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Preface

This book is intended primarily as a one-semester undergraduate text for a course
in algebraic combinatorics. The main prerequisites are a basic knowledge of linear
algebra (eigenvalues, eigenvectors, etc.) over a field, existence of finite fields, and
some rudimentary understanding of group theory. The one exception is Sect. 12.6,
which involves finite extensions of the rationals including a little Galois theory. Prior
knowledge of combinatorics is not essential but will be helpful.

Why do I write an undergraduate textbook on algebraic combinatorics? One
obvious reason is simply to gather some material that I find very interesting and
hope that students will agree. A second reason concerns students who have taken
an introductory algebra course and want to know what can be done with their new-
found knowledge. Undergraduate courses that require a basic knowledge of algebra
are typically either advanced algebra courses or abstract courses on subjects like
algebraic topology and algebraic geometry. Algebraic combinatorics offers a byway
off the traditional algebraic highway, one that is more intuitive and more easily
accessible.

Algebraic combinatorics is a huge subject, so some selection process was
necessary to obtain the present text. The main results, such as the weak Erdős–
Moser theorem and the enumeration of de Bruijn sequences, have the feature that
their statement does not involve any algebra. Such results are good advertisements
for the unifying power of algebra and for the unity of mathematics as a whole.
All but the last chapter are vaguely connected to walks on graphs and linear
transformations related to them. The final chapter is a hodgepodge of some unrelated
elegant applications of algebra to combinatorics. The sections of this chapter are
independent of each other and the rest of the text. There are also three chapter
appendices on purely enumerative aspects of combinatorics related to the chapter
material: the RSK algorithm, plane partitions, and the enumeration of labelled trees.
Almost all the material covered here can serve as a gateway to much additional
algebraic combinatorics. We hope in fact that this book will serve exactly this
purpose, that is, to inspire its readers to delve more deeply into the fascinating
interplay between algebra and combinatorics.
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viii Preface

Many persons have contributed to the writing of this book, but special thanks
should go to Christine Bessenrodt and Sergey Fomin for their careful reading of
portions of earlier manuscripts.

Cambridge, MA Richard P. Stanley
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Basic Notation

P Positive integers
N Nonnegative integers
Z Integers
Q Rational numbers
R Real numbers
C Complex numbers
Œn� The set f1; 2; : : : ; ng for n 2 N (so Œ0� D ;)
Zn The group of integers modulo n
RŒx� The ring of polynomials in the variable x with coefficients

in the ring R
Y X For sets X and Y , the set of all functions f WX ! Y

WD Equal by definition
Fq The finite field with q elements
.j / 1C q C q2 C � � � C qj�1
#S or jS j Cardinality (number of elements) of the finite set S
S �[T The disjoint union of S and T , i.e., S [ T , where S \ T D ;
2S The set of all subsets of the set S�
S

k

�
The set of k-element subsets of S��

S
k

��
The set of k-element multisets on S

KS The vector space with basis S over the field K
Bn The poset of all subsets of Œn�, ordered by inclusion
�.x/ The rank of the element x in a graded poset
Œxn�F.x/ Coefficient of xn in the polynomial or power series F.x/
x É y, y Ê x y covers x in a poset P
ıij The Kronecker delta, which equals 1 if i D j and 0 otherwise
jLj The sum of the parts (entries) of L, if L is any array of

nonnegative integers
`.�/ Length (number of parts) of the partition �

xi



xii Basic Notation

p.n/ Number of partitions of the integer n � 0
ker ' The kernel of a linear transformation or group homomorphism
Sn Symmetric group of all permutations of 1; 2; : : : ; n
� The identity permutation of a set X , i.e., �.x/ D x for all x 2 X



Chapter 1
Walks in Graphs

Given a finite set S and integer k � 0, let
�
S
k

�
denote the set of k-element subsets

of S . A multiset may be regarded, somewhat informally, as a set with repeated
elements, such as f1; 1; 3; 4; 4; 4; 6; 6g. We are only concerned with how many times
each element occurs and not on any ordering of the elements. Thus for instance
f2; 1; 2; 4; 1; 2g and f1; 1; 2; 2; 2; 4g are the same multiset: they each contain two
1’s, three 2’s, and one 4 (and no other elements). We say that a multiset M is on a
set S if every element ofM belongs to S . Thus the multiset in the example above is

on the set S D f1; 3; 4; 6g and also on any set containingS . Let
��

S
k

��
denote the set

of k-element multisets on S . For instance, if S D f1; 2; 3g then (using abbreviated
notation),

 
S

2

!

D f12; 13; 23g;
��
S

2

��
D f11; 22; 33; 12; 13; 23g:

We now define what is meant by a graph. Intuitively, graphs have vertices and
edges, where each edge “connects” two vertices (which may be the same). It is
possible for two different edges e and e0 to connect the same two vertices. We want
to be able to distinguish between these two edges, necessitating the following more
precise definition. A (finite) graph G consists of a vertex set V D fv1; : : : ; vpg and

edge set E D fe1; : : : ; eqg, together with a function 'WE !
��

V
2

��
. We think that if

'.e/ D uv (short for fu; vg), then e connects u and v or equivalently e is incident to
u and v. If there is at least one edge incident to u and v then we say that the vertices
u and v are adjacent. If '.e/ D vv, then we call e a loop at v. If several edges
e1; : : : ; ej (j > 1) satisfy '.e1/ D � � � D '.ej / D uv, then we say that there is a
multiple edge between u and v. A graph without loops or multiple edges is called
simple. In this case we can think of E as just a subset of

�
V
2

�
[why?].

The adjacency matrix of the graph G is the p � p matrix A D A.G/, over
the field of complex numbers, whose .i; j /-entry aij is equal to the number of

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 1,
© Springer Science+Business Media New York 2013
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2 1 Walks in Graphs

edges incident to vi and vj . Thus A is a real symmetric matrix (and hence has
real eigenvalues) whose trace is the number of loops in G. For instance, if G is the
graph

1

3

54

2

then

A.G/ D

2

6
6
6
6
6
4

2 1 0 2 0

1 0 0 0 1

0 0 0 0 0

2 0 0 0 1

0 1 0 1 1

3

7
7
7
7
7
5
:

A walk in G of length ` from vertex u to vertex v is a sequence v1; e1; v2; e2; : : : ,
v`; e`; v`C1 such that:

• Each vi is a vertex of G.
• Each ej is an edge of G.
• The vertices of ei are vi and viC1, for 1 � i � `.
• v1 D u and v`C1 D v.

1.1 Theorem. For any integer ` � 1, the .i; j /-entry of the matrix A.G/` is equal
to the number of walks from vi to vj in G of length `.

Proof. This is an immediate consequence of the definition of matrix multiplication.
Let A D .aij /. The .i; j /-entry of A.G/` is given by

.A.G/`/ij D
X

aii1ai1i2 � � �ai`�1j ;

where the sum ranges over all sequences .i1; : : : ; i`�1/ with 1 � ik � p. But
since ars is the number of edges between vr and vs , it follows that the summand
aii1ai1i2 � � � ai`�1j in the above sum is just the number (which may be 0) of walks of
length ` from vi to vj of the form

vi ; e1; vi1 ; e2; : : : ; vi`�1 ; e`; vj

(since there are aii1 choices for e1, ai1i2 choices for e2, etc.) Hence summing over
all .i1; : : : ; i`�1/ just gives the total number of walks of length ` from vi to vj , as
desired. ut



1 Walks in Graphs 3

We wish to use Theorem 1.1 to obtain an explicit formula for the number
.A.G/`/ij of walks of length ` inG from vi to vj . The formula we give will depend
on the eigenvalues of A.G/. The eigenvalues of A.G/ are also called simply the
eigenvalues of G. Recall that a real symmetric p � p matrix M has p linearly
independent real eigenvectors, which can in fact be chosen to be orthonormal (i.e.,
orthogonal and of unit length). Let u1; : : : ; up be real orthonormal eigenvectors for
M , with corresponding eigenvalues �1; : : : ; �p . All vectors u will be regarded as
p � 1 column vectors, unless specified otherwise. We let t denote transpose, so ut

is a 1 � p row vector. Thus the dot (or scalar or inner) product of the vectors u
and v is given by utv (ordinary matrix multiplication). In particular, utiuj D ıij
(the Kronecker delta). Let U D .uij / be the matrix whose columns are u1; : : : ; up ,
denoted U D Œu1; : : : ; up�. Thus U is an orthogonal matrix, so

U t D U�1 D

2

6
4

ut1
:::

utp

3

7
5 ;

the matrix whose rows are ut1; : : : ; u
t
p. Recall from linear algebra that the matrix U

diagonalizesM , i.e.,

U�1MU D diag.�1; : : : ; �p/;

where diag.�1; : : : ; �p/ denotes the diagonal matrix with diagonal entries �1; : : : ; �p
(in that order).

1.2 Corollary. Given the graph G as above, fix the two vertices vi and vj . Let
�1; : : : ; �p be the eigenvalues of the adjacency matrix A.G/. Then there exist real
numbers c1; : : : ; cp such that for all ` � 1, we have

.A.G/`/ij D c1�`1 C � � � C cp�`p: (1.1)

In fact, ifUD.urs/ is a real orthogonal matrix such thatU�1AUDdiag.�1; : : :; �p/,
then we have

ck D uikujk:

Proof. We have [why?]

U�1A`U D diag.�`1; : : : ; �
`
p/:

Hence
A` D U � diag.�`1; : : : ; �

`
p/U

�1:

Taking the .i; j /-entry of both sides (and using U�1 D U t ) gives [why?]

.A`/ij D
X

k

uik�
`
kujk;

as desired. ut



4 1 Walks in Graphs

In order for Corollary 1.2 to be of any use we must be able to compute the
eigenvalues �1; : : : ; �p as well as the diagonalizing matrix U (or eigenvectors ui ).
There is one interesting special situation in which it is not necessary to compute U .
A closed walk in G is a walk that ends where it begins. The number of closed walks
in G of length ` starting at vi is therefore given by .A.G/`/i i , so the total number
fG.`/ of closed walks of length ` is given by

fG.`/ D
pX

iD1
.A.G/`/i i

D tr.A.G/`/;

where tr denotes trace (sum of the main diagonal entries). Now recall that the trace
of a square matrix is the sum of its eigenvalues. If the matrix M has eigenvalues
�1; : : : ; �p then [why?] M` has eigenvalues �`1; : : : ; �

`
p. Hence we have proved the

following.

1.3 Corollary. Suppose A.G/ has eigenvalues �1; : : : ; �p . Then the number of
closed walks in G of length ` is given by

fG.`/ D �`1 C � � � C �`p:

We now are in a position to use various tricks and techniques from linear algebra
to count walks in graphs. Conversely, it is sometimes possible to count the walks by
combinatorial reasoning and use the resulting formula to determine the eigenvalues
of G. As a first simple example, we consider the complete graphKp with vertex set
V D fv1; : : : ; vpg and one edge between any two distinct vertices. Thus Kp has p
vertices and

�
p
2

� D 1
2
p.p � 1/ edges.

1.4 Lemma. Let J denote the p � p matrix of all 1’s. Then the eigenvalues of J
are p (with multiplicity one) and 0 (with multiplicity p � 1).

Proof. Since all rows are equal and nonzero, we have rank.J / D 1. Since a p � p
matrix of rank p �m has at least m eigenvalues equal to 0, we conclude that J has
at least p � 1 eigenvalues equal to 0. Since tr.J / D p and the trace is the sum of
the eigenvalues, it follows that the remaining eigenvalue of J is equal to p. ut
1.5 Proposition. The eigenvalues of the complete graph Kp are as follows:
an eigenvalue of �1 with multiplicity p � 1 and an eigenvalue of p � 1 with
multiplicity one.

Proof. We have A.Kp/ D J � I , where I denotes the p �p identity matrix. If the
eigenvalues of a matrixM are�1; : : : ; �p , then the eigenvalues ofMCcI (where c
is a scalar) are �1C c; : : : ; �pC c [why?]. The proof follows from Lemma 1.4. ut
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1.6 Corollary. The number of closed walks of length ` in Kp from some vertex vi
to itself is given by

.A.Kp/
`/i i D 1

p
..p � 1/` C .p � 1/.�1/`/: (1.2)

(Note that this is also the number of sequences .i1; : : : ; i`/ of numbers 1; 2; : : : ; p
such that i1 D i , no two consecutive terms are equal, and i` ¤ i1 [why?].)

Proof. By Corollary 1.3 and Proposition 1.5, the total number of closed walks in
Kp of length ` is equal to .p � 1/` C .p � 1/.�1/`. By the symmetry of the graph
Kp, the number of closed walks of length ` from vi to itself does not depend on i .
(All vertices “look the same.”) Hence we can divide the total number of closed walks
by p (the number of vertices) to get the desired answer. ut

A combinatorial proof of Corollary 1.6 is quite tricky (Exercise 1). Our algebraic
proof gives a first hint of the power of algebra to solve enumerative problems.

What about non-closed walks in Kp? It’s not hard to diagonalize explicitly the
matrix A.Kp/ (or equivalently, to compute its eigenvectors), but there is an even
simpler special argument. We have

.J � I /` D
X̀

kD0
.�1/`�k

 
`

k

!

J k; (1.3)

by the binomial theorem.1 Now for k > 0 we have J k D pk�1J [why?], while
J 0 D I . (It is not clear a priori what is the “correct” value of J 0, but in order for
(1.3) to be valid we must take J 0 D I .) Hence

.J � I /` D
X̀

kD1
.�1/`�k

 
`

k

!

pk�1J C .�1/`I:

Again by the binomial theorem we have

.J � I /` D 1

p
..p � 1/` � .�1/`/J C .�1/`I: (1.4)

Taking the .i; j /-entry of each side when i ¤ j yields

.A.Kp/
`/ij D 1

p
..p � 1/` � .�1/`/: (1.5)

1We can apply the binomial theorem in this situation because I and J commute. If A and B
are p � p matrices that don’t necessarily commute, then the best we can say is .A C B/2 D
A2 C AB C BAC B2 and similarly for higher powers.



6 1 Walks in Graphs

If we take the .i; i/-entry of (1.4) then we recover (1.2). Note the curious fact that if
i ¤ j then

.A.Kp/
`/i i � .A.Kp/

`/ij D .�1/`:
We could also have deduced (1.5) from Corollary 1.6 using

pX

iD1

pX

jD1

�
A.Kp/

`
�
ij
D p.p � 1/`;

the total number of walks of length ` in Kp . Details are left to the reader.
We now will show how (1.2) itself determines the eigenvalues of A.Kp/. Thus

if (1.2) is proved without first computing the eigenvalues of A.Kp/ (which in fact
is what we did two paragraphs ago), then we have another means to compute the
eigenvalues. The argument we will give can in principle be applied to any graph G,
not just Kp . We begin with a simple lemma.

1.7 Lemma. Suppose ˛1; : : : ; ˛r and ˇ1; : : : ; ˇs are nonzero complex numbers such
that for all positive integers `, we have

˛`1 C � � � C ˛`r D ˇ`1 C � � � C ˇ`s : (1.6)

Then r D s and the ˛’s are just a permutation of the ˇ’s.

Proof. We will use the powerful method of generating functions. Let x be a complex
number whose absolute value (or modulus) is close to 0. Multiply (1.6) by x` and
sum on all ` � 1. The geometric series we obtain will converge, and we get

˛1x

1� ˛1x C � � � C
˛rx

1 � ˛rx D
ˇ1x

1 � ˇ1x C � � � C
ˇsx

1 � ˇsx : (1.7)

This is an identity valid for sufficiently small (in modulus) complex numbers. By
clearing denominators we obtain a polynomial identity. But if two polynomials in x
agree for infinitely many values, then they are the same polynomial [why?]. Hence
(1.7) is actually valid for all complex numbers x (ignoring values of x which give
rise to a zero denominator).

Fix a complex number � ¤ 0. Multiply (1.7) by 1 � �x and let x ! 1=� . The
left-hand side becomes the number of ˛i ’s which are equal to � , while the right-
hand side becomes the number of ˇj ’s which are equal to � [why?]. Hence these
numbers agree for all � , so the lemma is proved. ut
1.8 Example. Suppose that G is a graph with 12 vertices and that the number of
closed walks of length ` in G is equal to 3 � 5` C 4` C 2.�2/` C 4. Then it follows
from Corollary 1.3 and Lemma 1.7 [why?] that the eigenvalues of A.G/ are given
by 5; 5; 5; 4;�2;�2; 1; 1; 1; 1; 0; 0.
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Notes for Chap. 1

The connection between graph eigenvalues and the enumeration of walks is
considered “folklore.” The subject of spectral graph theory, which is concerned with
the spectrum (multiset of eigenvalues) of various matrices associated with graphs,
began around 1931 in the area of quantum chemistry. The first mathematical paper
was published by L. Collatz and U. Sinogowitz in 1957. A good general reference
is the book2 [22] by Cvetković et al. Two textbooks on this subject are by Cvetković
et al. [23] and by Brouwer and Haemers [13].

Exercises for Chap. 1

NOTE. An exercise marked with (*) is treated in the Hints section beginning on
page 209.

1. (tricky) Find a combinatorial proof of Corollary 1.6, i.e., the number of closed
walks of length ` in Kp from some vertex to itself is given by 1

p
..p � 1/` C

.p � 1/.�1/`/.
2. Suppose that the graph G has 15 vertices and that the number of closed walks

of length ` inG is 8`C2 �3`C3 � .�1/`C.�6/`C5 for all ` � 1. LetG0 be the
graph obtained fromG by adding a loop at each vertex (in addition to whatever
loops are already there). How many closed walks of length ` are there in G0?
(Use linear algebraic techniques. You can also try to solve the problem purely
by combinatorial reasoning.)

3. A bipartite graph G with vertex bipartition .A;B/ is a graph whose vertex set
is the disjoint unionA �[B of A and B , such that every edge of G is incident to
one vertex in A and one vertex in B . Show by a walk-counting argument that
the nonzero eigenvalues of G come in pairs˙�.
An equivalent formulation can be given in terms of the characteristic poly-
nomial f .x/ of the matrix A.G/. Recall that the characteristic polynomial
of a p � p matrix A is defined to be det.A � xI /. The present exercise is
then equivalent to the statement that when G is bipartite, the characteristic
polynomial f .x/ of A.G/ has the form g.x2/ (if G has an even number of
vertices) or xg.x2/ (if G has an odd number of vertices) for some polynomial
g.x/.

NOTE. Sometimes the characteristic polynomial of a p�p matrixA is defined
to be det.xI�A/ D .�1/p det.A�xI /. We will use the definition det.A�xI /,
so that the value at x D 0 is detA.

2All citations to the literature refer to the bibliography beginning on page 213.
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4. Let r; s � 1. The complete bipartite graph Krs has vertices u1; u2; : : : ; ur ,
v1; v2, : : : ; vs , with one edge between each ui and vj (so rs edges in all).

(a) By purely combinatorial reasoning, compute the number of closed walks
of length ` in Krs.

(b) Deduce from (a) the eigenvalues of Krs .

5. (*) Let Hn be the complete bipartite graph Knn with n vertex-disjoint edges
removed. ThusHn has 2n vertices and n.n�1/ edges, each of degree (number
of incident edges) n � 1. Show that the eigenvalues of G are ˙1 (n � 1 times
each) and˙.n � 1/ (once each).

6. Let n � 1. The complete p-partite graph K.n; p/ has vertex set V D
V1 �[ � � � �[Vp (disjoint union), where each jVi j D n, and an edge from every
element of Vi to every element of Vj when i ¤ j . (If u; v 2 Vi then there is no
edge uv.) ThusK.1; p/ is the complete graphKp, andK.n; 2/ is the complete
bipartite graphKnn.

(a) (*) Use Corollary 1.6 to find the number of closed walks of length ` in
K.n; p/.

(b) Deduce from (a) the eigenvalues of K.n; p/.

7. Let G be any finite simple graph, with eigenvalues �1; : : : ; �p . Let G.n/ be
the graph obtained from G by replacing each vertex v of G with a set Vv of
n vertices, such that if uv is an edge of G, then there is an edge from every
vertex of Vu to every vertex of Vv (and no other edges). For instance,Kp.n/ D
K.n; p/. Find the eigenvalues of G.n/ in terms of �1; : : : ; �p .

8. Let G be a (finite) graph on p vertices. Let G0 be the graph obtained from G

by placing a new edge ev incident to each vertex v, with the other vertex of ev

being a new vertex v0. Thus G0 has p new edges and p new vertices. The new
vertices all have degree one. By combinatorial or algebraic reasoning, show

that if G has eigenvalues �i then G0 has eigenvalues .�i ˙
q
�2i C 4/=2. (An

algebraic proof is much easier than a combinatorial proof.)
9. Let G be a (finite) graph with vertices v1; : : : ; vp and eigenvalues �1; : : : ; �p .

We know that for any i; j there are real numbers c1.i; j /; : : : ; cp.i; j / such
that for all ` � 1,

�
A.G/`

�
ij
D

pX

kD1
ck.i; j /�

`
k:

(a) Show that ck.i; i/ � 0.
(b) Show that if i ¤ j then we can have ck.i; j / < 0. (The simplest possible

example will work.)

10. Let G be a finite graph with eigenvalues �1; : : : ; �p . Let G? be the graph with
the same vertex set as G and with �.u; v/ edges between vertices u and v
(including u D v), where �.u; v/ is the number of walks in G of length two
from u to v. For example,
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G G*

Find the eigenvalues of G? in terms of those of G.
11. (*) Let Ko

n denote the complete graph with n vertices, with one loop at each
vertex. (Thus A.Ko

n/ D Jn, the n � n all 1’s matrix, and Ko
n has

�
nC1
2

�
edges.)

LetKo
n�Ko

m denoteKo
n with the edges ofKo

m removed, i.e., choosem vertices
of Ko

n and remove all edges between these vertices (including loops). (Thus
Ko
n �Ko

m has
�
nC1
2

� � �mC1
2

�
edges.) Find the number C.`/ of closed walks in

	 D Ko
21 �Ko

18 of length ` � 1.

12. (a) Let G be a finite graph and let 
 be the maximum degree of any vertex of
G. Let �1 be the largest eigenvalue of the adjacency matrix A.G/. Show
that �1 � 
.

(b) (*) Suppose that G is simple (no loops or multiple edges) and has a total
of q edges. Show that �1 � p2q.

13. LetG be a finite graph with at least two vertices. Suppose that for some ` � 1,
the number of walks of length ` between any two vertices u; v (including u D v)
is odd. Show that there is a nonempty subset S of the vertices such that S has
an even number of elements and such that every vertex v of G is adjacent to
an even number of vertices in S . (A vertex v is adjacent to itself if and only if
there is a loop at v.)



Chapter 2
Cubes and the Radon Transform

Let us now consider a more interesting example of a graph G, one whose
eigenvalues have come up in a variety of applications. Let Z2 denote the cyclic group
of order 2, with elements 0 and 1 and group operation being addition modulo 2.
Thus 0 C 0 D 0, 0 C 1 D 1 C 0 D 1, and 1 C 1 D 0. Let Zn2 denote the direct
product of Z2 with itself n times, so the elements of Zn2 are n-tuples .a1; : : : ; an/
of 0’s and 1’s, under the operation of component-wise addition. Define a graph Cn,
called the n-cube, as follows: the vertex set of Cn is given by V.Cn/ D Z

n
2 , and two

vertices u and v are connected by an edge if they differ in exactly one component.
Equivalently, uCv has exactly one nonzero component. If we regardZn2 as consisting
of real vectors, then these vectors form the set of vertices of an n-dimensional cube.
Moreover, two vertices of the cube lie on an edge (in the usual geometric sense) if
and only if they form an edge of Cn. This explains why Cn is called the n-cube.
We also see that walks in Cn have a nice geometric interpretation—they are simply
walks along the edges of an n-dimensional cube.

We want to determine explicitly the eigenvalues and eigenvectors of Cn. We will
do this by a somewhat indirect but extremely useful and powerful technique, the
finite Radon transform. Let V denote the set of all functions f WZn2 ! R, where R

denotes the field of real numbers.1 Note that V is a vector space overR of dimension
2n [why?]. If u D .u1; : : : ; un/ and v D .v1; : : : ; vn/ are elements of Zn2 , then define
their dot product by

u � v D u1v1 C � � � C unvn; (2.1)

where the computation is performed modulo 2. Thus we regard u � v as an element
of Z2. The expression .�1/u�v is defined to be the real numberC1 or �1, depending
on whether u � v D 0 or 1, respectively. Since for integers k the value of .�1/k

1For abelian groups other than Z
n
2 it is necessary to use complex numbers rather than real numbers.

We could use complex numbers here, but there is no need to do so.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 2,
© Springer Science+Business Media New York 2013

11
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depends only on k (mod 2), it follows that we can treat u and v as integer vectors
without affecting the value of .�1/u�v. Thus, for instance, formulas such as

.�1/u�.vCw/ D .�1/u�vCu�w D .�1/u�v.�1/u�w

are well defined and valid. From a more algebraic viewpoint, the map Z! f�1; 1g
sending n to .�1/n is a group homomorphism, where of course the product on
f�1; 1g is multiplication.

We now define two important bases of the vector space V . There will be one basis
element of each basis for each u 2 Z

n
2 . The first basis, denoted B1, has elements fu

defined as follows:

fu.v/ D ıuv; (2.2)

the Kronecker delta. It is easy to see that B1 is a basis, since any g 2 V satisfies

g D
X

u2Zn2
g.u/fu (2.3)

[why?]. Hence B1 spans V , so since #B1 D dimV D 2n, it follows that B1 is a
basis. The second basis, denoted B2, has elements �u defined as follows:

�u.v/ D .�1/u�v:

In order to show that B2 is a basis, we will use an inner product on V (denoted h�; �i)
defined by

hf; gi D
X

u2Zn2
f .u/g.u/:

Note that this inner product is just the usual dot product with respect to the basisB1.

2.1 Lemma. The set B2 D f�uW u 2 Z
n
2g forms a basis for V .

Proof. Since #B2 D dimV (D 2n), it suffices to show that B2 is linearly
independent. In fact, we will show that the elements of B2 are orthogonal.2 We
have

h�u; �vi D
X

w2Zn2
�u.w/�v.w/

D
X

w2Zn2
.�1/.uCv/�w:

2Recall from linear algebra that nonzero orthogonal vectors in a real vector space are linearly
independent.
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It is left as an easy exercise to the reader to show that for any y 2 Z
n
2 , we have

X

w2Zn2
.�1/y�w D

�
2n; if y D 0,
0; otherwise,

where 0 denotes the identity element of Zn2 (the vector .0; 0; : : : ; 0/). Thus h�u; �vi
D 0 if and only u C v D 0, i.e., u D v, so the elements of B2 are orthogonal (and
nonzero). Hence they are linearly independent as desired. ut

We now come to the key definition of the Radon transform.
Given a subset � of Zn2 and a function f 2 V , define a new functionˆ�f 2 V by

ˆ�f .v/ D
X

w2�
f .vC w/:

The function ˆ�f is called the (discrete or finite) Radon transform of f (on the
group Z

n
2 , with respect to the subset �).

We have defined a map ˆ� WV ! V . It is easy to see that ˆ� is a linear
transformation; we want to compute its eigenvalues and eigenvectors.

2.2 Theorem. The eigenvectors of ˆ� are the functions �u, where u 2 Z
n
2 . The

eigenvalue �u corresponding to �u (i.e.,ˆ��u D �u�u) is given by

�u D
X

w2�
.�1/u�w:

Proof. Let v 2 Z
n
2 . Then

ˆ��u.v/ D
X

w2�
�u.vC w/

D
X

w2�
.�1/u�.vCw/

D
 
X

w2�
.�1/u�w

!

.�1/u�v

D
 
X

w2�
.�1/u�w

!

�u.v/:

Hence

ˆ��u D
 
X

w2�
.�1/u�w

!

�u;

as desired. ut
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Note that because the �u’s form a basis for V by Lemma 2.1, it follows that
Theorem 2.2 yields a complete set of eigenvalues and eigenvectors forˆ� . Note also
that the eigenvectors �u of ˆ� are independent of �; only the eigenvalues depend
on � .

Now we come to the payoff. Let 
 D fı1; : : : ; ıng, where ıi is the i th unit
coordinate vector (i.e., ıi has a 1 in position i and 0’s elsewhere). Note that the j th
coordinate of ıi is just ıij (the Kronecker delta), explaining our notation ıi . Let Œˆ
�
denote the matrix of the linear transformation ˆ
WV ! V with respect to the basis
B1 of V given by (2.2).

2.3 Lemma. We have Œˆ
� D A.Cn/, the adjacency matrix of the n-cube.

Proof. Let v 2 Z
n
2 . We have

ˆ
fu.v/ D
X

w2

fu.vC w/

D
X

w2

fuCw.v/;

since u D vC w if and only if uC w D v. There follows

ˆ
fu D
X

w2

fuCw: (2.4)

Equation (2.4) says that the .u; v/-entry of the matrixˆ
 is given by

.ˆ
/uv D
�
1; if uC v 2 
,
0; otherwise:

Now uC v 2 
 if and only if u and v differ in exactly one coordinate. This is just
the condition for uv to be an edge of Cn, so the proof follows. ut
2.4 Corollary. The eigenvectors Eu (u 2 Z

n
2) of A.Cn/ (regarded as linear

combinations of the vertices of Cn, i.e., of the elements of Zn2) are given by

Eu D
X

v2Zn2
.�1/u�vv: (2.5)

The eigenvalue �u corresponding to the eigenvector Eu is given by

�u D n � 2!.u/; (2.6)

where !.u/ is the number of 1’s in u. (The integer !.u/ is called the Hamming
weight or simply the weight of u.) Hence A.Cn/ has

�
n
i

�
eigenvalues equal to n�2i ,

for each 0 � i � n.
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Proof. For any function g 2 V we have by (2.3) that

g D
X

v

g.v/fv:

Applying this equation to g D �u gives

�u D
X

v

�u.v/fv D
X

v

.�1/u�vfv: (2.7)

Equation (2.7) expresses the eigenvector �u of ˆ
 (or even ˆ� for any � � Z
n
2) as

a linear combination of the functions fv. But ˆ
 has the same matrix with respect
to the basis of the fv’s as A.Cn/ has with respect to the vertices v of Cn. Hence the
expansion of the eigenvectors of ˆ
 in terms of the fv’s has the same coefficients
as the expansion of the eigenvectors of A.Cn/ in terms of the v’s, so (2.5) follows.

According to Theorem 2.2 the eigenvalue �u corresponding to the eigenvector �u

of ˆ
 (or equivalently, the eigenvectorEu of A.Cn/) is given by

�u D
X

w2

.�1/u�w: (2.8)

Now 
 D fı1; : : : ; ıng and ıi � u is 1 if u has a one in its i th coordinate and is 0
otherwise. Hence the sum in (2.8) has n � !.u/ terms equal to C1 and !.u/ terms
equal to �1, so �u D .n � !.u// � !.u/ D n � 2!.u/, as claimed. ut

We have all the information needed to count walks in Cn.

2.5 Corollary. Let u; v 2 Z
n
2 , and suppose that !.uC v/ D k (i.e., u and v disagree

in exactly k coordinates). Then the number of walks of length ` in Cn between u and
v is given by

.A`/uv D 1

2n

nX

iD0

kX

jD0
.�1/j

 
k

j

! 
n � k
i � j

!

.n � 2i/`; (2.9)

where we set
�
n�k
i�j
� D 0 if j > i . In particular,

.A`/uu D 1

2n

nX

iD0

 
n

i

!

.n � 2i/`: (2.10)

Proof. LetEu and �u be as in Corollary 2.4. In order to apply Corollary 1.2, we need
the eigenvectors to be of unit length (where we regard the fv’s as an orthonormal
basis of V). By (2.5), we have

jEuj2 D
X

v2Zn2
..�1/u�v/2 D 2n:
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Hence we should replaceEu byE 0
u D 1

2n=2
Eu to get an orthonormal basis. According

to Corollary 1.2, we thus have

.A`/uv D 1

2n

X

w2Zn2
EuwEvw�

`
w:

Now Euw by definition is the coefficient of fw in the expansion (2.5), i.e., Euw D
.�1/uCw (and similarly for Ev), while �w D n � 2!.w/. Hence

.A`/uv D 1

2n

X

w2Zn2
.�1/.uCv/�w.n � 2!.w//`: (2.11)

The number of vectors w of Hamming weight i which have j 1’s in common with
uC v is

�
k
j

��
n�k
i�j
�
, since we can choose the j 1’s in uC v which agree with w in

�
k
j

�

ways, while the remaining i � j 1’s of w can be inserted in the n � k remaining
positions in

�
n�k
i�j
�

ways. Since .u C v/ � w � j .mod 2/, the sum (2.11) reduces
to (2.9) as desired. Clearly setting u D v in (2.9) yields (2.10), completing the
proof. ut

It is possible to give a direct proof of (2.10) avoiding linear algebra, though we
do not do so here. Thus by Corollary 1.3 and Lemma 1.7 (exactly as was done for
Kn) we have another determination of the eigenvalues ofCn. With a little more work
one can also obtain a direct proof of (2.9). Later in Example 9.12, however, we will
use the eigenvalues of Cn to obtain a combinatorial result for which a nonalgebraic
proof was found only recently and is by no means easy.

2.6 Example. Setting k D 1 in (2.9) yields

.A`/uv D 1

2n

nX

iD0

" 
n � 1
i

!

�
 
n � 1
i � 1

!#

.n � 2i/`

D 1

2n

n�1X

iD0

 
n � 1
i

!
.n � 2i/`C1
n � i :

NOTE (for those familiar with the representation theory of finite groups).
The functions �uWZn2 ! R are just the irreducible (complex) characters of the group
Z
n
2 , and the orthogonality of the �u’s shown in the proof of Lemma 2.1 is the usual

orthogonality relation for the irreducible characters of a finite group. The results of
this chapter extend readily to any finite abelian group. Exercise 5 does the case Zn,
the cyclic group of order n. For nonabelian finite groups the situation is much more
complicated because not all irreducible representations have degree one (i.e., are
homomorphisms G ! C

�, the multiplicative group of C), and there do not exist
formulas as explicit as the ones for abelian groups.
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We can give a little taste of the situation for arbitrary groups as follows. LetG be
a finite group, and let M .G/ be its multiplication table. Regard the entries of M .G/

as commuting indeterminates, so that M .G/ is simply a matrix with indeterminate
entries. For instance, let G D Z3. Let the elements of G be a; b; c, where say a is
the identity. Then

M .G/ D
2

4
a b c

b c a

c a b

3

5 :

We can compute that det M .G/ D .aCbCc/.aC!bC!2c/.aC!2bC!c/, where
! D e2i=3. In general, when G is abelian, Dedekind knew that det M .G/ factors
into certain explicit linear factors overC. Theorem 2.2 is equivalent to this statement
for the group G D Z

n
2 [why?]. Equation (12.5) gives the factorization for G D Zn.

(For each w 2 G one needs to interchange the row indexed by the group element w
with the row indexed by w�1 in order to convert M .Zn/ to the circulant matrices of
(12.5), but these operations only affect the sign of the determinant.) Dedekind asked
Frobenius about the factorization of det M .G/, known as the group determinant,
for nonabelian finite G. For instance, let G D S3 (the symmetric group of all
permutations of 1; 2; 3), with elements (in cycle notation) a D .1/.2/.3/, b D
.1; 2/.3/, c D .1; 3/.2/, d D .1/.2; 3/, e D .1; 2; 3/, and f D .1; 3; 2/. Then
det M .G/ D f1f2f 2

3 , where

f1 D aC b C c C d C e C f;
f2 D �aC b C c C d � e � f;
f3 D a2 � b2 � c2 � d2 C e2 C f 2 � ae � af C bc C bd C cd � ef:

Frobenius showed that in general there is a set P of irreducible homogeneous
polynomials f , of some degree df , where #P is the number of conjugacy classes
of G, for which

det M .G/ D
Y

f 2P
f df :

Note that taking the degree of both sides gives #G DPf d
2
f . Frobenius’ result was

a highlight in his development of group representation theory. The numbers df are
just the degrees of the irreducible (complex) representations ofG. For the symmetric
group Sn, these degrees are the numbers f � of Theorem 8.1, and Appendix 1 of
Chap. 8 gives a bijective proof that

P
�.f

�/2 D nŠ.

Notes for Chap. 2

The Radon transform first arose in a continuous setting in the paper [90] of Radon
and has been applied to such areas as computerized tomography. The finite version
was first defined by Bolker [9]. For some further applications to combinatorics see
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Kung [67]. For the Radon transform on the n-cube Z
n
2 , see Diaconis and Graham

[28]. For the generalization to Z
n
k , see DeDeo and Velasquez [27].

For an exposition of the development of group representation theory by Frobe-
nius and other pioneers, see the survey articles of Hawkins [54–56].

Exercises for Chap. 2

1. (a) Start with n coins heads up. Choose a coin at random (each equally likely)
and turn it over. Do this a total of ` times. What is the probability that all
coins will have heads up? (Don’t solve this from scratch; rather use some
previous results.)

(b) Same as (a), except now compute the probability that all coins have tails up.
(c) Same as (a), but now we turn over two coins at a time.

2. (a) (difficult) (*) Let Cn;k be the subgraph of the cube Cn spanned by all vertices
of Cn with k � 1 or k 1’s (so the edges of Cn;k consist of all edges of Cn that
connect two vertices of Cn;k ; there are a total of k

�
n
k

�
edges). Show that the

characteristic polynomial of A D A.Cn;k/ is given by

det.A � xI / D ˙x.nk/�. n
k�1/

kY

iD1
.x2 � i.n� 2k C i C 1//. n

k�i/�. n
k�i�1/;

where we set
�
n

�1
� D 0.

(b) Find the number of closed walks in Cn;k of length ` beginning and ending
with a fixed vertex v.

3. (unsolved and unrelated to the text) Let n D 2k C 1. Does the graph Cn;kC1 of
Problem 2 above have a Hamiltonian cycle, i.e., a closed path that contains every
vertex exactly once? A closed path in a graph G is a closed walk that does not
repeat any vertices except at the last step.

4. Let G be the graph with vertex set Zn2 (the same as the n-cube) and with edge
set defined as follows: fu; vg is an edge of G if u and v differ in exactly two
coordinates (i.e., if !.u; v/ D 2). What are the eigenvalues of G?

5. This problem is devoted to the graph Zn with vertex set Zn (the cyclic group of
order n, with elements 0; 1; : : : ; n � 1 under the operation of addition modulo
n) and edges consisting of all pairs fi; i C 1g (with i C 1 computed in Zn, so
.n� 1/C 1 D 0). The graph Zn is called an n-cycle. We will develop properties
of its adjacency matrix analogously to what was done for the n-cube Cn. It will
be necessary to work over the complex numbersC. Recall that there are exactly n
complex numbers z (called nth roots of unity) satisfying zn D 1. They are given
by �0 D 1; �1 D �; �2; : : : ; �n�1, where � D e2i=n.

(a) Draw the graphsZ3, Z4, and Z5.
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(b) Let V be the complex vector space of all functions f WZn ! C. What is the
dimension of V?

(c) (*) If k 2 Z, then note that �k depends only on the value of k modulo n.
Hence if u 2 Zn then we can define �u by regarding u as an ordinary integer,
and the usual laws of exponents such as �uCv D �u�v (where u; v 2 Zn) still
hold. For u 2 Zn define �u 2 V by �u.v/ D �uv. Let B D f�uW u 2 Zng.
Show that B is a basis for V .

(d) Given � � Zn and f 2 V , define ˆ�f 2 V by

ˆ�f .v/ D
X

w2�
f .vC w/:

Show that the eigenvectors of ˆ� are the functions �u, with corresponding
eigenvalue �u DPw2� �uw.

(e) Let 
 D f1; n � 1g � Zn. Define fu 2 V by fu.v/ D ıuv. Let F D
ffuW u 2 Zng. It is clear that F is a basis for V (just as for Cn). Show that the
matrix Œˆ
� of ˆ
 with respect to the basis F is just A.Zn/, the adjacency
matrix of Zn.

(f) Show that the eigenvalues of A.Zn/ are the numbers 2 cos. 2j
n
/, where 0 �

j � n� 1. What are the corresponding eigenvectors?
(g) How many closed walks in Zn are of length ` and start at 0? Give the

answers in the cases n D 4 and n D 6without using trigonometric functions,
complex exponentials, etc.

(h) Let Z.2/
n be the graph with vertex set Zn and edges fi; j g for j � i D 1 or

j � i D 2. How many closed walks inZ.2/
n are of length ` and start at 0? Try

to express your answer in terms of trigonometric functions and not involving
complex numbers.

6. Let eCn be the graph obtained from the n-cube graph Cn by adding an edge
between every vertex v and its antipode (the vertex which differs from v in all
n coordinates). Find the number of closed walks in eCn of length ` which begin
(and hence end) at the origin 0 D .0; 0; : : : ; 0/.



Chapter 3
Random Walks

Let G be a finite graph. We consider a random walk on the vertices of G of
the following type. Start at a vertex u. (The vertex u could be chosen randomly
according to some probability distribution or could be specified in advance.) Among
all the edges incident to u, choose one uniformly at random (i.e., if there are k edges
incident to u, then each of these edges is chosen with probability 1=k). Travel to the
vertex v at the other end of the chosen edge and continue as before from v. Readers
with some familiarity with probability theory will recognize this random walk as a
special case of a finite-state Markov chain. Many interesting questions may be asked
about such walks; the basic one is to determine the probability of being at a given
vertex after a given number ` of steps.

Suppose vertex u has degree du, i.e., there are du edges incident to u (counting
loops at u once only). Let M D M .G/ be the matrix whose rows and columns are
indexed by the vertex set fv1; : : : ; vpg of G and whose .u; v/-entry is given by

Muv D �uv

du
; (3.1)

where �uv is the number of edges between u and v (which for simple graphs will
be 0 or 1). Thus Muv is just the probability that if one starts at u, then the next step
will be to v. We call M the probability matrix associated with G. An elementary
probability theory argument (equivalent to Theorem 1.1) shows that if ` is a positive
integer, then .M `/uv is equal to the probability that one ends up at vertex v in ` steps
given that one has started at u. Suppose now that the starting vertex is not specified,
but rather we are given probabilities �u summing to 1 and that we start at vertex
u with probability �u. Let P be the row vector P D Œ�v1 ; : : : ; �vp �. Then again an

elementary argument shows that if PM ` D Œ�v1 ; : : : ; �vp �, then �v is the probability
of ending up at v in ` steps (with the given starting distribution). By reasoning as
in Chap. 1, we see that if we know the eigenvalues and eigenvectors of M , then we
can compute the crucial probabilities .M `/uv and �u.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
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Since the matrix M is not the same as the adjacency matrix A, what does all this
have to do with adjacency matrices? The answer is that in one important case M is
just a scalar multiple of A. We say that the graph G is regular of degree d if each
du D d , i.e., each vertex is incident to d edges. In this case it’s easy to see that
M .G/ D 1

d
A.G/. Hence the eigenvectors Eu of M .G/ and A.G/ are the same,

and the eigenvalues are related by �u.M / D 1
d
�u.A/. Thus random walks on a

regular graph are closely related to the adjacency matrix of the graph.

3.1 Example. Consider a random walk on the n-cube Cn which begins at the
“origin” (the vector .0; : : : ; 0/). What is the probability p` that after ` steps
one is again at the origin? Before applying any formulas, note that after an
even (respectively, odd) number of steps, one must be at a vertex with an even
(respectively, odd) number of 1’s. Hence p` D 0 if ` is odd. Now note that Cn
is regular of degree n. Thus by (2.6), we have

�u.M .Cn// D 1

n
.n � 2!.u// :

By (2.10) we conclude that

p` D 1

2nn`

nX

iD0

 
n

i

!

.n � 2i/`:

Note that the above expression for p` does indeed reduce to 0 when ` is odd.

It is worth noting that even though the probability matrix M need not be a
symmetric matrix, nonetheless it has only real eigenvalues.

3.2 Theorem. Let G be a finite graph. Then the probability matrix M DM .G/ is
diagonalizable and has only real eigenvalues.

Proof. Since we are assuming that G is connected and has at least two vertices, it
follows that dv > 0 for every vertex v of G. Let D be the diagonal matrix whose
rows and columns are indexed by the vertices of G, with Dvv D

p
dv. Then

.DMD�1/uv D
p
du � �uv

du
� 1p

dv

D �uvp
dudv

:

Hence DMD�1 is a symmetric matrix and thus has only real eigenvalues. But if
B and C are any p � p matrices with C invertible, then B and CBC �1 have the
same characteristic polynomial and hence the same eigenvalues. Therefore all the
eigenvalues of M are real. Moreover, B is diagonalizable if and only if CBC �1
is diagonalizable. (In fact, B and CBC �1 have the same Jordan canonical form.)
Since a symmetric matrix is diagonalizable, it follows that M is also diagonalizable.

ut
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Let us give one further example of the connection between linear algebra and
random walks on graphs. Let u and v be vertices of a connected graphG. Define the
access time or hitting timeH.u; v/ to be the expected number of steps that a random
walk (as defined above) starting at u takes to reach v for the first time. Thus if the
probability is pn that we reach v for the first time in n steps, then by definition of
expectation we have

H.u; v/ D
X

n�1
npn: (3.2)

Conceivably this sum could be infinite, though we will see below that this is not the
case. Note that H.v; v/ D 0.

As an example, suppose that G has three vertices u; v;w with an edge between
u and w and another edge between w and v. We can compute H.u; v/ as follows.
After one step we will be at w. Then with probability 1

2
we will step to v and with

probability 1
2

back to u. Hence [why?]

H.u; v/ D 1

2
� 2C 1

2
.2CH.u; v//: (3.3)

Solving this linear equation gives H.u; v/ D 4.
We want to give a formula for the access time H.u; v/ in terms of linear

algebra. The proof requires some basic results on eigenvalues and eigenvectors of
nonnegative matrices, which we will explain and then state without proof. An r � r
real matrix B is called nonnegative if every entry is nonnegative. We say that B is
irreducible if it is not the 1 � 1 matrix Œ0� and if there does not exist a permutation
matrix P (a matrix with one 1 in every row and column, and all other entries 0)
such that

PBP�1 D
	

C D

0 E



;

where C and E are square matrices of size greater than zero. For instance, the
adjacency matrix A and probability matrix M of a graph G are irreducible if and
only if G is connected and is not an isolated vertex (i.e., a vertex v incident to no
edges, not even a loop from v to itself). We now state without proof a version of
the Perron–Frobenius theorem. There are some other parts of the Perron–Frobenius
theorem that we don’t need here and are omitted.

3.3 Theorem. Let B be a nonnegative irreducible square matrix. If � is the
maximum absolute value of the eigenvalues of B, then � > 0, and there is
an eigenvalue equal to �. Moreover, there is an eigenvector for � (unique up to
multiplication by a positive real number) all of whose entries are positive.

Now let M be the probability matrix defined by (3.1). Let M Œv� denote M with
the row and column indexed by v deleted. Thus if G has p vertices, then M Œv� is
a .p � 1/ � .p � 1/ matrix. Let T Œv� be the column vector of length p � 1 whose
rows are indexed by the vertices w ¤ v, with T Œv�w D �.w; v/=dw. Write Ip�1 for
the identity matrix of size p � 1.
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3.4 Theorem. The matrix Ip�1 �M Œv� is invertible, and

H.u; v/ D ..Ip�1 �M Œv�/�2T Œv�/u; (3.4)

the u-entry of the column vector .Ip�1 �M Œv�/�2T Œv�.

Proof. We first give a “formal” argument and then justify its validity. The probabil-
ity that when we take n steps from u, we never reach v and end up at some vertex
w is .M Œv�n/uw [why?]. The probability that once we reach w the next step is to v is
�.w; v/=dw. Hence by definition of expectation we have

H.u; v/ D
X

w¤v

X

n�0
.nC 1/�.w; v/

dw
.M Œv�n/uw: (3.5)

We claim that if x is a complex number satisfying jxj < 1, then

X

n�0
.nC 1/xn D .1 � x/�2: (3.6)

This identity is a simple exercise in calculus. For instance, we can compute the
coefficient of xn in the product .1 � x/2Pn�0.nC 1/xn. We can also differentiate
the familiar identity

X

n�0
xn D 1

1 � x : (3.7)

Another proof is obtained by expanding .1 � x/�2 by the binomial theorem for the
exponent�2. Convergence for jxj < 1 follows for example from the corresponding
result for (3.7).

Let us “blindly” apply (3.6) to (3.5). We obtain

H.u; v/ D
X

w¤v

..Ip�1 �M Œv�/�2/uw
�.w; v/

dw

D ..Ip�1 �M Œv�/�2T Œv�/u; (3.8)

as claimed.
It remains to justify our derivation of (3.8). For an arbitrary real (or complex) r�r

matrix B, we can define
P

n�0.nC 1/Bn entry-wise, that is, we set
P

n�0.nC 1/
Bn D C if

X

n�0
.nC 1/.Bn/ij D Cij

for all i and j indexing the rows and columns of B and C .
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It is straightforward to verify by induction on m the identity

.Ir �B/2
�
Ir C 2B C 3B2 C � � � CmBm�1� D Ir �.mC1/BmCmBm�1: (3.9)

Suppose that B is diagonalizable and that all eigenvalues �1; : : : ; �r of B satisfy
j�j j < 1. Note that our proof of (1.1) extends to any diagonalizable matrix. (The
matrix U need not be orthogonal, but this is irrelevant to the proof.) Hence

.Bn/ij D c1�n1 C � � � C cr�nr ;

where c1; : : : ; cr are complex numbers (independent of n). Hence from (3.9) we see
that the limit asm!1 of the right-hand side approaches Ir . It follows [why?] thatP

n�0.nC 1/Bn converges to .Ir �B/�2.

NOTE. The above argument shows that Ir �B is indeed invertible. This fact is also
an immediate consequence of the hypothesis that all eigenvalues of B have absolute
value less than one, since in particular there is no eigenvalue � D 1.

From the discussion above, it remains to show that M Œv� is diagonalizable, with
all eigenvalues of absolute value less than one. The diagonalizability of M Œv� is
shown in exactly the same way as for M in Theorem 3.2. (Thus we see also that
M Œv� has real eigenvalues, though we don’t need this fact here.) It remains to show
that the eigenvalues �1; : : : ; �p�1 of M Œv� satisfy j�j j < 1. We would like to apply
Theorem 3.3 to the matrix M Œv�, but this matrix might not be irreducible since the
graphG�v (defined by deleting fromG the vertex v and all incident edges) need not
be connected or may be just an isolated vertex. If G � v has connected components
H1; : : : ;Hm, then we can order the vertices of G � v so that M Œv� has the block
structure

M Œv� D

2

6
6
6
4

N1 0 � � � 0

0 N2 � � � 0
:::

0 0 � � � Nm

3

7
7
7
5
;

where each Ni is irreducible or is the 1 � 1 matrix Œ0� (corresponding to Hi being
an isolated vertex). The eigenvalues of M Œv� are the eigenvalues of the Ni ’s.

