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Preface

In the past decade there has been a significant change in the freshman/
sophomore mathematics curriculum as taught at many, if not most, of our
colleges. This has been brought about by the introduction of linear algebra
into the curriculum at the sophomore level. The advantages of using linear
algebra both in the teaching of differential equations and in the teaching
of multiv&riat,cscalfcu\l’t}s are by now widely recognized. Several textbooks
adopting this point of view are now available and have been widely adopted.
Students completing the sophomore year now have a fair preliminary under-
standing of spaces of many dimensions. .

It should be apparent that courses on the junior levei should draw upon
and reinforce the concepts and skills learned during the previous year.
Unfortunately, in differential geometry: at least, this is usually not the case.
Textbooks directed to students at this level generally restrict attention to
2-dimensional surfaces in 3-space rather than to surfaces of arbitrary
dimension. Although most of the recent books do use linear algebra, it is
only the algebra of R®. The student’s prehmmary understanding of higher
dimensions is not cultivated..

This book develops the geometry of n~dm=aswnal surfaces in (n + 1)-
space. It is designed for a 1-semester differential geometry course at the
junior-senior. level. It draws significantly on the contemporary student’s
knowledge of linear algebra, multivariate calculus, and differential equations,
thereby solidifying the student’s understanding of these subjectsT Indeed,
one of the reasons that a course in differential geometry is so valuable at
this level is that it does turn out students with a thorough understanding
of several variable calculus.

Another reason that differential geometry regularly attracts students is
that it contains ideas which are not only beautiful in themselves but are

vii



viii Preface

basic for both advanced mathematics and theoretical physics. It has been
the author’s experience that students taking his course have been more or
less evenly divided between mathematics and physics majors. The approach
adopted in this book, describing surfaces as solution sets of equations,
seems to be especially attractive to physicists.

The book considers from the outset the geometry of orientable hyper-
surfaces in R"*!, exhibited as inverse images of regular values of smooth
functions. By considering only such hypersurfaces for the first half of the
book, it is possible to move rapidly into interesting global geometry without
getting hung up on the development of sophisticated machinery. Thus, for
example, charts (coordinate patches) are not introduced until after the
initial discussions of geodesics, parallelism, curvature, and convexity. When
charts are introduced, it is as a tool for computation. However, they then
lead the development naturally into the study of focal points and surfaces
of arbitrary codimension.

One of the advantages of treating the geometry of n-dimensions from the
outset is that one can then illustrate each concept simultaneously in each
of the low dimensions. Thus, for example, the student’s understanding of
the Gauss map and its (spherical) image is aided by the possibility of
studying 1-dimensional examples, where the spherical image is a subset of
the unit circle. .

The main tool used in developing the theory is that of the calculus of
vector fields. This seems to be the most natural tool for studying differential
geometry as well as the one most familiar to undergraduate students of
mathematics and physics. Differential forms are not introduced until fairly
late in the book, and then only as needed for use in integration.

Students who have completed a good 2-year calculus sequence including
linear algebra and differential equations should be adequately prepared to
study this book. There are occasional places (e.g., in Chapter 13 on convexity)
where some exposure to the ideas of mathematical analysis would be helpful,
but not essential.

There is probably more material here than can be covered comfortably
in one semester except by students with unusually strong backgrounds.
Chapters 1-12, 14, 15, 22, and 23 contain the core of basic material which
should be covered in every course. Most instructors will probably also want
to cover at least parts of Chapters 17, 19, and 24.
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The interdependence of the chapters is as follows:

A few concepts in the early part of Chapter 13 are used in later chapters
but these may be studied, by those skipping Chapter 13, as needed.

Like the author of any textbook, I owe a considerable debt to researchers
and textbook writers who have preceded me and to teachers, colleagues,
and students who have influenced me. While I cannot explicitly acknowledge
all these, I must at least credit M. do Carmo and E. Lima whose paper,
Isometric immersions with semi-definite second quadratic forms, Arch. Math.
20 (1969) 173-175, inspired the treatment of convex surfaces in Chapter 13,
and S. S. Chern whose paper, A simple intrinsic proof of the Gauss-Bonnet
formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944)
747-752, inspired the treatment of the Gauss-Bonnet theorem in Chapter 21.
In addition, special thanks are due to Wolfgang Meyer whose comments on
the manuscript have been extremely helpful.

Stony Brook, New York ; JOHN A. THORPE
November, 1978
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s and Level Sets

Associated with each real valued function of several real variables is a collec-
tion of sets, called level sets, which are useful in‘studying qualitative proper-
ties of the function. Given a function f; U — R, where U < R"*, its level sets
are the sets f ~1(c) defined, for each real number c, by

fe= {(xp- ,x.u)eUf(xp o Xay1) = ¢}

The number c is called the hetght of the level set, and " Yc)is called the level
set at height c. Since f~!(¢) is the solution set of the equation
f(X15 oees Xgag) =10, the level set f- ‘(c} is often described as “the set
f(xh“ xu+1)$c '

The “ level set” and * hmght” termmo}oglcs arise from the relation be-
tween the level sets of a function and . its graph.. Tbe graph of a function
fU>R lsthesubsetofR””deﬁnedby (

- sraph(f)a,{(x;, ) Xu+z) e,Rn+?'::,(}§1, f"’,§»+1) elU

For cz(} the level’ ﬁetoffathetghtcfsjusttﬁesetofanpomtsmthe
domain of f over which the graph is at distance ¢ (see Figure 1.1). Forc <0,
the level set of fat height ¢is }ustathemofaiipomtsmthe domam of funder
‘which the graph lies at distance “~¢. -
For example, the level sets f ~ 4(c) of the function f (xi, ..., x,+L)= X3+
x2, , are-empty for ¢ <0, ommtofashgﬁpmnt(theongm)zfc=0
and for ¢ > consist of two points if n-= 0, circlés centered at the origin with
radius \/cifn = 1, sphemmtezﬁﬂattheoﬁgmmthradm\/&fn=2 etc
(see Figures 1.1 and 12). -

aﬂd x,.+z =f(xl’ o x:




2 1 Graphs and Level Sets

graph of
sz X3 f(Xp xg) = x} +x}
graph of
f(xy) = x%
— — --c— —

| |

| |

\ / X

o ixi=ea e [x1+x2—-c]

(@:n=0 ®b):n=1

Figure 1.1 The level sets f~(c) (c > 0) for the function
f(xls sery X,H.l) =x% + e 4 x3+1-

f—l (4)

1@
13)— f i 3) .
-1 ?2) -1 3
() f -1 () i@
- (1)1 ) Xa
-1 ©
1 2 2 xp

(a):n=90 (b):n=1 (c):n=

Figure 1.2 Level sets for the function f(xy, ..., Xps1) = x} + - + x24,.

For n = 1, level sets are (at least for non-constant differentiable functions)
generally curves in R2. These curves play the same roles as contour lines on a
topographic map. If we think of the graph of fas a land, with local maxima
representing mountain peaks and local minima representing valley bottoms,
then we can construct a topographic map of this land by projecting orthog-
onally onto R2. Then all points on any given level curve f ~*(c) correspond
to points on the land which are at exactly height ¢ above “sea level”
(x3 =0).

Just as contour maps provide an accurate picture of the topography of a
land, so does a knowledge of the level sets and their heights accurately
portray the graph of a function. For functions f: R? — R, study of the level
curves can facilitate the sketching of the graph of . For functions f: R® — R,



1’ Graphs and Level Sets , ' 3

the graph lies in R, prohibiting sketches and leaving the level sets as the best
tools for studying the behavior of the function.

One way of visualizing the graph of a function f: U - R, U = R? given
its level sets, is as follows. Think of a plane parallel to the (x,, x,)-plane,
moving vertically. When it reaches height ¢ this plane, x; = c, cuts the graph
of f in the translate to this plane of the level set f ~*(c). As the plane moves,
these sets generate the graph of f (see Figure 1.3).

“‘(b};

Figure 13 1 nd graphs of fanctions f: R? - R. The label on cach levelset
mdwates its hezgh& (a%»f (x,, x;) = -—xi +:x3.(b). A ﬁmcuun with two local minima.

The satm prmclple ‘can be used to help vzsual:ze level sets oﬂ functions
f: U>R, where U = R®. Each plane x; = constant will cut the level set
£~}c) (c fixed) in some subset, usually a curve. Letting the plane move, by
changing the selected value of the x;-coordinate, these subsets will generate
the level set f~ 1(c) (see Figure 1.4).

4




1 Graphs and Level Sets

ol

=1
X1 =" 3

»lw

X1
/ xl_'%vx%+x2=f7§
= '5,)6% +x2= %
0, x3 +x5=1
X1=- 2’x§ +x§= %

(a)

L

X ==-2 x;=-1 x1=0 f[x;= x; =2
x3=x%—4 x3=x§-l x3=x§ X3=x§"1 x3=x§—4

(b)

Figure 1.4 Level sets in R3 as generated by intersections with the planes
xy = constant. (a) x} + x3 + x=1. (b) x} —x} + x5 =0.

EXERCISES
In Exercises 1.1-1.4 sketch typical level curves and the graph of each
function.

1.1, f(xy, x3) = x4.



1 Graphs and Level Sets ) 5

12. f(xy, X3) = Xy — X3.
13. f(xy, %) = x — 3.

14. f(xy, x;) = 3r® — 8r° + 6r* where r* = x? + x}. [Hint: Fmd and |dent1fy the
critical points of f as a function of ]

-

In exercises 1.5-1.9 sketch the level sets f ~!(c), for n =0, 1,and 2, of each
. function at the heights mdxcated

15, f(X1, X2y .00 Xps1) =Xp4gs¢=—1,0,1,2.

L6, f(X1s X2y eves Xpi'1) =0x} + x5+ -+ x2,1;¢=0, 1, 4.
L7, f(X1; X325 cves Xgs1) = X3 — X3 — = —x3+,# c=-1,0,1,2.
18, (X1, X2y ee0r Xns1) =xF = X3 — - = X2, ;¢= =10, 1.
L9, f(x1s X2, -0s Xpat) =xF + x3/4 4+ -+ x2, /n+ 1), c=1

1.10. Show that the graph of any function f: R" — R is a level set for some function
F: Rn+l - R



Vector Fields

The tool which will allow us to study the geometry of level sets is the
calculus of vector fields. In this chapter we develop some of the basic ideas.

A vector at a point p e R**! is a pair v = (p, v) where v € R"*!. Geomet-
rically, think of v as the vector v translated so that its tail is at p rather than
at the origin (Figure 2.1). The vectors at p form a vector space R}™' of

A X

v (p, v)

Figure 2.1 A vector at p.

dimension n+ 1, with addition defined by (p, v)+ (p, w)= (p, v + w)
(Figure 2.2) and scalar multiplication by c(p, v) = (p, cv). The set
{(p, 1), -5 (P, v+ 1)} is a basis for R%* ! where {v,, ..., v, ,} is any basis for
R"*!, The set of all vectors at all points of R"*! can be identified (as a set)
with the Cartesian product R"*! x R"*! = R2"*2, However note that our
rule of addition does not permit the addition of vectors at different points of
R"+ 1 .

Given two vectors (p, v) and (p, w) at p, their dot product is defined, using
the standard dot product on R"**, by (p, v) - (p, w) = v < w. When (p, v) and

6



2 Vector Fields .- ’ , 7

A Xy
v+w

o : c&;e _— w/[}vﬂ nwu i 0 ‘s&ah‘q

1 a‘ ﬁmcnm whwh a.ssngns to each pomt

! are often most easily
- Three typical vector fields

(a) X(P) ). | (b) Xfpi*p S @ XGwx) = (-
1 Fgngz vmorﬁeman R?: X{p)ﬂ(p X(@).
alin this with functions and vector fields that are
smooth. A function f: U > R (U an opent set in R"*f‘) is smooth if all its
partial derivatives of all orders exist and are continuous. A function
- f U-»R" is smooth if each component function f;: U-R (f(p)=

(filp)s - .» fk(p)) forpe U) is smooth A vector field X on U is smooth if the
assocnated function X: U — [R"" ! is smooth.

t Recall that U c R**! is open if for each pe U there is an ¢>0 such that qeU
whenever |q - p|| <e.



8 2 Vector Fields

Associated with each smooth function f: U - R (U open in R*"*') is a
smooth vector field on U called the gradient Vf of f, defined by

(V1)(p) = (,,, Loh 52 (p)).

.9
0Xy41

We shall see that this vector field plays an important role in the study of the
level sets of f.

Vector fields often arise in physics as velocity fields of fluid flows. Asso-
ciated with such a flow is a family of parametrized curves called flow lines.
These “flow lines ” are in fact associated with any smooth vector field and
are important in geometry as well as in physics. In geometry these flow lines
are called “integral curves”.

A parametrized curve in R"*! is a smooth function a: I —» R"*!, where I is
some open interval in R. By smoothness of such a function is meant that a is
of the form a(t) = (x,(t), ..., x,+1(t)) where each x; is a smooth real valued
function on I.

The velocity vector at time ¢ (¢ € I) of the parametrized curve a: I - R"*1
is the vector at a(t) defined by

. do dx dx,
i) = (a0 52 ©) = (a0 52 01 .. 2220,

This vector is tangent to the curve a at «(t) (see Figure 2.4.). If a(t) represents

a(t)

a
o (t)

Figure 2.4 Velocity vector of a parametrized curve in R?.

for each ¢ the position at time ¢ of a particle moving in R"*! then of(r)
represents the velocity of this particle at time ¢.

A parametrized curve a: I — R"*! is said to be an-integral curve of the
vector field X on the open set U in R**! if a(t) e U and a(t) = X(«(t)) for
all t € I. Thus « has the property that its velocity vector at each point of
the curve coincides with the value of the vector field at that point (see
Figure 2.5).

Theorem. Let X be a smooth vector field on an open set U = R"*! and let
p € U. Then there exists an open interval I containing 0 and an integral curve
o: I - U of X such that

(i) (0) = p.
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. Figure 2.5 An mtegral curve of a vector field.

(ii) If ﬁ I- —-> U is any other integral curve of X with p(0) = p, then I = I and |
Be)=alt)foralltel

Remark. The integral curve a is called the maximal integral curve of X
through p, or simply the mtegral curve of X through p.

PROOF. Thxs theorem is a reformulation of the fundamental existence and
uniqueness theorem for solutmns of systems of first order differential equa-
tions. X, being a smooth vector field on U, has the form

X(p) = (P, X4(p), -5 Xp44(P))

where the X;: U— R are smooth functxons on U. A parametrized curve
a: [ - R**1 has the fofm '

a(t) 1) ees X 1(1)
where the xi I - R are smooth functions on I. The velocity of « is

i) = (a(t), 1., ,"""“(r))
The requirement that « be an integral curve of X says that a(r) = X(a(?)), or
' =Xl @)
®

dx.,+1 (t) X, 10x1(2)s -5 X4 1(2)).
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This is a system of n+ 1 first order ordinary differential equations in
n+ 1 unknowns. By the existence theorem for the solutions of such
equations,} there exists an open interval I, about 0 and a set x;: I; » R of
smooth functions satisfying this system subject to the initial conditions
x{(0)=p; for ie{l,...,n+ 1}, where p=(py, ..., Po+1)- Setting fy(t) =
(x4(2), ..., X4+ 1(t)) for this choice of functions yields an integral curve
Bi: I, - U of X with g,(0) = p.

By the uniqueness theorem for the solutions of first order ordinary differ-
ential equations,} if %;: I, » R is another set of functions satisfying the
system (E) together with the initial conditions %;(0) = p;, then X,(t) = x(¢)
forallt € I, n I,.In other words, if 8,: I, — U is another integral curve of
X with $,(0) = p then B,(t) = B,(¢) for all t € I, N I,. It follows from this
that there is a unique maximal integral curve « of X with «(0) = p (its
domain is the union of the domains of all integral curves of X which map 0
to p) and that if B: T — U is any other integral curve of X with p(0) = p then
B is simply the restriction of « to the smaller interval I O

ExampLE. Let X be the vector field X(p) = (p, X(p)) where X(x,, x,) =
(—=x3, x;) (Figure 2.3.(c)). A parametrized curve a(t) = (x,(t), x,(t)) is an
integral curve of X if and only if the functions x,(t) and x,(t) satisfy the
differential equations

The general solution of this pair of equations is
x,(t)=C,cost+ C,sint
x,(t)=C,sint— C,cos t.

Thus the integral curve of X through the point (1, 0) (with x,(0) = 1 and
xZ(O) = 0) is

a(t) = (cos t, sin t),

whereas the integral curve through an arbitrary point (a, b) (with x,(0) = a
and x,(0) = b) is :

B(t)=(acost—bsint asint+ b cost)
(see Figure 2.6).

t+See e.g. W. Hurewicz, Lectures on Ordinary Differential Equations, Cambridge, Mass.:
M.LT. Press (1958), p. 28.
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integial curve through (1, 1)

\ integral curve throﬁgh 1,0

.

Figure 2.6 Integral curves of the vector field X(xy, x2) = (x1, X2, — X2, X1).

EXERCISES

2.1

22.

23.

24.

25.

2.6.

Sketch the following vector fields on R?: X(p) = (p, X(p)) where
(@) X(p)=(0,1) (d) X(x1, x2) = (x2, x1)
) X(p)= -p (&) X(x1, x2) = (—2x3, 4x,).

(©) X(x1, x2) = (x2,-~x,)
Find and sketch the gradient field of each of the following functions:
(a) Sflxy, x2) = x4 +x,

(®) f(x1, x2) = x} + x3
(€) f(x1, x2) = x; — x3

() s, x2) = (= )4

The divergence of a smooth vector field X on U < R** L

X(p) = (5 Xo(p), ---» Xoss(p)) for pe U,

is the function div X: U —» R defined by div X = Y2} (2X,/dx,). Find the
divergence of each of the vector fields in Exercises 2.1 and 2.2.

Explain why an integral curve of a vector field cannot cross itself as does the
parametrized curve in Figure 2.4.

Find the integral curve through p = (1, 1) of each of the vector fields in Exer-
cise 2.1.

Find the mtegral curve through p= (a, b) of each of the vector fields in Exer-

c:seZl

A smooth vector ﬁeld X on an open set U of R"*! is said to be complete if for
each p € U the maximal integral curve of X through p has domain 7qual to R.
Determine which of the following vector fields are complete:

(&) X(xl, Xg) = (x,, X3, 1, 0), U=R2 .

(b) X(xy, x2) = (x5, %2, 1, 0), U = R? — {(0, O)}.

(C) X(xl, x;) = (x,, X2y —X2, x,), U=R?- {(0, 0)}.
(d) X(x3, x2) = (x3, x5, 1 + x3,0), U= R2
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28.

2.9.

2.10.

2.11.

2.12.

2 Vector Fields

Let U be an opensetin R"*!,letpe U, and let X be a smooth vector field on
U. Let a: I - U be the maximal integral curve of X through p. Show that if
B: T - U is any integral curve of X, with f(to) = p for some ¢, € T, then B(t) =
aft — to) for all t € I. [Hine: Verify that if B is defined by B(t) = (¢ + to) then B
is an integral curve of X with B(0) = p.]

Let U be an open set in R*** and let X be a smooth vector field on U. Suppose
a: I - U is an integral curve of X with «(0) = a(to) for some to € I, to # 0.
Show that « is periodic; i.e., show that a(t + o) = a(t) for all ¢ such that both ¢
and t + to € L. [Hint: See Exercise 2.8.]

Consider the vector field X(x;, x5) = (x3, X2, 1, 0) on R®2, For te R and
p € R?, let @(p) = a,(t) where a, is the maximal integral curve of X through p.

(a) Show that, for each t, @, is a one to one transformation from R? onto itself.
Geometrically, what does this transformation do?
(b) Show that

@, = identity
Qe =@ 0@, forallt, t,eR
o=@ ! forallteR

[Thus ¢+ ¢, is a homomorphism from the additive group of real numbers into
the group of one to one transformations of the plane.]

Repeat Exercise 2.10 for the vector fields

(@) X(x1, x2) = (x4, X2, —X2, x1)
(b) X(x1, x2) = (x1, X2, X1, X2)
(€) X(xy5 x2) = (x1, X2, X2, X1)-

Let X be any smooth vector field on U, U open in R"* . Let ¢,(p) = a,(t) where
a, is the maximal integral curve of X through p. Use the uniqueness of integral
curves to show that @, (¢:,(p)) = @1, +1,(p) and @ _(p) = @; *(p) for all ¢, t;, and
t, for which all terms are defined. [¢, is called the local 1-parameter group
associated to X.]




The Tangent Space

Let f: U — R be a smooth function, where U = R** ! is an open set, let c € R
be such that f ~!(c) is non-empty, and let p € f ~!(c). A vector at p is said to
be tangent to the level set f ~!(c) if it is a velocity vector of a parametrized
curve in R"*! whose image is contained in f~!(c) (see Figure 3.1).

1

(@:n=1 (b): n=2
Figure 3.1 Tangent vectors to level sets.

Lemma. The gradient of fat p € f ~!(c) is orthogonal to all vectors tangent to
f~Ye)at p.

ProOF. Each vector tangent to f~!(c) at p is of the form &(t,) for some
parametrized curve a: I - R"*! with a(t,) = p and Image a = f ~!(c). But
Image a < f ~*(c) implies f(a(t)) = c for all ¢ € I so, by the chain rule,

0= %(fo @)(to) = Vf ((to)) * &(to) = Vf (p) * alto). =

13



14 3 The Tangent Space

If Vf (p) = 0, this lemma says nothing. But if Vf(p) # 0, it says that the set
of all vectors tangent to f ~!(c) at p is contained in the n-dimensional vector
subspace [Vf(p)]* of R%** consisting of all vectors orthogonal to Vf(p). A
point p € R**! such that Vf(p) # 0 is called a regular point of f.

Theorem. Let U be an open set in R"** and let f: U — R be smooth. Letp € U
be a regular point of f, and let ¢ = f(p). Then the set of all vectors tangent to

f~Yc) at p is equal to [Vf(p)]*.

Proor. That every vector tangent to f ~!(c) at p is contained in [Vf (p)]* was
proven as the lemma above. Thus it suffices to show that, if v=(p, v) €
[V/(p)]*, then v=a(0) for some parametrized curve o with Image
a = f ~Y{c). To construct o, consider the constant vector field X on U defined
by X(q) = (¢, v). From X we can construct another vector field Y by sub-
tracting from X the component of X along Vf:

X(q) - V(@) o,
=X(q) - .
Y(q) (9) v/ @) Vf(q)
The vector field Y has domain the open subset of U where Vf # 0. Since p is
a regular point of £, p is in the domain of Y. Moreover, since X(p)=ve
[Vf (p)]*, Y(p) = X(p). Thus we have obtained a smooth vector field Y such
that Y(q) L Vf(q) for all g € domain (Y), and Y(p) = v.
Now let « be an integral curve of Y through p. Then «(0)=p,
&(0) = Y(«(0)) = ¥(p) = X(p) = v and

4 () = VI () - &le) = VF ((t)) - Y((e) = 0

! o

chain since a is since Y L Vf
rule an integral
curve of Y

for all ¢ € domain a, so that f(a(t)) = constant. Since f («(0)) = f(p) = ¢, this
means that Image o = f ~(c), as required. O

Thus we see that at each regular point p on a level set f ~!(c) of a smooth
function there is a well defined tangent space consisting of all velocity vectors
at p of all parametrized curves in f ~*(c) passing through p, and this tangent
space is precisely [V/(p)]* (see Figure 3.2).

EXERCISES

3.1. Sketch the level sets f ~1(—1), f~1(0), and f~*(1) for f(X1, .., Xn+1) = x? +
-+« + x2 — x2,1; n= 1, 2. Which points p of these level sets fail to have tangent
spaces equal to [Vf(p)]*?
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tangent space
at p

tangent space

v/ (p) ar

Faae) FaRN ¢\
(@a:n=1 ‘ (b):n=2

Figure 3.2 Tangent space at a typical point of the level set f~!(1), where

3.2.

33.

34.

35.

f(xl, ey x,,.,l):x} 4o +x3+l',

Show by example that

(a) The set of vectors tangent at a point p of a level set need not in general be a
vector subspace of R3* .
(b) The set of vectors tangent at a point p of a level set might be all of Rp*1,

Sketch the level set £ ~1(0) and typical values Vf(p) of the vector field Vf for
p € £~ 1(0), when

(@) f(x1, x2) =xF +x3 -1
(b) f(x1, x2) = x} — x5 — 1
(€) f(x1, x2) = x} — x}

d) fx1, X2) = x4 — x3.

Let f: U > R be a smooth function, where U — R**! is an open set, and let
a: I - U be a parametrized curve. Show that f - a is constant (i.e., the image of «

is contained in a level set of f) if and only if « is everywhere orthogonal to the
gradient of f (i.e., 1f and only if &(t) L Vf(x(t)) for all t € I).

Letf: U—>Rbea smooth function and let a: I - U be an integral curve of Vf. .

| (a) Show that (d/dt)(f o a)(t) = ||Vf(a(t))|? for all ¢t € I.

(b) Show that for each t, € I, the function fis increasing faster along « at a(to)
then along any other curve passing through a(to) with the same speed (ie.,
show that if f:T— U is such that B(so) = a(to) for some so eI and

1BGso)ll = |leleo)| then (d/de)(f = a)(to) (d/de)(f - B)to))-



Surfaces

A surface of dimension n, or n-surface, in R"*' is a non-empty subset S of
R"*! of the form S = f ~!(c) where f: U - R, U open in R**%, is a smooth
function with the property that Vf(p) # 0 for all p € S. A 1-surface in R? is
also called a plane curve. A 2-surface in R? is usually called simply a surface.
An n-surface in R"*! is often called a hypersurface, especially when n > 2.

By the theorem of the previous chapter, each n-surface S has at each point
p € S a tangent space which is an n-dimensional vector subspace of the space
R3*! of all vectors at p. This tangent space will be denoted by §,. It is
important to notice that this tangent space S, depends only on the set S and
is independent of the function f which is used to define S. Indeed, S, is
characterized as the set of all vectors at p which can be obtained as velocity
vectors of parametrized curves in R"** with images lying completely in S. If f
is any smooth function such that S = f ~*(c) for some ¢ € R and Vf(p) # 0
for all p € S (by definition of n-surface, there must exist one such a function;
in fact there are many such functions for each n-surface S) then S, may also
be described as [Vf(p)]*.

ExampLE 1. The unit n-sphere x3 + -+ + x2,; = 1 is the level set f~'(1)
where f(x, ..., X,+1) = x? + --- + xZ,{ (Figure 3.2). It is an n-surface be-
cause Vf (X1, ...r Xns1) = (X1 s Xnt 1, 2X1, -+.» 2Xz41) iS DOt Zero unless
(%15 ++» Xps 1) = (0, ..., 0) so in particular Vf(p) # 0 for p € f~'(1). [Warn-
ing! Beware that for a vector (p, v) € R}* ! to be zero it is only necessary that
v=0;thus (Xy, ..., Xps 1> 2Xy, --+5 2Xp4 1) = O implies 2x; = -+ =2x,,, =0
SO (X1 ...» X,41) = 0] When n = 1, the unit n-sphere is the unit circle.

ExampLE 2. For 0+# (ay,...,a,4,)€R"™™!' and beR, the n-plane
@y Xy + '+ @y 1 Xpsy = b is the level set f~1(b) where f(xy, ..., X,41) =

16
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ay%Xy + " + Gp41%p4 1. 1t is an n-surface for each b € R since

Vf(xl, ...,'x,|+1)= (x‘, very Xy gy By 000y a,,,,.l)

is never zero. A 1-plane is usually called a line in R? a 2-plane is usually
called simply a plane in R3, and an n-plane for n > 2 is sometimes called a
hyperplane in R**'. Two different values of b with the same value of
(ay, --., a,4 1) define parallel n-planes (see Figure 4.1).

f-l - 21 4 Xy

VAR CSY)
s © \

Sy’

Vi@ =0-1-2

» (@a:n=1

Vf(p)=(r-1-2,-3)

(b):n=2
Figure 4.1 Parallel n-planes f~(b), b= -2, —1,0, 1, where
f(xb cevy x,,+1)== - X3 - ZX2 - 3x3 —rr - (n + l)x,,“.

ExaMpLE 3. Let f: U — R be a smooth function on U, U open in R" The
graph of f, |

graph(f) = {(xs, ..., Xps1) € R*" i Xy = f(x4, ..., X,)}
is an n-surface in R"*! since graph (f) = g~ !(0) where

glx1s o5 Xns1) = Xpy1 —F (X35 -5 Xp)
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and Vg(xg, .-or Xpr1) = (X1 0s Xpe1, —0f10Xy, ..., —0f/0x,, 1) is never
zZero. '

EXAMPLE 4. Let S be an (n — 1)-surface in R", given by S = f ~*(c), where
f:U>R (U open in R") is such that Vf(p) # 0 for all pef~'(c). Let
g: U, >R where Uy = U x R={(xy, ..., Xp+1) € R 1 (x4, ..., X,) € U},
be defined by

g1 o es Xpa1) = (X1 -5 Xp)
Then g~ !(c) is an n-surface in R"*! because

i) )
Vg(xy, oo Xpr1) = (xl, ooy Xpa 1o 5—3{1’ cens 0){:,’ 0)
and 0f/0x,, ..., 0f/0x, cannot be simultaneously zero  when
g(X1s o rvs Xps1) = f(X15 ..., X,) = ¢ because Vf(xy,...,x,)#0 whenever

(X1 --+» X,) € f ~!(c). The n-surface g~ *(c) is called the cylinder over S (see
Figure 4.2).

A4 Xp A Xy

-1

_ @

1 1 g
1" " 1~
/'X2
— N k]
| 1-sphere

0-sphere
in R! / (unit circle)
in R2

(a: n=0 (b):n=1

Figure 4.2 The cylinder g~ (1) over the n-sphere: g(xy, ..., Xps1) = %3 + -+ + x2.

EXAMPLE 5. Let C be a curve in R? which lies above the x;-axis. Thus
C=f"Yc) for some f: U~ R with Vf(p)+ 0 for all pe C, where U is
contained in the upper half plane x,>0. Define S =g~ '(c) where
g: U x R— R by g(x;, X3, x3) = f(xy, (x} + x3)/?). Then § is a 2-surface
(Exercise 4.7). Each point p = (a, b) € C generates a circle of points of S,
namely the circle in the plane x, =a consisting of those points
(x4, X2, X3) € R? such that x, = a, x3 + x} = b § is called the surface of
revolution obtained by rotating the curve C about the x,-axis (see Figure
43).
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X3

Figure 4.3 The surface of revolution S obtained by rotating the curve C about the
Xq ‘axis.

Theorem. Let S be an n-surface in R**1, § = f~1(c) where f: U — R is such
that Vf (q) # 0 for all q € S. Suppose g: U — R is a smooth function and p € S

is an extreme point of g on S; i.e., either g(q) < g(p) for all q € S or g(q) = g(p)
for all g € S. Then there exists areal number A such that Vg(p) = AVf(p). (The
number A is called a Lagrange multiplier.)

ProoF, The tangent space to S at p is S, = [Vf(p)]*. Hence S; is the 1-
dimensional subspace of R}*! spanned by Vf(p). It follows, then, that
Vg(p) = AVf(p) for some A € R if (and only if) Vg(p) € S;; i.e., if (and only if)
Vg(p) - v=0for allv € S,. But each v € §, is of the form v = a(t,) for some
parametrized curve a: I - S and ty € I thh a(to) = p. Since p = a(t,) is an
extreme point of g on 8, ¢, is an extreme point of g - « on I. Hence

0= (f o a)(to) = Vg(a(to)) « alto) = Vg(p) - v
for all v € S, and so Vg(p) = AVf (p) for some 4, as required. 0

Remark.IfS is compact (closed and boundedt) then every smooth function
g: U — R attains a maximum on S and a minimum on S. The above theorem
can then be used to locate candidates for these extreme points. If S is not
compact, there may be no extrema.

ExampLE. Let S be the unit cnrcle x? + x2 =1 and define g: R2—» R by
g(xy, x;) = ax? + 2bx; x, + cxz where a,bceR (see Figure 4.4). Then
S =f"1(1) where f(x,, x,) = x? + x3,
Vf (x1, x3) = (x4, X3, 2x4, 2x,), |
and
Vg(xy, x3) = (x4, X3, 2axy + 2bx,, 2bx; + 2¢x,),

S is closed if R*™*! — S is open; S is bounded if there exists M € R such that ||p| <M
forallpes.
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1

€4

Figure 4.4 Level curves of the function g(xy, x2) = ax} + 2bx,x, + cx3
(ac — b* > 0). The four points where these curves are tangent to the unit circle §
are the extreme points of g on §.

so Vg(p) = AVf(p) for p = (x,, x,) € S if and only if

2ax, + 2bx, = 24x,
2bx; + 2¢x, = 2%,

a b\(x,\ A%

b ¢ Xa X2 '
Thus the extreme points of g on § are eigenvectors of the symmetric matrix
¢ ). Note that if

or

is an eigenvector of (¢ %) then
2 2 a b)(*
ax} + 2bx, x5 + ¢x} = (x1x3) b c\x
2
_ X1) _ o202 4 42y —
= (x, xz)l( ) =Axi+x3)=14
X2

so the eigenvalue 4 is just g(p), where p = (x;, x,). Since a 2 x 2 matrix has
only two eigenvalues, these eigenvalues are the maximum and minimum
values of g on the compact set S.
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EXERCISES

4.1

4.2.

43.

44.

4.5.

4.6.
4.7.
438.

4.9.

4.10.

4.11.

4.12.

For what values of ¢ is the level set f ~*(c) an n-surface, where

@) f(X1, os Xna1) =xF 4+ - + x4y
(b)f(xh ---,X.+1)=X%+"'+xf"x3+1
() f(X1s oer Xae1) =X1 X3 " Xppy + 1

Show that the cylinder x} + x% = 1 in R® can be represented as a level set of
each of the following functions:.

(a) f(x1, x2, x3) = x} + x}
(b) f(x1, X2, x3) = —x3 — x}
(©) f(x1 x2, x3) = 2x} + 2x} + sin(x} + x}):

Show that if an n-surface S is represented both as f ~*(c) and as g~ !(d) where
Vf(p) # 0 and Vg(p) + 0 for all p € S, then for each p € S, Vf(p) = AVg(p) for
some real number 4 # 0,

Sketch the graph of the function f: R*— R gwen by f(x1, x2) = x3 — 3x%x,.
[H int: First find the level set f ~ 1(0). In what region of the plane is f > 0? Where
is f < 07] The 2-surface graph (f) is called a monkey saddle. (Why?)

Sketch the cylinders f ~*(0) where
(@) f(x1, x2) = x4

(b) f(x1, X2, x3) =%, — x3

(©) f(x1, X2, x3) = (x3/4) + (x3/9) — 1

Sketch the cylinder over the graph of f(x) = sin x.

Verify that a surface of revolution (Example 5) is a 2-surface.

Sketch the surface of revolution obtained by rotating C about the x,-axis,
where C is the curve

(a) x2=1 (cylmder)
(b) —x, +x}=1x3>0  (l-sheeted hyperboloid)
(¢) x}+(x;—2)*=1  (torus)

Show that the set S of all unit vectors at all points of R? forms a 3-surface in R*.
[Hint: (x5, X3, X3, x4) € § if and only if x§ + x3 = 1.]

Let S =f~!(c) be a 2-surface in R* which lies in the half space x; > 0. Find a
function g: U — R (U open in R*) such that g~ (c) is the 3-surface obtained by
rotating the 2-surface § about the (x;, x,)-plane.

Let a, b, c € R be such that ac — b? > 0. Show that the maximum and mini-
mum values of the function g(x;, x;) = x? + x% on the ellipse ax} + 2bx, x; +
cx} ='1 are of the form 1/A, and 1/4, where 4, and A, are the eigenvalrws of the
matrix (§ ).

Show that the maximum and minimum values of the function
g(x1 .oy Xpe1) = Y151 a;jx;x; on the unit n-sphere xi+ -+ xi,, =1,
where (a;;) is a symmetric n X n matrix of real numbers, are eigenvalues of the
matrix (au).
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4.13. Show that if S is an n-surface in R"*!, g: R"*! —» R is a smooth function, and
p € S is an extreme point of g on S, then the tangent space to the level set of g
through p is equal to S, the tangent space to S at p, provided Vg(p) # 0 (see
Figure 4.4).

4.14. Let S be an n-surface in R"** and let p, € R"*1, p ¢ S. Show that the shortest
line segment from p, to S (if one exists) is perpendicular to S; ie., show that if
p € S is such that ||po — p|*> < |po — ¢||* for all g € S then (p, po — p) L S,.
[Hint: Use the Lagrange multiplier theorem.] Show also that the same conclu-
sion holds for the longest line segment from p, to S (if one exists).

4.15. R* may be viewed as the set of all 2 x 2 matrices with real entries by identifying
the 4-tuple (x4, x,, x3, x4) with the matrix

X1 X2
X3 Xa ’
The subset consisting of those matrices with determinant equal to 1 forms a

group under matrix multiplication, called the special linear group SL(2). Show
that SL(2) is a 3-surface in R*.

4.16. (a) Show that the tangent space SL(2), to SL(2) (Exercise 4.15)atp = (§ ) can
be identified with the set of all 2 x 2 matrices of trace zero by showing that

s _J( (a b)) _
@,={(r( , .a+d-0}.
[Hint: Show first that if

aft) = (xl(t) xz(t))
x3(t)  xa(t)
is a parametrized curve in SL(2) with afto)= (5 §) then (dx,/dt)
(to) + (dx4/dt)(to) = 0. Then use a dimension argument.]
(b) What is the tangent space to SL(2) at g = (3 })?

4.17. (a) Show that the set SL(3) of all 3 x 3 real matrices with determinant equal to
1 is an 8-surface in R®. :
(b) What is the tangent space to SL(3) at

p=

OO =
(= =]



“Vector Fields on Surfacés;'
Orientation

A vector field X on an n-surface S = R**! is a function which assigns to each
point p in S a vector X(p) € R3* ! at p. If X(p) is tangent to S (i.e, X(p) € S,)
for each p € S, X is said to-be a tangent vector field on S.If X(p) is orthogonal
to S (i.e, X(p) € S;) for each p € S, X is said to be a normal vector field on S
(see Figure 5.1). _

@ ’ (b)

Figure 5.1 - Vector fields on the 1-sphere: (a) a tangent vector field, (b) a normal
' vector field.

As usual, we shall work almost exclusively with functions and vector
fields which are smooth. A function g: S — R*, where S is an n-sn{lrfaoe in
R"*1 is smooth if it is the restriction to S of a smooth function §: V — R*
defined on some open set V in R**! containing S. Similarly, a vector field X
on S is smooth if it is the restriction to S of a smooth vector field defined on
some open set containing S. Thus, X is smooth if and only if X: § - R** ! is
smooth, where X(p) = (p, X(p)) for all p € S.

23
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The following theorem extends to n-surfaces the theorem of Chapter 2 on
the existence and uniqueness of integral curves.

Theorem 1. Let S be an n-surface in R"*1, let X be a smooth tangent vector
field on S, and let p € S. Then there exists an open interval I containing 0 and a
parametrized curve o: I — S such that

(i) a(0)=p
(i) &(t) = X(a(t)) for allte I
(iii) If B: T S is any other parametrized curve in S satisfying (i) and (ii), then
T<Iand B(t)=oft)foralltel. :

A parametrized curve a: I — S satisfying condition (i) is called an inte-
gral curve of the tangent vector field X. The unique « satisfying conditions
(1)-(iii) is the maximal integral curve of X through p € S.

Proor. Since X is smooth, there exists an open set V containing S and a
smooth vector field X on V such that X(q) = X(g)forallge S.Letf: U > R
and ¢ € R be such that S = f~!(c) and Vf(q) # 0 for all g € S. Let

W={qeUn V:Vf(q) #0}.

Then W is an open set containing S, and both X and fare defined on W. Let
Y be the vector field on W, everywhere tangent to the level sets of £, defined
by

Y(q) = X(q) — X(a) - V/(@)/IIV/(@)I*)Vf (a)-

Note that Y(g) = X(g) for all g € S. Let a: I - W be the maximal integral
curve of Y through p. Then « actually maps I into S because

(f o a)(t) = Vf((t)) - &(t) = Vf (a(2)) - Y(e(t)) = O, -
and f - «(0) = f(p) = c, so f o a(t) = c for all t € I. Conditions (i) and (ii) are
clearly satisfied, and condition (iii) is satisfied because any f: I — S satisfy-
ing (i) and (ii) is also an integral curve of the vector field Y on W so the
theorem of Chapter 2 applies. O

Corollary. Let S = f ~!(c) be an n-surface in R"* !, wheref: U — R is such that
V1 (q) # 0 for all q € S, and let X be a smooth vector field on U whose restric-
tion to S is a tangent vector field on S. If a: I — U is any integral curve of X
such that a(ty) € S for some to € I, then a(t) € S for all t € I.

ProOF. Suppose a(t) ¢ S for some ¢ € I, t > t,. Let t; denote the greatest
lower bound of the set

{tel:t>t,and aft) ¢ S}

Then f(a(t))=c for t, <t <t, so, by continuity, f(«(t;)) = c; that is,
a(t,) € S. Let : T - S be an integral curve through «(t, ) of the restriction of
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X to S. Then f is also an integral curve of X, sending 0 to a(t, ), as is the curve
& defined by &(t)= a(t +t,). By uniqueness of integral curves, a(t) =
@t — ty) = B(t — t,) € S for all ¢ such that t — ¢, is in the common domain
of & and B. But this contradicts the fact that a(t) ¢ S for values of ¢ arbitrarily
close to t,. Hence az(t) € S for all t € I with t > t,. The proof for t < t, is
similar. a

A subset S of R**! is said to be connected if for each pair p, g of points in
S there is a continuous map «: [a, b] — S, from some closed interval [a, b]
into S, such that a(a) = p and a(b) = q. Thus S is connected if each pair of
points in S can be joined by a continuous, but not necessarily smooth, curve
which lies completely in S. Note, for example, that the n-sphere (Figure 5.2)
is connected if and only if n > 1 (Exercise 5.1).-

A Xy ) ‘ ' X3

L X,
/, ;, s
q % \J X X

(@:n=0 . (byn=1 . (e:n=2

Figure 52 The n-sphere x2 + -+ + x2,; = 1 is connected if and only if n > 1.

In this book, we shall deal almost exclusively with connected n-surfaces.
As we shall see in Chapter 15 (see Exercise 15.13), given any n-surface S and
any p € §, the subset of § cenmstmg of all points of § which can be joined to
p by a continuous curve in § is itself an n-surface, and it is connected. Hence
we can study S by studying separately each of these “connected compon-

ents” of S.
\

Theorem 2. Let S cR"*'bea connected n-swface in R"*1. Then there exist
on S exactly two smooth unit normal vector fields N, and N, , and N,(p) =
—N,(p)for’all PES.

PROOF. Let f: U — R and ¢ € R be such that S = f ~*(c) and Vf(p) # 0 for all
peS. Then the vector ﬁeld N,onS defined by

o We) |
N =T PES

clearly has the required properties, as does the vector field N, defined by
Na(p) = —Ny(p) forall pe §.
To show that these are the only two such vector fields, suppose N; were
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another. Then, for each p € S, N3(p) must be a multiple of N, (p) since both
lie in the 1-dimensional subspace S5 = R, '. Thus

Ni(p) = g(p)N 1(p)

where g: S —» R is a smooth function on S (g(p) = N3(p) - Ny(p) for p € S).
Since N,(p) and N;(p) are both unit vectors, g(p) = £ 1 for each p e S.
Finally, since g is smooth and S is connected, g must be constant on S (see
Exercise 5.2). Thus either N3 = Nj or N3 = N,. O

A smooth unit normal vector field on an n-surface S in R"* !-is called an
orientation on S. According to the theorem just proved, each connected
n-surface in R"* ! has exactly two orientations. An n-surface together with a
choice of orientation is called an oriented n-surface.

Remark. There are subsets of R"* ! which most people would agree should be
called n-surfaces but on which there exist no orientations. An example is the
Mobius band B, the surface in R? obtained by taking a rectangular strip of
paper, twisting one end through 180°, and taping the ends together (see
Figure 5.3). That there is no smooth unit normal vector field on B can be

Figure 5.3 The Mobius band.

seen by picking a unit normal vector at some point on the central circle and
trying to extend it continuously to a unit normal vector field along this
circle. After going around the circle once, the normal vector is pointing in
the opposite direction! Since there is no smooth unit normal vector field on
B, B cannot be expressed as a level set f~*(c) of some smooth function
f: U — R with Vf(p) # 0 for all p € S, and hence Bisnot a 2-surface accord-
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ing to our definition. B is an example of an “unorientable 2-surface ”. Until
Chapter 14, we shall consider only “orientable” n-surfaces in R"* 1

A unit vector in R}*! (pe R"*!) is called a direction at p. Thus an
orientation on an n-surface S in R"*! is, by definition, a smooth choice of
normal direction at each point of S.

On a plane curve, an orientation can be used to define a tangent dlrectlon
at each point of the curve. The positive tangent direction at the point p of the
oriented plane curve C is the direction obtained by rotating the orientation
normal direction at p through an angle of —n/2, where the direction of
positive rotation is counterclockwise (see Figure 5.4).

@ (b)

Figure 54 Orientation on a plane curve: (a) the chosen normal direction at each
point determines (b) a choice of tangent direction at each point.

On a 2-surface in R3, an orientation can be used to define a direction of
rotation in the tangent space at each point of the surface. Given 6 € R, the
positive O-rotation at the point p of the oriented 2-surface S is the linear
transformation Ry: S, — S, defined by Ry(v) = (cos O)v + (sin O)N(p) x v
where N(p) is the onentatlon normal direction at p. R, is usually described
as the “ rlght-handed rotation about N(p) through the angle 6~ (see Figure
5.5).

5572 Ry(v) = N(p) x v

Figure 5.5 Orientation on the 2-sphere: at each point the chosen normal direction
determines a sense of positive rotation in the tangent space. The satellite figure is an
enlarged view of one tangent space.
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On a 3-surface in R*, an orientation can be used to define a sense of
“handedness” in the tangent space at each point of the surface. Given an
oriented 3-surface S and a point p € S, an ordered orthonormal basis
{e1, e,, e;} for the tangent space S, to S at p is said to be right-handed if the
determinant

€
€2
€3

N(p)

is positive, where N(p) = (p, N(p)) is the orientation normal direction at p
and e; = (p, ¢;) for i € {1, 2, 3}; the basis is left-handed if the determinant is
negative.

On an n-surface in R"*! (n arbitrary), an orientation can be used to
partition the collection of all ordered bases for each tangent space into two
subsets, those consistent with the orientation and those inconsistent with the
orientation. An ordered basis {v,, ..., v,} (not necessarily orthonormal) for
the tangent space S, at the point p of the oriented n-surface § is said to be
consistent with the orientation N on S if the determinant

det

Uy

det
v

N(p)
is positive; the basis is inconsistent with N if the determinant is negative.
Here, as usual, v; = (p, v;) and N(p) = (p, N(p)).

EXERCISES
5.1. Show that the unit n-sphere x? + -+ + x2,; = 1 is connected if n > 1.

5.2. Show that if S is a connected n-surface in R"*! and g: § — R is smooth and
takes on only the values +1and — 1, then g is constant. [Hint: Let p € S. For
g € S, let a: [a, b] > S be continuous and such that a(a) = p, a(b) = q. Use the
intermediate value theorem on the composition g o a.]

5.3. Show by example that if S is not connected then Theorem 2 of this section fails.

5.4. Show that the two orientations on the n-sphere x + - + x2,; = r? of radius
r > 0 are given by Ny(p) = (p, p/r) and N2(p) = (p, —p/r).

5.5. R" may be viewed as the n-surface x,+; = 0 in R"**. Let N be the orientation
on R"c R"*! defined by N(p) = (p, 0, ..., 0, 1) for each p € R" (This N is
called the natural orientation on R".) Show that, given this orientation for each
n,

() the positive tangent direction at p € R' is the direction (p, 1, 0),
(b) the positive O-rotation in R2, p € R? is counterclockwise rotation through
the angle 0, and
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5.6.

5.7

5.8.

5.9.

(c) the ordered orthonormal basis {(p, 1, 0, 0, 0), {p, 0, 1, 0, 0), (p, 0, O, 1, O)}
forR3,pe R’ is right-handed,

Let Cbean onented plane curve and let v be a nonzero vector tangent to C at
p € C. Show that the basis {v} for C, is consistent with the orientation on C if
and only if the positive tangent direction at p is v/|[v||. [Hint: Let 0 denote the
angle measured counterclockwise from (p, 1, 0) to the orientation direction
N(p), so that N(p) = (p, cos 8, sin 8). Express both v and the positive tangent
direction at p in terms of 8.]

Recall that the cross product v x w of two vectors v = (p, vy, v3, v3) and
w = (p, wy, w2, w3) in R} (p € R?) is defined by

VX W= (p v,ws— U3Wz, U3Wy — D1 W3, U1 Wy — VW)

(a) Show that v x w is orthogonal to both v and w and that |v x w|| =
* |l¥]l iw]l sin 6, where 8 = cos™*(v - w/jv| ||w|) is the angle between v and w.
(b) Show that if u = (p, uy, u,, us) then

o ’ Uy u; U
u-(vxw)=v-(wxu)='w-(uxv)= vy vy U3l
Wy W, w;

(c) Show that the only vector x in R} such that w- x is equal to the determi-
nant above (part b) for allue R3 isx=vxw

Let S be an oriented 2-surface in R? and let {v, w} be an ordered basis for the
tangent space s to S at p e S. Show that the consistency of {v, w} with the
orientation N of S is equivalent with cach of the following conditions:

(a) N(p)- (vxw)>0 '
(b) w/|w| = R,(v/ ﬂvﬂ) for some 6 with 0 <@ < =, where R, is the positive
f-rotation in-S,.

Let S be an oriented 3-surfaoe inR*andletpeS.

(a) Show that, given vectors v = (p, v) and w = (p, w) in S, there is a unique
vector v X w & S, such that

u
u* (v x w) = det R
W

N(p)

for all u = (p, u) € §,, where N(p) = (p, N(p)) is the orientation direction
at p. This vector v x w is the cross product of v and w.
(b) Check that the cross product in S, has the following properties:

(i) (vew)xx=vxx+wxx , :
(i) vx(W+x)=vxw+vxx , |
(iii) (cv) x w=c(v x w) '
(iv) v x (cw) = c(v x w)
VMyxw=—wxv

(vi) u- (vxw)sv wxu)=w- (uxv)
(vii) v x w is orthogonal to both v and w

[
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(viii) u - (v x w) = 0 if and only if {u, v, w} is linearly dependent
(ix) An ordered orthonormal basis {e,, e,, es} for S, is right-handed if
and only if e; - (e; x e;) > 0.

5.10. Let S be an oriented n-surface in R"*!, with orientation N, and let p € §.

(a) Show that an ordered basis for S, is inconsistent with N if and only if it is
consistent with —N.

