

Undergraduate Texts in Mathematics

Editors

F. W. Gehring
P.R. Halmos

Advisory Board

C. DePrima
I. Herstein

J. Kiefer

Joel Franklin

Methods of
Mathematical Economics

Linear and Nonlinear Programming,
Fixed-Point Theorems

Springer Science+Business Media, LLC

Joel Franklin
Department of Applied Mathematics
California Institute of Technology
Pasadena, CA 91125
USA

Editorial Board

F. W. Gehring

University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48104
USA

P.R. Halmos

University of Indiana
Department of Mathematics
Bloomington, Indiana 47401
USA

AMS Subject Classification (I980): 90-0I

With 38 Illustrations.

Library of Congress Cataloging in Publication Data

Franklin, Joel N
Methods of mathematical economics.

(Undergraduate texts in mathematics)
Includes index.
I. Linear programming. 2. Nonlinear programming.

3. Fixed point theory. 4. Economics, Mathematical.
I. Title
QA402.5.F73 5I9.7'2 79-27342

All rights reserved.

No part of this book may be translated or reproduced in any form
without written permission from Springer Science+Business Media, LLC.

© I980 by Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 1980
Softcover reprint of the hardcover 1st edition I980

9 8 7 6 5 4 3 2 I

ISBN 978-3-540-90481-6 ISBN 978-3-662-25317-5 (eBook)

DOI 10.1007/978-3-662-25317-5

To the memory of

Jan van der Corput
distinguished mathematician, inspiring teacher

-a friend I cannot find again.

Preface

In 1924 the firm of Julius Springer published the first volume of Methods
of Mathematical Physics by Richard Courant and David Hilbert. In the
preface, Courant says this:

Since the seventeenth century, physical intuition has served as a vital
source for mathematical problems and methods. Recent trends and fashions
have, however, weakened the connection between mathematics and physics;
mathematicians, turning away from the roots of mathematics in intuition,
have concentrated on refinement and emphasized the postulational side of
mathematics, and at times have overlooked the unity of their science with
physics and other fields. In many cases, physicists have ceased to appreciate
the attitudes of mathematicians. This rift is unquestionably a serious threat to
science as a whole; the broad stream of scientific development may split into
smaller and smaller rivulets and dry out. It seems therefore important to direct
our efforts toward reuniting divergent trends by clarifying the common
features and interconnections of many distinct and diverse scientific facts.
Only thus can the student attain some mastery of the material and the basis
be prepared for further organic development of research.

The present work is designed to serve this purpose for the field of mathe­
matical physics Completeness is not attempted, but it is hoped that access
to a rich and important field will be facilitated by the book.

When I was a student, the book of Courant and Hilbert was my bible.
Not in a thousand years could anything I wrote rival a book written by
Courant, inspired by the teaching of Hilbert. But if imitation is the sincerest
form of flattery, I may be forgiven for imitating Courant-Hilbert.

This book relates to economics as Courant-Hilbert related to physics.
Courant-Hilbert is not about physics, and this book is not about economics;
both books are about mathematics. Each book presents some topics asso­
ciated with a single field of application; neither book aims for completeness.

vii

Vlll Preface

Though I hope some economists will read it, this book is mainly meant
to be a text for mathematics students. It is written for undergraduates and
first-year graduate students. The part on linear programming could easily
be taught to sophomores, and the rest of the book is not much harder.

When I was a student, it was fashionable to give courses called "Ele­
mentary Mathematics from a Higher Point of View." That always seemed
to me the precise opposite of what was needed. What I needed was a few
courses on higher mathematics from an elementary point of view.

For instance, I wanted to understand the Brouwer fixed-point theorem.
That meant I had to take a course on topology, which was quite difficult and
time-consuming. The Brouwer theorem seemed to me a priceless jewel
guarded by a dragon called topology. Whenever I got near the jewel, the
dragon would breathe fire on me. It was frustrating. The statement of
Brouwer's theorem was so simple. Why was the proof so hard? (I never did
take the course in topology.)

Later, as a post-doctoral fellow at the Courant Institute, I attended
lectures on nonlinear partial differential equations by Louis Nirenberg.
He made everything depend on some marvelous theorems of Leray and
Schauder. I was eager to learn them. What did I need to know first? The
Brouwer fixed-point theorem, of course. There it was again. No way. It was
becoming an obsession.

A decade later, my colleague Adriano Garsia taught me his easy proof
of the Brouwer theorem. I give it to you now in this book; it has never
before appeared in print. I give you also Milnor's astonishing proof, which
appeared in a journal in late 1978. Milnor's proof is almost too easy to
believe.

You may be surprised to see the Schauder theorem here, too. Doesn't
that require your students to have a background in functional analysis?

Not really. I give them the Banach space of continuous functions with the
maximum norm. That takes five minutes to explain; maybe ten. That's
enough functional analysis to start with. Later, if they ever take a course on
functional analysis, they'll have no trouble extending what they know to
general Banach spaces. Schauder's theorem is one of the very great achieve­
ments of science. It is a principal tool of modem nonlinear analysis, as one
sees, for instance, in the work of Felix Browder and his associates. So great
a result, so useful a tool, should be available to all mathematics students
with an absolute minimum of preparation.

In this preface I'm talking to you, my colleague, who will teach the course.
In all the rest of the book I talk directly to the student. I've tried to make
the writing plain, direct, and readable.

Pasadena, California Joel Franklin

CHAPTER I

Linear Programming
1 Introduction to Linear Programming
2 Linear Programs and Their Duals
3 How the Dual Indicates Optimality
4 Basic Solutions
5 The Idea of the Simplex Method
6 Separating Planes for Convex Sets
7 Finite Cones and the Farkas Alternative
8 The Duality Principle
9 Perturbations and Parametric Programming

10 The Simplex Tableau Algorithm
11 The Revised Simplex Algorithm
12 A Simplex Algorithm for Degenerate Problems
13 Multiobjective Linear Programming
14 Zero-Sum, Two-Person Games
15 Integer Programming: Gomory's Method
16 Network Flows
17 Assignment and Shortest-Route Problems
18 The Transportation Problem

CHAPTER II
Nonlinear Programming

1 Wolfe's Method for Quadratic Programming
2 Kuhn-Tucker Theory
3 Geometric Programming

Contents

1
1

12
20
27
32
44
52
62
68
79
93
97

104
112
127
132
141
156

177
177
190
205

ix

X Contents

CHAPTER III
Fixed-Point Theorems 224
1 Introduction to Fixed Points; Contraction Mappings 224
2 Garsia's Proof of the Brouwer Fixed-Point Theorem 232
3 Milnor's Proof of the Brouwer Fixed-Point Theorem 251
4 Barycentric Coordinates, Spemer's Lemma, and an Elementary

Proof of the Brouwer Fixed-Point Theorem 262
5 The Schauder Fixed-Point Theorem 272
6 Kakutani 's Fixed-Point Theorem and Nash's Theorem for n-Person

Games 283

Index 293

Linear Programming 1

1 Introduction to Linear Programming

I first heard about linear programming around 1958. I had just come to
Caltech as an associate professor. I was making a trip to New York with
my boss, Professor Gilbert McCann, who was the director of Cal tech's new
computing center. We were making a survey of large industrial computer
installations to find out what were the principal industrial uses of computers.
One of the companies we planned to visit was the Mobil Oil Corporation.

When we arrived at Mobil, a secretary told us that we would be meeting
with Dr. Albert Sokolov*.

Good heavens, I thought, that can't be my old friend AI Sokolov from
NYU, can it? AI and I had been post-doctoral fellows at the Courant Institute
in New York University. I remembered him as a quiet fellow, with a pleasant
personality and a deep knowledge of mathematics.

After a short wait, another secretary came to take McCann and me to
Dr. Sokolov's office. This was a long trip. We went through many corridors
and passed by many lesser offices before we arrived at the office of Dr. Sokolov.

Sokolov's office seemed about the size of the Rose Bowl. In the distance,
behind a large desk, we saw Dr. Sokolov himself. After a long walk over thick
carpeting, we seated ourselves in front of his desk. It was AI.

"AI," I said, "you've come up in the world."
"Oh, it's nothing ... nothing, really," he said.
The shy manner was the same; only the surroundings were different. At

NYU AI and I had worked in small dusty offices with no air conditioning.

* "Albert Sokolov" is not his real name.

1

2 1 Linear Programming

After all, we were scholars; we were expected to be poor. But somehow AI had
not lived up to that expectation.

We had a nice chat about computers at Mobil. The company had a huge
new computing center. I knew it must have cost millions of dollars. Was it
worth it? I asked him:

"AI, you've got a huge installation here, millions of dollars worth. I know
oil companies have a lot of money, but they don't like to waste it, either.
How long will it take the company to pay off your investment in computers?"

He thought for a moment, apparently making a rough mental calculation.
Then he answered:

"We paid it off in about two weeks."
"That's amazing," I said. "What kind of problems do you do with this

computer?"
"Mainly linear programming."
AI explained at length. Using linear programming, they were able to make

optimal production decisions that had formerly been made-not so well-by
vice presidents. The result was a great gain for the company. Other big oil
companies were doing the same; it was very good for business. It was also
good for the consumer, who was getting more of what he wanted at less cost.

Let me tell you what linear programming is about and show you a few
examples.

Linear programming is about linear inequalities. As you know, a linear
equation is something like this:

3x1 - 4x2 + 9x3 = 7.

Well then, a linear inequality is something like this:

Linear algebra is the study of systems of linear equations, and linear pro­
gramming is the study of systems of linear inequalities.

In real linear algebra, all the constants and all the unknowns (variables)
are supposed real-positive, negative, or zero. The number of equations and
the number of unknowns are supposed finite. Likewise, in linear program­
ming all quantities are real and all systems are finite.

Linear programming is more general than real linear algebra. You see,
any real linear equation can be rewritten as two linear inequalities. For
instance, the equation x1 - 2x2 = 3 can be rewritten as the pair ofinequalities
x1 - 2x2 ~ 3, x1 - 2x2 ~ 3.

That simple remark proves the importance of linear programming. You
already know how important linear algebra is. Nobody could make a com­
plete list of the applications of real linear algebra. Well, real linear algebra
is just a special case of linear programming. But the converse is false: you
can't rewrite the linear inequality x 1 - 2x2 ~ 3 as a system oflinear equations.

1 Introduction to Linear Programming 3

A linear programming problem has three parts:

(i) a finite collection of linear inequalities or equations in a finite number
of unknowns x1o ... ,xn;

(ii) sign constraints xi ;::.: 0 on same subset of the unknowns-possibly all
or none of them;

(iii) a linear function to be minimized or maximized.

A solution x 1 , •.• , Xn of the first two conditions is called feasible; a
solution to all three conditions is called optimal. As you will see, the first
two conditions alone usually have infinitely many feasible solutions; but the
three conditions together usually have only one optimal solution.

EXAMPLE 1. Investment management. In 1972 Alfred Broaddus wrote an arti­
cle for the Monthly Review of the Federal Reserve Bank of Richmond. It was
called Linear Programming: A New Approach to Bank Portfolio Management.

Broaddus wanted to explain linear programming to bankers. During the
1960's, the Bankers Trust Company had developed a complex linear pro­
gramming model to help the managers reach their investment decisions. The
model had proved useful, and so other bankers got interested.

To explain the idea, Broaddus used a much simplified example, which I
will show you now.

Suppose the bank has 100 million dollars. Part of this money will be put
into loans (L}, and part into securities (S). Loans earn high interest. Securities
earn lower interest, but they have the advantage of liquidity: at any time,
they can be sold at market value.

In Broaddus's example, money loaned out earns 10%; money put into
securities earns 5%. Let L and S be the amounts of money in loans and
securities. Then the total rate of return is O.lOL + 0.05S. The bank wants to
maximize this rate subject to certain constraints.

Sign constraints. We must have

L;::.: 0 and S;::.: 0. (1)

Total-funds constraint. Assuming that the total amount available for
investment is 100 (in millions of dollars), we must have

L + S ~ 100. (2)

Liquidity constraint. For various reasons (Federal Reserve requirements,
etc.}, the bank wishes to keep at least 25% of its invested funds liquid. This
means S ;::.: 0.25(L + S), or

L- 3S ~ 0. (3)

Loan-balance constraint. The bank has certain big customers it never
wants to disappoint. If they want loans, they shall have loans. The bank
expects its prime customers to ask for loans totaling $30 million, and so L
must be at least that big:

L;;.: 30. (4)

4 I Linear Programming

Those are all the constraints. If L and S satisfy all four constraints, then
L and S make up a feasible portfolio. If L and S are feasible, and if

0.10L + 0.05S =maximum, (5)

then L and S make up an optimal portfolio. Thus, an optimal portfolio
maximizes the total rate of return subject to the constraints.

We can solve the bank's problem by drawing a picture. In the plane with
Cartesian coordinates L and S, the inequality L ;;::: 0 stands for the right
half-plane; the inequality S;;::: 0 stands for the upper half-plane. The com­
bined constraint (1) stands for the intersection of these two half-planes,
namely, the first quadrant. The second constraint (L + S ~ 100) stands for
the half-plane below the line L + S = 100. The third constraint (L- 3S ~ 0)
stands for the half-plane above the line L - 3S = 0. The last constraint
(L ;;::: 30) stands for the half-plane to the right of the line L = 30.

The feasible points (L,S) must satisfy all the constraints. That means they
must lie in all of the corresponding half-planes. Then they must lie in the
intersection of all these half-planes. This intersection is the triangle in
Figure 1. This triangle gives the feasible solutions (L,S).

s

Figure I

Which point in the triangle is optimal? To find out, we draw the lines of
constant return:

O.lOL + 0.05S =constant.

These are the lines 2L + S = constant. On each of these lines all points (L,S)
give the same total rate of return. These lines all have slope -2, and so they
are parallel to each other.

Look at the feasible triangle in Figure 1. Draw the line with slope -2
through the vertex Q; do the same for the vertex P and for the vertex 0. This
gives three parallel lines, with the least return on the line through Q and the
greatest return on the line through 0 . All other points of the triangle have
intermediate returns. The point 0 is the optimal solution.

I Introduction to Linear Programming

As a check, look at the Cartesian coordinates (L,S) for the vertices:

Q = (30,10), p = (30,70), 0 = (75,25).

The respective rates of return (O.lOL + 0.05S) are

3.5 < 6.5 < 8.75.

5

Thus, the optimal portfolio has L = 75, S = 25, and it produces the annual
rate of return $8.75 million.

ExAMPLE 2. The diet problem. In 1945 George Stigler published a paper
called "The Cost of Subsistence." This was no mere mathematical exercise;
it appeared in the Journal of Farm Economics. It presented a basic economic
problem of world food supply: What is the minimum cost of a nutritiopally
adequate diet?

Suppose we label the available foods 1, 2, ... , n. A daily diet for a single
individual is a set of components x1 ~ 0, x2 ~ 0, ... , Xn ~ 0. Thus, x3 would
be the amount of the third food in the daily diet of one individual.

If one gram (or other unit) offoodj costs ci, then the compoqent xi costs
cixi. The total cost of the diet is Lcixi. That is what we'd like to minimize.

An adequate diet must provide at least the minimum daily requirements
of certain nutrients-calories, various vitamins, protein, fat, carbohydrate,
crude fiber, certain amino acids, minerals, etc. The available foods are known
to contain the required nutrients in various amounts.

Let aii be the amount of nutrient i in one gram of food j. Then the com­
ponent xi contains the amount aiixi of nutrient i. The total amount of nutrient
i provided by the diet x 1, .•. ,Xn is the sum ailx 1 + · · · + a;nXn.

Let b; be the minimum daily requirement of nutrient i (i = 1, ... , m). Then
an adequate diet x must satisfy these linear inequalities:

(i = 1, ... ,m) (6)

Under those constraints we wish to minimize the cost:

(7)

The diet problem is a perfect example of the standard minimum problem
of linear programming. In 1945, when Stigler's paper appeared, there was
no good computer algorithm for solving large linear programs. In 1945 there
were no good computers, period.

Linear programming is a child of the computer age. A theoretical result
was published in 1902 by Julius Farkas, but he couldn't have dreamed how
important his theorem would become. After all, the computations were
impossible. The Farkas theorem was just another beautiful curiosity of pure
mathematics. Then came the computer-and with it, the simplex method of
George Dantzig. The simplex method does for linear programming what

6 1 Linear Programming

Gauss's method of elimination does for linear algebra: it gives you a way to
compute the answer. Dantzig's method appeared in 1951, and suddenly linear
programming sprang to life.

ExAMPLE 3. The transportation problem. In this example the unknowns xii
will have two subscripts. But that doesn't matter; we will still be looking
for a finite number of unknowns satisfying linear inequalities and sign
constraints.

Suppose oil is produced at certain plants in different locations-Arabia,
Venezuela, Mexico, Alaska, ... ; let si be the supply of oil at plant i. And
suppose oil is required at certain markets-New York, Tokyo, London, ... ;
let di be the amount demanded at market j. We assume the total supply is
enough to meet the total demand: Isi ~ Ldi.

Let cii be the shipping cost per barrel for shipping from plant ito marketj.
Let xii be the number of barrels shipped from plant i to market j. Then the
total shipping cost is LLciixii· We wish to minimize the total shipping cost
subject to the supply and demand constraints.

Let's number the plants i = 1, ... , m, the markets j = 1, ... , n. The total
amount shipped out of plant i cannot exceed the supply si:

n

L xii ~ si
j= 1

(i = 1, ... , m).

The total amount shipped into market j must at least meet the demand di:

m

L Xij ~ dj (j= 1, ... ,n).
i= 1

All amounts xii must be ~0. We wish to minimize the total shipping cost:
m n

L L ciixii = minimum.
i= 1 j= 1

The transportation problem has practical value and theoretical impor­
tance. Before long, you will know how to solve it.

ExAMPLE 4. Maximum return from resources. Suppose an oil company has
supplies s1, ... , sm of various crude products (resources). In the refineries, the
crude products can be used to make various refined products. The company
will be able to sell the refined products at current unit prices p1, ... , Pn· The
problem is to use the available crude products to make the collection of
refined products that will maximize the total selling price.

Suppose that one unit of refined product j requires the amount aii of crude
product i. Suppose we will make the amount xi of refined product j; then
xi uses aiixi of crude i. Summing over all j = 1, ... , n, we get the total use
of crude i, and this must be ~ si, which is the available supply:

(i = 1, ... ,m).

1 Introduction to Linear Programming

We require all xi;;::,: 0, and we want to maximize the total selling price:

p1x1 + p2x 2 + · · · + PnXn =maximum.

7

Example 4 is standard maximum problem of linear programming. Before
long, you will know how to solve it-it is easier than the transportation
problem.

Example 4 assumes that the unit market prices Pi are independent of the
produced quantities xi. That is a good assumption for a single company,
but a bad assumption for the economy of a whole nation. As the economists
would say, it is a good assumption for micro-economics, but a bad assump­
tion for macro-economics. That is typical for linear economic models. In all
applied mathematics, as a rule, linear models are adequate for small varia­
tions, but inadequate for large variations. Linear programming is a good
way to manage an oil refinery, but a bad way to manage a country.

EXAMPLE 5. Astronomy and Astrophysics is the name of the scientific journal
in which, in 1972, Harvard astronomerS. M. Faber published a paper called
"Quadratic Programming Applied to the Problem of Galaxy Population
Synthesis." Got that?

Well, you and I may not understand astrophysics, but we can understand
Dr. Faber's problem. She wanted to make a least-squares calculation. She'd
taken a lot of data, and she wanted to find out the numbers of stars in various
galaxies.

When she made the calculation, some of the galaxy populations came
out negative. Bad. Galaxy populations are never negative.

So she asked herself: What if I make a least-squares calculation with the
constraint that the unknowns must be nonnegative?

Now her problem looked something like this:

m

L (ailx 1 + · · · + a;nXn- b;)2 = minimum
;~ 1

for x 1 ;;::,: 0, · · · , xn ;;::,: 0. (Here m is bigger than n: m is the number of data
points; n is the number of galaxies studied.)

Without the sign constraints (xi ;;::,: 0) Faber's problem would be an
example of classical least squares. Gauss gave the solution:

But with the sign constraints the problem is an example of quadratic pro­
gramming.

Quadratic programming is nonlinear programming. You have no right
to hope that a problem in quadratic programming can be solved by the
simplex method of linear programming. But it can; Philip Wolfe showed
how.

8 1 Linear Programming

Wolfe's article appeared in the economics journal Econometrica. Qua­
dratic programming appeared as a method of mathematical economics, but
now it comes to the service of science. It makes short work of Dr. Faber's
problem on galaxy populations. Using Wolfe's method, the computations
are about as quick as the classical computations of Gauss.

And they are much more general. I didn't tell you the full story about
Faber's problem. In addition to the sign constraints (xi~ 0), she wants to
require a bunch of other constraints, which look like this:

(i = 1, ... ,k).

No problem. Wolfe's method can handle those, too. You'll be surprised to
learn how easy it is.

In general, linear programming has shown a surprising ability to handle
nonlinear problems. A marvelous example is the problem of Chebyshev
approximation.

EXAMPLE 6. Chebyshev approximation. In his Introduction to Numerical
Analysis, Edward Stiefel shows how linear programming can be used to solve
this problem:

We are given an over-determined system of linear equations

(i = 1, ... ,m).

We have many more equations than unknowns xi; we cannot expect to solve
the equations exactly.

Unavoidably, there will be errors:

(i = 1, ... ,m).

The errors e; will depend on our choice of the numbers xi· Let us define the
maximum absolute error:

J.l = max(je1j, Je2j, ... ,]em]).

Problem. Choose the xi so as to make J.l as small as possible.
This problem appears in many contexts. In engineering it's just what you

want for safety calculations. The worst error is the only one that counts.
That's the one that breaks the bridge or blows up the nuclear reactor. In
numerical analysis the worst error is often the best measure of the error of
a subroutine.

The theory of Chebyshev approximation was well known; there were
plenty of existence-and-uniqueness theorems. But no one knew how to
compute the answers. Then, around 1960, co!11es Edward Stiefel, who says
in effect:

Look here, the maximum absolute error J.l satisfies

(i = 1, ... ,m).

1 Introduction to Linear Programming 9

In other words, J.l satisfies these inequalities:

(i = 1, ... ,m).

The problem is to choose Xt. ... ,xm so that J.l can be as small as possible.
Define the new unknown x0 = J.l. Then this is the problem: Find numbers

x0 ,x1, ..• ,x, satisfying the linear inequalities

Xo + ailxl + ... + ai,Xn ~ bi
(i = 1, ... ,m)

with

x0 = minimum.

That is a problem in linear programming; you can compute the answers by
the simplex method.

Now let's get to work.

Appendix: Vectors, Matrices, and Linear Algebra

I assume you already have some experience with sets of linear equations.
I'm not going to teach you linear algebra here-that is a basic subject that
deserves a separate course. Anyway, for this book you need only a small
part of linear algebra. What you will need to know I will summarize now.

In this book all numbers are real (positive, negative, or zero); we won't
need complex numbers. Real numbers will sometimes be called scalars.

A vector x is a finite, ordered collection of real numbers x1o ... , x,. In
other words, x is a real-valued function (xi) defined on a finite set of integers
i = 1, ... , n. The numbers xi are called the components of x.

If x and y both have n components, then their inner product is

X • Y = X1Y1 + X2Y2 + ... + X,y,.

The Euclidian length of x is

lxl = .J(x . x) = .J(xt + ... + x~).

A vector x (in boldface) can be represented by a column vector x (not in
boldface) or by a row vector xT. For instance, if x has the two components
x1 = 7 and x 2 = 9, then x can be represented by the column vector

x=[;]
or by the row vector xT = [7,9]. A column vector is a matrix with only one
column; a row vector is a matrix with only one row.

10 1 Linear Programming

An m x n matrix A is a rectangular array of numbers aii with m rows
(i = 1, ... , m) and n columns (j = 1, ... , n). For example, if m = 2 and n = 3,
we have the matrix

Here a22 = n, a13 = 0.
The transpose of this matrix is

In general, if A= (aii), then AT= (bii) with bii = aii (i = 1, ... , m;j = 1, ... , n).
The system of linear equations

II

L aiixi = bi (i = 1, ... ,m)
j=l

may be written in the compact form Ax = b, where A is a matrix, and where
x and bare column vectors.

If A has components aii• then .A.A has components .A.aii·
If A and B are both matrices with m rows and n columns, then A + B

is the matrix with components cii = aii + bii.
If A is a p x q matrix and B is a q x r matrix, then AB is a p x r matrix

with components
q

cii = L aikbki·
k=l

For example, if xr is the 1 x 2 matrix [7,9], then

T T [49 63] X X= (130), but XX = 63 81 .

The matrix product is associative, but not generally commutative:

(XY)Z = X(YZ), but XY =f. YX (usually).

If the vectors xl, ... , xk all have n components, then a linear combination
of them is a vector

with components
k

Yi = L cixp1.
j= 1

For example, using column vectors, we have

1 Introduction to Linear Programming 11

The vectors xl, ... , xk are called linearly independent if no one of them
is a linear combination of the others. That means

k

L cixi = 0
j=l

only if all ci = 0.

The vectors x with n components constitute the real, n-dimensional vector
space Rn.

A linear subspace of Rn is subset L that contains all the linear combinations
of all of its points. The vectors

are a basis for L if they are linearly independent and if they SplBl L, so that

L = {y:y = c1b1 + · · · + c4bd}.

A theorem says that every basis for L has the same number of vectors.
That number, d, is called the dimension of L. If L is a linear subspace of Rn,
then Lhasa dimension din the range 0::::; d::::; n. We say d = 0 if L consists
of the single vector x = 0.

Rank of a matrix. Let A be an m x n matrix. If A has r independent
columns, but doesn't have r + 1 independent columns, then we say rank
A =r.

A theorem says rank A= rank Ar.
If A is an n x n matrix, then the equation Ax = b has a unique solution x

for every b in Rn if and only if A has independent columns (rank A = n).
If A is an m x n matrix, and if b lies in Rm, then the equation Ax = b has

some solution x in Rn if and only ifthe rank of A is not increased by adjoining
to A the vector b as a new column. For example, the equation

has a solution because

rank[~ ~ !] =rank[~ ~ ! :].
(Both ranks equall.)

Notation. For linear programming I use column vectors x and row vec­
tors xr. Subscripts denote different components xi of a single vector x, but
superscripts denote different vectors xi.

For nonlinear programming and for the fixed-point theorems I denote
vectors by boldface letters x. Thus, f(x) is a vector-valued function of a
vector, but g(x) (with g not in boldface) denotes a scalar-valued (real-valued)
function of a vector.

I denote matrices by capital letters, and I don't use bold-face for matrices.

12 1 Linear Programming

In the discussion of the Schauder theorem, the boldface vector notation
x is used for points in Banach space. I do this to distinguish points of the
space from real constants. For instance, if x stands for the cosine function
cos t and y stands for the sine function sin t, then ax + by stands for some
linear combination like

ax + by = J2 cos t - 8.9 sin t.

Here it is natural to think of x and y as generalized vectors.

2 Linear Programs and Their Duals

A linear program (or linear programming problem) looks like this: First, there
is a set of linear equations or inequalities. Second, there are sign constraints
xi~ 0 on some or all of the unknowns. Third, there is a linear form to be
minimized or maximized.

ExAMPLE 1. Solve these equations:

x 1 - 2x2 + x 3 = 4
-x1 + 3x2 = 5.

(1)

Require the unknowns to satisfy the sign constraints

(2)

A vector x that satisfies conditions (1) and (2) is called a feasible solution.
Look for an optimal solution x, which makes

x 1 + 2x2 + 3x3 =minimum. (3)

This is an example of a canonical minimum problem, which is the main
form of linear programming used in computer solution. In general, a canon­
ical minimum problem looks like this:

Ax=b
x ~ 0 (meaning all components X; ~ 0)

CTX =min.

In our example, we have the matrix

A=[1
-1

The unknown vector x is

-2
3

(4)

(5)

2 Linear Programs and Their Duals 13

The given requirement vector is

b=[~J (6)

The cost vector is

CT = [1,2,3]. (7)

ExAMPLE 2. Solve these inequalities:

Yt- Y2 ~ 1
-2yl + 3y2 ~ 2 (8)

Yt ~ 3.

The unknowns y1, y2 may be any real numbers-here there are no sign
constraints. A vector y that satisfies the inequalities (4) is called a feasible
solution. Look for an optimal solution y, which also satisfies

4y1 + 5y2 = maximum. (9)

This program looks different from the first. In the first program there
were equations (1); here there are inequalities (8). In the first program there
were sign constraints; here there are none. The first program was a minimum
problem (3); this one is a maximum problem (9).

We can state this problem using matrices and vectors. Here we have the
unknown vector

(10)

The inequalities become

(8)

and the maximum condition is

(9)

As it happens, the matrix A and the vectors b and cT came from the pre­
ceding example; they were defined in formulas (4), (6), and (7). But here they
appe&r in different ways. Before, A was multiplied on the right by the un­
known column x; now A is multiplied on the left by the unknown row yT.
Before, b was a requirement vector; now it is a price vector. Before, c was a
cost vector; now it is a requirement vector.

The program
(11)

is called the dual of the program

Ax = b, x ~ 0, cT x = min. (12)

14 I Linear Programming

You're going to be hearing a lot about duals and the duality principle. I
won't give you the full story now, but here is a sample:
The two optimal values are equal:

I min cT x for primal = max yTb for dual I (13)

But more of that later. Now we are just handling some matters of form.

ExAMPLE 3. Solve these inequalities:

x1 - 2x2 + x3 ~ 4
-x1 +3x2 ~5

(14)

with the sign constraints

X1 ~ 0, X 2 ~ 0, X 3 ~ 0. (15)

Look for an optimal solution satisfying

x1 + 2x2 + 3x3 = minimum. (16)

This is the same as Example 1 except that the equations have been re­
placed by inequalities. With the matrix and vectors of Example 1, our new
program has this form:

Ax ~ b, x ~ 0, cT x = min. (17)

A vector x satisfying Ax~ b, x ~ 0 is called a feasible solution; a feasible
solution that minimizes cT x is called an optimal solution.

(We never speak of an "optimal solution" unless it is also feasible. Strictly
speaking, we shouldn't say "optimal solution" at all, but just "solution",
since a linear programming problem is a problem of optimization. But the
redundant phrase optimal solution is common usage, and we will follow it.)

A program with the form (17) is called a standard minimum problem. Its
dual has the following form:

(18)

This is the same as the dual (11) except that now we have the sign con­
straints y ~ 0.

The general linear program and its dual. The primal problem looks like
this: We require certain inequalities and equations:

n

L aiixi ~ bi
j= 1

fori in I 1
(19)

2 Linear Programs and Their Duals

where I 1 and I 2 are disjoint sets of integers whose union is the set

I= I 1 u I 2 = {1,2, ... ,m}.

We require certain sign constraints:

Xj ~ 0 for j in J 1 ,

where J 1 is a specified subset of indices

J 1 c J = {1,2, ... ,n}.

15

(20)

(21)

(22)

(If J 1 is empty, there are no sign constraints; if J 1 = J, we require all xi~ 0.)
A feasible solution x solves (19) and (21); an optimal solution x is a feasible
solution minimizing a given linear form:

n

L cixi = minimum.
j=1

(23)

The corresponding dual problem looks like this: We look for a vector y
with component YI> ... , Ym· We require

m

L Y;aii ~ ci
i= 1

for j in J 1
(24)

where J 1 is the subset mentioned in (22), and where J 2 is the complement
J 2 = J - J 1 . For sign constraints, we require

fori in I 1 . (25)

For optimality we require
m

L y;b; = maximum. (26)
i=1

ExAMPLE 4. Look back at Example 1 and its dual, Example 2. What are the
index sets? They are

I= {1,2}; J = {1,2,3}

I 1 = 0, I 2 = I; J 1 = J, J 2 = 0,

where 0 stands for the empty set. Now Example 1 becomes a case of the
general primal, and Example 2 becomes a case of the general dual.

ExAMPLE 5. Look back at Example 3. The index sets are

I= {1,2}; J = {1,2,3}

I1=I, I2=0; J1=J, J2=0.

16 I Linear Programming

The next example will show how to handle inequalities and sign con­
straints that go the wrong way.

EXAMPLE 6. Let us try to state the following linear program as a general
minimum problem:

x 1 - 2x2 + x 3 :(; 4

-x1 + 3x2 ~ 5

x 1 + x 3 = 10

x 1 ~ 0, x 3 :(; 0

x 1 + 2x 2 + 3x3 = maximum.

The first inequality goes the wrong way, so we multiply it by -1, which gives

-x1 + 2x2 - x 3 ~ 4.

The constraint x3 :(; 0 goes the wrong way, so we define the new unknown
x3 = - x 3 ~ 0. Finally, we change the maximum problem into a minimum
problem by multiplying the thing to be optimized by - 1.

The result of all this is the following restatement of the original maximum
problem:

~5

X~= 10

x 1 ~ 0, x3 ~ 0

-x1 - 2x2 + 3x3 =minimum.

This takes the form of a general minimum problem. The index sets are

I= {1,2,3}; J = {1,2,3}

I 1 = {1,2}, I 2 = {3}; 1 1 = {1,3}, 1 2 = {2}.

In the last example we restated a maximum problem as a minimum prob­
lem. This brings up an interesting general question: Can we restate the
general dual problem as an equivalent problem in primal form?

Of course we can. Look at the general dual problem (24)-(26). First we
restate (24) as follows:

m

L (-a;)Y; ~ -cj for j in J 1
i= 1

for j in 1 2 • (24')

We use the sign constraints unchanged:

fori in I 1. (25')

2 Linear Programs and Their Duals 17

Finally, we get a minimum problem by replacing b by -b:
m

L (- b;)Y; = minimum. (26')
i= 1

The dual of the dual is the primal. The last three formulas state the dual
in the form of primal. The original primal problem was defined by a matrix
A, by vectors b and c, and by index sets I 1 and J 1 ; this problem appears in
formulas (19), (21), and (23). Let's denote this primal problem by

P(A;b,c;I t.l 1). (27)

(We don't need to mention the sets I 2 and J 2 , since they are just the com­
plements of I 1 and J d Using this notation, we can denote the problem
(24'), (25'), (26') by

(28)

The effect of taking the dual was to replace A by -AT, b by - c, c by - b,
I 1 by J t. and J 1 by I 1•

EXAMPLE 7. Suppose the primal is the canonical minimum problem

Ax = b, x ;;::: 0, cT x = min. (29)

Using the notation (27), we can denote this problem by P(A;b,c;0,J), where
0 is the null set and J = {1, ... ,n}. Let us now form the new primal (28).
Calling the new unknown y, we get the new primal P(-AT;c,b;J,0):

-ATy;;::: -c, -bTy =min.

Sure enough, this is equivalent to

yT A :::::; cT, yTb = max,

which is the dual of the original primal.

In general, if Pis the primal and DP is its dual, we have found

DP(A;b,c;I1,J1) = P(-AT; -c,-b;J1,11).

(30)

(31)

(32)

In other words, the dual of the primal is the new primal obtained from these
interchanges:

(33)

If you apply these interchanges twice, you get back where you started. For
instance, if you take minus the transpose twice, you get back the original
matrix. Thus, if we apply the operator D twice, we get

D · DP(A;b,c;I1,J1) = DP(-AT; -c,-b;Jt.I1)

= P(A;b,c;I 1,J 1).

In other words, the dual of the dual is the primal.

(34)

18 1 Linear Programming

The general problem in canonical form. The canonical minimum problem is

Ax = b, x ~ 0, cT x = min. (35)

Here there are no inequalities (I 1 = 0), and we require all xi ~ 0 (J 1 = J).
This is the problem P(A;b,c;0,J). It looks less general than the general
problem P(A;b,c;Il>J1), which may require some inequalities-

n

L a;ixi ~ b;
j= 1

and which may leave some unknowns free-

(36)

(37)

But we can put the general problem in canonical form. All we have to do
is define some new unknowns.

For every inequality (36) we define the slack variable z; ~ 0, and we write
(36) as an equation:

n

L aiixi - z; = b;
j=1

And for every free xi we write

(36')

(37')

requiting ui ~ 0 and vi~ 0. This depends on the deep truth that every real
number is the difference of two positive numbers. Now we have a problem
with all equations and with all unknowns ~0; the general problem has
become canonical.

EXAMPLE 8. Here is a general problem:

x 1 + 2x2 ~ 3

4x 1 + 5x2 = 6

x 1 ~ 0, - oo < x 2 < oo,

7x1 + 8x2 =min.

This is equivalent to the canonical problem

x 1 + 2u2 - 2v2 - z1 = 3

4x1 + 5u2 - 5v2 = 6

x1~o. u2~o. v2~o. z1~0

7x1 + 8u2 - 8v2 =min.

(38)

(38')

Later we'll spend a long time discussing computer methods for linear
program in canonical form. Now you understand why these methods will
apply to linear programs of every form.

I haven't yet shown you why the dual is so important, but as you will see
before long, duality is the heart of linear programming.

2 Linear Programs and Their Duals

PROBLEMS

1. State this problem as a canonical minimum problem:

3x1 - 4x2): 0

5x1 + 2x3 ~ 0

6x 2 + 7x3 = 0

x 1): 0, x3): 0; x2 =max.

2. State the dual of Problem 1.

3. State Problem 1 as a standard minimum problem.

4. State the dual of the problem in Example 6.

5. Consider the linear system

Ax= b, x;::: 0,

19

with nothing to be optimized. Show how to state this system as a canonical minimum
problem by the right choice for the cost vector c.

6. State the linear system Ax = b as a canonical minimum problem. What is the
dual program?

7. Solve this linear program graphically:

3x1 + 4x2 ~ 12

5x1 + 2x2 ~ 10

x): 0; x 1 + x2 =max.

8. State the dual of Problem 7 and solve it graphically. Verify that the maximum for
the primal equals the minimum for the dual.

9. A Chebyshev minimum problem (see Section 1): State the following problem as a
linear program:

10. State the dual of Problem 9.

l3x 1 + 4x2 - 71 ~ e

l2x 1 + 3x2 - 51 ~ e

l-x 1 +4x2 -9l~e

e=min.

11. Consider the system of strict inequalities

n

I aijxi > 0 (i = 1, ... ,m).
j= 1

Show how this system is equivalent to the following:

n

I aijui): 1
j= 1

(i = 1, ... ,m).

20 1 Linear Programming

12. Solve this problem:
3x1 + 4x2 ~ 12

4x1 + 5x2 ~ 20

x ~ 0; 5x1 + 6x2 =max.

13. State and solve the dual of Problem 12. Verify the equality ofthe primal and dual
optima.

14. State the following problem as a linear program:

5 ·l3x1 + 4x2 - 71 + 2 ·l2x1 + 3x2 - 51+ 8 ·l-x1 + 4x2 - 91 =min.

15. Find the dual program for Problem 14.

16. Find the dual of this linear program:

-d~Ax-b~d

x~O; cTx=min.

3 How the Dual Indicates Optimality

You've seen that every linear programming problem can be put in canonical
form:

Ax= b, x ~ 0

cr x = minimum.

(1)

(2)

If a vector x satisfies (1), it's called a feasible solution; if it satisfies (1) and
(2), it's called an optimal solution.

Some linear programs have no feasible solution. For example, this one
has none:

x1 = -1, x1 ~ 0; 3x1 =min. (3)

Some linear programs have feasible solutions but no optimal solution.
Look at this:

x1 - x2 = 0, x ~ 0; - 2x 1 = min. (4)

If we set x1 = x2 =A. and let A.-+ + oo, we can drive the cost down to
- oo(- 2A. -+ - oo). Since no single feasible solution produces minimum
cost, we say there is no optimal solution.

If an optimal solution exists, it need not be unique. Look at this program:

(5)

Here all x are optimal on the segment connecting (1,0) with (0,1).
Mathematicians love pathological cases, and you have just seen three.

The normal case is this: A linear program has many feasible solutions, and
one of them is the unique optimal solution. Here is a normal example:

3 How the Dual Indicates Optimality

EXAMPLE I.
2x 1 + x 2 - x 3 = 4, x ~ 0,

3x1 + 5x2 = minimum.

21

(6)

(7)

If you regard x 3 as a slack variable, the requirement (6) becomes an inequality
in 2 dimensions :

(6')

The feasible solutions (x1,x 2) appear in Figure 1. The slack x 3 doesn't appear
in Figure 1, but it equals 2x 1 + x 2 - 4 ~ 0.

Figure l

Figure 1 shows infinitely many feasible solutions. Where is the optimal
solution?

The lines of constant cost are the lines

3x1 + 5x2 = constant.

A few of these lines appear in Figure 2. Now I want you to imagine Figure 2
superimposed on Figure 1. Can you see which feasible solution has the least
cost?

Constant-cost lines
3x 1 + 5x2 = const.

Figure 2

22 1 Linear Programming

It is the unique optimal solution

(x1>x2) = (2,0).

At this point one of the constant-cost lines just touches the feasible set. The
line that does this is labeled cost = 6 in Figure 2. None of the lower-cost
lines hits the feasible set. Using the slack x 3 , we get the unique optimal
solution

(8)

The minimum cost equals 6.

This example is typical, and you can learn a lot from it. Note that the
optimal vector (8) has only one non-zero component. The matrix A in (6)
consists of only one row:

A= [2,1,-1]. (9)

The vector (8) is called a basic optimal solution; it has r non-zero compo­
nents as A has r independent rows. We'll discuss basic solutions later.

In this simple example, you could draw pictures and visualize the answer.
If the matrix A had been a 10 x 30 matrix instead of a 1 x 3 matrix, you
would have had a hard time drawing and visualizing. What we need is an
analytic technique.

How about calculus? After all, our problem is a constrained minimum
problem. Isn't that what Lagrange multipliers are for?

In calculus, we learned how to solve constrained minimum problems.
Suppose we have one constraint and three unknowns:

cp(xl>x2 ,x3) =min.; t/J(xl>x2 ,x3) = const.

The method was to form the Lagrange function cp - A.t{! and set the deriva­
tives equal to zero:

(j = 1,2,3).

But Example 1 is a constrained minimum problem:

2x 1 + x2 - x 3 = 4; 3x1 + 5x2 = min.

Let's form the Lagrange equations for this example:

3-2A.=0

5-A.=O

A.= 0.

Evidently, the Lagrange multiplier must equal ~, 5, and 0.
What went wrong? If you look back at (6), you see we have sign con­

straints xi ~ 0. In 3 dimensions, the points x that satisfy the full constraint
(6) constitute the intersection of a plane with the orthant x ~ 0. The unique

3 How the Dual Indicates Optimality 23

optimal point (2,0,0) lies on the boundary. And now we remember: Calculus
works when the optimal point lies in the interior.

If you want a simple example, try this one: Minimize the single function
3x + 5 for x ~ 0. Setting the derivative equal to zero, we get the equation
3 = 0, which we don't believe.

In general, calculus fails in linear programming because the optimal x
occurs on the boundary of the feasible set. To compute the optimal x, we
shall need a numerical method; but first we need an answer to this question:
How can we know an optimal solution when we see one? We need a sufficient
condition for x to be an optimal solution of the linear program

Ax = b, x ~ 0, cT x = min. (10)

Bounds from the dual. The dual program is

yT A :::; cT, yTb = max. (11)

If x is any feasible solution for the primal, and if y is any feasible solution of
the dual, then

and

EXAMPLE 2. The dual of Example 1 is the program

y1[2,1,-1]:::; [3,5,0]; 4Yl =max.

(12)

(13)

(14)

Pick any feasible solution for the dual, say Y1 = 1. Then yTb = 4, and we
conclude

for all feasible x. (15)

Indeed, we know that is true because we found min cT x = 6.

In general, any y that is feasible for the dual gives a lower bound for the
required minimum value of cT x for the primal.

Now suppose we find a pair of feasible solutions x andy that produce
equality:

(16)

Then we are in luck. As you will now see, x must then be optimal for the primal.
And by the way, y is optimal for the dual.

Proof? Easy. Let x be any competing feasible solution of the primal. Then
we know cT x ~ yTb because y is feasible for the dual. Now the assumption
of equality (16) implies

(17)

and this must hold for every feasible x. In short, x minimizes cT x over all
feasible x.

24 l Linear Programming

Similarly, for every y that is feasible for the dual, the equality (16) implies

(18)
Done.

EXAMPLE 3. Suppose we had chosen 91 = t instead of y1 = 1 in Example 2.
This would give

Example 2 is the dual of Example 1. If we call x the feasible solution of the
primal with components 2, 0, 0, we get

crx = 3x1 + sx2 + Ox3 = 6.

Since 9rb = cr x, we conclude that x is optimal for the primal, and 9 is
optimal for the dual.

In general, as we have proved, the equality 9rb = crx is a s~fficient con­
dition for optimality.

Is it also a necessary condition? If x is optimal for the primal, must there
be some 9 feasible for the dual satisfying 9rb = crx? The answer is yes, but
that is harder to prove. That is the duality theorem, which we will prove later.

The equilibrium theorem. If x is feasible for the primal, it satisfies

n

L aiixi = b; (i = 1, ... ,m) (19)
j= 1

(j = 1, ... ,n). (20)

(With no loss of generality, we consider linear programming in the canonical
form.) If y is feasible for the dual, it satisfies

m

L y;a;i ~ ci (i = 1, ... ,m). (21)
i= 1

We have found a condition for optimality:

m n

L y;b; = L CjXj. (22)
i= 1 j= 1

How does this equality happen? The answer appears in the following
theorem.

Theorem l. Let x be feasible for the primal canonical program, and let y be
feasible for the dual. Then

yTb ~ CTX. (23)

Equality occurs if and only if the equilibrium condition holds:

m

L Y;aii = ci if xi> 0 (24)
i= 1

3 How the Dual Indicates Optimality 25

This says, if the jth component of x is positive, then the jth dual inequality
(21) must be achieved as an equation.

PROOF. By the sign constraints (20) and by the dual inequalities (21), we have

Jl xi(ci- itt Y;aii);?: 0, (25)

and now the primal equations (19) give
n m

I xici = L y;b; ;?: 0, (26)
j=l i=l

which is the required inequality xT c - yTb ;?: 0.

Equality occurs iff equality occurs in (25). In the sum (25) each term is
;?:0; the component xi is ;?:0 by (20), and the factor(...) is ;?:0 by (21).
Therefore, the sum equals zero only if every single term equals zero, which
means this: If xi is positive, its factor (ci- L; y;a;) must be zero. That is the
equilibrium condition (24). D

ExAMPLE 4. In Example 3 we have the feasible pair

X~ [H F (t).

Here the component x1 is positive, and we have the corresponding equilib-
rium equation

Yta11 = (~)(2) = 3 = c1.

At once, we conclude x and y are optimal. (By the way, according to (14),
the other two dual inequalities are

Yt · 1 ::(5, Yt · (-1) ::(0,

and they are both satisfied strictly.)

EXAMPLE 5. Let's take a harder example-one that we couldn't solve by
drawing pictures. Here's the primal:

5x1 - 6x2 + 4x3 - 2x4 = 0

x 1 - x2 + 6x3 + 9x4 = 16

x;?:O

x 1 + 5x2 + 2x 3 + 13x4 =minimum.

Here we have 2 equations in 4 unknowns. We can try to solve the equa­
tions with just 2 non-zero components. For instance, let's use x2 and x3 •

This gives the numbers
x2 = 2, x 3 = 3,

26 1 Linear Programming

Good luck: they turned out positive. Setting x 1 = x4 = 0, we have a feasible
solution x for the primal.

Is x optimal? That's easy to check. The dual inequalities are

5Yt + Y2::::;; 1
-6yl-y2:;;;5

4yl + 6y2::::;; 2

-2yl + 9y2::::;; 13.

Since our primal x has positive second and third components, the equilib­
rium condition requires that the second and third dual inequalities be
satisfied as equations. The unique solution of these two equations is

Yt = -1, Y2 = 1.

The negative number y1 doesn't bother us, since the dual problem has
no sign constraints. But we must always verify that our equilibrium solution
y satisfies the other dual inequalities. In this example, we must verify the first
and fourth inequalities:

Sy1 + Y2::::;; 1, -2yt + 9y2 ::::;; 13.

Again we have good luck. We have verified that our equilibrium solution
y solves all the dual inequalities. Now the equilibrium theorem says
cT x = yTb, and so x is optimal for the primal and y is optimal for the dual.

Example 5 was not as contrived as you might think. The solution x was
what we will call a basic solution. As you will see, if a canonical program
has any feasible solution, it has a basic feasible solution; and if it has any
optimal solution, it has a basic optimal solution.

PROBLEMS

1. Draw the set of feasible solutions to this problem:

2. For Problem 1, locate all the optimal solutions for these values of(cl>c2): (2,1); (1,3);
(50,100); (-1,0); (0,-1); (-6,-7).

3. For the following primal, write the dual and use it to find one or two lower bounds for
the primal value:

[~ ~ !]x=Gl x~O, x1+x2+X3=min.

4. Consider this problem:

2 ~ x1 + 2x2 + 9x3 ~ 7, x ~ 0,

-7x1 + 9x2 + 16x3 = max.

Write the dual, and get an upper bound for the primal maximum.

4 Basic Solutions

5. Consider this problem:

2 ~ x1 + 2x2 + 9x 3 ~ 7, x?: 0,

-7x1 + 9x2 + 16x3 =min.

Write the dual, and get a lower bound for the primal minimum.

6. Write the equilibrium conditions for Problem 3.

27

7. Find the optimal solution for Problem 3 as follows: Compute the feasible solutions
with only two positive components; then check the equilibrium conditions.

8. Write the program in Problem 4 as a canonical minimum problem. What are the
equilibrium conditions?

4 Basic Solutions

We define a basic solution x as follows. Suppose x solves Ax= b. If x =1= 0,
then x has some non-zero components, say x<X, xp, Then we can write
Ax as a linear combination of the corresponding columns of A:

(1)

The solution x is said to depend on the columns a<X, aP, ... If the columns
a<X, aP, ... are linearly independent, then x is called a basic solution.

This covers the usual case, b =1= 0. For the case b = 0 we define the basic
solution x = 0. (In this case x depends on the null subset of columns of A.)

Remember that vectors a<X, aP, . .. are called linearly independent iff the
equation

(2)

implies that all the coefficients e<X, 8p, . .. are zero. Equivalently, the vectors
a<X, aP, ... are independent iff none of them is a linear combination of the
others.

EXAMPLE 1. Define the matrix

-1
2

-1]
-3 . (3)

We label the columns a\ a2 , a3• The three columns are dependent, because
they all lie in a 2-dimensional space. But every two of the columns are inde­
pendent. For example, these two columns are independent:

28 1 Linear Programming

ExAMPLE 2. For the matrix (3) let's compute all the basic solutions of

-1

2
(4)

First, there's a basic solution that depends on columns a 1 and a2 • We get
this solution by solving

We compute x 1 = !, x 2 =!.Setting x 3 = 0, we get a basic solution of(4):

(5)

Next, there's a basic solution that depends on columns a1 and a3. We get
it by solving

obtaining x 1 = -!, x 3 = -!.This gives another basic solution of(4):

(6)

In the same way, we compute the third basic solution of(4):

(7)

which depends on the independent columns a2 ,a3•

There are no other basic solutions. Why? Because the only other sets of
independent columns consist of only one column or of the null set, and none of
these sets spans a solution.

But there are millions of non-basic solutions. All of them have the form

(8)

where el + ()2 + ()3 = 1, where x, x', x" are the three basic solutions; for then

A(01x + 02x' + 03x") = 01b + 02b + 03b =b.

For instance, here is a non-basic solution:

18x- 12x'- Sx" ~ rn

4 Basic Solutions 29

Plug it into (4) and you'll see that it works. It is non-basic because it depends
on the dependent columns a\a2,a3•

If you want a more exotic example, take nx + ex' + (1 - n - e)x".

You get the idea: If the matrix A has more columns than rows, the equation
Ax = b typically has infinitely many solutions x. But A has only a finite
number of subsets of independent columns, and so the equation Ax = b has
only a finite number of basic solutions.

You'll see this is just what we need for linear programming: it cuts down
the number of possibilities from infinity to a finite number.

Theorem. Consider the canonical linear program

Ax = b, x ~ 0, cr x = min. (9)

First, if there is any feasible solution, then there is a basic feasible solution.
Second, if there is any optimal solution, then there is a basic optimal solution.

PROOF. First, suppose there is any feasible solution. Let x be a feasible
solution with the fewest positive components (if there is more than one such
feasible solution, pick any one of them).

If x has no positive components, then x = 0, and x is basic by definition.
Otherwise, let xa, Xp, . .. be the positive components. We will prove that the
columns aa, aP, ... are independent.

Suppose they are dependent. Then there is a linear combination

8 aa + 8 aP + · · · = 0 a p ' (10)

where at least one of the coefficients, say ea, is non-zero. We may assume ea
is positive, for otherwise we make it positive by multiplying the equation (10)
by -1.

We have assumed

Ax = Xaaa + XpaP + · · · = b,

where Xa > 0, Xp > 0, Form the equation (11) -A· (10):

(xa- A8a)aa + (xp - A8p)aP + · · · =b.

If A is not too big, we still have a feasible solution, with components

xa- A8a ~ 0, xp- A8p ~ 0,

(11)

(12)

(13)

But if A is too big, we no longer have a feasible solution, since we get a negative
component

Xa- Aea < 0 if A > Xa/8a.

Choose A as large as you can, keeping all components ~0 in (13). If ei is
~0, then xi- A8i remains positive for all A~ 0; but if ei is >0, we must
require A ~ xd8i. Since A must be ~ all these quotients, we choose

.A.= min{xi;ei: xi> 0 and ei > 0}. (14)

30 1 Linear Programming

If the minimum quotient occurs for i = Jl, then xll -).(}ll = 0 in (13).
Now the identity (12) shows that we have found a new feasible solution that
has fewer positive components than x has; the new jlth component is zero
whereas the old jlth component xll was positive. This contradicts our as­
sumption that x was a feasible solution with the fewest possible positive
components. Therefore, the columns d'", aP, ... couldn't have been dependent,
as in (10).

Conclusion: the feasible solution x is basic. That finishes the first half of
the proof; the second half goes much the same way:

Assume x is an optimal solution of the canonical linear program (9).
Some optimal solutions may have more positive components than others;
assume our optimal x has the fewest possible positive components. We will
show that x is basic.

If x = 0, then xis basic by definition. If x =F 0, call the positive components
xa.,Xp, •..• Again we must prove that the matrix columns aa.,aP, •.. are
independent. We will show that if they are dependent, then we can construct
a new optimal solution with fewer positive components.

Suppose aa., aP, •.. are dependent. Let

() aa. + () aP + · .. = 0 a. p ' (15)

where we may assume some coefficient is positive, say ()a. > 0. Then we assert

()a.ca. + ()pep + · · · = 0,

where c is the given cost vector.
Proofof(16): We know Ax= b, which says

xa.aa. + xpaP + · · · = b.

Form the equation (17) -A.· (15):

(xa. -).()a.)aa. + (xp -).()p)aP + · · · = b.

Since Xa. > 0, Xp > 0, ... , we have

(16)

(17)

(18)

Xa. -).()a. ~ 0, Xp -).()p ~ 0, . . . (19)

for small IA.I; then the components (19) give a new feasible solution. The
new cost is

ca.(xa.-).()a.)+ cp(Xp- A.()p) +···=old cost- A.(()a.ca. +()pep+···). (20)

If (16) were false, we could decrease the cost by letting). be some small positive
or negative number. Then x would not be optimal. Contradiction; (16) is
now proved.

Let). start at zero and slowly increase. As long as the new components
(19) remain ~ 0, they give a new optimal solution, since (16) implies new cost =
old cost in (20).

Assuming ()a.> 0, we see that the component xa.-).()a. becomes negative
if). is too big. Take). as large as possible, keeping all the new components

4 Basic Solutions 31

(19) ~ 0; set
2 = min{x;/0;: X;> 0 and 0; > 0}. (21)

If the minimum quotient occurs for i = Jl, then x,. - 20,. = 0 in (19), and
so the new optimal solution has fewer positive components than the old
optimal solution x. This contradicts our assumption.

Conclusion: the columns a~, aP, ... are independent, and so the optimal so­
lutfon x is basic. This finishes the proof of the theorem on basic solutions. D

Armed with this theorem, we are ready to attack the problem of numerical
computation.

PROBLEMS

1. For the matrix in formula (3) there are 6 non-empty sets of independent columns.
What are they?

2. Let

A=[1 0 -1 0 -1].
1 0 2 0 -3

What are the non-empty subsets of independent columns?

3. For the matrix in Problem 2 find all the basic solutions of

Ax=[~].
Using the basic solutions, represent the non-basic solutions. (See Example 1.)

4. Find all the basic solutions of

5. Find all the basic solutions of

Why do Problems 4 and 5 have different numbers of basic solutions?

6. Consider the equation

[1 0 -1] l 1 1 X = b, X ~ 0.

Find all the basic feasible solutions x for these values of b:

Draw a picture of the set of all b if x is feasible.

32 1 Linear Programming

7. Find the optimal basic solution x for

G ~ -~}=[~]. x~O, x2-x3=min.

8. Same as last problem, but now require x1 + x3 =min.

9. Write the standard program

[~ ~Jx ~ [~]. x ~ 0, x 1 + x 2 =min.

in canonical form by introducing two slack variables x 3 and x4 • Find all the basic
feasible solutions; find the basic optimal solution. (The new matrix will have four
columns. Draw them as vectors in the plane, and draw the vector with components
6,5.)

10. Find all feasible solutions x for

Which feasible solution is basic?

11. Prove or disprove this assertion: Let xl, ... ,xN be all the basic feasible solutions of
Ax = b, x ~ 0; then x is a feasible solution if it is a convex combination

(8; ~ o, Lei = 1).

12. Prove or disprove the converse of the preceding assertion (using only if instead of
if).

13. Let A be an m x n matrix with m ~ n. Suppose at most r columns of A are indepen­
dent (A has rank ~r). At most how many basic solutions can Ax= b have if b is
fixed?

5 The Idea of the Simplex Method

Most computer algorithms for linear programming come from the simplex
method of George Dantzig. Because the applications of linear programming
are so numerous and important, we will later discuss several simplex al­
gorithms. But now I just want to give you the idea of the method, the bare
bones; we'll put the flesh on later.

We take the linear programming problem in canonical form:

Ax = b, x ~ 0, cT x = min. (1)

We'll make a couple of simplifying assumptions, which are almost always
satisfied.

Assumptions of non-degeneracy. Let A have m rows and n columns; we
have fewer equations than unknowns, so we have m < n.

5 The Idea of the Simplex Method 33
(i) We assume that them rows of A are linearly independent. From linear

algebra, we know this is equivalent to assuming that A has m independent
columns. (Usually A will have several sets of m independent columns.)

(ii) We assume that b is not a linear combination of fewer than m columns
of A. In other words, if

(2)

we must know that at least m of the components xi are non-zero.
The first assumption implies that the equation Ax = b has a solution x

for every b. That is because the columns of A span the whole m-dimensional
space in which the vector b lies.

If assumption (i) is false, the m rows of A are dependent, which means that
the m equations LPiixi = bi are dependent or, worse, inconsistent. For
instance, if

A= [1 2 3]
2 4 6 '

its rows are dependent. Then Ax = b gives the equations

x 1 + 2x 2 + 3x3 = b1

2x1 + 4x2 + 6x 3 = b2 ,

which are dependent if b2 = 2bb or inconsistent if b2 # 2b 1•

(3)

In practice, if equations are dependent, one or more of them should be
erased. If the equations are inconsistent, they should be forgotten-or at
least reconsidered.

What does the assumption (ii) mean?

EXAMPLE 1. Look at this:

(4)

Here the matrix A has independent rows, so assumption (i) is OK. But as­
sumption (ii) is false here, because the vector b on the right is a multiple of
just one column:

(5)

while A has two rows.
This kind of problem creates an annoying technical difficulty for the

simplex method. But please note how fragile it is: the slightest perturbation
will destroy it. Suppose b is replaced by

b'=[~::} (6)

34 I Linear Programming

where band e are small errors; for instance, band e could be digital-computer
roundoff errors, or they could be data-measurement errors. Then the slightly
perturbed vector b' satisfies assumption (ii)-unless by some incredible bad
luck b equals 3e.

This example is typical. If assumption (ii) is not satisfied then a random
perturbation of the vector b satisfies assumption (ii) almost surely. (In fact, the
degenerate vectors b lie in the finite union of the linear subs paces spanned by
subsets of m - 1 columns of A; all these subspaces have dimensions less than
m, and so a random perturbation of b in m dimensions almost surely lies
outside their union.)

And so we will make the two assumptions of non-degeneracy. Now the
simplex method works without a hitch. The method has two phases:

Phase I finds a first basic feasible solution of Ax = b, x ~ 0. Or if the
problem has no feasible solution, Phase I proves that fact.

Phase II starts with a first basic feasible solution and ends with a basic
optimal solution. Or if the problem has no optimal solution, Phase II proves
that fact, and it shows you how to construct feasible solutions x that drive
the cost xr c down to minus infinity.

Both phases work in finite numbers of steps. We get exact answers, except
for the inevitable computer roundoff errors. We shall not have to rely on
infinite convergent sequences; a finite number of steps will give a precise
answer. The simplex method plays the same role in linear programming that
Gaussian elimination plays in linear algebra.

How to do Phase I. Assume you already know how to do Phase II; then
I can show you how to do Phase I. Let's write out the equations:

n

L: aiixi = b;
j= 1

(i = 1, ... ,m). (7)

We are looking for a feasible solution, x, with m positive components. We
assume all b; are positive; if any b; is negative, multiply the ith equation by - 1.

We can state Phase I as a minimum problem for which we already have
a first basic feasible solution. We state this problem:

n

L aiixi + z; = b; (i=l, ... ,m)
j= 1

X1 ~ 0, ... , Xn ~ 0, Z1 ~ 0, ... , Zm ~ 0
(8)

z1 + · · · + zm =minimum.

This is a canonical minimum problem with m equations and n + m un­
knowns. We assume this problem is non-degenerate.

Here is a first basic solution:

xi= 0 (j = 1, ... ,n); z; = b; (i = 1, ... , m). (9)

5 The Idea of the Simplex Method 35

This is a basic solution; it contains only m positive components. The matrix
in the preliminary problem (8) has the n + m columns a\ ... , a", e1, ... , em;
the first n columns come from A, and the last m columns come from the
m x m identity matrix. Using composite matrices and vectors, we could
write (8) in the form

[A I][:]=b

x;:;: 0, z;:;: 0, Iz; =min.
(8')

Our basic feasible solution (9) depends on the m independent columns
el, ... , ~. The cost of this solution is Iz; = Ib; > 0.

Now carry out a Phase II calculation on the preliminary minimum prob­
lem (8). When you're done, there are two possibilities:

Case 1: min Iz; = 0. In this case the final z equals zero, and so the basic
optimal solution of the preliminary problem satisfies

Ax= b, x;:;: 0. (10)

Then x is a basic feasible solution of the original problem.
Case 2: min Iz; > 0. In this case the original has no feasible solution.

For if x were a feasible solution of the original problem, then x along with
z = 0 would give a zero-cost solution of the preliminary problem (8).

EXAMPLE 2. Suppose the original feasibility problem is

-x1 -2x2 =3, x 1 ;:;:0, x2 ;:;:0.

Then the preliminary minimum problem is

-x1 - 2x2 + z1 = 3

X 1 ;:, 0, X 2 ;:, 0, Z 1 ;:, 0
z1 =minimum.

(11)

(12)

The unique solution of this problem is x1 = 0, x2 = 0, z1 = 3. Since the
preliminary minimum cost is positive, the original problem (11) has no
feasible solution.

EXAMPLE 3. Suppose the original feasibility problem is

x 1 + 2x2 = 3, x1 ;:;: 0, x2 ;:;: 0.

Then the preliminary minimum problem is

x1 + 2x2 + z1 = 3

X 1 ;:, 0, X 2 ;:, 0, Z 1 ;:, 0

z1 =minimum.

(13)

(14)

The first feasible solution is x 1 = 0, x2 = 0, z1 = 3; a basic optimal solution
is x1 = 3, x2 = 0, z3 = 0. This gives a feasible solution for (13).

36 1 Linear Programming

Before we discuss Phase II, I want to prove something that we'll need:

Lemma on Non-Degeneracy. Assume this problem is non-degenerate:

Ax = b, x ~ 0, xT c = min,

where A has m rows. Then x is a basic feasible solution iff x is a feasible
solution with exactly m positive components.

PROOF. If x is a basic feasible solution, it cannot have more than m positive
components; for then it would depend on a dependent subset of columns
of A. Nor can x have fewer than m positive components; for then b would
be a linear combination of fewer than m columns of A. This would violate
assumption (ii).

Conversely, if x is any feasible solution with exactly m positive com­
ponents, we can show that x must be basic. For instance, suppose
x 1 > 0, ... , Xm > 0 and xi = 0 for j > m. Then

Ax= x 1a1 + · · · + Xmam =b.

Suppose the columns al, ... ,am were dependent:

ela1 + ... +em~= 0,

with some ei > 0. Then

(xl - A.Ol)a1 + · · · + (xm- A.Om)am = b,

and we could make one or more coefficients zero by setting

A.= min{xdOi: ei > 0}.

Then b would be a combination of fewer than m columns of A. This violates
assumption (ii); therefore the columns a1, .•• , am are independent, and the
feasible solution x is basic. 0

How to do Phase II. Let x be a given basic feasible solution of the non­
degenerate canonical program

Ax = b, x ~ 0, cT x = min.

Using the equilibrium equations (discussed in the last section), we will find
out if x is optimal.

Let B be the set of indices j for which xi is positive:

(16)

We will call B the basis. If A has m rows, then the set B contains m members,
and so we write IBI = m.

The basic solution x depends on the columns ai for j in the basis B, that
is, for xi> 0. We may also call these columns the basis, which is a slight
misuse of language that will cause no trouble.

5 The Idea of the Simplex Method 37

The m columns in the basis constitute a matrix M with m columns and
m rows. This, too, we will call the basis when we feel like it; it would be better
to call it the basic matrix. Since its columns are independent, the square
matrix M has an inverse.

EXAMPLE 4. Consider

[! ~ ~]x=[1~J (17)

Suppose our given basic solution is xr = [1,0,1]. Then x 1 > 0 and x3 > 0,
so the basis is

B = {1,3}. (18)

The set B has two members: IBI = 2. The solution x depends on the basis
columns (the first and third), which constitute the basis matrix

M = [1 3] 4 6 . (19)

We won't use the symbol B to designate the basis matrix; the symbol B will
always designate the index set.

Back to the general case. We have

"x-ai=b L..- J '
B

(20)

where we sum over j in B. Since the basis columns constitute an invertible
matrix M, we can solve the m equilibrium equations

(j E B).

Using the matrix M, we could write (21) in the form

yTM = CT,

(21)

(22)

where the vector chas them components ci for j E B. The unique solution is

(23)

We now have two possibilities:
Case 1. Suppose the equilibrium solution y is feasible for the dual. Then, as

you saw in the last section, xis optimal for the primal problem (15); and by
the way, y is optimal for the dual problem

(24)
With yTb = CT X.

How shall we know if y is feasible for the dual? That is easy. Feasibility
in (24) means yr A ~ cr; written out, this says

(j = 1, ... , n) .. (25)

38 1 Linear Programming

By the equilibrium equations (21), these inequalities are satisfied as equa­
tions for j in B. So all we have to do is take the inner products of y with the
n - m non-basic columns ai and check the inequalities (25) for j ¢ B.

Suppose the check fails. Then we are in
Case 2. Suppose, for some non-basic j = s,

yTa• >c •. (26)

Then the equilibrium solution y is infeasible for the dual, and we have proved
nothing.