We need to show that each eigenvalue of Ni has absolute value less than one. If
Ni D Œ0� then the only eigenvalue is 0, so we may assume that Hi is not an isolated
vertex. Suppose thatHi has k vertices, so Ni is a k �k matrix. Let �i be the largest
real eigenvalue of Ni , so by Theorem 3.3 all eigenvalues � of Ni satisfy j�j � �i .
Let U D Œu1; : : : ; uk� be an eigenvector for �i with positive entries (which exists by
Theorem 3.3). We regard U as a column vector. Let V be the row vector of length
k of all 1’s. Consider the matrix product VNiU . On the one hand we have

VNiU D V.�iU / D �i .u1 C � � � C uk/: (3.10)
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On the other hand, if �j denotes the j th column sum of Ni , then

VNiU D Œ�1; : : : ; �k�U D �1u1 C � � � C �kuk: (3.11)

Now every �j satisfies 0 � �j � 1, and at least one �h satisfies �h < 1 [why?].
Since each uj > 0, it follows from (3.11) that VNiU < u1 C � � � C uk . Comparing
with (3.10) gives �i < 1.

Since the eigenvalues of M Œv� are just the eigenvalues of the Ni ’s, we see that
all eigenvalues � of M Œv� satisfy j� j < 1. This completes the proof of Theorem 3.4.

ut
3.5 Example. Let G be the graph of Fig. 3.1 with v D v4. Then

M D

2

6
6
6
6
66
6
6
6
6
4

1

3

1

3
0

1

3
1

4
0

1

4

1

2

0
1

2
0

1

2
1

4

1

2

1

4
0

3

7
7
7
7
77
7
7
7
7
5

;

I3 �M Œv� D

2

6
6
66
6
6
4

2

3
�1
3

0

�1
4

1 �1
4

0 �1
2

1

3

7
7
77
7
7
5

;

.I3 �M Œv�/�2 D

2

6
6
6
6
66
4

55

16

13

6

17

24
13

8

7

3

11

12
17

16

11

6

13

8

3

7
7
7
7
77
5

;

.I3 �M Œv�/�2

2

6
6
66
6
6
4

1

3
1

2

1

2

3

7
7
77
7
7
5

D

2

6
6
66
6
6
4

31

12
13

6
25

12

3

7
7
77
7
7
5

:

ThusH.v1; v/ D 31=12,H.v2; v/ D 13=6, and H.v3; v/ D 25=12.
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v1

v3

v2

v4

Fig. 3.1 A graph for
Example 3.5

NOTE. The method used to prove that
P

n�0.n C 1/Bn converges when all
eigenvalues of B have absolute value less than one can be extended, with a little
more work (mostly concerned with non-diagonalizability), to show the following.
Let F.x/ DP

n�0 anxn be a power series with complex coefficients an. Let ˛ > 0
be such that F.x/ converges whenever jxj < ˛. Let B be a square matrix (over the
complex numbers) whose eigenvalues � all satisfy j�j < ˛. Then the matrix power
series

P
n�0 anB

n converges in the entry-wise sense described above.

Notes for Chap. 3

Random walks on graphs is a vast subject, of which we have barely scratched the
surface. Two typical questions considerably deeper than what we have considered
are the following: how rapidly does a random walk approach the stationary
distribution of Exercise 1? Assuming G is connected, what is the expected number
of steps needed to visit every vertex? For a nice survey of random walks in graphs,
see Lovász [71]. The topic of matrix power series is part of the subject of matrix
analysis. For further information, see for instance Chap. 5 of the text by Horn
and Johnson [58]. Our proof of Theorem 3.4 is somewhat “naive,” avoiding the
development of the theory of matrix norms.

Exercises for Chap. 3

1. Let G be a (finite) graph with vertices v1; : : : ; vp . Assume that some power of
the probability matrix M .G/ defined by (3.1) has positive entries. (It’s not hard
to see that this is equivalent to G being connected and containing at least one
cycle of odd length, but you don’t have to show this.) Let dk denote the degree
(number of incident edges) of vertex vk . LetD D d1Cd2C� � �Cdp D 2q� r ,
whereG has q edges and r loops. Start at any vertex ofG and do a random walk
on the vertices of G as defined in the text. Let pk.`/ denote the probability of
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ending up at vertex vk after ` steps. Assuming the Perron–Frobenius theorem
(Theorem 3.3), show that

lim
`!1pk.`/ D dk=D:

This limiting probability distribution on the set of vertices of G is called the
stationary distribution of the random walk.

2. (a) Let G be a finite graph (allowing loops and multiple edges). Suppose that
there is some integer ` > 0 such that the number of walks of length ` from
any fixed vertex u to any fixed vertex v is independent of u and v. Show that
G has the same number k of edges between any two vertices (including k
loops at each vertex).

(b) Let G be a finite graph (allowing loops and multiple edges) with the
following property. There is some integer ` > 0 such that if we start at
any vertex of G and do a random walk (in the sense of the text) for ` steps,
then we are equally likely to be at any vertex. In other words, if G has p
vertices then the probability that the walk ends at vertex v is exactly 1=p
for any v. Show that we have the same conclusion as (a), i.e., G has the
same number k of edges between any two vertices.

3. (a) Let P.x/ be a nonzero polynomial with real coefficients. Show that the
following two conditions are equivalent.

• There exists a nonzero polynomialQ.x/ with real coefficients such that
all coefficients of P.x/Q.x/ are nonnegative.

• There does not exist a real number a > 0 such that P.a/ D 0.

(b) (difficult) Let G be a connected finite graph, and let M be the probability
matrix defined by (3.1). Show that the following two conditions are
equivalent.

• There exists a probability distributionP on P (so P.k/ is the probability
of choosing k 2 P) such that if we first choose k from the distribution
P and then start at any vertex of G and walk exactly k steps according
to the random walk described in the text, then we are equally likely to
be at any vertex of G.

• The graph G is regular, and no positive real number except 1 is an
eigenvalue of M .

4. (*) Fix 0 � p � 1. Start at the vertex .0; 0; : : : ; 0/ of the n-cube Cn. Walk
along the edges of the cube according to the following rule: after each unit
of time, either stay where you are with probability p or step to a neighboring
vertex randomly (uniformly). Thus the probability of stepping to a particular
neighboring vertex is .1 � p/=n. Find a formula for the probability P.`/ that
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after ` units of time you are again at .0; 0; : : : ; 0/. For instance, P.0/ D 1 and
P.1/ D p. Express your formula as a finite sum.

5. This problem is not directly related to the text but is a classic problem with a
very clever elegant solution. LetG be the graph with vertex set Zn (the integers
modulo n), with an edge between i and i C 1 for all i 2 Zn. Hence G is just
an n-cycle. Start at vertex 0 and do a random walk as in the text, so from vertex
i walk to i � 1 or i C 1 with probability 1=2 each. For each i 2 Zn, find the
probability that vertex i is the last vertex to be visited for the first time. In other
words, at the first time we arrive at vertex i , we have visited all the other vertices
at least once each. For instance, p0 D 0 (if n > 1), since vertex 0 is the first
vertex to be visited.

6. (a) Show that if u and v are two vertices of a connected graphG, then we need
not have H.u; v/ D H.v; u/, where H denotes access time. What if G is
also assumed to be regular?

(b) (difficult) For each n � 1, what is the maximum possible value ofH.u; v/�
H.v; u/ for two vertices u; v of a connected simple graph with n vertices?

7. (*) Let u and v be distinct vertices of the complete graph Kn. Show that
H.u; v/ D n � 1.

8. (*) Let Pn be the graph with vertices v1; : : : ; vn and an edge between vi and
viC1 for all 1 � i � n � 1. Show that H.v1; vn/ D n2. What about H.vi ; vj /
for any i ¤ j ? What if we also have an edge between v1 and vn?

9. Let Kmn be a complete bipartite graph with vertex bipartition .A1; A2/, where
#A1 D m and #A2 D n. Find the access time H.u; v/ between every pair of
distinct vertices. There will be two inequivalent cases: both u and v lie in the
same Ai , or they lie in differentAi ’s.

10. (*) For any three vertices u; v;w of a graphG, show that

H.u; v/CH.v;w/CH.w; u/ D H.u;w/CH.w; v/CH.v; u/:
11. Let k � 0, and let u and v be vertices of a graph G. Define the kth binomial

momentHk.u; v/ of the access time to be the average value (expectation) of
�
n
k

�
,

where n is the number of steps that a random walk starting at u takes to reach v
for the first time. Thus in the notation of (3.2) we have

H.u; v/ D
X

n�1

 
n

k

!

pn:

Let x be an indeterminate. Following the notation of (3.4), show that
X

k�0
Hk.u; v/x

k D ..Ip�1 � .x C 1/M Œv�/�1T Œv�/u:
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12. (*) Generalizing Exercise 7 above, show that for any two distinct vertices u; v
of the complete graphKn, the kth binomial moment of the access time is given
by Hk.u; v/ D .n � 1/.n � 2/k�1, k � 1. (When n D 2 and k D 1, we should
set 00 D 1.)



Chapter 4
The Sperner Property

In this chapter we consider a surprising application of certain adjacency matrices
to some problems in extremal set theory. An important role will also be played
by finite groups in Chap. 5, which is a continuation of the present chapter. In
general, extremal set theory is concerned with finding (or estimating) the most or
least number of sets satisfying given set-theoretic or combinatorial conditions. For
example, a typical easy problem in extremal set theory is the following: what is the
most number of subsets of an n-element set with the property that any two of them
intersect? (Can you solve this problem?) The problems to be considered here are
most conveniently formulated in terms of partially ordered sets or posets for short.
Thus we begin with discussing some basic notions concerning posets.

4.1 Definition. A poset P is a finite set, also denoted P , together with a binary
relation denoted � satisfying the following axioms:

(P1) (reflexivity) x � x for all x 2 P
(P2) (antisymmetry) If x � y and y � x, then x D y
(P3) (transitivity) If x � y and y � z, then x � z

One easy way to obtain a poset is the following. Let P be any collection of sets.
If x; y 2 P , then define x � y in P if x � y as sets. It is easy to see that this
definition of � makes P into a poset. If P consists of all subsets of an n-element
set S , then P is called a (finite) boolean algebra of rank n and is denoted by BS . If
S D f1; 2; : : : ; ng, then we denote BS simply by Bn. Boolean algebras will play an
important role throughout this chapter and the next.

There is a simple way to represent small posets pictorially. The Hasse diagram
of a poset P is a planar drawing, with elements of P drawn as dots. If x < y in
P (i.e., x � y and x ¤ y), then y is drawn “above” x (i.e., with a larger vertical
coordinate). An edge is drawn between x and y if y covers x, i.e., x < y and no
element z satisfies x < z < y. We then write x É y or y Ê x. By the transitivity
property (P3), all the relations of a finite poset are determined by the cover relations,
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so the Hasse diagram determinesP . (This is not true for infinite posets; for instance,
the real numbers R with their usual order is a poset with no cover relations.) The
Hasse diagram of the boolean algebra B3 looks like

φ

23

3

123

1312

21

We say that two posets P and Q are isomorphic if there is a bijection (one-to-one
and onto function) 'WP ! Q such that x � y inP if and only if '.x/ � '.y/ inQ.
Thus one can think that two posets are isomorphic if they differ only in the names
of their elements. This is exactly analogous to the notion of isomorphism of groups,
rings, etc. It is an instructive exercise (see Exercise 1) to draw Hasse diagrams of the
one poset of order (number of elements) one (up to isomorphism), the two posets
of order two, the five posets of order three, and the sixteen posets of order four.
More ambitious readers can try the 63 posets of order five, the 318 of order six,
the 2,045 of order seven, the 16,999 of order eight, the 183,231 of order nine,
the 2,567,284 of order ten, the 46,749,427 of order eleven, the 1,104,891,746 of
order twelve, the 33,823,827,452 of order thirteen, the 1,338,193,159,771 of order
fourteen, the 68,275,077,901,156 of order fifteen, and the 4,483,130,665,195,087 of
order sixteen. Beyond this the number is not currently known.

A chain C in a poset is a totally ordered subset of P , i.e., if x; y 2 C then
either x � y or y � x in P . A finite chain is said to have length n if it has nC 1
elements. Such a chain thus has the form x0 < x1 < � � � < xn. We say that a finite
poset is graded of rank n if every maximal chain has length n. (A chain is maximal
if it’s contained in no larger chain.) For instance, the boolean algebra Bn is graded
of rank n [why?]. A chain y0 < y1 < � � � < yj is said to be saturated if each
yiC1 covers yi . Such a chain need not be maximal since there can be elements of
P less than y0 or greater than yj . If P is graded of rank n and x 2 P , then we say
that x has rank j , denoted �.x/ D j , if the largest saturated chain of P with top
element x has length j . Thus [why?] if we let Pj D fx 2 P W �.x/ D j g, then P
is a disjoint union P D P0 �[P1 �[ � � � �[Pn, and every maximal chain of P has the
form x0 < x1 < � � � < xn where �.xj / D j . We call Pi the i th level of P . We write
pj D #Pj , the number of elements of P of rank j . For example, if P D Bn then
�.x/ D jxj (the cardinality of x as a set) and
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pj D #fx � f1; 2; : : : ; ngW jxj D j g D
 
n

j

!

:

(Note that we use both jS j and #S for the cardinality of a finite set S .) If a graded
posetP of rank n has pi elements of rank i , then define the rank-generating function

F.P; q/ D
nX

iD0
piq

i D
X

x2P
q�.x/:

For instance, F.Bn; q/ D .1C q/n [why?].
We say that a graded poset P of rank n (always assumed to be finite) is rank-

symmetric if pi D pn�i for 0 � i � n and rank-unimodal if p0 � p1 � � � � � pj �
pjC1 � pjC2 � � � � � pn for some 0 � j � n. If P is both rank-symmetric and
rank-unimodal, then we clearly have

p0 � p1 � � � � � pm � pmC1 � � � � � pn; if n D 2m;
p0 � p1 � � � � � pm D pmC1 � pmC2 � � � � � pn; if n D 2mC 1 :

We also say that the sequence p0; p1; : : : ; pn itself or the polynomial F.q/ D p0 C
p1qC � � �C pnqn is symmetric or unimodal, as the case may be. For instance, Bn is
rank-symmetric and rank-unimodal, since it is well known (and easy to prove) that
the sequence

�
n

0

�
;
�
n

1

�
; : : : ;

�
n

n

�
(the nth row of Pascal’s triangle) is symmetric and

unimodal. Thus the polynomial .1C q/n is symmetric and unimodal.
A few more definitions, and then finally some results! An antichain in a poset P

is a subsetA ofP for which no two elements are comparable, i.e., we can never have
x; y 2 A and x < y. For instance, in a graded poset P the “levels”Pj are antichains
[why?]. We will be concerned with the problem of finding the largest antichain in
a poset. Consider for instance the boolean algebra Bn. The problem of finding the
largest antichain in Bn is clearly equivalent to the following problem in extremal set
theory: find the largest collection of subsets of an n-element set such that no element
of the collection contains another. A good guess would be to take all the subsets of
cardinality bn=2c (where bxc denotes the greatest integer � x), giving a total of�

n

bn=2c
�

sets in all. But how can we actually prove there is no larger collection? Such
a proof was first given by Emanuel Sperner in 1927 and is known as Sperner’s
theorem. We will give three proofs of Sperner’s theorem in this chapter: one proof
uses linear algebra and will be applied to certain other situations; the second proof
is an elegant combinatorial argument due to David Lubell in 1966; while the third
proof is another combinatorial argument closely related to the linear algebra proof.
We present the last two proofs for their “cultural value.” Our extension of Sperner’s
theorem to certain other situations will involve the following crucial definition.

4.2 Definition. Let P be a graded poset of rank n. We say that P has the Sperner
property or is a Sperner poset if
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maxf#AWA is an antichain of P g D maxf#Pi W 0 � i � ng:

In other words, no antichain is larger than the largest level Pi .

Thus Sperner’s theorem is equivalent to saying that Bn has the Sperner property.
Note that if P has the Sperner property then there may still be antichains of
maximum cardinality other than the biggest Pi ; there just can’t be any bigger
antichains.

4.3 Example. A simple example of a graded poset that fails to satisfy the Sperner
property is the following:

We now will discuss a simple combinatorial condition which guarantees that
certain graded posets P are Sperner. We define an order-matching from Pi to PiC1
to be a one-to-one function �WPi ! PiC1 satisfying x < �.x/ for all x 2 Pi .
Clearly if such an order-matching exists then pi � piC1 (since � is one-to-one).
Easy examples (such as the diagram above) show that the converse is false, i.e.,
if pi � piC1 then there need not exist an order-matching from Pi to PiC1. We
similarly define an order-matching from Pi to Pi�1 to be a one-to-one function
�WPi ! Pi�1 satisfying �.x/ < x for all x 2 Pi .
4.4 Proposition. Let P be a graded poset of rank n. Suppose there exist an integer
0 � j � n and order-matchings

P0 ! P1 ! P2 ! � � � ! Pj  PjC1 PjC2  � � �  Pn: (4.1)

Then P is rank-unimodal and Sperner.

Proof. Since order-matchings are one-to-one it is clear that

p0 � p1 � � � � � pj � pjC1 � pjC2 � � � � � pn:

Hence P is rank-unimodal.
Define a graph G as follows. The vertices of G are the elements of P . Two

vertices x; y are connected by an edge if one of the order-matchings � in the
statement of the proposition satisfies �.x/ D y. (Thus G is a subgraph of the
Hasse diagram of P .) Drawing a picture will convince you that G consists of a
disjoint union of paths, including single-vertex paths not involved in any of the
order-matchings. The vertices of each of these paths form a chain in P . Thus we
have partitioned the elements of P into disjoint chains. Since P is rank-unimodal
with biggest level Pj , all of these chains must pass through Pj [why?]. Thus the
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number of chains is exactly pj . Any antichain A can intersect each of these chains
at most once, so the cardinality jAj of A cannot exceed the number of chains, i.e.,
jAj � pj . Hence by definition P is Sperner. ut

It is now finally time to bring some linear algebra into the picture. For any
(finite) set S , we let RS denote the real vector space consisting of all formal linear
combinations (with real coefficients) of elements of S . Thus S is a basis for RS , and
in fact we could have simply defined RS to be the real vector space with basis S .
The next lemma relates the combinatorics we have just discussed to linear algebra
and will allow us to prove that certain posets are Sperner by the use of linear algebra
(combined with some finite group theory).

4.5 Lemma. Suppose there exists a linear transformation U WRPi ! RPiC1 (U
stands for “up”) satisfying:

• U is one-to-one.
• For all x 2 Pi , U.x/ is a linear combination of elements y 2 PiC1 satisfying
x < y. (We then call U an order-raising operator.)

Then there exists an order-matching �WPi ! PiC1.
Similarly, suppose there exists a linear transformation U WRPi ! RPiC1

satisfying:

• U is onto.
• U is an order-raising operator.

Then there exists an order-matching �WPiC1 ! Pi .

Proof. Suppose U WRPi ! RPiC1 is a one-to-one order-raising operator. Let ŒU �
denote the matrix ofU with respect to the basesPi of RPi andPiC1 of RPiC1. Thus
the rows of ŒU � are indexed by the elements y1; : : : ; ypiC1

of PiC1 (in some order)
and the columns by the elements x1; : : : ; xpi of Pi . Since U is one-to-one, the rank
of ŒU � is equal to pi (the number of columns). Since the row rank of a matrix equals
its column rank, ŒU � must have pi linearly independent rows. Say we have labelled
the elements of PiC1 so that the first pi rows of ŒU � are linearly independent.

Let A D .aij / be the pi � pi matrix whose rows are the first pi rows of ŒU �.
(ThusA is a square submatrix of ŒU �.) Since the rows ofA are linearly independent,
we have

det.A/ D
X
˙a1.1/ � � �api .pi / ¤ 0;

where the sum is over all permutations  of 1; : : : ; pi . Thus some term ˙a1.1/ � � �
api.pi / of the above sum is nonzero. Since U is order-raising, this means that
[why?] yk > x.k/ for 1 � k � pi . Hence the map �WPi ! PiC1 defined by
�.xk/ D y�1.k/ is an order-matching, as desired.
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The case when U is onto rather than one-to-one is proved by a completely
analogous argument. It can also be deduced from the one-to-one case by considering
the transpose of the matrix ŒU �. ut
NOTE. Although it does not really help in understanding the theory, it is interesting
to regard a one-to-one order-raising operator as a “quantum order-matching.” Rather
than choosing a single element y D �.x/ that is matched with x 2 Pi , we choose
all possible elements y 2 PiC1 satisfying y > x at the same time. If U.x/ DP

y>x cyy (where cy 2 R), then we are choosing y with “weight” cy . As explained
in the proof of Lemma 4.5 above, we “break the symmetry” and obtain a single
matched element �.x/ by choosing some nonvanishing term in the expansion of a
determinant.

We now want to apply Proposition 4.4 and Lemma 4.5 to the boolean algebra
Bn. For each 0 � i < n, we need to define a linear transformation Ui WR.Bn/i !
R.Bn/iC1, and then prove it has the desired properties. We simply define Ui to be
the simplest possible order-raising operator, namely, for x 2 .Bn/i , let

Ui.x/ D
X

y2.Bn/iC1
y>x

y: (4.2)

Note that since .Bn/i is a basis for R.Bn/i , (4.2) does indeed define a unique linear
transformation Ui WR.Bn/i ! R.Bn/iC1. By definition Ui is order-raising; we want
to show that Ui is one-to-one for i < n=2 and onto for i � n=2. There are several
ways to show this using only elementary linear algebra; we will give what is perhaps
the simplest proof, though it is quite tricky. The idea is to introduce “dual” or
“adjoint” operators Di WR.Bn/i ! R.Bn/i�1 to the Ui ’s (D stands for “down”),
defined by

Di.y/ D
X

x2.Bn/i�1
x<y

x; (4.3)

for all y 2 .Bn/i . Let ŒUi � denote the matrix of Ui with respect to the bases .Bn/i
and .Bn/iC1, and similarly let ŒDi � denote the matrix ofDi with respect to the bases
.Bn/i and .Bn/i�1. A key observation which we will use later is that

ŒDiC1� D ŒUi �t ; (4.4)

i.e., the matrix ŒDiC1� is the transpose of the matrix ŒUi � [why?]. Now let
Ii WR.Bn/i ! R.Bn/i denote the identity transformation on R.Bn/i , i.e., Ii .u/ D
u for all u 2 R.Bn/i . The next lemma states (in linear algebraic terms) the
fundamental combinatorial property of Bn which we need. For this lemma set
Un D 0 and D0 D 0 (the 0 linear transformation between the appropriate vector
spaces).
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4.6 Lemma. Let 0 � i � n. Then

DiC1Ui � Ui�1Di D .n � 2i/Ii : (4.5)

(Linear transformations are multiplied right-to-left, so AB.u/ D A.B.u//.)
Proof. Let x 2 .Bn/i . We need to show that if we apply the left-hand side of (4.5)
to x, then we obtain .n � 2i/x. We have

DiC1Ui .x/ D DiC1

0

B
@
X

jyjDiC1
x�y

y

1

C
A

D
X

jyjDiC1
x�y

X

jzjDi
z�y

z:

If x; z 2 .Bn/i satisfy jx \ zj < i � 1, then there is no y 2 .Bn/iC1 such that x 	 y
and z 	 y. Hence the coefficient of z in DiC1Ui.x/ when it is expanded in terms of
the basis .Bn/i is 0. If jx \ zj D i � 1, then there is one such y, namely, y D x [ z.
Finally if x D z then y can be any element of .Bn/iC1 containing x, and there are
n � i such y in all. It follows that

DiC1Ui .x/ D .n � i/x C
X

jzjDi
jx\zjDi�1

z: (4.6)

By exactly analogous reasoning (which the reader should check), we have for x 2
.Bn/i that

Ui�1Di .x/ D ix C
X

jzjDi
jx\zjDi�1

z: (4.7)

Subtracting (4.7) from (4.6) yields .DiC1Ui �Ui�1Di /.x/ D .n�2i/x, as desired.
ut

4.7 Theorem. The operator Ui defined above is one-to-one if i < n=2 and is onto
if i � n=2.

Proof. Recall that ŒDi � D ŒUi�1�t . From linear algebra we know that a (rectangular)
matrix times its transpose is positive semidefinite (or just semidefinite for short) and
hence has nonnegative (real) eigenvalues. By Lemma 4.6 we have

DiC1Ui D Ui�1Di C .n � 2i/Ii :

Thus the eigenvalues of DiC1Ui are obtained from the eigenvalues of Ui�1Di

by adding n � 2i . Since we are assuming that n � 2i > 0, it follows that the
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eigenvalues ofDiC1Ui are strictly positive. HenceDiC1Ui is invertible (since it has
no 0 eigenvalues). But this implies that Ui is one-to-one [why?], as desired.

The case i � n=2 is done by a “dual” argument (or in fact can be deduced directly
from the i < n=2 case by using the fact that the poset Bn is “self-dual,” though we
will not go into this). Namely, from the fact that

UiDiC1 D DiC2UiC1 C .2i C 2 � n/IiC1
we get that UiDiC1 is invertible, so now Ui is onto, completing the proof. ut

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we obtain the famous
theorem of Sperner.

4.8 Corollary. The boolean algebra Bn has the Sperner property.

It is natural to ask whether there is a less indirect proof of Corollary 4.8. In fact,
several nice proofs are known; we first give one due to David Lubell, mentioned
before Definition 4.2.

Lubell’s Proof of Sperner’s Theorem. First we count the total number of maximal
chains ; D x0 < x1 < � � � < xn D f1; : : : ; ng in Bn. There are n choices for x1,
then n� 1 choices for x2, etc., so there are nŠ maximal chains in all. Next we count
the number of maximal chains x0 < x1 < � � � < xi D x < � � � < xn which contain
a given element x of rank i . There are i choices for x1, then i � 1 choices for x2,
up to one choice for xi . Similarly there are n � i choices for xiC1, then n � i � 1
choices for xiC2, etc., up to one choice for xn. Hence the number of maximal chains
containing x is i Š.n� i/Š.

Now let A be an antichain. If x 2 A, then let Cx be the set of maximal chains
of Bn which contain x. Since A is an antichain, the sets Cx, x 2 A are pairwise
disjoint. Hence

ˇ
ˇ
ˇ̌
ˇ

[

x2A
Cx

ˇ
ˇ
ˇ̌
ˇ
D
X

x2A
jCx j

D
X

x2A
.�.x//Š.n � �.x//Š:

Since the total number of maximal chains in the Cx’s cannot exceed the total number
nŠ of maximal chains in Bn, we have

X

x2A
.�.x//Š.n � �.x//Š � nŠ:

Divide both sides by nŠ to obtain

X

x2A

1
�
n
�.x/

� � 1:
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Since
�
n
i

�
is maximized when i D bn=2c, we have

1
�

n
bn=2c

� � 1
�
n
�.x/

� ;

for all x 2 A (or all x 2 Bn). Thus

X

x2A

1
�

n
bn=2c

� � 1;

or equivalently,

jAj �
 

n

bn=2c

!

:

Since
�

n
bn=2c

�
is the size of the largest level of Bn, it follows that Bn is Sperner. �

There is another nice way to show directly that Bn is Sperner, namely, by
constructing an explicit order-matching �W .Bn/i ! .Bn/iC1 when i < n=2.
We will define � by giving an example. Let n D 21, i D 9, and S D
f3; 4; 5; 8; 12; 13; 17; 19; 20g. We want to define �.S/. Let .a1; a2; : : : ; a21/ be a
sequence of˙1’s, where ai D 1 if i 2 S and ai D �1 if i 62 S . For the set S above
we get the sequence (writing � for �1)

� � 1 1 1 � � 1 � � � 1 1 � � � 1 � 1 1 � :

Replace any two consecutive terms 1� with 0 0:

� � 1 1 0 0 � 0 0 � � 1 0 0 � � 0 0 1 0 0:

Ignore the 0’s and replace any two consecutive terms 1� with 0 0:

� � 1 0 0 0 0 0 0 � � 0 0 0 0 � 0 0 1 0 0:

Continue:
� � 0 0 0 0 0 0 0 0 � 0 0 0 0 � 0 0 1 0 0:

At this stage no further replacement is possible. The nonzero terms consist of a
sequence of�’s followed by a sequence of 1’s. There is at least one� since i < n=2.
Let k be the position (coordinate) of the last �; here k D 16. Define �.S/ D
S [ fkg D S [ f16g. The reader can check that this procedure gives an order-
matching. In particular, why is � injective (one-to-one), i.e., why can we recover S
from �.S/?

It can be checked that if we glue together the order-matchings .Bn/i ! .Bn/iC1
for i < n=2 just defined, along with an obvious dual construction .Bn/i ! .Bn/i�1
for i > n=2 then we obtain more than just a partition of Bn into saturated chains
passing through the middle level (n even) or middle two levels (n odd), as in the
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proof of Proposition 4.4. We in fact have the additional property that these chains
are all symmetric, i.e., they begin at some level i � n=2 and end at level n � i .
Such a decomposition of a rank-symmetric, rank-unimodal graded poset P into
saturated chains is called a symmetric chain decomposition. A symmetric chain
decomposition implies that for any j � 1, the largest size of a union of j antichains
is equal to the largest size of a union of j levels of P (Exercise 6). (The Sperner
property corresponds to the case j D 1.) It can be a challenging problem to decide
whether certain posets have a symmetric chain decomposition (e.g., Exercises 5(b)
and 6 in Chap. 5 and Exercise 6 in Chap. 6), though we will not discuss this topic
further here.

In view of the above elegant proof of Lubell and the explicit description of an
order-matching � W .Bn/i ! .Bn/iC1, the reader may be wondering what was
the point of giving a rather complicated and indirect proof using linear algebra.
Admittedly, if all we could obtain from the linear algebra machinery we have
developed was just another proof of Sperner’s theorem, then it would have been
hardly worth the effort. But in the next chapter we will show how Theorem 4.7, when
combined with a little finite group theory, can be used to obtain many interesting
combinatorial results for which simple, direct proofs are not known.

Notes for Chap. 4

For further information on combinatorial aspects of partially ordered sets in general,
see Caspard–Leclerc–Monjardet [17], Fishburn [33], Stanley [107, Chap. 3], and
Trotter [113]. Sperner’s theorem (Corollary 4.8) was first proved by Sperner [100].
The elegant proof of Lubell appears in [72]. A general reference on the Sperner
property is the book by Engel [32]. For more general results on the combinatorics of
finite sets, see Anderson [1]. The linear algebraic approach to the Sperner property
discussed here is due independently to Pouzet [86] (further developed by Pouzet
and Rosenberg [87]) and Stanley [101, 103]. For further information on explicit
order-matchings, symmetric chain decompositions, etc., see the text [1] of Anderson
mentioned above.

Exercises for Chap. 4

1. Draw Hasse diagrams of the 16 nonisomorphic four-element posets. For a more
interesting challenge, draw also the 63 five-element posets. For those with lots of
time to kill, draw the 318 six-element posets, the 2,045 seven-element posets, the
16,999 eight-element posets, up to the 4,483,130,665,195,087 sixteen-element
posets.

2. (a) Let P be a finite poset and f W P ! P an order-preserving bijection, i.e., f
is a bijection (one-to-one and onto), and if x � y in P then f .x/ � f .y/.
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Show that f is an automorphism of P , i.e., f �1 is order-preserving. (Try to
use simple algebraic reasoning, though it’s not necessary to do so.)

(b) Show that the result of (a) need not be true if P is infinite.

3. Let F.q/ and G.q/ be symmetric unimodal polynomials with nonnegative
real coefficients. Show that F.q/G.q/ is also symmetric (easy) and unimodal
(harder).

4. Let q be a prime power, and let Fq denote the finite field with q elements.
Let V D Vn.q/ D F

n
q , the n-dimensional vector space over Fq of n-tuples of

elements of Fq . Let Bn.q/ denote the poset of all subspaces of V , ordered by
inclusion. It’s easy to see that Bn.q/ is graded of rank n, the rank of a subspace
of V being its dimension.

(a) Draw the Hasse diagram of B3.2/. (It has 16 elements.)
(b) (*) Show that the number of elements of Bn.q/ of rank k is given by the

q-binomial coefficient

 
n
k

!

D .qn � 1/.qn�1 � 1/ � � � .qn�kC1 � 1/
.qk � 1/.qk�1 � 1/ � � � .q � 1/ :

(c) (*) Show that Bn.q/ is rank-symmetric.
(d) Show that every element x 2 Bn.q/k covers .k/ D 1 C q C � � � C qk�1

elements and is covered by .n-k/ D 1C q C � � � C qn�k�1 elements.
(e) Define operatorsUi WRBn.q/i ! RBn.q/iC1 andDi WRBn.q/i !RBn.q/i�1

by
Ui.x/ D

X

y2Bn.q/iC1
y>x

y;

Di .x/ D
X

z2Bn.q/i�1
z<x

z:

Show that
DiC1Ui � Ui�1Di D ..n-i/� .i//Ii :

(f) Deduce that Bn.q/ is rank-unimodal and Sperner.

5. (difficult) Let S1; S2; : : : ; Sk be finite sets with #S1 D #S2 D � � � D #Sk. Let P
be the poset of all sets T contained in some Si , ordered by inclusion. In symbols,

P D 2S1 [ 2S2 [ � � � [ 2Sk ;

where 2S denotes the set of subsets of S . Is P always rank-unimodal?
6. LetP be a rank-symmetric, rank-unimodal poset. Show that ifP has a symmetric

chain decomposition, then for any j � 1 the largest size of a union of j
antichains is equal to the largest size of a union of j levels of P .



Chapter 5
Group Actions on Boolean Algebras

Let us begin by reviewing some facts from group theory. Suppose that X is an n-
element set and that G is a group. We say that G acts on the set X if for every
element  of G we associate a permutation (also denoted ) of X , such that for all
x 2 X and ; � 2 G we have

.�.x// D .�/.x/:
Thus [why?] an action of G on X is the same as a homomorphism 'WG ! SX ,
where SX denotes the symmetric group of all permutations of X . We sometimes
write  � x instead of .x/.

5.1 Example. (a) Let the real number ˛ act on the xy-plane by rotation coun-
terclockwise around the origin by an angle of ˛ radians. It is easy to check
that this defines an action of the group R of real numbers (under addition) on
the xy-plane. The kernel of this action, i.e., the kernel of the homomorphism
'WR! SR2 , is the cyclic subgroup of R generated by 2 .

(b) Now let ˛ 2 R act by translation by a distance ˛ to the right, i.e., adding .˛; 0/.
This yields a completely different action of R on the xy-plane. This time the
action is faithful, i.e., the kernel is the trivial subgroup f0g.

(c) Let X D fa; b; c; d g and G D Z2 � Z2 D f.0; 0/; .0; 1/; .1; 0/; .1; 1/g. Let G
act as follows:

.0; 1/ � a D b; .0; 1/ � b D a; .0; 1/ � c D c; .0; 1/ � d D d;

.1; 0/ � a D a; .1; 0/ � b D b; .1; 0/ � c D d; .1; 0/ � d D c:
The reader should check that this does indeed define an action. In particular,
since .1; 0/ and .0; 1/ generate G, we don’t need to define the action of .0; 0/
and .1; 1/—they are uniquely determined.

(d) Let X and G be as in (c), but now define the action by
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.0; 1/ � a D b; .0; 1/ � b D a; .0; 1/ � c D d; .0; 1/ � d D c;

.1; 0/ � a D c; .1; 0/ � b D d; .1; 0/ � c D a; .1; 0/ � d D b:

Again one can check that we have an action of Z2 � Z2 on fa; b; c; d g. The two
actions of G D Z2 � Z2 that we have just defined are quite different; for instance,
in the first action we have some elements of X fixed by some nonidentity element
of G (such as .0; 1/ � c D c), while the second action fails to have this property. See
also Example 5.2(c, d) below for another fundamental way in which the two actions
differ.

Recall what is meant by an orbit of the action of a group G on a set X . Namely,
we say that two elements x; y of X are G-equivalent if .x/ D y for some  2 G.
The relation ofG-equivalence is an equivalence relation, and the equivalence classes
are called orbits. Thus x and y are in the same orbit if .x/ D y for some  2 G.
The orbits form a partition ofX , i.e, they are pairwise-disjoint, nonempty subsets of
X whose union isX . The orbit containing x is denotedGx; this is sensible notation
since Gx consists of all elements .x/ where  2 G. Thus Gx D Gy if and only
if x and y are G-equivalent (i.e., in the same G-orbit). The set of all G-orbits is
denotedX=G.

5.2 Example. (a) In Example 5.1(a), the orbits are circles with center .0; 0/,
including the degenerate circle whose only point is .0; 0/.

(b) In Example 5.1(b), the orbits are horizontal lines. Note that although in (a) and
(b) the same groupG acts on the same set X , the orbits are different.

(c) In Example 5.1(c), the orbits are fa; bg and fc; d g.
(d) In Example 5.1(d), there is only one orbit fa; b; c; d g. Again we have a situation

in which a group G acts on a set X in two different ways, with different orbits.

We wish to consider the situation where X D Bn, the boolean algebra of rank
n (so jBnj D 2n). We begin by defining an automorphism of a poset P to be an
isomorphism 'WP ! P . (This definition is exactly analogous to the definition
of an automorphism of a group, ring, etc.) The set of all automorphisms of P
forms a group, denoted Aut.P / and called the automorphism group of P , under
the operation of composition of functions (just as is the case for groups, rings, etc.).

Now consider the case P D Bn. Any permutation  of f1; : : : ; ng acts on Bn as
follows: if x D fi1; i2; : : : ; ikg 2 Bn, then

.x/ D f.i1/; .i2/; : : : ; .ik/g: (5.1)

This action of  on Bn is an automorphism [why?]; in particular, if jxj D i , then
also j.x/j D i . Equation (5.1) defines an action of the symmetric group Sn of all
permutations of f1; : : : ; ng on Bn [why?]. (In fact, it is not hard to show that every
automorphism of Bn is of the form (5.1) for  2 Sn.) In particular, any subgroup
G of Sn acts on Bn via (5.1) (where we restrict  to belong to G). In what follows
this action is always meant.
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5.3 Example. Let n D 3, and let G be the subgroup of S3 with elements � and
.1; 2/. Here � denotes the identity permutation, and (using disjoint cycle notation)
.1; 2/ denotes the permutation which interchanges 1 and 2 and fixes 3. There are six
orbits ofG (acting on B3). Writing, e.g., 13 as short for f1; 3g, the six orbits are f;g,
f1; 2g, f3g, f12g, f13; 23g, and f123g.

We now define the class of posets which will be of interest to us here. Later we
will give some special cases of particular interest.

Let G be a subgroup of Sn. Define the quotient poset Bn=G as follows. The
elements of Bn=G are the orbits of G. If o and o0 are two orbits, then define o � o0
in Bn=G if there exist x 2 o and y 2 o0 such that x � y in Bn. It’s easy to check
that this relation � is indeed a partial order.

5.4 Example. (a) Let n D 3 and G be the group of order two generated by the
cycle .1; 2/, as in Example 5.3. Then the Hasse diagram of B3=G is shown
below, where each element (orbit) is labelled by one of its elements.

φ

1

12

123

13

3

(b) Let n D 5 andG be the group of order five generated by the cycle .1; 2; 3; 4; 5/.
Then B5=G has Hasse diagram

124

φ

1

13

1234

12345

12

123

One simple property of a quotient poset Bn=G is the following.

5.5 Proposition. The quotient poset Bn=G defined above is graded of rank n and
rank-symmetric.

Proof. We leave as an exercise the easy proof that Bn=G is graded of rank n and
that the rank of an element o of Bn=G is just the rank in Bn of any of the elements
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x 2 o. Thus the number of elements pi .Bn=G/ of rank i is equal to the number of
orbits o 2 .Bn/i=G. If x 2 Bn, then let Nx denote the set-theoretic complement of x,
i.e.,

Nx D f1; : : : ; ng � x D f1 � i � nW i 62 xg:
Then fx1; : : : ; xj g is an orbit of i -element subsets of f1; : : : ; ng if and only if
f Nx1; : : : ; Nxj g is an orbit of .n � i/-element subsets [why?]. Hence j.Bn/i=Gj D
j.Bn/n�i =Gj, so Bn=G is rank-symmetric. ut

Let  2 Sn. We associate with  a linear transformation (still denoted )
WR.Bn/i ! R.Bn/i by the rule



0

@
X

x2.Bn/i
cxx

1

A D
X

x2.Bn/i
cx.x/;

where each cx is a real number. This defines an action of Sn, or of any subgroupG
of Sn, on the vector space R.Bn/i . The matrix of  with respect to the basis .Bn/i
is just a permutation matrix, i.e., a matrix with one 1 in every row and column and
0’s elsewhere. We will be interested in elements of R.Bn/i which are fixed by every
element of a subgroupG of Sn. The set of all such elements is denoted R.Bn/

G
i , so

R.Bn/
G
i D fv 2 R.Bn/i W.v/ D v for all  2 Gg:

5.6 Lemma. A basis for R.Bn/Gi consists of the elements

vo WD
X

x2o
x;

where o 2 .Bn/i=G, the set of G-orbits for the action of G on .Bn/i .

Proof. First note that if o is an orbit and x 2 o, then by definition of orbit we have
.x/ 2 o for all  2 G (or all  2 Sn). Since  permutes the elements of .Bn/i ,
it follows that  permutes the elements of o. Thus .vo/ D vo, so vo 2 R.Bn/

G
i .

It is clear that the vo’s are linearly independent since any x 2 .Bn/i appears with
nonzero coefficient in exactly one vo.

It remains to show that the vo’s span R.Bn/
G
i , i.e., any v D P

x2.Bn/i cxx 2
R.Bn/

G
i can be written as a linear combination of vo’s. Given x 2 .Bn/i , let Gx D

f 2 GW.x/ D xg, the stabilizer of x. We leave as an easy exercise the standard
fact that .x/ D �.x/ (where ; � 2 G) if and only if  and � belong to the same
left coset of Gx , i.e., Gx D �Gx . It follows that in the multiset of elements .x/,
where  ranges over all elements of G and x is fixed, every element y in the orbit
Gx appears #Gx times, and no other elements appear. In other words,

X

2G
.x/ D jGxj � vGx:



5 Group Actions on Boolean Algebras 47

(Do not confuse the orbitGx with the subgroupGx!) Now apply  to v and sum on
all  2 G. Since .v/ D v (because v 2 R.Bn/

G
i ), we get

jGj � v D
X

2G
.v/

D
X

2G

0

@
X

x2.Bn/i
cx.x/

1

A

D
X

x2.Bn/i
cx

 
X

2G
.x/

!

D
X

x2.Bn/i
cx � .#Gx/ � vGx:

Dividing by jGj expresses v as a linear combination of the elements vGx (or vo), as
desired. ut

Now let us consider the effect of applying the order-raising operator Ui to an
element v of R.Bn/Gi .

5.7 Lemma. If v 2 R.Bn/
G
i , then Ui.v/ 2 R.Bn/

G
iC1.

Proof. Note that since  2 G is an automorphism of Bn, we have x < y in Bn if
and only if .x/ < .y/ in Bn. It follows [why?] that if x 2 .Bn/i then

Ui..x// D .Ui .x//:

Since Ui and  are linear transformations, it follows by linearity that Ui.u/ D
Ui .u/ for all u 2 R.Bn/i . In other words, Ui D Ui . Then

.Ui.v// D Ui..v//
D Ui.v/;

so Ui.v/ 2 R.Bn/
G
iC1, as desired. ut

We come to the main result of this chapter and indeed our main result on the
Sperner property.

5.8 Theorem. Let G be a subgroup of Sn. Then the quotient poset Bn=G is graded
of rank n, rank-symmetric, rank-unimodal, and Sperner.

Proof. Let P D Bn=G. We have already seen in Proposition 5.5 that P is graded of
rank n and rank-symmetric. We want to define order-raising operators OUi WRPi !
RPiC1 and order-lowering operators ODi WRPi ! RPi�1. Let us first consider just
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OUi . The idea is to identify the basis element vo of RBG
n with the basis element o

of RP and to let OUi WRPi ! RPiC1 correspond to the usual order-raising operator
Ui WR.Bn/i ! R.Bn/iC1. More precisely, suppose that the order-raising operator
Ui for Bn given by (4.2) satisfies

Ui.vo/ D
X

o02.Bn/iC1=G

co;o0 vo0 ; (5.2)

where o 2 .Bn/i=G. (Note that by Lemma 5.7, Ui.vo/ does indeed have the form
given by (5.2).) Then define the linear operator OUi WR..Bn/i=G/! R..Bn/i=G/ by

OUi.o/ D
X

o02.Bn/iC1=G

co;o0o0:

NOTE. We can depict the “transport of Ui to OUi” by a commutative diagram:

.RBn/
G
i

Ui�����! .RBn/
G
iC1

Š
?
?
y

?
?
yŠ

R.Bn=G/i
OUi�����! R.Bn=G/iC1

The arrows pointing down are the linear transformations induced by vo 7! o. The
map obtained by applying the top arrow followed by the rightmost down arrow is
the same as applying the leftmost down arrow followed by the bottom arrow.

We claim that OUi is order-raising. We need to show that if co;o0 ¤ 0, then o0 > o
in Bn=G. Since vo0 DPx02o0

x0, the only way co;o0 ¤ 0 in (5.2) is for some x0 2 o0
to satisfy x0 > x for some x 2 o. But this is just what it means for o0 > o, so OUi is
order-raising.

Now comes the heart of the argument. We want to show that OUi is one-to-one for
i < n=2. Now by Theorem 4.7,Ui is one-to-one for i < n=2. Thus the restriction of
Ui to the subspace R.Bn/

G
i is one-to-one. (The restriction of a one-to-one function

is always one-to-one.) But Ui and OUi are exactly the same transformation, except
for the names of the basis elements on which they act. Thus OUi is also one-to-one
for i < n=2.

An exactly analogous argument can be applied to Di instead of Ui . We obtain
one-to-one order-lowering operators ODi WR.Bn/Gi ! R.Bn/

G
i�1 for i > n=2. It

follows from Proposition 4.4, Lemma 4.5, and (4.4) that Bn=G is rank-unimodal
and Sperner, completing the proof. ut

We will consider two interesting applications of Theorem 5.8. For our first appli-
cation, we let n D �m

2

�
for some m � 1 and let M D f1; : : : ; mg. Set X D �M

2

�
, the

set of all two-element subsets ofM . Think of the elements of X as (possible) edges
of a simple graph with vertex set M . If BX is the boolean algebra of all subsets of
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Fig. 5.1 The poset BX=G of
nonisomorphic graphs with
four vertices

X (so BX and Bn are isomorphic), then an element x of BX is a collection of edges
on the vertex setM , in other words, just a simple graph onM . Define a subgroupG
of SX as follows. Informally, G consists of all permutations of the edges

�
M
2

�
that

are induced from permutations of the vertices M . More precisely, if  2 Sm, then
define O 2 SX by O � fi; j g D f � i;  � j g. Thus G is isomorphic to Sm.

When are two graphs x; y 2 BX in the same orbit of the action of G on BX?
Since the elements of G just permute vertices, we see that x and y are in the same
orbit if we can obtain x from y by permuting vertices. This is just what it means for
two simple graphs x and y to be isomorphic—they are the same graph except for the
names of the vertices (thinking of edges as pairs of vertices). Thus the elements of
BX=G are isomorphism classes of simple graphs on the vertex set M . In particular,
#.BX=G/ is the number of nonisomorphicm-vertex simple graphs, and #.BX=G/i
is the number of nonisomorphic such graphs with i edges. We have x � y in BX=G
if there is some way of labelling the vertices of x and y so that every edge of x
is an edge of y. Equivalently, some spanning subgraph of y (i.e., a subgraph of y
with all the vertices of y) is isomorphic to x, as illustrated in Fig. 5.1 for the case
m D 4. Hence by Theorem 5.8 there follows the following result, which is by no
means obvious and has no known non-algebraic proof.

5.9 Theorem. (a) Fix m � 1. Let pi be the number of nonisomorphic simple
graphs with m vertices and i edges. Then the sequence p0; p1; : : : ; p.m2/

is
symmetric and unimodal.

(b) Let T be a collection of simple graphs with m vertices such that no element
of T is isomorphic to a spanning subgraph of another element of T . Then #T
is maximized by taking T to consist of all nonisomorphic simple graphs with
b 1
2

�
m

2

�c edges.

Our second example of the use of Theorem 5.8 is more subtle and will be the
topic of the next chapter.
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Digression. Edge reconstruction. Much work has been done on “reconstruction
problems,” that is, trying to reconstruct a mathematical structure such as a graph
from some of its substructures. The most famous of such problems is vertex
reconstruction: given a simple graph G on p vertices v1; : : : ; vp, let Gi be the
subgraph obtained by deleting vertex vi (and all incident edges). Given the multiset
fG1; : : : ; Gpg of vertex-deleted subgraphs graphs, canG be uniquely reconstructed?
It is important to realize that the vertices are unlabelled, so givenGi we don’t know
for any j which vertex is vj . The famous vertex-reconstruction conjecture (still
open) states that for p � 3 any graph G can be reconstructed from the multiset
fG1; : : : ; Gpg.

Here we will be concerned with edge reconstruction, another famous open
problem. Given a simple graph G with edges e1; : : : ; eq , let Hi D G � ei , the
graph obtained from G by removing the edge ei .

Edge-Reconstruction Conjecture. A simple graph G can be uniquely recon-
structed from its number of vertices and the multiset fH1; : : : ;Hqg of edge-deleted
subgraphs.

NOTE. As in the case of vertex reconstruction, the subgraphsHi are unlabelled. The
reason for including the number of vertices is that for any graph with no edges, we
have fH1; : : : ;Hqg D ;, so we need to specify the number of vertices to obtain G.

NOTE. It can be shown that if G can be vertex-reconstructed, then G can be
edge reconstructed. Hence the vertex-reconstruction conjecture implies the edge-
reconstruction conjecture.

The techniques developed above to analyze group actions on boolean algebra
can be used to prove a special case of the edge-reconstruction conjecture. Note that
a simple graph with p vertices has at most

�
p
2

�
edges.

5.10 Theorem. Let G be a simple graph with p vertices and q > 1
2

�
p
2

�
edges. Then

G is edge-reconstructible.

Proof. Let Pq be the set of all simple graphs with q edges on the vertex set Œp� D
f1; 2; : : : ; pg, so #Pq D

�.p2/
q

�
. Let RPq denote the real vector space with basis Pq .

Define a linear transformation  q WRPq ! RPq�1 by

 q.�/ D �1 C � � � C �q;

where �1; : : : ; �q are the (labelled) graphs obtained from � by deleting a single
edge. By Theorem 4.7,  q is injective for q > 1

2

�
p
2

�
. (Think of  q as adding edges

to the complement of � , i.e., the graph with vertex set Œp� and edge set
�
Œp�
2

��E.�/.)
The symmetric group Sp acts on Pq by permuting the vertices and hence acts

on RPq , the real vector space with basis Pq . A basis for the fixed space .RPq/Sp

consists of the distinct sums Q� DP2Sp
.�/, where � 2 Pq . We may identify Q�

with the unlabelled graph isomorphic to � , since Q� D Q� 0 if and only if � and � 0 are
isomorphic. Just as in the proof of Theorem 5.8, when we restrict  q to .RPq/Sp
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for q > 1
2

�
p
2

�
we obtain an injection  q W .RPq/Sp ! .RPq�1/Sp . In particular, for

nonisomorphic unlabelled graphs Q�; Q� 0 with p vertices, we have

Q�1 C � � � C Q�q D  q. Q�/ ¤  q. Q� 0/ D Q� 0
1 C � � � C Q� 0

q:

Hence the unlabelled graphs Q�1; : : : ; Q�q determine Q� , as desired. ut
Polynomials with Real Zeros. There are many techniques other than the linear
algebra used to prove Theorem 5.8 for showing that sequences are unimodal. Here
we will discuss a technique based on simple analysis (calculus) for showing that
sequences are unimodal. In fact, we will consider some stronger properties than
unimodality.