(b) Suppose {v, ..., v,} is an ordered basis for S, which is consistent with N
and suppose {w,..., W,} is another ordered basis for S,. Show that
{W, ..., w,} is also consistent with N if and only if the matrix (a:;), where
W, = Z, a;v;, has positive determinant. [Hint: Complete each basis to a
basis for R%* ! by adjoining N(p). What is the relationship between (a;;)and
the two matrices which determine the consistency of the given bases with
N7



The Gauss Map

An oriented n-surface in R"*! is more than just an n-surface S, it is an
n-surface S together with a smooth unit normal vector field N on S. The
function N: § — R"* ! associated with the vector field N by N(p) = (p, N(p)),
p € S, actually maps S into the unit n-sphere " = R"**, since | N(p)|| = 1for
all p € S. Thus, associated to each oriented n-surface S is a smooth map
N: S — 8", called the Gauss map. N may be thought of as the map which
assigns to each point p € S the point in R**! obtained by “ translating” the
unit normal vector N(p) to the origin (see Figure 6.1). '

b X,

N —

Figure 6.1 The Gauss map of a 1-surface in R2,

The image of the Gauss map,
N(S) = {q € S": ¢ = N(p) for some p € S}
is called the spherical image of the oriented n-surface S (see Figure 6.2).

31
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A X

N(S)

(b):n=2

Figure 62 The spherical image of one sheet of a 2-sheeted hyperboloid x} —x3 -
co—x2,,=4, x,>0, oriented by N= —Vf/|Vf| where f(xy,...,%n+1)=
2

2
X{— X3 — "= Xpege

The spherical image of an oriented n-surface S records the set of direc-
tions which occur as normal directions to S. Hence its size is a measure of
how much the surface curves around in R"*. For an n-plane, which doesn’t
curve around at all, the spherical image is a single point. If an n-surface is
compact (closed and bounded) then it must curve all the way around: the
spherical image will be all of S". Although we do not yet have enough
machinery to prove this theorem in full generality, we can already prove an
important special case, namely the case in which § is a level set of a smooth
function defined on all of R"* 1.

Theorem. Let S be a compact connected oriented n-surface in R"** exhibited
as a level set f ~(c) of a smooth function f: R"*! — R with Vf(p) # 0 for all
p € S. Then the Gauss map maps S onto the unit sphere S".
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Proor. The idea of the proof is as follows. Given v € S" consider the n-plane
v*. By moving this n-plane far enough in the v-direction, it will have null
intersection with §. Bringing it back in until it just touches S at some point p,
it will be tangent there (see Figure 6.3). Hence at this point, N(p) = +v. If

Figure 6.3 The Gauss map of a compact oriented n-surface is onto.

N(p) = —v, then N(g)=v where q is obtained similarly, by moving the
n-plane in from the opposite direction.
More precisely, consider the functxon g: R"*1 5 R defined by g(p) =
pevsie, gxy, ooy Xur1) = a1 X1 + *** + @py g Xp4 4 Where
T 0= (g s i)

The level sets of g are the n-planes paraliel to v*. Since S is compact, the
restriction to S of the function g attains its maximum and its minimum, say
atpand q respectwely By the Lagrange multiplier theorem (Chapter 4),

(b v) = V(o) = AV (p) = |/ G)ING)

for some 4 € R. Hence v and N(p) are multnples of one another Since both
have unit length, it follows that N(p) = +v. Similarly, N(g) = tv.

It remains only to check that N(q) # N(p). For this, it suffices to con-
struct a continuous funct:on a: [a, b] > R"* 1, differentiable at a and b, such
that :

() a(@)=p, a(b)=g, @(a)= (p, vy &b)=(q,v) and
(ii) «(t) ¢ S fora <t <.b.

For then, by (i), if N= v/ llvf “’ e
(f = 2(a) = Vf (e(a)) * &la) S
| = [V (P)IN() - (7, v) = |V (P)|N(p) - v

and similarly ‘

(f o a)(b) = |V/(g)IIN(g) - v
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so the derivative (f-a) has the same sign at both endpoints. If
N = —Vf/|Vf|, the same conclusion holds. Thus, if N(p) were equal to
N(g) (= tv)then f° o would either be increasing at both end points or be
decreasing at both end points. Since f o a(a) = f o a(b) = c, this would imply
that there exist ¢, and ¢, between a and b withf - a(t,) > cand f - a(t,) < c.
But then, by the intermediate value theorem, there would exist ¢5 between ¢,
and ¢, such that f - a(t3) = ¢, contradicting (ii).

To construct «, enclose S in the interior of a large sphere S,. This is
possible since S is compact. Set (see Figure 6.4) o,(t)=p+ tv (0 <t < ay),

ay (a))=oa3 (by)

Image o,

Image a3

Image a,
a; (@) = a3 (by)

Figure 64  N(q) = — N(p).

where a, is such that a,(a,) € S;, and set a,(t) = g — tv (0 < ¢t < a,), where
a, is such that a,(a,) € S;. Let a3: [b,, b,] = S, be such that a;(b,) = a,(a,)
and a;(b,) = a,(a,). Such an a; exists because the n-sphere S, is connected
for n > 1. Then the function « defined by

(t) O<t<a)
at) = { as(t + by — ay) (a<t<a,+b,-by)
a2(01+a2+b2—b1—t) (a1+b2"blst
Sal+a2+b2—b1)

has the required properties, where a = 0, b = a, + a, + b, — b,. Continuity
and condition (i) are easy to check, and condition (ii) is satisfied because

(1) al(t) ¢ S for t > 0 since (g o oc,) (t) = Vg(ey(t)) - ay(t) =v-v> 0so g
is increasing along a,, and the maximum value of g on S is attained at
al(o) D;

(2) ay(t) ¢ S for t > 0 since (g o a,)(t) = v - (—v) <0 so g is decreasing
along «,, and the minimum value of g on § is attained at a,(0) = ¢; and

(3) as(t) ¢ S for t € [by, b,] since as(t) e S; and S; N S = . O

Remark. Some insight into the general case of this theorem can be gained
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from the following intuitive argument. Suppose S is compact and connected.
Then S divides R"*! into two parts, a part inside S and a part outside S.
Let S = f ~(c) where f: U - R. Then, for small enough & > 0, the level set
f~Y(c + ¢) will be an n-surface S, gotten by pushing each point of S a
short distance out from S along Vf (see Figure 6.5).

Vi=fl(c+e)

S, =ftete)
s=f"1(c)
v ] S_=fY(c-e)

Figure 6.5 Given a compact connected n-surface S = f ~!(c), the nearby level sets
f~Yc — ¢) and f ~(c + &) are slightly inside and slightly outside S.

(Possibly, f ~(c + ¢) might also contain some points far away from S but we
can ignore such points in the present argument.) Similarly, for small enough
¢ > 0, the level set f ~!(c — &) will be an n-surface S_ on the other side of S,
gotten by pushing each point of S a short distance out along —Vf. Denoting
by V the set of points between S_ and S., by V. the set of points in
R"**! — ¥ which lie on the same side of S as S, , and by V_ the set of points
in R**! — ¥ which lie on the other side of S, we can define f: R*** - R by

flp) forpeV
fp)={c+e forpeV,
c—¢ forpeV_.

Then f is continuous on R"*", smooth on the open set ¥ about S, and
7~1(c) = 5. The above proof can now be applied, with f replaced everywhere
by f, to show that the Gauss map is onto.

EXERCISES

In Exercises 6.1-6.5, describe the spherical image, when n = 1 and when
n=2, of the given n-surface, oriented by Vf/||Vf| where f is the function
defined by the left hand side of each equation.

6.1. The cylinder x3 + -+ + X3+, = L. o
62. Thecone —x? +x3+ -+ x2,,=0,%x,>0,

6.3. The sphere x} + x3 + -+ x2,; =12 (r>0).

6.4. The paraboloid —x; + x3 + -+ x2,, =0.
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6.5.

6.6.

6.7.

6.8.

6.9.

6 The Gauss Map

The 1-sheeted hyperboloid
~(x}/a®)+xi+ -+ x2; =1 (a>0)
What happens to the spherical image when a — c0? When a — 0?

Show that the spherical image of an n-surface with orientation N is the
reflection through the origin of the spherical image of the same n-surface with
orientation —N.

Let a=(ay, ..., ay+1) € R"**, a # 0. Show that the spherical image of an n-
surface § is contained in the n-plane a; x; + - + 4,4 X,+1 = 0 if and only if
for every p € S there is an open interval I about 0 such that p + ta € S for all
t € I. [Hint: For the “only if ” part, apply the corollary to Theorem 1, Chapter
5, to the constant vector field X(q) = (g, a).]

Show that if the spherical image of a connected n-surface § is a single point then
S is part or all of an n-plane. [Hint: First show, by applying the corollary to
Theorem 1, Chapter 5, to the constant vector fields W(g) = (g, w), where w L v,
{v} = N(S), that if Bis an open ball which is contained in Uand p € S n B then
H ~ B c S where H is the n-plane {x € R"**: x * v = p * v}. Then show that if
a: [a, b] - S is continuous and a(t) € Bfor t; <t <t thena(ty) - v =afty) - v
by showing that if, e.g, aft;) - v <a(t;) - v then S contains the open set
{xe B:a(t)) - v <x-v<aft;) - v}, which is impossible (why?).]

Let S = f~(c), where f: R"*! — R is a smooth function such that Vf (p) # 0 for
all p e S. Suppose a: R R"*! is a parametrized curve which is nowhere tan-
gent to S (ie., Vf(x(t)) - &(z) # O for all ¢ with «(t) € S; see Figure 6.6).

Image «

ol

o (tl)

Figure 6.6 The curve o« must cross the compact n-surface S an even number of times.



6 The Gauss Map 37

(a) Show that at each pair of consecutive crossings of S by a, the direction of
the orientation Vf/|Vf|| on S reverses relative to the direction of « [ie,
show that if a(t,)e § and oft;) € S, where t; <t,, and «(t)¢ S for
t, <t <ty, then Vf(a(t,)) * a(t,) > O if and only if Vf (a(t2)) - &(t2) < 0]

(b) Show that if § is compact and « goes to oo in both directions [ie.,
lim,. -  [@(t)]| = lim,~ + o [Ja(t)]| = o] then a crosses S an even number of
times.

6.10. Let S be a compact n-surface in R***. A point p € R**! — S is outside S if there
exists a continuous map a: [0, 0)— R"*! — S such that «(0)=p and
lim,. o la(t)] = oo. Let @(S) denote the set of all points outside S.

(a) Show that if B: [a, b] - R"*! — § is continuous and S(a) € O(S) then B(t) €

o(S) for all t € [a, b].
(b) Show that O(S) is a connected open subset of R***.



Geodesics

Geodesics are curves in n-surfaces which play the same role as do straight
lines in R". Before formulating a precise definition, we must introduce the
process of differentiation of vector fields and functions defined along pa-
rametrized curves. In order to allow the possibility that such vector fields and
functions may take on different values at a point where a parametrized curve
crosses itself, it is convenient to regard these fields and functions to be
defined on the parameter interval rather than on the image of the curve.

A vector field X along the parametrized curve a: I - R"*! is a function
which assigns to each ¢ € I a vector X(t) at «(t); i.e., X(t) € R, forallz € I.
A function f along o is simply a function f: I - R. Thus, for example, the
velocity & of the parametrized curve a: I - R"*! is a vector field along a
(Figure 7.1); its length ||&||: I — R, defined by & (¢) = ||&(¢)|| forallt € I,isa
function along a. ||&|| is called the speed of a.

X (tz)

a (1)

Figure 7.1 The velocity field along a parametrized curve a. Note that o(t,) = «(t,)
does not imply that a(t,) = é{t2).

38
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Vector fields and functions along parametrized curves frequently occur as
restrictions. Thus if X is a vector field on U, where U is an open subset of
R**! containing Image «, then X o « is a vector field along a. Similarly f - «
is a function along o whenever f: U - R, where U o Image a.

Each vector field X along « is of the form

X() = ((t), X1(t), ---» Xpas(8))
where each component X is a function along a. X is smooth ifeach X;: I - R

is smooth. The derivative of a smooth vector ﬁeld X along o is the vector field
X along « defined by

X(1) = (a(ayi’%l— ..., Tt (t))

X(t) measures the rate of change of the vector part (X,(t), ..., Xns1(t)) of

X(t) along . Thus, for example, the acceleration & of a parametrized curve «
is the vector field along « obtained by dlfferentlatmg the velocity field a
[& = (@)] (see Figure 7.2).

& (rg)
Figureff7.2 The aéceieration &(to) is the derivative at t, of the velocity vector ﬁeld é.

It is easy to check (Exercise 7.4) that differentiation of vector fields along
parametrized curves has the following properties. For X and Y smooth
vector fields along the parametrized curve a: I - R**! and fa smooth func-
tion along o, ' '

(i) (X+Y)—X+Y

@) (X)= X+ fX
(iii) X Yy =X-Y+X-Y

where X + Y, fX, and X - Y are defined along a by
(X + Y1) = X(1) + Y()
(fX)e) = ()X ()
(X - Y)(1) = X(0) - Y(r)
foralltel.
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A geodesic in an n-surface S < R"*! is a parametrized curve a: I - S
whose acceleration is everywhere orthogonal to S; that is, G(t) € Sy for all
t € I. Thus a geodesic is a curve in § which always goes “straight ahead ” in
the surface. Its acceleration serves only to keep it in the surface. It has no
component of acceleration tangent to the surface.

Note that geodesics have constant speed, because a&(t) € S,, and
&(t) € Sy, for all t € I implies that

Not(t)ll2 ~(<x(t » &(t)) = 24(t) - 6(t) = 0.

ExaMPLE 1. If an n-surface S contains a straight line segment a(t) = p + tv
(t € I) then that segment is a geodesic in S. Indeed, d(t) = Oforallz € I'soin
particular d(t) L S, forallt e I.

ExaMpPLE 2. For each a, b, ¢, d e R, the parametrized curve aft) =
(cos(at + b), sin{at + b), ct + d) is a geodesic in the cylinder x? + x3 = 1in
R3, because

a(t) = (a(t), —a® cos(at + b), —a? sin(at + b), 0) = +a>N(a(r))
for all t € R (see Figure 7.3).

Image » 4% Image « 4% 4%
N | -
X, L% L%,

— —> — > -~ -

| Xl P X1 P N X
1 e A

~
kl__J/ \|_/ Image «
(a) (b) ©

Figure 7.3 Geodesics a(t) = (cos(at + b), sin(at + b), ct +d) in the cylinder
xf+x3=1(a)a=0,(b)c=0,(c)a#0,c+0.

ExaMmpLE 3. For each pair of orthogonal unit vectors {e,, e,} in R* and each
a € R, the great circle (or point if a = 0) a(t) = (cos at)e; + (sin at)e, is a
geodesic in the 2-sphere x? + x}+x3=1 in R®, because a(t) = («(t),
— a*a(t)) = +a*N(a(z)) for all ¢ € R (see Figure 7.4).

Intuitively, it seems clear that given any point p in an n-surface S and any
initial velocity v at p (v € S,) there should be a geodesic in S passing through
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Figure 7.4 Great circles are geodesics in the 2-sphere.

p with initial velocity v. After all, a racing car travelling on S, passing
through p with velocity v, should be able to continue travelling “straight
ahead ” on S at constant speed ||, thereby tracing out a geodesic in S. The
following theorem shows that this is the case, and that the geodesic thh
these properties is essentially unique.

Theorem. Let S be an n-surface in R***, let p € S, and let v € S,,. Then there
exists an open interval I containing O and a geodesic a: I — S such that

(i) 2(0)=p and a(O) =Y.
(ii) If B: TS is any other geodesic in S with p(0) = p and B(0) = v, then
Tc1and B(t)=oft) forallte I. ,

‘Remark. The geodesic a is called the maximal geodesic in S passing through
p with initial velocity v.

PrOOF. S = f ~*(c) for some ¢ € R and some smooth function f: U —» R (U
open in R"*!) with Vf(p) # 0 for all p € S. Since Vf(p) # 0 for all p in some
open set containing S, we may assume (by shrinking U if necessary) that
Vf(p) # O for all p e U. Set N = Vf/||Vf|.

By definition, a parametrized curve a: I +Sis a geodesw of § ifand only
if its acceleration is everywhere perpendicular to S; that is, if and only if &()
is a multiple of N(x(t)) for all ¢ € I:

&(t) = g(e)N(«(¢))

for all ¢ € I, where g: I - R. Taking the dot product of both sides of this
equation with N(a(t)) we find

g=&*Noa=(@ Noafy—a-Nia
=—&+Nsa, |

since & * N o « = 0. Thus «: I — S is a geodesic if and only if it satisfies the
differential equation

©) B+ (& Noa)Noa)=0.
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This is a second order differential equation in a. (If we write a(t) =
(x4(2), - .., x,+1(t)), this vector differential equation becomes the system of
second order differential equations

d*x;  "H! . )%(x )dx jdx, _
dtZ 12 i ey M+l axk 15 ++os Xp+1 dl dt

where the N; (j € {1, ..., n + 1}) are the components of N.) By the existence
theorem for the solutions of such equations, there exists an open interval I,
about 0 and a solution fB,: I, — U of this differential equation satisfying the
initial conditions §,(0) = p and B,(0) = v (that is, satisfying x,(0) = p; and
(dxy/dt)0)=v; for ie{l,...,n+1}, where p=(py,...,P.+1) and
v=(p, vy, ..., Uy+1))- Moreover, this solution is unique in the sense that if
B,: I, - U is another solution of (G), with 8,(0) = p and j,(0) = v, then
Bi(t) = B,(t) for all t € I, n I,. It follows that there exists a maximal open
interval I (I is the union of the domains of all solutions to (G) which map 0
into p and have initial velocity v) and a unique solution a: I - U of (G)
satisfying «(0) = p and &(0) = v. Furthermore, if §: I - U is any solution of
(6) with B(0) = p and B(0) = v then T = I and B is the restriction of a to T.

To complete the proof, it remains only to show that the solution a to (G)
is actually a curve in S. For, if so, it must be a geodesic since it satisfies the
geodesic equation (G), and the rest of the theorem follows from the uni-
queness statements above.

To see that « is in fact a curve in S, note first that for every solution
a: I - U of (G), &N oa=0. Indeed,

(@*Noay=8*Noa+a-Nsa=0
by (G), so & * N o a is constant along «, and ’
(N - a)0)=v- N(p) =
since v € S, and N(p) L S,. It follows then that

(f e a) (1) = W/ () - &(t) = ||V () IN(x(t)) - () = O

for all t € I so f - a is constant, and f(«(0)) = f(p) = ¢ so f(«(t)) = ¢ for all
t € I; that is, Image « = f ~!(c) = S. O

It follows from the theorem just proved that each maximal geodesic on
the unit 2-sphere in R* (Example 3) is either a great circle (parametrized by a
constant speed parametrization) or is constant («(t) = p for all ¢, some p)
since such a curve can be found through each point p with any glven initial
velocity. Similarly, each maximal geodesic on the cylinder x? + x3 = 1in R®
(Example 2) is either a vertical line, a horizontal circle, a helix (spiral), or is
constant.

t See e.g. W. Hurewicz, Lectures on Ordinary Differential Equations, Cambridge, Mass.: MIT
Press (1958), pp. 32-33. See also Exercise 9.15.
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EXERCISES

7.1.

72.

73.

74.

7.5.

7.6.

1.7.

78.

Find the velocity, the acceleration, and the speed of each of the following
parametrized curves:

(a) aft) = (t, £?)

(b) a(t) = (cos t, sin t)

(c) a(t) = (cos 3¢, sin 3t)

(d) a(t) = (cos ¢, sin t, ¢) *
(e) a(t) = (cos t, sin t, 2 cos t, 2 sin t).

Show that if a: I — R*™*1is a parametnzed curve with constant speed then
@(t) L a(t) forallt e I

Leta: [ — R"" ! be a parametrized curve wuh a(t) # 0 for all ¢ € I. Show that
there exists a unit speed reparametrization B of a; i.c., show that there exists an
interval J and a smooth function h: J — I (onto) such that &’ > 0 and such that
B = a o h has unit speed. [Hint: Set h = s™* where s(t) = i, ||a(t)| dt for some
to € 1 .]

Let X and Y be smooth vector fields along the parametrized curve a: I - R**!
and let f: I — R be a smooth function along a. Verify that

() X+Y)=X+Y
(b) X)= X+ (X
© X Yy=X-Y+X-Y.

Let S denote the cylinder x? + x3 = r? of radius r > 0 in R®. Show that a is a
geodesic of S if and only if « is of the form

a(t) = (r cos(at + b), r sin(at + b), ct + d)
for somea, b, ¢, d € R.

Show that a parametrized curve a in the unit n-sphere x} + -+~ + x2,, = lisa
geodesic if and only if it is of the form '

aft) = (cos at)e; + (sin at)e,

for some orthogonal pair of unit vectors {e;, e,} in R"*! and some a € R. (For
a # 0, these curves are “great circles” on the n-sphere.)

Show that if a: I — § is a geodesic in an n-surface S and if f = a ° his a repar-
ametrization of a(h: T — I) then B is a geodesic in S if and only if there exist
a,beIRw1tha>0such that h(t) =at + b forallte I.

Let C be a plane curve in the upper half plane x, > 0 and let S be the surface of
revolution obtained by rotating C about the x, -axis (see Example 5, Chapter 4).
Let a: I - C, a(t) = (x4(t), x(t)), be a constant speed parametrized curve in C.
For each 0 € R, define ag: I = S by |

ag(t) = (x1(t) x2(t) cos 8, x,(t) sin 9)
and, for each t € I, define §,: R —» S by the same formula:
BA6) = (x1(z), x1(t) cos 6, x,(t) sin 6).
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4 x2 meridians parallels profile curve C

Kal J

Figure 7.5 Geodesics on a surface of revolution: all meridians are geodesics; a
parallel is a geodesic if it cuts the “ profile curve” C at a point where the slope of C is

7.9.

7.10.

7.11.

7.12.

Ze1Oo.

The curves «, are called meridians of S, and the circles 8, are parallels of S (see
Figure 7.5).

(a) Show that meridians and parallels always meet orthogonally; ie.,
dp(t)- B(@)=Oforalltel,feR

(b) Show that each meridian o, is a geodesic of S. [Hint: Note that {dy(t), B,(0)}
spans S,, where p = a,(t). Hence it suffices to check that dy(t) is perpendicu-
lar to both dy(t) and B,(6).]

(c) Show that a parallel B, is a geodesic of S if and only if the slope x(z)/x’(t)
of the tangent line to C at af(t) is zero.

Let S be an n-surface in R"**, letve S,,p € S,and let a: I — S be the maximal
geodesic in S with initial velocity v. Show that the maximal geodesic f in S with
initial velocity cv (c € R) is given by the formula f(t) = a(ct).

Let S be an n-surface in R"*!, let pe S, let ve S,, and let a: I — S be the
maximal geodesic in S passing through p with velocity v. Show that if §: 7 - §
is any geodesic in S with (to) = p and B(to) = v for some ¢, € T then B(t) =
a(t —to) forall te I.

Let S be an n-surface in R"*! and let B: I — S be a geodesic in S with f(to) =
B(0) and B(to) = B(0) for some t, € I, t, # 0. Show that g is periodic by show-
ing that B(t + to) = B(t) for all ¢t such that both ¢ and ¢ + ¢, € I. [Hint: Use
Exercise 7.10.]

An n-surface S in R"*! is said to be geodesically complete if every maximal
geodesic in § has domain R. Which of the following n-surfaces are geodesically
complete?

(a) The n-sphere x} + - + x2,; = 1.

(b) The n-sphere with the north pole deleted: x + -+ + x4y =1, X1 # L.
(c) The cone x? + x3 —x3 =0, x; > 0 in R>.

(d) The cylinder x} + x3 =1 in R®.

(¢) The cylinder in R® with a straight line deleted: x24+x3=1x #1

BBV, ERSIIY GiN Ra u-'
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- Parallel Transport

A vector field X along a parametrized curve a: I — S in an n-surface S is
tangent to S along « if X(t) € S, for all t € I. The derivative X of such a
vector field is, however, generally not tangent to S. We can, nevertheless,
obtain a vector field tangent to S by projecting X(t) orthogonally onto Sy,
for each t eI (see Figure 8.1). This process of differentiating and then

X@)
N(())

- ﬁ Sa
A

X(t)

Figure 8.1 The covariant derivative X'(¢) is the orthogonal projection onto the
tangent space of the ordinary derivative X(t).

projecting onto the tangent space to S defines an operation with the same
properties as differentiation, except that now differentiation of vector fields
tangent to-S yields vector fields tangent to S. This operation is called covar-
iant differentiation. :

Let S be an n-surface in R"“ let a: I - S be a.parametrized curve in S,
and let X be a smooth vector field tangent to S along a. The covariant
derivative of X is the vector field X’ tangent to S along « defined by

X'(t) = X(e) — [X(2) - N(e))IN((2)),
o 45
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where N is an orientation on S. Note that X'(¢) is independent of the choice
of N since replacing N by —N has no effect on the above formula.

It is easy to check that covariant differentiation has the following proper-
ties: for X and Y smooth vector fields tangent to S along a parameterized
curve «: I — S and f'a smooth function along a,

() X+Yy=X+Y
(ii) (fX) =fX+fX
(iii) X-Y)=X -Y+X-Y.

These properties follow immediately from the corresponding properties of
ordinary differentiation. For example, the following computation verifies
(ii):
X-Yy=X-Y+X-Y
=[X4+(X Neoa)Noa] - Y+ X [Y + (Y -Noa)Noa]
=X--Y+X- Y,

since N is perpendicular to S and X and Y are tangent to S.

Intuitively, the covariant derivative X’ measures the rate of change of X
along a as seen from the surface S (by ignoring the component of X normal
to S). Note that a parametrized curve a: I — S is a geodesic in § if and only if
its covariant acceleration (&) is zero along a.

The covariant derivative leads naturally to a concept of parallelism on an
n-surface. In R"*1, vectors v = (p, v) € R%** and w = (g, w) € R}*! are said
to be Euclidean parallel if v = w (see Figure 8.2(a)). A vector field X along a

/!

(a) (b)

Figure 8.2 Euclidean parallelism in R?: (a) parallel vectors; (b) a parallel vector
field.

parametrized curve a: I - R"*! is Euclidean parallel if X (t,) = X(t,) for all
ti, t, € I, where X(t) = (x(t), X(t)) for t € I (see Figure 82(b)). Thus X is
Euclidean parallel along « if and only if X = 0.

Given an n-surface S in R"*! and a parametrized curve a: I » S, a
smooth vector field X tangent to S along « is said to be Levi-Civita parallel,
or simply parallel, if X’ = 0. Intuitively, X is parallel along « if X is a constant
vector field along a, as seen from S.
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Note that Levi-Civita parallelism has the following properties:

(i) If X is parallel aiong o, then X has constant length, since
d 2 d ’ —
E"X" —d—t(XvX)-ZX X=0.

(i) If X and Y are two parallel vector fields along a, then X * Y is constant
along a, since :

X YY=X Y+X-Y=0.

(iii) If X and Y are parallel along «, then the angle cos™*(X * Y/|X| | Y|))
between X and Y is constant along a, since X Y, | X, and | Y| are each
constant along a.

(iv) If X and Y are parallel along « then so are X + Yand X, forallc e R

(v) The velocity vector field along a parametrized curve « in S is parallel if
and only if « is a geodesic.

Theorem 1. Let S be an n-surface in R** !, let a: I — S be a parametrized curve
inS,lettoel, and let v e S,(,O) Then there exists a unique vector field V,
tangent to S along o, which is parallel and has V(tg)=v.

Proor. We requn'e a vector field V tangent to S along « satisfying V' = 0.
But ‘

V=V—(V-Noa)Noa
=V—[(V-Noafy-V-N:aN-a
=V+(V-Nia)Noa

soV =0if and’ bnly if V satisfies the differential equatioﬁ
(P) . V+(V'NiaNoa=0.

This is a first order differential equation in V. (If we write V(t) = (a(t),
Vi(t), ..., Vo4 1(t)), this vector differential equation becomes the system of
first order differential equations

n+1 :
dV+ Z(N o a)(N;oa)¥;=0
at =4

where the N; (j € {1, ..., n + 1}) are the components of N.) By the existence
and uniqueness theorem for solutions of first order differential equations,
there exists a unique vector field V along « satlsfymg equation (P) together
with the initial condition V(t,)=v (that is, satisfying V(t,) = v; for
ie{l,...,n+1}, where v=(a(to),vy,...,0s+1)) The existence and
uniqueness theorem does not guarantee, however, that V is tangent to S
along a.
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To see that V is indeed tangent to S, simply note that, by (P),
(V' Noea)=V:Noa+V:Nia
=[-(V-Nsa)Noa]  Noa+V:-Noa
=-V-Néoag+V-Noa=0,
so V - N o a is constant along o and, since (V * N o a)(t,) = v * N(a(to)) = 0,

this constant must be zero. Finally, this vector field V, tangent to S along a,
is parallel because it satisfies equation (P). O

Remark. We have implicitly assumed in the above proof that the solution
V of (P) satisfying V(¢,) = v is defined on the whole interval I and not just on
some smaller interval containing ¢, . That this is indeed the case can be seen
from the following argument. Suppose I — I is the maximal interval on
which there exists a solution V of (P) satisfying V(to) = v. If T # I, there
exists an endpoint b of T with be I. Let {t;} be a sequence in I with
lim;_,, t; = b. Since |V| is constant on I, |V(z;)|| = |v] for all i, so the
sequence {¥(t;)} of vector parts of {V(t;)} takes values in a compact set, the
sphere of radius ||v| about the origin in R***. It follows that {V'(z;)} must
have a convergent subsequence {¥(¢;,)}. Let w = lim, ,, V(t,,), and let W be
a solution of (P), on some interval J containing b, with W(b) = («(b), w).
Then W — V is also a solution of (P),onT n J, and in particular |[W — V| is
constant on I n J. But

lim W) = V()] = [w—w| =0

s0 [W—=V|=00nJ n T; thatis, W=V onJ n I. Hence the vector field
on I U T which is equal to V on I and to W on I extends V to a solution of
(P) on an interval larger than I, contradicting the maximality of I. Hence
I =1, as claimed.

Corollary. Let S be a 2-surface in R® and let a: I — S be a geodesic in S with
a # 0. Then a vector field X tangent to S along a is parallel along o if and
only if both |X| and the angle between X and o are constant along o (see
Figure 8.3).

Figure 8.3 Levi-Civita parallel vector fields along geodesics in the 2-sphere.
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Proor. The “only if” statement is immediate from properties (i) and (iii)
above. So suppose both | X|| and the angle 6 between X and & are constant
alonga. Let t, € I and let v € S, be a unit vector orthogonal to a(t,). Let V
be the unique parallel vector field along a such that V(t,) = v. Then |V| = 1
and V - & = 0 along a so {&(t), V(t)} is an orthogonal basis for S, for each
t € I. In particular, there exist smooth functions f, g: I - R such that
X = fa + gV. Since

cos 0 =X - /| X| & =f|&ll/IX]
and
IX|12 =r>lel* + g%
the constancy of 6, |X|, and ||&| along & implies that f and g are constant
along a. Hence X is parallel along «, by property (iv) above. O

Parallelism can be used to transport tangent vectors from one point of an
n-surface to another. Given two points p and g in an n-surface S, a par-
ametrized curve in S from p to q is a smooth map «: [a, b] - S, from a closed
interval [a, b] into S, with a(a) = p and a(b) = g. By smoothness of a map «
defined on a closed interval we mean that a is the restriction to [, b] of a
smooth map from some open interval containing [a, b] into S. Each par-
ametrized curve a: [a, b} - S from p tog determines a map P,: S, — S, by

| P(v)= V()
where, for v € §,, V is the unique parallel vector field along a with V(a) = v.
P,(v) is called the parallel transport (or parallel translate) of v along a to g.

ExampLe. For 0 ¢ R, let ay: [0, ] - S? be the parametrized curve in
the unit 2-sphere S, from the north pole p = (0, 0, 1) to the south pole
q= (0,0, —1), defined by

oglt) = (cos 0 sin ¢, sin @ sin t, cos t).
Thus, for each 0, a, is half of a great circle on S (see Figure 8.4). Let
v=(p, 1,0, 0) e S2. Since o, is a geodesic in S?, a vector field tangent to S

along o, will be parallel if and only if it has constant length and keeps
constant angle with &,. The one with initial value v is

Volt) = (cos O)(t) — (sin BN (1)) x (t),
where N is the outward orientation on 8% Hence |
Pyy(v) = V()
= (cos 0)(g, —cos 6, —sin 6, 0) — (sin @)(q, —sin 6, cos 6, 0)
= — (g, cos 20, sin 20, 0).
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Py, )
Prx/4 (v)

Figure 8.4 Parallel transport along geodesics in the 2-sphere.

Note that parallel transport from p to g is path dependent; that is, if « and
B are two parametrized curves in S from p to g and v € S, then, in general,
P.(v) # Py(v).

Tangent vectors v € S, p € S, may also be transported along piecewise
smooth curves in S. A piecewise smooth parametrized curve o, in S is a contin-
uous map a: [a, b] - S such that the restriction of « to [¢;, ;] is smooth
foreachie {0, 1, ..., k}, wherea =ty < t; < *** < t;+, = b (see Figure 8.5).

Figure 8.5 A piecewise smooth curve « in a 2-surface.

The parallel transport of v € S, along a to a(b) is obtained by transporting v
along « to a(t,) to get v, € S,,,, then transporting v, along « to aft,) to get
V3 € S, and so on, finally obtaining P,(v) by transporting v, € S, along
a to a(b).

Theorem 2. Let S be an n-surface in R"*?, let p, q € S, and let a be a piecewise
smooth parametrized curve from p to q. Then parallel transport P,: S, S,
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along o. is a vector space isomorphism which preserves dot products; that is,

(i) P, is a linear map
(ii) P, is one to one and onto
(iii) Py(v)* P(w)=v -wforallv,weS,.

PRrOOF. Property (i) is an immediate consequence of the fact that if Vand W
are parallel vector fields along a parametrized curve in S, thensoare V + W
and cV, for all ¢ € R. Similarly, property (iii) follows from the fact that if V
and W are parallel then V - W is constant. Finally, the kernel (null space) of
P, is zero because |P,(v)| = 0 implies ||v|| = 0, by (iii), so P, is a one to one
linear map from one n-dimensional vector space to another. But all such
maps are onto. N O

EXERCISES -

8.1. Let S be an n-surface in R"* %, let a: I — S be a parametrized curve, and let X and
Y be vector fields tangent to S along a. Verify that

@) (X+Yy=X +Y,and
) (fX) =X +fX,

for all smooth functions f al&ng .

8.2. Let S be an n-plane ayx; + "+ + @p4 1 Xp4+1 =Db in R"*!, let p, g€ S, and let

v=(p,v) € S,. Show that if .« is any parametrized curve in S from p to g then

P,(v)= (g, v) Conclude that, in an n-plane, parallel transport is path
independent. R, ;

8.3. Let a: [0, 1] » S? be the half great circle in $2, running from the north pole
p = (0,0, 1) to the south pole g = (0 0, —1), defined by a(t) = (sin ¢, 0, cos t).
Show that, for v = (p, v;, v2, 0) € S, P,(v) = (¢, — vy, v2, 0). [Hint: Check this
first when v = (p, 1, 0, 0) and when v = (p, 0, 1, 0); then use the linearity of P, ]

8.4. Let p be a point in the 2-sphere $? and let v and w & S2 be such that ||v|| = |w].
Show that there is a piecewise $mooth parametrized curve a: [g, b] — S?, with
a(a) = a(b) = p, such that P,(v)=w. [Hint: Consider closed curves a, with
&(a) = v, which form geodesic triangles with a(t) L p for ¢t in the “middle
segment” of [a, b]]

8.5. Let a: I - R"** be a parametrized curve with a(t) € S; n Syforallt e I, where
S, and §; are two n-surfaces in R"**. Suppose X is a vector field along « which is
tangent both to S; and to S; along «.

(a) Show by example that X may be parallel along a viewed as a curve in S, but
not parallel anng o viewed as a curve in S,. |

(b) Show that if S, is tangent to S, along « (that is, (Sl),(,, = (Sz),(,, forallzeI)
then X is parallel along ¢ in S, if and only if X is parallel along a in S,.

(c) Show that, if S, and §; are n-surfaces which are tangent along a par-
ametrized curve a: I - S; n S,,then ais a geodesicin S, ifand only ifaisa
geodesic in S,.
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8.6.

8.7.

8.8.

8 Parallel Transport

Let S be an n-surface and let a: I — S be a parametrized curvein S. Let g: T - S
be defined by § = « o h where h: I — I is a smooth function with k'(¢) # O for all
t € 1. Show that a vector field X tangent to S along « is parallel if and only if
X o h is parallel along B. Conclude that parallel transport frompe Stoge S
along a parametrized curve « in S is the same as parallel transport from p to g
along any reparametrization of «, and that parallel transport from g to p along
a o h, where h(t) = —t, is the inverse of parallel transport from p to q along .

Let S be an n-surface in R"*!, let p € S, and let G, denote the group of non-
singular linear transformations from S, to itself. Let

H,={T € G,: T= P, for some piecewise smooth a: [a, b] - S with
a(a) = a(b) = p}.
Show that H, is a subgroup of G, by showing that

(i) for each pair of piecewise smooth curves a and g in S from p to p there is a
piecewise smooth curve y from p to p such that

P, =Py - P,, and
(ii) for each « in S from p to p there is a f in S from p to p such that Py = P; '
(The subgroup H, is called the holonomy group of S at p.)

Let a: I - S be a unit speed curve in an n-surface S, and let X be a smooth vector
field, tangent to S along a, which is everywhere orthogonal to o (X(t)) - &(t) =0
for all t € I). Define the Fermi derivative X’ of X by

X(t) = X(e) — [X'(t) - (e)]ult)-

(a) -Show that if X and Y are smooth vector fields along o which are tangent to S
and orthogonal to a then

() X+ Yy =X +V
(ii) (fX) =f'X+fX for all smooth functions f along a, and
(i) X Yy=X:Y+X'Y.

(b) Show that if a € I and v € S, is orthogonal to &(a) then there exists a
unique vector field V along «, tangent to S and orthogonal to «, such that
V’ =0 and V(a) = v. (V is said to be Fermi parallel along a.)

(c) For a: [a, b] —» S a parametrized curve in S and v € Sy, with v L &(0), let
F,(v) = V(b) where V is as in part b). Show that F, is a vector space isomor-
phism from &(a)* onto &(b)*, where &(t)* is the orthogonal complement of
&(t) in S,y . Also show that F, preserves dot products. (F,(v) is the Fermi
transport of v along a to a(b).)



The Weingarten Map

We shall now consider the local behavior of curvature on an n-surface. The
way in which an n-surface curves around in R"* ! is measured by the way the
normal direction changes as we move from point to point on the surface. In
order to measure the rate of change of the normal dmectxon, we need to be
able to differentiate vector fields on n-surfaces. -

Recall that, given a smooth function f defined on an open set U in R"*!
and a vector v € R"“, p € U, the derivative offwnh respect to v is the real
number

’ V'v f= (f° a)'(tO)

where a: I - U is any parametrized curve in U with &(t,) = v. Note that,
although the curve o appears in the formula defining V, £, the value of the
derivative does not depend on the choice of «. Indeed, by the chain rule,

V= (f o @) (to) = VS (alto)) - dlto) = VS (p) * v.
This formula, expressing V, fin terms of the gradient of f, shows that the
value of V, fis independent of the choice of curve a passing through p with
velocity v. It is frequently the most useful formula to use in computations.

This formula also shows that the function which sends v into V, fis a linear
map from R}*! to R; that is,

Vosn =V [+ V0 f |
-and
Vo f=cV f
forallv, we R™*'and ce R.

53
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Note that V, fdepends on the magnitude of v as well as on the direction
ofv.The formula V,, f= 2V, f, for example, expresses the fact that if we move
twice as fast through p, the observed rate of change of f will double.

When ||v|| = 1, the derivative V, fis called the directional derivative of f at
p in the direction v.

Given an n-surface § in R"*! and a smooth function f: § — R, its deriva-
tive with respect to a vector v tangent to S is defined similarly, by

Vv f= (fo a)l(tO)

where a: I — S is any parametrized curve in S with &(t,) = v. Note that the
value of V, f is independent of the curve a in S passing through p with
velocity v, since

V, f= (T a)(to) = Vf (alto)) - &(to) = V/ (p) - v

where f* U — R is any smooth function, defined on an open set U containing
S, whose restriction to S is f. It also follows from this last formula that the
function which sends v into V, f'is a linear map from S, to R.

The derivative of a smooth vector field X on an open set U in IRZ"’r ! with
respect to a vector v e R}* 1, p € U, is defined by

= (X ¢ a)(to)

where a: I — U is any parametrized curve in U such that &(t,) = v. For X a
smooth vector field on an n-surface S in R"*! and v a vector tangent to S at
p € S, the derivative V X is defined by the same formula, where now « is
required to be a parametrized curve in S with a(t,) = v. Note that, in both
situations, V,X € R3*! and that

V. X = (alto) (X1 0 a)(to) -+ 5 (Xns1 o a)(to))
= (p’ VvXI’ [EXE] Vv)(n+l)

where the: X; are the components of X. In particular, the value of V X does
not depend on the choice of a.

It is easy to check (Exercise 9.4) that differentiation of vector fields has the
following properties:

() V.X+Y)=V,X+V,Y

(i) V.(fX) = (V, /)X(p) + £ (P)V,X)
(iii) V(X - Y) = (V.X) - Y(p) + X(p) - (V. Y)

for all smooth vector fields X and Y on U (or on S) and all smooth functions
f: U-> R (orf: S > R). Here, the sum X + Y of two vector fields X and Y is
the vector field defined by (X + Y)(¢q) = X(g) + Y(g), the product of a func-
tion f and a vector field X is the vector field defined by (fX)(q) = f.(9)X(q),
and the dot product of vector fields X and Y is the function defined by
(X-Y)(g)=X(q)- Y(g), for all ge U (or for all g € S). Moreover, for each
smooth vector field X, the function which sends v into V X is a linear map,
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from R%** into R3* ! if X is a vector field on an open set U, and from S, into
Ro+! if Xisa vector field on an n-surface S.

Note that the derivative V X of a tangent vector field X on an n-surface S
with respect to a vector v tangent to S at p € S will not in general be tangent
to S. In later chapters we will find it useful to cons1der the tangential com-
ponent D X of V X:

DX = V,X - (V.X - N()N(p),

where N is an orientation on S. D X is called the covariant derivative of the
tangent vector field X with respect to v € S,. Note that DX = (X < a)(to)
where a: I - S is any parametrized curve in S with &(t,) = v. Covariant
differentiation has the same properties ((i)-(iii) above, with V replaced by D)
as ordinary differentiation (see Exercise 9.5). Moreover, for each smooth
tangent vector field X on S, the function which sends v into D X is a linear
map from S, mto S,

We are now ready to study the rate of change of the normal direction N
on an oriented n-surface S in R"*!. Note that, for pe S and v S, the
derivative V,N is tangent to S (ie., V,N L N(p)) since

0= V,(1) = V,(N - N)= (V,N) - N(p) + N(p) * (V,N)
= 2(V,N) - N(p).
The linear map L,,: S, S, defined by
| Ly(v)=-V,N

is called the Wemgarten map of S at p. The geometrlc meaning of L, can be
seen from the formula

VVN = _(N ° a)(tO)

where a: I — § is any parametrized curve in § with a(t,) = v: L,(v) measures
(up to sign) the rate of change of N (ic., the turning of N since N has
constant length) as one passes through p along any such curve a. Since the
tangent space S, to S at a(t) is just [N(a(t))]*, the tangent space turns as the
normal N turns and so L,(v) can be interpreted as a measure of the turning
of the tangent space as one passes through p along « (see Figure 9.1). Thus
L, contains information about the shape of §; for this reason L, is
sometimes called the shape operator of S at p.

For computational purposes, it is important to note that L,(v) can be
obtained from the formula |

L= —V,N= —(5, Vs N1, ... Vy Nar1)
= _(p Vﬁl(p)'va oo Vﬁn+1(p)'v)

where N is any smooth vector field defined on an open set U containing S
with N(q) = (q) for all g € S. Note that N’(q) need not be a unit vector for
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Image o

Figure 9.1 The Weingarten map. L,(v) = — (N > a)(to) measures the turning of the
normal, hence the turning of the tangent space, as one passes through p along the -
curve .

g ¢ S. When f: U— R is such that § = f ~*(c) for some c € R and N(q) =
V£ (q)/|Vf(q)| for all g€ S, it is natural to take N = Vf/||Vf|. Sometimes,
however, another choice of N is more convenient, as the following example
shows.

ExamPLE. Let S be the n-sphere x2 + -+ x2,; =r? of radius r >0,
oriented by the inward unit normal vector field N:

N(q) = (q, _Q/”q”) = (qs “Q/")
for g € S. Setting N(q) = (g, —g/r) for g e R"* (ie,,

N X1 Xn+1
N(xl, cany x"+1)= (xl, cees Xpt 1o -‘T, veey —m— |,

we have, forpe Sandve S,
L,()=-VN=—(p, V,Ny, ..., V. N,\y)

Y )

= %(p, Vo(x1), -5 VolXns1))-

But, foreachie{l,...,n+ 1},
Voxi=Vxi(p) v=(p,0,..., 1, ...,0) - (B, 01, ..., Ups1) = ¥;
SO

1 1
Lp(v)=;(p, Uty «vs v"+l)=;V.
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Thus the Weingarten map of the n-sphere of radius  is simply multiplication
by 1/r. Note however the dependence on the choice of orientation: if § is
oriented by the outward normal — N, the Weingarten map will be multipli-
cation by — 1/r.

The following two theorems exhibit important properties of the Weingar-
ten map.

Theorem 1. Let S be an n-surface in R"* 1, oriented by the unit normal vector
fieldN. Let p € S andv € S,,. Then for every parametrized curve a: I — S, with
© afty) = v for some t; € I,

a(to) * N(p) = L,(v) * v.

This theorem says that the normal component &(t,) * N(p) of acceleration
is the same for all parametrized curves a in S passing through p with velocity
v. In particular, if the normal component of acceleration is non-zero for
some curve a with a(t,) = v then it is non-zero for all curves in S passing
through p with the same velomty (see Figure 9.2). This component of acceler-

A 1)
/{wofmﬁ* "/

Lp(v)-v

Image « Image B Image y

v

Figure 9.2  All parametrized curves in S passing through p with the same velocity
will necessarily have the same normal component of acceleration at p. In the figure,
. afty) = B(t2) = alts) = v; B is a geodesic.

ation is forced on every such curve in S by the shape of § at p and, according
to the above formula, it can be computed directly from the value of the
Weingarten map L, onv.

Note that when « is a geodesic, its only component of acceleration is
normal to the surface, and this acceleration is foroed on o by the shabe of the
surface.

For § the n-sphere of radius r, the computatlon in the example above
shows that every unit speed curve « in S has normal component of accelera-
tion pointing inward with magnitude 1/r.

<
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Proor oF THEOREM 1. Since o is a parametrized curve in S, a(t) € S, =
[N(x(¢))}* for allt € I ie, & - (N - ) = O along . Hence

0=[a* (N~ )] (to)
= dto) * (N o a)(to) + &lto) * (N & a)(to)
= d(to) * N(a(to)) + v* V,N
—i(to) - N(p) = v  L(v)
$0 d(to) * N(p) = L,(v) - v as claimed. ’ O

Theorem 2. The Weingarten map L, is self-adjoint; that is,

L) w=v- Lyw)
Jorallv,weS,.

PrOOF. Let f: U— R (U open in R"*!) be such that S =f~"(c) for some
c € R and such that N(p) = Vf (p)/||Vf (p)| for all pe S. Then

wi) "

[ 7170+ o7 ‘Vf’]'“

(7 Jo0) - = g
Since Vf(p) - w = 0, the first term drops out. Thus

||Vf M V.(V)] - w

1 of of )
-, V,—, ..., V, . W
"Vf(P)“ (P 0x, 0Xp4 1

- [ (» V(‘ai)"” R LR

n+1 nt+1 2f .
||Vf(P)||( Z ax oy P> Z 0x; ax,.+1(p)vi) v

1 n+1 2

=~ T Zs . 25, P

L(v)-w=(-V\N) -w=— (|

Lyv)-w=

I|

where v=(p, vy, ..., ,41) and w=(p, Wy, ..., Wyi 1)
The same computation, with v and w interchanged, shows that

1 n+1 aZf
TN & v, o, P

i, j=1

Lyw)-v=
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B

Since 62ﬂ5xi ox; = 0%ffox; 6x,-" for all (i, j), we can finally conclude that

. 1 n+1 azf
Lyv)-w= ||Vf(p)" . le ox 0%, 32 a0 P,
n+1 azf
T L 5,5 PP
1w
- W i,jz'—-l dx, Ox; (p)w;v; = Ly(w) * v. |

EXERCISES

9.1.

9.2.

9.3.

94.

9.5.

9.6.

9.7.

Compute V, f where f: R**! >R and ve RL*, pe R"*1, are given by

(a) f(xh x2) = 2x§+ 3x%1 V= (19 0, 2, l) (n = 1)
(b) f(x1, x2) =x} —x3,v=(1,1,co8 §,sin ) - (n=1)
(c) f(xh X2, x3) = X3 X2x§, V= (ls 15 lya, by C) . (n = 2)
@Sf@=q av=_(p,0) : (arbitrary n).
Let U be an open setin R"* ! and let f: U — R be a smooth function. Show that
ife,=(p,0,.. .,0) where p € U and the 1 is in the (i + 1)th spot (i spots

after the p), then V.i f= (6ﬂ6x,)(p)
Compute VX where ve R3*!, pe R"*1, and X are ngen by

(a) x(xl’ x2) = (xl’ X2, xl,x29 x2)a v= (la 0’ 01 1) (n = 1)
(b) X(xy, x2) = (xy, X2, —X3, x,), v = (cos 0, sin 6, —sin 6,cos §) (n=1)
() X(q)=(g.29).v=0, .. S 1) (arbitrary n).

Verify that differentiation of vector fields has the properties (i)-(iii) as stated on
page 54.

Show that covariant differentiation of vector fields has the following proper-
ties: forpeSandveS,,,

(i) Dy(X + Y)=D,X + D,Y :
(ii) Dy(fX) = (v, £)X(p) + f(p)D,X
(i) Vo(X - Y) = (D,X) - Y(p) + X(p) - (D,Y)

for all smooth tangent vector fields X and Y on S and all smooth functions
f:S-R.

Suppose X is a smooth unit vector field on an n-surface S in R"*!; ie,
[|X(g)| =1 for all g€ S. Show that V,X 1 X(p) for all ve S,, p e S. Show
further that, if X is a unit tangent vector field on S, then D.X L X(p)1.

A smooth tangent vector field X on an n-surface § is said to be a geodesic vector

field, or geodesic flow, if all integral curves of X are geodesics of S.

(a) Show that a smooth tangent vector field X on § is a geodesic field if and
only if Dx(,,x 0for all peS.

(b) Describe a geodesic flow on a 2-surface of revolution in R>.
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9.8.

9.9.

9.10.

9.11.

9.12.

9.13.

9 The Weingarten Map

Compute the Weingarten map for

(a) the hyperplane @, x; + "+ + Gp41 Xpe1 = b [(ay, ..., @i 1) # (0, ..., 0)]
(b) the circular cylinder x3 + x2 = a2 in R® (a #0)

(Choose your own orientations).

Show that if S is an n-surface and N is a unit normal vector field on S, then the
Weingarten map of S oriented by —N is the negative of the Weingarten
map of S oriented by N.

Let V be a finite dimensional vector space with inner product (dot product).
Let L: V — V be a linear map.