You will now see that the wrong-way inequality (26) is telling us some­
thing: we can reduce our cost by bringing a• into the basis. Here's how we
do it:

We first express the non-basic column a• as a combination of the current
basic columns:

a• = L tp/. (27)
B

In terms of the basis matrix, this says

a• = Mt, or t = M- 1a•. (28)

If we multiply equation (27) by A. and add the result to equation (20), we
get

A.a• + 'L(xi- A.ti)ai =b. (29)
B

If A. is positive and small, all the m + 1 coefficients in (29) are positive, so we
have a new feasible solution of the primal. The new cost is

whereas the old cost was

A.c. + L (xi- A.ti)ci,
B

Subtracting the new from the old, we get

old cost- new cost= A.(z.- c.),

where we define

(30)

(31)

(32)

(33)

Remember, A. must be positive because it is the coefficient of a•. Equation (32)
says we reduce our cost if

z.- c.> 0. (34)

But this inequality does hold in Case 2. Proof: The definition (33) says
z. = cTt; the equilibrium condition (22) says cT = yTM. Therefore,

5 The Idea of the Simplex Method 39

But (28) says Mt = a•, and so

(35)

where y is the equilibrium solution. Now we recall that the wrong-way
inequality yr a" > c. defines Case 2, and so we do have z. - c. > 0.

The new solution. According to (32), the bigger we make A., the more we
reduce the cost; so we will make A. as big as we can. According to (29), if B
is the current basis, then A. must satisfy these limitations:

A. ;;::: 0, xi - A.ti ;;::: 0 for j in B, (36)

so that the new solution will be feasible. Now we see that Case 2 has two
sub-cases:

Case 2a. Suppose all ti are ::::;0, where (27) defines the ti. Then (36) says
we can make A. as large as we wish. Now (32) says we can drive the cost to
minus infinity by making A. ~ oo. In this sub-case there is no optimal solu­
tion x to the original problem. Now the computation stops; equation (29)
shows how to construct a non-basic solution x(A.) with arbitrarily low cost.

Case 2b. Suppose at least one ti is >0. Then (36) says that the biggest
value we can choose for A. is

(37)

Any bigger value would produce a negative coefficient in (29).
If the minimum (37) is achieved forj = p, then the coefficient of aP becomes

zero in the equation (29). Therefore p is unique, for if more than one coefficient
became zero in (29), then b could be represented as a linear combination of
fewer than m columns of A. That would violate non-degeneracy assump­
tion (ii).

So, if we choose the biggest admissible value A.*, exactly one coefficient
becomes zero in the representation

A.*a" + L (xi- A.*ti)ai =b. (38)
jeB

Now the lemma on non-degeneracy implies that this equation defines a new
basis:

B' = {s} + B- {p},

formed by adding the index s to B and removing the unique index p.
Now we can write (38) in the form

" x'-ai = b
/... J '

jeB'

where the new coefficients are the m positive numbers

(j E B,j # p).

(39)

(40)

(41)

Non-degeneracy implies that all m coefficients xj are positive and that the
m columns ai are independent for j in the new basis B'.

40 1 Linear Programming

Thus, in Case 2b, we compute a new basic feasible solution x'. Doing so,
we lower the cost by the positive amount A.*(z,- c,). We now go back to
the beginning of Phase II, using the new x' instead of the old x. This ends
the description of Phase II.

The computation has to stop after a finite number of iterations. Here's why:
If we ever find that we are in Case 1, we stop because we have proved that

our basic feasible solution is optimal.
If we find we are in Case 2a, we stop because we have found that no

optimal solution exists.
If we find we are in Case 2b, we compute a new basic solution x' with

lower cost. Therefore, we can only go through Case 2b a finite number of
times. That is because the matrix A has only a finite number of times. That
is because the matrix A has only a finite number of subsets of m columns,
and so the equation Ax= b has only a finite number of basic solutions. Now
suppose we pass through Case 2b many times, with a succession of basic
solutions xl, x2, x3, ••• Since the cost decreases with each new basic solu­
tion, we have

(42)

Therefore, all our basic solutions x1, x2, • •• are different; and so the number
of these solutions is finite.

And so the number of iterations is finite.
Using non-degeneracy, we proved that cycling is impossible: we never

return to a former basic solution in Case 2b. In a degenerate problem, in
practice cycling is unlikely, and luck will usually bring us through. But
cycling is possible in degenerate cases; this was proved in 1951 by A. J.
Hoffman. Later we'll discuss the lexicographic simplex method, which makes
cycling impossible in every case.

Now let me give you some examples of Phase II calculations.

ExAMPLE 5. Consider this problem:

x~O

x 1 + x2 - 3x3 =min.

We start with the basic feasible solution

x 1 = 2, x2 = 1, x3 = 0

Here the basis matrix and its inverse are

5 The Idea of the Simplex Method

If we compute M- 1a< 3 >, we get

G:J=~[-~ -~J[=~J=[=~l
To find out if we can decrease the cost by bringing in a3, we compute

z3 - c3 = t 1c1 + t2c2 - c3 = -1-1 + 3 = 1 > 0.

Since z3 - c3 is positive, we should bring in a3• We are in Case 2.

41

But look: Both ti are ~0. Therefore we are in Case 2a. There is no limit
to how much a3 we can bring in, and we can drive the cost to minus infinity.
Here we have

Aa3 + (2- At1)a1 + (1 - At2)a2 = b,

with t 1 = t2 = -1, and so we get the family of non-basic feasible solutions

[2 +A]
x(A) = 1: A .

The new cost is
CTX = 3- A,

which goes to - oo as A-+ + oo.

EXAMPLE 6. Look at this problem:

x~O

3x1 + 3x2 + 2x3 = min.

I give you the basic feasible solution

x1 = 1, x 2 = 1, x3 = 0.

You take it from there.
You first form the basis matrix and its inverse:

M=[! ~l M- 1 =~[-! -~J
Then you compute

Next you compute

z3 - c3 = (-3 + 6)- 2 = 1 > 0.

Since this is positive, you decide to bring in a3• Since one of the ti is positive,
you are in Case 2b.

42 I Linear Programming

How much a3 can you bring in? You have

A.a3 + (x1 - A.t 1)a1 + (x2 - A.t2)a2 = b,

where t 1 = -1 and t2 = +2. Therefore you make A. equal

A.*= x2/t2 = t,
obtaining the new basic solution

You have lowered the cost by this amount:

old cost- new cost= A.*(z3- c3) = t.
In fact, the old cost was 6; the new cost is 4.

EXAMPLE 7. We continue the last example, starting with the computed basic
feasible solution

Now the basis is B = {1,3}. The basis matrix and its inverse are

M=[! !l M- 1 =~[-: -~l
Applying M- 1 to the non-basic column, a 3, we get

from which we compute

z2 - c2 = t 1c1 + t 3c3 - c2 = 4- 3 < 0.

Since z.- c. is ~0 for all non-basics (in this example there is only one),
we are in Case 1. We are done: our basic feasible solution is optimal.

The last two examples are typical: we iterate Case 2b until we end in
Case 1. The Case 2a seldom occurs, because costs seldom go to minus
infinity.

For large problems, like those in the petroleum industry, it would take a
lot of computer time if we had to invert a new basis matrix M with each new
iteration. As I'll show you later, when we discuss numerical methods, you
won't have to do that. You can go from one iteration to the next and get the
new inverse M- 1 very quickly; that's what happens in the revised simplex
algorithm and in the dual simplex tableau algorithm. In one version of the
tableau algorithm no inverse M- 1 is computed; we go from basis to basis
with no explicit use of any inverse matrix.

But now let's return to the theory, which tells us what all the numbers
mean.

5 The Idea of the Simplex Method 43

Reference

George B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.
PROBLEMS

1. Consider the system Ax = b where

A= G ~ ~].
For which vectors b is the system redundant? For which is it inconsistent?

2. Consider the system

[1 2 3] =b.
9 6 3 X

Which vectors b fail to satisfy the assumption (ii)? Draw these vectors in the plane.

3. In Phase I, in formula (8) we required all b1 > 0. Why is Phase I degenerate if some
bi =0?

4. By direct observation, find the three basic solutions of

G ~ -~Jx=[-~J. x~o.
and note which two of the basic solutions are feasible. As an exercise, compute one
of the basic feasible solutions by a Phase I calculation. (Remember to multiply the
first equation by -1; then start with x 1 = x 2 = x3 = 0, z1 = z2 = 1.)

5. Continuing the last problem, use a Phase II calculation to compute the basic solution
minimizing x 1 + X2 + X3.

6. Apply Phase I to this program:

x 2 + 2x3 = 3

x1 + 2x2 + 3x3 = 4,

What does Phase I tell you?

7. Apply the simplex method to this program:

x~O.

G -~ -~Jx=GJ. x~O,
x1 - x2 =min.

Find a feasible solution with cost x 1 - x 2 = -1099•

8. Starting with the basic solution that depends on the first two columns, apply Phase II
to this program:

[-1 2 3]x=[1] 231 5'x~o.

44 1 Linear Programming

9. Choose the number w so that the following program has a solution. Then write
down the optimal solution,

10. Look at this program:

The program is degenerate if e = 0. Solve the program for small e > 0, and take the
limit as e -+ 0.

6 Separating Planes for Convex Sets

To prove the duality theorem, I will use a standard theorem in the repertoire
of every professional mathematician. If you know it already, you should
skip this section or just look it over quickly.

I'll make the presentation brief. All we'll need for the duality theorem is
the following Theorem 1. Much later, when we discuss nonlinear program­
ming, we'll use Theorem 3.

Definition of convex set. Let C be a set in the real Euclidean N -dimensional
space. The set C is called convex if it contains the line segment connecting
every pair of its points. In other words, if C contains x and y, then C should
contain all the points

(1- O)x + Oy (O ~ e ~ 1).

(If C consists of only one point, we call C convex.)
Definition of closed set. The set F is called closed if it contains all its

limit points. In other words, if all the points x1, x2, x3, ... lie in F, and if

x<k> - x0 as k - oo,

then x0 should lie in F. (Here superscripts denote different points; subscripts
will denote different coordinates.)

EXAMPLE. In 2 dimensions, the half-plane 3x1 - 5x2 < 7 is convex but not
closed.

EXAMPLE. The half-plane 3x1 - 5x2 ~ 7 is convex and closed.

EXAMPLE. The annulus 1 ~ lxl ~ 2 is closed but not convex.

6 Separating Planes for Convex Sets 45

EXAMPLE. In N dimensions, a convex polytope can be generated by any finite
set of points x1, ... , xP. The polytope

(xl, ... ,xP)

consists of all the convex combinations

X= 81x1 + e2x2 + ... + OpXP
where

el + ... + ep = 1, with all ej;;:::: 0.

Every convex polytope is convex and closed.

Lemma. Let C be a closed convex set that does not contain the origin x = 0.
Then C contains a nearest point x0, with

lx0l = min{lxl: x E C} > 0

(The assumption that C is convex is superfluous but useful. The assump­
tion that Cis closed is necessary, as you see from this example: The convex
set x 1 > 5 contains no point that minimizes the distance to the origin.)

PROOF. Let b be the greatest lower bound of lxl for all x in C:

b = inf{lxl: x E C}.

Let xl,x2, .•• be a sequence of points inC such that

lxkl ~ b as k ~ oo. (1)

Then we can use convexity to prove that xk converges to the required nearest
point x0 .

We use the parallelogram law of vector algebra:

lxP- xql2 + lxP + ~~2 = 2lxPI2 + 21~12· (2)

By convexity, the midpoint !(xP + xq) must lie in C, and so we have

l!(xP + xq)l ;;:::: b.
Now (2) gives

(3)

As p and q tend to infinity, the right-hand side goes to 4b2, by (1). Now (3)
implies

lim lxP - xql2 + 4b2 ~ 4b2,
p,q~oo

which says xP- xq ~ 0, and so the sequence xk has a limit: xk ~ x0 • Since
C is closed, the limit x0 lies in C.

Since lxkl ~ b, we find lx0 l = b. And so C does contain a point x0 that
minimizes the distance to the origin.

Definition of separating plane. The equation of a plane in RN (real N­
dimensional space) is

aTx + {3 = 0 (4)

46 I Linear Programming

provided that the constant vector a is non-zero. This plane is said to separate
the sets s1 and s2 if

aTx + f3 ~ 0

aTx + f3 ~ 0

for all x in S 1

for all x in S2 .
{5)

In the lenient definition {5), equalities may occur, so that the sets S 1 and S2

may have some points on the plane; the two sets may even have some points
in common. But if both inequalities are strict, this can't happen. Then

aTx+f3>0 forallxinS 1

aTx + f3 < 0 for all x in S2 .
{6)

In this case we say the plane strictly separates the two sets.
Even if the two sets are disjoint, they need not have a separating plane.

An example appears in Figure 1. '

0
Figure 1

But if both disjoint sets are convex, there must be a separating plane, as
we will prove. A typical example appears in Figure 2.

Figure 2

The main theorem is Theorem 1, in which one set is convex and closed
while the other set is a single point. In this case we get strict separation,
which is what we'll later use to prove the duality theorem of linear pro­
gramming.

Theorem 1. Let C be a closed convex set. Suppose the point b lies outside C.
Then there is a plane that strictly separates C from b.

6 Separating Planes for Convex Sets 47

PROOF. With no loss of generality, suppose b = 0; if b "# 0, make a pre­
liminary change of coordinates x' = x - b.

According to the lemma, C contains a point x 0 that minimizes lxl:
for all x in C. (7)

Let u be the unit vector that points from the origin to the nearest point
on C:

Let m be the midpoint !x0. Define the plane

uT(x- m) = 0.

(8)

(9)

(In formula (4) this makes a= u, f3 = -uT m.) We will now prove that this
plane strictly separates C from the origin, as in Figure 3.

Figure 3.

For x = 0 we have

uT(x- m) = uT(-tx0) = -!J < 0. (10)

But for all x in C we will prove

uT(x- m)?: !J > 0. (11)

If x lies in C, then so does the convex combination (1 - 8)x0 + Ox.
Therefore we have

(0 !(8 !(1).

Expanding the right-hand side, we get

lx012 !(lx012 + 28(x0f(x- xo) + ezlx- x012,
and

(0 !(8 !(1).

If you divide by 8 > 0 and let 8 - + 0, you deduce

0 !((x0)T(x - x0) for all x in C. (12)

But x0 = bu, and x0 = 2m; therefore (12) says

0 !((Juf(x - m - m).

48

Dividing by 6 > 0, we get

0 ~ uT(x - m) - uT m,

which proves (11), since uT m = 6/2.

1 Linear Programming

And so the theorem is proved. Note the crucial role played by the as­
sumption that C is closed: if a point b is not in a closed set, then the set
contains a point x 0 that is nearest to b, and the distance 6 is positive. If C
isn't closed, we can't say that.

You now know all you'll need for linear programming. I suggest you
skip the rest of this section until you need it for nonlinear programming.

Lemma. In RN, let S be any set of points. Then S contains a denumerable
subset that is dense in S.

PROOF. Let's prove it for N = 1. Consider all the open intervals I that have
rational endpoints:

a c b d . b < x < d (a, ,c, = mtegers).

If S contains a point in I, pick exactly one such point:

a c
b < x(a,b,c,d) < d'

These points are denumerable, and they constitute a subset S' c S. The
subset S' is dense in S, because every point x 0 in S is the limit of rational
numbers ajb from below and of rational numbers cjd from above, and so

x(a,b,c,d)-> x 0 .

For dimensions N > 1 the proof is the same; but now, instead of the
intervals I, we must use the N-dimensional rectangles whose vertices have
rational coordinates. D

In the next theorem, we'll assume C is convex but not necessarily closed.
Then we still get a separating plane, but the separation may not be strict.

EXAMPLE. For N = 2 the open right half-plane x 1 > 0 as a convex set that
doesn't contain the origin x = 0. There is no nearest point x0, and the
01stance 6 equals zero. The separating plane is the vertical axis x 1 = 0.

Theorem 2. Let C be any convex set that does not contain the origin x = 0.
Then there is a separating plane (5) with

aT x + f3 ?: 0 in C, aT x + f3 = f3 ~ 0 for x = 0, (13)

where the constant vector a is non-zero.

6 Separating Planes for Convex Sets 49

PROOF. By the lemma, we can choose a denumerable set of points x\x2, ...
that lie in S and that are dense in S. Using the first p points, we form the
convex polytope

(14)
Then

(15)

and as p--+ oo, every point in C is the limit of points in CP'
The convex polytope CP is a subset of C, so CP doesn't contain the origin

x = 0. Since CP is closed, we can use Theorem 1. By formulas (10) and (11),
we have

such that
(uPf(x- mP) = -!bP < 0 (x = 0)

~ !£5P > 0 (x E Cp)

Here uP is a unit vector; bP is the distance from the origin to CP; and

mP = (bp/2)uP.

If x lies in Cq, the lower inequality (16) holds for all p ~ q.

(16)

(17)

The inclusions (15) imply £5 1 ~ £52 ~ ... , and so the positive numbers bP
tend to a limit £5 0 ~ 0. The unit vectors uP need not converge, but they
must have a convergent subsequence, whose limit is some unit vector u0

(see Problem 20). Now the last two formulas imply, in the limit as p --+ oo,

(u0 f(x- m0) ~ 0 for x = 0

~ 0 for x E Cq. (18)

For each q, the second inequality holds for all x in Cq. Since every x in C
is the limit of points in Cq as q--+ oo, the second inequality (18) holds for
all x in C. This completes the proof.

It is now surprisingly easy to prove that there is a separating plane for
every disjoint pair of convex sets. (In Theorems 1 and 2 one of the pair
was a single point.)

Theorem 3. Let cl and c2 be disjoint convex sets in RN. Then there is a
separating plane (5).

PROOF. Form the set of all differences:

c = C1- C2 = {x- y: x E ch y E C2}. (19)

Since C 1 and C 2 are disjoint, we have x # y, and so C doesn't contain the
origin z = 0.

The set Cis convex. For if z and z' lie inC, then we have

z = x - y and z' = x' - y',

50 1 Linear Programming

and so

where
(1 - O)z + Oz' = x"- y",

x" = (1 - O)x + Ox' e C
y" = (1 - O)y + Oy' E C'

(O :s;; e :s;; 1).

Therefore, the convex combination (20) also lies in C.
Now we apply Theorem 2 to the convex set C. From (13), we have

for all z in C,

with p :s;; 0 and a =/;: 0.
What does this say about C1 and C2 ? It says

aT(x - y) + p ~ 0 with P :s;; 0,
and so

Therefore, for X in cl andy in Cz,

inf aT x ~ sup aT y.

(20)

(21)

(22)

(23)

Now set y equal to either the inf or the sup in (23)-or to any number
between. Then both of these inequalities hold:

aT X-"'/~ 0 for all X in Cl

aT y - "'/ :s;; 0 for all y in C2.

And so we have found a separating plane.

PROBLEMS

1. Show that the half-plane 3x1 - 5x2 < 7 is convex but not closed.

2. Show that the half-plane 3x1 - 5x2 ~ 7 is convex and closed.

3. Show that the annulus 1 ~ lxl ~ 2 is closed but not convex.

4. Prove that every convex polytope is convex and closed.

5. Let C be the closed disk

(xl + 3)2 + (x2 - 4)2 ~ 1.

Using the notation of the proof of Theorem 1, do these things:
(i) Evaluate the distance (j to the point b = 0.

(ii) Find the coordinates of x0 , of u, and of m.
(iii) Write the equation of the separating plane (9).

(24)

6. For the last problem find the equations of all the planes (lines) that strictly separate
the disk from the origin.

7. Let C be the unbounded, closed, convex set

{x:xeR2,x~O,x1x2 ~ 1}.

6 Separating Planes for Convex Sets 51

(This is the convex hull of one branch of a hyperbola.) Do the three things that
Problem 5 asks for.

8. Let F be the closed set

{x: x e R 2, x 2 ~ 1 -jxlj}.

Show that F is not convex. Find the two points in F that are nearest to the origin
(at distance t5 = tJ2). Let x1, x2, ••• be a sequence in F such that jxkl -+ t5. Show
that the sequence xk may diverge.

*9. The Bolzano-Weierstrass theorem says every bounded sequence has a bounded
sequence (see Problem 20). Deduce that the sequence xk in Problem 8 must have a
convergent subsequence. Show that the limit lies in F and minimizes the distance to
the origin.

10. Let S be the set of irrational numbers. Show that the nonzero rational multiples
of J2 are a denumerable dense subset of S.

11. In the plane, let C 1 be the open disk

cl = {x: (xl + w + (x2- 4)2 < 1},

and let c2 be the closed disk

C2 = {x: xi +X~~ 16}.

Show that these convex sets are disjoint, but that the distance between them is
t5 = 0. Find the separating plane (line). Is the separation strict?

12. In the plane, let C1 and C2 be the disjoint sets

cl = {x: xl > 0, xlx2 ~ 1},

c2 = {x: xl < 0, xlx2 ~ -1}.

Show that both sets are convex and closed. Find the difference set C. Observe that
C is convex, but show that C is not closed. What is the distance t5 between C 1 and
C2 ? What is the separating plane? Is the separation strict?

*13. Let C1 and C2 be convex, disjoint, and closed; let C1 be bounded. Then prove that
the distance between the sets is positive, and prove there is a strictly separating
plane.

14. LetS by any set in RN. Let C consist of all convex combinations

with 0; ~ 0, LO; = 1, xi e S.

The set C is called the convex hull of S. Prove that C is convex.

*15. Let C be the convex hull just defined for a setS in RN. Prove that C consists of all
convex combinations of n points in S where it suffices to take n ~ N + 1. (For
example, if S lies in the plane R2, then C consists of the convex combinations of
all subsets of three or fewer points.) For the proof, use the theorem on basic solutions.

*16. (Continuation). Show that the convex hull of a set S is the intersection of all the
convex sets that include S.

17. In the plane, let S be any closed polygon that is not convex. Show that the convex
hull has greater area, but has smaller perimeter.

52 1 Linear Programming

*18. In RN, if a closed half-space aT x + f3 ~ 0 includes the setS, show that the half-space
includes the convex hull of S. Deduce that two sets in RN have a separating plane
if and only if their convex hulls have a separating plane.

*19. Generalize Problem 9: Let F be any non-empty closed set in RN; let b lie outside F.
Prove that F contains a nearest point to b.

*20. Prove the Bolzano-Weirstrass theorem as follows: First look at R1. Let x; (i = 1,
2, ...) lie between a0 and b0 • Let m0 = !(a0 + b0). Show that infinitely many X; lie in
[a0 ,m0]. or inifinitely many lie in [m0 ,b0]; accordingly let [atob1] be one of those
two intervals. Similarly define [a.,b.]. Show that a. j, b.~. b. - a • 0. Show that
there is a convergent subsequence x:, where a.~ x: ~b •. Extend the result toRN
by looking at the N coordinates separately, taking subsequences of subsequences.

7 Finite Cones and the Farkas Alternative

We have considered linear programming in the canonical form

Ax= b, x ~ 0
cT x = minimum.

(1)

(2)

We defined the feasible solutions as the vectors x satisfying (1). An optimal
solution is a feasible solution with minimum cost cr x.

A feasible solution x may not exist; that depends on the matrix A and
on the vector b. We will now give a geometric meaning to the condition of
feasibility (1).

Let A be an m x n matrix. Define the set of all linear combinations of
the columns of A with coefficients xi~ 0:

(3)

The set C is called the finite cone generated by the finite collection of vectors
a\a2 , ••• ,a". In terms of the matrix A and of vectors x ~ 0, the definition
(3) says

C ={Ax: x ~ 0}. (4)

This gives a geometric meaning to feasibility: The equation Ax = b has a
solution x ~ 0 if and only if b lies in the finite cone C.

EXAMPLE 1. Consider the equation Ax = b for x ~ 0, where A is the matrix

A =[2 0
1 1

-1] 2 .

For this matrix the finite cone C is the shaded set in Figure 1.

(5)

A feasible solution x ~ 0 exists iff b lies in the cone C. For instance, if
b = (1,0f, then b lies outside the cone, so no feasible solution x exists. But

7 Finite Cones and the Farkas Alternative
53

a'
\-----------------~_,a '

Figure 1

if b = [-9,63Y, then b lies in the shaded region between a2 and a 3, so a
feasible solution x does exist. (The 3-dimensional vectors x don't appear in
Figure 1; only the 2-dimensional vectors Ax appear.)

The cone in Figure 1 is generated by the three columns of A. The same
cone is generated by just the first and third columns. It could not be gen­
erated by the first and second columns or by the second and third.

EXAMPLE 2. Let A be the matrix

A= [2 1
-1 3

-3]·
-2

The columns of this matrix appear in Figure 2.

Figure 2

(6)

a'

What finite cone C do these three columns generate? They generate the
whole plane. Therefore, every equation Ax = b has a feasible solution x ~ 0.

Again each pair of columns is independent, but this time no single pair
generates the whole cone C. The pair a1, a2 generates a sub-cone that we
will call a basic cone; so does the pair a2, a 3 ; and so does the pair a\ a1.

The full cone C is the union of the basic cones. In Figure 2 we see

c = cl u C2 u c3.

54 1 Linear Programming

Does that sound familiar? It is nothing but a geometrical restatement
of our theorem on basic feasible solutions. Let me explain:

Definition. If the vectors v1, ... , vk are independent, then we call their finite
cone a basic cone:

(7)

Theorem on Basic Cones. Let a 1, •.• , an generate the finite cone C. Let
C 1, •.. , Cq be the basic cones generated by the subsets of independent vectors
ai. Then C is the union of the basic cones:

(8)

PROOF. Let A be the matrix with columns al, ... , an. The cone C consists
of the vectors b = Ax with x ~ 0. In other words, Ax = b has a feasible
solution x ~ 0 iff b lies in C.

By the theorem on basic solutions (Section 4), if the equation Ax = b has
a feasible solution x ~ 0, then the equation has a basic feasible solution:

b = " x'.ai L.] ,
j E B

where the columns ai are independent for j E B, with all xj ~ 0.

(9)

The subset of columns { ai} (j E B) generates one of the basic cones Ck
in the union (8). And so the full cone C consists of those vectors b that lie
in one or more of the basic cones Ck. D

To prove the duality theorem of linear programming, we shall use the
strict separating-plane theorem for convex sets. But first we must prove that
finite cones are convex and closed.

Lemma. Every finite cone is convex and closed.

PROOF. Convexity is easy. Let C be generated by the columns of A, so C
is the set of points Ax with x ~ 0. Let Ax1 and Ax2 be two points in C.
Then

(1 - 8)Ax 1 + 8Ax2 = A((1 - 8)x1 + 8x2),

where the vector in parentheses is ~ 0 if 0 ::::; e ::::; 1. Therefore, C is convex.
Closedness is harder. First look at one of the basic cones Ck in the

union (8). Let's show that each Ck is closed.
Let b1,b2 , ••• lie in Ck> and suppose

bN ~ b* as N--+ oo. (10)

We want to show that b* lies in Ck. Using the formula (9), we write

(N = 1,2, ...), (11)

where the independent columns { ai} (j E B) generate the basic cone Ck.

7 Finite Cones and the Farkas Alternative

By linear independence, we know

I uiai =1- 0
B

if some u i =1- 0.

Letting u lie on the unit sphere lui = 1, we get a positive lower bound

55

~~ uiail ~ 8 > 0 if ~ uJ = 1. (12)

Now by homogeneity we deduce

It vpil ~ 8p if t vJ = pz. (13)

(This result would be false if the vectors ai were dependent.)
Since we assume the bN converge in (11), we know that bN- bM --+0 as

N and M go to infinity. Then

N,M--+ oo. (14)

Now set xNi- xMi = vi in (13). Then (13) says

IbN- bMI ~ 8PNM if I (xNi- xM/ = P~M·
j EB

Dividing by 8 > 0, we find that PNM--+ 0 as N--+ oo and M--+ oo. Therefore,
for each j E B there is a limit

lim xNi = xj ~ 0. (15)
N-oo

Using these limits in (11), we get

b* = "'x'!'ai L.. J '
B

which shows that the limit b* lies in Ck. This proves that each basic cone
C k is closed.

It follows that the union C is closed. For suppose bN in C and suppose
bN--+ b* as N--+ oo. Since the number of basic cones Ci is finite, an infinite
subsequence of the convergent sequence bN must lie in some single basic
cone Ck. Since the basic cone Ck is closed, the limit b* must lie in Ck. But
Ck lies in C, and so the limit b* lies in C. D

Now comes the great theorem of Julius Farkas: the alternative of linear
programming. This plays the same role in linear programming that the
Fredholm alternative plays in linear algebra. By the way, we'll show that
the Farkas alternative immediately implies the Fredholm alternative. But
most important for us is this: The Farkas theorem gives the duality theorem
of linear programming. That you will see in the next section.

Farkas proved his theorem in 1902. Just for fun, I looked up his paper
in the old journal where it was published. His proof is long and tedious;

56 1 Linear Programming

I never could quite understand it. As you know, the first proof of a great
theorem is ofteh long and tedious, like the first trip into a new territory.
But we no longer go from the east coast to the west by covered wagon,
and we need not prove Far_kas's theorem by Farkas's method. We will use
the separating-piane theorem (Theorem 1 of the last section).

The Farkas Alternative. Either the equation

(i) Ax= b has a solution x ~ 0

or (exclusive)

(ii) YT A ~ 0, yTb < 0 has a solution y.

(Here the or is exclusive, meaning that one case must occur but both
cases cannot occur.)

PROOF. Both cases cannot occur, for if yT A ~ 0 and x ~ 0, then yT Ax ~ 0,
which says yTb ~ 0, and so (ii) is false.

It remains to show that one of the two cases must occur. Let us suppose
(i) is false and prove that then (ii) must be true.

If (i) is false then the point b lies outside the finite cone C generated by
the columns of the matrix A. As we have proved, the cone C is convex and
closed. Therefore, there is a plane that strictly separates C from b:

aT z + p > 0 for z in C (16)

aTz+P<O forz=b (17)

In (16) set z = A(A.x) where xis any fixed vector ~0, and where A. is posi­
tive. This gives

for x ~ 0, A. > 0.

Dividing by A. and letting A.--+ + oo, we get

aT Ax ~ 0 for x ~ 0.

Since this holds for all x ~ 0, we deduce

aT A~ 0. (18)

Since the origin lies in C, we may set z = 0 in (16); this shows p > 0.
Now (17) says

(19)

Done. All you do now is set y = a, and the last two formulas give Farkas's
~oo o
EXAMPLE 3. As in Example 1, define

[2 0 -1] [1] A= 1 1 2 ,b= 0. (20)

7 Finite Cones and the Farkas Alternative 57

As we saw, the equation Ax = b has no solution x ~ 0. In other words,
Farkas (i) is false.

To get a vector y for Farkas (ii), look at Figure 1. Insert the vector b,
which points from the origin to the right. We want a vector y with a nega­
tive projection on b but with non-negative projections on all three of the aj.

If you look at the figure, you'll see that the vector y must point somewhere
between a2 and a 3. For instance, this will do:

yT = [-1,10].

Now we verify yr A ~ 0, yrb < 0:

YT A = [8,1 0,21], yTb = -1.

EXAMPLE 4. The Fredholm alternative of linear algebra. Consider the assertion

Ax = b has a solution x.

This assertion may be true or false, depending on the given A and b. Let's
state this assertion as a Farkas case (i) and get the alternative Farkas
case (ii).

Our assertion is not yet in the form (i), because it contains no sign con­
straint x ~ 0. So we use an old trick of linear programming: we set the
unconstrained x = u- v and require u ~ 0 and v ~ 0. Now (1 °) becomes

A(u- v) = b has a solution u ~ 0, v ~ 0.

In partioned form, this says

[A,-A] [~ J = b has a solution ~ 0.

Now we do have a Farkas case (i). What is the Farkas alternative? It is
this

has a solution y.

If we unpack the first inequality, we find

yTA~O and yT(-A)~O,

which means simply yr A= 0. Now (ii) says

yr A = 0, yTb < 0 has a solution y.

(ii)

(ii)

Here the sign of yrb is irrelevant, since we can replace y by - y. Thus (ii)
says this:

has a solution y.

In other words, either we can solve Ax= b or (exclusive) we can find a
vector y that is orthogonal to all columns of A but not orthogonal to b.
The alternative cases (1 °) and (2°) constitute the Fredholm alternative of
linear algebra, which Fredholm used in his theory of linear irttegral equations.

58 1 Linear Programming

EXAMPLE 5. Steady states of Markov processes. Suppose that a particle can
be in any one of states numbered 1, 2, ... , n (think of a Mexican jumping

bean that can be in any one of n cups). If the particle is in state j, let Pii

be the probability of a transition (a jump) to state i. We require Pii ~ 0 and

n

L Pii = 1 (j = 1,2, ... ,n). (21)
i= 1

At a certain instant, let xi equal the probability that the particle is in

state j. Then
n

xi ~ 0 and L xi = 1. (22)
j= 1

The vector x = (xb ... ,x.f is called the probability state vector, or just

state vector.
After a transition the particle will lie in state i with probability

(i = 1, ... , n). (23)

Evidently, all Yi are ~0, and the equations (21) and (22) guarantee LYi = 1.

By (23) the new state vector y is related to the old state vector x by the

equation y = Px, where P is the Markov matrix of transition probabilities.
A steady state is a state vector x that goes to itself:

x = Px, x ~ 0, l:xi = 1.

For instance, if Pis symmetric, we have the steady state

X= (!,!, ... ,!)T,
n n n

for then, if i = 1, ... , n,

" 1 1 1
L Piixi =- L Pii =- L Pii = -.

i= 1 n i n i n

But if the Markov matrix P is not symmetric, it is not so easy to prove there

is a steady state.
Farkas's theorem implies that every Markov matrix P has a steady state.

Here's how:
We will express the steady-state condition as a Farkas case (i). Let A be

the matrix whose first n rows and columns are the square matrix P - I, and

let then+ 1st row of A consist of l's:

A= [p ~/] with UT = [1,1, ... ,1]. (24)

Thus, A has n + 1 rows and n columns. Then the Markov matrix P has a

steady state x iff

Ax= b has a solution x ~ 0, (i)

7 Finite Cones and the Farkas Alternative

where b is the vector

b1 = 0, ... , bn = 0; bn+ 1 = 1.

Condition (i) just says this:

(P- I)x = 0
has a solution x ~ 0.

What is the Farkas alternative? It is this:

has a solution y.

Here y must have n + 1 components. If we set

YT = [z1, ... ,Zn,-A] = [zT,-A],

then (24) gives

YT A= [zT,-A] [p u-; I]= zT(P- J)- AUT,

while (25) gives yTb = -A. Now (ii) says

zT(P - J) ~ AUT, A, > 0 has a solution z, A.

If z and A satisfy (ii), then

n

L zipii - zi ~ A > 0
i= 1

Let zm =max zi. Then (21) implies
m

L ZiPii ~ max zi = Zm
i= 1

(j = 1, ... , n).

(j = 1, ... , n).

Settingj equal to the special index m, we find
m

L ZiPim - Zm ~ 0.
i= 1

Settingj =min (26), we get a contradiction; so Farkas (ii) is false.
Therefore, Farkas (i) is true: every Markov matrix has a steady state.

59

(25)

(ii)

(ii)

(26)

I've given you this important application to probability theory to make
a point: the Farkas theorem has tremendous power, and its use should not
be confined to linear programming.

Reference

J. Farkas, Uber die Theorie der einfachen Ung1eichungen, J. Reine Angew. Math,
Vol. 124 (1?02) pp. 1-24.

60 1 Linear Programming

PROBLEMS

1. If A is the matrix

draw the cone C = {Ax: x ~ 0}.

2. If A is the matrix in Problem 1, draw the cone C 12 generated by columns 1 and 2.
Also draw the other .five cones generated by non-empty linearly independent subsets
of columns. Observe that the union of all six basic cones is the cone C in Problem 1.
(Note: Some ofthese cones are proper subsets of some others)

3. Let A be the matrix

[1 2 3]
A= 4 56.

7 8 9

Which subsets of columns generate basic cones?

4. In the last matrix, change just one component. Now which subsets of columns
generate basic cones?

5. Prove or disprove this assertion: Letf(x) be a continuous function; let C = {f(x):
x ~ 0}. Then Cis closed. (Hint: In Rl, look atf(x) = 1/(1 + x) for x ~ 0.)

6. In general, prove that the union of a .finite number of closed sets is closed. Do you
need the word .finite?

7. If the m x n matrix A has rank r, at most how many basic cones are generated by
non-empty subsets of columns?

9. For which b does the system

have a solution x ~ 0?

10. In the preceding problem let the vector b take these four values:

For two of these vectors b, find vectors y satisfying

11. By introducing slacks, prove this: Either

has a solution x ~ 0
or (exclusive)

has a solution y ~ 0.

7 Finite Cones and the Farkas Alterative 61

12. Note that Ax = 0, x ~ 0 has a nonzero solution x iff

has a solution x ~ 0,

where eT = (1,1, ... ,1). Prove that the Farkas alternative is:

has a solution.

13. Find the Farkas alternative of this assertion: The system

[1 2 3]
4 5 6 x=b

7 8 9

has a solution x with x1 ~ 0 and x3 ~ 0. (Hint: Set x2 = u2 - v2 , with u2 ~ 0,
v2 ~ 0.)

*14. Find the Farkas alternative of this assertion: There exist vectors x andy satisfying

(The answer appears in the next section. Method: Use composite matrices and
composite vectors.)

15. Let A be defined as in Problem 13. Find the Fredholm alternative ofthis assertion:
The system Ax = b has a solution x.

*16. Let P be the Markov matrix

P=_! 0 3 4 . [1 2 5]
9 8 4 0

Find the steady state x.

*17. Let P and Q be Markov matrices with the same dimensions. Show that PQ and QP
are Markov matrices with state vectors x and y satisfying Qx = y, Py = x.

*18. In the plane, draw the cone C generated by the i'lfinite sequence of vectors

(j = 1,2,3, ...),

Is the cone C closed? Let b = (1,0)T. Is b in C? If not, is there a point in C that is
nearest to b? Let A be the 2 x oo matrix with the columns ai. Does Ax = b have a
solution x ~ 0? Is there a vector y satisfying yT A ~ 0, yTb < 0? Does the Farkas
alternative hold in infinite dimensions?

19. A cone in RN is a set C such that if x e C, then he C for all scalars A. ~ 0. A finite
cone satisfies the definition (3). Define a cone in R 3 that isn't a finite cone.

20. Let C be a cone in RN. Definite the set

C* = {y: yT x ~ 0 for all x e C}.

Show that C* is a cone in RN. The cone C* is called the dual of the cone C.

62 1 Linear Programming

21. In the plane, let the cone C consist of x = 0 and of all points x > 0. Is C a finite cone?
Show that C* consists of all x:::;;; 0. Define the dual of the dual: C** = (C*)*. For
this example show that C** consists of all x ;;::: 0. Note that C** is bigger than C.
In general, prove C** :::> C for cones in RN. Give an example where C** = C.

22. Use the Farkas theorem to prove C** = C if C is a finite cone.

23. If C is a finite cone, prove that the dual cone C is also a finite cone.

8 The Duality Principle

We'll begin with an easy consequence of the Farkas theorem.

Lemma. Either
has a solution x ~ 0 (i)

or (exclusive)

has a solution y ~ 0. (ii)

PROOF. As usual, we express inequalities as equations by introducing slack
variables z; ~ 0. Using the vector z, we can write Ax ~ b as Ax + z = b.
Then the alternative (i) takes the form

[A,IJ[;J = b has a solution [; J ~ 0. (i)

Now the Farkas theorem says (i) is true or (exclusive)

has a solution y. (ii)

Since yr[A,I] = [yT A,yr], the proof is done.

Now we can derive the duality principle. For convenience, we'll use the
standard form of linear programming. As you know, this entails no loss of
generality, because every linear programming problem can be put in stan­
dard form.

Duality Theorem. We consider the primal problem

Ax ~ b, X ~ 0, CT X = min.
and its dual,

yr A ~ cr, y ~ 0, yrb = max.

Then exactly one of these four cases occurs:

1. The normal case: Both the primal and the dual have optimal solutions,
and the two optimal values are equal:

(1)

8 The Duality Principle 63

2. The primal has no feasible solution x, but the dual has feasible solu­
tions y with

(2)

3. The dual has no feasible solution y, but the primal has feasible solu­
tions x with

(3)

4. Neither the primal nor the dual has a feasible solution. (Examples of
all four cases appear after the proof.)

PROOF. We will find the four cases by straightforward use of our lemma. All
we have to do is write the normal case (1) in the form of a Farkas alternative
(i). Then we'll look at the Farkas alternative (ii) and see what it says.

NoTATION. We will use a compound matrix A and compound vectors x,Y,fJ
in place of A, x, y, b in the lemma.

To use our lemma, we want to write the normal case as a collection of
inequalities to be solved by non-negative unknowns. First we write

(- A)x ~ - b, x ~ 0,

which says x is feasible for the primal. Then we write

ATy ~ c, y ~ 0,

which says y is feasible for the dual.
Finally, we write the inequality

(4)

(5)

CTX- bTy~ 0 (6)

to express the equation cT x = yTb. In fact, the strict inequality (<) is im­
possible in (6), since all feasible x and y satisfy

(7)

as we proved before. Therefore, the inequality (6) can hold only as an equa­
tion. Then, as we proved, x is optimal for the primal and y is optimal for
the dual.

To use the form (i) of our lemma, we will express the inequalities (4), (5),
(6) with a compound matrix

A=[-~ ~T]
CT -b

(8)

If A has m rows and n columns, then the compounded matrix A has m + n + 1
rows and n + m columns. We'll also need the compound vectors

64 I Linear Programming

The first vector has n + m components; the second has m + n + 1. Now we
can express (4), (5), (6) as follows:

has a solution x ~ 0. (i)

What is the Farkas alternative (ii)? It is this:

has a solution y ~ 0. (ii)

We'll express this with a compound vector y. If you look at the definition
of A, you see that it's partitioned into three sets of rows. So we'll partition
_yr like this:

(10)

Here v has m components, u has n, and A has one. Then (ii) says that the
following system is solvable:

Now let's unpack and see what we've got. This is what we've found for
Farkas (ii):

vT(-A)+AcT~O, uTAT -AbT~O, vT(-b)+uTc<O

v ~ u, u ~ 0, A ~ 0.
This says:

Au~ Ab

has a solution u ~ 0, v ~ 0, A ~ 0.

(ii)

What does this imply? It looks like a primal-dual pair. Indeed, if A is
positive, then ujA is feasible for the primal, and v/A is feasible for the dual,
and their values satisfy

(11)

But that is impossible. For every primal-dual feasible pair, the primal value
must be ~ the dual value in (11). Therefore (ii) implies A = 0.

Now (ii) is reduced to this:

Au ~ 0, vr A :(0, cr u < vTb

has a solution u ~ 0, v ~ 0.

The inequality cT u < vTb implies

cT u < 0 or 0 < vTb (or both).

(ii)

(12)

8 The Duality Principle

First suppose cT u < 0. Then the dual has no feasible solution y. For if

YT A:::; CT, y ~ 0
and if, by (ii),

Au~ 0, u ~ 0,
then we could deduce

0 :::; yT(Au) :::; CT U.

65

If the primal also has no feasible solution, then we have Case 4. But if the
primal has a feasible solution x, then

A(x + A.u) ~ b, x + A.u ~ 0 if A. ~ 0
and

cT(x + A.u) = cT x + A.(cT u) --+ - oo as A. --+ oo.

Then we have Case 3.
Second, suppose 0 < vTb in (12). Then the primal has no feasible solution

x. For if
Ax~ b, x ~ 0

and if, by (ii),

then we could deduce
0 ~ (vT A)x ~ vTb.

If the dual also has no feasible solution, then we have Case 4. But if the dual
has a feasible solution y, then

(y + A.v)T A :::; cT, y + A.v ~ 0 if A. ~ 0
and

(y + A.vfb = yTb + A.(vTb) --+ oo as A. --+ oo.

Then we have Case 2.
This completes the proof of the duality theorem. Let me summarize the

argument: Unless we have the normal Case 1, the lemma implies there are
vectors u and v satisfying

Au ~ 0, u ~ 0, vT A :::; 0, v ~ 0,
with

cTu < 0 or 0 < vTb (or both).

The inequality cT u < 0 implies we have Case 4 or Case 3; the inequality
0 < vTb implies we have Case 4 or 2. Thus, either we have the normal Case 1
or we have one of the other three cases. Since the four cases are mutually
exclusive, exactly one of them occurs.

ExAMPLE 1. Here is an example of the normal case:

x1 + 2x2 ~ 1; x ~ 0; 3x1 + 4x2 =min.

Y1 :::; 3, 2Yt :::; 4; Y1 ~ 0; Y1 = max.

Both optimal values equal2.

66 I Linear Programming

EXAMPLE 2. Here the primal has no feasible solution, while the dual has

optimal value + oo:

-x 1 - 2x2 ~ 1; x ~ 0; 3x1 + 4x2 =min.

-yl ~ 3, -2Yt ~ 4; y1 ~ 0; y1 =max.

EXAMPLE 3. Here is the reverse of the last example:

x1 ~ -3, 2x 1 ~ -4; x1 ~ 0; -x1 =min.

Y1 + 2y2 ~ -1; y ~ 0; -3y1 - 4y2 =max.

The primal has minimum cost - oo; the dual has no feasible solution.

EXAMPLE 4. Here there is no feasible x and no feasible y:

-3x2 ~ 4; x ~ 0; -5x 1 - 6x2 =min.

-3y2 ~ -6; y ~ 0; 2y 1 + 4Y2 =max.

Using the duality theorem, we can prove the full equilibrium theorem.

Before, we proved the easy half of it. We will revert to linear programming in

the canonical form because that's the form we use in computation.

Equilibrium theorem. The feasible solution x is optimal for

Ax = b, x ~ 0, cT x = min.

if and only if there exists a vector y satisfying

m

L y;aii ~ ci (j = 1, ... , n)
i= 1

(13)

(14)

with equality for all j for which xi is positive. (Here A is the matrix with com­

ponents a;i, as usual.)

PROOF. Before, we proved only the "if" part. But now we have the duality

theorem, and we know that the primal (13) has an optimal solution x only in

Case 1. In that case there exists a vector y that is optimal for the dual:

yT A ~ cr, yTb = max.

And the two optimal values are equal: cT x = yrb.

Then we have

which says

(15)

For feasible x we have xi~ 0; for feasible y every factor(...) in (15) is also

~ 0. So equation (16) implies that the factors (...) equal zero for allj for which

xi is positive. D

8 The Duality Principle 67

We used the equilibrium equations and the dual vector yin our discussion
of the simplex method. You may now think that the dual vector y has no
meaning, though it can be useful. In the next section, you'll see that the
optimal dual vector y does have meaning: the component Yi is a shadow cost.
If the requirement bi changes by bbi, and if the basis doesn't change, then the
minimum cost changes by Yi times bbi. In applications like those in petroleum
industry, this information is valuable because the data bi are seldom exact.

PROBLEMS

1. Guess the optimal solution of this problem:

G ~ !} = Gl x ~ 0, 2x1 + x2 + x3 =min.

Then solve the two equilibrium equations for the optimal dual vector (Yt.Y 2); verify
the equilibrium inequality (daul feasibility). For this example, identify the compound
matrix A and the compound vectors x, b. Verify the inequality Ax ~ b.

2. Verify the duality principle for the degenerate canonical program

[~ ~ !}=[:J x~O, x 1 +x3 =min.

3. Let A be the matrix

A= [1 0 -1].
0 1 0

Consider all the canonical minimum problems Ax = b, x ~ 0, cr x = min. Identify
those pairs of vectors b, c that produce each of the four cases in the duality theorem.

4. Let A be the matrix

Now do as in Problem 3.
A=C

-1

1

5. Obtain an equilibrium theorem for the standard linear program

Ax ~ b, x ~ 0, cr x = min.

(Introduce slack variables and use the canonical form.)

6. Verify the equilibrium theorem for the degenerate program in Problem 3.

7. Find equilibrium conditions for the Chebyshev approximation problem

n

-x0 ~ I aijxj-b;~Xo
j=l

x 0 =min.

(i = 1, ... ,m)

*8. Refer to the discussion of the idea of the simplex method. Use the simplex method
to prove the duality theorem for nondegenerate canonical minimum problems. Does
this proof work for degenerate problems? (Does the proof in the text work for
degenerate problems? Yes!)

68 1 Linear Programming

9 Perturbations and Parametric Programming

In applications, data are seldom exact, so it's important to know how the
solution changes if the data change a little.

Of course, one way to find out is to do the whole computation over and
over for various proposed sets of data. If the problem is big, and if each com­
putation takes hours of computer time, this process is slow and very expen­
sive. What's worse, you may get no insight-just pages and pages of numbers.

What you want to know is this: What is the effect of each input on the
minimum cost? Which of the inputs affect the cost most?

Now I'll show you how the dual vector answers these questions. And so
you'll see why the dual vector is cherished by oil-company vice presidents
and not just by mathematicians.

As you know, by the simplex method we solve the linear programming
problem in canonical form:

Ax = b, x ~ 0, cT x = min. (1)

We assume that the problem is non-degenerate.
At each stage of the simplex method, we use a vector y that solves the

equilibrium equations,

yTai = ci (j e B), (2)

where B is the current basis. We stop when the equilibrium vector y is feasible
for the dual program:

for all j = 1, ... , n. (3)

When this happens, x is optimal for the primal (1); and by the way, y is
optimal for the dual:

(4)

with

(5)

Question: What happens to the minimum cost if the requirement vector b
changes by a small perturbation bb?

Answer: The minimum cost changes by this amount:

(6)

In applied mathematics, perturbation theory usually gives answers that are
approximate-correct to first order. But I have a surprise for you: Formula
(6) is exact.

This gives meaning to the dual vector y. The component Yi is the shadow
cost of the ith requirement: if the ith requirement changes by bbi, then the
minimum cost changes by exactly bbi time y.-provided lbbl isn't too big.

9 Perturbations and Parametric Programming 69

This beautiful result follows from the equilibrium theorem. For suppose
b changes by i5b; then we can solve the system

L (xi+ i5xi)ai = b + (5b (7)
jeB

for the m unknowns xi + i5x i (j E B). This is a non-singular linear system of
m equations in m unknowns; the matrix of the system is the invertible basis
matrix M whose m columns are the ai for j in B.

By non-degeneracy, we have xi> 0 for the basic components (j E B) of
the origiqal basic optimal solution x. Therefore, we have

xi+ i5xi > 0 for j E B (8)

provided li5bl is small enough. That's because the m components (8) con­
stitute the vector M- 1(b + i5b), as you see by multiplying (7) by the inverse
of the basis matrix. Therefore,

(9)

so all the numbers i5xi tend to zero as the perturbation vector i5b tends to
zero.

Thus, the numbers xi + i5xi are all positive for j E B, and they give a basic
feasible solution for the primal problem (1) with b perturbed by i5b. But is
this solution optimal?

Yes. You see, the old optimal dual vector y still solves the equilibrium
and feasibility conditions:

T j - (0 B)· T j (0- 1) y a - ci 1 E , y a :;:;; ci 1 - , ... , n . (10)

After all, c hasn't changed and B hasn't changed-B is still the index set
where the primal feasible components are positive. That's all we need to
know. The equilibrium theorem says that the new basic feasible solution
x + i5x is optimal; and by the way, the old optimal dual vector y remains
optimal.

All right. It seems almost too easy. Let's look back. What made the proof
work? Just one thing: the perturbed basic components xi+ i5xi had to
remain ;::;: 0; as long as the data perturbation i5b was small enough to guaran­
tee that, the proof went through.

Ah, you say, but what if i5b doesn't remain small enough to guarantee
that? What then?

Then the optimal basis B has to change, and our pretty formula (6) doesn't
work any more, and you hav~ to go to the computer for another run.

For large perturbations i5b, or for degenerate problems, I'll give you a
theorem on what is called parametric programming. We consider two require­
ment vectors, b0 and b1 . We introduce the parameter 8 and draw the line
segment

(o:;:;; e:;:;; 1),

70 1 Linear Programming

If you keep the matrix A and the cost vector c fixed, then the family of
vectors b(lJ) generates a family of linear programs:

Ax = (1 - lJ)b0 + lJb 1 (0::::;; lJ ::::;; 1)
(11)

X~ 0, CT X= min.:= f,l(fJ).

The question is this: How does the minimum cost tJ.(lJ) behave as a function of
the parameter lJ?

You'll see that tJ.(lJ) behaves like the function in Figure 1: it is continuous,
convex, and piecewise linear. This doesn't give you numerical results as our
small-perturbation formula (6) did, but it does give you a general, qualita­
tive understanding.

J1(0)

+
I
I
I
I
I
I
I
I

I
I
I

--+-
' I
I

Figure 1

This reminds me of a comment by the famous electrical engineer John
R. Pierce. Speaking of Shannon's information theory, he said: "What some
of us attained was perhaps wisdom rather than knowledge."

Theorem. Suppose that the linear program (11) has optimal solutions x0 and
x 1 for lJ = 0 and lJ = 1, respectively. Then the program has an optimal solution
for every intermediate value, 0 < lJ < 1. The minimum cost tJ.(lJ) is continuous,
convex, and piecewise linear for 0 ::::;; lJ ::::;; 1.

PROOF. Please note that the theorem does not assume nondegeneracy. Nor
does it assume that optimal solutions exist for 0 < lJ < 1; we have to prove
that.

We'll use the dual program:

yT A::::;; cr, yT[(l - lJ)bo + lJbl] =max. (12)

Note that the dual feasibility condition (yT A ::::;; cT) is independent of the
parameter lJ; so if y is feasible for lJ = 0, then y is feasible for alllJ.

9 Perturbations and Parametric Programming 71

But we assume that the primal problem has an optimal solution x 0 for
e = 0. Then the dual has a solution y = y0 that is optimal for e = 0; so y0

is feasible for 0 ::::; e ::::; 1.
We'll now show that the primal problem has feasible solutions for

0::::; e::::; 1. Here they are:

x = (1 - 8)x0 + Bx1 (0::::; e::::; 1). (13)

Here x 0 is the given optimal solution forb = b0 , and x 1 is optimal forb = b1 •

Then the vector x satisfies

(14)

In general, x is not optimal, but it is feasible.
For each e in 0::::; e::::; 1, we've found a pair of vectors (x and y0) that are

feasible for the primal and the dual. Now the duality theorem tells us this:
For each e, we have the normal case-optimal solutions exist for the primal
and dual problems, and they have a common value,

J-L(B) =min cr x =max yrb. (15)

Now we'll show that J-L(B) looks like Figure 1. We'll prove this: For each
e, J-L(B) is the maximum of a finite number of linear functions:

J-L(O) = max[,1. 1(8),A2(8), ... ,AN(B)],

where each ,tk(B) has the form

(O::::; e::::; 1).

(In Figure 1 I've drawn J-L(B) as the maximum of four linear functions.)

(16)

(17)

We'll use the theorem on basic optimal solutions. First, we write the
dual (12) as a canonical minimum problem. We write the unconstrained
vector y as the difference u- v, with u?: 0 and v?: 0; and we introduce the
slack vector z ?: 0. Then (12) becomes the canonical minimum problem

Ar(u- v) + z = c; u?: 0, v?: 0, z?: 0

- [(1 - 8)b0 + Bb 1Y(u- v) = - J-L(B) =min.
(18)

We've proved that the equivalent problem (12) has an optimal solution;
therefore, the canonical problem (18) has a basic optimal solution. But there
is only a finite number of basic feasible solutions:

{ uk,vk,~} (k=1, ... ,N). (19)

Each feasible solution is a triple of vectors { u,v,z }, and the feasible solutions
are independent of e because A and c are independent of e.

For each e, to minimize the cost - J-L(B) in (18), we pick the best of theN
basic feasible solutions. This gives

-J-L(B) = min { -[(1- 8)b0 + 8b 1Y(uk- vk)}.
t::::;k~N

72 I Linear Programming

Multiplying this by -1, we get

J1(0)= max {ock+f3k0}, (20)
1 ~k~N

where, if/= uk- v\

()(k = (b0)T y\ {3k = (b1 - b0f /.
This proves the asserted formula (16), which implies that /1(0) is continuous
and piecewise linear. (It is continuous because it is the maximum of a finite
number of continuous functions.)

It remains to prove /1(0) is convex:

(0 :(' :(1).

To prove this, suppose e = (1 - c)0 1 + T02 , and suppose

J1(0) =Am(()) = max Ak(O).
1 "'k"'N

(21)

(22)

Here the maximinzing index m depends on e. If e stays fixed, the linear
function Am satisfies

But

and similarly, Am(02) :(/1(02). Therefore, (23) gives

Am(()):((1 - T)/1(01) + TJl(Oz).

Since Am(()) equals /1(0), this function is convex.
Perturbations of the cost vector. In the canonical problem (1), suppose

we perturb the cost vector c. What is the effect on the minimum cost?
Let x be a basic optimal solution belonging to the cost vector c. Let

xi> 0 for j E B, and assume the problem is non-degenerate.
The equilibrium and feasibility conditions are

yTai = ci

yTas ~ cs

for j in B

for s not in B.

(24)

(25)

Usually the inequalities (25) will be strict inequalities (<). Assuming this,
let c become c + be, and let y + by solve the non-singular linear system

T . c ') (y + by) a1 = ci + c5ci tOr j in B. (24

If c5c is small, then by must be small; so we must have

for s not in B, (25')

provided the strict inequalities (<) hold in (25).
Then we assert this: x remains an optimal basic solution for the perturbed

primal, and the perturbed minimum cost is just (c + c5c f x.

9 Perturbations and Parametric Programming 73

PROOF. Since A and b do not change, x remains feasible for the perturbed
primal problem. Since xi> 0 for j in B, formulas (24') and (25') provide new
equilibrium conditions when c becomes c + Jc. Therefore, x remains optimal.

The preceding analysis fails if the inequalities (25) are not strict, or if the
problem is degenerate, or if Jc is large. Then, as before, we can use parametric
programming.

Before, we perturbed the requirement vector; now, instead, we are per­
turbing the cost vector. But in principle, that can't make any difference. We
can always restate a linear programming problem so that the primal becomes
a dual and the dual becomes a primal. Then the cost vector becomes a
requirement vector, and vice versa. And now we can apply our theorem on
parametric programming.

Before we analyze more complicated perturbations, we'll need a theorem
that guarantees uniqueness for the optimal solution vector.

Uniqueness Theorem. Let A be an m x n matrix. Let x0 be a basic optimal
solution for the canonical program

Ax = b, x ~ 0, cT x = min. (26)

Let xi > 0 for j E B; let x. = 0 for s E B'. Let an optimal dual vector y0 satisfy
the conditions

yT ai = ci (j E B), yT a• < c. (s E B'), (27)

with strict inequalities for the non-basic indices s E B'. Then x0 is the unique
optimal solution of the primal, and y0 is the unique optimal solution of the dual.

PROOF. Suppose x 1 is another optimal solution for the primal (we don't
assume x 1 is a basic solution). Let x 1 - x 0 = v. Then Av = Ax1 - Ax0 = 0,
and v. = x; for s E B'; so

Av = 0, with v. ~ 0 for s E B'. (28)
Therefore,

0 = yT Av = L (yT ai)vi + L (yT a•)v.,
jeB seB'

or
(29)

If v =f. 0, then v. =f. 0 for somes E B', because Av = 0 implies v = 0 if v depends
only on B. But if, for s E B',

v. ~ 0 with some v. =f. 0,

then the strict inequalities yT a• < c. imply

L (yT a•)v. < L c.v •.
B' B'

Now (29) implies
0 < L CjVj + L c.v.,

B B'

74 1 Linear Programming

or
0 < cTv = cT(x1 - x0),

so x 1 could not be optimal.
Now we know that x0 is the unique optimal solution of the primal. Then

every optimal dual solution y must satisfy the equilibrium equations

(j E B), (30)

as we proved in the Equilibrium Theorem. Since the vectors ai are assumed
independent for j E B, the equations (30) have a unique solution, namely
y = y0 • So y0 is the unique optimal solution of the dual problem,

(31)

This uniqueness theorem is useful because its assumptions are usually
correct. Usually the problem is non-degenerate, and usually the non-basic
dual inequalities hold strictly. Now, making these assumptions, we can
obtain a complete first-order perturbation theory, covering simultaneous
perturbations of b, c, and the matrix A.

First, I want to make a remark on perturbations of the matrix, A --+ A+ bA:
Now we cannot expect the first-order perturbation formula to be exact.

To see this, let A be an ordinary square, invertible matrix M, and con­
sider the non-singular linear system

Mv=b,

with solution v = M- 1b. Let M become M + bM, and let's get a first-order
perturbation formula for the solution.

The perturbed solution, v + bv, satisfies the exact equation

(M + bM)(v + bv) = b, (32)
or

Mv + (bM)v + M(bv) + (bM)(bv) = b.

Since Mv = b, we may cancel those terms, obtaining

(bM)v + M(bv) + (bM)(bv) = 0. (33)

The product (bM)(bv) is a second-order term: it is the product of two small
quantities. If we neglect the second-order term, we can solve for bv:

(34)

This is the first-order perturbation formula by bv. It is inexact because we
neglected the second-order term in the exact formula (33).

EXAMPLE 1. Let oc, p, y, b be small. Let

9 Perturbations and Parametric Programming 75

Then to first order the perturbation Jv satisfies

1[4
Jv ~ 2 -3

Now let's go from linear algebra to linear programming. In the next
example, you'll see we have to be careful: the minimum cost may depend
discontinuously on the matrix A

ExAMPLE 2. For small e > 0, consider the canonical problem

(1 + e)- 1x 1 - (1- e)x2 = 1

x 1 - x2 = 1

x ~ 0, x 1 =min

Fore i= 0, the two equations have the unique solution

and so the minimum cost is 1 + e- 1, which tends to oo as e -+ 0. But if e = 0,
the two equations both say x 1 - x2 = 1, and the minimum cost for x ~ 0
is x 1 = 1. And so the solution x and the minimum cost depend discontin­
uously on the matrix.

Regular perturbation theory. In the last example, the limiting problem
was degenerate. Now assume, instead, that the canonical problem

Ax = b, x ~ 0, cT x = min.

is non-degenerate, and assume that x0 and y0 satisfy the conditions of our
uniqueness theorem. Let A, b, and c have small perturbations t5A, t5b, and be.
Then we can derive formulas for the first order perturbations 6x, by, and bJl
(where 11 = cT x = yTb).

Let M be the basis matrix, whose columns are the basic columns ai for
j E B. We assume xJ > 0 for j E B, xf = 0 for s E B'. The perturbation JA
induces a perturbation of the basis matrix:

JM = (Jai)jeB·

For small perturbations JA, the matrix M + JM remains non-singular, since
its determinant remains non-zero.

The vector x0 has n components; m of them are positive, and n- m of
them are zero. We now define the compressed vector x consisting of just the
m positive components of x0 • Thus, we have

Ax0 = L xJai = Mx = b. (35)
jeB

Similarly, we define the vector

C = (cj)jeB·

76 1 Linear Programming

Then we can write the m equilibrium equations, yT ai = ci (j E B), in the
simple form

(36)

For regular perturbations the basis B stays fixed. Then these are the exact
equations that determine Dx, Dy, and DfJ.:

(M + DM)(x + Dx) = b + Db,

(y0 + Dyf(M + JM) = (c + Jcl,

fl + Dfl = (c + J£Y(x + Jx)

= (y0 + Jyf(b + Jb)

(37)

(38)

(39)

(Notation: In all these formulas, if v is a vector with components vi for
j = 1, 2, ... , n, then v is the vector with just the components vi for j in the
basic index set B.)

Since M has an inverse, all these equations are solvable if DM is small
enough. And since we've assumed the strict inequalities

(s E B'),
we must obtain

(y0 + Dyfa• <c.+&. (s E B')

for small perturbations. Then the basis B does not change, and the exact
solutions

.x + Jx, y0 + Jy, 11 + J11

give the new optimal primal and dual vectors and the new minimum cost;
that follows from the equilibrium theorem.

To get first-order approximations, we drop the second-order terms in
the exact equations. After cancellations, we get

(DM)x + M(Dx) ~ Db

(DyfM + (y0fM ~ (DC)T

Jfl ~ cTJ.x + (JC)Tx

~ (y0 fJb + (Jyfb

If we solve for Dx and Dy, we get

Dx ~ M- 1[<5b- (JM)x]

(Jyf ~ [(JC)T- (yof(JM)JM-1

and now (39.1) gives bfl.

(37.1)

(38.1)

(39.1)

(40)

Finally, let's find the first-order perturbation of the inverse basis matrix.
Let M- 1 = U. Suppose M becomes M + DM. Then U becomes U + DU,
where

(M + JM)(U + JU) =I.

9 Perturbations and Parametric Programming

To first-order, this gives

MU + (c5M)U + M(c5U) ~ I.

If we cancel MU and I, we can solve for c5U:

c5U ~ -M- 1(c5M)U
or

I c5U ~ - U(c5M)U.I

ExAMPLE 3. Consider the canonical program

[1 2 3] = [5] (Ax = b)
4 5 6 X 14

x ~ 0, x2 =min. (f.l, = CT X = min.)

This is a solution: x 1 = 2, x2 = 0, x3 = 1. Here we have

B = {1,3}, x = [~} cT = [0,0] = [ct.c3].

M=[~ ~J M- 1 = U= -~[_: -~J
(yof = fTM-1 = (0,0].

Note the strict inequality for the non-basic index s = 2:

(yO)Ta2 = 0 < Cz = 1.

77

(41)

This inequality shows we can use regular-perturbation theory. Given small
perturbations c5A, c5b, be, we know the basis doesn't change, and we have
formulas for c5x, c5y, btJ, and c5U.

For instance, since c = 0, formula (39.1) gives the cost perturbation

btJ ~ (c5cfx = 2c5c1 + c5c3.

Reference

J. R. Pierce, The early days of information theory, IEEE Transactions on Information
Theory, Vol. IT-19 (1973) pp. 3-8.

PROBLEMS

1. Let x(8) be optimal for

[~ ~ !}=(1-e{~]+e[:J x~o,
[3,3,5Jx =min. = fJ(8).

78 1 Linear Programming

Let y(O) be optimal for the dual. Show that x(O) = [!,t,Oy, and find y(O). Using
formula (6), find JJ-(0) for small 0.

2. In the preceding program, solve for x(O) and y(O) for 0 ~ 0 ~ 1, and draw the graph
of JJ-(0). For which 0 is x(O) not unique? As 0 increases from zero, where does the
perturbation formula (6) fail? Where is JJ.'(O) discontinuous?

3. Let x(O) be optimal for

I! ~ !} = [!]. X~ 0,

[3,3,4 - 20]x = min. = JJ.(O)

Let y(O) be optimal for the dual. For 0 ~ 0 ~ 1 find x(O) and y(O), and draw the
graph of JJ-(0). For which(} is x(O) not unique? For which 0 is JJ-'(8) discontinuous?

4. Consider the canonical minimum problem

u ~ ; :}~[U X~~
[2,19,6,- 2]x = min.

(The large cost component c2 = 19 makes one guess x 2 = 0.) Compute the optimal
x and the optimal dual y; verify that cT x = yTb = 6. Compute the new optimal cost
if the requirement vector b changes to

b + bb = 8.999 . [7.003]
4.002

(Do not compute the new optimal x.)

5. In Example 1 set cx = e, fJ = -e, y = 2e, b = 3e where e = 0.01. Compute the exact
value of bv and compare it with the first-order perturbation.

6. Let M- 1 exist, and for smalllellet

(M + eP)(v + evUl + e2 v<2l + · · ·) = b.

If v is known, show how to compute the vectors v11l, v12l, ... recursively, assuming
the power series converges.

*7. (Continuation.) If M- 1 exists, show that the determinant of M + eP is a polynomial
in e that is nonzero fore= 0. Deduce that the vector (M + eP)- 1b has components
that are analytic functions of e for small lei, so that a convergent power series Eekv<kl
does exist.

8. Using the first-order perturbation formula, compute an approximate inverse for
the matrix.

[0.999 2.001].
2.998 3.002

10 The Simplex Tableau Algorithm 79

9. In Example 3, use the perturbations

M = { _ ~ - ~ ~]. bb = { _ ~ J
beT= e[2,-5,7],

where e = 10- 4• To first order, compute i)x, i)y, i)!J., and l)U.

10 The Simplex Tableau Algorithm

Previously, I explained to you the idea of the simplex method-what it does
and why it works. Now we'll get into the details of an algorithm you might
use for a general computer code.

Let A be an m x n matrix with m ~ n; assume the rows are linearly
independent. Consider the canonical linear program

Ax = b, x ;;:;: 0, cT x = min. (1)

If we assume that b is a linear combination of no fewer than m columns of A,
then the problem is what we called non-degenerate.