A sequence a0; a1; : : : ; an of real numbers is called logarithmically concave, or
log-concave for short, if a2i � ai�1aiC1 for 1 � i � n�1. We say that a0; a1; : : : ; an
is strongly log-concave if b2i � bi�1biC1 for 1 � i � n � 1, where bi D ai=

�
n
i

�
.

Strong log-concavity is equivalent to [why?]

a2i �
�
1C 1

i

��
1C 1

n � i
�
ai�1aiC1; 1 � i � n � 1;

from which it follows that strong log-concavity implies log-concavity.
Assume now that each ai � 0. Does log-concavity then imply unimodality?

The answer is no, a counterexample being 1; 0; 0; 1. However, only this type
of counterexample can occur, as we now explain. We say that the sequence
a0; a1; : : : ; an has no internal zeros if whenever we have i < j < k, ai ¤ 0,
and ak ¤ 0, then aj ¤ 0.

5.11 Proposition. Let ˛ D .a0; a1; : : : ; an/ be a sequence of nonnegative real
numbers with no internal zeros. If ˛ is log-concave, then ˛ is unimodal.

Proof. If there are only two values of j for which aj ¤ 0 then we always have
ai�1aiC1 D 0 so the conclusion is clear. Now assume that there are at least three
values of j for which aj ¤ 0 and assume that the proposition is false. Then there
exists 1 � i � n � 1 for which ai�1 > ai � aiC1 and aiC1 > 0, so a2i < ai�1aiC1,
a contradiction. ut

Now we come to a fundamental method for proving log-concavity.

5.12 Theorem (I. Newton). Let

P.x/ D
nX

iD0
bix

i D
nX

iD0

 
n

i

!

aix
i

be a real polynomial all of whose zeros are real numbers. Then the sequence
b0; b1; : : : ; bn is strongly log-concave, or equivalently, the sequence a0; a1; : : : ; an is
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log-concave. Moreover, if each bi � 0 (so the zeros of P.x/ are nonpositive [why?])
then the sequence b0; b1; : : : ; bn has no internal zeros.

Proof. Let degP.x/ D m � n. By the fundamental theorem of algebra, P.x/ has
exactlym real zeros, counting multiplicities. Suppose that ˛ is a zero of multiplicity
r > 1, so P.x/ D .x � ˛/rL.x/ for some polynomial L.x/ satisfying L.˛/ ¤ 0.
A simple computation shows that ˛ is a zero of P 0.x/ (the derivative of P.x/) of
multiplicity r � 1. Moreover, if ˛ < ˇ are both zeros of P.x/, then Rolle’s theorem
shows that P 0.x/ has a zero � satisfying ˛ < � < ˇ. It follows [why?] that P 0.x/
has at leastm�1 real zeros. Since degP 0.x/ D m�1we see that P 0.x/ has exactly
m � 1 real zeros and no other zeros.

Let Q.x/ D d i�1

dxi�1
P.x/. ThusQ.x/ is a polynomial of degree at mostm� i C 1

with only real zeros. Let R.x/ D xm�iC1Q.1=x/, a polynomial of degree at most
m � i C 1. The zeros of R.x/ are just reciprocals of those zeros of Q.x/ not equal
to 0, with possible new zeros at 0. At any rate, all zeros of R.x/ are real. Now
let S.x/ D dm�i�1

dxm�i�1 R.x/, a polynomial of degree at most two. By Rolle’s theorem
(with a suitable handling of multiple zeros as above), every zero of S.x/ is real. An
explicit computation yields

S.x/ D mŠ

2
.ai�1x2 C 2aix C aiC1/:

If ai�1 D 0 then trivially a2i � ai�1aiC1. Otherwise S.x/ is a quadratic polynomial.
Since it has real zeros, its discriminant
 is nonnegative. But


 D .2ai /2 � 4ai�1aiC1 D 4.a2i � ai�1aiC1/ � 0;

so the sequence a0; a1; : : : ; an is log-concave as claimed.
It remains to show that if each ai � 0 then the sequence a0; a1; : : : ; an has

no internal zeros. Suppose to the contrary that for some i < j < k we have
ai > 0; aj D 0; ak > 0. By arguing as in the previous paragraph we will obtain
a polynomial of the form c C dxk�i with only real zeros, where c; d > 0. But
since k � i � 2 we have that every such polynomial has a nonreal zero [why?], a
contradiction which completes the proof. ut

In order to give combinatorial applications of Theorem 5.12 we need to find
polynomials with real zeros whose coefficients are of combinatorial interest.
One such example appears in Exercise 9 in Chap. 9, based on the fact that the
characteristic polynomial of a symmetric matrix has only real zeros.
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Notes for Chap. 5

The techniques developed in this chapter had their origins in papers of L.H. Harper
[53] and M. Pouzet and I.G. Rosenberg [87]. The closest treatment to ours appears in
a paper of R. Stanley [103]. This latter paper also contains the proof of Theorem 5.10
(edge reconstruction) given here. This result was first proved by L. Lovász [70]
by an inclusion–exclusion argument. The condition q > 1

2

�
p
2

�
in Theorem 5.10 was

improved to q > p.log2 p � 1/ by V. Müller [78] (generalizing the argument
of Lovász) and by I. Krasikov and Y. Roditty [66] (generalizing the argument of
Stanley).

For further information on Newton’s Theorem 5.12, see, e.g., G.H. Hardy et al.
[52, p. 52]. For a general survey on unimodality, log-concavity, etc., see Stanley
[105], with a sequel by F. Brenti [12].

Exercises for Chap. 5

1. (a) Let G D f�; g be a group of order two (with identity element �). Let G act
on f1; 2; 3; 4g by  � 1 D 2,  � 2 D 1,  � 3 D 3, and  � 4 D 4. Draw the
Hasse diagram of the quotient poset B4=G.

(b) Do the same for the action  � 1 D 2,  � 2 D 1,  � 3 D 4, and  � 4 D 3.

2. Draw the Hasse diagram of the poset of nonisomorphic simple graphs with five
vertices (with the subgraph ordering). What is the size of the largest antichain?
How many antichains have this size?

3. Give an example of a finite graded poset P with the Sperner property, together
with a group G acting on P , such that the quotient poset P=G is not Sperner.
(By Theorem 5.8, P cannot be a boolean algebra.)

4. Consider the poset P whose Hasse diagram is given by
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Find a subgroupG of the symmetric group S7 for which P Š B7=G or else
prove that such a group does not exist.

5. A .0; 1/-necklace of length n and weight i is a circular arrangement of i 1’s and
n�i 0’s. For instance, the .0; 1/-necklaces of length 6 and weight 3 are (writing
a circular arrangement linearly) 000111, 001011, 010011, and 010101. (Cyclic
shifts of a linear word represent the same necklace, e.g., 000111 is the same
as 110001.) Let Nn denote the set of all .0; 1/-necklaces of length n. Define a
partial order onNn by letting u � v if we can obtain v from u by changing some
0’s to 1’s. It’s easy to see (you may assume it) that Nn is graded of rank n, with
the rank of a necklace being its weight.

(a) (*) Show that Nn is rank-symmetric, rank-unimodal, and Sperner.
(b) (Difficult) show that Nn has a symmetric chain decomposition, as defined

on page 40.

6. (unsolved) Show that every quotient poset Bn=G has a symmetric chain
decomposition.

7. Let M be a finite multiset, say with ai i ’s for 1 � i � k. Let BM denote the
poset of all submultisets of M , ordered by multiset inclusion. For instance, the
figure below illustrates the case a1 D 2, a2 D 3.

12

22

222

1222

11222

1122

112

1112

122

φ

Use Theorem 5.8 to show that BM is rank-symmetric, rank-unimodal, and
Sperner. (There are other ways to do this problem, but you are asked to use
Theorem 5.8. Thus you need to find a subgroup G of Sn for suitable n for
which BM Š Bn=G.)

8. (unsolved) LetG be the group related to Theorem 5.9, soG acts onBX whereX
consists of all two-element subsets of anm-set. Find an explicit order-matching
�W .BX=G/i ! .BX=G/iC1 for i < 1

2

�
m
2

�
. Even the weaker problem of finding

an explicit injection .BX=G/i ! .BX=G/iC1 is open.

9. (a) (*) Let Gp be the set of all simple graphs on the vertex set Œp�, so #Gp D
2.

p
2/. Given a graph G 2 Gp , let Gi be the graph obtained by switching at

vertex i , i.e., deleting every edge incident to vertex i and adding every edge
from vertex i that isn’t an edge of G. Define a linear transformation
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�WRGp ! RGp

by �.G/ D G1 C � � � C Gp . Show that � is invertible if and only if p 6�
0 .mod 4/.

(b) The graph G is switching-reconstructible if it can be uniquely recon-
structed from the multiset of unlabelled vertex switches Gi . That is, we
are given each Gi as an unlabelled graph. Show that G is switching-
reconstructible if p 6� 0 .mod 4/.

(c) (unsolved) Show that G is switching-reconstructible if p ¤ 4.
(d) Show that the number of edges of G can be determined from the multiset

of unlabelled Gi ’s if p ¤ 4. Find two graphs with four vertices and a
different number of edges, but with the same unlabelled Gi ’s.

(e) Define G to be weakly switching-reconstructible if it can be uniquely
reconstructed from the multiset of labelled vertex switches Gi . That is,
we are given each Gi as a labelled graph, but we aren’t told the vertex
i that was switched. Show that G is weakly switching-reconstructible if
p ¤ 4, but that G need not be weakly switching-reconstructible if p D 4.

10. SupposeX is a finite n-element set and G a group of permutations of X . Thus
G acts on the subsets of X . We say that G acts transitively on the j -element
subsets if for every two j -element subsets S and T , there is a  2 G for which
 � S D T . Show that if G acts transitively on j -element subsets for some
j � n=2, then G acts transitively on i -element subsets for all 0 � i � j .
(Although this can be done directly, there is a very easy proof using results
proven in the text.)

11. In Example 5.4(b) is drawn the Hasse diagram of B5=G, whereG is generated
by the cycle .1; 2; 3; 4; 5/. Using the vertex labels shown in this figure,
compute explicitly bU 2.12/ and bU 2.13/ as linear combinations of 123 and 124,
where bU 2 is defined as in the proof of Theorem 5.8. What is the matrix of bU 2

with respect to the bases .B5=G/2 and .B5=G/3?
12. A real polynomial F.x/ D Pn

iD0 aixi is called log-concave if the sequence
a0; a1; : : : ; an of coefficients is log-concave. Let F.x/ and G.x/ be log-
concave polynomials whose coefficients are positive. Show that the same is
true for F.x/G.x/.

13. (*) LetF.x/ be a real polynomial with positive leading coefficient whose zeros
all have the polar form rei� , where 2

3
� � � 4

3
. Show that F.x/ has positive,

log-concave coefficients.



Chapter 6
Young Diagrams and q-Binomial Coefficients

A partition � of an integer n � 0 is a sequence � D .�1; �2; : : : / of integers �i � 0
satisfying �1 � �2 � � � � and

P
i�1 �i D n. Thus all but finitely many �i are equal

to 0. Each �i > 0 is called a part of �. We sometimes suppress 0’s from the notation
for �, e.g., .5; 2; 2; 1/, .5; 2; 2; 1; 0; 0; 0/, and .5; 2; 2; 1; 0; 0; : : : / all represent the
same partition � (of 10, with four parts). If � is a partition of n, then we denote this
by � ` n or j�j D n.

6.1 Example. There are seven partitions of 5, namely (writing, e.g., 221 as short
for .2; 2; 1/): 5, 41, 32, 311, 221, 2111, and 11111.

The subject of partitions of integers has been extensively developed, but we
will only be concerned here with a small part related to our previous discussion.
Given positive integers m and n, let L.m; n/ denote the set of all partitions
with at most m parts and with largest part at most n. For instance, L.2; 3/ D
f;; 1; 2; 3; 11; 21; 31; 22; 32; 33g. (Note that we are denoting by ; the unique
partition .0; 0; : : : / with no parts.) If � D .�1; �2; : : : / and � D .�1; �2; : : : /

are partitions, then define � � � if �i � �i for all i . This makes the set of all
partitions into a very interesting poset, denoted Y and called Young’s lattice (named
after the British mathematician Alfred Young, 1873–1940). (It is called “Young’s
lattice” rather than “Young’s poset” because it turns out to have certain properties
which define a lattice. However, these properties are irrelevant to us here, so we will
not bother to define the notion of a lattice.) We will be looking at some properties of
Y in Chap. 8. The partial ordering on Y , when restricted to L.m; n/, makesL.m; n/
into a poset which also has some fascinating properties. Figure 6.1 shows L.1; 4/,
L.2; 2/, and L.2; 3/, while Fig. 6.2 shows L.3; 3/.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 6,
© Springer Science+Business Media New York 2013
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Fig. 6.1 The posets L.1; 4/,
L.2; 2/, and L.2; 3/

There is a nice geometric way of viewing partitions and the poset L.m; n/.
The Young diagram (sometimes just called the diagram) of a partition � is a left-
justified array of squares, with �i squares in the i th row. For instance, the Young
diagram of .4; 3; 1; 1/ looks like:

If dots are used instead of boxes, then the resulting diagram is called a Ferrers
diagram. Thus the Ferrers diagram of .4; 3; 1; 1/ looks like

The advantage of Young diagrams over Ferrers diagrams is that we can put
numbers in the boxes of a Young diagram, which we will do in Chap. 8. Observe
that L.m; n/ is simply the set of Young diagrams D fitting in an m � n rectangle
(where the upper-left (northwest) corner of D is the same as the northwest corner
of the rectangle), ordered by inclusion. We will always assume that when a Young
diagramD is contained in a rectangleR, the northwest corners agree. It is also clear
from the Young diagram point of view that L.m; n/ and L.n;m/ are isomorphic
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Fig. 6.2 The poset L.3; 3/

partially ordered sets, the isomorphism being given by transposing the diagram (i.e.,
interchanging rows and columns). If � has Young diagram D, then the partition
whose diagram is Dt (the transpose of D) is called the conjugate of � and is
denoted �0. For instance, .4; 3; 1; 1/0 D .4; 2; 2; 1/, with diagram

6.2 Proposition. The poset L.m; n/ is graded of rank mn and rank-symmetric.
The rank of a partition � is just j�j (the sum of the parts of � or the number of
squares in its Young diagram).

Proof. As in the proof of Proposition 5.5, we leave to the reader everything except
rank-symmetry. To show rank-symmetry, consider the complement N� of � in an
m � n rectangle R, i.e., all the squares of R except for �. (Note that N� depends
on m and n and not just �.) For instance, in L.4; 5/, the complement of .4; 3; 1; 1/
looks like
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If we rotate the diagram of N� by 180ı then we obtain the diagram of a partition
Q� 2 L.m; n/ satisfying j�j C jQ�j D mn. This correspondence between � and Q�
shows that L.m; n/ is rank-symmetric. ut

Our main goal in this chapter is to show that L.m; n/ is rank-unimodal and
Sperner. Let us write pi .m; n/ as short for pi .L.m; n//, the number of elements
of L.m; n/ of rank i . Equivalently, pi .m; n/ is the number of partitions of i with
largest part at most n and with at most m parts, or, in other words, the number of
distinct Young diagrams with i squares which fit inside anm�n rectangle (with the
same northwest corner, as explained previously). Though not really necessary for
our goal, it is nonetheless interesting to obtain some information on these numbers
pi .m; n/. First let us consider the total number #L.m; n/ of elements in L.m; n/.

6.3 Proposition. We have #L.m; n/ D �mCn
m

�
.

Proof. We will give an elegant combinatorial proof, based on the fact that
�
mCn
m

�
is

equal to the number of sequences a1; a2; : : : ; amCn, where each aj is eitherN orE,
and there are m N ’s (and hence n E’s) in all. We will associate a Young diagram
D contained in an m � n rectangle R with such a sequence as follows. Begin at the
lower left-hand corner of R and trace out the southeast boundary of D, ending at
the upper right-hand corner of R. This is done by taking a sequence of unit steps
(where each square ofR is one unit in length), each step either north or east. Record
the sequence of steps, using N for a step to the north and E for a step to the east.

Example. Let m D 5, n D 6, and � D .4; 3; 1; 1/. Then R and D are given by:

The corresponding sequence of N ’s and E’s is NENNEENENEE .
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It is easy to see (left to the reader) that the above correspondence gives a bijection
between Young diagrams D fitting in an m � n rectangle R and sequences of m
N ’s and n E’s. Hence the number of diagrams is equal to

�
mCn
m

�
, the number of

sequences. ut
We now consider how many elements of L.m; n/ have rank i . To this end, let q

be an indeterminate; and given j � 1 define .j / D 1C q C q2 C � � � C qj�1. Thus
.1/ D 1, .2/ D 1Cq, .3/ D 1CqCq2, etc. Note that .j / is a polynomial in q whose
value at q D 1 is just j (denoted .j /qD1 D j ). Next define .j /Š D .1/.2/ � � � .j / for
j � 1 and set .0/Š D 1. Thus .1/Š D 1, .2/Š D 1Cq, .3/Š D .1Cq/.1CqCq2/ D
1C 2q C 2q2 C q3, etc., and .j /ŠqD1 D j Š. Finally define for k � j � 0

�
k

j

�
D .k/Š

.j /Š.k � j /Š
:

The expression
�k

j

�
is called a q-binomial coefficient (or Gaussian coefficient).

When q is regarded as a prime power rather than as an indeterminate, then
Exercise 4 in Chap. 4 gives a definition of

�
n

k

�
in terms of the field Fq . In this chapter

we have no need of this algebraic interpretation of
�

n

k

�
.

Since .r/ŠqD1 D rŠ, it is clear that

�
k

j

�
qD1
D
 
k

j

!

:

One sometimes says that
�

k

j

�
is a “q-analogue” of the binomial coefficient

�
k
j

�
. There

is no precise definition of a q-analogue P.q/ of some mathematical object P (such
as a formula or definition). It should have the property that there is a reasonable
way to interpret P.1/ as being P . Ideally P.q/ should have some interpretation
involving Fq when q is regarded as a prime power. The q-analogue of the set f1g
is the finite field Fq , and the q-analogue of the set Œn� D f1; 2; : : : ; ng is the vector
space Fnq .

6.4 Example. We have
�k

j

� D � k

k�j

�
[why?]. Moreover,

�
k

0

�
D

�
k

k

�
D 1;

�
k

1

�
D

�
k

k � 1

�
D .k/ D 1C q C q2 C � � � C qk�1;

�
4

2

�
D .4/.3/.2/.1/

.2/.1/.2/.1/
D 1C q C 2q2 C q3 C q4;

�
5

2

�
D

�
5

3

�
D 1C q C 2q2 C 2q3 C 2q4 C q5 C q6:
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In the above example,
�

k

j

�
was always a polynomial in q (and with nonnegative

integer coefficients). It is not obvious that this is always the case, but it will follow
easily from the following lemma.

6.5 Lemma. We have �
k

j

�
D

�
k � 1

j

�
C qk�j

�
k � 1

j � 1

�
; (6.1)

whenever k � 1, with the initial conditions
�0

0

� D 1,
�k

j

� D 0 if j < 0 or j > k

(the same initial conditions satisfied by the binomial coefficients
�
k
j

�
).

Proof. This is a straightforward computation. Specifically, we have

�
k � 1

j

�
C qk�j

�
k � 1

j � 1

�
D .k � 1/Š

.j /Š.k � 1 � j /Š
C qk�j .k � 1/Š

.j � 1/Š.k � j /Š

D .k � 1/Š

.j � 1/Š.k � 1 � j /Š

�
1

.j /
C qk�j

.k � j /

�

D .k � 1/Š

.j � 1/Š.k � 1 � j /Š

.k � j /C qk�j .j /

.j /.k � j /

D .k � 1/Š

.j � 1/Š.k � 1 � j /Š

.k/

.j /.k � j /

D
�

k

j

�
:

ut
Note that if we put q D 1 in (6.1) we obtain the well-known formula

 
k

j

!

D
 
k � 1
j

!

C
 
k � 1
j � 1

!

;

which is just the recurrence defining Pascal’s triangle. Thus (6.1) may be regarded
as a q-analogue of the Pascal triangle recurrence.

We can regard equation (6.1) as a recurrence relation for the q-binomial
coefficients. Given the initial conditions of Lemma 6.5, we can use (6.1) inductively
to compute

�k

j

�
for any k and j . From this it is obvious by induction that the

q-binomial coefficient
�k

j

�
is a polynomial in q with nonnegative integer coeffi-

cients. The following theorem gives an even stronger result, namely, an explicit
combinatorial interpretation of the coefficients.

6.6 Theorem. Let pi .m; n/ denote the number of elements of L.m; n/ of rank i .
Then

X

i�0
pi .m; n/q

i D
�

m C n

m

�
: (6.2)
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NOTE. The sum on the left-hand side is really a finite sum, since pi .m; n/ D 0 if
i > mn.

Proof. Let P.m; n/ denote the left-hand side of (6.2). We will show that

P.0; 0/ D 1; and P.m; n/ D 0 if m < 0 or n < 0; (6.3)

P.m; n/ D P.m; n � 1/C qnP.m � 1; n/: (6.4)

Note that (6.3) and (6.4) completely determine P.m; n/. On the other hand,
substituting k D mC n and j D m in (6.1) shows that

�mCn

m

�
also satisfies (6.4).

Moreover, the initial conditions of Lemma 6.5 show that
�mCn

m

�
also satisfies (6.3).

Hence (6.3) and (6.4) imply that P.m; n/ D �mCn

m

�
, so to complete the proof we

need only establish (6.3) and (6.4).
Equation (6.3) is clear, since L.0; n/ consists of a single point (the empty

partition ;), so
P

i�0 pi .0; n/qi D 1; while L.m; n/ is empty (or undefined, if
you prefer) if m < 0 or n < 0.

The crux of the proof is to show (6.4). Taking the coefficient of qi of both sides
of (6.4), we see [why?] that (6.4) is equivalent to

pi .m; n/ D pi .m; n� 1/C pi�n.m � 1; n/: (6.5)

Consider a partition � ` i whose Young diagramD fits in an m � n rectangle R. If
D does not contain the upper right-hand corner of R, then D fits in an m � .n � 1/
rectangle, so there are pi.m; n � 1/ such partitions �. If on the other hand D does
contain the upper right-hand corner of R, thenD contains the whole first row of R.
When we remove the first row of R, we have left a Young diagram of size i � n
which fits in an .m � 1/ � n rectangle. Hence there are pi�n.m � 1; n/ such �, and
the proof follows [why?]. ut

Note that if we set q D 1 in (6.2), then the left-hand side becomes #L.m; n/ and
the right-hand side

�
mCn
m

�
, agreeing with Proposition 6.3.

As the reader may have guessed by now, the poset L.m; n/ is isomorphic to a
quotient poset Bs=G for a suitable integer s > 0 and finite group G acting on Bs .
Actually, it is clear that we must have s D mn since L.m; n/ has rank mn and in
general Bs=G has rank s. What is not so clear is the right choice of G. To this end,
let R D Rmn denote anm�n rectangle of squares. For instance,R35 is given by the
15 squares of the diagram
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We now define the group G D Gmn as follows. It is a subgroup of the group SR of
all permutations of the squares of R. A permutation  in G is allowed to permute
the elements in each row of R in any way and then to permute the rows among
themselves in any way. The elements of each row can be permuted in nŠ ways, so
since there are m rows there are a total of nŠm permutations preserving the rows.
Then the m rows can be permuted in mŠ ways, so it follows that the order of Gmn is
given bymŠnŠm. The groupGmn is called the wreath product of Sn and Sm, denoted
Sn oSm or Sn wr Sm. However, we will not discuss the general theory of wreath
products here.

6.7 Example. Supposem D 4 and n D 5, with the boxes of R labelled as follows:

6

1 2 3 4 5

7 8 9 10

12 1311 14 15

16 17 18 19 20

Then a typical permutation  in G.4; 5/ looks like

4

16 20 17 19 18

1 5 2 3

13 1512 14 11

7 9 6 10 8

i.e., .16/ D 1, .20/ D 2, etc.

We have just defined a groupGmn of permutations of the setR D Rmn of squares
of an m � n rectangle. Hence Gmn acts on the boolean algebra BR of all subsets of
the set R. The next lemma describes the orbits of this action.

6.8 Lemma. Every orbit o of the action of Gmn on BR contains exactly one Young
diagram D, i.e., exactly one subset D � R such that D is left-justified, and if �i is
the number of elements of D in row i of R, then �1 � �2 � � � � � �m.

Proof. Let S be a subset of R and suppose that S has ˛i elements in row i . If  2
Gmn and  �S has ˇi elements in row i , then ˇ1; : : : ; ˇm is just some permutation of
˛1; : : : ; ˛m [why?]. There is a unique ordering �1; : : : ; �m of ˛1; : : : ; ˛m satisfying
�1 � � � � � �m, so the only possible Young diagram D in the orbit  � S is the one
of shape � D .�1; : : : ; �m/. It’s easy to see that the Young diagram D� of shape �
is indeed in the orbit  � S . Namely, by permuting the elements in the rows of R we
can left-justify the rows of S , and then by permuting the rows of R themselves we
can arrange the row sizes of S to be in weakly decreasing order. Thus we obtain the
Young diagramD� as claimed. ut

We are now ready for the main result of this chapter.

6.9 Theorem. Set R D Rmn. Then the quotient poset BR=Gmn is isomorphic to
L.m; n/.
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Proof. Each element of BR=Gmn contains a unique Young diagram D� by Lemma
6.8. Moreover, two different orbits cannot contain the same Young diagramD since
orbits are disjoint. Thus the map 'WBR=Gmn ! L.m; n/ defined by '.D�/ D �

is a bijection (one-to-one and onto). We claim that in fact ' is an isomorphism of
partially ordered sets. We need to show the following: let o and o� be orbits of Gmn
(i.e., elements of BR=Gmn). Let D� and D�� be the unique Young diagrams in o
and o�, respectively. Then there exist D 2 o and D� 2 o� satisfying D � D� if
and only if � � �� in L.m; n/.

The “if” part of the previous sentence is clear, for if � � �� then D� � D�� .
So assume there exist D 2 o and D� 2 o� satisfying D � D�. The lengths of the
rows of D, written in decreasing order, are �1; : : : ; �m, and similarly for D�. Since
each row of D is contained in a row of D�, it follows that for each 1 � j � m, D�
has at least j rows of size at least �j . Thus the length ��

j of the j th largest row of
D� is at least as large as �j . In other words, �j � ��

j , as was to be proved. ut
Combining the previous theorem with Theorem 5.8 yields the following result.

6.10 Corollary. The posets L.m; n/ are rank-symmetric, rank-unimodal, and
Sperner.

Note that the rank-symmetry and rank-unimodality of L.m; n/ can be rephrased
as follows: the q-binomial coefficient

�
mCn

m

�
has symmetric and unimodal coeffi-

cients. While rank-symmetry is easy to prove (see Proposition 6.2), the unimodality
of the coefficients of

�
mCn

m

�
is by no means apparent. It was first proved by J.

Sylvester in 1878 by a proof similar to the one above, though stated in the language
of the invariant theory of binary forms. For a long time it was an open problem to
find a combinatorial proof that the coefficients of

�
mCn

m

�
are unimodal. Such a proof

would give an explicit injection (one-to-one function) �WL.m; n/i ! L.m; n/iC1
for i < 1

2
mn. (One difficulty in finding such maps� is to make use of the hypothesis

that i < 1
2
mn.) Finally around 1989 such a proof was found by K.M. O’Hara.

However, O’Hara’s proof has the defect that the maps � are not order-matchings.
Thus her proof does not prove that L.m; n/ is Sperner, but only that it’s rank-
unimodal. It is an outstanding open problem in algebraic combinatorics to find an
explicit order-matching �WL.m; n/i ! L.m; n/iC1 for i < 1

2
mn.

Note that the Sperner property of L.m; n/ (together with the fact that the largest
level is in the middle) can be stated in the following simple terms: the largest
possible collection C of Young diagrams fitting in an m � n rectangle such that
no diagram in C is contained in another diagram in C is obtained by taking all
the diagrams of size b 1

2
mnc. Although the statement of this fact requires almost

no mathematics to understand, there is no known proof that doesn’t use algebraic
machinery. The several known algebraic proofs are all closely related, and the one
we have given is the simplest. Corollary 6.10 is a good example of the efficacy of
algebraic combinatorics.



66 6 Young Diagrams

An Application to Number Theory. There is an interesting application of Corol-
lary 6.10 to a number-theoretic problem. Fix a positive integer k. For a finite subset
S of RC D fˇ 2 RWˇ > 0g, and for a real number ˛ > 0, define

fk.S; ˛/ D #

(

T 2
 
S

k

!

W
X

t2T
t D ˛

)

:

In other words, fk.S; ˛/ is the number of k-element subsets of S whose elements
sum to ˛. For instance, f3.f1; 3; 4; 6; 7g; 11/D 2, since 1C3C7D 1C4C6D 11.

Given positive integers k < n, our object is to maximize fk.S; ˛/ subject to the
condition that #S D n. We are free to choose both S and ˛, but k and n are fixed.
Call this maximum value hk.n/. Thus

hk.n/ D max
˛2RC

S�RC

#SDn

fk.S; ˛/:

What sort of behavior can we expect of the maximizing set S? If the elements of S
are “spread out,” say S D f1; 2; 4; 8; : : : ; 2n�1g, then all the subset sums of S are
distinct. Hence for any ˛ 2 R

C we have fk.S; ˛/ D 0 or 1. Similarly, if the elements
of S are “unrelated” (e.g., linearly independent over the rationals, such as S D
f1;p2;p3; ; 2g), then again all subset sums are distinct and fk.S; ˛/ D 0 or 1.
These considerations make it plausible that we should take S D Œn� D f1; 2; : : : ; ng
and then choose ˛ appropriately. In other words, we are led to the conjecture that

for any S 2 �RC

n

�
and ˛ 2 R

C, we have

fk.S; ˛/ � fk.Œn�; ˇ/; (6.6)

for some ˇ 2 R
C to be determined.

First let us evaluate fk.Œn�; ˛/ for any ˛. This will enable us to determine the
value of ˇ in (6.6). Let S D fi1; : : : ; ikg � Œn� with

1 � i1 < i2 < � � � < ik � n; i1 C � � � C ik D ˛: (6.7)

Let jr D ir � r . Then (since 1C 2C � � � C k D �kC1
2

�
)

n � k � jk � jk�1 � � � � � j1 � 0; j1 C � � � C jk D ˛ �
 
k C 1
2

!

: (6.8)

Conversely, given j1; : : : ; jk satisfying (6.8) we can recover i1; : : : ; ik satisfy-
ing (6.7). Hence fk.Œn�; ˛/ is equal to the number of sequences j1; : : : ; jk satis-
fying (6.8). Now let

�.S/ D .jk; jk�1; : : : ; j1/:
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Note that �.S/ is a partition of the integer ˛ � �kC1
2

�
with at most k parts and with

largest part at most n � k. Thus

fk.Œn�; ˛/ D p˛�.kC1
2 /
.k; n � k/; (6.9)

or equivalently,

X

˛�.kC1
2 /

fk.Œn�; ˛/q
˛�.kC1

2 / D
�

n

k

�
:

By the rank-unimodality (and rank-symmetry) of L.n � k; k/ (Corollary 6.10), the
largest coefficient of

�n

k

�
is the middle one, that is, the coefficient of bk.n � k/=2c.

It follows that for fixed k and n, fk.Œn�; ˛/ is maximized for ˛ D bk.n � k/=2c C�
kC1
2

� D bk.nC 1/=2c. Hence the following result is plausible.

6.11 Theorem. Let S 2 �RC

n

�
, ˛ 2 R

C, and k 2 P. Then

fk.S; ˛/ � fk.Œn�; bk.nC 1/=2c/:

Proof. Let S D fa1; : : : ; ang with 0 < a1 < � � � < an. Let T and U be distinct
k-element subsets of S with the same element sums, say T D fai1 ; : : : ; aik g and
U D faj1; : : : ; ajk g with i1 < i2 < � � � < ik and j1 < j2 < � � � < jk . Define T � D
fi1; : : : ; ikg and U � D fj1; : : : ; jkg, so T �; U � 2 �Œn�

k

�
. The crucial observation is

the following:

Claim. The elements �.T �/ and �.U �/ are incomparable inL.k; n�k/, i.e., neither
�.T �/ � �.U �/ nor �.U �/ � �.T �/.

Proof of claim. Suppose not, say �.T �/ � �.U �/ to be definite. Thus by definition
of L.k; n�k/ we have ir � r � jr � r for 1 � r � k. Hence ir � jr for 1 � r � k,
so also air � ajr (since a1 < � � � < an). But ai1 C � � � C aik D aj1 C � � � C ajk by
assumption, so air D ajr for all r . This contradicts the assumption that T and U are
distinct and proves the claim.

It is now easy to complete the proof of Theorem 6.11. Suppose that S1; : : : ; Sr
are distinct k-element subsets of S with the same element sums. By the claim,
f�.S�

1 /; : : : ; �.S
�
r /g is an antichain in L.k; n � k/. Hence r cannot exceed the size

of the largest antichain in L.k; n� k/. By Theorem 6.6 and Corollary 6.10, the size
of the largest antichain in L.k; n�k/ is given by pbk.n�k/=2c.k; n�k/. By (6.9) this
number is equal to fk.Œn�; bk.nC 1/=2c/. In other words,

r � fk.Œn�; bk.nC 1/=2c/;
which is what we wanted to prove. ut

Note that an equivalent statement of Theorem 6.11 is that hk.n/ is equal to the
coefficient of qbk.n�k/=2c in

�
n

k

�
[why?].
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Variation on a theme. Suppose that in Theorem 6.11 we do not want to specify the
cardinality of the subsets of S . In other words, for any ˛ 2 R and any finite subset
S 	 R

C, define

f .S; ˛/ D #

(

T � S W
X

t2T
t D ˛

)

:

How large can f .S; ˛/ be if we require #S D n? Call this maximum value h.n/.
Thus

h.n/ D max
˛2RC

S�RC

#SDn

f .S; ˛/: (6.10)

For instance, if S D f1; 2; 3g then f .S; 3/ D 2 (coming from the subsets f1; 2g and
f3g). This is easily seen to be best possible, i.e., h.3/ D 2.

We will find h.n/ in a manner analogous to the proof of Theorem 6.11. The big
difference is that the relevant poset M.n/ is not of the form Bn=G, so we will have
to prove the injectivity of the order-raising operatorUi from scratch. Our proofs will
be somewhat sketchy; it shouldn’t be difficult for the reader who has come this far
to fill in the details.

LetM.n/ be the set of all subsets of Œn�, with the orderingA � B if the elements
of A are a1 > a2 > � � � > aj and the elements of B are b1 > b2 > � � � > bk, where
j � k and ai � bi for 1 � i � j . (The empty set ; is the bottom element ofM.n/.)
Figure 6.3 showsM.1/, M.2/,M.3/, andM.4/.

It is easy to see that M.n/ is graded of rank
�
nC1
2

�
. The rank of the subset T D

fa1; : : : ; akg is
rank.T / D a1 C � � � C ak: (6.11)

It follows [why?] that the rank-generating function of M.n/ is given by

F.M.n/; q/ D
.nC1

2 /X

iD0
.#M.n/i /qi D .1C q/.1C q2/ � � � .1C qn/:

Define linear transformations

Ui WRM.n/i ! RM.n/iC1; Di WRM.n/i ! RM.n/i�1

by

Ui.x/ D
X

y2M.n/iC1
x<y

y; x 2M.n/i ;

Di .x/ D
X

v2M.n/i�1
v<x

c.v; x/v; x 2M.n/i ;
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Fig. 6.3 The posets M.1/, M.2/, M.3/, and M.4/

where the coefficient c.v; x/ is defined as follows. Let the elements of v be a1 >
� � � > aj > 0 and the elements of x be b1 > � � � > bk > 0. Since x covers v, there is
a unique r for which ar D br � 1 (and ak D bk for all other k). In the case br D 1
we set ar D 0 (e.g., if x is given by 5 > 4 > 1 and v by 5 > 4, then r D 3 and
a3 D 0). Set

c.v; x/ D
8
<

:

�
nC1
2

�
; if ar D 0;

.n � ar/.nC ar C 1/; if ar > 0:

It is a straightforward computation (proof omitted) to obtain the commutation
relation

DiC1Ui � Ui�1Di D
  
nC 1
2

!

� 2i
!

Ii ; (6.12)

where Ii denotes the identity linear transformation on RM.n/i . Clearly by definition
Ui is order-raising. We want to show thatUi is injective (one-to-one) for i < 1

2

�
nC1
2

�
.

We can’t argue as in the proof of Lemma 4.6 that Ui�1Di is semidefinite since the
matrices of Ui�1 andDi are no longer transposes of one another. Instead we use the
following result from linear algebra.
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6.12 Lemma. Let V and W be finite-dimensional vector spaces over a field. Let
AWV ! W and BWW ! V be linear transformations. Then

xdimV det.AB � xI / D xdimW det.BA � xI /:
In other words, AB and BA have the same nonzero eigenvalues.

We can now prove the key linear algebraic result.

6.13 Lemma. The linear transformation Ui is injective for i < 1
2

�
nC1
2

�
and

surjective (onto) for i � 1
2

�
nC1
2

�
.

Proof. We prove by induction on i that DiC1Ui has positive real eigenvalues for
i < 1

2

�
nC1
2

�
. For i D 0 this is easy to check since dimRM.n/0 D 1. Assume the

induction hypothesis for some i < 1
2

�
nC1
2

��1, i.e., assume thatDiUi�1 has positive
eigenvalues. By Lemma 6.12, Ui�1Di has nonnegative eigenvalues. By (6.12),
we have

DiC1Ui D Ui�1Di C
  
nC 1
2

!

� 2i
!

Ii :

Thus the eigenvalues of DiC1Ui are
�
nC1
2

� � 2i more than those of Ui�1Di . Since�
nC1
2

� � 2i > 0, it follows that DiC1Ui has positive eigenvalues. Hence it is
invertible, so Ui is injective. Similarly (or by “symmetry”) Ui is surjective for
i � 1

2

�
nC1
2

�
. ut

The main result on the posets M.n/ now follows by a familiar argument.

6.14 Theorem. The poset M.n/ is graded of rank
�
nC1
2

�
, rank-symmetric, rank-

unimodal, and Sperner.

Proof. We have already seen thatM.n/ is graded of rank
�
nC1
2

�
and rank-symmetric.

By the previous lemma,Ui is injective for i < 1
2

�
nC1
2

�
and surjective for i � 1

2

�
nC1
2

�
.

The proof follows from Proposition 4.4 and Lemma 4.5. ut
NOTE. As a consequence of Theorem 6.14, the polynomial F.M.n/; q/ D .1 C
q/.1 C q2/ � � � .1 C qn/ has unimodal coefficients. No combinatorial proof of this
fact is known, unlike the situation for L.m; n/ (where we mentioned the proof of
O’Hara above).

We can now determine h.n/ (as defined by (6.10)) by an argument analogous to
the proof of Theorem 6.11.

6.15 Theorem. Let S 2 �RC

n

�
and ˛ 2 R

C. Then

f .S; ˛/ � f
 

Œn�;

$
1

2

 
nC 1
2

!%!

D h.n/:
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Proof. Let S D fa1; : : : ; ang with 0 < a1 < � � � < an. Let T and U be
distinct subsets of S with the same element sums, say T D far1 ; : : : ; arj g and
U D fas1 ; : : : ; ask g with r1 < r2 < � � � < rj and s1 < s2 < � � � < sk . Define
T � D fr1; : : : ; rj g and U � D fs1; : : : ; skg, so T �; U � 2 M.n/. The following fact
is proved exactly in the same way as the analogous fact for L.m; n/ (the claim in
the proof of Theorem 6.11) and will be omitted here.

Fact. The elements T � and U � are incomparable in M.n/, i.e., neither T � � U �
nor U � � T �.

It is now easy to complete the proof of Theorem 6.15. Suppose that S1; : : : ; St are
distinct subsets of S with the same element sums. By the above fact, fS�

1 ; : : : ; S
�
t g

is an antichain in M.n/. Hence t cannot exceed the size of the largest antichain
in M.n/. By Theorem 6.14, the size of the largest antichain in M.n/ is the size
pb 12 .nC1

2 /c of the middle rank. By (6.11) this number is equal to f .Œn�; b 1
2

�
nC1
2

�c/. In

other words,

t � f
 

Œn�;

$
1

2

 
nC 1
2

!%!

;

which is what we wanted to prove. ut
NOTE. Theorem 6.15 is known as the weak Erdős–Moser conjecture. The original
(strong) Erdős–Moser conjecture deals with the case S 	 R rather than S 	 R

C.
There is a difference between these two cases; for instance, h.3/ D 2 (corresponding
to S D f1; 2; 3g and ˛ D 3), while the set f�1; 0; 1g has four subsets whose
elements sum to 0 (including the empty set). (Can you see where the proof of
Theorem 6.15 breaks down if we allow S 	 R?) The original Erdős–Moser
conjecture asserts that if #S D 2mC 1, then

f .S; ˛/ � f .f�m;�mC 1; : : : ; mg; 0/: (6.13)

This result can be proved by a somewhat tricky modification of the proof given
above for the weak case; see Exercise 5. No proof of the Erdős–Moser conjecture
(weak or strong) is known other than the one indicated here (sometimes given in a
more sophisticated context, as explained in the next Note).

NOTE. The key to the proof of Theorem 6.15 is the definition of Ui and Di which
gives the commutation relation (6.12). The reader may be wondering how anyone
managed to discover these definitions (especially that of Di ). In fact, the original
proof of Theorem 6.15 was based on the representation theory of the orthogonal Lie
algebra o.2nC 1;C/. In this context, the definitions of Ui and Di are built into the
theory of the “principal subalgebras” of o.2nC 1;C/. R.A. Proctor was the first to
remove the representation theory from the proof and present it solely in terms of
linear algebra.
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Notes for Chap. 6

For an undergraduate level introduction to the theory of partitions, see Andrews and
Eriksson [3]. A more extensive treatment is given by Andrews [2], while a brief
introduction appears in [107, Sect. 1.8].

As already mentioned in the text, the rank-unimodality ofL.m; n/, that is, of the
coefficients of the q-binomial coefficient

�
mCn

m

�
is due to J. J. Sylvester [112], with

a combinatorial proof later given by K. M. O’Hara [81]. An explication of O’Hara’s
work was given by D. Zeilberger [123].

The unimodality of the coefficients of the polynomial .1Cq/.1Cq2/ � � � .1Cqn/
is implicit in the work of E.B. Dynkin [30], [31, p. 332]. J.W.B. Hughes was the first
to observe explicitly that this polynomial arises as a special case of Dynkin’s work.
The Spernicity of L.m; n/ and M.n/ and a proof of the Erdős–Moser conjecture
were first given by Stanley [101]. It was mentioned in the text above that R.A.
Proctor [88] was the first to remove the representation theory from the proof and
present it solely in terms of linear algebra.

For two proofs of Lemma 6.12, see W.V. Parker [82] and J. Schmid [98].

Exercises for Chap. 6

1. (a) Let A.m; n/ denote the adjacency matrix (over R) of the Hasse diagram of
L.m; n/. Show that if A.m; n/ is nonsingular, then

�
mCn
m

�
is even.

(b) (unsolved) For whichm and n is A.m; n/ nonsingular? The pairs .m; n/with
this property form � n andmCn � 13 are .1; 1/, .1; 3/, .1; 5/, .3; 3/, .1; 7/,
.1; 9/, .3; 7/, .5; 5/, .1; 11/, .3; 9/, and .5; 7/.

(c) (very difficult) Show that every irreducible (over Q) factor of the characteris-
tic polynomial of the matrix A.m; n/ has degree at most 1

2
�.2.mC nC 1//,

where � is the Euler phi-function (defined on page 85).

2. (a) (moderately difficult) Show that the number c.m; n/ of cover relations in
L.m; n/, i.e., the number of pairs .�; �/ of partitions in L.m; n/ for which
� covers �, is given by

c.m; n/ D .mC n � 1/Š
.m � 1/Š .n� 1/Š :

(b) (considerably more difficult) (*) Show that the number d.m; n/ of pairs
.�; �/ of elements in L.m; n/ for which � � � is given by

d.m; n/ D .mC n/Š .mC nC 1/Š
mŠ .mC 1/Š nŠ .nC 1/Š :
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3. (difficult) (*) Note that L.m; n/ is the set of all partitions � in Young’s lattice Y
satisfying � � hnmi, the partition with m parts equal to n. Let Y� denote the set
of all partitions � � �. Is Y� always rank-unimodal?

4. (a) Find an explicit order matching �WL.2; n/i ! L.2; n/iC1 for i < n.
(b) (more difficult) Do the same for L.3; n/i ! L.3; n/iC1 for i < 3n=2.
(c) (even more difficult) Do the same for L.4; n/i ! L.4; n/iC1 for i < 2n.
(d) (unsolved) Do the same for L.5; n/i ! L.5; n/iC1 for i < 5n=2.

5. Assume that M.j/ � M.k/� is rank-symmetric, rank-unimodal, and Sperner.
Here M.k/� denotes the dual of M.k/, i.e., x � y in M.k/� if and only if
y � x in M.k/. (Actually M.k/ Š M.k/�, but this is not needed here.) Deduce
the original Erdős–Moser conjecture given by (6.13), namely, if S 	 R and
#S D 2mC 1, then

f .S; ˛/ � f .f�m;�mC 1; : : : ; mg; 0/:
NOTE. If P and Q are posets, then the direct product P �Q is the poset on the
set f.x; y/ W x 2 P; y 2 Qg satisfying .x; y/ � .x0; y0/ if and only if x � x0 in
P and y � y0 in Q.

6. (unsolved) Show that L.m; n/ has a symmetric chain decomposition. This is
known to be true for m � 4.



Chapter 7
Enumeration Under Group Action

In Chaps. 5 and 6 we considered the quotient poset Bn=G, where G is a subgroup
of the symmetric group Sn. If pi is the number of elements of rank i of this poset,
then the sequence p0; p1; : : : ; pn is rank-symmetric and rank-unimodal. Thus it is
natural to ask whether there is some nice formula for the numbers pi . For instance,
in Theorem 5.9 pi is the number of nonisomorphic graphs with m vertices (where
n D �

m
2

�
) and i edges; is there some nice formula for this number? For the group

Gmn D Sn oSm of Theorem 6.6 we obtained a simple generating function for pi
(i.e., a formula for the rank-generating function F.Bmn=Gmn; q/ D P

i piq
i ), but

this was a very special situation. In this chapter we will present a general theory
for enumerating inequivalent objects subject to a group of symmetries, which will
include a formula for the rank-generating functionsF.Bn=G; q/. The chief architect
of this theory is Pólya (though much of it was anticipated by Redfield) and hence is
often called Pólya’s theory of enumeration or just Pólya theory. See the references
at the end of this chapter for further historical information.

Pólya theory is most easily understood in terms of “colorings” of some geometric
or combinatorial object. For instance, consider a row of five squares:

In how many ways can we color the squares using n colors? Each square can be
colored any of the n colors, so there are n5 ways in all. These colorings can by
indicated as

C DA B E

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 7,
© Springer Science+Business Media New York 2013

75
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where A;B;C;D; and E are the five colors. Now assume that we are allowed to
rotate the row of five squares 180ı and that two colorings are considered the same
if one can be obtained from the other by such a rotation. (We may think that we
have cut the row of five squares out of paper and colored them on one side.) We say
that two colorings are equivalent if they are the same or can be transformed into
one another by a 180ı rotation. The first naive assumption is that every coloring
is equivalent to exactly one other (besides itself), so the number of inequivalent
colorings is n5=2. Clearly this reasoning cannot be correct since n5=2 is not always
an integer! The problem, of course, is that some colorings stay the same when we
rotate 180ı. In fact, these are exactly the colorings

A B C B A

where A;B; and C are any three colors. There are n3 such colorings, so the total
number of inequivalent colorings is given by

1

2
.number of colorings which don’t equal their 180ı rotation/

C.number of colorings which equal their 180ı rotation/

D 1

2
.n5 � n3/C n3

D 1

2
.n5 C n3/:

Pólya theory gives a systematic method for obtaining formulas of this sort for any
underlying symmetry group.

The general setup is the following. Let X be a finite set and G a subgroup of the
symmetric group SX . Think of G as a group of symmetries of X . Let C be another
set (which may be infinite), which we think of as a set of “colors.” A coloring of X
is a function f WX ! C . For instance, X could be the set of four squares of a 2� 2
chessboard, labelled as follows:

1 2

3 4

Let C D fr; b; yg (the colors red, blue, and yellow). A typical coloring of X
would then look like
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y r

r b

The above diagram thus indicates the function f WX ! C given by f .1/ D
r; f .2/ D b; f .3/ D y; f .4/ D r .

NOTE. We could work in the slightly greater generality of a group G acting on the
set X , i.e., we are given a homomorphism 'WG ! SX that need not be injective.
However, we then have a well-defined induced injective homomorphism  WH !
SX , whereH D G=.ker'/. The results obtained below forH are identical to those
we get for G, so nothing is lost by assuming that ' is injective. In this case we can
identify G with its image '.G/.

We define two colorings f and g to be equivalent (or G-equivalent, when it is

necessary to specify the group), denoted f 
 g or f
G
 g, if there exists an element

 2 G such that

g..x// D f .x/ for all x 2 X:
We may write this condition more succinctly as g D f , where g denotes the
composition of functions (from right to left). It is easy to check, using the fact that
G is a group, that 
 is an equivalence relation. One should think that equivalent
functions are the same “up to symmetry.”

7.1 Example. Let X be the 2 � 2 chessboard and C D fr; b; yg as above. There
are many possible choices of a symmetry group G, and this will affect when two
colorings are equivalent. For instance, consider the following groups:

• G1 consists of only the identity permutation .1/.2/.3/.4/.
• G2 is the group generated by a vertical reflection. It consists of the two elements
.1/.2/.3/.4/ (the identity element) and .1; 2/.3; 4/ (the vertical reflection).

• G3 is the group generated by a reflection in the main diagonal. It consists of the
two elements .1/.2/.3/.4/ (the identity element) and .1/.4/.2; 3/ (the diagonal
reflection).

• G4 is the group of all rotations of X . It is a cyclic group of order four with
elements .1/.2/.3/.4/, .1; 2; 4; 3/, .1; 4/.2; 3/, and .1; 3; 4; 2/.

• G5 is the dihedral group of all rotations and reflections of X . It has eight
elements, namely, the four elements of G4 and the four reflections .1; 2/.3; 4/,
.1; 3/.2; 4/, .1/.4/.2; 3/, and .2/.3/.1; 4/.

