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Preface

Do you remember your first day of your junior year of high school? I do. I was
in Doc Drennan’s classroom at Norman High School in Norman, Oklahoma,
and he asked whether any of us could recite the quadratic formula. A dozen
hands shot up. Then he asked whether any of us could explain why it was
true. All the raised hands were lowered.

By the end of that day in class, however, we had on the board two com-
plete explanations of the quadratic formula. What was interesting about this
was that Doc Drennan never left his seat (which, incidentally, was at the back
of the classroom). How did he do it? He asked us questions. He sent various
students to the board to grab the chalk and explain their ideas. He had us
discuss our ideas with each other. By the end of that year, we had learned
most of single-variable calculus but also some computer programming, some
number theory, even a unit on fractals. I’m sure he got out of his chair at
some point, but my enduring memory of Doc Drennan is of him sitting at the
back of the room and asking questions, usually some variation on “And what
do you think?”

Though the label wasn’t in common use at the time, today we call this
teaching style “Inquiry-Based Learning,” or IBL. For most of the 20th cen-
tury the dominant pedagogical style in college math classes was the lecture.
Early in the 21st century this is probably still true, but the tide seems to be
shifting. Several landmark education studies have recognized that nearly any
“active learning” teaching style is superior to lecture in terms of student
outcomes. (Here “active” means that the students are engaged in classroom
activities that promote higher order thinking.) In 2016, the Conference Board
of the Mathematical Sciences, an umbrella organization consisting of seven-
teen professional societies (including the AMS, ASA, MAA, NCTM, SIAM,
and SOA), put out a policy statement on active learning that calls on insti-
tutions of higher education to “ensure that effective active learning is
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incorporated into postsecondary mathematics classrooms.” As IBL is cer-
tainly an active learning style, the time is ripe for IBL to become more widely
practiced in the mathematics curriculum.

The goal in an IBL course is to get the students to be as active as possible
in finding their own answers to the big questions of the subject. This can
make using a typical textbook problematic for an IBL classroom, since the
author has already given a clear explanation for the main ideas. What if we
take that same textbook, but rip out the polished examples and proofs
of theorems? This is exactly what Paul Halmos did in his Linear Algebra
courses. (Halmos was a practitioner of IBL before it was known as IBL.) He
called these “problems courses” because what students received on day one
was a stack of problems to be solved and theorems to be proved. These
problems constituted the content of the course.

This is what most IBL instructors do. If you want to teach course X, you
think about the big ideas from that subject, then work backward from the big
ideas to a sequence of bite-sized problems that lead to the big ones. Maybe
your course has a hundred problems.1 The thought goes that if you can solve
these one hundred problems then you are well on your way to mastering
subject X.

Combinatorics is a very broad subject, so the difficulty in writing about
the subject is not what to include, but rather what to exclude. Which hun-
dred problems should we choose? I wanted a small, relatively self-contained
book with a narrow focus for a one-semester course. I chose enumerative
combinatorics with an emphasis on generating function techniques.2 Working
backward from some big goal results (to do with Eulerian numbers and
Narayana numbers), I ended up with Chapters 0–9 of the book. Later, I
added further topics on Refined Enumeration (Chapter 10), Probability
(Chapter 11), Partitions (Chapter 12), and some connections to Number
Theory (Chapter 13).

Over the years, I tinkered with the problem sequence, adding and
removing particular topics that seemed more or less important over time.
Mostly I added more “bridge problems” between the big ones to make sure
every student in the class had an access point to the material. I have learned
from experience that rarely is there such a thing as a “too easy” problem. But
if there is a low floor to the difficulty of some problems, I hope that with most
of them there is a high ceiling as well.

One beautiful thing about the inquiry-based approach is that students will
often dream up interesting variations on the themes in the book. With this in
mind, I have added a collection of essays and reading suggestions after each

1In fact, the first few years I taught the Combinatorics course at DePaul I had exactly one
hundred problems: hence the subtitle “One, Two, Skip a Few... Ninety-Nine, One
Hundred.”
2 In some ways I hope this book can act as an inquiry-based version of the first two
chapters of Herb Wilf’s wonderful book “generatingfunctionology.”
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chapter. These interludes between chapters represent mini-lectures that I
often give in my courses. They sometimes serve as a way to bridge the gaps
between the topics of one chapter and the next. Other times they point
students in directions of generalization and further investigation.

Let me finish with some hints about pace for the instructor using the book
for the first time. In my experience, it takes a typical group of students about
ten weeks to present one hundred problems. While progress is not constant, I
think ten student presentations per week is a good rule of thumb. In my class,
we go over the material in Chapter 0 together on day one—I bring actual
wooden Tower of Hanoi puzzles for the students to play with. Then the
students jump into the problems. How far we ultimately get varies, but as
long as the spirit of inquiry is at the forefront of the course, I am happy. The
journey matters to me more than the destination.

That said, there is some room for student and instructor choice. The
problems and chapters are meant to be done in the order listed, but from a
logical point of view, Chapters 12 and 13 could be done any time after
Chapter 6, and Chapter 11 has only a very mild dependence on results from
Chapters 8 and 9. I think Chapter 0 is important to discuss with students
early on to set the tone for the course. And while I consider Chapters 1–4 to
be essential material (First Principles, Permutations, Combinations, and the
Binomial Theorem), some students will have seen this material in earlier
courses. Depending on the backgrounds of the students, you could begin as
late as Chapter 4 or Chapter 5, with only a quick review of earlier facts.
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Chapter 0

Introduction to this book

“We are continually faced with a series of great opportunities brilliantly dis-
guised as insoluble problems.”

–John W. Gardner

An introduction to combinatorial problem solving

The Tower of Hanoi is a famous puzzle invented by Edouard Lucas
in 1883. There are three pegs and eight disks of all different sizes. Initially
the disks are stacked on one peg in decreasing size from the bottom up.

The Tower of Hanoi puzzle.

The object of the game is to move all eight disks onto another peg by
moving only one disk at a time. However, a larger disk cannot lie on top of
a smaller disk at any time.

Q: How many moves are required to solve the Tower of Hanoi
puzzle?

Think about this question for yourself before turning the page.

© Springer Nature Switzerland AG 2019
T. K. Petersen, Inquiry-Based Enumerative Combinatorics, Undergraduate
Texts in Mathematics, https://doi.org/10.1007/978-3-030-18308-0 0
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2 0 Introduction to this book

One way to approach a puzzle like this is to first generalize the question.
For example, why should there be eight disks? What about n disks? If we
suppose the puzzle can have any number of disks then we can scale the
problem up and down at will. This leads to a good first step for any problem.

Data collection: Consider small cases first.

We can see right away that it’s easy to solve the puzzle if there are only
one or two disks, and a moment’s thought leads us to solve the three disk
puzzle. We see that it takes us 1, 3, and 7 moves, respectively, to solve these
cases.

We now come to an easily overlooked part of problem-solving.

Notation: Name and conquer.

As we are collecting our data, it is useful to give a name to the quantities
we see. We will let Tn denote the minimum number of moves required to move
n disks from one peg to another. (“T” for Tower.) So far, we have T1 = 1,
T2 = 3, and T3 = 7. There is an even smaller case we haven’t considered yet:
T0 = 0, since it takes no moves to move no disks!

It often helps to make a table like the one below.

n Tn

0 0
1 1
2 3
3 7

Now that we’ve handled some small cases, let’s think big. How would we
deal with a tower where n is large? You may have already noticed that a
winning strategy for three disks is to move the top two disks onto a different
peg first, then to move the big guy, then to move the smaller two back on
top of the big one. In general, we can move the smallest n − 1 disks onto
a different peg (in Tn−1 steps), move the biggest disk (in one move), then
move the smaller disks back on top (in Tn−1 more steps). With this strategy,
it takes 2Tn−1 + 1 steps to move n disks. We don’t know if this is the best
possible strategy, so it only gives an upper bound on the fastest way to move
n disks:

Tn ≤ 2Tn−1 + 1, for n ≥ 1.

We’d like to say that this is an equality. To do this, we need to show there
isn’t some other, faster way to move the disks.

So, is there a faster way to do it? No. In order to move the biggest disk
to a new peg, all the smaller disks must be on one peg, and by definition
this requires Tn−1 moves. We now need one move to get the big guy onto his
new peg. To move the smaller disks back on top of the biggest one, we need,
again by definition, at least Tn−1 more steps. Thus, we have
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2Tn−1 + 1 ≤ Tn, for n ≥ 1.

The only way for both of our inequalities to be true is if we in fact have
equality. To summarize,

T0 = 0,

Tn = 2Tn−1 + 1, for n ≥ 1.

Such a set of equalities is called a recurrence relation: a way of getting
new values in our sequence of numbers, given knowledge of some previous
terms. We will see more of these later in the book.

The first nice thing about a recurrence is that it allows us to quickly
generate terms in the sequence:

T0 = 0,

T1 = 2 · 0 + 1 = 1,
T2 = 2 · 1 + 1 = 3,
T3 = 2 · 3 + 1 = 7,
T4 = 2 · 7 + 1 = 15,
T5 = 2 · 15 + 1 = 31,
T6 = 2 · 31 + 1 = 63, and so on.

An obvious drawback of this approach is that if we want, say, the value of
T100, we need the value of T99, which in turn requires T98, and so on, all the
way back down to T0 = 0. A better solution would give some kind of useful
formula for Tn that only depends on algebraic operations involving n.

Do we recognize the sequence of numbers 0, 1, 3, 7, 15, . . .? Aha! They are
each one less than a power of 2. Specifically, it seems that

Tn = 2n − 1, for n ≥ 0.

(At least it works for n ≤ 6.) How can we verify this formula in general?
Well, we know it works when n = 0, since 20 − 1 = 1 − 1 = 0, and if we

suppose that Tn = 2n − 1 for some particular n ≥ 0, then, via the recurrence
relation we find:

Tn+1 = 2Tn + 1,

= 2(2n − 1) + 1,

= 2n+1 − 2 + 1 = 2n+1 − 1, as desired.
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So if our formula works for some value of n, it works for the next value of n
as well. Because we know it works for n = 0, it must work for n = 1, hence
for n = 2, hence for n = 3, and so on.1 It works for any value of n we like!

Now that we have complete faith in our formula, it is trivial to compute
Tn. Going back to the original question, we see that T8 = 28 −1 = 255 moves
are required to solve the Tower of Hanoi puzzle.

We’ve answered our original question and then some. But as mathemati-
cians we may want a deeper understanding of the structure of the problem.
We have only counted the minimal number of moves required to solve the
puzzle; we haven’t explicitly described how to solve it. If we really want to
knock a problem out of the park, we want a characterization of solutions.
Not only “how many are there?” but “what are they?”

To do this, it often helps to draw pictures or somehow encode the infor-
mation in the problem.

Modeling: distill the essentials.

8
4
2
1

7
5
3

6

a b c

disk: 1 2 3 4 5 6 7 8
peg: a a b a b c b a

−→ “aababcba”

Fig. 0.1 Encoding a stage of the game.

For the Tower of Hanoi, we can label the pegs a, b, c and write a word like
aababcba to mean the disks 1, 2, 4, 8 are on peg a, disks 3, 5, 7 are on peg b, and
disk 6 is on peg c, as shown in Figure 0.1. We know that the word aababcba
could only encode this configuration because it tells us precisely which disks
go with which pegs; on each peg the disks must be stacked biggest to smallest
from the bottom up. (In some sense we now think about the disks first, rather
than the pegs first.) This is a big leap forward, as far as bookkeeping goes.
It becomes much easier to record a sequence of moves than drawing pictures

1 A mental image some people like is of a line of dominoes. The case n = 0 just
shows that you can knock down the first domino. Then we prove that the dominoes
are close enough together: if you knock down domino n, then domino n+1 will fall as
well. This kind of argument is known as a proof by induction; induction is often an
easy way to verify facts about mathematical objects that have some sort of recursive
structure.
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showing what has happened. For example, to demonstrate how to solve the
three disk puzzle, we could simply write down the following steps:

aaa → baa → bca → cca → ccb → acb → abb → bbb.

This is certainly simpler than sketching the disks and pegs!2

Now that we’ve got a way to encode the possible states of the game as
strings of letters, we want to understand how one string of letters gets trans-
formed into another. In particular, we want to know the best way to transform
a string of all a’s to a string of all b’s (or all c’s). It’s probably good to start
with small cases again. If there is only one disk, there are three possible
strings, each with one letter: a, b, and c. At any point we can move the disk
from one peg to another, so we can swap any of these strings for another.
Let’s move on to two disks.

There are now nine possible strings: aa, ab, ac, ba, bb, bc, ca, cb, and cc. It
is no longer possible to get from any string to another with just one move.
For instance, aa indicates that both disks are on peg a, so it is impossible to
move the bigger disk without first moving the smaller one. Hence we can’t
transform aa into something like ac with only one move.

After a little bit of thought however, we can sketch the following diagram3

to indicate which one-step moves are allowed:

cc

bc

ba

aa

ac ab bb

cb

ca

����� ��
��
�

�����

�����

�����

��
��
�

��
��
�

��
��
�

Let’s compare this with the corresponding diagram for one disk:

b

a

c

�����

�����

Hmm. It looks like the diagram for two disks is built out of the one-disk
diagram by gluing three copies of the one-disk diagram together in a certain
way. What is going on here? If we look at the smaller triangle at the top of

2 This “encoding” is what’s called a Bijection between the set of states of the n-disk
game, and the set of (a, b, c)-strings of length n. This lets us easily see that there
are 3n possible game states with three pegs, since there are 3n (a, b, c)-strings. The
Bijection Principle for enumeration is to count a set by creating a bijection (a
reversible, one-to-one correspondence) with another, easier-to-count set.
3 This sort of diagram is called a Graph. In general, a graph is a collection of points,
called “vertices” or “nodes”, and edges between them. There is an entire branch of
combinatorics devoted to the study of graphs.
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the two-disk diagram, it looks exactly like the one-disk diagram if we were to
add the letter a to the end of each string. But this makes sense, because these
are just all the states of the game in which the biggest disk is left untouched
on peg a. Similarly, the small triangle on the bottom left shows what happens
when the largest disk is on peg c, and the bottom right triangle shows what
happens when the largest disk is on peg b.

So if we want to figure out the diagram for three disks, we can get the
major components of it by taking the diagram for two disks and attaching
either an a, a b, or a c to the end of every string in the diagram (emphasized
in bold):

cca

bca

baa

aaa

aca aba bba

cba

caa

����� ��
��
�

�����

�����

�����

��
��
�

��
��
�

��
��
�

ccb

bcb

bab

aab

acb abb bbb

cbb

cab

����� ��
��
�

�����

�����

�����

��
��
�

��
��
�

��
��
�

ccc

bcc

bac

aac

acc abc bbc

cbc

cac

����� ��
��
�

�����

�����

�����

��
��
�

��
��
�

��
��
�

All that’s left is to tie these pieces together. But when can we move that
biggest disk? Only when all the smaller disks are on the same peg, different
from the location of the big guy. This occurs at one of the corners of the
triangle. We connect these corners where possible (cca ↔ ccb, bba ↔ bbc,
aab ↔ aac) and get the following picture:

bbb

abb

acb

ccb

cbb cab aab

bab

bcb

����� ��
��
�

�����

�����

�����
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All right, now we’re cooking. We are seeing a kind of structural recurrence
happening here. If we let Dn denote the nth diagram, we can continue our
reasoning to see how to build Dn+1 from Dn. We append the letters a, b, and
c to three separate copies of Dn, then join up the appropriate corners:



An inquiry based approach 7
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This picture now lets us read off the optimal strategy for solving the Tower
of Hanoi! To move the disks in the tower, we just do the sequence of moves
indicated by the edges between the game states down one side of the trian-
gle, from a · · · aa to b · · · bb, say. Why is this optimal? Because the shortest
distance between two points is a straight line! By the way, notice that our
numeric recurrence, Tn+1 = 2Tn +1, is built right into the picture. Awesome!

Now are we done? Only if we want to be. The great thing about mathe-
matics is that there’s always room to improvise, always a new question that
can be asked. We solved the “3-peg” Tower of Hanoi puzzle. What about
the “4-peg” puzzle? The “k-peg” puzzle? What if there are k pegs, and two
towers of different colors, and the goal is to relocate both towers? What if
there are k pegs and � towers? What if you put more (or fewer) restrictions
on the kinds of moves that you allow?

The possibilities are only limited by your imagination.

An inquiry based approach

I love mathematics, and combinatorics in particular, for the creative free-
dom it allows. When a class asks you to do nothing but sit and listen to
a lecture, you are not experiencing the creative side of mathematics. Fur-
thermore, listening to a lecture is not enough to learn. You must be active
in the learning process. Who hasn’t thought “I understood this when the
professor was going over it, but now that I’m on my own. . . ”? Don’t get
me wrong. Lecturing has its place, and I enjoy lecturing. When I teach this
course it is not uncommon for me to give brief lectures at certain points in
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the book to highlight key topics and to make connections with other parts of
mathematics. But no lecture can give you the joy of personal discovery.

To promote a more active participation in your learning, this book is de-
signed for a course that incorporates ideas from an educational philosophy
known as Inquiry-Based Learning, or IBL. The IBL approach is student-
centered. It is a method of teaching and learning in which students are given
tasks that require them to solve problems, ask questions, explore, create, and
communicate effectively. In other words, the best way to learn mathematics
is to do mathematics.

Rather than laying out a smooth and polished path to a solution, the IBL
instructor guides and mentors student learning through well-crafted prob-
lems. I like to think of the difference between a lecture-driven classroom and
an IBL classroom like the difference between taking a cable car to the summit
of a mountain and climbing to the top of the same mountain. See Figure 0.2.

Fig. 0.2 Two ways to reach the summit.

One could argue that both approaches can get you to the top of the moun-
tain, but clearly the experiences are different. And when you come to a new
mountain, for which there is no cable car, who is better prepared to reach
the summit?

Effective IBL courses can come in many different forms, but they all possess
two essential ingredients. Students, as much as possible, are responsible for:

• guiding the acquisition of knowledge, and
• validating the ideas presented.
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In particular, you should not look to the instructor as the sole authority on
the mathematical content.

Of course, the instructor will usually have an advanced degree in mathe-
matics and many years of experience, so their voice is important too. However,
I like to think of the instructor in this setting as a “guide on the side” as
opposed to a “sage on the stage,” as is typical in the lecture format. The
prominent role of student voices in the classroom means the instructor has
more time to listen. This in turn allows the instructor to provide, in a dy-
namic fashion, those hints and suggestions that the students actually need.
By constrast, a prepared lecture provides only those hints and suggestions
that the instructor has anticipated the students need. While the intersection
of the sets {anticipated student needs} and {actual student needs} is usually
nonempty, these sets are rarely identical.

When I teach this course, our in-class time is mostly devoted to student
presentations of the problems, and students are rewarded for how much math-
ematics they produce. My students are expected to:

• independently read and interact with the book,
• attempt all problems in good faith, solving as many of them as possible,
• present oral arguments during class for the solved problems,
• participate in discussions about each problem presented in class, and
• write clear and logical solutions for the presented problems.

These expectations foster self-reliance, diligence, and good communication
skills.4

The toolbox

Good problems take time, and you should expect to be stuck much of the
time. If you have solved a problem in under 10 minutes, that’s great, but you
aren’t being challenged. Find a new problem. I hope you get stuck sometimes,
so that you can learn what it takes to get un-stuck. Some of the skills I hope
you develop are tenacity, flexibility, and persistence in your problem-solving.
In other words, I hope you develop answers to the following question:

What do you do when you don’t know what to do?

Here is an incomplete list of suggestions that might help you get started:

4 Some instructors reading this may be starting to wonder about assessment: how
do I assign grades in a class like this? There is no simple answer to this question. I
think it depends heavily on context (the students, the institution, the goals of the
course as it fits in the larger curriculum, and so on). I have used different strategies
at different times. For those seeking advice on implementation, feel free to email me
with questions. I am happy to share my thoughts, as they apply to the context in
which you plan to run your course.
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• reread any relevant definitions,
• reread the problem statement,
• work out some small examples by hand,
• ask a classmate,
• ask your professor during office hours, or
• go for a walk to get coffee.

With high probability, there will be problems that you are unable to solve
on your own, even with good coffee. This is natural, but it is important that
you understand the solution to every (yes, every!) problem that is presented
during class. This means you have to learn to ask good questions, such as:

• Can you give me the broad outline of your reasoning?
• How did you know to set up that [equation, set, whatever]. . . ?
• How did you figure out what this question was asking?
• Was this the first thing you tried?
• Can you explain how you went from this line to that one?
• Could we have . . . instead?
• Would it be possible to . . . ?
• What if . . . ?

Another way to process a solution presented by another student is to
make observations that connect their ideas to past work, or that compare
approaches used by different people. Sample observations include:

• When I tried this problem, I thought I needed to . . . But I didn’t need to,
because. . .

• I think . . . is important to this argument because . . .
• When I read this problem, I thought it was the same as this earlier problem.

Now I see that it is/isn’t because. . .
• I really liked it when. . .

Let me also say a few words about resources external to this book and the
people in your class. Much of the material in the book (particularly Chapters
1 to 4) can be easily found in other books and in online resources. Resist the
temptation to look at these other sources!

The problems in this book are meant for you. You can do them, and you
will be much more satisfied when you produce the solutions independently.
Once a problem is already presented, then it might be interesting to find
the result in a different location, for the purposes of comparing different
approaches. But until then, resist the urge to look online!

Having said not to do online research, let me now immediately recommend
breaking that rule in the case of one special website. From Chapter 5 onward,
we will often be dealing with very interesting and important sequences of
numbers, and here (after some initial engagement with the material yourself)
I do recommend that you seek out another perspective via the
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On-line Encyclopedia of Integer Sequences

oeis.org

This is a living, breathing database containing hundreds of thousands of
entries that are constantly added to by researchers from around the world.
By the time you get to Chapter 5, you should be ready to get a glimpse at
the real world of research in enumerative combinatorics, and this website can
be a window on that world.

Structure of this book

This book is different by design. Each chapter has a main topic, and
there is a list of problems meant to guide you toward understanding of that
topic. There are Definitions, Theorems, Warmups, and Problems. The
Definitions and Theorems appear in special shaded bubbles like the one
shown below, along with some brief exposition. The Warmups are meant to
be easy problems to reinforce the ideas just introduced. Here’s some sample
text:

Unicorns

Definition. A unicorn is a mythical creature much like a horse, but
with a single horn in its forehead.

Here is a picture of a unicorn:

Asian and European unicorns are generally smaller and more docile than
South American unicorns. North American unicorns have shorter legs and
come in many colors. The African unicorn has been extinct since the late
19th century.
Warmup. Can a unicorn have two horns? Which weighs more, a ton of
delicious unicorn meat, or a ton of feathers?
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In my classes, we briefly discuss the content of these text blocks together,
which usually run less than a page. Sometimes we might split into small
groups first, sometimes we just share as a whole class. I try not to use more
than ten or fifteen minutes of class time on any one text block. I expect my
students to be reading ahead, so these sessions are just to check and make sure
we are all on the same page. This is a chance for them to ask basic questions,
and for that student who confused a unicorn with a pegasus (“horn, no wings”
versus “wings, no horn”) to clarify their understanding. Whether you go over
all the material in the expository text during classtime, understanding the
Definitions and Theorems is essential for doing the problems successfully.

Each Problem is meant to be presented by you or one of your classmates,
ideally in the order listed in the book. Sometimes these problems are guiding
you to a bigger, more general result. Other times, the problems are about
applying the ideas in a new way. To visually separate Problems from back-
ground material I use a blue side bar like this:

Problem. Show that in any collection of unicorns there are four times as
many legs as horns.

These problems are the core of the book. Some problems are easier than
others, but remember:

every problem can be done by you, the student.

I have tried to keep exposition to a minimum, since I don’t want to spoil too
many of the secrets that you are perfectly capable of revealing by yourselves.
At the end of each chapter I have included a short essay on a relevant topic
that can often lead to further exploration for interested students.

There are also additional exercises and problems at the back of the book,
corresponding to each chapter. These can be deployed if it seems there is a
need to review a topic from the chapter, or if there is a desire to do home-
work problems in addition to the presentation problems. With a few notable
exceptions (especially in later chapters), these additional problems do not
break new ground with respect to conceptual understanding.

A word about proofs

You may have noticed that there was no explicit “Theorem” stated in the
Tower of Hanoi discussion, and nowhere was a “proof” clearly delineated. In
the problems and theorems that constitute this book, you will be asked to
provide solutions, to give explanations, and, occasionally, to “prove” that a
certain result is true. What do I mean by “prove”?

Your instructor will help your class develop its own norms for mathe-
matical discourse, but to me, a proof is a clear, logical explanation for why
something is true. Nothing more or less.
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If you’ve taken a class about proofs, you may have mental templates for
how to write proofs, based on labels like “direct proof,” “contrapositive,”
“contradiction,” “induction,” and so on. That’s fine, but unless I clearly ask
for a certain type of argument, I would prefer if you not waste energy worrying
about the form your explanations take. Invest your energy in the content of
your explanations, and the form will follow.5

When working on the problems put to you in this book, focus on the
following two questions. If you can answer them both satisfactorily, you will
be just fine.

What is the Truth?

and

Why is it true?

5 This idea is not too different from what Chicago architect Louis Sullivan famously
wrote: “It is the pervading law of all things organic and inorganic . . . that form ever
follows function. This is the law.”
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Rogues’ Gallery of Integer Sequences

Eric Temple Bell Eugène Catalan Leonhard Euler

Fibonacci Édouard Lucas Percy MacMahon

T. V. Narayana Blaise Pascal Neil Sloane

Fig. 0.3 Portraits of some famous names encountered in this book (For Image Credits,
refer p. xi).



Chapter 1

First principles

“ ‘Begin at the beginning,’ the King said gravely, ‘and go on till you come to
the end: then stop.’ ”

–Charles Dodgson, a.k.a., Lewis Carroll

The dawn of counting.

One, two, three . . . This is the caveman’s counting algorithm. The
only truly trivial counting problem is one for which the things you wish to
count are obviously in a one-to-one correspondence with the first n counting
numbers. Otherwise, most counting problems are best approached by break-
ing them down into smaller, more manageable pieces that can be counted
“caveman style.”

In this chapter, you’ll explore basic definitions and counting principles:
The Sum Principle, The Product Principle, and The Bijection

Principle. The first allows you to count things separately on a case-
by-case basis, provided your cases don’t overlap (odds/evens, boys/girls,
red/white/blue, . . . ). The second allows you to count the number of out-
comes of a sequence of events. The third allows you to count new objects by
relating them to objects you already know how to count.
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Sets

Definition 1. A set is a collection of distinct objects known as the
elements or members of the set.

When possible, we may list the members of a set between a pair of curly
braces, as in the following set, called “S.”

S = {3, �, !, 7, π}.

Membership in a set is denoted by the symbol “∈,” so, for example, we can
write 3 ∈ S, which when read aloud says “3 is a member of set S” or simply
“3 is in S.”
Warmup 1. Using the membership symbol “∈,” write statements identifying
every member of the set S above.

Some sets are a bit too big to conveniently list all the members. Nonetheless,
it might be easy to define membership in the set. For this, we use the so-called
set builder notation, in which the set is given a name, followed by a definition
of its elements. For example, to define the set of two-digit even numbers, we
might write

E = {x ∈ Z : x = 2k for some k ∈ Z and − 100 < x < 100}.

Read aloud, this says “E is the set of integers x such that x = 2k for some
integer k and x is strictly greater than −100 and strictly less than 100.”
There is no strict dogma about how to use set builder notation. For example,
the following would also be a perfectly fine way to define E:

E = {x = 2k : k ∈ Z and xhas two digits }.

Warmup 2. Write the set of positive odd numbers using set builder notation.

Problem 1.
Write the set of perfect squares, {1, 4, 9, 16, . . .}, using set builder notation.
Next, translate the following set defined with set builder notation into English
and list a few of its elements:

P = {x ∈ N : x = 2n for some n ∈ N}.

In this book nearly all sets we encounter are finite, in which case we want
to know how many members the set has.

Cardinality

Definition 2. For a finite set S, the number of elements of S is called
the cardinality of S, denoted by |S|.
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The set S = {3, �, !, 7, π} has cardinality 5, or |S| = 5. The sets {−1}, {0},
and {S} all have cardinality 1.

For convenience, we declare that there is a unique set with zero elements,
called the “empty set” and denoted ∅, or {}. Other special sets include the
set of integers, denoted Z, and the set of positive integers, denoted N.

Warmup 3. Describe three of your favorite finite sets of cardinality three.
The author’s favorites include the set {1, 2, 3}, the set {Larry, Curly, Moe},
and the set containing his three children.

Problem 2.
How many even numbers are positive and less than 100? Phrase your answer
in terms of the cardinality of a set.

Problem 3.
Let S = {n ∈ Z : 1 ≤ n ≤ 49}, i.e., the set of all positive integers from 1 to
49. What is |S|? In your own words, why does S have the same number of
elements as the set in Problem 2?

Union

Definition 3. The union of two sets S and T , written S∪T , is defined
to be the set of all elements of S together with all elements of T , i.e.,
x ∈ S ∪ T if and only if x ∈ S or x ∈ T (or both).

The union of {a, b, 7} and {3, �, !, 7, π} is

{a, b, 7} ∪ {3, �, !, 7, π} = {a, b, 3, �, !, 7, π}.

Warmup 4. Come up with a pair of sets A and B such that |A| = 3, |B| = 5,
and |A ∪ B| = 6.

Problem 4.
With S as in Problem 3 and

T = {n ∈ Z : 0 < n < 100 and n is even}

(just as in Problem 2), what is |S ∪ T |?

Intersection

Definition 4. The intersection of two sets S and T , written S ∩ T ,
is defined to be the set of all elements of both S and T , i.e., x ∈ S ∩T
if and only if x ∈ S and x ∈ T .

The intersection of {a, b, 7} and {3, �, !, 7, π} is
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{a, b, 7} ∩ {3, �, !, 7, π} = {7}.

The intersection of {a, b, 7} and {1, 2, 3} is the empty set, i.e.,

{a, b, 7} ∩ {1, 2, 3} = ∅.

Warmup 5. Come up with a pair of sets A and B such that |A| = 8, |B| = 6,
and |A ∩ B| = 3.

Problem 5.
With S and T as in Problems 3 and 4, what is |S ∩ T |?
Problem 6.
For any two finite sets S and T , explain why

|S ∪ T | + |S ∩ T | = |S| + |T |.

If S ∩ T = ∅, i.e., |S ∩ T | = 0, then we say the sets S and T are disjoint.
A special case of Problem 6 can be stated as follows.

Sum Principle

Theorem 1. Suppose S and T are disjoint sets. Then

|S ∪ T | = |S| + |T |.

This result is known as the sum principle and it has many intuitive appli-
cations.

Warmup 6. Describe two different pairs of disjoint sets A and B whose
union has cardinality |A ∪ B| = 9. Is it possible that |A| = |B|?

Problem 7 (Starfolks).
I want to get a coffee from Starfolks. The nearest one is four blocks East and
three blocks North from here. See Figure 1.1. Assuming I only walk East or
North, how many different routes can I take to get there:

1. if the last block I walk is heading North?
2. if the last block I walk is heading East?
3. if I don’t care whether the last block I walk is North or East?

How can the sum principle be applied here?

Problem 8.
A complete graph on n vertices, denoted Kn, is the graph in which every ver-
tex is connected to every other vertex. In Figure 1.2 we see K5; the complete
graph on five vertices. It has ten edges. How many edges does K10 have?

Problem 9.
How many dominoes are there in a set that includes double blank through
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Fig. 1.1 Going for coffee.

Fig. 1.2 The complete graph K5.

double nine? Some of these dominoes are shown in Figure 1.3. What about
double blank through double twelve? Through double n?

Problem 10.
Let’s talk dominoes again. How many dots are there on a full set of domi-
noes? (You may want to work some small examples before finding a general
formula.)

Problem 11.
Suppose we roll a six-sided die and then flip a coin. How many distinct
outcomes are possible? (Assume we care only about the number on the die
together with the side of the coin.) If we roll a six-sided die and then flip two
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coins, how many outcomes are there? Does it matter if we toss two identical
coins versus, say, flipping a penny and a nickel?

Fig. 1.3 Some dominoes.

Cartesian product

Definition 5. Suppose S and T are sets. Their cartesian product,
denoted S × T , is the set of all ordered pairs (s, t) such that s ∈ S
and t ∈ T :

S × T = {(s, t) : s ∈ S, t ∈ T}.

In general, if S1, S2, . . . , Sm are sets, their cartesian product is the set
of all ordered m-tuples:

S1 × S2 × · · · × Sm = {(s1, s2, . . . , sm) : si ∈ Si for all i}.

It is often helpful to think of the cartesian product of two sets as a rectan-
gular array. For example, if S = {1, 2, 3} and T = {a, b}, we might visualize
their cartesian product as follows:

S × T =

⎧
⎨

⎩

(1, a) (1, b)
(2, a) (2, b)
(3, a) (3, b)

⎫
⎬

⎭
.

Warmup 7. Draw the cartesian product of the sets {1, x, π} and {0, y, z} in
a rectangular array. If you haven’t already, draw the outcomes from Problem
11 as a rectangular array as well.

Problem 12.
Let S = {n ∈ Z : −5 ≤ n ≤ 5} and let T = {n ∈ Z : 1 ≤ n ≤ 6}. Describe
the set S × T . What is |S × T |?
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Problem 13.
Let S1 = {1, 2, 3, 4, 5, 6}, S2 = {h, t}, and S3 = {h, t}. Describe the set
S1 × S2 × S3. What is |S1 × S2 × S3|?

The following theorem captures three progressively more general versions
of the product principle.

The product principle

Theorem 2.
(Ver. I.) Suppose S and T are finite sets. Then

|S × T | = |S| · |T |.

(Ver. II.) Suppose S1, S2, . . . , Sm are finite sets. Then

|S1 × S2 × · · · × Sm| = |S1| · |S2| · · · |Sm|.

(Ver. III.) Suppose S is the set of outcomes of an m-step process,
where for any i ∈ {1, 2, . . . ,m}, there are ai choices for step i, no
matter what earlier choices were made. Then

|S| = a1a2 · · · am.

The proof of the first version is straightforward when picturing the carte-
sian product with rectangular arrays. (One might even argue that we should
take the statement of version I as our definition of multiplication for positive
integers.) The second version follows from the first by induction on m, and
the third follows if one can make a careful use of notation to identify the set
S with a cartesian product.

The key distinction between version II and version III is that version III
does not assume that the set of choices for step i is independent of the previous
choices. If the choices at each step i are always the same, then we can simply
let Si denote the set of choices for step i and refer to version II.

Warmup 8. Amy, Bob, and Carol are three friends who are going to sit in
seats 1, 2, 3 of row ZZ at a concert. Here is a 3-step process for seating the
friends. Step 1): choose who sits in seat 1. Step 2): choose who sits in seat 2.
Step3): choosewho sits in seat 3.As there are three choices for step1, twochoices
for step 2, and one choice for step 3, we find 3 · 2 · 1 = 6 ways to seat the
friends.

Explain why this counting argument uses Version III of the product prin-
ciple, not Version II. Can you modify the counting argument so that Version
II does apply?
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Problem 14.
The following question refers to a standard deck of playing cards, in which
there are 52 cards. The cards come in thirteen ranks: A (ace), 2, 3, . . . , 10, J
(jack), Q (queen), K (king), and four suits: ♥,♣,♦,♠. See Figure 1.4.

1. A friend takes a deck of cards and spreads them across a table, face down.
You select one card at random and turn it over. There are many possible
outcomes for the card you select. In how many ways can you select:

a. a king?
b. a black king?
c. a red card?
d. a face card (i.e., J,Q,K, or A)?

2. Now, after you select your first card (round 1), you give it back to your
friend, who mixes all 52 cards and places them all back on the table for
another card selection (round 2). Now, in how many ways can you select:

a. a king in round 1 and a face card in round 2?
b. a black king in round 1 and a red card in round 2?
c. a black king in round 1 and a black card in round 2?

3. Now consider the situation in which you select your first card in round 1,
but do not return it to your friend. Your friend mixes the remaining 51
cards and you select any one of them for round 2. In this situation, how
many ways can you select:

a. a black king in round 1 and a red card in round 2?
b. a black king in round 1 and a black card in round 2?
c. a black card in round 1 and a black king in round 2?

4. How many ways can you select a black king, then a red card, then a black
7, 8, or 9? Does your answer here depend on whether you return cards to
your friend?

A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥
A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣
A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦
A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠

Fig. 1.4 Playing cards in a standard deck come in thirteen ranks and four suits.

Problem 15.
Suppose you flip a coin five times in a row, recording the sequence of heads
and tails you see, e.g., (h, h, t, h, t). How many different sequences of flips are
possible?
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Problem 16.
It’s Halloween and five children arrive at your door, all hoping for candy. You
have exactly five pieces of candy and you can give away none of the candy,
all of the candy, or any amount in between. Supposing you don’t give any
child more than one piece, how many different ways can you distribute the
candy? Does it matter if the pieces of candy are identical or not?

Subsets

Definition 6. Let S and T be sets. Then T is a subset of S, written

T ⊆ S,

if and only if every element of T is also an element of S.

Sometimes it is convenient to think of subsets in terms of intersections.
That is, T is a subset of S if and only if

S ∩ T = T.

Notice that it is always true that ∅ ⊆ S since S ∩ ∅ = ∅. Similarly, S ⊆ S
since S ∩ S = S.

Warmup 9. Are there more two-element subsets of a four-element set, or
more three-element subsets of a five-element set? Justify your response with
examples.

Problem 17.
Let S = {a, b, c, d, e}. How many subsets does S have?

Problem 18.
Let n be a positive integer and suppose S = {i ∈ Z : 1 ≤ i ≤ n} =
{1, 2, 3, . . . , n}. In terms of n, how many subsets does S have? Can you ex-
plain your formula with the product principle? Hint: Start small and work
your way up. Look at the cases of n = 1, 2, 3, 4, and try to explain the pattern
you see.

Functions

Definition 7. Suppose A and B are two finite sets. A function f
from A to B is a subset of the Cartesian product A × B such that for
each a ∈ A, there is exactly one b ∈ B such that (a, b) ∈ f .

The set A is called the domain of f , while B is called the codomain. We
denote a function from A to B by f : A → B, and we use the common
functional notation, f(a) = b, if and only if (a, b) ∈ f . This notation suggests
f has “input” from the domain A and provides “output” in the codomain B.
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The range of f , or image of f , denoted f(A), is the subset of B consisting of
second coordinates, i.e.,

f(A) = {b ∈ B : f(a) = b for some a ∈ A}.

For example, if A = {1, x, 5} and B = {2, x, 7, ∗}, then the set f =
{(1, 2), (x, 2), (5, x)} is a function, with range f(A) = {2, x}. We would write
f(1) = 2, f(x) = 2, and f(5) = x.