Suppose we start a Phase II calculation. We have a basic feasible solu­
tion x, and we want to compute a new basic feasible solution x' with lower
cost. To get a first basic feasible solution, we had to perform a Phase I
calculation. As I showed you, Phase I calculations are just special Phase II
calculations, so they do not require a different algorithm.

Suppose our given basic feasible solution x depends on the m columns
ai for j = j 1, •.• ,jm. Then we have

xi> 0 for j E B; B = {j1, ••. ,jm}·

Let me call the basic vectors

(i = 1, ... ,m).

Then v1, ••• , vm are the columns of the current basis matrix M.
We now express all the columns of A in terms ofthe basic columns:

ai = t 1iv 1 + t2iv2 + · · · + tmi~
and simi1arly we can write

(j = 1, ... , n),

b = t 10v1 + t20v2 + · · · + tmoVm.

This gives the simplex tableau

(tii)i = 1, ... ,m; j = 1, ... ,n,O.

EXAMPLE 1. Let

(2)

(3)

(4)

(5)

(6)

(7)

80 1 Linear Programming

Let the current basis vectors be the third and the first columns of A: v1 = a3,

v2 = a1 • Then this is the tableau:

a1 a2 a3 b

a3

I~ 1 1 ~I a1 -1 0

The second column, for instance, says

a3- a1 = a2. (8)

The last column says

a 3 + 2a1 =b. (9)

This gives the components of a basic solution: x3 = 1, x1 = 2, x2 = 0. Ifyou
look at the matrix A and the vector b defined in (7), you can verify formulas
(8) and (9).

The extended simplex tableau. For some purposes, it's convenient to
extend the tableau by expressing the natural unit vectors e1, ... , e"' in
terms of the current basis:

m

ei= I U;jV
i (j = 1, ... ,m). (10)

i= 1

This extends the tableau like this:

a1 a" b e1 e"'
v1 tu t1n t1o Uu U1m

(11)

vm tm1 tmn tmo Um1 Umm

Since the natural unit vectors ei are the columns of the identity matrix, I,
and since the basis vectors vi are the columns of the basis matrix, M, the
equations (10) can be written as the matrix equation

l=MU, (12)

where U is them x m matrix (u;J Thus, U is the inverse of the current basis
matrix, M.

Similarly, the original tableau equations, (4) and (5), can be written as the
matrix equation

[A,b] = MT (13)

where T=(t;i) (i=1, ... ,m;j=1, ... ,n,O). And since U=M- 1, the
extended tableau equals

[T; U] = M- 1[A,b;I], (14)

10 The Simplex Tableau Algorithm

EXAMPLE 2. In Example 1 the basis matrix is

Therefore,

M = [a3,a 1] = [~ ~l

U = M-1 = [3
-7

-2] 5 = (ui).

This gives the extended tableau

:: ~~~------~ __ 0_

1

__ ~-----~-----~~1

81

(15)

The first part expresses all the columns of A in terms of the current basis;
the second part gives the positive components of the current basic solution;
and the last part gives the inverse of the current basis matrix.

Changing the basis. Suppose we are given a simplex tableau (11), with
a current basis v1, ..• , vm. The basic vectors vi are certain columns of A.

Suppose a• isn't in the current basis, and we've decided to bring it into the
basis. We want to replace one of the current basic vectors by a•. How do we
do this? How do we get the new tableau? And most important: How can we
be sure that the new basic solution will be feasible?

We assume that the current basic solution is feasible:

t;o > 0 (i = 1, ... , m).

Thus, the current basic feasible solution x satisfies
n m

Ax = I xiai = I xiai = I t;ovi = b,
j=l jeB i=l

and so the tio are just the positive components of x.
Let the new tableau have the components

(i= 1, ... ,m;j= 1, .. ,n,O),

(i,j = 1, ... ,m).

(16)

(17)

(18)

(19)

Suppose we replace the current basic vector v' by the vector d, leaving the
other basic vectors vi unchanged. Then the new basic solution x' will have
non-zero components

(i=1, ... ,m). (20)

If x' is to be feasible, the components tio must be positive. This requirement
will decide the choice of v'.

Let's express a• in terms of the current basis:

(21)

82 1 Linear Programming

The basic vectors v1, ... , v', ... , vm are required to be linearly independent.
If a' replaces v' in the basis, we must require t,. =F O;for ift,. = 0, equation (21)
shows that the new basis would be dependent.

If t,. =F 0, we can express v' in terms of the new basis:

v' = t- 1 (a• - ~ t· vi) rs 4.J lS

i=1
i>Fr

(22)

Therefore, if we can express something in terms of v1, .•• , v', ... , vm, we can
surely express it in terms of v1, ... , a•, ... , vm. Therefore, the new set really
is a basis for the vector space Rm. The new basis is

(1)' 1 (')' s (m)' m v =v, ... ,v =a, ... ,v =v.

Let's get the new tableau. The coefficients t;i must satisfy

a! = t;j(v1)' + · · · + t~i(v')' + · · · + t;,j(vm)',

which means
m

ai = t~ia• + L t;i.
i=1
i>Fr

(23)

(24)

This uniquely defines the coefficients because the new basis consists of
independent vectors.

In terms of the old basis, we had

ai = t,iv' + L tijvi.
i>Fr

(25)

Now, for the old vector v' I want you to insert the representation (22), which
express v' in terms of the new basis. This is what you get:

(26)

This represents ai in terms of the new basis. The coefficient of a• is

(27)

and for i =F r the coefficient of vi is:

(i =F r), j (28)

These are the formulas for the new tableau.
For the extended tableau, we also want new coefficients u;i. This is no

problem if we regard the natural unit vectors ei as columns of an extended
matrix [A,I]-indeed, this is exactly what we do in Phase I calculations.
Then we may regard

(29)

10 The Simplex Tableau Algorithm

and so we may define

(i,j = 1, ... ,m).

Replacing j by n + j in formulas (27), (28), we get

u' rj = u,j/t,.

uii = uii - (tis/t,.)u,i (i =F r).

83

(30)

(31)

(32)

These complicated formulas have a simple meaning. If we replace v' by a•,
let's call row r of the old tableau the pivot row, and call column s the pivot
column. Call t,. the pivot element.

The transformation formulas (27) and (31) say this: Divide the pivot row by
the pivot element.

The formulas (28) and (32) say this: If i =F r, define the multiplier ei = tis/t, •.
To transform row i, subtract from it ei times the pivot row.

In summary, for the pivot row r,

new row r =(old row r)/t,.; (33)

for row i =F r,

new row i =(old row i)- ei (old row r). (34)

The multiplier ei has a simple interpretation. In the new tableau, we shall
have (v')' = a•, and so columns of the new tableau will have rth component
t~. = 1 and will have ith component ti. = 0 if i =F r. Therefore, in formula
(34) ei must be the unique multiplier that makes ti. = 0. Indeed, if we set j = s
in (28), we get

tis = tis - (tis/t,.)t,s = 0 (i =F r),

where (tis/t,.) = ei.
How to choose the pivot row. Given the pivot columns, there is only one

possible choice for the pivot row r, as you will now see. Remember, we assume
that our problem is non-degenerate.

For the current basic feasible solution, we have the positive components
tw(i = 1, ... , m). The new basic components will be, by (27) and (28),

t~0 = t,0/t,.

tio = tw - (tis/t,.)t,o (i =F r).

Since t~0 must be positive, we must require t,. > 0-the pivot element must
be positive.

Since ti0 must be positive for i =F r, we must have

tw - (tis/t,.)t,0 > 0 fori =Fr. (35)

All four t's in this formula are positive except possibly tis· If tis is :::;; 0, the
inequality (27) is true; if tis is positive, the inequality is true iff

(i =F r, tis > 0). (36)

84 I Linear Programming

Thus, r satisfies

I t.0 /t •• = min{t;o/t;.: t;. > 0, i = 1, ... , m}.1 (37)

This minimization uniquely determines r. For if the minimimum occurred
for i = r and for i = p, then we should have

t.0 /t •• = tpo/tP.,

which would violate the strict inequality (36) if p =F r.

EXAMPLE 3. In the tableau (15) in Example 2, the current basic vectors are
a 3 and a 1• Suppose we want to bring a2 into the basis. To get a new feasible
solution, we require t •• > 0; and for s = 2, this implies r = 1, since t 12 = 1 and
t22 = -1. Thus, a2 will replace v1 = a 3 in the basis.

To get the new tableau, we divide the pivot row by the pivot element
t 12 = 1, which leaves the first row unchanged. We than add thefirstrowto the
second, producing (~ 2 = 0. The result is this tableau:

(38)

Note that the new solution components (below b) are positive.

EXAMPLE 4. In the last example, only one component of the pivot column
was positive. Now suppose the pivot column is

Now there are two possibilities for the choice ofr, since the pivot column has
two positive components. Which one shall we choose?

To decide that, we have to look at the solution column. Suppose the
solution column is

Dividing by t;. > 0, we form the ratios 4 and ~. Since the second ratio is
smaller, we decide that the divisor 5 will be the pivot element, and so r = 3
will be the pivot row.

How to choose the pivot column. Before we choose the pivot row, we must
choose the pivot column. We will choose the pivot columns to lower the
cost if that is possible.

10 The Simplex Tableau Algorithm 85

The old cost is

(39)

Here the notation ci stands for the unit cost of the basic vector vi. If vi = ai',
then ci = cii. Similarly, the tableau element tiO equals X;= xii for the current
solution x.

If we decide to choose the pivot columns, what will the new cost be?
In order to introduce the amount J..a• into the solution, we add A. times the

equation

to the equation

m

a•- "\"' t· vi= 0 £.., ••
i= 1

m

L tiOvi = Ax = b,
i= 1

(40)

(41)

If all coefficients remain positive, we get a new feasible solution x(A.), with
m

A.a" + L (t;o - A.tis)vi = Ax(A.) = b.
i= 1

The new cost equals
m

A.c. + L (tiO - A.tis)ci.
i= 1

In this expression,
m

L twci =old cost;
i=O

Therefore, (43) implies

m

L ti.ci = z •.
i= 1

new cost = old cost - A.(z. - c.).

And so it pays to bring in a• iff z. - c. > 0.

(42)

(43)

(44)

(45)

As you see from (42), if all tis are ~0 in the pivot column, we can let
A. --+ + oo and still x(A.) will be a feasible solution. (This is called Case 2a in
"The Idea of the Simplex Method.") If z. - c. > 0 and all tis are ~ 0, the
computation should stop, because now we know how to drive the cost to
minus infinity. The computer should print out all the coefficients in formulas
(42)-(45).

If z. - c. > 0 and if some tis > 0, we are in what we called Case 2b. If
several indices s satisfy this condition, we may choose any of them-for
instance, we may choose the one that maximizes z. - c •. Having chosen the
pivot column s, we choose the pivot row r by formula (37). We then form
a new tableau by the rules (33), (34).

This decreases the cost by A. *(z. - c.), where A.* is the coefficient of a• in
the new basic solution. Since a• = (v')', we have

A.* = t~0 = t,0 /t, •.

86 l Linear Programming

If we call the old cost z0 and call the new cost z~, we have

, (z•- c.) Zo = Zo - -- t,o.
t,.

(46)

The criterion row. So far, we've defined the extended tableau

[T;U] = M- 1[A,b;I], (47)

where M is the current basis matrix. This tableau has m rows and n + 1 + m
columns. The tableau lacks certain information that we want, and we will
put that information in a row at the bottom:

(48)

This is the criterion row.
The first n components have the form

m

Zj- Cj = L t;i; - Cj (j = 1, ... ,n). (49)
i= 1

If ai is in the current basis, then we shall have zi- ci = 0; for if ai = vk,
then tii = 1 for i = k and tii = 0 for i # k, and ck = ci. If ai is not in the
current basis, we know that j is a candidate for pivot column if zi- ci > 0.
But if all zi- ci are :::;0, then the current basic feasible solution is optimal,
as we proved in our previous discussion of the idea of the method.

The next component in the criterion row is the current cost:

m
'\' ~ ~T~ T Zo = ~ t;oC; = C X = C X. (50)
i= 1

The last m components in the criterion row are defined as follows:

m

Yi= L U;i; (j = 1, ... ,m). (51)
i=1

Here (u;i) = U is the inverse of the basis matrix; U makes up the last part
of the extended tableau (47).

The meaning of yT: The definition (51) says

or

or
(52)

Thus, yT is the equilibrium solution. At the last stage all zi- ci are :::;0, and
then yT will be the optimal solution of the dual problem:

(53)

10 The Simplex Tableau Algorithm 87

Then yT will satisfy

r j- ::< · h "-" ·f · B y a - Zj:::::;: Cj, Wlt - 1 J E . (54)

(Again please refer to "The Idea of the Simplex Method.")
When we append the criterion row, the tableau looks like this:

tu . . . tln t1o Uu ...
U1m

.
tml

. . . tmn tmo Um1 ... Umm
(55)

zl - cl . . . Zm- Cm Zo Y1
... Ym

Now I'm going to show you the most surprising thing about the simplex
tableau algorithm: The criterion row transforms like all the other non-pivot
rows.

In other words, I assert this: For some e0 ,

new criterion row = old criterion row - e0 (pivot row). (56)

Since a' is entering the basis, we must have z~ - cs = 0 in the new tableau.
If formula (56) is right, then

and so we must have
eo = (zs - cs)/trs·

PROOF OF (56). I have to prove three things:

(57)

zj- cj = zj- cj- eotrj

Z~ = Zo - eotro

Y} = Yi - eouri

(j = 1, ... , n)

(j = 1, ... ,m).

First, I use the definition for the new tableau:

In the last sum, I may include the term for i = r, since it is zero. Then I get

zj = i~l tijci - (t,j/t,8) (~1 t;8C; - C8)

= Zj - (t,j/trsHzs - cs)

(j = 1, ... , n)

That proves (i).

(i)

(ii)

(iii)

88 I Linear Programming

Second, I recall the cost-transformation formula (46), which we proved
before. Formula (ii) merely restates (46).

Third, for the new tableau,

m

= L c;(uii - u,/;./t,.) + c.u,i/t, •.
i= 1
i*r

Including the zero term for i = r, I get

yj = itl c;uii- (u,)t,.)(t C;t;s- c.)
= Yi - (u,i/t,.)(z. - c.)

= Yi- 80u,i (j = 1, ... ,m).

That proves (iii) and ends the proof of the transformation formula for the
criterion row.

You now have the complete description of the simplex-tableau algorithm.
It is hard to understand, but easy to use. Most people who use it don't under­
stand it, but I hope you won't be one of those.

Let's use the algorithm to solve a numerical problem. Let's solve

Ax = b, x ~ 0, cT x = min,
where

A=[! ~ !l b = [1 ~} cT = [7,1,1]. (58)

First we'll do Phase I, then Phase II.

ExAMPLE 5. We want to solve

xl

[!
2 3 1

~l
Xz

= [1~] 5 6 0
x3
sl

(59)

Sz

The first basic feasible solution is s1 = 5, s2 = 13, x = 0. This is the first
tableau:

1 2 3 1 0 5
4 5 6 0 1 13

5 7 9 0 0 18

10 The Simplex Tableau Algorithm 89

In Phase I calculations we don't bother to use the extended tableau, since
the natural unit vectors ei are columns of the matrix.

Please note the criterion row at the bottom. In the Phase I calculation
the cost vector is

CT = [0,0,0,1,1].

It is not the vector cT given in (58); in Phase II (Example 6) we'll switch back
to the definition (58). Using the Phase I definition of cT, you can see how
the first criterion row was calculated. Note particularly the zeros under e1

and e2•

The biggest zi- ci is 9. It occurs for j = 3, so we'll bring a3 into the basis.
This gives the pivot column s = 3. (We might, instead, have chosen s = 1
or 2.)

To choose the pivot row r, we form the two ratios i, 1l. The first is smaller,
so we must choose r = 1. This makes the pivot element t 13 = 3. Please draw
a circle around it.

After you use the elimination rules, this is what you get for the second
tableau:

1 2 1 1 0 ~
3 3 3 3

2 1 0 -2 1 3

2 1 0 -3 0 3

The biggest zi- ci is 2. It occurs for j = 1, so we'll set s = 1 and bring
a1 into the basis.

To choose r, we form the ratios

(i) + m and 3 + 2.

The second is smaller, so we must choose r = 2. Draw a circle around the
new pivot element, t 21 = 2.

As before, you divide the pivot row by the pivot element, and you sub­
tract multiples of the pivot row from the other row so as to get zeros in the
rest of the pivot column. This is what you get:

0 1 1 2 1 7
2 3 -6 6

1 1 0 -1 1 3
2 2 2

(60)

0 0 0 -1 -1 0

Now all five criterion elements zi- ci are :::;;0. Therefore, you have an
optimal solution. The last column says

x 3 = i, x 1 = 1, cost = 0.

Please verify that these numbers do solve the problem (59).

90 1 Linear Programming

EXAMPLE 6. Now we are ready to do a Phase II calculation for the problem
(58).

In Example 5, we did the Phase I calculation, which gave us the first
basic feasible solution for Phase II. As you will now see, Phase I ends with
the initial tableau for Phase II-except that we must re-calculate the criterion
row. Then we shall get this tableau:

0 ! 1 7 2 1
6 3 -6

1 ! 0 ! -1 !
(61)

0 3 0 35 19 10
3 -3 -3

Please carefully compare this tableau with the final tableau (60) for
Phase I.

The first thing you notice is this: The two columns labeled e1 and e2 have
been moved to the right of the solution column (labeled b). That is merely a
matter of convention; it is customary but unnecessary. Except for this trans­
position, the numbers in the first two rows are the same in the two tableaus.

But the criterion rows are entirely different in the two tableaus. That
always happens when we go from Phase I to Phase II. Why? Because the
cost vectors are different. In Phase I the cost vector was

CT = [0,0,0,1,1]. (62)

This was an artificial cost vector that was contrived to give positive costs
to the slack variables s1os2 • When we drove the slack variables out of the
basis, we got the final Phase I cost zero. Then the solution column gave a
first basic feasible solution x for Phase II.

Now we will use the original, given cost vector

CT = [7,1,1].

As you see, this has nothing to do with the artificial Phase I cost vector (62).
It doesn't even have the same number of components. That is because we no
longer use the slack variables s1 s2 ; they are gone forever.

So where does the new criterion row come from? It comes from the new
basic costs (c3 = 1 and c1 = 7) and from the upper part of the tableau. I'll
compute three of the six criterion-row components for you:

z2 - c2 = (!) · 1 + (!) · 7 - 1 = 3

z0 = (~) · 1 + (!) · 7 = ¥
Y1 = (~) · 1 + (-1) · 7 = - 1f.

You can do the other three.
The last two criterion components are y1 and y2 • At each stage in Phase II,

they solve the equilibrium equations. At the end, they will give the optimal

I 0 The Simplex Tableau Algorithm 91

dual vector yT. As you know from our discussion of perturbations, the
optimal dual components Yi are the shadow costs, and they provide very
useful information. But if you don't think you'll need them, you don't have
to compute them. In the Phase II calculation, the last part of the tableau is
optional. If you won't be using the basis inverse (uii) or the shadow costs Yi•
then don't compute them.

Now let's do Phase II, starting with the tableau (61). The only positive
zi- ci is z2 - c2 = 3. Therefore, the pivot column iss= 2.

To choose the pivot row, we form the ratios

(i) + (t) = i and @ + (t) = 3.

The first is smaller, so we must choose the pivot row r = 1. Draw a circle
around the pivot element t,. = t 12 = t. We're going to replace v1 = a3 by a2

in the basis. Using the transformation rules, we get this tableau:

0 1 2 7 4 1
3 -3

1 0 -1 1 5 ! 3 -3 (63)

0 0 -6 134 31 1l -3

Now we have all zi - ci ::>.;; 0 (j = 1, 2, 3). That means we're done. The
optimal basic feasible solution x has the positive components

The minimum cost is

The optimal dual components (the shadow costs) are

Y1 = - 3l, Yz = 133 •

Please check these conditions:

(64)

(65)

(66)

(67)

where A, b, and care defined in the original problem (58). Then you'll believe
all we've done.

References

1. G. B. Dantzig: Programming in a Linear Structure, Econometrica, Vol. 17, pp.
73-74, 1949.

2. G. B. Dantzig, Maximization of Linear Functions of Variables Subject to Linear
Inequalities, in T. C. Koopmans (editor) Activity Analysis of Production and Alloca­
tion, pp. 339-347, Wiley, 1951.

92 1 Linear Programming

PROBLEMS

1. In Example 1 replace b by (1,1f. Let the current basis be v1 = a2 and v2 = a1.

2.

Express a3 and b as linear combinations of the basis, and write the tableau. Write
the current basic solution x. Write the basis matrix M and its inverse U. Write the
extended tableau. Verify equation (14).

Here is an extended tableau:
al az a3 b et ez

vt

I~ 0 ~ 1-~ ~-~ -:1 vz

Identify v1 and v2 as columns of A. Find numerical values for M, U, A, b, T, x.

Verify equation (13).

3. Start with the tableau in Problem 2. Let cT = (1,2,3). Compute z1, z2 , z3 , z 0 , y 1, y2 ;

then write the criterion row (48).

4. Start with the tableau in Problem 2. Let cT = (9,1, -1). Compute the criterion row.
Answer: (-6,0,0,-7,5,13). Now use the transformation rules to replace a3 by a 1 in
the basis; write the new extended tableau with criterion row.

5. Define

Do a Phase I calculation to get a basic feasible solution of Ax = b, x ~ 0.

6. Define A and b as in Problem 5. Set v1 = a3, v2 = a1 ; and start with the basic
feasible solution x 0 = j-(1,0,4jT. Let cr = (5,3,1). Do a Phase II calculation to get
optimal primal and dual vectors for Ax= b, x ~ 0, cr x =min. Answer: The optimal
primal vector is i(0,1,9f. Finally, check that cr x = yrb.

7. For small e of 0 let x(e) solve

[2 3 1] x = [2 + e]
5 6 4 5 , x ~ 0, 5x 1 + x2 =min.

What happens to the optimal primal and dual vectors as e 0? (Note: The problem
is degenerate for e = 0.) Use the equilibrium theorem to check optimality in the
limit.

8. Do a Phase I calculation for

[~ ! !Jx=GJ x~o.
What does Phase I tell you?

9. Do a Phase II calculation for

[2 -3 1Jx = [2]
5 -6 4 7 ' X~ O,

Start with x 0 = t[1,0,4Y. What does Phase II tell you? Compute a feasible solution
with cost -1010.

11 The Revised Simplex Algorithm 93

11 The Revised Simplex Algorithm

Around 1954, Dantzig and his colleagues found a way to make the simplex
algorithm more efficient.

You remember that the simplex tableau had three groups of columns:
first, the columns labeled a 1, .•. , an; second, the single columns labeled b;
third, the columns labeled e1, ... , em. Now you'll see this: You don't need to
compute the first group of columns. All you need from the first n columns is
the pivot column, but you can compute that single column when you need
it. Let me explain.

This is the problem, as usual:

Ax = b, x ~ 0, cT x = min. (1)

Here A is an m x n matrix, which is given along with the vectors b and c.
We'll assume the problem is non-degenerate.

First, we store the matrix (aii) and the vectors (bi) and (ci) in the com­
puter memory. We will never change these numbers, but we'll need them to
compute the other numbers.

At each stage, we'll start with these numbers from the simplex tableau:

t 10 Uu ... U1m
. . .

tmo Um1 ... Umm
(2)

zo Y1 ... Ym

And we'll also start with a list of the basic indices:

(3)

At each stage, we'll modify the numbers in (2) and (3).
The numbers mean precisely what they meant in the last section. The

tw give a current basic solution; the uii give the inverse of the current basis;
z0 gives the current cost; the Yi solve the equilibrium equations. All these
numbers are given at the beginning of Phase I, namely,

(4)

The numbers z0 and Yi must be re-computed at the beginning of Phase II,
namely,

m m

zo = L twci, Yi = L uiA• (5)
i= 1 i= 1

where ci = cj,·
Keep in mind, we'll be doing exactly what we did in the simplex-tableau

algorithm-with one exception: we won't compute all the tii and zi- ci.

94 I Linear Programming

So, how do we modify the abbreviated tableau? Pick one non-basic index
j. Compute the number

m

zi = L Yiaii· (6)
i= 1

(This formula is discussed in "The Idea of the Simplex Method.") If zi satisfies
zi > ci, set j = s; this will be the index of the pivot column. But if zi:::;; ci,
try some other non-basic indexj.

If zi :::;; ci for all non-basic indices j, you're done. Then you have the
optimal basic solution, with the positive components

(i = 1, ... ,m). (7)

The minimum cost is z0 , and the optimal dual vector is yr.
Suppose, instead, you've computed z i by formula (6), and you've found

zi > ci. Then, settingj = s, you proceed as follows.
First you compute the pivot column of the simplex tableau:

m

tis= L Uikaks
k=1

(i = 1, ... ,m). (8)

If all tis are :::;; 0, you're in Case 2a; you can drive the cost to minus infinity
by setting

m

x(A.) = A.a• + I (t;o - A.tis)vi
i = 1 (9)

cost = cr x(A.) = cr x(O) - A.(z. - c.), A. -+ oo.

If, instead, some tis are >0, you pick the pivot row r by the old formula:

(10)

This is what we called Case 2b. Now you should modify the tableau by the
old transformation rules with one exception: you don't compute the first n
columns; you compute only the last 1 + m columns.

Here are the rules:

new row r =(old row r)/t,.; (11)
and for i i= r,

new row i =(old row i)- (}i ·(old row r), (12)
where

(i i= r; i = 1, ... , m)
(13)

80 = (z. - c.)/t, •.

Finally you should replace the old basic indexj, by s.
Now you've got your new abbreviated tableau (2) and your new basis (3).

Now you can continue. As you know, the algorithm must succeed after only
a finite number of tableau modifications.

11 The Revised Simplex Algorithm 95

EXAMPLE. I want to re-do the last example of the preceding section. Please
compare the two calculations to see how to use the short tableau.

The problem is Ax = b, x ~ 0, cT x = min., where

[1 2 3] [5] T A = 4 5 6 , b = l3 , c = [7,1,1].

We're doing a Phase II calculation. We start with the short tableau

7 1_ 1
6 3 -6
J. -1 .!
2 2

ll 19 .lQ
13 -3 3

and with the basis {3,1 }, meaning that a 3 and a 1 are the current basic vectors.
The only non-basic column is a2 • We compute

z2 = YT a2 = (- 1jl) 0 2 + e3o) 0 5 = 4.

Here yT came from the tableau, while a2 came from permanent storage.
Since c2 = 1, we have z2 - c2 = 3 > 0, so the pivot column is s = 2.

Now we have to compute the pivot tableau column:

To get the pivot row r, we compute the ratios tw/t;, fort;,> 0:

t1o/t12 = t +!. t2o/t22 = ~ + t.
The first is smaller, so r = 1. Now we draw a circle around the pivot element
tl2 = !.

Now I'll write the pivot column next to the old short tableau:

7 1_ 1
6 3 -6
J. -1 .!
2 2

35 19 10
3 -3 3

The transformation rules require us to apply the elementary row operations
that convert the pivot column to [1,o,oy. If we do so, we get the new short
tableau:

7 1 1
3 -3
1 5 .!
3 -3 3

il 31 13
3 -3 3

Finally we must replace j 1 = 3 by s = 2 to obtain the new basis {2,1 }.

96 1 Linear Programming

Now start over with the new tableau. The only non-basic column is
j = 3. Therefore, we compute

_ T 3 _ [31 13] [3] 5 Z3 - Y a - -3,3 6 = - ·

Then we find z3 - c3 =-5-1= -6 < 0. That means we're done.
From the last tableau and basis, we get

and there we have the optimal primal and dual solutions. From the tableau,
we also get the final cost z0 = 134 • This completes the example.

I told you that the revised simplex algorithm was more efficient than the
full simplex tableau algorithm, but that isn't always true. In Phase II, using
the original simplex tableau algorithm, you don't have to compute U and
yT if you don't want to; using the revised algorithm, you have to compute
U and yT at every stage.

Another advantage of the original algorithm is this: Y au compute the
full array z1 - c1, ... , zn- en; by the elimination rule, this computations
is quick and accurate. Having the full array zi - ci, you don't have to pick
the first positive one; you can pick the largest zi - ci to give the pivot column
j = s. Usually this gives a greater cost reduction, since the single-stage cost
reduction equals the product (t, 0/t,.) · (z. - c.).

The factor t,0/t,. is unknown until you know the pivot row r, which is a
function of the pivot columns s. If you wished, you could pick s to maximize
the product (t,0/t,.) times z.- c •. That would maximize the single-stage
cost reduction, but it would require extra computation.

As for storage, the revised algorithm requires the original matrix A in
permanent storage; the original algorithm does not.

Both algorithms are, for most cases, excellent. In general, you may use
either one with confidence. The simplex method has been called the most
important numerical method invented in the twentieth century. When you
think of all its applications, it is hard to disagree with that assessment.

Reference

G. B. Dantzig, A. Orden, and P. Wolfe: Generalized Simplex Method for Minimizing
a Linear Form under Linear Inequality Restraints, Pacific J. Math. Vol. 5 (1955)
pp. 183-195.

PROBLEMS

1. Consider the problem

[l 2 3]x=[3]. x~O. x2 +x3 =min.
4 5 6 9

12 A Simplex Algorithm for Degenerate Problems 97

Start with the feasible solution x0 = (l,l,O)T. Compute optimal primal and dual
solutions by the revised simplex algorithm.

2. Consider the problem

G ~ ! ~ ~} = [!J x ~ 0, x4 + Xs = min.

Start with the feasible solution x0 = [0,0,0,3,9Y. Compute an optimal solution by
the revised simplex algorithm. (This is a Phase I calculation for Problem 1.)

3. Apply the revised simplex algorithm to

[! ~ !]x=[~l x~O, x2+X3=min.

(First introduce slacks for Phase 1.)

4. Apply the revised simplex algorithm to

[! =~ !Jx=Gl x~O, x1-X2=min.

5. Solve by the revised simplex algorithm:

[~ ~ ~Jx=Gl x~O, x2+x3=min.

First use Phase I to get a basic feasible solution. Then use Phase II to get optimal
primal and dual solutions. (Answer: The minimum cost equals !t.)

12 A Simplex Algorithm for Degenerate Problems

We've discussed the simplex method for non-degenerate linear programming
problems. I showed you two practical algorithms-simplex tableau and
revised simplex. Now I'd like to show you how to make the method work
even for degenerate problems.

This will be a theoretical discussion. As I explained before, degeneracy is
a fragile condition-the slightest round-off error will usually produce a
nondegenerate problem. In practice, the best thing to do about the pos­
sibility of degeneracy is to ignore it. Still, I want to show you the lexicographic
simplex algorithm because the mathematics is fascinating.

We are given an mxn matrix A along with vectors band c. This is the
problem:

Ax = b, x ~ 0, cr x = min.

We have called this problem non-degenerate if
i) rank A = m, and

ii) b is a linear combination of no fewer than m columns of A.
Otherwise the problem is called degenerate.

(1)

98 I Linear Programming

Always we assume m ~ n. If condition (i) is false, then the linear system
Ax = b is either inconsistent or redundant. If it's inconsistent, then the
problem has no solution, and that's that. But if the system Ax = b is consis­
tent and redundant, then some of the equations should be eliminated. If
A has rank r < m, then m - r redundant equations should be eliminated,
leaving a system Ax = o, where the matrix A consists of r independent rows
of A. Now the problem (1) is equivalent to

Ax = o, x ~ 0, cT x = min., (2)

in which condition (i) is satisfied. So from now on we'll assume condition
(i) holds.

Suppose condition (ii) fails. Then there can be a basic feasible solution x
with fewer than m positive components. Why should this make trouble for
the simplex method?

Because now cycling is possible. If some basic solution component t,0

equals zero in the simplex tableau, and if Z8 - C8 > 0 with t,s > 0, then surely

(3)

since all the competing quotients are ~ 0. So, if s is the pivot column, then r
may be the pivot row. If now as replaces v' in the basis, then the cost decreases
by zero:

t
new cost= old cost-~ (zs- cs) =old cost- 0. (4)

trs

Since the cost doesn't decrease, we can't be sure that we get a new basic
solution at each stage of the simplex method. Thus, if the cost stayed the
same at three successive stages, we might start with a basic solution x 1 , go
to a new basic solution x2, and then go back to x 1• Then the process would
cycle forever, and the method would fail.

To get around this, we'll introduce lexicographic ordering. We'll order
vectors the way we order words in a dictionary.

Let's use the symbol "G.T." to stand for "is lexicographically greater than."
Then, for instance, we have

lot G.T. log G.T. lie G.T. got. (5)

Thus, log comes after lie in the dictionary.
If we use the numbers 1, ... , 26 instead of the letters a, . .. , z, the example

(5) becomes

(11,15,20)G.T. (11,15,7)G.T. (11,9,5)G.T. (7,15,20).

You see the idea. Let the vector a have real components a0 , at. ... , am;
let b have real components b0 , b1, •.. , bm. Then we'll write a G.T. b to mean
this: For somej = 0, ... ,m,

aj>bj, whilea;=b; forall i<j. (6)

12 A Simplex Algorithm for Degenerate Problems 99

You have enough experience with dictionaries to accept without proof this
assertion: The relation G.T. establishes a complete ordering of the real vector
space RN. In other words, for every a and bin the space of real vectors with N
components, either a G.T. b orb G.T. a or a = b; and if a G.T. band b G.T.c,
then a G.T. c.

EXAMPLE 1. Let the components of the vectors a and b be the coefficients of
two polynomials in e:

p(e) = ao +ale+ ... + amem

q(e) = bo + b1e + · · · + bmem.

Suppose p(e) > q(e) for all sufficiently small e > 0; then a G.T. b. Conversely,
if a G.T. b, then p(e) > q(e) for small e > 0.

Now we'll apply lexicographic ordering to linear programming. Consider
the canonical program (1). Suppose condition (i) holds, but suppose condition
(ii) fails. Without loss of generality, assume all b; ~ 0 (if any b; is negative,
multiply the ith equation by -1).

We will use the revised simplex tableau:

t1o Uu ...
ulm

. . .
tmo Uml

... Umm
(7)

Zo Y1 ... Ym

Here (uii) is the inverse of the current basis; the vector (Y;) solves the equi­
librium equations; z0 is the current cost; and (t;o) gives the current basic
feasible solution, that is,

(8)

Since we allow degeneracy, we may not assume all t;o > 0; we may only
assume all t;0 ~ 0.

The tableau (7) has m + 1 rows, each with 1 + m components. Call the
first row t(1), call the second t(2), ... , and call the mth row t(m); call the last
row w. We will require that all of the first m rows be lexicographically positive:

I t(i) = [t;o,U;1, ... ,U;m] G.T. 0., (9)

This relaxes the requirement t;0 > 0. Now we only require t;o ~ 0; but if
t;0 = 0, we require the first non-zero component of the ith row of U to be
positive. Please note that this requirement is met at the beginning of Phase I;
for then we have t;o = b; ~ 0 and U = I.

100 1 Linear Programming

The last row is the generalized cost:

W= [zo,Yl•· · ·•Ym] (10)

When we change the basis, we will get a new tableau, with a new cost row w'.
We will require

lwG.T.w'.l (11)

This relaxes the requirement z0 > z' 0 . But it is enough for our purpose:
it prevents cycling. The argument is the same as before. As we go from basis to
basis, we get a succession of decreasing cost vectors:

w G.T. w' G.T. · · · G.T. w<P>. (12)

Since no two of these cost vectors are equal, no two of the bases are equal.
Here's how we do all this. Just as before, we compute

(13)

for j not in the basis. If all these numbers are ::::.:;; 0, we know that the current
basic feasible solution is optimal. But if z. - c. > 0, we know the current
solution is not optimal, and we may choose the pivot column s.

Exactly as before, we compute the pivot tableau column. We already have
the last component, z. - c.; the first m components are

m

t;. = L U;kalcs
k= 1

(i = 1, ... ,m).

As before, if all t;. are ::::.:;; 0, we can drive the cost to minus infinity (Case 2a).
So suppose some t;. > 0 (Case 2b).

Now watch this. We're going to choose the pivot row r. Up to now, the
algorithm has been identical to the revised simplex method, but now there
will be a subtle difference. We will chooser by this rule:

t(r)/t,. = min{t(i)/t;.: t;. > 0}. (14)

By "min" here we mean the lexicographic minimum, which is the minimum
vector according to the ordering "G.T."

The lexicographic minimum (14) is unique. For otherwise there would be
two rows, say r and p, such that

t(r)/t,. = t(p)/tp., with r ¥= p.

Then the two rows t(r) and t(p) would be proportional (dependent). Now
look at the last m components of the two vectors; they would have to be
proportional. Thus, rows rand p of U would be proportional. Then det U = 0.
But that is impossible for any inverse matrix, because all inverse matrices
have non-zero determinants.

So the lexicographic minimum (14) uniquely determines the pivot row r.
This amounts to a tie-breaking rule in case t,0/t,. = tp0/tps· Now the compu-

12 A Simplex Algorithm for Degenerate Problems 101

tation proceeds exactly as before, giving a new tableau, with components
ti0 , u;i, z'0 , yj. We must now prove these two assertions:

t'(i) G.T. 0 (i = 1, ... , m),

wG.T.w'.

(15)

(16)

Proof that t'(i) G.T. 0. By the usual simplex rule, we compute the new row
r as follows:

t'(r) = t(r)/t, •.

This is G.T. 0 by induction, since we assume t(r) G.T. 0 in the old tableau. As
usual, the pivot element t,. is positive.

Fori =1= r, the simplex rule gives

t'(i) = t(i) - (tis/t,.)t(r).

If tis is ~0, this gives t'(i) G.T. 0 because t(i) G.T. 0 and t(r) G.T. 0. If tis is
>0, then the unique minimization (14) implies

t'(i) = tis[t(i)/tis- t(r)/t,.] G.T. 0.

Proof that w G.T. w'. It remains only to prove that the generalized cost
decreases lexicographically. By the usual simplex rule, we compute the new
last row:

w' = w - 90t(r),

with 90 = (z. - c.)/t,. > 0. By induction, we assume t(r) G.T. 0 in the old
tableau. Therefore,

w - w' = 90t(r) G.T. 0,

and so we have w G.T. w'. This completes the proof that the lexicographic
simplex algorithm succeeds even for degenerate problems.

EXAMPLE 2. I want you to see a simple example of the tie-breaking rule for
choosing the pivot row. Suppose, at some stage, the pivot column and the
revised simplex tableau look like this:

0 1 -1 3
0 0 5 7

3 -6 2 1

5 -1 9 2

Here you see all tis = 1 and even z. - c. = 1.
Next you see the solution column (tm). z0 • Here we have some solution

components tw = 0; that would be impossible in a non-degenerate problem.
But note:

t(1) = [0,1,-1,3] G.T. 0

and also t(2) G.T. 0, even though t10 = t20 = 0.

102 1 Linear Programming

The last three columns give the matrix U on top and the vector yT below.
Since all three tis are positive, we have three candidates for pivot row. By

the old scheme, we compute the three ratios

tiO/tis = 0, 0, 3 fori= 1,2,3.

Here rows i = 1 and 2 produce a tie for the minimum. But look at this:

t{1)/tls = [0,1,-1,3],

t(2)/t2s = [0,0,5,7].

Since the first vector is G.T. the second, we break the tie by choosing the
pivot row r = 2.

Since the whole pivot column consists of 1 's, we compute the new tableau
by just subtracting the pivot row from the other rows. This gives the new
bottom row

w'=J5J-1 4 -5J.

This is the new generalized cost. Its first component is z0 = 5.
The old generalized cost was

w = J5 J -1 9 2J ,

also with first component z0 = 5. Note that w G.T. w' while z0 = z0: the
generalized cost decreases while the scalar cost stays the same.

Finally, I'd like to make some short remarks on the connection of the
lexicographic algorithm with perturbations and with the duality theorem.

Perturbations. If you look back at Example 1, you can see what we've done
in terms of perturbations. Suppose we replace the original requirement
vector b by a family of vectors

b(e) = b + ee1 + · · · + emt!" (0 < e « 1),

where e1, ... , t!" are the columns of I. Now consider the family of problems

Ax= b(e), x ~ 0, cTx =min. (17)

If rank A = m, you can show that these problems are non-degenerate for
all sufficiently small e > 0, even though the limiting problem with e = 0 is
degenerate (see Problem 9). Since the perturbed problems (17) are non­
degenerate, you can solve them with the original simplex method. The
effect of the perturbations is to translate the common ordering ">" into the
lexicographic ordering "G.T."

The duality theorem. By using the separating-plane theorem for convex
sets, we proved this: If the primal problem (1) has an optimal solution x 0 ,

then the dual problem,

(18)

12 A Simplex Algorithm for Degenerate Problems 103

has an optimal solution y0 , with

(19)

As we just showed, the lexicographic simplex method works even for
degenerate problems (1). If a optimal solution exists, this algorithm computes
a basic optimal solution x 0 in a finite number of steps. At the last stage, the
vector y satisfies

yTai = ci

yTak = zk::;;; ck

for j in the basis

for k not in the basis.
(20)

It follows that y is an optimal dual solution y0 satisfiying the cost equality (19).
Thus, the lexicographic algorithm gives an independent, purely algebraic
proof of the duality principle.

References

I. Dantzig, G. B., A. Orden, and P. Wolfe: Generalized Simplex Method for Mini­
mizing a Linear Form under Linear Inequality Restraints, Pacific J. Math. Vol. 5,
pp. 183-195, 1955.

2. Charnes, A. : Optimality and Degeneracy in Linear Programming, Econometrica,
Vol. 20, pp. 160-170, 1952.

PROBLEMS

1. For the vector space RN, prove:
(i) a G.T. b or b G.T. a or a = b;

(ii) if a G.T. b and b G.T. c, then a G.T. c.

2. In the plane R 2 draw pictures illustrating the two assertions in Problem 1.

3. For Example 1 prove that a G.T. b if and only if p(e) > q(e) in some interval
0 < e < e0 • What is the largest possible value of e0 if a = (5,- 7,1) and b = (5, -9,7)?

4. Show that the following problem is degenerate for e = 0, but is nondegenerate for
small e > 0:

5. Solve by the lexicographic simplex algorithm:

[: ~ !} = GJ. x ~ 0, x2 =min.

Start with the feasible solution x 0 = (0,1,0)T.

6. Solve by the lexicographic simplex algorithm:

[1 -2 3 1 OJ [OJ
4 5 6 0 1 x = 2 , x ~ 0, x4 + x 5 = min.

(This is a Phase I calculation that is degenerate because b has a zero component.)

104 1 Linear Programming

7. The text says" ... all inverse matrices have nonzero determinants." Why is that so?

8. In Example 2 change the component u21 from 0 to 1. Now use the lexicographic
algorithm to compute the next tableau.

*9. Prove the assertion after formula (17) as follows. Let M be a basis matrix whose
columns are m independent columns of A. Look at the vector .X(e) = M- 1b(e). If
M- 1 has columns u1, ••• , um, show that

x(e) = q + eu1 + e2u2 + ... + emum,

where q = M- 1b. The ith component of x(e) is

X;(e) = q; + BUn + e2u;2 + · · · + emuim·

This polynomial cannot be zero for more than m values of e unless the coefficients
u0 , ..• , u;m are all zero, which is impossible. Why? Deduce that the problems
Ax = b(e) are nondegenerate except for a finite number of e.

*10. In part, the duality principle says this: Suppose the primal (Ax =b, x~ 0, cr x= min.)
has no feasible solution; then either the dual has no feasible solution, or it has feasible
solutions y with bT y --+ + oo. Prove this by the lexicographic algorithm. (Look at the
result of a Phase I calculation.)

13 Multiobjective Linear Programming

Often, you would like to optimize several things at once. You want the
best car at the lowest price.

If you were a government regulator, you might want even more. This is
what you'd like to require of General Motors: Design a car that maximizes
safety, minimizes fuel consumption, minimizes air pollution, and minimizes
purchase cost.

As you know, that is impossible.
Nevertheless, decisions will be made, and some decisions are better than

others. Multiobjective decisions require compromises, or trade-oft's, in which
we are forced to compare things that are incommensurable.

What is the dollar value of a single human life? We don't even like to ask
the question. And yet we must answer that question if we design an auto­
mobile, a house, or a bridge. If you increase the cost a little, you can make it
a little safer. If, in your final design, you could have saved one more life by
spending x more dollars, you have answered the question: One life is worth
x dollars.

If you think life has infinite value, you will keep spending money until
no additional expenditure could make the car safer. Then your car would
cost more than people would pay for it. So the decision is not entirely yours;
in the end, the buyers will decide what they can afford to pay for a car-and
so they will set a dollar value on their lives.

What is a sensible way to think about these questions? As children, when
we learned arithmetic, we were taught not to compare apples and oranges;

13 Multiobjective Linear Programming 105

as adults, we do it all the time. Every day, we use our own taste, preference,
and judgment; and so we make decisions.

As a rule, we have a right to our own taste. But some decisions are just
plain stupid. These are decisions that could be improved in some respect
without loss in any other respect. For instance, if you can buy the same car
at a lower price, it would be stupid not to do so.

Economists call stupid decisions inefficient. All the other decisions are
efficient: they cannot be improved in one respect without being made worse
in some other respect.

For instance, if you could buy your Cadillac at a lower price at a different
agency, your decision is inefficient; but ifthe only car you can buy at a lower
price is a Chevrolet, your decision is efficient. Your efficient decision may
or may not be wise; you will have to decide that for yourself.

Multiobjective linear programming gives a beautiful example of these
ideas.

You remember the diet problem: Design a nutritionally adequate diet
at minimum cost. There we had a single objective: to minimize the dollar
cost. Let us now add this objective: to minimize the number of calories.
Here we are trying to design a nutritionally adequate diet for people on a
budget who want to lose weight. They know they could lose weight on filet
mignon, but they can't afford it.

As before, we have a list of n foods and a list of m nutrients. Let aii be the
amount of nutrient i in food j. For instance, aii might be the number of units
of vitamin B1 in an ounce of wheat germ; or aii might be the number of
grams of protein in an ounce of milk. Let bi be the minimum daily require­
ment of nutrient i. Let xi~ 0 be a possible quantity of food j in the diet.
Then we require

(1)

to satisfy the minimum daily requirement of nutrient i. For a nutritionally
adequate diet x, we required the inequality (1) for all nutrients i = 1, ... ,m.

For each foodj, as before, we have a dollar cost; but now we also have a
calorie cost. For one ounce of food j, let c1i be the dollar cost, and let c2i be
the calorie cost. Suppose a diet contains xi ounces of food j; this will cost
c1ixi dollars and will cost c2ixi calories. For the diet x, the total dollar cost
is 'Lclixi, and the total calorie cost is 'Lc2ixi.

Thus, the cost has two components: dollars and calories. The cost is a
vector. If C is the matrix with components cii (i = 1, 2; j = 1, ... , n), then
the cost is the vector Cx.

What makes one feasible diet better than another? Either it is cheaper
without being more fattening, or it is leaner without being more expensive.
In other words, x is a better diet than x0 if

(2)
or if

(3)

106 1 Linear Programming

Using the cost matrix C, we can express these inequalities compactly:

Cx ~ Cx0 but Cx =/: Cx0 . (4)

Then xis better than x0, because (2) or (3) must hold. In this case we call the
feasible solution x0 inefficient.

If no feasible solution x satisfies (4), we call the feasible solution x0 efficient,
and we will write

Cx0 = minimum. (5)

(Mathematically, the vector inequality u ~ vis partial ordering; it is transi­
tive and relexive, but is incomplete. The minimum (5) refers to the partial
ordering.)

And now the main question: How can we compute the efficient solutions
of a multiobjective linear program?

If we use the canonical form, this is the problem:

Ax = b, x ~ 0, Cx = min., (6)

where C is now a matrix with more than one row. Again, the feasible solu­
tion x0 is efficient (optimal) if no feasible solution x satisfies (4).

I will show you this: If x0 is efficient, then x0 solves a conventional
problem,

Ax= b, x ~ 0, (wTC)x =min., (7)

in which wTC is a single row; all components of the vector w will be positive.
Conversely, if w is any positive vector, and if x0 is optimal for the conven­
tional problem (7), then x0 is an efficient solution of the multiobjective linear
program (6). This reduces the new problem to an old one that we can solve.

Theorem. The vector x0 is an efficient solution of the multiobjective program
(6) if and only if there is a vector w > 0 for which x0 is an optimal solution of
the single-objective program (7).

PROOF. First, suppose x0 is optimal for (7), where w > 0. Suppose Cx ~ Cx0

but Cx =/: Cx0. Then
wT(Cx- Cx0) < 0,

contradicting the optimality of x0 . Therefore, x0 is an efficient solution of
(6). That was the easy part of the proof.

Now the hard part. Supposing x0 is efficient for (6), we must construct a
vector w > 0 for which x0 is optimal for (7). We can do this by the duality
theorem.

Given x0, we can regard Cx0 as a constant vector, and we can define the
following conventional linear program:

Ax= b

Cx + z = Cx0

X~ 0, Z ~ 0

LZ; =max.

(8)

13 Multiobjective Linear Programming 107

This is a canonical maximum problem to be solved for the composite vector
x,z.

Here is a feasible solution of (8): x = x0 , z = 0. I assert this solution is
optimal for (8). Otherwise, we must have :Lzi > 0, and then x would satisfy

(9)

which is impossible if x0 is efficient for (7).
If A has m rows and C has k rows, we can partition an optimal dual vector

for (8) as follows:

[-Y1• · · · '-Ym,wl, · · · ,wk] = [- yr,wr].

Then y and w satisfy
-yTA + wTC~ 0

wrl ~ [1, ... ,1],
- yrb + wr(Cx0) =min.= 0.

(10)

(11)

(12)

The dual minimum equals 0 because the primal maximum equals 0 in (8).
From (8), (10), and (12), we have

Ax0 = b, x0 ~ 0; yT A::::;; (wTC)

(wTC)xo = yrb.

Therefore, x0 is optimal for the primal problem

Ax= b, x ~ 0, (wrC)x0 =min.,

while y is optimal for the dual problem

yr A::::;; (wrC), yrb =max.

(13)

(14)

(15)

In this primal-dual pair, we regard wTC as a given row vector; it is the cost
vector in the primal (14) and is the requirement vector in the dual (15).

By (14), x0 solves the conventional program (7); by (11), the weights wi
are all positive. This ends the proof.

The meaning of the weights. Let's go back to the example of tke reducing
diet. There we had two cost components:

and

L c 1ixi =total dollars (16)
j

:L c2ixi =total calories.
j

(17)

The condition of feasibility had the form Ax~ b, x ~ 0; as you know, by
using slack variables, we could restate this in the canonical form Ax = b,
X~ 0.

According to the theorem, an efficient diet must be a feasible diet that
minimizes some linear combination of the cost components:

w1 ·(total dollars) + w2 ·(total calories) = min., (18)

108 1 Linear Programming

with positive coefficients w1 and w2 • This just says wT(Cx) =min., with
w>O.

The weights w; in (18) can't be dimensionless, because we mustn't add
dollars to calories. These would be appropriate dimensions:

dimension of w1 = 1/dollar

dimension of w2 = 1/calorie.

For instance, let us prescribe the values

w1 = 300/dollar, w2 = 2/calorie.

(19)

(20)

With this arbitrary choice of the weights, suppose we minimize the di­
mensionless linear combination (18):

(300/dollar) · (total dollars) + (2/calorie) · (total calories) = min.

You might call this linear combination a composite dimensionless cost.
According to this composite cost, adding $2 to the daily grocery bill is

exactly as bad as adding 300 calories to the daily calorie intake. How many
dollars is a calorie worth? If 300 calories are worth $2, then 1 calorie is
worth $0.067.

This shows what the weights mean. In general, the numerical values of
w; and wi assign relative dimensionless costs to units of the ith and jth cost
components. If w 1 = 300/dollar, then 300 is the dimensionless cost of one
dollar. Ifw2 = 2/calorie, then 2 is the dimensionless cost of one calorie. Thus,
if we identify dimensionless cost with relative worth, we have

worth of one calorie= 2_ = 0.067.
worth of one dollar 300

(21)

If our example had concerned traffic safety instead of reducing diets, then
traffic deaths would have replaced calories as one component of the multi­
objective cost. Then the ratio of weights would have assigned a dollar value
to a life.

The range of possible weights. If we prescribe positive weights W; for the
cost components LC;ix i• and if we solve the conventional linear program

Ax= b, x ~ 0, (wTC)x =min., (22)

then the optimal solution x0 will be an efficient solution of the multiobjective
linear program

Ax = b, x ~ 0, Cx = min. (23)

Conversely, suppose x0 solves Ax = b, x ~ 0; and suppose x0 is an
efficient solution of (23). Then we know that x0 is an optimal solution of (22)
for some w > 0.

As we've seen, the numerical ratios wifwi have meaning: they assign
worth ratios to the cost components, as in (20), (21). If the efficient solution

l3 Multiobjective Linear Programming 109

x0 uniquely determined the direction of the weight vector w, then x 0 would
uniquely determine the worth ratios wJwi.

But that is usually false; usually, x0 determines a range of possible weight
vectors. Thus, the efficient solution x0 determines a set Q such that for every
w in Q, x 0 is optimal for the conventional program (22). Then the worth
ratios wJwi will not be fixed, but may vary within certain intervals.

And so, given an efficient solution x0, we want to determine the full range
Q of possible weight vectors w. Only when we have the full range Q can we
answer this question: What are the possible relative worths that the efficient
solution x 0 assigns to the various cost components?

Suppose x0 is optimal for the conventional problem (22). Then there is an
optimal dual vector y satisfying

(24)

(In the second inequality, strict inequality">" is impossible; only"=" may
occur.) Conversely, the inequalities (24) imply that x 0 is optimal for (22).

With no loss of generality, we may assume W; ~ 1 for the dimensionless
numerical values of the positive weight components; for if pis any positive
scalar, replacing w by pw leaves the problem (22) unchanged. Therefore, w
is a possible weight vector if and only if w and some vector y satisfy the homo­
geneous inequalities (24) and the inhomogenous inequalities

(i = 1, ... 'k). (25)

In the real vector space of m + k dimensions, the composite vector
[yT,wT] ranges over the intersections of n + 1 + k closed half-spaces; the
intersection is a closed convex set r. If the set r is projected into the k­
dimensional space belonging to the coordinates w1, ... , wk, the result is a
closed convex set Q. This set Q is the range of possible weight vectors w. Thus,
each efficient solution x 0 determines a set of weight vectors.

EXAMPLE. Consider the multiobjective program

[!
2

!]x = [~J x~O,
5

r;
2

3l 1 0 .
2 ~ x=mm.

2

Here the cost has four components, as the cost matrix has four rows. I've
given you only the dimensionless cost matrix; the actual cost matrix would
attach a different dimension to each of the four rows.

We observe a feasible solution: x 0 = [1,1,0Y. We now ask two questions:
Is x 0 an efficient solution?

110 1 Linear Programming

If so, what is the set Q of its possible weight vectors?
Here x 0 is basic as well as feasible, and these are the equilibrium equa­

tions belonging to the conventional program with cost vector wT C:

[y1,y2J[! ~] = [wTc1,wTc2], (26)

where c1, c2, and c3 are the columns of the cost matrix. By the equilibrium
theorem, x 0 is optimal for (22) iff the equilibrium solution yT satisfies

[y1,Y2] [~] ~ WT c3 . (27)

Let's eliminate y by solving the equilibrium equations (26):

[] T[1 2] 1 [- 5 Yl•Y2 = w c ,c . 3 4

Now the inequality (27) becomes

1[-5 wT[c1,c2]. 3 4

or

or
WT(-c1 + 2c2) ~ WTC3 •

From the given cost matrix, this becomes

3w1 + w2 + w3 ~ 3w1 + w3 + 2w4 ,

or w2 ~ 2w4.
Since the inequality w2 ~ 2w4 has a solution w > 0, the feasible solution

x 0 is efficient.
The set Q consists of all four-dimensional vectors w satisfying the nor­

malization w; ~ 1 (i = 1, ... , 4) and solving the inequality w2 ~ 2w 4.
Interpretation. The normalization w; ~ 1 has no significance, since the

weight vector w has the same meaning as pw if p is any positive scalar.
Therefore, the possible dimensionless weight vectors are simply the vectors
satisfying

(i = 1,2,3,4).

So the given efficient solution x0 says nothing about the first and third
components of the multiobjective cost. About the second and fourth com­
ponents it says only this: one unit of the second component is worth ~ two units
of the fourth component.

And so we compare the incommensurable-apples and oranges, dollars
and calories, dollars and lives.

13 Multiobjective Linear Programming

Reference

Jared L. Cohon, Multiobjective Programming and Planning, Academic Press, 1978.

PROBLEMS

1. Draw the (feasible) solutions x of these inequalities:

3x1 + Xz ~ 6

x 1 + x 2 ~ 4

x1 + 3x2 ~ 6, x ~ 0.

Suppose the composite cost is

111

Show graphically that the efficient points x lie on the line segments pq and qr, where

p=[~J. q=[!J. r=GJ.
2. For Problem 1 find all the weight vectors w belonging to each of these efficient

points x:

(The weight w belongs to x if x minimizes wT Cx.)

3. Put Problem 1 in the canonical form (6) by introducing the nonnegative slacks
x3 , x4 , x 5 • Let x0 be the efficient point (1,3,0,0,4)r. Now write the conventional
program (8) and its dual. Find an optimal dual vector (-Y!>- y2 ,-y3 ,wl>w2), and
verify that (wl>w2) is a weight vector belonging to x0 •

4. Prove or disprove this assertion: The efficient points of a canonical multiobjective
linear program (6) constitute a convex set.

5. Prove or disprove this assertion: If the canonical multiobjective linear program (6)
has an efficient point, then it has a basic efficient point.

6. In the text Example we observed the basic solution x0 = (1,1,0f; then we proved
it was efficient by finding all its weight vectors. Now do the same thing for the basic
solution x1 = {!,O,t)r.

*7. Generalization: Let x0 be efficient for the multiobjective program Ax= b, x ~ 0,
Cx = min. Assume xJ > 0 for j e B, and let the columns ai (j e B) constitute a non­
singular basis matrix M. Let C be the matrix of columns ci (j e B). Show that the
weight vector w > 0 belongs to x0 if and only if

for all k not in B.

(Use the equilibrium theorem, where the dual solution y satisfies yrM = wrC.)

112 1 Linear Programming

8. Find all the efficient points x and all their weight vectors w:

[;
-1 0

-~}~[:} 1 0 -1 x~O

3 0 0

G
4 0 0 OJ .
5 0 0 0 x=mm.

14 Zero-Sum, Two-Person Games

In 1928, John von Neumann published a paper called (in German) "On the
Theory of Social Games." In 1944, he and the economist Oskar Morgenstern
extended this work in their famous book Theory of Games and Economic
Behavior.

Von Neumann proved a theorem on what he called zero-sum, two-person
games. His proof used the Brouwer fixed-point theorem. Using an idea of
George Dantzig, I'll prove this theorem for you by linear programming.
Dantzig's proof is better than von Neumann's because it is elementary and
because it is constructive-it shows you how to construct a best strategy.

First you have to know what von Neumann meant by a game. In The
Ascent of Man, Jacob Bronowski tells this story:

I worked with Johnny von Neumann during the Second World War in
England. He first talked to me about his Theory of Games in a taxi in
London-one of the favourite places in which he liked to talk about mathe­
matics. And I naturally said to him, since I am an enthusiastic chess player,
'You mean, the theory of games like chess.' 'No, no' he said. 'Chess is not a
game. Chess is a well-defined form of computation. You may not be able to
work out the answers, but in theory there must be a solution, a right procedure
in any position. Now real games,' he said, 'are not like that at all. Real life is
not like that. Real life consists of bluffing, of little tactics of deception, of
asking yourself what is the other man going to think I mean to do. And that
is what games are about in my theory.'

ExAMPLE 1. Let's play a game. When I say NOW, you stick out one or two
fingers. At the same instant, I will stick out one or two fingers. You try to
match me. You win if you do; you lose if you don't. This is a zero-sum, two
person game.

It's called zero-sum because the total wealth of the players stays fixed.
If we bet a penny a game either a penny goes from me to you or a penny
goes from you to me; our total wealth stays fixed.

The game is called two-person because there are just two sides. In this
example there are literally two persons, but in other examples there are two
teams, two corporations, two countries, or two alliances.

14 Zero-Sum, Two-Person Games 113

Let's call you P and me Q. You have two possible pure strategies (show
one or two fingers), and so have I. This is your payoff matrix:

one Q two
finger fingers

one finger I 1 I - I I
p two fingers - 1 1

For instance, the lower left entry means you lose one penny if you show two
fingers while I show one finger.

My payoff matrix would just be the negative of yours, since this game is
zero-sum, two-person. What I win you lose, and vice versa. For all such games
it is only necessary to write down the payoff matrix for one of the players-say
for player P.

If you know what I'm going to do, you can win a penny; if I know what
you're going to do, I can win a penny. So we say the game has no solution in
pure strategies.

Mixed strategies. Suppose we play the game many times. Sometimes you
show one finger and sometimes two. Suppose you decide ahead of time that
you're going to play your two possible pure strategies with probabilities
p1 and p2 , with p1 ~ 0, p2 ~ 0, p1 + p2 = 1. Then the vector p is called a
mixed strategy.

For instance, suppose we've decided to play a series of 100 games next
Saturday. On Friday evening you decide, correctly, that your optimal mixed
strategy is p1 = p 2 = t. You don't have to keep this secret. If you want to,
you can call me up and warn me that you've picked the mixed strategy
p1 = p2 = t; your warning won't do me any good.

What you do have to keep secret is the decisions on single plays. When we
play on Saturday, before each of the 100 games, you turn your back to me
and flip a coin so that I can't see how it lands. If it lands heads, you'll show
one finger on the next game; if tails, you'll show two fingers. During our
series, you'll be showing one finger about 50 times. I, your opponent, know
that in advance, but I don't know what you're going to do on any single play.

So what can I do to beat you? Nothing. No matter what I do, unless I
peek at the coin, your expected payoff is zero.

Whether you call me on Friday or not, I'll pick a mixed strategy for
myself. Naturally, I'll pick the mixed strategy q1 =q2 = t, and I'll plan to
pick my individual plays by covertly flipping a coin of my own. Now I don't
care what you'll do-as long as you don't peek at my coin. No matter what
you'll do, your expected payoff can't be greater than zero; in fact, your
expected payoff per game will be exactly zero.

Zero is the value of this game. This is because you can pick a mixed strategy
that will make your expected payoff at least zero, whatever I do; and I can
pick a mixed strategy that make your expected payoff no more than zero,

114 1 Linear Programming

whatever you do. Von Neumann's theorem says every zero-sum, two-person
game has a value in mixed strategies.

To continue Example 1, suppose you had picked a mixed strategy with
p1 <!.Then I should pick q1 = 1, q2 = 0, which means that I always show
one finger. Then you will match me with probability p1 < ! , and you will
not match me with probability 1 - p1 >!;your expected payoff per game is

Pt · 1 + (1 - Pt) · (-1) = 2p1 - 1 < 0.

For instance, if you had chosen p1 = 0.3, you could expect to lose about 40
cents in 100 games. Similarly, if you had picked p1 >!,I should pick q1 = 0,
q2 = 1, giving you the expected payoff

Pt · (-1) + (1 - p1) · 1 = 1 - 2p1 < 0.

Again, this is negative. The only way you can be sure to break even is to
choose p1 = !.

EXAMPLE 2. Now suppose this is your payoff matrix:

This game is a joy for you to play because you make money whatever you do.
Still, you have a best mixed strategy. Note that the payoff matrix is the sum

[-~ -1] [4 4]
1 + 4 4 .

This is the old payoff matrix with this change: 4 has been added to each
component. Whatever happened before will happen now, except that your
payoff is increased by 4 cents. Therefore, your best mixed strategy is still
p1 = p2 =!,and my best strategy is still q1 = q2 = !.

The value of this game is 4. That's the value per game to you. If you want to
play me a hundred of these games, you should pay me four dollars in advance
if you want to be fair.

EXAMPLE 3. Suppose this is the payoff matrix:

Clearly, the value of this game is 3, and every mixed strategy is optimal. In
general, though the value of the game is unique, the optimal mixed strategies
might not be unique.

EXAMPLE 4. Suppose this is the payoff matrix:

[2 1 -1]
-1 -2 3

14 Zero-Sum, Two-Person Games 115

Now you have two options (pure strategies), while I have three. If! know you
will play your first option, I will play my third; if I know you'll play your
second option, I'll play my second.

What is your best mixed strategy? What is mine? What is the value of this
game? You don't know.

I couldn't guess, either. Later we'll compute the answers by linear program­
ming. Your best strategy is

(1)

my best strategy is
(2)

the value of the game is ~.
So if you play right, you can expect to be about a penny ahead every seven

games, and there's no way I can stop you.

General discussion. Let the payoff matrix A have m rows and n columns.
We'll call p and q probability vectors, or mixed strategies, if

m n

p ~ 0, I Pi = 1; q ~ 0, I qj = 1. (3)
i= 1 j= 1

The (expected) payoff equals

m n

I I PiaiJ.qi = PT Aq. (4)
i= 1 j= 1

We'll say that the game with payoff matrix A has the value w, and we'll
call p and q optimal mixed strategies, if

m

L Piaii ~ ro
i=1

n

I aiiqi ~ ro
j=1

(j = 1, ... , n) (5)

(i = 1, ... ,m). (6)

Meaning: If the first player plays the mixed strategy p, his expected pay­
off is ~ w, whatever the second player does. Similarly, if the second player
plays the mixed strategy q, the expected payoff to the first player is ~ w,
whatever the first player does.

EXAMPLE 5. Taking A, p, and q from Example 4, please verify these
computations:

1
-2

116 1 Linear Programming

These are examples of formulas (5) and (6); they prove that OJ=~ for the
game in Example 4.

Uniqueness of the value. Suppose some mixed strategies p' and q' satisfy

L p;aii ~ OJ', L a;R} ~ OJ'.
i j

Then

~(~ p;aii)qj ~OJ', ~(~ a;jq})Pi ~OJ',
and now (6) and (5) imply

OJ ~ OJ', OJ ~ OJ',

or OJ= OJ'. So the value, if it exists, is unique.

Theorem (von Neumann). Let A be any real matrix. Then the zero-sum, two­
person game with payoff matrix A has a value OJ satisfying (5) and (6) for some
mixed strategies p and q.

PROOF. With no loss of generality, assume all aii are positive. Otherwise, if
aii +IX is positive for all i andj, then (5) and (6) may be replaced by

L P;(aii +IX)~ OJ+ IX, L(aii + 1X)qj ~OJ+ IX.
i j

(This is what we did in Example 2, with oc = 4.)
Assuming all aii > 0, we will construct a number OJ > 0 satisfying (5) and

(6). First we define the unknowns

u; = p;/OJ (i = 1, ... , m), vj = qj/OJ (j = 1, ... , n). (7)

Then (5) and (6) become
m

L u;aii ~ 1 (j = 1, ... , n)
i= 1

n

L aiivj ~ 1
j= 1

(i = 1, ... , m),

with u ~ 0, v ~ 0, and with

m n 1
L u; = L vj = -.
i=1 j=1 OJ

(8)

(9)

The required vectors u and v must solve the dual linear programs with
the requirements (8) and with the objectives

m n

L u; = minimum, L vj = maximum. (10)
i=1 j=1

14 Zero-Sum, Two-Person Games 117

By the duality theorem, these programs do have optimal solutions be­
cause they both have feasible solutions. (Since all aii are positive, a vector u
is feasible if all its components are large; the vector v = 0 is feasible for the
dual.) Again by the duality theorem, optimal vectors u and v do satisfy the
equality (9).

Taking w, u, and v from (9), we see that w, p, and q satisfy von Neumann's
theorem if p = wu and q = wv.

EXAMPLE 6. To illustrate the solution of games by linear programming, let's
first consider the payoff matrix in Example 1 :

[1 -1]
A1 = -1 1 .