• G6 is the symmetric group of all 24 permutations of X . Although this is a
perfectly valid group of symmetries, it no longer has any connection with the
geometric representation of X as the squares of a 2 � 2 chessboard.

Consider the inequivalent colorings ofX with two red squares, one blue square, and
one yellow square, in each of the six cases above.
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.G1/ There are 12 colorings in all with two red squares, one blue square, and one
yellow square, and all are inequivalent under the trivial group (the group with
one element). In general, whenever G is the trivial group then two colorings
are equivalent if and only if they are the same [why?].

.G2/ There are now six inequivalent colorings, represented by

r r

y

r

r y

r

r

y y

r r

r

y r

r y

rb

b

b

b b

b

Each equivalence class contains two elements.
.G3/ Now there are seven classes, represented by

r r

y

r r

y

y

r r

y

r r

r

y r

r

r y r

y r

bb b

b b b b

The first five classes contain two elements each and the last two classes
only one element. Although G2 and G3 are isomorphic as abstract groups,
as permutation groups they have a different structure. Specifically, the
generator .1; 2/.3; 4/ of G2 has two cycles of length two, while the generator
.1/.4/.2; 3/ has two cycles of length one and one of length two. As we will
see below, it is the lengths of the cycles of the elements of G that determine
the sizes of the equivalence classes. This explains why the number of classes
for G2 and G3 is different.

(G4) There are three classes, each with four elements. The size of each class
is equal to the order of the group because none of the colorings have any
symmetry with respect to the group, i.e., for any coloring f , the only group
element  that fixes f (so f D f ) is the identity ( D .1/.2/.3/.4/).

r r

y

r r

y

r

y rb b

b

(G5) Under the full dihedral group there are now two classes.

r

y

r r

y rb

b
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The first class has eight elements and the second four elements. In general, the
size of a class is the index in G of the subgroup fixing some fixed coloring in
that class [why?]. For instance, the subgroup fixing the second coloring above
is f.1/.2/.3/.4/; .1; 4/.2/.3/g, which has index four in the dihedral group of
order eight.

(G6) Under the group S4 of all permutations of the squares there is clearly only
one class, with all 12 colorings. In general, for any set X if the group is the
symmetric group SX then two colorings are equivalent if and only if each
color appears the same number of times [why?].

Our object in general is to count the number of equivalence classes of colorings
which use each color a specified number of times. We will put the information into
a generating function—a polynomial whose coefficients are the numbers we seek.
Consider for example the set X , the group G D G5 (the dihedral group), and the
set C D fr; b; yg of colors in Example 7.1 above. Let �.i; j; k/ be the number of
inequivalent colorings using red i times, blue j times, and yellow k times. Think of
the colors r; b; y as variables and form the polynomial

FG.r; b; y/ D
X

iCjCkD4
�.i; j; k/ribj yk:

Note that we sum only over i; j; k satisfying i C j C k D 4 since a total of four
colors will be used to color the four-element set X . The reader should check that

FG.r; b; y/ D .r4 C b4 C y4/C .r3b C rb3 C r3y C ry3 C b3y C by3/
C2.r2b2 C r2y2 C b2y2/C 2.r2by C rb2y C rby2/:

For instance, the coefficient of r2by is two because, as we have seen above, there
are two inequivalent colorings using the colors r; r; b; y. Note that FG.r; b; y/ is a
symmetric function of the variables r; b; y (i.e., it stays the same if we permute the
variables in any way), because insofar as counting inequivalent colorings goes, it
makes no difference what names we give the colors. As a special case we may ask
for the total number of inequivalent colorings with four colors. This is obtained by
setting r D b D y D 1 in FG.r; b; y/ [why?], yielding FG.1; 1; 1/ D 3 C 6C
2 � 3C 2 � 3 D 21.

What happens to the generating function FG in the above example when we
use the n colors r1; r2; : : : ; rn (which can be thought of as different shades of red)?
Clearly all that matters are the multiplicities of the colors, without regard for their
order. In other words, there are five cases: (a) all four colors the same, (b) one color
used three times and another used once, (c) two colors used twice each, (d) one color
used twice and two others once each, and (e) four colors used once each. These five
cases correspond to the five partitions of 4, i.e., the five ways of writing 4 as a sum
of positive integers without regard to order: 4, 3C1, 2C2, 2C1C1, 1C1C1C1.
Our generating function becomes
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FG.r1; r2; : : : ; rn/ D
X

i

r4i C
X

i¤j
r3i rj (7.1)

C2
X

i<j

r2i r
2
j C 2

X

i¤j
i¤k
j<k

r2i rj rk C 3
X

i<j<k<l

ri rj rkrl ; (7.2)

where the indices in each sum lie between 1 and n. If we set all variables equal to one
(obtaining the total number of colorings with n colors), then simple combinatorial
reasoning yields

FG.1; 1; : : : ; 1/ D nC n.n � 1/C 2
 
n

2

!

C 2n
 
n � 1
2

!

C 3
 
n

4

!

D 1

8
.n4 C 2n3 C 3n2 C 2n/: (7.3)

Note that the polynomial (7.3) has the following description: the denominator 8 is
the order of the group G5, and the coefficient of ni in the numerator is just the
number of permutations in G5 with i cycles! For instance, the coefficient of n2 is
3, and G5 has the three elements .1; 2/.3; 4/, .1; 3/.2; 4/, and .1; 4/.2; 3/ with two
cycles. We want to prove a general result of this nature.

The basic tool which we will use is a simple result from the theory of permutation
groups known as Burnside’s lemma. It was actually first proved by Cauchy when G
is transitive (i.e., jY=Gj D 1 in Lemma 7.2 below) and by Frobenius in the general
case and is sometimes called the Cauchy–Frobenius lemma.

7.2 Lemma (Burnside’s lemma). Let Y be a finite set and G a subgroup of SY .
For each  2 G, let

Fix./ D fy 2 Y W.y/ D yg;
so #Fix./ is the number of cycles of length one in the permutation  . Let Y=G be
the set of orbits of G. Then

jY=Gj D 1

#G

X

2G
#Fix./:

An equivalent form of Burnside’s lemma is the statement that the average number
of elements of Y fixed by an element of G is equal to the number of orbits. Before
proceeding to the proof, let us consider an example.

7.3 Example. Let Y D fa; b; c; d g,
G D f.a/.b/.c/.d/; .a; b/.c; d/; .a; c/.b; d/; .a; d/.b; c/g;

and

G0 D f.a/.b/.c/.d/; .a; b/.c/.d/; .a/.b/.c; d/; .a; b/.c; d/g:
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Both groups are isomorphic to Z2 � Z2 (compare Example 5.1(c) and (d)).
By Burnside’s lemma the number of orbits of G is 1

4
.4C 0C 0C 0/ D 1. Indeed,

given any two elements i; j 2 Y , it is clear by inspection that there is a  2 G
(which happens to be unique) such that .i/ D j . On the other hand, the number of
orbits of G0 is 1

4
.4C 2C 2C 0/ D 2. Indeed, the two orbits are fa; bg and fc; d g.

Proof of Burnside’s Lemma. For y 2 Y let Gy D f 2 GW � y D yg (the set of
permutations fixing y). Then

1

#G

X

2G
#Fix./ D 1

#G

X

2G

X

y2Y
�yDy

1

D 1

#G

X

y2Y

X

2G
�yDy

1

D 1

#G

X

y2Y
#Gy:

Now (as in the proof of Lemma 5.6) the multiset of elements  �y,  2 G, contains
every element in the orbit Gy the same number of times, namely #G=#Gy times.
Thus y occurs #G=#Gy times among the  � y, so

#G

#Gy
D #Gy:

Therefore

1

#G

X

2G
#Fix./ D 1

#G

X

y2Y

#G

#Gy

D
X

y2Y

1

#Gy
:

How many times does a term 1=#O appear in the above sum, where O is a fixed
orbit? We are asking for the number of y such that Gy D O. But Gy D O if and
only if y 2 O, so 1=#O appears #O times. Thus each orbit gets counted exactly
once, so the above sum is equal to the number of orbits. �

7.4 Example. How many inequivalent colorings of the vertices of a regular hexagon
H are there using n colors, under cyclic symmetry? Let Cn be the set of all n-
colorings of H . Let G be the group of all permutations of Cn which permute the
colors cyclically, so G Š Z6. We are asking for the number of orbits of G [why?].
We want to apply Burnside’s lemma, so for each of the six elements � ofG we need
to compute the number of colorings fixed by that element. Let  be a generator
of G.
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• � D 1 (the identity): All n6 colorings are fixed by � .
• � D ; �1: Only the n colorings with all colors equal are fixed.
• � D 2; 4: Any coloring of the form ababab is fixed (writing the colors

linearly in the order they appear around the hexagon, starting at any fixed vertex).
There are n choices for a and n for b, so n2 colorings in all.

• � D 3: The fixed colorings are of the form abcabc, so n3 in all.

Hence by Burnside’s lemma, we have

number of orbits D 1

6
.n6 C n3 C 2n2 C 2n/:

The reader who has followed the preceding example will have no trouble
understanding the following result.

7.5 Theorem. Let G be a group of permutations of a finite set X . Then the number
NG.n/ of inequivalent (with respect to G) n-colorings of X is given by

NG.n/ D 1

#G

X

2G
nc./; (7.4)

where c./ denotes the number of cycles of  .

Proof. Let n denote the action of 2 G on the set Cn of n-colorings ofX . We want
to determine the set Fix.n/, so that we can apply Burnside’s lemma. Let C be the
set of n colors. If f WX ! C is a coloring fixed by  , then for all x 2 X we have

f .x/ D n � f .x/ D f ..x//:
Thus f 2 Fix.n/ if and only if f .x/ D f ..x//. Hence f .x/ D f .k.x// for
any k � 1 [why?]. The elements y of X of the form k.x/ for k � 1 are just the
elements of the cycle of  containing x. Thus to obtain f 2 Fix.n/, we should
take the cycles �1; : : : ; �c./ of  and color each element of �i the same color.
There are n choices for each �i , so nc./ colorings in all fixed by  . In other words,
#Fix.n/ D nc./, and the proof follows by Burnside’s lemma. ut

We would now like not just to count the total number of inequivalent colorings
with n colors but more strongly to specify the number of occurrences of each color.
We will need to use not just the number c./ of cycles of each  2 G, but rather
the lengths of each of the cycles of  . Thus given a permutation  of an n-element
set X , define the type of  to be

type./ D .c1; c2; : : : ; cn/;
where  has ci i cycles. For instance, if  D 4; 7; 3; 8; 2; 10; 11; 1; 6; 9; 5, then

type./ D type .1; 4; 8/.2; 7; 11; 5/.3/.6; 10; 9/

D .1; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0/:
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Note that we always have
P

i ici D n [why?]. Define the cycle indicator of  to be
the monomial

Z D zc11 zc22 � � � zcnn :
(Many other notations are used for the cycle indicator. The use ofZ comes from the
German word Zyklus for cycle. The original paper of Pólya was written in German.)
Thus for the example above, we have Z D z1z23z4.

Now given a subgroupG of SX , the cycle indicator (or cycle index polynomial)
of G is defined by

ZG D ZG.z1; : : : ; zn/ D 1

#G

X

2G
Z:

ThusZG (also denotedPG , Cyc.G/, etc.) is a polynomial in the variables z1; : : : ; zn.

7.6 Example. IfX consists of the vertices of a square andG is the group of rotations
of X (a cyclic group of order 4), then

ZG D 1

4
.z41 C z22 C 2z4/:

If reflections are also allowed (so G is the dihedral group of order 8), then

ZG D 1

8
.z41 C 3z22 C 2z21z2 C 2z4/:

We are now ready to state the main result of this chapter.

7.7 Theorem (Pólya’s theorem, 1937). Let G be a group of permutations of the
n-element set X . Let C D fr1; r2; : : :g be a set of colors. Let �.i1; i2; : : :/ be the
number of inequivalent (under the action of G) colorings f WX ! C such that
color rj is used ij times. Define

FG.r1; r2; : : :/ D
X

i1;i2;:::

�.i1; i2; : : :/r
i1
1 r

i2
2 � � � :

(Thus FG is a polynomial or a power series in the variables r1; r2; : : :, depending
on whether or not C is finite or infinite.) Then

FG.r1; r2; : : :/ D ZG.r1Cr2Cr3C� � �; r21Cr22Cr23 C � � �; : : :; rj1Crj2Crj3C� � �; : : :/:

(In other words, substitute
P

i r
j
i for zj in ZG .)

Before giving the proof let us consider an example.
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7.8 Example. Suppose that in Example 7.6 our set of colors is C D fa; b; c; d g,
and that we take G to be the group of cyclic symmetries. Then

FG.a; b; c; d / D 1

4

�
.aCbCcCd/4C.a2Cb2Cc2Cd2/2C2.a4Cb4Cc4Cd4/�

D .a4C � � � /C.a3bC � � � /C2.a2b2C � � � /C3.a2bcC � � � /C6abcd:

An expression such as .a2b2 C � � � / stands for the sum of all monomials in the
variables a; b; c; d with exponents 2; 2; 0; 0 (in some order). The coefficient of all
such monomials is 2, indicating two inequivalent colorings using one color twice
and another color twice. If instead G were the full dihedral group, we would get

FG.a; b; c; d / D 1

8

�
.aCbCcCd/4C3.a2Cb2Cc2Cd2/2

C 2.aCbCcCd/2.a2Cb2Cc2Cd2/C2.a4Cb4Cc4Cd4/�

D .a4C � � � /C.a3bC � � � /C2.a2b2C � � � /C2.a2bcC � � � /C3abcd:

Proof of Pólya’s Theorem. Let #X D t and i1 C i2 C � � � D t , where each ij � 0.
Let i D .i1; i2; : : :/, and let Ci denote the set of all colorings of X with color rj
used ij times. The groupG acts on Ci , since if f 2 Ci and  2 G, then  �f 2 Ci .
(“Rotating” a colored object does not change how many times each color appears.)
Let i denote the action of on Ci . We want to apply Burnside’s lemma to compute
the number of orbits, so we need to find #Fix.i /.

In order for f 2 Fix.i /, we must color X so that (a) in any cycle of  , all
the elements get the same color, and (b) the color rj appears ij times. Consider the
product

H D
Y

j

.r
j
1 C rj2 C � � � /cj ./;

where cj ./ is the number of j -cycles (cycles of length j ) of  . When we expand
this product as a sum of monomials rj11 r

j2
2 � � � , we get one of these monomials by

choosing a term r
j

k from each factor of H and multiplying these terms together.

Choosing rjk corresponds to coloring all the elements of some j -cycle with rk. Since

a factor rj1 C rj2 C� � � occurs precisely cj ./ times inH , choosing a term r
j

k from
every factor corresponds to coloring X so that every cycle is monochromatic (i.e.,
all the elements of that cycle get the same color). The product of these terms rj

k

will be the monomial rj11 r
j2
2 � � � , where we have used color rk a total of jk times. It

follows that the coefficient of ri1i r
i2
2 � � � in H is equal to #Fix.i /. Thus

H D
X

i

#Fix.i /r
i1
1 r

i2
2 � � � : (7.5)
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Now sum both sides of (7.5) over all  2 G and divide by #G. The left-hand side
becomes

1

#G

X

2G

Y

j

.r
j
1 C rj2 C � � � /cj ./ D ZG.r1 C r2 C � � � ; r21 C r22 C � � � ; : : :/:

On the other hand, the right-hand side becomes

X

i

"
1

#G

X

2G
#Fix.i /

#

r
i1
1 r

i2
2 � � � :

By Burnside’s lemma, the expression in brackets is just the number of orbits of i
acting on Ci , i.e., the number of inequivalent colorings using color rj a total of ij
times, as was to be proved. �
7.9 Example (necklaces). A necklace of length ` is a circular arrangement of `
(colored) beads. Two necklaces are considered the same if they are cyclic rotations
of one another. Let X be a set of ` (uncolored) beads, say X D f1; 2; : : : ; `g.
Regarding the beads as being placed equidistantly on a circle in the order 1; 2; : : : ; `,
let G be the cyclic group of rotations of X . Thus if  is the cycle .1; 2; : : : ; `/, then
G D f1; ; 2; : : : ; `�1g. For example, if ` D 6 then the elements of G are

0 D .1/.2/.3/.4/.5/.6/;
 D .1; 2; 3; 4; 5; 6/;
2 D .1; 3; 5/.2; 4; 6/;
3 D .1; 4/.2; 5/.3; 6/;
4 D .1; 5; 3/.2; 6; 4/;
5 D .1; 6; 5; 4; 3; 2/:

In general, if d is the greatest common divisor ofm and ` (denoted d D gcd.m; `/),
then m has d cycles of length `=d . An integer m satisfies 1 � m � ` and
gcd.m; `/ D d if and only if 1 � m=d � `=d and gcd.m=d; `=d/ D 1. Hence the
number of such integers m is given by the Euler phi-function (or totient function)
�.`=d/, which by definition is equal to the number of integers 1 � i � `=d such
that gcd.i; `=d/D 1. As an aside, recall that �.k/ can be computed by the formula

�.k/ D k
Y

pjk
p prime

�
1 � 1

p

�
: (7.6)

For instance, �.1000/ D 1000.1� 1
2
/.1 � 1

5
/ D 400. Putting all this together gives

the following formula for the cycle enumeratorZG.z1; : : : ; z`/:

ZG.z1; : : : ; z`/ D 1

`

X

d j`
�.`=d/zd`=d ;
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or (substituting `=d for d ),

ZG.z1; : : : ; z`/ D 1

`

X

d j`
�.d/z`=dd :

There follows from Pólya’s theorem the following result (originally proved by
MacMahon (1854–1929) before Pólya discovered his general result).

7.10 Theorem.

(a) The numberN`.n/ of n-colored necklaces of length ` is given by

N`.n/ D 1

`

X

d j`
�.`=d/nd : (7.7)

(b) We have

FG.r1; r2; : : :/ D 1

`

X

d j`
�.d/.rd1 C rd2 C � � � /`=d :

NOTE. (b) reduces to (a) if r1 D r2 D � � � D 1. Moreover, since clearly N`.1/ D 1,
putting n D 1 in (7.7) yields the well-known identity

X

d j`
�.`=d/ D `:

What if we are allowed to flip necklaces over, not just rotate them? Now the
group becomes the dihedral group of order 2`, and the corresponding inequivalent
colorings are called dihedral necklaces. We leave to the reader to work out the cycle
enumerators

1

2`

0

@
X

d j`
�.d/z`=dd Cmz21z

m�1
2 Cmzm2

1

A ; if ` D 2m;

1

2`

0

@
X

d j`
�.d/z`=dd C `z1zm2

1

A ; if ` D 2mC 1:

7.11 Example. Let G D S`, the group of all permutations of f1; 2; : : : ; `g D X .
Thus for instance

ZS3 .z1; z2; z3/ D
1

6
.z31 C 3z1z2 C 2z3/;

ZS4 .z1; z2; z3; z4/ D
1

24
.z41 C 6z21z2 C 3z22 C 8z1z3 C 6z4/:

It is easy to count the number of inequivalent colorings in Ci . If two colorings of X
use each color the same number of times, then clearly there is some permutation of
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X which sends one of the colorings to the other. Hence Ci consists of a single orbit.
Thus

FS`
.r1; r2; : : :/ D

X

i1Ci2C���D`
r
i1
1 r

i2
2 � � � ;

the sum of all monomials of degree `.
To count the total number of inequivalent n-colorings, note that

X

`�0
FS`

.r1; r2; : : :/x
` D 1

.1 � r1x/.1 � r2x/ � � � ; (7.8)

since if we expand each factor on the right-hand side into the series
P

j�0 r
j
i x

j and

multiply, the coefficient of x` will just be the sum of all monomials of degree `.
For fixed n, let fn.`/ denote the number of inequivalent n-colorings of X . Since
fn.`/ D FS`

.1; 1; : : : ; 1/ (n 1’s in all), there follows from (7.8) that

X

`�0
fn.`/x

` D 1

.1 � x/n :

The right-hand side can be expanded (e.g., by Taylor’s theorem) as

1

.1 � x/n D
X

`�0

 
nC ` � 1

`

!

x`:

Hence

fn.`/ D
 
nC ` � 1

`

!

:

It is natural to ask whether there might be a more direct proof of such a simple result.
This is actually a standard result in elementary enumerative combinatorics. For fixed
` and n we want the number of solutions to i1 C i2 C � � � C in D ` in nonnegative
integers. Suppose that we arrange n � 1 vertical bars and ` dots is a line. There
are

�
nC`�1
`

�
such arrangements since there are a total of n C ` � 1 positions, and

we choose ` of them in which to place a dot. An example of such an arrangement
for ` D 8 and n D 7 is

The number of dots in each “compartment,” read from left to right, gives the
numbers i1; : : : ; in. For the example above, we get .i1; : : : ; i7/ D .0; 0; 2; 1; 0; 3; 2/.
Since this correspondence between solutions to i1 C i2 C � � � C in D ` and
arrangements of bars and dots is clearly a bijection, we get

�
nC`�1
`

�
solutions as

claimed.
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Recall (Theorem 7.5) that the number of inequivalent n-colorings of X (with
respect to any group G of permutations of X ) is given by

1

#G

X

2G
nc./;

where c./ denotes the number of cycles of  . Hence for G D S` we get the
identity

1

`Š

X

2S`

nc./ D
 
nC ` � 1

`

!

D 1

`Š
n.nC 1/.nC 2/ � � � .nC ` � 1/:

Multiplying by `Š yields

X

2S`

nc./ D n.nC 1/.nC 2/ � � � .nC ` � 1/: (7.9)

Equivalently [why?], if we define c.`; k/ to be the number of permutations in S`

with k cycles (called a signless Stirling number of the first kind), then

X̀

kD1
c.`; k/xk D x.x C 1/.x C 2/ � � � .x C ` � 1/:

For instance, x.x C 1/.x C 2/.x C 3/ D x4 C 6x3 C 11x2 C 6x, so (taking
the coefficient of x2) 11 permutations in S4 have two cycles, namely, .123/.4/,
.132/.4/, .124/.3/, .142/.3/, .134/.2/, .143/.2/, .234/.1/, .243/.1/, .12/.34/,
.13/.24/, .14/.23/.

Although it was easy to compute the generating function FS`
.r1; r2; : : :/ directly

without the necessity of computing the cycle indicatorZS`
.z1; : : : ; z`/, we can still

ask whether there is a formula of some kind for this polynomial. First we determine
explicitly its coefficients.

7.12 Theorem. Let
P
ici D `. The number of permutations  2 S` with ci cycles

of length i (or equivalently, the coefficient of zc11 zc22 � � � in `ŠZS`
.z1; : : : ; z`/) is equal

to `Š=1c1c1Š 2c2c2Š � � � .
Example. The number of permutations in S15 with three 1-cycles, two 2-cycles,
and two 4-cycles is 15Š=13 � 3Š � 22 � 2Š � 42 � 2Š D 851; 350; 500.

Proof of Theorem 7.12. Fix c D .c1; c2; : : :/ and let Xc be the set of all per-
mutations  2 S` with ci cycles of length i . Given a permutation � D
a1a2 � � �a` in S`, construct a permutation f .�/ 2 Xc as follows. Let the 1-cycles
of f .�/ be .a1/; .a2/; : : : ; .ac1 /. Then let the 2-cycles of f .�/ be .ac1C1; ac1C2/;
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.ac1C3; ac1C4/; : : :, .ac1C2c2�1; ac1C2c2/. Then let the 3-cycles of f .�/ be .ac1C2c2C1;
ac1 C 2c2 C 2; ac1 C 2c2 C 3/, .ac1 C 2c2 C 4; ac1 C 2c2 C 5; ac1 C 2c2 C 6/; : : : ; .ac1 C 2c2 C 3c3 � 2;

ac1C2c2C3c3�1; ac1C2c2C3c3/, etc., continuing until we reach a` and have produced
a permutation in Xc . For instance, if ` D 11; c1 D 3; c2 D 2; c4 D 1, and
� D 4; 9; 6; 11; 7; 1; 3; 8; 10; 2; 5, then

f .�/ D .4/.9/.6/.11; 7/.1; 3/.8; 10; 2; 5/:
We have defined a function f WS` ! Xc . Given  2 Xc , what is #f �1./,

the number of permutations sent to  by f ? A cycle of length i can be written in i
ways, namely,

.b1; b2; : : : ; bi / D .b2; b3; : : : ; bi ; b1/ D � � � D .bi ; b1; b2; : : : ; bi�1/:
Moreover, there are ci Š ways to order the ci cycles of length i . Hence

#f �1./ D c1Š c2Š c3Š � � �1c12c23c3 � � � ;
the same number for any  2 Xc . It follows that

#Xc D #S`

c1Šc2Š � � �1c12c2 � � �
D `Š

c1Šc2Š � � �1c12c2 � � � ;

as was to be proved. �
As for the polynomialZS`

itself, we have the following result. Write expy D ey .

7.13 Theorem. We have

X

`�0
ZS`

.z1; z2; : : :/x
` D exp

�
z1x C z2

x2

2
C z3

x3

3
C � � �

�
:

Proof. There are some sophisticated ways to prove this theorem which “explain”
why the exponential function appears, but we will be content here with a “naive”
computational proof. Write

exp

�
z1x C z2

x2

2
C z3

x3

3
C � � �

�

D ez1x � ez2
x2

2 � ez3
x3

3 � � �

D
0

@
X

n�0

zn1x
n

nŠ

1

A

0

@
X

n�0

zn2x
2n

2nnŠ

1

A

0

@
X

n�0

zn3x
3n

3nnŠ

1

A � � � :
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When we multiply this product out, the coefficient of zc11 zc22 � � �x`, where ` D c1 C
2c2 C � � � , is given by

1

1c1c1Š 2c2c2Š � � � D
1

`Š

�
`Š

1c1c1Š 2c2c2Š � � �
�
:

By Theorem 7.12 this is just the coefficient of zc11 zc22 � � � in ZS`
.z1; z2; : : :/, as was

to be proved. ut
As a check of Theorem 7.13, set each zi D n to obtain

X

`�0
ZS`

.n; n; : : :/x` D exp

�
nx C nx

2

2
C nx

3

3
C � � �

�

D exp

�
n.x C x2

2
C x3

3
C � � � /

�

D exp
�
n log.1 � x/�1�

D 1

.1 � x/n

D
X

`�0

 
�n
`

!

.�x/`

D
X

`�0

 
nC ` � 1

`

!

x`;

the last step following from the easily checked equality
��n
`

� D .�1/`�nC`�1
`

�
.

Equating coefficients of x` in the first and last terms of the above string of equalities
gives

ZS`
.n; n; : : :/ D

 
nC ` � 1

`

!

D n.nC 1/ � � � .nC ` � 1/
`Š

;

agreeing with Theorem 7.5 and (7.9).
Theorem 7.13 has many enumerative applications. We give one such result here

as an example.

7.14 Proposition. Let f .n/ be the number of permutations  2 Sn of odd order.
Equivalently, k D � (the identity permutation) for some odd k. Then
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f .n/ D
(

12 � 32 � 52 � � � .n � 1/2; n even;

12 � 32 � 52 � � � .n � 2/2 � n; n odd:

Proof. A permutation has odd order if and only if all its cycle lengths are odd.
Hence [why?]

f .n/ D nŠZSn .zi D 1; i oddI zi D 0; i even/:

Making this substitution in Theorem 7.13 gives

X

n�0
f .n/

xn

nŠ
D exp

�
x C x3

3
C x5

5
C � � �

�
:

Since � log.1 � x/ D x C x2

2
C x3

3
C � � � , we get [why?]

X

n�0
f .n/

xn

nŠ
D exp

�
1

2
.� log.1 � x/C log.1C x//

�

D exp
1

2
log

�
1C x
1 � x

�

D
r
1C x
1 � x :

We therefore need to find the coefficients in the power series expansion ofp
.1C x/=.1 � x/ at x D 0. There is a simple trick for doing so:

r
1C x
1 � x D .1C x/.1 � x

2/�1=2

D .1C x/
X

m�0

 
�1=2
m

!

.�x2/m

D
X

m�0
.�1/m

 
�1=2
m

!

.x2m C x2mC1/;

where by definition
 
�1=2
m

!

D 1

mŠ

�
�1
2

��
�3
2

�
� � �
�
�2m � 1

2

�
:

It is now a routine computation to check that the coefficient of xn=nŠ inp
.1C x/=.1 � x/ agrees with the claimed value of f .n/. ut
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Quotients of Boolean Algebras. We will show how to apply Pólya theory to the
problem of counting the number of elements of given rank in a quotient poset
BX=G. HereX is a finite set,BX is the boolean algebra of all subsets ofX , andG is
a group of permutations ofX (with an induced action on BX ). What do colorings of
X have to do with subsets? The answer is very simple: a 2-coloring f WX ! f0; 1g
corresponds to a subset Sf of X by the usual rule

s 2 Sf ” f .s/ D 1:
Note that two 2-colorings f and g are G-equivalent if and only if Sf and Sg are in
the same orbit of G (acting on BX ). Thus the number of inequivalent 2-colorings f
of X with i values equal to 1 is just #.BX=G/i , the number of elements of BX=G
of rank i . As an immediate application of Pólya’s theorem (Theorem 7.7) we obtain
the following result.

7.15 Corollary. We have

X

i

#.BX=G/i qi D ZG.1C q; 1C q2; 1C q3; : : :/:

Proof. If �.i; j / denotes the number of inequivalent 2-colorings of X with the
colors 0 and 1 such that 0 is used j times and 1 is used i times (so i C j D #X ),
then by Pólya’s theorem we have

X

i;j

�.i; j /xiyj D ZG.x C y; x2 C y2; x3 C y3; : : :/:

Setting x D q and y D 1 yields the desired result [why?]. ut
Combining Corollary 7.15 with the rank-unimodality of BX=G (Theorem 5.8)

yields the following corollary.

7.16 Corollary. For any finite group G of permutations of a finite set X , the
polynomial ZG.1 C q; 1 C q2; 1 C q3; : : :/ has symmetric, unimodal, integer
coefficients.

7.17 Example. (a) For the poset P of Example 5.4(a) we have G D f.1/.2/.3/,
.1; 2/.3/g, so ZG.z1; z2; z3/ D 1

2
.z31 C z1z2/. Hence

3X

iD0
.#Pi/q

i D 1

2

�
.1C q/3 C .1C q/.1C q2/�

D 1C 2q C 2q2 C q3:
(b) For the posetP of Example 5.4(b) we haveG D f.1/.2/.3/.4/.5/, .1; 2; 3; 4; 5/,

.1; 3; 5; 2; 4/, .1; 4; 2; 5; 3/, .1; 5; 4; 3; 2/g, so ZG.z1; z2; z3; z4; z5/ D 1
5
.z51 C

4z5/. Hence
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5X

iD0
.#Pi/qi D 1

5

�
.1C q/5 C 4.1C q5/�

D 1C q C 2q2 C 2q3 C q4 C q5:

Note that we are equivalently counting two-colored necklaces (as defined in
Example 7.9), say with colors red and blue, of length five according to the number
of blue beads.

(c) Let X be the squares of a 2 � 2 chessboard, labelled as follows:

1 2

43

Let G be the wreath product S2 oS2, as defined in Chap. 6. Then

G D f.1/.2/.3/.4/; .1; 2/.3/.4/; .1/.2/.3; 4/; .1; 2/.3; 4/;

.1; 3/.2; 4/; .1; 4/.2; 3/; .1; 3; 2; 4/; .1; 4; 2; 3/g;
so

ZG.z1; z2; z3; z4/ D 1

8
.z41 C 2z21z2 C 3z22 C 2z4/:

Hence

4X

iD0
.#Pi/qi D 1

4

�
.1C q/4 C 2.1C q/2.1C q2/C 3.1C q2/2 C 2.1C q4/�

D 1C q C 2q2 C q3 C q4

D
�

4

2

�
;

agreeing with Theorem 6.6.

Using more sophisticated methods (such as the representation theory of the
symmetric group), the following generalization of Corollary 7.16 can be proved:
let P.q/ be any polynomial with symmetric, unimodal, nonnegative, integer
coefficients, such as 1 C q C 3q2 C 3q3 C 8q4 C 3q5 C 3q6 C q7 C q8 or
q5 C q6 (D 0 C 0q C � � � C 0q4 C q5 C q6 C 0q7 C � � � C 0q11). Then the
polynomial ZG.P.q/; P.q2/; P.q3/; : : :/ has symmetric, unimodal, nonnegative,
integer coefficients.

Graphs. A standard application of Pólya theory is to the enumeration of noniso-
morphic graphs. We saw at the end of Chap. 5 that if M is an m-element vertex
set, X D �M

2

�
, and S

.2/
m is the group of permutations of X induced by permutations
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of M , then an orbit of i -element subsets of X may be regarded as an isomorphism
class of graphs on the vertex set M with i edges. Thus #.BX=S

.2/
m /i is the number

of nonisomorphic graphs (without loops or multiple edges) on the vertex set M
with i edges. It follows from Corollary 7.15 that if gi .m/ denotes the number of
nonisomorphic graphs with m vertices and i edges, then

.m2/X

iD0
gi .m/q

i D Z
S
.2/
m
.1C q; 1C q2; 1C q3; : : :/:

Thus we would like to compute the cycle enumerator Z
S
.2/
m
.z1; z2; : : :/. If two

permutations  and � of M have the same cycle type (number of cycles of each
length), then their actions on X also have the same cycle type [why?]. Thus for
each possible cycle type of a permutation of M (i.e., for each partition of m) we
need to compute the induced cycle type on X . We also know from Theorem 7.12
the number of permutations of M of each type. For small values of m we can pick
some permutation  of each type and compute directly its action on X in order to
determine the induced cycle type. Form D 4 we have:

Cycle Cycle
lengths Induced lengths
of  Number  permutation  0 of  0

1; 1; 1; 1 1 .1/.2/.3/.4/ .12/.13/.14/.23/.24/.34/ 1; 1; 1; 1; 1; 1

2; 1; 1 6 .1; 2/.3/.4/ .12/.12; 23/.14; 24/.34/ 2; 2; 1; 1

3; 1 8 .1; 2; 3/.4/ .12; 23; 13/.14; 24; 34/ 3; 3

2; 2 3 .1; 2/.3; 4/ .12/.13; 24/.14; 23/.34/ 2; 2; 1; 1

4 6 .1; 2; 3; 4/ .12; 23; 34; 14/.13; 24/ 4; 2

It follows that

Z
S
.2/
4
.z1; z2; z3; z4; z5; z6/ D 1

24
.z61 C 9z21z

2
2 C 8z23 C 6z2z4/:

If we set zi D 1C qi and simplify, we obtain the polynomial

6X

iD0
gi .4/q

i D 1C q C 2q2 C 3q3 C 2q4 C q5 C q6:

Indeed, this polynomial agrees with the rank-generating function of the poset of
Fig. 5.1.

Suppose that we instead want to count the number hi .4/ of nonisomorphic graphs
with four vertices and i edges, where now we allow at most two edges between any
two vertices. We can take M , X , and G D S

.2/
4 as before, but now we have three

colors: red for no edges, blue for one edge, and yellow for two edges. A monomial
ribj yk corresponds to a coloring with i pairs of vertices having no edges between
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them, j pairs having one edge, and k pairs having two edges. The total number e of
edges is j C 2k. Hence if we let r D 1; b D q; y D q2, then the monomial ribj yk

becomes qjC2k D qe . It follows that

i.i�1/X

iD0
hi .4/q

i D Z
S
.2/
4
.1C q C q2; 1C q2 C q4; 1C q3 C q6; : : :/

D 1

24

�
.1C q C q2/6 C 9.1C q C q2/2.1C q2 C q4/2

C8.1C q3 C q6/2 C 6.1C q2 C q4/.1C q4 C q8/�

D 1C q C 3q2 C 5q3 C 8q4 C 9q5 C 12q6 C 9q7 C 8q8 C 5q9
C3q10 C q11 C q12:

The total number of nonisomorphic graphs on four vertices with edge multiplicities
at most two is

P
i hi .4/ D 66.

It should now be clear that if we restrict the edge multiplicity to be r , then the
corresponding generating function is Z

S
.2/
4

.1C qC q2C � � �C qr�1; 1C q2C q4C
� � � C q2r�2; : : :/. In particular, to obtain the total number N.r; 4/ of nonisomorphic
graphs on four vertices with edge multiplicity at most r , we simply set each zi D r ,
obtaining

N.r; 4/ D Z
S
.2/
4

.r; r; r; r; r; r/

D 1

24
.r6 C 9r4 C 14r2/:

This is the same as number of inequivalent r-colorings of the set X D �
M
2

�
(where

#M D 4) [why?].
Of course the same sort of reasoning can be applied to any number of vertices.

For five vertices our table becomes the following (using such notation as 15 to denote
a sequence of five 1’s).

Cycle Cycle
lengths Induced lengths
of  Number  permutation  0 of  0

15 1 .1/.2/.3/.4/.5/ .12/.13/ � � � .45/ 110

2; 13 10 .1; 2/.3/.4/.5/ .12/.13; 23/.14; 25/.15; 25/.34/.35/.45/ 23; 14

3; 12 20 .1; 2; 3/.4/.5/ .12; 23; 13/.14; 24; 34/.15; 25; 35/.45/ 33; 1

22; 1 15 .1; 2/.3; 4/.5/ .12/.13; 24/.14; 23/.15; 25/.34/.35; 45/ 24; 12

4; 1 30 .1; 2; 3; 4/.5/ .12; 23; 34; 14/.13; 24/.15; 25; 35; 45/ 42; 2

3; 2 20 .1; 2; 3/.4; 5/ .12; 23; 13/.14; 25; 34; 15; 24; 35/.45/ 6; 3; 1

5 24 .1; 2; 3; 4; 5/ .12; 23; 34; 45; 15/.13; 24; 35; 14; 25/ 52
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Thus

Z
S
.2/
5

.z1; : : : ; z10/ D 1

120
.z101 C10z41z

3
2C20z1z

3
3C15z21z

4
2C30z2z

2
4C20z1z3z6C24z25/;

from which we compute

10X

iD0
gi .5/q

i D Z
S
.2/
5

.1C q; 1C q2; : : : ; 1C q10/

D 1C q C 2q2 C 4q3 C 6q4 C 6q5 C 6q6 C 4q7 C 2q8 C q9 C q10:
For an arbitrary number m D #M of vertices there exist explicit formulas for the
cycle indicator of the induced action of  2 SM on

�
M
2

�
, thereby obviating the need

to compute  0 explicitly as we did in the above tables, but the overall expression for
Z

S
.2/
m

cannot be simplified significantly or put into a simple generating function as
we did in Theorem 7.13. For reference we record

Z
S
.2/
6
D 1

6Š
.z151 C 15z71z

4
2 C 40z31z

4
3 C 45z31z

6
2 C 90z1z2z

3
4 C 120z1z2z

2
3z6

C144z35 C 15z31z
6
2 C 90z1z2z

3
4 C 40z53 C 120z3z

2
6/

.g0.6/; g1.6/; : : : ; g15.6// D .1; 1; 2; 5; 9; 15; 21; 24; 24; 21; 15; 9; 5; 2; 1; 1/:
Moreover if u.n/ denotes the number of nonisomorphic simple graphs with n

vertices, then

.u.0/; u.1/; : : : ; u.11//

D .1; 1; 2; 4; 11; 34; 156; 1044; 12346; 274668; 12005168; 1018997864/:
A table of u.n/ for n � 75 is given at

http://oeis.org/A000088/b000088.txt

In particular,

u.75/ D 91965776790545918117055311393231179873443957239
0555232344598910500368551136102062542965342147

8723210428876893185920222186100317580740213865

7140377683043095632048495393006440764501648363

4760490012493552274952950606265577383468983364

6883724923654397496226869104105041619919159586

8518775275216748149124234654756641508154401414

8480274454866344981385848105320672784068407907
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1134767688676890584660201791139593590722767979

8617445756819562952590259920801220117529208077

0705444809177422214784902579514964768094933848

3173060596932480677345855848701061537676603425

1254842843718829212212327337499413913712750831

0550986833980707875560051306072520155744624852

0263616216031346723897074759199703968653839368

77636080643275926566803872596099072;

a number of 726 digits! Compare

2.
75
2 /

75Š
D :9196577679054591809� 10726;

which agrees with u.75/ to 17 significant digits [why?].

Notes for Chap. 7

Burnside’s lemma (Lemma 7.2) was actually first stated and proved by Frobenius
[40, end of Sect. 4]. Frobenius in turn credits Cauchy [18, p. 286] for proving
the lemma in the transitive case. Burnside, in the first edition of his book [14,
Sects. 118–119], attributes the lemma to Frobenius, but in the second edition [15]
this citation is absent. For more on the history of Burnside’s lemma, see [79]
and [121]. Many authors now call this result the Cauchy–Frobenius lemma. The
cycle indicator ZG.z1; z2; : : :/ (where G is a subgroup of Sn) was first considered
by Redfield [91], who called it the group reduction function, denoted Grf.G/.
Pólya [84] independently defined the cycle indicator, proved the fundamental
Theorem 7.7, and gave numerous applications. For an English translation of Pólya’s
paper, see [85]. Much of Pólya’s work was anticipated by Redfield. For interesting
historical information about the work of Redfield and its relation to Pólya theory,
see [49,51,69,92] (all in the same issue of Journal of Graph Theory). The Wikipedia
article “John Howard Redfield” also gives information and references on the
interesting story of the rediscovery and significance of Redfield’s work.

The application of Pólya’s theorem to the enumeration of nonisomorphic graphs
appears in Pólya’s original paper [84]. For much additional work on graphical
enumeration, see the text of Harary and Palmer [50].

Subsequent to Pólya’s work there have been a huge number of expositions,
applications, and generalizations of Pólya theory. An example of such a general-
ization appears in Exercise 11. We mention here only the nice survey [25] by de
Bruijn.
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Theorem 7.13 (the generating function for the cycle indicator ZS`
of the

symmetric group S`) goes back to Frobenius (see [41, bottom of p. 152 of GA])
and Hurwitz [60, Sect. 4]. It is clear that they were aware of Theorem 7.13, even if
they did not state it explicitly. For a more conceptual approach and further aspects
see Stanley [108, Sects. 5.1–5.2].

Exercises for Chap. 7

1. For a simple graph � with vertex set V , we can define an automorphism of � to
be a bijection 'WV ! V such that u and v are adjacent if and only if '.u/ and
'.v/ are adjacent. The automorphisms form a group under composition, called
the automorphism group Aut.�/ of � . Let � be the graph shown below.

� � � �

� �

�

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

Let G be the automorphism group of � , so G has order eight.

(a) What is the cycle index polynomial of G, acting on the vertices of �?
(b) In how many ways can one color the vertices of � in n colors, up to the

symmetry of �?

2. A regular tetrahedron T has four vertices, six edges, and four triangles.
The rotational symmetries of T (no reflections allowed) form a group G of
order 12.

(a) What is the cycle index polynomial of G acting on the vertices of T ?
(b) In how many ways can the vertices of T be colored in n colors, up to

rotational symmetry?
(c) What about coloring the six edges of T , up to rotational symmetry?

3. How many necklaces (up to cyclic symmetry) have n red beads and n blue
beads? (Express your answer as a sum over all divisors d of n.)

4. (not directly related to the text) A primitive necklace is a necklace with no
symmetries, i.e., no nonidentity rotation of the necklace preserves the necklace.
Let M`.n/ denote the number of primitive n-colored necklaces with ` beads.
Show that

M`.n/ D 1

`

X

d j`
�.`=d/nd ;

where � denotes the Möbius function from number theory. (Compare (7.7).)
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5. Ten balls are stacked in a triangular array with 1 atop 2 atop 3 atop 4. (Think of
billiards.) The triangular array is free to rotate in two dimensions.

(a) Find the generating function for the number of inequivalent colorings using
the ten colors r1; r2; : : : ; r10. (You don’t need to simplify your answer.)

(b) How many inequivalent colorings have four red balls, three green balls, and
three chartreuse balls? How many have four red balls, four turquoise balls,
and two aquamarine balls?

6. The dihedral group D4 of order 8 acts on the set X of 64 squares of an 8 � 8
chessboard B . Find the number of ways to choose two subsets S � T of X ,
up to the action of D4. For instance, all eight ways to choose S to be a single
corner square s and T to be fs; tg, where t is adjacent to s (i.e., has an edge in
common with s), belong to the same orbit ofD4. Write your answer as a (short)
finite sum.

7. For any finite group G of permutations of an `-element set X , let f .n/ be the
number of inequivalent (under the action of G) colorings of X with n colors.
Find limn!1 f .n/=n`. Interpret your answer as saying that “most” colorings
of X are asymmetric (have no symmetries).

8. Let X be a finite set, and let G be a subgroup of the symmetric group SX .
Suppose that the number of orbits of G acting on n-colorings of X is given by
the polynomial

f .n/ D 1

443520
.n11 C 540n9 C � � � C 10n/:

(a) What is the order (number of elements) of G?
(b) What is the size #X of X?
(c) How many transpositions are in G? A transposition is a permutation that

transposes (interchanges) two elements of X and leaves the remaining
elements fixed.

(d) How many orbits does G have acting on X?
(e) Show thatG is not a simple group. A groupG with more than one element

is simple if its only normal subgroups are G and f1g.
9. It is known that there exists a nonabelian groupG of order 27 such that x3 D 1

for all x 2 G. Use this fact to give an example of two nonisomorphic finite
subgroupsG and H of SX for some finite set X such that ZG D ZH .

10. (somewhat difficult) Let NG.n/ be the polynomial of Theorem 7.5, and let
#X D d . Show that .�1/dNG.�n/ is equal to the number of inequivalent
n-colorings f WX ! Œn� of X such that the subgroupH of G fixing f (that is,
 � f D f for all  2 H ) is contained in the alternating group AX . This result
could be called a reciprocity theorem for the polynomialNG.n/.
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11. (difficult) Suppose that a finite groupG acts on a finite set X and another finite
groupH acts on a set C of colors. Call two colorings f; gWX ! C equivalent
if there are permutations  2 G and � 2 H such that

f .x/ D � � g. � x/; for all x 2 X:
Thus we are allowed not only to permute the elements of X by some element
of G but also to permute the colors by some element of H . Show that the total
number of inequivalent colorings is given by

ZG

�
@

@z1
;
@

@z2
;
@

@z3
; � � �

�
ZH.e

z1Cz2Cz3C���; e2.z2Cz4Cz6C��� /; e3.z3Cz6Cz9C��� /; : : :/;

evaluated at z1 D z2 D z3 D � � � D 0.

Example. Let n be the number of two-colored necklaces of four beads, where
we may also interchange the two colors to get an equivalent coloring. Thus
ZG D 1

4
.z41 C z22 C 2z4/ and ZH D 1

2
.z21 C z2/. Hence

n D 1

4
� 1
2

�
@4

@z41
C @2

@z22
C 2 @

@z4

�
.e2.z1Cz2Cz3C��� / C e2.z2Cz4Cz6C��� //jziD0

D 1

8

�
@4

@z41
C @2

@z22
C 2 @

@z4

��
.2z1/4

4Š
C .2z2/2

2Š
C 2z4

1Š
C .2z2/4

4Š
C 2z4

1Š

�ˇˇ
ˇ
ˇ
ziD0

D 1

8
.16C 4C 4C 4C 4/

D 4:

The four different necklaces are 0000, 1000, 1100, and 1010.

12. (a) Let e6.n/ denote the number of permutations  2 Sn satisfying 6 D
� (the identity permutation). Find a simple formula for the generating
function

E6.x/ D
X

n�0
e6.n/

xn

nŠ
:

(b) Generalize to ek.n/ D #f 2 SnWk D �g for any k � 1.

13. Let f .n/ be the number of permutations in the symmetric group Sn all of
whose cycles have even length. For instance, f .4/ D 9 and f .11/ D 0.

(a) Let

F.x/ D
1X

nD0
f .n/

xn

nŠ
:
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Find a simple expression for F.x/. Your answer should not involve any
summation symbols (or their equivalent), logarithms, or the function ex.

(b) Use (a) to find a simple formula for f .n/.
(c) Give a combinatorial proof of (b).

14. (difficult) Give a combinatorial proof of Proposition 7.14. Despite the similarity
between Proposition 7.14 and Exercise 13, the latter is much easier to prove
combinatorially than the former.

15. Let c.w/ denote the number of cycles of a permutation w 2 Sn. Let f .n/
denote the average value of c.w/.c.w/ � 1/ for w 2 Sn, i.e.,

f .n/ D 1

nŠ

X

w2Sn

c.w/.c.w/ � 1/:

(Set f .0/ D 1.) Find a simple formula for the generating function
P

n�0 f .n/tn:

16. (a) (*) Let n � 1, and let G be a subgroup of Sn of odd order. Show that the
quotient poset Bn=G has the same number of elements of even rank as of
odd rank.

(b) Generalize (a) as follows: give a necessary and sufficient condition on a
subgroup G of Sn, in terms of the cycle lengths of elements of G, for
Bn=G to have the same number of elements of even rank as of odd rank.

17. Let c.`; k/ denote the number of permutations in S` with k cycles. Show that
the sequence

c.`; 1/; c.`; 2/; : : : ; c.`; `/

is strongly log-concave.



Chapter 8
A Glimpse of Young Tableaux

We defined in Chap. 6 Young’s lattice Y , the poset of all partitions of all nonnegative
integers, ordered by containment of their Young diagrams.

21

φ

1

2

3

4

5

11

111

1111

11111 2111 221 311 32 41

22 31211

Here we will be concerned with the counting of certain walks in the Hasse diagram
(considered as a graph) of Y . Note that since Y is infinite, we cannot talk about
its eigenvalues and eigenvectors. We need different techniques for counting walks.
It will be convenient to denote the length of a walk by n, rather than by ` as in
previous chapters.

Note that Y is a graded poset (of infinite rank), with Yi consisting of all partitions
of i . In other words, we have Y D Y0 �[Y1 �[ � � � (disjoint union), where every
maximal chain intersects each level Yi exactly once. We call Yi the i th level of
Y , just as we did for finite graded posets.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 8,
© Springer Science+Business Media New York 2013

103
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Since the Hasse diagram of Y is a simple graph (no loops or multiple edges), a
walk of length n is specified by a sequence �0; �1; : : : ; �n of vertices of Y . We will
call a walk in the Hasse diagram of a poset a Hasse walk. Each �i is a partition
of some integer, and we have either (a) �i < �iC1 and j�i j D j�iC1j � 1 or
(b) �i > �iC1 and j�i j D j�iC1j C 1. (Recall that for a partition �, we write
j�j for the sum of the parts of �.) A step of type (a) is denoted by U (for “up,”
since we move up in the Hasse diagram), while a step of type (b) is denoted by
D (for “down”). If the walk W has steps of types A1;A2; : : : ; An, respectively,
where each Ai is either U or D, then we say that W is of type AnAn�1 � � �A2A1.
Note that the type of a walk is written in the opposite order to that of the walk.
This is because we will soon regard U and D as linear transformations, and
we multiply linear transformations right-to-left (opposite to the usual left-to-right
reading order). For instance (abbreviating a partition .�1; : : : ; �m/ as �1 � � ��m), the
walk ;; 1; 2; 1; 11; 111; 211; 221; 22; 21; 31; 41 is of type UUDDUUUUDUU D
U 2D2U 4DU 2.