For small functions, we can draw an “arrow diagram” to represent the
function. For example, f as above could be drawn as follows.

1

x

5

2

x

7

∗

A B

Warmup 10. For the sets A and B above, give two subsets of A × B that
are not functions.

Problem 19.
Count all the functions f : {a, b, c, d, e} → {0, 1}. How could this result be
related to Problem 17?

Injection/surjection/bijection

Definition 8. A function f : A → B is an injection if, for any two
distinct elements of A, say a �= a′, we have f(a) �= f(a′). A function
is a surjection if, for every b ∈ B, there exists an element a ∈ A such
that f(a) = b. A function that is both an injection and a surjection is
called a bijection.

These concepts are easily described in terms of arrow diagrams: an injec-
tion has no two arrows pointing to the same element of B, while a surjection
has at least one arrow pointing to each element of B. Thus, the arrow di-
agram for a bijection pairs off each element in A with a unique element in
B.

Warmup 11. Draw arrow diagrams for three different functions. One of
them should be an injection but not a surjection, one should be a surjection
but not an injection, and the third should be a bijection. Choose different
domains/codomains for each example.
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Bijection principle

Theorem 3. Suppose A and B are finite sets and f is a function
f : A → B. Then:

• if f is an injection, then |A| ≤ |B|,
• if f is a surjection, then |A| ≥ |B|, and
• if f is a bijection, then |A| = |B|.

This last item describes a powerful counting technique that we have
already used implicitly, and which we refer to as the bijection principle: If we
know |B| = n, and we have a bijection between A and B, we can conclude
|A| = n as well.

Problem 20.
Here is an alternate approach to the result of Problem 16. Let A denote the
set of ways to distribute candy in Problem 16, and let B denote the set of
sequences of coin flips in Problem 15. Find a bijection f : A → B. (Note that
something similar could be done to relate these to Problem 19 and Problem
17.)
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Organizing data

Data collection sounds boring, and it can be. But this often under-
appreciated part of the problem-solving process can be crucial to developing
true understanding. Throughout the problems you studied in Chapter 1, you
probably noticed that working through small cases is often a key part of
finding a complete solution, just like in the Tower of Hanoi problem from
Chapter 0. Here we will discuss two straightforward methods for organizing
data that can come in handy on all sorts of problems: the use of lexicographic
ordering and the use of decision trees.

Lexicographic ordering

Let’s return to Problem 7, which asked us to count paths to Starfolks as shown
in Figure 1.1. How did you begin with this problem? Maybe you started by
sketching some arbitrary paths as in Figure 1.5.

Fig. 1.5 Sketching some random paths for Problem 7.

But pretty soon you worry that you might be overlooking some of the
paths, so you start to organize them a bit more carefully, like in Figure 1.6.

Intuitively, you are sorting the paths in a systematic manner, even if it is
hard to articulate at first. You can now probably convince yourself that no
path is left off the list, which is crucial, and you aren’t accidentally duplicating
any path.

All that drawing of paths has you worn out, though, so you give up on
drawing all the pictures and you start translating the paths into “directions”
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Fig. 1.6 Organizing the paths in Problem 7.

by way of a sequence of letters E and N that tell you how to traverse the
path. (There is a bijection implicit here!) You start over:

EEEENNN,EEENENN,EEENNEN,

EEENNNE,EENEENN,EENENEN,

EENENNE,EENNEEN,EENNENE, . . .

It turns out there is a name for this ordering. It is called lexicographic ordering
and it appears in many guises. This is a generalization of alphabetical order
that we all learn in grade school.

For the paths encoded as “words” on the “alphabet” {E,N}, we can com-
pare paths in lexicographic order by reading from left to right. As soon as
the two paths disagree, the one whose next letter is “E” is declared to be
smaller in lexicographic order.

This ordering is natural even if we had used a different encoding for the
paths. Instead of Ns and Es, maybe we just record which steps are East,
with the understanding that all other steps are North. With this in mind,
our paths correspond to the subsets of {1, 2, 3, 4, 5, 6, 7} with exactly four
elements. If we write the elements of our subsets in increasing order, then it
is easy to order the subsets lexicographically:

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},

{1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 4, 6},

{1, 2, 4, 7}, {1, 2, 5, 6}, {1, 2, 5, 7}, . . .
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While other methods might also work, always consider organizing your
data with lexicographic order when generating small examples.

Decision trees

Another good way to organize small data is to look for recursive structure,
and this can often be done with the help of a decision tree. Recall the subset
counting that we needed to do in Problems 17 and 18. Here, lexicographic
order works, but feels a bit awkward. In Table 1.1 we see all subsets of
{1, . . . , n}, for n = 0, 1, 2, 3. In each row the sets are listed in lexicographic
order.

n Subsets

0 {}
1 {}, {1}
2 {}, {1}, {1, 2}, {2}
3 {}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}

Table 1.1 Subsets listed in lexicographic order.

Not exactly revealing, is it?
But if we think of creating new subsets from old, things look nicer, as

in Figure 1.7. Here, each branch in the tree represents a step in a natural
counting process using the product principle. At step i, we decide whether
or not to include element i in the subset.

{}

{}

{}

{} {3}

{2}

{2} {2, 3}

{1}

{1}

{1} {1, 3}

{1, 2}

{1, 2} {1, 2, 3}

Step 1

Step 2

Step 3

Fig. 1.7 Using a decision tree to generate subsets.
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Listing out all possible orderings of a set can be done with a tree too. It
would be pretty straightforward to list all the orderings of the set {a, b, c, d}
in lexicographic order, but we can also think of this process with a decision
tree. Each step in the process has us choose where to place each letter, relative
to any letters already placed. First we place letter a. Then we place b to the
left or right of a. Then we place c in one of three positions relative to a and
b, and so on. See Figure 1.8.

a

ab

abc

abcd

abdc

adbc

dabc

acb

acbd

acdb

adcb

dacb

cab

cabd

cadb

cdab

dcab

ba

bac

bacd

badc

bdac

dbac

bca

bcad

bcda

bdca

dbca

cba

cbad

cbda

cdba

dcba

Fig. 1.8 A decision tree for orderings of the set {a, b, c, d}.

Notice how this process had one choice, then two choices, then three, then
four. We could think of a kind of “inverse” decision process as follows. First
pick which letter goes in position one, then which goes in position two, and
so on. This yields the picture in Figure 1.9. Notice that now there are four
choices first, then three choices, then two, then one.

More generally, decision trees can be a good way to organize your thinking
about a problem and break it into conceptually smaller pieces. Figure 1.10
shows a sketch from a brainstorming session about Problem 14.

Whatever your method, when faced with a new problem you should take
the time to write out small examples by hand. Hunt for structure. Look for
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·

a

ab
abc abcd

abd abdc

ac
acb acbd

acd acdb

ad
adb adbc

adc adcb

b

ba
bac bacd

bad badc

bc
bca bcad

bcd bcda

bd
bda bdac

bdc bdca

c

ca
cab cabd

cad cadb

cb
cba cbad

cbd cbda

cd
cda cdab

cdb cdba

d

da
dab dabc

dac dacb

db
dba dbac

dbc dbca

dc
dca dcab

dcb dcba

Fig. 1.9 Another decision tree for orderings of the set {a, b, c, d}.

patterns. You may have to do this more than once before you hit upon an
idea that will generalize, but very often your patience will be rewarded.

Further reading

• George Pólya, “How to solve it,” Princeton Science Library, 2004.
This book, originally from 1945, is still a classic in the art of problem
solving. There are four basic steps: 1) understand the problem, 2) make a
plan, 3) carry out the plan, and 4) look back on your work.
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Fig. 1.10 Brainstorming about Problem 14.



Chapter 2

Permutations

“Words differently arranged have a different meaning and meanings differently
arranged have a different effect.”

–Blaise Pascal

53176842

�

X

•

•

•

•

X

•

•

X

X

•

•

•

X

•

•

X

•

•

X

• X

�

(4, 2, 0, 3, 2, 2, 1, 0)

What is the best way to encode a permutation?

A permutation is just about the most fundamental structure in all of
enumerative combinatorics. Many, many, problems can be recast as a problem
about counting certain ordered arrangements of a collection of objects.

In this chapter you will start to learn to count permutations.

© Springer Nature Switzerland AG 2019
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n\k 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 2

3 1 3 6 6

4 1 4 12 24 24

5 1 5 20 60 120 120

6 1 6 30 120 360 720 720

Table 2.1 Triangle of the numbers P (n, k), or the number of k-permutations of n.

Problem 21.
At a concert, you and three friends occupy seats 1, 2, 3, and 4 of row ZZ.
How many different ways can you all be seated so that you have seat 1? How
many different ways can you all be seated if you don’t necessarily occupy seat
1?

Problem 22.
Generalizing the previous problem, suppose that there are n people sitting
in seats 1, 2, 3, . . . , n of a certain row. How many different ways can these
people be arranged?

Problem 23.
We say an arrangement of rooks on a chessboard is non-attacking if no two
of the rooks lie in the same row or column. For example, the left of Figure 2.1
shows an arrangement of four non-attacking rooks on a 4-by-4 chessboard.
(We think of the rooks themselves as indistinguishable, so this is the only
non-attacking arrangement of rooks in these cells.) How many different ar-
rangements of four non-attacking rooks on a 4-by-4 chessboard are there with
a rook in the bottom left corner (column a, row 1)? How many arrangements
are there with a rook in column a, row 2? How many such arrangements are
there in total?

Problem 24.
How many arrangements of n non-attacking rooks on an n-by-n chessboard
are there?
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Fig. 2.1 An arrangement of four non-attacking rooks on a 4-by-4 chessboard and an
arrangement of six non-attacking rooks on a 10-by-6 chessboard.

Factorial notation

Definition 9. The product of the first n consecutive natural numbers,
1 · 2 · 3 · · · n, is called n factorial, written n! for short.

By convention, define 0! = 1. Notice also that n! = n · (n − 1)!. The first
few factorials are

1, 1, 2, 6, 24, 120, 720, . . . .

Warmup 12. What is 7!
3!? Explain why a!

b! is an integer if a ≥ b.

Problem 25.
How many bijections are there of the form w : {1, 2, . . . , n} → {1, 2, . . . , n}?

Problem 26.
Suppose ten friends go to a movie, but it is opening weekend and they can’t
find ten seats in a row. In one row, they find seats 1–6 unoccupied. How many
different ways can six of the friends sit together in these seats? (Ignore what
happens to the four friends who don’t sit in these seats.)

Problem 27.
Generalizing the previous problem, suppose n friends find only k seats in a
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row, where k ≤ n. Find a formula for the number of different ways k of the
friends can sit together in these seats.

Problem 28.
How many ways are there to arrange six non-attacking rooks on a 10-by-6
chessboard?

Problem 29.
How many ways are there to arrange k non-attacking rooks on an n-by-k
chessboard?

Problem 30.
Fix n ≥ k > 0. How many injections are there of the form w : {1, 2, . . . , k} →
{1, 2, . . . , n}?

123 132 213 231 312 321
124 142 214 241 412 421
125 152 215 251 512 521
134 143 314 341 413 431
135 153 315 351 513 531
145 154 415 451 514 541
234 243 324 342 423 432
235 253 325 352 523 532
245 254 425 452 524 542
345 354 435 453 534 543

Fig. 2.2 The members of S5,3, the 3-permutations of {1, 2, 3, 4, 5}.

Permutations

Definition 10. A k-permutation of a set A is an injection

w : {1, 2, . . . , k} → A.

The set of all k-permutations of A is denoted SA,k.

We usually write permutations as ordered lists of precisely k elements of
A, i.e., w = w(1)w(2) . . . w(k). For example, if A = {�, 4, a, b}, the set of
2-permutations of A is

SA,2 =
{

�4, �a, �b, 4a, 4b, ab
4�, a�, b�, a4, b4, ba

}
,

and, for example, w = �4 means w(1) = � and w(2) = 4.
The set of n-permutations of the set {1, 2, . . . , n} is denoted Sn. (The use

of “S” is because this set is known in other contexts as the symmetric group.)
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We use the notation Sn,k to mean the set of k-permutations of {1, 2, . . . , n},
with Sn = Sn,n.

The members of S5,3, the 3-permutations of {1, 2, 3, 4, 5}, are displayed in
Figure 2.2.

Warmup 13. Make a table listing the elements of S4, i.e., all permutations
of the set {1, 2, 3, 4}.

Warmup 14. If you haven’t already, encode the non-attacking rook arrange-
ments from Problem 23 as permutations. If you already have, find another
logical encoding of the arrangements as permutations, e.g., from the perspec-
tive of your opponent.

Let P (n, k) denote the number of k-permutations of a set with n elements,
i.e., P (n, k) = |Sn,k|. By convention, P (n, 0) = 1, i.e., there is precisely 1 0-
permutation of any set (even the empty set). Interpreting Problem 30 as a
statement about permutations, we have the following result.

Permutation formula

Theorem 4. For any integers n ≥ k ≥ 1,

P (n, k) = n · (n − 1) · · · (n + 1 − k) =
n!

(n − k)!
.

Warmup 15. Use this formula for P (n, k) to fill out the next row of Table
2.1. Describe any patterns you see in the triangle of numbers.

Problem 31.
Prove that P (n, n) = P (n, k)P (n − k, n − k), both by using the formula in
Theorem 4, and by using the meaning of k-permutations and the bijection
principle.

Here is a hint to get started. By definition |Sn,k| = P (n, k). Moreover,
the product principle gives us |Sn,k × Sn−k| = P (n, k)P (n − k, n − k). Thus
to prove the identity with the bijection principle, it suffices to describe a
bijection

f : Sn → Sn,k × Sn−k.

Problem 32.
Prove that P (n, k) = P (n−1, k)+kP (n−1, k−1), both by using the formula
in Theorem 4, and by using the meaning of k-permutations and the bijection
principle. See Problem 31 for help setting up the desired correspondence.
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The symmetric group

Permutations can be considered algebraic objects as well as combi-
natorial objects. It was mentioned that the set Sn is known as the symmetric
group. We will discuss a little about what this means, though many details
are best left to a course in abstract algebra.

Permutations as bijections

We have written permutations for the most part in “one-line” notation, e.g.,
w = 53124 is a member of S5. In another context, it would be better to
remember that each w is a bijective function, w : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}.
The arrow diagram for w = 53124, which means w(1) = 5, w(2) = 3, and so
on, would be drawn as follows.

1

2

3

4

5

1

2

3

4

5

It is easy to check that the composition of two such bijections is again a
bijection, so Sn is closed under the operation of composition. For example,
if we compose our permutation w above with the permutation v = 31245,
we find the permutation u = vw, defined by u(i) = v(w(i)). (We write our
composition of permutations from right to left as we would normally write
the composition of functions.) With arrow diagrams, the composition u looks
like:

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Notice that u(1) = v(w(1)) = v(5) = 5, u(2) = v(w(2)) = v(3) = 2, and so
on. We have u = 52314.

To say that Sn is a “group” means that:
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• composition is associative, i.e., if u, v, w ∈ Sn, then (uv)w = u(vw),
• there is an identity permutation, e, such that we = ew = w for any w ∈ Sn,

and
• every permutation w has an inverse, w−1, such that w−1w = ww−1 = e.

Each of these properties is easily verified. The identity permutation is the
“do nothing” bijection e = 12 · · · n, i.e., e(i) = i for all i.

Cycle notation

Another way to visualize a bijection on the set {1, 2, . . . , n} is to draw a
directed graph whose nodes are the numbers 1 to n, with an arrow from i to
j if w(i) = j. The example of w = 53124 would thus be drawn:

34

5

1

2

while v = 31245 is drawn:

34

5

1

2

This visualization helps us to see that permutations break up as collec-
tions of disjoint “cycles” on subsets of {1, 2, . . . , n}. The standard way to
write a permutation in terms of its cycles is to put the cycles in parentheses
(· · · i w(i)w(w(i)) . . .) and to concatenate the cycles. For example, we would
write w = (15423), v = (132)(4)(5), and u = (154)(2)(3). The cycles are
usually ordered by their smallest elements as we’ve done here.

Cycle notation is very important for identifying algebraic properties of
permutations. For example, the “order” of a permutation is the smallest
nonnegative integer r such that wr = e. For a cycle, r is just the size of the
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cycle. Thus in general, it is easy to argue that the order of any permutation
is the least common multiple of the sizes of its cycles.

Symmetries of a simplex

Okay, so Sn is a group. But why the “symmetric” group? Where does sym-
metry come in to play? One nice answer to this question comes from a way
of realizing the bijections in Sn as permutation matrices.

Given a permutation w ∈ Sn, define the n × n matrix Mw via

Mw[i, j] =

{
1 if w(i) = j,

0 otherwise.

For example, continuing with w = 53124, we have

Mw =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

If we take a column vector x = (x1, x2, x3, x4, x5) in R
5, then

Mwx = (x5, x3, x1, x2, x4).

Look at the subscripts!
In general, if x and y are vectors in R

n such that Mwx = y, then we find
yi = xw(i). Put simply, the permutation acts on R

n by permuting coordinates.
Now let Δ denote the set of points (x1, . . . , xn) in R

n such that xi ≥ 0
and

∑
xi = 1. This is known as the standard (n − 1)-dimensional simplex.

(The dimension is one less than n because of the linear constraint on the
coordinates.) Equivalently, the standard (n − 1)-simplex can be described as
the convex hull of the standard basis in R

n.
For example, if n = 2, we find Δ is the one-dimensional simplex. It is

defined as the set of points {(x, y) ∈ R
2 : x, y,≥ 0, x + y = 1}, which is

the line segment between (0, 1) and (1, 0). When n = 3, the two-dimensional
simplex is the set {(x, y, z) ∈ R

3 : x, y, z ≥ 0, x + y + z = 1}, which is the
triangle whose corners lie at (0, 0, 1), (0, 1, 0), and (1, 0, 0). See Figure 2.3.

If x is any point in Δ, then linearity of matrix multiplication can be used
to show Mwx is also a point in Δ. In other words, the image of Δ under the
map Mw is Δ itself!

Since Mw is a linear transformation, many of the points inside Δ will likely
get shuffled around. However, since Mw(Δ) = Δ, this transformation leaves
us with an identical-looking object. So we say the action of w is a “symmetry”
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x

y

y

z

x

Fig. 2.3 The 1-dimensional simplex in R
2 and 2-dimensional simplex in R

3.

of Δ. For example, if we take w = 312 acting on the 2-simplex (triangle) in
Figure 2.3, we have Mwx = (x3, x1, x2). This action is 120 degree rotation
around the line x = y = z, sending the corners to each other in a counter-
clockwise loop: (1, 0, 0) → (0, 1, 0) → (0, 0, 1) → (1, 0, 0). By contrast, if
v = 213, then Mv keeps (0, 0, 1) fixed, while swapping (1, 0, 0) with (0, 1, 0).
The action of Mv reflects the triangle across the plane x = y.

The simplex Δ is an example of a geometric object known as a “polytope.”
The study of symmetry groups of other polytopes is a vast subject involving
interesting aspects of algebra, geometry, and combinatorics.

Further reading

• Marcus du Sautoy, “Symmetry: A Journey into the Patterns of Nature,”
Harper Perennial, 2009.
This is an engaging and well-written book about symmetry and the life of
a mathematician.

• Bruce Sagan, “The Symmetric Group,” Springer Graduate Texts in Math-
ematics, 2001.
For those who have already taken a first course in abstract algebra, this is
a more advanced book on the algebraic combinatorics of permutations.

• Günter Ziegler, “Lectures on Polytopes,” Springer Graduate Texts in
Mathematics, 2006.
Despite being a “graduate text,” all that is needed to get started with this
book is a background in linear algebra.



Chapter 3

Combinations

“Mathematics is not a deductive science—that’s a cliche. When you try to
prove
a theorem, you don’t just list the hypotheses, and then start to reason. What
you do is trial and error, experimentation, guesswork.”

–Paul Halmos

∅

{1}

{1, 2}

{2}

{1, 3}

{3}

{2, 3}

{1, 2, 3}

→ 1

→ 3

→ 3

→ 1

Organizing the subsets of the set {1, 2, 3}. What happens when we count
them according to cardinality?

Binomial coefficients are among the most important whole numbers
you will ever know. Most middle-school students have seen Pascal’s triangle,
and we will see that this triangle of numbers is one of the most flexible and
durable objects in mathematics.

This chapter defines binomial coefficients and explores a few of their prop-
erties. In particular, we will find a nice formula for binomial coefficients,
prove Pascal’s recurrence, and discover some formulas for sums of binomial
coefficients.

© Springer Nature Switzerland AG 2019
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n\k 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Table 3.1 Triangle of the binomial coefficients
(
n
k

)
, or the number of k-subsets of

an n-element set.

Binomial coefficients

Definition 11. If A is a set and B is a subset of A with |B| = k, we
refer to B as a k-subset of A. The set of k-subsets of a finite set A is
denoted

(
A
k

)
, i.e.,

(
A

k

)
= {B ⊆ A : |B| = k}.

The binomial coefficient
(
n
k

)
is defined to be the number of k-subsets

of an n-element set. By definition, if |A| = n, then |(Ak
)| =

(
n
k

)
.

For example, if A = {�, 4, a, b}, we have
(

A

2

)
=

{{�, 4}, {�, a}, {�, b}, {4, a}, {4, b}, {a, b}}
,

which, since |A| = 4, establishes
(
4
2

)
= 6. Contrast this example with the

example of SA,2 following Definition 10.
Aloud we read

(
n
k

)
as “n choose k”, since each k-subset represents a differ-

ent way to choose k elements from the set. In some other books the binomial
coefficient

(
n
k

)
is denoted C(n, k), and k-subsets are sometimes called “k-

combinations.”
Notice that

(
n
0

)
= 1 since the empty set is a subset of every set, or in the

language of choice, there is precisely one way to choose nothing.

Warmup 16. Let A = {1, 2, 3, 4, 5}, and list all the elements of
(
A
3

)
.
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Caution! This definition of binomial coefficients contains no formula, though
you may have learned about a formula for

(
n
k

)
(involving a quotient of facto-

rials) in another class. We will derive the formula in Theorem 5. Until then,
rely only on what we have already proved and the definition given above.

Problem 33.
Five friends are outside a hip LA dance club, and they all want to get inside.
However, the bouncer will only take two of them. In how many different ways
can the bouncer choose a set of two of the friends to admit? Your answer here
will establish the value of

(
5
2

)
.

Problem 34.
Generalizing the previous problem, suppose n friends are outside a hip LA
dance club, but the bouncer will only admit 2 of them. In how many different
ways can the bouncer choose a set of 2 of the n friends? (Hint: be careful not
to double count!)

Problem 35.
Now the bouncer consents to admitting 3 of them. How many different ways
can the bouncer choose 3 of the n friends? 4 of the friends?

Problem 36.
Generalizing the previous problem, suppose the bouncer will now take k of the
n friends, where k ≤ n. Find a formula for the number of ways the bouncer
can choose k of the n friends. (Hint: it may help to relate this problem to the
result of Problem 30. How is sitting in a movie theater different from entering
a dance club?)

Problem 37.
Using the meanings of k-subset and k-permutation (i.e., using a bijection),
explain why

P (n, k) =
(

n

k

)
· k!.

From Problem 37 and the formula for P (n, k) in Theorem 4 it follows that
we get a nice formula for binomial coefficients using factorial notation.

Binomial formula

Theorem 5. For any n ≥ k ≥ 0,
(

n

k

)
=

P (n, k)
k!

=
n!

k!(n − k)!
.

Now, for example, we can compute
(
8
5

)
= 56 by

(
8
5

)
=

8!
5!3!

=
8 · 7 · 6
3 · 2 · 1

= 8 · 7 = 56.
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Warmup 17. Use Theorem 5 to compute the next row of Table 3.1. Describe
any patterns you see in the triangle of numbers.

Problem 38 (Pascal’s identity).
For any integers n ≥ k ≥ 1,

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1
k − 1

)
.

(This identity is why we sometimes call the array in Table 3.1 Pascal’s tri-
angle.) Prove this both by using the formula in Theorem 5 and by using
the definition of

(
n
k

)
in terms of k-subsets. Can you connect this problem to

Problem 7?

Problem 39.
Prove that (

n

k

)
=

(
n

n − k

)
,

both by using the formula in Theorem 5 and by using the definition of
(
n
k

)

in terms of k-subsets.

Problem 40.
What are the row sums in Table 3.1? That is, for any n ≥ 0, find a formula
for

n∑

k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
.

Explain your formula using the meaning of
(
n
k

)
and the result of Problem 18.

Problem 41.
What are the alternating row sums in Table 3.1? That is, for any n ≥ 0, find
a formula for

n∑

k=0

(−1)k
(

n

k

)
=

(
n

0

)
−

(
n

1

)
+

(
n

2

)
− · · · + (−1)n

(
n

n

)
.

Explain your formula using the meaning of
(
n
k

)
. Hint: this is easier to explain

when n is odd.

Problem 42.
What are the diagonal sums in Table 3.1? For n = 1, . . . , 10, find the numbers

∑

k≥0

(
n − k

k

)
=

(
n

0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ · · · .

(The sum ends after about n/2 terms because
(
a
b

)
= 0 if b > a.) Can you

think of a general way to compute the nth such sum? You don’t need to
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have an explicit formula for these numbers, but see if you can observe any
patterns.

Fig. 3.1 Going for coffee again.

Problem 43 (Starfolks, II).
I’m headed to Starfolks again. It’s still four blocks East and three blocks
North, but there’s a diagonal street as indicated in Figure 3.1. How many
ways can I get to Starfolks by walking only seven blocks? Explain your answer
in two different ways.

1. For your first explanation, ignore the diagonal street, since you won’t walk
along it anyway.

2. For your second explanation, break the set of paths into four subsetss,
according to where you cross the diagonal street.

Problem 44
A university committee is composed of 3 men and 4 women. Three of the
committee members must serve on an executive committee. How many ways
can the executive committee be chosen? Explain your answer in two different
ways.

1. For your first explanation, ignore gender.
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2. For your second explanation, break the question into cases, according to
the number of women on the executive committee.

Problem 45
Can you explain why, for any k and m less than or equal to n,

(
n

k

)
=

k∑

j=0

(
n − m

j

)(
m

k − j

)
?

For example, with n = 7, k = 3, and m = 3,
(

7
3

)
=

(
4
0

)(
3
3

)
+

(
4
1

)(
3
2

)
+

(
4
2

)(
3
1

)
+

(
4
3

)(
3
0

)
= 1·1+4·3+6·3+4·1 = 35.
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Anagrams, or multiset permutations

Anyone who has read all the Harry Potter books knows that
Voldemort’s real name is “Tom Marvolo Riddle” and at a crucial point in
the story we learn that these letters can be rearranged to spell “I am Lord
Voldemort”:

T O M M A R V O L O R I D D L E

I A M L O R D V O L D E M O R T

Of course, there were many other options available to young Mr. Riddle.
How might things have been different if instead of “LORD VOLDEMORT”
he became known as

LORD MOLD VOTER

or perhaps

OLD MR LOVE TROD?

The different arrangements of a given set of letters are called “anagrams”
and usually we only care about those rearrangements that have meaning as
words in English. However, as a mathematical notion, an anagram can be
any ordering of the set of letters. For example, a quite uninteresting anagram
of TOM MARVOLO RIDDLE is

ADDEILLMMOOORRTV.

Distinguishing “meaningful” anagrams from arbitrary rearrangements like
this one is an interesting problem, but outside the scope of this book. How-
ever, finding the number of all rearrangements is well within our grasp. How
many anagrams did Tom Riddle have to choose from? If Tom had been named
Tim, would he have had more or fewer anagrams of his name?

Before we answer these questions, let’s introduce some new mathematical
terminology.
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Multisets

Sets, by definition, have no repeated elements. By contrast, words often have
repeated letters. The notion of a “multiset” takes multiplicity into account.
Strictly speaking, a multiset is a set of pairs (x,mx), where x is an element and
mx is a positive integer representing the “multiplicity” of the element x. For
example, the set of letters in the word “OKLAHOMA” is {A,H,K,L,M,O},
whereas its multiset of letters is {(A, 2), (H, 1), (K, 1), (L, 1), (M, 1), (O, 2)}.
When there is no worry of confusion we use notation similar to usual set
notation, e.g., {A,A,H,K,L,M,O,O}.

For another example, we might have reason to consider the standard set
of 52 playing cards as a multiset in two different ways. We can ignore suits
to get a multiset with thirteen different elements, each with multipicity four:

{(A, 4), (2, 4), (3, 4), . . . , (10, 4), (J, 4), (Q, 4), (K, 4)}.

Alternatively, we can ignore ranks to get a multiset with four different ele-
ments, each with multiplicity thirteen:

{(♥, 13), (♣, 13), (♦, 13), (♠, 13)}.

Multiset permutations

The question of “how many anagrams?” now becomes the question of “how
many permutations of a multiset?” Let’s continue with the example of “OK-
LAHOMA.” There are eight letters in the word, and so there can be at most
8! anagrams. But immediately we see this is at least twice as many as we
need, since any permutation that swaps the two letters O has no effect on
the anagram. Similarly, swapping the letters A has no effect. Perhaps there
are 8!/4 anagrams?

Here is one way to answer the question clearly. Let A denote the set of ana-
grams of the multiset S = {A,A,H,K,L,M,O,O}. We want to enumerate
set A.

Suppose we make each letter distinct by adding subscripts to each of the
repeated letters, i.e., S′ = {A1, A2,H,K,L,M,O1, O2}. We might call S′ the
“linearization” of S, since it breaks the “ties” between repeated letters. Now,
set S′ has eight distinct letters and clearly 8! permutations. On the other
hand, given any anagram in set A, we can create a permutation of set S′ by
choosing where to place the subscripts on the letters O and letters A, e.g.,
see Figure 3.2. Each choice of an element of A yields four different choices of
permutation of set S′. We find |A| · 4 = |S′|!, and so |A| = 8!/4.

In general, suppose S is a multiset {(s1,m1), . . . , (sk,mk)} and let set S′

be the linearization of S obtained by making distinct copies of all repeated
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AHLOOKMA

A1HLO1O2KMA2

A1HLO2O1KMA2

A2HLO1O2KMA1

A2HLO2O1KMA1

Fig. 3.2 The ways of distinguishing repeated letters.

elements of S. Let A = A(S) denote the set of anagrams of S. For ease of
notation, we will denote the cardinality of S′ by N = m1 + · · · + mk = |S′|.

For each anagram in A, we can order the copies of the letter s1 in m1!
ways, we can order the copies of the letter s2 in m2! ways, and so on. Thus

N ! = |A| · m1!m2! · · · mk!.

Solving for |A| gives this nice result:

|A| =
N !

m1! · · · mk!
.

If we apply this formula to the “Tom Marvolo Riddle” multiset

{(A, 1), (D, 2), (E, 1), (I, 1), (L, 2), (M, 2), (O, 3), (R, 2), (T, 1), (V, 1)},

we find that there are

16!
3!2!2!2!2!

= 217, 945, 728, 000

or about 217 billion anagrams in all.
If the character was named “Tim Marvolo Riddle” then there would be

over 326 billion anagrams:

16!
2!2!2!2!2!2!

= 326, 918, 592, 000.

Multinomial coefficients

There is another way to think about counting anagrams. Let’s return to the
“OKLAHOMA” example. Any anagram corresponds to a surjection from
the set of positions of letters, {1, 2, 3, 4, 5, 6, 7, 8}, onto the set of letters,
{A,H,K,L,M,O}, such that two positions map to letter O and two positions
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map to letter A. For example, “AHLOOKMA” corresponds to this function:

1

2

3

4

5

6

7

8

A

H

K

L

M

O

How many such functions are there?
We can count these through a six-step process of choosing which arrows

point to the letters A, H, K, and so on:

• Step 1: choose which two arrows point to A.
• Step 2: choose which arrow points to H.
• Step 3: choose which arrow points to K.
• Step 4: choose which arrow points to L.
• Step 5: choose which arrow points to M.
• Step 6: choose which two arrows point to O.

In step 1, there are
(
8
2

)
ways to choose which arrows point to A. Having

completed step 1, there
(
6
1

)
ways to choose an arrow that points to H. After

making the choices in steps 1 and 2, there are
(
5
1

)
ways to decide which arrow

points to K. Continuing this line of reasoning for the remaining letters, we
find the total number of such functions is:

(
8
2

)(
6
1

)(
5
1

)(
4
1

)(
3
1

)(
2
2

)
.

Thus we can use our factorial formula for binomial coefficients to express
the number of ways to write an anagram of OKLAHOMA as:

8!
2!6!

6!
1!5!

5!
1!4!

4!
1!3!

3!
1!2!

2!
2!0!

,

which simplifies to
8!

2!2!
,

in agreement with our earlier formula.
In general, this line of reasoning applied to a multiset S = {(s1,m1), . . . ,

(sk,mk)}, with N = m1 + · · · + mk, yields the formula
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(
N

m1

)(
N − m1

m2

)
· · ·

(
mk

mk

)
=

N !
m1! · · · mk!

.

This kind of counting problem is common enough that there is a general-
ization of the notation for binomial coefficients that is sometimes used. We
write (

N

m1, . . . ,mk

)
=

N !
m1! · · · mk!

to denote the number of permutations of a multiset with multiplicities
m1, . . . ,mk and N = m1 + · · · + mk. These numbers are called “multino-
mial coefficients” since they generalize binomial coefficients, which are the
case of k = 2.

For example, the number of anagrams in the OKLAHOMA example is
(

8
2, 2, 1, 1, 1, 1

)
,

and the number of anagrams in the TOM MARVOLO RIDDLE example is
(

16
3, 2, 2, 2, 2, 1, 1, 1, 1, 1

)
.

When we read this aloud we say “sixteen choose three, two, two, two, two,
one, one, one, one, one.”

Further reading

• Howard Bergerson, “Palindromes and Anagrams,” Dover (1973).
This is just for fun! It is a collection of interesting palindromes and
anagrams. There are hundreds of word puzzle books out there that are
worth having fun with too.



Chapter 4

The Binomial Theorem

“Mathematics is the cheapest science. Unlike physics or chemistry, it does not
require any expensive equipment. All one needs for mathematics is a pencil and
paper.”

–George Pólya

0

1

00

10

11

01

000

100

110

010 001

101

111

011

How is the structure of a cube like expanding the polynomial (1 + t)3?

You may have wondered why the numbers
(
n
k

)
are called binomial co-

efficients, and not the “choice numbers” or “combination numbers” or some-
thing related to subsets. Why “binomial”? We’ll see why in this chapter,
which begins a theme for us: encoding combinatorial results algebraically.1

The main result you will prove in this section is the Binomial Theo-

rem. Then you will use this theorem to deduce several results for binomial
coefficients in a way that is relatively sweat-free. Some of these results were
already found in the previous chapter, while some would probably be much
harder to guess and prove without the Binomial Theorem.

1 Some might make the case that it’s the other way around: that combinatorics exists
to capture algebraic information. This is also true, but harder to appreciate until one
has seen a good deal of abstract algebra.

© Springer Nature Switzerland AG 2019
T. K. Petersen, Inquiry-Based Enumerative Combinatorics, Undergraduate
Texts in Mathematics, https://doi.org/10.1007/978-3-030-18308-0 4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18308-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-18308-0_4


56 4 The Binomial Theorem

Binomial Theorem

Theorem 6. If n ≥ 0, then

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

For example, we can expand (a+b)2 = a2 +2ab+b2, and row 2 of Pascal’s
triangle has

(
2
0

)
= 1,

(
2
1

)
= 2, and

(
2
2

)
= 1.

The proof of the Binomial Theorem can be done by induction using Pas-
cal’s recurrence. You will prove the theorem in the next few problems, but
for the moment try these warmup exercises to familiarize yourself with the
idea.

Warmup 18. Expand (a+ b)3 and (a+ b)4 and compare with rows 3 and 4
of Pascal’s triangle.

Warmup 19. Carefully expand the product

(a1 + tb1)(a2 + tb2)(a3 + tb3),

and group the terms according to powers of t, i.e., how many letters “b” ap-
pear in each monomial. For each monomial, write below it the set of subscripts
you see on the “b” letters. Compare with the subsets of the set {1, 2, 3}.

There is a straightforward generalization of the Binomial Theorem to the
“Trinomial Theorem” as follows:

(a + b + c)n =
∑

i+j+k=n

(
n

i, j, k

)
aibjck,

or indeed to the “Multinomial Theorem” for any r ≥ 2

(a1 + · · · + ar)n =
∑

m1+···+mr=n

(
n

m1, . . . ,mr

)
am1
1 · · · amr

r ,

where (
n

m1, . . . ,mk

)
=

n!
m1! · · ·mk!

is the multinomial coefficient discussed at the end of Chapter 3, but we will
keep our focus on the Binomial Theorem in this chapter.

Problem 46.
Prove the Binomial Theorem by induction. Hint: suppose
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(a + b)n−1 =
n−1∑

k=0

(
n − 1
k

)
akbn−1−k

and carefully expand (a + b)n = (a + b) · (a + b)n−1.

Problem 47.
The steps in this problem will prove the Binomial Theorem without induction.
Consider the following family of polynomials defined for any n ≥ 1:

fn(t) = (a1 + tb1)(a2 + tb2) · · · (an + tbn).

Hint: In Warmup 19, you looked at f3. Maybe you should also look at
f1(t), f2(t), and f4(t) before you try to answer the questions below.

1. What is the coefficient of t in fn(t)?
2. What is the coefficient of t2 in fn(t)? Try to describe this coefficient by

way of choosing terms in the product. (The mnemonic “a” for “absent”,
“b” for “be there” might help.)

3. Try to describe the coefficient of t5 in fn(t) by way of choosing terms in
the product.

4. Describe a bijection between the terms in the coefficient of tk in fn(t) and
the set of all k-subsets of {1, 2, . . . , n}.

5. Specialize the variables t, a1, b1, a2, b2, . . . to conclude the Binomial Theo-
rem.

Problem 48.
In Problem 40 you proved a formula for the row sum

n∑

k=0

(
n

k

)
.

Derive this formula as a corollary of the Binomial Theorem.

Problem 49.
Using the Binomial Theorem, find and prove a formula for

n∑

k=0

2k
(
n

k

)
.

Problem 50.
Using the Binomial Theorem, find and prove a formula for

n∑

k=0

(−2)k
(
n

k

)
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Problem 51.
If we set a = 1 and b = t in the Binomial Theorem, we get (1 + t)n =∑n

k=0

(
n
k

)
tk.

Differentiate both sides of this identity with respect to the variable t to
get a new identity, and use it to help compute the average cardinality of a
subset of {1, 2, . . . , n}, i.e., use it to compute

1
2n

⎛

⎝
∑

S⊆{1,2,...,n}
|S|

⎞

⎠ .

