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Preface

This book is intended for undergraduate students who have some working knowl-
edge of elementary calculus. It covers the geometries of various two-dimensional
homogeneous spaces with metrics—i.e., the Euclidean plane, the sphere, the
hyperbolic plane, and the Lorentz–Minkowski plane, which is the two-dimensional
spacetime that arises from the theory of special relativity. Our main purpose is to
introduce abstract spaces, such as the hyperbolic plane and the Lorentz–Minkowski
plane, to undergraduate students as easily and intuitively as possible. We start with
very intuitive spaces, the Euclidean plane and the sphere, and focus on a specific
structure theorem for isometries (Theorems 1.6, 2.7, 4.20, and 5.7), in which every
isometry is a composition of at most three (or four for the Lorentz–Minkowski
plane) reflections. This theorem appears in very similar forms in all four spaces, and
the proofs for them can also be presented in a similar fashion. We present geometric
proofs of these reflection theorems for the first two intuitive spaces and gradually
transit to the latter two abstract spaces. Although some terminologies are different
and more abstract, the basic structure of the theorem remains the same. Our strategy
is to familiarize the readers with the theorems and logic of the proofs first in the two
intuitive spaces and to then study the theorems, having similar structures and logic,
for the two abstract spaces so that the transition from concrete spaces to abstract
spaces can be made easily and smoothly.

In addition to the concentration on the reflection theorem, another difference
between this book and other similar books on geometry is that it treats the geometry
of special relativity from a truly geometric viewpoint, employing tools that can
be used by undergraduate students. Special relativity is an experimentally well
confirmed and universally accepted physical theory that explains how space and
time are linked. It replaces the primitive notion of an absolute universal time by
the notion of a relative time that is not independent of the reference frame and the
spatial position. Rather than treating the invariant time and invariant spatial intervals
between two events separately, one needs to consider an invariant spacetime interval,
which enables us to understand the spacetime from a geometric view of distances
and isometries.

vii



viii Preface

It is not easy for undergraduate students to approach the geometry of special
relativity. The existing books exploit tools that are too difficult for beginning
undergraduates to follow or do not provide a truly geometric viewpoint, depicting
only some physical consequences of the theory. We amalgamate special relativity,
as another interesting geometry, with classical geometries, noting the following two
points.

First, a similar type of reflection theorem holds for the space of special relativity.
We repeat a logically similar proof of the theorem given for classical spaces.
We think that this similarity helps the reader approach the geometry of special
relativity without reluctance. Although we mainly focus on the structure theorems of
isometries, readers will also understand other aspects of the geometry of the spaces
during their study.

Second, the three-dimensional spacetime of special relativity contains a hyper-
surface (a hyperboloid) that is isometric with the hyperbolic plane. It is always an
interesting task to connect two subjects that initially seem completely different. We
concretely explain this connection and give a thorough description. This will help
readers prepare for more advanced subjects, such as higher dimensional hyperbolic
geometry.

The structure of the book is as follows: In Chapter 1, we introduce the basic
geometric terminologies in the familiar Euclidean geometry, such as distance,
isometry, translation, reflection, rotation, orientation, and a fixed point. We also
introduce the reflection theorem and other structure theorems for isometries. Since
our purpose is to introduce abstract spaces to students using similarities to intuitive
spaces, we try to keep the discussion within studies on isometries. In Chapter 2, we
transit to another classical and intuitive geometry, the surface of the sphere. These
theorems and the proofs continue to appeal to geometric intuition. At this point,
the readers will start to note that the theorems and proofs for the sphere are very
similar to those for the Euclidean plane. Chapter 3 deals with the stereographic
projection and inversions. We introduce and prove some properties of inversions.
Unlike other books, we try to provide a representation of the geometry of the sphere
in the extended plane, following the perspectives of Henri Poincaré, which, we
hope, helps the readers understand why we must use abstract metrics for some
spaces. In Chapter 4, we deal with hyperbolic geometry. Although the treatment
is standard, we try to keep the prerequisite for this chapter minimal. We do not use
the notion of complex numbers. In Chapter 5, we introduce the Lorentz–Minkowski
plane, which is the two-dimensional space of special relativity. We keep the same
structure, i.e., we define similar terminologies and prove the theorem using a similar
logical structure. After we are familiarized with the geometry of special relativity,
we show that the hyperboloid in three-dimensional spacetime is actually isometric
with the hyperbolic plane. Finally, in Chapter 6, we explore the geometry of special
relativity. We define basic notions such as causality, worldline, four-vector, and four-
momentum. Some basic principles of relativistic kinematics will be touched upon.
Solving exercises is the most important part of learning mathematics. The results of
some exercises are used in the text and some interesting facts are stated in exercises.
The solutions for some selected exercises are provided at the end of the book.
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Chapter 1
Euclidean Plane

“The study of mathematics, like the
Nile, begins in minuteness but ends in
magnificence.”

Charles Caleb Colton (1780–1832)

“Equations are just the boring part of
mathematics. I attempt to see things in
terms of geometry.”

Stephen Hawking (1942–2018)

The word “geometry” is derived from the Greek words geos and metron, meaning
earth and measure, whose definition is generally attributed to the fact that the ancient
Egyptians regularly utilized geometry to resurvey the fertile farmlands of the Nile
river floodplain in late summer. The concepts of “distance” and “area” need not
be defined; they are already given by nature. A plane with this concept of distance
is called the Euclidean plane, denoted by E

2. It does not have special points or
directions. When this plane is equipped with a coordinate system, it is given the
origin 0 and x- and y-axes. The Euclidean plane with a coordinate system can be
identified by R

2, the set of all ordered pairs (x, y) of real numbers. We will not
distinguish R

2 and E
2 in this book.

1.1 Isometries

For two points p1 = (x1, y1), p2 = (x2, y2) ∈ R
2, the distance between p1 and p2

is given by

© Springer Nature Switzerland AG 2020
N.-H. Lee, Geometry: from Isometries to Special Relativity, Undergraduate
Texts in Mathematics, https://doi.org/10.1007/978-3-030-42101-4_1
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2 1 Euclidean Plane

Fig. 1.1 Line Lp1,p2 with
respect to the points p1 and
p2 p1

p2

Lp1, p2

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2.

Note that d(p1, p2) = 0 if and only if p1 = p2. Let us start with a definition.

Definition 1.1. A bijective map φ : R2 → R
2 is called an isometry of R

2 if it
preserves the distance, i.e.,

d(φ(p1), φ(p2)) = d(p1, p2)

for any two points p1, p2 ∈ R
2.

“Iso” means “same,” and “metry” indicates “measurement,” as in the word “geom-
etry.”

A line on R
2 can be regarded as the set of points equidistant from the two distinct

points p1 and p2 (Exercise 1.2, Figure 1.1):

Lp1,p2 = {p ∈ R
2 | d(p1, p) = d(p2, p)}.

Theorem 1.2. An isometry maps a line to a line.

Proof. Let φ : R2 → R
2 be an isometry, and let L be a line on R

2. Then, there are
two distinct points p1 and p2 such that

L = {p ∈ R
2 | d(p1, p) = d(p2, p)}.

Since φ is injective, φ(p1) and φ(p2) are distinct. Consider a line

L′ = {q ∈ R
2 | d(φ(p1), q) = d(φ(p2), q)}.

We will show that

L′ = φ(L).
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Let p ∈ L. Note that

d(p1, p) = d(p2, p).

Since φ preserves distance,

d(φ(p1), φ(p)) = d(p1, p) = d(p2, p) = d(φ(p2), φ(p)),

i.e.,

d(φ(p1), φ(p)) = d(φ(p2), φ(p)),

so φ(p) ∈ L′. Conversely, let q ∈ L′. Note that

d(φ(p1), q) = d(φ(p2), q).

Since φ is surjective, there exists a point p such that q = φ(p). Accordingly, the
following holds:

d(φ(p1), φ(p)) = d(φ(p2), φ(p)).

However, as before,

d(p1, p) = d(φ(p1), φ(p)) = d(φ(p2), φ(p)) = d(p2, p),

i.e., d(p1, p) = d(p2, p). Therefore, p ∈ L, and then,

q = φ(p) ∈ φ(L). ��
By Theorem 1.2, an isometry maps a triangle to a triangle. Since an isometry

preserves distance, the lengths of the edges in the triangle do not change. Thus,
an isometry maps a triangle to a congruent triangle. Because a polygon can be
decomposed into a union of triangles, an isometry maps a polygon to a congruent
polygon (Figure 1.2). In general, an isometry maps a geometric figure to a congruent
one, which will be clear by the end of this chapter. One can consider isometries as
maps that preserve all geometric properties of geometric figures.

Example 1.1. Let φ(x, y) = (2 − x, y). For two points p1 = (x1, y1), p2 =
(x2, y2) ∈ R

2, we have

d(φ(p1), φ(p2)) =
√

((2− x1)− (2− x2))
2 + (y1 − y2)2

=
√

(x1 − x2)2 + (y1 − y2)2

= d(p1, p2).



4 1 Euclidean Plane

f

Fig. 1.2 An isometry maps a polygon to a congruent polygon

Therefore, φ is an isometry.

Example 1.2. Let φ(x, y) = (x, y3). If p1 = (0, 0) and p2 = (0, 2), then

d(φ(p1), φ(p2)) =
√

(0− 0)2 + (0− 8)2

= 8 �= 2 =
√

(0− 0)2 + (0− 2)2 = d(p1, p2),

i.e., d(φ(p1), φ(p2)) �= d(p1, p2). Therefore, φ is not an isometry.

A translation, which moves the entire plane, is also an isometry.

Example 1.3 (t(a,b): translation by vector (a, b)). Let p = (a, b) be a point and

tp(x, y) = t(a,b)(x, y) = (x + a, y + b).

Then, tp is an isometry.

A reflection in a certain line is also an isometry.

Example 1.4 (r̄: reflection in the x-axis). Let r̄(x, y) = (x,−y); then, r̄ is an
isometry.

Example 1.5 (rθ : rotation by an angle θ about the origin). Let

rθ (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ);

then, rθ is an isometry (Figure 1.3).

Example 1.6 (rp,θ : rotation by an angle θ about a point p). For a point p and an
angle θ , let us denote by rp,θ the counterclockwise rotation by angle θ about point
p. Intuitively, this is also an isometry, which can be shown by direct calculation.
Note

rp,θ = tp ◦ rθ ◦ t−p.
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Fig. 1.3 Rotation rθ by an
angle θ about the origin

x

y

0

p

rq (p)

q

We leave the proof of the following theorem as an easy exercise for the reader
(Exercise 1.7).

Theorem 1.3.

1. The identity map

idR2 : R2 → R
2

is an isometry.
2. If φ is an isometry of R2, then φ−1 is also an isometry.
3. If φ and ψ are isometries of R2, then φ ◦ ψ is also an isometry.

We denote the set of all the isometries of R2 by Iso(R2).1

In addition to these isometries, what other ones are there? The answer is
somewhat surprising. Every isometry is a reflection or a composition of reflections.
We will illustrate this fact in the coming sections.

Exercises

1.1. Decide whether each of the following maps is an isometry:

(a) φ(x, y) = (2x,
y
2

)
(b) φ(x, y) = (x, |y|)

(c) φ(x, y) = 1√
2
(x − y, x + y + 1) (d) φ(x, y) = 1

5 (3x + 4y, 4x − 3y)

1.2. Let L be a line determined by the equation

ax + by + c = 0,

1Theorem 1.3 implies that Iso(R2) forms a “group” together with the composition operation.
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where a, b, and c are real numbers with (a, b) �= (0, 0). Show that there exist two
distinct points p1 and p2 such that

L = {p ∈ R
2 | d(p1, p) = d(p2, p)}.

1.3. Show that an isometry maps a circle to a circle of the same radius.

1.4. Suppose that a map φ : R2 → R
2 preserves distance. Show that this map is

injective.

1.5. Show that an isometry φ is a rotation about the origin if and only if

φ(x, y) = (ax − by, bx + ay)

for some real numbers a and b, with a2 + b2 = 1.

1.6. Explicitly express rp,θ (x, y) for p = (a, b).

1.7. Prove Theorem 1.3.

1.8. Show the following:

(a) r̄−1 = r̄ ,
(b) tα ◦ tβ = tα+β , t−1

α = t−α for α, β ∈ R
2,

(c) rθ ◦ rθ ′ = rθ+θ ′ , r−1
θ = r−θ for θ, θ ′ ∈ R.

1.9. A point α in R
2 is said to be fixed by a map f : R2 → R

2 if f (α) = α.
Suppose that two distinct points p and q are fixed points of an isometry φ. Show
that every point on the line through p, q is a fixed point of φ.

1.2 Three Reflections Theorem

An isometry is determined by how it maps three non-collinear points.

Theorem 1.4 (Three points theorem). Let φ and ψ be isometries of R2. If

φ(p1) = ψ(p1), φ(p2) = ψ(p2) and φ(p3) = ψ(p3)

for some set of non-collinear points p1, p2, and p3, then φ = ψ .

Proof. The isometry φ maps the triangle 
p1p2p3 to a congruent triangle


φ(p1)φ(p2)φ(p3),

which implies that the points φ(p1), φ(p2), and φ(p3) are also non-collinear
(Figure 1.4).
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Fig. 1.4 The isometry φ

maps the triangle 
p1p2p3
to a congruent triangle

φ(p1)φ(p2)φ(p3)

p1

p2 p3

f(p1)f(p2)

f(p3)

f

Fig. 1.5 Reflection r̄L in a
line L

r̄L(p)

p

L

r̄L

Suppose that φ �= ψ . Then, there exists a point p such that

φ(p) �= ψ(p),

and we can define a line L = Lφ(p),ψ(p). Note that

d(φ(p), φ(p1)) = d(p, p1) (∵ φ is an isometry)

= d(ψ(p), ψ(p1)) (∵ ψ is an isometry)

= d(ψ(p), φ(p1)),

i.e., d(φ(p), φ(p1)) = d(ψ(p), φ(p1)). Therefore, φ(p1) ∈ L. Similarly, we have
the following:

φ(p2) ∈ L and φ(p3) ∈ L.

Then, the points φ(p1), φ(p2), and φ(p3) are collinear, which is a contradiction.
��

For a line L, let us denote the reflection in the line L by r̄L. It is then easy to see
that r̄L is an isometry (Figure 1.5).
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Remark 1.5. From Figures 1.1 and 1.5, the following is evident:

(a)

r̄Lp1,p2
(p1) = p2, r̄Lp1,p2

(p2) = p1.

(b)

r̄Lp1,p2
(p) = p for each point p ∈ Lp1,p2 .

(c)

r̄Lp1,p2
◦ r̄Lp1,p2

= idR2, i.e., r̄−1
Lp1,p2

= r̄Lp1,p2
.

Now we can show that every isometry can be expressed as a composition of
reflections.

Theorem 1.6 (Three reflections theorem). An isometry of R2 is a composition of
at most three reflections.

Proof. Let φ : R2 → R
2 be an isometry and p1, p2, and p3 be non-collinear points.

We divide the situation into four cases.

Case 1. Assume that

φ(p1) = p1, φ(p2) = p2, φ(p3) = p3;

then, we have φ = idR2 , letting ψ = idR2 in Theorem 1.4. Note that idR2 = r̄L ◦ r̄L
for every line L.

Case 2. If only two of p1, p2, and p3 coincide with their images under φ, say

φ(p1) = p1, φ(p2) = p2 but φ(p3) �= p3,

then

d(p3, p1) = d(φ(p3), φ(p1)) = d(φ(p3), p1).

Therefore, letting L = Lp3,φ(p3), we have p1 ∈ L. Similarly, we have p2 ∈ L. Let
ψ = r̄L ◦ φ.

ψ(p1) = r̄L(φ(p1))

= r̄L(p1)

= p1 (∵ p1 ∈ L).

Similarly, we have ψ(p2) = p2. Note also that
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ψ(p3) = r̄L(φ(p3)) = p3 (∵ L = Lp3,φ(p3)).

Consequently, ψ = idR2 by Theorem 1.4 again, i.e., r̄L ◦ φ = idR2 . Therefore,

φ = r̄−1
L = r̄L,

and φ is a reflection.

Case 3. If only one of p1, p2, and p3 coincides with its image under φ, say

φ(p1) = p1 but φ(p2) �= p2, φ(p3) �= p3,

then

d(p2, p1) = d(φ(p2), φ(p1)) = d(φ(p2), p1).

Therefore, letting M = Lp2,φ(p2), we have p1 ∈ M . If φ′ = r̄M ◦ φ, then

φ′(p1) = r̄M(φ(p1)) = r̄M(p1) = p1

and

φ′(p2) = r̄M(φ(p2)) = p2.

Therefore, we return to Case 1 or Case 2. Therefore, we have φ′ = idR2 or φ′ = r̄L
for some line L, i.e., φ = r̄M or φ = r̄M ◦ r̄L.

Case 4. Assume, finally, that

φ(p1) �= p1, φ(p2) �= p2, φ(p3) �= p3. (1.1)

Let N = Lp1,φ(p1) and φ′′ = r̄N ◦ φ. Note that

φ′′(p1) = r̄N (φ(p1)) = p1.

Therefore, we return to Case 1, Case 2, or Case 3 and we have

φ′′ = idR2, φ
′′ = r̄M or φ′′ = r̄M ◦ r̄L

for some lines L and M , i.e.,

φ = r̄N , φ = r̄N ◦ r̄M or φ = r̄N ◦ r̄M ◦ r̄L.

��
Theorem 1.4 and Theorem 1.6 are the main theorems of this chapter, and very

similar theorems will appear for the other types of surfaces, such as the sphere,
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the hyperbolic plane, and the Lorentz–Minkowski plane. The proofs are also very
similar.

Exercises

1.10. Let L1 and L2 be lines. Suppose that r̄L1 ◦ r̄L2 = idR2 . Show that L1 = L2.

1.11. Suppose that a map φ : R2 → R
2 preserves distance. Show that this map is

bijective.

1.12. Given isometries φ and ψ , the conjugation of ψ by φ is the isometry

ψφ = φ ◦ ψ ◦ φ−1.

(a) For isometries φ, ψ , and ξ , show that

ξ(φ◦ψ) = (
ξψ
)φ

and

(ψ ◦ ξ)φ = ( ψφ
) ◦ ( ξφ

)
.

(b) For reflections r̄L and r̄M , show that

r̄
r̄M

L = r̄L′ ,

where L′ = r̄M(L).

(c) For an isometry φ, show that

r̄
φ

L = r̄L′ ,

where L′ = φ(L).

1.13. Two isometries φ, φ′ are said to be conjugate if there is an isometry ψ such
that φ = φ′ψ

. Show that any two reflections are conjugate.

1.14. For two points p1 = (x1, y1), p2 = (x2, y2) ∈ R
2, recall that the inner

product between them is defined as follows:

p1 · p2 = x1x2 + y1y2.

Then, the norm is ‖p‖ = √p · p.
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For a line L = Lp1,p2 , show that

r̄L(p) = p − 2(p − u) · v
‖v‖2 v

for every point p ∈ R
2, where u = 1

2 (p1 + p2) and v = 1
2 (p1 − p2).

1.3 Rotations and Translations

In the previous section, we proved that every isometry R
2 is a composition of at most

three reflections. Therefore, a rotation and a translation should be compositions of
reflections. We investigate how they come to be compositions of reflections. Let L

and M be two lines, and consider the composition r̄M ◦ r̄L. The situation can be
divided into three cases.

First, when L = M , trivially, we have r̄M ◦ r̄L = idR2 .
Second, when L meets M at a single point p with angle θ , as in Figure 1.6, we

claim that

r̄M ◦ r̄L = rp,2θ .

We prove this in the following. Clearly, r̄M ◦ r̄L(p) = p = rp,2θ (p). Choose a point
p1 on L and a point p2 on M that are different from p. From Figure 1.6, we clearly
have

(r̄M ◦ r̄L)(p) = p = rp,2θ (p),

(r̄M ◦ r̄L)(p1) = r̄M(p1) = rp,2θ (p1)

p
p1

p2

r̄L(p2)

r̄M (p1) = rp,2q (p1)
M

L(r̄M ◦ rL)(p2) = rp,2q (p2)¯

q
q

qq

Fig. 1.6 A composition of two reflections in non-disjoint lines is a rotation
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and

(r̄M ◦ r̄L)(p2) = r̄M(r̄L(p2)) = rp,2θ (p2).

By Theorem 1.4 and noting that the three points p, p1, and p2 are not collinear,
we conclude that

r̄M ◦ r̄L = rp,2θ .

We note that M = rθ (L).
Conversely, it is also clear from Figure 1.6 that every rotation is the composition

of two reflections in non-disjoint lines.

Example 1.7. Consider two lines

{
L : x − y = 1
M : x + y = 1.

Since they meet at p = (1, 0) with angle π
2 , we have

r̄M ◦ r̄L = rp,π .

Finally, the third case is when L does not meet M (i.e., they are parallel). In this
case, we claim that

r̄M ◦ r̄L = t2a,

where the vector a (= p3 − p2) is as shown in Figure 1.7.
Choose two distinct points p1 and p2 from the line L and p3 from the line M

such that the line through points p2 and p3 meets the lines L and M orthogonally
(Figure 1.7). Noting that r̄L(p1) = p1, we have

(r̄M ◦ r̄L)(p1) = r̄M(p1) = t2a(p1),

Fig. 1.7 A composition of
two reflections in parallel
lines is a translation

M

L

p2

p3
a

r̄L (p3)

r̄M (p1)

r̄M (p2)

(¯M ◦ rL)(p3)r ¯
p1
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Fig. 1.8
r̄M ◦ r̄L = r̄M ′ ◦ r̄L′ = rp,2θ

q

M

L

p

q

M′

L′

i.e., (r̄M ◦ r̄L)(p1) = t2a(p1). Similarly, we have

(r̄M ◦ r̄L)(p2) = t2a(p2).

It is not hard to see that

(r̄M ◦ r̄L)(p3) = t2a(p3).

Since p1, p2, and p3 are not collinear, we conclude that

r̄M ◦ r̄L = t2a.

We note also that M = ta(L).
Conversely, Figure 1.8 implies that every translation is the composition of two

reflections in parallel lines.
In summary, we have proved the following theorem.

Theorem 1.7.

1. a. An isometry is a rotation about a point p if and only if it is a composition of
two reflections in lines through the point p.

b. Let L, M , L′, and M ′ be lines through a point p. If rp,θ (L) = M and
rp,θ (L

′) = M ′ for some angle θ (Figure 1.8), then

r̄M ◦ r̄L = r̄M ′ ◦ r̄L′ = rp,2θ .

2. a. An isometry is a translation if and only if it is a composition of two reflections
in parallel lines.
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Fig. 1.9
r̄M ◦ r̄L = r̄M ′ ◦ r̄L′ = t2a

M

L

a

M′

L′

a

b. Let L, M , L′, and M ′ be parallel lines such that both the displacement vector
from L to M and that from L′ to M ′ are the same (the displacement vector is
a) (Figure 1.9). Then,

r̄M ◦ r̄L = r̄M ′ ◦ r̄L′ = t2a.

Example 1.8. Consider two lines

{
L : x + y = −1
M : x + y = 0.

The displacement vector from L to M is a = ( 1
2 , 1

2 ). Therefore, we have

r̄M ◦ r̄L = t2a = t(1,1).

A composition of translations is again a translation. What about a composition
of rotations or a mixture of rotations and translations? The answer is very simple, as
stated by the following theorem.

Theorem 1.8. The set of translations and rotations is closed under composition.

Proof. We can divide the situation into several cases:

(a) T ◦ T (b) T ◦ R

(c) R ◦ T (d) R ◦ R,

where “T” means translation and “R” means rotation.
The proofs for all the cases are very similar. We will give the proof of (b) as an

example and leave the proofs for the other cases as easy exercises.
Consider a composition of a translation and a rotation, e.g., tq ◦ rp,θ , where p

and q are some points and θ is an angle. Note that there are some non-parallel lines
H and L such that rp,θ = r̄L ◦ r̄H . Also by Theorem 1.7, there are some parallel
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Fig. 1.10 Parallel lines M

and N such that tq = r̄N ◦ r̄M

M

N
L

H

p

M

N

M′ = L′
N′

L

H

p

H′

M′ = L′
N′

H′
p q

Fig. 1.11 Lines H,H ′, L,L′,M,M ′, N , and N ′

lines M and N such that tq = r̄N ◦ r̄M (Figure 1.10). Translate the lines M and N

to lines M ′ and N ′ together so that M ′ goes through the point p (= H ∩L) (the left
diagram in Figure 1.11). Then,

tq = r̄N ◦ r̄M = r̄N ′ ◦ r̄M ′

by Theorem 1.7. Rotate the lines H and L about p together to lines H ′ and L′,
respectively, so that L′ coincides with M ′ (the right diagram in Figure 1.11). Then,

rp,θ = r̄L ◦ r̄H = r̄L′ ◦ r̄H ′ .

See the right diagram in Figure 1.11. Thus,

tq ◦ rp,θ = r̄N ′ ◦ r̄M ′ ◦ r̄L′ ◦ r̄H ′

= r̄N ′ ◦ r̄H ′ (∵ M ′ = L′)

= rq,θ ,

where {q} = N ′ ∩H ′. Thus, tq ◦ rp,θ is a rotation.
��
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Exercises

1.15. Prove or disprove the following:

(a) r̄M ◦ r̄L = r̄L ◦ r̄M ,
(b) tp2 ◦ tp1 = tp1 ◦ tp2 ,
(c) rθ2 ◦ rθ1 = rθ1 ◦ rθ2 ,
(d) rp2,θ2 ◦ rp1,θ1 = rp1,θ1 ◦ rp2,θ2 ,
(e) tα ◦ r̄L = r̄L ◦ tα ,
(f) rα,θ ◦ r̄L = r̄L ◦ rα,θ , where L and M are lines; p1, p2, and α are points; and θ1,

θ2, and θ are angles.

1.16. Suppose that two reflections r̄L1 and r̄L2 satisfy r̄L1 ◦ r̄L2 = r̄L2 ◦ r̄L1 . Show
that L1 = L2 or that L1 and L2 are orthogonal to each other.

1.17. (a) For a reflection r̄L in a line L through a point p and a rotation rp,θ , show
that

(
rp,θ

)(r̄L) = rp,−θ .

(b) For an isometry φ that fixes a point p, show that

r
φ

p,θ = rp,θ or rp,−θ .

1.18. Let φ and ψ be isometries of R2. Suppose that

φ(p1) = ψ(p1) and φ(p2) = ψ(p2)

for some set of two distinct points p1 and p2. Show that

φ = ψ or φ ◦ r̄L = ψ,

where L is the line going through points p1 and p2.

1.19. A halfturn σp for a point p ∈ R
2 is a rotation by the angle π about the point

p. Prove the following:

(a) The composition of two halfturns is a translation.

(b) Every translation is a composition of two halfturns.

(c) If p2 is the midpoint of points p1 and p3, then

σp2 ◦ σp1 = σp3 ◦ σp2 .
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(d) A composition of three halfturns is a halfturn. In particular, if three points
p1, p2, and p3 are non-collinear, then σp3 ◦ σp2 ◦ σp1 = σp, where �p1p2p3p

is a parallelogram.

(e) σp3 ◦ σp2 ◦ σp1 = σp1 ◦ σp2 ◦ σp3 for any three points p1, p2, and p3.

1.4 Glide Reflections and Orientation

We have seen that a composition of two reflections is either a rotation or a
translation. Let us now consider a composition of three reflections.

Example 1.9 (Glide reflection). Let L be a line and α be a vector parallel to L.
Then, we consider an isometry

ḡL,α = tα ◦ r̄L,

which we call a glide reflection. A glide reflection is a reflection followed by a
translation parallel to the reflection line (Figure 1.12).

If α = 0, then ḡL,α is a reflection. Therefore, every reflection is also a glide
reflection.

Since tα can factor into the composition r̄N ◦ r̄M of two reflections r̄N and r̄M , a
glide reflection is the composition of three reflections,

ḡL,α = r̄N ◦ r̄M ◦ r̄L,

where the lines L, M , and N are as shown in Figure 1.12. The converse also holds,
as stated in the following theorem.

ḡL,a (p)
a

p

L L
M

N

ḡL,a (p) L, M and N

Fig. 1.12 ḡL,α = r̄N ◦ r̄M ◦ r̄L
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Theorem 1.9. The composition of three reflections is a glide reflection.

Proof. Let φ be the composition of reflections in lines L, M , and N :

φ = r̄N ◦ r̄M ◦ r̄L.

For the proof, we must consider several cases, determining whether the lines L, M ,
and N are parallel to another.

Case 1. Assume that the lines L, M are orthogonal to each other. Let p be the point
where the lines L, M meet and M ′ be a line through the point p that is parallel to
the line N . Then there is another line L′ through the point p such that

r̄M ′ ◦ r̄L′ = r̄M ◦ r̄L.

Note that the line L′ is orthogonal to M ′. Now

φ = r̄N ◦ r̄M ◦ r̄L = r̄N ◦ r̄M ′ ◦ r̄L′ ,

which is a glide reflection along the line L.

Case 2. Assume that both the lines M and N pass through a point p. One can
choose a line M ′ through the point p that is orthogonal to the line L. Then, there is
another line N ′ through the point p such that

r̄N ′ ◦ r̄M ′ = r̄N ◦ r̄M .

See Figure 1.13.

φ = r̄N ◦ r̄M ◦ r̄L = r̄N ′ ◦ r̄M ′ ◦ r̄L

Now, we have a configuration of lines L, M ′, N ′ that belongs to Case 1 and we
conclude that φ is a glide reflection.

Fig. 1.13 Non-parallel lines
M and N , intersecting at the
point p

L

M

N

N ′

M ′

p
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Case 3. Assume that the lines M and N are parallel to each other. If L is also
parallel to them, we can choose another parallel line N ′ such that

r̄N ◦ r̄M = r̄N ′ ◦ r̄L.

Then,

φ = r̄N ◦ r̄M ◦ r̄L = r̄N ′ ◦ r̄L ◦ r̄L = r̄N ′,

which is a reflection.
If L is not parallel to them, the lines L, M meet at a point p. Rotate both the lines

L,M about the point p to get L′,M ′, respectively, so that

r̄M ′ ◦ r̄L′ = r̄M ◦ r̄L

and the line N meets with M ′ at a point.

φ = r̄N ◦ r̄M ◦ r̄L = r̄N ◦ r̄M ′ ◦ r̄L′ .

Now, we have a configuration of lines L′, M ′, N that belongs to Case 2 and we
conclude that φ is a glide reflection. ��

By using Theorem 1.6, together with Theorem 1.7 and Theorem 1.9, we obtain
the following classification theorem.

Theorem 1.10 (Classification of isometries of R2). An isometry of the Euclidean
plane is a rotation, a translation, or a glide reflection.

Proof. By Theorem 1.6, an isometry is a composition of at most three reflections.
By Theorem 1.7 and Theorem 1.9, it is a rotation, a translation, or a glide reflection.

��
Theorem 1.6 gives us much information about an isometry. For example, it is now

very clear that an isometry maps a geometric figure to a congruent geometric figure
because a reflection does. Intuitively speaking, two geometric figures are regarded
as congruent if they have the same shape and size or if one has the same shape and
size as the mirror image of the other. Now we give a more formal but more precise
definition of congruence.

Definition 1.11. Two sets of points in the Euclidean plane are said to be congruent
if and only if one is the image of the other under some isometry of the Euclidean
plane.

Let γ be a curve with length l(γ ). For a reflection r̄L, it is intuitively clear that

l(r̄L(γ )) = l(γ ),
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- translation - - rotation - - glide reflection -

Fig. 1.14 Transformations of the figure of the letter “R” by isometries

i.e., a reflection preserves the length of a curve. Again by Theorem 1.6, an isometry
is a composition of reflections; therefore, it also preserves the length of every curve.

A reflection maps a figure to its mirror image. Figure 1.14 shows how the figure
of the letter “R” is transformed by various isometries. Different from translation and
rotation, the letter transformed by a glide reflection is not exactly the letter “R” even
if the reader rotates or moves this book. The reason is that a glide reflection is the
composition of an odd number of reflections.

Definition 1.12.

a) An isometry that is a composition of an even number of reflections is said to be
orientation-preserving.

b) An isometry that is a composition of an odd number of reflections is said to be
orientation-reversing.

Let Iso+(R2) and Iso−(R2) be the sets of orientation-preserving isometries and
orientation-reversing isometries, respectively.

Theorem 1.13. Iso+(R2) consists of translations and rotations, and Iso−(R2)

consists of glide reflections.

Proof. Translations and rotations are orientation-preserving since they are compo-
sitions of two reflections. Conversely, consider an orientation-preserving isometry,

φ = r̄L1 ◦ r̄L2 ◦ · · · ◦ r̄L2n
.

Let φi = r̄L2i−1 ◦ r̄L2i
, which is either a translation or a rotation. Note that

φ = φ1 ◦ φ2 ◦ · · · ◦ φn.

By Theorem 1.8, it is either a rotation or a translation. This proves the first statement.
Glide reflections are orientation-reversing since they are compositions of three

reflections. Conversely, consider an orientation-reversing isometry

φ = r̄L1 ◦ r̄L2 ◦ · · · ◦ r̄L2n+1 .

Let φi = r̄L2i−1 ◦ r̄L2i
, which is either a translation or a rotation. Let
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φ′ = r̄L1 ◦ r̄L2 ◦ · · · ◦ r̄L2n
= φ1 ◦ φ2 ◦ · · · ◦ φn.

By Theorem 1.8, φ′ is either a rotation or a translation, which is a composition
of two reflections. We thus have φ′ = r̄M ◦ r̄L for some two lines L and M .
Therefore,

φ = (r̄L1 ◦ r̄L2 ◦ · · · ◦ r̄L2n

) ◦ r̄L2n+1 = φ′ ◦ r̄L2n+1 = r̄M ◦ r̄L ◦ r̄L2n+1 ,

which is a glide reflection by Theorem 1.9. ��
An orientation-reversing isometry, which is a glide reflection, cannot be realized

as actual motions of physical objects (if the objects are forced to remain in a plane).
By contrast, we frequently experience rotations and translations of objects. For this
reason, an orientation-preserving isometry is also called a rigid motion.

Theorem 1.14. The sets Iso+(R2) and Iso−(R2) are disjoint.

Proof. For the proof, it is very useful to examine the fixed points of isometries. The
set of fixed points of a non-trivial rotation (i.e., not the identity) is composed of a
single point. The set of fixed points of a non-trivial translation is empty. The set of
fixed points of a glide reflection is empty or is a line if it is a reflection. Therefore, if
there exists an isometry φ in Iso+(R2) ∩ Iso−(R2), its set of fixed points is empty.
Therefore, φ would be a translation, a composition of two reflections

φ = r̄L1 ◦ r̄L2 ,

and a glide reflection, a composition of three reflections

φ = r̄M1 ◦ r̄M2 ◦ r̄M3 .

Therefore, we have

φ = r̄L1 ◦ r̄L2 = r̄M1 ◦ r̄M2 ◦ r̄M3 ,

and so

r̄L2 ◦ r̄L1 ◦ r̄M1 ◦ r̄M2 ◦ r̄M3 = idR2 .

The right-hand-side identity map fixes every point; however, the left-hand-side
isometry is a glide reflection whose set of fixed points is a line or empty, resulting
in a contradiction. Therefore, Iso+(R2) and Iso−(R2) are disjoint. ��



22 1 Euclidean Plane

Exercises

1.20. Show that an isometry with exactly one fixed point is a rotation.

1.21. Show that an isometry is a glide reflection if and only if it is conjugate to
t(a,0) ◦ r̄ for some a ∈ R.

1.22. Show that the inverse of every glide reflection is also a glide reflection.

1.23. Let φ be a glide reflection. Show that φ2 is a translation.

1.24. Let φ be an isometry. A line L is said to be invariant under φ if φ(L) = L.
Show the following:

(a) φ has no invariant lines if and only if it is a rotation by aπ for some a /∈ Z.

(b) φ has a single invariant line if and only if it is a glide reflection with a non-zero
shift.

(c) If φ has multiple invariant lines, it has infinitely many ones.

1.25.

(a) Classify all the isometries such that φ2 = φ ◦ φ = idR2 .

(b) Classify all the isometries such that φ6 = idR2 .

1.26. Prove that there exists an isometry that cannot be expressed as a composition
of one or two reflections.

1.27. For x, y ∈ R, we define the distance in the usual way:

d(x, y) = |x − y|.

We define the isometries of R accordingly. Then, a reflection r̄a in a ∈ R is given
by

r̄a = 2a − x.

Show that every isometry of R is a composition of at most two reflections.



Chapter 2
Sphere

“The description of right lines and
circles, upon which geometry is
founded, belongs to mechanics.
Geometry does not teach us to draw
these lines, but requires them to be
drawn.”

Isaac Newton (1642–1727)

“Geometry is the art of correct
reasoning from incorrectly drawn
figures.”

Henri Poincaré (1854–1912)

Spherical geometry is almost as old as Euclidean geometry. In fact, the word
geometry means ‘measurement of the Earth’, and the Earth is (more or less) a
sphere. The ancient Greek geometers knew that the Earth was spherical. Navigation
motivated the study of spherical geometry because, even 2000 years ago, the fact
that the earth is curved had a noticeable effect on cartography. In spherical geometry,
the ‘points’ are points on the surface of the sphere. We are not concerned with the
‘inside’ of the sphere.

2.1 The Sphere S
2 in R

3

The (unit) sphere is

S
2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1}.
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A great circle is a circle on the sphere that divides the sphere into two equal
hemispheres. A great circle can also be defined as the intersection of the sphere and
a plane that goes through the origin 0. Two points that are diametrically opposite on
the sphere are called antipodal points. In spherical geometry, two points determine a
great circle unless they are antipodal points, in which case there are infinitely many
great circles joining them.

For two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2) in S
2, the distance

between them in R
3 is

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

The spherical distance dS2(p1, p2) is the arc length of the shortest path on S
2

from p1 to p2, which is a segment of the great circle through the points p1 and
p2 (Figure 2.1).

Note that

dS2(p1, p2) = � p10p2 = 2θ = 2 arcsin

(
1

2
d(p1, p2)

)
, (2.1)

where θ = 1
2
� p10p2 (Figure 2.2).

A plane in R
3 is a set of points defined by a linear equation,

ax + by + cz = d,

where a, b, c, and d are constants with (a, b, c) �= (0, 0, 0). Similar to a line in the
Euclidean plane, a plane in R

3 can be regarded as the set of points equidistant from
two distinct points p1 and p2 in R

3:

Pp1,p2 = {p ∈ R
3 | d(p1, p) = d(p2, p)}.

Fig. 2.1 Spherical distance
dS2 (p1, p2) between the two
points p1 and p2 on S

2

p1

p2

d (p1, p2)

d  2(p1, p2)
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0

p1

p2

q
q

Fig. 2.2 dS2 (p1, p2) = � p10p2 = 2θ = 2 arcsin
(

1
2 d(p1, p2)

)

Let

p1 = (a1, b1, c1) and p2 = (a2, b2, c2).

A point p = (x, y, z) belongs to Pp1,p2 if and only if d(p1, p) = d(p2, p), i.e.,

√
(a1 − x)2 + (b1 − y)2 + (c1 − z)2 =

√
(a2 − x)2 + (b2 − y)2 + (c2 − z)2

or

(a1 − a2)x + (b1 − b2)y + (c1 − c2)z− d = 0,

which is a linear equation, where d = 1
2 ((a2

1 + b2
1 + c2

1) − (a2
2 + b2

2 + c2
2)). For a

point p = (x, y, z) in R
3, the norm of p is defined by

‖p‖ =
√

x2 + y2 + z2.

Then, we obviously have d(p, q) = ‖p − q‖.
Now let us define the notion of maps that preserve the geometric properties of

figures on the sphere.

Definition 2.1. A bijective map φ : S2 → S
2 is called an isometry of S

2 if it
preserves the spherical distance, i.e.,

dS2(φ(p1), φ(p2)) = dS2(p1, p2)

for any two points p1, p2 ∈ S
2.

The main purpose of this chapter is to classify the isometries of the sphere as we did
for the Euclidean plane in the previous chapter. In doing so, we will be able to gain
considerable knowledge about the spherical geometry.
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A bijective map φ : R3 → R
3 is called an isometry of R

3 if the distance is
preserved, i.e.,

d(φ(p1), φ(p2)) = d(p1, p2)

for any two points p1, p2 ∈ R
3.

According to (2.1),

dS2(φ(p1), φ(p2)) = dS2(p1, p2)

if and only if

2 arcsin

(
1

2
d(φ(p1), φ(p2))

)
= 2 arcsin

(
1

2
d(p1, p2)

)
,

i.e.,

d(φ(p1), φ(p2)) = d(p1, p2).

In summary,

dS2(φ(p1), φ(p2)) = dS2(p1, p2) ⇔ d(φ(p1), φ(p2)) = d(p1, p2). (2.2)

Therefore, isometries of the sphere and isometries of R3 are closely related.

Proposition 2.2. If an isometry of R3 fixes the origin 0, then it induces an isometry
of S2. In other words, if an isometry φ of R3 satisfies

φ(0) = 0,

then the map ψ : S2 → S
2, given by ψ(p) = φ(p), is well defined and an isometry

of the sphere.

Proof. First, we must verify that ψ(p) belongs to the sphere if the point p does.
This is shown by the following:

d(ψ(p), 0) = d(φ(p), 0) = d(φ(p), φ(0)) = d(p, 0) = 1.

Since φ−1 is also an isometry of R3, the map ψ ′ : S2 → S
2 by ψ ′(p) = φ−1(p) is

also well defined. Then, ψ ′ is the inverse map of ψ , and so ψ is bijective. Finally,
by (2.2), ψ preserves the spherical distance because φ preserves the distance. ��

We denote the set of all the isometries of S2 by Iso(S2). In Chapter 1, we saw
that reflections in lines play important roles when studying isometries. We define a
spherical line for two distinct points p1 and p2 in S

2 (Figure 2.3) as follows:

Gp1,p2 = {p ∈ S
2 | dS2(p1, p) = dS2(p2, p)}.
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Fig. 2.3 Spherical line
Gp1,p2 with respect to points
p1 and p2 on S

2 Gp1, p2
p1

p2

Proposition 2.3. A spherical line is a great circle.

Proof. For two distinct points p1 and p2 on S
2, consider a spherical line

Gp1,p2 = {p ∈ S
2 | dS2(p1, p) = dS2(p2, p)}.

By (2.2),

Gp1,p2 = {p ∈ S
2 | d(p1, p) = d(p2, p)}

= S
2 ∩ {p ∈ R

3 | d(p1, p) = d(p2, p)}
= S

2 ∩ Pp1,p2 ,

which is a intersection of the sphere and a plane Pp1,p2 . The plane Pp1,p2 passes
through the origin because

d(p1, 0) = 1 = d(p2, 0),

i.e., d(p1, 0) = d(p2, 0). ��
Points on the sphere are said to be collinear if they lie on a great circle.

Lemma 2.4. An isometry of the sphere maps non-collinear points p1, p2, and p3
to non-collinear points.

Proof. Let φ : S2 → S
2 be an isometry. Suppose that the points φ(p1), φ(p2), and

φ(p3) are collinear, then they lie on a great circle Gp,q . Thus, we have

dS2(p, φ(p1)) = dS2(q, φ(p1)),

dS2(p, φ(p2)) = dS2(q, φ(p2))

and

dS2(p, φ(p3)) = dS2(q, φ(p3)).
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However, then,

dS2(φ
−1(p), p1) = dS2(φ

−1(q), p1),

dS2(φ
−1(p), p2) = dS2(φ

−1(q), p2)

and

dS2(φ
−1(p), p3) = dS2(φ

−1(q), p3),

which imply that the points p1, p2, and p3 lie on the great circle Gφ−1(p),φ−1(q).
Because this is a contradiction, the points φ(p1), φ(p2), and φ(p3) are non-
collinear. ��

In Theorem 1.4, we saw that an isometry of R2 is determined by how it maps
three non-collinear points. The following theorem is a version of Theorem 1.4 for
the spherical geometry.

Theorem 2.5 (Three points theorem for the sphere). Let φ and ψ be isometries
of the sphere. If

φ(p1) = ψ(p1), φ(p2) = ψ(p2) and φ(p3) = ψ(p3)

for some set of non-collinear points p1, p2, and p3, then φ = ψ .

Proof. According to Lemma 2.4, the three points φ(p1), φ(p2), and (p3) are also
non-collinear.

Suppose that φ �= ψ . Then, there exists a point p such that

φ(p) �= ψ(p),

and we can define a great circle G = Gφ(p),ψ(p). Note that

dS2(φ(p), φ(p1)) = dS2(p, p1) (∵ φ is an isometry)

= dS2(ψ(p), ψ(p1)) (∵ ψ is an isometry)

= dS2(ψ(p), φ(p1)),

i.e., dS2(φ(p), φ(p1)) = dS2(ψ(p), φ(p1)). So φ(p1) ∈ G. Similarly,

φ(p2) ∈ G and φ(p3) ∈ G.

However, the three points φ(p1), φ(p2), and (p3) are then collinear, which is a
contradiction. ��
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Exercises

2.1. Let p1 = 1√
2
(1, 1, 0) and p2 = 1√

2
(1, 0, 1). Calculate the following:

(a) d(p1, p2) (b) dS2(p1, p2).

2.2. (a) Show that there is no map f : R2 → S
2 such that

d(p, q) = dS2 (f (p), f (q))

for all points p and q in R
2.

(b) Show that there is no map g : S2 → R
2 such that

dS2(p, q) = d (g(p), g(q))

for all points p and q in S
2.

2.3. A spherical circle C of radius ρ with its center p ∈ S
2 is defined by

C = {x ∈ S
2 | dS2(p, x) = ρ}.

Determine its circumference Π(ρ). Show that Π(ρ) < 2πρ and

lim
ρ→0+

Π(ρ)

ρ
= 2π.

2.2 Isometries of the Sphere S
2

The reflection r̄Pp1,p2
in the plane Pp1,p2 is an isometry of R

3 such that the line

segment from the given point p in R
3 to the point r̄Pp1,p2

(p) intersects the plane
Pp1,p2 orthogonally at its midpoint. For example, if P is the yz-plane, then

r̄P (x, y, z) = (−x, y, z).

Similar to a reflection in a line, a reflection in a plane satisfies the following:

(a)

r̄Pp1,p2
(p1) = p2, r̄Pp1,p2

(p2) = p1.
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(b)

r̄Pp1,p2
(p) = p for each point p ∈ Pp1,p2 .

(c)

r̄Pp1,p2
◦ r̄Pp1,p2

= idR3 , i.e., r̄−1
Pp1,p2

= r̄Pp1,p2
.

If a plane P contains the z-axis, its intersection L with the xy-plane is a line, and
the line L goes through the origin. Then, we can consider a reflection r̄L : R2 → R

2

of the xy-plane in this line. It is easy to verify that

r̄P (x, y, z) = (r̄L(x, y), z). (2.3)

If the points p1 and p2 are on the sphere, then the plane Pp1,p2 goes through
the origin and Pp1,p2 ∩ S

2 = Gp1,p2 , which is a great circle. Since r̄Pp1,p2
fixes the

origin, it induces an isometry r̄Gp1,p2
of the sphere by Proposition 2.2.