To get a matrix with positive components, we can add any number 0(> 1
to all the components. If we use 0(= 4, we get the payoff matrix

A=G ~J
which occurred in Example 2; the new value equals 0(plus the old value,
that is, w = 0(+ w1 = 4 + m1.

The solution of the dual programs (8), (9), (10) is

UT = [!,!], VT = [!,!],

Therefore, w = 4, and so w 1 = 0 for the original game. To get the best mixed
strategies, we compute

PT =(OUT= 4[!.!] = [t,tJ
and, similarly, qr = wvr = [t,tJ.

ExAMPLE 7. Let's solve Example 4 by linear programming. Call the matrix
A1 and the value w 1 • To get a positive matrix A, add 0(= 3 to every compo­
nent; then

[5 4 2] A= 2 1 6' (11)

with value w = 3 + w 1•

This is the linear programming problem for u:

ur A;:;,:: [1,1,1], u;:;,:: 0; u1 + u2 =min.=!.
(!)

(12)

If this were a large problem, we would restate it as a canonical minimum
problem and solve it by the simplex method. But for this small problem,
we'll do better by judgment.

118 I Linear Programming

From the original problem, we judge it unlikely that the best strategy for
either player is a pure strategy. And so we expect both components of u
(or p) to be positive, and we expect at least two components of v (or q) to be
positive. If two components of the dual vector v are positive, then two of the
primal inequalities (12) must be equalities in an optimal solution.

There are only three possibilities for two primal equalities in (12); let's
try to be lucky. (When I prepared this example, I tried the possibilities in the
wrong order, but I'll save you the trouble.) Let's solve the second and third
primal inequalities as equalities:

[ul>u2] [; ~] = [1,1].

[ut>u2] = lz[5,2].

Does this satisfy the first primal inequality? Yes:

[ul,uz] [~] = ~~ > r
If vis optimal for the dual, the equilibrium theorem requires v1 = 0. Let's

solve for v2 and v3 :

and so
(13)

The equilibrium theorem assures us that u and v are optimal. The com­
mon value of their objective functions is

(14)

For the game, the optimal strategies are p = wu and q = wv; so (12), (13),
and (14) give

T-[21.] T-[Q~J.] p - 7>7 ' q - •7•7 • (15)

From (14) we have w = 2l, which is the value for the shifted payoff matrix A,
but not for the original matrix A1 • After the definition (11), we wrote the
equation w = 3 + w1 , and we will now use it to get the value w1 = -+.

This is a good example. The value t and the optimal strategies would be
hard to guess. Note that the second player should never play his first option,
but should only play his other two options with relative frequencies 4: 3.

You might object that the game of Example 7 is unfair, since it gives an
advantage to the first player. That is irrelevant for this reason: Any two­
person game can be symmetrized by requiring the competitors to play both

14 Zero-Sum, Two-Person Games 119

sides equal numbers of times. If you and I play the game 20 times, we'll
alternate the roles P and Q, so each of us will have the advantage exactly
10 times. Each pair of games constitutes a single symmetric game, which is
obviously fair.

Symmetric games look exactly the same to both players. If the payoff
matrix is B, then B must be a square matrix with

(16)

For instance, suppose b35 = $7. That means, if P plays option 3 while Q
plays option 5, then P wins $7 from Q. Therefore, if Q plays 3 while P plays
5, then Q wins $7 from P, and so b53 = -$7.

Let us now prove what must be true: The value of a zero-sum symmetric
game is zero, and an optimal strategy for one player is an optimal strategy for
the other.

Let w be the value; and let p and q be optimal mixed strategies for the
first and second players, respectively. We will prove w = 0, and we'll prove
p and q are optimal for the second and first players, respectively. (We can't
hope to prove q = p, because optimal strategies are not necessarily unique.)

If er = (1,1, ... , 1), then we assume

prB;:.: wer, Bq::::; we.

For all x we have xrBx = 0, because Br = -B. Therefore,

0 = pTBp;:.: weTp = W, 0 = qTBq::::; wqTe = W,

which proves w = 0. Now, taking transposes in (17), we get

-Bp = BTp;:.: 0, -qTB = qTBT::::; 0.

Multiplying both inequalities by -1, we get

Bp::::; 0, qTB;:.: 0,

(17)

(18)

which proves p and q are optimal for the second and first players, respectively.

In (18) we found a simple characterization of an optimal strategy for a
symmetric game: If B = - Br, then the probability vector p is optimal for
both players iff Bp ::::; 0.

This gives us a converse of our solution of games by linear programming.
We will now prove this: Every solvable linear program is equivalent to a
symmetric zero-sum, two-person game.

Let's write the program as a standard minimum problem:

Ax ;:.: b, x ;:.: 0, cr x = min.

Here's the dual problem:

yr A ::::; cr, y ;:.: 0, yrb = max.

120

Feasible solutions x and y and optimal if and only if

CT X~ yTb,

where, in fact, only the "=" may occur.

1 Linear Programming

We can summarize the conditions of feasibility and optimality as follows:
For x ~ 0, y ~ 0, we have

Here the matrix-call it B-has m + n + 1 rows and columns if A has m
rows and n columns. The matrix B is antisymmetric: B = -Br. The vector
has m + n + 1 non-negative components; the last component equals l.lfwe
divide the vector by the sum of its components, we get a probability vector p.
Then Bp ~ 0 where B = - BT, and so we've found a symmetric game
equivalent to the given linear program.

Bluffing. The most interesting thing about games like poker is bluffing.
Under what conditions and how often should you bluff? Your answer will
depend partly on your reading of the character of the other players, but will
also depend on your intuitive grasp of the theory of mixed strategies.

Bluffing occurs in business and in diplomacy. In his book TheN egotiating
Game, Dr. Chester Karrass tells the story of Hitler and Chamberlain at
Munich. On pp. 8-10 he has an essay: "The Rape of Czechoslovakia." I'll
summarize it for you. Hitler had everything against him; he had every reason
to back down. But he bluffed, and Chamberlain failed to call his bluff. Karrass
says at the end:

"Chamberlain, businessman turned politician, had lost the greatest nego­
tiation of all time. As a consequence, 25 million people were soon to lose
their lives."

Games like diplomacy and poker are too complicated to analyze precisely.
But still, game theory gives us, if not knowledge, at least wisdom. Here's an
example by S. Vajda:

EXAMPLE 8. You and I will play a simple bluffing game. The first thing we
both do is put down a small positive ante a. Then you draw one card from
an ordinary deck; after looking at it, you put it face down without showing
it to me. We'll say black cards are high, and red cards are low.

Here are the rules. After you draw, you may bet or fold. If you fold, you
lose the ante a. If you bet, then I may fold or I may call. If I fold, I lose the
ante a, whether you've drawn black or red. If I bet, then you win the amount
b if you drew a black card, or I win the amount b if you drew a red card. (The
ante a and bet size b are fixed in advance, with 0 < a < b.)

Your pure strategies. If you draw black, you will certainly bet-there's no
question about that; you will bet and win at least the ante a. The only ques-

14 Zero-Sum, Two-Person Games 121

tion is this: Will you bet if you draw red? That would be the bluff strategy.
If you fold when you draw red, that is the fold strategy. (Remember, even
if you're playing the fold strategy, you will bet if you draw black.)

My pure strategies. You've just bet. What should I do? If I know you
only bet on black, I will fold; but if I think you may bluff and bet on red,
I may decide to call you. I have two pure strategies: the call strategy, in which
I will call you if you bet; and the fold strategy, in which I will fold if you bet.

Can we write down your payoff matrix for this bluffing game? Sure we
can. Here it is:

call fold

bluff [0 a]
fold b- a 0

2

Let me explain. As usual, let's call the components aii. For instance, a21

is your average payoff if you play your fold strategy while I play my call
strategy. I'll explain all four components:

a11 = 0: If you draw black, you will bet, I will call, and you will win b. If you
draw red, you will bet (bluffing), I will call, and you will lose b. Since black
and red draws are equally likely, your average payoff is !(b - b) = 0.

a12 =a: Whatever you draw, you will bet, I will fold, and you will win the
ante a.

a21 = (b- a)/2: If you draw black, you will bet, I will call, and you will
win b. If you draw red, you will fold, and you will lose the ante a. Your
average payoff is (b - a)/2.

a22 = 0: If you draw black, you will bet, I will fold, and you will win a. If
you draw red, you will fold, and you will lose a. Your average payoff is zero.

Optimal mixed strategies. If you always play your bluff strategy, I will
always play my call strategy; if you always play fold, I will always play fold.
So, in pure strategies I can hold your average payoff down to zero.

But you can win with a mixed strategy. Using linear programming, we
can easily compute your best mixed strategy p, my best mixed strategy q, and
the value w. Your expected payoff will be w each time we play; I can't lower it,
and you can't raise it.

You can compute these values:

b-a ~ ~ b-a
Pl = b +a' P2 = b +a; ql = b +a' q2 = b +a; (19)

and w = a(b - a)/(b + a). Using the payoff matrix A, please verify the
inequalities

pTA~ (w,w), Aq ~ (:).

(Both inequalities will turn out to be equations.)

122 I Linear Programming

I promised you wisdom from this example, and now you'll get it. Your
optimal bluffing frequency depends on the bet-to-ante ratio r = bja. We
assumed r > 1. As r goes from 1 to oo, p1 goes monotonely from 0 to 1: the
bigger r is, the more often you should bluff.

As for me, if I look at q2 I see this: The bigger r is, the more often I should
fold.

The value w depends on a and r:

b-a r-1
w=a--=a·--.

b+a r+1
(20)

As a function of r, as r goes from 1 to oo, w increases monotonely from 0 to a.

Many-person games. Poker usually has more than two players. How
should you play n-person games if n is greater than 2?

Here the theory is very complex. It depends on your assumptions about
collusions and side payments. If you want to learn the main ideas simply,
it's hard to beat the old book by Luce and Raiffa.

When I was a college freshman, I had two roommates, Fritz and Ted. With
regard to all questions (Shall music be played? Shall the lights be on at
2 A.M.?) Fritz and Ted and I played a 3-person game you might call majority
rule, or democracy without the Bill of Rights. Superficially, the game appeared
symmetrical, but I soon learned that Fritz-and-Ted together couldn't be
beat. It was a lesson in 3-person game theory.

Later, I'll prove the Nash equilibrium theorem for you. This theorem
assumes there are no collusions, but it applies to most n-person games, even
to nonzero-sum games.

Nonzero-sum games. Zero-sum games are not the most important games.
The stock market may be a zero-sum game, but the stock market is not the
economy.

If I buy 100 shares of IBM stock, I may think I've made an investment.
Ignoring the broker's fees, I play a zero-sum game with the seller. If the price
goes up, I'll win and the seller will lose; if the price goes down, I'll lose and the
seller will win. One of us is going to profit at the other's expense.

Economists don't call stock purchases investments (they call them welfare
transfers, or something like that). Stock purchases are no part of the gross
national product. To an economist, an investment is a purchase made to
increase the productivity of a business. If I buy an IBM computer to make my
business more productive, that is an investment. It's good for IBM and good
for me. It's even good for you if you're one of my customers. In a wise business
transaction everyone comes out ahead. By and large, business is a positive­
sum game.

Disarmament: a negative-sum game. But not all is well in the world. For
instance, the United States and the Soviet Union divert much of their eco­
nomic productivity from the civilian sector to the military. Pacifists say this
is dangerous; realists say it is necessary. But everyone agrees that it's wasteful.

14 Zero-Sum, Two-Person Games 123

Poor people in both countries-and rich people, too-would be better off
if both countries disarmed.

So why don't they? Let's see if we can understand the paradox of disarma­
ment by making a simple mathematical model.

To begin, we'll assume that the world contains only two countries, the
U.S. and the U.S.S.R., so we don't both have to worry about disarming and
then getting bombed by China. Second, we'll assume that neither the U.S.
nor the U.S.S.R. is totally wicked, stupid, or crazy; we'll assume both coun­
tries act in their own interest. Last, we'll make the model symmetric. This is
what Bertrand Russell once called a false "love of symmetry" in discussing
these two countries, but you'll see that the symmetry won't affect our main
conclusion.

Both countries have two pure strategies: arm and disarm. If we both arm
(which is what we do in fact), let's say we both get payoffs equal to minus
$200 billion, if that is the annual defense budget in each country. If we both
disarm, both our payoffs rise to zero.

Suppose we disarm while they arm. Then our payoff could go to minus
infinity, or something pretty near. Meanwhile, their payoff could become
positive-say $100 billion. Even short of war, they could expect to win a
great deal from us by intimidation.

By a false love of symmetry, we'll assume exactly the reverse if we arm
while they disarm. We'll assume our payoff becomes $100 billion while theirs
goes to minus infinity.

Since the game isn't zero-sum, we have to write down two payoff ma­
trices-one for us (U.S.) and one for them (U.S.S.R.). We'll do this, in effect,
by writing four entries of the form a\b, where a is our payoff and b is theirs. So
here are the payoffs for the four possible pure-strategy pairs:

U.S.
arm

disarm

U.S.S.R.
arm disarm

-200\-200 + 100\- 00

- oo\ + 100 0\0

At present, we and the Russians are in the upper left box, since we are both
playing arm. We're both getting payoff -200. We would both be better off
if we both played disarm, which would put us in the lower right box.

But whatever they do, we are better off if we arm. If they arm, we must arm;
if they disarm, we are still better off if we arm. Similarly, whatever we do, they
are better off if they arm. And so we both wind up in the upper left box.

In logic, this is an example of the fallacy of composition: what's best for
the parts is not always best for the whole. This is the underlying paradox of
morality. We would all be better off if we were all good, but then it would pay
each one of us to cheat a little.

The bad news from game theory is this: The upper left box is a stable Nash
equilibrium. I hope I've roused your interest.

124 I Linear Programming

References

1. John von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann., Vol. 100
(1928) pp. 295-320.

2. John von Neumann and Oskar Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, 1944.

3. George Dantzig, "A Proof of the Equivalence of the Programming Problem and the
Game Problem," in Koopmans (ed.) Activity Analysis of Production and Allocation,
pp. 330-335, Wiley, 1951.

4. Jacob Bronowski, The Ascent of Man, p. 432, Little Brown and Company, 1973.
5. Chester Karrass, The Negotiating Game, The World Publishing Co., 1970.
6. R. Duncan Luce and Howard Raiffa, Games and Decisions, Wiley, 1957.
7. Lloyd Shapley and Martin Shubik, Game Theory in Economics, Rand Corporation

Reports No. R-904/1, 2, 3, 4, 6 (1971-1974).
8. Bertrand Russell, "What Is Freedom?" in Fact and Fiction, p. 56, Simon and

Schuster, 1962.
9. S. Vajda, Theory of Games and Linear Programming, Wiley, 1956.

PROBLEMS

1. Let 0::::;; x::::;; I and 0::::;; y::::;; 1. Let 1/f(x,y) = (x- yf. Show:

min 1/f(x,y) = 0 for all x,
y

max 1/f(x,y) ~ i for ally.
X

Deduce the strict inequality

m:n[m:x 1/f(x,y)] > m:x[m:n 1/J(x,y)J.

2. In general, let X and Y be closed, bounded subsets of Rm and R"; and let 1/J(x,y)
be continuous and real-valued for x e X, y e Y. Prove the inequality

m:n[m:x 1/f(x,y)J ~ m:x[m:n 1/J(x,y)J.

3. The minimax property of a matrix game: Let X be the probability vectors in
RM (x1 ~ O,l'x1 = 1); let Y be the probability vectors in RN. Let A be an m x n
matrix, and define the continuous function 1/J(x,y) = xrAy. Let p, q, w be optimal
strategies and the value satisfying (5) and (6). For x eX andy e Y, show

min [max xrAy] ::::;; max xr Aq ::::;; w,
y X X

max[min xrAy]~ min xrAy~ w.
X y y

Show that all these inequalities are equalities by using the result of Problem 2.

4. In The Ascent of Man, J. Bronowski presents a version of the game called Morra.
Each player shows one or two fingers, and each player guesses the number of
fingers the other player will show. Thus, each player has four pure strategies:

14 Zero-Sum, Two-Person Games 125

(show, guess) = (1,1), (1,2), (2,1), (2,2). The object is to guess how many fingers your
opponent will show. The payoff is zero if both players guess right or if both guess
wrong. But if only one player guesses right, the payoff to him, from his opponent,
equals the sum of the numbers shown by both players. This is a zero-sum, sym­
metric two-person game; find the payoff matrix. Answer:

~-~ A=
3

0

2 -3

0 0
0 0

-3 4

5. (Continuation.) Bronowski says that a best mixed strategy for Morra has relative
frequencies 0, 172 , 152 ,0. Prove Bronowski is right: verify Aq ~ 0, pTA~ 0 if p = q =
Bronowski's strategy.

6. (Continuation.) Show that Bronowski's strategy isn't the only optimal strategy:

show that p is optimal iff p1 = p4 = 0 and -1 ~ P2/P3 ~ l
7. (Continuation.) Suppose you play Bronowski's optimal strategy while I play the

mixed strategy (0.1,0.4,0.3,0.2). On the average, how much do you expect to win
per game?

8. Use linear programming to solve the game with payoff matrix

A= [5 -7].
-9 4

("Solve the game" means: find the value wand optimal mixed strategies p, q.)

9. Use linear programming to solve the game with payoff matrix

A= [-2, 3,-1].
1,-1, 2

10. Let a symmetric game have payoff matrix A= -Ar. Use the Farkas theorem to
prove there exists a vector q satisfying

Aq ~ 0, L:q1 = 1, q ~ 0.

(Since every matrix game can be symmetrized, this gives another proof of von
Neumann's theorem.)

11. The game hide and seek (von Neumann): Given is an m x n matrix B with com­
ponents bii > 0. Player P picks a row or a column, while player Q picks a single
component. Suppose Q picks brs; then Q must pay P the amount b,s if P picks
row r or column s, but the payoff is zero if P picks a row or a column not con­
taining b,s· (Q hides, P seeks.) Player P has m + n pure strategies, while player Q
has m · n pure strategies. Suppose P picks row i with probability p;, columnj with
probability p~{L:p; + L:pj = 1); suppose Q picks component b;1 with probability%·
What is the expected payoff to P from Q? Write the 5 x 6 payoff matrix A if B
is the matrix

126 1 Linear Programming

12. (Continuation.) For hide and seek take the matrix

Find the 4 x 4 payoff matrix A, and solve the game. [Answer: w = 0.8; pT =
(0.4,0.1,0.4,0.1); qT = (0.8,0,0,0.2).]

13. A multistage game: Each player is dealt three cards numbered 1, 2, 3. Three tricks
will be played. Each player plays one of his cards for the first trick; after observing
the first trick, each player plays one of his remaining two cards; then the last play
is forced. The payoff is some function of the cards played. Show that each player
has 24 pure strategies. (Hint: 24 = 3 · 23.)

*14. Generalize the last problem: let each player hold cards numbered 1, 2, ... , n.
Write a formula for the number of pure strategies for each player.

15. For hide and seek (Problem 11) show that player Q's optimal mixed strategy has
the components qii = wvii• where v solves

n

L b;jVij ~ 1 (i = 1, ... ,m)
j= 1

m

L buv;i ~ 1 (j = 1, ... ,n)
i= 1

vii ;;::. 0, L L vii = max = 1/w.
i j

(If we set xu= buvu, this linear program becomes what we shall later call an

optimal assignment problem.)

16. Use linear programming to solve the game with payoff matrix

A=[~ ~l
where a and c are positive. Set c = t(b - a), and apply your solution to obtain
formula (19) for Vajda's example of bluffing.

17. Find the 6 x 6 payoff matrix B for a symmetric game equivalent to the linear
program

[3 2 1] [7] .
1 1 5 x ;;::. 3 , x ;;::. 0, [7,5,9]x = mm.

Show that the optimal solution of the program is x0 = (1,2,0f by solving the
equilibrium equations. Now write the optimal mixed strategy p = q for the game;
verify Bq ~ 0.

18. For the nonzero-sum game disarmament, what are the expected values to the two
players if they use mixed strategies p and q? If the first player plays p, what strategy
is optimal for the second player?

15 Integer Linear Programming: Gomory's Method 127

15 Integer Linear Programming:
Gomory's Method

In canonical form, a linear programming problem looks like this:

Ax = b, x ~ 0, cT x = min. (1)

If the unknowns xi are required to be integers, we have a problem in integer
linear programming.

The canonical program (1) is a minimum problem. On any minimum
problem the effect of a new requirement is this: The new problem may have
no solution; or if a solution does exist, the new minimum will be greater than
or equal to the old minimum.

ExAMPLE 1. The canonical program

2x 1 + 4x2 = 5, x ~ 0, x 1 + x2 = min.

has the solution x1 = 0, x 2 = i. If we require x1 and x 2 to be integers, the
problem has no solution. In the theory of numbers, equations in integers are
called diophantine equations; the existence of solutions depends on divisibility
relationships.

EXAMPLE 2. The canonical program

2x 1 + 4x2 = 6, x ~ 0, x 1 + x 2 =min.

has the optimal real solution x 1 = 0, x 2 = !; the minimum equals l The
integer program has the solution x1 = 1, x2 = 1; the new minimum equals 2.

EXAMPLE 3. Here is the knapsack problem. Given positive values vi and
weights wi for j = 1, ... , n, we want to find integers xi satisfying

W1X1 + · · · + WnXn ~ /3, Xj ~ 0,
(2)

Here xi will be the number of objects of typej, each of which has value vi and
weight wi. The number f3 is a given positive bound on the total weight. The
total value Evixi is to be maximized.

The knapsack problem is difficult only because of the integer requirement.
If we drop the integer requirement, the solution is this: Take as much as
possible of an object that maximizes the value-to-weight ratio vmlwm. Then
the optimal solution has the components

Xm = /3/wm, where vm/wm = max(vi/wi)

xi= 0 if j :f:. m.

(If several indices m maximize vmlwm, pick any one of them.)

(3)

128 I Linear Programming

In real numbers the knapsack problem (2) is a trivial standard maximum
problem. If we call this the primal problem, then formula (3) gives the optimal
primal solution, and

Y1 = vmfwm

gives the optimal dual solution, satisfying

(j = 1, ... , n), y 1): 0, f3y 1 =min.

The optimal value for primal and dual is f3vm/wm.
For instance, look at this problem:

51x1 + 50x2 + 50x3 :::;; 100, xj): 0

150x1 + 100x2 + 99x3 =max.

(4)

(5)

Herem= 1 gives the maximum value-to-weight ratio 150/51, and the optimal
real solution is

x1 = 100/51, x2 = 0, x3 = 0;

the total value is 15,000/51 = 294.12.
In integers the solution is entirely different; it is

x 1 = 0, x2 = 2, x3 = 0.

(6)

(7)

The total value goes down to 200. Remember this example when you're
tempted to solve an integer program by first solving in reals and then
rounding off. If you round off the real solution (6), what you get is nothing
like the integer solution (7); and if you round off the real maximum 294.12,
the result is far from the integer maximum 200.

The next example will introduce the cutting-plane method. The idea is to
convert the integer requirement to new equation constraints. The successive
extended linear programs are solved for real solutions. When finally an
optimal real solution happens to have all components integers, this solution
must be optimal for the original integer program.

EXAMPLE 4. Consider this problem in integers:

2x 1 - x2 = 5, x): 0, x1 + x2 =min. (8)

In real numbers the optimal basic solution is x 1 = 1-, x2 = 0. Of course, you
can guess the solution in integers, but pretend you can't, or you'll ruin my
example.

In real numbers, the optimal basic variable is x 1• The basis matrix has only
the component 2; the inverse has only the component t. Multiplying the
constraint equation by the inverse of the basis, we get

(9)

The fractional parts of the non-basic coefficients are

{ -t} = t. H} = t.

15 Integer Linear Programming: Gomory's Method 129

(Every real number .A. equals an integer [.A.] plus a fractional part {.A.} with
0 ~ {A} < 1.) If x 1 and x2 are integers, equation (9) implies the congruence

(10)

where the congruence sign "=" means "differs by an integer from." (For
example, 2.718 = 0.718 = - 39.282.) Thus, the congruence (10) is equjvalent
to an equation

(z 1 = integer). (11)

But we have required x 1 ~ 0, x2 ~ 0. Therefore, the left-hand side must be
~ 0. Therefore, the integer z 1 must be ~ 0. This is the point. The constraint (11)
is new: the old optimal real solution (x 1 = 1, x2 = 0) doesn't solve the new
constraint, but an optimal integer solution must solve it.

So now we have an extended problem, with a new equation and a new
unknown:

2x 1 - x2 = 5

-z1 +!xz=! (12)

x 1 + x2 =min

An optimal integer solution of the original problem (8) must be an optimal
integer solution of (12).

For the extended problem (12) we compute the optimal real solution,
obtaining

(13)

(The optimal dual solution is y 1 = t, y2 = 3, and the primal-dual optimum is
cT x = yTb = 4.) The optimal real solution (13) happens to have integer
components. Therefore, it is an optimal integer solution of the extended
problem (12); and therefore, it is an optimal integer solution of the original
problem (8).

Gomory's cutting plane. In general, consider the canonical program (1) in
integers. Suppose all the given components a;i, b;, ci are integers; suppose
the set of real feasible solutions is bounded; and suppose an integer feasible
solution exists.

Without loss of generality, suppose x b ... , xm are the basic variables in an
optimal basic real solution x 0 (with xJ = 0 for m < j ~ n). If all the x? are
integers, we're done; for then x 0 is a vector with integer components that is
optimal over the larger class of reals. (If the best tennis player in the U.S.
lives in Nevada, he must be the best tennis player in Nevada.)

But suppose the optimal basic real vector x0 has some component that is
not an integer, say x~ ¥- integer. Then we will construct a new equation that
x 0 does not satisfy but that an optimal integer solution must satisfy.

First, we multiply the system Ax = b by the inverse of the basis matrix.
If the basic variables are Xt. ... , xm, the result has the form

X;+ L tiixi = t;o
j>m

(i = 1, ... ,m). (14)

130 1 Linear Programming

The numbers t;i are components of the simplex tableau. If we set xi= 0
for j > m, we get the basic components of the optimal real solution x0 :

x? = t;0 ~ 0 (i = 1, ... ,m).

We assume that t 10 =F integer.
Look at the single equation

x 1 + L t 1ixi = t 10 .
j>m

If this equation is satisfied by integers Xt.Xm+l> ..• ,xn, then we have the
congruence

(15)

as in the example (10). The right-hand side satisfies 0 < {t10} < 1; all terms
on the left are ~0 because the problem (1) requires x ~ 0. (All the fractional
parts { t;J are ~ 0 by definition.) Therefore, either the two sides of the con­
gruence are equal or the left is bigger than the right by an integer. This gives
the new constraint

L {tti}xi = {tto} + z1 (16)
j>m

as in the example (11); the new unknown, Zt. is an integer.
Please note this: The old optimal real solution x0 fails to solve this

constraint but an optimal integer solution must solve it.
If we append the equation (16) to the original system of equations, we

obtain an extended system of equations, with one more equation and one
more unknown, as in the example (12). To continue, we compute an optimal
real solution x 1 for the extended system. If all components of x 1 are integers,
then x 1 provides an optimal integer solution for the original problem. If not,
we get a new inequality exactly as we got the inequality (16). This gives a
second extension. And so on.

Ralph Gomory proved that this process succeeds in a finite number of
steps. Finally one gets an extended problem with an optimal real solution xP
whose components are all integers. Then xP must be an optimal integer
solution of the original problem.

The proof of Gomory's theorem is difficult. If I could simplify it, I would
present it to you. Instead, I'll give you references to some of Gomory's
papers and to some texts on integer programming.

As you saw, the general problem of integer programming is difficult
because even if all the data are integers, the optimal real solution generally
isn't a solution in integers. But there is an important class of integer programs
for which an optimal real solution is a solution in integers. These problems
are called network flows; I'll tell you about them next.

15 Integer Linear Programming: Gomory's Method 131

References

1. R. E. Gomory, "An Algorithm for Integer Solutions to Linear Programs," in Recent
Advances in Mathematical Programming (eds.: Graves and Wolfe), McGraw-Hill,
1963.

2. R. E. Gomory, "All Integer Programming Algorithm," in Industrial Scheduling (eds.:
Muth and Thompson), Prentice Hall, 1963.

3. T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, 1969.
4. H. M. Salkin, Integer Programming, Addison-Wesley, 1975.

PROBLEMS

1. Consider the knapsack problem (5) with the added constraints xi o::;; 1 (j = 1, 2, 3).
Find the optimal real solution x0 , and find the optimal integer solution x1.

*2. Consider the general knapsack problem (2) with the added constraints xi o::;; 1
(j = 1, ... , n). Find the optimal real solution x0• Write the dual program, and find
the optimal dual solution y0 ; verify the equality of the primal and dual optimal
values. Would you expect equality of the primal and dual optimal values for integer
programming?

3. Suppose x1o x 2 , x 3 are integers ~0 satisfying

21.7x1 - 18.2x2 - 19.4x3 = 5.3
Then show

7x1 + 8x2 + 6x3 = 3 + 10z1

where all four unknowns are integers ~0.

4. Consider the problem

21.7x1 - 18.2x2 - 19.4x3 = 2.3

Find the optimal integer solution.

5. Consider the linear program

e ~ !} = [:1]. X~ 0, X2 =min.

Show that the optimal real solution is x0 = (3,0,t)r. Multiply by the inverse basis
matrix to obtain

x 1 + x 2 = 3

X3 + tx2 = t
Show that the last equation for integers ~0 implies x2 = 1 + 3z1 where x2 and z1

are integers ~0.

6. (Continuation.) Consider the linear program

[i: ~ _f]•~[~:J no, x,~mm.

132 1 Linear Programming

Show that an optimal real solution x has the components 2, 1, 0, 0. Now find an
optimal integer solution x for Problem 5.

7. The knapsack problem in formula (5) is a standard maximum problem. Restate the
problem as a canonical minimum problem, and find the optimal integer solution
by Gomory's method.

16 Network Flows

Network flows are integer linear programs with an extraordinary property:
some optimal real solution is an optimal integer solution.

The original theory was discovered by L. R. Ford and D. R. Fulkerson.
It has its own theorems and its own algorithms-you don't have to use the
simplex method. It has applications ranging from industrial scheduling to
combinatorial analysis. But mainly, it's fun.

The basic mathematical model is a capacitated network (N,k). The network
N is just a finite set of points

N = {s,a,b, ... ,s'}.

Two of the points are special: the source, s, and the sink, s'. The points in N
are sometimes called nodes. If x andy are distinct nodes, we'll call (x,y) an
edge. The edge (y,x) is different from the edge (x,y). For each edge, we define
a capacity k(x,y) ~ 0. We suppose k takes integer values; we don't require
k(y,x) = k(x,y).

EXAMPLE 1. In Figure 1 you see a capacitated network.

s

a

b

Figure 1

s'

This network has four nodes: s,a,b,s'. Therefore, the number of directed
edge must be 4 · 3 = 12, and for each edge we must have a capacity k. In
Figure 1 you see only 6 capacities; those you don't see are assumed to be
zero. For instance, you see k(s,a) = 5; you don't see k(a,s), so it's zero.

Flows. Suppose (N,k) is a capacitated network with at least one node
besides the source and the sink. A flow f(x,y) is an integer-valued function

16 Network Flows ·

on the edges (x,y); it must have these properties:

(i) f(x,y) = - f(y,x)
(ii) f(x,y) ~ k(x,y)

(iii) LyeN f(x,y) = 0 if x -:f. s or s'.
(iv) f(s,x) ~ 0; f(x,s') ~ 0.

133

Property (i) says that a positive flow from x to y is considered a negative
flow from y to x. Property (ii) says that the flow from x to y shouldn't exceed
the capacity of that edge. Property (iii) is a conservation law for the interior
nodes x: the net flow out of x should be zero. Property (iv) says the flow
from the source may be positive, but not negative; and the flow into the sink
may be positive, but not negative.

As you see, f = 0 is always an admissible flow. The value of this flow is
zero.

The value of a flow f is defined as

v(f) = L f(s,x). (1)
X

This is the total flow out of the source. As you'll soon see, it's also the total
flow into the sink.

EXAMPLE 2. Figure 2.1 and 2.2 give admissible flows for the capacitated
network in Figure 1. The first flow has value 1; the second flow has value 4.

s

s

a

b

Figure 2.1

a

b

Figure 2.2

s'

s'

134 I Linear Programming

The second flow is a maximal flow: its value is as big as possible. If you
don't believe it, look at Figure 1 and see if you can do better.

Draw a curve around the nodes sand a, as in Figure 2.3; call this subset C.
If you look at the capacitated network in Figure 1, you'll see that the total
capacity out of Cis

k(s,b) + k(a,b) + k(a,s') = 1 + 2 + 1 = 4. (2)

This must be an upper bound for the value of any admissible flow. Since the
flow in Figure 2.2 achieves this value, it must be maximal.

b

Figure 2.3

Notation. If A and B are subsets of nodes, we define

k(A,B) = L L k(x,y),
xeA yeB

s'

(3)

and we define f(A,B) the same way. In this notation property (iii) becomes

f(x,N) = 0 if x =F s or s',

and the value of the flow is v(f) = f(s,N). We always assume k(x,x) =
f(x,x) = 0. If B =A, we must have f(A,A) = 0; that follows from the anti­
symmetry property (i).

Cuts. Let C be a subset of the nodes that includes the source but not the
sink. Let C' be the complement N - C. Thus, C' includes the sink but not
the source. The complementary pair C, C' is called a cut in the network N.

The capacity of the cut is k(C,C'). Iff is a flow in the capacitated network
(N,k), then f(C,C') is the flow from C to C', and it must satisfy the inequality

f(C,C') ~ k(C,C'). (4)

That is because we require f(x,y) ~ k(x,y) for every edge.
Different flows have different values; different cuts have different capaci­

ties. We called a flow with maximum value a maximal flow; we'll call a cut
with minimum capacity a minimal cut. Later, we will prove the max-flow,
min-cut theorem:

16 Network Flows 135

Theorem. Let (N,k) be a capacitated network. Then fo is a maximal flow and
C0 , C~ is a minimal cut if and only if

(5)

First, let me give you an example of different cuts and different flows in
a single capacitated network.

EXAMPLE 3. From Figure 1 let us tabulate all the cuts C, C' and all their
capacities, k(C,C').

c C' k(C,C')

s a,b,s' 5+1=6
s,a b,s' 1+2+1=4
s,b a,s' 5+4+4=13
s,a,b s' 1+4=5

Evidently, the second cut is minimal; its capacity equals 4.
In Figure 2.1 and 2.2 you see two different flows in this network. The

first flow has value 1; the second has value 4. The second flow is maximal, as
we showed after equation (2). As you see, the value of the maximal flow equals
the capacity of the minimal cut.

In Figure 2.3 the subset C and its complement are the minimal cut. For
the optimal flow, in Figure 2.2, you see that the flow across this cut equals 4,
which is the capacity of this cut.

As our example shows, different cuts have different capacities, and differ­
ent flows have different values. But for each flow f the number f(C,C') is
the same for all cuts C, C':

Lemma. If f is a flow in (N,k), then the value of the flow satisfies

v(f) = f(C,C')
for all cuts C, C'.

PROOF. Because f(x,y) = -f(y,x), we have f(C,C) = 0. Therefore,

f(C,C') = f(C,C') + f(C,C)

=f(C,N).
But

f(C,N) = I f(x,N) = f(s,N),
xeC

since we require f(x,N) = 0 unless x = s or s'. By definition!'f(s,N) = v(f).
Thus, the value of a flow equals the flow f(C,C') across every cut. Please

verify this for the flows in Figures 2.1 and 2.2. Now we can prove the theorem.

PROOF OF THE THEOREM. By assumption, the function f(x,y) is integer­
valued. The value v(f) is bounded above by the capacity of any cut. Therefore
a maximal flow fo exists.

136 l Linear Programming

Given the maximal flow f 0 , we choose a subset C0 as follows. We call an
edge (x,y) unsaturated if

f 0(x,y) < k(x,y). (6)

We call the path x 0 ,x1,x2 , .•• ,xk unsaturated if all of the kedges (x;_ 1,x;)
are unsaturated. Now we let C0 consist of the source s and all nodes x that
can be reached from s by unsaturated paths. (For example, for the network
in Figure 1 and the optimal flow in Figure 2.2 the set C0 consists of s and a.)

We assert that C0 cannot contain the sink s'. If C0 contained s', there
would be an unsaturated path going from s to s'. Along this path, in every
edge, we could increase fo by + 1 to obtain a new flow ft. For every interior
node x on the path, the flow into x would increase by 1 and the flow out of x
would increase by 1, leaving the net flow f 1(x,N) = 0. For the source, the
outward flow would increase by 1: f 1(s,N) = 1 + f 0(s,N). So the value of
the flow would increase by + 1, contradicting the maximality of f 0 •

Since C0 contains s but not s', the complementary sets C0 , C0 form a cut.
We now assert

f 0(x,x,') = k(x,x') if x e C0 and x' e C0. (7)

Proof: Otherwise the edge (x,x') would be unsaturated; then we could reach
x' by an unsaturated path going first from s to x and then from x to x'. Then
x' would lie not in C0 but in C0 , since we could reach it by an unsaturated
path.

Summing the equations (7), we get f 0(C0 ,C0) = k(C0 ,C0), which is the
required equation (5).

Conversely, this equation implies that the flow is maximal and the cut
is minimal. For iff is any competing flow, we must have

f(Co,Co) ~ k(Co,Co) = fo(Co,Co),

so v(f) ~ v(f0); and if C, C' is any competing cut, we must have

k(C,C') ~ fo(C,C') = fo(Co,Co) = k(Co,Co),

so k(C,C') ~ k(Co,Co). D

EXAMPLE 4. Figure 4.1 shows an optimal flow fo for the capacitated network
in Figure 4.2. Please look at the subset C0 ; check thatf0(C0 ,C0) = k(C0 ,C0).

Figure 4.1

16 Network Flows 137

Figure 4.2

The node b can be reached by the unsaturated path s, b. The node g can
be reached by the unsaturated path s, b, g.

But what about the node c? Why did I put this node in C0 ? Isn't the path
s, c saturated?

Yes, it is. But I can reach c by another path, which you might not think of:

s,b,g,c.

This path has three edges. The figures show that the first two edges are
unsaturated. But so is the last one:

fo(g,c) = - f 0(c,g) = -1 < 0 = k(g,c).

The point is this: A positive flow in an edge always induces a negative
flow in the reverse direction, and so it produces an unsaturated reverse edge,
since all capacities are ~ 0. You have to remember this point when you use
the following algorithm.

The unsaturated-path algorithm. The preceding proof suggests a way to
construct an optimal flow. Given the capacitated network (N,k), start with
any feasible flow, say f 1(x,y) = 0. Now let C1 be the set consisting of sand
of all nodes that can be reached from s by unsaturated paths; you can locate
these nodes recursively, starting from s. The set C1 depends on the given
(N,k), but also depends on the current feasible flow. If s' lies outside C1 , then
/ 1 is optimal, as the preceding proof shows; for then / 1(CbC'1) = k(CbC'1).

If s' lies inside C 1, you can get a better flow. Let s, a, b, ... , s' be an un­
saturated path from s to s'. Then f(x,y) < k(x,y) on every edge of the path.
Since you're dealing with integers, there is a largest positive integer L1 such
that

f1(x,y) + L1 ~ k(x,y)

for all edges on the path. Now let

f2(x,y) = f 1(x,y) + L1 on the path.

For / 2 to be feasible, let fiy,x) = -f2(x,y) in the reversed edges; and let
f 2(u,v) = f 1(u,v) in all the remaining edges of the network.

138 1 Linear Programming

The new flow is feasible for this reason: If y is any interior node of the
path, you've increased the flow into y by A, but you've also increased the
flow out of y by A, keeping the net flow zero.

The new flow is better because the flow out of s has increased by A ~ 1.
Now proceed as before. Form the set C2 consisting of sand all nodes that
can be reached from s by unsaturated paths. If s' lies outside C2 , you're
done; if not, you can get a better flow f 3 • And so on.

The process must yield an optimal flow fP in a finite number of steps
because

k(s,N) ~ f,.+ 1(s,N) = f,.(s,N) + IJ.n(n = 1, 2, ...)

ExAMPLE 5. Let's use this algorithm on the network (N,k) in Figure 1. We'll
start with/1 = 0. Then C 1 is all of N. Let n1 be the path s,a,s'. Then A1 = 1,
and we get the flow f 2 in Figure 5.

Figure 5

Now the unsaturated path s,a,b,s' has excess capacity Ll 2 = 2. By adding
2 to f 2 along the path, we get the new flow f 3 • For f 3 there is only one un­
saturated path to s', namely, s, b, s'. By increasing / 3 by the excess capacity
A3 = 1 along the path, we get the optimal flow / 4 , which appears in
Figure 2.2.

Network flows as linear programming. You can state any network-flow
problem as a linear program. Given (N,k), let's number the nodes 1, 2, ... , n,
with s = 1 and s' = n. Let kii be the capacity of the edge (iJ) and let jji be the
flow. Then we require

jji~kii (i,j=1, ... ,n)

hi+ jjj = 0

(i = 2, ... , n - 1)
(8)

n

L fli =max.
j=2

That's one way to state the max-flow problem.

16 Network Flows 139

Another way is this. Think of the flow f 1i as xii if the flow is ;;?; 0; otherwise,
let xii = 0. Using the unknowns xii;;?; 0 for i =I= j, we get this problem:

(i,j = 1, ... ,n; i =Fj)
n n-1

L xii - L xki = 0
j=2 k=1

(i = 2, ... , n - 1)
(9)

n

}.: xli =max
j=2

This formulation is more in the spirit of linear programming, since we
abandon the algebraic flows fii and use the nonnegative unknowns xii·
Note that the formulation (9) uses fewer constraints than (8) does.

Integer versus real programming. Given the integer capacities k(x,y);;?; 0,
we have stated the maximum-flow problem for the best integer flow f(x,y).
As you've just seen, we can restate this problem as an integer linear program
(9). Suppose we broaden the domain of competing flows by allowing real
non-integer flows. Then we might expect to get a bigger maximum value
f(s,N). But that is false; for this special class of linear programs the maximum
over integers equals the maximum over reals.

PROOF. Let f.. be any admissible real flow. Then for all cuts C, C' we must have

v(f..) = f..(C,C') ~ k(C,C').

In particular, this must be true for the cut C0 , C0 that appears in the proof
of the max-flow, min-cut theorem. That particular cut satisfied

k(Co,C0) = f 0(C0 ,C0) = v(fo).

where fo was a maximal integer flow. Therefore, we must have

v(f..) ~ k(C0 ,C0) = v(f0),

and so we cannot increase max v(f) by using non-integer flows.

EXAMPLE 6. For the network (N,k) in Figure 6 there are non-integer maximal
flows; but for all of them v(f) = 1, as for the two maximal integer flows.

a

s~---~---~---~----... s'
b k = 1 k = 1

Figure 6

140 1 Linear Programming

For instance, we could let f(s,a) = f(a,b) = f(s,b) = !, f(b,s') = 1, giving
v(f) = 1.

I'll give you some applications of network flows in the next section.

References

1. L. R. Ford, Jr., and D. R. Fulkerson, Maximal Flow Through a Network, Can. J.
Math., Vol. 8, pp. 399-404, 1956.

2. L. R. Ford, Jr., and D. R. Fulkerson, A Simple Algorithm for Finding Maximal
Network Flows and an Application to the Hitchcock Problem, Can. J. Math., Vol. 9,
pp. 210-218, 1957.

PROBLEMS

1. Let N = {s,a,b,s'}. Let the nonzero capacities be

k(s,a) = 5, k(a,s') = 2, k(a,b) = 1.

k(s,b) = 7, k(b,a) = 6, k(b,s') = 9.

Draw a picture of the capacitated network (N,k). Make a table of all cuts and
capacities (see Example 3). Identify the minimal cut and its capacity k(C0 ,C0).

2. For the network in Problem 1 find the maximal flow fo by inspection. Verify
formula (7) for this example, and verify that v{f0) = k(C0 ,C0).

3. Start with f = 0, and find the optimal flow fo in Problem 2 systematically by the
unsaturated-path algorithm.

*4. For the capacited network (N,k), suppose some capacities into the source are posi­
tive: k(x,s) > 0. Show that all these capacities may be replaced by zero without
affecting the maximum flow value v(f). (Method: Call the new capacity function k*,
and show that k(C,C') = k*(C,C') for all cuts.) Similarly, show that positive capaci­
ties out of the sink may be replaced by zero.

5. If the network N has m interior nodes, show that the number of cuts equals 2m.

6. If the network N has m interior nodes, show that the number of unsaturated
paths from s to s' has the upper bound m + m(m- 1) + · · · + m!

7. Using formula (9), write a linear program equivalent to Example 1.

8. Find a maximal flow and a minimal cut for this symmetric capacitated network:

2

6

5

3 9 s'

8 77 2 1 1

3 89 75 9

7 26 7 1 8

17 Assignment and Shortest-Route Problems 141

*9. Show that you never have to use flows around loops: Let f be a flow in (N,k).
Suppose the flow is positive in every edge in the directed loop a, b, c, ... , a. If L1
is the least of those edge flows, show that L1 may be subtracted from every edge
flow in the loop to produce a new admissible flow with the same value. Let a(f)
be the sum of all the positive edge flows f(x,y) in the network. Let fo be a maximal
flow in (N,k), and let fo minimize a(f) over the maximal flows. Deduce that fo
has no positive flow around any loop.

10. Suppose we generalize network-flow theory by allowing more than one source and
more than one sink. Show how to handle this generalization by using only one
source and one sink.

17 Assignment and Shortest-Route Problems

In the last section, we proved the max-flow, min-cut theorem, and we
discussed the unsaturated-path algorithm for computing a maximal flow.
As a first application, I want to show you the simple-assignment problem.

This problem is usually stated in terms of individuals and jobs, but this
usage is only figurative. The simple-assignment problem is not a serious
problem of personnel management, but it is an interesting problem of
combinatorial analysis. In that context it was first solved by P. Hall in 1935.

Suppose we have individuals i = 1, ... , m and jobs j = 1, ... , n. If in­
dividual i qualifies for job j, we'll set qii = 1; if not, we'll set qii = 0. The
matrix Q = (q;i) is called the qualification matrix; it has mrows and ncolumns;
all of its components are ones and zeros.

Rules. Each individual may take at most one job; each job may be taken
by at most one individual. Individual i may take job j only if qii = 1.

Objective. Assign jobs to as many individuals as possible.
Statement as integer linear programming. Let xii = 1 if individual i takes

job j; otherwise let xii = 0. Then the rules say this:

L>ij~ 1
j

L X;j ~ 1.
i

(xii ~ 0, xii integer)

The objective is to maximize the number of assignments:

LLXii =max.
i j

Statement as network flow. We define the network

(1)

(2)

(3)

142 1 Linear Programming

which contains a source, the m individuals, the n jobs, and a sink. We define
the capacities

k(s,a;) = 1 (i = 1, ... , m); k(bj,s') = 1 (j = 1, ... , n)

k(a;,b) = Mqij•

where M is a positive integer.

(4)

Thus, if individual i qualifies for job j, the capacity k(a;,b) is a positive
integer M; otherwise this capacity equals zero. Later we will set M = m + 1
in order to prove a theorem. But right now, suppose M is any positive
integer.

Suppose X;j gives an assignment that satisfies the rules (1). Then define
the flow f as follows:

f(a;,b) = xij

f(s,a;) = L xij
j

f(bj,s') = L X;j·
i

(5)

For the reverse edges use the opposite (negative) flows; for all other edges
set f(x,y) = 0.

The flow f is admissible for the capacitated network (N,k) because

f(s,a;) = L xij ~ 1 = k(s,a;)
j

f(a;,b) = xij ~% ~ Mq;j = k(a;,bj)

f(bj,s') = L xij ~ 1 = k(bj,s').
i

The value of the flow is

v(f) = f(s,N) = L f(s,a;) = L L xij.
i i j

This is the number of assignments, which we want to maximize.

(6)

(7)

Conversely, iff is an admissible flow, then xij = f(a;,b) defines a feasible
assignment, satisfying (1). You see, (4) and (5) imply

n

L xij = f(s,a;) ~ 1
j= 1

m

L X;j = f(bj,s') ~ 1
i= 1

(x;j = integer ~ 0)
(8)

(i= 1, ... ,m;j= 1, ... ,n).

These three conditions are the same three conditions that occur in (1) with
one exception: the inequality xij ~%in (1) is replaced by xij ~ Mq;j in (8),
where M may be any positive integer. This exception makes no difference,
for the first two conditions imply X;j ~ 1, and so X;j ~ Mq;j implies xij ~ qij·

17 Assignment and Shortest-Route Problems 143

Therefore, xii = f(a;,bi) is feasible for (1). By the way, f(a;,bi) can't be nega­
tive, because we require

- f(a;,b) = f(bi,a;)::;; k(bi,a;) = 0.

Thus, f is an admissible flow in (N,k) if and only if xii = f(a;,bi) is a fea­
sible assignment, satisfying (1). The value of the flow equals the number of
job assignments (7). The number of assignments is maximized by a maximal
flow.

EXAMPLE 1. Look at the capacitated network in Figure 1. Here we have 3
persons and 3 jobs. The first person qualifies for the first two jobs; the other
two persons qualify only for the third job.

/"·~··~
·,··~'·/'

a3 b3

Figure 1

At most two assignments are possible. The first person takes either job
1 or job 2; the second or the third person takes job 3. Correspondingly, there
are four maximal flows f; please draw all of them. All four maximal flows
have value v(f) = 2, which is the biggest possible number of assignments.

Algorithm. Suppose you're given a qualification matrix (q;), and you
want to compute the maximum number of assignments. All you have to do
is set up the flow model and apply the unsaturated-path algorithm described
in the preceding section.

Complete assignment. Suppose we want to assign all m individuals to jobs.
An obvious necessary condition is m::;; n: there must be as many jobs as
individuals. But more than that is necessary. Look at Figure 1. There are
three individuals and three jobs. Good. But a complete assignment is
obviously impossible, because two of the individuals qualify for only one
job; there is no admissible assignment for both these individuals (a2 and a3).

In general, let I be any subset of individuals. Let J(J) be the subset of jobs
for which at least one member of I qualifies. Then the number III must be ::;;
the number IJ(I)I:

III ::;; IJ(I)I. (9)

This must be true for all of the 2m subsets I.
In Figure 1 we saw this condition violated. For the subset I= {a2,a3}

we found J(I) = {b3}, and so III = 2 > IJ(I)I = 1. (There are seven other
subsets I, all of which do satisfy (9).)

144 I Linear Programming

So (9) is a necessary condition for a complete assignment. Is it also
sufficient? Yes. P. Hall proved it in 1935. We will prove it now by using the
max-flow, min-cut theorem.

Theorem. A complete assignment is possible if and only if III::;::; IJU)I for
every subset I c {a1, ... ,am}·

PROOF. As we've noted, a complete assignment implies the inequality (9) for
every subset I. Conversely, let's suppose (9) holds and construct a complete
assignment.

Given the qualification matrix(%), we use equations (3) and (4) to define
the capacitated network (N,k); in (4) we will define Mas some integer > m,
say M = m + 1.

Let fo be a maximal flow in (N,k). Then (5) implies

v(f0) = f(s,N) = L f(s,aJ = L L xii• (10)
i i j

so the value of a maximal flow equals the maximum possible number of
assignments. Thus, we have

0:;;:; v(f0):;;:; m, (11)

and we want to prove v(f0) = m if we assume all III:;;:; IJ(J)I.
Let C0 , C~ be a minimal cut. According to the max-flow, min-cut theorem,

we have
v(f0) = k(C0 ,C0). (12)

Let's take a close look at the complementary sets C0 , C0.
The set C0 contains the source, some individuals, and some jobs:

C0 = {s,l0 ,10 }.

The complement C0 contains the other individuals, the other jobs, and the
sink:

Co= {I0,10,s'}.

The capacity of the cut equals

k(C0 ,C0) = k(s,I0) + k(I 0 ,10) + k(J 0 ,s')

because the other three possible terms all equal zero:

k(s,J0) = k(s,s') = k(I 0 ,s') = 0.

Formulas (12) and (13) imply

v(f0) = k(s,l0) + k(I 0 ,10) + k(J 0 ,s').

(13)

(14)

Now you'll see the purpose of using M > m. According to (4), all capa­
cities between individuals a; and jobs bi equal 0 or M. Therefore, in (14) the
term k(l 0 ,10) equals one of the integers 0, M, 2M, 3M, But the sum

17 Assignment and Shortest-Route Problems

v(f0) must be :(m; therefore k(I0 ,J~) = 0, and so (14) becomes

v(f0) = k(s,I~) + k(J 0 ,s'),
or

v(fo) = II~I + IJ ol·

145

(15)

We're almost done. Using M > m, we proved k(l0 ,J~) = 0. That says no
individual in I 0 is qualified for any job in J~. Therefore,

(16)

This says that the individuals in I 0 can qualify only for jobs in J 0 . Now, at
last, we'll use the inequality (9): IIol :(!J(J0)!. Now (16) implies

Therefore,

and (15) yields

II ol :(!J(/ o)l :(IJ ol· (17)

II~I = m -IIol ~ m -IJol,

v(fo) = II~ I + IJ ol ~ m.

By (11), we have v(f0) = m, and so the maximal flow fo gives a complete
assignment. D

Optimal assignment. We can use the preceding result to solve a somewhat
different problem. Again we have m individuals and n jobs, but now we'll
assume every individual qualifies for every job. We'll assume that individual
i has aptitude aii ~ 0 for job j. We want to assign individuals to jobs so as
to maximize the sum ~:;aii over all the assignments i ~ j. Again we assume
the exclusion rules: at most one job per individual; at most one individual
per job.

Again we'll use the unknowns xij. We'll say xij = 1 if we assign i to j;
otherwise xii = 0. Now the exclusion rules say

n

I xii :(1
j= 1

(i=1, ... ,m)

(j = 1, ... ,n)

xii = integer ~ 0.

(18)

The objective is to maximize the sum of the aptitudes in the assignment:
m n

I I aiixij = max
i=l j=l

(19)

And so we have a problem in integer linear programming. I'll show you
how to solve this problem by network flows.

With no loss of generality, we may assume m = n. If m < n, introduce
dummy individuals i = m + 1, ... , n with a aii = 0 for all j; if m > n, intro-
duce dummy jobs j = m + 1, ... , n with aii = 0 for all i. Now we can assign

146 1 Linear Programming

all individuals and fill all jobs, and the problem becomes this:

(i = 1, ... ,n)

(j = 1, ... ,n) (20)
i= 1

xii = integer ~ 0
n n

L L aiixii = max
i= 1 j= 1

(The unknowns xii constitute a permutation matrix X of 1 's and O's. Each
column will contain exactly one 1, and each row will contain exactly one 1.)

If we ignore the integer constraint, the problem (20) is a canonical linear
program for n2 unknowns xii ~ 0. We shall get an optimal solution for all
real xii. This solution will happen to consist of integers, and so it will solve
the integer program (20).

The dual of (20) is this problem:

(i,j=1, ... ,n)

L;ui + L;vi =min.
(21)

For example, ifn = 2 the primal problem is this:

(22)

[au a12 a21 a22]x =max.

Corresponding to the upper and lower halves of the matrix, the dual vector
has two parts:

(23)

Then this is the dual problem:

u1 + v1 ~au, u1 + v 2 ~ a12 , u 2 + v1 ~ a21 , u 2 + V2 ~ a22 (24)
u1 + u2 + v1 + v2 = mm.

For the primal-dual pair (20), (21), the equilibrium theorem gives a neces­
sary and sufficient condition for optimality. Let x be feasible for the primal,
and let u, v be feasible for the dual. Then we require this condition:

Xij > 0

In other words, we require

xii = 0 if U; + vi > aii·

(25)

17 Assignment and Shortest-Route Problems 147

In terms of assignments, the equilibrium theorem says this: If (u,v) is
optimal for the dual, then individual i may be assigned to job j only if
ui +vi= aii. An optimal assignment is a complete assignment that satisfies
the equilibrium condition (25).

Algorithm for optimal assignment. We are given the integers aii ~ 0. We
pick some integers ui> vi satisfying the dual feasibility conditions:

(i,j = 1, ... , n). (26)

Now we'll say i qualifies for j (% = 1) if ui +vi= aii· This gives us a first
qualification matrix (qii). Using this qualification matrix, we use the network­
flow model for simple assignment to assign the maximum number of indi­
viduals to jobs for which they qualify. As usual, we'll use the assignment
variables xii.

If all individuals have been assigned, we're done. For i,j = 1, ... , n we have

n

L xii = 1,
j= 1

n

L xii = 1, xii = 0 or 1,
i=l

and we also have the equilibrium condition (25). Therefore, x is optimal for
the primal (20) and (u,v) is optimal for the dual (21).

But suppose some individuals have not been assigned by the maximal
flow. Then xii isn't feasible for the primal (20), and we still have work to do.
We will use the maximal flow to get an improved dual solution. Let fo be the
maximal flow that we've found for the simple-assignment problem defined
by the present qualification matrix (qii) (i,j = 1, ... , n). The value v(f0) is
the maximum number of people that can be assigned, and now we are as­
suming v(f0) < n (the assignment is incomplete).

Let C0 , C0 be a minimal cut. Then its capacity satisfies

k(Co,Co) = v(fo) < n.
As before, let

Co= {s,Io.Jo}. Co= {Io,Jo,s'},

(27)

(28)

where I 0 , J 0 are subsets of individuals and jobs, and I0, J 0 are their comple­
ments. Then

k(Co,C0) = k(s,Io) + k(I 0 ,J0) + k(J o,s').

As before, if M > n we conclude k(I 0 ,J0) = 0 and

k(Co,C0) = k(s,I0) + k(J 0 ,s')
= JioJ + IJol = n -IIol + IJol,

and now (27) implies n - JI 0 J + jJ 0 J < n, or

J1oJ < JioJ·

As in (16), we have J(I 0) c J 0 because k(I 0 ,J0) = 0.

(29)

(30)

(31)

The inequality jJ ol < JI 0 J is just what we need to get a better dual solution
u, v. By "better" I mean we can decrease the dual object function :Lui+ :Lvi.

148 1 Linear Programming

We will let
new u; = old u; - L1
new vi = old vi + L1

leaving u; unchanges for i in I'o, and vi unchanged for j in 10. Then

(32)

new(~);+ l:vi) = old(Lu; + l:vi)- {ji0I-II0 j}L1. (33)

Since II ol - II ol is > 0, we will choose L1 as big as we can.
How big can we choose L1 without violating the dual feasibility conditions?

We require
(i,j = 1, ... , n). (34)

Here i may lie in I 0 or in I'o, while j may lie in J 0 or in 10. By (32), u; + vi is
unchanged if i E I 0 and j E J 0 . If L1 ;?: 0, u; + vi can only increase if i E I 0,
since vi either increases or stays the same. So u; + vi can decrease only if
i E I 0 and j E 10:

(35)

But we have k(I 0 ,10) = 0: no i in I 0 qualifies for any j in J'o in the minimal
cut for simple assignment. In the present context that means

(i E I 0 ,j E 10). (36)

Remember, we defined "i qualifies for j" to mean that u; + vi equals aii· Thus,
we shall have

(i,j = 1, ... , n) (37)

if we choose

L1 = min{old(u; + v)- a;/ i E I 0 ,j E 10}. (38)

This is the biggest permissible value for L1; it is some positive integer, since it
equals the minimum discrepancy in the strict integer inequalities (36).

Now we use the new dual solution u, v to define a new qualification matrix
(q;). As before, we say i qualifiesforj(% = 1) ifu; +vi= aij. This gives anew
simple-assignment problem. If the new simple assignment is complete, that
is, if all n individuals get jobs, then we're done: the X;i solve the original
optimal-assignment problem (20). But if the assignment is incomplete, then
we can improve the dual solution again. And so on.

This process must succeed in a finite number of steps. Why? Because every
time we improve the feasible dual solution, we decrease the objective
l:u; + l:vi by at least 1. That can happen only a finite number of times,
because the dual objective function has a finite lower bound. Indeed, every
feasible primal solution X;i gives a lower bound. For instance, X;; = 1,
x;i = 0 (i =f. j) gives the lower bound

(39)

So we must get the optimal assignment in a finite number of steps.

17 Assignment and Shortest-Route Problems

EXAMPLE 2. Let this be the aptitude matrix:

[7 2 6]
(aii) = 3 9 1

8 4 5

One easy way to get a dual feasible solution is to set

u1 =max a1i, vi= 0.
i

149

Here this says u1 = 7, u2 = 9, u3 = 8, vi= 0. In Figure 2. the aptitude matrix
is inside the square; the u1 are at the left; the vi are on top.

0 0 0

7 (]) 2 6

9 3 ® 1
8 ® 4 5

Figure 2

I've drawn circles around those aii for which u1 + vi= aii. These equa­
tions define the first qualification matrix:

[1 0 OJ
(qij) = 0 1 0

1 0 0

Here we see that both i = 1 and i = 3 qualify only for the single j = 1.
Therefore, complete assignment is impossible.

We will improve the dual by decreasing u1 for i = 1 and i = 3 and by
increasing vi for j = 1 :

This gives Figure 3.

new u1 = old u1 - Ll

new vi = old vi + Ll

Ll

7-LI 7
9 3

8-LI 8

0 0

2 6

9 1

4 5

Figure 3

(i = 1,3)

(j = 2).

The biggest permissible value for Ll is Ll = 1. All bigger values violate
the inequality u1 + v3 ~ a 13 = 6. Choosing Ll = 1, we get Figure 4.

150 l Linear Programming

1 0 0

6 (1)2@
9 3 ® 1
7 ® 4 5

Figure 4

Now i = 1 qualifies for j = 1 and for the new j = 3 (note the new circle
around 6).

Now the circles around 8, 9, and 6 show that a complete assignment is
possible:

x 31 = 1, x 22 = 1, x 13 = 1; all other xii = 0.

Therefore, this is an optimal assignment.
As a check, we can compute the primal and dual objective functions.

First, we find

Next, we find

_Lui + _Lvi = (6 + 9 + 7) + 1 = 23.

The objective values are equal, and so the check is passed.

Transportation problem. The optimal-assignment problem can be re­
garded as a special case of the transportation problem, which looks like this:

n

L xij = si
j=1

m

L xii = di
i= 1

m n

(i=1, ... ,m)

(j = 1, ... ,n)

xii ~ 0, L L ciixii = min.
i= 1 j= 1

(40)

Here we are given the costs cii and the supplies si and demands di satisfy­
ing the consistency condition _Lsi= _Ldi. The optimal-assignment problem
(20) becomes a transportation problem if we set, in (40),

(41)

where we may set IX = max aii if we want to keep the costs cii nonnegative.
Note that (40) and (41) imply

(42)

Since niX is a constant, we shall have

_L_Lciixii = min. iff _L_Laiixii = max. (43)

17 Assignment and Shortest-Route Problems 151

If the data are integers, the transportation problem can be solved as a
network flow. This is done in the beautiful book Theory of Linear Economic
Models by David Gale. He first solves the transshipment problem-a gener­
alization of the simple-assignment problem. Then he uses the transshipment
algorithm as a subroutine to solve the transportation problem, just as we
used the simple-assignment algorithm as a subroutine to solve the optimal­
assignment problem. (See Problems 10-14.)

Later, we will take a different approach. We will solve the transportation
problem by using a special, efficient form of the simplex method.

Shortest-route problem. You've been working hard, and you deserve a
little recreation. Now I give you something just for fun. It isn't a network
flow-but who cares?

We are given a list of cities: a, b, ... , z. The cities are joined by a network
ofroads. We want to drive from a to z in the least possible time; we'll call
our route a shortest route.

We're given a list of direct-travel times r between every pair of cities.
For instance, r(c,q) is the time on a direct route from c to q; it is some positive
integer number of minutes-infinity if there is no direct route. We don't
require r(c,q) = r(q,c). We assume r(R) < oo for some route R from a to z.

EXAMPLE 3. In Figure 5 the unique shortest route is a, c, b, z.

a

('

b

Figure 5

z

If we call the shortest route R0 , the total time is r(R0) = 2 + 1 + 5 = 8. For
all other routes R from a to z we have r(R) > 8.

Algorithm for shortest route. If the number of cities is finite, we can find
the shortest route by enumeration, in theory. In practice, if the network is
complex, there would be too many routes to look at, and we want a better
algorithm.

Start with any route R. Now pick any node function cp that satisfies

(44)

for every pair of nodes (cities) c1 and c2 . A function cp is a sort of potential,
and we will require cp(a) = 0 at the start. Thus, we may pick cp = 0 as a first
potential. We'll assume that the functions cp are integer-valued, like r.

152 1 Linear Programming

Every potential qJ gives a lower bound for the least travel time. If R is the
route

then the total time on this route is

t(R) = t(a,x1) + r(xhx2) + · · · + r(xk,z)

~ [qJ(x1) - qJ(a)] + [qJ(x2) - qJ(x1)] + · · · + [qJ(z) - qJ(xk)].

Since qJ(a) = 0, all the terms cancel except qJ(z), and so we get the lower
bound

t(R) ~ qJ(z) for all R, for all qJ. (45)

This says that the travel time is ~ the potential at the final node.
If equality holds in (45), then R must be a shortest path. For if R' is any

competing path, then we have

t(R') ~ qJ(z) = t(R),

which means r(R') ~ r(R) for all R'.
But suppose r(R) > qJ(z). Then we can construct a new potential qJ1 with

qJ 1(z) > qJ(z). Here's how:
If x* is any node, we'll say that the path a, x1, x2, ... , xi> x* is efficient if

(46)

For the present potential qJ we have assumed there is no efficient path from
a to z. (If there were, then this path would be a complete route R satisfying
t(R) = qJ(z).)

Let E be the subset of nodes x* that can be reached by efficient paths.
The subset E depends on the potential qJ. At least a lies in E; we have assumed
that z does not. The final node z lies in the complementary set E'.

We may define a new potential as follows:

qJ1 = qJ in E, qJ 1 = Ll + qJ in E', (47)

where Ll is a positive integer constant. In particular, qJ 1(a) = 0 and qJ 1(z) =

Ll + qJ(z). The new potential satisfies the requirement

r(c1>c2) ~ (/J1(c2)- qJ 1(c1). (48)

This is obvious unless c2 lies in E' and c1 lies in E, in which case

(49)

But we must have

t(chc2) > qJ(c2)- qJ(c1) for c2 E E', c1 E E. (50)

Otherwise we could reach c2 by an efficient path going first to c1 and then
directly to c2 • That is impossible if c2 lies in E', and so the inequality (50)

17 Assignment and Shortest-Route Problems

must hold. Therefore, the integers r and cp must satisfy

r(cl>cz) ~ A + cp(cz)- cp(c1) = ({Jt(Cz)- cp1(c1)

for c1 E E, c2 E E', where A is the positive integer

A= min{r(cl>c2)- [cp(c2)- cp(c1)]: c1 E E, c2 E E'}.

This is the biggest permissible value for A in (47).

153

Now we repeat the process. Starting with the new potential, we locate
the new subset E of nodes that can be reached by efficient paths. If z lies
in E, we're done; otherwise, we construct another new potential. And so on.

This process must yield a shortest route in a finite number of steps. That
is because we increase the final potential cpi(z) by a positive integer Ai at
each step. This process must stop, because all the cpi(z) must be ~ the mini­
mum travel time r(R). At the end, a shortest route R appears as an efficient
path from a to z.

EXAMPLE 4. Let's use this algorithm on the network in Figure 6. Start with
the potential cp 0 = 0. Then E0 contains only a. For L1 0 we find

L1 0 = r(a,c)- [cp 0(c)- cp0(a)] = 2.

This gives the potential

cp 1(a) = 0, cp1(b) = cp1(c) = cp1(z) = 2.

Referring to Figure 6., we see E1 = {a,c}. Then we find

L11 = r(c,b)- [cp1(b)- cpl(c)] = 1.

This gives the potential

cpz(a) = 0, cp 2(c) = 2, cp 2(b) = 3, cp 2(z) = 3.

Now E2 = {a,c,b} and L1 2 = 5, giving at last

cp 3(a) = 0, cp 3(c) = 2, cp 3(b) = 3, cp 3(z) = 8.