Problem 52.
Using the Binomial Theorem, prove that the number of subsets of n with an
odd number of elements equals the number of subsets with an even number
of elements, i.e.,

∑

k≥0

(
n

2k

)
=

∑

k≥0

(
n

2k + 1

)
,

or (
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · · .

Hint: this identity is equivalent to the identity in Problem 41.

Problem 53.
Using the Binomial Theorem, and the fact that (1+ t)n = (1+ t)n−m(1+ t)m

for any 0 ≤ m ≤ n, show that

(
n

k

)
=

k∑

j=0

(
n − m

j

)(
m

k − j

)
.

Your primary technique here should be careful algebraic bookkeeping. Com-
pare this way of proving the identity with the method you used in Problem
45.
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Counting permutations according to cycles

The polynomial from the Binomial Theorem can be thought of as
a handy algebraic device for counting subsets of {1, 2, . . . , n} according to
cardinality, i.e.,

n∑

k=0

(
n

k

)
tk =

∑

S⊆{1,2,...,n}
t|S|.

The fact that this polynomial can also be expressed as (1+t)n is just a happy
coincidence from this point of view—a compact encoding of data.

Something similar occurs in a natural counting problem related to permu-
tations. We can replace the idea of

“counting subsets according to cardinality”

with

“counting permutations according to number of cycles.”

We discussed a bit about cycle structure for permutations at the end of
Chapter 2, and now we will see how many permutations have a given number
of cycles.

Cycle notation revisited

How do we generate all permutations in cycle notation? We could first gen-
erate our permutations in one-line notation (in lexicographic order, say) and
then convert each of these into cycle notation. This works, but we can also
work directly with cycle notation. Recall that standard cycle notation has the
cycles written so that the smallest element of the cycle appears first, and we
order the cycles according to which cycle has the smallest element. For exam-
ple, we write w = (135)(24)(6)(78), not (351)(24)(6)(78) or (6)(24)(135)(78).

Now, given a permutation w in Sn−1 written in cycle notation, we can
form n different permutations in Sn by considering the insertion of “n” into
w: either n is inserted somewhere in an existing cycle of w, or not. There
are n− 1 ways to insert n into an existing cycle—for each element i < n, we
can insert “n” immediately following “i” in the cycle containing i. If n is not
added to an existing cycle, then we insert n into a new singleton cycle that
is placed at the end of w.

For example, w = (135)(24)(6)(78) gives rise to the following nine permu-
tations:

(135)(24)(6)(78)(9) (135)(24)(6)(789) (135)(24)(6)(798)
(135)(24)(69)(78) (135)(249)(6)(78) (135)(294)(6)(78)
(1359)(24)(6)(78) (1395)(24)(6)(78) (1935)(24)(6)(78)
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This recursive structure can be illustrated with a decision tree as in Figure
4.1. We can compare this method of generating permutations with the one
appearing at the end of Chapter 1.

(1)

(1)(2)

(1)(2)(3)

(1)(2)(3)(4)
(1)(2)(34)
(1)(24)(3)
(14)(2)(3)

(1)(23)

(1)(23)(4)
(1)(234)
(1)(243)
(14)(23)

(13)(2)

(13)(2)(4)
(13)(24)
(134)(2)
(143)(2)

(12)

(12)(3)

(12)(3)(4)
(12)(34)
(124)(3)
(142)(3)

(123)

(123)(4)
(1234)
(1243)
(1423)

(132)

(132)(4)
(1324)
(1342)
(1432)

Fig. 4.1 The decision tree for permutations in cycle notation.

Stirling numbers of the first kind

We are now going to try to organize permutations according to the number
of cycles. For a permutation w ∈ Sn, let us denote by cyc(w) the number of
cycles in the permutation. For example the permutation w = (135)(2)(6)(8)
has four cycles, i.e., cyc(w) = 4. In Table 4.1 we see all the permutations in
S1, S2, S3, S4 grouped according to the number of cycles.

The Stirling numbers of the first kind, denoted S(n, k), count the number
of permutations in Sn with k cycles. That is,

S(n, k) = |{w ∈ Sn : cyc(w) = k}|.
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Group cyc(w) = 1 cyc(w) = 2 cyc(w) = 3 cyc(w) = 4

S1: (1)

S2: (12) (1)(2)

S3: (123) (1)(23) (1)(2)(3)
(132) (12)(3)

(13)(2)

S4: (1234) (1)(234) (1)(2)(34) (1)(2)(3)(4)
(1243) (1)(243) (1)(23)(4)
(1324) (12)(34) (1)(24)(3)
(1342) (13)(24) (12)(3)(4)
(1423) (14)(23) (13)(2)(4)
(1432) (123)(4) (14)(2)(3)

(132)(4)
(124)(3)
(142)(3)
(134)(2)
(143)(2)

Table 4.1 Permutations in cycle notation, grouped according to number of cycles.

n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1764 1624 735 175 21 1

Table 4.2 Triangle of the numbers S(n, k), or the number of permutations in Sn

with k cycles.

The triangle of Stirling numbers for n ≤ 7 is shown in Table 4.2.
After some thought, it is easy to see that

S(n, 1) = (n − 1)!, S(n, n) = 1,
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and S(n, k) = 0 if k < 1 or k > n.
Moreover, the Stirling numbers satisfy a two-term recurrence relation

S(n, k) = (n − 1)S(n − 1, k) + S(n − 1, k − 1). (4.1)

This follows immediately if we consider our recursive procedure for generating
permutations illustrated in Figure 4.1. Each permutation in Sn with k cycles
either comes from a permutation in Sn−1 with k − 1 cycles and (n) is a
singleton cycle, or it comes from some permutation in Sn−1 that already has
k cycles. For any of these permutations that already have k cycles, we have
n − 1 options for where to place n within an existing cycle.

The Rising Factorial Theorem

Now, given Equation (4.1), we can prove a simple formula analogous to the
Binomial Theorem.

Let

(t)(n) = t(t + 1)(t + 2) · · · (t + (n − 1)) =
n−1∏

i=0

(t + i).

This polynomial is sometimes called the “rising factorial.”
The recurrence (4.1) implies (via induction) that

(t)(n) =
∑

w∈Sn

tcyc(w) =
n∑

k=1

S(n, k)tk. (4.2)

Note the second equality follows by the definition of the Stirling numbers of
the first kind. By analogy with the Binomial Theorem we might call Equation
(4.2) the Rising Factorial Theorem.

As a cool consequence of this result, we can give a slick answer to the
question:

What is the expected number of cycles in a permutation in Sn?

Our approach here mirrors that of Problem 51.
First, note that the expected value of the number of cycles is by definition

∑
w∈Sn

cyc(w)
|Sn| .

We know that S(n, k) is number of permutations with cyc(w) = k, so

∑

w∈Sn

cyc(w) =
n∑

k=1

kS(n, k).
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But simply using the power rule for derivatives we find

d

dt

[
n∑

k=1

S(n, k)tk
]

=
n∑

k=1

kS(n, k)tk−1,

and setting t = 1 gives us the sum that we want. For example, if n = 4, we
have can see from Table 4.1 that

∑
w∈S4

cyc(w) = 50, which agrees with

d

dt

[
6t + 11t2 + 6t3 + t4

]
t=1

=
[
6 · 1 + 11 · 2t + 6 · 3t2 + 4t3

]
t=1

= 50.

There are 24 permutations in S4, so we conclude the expected number of
cycles is 50/24 = 25/12.

As |Sn| = n!, we compute the expectation in general as

∑
w∈Sn

cyc(w)
|Sn| =

1
n!

d

dt

[
n∑

k=1

S(n, k)tk
]

t=1

.

This is great, but in fact we can do better since the polynomial in question
is

∑n
k=1 S(n, k)tk = (t)(n). Now from the definition of (t)(n) and the product

rule for derivatives, we have the following expression:

d

dt

[
n∑

k=1

S(n, k)tk
]

=
d

dt

[
(t)(n)

]

=
n−1∑

i=0

∏n−1
j=0 (t + j)
(t + i)

.

For example, when n = 4, the derivative of (t)(4) = t(t + 1)(t + 2)(t + 3) is

(t + 1)(t + 2)(t + 3) + t(t + 2)(t + 3) + t(t + 1)(t + 3) + t(t + 1)(t + 2).

Multiplying by 1/n! and setting t = 1 in this expression yields

1
n!

n−1∑

i=0

n!
(1 + i)

=
n∑

k=1

1
k

= Hn,

where Hn denotes the nth harmonic number!
Looking back, we see that when n = 4, the expectation was 25/12 =

1+1/2+1/3+1/4. Since the harmonic number grows logarithmically, we get
a rough estimate that a random permutation in Sn should have about ln(n)
cycles.
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Further reading

• Miklós Bóna, “Combinatorics of Permutations, 2nd. Ed.” CRC Press
(2012).
This book is a good introduction to many topics in permutation enumer-
ation, including some discussed in this book. Chapter 3 is all about cycle
structure for permutations.



Chapter 5

Recurrences

“I have had my results for a long time: but I do not yet know how I am to
arrive at them.”

–Carl Friedrich Gauss

∅

How does this diagram grow from left to right?

The sequence of Fibonacci numbers,

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

is one of the most famous sequences in all of mathematics. It is defined by
the initial values f0 = 1, f1 = 1, and the identity fn = fn−1+fn−2 that holds
for all n ≥ 2.

Other sequences satisfy similar identities, called recurrence relations.
In this chapter we will see several different recurrence relations arising from
enumeration problems. The Pascal identity for binomial coefficients is an-
other sort of recurrence relation. It is a two-dimensional recurrence since it
generates a two-dimensional array of numbers rather than a one-dimensional
line of numbers like a sequence.

© Springer Nature Switzerland AG 2019
T. K. Petersen, Inquiry-Based Enumerative Combinatorics, Undergraduate
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Problem 54.
Generate the first few terms for the sequences defined by the following recur-
rences. Give an explicit formula for the terms of the sequence if possible.

1. a0 = 1, an = 2an−1 for n ≥ 1.
2. a0 = 1, an = nan−1 for n ≥ 1.
3. a0 = 0, an = an−1 + n for n ≥ 1.

4. a0 = 1, an =
n−1∑

i=0

aian−1−i for n ≥ 1.

5. a0 = 0, an = an−1 +
n∑

i=0

(i + n) for n ≥ 1.

6. a0 = 1, an =
n−1∑

k=0

(
n − 1

k

)
ak for n ≥ 1.

Compositions

Definition 12. A composition of n is an ordered list of positive in-
tegers whose sum is n, i.e., α = (α1, . . . , αk) is a composition of n if
and only if all αi > 0 are positive integers and α1 + · · · + αk = n.

Notice that (2, 2, 1) and (1, 2, 2) are two different compositions of 5. (If we
ignore the ordering on the list we get “partitions” rather than compositions.
This is the subject of Chapter 12.)

A composition made up of k positive integers, e.g., α = (α1, . . . , αk) is said
to have k parts. For example, (3, 2) is a composition with two parts, while
(3, 1, 1) has three parts.
Warmup 20. List all the compositions of 3, then list all compositions of 4.
Group the compositions in your lists by the number of parts.

Problem 55.
This problem explores some properties of compositions.

1. Let cn denote the number of compositions of n. Express cn in terms of
cn−1.

2. Write a formula for cn in terms of n.
3. How many compositions of n have k parts? Can you describe a bijection

between subsets and compositions?

Problem 56.
How many ways can you write n as a sum of ones and twos, i.e., how many
compositions of n have αi ∈ {1, 2}?

Problem 57.
How many ways can you write n as a sum of odd numbers, i.e., how many
compositions of n have αi ∈ {1, 3, 5, 7, 9, . . .}?
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Fig. 5.1 Two domino tilings of a 2 × 10 rectangle.

Problem 58 (Domino tilings).
A domino tiling is a way to cover a rectangle with 1 × 2 or 2 × 1 rectangles
so that the rectangles cover the larger rectangle with no overlapping and no
hanging over the edges.

How many domino tilings of a 2×10 rectangle are there? We see two such
tilings in Figure 5.1.

What about a 2 × n rectangle?

Problem 59 (Handshake problem).
When the math club executive board meets, each of the members shakes
hands with every other board member exactly once.

1. If there are three members, how many handshakes occur?
2. If a fourth person joins the board, how many more handshakes occur?
3. Let Tn denote the number of handshakes if the executive board has n

members. Express Tn in terms of Tn−1.
4. Write a formula for Tn in terms of n. (The numbers Tn are called the

triangular numbers. Can you think why?)
5. Can you relate the handshake problem to the complete graph Kn defined

in Problem 8?

Problem 60.
Suppose n lines are drawn so that no two lines are parallel and no three lines
intersect at any one point. (Such a set of lines is called generic, or is said to
be in general position.) Into how many regions is the plane divided by n such
lines?

How many of the regions are unbounded? bounded? For example, with
n = 3 lines there are six unbounded regions and one bounded region. Try to
use a recurrence to help guide your answer.
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Fig. 5.2 Three lines in general position.

�
Starfolks

Highway

Me

Fig. 5.3 Going for coffee one more time.

Problem 61 (Starfolks, III).
Okay, now I’m in a corner of town that abuts the highway, so my grid of
streets is incomplete, as seen in Figure 5.3. Starfolks is five blocks East and
five blocks North of me, but the highway runs on a straight diagonal line
between me and my coffee.
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Without walking along (or crossing) the highway, how many ways are there
to get to Starfolks?

What if Starfolks was n blocks East and North of me? (Hint: try to show
the recurrence from Problem 54, part 4, holds.)

Fig. 5.4 A set partition of ten people.

Problem 62.
There are ten people at a party. As will happen, some smaller groups start
to form, possibly with some people standing quietly by themselves. Perhaps
you look around the room and see a group of four, two pairs of people, and
two different people standing all by themselves, as in Figure 5.4.

The mathematical term for this splitting into groups is a set partition, i.e.,
a way to break up a set into a collection of nonoverlapping subsets. This can
range from having each element in a set by itself, to having all the elements
together in a single group.
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How many ways can these ten people be split into smaller groups? (Hint:
try to show that for a party of n people, the number of set partitions obeys
the recurrence in part 6 of Problem 54.)
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Lucas numbers and polynomials

The Fibonacci numbers have attracted a lot of popular attention. People
seem to find them everywhere! There could be many reasons why this is. One
reason might be because the recurrence relation they satisfy,

fn = fn−1 + fn−2,

is so darn simple. Add two terms together. A grade-school kid can do it.
Hmmm. “Add two terms together” also describes Pascal’s recurrence—is that
why binomial coefficients are ubiquitous too?

Before starting the next chapter, we will explore a sequence of numbers
called the “Lucas numbers” that are close cousins of the Fibonacci numbers.
We will also generalize both sequences of numbers to sequences of polynomi-
als.

The golden ratio

One of the things that novelists and movie producers like to drop into their
stories to sound smart is “the golden ratio” often denoted by ϕ. The definition
of the golden ratio is as the limit of ratios of consecutive Fibonacci numbers:

ϕ = lim
n→∞

fn
fn−1

.

The sequence of ratios begins:

1
1

= 1,
2
1

= 2,
3
2

= 1.5,
5
3

≈ 1.666,
8
5

= 1.6,
13
8

= 1.625,
21
13

≈ 1.615,

and, assuming the limit exists, it is not too hard to compute.
Using the recurrence, we have

ϕ = lim
n→∞

fn
fn−1

,

= lim
n→∞

fn−1 + fn−2

fn−1
,

= 1 + lim
n→∞

fn−2

fn−1
,

= 1 +
1
ϕ

.

Rewriting, we find
ϕ2 − ϕ − 1 = 0,
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and solving for ϕ, we have

ϕ =
1 +

√
5

2
= 1.6180339887 . . . .

We know the answer is the larger root since the smaller root, (1 − √
5)/2, is

a negative number.

Lucas numbers

The sequence of Lucas numbers is similar to the Fibonacci sequence. It begins

1, 3, 4, 7, 11, 18, 29, 47, . . .

and its recursive definition is nearly identical to the one for Fibonacci num-
bers. The only difference is in the starting values. That is, we define L0 = 1,
L1 = 3, and if n ≥ 2, Ln = Ln−1 + Ln−2.

Since the limit of ratios of consecutive Fibonacci numbers gave us the
golden ratio, we might wonder what the limit of ratios of consecutive Lucas
numbers looks like. Experimentally, we find

3
1

= 3,
4
3

≈ 1.333,
7
4

= 1.75,
11
7

≈ 1.571,
18
11

≈ 1.636,
29
18

≈ 1.611, . . . .

This looks pretty close to the golden ratio. What is going on?
If we look back at the derivation of the golden ratio ϕ above, we see that

all we used was the recurrence relation for the Fibonacci numbers. Since the
Lucas numbers satisfy the same recurrence, we will have limn→∞ Ln+1/Ln =
ϕ as well.

This makes some sense, because in another context, we would call the
limit of ratios of consecutive values the “growth rate” of the sequence. If two
sequences are generated by the same recurrence relation, it seems clear that
they should have the same growth rate.

Generalized Lucas numbers

The Fibonacci numbers and the Lucas numbers are but two sequences in an
infinite family of sequences that all have ϕ as their growth rate. Define the
generalized Lucas numbers, or the (a, b)-Lucas numbers to be the sequence
that begins L0 = a and L1 = b, and satisfying Ln = Ln−1+Ln−2. The classi-
cal Fibonacci numbers are the (1, 1)-Lucas numbers, and the Lucas numbers
of the previous section are the (1, 3)-Lucas numbers. Interestingly, any (a, b)-



Lucas numbers and polynomials 73

Lucas number is a linear combination of classical Fibonacci numbers. That
is, the (a, b)-Lucas sequence begins

a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, 5a + 8b, . . . , fn−2a + fn−1b, . . . .

It can be fun to make up your own favorite sequence by choosing the values
of a and b to suit your fancy, e.g., you can choose a to be a month (1, 2, . . . ,
12) and b to be a date (from the first to the last of the month). I happen to
be fond of the “April fools” sequence:

4, 1, 5, 6, 11, 17, 28, 45, 73, 118, 191, . . . .

Matching polynomials

There is another interesting generalization of Fibonacci and Lucas numbers
that comes from graph theory.

Define a matching of a graph to be a subgraph in which each vertex is
connected to at most one other vertex. The graph with zero edges is always
considered a matching, the “empty” matching. For example, the complete
graph on five vertices has twenty-six matchings: the empty matching and
twenty-five matchings with at least one edge, as shown in Figure 5.5.

The matching polynomial of a graph G is defined to be the sum

MG(t) =
∑

matchings m of G

t|m|,

where |m| denotes the number of edges in the matching. For example, with
the complete graph K5 we have

MK5(t) = 1 + 10t + 15t2.

Fibonacci polynomials and Lucas polynomials

In Figure 5.6 we see the thirteen matchings of the graph

We call a graph that has its nodes connected in this way a path graph, denoted
Pn, where n is the number of vertices. This example is P6. A sharp-eyed reader
might notice the connection between matchings on Pn and domino tilings of
a 2 × n rectangle as described in Problem 58.

From Figure 5.6 we compute the matching polynomial for P6 to be
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Fig. 5.5 The nonempty matchings of the complete graph K5.

MP6(t) = 1 + 5t + 6t2 + t3.

Looking at the smaller cases, we find

MP1(t) = 1,
MP2(t) = 1 + t,

MP3(t) = 1 + 2t,

MP4(t) = 1 + 3t + t2,

and
MP5(t) = 1 + 4t + 3t2.

Since a matching either has an edge connected to its rightmost vertex or
it doesn’t, we have

MPn
(t) = MPn−1(t) + tMPn−2(t).

In pictures this says matchings either look like
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Fig. 5.6 The thirteen matchings of the path P6.

(matching on Pn−1)

or

(matching on Pn−2)

Since setting t = 1 recovers the Fibonacci sequence, the polynomials
MPn

(t) are sometimes known as the Fibonacci polynomials.
Similarly, the Lucas polynomials are the matching polynomials for the

cycle graphs:

C1 C2 C3 C4 C5
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We can see that MC1(t) = 1, MC2(t) = 1 + 2t, and (with a little work)

MCn
(t) = MCn−1(t) + tMCn−2(t). (5.1)

Thus, setting t = 1 in this recurrence generates the Lucas numbers.
Proving (5.1) is not quite as obvious as in the case of the path graph, but

by considering whether a fixed node is matched to the left, right, or neither,
we can prove the following recurrence:

MCn
(t) = 2tMPn−2(t) + MPn−1(t),

or, considering whether a fixed edge is present or not,

MCn
(t) = MPn

(t) + tMPn−2(t).

(Can you draw pictures to illustrate these recurrences?)
Applying these recurrence relations, we find:

MCn−1(t) + tMCn−2(t) = MPn−1(t) + tMPn−3(t) + tMPn−3(t) + 2t2MPn−4(t)
= MPn−1(t) + 2t(MPn−3(t) + MPn−4(t))
= MPn−1(t) + 2tMPn−2(t)
= MCn

(t).

Thus we have established (5.1).

Further reading

• Art Benjamin and Jennifer Quinn, “Proofs that really count: The Art of
Combinatorial Proof,” Mathematical Association of America (2003).
This book is a great read and gives a good way to think about bijective
style proofs. Fibonacci numbers feature prominently.

• Martin Griffiths, “The golden string, Zeckendorf representations, and the
sum of a series,” American Mathematical Monthly, 118 (2011), 497–507.
This article discusses Fibonacci numbers and a result due to Zeckendorf
which says any number can be written uniquely as a sum of nonconsecutive
Fibonacci numbers. Cool!
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Generating functions

“A generating function is a clothesline on which we hang up a sequence of
numbers for display.”

–Herb Wilf

A clothesline of numbers.

You may recall from a calculus class the geometric series:

1
1 − z

= 1 + z + z2 + z3 + · · · + zk + · · · =
∑

k≥0

zk.

The coefficients in the (MacLaurin) series expansion of a function F (z) define
a sequence of numbers. Generally, if F (z) has MacLaurin series

∑

k≥0

akz
k = a0 + a1z + a2z

2 + · · · + akz
k + · · · ,

we can relate the function F with the sequence a0, a1, a2, . . .. So the function
1/(1 − z) encodes the rather boring sequence 1, 1, 1, . . ..

What about working the other way around? Given a sequence, is there
a function that encodes the sequence? Yes! And this function is called the
generating function for the sequence. In this chapter we will explore some
properties of generating functions. We will practice both (1) how to extract
a sequence from a generating function, and (2) how to find the generating
function for a sequence. The first task is fairly mechanical, whereas the second
can be very tricky (and very interesting!) in general.
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Power series generating functions

Definition 13. Given a sequence of numbers a0, a1, a2, . . . , ak, . . ., we
define its formal power series by:

F (z) =
∑

k≥0

akz
k = a0 + a1z + a2z

2 + · · · + akz
k + · · · .

We also refer to F as the generating function for the sequence.

We typically use capital letters like F,G, or A to denote the names of
generating functions, while we use lower case letters like q, t, x, y, or z for the
arguments. Feel free to choose notation to suit your taste.

Formal power series obey much the same arithmetic operations as polyno-
mials, listed here.

• c ·
∑

k≥0

akz
k =

∑

k≥0

(c · ak)zk for any constant c,

•
⎛

⎝
∑

k≥0

akz
k

⎞

⎠ +

⎛

⎝
∑

l≥0

blz
l

⎞

⎠ =
∑

m≥0

(am + bm)zm,

•
⎛

⎝
∑

k≥0

akz
k

⎞

⎠

⎛

⎝
∑

l≥0

blz
l

⎞

⎠ =
∑

j≥0

⎛

⎝
∑

k+l=j

akbl

⎞

⎠ zj ,

=
∑

j≥0

(
j∑

k=0

akbj−k

)
zj .

We can also compute derivatives of power series using the power rule:

d

dz

⎡

⎣
∑

k≥0

akz
k

⎤

⎦ =
∑

k≥0

kakz
k−1 =

∑

l≥0

(l + 1)al+1z
l,

and this derivative obeys all the usual rules of calculus.
Logically, one can take two points of view for these rules for power se-

ries manipulation. With analysis (calculus) in mind, we could only wish to
consider functions whose series expansions converge absolutely in some neigh-
borhood of the origin, in which case all three properties hold easily. Alterna-
tively, we can take an algebraic approach in which we define the ring of formal
power series. Here the second and third properties define the ring operations
of addition and multiplication. Either way, let’s not sweat the details right
now.
Note: You don’t need an infinite sequence to have a generating function.
If you like, finite sequences are just sequences with infinitely many zeroes
attached at the end. This is just the same as considering polynomials of
finite degree to be special kinds of formal power series.
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For example, the Binomial Theorem shows that the generating function
for the sequence

(
n
0

)
,
(
n
1

)
, . . . ,

(
n

n−1

)
,
(
n
n

)
is the function (1 + z)n. We will see

other polynomial generating functions in Chapters 8 and 9.

Problem 63.
In this problem, we derive the geometric series identity as a fact about mul-
tiplicative inverses in the ring of formal power series. Let F (z) =

∑
k≥0 zk,

and let G(z) = 1 − z. Show that F (z)G(z) = 1.
We conclude that F is the multiplicative inverse of G, which we write as

a reciprocal F (z) = 1/G(z). In other words,

1
1 − z

= 1 + z + z2 + z3 + · · · .

Problem 64.
Taking the geometric series identity in Problem 63 as a starting point, what
sequences are defined by the following generating functions?

1.
1

1 + z

2.
1

1 − 2z

3.
1

z − 3
4.

1
1 − z2

5.
1

(1 − z)2

Problem 65.
Multiplying a power series by 1/(1 − z) has a nice effect on a power series.
If F (z) =

∑
j≥0 ajz

j , what sequence has generating function F (z)/(1 − z)?
That is, if

F (z)
1 − z

=
∑

k≥0

bkz
k,

what are the numbers bk in terms of the aj?

Problem 66.
Show that

1
(1 − z)3

=
∑

n≥0

Tn+1z
n,

where Tn is the nth triangular number discussed in Problem 59.

Problem 67.
With the usual differentiation rules from calculus applied to rational func-
tions, find the sequences defined by the following series, where n ≥ 1.
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1.
dn

dzn

[
1

1 − z

]

2.
1

(1 − z)n

Can you find these sequences in Tables 2.1 and 3.1?

Problem 68.
What sequence is defined by the following generating function?

1
1 − 5z + 6z2

Problem 69.
Suppose α and β are nonzero real numbers. What sequences are defined by
the following generating functions?

1.
1

1 − αz

2.
1

1 − βz

3.
1

(1 − αz)(1 − βz)

Now find constants A and B (in terms of α and β) such that

1
(1 − αz)(1 − βz)

=
A

(1 − αz)
+

B

(1 − βz)

and derive another expression for the sequence given in part 3. You may also
want to compare with the example in Problem 68.

1

1− −
= 1 + + + + + + + · · ·

Fig. 6.1 A generating function for domino tilings of a 2×n rectangle (see Problem 58).

Problem 70.
Recall that the Fibonacci numbers are defined by f0 = 1, f1 = 1, and fn =
fn−1 + fn−2 for n ≥ 2. Find a formula for the generating function for the
Fibonacci sequence:

F (z) =
∑

k≥0

fkz
k = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + · · ·
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A hint is suggested by Figure 6.1.

Problem 71.
Using the formula from Problem 70, along with the results of Problem 69,
find a (non-recursive) formula for the nth Fibonacci number.

Problem 72.
We can encode two-dimensional arrays of numbers with bivariate generating
functions in many circumstances. Here is one example. Define the generating
function F (t, z) by

F (t, z) =
∑

n≥k≥0

an,kt
kzn =

1
1 − (1 + t)z

.

What is an,k?

Problem 73.
Use your expressions from Problems 70 and 72 to prove the following Fi-
bonacci identity (which we first glimpsed in Problem 42):

fn =
∑

k≥0

(
n − k

k

)
.

Problem 74.
Let a0, a1, a2, . . . be the sequence defined by part 4 of Problem 54, i.e., a0 = 1
and an =

∑n−1
i=0 aian−1−i for n ≥ 1. Find an expression for the generating

function of this sequence.

Problem 75.
This problem explores a family of generating functions.

1. Find a formula for the generating function for the sequence of squares:

V2(z) =
∑

k≥0

k2zk = z + 4z2 + 9z3 + 16z4 + · · · + k2zk + · · · .

2. Find a formula for the generating function for the sequence of cubes:

V3(z) =
∑

k≥0

k3zk = z + 8z2 + 27z3 + 64z4 + · · · + k3zk + · · · .

3. Let Vn(z) denote the generating function for the sequence of nth powers:

Vn(z) =
∑

k≥0

knzk = z + 2nz2 + 3nz3 + 4nz4 + · · · + knzk + · · · .

Find a formula for Vn(z) in terms of Vn−1(z).
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Problem 76.
With Vn(z) as in Problem 75, let An(z) = (1 − z)n+1Vn(z). Find a formula
for An(z) in terms of An−1(z), and use this recurrence (perhaps with the aid
of a computer) to make a table of the coefficients of these polynomials (Wait!
These are polynomials?!) for n = 1, 2, . . . , 8.

What happens when you set z = 1 in An(z)?
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Money problems

Here is a question that any third grader can understand:

How many ways can you give someone a dollar using only pennies, nickels,
dimes, and quarters?

In mathematical terms, how many nonnegative integer solutions are there to
the equation

1 · a + 5 · b + 10 · c + 25 · d = 100?

If we are systematic about it, we can probably get to the answer through
careful bookkeeping. How many ways can we do it with zero quarters? With
one quarter? two? three?

But that seems inelegant.
A slick answer to the question comes from the generating function ap-

proach. Let’s first think about using pennies and nickels only.
The generating function for amounts of money made with pennies only is

1
1 − z

= 1 + z + z2 + z3 + · · · =
∑

a≥0

za,

and with nickels only the generating function is

1
1 − z5

= 1 + z5 + z10 + z15 + · · · =
∑

b≥0

z5b.

Thus, the product of these two functions will be

1
(1 − z)(1 − z5)

=
∑

a,b≥0

za+5b.

This means the coefficient of zk will be the number of ways to express k as a
nonnegative linear combination of 1 and 5, i.e., the number of ways to write
k = a + 5b.

Adding in factors for dimes and quarters, we can answer the original ques-
tion by saying that it is the coefficient of z100 in the function

Fcoins(z) =
1

(1 − z)(1 − z5)(1 − z10)(1 − z25)
.

Computer software tells us this coefficient happens to be 242. For example,
using the computer algebra software Maple I type

Fcoins:=1/(1-z)/(1-zˆ5)/(1-zˆ(10))/(1-zˆ(25)):
and then

series(Fcoins,z,101);
to see the output



84 6 Generating functions

1 + z + z2 + z3 + z4 + 2z5 + 2z6 + · · · + 213z99 + 242z100 + O(z101).

To just get the coefficient alone, I can type
coeff(series(Fcoins,z,101), zˆ(100));

and it spits out the number 242.
But what if we have other constraints?

Small purse solutions

Now suppose we have a small change purse, and it can hold no more than
twenty coins. Then we need to restrict our solutions.

How many ways can you give someone a dollar using at most twenty coins?

We can get the answer to this question by modifying our generating func-
tion to keep track of the total number of coins used. Now, let

Fcoins(t, z) =
1

(1 − tz)(1 − tz5)(1 − tz10)(1 − tz25)
.

Then we can see now that each time we use a power of (say) z10 from the
third term in the denominator we get a power t to indicate which power of
z10 we used, i.e., how many dimes we are going to take. We get

Fcoins(t, z) =
∑

a,b,c,d≥0

(tz)a(tz5)b(tz10)c(tz25)d

=
∑

a,b,c,d≥0

ta+b+c+dza+5b+10c+25d.

This means the coefficient of tnzk is the number of ways to choose n coins that
add up to k cents. Let αn,k denote this coefficient. This is almost what we
want.

What we would really like is α20,100 + α19,100 + · · · + α1,100. We can either
extract each of these from Fcoins separately and add them up, or we can use
the trick of Problem 65 and multiply by 1/(1 − t) to get

Fcoins(t, z)
1 − t

=
∑

n,k≥0

⎛

⎝
∑

0≤m≤n

αm,k

⎞

⎠ tnzk

=
∑

n,k≥0

βn,kt
nzk,

where βn,k is the number of ways to make k cents using at most n coins.
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We find the answer to our “small purse” question is the coefficient of
t20z100 in this generating function. Computer software tells us the answer is
65.

Attainable amounts

If we look at the coefficient of zk in Fcoins(t, z), it is a polynomial in t that
records the number of ways to make k cents according to the number of coins
used. For example, the coefficient of z10 is t + t2 + t6 + t10, which reflects the
fact that we can make 10 cents with one dime, two nickels, one nickel and
five pennies, or ten pennies.

On the other hand, if we look at the coefficient of tn in Fcoins(t, z), it is
a polynomial in z that records the different amounts of money that can be
made with n coins. For example, the coefficient of t2 is

z2 + z6 + z10 + z11 + z15 + z20 + z26 + z30 + z35,

which tells us there are nine different amounts that can be made from two
coins, and each of these amounts can be made in one way.

Likewise, the coefficient of tn in Fcoins(t, z)/(1 − t) is a polynomial in z
that records the number of ways to make different amounts of money from
at most n coins. The coefficient of t2 here records the number ways to make
different amounts of money using at most two coins. It is

1 + z + z2 + z5 + z6 + 2z10 + z11 + z15 + z20 + z25 + z26 + z30 + z35.

We see there are now two ways to make ten cents (two nickels or one dime)
and many more values are attainable. This leads us to a natural question.

Which values are not attainable?

The postage stamp problem

This version of the question is sometimes called the “postage stamp problem”
since it was originally phrased in terms of sending a letter with restrictions on
the number and type of stamps.

You can fit at most n stamps on the letter. Given the values of the different
stamps, what is the smallest amount of postage you cannot put on the letter?

Suppose for illustration purposes our stamps are like our coins and come in
denominations of 1, 5, 10, and 25. Then Fcoins(t, z)/(1−t) contains the answer
to our question in some sense. Indeed, the smallest unattainable value is the
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first power of z not to appear in the coefficient of tn. With n = 2 stamps, we
see that three cents is the smallest unattainable value.

As a more interesting example, consider n = 5 stamps. The coefficient of
t5 from Fcoins(t, z)/(1 − t) is shown in Figure 6.2. Can you find the smallest
missing power of z?

1 + z + z2 + z3 + z4 + 2z5 + z6 + z7 + z8 + z9 + 2z10 + 2z11

+2z12 + 2z13 + z14 + 2z15 + 2z16 + 2z17 + z18 + 3z20 + 3z21

+2z22 + z23 + 4z25 + 3z26 + 2z27 + z28 + z29 + 4z30 + 3z31

+2z32 + z33 + 4z35 + 3z36 + 2z37 + z38 + 4z40 + 3z41 + z42

+4z45 + 2z46 + z47 + 4z50 + 2z51 + z52 + z53 + 3z55 + 2z56

+z57 + 3z60 + 2z61 + z62 + 3z65 + z66 + 2z70 + z71 + 2z75

+z76 + z77 + 2z80 + z81 + 2z85 + z86 + z90 + z95 + z100

+z101 + z105 + z110 + z125

Fig. 6.2 The coefficient of t5 in Fcoins(t, z)/(1 − t).

Frobenius numbers

The postage stamp problem is about unattainable values where the number
of coins is constrained. A different kind of problem arises when we allow any
number of coins.

Let’s state the general problem, sometimes known as the coin problem or
the Frobenius problem.

You have an unlimited supply of coins in n different (fixed) denominations:
d1, . . . , dn. What is the largest amount of money that cannot be obtained using
these coins?

With enough pennies, any value is attainable, so let’s assume all the de-
nominations are greater than one: di > 1.

Further, if all the denominations have a common divisor, d, greater than 1,
then every amount we create will be a multiple of d, so it is more interesting
to assume gcd(d1, . . . , dn) = 1.

In this situation, it turns out (though it’s not immediately obvious) that
every sufficiently large amount of money will be attainable. The largest
unattainable amount is known as the Frobenius number of the set {d1, . . . , dn},
sometimes denoted g(d1, . . . , dn).

As a very small example, g(3, 5) = 7. The number 7 is unattainable with
threes and fives, since we cannot get 7 with only threes, and using a 5 would
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leave 2, which is clearly unattainable since it is smaller than 3. On the other
hand, we can get 8 = 5 + 3, 9 = 3 · 3, and 10 = 2 · 5, and every number larger
than 10 can be obtained by adding sufficiently many threes.

For the case of two denominations, there is a formula for the Frobenius
number. If gcd(d1, d2) = 1, then

g(d1, d2) = d1d2 − d1 − d2.

This formula can be proved with a little bit of elementary number theory.
For more than two denominations, however, there is no such formula except
in special cases.

Our generating function approach gives one way to find the Frobenius
number. Let’s consider the case of d1 = 6, d2 = 9, and d3 = 20 to illustrate.
These are the sizes of boxes of Chicken McNuggets from the McDonald’s of
my youth. (Nowadays the boxes come in sizes 4, 6, 10, and 20, and since
there are no odd box sizes, the story is very different.) What is the largest
unattainable number of nuggets, i.e., what is g(6, 9, 20)? First, we will define
the relevant generating McFunction

Fnugget(z) =
1

(1 − z6)(1 − z9)(1 − z20)
=

∑

a,b,c≥0

z6a+9b+20c.

For this question we don’t really care about the coefficients in the series,
only which coefficients are nonzero. Since 6 is our smallest denomination,
once we see six consecutive nonzero terms, we know that all larger terms will
be nonzero as well, just by adding sixes. With a little computer assistance,
we expand Fnugget(z) as shown in Figure 6.3.

Fnugget(z) = 1
+z6

+z9 +z12

+z15 +2z18

+z20 +z21 +2z24

+z26 +2z27 +z29 +2z30

+z32 +2z33 +z35 +3z36

+2z38 +2z39 +z40 +z41 +3z42

+2z44 +3z45 +z46 +2z47 +3z48

+z49 +2z50 +3z51 +z52 +2z53 +4z54

...

Fig. 6.3 Expanding the Chicken McNugget generating function.

The coefficient of z43 is zero, but the next six terms have nonzero co-
efficients. Hence, g(6, 9, 20) = 43, i.e., 43 is the largest “non-nuggetable”
number.
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Further reading

• Matthias Beck and Sinai Robins, “Computing the Continuous Discretely:
Integer Point Enumeration,” Springer, 2007.
This book is an interesting blend of ideas from geometry and combina-
torics. It begins by developing a geometric understanding of some of the
problems in this chapter.

• Herb Wilf, “generatingfunctionology,” AK Peters, 2006.
As the title suggests, this book is all about generating functions. Wilf
employs both a combinatorial and an analytic perspective.



Chapter 7

Exponential generating functions
and Bell numbers

“The art of doing mathematics consists in finding that special case which con-
tains all the germs of generality.”