(a) Show that there exists a unique linear map I*: V-V such that
I¥v) - w=rv - L(w) for all v, w e V. [Hint: Choose an orthonormal basis
{ey, ..., e,) for Vand compute I*(e;) for each i]. (I* is the adjoint of L.)

(b) Show that the matrix for L* relative to an orthonormal basis for V is the
transpose of the matrix for L relative to that basis. Conclude that L is
self-adjoint (I* = L) if and only if the matrix for L relative to any orthonor-
mal basis for V is symmetric.

Let S = f~!(c) be an n-surface in R"**, oriented by Vf/|Vf|. Suppose p € S is
such that Vf (p)/||Vf (p)| = e+, where e; = (p, 0, ..., 1, ..., 0) with the 1 in the
(i + 1)th spot (i spots after the p) fori € {1, ..., n + 1}. Show that the matrix for
L, with respect to the basis {e,, e,, ..., e,} for S, is

(- 7o ax?zgx o)

Let S be an n-surface in R"*!, oriented by the unit normal vector field N.
Suppose X and Y are smooth tangent vector fields on S.

(a) Show that
(VxnY) * N(p) = (Vy»X) - N(p)

for all p € S. [Hint: Show that both sides are equal to L,(X(p)) - Y(p)]

(b) Conclude that the vector field [X, Y] defined on S by [X, Y](p)
= Vx»Y — Vy»X is everywhere tangent to S. ([X, Y] is called the Lie
bracket of the vector fields X and Y.)

The derivative at p € U (U open in R"*!) of a smooth map F: U —» R"* ! is the
linear transformation F'(p): R"*! — R"*! such that for every & > O there exists
a 6 > 0 guaranteeing that

IF(p + v) = F(p) — F(p)()||/lv] <& whenever o] <.

Show that if X: U - R"*! is smooth and X is the vector field on U given by
X(q) = (¢, X(q)) for all g € U then the derivative of X with respect to a vector
v = (p, v) € R"*!, where p € U, can be computed from the formula

V.X = (p, [X'(p)](v))-
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9.14. Show that the Weingarten map at a point p of an n-surface S in R"*! is

9.15.

essentially equal to the negative of the derivative at p of the Gauss mapof S by

showing that ,
Ly(p, v) = (. =[N'(P))(v))

for (p, v) € S,, where N: U — R"*! is any smooth function, defined on an open
set U containing S, whose restriction-to § is the Gauss map N of S. [For the
definition of the derivative, see Exercise 9.13.]

Letf: U= R, S =f~!(c), and N = Vf/||Vf || be as in the proof of the theorem of
Chapter 7. Let X be the vector field on U x R*** defined by

X(W) = X(Q’ w)‘= (q’ w, W, —(' ¢ va)N(Q))

where N(g) is the vector part of N(q) (N(q) = (g, N(q)). For each parametrized
curve a: I - U, define the natural lift & of a to be the parametrized curve
&: I- U x R"*?! given by a(t) = a(t).

(a) Suppose a: I — S. Show that « is a geodesic of § if and only if its natural lift
# is an integral curve of X. [Hint: Show that &(t) = X(&(¢))for all ¢ € I if and
only if  satisfies the geodesic equation (G).] Conclude that if a: 7 — S and
B: T — S are geodesics in S with a(O) B(0) and &(0) = B(0) then a(t) = B(t)
forallteInl

(b) Given'v = (p, v) € U x R**1, let : I - U x R**! be the integral curve of
X through v. Then B(z) is of the form (t) = (B.(t), B(t)) where B,: I > U
and f3: I - R"*'. Show that if pe Sand v € S, then B, is a geodesic of S
passing through p with initial velocity v. [Hint: First check that §, satisfies
the geodesic equation (G), then proceed as in the proof of the theorem of
Chapter 7 to verify that B, actually maps [ into S.]

Remark. Exercise 9.15 verifies the existence and uniqueness of a maximal geodesic
« in § with initial conditions «(0) = p and &(0) = v using only the existence and
uniqueness theorem for integral curves of vector fields. The introduction of the
natural lift & of a curve o is the geometric analogue of the substitution u; = dx, /dt
which reduces the 2nd order differential system

d‘xi aNJ dx dx,,

T ZN‘ax,,dt @ =0

(in n + 1 variables xi) to the first order differential system

dx,
ra

du,
dat

= U

oN
—==3 N‘ )“:?‘k ;

(in2n+2 va}xables x; and u;). This first order system of differential equations is just
the differential equation for the integral curves of X in U x R"*! ¢ R’r” The
vector field X is called a geodesic spray.



Curvature of Plane Curves

Let C =f ~'(c), where f: U — R, be a plane curve in the open set U = R?,
oriented by N = Vf/||Vf ||. Then, for each p € C, the Weingarten map L, isa
linear transformation on the 1-dimensional space C,. Since every linear
transformation from a 1-dimensional space to itself is multiplication by a
real number, there exists, for each p € C, a real number x(p) such that

L,(v)=«(p)vforallve C,.

k(p) is called the curvature of C at p.
If v is any non-zero vector tangent to the plane curve C at p € C then

Ly(v) - v = «(p)|v|*
so the curvature of C at p is given by the formula

k(p) = Ly(v) - v/IIv]|*

In particular, if a: I — C is any parametrized curve in C with &(t) # O for all
t € I then, by Theorem 1 of Chapter 9,

o L) i) _ i) - Ne(0)
N POTR Eo

If « is a unit speed parametrized curve in C, this formula reduces to

(o)) = a(t) - N((t)
Thus the curvature of C at p € C measures the normal component of acceler-
ation of any unit speed parametrized curve in C passing through p.
Note in particular the significance of the sign of k(p): if k(p) > O then the
curve at p is turning toward its normal N(p), and if x(p) < O the curve is
turning away from N(p) (see Figure 10.1).

62
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Figure 10.1 The curvature of C is positive at points where C is bending toward its
normal and is negative where C is bending away from its normal.

One way to compute the curvature of a plane curve is to use the formula
koa= (i Noa)a|?* (orthe equivalent formula in Exercise 10.1), where «
is any parametrized curve in C whose velocity is nowhere zero. If such an a is
oriented consistently with the orientation on C, it is called a local parametri-
zation of C.

Given an oriented plane curve C and a point p € C a parametrization of a
segment of C containing pis a parametnzed curve a: I — C which

(i) is regular ie., has &(t) 0 for alltel,

(ii) is oriented consistently with C; i.e., is such that for each ¢ € I the basis
{&(e)} for C, is consistent w1th the orientation N of C, and

(iii) has p € Image 2

If o is onto; ie. if a(I )=C, ais called -a global parametrization of C. In
general, « is.called a local parametrization of C. t

Local parametnzatxons of plane curves are, in principle, easy to obtain.
If C=f"(c) is oriented by N=Vf/|¥f|, then Vf(a)=(a (@/ox,)la)
(9f/ox,)(q)) is orthogonal to C, for each ge C, and the vector field X
given by X(q) = (g, (6/0x;)g) — (9f/0x1)(q)) is everywhere orthogonal to
Vf (X(q) is obtained by rotating Vf(g) through an angle of —=/2), so X is
a tangent vector field on C. Further, X(gq) # 0 for g € C and {X(g)} is con-
sistent with the orientation N. Hence, given any point p € C, the maximal
integral curve a: I - C of X through p will be a parametrization of a seg-
ment of C containing p.

Note that if, in this construction, the vector field Vf is replaced by the
vector field N = Vf/||Vf ||, then o becomes a unit speed parametrization of a
segment of C containing p, smoe

@)l = IIX(a(t))II = lIN(a ) =1

forallte Il

Local parametrizations of plane curves are unique up to reparametriza-
tion: given any parametrization f: T — C of a segment of C containing p,
there exists a smooth function h: T — R, with #'(¢) > O for all t € T, such that
B(t) = a(h(z)) for all t € I, where « is the unit speed local parametrization
constructed above Indeed, since {X(B(t))} is a basis for the 1-dimensional
vector space Cg), B(t) is necessarily a multiple of X(B(t)) In fact,

B(e)= 1) llx(ﬁ(t)) since |[X|| =1 and since {B(¢)} and {X(8(¢))} are both
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consistent with the orientation N of C. Setting

b= [ 1B ds

where t, is such that f(t,) = p, we obtain a monotone increasing smooth
function h: T - R (i(t) = | B(t)|| > O for all t € T) which sends ¢, to 0. The
parametrized curve B h~! has velocity

(B & h™1)(e) = B ()} ") (0)
= B @YK (B (¢)
= B~ @)Y B @) = X(Bh™*(2))

and so is an integral curve of the vector field X, with g h~1(0) = p = «(0).
By the uniqueness of integral curves, domain foh™' < I and o h™'(t) =
«(t) for all t € domain B - h~1. In other words, f(t) = a(h(t)) for all t € I, as
claimed. Note in particular that if B: T— C is a unit speed local parametriza-
tion of C with B(to) = p then h(t) =t — to and B(t) = ot — to) for all te I.

ExampLE. Let C be the circle f~1(r?), where f(xy, x,)= (x; —a)* +
(x, — b)%, oriented by the outward normal Vf/|Vf|. Since Vf(p)=
(p, 2(x; — a), 2(x; — b)) for p= (x4, x,) € R?, the integral curves of
X(p) = (p, 2(x; — b), —2(x; — a)) will be local parametrizations of C. The
integral curve through (a + r, b) gives the global parametrization «(t) =
(a + r cos 2t, b — r sin 2t). Hence

o 0 Ne@) _ i) | W)
CO="For  ~ROF TGO
_ (—4r cos 2t, 4r sin 2t) - (2r cos 2t, —2r sin 2t)
= (=2 sin 2¢, —2r cos 2t)|%||(2r cos 2t, —2r sin 2t)|

—8r? 1

= (4r?)(2r) T

If C had been oriented by the inward normal, the curvature would have been
+ 1/r at each point.

For C an arbitrary oriented plane curve and p € C such that x(p) # 0,
there exists a unique oriented circle O, called the circle of curvature of C at p
(see Figure 10.2), which

(i) is tangent to C at p (i.e, C, =0,)
(ii) is oriented consistently with C (i.e., N(p) = N(p) where N and N, are
respectively the orientation normals of C and O), and
(iii) whose normal turns at the same rate at p as does the normal to C (i.e.,
V.N=V,N, forall ve C,=0,).



10 Curvature of Plane Curves : 65

Figure 102 The circle of curvature at two points of an oriented plane curve C.

This circle of curvature is the circle which hugs the curve C closest among
all circles containing p (see Exercises 10.8 and 10.9). Condition (i) says that
the center of O is on the normal line to C at p, condition (iii) says that its
radius r satisfies the equation 1/r = |x(p)|, where x(p) is the curvature of C
at p, and condition (ii) says that N(p) points toward the center of O if
x(p) > 0 and away from the center of O if x(p) < 0. The radius r = 1/|x(p)|
of the circle of curvature is called the radius of curvature of C at p; its center
- is the center of curvature of C at p.

EXERCISES

10.1.

10.2.

10.3.

104.
10.5.

Let a(t) = (x(t), ¥(t)) (£ € I) be a local paié.mcttization of the oriented plane
curve C. Show that
koa= (Y =YXV + Y,

Letg: I - R be a smooth function and let C denote the graph of g. Show that
the curvature of C at the point (z, g(t)) is g"(t)/(1 + (g'(t))*)*2, for an appro-
priate choice of orientation.

“Find global parametrizations of each of the following plane curves, oriented

by Vf/||Vf|| where f is the function defined by the left side of each equation.

(a) ax; + bx; =, (a, b) # (0, 0).
)] x%/a’+x§/b2== La#0,b#0.
€) xs—ax}=c¢a#0
@dx}-x3=1x>0"

Find the curvature « of each of the onented plane curves in Exerm#e 10.3.

Let C be an oriented plane curve. Let p € C and let N(p) = (p, N(p)) denote
the orientation unit normal vector at p. Show thatif a: I — C is any unit speed
local parametrization of C with a(to) = p, and h(t) = (a(t) — p) - N(p) (see
Figure 10.3), then h(to) = ' (to) = 0 and h"(to) = x(p).
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AN (p)

FT T T T S a (1)
h (t){

y/ I4

Figure 10.3  h(t) is the projection of «(t) — p along N(p). h(t) may be thought of as

the “height of a(t) above the line tangent to S at p.”

10.6. Let C be a plane curve oriented by the unit normal vector field N. Let

10.7.

10.8.

10.9.

a: I - C be a unit speed local parametrization of C. For t € I, let T(t) = &(t).
Show that

T =xN
N=—«T
or, more precisely,
T=(koa)(Noa)
(Noa)= —(xoa)T.
These formulas are called the Frenet formulas for a plane curve.

Let a: 1> R*® be a unit speed parametrized curve in R® such that
a(t) x a(t) # 0 for all t € I. Let T, N, and B denote the vector fields along a
defined by T(t) = &(t), N(t) = &(t)/||a(t)|, and B(t) = T(t) x N(t) for all ¢ € I.

(a) Show that {T(t), N(z), B(t)} is orthonormal for each t € I.
(b) Show that there exist smooth functions x: I - R and t: I - R such that

T=«N
N=—«xT+1B
B= —1IN.

These formulas are called the Frenet formulas for parametrized curves in
R3. The vector fields N and B are respectively the principal normal and the
binormal vector fields along «. The functions x and t are called the curva-
ture and torsion of a.

Show that the circle of curvature O at a point p of an oriented plane curve C,
where x(p) # 0, has second order contact with C at p; i.e., show that if « and g
are unit speed local parametrizations of C and of O, respectively, with «(0) =
B(0) = p, then &(0) = A(0) and 4(0) = B(0).

Let C be an oriented plane curve, let p € C, and let a: I — C be a unit speed
local parametrization of C with «(0) = p. Assume «(p) # 0. For q € R? and
r >0, define f: I - R by f(t) = ||la(t) — g]|* — r>. Show that g is the center
of curvature and r the radius of curvature of C at p if and only if

£0)=110)=1"(0)=0.



10 Curvature of Plane Curves 67

Figure 104 Inclination angle of a unit speed curve in R2,

10.10. Letoa: I C be a unit speed local parametrization of the oriented plane curve
C. Suppose 6: I - R is smooth and is such that

: a(t) = (a(t), cos 6(t), sin 6(t))

foralltel (see Figure IOA) (We shall, in the next chapter, be able to prove
" that such a functlon 0 exists; see Exercise 11.15.) Show that d6/dt = x - o.



Arc Length and Line
Integrals

Before analyzing the Weingarten map for n-surfaces (n > 1) we shall pause
to see how parametrizations of plane curves can be used to evaluate integrals
over the curve.

The length I(«) of a parametrized curve a: [ - R**! is defined to be the
integral of the speed of a:

i@ = [ 1) a

where a and b are the endpoints of I (possibly + o0). Note that /() may be
+ c0. Also note that the length of a parametrized curve is the total “distance
travelled.” Whenever o retraces itself then that portion of the image which is
covered more than once is counted more than once.

Note that if p: T» R"*! is a reparametrization of «, then I(8) = I(x).
Indeed, if B = o o h where h: T— I is such that h'(t) > O for all t € I, then

16)= [ 13Ol de = [ T d

= [ sl du = 1),

where ¢ and d are the endpoints of T.
If « is a unit speed curve, then for ¢y, t; € I with t; <t,,

t2 t2
J [ETG] dt=j ldt=t,—t,
131

t

so the length of any segment of « is just the length of the corresponding
segment of the parameter interval. For this reason, unit speed curves are
often said to be parametrized by arc length.

68
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In order to apply the concept of length of a parametrized curve to define
the length of an oriented plane curve, we need two preliminary results.

Theorem 1. Let C be an oriented plane curve. Then there exists a global
parametrization of C if and only if C is connected.

Proor. It is immediate from the definition of connectedness that any
oriented plane curve which has a global parametrization must be connected.
Conversely, suppose C is connected. Let p € C and let a: I - C be the
local parametrization of C obtained as in the previous chapter. Recall that «
is the maximal integral curve through p of the vector field X obtained by
rotating through an angle of — /2 the vector field Vf, where C = f ~!(c) and
N = Vf/||[Vf||. Let p; € C. We shall show that p; € Image o, hence that a is a
global parametrization of C.
Since C is connected, there exists a continuous map f: [a, b] - C with
B(a) = p and B(b) = p,. The proof will be complete if we can show that
B(t) € Image a for all ¢ € [a, b]. To see that this is the case, let ¢, denote the
least upper bound of the set {t € [a, b]: B({a, t]) = Image a} and let y be an
integral curve of X with y(0) = B(t,). We shall construct an open rectangle B
about p, = f(t;) with the property that C ~ B = Image y. Assume for the
moment that such a B exists. Then, by continuity of B, there exists a é >0
such that B(t) € B (and hence f(t) € C ~ B < Image y)for allt € [a, b] with
|t — to| < é. Since B(t) e Image a for a <t < t, (and for t = t, if t, = a),
B(t) € (Image y) ~ (Image az) for some ¢ € [a, b] (¢ < to). Therefore y and «
are integral curves of X passing through a common point. « being maximal,
it follows that Image y Image a (and, in fact, that there exists a r € R such
that p(t) = aft — ) for all ¢ in the domain of y.) Hence f(t)e Cn Bc
Image y < Image o for all t € [a, b] with |t — t,| < 4. But this can only
happen if t, = b and B(t,) € Imagea, so ﬂ(t)e Image o for all t € [a, b] as
claimed.
Now to complete the proof we need only to construct B. For this, let

u = (f/0x2)(po), —(2f/x,1)(po)) and v = (3f/0x)(po), (8f/6x1)(po)) so that
(po, u) € Cp, and (po, v) L C,,, and let A denote the rectangle

A={py+ru+sv: |r| <e and |s| <&}

where ¢, >0 and &, > 0 are chosen small enough so that A4 is contained in
the domain of f and so that Vf(q) * (g, v) > O for all g € 4 (see Figure 11.1)
That this last condition can be satisfied is a oomequence of the continuity
of (6]78):1, 6j76x2) v and 'the fact' that " ((6]]03:,, 5j7¢3x3) U)(po) =
((@10x 1 )(po))? + ((6f10x,)Xpo))? > 0. The condition Vf(q) - (g, v) > O for all
q € A guarantees that, for |r| < &y, the function g,(s) = f(po + rul+ sv) is
strictly increasing on the interval —¢, < s < ¢, (g(s) > 0) and hence that for
each r with |r| <ée, there is at most one s with |s| <&, such that
g+(s) = f (po + ru + sv) = c. In other words, for each r with |r| < ¢, there is at
most one s with |s| < &, suchthat py + ru + sv € C. Now y(t) = po + hy(t)u +
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C

Figure 11.1 The rectangle A about p, is chosen so that each line segment &(s)=
(Po + ru) + sv (r fixed, —e; < s < &,) meets C at most once. In the shaded rectangle
B, each such line segment meets C exactly once.

hy(t)v, where hy(t) = (y(t) — po) - w/|[ul* and h,(t) = (¥(t) — po) - v/||v|? are
smooth functions of ¢ with h;(0) = h,(0) = 0. Using the continuity of y and of
h}, together with the fact that

13(0) = 9(0) * (po, /lul*) = X(po) - X(po)/|X(po)[* = 1,

we can choose t, < 0 and t, > 0in the domain of y so that both y(t) € 4 and

1(t) > Oforallt e (1, t,) (Figure 11.1). Setting ry = hy(;) and r, = hy(t5) it
follows that for each r € (ry, r,) there is exactly one t € (t,, t;) with hy(t) = r
(since h, (t) is continuous and strictly increasing) and that s = h,(t) for this ¢
is an s (and therefore the unique s) with |s| < &, such that po + ru + sv € C.
In other words, if B is the rectangle

B={po+ru+svir,<r<ry, |s| <&

then p, + ru + sv € B n C if and only if r = hy(t) and s = h,(t) for some
te (ty, t,); ie, if and only if po+ru+ sve Imagey. Thus Cn B
Image y, as required. O

The proof of Theorem 1, with X replaced everywhere by the unit vector
field X/|X|, also shows the existence of a global unit speed parametrization
of any connected oriented plane curve.

Theorem 2. Let C be a connected oriented plane curve and let B: 1 - C be a
unit speed global parametrization of C. Then B is either one to one or periodic.
Moreover, B is periodic if and only if C is compact.

PRrOOF. Suppose B(t;) = B(t,) for some ty, t, € I with t; #t,. Let X be the
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unit tangent vector field on C constructed as in the previous chapter and let «
be the maximal integral curve of X with a(0) = B(t,) = B(t,). Then, since s
also an integral curve of X, uniqueness of integral curves implies that

Blt)=olt — £,)

and, at the same time,
B(t) = alt — t5)
for all t € I. Setting T = t; — t,, we have
B(e) = alt — t1) = a((t7) — t2) = Bl + 7)

for all ¢ such that both ¢ and t + 7 e I. Thus if § is not one to one then it is
periodic. ‘

If B is periodic then C must be compact because C is the image under the
continuous map f of a closed interval [t,, ¢, + 7]}. On the other hand, if B is
not periodic, then  must be one to one so C cannot be compact because the
function B~!: C — R is continuous on C yet attains no maximum value. The
continuity of 7! can be checked as follows. Given t, € I and & > 0, set
7(t) = B(t + to) for t such that [t] <eand t + ¢, € I, and choose an open
rectangle B about p, = B(t,) = y(0) as in the proof of Theorem 1. Then
C N B < Image yso |B~1(p) — to| = |7y~ *(p)| < ewheneverp e C N B,as
required for continuity. ~ a

Recall that the period of a periodic function B is the smallest t such that
B(t + ) = B(t) for all t such that both t and ¢ + 1 are in the domain of B. If t
is the period of § then any subset of the domain of g of the form [¢,, t, + 7)
is called a fundamental domain of B. Note that the restriction of any periodic
global parametrization f of a compact plane curve to a fundamental domain
maps that fundamental domain one to one onto Image . Hence, if we allow
half-open intervals as well as open intervals as domains of parametrized curves,
every connected oriented plane curve admits a one to one unit speed global
parametrization. Moreover, any two such parametrizations a: I - C and
B: T— C have parameter intervals I and T of the same length. Indeed, « and
B are related by B(t) = a(t — t,) for some t, € R so I is simply a translate of
I. Hence we can define the length of a connected oriented plane curve C to be
the length of I where a: I — C is any one to one unit speed global parametri-
zation of C. .

Since the length of B is the same as the length of a« where a is any
reparametrization of B, it follows that the length of a connected oriented
plane curve can be computed from the formula

IC) = Ho) = f lae)] at

where a: I - C is any one to one global parametrization of C and a and b
are the endpoints of I.
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ExaMpLE. Let C denote the circle (x; — a)® + (x, — b)* = r* oriented by
its outward normal. Then a: I—C, defined by a(t)= (a+ rcos2t,
b — rsin 2t) is a global parametrization of C, as we saw in the previous
chapter. a is periodic with period 7 so the restriction of « to the interval [0, =)
is a one to one global parametrization of C. Hence

IC) = [ Ia@)] de = [ (~2r sin 2t, —2r cos 20)| de = 2nr.
0 0
The remainder of this chapter will be devoted to a discussion of differen-
tial 1-forms and their integrals.
A differential 1-form, usually called simply a I-form, on an open set
Uc R**! is a function w: U x R**' 5 R such that, for each p € U, the
restriction of w to R*! = U x R**! is linear.

ExaMpLE 1. Let X be a vector field on U and let wx: U x R"*! - R be
defined by i

wx(p, v) = X(p) - (p, v)
Then wy is a 1-form on U, called the 1-form dual to X.

ExampLE 2. For f: U — R a smooth function, define df: U x R"* ' 5 R by

V)=V, f=Vfp):v (=@v)eR’,pel)
Then df is a 1-form on U, called the differential of f.

ExampLE 3. Foreachie {1,...,n + 1},letx;: U— R (U < R"*') be defined
by

xi(al, ceey a,,+1) = ai.

The function x; is called the ith Cartesian coordinate function on U. The
1-form dx; simply picks off the ith component of each vector in its domain:

dx,(v) = Vx{p) - v=(p,0,...,1,...,0) - v=1,
forv=(p, vy, ..., 0p41) E RS, pe U

Remark. As is common in mathematics, we are using a single symbol in
different situations to represent different quantities. We have used the
symbol x; to denote a real number when describing a point (%15 --s Xps1)in
R"*1 we have used x; to denote a function with domain an interval when
describing a parametrized curve a(t) = (x,(t), .., X»+1(t)) in R"**, and now
we are using x; to denote a function whose domain is an open set in R"*1,
These various uses of the symbol x; are all standard. We could of course
introduce extra notation to avoid overworking any given symbol but only
at the cost of mushrooming symbology and non-conformity with common
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usage. We will continue to use the symbol x, in each of these situations;
the meaning in each given situation will always be clear in context.

A 1-form @ on U = R**1 is smooth if it is smooth as a function w: U x
R"*! < R?"*2 » R. Note that if f: U — R is a smooth function on U then its
differential df is a smooth 1-form on U.

The sum of two 1-forms w, and w, on an open set U = R**! is the 1-form
@y + w, defined by ,
(@1 + @2)(V) = @4(¥) + @,(v)

The product of a function f: U — R and a 1-form w on U is the 1-form fw on

U defined by
(fo)p, v) = f (P)o(p, v).

Note that the sum of two smooth 1-forms is smooth and that the product of
a smooth function and a smooth 1-form is smooth. - o
Given a "1-form w and a vector field X on U < R**! we can define a

function w(X): U - R by :
| (@X))p) = o(X(p))

Note that if @ and X are both smooth then so is &(X).

Proposition. For each 1-form » on U (U open in R**!) there exist unique
functions f;: U-R (ie {1, ..., n + 1}) such that
n+1

w=Y fdx;.

i=1

Moreover, w is smooth if and only if each f; is smooth.

ProoF. For each je {1, con+ 1} let X, denote the smooth vector field on
U defined by X,(p)=(p, 0, ..., 1, ..., 0), with the 1 in the (j + 1)th spot
(7 spots after the p). Then , :

" | 1 ifi=j
dx(X,) = {0' if i # .

Thus if @ = Y721 f, dx; then, for each je {1,..., n + 1},

n+1

fi= (igzlfi d-;"'i )(X,)’~=, o(X;).

This formula shows that the functions fj, if they exist, are unique apd also
that they are smooth if w is smooth. On the other hand, if we define func-
tions f; by the above formula, then the 1-forms w and Y72} f; dx; have the
same value on each of the basis vectors X;(p) for R%* ! and hence by linearity
they have the same value on all vectors in R}*!, pe U,so o = Y7121 f; dx;.
Clearly w is smooth if each f; is smooth. 0
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Corollary. Let f: U — R (U open in R"*') be a smooth function. Then

n+1 af
df = i; o, dx;.

Proor. df (X;) = Vf - X; = 0df/0x;. O

Now let @ be a smooth 1-form on the open set U< R"*! and let
«: [a, b] = U be a parametrized curve in U. The integral of w over a is the
real number

b
[o=] o).
Integrals of this type are called line integrals.

Note that if : [c, d] - U is any reparametrization of a, f = a o h where
h: [c, d] - [a, b] has derivative everywhere positive, then

j = j da)(B(t)) dt = j da)(c't(h(t)h’(t))) dt

B c ¢
- fw(d(h(t))h’(t)) dt = j:w(a(u)) du = j o.

In particular, if U is an open set in R? and C is a compact connected oriented
plane curve in U then we can define the integral of w over C by

o= o

-4

where «: [a, b] - C is any parametrized curve whose restriction to [a, b)isa
one to one global parametrization of C; the result will be independent of the
choice of a.

Also note that the line integral |, @ can be defined for « a piecewise
smooth parametrized curve. If «: [a, b] > U = R** is continuous and such
that the restriction of « to [t;, t;+ 1] is smooth for eachi € {0, 1, ..., k}, where
a=ty, <t < <t =Db,then the integral of the smooth 1-form w on U

over a is
[o=% o

3 i ai

i

where o is the restriction of « to [t;, t;+1]-

Remark. We have insisted, in defining the line integrals |, w and {¢ o, that
the parametrized curve o have domain a closed interval and that the plane
curve C be compact. This is done to assure the existence of the integrals.
Note that it is not necessary to make these assumptions in defining the
length integral because, the integrand being non-negative, this integral
always either exists or diverges to + 0.
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ExampLE 1. Let U be open in R"*! and let f: U — R be smooth. Then, for
a: [a, b] » U any parametrized curve in U,

[ =] @) e = [ (7 - o @)de =7 b)) - Fetel)
In particular, if cx(a) = ¢(b) then {, df = 0.

A 1-form which is the differential of a smooth function is said to be exact.
A parametrized curve «: [a, b] » R**! with a(a) = «(b) is said to be closed.
The above computatzon shows that the integral of an exact 1-form over a
closed curve is always zero. In particular, the integral of an exact 1-form over
a compact cormected oriented plane curve is always zero.

EXAMPLB 2 Let n denote the 1-form on R? — {0} defined by

Xp ‘ Xy

x4 xd 1+x —Mc%dsz

and let C denote the clhpse (xl/az) +(x2 /b*) = 1, oriented by its inward
normal. The parametrized curve a: [0, 2n] — C defined by a(t) = (a cos ¢,
b sin t) rwtncts to a one to one global parametrization of C on the interval
[0,2z)s0

f n= f n= j »(a(t»dr

,"=

: —f ) ) + o) dxz(“(t))] r
= ';,s;;;;s;‘fi“;z‘mz el
e
o vt e

4'[ 1+ 2=2u

Smce its mtcgral over the compact curve C is not zero, the 1-form # of
Example 2 cannot be exact. However, its restriction to V¥ (or, more precisely,
to V x R?), where V is the complsemcnt in R? of any ray through the oPgm
is exact. Indeed, for v any ‘unit vector in IR2 and

V=R~ {rv:r20}

n= de, where 0y: V > R is defined as follows. Let 6, denote the unique real
number with 0 <, < 2zn such that v = (cos 0,, sin 6,). Then, for each
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(x, y) € V, define 0,(x, y) to be the unique real number with 6, < 6y(x, y) <
0, + 2z such that

x y )
((x2 i y2)1/2 > (x2 T y2)1/2) = (cos Oy(x, y), sin 8y(x, y))

(see Figure 11.2). In order to verify that df, = nly simply note that
tan 0,(x, y) = y/x and cot 6y(x, y) = x/y so in each sufficiently small open
set we can solve one or the other of these equations for 8, and compute

00y a0y, Xy X4
de, =—d —dx, = — ——dx s dx,.
YT ox, x1+6x2 2 x2 + x3 1+x§+x§ 2
‘x
(%,9) 1
0,(x,y)
v ev
le

Figure 112 6,(x, y) is the inclination angle of the line segment from the origin
to (x, y), 0, <0, <6,+ 2n

Theorem 3. Let 1 be the 1-form on R* — {0} defined by

X2 X1
dxl + T——z de.

n=——37"23
x3 + x3 x2 + x3

Then for a: [a, b] > R? — {0} any closed piecewise smooth parametrized curve
in R? — {0},

[ n = 2mnk

for some integer k.
Proor. Define ¢: [a, b] > R by

o(t)=ol@)+ | n
where o, is the restriction of « to the interval [a, t] and ¢(a) is chosen so that
a(a)/||x(a)|| = (cos ¢(a), sin @(a)).

&
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We claim that

*) a(t)/|o(t)]| = (cos @(t), sin o(t))

for all t € [a, b]. Indeed, let t, denote the least upper bound of the set
{r € [a, b]: (*) holds for a <t < t}. By continuity, (*) must hold at t = ¢,.
Setting v = —a(to)/||a(to)] and defining 9,, as above we find that
(cos 8, (x(to)) sin B, (a(to))) = alto)/alto)] = (c0s @(to) sin p(to)) 50
@(to) — Oy (a(to)) = 2nm for some integer m. Choosing 6 > 0 so that a(t) € V
for all te[a,b] with |t—1t,| <& we find further that, for t e [a, b],
|t — to| <0, and t # t, (¢; a point where « fails to be smooth),

2 (0(0) ~ 0,(a(0) = n(@t) ~ B, (e(e) = O,
so o(t) — Oy(a(t)) = 2zm for all ¢ € [, b] with |t — to| < . But then

(cos @(t), sin @(t)) = (cos By(x(e)), sin 6,((r))) = alt)/|=(t)]|
for all such ¢, which is possible only if to = b. Thus t, = b and (*) holds for
all t € [a, b], as claimed. :
Finally, since a(a) = a(b), (*) implies that
(cos ¢(a), sin @(a)) = (cos @(b), sin p(b)),
s0 ¢(b) — p(a) = 2nk for some integer k, and '

[r=[ 1) de = 96) - o) = 20k 5

The integer k(a) = (1/27) [, n is called the winding number of a since it
counts the number of times the closed curve « winds around the origin.

EXERCISES

In Exercises 11.1-114, find the length of the given parametnzed curve
a: [- R,

1L «ft)= (2 %), I =[O, 2}, n=1

112. a(t) = (cos 3¢, sin 3t, 4t), I = [~ 1, 1, n = 2.

113, «(t) = (/2 cos 2¢, sin 2¢, sin 2t), I = [0, 2x], n = 2.
114. a(t) = (cos t, sin ¢, cos t, sin t), I = [0, 21:], n=3.

In Exercises 11.5-11.8, find the length of the connected oriented plane
curve f ~!(c), oriented by Vf/|Vf ||, where f: U — R and c are as given.

115, f(x1, x2) = 5x1 + 12x3, U = {(x4, x2): x} + x} < 169}, ¢ = 0.
116, f(xy, x3)=4x} +3(x; — 12, U=R% c=2.
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117, f(xq, X2) = x3 —x3, U ={(x1, X2): 0 < x; <2}, ¢c=1. [Set up, but do not

evaluate, the integral.]

118. f(x1, x2) = —9x + 4x3, U = {{x1, x;): x; >0, 0 <x, <3}, c=0. [Hint:

11.9.

11.10.

11.11.

11.12.

11.13.

11.14.

11.15.

11.16.

Note that there is a parametrization a(t) = (x,(t), x(t)) of f~*(0) with
xa(t) =t]

Show that if C is a connected oriented plane curve and C is the same curve
with the opposite orientation, then I(C) = I(C).

Let C be a connected oriented plane curve, let a: I — C be a one to one unit
speed parametrization of C, and let x: C —> R denote the curvature of C.

(a) Show that (% |k < a(t)| dt, where a and b are the endpoints of I, is
independent of the choice of one to one unit speed parametrization o of C.

(b) Show that [% |k o a(t)| dt = I(N © a), where N: C — R? is the Gauss map
of C.

[f% | o a(t)| dt is called the total curvature of C.]

Let f and g be smooth functions on the open set U = R**! Show that

(a) d(f +g)=df + dg.
(b) d(fg) = gdf + fdg.
(c) If h: R - R is smooth then d(h~ f)= (W' o f)df.

Compute the following line integrals.

(@) f. (x2 dx; — x; dx,) where a(t) = (2 cos ¢, 2 sin t),0<t<2m

(b) fc (—x3 dx; + x; dx;) where C is the ellipse (x3/a?) + (x3/b*) =1,
oriented by its inward normal.

(€) J. 32! x; dx; where a: [0, 1]- R"*! is such that «(0)=(0, O, ..., 0)
and a(1)=(1, 1, ..., 1). [Hint: Find an f: R"*! >R such that df =
Sl x;dx;.]

Let w=Y7!fidx; be a smooth 1-form on R**1 and let aft)=
(21(t), -- -, zn+1(t)), where the 2; are smooth real valued functions on [a, b}.
Show that

b nt+i

Lco = L ;1(fi gﬂa)% de.

Let C =f~!(c) be a compact plane curve oriented by Vf/||Vf |, let X be the
unit vector field on U = domain (f) obtained by rotating Vf/|Vf| through
the angle —n/2, and let wy be the l-form on U dual to X. Show that
IC Wy = l(C)

Let «: I » R? be a unit speed curve, let to € I, and let 8, € R be such that
&(to) = ((to), cos 8o, sin O,). Show that there exists a unique smooth function
0: I » R with 6 =60, such that &(t) = («(t), cos 0(t), sin 6(t)) for all t € L.
[Hint: Set 6(t) = 0o + {t, n(B(c)) d where 7 is the 1-form of Theorem 3 and
B = do/dt.]

Let a:[a, b] » R?> — {0} be closed piecewise smooth parametrized curve.
Show that the winding number of « is the same as the winding number of fx
where f: [a, b] - R is any piecewise smooth function along « with f(a) = f (b)
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and f(t) > O for all ¢ € [a, b]. Conclude that « and o/||«| have the same wind-
ing number.

1117. Let a=to <t; <-**<ty4y=b and let ¢:[a,b] x [0,1]> R?> - {0} be a
continuous map such that, for each u € [0, 1], the map ¢,: [a, b] » R defined
by @.(t) = ¢(t, u) is smooth on each interval [¢;, t;4,]. Assume that ¢ (a) =
@.(b) for all u € [0, 1]. Show that the winding number k(p,) is a continuous
function of u and hence that k(¢,) is constant and, in particular, k(o) = k(@,).
[The map ¢ is called a homotopy between ¢, and ¢,.]

11.18. The winding numbker‘of da/dt (which is the same, by Exercise 11.16, as the
winding number of da/dt/||do/dt|), where a: [a, b] > R? is a regular (&(t) # 0
for all t) parametrized curve with &(a) = &(b), is called the rotation index of a.

(a) Show by example that for each integer k there is an « with rotation index

(b) Show that if a is the restriction to [a, b] of a periodic regular parametrized
curve with period T =b — g and if « is one to one on [a, b) then the
rotation index of a is + 1. [Hint: See Figure 11.3. Let u € R%, u # 0, and
choose t, so that h(t) = a(t)+ # has an absolute minimum at t,. For

a (tz)

(@l ¥, 1))

(a(ty), ¥l 1)
=&t/ a(epll

-] (tl)

(@lto), ¥rg, fo+1))
= —&(to)/“ & (’0)”

a (to)

(to, to + T)

(t0’ ftO) R ‘

“(tg +1, g+ 1)

Figure 11.3 To show that the rotation index of ais + 1, ¢, is.chosen so that Image «
lies completely on one side of the tangent line at a(t,), Y is the normalized secant map
Y(ty, t2) = (a(t2) — alt1))/||a(t2) — «(t,)|] extended . continuously to the closed
triangle T, and @: [to, to + 7] x [0, 1] - T is the homotopy which maps horizontal
line segments to piecewise smooth curves in T, as indicated.
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11.19.

11.20.

11 Arc Length and Line Integrals

to<t; <t <tp+T1,let

do. da .
E(‘x)/ 5 &) ift; =1,
tit)=< d d .
e G| g @ T N

((t2) — alty))/||(t2) — «(ty)]|  otherwise,

define a homotopy ¢: [to, to + 7] x [0, 1]>R>—{0} by o=y ¢
where

| (to, to) + (¢ — to)(1 —u, 1 +u)

o(t, ) ifto<t<to+4r
t, u)=
(to+ttott)—(to+T—t)1+ul—1u)

fto+3T<t<to+r1,

calculate the winding number of ¢4, and apply Exercise 11.17. In calculat-
ing the winding number of ¢, note that Image @], ,+:/27 and Image
(p1|(,°+,,2_ w0+y are each contained in a region where the 1-form n is
exact.]

Let C be a compact connected oriented plane curve with curvature x every-
where positive and let a: R — C be a unit speed global parametrization of C.

(a) Show that if ue S' and h: R— R is defined by h(t) = a(t) - u then
K(to) = 0 if and only if N(x(to)) = +u, and h"(to) = x(x(to))u * N(x(to))
for all such t,. Conclude that the Gauss map N of C is onto.

(b) Show that if [to, to + ) is a fundamental domain of « then the rotation
index (Exercise 11.18) of ay, ;44 is equal to (1/2m) [i3*° (x o @)(t) dt.
[Hint: Use Exercises 11.15 and 10.10.]

(c) Show that if ¢ € (to, to + 7] is such that N(c) = N(to) and N(t) # N(to)
for to <t <c then [{ (x o «)(t) dt = 2n. [Use Exercise 10.10.] Conclude
that ¢ = to + t and that the Gauss map of C is one to one. [Use Exercise
11.18(b)]

A function f: C —» C (C = {complex numbers}) may be viewed as a function
from R? to R? by identifying each complex number a + bi with the point
(a, b) € R In particular, we may view each polynomial function f(z) =
a,2" +---+a;z+ao (a0, ..., a, € C) as a smooth map from R? into itself.
Given such a polynomial f, let a,: [0, 2n] - R? be defined by

ay(t) =f(cos t, sin t) = f(cos t + i sin t)

and let k(f) denote the winding number of o;.

(a) Show that if f(z) = ao # O for all z then k(f) = 0.

(b) Show that if f(z) = a, 2" with a, # O then k(f)=n.

(c) Show that if f is any polynomial with f(z) # 0 for all z € C with Iz] <1
then k(f)= 0. [Apply Exercise 11.17 to ¢: [0, 2x] x [0, 1] R* — {0},
o(t, u) = f(u(cos t + i sin t)).]
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(d) Show that if f is any polynomial with f(z) # O for all z € C with |z| > 1
then k(f) = n. [Apply Exercise 11.17 to ¢: [0, 2x] x [0, 1] — R% — {0},

1 .
: u” (—cost+isint) fu#0
olt, w)= T\, ( ) #
a(cos t + i sin t) ifu=0,

where a, is the leading coefficient of f(z).]

(¢) Conclude that if f is a polynomial with f(z) # O for all ze C then the
degree of f must be zero. (This exercise proves the fundamental theorem of
algebra: every non-constant polynomial with complex coefficients must
have a root in C.)

11.21. Let a: [a, b] > R? — {0} be smooth and such that a(a) = «(b). Suppose « hits
the positive x,-axis only finitely many times. Show that the winding number
k(a) is equal to the algebraic number of crossings of the positive x,-axis by «,
where each upward crossing is counted positively and each downward cross-
ing is counted negatively. [Hint: Let t, <t, <--- <t, be the set of all
t € [a, b] such that a(t) lies on the positive x;-axis. Let V and 6y be as in our
discussion of the winding number, with v = (1, 0). Then

‘ tiv1—¢e *
' k(oz) = Z hm df)y(éz(t)) dt
: 4=0 s~0
where to=a and tmer=Db (If t; =g, the sum wlll range only from 1 to
~1)] |

11.22. Let a: 1+ R?* bc a pxccewxsc smooth closed parametrmd curve. For

p = (a, b) € R? — Image «, define
: - "'(xz"'b dx1+(xl—a)dx2
: k,(az) -[ (cs—af +(x2=b)
(a) Show that k s(a) is an integer. [Hint: Show that k() is the winding
number of B: I -+ R? — {0} where B(t) = a(t) — p]
(b) Show thatifpand g e R? — Image « can be joined by a continuous curve
~ in'R® — Tmage o then k(o) = kyfa) :
(The integer k,(«) is the winding number of a about p.)




Curvature of Surfaces

Let S be an n-surface in R"* !, oriented by the unit normal vector field N, and
let p € S. The Weingarten map L,: S,— S, defined by L,(v) = —V,N for
v e §,, measures the turning of the normal as one moves in S through p with
various velocities v. Thus L, measures the way S curves in R**! at p. For
n =1, we have seen that L, is just multiplication by a number x(p), the
curvature of § at p. We shall now analyze L, when n > 1.

Recall that, for ve S,, L,(v)- v is equal to the normal component of
acceleration at p of every parametrized curve « in S passing through p with
velocity v. This component of acceleration is thus forced on o by the curva-
ture of $ in R"*!. When ||v|| = 1, this number

k(v)=L,(v)-v

is called the normal curvature of S at p in the direction v. Note that if k(v) > 0
then the surface S bends toward N in the direction v, and if k(v) < 0 it bends
away from N in the direction v (see Figure 12.1). When n = 1, k(v) = k(p) for
both unit vectors ve §,.

EXAMPLE 1. Let S be the sphere x2 + -+ + x2,; = r? of radius r, oriented by
the inward normal N(p) = (p, — p/||p||). Then, as we saw in Chapter 9, L, is
simply multiplication by 1/r. Hence k(v) = 1/r has the same value for all
tangent directions v at all points p € S.

ExXAMPLE 2. Let S be the hyperboloid —x? + x3 + x% = 1 in R?, oriented by
the unit normal vector field N(p)= (p, —x,/||p|, x2/|p|, x3/|p|) for
p = (xi, X, x3) € S (Figure 12.1). Then for p = (0, 0, 1), each unit vector
veS, is of the form (p, vy, v,, 0) where vi+v3=1 Ly(v)=
—V,N = (p, v;, —v,,0), and k(v) = v} — v3. In particular, k(v) = 1 when

82
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Figure 12.1 Normal curvature at p = (0, 0, 1) is positive in the direction e, =
" (p, 1, 0, 0) and negative in the direction e, = (p, 0, 1, 0).

v=(p, 1,0,0) and k(v)= —1 when v=(p, 0, 1,0). Moreover, k(v)=0
whenv = +(p, 1/./2, 1/4/2, 0)and when v = + (p, 1/s/2, —1/,/2, 0) which
is not surprising since the straight lines a(t) = (t/s/2, t//2, 1) and B(t) =
(t/\/f, —t/ﬁ, 1) both lie completely in S so S does not force any accelera-
tion on parametrized curves in these directions through p (see Figure 9.1).

Further insight into the meaning of normal curvature can be gained from
normal sections. Given an n-surface S = f ~(c)in R"**, oriented by the unit
normal vector field N, the normal section determined by the unit vector
v=(p,v)€S,, peS,is the subset A#'(v) of R"*! defined by

N (V)={ge R"*': g = p + xv + yN(p) for some (x, y) € R?}
where N is the Gauss map [N(p) = (p, N(p))] (see Figure 12.2). .#°(v)is justa
copy of R?, with p corresponding to the origin, p + v corresponding to (1, 0)
and p + N(p) corresponding to {0, 1), so we shall identify .4"(v) with R? and
shall view-the intersection § n #(v) as a subset of R2. More precisely,

N v’ 5 : sz

’ ;1
) '

() (b

Figure 122 (a) The normal section A'(v), ve S,, pe S. (b) S A A (v), viewed as a
, subset of R2.
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define i: R? » R"* 1 by i(x, y) = p + xv + yN(p), so that A"(v) = i(R?). Then
i(x, y)e S n N/ (v)<>i(x, y)e S<foi(x, y) = c so, under i, the level set
(foi) !(c) is identified with S~ A"(v). (fei)”!(c) is not necessarily a
(simple) plane curve, as Figure 12.2(b) shows. It is, however, if the points
where Vf is orthogonal to .47(v) are deleted:

Theorem 1. Let S be an oriented n-surface in R"** and let v be a unit vector in
Sp, p€ S. Then there exists an open set V c R"*! containing p such that
S A N (V) n Vis a plane curve. Moreover, the curvature at p of this curve
(suitably oriented) is equal to the normal curvature k(v).

PrOOF. Let f: U - R be such that S =f"*(c) and Vf(q) # O for all g€ S.
Given v = (p,v)€ S,, p€e S, let i: R* > R"*! be as above and let

V ={q e U: either Vf(q) - v + 0 or Vf(g) - N(p) # O},
where Vf (g) is the vector part ofyVf (g) (V/(q) = (¢, V/ (¢)))- Then pe V and

V(foi)x, y) = (x, 3, VI (i(x, ¥)) - v, T (iCx, y)) - N(p))
is never zero for (x, y)e i~ *(V) so

C=i"Y(SnNW)n V)= (foi)y Hc)ni (V)
is a plane curve (i.e., S N A4 (v) N V is a plane curve) as required.
Moreover, if a(t) = (x(t), y(t)) is a unit speed curve in C with &(t,) =
(0,0, 1,0) (this vector is tangent to C since it is orthogonal to V(f - i)(0, 0)),
then i o « is a unit speed curve in § N A7(v), since
1662 )OI = G ate) x0W + YONG)I?
= (') + (@) = |a@)]* = 1,
and (i ¢ a)(to) = v. Now, if we orient C so that the orientation normal at
(0, 0) is (0, 0, 0, 1), then the curvature of C at (0, 0) is
K(a(to)) = lto) * (o), 0, 1) = ¥"(to)

whereas the normal curvature of S in the direction v is

k(v) = (i s @)(to) * N(p) = (p, x"(to)v + y"(t0)N(p)) * (P, N(p)) = y"(to)
50 k(v) = x(x(t,)), as was to be shown. O

For p a point in an oriented n-surface S, the normal curvature k(v) is
defined for each unit vector v in the tangent space S, to S at p. Thus the
normal curvature at p is a real valued function with domain the unit sphere
in §,. Since k is continuous and the sphere is compact, this function attains
its maximum and its minimum. The following lemma shows that these ex-
trema are eigenvalues of the Weingarten map L,,.

Lemma. Let V be a finite dimensional vector space with dot product and
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lee L: V>V be a self-adjoint linear transformation on V. Let S =
{veV: v-v=1} and define f: S— R by f(v) = L(v)+ v. Suppose f is sta-
tionary at vy € S (that is, suppose (f- a)(to) = O for all parametrized curves
a: I— S with afty) = vo). Then L(ve) = f(vo)o (that is, v, is an eigenvector
of L with eigenvalue f (v,)).

PROOF. Since fis stationary at v,, 1(f < a)(0) = O for all parametrized curves
o in § with (0) = v,. For v any unit vector with v * v, =0, let «(t) =
(cos t)ve + (sin t)v. Then

0=(f-a)(0) = 3; L) - a(t)

= % ' t(cog"t)L(vo)- vo + 2 sin t cos t L{ve) * v + (sin? t)L(v) - v]

= 2L(Ug) it 8
Thus L(vo) L v for all unit vectors v € vg. It follows then that L(vo) L vg;
that is, L(vo) = ).vo for some Ae R. Thus v is an elgenvector of L. The
elgenvalue Ais g:ven by

A= Avo Vo = L(”o) L) =f(v°) O

Remark In thts lemma we have used the caneept af a (smooth) param
etrized curve ¢: I— V where V is an arbitrary finite dimensional vector
space with dot product. Smoothness makes sense in this setting because
limits and derivatives can be defined in the usual way: lim, ,,, a(t) = v means
for every ¢>0 there is a >0 such that [ja{t) — v <& whenever
0 <t —to} <6, and (dajdt)(to) = lim,.,, («(t) — a(ts))/(t — to) Whenever
this limit exists. In fact, all the geommy we are developmg here can be done
aswellin VasinR**%
~ The converse of the above hmma is also true: if vy is an elgenvector of L
then f(v) = L(v) * vis stationary at v, € S. Forifa: I » S thena(t) - a(t) =1
so a(t) (da/dt)(t) =0 for allte I and if a(to) =g thcn

- am)m—{ (L6 a(t)]
- £ () o)+ L %0
= 2L(a(to) - 3 (o) = 2halis) - S 0) =0,

Theorem 2. Let V be a finite dimensional vector space with dot product and let
L: V-V be a self-adjoint linear transformation on V. Then there exists an
_orthonormal basis for V- consisting of eigenvectors of L.
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Proor. By induction on the dimension n of V. For n = 1, the theorem is
trivially true. Assume then that it is true for n = k. Suppose n = k + 1. By the
lemma, there exists a unit vector v, in ¥ which is an eigenvector of L (e.g,
choose vy such that L(v,)* v, > L(v)* v for all unit vectors ve V) Let
W = vy. Then

LWw)-vy=w-L(vy)=w- Ao, =4 (w-v,)=0

for allw € W, where 4, is the eigenvalue belonging to v,. Thus the restriction
L|w of L to W maps W into W. Clearly L |y is self adjoint. Since dim(W) =
dim V — 1=k, the induction assumption implies that there exist
{v3, ..., Ux+1}, an orthonormal basis for W consisting of eigenvectors of
L|w. But each eigenvector of L|y is also an eigenvector of L, so
{vy, ..., Ux+1} is an orthonormal basis for V consisting of eigenvectors of L.

a

Note that there exist at most n eigenvalues of a self-adjoint linear trans-
formation L on an n-dimensional vector space because each eigenvalue is a
root of the characteristic polynomial det (L — AI) which is a polynomial in 4
of degree n. Here, I is the identity transformation on V. That 4 is a root of
this polynomial follows from the fact that L(v)= Av if and only if
(L — AI}(v) =0 so L — AI must be singular. Counting multiplicities then,
there are exactly n eigenvalues of L. Note further that the eigen directions v;
of L are determined uniquely (up to sign) if and only if the n eigenvalues of L
are distinct.