Remark 2.6. Similar to the reflection r̄Pp1,p2
, a reflection in a great circle also

satisfies (cf. Remark 1.5):

(a)

r̄Gp1,p2
(p1) = p2, r̄Gp1,p2

(p2) = p1.

(b)

r̄Gp1,p2
(p) = p for each point p ∈ Gp1,p2 .

(c)

r̄Gp1,p2
◦ r̄Gp1,p2

= idS2 , i.e., r̄−1
Gp1,p2

= r̄Gp1,p2
.

As in the case of the Euclidean plane, every isometry is a composition of
reflections. Note that the proof of the following theorem is very similar to that of
Theorem 1.6.

Theorem 2.7 (Three reflections theorem for S
2). An isometry of S2 is a compo-

sition of at most three reflections.

Proof. Let φ : S2 → S
2 be an isometry and p1, p2, and p3 be non-collinear points

on S
2. We consider four cases.

Case 1. If

φ(p1) = p1, φ(p2) = p2 and φ(p3) = p3,

then φ = idS2 if we let ψ = idS2 in Theorem 2.5.
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Case 2. If only two of the three points p1, p2, and p3 coincide with their images
under φ, e.g.,

φ(p1) = p1, φ(p2) = p2 but φ(p3) �= p3,

then

dS2(p3, p1) = dS2(φ(p3), φ(p1)) = dS2(φ(p3), p1).

Therefore, if G = Gp3,φ(p3), we have p1 ∈ G. Similarly we have p2 ∈ G. Let
ψ = r̄G ◦ φ; then,

ψ(p1) = r̄G(φ(p1))

= r̄G(p1)

= p1 (∵ p1 ∈ G).

Similarly, ψ(p2) = p2. Note also that

ψ(p3) = r̄G(φ(p3)) = p3 (∵ G = Gp3,φ(p3)).

Again, ψ = idS2 from Theorem 2.5, i.e., r̄G ◦ φ = idS2 . Therefore,
φ = r̄−1

G = r̄G, and φ is a reflection.

Case 3. If only one of the three points p1, p2, and p3 coincides with its image under
φ, e.g.,

φ(p1) = p1 but φ(p2) �= p2, φ(p3) �= p3,

then

dS2(p2, p1) = dS2(φ(p2), φ(p1)) = dS2(φ(p2), p1).

Therefore, letting M = Gp2,φ(p2), we have p1 ∈ M . Let φ′ = r̄M ◦φ. We then have

φ′(p1) = r̄M(φ(p1)) = r̄M(p1) = p1

and

φ′(p2) = r̄M(φ(p2)) = p2,

which leads us back to Case 1 or Case 2. Therefore, φ′ = idS2 or φ′ = r̄G for some
great circle G, i.e., φ = r̄M or φ = r̄M ◦ r̄G.
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Case 4. Finally, assume that

φ(p1) �= p1, φ(p2) �= p2, φ(p3) �= p3.

If N = Gp1,φ(p1) and we let φ′′ = r̄N ◦ φ, then

φ′′(p1) = r̄N (φ(p1)) = p1.

This leads us again back to Case 1, Case 2, or Case 3. Therefore,

φ′′ = idS2 , φ
′′ = r̄M or φ′′ = r̄M ◦ r̄G

for some great circles G and M , i.e.,

φ = r̄N , φ = r̄N ◦ r̄M or φ = r̄N ◦ r̄M ◦ r̄G.

��
Consider the rotation φ of R3 by angle θ about the z-axis,

φ(x, y, z) = (x cos θ − y sin θ, x sin θ + y cos θ, z).

Note that

φ(x, y, z) = (rθ (x, y), z). (2.4)

Since this rotation fixes the origin, it induces a rotation rz,θ on S
2. For each line l

through the origin, similarly, one can define a rotation rl,θ about the line.
Consider a composition of two reflections in the great circles G1 and G2. There

exist two planes P1 and P2 through the origin 0 such that G1 = P1 ∩ S
2 and G2 =

P2 ∩ S
2. Note that the intersection of these two planes is a line through the origin.

We set the coordinate system such that this line coincides with the z-axis. Let L1
and L2 be the lines on the xy-plane that are cut by P1 and P2, respectively, then L1
and L2 are lines on the xy-plane that pass through the origin. By (2.3),

r̄P1(x, y, z) = (r̄L1(x, y), z)

r̄P2(x, y, z) = (r̄L2(x, y), z)

r̄P2

(
r̄P1(x, y, z)

) = (r̄L2

(
r̄L1(x, y)

)
, z)

for each point (x, y, z) ∈ R
3. Note that r̄L2 ◦ r̄L1 is a rotation of the xy-plane about

the origin, i.e.,

r̄L2 ◦ r̄L1 = rθ
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Fig. 2.4 Rotation rl,θ of S2

by an angle θ about a line l
l

for some angle θ .
If we restrict this rotation to the xy-plane, by (2.4), we have

(
r̄G2 ◦ r̄G1

)
(x, y, z) = (rθ (x, y), z) = rz,θ (x, y, z)

for each point (x, y, z) ∈ S
2. In summary, a composition of two reflections in a great

circle is a rotation. By rl,θ , we mean a rotation by angle θ about a line l through the
origin (Figure 2.4).

Let us show that a rotation can be also expressed as a composition of two
reflections in great circles. Consider a rotation rl,θ . We choose a coordinate system
such that the line l coincides with the z-axis. Therefore,

rl,θ (x, y, z) = rz,θ (x, y, z) = (rθ (x, y), z).

Recall that a rotation of the Euclidean plane is a composition of two reflections in
lines:

rθ = r̄L2 ◦ r̄L1 ,

where L1 and L2 are lines on the xy-plane that pass through the origin. There exist
planes P1 and P2 that contain the lines L1 and L2, respectively, and the z-axis. Then,
by (2.3),

rl,θ (x, y, z) = rz,θ (x, y, z) = (rθ (x, y), z) = (r̄L2(r̄L1(x, y)), z)

= r̄P2(r̄L1(x, y), z) = r̄P2(r̄P1(x, y, z)) = (r̄P2 ◦ r̄P1)(x, y, z)

= (r̄G2 ◦ r̄G1)(x, y, z),

where G1 = P1 ∩ S
2 and G2 = P2 ∩ S

2. Therefore,
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rl,θ = r̄G2 ◦ r̄G1 .

Furthermore, for a given great circle G′1 that intersects with line l, it is not difficult
to see that there exists a great circle G′2 such that

rl,θ = r̄G′2 ◦ r̄G′1 .

Theorem 2.8. A composition of two rotations is a rotation.

Proof. Consider two rotations rl1,θ1 , rl2,θ2 and their composition

φ = rl2,θ2 ◦ rl1,θ2 .

If l1 = l2, then φ = rl1,θ1+θ2 , which is a rotation. Assume that l1 �= l2. Let P be
the plane that contains both the lines l1, l2 and G = P ∩ S

2. Note that G is a great
circle which meets with l1, l2 at two points, respectively. Thus there are great circles
G1,G2 such that

rl1,θ1 = r̄G ◦ r̄G1

and

rl2,θ2 = r̄G2 ◦ r̄G.

Then

φ = rl2,θ2 ◦ rl1,θ2 = r̄G2 ◦ r̄G ◦ r̄G ◦ r̄G1 = r̄G2 ◦ r̄G1 ,

which is a rotation. ��
Let Iso+(S2) be the set of all compositions of even numbers of reflections of the

sphere and Iso−(S2) be the set of all compositions of odd numbers of reflections.
An isometry in Iso+(S2) is said to be orientation-preserving, and an isometry
in Iso−(S2) is said to be orientation-reversing. By Theorem 2.8, an isometry is
orientation-preserving if and only if it is a rotation. This theorem is known as Euler’s
rotation theorem.

Lemma 2.9. Let r̄1, r̄2, · · · , r̄n be reflections in great circles. If the composition
r̄1 ◦ r̄2 ◦ · · · ◦ r̄n is the identity map, then n is even.

Proof. Suppose that n is odd; then, n = 2k + 1 for some k. Note that

r̄1 ◦ r̄2 ◦ · · · ◦ r̄n = r1 ◦ r2 ◦ · · · ◦ rk ◦ r̄n,

where ri = r̄2i−1 ◦ r̄2i , which is a rotation. Applying Theorem 2.8, we have r1 ◦ r2 ◦
· · · ◦ rk ◦ r̄n = r ◦ r̄n, where r is a rotation. Hence,
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r ◦ r̄n = idS2 ,

and finally, r = r̄n. Note that the set of fixed points of r̄n is a great circle. However,
the set of fixed points of a rotation r is composed of two points or the set S2.
Therefore, we have a contradiction, and n is even. ��
Theorem 2.10. The sets Iso+(S2) and Iso−(S2) are disjoint.

Proof. Suppose that Iso+(S2)∩ Iso−(S2) is not empty; then, it contains an isometry
φ. Since φ ∈ Iso+(S2),

φ = r̄1 ◦ r̄2 ◦ · · · ◦ r̄n,

where each r̄i is a reflection in a great circle and n is even. Moreover, because
φ ∈ Iso−(S2),

φ = r̄n+1 ◦ r̄n+2 ◦ · · · ◦ r̄n+m,

where m is odd. Hence,

r̄1 ◦ r̄2 ◦ · · · ◦ r̄n = r̄n+1 ◦ r̄n+2 ◦ · · · ◦ r̄n+m

and

r̄n ◦ r̄n−1 ◦ · · · ◦ r̄1 ◦ r̄n+1 ◦ r̄n+2 ◦ · · · ◦ r̄n+m = idS2 .

By Lemma 2.9, n + m is even, which is contradictory to the fact that n is even and
m is odd, thus proving the theorem. ��

Exercises

2.4. Recall that the conjugation of ψ by φ is the isometry

ψφ = φ ◦ ψ ◦ φ−1

for the given isometries φ and ψ .

(a) For reflections r̄G and r̄H , show that

r̄
r̄H

G = r̄G′ ,

where G′ = r̄H (G).
(b) For an isometry φ, show that

r̄
φ

G = r̄G′,
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where G′ = φ(G).

2.5. The antipodal map â : S2 → S
2, defined by p �→ −p, is an isometry.

(a) Show that the antipodal map is orientation-reversing.

(b) Let φ be an isometry of the sphere. Show that it is orientation-reversing if and
only if φ = â ◦ rl,θ for some rotation rl,θ .

2.6. Let φ be an isometry of the sphere. Show the following:

(a) It has at least two fixed points if it is not fixed-point-free.
(b) φ is a rotation if it has exactly two fixed points.

2.7. Suppose that an isometry φ of the sphere is fixed-point-free and φ2 = idS2 .
Prove that φ = â, the antipodal map.

2.8. Classify all the isometries of the sphere such that φ2 = idS2 .

2.9. Show that â ◦ φ = φ ◦ â for every isometry φ of the sphere.

2.10. Show that there is no isometry φ of the sphere with the property φ ◦ φ = â.

2.11. Complete the following multiplication table of isometries of S2.
Legend: Re = reflection, Ro = Rotation, N = neither reflection nor rotation.

Re Ro N

Re (i) (ii) (iii)

Ro (iv) Ro (vii)

N (v) (vi) Ro

(i) = Re ◦ Re, (ii) = Re ◦ Ro, and so on. For example, Re and N are possible
solutions for (ii).

2.12. Prove that there exists an isometry of S
2 that cannot be expressed as a

composition of one or two reflections.

2.3 Area of a Spherical Triangle

In the Euclidean plane, Heron’s formula gives the area of a triangle when the length
of its sides are known:

Area = √s(s − a)(s − b)(s − c),

where a, b, and c are the lengths of the sides, and s = 1
2 (a + b + c) is the

semiperimeter of the triangle. A region on the sphere bounded by three distinct
great circles is called a spherical triangle (Figure 2.6). There is a remarkably simple
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Fig. 2.5 Spherical lune of
interior angle θ

p

p′

G1

G2
W

q

formula for the area of a spherical triangle. It is expressed solely by the interior
angles.

Let G1 and G2 be half great circles from a point p to its antipodal point p′ and θ

be the interior angle between G1 and G2 (Figure 2.5). Then,

Area(S2) : Area(Ω) = 2π : θ,

where Ω is a spherical lune, i.e., the region bounded by the circles G1 and G2, as in
Figure 2.5. Recall that

Area(S2) = 4π.

Hence,

Area(Ω) = 4π · θ

2π
= 2θ. (2.5)

Theorem 2.11. The area of a spherical triangle with interior angles α, β, and γ

(
pqr in Figure 2.6) is

α + β + γ − π.

Proof. Let p′, q ′, and r ′ be the antipodal points of p, q, and r , respectively, as
shown in Figure 2.6, and

A = Area(
pqr), A′ = Area(
p′q ′r ′),

P = Area(
p′qr), P ′ = Area(
pq ′r ′),

Q = Area(
pq ′r), Q′ = Area(
p′qr ′),

R = Area(
pqr ′), R′ = Area(
p′q ′r).
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Fig. 2.6 Spherical triangle
with interior angles α, β,
and γ

p
q

r

p′q′

r′

a b

g

Fig. 2.7 A spherical triangle
in a spherical lune

a

g

p
q

r

p′

a

Since these 8 spherical triangles completely cover the sphere,

A+ P +Q+ R + A′ + P ′ +Q′ + R′ = Area(S2) = 4π.

By (2.5), A+ P = 2α (see Figure 2.7 and compare with Figure 2.5). Similarly,

A+Q = 2β,

A+ R = 2γ,

A′ + P ′ = 2α,

A′ +Q′ = 2β,

A′ + R′ = 2γ.

Adding all six equations,

2(A+ A′)+ A+ P +Q+ R + A′ + P ′ +Q′ + R′ = 4(α + β + γ ).
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Note that the two spherical triangles 
pqr and 
p′q ′r ′ are antipodal; therefore,
A = A′. Finally,

2(A+ A)+ 4π = 4(α + β + γ ),

and so

A = α + β + γ − π.

��
Since the area of a spherical triangle is positive, the sum of its interior angles is

greater than π . We can calculate the area of a spherical polygon by dividing it into
several spherical triangles. For example, consider a spherical pentagon whose five
vertices are p1, · · · , p5 with interior angles θ1, · · · , θ5 (Figure 2.8). The area of this
pentagon is then

Area(
p1p4p5)+ Area(
p1p3p4)+ Area(
p1p2p3).

Area(
p1p4p5) = � p5p1p4 + � p1p4p5 + � p4p5p1 − π,

Area(
p1p3p4) = � p4p1p3 + � p1p3p4 + � p3p4p1 − π,

Area(
p1p2p3) = � p3p1p2 + � p1p2p3 + � p2p3p1 − π.

Note that θ1 = � p5p1p4 + � p4p1p3 + � p3p1p2, etc. Adding all three equations,
the area of the pentagon is as follows:

Fig. 2.8 Spherical pentagon
and its subdivision into
spherical triangles

p1

p2

p3

p4

p5
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θ1 + θ2 + θ3 + θ4 + θ5 − 3π.

Generalizing this argument, one can similarly prove the following corollary.

Corollary 2.12. The area of an n-gon on S
2 with interior angles θ1, · · · , θn is

θ1 + · · · + θn − (n− 2)π. (2.6)

Theorem 2.13 (Euler’s Theorem). Let v , e, and f denote the number of vertices,
edges, and faces, respectively, of a convex polyhedron. Then,

v − e + f = 2.

Proof. Let us place the polyhedron in R
3 so that the origin 0 coincides with the

center of the polyhedron. Project the faces of the polyhedron from the origin 0 onto
the sphere via the map

p �→ p

‖p‖ .

Now the sphere is covered by f spherical polygons P1, · · · , Pf that correspond to
the faces of the polyhedron (see Figure 2.9 for the case of a cube). Therefore, the
sum of the areas of these polygons is 4π , i.e.,

Area(P1)+ · · · + Area(Pf ) = 4π.

Let ni be the number of edges of Pi and αij , for j = 1, · · · , ni , be its interior angles.
By Corollary 2.12,

Area(Pi) =
ni∑

j=1

αij − (ni − 2)π,

Fig. 2.9 Projection of the faces of a cube from the origin onto the sphere
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and thus,

4π =
f∑

i=1

Area(Pi) =
f∑

i=1

⎛
⎝

ni∑
j=1

αij − (ni − 2)π

⎞
⎠ .

Since every edge is shared by two polygons,

f∑
i=1

ni = 2e.

Since the sum of the angles at every vertex is 2π ,

f∑
i=1

⎛
⎝

ni∑
j=1

αij

⎞
⎠ = 2πv.

Hence,

4π =
f∑

i=1

Area(Pi)

=
f∑

i=1

⎛
⎝

ni∑
j=1

αij − (ni − 2)π

⎞
⎠

=
f∑

i=1

⎛
⎝

ni∑
j=1

αij

⎞
⎠− π

f∑
i=1

ni +
f∑

i=1

2π

= 2πv − π · 2e + 2πf,

and so
v − e + f = 2.

��
A Platonic solid is a polyhedron whose vertices all have the same degree and

whose faces are all congruent to the same regular polygon.

Theorem 2.14. There are exactly five Platonic solids: tetrahedrons, octahedrons,
icosahedrons, cubes, and dodecahedrons (see Figure 2.10).

Proof. Let P be a Platonic solid for which the degree of each of vertex is a, and let
each of its faces be a regular polygon with b sides. Then, 2e = av, and 2e = bf .
Note that a, b ≥ 3.
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Fig. 2.10 Platonic solids

By Euler’s Theorem, v − e + f = 2; hence,

2e

a
− e + 2e

b
= 2.

Therefore,

1

a
+ 1

b
= 1

2
+ 1

e
>

1

2
.

If a ≥ 6 or b ≥ 6, then

1

a
+ 1

b
≤ 1

3
+ 1

6
= 1

2
,

which is a contradiction. Hence, a < 6 and b < 6, which gives us a finite number
of cases to check, as shown in the following table.

��
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a b e v f Solid

3 3 6 4 4 Tetrahedron

3 4 12 8 6 Cube

3 5 30 20 12 Dodecahedron

4 3 12 6 8 Octahedron

4 4 X

4 5 X

5 3 30 12 20 Icosahedron

5 4 X

5 5 X

Exercises

2.13. Suppose that an equilateral spherical triangle has sides of length a and interior
angles θ . Show

cos
a

2
sin

θ

2
= 1

2
.

From this, show that θ > π
3 directly (so that the sum of the interior angles of an

equilateral spherical triangle exceeds π ).

2.14. Let T be a right-angled isosceles triangle on S
2 with like sides of spherical

length a (i.e., one angle is π
2 ). Show that

Area(T )

1
2a2

converges to one as a approaches zero.

2.15. Show that it is not possible to draw a “spherical rectangle,” i.e., a quadrilateral
with 4 right angles.

2.4 Orthogonal Transformations of Euclidean Spaces

Consider R
3, the Euclidean space of dimension three. For two points p1 =

(x1, y1, z1), p2 = (x2, y2, z2) ∈ R
3, recall that the distance between p1 and p2

is given by

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Recall that a bijective map φ : R3 → R
3 is an isometry of R3 if it preserves the

distance, i.e.,

d(φ(p1), φ(p2)) = d(p1, p2)
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for any two points p1, p2 ∈ R
3.

We have seen that isometries of S
2 have a close relation with some particular

types of isometries of R3.

Definition 2.15. An isometry φ of R3 is called an orthogonal transformation of R3

if φ(0) = 0.

The set of all orthogonal transformations of R3 is denoted O(3).

Proposition 2.16. Suppose that φ is an orthogonal transformation of R3. Then, we
have φ(S2) = S

2.

Proof. Let p ∈ S
2. Since ‖p‖ = 1,

‖φ(p)‖ = dR3(φ(p), 0) = dR3(φ(p), φ(0)) = dR3(p, 0) = ‖p‖ = 1.

Thus, φ(S2) ⊂ S
2.

Conversely, since φ is surjective, there exists some q ∈ R
3 such that φ(q) = p.

Note that

‖q‖ = dR3(q, 0) = dR3(φ(q), φ(0)) = dR3(p, 0) = ‖p‖ = 1.

Thus, q ∈ S
2, and φ(q) = p. We then have S

2 ⊂ φ(S2). ��
Hence, the restriction of φ to S

2 is a surjective map

φ|S2 : S2 → S
2.

Proposition 2.17. Suppose that φ is an orthogonal transformation of R
3. The

restriction φ|S2 : S2 → S
2 of φ is an isometry of S2.

Proof. We need to show that φ|S2 preserves the spherical distance. For p1, p2 ∈ S
2,

dS2(φ(p1), φ(p2)) = 2 arcsin

(
1

2
d(φ(p1), φ(p2))

)

= 2 arcsin

(
1

2
d(p1, p2)

)
= dS2(p1, p2).

��
Now we have a function

Ψ : O(3)→ Iso(S2)

defined by φ �→ φ|S2 .

Theorem 2.18. The map Ψ : O(3)→ Iso(S2) is bijective.

1. A reflection in a hyperplane through the origin maps to a reflection in a great
circle, and

2. φ1 ◦ φ2 �→ φ1|S2 ◦ φ2|S2 .
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Proof. For each φ ∈ Iso(S2), define φ̃ : R3 → R
3 by

φ̃(p) = ‖p‖ · φ
(

p

‖p‖
)

for p �= 0 and φ̃(0) = 0. It can be verified that φ̃ ∈ O(3). Thus, we have a function

Φ : Iso(S2)→ O(3).

It is also straightforward to verify that

Φ ◦ Ψ = idO(3), Ψ ◦Φ = idIso(S2);

hence, Ψ is bijective.
Properties 1 and 2 are obvious. ��

With this theorem and Theorem 2.7, we have the following two corollaries:

Corollary 2.19. Every orthogonal transformation is a composition of at most three
reflections in a hyperplane through the origin.

Corollary 2.20. Each isometry of R3 is a composition of at most four reflections in
hyperplanes.

Proof. Let φ : R3 → R
3 be an isometry. Note that there exists some reflection

r̄ in a hyperplane of R
3 such that r̄(0) = φ(0). Let ψ = r̄ ◦ φ. Then, ψ is an

orthogonal transformation and can thus be expressed as a composition of at most
three reflections. Since φ = r̄ ◦ ψ , the proof is complete. ��

Let

S
n−1 = {p ∈ R

n | ‖p‖ = 1}

and Iso(Sn−1) be the set of all bijective maps from S
n−1 to itself that preserve

distance. Further, define O(n) as the set of all isometries of Rn that map the origin
to the origin.

Using the same arguments, we can show that there is a one-to-one correspon-
dence between O(n) and Iso(Sn−1) in general. For higher dimensions (n > 3), we
do not have good geometric intuition; thus, it is not easy to investigate Iso(Sn−1)

geometrically, as we have done for S
2. However, we can investigate O(n) using

linear algebra, for which geometric intuition is not indispensable. Since there is a
one-to-one correspondence between O(n) and Iso(Sn−1), we can see the structure
of Iso(Sn−1) by looking at O(n). This is one of the reasons why we need to study
various fields of mathematics.



Chapter 3
Stereographic Projection and Inversions

“Everything has beauty, but not
everyone sees it.”

Confucius (551–479 BC)

“Inspiration is needed in geometry,
just as much as in poetry.”

Alexander Pushkin (1799–1837)

It is impossible to map figures on the sphere onto congruent ones on the plane.
Because the Earth is spherical, any flat representation of it causes distortions such
that areas and shapes cannot both be conserved simultaneously, i.e., the distance
cannot be preserved. The mapmaker must choose a projection method suitable for
the region to be mapped and the purpose of the map. Stereographic projection is one
method of making maps that preserves angles.

3.1 Stereographic Projection

The point N = (0, 0, 1) on the sphere is called the north pole. Let S2∗ = S
2 − {N},

and define a map Φ : S2∗ → R
2 as follows.

Definition 3.1. For p ∈ S
2∗, there exists a unique point q = (u, v) on R

2 such that
the line from N to (u, v, 0) passes through p (Figure 3.1). The map

Φ : S2∗ → R
2,

defined by Φ(p) = q, is called the stereographic projection.
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x

y

z

N

p2

p1

0 F (p1)

F (p2)

Fig. 3.1 Stereographic projection Φ

Proposition 3.2. We have

Φ(x, y, z) =
(

x

1− z
,

y

1− z

)

for (x, y, z) ∈ S
2∗, and

Φ−1(u, v) =
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)

for (u, v) ∈ R
2.

Proof. Let (α, β) = Φ(x, y, z). The line passing through (α, β, 0) and (x, y, z) is

{t (x, y, z)+ (1− t)(α, β, 0) | t ∈ R}.

Hence,

(0, 0, 1) = N = t (x, y, z)+ (1− t)(α, β, 0)

for some t ∈ R. Thus, t = 1
z
, and

α = x

1− z
, β = y

1− z
.

It is clear that Φ is a bijection. It is then trivial to check that
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Φ

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
= (u, v).

Therefore,

Φ−1(u, v) =
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

��
In many cases, it is convenient to define Φ on the whole sphere. Hence, we add

a point (denoted by “∞”) at infinity to R
2. The point∞ is considered to be near to

points with very large norms, just as the origin 0 is near to points with very small
norms.

Definition 3.3. The set

R
2∞ := R

2 ∪ {∞}

is called the extended plane.

Now we can define the stereographic projection on the whole sphere by setting

Φ(N) = ∞.

Then, the stereographic projection becomes a bijective map.

Theorem 3.4. The stereographic projection maps circles of the unit sphere that
contain the north pole to Euclidean straight lines in the plane, and it maps circles of
the unit sphere that do not contain the north pole to circles in the plane (Figures 3.2
and 3.3).

C

N

0 F (C)

Fig. 3.2 The image Φ(C) of a circle C on S
2, centered at N
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F (C2)

F (C1)

C1
C2

N

Fig. 3.3 The images of circles on S
2 obtained by Φ are circles or lines

Conversely, the inverse images of circles or lines on R
2 obtained by the

stereographic projection are circles on S
2.

Proof. Let C be a circle on the unit sphere. The circle C is the set of all points
(x, y, z) on S

2 that lie on some slicing plane E. The plane E is defined by

ax + by + cz+ d = 0,

where the real numbers a, b, c, and d satisfy a2+ b2+ c2 �= 0. Then, the projection
points (u, v) ∈ R

2 of the circle C satisfy

a

(
2u

1+ u2 + v2

)
+ b

(
2v

1+ u2 + v2

)
+ c

(
u2 + v2 − 1

1+ u2 + v2

)
+ d = 0,

i.e.,

2au+ 2bv + (u2 + v2)(c + d) = c − d.

If the circle C contains the north pole N = (0, 0, 1), then we have c+ d = 0. Thus,
in this case, the equation indicates that the projection of C is a Euclidean straight
line. If, however, the circle C does not contain the north pole, then c + d �= 0. In
this case, we obtain

(
u+ a

c + d

)2

+
(

v + b

c + d

)2

= a2 + b2 + c2 − d2

(c + d)2
.

Note that a2+b2+c2−d2

(c+d)2 > 0 (why?). Hence, we have the equation for a Euclidean
circle in the plane.



3.1 Stereographic Projection 51

C1

C2

p
f

f (C1)
f (C2)

f (p)q

Fig. 3.4 Angle preservation at point p

Conversely, let Γ be either a circle or a line on R
2. Choose three distinct points

q1, q2, and q3 from Γ , and let p1, p2, and p3 be the inverse images of these points
on S

2. Then, there exists a unique circle C on S
2 that passes through p1, p2, and p3,

and Φ(C) is a circle or a line, as shown already. Let us denote it by Γ ′. Note that
Γ ′ also contains q1, q2, and q3. Hence, Γ = Γ ′, which completes the proof. ��

Given two smooth curves C1 and C2 that intersect at a point p, we mean by the
angle between C1 and C2 at p the angle between their tangent lines at p, denoted
by

�
p(C1, C2)

(Figure 3.4). Consider a map f . Then, the curves f (C1) and f (C2) intersect at point
f (p). If f satisfies

�
p(C1, C2) = �

f (p)(f (C1), f (C2))

for any smooth curves C1 and C2 through p, f is said to preserve angles at p. If f

preserves angles at every point of its domain, it is simply said to preserve angles.

Example 3.1. Consider a map φ : R2 → R
2, defined by φ(x, y) = (x, y+y2), and

curves

γ1(t) = (t cos θ1, t sin θ1),

γ2(t) = (t cos θ2, t sin θ2),

where θ1 and θ2 are some fixed angles. Then, γ1 and γ2 are lines that pass through
the origin, with

� 0(γ1, γ2) = θ2 − θ1.

Note that

φ(γi(t)) = (t cos θi, t sin θi + t2 sin2 θi) (i = 1, 2)
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which also passes through the origin. Then,

d

dt
φ(γi(t))

∣∣∣∣
t=0
= (cos θi, sin θi)

is a tangent vector of it at the origin. Hence,

� 0(φ(γ1), φ(γ2)) = θ2 − θ1.

Therefore, φ preserves angles at the origin.
Consider another point p = (1, 1). Note that φ(p) = (1, 2). The lines

γ1(t) = (t cos θ1 + 1, t sin θ1 + 1),

γ2(t) = (t cos θ2 + 1, t sin θ2 + 1)

pass through the point p, with

�
p(γ1, γ2) = θ2 − θ1.

Note that

φ(γi(t)) = (t cos θi + 1, t2 sin2 θi + 3t sin θi + 2).

Similarly,

d

dt
φ(γi(t))

∣∣∣∣
t=0
= (cos θi, 3 sin θi)

is a tangent vector of φ(γi) at point φ(p). Consider some specific angles, for
example, θ1 = 0 and θ2 = π

4 . Then, the tangent vectors for φ(γ1) and φ(γ2) are

(1, 0)and

(
1√
2
,

3√
2

)
,

respectively. Hence, the angle between φ(γ1) and φ(γ2) is

cos−1
(

1√
10

)
�= π

4
.

Therefore, φ does not preserve angles at p.

Example 3.2. Consider a map φ : R2 → R
2, defined by φ(x, y) = (x − y, x + y).

We will show that φ preserves angles. For a given point p = (a, b) ∈ R
2 and an

angle θ , consider two curves γi : [−1, 1] → R
2, with
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γ1(0) = p, γ2(0) = p,

γ ′1(0) = (cos θ0, sin θ0),

and

γ ′2(0) = (cos(θ0 + θ), sin(θ0 + θ)).

Then,

�
p(γ1, γ2) = θ.

Let γi(t) = (xi(t), yi(t)); then, γ ′i (0) = (x′i (0), y′i (0)). Note that

φ(γi(t)) = (xi(t)− yi(t), xi(t)+ yi(t)),

and thus,

dφ(γi(t))

dt
= (x′i (t)− y′i (t), x′i (t)+ y′i (t)).

Hence,

dφ(γ1(t))

dt

∣∣∣∣
t=0
=(cos θ0− sin θ0, cos θ0+ sin θ0)=

√
2
(

cos
(
θ0+π

4

)
, sin

(
θ0+π

4

))
,

and similarly,

dφ(γ2(t))

dt

∣∣∣∣
t=0
= √2

(
cos
(
θ0 + θ + π

4

)
, sin

(
θ0 + θ + π

4

))
.

Therefore,

�
φ(p)(φ(γ1), φ(γ2)) = θ = �

p(γ1, γ2),

and thus, φ preserves angles.

It is easy to see that a composition of angle-preserving maps is also angle-
preserving. Since a reflection of the Euclidean plane clearly preserves angles and
every isometry of the Euclidean plane is a composition of reflections, an isometry of
the Euclidean plane preserves angles. Similarly, one can conclude that an isometry
of the sphere also preserves angles.

Theorem 3.5. The stereographic projection Φ preserves angles.

Proof. Let p be a point on the sphere and t1 and t2 be two tangent vectors of S2 at
p separated by angle θ . We can find circles C1 and C2 on S

2 that pass through p and
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the north pole N such that t1 and t2 are tangent vectors of C1 and C2, respectively,
at p (Figure 3.5). Hence,

�
p(C1, C2) = θ.

Note that

�
N(C1, C2) = �

p(C1, C2) = θ.

Then, there exist planes P1 and P2 such that

C1 = S
2 ∩ P1

and

C2 = S
2 ∩ P2.

Note that these planes pass through N . Therefore,

Φ(C1) = P1 ∩ Pxy

and

Φ(C2) = P2 ∩ Pxy,

where Pxy is the xy-plane. Let L1 = Φ(C1) and L2 = Φ(C2). We need to show
that

�
Φ(p)(L1, L2) = θ.

Let

P ′ = {(x, y, z) ∈ R
3 | z = 1},

L′1 = P1 ∩ P ′

and

L′2 = P2 ∩ P ′.

Note that P ′ is the tangent plane of S2 at N . Hence, L′1 and L′2 are tangent lines of
C1 and C2, respectively, at N . Therefore,

�
N(L′1, L′2) = �

N(C1, C2) = θ.
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Since P ′ is parallel to Pxy , L′1 and L′2 are parallel to L1 and L2, respectively.
Therefore,

�
Φ(p)(L1, L2) = �

N(L′1, L′2) = θ,

and the proof is complete (Figure 3.5).
Now let γ1 and γ2 be curves that pass through the point p, with

�
p(γ1, γ2) = θ.

Then, there are circles C1 and C2 that pass through N and are tangent to the curves
γ1 and γ2 at point p. Hence,

�
p(C1, C2) = θ.

As shown previously,

�
Φ(p)(Φ(C1),Φ(C2)) = θ,

and the curves Φ(γi), Φ(Ci) are still tangent at Φ(p) for i = 1, 2. Therefore,

�
Φ(p)(Φ(γ1),Φ(γ2)) = �

Φ(p)(Φ(C1),Φ(C2)) = θ,

and the proof is finished.
��

C1 C2

θ

L1
L2

Pxy

L′
1

L′
2

N

p

(p)F

q

q

Fig. 3.5 The stereographic projection preserves angles



56 3 Stereographic Projection and Inversions

Exercises

3.1. Show that the stereographic projection does not preserve distances, i.e., there
exist some points p1, p2 ∈ S

2 such that

dS2(p1, p2) �= d (Φ(p1),Φ(p2)) .

3.2. Show that the stereographic projection does not preserve areas, i.e., there exists
some region Ω ⊂ S

2 such that

Area(Ω) �= Area (Φ(Ω)) .

3.3. Note that the formula in Proposition 3.2 for Φ can be extended to any point
p = (x, y, z) ∈ R

3 with z �= 1. Consider a circle C on S
2 that is not a great circle.

Assume that C does not go through the north pole. Then, Φ(C) is a circle on R
2.

Note that there exists a cone in R
3 tangent to S

2 along C. Let q be its apex.
Show that Φ(q) is the center of the circle Φ(C).

3.4. Determine whether each of the following preserves angles:

(a) φ : R2 → R
2, defined by φ(x, y) = (x, 2y).

(b) φ : R2 → R
2, defined by φ(x, y) = (2x, 2y).

3.5. Prove that the map

φ : R2 → R
2,

defined by

φ(x, y) = (x2 − y2, 2xy),

preserves angles.

3.2 Inversions on the Extended Plane

Definition 3.6. Let f : R2∞ → R
2∞ and g : S2 → S

2 be maps such that

g = Φ−1 ◦ f ◦Φ

or, equivalently,

f = Φ ◦ g ◦Φ−1.

Then, f is said to be induced by g, and g is said to be induced by f .
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We are interested in the maps of the extended plane induced by isometries of the
sphere. The following observation is our starting point.

Proposition 3.7. Let I : R2∞ → R
2∞ be the map induced by the reflection r̄G of the

sphere in the great circle G = {(x, y, z) ∈ S
2 | z = 0}; then,

I (u, v) = 1

u2 + v2 (u, v)

for (u, v) �= (0, 0), I (0) = ∞ and I (∞) = 0.

Proof. The last two are obvious. Note that r̄G(x, y, z) = (x, y,−z). Therefore, for
(u, v) �= (0, 0),

I (u, v) =
(
Φ ◦ r̄G ◦Φ−1

)
(u, v)

= Φ
(
r̄G

(
Φ−1(u, v)

))

= Φ

(
r̄G

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

))

= Φ

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,−u2 + v2 − 1

u2 + v2 + 1

)

=
(

2u

2(u2 + v2)
,

2v

2(u2 + v2)

)

= 1

u2 + v2 (u, v).

��
For each point p ( �= 0),

0p · 0I (p) = 1

and

p − 0 = a (I (p)− 0)

for some a > 0. Before generalizing the map I , we introduce a term that includes
circles and lines.

Definition 3.8. A circline is a circle or

L ∪ {∞}

in R
2∞, where L is a line in R

2.
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For any given distinct three points (including∞) in the extended plane, there exists
a unique circline that goes through these three points.

Definition 3.9. Let C be a circline. The inversion in C, denoted by IC , is a map

IC : R2∞ → R
2∞

defined as follows.

a. If C = L∪ {∞} for a line L, then IC(p) = r̄L(p) for p �= ∞ and IC(∞) = ∞.
b. If C is a circle of radius r centered at q, then for p ( �= q,∞), IC(p) is a unique

point such that

qp · q IC(p) = r2

and

p − q = a (IC(p)− q)

for some a > 0. Explicitly,

IC(p) = r2

‖p − q‖2 (p − q)+ q

for p �= q. Moreover, IC(q) = ∞ and IC(∞) = q (Figure 3.6).

Note that the previously defined map I is the inversion in the unit circle centered
at the origin. It is trivial to verify that an inversion is bijective. It satisfies properties
very similar to those satisfied by a reflection in a line.

a. IC(p) = p for every point p ∈ C.
b. I−1

C = IC .
c. All points outside of the circle C are mapped to the inside of C, and with the

exception of the circle’s center, vice versa.

Fig. 3.6 Inversion IC in a
circle C

q p1

p2

IC (p1)

IC (p2)

C
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0

line line

circle circle

line circle

0

0

Fig. 3.7 The inversion I maps a circline to a circline

For p ∈ R
2 and r > 0, let Cp,r be a circle with center p and radius r . It is not

difficult to verify that

1. IC0,r
= dr ◦ I ◦ d 1

r
and

2. ICp,r = tp ◦ IC0,r
◦ t−p,

where dr : R2∞ → R
2∞ is defined by dr(q) = rq (Exercise 3.6).

Proposition 3.10. The inversion I maps a circline to a circline (Figure 3.7).

Proof. Let C be a circline. By Proposition 3.7, we have

I = Φ ◦ r̄G ◦Φ−1,

where G is the equator on S
2. Φ−1(C) is a circle on S

2, and r̄G(Φ−1(C)) is a circle
on S

2; thus,

I (C) = Φ(r̄G(Φ−1(C)))

is a circline, where we used Theorem 3.4. ��

Proposition 3.11. The inversion I preserves angles.
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Proof. According to Theorem 3.5, the stereographic projection Φ preserves angles.
Hence, Φ−1 also preserves angles. Note that I is the composition

I = Φ ◦ r̄G ◦Φ−1

of the angle-preserving maps Φ, r̄G, and Φ−1, where r̄G is a reflection of the sphere.
Therefore, I preserves angles.

��
Corollary 3.12. For a circline C,

a. IC maps a circline to a circline, and
b. IC preserves angles.

Proof. If C is a line, then IC is a reflection, so the above obviously holds. Otherwise,
C = Cp,r is a circle with center p and radius r . Note (Exercise 3.6) that

ICp,r = tp ◦ dr ◦ I ◦ d 1
r
◦ t−p.

Since the maps tp, dr , I , d 1
r
, and t−p send circlines to other circlines and preserve

angles, ICp,r does the same. ��
For a plane P in R

3, let

P∞ = P ∪ {∞}.

The circlines on P∞ and inversions in them can be similarly defined. One can
understand the stereographic projection via those inversions. Let p be a point on
S

2 that is different from the north pole N = (0, 0, 1). Then the three points p, N ,
and the origin 0 altogether determine a plane P that contains all of them. Then it is
obvious that the plane also contains the points (Φ(p), 0) (simply denoted by Φ(p))
on the xy-plane. Let

Γ = P ∩ S
2

and L be the intersection of P with the xy-plane, then Γ is a circle on P whose
center is 0 and its radius is 1. Draw another circle Σ on the plane P with the center
N such that it passes through the two points where the circle Γ and the line L

intersect. See Figure 3.8.
Consider the inversion

IΣ : P∞ → P∞

in Σ on P∞. Draw a line l through N and p, then

{Φ(p),∞} = L ∩ l.
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0

P•

p

L

z

N

l
S

G

IS (p) = F (p)

Fig. 3.8 IΣ(p) = Φ(p)

It is easy to see that

IΣ(Γ ) = L, IΣ(l) = l.

Since

Γ ∩ l = {N,p},

{IΣ(p), IΣ(N)} = IΣ(Γ ∩ l) = IΣ(Γ ) ∩ IΣ(l) = L ∩ l = {Φ(p),∞}.

Because IΣ(N) = ∞, we conclude that

IΣ(p) = Φ(p). (3.1)

This viewpoint will be extended more when we introduce inversions in spheres
in Section 3.3.

A converse of Corollary 3.12 also holds, as stated in the following lemma.

Lemma 3.13. Let C be a circline on R
2∞. Then, the set R2∞−C is composed of two

connected regions R1 and R2. For a bijective map f : R2∞ → R
2∞, if
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1. f fixes each point on C,
2. f (R1) = R2,
3. f maps a circline to a circline, and
4. f preserves angles,

then

f = IC.

Proof. If p ∈ C, then f (p) = p = IC(p). Assume that p /∈ C. We will show that
f (p) = IC(p).

Case 1. If

C = L ∪ {∞},

where L is a line, we have that

p �= ∞ and f (∞) = ∞

because the point∞ belongs to C. Since f is bijective, f (p) �= ∞. Draw a circle Γ

that has the points p and f (p) as its antipodal points and a line M that goes through
p and f (p). Then, M and Γ meet each other orthogonally at the points p and f (p).
Let

L ∩ Γ = {p1, p2},

then the circline f (Γ ) goes through three distinct points f (p), p1, and p2 that lie
on Γ . Hence, f (Γ ) = Γ . The lines L and M meet at a single point q. The circline

f (M ∪ {∞})

goes through two distinct points f (p) and q that lie on M . Since the map f

preserves angles, f (M ∪ {∞}) meets f (Γ ) = Γ orthogonally with Γ at f (p),
where Γ meets orthogonally with M . Hence,

f (M ∪ {∞}) = M ∪ {∞}.

Since f (∞) = ∞, we conclude that f (M) = M . Note that IC(M) = M and
IC(Γ ) = Γ . Now it is obvious that

f (p) = r̄L(p) = IC(p).

See Figure 3.9.
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Fig. 3.9 The map f is an
inversion (C = L ∪ {∞})

G
q

p

f (p)p1

p2

L M

Case 2. It remains to consider the case that C is a circle. For p /∈ C, first, assume
that neither p nor f (p) is∞. Draw a circle Γ that has the points p and f (p) as its
antipodal points and a line M that goes through p and f (p). Then, M and Γ meet
each other orthogonally at the points p and f (p). Let

C ∩ Γ = {p1, p2},

then the circline f (Γ ) goes through three distinct points f (p), p1, and p2 that lie
on Γ . Hence, f (Γ ) = Γ . Since the map f preserves angles, Γ and C meet each
other orthogonally. Note that C and M meet at two points q1 and q2. The circline

f (M ∪ {∞})

goes through three distinct collinear points q1, q2, and f (p) that lie on M . Hence,

f (M ∪ {∞}) = f (M ∪ {∞}).

See Figure 3.10.
Note that IC(M) = M and IC(Γ ) = Γ . Hence,

{p, f (p)} = M ∩ Γ = IC(M) ∩ IC(Γ ) = IC(M ∩ Γ ) = {IC(p), IC(f (p)}.

If p ∈ R1, then f (p) ∈ R2 and IC(p) ∈ R2. Therefore, f (p) = IC(p).
Now, consider the situation that p or f (p) is∞. Let α be the center of the circle

α. Suppose that f (α) �= ∞, then the previous argument applies and we conclude
that

f (α) = IC(α) = ∞,
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Fig. 3.10 The map f is an
inversion (C is a circle)
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which is a contradiction. Hence f (α) = ∞. We showed that

f (p) = IC(p)

for p ∈ R
2. Note that

IC(R2) = R
2∞ − {α}.

Hence, the bijectivity of f implies that

f (∞) = α = IC(∞).

��
Now we can prove the following theorem.

Theorem 3.14. A reflection of the sphere in a great circle induces an inversion of
the extended plane.

Proof. Let φ = Φ ◦ r̄G ◦ Φ−1 be the map on R
2∞ induced by a reflection r̄G of

the sphere in the great circle G. Let C = Φ(G), which is a circline. We will show
that φ = IC . First, we show that φ satisfies conditions 1 and 2 in Lemma 3.13. For
p ∈ C, Φ−1(p) ∈ G. Hence,

φ(p) = Φ(r̄G(Φ−1(p))) = Φ(Φ−1(p)) = p.

This is the first condition. Let Q1 and Q2 be the connected regions of S2 − G and
Ri = Φ(Qi) for i = 1, 2. Then R1 and R2 are the connected regions of R2∞ − C.
For p ∈ R1,
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Φ−1(p) ∈ Q1 ⇒ r̄G(Φ−1(p)) ∈ Q2 ⇒ Φ(r̄G(Φ−1(p))) ∈ R2.

Since Φ(r̄G(Φ−1(p))) = φ(p), φ satisfies the second condition.
For a circline Γ , Φ−1(Γ ) and r̄G(Φ−1(Γ )) are circles on S

2, and thus,

φ(Γ ) = Φ(r̄G(Φ−1(Γ )))

is a circline, which is the third condition in Lemma 3.13 for φ. Since the maps Φ,
r̄G, and Φ−1 all preserve angles, φ = Φ ◦ r̄G ◦ Φ−1 also preserves angles. This is
the final condition in Lemma 3.13. Thus, φ = IC . ��

The following will be useful in proving several theorems.

Lemma 3.15. For two circlines C and Γ on R
2∞,

IC ◦ IΓ ◦ IC = IΓ ′ ,

where Γ ′ = IC(Γ ).

Proof. We will use the result of Lemma 3.13. Let

f = IC ◦ IΓ ◦ IC.

We will check the conditions for f in Lemma 3.13 to show that

f = IΓ ′ .

1. Let p ∈ Γ ′, then p = IC(q) for some q ∈ Γ .

f (p) = f (IC(q))

= (IC ◦ IΓ ◦ IC)(IC(q))

= (IC ◦ IΓ )(q)

= IC(q)

= p

2. The set R2∞ − Γ is composed of two connected regions R1 and R2. We need to
show that

f (R1) = R2 and f (R2) = R1.

Since f (Γ ) = Γ as shown in the above and f sends a connected region to a
connected region, f (R1) = R1 or R2. Suppose that f (R1) = R1. For any points
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q ∈ R1, there are two distinct circlines C1, C2, passing through q, which intersect
orthogonally with Γ . Let

ci = Ci ∩ (Γ ∪ R1).

