. If A is the matrix in Problem 1, draw the cone C,, generated by columns 1 and 2.
Also draw the other five cones generated by non-empty linearly independent subsets
of columns. Observe that the union of all six basic cones is the cone C in Problem 1.
(Note: Some of these cones are proper subsets of some others)

3. Let A be the matrix
1 2 3
A=14 5 6]
7 8 9

Which subsets of columns generate basic cones?

4. In the last matrix, change just one component. Now which subsets of columns
generate basic cones?

5. Prove or disprove this assertion: Let f(x) be a continuous function; let C = {f(x):
x > 0}. Then C is closed. (Hint: In R?, look at f(x) = 1/(1 + x) for x = 0.)

6. In general, prove that the union of a finite number of closed sets is closed. Do you
need the word finite?

7. If the m x n matrix 4 has rank r, at most how many basic cones are generated by
non-empty subsets of columns?

9. For which b does the system

41 -2
Ax = =b
x [1 0 5}‘

have a solution x > 0?

10. In the preceding problem let the vector b take these four values:

N ]

For two of these vectors b, find vectors y satisfying
yTA4=0, yh=-99.

11. By introducing slacks, prove this: Either

Ax <b has a solution x = 0
or (exclusive)

yTA420, y'b<0 has a solution y > 0.
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12.

13,

*14.

15.

*16.

*17.

*18.

19.

20.

Note that 4x = 0, x = 0 has a nonzero solution x iff
Ax =0, eTx=1 has a solution x > 0,
where e7 = (1,1, .. .,1). Prove that the Farkas alternative is:
yTA>0  has a solution.
Find the Farkas alternative of this assertion: The system

1 2 3
4 5 6|x=b
7 8 9

has a solution x with x, > 0 and x; > 0. (Hint: Set x, = u, — v,, with u, > 0,
v, 20)
Find the Farkas alternative of this assertion: There exist vectors x and y satisfying
Ax<b yTA=cT

=0 y=0

cTx = yb.
(The answer appears in the next section. Method: Use composite matrices and
composite vectors.)

Let A be defined as in Problem 13. Find the Fredholm alternative of this assertion:
The system Ax = b has a solution x.

Let P be the Markov matrix

O | —
o O
AW N
[T NV

Find the steady state x.

Let P and Q be Markov matrices with the same dimensions. Show that PQ and QP
are Markov matrices with state vectors x and y satisfying Qx = y, Py = x.

In the plane, draw the cone C generated by the infinite sequence of vectors

af=(’1> G=123...),

Is the cone C closed? Let b = (1,0)T. Is b in C? If not, is there a point in C that is
nearest to b? Let 4 be the 2 x co matrix with the columns a’. Does Ax = b have a
solution x > 07 Is there a vector y satisfying y74 > 0, yTb < 0?7 Does the Farkas
alternative hold in infinite dimensions?

A cone in RY is a set C such that if x € C, then 1x € C for all scalars 4 = 0. A finite
cone satisfies the definition (3). Define a cone in R® that isn’t a finite cone.

Let C be a cone in R¥. Definite the set
C*={y:y"™x < Oforall xe C}.

Show that C* is a cone in RY. The cone C* is called the dual of the cone C.



62 1 Linear Programming

21. In the plane, let the cone C consist of x = 0 and of all points x > 0. Is C a finite cone?
Show that C* consists of all x < 0. Define the dual of the dual: C** = (C*)*. For
this example show that C** consists of all x > 0. Note that C** is bigger than C.
In general, prove C** > C for cones in R". Give an example where C** = C.

22. Use the Farkas theorem to prove C** = C if C is a finite cone.

*23. If C is a finite cone, prove that the dual cone C* is also a finite cone.

8 The Duality Principle
We'll begin with an easy consequence of the Farkas theorem.

Lemma. Either
Ax<b has a solution x = 0 @)
or (exclusive)

y'A>0, y"™ <0  hasasolutiony > 0. (i)

PRroOOF. As usual, we express inequalities as equations by introducing slack
variables z; > 0. Using the vector z, we can write Ax < b as Ax + z=b.
Then the alternative (i) takes the form

[4.1] [ﬂ =b  hasasolution [Z] = 0. (i)

Now the Farkas theorem says (i) is true or (exclusive)
y'[4,1]1>0, y"b <0  hasa solution y. (i)
Since yT[4,1] = [y"4,y"], the proof is done.

Now we can derive the duality principle. For convenience, we’ll use the
standard form of linear programming. As you know, this entails no loss of
generality, because every linear programming problem can be put in stan-
dard form.

Duality Theorem. We consider the primal problem

Ax=b, x>0, c'x=min
and its dual,
yTA<c”, y=0, y'b = max.

Then exactly one of these four cases occurs:
1. The normal case: Both the primal and the dual have optimal solutions,
and the two optimal values are equal:

min ¢"x = max y7b. 1)
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2. The primal has no feasible solution x, but the dual has feasible solu-
tions y with
y'h —» + 0. 2

3. The dual has no feasible solution y, but the primal has feasible solu-
tions x with
cx - —oo0. (3)
4. Neither the primal nor the dual has a feasible solution. (Examples of
all four cases appear after the proof.)

Proor. We will find the four cases by straightforward use of our lemma. All
we have to do is write the normal case (1) in the form of a Farkas alternative
(i). Then we’ll look at the Farkas alternative (ii) and see what it says.

NoraTioN. We will use a compound matrix A and compound vectors £, §, b
in place of 4, x, y, b in the lemma.
To use our lemma, we want to write the normal case as a collection of
inequalities to be solved by non-negative unknowns. First we write
(—A)x< —b, x=0, (4)
which says x is feasible for the primal. Then we write
ATy<e, y=0, )

which says y is feasible for the dual.
Finally, we write the inequality

cTx —bTy<0 (6)

to express the equation ¢"x = y™b. In fact, the strict inequality (<) is im-
possible in (6), since all feasible x and y satisfy

c"x = y'b, (M

as we proved before. Therefore, the inequality (6) can hold only as an equa-
tion. Then, as we proved, x is optimal for the primal and y is optimal for
the dual.

To use the form (i) of our lemma, we will express the inequalities (4), (5),
(6) with a compound matrix

-4 0
A=| o AT (8)
¢’ —b

If A has m rows and n columns, then the compounded matrix A hasm + n + 1
rows and n + m columns. We'll also need the compound vectors
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The first vector has n + m components; the second has m + n + 1. Now we
can express (4), (5), (6) as follows:

Ax<b has a solution X > 0. (1)
What is the Farkas alternative (ii)? It is this:
9TA>0, $"h<0  has a solution y > 0. (ii)

We'll express this with a compound vector j. If you look at the definition
of 4, you see that it’s partitioned into three sets of rows. So we’ll partition
97 like this:

T = [v"u"A]. (10)

Here v has m components, u has n, and 4 has one. Then (ii) says that the
following system is solvable:

—A 0
[v"u"A]| O AT[=0
CT _ bT
—b]
[vTu"A]] ¢|<O
0]

[v"uT,A] = 0.
Now let’s unpack and see what we’ve got. This is what we’ve found for
Farkas (ii):
T(—A)+4cT>20, uTAT =T 20, v"(=b)+u"c<0
vzu uz0 Ax=0.

This says:
Auz=lb  vTA<iT  cTu<v'b (ii)

has a solutionu =2 0,v>= 0,4 > 0.
What does this imply? It looks like a primal-dual pair. Indeed, if 4 is
positive, then u/A is feasible for the primal, and v/A is feasible for the dual,

and their values satisfy
cT(u/2) < (v/A)"h. (11)

But that is impossible. For every primal-dual feasible pair, the primal value
must be > the dual value in (11). Therefore (ii) implies A = 0.
Now (ii) is reduced to this:

Au=0, vTA4<0, cTu<vb (i1)
has a solutionu >0, v=0.
The inequality ¢"u < v”b implies

c'u<0 or 0<0vTh (orboth). (12)
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First suppose c¢Tu < 0. Then the dual has no feasible solution y. For if

yfa<c, y=0
and if, by (ii),
Auz=0, u=0,
then we could deduce
0< y"(Au) < cTu.

If the primal also has no feasible solution, then we have Case 4. But if the
primal has a feasible solution x, then

Ax+Aw=b, x+uz0 if 120
and
ATx+u)=c"x+AMc"™w) > —0 as A— .

Then we have Case 3.
Second, suppose 0 < vTh in (12). Then the primal has no feasible solution

x. For if

Ax=b, x=0
and if, by (ii),

TA<0, v=0,
then we could deduce

0= (vTA)x = v7b.

If the dual also has no feasible solution, then we have Case 4. But if the dual
has a feasible solution y, then

(y+A)TA<ce, y+iv=0 if 1>0
and
(y+ A0)"b=y"b + A(v"b) > o0 as A — o0.

Then we have Case 2.

This completes the proof of the duality theorem. Let me summarize the
argument: Unless we have the normal Case 1, the lemma implies there are
vectors u and v satisfying

Auz0, u=0, vT4<0, v=0,
with
cTu<0 or 0<v’h(or both).

The inequality ¢"u < 0 implies we have Case 4 or Case 3; the inequality
0 < v"b implies we have Case 4 or 2. Thus, either we have the normal Case 1
or we have one of the other three cases. Since the four cases are mutually
exclusive, exactly one of them occurs.

ExampLE 1. Here is an example of the normal case:
X;+2x,21; x20; 3x;+4x, =min.
yi<3, 2y:<4; y;20; y, =max.

Both optimal values equal 2.
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ExaMpLE 2. Here the primal has no feasible solution, while the dual has

optimal value + co:
—Xx; —2x, 2 1; >0; 3x, + 4x, = min.
4:

X
-y <3, -2y;<4; y;=20; y,=max

ExAMPLE 3. Here is the reverse of the last example:
x> -3, 2x,=>—4; x,20; —x;=min.
y1+2y, < —1; y=0; -3y, —4y,=max.

The primal has minimum cost — co; the dual has no feasible solution.

ExaMmpLE 4. Here there is no feasible x and no feasible y:
x, =2, —-3x,24; x=20;, —5x; —6x,=min.
yi1< =5 =3y,< -6, y=0; 2y, +4y,=max.

Using the duality theorem, we can prove the full equilibrium theorem.
Before, we proved the easy half of it. We will revert to linear programming in
the canonical form because that‘s the form we use in computation.

Equilibrium theorem. The feasible solution x is optimal for
Ax=b, x>0, cTx=min. (13)

if and only if there exists a vector y satisfying
Zyiaij<Cj (j=1,...,n) (14)
i=1

with equality for all j for which x; is positive. (Here A is the matrix with com-
ponents g;;, as usual.)

PRrOOF. Before, we proved only the “if” part. But now we have the duality
theorem, and we know that the primal (13) has an optimal solution x only in
Case 1. In that case there exists a vector y that is optimal for the dual:

yTA<c’, yTb = max.

And the two optimal values are equal: ¢"x = y7b.
Then we have
0=cTx — yTh = (cT — yTA)x,

which says

0= Z (Cj—‘ Z yiaij>xj'. (15)

ji=1 i=1

For feasible x we have x; > 0; for feasible y every factor (.. .) in (15) is also
>0. So equation (16) implies that the factors (. . .) equal zero for all j for which
x; is positive. O
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We used the equilibrium equations and the dual vector y in our discussion
of the simplex method. You may now think that the dual vector y has no
meaning, though it can be useful. In the next section, you'll see that the
optimal dual vector y does have meaning: the component y; is a shadow cost.
If the requirement b; changes by db;, and if the basis doesn’t change, then the
minimum cost changes by y; times 6b;. In applications like those in petroleum
industry, this information is valuable because the data b; are seldom exact.

PROBLEMS

1. Guess the optimal solution of this problem:

X = x=20, 2x;+x,+x = min
= U, .
2 3 A 75 1 2 3

Then solve the two equilibrium equations for the optimal dual vector (y,,y,); verify
the equilibrium inequality (daul feasibility). For this example, identify the compound
matrix 4 and the compound vectors %, b. Verify the inequality 4% < b.

2. Verify the duality principle for the degenerate canonical program

12 3] |4 50 + %. = mi
234x—6,x/,xl X3 = min.

3. Let A be the matrix
Ao 1 0 -1
o1 of

Consider all the canonical minimum problems Ax = b, x > 0, ¢"x = min. Identify
those pairs of vectors b, ¢ that produce each of the four cases in the duality theorem.

A_1—1 0
1 -1

5. Obtain an equilibrium theorem for the standard linear program

4. Let A be the matrix
Now do as in Problem 3.

Ax=b, x>0, ¢Tx=min.
(Introduce slack variables and use the canonical form.)
6. Verify the equilibrium theorem for the degenerate program in Problem 3.

7. Find equilibrium conditions for the Chebyshev approximation problem
—XOSZaijxj—bi<x0 (l=1,,m)
j=1

X = min.

*8. Refer to the discussion of the idea of the simplex method. Use the simplex method
to prove the duality theorem for nondegenerate canonical minimum problems. Does
this proof work for degenerate problems? (Does the proof in the text work for
degenerate problems? Yes!)
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9 Perturbations and Parametric Programming

In applications, data are seldom exact, so it’s important to know how the
solution changes if the data change a little.

Of course, one way to find out is to do the whole computation over and
over for various proposed sets of data. If the problem is big, and if each com-
putation takes hours of computer time, this process is slow and very expen-
sive. What’s worse, you may get no insight—just pages and pages of numbers.

What you want to know is this: What is the effect of each input on the
minimum cost? Which of the inputs affect the cost most?

Now I'll show you how the dual vector answers these questions. And so
you’ll see why the dual vector is cherished by oil-company vice presidents
and not just by mathematicians.

As you know, by the simplex method we solve the linear programming
problem in canonical form:

Ax=b, x>0, c'x=min. 6))

We assume that the problem is non-degenerate.
At each stage of the simplex method, we use a vector y that solves the
equilibrium equations,
vl =¢;  (jeB), 2

where B is the current basis. We stop when the equilibrium vector y is feasible
for the dual program:

yidd<e;  forallj=1,...,n ©)

When this happens, x is optimal for the primal (1); and by the way, y is
optimal for the dual:

yTA <, y'b = max, 4

with
min. cost = ¢Tx = yTh. 5)
Question: What happens to the minimum cost if the requirement vector b

changes by a small perturbation db?
Answer: The minimum cost changes by this amount

6 cost = yT(6b) = y,0b; + y,0b, + - + YuObpm. (6)

In applied mathematics, perturbation theory usually gives answers that are
approximate—correct to first order. But I have a surprise for you: Formula
(6) is exact.

This gives meaning to the dual vector y. The component y; is the shadow
cost of the ith requirement: if the ith requirement changes by 6b;, then the
minimum cost changes by exactly éb; time y,—provided |b| isn’t too big.
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This beautiful result follows from the equilibrium theorem. For suppose
b changes by 6b; then we can solve the system

Y (xj+ 0x)a’ =b + b (7

jeB
for the m unknowns x; + éx; (j € B). This is a non-singular linear system of
m equations in m unknowns; the matrix of the system is the invertible basis
matrix M whose m columns are the &’ for j in B.

By non-degeneracy, we have x; > 0 for the basic components (j € B) of
the original basic optimal solution x. Therefore, we have

x;+0x;>0 for jeB (8)

provided |6b| is small enough. That’s because the m components (8) con-
stitute the vector M ~1(b + 6b), as you see by multiplying (7) by the inverse
of the basis matrix. Therefore,

(5xj)jeB=M_15b7 (9)

so all the numbers dx; tend to zero as the perturbation vector db tends to
Zero.

Thus, the numbers x; + dx; are all positive for j € B, and they give a basic
feasible solution for the primal problem (1) with b perturbed by 8b. But is
this solution optimal?

Yes. You see, the old optimal dual vector y still solves the equilibrium
and feasibility conditions:

yid =cj(jeB); yd<c(j=1,...,n). (10)

After all, ¢ hasn’t changed and B hasn’t changed—B is still the index set
where the primal feasible components are positive. That’s all we need to
know. The equilibrium theorem says that the new basic feasible solution
X + Ox is optimal; and by the way, the old optimal dual vector y remains
optimal.

All right. It seems almost too easy. Let’s look back. What made the proof
work? Just one thing: the perturbed basic components x; + dx; had to
remain > 0; as long as the data perturbation §b was small enough to guaran-
tee that, the proof went through.

Ah, you say, but what if 6b doesn’t remain small enough to guarantee
that? What then?

Then the optimal basis B has to change, and our pretty formula (6) doesn’t
work any more, and you have to go to the computer for another run.

For large perturbations Jb, or for degenerate problems, I'll give you a
theorem on what is called parametric programming. We consider two require-
ment vectors, b and b'. We introduce the parameter 0 and draw the line
segment

bO)=(1—-6p°+6b* (0<O<L1),
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If you keep the matrix 4 and the cost vector ¢ fixed, then the family of
vectors b(6) generates a family of linear programs:

Ax = (1 — 0)b° + 0b! 0<<]
x 20, c'x=min. = u(6)

(1)

The question is this: How does the minimum cost u(6) behave as a function of
the parameter 0?

You’ll see that u(6) behaves like the function in Figure 1: it is continuous,
convex, and piecewise linear. This doesn’t give you numerical results as our
small-perturbation formula (6) did, but it does give you a general, qualita-
tive understanding.

—_
=)
Pt

—_—————— 3

Figure 1

—_——

This reminds me of a comment by the famous electrical engineer John
R. Pierce. Speaking of Shannon’s information theory, he said: “What some
of us attained was perhaps wisdom rather than knowledge.”

Theorem. Suppose that the linear program (11) has optimal solutions x° and
x! for @ = 0 and 0 = 1, respectively. Then the program has an optimal solution
for every intermediate value, 0 < 0 < 1. The minimum cost u(0) is continuous,
convex, and piecewise linear for 0 < 0 < 1.

PRrOOF. Please note that the theorem does not assume nondegeneracy. Nor
does it assume that optimal solutions exist for 0 < 8 < 1; we have to prove
that.

We'll use the dual program:

yrA<ct, yT[(1 — 6)b° + 6b'] = max. (12)

Note that the dual feasibility condition (y”4 < ¢T) is independent of the
parameter 6; so if y is feasible for & = 0, then y is feasible for all 6.
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But we assume that the primal problem has an optimal solution x° for
6 = 0. Then the dual has a solution y = y° that is optimal for § = 0; so y°
is feasible for 0 < 0 < 1.

We'll now show that the primal problem has feasible solutions for
0 < 0 < 1. Here they are:

x=(1-0)x°+0x! 0<0<). (13)

Here x° is the given optimal solution for b = b°, and x! is optimal for b = b'.
Then the vector X satisfies

x20, Ax=(1-0)p° + 0b'. (14)

In general, X is not optimal, but it is feasible.

For each 6 in 0 < 6 < 1, we've found a pair of vectors (X and y°) that are
feasible for the primal and the dual. Now the duality theorem tells us this:
For each 6, we have the normal case—optimal solutions exist for the primal
and dual problems, and they have a common value,

u(0) = min ¢"x = max y”b. (15)

Now we’ll show that u(6) looks like Figure 1. We'll prove this: For each
0, u(0) is the maximum of a finite number of linear functions:

p(60) = max[1,(0),45(0), . . . ,Ax(6)], (16)
where each 4,(6) has the form
AO=a+p0 (0<0<L1) (17)

(In Figure 1 I've drawn u(6) as the maximum of four linear functions.)
We'll use the theorem on basic optimal solutions. First, we write the
dual (12) as a canonical minimum problem. We write the unconstrained
vector y as the difference u — v, with u > 0 and v > 0; and we introduce the
slack vector z > 0. Then (12) becomes the canonical minimum problem

Afu—v)+z=c; u=0, v=0 z=0

—[(1 — 6)b° + 661 (u — v) = — u(6) = min. (18)

We’ve proved that the equivalent problem (12) has an optimal solution;
therefore, the canonical problem (18) has a basic optimal solution. But there
is only a finite number of basic feasible solutions:

{uf 0% 2%} (k=1,...,N). 19)

Each feasible solution is a triple of vectors {u,v,z}, and the feasible solutions
are independent of 6 because 4 and ¢ are independent of 6.

For each 0, to minimize the cost — u(6) in (18), we pick the best of the N
basic feasible solutions. This gives

~u(6) = min {—[(1 — 0)B° + Ob]7(u* — v¥)}.
1<k<N
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Multiplying this by — 1, we get
w(0) = max {oy + B0}, 20)
1<k<N

where, if y* = u* — v¥,

o = ()Y, Bi=(b' = bO)TY.
This proves the asserted formula (16), which implies that u(6) is continuous
and piecewise linear. (It is continuous because it is the maximum of a finite

number of continuous functions.)
It remains to prove u(60) is convex:

(1 =18y + 7)) < (1 —u(6,) + Tw(d) (O<e<1). (21
To prove this, suppose 8 = (1 — 7)0, + 10,, and suppose
H(0) = 4,(0) = max 4,(0). (22)
1<ksN

Here the maximinzing index m depends on 0. If 0 stays fixed, the linear
function A, satisfies

An(0) = Ap((1 — 7)1 + 102) = (1 — T)An(61) + T4(02)- (23)
But
Anl01) < mkaX Al0y) = w(@y),

and similarly, 4,(0,) < u(6,). Therefore, (23) gives
Anl(0) < (1 = 1)u(8y) + Tp(6,).

Since 4,(0) equals u(6), this function is convex.

Perturbations of the cost vector. In the canonical problem (1), suppose
we perturb the cost vector ¢. What is the effect on the minimum cost?

Let x be a basic optimal solution belonging to the cost vector c. Let
x; > 0 for j € B, and assume the problem is non-degenerate.