There is a nice combinatorial interpretation of walks of type Un which begin at
;. Such walks are of course just saturated chains ; D �0 É �1 É � � �É �n. In other
words, they may be regarded as sequences of Young diagrams, beginning with the
empty diagram and adding one new square at each step. An example of a walk of
type U 5 is given by

φ

:

We can specify this walk by taking the final diagram and inserting an i into square
s if s was added at the i th step. Thus the above walk is encoded by the “tableau”

21

3 5

4
:

Such an object � is called a standard Young tableaux (or SYT). It consists of the
Young diagram D of some partition � of an integer n, together with the numbers
1; 2; : : : ; n inserted into the squares ofD, so that each number appears exactly once,
and every row and column is increasing. We call � the shape of the SYT � , denoted
� D sh.�/. For instance, there are five SYT of shape .2; 2; 1/, given by

2

5
2

4
5

21 1 1 1 1
3 5

4 3
3 4
5 4

2 5 24
3 3

:
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Let f � denote the number of SYT of shape �, so for instance f .2;2;1/D5.
The numbers f � have many interesting properties; for instance, there is a famous
explicit formula for them known as the Frame–Robinson–Thrall hook-length
formula. For the sake of completeness we state this formula without proof, though
it is not needed in what follows.

Let u be a square of the Young diagram of the partition �. Define the hook H.u/
of u (or at u) to be the set of all squares directly to the right of u or directly below
u, including u itself. The size (number of squares) ofH.u/ is called the hook length
of u (or at u), denoted h.u/. In the diagram of the partition .4; 2; 2/ below, we have
inserted the hook length h.u/ inside each square u.

5

3

2

6 2 1

2

1

8.1 Theorem (hook-length formula). Let � ` n. Then

f � D nŠ
Q

u2� h.u/
:

Here the notation u 2 � means that u ranges over all squares of the Young diagram
of �.

For instance, the diagram of the hook lengths of � D .4; 2; 2/ above gives

f .4;2;2/ D 8Š

6 � 5 � 2 � 1 � 3 � 2 � 2 � 1 D 56:

In this chapter we will be concerned with the connection between SYT and
counting walks in Young’s lattice. If w D AnAn�1 � � �A1 is some word in U and D
and � ` n, then let us write ˛.w; �/ for the number of Hasse walks in Y of type w
which start at the empty partition ; and end at �. For instance, ˛.UDUU; 11/ D 2,
the corresponding walks being ;; 1; 2; 1; 11 and ;; 1; 11; 1; 11. Thus in particular
˛.U n; �/ D f � [why?]. In a similar fashion, since the number of Hasse walks of
typeDnU n which begin at ;, go up to a partition � ` n, and then back down to ; is
given by .f �/2, we have

˛.DnU n;;/ D
X

�`n
.f �/2: (8.1)

Our object is to find an explicit formula for ˛.w; �/ of the form f �cw, where
cw does not depend on �. (It is by no means a priori obvious that such a formula
should exist.) In particular, since f ; D 1, we will obtain by setting � D ; a simple
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formula for the number of (closed) Hasse walks of type w from ; to ; (thus including
a simple formula for (8.1)).

There is an easy condition for the existence of any Hasse walk of type w from ;
to �, given by the next lemma.

8.2 Lemma. Suppose w D DskU rk � � �Ds2U r2Ds1U r1 , where ri � 0 and si � 0.
Let � ` n. Then there exists a Hasse walk of type w from ; to � if and only if:

kX

iD1
.ri � si / D n;

jX

iD1
.ri � si / � 0 for 1 � j � k:

Proof. Since each U moves up one level and eachD moves down one level, we see
that

Pk
iD1.ri � si / is the level at which a walk of type w beginning at ; ends. Hence

Pk
iD1.ri � si / D j�j D n.
After

Pj
iD1.ri C si / steps we will be at level

Pj
iD1.ri � si /. Since the lowest

level is level 0, we must have
Pj

iD1.ri � si / � 0 for 1 � j � k.
The easy proof that the two conditions of the lemma are sufficient for the

existence of a Hasse walk of type w from ; to � is left to the reader. ut
If w is a word in U and D satisfying the conditions of Lemma 8.2, then we say

that w is a valid �-word. Note that the condition of being a valid �-word depends
only on j�j.

The proof of our formula for ˛.w; �/ will be based on linear transformations
analogous to those defined by (4.2) and (4.3). As in Chap. 4 let RYj be the real
vector space with basis Yj . Define two linear transformations Ui WRYi ! RYiC1
andDi WRYi ! RYi�1 by

Ui.�/ D
X

�`iC1
�<�

�;

Di .�/ D
X

�`i�1
�<�

�;

for all � ` i . For instance (using abbreviated notation for partitions)

U21.54422211/D 64422211C 55422211C 54432211C 54422221C 544222111
D21.54422211/D 44422211C 54322211C 54422111C 5442221:
It is clear [why?] that if r is the number of distinct (i.e., unequal) parts of �, then
Ui.�/ is a sum of r C 1 terms andDi.�/ is a sum of r terms. The next lemma is an
analogue for Y of the corresponding result for Bn (Lemma 4.6).
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8.3 Lemma. For any i � 0 we have

DiC1Ui � Ui�1Di D Ii ; (8.2)

the identity linear transformation on RYi .

Proof. Apply the left-hand side of (8.2) to a partition � of i , expand in terms of
the basis Yi , and consider the coefficient of a partition �. If � ¤ � and � can
be obtained from � by adding one square s to (the Young diagram of) � and then
removing a (necessarily different) square t , then there is exactly one choice of s and
t . Hence the coefficient of � in DiC1Ui .�/ is equal to 1. But then there is exactly
one way to remove a square from � and then add a square to get �, namely, remove
t and add s. Hence the coefficient of � in Ui�1Di .�/ is also 1, so the coefficient of
� when the left-hand side of (8.2) is applied to � is 0.

If now � ¤ � and we cannot obtain � by adding a square and then deleting a
square from � (i.e., � and � differ in more than two rows), then clearly when we
apply the left-hand side of (8.2) to �, the coefficient of � will be 0.

Finally consider the case � D �. Let r be the number of distinct (unequal) parts
of �. Then the coefficient of � in DiC1Ui .�/ is r C 1, while the coefficient of � in
Ui�1Di .�/ is r , since there are r C 1 ways to add a square to � and then remove it,
while there are r ways to remove a square and then add it back in. Hence when we
apply the left-hand side of (8.2) to �, the coefficient of � is equal to 1.

Combining the conclusions of the three cases just considered shows that the left-
hand side of (8.2) is just Ii , as was to be proved. ut

We come to one of the main results of this chapter.

8.4 Theorem. Let � be a partition and w D AnAn�1 � � �A1 a valid �-word. Let
Sw D fi WAi D Dg. For each i 2 Sw, let ai be the number ofD’s in w to the right of
Ai , and let bi be the number of U ’s in w to the right of Ai . Thus bi � ai is the level
we occupy in Y before taking the step Ai D D. Then

˛.w; �/ D f �
Y

i2Sw

.bi � ai /:

Before proving Theorem 8.4, let us give an example. Suppose wDU 3D2U 2DU 3D
UUUDDUUDUUU and � D .2; 2; 1/. Then Sw D f4; 7; 8g and a4 D 0, b4 D 3,
a7 D 1, b7 D 5, a8 D 2, b8 D 5. We have also seen earlier that f 221 D 5. Thus

˛.w; �/ D 5.3� 0/.5 � 1/.5 � 2/ D 180:

Proof. Proof of Theorem 8.4. For notational simplicity we will omit the subscripts
from the linear transformations Ui and Di . This should cause no confusion
since the subscripts will be uniquely determined by the elements on which U

and D act. For instance, the expression UDUU.�/ where � ` i must mean
UiC1DiC2UiC1Ui .�/; otherwise it would be undefined since Uj and Dj can only
act on elements of RYj , and moreover Uj raises the level by one while Dj lowers
it by one.



108 8 A Glimpse of Young Tableaux

By (8.2) we can replace DU in any word y in the letters U and D by UDCI .
This replaces y by a sum of two words, one with one fewer D and the other
with one D moved one space to the right. For instance, replacing the first DU
in UUDUDDU by UD C I yields UUUDDDU C UUDDU . If we begin with
the word w and iterate this procedure, replacing a DU in any word with UD C I ,
eventually there will be no U ’s to the right of any D’s and the procedure will come
to an end. At this point we will have expressed w as a linear combination (with
integer coefficients) of words of the form U iDj . Since the operation of replacing
DU with UD C I preserves the difference between the number of U ’s and D’s in
each word, all the wordsU iDj which appear will have i�j equal to some constant
n (namely, the number of U ’s minus the number of D’s in w). Specifically, say we
have

w D
X

i�jDn
rij .w/U

iDj ; (8.3)

where each rij .w/ 2 Z. (We also define rij .w/ D 0 if i < 0 or j < 0.) We claim
that the rij .w/’s are uniquely determined by w. Equivalently [why?], if we have

X

i�jDn
dij U

iDj D 0 (8.4)

(as an identity of linear transformations acting on the space RYk for any k), where
each dij 2 Z (or dij 2 R, if you prefer), then each dij D 0. Let j 0 be the least
integer for which dj 0Cn;j 0 ¤ 0. Let � ` j 0, and apply both sides of (8.4) to �. The
left-hand side has exactly one nonzero term, namely, the term with j D j 0 [why?].
The right-hand side, on the other hand,1 is 0, a contradiction. Thus the rij .w/’s are
unique.

Now apply U on the left to (8.3). We get

Uw D
X

i;j

rij .w/U
iC1Dj :

Hence (using uniqueness of the rij ’s) there follows [why?]

rij .Uw/ D ri�1;j .w/: (8.5)

We next want to apply D on the left to (8.3). It is easily proved by induction on
i (left as an exercise) that

DU i D U iD C iU i�1: (8.6)

(We interpret U�1 as being 0, so that (8.6) is true for i D 0.) Hence

1The phrase “the right-hand side, on the other hand” does not mean the left-hand side!
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Dw D
X

i;j

rij .w/DU
iDj

D
X

i;j

rij .w/.U
iD C iU i�1/Dj ;

from which it follows [why?] that

rij .Dw/ D ri;j�1.w/C .i C 1/riC1;j .w/: (8.7)

Setting j D 0 in (8.5) and (8.7) yields

ri0.Uw/ D ri�1;0.w/; (8.8)

ri0.Dw/ D .i C 1/riC1;0.w/: (8.9)

Now let (8.3) operate on ;. Since Dj .;/ D 0 for all j > 0, we get w.;/ D
rn0.w/U n.;/. Thus the coefficient of � in w.;/ is given by

˛.w; �/ D rn0.w/˛.U n; �/ D rn0f �;

where as usual � ` n. It is clear from (8.8) and (8.9) that

rn0.w/ D
Y

j2Sw

.bj � aj /;

and the proof follows. ut
NOTE. It is possible to give a simpler proof of Theorem 8.4, but the proof we have
given is useful for generalizations not appearing here.

An interesting special case of the previous theorem allows us to evaluate (8.1).

8.5 Corollary. We have

˛.DnU n;;/ D
X

�`n
.f �/2 D nŠ:

Proof. When w D DnU n in Theorem 8.4 we have Sw D fnC 1; nC 2; : : : ; 2ng,
ai D n � i C 1, and bi D n, from which the proof is immediate. ut

NOTE (for those familiar with the representation theory of finite groups). It can
be shown that the numbers f �, for � ` n, are the degrees of the irreducible
representations of the symmetric group Sn. Given this, Corollary 8.5 is a special
case of the result that the sum of the squares of the degrees of the irreducible
representations of a finite group G is equal to the order #G of G. There are many
other intimate connections between the representation theory of Sn, on the one
hand, and the combinatorics of Young’s lattice and Young tableaux, on the other.
There is also an elegant combinatorial proof of Corollary 8.5, based on the RSK
algorithm (after Gilbert de Beauregard Robinson, Craige Schensted, and Donald



110 8 A Glimpse of Young Tableaux

Knuth) or Robinson–Schensted correspondence, with many fascinating properties
and with deep connections to representation theory. In the first Appendix at the end
of this chapter we give a description of the RSK algorithm and the combinatorial
proof of Corollary 8.5.

We now consider a variation of Theorem 8.4 in which we are not concerned
with the type w of a Hasse walk from ; to w but only with the number of steps.
For instance, there are three Hasse walks of length three from ; to the partition 1,
given by ;; 1;;; 1; ;; 1; 2; 1; and ;; 1; 11; 1. Let ˇ.`; �/ denote the number of Hasse
walks of length ` from ; to �. Note the two following easy facts:

(F1) ˇ.`; �/ D 0 unless ` � j�j .mod2/.
(F2) ˇ.`; �/ is the coefficient of � in the expansion of .D C U /`.;/ as a linear

combination of partitions.

Because of (F2) it is important to write .D C U /` as a linear combination of
terms U iDj , just as in the proof of Theorem 8.4 we wrote a word w in U and D in
this form. Thus define integers bij .`/ by

.D C U /` D
X

i;j

bij .`/U
iDj : (8.10)

Just as in the proof of Theorem 8.4, the numbers bij .`/ exist and are well defined.

8.6 Lemma. We have bij .`/ D 0 if ` � i � j is odd. If ` � i � j D 2m then

bij .`/ D `Š

2m iŠ j ŠmŠ
: (8.11)

Proof. The assertion for `�i�j odd is equivalent to (F1) above, so assume `�i�j
is even. The proof is by induction on `. It’s easy to check that (8.11) holds for ` D 1.
Now assume true for some fixed ` � 1. Using (8.10) we obtain

X

i;j

bij .`C 1/U iDj D .D C U /`C1

D .D C U /
X

i;j

bij .`/U
iDj

D
X

i;j

bij .`/.DU
iDj C U iC1Dj /:

In the proof of Theorem 8.4 we saw that DU i D U iD C iU i�1 (see (8.6)). Hence
we get

X

i;j

bij .`C 1/U iDj D
X

i;j

bij .`/.U
iDjC1 C iU i�1Dj C U iC1Dj /: (8.12)
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As mentioned after (8.10), the expansion of .DCU /`C1 in terms ofU iDj is unique.
Hence equating coefficients of U iDj on both sides of (8.12) yields the recurrence

bij .`C 1/ D bi;j�1.`/C .i C 1/biC1;j .`/C bi�1;j .`/: (8.13)

It is a routine matter to check that the function `Š=2miŠj ŠmŠ satisfies the same
recurrence (8.13) as bij .`/, with the same initial condition b00.0/ D 1. From this
the proof follows by induction. ut

From Lemma 8.6 it is easy to prove the following result.

8.7 Theorem. Let ` � n and � ` n, with ` � n even. Then

ˇ.`; �/ D
 
`

n

!

.1 � 3 � 5 � � � .` � n � 1//f �:

Proof. Apply both sides of (8.10) to ;. Since U iDj .;/ D 0 unless j D 0, we get

.D C U /`.;/ D
X

i

bi0.`/U
i .;/

D
X

i

bi0.`/
X

�`i
f ��:

Since by Lemma 8.6 we have bi0.`/ D
�
`
i

�
.1 �3 �5 � � � .`� i �1// when `� i is even,

the proof follows from (F2). ut
NOTE. The proof of Theorem 8.7 only required knowing the value of bi0.`/.
However, in Lemma 8.6 we computed bij .`/ for all j . We could have carried out
the proof so as only to compute bi0.`/, but the general value of bij .`/ is so simple
that we have included it too.

8.8 Corollary. The total number of Hasse walks in Y of length 2m from ; to ; is
given by

ˇ.2m;;/ D 1 � 3 � 5 � � � .2m� 1/:
Proof. Simply substitute � D ; (so n D 0) and ` D 2m in Theorem 8.7. ut

The fact that we can count various kinds of Hasse walks in Y suggests that there
may be some finite graphs related to Y whose eigenvalues we can also compute.
This is indeed the case, and we will discuss the simplest case here. (See Exercise 21
for a generalization.) Let Yj�1;j denote the restriction of Young’s lattice Y to ranks
j � 1 and j . Identify Yj�1;j with its Hasse diagram, regarded as a (bipartite) graph.
Let p.i/ D #Yi , the number of partitions of i .

8.9 Theorem. The eigenvalues of Yj�1;j are given as follows: 0 is an eigenvalue of
multiplicity p.j /�p.j �1/; and for 1 � s � j , the numbers˙ps are eigenvalues
of multiplicity p.j � s/ � p.j � s � 1/.
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Proof. Let A denote the adjacency matrix of Yj�1;j . Since RYj�1;j D RYj�1 ˚
RYj (vector space direct sum), any vector v 2 RYj�1;j can be written uniquely as
v D vj�1 C vj , where vi 2 RYi . The matrix A acts on the vector space RYj�1;j as
follows [why?]:

A.v/ D D.vj /C U.vj�1/: (8.14)

Just as Theorem 4.7 followed from Lemma 4.6, we deduce from Lemma 8.3 that
for any i we have that Ui WRYi ! RYiC1 is one-to-one and Di WRYi ! RYi�1 is
onto. It follows in particular that

dim ker.Di / D dimRYi � dimRYi�1
D p.i/ � p.i � 1/;

where ker denotes kernel.

Case 1. Let v 2 ker.Dj /, so v D vj . Then Av D Dv D 0. Thus ker.Dj / is an
eigenspace of A for the eigenvalue 0, so 0 is an eigenvalue of multiplicity at least
p.j / � p.j � 1/.
Case 2. Let v 2 ker.Ds/ for some 0 � s � j � 1. Let

v� D ˙pj � sU j�1�s.v/C U j�s.v/:

Note that v� 2 RYj�1;j , with v�
j�1 D ˙

p
j � sU j�1�s.v/ and v�

j D U j�s.v/.
Using (8.6), we compute

A.v�/ D U.v�
j�1/CD.v�

j /

D ˙pj � s U j�s.v/CDUj�s.v/

D ˙pj � s U j�s.v/C U j�sD.v/C .j � s/U j�s�1.v/

D ˙pj � s U j�s.v/C .j � s/U j�s�1.v/

D ˙pj � s v�: (8.15)

It’s easy to verify (using the fact that U is one-to-one) that if v.1/; : : : ; v.t/
is a basis for ker.Ds/, then v.1/�; : : : ; v.t/� are linearly independent. Hence by
(8.15) we have that ˙pj � s is an eigenvalue of A of multiplicity at least t D
dim ker.Ds/ D p.s/ � p.s � 1/.

We have found a total of

p.j / � p.j � 1/C 2
j�1X

sD0
.p.s/ � p.s � 1// D p.j � 1/C p.j /

eigenvalues of A. (The factor 2 above arises from the fact that both Cpj � s and
�pj � s are eigenvalues.) Since the graph Yj�1;j has p.j � 1/ C p.j / vertices,
we have found all its eigenvalues. ut
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An elegant combinatorial consequence of Theorem 8.9 is the following.

8.10 Corollary. Fix j � 1. The number of ways to choose a partition � of j , then
delete a square from � (keeping it a partition), then insert a square, then delete a
square, etc., for a total ofm insertions andm deletions, ending back at �, is given by

jX

sD1
Œp.j � s/ � p.j � s � 1/�sm; m > 0: (8.16)

Proof. Exactly half the closed walks in Yj�1;j of length 2m begin at an element
of Yj [why?]. Hence if Yj�1;j has eigenvalues �1; : : : ; �r , then by Corollary 1.3
the desired number of walks is given by 1

2
.�2m1 C � � � C �2mr /. Using the values of

�1; : : : ; �r given by Theorem 8.9 yields (8.16). ut
For instance, when j D 7, (8.16) becomes 4C 2 � 2mC 2 � 3m C 4m C 5m C 7m.

When m D 1 we get 30, the number of edges of the graph Y6;7 [why?].

Appendix 1: The RSK Algorithm

We will describe a bijection between permutations  2 Sn and pairs .P;Q/ of
SYT of the same shape � ` n. Define a near Young tableau (NYT) to be the same
as an SYT, except that the entries can be any distinct integers, not necessarily the
integers 1; 2; : : : ; n. Let Pij denote the entry in row i and column j of P . The basic
operation of the RSK algorithm consists of the row insertion P  k of a positive
integer k into an NYT P D .Pij /. The operation P  k is defined as follows: let
r be the least integer such that P1r > k. If no such r exists (i.e., all elements of
the first row of P are less than k), then simply place k at the end of the first row.
The insertion process stops, and the resulting NYT is P  k. If, on the other hand,
r does exist then replace P1r by k. The element k then “bumps” P1r WD k0 into
the second row, i.e., insert k0 into the second row of P by the insertion rule just
described. Either k0 is inserted at the end of the second row, or else it bumps an
element k00 to the third row. Continue until an element is inserted at the end of a row
(possibly as the first element of a new row). The resulting array is P  k.

8.11 Example. Let

P D

3 7 9 14

6 11 12

10 16

13

15

Then P  8 is shown below, with the elements inserted into each row (either by
bumping or by the final insertion in the fourth row) in boldface. Thus the 8 bumps
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the 9, the 9 bumps the 11, the 11 bumps the 16, and the 16 is inserted at the end of
a row. Hence

.P  8/ D

3 7 8 14

6 9 12

10 11

13 16

15

We omit the proof, which is fairly straightforward, that if P is an NYT not
containing k, then P  k is an NYT. We can now describe the RSK algorithm.
Let  D a1a2 � � �an 2 Sn. We will inductively construct a sequence .P0;Q0/,
.P1;Q1/, : : : ; .Pn;Qn/ of pairs .Pi ;Qi / of NYT of the same shape, where Pi and
Qi each have i squares. First, define .P0;Q0/ D .;;;/. If .Pi�1;Qi�1/ have been
defined, then set Pi D Pi�1 ai . In other words, Pi is obtained from Pi�1 by row
inserting ai . Now defineQi to be the NYT obtained fromQi�1 by inserting i so that
Qi and Pi have the same shape. (The entries of Qi�1 don’t change; we are simply
placing i into a certain new square and not row-inserting it into Qi�1.) Finally let

.P;Q/ D .Pn;Qn/. We write 
RSK�! .P;Q/.

8.12 Example. Let  D 4273615 2 S7. The pairs .P1;Q1/; : : : , .P7;Q7/ D
.P;Q/ are as follows:

Pi Qi

4 1

2 1
4 2

2 7 1 3
4 2

2 3 1 3
4 7 2 4

2 3 6 1 3 5
4 7 2 4

1 3 6 1 3 5
2 7 2 4
4 6

1 3 5 1 3 5
2 6 2 4
4 7 6 7
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8.13 Theorem. The RSK algorithm defines a bijection between the symmetric group
Sn and the set of all pairs .P;Q/ of SYT of the same shape, where the shape � is a
partition of n.

Proof (sketch). The key step is to define the inverse of RSK. In other words, if
 7! .P;Q/, then how can we recover  uniquely from .P;Q/? Moreover, we
need to find  for any .P;Q/. Observe that the position occupied by n in Q is
the last position to be occupied in the insertion process. Suppose that k occupies
this position in P . It was bumped into this position by some element j in the row
above k that is currently the largest element of its row less than k. Hence we can
“inverse bump” k into the position occupied by j , and now inverse bump j into the
row above it by the same procedure. Eventually an element will be placed in the
first row, inverse bumping another element t out of the tableau altogether. Thus t
was the last element of  to be inserted, i.e., if  D a1a2 � � �an then an D t . Now
locate the position occupied by n�1 inQ and repeat the procedure, obtaining an�1.
Continuing in this way, we uniquely construct  one element at a time from right to
left, such that  7! .P;Q/. ut

The RSK-algorithm provides a bijective proof of Corollary 8.5, that is,

X

�`n
.f �/2 D nŠ:

Appendix 2: Plane Partitions

In this appendix we show how a generalization of the RSK algorithm leads to
an elegant generating function for a two-dimensional generalization of integer
partitions. A plane partition of an integer n � 0 is a two-dimensional array  D
.ij /i;j�1 of integers ij � 0 that is weakly decreasing in rows and columns, i.e.,

ij � iC1;j ; ij � i;jC1;

such that
P

i;j ij D n. It follows that all but finitely many ij are 0, and these 0’s
are omitted in writing a particular plane partition  . Given a plane partition  , we
write jj D n to denote that  is a plane partition of n. More generally, if L is any
array of nonnegative integers we write jLj for the sum of the parts (entries) of L.

There is one plane partition of 0, namely, all ij D 0, denoted ;. The plane
partitions of the integers 0 � n � 3 are given by

; 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
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If pp.n/ denotes the number of plane partitions of n, then pp.0/ D 1, pp.1/ D 1,
pp.2/ D 3, and pp.3/ D 6.

Our object is to give a formula for the generating function

F.x/ D
X

n�0
pp.n/xn D 1C x C 3x2 C 6x3 C 13x4 C 24x5 C � � � :

More generally, we will consider plane partitions with at most r rows and at most s
columns, i.e., ij D 0 for i > r or j > s. As a simple warmup, let us first consider
the case of ordinary partitions � D .�1; �2; : : : / of n.

8.14 Proposition. Let ps.n/ denote the number of partitions of n with at most s
parts. Equivalently, ps.n/ is the number of plane partitions of n with at most one
row and at most s columns [why?]. Then

X

n�0
ps.n/x

n D
sY

kD1
.1 � xk/�1:

Proof. First note that the partition � has at most s parts if and only if the conjugate
partition �0 defined in Chap. 6 has largest part at most s. Thus it suffices to find the
generating function

P
n�0 p0

s.n/x
n, where p0

s.n/ denotes the number of partitions
of n whose largest part is at most s. Now expanding each factor .1 � xk/�1 as a
geometric series gives

sY

kD1

1

1 � xk D
sY

kD1

0

@
X

mk�1
xmkk

1

A :

How do we get a coefficient of xn? We must choose a term xmkk from each factor
of the product, 1 � k � s, so that

n D
sX

kD1
mkk:

But such a choice is the same as choosing the partition � of n such that the part k
occurs mk times. For instance, if s D 4 and we choose m1 D 5, m2 D 0, m3 D 1,
m4 D 2, then we have chosen the partition � D .4; 4; 3; 1; 1; 1; 1; 1/ of 16. Hence
the coefficient of xn is the number of partitions � of n whose largest part is at most
s, as was to be proved. ut

Note that Proposition 8.14 is “trivial” in the sense that it can be seen by
inspection. There is an obvious correspondence between (a) the choice of terms
contributing to the coefficient of xn and (b) partitions of n with largest part at
most r . Although the generating function we will obtain for plane partitions is
equally simple, it will be far less obvious why it is correct.
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Plane partitions have a certain similarity with SYT, so perhaps it is not surprising
that a variant of RSK will be applicable. Instead of NYT we will be dealing
with column-strict plane partitions (CSPP). These are plane partitions for which
the nonzero elements strictly decrease in each column. An example of a CSPP is
given by

7 7 4 3 3 3 1

4 3 3 1

3 2

2 1

1

(8.17)

We say that this CSPP has shape � D .7; 4; 2; 2; 1/, the shape of the Young diagram
which the numbers occupy, and that it has five rows, seven columns, and 16 parts
(so � ` 16).

If P D .Pij / is a CSPP and k � 1, then we define the row insertion P  k

as follows: let r be the least integer such that P1;r < k. If no such r exists (i.e.,
all elements of the first row of P are greater than or equal to k), then simply place
k at the end of the first row. The insertion process stops, and the resulting CSPP
is P  k. If, on the other hand, r does exist, then replace P1r by k. The element
k then “bumps” P1r WD k0 into the second row, i.e., insert k0 into the second row
of P by the insertion rule just described, possibly bumping a new element k00 into
the third row. Continue until an element is inserted at the end of a row (possibly
as the first element of a new row). The resulting array is P  k. Note that this
rule is completely analogous to row insertion for NYT: for NYT an element bumps
the leftmost element greater than it, while for CSPP an element bumps the leftmost
element smaller than it.

8.15 Example. Let P be the CSPP of (8.17). Let us row insert 6 into P . The set of
elements which get bumped are shown in bold:

7 7 4 3 3 3 1

4 3 3 1

3 2

2 1

1

The final 1 that was bumped is inserted at the end of the fifth row. Thus we obtain

.P  6/ D

7 7 6 3 3 3 1

4 4 3 1

3 3

2 2

1 1
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We are now ready to describe the analogue of RSK needed to count plane
partitions. Instead of beginning with a permutation  2 Sn, we begin with an r � s
matrix A D .aij / of nonnegative integers, called for short an r � s N-matrix. We
convertA into a two-line array

wA D
�

u1 u2 � � � uN
v1 v2 � � � vN

�
;

where

• u1 � u2 � � � � � uN .
• If i < j and ui D uj , then vi � vj .
• The number of columns of wA equal to i

j
is aij . (It follows that N DP aij .)

It is easy to see that wA is uniquely determined byA, and conversely. As an example,
suppose that

A D
2

4
0 1 0 2

1 1 1 0

2 1 0 0

3

5 : (8.18)

Then

wA D
 
3 3 3 2 2 2 1 1 1

2 1 1 3 2 1 4 4 2

!

:

We now insert the numbers v1; v2; : : : ; vN successively into a CSPP. That is, we
start with P0 D ; and define inductively Pi D Pi�1  vi . We also start with
Q0 D ; and at the i th step insert ui into Qi�1 (without any bumping or other
altering of the elements ofQi�1) so that Pi andQi have the same shape. Finally let

.P;Q/ D .PN ;QN / and write A
RSK

0

�! .P;Q/.

8.16 Example. Let A be given by (8.18). The pairs .P1;Q1/; : : : , .P9;Q9/ D
.P;Q/ are as follows:

Pi Qi

2 3

2 1 3 3

2 1 1 3 3 3

3 1 1 3 3 3
2 2

3 2 1 3 3 3
2 1 2 2
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3 2 1 1 3 3 3 2
2 1 2 2

4 2 1 1 3 3 3 2
3 1 2 2
2 1

4 4 1 1 3 3 3 2
3 2 2 2
2 1 1 1

4 4 2 1 3 3 3 2
3 2 1 2 2 1
2 1 1 1

It is straightforward to show that if A
RSK

0

�! .P;Q/, then P and Q are CSPP of
the same shape. We omit the proof of the following key lemma, which is analogous
to the proof of Theorem 8.13. Let us just note a crucial property (which is easy to

prove) of the correspondence A
RSK

0

�! .P;Q/ which allows us to recover A from
.P;Q/, namely, equal entries of Q are inserted from left to right. Thus the last
number placed into Q is the rightmost occurrence of the least entry. Hence we can
inverse bump the number in this position in P to back up one step in the algorithm,

just as for the usual RSK correspondence 
RSK�! .P;Q/.

8.17 Lemma. The correspondenceA
RSK

0

�! .P;Q/ is a bijection from the set of r �s
matrices of nonnegative integers to the set of pairs .P;Q/ of CSPP of the same
shape, such that the largest part of P is at most s and the largest part of Q is at
most r .

The next step is to convert the pair .P;Q/ of CSPP of the same shape into a
single plane partition  . We do this by “merging” the i th column of P with the i th
column of Q, producing the i th column of  . Thus we first describe how to merge
two partitions � and � with distinct parts and with the same number of parts into
a single partition � D �.�; �/. Draw the Ferrers diagram of � but with each row
indented one space to the right of the beginning of the previous row. Such a diagram
is called the shifted Ferrers diagram of �. For instance, if � D .5; 3; 2/ then we get
the shifted diagram
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Do the same for �, and then transpose the diagram. For instance, if � D .6; 3; 1/
then we get the transposed shifted diagram

Now merge the two diagrams into a single diagram by identifying their main
diagonals. For � and � as above, we get the diagram (with the main diagonal drawn
for clarity):

Define �.�; �/ to be the partition for which this merged diagram is the Ferrers
diagram. The above example shows that

�.532; 631/D 544211:
The map .�; �/ 7! �.�; �/ is clearly a bijection between pairs of partitions .�; �/
with k distinct parts and partitions � whose main diagonal (of the Ferrers diagram)
has k dots. Equivalently, k is the largest integer j for which �j � j . Note that

j�j D j�j C j�j � `.�/: (8.19)

We now extend the above bijection to pairs .P;Q/ of CSPP of the same shape.
If �i denotes the i th column of P and �i the i th column of Q, then let .P;Q/ be
the array whose i th column is �.�i ; �i /. For instance, if

P D
4 4 2 1

3 1 1

2

and Q D
5 3 2 2

4 2 1

1

then
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.P;Q/ D

4 4 2 1

4 2 2 1

4 2

2

2

It is easy to see that .P;Q/ is a plane partition. Replace each row of .P;Q/ by
its conjugate to obtain another plane partition  0.P;Q/. With .P;Q/ as above we
obtain

 0.P;Q/ D

4 3 2 2

4 3 1 1

2 2 1 1

1 1

1 1

Write jP j for the sum of the elements of P and write max.P / for the largest
element ofP , and similarly forQ. When we mergeP andQ into .P;Q/, max.P /
becomes the largest part of .P;Q/. Thus when we conjugate each row, max.P /
becomes the number col. 0.P;Q// of columns of  0.P;Q/ [why?]. Similarly,
max.Q/ becomes the number row. 0.P;Q// of rows of .P;Q/ and of  0.P;Q/.
In symbols,

maxP D col. 0.P;Q//;

maxQ D row. 0.P;Q//: (8.20)

Moreover, it follows from (8.19) that

j 0.P;Q/j D j.P;Q/j D jP j C jQj � �.P /; (8.21)

where �.P / denotes the number of parts of P (or of Q).
We now have all the ingredients necessary to prove the main result of this

appendix.

8.18 Theorem. Let pprs.n/ denote the number of plane partitions of n with at most
r rows and at most s columns. Then

X

n�0
pprs.n/x

n D
rY

iD1

sY

jD1
.1 � xiCj�1/�1:

Proof. LetA D .aij / be an r�s N-matrix. We can combine the bijections discussed
above to obtain a plane partition .A/ associated with A. Namely, first apply RSK

to obtain A
RSK

0

�! .P;Q/, and then apply the merging process and row conjugation
to obtain .A/ D  0.P;Q/. Since a column i

j
of the two-line array wA occurs aij

times and results in an insertion of j into P and i into Q, it follows that
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jP j D
X

i;j

jaij ;

jQj D
X

i;j

iaij ;

max.P / D maxfj W aij ¤ 0g;
max.Q/ D maxfi W aij ¤ 0g:

Hence from (8.20) and (8.21), we see that the map A 7! .A/ is a bijection from
r � s N-matrices A to plane partitions with at most r rows and at most s columns.
Moreover,

j.A/j D jP j C jQj � �.P /
D
X

i;j

.i C j � 1/aij :

Thus the enumeration of plane partitions is reduced to the much easier enumeration
of N-matrices. Specifically, we have

X

n�0
pprs.n/x

n D
X


row./�r
col./�s

xjj

D
X

r�s N-matrices A

x
P
.iCj�1/aij

D
rY

iD1

sY

jD1

0

@
X

aij �0
x
P
.iCj�1/aij

1

A

D
rY

iD1

sY

jD1
.1 � xiCj�1/�1:

ut

Write ppr .n/ for the number of plane partitions of n with at most r rows. Letting
s !1 and then r !1 in Theorem 8.18 produces the elegant generating functions
of the next corollary.

8.19 Corollary. We have

X

n�0
ppr .n/x

n D
Y

i�1
.1 � xi /� min.i;r/; (8.22)

X

n�0
pp.n/xn D

Y

i�1
.1 � xi /�i : (8.23)
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NOTE. Once one has seen the generating function

1

.1 � x/.1 � x2/.1 � x3/ � � �
for one-dimensional (ordinary) partitions and the generating function

1

.1 � x/.1 � x2/2.1 � x3/3 : : :
for two-dimensional (plane) partitions, it is quite natural to ask about higher-
dimensional partitions. In particular, a solid partition of n is a three-dimensional
array  D .ijk/i;j;k�1 of nonnegative integers, weakly decreasing in each of the
three coordinate directions, and with elements summing to n. Let sol.n/ denote the
number of solid partitions of n. It is easy to see that for any integer sequence a0 D 1,
a1, a2; : : : , there are unique integers b1, b2; : : : for which

X

n�0
anx

n D
Y

i�1
.1 � xi /�bi :

For the case an D sol.n/, we have

b1 D 1; b2 D 3; b3 D 6; b4 D 10; b5 D 15;
which looks quite promising. Alas, the sequence of exponents continues

20; 26; 34; 46; 68; 97; 120; 112; 23;�186;�496;�735;�531; 779; : : : :
The problem of enumerating solid partitions remains open and is considered most
likely to be hopeless.

Notes for Chap. 8

SYT were first enumerated by P.A. MacMahon [74, p. 175] (see also [75, Sect. 103]).
MacMahon formulated his result in terms of “generalized ballot sequences” or
“lattice permutations” rather than SYT, but they are easily seen to be equivalent. He
stated the result not in terms of the products of hook lengths as in Theorem 8.1, but
as a more complicated product formula. The formulation in terms of hook lengths is
due to J.S. Frame and appears first in the paper [38, Theorem 1] of Frame, Robinson,
and R.M. Thrall; hence it is sometimes called the “Frame-Robinson-Thrall hook-
length formula.” (The actual definition of SYT is due to A. Young [122, p. 258].)

Independently of MacMahon, F.G. Frobenius [41, Eq. (6)] obtained the same
formula for the degree of the irreducible character �� of Sn as MacMahon obtained
for the number of lattice permutations of type �. Frobenius was apparently unaware
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of the combinatorial significance of deg ��, but Young showed in [122, pp. 260–261]
that deg�� was the number of SYT of shape �, thereby giving an independent proof
of MacMahon’s result. (Young also provided his own proof of MacMahon’s result
in [122, Theorem II].)

A number of other proofs of the hook-length formula were subsequently found.
C. Greene et al. [48] gave an elegant probabilistic proof. A proof of A. Hillman
and R. Grassl [57] shows very clearly the role of hook lengths, though the proof is
not completely bijective. A bijective version was later given by C.F. Krattenthaler
[64]. Completely bijective proofs of the hook-length formula were first given by
D.S. Franzblau and D. Zeilberger [39] and by J.B. Remmel [93]. An exceptionally
elegant bijective proof was later found by J.-C. Novelli et al. [80].

The use of the operators U and D to count walks in the Hasse diagram of
Young’s lattice was developed independently, in a more general context, by S. Fomin
[36, 37] and R. Stanley [104, 106]. See also [107, Sect. 3.21] for a short exposition.

The RSK algorithm (known by a variety of other names, either “correspondence”
or “algorithm” in connection with some subset of the names Robinson, Schensted,
and Knuth) was first described, in a rather vague form, by G. de B. Robinson [94,
Sect. 5], as a tool in an attempted proof of a result now known as the “Littlewood–
Richardson Rule.” The RSK algorithm was later rediscovered by C.E. Schensted
(see below), but no one actually analyzed Robinson’s work until this was done by M.
van Leeuwen [120, Sect. 7]. It is interesting to note that Robinson says in a footnote
on page 754 that “I am indebted for this association I to Mr. D.E. Littlewood.” Van
Leeuwen’s analysis makes it clear that “association I” gives the recording tableauQ

of the RSK algorithm 
RSK�! .P;Q/. Thus it might be correct to say that if  2 Sn

and 
RSK�! .P;Q/, then the definition of P is due to Robinson, while the definition

of Q is due to Littlewood.
No further work related to Robinson’s construction was done until Schensted

published his seminal paper [97] in 1961. (For some information about the unusual
life of Schensted, see [5].) Schensted’s purpose was the enumeration of permu-
tations in Sn according to the length of their longest increasing and decreasing
subsequences. According to Knuth [65, p. 726], the connection between the work
of Robinson and that of Schensted was first pointed out by M.-P. Schützenberger,
though as mentioned above the first person to describe this connection precisely was
van Leeuwen.

Plane partitions were discovered by MacMahon in a series of papers which were
not appreciated until much later. (See MacMahon’s book [75, Sects. IX and X] for an
exposition of his results.) MacMahon’s first paper dealing with plane partitions was
[73]. In Article 43 of this paper he gives the definition of a plane partition (though
not yet with that name). In Article 51 he conjectures that the generating function for
plane partitions is the product

.1 � x/�1 .1 � x2/�2 .1 � x3/�3 .1� x4/�4 � � �
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(our Eq. (8.23)). In Article 52 he conjectures our Eq. (8.22) and Theorem 8.18,
finally culminating in a conjectured generating function for plane partitions of n
with at most r rows, at most s columns, and with largest part at most t . (See
Exercise 34.) MacMahon goes on in Articles 56–62 to prove his conjecture in
the case of plane partitions with at most 2 rows and s columns (the case r D 2

of our Theorem 8.18), mentioning on page 662 that an independent solution was
obtained by A.R. Forsyth. (Though a publication reference is given to Forsyth’s
paper, apparently it never actually appeared.)

We will not attempt to describe MacMahon’s subsequent work on plane partitions,
except to say that the culmination of his work appears in [75, Art. 495], in which
he proves his main conjecture from his first paper [73] on plane partitions, viz., our
Exercise 34. MacMahon’s proof is quite lengthy and indirect.

In 1972 E.A. Bender and D.E. Knuth [6] showed the connection between
the theory of symmetric functions and the enumeration of plane partitions. They
gave simple proofs based on the RSK algorithm of many results involving plane
partitions, including the first bijective proof (the same proof that we give) of our
Theorem 8.18.

For further aspects of Young tableaux and the related topics of symmetric
functions, representation theory of the symmetric group, Grassmann varieties, etc.,
see the expositions of W.E. Fulton [42], B.E. Sagan [96], and R. Stanley [108,
Chap. 7].

Exercises for Chap. 8

1. Draw all the SYT of shape .4; 2/.
2. Using the hook-length formula, show that the number of SYT of shape .n; n/

is the Catalan number Cn D 1
nC1

�
2n
n

�
.

3. How many maximal chains are in the poset L.4; 4/, where L.m; n/ is defined
in Chap. 6? Express your answer in a form involving products and quotients of
integers (no sums).

4. A corner square of a partition � is a square in the Young diagram of � whose
removal results in the Young diagram of another partition (with the same upper-
left corner). Let c.�/ denote the number of corner squares (or distinct parts) of
the partition �. For instance, c.5; 5; 4; 2; 2; 2; 1; 1/ D 4. (The distinct parts are
5; 4; 2; 1.) Show that

X

�`n
c.�/ D p.0/C p.1/C � � � C p.n � 1/;

where p.i/ denotes the number of partitions of i (with p.0/ D 1). Try to give
an elegant combinatorial proof.
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5. Show that the number of odd hook lengths minus the number of even hook
lengths of a partition � is a triangular number (a number of the form k.k C
1/=2).

6. (moderately difficult) Show that the total number of SYT with n entries and at
most two rows is

�
n

bn=2c
�
. Equivalently,

bn=2cX

iD0
f .n�i;i / D

 
n

bn=2c

!

:

Try to give an elegant combinatorial proof.
7. (difficult) (*) Let f .n/ be the number of partitions � of 2n whose Young

diagram can be covered with n nonoverlapping dominos (i.e., two squares with
a common edge). For instance, the figure below shows a domino covering of
the partition 43221.

Let

F.x/ D
X

n�0
f .n/xn D 1C 2x C 5x2 C 10x3 C 20x4 C 36x5 C � � � :

Show that

F.x/ D
Y

n�1
.1 � xn/�2:

8. (difficult) Let � be a partition. Let mk.�/ denote the number of parts of � that
are equal to k, and let �k.�/ be the number of hooks of length k of �. Show
that

X

�`n
�k.�/ D k

X

�`n
mk.�/:

9. (moderately difficult) Let � be a partition, and let A� be the infinite shape
consisting of the quadrant Q D f.i; j / W i < 0; j > 0g with the shape
� removed from the lower right-hand corner. Thus every square of A� has a
finite hook and hence a hook length. For instance, when � D .3; 1/ we get the
diagram
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7

26

6 5 3

4 2

5 4 1

10 9 8

9 8 7 5

8 6 3 1

3 2 1

4

Show that the multiset of hook lengths of A� is equal to the union of the
multiset of hook lengths of Q (explicitly given by f11; 22; 33; : : : g) and the
multiset of hook lengths of �.

10. In how many ways can we begin with the empty partition ;, then add 2n
squares one at a time (always keeping a partition), then remove n squares one
at a time, then add n squares one at a time, and finally remove 2n squares one
at a time, ending up at ;?

11. (difficult) Fix n. Show that the number of partitions � ` n for which f � is odd
is equal to 2k1Ck2C:::, where k1 < k2 < � � � and n D 2k1C2k2C� � � (the binary
expansion of n). For instance, 75 D 20 C 21 C 23 C 26, so the number of
partitions � of 75 for which f � is odd is 26C3C1C0 D 1024.

12. Let U and D be the linear transformations associated with Young’s lattice.
Write D2U 2 and D3U 3 in the form

P
aij U

iDj .
13. Let U and D be the linear transformations associated with Young’s lattice.

Suppose that f is some (noncommutative) polynomial in U and D satisfying
f .U;D/ D 0, e.g., f .U;D/ D DU � UD � I . Let i D p�1. Show that
f .iD; iU / D 0.

14. (*) Show that

UnDn D .UD � .n � 1/I /.UD � .n � 2/I / � � � .UD � I /UD; (8.24)

where U and D are the linear transformations associated with Young’s lattice
(and I is the identity transformation), and where both sides of (8.24) operate
on the vector space RYj (for some fixed j ).

15. (difficult) Give a bijective proof of Corollary 8.8, i.e., ˇ.2m;;/ D 1 � 3 �
5 � � � .2m � 1/. Your proof should be an analogue of the RSK algorithm. To
start with, note that [why?] 1 � 3 � 5 � � � .2m � 1/ is the number of complete
matchings of Œ2m�, i.e., the number of graphs on the vertex set Œ2m� with m
edges such that every vertex is incident to exactly one edge.

16. Fix a partition � ` n� 1. Find a simple formula for the sum t.�/ DP�Ê� f
�

in terms of f �. The sum ranges over all partitions � that cover � (i.e., � > �

and nothing is in between, so � ` n) in Young’s lattice Y . Give a simple proof
using linear algebra rather than a combinatorial proof.

17. (a) (*) The Bell number B.n/ is defined to be the number of partitions of an
n-element set S , i.e., the number of sets fB1; : : : ; Bkg where Bi ¤ ;,
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Bi \ Bj D ; if i ¤ j , and
S
Bi D S . Find a simple formula for the

generating function

F.x/ D
X

n�0
B.n/

xn

nŠ
D 1C x C 2x

2

2Š
C 5x

3

3Š
C 15x

4

4Š
C � � � :

(b) (moderately difficult) Let f .n/ be the number of ways to move from the
empty partition ; to ; in n steps, where each step consists of either (i)
adding a box to the Young diagram, (ii) removing a box, or (iii) adding and
then removing a box, always keeping the diagram of a partition (even in
the middle of a step of type (iii)). For instance, f .3/ D 5, corresponding
to the five sequences

; .1;;/ .1;;/ .1;;/
; .1;;/ 1 ;
; 1 .2; 1/ ;
; 1 .11; 1/ ;
; 1 ; .1;;/

Find (and prove) a formula for f .n/ in terms of Bell numbers.
18. (difficult) (*) For n; k � 0 let �.n! nCk ! n/ denote the number of closed

walks in Y that start at level n, go up k steps to level nC k, and then go down
k steps to level n. Thus for instance �.n! nC1! n/ is the number of cover
relations between levels n and nC 1. Show that

X

n�0
�.n! nC k ! n/qn D kŠ .1 � q/�kF.Y; q/:

Here F.Y; q/ is the rank-generating function of Y , which by Proposition 8.14
(letting s !1) is given by

F.Y; q/ D
Y

i�1
.1 � qi /�1:

19. Let X denote the formal sum of all elements of Young’s lattice Y . The
operators U and D still act in the usual way on X , producing infinite linear
combinations of elements of Y . For instance, the coefficient of the partition
.3; 1/ in DX is 3, coming from applyingD to .4; 1/, .3; 2/, and .3; 1; 1/.

(a) Show that DX D .U C I /X , where as usual I denotes the identity linear
transformation.

(b) Express the coefficient sn of ; (the empty partition) inDnX in terms of the
numbers f � for � ` n. (For instance, s0 D s1 D 1; s2 D 2; s3 D 4.)

(c) Show that

DnC1X D .UDn CDn C nDn�1/X; n � 0;
whereD�1 D 0, D0 D I .
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(d) Find a simple recurrence relation satisfied by sn.
(e) Find a simple formula for the generating function

F.x/ D
X

n�0
sn
xn

nŠ
:

(f) Show that sn is the number of involutions in Sn, i.e., the number of
elements  2 Sn satisfying 2 D �.

(g) (quite difficult) Show that if  2 Sn and 
RSK�! .P;Q/, then �1 RSK�!

.Q;P /.
(h) Deduce (f) from (g).

20. (a) Consider the linear transformation Un�1DnWRYn ! RYn. Show that its
eigenvalues are the integers i with multiplicity p.n� i/�p.n� i �1/, for
0 � i � n� 2 and i D n.

(b) (*) Use (a) to give another proof of Theorem 8.9.
21. (a) (moderately difficult) Let YŒj�2;j � denote the Hasse diagram of the restric-

tion of Young’s lattice Y to the levels j � 2; j � 1; j . Let p.n/ denote the
number of partitions of n, and write �p.n/ D p.n/�p.n� 1/. Show that
the characteristic polynomial of the adjacency matrix of the graph YŒj�2;j �
is given by

˙x�p.j /.x2 � 1/�p.j�1/
jY

sD2
.x3 � .2s � 1/x/�p.j�1/;

where the sign is .�1/#YŒj�2;j � D .�1/p.j�2/Cp.j�1/Cp.j /.
(b) (difficult) Extend to YŒj�i;j � for any i � 0. Express your answer in terms

of the characteristic polynomial of matrices of the form

2

66
6
6
6
66
6
6
4

0 a 0 0 0

1 0 aC 1 0 0

0 1 0
: : : 0 0

: : :

: : : 0 b

1 0

3

77
7
7
7
77
7
7
5

:

22. (moderately difficult)

(a) Let U and D be operators (or just noncommutative variables) satisfying
DU � UD D 1. Show that for any power series f .U / DP

anU
n whose

coefficients an are real numbers, we have

eDtf .U / D f .U C t/eDt :
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In particular,

eDteU D etCU eDt : (8.25)

Here t is a variable (indeterminate) commuting with U and D. Regard
both sides as power series in t whose coefficients are (noncommutative)
polynomials in U and D. Thus for instance

eDteU D
0

@
X

m�0

Dntn

nŠ

1

A

0

@
X

n�0

U n

nŠ

1

A

D
X

m;n�0

DmU ntm

mŠ nŠ
:

(b) Show that e.UCD/t D e 12 t2CUt eDt .
23. Let w be a balanced word in U and D, i.e., the same number of U ’s as

D’s. For instance, UUDUDDDU is balanced. Regard U and D as linear
transformations on RY in the usual way. A balanced word thus takes the
space RYn to itself, where Yn is the nth level of Young’s lattice Y . Show that
the element En D P

�`n f �� 2 RYn is an eigenvector for w, and find the
eigenvalue.

24. (*) Prove that any two balanced words (as defined in the previous exercise)
commute.