–David Hilbert

How many ways can nine people group themselves?

How to partition a finite set? This question is almost as fundamental
as how to select a subset of elements, or how to permute the elements in the
set. However, the answer to the question turns out to be rather more delicate,
which is why we have deferred the question until now.

In this chapter we will introduce a new kind of generating function, known
as an exponential generating function. This type of generating func-
tion will help us to study the number of ways to partition a set, both with
and without order on the blocks.
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Exponential generating functions

Definition 14. Given a sequence of numbers a0, a1, a2, . . . , ak, . . . ,
we define its exponential generating function by

F (z) =
∑

k≥0

ak
zk

k!
= a0 + a1z + a2

z2

2
+ · · · + ak

zk

k!
+ · · · .

For example, the sequence 1, 1, 1, . . . has exponential generating function

ez =
∑

k≥0

zk

k!
= 1 + z +

z2

2
+ · · · +

zk

k!
+ · · · ,

where ez = exp(z) is the usual exponential function from calculus. To avoid
confusion, we refer to the generating function of Definition 13 as an ordinary
generating function.

Any particular sequence has both an ordinary and an exponential generat-
ing function. There is no rule that says we must use the ordinary generating
function or that we must use the exponential generating function. We simply
use the one that works best for us. So for example, the sequence 1, 1, 1, . . . has
exponential generating function ez and ordinary generating function 1/(1−z).

Warmup 21. What is the exponential generating function for the sequence
of factorials: 1, 1, 2, 6, 24, . . . , k!, . . .?

If a sequence of numbers grows too quickly, e.g., if k
√|ak| is unbounded,

a nice closed-form expression for the ordinary generating function is unlikely
since the series will diverge for z �= 0. An added bonus of using the exponential
generating function is that we are more likely to find a convergent power
series.

Problem 77.
Find the power series expansions for sin(z) and cos(z). (It is not important
whether you do this by hand or look it up; just find the correct series ex-
pansions.) What sequences have these as exponential generating functions?
What are the corresponding ordinary generating functions?

Problem 78.
What is the exponential generating function for the sequence 0, 1, 2, 3, . . .?
What is the exponential generating function for the sequence 1, 2, 3, 4, . . .
(i.e., starting at 1 instead of 0)?

Problem 79 (Multiplication for exponential generating functions).
Prove that if

F (z) =
∑

k≥0

ak
zk

k!
and G(z) =

∑

l≥0

bl
zl

l!
,
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are the exponential generating functions for the sequences a0, a1, a2, . . . and
b0, b1, b2, . . ., then their product is

∑

m≥0

(
m∑

k=0

(
m

k

)
akbm−k

)
zm

m!
.

Problem 80.
Suppose F (z) is the exponential generating function for a sequence a0, a1, a2, . . ..
What sequence has F ′(z) as its exponential generating function? In other
words, if

F ′(z) =
∑

l≥0

bl
zl

l!
,

what is the sequence b0, b1, b2, . . .?

Problem 81.
Let a0, a1, a2, . . . be the sequence from part 6 of Problem 54, defined by a0 = 1
and the recurrence

an+1 =
n∑

k=0

(
n

k

)
ak,

for n ≥ 0. Find the exponential generating function for the sequence
a0, a1, a2, . . ., i.e., find an expression for

F (z) =
∑

n≥0

an
zn

n!
.

Your answer should be expressible in terms of well-known functions.

Problem 82.
A derangement is a permutation such that for all i, w(i) �= i. For example,
231 and 312 are derangements of {1, 2, 3}. Let dn denote the number of
derangements of {1, 2, . . . , n}, with d0 = 1.

1. Show that for n ≥ 0,

n! =
n∑

k=0

(
n

k

)
dn−k.

(Hint: count all permutations in cases according to the number of fixed
points.)

2. Use the identity above to find a formula for the exponential generating
function ∑

n≥0

dn
zn

n!
.
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n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

Table 7.1 Triangle of the Stirling numbers
{
n
k

}
, or the number of set partitions of

{1, 2, . . . , n} with k blocks.

Set partitions

Definition 15. A set partition of a finite set S is a collection of
pairwise disjoint, nonempty subsets whose union is the whole set.

For example, here are three different set partitions of the set S =
{a, 2, !, π}:

{{a}, {2}, {!}, {π}},

{{a, 2, !, π}},

{{a, !}, {2, π}}.

Notice that each set partition is a set of subsets. The sets in the partition are
often referred to as “blocks”. Thus we would say the partitions above have 4
blocks, 1 block, and 2 blocks, respectively.

Warmup 22. List all the set partitions of the set {1, 2, 3} and all set parti-
tions of the set {1, 2, 3, 4}. Group your set partitions according to the number
of blocks in the partition.

Stirling numbers

Definition 16. The Stirling numbers of the second kind, denoted{
n
k

}
, count the number of set partitions of an n-element set with k

blocks.
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In the essay after Chapter 4 we saw other kinds of Stirling numbers, Stirling
numbers “of the first kind” that count permutations with a given number of
“cycles,” but we won’t discuss these here.

Problem 83.
Show that the Stirling numbers satisfy the following recurrence for n ≥ k ≥ 1:

{
n

k

}
=

{
n − 1
k − 1

}
+ k

{
n − 1

k

}
.

Problem 84.
For any k ≥ 1, let Sk(z) denote the exponential generating function for the
number of set partitions with k blocks, i.e.,

Sk(z) =
∑

n≥k

{
n

k

}
zn

n!
.

Prove that

Sk(z) =
(ez − 1)k

k!
.

Bell numbers and Bell polynomials

Definition 17. The nth Bell number is the number of set partitions
of an n-element set, denoted Bn. The nth Bell polynomial is the gen-
erating function for the Stirling numbers of the second kind:

Bn(t) =
n∑

k=1

{
n

k

}
tk.

For n = 0, we define B0 = 1 and B0(t) = t.

For example, B3(t) = t + 3t2 + t3 and B4(t) = t + 7t2 + 6t3 + t4. Note in
particular that Bn(1) = Bn.

Problem 85.
Prove that the Bell numbers satisfy the following recurrence for n ≥ 1:

Bn =
n−1∑

k=0

(
n − 1

k

)
Bk.

Note this gives a combinatorial interpretation to the recurrence in part 6 of
Problem 54.

Problem 86.
Prove that the Bell polynomials satisfy the following identity for n ≥ 1:
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Bn(t) = t(Bn−1(t) + B′
n−1(t)),

where B′
n−1(t) = d

dtBn−1(t) is the derivative of the (n−1)st Bell polynomial.

Problem 87.
Let S(t, z) denote the bivariate generating function for all the Stirling num-
bers, i.e.,

S(t, z) = 1 +
∑

n,k≥1

{
n

k

}
tkzn

n!

= 1 + tz + (t + t2)
z2

2
+ (t + 3t2 + t3)

z3

6
+ · · · .

1. Explain why

S(t, z) = 1 +
∑

n≥1

Bn(t)
zn

n!
,

where Bn(t) is the nth Bell polynomial.
2. Explain why

S(t, z) = 1 +
∑

k≥1

Sk(z)tk,

where Sk(z) is the generating function from Problem 84.
3. Prove

S(t, z) = et(e
z−1).

4. Conclude that the generating function for Bell numbers is

∑

n≥0

Bn
zn

n!
= e(e

z−1).

Compare this result with Problem 81.

Set compositions

Definition 18. A set composition of a set S is a set partition with
an ordering on its blocks.

For example, for the set S = {a, 2, !, π}, the following are two different set
compositions:

({a, !}, {2, π}) and ({2, π}, {a, !}).

Warmup 23. Explain why the number of set compositions of {1, 2, . . . , n}
with k blocks equals k!

{
n
k

}
. This number could be called an “ordered Stirling

number.”

In practice, we abbreviate notation when considering set compositions
of the set {1, 2, . . . , n} by writing all members of each block in increasing
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n\k 1 2 3 4 5 6 7

1 1

2 1 2

3 1 6 6

4 1 14 36 24

5 1 30 150 240 120

6 1 62 540 1560 1800 720

7 1 126 1806 8400 16800 15120 5040

Table 7.2 Triangle of the ordered Stirling numbers k!
{
n
k

}
, or the number of set

compositions of {1, 2, . . . , n} with k blocks.

order, and separating each block with a vertical bar. For example, the set
composition ({3}, {4, 6}, {1, 5, 2}) would be written 3|46|125.

The key thing about this notation is that it helps to identify set compo-
sitions with permutations. That is, each set composition has a permutation
(346125 in the example), while each permutation can be associated with sev-
eral different set compositions. We call the permutation obtained by ignoring
the bars in set composition the “underlying” permutation of that set compo-
sition. For n = 1, there is only one permutation and one set composition. For
n = 2, there are three set compositions: 12, 1|2, and 2|1. The permutation
12 corresponds to the set compositions 12 and 1|2, while the permutation 21
corresponds to the set composition 2|1.

Warmup 24. List all the set compositions of {1, 2, 3}; group them first
according to the number of blocks, then according to the underlying permu-
tation.

Problem 88.
Explain why the permutation 2351467 is the underlying permutation for 32
different set compositions of {1, 2, 3, 4, 5, 6, 7}.

Which permutation corresponds to the greatest number of set composi-
tions?

Which permutation corresponds to the fewest set compositions?
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Ordered Bell numbers and ordered Bell polynomials

Definition 19. The nth ordered Bell polynomial, denoted Bn(t), is
the generating function for set compositions {1, 2, . . . , n} counted ac-
cording to the number of blocks, i.e.,

Bn(t) =
n∑

k=1

k!
{

n

k

}
tk.

The nth ordered Bell number, denoted Bn, is the total number of
ordered set compositions of {1, 2, . . . , n}, i.e., Bn = Bn(1). We declare
B0(t) = t and B0 = 1.

Problem 89.
Show the ordered Bell numbers satisfy the following identity for all n ≥ 1:

Bn =
n−1∑

k=0

(
n

n − k

)
Bk .

Problem 90.
Let bn,k = k!

{
n
k

}
denote the number of ordered set compositions of {1, 2, . . . , n}

with k blocks. Show that

bn,k = kbn−1,k−1 + kbn−1,k.

Problem 91.
Prove the ordered Bell polynomials satisfy the following identity for n ≥ 1:

Bn(t) = tBn−1(t) + t(1 + t)B
′
n−1(t).

Problem 92.
Emulating our approach to Problem 87, let

S(t, z) = 1 +
∑

n,k≥1

k!
{

n

k

}
tkzn

n!
,

= 1 +
∑

n≥1

Bn(t)
zn

n!
,

= 1 + tz + (t + 2t2)
z2

2
+ (t + 6t2 + 6t3)

z3

6
+ · · · .

Prove that
S(t, z) =

1
1 − (ez − 1)t
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and conclude that

∑

n≥0

Bn
zn

n!
= 1 + z + 3

z2

2
+ 13

z3

6
+ · · · =

1
2 − ez
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OEIS

As a researcher in combinatorics, one of my favorite tools is the On-
Line Encyclopedia of Integer Sequences, or OEIS. This database was started
by the mathematician Neil Sloane, who first started keeping an index of
popular sequences of integers that came up in his work. At the time, Sloane
was a graduate student at Cornell University. A photo of the first page of
Sloane’s notebook is shown in Figure 7.1. Recognize any of these sequences?

Fig. 7.1 A photograph of Neil Sloane’s first notebook of integer sequences.

By 1973, Sloane had collected 2372 sequences and published them in a
book: “The Handbook of Integer Sequences.” The book was very popular with
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researchers, and in 1995, Sloane was joined by Simon Plouffe in producing a
follow-up, the “Encyclopedia of Integer Sequences,” with a then-astounding
5487 sequences.

The On-Line Encyclopedia of Integer Sequences was launched in 1996,
and initially hosted on Sloane’s personal web page at AT&T Labs, where
he worked. In the early 2000s, Sloane started enlisting the help of other
researchers in maintaining the Encyclopedia, and it is now run in a moderated
wiki format with a team of editors who review edits and new submissions.
There are currently hundreds of thousands of entries. A search on the terms
1, 2, 5, 15, 52, 203 gives the result shown in Figure 7.2

login

This site is supported by donations to The OEIS Foundation.

1, 2, 5, 15, 52, 203 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,5,15,52,203
Displaying 1-10 of 36 results found. page 1 2 3 4

Sort: relevance | references | number |  | created Format: long | short | data

A000110 Bell or exponential numbers: number of ways to partition a set of n labeled elements.
(Formerly M1484 N0585)

+20
723

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322,
1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, 51724158235372,
474869816156751, 4506715738447323, 44152005855084346, 445958869294805289,

4638590332229999353, 49631246523618756274 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,3
COMMENTS The leading diagonal of its difference table is the sequence shifted, see

Bernstein and Sloane (1995). - N. J. A. Sloane, Jul 04 2015
Also the number of equivalence relations that can be defined on a set of n

elements. - Federico Arboleda (federico.arboleda(AT)gmail.com), Mar 09
2005

a(n) = number of nonisomorphic colorings of a map consisting of a row of n+1
adjacent regions. Adjacent regions cannot have the same color. - David W.
Wilson, Feb 22 2005

If an integer is squarefree and has n distinct prime factors then a(n) is
the number of ways of writing it as a product of its divisors. - Amarnath
Murthy, Apr 23 2001

Consider rooted trees of height at most 2. Letting each tree 'grow' into the
next generation of n means we produce a new tree for every node which is
either the root or at height 1, which gives the Bell numbers. - Jon Perry,
Jul 23 2003

Begin with [1,1] and follow the rule that [1,k] -> [1,k+1] and [1,k] k
times, e.g., [1,3] is transformed to [1,4], [1,3], [1,3], [1,3]. Then a(n)
is the sum of all components. [1,1]=2, [1,2], [1,1]=5, [1,3], [1,2],
[1,2],[1,1], [1,2]=15, etc. - Jon Perry, Mar 05 2004

Number of distinct rhyme schemes for a poem of n lines: a rhyme scheme is a
string of letters (e.g., 'abba') such that the leftmost letter is always
'a' and no letter may be greater than one more than the greatest letter to

Fig. 7.2 Search results for 1, 2, 5, 15, 52, 203 on https://oeis.org.

The best way to really learn about OEIS is to check it out for yourself.
Go to https://oeis.org and poke around!

https://oeis.org
https://oeis.org
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Further reading

• Alexander Yong, The Joseph Greenberg problem: Combinatorics and Com-
parative Linguistics, Mathematics Magazine, Vol. 91, 192–197 (2018)
This short article talks about an application of Stirling numbers and Bell
numbers in linguistics.



Chapter 8

Eulerian numbers

“If you don’t make mistakes, you’re not working on hard enough problems. And
that’s a big mistake.”

–Frank Wilczek

1234

2134 12431324

21432314

3124 1342 1423

1432
2413

3214

2341

2431

3142

4213
4123

4132

3241

4231
3412

43123421

4321

Can you think of a rule for organizing permutations this way?

Leonhard Euler certainly didn’t have permutations on his mind when
in 1755 he wrote about the numbers bearing his name in this chapter. (He
was trying to find an easy way to compute sums of the form 1k +2k +3k + · · ·
for any value of k.) Nowadays, however, these numbers are usually defined
combinatorially: in terms of permutations.

In this chapter we will study Eulerian numbers and relate their generating
functions to the generating functions for the ordered Stirling numbers. Among
other things, we will see that these numbers satisfy a Pascal-like recurrence.

© Springer Nature Switzerland AG 2019
T. K. Petersen, Inquiry-Based Enumerative Combinatorics, Undergraduate
Texts in Mathematics, https://doi.org/10.1007/978-3-030-18308-0 8
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n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

7 1 120 1191 2416 1191 120 1

Table 8.1 Triangle of the numbers
〈
n
k

〉
, or the number of permutations in Sn with

k − 1 descents.

Recall Sn denotes the set of permutations of {1, 2, . . . , n}. A typical per-
mutation is denoted w = w(1) · · · w(n), e.g., w = 321546 is an element of S6

with w(1) = 3, w(2) = 2, w(3) = 1, w(4) = 5, w(5) = 4, and w(6) = 6.

Descents of a permutation

Definition 20. A descent of a permutation w = w(1) · · · w(n) is an
index i ∈ {1, 2, . . . , n − 1} such that w(i) > w(i + 1). We let Des(w)
denote the set of descents of w, and des(w) denote the number of
descents in w, i.e.,

des(w) = |Des(w)| = |{i : w(i) > w(i + 1)}|.

For example, if w = 51243, Des(w) = {1, 4} and des(w) = 2 since w(1) >
w(2) and w(4) > w(5). Counting descents is one way to measure how “mixed
up” a permutation is.

Warmup 25. How many permutations in S4 have no descents? exactly one
descent? two descents? three descents? four?

Runs of a permutation

Definition 21. A run of a permutation w = w(1) · · · w(n) is a maxi-
mal sequence of consecutive entries that increase, i.e., for some i ≤ j,
we have w(i) ≤ · · · ≤ w(j), but w(i − 1) �≤ w(i) and w(j) �≤ w(j + 1).
We let runs(w) denote the number of runs in w.
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For example, if w = 51243, runs(w) = 3, since there are three runs of w,
separated here with vertical bars: 5|124|3. Runs and descents are essentially
the same, in that descent positions mark the gaps between runs.

Warmup 26. How many permutations in S4 have one run? two runs? three
runs? four? Show that runs(w) = des(w) + 1.

Problem 93.
An ascent of a permutation w is an index i such that w(i) < w(i + 1).
Show that the number of permutations with k ascents equals the number of
permutations with k descents.

Problem 94.
A return in a permutation is a number i such that i + 1 appears to the left
of i in the permutation. For example, if w = 2714365, there are returns at 1
(since 2 is to the left of 1), at 3 (since 4 appears to the left of 3), at 5 (since
6 is to the left of the 5), and at 6 (since 7 appears to the left of 6).

Count all the elements of S4 according to the number of returns each
permutation has.

Can you prove in general that the number of permutations in Sn with k
returns equals the number of permutations in Sn with k descents?

Problem 95.
Find and prove a formula for the number of permutations in Sn that have
exactly one descent.

Eulerian numbers

Definition 22. For any n ≥ k ≥ 1, the Eulerian number
〈
n
k

〉
is the

number of permutations in Sn with k runs, or equivalently, k − 1
descents.

For example, the Eulerian numbers for n = 3 are
〈
3
1

〉
= 1,

〈
3
2

〉
= 4, and〈

3
3

〉
= 1, since we can gather the following data about descents in S3:

w runs(w) des(w)
123 1 0
132 2 1
213 2 1
231 2 1
312 2 1
321 3 2
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Eulerian polynomials

Definition 23. The nth Eulerian polynomial, denoted An(t), is the
generating function for permutations in Sn counted according to the
number of runs, i.e.,

An(t) =
∑

w∈Sn

truns(w) =
∑

w∈Sn

t1+des(w) =
n∑

k=1

〈
n

k

〉
tk.

For example, our table for S3 shows A3(t) = t + 4t2 + t3.

Warmup 27. What is A4(t)?

Problem 96.
Use the meaning of Eulerian numbers to prove

〈
n

k

〉
=

〈
n

n + 1 − k

〉
.

Problem 97 (Eulerian recurrence).
Prove the Eulerian numbers satisfy the following Pascal-like recurrence:

〈
n

k

〉
= k

〈
n − 1

k

〉
+ (n + 1 − k)

〈
n − 1
k − 1

〉
,

for n ≥ 2 and 1 ≤ k ≤ n. Use the recurrence to compute the next row of
Table 8.1.

Problem 98.
Prove the Eulerian polynomials satisfy the following recurrence for all n ≥ 2:

An(t) = ntAn−1(t) + t(1 − t)A′
n−1(t).

This is the same recurrence as the polynomials in Problem 76, so conclude

An(t)
(1 − t)n+1

=
∑

k≥1

kntk. (8.1)

Problem 99. (Worpitzky’s Identity).
For any n, k ≥ 1,

kn =
n∑

i=1

〈
n

i

〉(
k + n − i

n

)
.

For example, k3 =
(
k+2
3

)
+4

(
k+1
3

)
+

(
k
3

)
. You can use Equation 8.1 along with

the series for ti/(1 − t)n+1 to prove this in general.
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Problem 100.
Use Worpitzky’s identity or Equation (8.1) to get the following formulas for
Eulerian numbers:

〈
n

1

〉
= 1,

〈
n

2

〉
= 2n − (n + 1),

〈
n

3

〉
= 3n −

(
n + 1

1

)
2n +

(
n + 1

2

)
.

Conjecture and prove a general formula for
〈
n
k

〉
as an alternating sum of

powers and binomial coefficients.

Problem 101.
Let us define the exponential generating function for Eulerian polynomials
as follows:

E(t, z) = 1 +
∑

n≥1

An(t)
zn

n!

= 1 +
∑

n≥k≥1

〈
n

k

〉
tkzn

n!

= 1 + tz + (t + t2)
z2

2
+ (t + 4t2 + t3)

z3

6
+ · · · .

Prove
E(t, z) =

1 − t

1 − tez(1−t)
.

Hint: let u = z/(1 − t) and manipulate E(t, u)/(1 − t), keeping in mind
Equation (8.1).

In the next few problems, we will derive E(t, z) another way.

Problem 102.
Let’s do a plausibility check on our last result. If we set t = 1 in E(t, z), we
should get

E(1, z) = 1 +
∑

n≥1

n!
zn

n!
=

∑

n≥0

zn = 1/(1 − z).

But plugging in t = 1 gives
[

1 − t

1 − tez(1−t)

]

t=1

=
1 − 1

1 − ez·0 =
0
0
.

This seems bad. Resolve the issue. (Hint: instead of “plugging in” t = 1, take
a limit.)

Problem 103.
Recall from Problem 88 that the permutation w = 2351467 corresponds to
32 different set compositions of {1, 2, 3, 4, 5, 6, 7}, such as 235|1467, 2|35|1467,
23|5|1467, and so on. In general, let C(w) denote the set of set compositions
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whose underlying permutation (when we write the elements in each block in
order and remove bars) is w.

Show that ∑

C∈C(w)

t|C| = truns(w)(1 + t)n−runs(w),

where |C| denotes the number of blocks in the set composition C.

Problem 104.
Use Problem 103 to show that for n ≥ 1,

Bn(t) = (1 + t)nAn

(
t

1 + t

)
,

where Bn(t) is the nth ordered Bell polynomial from Definition 19. For ex-
ample,

(1 + t)3A3

(
t

1 + t

)
= (1 + t)3

(
t

1 + t
+ 4

t2

(1 + t)2
+

t3

(1 + t)3

)

= t(1 + t)2 + 4t2(1 + t) + t3

= t + 6t2 + 6t3 = B3(t).

Problem 105.
Use Problem 104 to relate the generating function for the Eulerian polyno-
mials, E(t, z), to the generating function for the ordered Bell polynomials,
S(t, z). (This is defined in Problem 92.) This should give another proof of the
formula for E(t, z) found in Problem 101.
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Euler (not Eulerian) numbers

Leonhard Euler did a lot of things, and many quantities are named
after him. There are of course the “Eulerian numbers” of this chapter, but
also we have:

• “Euler’s number”
e =

∑

k≥0

1
k!

= 2.71828 . . . ,

• “Euler characteristic”
χ = V − E + F,

where V , E, and F count vertices, edges, and faces of a polyhedron, re-
spectively,

• and “Euler’s constant” (or “Euler-Mascheroni constant”)

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · +
1
n

− ln(n)
)

= 0.57721566 . . .

Another, more combinatorial set of numbers is the sequence of “Euler
numbers” which we will denote En. The sequence begins:

1, 1, 1, 2, 5, 16, 61, 272, 1385, . . . .

It is sequence A000111 in OEIS.
The Euler numbers can be given the following recursive definition:

E0 = E1 = 1, En+1 =
1
2

n∑

k=0

(
n

k

)
EkEn−k (n ≥ 1). (8.2)

From this recursive description, we can show that the exponential generating
function for the sequence of Euler numbers is sec(z) + tan(z), i.e.,

E(z) =
∑

k≥0

Ek
zk

k!
= sec(z) + tan(z).

This identity amounts to showing that E(z) satisfies

E(z)2 + 1 = 2E′(z).

We can prove this using the recurrence (8.2) on the one hand, and by com-
puting the derivative of sec(z) + tan(z) on the other hand.

Let’s now discuss a combinatorial interpretation of the sequence.
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Zig-zag permutations

A combinatorial interpretation for Euler numbers seems to first appear in
work of Désiré André from 1888. We will define an up-down permutation as
one for which the entries alternately increase and decrease:

w(1) < w(2) > w(3) < w(4) > · · · .

Similarly, the down-up permutations are those for which the entries alter-
nately decrease and increase:

w(1) > w(2) < w(3) > w(4) < · · · .

The two families together are collectively called alternating permutations or
zig-zag permutations. In Table 8.2 we see the zig-zag permutations for n ≤ 5.

n up-down down-up

1 1 1

2 12 21

3
132
231

312
213

4

1324
1423
2314
2413
3412

4231
4132
3241
3142
2143

5

13254 14253
14352 15243
15342 23154
24153 24351
25143 25341
34152 34251
35142 35241
45132 45231

53412 52413
52314 51423
51324 43512
42513 42315
41523 41325
32514 32415
31524 31425
21534 21435

Table 8.2 The zig-zag permutations for n ≤ 5.

There is a simple correspondence between up-down permutations and
down-up permutations implicit in Table 8.2: for any up-down permutation of
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{1, 2, . . . , n} replacing the letter j with n + 1 − j will yield a corresponding
down-up permutation (and vice-versa). Notice the permutations 3517264 and
5371624 can be obtained from each other in this way. Thus the set of zig-zag
permutations splits evenly into these two types and we shall soon see that
for n ≥ 1,

En = |{up-down permutations in Sn}|,
= |{down-up permutations in Sn}|.

That is, E(z) = sec(z)+tan(z) is the exponential generating function for the
number of up-down (or down-up) permutations.

To prove this result, we need only show that the zig-zag permutations
satisfy the following identity for n ≥ 2:

2En = |{zig-zag permutations in Sn}| =
n−1∑

k=0

(
n − 1

k

)
EkEn−1−k.

Here is a bijective argument to prove the identity above. Consider how to
create the 2En zig-zag permutations (up-down or down-up) of length n. First
suppose that we put n in postion k + 1, for some k = 0, 1, . . . , n − 1. Then to
the left of n we will have an alternating permutation of length k that ends
in a down step, and to the right of n we will have an up-down permutaton
of length n − 1 − k. We can sketch the situation like this:

n

k n − 1 − k

Note that while we have drawn an up-down alternating permutation, it could
also be down-up. It depends on whether k is even or, as in this case, k is odd.

To fill in the rest of the picture, we need to do two things:

1. choose the k elements that go to the left of n and arrange them as an
appropriately alternating permutation, and

2. arrange the remaining n − 1 − k elements to the right of n as an appropri-
ately alternating permutation.

Step 1 can be done in
(
n−1
k

)
Ek ways. Indeed, we are choosing k of n − 1

elements, and these can be ordered in Ek ways, according to the reversal of
any up-down permutation of length k. For step 2, we also want to form an
up-down permutation, this time written left to right. Since there are n−1−k
elements to the right of n, this can be done in En−1−k ways.



110 8 Eulerian numbers

Now we can conclude that there are
(
n−1
k

)
EkEn−1−k alternating permu-

tations with n in position k + 1. Summing over all k, we have proved the
recurrence.

Other generating functions

The “classical” Euler numbers are actually the odd-indexed Euler numbers
as we have defined them, with a sign:

0, 1, 0,−2, 0, 16, 0,−272, 0, . . . , (−1)nE2n+1, . . . .

Since secant is an even function and tangent is an odd function, calculus tells
us that this sequence has exponential generating function

tan(iz)
i

= z − 2
z3

3!
+ 16

z5

5!
− · · · .

Some basic identities allow us to rewrite tan(iz)/i as

tanh(z) =
−1 + e2z

1 + e2z
.

Interestingly, we can connect this result to the generating function for Eule-
rian polynomials found in Problem 101:

E(t, z) =
∑

n≥0

An(t)
zn

n!
=

1 − t

1 − tez(1−t)
.

By setting t = −1, we find

E(−1, z) =
2

1 + e2z
= 1 − tanh(z) = 1 − z + 2

z3

3!
− 16

z5

5!
+ · · · .

But then by coefficient comparison, we have for n > 0:

An(−1) =

{
(−1)kE2k−1 if n = 2k − 1,

0 if n is even.

On the one hand, this gives us an expression for the Euler number E2k−1

as an alternating sum of Eulerian numbers:

E2k−1 = (−1)kA2k−1(−1) =
2k−1∑

i=1

(−1)k+i

〈
2k − 1

i

〉
.
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On the other hand, it tells us combinatorial information. First, since
A2k(−1) = 0, it tells us that the number of permutations in S2k with an
even number of descents equals the number of permutations with an odd
number of descents. Second, it tells us that in the case n is odd, the differ-
ence between the number of permutations with an even number of descents
and the number of permutations with an odd number of descents is (up to
sign) the number of up-down permutations:

|{w ∈ S2k−1 : des(w) is even}|−|{w ∈ S2k−1 : des(w) is odd}| = (−1)kE2k−1.

It is fun to find a bijective explanation for this identity.

Further reading

• Joe Buhler, David Eisenbud, Ron Graham, Colin Wright, Juggling drops
and descents, American Mathematical Monthly, 101, 507–519, (1994).
This fun and engaging article shows how Eulerian numbers arise the math-
ematical study of juggling!

• Ira Gessel, The Smith College Diploma Problem, American Mathematical
Monthly, 108, 55–57, (2001).
Gessel’s short note uses a clever bijection to explain how Eulerian numbers
crop up in a very different-sounding problem.

• Kyle Petersen, “Eulerian Numbers,” Birkhäuser Advanced Texts, (2015).
This book is all about Eulerian numbers from a combinatorial, geometric,
and algebraic point of view.



Chapter 9

Catalan and Narayana numbers

“I am interested in mathematics only as a creative art.”

–Godfrey Harold Hardy

How are these trees related to each other?

The Fibonacci numbers are pretty cool, but in modern algebraic
combinatorics, the most interesting sequence is the sequence of Catalan

numbers:
1, 1, 2, 5, 14, 42, 132, 429, . . .

The remarkable ability of these numbers to pop up in surprising locations
has led some to joke that a combinatorics paper is not complete until the
Catalan numbers have made an appearance. There are now more than two
hundred distinct combinatorial interpretations for Catalan numbers!

In this chapter we will study some families of objects counted by Catalan
numbers, as well as a triangle of numbers known as the Narayana numbers

that possess many of the properties of the Eulerian numbers.

© Springer Nature Switzerland AG 2019
T. K. Petersen, Inquiry-Based Enumerative Combinatorics, Undergraduate
Texts in Mathematics, https://doi.org/10.1007/978-3-030-18308-0 9
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n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 1 3 1

4 1 6 6 1

5 1 10 20 10 1

6 1 15 50 50 15 1

7 1 21 105 175 105 21 1

Table 9.1 Triangle of the numbers N(n, k), or the number of 231-avoiding permu-
tations in Sn with k − 1 descents.

231-avoiding permutations

Definition 24. A permutation w = w(1) · · ·w(n) in Sn is said to
contain the pattern 231 if there is a triple of indices i < j < k such
that w(k) < w(i) < w(j). Otherwise we say w is 231-avoiding. Let
Sn(231) denote the set of 231-avoiding permutations.

Pattern containment and avoidance is best thought of in terms of pictures.
We can graph a permutation w by plotting the pairs (i, w(i)) in cartesian
coordinates. The pattern 231 is then just a triple of dots, which appear at
heights “middle-high-low” when viewed from left to right. See Figure 9.1(a).
For example, the permutation 53412 contains the pattern 231 in two different
ways, with (i, j, k) = (2, 3, 4) and with (i, j, k) = (2, 3, 5), as outlined in Figure
9.1(b) with dashed lines.

Warmup 28. The permutations 1234567 and 7654321 both avoid the pat-
tern 231. Come up with three different members of S7(231).

Catalan numbers

Definition 25. The nth Catalan number, denoted Cn, counts the
number of 231-avoiding permutations in Sn, i.e., Cn = |Sn(231)|. By
convention C0 = 1, since there is one empty permutation that trivially
avoids the pattern.

The Catalan numbers are named for Eugène Catalan, a 19th-century math-
ematician. Although these are now known as Catalan numbers, Catalan called
them Segner numbers, after Johann Segner. Segner, in turn, learned of the



9 Catalan and Narayana numbers 115

Fig. 9.1 Containing the pattern 231 in a permutation.

sequence from Euler! But even Euler’s work was predated by that of Mongo-
lian mathematician Minggatu, though it seems unlikely that Euler was aware
of Minggatu.1

Warmup 29. List all the elements of Sn(231), for n ≤ 4 and compute the
corresponding Catalan numbers. For each n, count the number of permuta-
tions with 0, 1, 2, and 3 descents.

Problem 106.
By considering different values of i such that w(i+1) = n, show that Sn(231)
can be partitioned into subsets that are each in bijection with Si(231) ×
Sn−i−1(231). Use your correspondence to show that for any n ≥ 1,

Cn =
n−1∑

i=0

CiCn−i−1,

where C0 = 1.
This shows the Catalan numbers form the sequence from Problem 54, part

4. We found the ordinary generating function for this sequence in Problem
74, which we now denote by C(z):

C(z) =
∑

k≥0

Ckz
k = 1 + z + 2z2 + 5z3 + 14z4 + · · · =

1 − √
1 − 4z

2z
.

(You may want to re-derive this formula from the recurrence as practice.)

1 This phenomenon of naming scientific discoveries for someone other than the orig-
inal discoverer is known as “Stigler’s law of eponymy,” a name coined somewhat
facetiously by Stephen Stigler in 1980. Of course, Stigler knew that others had made
this observation before, which makes “Stigler’s law” an example of Stigler’s law.
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Keeping track of descents or runs in 231-avoiding permutations gives the
definition of Narayana numbers, by analogy with our definition of the Eule-
rian numbers.

Narayana numbers and Narayana polynomials

Definition 26. For any n ≥ k ≥ 1, the Narayana number N(n, k)
is defined to be the number of 231-avoiding permutations with k −
1 descents, or equivalently, k runs. The nth Narayana polynomial,
denoted Cn(t), is the generating function for permutations in Sn(231)
according to the number of runs, i.e.,

Cn(t) =
∑

w∈Sn(231)

truns(w) =
∑

w∈Sn(231)

t1+des(w) =
n∑

k=1

N(n, k)tk.

For convenience we set C0(t) = t.

Warmup 30. Compute Cn(t) for n ≤ 4.

Problem 107.
Returning to the bijection constructed in Problem 106, so that the Narayana
polynomials satisfy the following recurrence:

Cn(t) = Cn−1(t) +
n−2∑

i=0

Ci(t)Cn−i−1(t).

Use this recurrence to find an expression for the bivariate generating function
for the Narayana numbers,

C(t, z) =
∑

n≥0

Cn(t)zn,

= t + tz + (t + t2)z2 + (t + 3t2 + t3)z3 + · · · .

As a reality check, note that setting t = 1 should specialize to the generating
function from Problem 106.

Problem 108.
Use bijections to show that the number of permutations in Sn avoiding the
pattern 231 equals the number of permutations in these sets:

1. The set of 132-avoiding permutations, denoted Sn(132), which are charac-
terized by having no indices i < j < k with w(i) < w(k) < w(j).

2. The set of 213-avoiding permutations, denoted Sn(213), which are charac-
terized by having no indices i < j < k with w(j) < w(i) < w(k).

3. The set of 312-avoiding permutations, denoted Sn(312), which are charac-
terized by having no indices i < j < k with w(j) < w(k) < w(i).
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Problem 109.
Show N(n, k) = N(n, n + 1 − k). Try to do this both with a bijection and
algebraically.

Fig. 9.2 One of the 4862 paths in Dyck(8).

Dyck paths

Definition 27. A Dyck path of length 2n is a lattice path from (0, 0)
to (n, n) that takes n steps “East” from (i, j) to (i+ 1, j) and n steps
“North” from (i, j) to (i, j+1), such that all points on the path satisfy
i ≤ j. In other words, when drawn in the cartesian plane, a Dyck path
lies on or above the line y = x. The set of all Dyck paths of length 2n
is denoted Dyck(n).

We first saw Dyck paths in one of our Starfolks problems (Problem 61).
When discussing Dyck paths, we can draw a picture or record the list of steps
taken in the path. For example, the path given by

p = NNENNEEENENNNEEE
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is shown in Figure 9.2.

Peaks of a Dyck path

Definition 28. A peak in a Dyck path is a coordinate (i, j) in the
path such that both (i, j − 1) and (i + 1, j) are also on the path. In
other words, a peak corresponds to a North step followed by an East
step. We let pk(p) denote the number of peaks of the path p.

For example, the path in Figure 9.2 has four peaks, pk(p) = 4.

Warmup 31. Draw all paths in Dyck(n) for n ≤ 4, grouping them according
to the number of peaks.

Fig. 9.3 The triangle of Narayana numbers obtained as 2 × 2 minors of Pascal’s
triangle.

Problem 110.
For n ≥ 1, show that |Dyck(n)| = Cn and moreover,

Cn(t) =
∑

p∈Dyck(n)

tpk(p).

Problem 111.
Show that
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Cn =
1

n + 1

(
2n
n

)
=

(
2n
n

)
−

(
2n

n − 1

)
.

Hint: one way to do this is to consider the set of all paths from (0, 0) to (n, n),
and show that there are

(
2n
n−1

)
paths that fall below the line y = x.

Problem 112.
Show that

N(n, k) =
1
k

(
n

k − 1

)(
n − 1
k − 1

)
=

(
n − 1
k − 1

)(
n + 1
k

)
−

(
n

k − 1

)(
n

k

)
.

This shows we can think of Narayana numbers as 2 × 2 minors of Pascal’s
triangle, if we think of the triangle as large matrix. See Figure 9.3.

Problem 113 (Catalania = Catalan Mania).
There are over two hundred (!) different sets of combinatorial objects that are
enumerated by Catalan numbers. It is great fun to find bijections between
these sets, and to try to count them in a manner that gives Narayana numbers.
Try to make these connections with the following sets. In each case, the five
objects corresponding to n = 3 are listed.

1. (123-avoiding permutations) A permutation is 123-avoiding if there is no
triple of indices i < j < k such that w(i) < w(j) < w(k). The set of 123-
avoiders is denoted Sn(123). We have S3(123) = {132, 213, 231, 312, 321}.

2. (321-avoiding permutations) A permutation is 321-avoiding if there is no
triple of indices i < j < k such that w(k) < w(j) < w(i). The set of 321-
avoiders is denoted Sn(321). We have S3(321) = {123, 132, 213, 231, 312}.