The equilibrium and feasibility conditions are

ylad=¢; forjinB (24)
y'a* ¢,  forsnotin B. (25)

Usually the inequalities (25) will be strict inequalities (< ). Assuming this,
let ¢ become ¢ + dc, and let y + Jy solve the non-singular linear system

(y+0y)Ta =c;+6c; forjinB. (24)
If §c is small, then y must be small; so we must have
(y+6yTa*<c, forsnotinB, (25)

provided the strict inequalities (<) hold in (25).
Then we assert this: x remains an optimal basic solution for the perturbed
primal, and the perturbed minimum cost is just (c + dc)7x.
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Proor. Since A and b do not change, x remains feasible for the perturbed
primal problem. Since x; > 0 for j in B, formulas (24’) and (25') provide new
equilibrium conditions when ¢ becomes ¢ + dc. Therefore, x remains optimal.

The preceding analysis fails if the inequalities (25) are not strict, or if the
problem is degenerate, or if dc is large. Then, as before, we can use parametric
programming,

Before, we perturbed the requirement vector; now, instead, we are per-
turbing the cost vector. But in principle, that can’t make any difference. We
can always restate a linear programming problem so that the primal becomes
a dual and the dual becomes a primal. Then the cost vector becomes a
requirement vector, and vice versa. And now we can apply our theorem on
parametric programming.

Before we analyze more complicated perturbations, we'll need a theorem
that guarantees uniqueness for the optimal solution vector.

Uniqueness Theorem. Let A be an m x n matrix. Let x° be a basic optimal
solution for the canonical program

Ax=b, x>0, c"x=min. (26)

Let x; > 0 for j € B; let x;, = 0 for s € B'. Let an optimal dual vector y° satisfy
the conditions

yid =c;(jeB), y'a*<c(seB), @7
with strict inequalities for the non-basic indices s € B'. Then x° is the unique

optimal solution of the primal, and y° is the unique optimal solution of the dual.

PrOOF. Suppose x! is another optimal solution for the primal (we don’t
assume x! is a basic solution). Let x! — x° = v. Then Av = Ax' — Ax® =0,
and v = x! for se B’; so

Av =0, withp,=>0 for seB. (28)
Therefore,
0=yTdv =Y (y"dyw;+ Y, (yTa"),,
jeB seB’
or
0=3 cw;+ Y (ya), (29)
B B’

If v # 0, then v, # O for some s € B', because Av = 0 implies v = 0if v depends
only on B. But if, for se B/,

v, =0 with some v, # 0,
then the strict inequalities yTa* < ¢, imply
YT, <Y ey,
B’ B’

Now (29) implies
0<Y cp;+ Y ¢,
B B’
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or
0<cfv=cT(x* —x%,

so x! could not be optimal.
Now we know that x° is the unique optimal solution of the primal. Then
every optimal dual solution y must satisfy the equilibrium equations

yia=c; (jeB), (30)

as we proved in the Equilibrium Theorem. Since the vectors a’ are assumed
independent for j e B, the equations (30) have a unique solution, namely
y = y°. So y° is the unique optimal solution of the dual problem,

yTA <c”, yTh = max. (31)

This uniqueness theorem is useful because its assumptions are usually
correct. Usually the problem is non-degenerate, and usually the non-basic
dual inequalities hold strictly. Now, making these assumptions, we can
obtain a complete first-order perturbation theory, covering simultaneous
perturbations of b, ¢, and the matrix A.

First, I want to make a remark on perturbations of the matrix, A - A+ 0A4:
Now we cannot expect the first-order perturbation formula to be exact.

To see this, let A be an ordinary square, invertible matrix M, and con-
sider the non-singular linear system

Mv =),

with solution v = M~ 'b. Let M become M + 6M, and let’s get a first-order
perturbation formula for the solution.
The perturbed solution, v + dv, satisfies the exact equation

(M + oM)(v + ov) = b, (32)
or
Muv + (0M)v + M(6v) + (6M)(dv) = b.

Since Mv = b, we may cancel those terms, obtaining
(OM)v + M(dv) + (6M)(év) = 0. (33)

The product (0M)(dv) is a second-order term: it is the product of two small
quantities. If we neglect the second-order term, we can solve for dv:

dv = ~M~Y(SM)v. (34)
This is the first-order perturbation formula by dv. It is inexact because we
neglected the second-order term in the exact formula (33).

ExampLE 1. Let a, 8, 7,6 be small. Let

1+a 2+8 RE
[3+v 4+5:|(”+5")_[6]
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Then to first order the perturbation Jv satisfies

S R B H

Now let’s go from linear algebra to linear programming. In the next
example, you'll see we have to be careful: the minimum cost may depend
discontinuously on the matrix A

ExampLE 2. For small ¢ > 0, consider the canonical problem

I+e 'x;,—(1—gx,=1
xl_szl
x 20, x;=min

For ¢ # 0, the two equations have the unique solution
x;=14+¢&"1 x,=¢71,

and so the minimum cost is 1 + ¢!, which tends to co ase — 0. Butife = 0,

the two equations both say x, — x, = 1, and the minimum cost for x > 0

is x; = 1. And so the solution x and the minimum cost depend discontin-

uously on the matrix.

Regular perturbation theory. In the last example, the limiting problem
was degenerate. Now assume, instead, that the canonical problem

Ax=b, x>0, c"x=min.

is non-degenerate, and assume that x° and y° satisfy the conditions of our
uniqueness theorem. Let A, b, and ¢ have small perturbations 84, §b, and dc.
Then we can derive formulas for the first order perturbations dx, dy, and du
(where u = ¢Tx = yTb).

Let M be the basis matrix, whose columns are the basic columns &’ for
j € B. We assume xj? >0 for je B, x? =0 for se B'. The perturbation 54
induces a perturbation of the basis matrix:

SM = (5'); . 5.

For small perturbations 4, the matrix M + M remains non-singular, since
its determinant remains non-zero.

The vector x° has n components; m of them are positive, and n — m of
them are zero. We now define the compressed vector X consisting of just the
m positive components of x°. Thus, we have

Ax®= Y x%a) = Mz =b. (35)
jeB

Similarly, we define the vector

= (Cj)jeB-
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Then we can write the m equilibrium equations, y"a/ = ¢;(j € B), in the
simple form
yTM = ¢T. (36)
For regular perturbations the basis B stays fixed. Then these are the exact
equations that determine 0%, dy, and du:
(M + OM)(x + 6X) = b + b, (37)
(y° + 6y (M + 6M) = (¢ + 60), (38)
A+ op=(C+ 607 (X + %)
=(y° + 6y)"(b + b)
(Notation: In all these formulas, if v is a vector with components v; for
j=1,2,...,n, then 7 is the vector with just the components v; for j in the
basic index set B.)

Since M has an inverse, all these equations are solvable if 6M is small
enough. And since we’ve assumed the strict inequalities

()'e<ce, (seB)

(39)

we must obtain

(Y +6y)Ta* <c;+ ¢, (seB)

for small perturbations. Then the basis B does not change, and the exact
solutions
X+0%, ¥+ 0y, u+éu

give the new optimal primal and dual vectors and the new minimum cost;
that follows from the equilibrium theorem.

To get first-order approximations, we drop the second-order terms in
the exact equations. After cancellations, we get

(OM)% + M(6%) = ob (37.1)
6™ + (YO)™™ = (60" (38.1)
~ ATSc ATo
oux=¢ fx + (60)'x (39.1)
= (y°)73b + (6y)"b

If we solve for 0% and Jy, we get

5% = M~ 1[6b — (SM)%]

(0" = [60" — () EM)IM ™! @

and now (39.1) gives du.

Finally, let’s find the first-order perturbation of the inverse basis matrix.
Let M~ = U. Suppose M becomes M + 6M. Then U becomes U + U,
where

(M + oM)(U + 8U) = 1.
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To first-order, this gives
MU + (§M)U + M(SU) ~ I.
If we cancel MU and I, we can solve for §U:

U= —M YSM)U
or

|5U > — U(éM)U.l (41)

ExaMPLE 3. Consider the canonical program

12 3 5
[4 5 6}:[14}(/&:@

x>0, x,=min. (u = ¢"x = min.)

This is a solution: x; = 2, x, = 0, x; = 1. Here we have

B={13}, %= m & = [00] = [enes].

13 . I[ 6 -3
M*[4 6]’ M _U_‘E[—4 1]’

()T ="M~ =10,0].
Note the strict inequality for the non-basic index s = 2:
()'a*=0<c,=1.

This inequality shows we can use regular-perturbation theory. Given small
perturbations 64, db, dc, we know the basis doesn’t change, and we have
formulas for 6%, 8y, Sy, and SU.

For instance, since ¢ = 0, formula (39.1) gives the cost perturbation

O = (60 = 28¢y + dc;.
Reference

J. R. Pierce, The early days of information theory, IEEE Transactions on Information
Theory, Vol. IT-19 (1973) pp. 3-8.

PROBLEMS

1. Let x(6) be optimal for

12 3 1 4
[4 5 6}:(1-9)[3}0[9], x>0,

[3,3,5]x = min. = u(0).
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Let y(6) be optimal for the dual. Show that x(0) = [$,3,0]%, and find y(0). Using
formula (6), find u(6) for small 6.

2. In the preceding program, solve for x(6) and y(6) for 0 < 0 < 1, and draw the graph
of u(f). For which 6 is x(6) not unique? As 6 increases from zero, where does the
perturbation formula (6) fail? Where is u'(6) discontinuous?

[l 23 1
x = , x=20,
4 5 6 3

[3,34 — 20]x = min. = u(0)

3. Let x(8) be optimal for

Let y(6) be optimal for the dual. For 0 < 6§ <1 find x(6) and y(6), and draw the
graph of u(6). For which 6 is x(6) not unique? For which 6 is 1/(6) discontinuous?

4. Consider the canonical minimum problem

1 0 2 4 7

1 57 1lx=|9] x=0,
2 01 1 4
[2,19,6,—2]x = min.

(The large cost component ¢, = 19 makes one guess x, = 0.) Compute the optimal
x and the optimal dual y; verify that ¢"x = y7b = 6. Compute the new optimal cost
if the requirement vector b changes to

7.003
b4 db=|8999 .
4.002

(Do not compute the new optimal x.)

5. In Example 1 set « = ¢, § = —¢, y = 2¢, 6 = 3¢ where ¢ = 0.01. Compute the exact
value of 6v and compare it with the first-order perturbation.

6. Let M~ exist, and for small |¢| let
(M + eP)v + ev™ + 2@ + - ) =b.

If v is known, show how to compute the vectors v'*, v, . . . recursively, assuming
the power series converges.

*7, (Continuation.) If M ™! exists, show that the determinant of M + &P is a polynomial
in ¢ that is nonzero for & = 0. Deduce that the vector (M + ¢P)~'b has components
that are analytic functions of ¢ for small Isl, so that a convergent power series Zefp®
does exist.

8. Using the first-order perturbation formula, compute an approximate inverse for
the matrix.

0.999 2.001
2998 3.002 ]
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9. In Example 3, use the perturbations

5 -1 7 1
5A=£|:_2 0 3}, 5b=8|:_2:l,

3cT = ¢[2,-5,7],

where & = 10™*. To first order, compute dx, 8y, du, and U.

10 The Simplex Tableau Algorithm

Previously, I explained to you the idea of the simplex method—what it does
and why it works. Now we’ll get into the details of an algorithm you might
use for a general computer code.

Let A be an m x n matrix with m < n; assume the rows are linearly
independent. Consider the canonical linear program

Ax=b, x>0, c"x=min. 1)

If we assume that b is a linear combination of no fewer than m columns of A4,
then the problem is what we called non-degenerate.

Suppose we start a Phase II calculation. We have a basic feasible solu-
tion x, and we want to compute a new basic feasible solution x’ with lower
cost. To get a first basic feasible solution, we had to perform a Phase I
calculation. As I showed you, Phase I calculations are just special Phase 11
calculations, so they do not require a different algorithm.

Suppose our given basic feasible solution x depends on the m columns
a'forj=j,,...,j. Then we have

x;>0 for jeB; B={j,... jm} 2
Let me call the basic vectors
v =gt i=1,...,m). 3)

Then v, ..., v™ are the columns of the current basis matrix M.
We now express all the columns of 4 in terms of the basic columns:

d=tpt+tpr 4+t (j=1,...,n0), 4
and similarly we can write
b =to0" + tyov? 4+ + Luot™ (5)
This gives the simplex tableau

t)i=1,...,m; j=1,...,n0. (6)

235 9
A=[3 4 7]’ b=[13]‘ Y

ExampLE 1. Let
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Let the current basis vectors be the third and the first columns of 4: v! = a3,
v? = a'. Then this is the tableau:

! a a® b
310 1 1
it -1 0 2
The second column, for instance, says
a’—a' =a% (8)
The last column says
a’® +2at =b. 9)

This gives the components of a basic solution: x; = 1, x; = 2, x, = 0. If you
look at the matrix A and the vector b defined in (7), you can verify formulas
(8) and (9).

The extended simplex tableau. For some purposes, it’s convenient to

extend the tableau by expressing the natural unit vectors e,...,e™ in
terms of the current basis:

d=3Y upt (j=1,...,m). (10)
i=1

This extends the tableau like this:

al a b et e
1
U7 oty b tio Wi T Ugm
(11)
o™ tml U tmn tmO Ui T Umm

Since the natural unit vectors e’ are the columns of the identity matrix, I,
and since the basis vectors v* are the columns of the basis matrix, M, the
equations (10) can be written as the matrix equation

I=MU, (12)

where U is the m x m matrix (u;;). Thus, U is the inverse of the current basis
matrix, M.

Similarly, the original tableau equations, (4) and (5), can be written as the
matrix equation

[A,b] = MT (13)

where T=(t;) (i=1,...,m;j=1,...,n0). And since U=M"", the
extended tableau equals

[T;U] = M™'[Ab:I], (14)
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ExampLE 2. In Example 1 the basis matrix is

M =[aa'] = [3 g]

U=M"" =[_,3/ ~§:| = (u;)).

This gives the extended tableau

Therefore,

a’ |0 1 1 1 30 =2 (15)

The first part expresses all the columns of A in terms of the current basis;
the second part gives the positive components of the current basic solution;
and the last part gives the inverse of the current basis matrix.

Changing the basis. Suppose we are given a simplex tableau (11), with
a current basis v, . . ., v™ The basic vectors ¢ are certain columns of A.

Suppose @’ isn’t in the current basis, and we’ve decided to bring it into the
basis. We want to replace one of the current basic vectors by a*. How do we
do this? How do we get the new tableau? And most important: How can we
be sure that the new basic solution will be feasible?

We assume that the current basic solution is feasible:

Thus, the current basic feasible solution x satisfies
Ax =) x;a' =) xjal =) tio0' =b, 17
ji=1 jeB i=1

and so the t;, are just the positive components of x.
Let the new tableau have the components
t_/

i, i=1,...,mj=1,..,n0), (18)

uj; Gj=1,...,m). (19
Suppose we replace the current basic vector v" by the vector a°, leaving the
other basic vectors ¢ unchanged. Then the new basic solution x’ will have

non-zero components
te (i=1,...,m) (20)

If x' is to be feasible, the components t;, must be positive. This requirement
will decide the choice of v".
Let’s express @ in terms of the current basis:

=t 0 4 LVt L™ (21)
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The basic vectors v?,...,v",...,v™ are required to be linearly independent.
If @’ replaces v" in the basis, we must require t,, # 0; for if t,, = 0, equation (21)
shows that the new basis would be dependent.

If t,; # 0, we can express v" in terms of the new basis:

m
V=t a - Y (22)
i=1
i#r
Therefore, if we can express something in terms of v,...,v',...,v™ we can
surely express it in terms of v, ... ,a% ..., v™ Therefore, the new set really

is a basis for the vector space R™. The new basis is
@Y =0o'...,(vY =2a%...,0") =" (23)
Let’s get the new tableau. The coefficients t;; must satisfy
a =) + 0+ (0™
which means
a =10+ i 0. (24)
i=1
i*r

This uniquely defines the coefficients because the new basis consists of
independent vectors.
In terms of the old basis, we had

a" = t,jvr + Z tijvi. (25)
i#r

Now, for the old vector v" I want you to insert the representation (22), which
express v" in terms of the new basis. This is what you get:

al =ttt (as -3 tisvi> + Y v (26)

i#r i#r

This represents a’ in terms of the new basis. The coefficient of a° is

@)

and for i # r the coefficient of v' is:

Itéj = t;; — (Lig/tys)ty; (i# r)’l (28)

These are the formulas for the new tableau.

For the extended tableau, we also want new coefficients u;;. This is no
problem if we regard the natural unit vectors e’ as columns of an extended
matrix [A,/]—indeed, this is exactly what we do in Phase I calculations.
Then we may regard

el — an+1, e2 — an+2’ L ,em = an+m’ (29)
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and so we may define

u,-j= tl',ll+j (i,]= 1,.. .,m). (30)

Replacing j by n + j in formulas (27), (28), we get
u,rj = urj/trs (31)
Uiy = Ui; — (Lis/brs)thy (i #7). (32)

These complicated formulas have a simple meaning,. If we replace v" by a°,
let’s call row r of the old tableau the pivot row, and call column s the pivot
column. Call t,, the pivot element.

The transformation formulas (27) and (31) say this: Divide the pivot row by
the pivot element.

The formulas (28) and (32) say this: If i # r, define the multiplier 6, = ¢, /t,,.
To transform row i, subtract from it 0; times the pivot row.

In summary, for the pivot row r,

new row r = (old row r)/t,; (33)
for row i #r,
new row i = (old row i) — 6, (old row r). (34

The multiplier 8, has a simple interpretation. In the new tableau, we shall
have (1)’ = a®, and so column s of the new tableau will have rth component
t,s = 1 and will have ith component t;; = 0 if i # r. Therefore, in formula
(34) 6, must be the unique multiplier that makes t;; = 0. Indeed, if we set j = s
in (28), we get

tés =l — (tis/trs)trs =0 (l # 7‘),
where (t/t,;) = 0,.

How to choose the pivot row. Given the pivot column s, there is only one
possible choice for the pivot row r, as you will now see. Remember, we assume
that our problem is non-degenerate.

For the current basic feasible solution, we have the positive components
tioi = 1,...,m). The new basic components will be, by (27) and (28),

t;‘O = trO/trs
t;O =t — (tis/trs)trO (l # r)'
Since t;, must be positive, we must require t,, > O—the pivot element must

be positive.
Since tj, must be positive for i # r, we must have

tiO - (tis/trs)tro > 0 fOI' i ?é r. (35)

All four ¢’s in this formula are positive except possibly t;,. If t;; is <0, the
inequality (27) is true; if ¢, is positive, the inequality is true iff

trO/trs < tiO/tis (l # r, tis > 0) (36)
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Thus, r satisfies

tyo/tys = Min{tio/tis: t;; > 0,i=1,... ,m}.| 37)

This minimization uniquely determines r. For if the minimimum occurred
for i = r and for i = p, then we should have

trO/trs = tpO/tps’

which would violate the strict inequality (36) if p # r.

ExampLE 3. In the tableau (15) in Example 2, the current basic vectors are
a® and a'. Suppose we want to bring a? into the basis. To get a new feasible
solution, we require t,, > 0; and for s = 2, thisimplies r = 1, since ¢, , = 1 and
ty2 = —1. Thus, a® will replace v* = a* in the basis.

To get the new tableau, we divide the pivot row by the pivot element
t,, = 1, which leaves the first row unchanged. We than add the first row to the
second, producing t,, = 0. The result is this tableau:

(38)

Note that the new solution components (below b) are positive.

ExaMpLE 4. In the last example, only one component of the pivot column
was positive. Now suppose the pivot column is

3
9 =1-1].

5

Now there are two possibilities for the choice of r, since the pivot column has
two positive components. Which one shall we choose?

To decide that, we have to look at the solution column. Suppose the
solution column is

~

t9=]1]{.

N

Dividing by t;, > 0, we form the ratios % and %. Since the second ratio is
smaller, we decide that the divisor 5 will be the pivot element, and so r =3
will be the pivot row.

How to choose the pivot column. Before we choose the pivot row, we must
choose the pivot column. We will choose the pivot column s to lower the
cost if that is possible.
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The old cost is

c’x =) ¢jj=Ctyo+ + Culmo- (39)
jeB

Here the notation ¢ stands for the unit cost of the basic vector ¢’. If v' = a/;,
then ¢; = c;,. Similarly, the tableau element t;, equals X; = x;, for the current
solution x.

If we decide to choose the pivot column s, what will the new cost be?

In order to introduce the amount A¢® into the solution, we add A times the
equation

a—-) '=0 (40)
i=1
to the equation
tiol! = Ax = b, (41)
i=1
If all coefficients remain positive, we get a new feasible solution x(4), with
a4+ Y (tip — At = Ax(A) = b. (42)
i=1
The new cost equals
/ICS + Z (ti() - j’tis)éi‘ (43)
i=1
In this expression,
Y tiéi=oldcost; Y t,6 =z, (44)
i=0 i=1
Therefore, (43) implies
new cost = old cost — A(z; — c,). (45)

And so it pays to bring in a® iff z;, — ¢, > 0.

As you see from (42), if all t;, are <0 in the pivot column, we can let
A — + o0 and still x(4) will be a feasible solution. (This is called Case 2a in
“The Idea of the Simplex Method.”) If z, — ¢, > 0 and all ¢;; are <O, the
computation should stop, because now we know how to drive the cost to
minus infinity. The computer should print out all the coefficients in formulas
(42)—(45).

If zy — ¢, > 0 and if some t;; > 0, we are in what we called Case 2b. If
several indices s satisfy this condition, we may choose any of them—for
instance, we may choose the one that maximizes z; — c,. Having chosen the
pivot column s, we choose the pivot row r by formula (37). We then form
a new tableau by the rules (33), (34).