25. Define a graded poset Z inductively as follows. The bottom level Z0 consists
of a single element. Assume that we have constructed the poset up to level n.
First “reflect” Zn�1 through Zn. More precisely, for each element x 2 Zn�1,
let x0 be a new element of ZnC1, with x0 Ê y (where y 2 Zn) if and only
if y Ê x. Then for each element y 2 Zn, let y0 be a new element of ZnC1
covering y (and covering no other elements ofZn). Figure 8.1 shows the poset
Z up to level five. The cover relations obtained by the reflection construction
are shown by solid lines, while those of the form y0 Ê y are shown by broken
lines.

(a) Show that #Zn D FnC1 (a Fibonacci number), so the rank-generating
function of Z is given by

F.Z; q/ D 1

1 � q � q2 :

(b) Define Ui WRZi ! RZiC1 and Di WRZi ! RZi�1 exactly as we did for
Y , namely, for x 2 Zi we have



Exercises for Chap. 8 131

Fig. 8.1 The poset Z up to
level 5

Ui.x/ D
X

yÊx
y;

Di .x/ D
X

yÉx
y:

Show that DiC1Ui � Ui�1Di D Ii . Thus all the results we have obtained
for Y based on this commutation relation also hold for Z! (For results
involving p.n/, we need only replace p.n/ by FnC1.)

26. (a) Suppose that  2 Sn and 
RSK�! .P;Q/. Let f ./ be the largest integer k

for which 1; 2; : : : ; k all appear in the first row of P . Find a simple formula
for the number of permutations  2 Sn for which f ./ D k.

(b) Let E.n/ denote the expected value of f ./ for  2 Sn, i.e.,

E.n/ D 1

nŠ

X

2Sn

f ./:

Find limn!1E.n/.
27. (a) An increasing subsequence of a permutation a1a2 � � �an 2 Sn is a

subsequence ai1ai2 � � �aij such that ai1 < ai2 < � � � < aij . For instance,
2367 is an increasing subsequence of the permutation 52386417. Suppose
that the permutation w 2 Sn is sent into an SYT of shape � D .�1; �2; : : : /
under the RSK algorithm. Show that �1 is the length of the longest
increasing subsequence of w.

(b) (much harder) Define decreasing subsequence similarly to increasing
subsequence. Show that �0

1 (the number of parts of �) is equal to the length
of the longest decreasing subsequence of �.

(c) Assuming (a) and (b), show that for m; n � 1, a permutation w 2 SmnC1
has an increasing subsequence of lengthmC1 or a decreasing subsequence
of length nC 1.
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(d) How many permutations w 2 Smn have longest increasing subsequence of
length m and longest decreasing subsequence of length n? (Use the hook-
length formula to obtain a simple explicit answer.)

28. Write down the 13 plane partitions of 4 and the 24 plane partitions of 5.

29. Prove the statement preceding Lemma 8.17 that in the bijectionA
RSK

0

�! .P;Q/,
equal elements of Q are inserted from left to right.

30. Let A be the r � s matrix of all 1’s. Describe the plane partition  0.A/.
31. (a) Find the N-matrix A for which

 0.A/ D
6 4 4 3 3

5 3 3 2

3 2 1

:

(b) What message is conveyed by the nonzero entries of A?

32. (a) (quite difficult) Let A be an r � s N-matrix, and let A
RSK

0

�! .P;Q/. If At

denotes the transpose of A, then show that At
RSK

0

�! .Q;P /.

NOTE. This result is quite difficult to prove from first principles. If you
can do Exercise 19(g), then the present exercise is a straightforward
modification. In fact, it is possible to deduce the present exercise from
Exercise 19(g).

(b) A plane partition  D .ij / is symmetric if ij D ji for all i and j . Let
sr .n/ denote the number of symmetric plane partitions of n with at most r
rows. Assuming (a), show that

X

n�0
sr .n/x

n D
rY

iD1

�
1� x2i�1��1 �

Y

1�i<j�r

�
1 � x2.iCj�1/��1 :

(c) Let s.n/ denote the total number of symmetric plane partitions of n. Let
r !1 in (b) to deduce that

X

n�0
s.n/xn D

Y

i�1

1

.1 � x2i�1/.1� x2i /bi=2c :

(d) (very difficult; cannot be done using RSK) Let srt .n/ denote the number of
symmetric plane partitions of n with at most r rows and with largest part
at most t . Show that

X

n�0
srt .n/x

n D
Y

1�i<j�r

tY

kD1

1 � x.2�ıij /.iCjCk�1/

1 � x.2�ıij /.iCjCk�2/ :

33. The trace of a plane partition  D .ij / is defined as tr./ D P
i i i . Let

pp.n; k/ denote the number of plane partitions of n with trace k. Show that
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X

n�0

X

k�0
pp.n; k/qkxn D

Y

i�1
.1 � qxi /�i :

34. (very difficult; cannot be done using RSK) Let pprst .n/ be the number of plane
partitions of n with at most r rows, at most s columns, and with largest part at
most t . Show that

X

n�0
pprst .n/x

n D
rY

iD1

sY

jD1

tY

kD1

1 � xiCjCk�1

1 � xiCjCk�2 :

35. Let f .n/ denote the number of solid partitions of n with largest part at most 1.
Find the generating function F.x/ DPn�0 f .n/xn.



Chapter 9
The Matrix-Tree Theorem

The Matrix-Tree Theorem is a formula for the number of spanning trees of a graph
in terms of the determinant of a certain matrix. We begin with the necessary graph-
theoretical background. Let G be a finite graph, allowing multiple edges but not
loops. (Loops could be allowed, but they turn out to be completely irrelevant.)
We say that G is connected if there exists a walk between any two vertices of G.
A cycle is a closed walk with no repeated vertices or edges, except for the first and
last vertex. A tree is a connected graph with no cycles. In particular, a tree cannot
have multiple edges, since a double edge is equivalent to a cycle of length two. The
three nonisomorphic trees with five vertices are shown in Fig. 9.1.

A basic theorem of graph theory (whose easy proof we leave as an exercise) is
the following.

9.1 Proposition. Let G be a graph with p vertices. The following conditions are
equivalent:

(a) G is a tree.
(b) G is connected and has p � 1 edges.
(c) G has no cycles and has p � 1 edges.
(d) There is a unique path (= walk with no repeated vertices) between any two

vertices.

A spanning subgraph of a graph G is a graph H with the same vertex set as G,
and such that every edge of H is an edge of G. If G has q edges, then the number
of spanning subgraphs of G is equal to 2q , since we can choose any subset of the
edges of G to be the set of edges ofH . (Note that multiple edges between the same
two vertices are regarded as distinguishable, in accordance with the definition of a
graph in Chap. 1.) A spanning subgraph which is a tree is called a spanning tree.
Clearly G has a spanning tree if and only if it is connected [why?]. An important
invariant of a graph G is its number of spanning trees, called the complexity of G
and denoted �.G/.

9.2 Example. Let G be the graph illustrated below, with edges a, b, c, d , and e.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 9,
© Springer Science+Business Media New York 2013
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Fig. 9.1 The three trees with five vertices

d

a c

b

e

ThenG has eight spanning trees, namely, abc, abd , acd , bcd , abe, ace, bde, and
cde (where, e.g., abc denotes the spanning subgraph with edge set fa; b; cg).
9.3 Example. LetG D K5, the complete graph on five vertices. A simple counting
argument shows thatK5 has 60 spanning trees isomorphic to the first tree in Fig. 9.1,
60 isomorphic to the second tree, and 5 isomorphic to the third tree. Hence �.K5/ D
125. It is even easier to verify that �.K1/ D 1, �.K2/ D 1, �.K3/ D 3, and
�.K4/ D 16. Can the reader make a conjecture about the value of �.Kp/ for any
p � 1?

Our object is to obtain a “determinantal formula” for �.G/. For this we need
an important result from matrix theory, known as the Binet–Cauchy theorem or
Cauchy–Binet theorem and which is often omitted from a beginning linear algebra
course. Later (Theorem 10.4) we will prove a more general determinantal formula
without the use of the Binet–Cauchy theorem. However, the use of the Binet–
Cauchy theorem does afford some additional algebraic insight. The Binet–Cauchy
theorem is a generalization of the familiar fact that if A and B are n � n matrices,
then detAB D .detA/.detB/, where det denotes determinant. We want to extend
this formula to the case where A and B are rectangular matrices whose product is a
square matrix (so that detAB is defined). In other words, A will be anm�nmatrix
and B an n �m matrix, for some m; n � 1.

We will use the following notation involving submatrices. Suppose A D .aij / is
an m � n matrix, with 1 � i � m, 1 � j � n, and m � n. Given an m-element
subset S of f1; 2; : : : ; ng, let AŒS� denote the m � m submatrix of A obtained by
taking the columns indexed by the elements of S . In other words, if the elements of
S are given by j1 < j2 < � � � < jm, then AŒS� D .ai;jk /, where 1 � i � m and
1 � k � m. For instance, if

A D
2

4
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

3

5
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and S D f2; 3; 5g, then

AŒS� D
2

4
2 3 5

7 8 10

12 13 15

3

5 :

Similarly, let B D .bij / be an n � m matrix with 1 � i � n, 1 � j � m,
and m � n. Let S be an m-element subset of f1; 2; : : : ; ng as above. Then BŒS�
denotes them�m matrix obtained by taking the rows of B indexed by S . Note that
At ŒS� D AŒS�t , where t denotes transpose.

9.4 Theorem (the Binet–Cauchy Theorem). Let A D .aij / be anm�nmatrix, with
1 � i � m and 1 � j � n. Let B D .bij / be an n �m matrix with 1 � i � n and
1 � j � m. (Thus AB is anm�mmatrix.) Ifm > n, then det.AB/ D 0. Ifm � n,
then

det.AB/ D
X

S

.detAŒS�/.detBŒS�/;

where S ranges over all m-element subsets of f1; 2; : : : ; ng.
Before proceeding to the proof, let us give an example. We write jaij j for the

determinant of the matrix .aij /. Suppose

A D
	
a1 a2 a3
b1 b2 b3



; B D

2

4
c1 d1
c2 d2

c3 d3

3

5 :

Then

detAB D
ˇ
ˇ
ˇ̌a1 a2
b1 b2

ˇ
ˇ
ˇ̌ �
ˇ
ˇ
ˇ̌ c1 d1
c2 d2

ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇ̌a1 a3
b1 b3

ˇ
ˇ
ˇ̌ �
ˇ
ˇ
ˇ̌ c1 d1
c3 d3

ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇ̌a2 a3
b2 b3

ˇ
ˇ
ˇ̌ �
ˇ
ˇ
ˇ̌ c2 d2
c3 d3

ˇ
ˇ
ˇ̌ :

Proof of Theorem 9.4 (sketch). First suppose m > n. Since from linear algebra we
know that rankAB � rankA and that the rank of an m � n matrix cannot exceed n
(orm), we have that rankAB � n < m. ButAB is anm�mmatrix, so detAB D 0,
as claimed.

Now assumem � n. We use notation such asMrs to denote an r � s matrixM .
It is an immediate consequence of the definition of matrix multiplication (which the
reader should check) that

	
Rmm Smn
Tnm Unn


 	
Vmn Wmm

Xnn Ynm



D
	
RV C SX RW C SY
T V C UX TW C UY



: (9.1)

In other words, we can multiply “block” matrices of suitable dimensions as if their
entries were numbers. Note that the entries of the right-hand side of (9.1) all have
well-defined dimensions (sizes), e.g., RV C SX is an m � n matrix since both RV
and SX are m � n matrices.
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Now in (9.1) let R D Im (the m � m identity matrix), S D A, T D Onm (the
n �m matrix of 0’s), U D In, V D A, W D Omm, X D �In, and Y D B . We get

	
Im A

Onm In


 	
A Omm

�In B


D
	
Omn AB

�In B


: (9.2)

Take the determinant of both sides of (9.2). The first matrix on the left-hand side is
upper triangular with 1’s on the main diagonal. Hence its determinant is one. Since
the determinant of a product of square matrices is the product of the determinants
of the factors, we get

ˇ
ˇ̌
ˇ
A Omm

�In B
ˇ
ˇ̌
ˇ D

ˇ
ˇ̌
ˇ
Omn AB

�In B
ˇ
ˇ̌
ˇ : (9.3)

It is easy to see [why?] that the determinant on the right-hand side of (9.3) is
equal to ˙ detAB . So consider the left-hand side. A nonzero term in the expansion
of the determinant on the left-hand side is obtained by taking the product (with a
certain sign) of mC n nonzero entries, no two in the same row and column (so one
in each row and each column). In particular, we must choose m entries from the
last m columns. These entries belong to m of the bottom n rows [why?], say rows
m C s1;m C s2; : : : ; m C sm. Let S D fs1; s2; : : : ; smg � f1; 2; : : : ; ng. We must
choose n � m further entries from the last n rows, and we have no choice but to
choose the �1’s in those rows m C i for which i 62 S . Thus every term in the
expansion of the left-hand side of (9.3) uses exactly n�m of the �1’s in the bottom
left block �In.

What is the contribution to the expansion of the left-hand side of (9.3) from those
terms which use exactly the �1’s from rows m C i where i 62 S? We obtain this
contribution by deleting all rows and columns to which these �1’s belong (in other
words, delete row m C i and column i whenever i 2 f1; 2; : : : ; ng � S ), taking
the determinant of the 2m � 2m matrix MS that remains and multiplying by an
appropriate sign [why?]. But the matrix MS is in block-diagonal form, with the
first block just the matrix AŒS� and the second block just BŒS�. Hence detMS D
.detAŒS�/.detBŒS�/ [why?]. Taking all possible subsets S gives

detAB D
X

S�f1;2;:::;ng

jS jDm

˙.detAŒS�/.detBŒS�/:

It is straightforward but somewhat tedious to verify that all the signs areC; we omit
the details. This completes the proof. �

In Chap. 1 we defined the adjacency matrix A.G/ of a graph G with vertex
set V D fv1; : : : ; vpg and edge set E D fe1; : : : ; eqg. We now define two related
matrices. Continue to assume that G has no loops. (This assumption is harmless
since loops have no effect on �.G/.)

9.5 Definition. Let G be as above. Give G an orientation o, i.e, for every edge e
with vertices u; v, choose one of the ordered pairs .u; v/ or .v; u/. If we choose .u; v/,
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2

d

c 3

a b

1

e

f

4

Fig. 9.2 A graph G with an
orientation o

say, then we think of putting an arrow on e pointing from u to v; and we say that e
is directed from u to v, that u is the initial vertex and v the final vertex of e, etc.

(a) The incidence matrix M .G/ ofG (with respect to the orientation o) is the p�q
matrix whose .i; j /-entry M ij is given by

M ij D
8
<

:

�1; if the edge ej has initial vertex vi ,
1; if the edge ej has final vertex vi ,
0; otherwise.

(b) The laplacian matrix L.G/ of G is the p � p matrix whose .i; j /-entry Lij is
given by

Lij D
( �mij ; if i ¤ j and there are mij edges between vi and vj ,

deg.vi /; if i D j ,

where deg.vi / is the number of edges incident to vi . Note that L.G/ is
symmetric and does not depend on the orientation o.

As an example, let .G; o/ be the oriented graph of Fig. 9.2. Then

M .G/ D

2

6
6
4

1 �1 0 �1 �1 �1
�1 1 �1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3

7
7
5;

L.G/ D

2

6
6
4

5 �2 �1 �2
�2 3 �1 0

�1 �1 2 0

�2 0 0 2

3

7
7
5:

For any graph G, every column of M .G/ contains one 1, one �1, and q � 2
0’s; and hence the sum of the entries in each column is 0. Thus all the rows sum
to the 0 vector, a linear dependence relation which shows that rank .M .G// < p.
Two further properties of M .G/ and L.G/ are given by the following lemma.
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9.6 Lemma. (a) We have MM t D L.
(b) If G is regular of degree d , then L.G/ D dI �A.G/, where A.G/ denotes the

adjacency matrix ofG. Hence if G (or A.G/) has eigenvalues �1; : : : ; �p, then
L.G/ has eigenvalues d � �1; : : : ; d � �p .

Proof. (a) This is immediate from the definition of matrix multiplication.
Specifically, for vi ; vj 2 V.G/ we have

.MM t /ij D
X

ek2E.G/
MikMjk:

If i ¤ j , then in order for M ikM jk ¤ 0, we must have that the edge ek
connects the vertices vi and vj . If this is the case, then one of M ik and M jk will
be 1 and the other�1 [why?], so their product is always�1. Hence .MM t /ij D
�mij , as claimed.

There remains the case i D j . Then MikMik will be 1 if ek is an edge
with vi as one of its vertices and will be 0 otherwise [why?]. So now we get
.MM t /i i D deg.vi /, as claimed. This proves (a).

(b) Clear by (a), since the diagonal elements of MM t are all equal to d . ut

Now assume that G is connected, and let M0.G/ be M .G/ with its last row
removed. Thus M 0.G/ has p � 1 rows and q columns. Note that the number of
rows is equal to the number of edges in a spanning tree of G. We call M 0.G/ the
reduced incidence matrix ofG. The next result tells us the determinants (up to sign)
of all .p � 1/ � .p � 1/ submatrices N of M 0. Such submatrices are obtained by
choosing a set X D fei1; : : : ; eip�1g of p � 1 edges of G and taking all columns
of M 0 indexed by the set S D fi1; : : : ; ip�1g. Thus this submatrix is just M 0ŒS�.
For convenience we will not bother to distinguish between the set S of indices with
the corresponding set X of edges.

9.7 Lemma. Let S be a set of p�1 edges ofG. If S does not form the set of edges of
a spanning tree, then det M 0ŒS� D 0. If, on the other hand, S is the set of edges of
a spanning tree of G, then det M 0ŒS� D ˙1.

Proof. If S is not the set of edges of a spanning tree, then some subset R of S
forms the edges of a cycle C inG. Suppose that the cycle C defined byR has edges
f1; : : : ; fs in that order. Multiply the column of M 0ŒS� indexed by fj by 1 if in
going around C we traverse fi in the direction of its arrow; otherwise multiply the
column by �1. Then add these modified columns. It is easy to see (check a few
small examples to convince yourself) that we get the 0 column. Hence the columns
of M 0ŒS� are linearly dependent, so det M 0ŒS� D 0, as claimed.

Now suppose that S is the set of edges of a spanning tree T . Let e be an edge
of T which is connected to vp (the vertex which indexed the bottom row of M ,
i.e., the row removed to get M 0). The column of M 0ŒS� indexed by e contains
exactly one nonzero entry [why?], which is ˙1. Remove from M 0ŒS� the row and
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column containing the nonzero entry of column e, obtaining a .p � 2/ � .p � 2/
matrix M 0

0. Note that det M 0ŒS� D ˙ det M 0
0 [why?]. Let T 0 be the tree obtained

from T by contracting the edge e to a single vertex (so that vp and the remaining
vertex of e are merged into a single vertex u). Then M 0

0 is just the matrix obtained
from the incidence matrix M .T 0/ by removing the row indexed by u [why?]. Hence
by induction on the number p of vertices (the case p D 1 being trivial), we have
det M 0

0 D ˙1. Thus det M 0ŒS� D ˙1, and the proof follows. ut
NOTE. An alternative way of seeing that det M 0ŒS� D ˙1 when S is the set of
edges of a spanning tree T is as follows. Let u1; u2; : : : ; up�1 be an ordering of the
vertices v1; : : : ; vp�1 such that ui is an endpoint of the tree obtained from T by
removing vertices u1; : : : ; ui�1. (It is easy to see that such an ordering is possible.)
Permute the rows of M 0ŒS� so that the i th row is indexed by ui . Then permute the
columns in the order e1; : : : ; ep�1 so that ei is the unique edge adjacent to ui after
u1; : : : ; ui�1 have been removed. Then we obtain a lower triangular matrix with
˙1’s on the main diagonal, so the determinant is˙1.

We have now assembled all the ingredients for the main result of this chapter.
Recall that �.G/ denotes the number of spanning trees of G.

9.8 Theorem (the Matrix-Tree Theorem). LetG be a finite connected graph without
loops, with laplacian matrix L D L.G/. Let L0 denote L with the last row and
column removed (or with the i th row and column removed for any i ). Then

det L0 D �.G/:
Proof. Since L D MM t (Lemma 9.6(a)), it follows immediately that L0 D
M 0M

t
0. Hence by the Binet–Cauchy theorem (Theorem 9.4), we have

det L0 D
X

S

.det M 0ŒS�/.det M t
0ŒS�/; (9.4)

where S ranges over all .p � 1/-element subsets of f1; 2; : : : ; qg (or equivalently,
over all .p� 1/-element subsets of the set of edges of G). Since in generalAt ŒS� D
AŒS�t , (9.4) becomes

det L0 D
X

S

.det M 0ŒS�/
2: (9.5)

According to Lemma 9.7, det M 0ŒS� is˙1 if S forms the set of edges of a spanning
tree of G and is 0 otherwise. Therefore the term indexed by S in the sum on the
right-hand side of (9.5) is 1 if S forms the set of edges of a spanning tree of G and
is 0 otherwise. Hence the sum is equal to �.G/, as desired. ut

The operation of removing a row and column from L.G/ may seem somewhat
contrived. We would prefer a description of �.G/ directly in terms of L.G/. Such a
description will follow from the next lemma.
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9.9 Lemma. Let M be a p � p matrix (with entries in a field) such that the sum
of the entries in every row and column is 0. Let M0 be the matrix obtained from
M by removing the last row and last column (or more generally, any row and any
column). Then the coefficient of x in the characteristic polynomial det.M � xI / of
M is equal to �p � det.M0/. (Moreover, the constant term of det.M � xI / is 0.)

Proof. The constant term of det.M � xI / is detM , which is 0 since the rows ofM
sum to 0.

For simplicity we prove the rest of the lemma only for removing the last row
and column, though the proof works just as well for any row and column. Add all
the rows of M � xI except the last row to the last row. This doesn’t affect the
determinant and will change the entries of the last row all to �x (since the rows of
M sum to 0). Factor out �x from the last row, yielding a matrix N.x/ satisfying
det.M � xI / D �x detN.x/. Hence the coefficient of x in det.M � xI / is given
by � detN.0/. Now add all the columns of N.0/ except the last column to the last
column. This does not affect detN.0/. Because the columns of M sum to 0, the
last column of N.0/ becomes the column vector Œ0; 0; : : : ; 0; p�t . Expanding the
determinant by the last column shows that detN.0/ D p � detM0, and the proof
follows. ut
9.10 Corollary. (a) Let G be a connected (loopless) graph with p vertices.

Suppose that the eigenvalues of L.G/ are �1; : : : ; �p�1; �p , with �p D 0.
Then

�.G/ D 1

p
�1�2 � � ��p�1:

(b) Suppose that G is also regular of degree d and that the eigenvalues of A.G/

are �1; : : : ; �p�1; �p , with �p D d . Then

�.G/ D 1

p
.d � �1/.d � �2/ � � � .d � �p�1/:

Proof. (a) We have

det.L � xI / D .�1 � x/ � � � .�p�1 � x/.�p � x/
D �.�1 � x/.�2 � x/ � � � .�p�1 � x/x:

Hence the coefficient of x is ��1�2 � � ��p�1. By Lemma 9.9, we get
��1�2 � � ��p�1 D p � det.L0/. By Theorem 9.8 we have det.L0/ D �.G/,
and the proof follows.

(b) Immediate from (a) and Lemma 9.6(b). ut
Let us look at a couple of examples of the use of the Matrix-Tree Theorem.

9.11 Example. Let G D Kp, the complete graph on p vertices. Now Kp is regular
of degree d D p � 1, and by Proposition 1.5 its eigenvalues are �1 (p � 1 times)
and p � 1 D d . Hence from Corollary 9.10 there follows
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�.Kp/ D 1

p
..p � 1/� .�1//p�1 D pp�2:

Naturally a combinatorial proof of such an elegant result is desirable. In the
Appendix to this chapter we give three such proofs.

9.12 Example. Let G D Cn, the n-cube discussed in Chap. 2. Now Cn is regular of
degree n, and by Corollary 2.4 its eigenvalues are n � 2i with multiplicity

�
n
i

�
for

0 � i � n. Hence from Corollary 9.10 there follows the amazing result

�.Cn/ D 1

2n

nY

iD1
.2i/.

n
i /

D 22n�n�1
nY

iD1
i.

n
i /:

A direct combinatorial proof (though not an explicit bijection) was found by
Bernardi in 2012.

Appendix: Three Elegant Combinatorial Proofs

In this appendix we give three elegant combinatorial proofs that the number of
spanning trees of the complete graph Kp is pp�2 (Example 9.11). The proofs are
given in chronological order of their discovery.

First proof (Prüfer). Given a spanning tree T of Kp, i.e., a tree on the vertex set
Œp�, remove the largest endpoint (leaf) v and write down the vertex a1 adjacent to
v. Continue this procedure until only two vertices remain, obtaining a sequence
.a1; : : : ; ap�2/ 2 Œp�p�2, called the Prüfer sequence of T . For the tree below, we
first remove 11 and then record 8. Next remove 10 and record 1. Then remove 8 and
record 4, etc., ending with the sequence .8; 1; 4; 4; 1; 4; 9; 1; 9/ and leaving the two
vertices 1 and 9.

6

3

1

27

94

105

8
11
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We claim that the map just defined from trees T on Œp� to sequences .a1; : : :;
ap�2/ 2 Œp�p�2 is a bijection, thereby completing the proof since clearly Œp�p�2 has
pp�2 elements. The crucial observation is that the first vertex to be removed from
T is the largest vertex of T missing from the sequence [why?—this takes a little
thought]. This vertex is adjacent to a1. For our example, we get that 11 was the
first vertex removed and that 11 is adjacent to 8. We can now proceed recursively.
If T1 denotes T with the largest missing vertex removed, then the Prüfer sequence
of T1 is .a2; : : : ; ap�2/. The first vertex to be removed from T1 is the largest vertex
of T2 missing from .a2; : : : ; ap�2/. This missing vertex is adjacent to a2. For our
example, this missing vertex is 10 (since 11 is not a vertex of T2), which is adjacent
to 1. Continuing in this way, we determine one new edge of T at each step. At the
end we have found p�2 edges, and the remaining two unremoved vertices form the
.p � 1/st edge.

Second proof (Joyal). A doubly rooted tree is a tree T with one vertex u labelled S
(for “start”) and one vertex v (which may equal u) labelled E (“end”). Let t.p/ be
the number of trees T on the vertex set Œp�, and let d.p/ be the number of doubly
rooted trees on Œp�. Thus

d.p/ D p2t.p/; (9.6)

since once we have chosen T there are p choices for u and p choices for v.
Let T be a doubly rooted tree. There is a unique path from S to E, say with

vertices S D b1; b2; : : : ; bk D E (in that order). The following diagram shows such
a doubly rooted tree:

14

E

813

S
11 10 15 7 5 2 3

6 9
1 16

4 12 17

Let a1 < a2 < � � � < ak be the increasing rearrangement of the numbers
b1; b2; : : : ; bk . Let  be the permutation of the set fa1; : : : ; akg given by .ai / D bi .
Let D be the digraph of  , that is, the vertex set of D is fa1; : : : ; akg, with a
directed edge ai ! bi for 1 � i � k. Since any permutation  of a finite set
is a disjoint product of cycles, it follows that D is a disjoint union of directed
cycles (all edges of each cycle point in the same direction as we traverse the cycle).
For the example above, we have k D 7, .b1; : : : ; b7/ D .11; 10; 15; 7; 5; 2; 3/, and
.a1; : : : ; a7/ D .2; 3; 5; 7; 10; 11; 15/. The digraphD is shown below.



Appendix: Three Elegant Combinatorial Proofs 145

7

2

11 15 5

3 10

Now attach to each vertex v of D the same subgraph Tv that was attached
“below” v in T and direct the edges of Tv toward v, obtaining a digraph DT . For
our example we get

11

6
16

1

2

7
15 5

14 13 8

4 12 17

3 10

9

The graph DT has the crucial property that every vertex has outdegree one, that
is, one arrow pointing out. In other words, DT is the graph of a function f W Œp� !
Œp�, with vertex set Œp� and edges i ! f .i/. Conversely, given a function f W Œp�!
Œp�, all the above steps can be reversed to obtain a unique doubly rooted tree T for
whichDT is the graph of f . We have therefore found a bijection from doubly rooted
trees on Œp� to functions f W Œp�! Œp�. Since the number of such functions f is pp ,
it follows that d.p/ D pp . Then from (9.6) we get t.p/ D pp�2.

Third proof (Pitman). A forest is a graph without cycles; thus every connected
component is a tree. A planted forest is a forest F for which every component T
has a distinguished vertex rT (called the root of T ). Thus if a component T has k
vertices, then there are k ways to choose the root of T .

Let Pp be the set of all planted forests on Œp�. Let uv be an edge of a forest
F 2 Pp such that u is closer than v to the root r of its component. Define F to cover
the rooted forest F 0 if F 0 is obtained by removing the edge uv from F and rooting
the new tree containing v at v. This definition of cover defines the covering relation
of a partial order on Pp . Under this partial orderPp is graded of rank p�1. The rank
of a forest F in Pp is its number of edges. The following diagram shows the poset
P3, with the root of each tree being its top vertex.
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3

1
2

3

2
1

2

3
1

2

2

3

1

2

3

1 1

3
2

2

1
2

2

3

1 3

1 3

1

3

It is an easy exercise to see that an element F of Pp of rank i covers i elements
and is covered by .p� i �1/p elements. We now count in two ways the numberMp

of maximal chains of Pp . On the one hand, we can start at the top. The number of
maximal elements of Pp is p � t.p/, where t.p/ as above is the number of trees on
the vertex set Œp�, since there are p ways to choose the root of such a tree. Once a
maximal element F is chosen, then there are p � 1 elements F 0 that it covers, then
p � 2 elements that F 0 covers, etc., giving

Mp D p � t.p/.p � 1/Š D pŠ t.p/: (9.7)

On the other hand, we can start at the bottom. There is a unique element F of rank
one (the planted forest with no edges), then .p�1/p elements F 0 that cover F , then
.p � 2/p elements that cover F 0, etc., giving

Mp D pp�1.p � 1/Š: (9.8)

Comparing (9.7) and (9.8) gives t.p/ D pp�2.
Our third proof isn’t an explicit bijection like the first two proofs. On the other

hand, it has the virtue of not depending on the names of the vertices. Note that in
the first two proofs it is necessary to know when one vertex is larger than another.

Notes for Chap. 9

The concept of tree as a formal mathematical object goes back to Kirchhoff and
von Staudt. Trees were first extensively investigated by Cayley, to whom the term
“tree” is due. In particular, in [20] Cayley states the formula �.Kp/ D pp�2 for the
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number of spanning trees ofKp and he gives a vague idea of a combinatorial proof.
Because of this paper, Cayley is often credited with the enumeration of labelled
trees. Cayley pointed out, however, that an equivalent result had been proved earlier
by Borchardt [10]. Moreover, this result appeared even earlier in a paper of Sylvester
[111]. Undoubtedly Cayley and Sylvester could have furnished a complete, rigorous
proof had they had the inclination to do so. The elegant combinatorial proofs given
in the appendix are due to Prüfer [89], Joyal [61, Example 12, pp. 15–16], and
Pitman [83].

The Matrix-Tree Theorem (Theorem 9.8) was first proved by Borchardt [10]
in 1860, though a similar result had earlier been published by Sylvester [111] in
1857. Cayley [19, p. 279] in fact in 1856 referred to the not-yet-published work of
Sylvester. For further historical information on the Matrix-Tree theorem, see Moon
[77, p. 42].

Exercises for Chap. 9

1. (*) Let Gp be the complete graph Kp with one edge removed. How many
spanning trees does Gp have?

2. Let L D L.Krs/ be the laplacian matrix of the complete bipartite graphKrs .

(a) Find a simple upper bound on rank.L� rI /. Deduce a lower bound on the
number of eigenvalues of L equal to r .

(b) Assume r ¤ s and do the same as (a) for s instead of r .
(c) (*) Find the remaining eigenvalues of L.
(d) Use (a)–(c) to compute �.Krs/, the number of spanning trees of Krs.
(e) Give a combinatorial proof of the formula for �.Krs/, by modifying either

the proof of Prüfer or Joyal that �.Kp/ D pp�2.

3. Let p � 5 and let Gp be the graph on the vertex set Zp with edges fi; iC1g and
fi; i C 2g, for i 2 Zp . ThusGp has 2p edges. Show that �.Gp/ D pF 2

p , where
Fp is a Fibonacci number (F1 D F2 D 1, Fp D Fp�1 C Fp�2 for p � 3).

4. Let Cn be the edge complement of the cube graph Cn, i.e., Cn has vertex set
f0; 1gn, with an edge uv if u and v differ in at least two coordinates. Find a
formula for �.C n/, the number of spanning trees of Cn. Your answer should be
expressed as a simple product.

5. (a) (based on a suggestion of Venkataramana) Let G be a bipartite graph with
vertex bipartition .A;B/. Suppose that deg v D a for all v 2 A and deg v D
b for all v 2 B . Let A and L denote the adjacency matrix and laplacian
matrix ofG, respectively. Show that if the eigenvalues of L are �1; : : : ; �p ,
then the eigenvalues of A2 are .�1 � a/.�1 � b/; : : : ; .�p � a/.�p � b/.

(b) (*) Find the number of spanning trees of the graph Cn;k of Exercise 2 in
Chap. 2.
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6. (a) (*) Let G be a finite loopless graph with p vertices. Suppose that the
eigenvalues of the Laplacian matrix L.G/ are �1; : : : ; �p�1 and �p D 0. Let
J be the p � p matrix of all 1’s and let ˛ 2 R. Show that the eigenvalues
of LC ˛J are �1; : : : ; �p�1; ˛p.

(b) LetG[Kp be the graph obtained fromG by adding one new edge between
every pair of distinct vertices. Express the number of spanning trees of
G [Kp in terms of �1; : : : ; �p�1.

(c) Suppose that G is simple and let G be the complementary graph, i.e., G
and G have the same vertex set, and two distinct vertices are adjacent in G
if and only if they are not adjacent in G. Express the number of spanning
trees of G in terms of �1; : : : ; �p�1.

(d) (*) Let G be simple with p vertices and define the polynomial

P.G; x/ D
X

F

xc.F /�1;

where F ranges over all spanning planted forests of G and where c.F / is
the number of components of F . Show that

P.G; x/ D .�1/p�1P.G;�x � p/:
7. (*) Let V be the subset of Z � Z on or inside some simple closed polygonal

curve whose vertices belong to Z � Z, such that every line segment that makes
up the curve is parallel to either the x-axis or y-axis. Draw an edge e between
any two points of V at distance one apart, provided e lies on or inside the
boundary curve. We obtain a planar graph G, an example being

� � �

� � � � �

� � � � � �

� � � � �

� � � � �

LetG0 be the dual graphG� with the “outside” vertex deleted. (The vertices
of G0 are the interior regions of G. For each edge e of G, say with regions
R and R0 on the two sides of e, there is an edge of G0 between R and R0.
See Sect. 11.4 for more information on duals to planar graphs.) For the above
example, G0 is given by
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� �

� � � �

� � �

� � � �

Let �1; : : : ; �p denote the eigenvalues of G0 (i.e., of the adjacency matrix
A.G0/). Show that

�.G/ D
pY

iD1
.4 � �i/:

8. (a) Let L be the laplacian matrix of a graph G on p vertices. We know (via
Corollary 9.10) that the coefficient of x in the characteristic polynomial
det.L � xI / is �p�.G/. Show in fact that the coefficient of xj is equal to
.�1/j times the number fj .G/ of planted spanning forests (as defined in
the third proof of the Appendix to this chapter) ofG with j components.

(b) Deduce from Theorem 5.12 that the sequence f1.G/, f2.G/; : : :, fp.G/ is
strongly log-concave.

(c) (extremely difficult) Let gk.G/ denote the number of spanning forests (but
not planted) of G with j components. Show that the sequence g1.G/,
g2.G/; : : :, gp.G/ is log-concave. (The graphK3 shows that this sequence
need not be strongly log-concave.)

9. Let G be a vertex-transitive graph with p vertices. (This means that for any
two vertices u; v there is an automorphism ' of G satisfying '.u/ D v.) Let A

denote the adjacency matrix of G. Show that for any integer n � 1, tr.An/ is
divisible by p (where tr denotes trace).

10. (a) (moderately difficult) (*) Let G be a (finite) connected graph on a 2m-
element vertex set V . For any graph with vertices u and v, let�.u; v/ denote
the number of edges adjacent to both u and v. Suppose that there is an
automorphism 'WV ! V of G all of whose cycles have length two. (In
other words, ' is a fixed-point free involution.) Define the quotient graph
G=' as follows. The vertices of G=' are the orbits of '. Thus G=' has m
vertices. Write Œv� for the orbit containing vertex v, so Œv� D fv; '.v/g. Set

�.Œu�; Œv�/ D �.u; v/C �.'.u/; v/:
For instance, if G is a 4-cycle and ' takes each vertex to its antipode, then
G=' consists of a double edge. If G is a 6-cycle and ' takes each vertex to
its antipode, then G=' is a triangle. If G D K4, then G=' is a double edge
(for any '). If G D K3;3 then G=' is a 3-cycle for any '. Show that 2�.G/
is divisible by �.G='/, where � denotes the number of spanning trees.

(b) (difficult) Show in fact that �.G/ is always divisible by �.G='/.
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11. (a) (difficult) (*) Show that the number s.n; q/ of invertible n � n symmetric
matrices over the field Fq is given by

s.n; q/ D
(
qm.m�1/.q � 1/.q3 � 1/ � � � .q2m�1 � 1/; n D 2m� 1;
qm.mC1/.q � 1/.q3 � 1/ � � � .q2m�1 � 1/; n D 2m:

(b) Find a formula for the number f .p/ of simple graphs on the vertex set Œp�
with an odd number of spanning trees.

12. (*) Let S be a k-element subset of Œp�. Show that the number fS.p/ of planted
forests on the vertex set Œp� with exactly k components, whose set of roots is S ,
is given by fS.p/ D knn�k�1. Deduce that the total number fk.p/ of planted
forests on Œp� with k components is given by

fk.p/ D k
 
p

k

!

pp�k�1 D
 
p � 1
k � 1

!

pp�k :



Chapter 10
Eulerian Digraphs and Oriented Trees

A famous problem which goes back to Euler asks for what graphs G is there a
closed walk which uses every edge exactly once. (There is also a version for non-
closed walks.) Such a walk is called an Eulerian tour (also known as an Eulerian
cycle). A graph which has an Eulerian tour is called an Eulerian graph. Euler’s
famous theorem (the first real theorem of graph theory) states that a graphG without
isolated vertices (which clearly would be irrelevant) is Eulerian if and only if it
is connected and every vertex has even degree. Here we will be concerned with
the analogous theorem for directed graphs. We want to know not just whether
an Eulerian tour exists, but also how many there are. We will prove an elegant
determinantal formula for this number closely related to the Matrix-Tree Theorem.
For the case of undirected graphs no analogous formula is known, explaining why
we consider only the directed case.

A (finite) directed graph or digraph D consists of a vertex set V D fv1; : : : ; vpg
and edge set E D fe1; : : : ; eqg, together with a function 'WE ! V � V (the set
of ordered pairs .u; v/ of elements of V ). If '.e/ D .u; v/, then we think of e as
an arrow from u to v. We then call u the initial vertex and v the final vertex of e.
(These concepts arose in the definition of an orientation in Definition 8.5.) A tour
in D is a sequence e1; e2; : : : ; er of distinct edges such that the final vertex of ei is
the initial vertex of eiC1 for all 1 � i � r � 1, and the final vertex of er is the initial
vertex of e1. A tour is Eulerian if every edge of D occurs at least once (and hence
exactly once). A digraph which has no isolated vertices and contains an Eulerian
tour is called an Eulerian digraph. Clearly an Eulerian digraph is connected. The
outdegree of a vertex v, denoted outdeg.v/, is the number of edges of D with initial
vertex v. Similarly the indegree of v, denoted indeg.v/, is the number of edges ofD
with final vertex v. A loop (edge e for which '.e/ D .v; v/) contributes one to both
the indegree and outdegree. A digraph is balanced if indeg.v/ D outdeg.v/ for all
vertices v.

10.1 Theorem. A digraphD without isolated vertices is Eulerian if and only if it is
connected and balanced.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 10,
© Springer Science+Business Media New York 2013
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Proof. Assume D is Eulerian, and let e1; : : : ; eq be an Eulerian tour. As we move
along the tour, whenever we enter a vertex v we must exit it, except at the very end
we enter the final vertex v of eq without exiting it. However, at the beginning we
exited v without having entered it. Hence every vertex is entered as often as it is
exited and so must have the same outdegree as indegree. Therefore D is balanced,
and as noted aboveD is clearly connected.

Now assume that D is balanced and connected. We may assume that D has at
least one edge. We first claim that for any edge e of D, D has a tour for which
e D e1. If e1 is a loop we are done. Otherwise we have entered the vertex fin.e1/
for the first time, so sinceD is balanced there is some exit edge e2. Either fin.e2/ D
init.e1/ and we are done, or else we have entered the vertex fin.e2/ once more than
we have exited it. Since D is balanced there is new edge e3 with fin.e2/ D init.e3/.
Continuing in this way, either we complete a tour or else we have entered the current
vertex once more than we have exited it, in which case we can exit along a new edge.
SinceD has finitely many edges, eventually we must complete a tour. ThusD does
have a tour which uses e1.

Now let e1; : : : ; er be a tourC of maximum length. We must show that r D q, the
number of edges ofD. Assume to the contrary that r < q. Since in moving along C
every vertex is entered as often as it is exited (with init.e1/ exited at the beginning
and entered at the end), when we remove the edges ofC fromD we obtain a digraph
H which is still balanced, though it need not be connected. However, since D is
connected, at least one connected component H1 of H contains at least one edge
and has a vertex v in common with C [why?]. SinceH1 is balanced, there is an edge
e ofH1 with initial vertex v. The argument of the previous paragraph shows thatH1

has a tour C 0 of positive length beginning with the edge e. But then when moving
along C , when we reach v we can take the “detour” C 0 before continuing with C .
This gives a tour of length longer than r , a contradiction. Hence r D q, and the
theorem is proved. ut

Our primary goal is to count the number of Eulerian tours of a connected
balanced digraph. A key concept in doing so is that of an oriented tree. An oriented
tree with root v is a (finite) digraph T with v as one of its vertices, such that there
is a unique directed path from any vertex u to v. In other words, there is a unique
sequence of edges e1; : : : ; er such that (a) init.e1/ D u, (b) fin.er / D v, and (c)
fin.ei / D init.eiC1/ for 1 � i � r � 1. It’s easy to see that this means that the
underlying undirected graph (i.e., “erase” all the arrows from the edges of T ) is
a tree and that all arrows in T “point toward” v. There is a surprising connection
between Eulerian tours and oriented trees, given by the next result.

10.2 Theorem. Let D be a connected balanced digraph with vertex set V . Fix
an edge e of D, and let v D init.e/. Let �.D; v/ denote the number of oriented
(spanning) subtrees ofD with root v, and let �.D; e/ denote the number of Eulerian
tours of D starting with the edge e. Then

�.D; e/ D �.D; v/
Y

u2V
.outdeg.u/� 1/Š: (10.1)
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Proof. Let e D e1; e2; : : : ; eq be an Eulerian tour E in D. For each vertex u ¤ v, let
e.u/ be the “last exit” from u in the tour, i.e., let e.u/ D ej where init(e.u// D u
and init.ek/ ¤ u for any k > j .

Claim #1. The vertices of D, together with the edges e.u/ for all vertices u ¤ v,
form an oriented subtree of D with root v.

Proof of Claim #1. This is a straightforward verification. Let T be the spanning
subgraph of D with edges e.u/, u ¤ v. Thus if #V D p, then T has p vertices and
p � 1 edges [why?]. There are three items to check to insure that T is an oriented
tree with root v:

(a) T does not have two edges f and f 0 satisfying init.f / D init.f 0/. This is clear
since both f and f 0 can’t be last exits from the same vertex.

(b) T does not have an edge f with init.f / D v. This is clear since by definition
the edges of T consist only of last exits from vertices other than v, so no edge
of T can exit from v.

(c) T does not have a (directed) cycle C . For suppose C were such a cycle. Let f
be that edge of C which occurs after all the other edges of C in the Eulerian
tour E . Let f 0 be the edge of C satisfying fin.f / D init.f 0/ (D u, say). We
can’t have u D v by (b). Thus when we enter u via f , we must exit u. We can’t
exit u via f 0 since f occurs after f 0 in E . Hence f 0 is not the last exit from u,
contradicting the definition of T .

It’s easy to see that conditions (a)–(c) imply that T is an oriented tree with root v,
proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true. Given a
connected balanced digraph D and a vertex v, let T be an oriented (spanning)
subtree of D with root v. Then we can construct an Eulerian tour E as follows.
Choose an edge e1 with init.e1/ D v. Then continue to choose any edge possible to
continue the tour, except we never choose an edge f of T unless we have to, i.e.,
unless it’s the only remaining edge exiting the vertex at which we stand. Then we
never get stuck until all edges are used, so we have constructed an Eulerian tour E .
Moreover, the set of last exits of E from vertices u ¤ v of D coincides with the set
of edges of the oriented tree T .

Proof of Claim #2. Since D is balanced, the only way to get stuck is to end up at
v with no further exits available, but with an edge still unused. Suppose this is the
case. At least one unused edge must be a last exit edge, i.e., an edge of T [why?].
Let u be a vertex of T closest to v in T such that the unique edge f of T with
init.f / D u is not in the tour. Let y D fin.f /. Suppose y ¤ v. Since we enter y as
often as we leave it, we don’t use the last exit from y. Thus y D v. But then we can
leave v, a contradiction. This proves Claim #2.

We have shown that every Eulerian tour E beginning with the edge e has
associated with it a “last exit” oriented subtree T D T .E/ with root v D init.e/.
Conversely, given an oriented subtree T with root v, we can obtain all Eulerian
tours E beginning with e and satisfying T D T .E/ by choosing for each vertex
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u ¤ v the order in which the edges from u, except the edge of T , appear in E , as
well as choosing the order in which all the edges from v except for e appear in E .
Thus for each vertex u we have .outdeg.u/ � 1/Š choices, so for each T we haveQ

u.outdeg.u/ � 1/Š choices. Since there are �.D; v/ choices for T , the proof is
complete. ut
10.3 Corollary. LetD be a connected balanced digraph, and let v be a vertex ofD.
Then the number �.D; v/ of oriented subtrees with root v is independent of v.

Proof. Let e be an edge with initial vertex v. By (10.1), we need to show that
the number �.D; e/ of Eulerian tours beginning with e is independent of e. But
e1e2 � � � eq is an Eulerian tour if and only if ei eiC1 � � � eqe1e2 � � � ei�1 is also an
Eulerian tour, and the proof follows [why?]. ut

What we obviously need to do next is find a formula for �.D; v/. This result
turns out to be very similar to the Matrix-Tree Theorem, and indeed we will show
(Example 10.6) that the Matrix-Tree Theorem is a simple corollary to Theorem 10.4.

10.4 Theorem. LetD be a connected digraph with vertex set V D fv1; : : : ; vpg and
with li loops at vertex vi . Let L.D/ be the p � p matrix defined by

Lij D

8
ˆ̂
<

ˆ̂
:

�mij ; if i ¤ j and there are mij edges with
initial vertex vi and final vertex vj

outdeg.vi / � li ; if i D j .

(Thus L is the directed analogue of the laplacian matrix of an undirected graph.)
Let L0 denote L with the last row and column deleted. Then

det L0 D �.D; vp/: (10.2)

NOTE. If we remove the i th row and column from L instead of the last row and
column, then (10.2) still holds with vp replaced with vi .

Proof (Sketch). Induction on q, the number of edges of D. The fewest number of
edges which D can have is p � 1 (since D is connected). Suppose then that D has
p � 1 edges, so that as an undirected graph D is a tree. If D is not an oriented tree
with root vp , then some vertex vi ¤ vp ofD has outdegree 0 [why?]. Then L0 has a
zero row, so det L0 D 0 D �.D; vp/. If on the other handD is an oriented tree with
root vp, then an argument like that used to prove Lemma 9.7 (in the case when S is
the set of edges of a spanning tree) shows that det L0 D 1 D �.D; vp/.

Now assume that D has q > p � 1 edges and assume the theorem for digraphs
with at most q � 1 edges. We may assume that no edge f of D has initial vertex
vp, since such an edge belongs to no oriented tree with root vp and also makes no
contribution to L0. It then follows, since D has at least p edges, that there exists a
vertex u ¤ vp of D of outdegree at least two. Let e be an edge with init.e/ D u.
LetD1 beD with the edge e removed. Let D2 beD with all edges e0 removed such
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that init.e/ D init.e0/ and e0 ¤ e. (Note that D2 is strictly smaller than D since
outdeg.u/ � 2.) By induction, we have det L0.D1/ D �.D1; vp/ and det L0.D2/ D
�.D2; vp/. Clearly �.D; vp/ D �.D1; vp/C �.D2; vp/, since in an oriented tree T
with root vp, there is exactly one edge whose initial vertex coincides with that of e.
On the other hand, it follows immediately from the multilinearity of the determinant
[why?] that

det L0.D/ D det L0.D1/C det L0.D2/:

From this the proof follows by induction. ut
10.5 Corollary. Let D be a connected balanced digraph with vertex set V D
fv1; : : : ; vpg. Let e be an edge of D. Then the number �.D; e/ of Eulerian tours
of D with first edge e is given by

�.D; e/ D .det L0.D//
Y

u2V
.outdeg.u/� 1/Š:

Equivalently (sinceD is balanced, so Lemma 9.9 applies), if L.D/ has eigenvalues
�1; : : : ; �p with �p D 0, then

�.D; e/ D 1

p
�1 � � ��p�1

Y

u2V
.outdeg.u/� 1/Š:

Proof. Combine Theorems 10.2 and 10.4. ut
10.6 Example (the Matrix-Tree Theorem revisited). Let G D .V;E; '/ be a
connected loopless undirected graph. Let bG D .V;bE;b'/ be the digraph obtained
from G by replacing each edge e of G, where '.e/ D fu; vg, with a pair e0 and
e00 of directed edges satisfying b'.e0/ D .u; v/ and b'.e00/ D .v; u/. Clearly bG
is balanced and connected. Choose a vertex v of G. There is an obvious one-to-
one correspondence between spanning trees T of G and oriented spanning trees
bT of bG with root v, namely, direct each edge of T toward v. Moreover, L.G/ D
L.bG/ [why?]. Hence the Matrix-Tree Theorem is an immediate consequence of
Theorem 10.4.