For S an oriented n-surface in R"** and p € S, the eigenvalues k,(p), ...,
k,(p) of the Weingarten map L,: S, — S, are called principal curvatures of S
at p and the unit eigenvectors of L, are called principal curvature directions.
If the principal curvatures are ordered so that k,(p) < k,(p) < - < k.(p),
the discussion above shows that k,(p) is the maximum value of normal
curvature k(v) for ve S, ||v| = 1; k,_ 4 (p) is the maximum value of k(v) for
veS,,|v| =1,and v L v, where v, is a principal curvature direction corre-
sponding to k,(p); k,-2(p) = max{k(v): ve S,, |[v| = 1L, v L {v,, v,_}} etc.
Furthermore, all the principal curvatures k;(p) are stationary values of
normal curvature, and k, (p) is the minimum value of k(v)forve S, |v| = 1.

EXAMPLE. Let S be the hyperboloid —x? + x2 + xZ = 1 in R?, oriented by
N@) = (3. =4 /12l x2/1pls %, /11, = (x1, X2 %s) € . Then, as we saw
earlier in this chapter, for p= (0, 0, 1), S, = {(p, vy, v2, 0): vy, v, € R} and,
for ||v| =1, k(v)= v} — v}. Thus k(v) attains its maximum value (for
[v]|> = v} + v} = 1) when v= (p, £ 1, 0,0) and its minimum value when
v=(p,0, +1,0), so the principal curvatures at p are ky(p)= —1 and
ky(p) = 1.

Theorem 3. Let S be an oriented n-surface in R"**, let p € S, and let {k,(p),...,
k,(p)} be the principal curvatures of S at p with corresponding orthogonal
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principal curvature directions {vy, ..., v,}. Then the normal curvature k(v) in
the direction v € S,(||v]| = 1) is gwen by

k(v) = Z ki (P)(" Vi) = ‘ig k(p) cos? 6,

where 0, = cos™ }(v - v,) is the angle between v and v,.

PRrOOF. Since v can be expressed as a linear combination of the orthonormal
basis vectors {v,, ..., v,} by v=Y7_, (v - Vv, = Y7, (cos 6,)v; we have

k() = L) v = 3 (eos 6)L,(n) - ¥
Z(cosﬂ)k(p)v V—Zk(p)coszo O

i=1

The numbers cos §; = v * v; such that v =)Y"., (cos 6;)v; are called the
direction cosines of v with respect to the orthonormal basis {v,, ..., v,}. "
Associated with any self-adjoint linear transformation L: V — V, where
V is a vector space w:th a dot product, is a real vaiued function 2: V > lR
defined by :
‘ 2v)=L(v)-v.

This function 2 is the quadratzc form associated with L. The quadratic form
associated with the Wemgarten map L,ata point p of an oriented n-surface
S = R**1 is called the second fundamental form of S at p and is denoted by
&#,. Thus, & ,(v) = L,(v)* v = d(t,) - N(p) where a: I - S is any param-
etrized curve in S with afty)=p and d&(t,)=v. In particular, when
[¥l] = 1, & ,(¥) is equal to the normal curvature of § at p in the direction v.

The first fundamental form of S at p is the quadratic form .#, associated
with the identity transformatlon on §,. Thus £, (vV)=v -v= ﬁv"’ for all
veS

Note that the quadratic form associated with a self-adjoint linear trans-
formation L contains exactly the same information as L, since L can be
recovered from 2 by use of the formula

L{v)- w= 200 + w)é—‘.@@ - 2w)}

which is valid for all v and win V.
A quadratic form 2 is said to be

‘positive definite if 2(v) > 0 for all v # 0,
negative definite if 2(v) < 0 for all v+ 0,
definite if it is either positive or negative definite,
indefinite if it is neither positive or negative definite,
positive semi-definite if 2(v) > 0 for all v,
negative semi-definite if 2(v) < 0 for all v, and
- semi-definite if it is either positive or negative semi-definite.
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Thus the first fundamental form .#, of an oriented n-surface S = R** ! is
always positive definite. The second fundamental form ., is positive definite
if and only if the normal curvature k(v) = & ,(v) is positive for every direc-
tion v at p. By the previous theorem, this is the case if and only if all the
principal curvatures k;(p) of S at p are positive. Similarly, &, is negative
definite if and only if all the principal curvatures of S at p are negative. When
¥ p is positive definite, the surface S bends toward the unit normal N(p) in
every tangent direction v at p, whereas if &, is negative definite S bends
away from N(p) in all directions (see Figure 1. 3).

N{(p)

(a) (b) (c)

Figure 12.3 The Weingarten map at p is negative definite in (a), positive definite in
(b), and indefinite in (c).

Theorem 4. On each compact oriented n-surface S in R"* ! there exists a point
p such that the second fundamental form at p is definite.

Proor. The idea of the proof is to enclose S in a large sphere and then shrink
the sphere until it touches S (see Figure 12.4.) At the point of contact, the
normal curvature of § will be bounded away from zero by the normal
curvature of the sphere.

More precisely, define g: R*"*' >R by g(xy, ..., Xp41)=x]+ "
+ x2, ,. Since S is compact, there exists p € S such that g(p) > g(g) for all
q € S. By the Lagrange multiplier theorem, there exists A € R such that
Vg(p) = AVf (p) = uN(p) where S = f ~*(c) and u = +A||Vf(p)|. The sign of
[z depends on the orientation of S; assume for the moment that 4 <0 (i.e., S
in oriented by its “inward” normal). Then p= —|u| = —|uN(p)| =
~IVa(@)l = —2[|p|l, so that

N(p) = Vg(p) ﬁ (p, p)
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Figure 124 |k(v)| = 1/r for all directions v at p, where r is the radius of the
enveloping sphere.

Now, for ve S,, |v| =1, let a: 1S be such that &(to) =v. Then
goofte) = goaft) foralltel, so
2

d
OZBt—z

t Vg(o(t)) - &(t)

do
d—t,o aft) - t(t)

= 2f||aeo)||* + (alto), «(to)) * &(to)]
— 201 - [pING) - o)
=2[1 - ||p[[k()}

Thus k(v) > 1/||p| for all directions v € S,,.
If S were oriented so that u = Vg(p) N(p) > 0, then the normal curva-
ture would change sign so that k(v) < —1/|p| for all directions v at p. [J

The determinant and trace of the Weingarten map are of particular im-
portance in differential geometry. The determinant K(p) = det L, is called
the Gauss-Kronecker curvature of S at p. It is equal to the product of the
principal curvatures at p. Whenn = 2, K(p) = k, (p)kz(p) is called simply the
Gaussian curvature at p. 1/n times the trace of L, is called the mean curvature

H(p) of S at p. Thus H(p)= (1/n) Y7, ki (p) is the average value of
the principal curvatures at p.

The following theorem is useful in computing Gauss-Kronecker
curvature. - .

‘Theorem 5. Let S be an oriented n-surface in R**! and let p € S. Let Z be any
non-zero normal vector field on S such that N = Z/||Z|| and let {v,, ..., v,} be
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any basis for S,. Then

V..Z v,
K(p)= =1y det|gip| /' IZOdet| | ).
Z(p) Z(p)
Where’for Wi ooos Wygg € R2+1’ W; = (p’ Wi, 15 =« > wi,n+1)’
Wy Wi 1 Wi, n+1
det| = : :
Wnii Wonir1,1 77" Wasin+t
PrOOF. Since Z = ||Z|N,
v.Z (¥, 1ZING) + 1ZE)] N
det| .- = det :
v, Z (V. |Z[)N(p) + | Z(p)[ V\,N
Z(p) 1Z(p)|N(p)
V.,N
- Izl det | gin
|1Z(p)IN(p)
Lp(vl)
~ (- 1Yz det | | G
Z(p)
i 0 \2
n A :
= (17 1Z(p)]" det ol +
| \0 01 Z(p)
Vi

= (= 1)'|Z(p)|"(det A4) det .
Z(p)
= (= 1| Z(p)||"K(p) det v ’
Z(p)

where 4 is the matrix for L, with respect to the basis {v,, ..., v,} for S, and
A* denotes the transpose of 4. Solving for K(p) completes the proof. [

EXAMPLE. Let S be the ellipsoid (x2/a?) + (x3/b?) + (x3/c*) =1 (a, b, and ¢
all #£0), oriented by its outward normal Let Z(p)=3Vf(p)=
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(p, x1/a% x,/b?, x3/c?)for p = (x4, %, x3) € S. A basis for S, will consist of any
independent pair of vectors orthogonal to Z(p). For x, # 0; we may take
= (ps x2/b2’ _xl/aza 0) and V2 = (pa x3/62’ 09 _xl/az)' Then

V..Z x,/a*b* —x,/a*b? 0
det{V,,Z] = | x;3/a’c? 0 —x, /a*c?
Z(p) xl/a2 xz/b2 x3/c2
x, (x} x2 x%\ x
‘b;cz( ; +b§ +“§)=a‘b;cz’
v! ’ xZ/b —xl/a O 2
det| v, | = | x;3/c? 0 —x,/a? =%(X‘ xi +=3 )
Z(p) x, /a? x, /b? x3/c? a b

and
X2  x2  x2\12
120 = (3 +32 +3)
so the Gaussian curvature of the ellipsoid is

1
K(p) = - 3 3
. azbzcz(%+z: +x3)

Note that, although this formula for K was derived under the assumption
that x; 0, it is valid for all p € S by continuity.

Theorem 4 of this chapter is an example of a global theorem in differential
geometry. A property of an n-surface S is said to be a global property if it
expresses a fact about the surface S as a whole (such as, the n-surface § is
compact, or the n-surface S is connected, or the 1-surface C has finite length).
On the other hand, a property of S is said to be a local property if it expresses
a fact about the surface S at or near a particular point of S, a fact which can
be verified by computations in an arbitrarily small open set containing the
point (for example, the second fundamental form &, of S at p is definite, or
the Gauss-Kronecker curvature of S at p is positive). A global theorem is a
theorem in which a global property is among the essential hypotheses or
among the conclusions. A theorem in which all the essential hypotheses and
conclusions are local properties is called a local theorem. Thus, for example,
Theorems 3 and 5 of this chapter are local theorems (the hypothesis that S be
oriented, although a global hypothesis, is in fact inessential; these theorems
are independent of the orientation chosen and in fact all that is required for
the validity of these theorems is a choice of smooth unit normal vector field
N defined at and near the point p). In contrast, Theorem 4 of this chapter is a
global theorem; its validity depends crucially on the hypothesis that S be
compact. The theorem of Chapter 6 is another example of a global theorem.
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Our next theorem is an especially interesting type of global theorem. It
asserts the equivalence of two local properties, at each point of an n-surface
S, but only in the presence of a global hypothesis. Note that the theorem fails
to be true if the compactness hypothesis is removed. (Consider a one-sheeted
hyperboloid in R*.)

Theorem 6. Let S be a compact connected oriented n-surface in R***. Then the
Gauss-Kronecker curvature K(p) of S at p is non-zero for all p € S if and only if
the second fundamental form &, of S at p is definite for all p € S.

PrOOF. If &, is definite for all p € S then the normal curvature k(v) = & p(v)
is non-zero for each direction v € S, so in particular all principal curvatures
at p are non-zero and hence so is their product K(p).

Conversely, by Theorem 4 there exists a point p, € S such that &, is
definite. Suppose ¥, is in fact positive definite. Then the minimum princi-
pal curvature k, of S is positive at p,. Since k;: S —> R is continuous, S is
connected, and k, is nowhere zero (since, by hypothesis, K is nowhere zero),
k, must be everywhere positive. Hence all the principal curvatures are every-
where positive and & , is positive definite for all p € S. If & ,, were negative
definite, a similar argument, with k, replaced by the maximum principal
curvature k,, would show that &, is negative definite for all p € S. O

Remark. The connectedness hypothesis in Theorem 6 is actually inessen-
tial since it can be shown that every compact n-surface in R** ! is a finite
union of connected ones, and Theorem 6 can then be applied to each of
these.

EXERCISES
12.1. Let S =f"!(c) be an n-surface in R"**, oriented by Vf/||Vf||. Show that, for
v=(p, vy, ..., Uns1) @ Vector tangent to S at p € S, the value of the second

fundamental form of S at p on v is given by

n+1

o*f
)= —(/|Vf (I’)“)i,lz=1 E)ci_aac_,(p)viv"'
(When |[v|| = 1, this formula provides a straightforward way to compute the

normal curvature k(v) = &,(v) in the direction v.)

In Exercises 12.2-12.6, find the normal curvature k(v) for each tangent
direction v, the principal curvatures and principal curvature directions, and
the Gauss-Kronecker and mean curvatures, at the given point p of the given
n-surface f (x4, ..., X,4+1) = ¢ oriented by Vf/||Vf .

122, xi+ X2+ + X1 =1p=(10,...,0)
123. x3+ x4+ +x2,=r4r>0,p=(0,...,0,7)
124. (x3/a®) + (x3/b%) + (x3/c?) =1, p = (a, 0, 0) (in R®)
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125. (x}/a’) + (x3/b*) - (x3/c*) = L, p = (4, 0, 0) (in R)
126. x} + (/x3+x3 —2)* =1 (torus in R?)

@ p=100,3,0)
(b) p=1(0,1,0)

12.7. Show that if S and § denote the same n-surface in R**! but with opposite
- orientations, then K = (—1)’K where K and K are the Gauss-Kronecker
curvatures of S and § respectively. (In particular, Gauss-Kronecker curvature

is independent of the choice of orientation if n is even.)

In Exercises 12.8-12.11, find the Gaussxan curvature K: S — R where S is
the given surface.

128. x24+x3 -x3=0, 23 > 0 (cone)

129. (x}/a*) + (x3/b%) — (x}/c*) = 1 (hyperboloid)
12.10. (x3/a?) + (x}/b?) — x5 = O (elliptic paraboloid)
12.11. (x}/a?) — (x3/b*) — x5 = O (hyperbolic paraboloid)

12.12. (a) Find the Gaussian curvature of a cylinder over a plane curve.
(b) Find the Gauss-Kronecker curvature of a cylinder over an n-surface.

1213. Letg: R*" >R be a smooth function. Show that the Gauss-Kronecker curva-
ture K of the graph of g is given by the formula

azg L] ag )2 )(l/2)+ 1
K= dﬂ(axi ax!)/(l + ig’x (5;;
where the orientation N is chosen so that N(p) « (p, 0,...,0, 1) > Ofor all pin
the graph.

12.14. Let S be an oriented 2-surface in R*> and let p € S. Show that, for each v,
- WEeS,, L(v) x L(w)=K(p)v x w.

12.15. Show that, for S an oriented 2-surface in R3,
K(p) = Z(p) - V, Z x V. Z/| Z(p)|[*

where Z is any nowhere zero normal vector field on S and v and w are any two
vectors in §, such that v x w = Z(p).

12.16. Show that the mean curvature at a point p of an oriented n-surface S can be
computed from the values of normal curvature on any orthonormal basis
{¥y, ..., v,} for S, by the formula ‘

H) = 3 ko) ‘

12.17. Let S be an oriented 2-surface in R® and let {v,, v,} be an orthonormal basis
for §, consisting of eigenvectors of L,. Let k; = k(v;).
(a) Show that for v(8) = (cos O)v, + (sin O)v, € S,,
k(v(6)) = k, cos? 6 + k; sin® 6.
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12.18.

12.19.
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(b) Show that the mean curvature at p is given by the formula
1 2n
H(p)= 5. [ k() db.

Let S = f ~!(c) be an oriented n-surface, oriented by N = Vf/||Vf |. Show that
H(p) = —(1/n) div N. [Hint: First note that div N = trace {vi»V,N} and
then evaluate this trace using the basis {vi, ..., v,, N(p)} where {vy, ..., v,} is
an orthonormal basis of S, consisting of eigenvectors of L,.]

Let S =f"!(c) be an n-surface in R"**. Given a > 0, let § = g~*(c) where
g(p) = f(p/a) for all p such that p/a is in the domain of f.

(a) Show that § is an n-surface in R**! and that p € S if and only if ap € §.

(b) Letting S be oriented by Vf/|Vf || and S by Vg/[Vg|, show that the spheri-
cal images of S and of § are the same.

(c) Show that the mean curvatures H and H of S and § are related by
A(ap) = (1/a)H(p) )

(d) Show that the Gauss-Kronecker curvatures K and K of S and § are
related by K(ap) = (1/a")K(p).



Convex Surfaces

[ 4

An oriented n-surface S in R"*! is convex (or globally convex) if, for each
p € S, S is contained in one of the closed half-spaces

={geR"*':(g—p): N(p)=0}
or

Hy ={geR""": (g - p)"k N(p) <0},

where N is the Gauss map of S (see Figure 13.1). An oriented n-surface S is
convex at p € S if there exists an open set ¥ = R**! containing p such that
S N V is contained either in H; or in H,. Thus a convex n-surface is
necessarily convex at each of its pomts but an n-surface convex at each point
need not be a convex n-surface (see Figure 13.2).

If S is convex and S n H, = {p} for each p € S, where

H,={ge R""': (¢—p)- N(p)=0},

- then § is said to be strictly convex. Similarly, if S is convex at p for some
peS and S NV n H,={p} for some open set V containing p, then § is
strictly convex at p.

The goal of this chapter is to relate curvature to convexity. The first result
is an easy one.

Theorem 1. Let S be an oriented n-surface in R**! which is convex atpes.
Then the second fundamental form &, of S at p is semi-definite.

PrOOF. Suppose S N V < H; for some open set Vin R"*! containing p. For
veS,, let a:I->S NV be such that «to)=p and a(t,) = v. Define
h: I - R by h(t) = (x(t) — p) - N(p). Then h(t) > 0 for all t, since a(t) € H,

95
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Figure 13.1 S is convex if, for each p € 5, S is contained in one of the half-spaces
HE. Note that the common boundary of these two half-spaces is the n-plane
H,={geR"*!: g N(p) = 0} tangent to S at p.

for all ¢, and h(t,) = 0, so h attains an absolute minimum at ¢,. Hence
& p(v) = &(to) - N(a(to)) = h"(t0) = 0.
If S = H,, the inequality is reversed, for allve §,. O

The converse of Theorem 1 is not true; for example, the 2-surface
X3 =x} — x% in R® has &, semi-definite yet is not convex at 0. We can
prove, however, (Theorem 3) that if ¥, is definite, then § is convex (in fact,
strictly convex) at p.

The key idea in studying convexity is the observation that S is convex at
pe S if and only if the “height function” h: S — R, defined by h(q) =
q * N(p), attains either a local minimum or a local maximum at p. In order to
capitalize on this observation, we shall need to develop further the calculus
of smooth functions on n-surfaces.

Let h: S— R be any smooth function on the n-surface S = R***. The

gradient vector field of h is the smooth tangent vector field grad h on S
defined by

(grad h)(p) = VA(p) — (VA(p) - N(p))N(p)

Figure 13.2 A non-convex plane curve which is convex at each point.
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where i is any extension of & to a smooth function on an open set containing
S, and N is any orientation on S. Thus grad h is the tangential component of
Vh. The gradient of h: S — R has the following properties:

i) V,h = (grad h)(p)- vforallve S,,pe S.
(i) (h - a)(t) = (grad h)(«(t)) - &(z) for all t € I, where «: I — S is any pa-
rametrized curve in S.
(iii) (grad h)(p) = Y=y (V. h)V;, where {v,, ..., V,} is any orthonormal basis
forS,,peSs.
(iv) (grad h)(p) = 0 if and only if h is stationary at p, p€ S.

In particular, grad h is independent of the choice of extension £, by (iii).
Property (ii) is a form of the chain rule.
Property (i) is true because

Vb= V,h = Vh(p) - v = (grad h)(p) - v.

(ii) follows from (i), since (h o &)(t) = Vs h. To check (iii), dot both sides
with v,(j € {1, ..., n}) and use (i). Finally, (i) and (iii) together imply that
(grad h)(p) = 0 if and only if V, h = 0 for all v € §,, which establishes (iv).
(Recall that h: S — R is stationary atp € S if V,h = Oforallv e S,; thatis, if
i(h - @) (to) = O for all parametrized curves o in § with a(t,) = p.)

A point p € § at which h: S — R is stationary is called a critical point of h.
Critical points of smooth functions h: § — R come in three varieties: local
minima, local maxima, and saddle points (see Figure 13.3):

h: S —» R attains a local minimum at p € S if there is an open set V in §,
containing p, such that h(g) > h(p) for all ge V (V < § is an open set in §
if V.= W S for some open set W in R"*1.) '

h: S — R attains a local maximum at p € S if there is an open set V in
S, containing p, such that h(q) < h(p) for all ge V.

by

u
i . 7
D4 u

Figure 133 Critical points of the height function h: § » R,h(g) =q - u where uisa
unit vector in R**1. h measures height above the n-plane u*. h attains a local maxi-
mum at p, and a local minimum at p,; p, and p; are saddle points.
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p€ S is a saddle point of h: S — R if h is stationary at p but h attains
neither a local minimum nor a local maximum at p.

If, in the definitions of local minimum and local maximum, the inequali-
ties are strict then h is said to attain a strict local minimum (h(q) > h(p) for all
q eV, q # p) or a strict local maximum (h(q) < h(p) for all ge V, q # p) at p.

The condition (grad h)(p) = 0 is the “first derivative test” for a critical
point of h: S — R. We shall need a “second derivative test” to help distin-
guish between the types of critical points.

Let pe S be a critical point of h: S — R. The Hessian of h at p is the
quadratic form # ,: S, — R defined by

H (V) =V,(grad h) - v

Thus »#, is the quadratic form associated with the self-adjoint linear trans-
formation on S, which sends v to V,(grad ). Note that V,(grad h) does lie in
S, for each v € §, since

V.(grad k) - N(p) = V,((grad k) - N) — (grad h)(p) - V. N
=V,(0)—0-V,N=0.

Verification that this linear transformation is in fact self-adjoint is left as an
exercise (Exercise 13.2).

Theorem 2. (Second derivative test for local minima and maxima). Let S be an
n-surface in R"*1, let h: S — R be a smooth function which is stationary at
p € S and let A, denote the Hessian of h at p.

(i) If h attains a local minimum at p then 3 , is positive semi-definite. If h
attains a local maximum at p then 3, is negative semi-definite.

(ii) If 5#, is positive definite then h attains a strict local minimum at p.
If # , is negative definite then h attains a strict local maximum at p.

ProoF. (i) Suppose h attains a local minimum at p. Forve §,,leta: I =S
be such that &(to) = v. Then

(h o a)(t) = (grad h)(«(z)) - &(¢), forallte I, and

0 < (hoa)'(to) = Vi(grad h) - &(to) + (grad h)a(to)) - dlto)
= A p(v),

since (grad h)(p) = 0. Thus ¢, is positive semi-definite. The proof for local
maxima is similar.

(ii) To prove the first statement of (ii) it suffices to show that if h does not
attain a strict local minimum at p then J#, cannot be positive definite. So
suppose h does not attain a strict local minimum at p. Then there must be a
sequernce {p;} in S — {p} with lim,_, ,, px = p, such that h(p;) < h(p) for all k.
For each k, set v, = (p, — p)/||px — p||- Then {v;} is a sequence in the unit
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sphere $". Since S is compact, the sequence {v,} must have a convergent
subsequence, which we may as well assume is {v;} itself; let v = lim, ., ;.
We shall show that v = (p, v) € S, and that 5 ,(v) < 0.

Let W be an open ball in R**, containing p, such that both £, a smooth
extension of h, and f, a smooth function defining S as f ~!(c), are defined on
W. Then p, € W for sufficiently large k. Applying the mean value theorem to
g(t)=f(p + tv;) we find

0= f(p) = f(p) = gl = I’") —g(0)
s — Pl Ipe — p| — 0

=g(t)=Vf(p + tve) " Ve

for some ¢, € (0, |px — p||), where v, = (p + t; vy, v,). Taking the limit as
k — oo yields 0 = Vf(p) * v (since lim,,, t, =0)so ve S,. '
To see that #,(v) < 0, note that VA(p) = AVf(p) for some A € R, since
(grad h)(p) = 0, and A = VA(p) - Vf(p)/|Vf(p)|>. We shall apply Taylor’s
theorem to g,(t) = (F — Af Y(ox(t)), where o,(t) = p + tv,. Since ‘

gilt) = V(& — A Yeu(®)) * dult) = (VA — AVf You(t)) * (ol2), 0u)

and , ,
gi(t) = (Vay(VA — AVS)) * (oule), )
we find, for some ¢, between 0 and |2 — pll» |

glllze — pl) = 9:0) + .0l — I + dgi ()l — I
= g(0) + (VA — V1 )(p) * (. vi))lPx — P
v + %(Va.,(w(w" — AVf)) + (lt) vi)llpe — Pl
The middle term is zero ginoe Vh(p) = AVf (p). Hence
0 e = o) _ g — i)
~ pe—pl* ool
_ =)o) - (- 1))
lpe — pII?

)= g(lpe — Pl) — 9:(0)
Ipe - pI?

= ¥V (VR — AVS)) * (oulte), i)
Taking the limit as k — oo yields

(since £ (p) =/ (p) = ¢)

0> §V, (VK — AVf) - v.
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But this last expression is just 3. ,(v), since

H (V) =V, (grad h) - v
=V (Vi — (VE - N)N) - v

Vh - Vf
v (Vi )
_ v (VY vh - vf o
= V(Vh) (||an2 )Vf (®)- v (IIVfHZ )“”Vv‘vf )

v
Vo (VR) - v — AV(Vf) - v
Vo (Vi — AVf) - v,

s0 0 > #°,(v), as claimed.

Thus we have shown that if 7 does not attain a strict local minimum at the
critical point p € S then its Hessian #, cannot be positive definite. The
proof that if 4 does not attain a strict local maximum at p then . cannot be
negative definite is similar. O

When § is displayed as a level set S=f""(c) (f: U— R"*! such that
Vf(p) # O for all p € S) and h is described as the restriction to S of a smooth
function /: U — R, the local minima and local maxima are most easily found
usinig the following facts, which are evident from the above proof. The
critical points of h = f|s are those points p € S such that VA(p) = AVf (p) for
some A € R (4 is the Lagrange multiplier at p of the pair of functions £, ).
Then a sufficient condition that h = i |s attain a local minimum at the criti-
cal point p is that the quadratic form

H (V) =V (VE—2Vf)+v, vEeS,,

be positive definite; a sufficient condition that & attain a local maximum at p
is that this quadratic form be negative definite.

The critical point theory becomes especially simple when h: S —» R is a
height function h,(q) = q - u, where u is a unit vector in R**! (Figure 13.3).
Then h, = h, |s where

ﬁu(q) = q ‘U,
Vh(q)= (g, u), and
V.(Vh,)=0

for all ge R**! and all v e R}*!. It follows that p € S is a critical point of
h, = h,|s if and only if (p, u) = AVf(p) for some A € R. Since u is a unit
vector, |A| must equal 1/|Vf(p)| so p is a critical point if and only if
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(p, u) = £ N(p). Moreover, if p is a critical point of h, and v € S, then
# (V) = V(VE, — (V, - N)N) - v
= (Vh, - N)p)(-V,N - v)
=(u* N@)Z,)
=14 ,,(V),

where &, is the second fundamental form of S at p. We conclude, then, that
peSisa cntxcal point of the height function h,: S — R, h,(q) = q * u whereu
is a unit vector in R"*1, if and only if N(p) = +u, and at a critical point p of h,
the Hessian is equal to + the second fundamental form of S at p, the sign being
the same as that of N(p) * u.

An immediate consequence of these facts is the following partial converse
to Theorem 1.

Theorem 3 Let S be an onented n—swface in R”“’ ! Suppose p € S is such that
the second fundamental form &pofS at p is deﬁmte Then S is strictly convex
atp.

PROOF S is strictly convex at p if and only if the height functlon hyg: S— R
attains either a strict local minimum or a strict local maximum at p. But this
is the case since h,,(,) is stationary at p and #, = + ;’/’ is definite. [0

By c'ombining 'l'heorem ,3 thh Theorem 6 of Chapter 12 wesee that if S is
a compact connected oriented n-surface in R**! whose Gauss-Kronecker
curvature is nowhere zero then § is strictly convex at each point. The re-
mainder of this chapter will be devoted to proving (Theorem 5) that such an
S is globally convex. For this, we must show that if u = N(p) for somep e S
then the height function h, attains not just a local maximum or minimum at
p but in fact attains a global maximum or minimum at p. The idea of the
proof is to show that each h, can have only two critical points, namely the
point at which h, attains its global maximum and the point at which h,
attains its global minimum. The proof requires some further facts about
differential equatxons B

Recall that, given a smooth vector ﬁeld Xonanopenset U« R"*!anda
point q € U, there exists an open interval I, containing 0 and a unique
integral curve a,: I, » U of X with 2,(0) = q. “Theorem 4 says that, at least
for small ¢, a(t) is a smooth function of g.

Theorem 4. Let X be a smooth vector field on an open set U = R™1 and let
p € U. Then there exists an openset VinR"*' withpe V< Uandane>0
such that for each q € V there is an integral curve a,: (—é, s)—» U of X with
4(0) = q. Moreover, for each such V and &, the map y:Vx(—¢e)-U
deﬁned by ¥(g, t) = a,(t) is smooth.
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For a proof of Theorem 4, see, e.g., W. Hurewicz, Lectures on Ordinary
Differential Equations, M.LT. Press, Cambridge, Mass. 1958, pp. 28-29.

Corollary. Let X be a smooth tangent vector field on a compact n-surface
S < R**!, Then X is complete; that is, every maximal integral curve of X has
domain the whole real line. Moreover, for each t € R, the map Y,: S —> S
defined by y,(q) = a,(t), where a, is the maximal integral curve of X through q,
is smooth.

Proor. Extend X to a smooth vector field X on an open set U = R**!
containing S. We shall show first that there exists an & > 0 (a uniform &) such
that for every p € S there is an open set V, in R**!, with p € V, = U, such
that the conclusions of Theorem 4 hold for X, for this open set V , and for
this & Suppose there were no such & Then for each positive mteger k there
would be a point p, in S such that for every open set V containing p, the
maximal integral curve «, of X through g does not contain the interval
(—1/k, 1/k), for some g € V. Since S is compact, the sequence {p,} has a
subsequence converging to some point p € S. Now let V and ¢ be as in
Theorem 4, for this p and for X = X. Then for every q € V the maximal
integral curve of X through g will have domain containing the interval
(—¢, €). But p; € V for arbitrarily large k, and in particular for some k with
1/k < ¢. This contradicts the existence of {p,} and thereby establishes the
existence of a uniform &

It follows that the domain I of each maximal integral curve o of X is the
whole real line. For suppose there were an end point b € R of the open
interval I. Choosing t, € I so that |t, — b| < g, let  be the maximal integral
curve of X through a(t,). Then «(t) and B(t — t,) are integral curves of X
which agree at t, and so agree for all ¢ in their common domain. Hence the
parametrized curve which sends ¢ to a(t) for ¢ € I and sends t to (¢t — t,) for
|t —ty| <Eisan integral curve of X which extends « beyond b, contradict-
ing the fact that a is maximal. Hence I = R, as claimed.

Thus for each t € R there is a map y¥,: S — S defined by V,(q) = a,(t).
Note that, by uniqueness of integral curves, ¥, o Y, = Y4, for all 5, te R.
Indeed, for each s€ R and g € S, ¥,(¥,(q)) and ¥,..(g) both describe the
unique maximal integral curve of X through y,(gq). It follows that
Yo=Yy Yo © o Yy (composition k times), where the positive integer k
is chosen so that |t/k| < & But y,, is smooth by Theorem 4; hence, so is V/, .

O

Remark. It can be shown, further, that the map y: § x R — R defined by
¥(g, t) = ¥,(q) = () is also smooth, but we shall not need this fact.

Consider now the smooth tangent vector field grad h, where h: S > Risa
smooth function on the n-surface S = R"* 1. The integral curves of grad h are
called gradient lines of h (see Figure 13.4). If p € S is a critical point of h, then
(grad h)(p) = 0 so any gradient line a: I — S of h passing through p will be
simply a constant curve, a(t) = p for all ¢t € I. Along all other gradient lines, h



13 Convex Surfaces 103

Figure 134 Gradient lines of the height function h: S —» R, h(g) =g * .

is strictly increasing. Indeed, if a: I — S is any gradient line of  not passmg
through a critical point of A,

(- () = (grad A0 - #0) = [ AYG@)]* > 0

for all t € I. In fact, the gradient lines of h are the curves in S along which h
increases fastest among all curves in § with comparable speed (see Exercise
134).
A critical point p of a smooth function h: § ».R is non-degenerate if
V.(grad h) # O for all v € S,,, v # 0. Note that non-degenerate critical points
are isolated in that for each such critical point p there is an open set Vin §
about p such that V contains no other critical points of h. For otherwise
there would be a sequence {p,} of critical points of h converging to p and a
“ subsequence {p,} such that (p,, — p)/|lp, — Pl converges to a point v in the
unit sphere S; setting v = (p, v) it would follow, as in the proof of Theorem
2, that v e §, and that V (grad h) =0 (smoe (grad h)p,) = 0 for all k;) con-
tradxctmg non-degeneracy ‘

Lemma 1. Let S be a compact n-swface and let h: S — R be a smooth function
all of whose critical points are non-degenerate Then the gradient lines of h run
from one critical point of h to another; that is, if a: R— S is any maximal
gradient line of h. then there exist critical points p and q of h such that
lim,, _, a(t) q and lim,_, a(t) p (see Figure 13 4).

ProoF. Let «: R — S be a maximal gradient line of h. Since § is compact, the
sequence {a(k): k=1,2,...} has a convergent subsequence {x(t,)}. Let
p=lim, 'a(tk)‘ Then

h(p) — h(x(0) = 1 [h(a(s)) — h(aO)] |

= lim f (h o @) (t) dt

k- a0

= [ Igrad m)a@)I? dt
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so the integral [§ ||(grad h)((t))]|*> dt converges, which can happen only if
lim,, , ||(grad h)((t))|* = 0. In particular,

Ifgrad W) = lim [ (grad W)e(c)] =0

so p is a critical point of h.

We still must check that lim,_, ,, a(t) = p. But if not, there willbean ¢ > 0
such that, for each k, |a(s;) — p|| > & for some s, > t,. Since ||la(t;) — p|| < ¢
for k sufficiently large, this says that oft) enters and leaves the ball
{ge R"*!: ||g— p| <&} repeatedly as t— oo (see Figure 13.5). Since

=

o () o (5g)

Figure 13.5 If lim,., a(t) # p then « must repeatedly enter and leave the e-ball
about p = lim;_ o, a(t)

le(t) — p|| must equal ¢ for some t between ¢, and s, , we can choose s, so that
in fact ||a(s,) — p|| = & Since {g € S: | g — p| = &} is compact, the sequence
{a(s,)} has a subsequence converging to some point p, € § with
|py — p|| = & Since lim, ., s, = oo, the same argument that showed p was a
critical point of h also shows that p, is a critical point of h. Repeating this
construction with ¢ replaced by ¢/m leads to a critical point p,, € S of h with
| — p|| = ¢/m, for each positive integer m. But this contradicts the fact that
p is a non-degenerate, hence isolated, critical point of h. So, indeed,
lim,_, a(t)=p.

Consideration of the sequence {a(—k): k = 1, 2, ...} will yield in the same
way a critical point g of h such that lim,_, _,, a(t) = q. O

Theorem 5. Let S be a compact connected oriented n-surface in R**! whose
Gauss-Kronecker curvature is nowhere zero. Then

(i) The Gauss map N: S — S" is one to one and onto, and
(i) S is strictly convex.

PROOF. (i) By Theorem 6 of Chapter 12, the second fundamental form &, of
S at p is definite for all pe S. &, is either positive definite for all p or
negative definite for all p because the minimum and maximum normal cur-
vatures k, and k,, being continuous nowhere zero functions on the con-
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nected n-surface S, cannot change sign. By reversing the orientation on § if
necessary, we may assume that &, is negative definite for all p € S.

Now let u :S". By the d1scuss1on preceding Theorem 3, p € § is a critical
point of the height function h,:S— R, h,(q)=¢q-u, if and only if
N(p) = +u. Furthermore, since #, = u * N(p)¥,, N(p)= +uif and only if
h, attains a local maximum at p and N(p) = —u if and only if h, attains a
local minimum at p. In particular, all critical points of h, are non-degenerate,
hence isolated, and h, attains either a strict local maximum or a strict local
minimum at each one.

The fact that N is onto is now evident: given u € S" we find that u = N(p)
where p is any point where A, attains its maximum.

To see that N is one to one, let p be a point in S with N(p) = u. Then the
height function h, must attam a strict local maximum at p. We shall show
that the set

U,,’-_— {qges: lim (1) = p),

where a,: R— S is the mammal gradlent line of h, with aq(O) g,is an open
setinS.

First note that there exrsts an open set V inS about p such that all
gradient lines of b, which enter ¥, must run to p. Indeed, choose & > 0 small
enough so that

(1) pis the only critical point of h, in 4, ={g e §: |g - p| <&}

(2) h(p)> hyq) forallge 4,,q# p, and -
(3) B.={g € S: |g— p| = ¢} is non-empty,

et M, denote the maximum value of ‘h, on the compact set B,, and set
V,={qeS:|lqg—p| <eand h(q)>M¢} Then a gradient line « of h with
a(zo)e V, for some ¢, € R cannot have af(t) € B, for any t > t, (since h in-
creases. a.long ) and so «(t) must stay in A4, for all t > t,. a must therefore
run to a critical pomt in A, and p is the only one there.

The fact that U, is open now follows from the Corollary to Theorem 4.
Given any qo € U there will be a t, € R such that %g0(to) € V,. By continu-
ity of Yy, a,(te) = w,o(q) € V,,, and hence o, runs to p, for all q sufficiently
close to go. Thus U, is open in S.

“Finally, let {py, ..., p:} be the set of points in S where h, attains a local
maximum (i, where N(p;) = u) and let {g,, ..., ¢;} be the set of points
where h, attains a local minimum. These sets are finite because the critical
points of h, are isolated and S is compact. By the lemma, S — {g,, oo qy} is
the union of the mutually disjoint open sets U,,,, ..., U,,. But, since S is
connected, § — {qy, ..., q;} is also connected (see Figure 13.6), provided
n > 1, so this is possible only if there is just one p;; i.e., only if N is one to one.
The last step in the argument breaks down if n = 1, but Exercise 11.19 takes
care of this special case.
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Figure 13.6 A connected n-surface S (n > 1) cannot be disconnected by the removal

of a finite set of points: take a small ball about each point and reroute each contin-

uous curve from p to q around the boundaries of these balls. That the intersections of

sufficiently small balls with S are connected can be established rigorously by apply-
ing the inverse function theorem (see Chapter 15).

(ii) We have just seen that for each u € S" there is only one point p, € S at
which the height function h, attains a local maximum. The same arguments,
applied to — h,, show that there is only one point g, € S at which h, attains a
local minimum. Moreover, these two points are the only critical points of h,,.
Hence for each p € S the height function h,, where u = N(p), must attain
either its strict global maximum or its strict global minimum at the critical
point p. This says that S is strictly convex. O

EXERCISES

13.1. Show that if n is even and if the Gauss-Kronecker curvature at a point p of an
n-surface S = R"*! is negative then S is not convex at p.

13.2. Let S be an n-surface in R**1, let h: S — R be smooth, and let p € S be a critical
point of h. Show that the linear transformation from S, into itself which sends v
into V,(grad h) is self-adjoint.

13.3. Let V be a vector space with a dot product, let L: ¥ — V be a self-adjoint linear

transformation, and let 2 be the quadratic form associated with L.

(a) Show that 2 is positive definite if and only if all the eigenvalues of L are
positive.

(b) Show that, if V has dimension 2, then 2 is positive definite if and only if
(i) 2(v) > O for some v e Vand (ii) det L > 0.

(c) 2 is said to be non-degenerate if L is non-singular. Show that 2 is non-
degenerate if and only ifall the eigenvalues of L are non-zero. (Remark. Note
that a critical point p of a smooth function h: S — R is non-degenerate if
and only if the Hessian J, of h at p is a non-degenerate quadratic form.)

13.4. Let S be an n-surface in R"* ! and let h: § — R be smooth. Show that the curves
in S along which h increases fastest are the gradient lines of h by showing that if
a: [a, b} > S is an integral curve of grad h and B: [a, b] — S is any other curve
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Withl the same speed (| B()|| = ||&(¢)|| for all ¢ € [a, b]) and with (a) = a(a),
then h(x(b)) = h(B(b)). Show further that equality holds if and only if f = .

13.5. Let S be an n-surface in R"*! and let h: § - R be smooth. Show that the
gradient lines of h are everywhere orthogonal to the level sets of h; i.e., show
that if « is a gradient line of 4 and if B is any parametrized curve in § such that
h - B is constant, then B(t,) * &(to) = O whenever B(t;) = a(to).




Parametrized Surfaces

We have seen that every connected oriented plane curve C has a global
parametrization and that, using one, we can (i) find a useful formula for
curvature (x o a = &+ N o o/[|&]|?) and (ii) define various integrals over C.
We shall now carry out a similar program for n-surfaces (n > 1). It will turn
out that oriented n-surfaces (even connected ones) in general admit only
local parametrizations, but that will be adequate for our needs.

The first property that a parametrization must have is regularity. In order
to define regularity, we need the differential of a map. Let U be an open set in
R" and let ¢: U — R™ be a smooth map. The differential of ¢ is the smooth
map dp: U x R"— R™ x R™ defined as follows. A point ve U x R" is a
vector v= (p,v) at a point pe U. Given v, let a: I - U be any pa-
rametrized curve in U with &(to)=v. Then do(v) is the vector at
@(p) (do(v) € Ry, = R™ x R™) defined by

do(v) = ¢ ¢ alto)

(see Figure 14.1). Note that the value of dp(v) does not depend on the choice
of parametrized curve a, because '

@ & alte) = (@ ° a(to), (@1 ° a)(to), ---» (Pm © @) (o))
= (@(p), Vo (x(to)) * &(to), -- -, Vom(a(to)) - &(t0))
= (@(p), Vo.(p) * V. .., Vou(p) - V),

where the ¢, are the component functions of ¢ (¢(q) = (¢1(q), - --, Pm(q)) for
all g € U), so

do(v) = (¢(p), Vv@y, ..., V,0,)
108
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Image « Image goa
. -
o
e (p)
do(v)

F:gure 14.1 The differential of a map

This formula for do(v) not only shows mdependcnoe of « but also pro-
vides a strmghtforward method of « computmg dtp The smoothness of do is
also now evident.

It follows immediately from the above formula that the restriction do, of
do to R} is a linear map do,: R} — RS, . Its matrix relative to the standard
bases for R® and RT, is just the Jacobian matrix ((atp, /6x;)(p)) of ¢ at p.
Indeed, ife; = (p, 0, . , 0) and ¢} = (¢(p), 0, . ., 0) with the 1’s
inthe (j + l)th and (1 + 1)th spots respectively, then the ‘matrix (a;;)fordo,
is deﬁned by

dojle)=2 aei (e{l,....,n})
o | e ,

ay= d(op(ej) * ¢; = (o(p), V., 01, e V,l¢') .'e$
(o0} F20b . G ) 6= 320

‘The set U x R" = { J,.y R? is called the tangent bundle of the open set U
in R*, and is denoted by T(U). Thus the differential of the smooth map
@: U - R™ maps T(U) into T(R™). Similarly, if § is an n-surface in R**!its
tangent bundle is the set T(S) Upes S, = S x R"* 1. Given a smooth map
Q: S — R™, its differential is the map d(p T(S) - T(R™) defined by

do(v) = (o © a)(to)

where a: I — § is any parametrized curvein S with &(t,) = v. Note that dg is
just the restriction to T(S) of the differential ¢ of any smooth extension of ¢
to an open set in R**! and hence in particular do(v) is independent of the
choice of a. It follows also that the restriction dg, of d¢ to S,(pe S)is a
linear map do,: S, — Ry,,,. |

- Remark. For ¢: I - R, I an open interval in R, the symbol dp now has
two meanings. On the one hand, in Chapter 11 we defined dg, call it now
(do)V), to be a 1-form on I, so (dp)? is a smooth map from I x R into R.
Now we have defined do, call it (dp)®, to be a map from I x Rinto R x R.
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These two maps are related by the formula

(do)?(t, u) = ((t), ([de) (e, u))

and hence either can be recovered directly from the other. We shall continue
to use the notation d¢ for both; which of the two we mean will be clear in
context.

A parametrized n-surface in R"**(k > 0) is a smooth map ¢: U —» R"*%,
where U is a connected open set in R”, which is regular; i.e., which is such
that dg, is non-singular (has rank n) for each p € U. The regularity condi-
tion guarantees that the image of dg,, is an n-dimensional subspace of Rj(,;
for each p € U. Image d¢, is the tangent space to ¢ corresponding to the
point p € U. Note that ¢ need not be one to one, and that ¢(q) = ¢(p) for

q # p does not necessarily imply that Image d¢, = Image do,.
EXAMPLE 1. A parametrized 1-surface is simply a regular parametrized curve.

EXAMPLE 2. A parametrized n-surface in R" is simply a regular smooth map
from one open set U in R" onto another.

ExaMPLE 3. Let f: U—> R (U open in R") be a smooth function. Define
¢: U—R"*1 by ¢(p) = (p, f(p))- Then ¢ is a parametrized n-surface in R***
whose image is the graph of f.

EXAMPLE 4. Let ¢: U — R? be given by
¢(0, @) = (r cos 0 sin @, r sin 0 sin @, r cos ¢)

where U = {(6, #)e R*: 0 < ¢ <} and r > 0. Then ¢ is a parametrized
2-surface whose image is the 2-sphere of radius r in R*, with the north and
south poles missing (see Figure 14.2). Note that ¢ is not one to one; in fact,
@ wraps the strip U in R? around the sphere infinitely many times. The
north and south poles are excluded from Image ¢ because dg, is singular

Figure 14.2 Spherical coordinates.
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along the edges ¢ =0 and ¢ = = of the strip U. When —=n <0 <=, the
numbers 6 and ¢ are called the spherzcal coordmates of the point ¢(6, ¢)
on the sphere.

ExaMPLE 5. Let L: R" —» R*** (k > 1) be a non-singular linear map and let
w e R"** The map ¢: R" - R"** defined by

o(p)= L(p) +w

is a parametrized n-plane through w in R"**. Note that

do,(p, v) = (¢(p), L(v))
for all (p, v) € R}, p € R", since if at) = p + tv then &(0) = (p, v) and

@2 2)0)=(0 - 20, | @6+ 1)+ )

(o) 2] o)+ ey + )

= (o(p} LO))

EXAMPLE 6. Let ¢: U —» R"**(U < R") be a parametrized n-surface in R"*k,
The cylinder over ¢ is the parametrized (n + 1)-surface ¢: U x R— R"*** 1
defined by | |

(ula' 9un+1) (‘p(ul" vy “n): un+l)’ (ub-”, un)e U) “n-’-le R
(see Figure 14.3).

AX3

Figure 143 The cylinder over a parametrized curve ¢.

ExaMpLE 7. Let a: I » R? be a regular parametrized curve in R?, I open in R,
whose image lies above the x;-axis; i.e., y(t) > O for all ¢ € I where a(t) =
(x(¢), y(t)). Define 9: I x R— R3 by

@(t, 0) = (x(t), y(t) cos 6, y(t) sin 6).
@ is the parametrized surface of revolution obtained by rotating « about the
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Image ¢ where ¢ (¢, 8) =
(sinh ¢, cosh t cos 6,
cosh ¢ sin 6)

X2

Figure 144 The parametrized hyperboloid of revolution obtained by rotating the
parametrized curve a(t) = (sinh ¢, cosh t) about the x,-axis.

x,-axis (see Figure 14.4). Note that ¢ wraps the strip I x R around Image ¢
infinitely many times. -

ExAMPLE 8. Let a > b > 0 and define ¢: R? > R? by
(0, ) = ((a + b cos ¢)cos 6, (a + b cos ¢)sin 6, b sin @).

A comparison with Example 7 with the axes interchanged (x; — X3, X; = X,
X3 — X, ) shows that ¢ is the parametrized surface of revolution obtained by
rotating the parametrized circle

a(¢) = (a + b cos @, b sin ¢)

in the (x;, x3)-plane about the x,-axis. ¢ is a parametrized torus in R? (see
Figure 14.5). Note that the parametrized torus is doubly periodic. In fact,
@(0 + 2k, §) = 9(6, ¢ + 2kn) = (0, ¢) for all (6, ) € R k € Z. Hence

A X3
X2 0(8,9)
¢
“
c’ 7
/
K”A_ 8 .
X
¥ | | 1
I
J |
| ]
| |
a ! b :
e e s

Figure 14.5 A parametrized torus in R>.
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[ Y/
¢ =27
J glue
—_— glue
N2
$=0 9=0 0= 2n

Figure 14.6 Glueing a torus from a square.

each point of Image ¢ corresponds to a unique point (6, ¢) € R? with
0 <6 <2n and 0 < ¢ <2z Image ¢ can be viewed as obtained by taking
the square {(6, ¢) € R?*: 0 < 0, ¢ < 2z}, glueing the point (6, 0) to the point
(6, 2r) for each 0 € [0, 2] to get a cylinder and then glueing the ends of the
cylinder by glueing the point (0, ¢) to the point (2, ¢) for each ¢ € [0, 2x]
(see Figure 14.6).

ExXAMPLE 9. Let ¢: R* » R* be defined by

@(6, ¢) = (cos 6, sin 0, cos @, sin ).

This example is similar to Example 8 in that ¢ is doubly periodic and
Image ¢ can be visualized as the square with opposite edges identified.
Another way of visualizing Image ¢ is to observe that

Image ¢ = {(p, q) € R? x R%: p = (cos 0, sin ) for some 6,
q = (cos ¢, sin ¢) for some ¢}.

Thus Image ¢ is the Cartesian product of two circles, the unit circle in the
(x1, x,)-plane and the unit cycle in the (x;, x,)-plane, in R*. ¢ is called a
parametrized torus in R*.

ExAMPLE 10. Let ¢: I x R - R® be defined by

ot 0)= ((l +t cos g)cos 0, (1 +t cos g)sin 8, t sin g)
where I = {t e R: —} <t <}}. Then Image ¢ is the Mobius band (Figure
5.3). Note that the curves t— ¢(t, 6) (6 fixed) are straight line segments
centered on the unit circle in R? and making an angle 6/2 with the
(x4, x,)-plane. The curves 6+ @(t, 0) (¢ fixed) are periodic, with period 2= if
t = 0 and period 4 if ¢ # 0.