3. (Noncrossing partitions) A noncrossing partition is a set partition of
{1, 2, . . . , n} such that no two of its blocks, say A and B, contain members
a, c ∈ A and b, d ∈ B such that a < b < c < d. Here are the noncrossing
partitions on three elements: {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}},
{{1}, {2, 3}}, and {{1, 2, 3}}. These are all set partitions of {1, 2, 3}. For
n = 4, there are 15 set partitions, and they are all noncrossing except for
{{1, 3}, {2, 4}}.

4. (Balanced parenthesizations) A sequence of parentheses is balanced if it
can be parsed syntactically. In other words, there should be the same
number of open parentheses “(” and closed parentheses “)”, and when
reading from left to right there should never be more closed parentheses
than open. Here are the five balanced parenthesizations containing three
pairs: ()()(), ()(()), (()()), (())(), ((())).

5. (Two-row standard Young tableaux) A standard Young tableau is a two-
dimensional array of numbers (from 1 to the number of entries in the array)
that increases across rows and down columns. Let SY T (2, n) denote the
number of standard Young tableaux in a 2×n rectangular array. For n = 3,
these are:
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1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6

6. (Triangulations of a polygon) See Figure 9.4. Here we dissect an (n + 2)-
gon with n triangles. Notice the polygon is fixed in space, so one might
as well label the vertices. (Incidentally, this is the problem that Euler was
interested in when he studied the Catalan numbers!)

7. (Decreasing binary trees) See Figure 9.5. Here n is the number of vertices
of degree 2. Notice that how these are drawn in the plane matters, i.e., left
and right subtrees matter.

Fig. 9.4 Triangulations of a pentagon.

Fig. 9.5 Binary trees.
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Weak order and the Tamari lattice

A curious reader may be wondering what is going on with the illustrations
at the beginning of the last two chapters. These are shown in miniature in
Figure 9.6.

1234

2134 12431324

21432314

3124 1342 1423

1432
2413

3214

2341

2431

3142

4213
4123

4132

3241

4231
3412

43123421

4321

Fig. 9.6 The weak order and the Tamari lattice.

These are illustrations of certain partially ordered sets of combinatorial
objects that also happen to have a geometric structure, in that the combi-
natorial objects can be placed at the vertices of polyhedra. The picture on
the left shows the partial ordering known as the weak order on the set of
all permutations in S4. The picture on the right shows the partial ordering
known as the Tamari lattice on the set of binary trees with four internal
nodes. The corresponding geometric objects are known as the permutahedron
and the associahedron. Let’s learn a little more about these things.

Inversions

Pretend you have some books on a shelf, like in Figure 9.7. Just about the
simplest way to sort the books into alphabetical order (by author) is to look
along the shelf, from left to right, and when you come to two books that are
out of order, you swap them. The new ordering of books might not yet be in
alphabetical order, but it is closer than it was. Now look at the books again
and see if anything is still out of order. Swap again if necessary. Eventually,
after some number of swaps, all the books will be sorted in alphabetical order.

We will model the “sorted” order by the permutation 123 · · ·n, since the
numbers appear in their natural order. Any other permutation has at least one
pair of numbers that are out of order. The inversion number of a permutation
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Fig. 9.7 Sorting books on a bookshelf.

w, denoted inv(w), is the total number of pairs of numbers that are out of
order relative to one another.

For example, the permutation w = 23514 has inv(w) = 4. The four inver-
sion pairs are

w(1) = 2 > 1 = w(4),
w(2) = 3 > 1 = w(4),
w(3) = 5 > 1 = w(4),
w(3) = 5 > 4 = w(5).

Notice that the inversion pairs don’t need to be adjacent.
The number of inversions provides a natural way to quantify how close a

permutation is to being sorted. That is, if a permutation has k inversions,
then:

1. there is some sequence of k adjacent swaps that can be used to sort the
permutation, and

2. no sequence of fewer than k adjacent swaps will sort the permutation.

This assertion can be proved by induction, by considering the effect of swap-
ping any adjacent inversion pair. For example, if we swap the 5 and the 1
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in w = 23514, we get w′ = 23154, which has only three inversions since the
“5 > 1” inversion has been resolved.

The full “scan and swap” sorting procedure for w = 23514 runs as follows
(swaps are highlighted in bold):

23514 → 23154 → 21354 → 12354 → 12345.

Note we are always choosing the leftmost adjacent inversion in this procedure.
It turns out that, much like counting permutations according to number of

cycles as we did at the end of Chapter 4, the generating function for counting
permutations by inversions has a nice closed form. We have

∑

w∈Sn

qinv(w) = (1)(1 + q) · · · (1 + q + · · · + qn−1) =
n∏

i=1

(1 − qi)
(1 − q)

,

where the second equation follows from the algebraic identity (1 − qk) =
(1 − q)(1 + q + · · · + qk−1). This result is known as Rodrigues’ Theorem.

One proof of the theorem is via induction and can be understood with an
edge-labeled decision tree as shown in Figure 9.8. This is analogous to the
tree in Figure 1.9. Level n of this tree corresponds to the permutations in Sn,
and multiplying the edge weights on the path from 1 to w in the tree gives
qinv(w). We can see that the sum of the weights in each level corresponds to
(1 + q + · · · + qn−1) times the sum of the weights in the previous level, and
so Rodrigues’ Theorem follows.

Weak order

Setting aside the enumerative aspects of inversion numbers, let’s return to the
original problem of sorting with adjacent swaps. Draw all your permutations
in Sn on a piece of paper, and draw an arrow from one permutation to another
if you can swap two adjacent entries and reduce the number of inversions.
For example, we would have an arrow

23514 −→ 23154

as we can swap the 5 and the 1 in 23514 to get 23154, and the latter permu-
tation has fewer inversions.

There are n − 1 adjacent positions in any permutation of Sn, so each
permutation w will have n − 1 arrows connected to it: some arrows will be
coming in and some arrows will be going out.

Notice that 123 · · ·n has no inversions, so all its arrows are incoming, while
n · · · 321 has nothing but inversion pairs, so all arrows are outgoing. In graph
theory terminology, n · · · 321 is a source and 123 · · ·n is a sink. In general, the
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1

12

123

12341
1243q
1423q2
4123q3

1

132

13241
1342q
1432q2
4132q3

q

312

31241
3142q
3412q2
4312q3

q2
1

21

213

21341
2143q
2413q2
4213q3

1

231

23141
2341q
2431q2
4231q3

q

321

32141
3241q
3421q2
4321q3

q2

q

Fig. 9.8 The permutation growth tree with edge labels corresponding to the inver-
sion number.

number of outgoing arrows for the permutation w is the number of descents,
since descents are precisely adjacent inversions.

The illustration of the weak order on the left of Figure 9.6 is oriented so
that all edges are pointing downward. In the smaller case of S3, we would
draw the directed graph in Figure 9.9.

123

132 213

312 231

321

Fig. 9.9 The weak order on S3.

Since the arrows are defined to strictly decrease the number of inversions,
we know that no loops can occur, and that the arrows define a transitive
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relation. This gives a partial (not necessarily total) ordering on the set Sn

which is known as the weak order (or sometimes the weak Bruhat order).

Permutahedron

We can see from our small-dimensional pictures that it appears as though
there is a geometry to the weak order. This geometric structure is captured
in the permutahedron. This polytope is defined by taking the convex hull
of the orbit of a generic point in R

n. Its vertices obviously correspond to
permutations, but what takes a little more effort to see is that the edges
correspond to swapping adjacent entries.

For example, take the point x = (0, 1, 2) in R
3. Then by permuting coor-

dinates we get a total of six points

(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0),

all of which sit in the plane defined by x + y + z = 3. The convex hull of
these is a hexagon. This is illustrated in Figure 9.10. Compare with Figure
2.3 from Chapter 2.

One detail to notice about the permutahedron versus the weak order
is the labeling of the points. Each point can be identified with a per-
mutation by considering the relative ordering of the coordinates. That is,
the point (x1, x2, . . . , xn) is identified with the permutation w such that
xw(1) < xw(2) < · · · < xw(n). For example, the point (3, 2, 5, 1, 4, 0) in R

6

would correspond to the permutation w = 642153. In Figure 9.10, we have
put the corresponding permutations below each point.

Tamari lattice

The Tamari lattice is named after Dov Tamari who first described it in 1962,
though it was independently discovered by James Stasheff around 1963. It is
a partial ordering on parenthesizations of a string of n + 1 symbols.

For example, consider all valid parenthesizations of wxyz, which we can
think of as an associative product of four elements. They are

(((wx)y)z), ((wx)(yz)), ((w(xy))z), (w((xy)z)), (w(x(yz))).

These parenthesizations can be given a partial order by declaring that
((fg)h) < (f(gh)) for any sub-expressions f , g and h. We then extend this
relation by transitivity.

We can visualize these parenthesizations of n + 1 elements with planar
binary trees with n internal nodes and n+ 1 leaves. For example, we see the
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y

z

x

(0, 0, 3)

(0, 3, 0)(3, 0, 0)

(0, 2, 1)
132

(0, 1, 2)
123

(1, 0, 2)
213

(2, 0, 1)
231

(2, 1, 0)
321

(1, 2, 0)
312

Fig. 9.10 The convex hull of permutations of the point x = (0, 1, 2) is a hexagon.

Tamari lattice for n + 1 = 4 symbols in Figure 9.11. The illustration on the
right of Figure 9.6 shows the Tamari lattice with n+ 1 = 5 symbols in terms
of trees.

Associahedron

Just as the weak order can be realized with the polytope known as the per-
mutahedron, the Tamari lattice can be realized with a polytope known as the
associahedron. Realizing the associahedron in Euclidean space is not as simple
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Fig. 9.11 The Tamari lattice for n+ 1 = 4 symbols.

as realizing the permutahedron, although it was immediately conjectured
in the 1960s that the “Stasheff polytope” (as the associahedron is sometimes
known) is, in fact, a polytope. Despite this early guess, it was not until the
1980s that a proof of this fact was first published. Today there are many
different constructions and we will not attempt to describe them here.

However, it is worth noting that there is a perspective due to Alex Post-
nikov that puts both the permutahedron and the associahedron into a con-
tinuous family of polytopes known as “generalized permutahedra.” In this
way the associahedron is obtained by a certain deformation of the permuta-
hedron. For the partially ordered sets, this means the Tamari lattice can be
obtained from the weak order. One way to state this in purely combinatorial
terms is that the Tamari lattice is equivalent to the weak order restricted to
the 231-avoiding permutations! See Figure 9.12.

Further reading

• Richard Stanley, “Catalan numbers,” Cambridge University Press, (2015).
Richard Stanley has the definitive catalogue of combinatorial objects
counted by Catalan numbers. There are over two hundred different ex-
amples!
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1234
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Fig. 9.12 The Tamari lattice for n + 1 = 5 symbols, given by the weak order on
231-avoiding permutations in S4.



Chapter 10

Refined Enumeration

“The whole of science is nothing more than a refinement of everyday thinking.”

–Albert Einstein

Not all paths are created equal.

Major Percy Alexander MacMahon was an early 20th-century
mathematician who wrote one of the first major books on enumerative com-
binatorics. Among many other things, he studied permutations and certain
permutation statistics that we will investigate in this chapter. We can view
this work as a variation on a theme: when counting a set of objects (like per-
mutations) we may be able to keep track of more refined properties of these
objects along the way. In this chapter we will revisit some earlier counting
problems with an eye toward refinement.
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n\k 0 1 2 3 4 5 6 7 8 9 10

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

Table 10.1 Triangle of the Mahonian numbers M(n, k). Or, the inversion numbers
I(n, k), the number of permutations in Sn with k inversions.

Inversions of a permutation

Definition 29. An inversion of a permutation w = w(1) · · · w(n) is a
pair (i, j) such that i < j and w(i) > w(j). We let Inv(w) denote the
set of inversions, and we let inv(w) denote the number of inversions
of a permutation w, i.e.,

inv(w) = | Inv(w)| = |{(i, j) : i < j and w(i) > w(j)}|.

For example, w = 31542 has

Inv(w) = {(1, 2), (1, 5), (3, 4), (3, 5), (4, 5)}

and inv(w) = 5. Notice that descents w(i) > w(i+1) correspond to inversions
of the form (i, i+1). Here is a table with the number of inversions and descents
for permutations in S3.

w inv(w) des(w)
123 0 0
132 1 1
213 1 1
231 2 1
312 2 1
321 3 2
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Inversion generating functions and inversion numbers

Definition 30. Let

Sinv
n (q) =

∑

w∈Sn

qinv(w) =
∑

k≥0

I(n, k)qk,

where I(n, k) denotes the number of permutations in Sn with k inver-
sions.

We have Sinv
1 (q) = 1, Sinv

2 (q) = 1 + q, and the table for S3 above shows

Sinv
3 (q) = 1 + 2q + 2q2 + q3.

Warmup 32. Make a table showing the number of inversions and descents
for permutations in S4 and use it to write down Sinv

4 (q).

Problem 114.
What is the inversion number I(5, 4)? That is, how many permutations w in
S5 have inv(w) = 4?

Problem 115.
Let

Inv′(w) = {(w(i), w(j)) : i < j and w(i) > w(j)}.

Compute Inv′(w) for w = 31542 and explain its connection to Inv(w).
Prove that | Inv(w)| = | Inv′(w)| for any permutation w in Sn.

Problem 116.
Prove that for each permutation w in Sn,

0 ≤ inv(w) ≤
(

n

2

)
,

and these bounds are sharp. Describe the (unique) permutation w in Sn such
that inv(w) = 0 and the (unique) permutation w in Sn such that inv(w) =(
n
2

)
.

Problem 117.
Prove that the number of permutations in Sn with k inversions equals the
number of permutations with

(
n
2

) − k inversions. That is, for any n ≥ 1 and
any 0 ≤ k ≤ (

n
2

)
,

I(n, k) = I

(
n,

(
n

2

)
− k

)
.

Problem 118.
Prove that for any n ≥ 1,
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Sinv
n+1(q) =

n∑

k=0

qkSinv
n (q) = (1 + q + q2 + · · · + qn)Sinv

n (q),

and conclude by induction that

Sinv
n (q) =

n∏

i=1

⎛

⎝
i−1∑

j=0

qj

⎞

⎠ .

(See Figure 9.8 from the end of the last chapter for a hint.) This is sometimes
known as Rodrigues’ Theorem, named for nineteenth-century mathematician
Benjamin Olinde Rodrigues.

Major index of a permutation

Definition 31. The major index of a permutation w in Sn, denoted
maj(w), is the sum of the elements in the descent set (with the empty
set having sum zero). That is,

maj(w) =
∑

i∈Des(w)

i,

where we recall the descent set is Des(w) = {i : w(i) > w(i + 1)}.

For example, the permutation w = 31542 has descent set Des(w) =
{1, 3, 4}, so maj(w) = 1 + 3 + 4 = 8.

The major index gets its name from Major Percy Alexander MacMahon, a
late 19th- and early 20th-century combinatorialist. MacMahon was an officer in
the British army until 1898, retiring at the rank of major. When MacMahon
studied the statistic in Definition 31 he called it the “greater index” of a
permutation.

Here is a table with the major index and descent number for permutations
in S3.

w maj(w) des(w)
123 0 0
132 2 1
213 1 1
231 2 1
312 1 1
321 3 2
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Major index generating function and Mahonian numbers

Definition 32. Let

Smaj
n (q) =

∑

w∈Sn

qmaj(w) =
∑

k≥0

M(n, k)qk,

where M(n, k) denotes the number of permutations in Sn with major
index k. We call the coefficients M(n, k) the Mahonian numbers.

We have Smaj
1 (q) = 1, Smaj

2 (q) = 1 + q, and the table for S3 above shows

Smaj
3 (q) = 1 + 2q + 2q2 + q3.

Warmup 33. Make a table showing the major index and descent number
for permutations in S4, and use it to write down Smaj

4 (q). Compare with
Warmup 32.

Problem 119.
What is the Mahonian number M(n, k)? How many permutations w in S5

have maj(w) = 4?

Problem 120.
Prove that for each permutation w in Sn,

0 ≤ maj(w) ≤
(

n

2

)
,

and these bounds are sharp. Describe the (unique) permutation w in Sn

such that maj(w) = 0 and the (unique) permutation w in Sn such that
maj(w) =

(
n
2

)
.

Problem 121.
Prove that the number of permutations in Sn with major index k equals the
number of permutations with major index

(
n
2

) − k. That is, for any n ≥ 1
and any 0 ≤ k ≤ (

n
2

)
,

M(n, k) = M

(
n,

(
n

2

)
− k

)
.

Problem 122.
Prove that for any n ≥ 1,

Smaj
n+1(q) =

n∑

k=0

qkSmaj
n (q) = (1 + q + q2 + · · · + qn)Smaj

n (q),

and conclude by induction that



134 10 Refined Enumeration

Smaj
n (q) =

n∏

i=1

⎛

⎝
i−1∑

j=0

qj

⎞

⎠ .

Further, by Problem 118, we now know that Smaj
n (q) = Sinv

n (q) and hence
M(n, k) = I(n, k).

Problem 123.
Prove that M(n, k) = I(n, k) by establishing a bijection between permuta-
tions with major index k and permutations with k inversions.

To simplify notation in formulas like those found in Problem 122, we use
a special notation.

q-integer notation and q-factorials

Definition 33. Let

[n] = 1 + q + q2 + · · · + qn−1,

which is known as a q-integer. Similarly, we write [n]! to mean the
product [n][n − 1] · · · [2][1].

Now we can write the result of Problems 118 and 122 as follows.
q-analogues of n!

Theorem 7. For any n ≥ 1,

Sinv
n (q) = Smaj

n (q) = [n]!

This theorem is what is sometimes known as a q-analogue. That is, we have
taken the formula for counting permutations, n!, and “q-ified” it. This is a
refinement that has the parameter q keeping track of interesting information,
while if we set q = 1 we obtain our original formula.

Another example of a q-analogue comes from the Binomial Theorem. We
know there are 2n subsets of an n-element set, and the q-analogue [2]n counts
these subsets according to cardinality:

[2]n = (1 + q)n =
∑

S⊆{1,2,...,n}
q|S|.

In the remaining problems of this chapter we investigate some similar
results.

Problem 124 (q-Binomial Coefficients).
This problem investigates the q-binomial coefficients, which are obtained by
taking the q-analogue of the binomial formula. That is, for any 0 ≤ k ≤ n,
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Fig. 10.1 The area beneath a lattice path.

define [
n

k

]
=

[n]!
[k]![n − k]!

,

where [0]! = 1. For example
[
4
2

]
=

[4]!
[2]![2]!

=
[4][3]
[2][1]

=
(1 + q + q2 + q3)(1 + q + q2)

(1 + q)(1)
= (1 + q2)(1 + q + q2) = 1 + q + 2q2 + q3 + q4.

1. One of the first surprising things about q-binomial coefficients is that they
are polynomials. (They are obviously rational functions of q, but why
should the denominators always cancel?) For all 0 ≤ k ≤ n ≤ 4, expand[
n
k

]
as a polynomial in q, and arrange these polynomials in an array like

Pascal’s triangle.
2. Show

[
n
k

]
=

[
n

n−k

]
.

3. Show that q-binomial coefficients satisfy a refinement of Pascal’s recur-
rence. That is,

[
n
0

]
=

[
n
n

]
= 1 and for all 0 < k < n,

[
n

k

]
= qn−k

[
n − 1
k − 1

]
+

[
n − 1

k

]
.

Use induction to conclude that
[
n
k

]
is indeed a polynomial.

4. Show the degree of the polynomial
[
n
k

]
is k(n − k).

5. Show that for any 0 ≤ k ≤ n, the polynomial
[
n
k

]
has symmetric coeffi-

cients. That is, if
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[
n

k

]
=

k(n−k)∑

j=0

cjq
j ,

then cj = ck(n−k)−j for all j. (Hint: show replacing q by 1/q in
[
n
k

]
gives

the same formula, up to a factor of qk(n−k).)

Problem 125 (q-Binomial Coefficients revisited).
We now give a combinatorial interpretation to the q-binomial coefficients.
We know that

(
n
k

)
counts lattice paths (to Starfolks, say) on a grid that is k

blocks East by (n − k) blocks North. Let L(k, n − k) denote the set of such
paths. For a given path p in L(k, n−k), let area(p) denote the area under the
path (or the number of blocks southeast of the path). For example, Figure
10.1 shows a path on a six by four grid (n = 10, k = 6) with area(p) = 13.

Define the generating function for paths in L(k, n − k) by

Ln,k(q) =
∑

p∈L(k,n−k)

qarea(p).

1. Compute Ln,k(q) for all 0 ≤ k ≤ n ≤ 4 and arrange these polynomials in
an array like Pascal’s triangle.

2. Show that Ln,k(q) =
[
n
k

]
. (Hint: show both sets of polynomials satisfy the

same recurrence with the same boundary conditions.)
3. The definition of Ln,k(q) makes it obvious that Ln,k(q) is a polynomial,

whereas it is not obvious that
[
n
k

]
is a polynomial from its definition. In

a similar way, use combinatorial properties of Ln,k(q) to deduce parts 2),
4), and 5) of Problem 124.

Problem 126 (q-Catalan numbers).
Using the q-binomial coefficients as a starting point, let Cn(q) = 1

[n+1]

[
2n
n

]

denote the q-analogue of the Catalan numbers.

1. Show that

Cn(q) =
[
2n

n

]
− q

[
2n

n + 1

]
,

and conclude that Cn(q) is a polynomial.
2. Show that the degree of Cn(q) is n(n − 1).
3. For a lattice path p, we can define a valley as positions in which an East

step is followed immediately by a North step. For example, the path in
Figure 10.1 has p = ENEENNENEE, so its set of valleys is {1, 4, 7}.
The major index of a path is the sum of its valleys. With this example,
we would have maj(p) = 1 + 4 + 7 = 12.
Show that

Cn(q) =
∑

p∈Dyck(n)

qmaj(p).
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Problem 127 (Euler-Mahonian distribution).
In this problem we will study a q-analogue of the Eulerian numbers via the
joint distribution of permutation runs and major index. This joint distribu-
tion is known as the Euler-Mahonian distribution.

That is, define the q-Eulerian numbers
〈
n
k

〉maj as

〈
n

k

〉maj

=
∑

w∈Sn,runs(w)=k

qmaj(w).

By analogy with the Eulerian polynomials, denote the generating function
for the joint distribution of major index and runs (or descents) as follows:

Smaj
n (q, t) =

∑

w∈Sn

qmaj(w)truns(w) =
n∑

k=1

〈
n

k

〉maj

tk.

For example,
Smaj
3 (q, t) = t + (2q + 2q2)t2 + q3t3.

Note that Smaj
n (q, 1) = [n]! and Smaj

n (1, t) = An(t) (the Eulerian polynomial
from Chapter 8).

1. For each n ≤ 4, compute Smaj
n (q, t) and group terms according to powers

of t to see some small examples of q-Eulerian numbers.
2. Explain why

〈
n

k

〉maj

= [k]
〈

n − 1
k

〉maj

+ qk−1[n + 1 − k]
〈

n − 1
k − 1

〉maj

.

Compare with Problem 97.
3. Show that for n ≥ 0,

1
(1 − t)(1 − qt) · · · (1 − qnt)

=
∑

k≥0

[
n + k

n

]
tk.

As hint, use induction and the fact that
[
n + k

n

]
=

[
n + k − 1

n − 1

]
+ qn

[
n + k − 1

n

]
.

4. Show that for any n ≥ 0,

Smaj
n (q, t)

(1 − t)(1 − qt) · · · (1 − qnt)
=

∑

k≥0

[k + 1]ntk+1.

Compare with Problem 98.
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Continued fractions

What is

x = 1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

? (10.1)

If you like mathematical puzzles, you may have encountered this sort of ques-
tion before.

How are we to make sense of an expression like this? It seems that x is
defined as the limit of some sort of process of repeated division, but how
exactly is it defined? And assuming the process is well-defined, does the limit
exist? These are valid concerns, but for now, let us dismiss such worries and
push forward with the assumption that there is a real number satisfying
(10.1).

An intuitive idea for finding x is to recognize that x seems to be expressed
in terms of itself, in that everything below the first fraction bar is the same
as x itself. That is,

x = 1 +
1
x

,

which is equivalent to x2 = x + 1, or x2 − x − 1 = 0. This equation has roots

1 +
√

5
2

≈ 1.618 and
1 − √

5
2

≈ −.618.

Since x is clearly bigger than 1 (it is 1 plus positive stuff), we know x =
1+

√
5

2 = ϕ. This is our friend from the end of Chapter 5: the golden ratio!
An expression like Equation (10.1), with a collection of nested fractions,

is called a continued fraction. Continued fractions have been studied for cen-
turies. They provide a representation of real numbers that is quite distinct
from the usual decimal representation. It can be fun to try to show that

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + · · ·
or

e = 2 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a1, a2, a3, . . . is the sequence
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1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, . . . .

Continued fractions provide a sequence of rational approximations to a
real number. We can see this by truncating the expression after one fraction
bar, after two fraction bars, three fraction bars, and so on. (Of course decimal
representations do this too, by truncating after one decimal place, two decimal
places, three decimal places, and so on.) For example, Equation (10.1) tells
us that there is a sequence of rational numbers that converge to (1 +

√
5)/2

in the limit. The sequence begins

x0 = 1,

x1 = 1 +
1
1

= 1 +
1
x0

= 2,

x2 = 1 +
1

1 + 1
1

= 1 +
1
x1

=
3
2
,

x3 = 1 +
1

1 + 1
1+ 1

1

= 1 +
1
x2

=
5
3
,

...

Based on our discussion at the end of Chapter 5 about the golden ratio, we
are not too surprised to find this expression:

xn+1 = 1 +
1
xn

=
fn+1

fn
,

where the fn are the Fibonacci numbers beginning with f0 = f1 = 1.
For

√
2, we get the sequence

1,
3
2
,
7
5
,
17
12

,
41
29

,
99
70

,
239
169

≈ 1.4142, . . . ,

and for e, we get

2, 3,
8
3
,
11
4

,
19
7

,
87
32

,
106
39

≈ 2.7179, . . . .

Continued fractions for generating functions

In Chapter 9, we found the generating function for the Catalan numbers,

C(z) =
∑

n≥0

Cnzn = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · · ,
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is given by

C(z) =
1 − √

1 − 4z

2z
. (10.2)

While the closed-form expression for C(z) is not rational, we can use the idea
of partial fractions to find a sequence of rational generating functions that
approximate C(z).

Recall that we obtained the closed-form expression for C(z) by first show-
ing C(z) satisfies the identity

zC(z)2 − C(z) + 1 = 0,

or equivalently,
C(z)(1 − zC(z)) = 1.

Dividing by (1 − zC(z)) on both sides yields

C(z) =
1

1 − zC(z)
, (10.3)

which we can then “unravel” recursively to get

C(z) =
1

1 − zC(z)
,

=
1

1 − z

1 − zC(z)

,

=
1

1 − z

1 − z

1 − zC(z)

,

=
1

1 − z

1 − z

1 − z

1 − · · ·

, (10.4)

This suggests that we ought to consider the following sequence of functions:
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C(1)(z) =
1

1 − z
,

C(2)(z) =
1

1 − z

1 − z

=
1 − z

1 − 2z
,

C(3)(z) =
1

1 − z

1 − z

1 − z

=
1 − 2z

1 − 3z + z2
,

C(4)(z) =
1

1 − zC(3)(z)
=

1 − 3z + z2

1 − 4z + 3z2
,

C(5)(z) =
1

1 − zC(4)(z)
=

1 − 4z + 3z2

1 − 5z + 6z2 − z3
,

...

Expanding, we find

C(1)(z) = 1 + z + z2 + z3 + z4 + z5 + z6 + · · · ,

C(2)(z) = 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + · · · ,

C(3)(z) = 1 + z + 2z2 + 5z3 + 13z4 + 34z5 + 89z6 + · · · ,

C(4)(z) = 1 + z + 2z2 + 5z3 + 14z4 + 41z5 + 122z6 + · · · ,

C(5)(z) = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 131z6 + · · · ,

...

The bold terms are those that agree with the Catalan number generating
function, and we can see that each iteration gives us more terms that agree
with C(z). In particular, C(n)(z) is accurate up to the coefficient of zn.

Before we move on, we briefly mention a curiosity that some alert readers
may have noticed. If we take the limit as z → −1+ in Equation (10.4), we
get:
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1

1 +
1

1 +
1

1 +
1

1 + · · ·

,

which is precisely one less than the expression in Equation (10.1). Moreover,
taking the same limit in Equation (10.2) yields

lim
z→−1+

1 − √
1 − 4z

2z
=

1 − √
5

−2
≈ .618,

which is one less than the golden ratio, as expected. It turns out that this is
also the reciprocal of the golden ratio! That is, 1/ϕ = ϕ − 1, so

lim
n→∞

fn
fn+1

= ϕ − 1 ≈ .618.

Hmm. . . what happens when we take z → −1+ in the functions C(n)(z)?

Refinements via statistics for Dyck paths

We can give a combinatorial argument for the continued fraction expression
for C(z) by using Dyck paths, and moreover, this argument allows us to track
several statistics for Dyck paths along the way.

Recall from Chapter 9 that Dyck paths of length 2n are lattice paths from
(0, 0) to (n, n) that do not pass below the line y = x. We let Dyck(n) denote
the set of all such paths, and if p ∈ Dyck(n), we write |p| = n. Further, we let
Dyck =

⋃
Dyck(n) denote the set of all Dyck paths. We have Cn = |Dyck(n)|,

so
C(z) =

∑

n≥0

Cnzn =
∑

p∈Dyck

z|p|.

Call a Dyck path prime if the only points at which it touches the line y = x
occur at (0, 0) and (n, n). For convenience, we do not consider the empty path
that starts and ends at (0, 0) to be prime. Notice that each nonempty path
p ∈ Dyck has a unique “prime decomposition” into concatenated prime paths,
p1, p2, . . .. (If the empty path was prime, then such factorizations wouldn’t
be unique.) See, for example, Figure 10.2.

Write Dyck′(n) for the set of all prime Dyck paths of length n and let
Dyck′ =

⋃
Dyck′(n) denote the set of all prime Dyck paths. We let P (z)

denote the generating function for prime Dyck paths according to size, i.e.,

P (z) =
∑

p∈Dyck′
z|p|.
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•

•

•
•

•

p1

p2

p3

p4

Fig. 10.2 A Dyck path decomposed into prime Dyck paths.

Notice that if we concatenate two paths, size is additive. That is, if p1p2 = p,
we have |p| = |p1| + |p2|. This means P (z)2 is the generating function for all
Dyck paths with exactly two prime factors, P (z)3 is the generating function
for all Dyck paths with exactly three prime factors, and so on.

Grouping paths according to the number of prime factors, we have the
following identity:

C(z) = 1 + P (z) + P (z)2 + P (z)3 + · · · =
1

1 − P (z)
. (10.5)

Here is the interesting part: apart from the first North step and the final East
step, a prime path does not go below the line y = x + 1. This means that a
prime path can be uniquely written as p′ = NpE for some (not necessarily
prime) path p of length n. The correspondence p′ ↔ p gives a bijection be-
tween Dyck′(n+1) and Dyck(n) for each n. In terms of generating functions,
P (z) = zC(z). Thus, Equation (10.5) amounts to C(z) = 1/(1 − zC(z)), as
in (10.3).

But there is more insight to glean from Equation (10.5) if we keep track
of some statistics other than size.

For one, there is a natural q-analogue of the Catalan numbers obtained by
keeping track of the area below the lattice path. Since Dyck paths do not go
below the line y = x, we will normalize the area statistic, so for a Dyck path
p, area(p) counts the number of unit squares below the path and above the
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line y = x. This implies 0 ≤ area(p) ≤ (
n
2

)
for any path p in Dyck(n). For

example, the path in Figure 10.3 is a member of Dyck(8) with area 7.

•

•

• •

•

• • • •

• •

•

•

• • • •

y = x

Fig. 10.3 A path in Dyck(8) that is the concatenation of three prime paths. It
has four peaks and area seven. Note that length, area, and number of peaks are all
additive.

Since area is easily seen to be additive when concatenating paths, area
(p1p2) = area(p1) + area(p2), we immediately get

C(q, z) = 1 + P (q, z) + P (q, z)2 + P (q, z)3 + · · · =
1

1 − P (q, z)
,

where

C(q, z) =
∑

p∈Dyck

qarea(p)z|p| and P (q, z) =
∑

p′∈Dyck′
qarea(p

′)z|p′|.

Moreover, if p ∈ Dyck(n) is any path, then NpE is prime with area
area(NpE) = area(p) + n = area(p) + |p|. This shows
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P (q, z) =
∑

p∈Dyck

qarea(NpE)z|p|+1,

= z
∑

p∈Dyck

qarea(p)+|p|z|p|,

= z
∑

p∈Dyck

qarea(p)(qz)|p|,

= zC(q, qz).

Now we have a new, refined identity:

C(q, z) =
1

1 − zC(q, qz)
,

which leads to a refined continued fraction generating function:

C(q, z) =
1

1 − z

1 − qz

1 − q2z

1 − q3z

1 − · · ·
But wait. . . there’s more! We can also produce a continued fraction for

counting Dyck paths by area and peaks, since the number of peaks is additive
with respect to concatenation as well: pk(p1p2) = pk(p1) + pk(p2). Let

C(q, t, z) =
∑

p∈Dyck

qarea(p)tpk(p)z|p|,

and
P (q, t, z) =

∑

p′∈Dyck′
qarea(p

′)tpk(p
′)z|p′|.

Our key observation is (still!) that C is the geometric series in P :

C(q, t, z) = 1 + P (q, t, z) + P (q, t, z)2 + P (q, t, z)3 + · · · =
1

1 − P (q, t, z)
.

It remains to write P in terms of C, and this is a little bit delicate.
Notice the number of peaks in p′ = NpE is pk(p) = pk(p′), which is good!

. . . unless p is the empty path, in which case pk(NE) = 1 but pk(∅) = 0. This
means
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P (q, t, z) = tz +
∑

∅
=p∈Dyck

qarea(NpE)tpk(p)z|p|+1,

= tz + z
∑

p
=∅∈Dyck

qarea(p)tpk(p)(qz)|p|,

= tz + z(C(q, t, qz) − 1),
= z(t − 1) + zC(q, t, qz).

and
C(q, t, z) =

1
1 − z(t − 1) − zC(q, t, qz)

.

Although this is not quite as nice as our first refinement, we can still plow
ahead to find the following three-variable generating function for area, num-
ber of peaks, and size:

C(q, t, z) =
1

1− z(t− 1)− z

1− qz(t− 1)− qz

1− q2z(t− 1)− q2z

1− q3z(t− 1)− · · ·

There are probably other statistics that we can throw in to the mix, but at
this point it seems like we might be reaching the point of diminishing returns.

Further reading

• Art Benjamin, Francis Su, and Jennifer Quinn, Counting on Continued
Fractions Mathematics Magazine, 73, 98–104, (2000). This playful article
gives a combinatorial interpretation to continued fractions in terms of
tilings. This greatly generalizes the case of the continued fraction for the
golden ratio.

• Andrew Odlyzko and Herb Wilf, The Editor’s Corner: n Coins in a Foun-
tain American Mathematical Monthly, 95, 840–843, (1988). This short
note discusses a counting problem whose generating function is a contin-
ued fraction. The analysis by Odlyzko and Wilf inspired the idea for much
of the discussion of Dyck paths here.



Chapter 11

Applications to probability

“Creativity is the ability to introduce order into the randomness of nature.”

–Eric Hoffer

)b()a(

Rescaling the Eulerian and Narayana numbers to make probability
distributions. Which is which?

Probability and statistics are the central components of many ideas
in science and industry. The goal of this chapter is not to give a general
introduction to probability, but to give a taste for how generating functions
can unlock probabilistic results for combinatorial problems. In this chapter
we will explore how the mean and variance of probability distributions can
be extracted from generating functions, with sometimes surprising results
about the behavior of “random” combinatorial models.
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Discrete probability

Definition 34. A sample space S is any finite set. An event relative
to S is any subset A of S. The probability of event A relative to the
sample space S is defined to be

Pr(A) =
|A|
|S| .

There are more sophisticated definitions of probability, but this one will
serve our purposes. In practice we describe sample spaces intuitively as “ex-
periments” whose outcome cannot be known with any certainty ahead of
time. We may want to know the likelihood that our experiment has a certain
type of outcome and this is the “event” mentioned above.

For example, if our experiment is rolling a die and recording which side is
face up, it is natural to define the sample space as the set

S = {1, 2, 3, 4, 5, 6}.

If we want to know the probability of rolling a number greater than 4, the
event set A is A = {5, 6}, and Pr(A) = 2/6.

Random variables

Definition 35. Given a sample space S, a random variable is a func-
tion X : S → R that is used to help define events. For any set Y of
real numbers, we write

Pr(X ∈ Y ) =
|{s ∈ S : X(s) ∈ Y }|

|S| .

Since S is finite, X only achieves finitely many values. Moreover, the values
of X can usually be assumed to be nonnegative integers, so that we can encode
this distribution in a polynomial generating function

p(t) =
∑

k≥0

Pr(X = k)tk.

The function X gives rise to a probability distribution on the set of nonneg-
ative integers.

Let us return to the dice rolling example. In the language of random vari-
ables, we would say X denotes the random variable that gives the number
showing on the top of the die. Then we would write Pr(X > 4) = 2/6. The
full distribution has generating function

1
6
t +

1
6
t2 +

1
6
t3 +

1
6
t4 +

1
6
t5 +

1
6
t6.
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Warmup 34. Suppose an experiment is to flip a coin five times in a row
and record the sequence of outcomes (heads or tails). What is the sample
space of this experiment? Let X denote the random variable that records the
number of heads that occur. What is the probability of getting more heads
than tails?

Problem 128.
Let Xn denote the random variable that counts how many times a coin comes
up heads in a sequence of n tosses. What is Pr(Xn = k)? Let

pn(t) =
∑

k≥0

Pr(Xn = k)tk.

What is pn(t)? This is called the binomial distribution.
Find expressions for the ordinary and exponential generating functions for

the binomial distribution, i.e.,

F (t, z) =
∑

n≥0

pn(t)zn = 1 +
(

1
2

+
t

2

)
z +

(
1
4

+
2t

4
+

t2

4

)
z2 + · · · ,

and

G(t, z) =
∑

n≥0

pn(t)
zn

n!

Problem 129.
This problem refers to cycle notation for permutations, as discussed at the
end of Chapter 4.

Let Xn denote the random variable that counts how many cycles occur in
a random permutation in Sn.

What is the formula for

pn(t) =
∑

k≥0

Pr(Xn = k)tk?

What is the probability that a permutation in S9 has 4 cycles?

Problem 130.
What is the probability that 1 and 2 are in the same cycle in a permuta-
tion? For example, the permutation (152)(34) has 1 and 2 in the same cycle,
whereas (1345)(2) has them in different cycles. Hint: consider the decision
tree from the essay at the end of Chapter 4.