10.7 Example (the efficient mail carrier). A mail carrier has an itinerary of city
blocks to which he (or she) must deliver mail. He wants to accomplish this by
walking along each block twice, once in each direction, thus passing along houses
on each side of the street. He also wants to end up where he started, which is where
his car is parked. The blocks form the edges of a graph G, whose vertices are the
intersections. The mail carrier wants simply to walk along an Eulerian tour in the
digraph bG of the previous example. Making the plausible assumption that the graph
is connected, not only does an Eulerian tour always exist, but also we can tell the
mail carrier how many there are. Thus he will know how many different routes he
can take to avoid boredom. For instance, suppose G is the 3 � 3 grid illustrated
below.
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This graph has 192 spanning trees. Hence the number of mail carrier routes
beginning with a fixed edge (in a given direction) is 192 � 1Š4 2Š4 3Š D 18; 432.
The total number of routes is thus 18; 432 times twice the number of edges [why?],
viz., 18; 432� 24 D 442; 368. Assuming the mail carrier delivered mail 250 days a
year, it would be 1769 years before he would have to repeat a route!

10.8 Example (binary de Bruijn sequences). A binary sequence is just a sequence
of 0’s and 1’s. A binary de Bruijn sequence of degree n is a binary sequence A D
a1a2 � � �a2m such that every binary sequence b1 � � �bn of length n occurs exactly once
as a “circular factor” ofA, i.e., as a sequence aiaiC1 � � �aiCn�1, where the subscripts
are taken modulo 2n if necessary. For instance, some circular factors of the sequence
abcdefg are a, bcde, fgab, and defga. Note that there are exactly 2n binary sequences
of length n, so the only possible length of a binary de Bruijn sequence of degree
n is 2n [why?]. Clearly any cyclic shift aiaiC1 � � �a2na1a2 � � �ai�1 of a binary de
Bruijn sequence a1a2 � � �a2n is also a binary de Bruijn sequence, and we call two
such sequences equivalent. This relation of equivalence is obviously an equivalence
relation, and every equivalence class contains exactly one sequence beginning with
n 0’s [why?]. Up to equivalence, there is one binary de Bruijn sequence of degree
two, namely, 0011. It’s easy to check that there are two inequivalent binary de
Bruijn sequences of degree three, namely, 00010111 and 00011101. However, it’s
not clear at this point whether binary de Bruijn sequences exist for all n. By a clever
application of Theorems 10.2 and 10.4, we will not only show that such sequences
exist for all positive integers n, but we will also count the number of them. It turns
out that there are lots of them. For instance, the number of inequivalent binary de
Bruijn sequences of degree eight is equal to

1329227995784915872903807060280344576;

as the reader can easily check by writing down all these sequences. De Bruijn
sequences have a number of interesting applications to the design of switching
networks and related topics.

Our method of enumerating binary de Bruijn sequences will be to set up
a correspondence between them and Eulerian tours in a certain directed graph
Dn, the de Bruijn graph of degree n. The graph Dn has 2n�1 vertices, which
we will take to consist of the 2n�1 binary sequences of length n � 1. A pair
.a1a2 � � �an�1; b1b2 � � �bn�1/ of vertices forms an edge of Dn if and only if
a2a3 � � �an�1 D b1b2 � � �bn�2, i.e., e is an edge if the last n�2 terms of init.e/ agree
with the first n�2 terms of fin.e/. Thus every vertex has indegree two and outdegree
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two [why?], so Dn is balanced. The number of edges of Dn is 2n. Moreover, it’s
easy to see that Dn is connected (see Lemma 10.9). The graphsD3 and D4 look as
follows:

01

00100

10

11

111

110

100

000

011

010 101

Suppose that E D e1e2 � � � e2n is an Eulerian tour in Dn. If fin.ei / is the binary
sequence ai;1ai;2 � � �ai;n�1, then replace ei in E by the last bit ai;n�1. For instance,
the Eulerian tour (where we simply write the vertices)

000; 000; 001; 010; 101; 011; 111; 111; 110; 101; 010; 100; 001; 011; 110; 100; 000

corresponds to the sequence 0101111010011000 (the last bits of the vertices above,
excluding the first vertex 000). It is easy to see that the resulting sequence ˇ.E/ D
a1;n�1a2;n�1 � � �a2n;n�1 is a binary de Bruijn sequence, and conversely every binary
de Bruijn sequence arises in this way. In particular, since Dn is balanced and
connected there exists at least one binary de Bruijn sequence. In order to count the
total number of such sequences, we need to compute det L.Dn/. One way to do this
is by a clever but messy sequence of elementary row and column operations which
transforms the determinant into triangular form. We will give instead an elegant
computation of the eigenvalues of L.Dn/ based on the following simple lemma.

10.9 Lemma. Let u and v be any two vertices of Dn. Then there is a unique
(directed) walk from u to v of length n � 1.

Proof. Suppose u D a1a2 � � �an�1 and v D b1b2 � � �bn�1. Then the unique path of
length n � 1 from u to v has vertices

a1a2 � � �an�1; a2a3 � � �an�1b1; a3a4 � � �an�1b1b2; : : : ;

an�1b1 � � �bn�2; b1b2 � � �bn�1:

ut
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10.10 Theorem. The eigenvalues of L.Dn/ are 0 (with multiplicity one) and 2 (with
multiplicity 2n�1 � 1/.
Proof. Let A.Dn/ denote the directed adjacency matrix of Dn, i.e., the rows and
columns are indexed by the vertices, with

Auv D
�
1; if .u; v/ is an edge;
0; otherwise:

Now Lemma 10.9 is equivalent to the assertion that An�1 D J , the 2n�1 � 2n�1
matrix of all 1’s [why?]. If the eigenvalues of A are �1; : : : �2n�1 , then the
eigenvalues of J D An�1 are �n�1

1 ; : : : ; �n�1
2n�1 . By Lemma 1.4, the eigenvalues of J

are 2n�1 (once) and 0 (2n�1 � 1 times). Hence the eigenvalues of A are 2� (once,
where � is an .n�1/-st root of unity to be determined) and 0 (2n�1�1 times). Since
the trace of A is 2, it follows that � D 1, and we have found all the eigenvalues
of A.

Now L.Dn/ D 2I � A.Dn/ [why?]. Hence the eigenvalues of L are 2 �
�1; : : : ; 2 � �2n�1 , and the proof follows from the above determination of
�1; : : : ; �2n�1 . ut
10.11 Corollary. The number B0.n/ of binary de Bruijn sequences of degree n
beginning with n 0’s is equal to 22

n�1�n. The total numberB.n/ of binary de Bruijn
sequences of degree n is equal to 22

n�1
.

Proof. By the above discussion,B0.n/ is the number of Eulerian tours inDn whose
first edge is the loop at vertex 00 � � �0. Moreover, the outdegree of every vertex of
Dn is two. Hence by Corollary 10.5 and Theorem 10.10 we have

B0.n/ D 1

2n�1 2
2n�1�1 D 22n�1�n:

Finally,B.n/ is obtained fromB0.n/ by multiplying by the number 2n of edges, and
the proof follows. ut

Note that the total number of binary sequences of length 2n is N D 22
n
. By the

previous corollary, the number of these which are de Bruijn sequences is just
p
N .

This suggests the following problem, which remained open until 2009. Let An be
the set of all binary sequences of length 2n. Let Bn be the set of binary de Bruijn
sequences of degree n. Find an explicit bijection

 WBn � Bn ! An; (10.3)

thereby giving a combinatorial proof of Corollary 10.11.
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Notes for Chap. 10

The characterization of Eulerian digraphs given by Theorem 10.1 is a result of
I.J. Good [45], while the fundamental connection between oriented subtrees and
Eulerian tours in a balanced digraph that was used to prove Theorem 10.2 was shown
by T. van Aardenne-Ehrenfest and N.G. de Bruijn [119, Theorem 5a]. This result
is sometimes called the BEST Theorem, after de Bruijn, van Aardenne-Ehrenfest,
Smith, and Tutte. However, Smith and Tutte were not involved in the original
discovery. (In [99] Smith and Tutte give a determinantal formula for the number
of Eulerian tours in a special class of balanced digraphs. Van Aardenne-Ehrenfest
and de Bruijn refer to the paper of Smith and Tutte in a footnote added in proof.)
The determinantal formula for the number of oriented subtrees of a directed graph
(Theorem 10.4) is due to Tutte [116, Theorem 3.6].

De Bruijn sequences are named from the paper [24] of de Bruijn, where they are
enumerated in the binary case. However, it was discovered by R. Stanley in 1975 that
this work had been done earlier by C. Flye Sainte-Marie [35] in 1894, as reported
by de Bruijn [26]. The generalization to d -ary de Bruijn sequences (Exercise 2)
is due to T. van Ardenne-Ehrenfest and de Bruijn [119]. Some recent work in this
area appears in a special issue [109] of Discrete Mathematics. Some entertaining
applications to magic are given by P. Diaconis and R. Graham [29, Chaps. 2–4]. The
bijection  of (10.3) is due to H. Bidkhori and S. Kishore [8].

Exercises for Chap. 10

1. Choose positive integers a1; : : : ; ap�1. LetD D D.a1; : : : ; ap�1/ be the digraph
defined as follows. The vertices of D are v1; : : : ; vp. For each 1 � i � p � 1,
there are ai edges from xi to xiC1 and ai edges from xiC1 to xi . For instance,
D.1; 3; 2/ looks like

(a) Find by a direct argument (no determinants) the number �.D; v/ of oriented
subtrees with a given root v.

(b) Find the number �.D; e/ of Eulerian tours of D whose first edge is e.

2. Let d > 1. A d -ary de Bruijn sequence of degree n is a sequence A D
a1a2 � � �adn whose entries ai belong to f0; 1; : : : ; d � 1g such that every d -ary
sequence b1b2 � � �bn of length n occurs exactly once as a circular factor of A.
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Find the number of d -ary de Bruijn sequences of length n which begin with n
0’s.

3. Let G be a regular loopless (undirected) graph of degree d with p vertices and q
edges.

(a) Find a simple relation between p, q, and d .
(b) (*) Express the largest eigenvalue of the adjacency matrix A of G in terms

of p, q, and d .
(c) Suppose also that G has no multiple edges. Express the number of closed

walks in G of length two in terms of p, q, and d .
(d) Suppose that G has no multiple edges and that the number of closed walks

in G of length ` is given by

6` C 2 � .�3/`:

Find the number �.G/ of spanning trees ofG. (Don’t forget that A may have
some eigenvalues equal to 0.) Give a purely numerical answer, not involving
p, q, or d .

(e) Let G be as in (d). How many closed walks in G walk along each edge of G
exactly once in each direction? Give a purely numerical answer.

4. (difficult) Let f .p/ be the number of loopless connected digraphs D on the
vertex set Œp� such that D has exactly one Eulerian tour (up to cyclic shift).
For instance, f .3/ D 5; two such digraphs are triangles, and three consist of two
2-cycles with a common vertex. Show that

f .p/ D .p C 2/.p C 3/ � � � .2p � 1/; p � 2:

5. Suppose that the connected digraph D has p vertices, each of outdegree d and
indegree d . Let D0 be the graph obtained from D by doubling each edge, i.e.,
replacing each edge u ! v with two such edges. Express �.D0; e0/ (the number
of Eulerian tours of D0 beginning with the edge e0 of D0) in terms of �.D; e/.

6. LetD be a digraph with p vertices, and let ` be a fixed positive integer. Suppose
that for every pair u; v of vertices ofD, there is a unique (directed) walk of length
` from u to v.

(a) (*) What are the eigenvalues of the (directed) adjacency matrix A.D/?
(b) How many loops .v; v/ doesD have?
(c) (*) Show that D is connected and balanced.
(d) Show that all vertices have the same indegree d and same outdegree, which

by (c) is also d . Find a simple formula relating p, d , and `.
(e) How many Eulerian tours doesD have?
(f) (*) (open–ended) What more can be said aboutD? Show thatD need not be

a de Bruijn graph (the graphs used to solve #2).
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7. (a) Let n � 3. Show that there does not exist a sequence a1; a2; : : : ; anŠ such
that the nŠ circular factors ai ; aiC1; : : : ; aiCn�1 (subscripts taken modulo nŠ
if necessary) are the nŠ permutations of Œn�.

(b) Show that for all n � 1 there does exist a sequence a1; a2; : : : ; anŠ such that
the nŠ circular factors ai ; aiC1; : : : ; aiCn�2 consist of the first n � 1 terms
b1; : : : ; bn�1 of all permutations b1; b2; : : : ; bn of Œn�. Such sequences are
called universal cycles for Sn. When n D 3, an example of such a universal
cycle is 123213.

(c) When n D 3, find the number of universal cycles beginning with 123.
(d) (unsolved) Find the number Un of universal cycles for Sn beginning with

1; 2; : : : ; n. It is known that

U4 D 27 � 3:
U5 D 233 � 38 � 53:
U6 D 2190 � 349 � 533:
U7 D 21217 � 3123 � 5119 � 75 � 1128 � 4335 � 7320 � 7921 � 10935:

Moreover, U9 is divisible by p168, where p D 59229013196333 is prime.
Most likely there is not a “nice” formula for Un. Some, but not all, of
the factorization of Un into lots of factors can be explained using the
representation theory of Sn, a topic beyond the scope of this text.



Chapter 11
Cycles, Bonds, and Electrical Networks

11.1 The Cycle Space and Bond Space

In this chapter we will deal with some interesting linear algebra related to the
structure of a directed graph. Let D D .V;E/ be a digraph. A function f WE ! R

is called a circulation if for every vertex v 2 V we have

X

e2E
init.e/Dv

f .e/ D
X

e2E
fin.e/Dv

f .e/: (11.1)

Thus if we think of the edges as pipes and f as measuring the flow (quantity per
unit of time) of some commodity (such as oil) through the pipes in the specified
direction (so that a negative value of f .e/ means a flow of jf .e/j in the direction
opposite the direction of e), then (11.1) simply says that the amount flowing into
each vertex equals the amount flowing out. In other words, the flow is conservative.
The figure below illustrates a circulation in a digraphD.

5 2

3

4

−1

−6

7

3

π

Let C D CD denote the set of all circulations on D. Clearly if f; g 2 C and
˛; ˇ 2 R then f̨ Cˇg 2 C. Hence C is a (real) vector space, called the cycle space
ofD. Thus if q D #E, then CD is a subspace of the q-dimensional vector space RE

of all functions f WE ! R.
What do circulations have do with something “circulating,” and what does the

cycle space have to do with actual cycles? To see this, define a circuit or elementary
cycle inD to be a set of edges of a closed walk, ignoring the direction of the arrows,
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with no repeated vertices except the first and last. Suppose that C has been assigned
an orientation (direction of travel) o. (Note that this meaning of orientation is not
the same as that appearing in Definition 9.5.)

Define a function fC WE ! R (which also depends on the orientation o, though we
suppress it from the notation) by

fC .e/ D
8
<

:

1; if e 2 C and e agrees with o;

�1; if e 2 C and e is opposite to o;

0; otherwise:

It is easy to see that fC is a circulation. Later we will see that the circulations fC
span the cycle space C, explaining the terminology “circulation” and “cycle space.”
The figure below shows a circuit C with an orientation o and the corresponding
circulation fC .

1

−1−1

−1

1

Given a function 'WV ! R, called a potential on D, define a new function
ı'WE ! R, called the coboundary1 of ', by

ı'.e/ D '.v/� '.u/; if u D init.e/ and v D fin.e/.

Figure 11.1 shows a digraph D with the value '.v/ of some function 'WV ! R

indicated at each vertex v and the corresponding values ı'.e/ shown at each edge e.
One should regard ı as an operator which takes an element ' of the vector space

R
V of all functions V ! R and produces an element of the vector space R

E of all
functions E ! R. It is immediate from the definition of ı that ı is linear, i.e.,

ı.a'1 C b'2/ D a � ı'1 C b � ı'2;

1The term “coboundary” arises from algebraic topology, but we will not explain the connection
here.
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3

2 −1Fig. 11.1 A function
(potential) and its coboundary

for all '1; '2 2 R
V and a; b 2 R. Thus ı is simply a linear transformation ıWRV !

R
E between two finite-dimensional vector spaces.
A function gWE ! R is called a potential difference on D if g D ı' for some

'WV ! R. (Later we will see the connection with electrical networks that accounts
for the terminology “potential difference.”) Let B D BD be the set of all potential
differences on D. Thus B is just the image of the linear transformation ı and is
hence a real vector space, called the bond space of D.

Let us explain the reason behind the terminology “bond space.” A bond in a
digraph D is a set B of edges such that (a) removing B from D disconnects some
(undirected) component of D (i.e., removing B creates a digraph which has more
connected components, as an undirected graph, than D) and (b) no proper subset
of B has this property. A subset of edges satisfying (a) is called a cutset, so a bond
is just a minimal cutset. Suppose, for example, that D is given as follows (with no
arrows drawn since they are irrelevant to the definition of bond):

b c d

a

e

Then the bonds are the six subsets ab; de; acd; bce; ace, and bcd .
Let B be a bond. SupposeB disconnects the component .V 0; E 0/ into two pieces

(a bond always disconnects some component into exactly two pieces [why?]) with
vertex set S in one piece and NS in the other. Thus S [ NS D V 0 and S \ NS D ;.
Define

ŒS; NS� D fe 2 EW exactly one vertex of e lies in S and one lies in NSg:

Clearly B D ŒS; NS�. It is often convenient to use the notation ŒS; NS� for a bond.
Given a bond B D ŒS; NS� of D, define a function gB WE ! R by

gB.e/ D
8
<

:

1; if init.e/ 2 NS , fin.e/ 2 S;
�1; if init.e/ 2 S , fin.e/ 2 NS;
0; otherwise.
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Note that gB really depends not just on B , but also on whether we write B as ŒS; NS�
or Œ NS; S�. Writing B in the reverse way simply changes the sign of gB . Whenever
we deal with gB we will assume that some choice B D ŒS; NS� has been made.

Now note that gB D ı', where

'.v/ D
�
1; if v 2 S;
0; if v 62 S:

Hence gB 2 B, the bond space of D. We will later see that B is in fact spanned by
the functions gB , explaining the terminology “bond space.”

11.1 Example. In the digraph below, open (white) vertices indicate an element of
S and closed (black) vertices an element of NS for a certain bond B D ŒS; NS�. The
elements of B are drawn with solid lines. The edges are labelled by the values of gB
and the vertices by the function ' for which gB D ı'.

0

0

0 1 −1

−1

0

1
1 1

0

01

Recall that in Definition 9.5 we defined the incidence matrix M .G/ of a loopless
undirected graphG with respect to an orientation o. We may just as well think of G
together with its orientation o as a directed graph. We also will allow loops. Thus if
D D .V;E/ is any (finite) digraph, define the incidence matrix M D M .D/ to be
the p � q matrix whose rows are indexed by V and columns by E, as follows. The
entry in row v 2 V and column e 2 E is denotedmv.e/ and is given by

mv.e/ D
8
<

:

�1; if v D init.e/ and e is not a loop;
1; if v D fin.e/ and e is not a loop;
0; otherwise:

For instance, if D is given by

1 2

3

4

5

2

3

1
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then

M .D/ D

2

6
4

1 1 � 1 0 0

�1 � 1 0 1 0

0 0 1 � 1 0

3

7
5 :

11.2 Theorem. The row space of M .D/ is the bond space BD . Equivalently, the
functionsmvWE ! R, where v ranges over all vertices of D, span BD.

Proof. Let g D ı' be a potential difference on D, so

g.e/ D '.fin.e// � '.init.e//

D
X

v2V
'.v/mv.e/:

Thus g DPv2V '.v/mv, so g belongs to the row space of M .
Conversely, if g D P

v2V  .v/mv is in the row space of M , where  WV ! R,
then g D ı 2 B. ut

We now define a scalar product (or inner product) on the space R
E by

hf; gi D
X

e2E
f .e/g.e/;

for any f; g 2 R
E . If we think of the numbers f .e/ and g.e/ as the coordinates of

f and g with respect to the basis E, then hf; gi is just the usual dot product of f
and g. Because we have a scalar product, we have a notion of what it means for f
and g to be orthogonal, viz., hf; gi D 0. If V is any subspace of RE , then define the
orthogonal complement V? of V by

V? D ff 2 R
E W hf; gi D 0 for all g 2 Vg:

Recall from linear algebra that

dimV C dimV? D dimR
E D #E: (11.2)

Furthermore,
�V?�? D V . Let us also note that since we are working over R, we

have V \ V? D f0g. Thus RE D V ˚ V? (direct sum).
Intuitively there is a kind of “duality” between elementary cycles and bonds. Cy-

cles “hold vertices together,” while bonds “tear them apart.” The precise statement
of this duality is given by the next result.

11.3 Theorem. The cycle and bond spaces of D are related by C D B?.
(Equivalently, B D C?.)
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Proof. Let f WE ! R. Then f is a circulation if and only if

X

e2E
mv.e/f .e/ D 0

for all v 2 V [why?]. But this is exactly the condition that f 2 B?. ut

11.2 Bases for the Cycle Space and Bond Space

We want to examine the incidence matrix M .D/ in more detail. In particular, we
would like to determine which rows and columns of M .D/ are linearly independent
and which span the row and column spaces. As a corollary, we will determine
the dimension of the spaces B and C. We begin by defining the support kf k of
f WE ! R to be the set of edges e 2 E for which f .e/ ¤ 0.

11.4 Lemma. If 0 ¤ f 2 C, then kf k contains an undirected circuit.

Proof. If not, then kf k has a vertex of degree one [why?], which is clearly
impossible. ut
11.5 Lemma. If 0 ¤ g 2 B, then kgk contains a bond.

Proof. Let 0 ¤ g 2 B, so g D ı' for some 'WV ! R. Choose a vertex v which is
incident to an edge of kgk and set

U D fu 2 V W'.u/ D '.v/g:

Let NU D V � U . Note that NU ¤ ;, since otherwise ' is constant so g D 0. Since
g.e/ ¤ 0 for all e 2 ŒU; NU � [why?], we have that kgk contains the cutset ŒU; NU �.
Since a bond is by definition a minimal cutset, it follows that kgk contains a bond.

ut
A matrix B is called a basis matrix of B if the rows of B form a basis for B.

Similarly define a basis matrix C of C.
Recall the notation of Theorem 9.4: let A be a matrix with at least as many

columns as rows, whose columns are indexed by the elements of a set T . If S � T ,
then AŒS� denotes the submatrix of A consisting of the columns indexed by the
elements of S . In particular,AŒe� (short forAŒfeg�) denotes the column ofA indexed
by e. We come to our first significant result about bases for the vector spaces B
and C.

11.6 Theorem. Let B be a basis matrix of B and C a basis matrix of C. (Thus the
columns of B and C are indexed by the edges e 2 E of D.) Let S � E, Then:

(i) The columns of BŒS� are linearly independent if and only if S is acyclic (i.e.,
contains no circuit as an undirected graph).
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(ii) The columns of C ŒS� are linearly independent if and only if S contains no bond.

Proof. The columns of BŒS� are linearly dependent if and only if there exists a
function f WE ! R such that

f .e/ ¤ 0 for some e 2 S;
f .e/ D 0 for all e 62 S;

X

e2E
f .e/BŒe� D 0; the column vector of 0’s: (11.3)

The last condition is equivalent to hf;mvi D 0 for all v 2 V , i.e., f is a circulation.
Thus the columns of BŒS� are linearly dependent if and only if there exists a nonzero
circulation f such that kf k � S . By Lemma 11.4, kf k (and thereforeS ) contains a
circuit. Conversely, if S contains a circuit C then 0 ¤ fC 2 C and kfC k D C � S ,
so fC defines a linear dependence relation (11.3) among the columns. Hence the
columns of BŒS� are linearly independent if and only if S is acyclic, proving (i).
(Part (i) can also be deduced from Lemma 9.7.)

The proof of (ii) is similar and is left as an exercise. ut
11.7 Corollary. Let D D .V;E/ be a digraph with p vertices, q edges, and k
connected components (as an undirected graph). Then

dimB D p � k;
dim C D q � p C k:

Proof. For any matrixX , the rank ofX is equal to the maximum number of linearly
independent columns. Now let B be a basis matrix of B. By Theorem 11.6(i), the
rank of B is then the maximum size (number of elements) of an acyclic subset ofE.
In each connected componentDi of D, the largest acyclic subsets are the spanning
trees, whose number of edges is p.Di / � 1, where p.Di / is the number of vertices
of Di . Hence

rank B D
kX

iD1
.p.Di /� 1/

D p � k:

Since dimB C dim C D dimR
E D q by (11.2) and Theorem 11.3, we have

dim C D q � .p � k/ D q � p C k:

(It is also possible to determine dim C by a direct argument similar to our
determination of dimB.) ut
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The number q�pCk (which should be thought of as the number of independent
cycles in D) is called the cyclomatic number of D (or of its undirected version G,
since the direction of the edges has no effect).

Our next goal is to describe explicit bases of C and B. Recall that a forest is
an undirected graph without circuits, or equivalently, a disjoint union of trees. We
extend the definition of forest to directed graphs by ignoring the arrows, i.e., a
directed graph is a forest if it has no circuits as an undirected graph. Equivalently
[why?], dim C D 0.

Pick a maximal forest T ofD D .V;E/. Thus T restricted to each component of
D is a spanning tree. If e is an edge of D not in T , then it is easy to see that T [ e
contains a unique circuit Ce.

11.8 Theorem. Let T be as above. Then the set S of circulations fCe , as e ranges
over all edges of D not in T , is a basis for the cycle space C.

Proof. The circulations fCe are linearly independent, since for each e 2 E.D/ �
E.T / only fCe doesn’t vanish on e. Moreover,

#S D #E.D/ � #E.T / D q � p C k D dim C;

so S is a basis. ut
11.9 Example. Let D be the digraph shown below, with the edges a; b; c of T
shown by dotted lines.

e

d
c

b

fa

Orient each circuit Ct in the direction of the added edge, i.e., fCt .t/ D 1. Then the
basis matrix C of C corresponding to the basis fCd ; fCe ; fCf is given by

C D
2

4
0 �1 �1 1 0 0

�1 �1 �1 0 1 0

0 0 �1 0 0 1

3

5 : (11.4)

We next want to find a basis for the bond space B analogous to that of
Theorem 11.8.

11.10 Lemma. Let T be a maximal forest of D D .V;E/. Let T � D D � E.T /
(the digraph obtained from D by removing the edges of T ), called a cotree if D is
connected. Let e be an edge of T . Then E.T �/[ e contains a unique bond.
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Proof. Removing E.T �/ from D leaves a maximal forest T , so removing one
further edge e disconnects some component of D. Hence E.T �/ [ e contains a
bond B . It remains to show that B is unique. Removing e from T breaks some
component of T into two connected graphs T1 and T2 with vertex sets S and NS . It
follows [why?] that we must have B D ŒS; NS�, so B is unique. ut

Let T be a maximal forest of the digraph D, and let e be an edge of T . By the
previous lemma,E.T �/[e contains a unique bondBe . Let gBe be the corresponding
element of the bond space B, chosen for definiteness so that gBe .e/ D 1.

11.11 Theorem. The set of functions gBe , as e ranges over all edges of T , is a basis
for the bond space B.

Proof. The functions gBe are linearly independent, since only gBe is nonzero on
e 2 E.T /. Since

#E.T / D p � k D dimB;

it follows that the gBe ’s are a basis for B. ut
11.12 Example. Let D and T be as in the previous diagram. Thus a basis for B is
given by the functions gBa ; gBb ; gBc . The corresponding basis matrix is given by

B D
2

4
1 0 0 0 1 0

0 1 0 1 1 0

0 0 1 1 1 1

3

5 :

Note that the rows of B are orthogonal to the rows of the matrix C of (11.4), in
accordance with Theorem 11.3. Equivalently, BC t D 0, the 3 � 3 zero matrix.
(In general, BC t will have q � p C k rows and p � k columns. Here it is just a
coincidence that these two numbers are equal.)

The basis matrices C T and BT of C and B obtained from a maximal forest T
have an important property. A real matrix m � n matrix A with m � n is said to be
unimodular if everym�m submatrix has determinant 0, 1, or �1. For instance, the
adjacency matrix M .D/ of a digraphD is unimodular, as proved in Lemma 9.7 (by
showing that the expansion of the determinant of a full submatrix has at most one
nonzero term).

11.13 Theorem. Let T be a maximal forest of D. Then the basis matrices C T of C
and BT of B are unimodular.

Proof. First consider the case C T . Let P be a full submatrix of C (so P has
q � p C k rows and columns). Assume det P ¤ 0. We need to show det P D ˙1.
Since det P ¤ 0, it follows from Theorem 11.6(ii) that P D C T ŒT

�
1 � for the

complement T �
1 of some maximal forest T1. Note that the rows of the matrix
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C T ŒT
�
1 � are indexed by T � and the columns by T �

1 . Similarly the rows of the basis
matrix C T1 are indexed by T �

1 and the columns by E (the set of all edges of D).
Hence it makes sense to define the matrix product

Z D C T ŒT
�
1 �C T1 ;

a matrix whose rows are indexed by T � and columns by E.
Note that the matrix Z is a basis matrix for the cycle space C since its rows are

linear combinations of the rows of the basis matrix C �
T1

, and it has full rank since the
matrix C T ŒT

�
1 � is invertible. Now C T1 ŒT

�
1 � D IT �

1
(the identity matrix indexed by

T �
1 ), so Z ŒT �

1 � D C T ŒT
�
1 �. Thus Z agrees with the basis matrix C T in columns T �

1 .
Hence the rows of Z �C T are circulations supported on a subset of T1. Since T1 is
acyclic, it follows from Lemma 11.4 that the only such circulation is identically 0,
so Z D C T .

We have just shown that

C T ŒT
�
1 �C T1 D C T :

Restricting both sides to T �, we obtain

C T ŒT
�
1 �C T1 ŒT

�� D C T ŒT
�� D IT � :

Taking determinants yields

det.C T ŒT
�
1 �/ det.C T1 ŒT

��/ D 1:

Since all the matrices we have been considering have integer entries, the above
determinants are integers. Hence

det C T ŒT
�
1 � D ˙1;

as was to be proved.
A similar proof works for BT . ut

11.3 Electrical Networks

We will give a brief indication of the connection between the above discussion and
the theory of electrical networks. Let D be a digraph, which for convenience we
assume is connected and loopless. Suppose that at each edge e there is a voltage
(potential difference) Ve from init e to fin e and a current Ie in the direction of e (so
a negative current Ie indicates a current of jIej in the direction opposite to e). Think
of V and I as functions on the edges, i.e., as elements of the vector space RE . There
are three fundamental laws relating the quantities Ve and Ie .
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Kirchhoff’s First Law. I 2 CD. In other words, the current flowing into a vertex
equals the current flowing out. In symbols,

X

e
init eDv

Ie D
X

e
fin eDv

Ie;

for all vertices v 2 V .

Kirchhoff’s Second Law. V 2 C?
D D B. In other words, the sum of the voltages

around any circuit (called loops by electrical engineers), taking into account
orientations, is 0.

Ohm’s Law. If edge e has resistance Re > 0, then Ve D IeRe .
The central problem of electrical network theory dealing with the above three

laws2 is the following: which of the 3q quantities Ve; Ie; Re need to be specified
to uniquely determine all the others, and how can we find or stipulate the solution
in a fast and elegant way? We will be concerned here only with a special case,
perhaps the most important special case in practical applications. Namely, suppose
we apply a voltage Vq at edge eq , with resistances R1; : : : ; Rq�1 at the other edges
e1; : : : ; eq�1. Let Vi ; Ii be the voltage and current at edge ei . We would like to
express each Vi and Ii in terms of Vq and R1; : : : ; Rq�1. By “physical intuition”
there should be a unique solution, since we can actually build a network meeting the
specifications of the problem. Note that if we have quantities Vi ; Ii ; Ri satisfying the
three network laws above, then for any scalar ˛ the quantities ˛Vi ; ˛Ii ; Ri are also
a solution. This means that we might as well assume that Vq D 1, since we can
always multiply all voltages and currents afterwards by whatever value we want Vq
to be.

As an illustration of a simple method of computing the total resistance of a
network, the following diagram illustrates the notion of a series connectionD1CD2

and a parallel connectionD1 k D2 of two networksD1 andD2 with a distinguished
edge e at which a voltage is applied.

BA

A

ee

B

e eA B

D1

D1 + D2

D2 D1 || D2

2Of course the situation becomes much more complicated when one introduces dynamic network
elements like capacitors, alternating current, etc.
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When we apply a voltage Vq > 0 the current will flow along eq from the
higher potential to the lower. Thus Vq=Iq < 0, so we should define the total
resistance R.D/ of the network D, together with the distinguished edge e, by
R.D/ D �Vq=Iq . It is well known and easy to deduce from the three network
laws that

R.D1 CD2/ D R.D1/CR.D2/;

1

R.D1 k D2/
D 1

R.D1/
C 1

R.D2/
:

A network that is built up from a single edge by a sequence of series and parallel
connections is called a series–parallel network. An example is the following, with
the distinguished edge e shown by a broken line from bottom to top.

e

The simplest network which is not a series–parallel network is called the Wheatstone
bridge and is illustrated below. (The direction of the arrows has been chosen
arbitrarily.) We will use this network as our main example in the discussion that
follows.

3
1 2

5

6

4

We now return to an arbitrary connected loopless digraph D, with currents Ii ,
voltages Vi , and resistances Ri at the edges ei . Recall that we are fixing Vq D 1

and R1; : : : ; Rq�1. Let T be a spanning tree of D. Since I is a current if and only
if it is orthogonal to the bond space B (Theorem 11.3 and Kirchhoff’s first law), it
follows that any basis for B defines a complete and minimal set of linear relations
satisfied by the Ii ’s (namely, the relation that I is orthogonal to the basis elements).
In particular, the basis matrix CT defines such a set of relations. For example, if D
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is the Wheatstone bridge shown above and if T D fe1; e2; e5g, then we obtain the
following relations by adding the edges e1; e2; e5 of T in turn to T �:

I1 � I3 � I4 D 0;

I2 C I3 C I4 C I6 D 0; (11.5)

I4 C I5 C I6 D 0:

These three (D p�1) equations give all the relations satisfied by the Ii ’s alone, and
the equations are linearly independent.

Similarly if V is a voltage then it is orthogonal to the cycle space C. Thus any
basis for C defines a complete and minimal set of linear relations satisfied by the Vi ’s
(namely, the relation that V is orthogonal to the basis elements). In particular, the
basis matrix CT defines such a set of relations. Continuing our example, we obtain
the following relations by adding the edges e3; e4; e6 of T � in turn to T :

V1 � V2 C V3 D 0;
V1 � V2 C V4 � V5 D 0; (11.6)

V2 C V5 D 1:

These three (D q�pCk) equations give all the relations satisfied by the Vi ’s alone,
and the equations are linearly independent.

In addition, Ohm’s law gives the q � 1 equations Vi D RiIi , 1 � i � q � 1.
We have a total of .p � k/ C .q � p C k/ C .q � 1/ D 2q � 1 equations in the
2q� 1 unknowns Ii (1 � i � q) and Vi (1 � i � q� 1). Moreover, it is easy to see
that these 2q � 1 equations are linearly independent, using the fact that we already
know that just the equations involving the Ii ’s alone are linearly independent, and
similarly the Vi ’s. Hence this system of 2q � 1 equations in 2q � 1 unknowns has a
unique solution. We have now reduced the problem to straightforward linear algebra.
However, it is possible to describe the solution explicitly. We will be content here
with giving a formula just for the total resistance R.D/ D �Vq=Iq D �1=Iq .

Write the 2q�1 equations in the form of a .2q�1/�2q matrix K . The columns
of the matrix are indexed by I1; I2; : : : ; Iq , V1, V2; : : : ; Vq . The last column Vq of the
matrix keeps track of the constant terms of the equations. The rows of K are given
first by the equations among the Ii ’s, then the Vi ’s, and finally Ohm’s law. For our
example of the Wheatstone bridge, we obtain the matrix
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K D

I1 I2 I3 I4 I5 I6 V1 V2 V3 V4 V5 V6

1 0 �1 �1 0 0 0 0 0 0 0 0

0 1 1 1 0 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 1 0 0 0

0 0 0 0 0 0 1 �1 0 1 �1 0

0 0 0 0 0 0 0 �1 0 0 �1 1

R1 0 0 0 0 0 �1 0 0 0 0 0

0 R2 0 0 0 0 0 �1 0 0 0 0

0 0 R3 0 0 0 0 0 �1 0 0 0

0 0 0 R4 0 0 0 0 0 �1 0 0

0 0 0 0 R5 0 0 0 0 0 �1 0

:

We want to solve for Iq by Cramer’s rule. Call the submatrix consisting of all but
the last column X . Let Y be the result of replacing the Iq column of X by the last
column of K . Cramer’s rule then asserts that

Iq D detY

detX
:

We evaluate detX by taking a Laplace expansion along the first p�1 rows. In other
words,

detX D
X

S

˙ det.XŒŒp � 1�; S�/ � det.XŒŒp � 1�c ; NS�/; (11.7)

where (a) S indexes all .p � 1/-element subsets of the columns, (b) XŒŒp � 1�; S�
denotes the submatrix of X consisting of entries in the first p � 1 rows and in
the columns S , and (c) XŒŒp � 1�c ; NS� denotes the submatrix of X consisting of
entries in the last 2q � p rows and in the columns other than S . In order for
det.XŒŒp�1�; S�/ ¤ 0, we must choose S D fIi1 ; : : : ; Iip�1g, where fei1 ; : : : ; eip�1g
is a spanning tree T1 (by Theorem 11.6(i)). In this case, det.XŒŒp�1�; S�/ D ˙1 by
Theorem 11.13. If Iq 62 S , then the Iq column of XŒŒp� 1�c ; NS� will be zero. Hence
to get a nonzero term in (11.7), we must have eq 2 S . The matrixXŒŒp�1�c ; NS�will
have one nonzero entry in each of the first q�pC1 columns, namely, the resistances
Rj where ej is not an edge of T1. This accounts for q � p C 1 entries from the last
q�1 rows ofXŒŒp�1�c ; NS�. The remainingp�2 of the last q�1 rows have available
only one nonzero entry each, namely, a �1 in the columns indexed by Vj where ej
is an edge of T1 other than eq . Hence we need to choose q � p C 1 remaining
entries from rows p through q and columns indexed by Vj for ej not an edge of
T1. By Theorems 11.6(ii) and 11.13, this remaining submatrix has determinant˙1.
It follows that

det.XŒŒp � 1�; S�/ � det.XŒŒp � 1�c; NS�/ D ˙
Y

ej 62E.T1/
Rj :
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Hence by (11.7), we get

detX D
X

T1

˙
0

@
Y

ej 62E.T1/
Rj

1

A ; (11.8)

where T1 ranges over all spanning trees ofD containing eq . A careful analysis of the
signs (omitted here) shows that all signs in (11.8) are negative, so we finally arrive
at the remarkable formula

detX D �
X

spanning trees T1
containing eq

Y

ej 62E.T1/
Rj :

For example, if D is the Wheatstone bridge as above, and if we abbreviateR1 D a,
R2 D b, R3 D c, R4 D d , R5 D e, then

� detX D abc C abd C abe C ace C ade C bcd C bde C cde:

Now suppose we replace column Iq inX by column Vq in the matrix K, obtaining
the matrix Y . There is a unique nonzero entry in the new column, so it must be
chosen in any nonzero term in the expansion of detY . The argument now goes just
as it did for detX , except we have to choose S to correspond to a spanning tree T1
that doesn’t contain eq . We therefore obtain

detY D
X

spanning trees T1
not containing eq

Y

ej 62E.T1/

ej ¤eq

Rj :

For example, for the Wheatstone bridge we get

detY D ac C ad C ae C bc C bd C be C cd C ce:
Recall that Iq D det.Y /= det.X/ and that the total resistance of the network is

�1=Iq. Putting everything together gives our main result on electrical networks.

11.14 Theorem. In the situation described above, the total resistance of the network
is given by

R.D/ D � 1
Iq
D �

X

spanning trees T1
containing eq

Y

ej 62E.T1/
Rj

X

spanning trees T1
not containing eq

Y

ej 62E.T1/

ej¤eq

Rj
:

11.15 Corollary. If the resistancesR1; : : : ; Rq�1 are all equal to one, then the total
resistance of the network is given by
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R.D/ D � 1
Iq
D number of spanning trees containing eq

number of spanning trees not containing eq
:

In particular, if R1 D � � � D Rq�1 D 1, then the total resistance, when reduced to
lowest terms a=b, has the curious property that the number �.D/ of spanning trees
of D is divisible by aC b.

11.4 Planar Graphs (Sketch)

A graph G is planar if it can be drawn in the plane R
2 without crossing edges.

A drawing of G in this way is called a planar embedding. An example of a planar
embedding is shown in Fig. 11.2. In this section we state the basic results on the
bond and cycle spaces of a planar graph. The proofs are relatively straightforward
and are omitted.

If the vertices and edges of a planar embedding of G are removed from R
2, then

we obtain a disjoint union of open sets, called the faces (or regions) of G. (More
precisely, these open sets are the faces of the planar embedding of G. Often we
will not bother to distinguish between a planar graph and a planar embedding if no
confusion should result.) LetR D R.G/ be the set of faces ofG, and as usual V.G/
and E.G/ denote the set of vertices and edges of G, respectively.

NOTE. If G is a simple (no loops or multiple edges) planar embedding, then it
can be shown that there exists a planar embedding of the same graph with edges
as straight lines and with faces (regarding as the sequence of vertices and edges
obtained by walking around the boundaries of the faces) preserved.

The dual G� of the planar embedded graph G has vertex set R.G/ and edge set
E�.G/ D fe� W e 2 E.G/g. If e is an edge ofG, then let r and r 0 be the faces on its
two sides. (Possibly r D r 0; there are five such edges in Fig. 11.2.) Then define e�
to connect r and r 0. We can always draw G� to be planar, letting e and e� intersect
once. If G is connected then every face of G� contains exactly one (nonisolated)
vertex of G and G�� Š G. For any planar embedded graph G, the dual G� is
connected. Then G Š G�� if and only if G is connected. In general, we always

Fig. 11.2 A planar
embedding
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Fig. 11.3 A planar embedding and its dual

have G� Š G���. Figure 11.3 shows the dual G� to the graph G of Fig. 11.2, with
the vertices of G� drawn as open circles and the edges as broken lines.

11.16 Example. Let G consist of two disjoint edges. Then G� has one vertex and
two loops, while G�� is a three-vertex path. The unbounded face of G� contains
two vertices of G, and G�� 6Š G.

Orient the edges of the planar graph G in any way to get a digraph D. Let r be
an interior (i.e., bounded) face of D. An outside edge of r is an edge e such that r
lies on one side of the edge, and a different face lies on the other side. The outside
edges of any interior face r define a circulation (shown as solid edges in the diagram
below), and these circulations (as r ranges over all interior faces of D) form a basis
for the cycle space CG of G.

r

Given the orientation D of G, orient the edges of G� as follows: as we walk
along e in the direction of its orientation, e� points to our right.
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11.17 Theorem. Let f WE.G/ ! R. Define f �WE.G�/ ! R by f �.e�/ D f .e/.
Then

f 2 BG , f � 2 CG� ;

f 2 CG , f � 2 BG� :

11.18 Proposition. Let G be connected. The set S is the set of edges of a spanning
tree T of G if and only if S� D fe� W e 2 Sg is the set of edges of a cotree T � of
G�.

11.19 Corollary. If G is connected then �.G/ D �.G�/.
For nonplanar graphs there is still a notion of a “dual” object, but it is no longer a

graph but rather something called a matroid. Matroid theory is a flourishing subject
which may be regarded as a combinatorial abstraction of linear algebra.

11.5 Squaring the Square

A squared rectangle is a rectangle partitioned into finitely many (but more than one)
squares. A squared rectangle is perfect if all the squares are of different sizes. The
earliest perfect squared rectangle was found in 1936; its size is 33� 32 and consists
of nine squares:

The question then arose: does there exist a perfect squared square? A single
example was found by Sprague in 1939; it has 55 squares. Then Brooks, Smith,
Stone, and Tutte developed a network theory approach which we now explain.

The Smith diagram D of a squared rectangle is a directed graph whose vertices
are the horizontal line segments of the squared rectangle and whose squares are
the edges, directed from top to bottom. The top vertex (corresponding to the top
edge of the rectangle being squared) and the bottom vertex (corresponding to the
bottom edge) are called poles. Label each edge by the side length of the square to
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poleFig. 11.4 A Smith diagram

which it corresponds. Figure 11.4 shows the Smith diagram of the (perfect) squared
rectangle above.

The following result concerning Smith diagrams is straightforward to verify.

11.20 Theorem. (a) If we set Ie and Ve equal to the label of edge e, then
Kirchhoff’s two laws hold (so Re D 1) except at the poles.

(b) The Smith diagram is planar and can be drawn without separation of poles.
Joining the poles by an edge from the bottom to the top gives a 3-connected
graph, i.e., a connected graph that remains connected when one or two vertices
are removed.
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Call the 3-connected graph of Theorem 11.20 the extended Smith diagram of the
a�b squared rectangle. If we impose a current Ie1 D b on the new edge e1 (directed
from bottom to top) between poles, and a voltage Ve1 D �a, then Kirchhoff’s two
laws hold at all vertices. The diagram below shows the extended Smith diagram
corresponding to Fig. 11.4, with the new edge e1 labelled by the current Ie1 .

7

18

15

8
1

9

10

14

4

pole

pole

32

We therefore have a recipe for searching for perfect squared rectangles and
squares: start listing all three-connected planar graphs. Then choose an edge e1 to
apply a voltage V1. Put a resistance Re D 1 at the remaining edges e. Solve for Ie
(D Ve) to get a squared rectangle and hope that one of these will be a square. One
example � found by Brooks et al. was a 112 � 75 rectangle with 14 squares. It was
given to Brooks’ mother as a jigsaw puzzle, and she found a different solution 
!
We therefore have found a squared square (though not perfect):

112 x 112 Γ

75 x 75Δ
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Building on this idea, Brooks et al. finally found two 422�593 perfect rectangles
with thirteen squares, all 26 squares being of different sizes. Putting them together
as above gives a perfect squared square. This example has two defects: (a) it contains
a smaller perfect squared rectangle (and is therefore not simple) and (b) it contains
a “cross” (four squares meeting a point). They eventually found a perfect squared
square with 69 squares without either of these defects. It is now known (thanks to
computers) that the smallest order (number of squares) of a perfect squared square
is 21. It is unique and happens to be simple and crossfree. See the figure below. It is
known that the number (up to symmetry) of simple perfect squared squares of order
n for n � 21 is 1; 8; 12; 26; 160; 441; 1152; : : : .

62

25
16

9 7

33

29

19
8

27
35

50

37 42

18

1115

4

24

Notes for Chap. 11

The theory of cycle spaces and bond spaces developed here had its origins with
the pioneering work of G. Kirchhoff [63] in 1847. The proof given here of
Theorem 11.13 is due to W.T. Tutte [117] in 1965. A nice account of the history
of squaring the square due to Tutte appears in a Scientific American column by
Martin Gardner [44]. See also [118] for another article by Tutte. A further survey
article on this topic is by Kazarinoff and Weitzenkamp [62].
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Exercises for Chap. 11

1. (a) Let Cn be the graph of the n-cube. Find the dimension of the bond space
and cycle space of Cn. Does there exist a circulation (with respect to some
orientation of Cn) supported on three edges?

(b) Show that the cycle space CCn (with respect to some orientation of Cn) is
spanned by circulations fC , where C is a circuit of length four.

2. What digraphs have the property that every nonempty set of edges is a cutset?
3. What is the size of the largest set of edges of the complete graphKp that doesn’t

contain a bond? How many such sets are there?
4. (*) The cycle space CD and bond space BD of a finite digraph D were defined

over R. However, the definition works over any field K , even those of positive
characteristic. Show that the dimensions of these two spaces remain the same
for anyK , i.e., dim CD D q � p C k and dimBD D p � k.

5. (a) A graphG is edge-transitive if its automorphism group Aut.G/ is transitive
on the edges, i.e., for any two edges e; e0 of G, there in an automorphism �

which takes e to e0. For instance, the cube graph Cn is edge-transitive. Is an
edge-transitive graph also vertex-transitive? What about conversely? If we
consider only simple graphs (no loops or multiple edges), does that affect
the answers?

(b) Suppose that G is edge-transitive and has p vertices and q edges. A one
volt battery is placed on one edge e, and all other edges have a resistance
of one ohm. Express the total resistance Re D �Ve=Ie of the network in
terms of p and q.

6. Let D be a loopless connected digraph with q edges. Let T be a spanning tree
ofD. Let C be the basis matrix for the cycle space C ofD obtained from T and
similarly B for the bond space (as described in Theorems 11.8 and 11.11).

(a) (*) Show that det C C t D det BB t D �.D/, the number of spanning trees
of D (ignoring the directions of the edges).

(b) (*) Let

Z D
	

C

B



;

a q � q matrix. Show that detZ D ˙�.D/.
7. (difficult) Let M be an m � n real unimodular matrix such that every two

columns of M are linearly independent. Show that n � �m
2

�
.

8. Let D be a planar electrical network with edges e1; : : : ; eq . Place resistances
Ri D 1 at ei , 1 � i � q � 1, and place a voltage Vq D 1 at eq . Let D� be the
dual network, with the same resistancesRi at e�

i and voltage V �
q at e�

q . What is
the connection between the total resistances R.D/ and R.D�/?
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9. Let D be the extended Smith diagram of a squared rectangle, with the current
I and voltage V as defined in the text. What is the “geometric” significance of
the fact that hI; V i D 0?

10. Let D be the extended Smith diagram of an a� b squared rectangle. Show that
the number of spanning trees of D is divisible by aC b.



Chapter 12
Miscellaneous Gems of Algebraic Combinatorics

12.1 The 100 Prisoners

An evil warden is in charge of 100 prisoners (all with different names). He puts a
row of 100 boxes in a room. Inside each box is the name of a different prisoner. The
prisoners enter the room one at a time. Each prisoner must open 50 of the boxes, one
at a time. If any of the prisoners does not see his or her own name, then they are all
killed. The prisoners may have a discussion before the first prisoner enters the room
with the boxes, but after that there is no further communication. A prisoner may
not leave a message of any kind for another prisoner. In particular, all the boxes are
shut once a prisoner leaves the room. If all the prisoners choose 50 boxes at random,
then each has a success probability of 1/2, so the probability that they are not killed
is 2�100, not such good odds. Is there a strategy that will increase the chances of
success? What is the best strategy?

It’s not hard to see that the prisoners can achieve a success probability of greater
than 2�100. For instance, suppose that the first prisoner opens the first 50 boxes and
the second prisoner opens the last 50. If the first prisoner succeeds (with probability
1/2), then the first prisoner’s name is guaranteed not to be in one of the boxes opened
by the second prisoner, so the second prisoner’s probability of success is 50/99. Each
pair of prisoners can do this strategy, increasing the overall success probability to
.25=99/50, still an extremely low number. Can they do significantly better? The key
to understanding this problem is the realization that the prisoners do not have to
decide in advance on which boxes they will open. A prisoner can decide which box
to open next based on what he has seen in the boxes previously opened.

12.1 Theorem. There exists a strategy with a success probability of

1 �
100X

jD51

1

j
D 0:3118278207 � � � :

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8 12,
© Springer Science+Business Media New York 2013
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Proof. The prisoners assign themselves the numbers 1; 2; : : : ; 100 by whatever
method they prefer. Each prisoner is assigned a different number. The prisoners
memorize everyone’s number. They regard the boxes, which are lined up in a row,
as being numbered 1; 2; : : : ; 100 from left to right. A prisoner with number k first
goes to box k. If the prisoner sees his name, then he breathes a temporary sigh of
relief, and the next prisoner enters. Otherwise the first prisoner will see the name
of some other prisoner, say with number n1. He then opens box n1 and repeats the
procedure, so whenever he opens a box B that doesn’t contain his own name, the
next box that he opens has the number of the prisoner whose name appears in boxB .