Now let ¢: U— R"** be any smooth map, U open in R". A vector field
along ¢ is a map X which assigns to each point p € U a vector X(p) € R}(,}.
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U X(p)

(] »
? ¢ L
ﬂ Image do,

¢ (p)

Figure 14.7 A normal vector field along a parametrized 2-surface in R3.

X is smooth if it is smooth as a map X: U — R2"*Y; that is, if each
X;: U—- R is smooth on U, where X(p) = (¢(p), X1(p), --., X, +i(p)) for
p € U. The vector field X is tangent to ¢ if it is of the form X(p) = do,(Y(p))
(p € U) for some vector field Y on U; X is normal to ¢ if X(p) L Image do,
for all p € U (see Figure 14.7).

For ¢ a parametrized curve, the velocity field ¢ is a tangent vector field
along ¢ since ¢(t) = do,(t, 1) for all ¢. The velocity field generalizes as fol-
lows. For ¢: U — R"** a smooth map, U open in R", let E; (i€ {1, ..., n})
denote the tangent vector fields along ¢ defined by

E(p)=do,p.0,...,1,...,0)

where the 1 is in the (i + 1)th spot (i spots after the p). Note that the
components of E; are just the entries in the ith column of the Jacobian
matrix for ¢ at p:

E0)= (o) 220)) = (o60) 222 p) ... 22 )

where ¢(p) = (@1(p), - .., @a+x(p)) for p € U. The E, are called the coordinate
vector fields along ¢. Note that E,(p) is simply the velocity at p of the
coordinate curve u;— @(u,, ..., u,) (all u; held constant except u;) passing
through ¢(p) (see Figure 14.8). When ¢ is a parametrized n-surface (i.e.,
when ¢ is regular) these vector fields are linearly independent at each point
p € U, since do, is non-singular, and so they form a basis for the tangent
Image do, for each pe U.

For ¢: U - R"** a smooth map, U open in R", and X a smooth vector
field along g, the derivative V, X € R}(,} of X with respect tov e R}, p e U, is
defined by

vX= (o) 5| (xo )
= ((P(P), Vva s VvXn+k)

where X is the vector part of X (X(q) = (¢(q), X(q)) for ge U), « is any
parametrized curve in U with a(t,) = v, and the X;: U — R are the compo-

to
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}¢- constant

YYyYVvy
<

=)
Y

i, m——’
8 = constant

Figure 14.8 Coordinate curves on the parametrized 2-sphere (north and south
poles deleted.) ¢(6, ¢) = (cos 8 sin ¢, sin 8 sin ¢, cos @).

nents of X (X(g) = (o(g), X1(q) ---» Xnss(q)) for g€ U). Note that, when
v=¢=(p0,...,1,...,0), we have

o X X, F) o ) ‘
vx=(oth Z o)) = (ot L2 p1.... Fr2 )

Suppose now that ¢: U— R**! is a parametrized n-surface in R**1.
Then, for each p € U, let N(p) denote the unique unit vector at ¢(p) such that
N(p) L Image dg, and S

E,(p)
det E,,(p) >0
N
where the function det is defined as in Theorem 5 of Chapter 12. Then Nisa

smooth unit normal vector field along ¢ (Exercises 14.8 and 14.9). N is called
the orientation vector field along ¢. The linear map

L,: (Image do,) (Image dp,) -
defined by , ‘ .
a Lido,)= ~%.N ~
is the Weingarten map at p € U of the parametrized n-surface ¢: U —» R**1.
(Note that L, is well defined because dg, is one to one.) L, is self-adjoint
(Exercise 14.11). Its eigenvalues and unit eigenvectors are called the principal
curvatures and principal curvature directions of ¢ at p. Its determinant is the

Gauss-Kronecker curvature of ¢ at p (Gaussian curvature when n =2) and
1/n times its trace is the mean curvature of ¢ at p.

EXAMPLE. Let ¢ be the parametrized torus in R*:
0(0, ¢) = ((a + b cos ¢) cos 0, (a + b cos ¢)sin 6, b sin ¢)
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(Figure 14.5). The coordinate vector fields along ¢ have vector parts
E6, ¢)= %% = (a + b cos ¢)(—sin 6, cos 6, 0)
and
do . . .
E,(0, ¢)= % = b(—sin ¢ cos 0, —sin ¢ sin 6, cos ¢).

The orientation vector field N along ¢ has vector part

E,(6, ¢) x E,(6, ¢)
IE1(6, ¢) x E2(6, ¢)

= (cos 6 cos ¢, sin 0 cos ¢, sin ¢).
Hence, for p = (0, ¢) € R?,

L,(E4(p)) = Ly(de,(p, 1,0)) = =V, 1,0N = — (¢(p)’ g_];’)

= —(¢(p), —sin 6 cos @, cos 8 cos ¢, 0)

cos ¢

=_a+bcos¢El(p)

N, ¢) =

and

L&) = - (o0} Z5)

= —(@(p), —cos 0 sin ¢, —sin 0 sin ¢, cos ¢)

= - %Ez(l’)‘

Therefore E,(p) and E,(p) are eigenvectors of L,. The principal curvatures
are —(cos ¢)/(a + b cos ¢) and — 1/b. The Gaussian curvature is K(6, ¢) =
(cos @)/b(a + b cos ¢). Note that K >0 on the “outside” of the torus
(—7/2 < ¢ <m/2), K <0 on the “inside” (n/2 < ¢ < 3m/2), and K =0 on
the “top” (¢ = n/2) and on the “bottom” (¢ = —n/2) (see Figure 14.9).

Figure 149 Gaussian curvature of a torus.
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EXERCISES

14.1.

14.2.

143.

144

14.5.

14.6.

14.7.

Let S, be an n-surface in R"** and let §, be an m-surface in R™*1. Suppose
¢:8;—»R"*! is a smooth map such that ¢(S;)< S;. Show that
do: T(S,) > T(S2)

Let ¢: U; - U, and ¢: U, - R* be smooth, where U, = R* and U, = R™.
Verify the chain rule d(y - @) = dij - dop.

Verlfy that each of Examples 3 through 10 above satisfy the required condi-
tion.that do, be non-smgulax for each p € domain ¢.

Find the general formula describing the parametnzed surface obtained by
rotating about the x-axis a parametrized curve in the (x4, x3) plane. Verify
that the parametrized surfaces of Examples 4 and 8 above are of this type.

Define ¢: U — R*, where U ={(¢,0,¥): e R, 0<0<m 0<y <m}, by
(p(¢,0 ul/)c(sin¢sin,esin¢,cos¢sin6sinn/f cos 0 sin y, cos ).

(a) Verify that o is a parametrized 3-surface in R*.
(b) Show that the image of ¢ is contained in the unit 3-sphere in R*.

(¢, 6, and y are spherical coordinates on S°.)

Let ¢:U-R'*! be a parametrized n-surface 'in R**! and let
p=1(ay, ..., ans2) € R"*%, where a4, % 0. Define y: U x I > R"*? where
I={teR:0<t<1}by

Yty s tarr) = (1 — tys g )P+ tus 1@ty ... ), 0)

(see Figure 14.10). Show that Y isa paramemzed (n + 1)-surfacein R**2, (Y is
the cone over @ with vertex p.)

Figure 14.10 A cone over a parametrized curve a.

1
Let X be a smooth vector field on R*** and let ¢: U — R"** be a smooth map,
U open in R". Show that

VX o @)=V X
for all ve T(U).
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14.8.

14.9.

14.10.

14.11.

14.12.

14.13.

14.14.

In

14 Parametrized Surfaces

Let ¢ be a parametrized 2-surface in R3.

(a) Show that the orientation vector field N along ¢ is given by
El x Ez

|IEy x E, ||

where E, and E, are the coordinate vector fields along ¢.
(b) Conclude that N is smooth.

N=

Let ¢: U - R"*! be a parametrized n-surface in R***. Let X be the vector
field along @ whose ith component is (—1)"**** times the determinant of the
matrix obtained by deleting the ith column from the matrix

E,
E,

where the E; are the coordinate vector fields of ¢. (Note that this matrix is just
the transpose of the Jacobian matrix of ¢.)

(a) Show that X(p) # 0 for all pe U.

(b) Show that X is a normal vector field along ¢.

(c) Show that N = X/||X| is the orientation vector field along ¢.
(d) Conclude that N is smooth.

Let g: U> R be a smooth function on the open set U in R” and let
@: U— R"*! be defined by @(uy, ..., Us) = (U1, ..., Us, gUy, ..., 4s)). Show
that the orientation vector field along ¢ is given by

NE = (o0 - 22 0) - 01 |1+ £ (22 o))"

Show that the Weingarten map at each point of a parametrized n-surface in
R"*1 is self-adjoint.

Let ¢: U—>R"** be a parametrized n-surface in R"**  Show that
do: U x R" = R"™* x R"** is a parametrized 2n-surface in R*"*2~,

Let ¢: U~ R"** be a parametrized n-surface in R*** Let E; denote the
coordinate vector fields along ¢ and let ¢;= (p,0,..., 1,...,0) for pe U.
Show that V., E; = V,E, for all i and j.

Let ¢ be a parametrized n-surface in R"**. Show that the Gauss-Kronecker
curvature of ¢ is given by the formulas

K(p) = det[L,(E«p)) - E/(p)] _ det[(V,E;) - N(p)]
det[Ei(p) - E;(p)] det[Eq(p) - E;(p)]

where the E; are the coordinate vector fields along ¢, and
€ = (p, 0, veey 1, ey 0)

Exercises 14.15-14.18, find the Gaussian curvature of the given pa-

rametrized 2-surface ¢.

14.15.

@(0, ¢) = (a cos 0 sin ¢, a sin 0 sin @, a cos @) (sphere)
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14.16.
14.17.
14.18.
14.19.

14.20.

o(t, 8) = (cos 9, sin 8, t) (right circular cylinder)

o(t, ) = (¢ cos 0, ¢ sin 6, 0) (helicoid)

o(t, 6) = (sinh t, cosh ¢ cos 8, cosh ¢ sin @) (hyperboloid).

Find the Gauss-Krdnecker curvature of the parametrized 3-surface ¢, where
o(x, y, z) = (x, y, z, x2 + y* + z?) (3-paraboloid in R*).

Let ¢: I x R— R® be the parametrized surface of revolution obtained by
rotating the parametrized curve a(t) = (x(t), y(t)) (v(t) > 0 for all ¢ € I) about
the x,-axis. Thus

o(t, 6) = (x(t), y(t) cos 8, y(t) sin 9)
forte Iand 0 e R.

" (a) Show that the Gaussian curvature of ¢ is given by the formula

14.21.

_ xr(xnyl - xlyll)
=42 1 w2V
Y2 +y%

(b) Show that if o has unit speed this formula reduces to K = —y"/y.
Let a(t) = (x(t), y(t)), where

x(t) = 'J:\/l —e Fdy, (t>0)

ye)=e>,  (£>0)

and let @ be the parametrized surface of revolution obtained by rotating a
about the x,-axis. ‘ : :

(a) Show that a has unit speed.
(b) Show that o has the property that for each ¢ > 0 the segment between a(t)

Figure 14.11 A pseudosphere.
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and the x;-axis of the tangent line to « at a(t) has constant length 1.
(Hence Image o will be traced out by the end of a taut string one unit in
length, initially vertical with the other end at the origin, being pulled
along the x,-axis.)

(c) Show that ¢ has constant Gaussian curvature K = — 1. (¢ is called a
parametrized pseudosphere in R3; see Figure 14.11).



Local Equivalence of
Surfaces and Parametrized
Surfaces

In this chapter we shall establish two theorems which show that, locally,
n-surfaces and parametrized n-surfaces are the same. In order to do this, we
will need to use the following theorem from the calculus of several variables.

Inverse Function Theorem. Let U be an open set in R"*!,let : U— R"*! be
smooth, and suppose p € U is such that s , is non-singular. Then there exists
an open set V < U about p such that the restriction y |y of Y to V maps V one
to one onto an open set W in R"*!, and moreover the inverse map
W) t: WV is smooth.

A proof of this theorem may be found in Fleming’s Functions of Several
Variables (Second Edition, Springer-Verlag, 1977). Note that, since the
matrix for dy, with respect to the standard standard bases for R}*! and
Ry, is the Jacobian matrix J,(p) of ¥ at p, the condition that dy, be
non-singular says simply that det J,(p) # 0.

Theorem 1. Let S be an n-surface in R*** and let p € S. Then there exists an
open set V about p in R"*! and a parametrized n-surface ¢: U —» R"*1 such
that ¢ is a one to one map from U onto V n S (see Figure 15.1).

PRrOOF. Let f: U; » R (U, open in R"*!) be a smooth function such that
S=f"c) for some ceR and Vf(g)#0 for all geS. Choose
ie{l,...,n+ 1} such that (3f/dx;)(p) # 0. Such an i exists since V( (p) #0.
Deﬁne W Ul e Rn+1 by l//(xi’ (R xn+l) = (xl’ ey Xieq,s f(xla (AR ] xn+l)a
Xit+1s ---» Xn+1) Thus ¢ maps level sets of f into hyperplanes x; = constant,
and in particular  maps S into the hyperplane x; = ¢ (see Figure 15.2). The
Jacobian matrix J,,(p) is just the identity matrix with the ith column replaced
by the components of Vf(p). Hence det J,(p) = (9f/0x;)(p) # 0. So, by the
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/)

ynsS= ¢ ((U)

Figure 15.1 A parametrization of a portion of an n-surface.

inverse function theorem, there exists an open set V; < U, about p such that
Y maps V; one to one onto an open set W, about y(p), and
(W y,)"': Wy V, is smooth. For each j e {1, ..., n + 1}, choose a;, b; € R
with g; < b; such that

W ={(xy, ..., Xps1): @; < x; < b; for all j}
is a subset of W, and y(p) € W. Finally, let V = (¥ |,,)” (W), let
U={uy,....,u,)e R a;<u;<b;forj<i
and a;,; <u;<bj,, forj>i},
and define ¢: U — R"*! by (see Figure 15.2)
Oy, . ) =W ly) Yy o os Uim gy € Uy, ., ).
¢ is the required parametrized n-surface. |
Remark. Note that the parametrized surface ¢ of Theorem 1 can be

chosen so that the orientation vector fields N of ¢ and N° of S agree; that is,
so that N*(q) = N°(p(g)) for all g € U. Indeed, Image do, = S, for all

Ax v.oos=r Ax
w Xj=¢
T A
‘T A= 7
Xnil i1 byey XTH
yaivg by yaig

X, X1

Figure 152 The map ¥ |, maps the level set V ~ f~!(c) onto the intersection with
W of the hyperplane x; = c.
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q € U since Image ¢ < §,50 N°(p(g)) L Image do, for allg € U. Moreover,
the function g: U — R defined by

Ns(fn(q))

is continuous and nowhere zero. Since U is connected, g is either positive
everywhere or negative everywhere. If g(g)>0 for all ge U then
N® = N%0¢. If g(q) < 0 for all g€ U then N* = —N%o ¢, so if we replace
@ by the parametrized n-surface ¢: 0 — R**! defined by

q.’(uh Uz, U3, ""u’!)=¢(u1’ Uy, Uz, -- oy un)
we will have N* = N% o . Here,

'U={(u,,u2;u3,. o ) € R™: (uy, g, us, ..., u,) € U

A parametrized n-surface @ U R whose image is an open subset of
the oriented n-surface S and whose orientation vector field agrees with that
of § (i, N*=N®. ¢) is called a local parametrization of S. Theorem 1
guarantees the existence of a one to one local parametrization of S whose
image is an open set in S about any given pomt of §. The inverse ¢~ ! of such

a parametnzaﬁon @: U - S'is often called a chart because through ¢! the
~ region Image ¢ < § is “charted” on U < R", ;ust as a region of the earth is
charted on a topographxc or political map. ¢~ * is also sometimes called a
coordinate system because through ¢ ~* each point p € Image ¢ corresponds
to an n—tuple of real numbers, the coordmates of P

Examzi Let¢bethemapfromthcopmsquare0<0<21c,0<¢<21z
into R* defined, fora>b>0 by

¢(o ¢)= ((a+bcos¢)cos0 a+bcos¢)sm9 b sin ¢).

4 X3

2n

2z

Figure 153 ¢! is a chart on the portion of the torus obtained by deleting two
circles (0 =0 and ¢ =0.)
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Then ¢! is a chart on the torus (\/x} + x3 — a)* + x3 = b?, with two
circles deleted (see Figure 15.3).

EXAMPLE 2. Let ¢ map the open rectangle 0 < 6 < 27,0 < ¢ < minto R* by

@(60, ¢) = (cos 8 sin ¢, sin 0 sin ¢, cos ¢). Then ¢~ ' is a chart on the unit
sphere S? with a semi-circle deleted (see Figure 15.4).

X3

X2

Y

2n

X1

Figure 154 Spherical coordinates define a chart on the portion of the sphere S
obtained by deleting the semi-circle # = 0,0 < ¢ < 7.

EXAMPLE 3. A chart whose domain is the unit sphere with only one point
deleted, and which is easily described for spheres of arbitrary dimension, is
given by stereographic projection. Let S’ denote the unit n-sphere in R*1
and let g = (0, ..., 0, 1) denote the “north pole” of S". Let ¢: R" — S" be the
map which sends each p € R” into the point different from g where the line
through (p, 0) € R*** and q cuts S (see Figure 15.5).

Since a(t) = t(p, 0) + (1 — t)g = (tp, 1 — t) is a parametrization of the
line through (p, 0) and g, and since [a(t)| =1 if and only if t=0 or
t =2/(|p||* + 1), the map ¢ is given by the formula .

O(qyoeer Xp) = (X145 oevy 2%, X3+ 0 + X7 — D/(x3 + - +x2+1)

N

Figure 15.5 Stereographic projection.
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The map ¢ is a parametrized surface which maps R one to one onto
$" — {g}. The chart ¢~ ! is called stereographic projection from S" — {g} onto
the equatorial hyperplane. Note that ¢ leaves the equatonal (n — 1)-sphere
fixed, maps the unit ball {(x,,..., x,) € R": x} + -+ + xZ < 1} onto the
“southern hemisphere” {(x,, Cees x,,ﬂ) €8 Xppy < 0}, and maps the exte-
rior {(xy, ..., X,) € R": x} + -+ + x2 > 1} of the unit ball onto the “northern
hemlsphere {(x15 .5 Xn4+1) € S": X, 41 > O} with the north pole deleted.

'nleoremZ. Let ¢: U—» R'*! bea paramemzed n-swface in R**! and let
p € U. Then there exists an open set U, c U about p such that o(Uy)is an
n-surface in R"*t.

PROOF. Define y: U x R— R**! by ¥(g, s) = olq) + sN(q), where N(q) is
the vector part at g of the orientation vector field along ¢. Then

J,.«(p,m—é( 1,60) Nw) ( m; = Eﬁj(p)f ng))

is the matrix whose columns are the vector parts at p of the coordinate
vector fields E; and of the unit normal vector field N. Hence the columns of
Jy(p, 0) are linearly independent and det J,(p, 0) # 0. By the inverse func-
tion theorem, there exists an open set ¥V < U x R about (p, 0) such that the
restriction ¥}, of ¥ to V maps ¥ one to one onto the open set y(V), and
(¥ |y)~ ! is smooth. By shrinking V if necessary, we may assume V = U, x I
for some open set U, = U containing p and some open interval Ic R "
containing 0 (see Figure 15. 6). . Now define f:Imagey|y - R by
fWle, S)) =s; ie, f(p(g) + sN(g)) = s. Thus £ (¥(g, 5)) is the perpendicular
distance from ¥la, 5) to Image ¢. f is well defined and is smooth because fis
the composition of the smooth map. (M )~! with the projection map
U, x I I. The level set f ~*(0) is just o(U,) because

f7H0)={¥(g,5): ge Uy, s =0} = {plg): g € U,}:

() =¥ 0
%) Tmage o

T [

N |
(p, 0)
Figure 15.6 The inverse function theorem applied to a parametrized 1-surface ¢.
The straight lines in (V) are the lines B,(s) = ¢(g) + sN(q) (q fixed). The transverse

1-surfaces are the images of the maps ¢,: U, — R? given by ¢,(q) = ¢(q) + sN(q)
(s fixed).
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Finally, Vf(z) # O for z = y(g, 0) € f ~(0) because, letting a(s) = Y(q, s) =
o(q) + sN(g), we have

V/(2)- Nig) = Vf(@(0)) - 4(0) = (1 * a(0) = 1 0.
Thus ¢(U,) = f~!(0) is an n-surface in R"**. O

Theorem 1 says that about each point p of an n-surface Sin R"*! there is
an open set V such that S n V is the image of a one to one parametrized
n-surface. Theorem 2 says that about each point p in the domain of a
parametrized n-surface ¢ on R"*! there exists an open set ¥ such that
Image (¢ |) is an n-surface. Whenever a subset S of R**! is described both
as an n-surface S =f"!(c) and as the image of a parametrized n-surface
¢: U R"*! with N°(p) = N5(¢(p)) for all p € U, then ¢ and S have the
same geometry at each point:

(i) The Weingarten map L of ¢ at p € U is the same as the Weingarten

map LS, of S at ¢(p) because, for v e R,

L{(do(v)) = —V,N? = —V,(NSc @) = —(N® o ¢ - a)(to)
=-V, =a(to)Ns = —Vipm) N° = Lﬁ,(,,,(d(p(v))

where a: I - U is such that a(ty) = v.

(ii) The principal curvatures, Gauss-Kronecker curvature, and mean cur-
vature of ¢ at p € U are equal to the corresponding quantities for S at (p)
since all are computed directly from the Weingarten map.

Remark. Theorem 2 establishes that if ¢ is a parametrized n-surface in
R**! then, locally, Image ¢ is an n-surface; that is, a level set of a real valued
function f with non-vanishing gradient. A natural question is whether a
similar statement can be made about Image ¢ where ¢ is a parametrized
n-surface in R"**, The answer is affirmative. The statement is the same, with
n-surface in R"** defined as follows.

A surface of dimension n, or n-surface, in R"**(k > 1) is a non-empty
subset S of R"** of the form S = f~!(c) (c € R*) where f: U - R* (U open in
R"**) is a smooth function with the property that df, has rank k for each
p € S. Since the matrix for df, with respect to the standard bases for R}**
and R, is just the Jacobian matrix of f, whose columns are the vector parts
of the gradient vectors Vfi(p), where f(q) = (f1(q), .--, /(q)), g € U, this
definition can be rephased as follows: an n-surface in R"** is a non-empty
subset of R"** of the form

k
S=fillc)n - nfilla)= ‘le,fl(ci)

where the f;: U—> R (U open in R***) are smooth functions such that
{Vfi(p), ..., Vfi(p)} is linearly independent for each p € S (see Figure 15.7).
Thus an n-surface in R"** is the intersection of k (n+k— 1)-surfaces which
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f-l (Cl)

f ey

Figure 157 A l-surface S in R® is the intersection f~(c;) N f~'(c;) of two
2-surfaces.

meet “cleanly” in the sense that the normal directions are linearly indepen-
dent ‘at each point of the intersection.

 The tangent space S, at p € S to ann-surface § = ﬂf,, fiY(c;)in R"**is
the set of all vectors in R** of the form d(t,) where a is any parametnzed
curve in S with a(to) p- “Thus

=[fi'c)l o (fk_l(ck)]p
={ve Ry : Vfi(p)-v=0forie{l,...,n}}

The k-dimensional subspace S; of R,** spanned by the vectors
- {Vfilp), .. ‘Vf,(p)} is the normal space to S at p (see Figure 15.8). -

Exampie 1. A 1-surface in R® is usually called a space curve (see
Figure 15.8).

EXAMPLE 2. Igt fii R* > R(i € {1, 2}) be defined by
' Sfilxy, x2, X3, X4) = x3 + x3

fZ(xls X2, X3, x4)= x§ +x2

normal space at p

tangent space at p

Figure 15.8 The tangent space and the normal space at a point p of a 1-surface
(space curve) in R®.
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Then S =f7(1) n f5(1) is a 2-surface in R* (a torus). Note that S is the
Cartesian product of the unit circle in the (x;, x,)-plane and the unit circle in
the (x3, x4)plane. S=Image ¢, where ¢ is the parametrized torus
described in Example 9 of the previous chapter.

Remark. Just as the concept of n-surface in R"*! as defined in Chapter 4
was not general enough to include surfaces like the Mobius band, the
definition of n-surface in R"** given in this section is not general enough to
include all subsets of R"** which might be called n-surfaces. The surfaces of
Chapter 4 were “ orientable” surfaces, so called because each such surface
could be oriented by a choice of smooth unit normal vector field. The
n-surfaces in R"** of this chapter are “normally frameable” n-surfaces, so
called because each such surface can be “normally framed ” by a choice of k
smooth normal vector fields which form a basis for the normal space at each
point of S. We shall not in this book consider more general types of surfaces.

Remark. We have defined a map from an n-surface S ¢ R**! into R* to
be smooth if it is the restriction to S of a smooth function defined on some
open set in R"*! containing S. Using local parametrizations we can now give
an alternate characterization of smoothness.

Theorem 3. Let S be an n-surface in R** ! and let f: S — R*. Then fis smooth if
and only if f o ¢: U — R¥ is smooth for each local parametrization ¢: U — §.

Proor. If fis smooth then f o ¢ is smooth for each ¢ since it is a composition
of smooth functions.

Conversely, suppose f - ¢ is smooth for each local parametrization ¢ of S.
We must construct a smooth extension f of f to an open set V in R"*!
containing S. For each p € S, let ¢,: U, — S be a local parametrization of S
whose image contains p and let y,: U, x R— R**! be defined by y,(¢, 5) =
©,(q) + sN(¢,(q)), where N is an orientation on S. Then, as in the proof of
Theorem 2, we can find an open set ¥, about (¢, !(p), 0)in U, x R such that
/8 lv maps V, one to one onto an open set W, in R"*!, and
W, |V )~': W, - V, is smooth. Furthermore, by shrinking V if necessary, we
may assume that tp,,(q, s)e S for (g, s) € V,, if and only if s = 0. Now if we
define f,: W, - R* by 7,(¢,(q) + sN(¢,(q ))) f ((p,,(q)) we will have con-
structed a smooth extension f, = (f o @,) o wo (Y, )" of flw, s to the
openset W,in R"* 1. Here, (g, s) = g. We would like to, piece these extensions
together to get a smooth extension of f deﬁned on the open set | J,.s W,.
We can do this provided 7, =7,, on W, n W,,, for all p;, p, € S. But th1s
may not be the case (see Figure 15.9). If, however, for each p € § we choose
&, > 0 so that the ball of radius 2¢, about p is contained in W, and set
B, = the ball of radius ¢, about p then

‘pp,(‘h) + slN((pm(ql» = (ppz(qZ) + P N(‘sz(‘lz))
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Figure 159 Construction of a smooth extension.

can’dnly happena for (qls Sg) € (wpl lV”)- l(Bm)and (‘12 ’ Sz) € ('//pz IV’Z)— I(sz)Y
when ¢, (q:)= ¢p,(q2) and s;=s;. It follows that a function

. 7:Upes B, — R* can be defined by 7(¢,(a) + sN(®,(a))) = f (#,(¢)) and that
this function is a smooth extension of f. O

For f: S — R' a function defined on an n-surface S in R"** we can define

smoothness of f either by the requirement that f be the restriction to § of a

~ smooth function defined on some open set in R"** containing S or by the

requirement that f o ¢ be smooth for each local parametrization ¢ of S.

These two requirements on f are equivalent by an argument analogous to
that in the proof of Theorem 3. ,

~ A smooth map f with a smooth inverse is called a diffeomorphism. Thus,

for example, the local parametrization @: U — S constructed in the proof of

Theorem 1 is a diff.omorphism from the open set U = R**! onto the open

set V.~ S about p in S.

Theorem 4. (Inverse Function Theorem for n-surfaces). Let S and S be n-
surfaces, let yr: S— 8 be a smooth map, and suppose p € S is such that
dy,: S, 8,y is nonsingular. Then there exists an open set V about p in S and
an open set W about y(p) in § such that |, is a diffeomorphism from V onto
w. '

PROOF. Let ¢,: U; — S and ¢,: U, —»§ be one to one local parametriza-
tions of S and §, with p € ¢;(U,) and y(p) € ¢,(U;), constructed as in the
proof of Theorem 1. Then ¢;'cy o¢,:U;—»>U, is smooth and
d(@31 o ¥ o @1)pr 1y = (@7 Nyipy © AWy © (d01)p; 1y is Monmsingular so, by
the inverse function theorem for R”, there exists an open set|V; < U,
containing ¢ !(p) such that (¢5* o ¥ o @, )|y, is a diffeomorphism from V;
onto an open set W; c U, containing @3 * o y/(p). Set V = ¢,(V;) and W =
@2(Wy). Then Y|y = @3 o (93 ° ¥ © @) ° o1 !|y is a diffeomorphism from V
onto W. O
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Corollary. Let S be a compact connected oriented n-surface in R"*! whose
Gauss-Kronecker curvature is nowhere zero. Then the Gauss map N: S — S is
a diffeomorphism.

PrOOF. By Theorem 5 of Chapter 13, N is one to one and onto, so we need
only check that N~ is smooth. But for each p € Sand v € S,,dN(v) has the
same vector part as V,N = —L,(v) and this can be zero only when v =0
since, by Theorem 6 of Chapter 12, the second fundamental form &, of § at
p is definite. Applying Theorem 4 we conclude that N~ ! is smooth on an
open set about each point of $" and, by Theorem 3, this is sufficient. [J

EXERCISES

15.1. Letg=(0,..., 0, —1)denote the “south pole” of the unit n-sphere S". Find a
formula for the parametrized n-surface ¢: R" - S* — {g} which is the inverse
of stereographic projection from S" — {gq} onto the equatorial hyperplane
Xp+1 = 0.

15.2. Find a formula for the parametrized n-surface ¢: R" - S" — {g} where g is the
north pole (0,...,0, 1) of the unit n-sphere S" and ¢! is stereographic
projection from S” — {g} onto the tangent hyperplane x,,; = — 1 at the south
pole (0, ..., 0, —1). [Thus, for p € R", ¢(p) is the point of S" different from ¢
which lies on the line through g and (p, —1) e R**1]

153. Let ¢: U - R**! be a parametrized n-surface in R"*1, let y: U x R > R"*!
be defined by ¥(q, s) = @(q) + sN(q), let V = U, x I be such that y|, has a
smooth inverse, and let f'(Y(q, s)) = s, as in the proof of Theorem 2.

(a) Show that the level sets f ~!(c) (c € I) are everywhere orthogonal to the
lines B,(s) = ¢(q) + sN(q) (g€ U, fixed). [Hint: Note that each pa-
rametrized curve in f~!(c) is of the form ¢ o a + ¢N o o where « is a
parametrized curve in U,.]

(b) Show that Vf(z) = (z, N(q)) for z = ¥(q, s) € Y(U, x I).

154. Show that in Theorem 2 it is not sufficient to simply restrict the domain of ¢
to an open subset U; of U on which ¢ is one to one in order to ensure that
Image ¢ is an n-surface in R"*!: exhibit a one to one parametrized 1-surface
in R? whose image is not a 1-surface.

155. Let S be an oriented n-surface in R"*' and let T(S)=
{(ve Rx*! c R2"*Y; pe § and v - N(p) = 0}. Show that T(S) is a 2n-surface
in R?>"*2_(T(S) is the tangent bundle of S.)

156. Let S be an oriented n-surface in R'*! and let Ty(S)=
(veRyFIcR¥™*D:pe S, v-N(p)=0, v-v=1}. Show that Ty(S) is a
(2n — 1)-surface in R?"*2. (Ty(S) is the unit sphere bundle of S.)

15.7. (a) Viewing R* as the set of all 2 x 2 matrices with real entries by identifying
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15.8.

15.9.

15.10.
15.11.

15.12.

15.13.

15.14.

the 4-tuple (x4, ..., x4) with the matrix

(x 1 X2 )

X3  Xa >
show that the setO(2) of orthogonal 2 x 2 matrices is a 1-surface in R*.
[Recall that a matrix A is orthogonal if A~ is the transpose of 4. This is
equivalent to the condition that the rows of A form an orthonormal set.]

(b) Show that the tangent spaceO(2), toO(2) at p = (§ $) can be identified
with the set of all skew-symmetric 2 x 2 matrices by showing that

ab
N
[Hint: Compute (; * o;)(to), where

alt) = (al(t))

a1(t)
is an arbitrary parametrized curve inO(2) with a(to) = (§ )]

(a) Show that the set O(r) of orthogonal n x n matrices is an n(n — 1)/2
surface in R™. ;
(b) What is the tangent space to O(n) at p = the identity matrix?

Show that if § =f ~!(c) is an n-surface in R*** and p € § then the tangent
space S, to § at p is equal to the kernel of df,.

Prove Theorem 1 with n + 1 replaced everywhere by n + k:

Prove Theorem 2 with n+ 1 replaced bjr_n +k [Use y: U x R*— R***
defined by ¥(g, t5, ..., ts) = @(q) + Li~1 t: Ni(q) where the Ni(i € {1, ..., k})
are vector fields along ¢ which span the normal space (Image do,)* for each
qe U]

Let ¢:R"— S denote the inverse of stereographic projection from
§" —{(0, ..., 0, 1)} onto the equatorial hyperplane x,+; = 0.

(a) Show that for each p € R" there exists a real number A(p) > 0 such that'
lde()|| = A(p){v] for all v € R}. [Hint: Note that the vector part of do(v)
is just (d/dt)|o o(p + tv), where v = (p, v)] o
(b) Using the fact that v - w = (1/4)(|v + w||* — |lv = w|?), conclude that
do(v) * dp(w) = (A(p))*v * wior all'v, w € R}, and hence that dg preserves
_ angles between vectors. .

[This exercise thus shows that stereogfaphic projection is a conformal (angle
preserving) map.] '

Let S be an n-surface in R**! and let p € S. Show that the subset of § consist-
ing of all points g € S which can be joined to p by a continuous curvein Sisa
connected n-surface. |

Let C = f1(c,;) N f3 (cz) be a 1-surface in R® and let X = Vf; x Vf,. Show
that the restriction of X to C is a tangent vector field on C and that the
maximal integral curve of X through p € C is a one to one or periodic map
a: I - C. When does a map I onto C?



Focal Points

The construction in the proof of Theorem 2 of the previous chapter sur-
rounds the parametrized n-surface ¢: U —» R"*! with a family of smooth
maps ¢,: U —> R"*!(s € R) given by

?5(q9) = ¥ (g, s) = ¢(q) + sN*(q)

(Figure 15.6). When s = 0, ¢, = ¢ is a parametrized n-surface in R"**. For
s # 0, however, @, may fail to be a parametrized n-surface because there may
be points p € U at which ¢, fails to be regular. At each such point there will
be a direction v e R} (|v|| = 1) such that dg(v) = 0. If « is a parametrized
curve in U with &(t,) = v, it follows that

Py S “(to) = d‘l’s(é‘(to» = 09

that is, the curve ¢, o a(t) = @(x(t)) + sN®(x(t)) (s fixed) pauses (has velocity
zero) at t = t,. Geometrically, this says that the normal lines which start
along the curve ¢ - a near @(p) = ¢(a(t,)) tend to focus at /= @,(a(to)) =
@s(p) (see Figure 16.1). Such points / are called focal points of ¢. Note that
the normal lines along a need not actually meet at a focal point.

Given a parametrized n-surface ¢: U > R"*! and a point pe U, let
B: R—> R"*! be defined by B(s) = ¢(p) + sN*(p). Thus B is a unit speed
parametrization of the line normal to Image ¢ at ¢(p). A point /€ Image f
is said to be a focal point of ¢ along B if /= B(so) where s, is such that the
map ¢,,;: U— R"*! defined by ¢,,(q) = ¢(q) + so N°(q) is singular (not
regular) at p.

Theorem 1. Let ¢: U — R"*! be a parametrized n-surface, let p € U, and let
B: R— R"*! be the normal line given by B(s) = ¢(p) + sN*(p). Then the focal
points of ¢ along B are the points B(1/k;(p)), where the k;(p) are the non-zero

132
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Image ¢,

o (D Image ¢
Figure 16.1 /is a focal point of the paramcmzed 1-surface ¢ in R2.

principal curvatures ofpatp.In pamcular, there exist at most n focal pomts of
@ along p.

PROOF. /= B(s) = @,(p) is a focal point of ¢ along f if and only if dp,(v) = 0
for some v e R}, v+ 0. Letting a: I - U be such that a(t,) = v, the vector
part of do,(v) is

(¢,oa)=i’-|(¢oa+s~¢oa) (s ixed)
dt |,

4
dt |,

d

= — o P o5

| @+ eea)
Since this last expression is the vector part of ¢ ¢ a(to) + sV, N?, it follows
that do,(v) = 0 if and only if

0 =g afty) + sV, N°
= do(v) - sL,(do(v))
Hence, d(p,(v) 0 if and only if

L,(dp(v)) =~ (d(p(v))

Note that s cannot be zero since dp(v) # 0. Thus /is a focal point of ¢ along
B if and only if 1/s is an eigenvalue of L,; that is, if and only if 1/s is a
principal curvature of ¢ at p. O

Given an oriented n-surface S in R"*!, a point /e R**! is said to be a
focal point of S along the normal line B(s) = p + sNs(p) (p € S) if £ is a focal
point along g of ?, where ¢ is any parametrization, with N* = N° o ¢, of an
open set about p in S. Thus Zis a point where normal lines along some curve
through p in S tend to focus. By the previous theorem, the focal pdints of §
along B are the points f(1/k,(p)) where the k;(p) are the non-zero principal
curvatures of S at p. Note that the location of the focal points does not
depend on the choice of orientation on S since reversing N° also causes
the principal curvatures kj(p) to change sign, so the focal points
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p + (1/ky(p))N3(p) remain the same. Note further that the normal lines which
tend to focus at p + (1/k;(p))N°(p) are those which begin along a curve in S
which moves out from p in the ith principal curvature direction.

The next theorem describes the most important property of focal points;
namely, that distance from an n-surface is locally minimized along normal
lines only up to the first focal point. We shall state and prove this theorem
for oriented surfaces but of course it is also valid for parametrized surfaces.

Theorem 2. Let S be an oriented n-surface in R** 1. Let p € S and let p, lie on the
line normal to S through p. Define h: S — R by h(q) = ||g — po ||> Then h
attains a local minimum at p if and only if there are no focal points of S between
p and p, along the normal line through p (see Figure 16.2).

this line is shorter

P 4

Figure 16.2 Distance to S is no longer minimized along the normal beyond the first
focal point £,

PROOF. Since p, lies on the normal line to S at p, po = p + sN(p) for some
s € R. We shall assume that s > 0; if not, we can change the sign of s by
reversing the orientation on S. Define f: R"*! —» R by

f(g) = lla — pol* = (@ — Po) * (q — Po)
so that h is the restriction of 4 to S. Then

Vh(g) = 2(¢, 4 — Po)-
In particular,

Vh(p) = 2(p, p — Po) = —2sN(p)

so h is stationary at p (grad h(p) = 0). The Hessian of hat ponve S, (v # 0)
is given by (see Chapter 13)

# () = [Vo(Vh = ((VB) - N)N)] - v

= [Vu(VA) + ((VA) - N)(p)L,(v)] - v
= [2v — 2sL,(v)] - v = 2|]v[*(1 — sk(v/¥]}))
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where k(v/||v|) is the normal curvature of S in the direction v/|v|. Hence

A p(v) 2 2|lv]*(1 - sky(p))

where k,(p) is the maximum value of normal curvature at p; that is, k,(p) is
the maximal principal curvature of S at p. It follows that if k,(p) < 0, or if
k.(p) >0 and s < 1/k,(p), then 5, is positive definite so h attains a local
minimum at p. By continuity, # must also attain a local minimum at p when
k,(p) > 0 and s = 1/k,(p). Thus h attains a local minimum at p whenever
either k,(p) <0 or k,(p) > 0 and s < 1/k,(p); that is, whenever there are no
focal points between p and p, = p + sN(p) along the normal line to §
through p (see Figure 16.3).

p+ Uk, _1(P))N(p)

second focal point : /

y p+ A/ k(p)N
first focal point n (»)

Figure 163 For k,(p) > 0, the first focal point occurs at p + (1/k,(p))N(p).

Conversely, if 0 < 1/k,(p) < s then
C Hn) = 2(1 = sk(v,) = 2(1 — sk,(p) <O,

where v, is a principal curvature direction at p corresponding to the princi-
pal curvature k, , so &, is not positive semi-definite and h does not attain a
local minimum at p. In fact, if « is any parametrized curve in S with
@(to) = v, then

(h = Y (to) = (grad h)(p)  &fto) = O
(h = Y (t0) = Vs, (grad ) - {to) = #,{v,) <O

so distance from p, decreases as one moves out from p in § in the direction v,,.
O

and

The set of all focal points along all normal lines to an n-surface S in R"*?
is called the focal locus of S. This set may be visualized as follows. lTor each
s € R, the set

S,={qe R"*': g = p + sN(p) for some p e S}

of all points obtained by moving out from S along the normals a distance s
looks like an n-surface with singularities (points where the tangent space has
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dimension < n) at points which are focal points of S. These singularities
usually appear as cusps or folds in S,. The set S, may be viewed as the
position at time s/c (c = speed of light) of an advancing wavefront caused by
a flash of light along S at time s = 0. By watching these wavefronts we can
watch the singularities trace out the focal locus (see Figure 16.4).

s=0 s=1 s=2 focal locus

Figure 164 The focal locus of a parabola as the set of singularities of an advancing
wavefront.

EXERCISES
16.1. Let ¢: R — R? be the ellipse ¢(t) = (a cos ¢, bsin t) (@ > 0, b > 0).

(a) Show that the focal locus of ¢ is the image of the parametrized curve

a?-b , b-a .,
a(t)-( o cos t, —5—— sin t).

(b) Sketch the focal locus of ¢.

16.2. Let C be an oriented plane curve and let p € C be such that the curvature x(p)
of C at p is not zero.

(a) Show that for g € C sufficiently close to p, the normal lines to C at pand at
q intersect at some point h(q) € R2.

(b) Show that as g approaches p along C, the point h(g) approaches the focal
point of C along the normal line through p. [Thus the focal locus of C is the
“envelope” of the family of normal lines of C (see Figure 16.5)]

16.3. Let ¢: I - R? be a regular parametrized curve in R? with curvature x nowhere
zero. For t € I, let

oft) = o(t) + (1/x(e))N(¢),

so that « is a parametrization of the focal locus of .
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Figure 16.5 ' The focal locus of a parabola as the envelope of its normal lines.

(@) Show that o is regular (&(t) # 0) at t € I if and only if x'(t) # 0.

(b) Show that, for each ¢ € I with «'(t) # 0, the normal line to Image ¢ at ¢(t)
is tangent at a(t) to the focal locus of ¢ (see Figure 16.5). :

(c) Show that on any subinterval [t,, t;] = I such that k'(t) # Ofort, <t <t,,
the length of the line segment from ¢(t) to a(t) plus the length of « from «(t)
to a(t,) is constant as a function of ¢ (see Figure-16.6).

[Remark. Exercise 16.3 shows that any portion of a plane curve which has
regular focal locus can be traced out by unwinding a string from the focal locus
(Figure 16.6). The focal locus of a plane curve C is the locus of the centers of
curvature and is often called the evolute of C. A curve which is obtained from
another by unwinding a string is called an involute.]

a (tz)

o (1)

Figure 16.6 Half a parabola as an involute of its focal locus.

164. Let ¢: I - R? be a regular parametrized curve in R? and let ¢, € I. For each
s € R, define @,: I - R? by ¢,(t) = ¢(t) + sN°(t), let I, denote the largest inter-
val about ¢, on which ¢, is regular, and let x,: I, > R denote the curvature of
the restriction of ¢, to I,.

(a) Show that I, is an open interval about ¢, for each s < 1/k(to), where k is the
curvature of ¢.
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(b) Show that, for s < 1/x(to),

1
I
wlto)

and conclude that lim, /e |Ks(to)| = co. [Hint: You may assume for
ease of computation that ¢ is a unit speed curve.]

16.5. Let S be an oriented n-surfacein R"*'. Forp e Sand v € S, (v #0),leta: I - S
be a parametrized curve in § such that &(to) = vand definey: R x I - R"*! by
W(s, t) = a(t) + sN(a(t)). Let X denote the vector field, along the line  normal
to S at p (B(s) = p + sN%(p)), defined by X(s) = dy(s, 0, 0, 1) (see Figure 16.7).

KS(tO) =

Image B

Figure 16.7 A Jacobi field.

(2) Show that X(0) = v and that X(0) = — L,(v). [Hint: The vector part of Xis
(8/as)@w/or)]

(b) Show that X = 0 and conclude that X(s) = (B(s), v + sw) where v and w are
the vector parts of v and of — L(v) respectively.

(c) Show that X(s) = 0 if and only if B(s) is a focal point of S along f and v
points in a principal curvature direction corresponding to the principal
curvature 1/s.

Remark. It follow§ from (b) that the vector field X does not depend on the
choice of parametrized curve o with initial velocity v. X is called the Jacobi field
along f generated by v.



| Surface Area and Volume

We consider now the problem of how to find the volume (area when n = 2)
of an n-surface in R** *. As with the length of plane curves, this is done in two
steps. First we define the volume of a parametrized n-surface and then we
define the volume of an n-surface in terms of local parametrizations.
Recall that the length of a parametrized curve a: I — R? is defined by the
formula - R - .

1@ = [ 141 = [ Jac] a

where a and b are the endpoints ’of I In the language of parametrized
surfaces, if « is regular then the velocity field & is just the coordinate vector
field E, along the parametrized 1-surface « in R?, and

Il = s (e)]| = |Eq(e)] det( E;(:)/Nn(lz:;(t)ll) _ det(EN,((:)))

where N is the orientation vector field along o. The second equality here is a
consequence of the fact that the vectors E,(t)/|[E,(t)| and N(t) form an
orthonormal basis for RZ,, so

E, (t)/|E. (0)]
det( N (t) )

is the determinant of an orthogonal matrix and hence is equal to £ 1; the
sign is + because the basis E, (t)/|E,(¢)| is consistant with the orientation
N. The formula for the length of & can now be rewritten as

1= det(ENl )

139
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This integral is clearly a special case of an integral defined for parametrized
n-surfaces.

The volume of a parametrized n-surface ¢: U — R"* ! is defined to be the
integral

El El(ul,"'w un)
V(p) = fv det| ¢ |= jU det| g, © | d e di
N N(uy, ..., )

where E,, ..., E, are the coordinate vector fields along ¢ and N is the
orientation vector field along ¢. When n = 1, the volume of ¢ is usually
called the length of ¢ and is denoted I(¢). When n = 2, the volume of ¢ is
usually called the area of ¢ and is denoted A(¢). Note that, since the volume
integrand
E,
det| :

E,
N
is everywhere positive, V(@) > 0. V(¢) may be + co.

An intuitive explanation of why this particular integral should measure
volume is that the integrand measures “volume magnification” along ¢ (see
Figure 17.1).

It is convenient to have a formula for volume which does not require
calculation of the orientation vector field N.

Theorem 1. Let ¢: U — R"*! be a parametrized n-surface. Then

Vig) = | (et®: - E))"

PROOF.
E\]? E, E, \'
det l'é,, = det E:.. det én (t = transpose)
N N N
-,
=det| | o | (B E N
|\~
E,-E, E,-E, E,-N
=det} p [ g E,-E, E-N
N-E, N-E, N-N
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E,'E, - E,°E, 0

= det En:El E,,:E,, 0
0 cee 0 l
=det(E, * Ej).

Taking the square root of both sides and mtegratmg over U ylelds the
reqmred formula. 0

Remark. The functions g;;=E;E;; U-—R are called the metric
coefficients along ¢. The determinant det(g. ;) is usually denoted, in the differ-
ential geometry literature, by the letter g. The volume integral then takes the

form ¥(¢) = fu /9

@) 0,1 D, ; (Ay) E; () D,

U p (a9 (®1,0) @ ¢  BHE M

Figure 17.1 Area magnification along a paramemzed 2-surface ¢ in R®. The small
shaéedmnghb 1 in U with'area (Ax)}(Ay)is mapped by @'to the small shaded region
D; in @(U). The area of D; is closely approximated by the area of the paralielogram
in R3,,) spanned by de((Ax)(p, 1,0)) = (Ax)E(p) and dw((Ay)(P 0, 1)) = (Ay)E;(p)
The area of this latter parallelogram is

I(Ax)E(p) = (AYE;(p)| = (Ax)(Ay)El(p) x Ez(p) N(p)
- - [E®)\
o = (Ax)(AY)‘M\ E:p) |-
N(p)
The ratio of areas of the two shaded regions is
ADa) _ det(&(%%)%e(p Ax, Ay)
where limay, ay-0 €(p; Ax, Ay) = 0. The limiting ratio
~[Ealp)
A(D,) _
 (Ax, A‘::-w A(D,) det(l;;((:)))

measures area magnification at p under @; its integral over U gives the area of ¢.
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EXAMPLE. Let ¢: U — R? be defined by
@(0, ¢) = (r cos 0 sin ¢, r sin 0 sin ¢, r cos ¢)

where U = {(6, ¢) € R*: —n <@ <m, 0< ¢ <n}. Thus ¢ is the spherical
coordinate parametrization of the sphere of radius r in R? with half of a
great circle removed. Its area can be found by either of the above formulae:

E,
Alp) = L det( iz)

= .x | —rsin 0 sin ¢ r cos 0 sin ¢ 0
=J f r cos 0 cos ¢ rsinfcos¢ —rsin¢d| dodeo

0 """l —cosfsing —sinfsing —cos¢

=j j P sin ¢ dO d = 4nr?

0 "—-=n
or
n T 2 ain2 1/2

- LCEW2 — r’sin¢ O

Alg)=[ @et® - E)2 =] [ |77 T | d0d9

= j j r sin ¢ dO dp = 4nr®.
0 “—-=n

The formula of Theorem 1 allows us also to define the volume of pa-
rametrized n-surfaces in R"** for all k > 0. Even more generally, it enables us
to attach an n-dimensional volume to any smooth map ¢: U — R"**k, U open
in R". A smooth map ¢: U— R"**, U open in R", is called a singular n-
surface in R***. The adjective “singular” is used to emphasize that ¢ is not
required to be regular; ie., dp, may be singular for some (or, even, for all)
p € U. Note that each parametrized n-surface is a singular n-surface but that
singular n-surfaces are not, in general, parametrized n-surfaces. The
volume V(@) of a singular n-surface ¢: U — R"** is defined by

V(g)= | (det(E; - E;)"?
U
where, as usual, the E; are the coordinate vector fields along ¢.

EXAMPLE. Let ¢: U — R® be the parametrized 3-surface defined by

o(r, 0, ¢) = (r cos @ sin ¢, r sin 0 sin ¢, r cos é)

where U ={(r, 0, $): 0 <r <a, 0 <6 <2m, 0 < ¢ < n}. p maps U one to
one onto the open ball of radius a about the origin in R3 with a half disc
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\

Figure 17.2 The open ball B = {(x,, x,, x3) € R*: x} + x} + x} < a?} with the half
disc {(xy, x2, x3) € B: x4 2 0, x, = 0} deleted.

removed (see Figure 17.2). For p = (r, 0, ¢) € U, we find

E,(p)= (p, %qr—’(p)) = (p, cos 0 sin ¢, sin 6, sin ¢, cos ¢)

E,(p) = (p, g—(g(é)) = (p, —r sin 0 sin @, r cos 6 sin ¢, 0)

E;(p) = (p, g—z(p)) = (p, r cos 0 cos ¢, r sin 6 cos ¢, —r sin ¢)
so ,
Vip)= [ (det(E: - E,)

1/2

dr d0 d¢

-.27 .4

=[5

- jo" J':’ j: 2 sin ¢ dr dO de = gms.