This decreases the cost by A*(z, — c;), where A* is the coefficient of &° in
the new basic solution. Since a° = ("), we have

A= t;‘O = trO/trs'



86 1 Linear Programming

If we call the old cost z, and call the new cost z;,, we have

Z/O =Zy — (zs _ cs) tro. (46)

trs

The criterion row. So far, we’ve defined the extended tableau
[T;U] = M~ '[Ab;1], 47)

where M is the current basis matrix. This tableau hasmrowsand n + 1 + m
columns. The tableau lacks certain information that we want, and we will
put that information in a row at the bottom:

2y =€ty 5Zn — €205 YViseros Vme (48)

This is the criterion row.
The first n components have the form

z]-—cj———'z tiGi—c;  (j=1,...,n). (49)

If @’ is in the current basis, then we shall have z; — ¢; = 0; for if @/ = ¢%,
then t;; =1 for i=k and t; =0 for i # k, and & = ¢;. If &’ is not in the
current basis, we know that j is a candidate for pivot column if z; — ¢; > 0.
But if all z; — ¢; are <0, then the current basic feasible solution is optimal,
as we proved in our previous discussion of the idea of the method.

The next component in the criterion row is the current cost:

m
Zg = Z tioé} = 6T5C\ = ch. (50)
i=1

The last m components in the criterion row are defined as follows:

m

yj= z uijéi (]=17’m) (51)
i=1
Here (u;;) = U is the inverse of the basis matrix; U makes up the last part
of the extended tableau (47).
The meaning of y”: The definition (51) says

y'=¢vy,
or
y'M =2,
or
yldt=¢, if keB. (52)

Thus, y is the equilibrium solution. At the last stage all z; — ¢; are <0, and
then yT will be the optimal solution of the dual problem:

yTA<c”, yTh = max. (53)



10 The Simplex Tableau Algorithm 87

Then yT will satisfy
YT =z;<¢;, with“="ifjeB. (54)

(Again please refer to “The Idea of the Simplex Method.”)
When we append the criterion row, the tableau looks like this:

11 L Lio | U1 Uiy
(55)
tml e tmn tmO Upy 7 Upm
2y —=C " Zm—Cy | Zo | W1 R

Now I'm going to show you the most surprising thing about the simplex
tableau algorithm: The criterion row transforms like all the other non-pivot
rows.

In other words, I assert this: For some 6,

new criterion row = old criterion row — 8, (pivot row). (56)

Since a° is entering the basis, we must have z, — ¢, = 0 in the new tableau.
If formula (56) is right, then

’
ZS—CSZZS—CS—Ho'trs,

and so we must have

00 = (Zs - Cs)/trs' (57)
PROOF OF (56). I have to prove three things:
Zj—c¢;=z;— cj— Opt,; (G=1...,n 1)
Zo = Zo — Oot,o (11)
Vi=Yy; — Oou,; (=1,...,m). (iii)

First, I use the definition for the new tableau:

3

’ 7o
Zj= Z tijci
i=1

= ; (tij - tistrj/trs)ei + (trj/trs)CS'
i#r

In the last sum, I may include the term for i = r, since it is zero. Then I get

m m
Z;' Z tijci - (trj/trs)< Z tisci - cs>
i=1

=2z;— (trj/trs)(zs - cs)
=Zj—00t,.j (j:].,...,n)

That proves (i).
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Second, I recall the cost-transformation formula (46), which we proved
before. Formula (ii) merely restates (46).
Third, for the new tableau,

= Z é\i(uij - urjtis/trs) + csurj/trS'
Including the zero term for i = r, I get
m m
y; = Z é\iuij - (urj/trs)< Z é‘itis - cs)
i=1 i=1
= yj - (urj/trs)(zs - cs)
=yj—00u,j (j=1,...,m).

That proves (iii) and ends the proof of the transformation formula for the
criterion row.

You now have the complete description of the simplex-tableau algorithm.
It is hard to understand, but easy to use. Most people who use it don’t under-
stand it, but I hope you won’t be one of those.

Let’s use the algorithm to solve a numerical problem. Let’s solve

Ax=b, x>0, c'x = min,

123 5
A=|:4 s 6], b=[13], T =[7,1,1] (58)

First we’ll do Phase I, then Phase II.

where

ExAMPLE 5. We want to solve

X1
X2
12310 5
[4 560 1} 3 _[13} &)
S1
S2

The first basic feasible solution is s; = 5, s, = 13, x = 0. This is the first

tableau:
1 2 3 1 2 b

a' a* a’® e' e

et 2 3 1 0 5

214 5 6 0 1|13
5.7 9 0 018
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In Phase I calculations we don’t bother to use the extended tableau, since
the natural unit vectors e’ are columns of the matrix.
Please note the criterion row at the bottom. In the Phase I calculation
the cost vector is
" =10,0,0,1,1].

It is not the vector cT given in (58); in Phase II (Example 6) we’ll switch back
to the definition (58). Using the Phase I definition of ¢”, you can see how
the first criterion row was calculated. Note particularly the zeros under e
and e?.

The biggest z; — ¢; is 9. It occurs for j = 3, so we'll bring a® into the basis.
This gives the pivot column s = 3. (We might, instead, have chosen s =1
or2)

To choose the pivot row r, we form the two ratios §, 42. The first is smaller,
so we must choose r = 1. This makes the pivot element ¢, ; = 3. Please draw
a circle around it.

After you use the elimination rules, this is what you get for the second
tableau:

at a* & el e b
21 1 3 03
292 1 0 =2 1|3

2 1 0 -3 013

The biggest z; — ¢; is 2. It occurs for j = 1, so we'll set s = 1 and bring
a' into the basis.
To choose r, we form the ratios

3+¢) and 32
The second is smaller, so we must choose r = 2. Draw a circle around the
new pivot element, t,; = 2.
As before, you divide the pivot row by the pivot element, and you sub-

tract multiples of the pivot row from the other row so as to get zeros in the
rest of the pivot column. This is what you get:

at a®> a® e e b
300 1 1 2 1 1
2 3 6 6
o3 o0 -1 43 (%0)
0 0 0 -1 —-1]0

Now all five criterion elements z; — ¢; are <0. Therefore, you have an
optimal solution. The last column says

X3=%, x,=%, cost=0.

Please verify that these numbers do solve the problem (59).
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ExaMpLE 6. Now we are ready to do a Phase II calculation for the problem
(58).

In Example 5, we did the Phase I calculation, which gave us the first
basic feasible solution for Phase II. As you will now see, Phase I ends with
the initial tableau for Phase II—except that we must re-calculate the criterion
row. Then we shall get this tableau:

at a2 & b et e’

3 0 1 1 a 2 1

) H O (61)
1 L 0|2 |-1 1
0 3 0 |¥[-F -F

Please carefully compare this tableau with the final tableau (60) for
Phase L.

The first thing you notice is this: The two columns labeled e' and e? have
been moved to the right of the solution column (labeled b). That is merely a
matter of convention; it is customary but unnecessary. Except for this trans-
position, the numbers in the first two rows are the same in the two tableaus.

But the criterion rows are entirely different in the two tableaus. That
always happens when we go from Phase I to Phase II. Why? Because the
cost vectors are different. In Phase I the cost vector was

™ =[0,0,0,1,1]. (62)

This was an artificial cost vector that was contrived to give positive costs
to the slack variables s,,s,. When we drove the slack variables out of the
basis, we got the final Phase I cost zero. Then the solution column gave a
first basic feasible solution x for Phase II.

Now we will use the original, given cost vector

" =[7,1,1]

As you see, this has nothing to do with the artificial Phase I cost vector (62).
It doesn’t even have the same number of components. That is because we no
longer use the slack variables s, s,; they are gone forever.

So where does the new criterion row come from? It comes from the new
basic costs (c; = 1 and ¢; = 7) and from the upper part of the tableau. I'll
compute three of the six criterion-row components for you:

Z—=3)1+3 7-1=3
=@ 1+3)7=%
=@ 1+(-1)7=-%.

You can do the other three.

The last two criterion components are y; and y,. At each stage in Phase I1,
they solve the equilibrium equations. At the end, they will give the optimal
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dual vector y*. As you know from our discussion of perturbations, the
optimal dual components y; are the shadow costs, and they provide very
useful information. But if you don’t think you’ll need them, you don’t have
to compute them. In the Phase 11 calculation, the last part of the tableau is
optional. If you won’t be using the basis inverse (u;;) or the shadow costs y;,
then don’t compute them.

Now let’s do Phase II, starting with the tableau (61). The only positive
z; — ¢;is z, — ¢, = 3. Therefore, the pivot column is s = 2.

To choose the pivot row, we form the ratios

@+@=3% and P+ @ =3
The first is smaller, so we must choose the pivot row r = 1. Draw a circle

around the pivot element t,, = t,, = 3. We’re going to replace v* = a® by a?
in the basis. Using the transformation rules, we get this tableau:

a' a? a b e! e

o1 2]3] % -

M o0 -1 |4 |3 H (63)
0 0 -6 % |- %

Now we have all z; — ¢; <0 (j = 1,2,3). That means we’re done. The
optimal basic feasible solution x has the positive components

x;=%, x;=3% (64)
The minimum cost is
Tx=zo=14. (65)
The optimal dual components (the shadow costs) are
n=-% y=% (66)
Please check these conditions:
Ax=b, x20, yTA<cT, Tx=y"p, (67)

where A, b, and c are defined in the original problem (58). Then you’ll believe
all we’ve done.

References

1. G. B. Dantzig: Programming in a Linear Structure, Econometrica, Vol. 17, pp.
73-74, 1949.

2. G. B. Dantzig, Maximization of Linear Functions of Variables Subject to Linear
Inequalities, in T. C. Koopmans (editor) Activity Analysis of Production and Alloca-
tion, pp. 339-347, Wiley, 1951.
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PROBLEMS

L.

In Example 1 replace b by (1,1)7. Let the current basis be v! = a> and v* = a'.
Express a3 and b as linear combinations of the basis, and write the tableau. Write
the current basic solution x. Write the basis matrix M and its inverse U. Write the
extended tableau. Verify equation (14).

. Here is an extended tableau:

|4 0 1| 6]-3 -8
v [7 1 0 -1 2 5

Identify v' and v? as columns of 4. Find numerical values for M, U, 4, b, T, x.
Verify equation (13).

. Start with the tableau in Problem 2. Let ¢7 = (1,2,3). Compute z;, z,, 23, Zo, V1, V2;

then write the criterion row (48).

. Start with the tableau in Problem 2. Let ¢T = (9,1,—1). Compute the criterion row.

Answer: (—6,0,0,—7,5,13). Now use the transformation rules to replace a’ by a' in
the basis; write the new extended tableau with criterion row.

e

Do a Phase I calculation to get a basic feasible solution of Ax =5, x = 0.

. Define

. Define A and b as in Problem 5. Set v! = %, v® = a'; and start with the basic

feasible solution x° = £(1,04)T. Let ¢ = (5,3,1). Do a Phase II calculation to get
optimal primal and dual vectors for Ax = b, x > 0, ¢Tx = min. Answer: The optimal
primal vector is £(0,1,9)". Finally, check that ¢"x = y7b.

. For small ¢ # 0 let x(¢) solve

2 31 2+¢ .
[5 6 4]x=|: 5 :l, x=0, 5x; 4+ x, = min.

What happens to the optimal primal and dual vectors as ¢ — 0? (Note: The problem
is degenerate for ¢ = 0.) Use the equilibrium theorem to check optimality in the
limit.

. Do a Phase I calculation for

2 31 1
x = , x=0.
5 6 4 5

What does Phase I tell you?

. Do a Phase II calculation for

2 -3 1 2 .
s _6 4 X = -k x20, x; —x,—Xx3;=min

Start with x° = $[1,0,4]7. What does Phase 1I tell you? Compute a feasible solution
with cost —10*°,
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11 The Revised Simplex Algorithm

Around 1954, Dantzig and his colleagues found a way to make the simplex
algorithm more efficient.

You remember that the simplex tableau had three groups of columns:
first, the columns labeled a?, . . . ,a"; second, the single columns labeled b;
third, the columns labeled e!, . . ., €™ Now you’ll see this: You don’t need to
compute the first group of columns. All you need from the first n columns is
the pivot column, but you can compute that single column when you need
it. Let me explain.

This is the problem, as usual:

Ax=b, x=20, ¢'x=min. (1)

Here A is an m x n matrix, which is given along with the vectors b and c.
We'll assume the problem is non-degenerate.

First, we store the matrix (g;;) and the vectors (b;) and (c;) in the com-
puter memory. We will never change these numbers, but we’ll need them to
compute the other numbers.

At each stage, we’ll start with these numbers from the simplex tableau:

Lo | Uy "7 Uim

)
tmO uml umm
Zo | W1 T Vm

And we’ll also start with a list of the basic indices:

{jla st 7Jm} (3)

At each stage, we’ll modify the numbers in (2) and (3).

The numbers mean precisely what they meant in the last section. The
t;o give a current basic solution; the u;; give the inverse of the current basis;
z, gives the current cost; the y; solve the equilibrium equations. All these
numbers are given at the beginning of Phase I, namely,

tio=by, w;=20; zo=3b, y;=1 4

The numbers z, and y; must be re-computed at the beginning of Phase II,
namely,

Zo= ) tii V;= ) Wi )
i=1 i=1
where ¢; = ¢;,.

Keep in mind, we’ll be doing exactly what we did in the simplex-tableau
algorithm—with one exception: we won’t compute all the ¢;; and z; — c;.
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So, how do we modify the abbreviated tableau? Pick one non-basic index
j. Compute the number

z; = Z Viltyj. (6

(This formula is discussed in “The Idea of the Simplex Method.”) If z; satisfies
z; > ¢, set j = s; this will be the index of the pivot column. But if z; < ¢;,
try some other non-basic index j.

If z; < ¢; for all non-basic indices j, youre done. Then you have the
optimal basic solution, with the positive components

Zi=x;=t (i=1...,m). ™

The minimum cost is z,, and the optimal dual vector is yT.

Suppose, instead, you've computed z; by formula (6), and you’ve found
z; > c;. Then, setting j = s, you proceed as follows.

First you compute the pivot column of the simplex tableau:

tis = z uikaks (l = 1’ L ’m)' (8)
k=1

If all t;; are <0, you're in Case 2a; you can drive the cost to minus infinity
by setting

x(i) = las + Z (tio - itis)vi
i=1

©

cost = ¢"x(4) = ¢"x(0) — A(z;, — ¢), A — 0.
If, instead, some t;, are >0, you pick the pivot row r by the old formula:
tyo/tys = min{t;o/t;: tis > 0}. (10)

This is what we called Case 2b. Now you should modify the tableau by the
old transformation rules with one exception: you don’t compute the first n
columns; you compute only the last 1 + m columns.

Here are the rules:

new row r = (old row r)/t,; (11)
and fori #r,

new row i = (old row i) — 0, - (old row r), (12)
where
0, =t /t,s i#ri=1...,m
0o = (z, — ¢))/t,s
Finally you should replace the old basic index j, by s.
Now you’ve got your new abbreviated tableau (2) and your new basis (3).

Now you can continue. As you know, the algorithm must succeed after only
a finite number of tableau modifications.

(13)
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ExampLE. I want to re-do the last example of the preceding section. Please
compare the two calculations to see how to use the short tableau.
The problem is Ax = b, x > 0, ¢Tx = min., where

12 3 51,
a=[1 22 o[ 3] e-ran

We're doing a Phase II calculation. We start with the short tableau

— e
O | = o\

i [ 9fw oV

W
-
\O
-

l
|

...
w
|
¥

and with the basis {3,1}, meaning that a* and a’ are the current basic vectors.
The only non-basic column is a>. We compute
=y =(-%) 2+ 5=4

Here y” came from the tableau, while a> came from permanent storage.
Since ¢, = 1, we have z, — ¢, = 3 > 0, so the pivot column is s = 2.
Now we have to compute the pivot tableau column:

l22 —1 2115 ¥
To get the pivot row r, we compute the ratios t,,/t;, for t;, > 0:

7.1 3.1
tio/tiz =% 2, law/t2z=32%7.
The first is smaller, so r = 1. Now we draw a circle around the pivot element

t2 =3
Now I'll write the pivot column next to the old short tableau:

1 1 2 _ 1
2 6 3 6
1 3 1
2 2 _1 2

35 | _19 10

The transformation rules require us to apply the elementary row operations
that convert the pivot column to [1,0,0]". If we do so, we get the new short
tableau:

1 4 _1
3 3 3
1| s 1
3 3 3
14 [ _31 13
3 3 3

Finally we must replace j, = 3 by s = 2 to obtain the new basis {2,1}.
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Now start over with the new tableau. The only non-basic column is
Jj = 3. Therefore, we compute

Then we find z; — ¢c; = —5 — 1 = —6 < 0. That means we’re done.
From the last tableau and basis, we get

X2=% X =% =% y =%
and there we have the optimal primal and dual solutions. From the tableau,
we also get the final cost z, = 4. This completes the example.

I told you that the revised simplex algorithm was more efficient than the
full simplex tableau algorithm, but that isn’t always true. In Phase II, using
the original simplex tableau algorithm, you don’t have to compute U and
yT if you don’t want to; using the revised algorithm, you have to compute
U and yT at every stage.

Another advantage of the original algorithm is this: You compute the
full array z; — ¢4, ..., z, — c,; by the elimination rule, this computations
is quick and accurate. Having the full array z; — c;, you don’t have to pick
the first positive one; you can pick the largest z; — c; to give the pivot column
j = s. Usually this gives a greater cost reduction, since the single-stage cost
reduction equals the product (¢,/t,s) - (z; — ).

The factor t,,/t,; is unknown until you know the pivot row r, which is a
function of the pivot columns s. If you wished, you could pick s to maximize
the product (¢,0/t,s) times z, — ¢;. That would maximize the single-stage
cost reduction, but it would require extra computation.

As for storage, the revised algorithm requires the original matrix 4 in
permanent storage; the original algorithm does not.

Both algorithms are, for most cases, excellent. In general, you may use
either one with confidence. The simplex method has been called the most
important numerical method invented in the twentieth century. When you
think of all its applications, it is hard to disagree with that assessment.

Reference

G. B. Dantzig, A. Orden, and P. Wolfe: Generalized Simplex Method for Minimizing
a Linear Form under Linear Inequality Restraints, Pacific J. Math. Vol. 5 (1955)
pp- 183-195.

PROBLEMS

1. Consider the problem

123 3 =0 + min
X = x>0, = min.
45 6 9/ 2T X3
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Start with the feasible solution x° = (1,1,0)". Compute optimal primal and dual
solutions by the revised simplex algorithm.

2. Consider the problem

12310 3 )
x= , x20, x4+ x5 =min.
4 56 01 9

Start with the feasible solution x° = [0,0,0,3,9]7. Compute an optimal solution by
the revised simplex algorithm. (This is a Phase I calculation for Problem 1.)

3. Apply the revised simplex algorithm to

P23 3 =0 + min
X = x=20, x X3 = .
4 5 6 50 S

(First introduce slacks for Phase 1.)

4. Apply the revised simplex algorithm to

1 -2 3 3 .
4 5 6 x = 9l x20, x;y—Xx,=min.

5. Solve by the revised simplex algorithm:

52 1) 17 >0 + % = mi
238x—5,x/,x2 3 = min.

First use Phase I to get a basic feasible solution. Then use Phase II to get optimal
primal and dual solutions. (Answer: The minimum cost equals 4}.

12 A Simplex Algorithm for Degenerate Problems

We’ve discussed the simplex method for non-degenerate linear programming
problems. I showed you two practical algorithms—simplex tableau and
revised simplex. Now I'd like to show you how to make the method work
even for degenerate problems.

This will be a theoretical discussion. As I explained before, degeneracy is
a fragile condition—the slightest round-off error will usually produce a
nondegenerate problem. In practice, the best thing to do about the pos-
sibility of degeneracy is to ignore it. Still, I want to show you the lexicographic
simplex algorithm because the mathematics is fascinating.

We are given an mxn matrix 4 along with vectors b and c. This is the
problem:

Ax=b, x>20, c¢'x=min. 1)

We have called this problem non-degenerate if

i) rank A = m, and

ii) b is a linear combination of no fewer than m columns of A.
Otherwise the problem is called degenerate.
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Always we assume m < n. If condition (i) is false, then the linear system
Ax = b is either inconsistent or redundant. If it’s inconsistent, then the
problem has no solution, and that’s that. But if the system Ax = b is consis-
tent and redundant, then some of the equations should be eliminated. If
A has rank r < m, then m — r redundant equations should be eliminated,
leaving a system Ax = b, where the matrix A consists of r independent rows
of 4. Now the problem (1) is equivalent to

Ax=b, x=20, ¢'x=min, )

in which condition (i) is satisfied. So from now on we’ll assume condition
(i) holds.

Suppose condition (ii) fails. Then there can be a basic feasible solution x
with fewer than m positive components. Why should this make trouble for
the simplex method?

Because now cycling is possible. If some basic solution component ¢,
equals zero in the simplex tableau, and if z; — ¢, > 0 with ¢,, > 0, then surely

0 = t,o/t,s = min{t;o/t;: tis > O}, ©)

since all the competing quotients are > 0. So, if 5 is the pivot column, then r
may be the pivot row. If now a° replaces v” in the basis, then the cost decreases
by zero:

new cost = old cost — Z’—o (z, — ¢;) = old cost — 0. 4)
rs

Since the cost doesn’t decrease, we can’t be sure that we get a new basic
solution at each stage of the simplex method. Thus, if the cost stayed the
same at three successive stages, we might start with a basic solution x, go
to a new basic solution x?, and then go back to x'. Then the process would
cycle forever, and the method would fail.