Problem 131.
What is the probability that a permutation has no fixed points, i.e., what is
the probability that w(i) �= i for all i? Hint: look back at Problem 82.
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Problem 132.
This problem relies on Rodrigues’ Theorem for the generating function for
inversions in permutations, which is given at the end of Chapter 9.

Let Xn denote the random variable that counts how many inversions occur
in a random permutation in Sn.

What is the formula for

pn(t) =
∑

k≥0

Pr(Xn = k)tk?

What is the probability that a permutation in S9 has 21 inversions?

Expectation

Definition 36. The mean or expectation of a random variable X on
a sample space S is denoted E(X) and is defined to be

E(X) =
∑

r

r Pr(X = r).

For example, if we are rolling a six-sided die and considering the side that
lands face up, our expectation would be

1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
21
6

= 3.5.

For a different example, suppose our sample space is a set of standard
playing cards,

S = {A♥, A♣, A♦, A♠, . . . , K♥,K♣,K♦,K♠},

and X is the random variable that gives the point value of each card in the
game of “Hearts.” In this game most cards have no point value, but hearts
each have a value of 1, and the queen of spades has a value of 13.

Thus the expected point value of a randomly selected card is

E(X) = 0 · 38
52

+ 1 · 13
52

+ 13 · 1
52

= 1/2.

Warmup 35. If X has probability generating function

p(t) =
∑

k≥0

Pr(X = k)tk,

show that

E(X) = p′(1).
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Problem 133.
What is the expected number of fixed points of a permutation in Sn? For
example (134)(2)(5)(67) has two fixed points, while (1)(2)(3574)(6) has three
fixed points.

Problem 134.
What is the probability that a permutation in Sn begins with an increasing
run of length k? In other words, what is the probability that

w(1) < · · · < w(k),

but w(k) is not less than w(k + 1)?

Problem 135.
Continuing with Problem 134, what is the expected length of the first in-
creasing run of a permutation in Sn? What is the limit as n → ∞ of this
quantity?

Problem 136.
Consider the set of paths in the first Starfolks problem (Problem 7) where
we walk four blocks East and three blocks North. We can think of each path
as part of the boundary of a region in the plane whose bottom-left corner
sits at the origin, and with Starfolks at the point (4, 3). The lower boundary
is the x-axis and the rightmost boundary is the vertical line at x = 4. For
example, the path shown in Figure 11.1 has area seven.

1. Let X denote the random variable that counts the area under a path.
Compute the probability generating function p(t) =

∑
k Pr(X = k)tk.

(Hint: Think back to Problem 125.)
2. Now suppose q(t) is the generating function for paths that end at (3, 3)

and r(t) is the generating function for paths that end at (4, 2). Express p(t)
in terms of q(t) and r(t) in a way that is reminiscent of Pascal’s recurrence
for binomial coefficients.

3. What is the expected area under a path from (0, 0) to (4, 3)?
4. What are some ways that you can generalize this problem?

While the expected value of a random variable is good to know, the spread
of values is also important to know. Variance is one way to measure this.

Variance

Definition 37. The variance of a random variable is defined to be

Var(X) = E((X − E(X))2).

In other words, it is the expected value of the square of the distance
between X and the mean.
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Fig. 11.1 Area under a path.

It turns out that variance can be computed as a difference of expectations:

Var(X) = E(X2) − E(X)2. (11.1)

For example, to compute the variance of point values in a deck of cards
related to the game of Hearts, we first compute

E(X2) = 02 · 38
52

+ 12 · 13
52

+ 132 · 1
52

= 182/52 = 7/2.

Combined with E(X) = 1/2 from earlier, we have

Var(X) = 7/2 − (1/2)2 = 13/4.

Warmup 36. Compute the mean and variance of the binomial distribution
pn(t) for n ≤ 5.

Problem 137.
If X has probability generating function

p(t) =
∑

k≥0

Pr(X = k)tk,

show that

E(X2) =
d

dt
[tp′(t)]t=1 = p′′(1) + p′(1),
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and hence

Var(X) = p′′(1) + p′(1) − p′(1)2.

Problem 138.
Let Xn denote the random variable that counts the number of cycles in a
random permutation in Sn. At the end of Chapter 4 the generating function
for Xn was derived, and the expectation of Xn was shown to be E(Xn) = Hn,
where Hn is the nth harmonic number

What is Var(Xn)?

Problem 139.
As in Problem 128, let Xn denote the random variable that counts how many
times a coin comes up heads in a sequence of n tosses, and let pn(t) denote
its distribution, i.e., the binomial distribution.

1. Use the generating function formula you found for
∑

n≥1 pn(t)zn in Prob-
lem 128 to derive the generating function for the expectation E(Xn). Show

∑

n≥1

E(Xn)zn =
z

2(1 − z)2
.

2. What is E(Xn) as a function of n? Does this formula have a more combi-
natorial explanation?

3. Derive the generating function for the variance Var(Xn). Show
∑

n≥1

Var(Xn)zn =
z

4(1 − z)2
.

4. What is Var(Xn) as a function of n?

Problem 140.
Now let’s do for the Eulerian distribution what Problems 128 and 139 did
for the binomial distribution.

Recall that the Eulerian polynomial An(t) is the generating function for
permutations in Sn according to the number of runs. Let Xn be the random
variable that counts the number of runs in a random permutation of Sn.
Then the polynomial pn(t) = An(t)/n! is the probability generating function
for Xn.

1. What is the ordinary generating function for the sequence of polynomials
pn(t)?

2. Derive the generating function for the expectation E(Xn) from part 1.
Show

∑

n≥1

E(Xn)zn =
z(2 − z)
2(1 − z)2

.

3. What is E(Xn) as a function of n? Does this formula have a more combi-
natorial explanation?
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4. Derive the generating function for the variance Var(Xn) = E(X2
n) −

E(Xn)2. Show

∑

n≥1

Var(Xn)zn =
z2(3 − 2z)
12(1 − z)2

.

5. What is Var(Xn) as a function of n? For large n, the variance is approxi-
mately what proportion of n?

You may want the aid of a computer to prevent errors on parts 2 and 4. Also
keep in mind the lesson of Problem 102, i.e., to specialize some generating
functions to t = 1 it is not enough to plug in. We should really take a limit
as t → 1.

Problem 141.
We will repeat the steps in Problem 140 for the set of 231-avoiding permu-
tations. Here we let Xn denote the random variable that counts the num-
ber of runs in a random 231-avoiding permutation in Sn. Then pn(t) =
Cn(t)/Cn, where Cn(t) is the Narayana polynomial from Definition 26 and
Cn = Cn(1) = 1

n+1

(
2n
n

)
is the nth Catalan number.

For this problem you will probably want the generating function for the
Narayana numbers in Problem 107, denoted C(t, z) =

∑
n≥0 Cn(t)zn.

1. Show that

d

dt
[C(t, z)]t=1 =

∑

n≥1

C ′
n(1)zn =

∑

n≥1

(
2k − 1
k − 1

)
zn.

2. What is E(Xn) as a function of n? Does this formula have a more combi-
natorial explanation?

3. Compute E(X2
n), and hence Var(Xn) as a function of n. For large n, the

variance is approximately what proportion of n?
4. Comparing with Problem 140, which distribution is more disperse, the

Eulerian distribution or the Narayana distribution? (Look at Figure on Page
147.One is a picture of theNarayana distribution; the other is a picture of the
Eulerian distribution. Which is which?)
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Longest increasing subsequences and random partitions

Some permutation statistics are easier to analyze than others. De-
scents, inversions, and cycles are straightforward when compared to the per-
mutation statistic known as the longest increasing subsequence. The study
of this statistic leads to a large body of work at the intersection of proba-
bility theory and mathematical physics—in particular the study of random
matrices! This is a lot to cover briefly, but we will introduce some of the
combinatorial models and give hints about their large-scale behavior.

Patience sorting

Consider the following solitaire card game, known as patience sorting. We
turn the cards over one at a time and place them in piles. At each stage in
the game, the card may be placed on top of a pile or it can start a new pile.
However the card may only be placed on top of a pile if the card is smaller
in value than the current top card, e.g., a 3 can go on top of an 8, but not on
top of a 2. The object of the game is to end up with the fewest piles possible.

For example, if we have only nine cards ordered in the deck as 318925647
then first 3 is placed in a new pile, then the 1 can either go on top of the 3:
1
3 or it can start a new pile: 3 1.

The greedy strategy is to always place a card on top of the leftmost pile
possible, only starting a new pile if the card is greater than the top card
on each existing pile. It is not difficult to argue that the greedy strategy
is optimal in that it produces the fewest possible piles. Carrying out this
strategy with 318925647 we have the following sequence of piles:

3
1
3

1
3 8

1
3 8 9

1 2
3 8 9

1 2 5
3 8 9

1 2 5
3 8 9 6

4
1 2 5
3 8 9 6

4
1 2 5
3 8 9 6 7

Thus we see the minimal number of piles for this ordering of nine cards is
five.

Longest increasing subsequences

It turns out that the optimal number of piles in patience sorting for the
ordering w is precisely equal to the permutation statistic we want to study.
To be clear, an increasing subsequence is just what it sounds like: a sequence
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of values w(i1) < w(i2) < · · · < w(il) for some i1 < i2 < · · · < il. The length
of the longest such subsequence is denoted l(w).

For example, with w = 318925647 we have l(w) = 5 since · 1 · · 2 5 6 · 7
is an increasing subsequence and no other increasing subsequence is longer.
It turns out that greedy patience sorting gives a clever way to describe an
algorithm of Hammersley for finding this longest subsequence.

To make this connection, we augment the steps in the patience sorting by
drawing an arrow a ← b whenever b is placed on top of the pile immediately
to the right of a and a < b. Notice that in the greedy algorithm, the top card
in the pile to the left of b is necessarily smaller, so each card in a column
other than the first has at least one arrow pointing left. Doing this with
w = 318925647 we get the directed graph below:

1 2

3

4

5

6 78 9

By construction, there will always be a path from the leftmost pile to the
rightmost pile: 1 ← 2 ← 5 ← 6 ← 7. This is a longest increasing subsequence
of our permutation.

For a larger example, consider the permutation in S20 given by

u = 13 6 2 12 4 5 17 8 18 20 11 19 10 14 15 9 16 1 7 3

Here the directed graph from the greedy algorithm is shown in Figure 11.2.

1

2 3

4

5

6

7

8

9

10

11

1213

14

15 1617 18

19

20

Fig. 11.2 Patience sorting graph for an element of S20.

We can see that the length of the longest increasing subsequence is l(u) =
8, e.g., we have

2 ← 4 ← 5 ← 8 ← 10 ← 14 ← 15 ← 16.
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In this example there is more than one longest subsequence: we could go
· · · 8 ← 11 ← 14 · · · instead of · · · 8 ← 10 ← 14 · · · . The directed graph
contains all increasing subsequences.

Table 11.1 shows the distribution of longest increasing subsequences across
all permutations. There doesn’t appear to be standard terminology for this
array of numbers in the literature, but we will call it the triangle of Ulam
numbers, or the Ulam distribution, since Stanislaw Ulam initiated the study
of longest increasing subsequences.

n\k 1 2 3 4 5 6 7

1 1

2 1 1

3 1 4 1

4 1 13 9 1

5 1 41 61 16 1

6 1 131 381 181 25 1

7 1 428 2332 1821 421 36 1

Table 11.1 Triangle of the number of permutations in Sn with longest increasing
subsequence of length l(w) = k.

Young tableaux and Schensted insertion

In 1961, Craige Schensted developed a correspondence between permutations
and pairs of what are known as Young tableaux as another way to tackle the
increasing subsequence problem. In this approach we recursively record a pair
of arrays of numbers that increase across rows and down columns.

To be a bit more precise, define a standard Young tableau of size n to be
an array of numbers 1, 2, . . . , n that increase across rows and down columns.
For example,

T =
1 3 5 6
2 4
7

is a standard Young tableau of n = 7. The shape of a tableau is the list of
lengths of the rows, λ = (λ1, . . . , λk). Such lists of weakly decreasing numbers
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are known as integer partitions, and are studied further in Chapter 12. In this
example, the shape is λ = (4, 2, 1). Often the shape of a Young tableau is
drawn with an array of empty boxes known as a Young diagram, e.g.,

λ =

Young diagrams give a nice way to visualize integer partitions in many con-
texts.

Let’s now see how to do Schensted insertion. The process is similar to the
placing of cards on piles in patience sorting. We will have two tableaux of
the same shape, P and Q, that are updated recursively to keep track of the
values we insert and the positions that get filled. Suppose w ∈ Sn. Then for
each i = 1, 2, . . . n, we do the following with letter w(i) = j.

1. Insert j in the first row of P . Either j is placed at the end of the row, or,
if the first row contains elements larger than j, we displace the smallest
such element.

2. If j displaces an element from row one, insert the displaced element in
row two. This element goes either at the end of the row or it displaces the
smallest element that is larger than it.

3. Repeat this process row by row until some element is placed at the end of
a row.

4. Add a new box to Q in the same position. This box is filled with i, the
current number of values inserted.

We illustrate with the example permutation w = 318925647 from before.
To begin, we place the first letter of w, “3” in P and we record a “1” in Q
to indicate where the new box was added:

P = 3 Q = 1

Next we insert the second letter of w in P . Since w(2) = 1 is smaller than 3,
this action displaces the 3, which moves to the second row. Now we have

P = 1
3

Q = 1
2

The “2” added to Q reflects the position in which a new cell was added to
the shape of P . The remaining steps in the algorithm are shown in Figure
11.3.

Notice that the top row in our final P tableau corresponds exactly to
the cards on top of the piles in our greedy patience sorting algorithm! In
fact, we can see by induction that this holds at every stage of the insertion
process compared to every stage of the greedy patience sorting algorithm.
(The tableau P doesn’t make it so easy to read off the longest increasing
subsequence itself, however.)
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QP

3 1

1
3

1
2

1 8
3

1 3
2

1 8 9
3

1 3 4
2

1 2 9
3 8

1 3 4
2 5

1 2 5
3 8 9

1 3 4
2 5 6

1 2 5 6
3 8 9

1 3 4 7
2 5 6

1 2 4 6
3 5 9
8

1 3 4 7
2 5 6
8

1 2 4 6 7
3 5 9
8

1 3 4 7 9
2 5 6
8

Fig. 11.3 Schensted insertion for the permutation w = 318925647.

What Schensted proved was even more: not only does the length of the
first row corresponds to the longest increasing subsequence, the length of the
first column corresponds to the length of the longest decreasing subsequence!
(Check this is true for the example above.)

Before moving on, observe that the insertion algorithm can be run in
reverse. Thus Schensted insertion is really a bijection between elements w ∈
Sn and pairs of standard Young tableaux (P,Q). This is more widely known
as the Robinson–Schensted–Knuth correspondence, or RSK correspondence.

The hook length formula

If we let dλ denote the number of standard Young tableau of shape λ, then
Schensted’s correspondence implies the curious formula
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n! =
∑

λ�n

d2λ,

where λ � n means λ is a partition of n. Moreover, since the length of the
first row of P corresponds to the longest increasing subsequence of w, then
for each k we have

|{w ∈ Sn : l(w) = k}| =
∑

λ�n
λ1=k

d2λ,

which suggests a way to calculate the entries in Ulam’s distribution without
referring to permutations at all.

But are the numbers dλ easier to compute? Yes! There is a nice formula
for dλ, known as the hook length formula, due to Frame–Robinson–Thrall.
Schensted knew this formula, and recognized that it would provide one way
to compute the numbers in Ulam’s distribution.

The hook length formula is

dλ =
n!∏

c∈λ hc
,

where the product is over all cells in λ and hc is the hook length of the cell c.
This measures the number of cells to the right and below the cell c, including
c itself. For example, cell c marked below has hc = 7:

c • • • •
•
•

For the shape λ = (5, 3, 1), the hook length formula gives

d(5,3,1) =
9!

7 · 5 · 4 · 2 · 1 · 4 · 2 · 1 · 1
= 162,

so the permutation w = 318925647 is just one of 1622 = 26244 permutations
whose Young tableaux have shape (5, 3, 1).

If we want to find how many permutations in S9 have longest increasing
subsequence 9, we simply sum over all partitions of 9 with λ1 = 5. Using the
hook length formula several times we find:

|{w ∈ S9 : l(w) = 5}| = d2(5,4) + d2(5,3,1) + d2(5,2,2) + d2(5,2,1,1) + d2(5,1,1,1,1)

= 422 + 1622 + 1202 + 1892 + 702

= 83029.
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Expectation and limit shapes

The connection between the longest increasing subsequence problem and
Young tableaux means that instead of asking Ulam’s question,

What is the expected length of a longest increasing subsequence of a random
permutation?

we can instead ask

What is the expected length of the first part in a random partition?

We have to be a little careful about what we mean by a “random” partition,
but the hook length discussion gives us the proper weighting to make the
questions equivalent. We say the partition λ � n occurs with probability

d2λ
n!

=
n!∏

c∈λ h2
c

.

This is called the Plancharel measure on partitions. An incredible result due
to Logan-Shepp-Vershik-Kerov answers the following much stronger question,

What is the expected shape of a random partition?

The answer to this question is illustrated in Figure 11.4. Here we have ro-
tated the Young diagram 135 degrees. The boundary of the partition (rescaled
appropriately) is very close to the curve Ω given by

Ω(x) =
2
π

(
x arcsin

(
x√
2

)
+

√
2 − x2

)
.

Once we pass through the rescaling of our Young diagram (draw each box as
a diamond with integer corners, then shrink each box by a factor of 1/

√
2n)

and compare with the limit curve, we find the expected length of the first
row to be

λ1 ≈ 2
√

n,

answering Ulam’s original question. So, for instance, a random permutation
of n = 100 should have a longest increasing subsequence of about 20.

A completely surprising result known as the Baik–Deft–Johansson Theo-
rem says that Ulam’s distribution converges asymptotically to what is known
as the Tracy–Widom distribution. This distribution comes from Mathemati-
cal Physics; it is the distribution of the largest eigenvalue in a random Her-
mitian matrix! Subsequent work of Fields medalist Andrei Okounkov and
others shows that in fact the kth largest row in a random Young diagram
is distributed like the kth largest eigenvalue. Few would have guessed at the
depth of these results given Ulam’s original question.



162 11 Applications to probability

(a)

(b)

Fig. 11.4 Random Young diagrams of: (a) size n = 100, and (b) size n = 1000, as
compared to the limit shape Ω.
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Further reading

• Noga Alon and Joel Spencer, “The Probabilistic Method,” Wiley, 2008.
This book shows how to use probabilistic arguments to obtain combinato-
rial results, particularly in graph theory.

• Dan Romik, “The surprising mathematics of longest increasing subse-
quences,” Cambridge University Press, 2015.
This book tells the story of the longest increasing subsequence problem in
its full detail.



Chapter 12

Some partition theory

“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”
(“God made the integers, all else is the work of man.”)

–Leopold Kronecker

A correspondence between partitions (15,7,3,1) and (8,5,4,4,2,1,1,1).

How many ways can you write a number as a sum of smaller numbers?
This simple question is not as easy to answer as you might think. The study
of integer partitions has a long history in Number Theory and Com-
binatorics, with contributions from Leonhard Euler, Srinivasa Ramanujan,
Godfrey Harold Hardy, and more recently George Andrews and Ken Ono. In
this chapter we will ask some of the first questions about counting partitions.
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Integer partitions

Definition 38. A partition of n is an unordered collection of positive
integers whose sum is n. By convention, we list the elements in a
partition in decreasing order, e.g., λ = (λ1, . . . , λk) is a partition of
n if and only if the λi are positive integers, λ1 ≥ · · · ≥ λk ≥ 1, and
λ1 + · · · + λk = n. Denote the the number of parts, or length of a
partition by �(λ) = k. The size of the partition is the sum of the
parts, denoted |λ| = n.

Thus while (2, 2, 1), (2, 1, 2), and (1, 2, 2) all represent different composi-
tions (in the sense of Chapter 5), they represent the same partition of 5. The
default way to write this partition is (2, 2, 1).
Warmup 37. List all the partitions of 3, 4, 5, and 6. Organize your data by
the number of parts.

Throughout this chapter we denote the number of partitions of n by pn.
The sequence of partition numbers pn, n ≥ 1 begins:

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, . . .

and we usually take p0 = 1 for convenience.

Problem 142.
How many ways can you write n as a sum of ones and twos? This question
can be interpreted with or without ordering the summands.

1. How many partitions of n use only parts of size 1 and size 2, i.e., have
λi ∈ {1, 2}?

2. How many compositions of n use only parts of size 1 and size 2? (See
Problem 56.)

Problem 143.
In this problem you will get an expression for the ordinary generating function
for pn with an infinite product.

For any n and k, let
pn,k(t) =

∑

|λ|=n
λ1≤k

t�(λ).

This is the generating function for partitions of n according to the number of
parts, where the parts are at most k. For example if n = 5 and k = 3, we are
counting the partitions (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1)
according to length, and we find p5,3(t) = t2 + 2t3 + t4 + t5.

1. Let Pk(t, z) =
∑

n≥0 pn,k(t)zn denote the generating function for all par-
titions whose parts are at most k. Show that for any k ≥ 1,
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Pk(t, z) =
k∏

i=1

1
1 − tzi

.

2. Let pn(t) =
∑

|λ|=n t�(λ) and let P (t, z) =
∑

n≥0 pn(t)zn denote the gen-
erating for all partitions. Show that

P (t, z) =
∏

i≥1

1
1 − tzi

.

3. Conclude that the generating function for the partition numbers, P (z) =∑
n≥0 pnzn, is

P (z) =
∏

i≥1

1
1 − zi

.

This is known as Euler’s product formula.

Problem 144.
Prove that for n ≥ 3,

pn ≤ pn−1 + pn−2.

Use this inequality to conclude that for all n ≥ 1, pn ≤ fn, where fn denotes
the nth Fibonacci number, with initial values f1 = 1 and f2 = 2. In particular,
pn ≤ ϕn, where ϕ = (1 +

√
5)/2 is the golden ratio.

Young diagrams

Definition 39. A Young diagram is a visual illustration for parti-
tions. Given a partition λ = (λ1, . . . , λk), we draw k rows of boxes,
such that row i has λi boxes.

For example, the partition (4, 2, 1) is drawn

Notice that our convention is to have the rows drawn from largest on top to
smallest on bottom, and that the rows are left justified. This is the “English”
convention for visualizing partitions. The “French” convention is to have k
columns arranged from tallest on the left to shortest on the right. These are
known as “Ferrers diagrams” or “Ferrers boards,” e.g., the partition (4, 2, 1)
has Ferrers diagram
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Yet another way of drawing Young diagrams is “Russian style” as in

which is simply obtained by rotating the Ferrers diagram another 45 degrees.
(Russian style is also shown in Figure 11.4.)

Problem 145.
How many Young diagrams fit inside an a × b rectangle? Let

La,b(t) = 1 +
∑

λ⊆a×b

t|λ|,

where λ ⊆ a × b means the Young diagram for λ has at most a rows and at
most b columns. Find a recurrence relation for the polynomial La,b(t).

Conjugate partitions

Definition 40. The conjugate of a partition λ is the partition whose
parts are the lengths of the columns of the Young diagram for λ. We
denote the conjugate of λ by λ′. To put it another way, λ′

i = |{j :
λj ≥ i}|, so that λ′

1 is the number of parts of λ, λ′
2 is the number of

parts of λ that are at least two, and so on.

For example, if λ is the partition (4, 2, 1), its conjugate is λ′ = (3, 2, 1, 1).
In pictures, the Young diagram of the conjugate is obtained by reflecting the
Young diagram across the line y = −x:

λ = = λ′

Warmup 38. Use the notion of conjugate partitions to explain why La,b(t) =
Lb,a(t), where La,b(t) is as defined in Problem 145.

Warmup 39. Use the notion of conjugate partitions to explain why

pn,k(t) =
∑

|λ|=n
�(λ)≤k

tλ1 ,
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where pn,k(t) is the function defined in Problem 143. In other words, counting
partitions with restricted part size according to the number of parts is the
same as counting partitions with restricted number of parts according to part
size.

Problem 146.
The largest square that fits inside the Young diagram for λ is called the
Durfee square. The side length of the Durfee square is the largest s such that
λs ≥ s. Use the notion of a Durfee square to prove

P (t, z) = 1 +
∑

s≥1

tszs2
s∏

i=1

1
(1 − zi)(1 − tzi)

,

and hence

P (z) = 1 +
∑

s≥1

zs2
s∏

i=1

1
(1 − zi)2

,

where P (t, z) and P (z) are the partition generating functions from Problem
143. Here’s a hint. Decompose the Young diagram for λ into three Young
diagrams: the Durfee square itself, the diagram to the right of the square,
and the diagram below the square.

Problem 147.
A partition is self-conjugate if λ = λ′. A partition μ is said to have distinct
odd parts if μ1 > μ2 > · · · > μk and each of the μi are odd. Use a bijection
to show the number of self-conjugate partitions of n equals the number of
partitions of n with distinct odd parts.

Problem 148.
Let Dn denote the set of partitions of n whose parts are distinct, i.e., λ1 >
λ2 > · · · > λk. Let On denote the set of partitions whose parts are only odd
numbers.

1. Compute |Dn|, for n = 1, 2, . . . , 8.
2. Show

1 +
∑

n≥1

|Dn|zn =
∏

i≥1

(1 + zi).

3. Compute |On|, for n = 1, 2, . . . , 8.
4. Show

1 +
∑

n≥1

|On|zn =
∏

i≥1

1
(1 − z2i−1)

.

5. Compare generating functions to show |On| = |Dn|.
Problem 149.
Obtain the result of Problem 148, that |Dn| = |On|, with a bijection.
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Problem 150.
Let ξ(z) =

∏
i≥1(1 − zi) denote the denominator in the generating function

for all partitions found in Problem 143. This is sometimes called the Euler
function. Show that

ξ(z) = 1 − z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − · · · .

Find a formula for the exponents of the nonzero terms in the series expansion
of ξ(z), and show the only coefficients are 1,−1, and 0. (Hint: interpret the
left-hand side as running over all partitions into distinct parts, where if the
partition has an odd number of parts it gets counted with a minus sign.)

Problem 151.
From Problem 150, we can imagine rewriting the partition generating func-
tion as

P (z) =
∑

n≥0

pnzn =
1

1 − z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − · · ·

Explain how to use this expression to give the recursive formula

pn = pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 − · · · ,

with the convention that pk = 0 if k < 0. Use the recurrence to make a table
of pn for n ≤ 30.
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Plane Partitions

In this chapter we studied integer partitions, which we can think of as
one-dimensional arrays of finitely many weakly decreasing positive integers:

λ1 ≥ λ2 ≥ λ3 ≥ · · · .

A natural way to generalize this idea is to study two-dimensional arrays.
Define a plane partition ρ to be a two-dimensional array of finitely many
positive integers that weakly decrease across rows and down columns,

ρ =

ρ1,1 ρ1,2 · · ·
ρ2,1 ρ2,2 · · ·
ρ3,1 ρ3,2 · · ·
...

...
. . .

i.e., ρi,j ≥ ρi,j+1 and ρi,j ≥ ρi+1,j . If the sum of the parts of ρ is n, |ρ| =∑
ρi,j = n, we say ρ is a plane partition of n. We can draw plane partitions

much like we draw Young tableaux, except weakly decreasing across rows and
down columns, e.g.,

ρ =

9 3 2 1
7 3 1
2 2
2
1

is a plane partition of n = 33. Apart from the sum of the entries, we can also
keep track of the shape of ρ, which corresponds to some ordinary partition
λ. We will write sh(ρ) = λ. For example, the plane partition above has shape
sh(ρ) = (4, 3, 2, 1, 1).

Another visual way to think of plane partitions is in terms of stacks of n
cubes, in a kind of three-dimensional Young diagram, which we will call a
solid Young diagram. For example, in Figure 12.1 we see the plane partition
above as a stack of cubes.

MacMahon embarked on a thorough study of partitions and plane parti-
tions in the early twentieth century. We will survey some of his results and
some more recent developments. Of course if you can study one- and two-
dimensional partitions, why not d-dimensional partitions? It transpires that
beyond two dimensions things get much harder. While we shall soon see a
generating function for plane partitions, as of this writing there is no com-
parable formula for the generating function for three-dimensional partitions,
known as solid partitions.
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ρ =

9 3 2 1
7 3 1
2 2
2
1

=

Fig. 12.1 A plane partition as a stack of cubes.

Generating function

Let ppn denote the number of plane partitions of n, with pp0 = 1. The
sequence ppn begins

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, . . . .

For example, here are the six plane partitions of 3:

3 2 1 1 1 1 2
1

1
1
1

1 1
1

MacMahon’s formula for the generating function is a deceptively nice gen-
eralization of Euler’s product formula:

∑

n≥0

ppnzn =
∏

i≥1

1
(1 − zi)i

(12.1)

Compare with Problem 143.
While there are combinatorial explanations of this identity, none are so

quick and elementary as Euler’s identity. One approach is similar to the one-
dimensional case, in that we first count the plane partitions whose shape fits
inside a m×m, square. That is, if sh(ρ) = λ, we want λ1 ≤ m and �(λ) ≤ m.
This generating function turns out to be

∑

sh(ρ)⊆m×m

z|ρ| =
m∏

i=1

1
(1 − zi)i

m−1∏

j=1

1
(1 − zm+j)m−j

, (12.2)

and as m → ∞, we get Equation (12.1).
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P -partitions

But how to prove the identity in (12.2)? One method comes from the theory
of P -partitions, developed by Richard Stanley in the 1970s. Here, “P” stands
for a partially ordered set. In this case, we think of the cells in an m × m
square as being partially ordered from the bottom right to top left corner,
e.g.,

↔ P =

r

s t

u v w

x y

z

We have drawn P so that p < q if there is an upward path of edges from p
to q. This is a partial ordering since since some elements are incomparable,
e.g., s and t are incomparable, as are s and w.

A P -partition is an order-preserving map f : P → {0, 1, 2, 3, . . .}, i.e., if p
is below q in P , then f(p) ≤ f(q). When the partially ordered set is a square
grid as above, P -partitions correspond to plane partitions, e.g.,

5 2 1
2 2
1 1

↔ f(P ) =

0
1 0

1 2 1
2 2

5

corresponds to the function given by f(z) = 5, f(x) = f(y) = f(v) = 2,
f(w) = f(u) = f(s) = 1, and f(r) = f(t) = 0.

We can now interpret (12.2) in terms of these maps:
∑

sh(ρ)⊆m×m

z|ρ| =
∑

f∈A(P )

z|f |,

where A(P ) denotes the set of P -partitions for the m × m grid and |f | =∑
p∈P f(p).
For arbitrary partially ordered sets P , one does not expect the generating

function for P -partitions to be particularly simple. However, in the case where
P resembles a rectangular grid, Stanley proved a formula that can be phrased
in terms of the hook lengths, hc, as discussed at the end of Chapter 11. This
result is ∑

f∈A(P )

z|f | =
∏

c∈P

1
1 − zhc

,

which we will not prove here.
For the 3 × 3 example above, the hook lengths are
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5 4 3
4 3 2
3 2 1

so the generating function would be

∑

f∈A(P )

z|f | =
1

(1 − z)(1 − z2)2(1 − z3)3(1 − z4)2(1 − z5)
.

Thinking about the hook lengths in a general m × m square yields Equation
(12.2).

Plane partitions in a box

Another way to approach Equation (12.1) is to count the number of plane
partitions whose solid Young diagrams fit in an a × b × c box. That is, if ρ
has shape λ, we require λ1 ≤ a, �(λ) ≤ b and ρ1,1 ≤ c.

MacMahon also had a formula for this counting problem. The number of
plane partitions in an a × b × c box is

a∏

i=1

b∏

j=1

c∏

k=1

i + j + k − 1
i + j + k − 2

,

or more precisely, the generating function for these according to area is

∑

ρ⊆a×b×c

z|ρ| =
a∏

i=1

b∏

j=1

c∏

k=1

1 − zi+j+k−1

1 − zi+j+k−2
.

Note that letting a, b, c → ∞ implies Equation (12.1). This identity is not
trivial to prove either, and there have been several techniques for proving
it, including Stanley’s P -partition approach and variations on the Schensted
correspondence from Chapter 11.

For example, there are 116424 plane partitions that fit inside of a 3×4×5
box, and the generating function is

3∏

i=1

4∏

j=1

5∏

k=1

1 − zi+j+k−1

1 − zi+j+k−2
=

(1 − z7)2(1 − z8)3(1 − z9)3(1 − z10)2(1 − z11)
(1 − z)(1 − z2)2(1 − z3)3(1 − z4)3(1 − z5)2

which expands as shown in Figure 12.2. In Figure 12.3 we find one of the
5199 such plane partitions comprised of n = 26 small cubes.
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1 + z + 3z2 + 6z3 + 12z4 + 20z5 + 36z6 + 56z7 + 91z8 + 136z9 + 203z10

+ 287z11 + 407z12 + 548z13 + 736z14 + 955z15 + 1225z16 + 1525z17

+ 1883z18 + 2259z19 + 2686z20 + 3116z21 + 3574z22 + 4010z23

+ 4454z24 + 4837z25 + 5199z26 + 5477z27 + 5704z28 + 5823z29

+ 5884z30 + 5823z31 + 5704z32 + 5477z33 + 5199z34 + 4837z35

+ 4454z36 + 4010z37 + 3574z38 + 3116z39 + 2686z40 + 2259z41

+ 1883z42 + 1525z43 + 1225z44 + 955z45 + 736z46 + 548z47

+ 407z48 + 287z49 + 203z50 + 136z51 + 91z52 + 56z53

+ 36z54 + 20z55 + 12z56 + 6z57 + 3z58 + z59 + z60.

Fig. 12.2 The generating function for plane partitions inside a 3× 4× 5 box.

Fig. 12.3 One of the 5199 plane partitions of n = 26 that fits in a 3× 4× 5 box.

Lozenge tilings of a hexagon

There are many other interesting questions one can ask about plane par-
titions, especially as relate to symmetries. We will finish the discussion by
connecting back to the ideas of Chapter 11 and consider the “typical” features
of a large random plane partition. First, notice that when the dimensions of
the box are fixed, our solid Young diagrams are in bijection with so-called
“lozenge tilings” of a hexagon. The lozenges are the three types of rhombi
that correspond to the different exposed faces of the small cubes. We can
shade these for emphasis: white on top, black on the front left face, gray on
the front right face, as seen below.
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Rather than think about the solid Young diagram, we can speak of the lozenge
tiling instead.

There are robust methods for studying random tiling models like this,
and an incredible result due to Henry Cohn, Michael Larsen, and Jim Propp
says that as the size of the hexagon gets large, a typical lozenge tiling has
its corners filled by mostly the same type of tile. Moreover, in the case of a
regular hexagon (with a = b = c) the boundary between the corners and the
middle is very close to an inscribed circle! See Figure 12.4. In other words,
from a probabilistic standpoint, the corners are “frozen” whereas the interior
is warmer. This is what is known as an arctic circle theorem.

Fig. 12.4 A random plane partition in a 20× 20× 20 box.

Further reading

• Amir Aczel and Ken Ono, “My Search for Ramanujan: How I Learned to
Count,” Springer, 2016.
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Srinavasa Ramanujan is one of the fabled names in early 20th century
mathematics. His best known contributions have to do with questions
about partition numbers. Ken Ono is a prominent number theorist who
has contributed a lot to the understanding of partition numbers in more
recent years. This book is a memoir of Ono’s life, woven together with
Ramanujan’s life story.

• David Bressoud, “Proofs and Confirmations,” Cambridge University Press
(1999).
This book brings mathematical research to life. It studies the problem of
“alternating sign matrices” but there are connections to plane partitions.

• Robert Kanigel, “The Man Who Knew Infinity: A Life of the Genius Ra-
manujan,” Washington Square Press, 1992.
This biography of Ramanujan was the basis for the movie of the same
name.



Chapter 13

A bit of number theory

“God created infinity, and man, unable to understand infinity, had to invent
finite sets.”

–Gian-Carlo Rota

How many necklaces are there with eight black beads and eight white
beads?

We have seen ordinary generating functions, and we have seen expo-
nential generating functions. In this chapter we will investigate Dirichlet

generating functions. These are most useful for studying sequences that are
related to divisibility.
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For most of the book, we have not needed any particular knowledge other
than algebra skills and our wits. (Okay, maybe a tiny bit of calculus.) In
this chapter we need to assume only a little more, all of which can be found
in most undergraduate texts on number theory. The main focus here is the
multiplicative structure of positive integers.

Divisibility

Definition 41. Suppose d and n are integers. If there exists an integer
k such that n = dk, we say d divides n. In symbols we write d|n.

For example, 3|54, since 54 = 3 · 18. Some synonyms for “d divides n”
include “d is a divisor or n,” “d is a factor of n,” or “n is a multiple of d.”
While the definition of divisibility applies equally to negative numbers, e.g.,
7|(−35), we will primarily restrict our attention to positive integers.

Greatest common divisor

Definition 42. The greatest common divisor of integers m and n,
denoted gcd(m,n), is the largest integer d such that both m and n
are multiples of d. If gcd(m,n) = 1, we say the integers m and n are
relatively prime.

For example, gcd(36, 24) = 12, and gcd(14, 9) = 1.

Warmup 40. Find gcd(72, 28) and gcd(310, 186). (There is a quick method
for computing gcd(m,n) known as the Euclidean algorithm. You don’t need
to use this method to compute the greatest common divisor, but if you don’t
know the method, you may want to look it up.)

We assume you are familiar with the notion of a prime number, i.e., an
integer greater than 1 that has no proper divisors. The first few of these are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . .

We can write any integer greater than 1 as a product of primes, e.g., 84 =
22 · 3 · 7. This is known as a prime factorization. We will rely heavily on the
fact that prime factorizations are unique.

Fundamental Theorem of Arithmetic

Theorem 8. For any integer n > 1, there exists a unique set of primes
p1 < p2 < · · · < pk and positive integer exponents e1, e2, . . . , ek such
that

n = pe1
1 pe2

2 · · · pek

k .

The fact that such factorizations exist is not too difficult to justify by
mathematical induction. The uniqueness of the factorization is less obvious,
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but follows by appealing to “Euclid’s Lemma”: if a and b are integers and p
is a prime that divides ab, then p|a or p|b. Details can be found in most any
book on elementary number theory.

Warmup 41. Find the prime factorizations of 342 and 510, then compute
gcd(342, 510).

We have seen ordinary and exponential generating functions. Now we con-
sider a new type of generating function, one that is built to deal with number-
theoretic sequences. Loosely, these are sequences whose recursive structure is
tied up with prime factorization.