1 0 0
0 r?sin2¢ O
0 0 r?

Theorem 2. Let ¢: U — R"*! be a parametrized n-surface and let N: U » S
denote its Gauss map (N(p) = (¢(p), N(p)) for all pe U, where N is the
orientation vector field along @). Then

VIN) = | 1K |det(E? - Eg)?
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where K: U - R is the Gauss-Kronecker curvature of ¢ and the Ef are the
coordinate vector fields along ¢.

ProoF. The coordinate vector field EY of the singular n-surface N has vector
part at p € U equal to N/dx;(p), which is the same as the vector part of

n

VN = —L,(do,(e;)) = — L,(Ef(p) = Z i(P)EL ()

where ¢; = (p,0,..., 1,...,0) (the 1 in the (i + 1)th spot), L, is the Weingar-
ten map of ¢ at p, and ( a;{(p)) is the matrix for L, with respect to the basis
{E?(p)} for the tangent space Image d¢,. Hence

det(EY - EY) = det(; agEf - ; a,jE;")

= det(z akiale({ * E‘,p)
k, 1

— (det(ay)? det(E? - E)
= K2 det(E? - E?).

Taking the square root of both sides and integrating, we obtain

V(N) = fv(det(Ei.“ CE)V2 = L]K | det(EY - EZ)Y/2. O

Corollary. The Gauss-Kronecker curvature at p € U of a parametrized n-
surface @: U — R"*! has absolute value

|K(p)| = ﬁ_{‘; V(N|z)V(e|s)

where B,={qe U: |q— p|| <¢&}

PrOOF. By Theorem 2 and the mean value theorem for integrals,

V(N|s,) — | K(p,)|det(E?(p,) - 1‘31""(1’1))1/2 jB. 1
V(®]s.) (det(E?(p2) - EZ(p2)))"? f5. 1

for some p,, p; € B,. Taking the limit as ¢ — 0 completes the proof. O

Remark. This Corollary provides us with a geometric interpretation of
the magnitude of the Gauss-Kronecker curvature K of an oriented n-surface
S = R"*! in terms of volume magnification under the Gauss map N. The
significance of the sign of K is as follows. Taking Z = N in Theorem 5 of
Chapter 12 and using the fact that dN(v) and V, N have the same vector
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part for all ve §,, p e S, we find that

V.N ! dN (vl) Vi
K(p) = (= 1) det VV:N det ‘i" =det| , N:(v,,) det ‘:n
N(p) N(p) \N*(N@)/| \N(p)

where vy, ..., V, is any basis for S, and N% is the standard orientation on
8", defined by N¥(q) = (¢, (—1)"q). Thus K(p) >0 if and only if dN
maps each basis for S, consistent with the orientation on S to a basis for
Sh(p consistent with the standard orientation on $". Given any smooth map
f: § = 8 from one oriented n-surface in R"*! to another and any p € S with
dfp: Sp— 3 7(p» NOn-singular, f is said to be orientation preserving at p if df
maps bases for S, consistent with the orientation on S to bases for 5,
consistent with the orientation on §; otherwise f is said to be orientation
reversing at p. Thus, the Gauss-Kronecker curvature K(p) at a point p of an
oriented n-surface S = R**! is positive if and only if the Gauss map N: S - S"
is orientation preserving at p, and K(p) is negative if and only if N is orientation
reversing at p. '

Just as the length of a parametrized curve is unchanged under reparam-
etrization, the volume of a singular n-surface is unchanged under reparam-
etrization. A reparametrization of a singular n-surface ¢: U, > R"** is a
singular n-surface y: U, » R"** of the form y = ¢ o h where h: U, - U, is
a smooth map with smooth inverse and Jacobian determinant everywhere
positive (see Figure 17.3). Note that any pair of such singular n-surfaces will
always have the same images. Furthermore, if ¢ is a parametrized n-surface
and ¥ is a reparametrization of ¢ then  is a parametrized n-surface and, if
k = 1, the orientation vector fields N® along ¢ and N¥ along y are related by
N¥(p) = N°(h(p)), for all p € U, (Exercise 17.11).

Figure 173 - is a reparametrization of ¢.
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Theorem 3. Let ¢:U,—> R""* be a singular n-surface and let
Y =@ o h: Uy > R"** be a reparametrization of ¢. Then V() = V(o).

Proor. Let Ef and EY denote, respectively, the coordinate vector fields along
¢ and along y. Then, letting X; denote the vector field on R" defined by
X:p)=(@0, ..., 1, ..., 0) where the 1 is in the (i + 1)th spot we have, for
14 € U2 ’

EY(p) = d(X,(p)) = d(o - h)X,(p)) = do(dh(X.(p))
(Zh,,, X0 ) = 3 hlp) do(Xuhp)

uM:

ha(p)EZ (h(P)),

where the h;; = 0h; /0x; are the entries in the Jacobian matrix for h. Hence

E!-Ef= 3 huhyEfh-Efoh,

k,1=1

and
det(EY - EY) = (det(h;;))> det(E? o h - ES o h) = J2 det(E? o h - E o h),

where J, is the Jacobian determinant of h. By the change of variables
theorem for multiple integrals,

V)= | (det(E! - )

=[  (det(Es - h-Eg o h)v2,

h=1(Uy)
= [ det(E? - E9)V2 = V(9). O
Uy

Passing now to oriented n-surfaces S in R"*!, we would like to obtain the
volume of S by adding up the volumes of subsets which are images of one to
one singular n-surfaces. However, it is generally not possible to express § as
a disjoint union of such sets. It is possible to express S as the union of images
of closed rectangles which overlap only along the boundaries (see Figure
17.4); the set of boundary points will then contribute nothing to the volume
integral so the overlap will not matter and the volume of S can then be
defined as the sum of volumes of these “ singular rectangles.” This procedure,
although intuitively quite attractive, is difficult to carry out rigorously. We
shall adopt an alternate approach.
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Figure 17.4 The surface S can be expressed as a union of rectangular regions which
overlap only along the boundaries of the rectangles. -

Consider the volume integrand
E,
det}

\N

of a one to one local parametrization ¢: U — S. If we replace @ by a repa-
rametrization y = @ o h: U; — S, the volume integrand changes in that the
" coordinate vector fields of ¢ are replaced by the coordinate vector fields of
¥, but the volume integral does not change. This suggests that essential part
of the volume integrand at p € S is the function { which assigns to each
ordered set {v,, ..., v,} of n vectors in S, the number

v.l
{(vq, ..., V) =det v
N(p)

¢ is called the volume form on S. We shall see that the volume form can be
integrated over a compact oriented n-surface S in R*+1; its integral will be
the volume of S. { is an example of a differential n-form. ,

A differential k-form, usually called simply a k-form, on an n-surface S is a
function @ which assigns to each ordered set {vy, ..., v;} of k vectorsin §,,
p € S, a real number @(vy, ..., ;) such that

(i) for each ie {1, ..., k} and vy, ..., Viegs Viey, -oo» & € S,, €S, the
function which sends v e S, t0 @(¥y, ..., Vi— 1y ¥ Via 15 -+ o5 v,) € R is linear,
and ‘

(ii) for each vy, ..., v, € S, and for each permutation ¢ of the integers
{1, ...,k
O(Voq1)s --+5 Vo) = (sig0 O (Vy, ..., Vi) |

Note that the conditions (i) and (ii) simply express familiar properties of
the determinant when k=n and o is taken to be the volume form (.
Property (i) is called multilinearity and property (ii) is called skewsymmetry.
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Given a k-form w and tangent vector fields X;,..., X, on S, we can define
a real valued function o(Xj, ..., X;) on S by

[0(X,, -, X))(p) = 0(Xs(p), - -, XilP))
The k-form w is said to be smooth if o(X,, ..., X;): S — R is smooth when-
ever the vector fields X,, ..., X, are smooth.

EXAMPLE 1. A 1-form on § is simply a function w: T(S) = | J,cs S, = Rsuch
that the restriction of w to S, is linear for each p € S. Thus, for example, if X
is a tangent vector field on S then the function wx: T(S)— R defined by

wx(¥V)=X(p) v (veS,,pes)
is a 1-form on S. wy is called the 1-form dual to X.

EXAMPLE 2. Let w, and w, be 1-forms on S. Then the function w; A w,
defined by

(@1 A @3)(V1, V2) = 01(V1)02(V2) — @4 (V2)w2(V1)
is a 2-form on S. w; A w, is the exterior product of w, and w,.

EXAMPLE 3. The volume form { on an oriented n-surface § in R**! is a
smooth n-form on S.

EXAMPLE 4. Let w be a k-form (k > 1) on S and let X be a tangent vector field
on S. Then the function X 1 @ defined by

(X J w)(vl, caesy v,‘_x) = w(X(p), Vig ooy Vo 1)
is a (k — 1)-form on S. X s w is the interior product of X and w.

EXAMPLE 5. Let @ be a k-form on an m-surface § and let f: S— 8 be a
smooth map from the n-surface S into §. Then the function f *w defined by

(f*o)(vys ... Vi) = 0(df (vq), ..., df (%))
is a k-form on S. f*w is called the pull-back of w under f.

The sum of two k-forms w; and w, on an n-surface S is the k-form
®; + w, defined by

(@3 + @) (Vs -5 Vi) = @3 (Vg -, Vi) + @2(¥y, ..., V).

The product of a function f: S — R and a k-form w on S is the k-form fw on §
defined by

(fo)vy, -5 Vi) =f (P)o(Vy, -5 Vi),

forv,,...,v, € S,, p € S. Note that the sum of two smooth k-forms is smooth
and that the product of a smooth function and a smooth k-form is smooth.
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For o a smooth k-form on an n-surface S and ¢ a singular k-surface in §
(i.e., with Image ¢ < S), the integral of w over ¢ is defined by

Lw = fuw(E';’, ..., Ep),

provided the latter integral exists. The vector fields Ef are of course the
coordinate vector fields along ¢. The integral will exist, in particular, when-
ever the function w(EY, ..., EY) is identically zero outside some compact
subset of U. o '

ExaMrLE. For ¢ a local parametrization of S and { the volume form on §,

Lp {= V(‘P)

Note that if  is a reparametrization of the smgular k-sutface ¢inSand ®
is a smooth k-form on S such that [, w exists then |, w exists and
fy o= {, o Indeed, if : Uy » S and Yy =@ o h: U, — S then, as in the
proof of Theorem 3, EY = Y%, h;Ef - h so

fw=f o(EY, -, Ef)
v Uz .
k k
= J-v Co( Z h!xlEYf’ h,..., ZthE?k ° h)
2 =

Ji=1

"f th *hiw(ES, o b, ..., B  h),

Uz ji1-
where the last equahty isa consequencc of the multilinearity of w. By the
skewsymmetry of @, w(E$, < h, ..., ES, o h) is zero whenever two or more of
the j;s are equal, and o(E},, ..., E$) = (sign o)o(EY, ..., Ef) whenever
ji=a(1), ..., jx = o(k) for some permutatlon cof{l,..., k}. Hence

J‘w=f Z Slgn a’)hcu)l "h,wkw(E'th,...,Eth)

Uz o

=[ (oS, ....ED) by,
h-YUy) L

- Llw(w;, Ep) = Lw,
as claimed.

We now proceed to define the integral of an n-form w over a compact
oriented n-surface S. This is done by expressing the n-form as a sum of
n-forms ; each of which is identically zero outside the image of some one to
one local parametrization @; and then defining s w =Y ,, ;. The
n-forms w,; ‘will be obtained as products of @ with functions f; with the

property that ¥, f; = 1.
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A partition of unity on an n-surface S is a finite collection of smooth
functions f;: S — R (i {1, ..., m}) such that

() filg)=0forallie{l,...,m}and allqg €S,

(ii) for each i € {1, ..., m} there exists a one to one local parametrization
@;: U; — S such that f; is identically zero outside the image under ¢; of a
compact subset of U;, and

(iii) Y, fi(g)=1forallgeS.

If {¢;} is any collection of one to one local parametrizations satisfying (ii),
the partition of unity {f}} is said to be subordinate to {¢;}.

Remark. The requirement that the collection of functions { f;} be finite can
be replaced by a less restrictive requirement called local finiteness, but finite
partitions of unity will be adequate for our needs.

Theorem 4. Let S be a compact n-surface in R"* 1. Then there exists a partition
of unity on S.

ProoF. First we construct, for each p € S, a “bump function” g,: S — R as
follows. Given p € S, let ¢,: U, — S be a one to one local parametrization of
S whose image is an open set about p in S, as constructed in the proof of
Theorem 1 of Chapter 15. Choose r, > 0 such that

B,= {xeR" "x - ‘p;l(p)” =< rp} <U,
and define the bump function d,: S— R by
e~ 12— llo; 1) —o, Up)I2) for qe ]/p

gp(‘l)=lo for q ¢V,

where
V,={q¢ ¢0,(U,): |o;'(a) — ¢, ' (p)]| <73}

(see Figure 17.5). Then g, is smooth (Exercise 17.17), g, is identically zero
outside the image under ¢, of the compact set B, = U, and g,(q) > O for all
q in the open set V, about p in S.

Assuming for the moment that we can find a finite set {p,, ..., p} of
points in S such that { )., V,, =S, we can define f;: S—» R for each ie
{L, ..., m} by

£i(a) = gx(q) .;gm(q)-

Note that the denominator ) 7, g, (q) is nowhere zero, since each g, (q) > 0
and g, (q) > 0 when jis such that g € V. {; } is then a partition of unity on
S, subordinate to {¢,}.

Finally, the fact that there exists a finite set {p, ..., p,,} of points in § such
that ( Jiu, V,, =S is a consequence of the Heine-Borel theorem: the sets
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graph of 4,
graph of A,

v, 0, (p) B,

@ (b)
Figure 17.5 Construction of a smooth bump function.

(a) The function h,: R — R given by

h e Ve i |t <r

. m() =19 if |¢] =

" is smooth. ‘ -

(b) The bump function g,: S — R is such that g, is identically zero outside the image
of the local parametrization ¢,: U,—S, and g, ¢, =h, where hy(x)=
k. (Ix — @7 '(p)]) for x e U,. :

{V,: p € S} are open sets in S which cover S (| ), s V, = §); the Heine-Borel
Theorem (see, e.g., Fleming, Functions of Several Variables, Springer-Verlag
1977 (Second Edition)) states that every covering of a compact set S by open
sets has a finite subcovering; i.e., there is a finite collection {V,,,, ..., V,.} of
these sets with { J7., V,,=S. ' O

The integral of a smobth n-form o over a compact oriented n-surface
S = R**! is defined to be the real number :
[e=2] (o)
S i i

where {f;} is any partition of unity on S subordinate to a collection {¢;} of
one to one local parametrizations of S. Note that |5 @ does not depend on
the choice of partition of unity because if { /;} is another, subordinate to local
parametrizations {¢;}, then ‘

) L}fj ) ——-}; L} (Z ﬁ)f,w_ =33 L!.( fi o)
(1) ()}
=L, GTo= 2| Gife)

i,j “oij

(i) ; ; J'm(]}f'w) E Z Li (; Z")ﬁw B z Li(ﬁws’

13

where @ is the restriction of §; to the open set §; (V;), V; = (Image &;) N
(Image ¢,), and g;; is the restriction of ¢; to ¢; '(V;;). Equalities (1) and (3)
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hold because f; f; is identically zero outside V;;, and equality (2) holds be-
cause ¢;; is a reparametrization of ¢ (see Exercise 17.18).

Using integration of forms, we can now define the volume of a compact
oriented n-surface S = R"*1! to be the integral over S of its volume form {:

V(S) = L L

We can also now define the integral over S of any smooth function
f:S—>Rby

Jr=]rt
EXERCISES

17.1. Find the area of the parametrized “cylinder in R® with a line removed ” given
by ¢(6,t)=(rcos 6, rsin 6,t),0<0<2n,0<t<h

17.2. Find the area of the parametrized “ cone in R® with a line removed ” given by
@0, t)=(trcos 0,trsin 6, (1 —t)h), 0 <O <2m, 0 <t <1

17.3. Find the area of the parametrized “torus in R® with two circles removed”
given by

(0, ¢) = ((a + b cos ¢)cos 8, (a + b cos ¢p)sin 6, b sin ),
0<6<2n,0<¢<2m

174. Find the area of the parametrized “torus in R* with two circles removed”
given by

00, ¢)=(acos ,asin§,bcos ,bsing), 0<0<2m0<¢<2m

17.5. Find the volume of the parametrized “unit 3-sphere in R* with part of a
2-sphere removed ” given by

(¢, 6, ¥) = (sin ¢ sin 0 sin ¥, cos ¢ sin 6 sin Y, cos @ sin ¥, cos ¥),
0<¢dp<2n,0<0<mn,0<y<m
17.6. Show that the area of the parametrized surface of revolution ¢(t, ) =

(x(t), y(t)cos 0, y(t)sin 0),a <t < b, 0 < 0 < 2m, where y(t) >0 fora <t <b,
is given by the formula

Alo)= | <O + BOF)* d.

1777. Let g: U—> R be a smooth function on the open set U c R" Define
o: US> R by @uy, ..., uy)= (4, ..., tn, gltty, ..., u,)). Show that
Vig) = fu (1 + X (9g/0u)*)"2.
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17.8.

17.9.

17.10.

17.11.

Let ¢,: U— R"*! be defined by
(01, ..., 8,) = (sin 8, sin 0, --- sin 6,, cos 0, sin 8, -+ sin 6,,
cos 0, sin 05 -+ sin 6,, ..., cos 0,-, sin 6,, cos 6,),
where U = {(0y, ..., 0,) € R": 0 < 0, <2m,0< 6, <mfor 2 <i<nj

(a) Show that ¢, is a parametrized n-surface.

(b) Show that ¢, maps U one to one onto a subset of the unit n-sphere S".

(c) Show that S"—Image ¢, is contained in the (n— 1)-sphere
{(x1, -+ s Xn+1) € 8" x4 = O}. (It will then follow that V(¢,) = V(S") since
S' — Image ¢, has n-dimensional volume zero.)

(d) Find a formula expressing the volume of ¢, as a multiple of the volume of
@.—1. [Hint: Introduce a zero into the last corner entry of the matrix

E,
E,
N

by adding to the last row a suitable multiple of the next to the last row. Then
expand the determinant by minors of the last column. Finally pull out all
factors of sin 6, and integrate with respect to 6,.]

(¢) Find V(p,).

Leto: U—»R3bea parametnzed 2-surface in R3. Show that the area of Qis
given by the formula A((p) = [y |0@/0us x dp/du, ||.

Let ¢: U= R"“ be a parametrized n-surface in R***. Let W be the vector
field along ¢ whose ith component at p € U is (—1)"*' times the determinant
of the matrix obtained by deleting the ith row from the Jacobian matrix of ¢
at p (or the ith column from the matrix

Ey(p)
P

EA(p)

(a) Show that W is a normal vector field along @, and that W/|W|| is the
orientation vector field along ¢.
(b) Show that V(¢) = fu W]

Let ¢: U, » R**! be a parametrized n-surface and let y = ¢ o h: U, » R"**
be a reparametrization of ¢. Show that N¥ = N o h, where N¥ and N? are,
respectively, the orientation vector fields along ¢ and along y. [Hint: Show
that

EY ESoh i
det Eﬁ = J, det E::o "
N NYoh

where J,, is the Jacobian determinant of h.]
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17.12.

17.13.

17.14.

17.15.

17 Surface Area and Volume

Let w be a k-form on the n-surface S.

(a) Show that if {v, ..., v,} is a linearly dependent set of vectors in S,, p € S,
then w(vy, ..., %)= 0.
(b) Show that if k > n then w is identically zero.

Let S be an oriented n-surface in R**! and let { be the volume form on S.

(a) Show that if {v,,...,v,} is an orthonormal basis for S,, peS, then
{(vy,...,v,)= t1and {(v,,...,v,) = +1if and only if the basis {v,, ..., V,}
is consistent with the orientation N of S.

(b) Show that if w is any n-form on S then there exists a function f: § - R
such that w = f{. [Hint: Set f(p) = w(v,, ..., v,) where {v, ..., v,} is any
orthonormal basis for S, consistent with the orientation N on S. Then
compute the values of w and of f{ on wy, ..., w, where w; = Y 7=, a;;v;.]

Let w, be a k-form and let w, be an I-form on the oriented n-surface S « R** 1.
Define the exterior product w; A @, by

(@1 A3 )(Vys -y Visr)

1 .
= i Z (sign )0 1(Vocr)s -+ -5 You)O2(Vog+1)s -+ > Yo+1)

forvy,..., v44; € S,, where the sum is over all permutations o of {1,..., k + I}.

{a) Show that w; A, is a (k + I}-form on S.

(b) Show that w; A @y = (— 1wy A @,.

(c) Show that if w; is another Iform on S then w,A(w, + @;3)=
W) AWy + W) AW3.

(d) Show that if w; is an m-form on S then (w; A w2) A w3 = ©; A (W2 A W3)

(¢) Show thatif X, ..., X, are tangent vector fields on S such that for each
pe S {X,(p) ..., X»+1(p)} is an orthonormal basis for S, consistent with
the orientation on S, and if, for each i, w; is the 1-form on § dual to X;
then

WyA A, =

where { is the volume form on S. [Hint: Use mathematical induction to
prove that for 1<k <n, (A A)Xy, ..., Xg)=1 and that
X; 1 (0w A+  Aw) = O for all i > k. Then use Exercise 17.13.]

Let S be an oriented n-surface in R"*!, let S be an oriented m-surface in
R™*1, let f: S —» § be a smooth map, and let @ be a smooth k-form on 3.

(a) Show that f*w is a smooth k-form on S.
(b) Show that if ¢ is a singular k-surface in S then

[0l

S0

(c) Show that if m = n and if f is an orientation preserving diffeomorphism

then
L [*o = j gm.
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17.16.

17.17.

17.18.

17.19.

Show that the antipodal map f:S"— S" on the n-sphere S, defined by
f(p) = —p, is orientation preserving if and only if n is odd.

(a) Show that the function h: R — R defined by
e ift>0
h(t) =
(®) {0 ift<0

is smooth.
(b) Conclude that for each r > 0 the function h,: R — R given by

e~ e 1t < r
t)= »
o=l
issmooth and that the bump function g, defined in the proof of Theorem 4
is smooth.

Let S be an oriented n-surface in R**! and let @: U — S and : V = S be one
to one local parametrizations of S. Show that if W = o(U) n y(V)# &
then A= ¢ ' o yY|,-1w, is an orientation preserving diffeomorphism from
Yy~ Y(W) to ¢~ '(W). Conclude that ¥|,_.4, is a reparametrization of
@lo-1m)- ‘

Let X and Y be vector fields on R? and let wy and wy be their dual 1-forms.
Show that, for v and w in R}, pe R?,

(@x A Dy W) = (X x Y)p) - (v x W)

[Hint: By multilinearity, it suffices to check this equation when v and w
are standard basis vectors.]



Minimal Surfaces

Let ¢: U - R"*! be a parametrized n-surface in R**'. A variation of ¢ is a
smooth map ¥: U x (—¢, €)= R**! with the property that Y/(p, 0) = ¢(p)
for all p € U. Thus a variation surrounds the n-surface ¢ with a family of
singular n-surfaces ¢@,: U —» R**}(—¢ < s < &) defined by o,(p) = ¥(p, s).

A variation  of the form

¥(p, s) = o(p) + s/ (P)N(p),

where 1 is a smooth function along ¢ and N is the Gauss map of g, is called a
normal variation of @. If f is the constant function 1, this variation i is of the
type considered in Chapter 16 which, for each s, pushes ¢ out a distance s
along the normal. If f is a bump function similar to the one whose graph
appears in Figure 17.5(b), the variation y introduces a bump in ¢ by pushing
@ out along the normal only in a ball B, about p € U (see Figure 18.1). If ¢
already has a bump at p, then the normal variation { may tend to remove
the bump.

A variation  with the property that Y(p, s) = ¥(p, 0) for —e<s<e
whenever p lies outside some compact subset C of U is said to be compactly

Figure 18.1 A normal variation.

156
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supported. Note that if y: U x (—¢, ¢)— R**! is a compactly supported
variation of ¢ there is an &, > 0 such that each ¢,, for |s| <&,, is a par-
ametrized n-surface. One way to see this is to observe that the function
0: U x (—¢, €)— R defined by

1)

Exp)
N(p)

where the E? are the vector parts of the coordinate vector fields Ef along ¢,
and N is the Gauss map along ¢, is continuous. Hence, the set

Cl‘_:{(p’ S)G W+1:pec, |Sl Ss/z, and 5(1”5):0}

d(p, s) = det:

is compact. If C, is empty, let ¢, = ¢/2; oﬂ1erwise let ¢, be the minimum
value of g on C,, where g: R"*! — R is given by g(p, s) = |s|. Then

(i) & # O since 6(p,0)# O forall pe U,
(ii) o(p, s) # O whenever p € C and |s| < ¢,, and
(iii) 5(p, s)*£ O for all s(|s| < &) whenever p ¢ C (since then the E; are equal
to the coordinate vector fields E; along ¢).

Thus d(p, s) # 0 whenever pe U and |s| <&, so the coordinate vector
fields E} of ¢, are linearly independent; ie., @, is regular as required.

We shall analyse the effect that compactly supported normal variations
have on volume. Let ¢: U— R"*! be a parametrized n-surface with finite
volume and let y: U x (—¢, ¢)— R"*! be a compactly supported normal
variation of ¢,

llf(p, s) = o(p) + S ()N (p)

Then the coordinate vector field E; of ¢, has vector part

.09, 0@ Qf_ oN
E; o, au+aN+g” :

But, for each p € U, ON/ouy(p) is the vector part of

VepN = —L,(E(p)) = —- jgcﬁ(p)EJ(p%

where L, is the ‘Weingarten map of ¢ at p, the E; are the ooordmase vector
fields along @, and (c;;(p)) is the matrix for L, with respect to the basis {E;(p)}
for the tangent space Image d¢,. Hence

E;=E, +s(gf N-f ZcﬁEj)
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The volume of ¢ is

Ej
Vip,)= | det :
() fu B
N°® ;
where N° is the orientation vector field along g . Its rate of change at s = Ois
Ei
d 0 :
—| V(ps)=| = | det]
ds ) ((pS) J;] 0s 0 ¢ Ef,
NS
But, since E? = E; and N° = N, we have
E,
E; : Ey
d : n aEf -
el = 0s |s=
2l det E .-;1 det s=0o | +det] E,
ON®
N° E 6s s=0
N
E, E,
of z
@ » —N - ZE; i E
= Z det au,- fjglc" J = —f Z Cﬁ det J
i=1 . iLj=1 .
E, E,
N N
ith row
E,
(2) n
= _fl;l c,-i det E"
N

To obtain equality (1) we have used the fact that (IN®/0s)|, -, , being perpen-
dicular to N = N°, is a linear combination of {E,, ..., E,} so the determin-
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ant of the matrix with these n + 1 vectors as rows must be zero. To obtain
equality (2) we have used the fact that when j # i the coefficient of c;; is the
determinant of a matrix with two equal rows and is therefore zero. We
conclude, then, that

E,
d :
‘E L V((ps) = —n jUfH det En

N

where H(p) = (1/n) trace L, is the mean curvature of p at pe U.

Remark. It can be shown (see Exercise 18.7) that this formula is valid for
all compactly supported variations ¥ of ¢ (not just for normal ones), where
the function f: U — R is defined by f= X+ N, X being the variation vector
field along ¢ defined by X(p) = E¥,,(p, 0), E¥,, the (n + 1)th coordinate
vector field along . The formula is also valid for all normal variations
‘(not necessarily compactly supported) as long as all the necessary integrals
are defined and the interchange of (d/ds)|, and [y, can be justified.

The volume integral is said to be stationary at the parametrized n-surface
o: U R if V(p) < oo and (d/ds)|o V(e,) = O for all compactly sup-
ported normal variations ¥ of . This is the case, for example, when the
volume of ¢ is smaller than that of each parametrized n-surface ¢, which can
be obtained from ¢ via a small compactly supported normal variation.

Theorem. Let ¢: U — R**! be a parametrized n-surface with finite volume in
R**1. Then the volume integral is stationary at ¢ with respect to compactly
supported normal variations if and only if the mean curvature of S is identically
zero. :

PROQF.;Cer:tainly if H = 0 then, for every compactly supported normal vari-
ation y of @, '

E,

d , ;'

Z 0V((p,)--: —n jUfHdet E, =0.
N

Conversely, if H(p) # 0 for some p € U, choose an ¢ > 0 such that the closed
ball about p of radius ¢ is contained in U, let h: U — R be a smooth bump
function with h(p) =1, h(g) = O for all g€ U, and h(g) = 0 for all q with
lg — p|| = ¢ and let § be the normal variation of ¢ with f= hH. Then ¥
is compactly supported and f H = hH? is non-negative on U anc% positive
at p, so ' E,

V(ps)= —n fUth det Fi,. <0. 0
N

d

dSQ
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A parametrized or oriented n-surface in R"*! with mean curvature iden-
tically zero is called a minimal surface. The adjective “minimal ” is used here
because a minimal surface usually arises as a surface whose volume is mini-
mal among all surfaces obtainable from it via small normal variations. Mini-
thal 2-surfaces in R? are found in nature as soap films: if a soap film takes the
shape of a surface spanning a wire frame then (assuming air pressure is the
same on both sides of the film) in order for the surface to be stable its area
must be minimal among all nearby surfaces spanning the given frame (see
Figure 18.2).

wire frame

plane

catenoid

Figure 18.2 Minimal surfaces can be obtained by dipping a wire frame in a soap
solution. (For best results, keep the distance between the parallel circles small.)

Clearly an n-plane a;x; + *** + G,4+1X,+, = b is a minimal surface in
R"*! since all principal curvatures, and hence also the mean curvature, are
identically zero. On the other hand, there are no compact minimal surfaces
in R"*1 since, by Theorem 4 of Chapter 12, each compact n-surface in R"**
must contain a point where all principal curvatures are different from zero
and have the same sign.

We shall find all 2-surfaces of revolution in R* which are minimal. Sup-
pose first that a: I —» R? is a parametrized curve of the form «(t) = (¢, y(t))
for some smooth function y: I - R with y(t) > O for all ¢t € I. The 2-surface
obtained by rotating a about the x,-axis is given by

o(t, 0) = (t, y(t)cos 0, y(t)sin 6).

A straight-forward computation (Exercise 18.1) shows that the principal
curvatures of ¢ are given by

Ki(t, 0) = —y"(e)/(1 + (v ()))*?
K2(t, 8) = 1/y(e)(1 + (y'(2))*)">

Thus the mean curvature of ¢ will be zero if and only if y(r) satisfies the
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differential equation
o 1
L+ (1 +yH)"
‘Multiplying both sides by y'(1 + y'?)'/> we obtain
yy' _y

1+y2 y

which integrates to

1 log(1 + y?) = log y + log c = log(cy),
or

1+y?= ()
where ¢ > 0 is a constant of integration. Solving for y’ gives:
y=t(eP-D" o y/leyP - 1) = £1
Integrating again, we obtain | |

(1/c)(cosh™*(cy) — ;) = %t
or

y=1/|e] )cosh(cit +¢3)

where ¢, = +c and c, is another constant of integration.

A curve in R? of the form x, = (1/|¢, | Jeosh(cy x4 + ¢;) is called a caten-
ary; a surface of revolution obtained by rotating such a curve about the
x,-axis is called a catenoid (Figure 18.2). The above argument shows that
each minimal surface in R® which can be obtained by rotating the graph of a
smooth function about the x,-axis is a portion of a catenoid.

If we drop the requirement that the parametrized curve o have image the
graph of a function, we obtain in addition to catenoids only portions of
planes. Indeed, if a(t) = (x(t), y(t)) then on any interval where x’ # O there
exists a reparametrization § of a of the form B(t) = (¢, y o x~*(t)) so on that
interval Image o is the graph of a function. On any interval where x’ is
identically zero, « must be of the form a(t) = (c, y(t)) for some ¢ € R so the
surface of revolution obtain by rotating this portion of & about the x,axis is
contained in the plane x, = c. Since two catenoids, defined by éhoosing
different values of ¢, and ¢, , do not fit together smoothly, and a portion of a
catenoid cannot be glued smoothly onto a portion of a plane, we conclude
that the only connected minimal surfaces of revolution in R? are portions of
catenoids and portions of planes.
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18 Minimal Surfaces

EXERCISES

18.1.

18.2.

183.

184.

18.5.

18.6.

18.7.

Find the principal curvatures of the parametrized surface of revolution ob-
tained by rotating about the x,-axis the parametrized curve a(t) = (¢, y(t)),
where y(t) >0 forallte I

Show that the parametrized helicoid ¢: R* — R? defined by o(t, 8) = (t cos 6,
t sin 0, 0) is a minimal surface.

Let S be a connected minimal 1-surface in R2. Show that S is a segment of a
straight line.

Show that the Gaussian curvature of a minimal 2-surface in R3 is
everywhere < 0.

Show that an oriented 2-surface S in R? is a minimal surface if and only if for
each p € S there exist orthogonal directions v and w in S, on which the normal
curvature of § is zero. (Directions v € S, for which the normal curvature k(v) is
zero are called asymptotic directions.)

Show that if the Gauss map of a minimal 2-surface S in R® is regular then it is
conformal; i.e., show that if dN,: S, — S, is non-singular (p € S) then there
exists A(p) > O such that |dN,(v)|| = A(p)||v| for all v € S,,.

Let a: [a, b] - R? be a unit speed curve and let ¥: [a, b] x (—¢, &) > R* be a
variation of a. Show that

4
ds
where a,(t) = ¥(t, s), X(t) = E¥(t, 0), N is the orientation vector field along «,

and « is the curvature along a. Conclude that if y/(a, s) = a(a) and (b, s) =
a(b) for all s then ’

)= (X N)'i - j "X - N)e)ele) dt

2 | o= =[x Moyt a.

[Hint: Verify that (8/s)]o || | = ((62¢/0t 0s) - (9y/0t))|s=0 and integrate by
parts.]
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In Chapter 7 we defined geodesics as “straightest curves” in an n-surface. In
this chapter we shall examine the role of geodesics as “shortest curves.” We
begin by using a technique of the calculus of variations analogous to the one
we used in Chapter 18 to study minimal surfaces. Now, however, we shall
vary parametrized curves rather than parametrized surfaces. i

Let o: [a, b] - S be a parametrized curve in an n-surface S < R"**. A
variation of a is a smooth map ¥: [a, b] x (—&,&)— S (¢ > 0) such that
(t, 0) = a(t) for all t € I (see Figure 19.1). The two coordinate vector fields
E, and E, along ¥, defined by '

E( s)=dy(t, s 1,0)
are then tangent to S along . Note that E,(t, 0) = &(¢) for all t € I. The
vector field X along a defined by X(t) = E,(t, 0) is called the variation vector
field along a associat’ed’ with the variation .

*

‘IIIIIII“IllIIIIlIIIIllllllllIHlllllll
Figure 19.1 A variation of a parametrized curve.

163
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A variation ¥ of a parametrized curve o defines a family of parametrized
curves ay: [a, b] = S by a,(t) = Y(t, s). The length of o, is given by the length
integral

1) = [ Tt e = [ B 9] e

The derivative of this function of s is
d b9 12
)= [ 2 (B, BV de

) 3o
[EG)- %) /e ae

If we assume now that o is a unit speed curve then |E, [,-o = ||&| = 1 so

4
ds

bt
)= [ X - ade

=_[:[(x-o'c)'—x-az]dt

or

10 = (X 00) — (X (o) - [ (X 8) e

This boxed formula is called the first variation formula for the length
integral. It is valid for any variation y of any unit speed curve « in S. Note
that the right hand side depends only on the variation vector field X; any
two variations of o with the same variation vector field will yield the same
value of (d/ds) |, I(a).

A variation y: [a, b] x (—¢, ¢)— S is said to be a fixed endpoint variation
of at) = y(t, 0) if Y(a, s) = a(a) and (b, s) = a(b) for all s € (—¢, ). The
variation V is said to be a normal variation if the variation vector field X is
everywhere orthogonal to « (X(t) L &(¢) for all ¢ € [a, b]). Specializing the
first variation formula to these situations yields the following.

Theorem 1. Let a: [a, b] — S be a unit speed curve in an n-surface S = R**+1,
Then the following three conditions are equivalent:

(i) The length integral is stationary at o with respect to fixed endpoint
variations.
(ii) The length integral is stationary at a with respect to normal variations.
(iii) o is a geodesic in S.
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In partlcular ifaisa shortest curve in S joining two points of S then o is a
geodesic.

Proor. If ¥: [a, b] x (—¢, €)= S is a fixed endpoint variation of a then

¥(a, s) = a(a) for |s| <e so X(a)= (a(a), (3Y/3s)(a, 0)) = 0 and similarly

X(b)=0. If y is a normal variation of a then X(a)* &(a)=0 and
X(b)~ a(b) = 0. In either case, the first variation formula reduces to

% )= - j b(x ‘&) dt.

If a is a geodesic in S then &(t) L S, for all t € [a, b] so X + & = 0 along «
and therefore (d/ds)|, I(a,) = O, for all fixed endpoint or normal variations ¥/
of «. Thus (jii)=> (i) and (m)=> (ii).
On the other hand, if « is not a geodesic then there is a to € [a, b] such
that &(to) ¢ Szq; i-¢,, such that the tangentxal component &'(t) of &(t,) is not
~zéro. (Recall from Chapter 8 that & is the covariant acceleration of a.) We
will construct a fixed endpoint normal variation y of o whose variation
vector field along a is f& where fis a nonnegative smooth function along o
with f (a) = f (b) = 0 and f (t,) > 0. This will be a normal variation of a since,
‘& being a unit vector field along «, &' L &. The first variation formula, for this
vanatlon, beccmes :

z(a,)- —J IrE a~—j fla)? <o,

proving that (i)=> (iii) and (ii)=> (iii).

To construct the variation ¢, let ¢: U — S be a one to one parametnzed
n-surface whose image is an open set in S containing a(t,). Choose a,, b,
witha < a, < b, < bsuch that «([a;, b,]) = Image ¢. Define g: [a,, b;] > U

*by B(t) = @~ o «(t), let f: [a, b] - R be a smooth bump function with
f(to) >0 and f(t) = O for all ¢ ¢ [a,, b;], and let Y be the smooth vector
field along § defined by Y(t) = £(t)(dpsq)” *(&(t)) (see Figure 19.2). Now
define y: [a, b] x (—¢, €)= S by

j(p(ﬁ(t) +sY(t)) forte [a-l, b}, se(—¢¢)
T looBt)=aft) forté[ay, b)), s€(—¢e)
where ¢ > 0 is chosen small enough so that B(t) + sY(t)e U for all (¢, 5)e

[a;, by] x (—¢, €). Then ¥ is a fixed endpoint variation of « with variation
vector field

Yt s)

X(t) = v, 0,0, 1)-"“P(Y<‘)> or g o 1] |

= [} ()

as required.
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Image B Image ¢

a(ay)

B(ay) A a (b))

Image o

a bl ;7

— | 1 ]
I
a
Figure 19.2 Construction of a length decreasing variation along a non-geodesic.

Finally, if « is shortest among all curves in S joining a(a) to a(b) then I(c,)
is minimum at s =0, for all fixed endpoint variations of «, so the length
integral is stationary at o« and « must be a geodesic in S. d

Remark 1. The proof above not only shows that if & is not a geodesic then
a does not minimize length but in fact describes how to obtain a shorter
curve from a(a) to a(b): simply deform «, keeping the endpoints fixed,
in the direction of the tangential component a’ of acceleration of « (see
Figure 19.3).

Remark 2. A review of the proof of Theorem 1 will show that replacing the
hypothesis that « be a unit speed curve in S with the hypothesis that o be a
constant speed curve in S will not alter the validity of the theorem, although
the first variation formula will change slightly.

Remark 3. The first variation formula can be rewritten in terms of the
covariant acceleration &’ of a as follows: *

;,“1; ol(as) = (X - &)(b) — (X - &)a) — f(x i

this curve is shorter

Figure 19.3 Decreasing lengths of curves on S2.
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Theorem 1 establishes that a shortest unit speed curve between two
points p and g in an n-surface S = R"* ! must be a geodesic. It does not show
that there exists a shortest curve between two points (in fact, there may be
none: consider a 2-plane in R® with a point removed) and it does not show
that a geodesic a: [a, b] — S is a shortest curve (even locally) between a(a)
and a(b) (in fact, it may not be; see Figure 19.4). But we will show that, if p
and g € S are close enough, there does exist a geodesic connecting p to ¢
which is in fact shortest among all curves in § joining p to g. To prove these
facts, we shall use the exponential map of an n-surface.

this curve is shorter

Figure 194 Geodesics (great circles) on the sphere do not minimize the length
integral, even locally, beyond the conjugate (antipodal) point p'.

"Forve T(S)= U pes Sp, let a, denote the unique maxlmal geodesxc in§
with &,(0) = v. Let

U ={ve T(S): 1 € domain a,}

and let exp: U — S be defined by exp(v) = a,(1). exp is called the exponential
map of S.

Note that the zero vector in S, is in U for each p € § and that its image
under exp is p. : '

ExampLE. The maximal geodesic in the unit circle S! < R? with initial ve-
locity v = (1, 0, 0, 6) is the constant speed global parametrization a,(t) =
(cos 6, sin 6t) of S'. Hence

exp(1, 0,0, 0) = a;(l) = (cos 6, sin 6).

Viewing R? as the set C of complex numbers by identifying (a, b) with a + bi,
this formula may be rewntten in the form exp(1, 0, 0, 8) = cos 0 +
isin §=e*

Theorem 2. The exponéntial map exp: U — S of an n-surface S in R"* ! has the
Jfollowing properties:
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(i) The domain U of exp is an open set in T(S).

(i) IfveUthentve Ufor0<t<1.

(iii) exp is a smooth map.

(iv) For each p € S there exists a set U,, open in S, and containing 0€ S,,
such that U, c U and exp |y, is a diffeomorphism from U, onto an open
subset of S containing p.

(v) For each pe S and v € S,, the maximal geodesic o, with &,(0)=v is
given by the formula

av(t) = exp(tv).

PRrOOF. (v) is immediate from the fact that for each t € R the parametrized
curve a(s) = a,(ts), defined on the interval {s € R: tse I} where I is the
domain of «,, is a geodesic with a(0) = td,(0) = tv. By uniqueness of
geodesics, a,,(s) = a(s) = a,(ts) for all s such that ts € I. Taking s = 1 yields,
for each t € I, a,(t) = o, (1) = exp(tv).

(ii) follows from (v) because if v € U then 1 is in the domain of «, so
o, (t) = exp(tv) is defined for 0 <t < 1.

(i) Recall (Exercise 15.5) that T(S) is a 2n-surface in R*"*2. Consider the
smooth vector field X on T(S) defined by

X(V) = (P, v, 0, —(V : Vv N)N(p))

for v = (p, v) € T(S). X is called the geodesic spray on T(S). We shall relate
the integral curves of X to the geodesics of S.

For a: I - S any parametrized curve in S, the natural lift of a to T(S) is
the parametrized curve &: I — T(S) given by

i(t) = afe) = (oc(t), & (t)).
The velocity of & is
30) = (o0 20 £ 2 0)

so a is an integral curve of X if and only if

d?a .
Froh —(@*ViN)Noa.

But this is just the differential equation (G) (see Chapter 7) of a geodesicin S.
Thus a: I — S is a geodesic in S if and only if its natural lift & to T(S) is an
integral curve of the geodesic spray X. Furthermore, for each ve T(S),
the maximal geodesic a, with initial velocity v has natural lift &, with
v =4d,(0) and X(v) = &(0) so X is a tangent vector field on T(S) whose
maximal integral curve through ve T(S) is &,. It follows that, for each
v € T(S), the maximal geodesic a, in S with &,(0) = v is given by the formula
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a, =m o B, where B, is the maximal integral curve of X with B,(0) = v, and
n: T(S)— S is defined by n(p, v) = p.

Now, if v € T(S) is in the domain U of the exponential map then the
geodesic «, has domain containing the interval [0, 1] and hence the maximal
integral curve f, = &, of X through v has domain containing [0, 1]. As in
the proof of the Corollary to Theorem 4 of Chapter 13, we can choose
£ > 0 such that for each ¢ in the compact set [0, 1] there is an open set V,
in T(S) containing B,(t) such that the integral curve of X through each
point of ¥, has domain oontammg theinterval (—&,%). Setting V =  J;¢0, n ¥
we obtam an open set V in T(S), containing B,([0, 1]), such that through
each point w of V there passes an integral curve g, of X with £,(0) =
and such that domain (B,) contains (—g, £). By Theorem 4 of Chapter 13
the map y: (—& &) x V — T(S) defined by y(t, w) = B,(t) is smooth. More-
over, by uniqueness of integral curves f;_(s) = Ba(t + s) for all ¢ and s such
that t, s € (—¢, €) and such that B,(t) € V. Choosing k a positive integer such
that 1/k <% and defining Yy V - T(S) by V(W) = Y(1/k, w) = B,(1/k),
it follows that :

W am © ¥ a)W) = Bgapmy(1/k) = Bu(2/K)
for all w e V such that ¥, (w) = B,(1/k) € V and, iterating k times,

Wi o o Yap)(W) = Bulk/k) = Bu(1)
for all w in the open set
W={we VY, (WeV,yuopuweV,. ..,
(Wax o o ¥p)(w) € V (composition k — 1 times)}.

Thus 1 € domain(f,) = domain(x - B,) = domain a,, for all we W. In
other words, W < U. Since v e W, we have succeeded in finding, for each
ve U, an open set W in T(S) such that ve W < U. Hence U is an open
set in T(S). ,

(iil) Since, in the notation of the previous paragraph,

exp(W) = an(1) =m0 By (1) =(m o Yyp o - o Yyp)W) -

for all w e W, exp is smooth.

(iv) We need only check that (d exp)o: (S,)o — S, is non-singular, for
then the inverse function theorem applies. But each element of (S,)o is of
the form d(0) where «(t) = tv for some v € S, and, by (v),

(d exp)(&(0)) = (exp ¢ @)(0) = &,(0) = v

so (d exp)(¢(0)) = 0 only if &(0) = 0. This says that (d exp), is non-‘singular.
a

Accordihg to Theorem 2, the geodesics in S through pe S can be
described as the images under exp of the rays «(t) = tv in S,, (see Figure 19.5).
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Figure 19.5 The geodesics in S through p are the images under the exponential map
of the rays through 0 in S,. Moreover, exp maps the &-ball B, about 0 diffeomor-
phically onto the open set U, in S, for sufficiently small ¢ > 0.

Moreover, for ¢> 0 sufficiently small, exp maps the e-ball B, =
{veS,: |v| < ¢} diffeomorphically onto an open set U, in S. For g€ U,
it follows that there exists a geodesic in U, joining p to g; namely, the
geodesic a,(t) = exp(tv) (0 <t < 1) where ve B, is such that exp(v) = g.
Furthermore, this geodesic is the unique (up to reparametrization) geodesic
in U, joining p to q. We shall show that in fact this geodesic has length
less than or equal to that of every parametrized curve in S joining p to q.
The proof depends on two facts about the differential of the exponential
map.

Lemma. Let S be an n-surface in R"** and let U = T(S) be the domain of the
exponential map of S. For p€ S, and ve S, n U, d exp has the following effect
on vectors tangent to S, at v:

(i) If w € (S,), is tangent at v to the ray a(t) = tv through v (i.e., if Wis a
multiple of &(1)) then ||(d exp)(w)| = |w||.

(ii) If we (S,), is orthogonal to the ray aft)=tv through v (ie., if
@(1) - w=0) then (d exp)(w) is orthogonal to the geodesic (exp o a)(t) =
exp(v).

Remark. Statement (ii) is usually called the Gauss lemma (see Figure 19.6).

\u

(d exp) (w)
exp (v)

p

Figure 19.6 The Gauss lemma: d exp preserves orthogonality to radial geodesics.
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PROOF. (i) (exp o a)(t) = exp(tv) is the maximal geodesic in S with initial
velocity v. Since geodesics have constant speed,

|(d exp)@)]| = ||(exp ¢ «)(1)] = [l(exp ¢ a)(O)] = |lv] = |&(1)].
Since d exp is linear on T(S), = (S,)y, it follows that if w = c&(1) for some
c € R then

I exp)w)ll = |¢|]|(d exp)e())] = || |&()] = |wl-
(ii) Each w e (S,), is of the-form w = B(0) where B(s) = v + sx for some
x € §,. Since

W1)- w=i(1) BO) =2 (1)- P 0)=v-x

the condition that w be orthogonal to the ray a says that v - x = 0.
- We must show that (exp s a)(1) - (4 exp)(w) = 0. But

(4 exp)(w) = (d exp)(B(0)) = (exp > B)O)

(exp 5 a)(1) - (d exp)(w) = (exp 5 a)(1) - (exp ¢ B)(0)
= El(lg 0) * Ez(l, 0)
where E, and Eyz are the coordinate vector fields along the map y: [0, 1] x
(—&, €)— S defined by
| W(t, s) = exp(e(v + 5x)),
¢ > 0 being chosen small enough that ¢(v + sx) € U whenever0 <t < 1and
|s] <& (see Figure 19.7). So we must show that (E,-E,)(1,0)=

\ud

‘p X /-—"
/ ) exp

0 b
Figure 19.7 o(t, s) = t(v + sx) maps [0, 1] x {—s&, £) onto a triangle in §,. The map
W = exp o ¢ is a variation of the geodesic a.

"E,(1,0) - E5(1, 0) = 0. We shall do this by showing that (E, - Ez)qt, 0)=0
for all t € [0, 1]. Since (E; - E,)0, 0) = 0 (because E,(0, 0) = 0), it suffices
to check that (E; - E,)(t, 0) is constant.

Note first that for each s € (—¢, ¢) the coordinate curve o,: [0, 1]— S
defined by

a(t) = exp(t(v + sx))
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is a geodesic in S with initial velocity v + sx. Since geodesics have constant
speed and v x =0,

[Eq(s, )17 = la(@)]* = 8O = [Iv]]* + s*[x[*

for all (¢, s) € [0, 1] x (—¢, ¢€).
Now

0
E(El *E;) = (Vg,Ey) ' E; + E; - (Vg,E,)
where (Vg,E;)t, s) = V., 1,0 E; for j € {1, 2}. Since each coordinate curve
a, is a geodesic, (VgE,)(s, t)=d,(t) is orthogonal to S and hence
(Ve,E,) - E; = 0. Since, in addition,
62
Ve,Ea) 9= (V06 5) 2% 6.5))

= (6. 5) 25 .5)) = e Eul 5

we find that
0 10
ot (E, - E;)=E, - (Vg,E) = 20s (E,-E,y)
10
= 22 (vl + I ]?) = s
s0
O E) =0
6t ! 2 s=0
and hence (E, * E,)(t, 0) is constant, as required. O

Theorem 3. Let S be an n-surface in R"*1, let p € S, and let ¢ > 0 be such that
the exponential map of S maps the ball B, = {v € S, ||v|| < &} diffeomorphically
onto an open set U, in S. Then, for each q€ U,, the parametrized curve
a(t) = exp(tv), 0 < t < 1, where v € B, is such that exp(v) = g, is a geodesic
in S joining p to q, and if B: [a, b] - S is any other parametrized curve in S
joining p to q then I(B) > I(x).