To get around this, we’ll introduce lexicographic ordering. We'll order
vectors the way we order words in a dictionary.

Let’s use the symbol “G.T.” to stand for “is lexicographically greater than.”
Then, for instance, we have

lot GT. logGT. lieGT. got. 5

Thus, log comes after lie in the dictionary.
If we use the numbers 1, . . ., 26 instead of the letters q, . . ., z, the example

(5) becomes
(11,1520)G.T. (11,15,7)G.T. (11,9,5)G.T. (7,15,20).

You see the idea. Let the vector a have real components ag,a;, . . . , Gp;
let b have real components by, b,, . .. ,b,,. Then we’ll write a G.T. b to mean
this: For somej=0,...,m,

a;>b;, whilea;=b; forall i<j. (6)
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You have enough experience with dictionaries to accept without proof this
assertion: The relation G.T. establishes a complete ordering of the real vector
space R¥. In other words, for every a and b in the space of real vectors with N
components, eithera G.T.borb G.T.aora = b;andifa G.T.bandb G.T.c,
thena G.T.c.

ExaMPLE 1. Let the components of the vectors a and b be the coefficients of
two polynomials in &:

ple)=ay+ae+ -+ a,e"
qe)=by+be+---+b,e™

Suppose p(e) > q(¢) for all sufficiently small ¢ > 0; then a G.T. b. Conversely,
if a G.T. b, then p(g) > gq(e) for small ¢ > 0.

Now we’ll apply lexicographic ordering to linear programming. Consider
the canonical program (1). Suppose condition (i) holds, but suppose condition
(ii) fails. Without loss of generality, assume all b; > 0 (if any b; is negative,
multiply the ith equation by —1).

We will use the revised simplex tableau:

Lio | U1 7 Uiy

(7
tmO Uy T umm
Zo Y1 T Vm

Here (u;;) is the inverse of the current basis; the vector (y;) solves the equi-
librium equations; z, is the current cost; and (t;,) gives the current basic
feasible solution, that is,

in = tio Where B = {jl, LU 5jm}' (8)

Since we allow degeneracy, we may not assume all t;, > 0; we may only
assume all ¢;;, = 0.

The tableau (7) has m + 1 rows, each with 1 + m components. Call the
first row t(1), call the second t(2), . . ., and call the mth row t(m); call the last
row w. We will require that all of the first m rows be lexicographically positive :

|t(i) = [tiotiys - - - Uim] G.T. 0.} )

This relaxes the requirement t;, > 0. Now we only require t;, > 0; but if
t;o = 0, we require the first non-zero component of the ith row of U to be
positive. Please note that this requirement is met at the beginning of Phase I;
for then we have t;, = b, 20and U = I.
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The last row is the generalized cost:

W=1[20,Y1,-+»Vm] (10)

When we change the basis, we will get a new tableau, with a new cost row w'.
We will require

wGT. w. (11)

This relaxes the requirement z, > z'o. But it is enough for our purpose:
it prevents cycling. The argument is the same as before. As we go from basis to
basis, we get a succession of decreasing cost vectors:

wGT.wGT. - GT.w?. (12)

Since no two of these cost vectors are equal, no two of the bases are equal.
Here’s how we do all this. Just as before, we compute

zj—c;=y'al —¢; (13)
for j not in the basis. If all these numbers are <0, we know that the current
basic feasible solution is optimal. But if z, — ¢, > 0, we know the current
solution is not optimal, and we may choose the pivot column s.

Exactly as before, we compute the pivot tableau column. We already have
the last component, z; — c¢,; the first m components are

m
tis = Z U s i=1,...,m).
k=1

As before, if all ¢, are <0, we can drive the cost to minus infinity (Case 2a).
So suppose some t;; > 0 (Case 2b).

Now watch this. We’re going to choose the pivot row r. Up to now, the
algorithm has been identical to the revised simplex method, but now there
will be a subtle difference. We will choose r by this rule:

t()/t,, = min{t(i)/t;: t;; > O}. (14)

By “min” here we mean the lexicographic minimum, which is the minimum
vector according to the ordering “G.T.”

The lexicographic minimum (14) is unique. For otherwise there would be
two rows, say r and p, such that

t(r)/t,s = t(p)/t,,, With v # p.

Then the two rows t(r) and t(p) would be proportional (dependent). Now
look at the last m components of the two vectors; they would have to be
proportional. Thus, rows r and p of U would be proportional. Thendet U = 0.
But that is impossible for any inverse matrix, because all inverse matrices
have non-zero determinants.

So the lexicographic minimum (14) uniquely determines the pivot row r.
This amounts to a tie-breaking rule in case t,o/t,s = t,0/t,s- Now the compu-
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tation proceeds exactly as before, giving a new tableau, with components
tio» Uij» Zo, ¥j- We must now prove these two assertions:

t@)GT.0 (i=1,...,m), (15)

wGT. w. (16)

Proof that t'(i) G.T. 0. By the usual simplex rule, we compute the new row
r as follows:
t(r) = t(r)/t,.

This is G.T. 0 by induction, since we assume t(r) G.T. 0 in the old tableau. As
usual, the pivot element ¢, is positive.
For i # r, the simplex rule gives

t'(0) = t(i) — (t/1,:)t(r).

If ¢, is <O, this gives t'(i) G.T. 0 because t(i) G.T. 0 and t(r) G.T. 0. If ¢, is
>0, then the unique minimization (14) implies

t'() = t,[t@)/t; — t()/1,,] G.T. 0.

Proof that w G.T. w'. It remains only to prove that the generalized cost
decreases lexicographically. By the usual simplex rule, we compute the new
last row:

w =w — B,t(r),

with 0, = (z, — ¢,)/t,s > 0. By induction, we assume t(r) G.T. 0 in the old
tableau. Therefore,
w—w = 0,t(r) G.T. 0,

and so we have w G.T. w'. This completes the proof that the lexicographic
simplex algorithm succeeds even for degenerate problems.

ExampLE 2. I want you to see a simple example of the tie-breaking rule for
choosing the pivot row. Suppose, at some stage, the pivot column and the
revised simplex tableau look like this:

1] o] 1 -1 3
1| ol o 5 7
1 3|-6 21
5~192

Here you see all ¢;; = 1 and even z, — ¢, = 1.

Next you see the solution column (¢;), z,. Here we have some solution
components t;, = 0; that would be impossible in a non-degenerate problem.
But note:

t(1)=[0,1,—1,3] G.T.0

and also t(2) G.T. 0, even though t,, = t,, = 0.
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The last three columns give the matrix U on top and the vector y” below.
Since all three ¢, are positive, we have three candidates for pivot row. By
the old scheme, we compute the three ratios

tio/tis = 0,0,3 fori=1,2,3.
Here rows i = 1 and 2 produce a tie for the minimum. But look at this:
t(l)/tls = [0>1>_ 153:|>
t(z)/tZS = [0909597]
Since the first vector is G.T. the second, we break the tie by choosing the
pivot row r = 2.
Since the whole pivot column consists of 1’s, we compute the new tableau

by just subtracting the pivot row from the other rows. This gives the new
bottom row

w=|[s]-1 4 -5].

This is the new generalized cost. Its first component is z, = 5.
The old generalized cost was

also with first component z, = 5. Note that w G.T. w' while z, = z;: the
generalized cost decreases while the scalar cost stays the same.

Finally, I’d like to make some short remarks on the connection of the
lexicographic algorithm with perturbations and with the duality theorem.

Perturbations. If you look back at Example 1, you can see what we’ve done
in terms of perturbations. Suppose we replace the original requirement
vector b by a family of vectors

bey=b+ee' + -+ (0<ex]l),
where e, .. ., ¢™ are the columns of I. Now consider the family of problems
Ax =b(), x>0, c¢'x=min. 17

If rank A = m, you can show that these problems are non-degenerate for
all sufficiently small ¢ > 0, even though the limiting problem with ¢ = 0 is
degenerate (see Problem 9). Since the perturbed problems (17) are non-
degenerate, you can solve them with the original simplex method. The
effect of the perturbations is to translate the common ordering “>" into the
lexicographic ordering “G.T.”

The duality theorem. By using the separating-plane theorem for convex
sets, we proved this: If the primal problem (1) has an optimal solution x°,
then the dual problem,

yTA <", y'b = max, (18)



12 A Simplex Algorithm for Degenerate Problems 103

has an optimal solution y°, with
cTx% = (yO)Tb. (19)

As we just showed, the lexicographic simplex method works even for
degenerate problems (1). If a optimal solution exists, this algorithm computes
a basic optimal solution x° in a finite number of steps. At the last stage, the
vector y satisfies

ylal =¢; for j in the basis 20)
yfad* =z, < ¢,  for k not in the basis.

It follows that y is an optimal dual solution y° satisfiying the cost equality (19).
Thus, the lexicographic algorithm gives an independent, purely algebraic
proof of the duality principle.
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PROBLEMS

1. For the vector space R¥, prove:
i) aGT.borbGT. aora=hb;
(ii) if aG.T.band bG.T.c, then aG.T. c.

2. In the plane R? draw pictures illustrating the two assertions in Problem 1.

3. For Example 1 prove that a G.T.b if and only if p(e) > q(¢) in some interval
0 < & < gy. What is the largest possible value of ¢, ifa = (5,—7,1) and b = (5,—9,7)?

4. Show that the following problem is degenerate for ¢ = 0, but is nondegenerate for

small ¢ > 0:
t2 3 2], 1], [0
4 5 6| |5 %o 1]

5. Solve by the lexicographic simplex algorithm:

1 2 3 2 .
45 6 X = 5P x 20, x,=min.

Start with the feasible solution x° = (0,1,0)T.

6. Solve by the lexicographic simplex algorithm:

1—2310_0 S0 + xe = mi
4 5601x—2,x/,x4 X5 = min,

(This is a Phase I calculation that is degenerate because b has a zero component.)
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7. The text says “. . . all inverse matrices have nonzero determinants.” Why is that so?

8. In Example 2 change the component u,, from 0 to 1. Now use the lexicographic
algorithm to compute the next tableau.

*9. Prove the assertion after formula (17) as follows. Let M be a basis matrix whose
columns are m independent columns of 4. Look at the vector £(g) = M~ !b(e). If
M ™1 has columns u!, .. .,u™, show that

%(e) =q +eu' + &%l + -+ ™",
where ¢ = M~ 'b. The ith component of x(g) is
%:8) = q; + ey + Uy + - + gy
This polynomial cannot be zero for more than m values of ¢ unless the coefficients

Uy, .. .Uy, are all zero, which is impossible. Why? Deduce that the problems
Ax = b(¢) are nondegenerate except for a finite number of e.

*10. In part, the duality principle says this: Suppose the primal (Ax = b, x> 0, ¢’ x = min.)
has no feasible solution; then either the dual has no feasible solution, or it has feasible
solutions y with bTy — + co. Prove this by the lexicographic algorithm. (Look at the
result of a Phase I calculation.)

13 Multiobjective Linear Programming

Often, you would like to optimize several things at once. You want the
best car at the lowest price.

If you were a government regulator, you might want even more. This is
what you’d like to require of General Motors: Design a car that maximizes
safety, minimizes fuel consumption, minimizes air pollution, and minimizes
purchase cost.

As you know, that is impossible.

Nevertheless, decisions will be made, and some decisions are better than
others. Multiobjective decisions require compromises, or trade-offs, in which
we are forced to compare things that are incommensurable.

What is the dollar value of a single human life? We don’t even like to ask
the question. And yet we must answer that question if we design an auto-
mobile, a house, or a bridge. If you increase the cost a little, you can make it
a little safer. If, in your final design, you could have saved one more life by
spending x more dollars, you have answered the question: One life is worth
x dollars.

If you think life has infinite value, you will keep spending money until
no additional expenditure could make the car safer. Then your car would
cost more than people would pay for it. So the decision is not entirely yours;
in the end, the buyers will decide what they can afford to pay for a car—and
so they will set a dollar value on their lives.

What is a sensible way to think about these questions? As children, when
we learned arithmetic, we were taught not to compare apples and oranges;
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as adults, we do it all the time. Every day, we use our own taste, preference,
and judgment; and so we make decisions.

As a rule, we have a right to our own taste. But some decisions are just
plain stupid. These are decisions that could be improved in some respect
without loss in any other respect. For instance, if you can buy the same car
at a lower price, it would be stupid not to do so.

Economists call stupid decisions inefficient. All the other decisions are
efficient: they cannot be improved in one respect without being made worse
in some other respect.

For instance, if you could buy your Cadillac at a lower price at a different
agency, your decision is inefficient; but if the only car you can buy at a lower
price is a Chevrolet, your decision is efficient. Your efficient decision may
or may not be wise; you will have to decide that for yourself.

Multiobjective linear programming gives a beautiful example of these
ideas.

You remember the diet problem: Design a nutritionally adequate diet
at minimum cost. There we had a single objective: to minimize the dollar
cost. Let us now add this objective: to minimize the number of calories.
Here we are trying to design a nutritionally adequate diet for people on a
budget who want to lose weight. They know they could lose weight on filet
mignon, but they can’t afford it.

As before, we have a list of n foods and a list of m nutrients. Let a;; be the
amount of nutrient i in food j. For instance, a;; might be the number of units
of vitamin Bl in an ounce of wheat germ; or a;; might be the number of
grams of protein in an ounce of milk. Let b; be the minimum daily require-
ment of nutrient i. Let x; > 0 be a possible quantity of food j in the diet.
Then we require

;3 Xy + AipXy + 0+ apx, 2 b; (1)

to satisfy the minimum daily requirement of nutrient i. For a nutritionally
adequate diet x, we required the inequality (1) for all nutrients i =1, ... ,m.

For each food j, as before, we have a dollar cost; but now we also have a
calorie cost. For one ounce of food j, let ¢, ; be the dollar cost, and let c,; be
the calorie cost. Suppose a diet contains x; ounces of food j; this will cost
¢y;x; dollars and will cost ¢, ;x; calories. For the diet x, the total dollar cost
is ) c;x;, and the total calorie cost is Y c,;X;.

Thus, the cost has two components: dollars and calories. The cost is a
vector. If C is the matrix with components ¢;i=12;j=1,...,n), then
the cost is the vector Cx.

What makes one feasible diet better than another? Either it is cheaper
without being more fattening, or it is leaner without being more expensive.
In other words, x is a better diet than x° if

Yeix; < Yeyx) and Yeax; < Y ) (2

Yeax; < Yeyx; and Yoy x; < Yoy x?. (3)

or if
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Using the cost matrix C, we can express these inequalities compactly:
Cx < Cx®° but Cx# Cx°. (4)

Then x is better than x°, because (2) or (3) must hold. In this case we call the
feasible solution x° inefficient.
If no feasible solution x satisfies (4), we call the feasible solution x° efficient,
and we will write
Cx° = minimum. (%)

(Mathematically, the vector inequality u < v is partial ordering; it is transi-
tive and relexive, but is incomplete. The minimum (5) refers to the partial
ordering.)

And now the main question: How can we compute the efficient solutions
of a multiobjective linear program?

If we use the canonical form, this is the problem:

Ax=b, x>0, Cx=min, (6)

where C is now a matrix with more than one row. Again, the feasible solu-
tion x? is efficient (optimal) if no feasible solution x satisfies (4).
I will show you this: If x° is efficient, then x° solves a conventional
problem,
Ax=b, x>0, (W'C)x = min,, (7

in which w”C is a single row; all components of the vector w will be positive.
Conversely, if w is any positive vector, and if x° is optimal for the conven-
tional problem (7), then x° is an efficient solution of the multiobjective linear
program (6). This reduces the new problem to an old one that we can solve.

Theorem. The vector x° is an efficient solution of the multiobjective program
(6) if and only if there is a vector w > O for which x° is an optimal solution of
the single-objective program (7).

ProoF. First, suppose x° is optimal for (7), where w > 0. Suppose Cx < Cx°
but Cx # Cx°. Then
wT(Cx — Cx%) < 0,

contradicting the optimality of x°. Therefore, x° is an efficient solution of
(6). That was the easy part of the proof.

Now the hard part. Supposing x° is efficient for (6), we must construct a
vector w > 0 for which x° is optimal for (7). We can do this by the duality
theorem.

Given x°, we can regard Cx° as a constant vector, and we can define the
following conventional linear program:

Ax=b
Cx+z=Cx°
x=20, z=20
Y z; = max.

@
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This is a canonical maximum problem to be solved for the composite vector
X, 2.

Here is a feasible solution of (8): x = x°, z = 0. I assert this solution is
optimal for (8). Otherwise, we must have Y z, > 0, and then x would satisfy

Ax=b, x>0, Cx<Cx°% Cx#Cx° 9)

0

which is impossible if x° is efficient for (7).
If A has mrows and C has k rows, we can partition an optimal dual vector
for (8) as follows:

[_yla s T YmWies e e 5Wk] = [—',VT,WT]~

Then y and w satisfy
—yTA+wTC>0 (10)
wil>1,....1], (11)
—yTh + wT(Cx°®) = min. = 0. (12)

The dual minimum equals 0 because the primal maximum equals 0 in (8).
From (8), (10), and (12), we have

Ax®=b, x°>0; yTA<W'0)

(wTC)x® = yTb. (13)
Therefore, x° is optimal for the primal problem
Ax=b, x>0, (W'C)x°= min, (14)
while y is optimal for the dual problem
yTA < (WTC), yTh = max. (15)

In this primal-dual pair, we regard w”C as a given row vector; it is the cost
vector in the primal (14) and is the requirement vector in the dual (15).

By (14), x° solves the conventional program (7); by (11), the weights w;
are all positive. This ends the proof.

The meaning of the weights. Let’s go back to the example of the reducing
diet. There we had two cost components:

¢, %; = total dollars (16)
» Y17
J

and
Y ¢,;x; = total calories. 17
J
The condition of feasibility had the form Ax > b, x > 0; as you know, by
using slack variables, we could restate this in the canonical form Ax = b,
x=0.
According to the theorem, an efficient diet must be a feasible diet that
minimizes some linear combination of the cost components:

w, - (total dollars) + w, - (total calories) = min., (18)
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with positive coefficients w, and w,. This just says w’(Cx) = min., with
w> 0.

The weights w; in (18) can’t be dimensionless, because we mustn’t add
dollars to calories. These would be appropriate dimensions:

dimension of w;, = 1/dollar

19
dimension of w, = 1/calorie. (19)

For instance, let us prescribe the values
w, = 300/dollar, w, = 2/calorie. (20)

With this arbitrary choice of the weights, suppose we minimize the di-
mensionless linear combination (18):

(300/dollar) - (total dollars) + (2/calorie) - (total calories) = min.

You might call this linear combination a composite dimensionless cost.

According to this composite cost, adding $2 to the daily grocery bill is
exactly as bad as adding 300 calories to the daily calorie intake. How many
dollars is a calorie worth? If 300 calories are worth $2, then 1 calorie is
worth $0.067.

This shows what the weights mean. In general, the numerical values of
w; and w; assign relative dimensionless costs to units of the ith and jth cost
components. If w, = 300/dollar, then 300 is the dimensionless cost of one
dollar. If w, = 2/calorie, then 2 is the dimensionless cost of one calorie. Thus,
if we identify dimensionless cost with relative worth, we have

worth of one calorie _ i
worth of one dollar ~ 300

= 0.067. 1)

If our example had concerned traffic safety instead of reducing diets, then
traffic deaths would have replaced calories as one component of the multi-
objective cost. Then the ratio of weights would have assigned a dollar value
to a life.

The range of possible weights. If we prescribe positive weights w; for the
cost components ) ¢;;x;, and if we solve the conventional linear program

Ax=b, x>0, (W'C)x=min, (22)

then the optimal solution x° will be an efficient solution of the multiobjective
linear program

Ax=b, x20, Cx=min. (23)

Conversely, suppose x° solves Ax = b, x > 0; and suppose x° is an
efficient solution of (23). Then we know that x° is an optimal solution of (22)
for some w > 0.

As we've seen, the numerical ratios w;/w; have meaning: they assign
worth ratios to the cost components, as in (20), (21). If the efficient solution



13 Multiobjective Linear Programming 109

x° uniquely determined the direction of the weight vector w, then x° would
uniquely determine the worth ratios w;/w;.

But that is usually false; usually, x° determines a range of possible weight
vectors. Thus, the efficient solution x° determines a set Q such that for every
w in Q, x° is optimal for the conventional program (22). Then the worth
ratios w;/w; will not be fixed, but may vary within certain intervals.

And so, given an efficient solution x°, we want to determine the full range
Q of possible weight vectors w. Only when we have the full range € can we
answer this question: What are the possible relative worths that the efficient
solution x° assigns to the various cost components?

Suppose x° is optimal for the conventional problem (22). Then there is an
optimal dual vector y satisfying

yTA <wIC, yTh = wiCx°. (24)

(In the second inequality, strict inequality “> " is impossible; only “=" may
occur.) Conversely, the inequalities (24) imply that x° is optimal for (22).

With no loss of generality, we may assume w; > 1 for the dimensionless
numerical values of the positive weight components; for if p is any positive
scalar, replacing w by pw leaves the problem (22) unchanged. Therefore, w
is a possible weight vector if and only if w and some vector y satisfy the homo-
geneous inequalities (24) and the inhomogenous inequalities

w21 (i=1,...,k. (25)

In the real vector space of m + k dimensions, the composite vector
[y",w"] ranges over the intersections of n + 1 + k closed half-spaces; the
intersection is a closed convex set I'. If the set I" is projected into the k-
dimensional space belonging to the coordinates wy, ..., w,, the result is a
closed convex set Q. This set Q is the range of possible weight vectors w. Thus,
each efficient solution x° determines a set of weight vectors.

ExaMmpLE. Consider the multiobjective program

1 23 3

4 6 X = |i9J, X > 05
(1 2 3]

110 .