Then

c1 ∩ c2 = {q}.

The end points of ci lie on Γ and so they are fixed by the f , f (ci) is a part of a
circline and it meets orthogonally with f (Γ ) = Γ . Hence, f (ci) = ci .

{f (q)} = f ({q})
= f ({c1 ∩ c2})
= f (c1) ∩ f (c2)

= c1 ∩ c2

= {q}

and so f (q) = q, i.e.,

(IC ◦ IΓ ◦ IC)(q) = q,

which implies

IΓ (IC(q)) = IC(q).

We conclude that IC(q) belongs to the circline Γ . Since q can be any points in
R1,

IC(R1) ⊂ Γ,

which is impossible. Hence, f (R1) �= R1 and so f (R1) = R2.
3. Each of the maps IC , IΓ sends a circline to a circline. Hence, the map

f = IC ◦ IΓ ◦ IC

sends a circline to a circline.
4. Each of the maps IC , IΓ preserves angles. Hence, the map f preserves angles.

��
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Exercises

3.6. Show the following:

(a) IC0,r
= dr ◦ I ◦ d 1

r
.

(b) ICp,r = tp ◦ IC0,r
◦ t−p.

3.7. Let

φ : R2∞ → R
2∞

be the map induced by the antipodal map â. Show that φ = −I .

3.8. Show the following:

(a)

d (I (p), I (q)) = 1

‖p‖‖q‖d(p, q)

for p, q ∈ R
2,

(b)

d (IC(p), IC(q)) = r2

‖p − α‖‖q − α‖d(p, q)

for p, q ∈ R
2, where C = Cα,r .

3.9. A Steiner chain is a collection of finitely many circles on R
2, all of which are

tangent to two given non-intersecting circles α and β (the center circle and the outer
circle in Figure 3.11) such that each circle in the chain is tangent to the previous and
subsequent circles in the chain. Note that the first and last circles are also tangent to
each other. A Steiner chain of 17 circles is shown in Figure 3.11.

Prove the following:
“If at least one Steiner chain of n circles exists for two given circles α and β,

then there is an infinite number of Steiner chains of n circles for the circles α and
β”

(Hint. Consider an inversion that maps α and β to concentric circles.)

3.10. In Figure 3.12, starting with the circle P1 tangent to the three semicircles
forming the arbelos, construct a chain of tangent circles Pi all tangent to one of
the two small interior circles and to the large exterior one. This chain is called the
Pappus chain. Let rn be the radius of Pn and hn be the distance to the line AB from
the center of Pn. Show that

hn = 2nrn.

(Hint. Consider an inversion that produces Figure 3.13.)



68 3 Stereographic Projection and Inversions

Fig. 3.11 A Steiner chain of
17 circles

Fig. 3.12 A Pappus chain

3.3 Inversions on the Sphere S
2

We showed that a reflection on S
2 induces an inversion on R

2∞. Then what kind of
maps on S

2 is induced by an inversion on R
2∞? Answering this question will be our

next task.
Let us define inversions in circles on the sphere.

Definition 3.16. Let C be a circle on the sphere. The inversion in the circle C is a
map

IC : S2 → S
2

defined as follows:

(a) If C is a great circle, then IC is defined as the reflection r̄C in C.
(b) Otherwise, let q be the apex of the cone in R

3 tangent to S
2 along C. For each

point p on S
2, if p lies on C, then IC(p) = p. Otherwise, the point IC(p)
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Fig. 3.13 An inversion of a Pappus chain

Fig. 3.14 Inversion IC in a
circle C on S

2

on S
2 is defined as the second intersection of the straight line through q and p

(Figure 3.14).

Clearly, an inversion on the sphere is bijective. We will show that inversions on
the sphere exhibit properties similar to those of the inversions on the extended plane.

One can understand the inversions on the sphere via inversions in planes when
C is not a great circle. For a given point p on S

2, choose a plane P in R
3 which

contains p, q and the center on S
2 of the circle C. Then it is obvious that the plane

also contains the points IC(p). Let
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Fig. 3.15 IC(p) = IΞ (p)

P•

IC(p) = IX (p)

p

l

q

G

X

Γ = P ∩ S
2,

then Γ is a circle on P whose center is 0 and its radius is 1. Draw another circle Ξ

on the plane P with the center q such that it passes through the two points where
the circle C and the plane P intersect. See Figure 3.15.

Note that the circle Γ intersects orthogonally with the circle Ξ . Consider the
inversion

IΞ : P∞ → P∞

in Ξ on P∞. Draw a line l through q and p, then

{p, IC(p)} = Γ ∩ l.

It is easy to see that

IΞ (Γ ) = Γ, IΞ (l) = l.

Since

Γ ∩ l = {N,p},
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{IΞ (p), IΞ (IC(p))} = IΞ (Γ ∩ l) = IΞ (Γ ) ∩ IΞ (l) = Γ ∩ l = {p, IC(p)}.

Because IΞ (p) �= p, we conclude that

IΞ (p) = IC(p). (3.2)

Proposition 3.17. An inversion on the sphere preserves angles and maps a circle
to a circle.

Proof. Let C be a circle on the sphere. If C is a great circle, then IC is the reflection
in C, which clearly satisfies the required properties. ��

Assume that C is not a great circle. Let q be the apex of the cone in R
3 tangent to

S
2 along C. By choosing a suitable coordinate system (without changing the origin),

we can assume that q lies on the z-axis with positive z-coordinate.
First, we prove the following claim:

Claim. For each point p on S
2,

IC(p) = (Φ−1 ◦ IC′ ◦Φ)(p),

where C′ = Φ(C).

Proof of Claim. Choose a plane P in R
3 which contains p, q and the center on S

2

of the circle C. Then it is obvious that the plane also contains the points IC(p). Let

Γ = P ∩ S
2

and L be the intersection of P with the xy-plane, then Γ is a circle on P whose
center is 0 and its radius is 1. Draw a circle Σ on the plane P with the center N

such that it passes through the two points where the circle Γ and the line L intersect
(Figure 3.16).

For the inversion IΣ : P∞ → P∞, we have showed in (3.1):

IΣ(α) = Φ(α) (3.3)

for each point α ∈ Γ and so

I−1
Σ (β) = Φ−1(β) (3.4)

for each point β ∈ L. Let Ξ be the circle on the plane P whose center is the point
q such that it passes through the two points where the circle C and the plane P

intersect. For the inversion IΞ : P∞ → P∞, we also showed in (3.2):

IΞ (α) = IC(α) (3.5)
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Fig. 3.16 IC(p) = (Φ−1 ◦ IC′ ◦Φ)(p)

for each point α ∈ Γ . Note that the circles C′, C′′ and the line L intersect
orthogonally with another at the points p1, p2. Hence,

IC′(α) = IC′′(α) (3.6)

for each point α on the line L. The circles Ξ and Γ intersect orthogonally with
each other at two points whose images under the inversion IΣ are p1, p2. Since
IΣ(Γ ) = L∞ and C′′ intersects orthogonally with L at p1, p2, we conclude that
IΣ(Ξ) = C′′ and so

IΣ(C′′) = Ξ. (3.7)
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Finally, we have

(Φ−1 ◦ IC′ ◦Φ)(p) = Φ−1 (IC′ (Φ(p)))

= Φ−1 (IC′ (IΣ(p))) (∵ (3.3))

= Φ−1 (IC′′ (IΣ(p))) (∵ (3.6))

= I−1
Σ (IC′′ (IΣ(p))) (∵ (3.4))

= IΣ (IC′′ (IΣ(p)))

= (IΣ ◦ IC′′ ◦ IΣ) (p)

= IIΣ(C′′)(p) (∵ Lemma 3.15)

= IΞ (p) (∵ (3.7))

= IC(p), (∵ (3.5))

which completes the proof of Claim.
According to Claim,

IC = Φ−1 ◦ IC′ ◦Φ,

which is a composition of maps that preserve angles and map a circle to a circle.
Hence, the map IC also preserves angles and maps a circle to a circle. ��
Theorem 3.18. Every inversion on the sphere induces an inversion on the extended
plane, and every inversion on the extended plane induces an inversion on the sphere.

Proof. Let C be a circle on the sphere, and let

f = Φ ◦ IC ◦Φ−1

be the map on the extended plane, induced by the inversion IC on the sphere. Let
C′ = Φ(C), which is a circline on R

2∞. Then, the set R2∞ − C′ is composed of two
connected regions R1 and R2. It is trivial to verify that f fixes each point on C′ and
f (R1) = R2. In Proposition 3.17, we showed that IC preserves angles and maps a
circle to a circle, which implies that f maps a circline to a circline and preserves
angles. Now we have checked all the conditions in Lemma 3.13, so we can conclude
that f is the inversion in C′.

Conversely, let Γ be a circline on the extended plane and C = Φ−1(Γ ). Note
that C is a circle on the sphere. We also note that Φ(C) = Γ . We showed that the
inversion IC on the sphere induced the inversion IΓ on the extended plane:

Φ ◦ IC ◦Φ−1 = IΓ .
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Hence,

IC = Φ−1 ◦ IΓ ◦Φ,

i.e., IΓ induces the inversion IC on the sphere. ��
One can define an inversion in a sphere on R

3 in a similar way. Let S be a sphere of
radius r , centered at q in R

3. The inversion

IS : R3 − {q} → R
3

in S is defined to satisfy the relations

qp · qIS(p) = r2

and

p − q = a (IS(p)− q)

for some a > 0 and any point p ∈ R
3 − {q}. Concretely,

IS(p) = r2

‖p − q‖2 (p − q)+ q.

One can show that an inversion in a sphere satisfies properties similar to those
satisfied by an inversion in a circle on the extended plane.

The stereographic projection can be understood by using an inversion in a sphere.
It is not difficult to verify that

Φ(p) = IS(p)

for each p ∈ S
2 − {N}, where S is a sphere of radius

√
2 centered at the north

pole N .

Exercises

3.11. Let q be a point R3, with ‖q‖ < 1. For each point p ∈ S
2, the line through p

and q intersects S2 at another point p′ (Figure 3.17).
Define a map

âq : S2 → S
2

by âq (p) = p′. Note that â0 is the antipodal map â.
Show that âq preserves angles and maps a circle to a circle.
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Fig. 3.17 âq (p) = p′

(Hint. Show that âq is a composition of a rotation by the angle π and an
inversion.)

3.12. Show that an inversion in a circle (not a great circle) on S
2 is a restriction

to S
2 of an inversion in a sphere. In concrete words, for an inversion IC of S2 in a

circle C (not a great circle) on S
2, show that there is a sphere S in R

3 such that

IC(p) = IS(p)

for each point p on S
2.

3.13.

• The set R∞ = R ∪ {∞} is called the projectively extended real line. In addition
to the standard operations on the subset R of R∞, the following operations are
defined for x ∈ R∞, with exceptions as indicated:

−(∞) = ∞, x +∞ =∞+ x = ∞ if x �= ∞,

x · ∞ = ∞ · x = ∞ if x �= 0,

x/∞ = 0 if x �= ∞,

x/0 = ∞ if x �= 0.

• A linear fractional transformation (also called Möbius transformation) is a map
f : R∞ → R∞ that has the form

f (x) = ax + b

cx + d

for some fixed real numbers a, b, c, d with ad − bc �= 0 and f (∞) = a
c

.
• For a ∈ R, the reflection r̄a , defined in Exercise 1.27, is extended to R∞ by

setting r̄a(∞) = ∞. For α ∈ R and r > 0, we define a map Iα,r : R∞ → R∞
by
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Iα,r (x) = r2

|x − α|2 (x − α)+ α = r2

(α − x)
+ α

for x �= α and Iα,r (α) = ∞.
We call r̄a and Ia,r inversions of R∞.

1. For a 2× 2 matrix

A =
(

a b

c d

)
,

with entries in R such that det(A) �= 0, define a linear fractional transformation
fA by

f (x) = ax + b

cx + d
.

Show that

fA ◦ fB = fAB

and

f−1
A = fA−1

for 2× 2 matrices A,B with det(A) �= 0, det(B) �= 0.
2. For given three distinct elements x2, x3, x4 in R

3, show that there exists a unique
linear fractional transformation f such that

f (x2) = 1, f (x3) = 0, f (x4) = ∞.

For given x1 in R∞, the cross ratio (x1, x2; x3, x4) is defined as the image of x1
under the linear fractional transformation f . Show that

(x1, x2; x3, x4) = x2 − x4

x2 − x3

x1 − x3

x1 − x4

when x1, x2, x3, x4 are distinct elements of R.
3. An injective map f : R∞ → R∞ is said to preserve the cross ratio if

(f (x1), f (x2); f (x3), f (x4)) = (x1, x2; x3, x4)

for each x1 ∈ R∞ and any distinct elements x2, x3, x4 of R∞.
Show that every linear fractional transformation preserves the cross ratio.

4. For each inversion ψ of R∞, show that there exists a unique inversion φ of R2∞
such that
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φ(x, 0) = (ψ(x), 0)

for any x ∈ R∞, where we regard (∞, 0) (for∞ ∈ R∞) as∞ (for∞ ∈ R
2∞).

5. For an injective map f : R∞ → R∞, show that the following are equivalent:

a. f is a composition of inversions of R∞.
b. f is a linear fractional transformation of R∞.
c. f preserves the cross ratio.

3.4 Representation of the Sphere in the Extended Plane

In most cultures, ancient people believed that the Earth’s shape was a plane or a disk.
Imagine that there is a fantasy world, called Sphereland, which is in the shape of a
sphere. There are two-dimensional beings livings in Sphereland. They are tiny (size
of approximately 10−7), similar to how human beings are very tiny compared with
the Earth. Different from us, they have no conception of the three-dimensional space
that might exist outside of their world. There lives a tiny but clever mathematician,
named Kyuri, in Sphereland. Since she does not travel far enough, compared with
the radius of the sphere, her entire world simply looks like the Euclidean plane.
Thus, she may well develop Euclidean geometry there as Euclid did in ancient
Greece 2000 years ago. Since she is a great mathematician, she succeeds in showing
that the value of π (which she thinks is a constant) lies between 223

71 (approximately
3.1408) and 22

7 (approximately 3.1429), as did Archimedes. However, after she
measures the circumference of some huge circles, she realizes that the number π

is not a constant in her world. Finally, she correctly concludes that her world is not
flat. Still, she has no conception of three-dimensional space, and she has no choice
but to use R2 to study the geometry of her world. Thus, she maps Sphereland to R

2∞
using the stereographic projection. This section is about how she studies her world
using R

2∞.

Definition 3.19. For p, q ∈ R
2∞, the stereographic distance between p and q is

defined as

dΦ(p, q) = dS2

(
Φ−1(p),Φ−1(q)

)
.

For a curve C on R
2∞, its stereographic length is defined as

lΦ(C) = l
(
Φ−1(C)

)
.

Let γ : [a, b] → R
2 be a smooth plane curve and γ (t) = (x(t), y(t)). The length

of this curve is given by
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l(γ ) =
∫

b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

Since every reflection on the plane preserves the length of a plane curve, an isometry
of the plane preserves the length of the plane curve.

Similarly, for a smooth spherical curve γ : [a, b] → S
2 with γ (t) =

(x(t), y(t), z(t)), its length is

l(γ ) =
∫

b

a

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt.

Since every reflection on the sphere preserves the length of the spherical curve, an
isometry of the sphere preserves the length of the spherical curve.

Let γ : [a, b] → R
2 be a smooth curve, with γ (t) = (u(t), v(t)). Let

(x(t), y(t), z(t)) = Φ−1 (u(t), v(t)); then,

x = 2u

u2 + v2 + 1
, y = 2v

u2 + v2 + 1
, z = u2 + v2 − 1

u2 + v2 + 1
.

dx

dt
= ∂x

∂u

du

dt
+ ∂x

∂v

dv

dt
= 2− 2u2 + 2v2

(1+ u2 + v2)2

du

dt
+ −4uv

(1+ u2 + v2)2

dv

dt
,

dy

dt
= ∂y

∂u

du

dt
+ ∂y

∂v

dv

dt
= −4uv

(1+ u2 + v2)2

du

dt
+ 2+ 2u2 − 2v2

(1+ u2 + v2)2

dv

dt

and

dz

dt
= ∂z

∂u

du

dt
+ ∂z

∂v

dv

dt
= 4u

(1+ u2 + v2)2

du

dt
+ 4v

(1+ u2 + v2)2

dv

dt
.

After routine but lengthy calculations, one can show that

(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

= 4

(1+ u2 + v2)2

((
du

dt

)2

+
(

dv

dt

)2
)

.

Hence,

lΦ(γ ) = l
(
Φ−1(γ )

)

=
∫

b

a

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt
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=

∫
b

a

2

1+ u2 + v2

√(
du

dt

)2

+
(

dv

dt

)2

dt.

Hence, we have

lΦ(γ ) =

∫
b

a

2

1+ u2 + v2

√(
du

dt

)2

+
(

dv

dt

)2

dt. (3.8)

Definition 3.20. A stereographic isometry of R2∞ is a bijective map f : R2∞ →
R

2∞ such that

dΦ(f (p), f (q)) = dΦ(p, q)

for any p, q ∈ R
2∞.

Then, the following two theorems immediately arise.

Theorem 3.21. A map f : R2∞ → R
2∞ is a stereographic isometry if and only if it

induces an isometry of the sphere.

Proof. (⇒) Let f : R2∞ → R
2∞ be a stereographic isometry and g = Φ−1 ◦f ◦Φ.

For any points p, q ∈ S
2,

dS2(g(p), g(q)) = dS2((Φ
−1 ◦ f ◦Φ)(p), (Φ−1 ◦ f ◦Φ)(q))

= dΦ((f ◦Φ)(p), (f ◦Φ)(q))

= dΦ(Φ(p),Φ(q))

= dS2(p, q).

Hence, g is an isometry of S2.
(⇐) For a map f : R2∞ → R

2∞, let g = Φ−1 ◦f ◦Φ be an isometry of S2. Then,
f = Φ ◦ g ◦Φ−1. For any points p, q ∈ R

2∞,

dΦ(f (p), f (q)) = dΦ((Φ ◦ g ◦Φ−1)(p), (Φ ◦ g ◦Φ−1)(q))

= dS2((g ◦Φ−1)(p), (g ◦Φ−1)(q))

= dS2(Φ
−1(p),Φ−1(q))

= dΦ(p, q).

Hence, f is a stereographic isometry. ��
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Let us denote by Iso(R2∞) the set of all the stereographic isometries. Then
Theorem 3.21 implies that there is a one-to-one correspondence between the sets
Iso(S2) and Iso(R2∞).

Theorem 3.22. A stereographic isometry is a composition of at most three inver-
sions.

Proof. Let φ be a stereographic isometry, then, by Theorem 3.21,

Φ−1 ◦ φ ◦Φ : S2 → S
2

is an isometry of S2. By Theorem 2.7, Φ−1 ◦φ ◦Φ is a composition of at most three
reflections in great circles:

Φ−1 ◦ φ ◦Φ = r̄1 ◦ r̄2 ◦ · · · ◦ r̄n,

where r̄1, r̄2, · · · , r̄n are some reflections in great circles with n ≤ 3. Then

φ = Φ ◦ r̄1 ◦ r̄2 ◦ · · · ◦ r̄n ◦Φ−1

= Φ ◦ r̄1 ◦Φ−1 ◦Φ ◦ r̄2 ◦Φ−1 ◦ · · · ◦Φ ◦ r̄n ◦Φ−1

= I1 ◦ I2 ◦ · · · ◦ In,

where Ii := Φ ◦ r̄i ◦Φ−1 is an inversion on R
2∞ by Theorem 3.14.

��
One can define a stereographic line on R

2∞ as the set of points that have the same
stereographic distance from two distinct points. One can show that an image of a
great circle obtained by the stereographic projection is a stereographic line. It is not
difficult to prove the following theorem.

Theorem 3.23. A stereographic line is the unit circle centered at the origin or
a circline that intersects with the unit circle at two antipodal points of the circle
(Figure 3.18).

Proof. Let Γ be a stereographic line. Then

Γ = {p ∈ R
2 | dΦ(p1, p) = dΦ(p2, p)}

for some fixed distinct points p1, p2 in R
2∞ and

p ∈ Γ ⇔ dΦ(p1, p) = dΦ(p2, p)

⇔ dS2(Φ
−1(p1),Φ

−1(p)) = dΦ(Φ−1(p2),Φ
−1(p))

⇔ Φ−1(p) ∈ GΦ−1(p1),Φ
−1(p2)

.



3.4 Representation of the Sphere in the Extended Plane 81

Fig. 3.18 Stereographic lines through points (0, 1) and (0,−1)
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Hence,

Φ−1(Γ ) = GΦ−1(p1),Φ
−1(p2)

is a spherical line, which is a great circle. If Φ−1(Γ ) is an equator of the sphere,
then Γ = Φ(Φ−1(Γ )) is the unit circle, centered at the origin. Otherwise, Φ−1(Γ )

meets the equator at two antipodal points. Then, Γ = Φ(Φ−1(Γ )) is a circline
that intersects with the unit circle at two antipodal points of the circle. On the other
hand, let Γ be a circline that intersects with the unit circle at two antipodal points
of the circle. Note that Φ−1(Γ ) is a circle on the sphere that meets the equator at
two antipodal points. This means that Φ−1(Γ ) is a great circle. Hence, Γ is also a
stereographic line in this case, or a circline that intersects with the unit circle at two
antipodal points of the circle.

��
Definition 3.24. Let R be a region in R

2∞. Then, its stereographic area is defined as

Area Φ (R) = Area
(
Φ−1(R)

)
.

A stereographic triangle is a region on R
2∞ bounded by three stereographic lines.

Theorem 3.25. The area of a stereographic triangle with interior angles α, β, and
γ is

α + β + γ − π.

Remark 3.26. Let R be a region in R
2∞. Then, its stereographic area can be given as

Area Φ (R) =
∫∫

R

4dudv

u2 + v2 + 1
.

Thus far, we have considered a few spaces with distances: (R2, d), (S2, dS2) and
(R2∞, dΦ). One can regard distance as a function. For example, the distance d on
the Euclidean plane R

2 is the function

d : R2 × R
2 → R.

A set M with a distance function dM : M ×M → R is called a (metric) space;
more conditions on dM can be added, depending on the geometry under study. If
there exists a bijective map φ from a space M1 with distance dM1 to another space
M2 with distance dM2 that preserves the distances dM1 and dM1 , i.e.,

dM2(φ(p), φ(q)) = dM1(p, q)
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for any p, q ∈ M1, then the map φ is called an isometry from M1 to M2, and the
spaces M1 and M2 are said to be isometric. If M1 and M2 are isometric, they share
the same geometric properties. By the very definition of dΦ on R

2∞ (Definition 3.19),
the spaces (S2, dS2) and (R2∞, dΦ) are isometric. This is the reason why they
satisfy basically the same geometric theorems with respect to lines, circles, and
isometries. One can regard (S2, dS2) and (R2∞, dΦ) as different models of the same
space. Note that the space (S2, dS2) sits in the three- dimensional Euclidean space.
Hence, geometric intuition for three-dimensional space is very useful in studying
this model. However, the beings on Sphereland do not have such intuition and so it
may be very hard for them to understand this model.

On the other hand, the space (R2∞, dΦ) uses the set R2 as its base. This model
looks awkward and unnatural to us because it represents the geometry of the sphere
in R

3 on the set R2. However, people on Sphereland may be much more comfortable
with this model because they have no conception of the three-dimensional space.

We have good geometric intuition for the three-dimensional Euclidean space. It
is possible that our universe is not isometric with R

3 but some other space such as
the following space in R

4:

{(x, y, z, u) ∈ R
4 | x2 + y2 + z2 + u2 = R2},

where R is some huge number that represents the size of our universe. However, we
would be more comfortable with a model that uses the set R3 as its base just as the
beings on Sphereland are more comfortable with the model (R2∞, dΦ).

One can interpret the geometry of Sphereland somewhat differently (originally
an idea of Poincaré). Consider a world with inhabitants that can be described by R

2.
One of its descriptors is temperature; the absolute temperature at (u, v) is

T (u, v) = 1+ u2 + v2

2
.

The lengths of objects, including living creatures, are proportional to the absolute
temperature. How will a little flat creature endowed with reason living in this world
describe the main physical laws of her world? The first question she may ask could
be the following:

Is the world finite or infinite?

To answer this question, an expedition is organized; however, as the expedition
moves away from the origin, the legs of the explorers become longer, and their
steps become bigger, proportional to the temperature T (u, v) (see Figure 3.19).
Therefore, the length of their steps is

cT (u, v) = c

(
1+ u2 + v2

2

)
,
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0

Fig. 3.19 As the legs of the explorers become longer, their steps become bigger

where c is some small positive constant, which depends on the size of their body.
Therefore, the length of a curve in her world will be measured as∫

b

a

k

T (u, v)

√(
du

dt

)2

+
(

dv

dt

)2

dt

for a curve γ : [a, b] → R
2 with γ (t) = (u(t), v(t)), where k is some positive

scaling constant. If one sets as k = 1, this is the formula given in (3.8).
Suppose that γ (t) = (t, 0) is the path of the explorers and that they take one

step per second. Then, the steps needed to reach the “end” of the world would be as
follows:∫ ∞

0

2

c(1+ t2 + 02)

√(
dt

dt

)2

+
(

d0

dt

)2

dt =
∫ ∞

0

2

c(1+ t2)
dt = π

c
,

which is finite! Hence, they will conclude that the world is finite.
The next question may be the following:

Can they realize that the temperature is varying in the world?

Having constructed a thermometer (based on different expansion coefficients
of various materials), they carry it around their world and take measurements.
However, since the lengths of all objects change simultaneously with temperature,
the thermometer gives the same measurement all over the world. They conclude that
the temperature is constant.

They might study straight lines, i.e., investigate the shortest path between two
points. The ordinary Euclidean lines are not straight lines in their world. They will
discover that the shortest path is a stereographic line, which is the image of a great
circle on the stereographic map.

What do you think about our real universe? Do you think that it is really a
Euclidean three-dimensional space? To draw a reasonable conclusion, one needs
to make measurements on an astronomical scale.
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Exercises

3.14. Find

dΦ(p1, p2) and lΦ(C),

where p1 = (0, 0), p2 = (1, 0) and C is a circle having the line segment p1p2 as a
diameter.

3.15. Let T be the stereographic triangle whose vertices are (0, 0), (0, 1), and
(1, 0). Find its stereographic area

AreaΦ(T ).



Chapter 4
Hyperbolic Plane

“One geometry cannot be more true
than another; it can only be more
convenient.”

Henri Poincaré (1854–1912)

“Mathematics is the art of giving the
same name to different things.”

Henri Poincaré (1854–1912)

Hyperbolic geometry was created in the nineteenth century to better understand
Euclid’s axiomatic basis for geometry. However, hyperbolic geometry is similar to
Euclidean geometry in many respects. It has the concepts of distance and angle,
and there are many theorems common to both. However, there are also striking
differences, e.g., the sum of the angles of a hyperbolic triangle is always less than π .

4.1 Poincaré Upper Half-Plane H
2

The upper half-plane is the set

H
2 = {(x, y) ∈ R

2 | y > 0}.

In Section 3.4, we introduced the space R
2∞, whose “lines” are the unit circle,

centered at the origin, or circlines that intersect with the unit circle at two antipodal
points of the unit circle (Theorem 3.23). This distortion of “lines” is caused because
we described the geometry of the sphere, which is a curved surface, on a flat plane.
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In this chapter, we introduce another interesting geometry of a certain curved
surface. Different from the sphere, this surface cannot sit in R

3; however, it is
one of the very basic surfaces, along with the Euclidean plane and the sphere.
We will describe its geometry on the upper half-plane H

2. Its “lines” will turn
out to be semicircles or vertical half lines that intersect orthogonally with the x-
axis (Figure 4.1). Similar to the process described in Section 3.4, we can also
imagine that some variation of temperature results in the geometry on H

2. Note that
the lengths of objects, including living creatures, are proportional to the absolute
temperature. Then, the question would be

“What temperature variation would result in a certain geometry?”

Note that a “line” through given points p and q is also the “shortest” path from p

to q, where the “distance” is measured in a way determined by its geometry. Because
the “shortest” path on H

2 is not a Euclidean line but a semicircle (Figure 4.2), the
temperature is not constant. We can expect that the temperature increases as the y-
coordinate increases, i.e., as the y-coordinate increases, the legs of the creatures
become proportionally larger, and thus, fewer steps are required to reach point
q from point p along the circle than along the Euclidean line (Figure 4.3). The
simplest choice of an appropriate temperature function would be as follows:

T (x, y) = y.

Fig. 4.1 “Lines” on the
upper half-plane H

2

x

Fig. 4.2 The “shortest” path
from p to q

x

q

p
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Fig. 4.3 This distance is 9
steps along the Euclidean line
but only 6 steps along the
semicircle!

Surprisingly, this naive choice of temperate function yields the correct geometry.
Note that the temperature (also the size of the creatures) approaches zero as it
approaches the x-axis.

Given this temperature function, we define the H
2-length of a curve on H

2 as
follows:

Definition 4.1. Let γ : [a, b] → H
2 be a smooth curve on the half-plane, where

γ (t) = (x(t), y(t)); then, its hyperbolic length is as follows:

lH2(γ ) =

∫
b

a

1

T (x, y)

√(
dx

dt

)2

+
(

dy

dt

)2

dt =

∫
b

a

1

y

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

For example, consider the following:

γ1 : [a, b] → H
2, γ1(t) = (0, t), 0 < a < b.

Then, γ1 is a part of a vertical line, and its hyperbolic length is

lH2(γ1) =

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt =

∫
b

a

1

t
dt = ln

b

a
.

Let

γ2 : [a, b] → H
2, γ2(t) = (t, c), 0 < a < b, 0 < c.

Then, it is a part of a horizontal line, and its hyperbolic length is

lH2(γ2) =

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt =

∫
b

a

1

c
dt = b − a

c
,
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which is inversely proportional to c.
The set H2 with the hyperbolic length is called the hyperbolic plane.

Definition 4.2. A bijective map φ : H2 → H
2 is an isometry of the hyperbolic

plane if it preserves the hyperbolic lengths of the curves, i.e.,

lH2(φ(γ )) = lH2(γ )

for each smooth curve γ on H
2.

Denote the set of all isometries of the hyperbolic plane by Iso(H2).
For a map

f : R2 → R
2,

if f (H2) ⊂ H
2, we consider it a map from H

2 to H
2.

For a map g : H2 → H
2 and a curve γ : [a, b] → H

2 with γ (t) = (x(t), y(t)),
recall that the curve δ := g(γ ) : [a, b] → H

2 is defined by

δ(t) = g(γ (t)).

Example 4.1 (Translations in the x-direction). For a ∈ R, t(a,0)(x, y) = (a+x, y).

δ(t) = (t(a,0)(γ )
)
(t) = (x(t)+ a, y(t)).

lH2

(
t(a,0)(γ )

) = lH2(δ)

=

∫
b

a

√(
d(x+a)

dt

)2 +
(

dy
dt

)2

y
dt

=

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt

= lH2(γ ).

Hence, t(a,0) is an isometry of the hyperbolic plane.

Example 4.2 (Reflections in vertical lines). If L is a line defined by x = a, then
r̄L(x, y) = (2a − x, y), and

δ(t) = (r̄L(γ )) (t) = (2a − x(t), y(t)).
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lH2 (r̄L(γ )) =

∫
b

a

√(
d(2a−x)

dt

)2 +
(

dy
dt

)2

y
dt

=

∫
b

a

√(− dx
dt

)2 +
(

dy
dt

)2

y
dt

=

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt

= lH2(γ ).

Hence, r̄L is an isometry of the hyperbolic plane.

Example 4.3 (Rescaling about the origin 0). Let dr(x, y) = (rx, ry) for some
r > 0.

δ(t) = (dr (γ )) (t) = (rx(t), ry(t)).

lH2 (dr (γ )) =

∫
b

a

√(
d(rx)

dt

)2 +
(

d(ry)
dt

)2

ry
dt

=

∫
b

a

r

√(
dx
dt

)2 +
(

dy
dt

)2

ry
dt

=

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt

= lH2(γ ).

Hence, dr is an isometry of the hyperbolic plane.

Proposition 4.3. The inversion I is an isometry of the hyperbolic plane.
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Proof. Note that

I (x, y) = 1

x2 + y2
(x, y).

(
d

dt

x

x2 + y2

)2

+
(

d

dt

y

x2 + y2

)2

= 1

(x2 + y2)2

((
dx

dt

)2

+
(

dy

dt

)2
)

.

lH2 (I (γ )) =

∫
b

a

√(
d
dt

x
x2+y2

)2 +
(

d
dt

y

x2+y2

)2

y

x2+y2

dt

=

∫
b

a

1

x2 + y2

√(
dx
dt

)2 +
(

dy
dt

)2

y

x2+y2

dt

=

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt

= lH2(γ ).

Hence, I is an isometry. ��
Theorem 4.4. If C is a circle, centered at a point on the x-axis, or a vertical line,
then the inversion IC is an isometry of the hyperbolic plane.

Proof. When C is a vertical line, this was proved in Example 4.2. If C = C0,r is a
circle with radius r , centered at the origin, then

IC = dr ◦ I ◦ d1/r ,

which is a composition of isometries. Therefore, it is an isometry. In general, if
C = C(a,0),r is a circle of radius r , centered at (a, 0), then

IC = t(a,0) ◦ IC0,r
◦ t(−a,0),

which is again a composition of isometries. Hence, IC is also an isometry. ��
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Exercises

4.1. Let L be a line segment connecting the points (1,
√

3) and (0, 2), and let C be
part of a Euclidean circle with radius 2 and center 0 connecting these two points.
Show numerically that

lH2(L) > lH2(C).

You may use the formula

∫
dx

sin x
= ln

∣∣∣tan
x

2

∣∣∣

and a calculator.

4.2. Let C be a curve joining the origin and the point (0, 1). Show that it does not
have a finite hyperbolic length. What does this mean?

4.3. For each pair of points p, q ∈ H
2, show that there is an isometry φ of the

hyperbolic plane such that φ(p) = q

4.2 H
2-Shortest Paths and H

2-Lines

Henceforth, an inversion means an inversion in a vertical line, or a circle whose
center lies on the x-axis, and a translation means a translation in the x-direction.
Hence, an inversion and a translation are isometries of the hyperbolic plane.

On the Euclidean plane, a line segment measures the shortest distance between
two points. We develop a similar notion, corresponding to that of the line segment
on the Euclidean plane. For two distinct points p1 and p2, a path from p1 to p2 is a
smooth curve γ : [a, b] → H

2 such that

γ (a) = p1, γ (b) = p2.

Definition 4.5. A path γ from a point p1 to another point p2 is called an H
2-

shortest path from p1 to p2 if

lH2(γ ) ≤ lH2(γ
′)

for every path γ ′ from p1 to p2.

Proposition 4.6. The curve

γ : [a, b] → H
2, γ (t) = (0, t), 0 < a < b,

is the unique H
2-shortest path from (0, a) to (0, b).
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Proof. Note that lH2(γ ) = ln b
a

. Let δ : [c, d] → H
2 be any path from (0, a) to

(0, b) with δ(t) = (x(t), y(t)). Then, y(c) = a, y(d) = b, and

lH2(δ) =

∫
d

c

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt ≥

∫
d

c

√(
dy
dt

)2

y
dt

=
∫

d

c

1

y

∣∣∣∣
dy

dt

∣∣∣∣ dt ≥
∫ y(d)

y(c)

dy

y
= ln

y(d)

y(c)
= ln

b

a
= lH2(γ ).

In summary, lH2(δ) ≥ lH2(γ ), and the equality holds only if

dx

dt
= 0 and

dy

dt
≥ 0,

which implies that δ and γ are the same curves (Figure 4.4). Thus ends the proof.
��

Proposition 4.7. Let φ be an isometry of the hyperbolic plane and γ be a path
from p1 to p2. Then, γ is an H

2-shortest path from p1 to p2 if and only if φ(γ ) is
an H

2-shortest path from φ(p1) to φ(p2).

Proof. First, let γ be an H
2-shortest path from p1 to p2 and δ = φ(γ ). Let δ′ be a

path from φ(p1) to φ(p2). Then, γ ′ := φ−1(δ′) is a path from p1 to p2. Therefore,

lH2(γ ) ≤ lH2(γ
′) = lH2

(
φ−1(δ′)

)
= lH2

(
δ′
)

x

y

a

b

0

dy
dt < 0, dx

dt �= 0

dx
dt �= 0

g

d

Fig. 4.4 γ is the H
2-shortest path from (a, 0) to (b, 0)
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because φ−1 is also an isometry. Hence,

lH2(δ) = lH2 (φ(γ )) = lH2(γ ) ≤ lH2

(
δ′
)
.

Therefore, δ = φ(γ ) is an H
2-shortest path from φ(p1) to φ(p2).

Second, if we let ψ = φ−1, q1 = φ(p1), and q2 = φ(p2) and apply the same
argument, then the converse is also proven. ��
Lemma 4.8. If Γ is either a vertical line or a circle, centered at a point on the
x-axis, then there is an isometry φ such that φ(Γ ) is the y-axis.

Proof. If Γ is a vertical line, there is some isometry φ (for example, a translation
in the x-direction) such that φ(Γ ) is the y-axis.

Otherwise Γ would be a circle, centered at a point on the x-axis. Let q be one
of the intersection points of the circle Γ and the x-axis. Let C be a circle of radius
1 with center q. Then, IC(Γ ) is a line. Since the circle Γ intersects orthogonally
with the x-axis, IC sends the x-axis to the x-axis, and an inversion preserves angles,
the line meets orthogonally with the x-axis, i.e., it is a vertical line (Figure 4.5). By
applying a translation in the direction of the x-axis, one can move the line to the
y-axis. The composition φ of the inversion and the translation maps the circle Γ to
the y-axis. Note that φ is an isometry. ��

Theorem 4.9. For any two points p1, p2 ∈ H
2, there exists a unique H

2-shortest
path from p1 to p2, and it is a part of a vertical line or a circle, centered at a point
on the x-axis.

Proof. Let γ be a path from p1 to p2 that is a part of a vertical line or a part of a
circle, centered at a point on the x-axis.

According to Lemma 4.8, there is an isometry φ such that φ(γ ) is a part of the
y-axis. According to Proposition 4.6, φ(γ ) is an H

2-shortest path from φ(p1) to
φ(p2), and according to Proposition 4.7,

φ−1 (φ(γ )) = γ

Fig. 4.5 φ(Γ ) is a vertical
line

xq

C

IC (G)

G
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is an H
2-shortest path from p1 to p2. Suppose that there is another H

2-shortest
path δ from p1 to p2 that is different from γ . Then, φ(δ) is another H

2-shortest
path from φ(p1) to φ(p2) that is different from φ(γ ), which is contradictory to
Proposition 4.6. Hence, γ is the unique H

2-shortest path from p1 to p2. ��
We can now define the hyperbolic distance between points on H

2.

Definition 4.10. For p1, p2 ∈ H
2, the hyperbolic distance between p1 and p2 is as

follows:

dH2(p1, p2) = lH2(γ ),

where γ is the H
2-shortest path from p1 to p2.

For p1 = (a, b) and p2 = (a, c), which lie on the same vertical line,

dH2(p1, p2) =
∣∣∣ln c

b

∣∣∣ .

According to Theorem 4.9, we can formulate a triangle inequality for the
hyperbolic plane.

Corollary 4.11 (Triangle inequality for the hyperbolic plane). For three points
p1, p2, and p3 in the hyperbolic plane,

dH2(p1, p3) ≤ dH2(p1, p2)+ dH2(p2, p3),

where the equality holds if and only if p2 lies on the H2-shortest path from p1 to p3.

Proof. Let γij be the H
2-shortest path from pi to pj for 1 ≤ i < j ≤ 3. Then,

dH2(pi, pj ) = lH2(γij ).

Note that the union (denoted by δ) of γ12 and γ23 is a path from p1 to p3 (Figure 4.6).
According to Theorem 4.9,

dH2(p1, p2)+ dH2(p2, p3) = lH2(δ) ≥ lH2(γ13) = dH2(p1, p3),

Fig. 4.6 dH2 (p1, p3) ≤
dH2 (p1, p2)+ dH2 (p2, p3)

x

•
•

•p1

p2

p3
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and the equality holds if and only if δ has the same path as γ13, which means that
point p2 lies on path γ13. ��
Corollary 4.12. If dH2(p1, p2) = 0, then p1 = p2.

Proof. According to Lemma 4.8, there is an isometry φ such that φ(p1) and φ(p2)

lie on the y-axis, i.e.,

φ(p1) = (0, a), φ(p2) = (0, b) for some a, b > 0.

According to Proposition 4.6, the curve γ : [0, 1] → H
2 by γ (t) = (0, at+b(1−t))

is the H
2-shortest path from φ(p1) to φ(p2). Hence,

0 = dH2(p1, p2) = dH2 (φ(p1), φ(p2)) = lH2(γ ) =
∣∣∣∣ln

b

a

∣∣∣∣ .

Therefore, a = b and φ(p1) = φ(p2). Since an isometry is injective, p1 = p2. ��
Definition 4.13. For two distinct points p1, p2 ∈ H

2, the set of points equi-H2-
distant from p1 and p2 is called a hyperbolic line (or simply an H

2-line), i.e.,

Hp1,p2 = {p ∈ H
2 | dH2(p, p1) = dH2(p, p2)}.

Proposition 4.14. Let p1 = (−a, b) and p2 = (a, b) for a, b > 0. Then, Hp1,p2 is
the y-axis.

Proof. Let L be the y-axis; then, r̄L(p1) = p2. For each point p ∈ L, r̄L(p) = p,
and hence,

dH2(p1, p) = dH2 (r̄L(p1), r̄L(p)) = dH2(p2, p).

Therefore, p ∈ Hp1,p2 and L ⊂ Hp1,p2 .
Suppose that there exists some point q ∈ Hp1,p2 such that q /∈ L. Let q = (c, d);

then, c �= 0. Hence, we have that c > 0 or c < 0, say c > 0, then the H
2-

shortest path from p1 to q intersects with the y-axis at a point p′ (Figure 4.7). Let
q ′ = (−c, d) = r̄L(q). It is not difficult to see that the point p′ does not lie on the
H

2-shortest path from p1 to q ′. Therefore, by Corollary 4.11,

dH2(p1, q
′) < dH2(p1, p

′)+ dH2(p
′, q ′).

However,

dH2(p1, q
′) = dH2

(
r̄L(p1), r̄L(q ′)

)

= dH2(p2, q)

= dH2(p1, q)
(
∵ q ∈ Hp1,p2

)
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x

y

••

••

• qq ′

p2p1

p ′

0

Fig. 4.7 The H
2-shortest path from p1 to q intersects with the y-axis at a point p′

= dH2(p1, p
′)+ dH2(p

′, q)

= dH2(p1, p
′)+ dH2

(
r̄L(p′), r̄L(q)

)

= dH2(p1, p
′)+ dH2(p

′, q ′),

i.e.,

dH2(p1, q
′) = dH2(p1, p

′)+ dH2(p
′, q ′),

which is a contradiction. Hence, if q ∈ Hp1,p2 , then q ∈ L and Hp1,p2 ⊂ L.
Therefore, Hp1,p2 = L. ��

Lemma 4.15. For two points p1, p2 ∈ H
2, there is a composition φ of reflections

in a circle centered at the x-axis and translations in the x-direction such that

φ(p1) = (a, b), φ(p2) = (−a, b)

for some a, b ∈ R, i.e., two points φ(p1) and φ(p2) are symmetric with respect to
the y-axis.

Proof. For a point p, let πx(p) and πy(p) be its x- and y-coordinates, respectively.
If the points p1 and p2 lie on a circle Γ , centered at a point on the x-axis, then let q1
and q2 be the intersection points of Γ with the x-axis. Consider a unit circle Cα,1,
where the center α lies on the x-axis. The inversion ICα,1 maps p1 and p2 to points
on a vertical line when α = q1 or q2, respectively. Note that the sign of

πy

(
ICα,1(p1)

)− πy

(
ICα,1(p2)

)
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Fig. 4.8 Compare the signs
of πy

(
ICα,1 (p1)

)−
πy

(
ICα,1 (p2)

)
for α = q1, q2

x

•
•p1

p2

•• q2q1

Cq1,1 Cq2,1

•

•

•

•

IC q2,1 (p1)IC q2,1 (p2)IC q2,1 (p2)

IC q1,1 (p1)

G

changes as α moves between q1 and q2 along the x-axis (Figure 4.8). Therefore,
there exists some point α0 between q1 and q2 such that

πy

(
ICα0,1(p1)

)
− πy

(
ICα0,1(p2)

)
= 0.

There is some translation t in the x-direction such that

πx

(
t
(
ICα0,1(p1)

))
+ πx

(
t
(
ICα0,1(p2)

))
= 0.

We still have

πy

(
t
(
ICα0,1(p1)

))
− πy

(
t
(
ICα0,1(p2)

))
= 0.

Therefore, t ◦ ICα0,1 is a map that we seek.
If the points p1 and p2 do not lie on a circle, centered at a point on the x-axis,

then they lie on a vertical line. There is some inversion I1 that maps the line to a
circle. Find α0 and a translation t for I1(p1) and I1(p2), as we did in the previous
case. Now the map

t ◦ ICα0,1 ◦ I1

is a map that we are looking for. ��

Theorem 4.16. A hyperbolic line is either a vertical line or a circle, centered at a
point on the x-axis.

Proof. Let Hp1,p2 be a hyperbolic line. According to Lemma 4.15, there is an
isometry φ that is a composition of inversions and translations such that

φ(p1) = (a, b), φ(p2) = (−a, b)
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for some a, b ∈ R. According to Proposition 4.14, Hφ(p1),φ(p2) is the y-axis.
Therefore,

Hp1,p2 = φ−1(Hφ(p1),φ(p2))

is either a vertical line or a circle that intersects orthogonally with the x-axis because
Hφ(p1),φ(p2) does. Hence, the proof is complete. ��

Exercises

4.4. For two points p1, p2 ∈ H
2, show that

dH2(p1, p2) = 2 tanh−1
(

d(p1, p2)

d(p1, r̄(p2))

)

for each of following cases, where d(p1, p2) is the ordinary Euclidean distance.

1. The points p1, p2 are on the same vertical line.
2. The points p1, p2 are on a Euclidean circle of Euclidean radius 1

2 , centered at the

point
(

1
2 , 0
)

.

(Hint. In the polar coordinate, r(θ) = cos θ parameterize the circle. You may
want to use the formula

∫
2

sin 2θ
dθ = ln |tan θ | .

)
3. The points p1, p2 lie on the hyperbolic plane. (Hint. Use 1, 2 and consider

suitable isometries.)

4.3 Isometries of the Hyperbolic Plane

We want to use IHp1,p2
as “reflections” of the hyperbolic plane. Then, the following

should hold.

Lemma 4.17. For a hyperbolic line Hp1,p2 ,

IHp1,p2
(p1) = p2.