What is the probability of success of this strategy? Suppose that box i contains
the name of the prisoner numbered .i/. Thus  is a permutation of 1; 2; : : : ; 100.
The boxes opened by prisoner i are those containing the names of prisoners with
numbers .i/, 2.i/, 3.i/, etc. If k is the length of the cycle of  containing i ,
then the prisoner will see his name after opening the kth box. This will happen
whenever k � 50. Thus all prisoners see their names if and only if every cycle of
 has length at most 50. If  does not have this property, then it has exactly one
cycle of length r > 50. There are

�
100
r

�
ways to choose the elements of the cycle and

.r � 1/Š ways to arrange them in a cycle. There are then .100� r/Š ways to arrange
the other elements of  . Thus the number of permutations  2 S100 with a cycle of
length r > 50 is

 
100

r

!

.r � 1/Š.100� r/Š D 100Š

r
:

(There are more clever ways to see this.) Hence the probability of success, i.e., the
probability that  has no cycle of length more than 50, is

1 � 1

100Š

100X

rD51

100Š

r
D 1 �

100X

rD51

1

r
;

as claimed. ut
If we apply the above argument to 2n prisoners rather than 100, then we get a

success probability of

1 �
2nX

rDnC1

1

r
D 1 �

2nX

rD1

1

r
C

nX

rD1

1

r
:

From calculus we know that there is a constant � D 0:577215665 � � � , known as
Euler’s constant, for which

lim
n!1

 
nX

rD1

1

r
� logn

!

D �:
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It follows that as n!1, the success probability of the prisoners is

lim
n!1.1 � log 2nC logn/ D 1 � log 2 D 0:3068528194 � � � :

It seems quite amazing that no matter how many prisoners there are, they can always
achieve a success probability of over 30 %!

NOTE. It can be shown that the above strategy is in fact optimal, i.e., no strategy
achieves a higher probability of success. The proof, however, is not so easy.

12.2 Oddtown

The village of Oddtown has a population of n people. Inhabitants of Oddtown like
to form clubs. Every club has an odd number of members, and every pair of clubs
share an even number of members (possibly none).

12.2 Theorem. There are at most n clubs.

Proof. Let k be the number of clubs. Define a matrix M D .Mij / over the two-
element field F2 as follows. The rows of M are indexed by the clubs Ci and the
columns by the inhabitants xj of Oddtown. Set

Mij D
(
1; xj 2 Ci ;
0; otherwise:

The matrix M is called the incidence matrix corresponding to the clubs and their
members.

In general, let S be a subset of Œn�, and let �S 2 Z
n be the characteristic vector

of S , i.e., �S D .a1; : : : ; an/ where

ai D
�
1; i 2 S;
0; i 62 S:

If T is another subset of Œn�, then the key observation is that the scalar (dot) product
of �S and �T is given by �S � �T D #.S \ T /. Hence if we now work over F2, then

�S � �T D
�
1; if #.S \ T / is odd;
0; if #.S \ T / is even:

(12.1)

Let A D MM t , a k � k matrix. By (12.1) and the assumption that every club
has an odd number of members, we see that main diagonal elements of A are 1.
Similarly the off-diagonal elements of A are 0, so A D Ik , the k � k identity
matrix. Hence rank .A/ D k.
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Recall that ifB is a k�mmatrix andC is anm�nmatrix (over some field), then
rank .BC / � rank.B/ (as well as rank .BC / � rank .C /), since for any matrix D,
rank .D/ D dim image.D/. Hence, since M has n columns,

n � rank .M / � rank .MM t / D rank .A/ D k: ut

While Theorem 12.2 can be proved without linear algebra, the proof is not easy.

12.3 Complete Bipartite Partitions of Kn

Figure 12.1 shows the six edges of the complete graphK4 partitioned (according to
the edge label) into the edge sets of the three complete bipartite graphs K3;1, K2;1,
andK1;1. Clearly we can extend this construction, achieving a partition of the edges
E.Kn/ ofKn into the edge sets of n�1 complete bipartite graphs. Specifically, letE1
be the set of edges incident to a fixed vertex v. ThusE1 is the edge set of a complete
bipartite graphKn�1;1. RemoveE1 fromE.Kn/ and proceed by induction, obtaining
a partition of E.Kn/ into the edges of Kn�1;1, Kn�2;1; : : :, K1;1. The question thus
arises as to whether E.Kn/ can be partitioned into fewer than n � 1 edge sets of
complete bipartite graphs.

12.3 Theorem. If E.Kn/ is the disjoint union of the edge sets of m complete
bipartite graphs, then m � n � 1.

Proof. Let E.Kn/ D E.B1/ �[E.B1/ �[ � � � �[E.Bm/ (disjoint union), where Bk is a
complete bipartite graph with vertex bipartition .Xk; Yk/ (so Xk \ Yk D ;). For
1 � i � n, define an n � n matrix Ak by

.Ak/ij D
�
1; i 2 Xk; j 2 Yk;
0; otherwise:

1

21

1 2

3

Fig. 12.1 A decomposition
of the edges of K4 into three
complete bipartite graphs
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All nonzero rows of Ak are equal, so rank Ak D 1. Let S DPm
kD1 Ak . For i ¤ j ,

exactly one of the 2m numbers .Ak/ij and .Ak/j i , 1 � k � m, is equal to 1, since
every edge ij of Kn appears in one E.Bk/ with either i 2 Xk and j 2 Yk or else
j 2 Xk and i 2 Yk . Hence

S C St D J � I;
where as usual J is the n � n all 1’s matrix and I is the n � n identity matrix.

Claim. If T is any real matrix satisfying T C T t D J � I , then rank T � n� 1.

Suppose to the contrary that rank T � n � 2. Then T has (at least) two linearly
independent eigenvectors x; y such that T x D Ty D 0 [why?]. Since J has rank
one, the space hx; yi spanned by x and y contains a nonzero vector z satisfying
J z D 0 [why?]. Then from T C T t D J � I and T z D 0 we get �z D T t z. Take
the dot product with zt on the left. We get

�jzj2 D zt T t z

D .zt T t z/t .since a 1 � 1 matrix is symmetric/

D zt T z .since in general .AB/t D BtAt /

D 0 .since T z D 0/;
contradicting z ¤ 0. Hence the claim is proved, so in particular rank X � n�1. But
in general rank .ACB/ � rankAC rankB [why?]. Therefore from S DPm

kD1 Ak
and rank Ak D 1 we get rank S � m. It follows that m � n � 1, completing the
proof. ut

12.4 The Nonuniform Fisher Inequality

A balanced incomplete block design (BIBD) with parameters .v; k; �; r; b/ is a v-
element set X and a collection A of k-element subsets (blocks), with #A D b, such
that any two points x; y 2 X lie in exactly � blocks, and each point is in exactly r
blocks. We also assume that k < v, which is the reason for the word “incomplete.”
We can draw a BIBD as a bipartite graph with vertex bipartition .X;A/. There is an
edge from x 2 X to A 2 A if x 2 A. Thus the degree of each vertex x 2 X is r ,
and the degree of each vertex A 2 A is k. It follows that vr D kb (the total number
of edges of the graph). We can also count the number of two-element sets of edges
that are incident to the same vertex of A. On the one hand, since each vertex in A
has degree k this number is b

�
k

2

�
. On the other hand, each pair of points in X are

mutually adjacent to � points in A, so we get �
�v
2

� D b
�
k

2

�
. A little manipulation

shows that the two equalities vr D kb and �
�v
2

� D b�k
2

�
are equivalent to

vr D kb; �.v � 1/ D r.k � 1/;
the usual form in which they are written.
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Fisher showed in 1940 that b � v. This inequality was generalized by Bose
in 1949. The most convenient way to state Bose’s inequalities, known as the
nonuniform Fisher inequality, is to reverse the roles of points and blocks. Thus
consider the elements x of X to be sets whose elements are the blocks A 2 A that
contain them. In other words, we have a collection C1; : : : ; Cv of r-element sets
whose union contains b points x1; : : : ; xb . Each point is in exactly k of the sets.
Finally, #.Ci \ Cj / D � for all i ¤ j .

12.4 Theorem. Let C1; : : : ; Cv be distinct subsets of a b-element set X such that
for all i ¤ j we have #.Ci \ Cj / D � for some 1 � � < b (independent of i and
j ). Then v � b.

Proof. Case 1: some #Ci D �. Then all other Cj ’s contain Ci and are disjoint
otherwise, so

v � 1„ƒ‚…
from Ci

C b � �„ƒ‚…
from all Cj¤Ci

� b:

Case 2: all #Ci > �. Let �i D #Ci � � > 0. Let M be the incidence matrix of the
set system C1; : : : ; Cv, i.e., the rows of M correspond to the Ci ’s and the columns
to the elements x1; : : : ; xb of X , with

M ij D
�
1; xj 2 Ci ;
0; xj 62 Ci :

Let A D MM t . The hypotheses imply that A D �J C G, where J as usual is the
all 1’s matrix (of size v) and G is the diagonal matrix diag.�1; : : : ; �v/.

Claim: rank .A/ D v (i.e., A is invertible). We would then have

v D rank .A/ � rank .M / � b;

the last inequality because M has b columns.

As in the proof of Theorem 4.7, a real symmetric matrix B is positive
semidefinite if it has nonnegative eigenvalues. Equivalently, by basic linear algebra,
uBut � 0 for all row vectors u of length v. Moreover B is positive definite (and so
has positive eigenvalues) if uBut > 0 for all u ¤ 0.

Now we easily compute that

u.�J CG/ut D �.u1 C � � � C uv/
2 C �1u21 C � � � C �vu2v > 0

for all u ¤ 0. Thus A D �J CG is positive definite and hence of full rank v. ut
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12.5 Odd Neighborhood Covers

Consider an m � n grid graph. The case m D 3, n D 4 is shown in Fig. 12.2. At
each vertex are a turned on light bulb and also a switch that changes the state of its
bulb and those of its neighbors (adjacent vertices). Can all the lights be turned off?

This problem was open for many years until in 1989 Sutner, then a graduate
student, showed using automata theory that the answer is yes for any (finite) graph!
More explicitly, let G be a finite graph with a turned on light bulb at each vertex.
At each vertex is a switch that changes the state of that vertex and all its neighbors.
Then it is possible to turn off all the lights. We will give a modification of a simpler
proof due to Caro based on linear algebra.

Without loss of generality we may assume that G is simple. If v 2 V.G/, then
the neighborhood N.v/ of v is the set consisting of v and all vertices adjacent to v.
A little thought shows that we need to prove the following result.

12.5 Theorem. There exists a subset S � V D V.G/ such that #.S \N.v// is odd
for all v 2 V . (It follows that switching at the vertices v 2 S turns all the lights off.)

Proof. Let V.G/ D fv1; : : : ; vpg. Let A be the adjacency matrix of G over the field
F2, and let y D .1; 1; : : : ; 1/ 2 F

p
2 . Write row.B/ for the row space of a matrix B.

Given S � V , let �S D .a1; : : : ; ap/ 2 F
p
2 denote the characteristic (row) vector of

S , i.e.,

ai D
�
1; vi 2 S;
0; vi 62 S:

Note that switching at S turns all the lights off if and only if �S.ACI / D y. Hence
we need to show that y 2 row.A C I / [why?].

Let us recall from linear algebra some standard facts about orthogonal subspaces.
Let K be a field, and for u; v 2 Kn let u � v be the usual dot product (2.1) of u and v,
so u � v 2 K . IfW is a subspace ofKn, then define the orthogonal subspaceW ? by

W ? D fu 2 Kn W u � v D 0 for all v 2 W g:
(In Chap. 11 we discussed the case K D R.) Let d D dimW . Since W ? is the
set of solutions to d linearly independent homogeneous linear equations [why?], we
have

Fig. 12.2 The 3� 4 grid
graph
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dimW C dimW ? D n: (12.2)

Note that by definition of ? we have W � .W ?/?. By (12.2) and the equation
obtained from it by replacingW with W ?, we get dimW D dim .W ?/?. Hence

.W ?/? D W: (12.3)

NOTE. Though irrelevant here, let us point out that if K � R then W \W ? D f0g,
but that this fact need not hold in characteristic p ¤ 0. Over C we should define
u � v D u1 Nv1 C � � � C unNvn, where N denotes complex conjugation, in order to get the
most sensible theory.

Now by (12.3) the vector y D .1; 1; : : : ; 1/ (or any vector in F
n
2) lies in the row

space of A C I if and only if it is orthogonal to every vector in row.A C I /? D
ker.ACI /. Thus we need to show that if .ACI /vt D 0, then v�y D 0. Equivalently,
if yvt ¤ 0 then .A C I /vt ¤ 0. Note that (a) yvt ¤ 0 means that v has an odd
number of 1’s and (b) .A C I /vt is the sum of the rows of A C I indexed by the
positions of the 1’s in v. Thus we need to show that A C I does not have an odd
number of rows summing to 0.

Suppose that v1; : : : ; vk are vertices indexing rows of A summing to 0. LetH be
the subgraph induced by v1; : : : ; vk , i.e., H consists of the vertices v1; : : : ; vk and
all edges of G between two of these vertices. Let bij be the .i; j /-entry of A C I .
Since

Pk
iD1 bij D 0 for 1 � j � n and each bii D 1, it follows that every vertex of

H has odd degree. Since [why?]

X

v2V.H/
deg v D 2 � #E.H/;

we have that k D #V.H/ is even, completing the proof. ut

12.6 Circulant Hadamard Matrices

For our next “gem of algebraic combinatorics,” we will provide some variety by
leaving the realm of linear algebra and looking at some simple algebraic number
theory.

An n � n matrix H is a Hadamard matrix if its entries are ˙1 and its rows are
orthogonal. Equivalently, its entries are˙1 and HHt D nI . In particular [why?],

detH D ˙nn=2: (12.4)

It is easy to see that ifH is an n�n Hadamard matrix then n D 1, n D 2, or n D 4m
for some integerm � 1. (See Exercise 18.) It is conjectured that the converse is true,
i.e., for every such n there exists an n � n Hadamard matrix.
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An n � n matrix A D .bij / is a circulant or circulant matrix if it has the form
bij D ai�j for some a0; a1; : : : ; an�1, where the subscript i � j is taken modulo n.
For instance,

A D

2

6
6
4

a b c d

d a b c

c d a b

b c d a

3

7
7
5

is a circulant. Let A D .ai�j / be an n � n circulant, and let � D e2i=n, a primitive
nth root of unity. It is straightforward to compute that for 0 � j < n the column
vector Œ1; �j ; �2j ; : : : ; �.n�1/j �t is an eigenvector of A with eigenvalue a0 C �j a1 C
�2j a2 C � � � C �.n�1/j an�1. Hence

det A D
n�1Y

jD0
.a0 C �j a1 C �2j a2 C � � � C �.n�1/j an�1/: (12.5)

Note that the matrix 2

66
4

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

3

77
5

is both a Hadamard matrix and a circulant.

Conjecture. Let H be an n � n circulant Hadamard matrix. Then n D 1 or n D 4.

The first significant work on this conjecture is due to Turyn. He showed that
there does not exist a circulant Hadamard matrix of order 8m, and he also excluded
certain other orders of the form 4.2m C 1/. Turyn’s proofs use the machinery of
algebraic number theory. Here we will give a proof for the special case n D 2k ,
k � 3, where the algebraic number theory can be “dumbed down” to elementary
commutative algebra and field theory. (Only in Theorem 12.14 do we use a little
Galois theory, which can be avoided with a bit more work.) It would be interesting
to find similar proofs for other values of n.

12.6 Theorem. There does not exist a circulant Hadamard matrix H of order 2k ,
k � 3.

NOTE. It is curious that the numbers 2k (k � 2) are the easiest multiples of 4 to
show are not the orders of circulant Hadamard matrices, while on the other hand the
numbers 2k (k � 1) are the easiest numbers to show are the orders of Hadamard
matrices. To see that 2k is the order of a Hadamard matrixH , first note that the case
k D 1 is trivial. It is routine to show that if H1 is a Hadamard matrix of order a and
H2 is a Hadamard matrix of order b, then the tensor (or Kronecker) productA˝ B
is a Hadamard matrix of order ab. It follows that there exists a Hadamard matrix of
order 2k, k � 1.
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From now on we assume n D 2k and � D e2i=2
k
. Clearly � is a zero of the

polynomial pk.x/ D x2
k�1 C 1. We will be working in the ring ZŒ��, the smallest

subring of C containing Z and �. Write Q.�/ for the quotient field of ZŒ��, i.e., the
field obtained by adjoining � to Q.

12.7 Lemma. The polynomial pk.x/ is irreducible over Q.

Proof. If pk.x/ is reducible then so is pk.xC 1/. A standard fact about polynomial
factorization is Gauss’ lemma, namely, an integral polynomial that factors over Q
also factors over Z. If p.x/; q.x/ 2 ZŒx�, write p.x/ � q.x/ .mod 2/ to mean that
the coefficients of p.x/ � q.x/ are even. Now [why?]

pk.x C 1/ � .x C 1/2k�1 C 1 � x2k�1

.mod 2/:

Hence any factorization of pk.x C 1/ over Z into two factors of degree at least one
has the form pk.x C 1/ D .xr C 2a/.xs C 2b/, where r C s D 2k�1 and a; b are
polynomials of degrees less than r and s, respectively. Hence the constant term of
pk.x C 1/ is divisible by 4, a contradiction. ut

It follows by elementary field theory that every element u 2 ZŒ�� can be uniquely
written in the form

u D b0 C b1� C b2�2 C � � � C bn=2�1�n=2�1; bi 2 Z:

The basis for our proof of Theorem 12.6 is the two different ways to compute
detH given by (12.4) and (12.5), yielding the formula

n�1Y

jD0
.a0 C �j a1 C �2j a2 C � � � C �.n�1/j an�1/ D ˙nn=2 D ˙2k2k�1

: (12.6)

Thus we have a factorization in ZŒ�� of 2k2
k�1

. Algebraic number theory is
concerned with factorization of algebraic integers (and ideals) in algebraic number
fields, so we have a vast amount of machinery available to show that no factorization
(12.6) is possible (under the assumption that each aj D ˙1). Compare Kummer’s
famous approach toward Fermat’s Last Theorem (which led to his creation of
algebraic number theory), in which he considered the equation xn C yn D zn asQ
�nD1.x C �y/ D zn.
We are continuing to assume that H D .aj�i / is an n � n circulant Hadamard

matrix. We will denote the eigenvalues of H by

�j D a0 C a1�j C a2�2j C � � � C an�1�.n�1/j :

12.8 Lemma. For 0 � j � n � 1 we have

j�j j D
p
n:
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Thus all the factors appearing on the left-hand side of (12.6) have absolute
value

p
n.

First proof (naive). Let Hi denote the i th row of H , let � denote the usual dot
product, and let N denote complex conjugation. Then

�j N�j D .a0 C a1�j C � � � C an�1�.n�1/j /.a0 C a1��j C � � � C an�1��.n�1/j /

D H1 �H1 C .H1 �H2/�
j C .H1 �H3/�

2j C � � � C .H1 �Hn/�
.n�1/j :

By the Hadamard property we haveH1 �H1 D n, whileH1 �Hk D 0 for 2 � k � n,
and the proof follows. ut
Second proof (algebraic). The matrix 1p

n
H is a real orthogonal matrix. By linear

algebra, all its eigenvalues have absolute value 1. Hence all eigenvalues �j of H
have absolute value

p
n. ut

12.9 Lemma. We have

2 D .1 � �/n=2u; (12.7)

where u is a unit in ZŒ��.

Proof. Put x D 1 in

xn=2 C 1 D
n�1Y

jD0
j odd

.x � �j /

to get 2 DQj .1 � �j /. Since

1 � �j D .1 � �/.1C � C � � � C �j�1/;

it suffices to show that 1C�C� � �C�j�1 is a unit when j is odd. Let j Nj � 1 .modn/.
Then

.1C � C � � � C �j�1/�1 D 1 � �
1 � �j

D 1 � .�j / Nj

1 � �j 2 ZŒ��;

as desired. ut
12.10 Lemma. We have ZŒ��=.1 � �/ Š F2.

Proof. Let R D ZŒ��=.1 � �/. The integer 2 is not a unit in ZŒ��, e.g., because 1=2
is not an algebraic integer (the zero of a monic polynomial f .x/ 2 ZŒx�). Thus by
Lemma 12.9, 1 � � is also not a unit. Hence R ¤ 0.
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For all j we have �j D 1 in R since � D 1 in R. Hence all elements of R can be
written as ordinary integersm. But 0 D 2 inR by Lemma 12.9, so the only elements
of R are 0 and 1. ut
12.11 Lemma. For all 0 � j � n� 1 there is an integer hj � 0 such that

a0 C a1�j C a2�2j C � � � C an�1�.n�1/j D vj .1 � �/hj ;

where vj is a unit in ZŒ��.

Proof. Since 2 is a multiple of 1 � � by Lemma 12.9, we have by (12.6) that

n�1Y

jD0
.a0 C a1�j C a2�2j C � � � C an�1�.n�1/j / D 0

in ZŒ��=.1 � �/. Since ZŒ��=.1 � �/ is an integral domain by Lemma 12.10, some
factor a0C a1�j C � � �C an�1�.n�1/j is divisible by 1� �. Divide this factor and the
right-hand side of (12.6) by 1� � and iterate the procedure. We continue to divide a
factor of the left-hand side and the right-hand side by 1� � until the right-hand side
becomes the unit u. Hence each factor of the original product has the form v.1��/h,
where v is a unit. ut
12.12 Corollary. Either �0=�1 2 ZŒ�� or �1=�0 2 ZŒ��. (In fact, both �0=�1 2 ZŒ��

and �1=�0 2 ZŒ��, as will soon become apparent, but we don’t need this fact here.)

Proof. By the previous lemma, each �j has the form vj .1 � �/hj . If h0 � h1 then
�0=�1 2 ZŒ��; otherwise �1=�0 2 ZŒ��. ut

We now need to appeal to a result of Kronecker on elements of ZŒ�� of absolute
value one. For completeness we include a proof of this result, beginning with a
lemma. Recall that if � is an algebraic number (the zero of an irreducible polynomial
f .x/ 2 QŒx�), then a conjugate of � is any zero of f .x/.

12.13 Lemma. Let � be an algebraic integer such that � and all its conjugates have
absolute value one. Then � is a root of unity.

Proof. Suppose the contrary. Let deg � D d , i.e., ŒQ.�/ W Q� WD dimQ Q.�/Dd .
Now � , �2, �3; : : : are all distinct and hence infinitely many of them have the
property that no two are conjugate. Each �j 2 ZŒ�� and so is the root of a monic
integral polynomial of degree at most d , since the set of algebraic integers forms a
ring. If �1; �2; : : : ; �d are the conjugates of � , then all the conjugates of �j are among
�
j
1 , �j2 ; : : : ; �

j

d . Hence each �j satisfies the hypothesis that all its conjugates have
absolute value 1 (and �j is an algebraic integer). Thus the r th elementary symmetric
function er in �j and its conjugates has at most

�
d

r

�
terms, each of absolute value

1, so jer j �
�
d
r

�
. Moreover, er 2 Z since �j is an algebraic integer. It follows

that there are only finitely many possible polynomials that can be an irreducible
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monic polynomial with a zero equal to some �j , contradicting the fact that there are
infinitely many �j ’s for which no two are conjugate. ut
12.14 Theorem (Kronecker). Let � be any root of unity and ˛ 2 ZŒ� � with j˛j D 1.
Then ˛ is a root of unity.

Proof. Since ˛ 2 ZŒ� �, we see that ˛ is an algebraic integer. We use the basic fact
from Galois theory that the Galois group of the extension field Q.�/=Q is abelian.
Let ˇ be a conjugate of ˛, so ˇ D w.˛/ for some automorphism w of Q.�/. Apply
w to the equation ˛ N̨ D 1. Since complex conjugation is an automorphism of Q.�/
it commutes with w, so we obtain ˇ Ň D 1. Hence all the conjugates of ˛ have
absolute value one, so ˛ is a root of unity by the previous lemma. ut

For our next result, we need the standard algebraic fact that if � D e2i=m,
a primitive mth root of unity, then ŒQ.�/ W Q� D �.m/ (the Euler �-function).
Equivalently, the unique monic polynomial ˆm.x/ whose zeros are the primitive
mth roots of unity is irreducible. This polynomial is by definition given by

ˆm.x/ D
X

1�j�m
gcd.j;m/D1

.x � �j /

and is called a cyclotomic polynomial. Lemma 12.7 is the case m D n .D 2k/.
12.15 Lemma. If � 2 ZŒ�� is a root of unity, then � D �r for some r 2 Z.

Proof. Suppose not. It is easy to see that then either � is a primitive 2mth root of
unity for somem > k, or else �s is a primitive pth root of unity for some odd prime
p and some s � 1. In the former case

ŒQ.�/ W Q� D �.2m/ D 2m�1 > 2k�1 D �.2k/ D ŒQ.�/ W Q�;

a contradiction. In the latter case, �s� is a primitive pn-th root of unity, so

ŒQ.�s�/ W Q� D �.pn/ D .p � 1/�.n/ > �.n/ D ŒQ.�/ W Q�;

again a contradiction. ut
We now have all the ingredients to complete the proof of Theorem 12.6. Note

that we have yet to use the hypothesis that ai D ˙1. By Lemma 12.8 we have

j�1=�0j D j�0=�1j D 1:

Hence by Corollary 12.12, Theorem 12.14, and Lemma 12.15 we have �0 D ��r�1
for some r . Expand �0 and ��r�1 uniquely as integer linear combinations of
1; �; �2; : : : ; �

n
2 �1:
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�0 D a0 C a1 C � � � C an�1 D ˙
p
n;

��r�1 D ��r ..a0 � an=2/C .a1 � an=2C1/� C � � � /
D .ar � an=2Cr /C .arC1 � an=2CrC1/� C � � � :

Equating coefficients of �0 yields ˙pn D ar � an=2Cr . Since each ai D ˙1, we
must have n � 4, completing the proof. ut

12.7 P-Recursive Functions

A function f WN ! C is called polynomially recursive, or P -recursive for short, if
there exist polynomials P0.n/; : : : ; Pd .n/ 2 CŒn�, with Pd.n/ ¤ 0, such that

Pd.n/f .nC d/C Pd�1.n/f .nC d � 1/C � � � C P0.n/f .n/ D 0 (12.8)

for all n � 0.
For instance, the Fibonacci sequence Fn is P -recursive since FnC2 � FnC1 �

FnD0 for all n � 0. Here d D 2 and P2.n/ D 1, P1.n/ D P0.n/ D �1. This
situation is quite special since the polynomials Pi.n/ are constants. Another P -
recursive function is f .n/ D nŠ, since f .nC 1/� .nC 1/f .n/ D 0 for all n � 0.

Let P denote the set of all P -recursive functions f WN ! C. Our goal in this
section is to prove that P is a C-algebra, that is, for any f; g 2 P and ˛; ˇ 2 C, we
have

f̨ C ˇg 2 P ; fg 2 P ;
with obvious compatibility properties such as . f̨ /g D f .˛g/ D ˛.fg/. There is
one technical problem that needs to be dealt with before proceeding to the proof.
We would like to conclude from (12.8) that

f .nC d/ D � 1

Pd .n/
.Pd�1.n/f .nC d � 1/C � � � C P0.n/f .n//: (12.9)

This formula, however, is problematical when Pd.n/ D 0. This can happen only
for finitely many n, so (12.9) is valid for n sufficiently large. Thus we want to deal
with functions f .n/ only for n sufficiently large. To this end, define f 
 g if
f .n/ D g.n/ for all but finitely many n. Clearly 
 is an equivalence relation;
the equivalence classes are called germs at 1 of functions f WN ! C. The germ
containing f is denoted Œf �. Write G for the set of all germs.

12.16 Lemma. (a) If f is P -recursive and f 
 g, then g is P -recursive. In
other words, the property ofP -recursiveness is compatible with the equivalence
relation 
.
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(b) Write CN for the complex vector space of all functions f WN! C. Let ˛; ˇ 2 C

and f1; f2; g1; g2 2 C
N. If f1 
 f2 and g1 
 g2, then f̨1 C ˇg1 
 f̨2 C ˇg2

and f1g1 
 f2g2. In other words, linear combinations and multiplication
are compatible with the equivalence relation 
. Thus the set G has the
structure of an C-algebra, i.e., a complex vector space and a ring (with obvious
compatibility properties such as . f̨ /g D f .˛g/ D ˛.fg/).

Proof. (a) Suppose that f .n/ D g.n/ for all n > n0. Let (12.8) be the recurrence
satisfied by f . Multiply both sides by

Qn0
jD0.n � j /. We then get a recurrence

relation satisfied by g. Hence g is P -recursive.
(b) This is clear. ut

Let CŒn� denote the ring of complex polynomials in n. Let C.n/ denote the
quotient field of CŒn�, i.e., the field of all rational functions P.n/=Q.n/, where
P;Q 2 CŒn�. Suppose that f 2 C

N and R 2 C.n/. Then f .n/R.n/ is defined
for n sufficiently large (i.e., when the denominator of R.n/ is nonzero). Thus we
can define the germ Œf .n/R.n/� 2 G to be the germ of any function that agrees
with f .n/R.n/ for n sufficiently large. It is easy to see that this definition of scalar
multiplication makes G into a vector space over the field C.n/. We now come to the
key characterization of P -recursive functions (or their germs).

12.17 Lemma. A function f 2 C
N is P -recursive if and only if the vector space

Vf over C.n/ spanned by the germs Œf .n/�, Œf .n C 1/�, Œf .n C 2/�; : : : is finite-
dimensional.

Proof. Suppose that f .n/ satisfies (12.8). Let V 0
f be the vector space over C.n/

spanned by Œf .n/�, Œf .nC 1/�, Œf .nC 2/�; : : : ; Œf .nCd � 1/�, so dimC.n/ V 0
f � d .

Equation (12.9) shows that Œf .nCd/� 2 V 0
f . Substitute nC1 for n in (12.9). We get

that Œf .nCdC1/� is in the span (overC.n/) of Œf .nC1/�, Œf .nC2/�; : : : ; Œf .nCd/�.
Since these d germs are all in V 0

f , we get that Œf .n C d C 1/� 2 V 0
f . Continuing

in this way, we get by induction on k that f .n C d C k/ 2 V 0
f for all k � 0, so

V 0
f D Vf . Thus Vf is finite-dimensional.

Conversely, assume that dimC.n/ Vf < 1. Then for some d , the germs Œf .n/�,
Œf .nC1/�; : : : ; Œf .nCd/� are linearly dependent over C.n/. Write down this linear
dependence relation and clear denominators to get a recurrence (12.8) satisfied by f .
Hence f is P -recursive. ut

We now have all the ingredients necessary for the main result of this section.

12.18 Theorem. Let f; g 2 P and ˛; ˇ 2 C. Then:

(a) f̨ C ˇg 2 P
(b) fg 2 P
Proof. (a) By Lemma 12.17 it suffices to show that dimV f̨ Cˇg < 1. Now

by definition, the sum Vf C Vg is the vector space consisting of all linear
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combinations �Œu� C ıŒv�, where Œu� 2 Vf and Œv� 2 Vg and �; ı 2 C.n/.
In particular, Vf C Vg contains all the germs ˛Œf .n C k/� C ˇŒg.n C k/� D
Œ f̨ .nC k/�C ˇg.nC k/�, k � 0. Hence

V f̨Cˇg � Vf C Vg:

Now if V and W are subspaces of some vector space, then V CW is spanned
by the union of a basis for V and basis for W . In particular, if V and W are
finite-dimensional, then dim.V CW / � dimV C dimW . Hence

dimV f̨Cˇg � dim.Vf C Vg/ � dimVf C dimVg <1;

as was to be proved.
(b) The proof is analogous to (a), except that instead of the sum V C W we need

the tensor product V ˝K W over the field K . Recall from linear algebra that
V ˝K W may be thought of (somewhat naively) as the vector space spanned by
all symbols v˝ w, where v 2 V and w 2 W , subject to the conditions

.v1 C v2/˝ w D v1 ˝ wC v2 ˝ w;

v˝ .w1 C w2/ D v˝ w1 C v˝ w2;

˛v˝ w D v˝ ˛w D ˛.v˝ w/;

where ˛ is a scalar. A standard and simple consequence is that if V has the
basis fv1; : : : ; vmg and W has the basis fw1; : : : ;wng, then V ˝K W has the
basis vi ˝ wj , for 1 � i � m and 1 � j � n. In particular,

dim.V ˝K W / D .dimV /.dimW /:

Recall the basic “universality” property of the tensor product V ˝W D V ˝K
W : there is a bilinear map � WV �W ! V ˝W such that for any vector space
Y and bilinear map ˆWV �W ! Y , there is a unique linear map 'WV ˝W !
Y for which ˆ D '� . In particular, there is a unique linear transformation
'WVf ˝C.n/ Vg ! G satisfying

Œf .nC i/�˝ gŒ.nC j /� '7! Œf .nC i/g.nC j /�:

The image of ' contains all germs Œf .n C i/g.n C i/�, so Vfg � image.'/.
Thus

dimVfg � dim.Vf ˝C.n/ Vg/ D .dimVf /.dimVg/ <1;
and the proof follows.

ut
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Notes for Chap. 12

The 100 prisoners problem was first considered by Miltersen. It appeared in a paper
with Gál [43]. Further information on the history of this problem, together with a
proof of optimality of the prisoners’ strategy, is given by Curtin and Warshauer [21].

The Oddtown theorem is due to Berlekamp [7]. Theorem 12.3 on decomposing
Kn into complete bipartite subgraphs is due to Graham and Pollak [46, 47]. For
Fisher’s original proof of the inequality v � b for BIBD’s and Bose’s nonuniform
generalization, see [34] and [11]. Sutner’s original proof of the odd neighborhood
theorem (Theorem 12.5) appears in [110], while the simpler proof of Caro may
be found in [16]. The odd neighborhood problem is also known as the Lights
Out Puzzle. For a host of other applications of linear algebra along the lines of
Sects. 12.2–12.5, see the unpublished manuscript [4] of Babai and Frankl and the
book [76] of Matoušek.

The circulant Hadamard matrix conjecture was first mentioned in print by Ryser
[95, p. 134], though its precise origin is obscure. The work of Turyn mentioned
in the text appears in [114, 115]. Some more recent progress is due to Leung and
Schmidt [68].

While P -recursive functions and their cousins the D-finite series of Exercise 25
were known to nineteenth century analysts, the first systematic treatment of them
did not appear until the paper of Stanley [102] in 1980, which includes a statement
and proof of Theorem 12.18. For an exposition, see Stanley [108, Sect. 6.4].

Exercises for Chap. 12

1. Suppose that we have 2n prisoners and the same evil warden as in Sect. 12.1.
Let 0 < ˛ < 1. Now the prisoners open 2˛n of the boxes (more precisely, the
closest integer to 2˛n). For what value of ˛ will the strategy used in the proof
of Theorem 12.1 yield a 50 % chance of success in the limit as n!1?

2. Suppose that we have the same 100 prisoners and evil warden as in Sect. 12.1.
This time, however, each prisoner must open 99 boxes. If any prisoner sees his
or her name, then they are all killed. Find the best strategy for the prisoners and
the resulting probability p of success. Note that 10�200 � p � 10�2, the upper
bound because the first prisoner has a success probability of 1=100. (Unlike the
situation in Sect. 12.1, once the best strategy is found for the present problem
the proof of optimality is easy.)

3. (a) This time the evil warden puts a red hat or a blue hat on the head of each
of the 100 prisoners. Each prisoner sees all the hats except for his own.
The prisoners simultaneously guess the color of their hat. If any prisoner
guesses wrong, then all are killed. What strategy minimizes the probability
that all are killed?



204 12 Miscellaneous Gems

(b) Now the prisoners have hats as before, but only the prisoners who guess
wrong are killed. What is the largest integer m such that there is some
strategy guaranteeing that at least m prisoners survive?

4. (*) Our poor 100 prisoners have distinct real numbers written on their fore-
heads. They can see every number but their own. They each choose (indepen-
dently, without communication) a red or blue hat and put it on their heads. The
warden lines them up in increasing order of the numbers on their foreheads. If
any two consecutive prisoners have the same color hat, then all are killed. What
is the best strategy for success?

5. (a) (*) Suppose that n people live in Reverse Oddtown. Every club contains an
even number of persons, and any two clubs share an odd number of persons.
Show that no more than n clubs can be formed.

(b) (rather difficult) Show that if n is even, then at most n � 1 clubs can be
formed.

6. (a) Suppose that n people live in Eventown. Every club contains an even
number of persons, every two clubs share an even number of persons, and
no two clubs have identical membership. Show that the maximum number
of clubs is 2bn=2c.

(b) (rather difficult) Suppose that fewer than 2bn=2c clubs have been formed
using the Eventown rules of (a). Show that another club can be formed
without breaking the rules.

7. (Bipartite Oddtown) A town of n citizens has m red clubs R1; : : : ; Rm and m
blue clubs B1; : : : ; Bm. Assume that #.Ri \ Bi/ is odd for every i and that
#.Ri \ Bj / is even for every i ¤ j . Prove that m � n.

8. Triptown has n persons and some clubs. Any two distinct clubs share a number
of members that is a multiple of 3. Let j be the number of clubs C for which
#C is not a multiple of 3. Show that j � n.

9. Strangetown has n people and k clubs C1; : : : ; Ck. Each club has an even
number of members, and any two clubs have an even number of members in
common, with the following exception: Ci and CkC1�i have an odd number of
members in common for 1 � i � k. (If k D 2mC 1 and i D mC 1, then this
means that club CmC1 has an odd number of members.) Show that there are at
most n clubs.

10. Weirdtown has n people and k clubsC1; : : : ; Ck . Each club has an even number
of members, and any two clubs have an even number of members in common,
with the following exception: if 1 � i � k � 1, then Ci and CiC1 have an odd
number of members in common. As a function of n, what is the largest possible
value of k?

11. (a) An n � n real matrix is skew-symmetric if At D �A. Let A be such a
matrix with n odd. Show that detA D 0. (This is a standard result from
linear algebra.)

(b) Let G be a simple graph with an odd number of vertices. The deleted
neighborhood N 0.v/ of a vertex v is the set of all vertices adjacent to
v. Show that there is a nonempty subset S of the vertices such that
S intersects every deleted neighborhood N 0.v/ in an even number of
elements.
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12. (*) Let Mn denote the vector space of all real n � n matrices, so dimMn D n2.
Let V be a subspace of Mn such that every eigenvalue of every matrix A 2 V
is real. Show that dimV � �nC1

2

�
.

13. Let the edge set E.Kn/ of the complete graphKn be a union of the edge sets of
complete bipartite graphs B1; : : : ; Bm such that every edge of Kn is covered an
odd number of times. Show that m � .n � 1/=2. (The minimum value of m is
not known.)

14. A complete tripartite graph with vertex tripartition .X1;X2;X3/ is the graph
on the disjoint vertex sets Xi with an edge between any two vertices not in
the same set Xi . (We allow one of the Xi to be empty, so for instance K2 is a
complete tripartite graph.) Thus if #Xi D pi then the complete tripartite graph
has p1p2Cp1p3Cp2p3 edges. Suppose that the edge set E.Kn/ is partitioned
into m disjoint edge sets of complete tripartite graphs. What is the minimum
value of m?

15. (*) Let A1; : : : ; An be distinct subsets of an n-set X . Give a linear algebra proof
that for some x 2 X , all the sets Ai �x (short for Ai �fxg) are distinct. (There
is a fairly simple combinatorial proof, but that is not what is asked for.) NOTE

ON NOTATION. Ai � x D Ai if x 62 Ai .
16. Show that the number of “switching sets” S in Theorem 12.5 has the form 2n

for some n � 0.
17. (a) Let G be a simple graph with p vertices such that exactly 2p�1 subsets of

the vertices are switching sets, i.e., they turn off all the light bulbs in the
scenario of Sect. 12.5. Show that G is a complete graph Kp. Give a proof
based on linear algebra.

(b) Describe the 2p�1 switching sets for Kp.
(c) (more difficult) Same as above, but with exactly 2p�2 switching sets. Show

that G is a disjoint union of two complete graphs.
18. (*) Show that a Hadamard matrixH has order 1, 2, or n D 4m for some integer

m � 1.
19. For what values of n do there exist n C 1 vertices of an n-dimensional cube

such that any two of them are the same distance apart? For instance, it’s clearly
impossible for n D 2, while for n D 3 the vertices can be 000, 110, 101, 011.
Your answer should involve Hadamard matrices.

20. (a) Show that if H is an n � n Hadamard matrix all of whose rows have the
same number of 1’s, then n is a square.

(b) Show also that all columns ofH have the same number of 1’s.
21. (*) Clearly 2n and nŠ are P -recursive functions, so by Theorem 12.18 f .n/ D

2n C nŠ is also P -recursive. Find a recurrence of the form (12.8) satisfied by
f .n/.

22. (difficult) Let f .n/ DPn
kD0

�
n
k

�3
. Show that

.nC2/2f .nC2/�.7n2C21nC16/f .nC1/�8.nC1/2f .n/ D 0; n � 0:
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23. (*) (difficult) Let f .n/ be the number of paths from .0; 0/ to .n; n/, where
each step in the path is .1; 0/, .0; 1/, or .1; 1/. For instance, f .1; 1/ D 3,
corresponding to the paths (where we abbreviate .1; 0/ as 10, etc.) 00! 10!
11, 00! 01! 11, and 00! 11. Show that

.nC 2/f .nC 2/� 3.2nC 3/f .nC 1/C .nC 1/f .n/ D 0; n � 0:

24. (a) Let ˛1; : : : ; ˛k be distinct nonzero complex numbers, and let Q1.n/, : : : ;
Qk.n/ be distinct nonzero complex polynomials. Define

f .n/ D Q1.n/˛
n
1 CQ2.n/˛

n
2 C � � � CQk.n/˛

n
k ; n � 0:

Show that f .n/ is P -recursive.
(b) (difficult) Show that the least degree d of a recurrence (12.8) satisfied by

f .n/ is equal to k.
25. (a) Let CŒŒx�� denote the ring of all power series

P
n�0 anxn over C. It

is easy to see that CŒŒx�� is an integral domain. A Laurent series is a
series

P
n2Z bnxn, i.e., any integer exponents are allowed. Show that the

quotient field of CŒŒx��, denoted C..x//, consists of all Laurent series of
the form

P
n�n0 bnx

n for some n0 2 Z, i.e., all Laurent series with finitely
many negative exponents. Equivalently, C..x// is obtained from CŒŒx�� by
inverting the single element x. Show also that C..x// contains the field
C.x/ of all rational functionsP.x/=Q.x/, whereP;Q 2 CŒx�, in the sense
that there is a Laurent series F.x/ 2 C..x// satisfyingQ.x/F.x/ D P.x/.

(b) A Laurent series y 2 C..x// is called D-finite (short for differentiably
finite) if there exist polynomials p0.x/; : : : ; pm.x/, not all 0, such that

pd .x/y
.d/ C � � � C p1.x/y0 C p0.x/y D 0;

where y.d/ denotes the d th derivative of y with respect to x. Show that a
power series

P
n�0 f .n/xn is D-finite if and only if the function f .n/ is

P -recursive.
(c) Show that y 2 C..x// is D-finite if and only if the vector space over C.x/

spanned by y; y0; y00; : : : is finite-dimensional (whence the terminology
“D-finite”).

(d) Show that the set D of D-finite Laurent series f 2 C..x// forms a
subalgebra of C..x//, i.e., D is closed under complex linear combinations
and under product.

(e) (more difficult) Show that D is not a subfield of C..x//.
26. (*) A Laurent series y 2 C..x// is called algebraic if there exist polynomials

p0.x/, p1.x/; : : : ; pd .x/ 2 CŒx�, not all 0, such that

pd .x/y
d C pd�1.x/yd�1 C � � � C p1.x/y C p0.x/ D 0: (12.10)

Show that an algebraic series y is D-finite.
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27. (very difficult) Show that a nonzero Laurent series f .x/ 2 C..x// and its
reciprocal 1=f .x/ are both D-finite if and only if f 0.x/=f .x/ is algebraic.

28. (a) (difficult) Suppose that F.x; y/ D P
m;n�0 amnxmyn is a power series

in two variables with complex coefficients amn that represents a ratio-
nal function. In other words, there are polynomials P.x; y/;Q.x; y/ 2
CŒx; y� such that Q.x; y/F.x; y/ D P.x; y/. Show that the power seriesP

n�0 annxn, called the diagonal of F.x; y/, is algebraic.
(b) (difficult) Let

F.x; y; z/ D 1

1 � x � y � z
D

X

k;m;n�0

.k CmC n/Š
kŠmŠ nŠ

xkymzn:

Show that the diagonal series
P

n�0
.3n/Š

nŠ3
xn is not algebraic.

(c) (very difficult) Show that the diagonal of any rational function over C in
finitely many variables is D-finite.



Hints for Some Exercises

Chapter 1

1.5 Consider A.Hn/
2 and use Exercise 3.

1.6 (a) First count the number of sequences Vi0; Vi1 ; : : : ; Vi` for which there exists
a closed walk with vertices v0; v1; : : : ; v`Dv0 (in that order) such that vj2Vij .

1.11 Consider the rank of A.�/ and also consider A.�/2. The answer is very
simple and does not involve irrational numbers.

1.12 (b) Consider A.G/2.

Chapter 2

2.2 See Exercise 9 in Chap. 9.
2.5 (c) Mimic the proof for the graph Cn, using the definition

h�u; �vi D
X

w2Zn
�u.w/�v.w/;

where an overhead bar denotes complex conjugation.

Chapter 3

3.4 You may find Example 3.1 useful.
3.7 It is easier not to use linear algebra.
3.8 See previous hint.

3.10 First show (easy) that if we start at a vertex v and take n steps (using our
random walk model), then the probability that we traverse a fixed closed walk
W is equal to the probability that we traverseW in reverse order.

3.12 See hint for Exercise 7.

R.P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6998-8,
© Springer Science+Business Media New York 2013
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Chapter 4

4.4 (b) One way to do this is to count in two ways the number of k-tuples
.v1; : : : ; vk/ of linearly independent elements from F

n
q : (1) first choose v1, then

v2, etc., and (2) first choose the subspace W spanned by v1; : : : ; vk , and then
choose v1, v2, etc.

4.4 (c) The easiest way is to use (b).

Chapter 5

5.5 (a) Show that Nn Š Bn=G for a suitable group G.
5.9 (a) Use Corollary 2.4 with n D �p

2

�
.

5.13 Use Exercise 12.

Chapter 6

6.2 (b) Not really a hint, but the result is equivalent [why?] to the case r D m,
s D n, t D 2, and x D 1 of Exercise 34 in Chap. 8.

6.3 Consider � D .8; 8; 4; 4/.
6.5 First consider the case where S has � elements equal to 0 (so � D 0 or 1), �

elements that are negative, and  elements that are positive, so � C � C  D
2mC 1.

Chapter 7

7.16 (a) Use Pólya’s theorem.

Chapter 8

8.3 Encode a maximal chain by an object that we already know how to enumerate.
8.7 Partially order by diagram inclusion the set of all partitions whose diagrams

can be covered by nonoverlapping dominos, thereby obtaining a subposet Y2
of Young’s lattice Y . Show that Y2 Š Y � Y .

8.14 Use induction on n.
8.17 (a) One way to do this is to use the generating function

P
n�0 ZSn.z1; z2; : : : /

xn for the cycle indicator of Sn (Theorem 7.13). Another method is to find
a recurrence for B.n C 1/ in terms of B.0/; : : : ; B.n/ and then convert this
recurrence into a generating function

8.18 Consider the generating function

G.q; t/ D
X

k;n�0
�.n! nC k ! n/

tkqn

.kŠ/2

and use (8.25).
8.20 (b) Consider the square of the adjacency matrix of Yj�1;j .
8.24 Use Exercise 14.

16
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Chapter 9

9.1 There is a simple proof based on the formula �.Kp/ D pp�2, avoiding the
Matrix-Tree Theorem.

9.2 (c) Use the fact that the rows of L sum to 0 and compute the trace of L.
9.5 (b) Use Exercise 3 in Chap. 1.
9.6 (a) For the most elegant proof, use the fact that commuting p � p matrices

A and B can be simultaneously triangularized, i.e., there exists an invertible
matrix X such that both XAX�1 and XBX�1 are upper triangular.

9.6 (d) Use Exercise 8(a).
9.7 Let G� be the full dual graph of G, i.e., the vertices of G� are the faces of G,

including the outside face. For every edge e ofG separating two facesR and S
ofG, there is an edge e� ofG� connecting the verticesR and S . ThusG� will
have some multiple edges and #E.G/ D #E.G�/. First show combinatorially
that �.G/ D �.G�/. (See Corollary 11.19.)

9.10 (a) The laplacian matrixL D L.G/ acts on the space RV.G/, the real vector
space with basis V.G/. Consider the subspace W of RV.G/ spanned by the
elements vC '.v/, v 2 V.G/.

9.11 (a) Let s.n; q; r/ be the numberof n�n symmetric matrices of rank r over Fq .
Find a recurrence satisfied by s.n; q; r/ and verify that this recurrence is
satisfied by

s.n; q; r/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

tY

iD1

q2i

q2i � 1 �
2t�1Y

iD0
.qn�i � 1/; 0 � r D 2t � n;

tY

iD1

q2i

q2i � 1 �
2tY

iD0
.qn�i � 1/; 0 � r D 2t C 1 � n:

9.12 Any of the three proofs of the Appendix to Chap. 9 can be carried over to the
present exercise.

Chapter 10

10.3 (b) Use the Perron–Frobenius theorem (Theorem 3.3).
10.6 (a) Consider A`.
10.6 (f) There is an example with nine vertices that is not a de Bruijn graph.
10.6 (c) Let E be the (column) eigenvector of A.D/ corresponding to the largest

eigenvalue. Consider AE and AtE, where t denotes transpose.

Chapter 11

11.4 Use the unimodularity of the basis matrices C T and BT .
11.6 (a) Mimic the proof of Theorem 9.8 (the Matrix-Tree Theorem).
11.6 (b) Consider ZZt .

1
2
5
6
6
7
10
11
12
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Chapter 12

12.4 The best strategy involves the concept of odd and even permutations.
12.5 For the easiest solution, don’t use linear algebra but rather use the original

Oddtown theorem.
12.12 What are the eigenvalues of skew-symmetric matrices?
12.15 Consider the incidence matrix M of the sets and their elements. Consider

two cases: detM D 0 and detM ¤ 0.
12.18 Consider the first three rows of H . Another method is to use row operations

to factor a large power of 2 from the determinant.
12.21 It is easiest to proceed directly and not use the proof of Theorem 12.18.
12.23 First find a simple explicit formula for the generating function

P
n�0 f .n/xn.

12.26 Differentiate with respect to x (12.10) satisfied by y.
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84. G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische

Verbindungen. Acta Math. 68, 145–254 (1937)
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