3 2 1 X = min.
|4 2 2]

Here the cost has four components, as the cost matrix has four rows. I've
given you only the dimensionless cost matrix; the actual cost matrix would
attach a different dimension to each of the four rows.
We observe a feasible solution: x° = [1,1,0]7. We now ask two questions:
Is x° an efficient solution?
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If so, what is the set Q of its possible weight vectors?
Here x° is basic as well as feasible, and these are the equilibrium equa-
tions belonging to the conventional program with cost vector wC:

1 2
D]y 3] - Dretwre) 26)

where ¢', ¢?, and ¢* are the columns of the cost matrix. By the equilibrium
theorem, x° is optimal for (22) iff the equilibrium solution y7 satisfies

3
[y1v2] [6] <wie @)

Let’s eliminate y by solving the equilibrium equations (26):
1[ -5 2
= wiTel @272
Dl =wiee)-3[ 73 7]
Now the inequality (27) becomes
1] -5 2] [3
Tl .27 .2 . < wTe3
wilcle?] 3[ 4 1 [6]\W c

-1
WT[CI’CZJ[ 2] <wTed

or

or
wl(—c' +2c?) < whcd,

From the given cost matrix, this becomes

3wy + wy + wy < 3wy + wy + 2wy,

or w, < 2wy,.

Since the inequality w, < 2w, has a solution w > 0, the feasible solution
x° is efficient.

The set Q consists of all four-dimensional vectors w satisfying the nor-
malization w; > 1 (i=1,...,4) and solving the inequality w, < 2w,.

Interpretation. The normalization w; > 1 has no significance, since the
weight vector w has the same meaning as pw if p is any positive scalar.
Therefore, the possible dimensionless weight vectors are simply the vectors
satisfying

W2 < 2W4, Wi > 0 (i - 1, 2, 3,4).

So the given efficient solution x° says nothing about the first and third
components of the multiobjective cost. About the second and fourth com-
ponents it says only this: one unit of the second component is worth < two units
of the fourth component.

And so we compare the incommensurable—apples and oranges, dollars
and calories, dollars and lives.
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PROBLEMS

1.

*7.

Draw the (feasible) solutions x of these inequalities:

Show graphically that the efficient points x lie on the line segments pq and qr, where

o[} L]

. For Problem 1 find all the weight vectors w belonging to each of these efficient

I F ATt

(The weight w belongs to x if x minimizes wTCx.)

. Put Problem 1 in the canonical form (6) by introducing the nonnegative slacks

X3, X4, Xs. Let x° be the efficient point (1,3,0,0,4)". Now write the conventional
program (8) and its dual. Find an optimal dual vector (—y,;,— y,,— y3,Ww;,W,), and
verify that (wy,w,) is a weight vector belonging to x°.

. Prove or disprove this assertion: The efficient points of a canonical multiobjective

linear program (6) constitute a convex set.

. Prove or disprove this assertion: If the canonical multiobjective linear program (6)

has an efficient point, then it has a basic efficient point.

. In the text Example we observed the basic solution x° = (1,1,0)T; then we proved

it was efficient by finding all its weight vectors. Now do the same thing for the basic

solution x' = (2,0,9)".

Generalization: Let x° be efficient for the multiobjective program Ax = b, x > 0,
Cx = min. Assume x? > 0 for j e B, and let the columns a’ (j € B) constitute a non-
singular basis matrix M. Let C be the matrix of columns ¢/ (j € B). Show that the
weight vector w > 0 belongs to x° if and only if

wi(c* ~CM~'d*)20  for all k not in B.

(Use the equilibrium theorem, where the dual solution y satisfies y"M = w'C.)
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8. Find all the efficient points x and all their weight vectors w:

31 -1 0 0 6
11 0 -1 Olx=14], x=0
13 0 0 -1 6

2400 0]
1500 0" ™™

14 Zero-Sum, Two-Person Games

In 1928, John von Neumann published a paper called (in German) “On the
Theory of Social Games.” In 1944, he and the economist Oskar Morgenstern
extended this work in their famous book Theory of Games and Economic
Behavior.

Von Neumann proved a theorem on what he called zero-sum, two-person
games. His proof used the Brouwer fixed-point theorem. Using an idea of
George Dantzig, I'll prove this theorem for you by linear programming.
Dantzig’s proof is better than von Neumann’s because it is elementary and
because it is constructive—it shows you how to construct a best strategy.

First you have to know what von Neumann meant by a game. In The
Ascent of Man, Jacob Bronowski tells this story:

I worked with Johnny von Neumann during the Second World War in
England. He first talked to me about his Theory of Games in a taxi in
London—one of the favourite places in which he liked to talk about mathe-
matics. And I naturally said to him, since I am an enthusiastic chess player,
‘You mean, the theory of games like chess.” ‘No, no’ he said. ‘Chess is not a
game. Chess is a well-defined form of computation. You may not be able to
work out the answers, but in theory there must be a solution, a right procedure
in any position. Now real games,” he said, ‘are not like that at all. Real life is
not like that. Real life consists of bluffing, of little tactics of deception, of
asking yourself what is the other man going to think I mean to do. And that
is what games are about in my theory.’

ExampLE 1. Let’s play a game. When I say NOW, you stick out one or two
fingers. At the same instant, I will stick out one or two fingers. You try to
match me. You win if you do; you lose if you don’t. This is a zero-sum, two
person game.

It’s called zero-sum because the total wealth of the players stays fixed.
If we bet a penny a game either a penny goes from me to you or a penny
goes from you to me; our total wealth stays fixed.

The game is called two-person because there are just two sides. In this
example there are literally two persons, but in other examples there are two
teams, two corporations, two countries, or two alliances.
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Let’s call you P and me Q. You have two possible pure strategies (show
one or two fingers), and so have I. This is your payoff matrix:

one Q two

finger fingers
one finger 1 -1
two fingers | —1 1

For instance, the lower left entry means you lose one penny if you show two
fingers while I show one finger.

My payoff matrix would just be the negative of yours, since this game is
zero-sum, two-person. What I win you lose, and vice versa. For all such games
itis only necessary to write down the payoff matrix for one of the players—say
for player P.

If you know what I'm going to do, you can win a penny; if I know what
you're going to do, I can win a penny. So we say the game has no solution in
pure strategies.

Mixed strategies. Suppose we play the game many times. Sometimes you
show one finger and sometimes two. Suppose you decide ahead of time that
you're going to play your two possible pure strategies with probabilities
py and p,, with p; >0, p, > 0, p, + p, = 1. Then the vector p is called a
mixed strategy.

For instance, suppose we’ve decided to play a series of 100 games next
Saturday. On Friday evening you decide, correctly, that your optimal mixed
strategy is p; = p, = 3. You don’t have to keep this secret. If you want to,
you can call me up and warn me that you’ve picked the mixed strategy
p1 = p, = %; your warning won’t do me any good.

What you do have to keep secret is the decisions on single plays. When we
play on Saturday, before each of the 100 games, you turn your back to me
and flip a coin so that I can’t see how it lands. If it lands heads, you’ll show
one finger on the next game; if tails, you’ll show two fingers. During our
series, you'll be showing one finger about 50 times. I, your opponent, know
that in advance, but I don’t know what you’re going to do on any single play.

So what can I do to beat you? Nothing. No matter what I do, unless I
peek at the coin, your expected payoff is zero.

Whether you call me on Friday or not, I'll pick a mixed strategy for
myself. Naturally, I'll pick the mixed strategy q, =¢, = %, and I'll plan to
pick my individual plays by covertly flipping a coin of my own. Now I don’t
care what you’ll do—as long as you don’t peek at my coin. No matter what
you'll do, your expected payoff can’t be greater than zero; in fact, your
expected payoff per game will be exactly zero.

Zero is the value of this game. This is because you can pick a mixed strategy
that will make your expected payoff at least zero, whatever I do; and I can
pick a mixed strategy that make your expected payoff no more than zero,
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whatever you do. Von Neumann's theorem says every zero-sum, two-person
game has a value in mixed strategies.

To continue Example 1, suppose you had picked a mixed strategy with
p; < 4. Then I should pick g, = 1, g, = 0, which means that I always show
one finger. Then you will match me with probability p, < 1, and you will
not match me with probability 1 — p, > 4; your expected payoff per game is

pi-1+(—=p)-(~=1)=2p; —1<0.

For instance, if you had chosen p, = 0.3, you could expect to lose about 40
cents in 100 games. Similarly, if you had picked p, > 4, I should pick g, = 0,
g, = 1, giving you the expected payoff

py(-D+(1Q—-p)-1=1-2p <0

Again, this is negative. The only way you can be sure to break even is to
choose p, = 1.

ExaMpLE 2. Now suppose this is your payoff matrix:

H

This game is a joy for you to play because you make money whatever you do.
Still, you have a best mixed strategy. Note that the payoff matrix is the sum

1 -1 4 4
R P
This is the old payoff matrix with this change: 4 has been added to each
component. Whatever happened before will happen now, except that your
payoff is increased by 4 cents. Therefore, your best mixed strategy is still
p1 = P, = %, and my best strategy is still g, = q, = 3.
The value of this game is 4. That’s the value per game to you. If you want to

play me a hundred of these games, you should pay me four dollars in advance
if you want to be fair.

ExAMPLE 3. Suppose this is the payoff matrix:

3 3

3 3f
Clearly, the value of this game is 3, and every mixed strategy is optimal. In
general, though the value of the game is unique, the optimal mixed strategies

might not be unique.

ExaMPLE 4. Suppose this is the payoff matrix:

2 1 -1
-1 =2 3
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Now you have two options (pure strategies), while I have three. If I know you
will play your first option, I will play my third; if I know you’ll play your
second option, I'll play my second.

What is your best mixed strategy? What is mine? What is the value of this
game? You don’t know.

I couldn’t guess, either. Later we’ll compute the answers by linear program-
ming. Your best strategy is

Qe

pi=3% p=3% (1)

my best strategy is
ql = 05 Q2 = %5 q3 = %; (2)

the value of the game is .
So if you play right, you can expect to be about a penny ahead every seven
games, and there’s no way I can stop you.

General discussion. Let the payoff matrix A have m rows and »n columns.
We'll call p and q probability vectors, or mixed strategies, if

p=20, Y p=1; ¢20, ) g;=1. 3)

The (expected) payoff equals

m

z Z Didiq; = PTA‘I- 4)

i=1j=1

We'll say that the game with payoff matrix 4 has the value w, and we’ll
call p and q optimal mixed strategies, if

Z Pid;; = @ (G=1,...,n (5)
i=1
Yag <o (i=1,...,m). (6)
j=1

Meaning: If the first player plays the mixed strategy p, his expected pay-
off is > w, whatever the second player does. Similarly, if the second player
plays the mixed strategy g, the expected payoff to the first player is <w,
whatever the first player does.

ExampLE 5. Taking A4, p, and ¢ from Example 4, please verify these
computations:

2 1 -
52
[797 |:__1 _2

= [544] = 3[L11]

lb-)r—-

Qe QR O
—

]
-
—_ =
 S—
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These are examples of formulas (5) and (6); they prove that w = 1 for the
game in Example 4.

Uniqueness of the value. Suppose some mixed strategies p’ and ¢’ satisfy
Z pia; 2 o, Z a;q; < o'
i i
Then

Z(Z pé%)qi = o Z(Z aiﬂ})l’i < o
i J

J i

and now (6) and (5) imply

0wz, oo,

or w = w'. So the value, if it exists, is unique.

Theorem (von Neumann). Let A be any real matrix. Then the zero-sum, two-
person game with payoff matrix A has a value w satisfying (5) and (6) for some
mixed strategies p and q.

Proor. With no loss of generality, assume all g;; are positive. Otherwise, if
a;; + a is positive for all i and j, then (5) and (6) may be replaced by

YLola+a)Z>o+a Y (a;+0)q <o+
i j
(This is what we did in Example 2, with o = 4.)

Assuming all a;; > 0, we will construct a number w > 0 satisfying (5) and
(6). First we define the unknowns

uizpi/w(i=15"'am)’ Dj"_—qj/w(j:la"'an)' (7)
Then (5) and (6) become

(®)

with u = 0, v > 0, and with

. 9)

gl

m n
L= v;=
i=1 j=1

The required vectors u and v must solve the dual linear programs with
the requirements (8) and with the objectives

n
¥; = minimum, Y v; = maximum. (10)
1 j=1

™M=

i
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By the duality theorem, these programs do have optimal solutions be-
cause they both have feasible solutions. (Since all a;; are positive, a vector u
is feasible if all its components are large; the vector v = 0 is feasible for the
dual.) Again by the duality theorem, optimal vectors u and v do satisfy the
equality (9).

Taking w, u, and v from (9), we see that w, p, and q satisfy von Neumann’s
theorem if p = wu and q = wv.

ExaMmpLE 6. To illustrate the solution of games by linear programming, let’s
first consider the payoff matrix in Example 1:

1 -1
|

To get a matrix with positive components, we can add any number « > 1
to all the components. If we use « = 4, we get the payoff matrix

5 3
it

which occurred in Example 2; the new value equals « plus the old value,
thatis, o =a + w; =4 + w,.
The solution of the dual programs (8), (9), (10) is

T _ril T il
u _‘[878’ v _'[898a
ul+u2=vl+02=%=a‘).

Therefore, w = 4, and so w, = 0 for the original game. To get the best mixed
strategies, we compute

p" = o = 4[k4] = [34]

and, similarly, g7 = wov” = [$,3].

ExaMPLE 7. Let’s solve Example 4 by linear programming. Call the matrix
A, and the value w,. To get a positive matrix 4, add « = 3 to every compo-

nent; then
5 4 2
A:
[2 X 6], (11)

This is the linear programming problem for u:

with value w = 3 + w;,.

WAz [L1L,1], u>0; u; +u,=min = 1 (12)
w

If this were a large problem, we would restate it as a canonical minimum
problem and solve it by the simplex method. But for this small problem,
we’ll do better by judgment.
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From the original problem, we judge it unlikely that the best strategy for
either player is a pure strategy. And so we expect both components of u
(or p) to be positive, and we expect at least two components of v (or g) to be
positive. If two components of the dual vector v are positive, then two of the
primal inequalities (12) must be equalities in an optimal solution.

There are only three possibilities for two primal equalities in (12); let’s
try to be lucky. (When I prepared this example, I tried the possibilities in the
wrong order, but I'll save you the trouble.) Let’s solve the second and third
primal inequalities as equalities:

[ty,10,] [‘1‘ g] — [L1].

[ulauZ:l = 712_[572]‘
Does this satisfy the first primal inequality? Yes:

50 29 .
[uy,u,] [2] =35> 1.

If v is optimal for the dual, the equilibrium theorem requires v; = 0. Let’s
solve for v, and vj:

5 4 2 1
BN
U3
and so
v =0, 172:%: Us=23_2- (13)

The equilibrium theorem assures us that u and v are optimal. The com-
mon value of their objective functions is

7 1
u1+u2=l)1+l)2+l)3=ﬁ=(;). (14)
For the game, the optimal strategies are p = wu and g = wv; so (12), (13),

and (14) give
=331 " =[044] 1s)

From (14) we have w = #*, which is the value for the shifted payoff matrix A,
but not for the original matrix 4,. After the definition (11), we wrote the
equation o = 3 + w,, and we will now use it to get the value w, = %.

This is a good example. The value 4 and the optimal strategies would be
hard to guess. Note that the second player should never play his first option,
but should only play his other two options with relative frequencies 4:3.

You might object that the game of Example 7 is unfair, since it gives an
advantage to the first player. That is irrelevant for this reason: Any two-
person game can be symmetrized by requiring the competitors to play both
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sides equal numbers of times. If you and I play the game 20 times, we’ll
alternate the roles P and Q, so each of us will have the advantage exactly
10 times. Each pair of games constitutes a single symmetric game, which is
obviously fair.

Symmetric games look exactly the same to both players. If the payoff
matrix is B, then B must be a square matrix with

BT = —B. (16)

For instance, suppose b;s = $7. That means, if P plays option 3 while Q
plays option 5, then P wins $7 from Q. Therefore, if Q plays 3 while P plays
5, then Q wins $7 from P, and so bs; = —§7.

Let us now prove what must be true: The value of a zero-sum symmetric
game is zero, and an optimal strategy for one player is an optimal strategy for
the other.

Let w be the value; and let p and g be optimal mixed strategies for the
first and second players, respectively. We will prove w = 0, and we’ll prove
p and g are optimal for the second and first players, respectively. (We can’t
hope to prove g = p, because optimal strategies are not necessarily unique.)

If e =(1,1,...,1), then we assume

p"B > we”, Bq < we. 17
For all x we have xTBx = 0, because BT = — B. Therefore,
0=p"Bp> weTp=w, 0=¢q"Bg< wqTe=ow,
which proves o = 0. Now, taking transposes in (17), we get
—Bp=B"p>0, —q"B=¢"B"<0.
Multiplying both inequalities by — 1, we get
Bp<0, ¢"B>=0, (18)

which proves p and g are optimal for the second and first players, respectively.

In (18) we found a simple characterization of an optimal strategy for a
symmetric game: If B= — B”, then the probability vector p is optimal for
both players iff Bp < 0.

This gives us a converse of our solution of games by linear programming.
We will now prove this: Every solvable linear program is equivalent to a
Symmetric zero-sum, two-person game.

Let’s write the program as a standard minimum problem:

Ax=b, x=20, ¢'x=min.
Here’s the dual problem:

yTA< ", y=20, y'b = max.
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Feasible solutions x and y and optimal if and only if
cTx < y™h,

where, in fact, only the “=" may occur.
We can summarize the conditions of feasibility and optimality as follows:
For x = 0, y = 0, we have

0’ —Aa b y
AT 0, —-c||x|<0
b7, T, 0|1

Here the matrix—call it B—has m + n + 1 rows and columns if 4 has m
rows and n columns. The matrix B is antisymmetric: B = — B”. The vector
has m + n + 1 non-negative components; the last component equals 1. If we
divide the vector by the sum of its components, we get a probability vector p.
Then Bp <0 where B= —B7, and so we've found a symmetric game
equivalent to the given linear program.

Bluffing. The most interesting thing about games like poker is bluffing.
Under what conditions and how often should you bluff? Your answer will
depend partly on your reading of the character of the other players, but will
also depend on your intuitive grasp of the theory of mixed strategies.

Bluffing occurs in business and in diplomacy. In his book The Negotiating
Game, Dr. Chester Karrass tells the story of Hitler and Chamberlain at
Munich. On pp. 8-10 he has an essay: “The Rape of Czechoslovakia.” I'll
summarize it for you. Hitler had everything against him; he had every reason
to back down. But he bluffed, and Chamberlain failed to call his bluff. Karrass
says at the end:

“Chamberlain, businessman turned politician, had lost the greatest nego-
tiation of all time. As a consequence, 25 million people were soon to lose
their lives.”

Games like diplomacy and poker are too complicated to analyze precisely.
But still, game theory gives us, if not knowledge, at least wisdom. Here’s an
example by S. Vajda:

ExaMpLE 8. You and I will play a simple bluffing game. The first thing we
both do is put down a small positive ante a. Then you draw one card from
an ordinary deck; after looking at it, you put it face down without showing
it to me. We'll say black cards are high, and red cards are low.

Here are the rules. After you draw, you may bet or fold. If you fold, you
lose the ante a. If you bet, then I may fold or I may call. If I fold, I lose the
ante a, whether you've drawn black or red. If I bet, then you win the amount
b if you drew a black card, or I win the amount b if you drew a red card. (The
ante a and bet size b are fixed in advance, with 0 <a < b.)

Your pure strategies. If you draw black, you will certainly bet—there’s no
question about that; you will bet and win at least the ante a. The only ques-
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tion is this: Will you bet if you draw red? That would be the bluff strategy.
If you fold when you draw red, that is the fold strategy. (Remember, even
if you're playing the fold strategy, you will bet if you draw black.)

My pure strategies. You’ve just bet. What should I do? If I know you
only bet on black, I will fold; but if I think you may bluff and bet on red,
I may decide to call you. I have two pure strategies: the call strategy, in which
I will call you if you bet; and the fold strategy, in which I will fold if you bet.

Can we write down your payoff matrix for this bluffing game? Sure we
can. Here it is:

call fold
bluff 0 a
Pld |22 o

Let me explain. As usual, let’s call the components a;;. For instance, a,,
is your average payoff if you play your fold strategy while I play my call
strategy. I'll explain all four components:

a,; = 0:Ifyoudraw black, you will bet, I will call, and you will win b. If you
draw red, you will bet (bluffing), T will call, and you will lose b. Since black
and red draws are equally likely, your average payoff is (b — b) = 0.

a,, = a: Whatever you draw, you will bet, I will fold, and you will win the
ante a.

a,, = (b — a)/2: If you draw black, you will bet, I will call, and you will
win b. If you draw red, you will fold, and you will lose the ante a. Your
average payoff is (b — a)/2.

a,, = 0:If you draw black, you will bet, I will fold, and you will win a. If
you draw red, you will fold, and you will lose a. Your average payoft is zero.

Optimal mixed strategies. If you always play your bluff strategy, I will
always play my call strategy; if you always play fold, I will always play fold.
So, in pure strategies I can hold your average payoff down to zero.

But you can win with a mixed strategy. Using linear programming, we
can easily compute your best mixed strategy p, my best mixed strategy g, and
the value w. Your expected payoff will be w each time we play; I can’t lower it,
and you can’t raise it.

You can compute these values:

_b—a _ 2a _ 2a _b—a
‘b—i—a’ p2‘b+a’ ql—b“}‘a, qZ—b+a

P1 ; (19)

and w = a(b — a)/(b + a). Using the payoff matrix A, please verify the
inequalities

P4 > (0w), Ag< (a’>
w

(Both inequalities will turn out to be equations.)
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I promised you wisdom from this example, and now you’ll get it. Your
optimal bluffing frequency depends on the bet-to-ante ratio r = b/a. We
assumed r > 1. As r goes from 1 to oo, p; goes monotonely from O to 1: the
bigger r is, the more often you should bluff.