For the last potential an efficient path from a to z is the required shortest
route a, c, b, z.

References

1. David Gale, Theory of Linear Economic Models, McGraw-Hill, 1960.
2. L. R. Ford, Jr., "Network Flow Theory", RAND paper p-923, 1956.
3. P. Hall, "On representatives of subsets," J. London Math. Soc., vol. 10 (1935) pp.

26-30.
4. P.R. Halmos and H. E. Vaughan, "The Marriage Problem," American J. Math,

vol. 72 (1950) pp. 214-215.
5. Marshall Hall, Jr., Combinatorial Theory, Ginn Blaisdell, 1967.
6. Richard Bellman, Dynamic Programming, Princeton Univ. Press, 1957.

154 I Linear Programming

PROBLEMS

1. For the simple-assignment problem, use the qualification matrix

Set up the flow model. Find an optimal flow fo assigning as many persons as
possible. Find the minimal cut C0 , C~. Find a subset 10 for which jJ(J0)j < jl0 j.

2. Set up the flow model for the simple-assignment problem with qualification matrix

[~ : ~ iJ
Solve by inspection. Then, for practice, solve systematically by the flow algorithm.

3. A combinatoric problem: Given is an n x n matrix with n2 positive-integer com­
ponents aii. Call a subset of components OK if no two components lie in the
same row or column. The problem is to pick an OK subset of components with
maximum sum. State this problem as an optimal-assignment problem.

4. For Problem 3 use the matrix

[3 3 2J
A= 1 3 5.

2 1 3

First solve by inspection. Then use the flow algorithm to see how it works.

5. Use the flow algorithm to solve the optimal-assignment problem with the aptitude
matrix

[1 3 3 3 2]
A = 2 1 2 3 5 .

3 2 1 1 3

6. In Problem 3 suppose you want an OK subset of n components with minimum

sum. State this too as an optimal-assignment problem.

7. Use the shortest-route algorithm for this road network, where 't' is symmetric:

17 Assignment and Shortest-Route Problems 155

*8. In the calculus of variations one looks for a curve y(x) (0 ,;;; x ,;;; 1) that minimizes
an integral

J0
1 F(x,y(x),y'(x))dx,

where y(O) and y(1) are given, and where F(x,u,v) is a prescribed function. Show
how a discretized version of this problem might be solved by the shortest-route
algorithm. Method: For small positive Llx and smalliLiyl, define the direct time-r
between the points (x,y) and (x + Llx, y + Lly) as

-r = F(x,y, ~~)Lix.
(You may assume F > 0; otherwise, replace F by F plus some large constant.)

9. For the shortest-route problem define the function c/J(w) as the shortest total travel
time from a to w = b, c, ... , z. Show that c/J is an admissible potential, satisfying
(44). Show that c/J satisfies this functional equation of dynamic programming:

c/J(w) =min [c/J(A.) + -r(A.,w)] if w #a,
kl'w

where we define c/J(a) = 0.

*10. Transshipment problem. Let P 1, ... ,Pm be plants with supplies a 1, ... ,am. Let
M 1, ••. ,M" be markets with demands d1, ... ,d .. Assume l"a; ~ l"di. Let k(P;,Mj) ~
0 be the shipping capacity from P; to Mi; define k(s,P;) = O";, k(Mi,s') = di. Prove that
all demands can be met unless there is a subset M' of markets for which

d(M') > a(P') + k(P,M')

where P and P' are complementary subsets of plants. Method: Let C0 , C~ be a
minimal cut in the network {s,P1, ... ,Pm,Ml> ... ,M.,s'}. If C0 = {s,P,M}, then
the minimal cut has capacity a(P') + k(P,M') + d(M). Now what if a maximal flow
has value <d(M) + d(M')?

11. Show that the dual of the transportation problem (40) is

u;+vi,;;;cii (i=1, ... ,m;j=1, ... ,n)

~);u; + L,divi =max.

*12. Let cij,s;,di be integers~ 0, with l"s; = l"di. Define the transportation problem (40)
and its dual (Problem 11). Suppose u, v are feasible for the dual. Let f3 be some
integer bigger than l"di, and define the transshipment problem (Problem 10) with
supplies s;, demands di, and shipping capacities

k(P. M-) = {/3 if U; +vi= cii
" 1 0 if u; + vi < c;/

Suppose the transshipment problem is solvable. Let X;i be the amount shipped
from P; to Mi. Show that the xii give an optimal solution of the transportation
problem.

*13. (Continuation.) In Problem 12 suppose the transshipment problem is not solv­
able. For the subsets defined in Problem 10, conclude that k(P,M') = 0 because

156

k(P,M') ~ Idi <fl. Hence Problem 10 implies

I dj> Is;.
M' P'

1 Linear Programming

Now show that vi can be increased on M' and u; can be decreased on P' to obtain
a new feasible dual solution with increased value Is;u; + Idivi.

* 14. A network-flow algorithm for the transportation problem:
(i) Start with any feasible u, v (for instance, 0, 0).

(ii) Try to solve the transshipment problem in Problem 12. Stop if there is a
solution x.

(iii) Otherwise, improve the feasible u, v as in Problem 13. Return to step (ii).
Why must this algorithm solve the transportation problem (40) in a finite number
of steps?

18 The Transportation Problem

Suppose a certain commodity, say oil, is produced at plants i = 1, ... , m.
And suppose the oil must be shipped to markets j = 1, ... , n. Call xii the
unknown number of barrels of oil to be shipped from plant i to market j.
Let cii be the shipping cost per barrel. Then the shipping cost from i to j
will be the product ciixii• and the total shipping cost from all plants to all
markets will be

m n

L L ciixii. (1)
i= 1 j= 1

Suppose the supply at plant i is si, and suppose the demand at market j
is di. Let the total supply be ~ the total demand:

(2)

Then all demands can be met with the existing supplies; the problem is to
meet them with minimum cost.

We require
n

L xii ~ si (i=l, ... ,m),
i= 1

which says that the total shipped out of plant i is ~ si. And we require
m

L Xij ~ dj
i= 1

(j = 1, ... , n),

(3)

(4)

which says that the total shipped into marketj must be ~di. Then no supply
will be exceeded, and every demand will be met. By the way, note that these
constraints imply (2):

L si ~ L L xii ~ L di. (5)
i i j j

18 The Transportation Problem 157

This is the transportation problem: Find xu:;::: 0 to meet the constraints
(3), (4) and minimize the cost (1).

Figure 1 illustrates the problem for two plants and three markets. The
figure suggests that the problem could be regarded as a network flow, and
that has been done. But we shall here solve the problem by the simplex
method. We will not use the simplex tableau, which would fail to use the
special features of our problem; but we will use the basic idea.

Supplies ed2 Demands

Figure 1

The result will be an exceedingly efficient numerical algorithm. This
algorithm is so good that we can use it to solve medium-sized problems by
hand, or to solve huge industrial problems by computer. In pure mathe­
matics, certain problems of combinatorial analysis have the mathematical
structure of transportation problems; these problems, too, can be solved by
the algorithm we're about to discuss.

As it often happens in our subject, the algorithm is easy but the theory is
hard. So please bear with it; the reward of understanding will be worth your
trouble.

In our approach by the simplex method, we first restate the inequalities
as equations. Indeed, if the total supply equals the total demand, then the
inequalities (3) and (4) must already be equations; for only as equations can
these inequalities yield equalities on both sides of (5). For instance, if

then (3) implies

i j

and now (4) implies Is;> 'fA (total supply> total demand). Thus, if
Is; = Idi, then the "~" in (3) and the ":;:::" in (4) may both be replaced
by"=".

Suppose instead that total supply exceeds total demand:
m n

I si > I dj. (6)
i=l j=l

158 1 Linear Programming

We can reduce this case to the former by a trick. Define the excess

m n

d0 = L S; - L di > 0. (7)
i= 1 j= 1

Now introduce a dump, a fictitious market j = 0 with demand d0 , and say
that there is no shipping cost to the dump:

C;o = 0 (i=l, ... ,m).

If we include the dump, j = 0, we now have

m n

L S; = L dj,
i=1 j=O

and we can proceed as before. The constraints become the equations

and we seek X;i ;;:: 0 to

n

L xii = s;
j=O

m

L X;j = dj
i= 1

(i = 1, ... ,m)

(j = 0, ... ,n),

m n

minimize L L c;ixii.
i=1 j=O

(8)

(9)

(10)

(11)

To solve the original problem, we solve the new problem for the unknowns
xii. At the end, we ignore the final slack variables x;0 .

Thus, replacing j = 0 by j = 1, we may always use the canonical form of
the transportation problem:

n

L xii = s;
j=1

m

L X;j = dj
i= 1

m n

(i=1, ... ,m)

(j = 1, ... ,n)

L L ciixii = mmtmum.
i= 1 j= 1

(12)

The m + n equations are redundant, and we must assume that the given
supplies and demands satisfy the consistency condition

m n

L: s, = L: dj. (13)
i= 1 j= 1

18 The Transportation Problem 159

We can think of the unknowns xu as components of an m-by-n matrix X.
We are given the row sums s; and the column sums dj. For example, if m = 2
and n = 3, we have this picture:

Xu x12 x13 St
(14)

Xzt Xzz Xz3 Sz

d1 d2 d3

But to understand the theory, we may regard the unknowns xu as com­
ponents of a vector x. Then the equations (12) take the form

Ax =b, (15)

where A has m + n rows and mn columns. For example, if again m = 2 and
n = 3, then (15) becomes

1 1 1 0 0 0
Xu

St

0 0 0 1 1 1
x12

Sz
(16)

1 0 0 1 0 0
x13

dl
0 1 0 0 1 0

Xzt

0 0 1 0 0 1
Xzz

Xz3

This formula and formula (14) say the same thing in different ways.
If we use the vector unknown x, then the transportation problem (12)

becomes

Ax =b
x~O (17)

c · x = minimum.

Here x has the mn components Xu, x 12 , ... , xmn; b has them+ n components
s1, .•• ,sm,d1, ••. ,dn; and c has the mn components cu,c12, ... ,cmn· The
matrix A is the obvious generalization of the matrix in (16). The redundancy
of the equations (12) shows up in A: the sum of the first m rows equals the
sume of the last n rows (both sums equal a row vector of a111 's).

The dual of (17) is the maximum problem

y·A~c

y · b = maximum
(18)

Since the first m rows of A are formed differently from the last n rows, we will
partition the dual vector as follows:

(19)

160 1 Linear Programming

For example, if the primal problem is (16), the dual vector is

and the dual problem (18) becomes

ul + vl ~ cu

ul + v2 ~ c12

ul + v3 ~ c13

u2 + vl ~ c21

u2 + v2 ~ c22

u2 + v3 ~ c23

u 1s 1 + u2s2 + v 1d1 + v2d2 + v 3d3 =maximum.

In general, this is the dual problem (18):

u;+vi~cii (i=1, ... ,m;j=1, ... ,n)

L:u;s; + L:vA = maximum.

(20)

(21)

A first feasible solution. We know that the consistency condition (13) is
necessary for the redundant equations (12) to have a solution; now we'll
show it is sufficient. Given consistent supplies and demands, we will construct
a solution xii. If the given S; and d i are ~ 0, our solution X;i will be ~ 0. And
our solution will have at most m + n - 1 non-zero components.

First suppose m = 1. Then we just set

(22)

Here the matrix X has just one row; the single row sum equals s1, by (13).
Similarly, if n = 1 we just set xil = s; (i = 1, ... , m).

Now suppose m > 1 and n > 1. We will eliminate one row equation or
one column equation to get a smaller system of the same type. Set

x 11 = s 1 if s 1 ~ d1

x 11 = d1 if d1 < s1.

In the first case, let the first row of X equal

s1 0 0 · · · 0.

Now define a reduced demand

d! = d1 - s1 ~ 0

We thus get the reduced system

n

L Xij = S;
j= 1

m

L Xij = dj
i=2

(i=2, ... ,m)

(j=1, ... ,n)

(23.1)

(23.2)

(24)

(25)

(26)

18 The Transportation Problem 161

where the demands are now

(27)

The sum of these demands equals the sum of the remammg supplies
s2 , ••• , sm. The new system has m - 1 row equations and n column equa­
tions. By induction, we can solve the reduced system with at most [(m - 1) +
n] - 1 non-zero xii. Since we previously found the first row (24), we now have
solved the original system with at most m + n - 1 non-zero xii.

In the case (23.2), we instead eliminate the first column equation. We now
let the first column of X equal

(28)

0

and we define a reduced supply

s~ = s1 - d1 > 0. (29)

Now the reduced system has one less unknown; it has one less equation;
it has the supplies

and the demands

The sum of the new supplies equals the sum of the new demands. As before,
we argue by induction and conclude that we can solve the original m + n
equations (12). Our solution will have at most m + n - 1 non-zero xii; and
if all s; and di are ;):0, then all xii will be ;):0. D

EXAMPLE I. Let's get a feasible solution for this problem

xll X12 x13 X14 3

Xz1 Xzz X23 Xz4 5 (30)

X31 X32 X33 X34 9

7 3 1 6

The supplies are at the right; the demands are at the bottom; both totals
equal17.

Since s1 = 3 and d1 = 7, we set x 11 = 3 and eliminate the first row. This
give the reduced system

Xz1 Xzz Xz3 Xz4 5
X31 X32 X33 X34 9
4 3 1 6

162 1 Linear Programming

Now the first demand is < the first supply, so we eliminate the first
column. We set x21 = 4 and get the smaller system

X22 X23 X24 1
X32 X33 X34 9

3 1 6

Setting x 22 = 1 and eliminating the first row, we get

Jx32 X33 X34J 9
2 1 6

The last three xii must equal 2, 1, 6.
In summary, we have found this feasible solution:

3

4 1

2 1 6

7 3 1 6

3

5

9

(31)

(The blan:R squares belong to the xii that equal zero.) Here m = 3, n = 4,
and m + n - 1 = 6, which is just the number of nonzero X;i· If we wrote
this example in the form Ax = b, we would find for A a matrix with 7 rows
and 12 columns, with rank A = 6.

Basic solutions and nondegeneracy. We have proved that we can solve the
m + n equations (12) if and only if LSi = Ldi. In other words, if we write
the equations (12) in the form Ax = b, the range of the matrix A is the
linear subspace of all vectors b with m + n components that satisfy the
equation

bl + · · · + bm- bm+l- · · ·- bm+n = 0.

Thus, the range of A has dimension m + n - 1, and so

rankA=m+n-1.

(32)

(33)

In the general theory of linear programming, we talked about basic solu­
tions x for equations Ax= b. We called the subset of columns aP,aq, ... ,as
a basis if it was a basis for the range of A. Equivalently, if rank A = r, a
basis was any subset of r independent columns of A. We defined a basic
solution x as a solution whose only non-zero components xi multiplied
columns ai in a basis:

(34)

18 The Transportation Problem 163

Thus, if rank A = r, a basic solution has at most r non-zero components.
If aP, ... , as is a basis, then the components xP, ... , xs in the equation (34)
are called basic variables or variables in the basis. And sometimes the term
basis is used for the set of indices p, ... , s if xP, ... , Xq are basic variables.

Theorems on basic solutions. First, if Ax = b has any feasible solution
x ~ 0, then it has a basic feasible solution. Second, if the linear program

Ax = b, x ~ 0, c · x = minimum (35)

has any optimal solution, then it has a basic optimal solution. We proved
those two theorems for linear programming in general.

In the transportation problem, the general theorems apply. Only now
we have to take care because the unknowns X;i have two subscripts. For
instance, in the example (16) the unknowns xii have the subscripts i = 1, 2
and j = 1, 2, 3. In principle, this cannot matter; for if we wished, we could
re-name the six unknowns x 1,x2 , ... ,x6 • Then we'd have conventional,
single-indexed unknowns xi. But in practice, we'll find the original double­
indexed unknowns xii convenient.

EXAMPLE 2. If m = 2 and n = 3, the equation Ax= b takes the equivalent
forms (14) and (16). Here rank A = 4; the first four columns of A are linearly
independent, and so they constitute a basis. For this basis the basic variables
are

(36)

Equivalently, we say that this basis is the set of double indices

B = {(1,1), (1,2), (1,3), (2,1)}. (37)

Thus, B is the set of all double indices (i,j) for which X;j is a basic variable.
The set B has r members if there are r basic variables. In this example
r = 4, and so we write

IBI =4, (38)

which means the set B has four members.
If instead of (16) we use the picture (14), we can designate the basis B

by marking the squares (i,j) that belong to B. For the basis (37) we get this
picture:

(39)

Using any basis, we get a basic solution by solving all the row and column
equations with only the basic unknowns (the non-basic unknowns are set
equal to zero). For instance, suppose the supplies and demands are

S; = 7,4; dj = 5,0,6. (40)

164 1 Linear Programming

If (39) gives the basis, then we solve

(41)

for the marked basic unknowns.
Since the second row has only the one mark in square (2,1), we first find

x21 = 4. Then we're left with this picture for the first row

I • I • I • I 7 (42)

1 0 6

(the 1 is the residual demand 5-4). This yields the remaining basic unknowns:

x 11 = 1, x 12 = 0, x13 = 6. (43)

Degeneracy. In linear programming in general, if A has rank r, and if the
equation Ax= b has a solution x with fewer than r non-zero xi, the prob­
lem is called degenerate. For instance, the transportation problem with
supplies and demands (40) is degenerate. Why? Because the rank equals 4,
but we just found a basic solution with only 3 non-zero components
(remember, we found x 12 = 0).

In linear programming, degeneracy is more of a worry in principle than
in practice. Almost all small perturbations of degenerate programs produce
non-degenerate programs. Such perturbations can be made deliberately or
inadvertently, for instance, by round-off error. Since the solution depends
continuously on the data, no great harm is done. For example, in the data
(40) any small perturbation that makes d2 positive produces a non-degenerate
problem, and a small perturbation of the data produces only a small per­
turbation in the solution.

(Of course, we assume that the perturbed data are consistent; and if they
are not, our algorithm will, in effect, make them so. We know that the
m + n supply and demand equations are redundant, and that they require
the consistency condition ~)i = 'f.di. This need never worry us, for we can
avoid the redundancy and the consistency condition simply by ignoring any
one of the m + n equations.)

So, from now on we will make an assumption of non-degeneracy. We will
assume that our data have these properties:

(i) consistency: s1 + · · · + sm = d1 + · · · + dn.
(ii) fullness: every solution of them+ n supply and demand equations

has at least m + n - 1 non-zero components.
The fullness property implies this: Suppose a solution x has exactly

m + n- 1 non-zero components; then xis a basic solution. For otherwise
the non-zero components of x would belong as coefficients to a dependent
set of the columns of A, and now some subset of those columns would

18 The Transportation Problem 165

yield a solution x' with fewer non-zero components. Then the solution x'
would violate the fullness property.

Equilibrium. Let x be a basic feasible solution, with m + n - 1 positive
components X;i for the double indices (i,j) in the basis B. The equilibrium
equations are the m + n - 1 equations

for (i,j) in B. (44)

These equations come from the dual problem (21) by writing a dual equation
for every positive primal unknown. We now distinguish two cases:

(0() uP + vq ~ cpq for all (p,q) not in B.

In this case we're through: the feasible solution x is optimal. This follows
from the general equilibrium theorem of linear programming. In this case
u and v are feasible for the dual (21), and they yield

m n m n

L U;S; + L vA = L L (u; + vi)xii
i=l j=l i=l j=l

= L (u; + vi)xii
B

Thus, both ·our dual and primal solutions are optimal.
Now take the other case:

for some (p,q) not in B.

(45)

In this case we still have work to do. The inequality (/3) implies u, v are not
feasible for the dual; and we can lower the primal cost by introducing Xpq

into the basis.
Changing the basis. How can we introduce the small positive amount

xpq =A.> 0? We call the current basis B, and by non-degeneracy (ii) we
assume all xii > 0 for (i,j) e B.

We may write the current supply equations m thiS notation, in which an
asterisk denotes a sum over basic variables:

(i = 1, ... ,m) (46)

Here we sum over the indices j for which (iJ) lies in B.
Similarly, we may write the current demand equations in this notation:

(j = 1, ... ,n) (47)

Here we sum over the indices i for which (iJ) lies in B. The non-basic variable
Xpq appears in none of the sums (46), (47).

The new shipment xpq = A. > 0 will use the amount A. from the supply sP
and contribute the amount A. to the demand dq; this shipment has no effect
on the other supplies and demands. Thus, if (jii is the Kronecker delta, the

166 1 Linear Programming

new shipment uses the amount Ab;p from the supply s; and contributes Abiq
toward the demand di.

So the new supply and demand equations take these forms:

Abiq +I* (xii- At;i) = di
i

(i = 1, ... , m)

(j = 1, ... , n)

(48)

(49)

where the sums I* include only terms with indices (i,j) in the current basis, B.
Please compare these formulas with the preceding two formulas, and note the
new terms Atii.

The terms Atii are defined for (i,j) E B; they are needed to compensate for
the new non-basic terms Ab;p and Abiq· For (i,j) E B the tii are the unique
numbers that satisfy the equations

I* tij = b;p
j

I* tij = Jjq
i

(i = 1, ... , m)

(j = 1, ... , n).

(50)

(51)

These two formulas give m + n consistent equations for m + n - 1 basic
unknowns tii. If the original basic equations (46) and (47) hold, then the new
equations (48) and (49) hold iff the equations (50) and (51) hold.

The best choice of A. Since xii > 0 for all (i,j) E B, the new variables,
xpq =A> 0 and

for (i,j) in B,

will give a new feasible solution if A is small enough.
The new cost is

Now the equilibrium equations (44) imply

But (50) implies

and similarly, (51) implies

I tiicii = I tii(u; + vi).
B B

m

= I u;b;p = uP,
i= 1

n

= I vibiq = vq.
j= 1

(52)

(53)

(54)

(55)

18 The Transportation Problem

So (53) says the new cost equals

I xiicii- A(up + vq- cpq).
B

The sum over B equals the old cost. Therefore,

cost decrease = A(up + vq- cpq),

167

(56)

(57)

which is positive, by the inequality (/3). The bigger we can make A, the better.
If we could make A--+ + oo, we could make the cost--+ - oo. Obviously, that
is impossible if all c;j are ?: 0.

Just how big may we take A? From (48) and (49) you see we must require

for all (ij) in B. (58)

Otherwise we'd no longer have a feasible solution. If tii ~ 0, we get no trouble,
but we could get trouble from any tii that is > 0.

Therefore, this is the biggest and the best value for A:

Best A= min{x;)t;/ t;j > 0, (ij) E B}. (59)

That says, we take A equal to the minimum quotient for which the denomina­
tor tii is positive; any bigger A would make one of the differences (58) negative.
(Later, in formula (63), we will find a better form for Best A.)

Throughout this discussion, I hope you understand that all we are doing
is applying the simplex method to a special problem. Right now, the applica­
tion may seem complicated, but you will soon find great simplifications. For
example, you'll find that the mysterious positive denominator in (59) can
take only one value: tii = 1. This helps make the computing easy, and it has
an important theoretical consequence: if the data s; and dj are all integers,
then the answers xii will also be integers. The first basic solution consists of
integers, and all later basic solutions will consist of integers.

You will also find this: All the linear systems we have to solve can be solved
recursively, step by step. This has to be seen to be believed, and I'll give you
a numerical example before I prove it for you.

But we're getting ahead of our story. Let's finish our discussion of changing
the basis.

When we pick the best A, the minimum in (59) is achieved for some t11 v > 0
with (J.t,v) in B. Then

xii- Atii = 0 for (ij) = (J.t,V). (60)

Thus, as xpq enters the basis with the value A > 0, x 11 v leaves the basis and
becomes zero. In a non-degenerate problem this implies that (J.t,v) is unique;
for otherwise at least two of the old basic variables would become zero, and
we'd be left with a new basic solution with fewer than m + n- 1 positive xii.
By the fullness property (ii), that's impossible.

Thus we change the basis: (J.t,v) leaves; (p,q) enters.

168 l Linear Programming

Summary. We will solve non-degenerate transportation problems by the
simplex method. (If a problem is degenerate, we perturb it a little and almost
surely make it non-degenerate.) These are the steps in the simplex method:

1. Compute the first basic feasible solution xii.

2. Solve the equilibrium equations for u; and vi. Now see which case
you're in:

Case (oc). The current xis optimal; STOP.
Case ({3). You can lower the cost by introducing xpq > 0.
3. In case ({3), solve the equations for tii. Get a new basic solution by

bringing (p,q) into the basis and removing (,u,v). Return to step 2.
With each change of basis, the cost decreases. Since the number of possible

bases is finite, the process must finally stop with an optimal basic solution.

A COMPLETE NUMERICAL EXAMPLE. Let the costs, supplies, and demands be

S; = 8,3
dj = 4,2,5

Since LS; = Ldi = 1, the data are consistent. We hope, and assume, that
the problem is non-degenerate.

Step 1. We will get a first basic feasible solution by the method discussed
before Example 1 (this method is sometimes called the northwest-corner
method). We set up a 2-by-3 rectangle for the unknowns x;i; we put the
supplies at the right, the demands at the bottom

4 2 5

First, we get x 11 = 4, eliminating the first column and leaving the residual
supply s'1 = 8 - 4 = 4. Continuing, we find the basic X;i = 4, 2, 2, 3 in this
picture:

~8
[IID3

4 2 5

We have found four basicx;i > 0, which is correct here because m + n- 1 = 4.
Step 2. We'll solve u; +vi= c;i in B. We start with this picture:

18 The Transportation Problem 169

The letters are unknowns; the numbers give cii where (i,j) E B. The picture
requires

u1 + v1 = 9, u1 + v2 = 7, u1 + v3 = 1, u2 + v3 = 0.

We have four equations in five unknowns. We arbitrarily make v3 = 0. (We
might as well have made v3 = 57 or anything else.)

Now the picture imples u2 = 0 and u1 = 1, for only these values permit
v3 = 0. This yields the picture

~~
V1 V2 0

Now the 1 at the right forces v1 = 8 and v2 = 6, giving

Cil2I!J 1

rr=E:Jo
8 6 0

Now all the equilibrium equations are solved. Notice that once we set vn = 0,
the other unknowns were forced, one by one.

Finally in step 2, we have to compute ui +vi for i,j not in B. These are the
two primed valued in this picture:

trlHB~
8 6 0

(The dots occur for (i,j) E B. If we compare the primed numbers with the
corresponding costs, we find that we are in case (f:J):

u2 + v1 = 8 > 5 = c21

u2 + v2 = 6 > 4 = c22 •

These two inequalities tell us we could lower the cost by bringing either
(2,1) or (2.2). Since the first discrepancy is greater, let's bring in (p,q) = (2,1).

Step 3. We'll solve this picture for the tii:

The 1 's at right and at bottom occur in row p and column q; here p = 2, q = 1.
We must solve for a tii wherever there is a dot, that is, where (i,j) is in B. The
row sums occur at right; the column sums occur at bottom.

170 1 Linear Programming

This system is also recursive. Since only one dot occurs in row 2, we find
tl2 = 1:

1-Tilo
LITI1

1 0 0

Now only one unknown remains in each of the three columns, and we get
the remaining tii:

~0
ITI:IJ1

1 0 0

Note that all the tii equal1 or 0 or -1; that will always be true.
Since tii > 0 iff tii = 1, (59) gives

Best A.= min{xii: tii = 1}

= min(x 11,x23)

= min(4,3) = 3 = X23·

(61)

Therefore, x23 will leave the basis as x21 enters with the value A. = 3. Here
(Jt,v) = (2,3), and (p,q) = (2,1). For (ij) e B, xii goes to xii- A.tii, and we get
the new basic feasible solution

f±efj:
4 2 5

Note that the supply and demand equations are again satisfied.
How did the cost change? Since we brought in x21 =A.= 3, where

u2 + v1 - c21 = 3, the cost must have decreased by the product 3 x 3 = 9.
In fact, you can compute the first cost

old 2;ciixii = 52

and you can compute the new cost

new 2;ciixii = 43.

Return to step 2. We set up the equilibrium equations for the new basis B.
This is the picture:

As before, the letters are unknowns; the numbers give cii where (i,j) e B.

18 The Transportation Problem 171

Again we arbitrarily make v3 = 0. And now, one by one, the picture forces
the following values:

v3 = 0, u1 = 1, v2 = 6, v1 = 8, u2 = -3.

And so the picture becomes

[iliLJ 1

[J]TI -3

8 6 0

Finally in step 2, we have to compute u; + vi for (i,j) not in B. These are
the two primed numbers in this picture:

Now we compare:

~1
[TI_ED-3

8 6 0

u2 + v2 = 3 < c22 = 4

u2 + v3 = -3 < c23 = 0

The inequalities u; + vi::::; cij for (i,j) not in B define the case (a). And so we
discover that the current x is optimal.

Check: In the case (a), but not in the case (/3), the u and v are feasible for the
dual. Since they solve the equilibrium equations, they must satisfy

if x is optimal for the primal. As a check, we compute

~);u; = 8 · 1 + 3 · (- 3) = -1

L,divi = 4 · 8 + 2 · 6 + 5 · 0 = 44.

Sure enough, the sum is 43, which equals the last L,c;ixii·

General discussion. We just finished solving by hand a linear-programming
problem with 5 equations and 6 unknowns. All the equations were easy: we
could solve them recursively. Now you'll see why that will always be true.

The primal basic equations. In the m-by-n rectangle, put a dot in each
square (i,j) where (i,j) is in the basis B. Put m supplies at the right and n
demands at the bottom. If L,s; = L,di, there must be one and only one solu­
tion xij belonging to the basis B. We will prove that we can compute the basic
xij recursively. That is to say, at each stage we can find some equation with
only one new unknown.

Every equation is a row equation or a column equation. Call either a row
or a column a line. The matrix X has m + n lines. On the intersections of
these lines we have placed m + n - 1 dots.

172 1 Linear Programming

Every line must contain at least one dot. Otherwise some row or column
equation would contain no basic unknown, and so this equation would be
unsolvable for any given non-zero supply or demand. For instance, the
third column must have a dot; otherwise we could never meet d3 =F 0.

Lemma. Some line contains exactly one dot.

PRooF. Otherwise every line would have at least 2 dots. Looking at them
rows, we must see at least 2m dots; looking instead at then columns, we must
see at least 2n dots. But one or both of those numbers must be > m + n - 1 :

2m > m + n - 1 or 2n > m + n - 1.

One way or the other, we see more than m + n - 1 dots; that contradicts
our assumption. D

So some line contains just one dot. If the line is a row, we can solve for one
basic xii and eliminate one supply equation; this eliminates one supply, si,
and changes one demand, di, to the residual demand di- si. (The residual
need not be ;;:: 0, because a basic solution x need not be feasible.) If the line is
a column, we eliminate one demand equation, deleting one demand di and
changing one supply si to the residual supply si - di.

The new supplies and demands are consistent. In terms of dots and lines,
we have one less dot and one less line. The remaining m + n - 2 dots designate
a basis for the remaining m + n - 1 consistent supply and demand equations.
Each remaining line must contain at least one dot; and so, by the lemma,
some remaining line contains exactly one dot.

Continuing in this way, we solve for all the basic xii. At each stage, some
equation contains only one new unknown-some remaining line contains
only one remaining dot.

The form of a basic solution. Look at this diagram, in which the dots give
a basis B.

d1 d2 d3

We solve for the basic xii one by one:

x12 = d2 , x 11 = s1 - d2 , x21 = d1 + d2 - s1,

x23 = s2 + s1 - d1 - d2 .

Every xii has one of these two forms:

(r) xii = l:si - Ldi

(c) xii = Ldi - l:si,

where the sums are taken over subsets.

(62)

18 The Transportation Problem 173

In the example (62), we found x 11 and x23 in the form (r); these unknowns
came from row equations. We found x 12 and x21 in the form (c); these
unknowns came from column equations.

In general, every basic xij has one of the forms (r), (c). This is the reason:
At each stage, residual supplies have the form (r) while residual demands
have the form (c); that is true for the first stage, and it follows by induction
for the later stages. But each new xij is picked up from some residual row or
column equation. From a residual row, xii will get the form (r); from a column,
the form (c).

Now you can see why all the tii equal!, 0, or -1. Remember, the tii came
from solving a set of basic equations with these data:

sP = 1, si = 0 (i =F p); dq = 1, di = 0 (j =F q).

Every partial sum 2.:Si equals 0 or 1; every partial sum 'L,di equals 0 or 1.
Every difference (r) or (c) can equal only 1, 0, or -1. But every tij must have
the form (r) or (c), and so every tij = 1 or 0 or -1.

Knowing this, you can put formula (59) in better form:

Best).= min{xij: tii = 1}. (63)

The equilibrium equations. In our complete numerical example, we solved
two sets of equilibrium equations

ui + vi= cij for (ij) E B, (64)

with vn = 0. You saw that we could solve these equations recursively. Now
I'll show you why that will always be true.

Since we arbitrarily set vn = 0, our first step is to look for some equation
(64) that contains vn:

ui + Vn = cin for (i,n) E B. (65)

Every equation (65) determines one unknown ui. In this way we solve for
one ui for each basic dot (i,n) in the last column of the m-by-n rectangle.
Since every line in the rectangle must contain at least one basic dot, we
must find at least one equation (65).

Now we have computed the ui for which (i,n) is in the basis. The next
step is to look for those equations (64) that contain the known ui; every
such equation-if there is any-determines a new vi. If there isn't any such
equation, our engine must stop: we are out of gas and out of luck. The
point of this discussion is to prove we never will run out of gas: we'll be
able to keep going till we've reached all the ui and vi.

After we know some u;, formula (64) determines all the vi for j associated
with i in the basis; conversely, after we know some vi, we can get all ui
for i associated with j in the basis. Suppose we've gone on this way as far
as we can; suppose we have to stop after computing

ui for i in the set I,

vi for j in the set J.

(66)

(67)

174 l Linear Programming

Then this is what we want to prove:

I= {1,2, ... ,m}
J = {1,2, ... ,n}.

(68)

In other words, we have to stop only when we've got all the unknown u;
and vi.

For every dual variable u; in (66), write down the corresponding primal
basic equation:

fori in I. (66')

These equations contains only x;i for (i,j) in the basis B. If i is in I, then
j must be in J; for otherwise we could compute some new vi by solving
some new equation

i E I,j ¢ J.

Likewise, for every dual variable vi in (67), write down the corresponding
primal basic equation:

for j in J. (67')

As before, if j is in J, and if X;i is a basic variable, then i must be in I;
for otherwise we could solve some new equation

i ¢ I,j ¢ J.

Suppose (68) is false. If I is incomplete, then (66') omits some of the m
supply equations; if J is incomplete, then (67') omits some of then demand
equations. In either case, the data

(69)

are incomplete, and so they may be chosen independently. The consistency
condition is

m n

L S; = L dj, (70)
i= 1 j= 1

and that condition applies only if I and J are complete. But if I or J is
incomplete, then the incomplete primal basic equations (66'), (67') are inde­
pendent: the data consist of III+ IJI unconstrained numbers. (Here we use
the notation lSI to stand for the number of members of a finite setS.)

So, if I or J is incomplete, the III + IJI primal basic equations (66'),
(67') are independent. How many basic primal unknowns x;i do these
equations contain? These equations contain the unknowns

{xij: i E I,j E J, (i,j) E B}. (71)

If we call this set X', we will prove

IX'I = III + IJI- 1. (72)

18 The Transportation Problem 175

If the III + III equations are independent, then they contain too few un­
knowns, and for some data (69) the equations would have no solution. That
is impossible, since every basis B must provide a solution xij for every
consistent set of primal equations. This argument proves that the III+ III
equations cannot be independent, and that means

III = m and III = n. (73)

Now we will prove (72). We have to count the set X' in (71). We let the
primal variable xij correspond to the dual equation

U; + Vj = C;/ i E I,j E I, and (i,j) E B. (74)

Each member of X' corresponds to exactly one equation (74), and so IX'I
is the number of these equations.

But these are precisely the equilibrium equations that we solved to get
the u; and vj in (66) and (67). Every time we solved a new equation (74), we
computed one new dual unknown, u; or vj. Before we solved any equation
(74), we started with the one dual unknown v" = 0. After we solved one
equation, we knew two dual unknowns. Finally, we must have solved
III + III- 1 equations in order to end with III + III unknowns. Therefore,
we solved exactly III + III - 1 equations (74), and that must be the size of
the corresponding set X'. That proves (72) and so we finish our discussion
of the transportation problem.

When you do the following problems, you'll see how easy the algorithm
is to use.

References

1. F. L. Hitchcock, The distribution of a product from several sources to numerous
localities. J. Math. Phys. Vol. 20 (1941) pp. 224-230.

2. T. C. Koopmans, Optimum utilization of the transportation system, Econometrica
Vol. 17 (1949) pp. 136-145.

3. Walter Garvin, Introduction to Linear Programming (Part II: The Transporation
Problem and its Variants), McGraw-Hill, 1960.

PROBLEMS

1. Let the costs, supplies, and demands be

[9 7 1] S; = 2, 9
(c;) = 5 4 0 ' dj = 4,2,5

As in the complete numerical example, find optimal u, v, and x. Check: Es;u; +
Edh = EJ:ciixii = 36.

176

2. Let the costs, supplies, and demands be

[9 1 7] S; = 2, 10
(c;) = 5 4 0 ' dj = 4,3,5

1 Linear Programming

Find optimal u, v, and x. Check: Dual and primal values= 26.

3. Let the costs, supplies, and demands be

[7 2 5]
(c;) = 4 1 8 ,

9 6 3

S; = 8,6,5
dj = 3,9, 7"

Find optimal u, v, and x. Check: Dual and primal values= 52.

4. Make up a non-trivial transportation problem with 3 supplies and 4 demands.
Solve it, and check the equality of dual and primal values.

*5. Solve Problem 3 with the network-flow algorithm described in the last problem in
the preceding section. Compare that algorithm with the one in this section. Which
algorithm do you prefer? Why? Which one handles degeneracy better? Which one
do you think would be better for computer solution of very large problems?

Nonlinear Programming 2

1 Wolfe's Method for Quadratic Programming

Look at the following problem:

Ax= b, x;;?; 0

p · x + !x · Cx = minimum.
(1)

Here A is an ni x n matrix; bERm, p ERn; and C is an n x n symmetric
matrix. If C = 0, we have the canonical minimum problem of linear pro­
gramming; but if C =1= 0, the problem is nonlinear.

We will obtain necessary and sufficient conditions for x0 to solve (1).
Then we'll discuss Wolfe's method for solving (1) with a computer.

Wolfe's method is easy to program, since his algorithm is a variant of the
simplex method of linear programming. As we will show, Wolfe's method
works if C is positive definite; it also works if p = 0 and C is only positive
semi-definite. For these quadratic-programming problems, Wolfe's method
gives an elegant and practical solution.

Necessary conditions. It would be easy to deduce necessary and sufficient
conditions from the general Kuhn-Tucker theorems, which we will discuss
later. But I'll give you an independent derivation that uses only the Farkas
theorem.

As in linear programming, we'll say x 0 is feasible for (1) if it satisfies the
constraints:

Ax= b, x;;?; 0.

If x 0 is feasible, then all x = x 0 + ey are feasible for which

Ay=O
and

Yi;;?; 0 if xJ = 0,

(2)

(3)

177

178 2 Nonlinear Programming

where 0:::::; B « 1. If x0 is optimal for (1), and if we define

q(x) = p · x + !x · Cx,

then the conditions (3) should imply

q(x0) :::::; q(x0 + ey) (0:::::; B « 1).

Expanding the quadratic, we find

q(x0 + ey) = q(x0) + e(p + Cx0) · y + !e2y · Cy.

(4)

(5)

(6)

For small B > 0 the coefficient of B must be ~0 if (5) holds. Therefore,
(3) should imply

(7)

To use the Farkas theorem, we must put (3) in a familiar form. Let
ah ... ,am be the rows of the given matrix A; let el, ... ,e" be the natural
basic unit vectors in R". Then (3) says

ai ·y~ 0

-ai · y ~ 0

(i = 1, ... ,m)

(i = 1, ... ,m)

ei · y ~ 0 if xJ = 0.

Since (8) implies (7), the Farkas theorem says
m m

p + Cx0 = L piai + L ai(-ai) + L0 -ciei
i= 1 i= 1

(8)

(9)

where the coefficients are all ~0; the sum Lo is taken only for j such that
xJ =0.

We will now restate (9). If we set ui = ai- p;, we get a vector u E Rm.
Then

m

L (ai- p;)ai = uA =AT u,
i= 1

and (9) says
p + Cx0 + AT u = v,

where

Note that
x0 • v = Lo T ixJ = 0.

We have thus proved the following result:

(10)

(11)

(12)

Theorem 1. Suppose x0 solves the quadratic-programming problem (1). Then
there exist vectors u0 in Rm, v0 in R" such that x 0, u0 , v0 solve

Ax =b
Cx + ATu- v = -p

(13)

X ~ 0, V ~ 0, X · V = 0.

(We do not require u ~ 0; u is unrestricted in Rm.)

1 Wolfe's Method for Quadratic Programming 179

This is a necessary condition for x0 to be optimal. It is remarkable for
the following reason: All the equations are linear-except the one equation
x · v = 0. That equation amounts to an exclusion rule: the components x1
and v 1 must not both be positive. (If one is positive, the other must be zero,
since we require x ~ 0 and v ~ 0.)

EXAMPLE I. Consider the problem

Here we identify

Now (13) becomes

3x 1 + 4x2 = 6, x ~ 0

x~- 5x1 + 7x2 =minimum.

A= (3,4), b = (6)

c = (~ ~). p = (- ~)

X ~ 0, V ~ 0, X • V = 0.

(14)

(15)

(16)

For x1 ~ 2 and x2 ~ 0 the quadratic in (14) is minimized iff x 1 = 2 and
x 2 = 0. Therefore, our problem has the unique solution

If we set

we solve (16).

EXAMPLE 2. Consider the problem

x 1 + x2 = 2, x ~ 0

- x~ - x~ = minimum.

This problem has two solutions:

Here the system (13) becomes

x1 + x2 = 2

X ~ 0, V ~ 0, X • V = 0.

(17)

(18)

(19)

(20)

(21)

180 2 Nonlinear Programming

One solution is

Another solution is

x0 = (~). u0 = (4), vo = (~).
But look: There is a third solution, namely,

x0 =G). uo = (2), vo = (~). (22)

This x 0 does not solve (19). Therefore, the necessary condition (13) is not
sufficient for x 0 to solve the quadratic program (1).

Sufficient conditions. We will show that (13) is sufficient, as well as neces­
sary, for ~0 to solve (1) if C is positive semi-definite (w · Cw ~ 0 for all w).
Note that C = (- 2) in Example 2; that accounts for the false solution (22).

Theorem 2. Suppose C is positive semi-definite. Suppose x 0 , u0 , v0 solve (13).
Then x0 solves the quadratic program (1}. If C is positive definite, then the
solution of (1) is unique.

PROOF. If we expand the quadratic (4), we get

q(x0 + y) = q(x0) + (p + Cx0) • y + !-y · Cy.

If xis feasible for (1), let y = x- x 0 • Then y must satisfy

Ay = 0, Yi ~ 0 if xJ = 0.

Since x0 , u0 , v0 satisfy (13), we have

p + Cx0 = v0 - u0 A,
and so

(23)

(24)

(25)

But v0 ~ 0; and vJ > 0 implies xJ = 0, which implies Yi ~ 0. Therefore,
v0 • y ~ 0; and now (25} and (23) give

(26)

This proves that x0 minimizes q(x). If C is positive definite, then we can
say more: If x 0 + y is feasible, then (26) implies

q(x0 + y) > q(x0) unless y = 0, (27)

and so x0 is the unique solution of (1).
Existence. Does the quadratic program (1) have a solution? If C is posi­

tive definite, that question is easy to answer: A solution exists if there is any
x1 that satisfies the constraints.

I Wolfe's Method for Quadratic Programming 181

Here is the proof. For some a> 0 we have

x · Cx ~ alxl 2 for all x,

and so the quadratic q(x) equals

p · x + fx · Cx ~ -IPIIxl + fajxl 2

> q(x1) if lxl ~ R

if R is big enough. Therefore, we may restrict the competition to the sphere
lxl ~ R. Now the set

{x: Ax= b, x ~ 0, lxl ~ R}

is closed and bounded, and so some x0 in this set minimizes q(x). 0
If C is not positive definite, the question of existence is harder. In prac­

tice, as you know, we usually have some reason for thinking a solution
exists, and what we want is a good algorithm for computing it.

Wolfe's algorithm. If C is positive definite, or if p = 0 and Cis positive
semidefinite, we can use a simplex method to solve the system (13). Our two
theorems tell us that the system (13) is equivalent to the quadratic pro­
gram (1).

You object, I'm sure. The system (13) is nonlinear because of the equa­
tion x · v = 0. We can't use the simplex method for a nonlinear problem.

Yes, we can. Let's write the system (13) without the offending nonlinear
equation:

Ax=b

Cx + ATu- v = -p

x ~ 0, u free, v ~ 0.

(28)

This is a problem in linear programming. We could compute a solution
x, v, u by the simplex method. But probably we would find x · v > 0, and
we must exclude that.

Here is the trick: We will use the equation x · v = 0 as an exclusion rule:
xi and vi must not both be positive for any j = 1, ... , n. We will use the
familiar simplex method with this one modification: At any stage, if xi is
in the old basis (xi> 0), we must not bring vi into the basis; if vi is in the
old basis (vi> 0), we must not bring xi into the basis.

We begin by using the simplex method, in the usual way, to obtain a
basic feasible solution x = x 1 for the linear program

Ax= b, x ~ 0. (29)

(Here, and in what follows, we assume that the linear programming prob­
lems we meet are non-degenerate, so that the simplex method works.) Next
we set u1 = 0 and v1 = 0. Note that we begin with x 1 · v1 = 0.

If, by some miracle, our initial x 1 solves Cx1 = -p, we are done; for
then Theorem 2 tells us that x 1 solves the quadratic program. But if Cx1 i=
- p, we will introduce slack variables z 1 ~ 0, ... , zn ~ 0 and later drive

182 2 Nonlinear Programming

them to zero. We let
n

L ciixj + d;zf = - p;
i= 1

(i = 1, ... ,n) (30)

where we fix d; = ± 1 so that we may take zf ~ 0. This fixes the diagonal
matrix

(31)

The slack vector z ~ 0 will later vary (and eventually equal 0), but D will
always have its initial definition.

We now restate (28) as a minimum problem:

Ax=b
Cx + AT u - v + Dz = - p

x ~ 0, u free, v ~ 0, z ~ 0

J.l = z 1 + · · · + zn = minimum.

If for the free variable u we introduce

u = u' - u" with u' ~ 0 and u" ~ 0,

(32)

(33)

then (32) becomes a canonical minimum problem of linear programming.
We start with the initial feasible solution

x=x\ u=O, v=O, z=z1• (34)

To the linear-programming problem (32) we now apply the usual simplex
method-with just one variance: at each change of basis we apply the exclu­
sion rule. If xi> 0, we must not bring in vi> 0; if vi> 0, we must not bring
in xi > 0. After a finite number of changes of basis, the computation must
stop. Indeed, that would be true even if we did not use the exclusion rule.

When the computation stops, J.l has some value ~0. Wolfe proved this:
If C is positive definite, the final value of J.l is zero.

Look what that says about the system (32). It says that z has the final
value 0. What's more, since we've used the exclusion rule at every stage, we
have kept x · v = 0. Under these conditions the system (32) is identical to
the nonlinear system (13); and that, we know, is necessary and sufficient for
the final value x = x0 to solve the quadratic program (1).

Now let's prove Wolfe's result: J.l takes the final value zero.
When the computation stops, let

J 1 = {j: Xi> 0}
J 2 = {j: vi> 0}
J 0 = {j: xi= vi= 0}.

(35)

1 Wolfe's Method for Quadratic Programming 183

By the exclusion rule, x · v = 0, and so the index sets J 1 and J 2 are disjoint.
And, of course, both J 1 and J 2 are disjoint from J 0 • And the union is

1 1 u 1 2 u 1 0 = {1,2, ... ,n}. (36)

All that says is this: For each j, either xi> 0 or vi> 0 or xi= vi= 0.
At each stage, this is what the exclusion rule requires: We may bring xi

into the basis only if j E J 1 u J 0 , since the set J 2 is excluded; we may bring
vi into the basis only if j E J 2 u J 0 , since the set J 1o is excluded. At the
final stage the simplex method tells us this: No permitted change of basis
can lower the cost ll·

We now write down a linear-programming problem that mentions only
the final permitted index sets in (32). Let

a1, ... ,a" be the columns of A

a 1, ... ,am be the columns of AT,
(37)

and let ci, ei, and di be the columns of the matrices C, I, and D. Then the
system (32), with only the permitted indices, takes this form:

L xiai = b

m n

L xici + L uiai- L viei + L zidi = -p
J1uJo i=1 J2uJo j=1

minimize :Lz i = Jl

xi ;:::: 0, ui free, vi ;:::: 0, z i ;:::: 0.

(38)

When the algorithm stops, the numbers xi, ui> vi, zi solve the linear pro­
gram (38). Now we will prove minimum Jl = 0 in (38).

We will use the equilibrium theorem of linear programming. The con­
straints in (38) comprise m + n linear equations. Therefore, the dual vector
has m + n components, say

(39)

The dual vector is naturally partitioned into twp parts, r and s. According
to the equilibrium theorem, the optimal dual vector satisfies the following
conditions:

(oc) r · ai + s · ci = 0 ifjeJ1

(/3) r · ai + s · ci ::::;:; 0 ifjeJ0

(y) s ·ai = 0 (i=l, ... ,m)

(~) -s · ei = 0 ifjeJ2

(e) -s · ei::::;:; 0 ifjeJ0

(') s. di::::;:; 1 (j = 1, ... ,n)

('1) r·b-s·p=Jl.

184 2 Nonlinear Programming

Equality occurs in (ex) because xi> 0 in J 1 ; equality occurs in (y) because
ui is free; equality occurs in (b) because vi> 0 in J 2 ; equality occurs in (ry)
because the final value of tt is optimal in (38).

Assuming C is positive definite, we will now prove tt = 0.
First we will shows= 0. To do so, we only need to shows· Cs:::; 0. We

now assert:

{
:::;OinJ0

(r · ai + s · ci)si = 0 ~n J 1.

=0mJ2

(40)

The equality in J 0 follows from the inequality (p) and the inequality (s),
which says si ~ 0 in J 0 ; the equality in J 1 follows from the equality (ex); the
equality in J 2 follows from the equality (b), which says si = 0 in J 2 • Summing
over the three subsets, and using

we deduce

n

" ais. =As L. J '
j= 1

n

" cis.= Cs L. J '
i= 1

r · As + s · Cs :::; 0, (41)

But the vector As has the components ai · s, and (y) says all those inner
products are zero. Therefore, As = 0 and

s · Cs:::; 0,

which proves s = 0. Now (rt) says

tt = r · b - s · p = r · b,

(42)

(43)

and we will show this equals zero. We have b =Ax in Wolfe's linear program
(32). Therefore,

Now (ex) gives

r·b=r·Ax

n

= L r · aixi.
i= 1

(44)

r·ai=-s·ci=O in J 1. (45)

But xi # 0 iff j E J 1 (that was the definition of the subset J 1). Therefore,

Jl. = r ·Ax = L r · aixi = 0, (46)
J,

which is the required result.
A different assumption. We just proved tt = 0 by assuming C positive

definite. Now, instead, let's assume

C positive semidefinite, and p = 0. (47)

This assumption is neither weaker nor stronger than the former.

1 Wolfe's Method for Quadratic Programming 185

Assuming (47) we will again prove 11 = 0 when Wolfe's algorithm stops.
Since 11 = L)j in (32), and since x · v = 0, that will again prove that Wolfe's
final x solves the quadratic program (1).

Now we can't shows = 0, but we can show Cs = 0. To do so, we only need
to shows· Cs ~ 0. For then the semidefiniteness gives

(s + ay) · C(s + ay) ~ 0 for ally,
and so

s · Cs + 2ay · Cs + a2y · Cy ~ 0.

Now s · Cs ~ 0 implies

for ally.

Letting a --+ ± 0, we find y · Cs = 0 for all y, and so Cs = 0.
Again we make the assertion (40), and the proof is just what it was; and

again we deduce (41) and (42). Now (42) implies not s = 0 but only Cs = 0.
Again we have s · p = 0, but now it's true for a different reason: we've

assumed p = 0. Therefore, we again have 11 = r ·b. And again (~) implies

r · aj = -s · cj in J 1,

and now this equals zero because s · cj equals the jth component of the
vector

s · C = cr s = Cs = 0.

Now, as before, (46) yields the result 11 = 0.

A NuMERICAL EXAMPLE. Although Wolfe's theoretical arguments are subtle
and complex, his computing method is easy. I hope this example will con­
vince you.

We will solve the quadratic program

X 1 + X 2 = 1, X~ 0
(48)

xf + x1x2 + x~ - 5x2 =minimum.

You can solve this by inspection if you set x1 = 1 - x2 in the quadratic.
The unique solution is the boundary point where x 2 = 1. This problem is a
good test for Wolfe's method, since the minimum occurs on the boundary.

The problem (48) has the form

Ax= b, x ~ 0

tx · Cx + p · x = minimum,
(49)

where

A = (1,1),

C=G D
b = (1)

p = (-~)
(50)

Since Cis positive definite, Wolfe's algorithm must work.

186 2 Nonlinear Programming

We first get a basic solution to Ax= b, x ~ 0. Lefs say our computer
gives us

(51)

(This is bad luck; the other basic solution solves the quadratic program.)
We now compute

Cx =G). (52)

If this equaled - p, we would be through; since it does not, we must introduce
slack variables zi ~ 0. We write

Cx +Dz= -p, (53)

which becomes

(54)

This fixes d1 = -1, d2 = 1, and it gives the initial slack vector the components
2,4. Note that we had to take d1 = -1, not d1 = + 1, in order to get z1 ~ 0.

We now write down Wolfe's linear program (32):

=1
2x 1 + x 2 + u1 - v1 - z1 = 0

x 1 + 2x2 + u1 - v2 + z2 = 5

xi~ 0, u1 free, vi~ 0, zi ~ 0

Minimize z1 + z2 = Jl.

(55)

All we have to do is solve this problem by the simplex method with just one
variance: the exclusion rule x · v = 0.

We start with the basic feasible solution to (55) that we have already
computed:

(56)

All the other unknowns intially equal zero. The initial cost is Jl. = z 1 + z 2 = 6.
I won't confuse you by writing down the simplex tableau. It's enough to

tell you what happens with each change of basis.
First change of basis: x2 comes in, x1 goes out. Result: the new basic

solution
(57)

with the reduced cost Jl. = 4. Please verify that the values (57) do satisfy the
three equations in (55).

Next change of basis: v1 comes in, z1 goes out. The entrance of v1 is
permitted by the exclusion rule, since x1 = 0 at this stage. Result: the new

1 Wolfe's Method for Quadratic Programming 187

basic solution
(58)

with the reduced cost J.l = 3. Again, please verify.
Last change of basis: u1 comes in, z2 goes out. Result: the basic solution

(59)

with the cost J.l = 0. STOP.
As you see, the computer stops with the right answer: x2 = 1. That's how

Wolfe's method does quadratic programming.

Next, I'll tell you about the general theory of nonlinear programming.

References

Philip Wolfe, The Simplex Method for Quadratic Programming, Econometrica, vol. 27
(1959) pp. 382-398.

J. J. Sylvester, "A Question in the Geometry of Situation," Quarterly J. Pure and Appl.
Math, vol. 1 (1857) p. 79.

PROBLEMS

1. For C = 0 show that the optimality condition (13) is the equilibrium condition of
linear programming.

2. Classical Lagrange multipliers: Suppose x0 solves the quadratic program (1), and
suppose x0 is an interior point: x0 > 0. Then what does the optimality condition
(13) become? (The components of u0 are Lagrange multipliers.)

3. Consider the problem
2x1 + 3x2 ~ 6, x ;_:, 0

(x1 - 1)2 + (x2 - W = min.

Draw a picture and guess the solution. Introduce a slack x3 ;_:, 0, and rewrite the
problem in the form (1); identify A, b, C, p. Now use Theorem 2 to prove your
guess is optimal: find x0, u0, v0 satisfying (13).

4. Do as in Problem 3 for the problem

x1 + 7x2 ~ 7, x ~ 0,

(x1 - 1)2 + (x2 - 5)2 =min.

5. Sylvester's problem (1857): "It is required to find the least circle which shall con­
tain a given set of points in the plane." Show that Sylvester's problem for finite
point sets in Rn is equivalent to the following quadratic program: If the points
a 1> ••• , am are given, find a point x and a number }. solving

a;· x +}. ~ tla;j2 (i = 1, ... ,m),

tx·x+l=min.

Then the required least sphere has center x and has radius r = ..j(x · x + 21).

188

6. In general, suppose x0 solves

Ax~b, xERN,

tx · Cx + p · x = min.

2 Nonlinear Programming

where A is an m x N matrix and C is an N x N matrix. Show that the following
condition is necessary for optimality: If at. ... ,am are the rows of A, suppose

0 { = b; for i in I
a- ·x

' >b; fori not in I.

Then there must be numbers W;)?: 0 for i in I such that

Cx0 + p = L: w;a;.
I

Method: For 0 <a« 1 set x = x 0 + ey. Show that if y satisfies

a; ·y ~ 0 fori in I,

then y must satisfy (Cx0 + p) · y ~ 0. Now use the Farkas theorem.

7. (Continuation.) If C is positive semidefinite in Problem 6, show that the necessary
condition is also sufficient.

8. (Continuation.) For Problem 7 show that the optimality condition may be ex­
pressed as follows: x0 is optimal iff there exist vectors z and w such that

Ax0 - z = b

Cx0 + p = ATw

z ~ 0, w ~ 0, z . w = 0.

9. (Continuation.) For Sylvester's problem in R", what is the optimality condition?
(Set N = n + 1, xN = II..)

*10. (Continuation.) For Sylvester's problem in R", show that the optimal sphere has
center x and radius r such that (1) all the given points a 1, •.. ,am lie in the ball of
radius r with center x, and (2) the center x lies in the convex hull of the points a;
lying on the boundary:

X = L W;a;, W; ~ 0, L W; = 1
I I

where Ia; - xl = r for i E I. (The optimal sphere is unique because, if two optimal
spheres had radius r but had different centers, the intersection of the two balls
would lie in a ball of radius <r, and this smaller ball would contain the given
points.)

11. Consider the quadratic program

6x1 + 3x2 + 2x3 = 6, x ~ 0

xi + (x2 - 2)2 + (x3 - W = min.

Using condition (13), find the optimal solution. (Hint: x 1 = 0.)

1 Wolfe's Method for Quadratic Programming 189

12. For Problem 11 what is Wolfe's linear program with exclusion rule?

13. Consider the quadratic program

Ax~ b, x ~ 0.

!x · Cx + p · x = min.

Introduce a slack vector and then get an optimality condition from (13).

14. Consider the quadratic program

[~ ~ ~}=[~]. x~O
xi + x1x2 + x~ + 3x~ - 7x2 =min.

What is Wolfe's linear program with exclusion rule? If you start with the feasible
solution x = (t ,O,i), what is the diagonal matrix D for Wolfe's method? What is
the starting slack vector z?

15. Classical least squares: Let M be an m x n matrix, and let g be given in Rm. Sup­
pose no x solves Mx = g. Consider the problem of minimizing the length of the
residual:

fMx - gf 2 = min. for x in R".

Show that a necessary and sufficient condition for optimality is

MTMx = MTg.

Show that the optimal x is unique iff the columns of M are linearly independent.

16. Consider least squares with sign constraints:

fMx - gf 2 = min., x ~ 0.

Find a necessary and sufficient condition for optimality. Write Wolfe's linear pro­
gram with exclusion rule.

17. Investment strategy: Let p 1 and p2 be today's prices per share for two stocks. We
wish to buy x 1 and x 2 shares of the two stocks so that

(i)

We guess that next year the prices per share will be p1 + ~t 1 and p2 +liz, and we
want at least $10,000 expected profit:

(ii)

Let the statistical variance (volatility) of our portfolio be the positive definite
quadratic form

(iii)

The problem is to meet the constraints (i) and (ii) with minimum volatility (iii).
From condition (13) find a necessary and sufficient condition for the optimal port­
folio x1, x2 . Draw a picture that illustrates the quadratic program.

18. Generalize the last problem for an optimal portfolio of n stocks.

190 2 Nonlinear Programming

2 Kuhn-Tucker Theory

When you first studied calculus, you learned how to solve maximum prob­
lems. Given a function g(x), if you wanted its maximum value, you solved
the equation g'(x) = 0.

All we're going to do now is generalize that basic method of calculus.
We'll pay special attention to what happens inn dimensions if the maximum
occurs on the boundary. We'll discuss a constrained maximum problem, and
we'll talk about a saddle-value problem that generalizes the idea of Lagrange
multipliers. We'll follow the classic presentation given by Kuhn and Tucker
in 1950.

In a charming, scholarly article published in 1976, Kuhn points out that
the famous Kuhn-Tucker conditions were anticipated by William Karush
in his Master's Thesis, which he wrote in 1939. Also, there was a paper by
Fritz John in 1948.

But still we speak of the Kuhn- Tucker conditions. Just so, we speak of
Fourier series-though Euler used them before Fourier did. We do so with
reason: it was Fourier, not Euler, who first presented the full significance of
the discovery that continues to bear his name. We do not depreciate the
priority of Euler when we continue to value the major contribution of
Fourier.

Enough philosophy. Let's get back to calculus.
You remember that little maximum problem? Let's take a close look at it.

We are given a function g(x), and we want its maximum for 0 ~ x ~a. Let

g(x) = x sin x (0 ~ x ~a).

We take the derivative and set it equal to zero;

g'(x) = sin x + x cos x = 0.

This equation has the roots x = 0, x~>x2 , •.• where

Xn = -tan Xn, (n- !)rr < Xn < nn.

(1)

(2)

(3)

Now we see some complications. The easy root, x = 0, cannot maximize
g(x), since g(x) > 0 for small x > 0. If a< x 1, then the maximum occurs
on the boundary, at x =a. If a~ x 1, then the maximum may occur at one of
the roots x 1,x3 ,x5 , ... ; or it may occur at x =a. The maximum cannot
occur at any of the roots x2 , x4 , x 6 , .•• , since these points provide local
minima.

I gave you this example to remind you that when you use calculus for a
maximum problem, you have to take a close look at the boundary. And so
we proceed with caution to a general maximum problem of nonlinear pro­
gramming:

MAX. Let g(x), f 1(x), ... Jm(x) be differentiable for x ~ 0 in Rn. Find
x0 to make

g(x) = maximum for f(x) ~ 0 and x ~ 0. (4)

2 Kuhn-Tucker Theory 191

In our example (1), we have n = 1, m = 1,

g(x 1) = x 1 sin x 1, f 1(x 1) =a- x 1. (5)

In general, the constraints x ~ 0, f(x) ~ 0 define the domain of feasible x.
In (1) the feasible x 1 satisfy 0::::;; x 1 ::::;; a.

The problem MAX is more general than it looks. It is like the standard
form of linear programming: it may be used to express the general form. If
we want to remove some constraints x; ~ 0, we set those X; = s; - t; and then
require s; ~ 0 and t; ~ 0. If we want to require jj = 0, we write the two
inequalities jj ~ 0 and - jj ~ 0.

We will look for necessary conditions for x0 to solve MAX. Ifx0 > 0 and
f(x 0) > 0, we shall obtain the familiar necessary condition of calculus:

(6)

Complications occur only if some components x? = 0 or some components
jj(x0) = 0.

We will obtain conditions for a local maximum. We compare x0 with
points x on a very small arc starting from x0 :

x = x(t) (0 ::::;; t < tl). (7)

We assume x(O) = x0 , and we assume that all points on the arc are feasible:

X;(t) ~ 0 (i = 1, ... , n); jj(x(t)) ~ 0 (j = 1, ... , m). (8)

We assume that the arc x(t) is differentiable at t = 0:

x(t) = x0 +tv+··· (0::::;; t < t1), where v = x'(O). (9)

If x? > 0, then x;(t) must remain positive for small t; and if jj(x0) > 0,
then jj(x(t)) must remain positive for small t. But we have to be careful
about those i or j for which x? = 0 or jj(x0) = 0. We now define just those
sets of indices:

I= I(x 0) = {i: x? = 0}

J = J(x0) = {j: jj(x0) = 0}.
(10)

To keep X;~ 0 and jj ~ 0, we require that the initial velocity v satisfy

v · ei = v; ~ 0 for i E I

v · Vjj(x0) ~ 0 for j E J.
(11)

Conversely, if some feasible x 0 is given, let I and J be defined by (1 0). We then
say x0 satisfies the constraint qualification CQ if the following is true: For all
v in Rn that satisfy (11) there is a small arc of feasible points

x(t) = x0 + tv + o(t) (0 ::::;; t < tl).

If the functions jj are linear, then CQ holds for all feasible x0 ; for then
we may use the linear arc x = x0 + tv. If the jj are nonlinear, then CQ may

192 2 Nonlinear Programming

fail as we will later show by an example. Typically, the assumption CQ
holds, but some care is needed to define the arc x(t).

The typical case is illustrated in Figure 1.

CQ satisfied at x0

Figure I

The shaded region gives the feasible points x; they satisfy

x 1 ;;:::: 0, x 2 ;;:::: 0 ; / 1 ;;:::: 0, / 2 ;;:::: 0, / 3 ;;:::: 0.

For the illustrated feasible point x0 , we have

x~ > 0, xg = 0; / 1 = 0, !2 > 0, j3 = 0,

which means

(12)

(13)

(14)

As you see, the sets I and J depend on x 0 ; ifx0 had been chosen in the interior
of the feasible set, then both I and J would be empty, and CQ would be
satisfied vacuously.

Look at the linear arc x 0 + tv in Figure 1. Here we see

v2 > 0, v · V/1 > 0, v · V/3 = 0.

Though v satisfies the requirements (11), the linear arc is infeasible. Never­
theless, there is a feasible curvilinear arc x = x 0 + tv + · · ·.

What about the other feasible points x 0 in Figure 1? As you can see, they
all satisfy CQ. For every feasible x 0, if the velocity v points into or tangent
to the feasible set, then there is a small feasible arc x(t) that starts from x0

with the initial velocity v.

Theorem 1. L et x 0 ;;:::: 0 and f(x0) ;;:::: 0, and suppose x 0 satisfies the constraint
qualification CQ. Define the Lagrange function

cf>(x,u) = g(x) + u · f(x) (x ;;:::: 0, u ;;:::: 0). (15)

2 Kuhn-Tucker Theory 193

Suppose x0 satisfies the maximum problem MAX. Then for some u0 ~ 0, x0

and u0 satisfy
V xc/J ~ 0, X • V xc/J = 0, X ~ 0,
V uc/J ~ 0, U · V uc/J = 0, U ~ 0.

(16)

(17)

PROOF. This theorem is a straightforward application of the Farkas alter­
native.

If x0 solves MAX, define the index sets I and J by formula (10). Let v be
any initial velocity satisfying (11). Then there is a feasible arc (9), and so we
must have

(0 ~ t < tl), (18)

which implies
(19)

CQ says, in effect, that the inequalities (11) imply the inequality (19).
The Farkas theorem says that if the inequalities v · ak ~ 0 imply v · b ~ 0,

then b = IJc~k with Jck ~ 0. If we let

b=-Vg, {ak}={ei:iEI}u{V./j:jEJ} (20)
we get

- Vg(x0) = L piei + L aj V.fj(x0) (21)
I J

with Pi~ 0 and aj ~ 0. You may not know it, but we now have all we need;
the rest is just a matter of form.

The definition (15) for ¢(x,u) implies

m

V x¢ = Vg(x) + L uj V.fj(x),
j= 1

Vu¢ = f(x).

We now define the vector u0 :

Then (21) says

uJ = {~ (j E J)

(j rt J)

- L piei = Vg(x0) + L aj V./j(x0)
I J

= v x¢(xo,uo)

(22)

(23)

(24)

(25)

This vector is ~0; its only nonzero components are the numbers -Pi
where i E I. Now remember: i E I means x? = 0. Therefore, at x0, u0 the
vector V x¢ is ~ 0 and is orthogonal to x0 ; but that's just what (16) asserts.