Proof. Let Γ be either a vertical line or a circle centered at the x-axis, passing
through the points p1 and p2. According to Lemma 4.8, there is an isometry φ such
that φ(Γ ) is the y-axis. It is not difficult to see that
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φ
(
Hp1,p2

) = Hφ(p1),φ(p2).

By symmetry, Hφ(p1),φ(p2) is a circle, centered at the origin 0. Then, we can choose
some points q1 and q2 from Hφ(p1),φ(p2) such that q1 = (a, b) and q2 = (−a, b) for
some a, b ∈ R. Note that

Hq1,q2 = φ(Γ )

and

φ−1(q1), φ
−1(q2) ∈ Hp1,p2 .

It is also easy to see that

Hφ−1(q1),φ
−1(q2)

= φ−1 (φ(Γ )) = Γ.

Let p = IHp1,p2
(p1). Then p �= p1. Note that

dH2

(
φ−1(q1), p

)
= dH2

(
IHp1,p2

(
φ−1(q1)

)
, IHp1,p2

(p)
)

= dH2

(
φ−1(q1), p1

)
(∵ φ−1(q1) ∈ Hp1,p2)

= dH2 (q1, φ(p1))

= dH2 (q2, φ(p1))

= dH2

(
φ−1(q2), p1

)

= dH2

(
IHp1,p2

(
φ−1(q2)

)
, IHp1,p2

(p1)
)

= dH2

(
φ−1(q2), p

)
.

Hence, p ∈ Hφ−1(q1),φ
−1(q2)

= Γ , and thus, φ(p) lies on the y-axis. Let q be the
intersection point of the y-axis and Hφ(p1),φ(p2). Then, φ−1(q) is the intersection
point of Γ and Hp1,p2 , and

dH2 (q, φ(p)) = dH2 (q, φ(p1)) = dH2 (q, φ(p2))

because

dH2 (q, φ(p)) = dH2

(
φ−1(q), p

)

= dH2

(
IHp1,p2

(
φ−1(q)

)
, IHp1,p2

(p)
)
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= dH2

(
φ−1(q), p1

)

= dH2 (q, φ(p1)) .

Since the points φ(p), φ(p1), and φ(p2) lie on the y-axis, we conclude that
φ(p) = φ(p1) or φ(p2). Note that p �= p1. Hence, we have φ(p) = φ(p2). Finally,

IHp1,p2
(p1) = p = p2.

��
Points on the hyperbolic plane are said to be collinear if they lie on the same

hyperbolic line.

Lemma 4.18. An isometry of the hyperbolic plane maps non-collinear points p1,
p2, and p3 to non-collinear points.

Proof. Let φ : H2 → H
2 be an isometry. Suppose that the points φ(p1), φ(p2) and

φ(p3) are collinear. Then, they lie on an H
2-line Hp,q . Therefore,

dH2(p, φ(p1)) = dH2(q, φ(p1)),

dH2(p, φ(p2)) = dH2(q, φ(p2)),

and

dH2(p, φ(p3)) = dH2(q, φ(p3)).

However, then,

dH2(φ
−1(p), p1) = dH2(φ

−1(q), p1),

dH2(φ
−1(p), p2) = dH2(φ

−1(q), p2),

and

dH2(φ
−1(p), p3) = dH2(φ

−1(q), p3),

which implies that the points p1, p2, and p3 lie on an H
2-line Hφ−1(p),φ−1(q). This

is a contradiction, and the points φ(p1), φ(p2), and φ(p3) are non-collinear. ��
Theorem 4.19 (Three points theorem for the hyperbolic plane). If two isome-
tries φ and ψ coincide at three non-collinear points p1, p2, and p3, then φ = ψ .

Proof. According to Lemma 4.18, the points φ(p1), φ(p2), and φ(p3) are also non-
collinear.

Suppose that φ �= ψ . Then, there is a point p such that



4.3 Isometries of the Hyperbolic Plane 103

φ(p) �= ψ(p),

and we can define an H
2-line H = Hφ(p),ψ(p). Note that

dH2(φ(p), φ(p1)) = dH2(p, p1) (∵ φ is an isometry)

= dH2(ψ(p), ψ(p1)) (∵ ψ is an isometry)

= dH2(ψ(p), φ(p1)),

i.e., dH2(φ(p), φ(p1)) = dH2(ψ(p), φ(p1)). Therefore, φ(p1) ∈ H . Similarly, we
have

φ(p2) ∈ H and φ(p3) ∈ H.

But then, the points φ(p1), φ(p2), and (p3) are collinear, which is a contradiction.
��

Theorem 4.20 (Three inversions theorem for the hyperbolic plane). An isome-
try of the hyperbolic plane is a composition of at most three inversions.

Proof. Let φ : H2 → H
2 be an isometry and p1, p2, and p3 be non-collinear points.

We divide the situation into four cases.

Case 1. First, assume that

φ(p1) = p1, φ(p2) = p2 and φ(p3) = p3;

then, φ = idH2 , letting ψ = idH2 in Theorem 4.19.

Case 2. If only two of p1, p2, and p3 coincide with their images under φ, say

φ(p1) = p1 and φ(p2) = p2 but φ(p3) �= p3,

then

dH2(p3, p1) = dH2(φ(p3), φ(p1)) = dH2(φ(p3), p1).

Therefore, letting H = Hp3,φ(p3), we have p1 ∈ H . Similarly, we have p2 ∈ H .
Let ψ = IH ◦ φ; then,

ψ(p1) = IH (φ(p1))

= IH (p1)

= p1. (∵ p1 ∈ H)

Similarly, ψ(p2) = p2. Note also that



104 4 Hyperbolic Plane

ψ(p3) = IH (φ(p3)) = p3. (∵ H = Hp3,φ(p3))

Again, ψ = idH2 by Theorem 4.19. Therefore, IH ◦ φ = idH2 . Hence,

φ = I−1
H = IH ,

and φ is an inversion.

Case 3. If only one of p1, p2, and p3 coincides with its image under φ, say

φ(p1) = p1 but φ(p2) �= p2 and φ(p3) �= p3,

then

dH2(p2, p1) = dH2(φ(p2), φ(p1)) = dH2(φ(p2), p1).

Therefore, letting M = Hp2,φ(p2), we have p1 ∈ M . Let φ′ = IM ◦ φ; then,

φ′(p1) = IM(φ(p1)) = IM(p1) = p1,

and

φ′(p2) = IM(φ(p2)) = p2,

converting to Case 1 or Case 2. Therefore, φ′ = idH2 or φ′ = IH for some circle H ,
i.e., φ = IM or φ = IM ◦ IH .

Case 4. Finally, assume that

φ(p1) �= p1, φ(p2) �= p2 and φ(p3) �= p3.

Let N = Hp1,φ(p1) and φ′′ = IN ◦ φ. Then,

φ′′(p1) = IN(φ(p1)) = p1,

again converting to Case 1, Case 2, or Case 3. Therefore,

φ′′ = idH2 , φ
′′ = IM or φ′′ = IM ◦ IH

for some circles H and M , i.e.,

φ = IN , φ = IN ◦ IM or φ = IN ◦ IM ◦ IH .

��
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Since an isometry is a composition of inversions and an inversion preserves
angles, we pose the following corollary.

Corollary 4.21. An isometry of the hyperbolic plane preserves angles.

Let Iso+(H2) be the set of all isometries that are compositions of even numbers
of inversions inversions and Iso−(H2) be the set of isometries that are compositions
of odd numbers of isometry in Iso+(H2) is said to be orientation-preserving and an
isometry in Iso−(H2) is said to be orientation-reversing.

Exercises

4.5. Suppose that two distinct points p and q are fixed points of an isometry

φ : H2 → H
2.

Show that every point on the hyperbolic line through p and q is also a fixed point of
φ.

4.6. Recall that given the isometries φ and ψ of H2, the conjugation of ψ by φ is
the isometry

ψφ = φ ◦ ψ ◦ φ−1.

(a) For inversions IH and IM in hyperbolic lines H and M , show that

I
IM

H = IH ′ ,

where H ′ = IM(H).
(b) For an isometry φ and a hyperbolic line H , show that

I
φ

H = IH ′ ,

where H ′ = φ(H).

4.7. Show that a translation in the x-direction and rescaling about the origin are
compositions of two inversions.

4.8. Two H
2-lines L and M are said to be ultraparallel if there is another H2-line

that is orthogonal to both the H2-lines L,M . Consider an isometry φ = IM ◦ IL for
ultraparallel H2-lines L,M . Show that there is an isometry ψ such that

φψ = dr

for some r > 0.
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(Hint. Consider an isometry that sends the common perpendicular H2-line to the
y-axis.)

4.9. Note that an isometry φ of H2 can be defined for points on the x-axis, possibly
except for one point, if one sets the image of that point under the isometry as∞.

1. Assume that φ(1, 0) = (1, 0), φ(0, 0) = (0, 0) and φ(∞) = ∞. Show that
φ = idH2 .

2. For each linear fractional transformation f : R∞ → R∞ (see Exercise 3.13),
show that there exists a unique isometry φ of H2 such that

φ(x, 0) = (f (x), 0)

for any x ∈ R∞, where we regard (∞, 0) (for∞ ∈ R∞) as∞ (for∞ ∈ R
2∞).

4.4 Hyperbolic Triangle and Hyperbolic Area

An H
2-triangle consists of three edges of H2-lines. An H

2-polygon is a figure on H
2

that can be expressed as the union of a finite number of H2-triangles, overlapping
only in edges and vertices (Figure 4.9).

Two regions on H
2 are said to be congruent if they are images of each other by

some isometry of the hyperbolic plane.
Different from triangles on the Euclidean plane and sphere, we do not have an

intuitive notion for an area for a region on H
2. However, we will show that we can

define a hyperbolic area satisfying the following conditions.

A1. For each H
2-polygon R, the H

2-area of R (denote AreaH2(R)) is a
positive number.

A2. (Congruence) If two H
2-triangles are congruent, then they have equal

H
2-areas.

A3. (Additivity) If R = R1 ∪ R2 is the union of two H
2-polygons,

overlapping only in edges and vertices, then

AreaH2(R) = AreaH2(R1)+ AreaH2(R2).

(continued)

Fig. 4.9 Hyperbolic triangle
and hyperbolic polygon

x
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A4. Let T be a right-angled (i.e., one angle is π
2 ) H2-triangle with like sides

of H2-length a as in Figure 4.10. Then,

AreaH2(T )

1
2a2

converges to one as a goes to zero.

When a right-angled triangle is very tiny, then it is very similar to one in the
Euclidean plane (Figure 4.10). This is why we require condition A4. Note that area
on the sphere also satisfies condition A4 (Exercise 2.14).

For a region, which can be approximated by an H
2-polygon, its area can be

defined as the limit of H2-areas of H2-polygons. Note that the ordinary Euclidean
area satisfies A2. There is an elegant way to deduce a formula for H2-area only from
the conditions A1 ∼ A4. Here, we give a somewhat crude but simpler definition by
double integration.

Definition 4.22. Let R be an (integrable) region on H
2; then, the H

2-area of R is

AreaH2(R) =
∫ ∫

R

dxdy

y2
.

Then, conditions A1 and A3 are immediately satisfied.

Lemma 4.23. The unbounded region Ω with interior angles α and β as in
Figure 4.11 has a finite H

2-area,

AreaH2(Ω) = π − (α + β).

Fig. 4.10 Very tiny
right-angled H

2-triangle and
its enlargement

x
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Fig. 4.11 Unbounded region
Ω with interior angles α and
β

0
•

xr−r a b
a b

b
a

W

Proof. Note that

a = r cos(π − α) and b = r cos β.

By Definition 4.22,

AreaH2(Ω) =
∫ ∫

Ω

dxdy

y2 =
∫ b

a

∫ ∞
√

r2−x2

1

y2 dydx =
∫ b

a

dx√
r2 − x2

,

and making the change of variables x = r cos θ , we have

∫ b

a

dx√
r2 − x2

=
∫ β

π−α

−r sin θ

r sin θ
dθ = π − (α + β).

��

Corollary 4.24. The H
2-area of an H

2-triangle with interior angles α, β, and γ is

π − (α + β + γ ).

Proof. Let T be an H
2-triangle with interior angles α, β, and γ . If one of the edges

is a part of a vertical line as in Figure 4.12, we obtain

AreaH2(T ) = AreaH2(T ∪Ω)− AreaH2(Ω)

= (π − (γ + (β + δ)))− (π − ((π − α)+ δ))

= π − (α + β + γ ),

where we used Lemma 4.23. If none of the edges are parts of vertical lines, we can
divide the triangle as in Figure 4.13, where β = β1 + β2.
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Fig. 4.12 Hyperbolic area of
a hyperbolic triangle

x

W

T
a

b d

g

Fig. 4.13 Division of a
hyperbolic square into two
hyperbolic triangles T1 and T2

x

a b1
b2

d
g

T1
T2

Note that T = T1 ∪ T2 with one edge in common. Thus,

AreaH2(T ) = AreaH2(T1)+ AreaH2(T2)

= (π − (α + β1 + (π − δ)))+ (π − (δ + β2 + γ ))

= π − (α + β1 + β2 + γ )

= π − (α + β + γ ).

��

Theorem 4.25. The H2-area, defined in Definition 4.22, satisfies all conditions A1,
A2, A3, and A4.

Proof. As previously discussed, conditions A1 and A3 come immediately from
Definition 4.22. Two congruent H2-triangles have the same interior angles (note
that an isometry of H

2 preserves angles); therefore, they have the same H
2-area

according to Corollary 4.24, which is condition A2.
To show A4, let T be an isosceles right-angled H

2-triangle with like sides of
H

2-length a. Suppose that T shrinks to a point p = (x, y). From the mean value
theorem for the integration, there is a point (u, v) ∈ T such that

AreaH2(T ) = Area(T )
1

v2 ,

where Area(T ) is the ordinary Euclidean area of T . Let Γ1 and Γ2 be two sides of
H

2-length a. Then, there are points (u1, v1) ∈ Γ1 and (u2, v2) ∈ Γ2 such that

a = l(Γ1)

v1
= l(Γ2)

v2
,
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where l(Γi) is the Euclidean length of Γi . As T shrinks to a point (i.e., a approaches
zero),

AreaH2(T ) = Area(T )
1

v2

is approximated by

1

2
l(Γ1)l(Γ2)

1

v2
= 1

2
v1v2a

2 1

v2
.

Note that v1, v2, and v approach y as T shrinks to the point p = (x, y). Therefore,
as T shrinks to a point, the ratio

AreaH2(T )

1
2a2

approaches

1
2y · y · a2 1

y2

1
2a2

= 1,

meeting condition A4. ��
Corollary 4.26. The sum of the interior angles of a hyperbolic triangle is less than
π .

Proof. Let T be an H
2-triangle with interior angles α, β, and γ . According to

condition A1, its H2-area is positive:

AreaH2(T ) = π − (α + β + γ ) > 0,

concluding the proof. ��

Exercises

4.10. Find a formula for the H
2-area of an H

2-polygon with interior angles
θ1, θ2, · · · , θn.

4.11. Show that the H
2-areas of H2-triangles are bounded, and find the least upper

bound.

4.12. We call

∂H2 := {(x, y) ∈ R
2 | y = 0} ∪ {∞}



4.4 Hyperbolic Triangle and Hyperbolic Area 111

the boundary of H2. Note that the boundary points do not belong to H
2. One can

regard each H
2-line as having two endpoints at the boundary ∂H2 (Figure 4.14).

An ideal H2-triangle is a triangle with three vertices at the boundary, a 2/3-ideal
H

2-triangle has two points at the boundary, and a 1/3-ideal H2-triangle has one
point at the boundary (Figure 4.15).

Note that an ideal, a 2/3-ideal or a 1/3-ideal H2-triangle’s vertices do not lie on
H

2 (Figures 4.16 and 4.17). Therefore, they are not real H2-triangles; they are not
even bounded. However, we can show that they have finite H

2-areas.

1. Show that all ideal H2-triangles are congruent.
2. Find the H

2-area of an ideal H2-triangle.

4.13. Two H
2-lines L and M are said to be asymptotically parallel if they intersect

on the boundary of H2. Consider an isometry φ = IM◦IL for asymptotically parallel
H

2-lines L,M . Show that there is an isometry ψ such that

φψ = t(1,0).

(Hint. Consider an isometry that sends the intersection point on ∂H2 to∞.)

Fig. 4.14 Each H
2-line has

two endpoints at the
boundary ∂H2

x

∞

Fig. 4.15 Ideal H2-triangles ∞

x

Fig. 4.16 2/3-ideal
H

2-triangles

x
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Fig. 4.17 1/3-ideal
H

2-triangles with a right
angle

x

4.14. Two H
2-lines are said to be parallel if they are disjoint. Show that two parallel

H
2-lines are ultraparallel or asymptotically parallel.

4.5 Poincaré Disk

Let C be a Euclidean circle of radius
√

2, centered at (0,−1). Let

J = r̄ ◦ IC,

the composition of the inversion in C and reflection in the x-axis. Then, concretely,
J is as follows:

J (x, y) =
(

2x

x2 + (1+ y)2
,

x2 + y2 − 1

x2 + (1+ y)2

)
.

It is easy to verify that J maps H2 onto a unit disk

B
2 := {(x, y) | x2 + y2 < 1}.

Let ∂B2 := {(x, y) ∈ R
2 | x2 + y2 = 1}, and call it the boundary of B2. As in

Figure 4.18, ∂H2 is mapped to ∂B2 via J .
Let γ : [a, b] → B

2 be a smooth curve on B
2. Then, a curve J−1(γ ) : [a, b] →

H
2 on H

2 is defined as follows:

J−1(γ )(t) = J−1(γ (t)).

We define the D
2-length of γ as follows:
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Fig. 4.18 J maps H2 onto a
unit disk

x

y

0

•−1

−1 1

C

lD2(γ ) = lH2(J
−1(γ )).

The set B2 with this D2-length is denoted by D
2 and is known as the Poincaré disk.

Let γ : [a, b] → D
2 be a smooth curve with γ (t) = (u(t), v(t)). Let (u, v) =

J (x, y). Then, it is not hard to verify that

x = 2u

u2 + (v − 1)2 ,

dx

dt
= 2(−u2 + (v − 1)2)

(u2 + (v − 1)2)2

du

dt
− 4u(v − 1)

(u2 + (v − 1)2)2

dv

dt
,

and

y = −u2 − v2 + 1

u2 + (v − 1)2 ,

dy

dt
= 4u (v − 1)(

1+ u2 − 2v + v2
)2

du

dt
+ 2

(−u2 + (v − 1)2
)

(
1+ u2 − 2v + v2

)2
dv

dt
.

A lengthy but direct calculation yields the following:

(
dx
dt

)2 +
(

dy
dt

)2

y2 = 4

(
du
dt

)2 + ( dv
dt

)2
(
1− (u2 + v2)

)2 .
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Therefore,

lD2(γ ) = lH2(J
−1(γ )) =

∫
b

a

√(
dx
dt

)2 +
(

dy
dt

)2

y
dt =

∫
b

a

2
√(

du
dt

)2 + ( dv
dt

)2
1− (u2 + v2)

dt.

Hence, we have

lD2(γ ) =

∫
b

a

2

1− (u2 + v2)

√(
du

dt

)2

+
(

dv

dt

)2

dt. (4.1)

For two points p and q on D
2, the D

2-distance dD2(p, q) is defined as follows:

dD2(p, q) := dH2(J
−1(p), J−1(q)).

An isometry of D
2 is a bijective map from D

2 to itself that preserves the D
2-

distance. Denote the set of all isometries of D2 by Iso(D2).

Proposition 4.27. A bijection φ : D2 → D
2 is an isometry of D2 if and only if

J−1 ◦ φ ◦ J : H2 → H
2

is an isometry of H2.

Proof. Let φ be an isometry of D
2 and ψ = J−1 ◦ φ ◦ J . For any two points

p, q ∈ H
2,

dH2(ψ(p), ψ(q)) = dH2

(
J−1(φ(J (p))), J−1(φ(J (q)))

)

= dD2 (φ(J (p)), φ(J (q)))

= dD2 (J (p), J (q)) (∵ φ ∈ Iso(D2))

= dH2

(
J−1(J (p)), J−1(J (q))

)

= dH2(p, q).

Therefore, ψ is an isometry of H2. The converse can be similarly shown. ��
One can also define a D

2-line.

Definition 4.28. For two distinct points p1 and p2 of D2, the set of points equi-D2-
distant from p1 and p2 is called a D

2-line:

H ′
p1,p2

= {p ∈ D
2 | dD2(p, p1) = dD2(p, p2)}.
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Proposition 4.29. A subset H ′ of D2 is a D
2-line if and only if J−1(H ′) is an H

2-
line.

Proof. Note, for p1, p2 ∈ D
2,

p ∈ H ′
p1,p2

⇔ dD2(p, p1) = dD2(p, p2)

⇔ dH2

(
J−1(p), J−1(p1)

)
= dH2

(
J−1(p), J−1(p2)

)

⇔ J−1(p) ∈ HJ−1(p1),J
−1(p2)

.

Therefore, if H ′ is a D2-line, then J−1(H ′) = HJ−1(p1),J
−1(p2)

, which is an H
2-line.

Conversely, let J−1(H ′) be an H
2-line; then, there are points q1, q2 ∈ H

2 such that

J−1(H ′) = Hq1,q2 = HJ−1(p1),J
−1(p2)

,

where p1 = J (q1) and p2 = J (q2). Therefore,

H ′ = J
(
J−1(H ′)

)
= J

(
HJ−1(p1),J

−1(p2)

) = H ′
p1,p2

,

which is a D
2-line. ��

As sets, the boundary of D2 is the same as that of B2, i.e., ∂D2 = ∂B2.

Theorem 4.30. A D
2-line is a circline, intersecting the boundary ∂D2 of D

2

orthogonally (Figure 4.19).

Proof. Note that J is a composition of a reflection in a line and an inversion, which
maps a circline to a circline and preserves angles. Hence, J also maps a circline to
a circline and preserves angles. Since every H

2-line is a circline that orthogonally
intersects ∂H2 and J maps H2 onto D

2, the proof is complete by Proposition 4.29.
��

The following theorem can be showed easily.

Theorem 4.31. An isometry of D2 is a composition of at most three inversions in
D

2-lines.

Proof. Let φ be an isometry of D2, then, by Proposition 4.27,

J−1 ◦ φ ◦ J : H2 → H
2

is an isometry of S2. By Theorem 4.20, J−1 ◦φ ◦J is a composition of at most three
inversions in H

2-lines:

J−1 ◦ φ ◦ J = I1 ◦ I2 ◦ · · · ◦ In,
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Fig. 4.19 D
2-lines on D

2

where I1, I2, · · · , In are some inversions in H
2-lines with n ≤ 3. Then

φ = J ◦ I1 ◦ I2 ◦ · · · ◦ In ◦ J−1

= J ◦ I1 ◦ J−1 ◦ J ◦ I2 ◦ J−1 ◦ J ◦ · · · ◦ J−1 ◦ J ◦ In ◦ J−1

= f1 ◦ f2 ◦ · · · ◦ fn,

where fi := J ◦ Ii ◦ J−1. Note that Ii = IΓi
for some H

2-line Γi .

fi = J ◦ Ii ◦ J−1

= r̄ ◦ IC ◦ IΓi
◦ IC ◦ r̄

= r̄ ◦ IIC(Γi) ◦ r̄

= Ir̄(IC(Γi ))

= IJ (Γi),

where we used Lemma 3.15 twice. By Proposition 4.29, J (Γi) is a D
2-line and fi

is an inversion in a D
2-line. ��

As usual, we define D
2-circles (or H2 circles) as sets of points equi-D2-distant

(or equi-H2-distant) from a certain point.

Lemma 4.32. The D
2-circle of D2-radius ρ, centered at the origin, is a Euclidean

circle, centered at the origin. Its D2-circumference is 2π sinh ρ.
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Proof. It is not difficult to see that the D
2-shortest path from a point in D

2 to the
origin is a part of a D2-line. Note also that every D

2-line through the origin is a line.
Let Γ be a D

2-circle. For each point p ∈ Γ , let

p = (r cos θ, r sin θ)

for some θ , where r is the Euclidean radius of Γ . Then,

γ : [0, r] → D
2 by γ (t) = (t cos θ, t sin θ) (4.2)

is the D
2-shortest path from the origin to point p. By the formula in (4.1), the D

2-
radius ρ of Γ is as follows:

ρ = dD2(0, p)

=

∫
r

0

2
√(

du
dt

)2 + ( dv
dt

)2
1− (u2 + v2)

dt

=
∫

r

0

2
√

cos2 θ + sin2 θ

1− (t2 cos2 θ + t2 sin2 θ)
dt

=
∫ r

0

2

1− t2 dt = ln(1+ r)− ln(1− r)

= ln

(
1+ r

1− r

)

= ln

(
2

1− r
− 1

)
.

Hence,

eρ = 2

1− r
− 1,

and

r = eρ − 1

eρ + 1
.

Let us now determine the D
2-circumference of Γ . A curve δ : [0, 2π ] → D

2,
defined as

δ(t) = (r cos t, r sin t),
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parameterizes the circumference. Therefore, by the formula in (4.1),the D
2 circum-

ference is as follows:∫
2π

0

2
√(

du
dt

)2 + ( dv
dt

)2
1− (u2 + v2)

dt =

∫
r

0

2
√

r2 sin2 t + r2 cos2 t

1− (r2 cos2 t + r2 sin2 t)
dt

=
∫ 2π

0

2r

1− r2 dt

= π
(
eρ − e−ρ

)

= 2π sinh ρ.

��
Theorem 4.33.

1. A D
2-circle is a Euclidean circle, and its D

2-circumference is 2π sinh ρ, where
radius ρ is its D2-radius.

2. An H
2 circle is a Euclidean circle, and its H2-circumference is 2π sinh ρ, where

radius ρ is its H2-radius.

Proof. Let C be a D
2-circle, centered at a point p ∈ D

2 with D
2-radius ρ. We

can choose an isometry φ of D2 such that φ(p) = 0. Now φ(C) is centered at the
origin, and its D2-circumference is 2π sinh ρ according to Lemma 4.32. Hence, the
D

2-circumference of C is 2π sinh ρ.
Let Γ be an H

2 circle with H
2-radius ρ. Then, J (Γ ) is a D

2-circle with D
2-

radius ρ, and its D
2-circumference is 2π sinh ρ. Therefore, the H

2-circumference
Γ is 2π sinh ρ. ��
Definition 4.34. The Gaussian curvature of a surface S at p ∈ S is as follows:

K = lim
ρ→0+

3 · 2πρ − Γ (ρ)

πρ3 ,

where Γ (ρ) is the circumference (measured in S) of the circle of radius ρ centered
at p.

The Gaussian curvature is a fundamental geometric invariant. It is not difficult
to show that two isometric surfaces have the same Gaussian curvature at their
corresponding points (Exercise 4.18). Accordingly, the following theorem implies
that the Euclidean plane, the sphere, and the hyperbolic plane are not isometric, i.e.,
they are geometrically different.

Theorem 4.35.

1. The Gaussian curvature of the Euclidean plane is 0 at each of its points.
2. The Gaussian curvature of the sphere is +1 at each of its points.
3. The Gaussian curvature of the hyperbolic plane is −1 at each of its points.
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Proof. The first statement is obvious. The circumference of a circle on S
2 with

spherical radius ρ is 2π sin ρ. Therefore, the Gaussian curvature of the sphere is
+1.

Finally, according to point 2 in Theorem 4.33, the Gaussian curvature of the
hyperbolic plane is −1 at each of its points. ��

Exercises

4.15. Note that a Euclidean rotation rθ is also an isometry of D
2. Consider an

isometry φ = IM ◦ IH of D2 for D2-lines H and M that intersect each other. Show
that there is an isometry ψ of D2 such that

φψ = rθ

for some angle θ .
Show also that θ is twice the angle between H and M at the intersection point.

4.16. Show that the H
2-radius of the inscribed circle of an H

2-triangle is bounded.
Find its least upper bound.

(Hint. Try to solve the problem on D
2.)

4.17. Show that the length of the altitude of any isosceles right-angled H
2-triangle

is bounded. Find its least upper bound, which is the Schweikart’s constant.
(Hint. Try to solve the problem on D

2 and consider a D
2-triangle whose right-

angled vertex is the origin. )

4.6 Klein Disk

We introduce another model of a hyperbolic surface. Consider a hemisphere J
2 =

{(x, y, z) ∈ S
2 | z > 0}, with an equator G of S2 and a reflection r̄G of S2 in G.

Then, we have a bijective map

f = r̄G ◦ (Φ−1|B2) : B2 → J
2,

g = πz|J2 : J2 → B
2,

and

K = g ◦ f : B2 → B
2,

where πz is the projection of R3 to the xy-plane along the z-axis. More concretely,
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Fig. 4.20 The maps f , g, and K in the zx-plane, cross-section view

K(x, y) =
(

2x

1+ x2 + y2 ,
2y

1+ x2 + y2

)
.

In Figure 4.20, these maps are illustrated (zx-plane cross-section view).
Let Γ be a curve on B

2. Then, we have another curve K−1(Γ ) on B
2. We define

the K
2-length of Γ as follows:

lK2(Γ ) := lD2(K
−1(Γ )).

The set B2 with this K2-length, denoted K
2, is called the Klein disk. The notions

of the K
2-distance dK2 , K2-line, and K

2-circle are similarly defined.
Recall that a set M with a distance dM is called a (metric) space. Recall also that

if there is a bijective map φ from a space M1 to another space M2 that preserves the
distances dM1 and dM2 , i.e.,

dM2(φ(p), φ(q)) = dM1(p, q)

for any p, q ∈ M1, then the spaces M1 and M2 are said to be isometric.
Hence H

2, D2 and K
2 are isometric spaces that represent the same geometry:

H
2 J−→ D

2 K−→ K
2.
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Fig. 4.21 K
2-lines on K

2

The K
2 length of a curve γ : [a, b] → K

2, γ (t) = (x(t), y(t)), can be shown to
have the following form:

lK2(γ ) =

∫
b

a

√√√√
(

dx
dt

)2 +
(

dy
dt

)2

1− x2 − y2 +
(
x dx

dt
+ y

dy
dt

)2

(1− x2 − y2)2 dt, (4.3)

which is quite complicated. However, the Klein disk model has an advantage—a
K

2-line is a Euclidean line.

Theorem 4.36. A K
2-line is a Euclidean line. Conversely, a Euclidean line on K

2

is a K
2-line (Figure 4.21).

Proof. If a curve Γ on K
2 is a K

2-line, then the curve

Γ ′ = K−1(Γ )

is a D
2-line. Hence, Γ ′ is a circline that intersects orthogonally with ∂B2. Note that

the map f is angle-preserving and sends one circline to another one. Hence, f (Γ ′)
is a circline on S

2 that intersects orthogonally with the equator G of S2. The plane
that cuts S

2 along f (Γ ′) meets orthogonally with the xy-plane. Now it is easy to
see that the curve

Γ = K(Γ ′) = g(f (Γ ′))

is the intersection of this plane with the xy-plane, which is a Euclidean line. ��
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Note that the projection g is not angle-preserving and does not send a circle to a
circle. Hence, a K

2 circle does not need to be a Euclidean circle (Exercise 4.20).

Exercises

4.18. Prove that the Gaussian curvature is a geometric invariant. In concrete words,
for an isometry φ : S → S′ from a surface S with distance d to another surface S′
with distance d ′ and a given point p ∈ S, show that the Gaussian curvature of S at
point p is equal to that of S′ at points φ(p).

4.19. Show that the map K is not angle-preserving.

4.20. Show that a K
2 circle is a Euclidean ellipse. When is it a Euclidean circle?

4.7 Euclid’s Fifth Postulate: The Parallel Postulate

At approximately 300 BC, Euclid wrote a book called “Elements” that encompassed
all the mathematics known to the Greeks up to that time. Numerous theorems about
geometry are derived from the following five postulates—postulates are so self-
evident that they must be accepted without proof.

1. Two distinct points on the plane determine a line segment.
2. Line segments can be extended indefinitely in a straight line.
3. For any straight line segment, a circle can be drawn having the segment as the

radius and one endpoint as the center.
4. All right angles are congruent.
5. If a line segment intersects two straight lines forming two interior angles on the

same side that sum to less than π , then the two lines, if extended indefinitely,
meet on the side on which the angles sum to less than π .

The fifth postulate (commonly called the parallel postulate) is more complicated
than the preceding four postulates. Euclid used the previous four postulates to obtain
28 theorems. The geometry based on the axiom system without the fifth postulate is
called the absolute geometry.

Until the 1800s, people believed that this absolute geometry was actually the
Euclidean geometry and thought that the fifth postulate would be a mere theorem
of the absolute geometry. They attempted to “prove” the fifth postulate, using only
the other four postulates, for 2,000 years. Many people claimed that they actually
did so, but they were, in fact, assuming some hypotheses that were equivalent to the
fifth postulate. Some of those hypotheses are the following:

• There is at most one line that can be drawn parallel to another given line through
an external point.
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• The sum of the interior angles in every triangle is exactly π .
• There exists a pair of similar, but not congruent, triangles.
• The Pythagorean Theorem.
• There is no upper limit to the area of a triangle.
• The circumference of any circle of radius r is 2πr .
• There is a quadrilateral whose interior angles are all π

2 .

Now, it is easy to see that all the postulates except the fifth one hold for the
hyperbolic plane. Hence, the existence of hyperbolic geometry can be regarded as
the evidence that Euclid’s fifth postulate is independent of the other four postulates.
For a more detailed history of the development of hyperbolic geometry and non-
Euclidean geometry, we refer to [15].

There are many differences between the geometries of the Euclidean plane, the
sphere, and the hyperbolic plane. The most intrinsic one is the difference between
their Gaussian curvatures, as shown in Theorem 4.35 (see also Exercise 4.18). One
of the other differences is the tessellation on them. A tessellation is an arrangement
of flat shapes, called tiles, without overlaps or gaps. Some tessellations involve
many types of tiles; however, the most interesting tessellations use only one or a
few different types of tiles. A regular tessellation is a pattern made by repeating a
regular polygon. A regular tessellation is described by two positive integers, [s, t],
where s is the number of sides on the regular tiling polygon and t is the number of
these polygons that meet at a vertex.

In the Euclidean plane, the vertex angle of a regular s-sided polygon is equal to

π − 2π

s
.

For a regular tessellation on the Euclidean plane where t polygons meet at a vertex,

t

(
π − 2π

s

)
= 2π

or, equivalently,

(s − 2)(t − 2) = 4.

Hence, there are three possibilities:

[s, t] = [3, 6], [4, 4], [6, 3].

This is why there are only three types of regular tessellations, whose tiles are
triangles, squares, and hexagons (Figure 4.22).

For regular tessellations on the sphere, the vertex angle of a regular s-sided
polygon is greater than π − 2π

s
. Hence, we have
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Fig. 4.22 Regular tessellations of types [3, 6], [4, 4], and [6, 3] on R
2

Fig. 4.23 Regular spherical tessellations of types [2, 5] and [4, 2]

t

(
π − 2π

s

)
< 2π

or, equivalently,

(s − 2)(t − 2) < 4.

Hence, in contrast with the Euclidean plane, s = 2 or t = 2 can be a solution
for the equation. For the sphere, a spherical lune can be regarded as a regular 2-
gon. The combination of t spherical lunes with interior angles 2π

t
forms a regular

tessellation of the sphere with t tiles. This is a regular spherical tessellation of
type [2, t] (Figure 4.23). However, a hemisphere can be regarded as an s-gon by
placing s vertices on its boundary. The use of two hemispheres forms a regular
spherical tessellation of the sphere with two tiles of regular s-gons of types [s, 2]
(Figure 4.23). Other than these two classes of regular spherical tessellations, a
regular spherical tessellation of the sphere has a one-to-one correspondence to a
Platonic solid, which is a projection of the boundary of the solid from the origin to
the sphere. We have seen that there are exactly five Platonic solids (Theorem 2.14).
Hence, there are five regular spherical tessellations of spheres of this type.

In the case of the hyperbolic plane, the vertex angle of a regular s-sided polygon
is less than π − 2π

s
. Hence,
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t

(
π − 2π

s

)
> 2π

or, equivalently,

(s − 2)(t − 2) > 4.

Note that there are infinitely many possibilities. The following proposition guaran-
tees that all these possibilities are realizable (Exercise 4.21).

Proposition 4.37. For a given integer n with n ≥ 3 and a given angle θ with

0 < θ <
(n− 2)π

n
,

there is a regular n-gon on the hyperbolic plane whose interior angle is θ .

Proof. We will show it on the Poincaré disk D
2. Draw a Euclidean circle Γ that

intersects orthogonally with ∂D2 such that the Euclidean center of the circle lies on
the x-axis. Note that Γ is a D

2-line. We can also require that the circle intersects
with the line segment 0p with the angle θ

2 , where p = (cos ϕ, sin ϕ) with ϕ = π
n

(Figure 4.24). Let

Γk = r 2kπ
n

(Γ ).

Then, Γ0, Γ1, · · · , Γn−1 together form a regular n-gon whose interior angle is θ .
��

The regular hyperbolic tessellations shown in Figure 4.25 are of type [4, 5]which
are composed of D2-squares.

0

p•

x

y

0
x

y

j j

Fig. 4.24 A construction of a regular D2 hexagon with interior angle θ
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The regular hyperbolic tessellations shown in Figure 4.26 are of types [5, 4] and
[7, 4], respectively. Note that all the interior angles of the tiles are π

2 .
The regular hyperbolic tessellations in Figure 4.27 are of types [7, 3] and [7, 7],

respectively.
Circle Limit IV (Heaven and Hell) by M.C. Escher(1960) is related with a regular

hyperbolic tessellation of type [6, 4]1.

Fig. 4.25 Two regular hyperbolic tessellations of type [4, 6]

Fig. 4.26 Regular hyperbolic tessellations of types [5, 4] and [7, 4]

1https://www.escherinhetpaleis.nl/escher-today/circle-limit-iv-heaven-and-hell/?lang=en

https://www.escherinhetpaleis.nl/escher-today/circle-limit-iv-heaven-and-hell/?lang=en
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Fig. 4.27 Regular hyperbolic tessellations of types [7, 3] and [7, 7]

Exercises

4.21. For each pair of non-negative integers s and t with

(s − 2)(t − 2) > 4,

show that there is a regular hyperbolic tessellation of type [s, t].



Chapter 5
Lorentz–Minkowski Plane

“The essence of mathematics is its
freedom.”

Georg Cantor (1845–1918)

“Do not fear to be eccentric in
opinion, for every opinion now
accepted was once eccentric.”

Bertrand Russell (1872–1970)

Special relativity (also known as the special theory of relativity) is an experimentally
well-confirmed and universally accepted physical theory that explains how space
and time are linked. It was originally proposed by Albert Einstein. Today, special
relativity is accepted as the most accurate theory of motion at any speed when
gravitational forces are negligible. Special relativity leads to a wide range of conse-
quences, which have been experimentally confirmed, including length contraction,
time dilation, relativity of simultaneity, a universal speed limit and the mass-energy
equivalence. It has replaced the long-standing notion of an absolute universal time
by the notion of a relative time that is not independent of a reference frame and
spatial position. Rather than treating the invariant time and the invariant spatial
intervals between two events separately, we must consider an invariant spacetime
interval, which enables us to understand spacetime from a geometric view of
distances and isometries. In this chapter, we study the simple two-dimensional case.
The goal is to formulate the geometry of special relativity in a truly equal setting
along with other classical geometries. We will also see that hyperbolic geometry
and relativistic geometry are intrinsically related.
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5.1 Lorentz–Minkowski Distance

For e1 = (x1, τ1), e2 = (x2, τ2) in R
2, the Lorentz–Minkowski distance between e1

and e2 is as follows1:

dII(e1, e2) = (x1 − x2)
2 − (τ1 − τ2)

2.

The set R2, together with the Lorentz–Minkowski distance, is called the Lorentz–
Minkowski plane. To distinguish the Lorentz–Minkowski plane from the Euclidean
plane, we denote the set by R

1,1 (Figure 5.1) and call its elements events. A bijective
map φ : R1,1 → R

1,1 is called an isometry of the Lorentz–Minkowski plane if it
preserves the Lorentz–Minkowski distance, i.e.,

dII(φ(e1), φ(e2)) = dII(e1, e2)

for any two events e1, e2 ∈ R
1,1. We denote by Iso(R1,1) the set of all isometries

of the Lorentz–Minkowski plane. A line on the Lorentz–Minkowski plane can be
regarded as the set of events equidistant from two distinct events e1 and e2:

Le1,e2 := {e ∈ R
1,1 | dII(e1, e) = dII(e2, e)}.

Let α be an event and tα(e) = α + e; then, tα is an isometry that is called a
translation. The following properties can be readily proven:

Fig. 5.1 Lorentz–Minkowski
plane R

1,1

0
x

t

1In a general system of units,

dII(e1, e2) = (x1 − x2)
2 − c2(t1 − t2)

2

for e1 = (x1, t1), e2 = (x2, t2), where c is the speed of light. In this book, we are using a timescale
so that c = 1.
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dII(e1, e2) = dII(e2, e1),

dII(e1, e2) = dII(e2 − e1, 0),

and

dII(ae1, ae2) = a2dII(e1, e2)

for a ∈ R.

Lemma 5.1. An isometry of the Lorentz–Minkowski plane maps a line to a line.

Proof. Let L be a line and φ be an isometry; then, there are two distinct events e1
and e2 such that

L = {p ∈ R
1,1 | dII(e1, p) = dII(e2, p)}.

Since φ is injective, the events φ(e1) and φ(e2) are distinct. Let

L′ = {q ∈ R
1,1 | dII(φ(e1), q) = dII(φ(e2), q)}

such that L′ is also a line. Then, it is adequate to show that

L′ = φ(L).

Let p ∈ L be an event such that

dII(e1, p) = dII(e2, p).

Since φ preserves the Lorentz–Minkowski distance,

dII(φ(e1), φ(p)) = dII(e1, p) = dII(e2, p) = dII(φ(e2), φ(p)),

i.e.,

dII(φ(e1), φ(p)) = dII(φ(e2), φ(p));

therefore, φ(p) ∈ L′. Conversely, let q ∈ L′; then,

dII(φ(e1), q) = dII(φ(e2), q).

Since φ is surjective, there is an event p such that q = φ(p). Accordingly,

dII(φ(e1), φ(p)) = dII(φ(e2), φ(p)).

Again,
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dII(e1, p) = dII(φ(e1), φ(p)) = dII(φ(e2), φ(p)) = dII(e2, p),

i.e., dII(e1, p) = dII(e2, p). Thus, p ∈ L, and then,

q = φ(p) ∈ φ(L).

��
Events in R

1,1 are said to be collinear if they lie on the same line. The following
lemma is the Lorentz–Minkowski plane version of the “three points theorem.”

Lemma 5.2 (Three events theorem). Let φ and ψ be isometries of the Lorentz–
Minkowski plane. If

φ(e1) = ψ(e1), φ(e2) = ψ(e2) and φ(e3) = ψ(e3)

for some set of non-collinear events e1, e2, and e3, then φ = ψ .

Proof. It is not difficult to show that the events φ(e1), φ(e2), and φ(e3) are also
non-collinear.

Suppose that φ �= ψ . Then, there is an event e such that φ(e) �= ψ(e), and we
can define a line L = Lφ(e),ψ(e). Note that

dII(φ(e), φ(e1)) = dII(e, e1) = dII(ψ(e), ψ(e1)) = dII(ψ(e), φ(e1)),

i.e., dII(φ(e), φ(e1)) = dII(ψ(e), φ(e1)). Therefore, φ(e1) ∈ L. Similarly, φ(e2) ∈
L and φ(e3) ∈ L. Then the events φ(e1), φ(e2), and φ(e3) are collinear, which is a
contradiction. ��

For e1 = (x1, τ1), e2 = (x2, τ2) ∈ R
1,1, the Minkowski inner product is defined

by

e1 · e2 = x1x2 − τ1τ2.

The Minkowski inner product possesses similar properties as the ordinary inner
product:

e1 · e2 = e2 · e1,

e1 · (e2 + e3) = e1 · e2 + e1 · e3.

Define the norm-square ‖ ‖2 on R
1,1 by ‖e‖2 = e · e. We can see that

dII(e1, e2) = ‖(e1 − e2)‖2.

If an event e satisfies ‖e‖2 > 0, ‖e‖2 = 0 or ‖e‖2 < 0, it is called spacelike,
lightlike, or timelike, respectively. If two events e1 and e2 satisfy e1 · e2 = 0, then
they are said to be orthogonal to one another.
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Theorem 5.3. Let φ : R1,1 → R
1,1 be a surjective map with φ(0) = 0. The map φ

is an isometry if and only if it preserves the Minkowski inner product, i.e.,

φ(e1) · φ(e2) = e1 · e2

for any e1, e2 ∈ R
1,1.

Proof. Assume first that φ is an isometry. Note that

‖φ(e)‖2 = dII(φ(e), 0) = dII(φ(e), φ(0)) = dII(e, 0) = ‖e‖2

for every event e. From

‖e1 − e2‖2 = (e1 − e2) · (e1 − e2) = ‖e1‖2 − 2e1 · e2 + ‖e2‖2,

e1 · e2 = 1
2

(‖e1‖2 + ‖e2‖2 − ‖e1 − e2‖2
)
. Hence,

φ(e1) · φ(e2) = 1

2

(
‖φ(e1)‖2 + ‖φ(e2)‖2 − ‖φ(e1)− φ(e2)‖2

)

= 1

2

(
‖e1‖2 + ‖e2‖2 − dII(φ(e1), φ(e2))

)

= 1

2

(
‖e1‖2 + ‖e2‖2 − dII(e1, e2)

)

= 1

2

(
‖e1‖2 + ‖e2‖2 − ‖e1 − e2‖2

)

= e1 · e2,

and therefore, φ preserves the Minkowski inner product.
Conversely, assume that φ preserves the Minkowski inner product. Then,

dII(φ(e1), φ(e2)) = ‖φ(e1)− φ(e2)‖2

= φ(e1) · φ(e1)− 2φ(e1) · φ(e2)+ φ(e2) · φ(e2)

= e1 · e1 − 2e1 · e2 + e2 · e2

= ‖e1 − e2‖2 = dII(e1, e2).

Therefore, φ is an isometry. ��
Consider a map bλ : R1,1 → R

1,1, defined as follows:

bλ(x, τ ) = (x cosh λ+ τ sinh λ, x sinh λ+ τ cosh λ),

where λ ∈ R and (x, τ ) ∈ R
1,1. Let us show that this is an isometry. Since φ(0) = 0,

it is sufficient to show that
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b(e1) · b(e2) = e1 · e2

for any e1 = (x1, τ1), e2 = (x2, τ2) ∈ R
1,1. Noting that cosh2 λ− sinh2 λ = 1,

bλ(e1) · bλ(e2) = (x1 cosh λ+ τ1 sinh λ)(x2 cosh λ+ τ2 sinh λ)

− (τ1 cosh λ+ x1 sinh λ)(τ2 cosh λ+ x2 sinh λ)

= x1x2 cosh2 λ− x1x2 sinh2 λ− τ1τ2 cosh2 λ+ τ1τ2 sinh2 λ

= (x1x2 − τ1τ2)(cosh2 λ− sinh2 λ)

= x1x2 − τ1τ2 = e1 · e2.