As for me, if I look at g, I see this: The bigger r is, the more often I should
fold.

The value w depends on a and r:

b—a_ ‘r—l

“ra Yyt (20

)
As a function of r, as r goes from 1 to co, w increases monotonely from O to a.

Many-person games. Poker usually has more than two players. How
should you play n-person games if n is greater than 2?

Here the theory is very complex. It depends on your assumptions about
collusions and side payments. If you want to learn the main ideas simply,
it’s hard to beat the old book by Luce and Raiffa.

When I was a college freshman, I had two roommates, Fritz and Ted. With
regard to all questions (Shall music be played? Shall the lights be on at
2 A.M.?) Fritz and Ted and I played a 3-person game you might call majority
rule, or democracy without the Bill of Rights. Superficially, the game appeared
symmetrical, but I soon learned that Fritz-and-Ted together couldn’t be
beat. It was a lesson in 3-person game theory.

Later, I'll prove the Nash equilibrium theorem for you. This theorem
assumes there are no collusions, but it applies to most n-person games, even
to nonzero-sum games.

Nonzero-sum games. Zero-sum games are not the most important games.
The stock market may be a zero-sum game, but the stock market is not the
economy.

If I buy 100 shares of IBM stock, I may think I’ve made an investment.
Ignoring the broker’s fees, I play a zero-sum game with the seller. If the price
goes up, I'll win and the seller will lose; if the price goes down, I'll lose and the
seller will win. One of us is going to profit at the other’s expense.

Economists don’t call stock purchases investments (they call them welfare
transfers, or something like that). Stock purchases are no part of the gross
national product. To an economist, an investment is a purchase made to
increase the productivity of a business. If I buy an IBM computer to make my
business more productive, that is an investment. It’s good for IBM and good
for me. It’s even good for you if you’re one of my customers. In a wise business
transaction everyone comes out ahead. By and large, business is a positive-
sum game.

Disarmament: a negative-sum game. But not all is well in the world. For
instance, the United States and the Soviet Union divert much of their eco-
nomic productivity from the civilian sector to the military. Pacifists say this
is dangerous; realists say it is necessary. But everyone agrees that it’s wasteful.
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Poor people in both countries—and rich people, too—would be better off
if both countries disarmed.

So why don’t they? Let’s see if we can understand the paradox of disarma-
ment by making a simple mathematical model.

To begin, we’ll assume that the world contains only two countries, the
U.S. and the U.S.S.R., so we don’t both have to worry about disarming and
then getting bombed by China. Second, we’ll assume that neither the U.S.
nor the U.S.S.R. is totally wicked, stupid, or crazy; we’ll assume both coun-
tries act in their own interest. Last, we’ll make the model symmetric. This is
what Bertrand Russell once called a false “love of symmetry” in discussing
these two countries, but you’ll see that the symmetry won’t affect our main
conclusion.

Both countries have two pure strategies: arm and disarm. If we both arm
(which is what we do in fact), let’s say we both get payoffs equal to minus
$200 billion, if that is the annual defense budget in each country. If we both
disarm, both our payofs rise to zero.

Suppose we disarm while they arm. Then our payoff could go to minus
infinity, or something pretty near. Meanwhile, their payoff could become
positive—say $100 billion. Even short of war, they could expect to win a
great deal from us by intimidation.

By a false love of symmetry, we’ll assume exactly the reverse if we arm
while they disarm. We'll assume our payoff becomes $100 billion while theirs
goes to minus infinity.

Since the game isn’t zero-sum, we have to write down two payoff ma-
trices—one for us (U.S.) and one for them (U.S.S.R.). We'll do this, in effect,
by writing four entries of the form a\b, where a is our payoff and b is theirs. So
here are the payoffs for the four possible pure-strategy pairs:

US.S.R.
arm disarm

arm —200\—200 | +100\— o0
disarm | —oo\+100 00

US.

At present, we and the Russians are in the upper left box, since we are both
playing arm. We're both getting payoff —200. We would both be better off
if we both played disarm, which would put us in the lower right box.

But whatever they do, we are better offif we arm. If they arm, we must arm;
if they disarm, we are still better off if we arm. Similarly, whatever we do, they
are better off if they arm. And so we both wind up in the upper left box.

In logic, this is an example of the fallacy of composition: what’s best for
the parts is not always best for the whole. This is the underlying paradox of
morality. We would all be better off if we were all good, but then it would pay
each one of us to cheat a little.

The bad news from game theory is this: The upper left box is a stable Nash
equilibrium. I hope I've roused your interest.
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PROBLEMS

I. Let 0< x<1and 0< y <1 Let y(x,y) = (x — y)%. Show:

min Y(x,y) =0 for all x,
y
max (x,y) =%  forall y.
Deduce the strict inequality

min I:max Y(x, y):l > max |:min Y(x, y):|.

y x x y

. In general, let X and Y be closed, bounded subsets of R™ and R"; and let y(x,y)

be continuous and real-valued for x € X, y € Y. Prove the inequality

min [max Y(x, y):| > max [min Y(x, y)].

y x X y

. The minimax property of a matrix game: Let X be the probability vectors in

RM (x; = 0,Xx; = 1); let Y be the probability vectors in RY. Let A be an m x n
matrix, and define the continuous function y(x,y) = xTAy. Let p, ¢, » be optimal
strategies and the value satisfying (5) and (6). For x € X and y € Y, show

min [max xTAyJ < max x"Ag < o,

y X

x

max [min xTAy] > min xTAy > .

X y y

Show that all these inequalities are equalities by using the result of Problem 2.

. In The Ascent of Man, J. Bronowski presents a version of the game called Morra.

Each player shows one or two fingers, and each player guesses the number of
fingers the other player will show. Thus, each player has four pure strategies:
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10.

11.

(show, guess) = (1,1), (1,2), (2,1), (2,2). The object is to guess how many fingers your
opponent will show. The payoff is zero if both players guess right or if both guess
wrong. But if only one player guesses right, the payoff to him, from his opponent,
equals the sum of the numbers shown by both players. This is a zero-sum, sym-
metric two-person game; find the payoff matrix. Answer:

0 2 -3 0
-2 0 o 3

3 0 0 -4

0 -3 4 0

A=

. (Continuation.) Bronowski says that a best mixed strategy for Morra has relative

frequencies 0,75,75.0. Prove Bronowski is right: verify 4g <0, pTA>0if p=q=
Bronowski’s strategy.

. (Continuation.) Show that Bronowski’s strategy isn’t the only optimal strategy:

show that p is optimal iff p, = p, = 0 and % < p,/p; < 3.

. (Continuation.) Suppose you play Bronowski’s optimal strategy while I play the

mixed strategy (0.1,0.4,0.3,0.2). On the average, how much do you expect to win
per game?

. Use linear programming to solve the game with payoff matrix

N

(“Solve the game” means: find the value w and optimal mixed strategies p, g.)

. Use linear programming to solve the game with payoff matrix

-2, 3,-1
A= .
1,—1, 2

Let a symmetric game have payoff matrix 4 = — A”. Use the Farkas theorem to
prove there exists a vector g satisfying

(Since every matrix game can be symmetrized, this gives another proof of von
Neumann’s theorem.)

The game hide and seek (von Neumann): Given is an m x n matrix B with com-
ponents b;; > 0. Player P picks a row or a column, while player Q picks a single
component. Suppose Q picks b,; then Q must pay P the amount b, if P picks
row r or column s, but the payoff is zero if P picks a row or a column not con-
taining b,,. (Q hides, P seeks.) Player P has m + n pure strategies, while player Q
has m - n pure strategies. Suppose P picks row i with probability p;, column j with
probability pi(Xp; + Zp; = 1); suppose Q picks component b;; with probability g;;.
What is the expected payoff to P from Q? Write the 5 x 6 payoff matrix A4 if B

is the matrix
B— 1 2 3
"4 5 6]
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12. (Continuation.) For hide and seek take the matrix

1 2
B= .
3 4
Find the 4 x 4 payoff matrix A, and solve the game. [Answer: w = 0.8; p” =

(0.4,0.1,04,0.1); g7 = (0.8,0,0,02)]

13. A multistage game: Each player is dealt three cards numbered 1, 2, 3. Three tricks
will be played. Each player plays one of his cards for the first trick; after observing
the first trick, each player plays one of his remaining two cards; then the last play
is forced. The payoff is some function of the cards played. Show that each player
has 24 pure strategies. (Hint: 24 = 3 - 23)

*14. Generalize the last problem: let each player hold cards numbered 1,2,...,n
Write a formula for the number of pure strategies for each player.

15. For hide and seek (Problem 11) show that player Q’s optimal mixed strategy has

the components q;; = wv;;, where v solves

v; 20, Y Y v;=max = l/w.
i

(If we set x;; = b;;v;;, this linear program becomes what we shall later call an

optimal assignment problem.)

16. Use linear programming to solve the game with payoff matrix

)

A= ,

c 0

where a and ¢ are positive. Set ¢ = 3(b — a), and apply your solution to obtain
formula (19) for Vajda’s example of bluffing.

17. Find the 6 x 6 payoff matrix B for a symmetric game equivalent to the linear

program
[:: f ;}x = I:;/} x>20, [7,59]x = min.

Show that the optimal solution of the program is x° = (1,2,0)T by solving the
equilibrium equations. Now write the optimal mixed strategy p = ¢ for the game;
verify Bq < 0.

18. For the nonzero-sum game disarmament, what are the expected values to the two
players if they use mixed strategies p and ¢? If the first player plays p, what strategy
is optimal for the second player?
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15 Integer Linear Programming:
Gomory’s Method

In canonical form, a linear programming problem looks like this:
Ax=b, x>0, c'x=min. 1)

If the unknowns x; are required to be integers, we have a problem in integer
linear programming.

The canonical program (1) is a minimum problem. On any minimum
problem the effect of a new requirement is this: The new problem may have
no solution; or if a solution does exist, the new minimum will be greater than
or equal to the old minimum.

ExaMpLE 1. The canonical program
2x;+4x,=5, x=20, x;+ x, =min.

has the solution x; = 0, x, = 3. If we require x, and x, to be integers, the
problem has no solution. In the theory of numbers, equations in integers are
called diophantine equations; the existence of solutions depends on divisibility
relationships.

ExaMPLE 2. The canonical program
2x1 +4x2=6, xZO, X1 +X2=mln

has the optimal real solution x, = 0, x, = 3; the minimum equals 3. The
integer program has the solution x, = 1, x, = 1; the new minimum equals 2.

ExampLE 3. Here is the knapsack problem. Given positive values v; and
weights w; for j = 1,...,n, we want to find integers x; satisfying

wix;+ o+ wx, < B, x;20,

v3Xy + 4+ VX, = max.

@

Here x; will be the number of objects of type j, each of which has value v; and
weight w;. The number  is a given positive bound on the total weight. The
total value Zv;x; is to be maximized.
The knapsack problem is difficult only because of the integer requirement.
If we drop the integer requirement, the solution is this: Take as much as
possible of an object that maximizes the value-to-weight ratio v,,/w,,. Then
the optimal solution has the components
Xm = B/Wm, Where v,/w,, = max(v;/w;) 3

(If several indices m maximize v,,/w,,, pick any one of them.)
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In real numbers the knapsack problem (2) is a trivial standard maximum
problem. If we call this the primal problem, then formula (3) gives the optimal
primal solution, and

Y1 = Up/Wn 4)
gives the optimal dual solution, satisfying
yw;zv;  (j=1...,n, y; 20, By, =min

The optimal value for primal and dual is fv,,/W,.
For instance, look at this problem:

51x; 4+ 50x, + 50x3 < 100, x;=0

150x; + 100x, + 99x; = max. )

Here m = 1 gives the maximum value-to-weight ratio 150/51, and the optimal
real solution is

x1 = 100/51, xl - 0, x3 = 0, (6)

the total value is 15,000/51 = 294.12.
In integers the solution is entirely different; it is

Xl = 0, xl = 2, x3 = 0 (7)

The total value goes down to 200. Remember this example when you're
tempted to solve an integer program by first solving in reals and then
rounding off. If you round off the real solution (6), what you get is nothing
like the integer solution (7); and if you round off the real maximum 294.12,
the result is far from the integer maximum 200.

The next example will introduce the cutting-plane method. The idea is to
convert the integer requirement to new equation constraints. The successive
extended linear programs are solved for real solutions. When finally an
optimal real solution happens to have all components integers, this solution
must be optimal for the original integer program.

ExaMpLE 4. Consider this problem in integers:
2x1 “XZ =5, xZO, xl +x2 =min. (8)

In real numbers the optimal basic solution is x; = 3, x, = 0. Of course, you
can guess the solution in integers, but pretend you can’t, or you'll ruin my
example.

In real numbers, the optimal basic variable is x ;. The basis matrix has only
the component 2; the inverse has only the component 4. Multiplying the
constraint equation by the inverse of the basis, we get

©)

(S0

Xy — %Xz =
The fractional parts of the non-basic coefficients are

(-4-% #-t
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(Every real number A equals an integer [A] plus a fractional part {1} with
0 < {4} < 1) If x; and x, are integers, equation (9) implies the congruence

; (10)

where the congruence sign “=" means “differs by an integer from.” (For
example, 2.718 = 0.718 = —39.282.) Thus, the congruence (10) is equjvalent
to an equation

Il
(ST

X2

N

Ix,=%42z,  (z; = integer). n

But we have required x; = 0, x, = 0. Therefore, the left-hand side must be
20. Therefore, the integer z, must be > 0. This is the point. The constraint (11)
is new: the old optimal real solution (x, = 3, x, = 0) doesn’t solve the new
constraint, but an optimal integer solution must solve it.

So now we have an extended problem, with a new equation and a new
unknown:

2x{—%x, =15
LT (2120,%,20,x,>0) (12)
—Z; +3X, =12

Xy + X, = min

An optimal integer solution of the original problem (8) must be an optimal
integer solution of (12).
For the extended problem (12) we compute the optimal real solution,
obtaining
z,=0, x;,=3, x,=1. (13)

(The optimal dual solution is y; = 3, y, = 3, and the primal-dual optimum is
¢"x = yTb = 4.) The optimal real solution (13) happens to have integer
components. Therefore, it is an optimal integer solution of the extended
problem (12); and therefore, it is an optimal integer solution of the original
problem (8).

Gomory’s cutting plane. In general, consider the canonical program (1) in
integers. Suppose all the given components a;;, b;, c; are integers; suppose
the set of real feasible solutions is bounded; and suppose an integer feasible
solution exists.

Without loss of generality, suppose x;, . . ., x,, are the basic variables in an
optimal basic real solution x° (with x9 = 0 for m < j < n). If all the x{ are
integers, we're done; for then x° is a vector with integer components that is
optimal over the larger class of reals. (If the best tennis player in the U.S.
lives in Nevada, he must be the best tennis player in Nevada.)

But suppose the optimal basic real vector x° has some component that is
not an integer, say x{ # integer. Then we will construct a new equation that
x° does not satisfy but that an optimal integer solution must satisfy.

First, we multiply the system Ax = b by the inverse of the basis matrix.
If the basic variables are x,, . . ., x,,, the result has the form

Xi+ Y txj=1tp (i=1...,m). (14)

j>m
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The numbers t;; are components of the simplex tableau. If we set x; =0

for j > m, we get the basic components of the optimal real solution x°:

X?=ti0>0 (l=1,,m)

We assume that ¢, # integer.
Look at the single equation

X1 + Z tlej = th‘
j>m

If this equation is satisfied by integers x{, X+ 1, - - - » X, then we have the
congruence

2 {tuhx; = {tio), (15)

j>m
as in the example (10). The right-hand side satisfies 0 < {¢;,} < 1; all terms
on the left are >0 because the problem (1) requires x = 0. (All the fractional
parts {t;;} are >0 by definition.) Therefore, either the two sides of the con-
gruence are equal or the left is bigger than the right by an integer. This gives
the new constraint

Y {tdxi={tio} +2z,  (z,20) (16)

j>m

as in the example (11); the new unknown, z,, is an integer.

Please note this: The old optimal real solution x° fails to solve this
constraint but an optimal integer solution must solve it.

If we append the equation (16) to the original system of equations, we
obtain an extended system of equations, with one more equation and one
more unknown, as in the example (12). To continue, we compute an optimal
real solution x! for the extended system. If all components of x! are integers,
then x! provides an optimal integer solution for the original problem. If not,
we get a new inequality exactly as we got the inequality (16). This gives a
second extension. And so on.

Ralph Gomory proved that this process succeeds in a finite number of
steps. Finally one gets an extended problem with an optimal real solution x”
whose components are all integers. Then x? must be an optimal integer
solution of the original problem.

The proof of Gomory’s theorem is difficult. If I could simplify it, I would
present it to you. Instead, I'll give you references to some of Gomory’s
papers and to some texts on integer programming.

As you saw, the general problem of integer programming is difficult
because even if all the data are integers, the optimal real solution generally
isn’t a solution in integers. But there is an important class of integer programs
for which an optimal real solution is a solution in integers. These problems
are called network flows; I'll tell you about them next.
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PROBLEMS

1. Consider the knapsack problem (5) with the added constraints x; < 1 (j = 1,2, 3).
Find the optimal real solution x°, and find the optimal integer solution x!.

*2. Consider the general knapsack problem (2) with the added conmstraints x; <1
(j=1,...,n). Find the optimal real solution x°. Write the dual program, and find
the optimal dual solution y°; verify the equality of the primal and dual optimal
values. Would you expect equality of the primal and dual optimal values for integer
programming?

3. Suppose x,, x,, x5 are integers >0 satisfying

21.7x; — 182x, — 194x; =53
Then show
Tx, + 8%, + 6x3 =3 + 10z,

where all four unknowns are integers =0.
4. Consider the problem
21.7x; — 18.2x, — 19.4x3 =23
x=0, x;+ x,+ x3;=min.
Find the optimal integer solution.

5. Consider the linear program

12 31 [4 >0 o
3 s 6x— ul x>0, x,=min

Show that the optimal real solution is x° = (3,0,3)7. Multiply by the inverse basis
matrix to obtain
Xy + x,=3

1 -1
X3 +3X=3

Show that the last equation for integers >0 implies x, = 1 + 3z, where x, and z,
are integers >0.

6. (Continuation.) Consider the linear program

123 0 4
356 O0lx=|1l|, x>0, X,=min.
010 -3 1
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Show that an optimal real solution X has the components 2, 1,0,0. Now find an
optimal integer solution x for Problem 5.

7. The knapsack problem in formula (5) is a standard maximum problem. Restate the
problem as a canonical minimum problem, and find the optimal integer solution
by Gomory’s method.

16 Network Flows

Network flows are integer linear programs with an extraordinary property:
some optimal real solution is an optimal integer solution.

The original theory was discovered by L. R. Ford and D. R. Fulkerson.
It has its own theorems and its own algorithms—you don’t have to use the
simplex method. It has applications ranging from industrial scheduling to
combinatorial analysis. But mainly, it’s fun.

The basic mathematical model is a capacitated network (N k). The network
N is just a finite set of points

N ={sab,...s}.

Two of the points are special: the source, s, and the sink, s'. The points in N
are sometimes called nodes. If x and y are distinct nodes, we'll call (x,y) an
edge. The edge (y,x) is different from the edge (x, y). For each edge, we define
a capacity k(x,y) 2z 0. We suppose k takes integer values; we don’t require

k(y,x) = k(x,y).

ExampLE 1. In Figure 1 you see a capacitated network.

Figure 1

This network has four nodes: s,a,b, s’. Therefore, the number of directed
edge must be 4 -3 = 12, and for each edge we must have a capacity k. In
Figure 1 you see only 6 capacities; those you don’t see are assumed to be
zero. For instance, you see k(s,a) = 5; you don’t see k(a,s), so it’s zero.

Flows. Suppose (N,k) is a capacitated network with at least one node
besides the source and the sink. A flow f(x,y) is an integer-valued function
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on the edges (x,y); it must have these properties:

(i) f(x,y) = —f(y:x)

(i) f(x,y) < k(x,y)
(i) Y, cn flx,y)=0ifx #sors.
(iv) f(s,x) = 0; f(x,5) = 0.

Property (i) says that a positive flow from x to y is considered a negative
flow from y to x. Property (ii) says that the flow from x to y shouldn’t exceed
the capacity of that edge. Property (iii) is a conservation law for the interior
nodes x: the net flow out of x should be zero. Property (iv) says the flow
from the source may be positive, but not negative; and the flow into the sink
may be positive, but not negative.

As you see, f = 0 is always an admissible flow. The value of this flow is
ZEero.

The value of a flow f is defined as

o(f) =Y f(s,%). 1)

This is the total flow out of the source. As you’ll soon see, it’s also the total
flow into the sink.

ExampLE 2. Figure 2.1 and 2.2 give admissible flows for the capacitated
network in Figure 1. The first flow has value 1; the second flow has value 4.

a

I~

Figure 2.2
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The second flow is a maximal flow: its value is as big as possible. If you
don’t believe it, look at Figure 1 and see if you can do better.

Draw a curve around the nodes s and q, as in Figure 2.3; call this subset C.
If you look at the capacitated network in Figure 1, you'll see that the total
capacity out of C is

k(s,b) + k(a,b) + k(a,s)=1+2+1=4. 2

This must be an upper bound for the value of any admissible flow. Since the
flow in Figure 2.2 achieves this value, it must be maximal.

b
Figure 2.3

Notation. If A and B are subsets of nodes, we define

k(AB)= Y » k(xy), 3)

xeAyeB
and we define f(A4,B) the same way. In this notation property (iii) becomes
fx,N)=0 if x#s or &,

and the value of the flow is v(f) = f(s,N). We always assume k(x,x) =
f(x,x) = 0. If B= A, we must have f(4,4) = 0; that follows from the anti-
symmetry property (i).