Dirichlet generating function

Definition 43. Given a sequence of numbers a1, a2, . . . , ak, . . . , we
define its Dirichlet generating function by:

F (s) =
∑

n≥1

an
1
ns

= a1 + a2
1
2s

+ a3
1
3s

+ · · · + an
1
ns

+ · · · .

Addition and scalar multiplication of Dirichlet series work as you might
expect:

c ·
∑

n≥1

an
1
ns

=
∑

n≥1

can
1
ns

,

and ∑

n≥1

an
1
ns

+
∑

n≥1

bn
1
ns

=
∑

n≥1

(an + bn)
1
ns

,

but multiplication for Dirichlet series is really nice for number-theoretic pur-
poses. Suppose F (s) =

∑
an/ns and G(s) =

∑
bn/ns are two Dirichlet series.

Then

F (s)G(s) =
(

a1 + a2
1
2s

+ a3
1
3s

+ · · ·
) (

b1 + b2
1
2s

+ b3
1
3s

+ · · ·
)

= a1b1 + (a1b2 + a2b1)
1
2s

+ (a1b3 + a3b1)
1
3s

+ (a1b4 + a2b2 + a4b1)
1
4s

+ (a1b5 + a5b1)
1
5s

+ · · ·

=
∑

n≥1

(
∑

dm=n

adbm

)
1
ns

=
∑

n≥1

⎛

⎝
∑

d|n
adbn

d

⎞

⎠ 1
ns

.

This is the key property of multiplication: the coefficients in a product of
Dirichlet series can be expressed as a sum over all divisors.
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The power series 1/(1 − z) and ez were fundamental building blocks in
earlier chapters since they encoded the sequence 1, 1, 1, . . . in an ordinary or
exponential generating function. The Dirichlet generating function for the
sequence 1, 1, 1, . . . has a special name. It is known as the Riemann zeta
function.

Riemann zeta function

Definition 44. We define the Riemann zeta function as the formal
series

ζ(s) =
∑

n≥1

1
ns

= 1 +
1
2s

+
1
3s

+ · · · +
1
ns

+ · · · .

As an analytic creature, ζ(s) is rather different from the other types of
functions we have worked within this book. You may know some facts about
special values of ζ from a calculus class. For example, ζ(1) =

∑
1/n is the

harmonic series, which diverges, while ζ(2) = π2

6 . The problem of computing
the sum of this series was known as the Basel problem and one of Euler’s first
big achievements was its solution.

For us, it will be good enough to think of ζ(s) as a formal series, along with
the following fundamental formula. This formula expresses ζ(s) as a product
over all prime numbers:

ζ(s) =
∏

p prime

1
1 − ( 1p )s

. (13.1)

To see why this identity holds it helps to start small. For p = 2 we have

1
1 − ( 12 )s

= 1 +
1
2s

+
1
4s

+
1
8s

+ · · · =
∑

k≥0

1
(2k)s

.

The only numbers appearing in the denominator are powers of 2. Likewise,

1
1 − ( 13 )s

= 1 +
1
3s

+
1
9s

+
1

27s
+ · · · =

∑

l≥0

1
(3l)s

.

If we multiply these two series we get

1
1 − ( 12 )s

· 1
1 − ( 13 )s

=
∑

k,l≥0

1
(2k3l)s

.

Now the numbers showing up in the denominator are precisely those that
have only 2 or 3 as prime factors. But of course to produce every positive
integer n, we need to include all the primes. Moreover, the uniqueness of
the Fundamental Theorem of Arithmetic says we won’t get any integers n
repeated in the sum.
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Note: A cautious reader might squirm at this point, since we are passing
from a finite product to an infinite product. As in Chapter 6 when we first
introduced generating functions, we can either take a formal algebraic stance
or a careful analytic accounting. Either way, the statement can be placed on
solid ground and we should be unafraid to push forward.

Warmup 42. Show that ζ(s−1) =
∑

n≥1 n 1
ns . What sequence does ζ(s−k)

encode?

Problem 152.
Let τ(n) denote the number of divisors of n. Show that

ζ(s)2 =
∑

n≥0

τ(n)
1
ns

.

Problem 153.
Let σ(n) denote the sum of divisors of n. Show that

ζ(s)ζ(s − 1) =
∑

n≥0

σ(n)
1
ns

.

Problem 154.
Define

σk(n) =
∑

d|n
dk.

This function generalizes the number of divisors and sum of divisors: σ0(n) =
τ(n) and σ1(n) = σ(n). Express the Dirichlet generating function for σk(n)
in terms of the zeta function.

Multiplicative function

Definition 45. A function f is multiplicative if, for any pair of rela-
tively prime positive integers m and n, f(mn) = f(m)f(n).

By the Fundamental Theorem of Arithemetic, this means that if n =
pe1
1 pe2

2 · · · pek

k , then

f(n) = f(pe1
1 )f(pe2

2 ) · · · f(pek

k ).

We will give several examples of functions that have this property.
First, the divisor counting function τ(n) from Problem 152 is multiplica-

tive. To see this, suppose m and n are relatively prime. Then by the Funda-
mental Theorem of Arithmetic, any divisor of their product can be uniquely
expressed as the product of a divisor d of m and a divisor d′ of n. Hence
τ(mn) = τ(m)τ(n). In fact, a similar argument shows the function σk(n)
from Problem 154 is multiplicative for any k.
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Warmup 43. List all the divisors of m = 3 and n = 4, then list all the
divisors of mn = 12. Verify σk(12) = σk(3)σk(4) for k = 0, 1, 2.

Another important example counts how many numbers are relatively prime
to a given number.

Totient function

Definition 46. The totient function, φ, counts the number of positive
integers that are less than or equal, and relatively prime to, a given
input, i.e.,

φ(n) = |{1 ≤ i ≤ n : gcd(i, n) = 1}|.

Notice that φ(1) = 1 and if p is a prime number, then φ(p) = p − 1. It
takes a bit of thought to see why φ is multiplicative, but we will just take
this fact for granted.

Warmup 44. Compute φ(16), φ(32), φ(20).

Our final example may seem rather strange at first, but it will turn out to
play an important role in certain counting problems. It is multiplicative by
fiat.

Möbius function

Definition 47. The Möbius function, μ, is the multiplicative function
that records the presence or absence of distinct prime factors. For
each power of a prime μ is defined by

μ(pe) =

⎧
⎪⎨

⎪⎩

1 if e = 0,

−1 if e = 1,

0 if e ≥ 2.

We define μ(n) in terms of the prime factorization of n. If n =
pe1
1 pe2

2 · · · pek

k , then μ(n) = μ(pe1
1 )μ(pe2

2 ) · · · μ(pek

k ).

Warmup 45. Compute μ(15), μ(30), μ(45). Try to come up with a simple
way to say when μ(n) = 0.

Problem 155.
Show that σk(n) is multiplicative for any k. Hint: it suffices to consider the
case n = pe · m and gcd(m, p) = 1.

Problem 156.
Show that ∑

d|n
φ(d) = n.
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Hint: write all the fractions 1
n , 2

n , . . . , n
n in reduced form and count them

according to denominators.

Problem 157.
Show that μ(1) = 1 and if n > 1,

∑

d|n
μ(d) = 0.

Hint: first consider which divisors have μ(d) = 0, then, by considering subsets
of the prime factors of n, show that the other divisors pair off in a natural
way.

Problem 158.
Show that if n = pe1

1 pe2
2 · · · pek

k , then

φ(n) =
k∏

i=1

(pei
i − pei−1

i ) =
k∏

i=1

pei
i

(
1 − 1

pi

)
= n

k∏

i=1

(
1 − 1

pi

)
.

This is called Euler’s formula for the totient function. Hint: since φ is mul-
tiplicative, it suffices to consider the case of a prime power.

Fundamental Theorem of multiplicative functions

Theorem 9. Suppose f(n) is a multiplicative function and

F (s) =
∑

n≥1

f(n)
1
ns

is the Dirichlet series for the function. Then

F (s) =
∏

p prime

(
f(1) + f(p)

1
ps

+ f(p2)
1

(p2)s
+ · · ·

)
.

This identity greatly generalizes our formula for the zeta function given in
Equation 13.1, but the reasoning is similar.

For each prime p, we can write the series for the powers of p, call it Fp:

Fp(s) =
∑

e≥0

f(pe)
1

(pe)s
= f(1) + f(p)

1
ps

+ f(p2)
1

(p2)s
+ · · ·

If we multiply two of these, say Fp(s) and Fq(s), we get
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Fp(s)Fq(s) =

⎛

⎝
∑

e≥0

f(pe)
1

(pe)s

⎞

⎠

⎛

⎝
∑

k≥0

f(qk)
1

(qk)s

⎞

⎠ ,

=
∑

e,k≥0

f(pe)f(qk)
1

(pe)s(qk)s
,

=
∑

e,k≥0

f(peqk)
1

(peqk)s
,

where the final equation holds because f is multiplicative. In other words,
the product is a sum over precisely all integers whose prime factors are p or
q.

The same holds for any number of factors, and, given uniqueness of fac-
torizations in the Fundamental Theorem of Arithmetic, the result follows.

Problem 159.
Show that ∑

n≥1

μ(n)
1
ns

=
1

ζ(s)
.

Hint: first consider the case of powers of a fixed prime p, then use Theorem
9.

Problem 160.
Suppose a1, a2, a3, . . . and b1, b2, b3, . . . are sequences related by the identity

an =
∑

d|n
bd,

for all n ≥ 1.

1. Let F (s) =
∑

n≥1 an
1

ns and G(s) =
∑

n≥1 bn
1

ns . Show that

F (s) = G(s)ζ(s).

2. Conclude that
bn =

∑

d|n
μ(d)an

d
.

This technique for expressing the bn sequence in terms of the an sequence
is known as Möbius inversion.

Problem 161.
We will study the totient function again.

1. Use the result of Problem 156 to conclude that

∑

n≥1

φ(n)
1
ns

=
ζ(s − 1)

ζ(s)
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and by Möbius inversion,

φ(n) =
∑

d|n
μ(d) · n

d
= n ·

∑

d|n

μ(d)
d

.

2. Use the definition of the Möbius function to conclude that for any n ≥ 1,

∑

d|n

μ(d)
d

=
∏

p|n

(
1 − 1

p

)
,

where the product is taken over all distinct primes dividing n.
3. Deduce Euler’s formula from Problem 158,

φ(n) = n
∏

p|n

(
1 − 1

p

)
.

Problem 162.
Use the Dirichlet generating functions for τ(n), σ(n), and φ(n) to deduce the
identity

σ(n) =
∑

d|n
τ(d)φ

(n

d

)
.

Problem 163.
A primitive binary string is one which cannot be written as a concatenation
of smaller, identical binary strings. For example, 1101010110 is primitive, but
101101101 is not primitive.

1. List all primitive binary strings of length n = 1, 2, 3, 4.
2. Explain why a binary string of length n that is not primitive can be written

uniquely as a concatenation of d identical copies of a primitive string of
length n

d . To be more precise, prove the following: For any binary string
of length n that is not primitive, call it s, there exists a unique integer d|n
and a primitive string t of length n/d, such that s is the concatenation of
d copies of t.

3. Let b(n) denote the number of primitive binary strings of length n, and
show

2n =
∑

d|n
b(n).

4. Use Möbius inversion to give a formula for b(n). What is b(20)?

Problem 164.
A binary necklace is a binary string drawn on a circle. In this visual drawing,
we think of a white bead as a “0” and a black bead as a “1.” See Figure 13.2
for the necklaces of length 5. Note that for a necklace, all that matters is the
circular ordering of the beads.



188 13 A bit of number theory

If we “cut” a necklace, it becomes a binary string. For example sup-
pose we cut the binary necklace below at the location indicated in Fig-
ure 13.1. If we read clockwise from the cut point, this corresponds to the
binary string 000100011101. For another example, notice that each of the
strings 00101, 10010, 01001, 10100, 01010 correspond to the same 5-bead neck-
lace (the leftmost picture in the second row of Figure 13.2).

We say a necklace is primitive if, when cut, the corresponding binary string
is primitive in the sense of Problem 163.

1. Let η(n) denote the number of binary necklaces with n beads and let c(n)
denote the number of primitive binary necklaces with n beads. Explain
why

η(n) =
∑

d|n
c(d).

2. Show
n · c(n) = b(n),

where b(n) is the number of primitive binary strings. Use the formula for
b(n) from Problem 163 to give a formula for c(n), and hence η(n). (Your
formula for η(n) should be a double sum involving the Möbius function
and powers of 2.)

3. Let
B(s) =

∑

n≥1

b(n)
1
ns

, C(s) =
∑

n≥1

c(n)
1
ns

,

N(s) =
∑

n≥1

η(n)
1
ns

, T (s) =
∑

n≥1

2n 1
ns

,

and recall

1
ζ(s)

=
∑

n≥1

μ(n)
1
ns

,
ζ(s − 1)

ζ(s)
=

∑

n≥1

φ(n)
1
ns

.

Use identities between these generating functions to prove

η(n) =
1
n

∑

d|n
φ(d)2

n
d .
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Fig. 13.1 A cut in a necklace.

Fig. 13.2 The binary necklaces with five beads, demonstrating η(5) = 8.
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General Möbius Inversion

Classical Möbius inversion can be viewed as a special case of a general
technique for inverting formulas indexed by partially ordered sets. This idea
was developed by Gian-Carlo Rota in the mid-twentieth century.

To get a feel for the general concept, consider the following example. Sup-
pose we have some elements A,B,C,D,E, F,G related as indicated in Figure
13.3.

A

B C

D E F

G

(a)

0

0 +2

−1 −1 −1

+1

(b)

Fig. 13.3 (a) A partial ordering of the set {A, B, C, D, E, F, G}, and (b) values of
the Möbius function μ(x, G).

Further, suppose α and β are functions defined on these elements. Further,
suppose we know all values of α and we know that α(y) =

∑
x≤y β(x), where

x ≤ y means x is below y in the diagram. Concretely, we have

α(G) = β(A) + β(B) + β(C) + β(D) + β(E) + β(F ) + β(G),
α(F ) = β(A) + β(C) + β(F ),
α(E) = β(A) + β(C) + β(E),
α(D) = β(A) + β(B) + β(C) + β(D),
α(C) = β(A) + β(C),
α(B) = β(A) + β(B),
α(A) = β(A).

Can we solve for the values of β? In particular, what is β(G)?
Since α(A) = β(A), we can substitute and work recursively, solving β(B) =

α(B) − α(A), β(C) = α(C) − α(A), and so on, until we find

β(G) = α(G) − α(F ) − α(E) − α(D) + 2α(C). (13.2)

We can see that all that is required to invert a system of equations like this
is a little linear algebra.
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The idea behind Möbius inversion is to give a general method for solving
for β in terms of α like this. But rather than thinking of it as a linear algebra
problem, we come up with a description for the coefficients in terms of the
combinatorics on the ordering of the elements {A,B,C, . . .}. To make this
notion more precise we need a little background.

Posets

We have mentioned partially ordered sets several times before in this book.
Let’s see the precise definition now. A partially ordered set P , or “poset,” is
a set with a relation “≤” that is

• (reflexive) x ≤ x for all x ∈ P ,
• (antisymmetric) if x ≤ y and y ≤ x, then x = y, and
• (transitive) if x ≤ y and y ≤ z, then x ≤ z.

What distinguishes a partially ordered set from a totally ordered set is that
elements can be incomparable.

One familiar partial order is the set of subsets of a finite set ordered by
inclusion. This is illustrated in Figure 13.4(a) for the set {a, b, c}. Another
is the lattice of divisors of a positive integer, as shown in Figure 13.5(b) for
n = 300.

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

(a)

−1

+1 +1 +1

−1 −1 −1

+1

(b)

Fig. 13.4 (a) The poset of subsets of {a, b, c} and (b) the Möbius function
μP (I, {a, b, c}).

The posets for which Möbius inversion works need not be finite, but they
should be “locally finite” in the sense that every interval [u, v] = {p ∈ P :
u ≤ p ≤ v} is finite. It is also helpful to assume that the poset has a unique
minimal element.
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1

2 3 5

4 6 10 15 25

12 20 30 50 75

60 100 150

300

(a)

0

0 0 0

0 0 −1 0 0

0 +1 +1 +1 0

−1 −1 −1

+1

(b)

Fig. 13.5 (a) The poset of divisors of n = 300 and (b) the Möbius function μP (d, 300).

Möbius function of a poset

Let P be a locally finite poset. The Möbius function of P , denoted μP , is
defined recursively as follows for any u ≤ v:

μP (u, v) =

{
1 if u = v,

−∑
u≤x<v μP (u, x) if u < v.

Another way to think about this is that we have μP (v, v) = 1 for all v and
∑

u≤x≤v

μP (x, v) = 0.

For example, if we fix v = G in the poset of Figure 13.3(a) we have the
values for μP (x,G) as shown in Figure 13.3(b). Compare these values with
the coefficients we found in Equation (13.2).

The general version of Möbius inversion reads like this. Suppose P is a
locally finite poset with a unique minimal element, and suppose α and β are
functions defined on P that are related via

α(y) =
∑

x≤y

β(x),

where the sum is over all elements below y in P . (Note that since we assume
P has a unique minimum element, this is a finite sum.) Then a formula for
β is given by
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β(y) =
∑

x≤y

μP (x, y)α(x). (13.3)

We will now look at several manifestations of this formula.

Inclusion–exclusion and descent sets

If P is the set of all subsets of a finite set S, then induction shows that for
any sets I ⊆ J , we have μP (I, J) = (−1)|J|−|I|. (See Figure 13.4(b).) This
means if

α(J) =
∑

I⊆J

β(I),

then
β(J) =

∑

I⊆J

(−1)|J|−|I|α(I). (13.4)

This relation is sometimes known as “inclusion–exclusion.”
Let’s use inclusion–exclusion to count the number of permutations in Sn

with descent set J . That is, let Des(w) = {j : w(j) > w(j + 1)} denote the
set of descents of the permutation w, and define

α(J) = |{w ∈ Sn : Des(w) ⊆ J}| and β(J) = |{w ∈ Sn : Des(w) = J}|.

To form a permutation whose descent set is contained in J = {j1 < j2 <
· · · < jk}, we can first choose j1 elements and arrange them in increasing
order, then choose another j2 − j1 elements and arrange them in increasing
order, and so on. See Figure 13.6.

  
 

 

j1

 

 

 
  

j2 · · · jk

 
 

 
 

Fig. 13.6 Arranging increasing runs between elements of J = {j1 < j2 < · · · < jk}.

There might or might not be descents in the positions indexed by J , but
there certainly cannot be descents elsewhere. Thus it is not too difficult to
see that
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α(J) =
(

n

j1, j2 − j1, j3 − j2, . . . , n − jk

)
.

By inclusion–exclusion, we find

β(J) =
∑

I⊆J

(−1)|J|−|I|α(I)

=
k∑

i=0

(−1)k−i
∑

1≤a1<···<ai≤k

(
n

ja1 , ja2 − ja1 , . . . , n − jai

)
.

Derangements problem revisited

Notice that if α(J) and β(J) depend only on the cardinality of J , then for
any |J | = n, we can write α(J) = α(n) and β(J) = β(n). Collecting like
terms in Equation (13.4) we get

β(n) =
n∑

k=0

(−1)k

(
n

k

)
α(k).

To see this idea applied, we can revisit Problem 82, the problem of counting
derangements. Let dn = |{w ∈ Sn : w(i) �= i for any i}| denote the number
of derangements, i.e., those permutations that have no fixed points.

Let I ⊆ {1, 2, . . . , n}. To form a permutation whose fixed point set is
exactly I, we must ensure that the remaining elements in {1, 2, . . . , n} − I
are permuted according to a derangement. By summing over all I, we obtain
all permutations in Sn. Thus,

n! =
∑

I⊆{1,2,...,n}
dn−|I|.

By inclusion–exclusion,

dn =
∑

I⊆{1,2,...,n}
(−1)n−|I||I|!

Each summand depends only on the cardinality of I, not I itself. Thus we
can group these terms according to cardinality to find



General Möbius Inversion 195

dn =
n∑

k=0

(−1)n−k

(
n

k

)
k!

= n!
n∑

k=0

(−1)n−k 1
(n − k)!

= n!
(

1 − 1 +
1
2!

− 1
3!

+
1
4!

− · · · (−1)n 1
n!

)
.

The poset of divisors

Next we show how number-theoretic Möbius inversion fits in this framework.
The underlying poset P is all positive divisors of n, ordered by divisibility.
Here, “x ≤ y” in P means x|y, and μP (x, y) = μ

(
y
x

)
. In the poset of divisors,

we see that if n = pe1
1 · · · pek

k then the poset has the stucture of a cartesian
product totally ordered sets 1|p|p2| · · · |pe, e.g., in the case of n = 300 =
22 · 3 · 52, we have

P = {1|2|22} × {1|3} × {1|5|52},

which is also illustrated in Figure 13.7.

Fig. 13.7 The poset of divisors of n = 300.
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Compare with Figure 13.5(b).

Further reading

• George Andrews, “Number Theory,” Dover, 1994.
There are many good books on Number Theory out there. This is a good
one for blending Number Theory with Combinatorics. It is inexpensive
and well written.

• Paul Hoffman, “The Man Who Loved Only Numbers,” Hachette Books,
1998.
This is an amazing biography of Paul Erdős, one of the greatest mathe-
maticians of the 20th century.

• Simon Singh, “Fermat’s Enigma,” Anchor, 1998.
This is a great journalistic account of one the biggest mathematical ac-
complishments of the last century.
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Exercises for Chapter 1

1. Use set builder notation to describe the set of all odd two-digit numbers.
2. Let S = {n ∈ Z : 1 ≤ n ≤ 100} and let T denote the set of positive mul-

tiples of 3 with at most three digits, i.e., T = {3, 6, 9, . . . , 999}. Compute
the following cardinalities.

a. |S|
b. |T |
c. |S ∩ T |
d. |S ∪ T |

3. A PIN (personal identification number) is a sequence of four digits used for
security purposes by banks and other organizations to protect consumer
information. Each digit is typically from 0 to 9 e.g., 0394 is a PIN.

a. How many PIN numbers are there?
b. How many PIN numbers have no repeated digits?
c. How many PIN numbers repeat at least one digit?

Fig. A.1 Going for coffee.

4. In Figure A.1 we see the same grid of streets from Problem 7, but there
is construction at the intersection marked with an X. How many different
routes can I take to get to Starfolks that avoid that intersection? (Like
problem 7, assume I only walk East or North from one intersection to
another.)
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5. Consider the grid of streets shown in Figure A.2.

Fig. A.2 A new neighborhood of streets.

How many ways can I walk eight blocks on this grid of streets, assuming
I only walk East and South? (Notice this means I have to reach either
A,B,C,D or E.)
In what ways can you generalize this problem?

6. Let S = {1, 2, 3, 4, 5, 6} and let T = {(i, j) ∈ Z×Z : 1 ≤ i ≤ j ≤ 6}.

a. How is the set S × S related to rolling a pair of dice?
b. What is |S × S|?
c. How is the set T related to rolling a pair of dice?
d. What is |T |?
e. What circumstances would lead you to prefer to use set S × S versus

set T to model the roll of two dice?

7. Consider drawing three cards from a standard deck as in Problem 14, part 4.
How many ways can you:

a. Select a ten in round 1, then a nine in round 2, then an eight in round
3?

b. Select a nine, then an eight, then a ten?
c. Select three cards whose ranks are {8, 9, 10} (ignore suits, and ignore

the order in which the cards are selected).
d. Select three cards that form a run? (A run is any three consecutive

cards of the same suit, where the ace can be played low, as in the
run A♣, 2♣, 3♣, or high, as in Q♣,K♣, A♣, but a run cannot “wrap
around” as in K♣, A♣, 2♣.)

Explain your reasoning for each part.
8. Consider all possible subsets of {1, 2, 3}. How many unordered pairs of

distinct subsets (i.e., {A,B} with A �= B) are there?
Now among the pairs of distinct subsets, how many are there with the
following properties?
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a. A ∪ B = {1, 2, 3}
b. A ∩ B = ∅
c. A ∩ B = {3}
d. |A ∩ B| = 1

9. How many functions are there f : {a, b, c, d} → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}?
How many of these are injective?

10. How many injections f : {0, 1, 2} → {a, b, c, d, e} are there? How many
surjections g : {a, b, c, d, e} → {0, 1, 2} are there?

11. Suppose |A| = k and |B| = n, with 3 ≤ k < n. Are there more functions
f : A → B or are there more functions g : B → A? Explain.



Supplementary exercises 201

Exercises for Chapter 2

1. How many permutations of a deck of 52 cards are there? Is this number
bigger or smaller than the number of atoms in the solar system?

2. The top students in the state take an exam, and the top three students
receive a scholarship. First prize is $20,000, second prize is $10,000, and
third prize is $5,000. There are 1729 students taking the test this year.
How many ways are there to award the prizes, assuming there are no ties?

3. Which is bigger, n! or 2n? Explain.
4. Recall a PIN number is a sequence of four digits.

a. How many PIN numbers use precisely the digits {1, 2, 7, 9}?
b. How many PIN numbers use precisely the digits {2, 7, 9}? (Note one

digit must be repeated.)
c. How many PIN numbers use precisely the digits {7, 9}?

5. Suppose a bank allows its PIN numbers to include letters as well as num-
bers.

a. How many PIN numbers are there, assuming the letters are only lower-
case?

b. How many such PIN numbers don’t repeat any characters?
c. If we allow letters to appear as upper- and lowercase (e.g., a and A are

considered different characters), how many PIN numbers are there?
d. Allowing both upper- and lowercase letters, how many PIN numbers

don’t repeat any characters?
e. Some of the PIN numbers from part d. have the same letter appearing

twice—once as a lowercase letter and once as an upper case letter. For
example: a32A. How many of the PIN numbers from part d. don’t have
this property? In other words, how many case-sensitive alphanumeric
PIN numbers have no repeated numbers and no repeated letters?

6. How many ways are there to rearrange the letters in the word SAMMY ?
Note this is like a permutation of the letters S, A, M , and Y except that
the letter M needs to be used twice.

7. How many ways are there to arrange a deck of cards so that all the black
cards appear before the red cards?

8. How many ways are there to arrange a deck of cards so that all the clubs
appear before any of the spades, which appear before any of the hearts,
which appear before any of the diamonds?

9. How many ways are there to arrange a deck of cards so that the face
values on the cards are in increasing order, i.e., all the aces appear before
the twos, the twos appear before the threes, and so on, with kings at the
end?

10. How many non-attacking rook arrangements are there on a 7-by-5 chess-
board?
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11. Eight colleagues are sitting at a circular table during a banquet at a math-
ematics conference. If we only care about who sits next to whom in clock-
wise order, and not the exact seats in which they sit, how many ways can
these people be arranged?

12. How many:

a. permutations w of {1, 2, 3, 4, 5} have w(3) > w(4)?
b. permutations w in Sn have w(3) > w(4)? (Assuming n ≥ 4)

13. How many:

a. permutations w of {1, 2, 3, 4, 5} have w(2) < w(3) > w(4)?
b. permutations w in Sn have w(2) < w(3) > w(4)? (Assuming n ≥ 4)

14. How many:

a. permutations of {1, 2, 3, 4, 5} have the number 3 appearing to the right
of the number 4?

b. permutations in Sn have the number 3 appearing to the right of the
number 4? (Assuming n ≥ 4)

15. How many:

a. permutations of {1, 2, 3, 4, 5} have the number 3 appearing to the right
of both the number 4 and the number 2?

b. permutations in Sn have the number 3 appearing to the right of the
number 4 and the number 2? (Assuming n ≥ 4)
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Exercises for Chapter 3

1. The local elementary school chess league keeps rankings throughout the
school year. The top four finishers will compete in a playoff during the last
week of school. If there are 20 players in the league, how many possible
combinations of players can compete in the playoff?

2. The math club executive board meets once a month. There are ten mem-
bers of the board and they begin each meeting by sharing a special hand-
shake. If each boardmember shakes handswith every other boardmember,
how many handshakes are there in all?

3. In the 2014 FIFA World Cup there were 32 teams arranged into 8 groups
of 4.

a. If the groups are labeled A–H, how many ways could the groups have
been formed?

b. If we don’t care about the labels of the groups, how many ways could
the groups have been formed?

c. The United States and Portugal were placed in the same group in 2014.
How many ways could the groups have been formed so that these two
teams were placed in the same group?

Fig. A.3 Going for coffee and a bagel.

4. This morning I want a coffee from Starfolks (indicated with a � on the
map in Figure A.3) and a bagel from the bakery (indicated on the map
with the X). If I only follow the grid of streets and walk the minimum
total distance (e.g., six blocks to Starfolks and seven blocks from Starfolks
to the bakery), how many ways can I:
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a. Walk from home to Starfolks?
b. Walk from home to the bakery (whether or not I stop at Starfolks)?
c. Walk from Starfolks to the bakery?
d. Walk from home to the bakery, after first stopping for Coffee at Star-

folks?
e. Make a round trip: home to Starfolks, Starfolks to bakery, then bakery

back home?

5. A graph is a pair (V,E), where V is a set called the vertex set and E is
a set of 2-element subsets of V known as the edge set. For example, the
pair ({A,B,C,D}, {{A,B}, {B,C}}) is a graph, which might be drawn
like this:

A

B

CD

a. Draw all the graphs with vertex set {A,B,C}.
b. How many edges can you form from the vertex set {A,B,C,D,E}?
c. How many graphs have vertex set {A,B,C,D,E}?
d. What is the greatest number of edges that a graph with n vertices may

have?
e. Fix a finite set V with |V | = n. How many graphs have vertex set V ?

6. Recall that an anagram is a rearrangement of the letters in a word.

a. Come up with a five-letter name that has 120 anagrams.
b. Come up with a five-letter name that has 60 anagrams.
c. Which has more anagrams, ILLINOIS or OKLAHOMA?
d. Which U.S. state has the most anagrams?

7. Suppose a bucket has a hundred red balls, a hundred blue balls, and a
hundred white balls. If you draw out ten balls from the bucket, how many
combinations of ball colors can you see? Note that all we care about is the
number of each type of ball, i.e., how many different triples of nonnegative
integers (r, b, w) have r + b + w = 10?

8. How many ways can a deck of cards be arranged so that all the clubs
appear before the spades? (Hint: Choose where to place these cards first,
then consider how many ways they might occupy those positions.)

9. Notice that
(
4
2

)
= 1+2+3 and

(
5
2

)
= 1+2+3+4. Use Pascal’s identity

repeatedly to prove that
(

n

2

)
= 1 + 2 + · · · + (n − 2) + (n − 1).

10. Explain why (
2n

n

)
=

n∑

j=0

(
n

j

)2

.
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11. Consider the binomial coefficients
(
2
1

)
,
(
4
2

)
,
(
8
4

)
,
(
16
8

)
, and so on. What is the

largest power of 2 that divides
(
2n+1

2n

)
?
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Exercises for Chapter 4

1. Expand (a + b)7 without any technology apart from Pascal’s triangle.
2. Expand (2 + t)5 as a polynomial in t without the aid of technology apart

from Pascal’s triangle.
3. Expand (x− y)5 as a polynomial in x and y without the aid of technology

apart from Pascal’s triangle.
4. Expand (N + E)5 and explain how the terms relate to the paths in the

grid of streets shown in Figure A.4.

Fig. A.4 Lattice paths in a neighborhood for explaining (N + E)5.

5. Compute
100∑

k=0

(−1)k

(
100
k

)
.

6. Compute
100∑

k=0

2k(−3)n−k

(
100
k

)
.

7. Compute
100∑

k=0

3k(−2)n−k

(
100
k

)
.

8. In calculus, the power rule for derivatives states that d
dx [xn] = nxn−1. The

definition of the derivative says
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d

dx
[xn] = lim

h→0

(x + h)n − xn

h
.

Use the Binomial Theorem to help prove the power rule in the case where
n is a positive integer.

9. Write down the first, say, ten rows of Pascal’s triangle. Did you ever notice
that (except for the far left and far right entries) some rows consist entirely
of multiples of the row number? For example, when n = 5, the row is:

1 5 10 10 5 1

and we see both 5 and 10 are multiples of 5. Which rows have this property?
In other words, for which values of n is it true that all values of

(
n
k

)
(with

1 ≤ k ≤ n−1) are multiples of n? What is your conjecture? Can you prove
it?
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Exercises for Chapter 5

1. Generate the first five terms in each of the following sequences.

a. a0 = 1, an = 3an−1 for n ≥ 1.
b. a0 = 1, an = 2 + an−1 for n ≥ 1.
c. a0 = 0, an = 1 + 2an−1 for n ≥ 1.
d. a0 = 1, a1 = 1, an = 2an−1 + an−2 for n ≥ 2.
e. an = 1

n+1

(
2n
n

)
for n ≥ 0.

2. The growth rate of a sequence is the limit

ρ = lim
n→∞

an+1

an
.

(The golden ratio discussed at the end of Chapter 5 is the growth rate
for the Fibonacci sequence.) Compute the growth rate for each of the
sequences in Exercise 1.

3. How many subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} contain no consecutive
numbers? For example {1, 3, 7, 9} contains no consecutive numbers, but
{1, 3, 7, 8} does contain consecutive numbers.

4. In Problem 56 we saw that the number of compositions of n using only
parts of size 1 and 2 was given by a Fibonacci number. How many com-
positions of n use only parts of size 1 and 3? For example, there are three
such compositions of four: (1, 1, 1, 1), (3, 1), and (1, 3).

5. How many compositions of n use only parts of size 2 and 3? For example,
there are three such compositions of seven: (2, 2, 3), (2, 3, 2), and (3, 2, 2).

6. How many compositions of n have all their parts greater than one, except
possibly the final part? For example, there are three such compositions of
four: (4), (2, 2), and (3, 1).

7. How many compositions of n have an odd final part? For example, there
are three such compositions of three: (3), (2, 1), and (1, 1, 1).

8. In Problem 58, we counted the number of domino tilings of a 2 × n rect-
angle. How many ways can you tile a 3 × n rectangle with dominoes?

9. An L-tiling of a 2 × n rectangle is like a domino tiling except that it uses
the pieces

and

See Figure A.5. How many L-tilings of a 2 × n rectangle are there?
10. An S-tiling of a 2 × n rectangle is like a domino tiling except that it uses

the pieces

and

See Figure A.5. How many S-tilings of a 2 × n rectangle are there?
11. A T-tiling of a 2 × n rectangle is a tiling that uses the pieces
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Fig. A.5 An L-tiling, an S-tiling, and a T-tiling of a 2 × 10 rectangle.

and

See Figure A.5. How many T-tilings of a 2 × n rectangle are there?

A

BC

Fig. A.6 A directed graph on vertex set {A,B,C}.

12. This problem is about counting walks on directed graphs. A directed graph
is a pair (V,E) such that V is a finite set known as the vertex set and E
is a collection of ordered pairs of vertices in V ×V known as the edge set.
For example, the graph

({A,B,C}, {(A,B), (B,B), (B,C), (C,B), (C,A)})

is shown in Figure A.6. A walk on a directed graph is a sequence of
vertices and edges of the graph such that there is a directed edge from each
vertex to the subsequent vertex. The length of a walk is the number of edges
in the sequence. Since there is at most one edge from any vertex to another,
we can merely list the vertices in the walk. For example, ABCBBCA
records a walk of length 6 on the graph in Figure A.6.
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In each example below, you are asked to consider a sequence an, where an

is the number of walks of length n that possess certain features. For each
sequence compute the first five terms and then try to find a recurrence
and/or formula for the sequence.

a. Let an denote the number of walks of length n, on the graph below,
that begin and end at A.

A B

b. Let an denote the number of walks of length n, on the graph below,
that begin and end at A.

A B

c. Let an denote the number of walks of length n, on the graph below,
that begins at A but can end at any vertex.

A

BC
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Exercises for Chapter 6

1. Expand the following generating functions as series. What sequences do
they encode?

a.
1

1 − 3z

b.
1

2 − z

c.
z

2 − 3z

d.
1

1 − z3

e.
1

1 + z2

2. What sequence is encoded by the generating function

1
1 − 7z + 10z2

?

You should be able to give both a recursive formula and a closed-form
expression for the nth term.

3. Let an be the sequence defined by a0 = 1, a1 = 3 and an = an−1 + an−2

for n ≥ 2. What is the generating function for the sequence ak?
4. The (a, b)-Lucas numbers are defined by a0 = a, a1 = b, and an =

an−1 + an−2 for n ≥ 2. What is the generating function for the (a, b)-
Lucas numbers?

5. Let an be the sequence defined by a0 = a1 = 1 and an = 2an−1+an−2 for
n ≥ 2. What is the generating function for the sequence ak?

6. Let an be the sequence defined by a0 = a1 = 1 and an = an−1+2an−2 for
n ≥ 2. What is the generating function for the sequence ak?

7. Let an be the sequence defined by a0 = a1 = a2 = 1 and an = an−1 +
an−2 + an−3 for n ≥ 2. What is the generating function for the sequence
ak?

8. Let bk =
∑k

j=0 fj , where fj is the jth Fibonacci number, defined by f0 =
f1 = 1 and fj = fj−1 + fj−2 for j ≥ 2. What is the generating function
for the sequence bk?

9. The Euro (e) is a currency used in much of Europe. Like the dollar, it has
coins that are worth hundredths of a unit, also known as cents. The coins
come in denominations of 1, 2, 5, 10, 20, and 50 cents. Let cn denote the
number of ways to make n cents out of some combination of these coins.
Write an expression for the generating function

Fe(z) = 1 +
∑

n≥1

cnzn,

and use software to find c100.
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10. Chicken McNuggets traditionally came in boxes of 6, 9, and 20. Nowadays,
most American locations of McDonald’s sell the nuggets in sizes of 4, 6, 10,
and 20, whereas in some locations outside the United States, you can find
McNuggets sold in packs of 4, 6, 9, and 20.
Explain how the different collections of pack sizes impact the conclu-
sions about “non-nuggetable numbers” discussed in the essay at the end
of Chapter 6. In particular, compare the generating functions for these two
versions of the question.
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Exercises for Chapter 7

1. Expand the following generating functions as exponential series in z. What
sequences do they encode?

a. e2z

b. e1+z

c. cos(3z)

d.
sin(

√
z)√

z

2. Expand e(1+t)z first as an exponential series in z, then as an ordinary series
in t i.e.,

e(1+t)z =
∑

n≥0

∑

k≥0

an,ktk
zn

n!
.

What are the numbers an,k?
3. Use Problem 79 to find the series expansions for sin(z)2 = sin(z) · sin(z)

and cos2(z) = cos(z) · cos(z). Use the result to prove the Pythagorean
Theorem, i.e., sin2(z) + cos2(z) = 1, the hard way.

4. Expand eiz, where i2 = −1, and use this to explain Euler’s identity:

eiπ + 1 = 0.

(Hint: When expanding eiz, regroup the terms according to whether they
have a factor of i in them.)