Hence, bλ is an isometry, referred to as a Lorentz boost.2 It is not difficult to show
that (Exercise 5.5)

bλ1+λ2 = bλ1 ◦ bλ2 .

Exercises

5.1. For some a, b, c ∈ R with (a, b) �= (0, 0), let

L = {(x, τ ) ∈ R
1,1 | ax + bτ = c}.

Find some events e1, e2 ∈ R
1,1 such that

L = Le1,e2 .

5.2. For two distinct events e1 and e2, show that

1.

Le1,e2 = {e ∈ R
1,1 | (e − u) · v = 0},

where u = 1
2 (e1 + e2) and v = 1

2 (e1 − e2).
2. for any u′ ∈ Le1,e2 and a ∈ R with a �= 0,

Le1,e2 = {e ∈ R
1,1 | (e − u′) · v′ = 0},

where v′ = av.

2A Lorentz boost is also called a hyperbolic rotation.
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5.3. Show that a Euclidean reflection

φ(x, τ ) = (τ, x)

is not an isometry of R1,1.

5.4. Show that a Euclidean rotation

φ(x, τ ) = (x cos θ − τ sin θ, x sin θ + τ cos θ)

is not an isometry of R1,1 unless θ = nπ for some n ∈ Z.

5.5. Show that a composition of two Lorentz boosts is a Lorentz boost. More
precisely, show that

bλ2 ◦ bλ1 = bλ1+λ2 .

5.6. Suppose that a map φ : R
1,1 → R

1,1 preserves the Lorentz–Minkowski
distance. Show that it is injective.

Note that the solution for a similar-looking Exercise 1.11 does not work here.

5.2 Relativistic Reflections

Since reflections play a key role in studying isometries of the Euclidean plane, it
is natural to also consider reflections in the Lorentz–Minkowski plane. For a line
Le1,e2 , let us denote by r̄Le1,e2

(if it exists) the relativistic reflection of the Lorentz–
Minkowski plane in the line Le1,e2 . We seek to define r̄Le1,e2

such that it satisfies all
the properties in Remark 5.4, similar to a reflection of the Euclidean plane.

Remark 5.4.

(a) r̄Le1,e2
(e1) = e2, and r̄Le1,e2

(e2) = e1.
(b) r̄Le1,e2

(e) = e for each event e ∈ Le1,e2 .

(c) r̄2
Le1,e2

= idR1,1 .

Let e1 = (0, 0) and e2 = (1, 1). Then, the events e1 and e2 belong to the line
Le1,e2 . By property (a), r̄Le1,e2

(e1) = e2, and by property (b), r̄Le1,e2
(e1) = e1.

Therefore, e1 = e2, but clearly e1 �= e2. Therefore, a relativistic reflection in such
a line cannot exist. We call the line described above lightlike, i.e., a line Le1,e2 such
that e1, e2 ∈ Le1,e2 . It is not difficult to see that Le1,e2 is lightlike if and only if
e1 − e2 is lightlike (Lemma 5.6). For a non-lightlike line L = Le1,e2 , define the
relativistic reflection as follows:

r̄L(e) = e − 2(e − u) · v
‖v‖2 v,
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where u = 1
2 (e1 + e2) and v = 1

2 (e1 − e2) (see Exercise 1.14). We call v a normal
event of the line L.

Theorem 5.5. The relativistic reflection r̄Le1,e2
is an isometry of the Lorentz–

Minkowski plane, and it satisfies the properties in Remark 5.4.

Proof. First, for two events p1 and p2,

dII(r̄Le1,e2
(p1), r̄Le1,e2

(p2)) = ‖r̄Le1,e2
(p1)− r̄Le1,e2

(p2)‖2

=
∥∥∥∥p1 − p2 − 2(p1 − p2) · v

‖v‖2
v

∥∥∥∥
2

= ‖p1 − p2‖2 + 4((p1 − p2) · v)2

‖v‖4
‖v‖2

− 4((p1 − p2) · v)2

‖v‖2

= ‖p1 − p2‖2

= dII(p1, p2).

Therefore, r̄Le1,e2
is an isometry. Note that

r̄Le1,e2
(e1) = e1 − 2(e1 − u) · v

‖v‖2 v = e1 − 2v · v
‖v‖2 v = e1 − 2v = e2,

and similarly, r̄Le1,e2
(e2) = e1, which is property (a) in Remark 5.4.

If e lies on the line Le1,e2 , then

dII(e, e1) = dII(e, e2),

i.e.,

‖e − e1‖2 = ‖e − e2‖2,

which implies that

1

4
(‖e1‖2 − ‖e2‖2) = 1

2
(e1 − e2) · e,

i.e., u · v = v · e; thus, (e − u) · v = 0. Hence,

r̄Le1,e2
(e) = e − 2(e − u) · v

‖v‖2 v = e,

showing property (b) in Remark 5.4.
Choose two distinct events p1 and p2 from L; then, the events e1, p1, and p2 are

non-collinear. Let φ = r̄−1
Le1,e2

. It can be readily verified that
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φ(e1) = r̄Le1,e2
(e1), φ(p1) = r̄Le1,e2

(p1), φ(p2) = r̄Le1,e2
(p2).

According to Lemma 5.2, r̄−1
Le1,e2

= φ = r̄Le1,e2
. This is property (c) in Remark 5.4.

��
The set of fixed points of r̄Le1,e2

is the following:

{e ∈ R
1,1 | (e − u) · v = 0},

which is a line. Note that the line Le1,e2 is a subset of the set of fixed points of r̄Le1,e2
.

Therefore (see also Exercise 5.2),

Le1,e2 = {e ∈ R
1,1 | (e − u) · v = 0}.

Since e1 = u + v and e2 = u − v, one can think that the events u and v determine
the line. It is obvious that scaling v by a non-zero real number a does not change
the line. Additionally, replacing u by any event in L does not change the line. It
can be readily seen that the two lines L1 and L2, determined by u1, v1, and u2, v2,
respectively, are parallel if and only if v1 = av2 for some non-zero real number a.

We summarize the properties of a lightlike line as follows.

Lemma 5.6. The following statements are all equivalent for a line L = Le1,e2 .

1. L is a lightlike line.
2. e1 ∈ L or e2 ∈ L.
3. e1 − e2 is a lightlike event.
4. For any two events α1, α2 ∈ L, α1 − α2 is lightlike.
5. There are some distinct events α1, α2 ∈ L such that α1 − α2 is lightlike.

Proof. Let

u = 1

2
(e1 + e2), v = 1

2
(e1 − e2).

Then, by Exercise 5.2,

Le1,e2 = {e ∈ R
1,1 | (e − u) · v = 0}.

1 ⇒ 2: It is trivial.
2 ⇒ 3: Assume that e1 ∈ L = Le1,e2 . Then,

0 = dII(e1, e1) = dII(e1, e2) = ‖e1 − e2‖2,

and thus, e1 − e2 is lightlike.
3 ⇒ 4: Note that
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(αi − u) · v = 0,

where u = e1+e2
2 and v = e1−e2

2 . Hence,

0 = (α1 − u) · v − (α2 − u) · v = (α1 − α2) · v.

Since v is lightlike, v = (a,±a) for some non-zero a ∈ R. Let α1 − α2 =
(b, c); then, ab − (±)ac = 0. Therefore, b = ±c, and

α1 − α2 = (±c, c)

is a lightlike event.
4 ⇒ 5: It is clear.
5 ⇒ 1: As in “3 ⇒ 4”, we have

(α1 − α2) · v = 0.

Since α1 − α2 is lightlike, v = e1−e2
2 is also lightlike. Hence,

dII(e1, e2) = ‖e1 − e2‖2 = 0.

Since

dII(e1, e1) = 0 = dII(e1, e2),

e1 ∈ L = Le1,e2 . Similarly, e2 ∈ L.
��

We prove a reflection theorem for the Lorentz–Minkowski plane.

Theorem 5.7 (Four reflections theorem for the Lorentz–Minkowski plane). An
isometry of the Lorentz–Minkowski plane is a composition of at most four relativistic
reflections.

Proof. Let φ : R1,1 → R
1,1 be an isometry.

Case 1. First, assume that there are non-collinear events e1, e2, and e3 such that

φ(e1) = e1, φ(e2) = e2 and φ(e3) = e3.

According to Lemma 5.2, φ is the identity map, which is a composition of two
relativistic reflections.

Case 2. Assume that there are distinct events e1 and e2 such that

φ(e1) = e1, φ(e2) = e2.
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If e1 − e2 is lightlike, then choose an event e3 such that the events e1, e2, and e3 are
not collinear. Suppose that φ(e3) �= e3, then we let L = Le3,φ(e3). Since

dII(e1, e3) = dII(φ(e1), φ(e3)) = dII(e1, φ(e3)),

e1 ∈ L and similarly e2 ∈ L. Since e1 − e2 is lightlike, by Lemma 5.6, L is a
lightlike line, and the event e3 lies on L. In summary, the events e1, e2, and e3 lie on
the line L, which is a contradiction. Therefore,

φ(e3) = e3,

resorting to Case 1. If e1−e2 is not lightlike, consider a line L that contains both the
events e1 and e2. It is elementary to verify that L is not a lightlike line (Lemma 5.6).
Choose an event e3 such that the events e1, e2, and e3 are not collinear. If φ(e3) = e3,
we resort to Case 1. Otherwise, consider a line Lφ(e3),e3 . Since

e1, e2 ∈ Le3,φ(e3),

Le3,φ(e3) = L.

Therefore, r̄L ◦ φ leaves the events e1, e2, and e3 fixed, r̄L ◦ φ is the identity, and φ

is a relativistic reflection.

Case 3. Assume that there is an event e1 such that φ(e1) = e1. Choose another
event e2 such that e1 − e2 is not lightlike. If φ(e2) = e2, we resort to Case 2.
Otherwise, let

L = Lφ(e2),e2 .

Note that e1 ∈ L. Suppose that L is a lightlike line, then e2, φ(e2) ∈ L. However,
this means that e1−e2 is lightlike (Lemma 5.6), which is a contradiction. Therefore,
L is not a lightlike line and we can consider the relativistic reflection r̄L in the line
L. Note that the map r̄L◦φ leaves the events e1 and e2 fixed. Therefore, we can apply
Case 2 and conclude that φ is a composition of at most two relativistic reflections.

Case 4. Assume that φ has no fixed events. Let e1 = φ(0). Note that e1 �= 0. If e1
is non-lightlike, let L = L0,e1 . Let ψ = r̄L ◦ φ; then,

ψ(0) = r̄L(e1) = 0.

Applying Case 3, we conclude that ψ is a composition of at most two relativistic
reflections. Therefore, φ = r̄L ◦ ψ is a composition of at most three relativistic
reflections. If e1 is lightlike, we can let e1 = (a,±a) with a �= 0. Let e2 = (a, 0);
then, e2 − 0 and e1 − e2 are non-lightlike. Let

L1 = Le1,e2, L2 = L0,e2
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and ψ ′ = r̄L2 ◦ r̄L1 ◦ φ. Then,

ψ ′(0) = (r̄L2 ◦ r̄L1 ◦ φ)(0) = (r̄L2 ◦ r̄L1)(e1) = r̄L2(e2) = 0.

Applying Case 3, we conclude that ψ ′ is a composition of at most two relativistic
reflections. Therefore, φ = r̄L1 ◦ r̄L2 ◦ψ ′ is a composition of at most four relativistic
reflections. ��

Consider a composition of two relativistic reflections r̄L1 and r̄L2 . A property
similar to that used in the Euclidean plane holds as follows.

Theorem 5.8. The composition of two relativistic reflections in two non-lightlike
parallel lines is a translation.

Proof. Let L1 and L2 be two non-lightlike parallel lines and

r̄Li
(e) = e − 2(e − ui) · vi

‖vi‖2 vi

for i = 1, 2. Since the lines L1 and L2 are parallel, we can assume that v1 = v2 = v

and u2 = u1 + av for some event v and real number a. Hence,

(
r̄L2 ◦ r̄L1

)
(e) = r̄L2

(
e − 2(e − u1) · v1

‖v1‖2
v1

)

=
(

e − 2(e − u1) · v1

‖v1‖2
v1

)
−

2
((

e − 2(e−u1)·v1
‖v1‖2 v1

)
− u2

)
· v2

‖v2‖2
v2

= e − 2(e − u1) · v
‖v‖2

v −
2
((

e − 2(e−u1)·v
‖v‖2 v

)
− (u1 + av)

)
· v

‖v‖2
v

= e − 2(e − u1) · v
‖v‖2 v − 2 (e · v − 2(e − u1) · v − (u1 + av) · v)

‖v‖2 v

= e − 2(e − u1) · v
‖v‖2 v − 2

(−e · v + u1 · v − a‖v‖2
)

‖v‖2 v

= e + 2av = t2av(e).

Therefore, r̄L2 ◦ r̄L1 = t2av , which is a translation. ��
For a non-zero event α, the set α⊥ is defined as follows:

α⊥ = {e ∈ R
1,1 | α · e = 0}.
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For a non-lightlike event v, let L = v⊥ and L′ = tv/2(L). Then, tv = r̄L′ ◦ r̄L,
which is a composition of two relativistic reflections. In contrast to the case of the
Euclidean plane, some translations cannot be expressed as a composition of two
relativistic reflections.

Theorem 5.9. For a non-zero, lightlike event α, the translation tα cannot be
expressed as a composition of two relativistic reflections. It can be expressed as
a composition of four relativistic reflections.

Proof. Suppose that tα = r̄L′ ◦ r̄L for some non-lightlike lines L and L′. If the lines
L and L′ are parallel with the non-lightlike normal event v, then r̄L′ ◦ r̄L = tkv

for some real number k. Note that α = kv. However, then, the lines L and L′ are
lightlike, which is impossible. If the lines L and L′ are not parallel, then

L ∩ L′ = {e}

for some event e. Then,

e �= e + α = tα(e) = (r̄L′ ◦ r̄L)(e) = e,

which is a contradiction. Note that α = (a,±a) for some a �= 0. Let α1 = (a, 0)

and α2 = α− α1. Note that the events α1 and α2 are not lightlike. Hence, tαi
can be

expressed as a composition of two relativistic reflections. Since tα = tα2 ◦ tα1 , the
proof is complete. ��

A composition of two Euclidean reflections of R
2 in two crossing lines is a

Euclidean rotation. We will show that a similar property holds in the Lorentz–
Minkowski plane. We need to develop a concept of “angles” in the Lorentz–
Minkowski plane.

Exercises

5.7. Show that the relativistic reflection r̄L depends on the line L, not on the
individual events e1 and e2. In concrete words, show that

e − 2(e − u) · v
‖v‖2 v = e − 2(e − u′) · v′

‖v′‖2 v′

for every event e if the events e′1 and e′2 satisfy Le1,e2 = Le′1,e′2 , where

u′ = 1

2
(e′1 + e′2) and v′ = 1

2
(e′1 − e′2).
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5.8. For a relativistic reflection r̄L in a non-lightlike line L, show that

r̄L+α = tα ◦ r̄L ◦ t−α,

where L+ α = tα(L).

5.9. Given the isometries φ and ψ of R1,1, the conjugation of ψ by φ is the isometry

ψφ = φ ◦ ψ ◦ φ−1.

(a) For relativistic reflections r̄L and r̄M , show that

r̄
r̄M

L = r̄L′ ,

where L′ = r̄M(L).
(b) For an isometry φ, show that

r̄
φ

L = r̄L′ ,

where L′ = φ(L).

5.10. Let L be a timelike line and φ be an isometry. Show that the line ψ(L) is also
timelike.

5.11. Recall that two isometries φ, φ′ are said to be conjugate if there is an
isometry ψ such that φ = φ′ψ (Exercise 1.13). Show that there are some relativistic
reflections r̄L, r̄M that are not conjugate.

5.3 Hyperbolic Angle

Note that the Lorentz boost bλ has a very similar property to rotation in the
Euclidean plane (Exercise 5.5),

bλ2 ◦ bλ1 = bλ1+λ2 ,

and bλ(0) = 0. Thus, it may be worth trying to develop concepts of angles and
rotations in the Lorentz–Minkowski plane.

Definition 5.10. Let e1 = (x1, τ1) and e2 = (x2, τ2) be spacelike events with x1 >

0 and x2 > 0, and let e′i = ei√
‖ei‖2

. Then, e′i is on the unit hyperbola

x2 − τ 2 = 1.
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Fig. 5.2 Hyperbolic angle
� e10e2 from e1 to e2 with
respect to the origin 0

x2 − t2 = 1

0

e′
1

e1

e′
2e2

x

t

Fig. 5.3 e = √‖e‖2(a, b)

0 e0

(a,b)e

x

t

x2−t2 = 1

Then, the hyperbolic angle � e10e2 from e1 to e2 with respect to the origin 0 is twice
the signed Euclidean area of the sector on the unit hyperbola cut off from e′1 to e′2
(Figure 5.2). (Take a plus sign if τ ′2 > τ ′1, and take a minus sign otherwise.)

Proposition 5.11. For a spacelike event e with a positive x-coordinate,

e =
√
‖e‖2(cosh λ, sinh λ),

where λ = � e00e with e0 = (1, 0).

Proof. Let e = √‖e‖2(a, b); then, (a, b) lies on the curve x2− τ 2 = 1 as shown in
Figure 5.3. Let ξ = sinh−1(b). Then, b = sinh(ξ) and

a =
√

1+ b2 =
√

1+ sinh2 ξ = cosh ξ.

For now, we assume b ≥ 0. The hyperbolic angle λ = � e00e is twice the area
surrounded by the curve x2 − τ 2 = 1 with x > 0, the x-axis and the line through
the origin and the event e. Hence,
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λ = � e00e

= 2

(
1

2
ab −

∫ a

1

√
x2 − 1dx

)

= cosh ξ sinh ξ − 2
∫ ξ

0

√
cosh2 t − 1 sinh tdt

= cosh ξ sinh ξ + ξ − 1

2
sinh 2ξ

= ξ,

i.e., ξ = λ. Therefore, a = cosh λ, and b = sinh λ. If b < 0, then the hyperbolic
angle is simply the negative of the area; the other calculation is the same. ��

Since the hyperbolic angle is defined by area, which is additive, the hyperbolic
angle is also additive:

� e10e3 = � e10e2 + � e20e3 (5.1)

for spacelike events e1, e2, and e3 with positive x-coordinates. Hyperbolic angles
are closely related to hyperbolic functions. We summarize some of their properties,
which can be readily shown by direct calculation.

cosh λ = 1

2
(eλ + e−λ), sinh λ = 1

2
(eλ − e−λ),

tanh λ = sinh λ

cosh λ
= eλ − e−λ

eλ + e−λ
,

cosh2 λ− sinh2 λ = 1,

| sinh λ| < cosh λ, | tanh λ| < 1,

sinh(λ± λ′) = sinh λ cosh λ′ ± cosh λ sinh λ′,

cosh(λ± λ′) = cosh λ cosh λ′ ± sinh λ sinh λ′,

tanh(λ± λ′) = tanh λ± tanh λ′

1± tanh λ tanh λ′
,

sinh 2λ = 2 sinh λ cosh λ,

cosh 2λ = cosh2 λ+ sinh2 λ,
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cosh2 λ = cosh 2λ+ 1

2
,

sinh2 λ = cosh 2λ− 1

2
.

In general, a spacelike event e can be written as

e = ě(cosh λ, sinh λ)

for some real number ě and λ. It is readily seen that these numbers, ě and λ, are
unique (Exercise 5.12). For two spacelike events e1 and e2 with

e1 = ě1(cosh λ1, sinh λ1), e2 = ě2(cosh λ2, sinh λ2),

the hyperbolic angle � e10e2 is defined as follows:

� e10e2 = λ2 − λ1.

For spacelike events e1, e2, and e3, it is now readily seen that

� e10e3 = � e10e2 + � e20e3.

We can similarly define the hyperbolic angle for two timelike events as follows:

e1 = (x1, τ1), e2 = (x2, τ2)

with τ1 > 0 and τ2 > 0 by using the hyperbola

x2 − τ 2 = −1.

We can verify

� e10e2 = � ẽ10ẽ2,

where ẽi = (τi, xi). The above formula can then be used as a definition of a
hyperbolic angle for timelike events. Then, for a timelike event e,

e = ě(sinh λ, cosh λ),

where λ = � e00e with e0 = (0, 1). For a non-lightlike event e, the number ě is
called the signed relativistic norm of e. If e is a lightlike event, we define ě to be
zero. Note that

ě2 =
∣∣∣‖e‖2

∣∣∣ .
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For a timelike event e1 and a spacelike event e2, the hyperbolic angle between e1
and e2 with respect to the origin 0 is defined as follows:

� e10e2 = � ẽ10e2(= � e10ẽ2).

For events

e1 = (cosh λ1, sinh λ1),

e2 = (cosh λ2,− sinh λ2) = (cosh(−λ2), sinh(−λ2)),

e3 = (sinh λ3, cosh λ3),

e4 = (sinh λ4,− cosh λ4) = −(sinh(−λ4), cosh(−λ4)),

the hyperbolic angles between them are as follows,

� e10e2 = −λ2 − λ1,

� e10e3 = � e10ẽ3 = λ3 − λ1,

� e10e4 = � e10ẽ4 = −λ4 − λ1,

� e20e3 = � e20ẽ3 = λ3 − (−λ2) = λ3 + λ2,

� e20e4 = � e10ẽ4 = −λ4 − (−λ2) = −λ4 + λ2,

� e30e4 = � ẽ10ẽ4 = −λ4 − λ3.

We propose a formula for the Minkowski inner product, similar to that of the
Euclidean inner product.

Theorem 5.12. For two non-lightlike events e1 and e2, let λ = � e10e2.

1. If both the events e1 and e2 are spacelike, then

e1 · e2 = ě1ě2 cosh λ.

2. If both the events e1 and e2 are timelike, then

e1 · e2 = −ě1ě2 cosh λ.

3. If the event e1 is spacelike and the event e2 is timelike, then

e1 · e2 = ě1ě2 sinh λ.

Proof. Assume that both events e1 and e2 are spacelike. (The proof for the timelike
events is very similar, and we will omit it.) Note that

ei = ěi (cosh λi, sinh λi)

for some λi ∈ R. Then λ2 − λ1 = λ.
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Therefore,

e1 · e2 = ě1ě2(cosh λ1 cosh λ2 − sinh λ1 sinh λ2)

= ě1ě2 cosh(λ2 − λ1)

= ě1ě2 cosh λ.

Suppose that e1 is spacelike and e2 is timelike. Then,

e1 = ě1(cosh λ1, sinh λ1), e2 = ě2(sinh λ2, cosh λ2)

for some λi ∈ R and λ2 − λ1 = λ.

e1 · e2 = ě1ě2(cosh λ1 sin λ2 − sinh λ1 cosh λ2)

= ě1ě2 sinh(λ2 − λ1)

= ě1ě2 sinh λ.

��
We note a direct consequence of this theorem.

Corollary 5.13. If both events e1 and e2 are spacelike or timelike, then

|e1 · e2| ≥ |ě1ě2|.

The following formula holds for all non-lightlike events e1, e2, and e3 (Exer-
cise 5.15):

� e10e3 = � e10e2 + � e20e3. (5.2)

Suppose that both the events e1 and e2 are spacelike or timelike. We note that
� e10e2 = 0 if and only if the events e1 and e2 lie on a line through the origin
(Exercise 5.16).

For two events e1 and e2 that are different from an event e0, the hyperbolic angle
� e1e0e2 from e1 to e2 with respect to e0 is defined as follows:

� e1e0e2 = � e′10e′2,

where e′1 = e1 − e0 and e′2 = e2 − e0 (Figure 5.4).
Consider a line

L = {e ∈ R
1,1 | (e − u) · v = 0}

with a normal event v. It is not difficult to show that

L = {u+ t ṽ | t ∈ R}.
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Fig. 5.4 Hyperbolic angle
� e1e0e2 from e1 to e2 with
respect to e0
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In general, for a line L = {u + tw | t ∈ R}, where w is a non-zero event, w is
called a directional event of the line L. We call a line L spacelike (or timelike) if it
has a spacelike directional event (or timelike directional event). Note that a line is
spacelike if and only if it has a timelike normal event.

Let L and L′ be lines with directional events w and w′, respectively. The
hyperbolic angle between L and L′ is defined as the angle between w and w′ as
follows:

� LL′ = � w0w′.

It is not difficult to see that

� LL′ = � v0v′,

where v and v′ are normal events of L and L′, respectively.

Exercises

5.12. For real numbers a, a′, λ and λ′ with a, a′ �= 0, assume that

a(cosh λ, sinh λ) = a′(cosh λ′, sinh λ′).

Show that a = a′ and λ = λ′.

5.13. For a spacelike event

e1 = ě1(cosh λ1, sinh λ1)

and a timelike event

e2 = ě2(sinh λ2, cosh λ2),
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show that

bλ(e1) = ě1(cosh(λ1 + λ), sinh(λ1 + λ))

and

bλ(e2) = ě2(sinh(λ2 + λ), cosh(λ2 + λ)).

5.14. For two spacelike events e1 and e2 with ě1ě2 > 0, show that

√
‖e1 + e2‖2 ≥

√
‖e1‖2 +

√
‖e2‖2.

This is referred to as the reverse triangle inequality.

5.15. For non-lightlike events e1, e2, and e3, show that

� e10e3 = � e10e2 + � e20e3.

5.16. Suppose that both events e1 and e2 are spacelike or timelike. Show that
� e10e2 = 0 if and only if the events e1 and e2 lie on the same line through the
origin.

5.17. Let e1 and e2 be non-lightlike orthogonal events. Prove that one of them is
spacelike and that the other is timelike.

5.4 Relativistic Rotations

Figure 5.5 shows how the Lorentz boost bλ acts on the Lorentz–Minkowski plane.

Lemma 5.14. Let φ : R1,1 → R
1,1 be an isometry with φ(0) = 0. Suppose

� e0e′ = 0

for every non-lightlike event e, where e′ = φ(e). Then, φ = idR1,1 or −idR1,1 .

Proof. According to Theorem 5.3, φ preserves the Minkowski inner product. Let e

be a non-lightlike event. Note that φ(e) = ae for some real number a. From

‖e‖2 = e · e = φ(e) · φ(e) = a2e · e = a2‖e‖2,

we conclude that a2 = 1, i.e., a = ±1. Assume that φ �= idR1,1 . Note that the three
events 0, (1, 0), and (2, 1) are non-collinear. Hence, φ(1, 0) �= (1, 0) or φ(2, 1) �=
(2, 1). If φ(1, 0) �= (1, 0), then φ(1, 0) = −(1, 0). Let φ(2, 1) = a(2, 1). Since
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Fig. 5.5 Lorentz boost bλ

rotates the
Lorentz–Minkowski plane
“relativistically”

0

x′

xl

t ′t
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2 = (1, 0) · (2, 1) = φ(1, 0) · φ(2, 1) = (−1, 0) · a(2, 1) = −2a,

a = −1. Since the images of the three events under φ and −idR1,1 match, we
conclude that φ = −idR1,1 according to Lemma 5.2. Additionally, in the case where
φ(2, 1) �= (2, 1), we can show the same result using similar arguments. ��
Note that

� e0e′ = λ = � e0e′′

for every non-lightlike event e (Exercise 5.13), where e′ = bλ(e) and e′′ = −bλ(e).

Theorem 5.15. Let φ : R1,1 → R
1,1 be an isometry with φ(0) = 0 and λ be a real

number. Suppose that

� e0e′ = λ

for every non-lightlike event e, where e′ = φ(e). Then, φ = bλ or −bλ.

Proof. Let ψ = b−λ ◦ φ. Using (5.2) and the result from Exercise 5.13,

� e0ψ(e) = � e0b−λ(φ(e)) = � e0φ(e)+ � φ(e)0b−λ(φ(e)) = λ− λ = 0.

Hence, ψ satisfies the condition in Lemma 5.14, and

ψ = idR1,1 or − idR1,1,

which implies that φ = bλ or −bλ. ��
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Let b̄λ = −bλ. We call b̄λ an antipodal Lorentz boost. Let

bα,λ = tα ◦ bλ ◦ t−α, b̄α,λ = tα ◦ b̄λ ◦ t−α.

Let φ : R1,1 → R
1,1 be an isometry that fixes an event α and λ be a real number.

According to Theorem 5.15,

� eαe′ = λ

for every event e with e−α being non-lightlike if and only if φ = bα,λ or b̄α,λ, where
e′ = φ(e) (Exercise 5.18). In other words, bα,λ and b̄α,λ “rotate” events around the
event α by a hyperbolic angle λ. This is the motivation for the following definition.

Definition 5.16. The isometries bα,λ and b̄α,λ of R1,1 are called relativistic rota-
tions around the event α by the hyperbolic angle λ.

With some calculations, we can find the concrete form of the relativistic reflection
in a non-lightlike line L that passes through the origin 0. Note that L = v⊥, where
v is a normal event of L. We choose the normal event v such that v̌ = 1.

First, assume that L is a timelike line. Then, v is spacelike, and

v = (cosh λ, sinh λ),

where λ = � e00v with e0 = (1, 0). Hence,

r̄L(x, τ ) = (x, τ )− 2(x, τ ) · v
‖v‖2

v

= (x, τ )− 2(xa − τb)(a, b)

= ((1− 2a2)x + 2abτ,−2abx + (1+ 2b2)τ

= (x(1− 2 cosh2 λ)+ 2τ cosh λ sinh λ,−2x cosh λ sinh λ

+ τ(1+ 2 sinh2 λ))

= (−x cosh 2λ+ τ sinh 2λ,−x sinh 2λ+ τ cosh 2λ),

where (a, b) = v.
Second, if L is spacelike, then v is timelike, and

v = (sinh λ, cosh λ),

where λ = � e10v with e1 = (0, 1). Hence,

r̄L(x, τ ) = (x, τ )− 2(x, τ ) · v
‖v‖2 v

= (x, τ )+ 2(xa − τb)(a, b)
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= ((1+ 2a2)x − 2abτ, 2abx + (1− 2b2)τ )

= (x(1+2 sinh2 λ)−2τ sinh λ cosh λ, 2x sinh λ cosh λ+τ(1−2 cosh2 λ))

= (x cosh 2λ− τ sinh 2λ, x sinh 2λ− τ cosh 2λ).

For a line L = v⊥ with a non-lightlike event v, let L̃ = ṽ⊥. Note also that r̄L = −r̄L̃
and that the lines L and L̃ are orthogonal, i.e., their normal events are orthogonal.

Now consider a composition φ = r̄L′ ◦ r̄L of relativistic reflections in two lines
L and L′ that pass through the origin 0.

Case 1. First, assume that the lines L and L′ are timelike. Then,

L = (cosh λ, sinh λ)⊥, L′ = (cosh λ′, sinh λ′)⊥

for some λ and λ′. Hence,

r̄L(x, τ ) = (−x cosh 2λ+ τ sinh 2λ,−x sinh 2λ+ τ cosh 2λ),

r̄L′(x, τ ) = (−x cosh 2λ′ + τ sinh 2λ′,−x sinh 2λ′ + τ cosh 2λ′).

Accordingly,

φ(x, τ )

= (r̄L′ ◦ r̄L)(x, τ )

= (x(cosh 2λ cosh 2λ′ − sinh 2λ sinh 2λ′)+ τ(− cosh 2λ′ sinh 2λ+ cosh 2λ sinh 2λ′),

x(− cosh 2λ′ sinh 2λ+ cosh 2λ sinh 2λ′)+ τ(cosh 2λ cosh 2λ′ − sinh 2λ sinh 2λ′))

= (x cosh(2λ′ − 2λ)+ τ sinh(2λ′ − 2λ), x sinh(2λ′ − 2λ)+ τ cosh(2λ′ − 2λ))

= b(2λ′−2λ)(x, τ ).

Therefore, r̄L′ ◦ r̄L = b2(λ′−λ) = b2 � LL′ .

Case 2. If the lines L and L′ are spacelike, then r̄L = −r̄L̃ and r̄L′ = −r̄L̃′ . Since
L̃ and L̃′ are orthogonal to L and L′, respectively,

� LL′ = � L̃L̃′.

Therefore,

φ = r̄L′ ◦ r̄L = (−1)2r̄L̃′ ◦ r̄L̃ = b2 � L̃L̃′ = b2 � LL′ ,

which is a Lorentz boost.
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Case 3. Finally, if one of the lines L or L′ is spacelike and the other is timelike,
e.g., L is spacelike and L′ is timelike, then from r̄L = −r̄L̃,

φ = r̄L′ ◦ r̄L = (−1)r̄L′ ◦ r̄L̃ = −b2 � L̃L′ = b̄2 � L̃L′ ,

which is an antipodal Lorentz boost.
We obtain results for relativistic rotations similar to those in the Euclidean plane.

Theorem 5.17. An isometry of R1,1 is a relativistic rotation around an event α if
and only if it is a composition of two relativistic reflections r̄L1 and r̄L2 in lines L1
and L2, respectively, which pass through the event α.

Proof. The previous discussion gives a proof for the case in which α is the origin.
The proof for the general case is similar. Let M1 and M2 be spacelike lines through
the origin such that � M1M2 = λ

2 . Noting that

tα ◦ r̄Mi
◦ t−α = r̄tα(Mi),

bα,λ = tα ◦ bλ ◦ t−α

= tα ◦ r̄M2 ◦ r̄M1 ◦ t−α

= tα ◦ r̄M2 ◦ t−α ◦ tα ◦ r̄M1 ◦ t−α

= r̄tα(M2) ◦ r̄tα(M1),

which is a composition of two relativistic reflections in lines tα(M1) and tα(M2)

through the event α. Similarly,

b̄α,λ = r̄tα(M2) ◦ r̄tα(M̃1)
.

Conversely, for non-lightlike lines L1 and L2 that pass through an event α, each
line t−α(Li) passes through the origin. Hence,

t−α ◦ r̄L2 ◦ r̄L1 ◦ tα = t−α ◦ r̄L2 ◦ tα ◦ t−α ◦ r̄L1 ◦ tα

= r̄t−α(L2) ◦ r̄t−α(L1)

is a relativistic rotation around the origin by the angle

λ = 2� t−α(L1) t−α(L2) = 2� L1L2,

which is bλ or b̄λ. Hence, r̄L2 ◦ r̄L1 is

tα ◦ bλ ◦ t−α = bα,λ

or
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tα ◦ b̄λ ◦ t−α = b̄α,λ,

which is a relativistic rotation around the event α. ��

Exercises

5.18. Let φ : R1,1 → R
1,1 be an isometry that fixes an event α and λ be a real

number. Show that

� eαe′ = λ

for every event e with e − α being non-lightlike if and only if φ = bα,λ or b̄α,λ,

where e′ = φ(e).

5.19. Let φ be a relativistic rotation such that φn = idR1,1 for a positive integer n.
Show:

1. φ = idR1,1 when n is odd and
2. φ = idR1,1 or b̄α,0 for some event α when n is even.

5.5 Matrix and Isometry

Let Iso+(R1,1) be the set of all compositions of even numbers of relativistic
reflections, and let Iso−(R1,1) be the set of all compositions of odd numbers
of relativistic reflections. An isometry in Iso+(R1,1) is said to be orientation-
preserving, and an isometry in Iso−(R1,1) is said to be orientation-reversing. Note
that Iso(R1,1) = Iso+(R1,1) ∪ Iso−(R1,1).

We will show that the sets Iso+(R1,1) and Iso−(R1,1) are disjoint. This could be
done by using purely geometric arguments, considering various configurations of
reflection lines, as in Chapter 1, although the argument can be more complicated
because of the existence of lightlike lines, in which relativistic reflections cannot
be defined. Instead, we will take a more algebraic approach that uses matrix
computation.

For a 2× 2 matrix

A =
(

a b

c d

)
,

we define a map TA : R1,1 → R
1,1 as follows:

TA(x, τ ) = (ax + bτ, cx + dτ).
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Remark 5.18. We consider an event e = (x, τ ) a 1 × 2 matrix. For a matrix M ,
denote its transpose by Mt . Then,

(TA(x, τ ))t = A

(
x

τ

)

or

TA(x, τ ) =
(

A

(
x

τ

))t

= (x, τ )At .

Theorem 5.19. For two 2× 2 matrices A and B,

TA ◦ TB = TAB.

Proof. For (x, τ ) ∈ R
1,1,

(TA ◦ TB)(x, τ ) = TA((x, τ )Bt )

= (x, τ )BtAt

= (x, τ )(AB)t

= TAB(x, τ ),

and the proof is complete. ��
The Lorentz boost is bλ = TR(λ), where

R(λ) =
(

cosh λ sinh λ

sinh λ cosh λ

)
.

The relation

bλ1+λ2 = bλ1 ◦ bλ2

is from the relation R(λ1 + λ2) = R(λ1)R(λ2). Note that b̄λ = T−R(λ). For a
timelike line L = v⊥ with a spacelike normal event

v = (cosh λ, sinh λ),

the relativistic reflection in L is r̄L = TΛ(2λ), where

Λ(λ) =
(− cosh λ sinh λ

− sinh λ cosh λ

)
.
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Similarly, r̄L̃ = T−Λ(2λ). Some simple calculations lead to

Λ(λ2)Λ(λ1) = R(λ2 − λ1).

Let J =
(

1 0
0 −1

)
. Note that the Minkowski inner product e1 · e2 can be expressed

by multiplications of matrices:

e1 · e2 = e1Jet
2.

A 2× 2 matrix A is said to be J-orthogonal if AtJA = J .

Theorem 5.20. For a 2× 2 matrix A, the map TA : R1,1 → R
1,1 is an isometry if

and only if A is J -orthogonal.

Proof. Note that e1 · e2 = e1Jet
2 for e1, e2 ∈ R

1,1. Then,

TA(e1) · T (e2) = TA(e1)JTA(e2)
t

= e1A
tJAet

2.

Hence, TA(e1)·TA(e2) = e1·e2 if and only if AtJA = J . According to Theorem 5.3,
the proof is complete. ��
For the equation AtJA = J , taking the determinant on both sides yields

det(AtJA) = det(At ) det(J ) det(A) = det(A) det(J ) det(A) = det(J ).

Therefore, det(A)2 = 1, and thus, det(A) = ±1. Note that det(±R(λ)) = 1 and
det(±Λ(λ)) = −1. The following lemma provides a complete description of J -
orthogonal matrices.

Lemma 5.21. If A is a J -orthogonal matrix, then A = ±R(λ) or A = ±Λ(λ) for
some real number λ.

Proof. Let

A =
(

a b

c d

)
.

Since

AtJA =
(

a2 − c2 ab − cd

ab − cd b2 − d2

)
= J,

a2 − c2 = 1, b2 − d2 = −1, ab − cd = 0.
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First, assume that the (1, 1) entry of matrix A is non-negative, i.e., a ≥ 0. Let
λ = sinh−1 c; then, c = sinh λ, and

a =
√

c2 + 1 =
√

sinh2 λ+ 1 = cosh λ.

Let λ′ = sinh−1 b, i.e., b = sinh λ′.

Case 1. Suppose that d ≥ 0.

d =
√

b2 + 1 =
√

sinh2 λ′ + 1 = sinh λ′.

Hence,

0 = ab − cd

= cosh λ sinh λ′ − cosh λ′ sinh λ

= sinh(λ′ − λ).

Therefore, λ′ = λ, and A = R(λ).

Case 2. Suppose that d < 0. Then,

d = −
√

b2 + 1 = −
√

sinh2 λ′ + 1 = − cosh λ′.

We know that

0 = ab − cd

= cosh λ sinh λ′ + cosh λ′ sinh λ

= sinh(λ′ + λ),

and therefore, λ′ = −λ. Hence,

A =
(

cosh λ sinh(−λ)

sinh λ − cosh(−λ)

)

= −
(− cosh λ sinh λ

− sinh λ cosh λ

)

= −Λ(λ).

Second, assume a < 0. Let B = −A; then, B is a J -orthogonal matrix with a
positive (1, 1) entry. Applying the previous arguments, we conclude that B = R(λ)

or −Λ(λ) for some real number λ. Therefore, A = −B = −R(λ) or Λ(λ). ��
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Consider a relativistic reflection r̄L. If L passes through the origin, r̄L = TΛ(λ)

or T−Λ(λ) for some λ, as previously shown. Note that Λ(λ) and −Λ(λ) are J -
orthogonal matrices with determinant −1.

If L does not pass through the origin, consider L′ = t−β(L), where β is an event
on L. Note that L = tβ(L′) and (Exercise 5.8)

r̄L = tβ ◦ r̄L′ ◦ t−β.

Note that r̄L′ = TA for some J -orthogonal matrix with determinant −1. Hence,

r̄L(e) = (tβ ◦ r̄L′ ◦ t−β)(e)

= β + (e − β)At

= β − βAt + eAt

= α + eAt

= (tα ◦ TA)(e),

where α = β − βAt . Therefore, r̄L = tα ◦ TA for event α and some J -orthogonal
matrix A with det(A) = −1.

Theorem 5.22. A composition of n relativistic reflections can be expressed as
follows:

tα ◦ TA

for some event α and a J -orthogonal matrix A with det(A) = (−1)n. Such α and A

are unique.

Proof. We will use an induction on n. When n = 1, it is already showed.
Assume that this statement holds when n = k, and consider the case n = k + 1.

Note that

r̄Lk+1 ◦ r̄Lk
◦ · · · ◦ r̄L1 = r̄Lk+1 ◦ tα ◦ TA

for some event α and some J -orthogonal matrix A with determinant (−1)k . Note
also that

r̄Lk+1 = tβ ◦ TB

for some event β and some J -orthogonal matrix B with determinant−1. Hence, for
every event e,

(r̄Lk+1 ◦ r̄Lk
◦ · · · ◦ r̄L1)(e) = (r̄Lk+1 ◦ tα ◦ TA)(e)

= (tβ ◦ TB ◦ tα ◦ TA)(e)
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= (tβ ◦ TB)(α + eAt )

= β + (α + eAt )Bt

= β + αBt + eAtBt

= α′ + e(BA)t

= α′ + eA′t

= (tα′ ◦ TA′)(e),

where A′ = BA and α′ = β + αBt . Hence,

r̄Lk+1 ◦ r̄Lk
◦ · · · ◦ r̄L1 = tα′ ◦ TA′ .

Note that

det(A′) = det(B) det(A) = (−1)k+1.

Therefore, we showed that the statement holds for the case n = k + 1.
The uniqueness of α and A can be readily obtained (Exercise 5.20). ��

Corollary 5.23. An isometry of the Lorentz–Minkowski plane has the following
form:

tα ◦ TA

for some event α and a J -orthogonal matrix A. It is orientation-preserving (or
orientation-reversing) if and only if det(A) = 1 (or −1).

Proof. According to Theorem 5.7, the isometry is a composition of relativistic
reflections. Theorem 5.22 implies that it has a form of

tα ◦ TA.

The second statement is also a result of Theorem 5.22. ��
At this point, the fact that the sets Iso+(R1,1) and Iso−(R1,1) are disjoint is

obvious.

Corollary 5.24. Let A be a J -orthogonal matrix and α be an event. Let φ = tα ◦
TA.

1. If det(A) = 1, then φ is either a translation or a relativistic rotation.
2. If det(A) = −1, then φ is either a relativistic reflection or a composition of three

relativistic reflections.

Proof. φ is an isometry of R1,1 and so it is a composition of at most four relativistic
reflections.



160 5 Lorentz–Minkowski Plane

If det(A) = −1, then φ is a relativistic reflection or a composition of three
relativistic reflections by Theorem 5.22.

Assume that det(A) = 1. If A is the 2 × 2 identity matrix I2, then φ = tα is
a translation. Assume that A �= I2. Let us check whether there is an event β that
satisfies φ(β) = β, i.e.,

βAt + α = β

i.e.,

β(I2 − At) = α.

Noting that A = ±R(λ) for some λ ∈ R by Lemma 5.21 and A �= I2, it can be
readily shown that

det(I2 − At) = det(I2 ∓ R(λ)t ) = 2(1∓ cosh(λ)) �= 0.

Thus, it has the inverse matrix (I2−At)−1, and β = α(I2−At)−1; such an event β

does therefore exist.
Let

ψ = t−β ◦ φ ◦ tβ = t−β ◦ tα ◦ TA ◦ tβ .

For every event e,

ψ(e) = (t−β ◦ tα ◦ TA ◦ tβ)(e)

= (e + β)At + α − β

= eAt + α − β(I2 − At)

= eAt + α − α

= TA(e).

Hence, ψ = TA. Since A = ±R(λ),

ψ =
{

bλ, if A = R(λ);
b̄λ, if A = −R(λ).

Finally,

φ = tβ ◦ ψ ◦ t−β =
{

tβ ◦ bλ ◦ t−β = bβ,λ, if A = R(λ);
tβ ◦ b̄λ ◦ t−β = b̄β,λ, if A = −R(λ),

which is a relativistic rotation around the event β. ��
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Corollary 5.25. For a non-zero, lightlike event α, the translation tα cannot be
expressed as a composition of less than four relativistic reflections.

Proof. According to Theorem 5.9, tα cannot be expressed as a composition of two
relativistic reflections. According to Corollary 5.23, tα is orientation-preserving.
Hence, tα cannot be expressed as a composition of three relativistic reflections, and
it is not a relativistic reflection. This completes the proof. ��

Exercises

5.20. For two events α, β and two 2× 2 matrices A,B, suppose that

tα ◦ TA = tβ ◦ TB.

Show that

α = β and A = B.

5.21. Suppose that an isometry of R1,1 cannot be expressed as a composition of less
than four relativistic reflections. Show that it is a translation in a lightlike direction.

5.22. Show that the set of translations and relativistic rotations is closed under
composition.

5.23. For an orientation-reversing isometry φ of R1,1, show that φ2 is a translation.

5.24. Classify all the isometries such that φ2 = φ ◦ φ = idR1,1 .

5.25. Suppose that an isometry φ : R1,1 → R
1,1 satisfies φ6 = idR1,1 . Show that

φ2 = idR1,1 .

5.6 Relativistic Lengths of Curves

For curves in R
1,1, we define the notion of “length.” Before proceeding, we must be

more precise about the definition of a curve in R
1,1. By a curve, we mean a smooth

curve, i.e., a curve with a smooth, regular parametrization. A parametrization
γ (t) = (x(t), τ (t)) is called smooth if all the functions x(t) and τ(t) of t have
derivatives of all finite orders; it is called regular if dγ (t)

dt
�= 0 for any t . Henceforth,

a parametrization will be assumed to be smooth and regular. For a parameterized
curve

γ : [a, b] → R
1,1, γ (t) = (x(t), τ (t)),
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γ is called spacelike (timelike) if ‖γ ′(t)‖2 > 0 (< 0) for each t . It might seem
natural to use the following as the definition of length for curves:

∫ b

a

dII
(

dγ (t)

dt
, 0
)

dt.

Note that

∫ b

a

dII
(

dγ (t)

dt
, 0
)

dt =
∫ b

a

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt =
∫ b

a

((
dx(t)

dt

)2

−
(

dτ(t)

dt

)2
)

dt.