PROOF. Let r: S, — R be defined by r(x) = ||x||. We shall use the following
facts about the 1-form dr on S, — {0}:

(a) Ifw e (S,), is tangent to the ray in S, through v € S, then |dr(w)| = |||
(b) If w e (S,), is orthogonal to the ray in S, through v € S, then dr(w) = 0.

To verify these facts, note that each w € (S,), is of the form w = j(0) where
y(s)= v + sx for some x € S,. If w is tangent to the ray through v then
x = Av for some A € R and so y(s) = (1 + As)v and

|dr(w)| = |dr(;(O))] = | (> 7Y(0)]

EANEsY

= |A[Ivl = Ix] = [Iwl-
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If w is orthogonal to the ray through v then x L v, ro y(s) = ||v + sx| =
(Iv} + s2|x[?)1", and dr(w) = dr(30)) = (r > 7Y(0) = 0.

Now the fact that a(t) = exp(tv) is a geodesic joining p to qis already clear
from Theorem 2. So suppose B: [a, b] —» S has B(a) = p and B(b) = q. Let c
denote the least upper bound of the set

{tela b): la )= UY

so that B(I) = U, where I = [a, b] if c = b and I = [a, c] otherwise. Letting
7: U,—~ R be defined by 7 =r o (exp|s)~" (see Figure 19.8), we see that

Image §

Image 8

Image o

Fxgurc 19.8 The concentnc spheres in the ball B, are level scts of r: S, R. The
images of these sets under exp are level sets of 7: U, » R.

HB(@) = 7(p) =0 and tim,.. 7B = ¢ > Fa) if ¢ b, 7(BO) = 7) it
c = b. In either case, by the intermediate value theorem, 7(B(t)) = 7(q) for
some t € I; let t; be the smallest such ¢. Let B: [a, ¢, a—oB be defined by

B(t) = (expls,)”*(B(¢)). Then B(¢) = Br(r) + B.(¢) where Br(t) is tangent to the
ray in §, thtough B(z) and B, (¢) i is orthogonal to this ray. Using the above
facts about dr, we find .

1= [ el = [ Iv] = Il =) = o) = ) - 7B
=[fepr=["Copy=[ =] aty)
<[ lart)| = [ 161 = [ 1@ cxo¥Bol
[ e+ ookl |
= (@)= tow: 8= 11 <[ 181 = 19

when the equality (1) and the inequality (2) are valid by the lemma.  (J
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Remark 1. I(B) can equal () only if each of the three inequalities above is
an equality. This can happen only if (working backwards through the
inequalities)

(i) B(t)= B(ty) for all t > t,.
(ii) B(z) has no component orthogonal to the ray in S, through (z), for all
t<t,,and
(iii) r o B is monotone on [a, t,].

These three conditions imply that, under the hypotheses of the theorem, if
I(B) = l(«) then B = o o h where h: [a, b] — [0, ||v|] is monotone; in particular,
o and B have the same image.

Remark 2. A review of the proof of Theorem 3 will verify that if V is any
open set in U n S, (U the domain of the exponential map) such that exp
maps V diffeomorphically onto an open set W in S and if exp(tv) € W for
0<t<ty, then a,t)=-exp(tv) (0 <t <t,) is shortest among all pa-
rametrized curves in W joining p to exp(t,v). However, a,(t)= exp(tv)
(0 <t < to) need not be shortest among all curves in S joining p to exp(t, v)
(see Exercise 19.4).

Remark 3. A point g = a,(7) is said to be conjugate to p = «,(0) along the
geodesic a,(t) = exp(tv) if (d exp)(w) = 0 for some non-zero w € (S,),. By
the lemma of this chapter, each w € (S,),, such that (d exp)(w) = 0 must be
orthogonal to the ray a(t) = tv in S,, so w = B(0) where B(s) = v + sx for
some x € S, with x L v. Defining y: [0, 7] x (—¢, £) = S (¢ sufficiently
small) by

Y(t, s) = exp(t(v + sx)),

we obtain a variation of the geodesic a, |0, 5 such that each of the coordinate
curves a,(t) = Y(t, s) is a geodesic starting at p, and these geodesics tend to
focus at g (see Figure 19.9). Thus conjugate points along geodesics from p
are analogous to focal points along normal lines to an n-surface in R"**.
This analogy is made more complete by the observation that the geodesics
radiating from p in S are the same as the geodesics normal to the

w v q
exp
/—_"> - =
0
-—
Y

Figure 19.9 There is a 1-parameter family of geodesics through p which tends to
focus at the conjugate point g.
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(n — 1)-surface exp{v € S,: |v|| = 8}, 6 > O being chosen small enough that
exp. is a difffomorphism on some ball B, about the origin in §, of radius
¢ > 0. The proof of Theorem 3 can be modified slightly to show that up to
the first conjugate point the geodesic a, locally minimizes the length integral
in the sense that if x is any fixed endpoint variation of a, |0, ,,; and if there are
no conjugate points a.(t) for 0 <t <, then I(y,) > l(a,|0,y) for all
sufficiently small s, where y,(t) = x(¢, s). It can be shown that a, does not
minimize the length integral, even locally, beyond the first conjugate point
(see Figure 19.4). '

The set of points g € S such that g is conjugate to p along some geodesic
through p is called the conjugate locus of p in S (see Figure 19.10).

Flgure 19.10 The conjugate locus of a point p on an ellipsoid. Two geodes:cs from p
are also shown.
EXERCISES

19.1. Let S be an n-surface in R"*!. For a: [, b] = S a parametrized curve in S,
define the energy of a to be the integral [} [[#(¢)||? dt. Show that a is a geodesic
in § if and only if the energy integral is stationary at a with respect to fixed
endpoint variations. ’

19.2. (a) Show that each vector tangent to the unit circle S! = R? is of the form
v(e, 0) = (cos ¢, sin @, —0 sin @, 9 cos @)

¢ for some ¢, 0 € R.
(b) Show that the exponential map on S' is given by

exp(v(g, 0)) =™

where R? is viewed as the set of complex numbers by identifying (a, b) with
a + bi.

19.3. Let S be an oriented n-surface in R**1, let T(S) = | J,es5 S, = R2™* Y, and let
v=(p,v)e T(S)

(a) Show that the tangent space (T(S)), to T(S) at v is .
(T(S))y = {(x1, X2, X3, X4) € RICO*1:
=p, x2 =1, (p, x3) € Sp, (P, x3) * Lp(v) = (P, x4) * N(p)}
where L, is the Weingarten map of S at p.
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194.

19.5.

19.6.

19.7.

19 The Exponential Map

(b) Show that the tangent space (S,), to S, at v is

(Sp)lv ={(p, v, 0, x): (p, x) € S,.}.

(c) Show that (p, v, 0, x) € (S,), is tangent to the ray a(t) = tvin S, if and only
if x = Av for some 4 € R, and that (p, v, 0, x) is orthogonal to this ray if and
only if v - x = 0 (orthogonality in (S,),!).

Let S be the cylinder x3 + x3 =1in R* and let p=(1,0,0) e S.

(a) Show that S, ={(p, 0, a, b): a, be R}.

(b) Compute exp(v) for v=(p, 0, a, b) € S,.

(c) Show that the conjugate locus of p in S is empty.

(d) Show that there is an open set in S, containing the ray a(t) =tv, v=
(p, 0, 1, 1), which is mapped diffeomorphically by exp onto an open set
in S containing the geodesic a,(t) = exp(tv).

(¢) Show that, nevertheless, there is a to € R such that a,(t) = exp(tv)
(0 < t < to) is not a shortest curve in S joining p to exp(to v).

Let S? be the unit 2-sphere in R* and let p = (0, 0, 1) € S%.

(a) Show that S} = {(p, a, b, 0): @, b € R}.

(b) Compute exp(v) for v = (p, a, b, 0) € SZ.

(c) Show that the conjugate locus of p consists of the single point
qg=(0,0, —1).

(d) Show that exp maps the ball {v € S: |v| < =} diffeomorphically onto
§* —{a}.

Let S be a connected n-surface in R**1. For p, and p, € S, define the intrinsic
distance d(p,, p2) from p, to p, to be the greatest lower bound of the set

{Il(a): a is a piecewise smooth parametrized curve in S joining p; to p,}.
Show that, for all p,, p,, and py € S,

(a) d(p1, p2) = d(p2, p1)
(b) d(p1, p2) + d(p2, p3) = d(p1, p3)
(c) d(py, p2) =0 and d(p,, p,) = 0 if and only if p; = p,.

[Hint: for (c), take p = p, and choose ¢ as in Theorem 3 but small enough so
that p, ¢ U,. Then argue that d(p,, p,) > ¢.]

Let S be an n-surface in R"*! and let T;(S) denote the unit sphere bundle of S
(Exercise 15.6).

(a) Show that the restriction to T;(S) of the geodesic spray is a tangent vector
field on T;(S).

(b) Using the fact that T;(S) is compact if § is compact, show that each com-
pact n-surface in R"*! is geodesically complete.

(c) Conclude that if S is compact then the domain of the exponential map of S
is all of T(S).



Surfaces with Boundary

In this chapter we shall develop some machinery which we shall need in
the next chapter to prove one of the most celebrated theorems in differential
geometry, the Gauss-Bonnet theorem. We shall first discuss n-surfaces-with-
boundary. Then we shall develop a little bit of the differential calculus of
forms.

An n-surface-with-boundary in R** is a non-empty subset S of R*+1 of
the form

o S=fTH) g ((—os e]) 0 g (-0, )

= {P € U:f(p)’_' G gl(p) < C1s oees gk(p) < Ck}

where k is a positive integer, {c, ¢, ..., ¢} © R,andf: U —» Randg;: U; > R
for i € {1, ..., k} are smooth functlons defined on open subsets of R"* ! and
satisfying the conditions

(i) Vf(p)+0forallpe S
(ii) g7 (c;) n g5 '(c;) n S is empty whenever i +j
(iii) For each i e {1, ..., k}, {Vf(p), Vgi(p)} is linearly independent for all
pegiic)n S

- The boundary oS of S is the set

: k
0S ={p e S: gi(p) = ¢, for some i} = | ) gi '(c;) n S. |
i=1

The interior of S is the set S — &S.

‘Condition (i) guarantees that the interior of S is an n-surface in R** ' and
in fact that S itself is part of an n-surface (f ~!(c)) in R"**. Condition (ii)
guarantees that the parts of the boundary S defined by the various func-

n+ 1

177
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tions g; are disjoint. Condition (iii) then guarantees that 0S is an
(n — 1)-surface in R"*!.

Remark. Equivalently, an n-surface-with-boundary in R"*! may be
described as

S={peSigip)<cy....qlp)<c
where § is an n-surface in R"*! and g,, ..., g,: § — R are smooth functions
on S such that g; *(c;) N gj *(c;) is empty whenever i # j and such that
(grad g;)(p) # 0 whenever p € g }(c;).
ExaMPLE 1. The hemisphere
S={(x1, x2, x3) e R*: x} +x} +x3=1,x, >0}

is a 2-surface-with-boundary in R?® (take f(x,, x5, x3) = x? + x3 + x3,
¢ =1, g(x,, x5, x3) = —x3, and ¢, = 0). Its boundary is the equator:

08 = {(x1, x5, x3) € S: x3 = 0}
(see Figure 20.1).

X3

X,

Xy
oS

Figure 20.1 The hemisphere x? + x3 + x2 =1, x5 > 0.

ExampLE 2. For S = f~!(c) an (n — 1)-surface (without boundary) in R", 4
consider the set

SXTI={(Xg, .00 Xps1) ER"™ L f(x,.-0s %) =6,0<x,,; <1}

Thus S x I is a portion of the cylinder over S (see Figure 20.2). § x I
is an n-surface-with-boundary in R"*!. Its boundary consists of two
copies of S: g7 '(0) where gy(xy, ..., Xp+1)= —X,4; and g3 (1) where
g2(X15 s Xn41) = Xp4 1.
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Figure 202 The cylinder-with-boundary S = 8 x I.

The tangent space at apoint p € 5,5 = £ ~(c) N (Viey g7 {((— 0, ¢J)an
n-surface-with-boundary in R**?, is the n-dimensional vector space S
S,={veR:*':v-Vf(p)=0}

A vector ve S,, pedS (p € g '(c;) for some i), is (see Figure 20.3)
(i) autward-pointing ifv Vgip) >0
(ii) inward-pointing if v - Vgi(p) <0
(iii) tangent to the boundary if v - Vg(p) = 0 :
{iv) normal to the boundary if v - w = 0 for all w € S, which are tangent to
the boundary. ’ ‘

a8

Figure 203 Three vectors in the tangent space ,, p € 3. v is inward pointing, w is
outward pointing and normal to the ,boundary, and x is tangent to the boundary.

Note, for each p € 85, that the set (9S), of all vectors in S, which are tangent
to the boundary is an (n — 1)-dimensional subspace of S, and that thereis
exactly one outward-pointing unit vector in S, which is normal to the
boundary. i , SRR

Note also that all the conditions above can be reformulated without
reference to the functions f; gy, ..., gy and hence depend only on the surface
and not on the functions defining it. Thus, for p € §, the tangent space S, can
be described as the set of all vectors v e R} ! of the form v = &(t,) where
«: I — R**! (I an open interval) is a parametrized curve such that a(t;) = p
for some ¢, € I and either a(t) € S for all r € I with t < t,, or a(t) € § for all
t € I witht > t,, or both. A vector v € S, p € S, is tangent to dS if v = a(t,)
for some a: I - R**! with a(t) € S for all t € I. A vector ve S,, p € 38,
which is not tangent to dS is outward-pointing if v =a(t,) for some
a: I - R"*! with at) € S for all t € I witht < t,, and v is inward-pointing if
v = d(t,) for some a with a(t)e S forallt € I with t > £,.
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An orientation on S is a choice of smooth unit vector field N on S with
N(p) L S, for all p € S, where smoothness is defined exactly as in the case of
n-surfaces without boundary. Note that each orientation N on S defines a
volume form on S, ie., a smooth n-form { on S with {(vy,...,v,)= +1
whenever {v,, ..., v,} is an orthonormal basis for S,, by the formula

vy
{(vyy --., v,) =det v
N(p)

Conversely, each volume form { on S uniquely determines an orientation
N on S by the requirement that N(p) for p € S be the unique unit vector in S;
such that

Vi
det v}, ={(Vyy .ees V)
N(p)
for {v,, ..., v,} any orthonormal basis for S,. Thus an orientation on §

determines, and is determined by, a choice of volume form on S; we could
therefore define an orientation on S to be a choice of volume form. This
definition makes sense also for n-surfaces in R**™ (m > 0) so we shall refor-
mulate the concept of orientation in this more general setting.

Let S be either an n-surface in R"*™ or an n-surface-with-boundary in
R"*!. A volume form on S is a smooth n-form { on S such that
{(vy, ..., v,) = +1 whenever {v,,...,v,} is an orthonormal basis for S,,
p € S. An orientation on S is a choice of volume form { on S. An ordered
basis {v,, ..., v,} (not necessarily orthonormal) for S,, p € S, is said to be
consistent with the orientation { if (and only if) {(vy, ..., v,) > 0. S is said to
be oriented if there is given an orientation { on S.

Remark. These definitions extend in an obvious way to n-surfaces-with-
boundary in R"*™ We leave it to the interested reader to formulate a
definition of “n-surface-with-boundary in R"*™”. For n-surfaces or n-
surfaces-with-boundary in R"*! we shall, whenever convenient, continue to
view an orientation as a choice of smooth unit normal vector field.

For S an n-surface-with-boundary in R"*!, an orientation { on S defines
an orientation {5 on the (n — 1)-surface 0S by the formula {,s = V _1{ where
V is the smooth vector field on 8S defined by V(p) = the outward pointing
unit vector in S, which is normal to the boundary. This orientation {;s is
called the induced orientation on 8.

Integration of differential n-forms over compact oriented n-surfaces in
R"*™ or over compact oriented n-surfaces-with-boundary in R"*! can now
be defined exactly as for n-surfaces in R"* !, We first define local parametriza-
tions. For S an oriented n-surface in R"*™, a local parametrization of S is a
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parametrized n-surface @: U — R"*™ such that @(U) < S and such that ¢ is
consistent with the orientation { on § in the sense that {(E,, ..., E,)>0
where the E,, ..., E, are the coordinate vector fields along ¢. For S an
oriented n-surface-with-boundary in R"*!, a local parametrization is a
smooth map ¢ of one of the following two types:

(i) @: U - R**! is a parametrized n-surface such that ¢(U) is an open set
in S (i.., (U) s the intersection with S of an open set in R** ') and such that
¢ is consistent with the orientation { in the sense described above (these are
the local parametrizations whose images are contained in the interior of S);

(i) ¢: U—>R"*! is the restriction to U=V n R., where R =
{(x1, ...s X,)€R" x,<0}, of a parametrized n-surface ¢: V-»R**!
such that @(U) is an open set in S and such that ¢ is consistent with the
orientation { on S in the sense described above (these are the local parame-
trizations whose images contains points of 8S; see Figure 20.4).

"N

® w

Figure 20.4 Local parametrizations of a 2-surface-with-boundary.

The existence of one to one local parametrizations whose images cover
the given n-surface (or n-surface-with-boundary) is guaranteed by Theorem
1 of Chapter 15 and its generalizations (see Exercises 15.10 and 20.1). We
may even insist, if we wish, that each of the sets U be either an open ball in
R" or the intersection with R™ of an open ball centered on the (n — 1)-plane
x, = 0 (Figure 20.4). |

For w an n-form on the compact oriented n-surface S = R"*™ or on the
compact oriented n-surface-with-boundary S = R**?, the integral s w is
defined to be the real number ‘ i

Jo=2[ i)

where {f} is any partition of unity on S subordinate to a finite collection {¢;}
of one to one local parametrizations of S. The existence of a partition of
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unity on S and the fact that {5 w is independent of the particular partition of
unity used are proved exactly as in the case of oriented n-surfaces in R"*!
(see Chapter 17).

Having defined the integral over S of an arbitrary smooth n-form w, we
can define the volume of a compact oriented n-surface S in R**™ or of a
compact oriented n-surface-with-boundary S in R**! to be the integral over
S of the orientation volume form:

V)=t

and we can define the integral over such an S of any smooth functionf: S - R
by the formula

Jr=1re

The constructions above are part of the integral calculus of forms. We
shall also need to use some of the differential calculus of forms.

Let S be an n-surface or an n-surface-with-boundary in R"* 1. The differ-
ential of a smooth function f: S — R is the smooth 1-form dfon S defined by
df(v)=V, fforve S,, p € S. The exterior derivative of a smooth 1-form w
on S is the smooth 2-form dw on S defined by

dw(vh v2) = V“CO(VZ) - szw(vl) - w([vl’ VZ](p))

where, for v;, v, € S,, pe S, V, and V, are arbitrarily chosen smooth tan-
gent vector fields, defined on an open set U of S containing p, such that
V,(p) = v, and V,(p) = v,, and where [V, V,], the Lie bracket of the vector
fields V, and V,, is the smooth tangent vector field on S defined by

[V, Vol@) = Vv, V2 — Vv Vi

(see Exercise 9.12). The verification that the right hand side of the formula
defining dw is independent of the choice of vector fields V, and V, is left as
an exercise (Exercise 20.2). Note that the multilinearity, skewsymmetry, and
smoothness of dw are evident from the definition.

Remark. The formula defining dw often appears in the literature with a
factor of 4 on the right hand side. This is to compensate for a factor of }
which is also introduced, in these sources, into the definition of exterior
product of 1-forms.

Lemma 1. Let f: S — R be a smooth function on S and let » be a smooth 1-form
on S. Then

(i) d(df) =0
(i) d(fw)=df Ao + f dw.
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PROOF. (i) Since d(df) is bilinear, it suffices to check that d(df }(v;, v;) = 0 for
alli,je{l, ..., nj where {vy, ..., v,} is any basis for S, (p € S arbitrary). We
shall take v; = E;(g) where the E; are the coordinate vector fields of some one
to one local parametrization ¢: U — S with ¢(g) = p. SettingV; = E; o ¢~ %,
we see that V; has vector part (0¢/dx;) c ¢~ ' s0 Vy,;,)V;= VgV, has
vector part (9%¢/dx; 0x;)(g) for all i and j, and [V}, VJ(p) = Vy,,» V; —
Vv Vi = 0. Since Vi(p) = E(q) = v; for all i, it follows that

d(@df )%, v;) = Vg 4f (V5) = Vi 4 (V)
= Ve Vo1 S = Ves@ VEicp-1 f
= VE;(q)VEj(f ° @) — VE,(,, Vel(f° )
_(fe ¢)(q) _*(fo9) @

T ox; 0x; 0x; 0x;
| =0.
(ii) Adopting the same notation used in defining dw, we have
d(fo)(vy, v2) = Vy,(fo(V2)) = Vo, (fo(V4)) = fol[V1, V2](p))
= (Vy, N)o(V2p)) + £ (P)Vy, (V)
- (V. N)o(V1(p)) = £ (P)Vy, (V) — f (Po([V 1, V2](P))
= df (v, )o(v3) — df (v2)o(v1) + £ (p) deo(v,, ¥2)
N = (@ A @)V, V2) + (f dw)(vy, V2)- O

Lemma 2. Let @ be a sinooth 1-form on S and let ¢: U — S be a singular
2-surface in S. Then ' :

I, _ Oy
3x1 axZ

where E,, E, are the coordinate vector fields along ¢ and w,for i € {1, 2} is the
smooth function along ¢ defined by w; = o(E,).

dw(Eb E2) =

Proor. First note that if s: ¥ — S is a one to one local parametrization of S
and o is any smooth 1-form on y(V) then w = Y*-, f; dg; for some choice
of smooth functions f; and g; on ¥(V). Indeed, if we define f; = w(EY - ¢~ 1)
and g; = x; o Y ! where the x,, ..., X, are the coordinate functions on R"
(xday, - -, a,) = a;) then, for each pe V and j e {1,...,n},

(5 £ da)ES(P) = 5 S 0)Vagon i = 5 S00) 3 00°¥
— Fo) = o(ESG)

so the linear functions w,, and (¥ f; dg;)y,) agree on a basis for Sy, and
hence are equal, for each pe V.
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Thus for w a 1-form on S and ¢: U — S a singular 2-surface we may, in
some open set W about any given point of Image ¢, express w as
w =) f; dg;. Then, on ¢~ }(W), by Lemma 1,

do(E,, E;) = Z df; ndgi(E,, E,)
= Z (df(E,) dg,(E,) — dfi(E,) dg{(E,))
of; o @ g, o af; o @ 0g; °
=Z(f¢g ¢ _Uio9dg ﬂ

6x1 aX2 axZ axl
whereas
(3(02 a a
. T Al =— .0 da(E
axl axl w(Ez) axl Z (f; (P) gi( 2)
_y(¥oece ., a’gio«»)
-2 ( Ox;  0x, * Uie @) 0x 0%,
0w,

Fo 5%;60(1‘:1) = % > (fio ) dgiE,)

2 e}
Z(af (Pag, +(ﬁo(p)agi (P)

0x,  0x, 0x, 0x,

s0 dw(E;, E;) = (0w, /0x,) — (0w, /0x,). O

We shall need a formula (Stokes’ formula) relating differentiation to
integration for forms on 2-surfaces. This formula is the natural generaliza-
tion to 2-surfaces of the fundamental theorem of calculus as applied to line
integrals ({, df = f (a(b)) — f («(a)). We shall integrate first over special “ sin-
gular 2-surfaces-with-boundary ”.

Let S be an n-surface or an n-surface-with-boundary in R"*1,

A smgular disc in S is a smooth map ¢: D— S, where D = {(x,, x,) €
R:xi+x3< 1}. Smoothness here means, as usual, that ¢ can be extended
to a smooth map defined on some open set containing D. The boundary of
the singular disc ¢: D— S is the parametrized curve dp = ¢ o a where
a: [0, 2n] — D is defined by a(t) = (cos ¢, sin t) (see Figure 20.5).

A singular half-disc in S is a smooth map ¢: D N RZ2 - S where
RZ ={(x,, x,) € R%: x, <0}; its boundary is the piecewise smooth par-
ametrized curve dp = ¢ - o where «: [0, 2 + 1] - S is defined by

(1-10) if 0<t<2
alt) =
) (cos(t —2 +m),sin(t—2+n) if 2<t<m+2

(Figure 20.5).
A singular triangle in S is a smooth map ¢: A —» S where

A= {(xl, xz) € R2: X1 ZO, X3 20, X1 + x2-S 1};
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Figure 20.5 A singular disc, a singular half-disc, and a singular triangle in the
2-surface-with-boundary S.

jxts boundary is the piecewise smooth parametnzed curve dp =@ o where(
a: [0, 3] > A is defined by

(t.0) if 0<t<l1
at)={@—tt—1) if 1<t<2
0,3—1) if 2<t<3
(Figure 20.5). | |
" The mtegral of a smooth 2-form  on S over one of these singular 2-

surfaoes-w1th-boundary @ is defined in the same way as the integral of o
over a singular 2-surfaoe

Jo=] ‘w(El,Ez)’

2(9)

where 2(p) R? is the domain of [ and E,, Ez are the coordinate vector
fields along ¢.

Theorem 1 (Local Stokes” Theorem). Let S = R**! be an n-surface or an
n-surface-with-boundary, let &» be a smooth 1-form.on S, and let ¢ be either a
singular disc, a singular half-disc, or a singular triangle in S. Then

[do=] o

[ op
PrOOF. By Lemma 2,
0w, 00)1
dw(Ela EZ) axl axz

where ®, = w(E,) and », = o(E,) are smooth functions along ¢. By
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Green’s Theorem (see Exercise 20.5)

6(02 0(01 )
2 — 5= | (0 dx; + 0, dx
J'Q(q;) (axl axz J;( 1 1 2 2)
where « is the piecewise smooth parametrized curve used in the definition of
0 and x;, x,: R*> —» R are the coordinate functions on R? (x(a,, a,) = a;).
Hence, letting [a, b] denote the domain of « and letting a,, a, denote the

coordinate functions of a (x(t) = (a;(t), a5(t)) for ¢ € [a, b]) we have

dw, OJw,
J; do = Lw) dw(E,, E,) = fg(¢)(a—.7ﬂ - aixz) = J;(a), dx; + w, dx,)
= (@1 + 0 d(6) + @3 - ) )
- j:(w(El c2) 1 4 oE, - a)%)

b (da, da,
—J;(D(TtEl °a+WE2 oa)

= jbw(dq,(a)) = jbw(q; s o) = fww = L(,w' O

a a

Theorem 2 (Global Stokes’ Theorem). (i) Let S be a compact oriented 2-
surface-with-boundary in R3, let its boundary 0S be oriented by its induced
orientation, and let w be a smooth 1-form on S. Then

L do = st.

(ii) Let S be a compact oriented 2-surface (without boundary) in R® and let o
be a smooth 1-form on S. Then

fdw=0.
s

Proor. For each p € S we can find a one to one local parametrization ¢ ,of S
with p € Image ¢,. We may assume that the domain of each ¢,,, for p in the
interior of S, is an open ball and, in fact, by composing with a diffeomor-
phism of R? if necessary, that the domain of @, is the ball of radius 2
centered at the origin in R2. For p € S we may similarly assume that the
domain of ¢, is the intersection with R? of the ball of radius 2 centered at
the origin in R? and that ¢, o B, where f(t) = (1 —¢,0)for —1 <t <3,isa
local parametrization of dS (see Exercise 20.1). Note that the parametrized
1-surface @, o B is consistent with the orientation on 4S5 ; indeed, the induced
orientation on 0S was constructed precisely so that this would be true.
Proceeding as in the proof of Theorem 4, Chapter 17, we can construct a
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partition of unity {f;} on S subordinate to a finite collection {p, = ¢,} of
these local parametrizations and in fact such that each f; is identically
zero outside ¢,(D n 2(¢;)), where D D(p;))=D if p,e S-S and
DN 2(p;))=D N R if pedS (take r,=1 in the partition of unity
construction). Then, by Lemma 1,

do =Y fido =Y (d(fio) - dfi rw).

Since
Ydiro=dQ f)rw=d(1)rw =0,
we have ’
do =3, d(fiw)

and he‘noe
[dw=2 [ die) =3 (o)

where the last eqtiality holdé because fiw, and hence d( f;w), is identically
zero outside (D n P(g))) (see Exercise 20.6). Letting ;= ¢;|5 ~ gy Ve
see further that

Jdo=%] di0)=%[ so

where the last equality is a consequence of Theorem 1. Letting
S = {i: p; € S} we find that, for i ¢ 5, f] o ¢, is zero outside D, hence on the
boundary of D, and sof; = dy; = 0 which implies that {,,, f;® = 0.1t follows
that if § is without boundary then {5 dw = 0. On the other hand, if S has a
boundary then {f;|,s: i € £} is a partition of unity on 4S subordinate to the
local parametrizations {p; o B:ie S}, and fi- dY;=0for2 <t <m+2so
S fro=[4,.p fiw for i€ F (fio@;o p=0for t <0 and for t > 2) and

de= )y fo,-m= hy J’ fico=st. |

iesS ieS “@iep

EXERCISES

20.1. Let S=f"Yc) n g1 "{(— 0, ¢1]) N - n gx }((— o0, ¢]) be a n-surface-with-
boundary in R**! and suppose p € g; !(c,). Show that there exists a par-
ametrized n-surface @: B, — R** !, where B, is a ball of radius ¢ about 0 in R",
such that ¢(0) = p and ¢|s, ~r- maps B, » R™. one to one onto an open set
W about p in S. [Hint: First find a local parametrization y: U — f ~!(c) with
image containing p. Then apply the inversé function theorem to the map
¢: U->R" defined by o(xs, ..., Xp))=(Xg, -y Xjoqs Xji1s wees X
gi(W(xy, ..., X,)) — ¢;) where j is such that (9/0x,)g; - ¥)(¥ ~*(p)) # 0.



188

20.2.

20.3.

20.4.

20.5.

20.6.

20.7.

20 Surfaces with Boundary

Let S be an n-surface or n-surface-with-boundary in R"*! and let  be a
smooth 1-form on S. For V,, V, any two smooth tangent vector fields on an
open set U < S, define u(V,, V2): U > R by

(1(V1, V2))(P) = Vv, iy @(V2) = Vy,n@(V1) — o([Vy, V2](p))-
(a) Show that

u(fVy, V3) =fu(Vy, V2) = u(Vy, fV2)

for all smooth functions f: U - R.

(b) Show that if W, and W, are smooth tangent vector fields on U such
that W,(p) = V,(p) and W,(p) = V,(p) for some pe U then u(V,, V,)(p) =
w(Wy, W,)(p). [Hint: Take Xj, ..., X, smooth tangent vector fields, defined
on some open set V < U with pe V, such that {X,(g), ..., X,(g)} is a basis
for S, for all g e V. Express the given vector fields as linear combinations of
the X;’s and apply part a).]

(c) Conclude that the value of the right hand side of the formula used in this
chapter to define dw is independent of the choice of vector fields V, and V,.

Let S be an n-surface in R"*1, let § be an m-surface in R™* 1, and letf: S —» S'be
a smooth map.

(a) Show that if @, and w, are l1-forms on § then f*(w; Aw,)=

[*oy A fro,.

(b) Show that if g: S — R is smooth then f*(dg) = d(g - f).

(c) Show that if @ is a smooth 1-form on § then f*(dw) = d(f*w).
[Hint: Use the fact that, for U a suitably small open set in Soly=Y-1 fidg
where f; and g;: U — R are smooth functions (see the proof of Lemma 2).]

Let S be an n-surface in R**! and let @ be a smooth 2-form on S. Show that if
@: U — S is a one to one local parametrization of S then there exist smooth real
valued functions f;; (1 <i<j<n) and g; (1<i<n) on ¢(U) such that
© |pwy = Y1 <i<js<n fij dgi Adg;. [Hint: See the proof of Lemma 2.]

Let U be an open set in R? containing 2 where 9 is A, D, or D N R2, and
suppose ®; and w, are smooth real valued functions on U. Prove Greer's
theorem:

0 d
(522 -52) - [(n dxi+ 0 s

where a is the piecewise smooth parametrization of the boundary of 2
described in this chapter. [Hint : Break the left hand side into a difference of two
integrals, evaluate these by iterated integration, and reparametrize the curve
which appears in the resulting line integral.]

Let S be an n-surface in R"*! and let w be a smooth n-form on S. Suppose w is
identically zero outside ¢(C) where ¢: U — S is a local parametrization of §
and C is a compact subset of U. Show that |s @ = |, w. [Hint: Construct a
partition of unity {f;} on S with the property that for each i either (i) f; is
identically zero outside @(U), or (ii) f; is identically zero on ¢(C).]

Let @ be a smooth k-form on an n-surface S. Forpe Sand vy, ..., V41 €S,
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20.8.

209.

20.10.

let
da’(vh ceey vt+1)= ' Z : 1(-1)‘—lvww (vb ceey vi~l9 vH-l’ eaey vk+l)

sisk+

+ Z (— l)i+jw ([vh V}]’ vb sy vi- 1s vi+ 1 »ovy
18i<jsk+1

Vo1 Vists oo Vi1 XP)

where V,, ..., Vy4, are smooth tangent vector fields, defined on an open set in

S, such that V,(p) = v, for each i. Show that the value of the right hand side of

this formula is independent of the choice of vector fields V;, ..., V41, and that
do is a smooth (k + 1)-form on S. [Hint: See Exercise 20.2.] dw is the exterior

derivative of the k-form w.

‘Show that exterior differentiation of smooth k-forms (Exercise 20.7) has the

following properties:

(a) If  and n are smooth k-forms on S then d(w + n) = do + dn.

(b) If f: S» R is a smooth function and w is a smooth k-form on S then
d(fo) = dfro + [ do.

(c) If w is a smooth k-form on S and n is a smooth [-form on § then
d(w An) = do An + (—1) o Adn.

“{d) d3=.=0.“

Let X be a smooth vector field on an n-surface § and let wx be its dual 1-form.
(a) Show that, forv, we S,, p€S,

doog(v, w) = (V, X) * w— (Vo X) V.
(b) Show that if § = R® then -

~ daxg(v, w) = (cur1 X) * (v x w)
where ’ '

(cuﬂxm=(p,-,;;——-—,-—---—-—,-—————) ,

14

Xy, X, and X, being the component functions of X.
Let S be a compact oriented 2-surface-with-boundary in R® and let X be a
smooth vector field defined on an open set U in R® containing S. Prove the
classical Stokes” formula :

» L(curl X)*N= LSX -T

where curl X is as in Exercise 209, N is the orientation vector field on S, and
T(p) is, for each p € 3S, the unique unit vector tangent to 5 at p such that
{T(p)} is consistent with the induced orientation on 8S. [Hint: Apply Theorem
2 to the 1-form i*ox where i: § — R? is defined by i(g) = g for all g€ 5.



The Gauss-Bonnet Theorem

In this chapter we shall study the integral {5 K of the Gaussian curvature
over a compact oriented 2-surface S. We shall see that (1/2x) (s K always
turns out to be an integer, the Euler characteristic of S. This is the 2-
dimensional version of the Gauss-Bonnet theorem. A similar result is valid
in all higher even dimensions but the computations are less transparent so
we shall be content with a few comments about this more general case at the
end of the chapter. )

The Gauss-Bonnet theorem is obtained by applying Stokes’ Theorem to
a 1-form constructed with the aid of a unit tangent vector field. Let S be an
oriented 2-surface or 2-surface-with-boundary in R3. Suppose X is a smooth
unit tangent vector field defined on an open set U in S. We use the vector
field X to construct a 1-form w on U as follows. For anyve S,, p € S, let
Jv € S, be the vector obtained from v by a positive rotation in S, through
the angle n/2. Thus Jv = N(p) x v where N is the orientation vector field on
S. Note that {v, Jv} is an ordered orthonormal basis for S, consistent with
the orientation of S. We define the 1-form @ on U by

o(v) = (D.X) - JX(p) = (V, X) - JX(p)

where D denotes covariant differentiation (D, X is the tangential component
of V, X). This 1-form w is called the connection form on U associated with X.
Note that JX, defined by (JX)(p) = JX(p), is a smooth unit vector field on U
which is everywhere orthogonal to X and that )

D, X = o(v)JX(p)
D,(JX) = —a(v)X(p)

190
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Indeed, X, being a unit vector field on S, has derivative D, X orthogonal to
X(p). Hence D, X = aJX(p) for some a € R, and a = D, X - JX(p) = w(v).
Similarly, D (JX) = bX(p) where

b=D,(JX) - X(p) = V,(JX - X) = JX(p) - D,X = — (V).

The connection form @ measures, up to sign, the rotation rate, relative to
X, of parallel vector fields along parametrized curves in U. In order to see
this, we must first formulate precisely the meaning of “ rotation rate ”. Sup-
pose a: [a, b] — S is a parametrized curve in S and Y and Z are smooth unit
vector fields tangent to S along a. Then

Z(t) = cos ()Y (t) + sin 0(t)JY(¢)
for some smooth function 6: [a, b] —» R (see Figure 21.1).

Z(t)

Figure 21.1. 6(t) measures the angle of rotation from Y(t) to Z(z).

An explicit formula for such a function 6 may be obtained as follows. Let
B: I — R? be defined by e
B = (20 - Y Z0)- JY()
Then ||f(t)]| = 1 for all ¢ € I so in particular we can find a 6, € R such that
B(a) = (cos 8y, sin 6,). Set () = 85 + [, n where p, is the restriction of §
to the interval [a, ] and 5 is the 1-form on R? given by
n = —[x2/(x} + x3)] dx; + [x1/(x} + x3)] dx,.

Then B(t) = (cos 6(t), sin 6(t)) for all ¢ € I, as required (see the proof of
Theorem 3, Chapter 11).

The function # measures the angle of rotation from Y to Z along a. It is
not uniquely determined, but any two such functions must differ by a mul-
tiple of 2n. Hence, the derivative &'(t) is uniquely determined. & is called the
rotation rate of Z, relative to Y, along a. The real number 6(b) — 6(a) is also
uniquely determined; it is called the total angle of rotation of Z along a,
relative to Y. ‘ - |

Lemma 1. Let S be an oriented 2-surface in R®, let X be a smooth unit tangent
vector field on an open set U in S, and let w be the connection form on U
associated with X. Suppose a: [a, b] — U is any parametrized curve in U and Z



192 21 The Gauss-Bonnet Theorem

is any parallel unit vector field along a. Then

(i) w(&) is equal to the negative of the rotation rate of Z, relative to X (or,
more precisely, relative to X - a), along a.

(ii) [, @ is equal to the negative of the total angle of rotation of Z, relative
to X, along a.

PROOF. (i) Let 6: [a, b] —» R measure the angle of rotation from X to Z along
. Since Z is parallel along a,

0=2 = (cosOXoo+sinbJXoa)
=—@'sin@Xoa+ 8 cosfJXoa+cos§ D;X +sin § D, JX
= (0 + w(@))(—sin 6 X o a + cos 6 JX - a)

(we have used here the above boxed formulas) and hence 8’ + w(&) = 0;ie.,
w(@)= -0

(i) f. 0 = 2 of@) = —[2 6 = —(6(b) - 0(@)). 0

If «: [a, b)] > U is a unit speed geodesic in S then the velocity field & is
parallel along « and may be used as the vector field Z in Lemma 1. Then
Lemma 1 says that |, » measures the negative of the total angle of rotation
of & with respect to the vector field X. The 1-form w can also be used to
measure the angle of rotation of & with respect to the vector field X for « any
smooth unit speed curve in U. The relevant formula contains also the
geodesic curvature K,: [a, b] - R of a, defined by

K, = (@) « Ja.
The geodesic curvature measures how much « deviates from being a
geodesic. Its magnitude |x,| is just the magnitude ||&'| of the covariant
acceleration & of « since &, being a unit vector field along a, has covariant
derivative orthogonal to itself and hence a multiple of Ja. Note that a is a
geodesic if and only if «, is identically zero.

Lemma 2. Let S, X, U and @ be as in Lemma 1 and let «: [a, b] > S be a
smooth unit speed curve in U. Then the total angle of rotation of & with respect
to the vector field X is equal to [’ x, — |, @.

PROOF. Let Z be a parallel unit vector field along «, let 6: [a, b] - R measure
the angle of rotation from X to Z along «, and let ¢: [a, b] - R measure the
angle of rotation from X to a. Then ¢ — 0 measures the angle of rotation
from Z to &; that is,
a = cos(¢ — 0)Z + sin(¢p — 0)JZ,
and '
Ja = —sin(¢ — 6)Z + cos(¢ — 6)JZ.

Taking the covariant derivative of & and using the fact that Z and JZ are
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both parallel along « (JZ is parallel because by the existence and uniqueness
theorem for parallel vector fields thereis a unique parallel vector field along
a with initial value JZ(a); this vector field must be smooth, of unit length,
and orthogonal to Z along a; and JZ is the only such vector field) we find

& = (¢' — &)(—sin(¢ — 6)Z + cos(¢ — OVZ)

S0
7 Kg=0Ja=¢ —
Hence the total angle of rotation of & relative to X is
b b b b ,
=k, +|O=|k,— | O
[o=lmefo=ln-]

The relation between the 1-form w and the Gaussian curvature is as
follows.

“ Lemma 3. Let S, U, X, and o be as in Lemma 1. Then, on U,
dw = —K{

where K is the Gaussian curvature of S and { is the volume form on S.

, PROOF. By Exercise 17 13, dw —ﬂ,’ for some f: U = R. Tofind f (p)(p € U)we
need only evaluate dw and { on a basis for §,,. The basis we shall use is the
coordinate basis {E,(p), E,(p)} attached to a  local parametrization ¢ of S
whose image contains pand is contained in U Then, by Lemma 2, Chapter 20,

7 0
dafE, B) =32 ~ 2 = L o(E) - - ofEy)

0xq 6x2
) ,
="5;:—1- (VE2X ¢ JX ° (P) - ‘aTz(VElX JX o (p)

= (Vg, Ve, X — Ve, Ve, X) - JX o9

VX Vg JX - Vg X - Vg, JX

where VeZ for Z a smooth vector field on U is the smooth vector field along
¢ defined by (Vg, Z)(p) = Vg4, Z, and Vg, Z for Z a smooth vector field along
@ is the smooth vector field along ¢ defined by (Vg,Z)(p) = V,,Z. Here

e, = (p,1,0)and e, = (p,0, 1) The first term in the above expression vamshes
by the equality of mixed partial derivatives. Furthermore,

VeX =DeX + (VeX) - No @)N o ¢ |
=DeX + (L(E) X -@)N -

where L(E,) is the vector field along ¢ defined by L(E)}(p) = L,(E{(p)) =
- —Vg,N, L, being the Weingarten map of ¢ at p. Using this and the corre-
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sponding formula for Vg, JX we find
do(E,, E;) = Dg,X + Dg,JX — Dg X * Dg,JX
+ (L(E;) - X © @)(L(E,) - JX - ¢)
— (L(Ey) - X © @)(L(E,) - JX < 9).

The first two terms on the right hand side of this last formula vanish because,
for each i and j, the derivative DgX of the unit vector field X must be
orthogonal to X, hence a multiple of JX and hence orthogonal to Dg,JX.
Applying the vector identity

(Vg X ¥3) * (V3 X vg) = (v * v3)(v Va) = (V1 * va)(v2 * v3)
to the remaining two terms yields
dw(Ey, E;) = (L(E,) x L(E,)) - (X o ¢ x JX © ¢)
=—-LE,)XLE;)Noo
= —(det L)El X E2 *No [(/]

E,
= —(K - p)det ( E, )
Nog
_(K ° (p)C(El’ EZ)
- (KC)(ED Ez)
from which we can conclude that dw = —K(. O

Theorem 1. Let S be an oriented 2-surface in R* and let U be an open subset of
S on which there is defined a smooth unit tangent vector field X. Then, for
@: D> U any singular disc in U and Z any parallel vector field along oo,
{o KU is equal to the total angle of rotation of Z, relative to X, along d¢.

ProoF. Let @ be the connection form associated with X. By Lemma 3 and
Stokes’ theorem,

which, by Lemma 1, is eqﬁal to the total angle of rotation of Z, relative to X,
along do. O

Remark. Theorem 1 shows, in particular, that the total angle of rotation
of Z relative to X along d¢ is independent of both X and Z and in fact
depends only on ¢; this angle is called the holonomy angle of ¢. Note that
this angle depends crucially on ¢ and not just on d¢ (see Figure 21.2).
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2=091=039;

P2

P,
, ey
'Figure 21.2. The total angle of rotation of a unit vector field Z parallel along
a = 0@, = d¢,, with respect to a unit tangent vector field X, on U, = §* — {p,}, will

be cons:derably different from the total angle of rotation of Z along « relative to a
unit tangent vector field X; on U; = S? — {p;}.

{ Theorem 1 also ylelds an interesting mtcrptetatxon of the Gaussian
‘curvature: K(p), p € S, is the limit, as a disc ¢ about p shrinks to zero, of the
ratio: holonomy angle of ¢/area of ¢. More precisely, we have the following.

5

Corollary. LetSbeanonenzedZ-smfacem R3, letp €S, andletq: D—-»Sbea
singular disc in S with @(0) = p and dg,: R} — S, non-singular. Then

K(p) = hm 0(e.)/ Ale.)

where @,: D — S is defined by <p,(q) = tp(aq), O(.)is the holonomy angle of @,
and A(g,) is the area of ¢, (see Figure 21.3).

Proor. For ¢ sufficiently small, Image ¢, is oontamed in the image of a one
to one local parametrization of S and hence there exists a smooth unit vector
field X (e.g., a normalized coordinate vector field) on an open set containing
Image ¢,. The regularity of ¢ at 0 guarantees that A(¢,) # 0 for all ¢ > 0.
Using Theorem 1, the mean value theorem for integrals, and the fact that the
coordinate vector fields E along ¢, are related to the coordinate vector
ﬁelds E, along ¢ by EX(q) = eE(eq), we find

ooy K& [ (K- 0B, ED  Klpa KB Ba) [ 1
) Jo o JeE (083 (a2) Esaa) [ 1

K(‘P(aqz))c(Et(ﬁQx): E;(eq1))
{(E1(eq2), E,(eq2))
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Image o
Image o,

Image ¢,

p

Figure 21.3. The Gaussian curvature K(p) is equal to the limit, as £ — 0, of the ratio:
holonomy angle of ¢, /area of ¢, .

for some g,, g, € D (depending on ¢). Taking the limit as ¢ — 0 completes the
proof. O

The Gauss-Bonnet theorem in its local form relates the integral of the
Gaussian curvature over a regular triangle to the integral of the geodesic
curvature over its boundary. By a regular triangle in an oriented 2-surface S
we mean a singular triangle ¢: A — S which is the restriction to A of a one to
one local parametrization of S defined on some open set in R2 containing A.
The boundary de¢: [0, 3] — S is then a piecewise smooth curve in S with the
property that «; = 0 |;_,,; is a regular parametrized curve (& #.0) for
i € {1, 2, 3}. The exterior angles of a regular triangle ¢ are the unique real
numbers 0, 6,, 0; € (—=, n] such that

Vi = (COS ei)ll,- + (Sin oi)"“i

where u; = a,(i)/||a;(i)|| fori € {1, 2, 3}, v; = d; 1 (i)/]|d;+ 1 ()| for i € {1, 2}, and
vy = &;(0)/||&,(0)|| (see Figure 21.4). In fact, 0 < ; < = for each i since ¢ is
orientation preserving.

uy

Image a;

Image ¢

Image «,

Image o,

Figure 21.4. The exterior angles of a regular triangle.
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Theorem 2 (Local Gauss-Bonnet Theorem). Let S be an oriented 2-surface in
R and let ¢: A — S be a regular triangle in S. Then

ch+j x,-—2n— zei

i=1

where K is the Gaussian curvature of S,{is the volume formon S, B: [a, b] )
is a unit speed reparametrization of 0@, x, is the geodesic curvature of B, and
0., 0,, 05 are the exterior angles of ¢. .

PROOF. Since ¢ is the restriction to A of a one to one local parametrization @,

there exists a smooth unit tangent vector field X defined on an open set U

in § contammg Image @. Indeed, we may take U =Image ¢ and

X =E, 3" Y/|E, - »!| where E, is the first coordinate vector field of §.

Let w be the connection form on U associated with X. Then, by Lemma 3
and the local version of Stokes’ theorem,

e

where the B;: [a;, b]] - S are the three smooth segments of . By Lemma 2,

fw—Lm 2

where @, is the total angle of rotation of B, with respect to X. But, choosing
. 6, so-that

B1(a,) = cos Go X(p(a,)) + sin GOJX(B(“l)),
we see that (see Figure 21.5).
Bi(by) = cos(8, + ¢‘)X(ﬂ(a,)) + sxn(Oo + ¢4 )JX(ﬁ(az))
Ba(az) = cos(6o + ¢; + :9:')x(ﬂ(‘lz)) +sin(f, + ¢, + 0;VX(B(az))
Pa(b2) = cos(By + ¢y + 0, + ¢2)X(B(as)) + sin(@ + b1 + 02 + $2)/X(B(as))

Bi(ay) = cos(@o + ¥ ¢ + T 6)X(B(ay)) + sin(6, + X ¢, + T 0:X(B(ay)).
Comparison of the two formulas above for B,(a,) shows that
y i + Y. 6, = 2nk for some integer k.

Hence
Lm=-zfm+z@

b
=[x+ 2mk— T 6,
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Bz(az)

X(B(al)) X(B(aZ))
Image ¢

Figure 21.5. The angle of rotation of B with respect to X increases by ¢; along f;
and increases by 6; at the ith vertex of ¢.

1 b
E(J‘,KCJ'LK"JFZO"):
for some integer k.

To see that k = 1, consider the singular triangle ¢,: A — R* defined for
each t € [0, 1] by

SO

x4, tx;) — (0, 0)

(0, 0) + 2 t

if0<t<1

(Pt(xl’ x2) =

(0, O)+xla¢(0 0) + x 2 (o 0) ift=0.

Then ¢, is in fact a regular triangle in the oriented 2-surface S, = Image ,
where @,: W — R? is the parametrized 2-surface obtained by replacing ¢
everywhere in the above formula by a local parametrization ¢: W — S of §
with @ |, = ¢, the open set W being chosen so that tp € W whenever p € W
and 0 <t < 1. The 2-surfaces S, (0 < ¢ < 1) describe a continuous deforma-
tion of the 2-surface S; = Image ¢ onto the 2-surface S, which is a portion
of a 2-plane (see Figure 21.6). Letting K* and {* denote the Gaussian curva-
ture and volume form of S, and «j: [a,, b] — R and 6 denote the geodesic

Image ¢
So
Image ¢,

8y

Figure 21.6 The deformation ¢, deforms the regular triangle ¢ to
the plane triangle ¢, .
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curvature and exterior angles associated with the regular triangle ¢,, the
argument above shows that

([ es [+ £ 0t) =

where k' is an integer. But the left hand side of this equation varies contin-
uously with ¢, hence so must the right hand side. Since k' is always an integer,
k' must therefore have the same value for all ¢ € [0, 1]. But when ¢ = 0, the
regular triangle ¢, is just an ordinary plane triangle bounded by straight line
segments, 50 K° =0,k0=0,) 67 =2m,and hence 1 =k®=k'=k. [

Remark. The formula in this theorem can be rephrased m terms of the
interior angles 6; = n — 0, of ¢ as follows:

[ e ()

This formula has an interesting interpretation for geodesic triangles. A

geodesic triangle in S is a regular triangle ¢: A — S such that each smooth
segment of d¢ is a reparametrization of a geodesic. For such triangles,
{4 x, = 0 so the local Gauss-Bonnet formula becomes

[ Kt = (éf‘)f .