Cuts. Let C be a subset of the nodes that includes the source but not the
sink. Let C’ be the complement N — C. Thus, C’ includes the sink but not
the source. The complementary pair C, C' is called a cut in the network N.

The capacity of the cut is k(C,C"). If f is a flow in the capacitated network
(N,k), then f(C,C") is the flow from C to C’, and it must satisfy the inequality

fIC,C) < K(C,C). 4)

That is because we require f(x,y) < k(x,y) for every edge.

Different flows have different values; different cuts have different capaci-
ties. We called a flow with maximum value a maximal flow; we’ll call a cut
with minimum capacity a minimal cut. Later, we will prove the max-flow,
min-cut theorem:
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Theorem. Let (N,k) be a capacitated network. Then f, is a maximal flow and
Cy, Cy is a minimal cut if and only if

fo(Co, 6) = k(CO,Cb). (5)

First, let me give you an example of different cuts and different flows in
a single capacitated network.

ExampLE 3. From Figure 1 let us tabulate all the cuts C,C’ and all their
capacities, k(C,C’).

C C k(C,C)

S ab,s S5+1=6
s, a b,s' 1+2+1=4
s, b a,s 5+4+4=13
s,a,b s 1+4=5

Evidently, the second cut is minimal; its capacity equals 4.

In Figure 2.1 and 2.2 you see two different flows in this network. The
first flow has value 1; the second has value 4. The second flow is maximal, as
we showed after equation (2). As you see, the value of the maximal flow equals
the capacity of the minimal cut.

In Figure 2.3 the subset C and its complement are the minimal cut. For
the optimal flow, in Figure 2.2, you see that the flow across this cut equals 4,
which is the capacity of this cut.

As our example shows, different cuts have different capacities, and differ-
ent flows have different values. But for each flow f the number f(C,C’) is
the same for all cuts C,C’:

Lemma. If f is a flow in (N,k), then the value of the flow satisfies

u(f) = f(C,C)
for all cuts C,C'.

Proor. Because f(x,y) = —f(y,x), we have f(C,C) = 0. Therefore,

AICC) = fC,C) + f(C,C)

= f(C,N).

But
fICN) =} f(xN)= f(s,N),

xeC

since we require f(x,N) = 0 unless x = s or 5. By definition*f(s,N) = v(f).
Thus, the value of a flow equals the flow f(C,C’) across every cut. Please

verify this for the flows in Figures 2.1 and 2.2. Now we can prove the theorem.

PROOF OF THE THEOREM. By assumption, the function f(x,y) is integer-
valued. The value v( f) is bounded above by the capacity of any cut. Therefore
a maximal flow f; exists.
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Given the maximal flow f;,, we choose a subset C,, as follows. We call an
edge (x,y) unsaturated if

fO(x7y) < k(x’y) (6)

We call the path x4,x,,X,, ..., X, unsaturated if all of the k edges (x;_ ;,x;)
are unsaturated. Now we let C,, consist of the source s and all nodes x that
can be reached from s by unsaturated paths. (For example, for the network
in Figure 1 and the optimal flow in Figure 2.2 the set C, consists of s and a.)

We assert that C, cannot contain the sink s'. If C, contained ', there
would be an unsaturated path going from s to s'. Along this path, in every
edge, we could increase f, by + 1 to obtain a new flow f;. For every interior
node x on the path, the flow into x would increase by 1 and the flow out of x
would increase by 1, leaving the net flow f,(x,N) = 0. For the source, the
outward flow would increase by 1: fi(s,N) =1 + fy(s,N). So the value of
the flow would increase by + 1, contradicting the maximality of f,,.

Since C, contains s but not s, the complementary sets C,, C;, form a cut.
We now assert

folx,x)=k(x,x) if xeC, and x'€Cj. @)

Proof: Otherwise the edge (x,x) would be unsaturated; then we could reach
x' by an unsaturated path going first from s to x and then from x to x'. Then
x" would lie not in Cj, but in C,, since we could reach it by an unsaturated
path.

Summing the equations (7), we get fo(C,,Co) = k(C,y,Cy), which is the
required equation (5).

Conversely, this equation implies that the flow is maximal and the cut
is minimal. For if f is any competing flow, we must have

f(Co,Co) < k(Co,Co) = foCo,Co),
so v(f) < v(fp); and if C,C’ is any competing cut, we must have
k(C,C) 2 fo(C,C') = fo(Co,Co) = k(C,,C0),
$0 k(C,C') Z k(Co,Cy). O

ExaMPLE 4. Figure 4.1 shows an optimal flow f, for the capacitated network
in Figure 4.2. Please look at the subset C,; check that f(C,,Cp) = k(C,,Cp).

Figure 4.1
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Figure 4.2

The node b can be reached by the unsaturated path s, b. The node g can
be reached by the unsaturated path s, b, g.

But what about the node ¢? Why did I put this node in C,? Isn’t the path
s, ¢ saturated?

Yes, it is. But I can reach ¢ by another path, which you might not think of:

s,b,g,c.

This path has three edges. The figures show that the first two edges are
unsaturated. But so is the last one:

fO(g5c) = —fO(C’g) =-1<0= k(g,C)

The point is this: A positive flow in an edge always induces a negative
flow in the reverse direction, and so it produces an unsaturated reverse edge,
since all capacities are 20. You have to remember this point when you use
the following algorithm.

The unsaturated-path algorithm. The preceding proof suggests a way to
construct an optimal flow. Given the capacitated network (N,k), start with
any feasible flow, say f,(x,y) = 0. Now let C, be the set consisting of s and
of all nodes that can be reached from s by unsaturated paths; you can locate
these nodes recursively, starting from s. The set C, depends on the given
(N,k), but also depends on the current feasible flow. If s’ lies outside C,, then
/1 is optimal, as the preceding proof shows; for then f,(C,,C’) = k(C,,C}).

If &' lies inside C,, you can get a better flow. Let s,a,b, ...,s be an un-
saturated path from s to s". Then f(x,y) < k(x,y) on every edge of the path.
Since you're dealing with integers, there is a largest positive integer 4 such
that

fi(x,y) + 4 < k(x,y)
for all edges on the path. Now let
f2(x,) = fi(x,y) + 4 on the path.

For f, to be feasible, let f5(y,x) = —f,(x,y) in the reversed edges; and let
fo(u,v) = fi(u,) in all the remaining edges of the network.
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The new flow is feasible for this reason: If y is any interior node of the
path, you've increased the flow into y by 4, but you’ve also increased the
flow out of y by 4, keeping the net flow zero.

The new flow is better because the flow out of s has increased by 4 > 1.
Now proceed as before. Form the set C, consisting of s and all nodes that
can be reached from s by unsaturated paths. If s’ lies outside C,, you're
done; if not, you can get a better flow f;. And so on.

The process must yield an optimal flow f, in a finite number of steps

because
k(s,N)= f,,1(s&N)=f(sN)+ A,(n=1,2,...)

with 4, > 1.
ExXAMPLE S. Let’s use this algorithm on the network (N,k) in Figure 1. We'll

start with f; = 0. Then C, is all of N. Let ©; be the path s,a,s". Then 4, = 1,
and we get the flow f, in Figure 5.

NN

N
b b
Figure 5

a [

\/

Now the unsaturated path s, a, b, s’ has excess capacity 4, = 2. By adding
2 to f, along the path, we get the new flow f;. For f; there is only one un-
saturated path to s, namely, s,b,s’. By increasing f; by the excess capacity
45 =1 along the path, we get the optimal flow f,, which appears in
Figure 2.2.

Network flows as linear programming. You can state any network-flow
problem as a linear program. Given (N,k), let’s number the nodes 1,2, ... ,n,
with s = 1 and s’ = n. Let k;; be the capacity of the edge (i) and let f; be the
flow. Then we require

f;]skl] (i’j=1,'-"n)
fi+ fi=0

,ifi,-=0 (i=2,...,n=1) ©)

n
ji=2

That’s one way to state the max-flow problem.
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Another way is this. Think of the flow f, ; as x;; if the flow is >0; otherwise,

let x;; = 0. Using the unknowns x;; > 0 for i # j, we get this problem:

xij<ky (@Gi=1,...,ni#])

n n—1
X — Xy= 0 i=2,...,n—1
2T L% ( ) o)

This formulation is more in the spirit of linear programming, since we
abandon the algebraic flows f;; and use the nonnegative unknowns x;;.
Note that the formulation (9) uses fewer constraints than (8) does.

Integer versus real programming. Given the integer capacities k(x,y) = 0,
we have stated the maximum-flow problem for the best integer flow f(x,y).
As you’ve just seen, we can restate this problem as an integer linear program
(9). Suppose we broaden the domain of competing flows by allowing real
non-integer flows. Then we might expect to get a bigger maximum value
f(s,N). But that is false; for this special class of linear programs the maximum
over integers equals the maximum over reals.

PRrOOF. Let f, be any admissible real flow. Then for all cuts C, C’' we must have
u(f) = £(C,C) < k(C,C).

In particular, this must be true for the cut C,, Cj, that appears in the proof
of the max-flow, min-cut theorem. That particular cut satisfied

k(C,Co) = fo(Co,Co) = v(fo),
where f, was a maximal integer flow. Therefore, we must have

v(£) < k(Co,Co) = v(fo),

and so we cannot increase max v(f) by using non-integer flows.

ExAMPLE 6. For the network (N,k) in Figure 6 there are non-integer maximal
flows; but for all of them v( f) = 1, as for the two maximal integer flows.

o5

k=1
Figure 6
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For instance, we could let f(s,a) = f(a,b) = f(s,b) =%, f(b,s) =1, giving
u(f)=1

T’ll give you some applications of network flows in the next section.
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PROBLEMS
1. Let N = {s,a,b,s'}. Let the nonzero capacities be
k(s,@) =5, k(as)=2, k(ab) =1.
k(s,p) =17, k(ba) =6, k(bs)=09.
Draw a picture of the capacitated network (N,k). Make a table of all cuts and
capacities (see Example 3). Identify the minimal cut and its capacity k(C,,Cy).

2. For the network in Problem 1 find the maximal flow f, by inspection. Verify
formula (7) for this example, and verify that v(fy) = k(C,,Cy).

3. Start with f = 0, and find the optimal flow f; in Problem 2 systematically by the
unsaturated-path algorithm.

*4. For the capacited network (N.k), suppose some capacities into the source are posi-
tive: k(x,s) > 0. Show that all these capacities may be replaced by zero without
affecting the maximum flow value v(f). (Method: Call the new capacity function k*,
and show that k(C,C’) = k*(C,C’) for all cuts.) Similarly, show that positive capaci-
ties out of the sink may be replaced by zero.

5. If the network N has m interior nodes, show that the number of cuts equals 2™.

6. If the network N has m interior nodes, show that the number of unsaturated
paths from s to s’ has the upper bound m + m(m — 1) + - - - + m!

7. Using formula (9), write a linear program equivalent to Example 1.
8. Find a maximal flow and a minimal cut for this symmetric capacitated network:

31 9 ¢
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*9. Show that you never have to use flows around loops: Let f be a flow in (N,k).
Suppose the flow is positive in every edge in the directed loop 4, b,c, ... ,a. If 4
is the least of those edge flows, show that 4 may be subtracted from every edge
flow in the loop to produce a new admissible flow with the same value. Let o(f)
be the sum of all the positive edge flows f(x,y) in the network. Let f, be a maximal
flow in (N,k), and let f;, minimize o(f) over the maximal flows. Deduce that f,
has no positive flow around any loop.

10. Suppose we generalize network-flow theory by allowing more than one source and
more than one sink. Show how to handle this generalization by using only one
source and one sink.

17 Assignment and Shortest-Route Problems

In the last section, we proved the max-flow, min-cut theorem, and we
discussed the unsaturated-path algorithm for computing a maximal flow.
As a first application, I want to show you the simple-assignment problem.

This problem is usually stated in terms of individuals and jobs, but this
usage is only figurative. The simple-assignment problem is not a serious
problem of personnel management, but it is an interesting problem of
combinatorial analysis. In that context it was first solved by P. Hall in 1935.

Suppose we have individuals i =1,...,m and jobs j=1,...,n If in-
dividual i qualifies for job j, we’ll set g;; = 1; if not, we'll set g;; = 0. The
matrix Q = (g;;) is called the qualification matrix; it has mrows and n columns;
all of its components are ones and zeros.

Rules. Each individual may take at most one job; each job may be taken
by at most one individual. Individual i may take job j only if g;; = 1.

Objective. Assign jobs to as many individuals as possible.

Statement as integer linear programming. Let x;; = 1 if individual i takes
job j; otherwise let x;; = 0. Then the rules say this:

PRI
j .
(x;; = 0, x;; integer)
Yox; <L N N (1)
i
Xij < g5
The objective is to maximize the number of assignments:

Z Z X;; = max. )

Statement as network flow. We define the network

N:s,aq,...,a,,by,...,b,s, 3)
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which contains a source, the m individuals, the n jobs, and a sink. We define

the capacities
k(sa)y=1@G=1,...,m); kb,s)=1(=1,...,n) @
k(ai’bj) = Mqij7

where M is a positive integer.

Thus, if individual i qualifies for job j, the capacity k(a;,b;) is a positive
integer M ; otherwise this capacity equals zero. Later we willset M =m + 1
in order to prove a theorem. But right now, suppose M is any positive
integer.

Suppose x;; gives an assignment that satisfies the rules (1). Then define

the flow f as follows:
f(ai,bj) = X;j

f(s,ai) = ; xij (5)
f(bjasl) = Z Xij-

For the reverse edges use the opposite (negative) flows; for all other edges

set f(x,y) =
The flow f is admissible for the capacitated network (N,k) because

f(sa)—Zx” 1 = k(s,a;)

f(anb ) - xl] Mql] k(ahbj) (6)
fb;,s) = Z x;; < 1=k(b;,s).

The value of the flow is

vo(f) = f(s,N) = Zf(sa)—Zle, Y

This is the number of assignments, which we want to maximize.
Conversely, if f is an admissible flow, then x;; = f(a;,b;) defines a feasible
assignment, satisfying (1). You see, (4) and (5) 1mp1y

n

Y x;=flsa) <1

i=1

Z 0= (bj,s)

xi; < Mg;; i=1,...,m;j=1,...,n)

(x;; = integer >0)

)

These three conditions are the same three conditions that occur in (1) with
one exception: the inequality x;; < g;; in (1) is replaced by x;; < Mg;; in (8),
where M may be any positive integer. This exception makes no difference,
for the first two conditions imply x;; < 1, and so x;; < Mgq;; implies x;; < ¢;;.
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Therefore, x;; = f(a;,b)) is feasible for (1). By the way, f (ai,l; ;) can’t be nega-
tive, because we require

—flay,by) = f(bj,a) < k(bj,a) = 0.

Thus, f is an admissible flow in (N,k) if and only if x;; = f(a;,b)) is a fea-
sible assignment, satisfying (1). The value of the flow equals the number of
job assignments (7). The number of assignments is maximized by a maximal

fow.

ExampLE 1. Look at the capacitated network in Figure 1. Here we have 3
persons and 3 jobs. The first person qualifies for the first two jobs; the other
two persons qualify only for the third job.

Figure 1

At most two assignments are possible. The first person takes either job
1 or job 2; the second or the third person takes job 3. Correspondingly, there
are four maximal flows f; please draw all of them. All four maximal flows
have value v(f) = 2, which is the biggest possible number of assignments.

Algorithm. Suppose you're given a qualification matrix (g;;), and you
want to compute the maximum number of assignments. All you have to do
is set up the flow model and apply the unsaturated-path algorithm described
in the preceding section.

Complete assignment. Suppose we want to assign all m individuals to jobs.
An obvious necessary condition is m < n: there must be as many jobs as
individuals. But more than that is necessary. Look at Figure 1. There are
three individuals and three jobs. Good. But a complete assignment is
obviously impossible, because two of the individuals qualify for only one
job; there is no admissible assignment for both these individuals (a, and a,).

In general, let I be any subset of individuals. Let J(I) be the subset of jobs
for which at least one member of I qualifies. Then the number |I| must be <
the number |J(I)|:

1] < JJ(1)). )

This must be true for all of the 2™ subsets I.

In Figure 1 we saw this condition violated. For the subset I = {a,,as}
we found J(I) = {b3}, and so |I| =2 > |J(I)] = 1. (There are seven other
subsets 1, all of which do satisfy (9).)



144 1 Linear Programming

So (9) is a necessary condition for a complete assignment. Is it also
sufficient? Yes. P. Hall proved it in 1935. We will prove it now by using the
max-flow, min-cut theorem.

Theorem. A complete assignment is possible if and only if |I| <|J(I)| for
every subset I < {ay, . ..,a,,}.

PRrROOF. As we've noted, a complete assignment implies the inequality (9) for
every subset I. Conversely, let’s suppose (9) holds and construct a complete
assignment.

Given the qualification matrix (g;;), we use equations (3) and (4) to define
the capacitated network (N,k); in (4) we will define M as some integer >m,
say M =m + 1.

Let f, be a maximal flow in (N,k). Then (5) implies

v(fo) = f(s,N) = Z fls,a) = Z Z Xijs (10)

so the value of a maximal flow equals the maximum possible number of
assignments. Thus, we have

0 < u(fo) <m, (11)

and we want to prove v(fo) = m if we assume all |I| < |J(I)|.
Let C,, Cj be a minimal cut. According to the max-flow, min-cut theorem,
we have
v(fo) = k(Co,Co). (12)

Let’s take a close look at the complementary sets C, Cj,.
The set C,, contains the source, some individuals, and some jobs:

Co = {810/ o}-
The complement Cy, contains the other individuals, the other jobs, and the
sink:
o= {I0.Jo.5'}.
The capacity of the cut equals
k(Co,Co) = k(s,1o) + k(Io,J0) + k(Jo,5) (13)
because the other three possible terms all equal zero:
k(s,Jgo) = k(s,s") = k(I,,s") = 0.
Formulas (12) and (13) imply
v(fo) = k(s,Io) + k(Io,J5) + k(Jo,8). (14

Now you’ll see the purpose of using M > m. According to (4), all capa-
cities between individuals g; and jobs b; equal 0 or M. Therefore, in (14) the
term k(I,,Jp) equals one of the integers 0,M,2M,3M, .... But the sum
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v(fo) must be <m; therefore k(1,,J5) = 0, and so (14) becomes

v(fo) = k(s,Io) + k(Jo,5),
or
v(fo) = [Io| + |Jol. (15)

We’re almost done. Using M > m, we proved k(I,,J;,) = 0. That says no
individual in I, is qualified for any job in Jj. Therefore,

JIo) = J,o. (16)

This says that the individuals in I, can qualify only for jobs in J,. Now, at
last, we’ll use the inequality (9): |I,| < |J(I,)|- Now (16) implies

[Lo| < U o)| < V- (17)
Therefore,
[To = m — || = m —|Jo,
and (15) yields
v(fo) = |Io| + [Jo| = m.

By (11), we have v(f,) = m, and so the maximal flow f, gives a complete
assignment. O

Optimal assignment. We can use the preceding result to solve a somewhat
different problem. Again we have m individuals and n jobs, but now we’ll
assume every individual qualifies for every job. We'll assume that individual
i has aptitude a;; > 0 for job j. We want to assign individuals to jobs so as
to maximize the sum ) g;; over all the assignments i — j. Again we assume
the exclusion rules: at most one job per individual; at most one individual
per job.

Again we'll use the unknowns x;;. We'll say x;; = 1 if we assign i to j;
otherwise x;; = 0. Now the exclusion rules say

=

(18)

.MS
=

g1 (=1,...,n

Xx;; = integer > 0.

The objective is to maximize the sum of the aptitudes in the assignment:

m n
Y, Y a;x; = max (19)
i=1j=1
And so we have a problem in integer linear programming. I'll show you
how to solve this problem by network flows.
With no loss of generality, we may assume m = n. If m < n, introduce
dummy individuals i=m + 1, ...,n with a a; = 0 for all j; if m > n, intro-
duce dummy jobs j = m + 1, ...,n with a;; = 0 for all i. Now we can assign
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all individuals and fill all jobs, and the problem becomes this:

Z x;j=1 (j=1,...,n) (20)

x;; = integer > 0

n n
Y Y a;x; = max
i=1j=1
(The unknowns x;; constitute a permutation matrix X of 1’s and 0’s. Each
column will contain exactly one 1, and each row will contain exactly one 1.)
If we ignore the integer constraint, the problem (20) is a canonical linear
program for n*> unknowns x;; > 0. We shall get an optimal solution for all
real x;;. This solution will happen to consist of integers, and so it will solve
the integer program (20).
The dual of (20) is this problem:

ui+l7j>aij (i,j=1,...,n)

21
Yu; + Y v; = min.
For example, if n = 2 the primal problem is this:
1 1 0 0ffxy, 1
0 0 1 1]]xy, 1
= >
101 oflxy| |1 *=° @2
01 0 1]([x,, 1

[aiy a1z ay; ay;]x = max.

Corresponding to the upper and lower halves of the matrix, the dual vector
has two parts:
yT = [ul,u29vl,v2]' (23)

Then this is the dual problem:

U+ 0y 20ayy, U+ 0= a1, Uy + U2 dyy, Uyt Uy 2 day

U, + U, + [ + Uy, = min. (24)

For the primal-dual pair (20), (21), the equilibrium theorem gives a neces-
sary and sufficient condition for optimality. Let x be feasible for the primal,
and let u, v be feasible for the dual. Then we require this condition:

xij > 0 Only lf ui + Uj = aij. (25)
In other words, we require

xij=0 lf ui+vj>aij.
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In terms of assignments, the equilibrium theorem says this: If () is
optimal for the dual, then individual i may be assigned to job j only if
u; + v; = a;;. An optimal assignment is a complete assignment that satisfies
the equilibrium condition (25).