Consider a spacelike curve

γ : [0, 1] → R
1,1, γ (t) = (2t, t).

Then, its length would be

∫ 1

0

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt =
∫ 1

0
3dt = 3.

However, if we use another parametrization

δ : [0, 1] → R
1,1, δ(t) = (2t2, t2)

for the same curve, the length is different:

∫ 1

0

∥∥∥∥
dδ(t)

dt

∥∥∥∥
2

dt =
∫ 1

0
12t2dt = 4.

The correct definition requires some modification.

Definition 5.26. For a spacelike curve,

γ : [a, b] → R
1,1, γ (t) = (x(t), τ (t)),

its relativistic length is as follows:

lR(γ ) =

∫
b

a

√∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt =

∫
b

a

√(
dx(t)

dt

)2

−
(

dτ(t)

dt

)2

dt.

For a timelike curve,
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lR(γ ) =

∫
b

a

√
−
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt =

∫
b

a

√
−
(

dx(t)

dt

)2

+
(

dτ(t)

dt

)2

dt.

It can be readily verified that this definition does not depend on the parametrization
(Exercise 5.27). The following theorem justifies Definition 5.26 further.

Theorem 5.27. If Γ is a spacelike (or a timelike) curve of finite relativistic length,
then

lR(φ(Γ )) = lR(Γ )

for every isometry φ of R1,1.

Proof. According to Corollary 5.23, φ = tα ◦ TA for some event α and a J -
orthogonal matrix A. It is obvious that the translation tα preserves the relativistic
length. Hence, we must only show that lR(TA(Γ )) = lR(Γ ). Let

γ : [a, b] → R
1,1, γ (t) = (x(t), τ (t))

be a parametrization of Γ and δ = TA ◦ γ . Note that

δ(t) = (Aγ (t)t )t

and

dδ(t)

dt
=
(

A
dγ (t)t

dt

)t

= dγ (t)

dt
At .

Hence,

∥∥∥∥
dδ(t)

dt

∥∥∥∥
2

= dδ(t)

dt
· dδ(t)

dt

= dδ(t)

dt
J

dδ(t)t

dt

= dγ (t)

dt
AtJA

dγ (t)t

dt

= dγ (t)

dt
J

dγ (t)t

dt

= dγ (t)

dt
· dγ (t)

dt
=
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

,

and therefore,
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lR(φ(Γ )) = lR(δ) =

∫
b

a

√∥∥∥∥
dδ(t)

dt

∥∥∥∥
2

dt =

∫
b

a

√∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt = lR(γ ) = lR(Γ ).

A similar argument works for the case where Γ is a timelike curve. ��
Let us consider a hyperbolic curve:

U
1 = {(x, τ ) ∈ R

1,1 | τ =
√

1+ x2}.

It is one of two components of the curve defined by

‖e‖2 = −1.

Hence, U1 may be thought of as a relativistic “circle” of squared radius −1 or of
radius

√−1.
U

1 can be parameterized by

γ : R→ U
1, γ (t) = (sinh t, cosh t). (5.3)

Note that U1 is a spacelike curve and that each event in U
1 is timelike. For two events

e1 and e2 on U
1, we define the Lorentz–Minkowski distance dU(e1, e2) between e1

and e2 by the relativistic length along U
1 from e1 to e2. Let ei = (sinh λi, cosh λi)

for some λi ; then, it is readily seen (Figure 5.6) that

dU(e1, e2) = |λ1 − λ2| = |� e10e2|.

Using −e1 · e2 = cosh λ with λ = � e10e2 (Theorem 5.12) yields the following
proposition.

Fig. 5.6 dU(e1, e2) =
|λ1 − λ2| = |� e10e2|

0

e1

e2

x

1
t
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Proposition 5.28. cosh dU(e1, e2) = −e1 · e2.

Note that the parametrization γ is an isometry from R to U
1. (An isometry of R is

defined in Exercise 1.27.) An isometry of R1,1 is called a Lorentz transformation if
it fixes the origin; the set of them is denoted by O(1, 1). If a Lorentz transformation
maps U1 onto U

1, we call it orthochronous and denote the set of these by O+(1, 1).
Note that the restriction of an element φ of O+(1, 1)

φ|U1 : U1 → U
1

is an isometry of U1. The following is a relativistic version of Theorem 2.18.

Theorem 5.29. The restriction map

O+(1, 1)→ Iso(U1),

given by

φ �→ φ|U1,

is bijective.

Proof. We will build the inverse map of the map in the statement. For each isometry
φ of U

1, we must find a map from O+(1, 1) whose restriction to U
1 is φ. Since

R and U
1 are isometric and an isometry of R is a composition of reflections

(Exercise 1.27), we can assume that φ is a reflection of U1 (fixing one single event
α and moving other events to different events). Let L be a line that passes through 0
and α; then, L is timelike, and it is not difficult to see that r̄L|U1 = φ (Exercise 5.28).
Note that r̄L belongs to O+(1, 1). Hence, we found such a map. ��

Exercises

5.26. Let γ : [a, b] → R
1,1 be a spacelike (timelike) curve and f : [c, d] → [a, b]

be a bijective differentiable function. Then,

δ = γ ◦ f : [c, d] → R
1,1

is a reparametrization of the curve. Show that the parametrization δ is spacelike
(timelike).

5.27. Let γ : [a, b] → R
1,1 be a spacelike or timelike curve and f : [c, d] → [a, b]

be a bijective increasing differentiable function. Then,

δ = γ ◦ f : [c, d] → R
1,1
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is a reparametrization of the curve. Show that their relativistic lengths are the same,
i.e.,

lR(γ ) = lR(δ).

5.28. Consider the map γ : R → U
1 in (5.3) with an event α ∈ U

1. Assume that
γ (a) = α. Define a reflection r̄ : R→ R by r̄(t) = 2a − t . Consider a relativistic
reflection r̄L of R1,1, where L is a line on R

1,1 that goes through 0 and α. Show that

r̄L(e) = (γ ◦ r̄ ◦ γ−1)(e)

for each event e ∈ U
1.

5.7 Hyperboloid in R
2,1

In this section, we will see that hyperbolic geometry and relativistic geometry are
intrinsically related. Let us consider three-dimensional space with the Minkowski
inner product

e1 · e2 = x1x2 + y1y2 − τ1τ2

for events ei = (xi, yi, τi) ∈ R
3. Then, the Lorentz–Minkowski distance dII(e1, e2)

is defined by

dII(e1, e2) = ‖e1 − e2‖2 = (e1 − e2) · (e1 − e2),

and we denote the set R3 with the Lorentz–Minkowski distance by R
2,1, which

represents a three-dimensional Lorentz–Minkowski space. The elements of R
2,1

are also called events. A bijective map φ : R2,1 → R
2,1 is called an isometry

of R
2,1 if it preserves the Lorentz–Minkowski distance. We denote by Iso(R2,1)

the set of all such isometries and by O(2, 1) the set of all isometries that fix the
origin. All other notations can be similarly defined. For each event e ∈ R

2,1, if
‖e‖2 > 0 (resp. ‖e‖2 = 0, ‖e‖2 < 0), then the event e is said to be spacelike (resp.
lightlike, timelike). If two events e1 and e2 satisfy e1 · e2 = 0, then they are said to
be orthogonal to each other.

Lemma 5.30. Suppose two non-zero events e1 and e2 are orthogonal to each other.
If e1 is timelike, then e2 is spacelike.

Proof. Let ei = (xi, yi, τi). Since e1 is timelike, ‖e1‖2 = x2
1+y2

1−τ 2
1 < 0. Hence,

τ1 �= 0, and

1

τ 2
1

(x2
1 + y2

1) < 1.
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Because e1 · e2 = 0, τ1τ2 = x1x2 + y1y2. Therefore,

τ2 = 1

τ1
(x1x2 + y1y2).

We note that

‖e2‖2 = x2
2 + y2

2 − τ 2
2

= x2
2 + y2

2 −
(

1

τ1
(x1x2 + y1y2)

)2

≥ x2
2 + y2

2 −
1

τ 2
1

(x2
1 + y2

1)(x2
2 + y2

2)

≥ x2
2 + y2

2 − (x2
2 + y2

2)

= 0,

where the equalities hold only if x2
2+y2

2 = 0, i.e., x2 = y2 = 0. Hence, if ‖e2‖2 = 0,
then x2 = y2 = 0. However, then 0 = ‖e2‖2 = τ 2

2 and τ2 = 0, which is impossible
because e2 is a non-zero event. Therefore, ‖e2‖2 > 0. ��

For a parameterized curve

γ : [a, b] → R
2,1, γ (t) = (x(t), y(t), τ (t)),

γ is timelike (spacelike) if ‖γ ′(t)‖2 < 0 (> 0) for each t . For a timelike or a
spacelike curve γ : [a, b] → R

2,1, we define its relativistic length as follows:

lR(γ ) =

∫
b

a

√
−
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt

for a timelike curve and

lR(γ ) =

∫
b

a

√∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt

for a spacelike curve.
Let us consider a hyperbolic surface, which is called a hyperboloid:

U
2 := {(x, y, τ ) ∈ R

2,1 | τ =
√

1+ x2 + y2}.
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Note that

U
2 = {(x, y, τ ) ∈ R

2,1 | x2 + y2 − τ 2 = −1, τ > 0}.

Hence, U2 is one of two components of the surface defined by

‖e‖2 = −1.

Thus, U2 may be considered a relativistic “sphere” of squared radius−1 or of radius√−1.

Proposition 5.31. A curve on U
2 is spacelike.

Proof. Let

γ : [a, b] → U
2, γ (t) = (x(t), y(t), τ (t))

be a parametrization of a curve on U
2. Note that

−1 = ‖γ (t)‖2 = x(t)2 + y(t)2 − τ(t)2.

The event γ (t) is timelike. Differentiating both sides of the equation with respect to
t yields

0 =2x(t)
dx(t)

dt
+ 2y(t)

dy(t)

dt
− 2τ(t)

dτ(t)

dt

=2(x(t), y(t), τ (t)) · (dx(t)

dt
,
dy(t)

dt
,
dτ(t)

dt
)

=2γ (t) · dγ (t)

dt
.

Hence, the events γ (t) and dγ (t)
dt

are orthogonal. According to Lemma 5.30, dγ (t)
dt

is spacelike, so the curve γ is spacelike. ��
We will use the relativistic length lR(γ ) as the U

2-length of a curve γ on U
2:

lU2(γ ) = lR(γ ).

If we project the hyperboloid U
2 through the origin to the plane τ = 1, the image

is a unit disk, which is identified as a Klein disk by dropping the τ -coordinate
(Figure 5.7): (x, y, 1) �→ (x, y).

This results in a bijective map ξ : U2 → K
2 from the hyperbolic surface to the

Klein disk as follows:

(x, y, τ )
ξ�−→
(x

τ
,
y

τ

)
.
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Fig. 5.7 Projection of the
hyperboloid U

2 through the
origin to the plane τ = 1

The following theorem states that U2 and K
2 (and H

2 and D
2) are essentially the

same space.

Theorem 5.32. For a curve Γ on U
2 of finite relativistic length,

lU2(Γ ) = lK2(ξ(Γ )).

Proof. One can show that the map ζ : U2 → D
2 is as follows:

(x, y, τ ) �→
(

x

1+ τ
,

y

1+ τ

)
.

Then, lD2(ζ(Γ )) = lK2(ξ(Γ )), and thus, it is sufficient to show that

lU2(Γ ) = lD2(ζ(Γ )).

Let γ : [a, b] → U
2, γ (t) = (x(t), y(t), τ (t)) be a parametrization of Γ . Then,

lU2(γ ) =

∫
b

a

√∥∥∥∥
dγ

dt

∥∥∥∥
2

dt =

∫
b

a

√(
dx

dt

)2

+
(

dy

dt

)2

−
(

dτ

dt

)2

dt.

Now note that

δ(t) = ζ(γ (t)) =
(

x(t)

1+ τ(t)
,

y(t)

1+ τ(t)

)

is a parametrization of ζ(Γ ). Let
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X = x

1+ τ
, Y = y

1+ τ
.

Using the relations

x2 + y2 + 1 = τ 2

and

x
dx

dt
+ y

dy

dt
= τ

dτ

dt
,

(
2

1−X2 − Y 2

)2
((

dX

dt

)2

+
(

dY

dt

)2
)

=
4

((
− x dτ

dt

(1+τ)2 +
dx
dt

1+τ

)2

+
(
− y dτ

dt

(1+τ)2 +
dy
dt

1+τ

)2
)

(
1− x2

(1+τ)2 − y2

(1+τ)2

)2

=
4

((
x dτ

dt
− (1+ τ) dx

dt

)2 +
(
y dτ

dt
− (1+ τ)

dy
dt

)2
)

(−(1+ τ)2 + x2 + y2
)2

=

((
x dτ

dt
− (1+ τ) dx

dt

)2 +
(
y dτ

dt
− (1+ τ)

dy
dt

)2
)

(1+ τ)2

=
(

dx

dt

)2

+
(

dy

dt

)2

+
(τ − 1)

(
dτ
dt

)2 − 2 dτ
dt

(
x dx

dt
+ y

dy
dt

)

(1+ τ)

=
(

dx

dt

)2

+
(

dy

dt

)2

−
(

dτ

dt

)2

.

Therefore,

lD2(ζ(Γ )) = lD2(δ)

=

∫
b

a

2

1−X2 − Y 2

√(
dX

dt

)2

+
(

dY

dt

)2

dt

=

∫
b

a

√(
dx

dt

)2

+
(

dy

dt

)2

−
(

dτ

dt

)2

dt
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= lU2(γ )

= lU2(Γ ).

��
For two distinct events p1 and p2 on U

2, a path on U
2 from p1 to p2 is a smooth

curve γ : [a, b] → U
2 such that

γ (a) = p1, γ (b) = p2.

Definition 5.33. A path γ on U
2 from an event p1 to another event p2 is called a

U
2-shortest path from p1 to p2 if

lU2(γ ) ≤ lU2(γ
′)

for any path γ ′ on U
2 from p1 to p2.

Theorem 5.32 implies that a curve γ on U
2 is a U

2-shortest path if and only if
its image on K

2 under ξ is a K
2-shortest path on K

2. As before, we define the U
2

distance dU2 on U
2 as follows:

dU2(p, q) = lU2(γ )

for p, q ∈ U
2, where γ is a U

2-shortest path from p to q. An isometry of U2 is a
bijective map from U

2 to itself that preserves the U
2 distance.

Note that

dU2(p, q) = lU2(γ ) = lK2(ξ(γ )) = dK2(ξ(p), ξ(q)).

Hence, the map ξ : U2 → K
2 is an isometry, and the two spaces U

2 and K
2 are

isometric. We now define a U
2-line as the set of all the events on U

2 that have the
same U

2 distance from some two distinct events on U
2. Then, it is not difficult to

see that a curve γ on U
2 is a U2-line if and only if ξ(γ ) is a K2-line. Hence, we can

pose the following theorem.

Theorem 5.34. A U
2-line on U

2 is an intersection of U
2 with a plane in R

2,1

containing the origin.

Proof. There is a one-to-one correspondence between the set of U2-lines on U
2 and

the set of K2-lines on K
2. A K

2-line L is a Euclidean line that is the intersection
of the plane τ = 1 and a plane P passing through the origin. Hence, the K

2-line L

yields a U2-line M on U
2 that is the intersection of the plane P and U

2. Conversely,
for a given K

2-line M on the plane τ = 1, there is a unique plane P , passing through
the origin, whose intersection with the plane τ = 1 is a K

2-line L. See Figure 5.8.
��

Note that the plane, corresponding to a given U
2-line in the proof of Theorem 5.34,

is unique.
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Fig. 5.8 K
2-line L and

U
2-line M

It is now clear that the spaces H2, D2, K2 and U
2 are all isometric (Figure 5.9).

A cross-section in R
2,1 is shown in Figure 5.9, which shows how the models H2,

D
2, K2,J2, and U

2 are related. The five bullet points η, δ, κ , ζ , and υ represent the
same point in the hyperbolic geometry in two dimensions. The following is how
the points on the figure correspond to each of the models of hyperbolic surfaces in
Figure 5.9.

• H
2: (x, y)↔ (1, x, y)

• D
2: (x, y)↔ (x, y, 0)

• K
2: (x, y)↔ (x, y, 1)

See also Figure 5.10, where a Poincaré disk on the plane τ = 0 is shown,
explaining the correspondence between D

2-lines (L) and U
2-lines (M).

Exercises

5.29. Consider a U
2 circle Γ of U2-radius ρ with center α ∈ U

2:

Γ = {e ∈ U
2 | dU2(α, e) = ρ}.

Find its U2-circumference, lU2(Γ ).

5.8 Isometries of R2,1

In Section 2.4, we saw that we can understand some aspects of isometries of
R

3 based on the geometry of S
2. Since the hyperboloid U

2 is isometric with the
hyperbolic plane, we now have a good knowledge of its isometries. In this section,
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Fig. 5.9 H
2, D2, K2, J2 and U

2

Fig. 5.10 D
2-line L and

U
2-line M
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we investigate the structure of the isometries of R2,1 using our knowledge of the
isometries of U2.

Let P be a plane in R
2,1 that contains the origin. Then,

P = {te1 + se2 | t, s ∈ R}

for some events e1 and e2. Conversely, if e1 and e2 are non-zero events in P such
that there is no real number λ such that e2 = λe1, then

P = {te1 + se2 | t, s ∈ R}.

Lemma 5.35. Every U
2-line through an event e0 ∈ U

2 can be parameterized by

t �→ e0 cosh t + α sinh t,

where α is an event such that

‖α‖2 = 1, e0 · α = 0.

Proof. Let Γ be a U
2-line through the event e0. Then, by Theorem 5.34, Γ =

U
2∩P for some plane P through the origin. We can choose an event β from P such

that β = (x, y, 0) with ‖β‖2 = 1. Since e0 and β are non-zero events and they are
not proportional to one another,

P = {te0 + sβ | t, s ∈ R}.

We seek an event α in P such that

‖α‖2 = 1, e0 · α = 0.

Let α = ae0 + bβ. Then,

1 = ‖α‖2 = −a2 + b2 + 2ab(e0 · β),

0 = e0 · α = −a + b(e0 · β).

Hence,

a = ±e0 · β√
1+ (e0 · β)2

, b = ±1√
1+ (e0 · β)2

,

and we have found such an event α. Since α = ae0 + bβ,

P = {te0 + sβ | t, s ∈ R} = {te0 + sα | t, s ∈ R}.
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Let γ (t) = e0 cosh t + α sinh t . Note that γ (0) = e0 and γ (t) ∈ P . Since

‖γ (t)‖2 = ‖e0‖2 cosh2 t + ‖α‖2 sinh2 t = − cosh2 t + sinh2 t = −1,

γ (t) ∈ U
2. Hence, γ (t) ∈ U

2 ∩ P = Γ .
Conversely, for any event e ∈ Γ = U

2 ∩ P , e = te0 + sα for some s, t ∈ R.
Note that

−1 = ‖e‖2 = t2‖e0‖2 + 2ts(e0 · α)+ s2‖α‖2 = −t2 + s2.

Note also that t = cosh λ and s = sinh λ for some real number λ. Therefore, e =
γ (λ). ��

We present a two-dimensional version of Proposition 5.28.

Corollary 5.36. cosh
(
dU2(e1, e2)

) = −e1 · e2 for any e1, e2 ∈ U
2.

Proof. According to Lemma 5.35, there is a parameterized curve

γ (t) = e1 cosh t + α sinh t

for some α with ‖α‖2 = 1 and e1 · α = 0 such that γ (a) = e2 for some a ∈ R.

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

= cosh2 t − sinh2 t = 1.

Hence,

dU2(e1, e2) =

∫
a

0

√∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

dt = a.

Note that

e1 · e2 = e1 · γ (a) = e1 · (e1 cosh a + α sinh a) = − cosh a.

Therefore,

cosh
(
dU2(e1, e2)

) = cosh a = −e1 · e2.

��
Compare it with the formula for the case of S2 and R

3:

cos
(
dS2(p1, p2)

) = p1 · p2

for any p1, p2 ∈ S
2, where the inner product “·” is the ordinary one for the

Euclidean space R
3.
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The formula for the U
2-distance in Corollary 5.36 is simpler and easier to use

than that for H
2-distance (Exercise 4.4). This is one of the advantages that are

enjoyed when one uses U
2 for a model of hyperbolic geometry. One can use the

formula in Corollary 5.36 in deducing a formula for the distance in D
2 as follows:

Note that

(x, y)
ζ−1

�−→
(

2x

1− (x2 + y2)
,

2y

1− (x2 + y2)
,

1+ x2 + y2

1− (x2 + y2)

)

or

p
ζ−1

�−→
(

2p

1− ‖p‖2
,

1+ ‖p‖2

1− ‖p‖2

)
= 1

1− ‖p‖2

(
2p, 1+ ‖p‖2

)
.

Hence,

cosh(dD2(p1, p2)) = cosh(dU2(ζ
−1(p1), ζ

−1(p2)))

= −ζ−1(p1) · ζ−1(p2)

= − 1

(1−‖p1‖2)(1−‖p2‖2)
(4p1 ·p2− (1+‖p1‖2)(1+‖p2‖2))

= 1− 1

(1− ‖p1‖2)(1− ‖p2‖2)
(4p1 · p2 − 2‖p1‖2 − 2‖p2‖2)

= 1− 2‖p1 − p2‖2

(1− ‖p1‖2)(1− ‖p2‖2)

= 1+ 2(d(p1, p2))
2

(1− ‖p1‖2)(1− ‖p2‖2)
,

i.e.,

cosh(dD2(p1, p2)) = 1+ 2(d(p1, p2))
2

(1− ‖p1‖2)(1− ‖p2‖2)
.

A map φ ∈ O(2, 1) is called orthochronous if it maps U2 onto U
2, and we denote

the set of these maps by O+(2, 1).

Proposition 5.37. The restriction

φ|U2 : U2 → U
2

of an element φ of O+(2, 1) is an isometry of U2.

Proof. It is not difficult to prove that a map from R
2,1 to R

2,1, fixing the origin, is
an isometry of R2,1 if and only if it preserves the Minkowski inner product (regard
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events as elements of R2,1 in the proof of Theorem 5.3). For any events e1, e2 ∈ U
2,

according to Corollary 5.36,

cosh dU2(φ(e1), φ(e2)) = −φ(e1) · φ(e2) = −e1 · e2 = cosh dU2(e1, e2),

which implies that dU2(φ(e1), φ(e2)) = dU2(e1, e2). ��
For two distinct events e1, e2 ∈ R

2,1, we can define a plane Pe1,e2 in R
2,1 as in

R
1,1:

Pe1,e2 := {e ∈ R
2,1 | dII(e1, e) = dII(e2, e)}.

Note that

Pe1,e2 = {e ∈ R
2,1 | (e − u) · v = 0}, (5.4)

where u = 1
2 (e1+ e2) and v = 1

2 (e1− e2) (Exercise 5.2). Furthermore, if e1− e2 is
not lightlike, we define the relativistic reflection r̄Pe1,e2

in the plane Pe1,e2 as follows:

r̄Pe1,e2
(e) = e − 2(e − u) · v

‖v‖2 v

It can be readily shown that the relativistic reflection is an isometry of R
2,1

(Theorem 5.5) and that every translation can be expressed as a composition of two
(for the non-lightlike direction, Theorem 5.8) or four (for the lightlike direction,
Theorem 5.9) relativistic reflections, as shown in Section 5.2—just regard events as
elements of R2,1 in the proofs.

Lemma 5.38. For two distinct events α, β ∈ U
2, consider a U

2-line

Lα,β := {e ∈ U
2 | dU2(e, α) = dU2(e, β)}.

Then

Lα,β = Pα,β ∩ U
2.

Furthermore, the event α − β is not lightlike. Hence, the relativistic reflection r̄Pα,β

of R2,1 in the plane Pα,β is defined.

Proof. For each e ∈ Lα,β ,

dII(α, e) = ‖α − e‖2

= ‖α‖2 − 2α · e + ‖e‖2

= −2− 2α · e
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= −2+ 2 cosh
(
dU2(α, e)

)
(∵ Corollary 5.36)

= −2+ 2 cosh
(
dU2(β, e)

)

= −2− 2β · e (∵ Corollary 5.36)

= ‖β‖2 − 2φ(α) · e + ‖e‖2

= ‖β − e‖2

= dII(β, e).

Hence, e ∈ Pα,β and so Lα,β ⊂ Pα,β . By Theorem 5.34, Lα,β = Pα,β ∩ U
2.

‖α − β‖2 = ‖α‖2 − 2α · β + ‖β‖2

= −2− 2α · β
= −2+ 2 cosh

(
dU2(α, β)

)
(∵ Corollary 5.36)

�= 0. (∵ dU2(α, β) �= 0)

Hence, the event α − β is not lightlike and so the relativistic reflection r̄P in P =
Pα,β is defined. ��

An isometry φ of U2 is called a reflection if the corresponding isometry ζ−1◦φ◦ζ
of D

2 is an inversion in a D
2-line. In the following theorem, it is proved that a

reflection of U
2 is the restriction to U

2 of a relativistic reflection in a plane that
passes through the origin in R

2,1. This property was discussed for the case of R3

and S
2 in Section 2.2.

Theorem 5.39. An isometry φ of U2 is a reflection in a U
2-line L if and only if

φ(e) = r̄P (e)

for each event e ∈ U
2, where P is the plane in R

2,1 through the origin such that
P ∩ U

2 = L.

Proof. By Theorem 5.34, L = U
2 ∩ P for some plane P through the origin. By

Lemma 5.8, the relativistic reflection r̄P in the plane P is defined.
Let φ be the reflection of U2 in a U

2-line L. If e ∈ L, then e ∈ P and so

φ(e) = e = r̄P (e).

If an event e ∈ U
2 does not lie on L, then e �= φ(e) and

L = Le,φ(e).

By Lemma 5.8,
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Le,φ(e) = Pe,φ(e) ∩ U
2.

Hence, P = Pe,φ(e) and so r̄P (e) = φ(e).
Conversely, assume that an isometry φ of U2 satisfies

φ(e) = r̄P (e)

for each e ∈ U
2. If e ∈ L, then e ∈ P and so

φ(e) = r̄P (e) = e.

If e /∈ L, then e /∈ P and so r̄P (e) �= e. Hence, P = Pe,r̄P (e) and, by Lemma 5.8,
L = Le,r̄P (e).

φ(e) = r̄P (e) = r̄P (e).

Therefore, φ is the reflection of U2 in L. ��
Since U

2 and D
2 are isometric, every isometry of U2 is a composition of at most

three reflections.
If a plane P contains the origin, then we can let u = 0 in (5.4) (Exercise 5.2),

P = {e ∈ R
1,1 | e · v = 0} = v⊥.

We are interested in the case that P meets with U
2 along a U

2-line. Hence, assume
that P ∩ U

2 �= ∅ and choose an event α ∈ P ∩ U
2.

α · v = 0, ‖α‖2 = −1.

By Lemma 5.30, ‖v‖2 > 0. Thus, we can assume that ‖v‖2 = 1 and then

r̄P (e) = e − 2(e · v)v.

The following is a higher-dimensional version of Theorem 5.29 and very similar
to Theorem 2.18.

Theorem 5.40. The map

Ψ : O+(2, 1)→ Iso(U2)

defined by the restriction is bijective.

Proof. In this proof, we assume some knowledge of linear algebra. We will build
an inverse map of the map in the statement. For each isometry φ of U2, we must
find a map ψ from O+(2, 1) whose restriction to U

2 is φ. Let



180 5 Lorentz–Minkowski Plane

e1 = (0, 0, 1), e2 = (1, 0,
√

2), e3 = (0, 1,
√

2),

which are elements of U2. Let e′i = φ(ei). According to Corollary 5.36,

φ(ei) · φ(ej ) = − cosh dU2(φ(ei), φ(ej )) = − cosh dU2(ei, ej ) = ei · ej

for each i, j . Note that any event e ∈ R
2,1 can be expressed as

e = a1e1 + a2e2 + a3e3

with coefficients a1, a2, a3 ∈ R and those coefficients are unique. We define a linear
map ψ : R2,1 → R

2,1 as follows:

a1e1 + a2e2 + a3e3 �→ a1φ(e1)+ a2φ(e2)+ a3φ(e3),

where ai ∈ R. We can denote

a1e1 + a2e2 + a3e3

by

∑
i

aiei .

Then

ψ

(∑
i

aiei

)
=
∑

i

aiψ(ei)).

Hence,

ψ

(∑
i

aiei

)
· ψ
⎛
⎝∑

j

bj ej

⎞
⎠ =

∑
i

aiφ(ei) ·
∑
j

bjφ(ej )

=
∑
i,j

aibj

(
φ(ei) · φ(ej )

)

=
∑
i,j

aibj (ei · ej )

=
∑

i

aiei ·
∑
j

bj ej .

Therefore, ψ preserves the Minkowski inner product, and accordingly, it is an
isometry of R2,1.
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Note that e1 ∈ U
2 and ψ(e1) = φ(e1) ∈ U

2. Hence, e1 ∈ U
2 ∩ ψ(U2) and so

U
2∩ψ(U2) �= ∅. Using the result from Exercise 5.30, we conclude that φ(U2) = U

2

and so ψ ∈ O+(2, 1).
For e, e′ ∈ U

2,

dU2(ψ(e), ψ(e′)) = cosh−1(−ψ(e) · ψ(e′)) (∵ Corollary 5.36x)

= cosh−1(−e · e′)
= dU2(e, e

′) (∵ Corollary 5.36).

So ψ |U2 is an isometry of U2. Since there are no planes in R
2,1 that contain all the

points e1, e2, e3 and the origin, there are no U
2-lines that pass through all the points

e1, e2, and e3. Note that ψ(ei) = φ(ei) for i = 1, 2, 3. By Theorem 4.19,

ψ |U2 = φ,

where we note that H2 and U
2 are isometric with each other. For a given isometry

φ of U2, we have built an isometry ψ in O+(2, 1) such that Ψ (ψ) = φ. Hence, the
map Ψ is bijective. ��
By Theorem 5.39, now it is clear that a relativistic reflection in O+(2, 1) corresponds
to a reflection of U2 via the map Ψ in Theorem 5.40.

Theorem 5.41. An isometry of R2,1 is a composition of at most eight relativistic
reflections.

Proof (Sketch). Let φ be an isometry of R2,1. Suppose that φ ∈ O+(2, 1). Then,
from the proof of Theorem 5.40, we can show that φ|U2 is an isometry of U2, which
is a composition of at most three reflections. This implies that φ is a composition
of at most three relativistic reflections. If φ ∈ O(2, 1) but φ /∈ O+(2, 1), then
φ(e) /∈ U

2 for some e ∈ U
2. Since (r̄ ◦ φ)(e) ∈ U

2,

(r̄ ◦ φ)(U2) ∩ U
2 �= ∅,

where r̄ is the relativistic reflection in the xy-plane. Using the result from Exer-
cise 5.30, we conclude that

(r̄ ◦ φ)(U2) = U
2,

and that r̄ ◦ φ lies in O+(2, 1); thus, it is a composition of at most three relativistic
reflections. Therefore, φ is a composition of at most four relativistic reflections in
this case. If φ /∈ O(2, 1), then

tα ◦ φ ∈ O(2, 1),
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where α = −φ(0). Note that tα ◦ φ is a composition of at most four relativistic
reflections and that the translation tα is a composition of two or four relativistic
reflections. Therefore, φ is a composition of at most eight relativistic reflections in
the most general case. ��
It is known that an isometry of R2,1 can be expressed as a composition of at most
four (not five!) relativistic reflections.

Corollary 5.42. An isometry of R2,1 is a composition of relativistic reflections.

Using this corollary, one can show that an isometry of R2,1 can be expressed with a
matrix multiplication and addition by an event, as in Corollary 5.23.

Exercises

5.30. Suppose that the set φ(U2) ∩ U
2 is non-empty for a map φ ∈ O(2, 1). Prove

that φ maps U2 onto U
2.

5.31. Let e1 and e2 be timelike events in R
2,1. Show that

(e1 · e2)
2 ≥ ‖e1‖2‖e2‖2

with equality if and only if e1 = λe2 for some real number λ.

5.32. Two U
2-lines are said to intersect orthogonally with each other if the two

corresponding D
2-lines on D

2 intersect orthogonally with each other.
For two U

2-lines L = α⊥ ∩U
2 and M = β⊥ ∩U

2, show that the U2-lines L and
M intersect orthogonally with each other if and only if

α · β = 0.

(Hint. Let φ be the reflection of U2 in the U2-line L. Then the U2-line M intersect
orthogonally with L if and only if φ(M) = M and L �= M .)



Chapter 6
Geometry of Special Relativity

“The views of space and time which I
wish to lay before you have sprung
from the soil of experimental physics,
and therein lies their strength. They
are radical. Henceforth space by itself,
and time by itself, are doomed to fade
away into mere shadows, and only a
kind of union of the two will preserve
an independent reality.”

Hermann Minkowski (1864–1909)

“In all affairs it’s a healthy thing now
and then to hang a question mark on
the things you have long taken for
granted.”

Bertrand Russell (1872–1970)

6.1 R
3,1 and the Special Relativity of Einstein

Spacetime is the arena in which all physical events take place, i.e., an event is a point
in spacetime specified by its position and time. The basic elements of spacetime are
events. In spacetime, an event is a unique position (x, y, z) with a unique time t .
Thus, it is specified by quadruples of real numbers, i.e., (x, y, z, t). For example, in
the year 2014, an exploding star (supernova) was spotted, later named SN 2014J, in
a nearby galaxy, which is at a distance of approximately 12 million light years. This
explosion is an example of an event, wherein its position and time are described
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from our point of view, i.e., the viewpoint of the human beings on Earth. We can set
Earth as the origin of a coordinate system of spacetime and assign the coordinates
(x, y, z, t).

Spacetime itself can be viewed as the set of all events in the same way that the
Euclidean plane is the set of all of its points. Hence, it can be identified with the set
R

4. The trajectories of elementary point particles such as electrons through space
and time are thus a continuum of events that may be regarded as a “curve” in R

4.
The trajectory of a compound object (consisting of a huge number of elementary
point particles) is a union of many curves twisted together by virtue of interactions
between the particles in it through spacetime.

Physicists use the term “observer” as a synonym for a specific reference frame
from which a set of events is being recorded. Referring to an observer in special
relativity is not specifically considering an individual creature who is witnessing
events, but rather, it is a particular coordinate system by which events are to be
assigned coordinates. The effects of special relativity occur regardless of whether
there is a human being within the inertial reference frame to observe them.

For an observer O, the set of events has a one-to-one correspondence to R
4 by

specifying each event by quadruples of real numbers (x, y, z, t). If there is another
observer O′, she may record each event in her own way. In the example of the
supernova SN 2014J above, imagine that there are other creatures in the center of
the Andromeda Galaxy, which is a spiral galaxy approximately 2.5 million light-
years (2.4 × 1019 km) from Earth, moving at 300 kilometers per second in the
direction of the earth. They also observed the explosion, and they would record it
from their point of view, assigning it the coordinates (x′, y′, z′, t ′).

The transformations in coordinates of all events between these two observers O
and O′ can be expressed by a map φ : R4 → R

4, (x, y, z, t) �→ (x′, y′, z′, t ′).
Before Einstein and his contemporaries, the common belief was that the spatial
distance and the time interval are independently invariant under this transformation:

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

=
√

(x′1 − x′2)2 + (y′1 − y′2)2 + (z′1 − z′2)2, (6.1)

t1 − t2 = t ′1 − t ′2. (6.2)

In the nineteenth century, this belief started to lose ground. In classical electro-
magnetism, the electromagnetic field obeys a set of equations known as Maxwell’s
equations. It was noted that light is a fluctuating wave of electromagnetic fields.
According to Maxwell’s equations, the speed of light is a universal constant (≈
3.00× 108 m/s), independent of the observers. However, (6.1) and (6.2) (and some
intuition) imply that the speed must vary with respect to the observers unless it is
infinite.

One suggested solution to this contradiction was to assume the existence of
a luminiferous background substance (called “ether”) through which the light
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Fig. 6.1 Earth in the ether
wind

OO′v u x

Fig. 6.2 Observers O and O′ in relative motion and a moving object
⊙

propagates. Just as waves on the surface of water must have a supporting substance,
a “medium,” to be propagated (in this case, water) and audible sound needs a
medium to transmit its wave motions (such as gas or liquid), light, which is an
electromagnetic wave, must also propagate in a medium, the so-called “luminiferous
ether.” Since light can be propagated through a vacuum, it was assumed that even a
vacuum must be filled with luminiferous ether.

The Earth orbits around the Sun at a speed of approximately 30 km/s. The Earth
is in motion, through the ocean of ether. According to this hypothesis, Earth and the
ether are in relative motion, which implies that there should be a so-called ether wind
(Figure 6.1). In experiments conducted by Michelson and Morley, it was shown that
such wind does not exist and that the speed of light is constant in fall and summer
and in any direction.

Einstein and his contemporaries suggested another relation, instead of (6.1)
and (6.2):

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − c2(t1 − t2)

2

= (x′1 − x′2)2 + (y′1 − y′2)2 + (z′1 − z′2)2 − c2(t ′1 − t ′2)2, (6.3)

where c is the speed of light.
Choosing a new unit for time by letting τ = ct , (6.3) becomes

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (τ1 − τ2)

2

= (x′1 − x′2)2 + (y′1 − y′2)2 + (z′1 − z′2)2 − (τ ′1 − τ ′2)2.
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Note that the speed of light is 1 in this time scale. Thus, the transformations
of special relativity are isometries that preserve the Lorentz–Minkowski distance,
defined as follows:

dII(e1, e2) = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (τ1 − τ2)

2

for e1 = (x1, y1, z1, τ1) and e2 = (x2, y2, z2, τ2). Hence, we denote spacetime
by R

3,1. The physical theory resulting from (6.3) is called the theory of special
relativity. Some consequences of (6.3) are the following:

1. Two events happening in two different locations that occur simultaneously for an
observer may occur non-simultaneously for another observer (lack of absolute
simultaneity). See Theorem 6.11.

2. The time lapse between two events is not independent of the observers and is
dependent on the relative speeds of the observers. (The twin paradox describes
a twin who departs from the Earth in a spaceship traveling near the speed of
light and returns to find that his or her twin sibling has gotten much older.) See
Theorem 6.16.

3. The dimensions (e.g., length) of an object measured by an observer may not be
the same as those measured by another observer. (The ladder paradox involves a
ladder, which is longer than a garage at rest, moving near the speed of light and
being contained within the smaller garage.)

4. Speeds do not simply add. If the observer O measures an object
⊙

as moving
at speed u in the positive x-direction, then the observer O′, moving at speed v

in the negative x-direction with respect to O, will measure the object as moving
with speed

u+ v

1+ uv
c2

. (6.4)

See Section 6.5 for a derivation of this formula.

Exercises

6.1. Let R1 = {x ∈ R | −1 < x < 1}. Motivated by (6.4), with the convention of
c = 1, we define

u⊕ v = u+ v

1+ uv

for u, v ∈ R1. Show that

1.

u⊕ v ∈ R1

for u, v ∈ R1.
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2.

(u⊕ v)⊕ w = u⊕ (v ⊕ w)

for u, v,w ∈ R1.
3.

u⊕ u⊕ · · · ⊕ u︸ ︷︷ ︸= (1+|u|)n−(1−|u|)n
(1+|u|)n+(1−|u|)n

u
|u|

n times

for a positive integer n and u ∈ R1.

6.2. For r ∈ R and u ∈ R1, let

r ⊗ u = (1+ |u|)r − (1− |u|)r
(1+ |u|)r + (1− |u|)r

u

|u| .

For any r, r ′ ∈ R and u, v ∈ R1, show that

1. r ⊗ u = tanh
(
r tanh−1(u)

)
.

2. r ⊗ u belongs to R1.
3. (r + r ′)⊗ u = (r ⊗ u)⊕ (r ′ ⊗ u).
4. (rr ′)⊗ u = r ⊗ (r ′ ⊗ u).
5. r ⊗ (u⊕ v) = (r ⊗ u)⊕ (r ⊗ v).

� The operations ⊕ and ⊗ form the so-called Gyrogroups, which can be used to
describe hyperbolic geometry in a different way.

6.2 Causality

Let us consider four-dimensional space with the Minkowski inner product

e1 · e2 = x1x2 + y1y2 + z1z2 − τ1τ2

for events ei = (xi, yi, zi, τi) ∈ R
4. Then, the Lorentz–Minkowski distance

dII(e1, e2) is defined as follows:

dII(e1, e2) = ‖e1 − e2‖2 = (e1 − e2) · (e1 − e2),

and we denote the set R4 with the Lorentz–Minkowski distance by R
3,1 and call

it four-dimensional Lorentz–Minkowski space, which is a mathematical model of
spacetime. A bijective map φ : R3,1 → R

3,1 is called an isometry of R
3,1 if it

preserves the Lorentz–Minkowski distance. We denote the set of all such isometries
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by Iso(R3,1) and the set of all isometries fixing the origin 0 by O(3, 1). All other
notations can be similarly defined.

Recall that we are assuming that a curve is described by a smooth, regular
parametrization. A parametrization γ (t) = (x(t), y(t), z(t), τ (t)) is called smooth
if all the functions x(t), y(t), z(t), and τ(t) of t have derivatives of all finite orders,
and it is called regular if

dγ (t)

dt
�= 0

for any t . A parametrization is always assumed to be smooth and regular.
For an object (approximated as a point in space, e.g., a particle or an observer),

one can consider a curve composed of spacetime events that correspond to the
history of the object. Each point of this curve is an event that can be labeled with
a spatial position and the time of the object. We call this curve the worldline of
the object. For example, the orbit of the Earth in the solar system is approximately
a circle, a three-dimensional closed curve in space (Figure 6.3): the Earth returns
every year to the same position in space. However, it comes back there at a different
time. The worldline of the Earth is actually helical in spacetime (Figure 6.4) and
does not return to the same point in the spacetime.

Roughly speaking, physics is the study of the worldlines of objects—how they
look and how they can be determined. Before we proceed to the study of worldlines,

Fig. 6.3 Motion of the Earth
in space space

Fig. 6.4 Worldline of the
Earth in spacetime

time

space
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Fig. 6.5 Cause e1 and effect e2

we need to consider an important physical concept, causality. Causality is the
relationship between causes and effects. An effect cannot occur before its cause.

Referring to Figure 6.5, let e1 = (x1, y1, z1, τ1) be the event of the bullet being
fired and e2 = (x2, y2, z2, τ2) be the event of the bullet hitting the target. Since
e2 is an effect and e1 is its cause, the time relation should be τ1 < τ2. Suppose
that these events are recorded as e′1 = (x′1, y′1, z′1, τ ′1) and e′2 = (x′2, y′2, z′2, τ ′2)
by another observer. We still should have τ ′1 < τ ′2. In the previous section, we
saw that simultaneity is not an absolute concept in relativity. Hence, comparing
the time coordinates is not sufficient to address causality (see Exercise 6.7). For
e = (x, y, z, τ ) ∈ R

3,1, the event e is said to be future-directed (past-directed) if
τ > 0 (τ < 0). We now can define a causality relation between events.

Definition 6.1. For two events e1, e2 ∈ R
3,1, e1 is said to causally precede e2 if

e2 − e1 is neither past-directed nor spacelike, i.e.,

τ2 − τ1 ≥ 0 and (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (τ1 − τ2)

2 ≤ 0

for ei = (xi, yi, zi , τi), denoted as e1 ≺ e2.

It is a simple but useful fact that

e1 ≺ e2 ⇔ 0 ≺ e2 − e1.

Note that e1 �≺ e2 does not imply e2 ≺ e1. Two events e1 and e2 are said to be
causally related if e1 ≺ e2 or e2 ≺ e1 and causally unrelated otherwise. If two
events e1, e2 are causally unrelated, then

|τ1 − τ2| <
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

i.e., the spatial distance between e1 and e2 is greater than the time distance between
them. One can say that they are too far from each other to be causally related within
the given time elapse |τ1 − τ2|.

The causality relation is transitive. To prove this, we need a lemma.

Lemma 6.2. For two events e1, e2,

0 ≺ e1 + e2
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if

0 ≺ e1 and 0 ≺ e2.

Proof. First note that e1 + e2 is not past-directed. Therefore, we must show that

‖e1 + e2‖2 ≤ 0.

Let ei = (xi, yi, zi , τi) for i = 1, 2. Then, the given condition implies that

τi ≥ 0 and x2
i + y2

i + z2
i ≤ τ 2

i .

Recall the Cauchy–Schwartz inequality,

x1x2 + y1y2 + z1z2 ≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2.

Hence,

e1 · e2 = x1x2 + y1y2 + z1z2 − τ1τ2

≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2 − τ1τ2

≤ τ1τ2 − τ1τ2

= 0.

Finally,

‖e1 + e2‖2 = ‖e1‖2 + ‖e2‖2 + 2e1 · e2 ≤ ‖e1‖2 + ‖e2‖2 ≤ 0.

��
Theorem 6.3. The causality relation ≺ is transitive, i.e., if e1 ≺ e2 and e2 ≺ e3,
then e1 ≺ e3.

Proof. Note that

0 ≺ e2 − e1, 0 ≺ e3 − e2.

According to Lemma 6.2,

e3 − e1 = (e3 − e2)+ (e2 − e1) # 0,

which means that e1 ≺ e3. ��
The causality relation is a partial order, satisfying:

• Reflexivity: e1 ≺ e1
• Antisymmetry: e1 ≺ e2, e2 ≺ e1 ⇒ e1 = e2
• Transitivity: e1 ≺ e2, e2 ≺ e3 ⇒ e1 ≺ e3.
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The reflexivity is obvious and the transitivity is showed in the previous theorem. For
the antisymmetry, assume that

e1 ≺ e2, e2 ≺ e1

for ei = (xi, yi, zi , τi). Since neither e2 − e1 nor e1 − e2 is past-directed,

τ1 ≤ τ2, τ2 ≤ τ1,

which implies τ1 = τ2. The event e2 − e1 is not spacelike. Hence,

0 ≥ ‖e2 − e1‖2

= (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (τ1 − τ2)

2

= (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2

and so

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 = 0.

We conclude that

x1 = x2, y1 = y2, z1 = z2

and accordingly e1 = e2.
In general, an isometry does not need to preserve the causality relation. For

example, if φ(x, y, z, τ ) = (x, y, z,−τ), then φ is an isometry but does not
preserve the causality relation.

Definition 6.4. An isometry φ of R
3,1 is said to be causal if it preserves the

causality relation, i.e., φ(e1) ≺ φ(e2) for any two events e1, e2 ∈ R
3,1 with e1 ≺ e2.

It is known that if an isometry φ of R3,1 is not causal, then it is causality-reversing,
i.e. φ(e1) # φ(e2) for any e1, e2 ∈ R

3,1 with e1 ≺ e2 (see Corollary 6.8 for the
case of R1,1).