5. How many ways can we divide a group of 10 people into 4 subgroups:

a. if we specify that the groups have sizes 6, 2, 1, 1?
b. if we specify that the groups have sizes 3, 3, 2, 2?
c. if we don’t care how many people are in each group, so long as there is

at least one person per group? (You can build off of Table 7.1 to save
some work here.)

6. List all the set partitions of {a, b, c, d, e} that have three blocks.
7. List all the set compositions of {1, 2, 3, 4}, grouped according to the under-

lying permutation in S4.
8. Make a chart comparing the following five generating functions. Explain

what each counts, and how they are related to each other:

Bn(t),Bn(t), Sk(z), S(t, z),S(t, z)

9. Let an denote the number of set partitions of an n-element set with an even
number of blocks, minus the number of set partitions with an odd number
of blocks. For example, with n = 3, there are five set partitions. Three of
them have two blocks, one has one block, and one has three blocks. Thus
a3 = 3 − 2 = 1. What is the exponential generating function for the an?
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10. Let an denote the number of set compositions of an n-element set with
an even number of blocks, minus the number of set partitions with an
odd number of blocks. For example, with n = 3, there are thirteen set
compositions. Six of them have two blocks, one has one block, and six have
three blocks. Thus a3 = 6 − 7 = −1. What is the exponential generating
function for the an?

11. This problem asks you to explore OEIS. First, generate several terms for
each of the sequences in Problem 54, and look them up.

a. What are their entry numbers?
b. Did you uniquely identify each sequence on the first search, or did you

have to generate some more terms before you were sure you had the
correct entry?

c. Which entry has the longest list of references?
d. Which entry do you find the most surprising, either in terms of its

combinatorial interpretations or in terms of its connections to other
areas of mathematics?
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Exercises for Chapter 8

1. How many permutations in S9 have three ascents?
2. Martha’s lab is getting together for a group photo. There are ten team

members, no two of which are the same height. Let h1, h2, . . . , h10 denote
their heights. How many ways can the team be arranged so that:

a. the members are arranged in increasing order? In other words, how
many permutations w have hw(1) < hw(2) < · · · < hw(10)?

b. the heights increase to the middle, then decrease? In other words, how
many permutations w have hw(1) < hw(2) < hw(3) < hw(4) < hw(5) and
hw(6) > hw(7) > hw(8) > hw(9) > hw(10)?

c. the heights increase (not necessarily to the middle), then decrease?
d. the two tallest team members are in the middle of the photo, with

shorter people arranged in decreasing order moving away from the mid-
dle?

3. How many permutations in S7 have at most one return? How many per-
mutations w in Sn have at most one return? (See Problem 94 for the
definition of a return in a permutation.)

4. An inversion sequence of length n is a list of numbers s = (s1, s2, . . . , sn)
such that 0≤si ≤ i−1 for all i. Let In denote the set of inversion sequences
of length n. There are n! inversion sequences of length n, so these elements
are in bijection with permutations in various ways. In this problem you
will describe the Eulerian numbers in terms of inversion sequences.
Let asc(s) denote the number ascents of an inversion sequence, i.e.,

asc(s) = |{i : si < si+1}|.

For example, if s = (0, 0, 1, 2, 0, 1) then asc(s) = |{2, 3, 5}|=3. Prove that
〈

n

k

〉
= |{s ∈ In : asc(s) = k − 1}|.

5. A weak descent of an inversion sequence is an entry i such that si ≥ si+1,
denoted

des(s) = |{i : si ≥ si+1}|.
Prove that 〈

n

k

〉
= |{s ∈ In : des(s) = k − 1}|.

6. Suppose we have n boxes and n balls. We will play a game of placing balls
into the boxes, but there are some subtleties.
First of all, the boxes look similar to one another but the openings at the
top vary in size. We arrange the boxes from biggest opening to smallest
opening and see that they are all distinct sizes.
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The balls also appear to come in all different sizes. In fact, we find that
for each i, the ith largest ball is just barely small enough to fit into the ith
largest box, but it can’t quite fit into any of the smaller boxes. See Figure
A.7 for an illustration when n = 5.

a. How many ways are there to place the balls in the boxes? (Assume that
each box has enough room to accommodate all the balls that fit through
its opening.)

b. How many ways are there to place the balls in the boxes so that the
smallest box is empty?

c. How many ways are there to place the balls in the boxes so that exactly
one box is empty?

d. How many ways are there to place the balls in the boxes so that exactly
k boxes are empty?

Fig. A.7 Putting some balls of different sizes into boxes with different size openings.

7. Recall the descent set of a permutation w, denoted Des(w), is the set of
all descents of w, i.e., Des(w) = {i : w(i) > w(i + 1)}.

a. How many permutations w ∈ Sn have Des(w) ⊆ {1}?
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b. How many permutations w ∈ Sn have Des(w) ⊆ {2}?
c. How many permutations w ∈ Sn have Des(w) ⊆ {j}?
d. How many permutations w ∈ Sn have Des(w) ⊆ {5, 8}?
e. How many permutations w ∈ Sn have Des(w) ⊆ {j1, j2}?

8. For this and the next two exercises, let αJ(n) denote the number of permu-
tations in Sn with Des(w) ⊆ J . Fix n = 5. For each subset J ⊆ {1, 2, 3, 4},
find αJ(5).

9. Find a formula for αJ (n) in general.
10. In terms of n, which subsets J seem to maximize αJ (n)?
11. Use Problem 96 to prove that the Eulerian polynomials are self-reciprocal,

i.e., that tn+1An(1/t) = An(t).
12. Use the identity of Problem 104 to prove the inverse relationship as follows:

An(s) = (1 − s)n Bn

(
s

1 − s

)
.

13. Now use the self-reciprocity of An(s) (from Exercise 11) to prove

An(s) = s(s − 1)n Bn

(
1

s − 1

)
,

and conclude that the ordered Bell numbers can be extracted from the
Eulerian polynomials, i.e., Bn = 1

2An(2). Can you obtain this result
directly from the exponential generating functions? (Hint: take care with
the constant terms!)
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Exercises for Chapter 9

1. Use the recursive idea of Problem 106 to list all the elements of S5(231).
2. Draw all the Dyck paths in Dyck(5).
3. Show that Cn counts the number of nonnesting partitions of {1, 2, . . . , n}.

A nonnesting partition is a set partition π = {R1, . . . , Rk} such that if
{a, d} ⊆ Ri and {b, c} ⊆ Rj with a < b < c < d, then Ri = Rj . The
fourteen nonnesting partitions of {1, 2, 3, 4} are shown in Figure A.8.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. A.8 The fourteen nonnesting partitions of {1, 2, 3, 4}.

4. Show that counting nonnesting partitions by number of blocks gives the
Narayana numbers.

5. ShowthatCn counts thenumberofnoncrossingmatchings on{1, 2, . . . , 2n−
1, 2n}. A noncrossing matching is a noncrossing partition with all the
blocks having size two. For example, when n = 3, the five noncrossing
matchings on {1, 2, 3, 4, 5, 6} are shown in Figure A.9.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

Fig. A.9 The five noncrossing matchings on {1, 2, 3, 4, 5, 6}.

6. Describe a statistic for noncrossing matchings so that the distribution of
this statistic gives the Narayana numbers. (Hint: look for a bijection with
noncrossing partitions.)
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7. A Motzkin path of length n is a lattice path from (0, 0) to (n, n) that
never passes below the line y = 0 and uses only “up” steps from (i, j) to
(i + 1, j + 1), “down” steps from (i, j) to (i + 1, j − 1), and “horizontal”
steps from (i, j) to (i + 1, j). Note that Motzkin paths that contain no
horizontal steps are in bijection with Dyck paths. For example, the nine
Motzkin paths of length four are shown in Figure A.10.

H H H H

U D H H H U D H H H U D

U H D H U H H D H U H D

U D U D U U D D

Fig. A.10 The nine Motzkin paths of length four.

Let Mn denote the number of Motzkin paths of length n, with M0 = 1.
Here are the first few values of Mn, sometimes called Motzkin numbers:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, . . . .

Let M(z) =
∑

n≥0 Mnzn. Show that

M(z) =
1 − z − √

1 − 2z − 3z2

2z2
.

Hint: each Motzkin path is built from a Dyck path by inserting horizontal
steps between the steps of the Dyck path. Use this fact to show

M(z) =
1

1 − z
C

(
z2

(1 − z)2

)
,

where C(z) is the Catalan generating function.
8. A Schröder path of size n is a lattice path from (0, 0) to (n, n) that never

passes below the line y = x and uses only steps “North” from (i, j) to
(i, j + 1), “East” from (i, j) to (i + 1, j) and “Northeast” from (i, j) to
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(i + 1, j + 1). Note that Schröder paths with no northeast steps are Dyck
paths. For example, the six Schröder paths of size 2 are shown in Figure
A.11.

Fig. A.11 The six Schröder paths of size n = 2.

Let Rn denote the number of Schröder paths of size n, with R0 = 1. We
call the number Rn a Schröder number. Here are the first few values for
Rn:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . .

Let R(z) =
∑

n≥0 Rnzn. Show that

R(z) =
1 − z − √

1 − 6z + z2

2z
.

Hint: Just as with Motzkin paths, each Schröder path can be built from
a Dyck path by inserting northeast steps between the steps of the Dyck
path. Use this fact to show

R(z) =
1

1 − z
C

(
z

(1 − z)2

)
,

where C(z) is the Catalan generating function.
9. Show the Schröder numbers (apart from R0 = 1) are always even. You

can do this by manipulating the generating function from the previous
problem, but try to explain it combinatorially.
Hint: find a bijection between the Schröder paths with a peak on the line
y = x+1 and those without. The number of Schröder paths with no peak
on the line y = x+1 are called small Schröder numbers, denoted rn. Here
are the first few values of the small Schröder numbers:

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, . . . .

Given that r0 = 1 and rn = Rn/2 for n ≥ 1, use the generating function
found in the previous problem to conclude that



Supplementary exercises 221

∑

n≥0

rnzn =
1 + z − √

1 − 6z + z2

4z
.

10. Show that the small Schröder numbers rn count the number of valid paren-
thesizations of n + 1 symbols with at most n − 1 pairs of parentheses.
Parentheses around the entire expression are not allowed, and each pair of
parentheses must enclose at least two sub-expressions. For example, here
are the eleven parenthesizations of four symbols:

((wx)y)z (w(xy))z (wx)(yz) w((xy)z) w(x(yz))

(wx)yz (wxy)z w(xy)z w(xyz) wx(yz)

wxyz

Can you interpret these parenthesizations in terms of planar rooted trees
of some kind?

11. Come up with a combinatorial interpretation for the numbers
(
n
k

)−(
n

k−1

)

with 0 ≤ k ≤ 
n/2�:
1
1
1 1
1 2
1 3 2
1 4 5
1 5 9 5
1 6 14 14

These are sometimes called ballot numbers. (Note the Catalan numbers
correspond to the special case where n is even and k = n/2.)
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Exercises for Chapter 10

1. Regina has several books on her shelf:

L
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E
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E
ph
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n

She would like them to be in alphabetical order by the author’s last name.

a. Thinking of the order of the books as a permutation, how many inver-
sions does the shelf have right now? That is, how many pairs of books
are out of order alphabetically?

b. Regina is going to use a simple procedure to sort the books on her
shelf. She will scan the books from left to right, and when she sees two
adjacent books that are out of order, she will swap them. She continues
comparing and swapping until she reaches the right edge of the shelf,
then returns to the left edge and scans the books again. If she scans all
the way from left to right without swapping any books, she knows her
task is complete!
For example, “Lee” comes before “Watterson” but “Watterson” should
come after “Gogol” so Regina swaps “Watterson” and “Gogol”:
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Now Regina compares “Watterson” and “Kant” and makes another
swap:
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So far, Regina has performed two book swaps. After several more com-
parisons and swaps, Regina has reached the right edge of the shelf and
the books are in this order:
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Now Regina returns to the left edge and starts the procedure over again.
By the time Regina has sorted the books in alphabetical order, how
many swaps will she have performed?

2. Regina’s algorithm from Exercise 1 can be applied to any list of objects
that are ordered, which we can model with permutations. To describe the
algorithm in general, let w be an element of Sn. We scan the permutation
w from left to right, comparing adjacent entries: w(i) with w(i + 1). If
w(i) > w(i + 1), then we swap these two numbers before moving to the
next two. Upon comparing (and possibly swapping) w(n − 1) and w(n),
we return to the beginning of the list and start over. If we scan all the way
through the permutation and find w(i) < w(i+1) for each i < n, then we
know our permutation is completely sorted and the algorithm terminates.
For example, here is the algorithm applied to the permutation w = 325146
in S6. Below we have underlined comparisons. If two adjacent entries swap
places, we highlight them in bold:

325146 → 235146 → 235146 → 231546 → 231456 → 231456

After the first pass, we return to the beginning and start comparing again:

231456 → 231456 → 213456 → 213456 → 213456 → 213456

The comparisons and swaps continue until we can scan through the per-
mutation without finding any adjacent numbers out of order. In this case,
it takes two more scans through the permutation:

213456 → 123456 → 123456 → 123456 → 123456 → 123456

and finally

123456 → 123456 → 123456 → 123456 → 123456 → 123456

For this example, we made a total of 5 swaps. Let’s try to figure out how
many swaps we do in general.
Let w(1) denote the permutation we obtain after the first swap, w(2) the
permutation after the second swap, and so on. Then we see that the al-
gorithm in general produces a sequence of permutations that terminates
with the identity permutation 123 · · · n after some number of swaps, i.e.,

w → w(1) → w(2) → · · · → w(k) = 123 · · · n,

for some number k.

a. Show that each time we make a swap in this algorithm, the number of
inversions drops by exactly one. That is, show

inv(w(i+1)) = inv(w(i)) − 1.
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Conclude that if Regina’s algorithm performs k swaps, then inv(w)= k.
b. Show that no matter what, if we swap two numbers w(i), w(i + 1) in

a permutation w to obtain the permutation w′, then either inv(w′) =
inv(w) + 1 or inv(w′) = inv(w) − 1.

c. Conclude that Regina’s algorithm is optimal with respect to the number
of swaps. That is, suppose w in Sn is a permutation for which inv(w)=k
is the number of swaps performed in her algorithm. Then there is no
way to sort w with fewer than k adjacent swaps.

3. Do an investigation of sorting algorithms. Regina’s algorithm is known
as “Bubble Sort” in the literature. What are some other common sorting
algorithms? What are the pros and cons of each?

4. An inversion sequence of length n is a list of numbers s = (s1, . . . , sn) such
that 0 ≤ si ≤ i − 1 for each i. Let In denote the set of such sequences,
which we recognize is simply a cartesian product defined as follows:

In = {0} × {0, 1} × {0, 1, 2} × · · · × {0, 1, 2, . . . , n − 1}.

For an inversion sequence s, denote the sum of its entries by |s|. That is,
for s in In, let

|s| = s1 + s2 + · · · + sn.

For example, with s = (0, 0, 1, 2, 0, 4) in I6, we have |s| = 0 + 0 + 1 + 2 +
0 + 4 = 7.

a. For n ≤ 4, make a table that counts inversion sequences s ∈ In accord-
ing to |s|.

b. It is easy to see that |In| = n!. Now show that counting inversion
sequences according to |s| gives a q-analogue, i.e., show that

∑

s∈In

q|s| = [n]!

c. Part b. and Theorem 7 imply that

I(n, k) = |{w ∈ Sn : inv(w) = k}| = |{s ∈ In : |s| = k}|.

Give a bijection between permutations and inversion sequences that
proves this identity directly.

5. The weak descent set of an inversion sequence is the set of all i such that
si ≥ si+1, i.e.,

Des(s) = {i : si ≥ si+1}.

Define the major index for an inversion sequence to be the sum of the
weak descents, i.e., if s ∈ In,
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maj(s) =
∑

i∈Des(s)

i

For example, with s = (0, 0, 1, 2, 0, 4) in I6, we have Des(s) = {1, 4} and
maj(s) = 1 + 4 = 5.

a. For n ≤ 4, make a table that counts inversion sequences s ∈ In accord-
ing to maj(s).

b. Find a bijection between permutations and inversion sequences that
proves

|{w ∈ Sn : maj(w) = k}| = |{s ∈ In : maj(s) = k}|.

c. Part b. and Theorem 7 now imply that
∑

s∈In

qmaj(s) = [n]!

Can you prove this result without the bijection in part b.?

6. The following is a greedy algorithm for sorting a permutation with swaps
that aren’t necessarily adjacent: find the largest element that is out of
place, move it to its proper place, and repeat. This algorithm is known as
straight selection sort.
More precisely, if w(n) = n, do nothing and move on to sort w(1) · · · w(n−
1).
Otherwise, if w(i) = n, with i < n, swap w(i) and w(n) to get the perm-
utation w′. Then w′(n) = n, and we can now sort w′(1) · · · w′(n − 1).
For example, here is the algorithm applied to the permutation w =
3172546. Below we denote a swap between positions i and j by (ij),
and we highlight w(i) and w(j) in bold.

3172546︸ ︷︷ ︸
(37)

→ 316254︸ ︷︷ ︸
(36)

7 → 31 42︸︷︷︸
(34)

567 → 312︸︷︷︸
(13)

4567 → 21︸︷︷︸
(12)

34567 → 1234567

Suppose (i1j1), . . . , (ikjk) are the swaps used in straight selection sort for
some w. Define the sorting index for w to be

sor(w) =
k∑

r=0

(jr − ir),

e.g., with w = 3172546 above, we get

sor(3172546) = (7 − 3) + (6 − 3) + (4 − 3) + (3 − 1) + (2 − 1) = 11.
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Informally, the sorting index measures the “cost” of straight selection sort,
with transpositions of elements that are far away costing more than ele-
ments closer by.

a. For n ≤ 4, make a table that counts permutations w ∈ Sn according
to sor(w).

b. Show that the sorting index is Mahonian, i.e., that it has the same
distribution as the Mahonian numbers:

∑

w∈Sn

qsor(w) = [n]!.

7. We will define yet another Mahonian statistic on permutations. This one
comes from a searching procedure. We will scan our list of numbers from
left to right, and we want to pull out the numbers 1, 2, . . . , n in order. How-
ever, we are only allowed to pull out the numbers in strict succession: 2
after 1, 3 after 2, and so on. Once we scan through the list, we scan through
the (now shorter) list again, repeating as often as necessary until we have
selected all the numbers. For example, with the permutation w=3172546,
we perform the following sequence of scans through the list. In bold, we
have highlighted the numbers selected in each scan:

3 1 7 2 5 4 6
3 7 5 4 6 12

7 5 6 1234
7 123456

1234567

What we will count here is the number of times a number is not selected
when scanning through the list. For example, the number 3 was not
selected in the first scan, and the number 7 was not selected in any of the
first three scans. All told, there were nine instances in which we scanned,
but did not select a number in the example above: 3 was overlooked once,
7 was overlooked three times, 5 was overlooked twice, 4 was overlooked
once, and 6 was overlooked twice.
We call this total number the disorder of a permutation, and denote it by
dis(w). In the example above, then, dis(w) = 9.

a. For n ≤ 4, make a table that counts permutations w ∈ Sn according to
dis(w).

b. Show that disorder is Mahonian, i.e.,
∑

w∈Sn

qdis(w) = [n]!.

8. We now have four distinct permutation statistics that give rise to the
Mahonian numbers: inv, maj, sor, and dis.
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a. Can you find a permutation w such that no two of these statistics agree?
b. Parts i)–vi). For each pair of statistics {stat1, stat2}⊂{inv,maj, sor,dis},

find a bijection f : Sn → Sn such that if f(w) = w′ then stat1(w) =
stat(w′). (Warning: many of these correspondences are not obvious!)

9. Using any of the combinatorial interpretations for the Mahonian numbers
(pick your favorite), show that:

a. For k < n,
I(n, k) = I(n, k − 1) + I(n − 1, k).

b. For any n and k,

I(n, k) = I(n − 1, k − n + 1) + I(n − 1, k − n + 2) + · · · + I(n − 1, k)

=
n∑

j=1

I(n − 1, k − n + j)

(Note that the formula is valid for all n and k since I(n − 1, k) = 0 if
k < 0 or k >

(
n−1
2

)
.)

10. Let’s revisit Problem 125, but give q-binomial coefficients a new combina-
torial interpretation. As in that problem, let L(k, n−k) denote the set of
paths from (0, 0) to (k, n − k) that take steps East and North, for a total
of n steps.
Here we define the major index of a path, maj(p), by thinking of p as a
word in {N,E} with E > N . For example, if p = NEENENE, maj(p) =
3+5 = 8. In terms of pictures, maj(p) is adding the positions of the valleys
of p, since a valley is an East step followed by a North step. In Table A.1
we see the ten paths in L(2, 3) grouped according to major index.

maj(p) = 0 1 2 3 4 5 6

•
•
•
• • •

• 1

•
•
• •

• • 2

•
•
•

•
• • 3

•
•

• 1

• 3

•
•

• 1

•
• 4

•

•
• 2

• 4

•

•
• 2

•
• •

•
•
• 3

• •

•
•
• • 4

•

Table A.1 Lattice paths counted according to major index. Valleys are labeled with
their position.



228 Supplementary exercises

Define the generating function for paths in L(k, n − k) by

Lmaj
n,k (q) =

∑

p∈L(k,n−k)

qmaj(p).

a. Compute Lmaj
n,k (q) for all 0 ≤ k ≤ n ≤ 4 and arrange these polynomials

in an array like Pascal’s triangle.
b. Can you show that Lmaj

n,k (q) =
[
n
k

]
? (Warning: this is not as straightfor-

ward as it is for area. If you think you have a simple explanation please
let this textbook author know about it!)

11. The normalized area statistic for Dyck paths, area(p), counts the number
of unit squares above the line y = x. (This is discussed in the essay at the
end of Chapter 10.) Let Carea

n (q) denote the generating function for this
area statistic on Dyck(n), the set of all Dyck paths. That is,

Carea
n (q) =

∑

p∈Dyck(n)

qarea(p).

Show that

Carea
n (q) =

n−1∑

i=0

qiCarea
i (q)Carea

n−1−i(q).

12. In Problem 127, we studied the joint distribution of descents and major
index for permutations, which we called the “Euler-Mahonian” distribu-
tion. This problem investigates a different Euler-Mahonian distribution,
the joint distribution of descents and inversions. Let

Sinv
n (q, t) =

∑

w∈Sn

qinv(w)tdes(w),

with Sinv
0 (q, t) = 1 for convenience.

a. Compute Sinv
n (q, t) for n ≤ 4, and group terms according to powers of

t to see how these “q-Eulerian numbers” differ from those in Problem
127.

b. Show that

Sinv
n (q, t) = Sinv

n−1(q, t) + t
n−2∑

i=0

[
n − 1

i

]
Sinv

i (q, t)qn−1−iSinv
n−1−i(q, t).

c. Let us consider the following q-analogue of an exponential generating
function as follows (compare with the generating function in Problem
101):

S(q, t, z) = 1 +
∑

n≥1

Sinv
n (q, t)

zn

[n]!



Supplementary exercises 229

Show that

S(q, t, z) =
(1 − t) exp(z(1 − t); q)
1 − t exp(z(1 − t); q)

,

where
exp(z; q) =

∑

n≥0

zn

[n]!

is a q-analogue of the exponential function.
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Exercises for Chapter 11

1. Suppose we have an experiment in which we toss a coin twice then roll a
six-sided die.

a. What is the sample space for this experiment?
b. Let X denote the random variable that counts the number of heads

plus the number on the die, e.g., if we toss heads, toss tails, then roll a
4, X = 1 + 0 + 4 = 5. What is the probability generating function

p(t) =
∑

k≥0

Pr(X = k)tk?

c. What is Pr(X ≤ 3)?
d. What is E(X)?
e. What is Var(X)?

2. What is the probability that, in a sequence of n coin tosses, you never see
heads twice in a row?

3. Consider the experiment in which we toss a coin until we see heads twice
in a row. Let X denote the random variable that records how many times
we toss the coin before seeing two heads. For example, if our sequence of
tosses is HTTHTTHTHH , then X = 10.

a. Compute Pr(X = n) for n ≤ 7.
b. Find and prove a recurrence for Pr(X = n) in terms of Pr(X = n − 1)

and Pr(x = n − 2).
c. What is the generating function

∑

n≥0

Pr(X = n)zn?

d. What is
∑

n≥0 Pr(X = n)? Explain this with and without the gener-
ating function from part c.

4. What is the probability that, in a sequence of 100 coin tosses, you never
see four heads in a row?

5. What is the probability that in a sequence of 100 coin tosses, you do have
a run of five heads in a row?

6. In Figure A.12 we see two sets of data from an experiment in which
a subject was asked to toss a coin one hundred times. (The tosses are
ordered left to right, top to bottom.) One of the test subjects performed
the experiment faithfully. The other got lazy and faked it after the first
ten tosses or so. Which is the real data set? Explain your reasoning.

7. (Essay opportunity) We often imagine that a sequence of coin flips can
come up heads indefinitely: HHHHH . . .. Thus it is entirely possible that
someone might toss a fair coin and have it come up heads one hundred
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A
HHTHTHTHTT
THTHTHTHHT
HTHTHTHTHH
HTHTHTHTHT
HTHTHHHHTH
HTHTHTHHTH
THTHTHHTTT
THHTHTHTHT
HTTTHHHTHT
HHTTHHTHTH

B
HHHTTTTHTT
HTTTHTTHTT
HTHHHTHTTT
THTTTHHTTH
HTHHHHTTTH
HHHTTHTHHT
THHTHHTHTT
HHHTHHHTTT
THTTTHHHHH
HTTHTTHTHT

Fig. A.12 Two data sets. Which is real?

times in a row. However, the probability of that happening is 1/2100 ≈
7.9 × 10−31. For “practical purposes” will this ever happen?
It seems like we are wading into some deep philosophical waters here. To
help us distinguish between the mathematically possible and the realisti-
cally possible, consider the following thought experiments.

a. First, you give every person on the planet a fair coin to toss, with
instructions to continue until the coin comes up tails. What is the prob-
ability that at least one person gets ten heads in a row? twenty heads in
a row? thirty heads in a row? What is the expected maximum? Explain
your reasoning with as much precision as possible.

b. As a variation on the previous experiment, we now instruct everyone
to toss their coin a thousand times (this should take each person an
hour or two), recording the length of the longest run of heads that they
witness during those tosses. Now how likely is it that at least one person
witnesses a hundred heads in a row?

8. In a standard deck of fifty-two cards, the cards come in thirteen ranks and
four suits. Suppose you are dealt five cards at random as in a game of
poker. See Figure 1.5 for the cards, and see Table A.2 for the definitions
of the standard poker hands.

a. What is the size of the sample space?
b. Compute the probability of each of the ten hands, from high card to

royal flush.
c. What is the probability of getting a pair or better, i.e., a hand that is

better than high card?
d. Let X denote the random variable that assigns a number from 0 to 9 for

each of the hands, with 0 corresponding to high card, 1 corresponding
to a pair, and so on, with 9 corresponding to a royal flush. Compute

p(t) =
9∑

k=0

Pr(X = k)tk.
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e. Use p(t) to find E(X) and Var(X). Does this information have any
practical use? Explain.

Hand Description Example

Royal Flush 10 through A of one suit 10♠, J♠, Q♠,K♠, A♠

Straight Flush
five consecutive ranks of one suit

(but not a royal flush)
8♥, 9♥, 10♥, J♥, Q♥

Four of a Kind four cards of the same rank 2♥, 2♣, 2♦, 2♠, 6♥

Full House
two cards of one rank and
three cards of another rank

4♥, 4♣, 8♥, 8♣, 8♠

Flush
five cards of one suit
(but not a straight)

2♣, 4♣, 5♣, J♣,K♣

Straight
five consecutive ranks

(but not a flush)
4♥, 5♣, 6♣, 7♠, 8♥

Three of a Kind
three cards of the same rank

(but not a full house or four of a kind)
9♥, 9♣, 9♠, 7♠, A♥

Two Pair
two pairs of cards of the same rank

(but not four of a kind)
9♥, 9♣, J♠, J♦, 2♣

Pair
one pair of cards of the same rank
(but not three nor four of a kind,

nor a full house)
3♠, 3♣, 7♠, J♥, Q♣

High Card any other collection of cards 4♠, 5♣, 10♠, J♥, Q♣

Table A.2 There are ten standard poker hands, ordered from high card (lowest) to
royal flush (highest).

9. You are designing a dice-rolling game called “Dice Wars.” The game has
three players, and each player has one special six-sided die (die A, die B,
and die C). They play a game where they roll their dice two at a time
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in “battle.” Whoever rolls the largest number wins the battle. If the two
combatants roll the same number they draw and nobody wins the battle.
To make things interesting, the numbers on the faces are carefully chosen
so that:

• Die A defeats die B more than half the time,
• Die B defeats die C more than half the time, and
• Die C defeats die A more than half the time.

How is this possible? Give an example of how to label the faces of the dice.
To lend the game some elegance, try to label the faces so that the sum of
the numbers is the same for each die. If N is this common number, what
is the smallest positive whole number N that can be used?

10. There are 137 seats on a typical Boeing 737 airplane as it makes the short
flight from Minneapolis to Chicago. It is a full flight and everyone is in
line waiting to board.
The first person in line somehow loses his boarding pass on the way down
the jetbridge, and rather than trying to remember his seat number he picks
a purely random seat and sits down. From this point on, no one else loses
their boarding pass. When a passenger boards the plane, either their seat
is open, in which case they sit down in it, or someone is sitting in their
seat. Being polite Minnesotans, a person in this situation won’t cause a
fuss but instead will pick one of the open seats purely at random.
You were in the bathroom when they started boarding the plane and so
are stuck at the very back of the line. What is the probability you will get
your own seat?

11. Suppose a sequence of participants in a drug trial enter a room to receive
treatment. Each person will reach into a bag and pull out either a black
ball or a white ball. If the ball is black they receive treatment A. If white,
they receive treatment B.
Upon selecting a ball they return their ball to the bag and add one more
ball of the opposite color. That is, if a person draws a black ball, they
return their black ball and they add a new white ball. If a person draws a
white ball, they return their white ball and they add a new black ball.
The purpose of this process is to make it more likely that person n and
person n + 1 draw different colors.
When the first patient enters the room, there is one black ball and one
white ball in the bag.

a. Let pn,k denote the probability that after n participants have received
their treatment, precisely k of them received treatment A. Relate pn,k

to a probability distribution you saw in Chapter 11. (Hint: look for a
recurrence relation.)

b. One of the goals of a random drug trial is to have about equal numbers
of people receiving each treatment (without the doctors knowing or
dictating who receives which treatment). With this in mind, a simpler



234 Supplementary exercises

design for a random drug trial would be to have a coin toss for each
patient, e.g., heads means treatment A and tails means treatment B.
In what way is the black/white ball selection process described above
superior to a coin-tossing assignment? It might help to compare the
outcomes of each design with a population of n = 1000 participants.

12. We can extend Problems 128 and 139 to study the binomial distribution
for a biased coin as follows. Suppose p is the probability that our coin
comes up tails and q = 1−p is the probability that it comes up heads. Let
bn(t) denote the biased binomial generating function. Then the probability
generating function for just one coin toss is b1(t) = p + qt, and with two
tosses it is b2(t) = (p + qt)2, and so on. After n tosses, we get

bn(t) =
∑

k≥0

Pr(Xn = k)tk = (p + qt)n,

where Xn is the random variable that counts the number of times heads
appears in a sequence of n tosses.

a. Using the Binomial Theorem, what is Pr(Xn = k), the probability that
after n tosses, our biased coin comes up heads exactly k times?

b. Mirroring Problem 128, find the ordinary and exponential generating
functions for bn(t):

F (t, z) =
∑

n≥0

bn(t)zn and G(t, z) =
∑

n≥0

bn(t)
zn

n!

c. Mirroring Problem 139, find generating functions for E(Xn) and Var(Xn)
for the biased binomial distributions, and find formulas for the expec-
tation and variance in terms of p, q, and n.
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Exercises for Chapter 12

1. Use computer software to find p100 (the number of partitions of n = 100)
by expanding one of the generating functions from Problem 143.

2. In Problem 142, we investigated partitions whose parts were only ones and
twos. We will investigate similar sets of restricted partitions here. For a set
of positive integers S, let pn(S) denote the number of integer partitions of
size n whose parts belong to S, i.e.,

pn(S) = |{λ : |λ| = n, λi ∈ S}|

(Thus in Problem 142, we investigated pn(S) for S = {1, 2}.) For each set
S below, compute the generating function

PS(z) = 1 +
∑

n≥1

pn(S)zn

and use it (possibly with software) to find pn(S) for n ≤ 10.

a. S = {1, 3}
b. S = {2, 3}
c. S = {1, 2, 3}
d. S = {2, 4, 6, 8, . . .} (even numbers)
e. S = {1, 2, 4, 8, 16, . . .} (powers of two)
f. S = {1, 2, 3, 5, 8, 13, . . .} (Fibonacci numbers!)
g. S =? (pick your own!)

3. Inspired by part f. of the previous exercise, let p′
n denote the number of

partitions of n into distinct Fibonacci numbers. For example, p′
3 = 2,

since (3) and (2, 1) are partitions of 3 into Fibonacci numbers without any
repeats.

a. Compute p′
n for n ≤ 12.

b. For which values of n is p′
n = 1?

4. In Problem 145 we found the generating function for partitions (Young
diagrams) that fit inside an a × b rectangle. In this problem you will do
the same for partitions with distinct parts. (Problem 148 also looked at
partitions with distinct parts.) Let L′

a,b(t) denote the generating function
for such partitions according to size:

L′
a,b(t) = 1 +

∑

λ⊆a×b
(distinct parts)

t|λ|

a. Compute L′
a,b(t) for a + b ≤ 5.

b. Find a simple factorization of L′
a,a(t).
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c. Is it easier to compute L′
a,b(t) when a < b (short and wide) or when

a > b (tall and narrow)? Explain.

5. For a partition λ = (λ1, . . . , λk), define the multiplicity of i, denoted mi =
mi(λ), to be the number of parts of size i in λ. An alternate “multiplicity”
notation for partitions is λ = 1m12m2 · · · , with parts of multiplicity zero
omitted. For example, with λ = (5, 5, 3, 3, 3, 3, 2, 1) we have m5 = 2, m3 =
4, and m2 = m1 = 1, while all other multiplicities are zero. Thus we
would write λ = 11213452 in multiplicity notation. Note that by definition,∑

mi = �(λ) and
∑

i · mi = n.
With this notation in mind, show that for fixed n,

∏

λ=1m12m2 ···
|λ|=n

m1(λ)!m2(λ)! · · · =
∏

λ=1m12m2 ···
|λ|=n

1m1(λ)2m2(λ) · · ·

For example, for n = 4, we have five partitions, 4, 31, 22, 212, 14, and the
identity is:

(1!)(1! · 1!)(2!)(1! · 2!)(4!) = 96 = (4)(3 · 1)(22)(2 · 12)(14).

Hint: let m′
j(λ) denote the number of multiplicities greater than or equal

to j, i.e., m′
j(λ) = |{i : mi(λ) ≥ j}|. The number of times j appears as a

factor on the left-hand side of the identity is
∑

|λ|=n m′
j(λ). The number of

times j appears as a factor on the right-hand side is
∑

|λ|=n mj(λ). Show
these two sums are equal.

6. Using the notation of the previous exercise, show that for fixed n,

∑

λ=1m12m2 ···
|λ|=n

1
m1(λ)!1m1(λ)m2(λ)!2m2(λ) · · · = 1

For example, for n = 4, we have five partitions, 4, 31, 22, 212, 14, and the
identity is:

1
1! · 4

+
1

1! · 3 · 1! · 1
+

1
2! · 22

+
1

1! · 2 · 2! · 12
+

1
4! · 14

=
1
4
+

1
3
+

1
8
+

1
4
+

1
24

= 1.

7. Find the generating function for self-conjugate partitions. (Hint: Problem
147 can make this easier to work out.)
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Exercises for Chapter 13

1. What sequence has Dirichlet generating function

− d

ds
[ζ(s)]?

2. Generalize our approach to counting binary necklaces (Problems 163 and
164) to count necklaces with up to m colors of beads. Show that there are

1
n

∑

d|n
φ(d)m

n
d

such necklaces, for any fixed choice of m.
3. This and the next few exercises investigate Farey sequences. A Farey

sequence of size n, denoted Fn, consists of all reduced fractions between
0 and 1 whose denominators are less than or equal to n, ordered from
smallest to biggest. For example, here is F5:

{
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
1
5
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

}
.

a. Make a table of the Farey sequences Fn for n ≤ 7.
b. Compute | Fn | for n ≤ 7, and let an = | Fn |. Show that

an = an−1 + φ(n),

where φ(n) is the totient function. Hint: consider those fractions that
have n as their smallest denominator.

4. Consider two reduced fractions:

0 ≤ a

b
<

c

d
≤ 1,

where gcd(a, b) = gcd(c, d) = 1. Show that if these two fractions are con-
secutive elements of a Farey sequence Fn, then

c

d
− a

b
=

1
bd

.

Hint: use the fact that Fn−1 ⊂ Fn to reduce to the case where b or d
equals n.

5. Define the mediant of two reduced fractions a/b and c/d to be (a+c)/(b+
d).

a. Show that the mediant lies strictly between the other two fractions:

a

b
<

a + c

b + d
<

c

d
.
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b. Suppose a/b and c/d are reduced fractions with a/b < c/d. Show that
if bc − ad = 1, then for n = max{b, d}, a/b and c/d are consecutive
elements of the Farey sequence Fn.

c. Show a/b < (a + c)/(b + d) < c/d form three consecutive elements of
Fb+d.

6. Show that if we have three consecutive members of a Farey sequence Fn,

0 ≤ a

b
<

e

f
<

c

d
≤ 1,

then
e

f
=

a + c

b + d
.

That is, elements between others in the Farey sequence must be mediants.
7. This exercise yields a fun result at the intersection of probability and

number theory.

a. Use a computer program to search through all pairs of distinct integers,
1 ≤ a < b ≤ 100, and compute the proportion of these pairs that are
relatively prime.

b. Show that the probability that a random integer is divisible by p is
1/p. That is, given prime p and any integer n, let n = pk + r where
0 ≤ r < p. Explain why k is the number of integers less than or equal
to n that are multiples of p. Let Pr(n, p) denote the probability that a
random integer between 1 and n is divisible by p, and conclude

Pr(n, p) =
k

n
=

1
p

· k

k + r
p

,

and hence
lim

n→∞ Pr(n, p) =
1
p
.

c. Using similar reasoning, explain why the probability that two random
numbers are both multiples of p approaches (1/p)2. Conclude that the
probability that two random numbers do not share a common factor of
p approaches 1 − (1/p)2.

d. Explain why the probability that two random numbers are relatively
prime is

1
ζ(2)

=
6
π2

= 0.6079 . . . .
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