Algorithm for optimal assignment. We are given the integers a;; > 0. We

pick some integers u;, v; satisfying the dual feasibility conditions:

u +v; > ay; ij=1,...,n). (26)

Now we'll say i qualifies for j (q;; = 1) if u; + v; = a;;. This gives us a first
qualification matrix (g;;). Using this qualification matrix, we use the network-
flow model for simple assignment to assign the maximum number of indi-
viduals to jobs for which they qualify. As usual, we’ll use the assignment
variables x;;.

Ifall individuals have been assigned, we’re done. Fori,j =1, ... ,nwehave

Y x;=1, Y x;;=1, x;=00r1,

j=1 i=1
and we also have the equilibrium condition (25). Therefore, x is optimal for
the primal (20) and (u,v) is optimal for the dual (21).

But suppose some individuals have not been assigned by the maximal
flow. Then x;; isn’t feasible for the primal (20), and we still have work to do.
We will use the maximal flow to get an improved dual solution. Let f; be the
maximal flow that we’ve found for the simple-assignment problem defined
by the present qualification matrix (g;;) (i,j = 1,...,n). The value v(fo) is
the maximum number of people that can be assigned, and now we are as-
suming v( fo) < n (the assignment is incomplete).

Let Cy, C;, be a minimal cut. Then its capacity satisfies

k(Co,Co) = v(fo) < n. (27)
As before, let
Co = {sIo.Jo}, Co={I6,J0.5}s (28)

where I, J, are subsets of individuals and jobs, and I, J; are their comple-
ments. Then

k(Co,Co) = k(s,Io) + k(Io,J0) + k(J o,5)- (29)
As before, if M > n we conclude k(I,,Jp) = 0 and
k(CO’ b) = k(s’IIO) + k(JO,S,)

and now (27) implies n — |I,| + |Jo| < n, or
ARSIAN (31)

As in (16), we have J(I,) = J, because k(I,,J5) = 0.
The inequality |Jo| < |I,| is just what we need to get a better dual solution
u,v. By “better” I mean we can decrease the dual object function ) u; + Y v;.
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We will let
new u; = old u; — 4 (iely)

new v; = old v; + 4 (jedo) 32)

leaving u; unchanges for i in Iy, and v; unchanged for j in J§,. Then

new (Y u; + Y v;) = old(Yu; + Yv;) — ([o| — |Jo])4- (33)

Since |Io| — |Jo| is >0, we will choose 4 as big as we can.
How big can we choose 4 without violating the dual feasibility conditions?
We require
new u; — New v; > a;; Gj=1,...,n). (34)

Here i may lie in I, or in I5, while j may lie in J, or in J§. By (32), u; + v;is
unchanged if i€ I, and je Jo. If 4 > 0, u; + v; can only increase if i € I,
since v; either increases or stays the same. So u; + v; can decrease only if
ielypandje Jy:

new(u; + v;) = old(w; + v;) — 4 (iely, je Jp). (35)

But we have k(I,,J;) = 0: no i in I, qualifies for any j in J§ in the minimal
cut for simple assignment. In the present context that means

oldw, + v))>a;  (iely,jely). (36)

Remember, we defined “i qualifies for j” to mean that u; + v; equals a;;. Thus,
we shall have

old(u; + v) — 4 > a;; Gj=1,...,n) (37)
if we choose
A =mln{01d(u,+ UJ)_aU. lelo,JeJlo} (38)

This is the biggest permissible value for 4; it is some positive integer, since it
equals the minimum discrepancy in the strict integer inequalities (36).

Now we use the new dual solution u, v to define a new qualification matrix
(g:;)- As before, we say i qualifies for j (¢;; = 1) if ; + v; = a;;. This gives a new
simple-assignment problem. If the new simple assignment is complete, that
is, if all n individuals get jobs, then we’re done: the x;; solve the original
optimal-assignment problem (20). But if the assignment is incomplete, then
we can improve the dual solution again. And so on.

This process must succeed in a finite number of steps. Why? Because every
time we improve the feasible dual solution, we decrease the objective
Yu; + Y v; by at least 1. That can happen only a finite number of times,
because the dual objective function has a finite lower bound. Indeed, every
feasible primal solution x;; gives a lower bound. For instance, x; = 1,
x;; = 0 (i # j) gives the lower bound

Yu;+ Yv; = ZZaijx,-j=Zai,-. (39)
i J i

So we must get the optimal assignment in a finite number of steps.
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ExaMpLE 2. Let this be the aptitude matrix:

72 6
(aij) = 3 9 1
8 4 5

One easy way to get a dual feasible solution is to set

u; = max a;
J

j Uj= 0.

Here this says u; = 7,u, = 9, u3 = 8, v; = 0. In Figure 2. the aptitude matrix
is inside the square; the u; are at the left; the v; are on top.

0 0 O
70D 2 6
913 @O 1
8 4 5

Figure 2

I've drawn circles around those g;; for which u; + v; = a;;. These equa-
tions define the first qualification matrix:

(9:) =

—_— O
S = O
o O O

Here we see that both i=1 and i =3 qualify only for the single j = 1.
Therefore, complete assignment is impossible.
We will improve the dual by decreasing u; for i=1 and i = 3 and by
increasing v; for j = 1:
new y; = old u; — 4 (i=1,3)
new v; = old v; + 4 (j=2).

This gives Figure 3.

4 0 0
T7—417 2 6
9 3 91
8§—4 (8 4 5

Figure 3

The biggest permissible value for 4 is 4 = 1. All bigger values violate
the inequality u, + v3 = a,3 = 6. Choosing 4 = 1, we get Figure 4.
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10
6|@ 2
913 @
7|1® 4

Figure 4

0
®
1
5

©

Now i =1 qualifies for j =1 and for the new j = 3 (note the new circle
around 6).

Now the circles around 8, 9, and 6 show that a complete assignment is
possible:

X31=1, x3,=1, x;3=1; allotherx;=0.

Therefore, this is an optimal assignment.
As a check, we can compute the primal and dual objective functions.
First, we find

ZZaijxij = a31 + a22 + a13 = 23
Next, we find
Yui+yv;=06+9+7)+1=23

The objective values are equal, and so the check is passed.

Transportation problem. The optimal-assignment problem can be re-
garded as a special case of the transportation problem, which looks like this:

i xj=d; (j=1...,n (40)

m n
x;; =0, '21 -21 ¢;j%;; = min.
Pl

Here we are given the costs c;; and the supplies s; and demands d; satisfy-
ing the consistency condition ) s; = ) d;. The optimal-assignment problem
(20) becomes a transportation problem if we set, in (40),

(41)

where we may set « = max q;; if we want to keep the costs ¢;; nonnegative.
Note that (40) and (41) imply

LD CijXiy = 1oL — DY ;. (42)

Since na is a constant, we shall have

m=n, Si=dj=1’ C,-j=ot—aij,
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If the data are integers, the transportation problem can be solved as a
network flow. This is done in the beautiful book Theory of Linear Economic
Models by David Gale. He first solves the transshipment problem—a gener-
alization of the simple-assignment problem. Then he uses the transshipment
algorithm as a subroutine to solve the transportation problem, just as we
used the simple-assignment algorithm as a subroutine to solve the optimal-
assignment problem. (See Problems 10-14.)

Later, we will take a different approach. We will solve the transportation
problem by using a special, efficient form of the simplex method.

Shortest-route problem. You've been working hard, and you deserve a
little recreation. Now I give you something just for fun. It isn’t a network
flow—but who cares?

We are given a list of cities: a, b, . . ., z. The cities are joined by a network
of roads. We want to drive from a to z in the least possible time; we’ll call
our route a shortest route.

We're given a list of direct-travel times t between every pair of cities.
For instance, 7(c,g) is the time on a direct route from c to g; it is some positive
integer number of minutes—infinity if there is no direct route. We don’t
require 7(c,q) = 7(g,c). We assume t(R) < oo for some route R from a to z.

ExampLE 3. In Figure 5 the unique shortest route is a, ¢, b, z.

Figure 5

If we call the shortest route R, the total time is t(Ry) =2 + 1 + 5 = 8. For
all other routes R from a to z we have 7(R) > 8.

Algorithm for shortest route. If the number of cities is finite, we can find
the shortest route by enumeration, in theory. In practice, if the network is
complex, there would be too many routes to look at, and we want a better
algorithm.

Start with any route R. Now pick any node function ¢ that satisfies

t(c1,¢2) 2 @(c2) — olcy) (44)

for every pair of nodes (cities) ¢; and ¢,. A function ¢ is a sort of potential,
and we will require ¢(a) = 0 at the start. Thus, we may pick ¢ = 0 as a first
potential. We’ll assume that the functions ¢ are integer-valued, like 7.
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Every potential ¢ gives a lower bound for the least travel time. If R is the
route
R:a,xy,%5,...,%2,

then the total time on this route is

T(R) = ‘c(a,xl) + T(xl,XZ) + 0+ ‘C(Xk,Z)
2 [p(xy) = @] + [@(x2) — 9(x )] + - + [0(2) — @(x,)].
Since ¢(a) = 0, all the terms cancel except ¢(z), and so we get the lower

bound
T(R) = ¢(z) for all R, for all ¢. (45)

This says that the travel time is > the potential at the final node.
If equality holds in (45), then R must be a shortest path. For if R’ is any
competing path, then we have
7(R') 2 ¢(2) = 1(R),

which means 7(R’) = z(R) for all R".

But suppose 7(R) > ¢(z). Then we can construct a new potential ¢, with
¢@4(2) > ¢(z). Here’s how:

If x* is any node, we'll say that the path a, x,, x,, .. ., X;, x* is efficient if

1(aX;) + T(X1,X2) + 4 T(xx*) = @(x¥). (46)

For the present potential ¢ we have assumed there is no efficient path from
a to z. (If there were, then this path would be a complete route R satisfying

©R) = ¢(2).)

Let E be the subset of nodes x* that can be reached by efficient paths.
The subset E depends on the potential ¢. At least a lies in E; we have assumed
that z does not. The final node z lies in the complementary set E'.

We may define a new potential as follows:

o, =@inE, ¢o,=4+¢inkE, 47

where A is a positive integer constant. In particular, ¢;(a) = 0 and @,(z) =
A + ¢(2). The new potential satisfies the requirement

©(c1,62) Z @1(ca) — @1(cy). (43)
This is obvious unless ¢, lies in E’ and ¢, lies in E, in which case
@i(c) =4+ @(ca), @ilcy) = oley) (49)
But we must have
1(c,¢z) > @(cy) — @(cy) for c,eE,c, €L (50

Otherwise we could reach c, by an efficient path going first to ¢, and then
directly to c,. That is impossible if ¢, lies in E’, and so the inequality (50)
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must hold. Therefore, the integers T and ¢ must satisfy

T(C1,62) 2 4 + @(c3) — olcq) = @1(cy) — @4(cy)

for ¢, € E, ¢, € E', where 4 is the positive integer
4 = min{z(cy,¢,) — [@(ca) — @(cy)]:c; € E, c, € E'}.

This is the biggest permissible value for 4 in (47).

Now we repeat the process. Starting with the new potential, we locate
the new subset E of nodes that can be reached by efficient paths. If z lies
in E, we’re done; otherwise, we construct another new potential. And so on.

This process must yield a shortest route in a finite number of steps. That
is because we increase the final potential ¢;(z) by a positive integer 4; at
each step. This process must stop, because all the ¢;(z) must be < the mini-
mum travel time T(R). At the end, a shortest route R appears as an efficient
path from a to z.

EXAMPLE 4. Let’s use this algorithm on the network in Figure 6. Start with
the potential ¢, = 0. Then E, contains only a. For 4, we find

4o = t(a,c) — [olc) — po(a)] = 2.
This gives the potential

?1(@) =0, ¢4(b) = @1(c) = ¢1(2) = 2.

Referring to Figure 6., we see E; = {a,c}. Then we find

4y =t(c,b) — [@4(b) — 94(c)] = L.
This gives the potential

©2(a) =0, @c)=2, @(b)=3, @,2)=3.
Now E, = {a,c,b} and 4, = 5, giving at last

93(a) =0, o3(c)=2, @3b)=3, o¢;(2)=38.

For the last potential an efficient path from a to z is the required shortest
route a, ¢, b, z.
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PROBLEMS

1. For the simple-assignment problem, use the qualification matrix

(=N

0 1
0 0
1 of
1 0

O = =

0

Set up the flow model. Find an optimal flow f, assigning as many persons as
possible. Find the minimal cut C,, C4. Find a subset I, for which |J(Io)| < |Io|.

2. Set up the flow model for the simple-assignment problem with qualification matrix

0011
1100
0101
0100

Solve by inspection. Then, for practice, solve systematically by the flow algorithm.

3. A combinatoric problem: Given is an n x n matrix with n* positive-integer com-
ponents g;;. Call a subset of components OK if no two components lie in the
same row or column. The problem is to pick an OK subset of components with
maximum sum. State this problem as an optimal-assignment problem.

4. For Problem 3 use the matrix
332
A=|1 3 5j.
213
First solve by inspection. Then use the flow algorithm to see how it works.
5. Use the flow algorithm to solve the optimal-assignment problem with the aptitude

matrix

A

i
w N -

3332
1 2 3 5}
2113

6. In Problem 3 suppose you want an OK subset of n components with minimum
sum. State this too as an optimal-assignment problem.

7. Use the shortest-route algorithm for this road network, where 7 is symmetric:

[ ¥4

ae L

\
/

W




17 Assignment and Shortest-Route Problems 155

*8.

*10.

11.

*12.

*13.

In the calculus of variations one looks for a curve y(x) (0 € x < 1) that minimizes
an integral

fol F(x,y(x),y'(x)) dx,

where y(0) and y(1) are given, and where F(x,u,v) is a prescribed function. Show
how a discretized version of this problem might be solved by the shortest-route
algorithm. Method: For small positive Ax and small |A y|, define the direct time t
between the points (x,y) and (x + 4x, y + 4y) as

—F(xy )4
T= x,y,Ax X.

(You may assume F > 0; otherwise, replace F by F plus some large constant.)

. For the shortest-route problem define the function ¢(w) as the shortest total travel

time from a to w = b, ¢, ...,z Show that ¢ is an admissible potential, satisfying
(44). Show that ¢ satisfies this functional equation of dynamic programming:

¢(w) =min[¢p(}) + t(hw)] if w+#aq,
it

where we define ¢(a) = 0.

Transshipment problem. Let Py,...,P, be plants with supplies o,,...,0,. Let
M, ...,M,be markets with demands d, . . . ,d,. Assume Xo; > Zd;. Let k(P;,M ) >
0be the shipping capacity from P; to M; define k(s,P;) = d;, k(M ;,5') = d;. Prove that
all demands can be met unless there is a subset M’ of markets for which

dM') > o(P') + k(P,M")
where P and P’ are complementary subsets of plants. Method: Let C,, Cy be a
minimal cut in the network {s,P,,...,P,,My,...,M,s'}. If Co = {s,P,M}, then
the minimal cut has capacity ¢(P’) + k(P,M’) + d(M). Now what if a maximal flow
has value <d(M) + d(M’)?
Show that the dual of the transportation problem (40) is

U+ v; < ¢ i=1....mj=1,...,n)
Ysau; + Y dv; = max.

Let c;j.5:,d; be integers > 0, with Zs; = Zd;. Define the transportation problem (40)
and its dual (Problem 11). Suppose u, v are feasible for the dual. Let § be some
integer bigger than Zd;, and define the transshipment problem (Problem 10) with

supplies s;, demands d;, and shipping capacities
kpmy={F T Ern=a
0 if w4v<cy

Suppose the transshipment problem is solvable. Let x;; be the amount shipped
from P; to M;. Show that the x;; give an optimal solution of the transportation
problem.

(Continuation.) In Problem 12 suppose the transshipment problem is not solv-
able. For the subsets defined in Problem 10, conclude that k(P,M’) = 0 because
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k(P,M’) < Y d; < B. Hence Problem 10 implies
Ydi>Y s
M’ P’

Now show that v; can be increased on M’ and u; can be decreased on P’ to obtain
a new feasible dual solution with increased value Y su; + Y dv;.

*14. A network-flow algorithm for the transportation problem:
(i) Start with any feasible u, v (for instance, 0,0).
(i) Try to solve the transshipment problem in Problem 12. Stop if there is a
solution x.
(iii) Otherwise, improve the feasible u, v as in Problem 13. Return to step (ii).
Why must this algorithm solve the transportation problem (40) in a finite number
of steps?

18 The Transportation Problem

Suppose a certain commodity, say oil, is produced at plants i=1,... m.
And suppose the oil must be shipped to markets j =1,...,n. Call x;; the
unknown number of barrels of oil to be shipped from plant i to market j.
Let c;; be the shipping cost per barrel. Then the shipping cost from i to j
will be the product c;;x;;, and the total shipping cost from all plants to all
markets will be
> X CijXije (1)
i=1j=1
Suppose the supply at plant i is s;, and suppose the demand at market j
is d;. Let the total supply be > the total demand:

Si+c s, =di+ 0+ d, (2

Then all demands can be met with the existing supplies; the problem is to
meet them with minimum cost.
We require

z xijgsi (i=1a-"am)7 (3)
i=1
which says that the total shipped out of plant i is <s;. And we require

)

M=
Ra
~.
\V;
&_&
p—
~
I
J—"
v:
N

1]
-

which says that the total shipped into market j must be >d;. Then no supply
will be exceeded, and every demand will be met. By the way, note that these
constraints imply (2):

Y=Y Y x>Y d; 5)
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This is the transportation problem: Find x;; > O to meet the constraints
(3), (4) and minimize the cost (1).

Figure 1 illustrates the problem for two plants and three markets. The
figure suggests that the problem could be regarded as a network flow, and
that has been done. But we shall here solve the problem by the simplex

method. We will not use the simplex tableau, which would fail to use the
special features of our problem; but we will use the basic idea.

/

Supplies ed, Demands

S,0
\\.d

Figure 1

od,

3

The result will be an exceedingly efficient numerical algorithm. This
algorithm is so good that we can use it to solve medium-sized problems by
hand, or to solve huge industrial problems by computer. In pure mathe-
matics, certain problems of combinatorial analysis have the mathematical
structure of transportation problems; these problems, too, can be solved by
the algorithm we’re about to discuss.

As it often happens in our subject, the algorithm is easy but the theory is
hard. So please bear with it; the reward of understanding will be worth your
trouble.

In our approach by the simplex method, we first restate the inequalities
as equations. Indeed, if the total supply equals the total demand, then the
inequalities (3) and (4) must already be equations; for only as equations can
these inequalities yield equalities on both sides of (5). For instance, if

Z x6j < S6s
J

> ; Xij < XSis

i

then (3) implies

and now (4) implies )'s; > Y d; (total supply > total demand). Thus, if
Ysi=)d;, then the “<” in (3) and the “>” in (4) may both be replaced
by 6‘= 77'

Suppose instead that total supply exceeds total demand:

Y5> ) d; (6)
i=1 j=1



158 1 Linear Programming
We can reduce this case to the former by a trick. Define the excess
m n
dOE z S; — Z d1>0. (7)

Now introduce a dump, a fictitious market j = 0 with demand d,,, and say
that there is no shipping cost to the dump:

Ci():O (l=1,,m) (8)
If we include the dump, j = 0, we now have
z §; = Z dja (9)
i=1 j=0

and we can proceed as before. The constraints become the equations
(10)

and we seek x;; > 0 to

minimize ) Y ¢;x;. (11)

i=1j=0

To solve the original problem, we solve the new problem for the unknowns
x;;. At the end, we ignore the final slack variables x;,.

Thus, replacing j = 0 by j = 1, we may always use the canonical form of
the transportation problem:

(12)

xij>0

m n
Y Y ¢jx; = minimum.
i=1j=1

The m + n equations are redundant, and we must assume that the given
supplies and demands satisfy the consistency condition

Z Si= Z d_’. (13)
i=1 j=1
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We can think of the unknowns x;; as components of an m-by-n matrix X.
We are given the row sums s; and the column sums d;. For example, if m = 2
and n = 3, we have this picture:

X111 X122 Xp3| 81

(14)

X21 X223 Xz3| S2

dy d, d,

But to understand the theory, we may regard the unknowns x;; as com-
ponents of a vector x. Then the equations (12) take the form

Ax = b, (15)

where 4 has m 4+ n rows and mn columns. For example, if again m = 2 and
n = 3, then (15) becomes

111000 5,
000 1 1 1]\ [s
10010 of ™|=|4q (16)
01001 o0/\*] \q
00100 1|\ \g

X23

This formula and formula (14) say the same thing in different ways.
If we use the vector unknown x, then the transportation problem (12)
becomes

Ax=Db
x>0 (17)
€' X = minimum.
Here x has the mn components x,,,X,,, . . ., X,,,; b has the m + n components
Sts+++»Smdy, ..., d,; and ¢ has the mn components ¢;,¢5,. . .,Cn The

matrix 4 is the obvious generalization of the matrix in (16). The redundancy
of the equations (12) shows up in A4: the sum of the first m rows equals the
sume of the last n rows (both sums equal a row vector of all 1’s).

The dual of (17) is the maximum problem

y-A<c

y - b = maximum (13)

Since the first m rows of A are formed differently from the last n rows, we will
partition the dual vector as follows:

y = (ul’ e ’umavla e 9vn)' (19)
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For example, if the primal problem is (16), the dual vector is

Y = (Ug,Uz,0,0,,03),
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