Example 6.1. A four-dimensional Lorentz boost is a causal isometry that is defined
as follows:

Bλ : R3,1 → R
3,1

Bλ(x, y, z, τ ) = (x′, y′, z′, τ ′),
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⎧
⎪⎪⎨
⎪⎪⎩

x′ = x cosh λ+ τ sinh λ,

y′ = y,

z′ = z,

τ ′ = x sinh λ+ τ cosh λ

for λ ∈ R. Suppose e1 ≺ e2 with ei = (xi, yi, zi , τi) for i = 1, 2. Then, τ1 ≤ τ2,
and

‖e1 − e2‖2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (τ1 − τ2)

2 ≤ 0,

which implies that

|x1 − x2| =
√

(x1 − x2)2

≤
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

≤
√

(τ1 − τ2)2

= |τ1 − τ2|
= τ2 − τ1.

Let

e′i = Bλ(ei) = (x′i , y′i , z′i , τ ′i ).

It is easy to check that Bλ is an isometry of R3,1 (Proposition 6.10),

‖e′1 − e′2‖2 = ‖e1 − e2‖2 ≤ 0.

Moreover,

τ ′1 − τ ′2 = x1 sinh λ+ τ1 cosh λ− x2 sinh λ− τ2 cosh λ

= (x1 − x2) sinh λ+ (τ1 − τ2) cosh λ

≤ |x1 − x2|| sinh λ| + (τ1 − τ2) cosh λ

≤ (τ2 − τ1)| sinh λ| + (τ1 − τ2) cosh λ

= (τ2 − τ1) (| sinh λ| − cosh λ)

≤ 0.

Hence, e′1 ≺ e′2. Therefore, Bλ is a causal isometry.

It is also trivial to check that a translation tα by an event α ∈ R
3,1 is a causal

isometry.
A causal isometry has the following properties which seem natural.
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Theorem 6.5.

a) A composition of two causal isometries is causal.
b) The inverse of a causal isometry is causal.

Proof.

a) Let φ1 and φ2 be causal isometries of R3,1. Then,

e1 ≺ e2 ⇒ φ1(e1) ≺ φ1(e2)⇒ φ2(φ1(e1)) ≺ φ2(φ1(e2)).

Therefore, the composition φ2 ◦ φ1 is causal.
b) Let φ be a causal isometry of R3,1. Suppose that φ−1 is not causal. Then,

φ−1(e1) �≺ φ−1(e2)

for some events e1, e2 ∈ R
3,1 with e1 ≺ e2. Since φ−1 is also an isometry,

‖φ−1(e2)− φ−1(e1)‖2 = dII(φ−1(e2), φ
−1(e1))

= dII(e2, e1)

= ‖e2 − e1‖2

≤ 0.

Hence, φ−1(e2) − φ−1(e1) is past-directed because otherwise, φ−1(e1) ≺
φ−1(e2). Now φ−1(e1)− φ−1(e2) is future-directed, and therefore,

φ−1(e2) ≺ φ−1(e1).

Note that

φ(φ−1(e2)) ≺ φ(φ−1(e1)),

i.e.,

e2 ≺ e1.

Then, e1 = e2 and hence, we have

φ−1(e1) = φ−1(e2),

which implies

φ−1(e1) ≺ φ−1(e2).
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Now we have a contradiction and so φ−1 is a causal isometry.
��

Mapping R
3,1 by a causal isometry in geometry is equivalent to recording events

in the spacetime by another observer in physics. Hence, the physical saying
“An event (x, y, z, τ ) is recorded as (x′, y′, z′, τ ′) by another observer.”
is equivalent to the geometrical saying
“An event (x, y, z, τ ) is mapped to (x′, y′, z′, τ ′) by a causal isometry.”

Exercises

6.3. Suppose that e1 ≺ e2 and e3 ≺ e4 for events e1, e2, e3, and e4. Show that

a) e1 + e3 ≺ e2 + e4.
b) e1 − e4 ≺ e2 − e3.

6.4. For v ∈ R with |v| < 1, the map

Lv : R3,1 → R
3,1,

defined by

Lv(x, y, z, τ ) = (x′, y′, z′, τ ′),
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′ = 1√
1−v2

(x − vτ),

y′ = y,

z′ = z,

τ ′ = 1√
1−v2

(τ − vx),

is called a Lorentz transformation. Show that

Lv = Bλ

for some λ ∈ R.

6.3 Causal Isometry

One can define the notion of causality for R1,1 similarly. Using knowledge about
isometries of R1,1 from Chapter 5, we will show numerous interesting facts about
casualty in R

1,1 and R
3,1 in this section.
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Lemma 6.6. For any events e1, e2 ∈ R
1,1 with e1 ≺ e2,

1. TA(e1) ≺ TA(e2) if A = R(λ) or Λ(λ) for some λ,
2. TA(e1) # TA(e2) if A = −R(λ) or −Λ(λ) for some λ.

Proof. Let ei = (xi, τi) and e′i = (x′i , τ ′i ) = TA(ei). Note that τ1 ≤ τ2 and

(x1 − x2)
2 − (τ1 − τ2)

2 ≤ 0.

Hence,

|x1 − x2| ≤ τ2 − τ1.

Since TA is an isometry of R1,1 for all the cases, we need to show that τ ′1 ≤ τ ′2 if
A = R(λ) or Λ(λ) and τ ′1 ≥ τ ′2 if A = −R(λ) or −Λ(λ). These can be shown by
direct calculation. For example, if A = Λ(λ), then

x′ = −x cosh λ+ τ sinh λ,

τ ′ = −x sinh λ+ τ cosh λ.

Hence,

τ ′1 − τ ′2 = −x1 sinh λ+ τ1 cosh λ+ x2 sinh λ− τ2 cosh λ

= −(x1 − x2) sinh λ+ (τ1 − τ2) cosh λ

≤ |x1 − x2|| sinh λ| + (τ1 − τ2) cosh λ

≤ (τ2 − τ1)| sinh λ| + (τ1 − τ2) cosh λ

= (τ2 − τ1) (| sinh λ| − cosh λ)

≤ 0

and so τ ′1 ≤ τ ′2. We leave as an exercise (Exercise 6.5) the calculation for the rest of
cases. ��

The following theorem describes causal isometries of R1,1 completely.

Theorem 6.7. An isometry of R1,1 is causal if and only if it has the form of

tα ◦ TA,

where A = R(λ) or Λ(λ) for some λ ∈ R.

Proof. According to Corollary 5.23, an isometry φ of R1,1 has the form

φ = tα ◦ TA
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for some J-orthogonal matrix A and event α ∈ R
1,1. By Lemma 5.21, A = ±R(λ) or

±Λ(λ) for some λ ∈ R. Note that the translation tα is causal. As seen in Lemma 6.6,
TA is causal only if A = R(λ) or Λ(λ). Hence, the proof is completed. ��

An isometry of R1,1 is causal or causality-reversing as shown in the following
corollary.

Corollary 6.8. If an isometry φ of R1,1 is not causal, then φ(e1) # φ(e2) for any
e1, e2 ∈ R

1,1 with e1 ≺ e2.

Proof. By Corollary 5.23 and Lemma 5.21, an isometry φ of R1,1 has the form

φ = tα ◦ TA

for event α ∈ R
1,1, where A = ±R(λ) or ±Λ(λ) for some λ ∈ R. By Theorem 6.7,

A = −R(λ) or −Λ(λ). As seen in Lemma 6.6, TA(e1) # TA(e2) for events e1, e2
with e1 ≺ e2 in this case. Therefore,

e1 ≺ e2 ⇒ TA(e1) # TA(e2)

⇒ tα(TA(e1)) # tα(TA(e2))

⇒ φ(e1) # φ(e2).

��
The following lemma will be used in proving Theorem 6.11.

Lemma 6.9. If two events e1, e2 ∈ R
1,1 are causally unrelated, there are causal

isometries φ1, φ2, and φ3 of R1,1 such that

1. the event φ1(e1)− φ1(e2) is past-directed,
2. the events φ2(e1) and φ2(e2) have the same time coordinate,
3. the event φ3(e1)− φ3(e2) is future-directed.

Proof. Note that

‖e1 − e2‖2 > 0

and so e1 − e2 is spacelike. Hence,

e1 − e2 = a(cosh λ, sinh λ)

for some a, λ ∈ R with a �= 0. By Theorem 6.7, the Lorentz boost

bη = TR(η)

is a causal isometry. Note that

bη(e1 − e2) = a(cosh(λ+ η), sinh(λ+ η)).
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We can find real numbers η1, η2, and η3 such that the numbers

a sinh(λ+ η1), a sinh(λ+ η2), a sinh(λ+ η3)

are negative, zero, positive, respectively.
Let φi = bηi

◦ t−e2 for i = 1, 2, 3, then φ1, φ2, and φ3 are causal isometries. Note
that

φi(e1)− φi(e2) = bηi
(e1 − e2)− bηi

(0)

= a(cosh(λ+ ηi), sinh(λ+ ηi))− 0

= (a cosh(λ+ ηi), a sinh(λ+ ηi)).

Hence, the event φ1(e1)−φ1(e2) is past-directed, the events φ2(e1) and φ2(e2) have
the same time coordinate and the event φ3(e1)− φ3(e2) is future-directed. ��

For a map

ψ : R1,1 → R
1,1

defined by

ψ(x, τ) = (f (x, τ ), g(x, τ )) ,

define a map

ψ̃ : R3,1 → R
3,1

by

ψ̃(x, y, z, τ ) = (f (x, τ ), y, z, g(x, τ ))

respectively, where f and g are some functions of x and τ . The map ψ̃ is said to be
induced by the map φ. Note that the isometry Bλ of R3,1 in Example 6.1 is induced
by the isometry bλ of R1,1. The following hold:

Proposition 6.10.

1. The map ψ is an isometry of R1,1 if and only if the map ψ̃ is an isometry of R3,1.
2. The map ψ is a causal isometry of R1,1 if and only if the map ψ̃ is a causal

isometry of R3,1.

Proof. For an event e = (x, y, z, τ ) ∈ R
3,1, let

ê = (x, τ ) ∈ R
1,1.

Then
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̂̃ψ(e) = ψ (̂e) .

First, assume that ψ is an isometry of R1,1. For events e1, e2 ∈ R
3,1 with

ei = (xi, yi, zi, τi),

we have

dII(ψ(̂e1), ψ(̂e2)) = dII(̂e1, ê2).

Note also

dII(e1, e2) = ‖e1 − e2‖2

= (x1 − x2)
2 − (τ1 − τ2)

2 + (y1 − y2)
2 + (z1 − z2)

2

= ‖̂e1 − ê2‖2 + (y1 − y2)
2 + (z1 − z2)

2

= dII(̂e1, ê2)+ (y1 − y2)
2 + (z1 − z2)

2.

Hence,

dII(ψ̃(e1), ψ̃(e2)) = dII
(
̂̃ψ(e1),

̂̃ψ(e2)
)
+ (y1 − y2)

2 + (z1 − z2)
2

= dII(ψ(̂e1), ψ(̂e2))+ (y1 − y2)
2 + (z1 − z2)

2

= dII(̂e1, ê2)+ (y1 − y2)
2 + (z1 − z2)

2

= dII(e1, e2)

and so ψ̃ is an isometry of R3,1.
Second, assume that ψ̃ is an isometry of R3,1. Then, for any events e1, e2 ∈ R

3,1,

dII(ψ̃(e1), ψ̃(e2)) = dII(e1, e2),

i.e.,

dII
(
̂̃ψ(e1),

̂̃ψ(e2)
)
+(y1−y2)

2+(z1−z2)
2 = dII (̂e1, ê2)+(y1−y2)

2+(z1−z2)
2,

which implies

dII (ψ(̂e1), ψ(̂e2)) = dII (̂e1, ê2) .

Since we can choose ê1 and ê2 arbitrarily, we have shown that ψ is an isometry of
R

1,1.
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It is trivial to check that the event ψ(e1) − ψ(e2) is past-directed if and only if
the event ψ̃(e1)− ψ̃(e2) is past-directed. Hence, the second claim holds. ��

For a map φ : R3 → R
3, define a map

φ̃ : R3,1 → R
3,1

by

φ̃(x, y, z, τ ) = (φ(x, y, z), τ ).

It is easy to see that φ is an isometry of R3 if and only if φ̃ is an isometry of R3,1

(Exercise 6.6).

Theorem 6.11. If two events e1, e2 ∈ R
3,1 are causally unrelated, there are causal

isometries φ1, φ2, and φ3 of R3,1 such that

1. the event φ1(e1)− φ1(e2) is past-directed,
2. the events φ2(e1) and φ2(e2) have the same time coordinate,
3. the event φ3(e1)− φ3(e2) is future-directed.

Proof. Since the events e1, e2 are causally unrelated,

‖e1 − e2‖2 > 0.

Let ei = (xi, yi, zi , τi) for i = 1, 2 and

e′i = t−e2(ei),

i.e., e′1 = e1 − e2 and e′2 = 0. Let

e′1 = (x′1, y′1, z′1, τ ′1) = (α, τ ′1),

where α = (x′1, y′1, z′1). Note that

‖α‖2 − τ ′1
2 = ‖e′1‖2 = ‖e1 − e2‖2 > 0.

Let β = (‖α‖, 0, 0, ) ∈ R
3.

If α �= β, consider a plane P = Pα,β in R
3. Then the plane P contains the origin

of R3, r̄P (0R3) = 0R3 and

r̄P (α) = β,

where 0R3 is the origin of R3. Note that r̄P induces an isometry ˜̄rP of R3,1. Let

e′′i = ˜̄rP (e′i ).
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Then e′′2 = 0

e′′1 = (r̄P (α), τ ′1) = (β, τ ′1) = (‖α‖, 0, 0, τ ′1).

If α �= β, let e′′i = e′i .
Since

∥∥∥ê′′1 − ê′′2
∥∥∥

2 = ‖α‖2 − τ ′1
2

> 0,

the events ê′′1 , ê′′2 of R1,1 are causally unrelated. According to Lemma 6.9, there are
causal isometries ψ1, ψ2, and ψ3 of R1,1 such that the event

ψ1

(
ê′′1
)
− ψ1

(
ê′′2
)

is past-directed, the events ψ2

(
ê′′1
)

and ψ2

(
ê′′2
)

have the same time coordinate and

the event

ψ3

(
ê′′1
)
− ψ3

(
ê′′2
)

is future-directed.
If α �= β, let

φi = ψ̃i ◦ ˜̄rP ◦ t−e2

for i = 1, 2, 3. If α = β, let

φi = ψ̃i ◦ t−e2

for i = 1, 2, 3.
Then φ1, φ2, and φ3 are causal isometries of R3,1. Noting that

φi(e1)− φi(e2) = ψ̃i(e
′′
1)− ψ̃i(e

′′
2).

we have

φ̂i (e1)− φ̂i (e2) = ψi

(
ê′′1
)
− ψi

(
ê′′2
)

.

Therefore, the event φ1(e1) − φ1(e2) is past-directed, the events φ2(e1) and φ2(e2)

have the same time coordinate and the event φ3(e1)− φ3(e2) is future-directed. ��
Hence, if two events e1, e2 are causally unrelated, then their time order is not
absolute—some observer may record that the event e1 occurs before e2 while some
other observer may record that the event e1 occurs after e2. Therefore, we conclude
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that two events e1, e2 should be causally related if one of them is a cause or an effect
of another.

Suppose that events e1 and e2 are causally related. The following theorem
guarantees that there is an observer for whom the two events e1 and e2 occupy
the same spatial position at different moments.

Theorem 6.12. If two events e1 and e2 of R3,1 are causally related, there is a causal
isometry φ of R3,1 such that

φ(e1) = (0, 0, 0, τ1), φ(e1) = (0, 0, 0, τ2)

for some τ1, τ2

Proof. We will use arguments similar to those in the proof of Theorem 6.11. Since
the events e1, e2 are causally related,

‖e1 − e2‖2 ≤ 0.

Let ei = (xi, yi, zi , τi) for i = 1, 2 and

e′i = t−e2(ei),

then e′2 = 0. Let

e′1 = (x′1, y′1, z′1, τ ′1) = (α, τ ′1),

where α = (x′1, y′1, z′1). Note that

‖α‖2 − τ ′1
2 = ‖e′1‖2 = ‖e1 − e2‖2 ≤ 0.

Let β = (‖α‖, 0, 0, ) ∈ R
3.

If α �= β, consider a plane P = Pα,β in R
3. Then the plane P contains the origin

of R3, r̄P (0R3) = 0R3 and

r̄P (α) = β,

where 0R3 is the origin of R3. Note that r̄P induces an isometry ˜̄rP of R3,1. Let

e′′i = ˜̄rP (e′i ).

Then e′′2 = 0 and

e′′1 = (r̄P (α), τ ′1) = (β, τ ′1) = (‖α‖, 0, 0, τ ′1).

If α = β, let e′′i = e′i for i = 1, 2.
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Since

∥∥∥ê′′1
∥∥∥

2 = ‖α‖2 − τ ′1
2 ≤ 0,

ê′′1 = (‖α‖, τ ′1) = a(sinh λ, cosh λ)

for some a, λ. Then

b−λ(ê
′′
1) = a(sinh(λ− λ), cosh(λ− λ)) = (0, a)

(see Exercise 5.13).
If α �= β, let

φ = b̃−λ ◦ ˜̄rP ◦ t−e2 .

If α = β, let

φ = b̃−λ ◦ t−e2 .

Then φ is a causal isometry of R3,1. Finally, we have

φ(e1) = b̃−λ(e
′′
1) = (0, 0, 0, a)

and

φ(e2) = b̃−λ(0) = 0 = (0, 0, 0, 0).

��

Exercises

6.5. Complete the proof of Lemma 6.6.

6.6. Let φ : R3 → R
3 be an isometry of R3. Show that the map

φ̃ : R3,1 → R
3,1,

defined as

φ̃(x, y, z, τ ) = (φ(x, y, z), τ ),

is an isometry of R3,1.
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6.7. Consider events e1 = 0, e2 = (a, 0, 0, b) with a > b > 0. Note that e2 − e1
is future-directed. Show that there is a four-dimensional Lorentz boost Bλ such that
Bλ(e2)− Bλ(e1) is past-directed.

6.8. Show that a causal orientation-preserving isometry of R1,1 has the form of

tα ◦ bλ.

for some α ∈ R
1,1 and some λ ∈ R.

6.4 Worldline

We now return to the discussion of the worldlines of objects in R
3,1. A sequence

of spacetime events on the worldline represents the history of the object, and these
events should thus be causally related to one another. A curve in R

3,1 is called causal
if each pair of events on it is causally related. There are infinitely many ways of
parameterizing a worldline, but there is a natural condition, called “future-directed.”
A parameterized curve γ (t) = (x(t), y(t), z(t), τ (t)) is said to be future-directed
(past-directed) if

dτ(t)

dt
> 0

(
dτ(t)

dt
< 0, resp.

)

for any t .

Proposition 6.13. A parametrization of a causal curve is either future-directed or
past-directed.

Proof. Let

γ (t) = (x(t), y(t), z(t), τ (t)) = (α(t), τ (t))

be a parametrization of a causal curve, where α(t) = (x(t), y(t), z(t)) ∈ R
3.

Suppose that

dτ(t)

dt

∣∣∣∣
t=t0

= 0

for some t0. Note that a parametrization is assumed to be regular. Hence,

dγ (t)

dt

∣∣∣∣
t=t0

�= 0,
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dα(t)

dt

∣∣∣∣
t=t0

=
(

dx(t)

dt
,
dy(t)

dt
,
dz(t)

dt

)∣∣∣∣
t=t0

�= (0, 0, 0),

and therefore,

∥∥∥∥
dα(t)

dt

∥∥∥∥
2
∣∣∣∣∣
t=t0

=
((

dx(t)

dt

)2

+
(

dy(t)

dt

)2

+
(

dz(t)

dt

)2
)∣∣∣∣∣

t=t0

> 0.

Hence, at least one of

dx(t)

dt

∣∣∣∣
t=t0

,
dy(t)

dt

∣∣∣∣
t=t0

,
dz(t)

dt

∣∣∣∣
t=t0

is non-zero, say

dx(t)

dt

∣∣∣∣
t=t0

�= 0.

By continuity, there is some positive number ε > 0 such that

∣∣∣∣
dx(t)

dt

∣∣∣∣ >
a

2
,

∣∣∣∣
dτ(t)

dt

∣∣∣∣ <
a

2

for any t ∈ [t0 − ε, t0 + ε], where

a =
∣∣∣∣∣
dx(t)

dt

∣∣∣∣
t=t0

∣∣∣∣∣ > 0.

By the mean value theorem,

x(t0 + ε)− x(t0)

ε
= dx(t)

dt

∣∣∣∣
t=c1

,
τ (t0 + ε)− τ(t0)

ε
= dτ(t)

dt

∣∣∣∣
t=c2

for some c1, c2 ∈ [t0, t0 + ε]. Hence,

‖α(t0 + ε)− α(t0)‖2 ≥ |x(t0 + ε)− x(t0)|2 = ε2

∣∣∣∣∣
dx(t)

dt

∣∣∣∣
t=c1

∣∣∣∣∣
2

> ε2 a2

4

and

(τ (t0 + ε)− τ(t0))
2 = ε2

(
dτ(t)

dt

∣∣∣∣
t=c2

)2

< ε2 a2

4
.
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Note that γ (t0 + ε) and γ (t0) are causally related. Therefore,

‖γ (t0 + ε)− γ (t0)‖2 ≤ 0.

However,

‖γ (t0+ε)−γ (t0)‖2 = ‖α(t0+ε)−α(t0)‖2−(τ (t0+ε)−τ(t0))
2 > ε2 a2

4
−ε2 a2

4
= 0,

which is a contradiction. Therefore,

dτ(t)

dt
�= 0

for any t . Therefore, by continuity,

dτ(t)

dt

is always positive or negative, which implies the statement in the theorem. ��
The following theorem characterizes the causality of curves.

Theorem 6.14. A parameterized curve γ is causal if and only if

dγ (t)

dt

is not spacelike.

Proof. First, assume that the curve γ is causal. Then, the events γ (t+Δt) and γ (t)

are causally related for any t and Δt . Therefore,

‖γ (t +Δt)− γ (t)‖2 ≤ 0

and

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

= lim
Δt→0

∥∥∥∥
γ (t +Δt)− γ (t)

Δt

∥∥∥∥
2

= lim
Δt→0

‖γ (t +Δt)− γ (t)‖2

|Δt |2 ≤ 0.

Therefore, dγ (t)
dt

is not spacelike.

Conversely, assume dγ (t)
dt

is not spacelike, i.e.,

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

≤ 0 (6.5)

for any t . Let γ (t) = (α(t), τ (t)). If
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dτ(t)

dt
= 0

for some t , then

0 ≥
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

=
∥∥∥∥
dα(t)

dt

∥∥∥∥
2

−
∣∣∣∣
dτ(t)

dt

∣∣∣∣
2

=
∥∥∥∥
dα(t)

dt

∥∥∥∥
2

≥ 0.

Therefore,

∥∥∥∥
dα(t)

dt

∥∥∥∥
2

= 0

and

dγ (t)

dt
= 0,

which is contradictory to the regularity of γ . Hence,

dτ(t)

dt
�= 0

for any t . Therefore, by continuity,

dτ(t)

dt

is always positive or negative. Suppose that the curve γ is not causal; then, there are
some a and b (a < b) such that γ (a) and γ (b) are not causally related. Then,

‖γ (a)− γ (b)‖2 > 0. (6.6)

Note that α(t) is a parameterized curve in R
3 and

∫ b

a

∥∥∥∥
dα(t)

dt

∥∥∥∥ dt

is the Euclidean length of the curve from t = a to t = b. Hence, the length should
be greater than or equal to the Euclidean distance between α(a) and α(b):

∫ b

a

∥∥∥∥
dα(t)

dt

∥∥∥∥ dt ≥ ‖α(a)− α(b)‖.

However, (6.5) implies that
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∥∥∥∥
dα(t)

dt

∥∥∥∥
2

−
∣∣∣∣
dτ(t)

dt

∣∣∣∣
2

≤ 0,

i.e.,

∥∥∥∥
dα(t)

dt

∥∥∥∥ ≤
∣∣∣∣
dτ(t)

dt

∣∣∣∣ .

Hence,

‖α(a)−α(b)‖ ≤
∫ b

a

∥∥∥∥
dα(t)

dt

∥∥∥∥ dt ≤
∫ b

a

∣∣∣∣
dτ(t)

dt

∣∣∣∣ dt=
∣∣∣∣
∫ b

a

dτ(t)

dt
dt

∣∣∣∣=|τ(b)−τ(a)|,

where we used the fact that dτ(t)
dt

is always positive or negative. Then,

0 < ‖γ (a)− γ (b)‖2 = ‖α(a)− α(b)‖2 − (τ (b)− τ(a))2 ≤ 0,

which is a contradiction. Therefore, the curve γ is causal. ��
According to Proposition 6.13 and Theorem 6.14, every worldline has a future-

directed parametrization that is not spacelike.
A line l in R

3,1 is a subset

l = {α + tβ | t ∈ R}

of R3,1, where α, β are some events in R
3,1 with β �= 0. The line l is said to be

timelike (spacelike, resp.) if ‖β‖2 < 0 (‖β‖2 > 0, resp.). If ‖β‖2 = 0, then it is
called a lightline.

Each observer has her own coordinate system of the spacetime. Hence, for
an observer, there is a corresponding coordinate system of the spacetime, which
physicists often call a reference frame. An observer is supposed to record her
position as the spatial origin of her own coordinate system. In other words, the
worldline of the observer is recorded as (0, 0, 0, t) in her coordinate system for any
t because she regards her position the center of spatial space R

3 as we often put the
Earth as the center when we observe our universe

Note that mapping R
3,1 by a causal isometry is equivalent to recording the

spacetime by an observer—for an observer, there is a causal isometry. Therefore,
if a curve γ (t) is the worldline of an observer, then

φ(γ (t)) = (0, 0, 0, t)

i.e.,

γ (t) = φ−1(0, 0, 0, t)
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for any t , where φ is a causal isometry φ of R3,1, corresponding to the observer.
The following holds in general.

Theorem 6.15. A curve is the worldline of an observer if and only if it is a timelike
line.

Proof. We give a proof for the case of R
1,1 and refer to [17] for the general

case. Let γ (t) be the worldline of an observer, then γ (t) = φ−1(0, t) for some
causal isometry of R

1,1. Note that φ−1 is also a causal isometry. According to
Corollary 5.23,φ has the form

φ−1 = tα ◦ TA

for some J-orthogonal matrix A and event α ∈ R
1,1. Let

A =
(

a b

c d

)
,

then c2 − d2 = −1. Let β = (c, d), then ‖β‖2 = −1 and so β is a timelike event.

γ (t) = φ−1(0, t) = (tα ◦ TA)(0, t) = α + tβ,

which is a parametrization for a timelike line.
Conversely, let

l = {α + tβ | t ∈ R}

be a timelike line. Then β = (c, d) is a timelike event. We can assume that

β = (sinh λ, cosh λ)

for some λ ∈ R by replacing β by aβ for some a ∈ R if necessary. Let φ = b−λ◦t−α ,
then φ is a causal isometry. Note that

φ−1 = tα ◦ bλ.

Hence, the worldline of the observer, corresponding to the causal isometry φ, is

γ (t) = φ−1(0, t) = (tα ◦ bλ)(0, t) = α + tβ,

which is a parametrization of the line l. ��
A timelike line describes a motion of constant velocity (see Definition 6.17 for

an official definition of the velocity). The fact that any timelike line can be the
worldline of an observer is closely related with the following physical principle of
relativity.
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“The laws of physics are identical in every inertial frame of reference (i.e., every non-
accelerating frame of reference)”

For a timelike line l, there is an observer whose worldline is the line. Let e1, e2 ∈
L. Note that

φ−1(e1) = (0, 0, 0, τ1), φ−1(e2) = (0, 0, 0, τ2)

for some τ1, τ2, where φ is the causal isometry corresponding to the observer.
Suppose that the observer is carrying a clock. The two events e1, e2 occur at τ1, τ2,
respectively, according to the clock. Hence, the elapsed time on the clock of the
observer between the event e1 and the event e2 is

|τ2 − τ1|.

Note that

−(τ2 − τ1)
2 = ‖φ−1(e2)− φ−1(e1)‖2

= dII(φ−1(e2), φ
−1(e1))

= dII(e2, e1)

= ‖e2 − e1‖2.

Since

‖e2 − e1‖2 < 0,

|τ2 − τ1| =
√
−‖e2 − e1‖2. (6.7)

Let γ (t) (a ≤ t ≤ b) be the worldline of a traveler (not necessarily an observer)
who is carrying a clock. Note that the traveler may accelerate during her journey and
the worldline may not be a line. We want to find out the elapse of time from γ (a)

to γ (b) the clock records. Let us approximate the curve γ (t) by a series of timelike
line segments (Figure 6.6) as

a = t0 < t1 < · · · < tn = b.

For each line segment, the time elapse is given by

√
−‖γ (ti)− γ (ti−1)‖2

as in (6.7). Hence, the elapse of time from an event γ (a) to an event γ (b) can be
found by taking the limit:
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Fig. 6.6 Approximation of a
curve by line segments

0
x

t

lim
n→∞

n∑
i=0

√
−‖γ (ti)− γ (ti−1)‖2.

For simplicity, assume that

ti = a + b − a

n
i = a + iΔt,

where Δt = b−a
n

. Then

lim
n→∞

n∑
i=0

√
−‖γ (ti)− γ (ti−1)‖2 = lim

n→∞

n∑
i=0

√
−
∥∥∥∥
γ (ti)− γ (ti−1)

Δt

∥∥∥∥
2

Δt

=
∫ b

a

√
−
∥∥∥∥
dγ

dt

∥∥∥∥
2

dt.

Note that it is the relativistic length lR(γ ) of the curve γ , which is defined in
Section 5.6. It is invariant under isometries (Theorem 5.27) and reparametrizations
(Exercise 5.27)1. It is called the proper time along the worldline between those two
events. The following theorem addresses the twin paradox.

Theorem 6.16. Let γ (t) be a worldline such that γ (t1) = e1, γ (t2) = e2 for two
events e1, e2. then elapsed proper time along the worldline between e1, e2 satisfies
the inequality

1It was showed for R1,1 but the same argument also applies to the case of R3,1.
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∫ t2

t1

√
−
∥∥∥∥
dγ

dt

∥∥∥∥
2

dt ≤ √−‖e1 − e2‖,

where the equality holds if and only if the worldline is a line segment between e1, e2.

Proof. Let l be a line through the events e1, e2. Then l is a timelike line and, by
Theorem 6.15, there is an observer whose worldline is the line l. Let φ be the
corresponding causal isometry. Then φ−1(e1) = (0, τ1) and φ−1(e2) = (0, τ2).
Note that

lR(γ ) = lR(φ−1(γ )),

where the length is measured between t = t1, t = t2. Let

φ−1(γ (t)) = (x(t), y(t), z(t), τ (t)).

Then, x(t) = 0, y(t) = 0 for any t and so

lR(γ ) = lR(φ−1(γ ))

=
∫ t2

t1

√
−
∥∥∥∥
dφ−1(γ (t))

dt

∥∥∥∥
2

dt

=
∫ t2

t1

√
−
(

dx(t)

dt

)2

−
(

dy(t)

dt

)2

−
(

dz(t)

dt

)2

+
(

dτ(t)

dt

)2

dt

≤
∫ t2

t1

∣∣∣∣
dτ(t)

dt

∣∣∣∣ dt

=
∣∣∣∣
∫ t2

t1

dτ(t)

dt
dt

∣∣∣∣ (∵ Proposition 6.13)

= |τ2 − τ1|
= √−‖e1 − e2‖. (∵ (6.7))

The equality holds if and only if dτ(t)
dt

= 0 for any t . Note that dτ(t)
dt

= 0 for any t if
and only if φ−1(γ ) is a line, which implies the claim in the theorem. ��
Hence, the clock, carried by an accelerated traveler, appears to run more slow than
that of a non-accelerating traveler. This phenomenon is called the time-dilation. The
time-dilation is very well-confirmed by many experiments in numerous situations.
This effect should be carefully taken into account in correcting the time in global
positioning system (GPS), in order to keep the system to work reliably.
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Exercises

6.9. A traveler on a spaceship takes a journey to a remote star. The spaceship
uniformly accelerates at a until it reaches the midpoint of the journey and its
worldline of the traveler is

γ (t) = 1

a
(cosh t − 1, 0, 0, sinh t),

where γ (0) = 0 represents the launching event of the spaceship. Note that this
parametrization of the worldline is made from the viewpoint of people on the Earth.

Let d be the spatial distance between the Earth and the star.

1. Suppose that the traveler reaches the midpoint of her journey to the star when
t = t0. Let T be the proper time elapse of the traveler between t = 0, t = t0, and
T ′ be time elapse of people on Earth between t = 0, t = t0. Express T , T ′, and
t0 in terms of a and d.

2. We want the spaceship to accelerate at a comfortable rate that has the effect of
mimicking weights of its crews on Earth. Assume that the spaceship accelerates
at g, which is the gravitational acceleration on the surface of the Earth, so that
its crew experiences the equivalent of a gravitational field with the same strength
as that on Earth. The spaceship starts to decelerate at g just after it reaches the
midpoint of the journey and eventually stops at the position of the star. It will
take twice as long in terms of proper time T for the spaceship to arrive at the
destination. Suppose that the spaceship returns to the Earth in the same way. Then
the total proper time elapse of the traveler during her journey is 4T . Suppose that
the traveler starts her journey at her tenth birthday, which is January 2nd, 2021.
She will come back to the Earth exactly when her age reaches 46, which is her
father’s age when she starts the journey. How many years pass on Earth when she
comes back? Find out the distance d between the Earth and the star.

Use the light-year for the unit for the distance and the year for the unit for time.
g is approximately 1.03 light-year/year2.

6.5 Kinetics in R
3,1

We define a fundamental physical notion for a worldline.

Definition 6.17. Let Γ be the worldline of an object and e be an event on Γ . Let
γ (t) = (x(t), y(t), z(t), τ (t)) = (α(t), τ (t)) be a future-directed parametrization
of Γ with γ (t0) = e. The three-dimensional vector

v = 1
dτ(t)
dt

dα(t)

dt

∣∣∣∣∣
t=t0
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is called the velocity of the object at e, and its Euclidean norm

‖v‖ = ‖ dα(t)
dt
‖

dτ(t)
dt

∣∣∣∣∣
t=t0

is called the speed of the object at e.

It is not difficult to see that the velocity and thus the speed do not depend on
parametrization (Exercise 6.11).

Let us derive the formula (6.4) of the addition of speeds. In Figure 6.2,
the observer O records events with coordinates (x, y, z, τ ) and another observer
O′, moving with speed v relative to O, records events using the coordinates
(x′, y′, z′, τ ′). Let φ(x, y, z, τ ) = (x′, y′, z′, τ ′). Then the map

φ : R3,1 → R
3,1

is a causal isometry. We can assume that φ(0) = 0. The worldline of the object
⊙

with respect to the observer O is given by

γ (t) = (ut, 0, 0, t).

Since y′ = y and z′ = z, φ has form of

φ(x, y, z, τ ) = (f (x, τ ), y, z, g(x, τ )) ,

where f and g are some functions of x and τ .
From the results of Proposition 6.10 and Exercise 6.8 with φ(0) = 0, we can

assume that φ is a Lorentz boost, hence

φ(x, y, z, τ ) = (x cosh λ+ τ sinh λ, y, z, x sinh λ+ τ cosh λ)

for some λ.
The worldline of the observer O with respect to the observer O′ is

α(t) = φ(0, 0, 0, t) = (t sinh λ, 0, 0, t cosh λ)

Its velocity is (v, 0, 0) as indicated in Figure 6.2, therefore

v = sinh λ

cosh λ
= tanh λ.

The worldline of the object
⊙

with respect to the observer O′ is

γ ′(t) = φ(γ (t)) = (ut cosh λ+ t sinh λ, 0, 0, ut sinh λ+ t cosh λ)
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and its velocity is

(
u cosh λ+ sinh λ

u sinh λ+ cosh λ
, 0, 0

)
=
(

u+ tanh λ

u tanh λ+ 1
, 0, 0

)
=
(

u+ v

uv + 1
, 0, 0

)
.

Therefore, the speed of the object
⊙

with respect to the observer O′ is

u+ v

1+ uv
,

which is the formula (6.4) (note that we are using a timescale so that c = 1).
If the object does not move, then its speed is zero. However, if its worldline

is mapped to another one by a causal isometry of R
3,1 (physically speaking, if

the object is observed by another observer), its velocity and speed may change.
Newton’s first law states that if there is no force acting on the object, then the
velocity of the object is constant. For a photon (the smallest discrete amount of
light), its speed is 1 (we are using a timescale that causes the speed of light to be 1),
so its worldline is lightlike, i.e.,

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

= 0,

which implies that

‖v‖ = ‖
dα(t)

dt
‖

dτ(t)
dt

= 1.

According to physics, all conventional matter and all known forms of information
in the universe can travel at a speed that is less than or equal to the speed of light.
We “prove” this fact mathematically.

Theorem 6.18. The speed of an object is less than or equal to the speed of light at
any event of its worldline.

Proof. Let γ (t) = (x(t), y(t), z(t), τ (t)) = (α(t), τ (t)) be a future-directed
parametrization of the worldline of the object. Since the worldline is a causal curve,

dγ (t)

dt
=
(

dx(t)

dt
,
dy(t)

dt
,
dz(t)

dt
,
dτ(t)

dt

)

is not spacelike according to Theorem 6.14. Hence,

0 ≥
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

=
∥∥∥∥
dα(t)

dt

∥∥∥∥
2

−
(

dτ(t)

dt

)2

,
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i.e.,

dτ(t)

dt
≥
∥∥∥∥
dα(t)

dt

∥∥∥∥ .

Therefore,

1 ≥ ‖
dα(t)

dt
‖

dτ(t)
dt

.

��
According to physics, the speed of a massive object is always less than that of

light, which means that its worldline is a timelike curve (a photon is considered to
be massless). There are many ways to parameterize a worldline; however, a special
kind of parametrization is very useful to study the worldline of an object.

Definition 6.19. A parametrization γ of a worldline is said to be natural if it is
future-directed and

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

= −1

for every t .

Theorem 6.20. A timelike worldline admits a natural parametrization. Further-
more, if both γ and δ are natural parametrizations of the worldline, then

γ (t + a) = δ(t)

for some real number a.

Proof. Let γ : [a, b] → R
3,1, γ (t) = (x(t), y(t), z(t), τ (t)) be a future-directed

parametrization of a worldline. Then,

∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

< 0,
dτ (t)

dt
> 0.

Define a function s : [a, b] → R as

s(t) =

∫
t

a

√
−
∥∥∥∥
dγ (u)

du

∥∥∥∥
2

du.

Then, s(t) is a strictly increasing function, and its image is an interval. Therefore,
the function s(t) has an inverse function t (s). Writing γ̄ (s) = γ (t (s)), we obtain a
reparametrization γ̄ of the worldline. Note that
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ds(t)

dt
=
√
−
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

.

Let γ̄ (s) = (x̄(s), ȳ(s), z̄(s), τ̄ (s)). First,

dτ̄ (s)

ds
=

dτ(t)
dt

ds(t)
dt

=
dτ(t)
dt√

−
∥∥∥ dγ (t)

dt

∥∥∥
2

> 0,

which implies that the parametrization γ̄ is future-directed. In addition,

dγ̄ (s)

ds
=

dγ (t)
dt

ds(t)
dt

=
dγ (t)

dt√
−
∥∥∥ dγ (t)

dt

∥∥∥
2
.

Therefore,

∥∥∥∥
dγ̄ (s)

ds

∥∥∥∥
2

=
∥∥∥ dγ (t)

dt

∥∥∥
2

−
∥∥∥ dγ (t)

dt

∥∥∥
2 = −1,

which shows that γ̄ is a natural parametrization.
Let γ and δ be natural parametrizations of the worldline. Then, δ is a

reparametrization of γ ; therefore, there is a function u(t) such that δ(t) = γ (u(t)).
Since

−1 =
∥∥∥∥
dδ(t)

dt

∥∥∥∥
2

=
∥∥∥∥
dγ (u(t))

dt

∥∥∥∥
2

=
∥∥∥∥
dγ (u)

du

du(t)

dt

∥∥∥∥
2

=
∥∥∥∥
dγ (u)

du

∥∥∥∥
2 ∣∣∣∣

du(t)

dt

∣∣∣∣
2

= −
∣∣∣∣
du(t)

dt

∣∣∣∣
2

,

i.e.,
∣∣∣ du(t)

dt

∣∣∣
2 = 1. Hence, du(t)

dt
= ±1.
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Let γ (t) = (x(t), y(t), z(t), τ (t)); then,

δ(t) = γ (u(t)) = (x(u(t)), y(u(t)), z(u(t)), τ (u(t))).

Since both γ and δ are future-directed,

0 <
dτ(t)

dt

and

0 <
dτ(u(t))

dt
= dτ(u)

du

du(t)

dt
.

Hence, du(t)
dt

> 0 and

du(t)

dt
= +1.

Finally, u(t) = t + a for a real constant a, and hence,

δ(t) = γ (u(t)) = γ (t + a).

��
The worldline of a massive object is timelike. Therefore, it admits a natural

parametrization.

Definition 6.21. Let Γ be the worldline of an object and e be an event on Γ . Let
γ (t) = (x(t), y(t), z(t), τ (t)) = (α(t), τ (t)) be a natural parametrization of Γ with
γ (t0) = e.

dγ (t)

dt

∣∣∣∣
t=t0

=
(

dx(t)

dt
,
dy(t)

dt
,
dz(t)

dt
,
dτ(t)

dt

)∣∣∣∣
t=t0

is called the four-velocity of the object at e.

One can show that the four-velocity does not depend on the parametrization.

Proposition 6.22. Let v be the velocity of a massive object at some event. The four-
velocity of the object at that event is as follows:

1√
1− ‖v‖2

(v, 1).

Proof. Let γ (t) = (x(t), y(t), z(t), τ (t)) = (α(t), τ (t)) be a natural parametriza-
tion of the worldline of the object. Then,
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−1 =
∥∥∥∥
dγ (t)

dt

∥∥∥∥
2

=
∥∥∥∥
dα(t)

dt

∥∥∥∥
2

−
(

dτ(t)

dt

)2

= ‖v‖2
(

τ(t)

dt

)2

−
(

τ(t)

dt

)2

.

Hence,

dτ(t)

dt
= 1√

1− ‖v‖2
.

The four-velocity is

dγ (t)

dt
=
(

dα(t)

dt
,
dτ(t)

dt

)
= dτ(t)

dt

(
dα(t)

dt

dτ(t)
dt

, 1

)
= 1√

1− ‖v‖2
(v, 1).

��
Let m be the mass of a massive object; then, the quantity mass times the four-

velocity,

p = m√
1− ‖v‖2

(v, 1), (6.8)

is called the four-momentum of the object. Note that ‖p‖2 = −m2. When the speed
of the object is much less than the speed of light, which is 1 in our time scale, the
motion of the object can be described by classical mechanics. More concretely, if
‖v‖ is much less than 1 (‖v‖ $ 1), then

1√
1− ‖v‖2

≈ 1+ 1

2
‖v‖2.

Hence, if we approximate the four-momentum of the object up to the first term with
respect to ‖v‖,

m√
1− ‖v‖2

(v, 1) ≈
(

mv,m+ 1

2
m‖v‖2

)
.

Before proceeding, let us see how accurate this approximation is in the real world.
The typical speed of a bullet is approximately 1000 m/s. In our time scale, its speed
is

‖v‖ = 1000 m/s

299792458 m/s
= 0.00000333564 . . .

(the speed of light is 299792458 m/s). Hence,

1√
1− ‖v‖2

= 1+ 5.56311 . . .× 10−12,
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1+ 1

2
‖v‖2 = 1+ 5.56325 . . .× 10−12.

Note that mv and 1
2m‖v‖2 are the momentum and kinetic energy of the object,

respectively, in classical mechanics. Let p = (px, py, pz, E). Since

E −
√
−‖p‖2 ≈ 1

2
m‖v‖2

for ‖v‖ $ 1, which is the classical kinetic energy of the object, we call

Ek := E −
√
−‖p‖2 = m√

1− ‖v‖2
−m

the relativistic kinetic energy of the object. The quantity E is called the total energy
of the object (this naming will be justified later). The total energy when the speed is
zero is called the rest energy of the object, and we denote it by E0. Note that

E = Ek + E0.

For the bullet previously considered, the difference between its classical kinetic
energy and its relativistic kinetic energy is less than 0.0025%, which implies that
the relativistic effect is negligible when the speed of the object is much less than
the speed of light. Electrons are very light and easy to accelerate. In a physics lab,
one can easily find an electron whose speed is 99% of the speed of the light, i.e., its
speed is 0.99 in our time scale. In this case, the ratio of its relativistic kinetic energy
to its classical kinetic energy is greater than 12. Therefore, the relativistic effect is
large and cannot be ignored when studying the motion of these electrons.

According to Newton’s first law of motion, an object either remains at rest or
continues to move at a constant velocity unless acted upon by a force. Therefore, the
worldline for such an object is a line in R

3,1 that has a constant four-momentum.
Imagine that there are two objects that initially do not interact with each other.

If there are no outside forces, they have constant four-momentums p1 and p2
according to Newton’s first law of motion. Suppose that these two objects collide
with each other at some moment and then do not interact with each other afterward;
hence, they have constant four-momentums p′1 and p′2 (Figure 6.7). The relativistic
version of Newton’s third law of motion asserts that

p1 + p2 = p′1 + p′2.

If there are several particles interacting, then Newton’s third law of motion asserts
that

p1 + p2 + · · · + pn = p′1 + p′2 + · · · + p′n. (6.9)
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Fig. 6.7 Collision of two
objects

If the speeds of the objects are much less than one, there is conservation of
momentum and conservation of kinetic energy.

A photon moves at a constant velocity, and its speed is 1, which means that its
worldline is lightlike and that it does not admit a natural parametrization. According
to physics, a photon interacts with ordinary objects. One can ask if it still has a four-
momentum that obeys Newton’s third law of motion ( (6.9)) during the interaction.
The four-momentum in (6.8) is not well-defined for a photon because

1− ‖v‖2 = 0.

Instead, one may consider a photon as a limiting case of a massive object whose
speed approaches one in (6.8). For the photon to have a well-defined four-
momentum, its mass should approach zero in this limiting process. In this way, we
expect that a photon is massless. Let p = (px, py, pz, E) be the four-momentum of
a photon; then,

p = lim
m→0+

pm,

where pm = m√
1−‖v‖2

(v, 1). Since m√
1−‖v‖2

> 0, we expect that E > 0. Noting

that ‖pm‖2 = −m2, we conclude that

‖p‖2 = lim
m→0+

(−m2) = 0.

Since ‖p‖2 = 0, the relativistic kinetic energy of a photon is

Ek = E −
√
−‖p‖2 = E,

which is the total energy.
According to physics, an ordinary object may not travel faster than light.