What about the assertion (17)? At x0, u0 we have

(26)

194 2 Nonlinear Programming

since x0 is feasible for MAX. And we have

u0 · VucJ>(x0 ,u0) = u0 · f(x 0)

= L crijj(xo).
J

But j E J means jj(x0) = 0, and so the inner product (27) equals zero.

(27)

That complets the proof of Theorem 1. As you saw, the key formula was
(21), which comes right from the Farkas theorem.

CQ may fail. I promised you an example. Kuhn and Tucker gave this
example in their 1950 paper:

MAX. Maximize x 1 for

x 1 ~ 0, x 2 ~ 0, (1 - x 1) 3 - x2 ~ 0.

Solution. Here we haven= 2, m = 1,

g = x 1, / 1 = (1 - x 1) 3 - x2 .

The feasible set (28) appears shaded in Figure 2.

g = x,
f 1 =(1 - xtl3 -x2

CQ fai ls at x0 = (1,0)

Figure 2

(28)

(29)

Right away we see that g(x) is maximized by x0 = (1,0); this is the unique
solution to MAX.

What about CQ? At x0 we have

x2 = 0 and / 1 = 0. (30)

Then CQ asks us to consider all v for which

v2 ~ 0 and v · V/1(x0) ~ 0. (31)

Since Vf1(x0) = (0, -1), the last formula says v2 ~ 0 and - v2 ~ 0; that is,
v2 = 0. One such v appears in Figure 2; it is v = (1,0). But no feasible arc
x(t) starts from x0 with initial velocity v = (1,0). Therefore, CQ fails.

2 Kuhn-Tucker Theory 195

Now what happens to Theorem 1? Did we really need CQ to deduce (16)
and (17)? Here we have

c/J(x,u) = x 1 + u1[(1 - x1) 3 - x 2].

Formula (16) asserts that or some u1 = u?

V xc/J(x,u) ::::; 0 for X = (1,0).

But this is false, since the first component of V xcP equals 1. So we did need to
assume CQ in Theorem 1. A pretty example.

Sufficient conditions. Theorem 1 gives necessary conditions for x 0 to
solve MAX. What else may we require ofx0 to obtain sufficient conditions?

First consider the unconstrained problem. In elementary calculus, one
learns the necessary condition g'(x0) = 0 and the condition g"(x0) < 0, which
is sufficient for x 0 to give a local maximum. This conditions works because
it keeps the graph of g(x) below the tangent to the graph at x0 • Analytically,
we may express this as follows:

g(x) ::::; g(x0) + (x - x 0)g'(x0). (32)

This formula has much to recommend it: it does not use the second
derivative g"; if g'(x0) = 0, it guarantees a global maximum if it holds for
all x; and it is a property of all concave functions, as we will now show.

Lemma. Let 1/J(x) be any concave differentiable function in R". Then

1/J(x) ::::; l/J(x0) + (x - x0) • Vl/J(x0). (33)

PROOF. By the definition of concavity, for 0 < e < 1 we have

(1 - e)l/J(x0) + el/J(x) ::::; 1/J((1 - e)x0 + ex),
1/J(x)::::; l/J(x0) + e- 1[1/J(x0 + e(x- x0)) -l/J(x0)]. (34)

If we let e --+ 0, we get the result (33).

Local concavity. It's important to notice that the inequality (33) may be
used as a local condition on x0 : we may require it for all x for just one x0 •

Then 1/J(x) need not be concave, but still we shall know that x0 gives a global
maximum.

For example, look at Figure 3. Here g(x) is given for 0::::; x::::; 1. We
assume g'(O) ::::; 0, which is ncessary, but not sufficient, for x 0 = 0 to maximize
g(x). Now we require the additional condition of local concavity: For x0 = 0

g(x) ::::; g(x0) + (x - x 0)g'(x0) for 0 ::::; x ::::; 1.

Now Figure 3 shows that x0 maximizes g(x) though g(x) is only locally
concave.

196 2 Nonlinear Programming

--~------------~-----.x x 0 = 0

Local concavity at x0

Figure 3

Now we're ready to state general sufficient conditions for x0 to solve
MAX:

Theorem 2. Let g(x),f1(x), ... Jm(x) be differentiable for x ~ 0 in R". Define
the Lagrange function (15). Assume that x0 and u0 satisfy the conditions (16),
(17). Now assume that the function

(x ~ 0)

is locally concave (33) at x0 • Then x0 solves MAX.

Remark 1. Since u0 ~ 0 in Rm, the function

1/J(x) = g(x) + u0 · f(x) (x ~ 0)

(35)

(36)

will be locally concave at x 0 if all the functions g(x),f1(x), ... Jm(x) are
locally concave.

Remark 2. Perhaps with some pain, you remember the constraint qualifi­
cation CQ. We had to assume CQ to get Theorem 1, but we shall not have to
assume CQ to get Theorem 2.

PRooF OF THE THEOREM. Suppose x ~ 0 and f(x) ~ 0. Then, since u0 ~ 0,

g(x) ~ g(x) + u0 · f(x) = 1/f(x). (37)

But we have assumed 1/J(x) is locally concave at x 0 , and so

for all x ~ 0. (38)

But that just says

g(x) ~ g(x0) + u0 · f(x0) + (x - x 0) • VxC/>(x0,u0). (39)

But (16) says (at x0,u0)

so (39) gives
(40)

(41)

2 Kuhn-Tucker Theory 197

Now (17) says
(42)

and so (41) gives the result: g(x) ~ g(x0).

The case of linear programming. Whenever you learn something new,
you can test its strength by applying it to something you knew before. Let's
see what our two theorems say about the standard maximum problem of
linear programming:

Ax ~ c, x ~ 0, b · x = max. (43)

This is a special case of MAX if we set

g(x) = b · x, f(x) = c - Ax. (44)

Then this is the Lagrange functional:

c/>(x,u) = b · x + u · (c - Ax).

Its gradients with respect to x and u are

V xcP = b - uA, V ucP = C - Ax. (45)

Theorem 1 gives necessary conditions for x0 to solve MAX; Theorem 2
gives sufficient conditions. The constraint qualification CQ is satisfied for
all feasible x because f(x) is linear (this is proved in the first paragraph after
the definition of CQ). The function c/>(x,u0) is concave in x because it is
linear. Therefore, the two theorems say this about linear programming: x0

solves MAX if and only if it and some u0 satisfy (16) and (17).
If we insert the gradients (45) into formulas (16) and (17), we get

b - uA ~ 0, (b - uA) · x = 0, x ~ 0,
c - Ax ~ 0, u · (c - Ax) = 0, u ~ 0.

(16')

(17')

These formulas require: xis feasible for the primal; u is feasible for the dual;
and the equilibrium conditions hold.

Indeed, we knew before that these conditions were necessary and sufficient
for optimality in linear programming; they are equivalent to the duality
theorem. I hope you are pleased that our two theorems pass this test of
strength. But you shouldn't be surprised; for we did use the Farkas theorem
to prove Theorem 1, and we know that the Farkas theorem implies the
duality theorem.

A saddle-value problem. In the linear case, which we just discussed, we
maximized with respect to x, and we minimized with respect to u. That
suggests the following general problem:

SV. Let c/>(x,u) be differentiable for x ~ 0 in R" and u ~ 0 in Rm. Find
x0 ~ 0 and u0 ~ 0 to solve

(46)

for all x ~ 0 and u ~ 0.

198 2 Nonlinear Programming

This just says: At x0 , D0 the function lj>(x,D) is maximized with respect to
x if D stays fixed, and ¢ is minimized with respect to D if x stays fixed. We
know that the saddle-value property is important in game theory, and so
we will consider the general problem SV; we will not restrict the definition
of 4> to formula (15), though that is the most important case.

This is what we want to know in general: what relationship exists between
the saddle-value property (46) and the two formulas

v xlf>(x0 ,D0) ::::;; 0, x0 • v x4>(x0 ,D0) = 0, x0 ~ 0

Vulf>(x0 ,D0) ~ 0, D0 · Vulf>(x0 ,D0) = 0, D0 ~ 0.

(i)

(ii)

In the context of nonlinear programming, these were formulas (16) and (17).
The following theorem gives a relationship.

Theorem 3. Suppose x0 , u0 solve the saddle-value problem SV. Then they
satisfy formulas (i) and (ii). Conversely, suppose x0 , u0 satisfy (i) and (ii);
suppose also that they satisfy

lj>(x,D0)::::;; lj>(x0,D0) + (x- x0) • VA>(x0,u0) for x ~ 0 (iii)
and

lj>(x0,u) ~ lj>(x0,u0) + (u- u0) · Vulf>(x0,u0) for u ~ 0. (iv)

Then x0 , u0 solve SV.

Before the proof, here are a few remarks:

1. The supplementary conditions (iii) and (iv) require that 4> be locally
concave in x and locally convex in D. That's what you'd expect if 4> is maxi­
mized with respect to x and minimized with respect to D.

2. Without some supplementary conditions, (i) and (ii) do not imply
SV. For example, ifm = n = 1, let

lj>(x,u) = (x - 7)2 - (u - 9)2 (x ~ 0, u ~ 0)

Here (i) and (ii) are both satisfied at x0 = 7, u0 = 9. But SV fails, since

lj>(x,9) > l/>(7,9) > lj>(7,u) if x # 7 and u # 9,

which is the opposite of the SV inequality (46).
3. In the most important case, 4> is a Lagrange function:

lj>(x,D) = g(x) + D · f(x). (47)

Then the inequality (iv) is automatically satisfied as an equality, since 4> is
linear in D. And the inequality (iii) is just the condition of local concavity
(35), which we used as a supplementary condition in Theorem 2. After
proving Theorem 3, we'll relate the SV problem to the MAX problem.

PROOF OF THE THEOREM. Suppose x0 , u0 solve SV. Since 4> is maximized with
respect to its first argument, we have

(48)

2 Kuhn-Tucker Theory 199

for all x ~ 0 if 0 < e < 1. If we divide by e and let e ---+ 0, we get

(x - x0) · V x</>(x0,u0) ~ 0 for all x ~ 0. (49)

Since x- x0 may equal any v ~ 0, (49) implies

Vx</>(x0,u0) ~ 0. (50)

And since x may equal 0, (49) implies

-x0 · Vx'f>(x0,u0) ~ 0. (51)

But since x0 ~ 0, only equality can occur in (51). This proves (i). Exactly
the same argument proves (ii), since SV says that minus </> is maximized with
respect to its second argument.

Conversely, suppose x0, u0 satisfy all four conditions (i), ... , (iv). Then
for all x ~ 0

And for all u ~ 0

<f>(x,u0) ~ <f>(x0,u0) + (x - x0) · V x<f>(x0,u0)

= <f>(x0,u0) +X · V x<f>(x0,u0)

~ <f>(xo,uo).

<f>(x0,u) ~ <f>(x0,u0) + (u- u0) · Vu<f>(x0,u0)

= <f>(x0,u0) + u · Vu<f>(x0,u0)

~ <f>(xo,uo).

That proves SV and completes the proof of the theorem.

For concave functions the problems SV and MAX are almost equivalent:

Theorem 4. Let g(x),f1(x),Jm(x) be differentiable and concave for x ~ 0
in R". Let <f>(x,u) be the Lagrange function (47). Suppose x0 and some u0 solve
SV. Then x 0 solves MAX. Conversely, suppose x0 solves MAX and CQ; or
suppose directly that x0 and some u0 solve (i) and (ii). Then x0 and some u0

solve SV.

PROOF. Since <f>(x,u) is concave in x, condition (iii) holds for every x0 and u0 .

Since </> is linear in u, condition (iv) holds (as an equality). Thus, for concave
functions we may take (iii) and (iv) for granted.

If x0 and u0 solve SV, then Theorem 3 says they solve (i) and (ii). Now
Theorem 2 says that x0 solves MAX.

Conversely, ifx0 solves MAX and CQ, then Theorem 1 says x0 and some
u0 solve (i) and (ii). Now Theorem 3 says that x0 and u0 solve SV.

Slater's theorem. The last theorem relates the SV and MAX problems for
concave functions that are differentiable. But a concave function need not
be differentiable. (For example, in one dimension, 1 - lxl is not differentiable.)
And yet one may state saddle-value and maximum problems for non­
differentiable functions. How are these problems related for general concave
functions?

200 2 Nonlinear Programming

In the following discussion we will assume that, for all x ~ 0 in R", the

given functions g(x),f1(x),!m(x) are not necessarily differentiable. We

define two problems:
MAX.' Find x 0 ~ 0 to solve

g(x) = maximum

SV. Find x0 ~ 0, u0 ~ 0 to solve

for x ~ 0 and f(x) ~ 0.

g(x) + u0 · f(x) ~ g(x0) + u0 · f(x 0) ~ g(x0) + u · f(x 0)

for all x ~ 0 in R" and all u ~ 0 in Rm.
First we have an easy result:

Theorem 5. Suppose x0 , u0 solve SV. Then x0 solves MAX. (And this true for
all real-valued functions g,/1, .•• .!m -concave or not). Moreover, u0 · f(x 0) = 0.

PROOF. In SV the second inequality implies

(u - u0) · f(x0) ~ 0 for all u ~ 0.

If we let all ui -+ + oo, we deduce f(x 0) ~ 0; if instead we set u = 0, we find

- u0 • f(x 0) ~ 0, and now u0 ~ 0 implies u0 · f(x0) = 0.
The first inequality SV now states

for all x ~ 0.

Since SV assumes u0 ~ 0, we find g(x) ~ g(x0) if f(x) ~ 0. And so x0 solves
MAX.

I repeat: This theorem is a platitude; it holds for all real-valued functions.

But the next theorem-proved by M. Slater in 1950-is no platitude. It
proves a converse of Theorem 5 for concave functions.

Slater's Theorem. Suppose g(x),f1(x),!m(x) are concave for all x ~ 0;
suppose f(a) > 0 for some a~ 0; and suppose x0 solves MAX. Then x0 and
some u0 solve SV.

First, here are some remarks on the assumptions:

1. If we drop the assumption of concavity, the theorem becomes false.

For example, let m = n = 1 and set

g(x) = x 2 , f(x) = 2- x.

Then f(a) > 0 if a = 1; and x 0 = 2 solves MAX. But SV requires for all

X~ 0:
g(x) + u0 f(x) ~ g(x0) + u0 f(x 0),

and so
x2 + u0(2- x) ~ constant.

This is impossible, since the term x 2 dominates as x -+ oo.

2 Kuhn-Tucker Theory 201

2. More surprising is that we need the assumption f(a) > 0 for some
a ;:::: 0. If we drop this assumption, we have this counter-example:

Let m = 1, n = 2, and set

g(x) = x1, f(x) = -x2 - (x 1 - 1)2 •

Both functions are concave. Ifx;:::: 0, only one point x0 is feasible for MAX:

x0 ;:::: 0 and f(x0) ;:::: 0 iff x0 = (1,0).

Therefore, this point solves MAX. Please note this: No point a;:::: 0 makes
f(a) > 0.

Now suppose x0 and some u0 solve SV. Then, for all x ;:::: 0,

g(x) + u0 f(x) ~ g(x0) + u0 f(x 0),

which says

If we set x2 = 0, x 1 = 1 + e, this says

1 + e + u0(- e2) ~ 1

which is false for small e > 0. Therefore, there is no u0 for which x0 and
u0 solve SV.

PROOF OF SLATER's THEOREM. We will use the separating-plane theorem for
convex sets: Suppose Y and Z are disjoint convex sets in RM; then there is a
fixed vector w # 0 for which

w·y~w·z (52)

for all y in Y and all z in Z.
Let x0 solve MAX. We now define sets Y and Z in Rm+l. Let Y be the

set of all points

such that, for some x ;:::: 0 in R",

Yo~ g(x), and Yi ~ jj(x)

Let Z be set of all points

such that

(j = 1, ... ,m). (53)

(j = 1, ... ,m). (54)

We will show that Y and Z are disjoint and convex. They are disjoint
because if y = z, then for some x ;:::: 0

g(x) ;:::: Yo = Zo > g(x0),

and
(j=1, ... ,m),

202 2 Nonlinear Programming

and x0 would not solve MAX. The set Z is convex because it is an open
half-space. The set Y is convex because the functions g,Jj are concave: if

y :s:; f(x) and y' :s:; f(x'),
where fo = g, then

(1 - O)y + Oy' :s:; (1 - O)f(x) + Of(x')

:s:; f((1 - O)x +Ox') (0 :s:; (} :s:; 1),

and so Y contains (1 - O)y + (}y' if it contains y andy'.
Now the separating-plane theorem says there is a vector w =1- 0 that

satisfies (52) for ally in Y and all z in Z:

WoYo + W1Y1 + ''' + WmYm :s:; WoZo + W1Z1 + ''' + WmZm. (55)

Since we may let all zi-+ + oo for z e Z, we deduce wi ~ 0 (j = 0, ... , m).
By the definition (53), ifx ~ 0 in R", then we may take

Yo = g(x), Yi = Jj(x) (j = 1, ... ,m). (56)

And by the definition (54), if e > 0 we may take

z0 = g(x0) + e, zi = e (j = 1, ... ,m). (57)

If we insert these values in (55) and let e -+ 0, we get

Wog(x) + wtfl(x) + · · · + wmfm(x) :s:; w0g(x0) (x ~ 0). (58)

The purpose of Slater's assumption f(a) > 0 is to prove w0 > 0. If we set
x =a in (58), and ifw0 = 0, we find

(59)

But that is impossible, because w =1- 0 and w ~ 0, and so the sum in (59) is
positive. Therefore, w0 > 0.

Now we may divide by w0 in (58) to obtain

g(x) + uU1(x) + · · · + u~fm(x) :s:; g(x0) (x ~ 0), (60)

where uJ = wJiw0 (j = 1, ... ,m); the point D0 is ~0 in Rm.
Since x0 is assumed to solve MAX, it satisfies f(x0) ~ 0, and so

(D ~ 0). (61)

If we set x = x0 in (60), we get

g(x0) + D0 · f(x0) :s:; g(x0). (62)

But D0 · f(x0) ~ 0, and so (62) implies D0 • f(x0) = 0. Now (60) and (61) yield
SV: For all x ~ 0 and all D ~ 0,

g(x) + D0 • f(x) :s:; g(x0) = g(x0) + D0 • f(x0)

:s:; g(x0) + D · f(x0).

We will use Slater's theorem in the theory of geometric programming.

(63)

2 Kuhn-Tucker Theory 203

References

l. H. W. Kuhn and A. W. Tucker, "Nonlinear Programming," in Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability (Berkeley,
U. of California Press, 1950), 481--492.

2. William Karush, "Minima of Functions of Several Variables with Inequalities as
Side Conditions," Master's Thesis, Department of Mathematics, University of
Chicago, December, 1939, 26 pp.

3. Fritz John, "Extremum Problems with Inequalities as Subsidiary Conditions,"
Studies and Essays, Courant Anniversary Volume (New York, lnterscience, 1948),
187-204.

4. H. W. Kuhn, "Nonlinear Programming: a Historical View," in R. W. Cottle and
C. E. Lemke (ed.) Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9 (1976)
pp. l-26.

5. M. Slater, "Lagrange Multipliers Revisited," Cowles Commission Discussion
Paper No. 403, November, 1950.

PROBLEMS

1. Define the gradient Vf(x) as the vector with components ofjoxi. If xis a function
oft with derivative x'(t) = v(t), show that

v · Vf(x);;;: 0 when t = 0

if f(x(O)) = 0 and if f(x(t));;;: 0 when t > 0.

2. The text says: "If the functions jj are linear, then CQ holds for all feasible x0 ;

for then we may use the linear arcx = x0 +tv." Why is that so?

3. In Theorem 1 replace the inequality constraint f(x) ;;;: 0 by the equality constraint
f(x) = 0. Show that the conclusion still holds except that u need not be ;;;:O in (17).
Method: Write the equality as a pair of inequalities, and apply Theorem 1.

4. If C is a symmetric matrix, show that the function x · Cx is convex iff C is posi­
tive semi-definite.

5. Consider the quadratic program

Ax=b, x;;;:O,

!x·Cx+p·x=min.

Find necessary and sufficient conditions for optimality by using Theorems 1 and 4.
Check your conditions with the theorems in Section 1.

6. Assume the general constraints:

xi;;;: 0 fori in Jh xi real fori in 10 ,

jj ;;;: 0 for j in J 1o jj = 0 for j in J 0 •

Assuming CQ and differentiability, use Theorem 1 to obtain necessary conditions
for g(x) = max.

7. Consider the problem
xf + X~ ,;;; 25, X ;;,: 0

(x1 - 3)2 + (x2 - 4)2 = max.

204 2 Nonlinear Programming

Guess the solution x0, and verify the necessary conditions (16), (17). State and
verify the constraint qualification CQ; draw a picture.

8. Solve the problem

xi+ x~ ~ 25

x1 + x 2 ~ 7, x ~ 0

(x1 - 3)6 + (x 2 - 4)6 = max.

Verify all the necessary conditions for optimality, including CQ. (Answer: x 0 =

(4,3); u0 = (6,42).) Draw a picture.

9. In R1 a function is convex if, for all x andy,

g((1 - lJ)x + lJy) ~ (1 - lJ)g(x) + lJg(y) (0 ~ lJ ~ 1).

If g" exists, show that g is convex if g" ~ 0.

10. For x in R", a function f(x) is convex if

f((1 - O)x + Oy) ~ (1 - O)f(x) + lJf(y) (0 ~ lJ ~ 1).

If f is twice continuously differentiable, show that f is convex if the matrix
(i'Pf/ax;8x) is positive semi-definite. (Method: For 0 ~ lJ ~ 1 define the function
g(lJ) = f((1 - O)x + Oy), and require

g(lJ) ~ (1 - O)g(O) + Og(1) (0 ~ lJ ~ 1).

Now use the result of Problem 9.)

11. Get a variant of Slater's theorem that holds for x with no sign constraints (we
will use this variant for geometric programming). (Method: Make the change of
variable x = y - z, and require y ~ 0, z ~ 0.)

12. Let the functions ljJ(x), cp 1(x), ... , cpm(x) be convex for x ~ 0. Suppose x0 minimizes
l/J(x) for all x ~ 0 such that

cp;(x) ~ b;

What does Slater's theorem imply?

(i = 1, ... ,m).

13. Let xl> ... ,x. be probabilities (xi~ 0, Ixi = 1). Claude Shannon defined the
entropy of information as -LX; log X;. Show that the entropy function is concave.
Then find necessary and sufficient conditions for the entropy to be maximized
under constraints };(x) ~ 0 (i = 1, ... ,m) if the functions}; are differentiable and
concave.

14. (Continuation.) Again suppose x ~ 0, Ixi = 1. Derive conditions to maximize the
Shannon entropy if the constraints are linear equations

•
I aiixi = b;
j= 1

(i=1, ... ,r).

(This problem occurs in communication engineering; see D. Slepian, "On Maxen­
tropic Discrete Stationary Processes," Bell System Technical J., vol. 51 (1972)
pp. 629 -653.)

3 Geometric Programming 205

3 Geometric Programming

Geometric Programming is the title of an important book by R. J. Duffin,
E. L. Peterson, and Clarence Zener. The authors give a simple analytical
method for solving a class of nonlinear programming problems that arise
in engineering design.

Let t 1, t2 , ••• , tn be positive unknowns. Consider this problem:

q(t) = minimum fort> 0, p1(t) ~ 1, ... ,pm(t) ~ 1. (1)

Here t stands for (th . .. , tn), and t > 0 means all ti > 0. The functions
q, Pt. ... , Pm are given nonlinear functions of t h ... , tn.

In engineering design, the given functions can often be satisfactorily
represented as sums of finite numbers of terms of the form

(2)

with positive coefficients c. The exponents k1, k2 , ••• , kn may be any real
numbers-positive, negative, or zero. The authors D, P, and Z call these
functions posynomials:

p(t) = L c(k)t~' · · · t~". (3)
...

They are polynomials with positive coefficients. Geometric programming
applies to nonlinear programming problems (1) in which the given functions
are posynomials.

Here are two examples of posynomials:

p(x,y,z) = n: + 3x-fty19.6 + x3yz-4s + J7z13

q(t) = q(tlh) = 5tl t2 1 + J2t2 7•2 .

But the following functions are not posynomials:

f(x) = (1- x)- 1 = 1 + x + x 2 + · · ·
g(x) = 3- x

h(x,y) = tr+y

cp(t) = (1 + tl + t2 + t3)- 1.

(0 <X< 1)

(4)

(5)

NoTATION. It will be convenient to represent the cumbersome product in
(2) by

(6)

Now the posynomial (3) takes the form

p(t) = L c(k)t', (7)
...

where the vector k ranges over a finite set of points in R"; let's call this set K.
For example, in (4) the posynomial p(x,y,z) depends on three real variables,

so we may write p(x,y,z) = p(t) where t = (x,y,z). Then t and k lie in R3. The
variable t ranges over all points (x,y,z) with positive coordinates. The

206 2 Nonlinear Programming

exponent vector k ranges over the set K that consists of just these four points:

(0,0,0) (-J2,19.6,0) (3,1,-45) (0,0,13).

The associated coefficients c(k) are the four positive numbers n, 3, 1 and .J7;
for instance,

c(- J2,19.6,0) = 3.

In this way we can represent the posynomial p(x,y,z) in the general form

p(t) = L c(k)f' (8)
K

where we sum over k in K.
When we deal with a collection of posynomials p1(t), ... ,pm(t), we have

to distinguish the different exponent sets K 1o ••• , Km and the different
associated coefficients c1(k), ... , cm(k). We will denote the ith posynomial by

P;(t) = L C;(k)f' (9)
K;

where we sum over k in the set K;. (It would perhaps be clearer if we wrote
k e K; below the L instead of just K;; but later we'll be writing multiple sums
and products, and the shorter notation will be easier.)

Posynomials are nasty functions. In general, they are neither convex nor
concave. But the authors D, P, and Z observed this: A simple change of vari­
ables makes every posynomial a convex function. That saves the subject: it
reduces geometric programming to a topic in convex programming.

This is the change of variables that does the trick:

(10)

Now the posynomial p(t) equals a convex function f(x). We'll prove this in a
minute, but first I'd better say something about convex functions.

A function f(z) is called convex if it satisfies

/((1 - O)x + Oy) ~ (1 - O)f(x) + Of(y) (0 ~ 0 ~ 1). (11)

As 0 goes from 0 to 1, the point (1 - O)x + Oy moves on the line segment
from x toy. The definition (11) says flies below or on the straight line joining
the ordinates at endpoints.

X

Convex function f
Figure 1

y

3 Geometric Programming 207

A function f is called concave if - f is convex. Then the inequality (11) is
reversed.

In (11), if you define g(0) by

g(O) = f((1 - O)x +By) (0 ~ 1),
then (11) says

g(B) ~ (1 - B)g(O) + Bg(1) (0 ~ B ~ 1). (12)

This inequality holds if g"(B) is ~ 0; this is proved in the Appendix. (Thus, we
may take g(B) = 02 or e- 6 ; these functions satisfy (12) because their second
derivatives are positive.)

Therefore, f(z) will be convex if

(:By f((1 - B)x +By)~ o (O ~ e ~ 1). (13)

If you work this out, it says
n n

I I u;(oijf)uj ~ o, (14)
i=l j=l

where u; = Y; - X; and where oijf is the second derivative of f(z) with respect
to z; and zi. If His the symmetric matrix with components oijf, the inequality
(14) says u · Hu ~ 0. Thus, the function f is convex if the matrix of its second
derivatives is positive semidefinite.

ExAMPLE 1. Let

f(x) = ek · x = exp(k1x 1 + k2x2 + · · · + knxn).

Differenting twice, we get

O;if(x) = k;kiek · x = k;kd(x)
and so

I I u;(oijf)ui = I u;k; I uiki~ · x
i j i j

= (~ u.k.)
2

ek · x ~ 0.

Therefore, ek · x is convex.

EXAMPLE 2. As a function oft, consider the one-term posynomial

p(t) = tlt2

Is this function convex? Let's see.

fort> 0.

This is the matrix of second derivatives:

H = (oijp) = G ~).
This is not positive semidefinite, for if we let u = (1, -1), we get

u·Hu= -2<0.

(15)

(16)

(17)

208 2 Nonlinear Programming

Finally, let y - x = u, where we may take

Then

But at the midpoint,

X = (2,2), y = (3,1).

p(x) = 4, p(y) = 3.

p(!(x + y)) = p(~ ,f) = ¥ > !p(x) + !p(y),

so p(t) is not convex.

Example 2 proves that posynomials need not be convex. (They don't have
to be concave either, as you can see from the example t 1t2 , which equals s2

on the line t 1 = t2 = s > 0.)

EXAMPLE 3. Look again at the non-convex function t 1t2 • Make the change
of variables t 1 = tr', t2 = tr2 • Then

t1t2 = exp(x1 + x2),

which equals e" · x if k = (1,1). Now Example 1 says p(t) is a convex function
of the new variable x.

This leads to the general result: the change of variables (10) makes the
polynomial p(t) into a convex function f(x). And now xis free in W: whereas
ti was restricted to ti > 0, now xi ranges over - oo <xi< oo.

To prove the general result, we first show that each term

t'll • • • t~n = e". X (18)

is convex in x. But that's just what we proved in Example 1. Now the linear
combination

f(x) = L c(k)ek. x (19)
K

has positive coefficients c(k). As you see from the defining inequality (11),
a linear combination of convex functions is convex if the coefficients are
positive. Therefore f(x) is convex. 0

We'll use the theory of convex programming later. But first let's discuss
the technique of solving problems. This depends on a general inequality,
from which "geometric" programming derives its name-the inequality of
arithmetic and geometric means.

Assume

{j = 1, ... , n). (20)

Then

(u)8' (u)8" U1 + ... + Un ;>-: e: . . . e: , (21)

3 Geometric Programming 209

where we define (u/0)6 = 1 if 0 = 0. Equality occurs in (21) iff all Oi are
positive and

(22)

The inequality (21) is illustrated and proved in the Appendix. As a matter of
notation, we will often write (21) in this form:

(23)

EXAMPLE 4. We'll use the geometric inequality to solve a simple problem
in geometric programming: In R3 find t > 0 to minimize

q(t) = 4t1 1t2 1t3 1 + 4t2t3 + 2t1t3 + t1t2. (24)

(Here we assume no constraints Pi(t) ~ 1.)

SoLUTION. We'll use the geometric inequality (21) with exponents Oi that
we'll determine later. If we write q(t) as a sum of four terms, we find

q(t) = u1 + · · · + u4 ~ u~• · · · u~•

q(t) ~ (4t1 1 t2 1 t3 1/0 1)6'(4t2t3/02)62(2t1 t3/03)63(t 1 t2/04)6•.
(25)

This inequality holds for all t > 0; both sides are functions oft.
To find a lower bound for q(t), we'll try to choose the O's to make the

right-hand side of(25) independent oft. If we collect the terms, (25) takes the
form

where the constant term is

and where the powers bi are

b1 = -01 + 03 + 04

b2 = -01 + 02 + 04

b3 = -01 + 02 + 03

(26)

(27)

(28)

As (26) shows, if we can make all the powers bi equal zero, then we'll get the
lower bound

q(t) ~ v(O) for all t > 0. (29)

If then we can choose t to achieve equality in (29), we'll get the minimum
value of q(t).

If we set bi = 0 (i = 1, 2, 3), we get 3 equations in 4 unknowns. A fourth
equation comes from the assumption (20):

01 + 02 + 03 + 04 = 1.

210 2 Nonlinear Programming

You can solve the 4 equations by elimination. Here are the answers:

01=i, 02=03=04=!. (30)

Good news: All the O's are positive. Remember, we need Oi > 0 to satisfy
assumption (20), and we'll need Oi > 0 to satisfy the condition of equality, (22).

If we insert the values (30) in the inequality (26), we get this lower bound
for all t > 0:

q(t);;:: v(i,!.!.!). (31)

Now (27) gives the lower bound q(t) ;;:: 10.
Since q(t);;:: 10 for all t > 0, we can minimize q(t) if we can find some t

that achieves the equality q(t) = 10. Now what does that say? It says we
want to achieve equality of the arithmetic and geometric means. For this
we use the general condition (22).

Here Ut.····u4 are the 4 terms in the posynomial q(t); 01, ... ,04 are
the exponents we computed in (29). So the condition of equality (22) says

4t1 1t2 1t3 1/(i) = 4t2t3/(!)

= 2tlt3/(!) = tlt2/(!).
(32)

This amounts to 3 equations in 3 unknowns. The equations are nonlinear
in the ti, but they are linear in xi= log ti. You can easily get these answers:

tl = 2, t2 = 1, t3 = t.
These are the unique positive numbers that minimize q(t), giving q(t) = 10.

I've given all the details in this simple example because it so well illus­
trates the general method. But it should raise some questions in your mind:

• Shall we always get the same number of equations and unknowns?
(Unfortunately, the answer is no.)

• Shall we always get the equality q(t) = v(ll) if q is minimum? (The answer
is yes, and we will prove it.)

• If we have trouble getting the minimum of q(t) by this technique, can
we at least get some good lower bounds? (Yes, we can.)

• In this simple example, which we could have done by ordinary calculus,
we didn't have any constraints Pi(t) ~ 1. Is the technique usable if we have
constraints? (Yes, it is; the next example will show you how.)

EXAMPLE 5. Here's a problem with a constraint. Fort> 0 minimize

q(t) = t1 1t2 1t3 1 + t2t3
under the constraint

(33)

(34)

SOLUTION. Here's how you work in the constraint. If a: is any number ;;:: 0,
then of course

q(t) ;;:: q(t)[p(t)]" (35)

3 Geometric Programming 211

for all feasible t (t > 0, p(t) ::::;; 1). Now we're set up for the geometric inequality.
For the term q(t) we write

q(t) ~ (t1 1t2 1t3 1/01)8 '(t2t3/02)82,

requiring Oi ~ 0, "'i.Oi = 1. For the term p(t) we write

p(t) ~ (tt1t3/cp1)'~''(it1t2/cp2)'1'2 ,

requiring cpi ~ 0, L<Pi = 1. Now the composite inequality (35) yields

where v is the constant

v = 01 8'02 82(2cp1)-"''~''(4cp2)-"''1'2

and b~> b2, b3 are the powers

b1 = -01 + rxcp1 + rxcp2

b2 = -01 + 02 + rxcp2

b3 = -01 + 02 + rxcp1

To get the lower bound q(t) ~ v, we need to solve these equations:

bj = 0

01 + 02 = 1

<P1 + <P2 = 1,

(j = 1,2,3)

(36)

(37)

(38)

(39)

where we require all five unknowns 01, 02, cp1, cp2, rx to be ~0. If we introduce
the new unknowns

rxcp1 = m1, rxcp2 = m2, (40)

then the system (39) becomes linear:

-01 +m1 +m2 =0

-81+82 +m2 =0

-81+82+m1 =0
(41)

01 + 02 = 1.

All four unknowns are required ~0. Note that the constraint cp 1 + cp 2 = 1
has disappeared. When we've found m1 and m2 , we'll define rx by

(42)
Now (40) gives

cp1 = mdrx, cp2 = m2/rx if rx > 0. (43)

If rx = 0, we arbitrarily set cp 1 = cp 2 = t. (If rx = 0, the choice of the cpi is
irrelevant, because the factor p"' in (35) equals 1.)

This is the unique solution of the linear system (41):

e 2 8 1 1 1 1=3, 2=3, m1=3, m2=J· (44)

212 2 Nonlinear Programming

Please check it. Now (42) and (43) give the original unknowns

IX= 1, Cf>1 = !, q>z = !. (45)

Bear in mind that at this stage, before we've proved any theorems, you must
regard it as pure good luck that all the unknowns (44) turned out positive.
If any one of them had turned out negative, our discussion of this example
would be over: the method would have failed.

If we use the computed values in (37), we get

v = (1)-2/3(1)-li3(1)-li3(2)-li3 = l
Therefore, for all feasible t, q(t) ~ 1.5.

How do we get equality? As you know, this requires t to make the terms
equal in the two geometric inequalities:

t1 1t2 1t3 1/01 = tzt3/0z

!t1t3/Cf>1 = ftltz/q>z.
(46)

But that isn't all. Since we found IX positive (IX= 1), and since we require
p(t) ~ 1, the factor p11 in (35) will be < 1 unless p(t) = 1. Therefore, we must
require p(t) = 1:

(47)

(Equivalently, we may require that the second pair of terms in (46) both
equall.)

If we use the computed values 01, 02 , cp 17 cp 2 in (46) and (47), we have three
equations for the three unknowns ti. (Once again, if we wished, we could
replace these nonlinear equations by linear equations for xi= log ti.) The
solutions are (please verify)

(48)

That's the answer. These components make q(t) = 1.5; all other feasible t
make q(t) > 1.5.

EXAMPLE 6. I hope you're not tired of examples, but I have to give you one
more before you can use this technique on the harder problems. On the
easier problems, like the last two, the number of equations equals the number
of unknowns, and you get an exact solution; on the harder problems, like
the one I'll show you now, the number of equations is greater than the
number of unknowns, and you get only upper and lower bounds. Often
these bounds are close, and they may give you all the accuracy you need
for an engineering problem.

PROBLEM. Fort > 0 minimize

(49)

under the constraint
(50)

3 Geometric Programming 213

SoLUTION. This problem is identical to Example 5 except that the new term
t~ has been added to q(t). If we proceed as before, for feasible t we get

q(t) ~ q(t)[p(t)]'"

~ (t11t21t31 j()1)9'(t2t3j()2)9>(t~j()3)9'

· [(!t 1 t3/1P1Y"'(!t 1 t2/1P2)'~'2]'",

provided ex~ 0, () 1 ~ 0, () 2 ~ 0, cp 1 ~ 0, cp 2 ~ 0 and

()1 + ()2 + ()3 = 1 and IP1 + IP2 = 1.

(51)

(52)

(53)

Note that now we have a new unknown, ()3 , which has appeared because of
the new term t 7•

If, as before, we define

w1 = cxcp1 ~ 0, w 2 = cxcp2 ~ 0,

and if we set the powers ofthe ti equal to zero, we get these linear equations:

-(}l +w1+w2 =0 (i)

-(}1 + ()2 + W2 = 0

-(}1 + ()2 + 7()3 + W1 = 0;

and the only constraint that remains from (53) is

()1 + ()2 + ()3 = 1.

(ii)

(iii)

(iv)

These four equations contain five unknowns. This is an under-determined
system, for which there are infinitely many solutions. The unknowns are
called the dual unknowns.

Every nonnegative solution gives a different lower bound

q(t) ~ v(() 1,()2 ,()3 ,wl>w2)

for all feasible t. From (52), we see that v has the form

v = ()1 9 '()292()3 9'(2cp1)-"''(4cp2)-"'2

where IPi = rx.wi and cp 1 + cp 2 = 1.

(54)

(55)

Ideally, to get the best lower bound v, we would maximize the expression
(55) for all nonnegative variables satisfying the equations (i)-(iv). Then (54)
would give

(56)

for all feasible t. Later, we'll prove this remarkable general result of D, P,
andZ:

Jmin q =max vJ (57)

In other words, some feasible t gives equality in (56), and that value of t
minimizes q(t).

214 2 Nonlinear Programming

If we can't easily get max v, at least we can get some v to use in (54). All
we have to do is find any nonnegative numbers 01, .•. ,w2 that solve (i)-(iv).
These equations are the same as equations (41) except for the new terms in 03 .

So if we set 03 = 0 and use the old values (44) for the other unknowns, we
get five numbers that solve the new equations; we get

01=-!, 02=!, 03=0, (.()1=!, (.()2=-!.

If we plug these numbers into formula (55}, using 0° = 1, we get v = 1.5.
This is just the value of v that we computed in the preceding example, where
there was no 03 . In the present example, this value of v gives the lower bound

q(t) ~ 1.5 for all feasible t.

To get an upper bound for min q(t), all we have to do is pick any feasible
t. For instance, let's pick the t that was optimal for the preceding example,
namely t = (2,1,t). This t is feasible for the present example, and it gives q
the value

q(2,1,t) = 1.5078.

Along with the lower bound q ~ 1.5, this gives the bracket

1.5 ~ min q(t) ~ 1.5078.

This much accuracy is good enough for most engineering problems.

The degree of difficulty. In the last problem there were five dual unknowns
81 ,()2 , 83 , ro 1, w 2 but only four dual equations (i)-(iv). That made the problem
more difficult than the preceding two problems, where the number of dual
unknowns equaled the number of dual equations. What determines these
numbers?

If you look at the last example, you see that the three dual unknowns
01,02 ,03 arose from the three terms in the sum for q(t); likewise, the two
dual unknowns COt. w2 arose from the two terms in the sum for p(t). In
general, you will see this: The number of dual unknowns equals the total
number of terms summed in all the given posynomials. Call this number N.

Now let's count the dual equations. In the last example, one dual equation
bi = 0 arose for each primal unknown ti, where bi was the composite expo­
nent oft i· This accounted for the three dual equations (i), (ii), (iii). But we had
one more dual equation, (iv), which came from normalizing the weights
01, 02,03 in the geometric inequality for q(t). There were no more dual
equations. The normalization cp 1 + cp 2 = 1, for the weights belonging to the
constraint posynomial p(t), disappeared when we introduced the new vari­
ables w 1 = r:x.cp 1, w2 = r:x.cp 2 • This example is typical: one dual equation will
arise for each primal unknown ti (j = 1, ... , n); one more equation will arise
from normalizing the weights Oi in the inequality for q. In general, the number
of dual equations will equal the number of primal unknowns plus one: n + 1.

Let's check. In Example 4 we had N = 4 summands in q(t); there was no
p(t); we had n = 3 primal unknowns ti; and we had N dual equations in

3 Geometric Programming 215

n + 1 dual unknowns. In Example 5 we had N = 4 summands in the po­
synomials q and p; we had n = 3; and again we had N dual equations in
n + 1 dual unknowns. We've already checked Example 5, where N = 5 and
n = 3.

As a rule, the number of summands will be greater than the number of
variables ti, and so we shall have N ~ n + 1. If N = n + 1, the number of
dual equations equals the number of unknowns. If N > n + 1, there are
more dual equations than dual unknowns; for this caseD, P, and Z define

the degree of difficulty= N- (n + 1). (58)

This quantity usually, but not always, gives the dimension of the set of
solutions of the dual equations.

It is possible, though unusual, for the degree to be negative. Then we have
N ~ n, which usually means that the N summands are independent variables.
For instance, if the only given posynomial is

(59)

then N = n = 2; the degree is -1, and the summands u1 and u2 are indepen­
dent. The function q(t) has no minimum for t > 0, though q can be made to
approach the lower bound zero. (Set t 1 = e, t2 = e2 ; let e-+ 0.)

But look at this strange example:

(60)

Here N - (n + 1) = 2 - 4 = -2, but there is a respectable minimum, 2,
which is achieved on the whole surface t 1t2 t3 = 1 fort> 0. You can easily
see how this sort of thing can happen. Though q appears to be a function of
three variables, it is really a function of just the one variable u = t 1t2t 3 •

Then q = u + u- 1 ~ 2, with equality iffu = 1.
General discussion. Let q(t),p1(t), ... , Pm(t) be posynomials for t > 0 in

Rn. Consider this problem:

q(t) = minimum fort > 0 and p;(t) ~ 1(i = 1, ... , m). (61)

We'll now discuss a general application of the geometric inequality.
For feasible t, which satisfy the constraints, we have

(62)

if rx; ~ 0 (i = 1, ... , m). We now write the posynomial p;(t) in the notation
(9); for convenience, we define p0(t) = q(t) and cx 0 = 1. In this notation, (62)
says

q(t) ~ ifi [t C;(k)f' T·
For k in the finite set K;, let the weights O;(k) satisfy

O;(k) ~ 0, L O;(k) = 1.
Ki

(63)

216 2 Nonlinear Programming

Definew1(k) = IX;O;(k). Then we have

L C;(k)tk ~ n {c;(k)t/O;(k)}1)j(kJ, (64)
Ki K1

and (63) gives
m

q(t) ~ TI TI {c;(k)tk/O;(k)}"'t<k>. (65)
i=O K;

To get a lower bound for q(t), we try to make the product on the right
independent oft. Using the definition (6) fort, we collect the terms in (65)
to obtain

where v(w) is the constant
m

v(w) = TI TI {c;(k)/O;(k)}"'•<kJ
i=O K;

and bi is the collected power of ti, namely,

m

bj = I I k1-m;(k) (j = 1, ... , n).
i=O K;

Since IX0 = 1, the unknowns w0(k) = 00(k) are required to satisfy

L w0(k) = 1.
Ko

The other n dual equations are

bj = 0 (j=l, ... ,n).

(66)

(67)

(68)

(69)

All the dual unknowns w;(k) are required to be ~ 0. The number of dual
unknowns equals IKol + · · · + IKml, which is the number of summands in
all the posynomials p0 , .•. ,Pm· If the numbers w;(k) ~ 0 satisfy the n + 1
dual equations, they are called feasible for the dual problem, and they provide
the lower bound

q(t) ~ v(w)

for all t that are feasible for primal problem (61).
This is the dual problem:

v(w) = maximum for feasible w.

that is, forw ~ 0 satisfying equations (68) and (69).
Now we will prove the main theorem of geometric programming.

Theorem. Assume that some t satisfies the strict primal constraints

t > 0, P;(t) < 1 (i=1, ... ,m).

(70)

(71)

(72)

Suppose the primal problem (61) has a solution. Then the dual problem (71) has
a solution, and

min q(t) = max v(w). (73)

3 Geometric Programming 217

REMARKS. This is not an elementary theorem, since the proof uses Slater's
theorem for convex programming (see Section 2).

The equality min q = max v states that for some feasible primal t and
dual ro, we can attain equality in the composite geometric inequality (65).
For equality to hold we must first have equality in (62), and so we require

a.i = 0 if Pi(t) < 1 (i=1, ... ,m), (74)
where

a.i = L Wj(k) (i = 0, 1, ... , m).
K;

If a.i = 0, the weights Oi(k) are irrelevant, since p~ = p? = 1. But if a.i > 0, we
require equality in the inequality (64) for the posynomial Pi(t). So, if a.i > 0,
we require

ci(k)t' /Oi(k) = constant

Since Oi(k) = wi(k)/a.i> this says

fork in Ki.

for k in Ki if a.i > 0 (75)

where A.i equals some constant fork in Ki. (Please note that the requirement
(75) must apply to the index i = 0, since we assume a. 0 = 1.)

The conditions (74) and (75) are necessary and sufficient for the equality
q(t) = v(w) ift and ware feasible. For all other feasible t and w we get only the
strict inequality q(t) > v(w). So the proof of the theorem must boil down to
the conditions (74) and (75). 1ft solves the primal minimum problem, we have
to prove the existence of an w that is feasible for the dual and that solves the
equilibrium conditions (74) and (75).

In Section 2 we proved Slater's theorem for concave functions g(x),
f 1(x), ... Jm(x) defined for x ~ 0. For the following proof, we need a version
of Slater's theorem that applies for all x. To get this version, set x = y - z
where y and z are ~ 0. Then, for instance,

g(x) = g(y - z) (y ~ 0, z ~ 0),

and if g(x) is concave in x for all x, then g(y - z) is concave in y and z for all
y ~ 0 and z ~ 0.

Define the Lagrangian

cp(x,u) = g(x) + u · f(x)

= g(x - y) + u · f(y - z)
(76)

for y and z ~ 0 in Rn, u ~ 0 in Rm. Suppose x0 maximizes g(x) for all x such
that f(x) ~ 0. Set x0 = y0 - z0 • Then our first version of Slater's theorem
implies, for some u0 ~ 0 in Rm,

cp(y - z, uo) ~ cp(yo - zo, uo) ~ cp(yo - zo, u)

for all y and z ~ 0 in Rn and for all u ~ 0 in Rm. Setting x = y - z, we get,
for some u0 ~ 0 in Rm,

(77)

218 2 Nonlinear Programming

for all x in Rn and for all u ~ 0 in Rm. The conclusion (77) holds under
Slater's assumption

f(a) > 0 for some a in Rn. (78)

PROOF OF THE THEOREM. If we make the change of variables ti = ~1, then
all the posynomials defined for t > 0 become convex functions of x for all x
in W. (We proved this after Example 3.) To use Slater's theorem, we define
the following concave functions of x:

g(x) = -q(t)

J;(x) = 1 - Pi(t) (i = 1, ... ,m).

Slater's theorem now gives the conclusion (77):

(79)

(80)

g(x) + u0 • f(x) ~ g(x0) + u0 · f(x 0) ~ g(x0) + u · f(x 0) (81)

for all x in W and all u ~ 0 in Rm.
If we set u = 0, the second inequality (81) gives u0 • f(x 0) ~ 0. But u0 ~ 0

and f(x 0) ~ 0, and so u0 • f(x 0) ~ 0. Therefore, u0 • f(x0) = 0. Since both
vectors are ~0, we deduce

uP = 0 if jj(x0) > 0. (82)

Since u0 • f(x 0) = 0, the first inequality (81) says

g(x) + u0 · f(x) ~ g(x0) (83)

with equality for x = x 0 • Now elementary calculus implies for x = x 0

a ox. [g(x) + u0 • f(x)] = 0
J

(j=l, ... ,n). (84)

Now everything is done but the bookkeeping. Using t!' = ~ · x, we find

g(x) = - q(t) = - L: c0(k)ek · x

Ko

a_!_ g(x) = - L: c0(k)ki~ · x

Xj Ko
(j = 1, ... , n).

Similarly, for i = 1, ... , m, we find

j J;(x) = - L: ci(k)kiek · x
OXj K;

(j = 1, ... , n).

Now (84) becomes

m

- L uP L ci(k)ki exp k · x 0 = 0 (j = 1, ... , n), (85)
i=O K;

where we've set ug = 1.
Let q0 = q(t0) = - g(x0). If we divide the last formula by - q0 , we get

m

I I kpJi(k) = o (j = 1, ... ,n) (86)
i=O K;

3 Geometric Programming

where we identify

mi(k) = q0 1u?ci(k) exp k · x 0

We divided by q0 to make

L m0(k) = 1.
Ko

219

(i=O, ... ,m). (87)

(88)

If you compare the last three formulas to the dual equations defined by (67),
(68), (69), you see that the nonnegative numbers mi(k) defined in (87) satisfy
the n + 1 dual equations.

All we have to do now is verify the equilibrium conditions (74) and (75).
First let's compute the sum (Xi· Formula (87) gives

(i = 0, 1, ... , m)
K;

= q0 1u? L ci(k) exp k · x 0,
K;

and so
(i=1, ... ,m).

But we have J; = 1 - Pi ~ 0, and so formula (82) implies (Xi = 0 if Pi < 1
(i = 1, ... , m). That verifies condition (74).

Finally, we put mi(k) in the required form

mi(k) = A.ici(k)t!'.

This comes from (87) if we set t = t 0 and identify

A.i = q0 1u?, tk = exp k · x 0 •

That verifies condition (75) and completes the proof. 0

Reference

R. J. Duffin, E. L. Peterson, and Clarence Zener, Geometric Programming, 1967,
John Wiley and Sons.

Appendix: The Inequality of Arithmetic and
Geometric Means

In the simplest case this inequality states

!(a+ b)~ Jab (1)

for positive numbers a and b. Equality occurs iff a = b. On the left is the
arithmetic mean; on the right is the geometric mean.

The geometric mean really does occur in geometry. If a rectangle has
sides a and b, the geometric mean equals the side of a square with the same

220 2 Nonlinear Programming

area. The inequality (1) implies that the square has the least perimeter of all
rectangles with the same area.

Generalization. Let X1, ... ,Xn be positive numbers. Let ()1, ... ,en satisfy

Then we assert
e1x1 + ... + enxn ~ X~1 ••• x~n

with equality iff x 1 = · · · = xn.

ExAMPLE. If n = 2 and if 81 = 82 = t, we get the inequality (1).

(2)

(3)

Equivalent assertion. In geometric programming one uses this form of the
inequality :

(u)e, (u)en u+···+u>-_! ... ___!!_
1 n ::--- () ()

1 n

(4)

where
(5)

Formula (4) comes from (3) by setting ()ixi = ui. Equality occurs in (4) iff

(6)

PROOF. Let f(x) = log x for x > 0. Taking logarithms in (3), we get this
assertion:

(7)

with equality iff x 1 = · · · = xn. This asserts that log x is a strictly concave
function. We will prove (7) by induction after we've proved it for n = 2.

If n = 2, set 81 = t and 82 = 1 - t. For 0 ~ t ~ 1 define the function

g(t) = log((1- t)x 1 + tx 2)- (1- t) log x1 - t log x 2 . (8)

If x 1 =f. x 2 , the function g(t) satisfies

g(O) = g(1) = 0,

g"(t) < 0 for 0 ~ t ~ 1.
(9)

We now assert
g(t) > 0 for 0 < t < 1. (10)

If this were false, then g(t) would be ~ 0 at some interior point of the interval
[0,1]. Then g(t) would achieve its minimum value at some interior point t0 ,

where calculus would require

g'(to) = 0, g"(t0) ~ 0.

But this is impossible, because g"(t) < 0. This proves (10), and if we take
exponentials, we get the required result (7) if n = 2.

3 Geometric Programming

If n > 2, we use induction. First we define a positive number y by

()tXt + ()zXz + ... + ()nxn = ()tXt + (1 - ()t)y.

The result for n = 2 now gives

f(8txt + (1- ()t)Y))!: 8tf(xt) + (1- ()t)f(y).

Now induction gives

f(y) = f((1- ()t)-t(()zXz + ... + ()nxn))

)!: (1 - 8t)-t8zf(xz) + · · · + (1 - ()t)-t()nf(xn)

221

(11)

(12)

If we use this in (11) we get the required inequality (7). Looking at (12) and
(13) we see that equality occurs iff

This completes the proof of the inequality of arithmetic and geometric
means.

What happens if some ()i = 0? We've proved

assuming

n n

I uj)!: n (uj;e/j
j~ t j~ t

n

e j > o, u j > o, I e j = 1.
j~ t

If some () i __.. + 0, we define the term

(ui/8/1 = 1 if ()i = 0,

(13)

(14)

(15)

which is the limiting value, since ui is assumed positive. Now we can replace
(14) by the broader assumption

(16)
j~ t

allowing some ()i = 0.
If ()i > 0 for j E J, we find

n

L ui >Lui if some ()i = 0. (17)
j~t J

Now the inequality (13) for positive ()i says

I uj)!: n (u)e/i. (18)
J J

But the product over J may be taken over all j = 1, ... , n, since the extra
factors (15) all equall. Now the last two formulas imply the strict inequality

n n

I uj > n (u)el] if some ()i = 0. (19)
j~ t j~ t

222

PROBLEMS

1. Use the geometric inequality (21) to minimize

7-ft+ 9C 3 for t > 0,

2. Use the geometric inequality (21) to minimize

2 Nonlinear Programming

3t1 1t2 1 + 4tf + 15t1 t~ for t > 0.

In the optimum, what are the relative weights fit, 82 , 83 ?

3. Find positive x, y minimizing

3x2 + 7y4 for xy ~ 5.

4. Show that linear programming is a special case of geometric programming: Con­
sider the linear program

m

L Yiaii ~ ci (j = 1, ... ,n)
i=1

LY;b; =max.

Set t; = exp Y; > 0 and define

q(t) = tlbl • • • t;;;bm,

pj(t) = e-CJtj_lJ •• • t:.mJ.

Consider the geometric program to minimize q(t) for t > 0 satisfying pj(t) ~ 1
(j = 1, ... ,n).

*5. (Continuation.) Show that the fundamental theorem of geometric programming
implies the duality principle and the equilibrium theorem of linear programming.
(Note: For the geometric program in Problem 4, the exponents rxi satisfy

•
rxi ~ 0, L aiirxi = b;

j=1

where (74) requires rxi = 0 if pj(t) < 1.)

(i = 1, ... ,m),

6. Let A, B, C, D be positive constants. Problem: Find positive x, y, z minimizing

q = A(xyz)- 1 + Byz + Cxz + Dxy.

Show that the optimal weights are 81 = !-, 82 = 83 = 84 = t, as in formula (30).
Get formulas for the optimal x, y, z. Verify the primal-dual equality min q = max v.

7. For positive x,y,z minimize

under the constraint
2xz + xy3 ~ 9.

Verify the primal-dual equality min q =max v.

8. Consider the problem to minimize

q = x-1y-1z-1 + yz + x-Sy2z3

3 Geometric Programming 223

for positive x, y, z satisfying

txz + ixy ~ 1.

Find upper and lower bounds for min q. (Look at Examples 5 and 6.)

9. For t > 0 in R", what is the minimum value of It; if Ot;- 1 ~ 1? For 8; ~ 0
(i = 1, ... ,n) and IB; = 1, what is the maximum value of ne;-8'?

10. Use geometric programming to minimize

t 1 + 2t2 + · · · + nt. for t > 0
if It;- 2 ~ 1.

11. This problem is not a geometric program: Find positive x, y minimizing

(x2 + y4)1i2 + x-1 + xy + y-3.

State the problem as a geometric program to find positive x, y, z minimizing

z + x- 1 + xy + y- 3

where x, y, z satisfy an appropriate constraint p(x,y,z) ~ 1.

12. A rectangular box in three dimensions has volume V, surface area A, and edge
length L. State the following problem as a geometric program: Maximize V for
A~ 10 in.2 and L ~ 16 in.

13. Show that the volume, area, and edge length of a box satisfy the inequalities

V1i3 ~ (A/6)112 ~ L/12.

Which boxes produce equalities?

3 Fixed-Point Theorems

1 Introduction to Fixed Points; Contraction
Mappings

In the theory of zero-sum, two-person games the basic theorem was proved
by John von Neumann; he used the Brouwer fixed-point theorem. In the
theory of many-person games the basic theorem was proved by J. F. Nash;
he also used the Brouwer fixed-point theorem. We will prove Nash's theorem
with the Kakutani fixed-point theorem.

What is afixed-point theorem? It is a theorem that refers to an equation

x = f(x). (1)

Usually, the theorem gives conditions for the existence of a solution. The
function f may be thought of as a mapping. Then a solution x is a point that
the mapping leaves fixed. There are many varieties of fixed-point theorems.
Some give conditions for uniqueness or multiplicity of solutions. The Kaku­
tani theorem refers to a generalization of the equation (1). In the Schauder
theorem the fixed "point" lies in a "space" of functions, and this "point" may
be a function that solves a nonlinear integral equation or partial differential
equation.

Some fixed-point theorems are constructive; most are not. The Brouwer
theorem is not. It just tells you a solution exists; it's up to you to find it.
You ask: What good is that? What good is a mere existence theorem?

Gauss called mathematics the science of relationships. Perhaps the most
basic mathematical relationship is existence, relating a problem to a solution.
Gauss was a formidable computer, and when he could compute something
important, he did; when he couldn't, he proved it existed. For instance, he

224

1 Introduction to Fixed Points; Contraction Mappings 225

proved the fundamental theorem of algebra: For every polynomial equation,
a complex root exists. That's not as good as the quadratic formula, but it
will have to do-as Galois showed later.

Even the practical computer user can take comfort from an existence
theorem. When you're trying to find something, it's a comfort to know
it exists.

Look at the fixed-point equation: x = f(x). Have you ever seen it before?
Yes, you have-perhaps more often than you know. You see, every equation
is a fixed-point equation.

The reason is simple. Suppose this equation is given: g(x) = 0. Then we
can write the fixed-point equation

X = X + g(x), (2)
or if you prefer,

X = X - 79g(x).

In general we can write the equation g(x) = 0 as the fixed-point equation

X = X + cP[g(x)] (3)

provided that cl>[g] = 0 iff g = 0. So when we talk generally about fixed­
point equations, we are talking about all equations.

The contraction mapping principle is an exception among fixed-point
theorems: it is constructive. You can use the method of proof to construct a
solution. The method is called the method of successive approximations.
(When I was a graduate student, I liked this method so much that I wrote
my thesis on it.)

In its elementary form, the contraction mapping theorem says this: Let
M be a closed set of real numbers, and suppose the function f maps M into
itself. (If you like, think of M as the set of all real numbers.) Finally, suppose
f is a contraction mapping:

lf(a)- f(b)l ~ Ola- bl, (4)

where 0 ~ l.l < 1. Conclusion: The mapping f has a unique fixed point in M.
Uniqueness is easy to prove. If there were two fixed points, a and b, then

the contraction property imples

Ia- bl = If(a)- J(b)l ~ e Ia- bl. (5}

Then a - b = 0 because 0 ~ l.l < 1.
To prove the existence of a fixed point, we'll use an iterative scheme.

Start with any x 0 in M, and compute the successive approximations

(n = 0, 1,2, ...). (6)

We'll prove that the sequence xn converges.
That will suffice. If xn ~ x, then the limit x must lie in M because all the

xn lie in M and M is closed (M contains all its limit points). Next, (4) implies

(7)

226 3 Fixed-Point Theorems

so Xn --+ x implies f(xn) --+ f(x). Now (6) yields the fixed-point equation
x = f(x).

To prove that x" converges, we subtract from the equation (6) the same
equation with n replaced by n - 1:

Xn+ 1 - Xn = f(xn)- f(xn-1)

The contraction property implies

lxn+ 1 - xnl ~ Olxn - Xn-11

lxn+ 1 - xnl ~ O"lx1 - Xol

For all q > p this implies

(n=1,2, ...).

(n = 1,2, ...).

(n=1,2, ...).

lxq - xPI = l:t~ (xn+ 1 - Xn)l ~ q~1
lxn+ 1 - Xnl

~ lx1- Xoi(OP + 0P+ 1 + · · · + ~- 1).

< lx1 - xoloP(1 - e)- 1 --+ 0 as p --+ 00.

(8)

(9)

(10)

Since Xq- xP --+ 0 for q > p --+ oo, the sequence xn converges, and so we
have constructed a fixed point. 0

EXAMPLE I. Suppose we want to solve the fixed-point equation

X= 1- x5. (11)

As x goes from 0 to 1, the right-hand side goes from 1 to 0. Evidently, the
graphs cross and there is a unique root between 0 and 1.

Let M be the closed interval 0 ~ x ~ 1. The function 1 - x 5 maps M
into itself. Start with x 0 = 0.5 and compute the successive approximations

Xn+ 1 = 1 - x; (n = 0, 1,2, ...). (12)

The limit should be a root of (11), shouldn't it?
Here's what you get for the sequence x0 ,xhx2 , .•• with 3-digit accuracy:

0.5, 0.969, 0.147, 1, 0, 1, 0, 1, 0,

Good grief. What's wrong?
What's wrong is this: The root x lies near 1, but the function 1 - x 5 is

not a contraction mapping near 1, since the derivative equals - 5x4 = -20
at x = 1. But, as you see by dividing by b - a and letting b --+ a in (4), a
differentiable contraction mapping should satisfy

lf'(a)l ~ e < 1, (13)

This simple example is typical of the frustrations of the contraction
mapping theorem. The root obviously exists, but we can't get it. Or can we?

I Introduction to Fixed Points; Contraction Mappings 227

EXAMPLE 2. We are determined to solve the equation (11) by successive
approximations. We introduce a parameter A and write the equation in the
form

x = (1 - A)x + A(1 - x5) = f(x) (0 ~X~ 1). (14)

This equation is equivalent to (11) unless A = 0. We will choose A so as to
make lf'(x)l ~ () < 1.

If we choose A=~. then we shall have lf'l ~ ~ on the whole interval.
Then we get the iterative scheme

(n = 0,1, ...).

Starting with x0 = 0.5, we compute this sequence:

0.5, 0.634, 0.709, 0.741, 0.751, 0.754, 0.755, 0.755,

At last we get x = 0.7548776662. That's more like it.

ExAMPLE 3. What happens if you try to solve x = 1 - x by successive
approximations? Try, and see what happens. (This is like the story about
mothballs: Do mothballs kill moths? Yes, but only if you make a direct hit.)

EXAMPLE 4. Newton's method is an automatic way to convert an equation
g(x) = 0 into a fixed-point equation x = f(x) in which f(x) is a contraction
in the neighborhood of a root. If g(x) is differentiable, we write

x = f(x) = x - g'(x)- 1g(x). (15)

For simplicity, suppose g'(x) =P 0 and suppose g" exists near the root. Then
f'(x) = (g')- 2g"g = 0 at the root, and lf'l is very small near the root. So the
contraction principle must work if M is a small closed interval containing
the root.

With its generalizations to N-dimensional space and to function spaces,
the Newton equation (15) gives the most important example of the equation
(3). Here cP[g(x)] stands for -g'(x)- 1g(x). (In N dimensions g'(x) is the
Jacobian matrix; in function spaces g'(x) is the Frechet derivative.)

We proved the contraction-mapping theorem in 1 dimension. You will
have many uses for this theorem in N dimensions and in function spaces.
Don't let those terms intimidate you. The proof looks almost the same as
what you know already. Now I'm going to show you Banach's 1922 version.
Please compare the proof line for line with our old formulas (4)-(10); you'll
see there's not much new.

Banach talks abstractly about a complete metric space M. This is a set
on which we have a function d(a,b) measuring a kind of distance between
every two points in M. We require these properties:

(i) d(a,b) = d(b,a) ~ 0, with d(a,b) = 0 iff a = b.
(ii) d(a,b) + d(b,c) ~ d(a,c), (triangle inequality).

228 3 Fixed-Point Theorems

(iii) If d(xp,xq) ~ 0 as p, q ~ oo, then there exists in M a "limit" x such that
d(x,.,x) ~ 0 (completeness-the Cauchy property).

Theorem. Let f map a complete metric space M into itself Assume, for every
a and b,

d(f(a),f(b)) ~ Od(a,b),

where 0 ~ 0 < 1. Then f has a unique fixed point in M.

PROOF. Uniqueness: If there were two fixed points, a and b, then

d(a,b) = d(f(a),f(b)) ~ Od(a,b).

Then d(a,b) = 0 because 0 ~ 0 < 1, and so a = b.
Existence: Start with any x 0 in M and compute x 1,x2 , •.• by

(n = 0, 1,2, ...).

We will prove that d(xp,xq) ~ 0 asp, q ~ oo.

(4')

(5')

(6')

That will suffice. For then completeness implies there is a point x in M
such that d(x,.,x) ~ 0. Next, (4') implies

d(f(x,.),f(x)) ~ Od(x,.,x);

hence, d(f(x,.),f(x)) ~ 0. By the triangle inequality,

d(x,f(x)) ~ d(x,x,.+ 1) + d(xn+1,f(x)),

(7')

and now (6') yields d(x,.+ 1,f(x)) = d(f(x,.),f(x)) ~ 0, and so d(x,f(x)) = 0
and x = f(x).

To prove d(xp,Xq) ~ 0, we write

(n = 1,2, ...).

Repetition gives us

d(x,.,x,.+ 1) ~ (J"d(x0 ,x1) (n = 1,2, ...). (9')

If q > p, the triangle inequality and (9') imply

q-1
d(xp,Xq) ~ L d(x,.,x,.+ 1)

n=p
(10')

~ d(Xo,Xl)((}P + ()P+l + ''' + ~- 1)

< d(xo,X1)(}P(1- 0)- 1 ~ 0 as p ~ 00.

This completes the proof of Banach's theorem.

As I said, nothing much is new here. So why did I bother to show it to
you? Why did I show you both versions? For two reasons:

1. Abstraction intimidates me. Unless I'm talking about something I can
touch, smell, or taste, I don't know what I'm talking about. I can taste

1 Introduction to Fixed Points; Contraction Mappings 229

the real numbers, but complete metric spaces make me uneasy. Perhaps
you feel the same way.

2. The abstract version has tremendous unexpected consequences. With no
trouble, it implies the Cauchy-Lipschitz theorem on the existence and
uniqueness of solutions to systems of ordinary nonlinear differential equa­
tions. With no trouble, it implies the implicit-function theorem. It is
enough to make you believe in pure mathematics. (See Problems 1 and 2.)

Let me give you just one small example-a Hammerstein integral equa-
tion.