However, if an object continues to be “pushed” forward, its speed will increase.
Hence, one can still suspect that a pushed object may travel faster than light.

Imagine a situation in which a photon pushes an object through a collision. Let

(p, 0, 0, p), (−p′, 0, 0, p′)
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be the four-momentums of the photon before and after the collision (p, p′ > 0). Let

m√
1− v2

(v, 0, 0, 1) and
m√

1− v′2
(v′, 0, 0, 1)

be the four-momentums of the object before and after the collision, respectively,
where v and v′ are the speeds of the object before and after the collision,
respectively. We assume that the object initially does not travel faster than light,
and thus, v < 1. By Newton’s third law of motion,

(p, 0, 0, p)+ m√
1− v2

(v, 0, 0, 1) = (−p′, 0, 0, p′)+ m√
1− v′2

(v′, 0, 0, 1),

which results in

p + mv√
1− v2

= −p′ + mv′√
1− v′2

and

p + m√
1− v2

= p′ + m√
1− v′2

.

Therefore,

2p + (1+ v)m√
1− v2

= m
1+ v′√
1− v′2

,

which yields

v′ = m2v + 2p2(1− v)+ 2mp
√

1− v2

m2 + 2p2(1− v)+ 2mp
√

1− v2
= b

a
,

where

a = m2 + 2p2(1− v)+ 2mp
√

1− v2,

and

b = m2v + 2p2(1− v)+ 2mp
√

1− v2.

Since 0 ≤ v < 1, a > 0, b > 0 and

a − b = m2(1− v) > 0.

Hence,
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Fig. 6.8 The speed of a massive object cannot reach the speed of light

Fig. 6.9 Electron–positron
annihilation

v′ = b

a
< 1,

which means that the speed of the object after the collision is still less than that of
light. Even though the object is pushed forward by a photon, the speed is less than
that of light. Hence, regardless of how hard and how many times an object is pushed
by photons, its speed cannot reach the speed of light (Figure 6.8).

According to elementary particle physics theory, every type of elementary
particle has an associated antiparticle with the same mass but with opposite physical
charges (such as electric charge). For example, the antiparticle of the electron is the
anti-electron (which is called a positron). While an electron has a negative electric
charge, a positron has a positive electric charge. When a positron (e+) collides with
an electron (e−), annihilation occurs, resulting in the creation of gamma ray photons
(�1,�2) (Figure 6.9):

e− + e+ → �1 +�2.
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Let E−, E+, E1, and E2 be the total energies of the electron, the positron, and the
two photons, respectively. According to Newton’s third law,

E− + E+ = E1 + E2.

Suppose that the electron and the positron do not initially move. Then, the left-hand
side of the above equation is the sum of their masses. However, the right-hand side
of the above equation includes all the kinetic energies of the photons. Hence, we
conclude that

2me = E1 + E2,

where me is the mass of an electron, which is equal to that of a positron.
Therefore, we can say that all the mass of the electron and the positron turns

into kinetic energy of the photons. Since every type of particle has an associated
antiparticle and particle–antiparticle pairs can annihilate each other, producing
photons, every object of the universe can turn into photons, whose total energy is
the mass of the object:

E = m.

This leads to the famous conclusion by Einstein that mass is just another form of
energy (mass–energy equivalence). The above equation involves the speed of light,
which is 1 in our scale of time. In the ordinary unit system, the equation of the
mass–energy equivalence becomes

E = mc2,

where c is the speed of light.

Exercises

6.10. For u, v ∈ R with |u|, |v| < 1, show that

∣∣∣∣
u+ v

1+ uv

∣∣∣∣ < 1.

6.11. Show that the velocity and, accordingly, the speed of an object are indepen-
dent of how its worldline is parameterized.

6.12. Consider a worldline γ1 whose speed is less than one at every event of it. Map
it to another worldline γ2 by an isometry R

3,1. Show that the speed of γ2 is still less
than one at every event of it.
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Chapter 1

1.2 Note that a �= 0 or b �= 0. First assume that a �= 0.
Let

p1 =
(
a − c

a
, b
)

and

p2 =
(
−a − c

a
,−b

)
.

Then, for p = (x, y) ∈ R
2,

p ∈ Lp1,p2 ⇔ d(p1, p) = d(p2, p)

⇔ d(p1, p)2 = d(p2, p)2

⇔
(
x − a + c

a

)2 + (y − b)2 =
(
x + a + c

a

)2 + (y + b)2

⇔ 2
(
−a+ c

a

)
x+
(
−a+ c

a

)2−2by=2
(
a+ c

a

)
x+
(
a + c

a

)2 + 2by

⇔ 0 = 4ax + 4by + 4c

⇔ 0 = ax + by + c.

Therefore, L = Lp1,p2 .
Now assume a = 0. Then b �= 0 and the line L is defined by the equation
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y = − c

b
.

Let

p1 =
(

0,− c

b
− 1
)

and

p2 =
(

0,− c

b
+ 1
)

.

Then we have L = Lp1,p2 also in this case.

1.3 For an isometry φ and a circle

C = {p ∈ R
2 | d(p, q) = r},

where q is the center and r is the radius, let

C′ = {p ∈ R
2 | d(p, φ(q)) = r},

a circle of radius r , centered at φ(q).
We will show that

C′ = φ(C).

p ∈ C′ ⇔ d(p, φ(q)) = r

⇔ d(φ−1(p), φ−1(φ(q))) = r

⇔ d(φ−1(p), q)) = r

⇔ φ−1(p) ∈ C

⇔ p ∈ φ(C).

Hence, C′ = φ(C).

1.6 Note that

r(a,b),θ = t(a,b) ◦ rθ ◦ t−(a,b).

Hence,
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r(a,b),θ (x, y) = (t(a,b) ◦ rθ ◦ t−(a,b))(x, y)

= (t(a,b) ◦ rθ )(x − a, y − b)

= t(a,b)((x − a) cos θ − (y − b) sin θ, (x − a) sin θ + (y − b) cos θ)

= (a+(x − a) cos θ−(y − b) sin θ, b+ (x − a) sin θ+ (y − b) cos θ).

1.7

1. For all p, q ∈ R
2,

d(idR2(p), idR2(q)) = d(p, q).

Hence, the identity map is an isometry.
2. Let φ be an isometry of R2. For all p, q ∈ R

2,

d(φ−1(p), φ−1(q)) = d(φ(φ−1(p)), φ(φ−1(q))))

= d(p, q).

Hence, φ−1 is also an isometry.
3. Let φ and ψ be isometries of R2. For all p, q ∈ R

2,

d((φ ◦ ψ)(p), (φ ◦ ψ)(q)) = d(φ(ψ(p)), φ(ψ(q)))

= d(ψ(p), ψ(q))

= d(p, q).

Hence, φ ◦ ψ is also an isometry.

1.11 Choose non-collinear points p1, p2, and p3. The isometry φ maps the triangle

p1p2p3 to a congruent triangle


φ(p1)φ(p2)φ(p3),

which implies that the points φ(p1), φ(p2), and φ(p3) are also non-collinear. As
in the proof of Theorem 1.6, by composing reflections, we can build an isometry ψ

such that

φ(p1) = ψ(p1), φ(p2) = ψ(p2) and φ(p3) = ψ(p3).

Using arguments similar to those in the proof of Theorem 1.4, we show that φ = ψ .
Since ψ is bijective, φ is also bijective.
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1.13 For given two reflections r̄L, r̄M in lines L,M , there is an isometry ψ such
that ψ(M) = L.

r̄
ψ

M = r̄ψ(M) = r̄L.

Hence, r̄L and r̄M are conjugate.

1.14 Define a map φ : R2 → R
2 using the formula in the exercise;

φ(p) = p − 2(p − u) · v
‖v‖2

v.

We must show that φ = r̄L.
First, for two points α1 and α2,

d(φ(α1), φ(α2)) = ‖φ(α1)− φ(α2)‖2

=
∥∥∥∥α1 − α2 − 2(α1 − α2) · v

‖v‖2
v

∥∥∥∥
2

= ‖α1 − α2‖2 + 4((α1 − α2) · v)2

‖v‖4
‖v‖2 − 4((α1 − α2) · v)2

‖v‖2

= ‖α1 − α2‖2

= d(α1, α2).

Therefore, φ is an isometry by Exercise 1.11. Then,

φ(p1) = p1 − 2(p1 − u) · v
‖v‖2

v = p1 − 2v · v
‖v‖2

v = p1 − 2v = p2,

and similarly, φ(p2) = p1.
If p lies on the line Lp1,p2 , then d(p, p1) = d(p, p2), i.e., ‖p − p1‖2 = ‖p −

p2‖2, which implies that

1

4
(‖p1‖2 − ‖p2‖2) = 1

2
(p1 − p2) · p,

i.e., u · v = v · e; thus, (p − u) · v = 0. Hence,

φ(p) = p − 2(p − u) · v
‖v‖2 v = p.

Note that p, p1, and p2 are non-collinear for p ∈ L, and we showed that

φ(p) = p = r̄L(p), φ(p1) = p2 = r̄L(p1), φ(p2) = p1 = r̄L(p2).
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Therefore, according to Theorem 1.4, φ = r̄L.

1.23 Consider a glide reflection φ = gL,α . Choose a coordinate system such that L

coincides with the x-axis. Then, α = (a, 0) for some a. Then,

φ = gL,α = t(a,0) ◦ r̄ .

For (x, y) ∈ R
2,

φ2(x, y) = (t(a,0) ◦ r̄)2(x, y)

= (t(a,0) ◦ r̄)(a + x,−y)

= (2a + x, y)

= t(2a,0)(x, y)

= t2α(x, y).

Therefore, φ2 = t2α , a translation.

1.27 Let φ : R→ R be an isometry. Let ψ = r̄a ◦ φ, where a = φ(0)
2 . Then, ψ is

an isometry with ψ(0) = 0.

Case 1. Assume that ψ(1) = 1. We will show that ψ = idR. Suppose that ψ(x) �=
x for some x ∈ R. Since

|x| = d(x, 0) = d(ψ(x), ψ(0)) = d(ψ(x), 0) = |ψ(x)|,

ψ(x) = −x. Note

|x − 1| = d(x, 1) = d(ψ(x), ψ(1)) = d(ψ(x), 1) = |ψ(x)− 1| = | − x − 1|,

which implies x = 0. But then 0 = ψ(0) = ψ(x) �= x = 0, which is impossible.
Hence, r̄a ◦ φ = ψ = idR and so φ = r̄a .

Case 2. Assume that ψ(1) �= 1. Note

|ψ(1)| = |ψ(1)− 0| = d(ψ(1), 0) = d(ψ(1), ψ(0)) = d(1, 0) = 1.

Hence ψ(1) = −1.
Let ψ ′ = r̄0 ◦ ψ , then ψ ′(1) = 1. Since ψ ′(0) = 0, we can use Case 1 to show

that ψ ′ = idR, i.e.,

r̄0 ◦ r̄a ◦ φ = idR,

which implies φ = r̄a ◦ r̄0, a composition of two reflections.
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Chapter 2

2.5

(a) Let Gx,Gy , and Gz be the intersection of the sphere with the yz-plane, zx-
plane, and xy-plane, respectively. It can be readily verified that

â = r̄Gz ◦ r̄Gy ◦ r̄Gx ,

which is an orientation-reversing isometry.
(b) If φ = â ◦ rl,θ for some rotation rl,θ , then φ can be expressed as a composition

of (3+ 2) reflections. Hence, it is orientation-reversing.
Conversely, if φ is orientation-reversing, then â ◦φ is orientation-preserving.

According to Euler’s rotation theorem, it is a rotation rl,θ , i.e.,

â ◦ φ = rl,θ ,

which implies that

φ = â ◦ rl,θ .

2.6 If φ is orientation-preserving, then according to Euler’s rotation theorem, it is a
rotation whose fixed points are composed of two points or infinite points (when it is
a rotation by zero angle).

If φ is orientation-reversing, then according to Exercise 2.5,

φ = â ◦ rl,θ

for some line l through the origin and an angle θ (0 ≤ θ < 2π)). One can choose
the coordinate system such that l coincides with the z-axis. Let p = (x, y, z) be a
fixed point of φ; then,

(x, y, z) = p = φ(p) = −(rθ (x, y), z).

Hence, z = 0, and θ = π . Now it is readily seen that all the points on the equator of
the sphere are fixed points of φ. Note that φ is actually a reflection.

In summary, if the isometry φ has a fixed point, then it is a rotation or a reflection.
Now the claims in the Exercise are readily verified.

2.14 Let p1, p2, and p3 be the vertices of the spherical triangle T , right-angled at
p1. We can choose a coordinate system such that

p1 = (1, 0, 0), p2 = (cos a, sin a, 0), p3 = (cos a, 0, sin a).
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Project the triangle T from the origin to the plane x = 1, forming a right-angled
isosceles triangle with like sides of length a. Hence, the area of its projected image
is

1

2

(
sin a

cos a

)2

= 1

2
tan2 a,

and it is greater than the area of T . Conversely, project the triangle T from the origin
to the plane x = cos a, forming a right-angled isosceles triangle with like sides of
length sin a. Hence, the area of its projected image is

1

2
sin2 a,

which is less than the area of T . In summary,

1

2
tan2 a > Area(T ) >

1

2
sin2 a,

and therefore,

1
2 tan2 a

1
2a2

>
Area(T )

1
2a2

>

1
2 sin2 a

1
2a2

.

Therefore,

Area(T )

1
2a2

converges to one as a approaches zero.

Chapter 3

3.3 Let P be the plane in R
3 whose intersection with S

2 is C. Choosing a suitable
coordinate system, we can assume that P is orthogonal to the zx-plane. Let C ∩
zx-plane = {p1, p2}. Now we only need to show (why?) that Φ(q) is the middle
point of Φ(p1) and Φ(p2), i.e.,

Φ(q) = 1

2
(Φ(p1)+Φ(p2)).

Note that pi = (cos θi, 0, sin θi) for some θ1 and θ2, and thus,
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Φ(pi) =
(

cos θi

1− sin θi

, 0

)
.

By a direct calculation, one can show that

q = cosec(θ1 − θ2)((sinθ1 − sinθ2), 0,−(cosθ1 − cos(θ2))).

By another direct calculation, one can check that

Φ(q) = 1

2
(Φ(p1)+Φ(p2)).

3.6

(a) For α ∈ R
2,

IC0,r
(α) = r2

‖α‖2 α.

However,

(dr ◦ I ◦ d 1
r
)(α) = (dr ◦ I )(α/r)

= dr

(
1

‖α/r‖2 α/r

)

= dr

(
r

‖α‖2
α

)

= r2

‖α‖2
α.

Hence, IC0,r
= dr ◦ I ◦ d 1

r
.

(b) For α ∈ R
2,

ICp,r (α)− p = r2

‖α − p‖2 (α − p).

Hence,

ICp,r (α) = p + r2

‖α − p‖2 (α − p) = (tp ◦ IC0,r
◦ t−p

)
(α).

3.13

1. Let
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A =
(

a b

c d

)
, B =

(
α β

δ γ

)
.

Then

fA (fB(x)) = fA

(
αx + β

δx + γ

)
=a

αx+β
δx+γ

+ b

c
αx+β
δx+γ

+d
= (aα + bδ)x+aβ+dγ

(cα + dδ)x + cβ + dγ
=fAB(x).

Thus, fA ◦ fB=fAB .
Note that

fI2 = idR∞

for

I2 =
(

1 0
0 1

)

and

AA−1 = A−1A = I2.

Thus

fA ◦ fA−1 = fA−1 ◦ fA = fI2 = idR∞,

which means f−1
A = fA−1 .

2. If none of the elements x2, x3, x4 is∞, let

f (x) = x − x3

x − x4

x2 − x3

x2 − x4
.

If x2, x3 or x4 = ∞, let f (x) be

x − x3

x − x4
,

x2 − x4

x − x4
,

x − x3

x2 − x3

respectively. Then f has the property. Let g be another linear fractional
transformation with the same property. Then f ◦ g−1 is also a linear fractional
transformation that leaves 1, 0,∞ invariant. Direct calculation shows that

f ◦ g−1 = idR∞ .

Hence f = g and we conclude that f is uniquely determined.
When x1, x2, x3, x4 ∈ R,
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(x1, x2; x3, x4) = f (x1) = x1 − x3

x1 − x4

x2 − x3

x2 − x4
.

3. For given x1, x2, x3, x4 ∈ R∞, define a map g : R∞ → R∞ by g(x) =
(x, x2; x3, x4). Explicitly,

g(x) = x − x3

x − x4

x2 − x4

x2 − x3

for x �= x4 and g(x4) = ∞.
It is easy to verify that g is a linear fractional transformation. For a given linear
fractional transformation f , g ◦f−1 is also a linear fractional transformation and

(g ◦ f−1) (f (x2)) = g(x2) = 1,

(g ◦ f−1) (f (x3)) = g(x3) = 0

and

(g ◦ f−1) (f (x4)) = g(x4) = ∞.

Hence, by the very definition of the cross ratio,

(g ◦ f−1) (f (x1)) = (f (x1), f (x2); f (x3), f (x4)).

On the other hand,

(g ◦ f−1) (f (x1)) = g(x1) = (x1, x2; x3, x4).

Therefore,

(f (x1), f (x2); f (x3), f (x4)) = (x1, x2; x3, x4),

i.e., f preserves the cross ratio.
4. An inversion IC of R2∞ in a circline C leaves the x-axis invariant if and only if

the circline C meets with the x-axis orthogonally.
When ψ = r̄a for some a ∈ R, we have

IC(x, 0) = (ψ(x), 0)

for x ∈ R∞ if and only if C is a vertical line that meets the x-axis at x = a.
When ψ = r̄α,r for some α ∈ R and r > 0, we also have

IC(x, 0) = (ψ(x), 0)
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for x ∈ R∞ if and only if C is a circle that meets the x-axis orthogonally at
x = α − r, α + r .

5.

a ⇔ b: It is easy to see that an inversion of R∞ is a linear fractional trans-
formation. By 1 of Exercise 3.13, a composition of linear fractional
transformations is a linear fractional transformation. Hence, a compo-
sition of inversions of R∞ is a linear fractional transformation.
Conversely, consider a linear fractional transformation

f (x) = ax + b

cx + d
.

For r �= 0, define a map dr : R∞ → R∞ by dr(x) = rx. When r > 0,

dr(x) =
(√

r
)2

1
x

= I0,
√

r

(
I0,1(x)

)
.

So dr = I0,
√

r ◦ I0,1. When r < 0,

dr = I0,
√−r ◦ I0,1 ◦ r̄0.

Therefore, dr is a composition of inversions of R∞ in either case.
Assume that a, c �= 0.

f (x)=ax+b

cx+d
=−a

c

(
−1−

d
c
− b

a

− d
c
−x

)
=d− a

c

(
r̄− 1

2

(
d( d

c
− b

a

)
(
r̄− d

2c
(x)
)))

.

Hence,

f = d− a
c
◦ r̄− 1

2
◦ d( d

c
− b

a

) ◦ r̄− d
2c

is a composition of inversions. Similarly one can easily show that f is a
composition of inversions for the case that a = 0 or c = 0.

b ⇔ c: “b ⇒ c” is shown already in 3 of Exercise 3.13.
Assume that f preserves the cross ratio. We will show that f is a linear
fractional transformation. Let

x2 = f (1), x3 = f (0), x4 = f (∞).

Define a map g : R∞ → R∞ by

g(x) = (f (x), f (x2); f (x3), f (x4)) = (x, x2; x3, x4).
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Note that g is a linear fractional transformation with

g(x2) = 1, g(x3) = 0, g(x4) = ∞.

Let h = g ◦ f , then it also preserves the cross ratio. Note that h(1) = 1,
h(0) = 0, and h(∞) = ∞. Hence,

x = (x, 1; 0,∞) = (h(x), h(1);h(0), h(∞)) = (h(x), 1; 0,∞) = h(x),

so

g ◦ f = h = idR∞

and we conclude that f = g−1 is a linear fractional transformation.

Chapter 4

4.6

(a) Choose two points p1, p2 ∈ H ′ = IM(H). Then, IM(pi) ∈ H . Note that
IH ′(pi) = pi. Note also that

I
IM

H (pi) = (IM ◦ IH ◦ IM)(pi)

= IM(IH (IM(pi)))

= IM(IM(pi))

= pi

for i = 1, 2. Choose another point p3 that does not belong to H ′; then, H ′ =
Hp3,p

′
3

for some point p′3. Note that

H = (IM)−1(H ′) = IM(H ′) = IM(Hp3,p
′
3
) = HIM(p3),IM(p′3).

Clearly, IH ′(p3) = p′3. Note that

I
IM

H (p3) = (IM ◦ IH ◦ IM)(p3)

= IM(IH (IM(p3)))

= IM(IM(p′3))

= p′3.

In summary,
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IH ′(pi) = I
IM

H (pi)

for i = 1, 2, 3, and p1, p2, and p3 are non-collinear. According to Theo-
rem 4.19,

IH ′ = I
IM

H .

(b) According to Theorem 4.20,

φ = IHn ◦ IHn−1 ◦ · · · ◦ IH2 ◦ IH1

for some lines H1,H2, · · · ,Hn with 0 ≤ n ≤ 3. Let

H ′
k = (IHk

◦ IHk−1 ◦ · · · ◦ IH2 ◦ IH1)(H).

Note that H ′
n = φ(H) = H ′. Then,

I
φ

H = φ ◦ IH ◦ φ−1

= IHn ◦ IHn−1 ◦ · · · ◦ IH2 ◦ IH1 ◦ IH ◦ IH1 ◦ IH2 ◦ · · · ◦ IHn

= IHn ◦ IHn−1 ◦ · · · ◦ IH2 ◦ IH ′
1
◦ IH2 ◦ · · · ◦ IHn

= IHn ◦ IHn−1 ◦ · · · ◦ IH3 ◦ IH ′
2
◦ IH3 ◦ · · · ◦ IHn

...

= IH ′
n

= IH ′ .

4.12

1. Let T be an ideal H2-triangle with vertices p1, p2, and p3. We need to find an
isometry φ of H2 such that

φ(p1) = 0, φ(p2) = (1, 0), φ(p3) = ∞.

Case 1. If all the pi’s are on the x-axis. We can assume that πx(p2) < πx(p1) by
re-labeling if necessary. Let

φ = dr ◦ t(−k,0) ◦ IC,

where C is a circle, centered at p3, k = πx(IC(p1)) and

r = 1

πx(t(−k,0)(IC(p2)))
.
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Now it is easy to verify

φ(p1) = 0, φ(p2) = (1, 0), φ(p3) = ∞.

Case 2. If any of pi’s is ∞. Let p3 = ∞. Then p1 and p2 lie on the x-axis and
we can assume that πx(p1) < πx(p2).

Let

φ = ds ◦ t(−l,0),

where l = πx(p1) and s = 1
t(−l,0)(p2)

. Again it is easy to verify

φ(p1) = 0, φ(p2) = (1, 0), φ(p3) = ∞.

2. Let T be the ideal H2-triangle with vertices 0, (1, 0),∞. Using the integral in
the proof of Lemma 4.23, we can show that

Area2
H
(T ) = π.

Since all the ideal H2-triangles are congruent with T , as shown above, and an
isometry of H2 preserves the H

2-area, the H
2-area of an ideal H2-triangle is π .

4.18
Let C be a circle on S of radius ρ, centered at p, and let Γ (ρ) be the

circumference (measured in S) of C. Note that

C = {q ∈ S | d(p, q) = ρ}.

Hence,

φ(C) = {φ(q) | q ∈ S, d(p, q) = ρ}
= {q ′ ∈ S′ | φ−1(q ′) ∈ S, d(p, φ−1(q ′)) = ρ}
= {q ′ ∈ S′ | d(p, φ−1(q ′)) = ρ}
= {q ′ ∈ S′ | d ′(φ(p), q ′) = ρ},

which is a circle on S′ of radius ρ, centered at φ(p). Since φ is an isometry, the
circumference Γ ′(ρ) (measured in S′) of φ(C) is the circumference of C (measured
in S), which is Γ (ρ).

Therefore, the Gaussian curvature of S′ at the points φ(p) is

K ′ = lim
ρ→0+

3 · 2πρ − Γ ′(ρ)

πρ3
= lim

ρ→0+
3 · 2πρ − Γ (ρ)

πρ3
= K,
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which is the Gaussian curvature of S at point p.

4.20 Note that the image of a D
2-circle on J

2 is a Euclidean circle. Hence, a K
2-

circle, which is a projection of the circle on J
2 to the xy-plane, is, in general, a

Euclidean ellipse. A K
2-circle is a Euclidean circle if and only if the circle on J

2

has the north pole as it spherical center.

4.21 Let θ = 2π
t

, then

θ <
(s − 2)π

s
.

Hence, as in Proposition 4.37, we can build a regular s-gon on the hyperbolic plane
whose interior angle is θ . Perform hyperbolic reflections in all the edges of the s-
gon. Then we have new s regular s-gons. Note that they overlap only in their edges.
Perform hyperbolic reflections in all the edges of all the s-gons again. Then we have
more regular s-gons and they overlap only in their edges. Repeat this process to get
a regular hyperbolic tessellation. This tessellation is of type [s, t].

Chapter 5

5.2

1.

e ∈ Le1,e2 ⇔ dII(e, e1) = dII(e, e2)

⇔ ‖e − e1‖2 = ‖e − e2‖2

⇔ ‖e‖2 + ‖e1‖2 − 2e · e1 = ‖e‖2 + ‖e2‖2 − 2e · e2

⇔ ‖e1‖2 − 2e · e1 − ‖e2‖2 + 2e · e2 = 0

⇔ (e1 + e2) · (e1 − e2)− 2e · (e1 − e2) = 0

⇔ 2u · 2v − 2e · 2v = 0

⇔ (e − u) · v = 0.

2. Since u′ ∈ Le1,e2 ,

(u′ − u) · v = 0.

Let L′ = {e ∈ R
1,1 | (e − u′) · v′ = 0}.

e ∈ Le1,e2 ⇔ (e − u) · v = 0
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⇔ (e − u) · v − (u′ − u) · v = 0

⇔ (e − u′) · v = 0

⇔ a(e − u′) · v = 0

⇔ (e − u′) · v′ = 0

⇔ e ∈ L′.

Hence, Le1,e2 = L′.

5.5 A direct calculation yields

(bλ2 ◦ bλ1)(x, τ ) =(cosh(λ2)(x cosh(λ1)+ τ sinh(λ1))+
(τ cosh(λ1)+ x sinh(λ1)) sinh(λ2),

cosh(λ2)(τ cosh(λ1)+ x sinh(λ1))+
(x cosh(λ1)+ τ sinh(λ1)) sinh(λ2))

=(x cosh(λ1) cosh(λ2)+ τ cosh(λ2) sinh(λ1)+
τ cosh(λ1) sinh(λ2)+ x sinh(λ1) sinh(λ2), τ cosh(λ1) cosh(λ2)

+ x cosh(λ2) sinh(λ1)+ x cosh(λ1) sinh(λ2)+
τ sinh(λ1) sinh(λ2))

=(x cosh(λ1 + λ2)+ τ sinh(λ1 + λ2), τ cosh(λ1 + λ2)+
x sinh(λ1 + λ2))

=bλ1+λ2(x, τ ).

Therefore, bλ2 ◦ bλ1 = bλ1+λ2 .

5.8 Let e1, e2 ∈ L+ α. Then, ei − α ∈ L. Note that r̄L+α(ei) = ei . Note also that

(tα ◦ r̄L ◦ t−α)(ei) = (tα ◦ r̄L)(ei − α)

= tα(ei − α)

= ei

for i = 1, 2. Choose an event e3 that does not lie on the line L + α; then, one can
choose another event e′3 such that

L+ α = Le3,e
′
3
.

Note that
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L = Le3−α,e′3−α.

Clearly, r̄L+α(e3) = e′3. Note also that

(tα ◦ r̄L ◦ t−α)(e3) = (tα ◦ r̄L)(e3 − α)

= tα(e′3 − α)

= e′3.

In summary,

r̄L+α(ei) = (tα ◦ r̄L ◦ t−α)(ei)

for i = 1, 2, 3, and e1, e2, and e3 are non-collinear. According to Lemma 5.2,

r̄L+α = tα ◦ r̄L ◦ t−α.

5.10 Let L = Le1,e2 be a timelike line, then ‖e1 − e2‖2 > 0.

φ(L) = φ(Le1,e2) = Lφ(e1),φ(e2).

Note that

‖φ(e1)− φ(e2)‖2 = dII (φ(e1), φ(e2))

= dII (e1, e2)

= ‖e1 − e2‖2

> 0.

Hence, φ(L) is a timelike line.

5.12 From

‖a(cosh λ, sinh λ)‖2 = ‖a′(cosh λ′, sinh λ′)‖2,

we have a2 = a′2, so a = ±a′. Since cosh λ, cosh λ′ > 0 and

a cosh λ = a′ cosh λ′,

we conclude that a = a′. From a sinh λ = a′ sinh λ′, we have

sinh λ = sinh λ′,

which implies that λ = λ′.
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5.13

bλ(e1) = ě1(cosh(λ1) cosh(λ)+ sinh(λ1) sinh(λ), cosh(λ) sinh(λ1)

+ cosh(λ1) sinh(λ))

= ě1(cosh(λ1 + λ), sinh(λ1 + λ)),

bλ(e2) = ě2(cosh(λ) sinh(λ2)+ cosh(λ2) sinh(λ), cosh(λ2) cosh(λ)

+ sinh(λ2) sinh(λ))

= ě2(sinh(λ2 + λ), cosh(λ2 + λ)).

5.15 Let e0 = (1, 0) and

λ(e) = � e00e

for a non-zero event e. Then,

λ(e) = λ(−e) = λ(ẽ) = λ(−ẽ).

Hence, we can assume that e1, e2, and e3 are spacelike with positive x-coordinates.
Now the claim in the exercise comes directly from (5.1).

5.19 φ = bα,λ or b̄α,λ. If φ = bα,λ, then

idR1,1 = bn
α,λ = bα,nλ.

Hence, we have

tα ◦ bnλ ◦ t−α = idR1,1 ,

which implies

bnλ = ◦t−α ◦ idR1,1 ◦ tα = idR1,1 .

Hence nλ = 0 and we have λ = 0, which means that φ = b0 = idR1,1 .
If φ = b̄α,λ, then

idR1,1 = b̄n
α,λ =

{
bα,nλ, if n is even;
b̄α,nλ, if n is odd.

When n is even, we have

bα,nλ = tα ◦ bnλ ◦ t−α = idR1,1,

which implies
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bnλ = ◦t−α ◦ idR1,1 ◦ tα = idR1,1 .

Hence nλ = 0 and we have λ = 0. So φ = b̄α,0.
When n is odd,

φn = b̄α,nλ �= idR1,1 .

Hence, this case is excluded.
In summary, we have the claims in the exercise.

5.20 First, suppose that

tγ ◦ TC = idR1,1

for some event γ and 2× 2 matrix C. Note that

γ = tγ (0) = (tγ ◦ TC)(0) = idR1,1(0) = 0.

Let

C =
(

a b

c d

)
.

Since

(a, c) = TC(1, 0) = idR1,1(1, 0) = (1, 0)

and

(b, d) = TC(0, 1) = idR1,1(0, 1) = (0, 1),

C =
(

1 0
0 1

)
= I2.

From the condition given in the exercise,

t−1
β ◦ tα ◦ TA ◦ T −1

B = idR1,1,

i.e.,

tα−β ◦ TAB−1 = idR1,1 .

As shown above, α − β = 0, and AB−1 = I2; thus, α = β, A = B.

5.27 Assume that γ is a spacelike curve. Then, according to Exercise 5.26, δ is also
a spacelike curve.
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lR(δ) =

∫
d

c

√∥∥∥∥
dδ(t)

dt

∥∥∥∥
2

dt

=

∫
d

c

√∥∥∥∥
γ (s)

ds

f (t)

dt

∥∥∥∥
2
∣∣∣∣∣∣
s=f (t)

dt

=

∫
d

c

√∥∥∥∥
γ (s)

ds

∥∥∥∥
2
∣∣∣∣∣∣
s=f (t)

∣∣∣∣
f (t)

dt

∣∣∣∣ dt

=

∫
d

c

√∥∥∥∥
γ (s)

ds

∥∥∥∥
2
∣∣∣∣∣∣
s=f (t)

f (t)

dt
dt

=

∫
b

a

√∥∥∥∥
γ (s)

ds

∥∥∥∥
2

ds

= lR(γ ).

One can similarly show that if γ is a timelike curve, δ is also timelike.

5.28 α = γ (a) = (sinh a, cosh a). Thus, L = v⊥, where

v = (cosh a,− sinh a) = (cosh(−a), sinh(−a)).

Hence, r̄L = TΛ(−2a). Let e = (sinh λ, cosh λ).

(γ ◦ r̄ ◦ γ−1)(e) = (γ ◦ r̄)(λ)

= γ (2a − λ)

= (sinh(2a − λ), cosh(2a − λ))

= TΛ(−2a)(sinh λ, cosh λ)

= TΛ(−2a)(e)

= r̄L(e).

5.30 Choose an event e from φ(U2) ∩ U
2. Let e′ ∈ φ(U2). Then, e = φ(e1) and

e′ = φ(e′1) for some e1, e
′
1 ∈ U

2. Note that

‖e′‖2 = ‖φ(e′1)‖2 = ‖e′1‖2 = −1.
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Hence, e′ or −e′ belongs to U
2. Suppose that −e′ ∈ U

2. Then, according to
Corollary 5.36,

1 ≤ cosh dU2(e,−e′)

= −e · (−e′)

= e · e′
= φ(e1) · φ(e′1)

= e1 · e′1
= −(−e1 · e′1)
= − cosh dU2(e1, e

′
1)

≤ −1,

which is a contradiction. Therefore, e′ ∈ U
2, and we conclude that

φ(U2) ⊂ U
2.

On the other hand, note that

e ∈ φ(U2) ∩ U
2 ⇒ e1 = φ−1(e) ∈ U

2 ∩ φ−1(U2),

which implies that

φ−1(U2) ∩ U
2 �= ∅.

Applying the same argument to the isometry φ−1,

φ−1(U2) ⊂ U
2,

which implies that U2 ⊂ φ(U2).
In summary, φ(U2) = U

2.

Chapter 6

6.5 If A = −Λ(λ), then

x′ = x cosh λ− τ sinh λ,

τ ′ = x sinh λ− τ cosh λ.
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Hence,

τ ′1 − τ ′2 = x1 sinh λ− τ1 cosh λ− x2 sinh λ+ τ2 cosh λ

= (x1 − x2) sinh λ− (τ1 − τ2) cosh λ

≥ −|x1 − x2|| sinh λ| − (τ1 − τ2) cosh λ)

≥ −(τ2 − τ1)| sinh λ| − (τ1 − τ2) cosh λ

= (τ2 − τ1) (−| sinh λ| + cosh λ)

≥ 0

and so τ ′1 ≥ τ ′2.
If A = R(λ), then

x′ = x cosh λ+ τ sinh λ,

τ ′ = x sinh λ+ τ cosh λ.

Hence,

τ ′1 − τ ′2 = x1 sinh λ+ τ1 cosh λ− x2 sinh λ− τ2 cosh λ

= (x1 − x2) sinh λ+ (τ1 − τ2) cosh λ

≤ |x1 − x2|| sinh λ| + (τ1 − τ2) cosh λ

≤ (τ2 − τ1)| sinh λ| + (τ1 − τ2) cosh λ

= (τ2 − τ1) (| sinh λ| − cosh λ)

≤ 0.

and so τ ′1 ≤ τ ′2.
If A = −R(λ), then

x′ = −x cosh λ− τ sinh λ,

τ ′ = −x sinh λ− τ cosh λ.

Hence,

τ ′1 − τ ′2 = −x1 sinh λ− τ1 cosh λ+ x2 sinh λ+ τ2 cosh λ

= (x2 − x1) sinh λ+ (τ2 − τ1) cosh λ

≥ −|x1 − x2|| sinh λ| + (τ2 − τ1) cosh λ

≥ −(τ2 − τ1)| sinh λ| + (τ2 − τ1) cosh λ

= (τ2 − τ1) (−| sinh λ| + cosh λ)

≥ 0.
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and so τ ′1 ≥ τ ′2.

6.6 For events e1, e2 ∈ R
3,1, ei = (xi, yi, zi, τi), let αi = (xi, yi, zi) ∈ R

3. Then
ei = (αi, τi) and

‖e1 − e2‖2 = ‖α1 − α2‖2 − (τ1 − τ2)
2.

Hence,

dII (φ̃(e1), φ̃(e2)
) = ∥∥φ̃(e1)− φ̃(e2)

∥∥2

= ‖(φ(α1), τ1)− (φ(α2), τ2)‖2

= ‖(φ(α1)− φ(α2)‖2 − (τ1 − τ2)
2

= d(φ(α1), φ(α2))− (τ1 − τ2)
2

= d(α1, α2)− (τ1 − τ2)
2

= ‖α1 − α2‖2 − (τ1 − τ2)
2

= ‖e1 − e2‖2

= dII(e1 − e2).

Hence, φ̃ is an isometry of R3,1.

6.7 For an event e = (x, y, z, τ ) ∈ R
3,1, let

ê = (x, τ ) ∈ R
1,1.

Note that the event ê2 = (a, b) is spacelike. Hence,

ê2 = ˇ̂e2(cosh t, sinh t)

for some t ∈ R with t > 0, ˇ̂e2 > 0. Let λ = −2t . Then,

Bλ(e2) = ( ˇ̂e2 cosh(−t), 0, 0, ˇ̂e2 sinh(−t)).

Now, clearly, Bλ(e2)− Bλ(e1) is past-directed.

6.8 According to Theorem 6.7, a causal isometry of R1,1 has the form of

tα ◦ TA,

where A = R(λ) or Λ(λ) for some λ ∈ R. Note that this isometry is orientation-
preserving only if A = R(λ) and then TA = bλ. So we are done.
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6.9

1. First, note that

γ (t0) = 1

a
(cosh t0 − 1, 0, 0, sinh t0) =

(
d

2
, 0, 0, T ′

)
.

Hence,

t0 = cosh−1
(

ad

2
+ 1

)

and so

T ′ = 1

a
sinh t0 = 1

a
sinh

(
cosh−1

(
ad

2
+ 1

))
.

The proper time elapse is

T =
∫ 0

t0

√
−
∥∥∥∥
dγ

dt

∥∥∥∥
2

dt

=
∫ 0

t0

√
1

a2 (− sinh2 t + cosh2 t)dt

=
∫ 0

t0

1

a
dt = t0

a
= 1

a
cosh−1

(
ad

2
+ 1

)
.

2. From the previous calculation,

t0 = cosh−1
(

gd

2
+ 1

)
, T = 1

g
cosh−1

(
gd

2
+ 1

)
.

T = 46− 10

4
= 9.

The distance d between the Earth and the star is

d = 2

g
(cosh(gT )− 1) ≈ 10304 light-years.

The number of years that pass on Earth is

4T ′ = 4

g
sinh

(
cosh−1

(
gd

2
+ 1

))
≈ 20611 years.
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6.11 Let γ (t) and γ ′(t) be parametrizations of the worldline. Then,

γ ′(t) = γ (s(t))

for some one variable function s(t) with ds
dt
�= 0. Let

γ (t) = (r(t), τ (t)) and γ ′(t) = (r ′(t), τ ′(t))

with r(t), r ′(t) ∈ R
3. The velocity with respect to the parametrization γ (t) is

1
dτ(t)
dt

dr(t)

dt
.

The velocity with respect to the parametrization γ ′(t) is

1
dτ ′(t)

dt

dr ′(t)
dt

= 1
dτ(s(t))

dt

dr(s(t))

dt

= 1
dτ(s)
ds

ds
dt

dγ (s)

ds

ds

dt

= 1
dτ(s)
ds

dγ (s)

ds
,

which is the velocity with respect to the parametrization γ (t). Hence, the velocity
and the speed are independent of the parametrization.
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Area of a spherical triangle, 36
Asymptotically parallel, 111

B
Boundary of H2, 111
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Causal curve, 205
Causal isometry, 193
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Conditions for hyperbolic area, 106
Congruent, the Euclidean plane, 19

Congruent, the hyperbolic plane, 106
Conjugate, 10
Conjugation, 10
Cross ratio, 76
Cube, 41

D
Determinant of matrices, 157
Directional event, 149
Distance on R
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Dodecahedron, 41

E
Euclidean ellipse, 122
Euclidean plane, 1
Euler’s rotation theorem, 34
Euler’s Theorem, 40
Event, 130
Extended plane, 49
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Four-dimensional Lorentz boost, 193
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G
Gaussian curvature, 118
Glide reflection, 17
Global positioning system (GPS), 214
Great circle, 24

H
Half line, 88
Halfturn, 16
Heron’s formula, 36
Hexahedron, 41
Hyperbolic angle, 144
Hyperbolic area, 106
Hyperbolic curve, 165
Hyperbolic distance, 96
Hyperbolic function, 145
Hyperbolic line, 97
Hyperbolic plane, 90
Hyperbolic rotation, 134
Hyperbolic shortest paths, 93
Hyperbolic tessellation, 126
Hyperbolic triangle, 106
Hyperboloid, 168

I
Icosahedron, 41
Ideal H2-triangle, 111
Induced by, 57
Invariant line, 22
Inversion, 58
Inversion of R∞, 76
Inversion on S

2, 68
Isometric, 83, 120
Isometries of S2, 29
Isometry of R2, 2
Isometry of S2, 25
Isometry of U2, 172
Isometry of D2, 114
Isometry of the hyperbolic plane, 90
Isometry on R

2, 1
Isosceles right-angled H

2-triangle, 119

K
Klein disk, 120

L
Least upper bound, 119
Lightlike event, 133
Lightlike line, 135
Linear fractional transformation, 75

Line on R
2, 2

Lorentz boost, 134
Lorentz–Minkowski distance, 130
Lorentz–Minkowski plane, 130
Lorentz transformation, 166, 196

M
Mass–energy equivalence, 226
Matrix, 155
Matrix and isometry, 155
Metric space, 82, 120
Minkowski inner product, 132, 133, 167
Möbius transformation, 75

N
Natural parametrization, 217
Newton’s first law of motion, 222
Newton’s third law of motion, 222
Norm, 10
Normal event, 136

O
Observer, 186
Octahedron, 41
Orientation-preserving on R

2, 20
Orientation-preserving on R

1,1, 155
Orientation-preserving on H

2, 105
Orientation-preserving on S

2, 34
Orientation-reversing on R

2, 20
Orientation-reversing on R

1,1, 155
Orientation-reversing on H

2, 105
Orientation-reversing on S

2, 34
Orthochronous, 166
Orthochronous isometry, 177
Orthogonal, 133
Orthogonal events, 133
Orthogonal transformation of Euclidean

spaces, 44

P
Pappus chain, 67
Parallel, 112
Parallel postulate, 122
Parametrization, regular, 162, 190
Parametrization, smooth, 162, 190
Partial order, 192
Photon, 216
Platonic solid, 41
Poincaré disk, 112
Poincaré upper half-plane, 87
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Point at infinity, 49
Precede causally, 191
Preserve angles, 51
Preserve the cross ratio, 76
Projectively extended real line, 75
Proper time, 213

R
Reference frame, 186
Reflection, 4
Regular tessellation, 123
Relativistic kinetic energy, 222
Relativistic length, 164
Relativistic lengths of curves, 162
Relativistic reflection, 135
Relativistic rotation, 152
Representation of the sphere in the

extended Plane, 77
Rest energy, 222
Reverse triangle inequality, 150
Rigid motion, 21
Rotation, 4

S
Schweikart’s constant, 119
Semicircle, 88
Signed relativistic norm, 146
Spacelike curve, 163
Spacelike event, 133
Spacelike line, 149
Spacetime, 185
Special relativity, 129
Speed, 215
Speed of light, 186
Spherical circle, 29
Spherical distance, 24
Spherical line, 26
Spherical lune, 37
Spherical rotation, 33
Spherical tessellation, 124
Spherical triangle, 36
Steiner chain, 67

Stereographic area, 82
Stereographic distance, 77
Stereographic isometry, 79
Stereographic length, 77
Stereographic line, 80
Stereographic projection, 47

T
Tessellation, 123
Tetrahedron, 41
Theory of special relativity, 188
Three events theorem, 132
Three inversions theorem for the

hyperbolic plane, 103
Three points theorem, 6
Three points theorem for the hyperbolic

plane, 102
Three points theorem for the sphere, 28
Three reflections theorem, 8
Three reflections theorem for the sphere, 30
Time-dilation, 214
Timelike curve, 163
Timelike event, 133
Timelike line, 149
Total energy, 222
Translation, 4
Transpose, 156

U
Ultraparallel, 105
Unit disk, 112
Unit sphere, 23
Upper half-plane, 87

V
Velocity, 215

W
Worldline, 190
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(x1, x2; x3, x4), 76
1× 2 matrix, 156
1/3-ideal H2-triangle, 111
2× 2 matrix, 155
2/3-ideal H2-triangle, 111
Bλ, 193
H ′

p1,p2
, 115

Hp1,p2 , 97
I , 57
IC , 58
Ia,r , 76
J , 112
J -orthogonal matrix, 157
K(x, y), 119
Lv , 196
Pp1,p2 , 24
R(λ), 157
TA, 155
Λ(λ), 157
Φ, 49
α⊥, 141
�

p(C1, C2), 51
b̄λ, 152
ě, 146
âq , 74
∞, 49
R

2∞, 49
R

1,1, 130
R

2,1, 167
R

3,1, 189
R∞, 75
U

1, 165
U

2-line, 172
U

2-shortest path, 172

O(3), 44
∂H2, 111
∂B2, 112
≺, 191
Iso(S2), 26
ẽ, 146
ζ : U2 → D

2, 170
dr , 59
dD2 , 114
dH2 , 96
dK2 , 120
dS2 , 24
fA, 76
lR , 163
lU2 , 169
lΦ , 77
lD2 , 113
lH2 , 89
lK2 , 120
rl,θ , 33
v⊥, 141
IHp1,p2

, 100

B
2, 112

E
2, 1

Iso(H2), 90
Iso(R2), 5
Iso(R1,1), 130
Iso(R2,1), 167
Iso(R3,1), 190
Iso(D2), 114
Iso+(R1,1), 155
Iso+(H2), 105
Iso+(S2), 34
Iso−(R1,1), 155
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Iso−(H2), 105
Iso−(S2), 34
O(1, 1), 166
O(2, 1), 167
O(3, 1), 190
O+(1, 1), 166
O+(2, 1), 177
dII, 130
D

2, 113
D

2-circle, 116
D

2-distance, 114
D

2-length, 112
D

2-line, 114
H

2, 87
H

2 circle, 116

H
2-area, 106, 107

H
2-area of an ideal H2-triangle, 111

H
2-length, 89

H
2-line, 97

H
2-polygon, 106

H
2-shortest path, 93

H
2-triangle, 106

J
2, 119
K

2, 120
K

2 circle, 122
K

2-distance, 120
K

2-length, 120
K

2-line, 120
AreaH2 , 107
S

2, 23
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