EXAMPLE 5. Consider the nonlinear integral equation

x(t) = J0
1 e-st cos(A.x(s))ds (0 ~ t ~ 1), (16)

with 0 <.A< 1. Using Banach's theorem, we will prove that this equation
has a unique continuous real-valued solution x(t).

We'll let M be the space of "points" x equal to continuous functions x(t)
for 0 ~ t ~ 1. If a = a(t) and b = b(t), we'll define the distance d(a,b) by the
maximum norm

d(a,b) = maxla(t)- b(t)l (0 ~ t ~ 1). (17)

Forinstance,ifa(t) = tandb(t) =sin t,thend(a,b) = 1- sin 1 = 0.1585.
Our space M is a complete metric space. You see at once that d(a,b) has

the properties (i) and (ii). It also has property (iii): a uniformly convergent
sequence of continuous functions has a continuous limit. (See Problem 5.)

Now then. What is the mapping? If x lies in M, we define f(x) = y, where

y(t) = J0
1 e-st cos(h(s))ds (0 ~ t ~ 1). (18)

The problem (16) asks for a fixed point: x = f(x).
The mapping is a contraction because we've assumped 0 < .A < 1. You

see,
cos A.a - cos A.b = A.(b - a) sin e,

where (} lies between A.a and A.b. Therefore,

Ieos A.a - cos .Abl ~ .Alb - aj.

For the functions a(t) and b(t), we get

lcos(.Aa(t)) - cos(A.b(t))I ~ lb(t) - a(t)l ~ d(a,b).

For the integrals u = f(a) and v = f(b), we get

lu(t)- v(t)l ~ J0
1 e-stlcos(.Aa(s))- cos(.Ab(s))l ds

~ Ad(a,b) J0
1 e-st ds ~ Ad(a,b).

230 3 Fixed-Point Theorems

Taking the maximum for 0 :::::;; t :::::;; 1, we get

d(f(a),f(b)) :::::;; Ad(a,b).

Beautiful. That's all there is to it. Banach's theorem says there is one and
only one solution x(t) to the nonlinear integral equation (16).

We assumed 0 < A < 1; you might wonder what happens if A ~ 1. Then
we can't use the contraction-mapping principle.

For A = 1 we can get a solution by taking a convergent subsequence of
solutions x(t;A) belonging to parameters A< 1 with A ---. 1. It's easy to show
that the solutions x(t;A) are uniformly bounded and equicontinuous for
0 :::::;; t :::::;; 1; a classical theorem gives a convergent subsequence and hence
a solution x(t, 1) for A = 1.

For A> 1 we have a different story. Then the Hammerstein equation (16)
becomes a hard problem; I have no elementary way to prove a solution
exists. For A > 1 we shall later get a solution from the Schauder fixed-point
theorem, which extends to Banach space the great theorem of Brouwer.

I will give you three proofs of the Brouwer fixed-point theorem. If you
wish, you can study any one of them without the other two. The first of the
three proofs has never before appeared in print. It was told to me by my
colleague Adriano Garsia.

References

I. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux.
equations integrales. Fund. Math. Vol. 3 (1922) pp. 133-181.

2. D. R. Smart, Fixed Point Theorems, Cambridge Univ. Press, 1974.

PROBLEMS

1. Cauchy-Lipschitz theorem. Consider the initial-value problem of ordinary differ­
ential equations

d
dt x(t) = f(x(t),t), x(O) = 0.

Assuming f satisfies a Lipschitz condition, you can prove a solution x(t) exists and
is unique in some interval 0 ~ t ~ t 1• Here's how:

Assume the function f(s,t) is continuous for lsi ~ s0 and 0 ~ t ~ t0 , with

if(s,t)- f(s',t)i ~ A.is- s'i
for some Lipschitz constant A.. Rewrite the initial-value problem as the integral
equation

x(t) = f~ f(x(u),u) du.

1 Introduction to Fixed Points; Contraction Mappings 231

If J-1 is an upper bound of lf(s,t)l, let t1 satisfy

0 < t 1 ~ t0 , t 1A. < 1, t 1JJ ~ s0 •

Define the complete metric space of continuous functions x(t) with lx(t)l ~ s0 for
0 ~ t ~ t 1 • Define the "distance" between two such functions as

d(x1ox 2) = maxlx1(t)- x2(t)l for 0 ~ t ~ t1.

Show that the integral in the integral equation gives a contraction mapping of the
metric space into itself. Now get a unique fixed point x from Banach's theorem.
The fixed point x = x(t) solves the initial-value problem.

2. Implicit-function theorem. Assume g(x,t) is continuously differentiable in some
neighborhood of the origin; assume g(O,O) = 0. Given t near zero, you want a
solution x to the equation g(x,t) = 0 (the solution x is an implicit function of t).
Assume the partial derivative gx i= 0, and proceed as follows:

Define the constant c = gx(O,O) i= 0. Define the function f(x,t) = x- c- 1g(x,t).
Show fx = 0 for x, t = 0, 0; deduce that lfxl ~ () < 1 in some closed rectangle
lxl ~ xl> ltl ~ t1• Now, given t, consider the fixed-point equation x = f(x,t). Use the
contraction-mapping theorem.

*3. Generalize Problem 1: State and prove the Cauchy-Lipschitz theorem for R".

*4. Generalize Problem 2: State and prove the implicit-function theorem for an equa­
tion g(x,t) = 0 where g and x lie in W while t lies in Rm.

*5. Assume x.(t)-+ x(t) as n-+ oo, uniformly in t for 0 ~ t ~ 1. That means: Given
e > 0, you can find N = N(e), independent of t, such that

lxn(t) - x(t)l ~ e if n ~ N(e).

If the x.(t) are continuous, prove that x(t) is continuous. Hint:

6. Newton's method. Let g(a) = 0. Assume g(x) is twice continuously differentiable
for x near a. Assume g'(a) i= 0. Pick x 0 near a, and define the iteration scheme

(n = 0, 1,2, ...).

Prove x.-+ a if x 0 is picked close enough to a; this is called local convergence.

7. For Problem 6, prove quadratic convergence:

*8. Newton's method if g'(a) = 0. Assume

g(x) = b(x- a)P + · · ·,
g'(x) = bp(x - a)p- 1 + · · ·,

where b i= 0 and p > 1 (the dots stand for smaller terms). Again prove local con­
vergence for Newton's method; disprove quadratic convergence.

9. Considerthefunctionf(x)=x+e-x on the half-linex~O. Observe thatO~ f'(x)< 1,
and deduce that If(a)- f(b)l < Ia- bl. Is f(x) a contraction mapping? Does the

232 3 Fixed-Point Theorems

equation x = f(x) have a root? Would it help to restrict f(x) to a closed interval
0 ~ x ~ A? Why not?

10. If A is a positive constant, consider the function f(x) =sin AX for - oo < x < oo.
For which constants A does f(x) give a contraction mapping of R1 into itself?
For which A does the equation x = f(x) have a root? For which A is the root
unique?

11. If M is an interval of real numbers, and if f(x) is differentiable on M, show
that f(x) is a contraction if and only if lf'(x)l ~ (} < 1, for some constant 0. If
M is the union of disjoint intervals, show that f(x) need not be a contraction if
lf'(x)l ~ (} < 1: let M be the union of disjoint intervals 11>12 ; define f(x) mapping
M into itself with no fixed point, though f'(x) = 0.

~12. Let M be a closed, bounded, convex subset of R", and let f(x) map Minto itself.
Assume all n components of f are continuously differentiable, and define the n x n
Jacobian matrix J = (aj;jax). Using Euclidian length, show that f(x) gives a con­
traction mapping iff the Jacobian matrix has norm IJI < 1. (The norm of a matrix
A is defined as the maximum of the length quotients IAzl + lzl for vectors z * 0.)

~13. Generalize Newton's method (Problem 6) to R". With an appropriate assumption,
prove local convergence.

2 Garsia' s Proof of the Brouwer
Fixed-Point Theorem

The Brouwer fixed-point theorem is one of the most important results in
modern mathematics. It is easy to state but hard to prove. The statement is
easy enough to be understood by anyone, even by someone who can't add
or subtract. But its proof has usually been so difficult that it has been taught
only in graduate courses on topology.

The Brouwer theorem has many applications in mathematical analysis.
For instance, it is an essential tool in the theory of ordinary differential
equations. In its extension by Schauder and Leray, the fixed-point theorem
is used to establish previously unattainable results in the theory of nonlinear
partial differential equations and integral equations. In mathematical eco­
nomics, it is used to prove the existence of equilibria in many-person games.

This is what the Brouwer theorem says in everyday terms: Sit down with
a cup of coffee. Gently and continuously swirl the coffee about in the cup.
Put the cup down, and let the motion subside. When the coffee is still,
Brouwer says there is at least one point in the coffee that has returned to the
exact spot in the cup where it was when you first sat down.

In mathematical terms the Brouwer theorem says: If a ball (or its topo­
logical equivalent) is mapped continuously into itself, then at least one point
must be mapped into itself.

Now that is fascinating. Somehow it should be easy to prove.

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 233

When I was a student, like all mathematics students, I knew the statement
of the Brouwer theorem. Of course, I wanted to understand it. I knew that
sooner or later I would have to understand it if I wanted to call myself a
competent professional mathematician. But I never took a course in topol­
ogy, and so I failed to learn a proof.

As a post-doctoral fellow in New York University, I decided to attend
lectures on topology with the purpose of understanding the Brouwer theo­
rem. The professor was the eminent mathematician Emil Artin. His first
lectures were all about something called "the free group," which I found
vexing. After a while, I felt we would never reach the Brouwer theorem, and
I stopped attending; I let the matter slide. I tried to prove the theorem for
myself, but always failed. I looked at books on topology, but lacked the
patience to study them.

One day ten years later, I was complaining to my colleague Adriano
Garsia:

"Why isn't there an easy proof of the Brouwer fixed-point theorem?"
"Didn't you ever take a course in topology?" he asked.
"No," I admitted. Why not be honest?
"Well, what would you consider a simple proof?" he asked.
"One that I can understand," I said.
"Do you know Green's theorem?" he asked.
"You mean Green's theorem in integral calculus? Of course I know

Green's theorem; everyone knows Green's theorem," I said huffily.
"Then I can give you an easy proof of the Brouwer theorem," he said.
"I dare you," I said.
He told me his proof, and now I'm going to tell it to you. His proof is

beautiful and fairly easy. I would say it is about twice as hard to learn as
Stokes's theorem in calculus, but not harder than that. If you can understand
ordinary engineering mathematics, then you can understand Garsia's proof
of the Brouwer fixed-point theorem.

First, some terminology. Topologists use the word ball for the solid
lxl ::;;; 1; they use the word sphere for the surface lxl = 1. Other mathemati­
cians use sphere for either the solid or its surface, and then they have to
explain what they mean. I think the topologists are right, and I will use the
words ball and sphere as they do.

Brouwer's fixed-point theorem says:
Let f(x) be a continuous function defined in the N-dimensional unit ball

lxl ::;;; 1. Let f(x) map the ball into itself: lf(x)l ::;;; 1 for lxl ::;;; 1. Then some point
in the ball is mapped into itself: f(x 0) = X 0 •

For N = 1 the theorem says this: If -1 ::;;; f(x) ::;;; 1 for -1 ::;;; x ::;;; 1, then
f(x) = x for some x. In other words, the graph y = f(x) must intersect the
line y = x for some x. This is illustrated in Figure 1.

For N = 1 the theorem is easy to prove. The function f(x)- xis con­
tinuous for - 1 ::;;; x ::;;; 1. It is ::;;; 0 at x = 1 ; it is ;;:::: 0 at x = -1. Therefore it
equals 0 somewhere in the closed interval -1 ::;;; x ::;;; 1.

234 3 Fixed-Point Theorems

y=x

Figure 1

Note that the assumptions on f(x) are all used; if any assumption is
dropped, the theorem is false. For instance, if f(x) = x + 1, then f(x) =F x for
-1 ~ x ~ 1; here f(x) does not satisfy Jf(x)J ~ 1 for JxJ ~ 1. For another
instance, if f(x) = - x for JxJ ~ 1 except for the single point x = 0 where
f(x) = t, then f(x) =F x for -1 ~ x ~ 1; here f(x) is discontinuous.

For N = 2 dimensions, the theorem says this: If the disk JxJ ~ 1 is mapped
continuously into itself, at least one point is mapped into itself.

•
/"'

y =f(x)

Figure 2

Here again we see that if any of the assumptions on the mapping f(x) is
dropped, the theorem becomes false. Note also this: If the disk is replaced
by some other domain, the theorem may become false. For instance, consider
the annulus ! ~ JxJ ~ 1. This domain can be mapped continuously into
itself by a rotation through an angle fJ. Unless fJ is a multiple of 2n, there is
no fixed point.

This brings us to the topology of the domain. We say that the ballJxJ ~ 1
is topologically equivalent to a domain D if there is a continuous mapping

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 235

y = Tx from the ball into D, with a continuous inverse mapping x = r- 1y
from D back to the ball.

For instance, in 2 dimensions the disk lxl ~ 1 is topologically equivalent
to the square -1 ~ y1 ~ 1, -1 ~ y2 ~ 1. (For r- 1 we may take the mapping

X1 = ytfa, Xz = Yz/a if a = IY'I,
where y' is the boundary point on the ray from 0 through y.) But we may
not let D be the whole plane; and we may not let D be an annulus.

Let D be topologically equivalent to the unit ball. Suppose the Brouwer
theorem is true for the unit ball; then it is true for D.

Here is the proof. Suppose f(y) maps D into itself, and suppose f is con­
tinuous; we want to show that f has a fixed point yo = f(y 0

). Set up the
continuous correspondence

y = Tx, x = r- 1y

for y in D and lxl ~ 1. This is illustrated in Figure 3.

T --T-'

Figure 3

Now define the function

g(x) = r- 1f(Tx)

This function maps lxl ~ 1 into itself, and g is continuous because r- 1, f,
and Tare continuous. Now Brouwer's theorem for the ball says: g has a
fixed point X0 = g(X0). If yo = TX0 , then

y-lyo = g(T-1yo)

If we apply T, we get the fixed point

yo= Tg(T- 1yo) = f(yo) m D.

Now we will approach the proof of Brouwer's theorem for the ball. Let
f map the unit ball continuously into itself. Define the function

h(x) = x - f(x).

A fixed point off is a root of the equation h(x) = 0. If we suppose f(x) has
no fixed point for lxl ~ 1, then h(x) #: 0 for lxl ~ 1.

236 3 Fixed-Point Theorems

The discriminant. If h(x) is any function in RN that is continuous and
non-zero on the surface lxl = 1, we will define a discriminant <5[h]. We
require <5 to be a real-valued functional with three properties:

(i) <5 [h(x)] ¥: 0 if h(x) = x
(ii) <5[h(x)] = 0 if h(x) can be defined as a continuous non-zero function in the

whole unit ballixi :::;; 1.
(iii) If h1(x) and h2(x) never point in opposite directions on the surface, then

they have equal discriminants:

for 0:::;; (}:::;; 1 and lxl = 1

EXAMPLE. For N = 1, we can construct a functional <5[h] as follows. The
function h(x) is given on the boundary of the unit ball -1 :::;; x :::;; 1; in other
words the two numbers h(-1) ¥: 0 and h(1) ¥: 0 are given. Lets= the sign
of h(1): s = 1 if h(1) > 0; s = -1 if h(1) < 0. Lets' = the sign of h(-1). Then
define

<>[h] = s- s'.

Now verify the three properties:

(i) <5(X] = 1 - (-1) = 2 '¢: 0.
(ii) s - s' = 0 if h(x) has any continuous non-zero extension into the whole

interval, since s - s' ¥: 0 implies that h(1) and h(-1) have opposite signs.
(iii) In one dimension "h 1(x) and h2(x) never point in opposite directions on

the surface" means: h1(1) and h2(1) have the same sign, and h1(-1) and
h2(-1) have the same sign. Then the two discriminants are equal.

Use of the discriminant. If we can construct a discriminant <5 [h] with the
three required properties, then we can prove the fixed-point theorem. Here's
how:

Given is f(x) mapping jxj :::;; 1 continuously into itself. Define h(x) = x -
f(x) for jxj = 1. Iff has no fixed point, then h(x) ¥: 0. We now assert that
x and h(x) nowhere point in opposite directions if lxl = 1. Indeed,

x · h(x) = x · {x- f(x)} = 1 - x · f(x)
while

0 < jx - f(x)jl = 1 - 2x · f + IW :::;; 2(1 - x · f).

Therefore, x · h(x) > 0 and

(1 - (})x + (}h(x) ¥: 0 if 0 :::;; (} :::;; 1,

since the equality would imply 1 - (} + (}x · h = 0.
Now property (iii) says that <5[h] = <5[x]. But <5[x] ¥:0, and so <5[h] ¥:0.

Now property (ii) says that any continuous definition of h(x) in the whole
ball must somewhere =0. Thenx- f(x) = 0, that is, fhasafixedpoint.

The operator D. The definition of the discriminant will depend on a cer­
tain differential operator D. Here w~ suppose RN is the space of vectors with

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 237

N real components. The operator D will apply to functions g(x) with these
properties: g(x) lies in RN and is twice continuously differentiable as a func­
tion of x in a neighborhood of the surface lxl = 1. For such functions,
Dg(x) = h(x) will lie in RN and will be continuously differentiable oo the
surface lxl = p = 1.

Let oi represent ojoxi. Then oig is the vector whose ith component is
oigi. We first define the Jacobian matrix

J = [o1g,o2g, ... ,aNgJ
with determinant

det J = L1 = L1[g].

Define Jk to be the matrix obtained by replacing the column o~ by g. Call
its determinant

det Jk = L1k[g].

Now define h = Dg to be the vector whose kth component is

hk = L1k[g].

We will illustrate these definitions for N = 1, 2, and 3.
N = 1. Here we have

J = [o1g1]. L1 = o1g1 = g'1(x1),

J1 = [gt], h1 = L11 = g1(x1) = Dg.

N = 2. Here we have

J = [o1g,82g], L1 = det J

J 1 = [g,82g], L11 = det J 1o

J 2 = [81g,g], L12 = det J 2•

For example, suppose

then

J _ [x~ + x 2 , 1 J
1 - x 1 cos x 2 , -x1 sin x 2

L1 1 = (x~ + x 2)(-x1 sin x 2)- x1 cos x 2

J _ [2xl> x~ + x2 J
2 - cos x2 , x 1 cos x2

L1 2 = 2x~ cos x 2 - (x~ + x 2) cos x 2

238 3 Fixed-Point Theorems

and so v[xi+ x2 J =[<xi~ x2)(-x1 sin2x2)- x1 cos x2]
x1 cos x 2 2x1 cos x 2 - (x1 + x2} cos x 2

N = 3. Here we have

J = [81g,82g,83g],

J 1 = [g,82g,83g],

J 2 = [81g,g,83g],

J 3 = [81g,82g,g],

L1 = det J

L1 1 = det J 1

L1 2 =detJ2

Ll3=detJ3

Thus, the operator D is a first-order differential operator mapping vectors
into vectors. In this sense it is like the operator curl (usually written as V x);
it is unlike the divergence (usually written as V ·), which maps vectors into
scalars.

The operator D satisfies an identity that will make it useful to us: the
divergence of Dg inN dimensions equals N times the Jacobian determinant.

Lemma. V · (Dg) = N det J.

EXAMPLE. In the example we used for N = 2, we find
V · (Dg) = 81[(xi + x2)(-x1 sin x2)- x1 cos x2]

+ 82[2xi cos x2 - (xi + x2) cos x2]

= 2[-xi sin x 2 - cos x2] = 2 det J.

EXAMPLE. For N = 2 this is the proof of the lemma: The vector Dg has the
two components

det[g,8 2g] and det[a 1g,g].

The divergence of this vector equals

det[81g,82g] + det[g,81 82g] + det[82 81g,g] + det[81g,82g].

The second and third terms cancel, because they are determinants with
two columns interchanged. The remaining two terms each equal det J.

PROOF OF THE LEMMA. For N ~ 2 the proof directly generalizes the proof just
given for N = 2. The vectorfunction Dg has the components Ll 1, L1 2, ... , L1 N•

and so th~ divergence equals

V · (Dg) = 81LI1 + 02LI2 + · · · + oNLIN.

Each Llk is a determinant

2 Garsia's Proof of the Brouwer Fixed-Point Theorem

The rule for differentiating determinants says

N

8kLik = L det Jkv
v=1

239

where Jkv is the matrix obtained by applying the operator 8k to the vth
column ofthe matrix Jk.

If v = k this rule gives

det Jkk = det J = Ll.

That is because J k was formed from J by replacing the kth column, 8,.g, by
g; now if 8k is applied to this column, we get back the original column 8kg.

Ifv =I= k, the matrix Jkv has column v equal to 8k 8vg; it has column k equal
tog; and for columnj =I= v or kit has 8ig. Thus the matrices Jkv and Jvk are
identical except that columns k and v are interchanged. Therefore,

Now we find

N

v. (Dg) = L 8kLik
k=1

N N

= L L det Jkv = N det J,
k= 1 v= 1

since the terms with k = v equal det J, and the terms with k =1= v cancel.

Corollary. If u(x) is twice continuously differentiable and if ju(x)j = 1, then
V · (Du) = 0.

PRooF. We must show that det J = 0, where

It is enough to show that the columns of J are dependent. But that is true,
since every column 8 iu is orthogonal to the unit vector u:

0 = 8ijuj2 = 2u · 8iu.

Now we are ready to define the discriminant t5[u] for functions that are
twice continuously differentiable unit vectors in a neighborhood of the unit
sphere. For these functions we define

t5[u] = J (Du) · ndS
lxl=1

Note that x equals n, the outer normal, on the surface jxj = 1. Here we
assume N;;:::: 2 dimensions. If AN is the area of the surface jxj = 1, topologists
call AN 1 t5(u] the degree of mapping.

240 3 Fixed-Point Theorems

EXAMPLE. What does this mean for N = 2? Here x on the unit circle is the
unit normal, and

Then

(V.) ·n,dS = det[u,82u]dx2 -det[81u,u]dx 1

= det[u,8 2udx2] +det[u,8 1udx 1]

= det[u,du]

= u1 du2 - u2 du 1

= d arctan(~:) (since ui + u~ = 1)

= d arg u.

This gives the definition for N = 2:

b[u] = ~= 1 d arg u.

The discriminant is the net change of argument around the unit circle.

EXAMPLE. For general N we shall need to know b[u] if u is the unit vector

u(x) = p- 1x where p = lxl > 0

Let e1, •.• , eN be the basic unit vectors

Then
8k(p- 1x) = -p- 3xkx + p-lek

= - xkx + ek for p = 1.

This is the kth column of the Jacobian matrix J.
To obtain the jth component of the vector Du, we must replace the jth

column of J by u and take the determinant; for p = 1 this gives

det[-x 1x + e1, .. , x, ... , -xNx +eN]

where xis thejth column. We can eliminate the terms -x1x, ... , -xNx in
the other columns by adding multiples of the column x. This gives the
determinant

This shows that for u(x) = xj p

Du = x for p = 1.

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 241

Now we find at once

(J[p- 1x]= I x·xdS= I 1dS=AN>O, Jp=l Jp=l

where AN is the area of the unit sphere (A 2 = 2n, A 3 = 4n, etc.).

EXAMPLE. It will also be useful to know (J [v] where v = - u = - p- 1x. If
we look over the preceding computation, we see that in the determinants
every column is multiplied by -1 if u is replaced by -u; therefore, since
there are N columns, the result xi must be multiplied by (-1t. This gives

Dv = D(-u) = (-1)NDu = (-1)Nx,
and we find

Now we'll find a few more properties of (J[u] for functions u(x) in the class
U2 (twice continuously differentiable unit vectors in a neighborhood of
lxl = 1).

Lemma. Suppose u(x) is in U2• And suppose that u(x) can be defined as a twice
continuously differentiable unit vector in the whole unit ball lxl ~ 1. Then
(J[u] = 0.

EXAMPLE. We have computed (J[u] =AN> 0 ifu(x) = xjp near p = 1. Now
the lemma implies that there is no way to extend the definition of u(x)
inside the ball p ~ 1 so that u(x) remains a twice continuously differentiable
unit vector.

PROOF OF THE LEMMA. Suppose that iu(x)l = 1 for p ~ 1. Then we have
V · Du = 0 for p ~ 1. Now we can use Green's theorem:

(J[u] = £= 1 (Du) · ndS

= I V · (Du) dV = 0. Jp:E;l

That's all there is to it. 0

Next we will obtain a remarkable invariance property of the discriminant.

Lemma. If u(x) and v(x) are both in the class U2, and if u + v is nowhere zero
on the unit sphere p = 1, then (J[u] = (J[v].

EXAMPLE. In two dimensions this says that if the unit vectors u and v are
never opposite on the unit circle, then they have the same net change of
argument as x moves around the circle. For instance, suppose u(x) = x for
p = 1, and suppose v(x) ¥= - x. Then arg v(x) changes by 2n as x moves
around the circle.

242 3 Fixed-Point Theorems

PROOF OF THE LEMMA. The functions u(x) and v(x) are given for 1 - e <
p < 1 + e. Let cp(p) be defined for 1 - e ~ p ~ 1 + e with these properties:

(i) 0 ~ cp(p) ~ 1 for 1 - e ~ p ~ 1 + e
(ii) cp, cp', and cp" are continuous

(iii) cp(p) = 0 for 1 - e ~ p ~Po
(iv) cp(p) = 1 for p1 ~ p ~ 1 + e

where 1 - e < p0 < p1 < 1. In other words: cp(p) = 0 in a small interval;
cp(p) increases smoothly to the value 1; and then cp(p) = 1 in a small interval.

We can use cp(p) to make a smooth transition between u(x) and v(x) in
the spherical shell 1 - e < p ~ 1. We first define the vector

q(x) = (1 - cp(p))u(x) + cp(p)v(x)

Then q(x) =F 0 because u and v are unit vectors that are never opposite if e
is small enough. Now we define the unit vector

w(x) = q(x)/lq(x)l.

The properties of cp(p) guarantee that w(x) lies in U2 and that

w(x) = u(x) for 1 - e < p ~ Po

w(x) = v(x) for p 1 ~ p ~ 1 +e.

We will now apply Green's theorem in a spherical shell. Let u lie between
1 - e and p0 ; we will integrate for q ~ p ~ 1:

(Here xp- 1 = n, the outward normal.) We note these facts:

\7 · Dw(x) = 0 since w E U2

Dw = Du for p = q

Dw = Dv for p = 1.

The Green's identity now becomes

0 = J:=t (Dv) · ndS- J:=a(Du) · ndS

The first integral equals <5[v]; we will show that the second integral
equals <5[u]. That follows if we replace w by u in the Green's identity. Since
u(x) lies in U2' we find

which says

0 = (J:=t- J:=a)(Du) · ndS

0 = <5[u]- J:=a(Du) · ndS

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 243

Formula(*) now yields the result:

0 = b[v]- b[u].

The definition of b[h]. So far, we have defined the discriminant b[u] only
for functions u(x) in U 2• Using the properties of b[u], we can now define
b [h] for all functions h(x) with these properties: h(x) lies in RN if lxl = 1 and
x E RN; h(x) is continuous and non-zero if lxl = 1.

First we extend the definition of h(x) by the formula

h(x) = ph(p - 1x) for 0 < p = lxl < oo.

This function is continuous for all x ERN; it is non-zero; and it approaches
0 asp~ 0.

If h(x) does not have continuous second derivatives, we can approximate
it as well as we like by a function k(x) with continuous second derivatives
for x in a bounded region, e.g., for lxl ~ 2. For instance, we can use the
Weierstrass approximation theorem to obtain a function k(x) whose compo­
nents k;(x) are polynomials in theN variables x 1, ... , xN. Since h(x) =F 0 for
p > 0, we shall have

k(x) · h(x) > 0 if t ~ p ~ 2

if k is close enough to h. If the original h(x) does have continuous second
derivatives, we simply define k(x) = h(x) for t ~ p ~ 2.

Now we define the function

u(x) = k(x)/lk(x)l <t < p < 2)

This function lies in U 2 , and it has the essential property

u(x) · h(x) > 0 (! < p < 2)

Since u(x) lies in U 2 , we have b[u] defined by the integral

b[u] = L=t (Du) · xdS.

Definition. Let h(x) be continuous and non-zero for p = 1. Let u(x) be any
function in U2 such that

u(x) · h(x) > 0 for p = 1.
Then we define

l<>[h] = b[uJ!

We must show that this definition makes sense. Suppose that u(x) and
v(x) are two different functions in U 2 such that

u · h > 0 and v · h > 0 for p = 1.

Then definition says b[h] equals both b[u] and b[v]; we must show that these
two numbers are equal. It will be enough to show that u + v =F 0 for p = 1,

244 3 Fixed-Point Theorems

because we have shown that this implies b[o] = b[v]. But

(o + v) · h = o · h + v · h > 0

Therefore, o + v =1= 0, and our definition of b[h] makes sense.

Theorem. The discriminant o [h] h.as the required properties (i), (ii), and (iii).

PROOF. (i) If h(x) = x, we define o(x) = x/ p, and we have shown

o[x] = b[x/p] =AN> 0.

(ii) Suppose h(x) is continuous and non-zero in the whole unit ball
p~l.

If h(x) is not twice continuously differentiable, we can approximate it by
a function k(x) e C2. If Jk(x)- h(x)J < e, then for very small e > 0

JkJ = Jk - h + hJ ~ JhJ - Jk - hJ > JhJ - e > 0

2k · h = JhJ2 + JkJ2 - Jh - kJ2 > JhJ 2 + (JhJ - e)2 - e2 > 0

Now we define o(x) = k(x)/Jk(x)J for p ~ 1. Then

0 . h > 0, c5[h] = c5[0] = 0.

(iii) Suppose h1(x) and h2(x) nowhere have opposite directions on the
surface p = 1. Then we can approximate them by k 1(x) and k 2(x) that are
never opposite and that lie in C2 in a neighborhood of p = 1; we also require
ki · hi > 0 for p = 1.

For p near 1, we now define the unit vectors

o1 = ktfJklJ, o2 = k2/lk2l

Since k 1 and k 2 nowhere have opposite directions, we have o1 + o2 =I= 0. We
have proved that this implies

Finally, we note that

o[hl] = o[ol] and c5[h2] = c5[o2]

since ki · hi > 0 implies oi · hi > 0 for p = 1. This completes the proof that
c5[h1] = c5[h2]·

PROOF OF THE BROUWER FIXED-POINT THEOREM. We have now defined the
discriminant c5 [h], and we've proved it has the required three properties. Now
the proof of the Brouwer theorem is very short; it appears in the preceding
remark "Use of the discriminant." -

We've done what we set out to do: prove the great Brouwer fixed-point
theorem. We'll close our discussion with just a few remarks.

Elementary proofs of Brouwer's theorem. Garsia's proof makes Brower's
theorem an exercise in determinants and vector calculus-engineering

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 245

mathematics, you might say. Similar proofs had been published by E. Heinz
and by Dunford and Schwartz.

These proofs are not considered "elementary," because they use calculus
There is an elementary proofbased on an ingenious combinatorial lemma of
Spemer. But do not be misled by the word elementary: a proof may be
elementary but nevertheless difficult. The whole theory of finite groups is
elementary. But is it easy? I do not think so.

The number of zeros. Suppose h(x) ;f. 0 for p = 1. Suppose h(x) is con­
tinuous for p::::;; 1. If <5[h] ;f. 0, we know that h(x) = 0 for some x with p < 1.
Is it possible that b [h J somehow counts the number of roots?

In one famous case the answer is yes. In two dimensions let x1 + ix2 be
a complex variable, and let h1 + ih2 be an analytic function. In two dimen­
sions we found that <5[h] equals the net change of argument as x moves
around the unit circle. Now the principle of the argument for analytic functions
says the net change in argh equals 2n times the number of zeros ofh inside the
unit circle p < 1. (Here the zeros are counted with their multiplicities; for
instance, x 3(x - !) has four zeros.) So for analytic functions the discriminant
b [h] equals 2n times the number of zeros.

But in general the answer is no: b [h] cannot be expected to yield the number
of zeros. Why not? Because <5[h] depends only on the boundary values ofh;
and we can modify h to produce a continuous function k that equals h on the
boundary, but has one more zero inside. Then b [h J = b [k], but h and k have
different numbers of zeros.

To construct k, suppose the continuous function h(x) ;f. 0 at the point
x =a inside the unit ball. For each x ;f. a, let A.(x) equal the distance from a
to the unit sphere p = 1 in the direction of the vector x - a. Then

A.(x) = lx - al for p = 1
0 < 1 - lal ::::;; A.(x) ::::;; 1 + Ia! < 2 for all x ;f. a

and the function A.(x) is continuous except at x =a. Now construct the
function

k(x) = A. - 1(x)lx - aih(x)

This function is continuous for all p ::::;; 1 if we define k(a) = 0. On the
boundary p = 1 we have k(x) = h(x). But k(x) has exactly one more zero
than h(x) inside p < 1, namely, x = a.

(This construction does not violate the principle of the argument. If
h1 + ih2 is analytic, then k1 + ik2 is continuous but not analytic.)

Continuous direction fields on spheres. Here's a puzzle for you: On a globe
representing the earth, can you draw a continuous family of unit tangents?
At any point x on the globe, a unit tangent u(x) represents a direction. The
question is this: Can the function u(x) be continuous on the whole spherical
surface? Our experience with geography suggests the answer is no: there has
to be trouble at the north pole or somewhere.

246 3 Fixed-Point Theorems

If the earth were a two-dimensional disk, the surface would be a circle, and
the puzzle would be easy. Solution:

u(x) = (- ~:) if x = GJ and p = 1.

If the earth were four-dimensional, we could extend the two-dimensional
solution to obtain

u(x) = (- ~:) if x = (~:) and p = 1.
-x4 x3

x3 x4

This trick works for any even number of dimensions. If N is even, just
define

But suppose N is odd. Then we can prove that the puzzle has no solution.
This is a beautiful application of the discriminant.

Theorem. InN dimensions, if N is odd then there is no continuous u(x) on the
surface p = 1 such that

lu(x)l = 1 and u(x) · x = 0.

PROOF. You remember we computed

~(x]=AN>O and 0(-x]=(-)NAN.

These numbers are different if N is odd.
Now suppose u(x) solves the puzzle. Let's compute its discriminant,

15 [u]. We can do this if we can find any continuous v(x) for p = 1 such that
lvl = 1 and v + u =1- 0. Then we know J[u] = b[v], by property (iii) of the
discriminant.

For v(x) we may choose v(x) = x, since

(X + U) · X = X · X + 0 = 1,
and so

x+u=l-0

by our assumption that u · x = 0. Therefore,

b(u]=b[x]=AN>O

But wait a minute. We may also choose v(x) = -x, since

(-x + u) · (-x) = 1, and so -x + u =1- 0.
Therefore

<5[u] = <5[-x] =(-tAN.

This is impossible if N is odd, for then b[u] would be both positive and
negative.

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 247

References

1. L. E. J. Brouwer, Uber Abbildung und Mannigfaltigkeiten, Math. Ann. Vol. 71
(1910) pp. 97-115.

2. E. Heinz, An elementary analytic theory of the degree of mapping in n-dimensional
space, J. Math. Mech. Vol. 8 (1959) p. 231.

3. N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, 1958, lnterscience, New
York.

Appendix: Convex bodies. We define a convex body to be a closed, bounded,
convex set.1 Suppose a convex body is mapped continuously into itself. Must
there be a fixed point? As we've shown, the answer is yes ifthe body is topo­
logically equivalent to the unit ball.

We will now prove this equivalence. But we must be careful, because a
degenerate convex body in RN may have dimension M < N. For instance,
in R3 a line segment has dimension M = 1; a triangle has dimension M = 2.
But still, the segment is a ball in 1 dimension, and a triangle is equivalent to
a ball in 2 dimensions. That is enough for our purpose.

Theorem. Let C be a convex body in RN. Suppose C contains more than one
point. Then, for some M :::; N, C is topologically equivalent to a closed ball
inRM.

PROOF. Choose points in C: x 0,x1, ... ,xM. Choose as many points as
possible so that the M differences

are linearly independent in RN. These M points span an M-dimensional
linear subspace L M.

We now say this: The whole body C lies in the hyperplane pM = x0 + L M.
Indeed, if some point xM+ 1 in Clay outside pM, then xM+ 1 - x 0 would be
a new independent point in L; and that is impossible.

From now on we will think of the body C only as a subset of the plane
PM. If we say that a point b is an interior point of C, we shall mean that C
contains an M-dimensional ball centered at band lying in PM. (If M = N,
then pM is the original space RN.)

We now construct the barycenter

b = (M + 1)- 1(x0 + x 1 + · · · + xM).

Since C is convex, this is an interior point of C.

1 Definitions: A closed set contains its limit points; a bounded set lies inside some sphere;
a convex set contains the segment between every pair of its points.

248 3 Fixed-Point Theorems

Let u be any unit vector in L M_ Then the body C contains a boundary
point b + A.u with A. > 0. For each u there is only one such boundary point.
Why? Suppose there were two, with A. 1 < A.2• Remember that C contains
some small ball S centered at b. But then the point b + A. 1 u lies interior to the
convex hull of the ball S and the point b + A.2u. Then b + A. 1 u is interior to
C, which is impossible for a boundary point.

Thus, for each u in LM, there is a unique

A.= A.(u) > 0

such that b + A.u lies on the boundary of C. The function A.(u) is called the
radial function.

We assert that the radial function is continuous as a function of the unit
vector u e L M_ If u0 were a point of discontinuity, then the boundary of C
would contain points

(k=1,2,3, ...)

with uk--+ u0 but with positive A.k not converging to A.(u0). Since A.1oA. 2 , ••• is
a bounded sequence, there is a subsequence with a limit A.* =I= A.(u0). But
then b + A. *u0 must lie on the boundary of C, since a limit of boundary points
must be a boundary point. Now we would have two boundary points

b + A.u0 with A. = A.* and A. = A.(u0),

and that is impossible, since the boundary point in the direction u0 is unique.
Now we have all we need for a bicontinuous mapping of C into the unit

ball IYI ~ 1 in RM. Let ul, u2 , ... , uM be orthogonal unit vectors that con­
stitute a basis for the linear subspace L M_ For all x in L M, define y in RM by
the identity

X= Y1U1 + Y2U2 + ... + YMUM.

Then lxJ :::::;; 1 corresponds bicontinuously to JyJ :::::;; 1.
The convex body C consists of b and of all the points

c = b + pA.(u)u with 0 < p :::::;; 1, Jul = 1,

u E L M. Setting x = pu, we let this point correspond to y in RM, where
0 < p = Jxl = JyJ:::::;; 1. We let b correspond y = 0, and we now have the
required bicontinuous mapping of C into the unit ball JyJ :::::;; 1.

Explicitly, if U is the N x M matrix whose columns are the orthogonal
unit vectors ui, then

b + pA.(u)u = c

maps the unit ballJyJ :::::;; 1 continuously into C, where

P = JyJ and pu = y = x = Uy.

Conversely, the inverse mapping

A. - 1(u)Ur(c - b) = y

2 Garsia's Proof of the Brouwer Fixed-Point Theorem 249

maps C continuously into IYI :;;;; 1, where

u = (c - b)/lc - bl if c :;{: b,

and where c = b maps into y = 0. The inverse mapping is continuous
because the radial function A.(u) is continuous and positive.

PROBLEMS

1. A famous theorem of Oskar Perron states that an n x n positive matrix must have
a positive eigenvalue with a positive eigenvector. (In other words, if all aii are
>0, then Ax= A.x for some A.> 0, with all xi> 0.) Prove Perron's theorem fast:
If A is the matrix, let S be the set of probability vectors (xi;;::: 0, l:xi = 1). Let
A.(x) equal the sum of the components of the vector Ax. Define the function
f(x) = r 1(x)Ax. Show that f(x) maps the simplex S continuously into itself. And
so ... ?

2. Prove the fundamental theorem of algebra: Let p(z) = z" + c1z"- 1 +···+c •.
Assume p(z) '# 0 for all complex z, and get a contradiction as follows. For A.> 0,
define the function f(z) =A. -•p(A.z). For lzl = 1 show that f(z)-+ z" as A.-+ + oo.
Deduce that the discriminant satisfies

b[f(z)] = b[z"] = 2nn '# 0

for all sufficiently large A.. Conclude that f(z) = 0 for some z in the unit disk.

3. Differential equations: Consider the nonlinear system dx/dt = f(x) in R". An
equilibrium is a constant solution x(t) = x0 ; an equilibrium satisfies f(x0) = 0. Let
the function f(x) be continuous. For x on some sphere lxl = R, assume that f(x)
nowhere points in the direction x (or instead, assume that f(x) nowhere points in
the direction -x). Then show that the sphere must enclose an equilibrium x0 •

4. Differential equations: Let f(x,t) be Lipschitz-continuous in x, and let f be con­
tinuous and periodic in t: f(x, t + 1) = f(x,t). For the nonlinear system dx/dt =
f(x,t), consider the mapping x(0)f-+x(1) for solutions x(t). Suppose this mapping
carries a domain D into itself, where D is topologically equivalent to a ball. Then
show there is a periodic solution x(t) = x(t + 1).

*5. Game theory: Using the Brouwer fixed-point theorem, you can prove von Neu­
mann's theorem on zero-sum two-person games. Let A be an m x n matrix. Let D
be the set of pairs of vectors x, y, with x E R"', y E R", X; ;;::: 0, LX; = 1, Yi;;::: 0,
LYi = 1. You want a pair x0, y0 in D satisfying

x · Ay0 ~ x0 • Ay0 ~ x0 • Ay

for all x, y in D. Map D into itself as follows. First define the ramp function
{A.}+ = max(A.,O) for real A.. Now define

u;(x,y) = {~ aiiyi- ~ ~ x;a;iYi}+
} ' }

250

Map x, y f-+ x', y' as follows:

x; = (x; + U;)/(1 + u1 + · · · + um)

yj = (Yi + vj)/(1 + v1 + · · · + v.).

3 Fixed-Point Theorems

Show that this mapping maps D continuously into itself, and show that a fixed
point provides the required x0, y0• (J. F. Nash used this method to prove his gen­
eral equilibrium theorem.)

6. A mapping x f-+ g(x) is called a retract if (i) it keeps every point on the boundary
of the domain fixed, and (ii) it maps the interior into the boundary. Using Brouwer's
theorem, prove that the ball lxl :::;; 1 has no continuous retract. Hint: Define
f(x) = t(x- g(x)), and look at a fixed point x = f(x).

7. (Converse.) Suppose Brouwer's theorem were false. Then show how to construct a
continuous retract of the unit ball. Hint: If x i= f(x), look at the arrow pointing
from f to x; extend the arrow to a boundary point x'; look at the mapping x f-+ x'.

8. Let the letter E be mapped continuously into itself. Must there be a fixed point?
(For the letter 0 the answer is no.) What about the letter e?

9. (Rothe's theorem.) For x in the closed unit ball in R", let f(x) be continuous. As­
sume lf(x)l :::;; 1 if lxl = 1, but do not assume lf(x)l :::;; 1 if lxl < 1. Still, show that
f(x) has a fixed point in the unit ball. Method: First define the function g(x) =

xflxl for lxl ~ 1; define g(x) = x for lxl :::;; 1. Look at g(f(x)).

*10. Extend Rothe's theorem (Problem 9) to general convex bodies in R".

11. Theorem on homotopy: Let u(x,t) be a continuous non-zero vector in R" for x on
the unit sphere in R" for 0 :::;; t :::;; 1, so that the discriminant 15[u] is a function of t
for 0 :::;; t :::;; 1. Show that t5 [u] is constant. Method: From the continuity of u,
deduce for small lei :

u(x,t) · u(x, t + e) > 0,

and so the discriminant is constant.

12. For lxl = r i= 0, define this unit vector in R2 :

u(x) = r- 2(x~- x~,2x1x2).

Form the Garsian Du, and verify that its divergence is zero: V · Du = 0. Evaluate
the discriminant o[u]. (Answer: t5 = 4n. Note that in the complex plane u is just
z2 /r2.)

13. Let S be the set of probability vectors in R" (x; ~ 0, LX;= 1). Construct a hi­
continuous function f(x) that maps S one-one onto the unit ball in R"- 1•

14. Let lxl :::;; 1, x e Rm; let IYI :::;; 1, y e R". Consider the set D comprising all pairs x, y.
Show that D is topologically equivalent to the unit ball in Rm+•.

15. Show that there is no way to define a continuous direction field on the surface of
an ellipsoid in R3•

16. Consider a continuously circulating fluid flow inside a torus. Assume the flow is
steady, so that the velocity at a point x depends on x but not on the time t. Show

3 Milnor's Proof of the Brouwer Fixed-Point Theorem 251

that there must be at least one closed streamline: there must be some periodic
solution x(t) for the position x of a particle at time t. Poincare proved results like
that. The trick is to look at one cross-sectional disk D. Each particle in D leaves
and returns to D after one complete circuit around the torus. Thus, the flow maps
D continuously onto itself. Look at a fixed point of this mapping.

3 Milnor's Proof of the Brouwer
Fixed-Point Theorem

Until recently, all proofs of the Brouwer fixed-point theorem have been
difficult; they have used combinatorial arguments, homology theory, differ­
ential forms, or geometric topology. Most people who have wanted to use
the Brouwer theorem have never understood a proof of it. I should know;
I was one of them.

In 1978 John Milnor published a simple proof, which I'm going to pre­
sent to you now. All you need to know first is calculus.

Brouwer's theorem says this: Let f(x) be any continuous function that maps
the ballJxJ ::::; 1 into itself. Then there is a fixed point, c, which is mapped into
itself: c = f(c).

We will use the term unit ball for the n-dimensional solid comprising all
points x whose coordinates satisfy

xi+···+ x;::::; 1.

(In other words, JxJ 2 ::::; 1, where x · x = JxJ 2 = l:xf.) We'll call this ball Bn.
The surface of Bn is the sphere sn- 1 comprising all points X whose co­

ordinates satisfy
xi+···+ x~ = 1.

Thus, in three-dimensional space S2 is the 2-dimensional sphere that bounds
the unit ball B 3•

If n = 1, the unit ball is the line segment -1 ::::; x::::; 1. If f(x) maps B1

into itself, we get Figure 1. Each point x goes to a point f(x). Draw an arrow
from x to f(x); the arrow has length zero if xis a fixed point.

• ----:)1~ ---• ---;)lo~ --- ..,.EE--- •
-1 f(-1) f(l) I

Figure 1

Suppose there were no fixed point. Then the arrow at -1 would point
to the right; the arrow at + 1 would point to the left. Let x move continuously
from -1 to + 1, and watch the arrow from x to f(x). Somewhere between
-1 and + 1 the arrow has to flip from right to left. This is impossible if the
arrow is continuous and nowhere zero.

252 3 Fixed-Point Theorems

In analytical terms, the arrow is represented by the difference f(x) - x.

This function is positive at x = -1; it is negative at x = + 1. Since f(x) - x

is continuous, it must equal zero at some intermediate point c. Then f(c) = 0,

and cis the required fixed point.
If n = 2, we get Figure 2. Each point x goes to another point f(x) in the

ball B2 • Draw the arrow from each point x to its image f(x). On the boundary

S1 all the arrows point inward. Brouwer's theorem says some arrow in the

ball has length zero.

/::
•

f(x)

Figure 2

Notice that we need the hypothesis of continuity. Otherwise, we could

let f(x) be, say, a rotation through 90°; that would leave the center fixed, so
we could agree to map the center x = 0 into some other point f(O) #- 0. Then

f(x) would be a discontinuous function with no fixed point.
Already for n = 2 the Brouwer theorem is somewhat difficult. It could

be proved by using the winding number of Poincare, but we won't take time

for that now.
For n > 2, all proofs have been difficult, or they required advanced,

specialized preparation. But now we have the astonishing proof by John

Milnor, which depends on this fact: the function (1 + t2)"12 is not a poly­

nomial if n is an odd integer.
Why should that have anything to do with the Brouwer fixed-point

theorem? You will see.
We begin with a puzzle: In n dimensions, construct a continuous field of

unit tangents to the sphere sn- 1.

For n = 2 the solution is easy. Look at Figure 3. At each point u on S1

we construct the tangent v(u) = (- u2 ,ut). Then

Jv\ = 1 and v · u = 0.

For n = 3 we have 3-space, as in the real world. Regard the earth as the

unit ball. Can you put a continuous direction field on the surface? I'll bet

you can't. Think about it; you're bound to have trouble at the north pole

or somewhere else.

3 Milnor's Proof of the Brouwer Fixed-Point Theorem 253

v(u)

Figure 3

How about n = 4? Now you can't visualize the problem, but you can
easily solve it. If you use the trick we used for n = 2, first on ub u2 and then
on u3 , u4 , you get the unit tangents

v(u) = (- u2 ,u1 ; - u4 ,u3).

Clearly, this trick works for all even n. We get this continuous field of
tangents:

v(u) = (-u2 ,u1 ; •• • ; -un,un_ 1). (1)

But if n is odd, the hairy-ball theorem says there is no solution:

Theorem 1. If n is odd, then there is no continuous field of non-zero tangents
to the unit sphere sn- 1.

PROOF. For lui = 1, let v(u) be a field of unit tangents:

u · v(u) = 0, lv(u)l = 1 for lui = 1.

For the moment, assume that v(u) is continuously differentiable.
Let A be the spherical shell (or annulus)

(2)

where r = lxl. The shell A surrounds the unit sphere. We now extend the
definition of v to the shell A. For lui = 1 define

v(ru) = rv(u) (! ~ r ~ ~). (3)

This definition makes v(x) continuously differentiable in A, with

x · v(x) = 0 and lv(x)l = lxl = r.
Now lett be a small real constant, and define the mapping

x ~ x + tv(x) (x E A). (4)
This maps A into some set At. (Can you guess what At is? Look at Figure 4.)

254 3 Fixed-Point Theorems

Figure 4

We have to show that the mapping (4) is one-to-one. Since v(x) is con­
tinuously differentiable, there is some constant A. > 0 for which

lv(x) - v(y)l ~ A.lx - Yl (5)

for every couple of points x and y in A. Now suppose x and y map into the
same point:

x + tv(x) = y + tv(y)
Then

lx - Yl = ltllv(y)- v(x)l ~ ltiA.Ix- Yl

This implies x = y if ltl < 1/A.. Thus, for smallltl the mapping is one-to-one.
Now we'll show that the image A, is just another annulus. If lxl = r, then

the image has length
(6)

since x and v(x) are orthogonal vectors of length r. This identity shows that
the sphere of radius r maps into the sphere of radius r.J(l + t2).

Now we need to show that the first sphere maps onto the second, which
means that every point in the second sphere is the image of some point in
the first sphere. In other words, we need to prove that the following equation
must have a solution:

x + tv(x) = c, (7)
where

Here c is given, and we must find x.
First suppose lei= 1. Write the equation in the form

x = c- tv(x). (8)

We will use the contraction-mapping principle. The function on the right
maps the shell A into itself if ltl < t, for then

ltv(x)l < tlv(x)l = tr ~ !(! ~ r ~ !)

3 Milnor's Proof of the Brouwer Fixed-Point Theorem 255

and so
t =lei- t ~ le- tv(x)l ~lei+ t = !.

If also ltl < 1/A., then

ltv(x) - tv(y)l ~ ltl· A. ·lx - Yl

and so the function e - tv(x) is a contracting mapping on A. This mapping
has a fixed point, which solves the equation (8) if lei = 1.

If lei =I= 1, define the unit vector e1 = e/iel. Then we can solve this equation
for x 1 :

x1 + tv(x1) = e1.
If we multiply this equation by lei, we get the required solution x = lelx1.

Now we have completed a proof that, for small t, the function

n~=x+tvW ~

maps the shell A one-to-one onto the shell

At: !(1 + t2)1/2 ~ r ~ !(1 + t2}112.

What is the volume IAtl? Inn dimensions, since At is geometrically similar
to A, we have

(10)

where the constant !AI is the volume of the n-dimensional shell ! ~ r ~ ! .
For instance, if n = 3,

IAI = tn[@3 - (t)3J.
But suppose we use calculus. The function f(x) maps A one-to-one onto

At. Therefore,

!At!= J det(:~)dx 1 · · · dx" (11)

if the Jacobian determinant is positive.
Now the definition (9) gives

-- u .. +t-(8J;) _ (s: ov;)
OXj '1 8xi

(i,j = 1, ... , n) (12)

where {)ii = 8x;/8xi = 1 or 0. Thus, the Jacobian matrix (12) tends to I as
t --+ 0, and so the determinant tends to 1.

As a function of the parameter t, each component (12) is a linear function.
Therefore, the Jacobian determinant is some polynomial

det(:~J = 1 + a1(x)t + · · · + a"(x)t".

If we integrate over x, we get another polynomial:

IAtl = bo + b1t + b2t2 + · · · + b"t",

where bk is the integral of ak(x) over the annulus A.

(13)

256 3 Fixed-Point Theorems

EXAMPLE. If n = 2 let

The Jacobian determinant equals

I~ -t, = 1 + t2 1 .

Integrating over x for ! ~ x ~ t we compute

JAtJ = JAJ(1 + t 2)

where JAJ = n[@2 - (!}2] = 2n.
In general, formula (13) says JAtJ is a polynomial in t. But formula (10)

says JAtJ is a constant times (1 + t2t 12• These conclusions are inconsistent
if n is odd. Thus, we have proved that for odd n the sphere S"- 1 has no field
of unit tangents v(x) if v(x) is continuously differentiable.

Finally, we have to remove the assumption of differentiability.
Let v(x) be any continuous field of non-zero tangents to S"- 1. Using v(x),

we will construct a differentiable tangent field w(x). First extend the defini­
tion ofv(x) to the whole space by the formula

v(ru) = rv(u) (0 ~ r < oo, JuJ = 1).

Now consider v(x) in the closed n-dimensional cube

C: -1 ~X;~ 1 (i = 1, ... , n).

Using the Weierstrass approximation theorem in the cube C, we can approx­
imate each component v;(x1, ... ,xn) by some polynomial P;(x 1, .•• ,xn),
and we can make this approximation as good as we like in the whole cube
C. Since the cube C includes the unit sphere, we can make p so close to v that

p - (p · u)u =1= 0 for JuJ = 1. (14)

(Note that this expression tends to vas p -+ v. Remember, v =I= 0 for JuJ = 1.)
Ifp = p(u), the vectors (14) constitute an infinitely differentiable non-zero

tangent field w(u) on the unit sphere. If you require unit tangents, just form
wfJwJ. Now our proof for differentiable tangents gives the full result: there
can be no continuous field of non-zero tangents to S" - 1 if n is odd. D

That proves the hairy-ball theorem. I hope the details didn't make you
lose track of the idea, which was this: The function x + tv(x) maps the
annulus A onto the annulus

At = (1 + t2)112 A,

because x · v = 0. The volume of At in n dimensions is

JAtJ = (1 + t 2)"'2 JAJ.

But calculus says JAtJ is a polynomial in t. Therefore n is even.

3 Milnor's Proof of the Brouwer Fixed-Point Theorem 257

Now we can prove the Brouwer fixed-point theorem.
This is the idea: Suppose the Brouwer theorem is false in n dimensions.

Then we will construct a field of non-zero vectors in the ball B" that are
normal to sphere S"- 1 . We will then regard the ball B" as the equatorial disk
inside the higher-dimensional ball B" + 1 . By stereographic projections from
the north and south poles, we construct a continuous field of tangents to the
sphere S". But we know this is impossible if n is even. But Brouwer's theorem
for n dimensions implies Brouwer's theorem for n - 1 dimensions, as you
will see. This proves Brouwer's theorem for all n, even or odd.

Theorem 2. Let f(x) map the unit ball B" continuously into itself. Then there
is a fixed point x = f(x).

PROOF. Suppose f(x) has no fixed point. Let [x[~ 1; let y = f(x), and form
all the vectors z = x - y. Then z =f. 0, and on the unit sphere the vectors z
point outward:

X · Z = X · (x - y) = 1 - X · y > 0 if [xi = 1. (15)

Why? Because

0 < [x - y[2 = [x[2 + [y[2 - 2x · y ~ 2 - 2x · y.

We will now construct a field of vectors w that are continuous and non-zero
in B", with w(x) = x if [x[= 1. Define

W =X- AY (y = f(x)) (16)

where). is the scalar

1- X· X
A= .

1- X· y
(17)

The denominator is non-zero, by (15), and so w(x) is a continuous function of
x in B".

On the sphere [x[= 1 we have A = 0, and so w = x. This says w(x) is the
outward unit normal at the surface point x.

It remains to show w =f. 0 inside the ball. If w = 0, multiply the equation
(16) by the denominator of the fraction A. This gives the equation

0 = (1 - x · y)x - (1 - x · x)y. (18)

But w = 0 says x = Ay, which gives

(x · y)x = A2(y · y)y = (x · x)y.

Now (18) becomes 0 = -x + y, which we have ruled out. Therefore w =f. 0
in the ball B".

Now regard B" as the equatorial disk inside the ball B"+ 1. Using the
vectors win the disk B", we will construct a field of tangents to the sphereS",
which is the boundary of B" + 1•

258 3 Fixed-Point Theorems

First we'll work on the southern hemisphere. Look at Figure 5. You're
looking at a side view of the ball B" + 1. Your eyes are at the level of the
equator, so the equatorial disk B" looks to you like a line segment. From the
north pole, N, we project each point x in the disk onto a point u in the
southern hemisphere. We're going to construct a tangent vat the point u.

N ,
\
\

B"

Figure 5

\
\
\
\X

v

In case you are uncomfortable with all this n-dimensional visualizing,
you can use formulas:

If x has the coordinates x b ... , Xn in n dimensions, then
X = (xl> ... , Xn,O)

in n + 1 dimensions. The north pole is

N = (0, ... ,0,1)

(19)

(20)

The point x lies on the line segment between N and the stereographic
projection u in the southern hemisphere. Therefore, for some e = e(x)
between 0 and 1, we have

x = (1 - e)N + eu. (21)

The coordinates satisfy these equations:

X;= eu; (i = 1, ... ,n)
(22)

0 = (1 - e)+ eun+ 1·

Given the x;, we can solve for the u; and e. First, we write

(i = 1, ... , n); un+ 1 = (e - l)je. (23)

Since lui = 1 on the sphereS", we require

n+ 1

1 = 2: uf = (xtfef + · · · + (x";e)2 + (e- w;ez.
i= 1

3 Milnor's Proof of the Brouwer Fixed-Point Theorem

Multiplying by 02, we find (} 2 = lxl2 + (0- 1}2, and so

(} = !(lxl2 + 1).

259

(24)

Note that(} is ~!.In equation (21), this says xis closer to u than toN. But
that is clear from Figure 5.

Now we are going to construct a tangent vat the point u. We have pro­
jected a point x in the equatorial disk B" onto the point u in the southern
half of S". We will now use the vector w(x) defined in (16), satisfying

W E B", W # 0, W = X if lxl = 1. (25)

If lxl < 1, we can construct a small line segment

x(t) = x + tw(x) (0:::::; t « 1). (26)

If we project this segment stereographically from N, we get a small arc

u(t) = u(x + tw(x)) (0 :::::; t « 1) (27)

If you regard t as time, the point x(t) has velocity w(x) in the disk B". The
projection u(t) then has the velocity

d
v = dt u(t) for t = 0. (28)

The vector v is tangent to S" at the point u. That follows by differentiating
the identity u(t) · u(t) = 1.

To show v =F 0, we write the projection identity (21) as a function of time:

x(t) = (1 - O(t))N + O(t)u(t) (0:::::; t « 1). (29)

If we take derivatives at t = 0, we get

w = -O'N + O'u + Ov.

Then

v = o- 1[w + O'(N- u}]. (30)

If 0' = 0, then v =F 0 because w =F 0; if 0' =F 0, then v =F 0 because

(31)

Since Wn+1 = 0 and Un+1 < 0.
We have shown v =F 0 and v · u = 0 if un+ 1 < 0. Now let u approach the

equator un+ 1 = 0. According to the projection identity (21), this happens if

0 ~ 1, lxl ~ 1, X - U ~ 0.

Then formula (30) gives, in the limit,

v = [w + O'(N - x)] (32)

260 3 Fixed-Point Theorems

as u approaches a point x on the equator. But then w = x, by (25); and

()' = :t !(1 + X · X) = W • X = 1,

by (24) and (25). Therefore,

V = [X + N - X] = N if Un + 1 = 0. (33)

This completes the definition ofv as a non-zero field of tangents to the closed
southern hemisphere in S". At the equator the tangents v are unit vectors
pointing straight up.

As a function of u, the vector v is continuous. Why? All the functions
0, 0', w, and u are continuous functions of x, as we've seen. Then (30) says
v is a continuous function of x, since () is ~!. But (22) gives x as a continuous
function of u. And so v is a continuous function of u.

What have we done so far? First, we assumed the Brouwer theorem false
for the ball B". We then regarded B" as the equatorial disk in B"+ 1. By stereo­
graphic projection from the north pole, we constructed a continuous field of
non-zero tangents to the lower half of S". For u on the equator the tangent
v(u) equals a unit vector pointing straight up (v = N).

We used the north pole and projected down. Suppose we had used the
south pole and projected up. What would we have got? By symmetry, we
would have got a continuous field of non-zero tangents to the upper half of
S"; call these tangents v+(u). By symmetry, for u on the equator the tangent
v+(u) equals a unit vector pointing straight down (v = S). Look at Figure 6
and compare it to Figure 5.

I
I
I
I
I
I

4
s

Figure 6

As you can see, v+ makes a perfect mismatch with v on the equator:

v+(u) = -v(u) for un+ 1 = 0 (lui= 1). (34)

That's awful-just what we don't want. What we want is a continuous field
of tangents on the whole sphere S": the limits from above and below have
to match on the equator.

3 Milnor's Proof of the Brouwer Fixed-Point Theorem 261

But we can get that. We have defined v(u) in the lower hemisphere. We
can define v(u) in the upper hemisphere as follows:

v(u) = -v+(u) for un+ 1 ~ 0.

This turns the mismatch (34) into a match, and now we have a continuous
field of non-zero tangents on the whole sphere S".

But the hairy-ball theorem says that is impossible if n = 2, 4, 6,
Therefore, the Brouwer fixed-point theorem must be true for the ball B" if
n = 2,4,6,

What about n = 1, 3, 5, ... ? Then the hairy-ball theorem is no help. On
the contrary, if n = 1, 3, 5, ... , then S" does have a continuous field of
tangents. Could it be that the Brouwer theorem is false for odd n?

No, the Brouwer theorem is true for all n. Here's why:
Let n = 1, 3, 5, Let f(x) map B" continuously into itself; we want a

fixed point x = f(x). For yin B"+ 1 define the function

g(y) = (j1(x), ... ,J,(x),O)

where we set Yi =xi for j = 1, ... , n. The function g(y) first vertically pro­
jects y onto the point x in the equatorial disk Yn+ 1 = 0, then applies the
mapping f from the disk into itself.

The function g(y) maps B"+ 1 continuously into itself. By what we have
proved, g(y) must have a fixed point if n + 1 = 2, 4, 6, The fixed point
satisfies y = g(y), which says

Yi =xi= jj(x) (j = 1, ... ,n); Yn+ 1 = 0.

Thus, the Brouwer theorem for B"+ 1 implies the Brouwer theorem for B",
and so the proof is done.

Think it over; it's an amazing proof. Milnor makes the hairy-ball theorem
depend on the fact that (1 + t 2)"12 isn't a polynomial if n is odd. Then a little
projecting gives the Brouwer theorem for even dimensions, and a little more
projecting gives it for odd dimensions.

Milnor's original article is only four pages long. I've written everything
out in great detail-stereographic projections and all. I hope it's helped you.

References

1. J. Milnor, Analytic proofs of the "hairy ball theorem" and the Brouwer fixed point
theorem, American Math. Monthly, Vol. 85 No.7 (1978), pp. 521-524.

2. D. Asimov, Average Gaussian curvature of leaves of foliations, preprint, 1976.
Bull. Amer. Math. Soc. 84, (1978) pp. 131-133.

3. W. M. Boothby, On two classical theorems of algebraic topology, Amer. Math.
Monthly, Vol. 78 (1971) pp. 237-249.

4. P. Hilton and S. Wylie, Homology Theory, Cambridge University Press, New York,
1960, pp. 218-219.

262 3 Fixed-Point Theorems

5. M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976, pp. 73, 134.
6. S. Lang, Analysis II, Addison-Wesley, Reading, Mass., 1969, pp. 50, 121.
7. J. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Va., Char­

lottesville, 1965, pp. 14, 30.
8. E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966, pp. 151, 194.

Problems. If you haven't done any of the problems in the last section, you might want
to do some of them now. After studying this section, you can do any of the sixteen
problems in the last section except Problems 2, 3, 11, and 12, which need the idea of
degree of mapping.

4 Barycentric Coordinates, Sperner's Lemma, and
an Elementary Proof of the Brouwer
Fixed-Point Theorem

Garsia's proof of the Brouwer fixed-point theorem is fairly easy; but it is
not elementary, since it uses calculus. So does Milnor's proof. Now we'll
discuss an elementary proof. In my opinion, it is more difficult than Garsia's
or Milnor's, but perhaps you will find it easier. Anyway, the elementary
proof is worth learning because it introduces some techniques that we can
use for other purposes.

Barycentric coordinates. In 2 dimensions a simplex is a triangle; in 1 di­
mension a simplex is a line segment; in N dimensions a simplex is the set
of all points

(1)

such that

Xo ?: 0, ... , XN ?: 0, and Xo + . " " + XN = 1. (2)

Here v0, ... , vN are the vertices of the simplex. The numbers x0, ... , xN are
the barycentric coordinates of the point x.

Do not confuse the N + 1 barycentric coordinates of x with the N
cartesian coordinates. In this discussion we will always mean by X; the
ith barycentric coordinate of a point x inside the fixed simplex with vertices
v0, ... , vN. Our whole world will be that one simplex; we will have no
interest in any point outside our simplex.

Of course, there are easy identities relating barycentric and cartesian
coordinates. If the vertex vk has the cartesian coordinates c~>, ... , c~>, then
x has theN cartesian coordinates c1, ... , eN where (1) gives

C · = X 0 C(O) + · " " + XNC(N)
J J J (j = 1, ... ,N). (3)

4 Barycentric Coordinates, Sperner's Lemma, and an Elementary Proof

Conversely, if the simplex is nondegenerate, that is, if the N vectors

v1 - v0, v2 - v0, ... , vN - v0 are independent,

263

(4)

then the cartesian coordinates of x uniquely determine its barycentric co­
ordinates. For then the equation

x- v0 = a1(v1 - v0) + az{v2 - v0) + · · · + aN(vN- v0) (5)

has a unique solution at> ... , aN. If we now define

then (5) gives

x 1 = a1, x 2 = a2 , ••• ,xN =aN, and
x 0 = 1- a 1 - ···-aN, (6)

(7)

By the definition of the simplex, all the numbers xk in (6) are >0 if x lies
in the simplex; and (6) implies x 0 + · · · + xN = 1.

By the way, why are those coordinates called barycentric? Because the
barycenter b is the center of gravity, namely,

1
b = -- (v0 + v1 + · · · + vN)

N + 1 '

and this point has the simple barycentric coordinates

b0 = b1 = · · · = bN = 1/(N + 1).

Brouwer's fixed-point theorem for the simplex. A triangle is topologically
equivalent to the disk lxl ~ 1 in 2 dimensions; and tetrahedron is equivalent
to the balllxl ~ 1 in 3 dimensions; and a nondegenerate simplex of points
(1) is equivalent to the balllxl ~ 1 in N dimensions. Therefore, it suffices to
state Brouwer's theorem for the simplex.

Theorem. If f(x) maps a nondegenerate simplex continuously into itself, then
there is a fixed point x* = f(x*).

In barycentric coordinates, a fixed point satisfies the equations

xt = _h(x*) (k = 0, ... ,N). (8)

In the proof that follows, we shall find it easier to prove inequalities:

xt > _h(x*) (k = 0, ... ,N). (9)

But for barycentric coordinates the equations (8) and the inequalities (9) imply
each other: trivially, (8) implies (9); but also (9) implies (8), because

l:xt = 1 = Lk
k k

On the boundary faces of the simplex certain inequalities xk > fk(x)
cannot occur. In 2 dimensions you can see this if you look at Figure 1.

264 3 Fixed-Point Theorems

(0,0,1) = v2

x 2 = 0

Figure 1

The vertex vk has kth coordinate equal to 1 and all other coordinates
equal to zero. The boundary face opposite vk consists of all x with xk = 0.

Let y = f(x). If y # x, then some coordinate Yi # xk. Therefore, since
LYi = "Lxi, we must have both

some xk > Yk and some xi < Yi· (10)

Focus on the first inequality, xk > yk; clearly this cannot occur where
xk = 0. In other words, xk > Yk cannot occur on the segment opposite vk.

In three dimensions the boundary of the simplex is more complicated.
The simplex is determined by 4 vertices. Any 3 vertices determine a bound­
ary face; any 2 vertices determine a boundary segment. Let us call all the
faces, segments, and vertices boundary elements. Each element has dimension
2,1, or 0.

InN dimensions each boundary element has dimension N- 1, N- 2, ... ,
or 0. A boundary element of dimension d < N is determined by a set of
d + 1 vertices, say

(11)

On this boundary element the points x have coordinates

Xp ~ 0, Xq ~ 0, ... , X 8 ~ 0. (12)

All other coordinates xk = 0, and so the inequality xk > Yk ~ 0 cannot
occur on this boundary element. In other words:

If xi > Yi for x in (vP,vq, ... ,v") then j = p or q or· · · or s. (13)

(Here the notation (vP, ... ,v•) stands for the boundary element determined
by vP, ... , v".)

Now we can define the scheme of indexing that will play the crucial role
in our use of Sperner's lemma. For all x in the N-dimensional simplex,
let y be any function of x such that y lies in the simplex but y # x. Then,
as we've seen, for each x we have some xi> Yi· Now define the index m(x)
as the smallest such j:

(14)

4 Barycentric Coordinates, Sperner's Lemma, and an Elementary Proof 265

(We choose the smallest j only as one definite way to pick some index
satisfying xi> yi ; we might as well have chosen the largest such j, but we
didn't.)

The function m(x) takes one of the values 0, 1, . . . , N for each x the
simplex. But on the boundary, we know that the function m(x) is restricted.
Formula (13) implies this:

For x in (vP,vq, ... ,v•) the function m(x) = p or q or·· ·or s. (15)

For N = 2 this result is illustrated in Figure 2.

m = 0, I, or 2

m = Oor I

Figure 2

Do you remember why we are doing all this? We are looking for a fixed
point of f(x). That is a point x whose barycentric coordinates satisfy all
the inequalities

(16)

where y = f(x). Here's how we will do it:
For n = 2, 3, ... we form the nth barycentric subdivision of our simplex.

In two dimensions we show the fifth subdivision in Figure 3.

In Figure 3 the vertices in the subdivision are the points

x = !(k0 ,kt.k2) (17)

266 3 Fixed-Point Theorems

where the ki are integers with

all ki ~ 0 and I;ki = 5, (18)

In general, for the nth subdivision in N dimensions, the vertices are the
points

1
X = - (k0 ,k1, .•• ,kN),

n

where the ki are integers satisfying

all ki ~ 0 and l;ki = n.

(19)

Look again at Figure 3. We will call the little shaded triangle a cell. The
original simplex is the whole body; the subsimplexes are its cells. In Figure 3
we see 25 cells. Each cell is small; the diameter of each cell is ! of the diam­
eter of the body.

In general, in the nth subdivision of a simplex in N dimensions, the
number of cells tends to infinity as n ~ oo; but the diameter of each cell
tends to zero. If L1 is the diameter of the body, then the diameter of each
cell is Ll /n.

We are given a continuous function y = f(x) that maps the body into
itself. We assume that f(x) has no fixed point, and we will now deduce the
opposite: f(x) must have a fixed point. That will prove Brouwer's theorem.

Since we assume y =1= x, we may use formula (14) to label each point x
with an index m(x). The index takes one of the values 0, . .. , N at each
point in the body, and on the boundary of the body the index satisfies the
restriction (15), which we have illustrated in Figure 2.

Now look at Figure 3. We count 21 vertices. Label each vertex x with
an index m(x) = 0, 1, or 2. On the boundary you must obey the rule (15),
which is pictured in Figure 2. That means you must use m = 0 or 1 on the
bottom side, m = 0 or 2 on the left, and m = 1 or 2 on the right. In Figure 3,
that leaves 6 interior vertices, each to be labeled 0, 1, or 2.

Sperner's puzzle unsolved

Figure 4

4 Barycentric Coordinates, Sperner's Lemma, and an Elementary Proof 267

Now's here a puzzle. Follow the rules we've just given, and label all
21 vertices in Figure 3, so that none of the 25 cells has all the labels 0, 1, 2.
(See Figure 4, for one attempt.)

Sperner's lemma, which we will prove, says the puzzle is impossible. At
least one of the cells must have a complete set of labels. (Sperner's lemma
applies to all regular simplicial subdivisions, but for our purposes we will
only state and prove it for what we've called the nth barycentric subdivision.)

Sperner's Lemma Farm the nth barycentric subdivision of a nondegenerate
simplex in N dimensions. Label each vertex with an index m(x) = 0, ... , N
that satisfies the restriction (15) on the boundary. Then some cell in the sub­
division must have vertices with the complete set of labels: 0, 1, ... , and N.

Before we prove Sperner's lemma, let's show how it proves the Brouwer
fixed-point theorem:

Let y = f(x) map the simplex continuously into itself. If we assume
y =F x, we can use (14) to define an index m(x) that satisfies (15).

Form the nth barycentric subdivision. Now Sperner's lemma guarantees
that some cell has vertices with the complete set of labels; say

m = 0 at the vertex x 0(n)

m=1 at the vertex x 1(n) (20)

m=N at the vertex xN(n).

What does this say about the function y = f(x)? If m = j at the point x,
then the definition (14) says something about the jth barycentric coordinate,
namely, xj > Yj· Therefore, (20) says this:

at the vertex x 0(n)

at the vertex x 1(n)

at the vertex xN(n).

(21)

But all the vertices of the cell are close to each other if n is large, since the
diameter of the cell is the diameter of the body divided by n:

max lxP(n)- xq(n)i = t1/n ~ 0 as n ~ oo. (22)
O"ip<q"iN

As n ~ oo, let's watch the single vertex x 0(n). This vertex wanders through
the body in some bounded infinite sequence. The sequence may or may not
have a limit, but this we do know: Some subsequence has a limit 1 ; say

(23)

1 The limit is guaranteed by the Bolzano-Weierstrass theorem.

268 3 Fixed-Point Theorems

But now the closeness of the vertices (22) implies that they all tend to x*
as n5 -+ oo:

xP(n5) -+ x* as s -+ oo (p = 0, 1, ... , N). (24)

Now the continuity of f(x) implies

f(xP(ns)) -+ f(x*) = y* as s -+ oo (p = 0, 1, ... , N). (25)

But the barycentric coordinates of a point x depend continuously on x.
Therefore, if we let n = ns -+ oo in (21), we obtain the limiting inequalities

In other words,
xj ~ yj

at the limit x*

at the limit x*

at the limit x*.

(j = 0, 1, ... , N),

(26)

(27)

and for barycentric coordinates this says x* = y*. This is an elementary
proof of the Brouwer fixed-point theorem.

Wonderful. Now all we have to do is prove Sperner's lemma. This we will
do by using induction on the dimension N. As it often happens in inductive
proofs, we will find it easier to prove more than the original assertion. We will

prove this:
Assertion. In Sperner's lemma the number of fully labeled cells must be odd.
In other words, the number of cells with the complete set of labels must

be 1 or 3 or 5 or As it happens in Figure 4, the number is 1; by changing
a label, you can make the number 3; but in no way can you make the num­
ber 0 or 2 or 4 or ... or 24.

NOTATION. In N dimensions, if the vertices of a cell have the labels
m0 , mb ... , mN, we say the cell has type (m 0 , mb ... , mN)· Here permutations
don't matter, but multiplicities do matter. For instance,

(0,1,2,0) = (2,0,0,1) = (2,1,0,0) i= (2,1,1,0).

A cell in N dimensions has boundary elements of dimensions 0, 1, ... ,
N - 1. Those of dimension 0 we will call vertices; those of dimension N - 1
we will call faces. We will call the whole cell an element of dimension N.

The counting function. We are given a barycentric subdivision labeled by

the rules of Sperner's lemma. By F(a,b, ... ,q) we shall mean the number of
elements in the body of type (a,b, . .. ,q).

For example, in Figure 4 we count:

F(O) = 8

F(O,O) = 9,

F(1) = 6

F(0,1) = 5,

F(2) = 7

F(0,1,0) = 3, F(0,1,1) = 1, F(0,1,2) = 1

This is just a sampling; for instance, we omitted F(1,2) and F(1,1,2).

(28)

4 Barycentric Coordinates, Sperner's Lemma, and an Elementary Proof 269

In terms of the counting function, this is our assertion: InN dimensions

F(0,1, ... ,N) is odd. (29)

That is true in (28), where F(0,1,2) = 1.
The case N = 1. We must show that F(0,1) is odd if we number the segment

0·---·--·---·---·---·1

by our rules.
Let's look at the faces labeled 0 (if N = 1, a face is a single point). Two

labels 0 occur in each cell of type (0,0); one label 0 occurs in each cell of
type (0,1).

Now look at the sum
2F(O,O) + F(0,1).

This sum counts every interior 0 twice, since every interior 0 is the face that
is shared by two cells; but the sum counts the single 0 on the boundary
of the segment only once. Therefore,

2F(O,O) + F(0,1) = 2Fi(O) + 1, (30)

where F;(O) stands for the number of interior O's. This proves F(0,1) is odd.
For example, look at the bottom edge in Figure 4. This edge is numbered

0 0 1 1 1 1 (31)

This body has
F(O,O) = 1, F(0,1) = 1, Fi(O) = 1, (32)

and these numbers satisfy (30).
We could now go right to the general case, but it will be easier for you

if you first understand this:
The case N = 2. Let's look at the faces labeled (0,1). Two faces (0,1) occur

in each cell of type

0

1\ or
OL___i1

One face (0, 1) occurs in each cell of type

2

061

Now look at the sum

2[F(0,1,0) + F(0,1,1)] + F(0,1,2).

(33)

(34)

(35)

This sum counts every interior face (0,1) twice, since every interior face is
shared by two cells; but the sum counts every face (0,1) on the boundary

270 3 Fixed-Point Theorems

of the body only once, because each face on the boundary belongs to only
one cell. Therefore, our sum (35) satisfies

2[F(O,l,O) + F(0,1,1)] + F(0,1,2) = 2F;(0,1) + Fb(O,l), (36)

where F; and Fb stand for the numbers of faces (0,1) in the interior and on
the boundary.

We now say this: Fh(0,1) is odd. Why? Because this is the number of
segments (0,1) on the boundary. These segments can lie only on the element
between the vertices v0 and v1 . On this element Sperner's lemma applies
with dimension N- 1 = 1, and so Fb(O,l) is odd by induction.

Now formula (36) takes the form

2[...] + F(O,l,2) = 2(...) +(odd). (37)

This proves F(0,1,2) is odd.
For example, look at Figure 4. In (28), we counted

F(O,l,O) = 3, F(O,l,l) = 1, and F(0,1,2) = 1. (38)

We now count the interior and boundary faces (0,1):

F;(O,l) = 4 and Fb(O,l) = 1. (39)

These numbers satisfy formula (36): 2[3 + 1] + 1 = 2(4) + 1.
Note that the count Fb(O,l) uses only the element between v0 and v1 ; we

looked at this element before in formula (31), and our present Fh(O,l) ap­
peared before as F(O,l) in (32).

Now I'm sure you get the idea, and you'll easily understand what follows.
The general case N > 1. Let's look at the faces labeled (0, 1, ... , N- 1).

Two such faces occur in each cell of type

(0, 1, ... , N - 1, m) if m ~ N - 1.

One face (0, 1, ... , N- 1) occurs in each cell of type

(0, 1, ... ,N- l,N).

Now look at the sum

n-1

S = 2 L F(O, 1, ... ,N- l,m) + F(O, 1, ... ,N- l,N). (40)
m=O

This sum counts every interior face (0, ... , N - 1) twice, since every interior
face is shared by two cells; but the sum counts every face (0, ... , N- 1) on
the boundary of the body only once, because each face on the boundary be­
longs to only one cell. Therefore, our sum satisfies

S = 2F;(O, ... ,N- 1) + Fb(O, ... ,N- 1). (41)

We now say this: Fb(O, ... ,N- 1) is odd. Why? Because, in N- 1
dimensions, this is the number of cells of type (0, ... , N - 1) in a Sperner
subdivision of the (N- !)-dimensional simplex (v0, ... ,vN- 1). Now Sper-

4 Barycentric Coordinates, Sperner's Lemma, and an Elementary Proof 271

ner's lemma applies with dimension N- 1, and so Fb(O, ... ,N- 1) is odd
by induction.

Now formulas (40) and (41) take the forms

s = 2 L + F(O, 1, ... ,N- 1,N)
and

S = 2F; + F b = even + odd = odd.

This proves Spemer's lemma; and as we saw, Spemer's lemma proves the
Brouwer fixed-point theorem. We shall later use the technique of barycentric
subdivision to prove the fixed-point theorem of Kakutani.

But first we will extend Brouwer's theorem to infinite dimensions. We will
prove the Schauder fixed-point theorem, which is one of the most powerful
tools in mathematical analysis.

PROBLEMS

1. In the plane, let the vertices v0, v1, v2 have the cartesian coordinates (3,- 2), (1,5),
(-7,1). Let x have cartesian coordinates (cl>c2), and let x have barycentric co­
ordinates (x0 ,xl>x2) in the simplex (v0,v\v2). Write the cartesian coordinates of x
as functions of its barycentric coordinates; also write the barycentric coordinates
as functions of the cartesian coordinates.

2. For Problem 1 show that the simplex is nondegenerate.

3. For Problem 1 draw the simplex, and draw the five lines

4. For Problem 1 draw the sixth barycentric subdivision. Locate the point with
barycentric coordinates i-(3,1,2). Also locate the barycenter, and write its barycentric
coordinates.

5. For the simplex in Problem 1 define the mapping y = f(x) by

unless x is the barycenter b; for x = b define y1 = 1, y2 = 0, y3 = 0. Show that
this mapping is discontinuous, and show that it has no fixed point.

6. For Problem 5 define the index function m(x) according to formula (14). Draw the
third barycentric subdivision. For each of the ten vertices in the subdivision write
the barycentric coordinates of x and of y = f(x); then find the ten numbers m(x).
In a separate picture, attach the labels m(x) to the ten subdivision vertices. What
does formula (15) say for this example? How many of the nine cells have vertices
labeled 0, 1, 2?

7. In Figure 4 evaluate F(2,1) and F(1,2,1).

8. Draw a triangle, and mark a point a in the interior. Label the three vertices
v0, v\ v2• Now draw the subset of points y in the simplex with y0 ~ a0 • Draw the
subset with y1 ~ a1, and draw the subset with y2 ~ a2 • Draw the intersection of
two of these subsets. Draw the intersection of all three.

272 3 Fixed-Point Theorems

9. The text says that the barycentric coordinates of a point in a nondegenerate
simplex are continuous functions of the point. What does that mean and why is
it true? Is it true for a degenerate simplex?

10. The diameter of a closed, bounded set is the maximum distance between two
points. If a simplex has diameter Ll, why does every cell in the nth barycentric
subdivision have diameter Ll/n? (Hint: First show that the diameter of a simplex
is the greatest distance between two of its vertices.)

11. If a simplex in N dimensions has diameter Ll, and if b is the barycenter, show
that

N IX - bJ ,::: --- LJ
"""'N + 1

for all x in the simplex.

12. Let x andy be two points in anN-dimensional simplex. Suppose their barycentric
coordinates satisfy

X;~ Y;- e (i = 0, 1, ... , N),

where e ~ 0. Then prove

X;~ Y; + Ne (i = 0, ... ,N).

*13. Approximate fixed points: Suppose f(x) maps a nondegenerate N-dimensional
simplex continuously into itself. Suppose f satisfies jf(x)- f(x')j ~ ,A.jx- x'J. Let
the simplex have diameter .d. Form the nth barycentric subdivision. Let b* be the
barycenter of a cell with a complete set of Sperner labels as in formula (20). Now
derive an upper bound for the Euclidian distance Jb*- f(b*)j. (Your upper bound
should be 0(1/n) as n-> oo.)

*14. Consider the nth barycentric subdivision of anN-dimensional simplex. Easy: Show
that the number of cells is nN. Hard: Show that the number of vertices is the
binomial coefficient

(n + N) = (n + l)(n + 2) · · · (n + N)
N 1·2···N

5 The Schauder Fixed-Point Theorem

In his popular book How to Solve It, the distinguished mathematician
George P6lya said: "A great discovery solves a great problem "

Professor P6lya was one of my teachers. He always filled his lectures with
examples. He believed that the more abstract a subject was, the more it called
for vivid examples.

So let's begin with a great problem and with an example. The problem
is to prove the existence of solutions to nonlinear integral equations. The
example is this equation:

x(t) = J0
1 e -sr cos(7x(s)) ds (0 ::::; t ::::; 1). (1)

5 The Schauder Fixed-Point Theorem 273

If a real-valued, integrable solution x(s) exists, it makes the integral a
continuous function oft, and so x(t) must be continuous. And if x(t) exists,
it must satisfy

Jx(t)J ~ 1 (0 ~ t ~ 1), (2)
since

Jx(t)J = !Sol e-st cos(...)dsl ~Sol e-st ds ~ 1.

Let's define the set of all real-valued functions x(t) that are continuous
for 0 ~ t ~ 1. This set is called a Banach space, and we will denote it by Ill
A "point" x in the "space" IEB is a real-valued, continuous function x(t). If
we think ofx as a vector, we may think of x(t) as its components for 0 ~ t ~ 1.
The vector x has infinitely many components, and IEB has dimension infinity.

The integral in (1) transforms every continuous function x(s) into a con­
tinuous function

y(t) = S0
1 e-st cos(7x(s))ds (0 ~ t ~ 1).

In the Banach space IEB, let us write this identity in the form

y = f(x).

(3)

(4)

Here f(x) is given by the integral in (3). Since a continuous x(s) produces a
continuous y(t), we may say that the function f(x) = y maps the Banach
space IEB into itself.

And we can say more. Let us define the "unit ball" in IEB. This will consist
of the points x that satisfy the inequality max\x(t)J ~ 1. As we saw, the func­
tion f maps every point x into the unit ball yJ ~ 1; here we use the norm

JyJ = max Jy(t)J.
O:!E;t~l

(5)

In particular, the function f maps the unit ball into itself
It's beginning to sound familiar, isn't it? It sounds like the language of

the Brouwer fixed-point theorem. In this language, what does the original
equation (1) ask for? It asks for a fixed point:

x = f(x). (6)

By analogy with the Brouwer theorem, we shall want to know that the
function f is continuous. But what does continuity mean in a Banach space?

It means this: If xn -+ x*, then f(xn) -+ f(x*). And by this we mean that

if Jxn- x*J -+ 0, then jf(xn)- f(x*)J -+ 0. (7)

In our space IEB, the convergence Jxn - x*J -+ 0 means

max Jxn(t) - x*(t)J -+ 0 as n -+ oo. (8)
o,.;t,.; 1

This is what we ordinarily call uniform convergence of the sequence xn(t) on
the interval 0 ~ t ~ 1. If y = f(x), the function f is continuous if the uniform

274 3 Fixed-Point Theorems

convergence xn(s) -+ x*(s) implies the uniform convergence Yn(t) -+ y*(t). If
formula (3) defines y = f(x), then the function f is indeed continuous. In the
Banach space IEB, our function f maps the unit ball continuously into itself.

Therefore, the integral equation (1) has a solution if the following gener­
alization of Brouwer's theorem is correct:

Theorem 0. In a Banach space IEB, let f(x) map the unit ball continuously into
itself Then the mapping has a fixed point x = f(x).

Alas, this theorem is false, as an example will show. We shall need to
require something more than continuity; then we shall have the Schauder
fixed point theorem. The Schauder theorem proves the existence of solutions
for an enormous class of nonlinear functional equations-including our
little integral equation (1).

Now let's get down to business. In general, what is a Banach space IEB?
It is a linear vector space of points x defined over a field of scalars, which we
shall take to be the field of real constants c. There is a zero vector, 0, for
which

x+O=x for all x in IEB.

There is a norm jxj that satisfies

jxj ~ 0, with jxj = 0 iffx = 0,

jcxj = jcjjxj,

jx +YI ~ lxl + IYI·

(9)

(10)

(11)

(12)

Finally, the space must satisfy the Cauchy property: If the sequence
xh x2 , ••• satisfies

(13)

then there is a limit x*, for which

jxn - x*j -+ 0 as n -+ 00. (14)

We do not need to assume that, conversely, (14) implies (13), since that is
implied by the triangle inequality (12).

EXAMPLE 1. Let IEB be the space of real-valued continuous functions x(t) for
0 ~ t ~ 1. One easily verifies the properties (9)-(12). The point x = 0 in IEB
is the continuous function x(t) = 0 for 0 ~ t ~ 1. The norm is

jxj = max jx(t)j.
o.;;r.;; 1

(15)

The Cauchy property states a basic theorem about continuous functions:
If a sequence of continuous functions x1(t), x2(t), ... satisfies (13), then the
sequence converges uniformly to a continuous function x*(t). I'm assuming
that you know this theorem.

5 The Schauder Fixed-Point Theorem 275

EXAMPLE 2. Consider the space of points

(16)

with infinitely many real components x;. This is the obvious extension of
theN-dimensional vector space RN as N--.. oo. We define the norm as

lxl = (x~ + x~ + · · ·)112, (17)

and we define H to be the set of x with lxl < oo.
The space His a Banach space. The properties (9)-(12) are easy to verify

if you know the Schwarz inequality. The Cauchy property, (13) => (14),
requires some care to prove. Here is a sketch of the proof: You first show
that if Xn has the components Xni• then (13) implies that there exist limits

xj = lim Xmj· (18)
m-+oo

You then show, for finite N,

N

L (xnk - x1)2 ~ lim sup lxn - Xmj 2• (19)
j= 1 m-+oo

If you first let N --.. oo and then let n --.. oo, you get the Cauchy limit (14).
The space H is called a Hilbert space because it has an inner product

X • y = LXiYi (20)

that satisfies x · x = jxj2• And the inner product has other familiar properties.

Every Hilbert space is a Banach space, but the converse is false. In a
Hilbert space the norm satisfies the parallelogram law:

(21)

You can show that the Banach space IB in Example 1 fails the parallelogram
law; therefore IBis no Hilbert space.

Theorem 0 is false. The Hilbert space H provides a pretty counterexample
to our naive extension of the Brouwer fixed-point theorem. For all x in the
unit balljxj ~ 1, define

Y1 = (1 -jxj2) 112 ; Y2 = Xt. Y3 = X2, Y4 = X3, • • •• (22)

Then y is a continuous function of x: if x--.. x*, then y--.. y*, where
yt = (1 -jx*j)112 and Yr+ 1 = xr.

If lxl ~ 1, then IYI ~ 1; indeed, IYI = 1.
But can there be a fixed point x = y? If so, then all its components are

equal. Only one x in H has equal components: x = 0. But then (22) says
y1 = 1, and soy =I= x. (This example is due to S. Kakutani.)

What goes wrong in spaces of infinite dimension? I'll tell you the secret:
The finite-dimensional ball is compact; the infinite-dimensional ball is not.

Compactness. A set is compact if every infinite sequence in the set has a
limit point in the set. In the N-dimensional vector space RN every closed,

276 3 Fixed-Point Theorems

bounded set is compact; that is the Bolzano-Weierstrass theorem. For
example, in RN the unit ballixl ~ 1 is compact.

But look at the unit ball in the Hilbert space H. The ball is bounded; and
it is closed, because

lxnl ~ 1 and xn -+ x* imply lx* I ~ 1.

But the ball cannot be compact, since it contains an infinite sequence of
orthogonal unit vectors:

x 1 = (1,0,0, ...), x 2 = (0,1,0, ...), x 3 = (0,0,1, ...),

No subsequence can converge, since

for all m ¥- n.

Look also at the Banach space lEE of continuous functions x(t) (0 ~ t ~ 1).
Here also, the unit ballixl ~ 1 is closed and bounded; but it cannot be com­
pact, since no subsequence of the continuous functions xn(t) = tn converges
uniformly for 0 ~ t ~ 1. The convergence could not be uniform, because the
pointwise limit has a discontinuity at t = 1.

The sequence xn(t) =sin nt gives a more dramatic example. Here each
subsequence diverges for infinitely many tin every subinterval; so uniform
convergence on the whole interval [0,1 J is out of the question.

In the false Theorem 0 the function f(x) maps the ball continuously into
itself. We know this is not enough to guarantee a fixed point. But Schauder
showed that a fixed point is guaranteed if f(x) has one more property: it maps
the unit ball into a compact set. This requirement adds no new restriction in
finite dimensions, since in RN the unit ball is compact.

How severe is this new requirement? We can infer from an example that
Schauder's requirement if often met.

You remember our integral equation (1). Here the identity (3) defines, in
the Banach space lEE, a function y = f(x) that maps the unit ball continuously
into itself. Into but, as we will show, not onto. Let Y be the range off:

Y = {y: y = f(x), lxl ~ 1}. (23)

We will show that Y is compact.
We shall rely on the classical selection principle, which is proved in

Appendix 1: For 0 ~ t ~ 1let the sequence Yn(t) (n = 1, 2, ...) be uniformly
bounded and equicontinuous. Then the sequence has a uniformly convergent
subsequence.

To show that Y is compact, let xn be a sequence in the unit ball in lEE; then
show that the resulting sequence Yn has a convergent subsequence. That is,
show that the sequence of continuous functions

(0 ~ t ~ 1) (24)

has a uniformly convergent subsequence.

5 The Schauder Fixed-Point Theorem 277

The sequence is uniformly bounded: IYn(t)l :::::; 1. To show that it is equi­
continuous, we estimate:

By the mean-value theorem of calculus,

le-•'- e-•ri :::::; sit- rl,
and so

The bound on the right tends to zero as r - t, and the bound is independent of
n; that is the definition of equicontinuity. The classical selection principle
now guarantees a uniformly convergent subsequence Yn,(t). Therefore, the
range Y is compact.

Now our nonlinear integral equation (1) is guaranteed a solution by the
Schauder fixed-point theorem:

Theorem 1. Let X be a non-empty convex set in a Banach space; let Y be a
compact subset of X. Suppose y = f(x) maps X continuously into Y. Then there
is a fixed point x* = f(x*).

PROOF. Choose any e > 0. Successively, pick y 1, y 2 , y 3 , .•. in Y so that

IY;- Yil ~ e for 1 :::::; i < j:::::; n. (25)

Keep picking new points Yn as long as you can. You must stop with some
finite n; for otherwise you could pick an infinite sequence of points y 1, y 2 , ...

that satisfied the inequalities (25). This sequence could not have a con­
vergence subsequence, and this violates our assumption that Y is compact.

The finite set y 1, •.• , y" is e-dense in Y: for every y in Y, we must have

IY;- Yl < e for some i = 1, ... ,n; (26)

otherwise we could increase n by defining y" + 1 = y.
We now define the convex polytope

X.= {ll1y1 + · · · + ll"y": Lll; = 1, all ll; ~ 0}. (27)

This is a subset of X, since X is convex and X contains all the points Y; in
the subset Y. (But x. need not lie in Y, which is not assumed convex.)

We will now map all of Y into the polytope x. by a continuous function
p.(y) that approximates y:

IP.(Y) - Yl < e for all y in Y. (28)

To construct the function p.(y), we must construct n continuous functions

n

ll; = li;(Y) ~ 0, with L ll1 = 1. (29)
i= 1

278 3 Fixed-Point Theorems

First we define, for i = 1, ... , n,

() {0 if IYi- Yl ~ 8

({J; y = 8 - IYi - Yl if IYi - Yl < 8.
(30)

Each of these n function ({J;(Y) is continuous, and (26) guarantees ({J;(Y) > 0
for some i = 1, ... ,n.

And now we construct the n continuous functions

8;(y) = ({J;(Y)/s(y) (i = 1, ... , n; yin Y) (31)
where

s(y) = o/l(Y) + · · · + o/n(Y) > 0.

The functions 8;(Y) satisfy 8; ~ 0, _Le; = 1.
Finally, we construct the continuous function

(32)

This function maps Y into the polytope X,. By (30), 8;(Y) = 0 unless
IY; - Yl < 8. Therefore, p,(y) is a convex combination of just those points Y;
for which IY; - Yl < e; and so

jp,(y) - Yl = I,L8;(y)(y;- y)j

~ _L8;(y)jy; - yj < e.
(33)

This established the approximating property (28).
Now we map the convex polytope X, continuously into itself by the

function
f,(x) = p,(f(x)) for x in X,. (34)

Now a fixed point
x, = f.(x,) in X, (35)

must exist for this reason:
The polytope X, lies in the finite-dimensional linear subspace L spanned

by then points y 1, ... ,Yn· If this subspace has dimension N, it can be put in
one-to-one continuous correspondence with the familiar Euclidian vector
space RN. Explicitly, ifbl> ... , bN are a basis for the subspace L of the Banach
space, we set up the correspondence

c,b, + + c.b,- (}:) in R".

Now the polytope X, in the Banach space corresponds bicontinuously to the
polytope

where

and

(36)

(37)

5 The Schauder Fixed-Point Theorem 279

The continuous mapping f, of X, into itself corresponds to a continuous
mapping g. of the Euclidian polytope (36) into itself. A polytope in RN is
a closed, bounded, convex set; therefore it is topologically equivalent to a
single point or to a ball in RM for some M ::::;; N. (This was proved in the
Appendix to Section 2.) Now the Brouwer fixed-point theorem guarantees
a fixed point

z• = g.(z") in RN.

The corresponding point is a fixed point in the Banach space:

x. = f.(x.) in X,.

(Perhaps I have labored this point unnecessarily; perhaps without
argument you would have believed that the Brouwer theorem guarantees the
fixed point x. in the Banach space. But I needed the argument to convince
myself, since we proved the Brouwer theorem only for convex bodies in RN.)

Now we will cautiously take a limit as 6 -+ 0. Set y, = f(x.). Since Y is
compact, we may let 6 -+ 0 through some sequence 6 1, 62 , ..• for which y,
converges to a limit in Y:

We now write
f(x,) = y,-+ y* as 6 = 6k-+ 0.

x, = f.(x,) = p,(f(x,)) = p.(y,),

x. = y. + [p.(y.)- y,].

But we have IP.(Y) - Yl < 6 for all y, so (38) implies

x, -+ y* as 6 = 6k -+ 0.

Now, since f is continuous, (38) yields the fixed point:

f(y*) = y*.

(38)

(39)

(40)

Appendix. The Arzela-Ascoli theorem: For 0::::;; t::::;; 1 let the sequence
Y1(t), y2(t), ... satisfy

!Yn(t)l ::::;; M; and !yn(s) - yit)l < 6 if Is - tl < <5(6).

Then the sequence has a uniformly convergent subsequence.

PROOF. Let r1,r2 , ••• be the rational numbers in [0,1]. Let the bounded
sequence Yn(r 1) converge if n goes to infinity through the set

Choose the subset N 2 c N 1 so that yn(r2) converges ifn -+ oo through the set

Nz:n21<nzz<nz3<···.

In general, choose Nk c Nk- 1 so that Yn(rk) converges if n -+ oo through the
set

280 3 Fixed-Point Theorems

Now define the diagonal set:

D: nu < n22 < n33 <

Since nkk E Ni for all k ~ j, we have limits

y.(rj) ~ A.i as N = nkk ~ oo.

If t lies in [0,1], fore > 0 we have a b(e) such that, for all n,

Jy.(r) - Y.(t)J < e if Jr - tJ < b(e).
Then

Jyit)- Ym(t)J ~ Jy.(t)- yir)J + Jy.(r) - Ym(r)J + Jym(r) - Ym(t)J

~e+e+e

if n and mare sufficiently large in the diagonal set D. Given e, we may let r be
one of the numbers 0, 1/q, 2/q, ... , 1 if q > 1/b(e). Thus, given e > 0, we can
find a number M(e) such that

ifn,m ~ M(e) and n,m are in D.

This proves the uniform convergence of y.(t) as n tends to infinity in D.

References

1. J. Schauder, Der Fixpunktsatz in Funktionalriiumen, Studia Math. Vol. 2 (1930)
pp. 171-180.

2. G. P6lya, How to Solve It, Princeton Univ. Press., 1948.
3. H. Brezis and F. E. Browder, Existence theorems for nonlinear integral equations of

Hammerstein type, Bull. Amer. Math. Soc., Vol. 81 (1975) pp. 73-78.

PROBLEMS

1. For 0 ~ t ~ 1let Y be the set of differentiable functions y(t) that satisfy jy(t)j ~ 1732,
jy'(t)j ~ 1756. Prove that every sequence y.(t) E Y has a uniformly convergent sub­
sequence. (Use the Arzela-Ascoli theorem.)

2. Let g(t,x) be continuous for t ~ 0 and jxj ~ 1, with jg(t,x)j ~ M. Let IB be the
Banach space of continuous functions x(t) for 0 ~ t ~ t0 , with jx(t)j ~ 1. How
small must the positive number t0 be so that the equation

y(t) = J~ g(s,x(s)) ds

maps IB into a subset Y c IB? (Answer: t0 must be ~1/M.) Show that the map­
ping is continuous in the maximum norm. Show that the subset Y is compact.

3. (Continuation.) Now you are ready to prove a famous theorem of Peano: Assume
that the function g(t,x) is continuous for 0 ~ t < t 1 and jxj ~ 1. Then the initial-value

problem
dx(t) dt = g(t,x(t))

x(O) = 0

5 The Schauder Fixed-Point Theorem 281

has a solution x(t) if the positive number t0 is small enough. (Do not assume a
Lipschitz condition! Don't try to prove uniqueness, because it isn't true. Example:
x' = JX, x(O) = 0 has two solutions: x 1 = 0 and x 2 = t 2/4.)

*4. (Continuation.) When I was a student, I proved a generalization of Peano's
theorem for functional differential equations like this one:

dx(t) dt = g(t,x(t),x(w(t))),

where w(t) is a given continuous function satisfying w(t) ~ t. My proof was long
and clumsy because I did not know Schauder's theorem. You can prove my
theorem in a few lines. Assume -a~ w(t) ~ t for 0 ~ t ~ t1o and give the initial
condition

x(t) = tf>(t) for -a~ t ~ 0.

Assume the given functions g, w, and ¢> are continuous. Now prove that a solution
x(t) exists for 0 ~ t ~ t0 if the positive number t0 is small enough. (Reference:
Proc. Amer. Math. Soc., Vol. 5 (1954) pp. 363-369.)

5. First verify that the integral

u(x) = J0
1 G(x,y)t/J(y)dy

solves the boundary-value problem

-u"(x) = t/J(x) (0 ~ x ~ 1)

u(O) = u(1) = 0

if G is the Green's function

G(x,y) = {(1 - x)y for y ~ x
(1 - y)x for x ~ y"

Now use Schauder's theorem to prove the existence of a solution to the nonlinear
boundary-value problem

-u"(x) = e-•<x>

u(O) = u(1) = 0.

(0 ~X~ 1)

*6. For y in a 3-dimensional bounded solid D, suppose that the function G(x,y) is
positive and integrable, and suppose that the integral

JD G(x,y)dy

is a bounded, continuous function of x in D. Use the Schauder theorem to establish
the existence of a solution to the nonlinear integral equation

u(x) = JD G(x,y)e-•<Y>dy,

where dy stands for dy 1 dy2 dy3 • (That's how you prove a solution exists to the
nonlinear boundary-value problem - V2u = e-•, u = 0 on oD.)

*7. From Walras to Debreu, economists have talked about equilibrium. First, the
economy is described by a state variable x in an appropriate mathematical space.

282 3 Fixed-Point Theorems

When something happens in the economy, the state x goes to a state f(x). An
equilibrium is a state that stays fixed: x = f(x). Use Schauder's theorem to give
general conditions for the existence of economic equilibria. Give economic ex­
amples or interpretations of these terms: Banach space, norm, boundedness, con­
tinuity, convexity, compactness.

8. Prove that this boundary-value problem has a solution:

-u"(x) + u(x) = x sin(u(x)) (0:::; x:::; 1)

u(O) = 5, u(1) = 7.

Method: First get an integral equation.

9. Let X be a closed set in a normed space. Let Y be compact subset of X. Let
g(x) be a contraction mapping such that y + g(x) lies in X for y E Y and x E X.
Let the equation

x = y + g(x)

have the solution x = h(y). Prove that h(y) maps Y continuously into a compact
subset of X.

10. (Continuation.) Now you can prove Krasnoselskii's theorem: Consider the fixed­
point equation

x = f(x) + g(x)

for x in a Banach space IR. Let X be a non-empty closed convex set in IR. Let
f(x) map X continuously into a compact subset Y c X. Let g(x) be a contrac­
tion mapping on X; do not assume that the range of g is compact. Assume
y + g(x) EX for y E Y and x EX. Now prove there is a fixed point x = f(x) + g(x).

11. (Continuation.) Prove the existence of a solution to the equation

1 2 (1
x(t) = 3 cos(x(t)) + 3 Jo e-st cos(7x(s))ds (0 :::; t :::; 1)

Note that the mapping x(t) H cos(x(t)) is not compact on the Banach space of
continuous functions. Use Krasnoselskii's theorem.

12. Let l/f(x) be a given continuous function, and consider the linear boundary-value
problem

-(1 + xl/f2(x))u"(x) + u(x) = 0 (0:::; x:::; 1)

u(O) = 0, u(1) = 1.

This linear problem is known to have a unique solution. Show that the solution
u(x) must satisfy the bounds

0 :::; u(x) :::; 1, 0 :::; u'(x) :::; 1

regardless of l/f(x). Now prove that a solution exists to the nonlinear boundary­
value problem

-(1 + xu2(x))u"(x) + u(x) = 0

u(O) = 0, u(1) = 1.

Method: Look for a fixed point of the mapping l/J H u.

6 Kakutani's Fixed-Point Theorem

6 Kakutani's Fixed-Point Theorem and
Nash's Theorem for n-Person Games

283

Many theoretical economists have quoted Kakutani's fixed-point theorem.
But even if no one quoted it, mathematicians would still study it because of
its novelty. It talks about a novel kind of function Y = F(x): if x equals a
point in the set X, then Y equals a subset of X. Yes, I said equals a subset.

Here is a homely example of such a function. Let X be the set of all men.
If x is a man, let F(x) equal the subset of men whose names are known to
the manx.

Kakutani's theorem talks about the relationship

x E F(x), (1)

which says that x is a member of the subset F(x). In our example a man x
lies in F(x) if he knows his own name. In other words, x E F(x) unless x has
amnesia.

The inclusion x E F(x) is a generalization of the equation for a fixed point:

x = f(x). (2)

To see this, let each subset Y = F(x) contain only the single member y = f(x).
Then "x E F(x)" means "x = f(x)."

Kakutani's theorem follows from the Brouwer fixed-point theorem. We
will prove it by using the technique of barycentric subdivision. Then we will
give a famous application to economics: the Nash equilibrium theorem for
n-person games.

Kakutani's Theorem. Let X be a closed, bounded, convex set in the real N­
dimensional space RN. For every x EX let F(x) equal a non-empty convex
subset Y c X. Assume that the graph

{x,y: y E F(x)} is closed. (3)

Then some point x* lies in F(x*).

Before the proof, here are a few remarks:
1. The condition (3) means this: Suppose a sequence xn has a limit x0,

and suppose that
(n = 1,2,3, ...). (4)

Suppose also that yn tends to some limit y0 . Then (3) requires that the limits
satisfy

(5)

All that says is this: Draw the graph of all points x and y for which x lies in
X while y lies in the subset Y = F(x); then this graph is a closed set in the

284 3 Fixed-Point Theorems

2N-dimensional space of points with the 2N real coordinates

(Some authors express the closedness of the graph by writing: F(x) is upper
semicontinuous.)

The closedness of the graph (3) is a generalization of ordinary continuity.
Suppose each set Y = F(x) contains only the single point y = f(x) in the
closed, bounded set X. If f(x) is continuous, then the graph

{x,y: y = f(x)} is closed. (6)

Conversely, suppose that (6) holds; let's show that f(x) is continuous.
Suppose that x" --+ x0 . Then x0 lies in X because we assume that X is

closed. Let y0 = f(x 0) and let y" = f(x") for n = 1, 2, 3, We want to show
that y" --+ y0 • Since the sequence y" lies in the bounded set X, some sub­
sequence converges:

y" --+ y* for n = n. --+ oo.

Now the closeness of the graph (6) implies

y* = f(x0),

(7)

(8)

that is, y* = y0 • Likewise, if y' is the limit of some other subsequence of the
bounded sequence y", then the closedness (6) implies y' = y0 = y*. Since
all convergent subsequences of the sequence y" have the same limit, y0 , the
whole sequence y" converges to y0 . Thus, (6) implies f(x) is continuous.

(Here we have leaned heavily on the boundedness of the set X. If X is
unbounded, then the graph may be closed while f(x) is discontinuous. For
example, let X be the set of all the real numbers. Define f(x) = 1/x if x ¥= 0;
define f(O) = 17. The graph is closed, but the function is discontinuous.)

2. In the statement ofKakutani's theorem the subset Y = F(x) is assumed
convex. Why? Otherwise the theorem would be false. Let X be the interval
- 1 ~ x ~ 1. Define

F(x) = {!} for -1 ~ x < 0

F(O) = {!,-!}
F(x) = { -!} for 0 < x ~ 1.

Here F(x) c X, and the graph of[x,F(x)] is closed. But no point in X satisfies
x E F(x). That is because the subset F(O), which contains exactly two points,
is not convex.

3. The Brouwer fixed-point theorem is a special case of Kakutani's
theorem. If F(x) = {f(x)}, where f(x) is a single point in X, then f(x) is con­
tinuous if and only if the graph [x,f(x)] is closed; we proved this in remark
No. 1. And now x* E F(x*) means x* = f(x*).

4. The assumption that the convex body X has an interior point a in RN
is unnecessary; it appears in the following proof only for convenience. As

6 Kakutani's Fixed-Point Theorem 285

we showed before1 , if a convex body in RN has no interior point, and if the
body has more than one point, then the body does have an interior point
relative to some M-dimensional hyperplane that contains the body. Now
the proof can be carried out in RM.

5. You may wish to review the definitions of these terms: nondegenerate
simplex, barycentric coordinates, nth barycentric subdivision, cell (in the
subdivision).

PROOF OF KAKUTANI's THEOREM. First we say 'this: We may assume that
X is a nondegenerate simplex in RN.

Otherwise, letS be a non degenerate simplex that contains X, as in Figure 1.
We will mapS continuously into X as follows:

(i) If s E X, just let x(s) = s.
(ii) Let a be an interior point of X (see the preceding Remark No. 4).

Suppose that s E S buts¢ X (see Figure 1); now define x(s) to be the unique
boundary point of X that lies on the segment joining a to s. (This boundary
point is unique because a is an interior point.)

Figure 1

For each s E S we now define the subset

G(s) = F(x(s)) c X c S.

The subset G = F is convex. And the graph [s,G(s)] is closed; for if

s ~ s0 and y E G(s) and y ~ y0,

then
x(s) ~ x(s0) and y E F(x(s)) and y ~ y0,

and therefore

1 See the appendix to Section 2.

(9)

(10)

(11)

(12)

286 3 Fixed-Point Theorems

Now the assumptions of our theorem hold for the function G(s) for s e S.
If the theorem holds for simplexes, then some point in the simplex S satisfies

s* e G(s*). (13)

But we defined G(s) = F(x(s)) c X, and so (13) implies s* eX. Then
s* = x(s*), and (13) says

x* E F(x*) with x* = s* = x(s*) E X. (14)

Thus, the theorem for simplexes implies the theorem for arbitrary convex
bodies X.

From now on, assume X is the nondcgenerate simplex

(15)

Form the nth barycentric subdivision of X. Define a continuous function
f"(x) as follows: If x is a vertex of any cell in the subdivision, let f"(x) equal
some point y E F(x). If x is a general point in a cell, then define f"(x) by linear
interpolation from the values at the N + 1 vertices of the cell that contains
x. Explicitly,

N

define f"(x) = L Ol"(xi) if
j=O

N

x = .L eixi, ei ~ o, _Lei= 1.
j=O

(16)

(17)

Note that if x lies on an (N- !)-dimensional face common to two cells,
then the two definitions of f"(x) on the common face are consistent.

The function f"(x) maps the body X continuously into itself. Now the
Brouwer theorem yields a fixed point

(18)

If, by chance, x" is a vertex of the subdivision, we're through, because we
picked f"(x) e F(x) at all vertices x. But if x" is not a vertex, we have more
work to do.

Suppose that x" lies in the cell

(19)

As in (17), let (} 0 , ••• , (}N be barycentric coordinates relative to the cell. If

then (18) implies

x" = f"(x") = (}noY"0 + (Jn1Yn1 + ... + (}nNYnN,

where
(j = 0, ... ,N).

(20)

(21)

(22)

6 Kakutani's Fixed-Point Theorem 287

We now use the Bolzano-Weierstrass theorem to pick a subsequence
n. --+ oo that makes everything in sight converge. We require these limits
as n = n. --+ oo :

x"--+ x*

(}nj --+ (}j (j = 0, ... , N) (23)

y"i --+ yi (j = 0, ... , N).

Since the cells shrink to points as n --+ oo, the first limit (23) implies the same
limit for the cell vertices:

x"i --+ x* as n. --+ oo (j = 0, ... ,N). (24)

Now the fixed-point equation (21) gives

x* = 0oY0 + 01Y1 + · · · + (}NyN. (25)

Where are the limit points yi? If we apply the closedness assumption (3) to
(22), we locate the limits:

yi e F(x*) (j = 0, ... , N). (26)

Ah! Now we recall the assumption: each subset F is convex. All the points
yi in the convex combination (25) lie in the same convex set F(x*). So (25)
yields the result:

x* e F(x*). (27)

In the theory of many-person games, the point x* gives optimal strategies
for all the players.

Application ton-person games. We will now deduce the Nash equilibrium
theorem for n-person games. This is one of those mathematical topics in
which the ideas are simple but the notation is complex. Subscripts beget
sub-subscripts; superscripts grow supersuperscripts; and the simple ideas get
lost. We don't need that kind of trouble.

So, with no loss of conceptional generality, we will fix n = 3. We have
exactly three players; their names are Able, Baker, and Charlie. Each has
a finite number of possible moves-called pure strategies:

Able has pure strategies i = 1, 2, ... , i0

Baker has pure strategiesj = 1,2, ... ,j0 (28)

Charlie has pure strategies k = 1, 2, ... , k0 .

If Able plays i while Baker plays j a~d Cha~ie plays k, the players get payoffs:
Able get aiik; Baker gets biik; Charhe get ~ik·

Mixed strategies. As we know from the study of zero-sum two-person
games, we should allow the players to choose their moves at random. We
will assume:

Able plays i with probability P;

Baker plays j with probability qi

Charlie plays k with probability rk,

(29)

288 3 Fixed-Point Theorems

where P; ~ 0, qi ~ 0, rk ~ 0, and

LP; = Lqi = :Lrk = 1. (30)

We assume i,j, k are independent random variables. Now the players have
more freedom. Instead of choosing pure strategies i,j, k, they may choose
mixed-strategy vectors p, q, r.

(Pure strategies are special cases of mixed strategies. For instance, if
Able wants to choose the pure strategy i = 2, he chooses the mixed strategy
p with component p2 = 1 and all other P; = 0.)

Now the payoffs are expected values. If our players play the mixed strate­
gies p, q, r, the payoff to Able is the expected value

a(p,q,r) = L a;ikPiqh;
i,j,k

(31)

the payoffs to Baker and to Charlie are the analogous sums b(p,q,r) and
c(p,q,r).

Let's look at the game through Able's eyes. He doesn't know exactly
which moves Baker and Charlie will make, but we assume he does know
their probability vectors q and r. For instance, Able doesn't know which
move Charlie will make, but Able does know the probability rk that Charlie
will make move k.

If Able knows Baker's q and Charlie's r, how can Able best choose his p?
Able will choose his p to maximize his payoff:

a(p,q,r) ~ a(p',q,r) for all p', (32)

where p' ranges over probability vectors. The maximum property (32) defines
a set of solutions

p E P(q,r). (33)

Here P is a subset of the probability vectors with i0 components.
Indeed, we can see just what P is if we look at the definition (31). As a

function of the variable vector p', the payoff is linear:

where

a(p',q,r) = L a;p;,
i

a; = L aiikqirk.
j,k

If q and r are given, then the coefficients a; are constants.

(34)

(35)

How do you maximize a linear form (34)? For instance, how would you
maximize

2p~ + 1p~ + 4p~ + 1p~ + 1p~ (36)

over probability vectors p'? That's easy. You would let p' equal any p that
averaged only the maximum coefficients. In the example (36), we see
max all= 7 and

(37)

6 Kakutani's Fixed-Point Theorem 289

and so we require that p lie in the set

p = {p: Pi;:?: 0, LP; = 1, Pl = P3 = 0}. (38)

The maximum value 7 is attained if and only if p' lies in P.
In general, to maximize the linear form (34), we require that p' lie in the

set

P = {p: P;?: 0, LP; = 1, P; = 0 if a;< m:x a11}. (39)

This is a closed, bounded convex set. If the coefficients at. a2 , •.. are functions
of q and r, then the convex body P is a function of q and r. Then we write
P = P(q,r), as we did in formula (33). The convex body P(q,r) is the set of
Able's optimal mixed strategies p.

Now pretend you are Baker. Then you know your enemies' strategies
p and r. And so you will choose your strategy q to maximize your payoff:

b(p,q,r) ;:?: b(p,q',r) for all q'. (40)

This holds for all q in a convex body Q(p,r), which is the set of Baker's optimal
mixed strategies q.

Analogously, Charlie knows p and q. He chooses r in the convex body
R(p,q) defined by the maximization

c(p,q,r);:?: c(p,q,r') for all r'. (41)

Nash's solution. We say that p,q,r solve the game if

p E P(q,r), q E Q(p,r), and r E R(p,q). (42)

Then no player has any incentive to change his mixed strategy as long as his
enemies don't change theirs. For instance, look at Baker. Why should he
change his q? Since q E Q(p,r), Baker is already getting as much as he can-as
long as Able and Charlie don't change p and r.

Nash's Theorem. Mixed strategies exist that solve the game.

PROOF. Given the arrays aijk> bijk> cijb we must show that mixed strategies
p,q,r exist that solve (15).

We set up the composite vector

(43)

This vector has N real components where (1) gives N = i0 + j 0 + k0 . The
vector x lies in the closed, bounded, convex set X defined by (30).

For each x E X we define the following subset of X:

[
P(p,r)J

F(x) = Q(p,r) .
R(p,q)

(44)

290 3 Fixed-Point Theorems

Here P, Q, and Rare the convex bodies defined by (32), (40), and (41). Nash's
theorem says just this: Some point x* lies in its own F(x*). That means: p*
lies in P(q*,r*); q* lies in Q(p*,r*); r* lies in R(p*,q*).

This statement begs us to use Kakutani's theorem. All we have to do is
to check these hypotheses:

(i) each subset F is convex in X;
(ii) the graph [x,F(x)] is closed.

Hypothesis (i) holds because the component subsets P, Q, R are convex. So
all we have to do is to check hypothesis (ii).

Suppose x andy satisfy

x EX, y E F(x),

and suppose these points tend to limits in the closed set X:

x __. xo, y __.yo.

Then we must show that these limits satisfy

y0 E F(x0).

(45)

(46)

(47)

Formula (43) says x has three parts: p,q,r. Similarly, y has three parts:
u, v, w. Then (45) says:

u E P(q,r), V E Q(p,r), WE R(p,q). (48)

These three statements mean the following: For· all probability vectors
p',q',r', we have

a(u,q,r) ~ a(p',q,r)

b(p,v,r) ~ b(p,q',r)

c(p,q,w) ~ c(p,q,r').

(49)

As x and y tend to limits, their parts p, q, r and u, v, w tend to limits. Since
the functions a, b, c are continuous, the inequalities (49) hold for the limits;
and that means y0 e F(x0).

We have now verified the hypotheses of Kakutani's theorem. And so
the game has a solution:

x* E F(x*). (50)

If you agree that we lost no conceptual generality be setting n = 3, then we
have proved Nash's theorem for n-person games.

References

1. S. Kak:utani, A generalization of Brouwer's fixed point theorem, Duke Math. J.
Vol. 8 (1941) pp. 457-458.

2. J. F. Nash, Equilibrium points inn-person games, Proc. Nat. Academy of Sciences,
Vol. 36 (1950) pp. 48-49.

6 Kakutani's Fixed-Point Theorem 291

PROBLEMS

1. Let X be the interval -1 ~ x ~ 1. Let F(x) be the set of numbers y satisfying
x 2 + y2 ;;::: !. Draw the graph

G = {(x,y): x EX, y e F(x)}.

Show that G is a closed set in the plane. Draw the sets F(-1), F(O), F(t), F(!), F(i).
Which of them are convex?

2. For 0 ~ x ~ 1 define f(O) = 17, f(x) = 1/x if x > 0. Draw the graph

G = {(x,y): 0 ~ x ~ 1, y = f(x)}.

Show that G is a closed set in the plane, although the function f(x) is discon­
tinuous. Is G convex?

3. For the function f(x) in problem 2, define the set-valued function F(x) = {y:
0 ~ y ~ f(x)}. Draw the graph

G1 = {(x,y): 0 ~ x ~ 1, y E F(x)}.

Is the graph G1 convex? Is it closed? Is the set F(x) convex? Is it closed?

4. Using Nash's theorem, prove von Neumann's theorem for zero-sum, two-person
games: Given an m x n matrix A, prove that there are mixed strategies x0 and y0

such that
x · Ay0 ~ x 0 • Ay0 ~ x 0 • Ay

for all mixed strategies x and y.

5. Earlier, we discussed the nonzero-sum game disarmament (Ch. I, Sec. 14). I said
that both countries arm in a Nash equilibrium; please verify that now. I also said
that this equilibrium was stable, meaning that the optimal mixed strategies don't
change if the payoffs change slightly. Is that true? Are all Nash equilibria stable?

6. Suppose Able, Baker, and Charlie play a game. Each writes an integer from 1
to 10. If Able writes i, Baker j, and Charlie k, these are the payoffs: li-il to Able,
li- kl to Baker, and lk- il to Charlie. Find the Nash equilibrium.

7. Majority wins: Each of three players shouts Red! or Black! If one player shouts
one color while the other two players shout the other color, the one player must
pay a dollar to each of the other two players. Show that this is a zero-sum game,
and find a Nash solution. How is this solution upset if two of the players collude?
Write the payoff matrix of the zero-sum two-person game in which Able plays
against a coalition of Baker and Charlie. Assume Baker and Charlie always shout
the same color. Show that Able must expect to lose, on the average, a dollar a
game.

8. In the statement of Kakutani's theorem the subset F(x) is not assumed closed.
Show that the closed-graph assumption (3) implies F(x) is closed.

9. Here is a quick false proof of Kakutani's theorem: The assumptions imply there
must be a continuous point-valued function f(x) e F(x); now Brouwer's theorem
guarantees a fixed point x* = f(x*). Construct a counterexample that shows this
proof is false.

292 3 Fixed-Point Theorems

*10. In Kakutani's theorem drop the assumption that all the sets F(x) are convex. Then

prove some point x* lies in the convex hull of F(x*). (Definition: The convex hull

of a set Y is the intersection of all convex sets that include Y. For Y c RN the

convex hull is the set of all convex combinations

00 y0 + 01y 1 + · · · + ONyN with 0;;::. 0, EO; = 1,

where y0, ... , yN lie in Y.)

* 11. Let X be a closed, bounded, convex set in RN. Let f(x) maps X into itself, but

do not assume that f(x) is continuous. Let F(x) be the convex hull of the set of

limit points of f(z) for z-+ x (with z # x). Then show that some point x* lies in

the set F(x*). Show that this result is just Brouwer's theorem if f(x) is continuous.

Illustrate the result if f(x) is the discontinuous function

{
0.5 for -1 ~ x < 0

f(x) = 0.6 for x = 0

-0.7 for 0 < x ~ 1

What are the two limit points of f(z) as z-+ 0? What is the set F(O)? What is x*?

Algebra, fundamental theorem of 249
Alternative

Farkas 55
Fredholm 57

Apples and oranges, comparing 104
Argument, principle of the 245
Artin, Emil 233
Anellt-Ascoli selection principle 279
Ascent of Man 112, 124
Asimov, D. 261
Assignment problems

complete 143
optimal 145
transportation problem 150, 156
transshipment problem 155

Astronomy and Astrophysics 7

Ball and sphere 233, 251
Banach space

compact sets in 275
completeness (Cauchy property) 274
continuous functions on 273
general 274
Hilbert space 275
of continuous functions 273

Bankers Trust Company 3
Bank portfolio management 3
Barycentric coordinates 262

used in simplex subdivision 265
Basic solutions 27-31, 54
Bellman, Richard 153
Bluffing 120
Bolzano-Weierstrass theorem

stated 51
proved 52

Boothby, W.M., 261
Boundary-value problems,

nonlinear 281 , 282
Brezis, H. 280
Broaddus,Alfred 3

Index

Bronowski, Jacob 112, 124, 125
Brouwer fixed-point theorem

applied to positive matrices, differential
equations, algebra 249

in game theory 112, 249
proofs

elementary 267
Garsia 's 232
Milnor's 251

reference 24 7
Browder, Felix viii, 280

Calculus of variations and shortest
routes 155

Canonical minimum problem 12
Cauchy-Lipschitz theorem 229,

231
Chames, A. 103
Chebyshev approximation 8
Closed graph 284
Closed sets 44
Cohon, J.L. 111
Computer methods for linear programming

(see Simplex method)
Concavity, local 195
Constraint qualification, CQ 191
Contraction mapping 225, 228
Convex functions 206
Convex (concave)

programming 199-202

294

Convex sets
bodies 247
convex hull 51
defined 44
polytopes 45
separating planes 45ff.

Courant-Hilbert vii
Criterion row 86
Cutting plane 129

Dantzig,George 5,32,43,91, 103,112,
124

Debreu, G. 281
Decisions, multiobjective 105
Degree of difficulty 214
Degree of mapping 239
Diet problem 5, 105
Differential equations

Cauchy-Lipschitz theorem 231
equilibria and periodic solutions 249
nonlinear boundary-value

problems 281, 282
Peano theorem 280, 281

Diophantine equations 127
Directions on spheres 245, 253
Disarmament 122
Discriminant 236, 243
D; P, and Z (see Duffin, Peterson, and

Zener)
Dual finite cone 61, 62
Dual linear program 15
Duality theorem

for geometric programming 216
proved by Farkas alternative 62
proved by simplex method 102

Duffin, R.J., Peterson, E.L., and Zener,
Clarence 205,206,213,219

Dunford, N., and Schwartz, J.T. 245,
247

Dynamic programming 153, 155

Efficient solutions
assigning relative weights (values) 107
defined 106

Engineering
communication 204
design 205

Entropy of information 204
Equicontinuity 277
Equilibrium

for differential equations 249
in economics 281

Equilibrium theorems in linear
programming 24, 66

Faber, S.M. 7
Fallacy of composition 123
Farkas, Julius 5, 55, 59
Finite cones

closed and convex 54
dual 61, 62
unions of basic cones 64

Fixed-point theorems
Brouwer 232, 251, 262
contraction mapping 225, 228
for all equations 225
Kakutani 283
Krasnoselskii 282
Rothe 250
Schauder 272

Fixed points, approximate 272
Fluid flow inside torus 250
Ford, L.R., Jr. 140, 153
Frechet derivative 227
Fulkerson, D.R. 140

Galaxy population synthesis 7
Gale, David 151, 153
Games

and Brouwer's theorem 249
bluffing 120
chess 112

Index

equivalent to linear programs 120
hide and seek 125
minimax property 124
Morra 124
multistage 126
Nash's theorem 287
nonzero-sum, disarmament 122
n-person 122
payoff and value 113
payoff matrix 115
pure and mixed strategies 113
symmetric 119
von Neumann's theorem, Dantzig 's

proof 116
zero-sum, two person 112ff.

Games and Decisions 124
Garsia, Adriano 232ff.
Garsian, differential operator 236
Garvin, Walter 175
Geometric programming

as convex programming 205
book 219

Index

degree of difficulty 215
duality theorem 216
geometric inequality 219
includes linear programming 222
posynomials 205

Gomory's theorem 130, 131

Hairy-ball theorem 245, 253
Hall, Marshall, Jr. 153
Hall, P. 141, 153
Halmos, Paul 153
Hammerstein integral equation 229, 272,

280
Heinz, E. 245, 247
Hilbert space 275
Hilton, P. and Wylie, S. 261
Hirsch, M. 262
Hitchcock, F.L. 175
Hitler and Chamberlain 120
Hoffman, A.J. 40
Homology modulo 2 (see Spemer's

lemma)
Homotopy theorem 250
How to Solve It 272, 280
Hu, T.C. 131

Implicit-function theorem 229, 231
Information theory 70, 204
Integer linear programming

general 127
network flows 132

Integral equations, nonlinear 229, 272,
280-282

Investment
economic definition 122
portfolio optimization 3, 189

John, Fritz 190, 203

Kakutani 's fixed-point theorem
applied to discontinuous mappings

292
applied to n-person games 287
closed graph, upper

semicontinuous 284
for set-valued functions 283
implies Brouwer theorem 284

Kakutani, S., counterexample by 275
Karrass, Chester 120, 124
Karush, William 190, 203

Knapsack problem 127
Koopmans, T.C. 175

295

Krasnoselskii fixed-point theorem 282
Kuhn-Tucker conditions 190-200, 203

Lagrange multipliers 187, 192, 203
Lang, S. 262
Least-squares 7, 189
Leray, J. viii, 232
Lexicographic simplex algorithm for

degeneracy 97ff.
Life, dollar value of 104
Linear algebra 9- 11
Linear programming

basic solutions 27
canonical form 18
continuity 7 5
defined 12, 14
dual 15
equilibrium 24, 66
feasible and optimal solutions 15
integer 127, 132
multiobjective 104
optimal criterion 24
perturbations and parametric 68
primal-dual equivalence 16
simplex method 32, 79, 93, 97
uniqueness of solution 73

Luce, R. Duncan 122, 124

Markov processes by linear
programming 58

Matrices
compound (composite) 63
definition and properties 10, 11
Jacobian 232
Markov's theorem 249
norm 232
Perron's theorem 249

McCann, G.D. I
Methods of Mathematical Physics vii
Metric space, complete 227
Milnor, John 251ff.
Mobil Corporation 1
Morgenstern, Oskar 112, 124
Multiobjective linear

programming 104ff.

Nash's theorem for n-person
games 287-290, 250, 123

Negotiating Game 120, 124

296

Network flows
applications 141ff.
as linear programming 138
defined 132
integer versus real 139
max-flow, min-cut theorem 135
unsaturated-path algorithm 137

Neumann, John von 112, 124, 125
Newton's method 227, 231
Nirenberg, L. viii
Nonlinear programming

convex (concave) 199
dynamic 153
general 190
geometric 205
quadratic 177

Orden, A. 96, 103

Parametric programming 69ff.
Partial ordering 106
Peano existence theorem 280

extended to delay-differential
equations 281

Perron's theorem 249
Perturbations

in lexicographic ordering 99, 102
in linear programming 68

Pierce, J.R. 70, 77
Pivot, element, row, and column 83
P6lya, George 272, 280
Posynomials 205
Primal-dual equivalence 16

Quadratic programming
for stock portfolio selection 189
for Sylvester's problem 187, 188
in astrophysics 7
Wolfe's method 177

Raiffa, Howard 122, 124
Rank of a matrix 11
Resource allocation, optimal 6
Retracts 250
Revised simplex algorithm 93ff.
Rothe fixed-point theorem 250
Russell, Bertrand 123, 124

Saddle-value problems 197-202
Salkin, H.M. 131

Schauder fixed-point theorem
applied to differential

equations 280-283

Index

applied to economic equilibrium 281
applied to Hammerstein integral

equation 272,280
proved 277-280

Shadow costs 68
Shannon, Claude 70,204
Shapley, Uoyd 124
Shortest-route problem 151
Shubik, Martin 124
Simplex

barycentric subdivision 265
body and cells 266
boundary elements 264
defined 262
faces 268
vertices 262

Simplex method
basis indices and matrix 36, 37
computer algorithms 79, 93, 97
finiteness 40
idea of 32
non-degeneracy in 32, 36
prevention of cycling 100

Slepian, D. 204
Spanier, E. 262
Sperner's lemma 267
Stiefel, Edward 8
Stigler, George 5
Smart, D.R. 230
Springer, Julius vii
Stereographic projection 258
Stock market

as zero-sum game 122
portfolio optimization 189

Sylvester's problem 187, 188
Symmetry, love of 123, 124

Theory of Games and Economic
Behavior 112

Theory of Linear Economic Models 151,
153

Topological equivalence 234
Transportation problem 6, 166

canonical form 158
consistency condition 158
degeneracy 159, 162, 164
network flow algorithm 156
numerical solution by simplex

method 168
Transshipment problem 151, 155

Index

Uniform convergence 231, 273, 280

Vajda, S. 120, 124
Vaughan, H. E. 153
Vectors, notations for 9

Walras, L. 281
Winding number 252
Wisdom and knowledge 70, 120
Wolfe, Philip 7, 96, 103, 177, 187

297

Undergraduate Texts in Mathematics

Apostol: Introduction to Analytic

Number Theory.

1976. xii, 370 pages. 24 illus.

Childs: A Concrete Introduction to

Higher Algebra.

1979. xiv, 338 pages. 8 ill us.

Chung: Elementary Probability Theory

with Stochastic Processes. Third Edition

1979. 336 pages.

Croom: Basic Concepts of Algebraic

Topology.

1978. x. 177 pages. 46 illus.

Fleming: Functions of Several Variables.

Second edition.

1977. xi. 411 pages. 96 illus.

Halmos: Finite-Dimensional Vector

Spaces. Second edition.

1974. viii. 200 pages.

Franklin: Methods of Mathematical Economics.

Linear and Nonlinear Programming,

Fixed-Point Theorems.

1980. x, 297 pages. 38 illus.

Halmos: Naive Set Theory.
1974. vii, 104 pages.

Kemeny/Snell: Finite Markov Chains.

1976. ix, 210 pages.

Lax/ Burstein{ Lax: Calculus with

Applications and Computing.
Volume I.

1976. xi, 513 pages. 170 illus.

LeCuyer: College Mathematics with

A Programming Language.

1978. xii, 420 pages. 126 illus. 64 diagrams.

Malitz: Introduction to Mathematical
Logic.

Set Theory - Computable Functions -
Model Theory.

1979. 255 pages. 2 illus.

Prenowitz/ Jantosciak: The Theory of

Join Spaces.

A Contemporary Approach to Convex

Sets and Linear Geometry.

1979. 534 pages. 404 illus.

Priestley: Calculus: An Historical

Approach.

1979. 441 pages. 300 illus.

Ross: Elementary Analysis

A Theory of Calculus

1980. viii, 264 pages.

Protter I Morrey: A First Course in Real
Analysis.
1977. xii, 507 pages. 135 illus.

Sigler: Algebra.
1976. xi, 419 pages. 32 illus.

Singer I Thorpe: Lecture Notes on

Elementary Topology and Geometry.

1976. viii, 232 pages. 109 illus.

Smith: Linear Algebra
1978. vii, 280 pages. 21 illus.

Thorpe: Elementary Topics in

Differential Geometry.

1979. 253 pages. 126 illus.

Whyburn/Duda: Dynamic Topology.

1979. I 52 pages. 20 ill us.

Wilson: Much Ado About Calculus.
A Modern Treatment with Applicatiom

Prepared for Use with the Computer.
1979. 788 pages. 145 illus.

Instructor's Manual
vi, 165 pages.

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions false

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /PDFA1B:2005

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