[4

- Since (Y 6;) — = = 0 when S is a 2-plane (and, in fact, whenever K = 0), this

formula says that [, K{ measures the excess (in comparison with the geodesic
triangles of plane geometry) angular content of the geodesic triangle ¢. In
particular, if K > 0 everywhere then geodesic triangles in S have angle sum
> m, and if K < 0 everywhere the geodesic triangles in S have angle sum
< ' :

The Gauss-Bonnet theorem in its global form expresses the integral |5 K
of the Gaussian curvature of a compact oriented 2-surface S as 2% times a
certain integer associated with S. If there is a smooth nowhere zero tangent
vector field on S, this integer must be zero: '

Theorem 3. Let S be a compact oriented 2:surface in R3. Suppose there exists a
smooth nowhere zero tangent vector field on S. Then |s K = 0.

Proor. If X is such a vector field then X/||X|| is a smooth unit tangent vector
field on S. Letting w be the connection form associated with X/| X|| we have,
by Lemma 3 and the global version of Stokes’ theorem, |

,LK=LKC=—de=O. 0

Corollary. Let S be a compact oriented 2-surface in R® whose Gaussian curva-
ture is everywhere > 0. Then there can be no smooth nowhere zero tangent
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vector field on S. In particular, there is no smooth nowhere zero tangent vector
field on S2.

ProoF. By Theorem 4 of Chapter 12 there must be a point p € S with
K(p) > 0. K must therefore be > 0 on an open set in S about p and since
K > 0 everywhere it follows that |5 K > 0. O

To get some insight into what happens when there is no smooth unit
tangent vector field on S, consider the case where S is the sphere S? oriented
by its outward normal. Although there can be no smooth unit tangent vector
field on S? there is one on S?> — {p} where p= (0,0, —1) and there is
another on S? — {q} where q = (0, 0, 1). For example, we can define X, on
S — {p} by X; = E¢' o 97 !/|[E$! o @7 | where ¢,: R* » S? — {p} is the in-
verse of stereographic projection from the south pole p of S? and E4'is its
first coordinate vector field, and we can similarly define X, on S? — {g} by
X, =E{20 @7 !/||E$? o 93| where @,: R*> - S? — {g} is the inverse of ster-
eographic projection from the north pole ¢. Letting w, and w, be the con-
nection forms associated with X, and X, respectively and letting

82 ={(xy, x5, x3) €S%: x3 >0} and S% ={(x,, x;, x3) € $?: x3 <0}

we see that S2 and S2 are 2-surfaces-with-boundary whose union is S? and
whose intersection is the equator in S2. Furthermore, w, is defined on S2
and w, on S% . Applying Lemma 3 and the global version of Stokes’ theorem
yields

JSZK - LZKC B J’SiKC * '[SZ_KC - —Jsi deoy - sz dory

=—J. wy, — w2=—J w; + w,y
282 as2 as2 as%

where the last equality is due to the fact that #S2 and 0S2 are the same
l-surface in R? but provided with opposite orientations. Letting a(t) =
(cos ¢, sin t, 0) for 0 <t < 2=, we see that « |, 2m 18 a local parametrization
of 0S2 whose image misses only one point of 8S% and hence

jK=—f w1+J w2=-—fwl+fw2.
s2 as? 282 « a

But, by Lemma 1, — L, w, is equal to the total angle of rotation of Z relative
to X, along a, where Z is any parallel vector field along a (we could take
Z = ¢), and |, w, is equal to the total angle of rotation of X, relative to Z
alonga;ie., |s2 K = — [, w; + |, w, is equal to the total angle of rotation of
X, relative to X; along a. Since X,(x(27)) = X,(x(0)) and X,(x(27)) =
X, («(0)), this total angle of rotation must be an integer multiple of 2x; ie.,
(1/27) 5. K must be an integer. From Figure 21.7 it is easy to see that this
integer is 2 (as expected since {5 K = [s.1 = V(S?) = 4n).
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5X1

Flgure 21.7. The rotatwn angle of X, with respect to X, increases by 27 along each-
: half of the equator.

" The global Gauss-Bonnet theorem is obtained by generalizing the above
_construction to an arbitrary compact oriented 2-surface S = R3. We shall
first establish an integral formula for the total angle of rotation, along a
parametrized curve, of one unit tangent vector field relative to another. Then
we shall study this total rotation angle along closed curves which encircle
“singularities  of one of the vector fields.

Lemma 4. Let X and Y be smooth unit tangent vector fields defined on an open
“set U in an oriented 2-surface S. Let wxy be the smooth 1-form on U defined by

wxy = fdg — gdf
where f=X-Y and g=X - JY. Then '

(i) doxy =0
(i) . wxy, where a is any parametnzed curve in U, is equal to the total angle
of rotation of X relative to Y along a.

Remark. Some insight into why this lemma is correct may be gleaned
from the observation that wyy = d tan™ (g/f) wherever f is not zero.

PROOF OF LEMMA 4.
(1) By Lemma 1 of Chapter 20, |

dwgy = df ndg — dg Adf = 2df A dg.
But f2 + g*> = 1 and hence
0=d(f? + g°) = 2fdf + 2gdg.
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Taking exterior products of this equation with dg and with df yields
0=2fdfrndg and O =2gdfndg.
Since f and g are never simultaneously zero, this implies that
0 =2dfndg = doxy .

(ii) Let 0: [a, b] > R measure the angle of rotation from Y to X along o
so that

Xoca=cos0Yoa+sindJYoa.
Then fo o = cos 6 and g > a« = sin @ and hence
wxy(@) = (f o 1)dg(&) — (g  a)df (&)
=(foa)geoa) —(goaffoa)f=0.
Integrating yields

[oxr = [ @xsle) = [ 0= 006) - o) 0

Let X be a smooth unit tangent vector field defined on an open set U in
an oriented 2-surface S. An isolated singularity of X is a point p € S such that
p¢ U but V—{p} = U for some open set V in S containing p. Given an
isolated singularity p of X, we may choose

(i) € > 0 so that the exponential map exp of S maps the open ball B, of
radius ¢ about 0 in S, diffeomorphically onto an open set U, = U U {p},
(ii) w e S, with |jul| =1,
(iii) re Rwith 0 <r <¢, and
(iv) Y a smooth unit tangent vector field on U,.

The existence of such an ¢ is guaranteed by Theorem 2 of Chapter 19; the
vector field Y can be obtained, for example, by applying d exp to any smooth
non-zero vector field on B, and normalizing the result. Having chosen ¢, u, r
and Y, we define the index 1(X, p) of X at the isolated singularity p to be 1/2n
times the total angle of rotation of X relative to Y along the closed curve «,,
where a,: [0, 2r] - U, is defined by

o,(t) = exp(r cos t u + r sin t Ju)
(see Figure 21.8).

Lemma 5. The index 1(X, p) is an integer which depends only on X and p (and
not on the choices of ¢, u, r, and Y).

ProOF. 1(X, p) is an integer because if 6,: [0, 2r] > R measures the angle of
rotation from Y to X along a, then the equation X o «,(27) = X © «,(0) im-
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=2

Figure 21.8. Isolated singularities of vector fields. In each case the integral curves
are shown and the index is indicated.

plies that
cos 6,(2n)Y ° a,(2n) + sin 6,27VY o «,(27)
= X o a,(2z)

=X a,(0)
= cos ,(0)Y ° «,(0) + sin 6,(0MY - 2,(0)

and, since Yo o 2n)=Y o a,(O) this can happen only if § (21:) ) (0) isan
mteger multiple -of 2n. -
~ Independence of Y. Suppose z were another smooth unit ‘tangent vector
ﬁeld on U,. We must show that the total angle of rotation of X relative to Z
along o, is equal to the total angle of rotation of X relative to Y along a, . The
- difference of these angles is just the total angle of rotation of Y relative to Z
which, by Lemma 4, is equal to [, wyz, so we must show that {, wyz = 0.
But since wy; is defined on all of U,, and a, is the boundary of the singular
disc ¢,; D— U, defined by ¢,(x;, X;)=exp(r(x,u + x; Ju)), Stokes’
theorem and Lemma 4 imply that

f Wyz = J 'wvz = J;' df"vz =0,

as requnred ’

Independence of r: Lct Oxy be the 1- form on U, —{p} defined as in
Lemma 4. Then (X, p) = (1/2n) j',, wxy. This formula shows that (X, p)
varies continuously with r. But since 1(X, p) is. always an integer, this can
happen only if (X, p) is constant asa funchon ofr,ie. z(X, p) is independent

of r.
r? }

Independence of u: For 0 <r <¢, let
Then S, is an oriented 2-surface-with-boundary, oriented by the restriction

-1
S, = (expL )
to S, of the orientation on S. Moreover, «,: (0, 2r) — 08, is a local parametri-

qge U,:
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zation of S, whose image misses just one point of 48, . It follows that

X, p)=| wxy =] wxy-
(X, p) L XY Ls, XY
This last integral does not depend on the choice of u.

Independence of ¢: If exp maps both B,, and B,, diffcomorphically onto
open sets in U U {p} then we can choose r less than both ¢, and ¢, and use
this r to compute 1(X, p); the choice of ¢ € {¢,, &,} is then clearly irrelevant.

O

Theorem 4 (Global Gauss-Bonnet Theorem). Let S be a compact oriented
2-surface in R® and let X be any smooth unit tangent vector field defined on S
except at isolated singularities {p, ..., p}. Then

(1/2) LK = .;:(x, P

In particular (1/2x) js K is always an integer.

Remarks. This theorem can be read in two ways. On the one hand it says
that (1/2x) js K is always an integer, a remarkable result. On the other hand,
it says that the sum of the indices of any smooth unit tangent vector field
defined on S except at isolated singularities is the same as the sum of the indices
of any other such vector field, another remarkable result. This common
integer is called the Euler characteristic x of S. It can be shown that y is equal
to 2-2g where g is the genus (the “ number of holes ) of S (see Figure 21.9).

=> =

g=1 g=2 g=3
Figure 21.9. 2-surfaces with genus g € {1, 2, 3}.

(The theorem that (1/27) fs K = x is actually the Gauss-Bonnet theorem.
The theorem that )’ (X, p;) = y is called the Poincare-Hopf theorem.) For
another interpretation of y see Exercise 21.4.

We have implicitly assumed here that there is at least one smooth unit
tangent vector field defined on S except at isolated singularities. That this is
so is left as an exercise (Exercise 21.5). Note that compactness of S guaran-
tees that there can be only finitely many isolated singularities for any given
vector field.

ProOF OF THEOREM 4. For each i € {1, ..., k} choose ¢; > 0 so that the ex-
ponential map exp maps the ball B, of radius ¢; about 0 in S, diffeomor-
phically onto an open set U, about p; in S. We may also insist that the ¢;s are
chosen small enough so that U; n U, is empty whenever i # j. Choose r > 0
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 such that r <, for all i. Let

[ -1
)
B“

i ;
= |J S, where Si={qe U;:
> r whenever q € U; for some i }

(exp L,; )-l(q) :

(see Figure 21.10). Then S, and S_ are Vconilpact oriented 2-surfaces-with-
boundary in R® oriented by restricting the orientation on S, and

Sy

.

and let

S- ={qu:

Figure 21.10. S is the union ot‘ two 2-surfaces-wath-boundary one (S.) a union of
Bxscs about the singularities of X, and the other (S ) consisting of the complement of
the interiors of these discs.

: 6S+ = as = S + NS Note however that the mduoed orientation on 6§ ,
is opposite to the induced orientation on 35 _ .

Now let Y be a smooth unit tangent vector field on | J}., U,.(Y can be
obtained, for example, by applying d exp to smooth non-zero vector fields
on each B, and normalizing the result.) Letting , be the connection form
associated with Y and w, be the connection form associated with X, Lemma
3 and Stokes’ Theorem imply that-

| sz‘_" LKC"’L KL + js_xcs -L* dw, — L_ dw,

= —J CU1—J. C\O2=“—-J" w1+f Wy
‘ oS- oSy [ 8

-5 (Lo Lol oo o)

08

where a;: [0 2n] — 08, is defined by a,(t) = exp(rcos tw; + rsin ¢ Ju,), na
unit vector in S,,. But if Z, is any parallel unit vector field along a; then, by
Lemma 1, Li p 1 + fa, @2 equals the total angle of rotation of Z relative to
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Y along a; plus the total angle of rotation of X relative to Z along a; which is
the same as the total angle of rotation of X relative to Y along «;. This last
angle is just the index of X at p;, so

LK = élz(x, p)). O

The Gauss-Bonnet formula generalizes to compact oriented n-surfaces S
of any even dimension as follows: (2/V(S")) s K = x where V(S") is the
volume of the unit n-sphere $", K is the Gauss—Kronecker curvature of S,
and y is the Euler characteristic of S, an integer. One proof (see S. S. Chern,
A simple intrinsic proof of the Gauss-Bonnet formula for closed Rieman-
nian manifolds, Annals of Mathematics 45 (1944) 747-752) is by a argument
which directly generalizes the argument used in the proof of Theorem 4.
Another proof is based on the following fact.

Lemma 6. Let S be an oriented n-surface in R** 1, let { be the volume form on S,
and let & be the volume form on the unit sphere S" with its standard orientation.
Then

N*¢ = K({

where N: S — S" is the Gauss map and K is the Gauss—Kronecker curvature
of S.

Proor. For vy, ..., v, €S, p € S, we have, using Theorem 5 of Chapter 12
together with the fact that dN(v) and V, N have the same vector part for all
veSs,,

(N*¢)(vys ..., V,) = E(AN(vy), ..., AN(v,))

dN (vl) Vv}N Vi
= det i N:(v,,) = (—1)"det Vv: N|= K(p)det ]
N*(N(p)) N(p) N(p)
= K(p)(vy, --.5 V,) d

For S = R"*! a compact connected oriented n-surface with K > 0 every-
where, the fact that (2/V(S")) |s K is an integer is now immediate because, in

this case, N is an orientation preserving diffeomorphism and hence, using
Exercise 17.15,

LK = szc = L N*¢ = ané = V(S")

s0 (2/V(S")) fs K = 2. In the general case, if p € S is such that K(p) # 0 then
dN, will be non-singular so there will be an open set U, about p which is
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~ mapped diffeomorphically by N onto an open set in S". If K(p) > 0 this
diffeomorphism will be orientation preserving, so-

[ k=] Nx=] &=v@NW,).
Up U, NUp)
If K(p) < 0 the diffeomorphism N |y, will be orientation reversing so
[ k=] N%=-] &=-vNW,)
Up  “Up N(Up) o

It can be shown (see J. Milnor, Topology from the Differentiable Viewpoint, .
The University Press of Varginia, 1965) that “most” points g of S" are regular
values of N in that dN, is non-singular (K(p) # 0) for all p € N™*(g) and,
furthermore, that the mteger

| d=#{peN g K()>0) - #{pe N-l(q):- K(p) <0}

~is independent of the regular value g, where #{—} denotes the number of
points in the (finite) set {—}. The number d is called the degree of the Gauss
~ map N: § — §". For a sufficiently small open set U about a regular value g of

N it follows that N~ *(U) consists of # (N~ '(q)) disjoint open sets in S, each
- mapped difffomorphically by N onto U, and that -

e : J;v 1(U)K, J’N 1;U)N*é - d f ¢ =av(U).

~ Since the regions where K = 0 contribute nothmg to the integral, a careful
" choice of partition of unity will yield [s K = dV(S"), or (1/V(§") s K = d.
For n even, d = x/2 where y is the Euler characteristic of S.

EXERCISES

21.1. Let S be an oriented 2-surface in R®. Suppose ¢: D— S and y: D— S are
singular discs in'S such that d¢p = dy. Show that the holonomy angle of ¢
differs from the holonomy angle of y by an integer multiple of 2x.

21.2. A singular rectangle in an oriented 2-surface S is a smooth map ¢: J—» S
where

={(x,,x2)elR2'0<xlsl 0<x,<1).

Its boundary is the plecewxse smooth parametrized curve a: [0, 4] - R?
defined by,

60)  if0<t<l
-1 if1<r<2
W)= (3-141) if2<t<3
©04-1) if3<r<a
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o is regular if it is the restriction to [] of-a one to one local parametrization
of S. Prove the Gauss-Bonnet theorem for regular rectangles:

b 4
J;KC + L Ky =2m— i;e,.

where ,: [a, b] > R and 6, (ie{], 2, 3, 4}) are defined in the same way as
for regular triangles (see Theorem 2).

21.3. Let X and Y be smooth unit tangent vector fields defined on an open set U
in an oriented 2-surface S and let h: U—R? be defined by h(p)=
(X(p) * Y(p), X(p) * JY(p)). Show that wyy = h*n where wyy is the 1-form on U
defined in Lemma 4 and 7 is the 1-form on R? — {0} defined in Theorem 3 of
Chapter 11.

21.4. Let S be a compact oriented 2-surface in R>. Suppose there exists a finite
collection of regular triangles ¢;: A — S(i € {1, ..., m}) such that
(i) UT=1 Image ;=S

(ii) If pe S is in the image of more than 2 of the ¢; then p is, for each
such i, the image under g, of a vertex of A.

(iii) If p is in the image of exactly two of the @, then the intersection of
the images of these ¢, is equal to the image of a smooth segment of the
boundary of each.

Such a collection {@,, ..., @,} is called a triangulation T of S (see Figure
21.11). Points of type (ii) are called vertices of T and subsets of the form Image
@; N Image ¢, as in (jii) are called edges of T. The @; themselves are called the
faces of T.

Figuré 21.11. A triangulation of the 2-sphere.

Show that
(1/2n)j K=v—c+/
S
where o is the number of vertices, ¢ the number of edges, and / the number

of faces, of T. [Hint: Apply the local Gauss-Bonnet theorem to each
triangle ¢, .]
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21,

216.

Let S be an oriented n-surface in R**1. For g ¢ S, let f,: S - R be the smooth
function defined by f,(p) = |lq — p||* : ;

(a) Show that pe S is a critical point of f, if and only if g — p = AN(p)
for some A € R, where N is the Gauss map of S.

(b) Show that if pe S is a critical point of f, and veS,, v#0, then
V, grad f, = 0 if and only if L,(v) = (1/A)v where L, is the Weingarten map
of S at p and A is as in part (a).

(c) Conclude that if g does not lie on the focal locus of S then all critical
points of f, are non-degenerate and hence isolated. (It follows then that
grad f,/||grad f,|| is a smooth unit tangent vector field defined on § except at
isolated singularities.)-

Let S be an oriented 2-surface in R® and let X be a smooth unit tangent
vector field defined on an open set U in S. Let 6, be the 1-form on U dual
to X, let 0, be the 1-form on U dual to JX, and let w be the connection
1-form on U associated with X. Show that

dﬂl =w/\02
d02= --a)/\Ol
dﬂ)u -—-KO, /\02

where K is the Gaussian curvature of S. :
(These equations are called the Cartan structural equations.)




Rigid Motions
and Congruence

A rigid motion of R"*! is a map y: R"*!' > R'*! such that ||y (p)—
¥(q)| = |lp — q| for all p, g € R***. Thus a rigid motion is a map which
preserves distances between points.

ExXAMPLE 1. For a € R"*?, define y: R"*! > R"*! by y(p) = p + a. Then ¥
is a rigid motion of R"*?, called translation by a.

ExXAMPLE 2. For 0 € R, define y: R> —» R? by
Y(xy, x3) = (x, cos @ — x, sin 6, x, sin 6 + x, cos 0).

Then V¥ is a rigid motion of R?, called rotation through 0 (see Figure 22.1).

N

v (O, 1) 20, 1)

9 v(1,0)

v

a0

Figure 221 Rotation of R? through 6.

210
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Figure 222 Reflection through the n-plang H.

/""Exmm.m For ac R la] = 1, and b e R, define y: R**! » R"** by
(seeFlgure222) : ,

w(p)=p+2(b—p'a)a

Then ¢ is a rigid motion of IR"” called reﬂect:on through the n-plane
H={xeR*:a-x=hb}

ExaMPLE4. Let y: R""' > R"*! be a linear ttansformatmﬁ such that
()| = |lv]| for all ve R***. Then y is a rigid motion because ||y/(p) —

v(g)l = vl — 9)| = ﬁp g| for all p, g € R***. y is called an orthogonal
transformation of R"* 1, Note that a linear transformation of R**! is a rigid
motion if and only if it is an orthogonal transformatlon

The composition y, o ¢1, of two rigid motions of R**! is a rigid motion.
In particular, an orthogonal transformation followed by a translation is a
rigid motion. It turns out that every rigid motion can be obtained this way.

Theorem 1. Let  be a ngtd motion of R**1. Then there exists a unique
orthogonal transfommtwn #/ . and a unique translation , such that

¥=y;° ¥

"PROOF. Let a = y(0), let n/z,bc translation by a, and let ¥; = ¢3! o Y. We
shall show that ¥, is an orthogonal transformation. Clearly , is|a rigid
motion with ¥(0) = 0. y, preserves norms because

41 @)l = ¥1(0) = 1) = [l — O = o]

for all v € R"* 1. Thus we need only show that ¥, is linear. First observe that
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y, preserves dot products:
VU1(0) - Y1 w) =312 @) + [ W) — (V1) — ¥1w)]*)
3(lol? + [wl = o — wll*)

vew,

for all v, w € R** 1. Finally to establish linearity, we must show that
Yile1vy + ca02) = ey (vg) + ca¥1(vz)

or, equivalently, that

Yi(e vy + €202) — €1 ¥4(vy) — c2¥4(v2) =0

for allv,, v, € R"*1and c,, ¢, € R. For this it suffices to show that the vector
Yi(civy + c30,) — €14 (vy) — €2 ¥4 (v2) is orthogonal to every vector in
some basis for R"*1. Butiif {e,, ..., €,+,} is any orthonormal basis for R"**
then {Y(ey), --., ¥(eq+1)} is also an orthonormal basis for R"*1, since ¥,
preserves dot products, and

[Wilervy + C203) — ¢ ¥4(vy) — c2¥4(v2)] - Vi(e)

= (cyv; + C20;) - € — ¢4(vy ce)—cavyre)=0

forie{l,...,n+ 1}. Thus ¥, is linear. ( ‘

Uniqueness of ¥, and /, follows from the requirements that the transla-
tion ¥, must satisfy ¥,(0) =y, o ¥,(0)=y(0) and that Y, must equal
yzloy. O

Corollary. Let y: R"*1 — R"*! be a rigid motion. Then

(i) ¥ is smooth.
(i) ¥ maps R"** onto R***, and
(iii) dy(v) - dy(w)=v-wiorallv,we Ry"!, pe R""1.

PRroOF. (i) Linear transformations and translations are smooth, hence so are
rigid motions. .

(i) Translations are onto, as is any orthogonal transformation of Re*!
(the kernel must be zero, since norms are preserved). Hence rigid motions
are onto.

(iii) First note that if Y =, o Y, is the unique decomposition of the
rigid motion ¥ into an orthogonal transformation ¥/ followed by a transla-
tion , then

(*) dy(p, v) = W(p), ¥1(v))

for all (p,v)e R:*Y, pe R"*!. Indeed, setting «(t)=p+tv, so that
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~ &(0) = (p, v), we have (where ¥, is translation by a)

6.0)= ¥ - o0)=(40) | vio + )

0'/’2 oy (p + tv))

- (vo) 5

= (v Z| 6:0)+ 0100 + )
= W) V)

Hence, fc;r v=(p, v) and w = (p, w) € R}*,
dy(v) - dy(w) = (¥(p), ¥1(0) - W(p) ¥1(w))
=) W = w=vew O

- Two n-surfaces § and §in R** ! are congruent if there exists a rigid motion

¥: R 1 R**1 such that y(S)=S. The differential dy of such a rigid
motion maps the tangent space S, to S at each p € § onto the tangent space
8, to S at Y(p) so, since dy preserves dot products, dy/(N(p)) = + N ()
where N and N are any given orientation vector fields on S and § respec-
tively. Note that an orientation N can always be chosen on S so that

dW(N@)) = +N(y(p)) for all pe S (ie., so that dy - N= N y)
“Theorem 2. Let S and § be congruent n-surface in R***, let y: R"*! > R*™!
be a rigid motion such that W(S) = S, and assume that S and § are oriented
sothat dy o N=Noy. Then ce
(i) dy(v) - dy(w)=v-wforallv,weS,, peS,and
(ii) the second fundamental forms &, of S at pe S and Py, of S at Y(p) are
related by &= Pyppody. '

PRrOOF. (i) is immediate from the corollary above.

(i) Let ¢, be the orthogonal part of { as in Theorem 1. Given p € § and
veS,, let a: IS be such that (to) = v. Then dy(v) = ¥ o afto) so the
value of the Weingarten map L, of S at y(p) on dy/(v) is

k I‘Mp)(d'//(“)) = “'vdﬁv),N
= —(N o a)to)
= — (@ Noa)eo)
= (W0 (- N> ) (by cquation (+) above)
= — (W (p) ¥1((N ° a)(to)) (by linearity of yy)
= —dy(p, (N - a)(to)) (again, by equation (*))
= —dy(V,N)
= dy(L,(v)),
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where L, is the Weingarten map of S at p. Thus

Py @V (¥)) = Ly (@ (v)) - dp(v) = dp(L,(v)) - dr(v)
= Ly(v): v=Sp(v) !

Corollary. Let S and § be congruent oriented n-surfaces in R"**. Then S and §
have the same geometry in that if Y is a rigid motion mapping S onto S with
N oy =dy o N and y, is the orthogonal part of Y then

(i) the length of a: I — S is the same as the length of Y o a: 1> §,

(ii) the Gauss map N of S is related to the Gauss map NofSbyNo-y=
¥, o N, and in particular the spherical image of § is the image under \,
of the spherical image of S,

(iii) a: I — S is a geodesic in S if and only if Y o a is a geodesic in S,

(iv) a vector field X along «: I — S is parallel if and only if dy o X is parallel
along - a,

(v) the Weingarten maps L, of S at p € S and Ly, of S at y(p) are related
by

twm cdy, = d'/’p o Ly,

(vi) the normal curvatures k of S and K of § are related by k = k o di and in
particular the principal curvatures of S at p € S are the same as the
principal curvatures of § at y(p),

(vii) the Gauss-Kronecker and mean curvatures of S at p € S are equal to the
Gauss-Kronecker and mean curvatures of § at y(p),

(viii) S is convex at p € S if and only if § is convex at y(p),

(ix) the focal locus of § is the image under  of the focal locus of S,

(x) the volume of S equals the volume of S,

(xi) S is a minimal surface if and only if § is a minimal surface, and

(xii) the conjugate locus of Y(p) in S is the image under s of the conjugate
locus of pin S.

PROOF.
(@) 0 oa)=f; ¥ eal={l|dyal = |a] = la)
dy o N.

(ii) Immediate from the equation N o yy =

(iii) Follows from (iv) since « is a geodesic if and only if & is parallel.

(iv) (dy ¢ X)(t) = dy(X(t)) is a multiple of N(y(x(t))) = dy/(N(x(t))) if and
only if X(t) is a multiple of N(a(t)).

(v) This is contained in the proof of Theorem 2.

(vi) k(@Y (v)) = &Ly d¥(v)) = & p(v) = k(v). That the principal curvatures
are the same follows from this or from (v), since L, and
L,=dy,° L, dy,* have the same eigenvalues.

(vii) Follows from (vi).
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~(vm) W(a) — ¥())- R @) = ¥1(2) — ¥1(p)) - ¥1 (N (p))
= (g —p)* N(p} )
(nx) V(p + (k)N () = ¥2(01(p) + (/kilp)Ws 1 (N (p)))
= ¥1(p) + (1/k(P)W1(N(p)) + a
= y(p) + (VKW E)N W)

(x) For any local parametrization ¢ of S, ¥ - ¢ is a local parametrization
‘ and

det(EY *° - Enﬁ ) = det(d:l:(E”) . d!/l(E}’)) = det(E? - E)

so the volume integrands are equal.
(xi) Follows from (vii).

(xii) ¥ o exp = exp o dy where exp and éxp are the exponential maps of S
-, and § since, by (iii), ¥ maps geodesics to geodesics. Hence y maps
' conjugate points a]cng the geodesnc exp(tv) in § to conjugate points

‘ along the geodes:c exp{td:ﬁ(v)) in§. O

’ ~The converse of‘v’i‘heoremvz is also true:

Theorem 3. Let § and § be connected oriented n-surfaces in R**. Suppose
there exists a smooth map Y from S onto § such that

) drlz(v) dy(w)=v-wiorallv,we S,,peSand
(ii) the second fundamental forms &, of S at p and P, of § at Y(p) are
related by &, = Py, © i, for all pPeS.

Then S and § are congruent and, in fact Y is the restnctzon to S of a rigid
motion of R"* 1,

PROOF. Let p, € Sanddcﬁneang:dmohom}ofﬂ"“ byJ =, o Y, where
¥, is the unique orthogonal transformation of R*** such that

() ¥1(N(po)) = N(¥(po))
() (Po, ¥1(v)) = d¥(po, v) for all v € R™*1 such that v L N(p,) (i.e., such
* that (po, v) € S,,),

and y, is the translation of R**! wluch sends ¥1(po) to Y(po). We shall show
that (! - |//)(p) p for all p € S thereby establishing that :// ¥ls.
Let ¢ = §~" o y. Then @ maps S onto the n-surface § = "‘(S') and
(i) do(v) - dp(w)=v - w for all v, weS,,,peS :
(11) .9” =P yp o do for all p € S (2, = second fundamental form of § at

(iii) fP(Po) =Po,
(iv) dp(v)=vforallve S,
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From (i) and (ii) we can conclude that the Weingarten maps L, of S and L,
of S are related by L, cdp =dp - L,,forall pe S. Indeed,

L, (do(v)) - dop(w) = 3 ooV + W) — L op(do(v)) — Z oi(d(W))
= HF v + W) = F(v) — F5(W))
= Lp(v) ‘W= d(P(Lp(v)) ) d(o(w)

for all v, w e S, and, since dp maps S, onto S, forallpe S (dp maps
orthonormal bases for S, to orthonormal bases for S, , by (1)), this implies
that L, (dp(v)) = do(L,(v)) forall ve S,.

We shall show that if «: I — S is any parametrized curve in S such that,
for some t, € I, p(a(to)) = *(to) and d,, = identity (this will be the case,
for example, if a(to) = po) then @(a(t)) = «(t) and d@.y = identity for all
tel Let X,,..., X, be smooth vector fields parallel along a such that
{X,(t), .-, Xp+1(t)} is an orthonormal basis for S, for each t € I. Such
vector fields can be obtained by choosing an orthonormal basis {x,, ..., X}
for S, and defining X; to be the unique vector field parallel along « with
Xi(to) = x;. Let Yy, ..., Y, be the vector fields along ¢ o « defined by
Y(t) = dp(Xi(t))for t € I. Then {Y,(t), ..., Y,(t)} is an orthonormal basis for
S, . for each tel (by (i) Yi(to) = Xilto) for each i (since d@,q =
identity), and

pia= ¥ (0:0) YIVi= T (o) dp(X)Y,

i=1 =1

M=

(@ X))Y;.

1

If we could show that Y; = X;, where Y;: I > R"* 1 is the vector part of Y;
and X;: [ » R"*1 is the vector part of X;, we would have

i

d > : do

L o o o) = %+ XY, = 5 X)X, = —

doem= 36 XN= T XK=
s0 ¢ o o and « could differ at most by a constant. Since (¢ © a)(to) = alto),
we could then conclude that (¢ o a)(t) = a(t) for all ¢ € I and, furthermore,
that

do(X,(t)) = Yi(t) = (@((t), %)) = ((t), Xi(t)) = Xi{e)

for each i so dg,, = identity, for t € I, as required.

So we shall show that X; = Y;forie {1, ..., n}. For this,set X, ., = Noa
and Y,,, = No¢oa, sothat {X(t), ..., X,+,(t)} is an orthonormal basis
for Ri! and {Y(t), ..., Y, 1(t)} is an orthonormal basis for R 5, for
each t € I. Then

. n+1 . nt+1
X,'= Zaijxl' and Yi= Zb'JYJ
=1 =1

J
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where a;=X;" X, and b;; =Y, * Y, are real valued functions on I. We shall
show first that a;; = b;; for all i and j. Since

J ,
0=E(Xi'Xj)=xi‘xi+Xi'Xi=a”+aﬁ

we have that a; = —a;; for all i and j, and similarly b;; = —b;;for alliand j,
so it suffices to check that a;;=b;; for i <j But the vector fields
Y, =dop o X;,i€{l, ..., n}, are parallel (in §)along ¢ - a. This follows from
(i) and from the fact that the vector fields X; are parallel along a; we will,
however, delay the verification until the next chapter (Corollary 2 to
Theorem 1, Chapter 23). Assuming this, we have that Y, is normal to S, just
‘as X, is normal to S, for i < n, and hence

by=Y:"Y;=0=X,-X,=a
for 1 < i, j < n. Furthermore, for i < n,
- binr1 =Y Y =Y, Nogoa=-Y; Nogoa
=Y L(p ¢ ) = Y; - L{do(a)) = do(X,) - do(L(x))
=X;" L@)=-X;*Néa=X;"Noa=X,* Xp4; =G ps1,

where L(@) is the vector field along « defined by (L(&))t) = L, ((t)) and

L(p 5 «) is defined similarly. We conclude, then, that a;; = b;; whenever
1<i<j<n+1 and hence a;; = b;; for all i and j.

We can now complete the proof that X; = Y;forallie {1,...,n + 1}. For

Y, =311 ¢;X;, where ¢;; =Y, - X I - R, (cij(to)) is the identity matrix,

and ;
dcil__dY,. ) .de
dt _ dt X_"+Y‘ dt
nt1 n+1
- (Eoet) o (Fore)
n+1

= Y (@ucy + anca)
k=1

- This system of first order differential equations, with initial conditions

1 ifi=j
cfto) =1y iri4j’
is satisfied by the functions
1 ifi=j
Wt)=\o ifit}’

since a;; + a; = 0, 50, by the uniqueness of solutions of first order differential
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equations, (c;;(t)) is the identity matrix for all ¢ € I. In other words, Y(t) =
Xit)forallie{l,...,n+1}and allt e I
Finally, we must show that ¢(p)=p for all pe S. Let

U={peS:¢(p)=p and do,=identity}.

Then U is an open set in S since each point p € U is contained in an open set
of the form ¢(V'), where ¢ is a local parametrization of S and V is an open
ball in R”, and p can be joined to any point of ¢(V') by a parametrized curve
in ¢(V), so ¢(V) = U by what has just been established. On the other hand,
the complement S — U of U in § is an open set in S since ¢ and d¢ are both
continuous. Since S is connected, this can happen only if either U or § — U
is empty. (If a: [a, b]j—> S were a continuous map with afa)e U and
a(b) € S — U then aft,) could belong neither to U nor to S — U, where t, is
the least upper bound of the set {t € [a, b] € a(t) € U}). Since p, € S, S — U
must be empty so U = S and, in particular, ¢(p) =p for all p € S. O

EXERCISES

22.1. Verify that each of the maps described in Examples 1, 2 and 3 of this chapter are
indeed rigid motions.

22.2. Show that if i, is an orthogonal transformation of R"** and ¢, is translation
by a (ae R"*!) then ¥, o ¥, = §, o Y, where J, is translation by ¥, (a).

22.3. Show that each of the following statements is equivalent with the statement
that the linear transformation :R"*!—>R"*! is an orthogonal
transformation:

(@) y() - y(w)=v-wilorallo,we R

(b) ¥ maps orthonormal bases to orthonormal bases; i.e.,if {ey, ..., e,+1}isan
orthonormal basis for R"*! then so is {{/(e,), ..., Y(en+ 1)}

(c) the matrix for  relative to any orthonormal basis for R**! is an orthog-
onal matrix (i.e., its transpose is equal to its inverse).

22.4. Arotationof R"*! is an orthogonal linear transformation with determinant + 1.

(a) Show that a linear transformation y: R - R? is a rotation if and only if
there exists a real number 8 such that the matrix for y with respect to the
standard basis for R? is

(cos # —sin 0)
sin 0 cos 0/

(b) Show that every rotation y of R leaves a direction fixed (i.e., ¥ has a unit
eigenvector with eigenvalue 1).

(c) Show that if y is a rotation of R, e, is a unit vector with y/(e;) = e;, and e,
is a unit vector perpendicular to ey, then the matrix for y with respect to
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the orthonormal basis {e,, e;, e5 x e} for R? is of the form

1 0 0

0 cos@ ~—sinf

0 sin 6 cos 0

22.5. Show that the hyperbolas x; x, = 1 and x} — x% = 2 in R? are congruent.
22.6. Let  be a rigid motion of R**! and let F denote the set of fixed points of y,

F={geR"*':y(q)=gq}.

for some 8 € R.

Forp ¢ F let

p={xe R x — y(p)| = |x - pll}

‘(a) Show that H,, is an n-plane in R**!,

(b) Show that F < H,,.

(c) Letting y, be reﬂecnon through H,, show that the set of fixed pomts of

; Yp.o ¥ contains {p} U F.

" (d) Show that if Oe F then Z}-, cipi€ F whenever p,, ..., p € F and
Cl,..‘-,CkER. )

- (¢) Show that there exists a k < n + 2 and reflections ¥, ..., ¥, of R**! such
that ¢ = Yy o = o Y.

227, A rigid motion - qtl of R"“ wh:ch maps an n—surface S onto itself is called a
symmetry of S. .

(a) Show that the set of rigid motions of R"** forms a group under composi-
tion, and that the symmetries of § form a subgroup.
(b) Show that the symmetry group of the unit n-sphere S" is the group of all
- orthogonal transformations of R***..
(c) Describe the symmetry group of the cylinder x} + x3 = a? in R®.
(d) Describe the symmetry fgroup of the ellipsoid
2 2
—-5 + ';-:'iz- + x—f =1

in R, (i) when b = ¢ # a and (ii) when a, b, and c are distinct. _



Isometries

As inhabitants of the earth, we are (or, at least, we were until the invention of
air and space vehicles) forced to deduce the geometry of the earth from
measurements made on the earth. We can measure distance along curves,
and by taking a derivative with respect to time, we can measure velocity and
speed. The geometry which can be derived from such measurements is called
intrinsic geometry.

The primitive data needed to be able to compute distance along curves in
an n-surface S is the dot product of tangent vectors. Indeed, given the dot
product on each tangent space S,, p € S, the length /(a) of a parametrized
curve a: [a, b] - S can be computed from the formula

o) = f Jade)| de = f:(a(t) - )V dr.

Conversely, if we can compute the length of arbitrary smooth curves in S
then we can compute norms of vectors in S, (for v € §,, take «: [a, b] > S
with &(to) = v and let s(t) = the length of « from a to ¢; then |v|| = [|&(to)]| =
(ds/dt)(to)). From the norms we can then compute all dot products; e.g., via
the identity

vew=3(v+wl? - v]* — [w]?)

Thus the intrinsic geometry of an n-surface S, the geometry which can be
derived from length measurements along curves in S, is the same as that part
of the geometry of S which can be derived from a knowledge of the dot
product on the tangent space at each point of S.

A smooth map ¥ from one n-surface S = R"** to another § = R"*! is
called a local isometry if it preserves dot products of tangent vectors; that is,

220
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i
dY(v) - dy(w)y=v-w

for all v, we §,, p € S. The differential dy,: S, - S',, at p of such a map is
necessarily non-singular for each p € S so, by the inverse function theorem,
Y must map some open set about each point p in S one to one onto an open
set about (p) in . It follows from this that y(S) is an open subset of $. But
¥(S) need not be the whole of §, nor must i: S — y(S) be one to one. A local
isometry which maps an n-surface S one to one onto an n-surface 3 is called
an isometry of S onto S.

Since an isometry is by definition a one to one map y: S — § which
preserves dot products of tangent vectors, it preserves all the intrinsic
geometry of the surface. Thus, for example, if a: [a, b] — S is a parametrized
curve in S then the corresponding curve -« in § has the same length:

1 o) = [ 160 a)o)] de = | et e

= [ a6 e = i)

In fact, intrinsic geometry can be described as that part of the geometry of
‘surfaces which is preserved by isometries. Two surfaces S and § such that
there exists an isometry y: S — § are said to be isometric; they necessarily
have the same intrinsic geometry.

ExampLE 1. Let y: R"** - R"** be a rigid motion and let S be an n-surface
in R***. Then y |5 is an isometry of S onto y(S).

EXAMPLE 2. Let §: R? - R be defined by y/(6, u) = (cos , sin 6, u). Thus y
maps the plane around (and around) the cylinder x} + x2 = 1 in R® (see
Figure 23.1). ¥ is a local isometry since, for each (6, u) € R?, d maps the
orthonormal basis {(6, 4, 1, 0), (6, 4, 0, 1)} for R, ,, to the orthonormal basis

{E (6, u), E;(0, u)} = {(¢(0, u), —sin 6, cos 6, 0), (¢(6, u), 0, 0, 1)}

for Image dy, ., SO d, ,, must preserve dot products. By restricting ¥ to
the open set U = {(9, u) € R?: —n < 6 < =} we obtain an isometry ¥ |, from
the infinite strip U in R? onto the cylinder with a line removed. ‘

- |
EXAMPLE 3. The map ¢ from the plane to the torus ((x? + x3)¥? -
a)? + x} = b* (a> b > 0) given by

@(d, 0) = ((a + b cos @)cos 6, (a + b cos @)sin 6, b sin ¢)
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A X3

S|

oV

X2

Figure 23.1 (6, u) = (cos 6, sin 0, u)is a local isometry from R? onto the cylinder
x2 +x2 = 1in R®. The restriction of ¥ to the infinite strip U is an isometry from U
onto the cylinder with a line (dotted) removed.

is not a local isometry because, for example,
lde(@, 6,0, 1)| = [[(¢(¢, 0), — (a + b cos ¢)sin 6, (a + b cos ¢)cos 6, 0)]
=a+bcos ¢
is not equal to ||, 6, 0, 1)|| = 1 for all (¢, ) € R®. On the other hand, the
map ¥ which maps the plane onto the torus
[xi+xi=1
2 +xi=1

in R* by y/(¢, 8) = (cos ¢, sin @, cos 0, sin 0) s a local isometry because, for
each (¢, 6) € R?, the vectors

ay(9, 6, 1,0) = (y(¢, 6), —sin ¢, cos ¢, 0, 0)
dy (¢, 6,0, 1) = (¥(e, 6), 0, 0, —sin 6, cos 6)

do form an orthonormal basis for Image dy/4 4. By restricting y to the open
set U = {(¢, 0)e R%: —x < ¢ < m, —n < 0 < 7} we obtain an isometry Y |y
from the square U in R? onto the torus in R* with two circles removed.

EXAMPLE 4. Let S be the punctured plane R? — {(0, 0)} and let § be the cone
3x2 + 3x2 — x2 =0, x3 > 0, in R®. Define y: S— § by

Y(r cos 0, r sin ) = (% cos 20, % sin 20, —\é_g’-r)

where (r, 8), r > 0, are polar coordinates on R* — {(0, 0)}. Then y is a local
isometry. For if U ={(r, 0)e R*:r> 0} then the maps ¢: U~ S and
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1 U= 8§ defined by ~
@(r, 8) = (r cos 6, r sin 6)
o(r, 9)-—( cos 20, - sm 20, ?r)

are parametrized 2-surfaces mapping U onto S and § respectively, and
@ =y - ¢ (see Figure 23.2). The coordinate vector fields E; along ¢ and E,
along @ are given by

» Ey(r, 0)= ((p(r, 0), %‘r’l(r, o)) = ((r, 0), cos 6, sin 6)
E,(r, 0) = (¢(r, 02, o)) = (¢(¢,6), ~rsin 6, r cos 0)

0= (560, 20.0) - (‘(r;e)}!mz"’*si“"'é)

E,(r. 0) ==A(é')(r5 0), 55 (r, 9)) = (@(r, 6), —r sin 26, r cos 26, 0). |
Moreover, for each pé U, di//(E,-(b)) = E,(p) for i e {1, 2}, since
 W(E(p)) = d¥(do(e)) = d(v > o)(e) = di(e) = Eifp)

4 x;3
4 Xy

v Figure 23.2 ¢ is a local isometry from the punctured plane S onto the cone S. The
restriction of ¥ to the upper half plane x, > 0is an isometry onto the cone with a line
removed.
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where e; = (p, 1, 0) and e, = (p, 0, 1). Finally, dot products of tangent vec-
tors are preserved by y because dot products of the basis vectors are
preserved:

dy(E(p)) - d(E(p)) = Ei(p) - E/(p)

1 ifi=j=1

=<0 if(,j)=(L2)or (i, j)=(21)
‘rZ fi=j=2

=E{(p) Ei(p)

forallp=(r,0) e U.

Remark 1. Example 2 is an example of a special class of isometries called
bendings. Roughly, the cylinder with a line deleted is obtained by bending
the strip {(x,, X, X3) € R*: —x < x; <, x3 = 0}, without stretching, tear-
ing, or glueing, into the shape of a cylinder. This process clearly leaves length
measurements along curves in the surface unchanged; ie., two surfaces
which can be obtained from one another by bending are isometric. A precise
definition of bending is as follows. An n-surface S in R"** is obtained
from an n-surface S in R"** by bending if there exists a smooth map
¥: [a, b] x S > R"** such that

(1] for each t € [a, b], the map y,: S — R"** defined by ¥,(p) = ¥(t, p)is an
isometry,
(i) Y.(p)=p for all p € S; ie., ¥, = identity map on S, and
(iii) ¥, is an isometry of S onto 3.

The 2-torus in R* with two circles deleted and the cone in R® with a line
deleted (Examples 3 and 4) are also obtained by bending portions of
2-planes.

Remark 2. Example 4 illustrates a useful technique for checking that a
map ¥: S — § of n-surfaces is a local isometry. Forpe S,let : U—>Sbea
local parametrization of an open set of S about p. If ¥ is a local isometry,
then ¢ = ¥ o ¢ will be a parametrized n-surface, with Image ¢ < S, and the
coordinate vector fields E; along ¢ and E; along ¢ will be such that
E E;= E -E ;- Conversely, if for each p € § thereissucha¢: U— S, with
p € Image o, then ¥ is a local isometry.

Those features of the geometry of an n-surface S which are part of the
intrinsic geometry of S (i.e., which can be determined from measurements on
the surface) are the ones that are preserved, or invariant, under isometries.
We have seen that the length of curves is an isometry invariant. It follows
then that geodesics are isometry invariants, since a parametrized curve a isa
geodesic if and only if it has constant speed and is such that the length
integral is stationary at « with respect to fixed endpoint variations. Volume
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is also an isometry invariant since the volume integral V(p)=
fu det(E; - E;)"/? of a parametrized n-surface ¢ depends only on the dot
products of the coordinate vector fields. On the other hand, the spherical
image, the principal curvatures, the mean curvature, the focal locus, and the
property of being a minimal surface in R"*! are not isometry invariants
since, for example, none of these features are preserved under the isometry
¥(xy, X5, 0) = (cos x,, sin x;, x,) mapping the strip x; =0, —n < x, <,
onto the cylinder x? + x3 = 1 with a line removed (Figure 23.1). We shall
see that, contrary to intuition, the Gauss-Kronecker curvature K of an
n-surface in R"*! is an isometry invariant, whenever n is even. Thus, even
though the principal curvatures are not invariant under isometries, their
product is, in even dimensions. This theorem so pleased Gauss, who dis-
. covered it for n =2, that he called it a “theorema egregium” (a “most
excellent theorem”). We shall see also that parallel transport is invariant
under isometries. The key to all of these facts is the observation that co-
_~variant differentiation is intrinsic.

Let us recall the concept of covariant differentiation and extend it to
n-surfaces in R"**. Given an n-surface S in R"** and a smooth vector field X
tangent to S along a parametrized curve a: I — S, the covariant derivative of
X along o is the vector field X/, tangent to S along a, obtained by projecting

X(¢) orthogonally onto the tangent space S, for each t € I. Thus X'(¢) is
the tangential component of X(t). For X a smooth tangent vector field on the
n-surface S = R"**, and ve S,, p € S, the covariant derivative D, X of X
with respect to v is the tangential component of the derivative V, X. Sim-
ilarly, for X a smooth tangent vector field along a parametrized n-surface
@: U— R"** the covariant derivative D, X of X with respect to ve R},
p € U, is the tangential component of V, X; that is, D, X is the orthogonal
projection of V, X into the tangent space Image dg,. These covariant differ-
entiation operations are related to each other as follows.

If X is a smooth tangent vector field on the n-surface S < R***and ais a

-parametrized curve in S, or if X is a smooth tangent vector field along the
parametrized n-surface ¢: U —» R"** and « is a parametrized curve in U,
then

Dy X = (X o a)(t)

for all ¢t in the domain of a.
If X is a smooth vector field on the n-surface S « R***and ¢: U > Sisa
parametrized n-surface in R"** whose image is contained in S, then

DyyX = (Xoa)(t) \

forallve[R"“,peU |

Given two smooth tangent vector ﬁelds X and Y on an n-surface
S < R"** the covariant derivative of Y with respect to X is the tangent
vector field DxY on S defined by (DxY)(p) = Dy,Y for p € S. Similarly,
given the smooth tangent vector fields X and Y along a parametrized n-
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surface ¢: U — R"*!, the covariant derivative DyY is the tangent vector
field along ¢ defined by (DxY)(p) = Dsy,-1(xpn Y, for pe U.

The covariant derivative of one smooth tangent vector field with respect to
another is a smooth tangent vector field. Furthermore, covariant differ-
entiation has the following familiar properties:

(i) DoxsyZ = DxZ + DyZ
(i) D,xY = fDx Y
(iii) Dy(Y + Z) = DxY + DyZ
(iv) Dx(fY)= (Vx /)Y +fDxY
(v) V(Y - Z) = (DxY) - Z + Y - (DxZ)

for all smooth tangent vector fields X, Y, and Z on S (or along @) and all
smooth functions f on S (or along ¢). In (v), the derivative of Vxh of the
smooth function on h =Y - Z is defined to be the smooth function on §
given by (Vxh)(p) = Vxh (or along ¢ given by (Vxh)(p) = Ve, -1xen 1)
Verification of these properties of covariant differentiation is left as an
exercise.

Theorem 1. Let ¢: U — R"** be a parametrized n-surface and let E
ie{l, ..., n}, be the coordinate vector fields along @. Then, for pe U and i,

jke{l, ..., n}.
0ga agjk_%)
(D5 E)) - E, = (ax ok xS

where the g;;: U — R are defined by g;; =E; * E;.
PrOOF. Note first that Dg,E; = Dg E; for all i and j. Indeed, for eachpe U,

E/p) = (ot0) 32 o)

and

e E)0)=(00) 700 0))

By the symmetry of the second partials, we have (Vg E;)p) = (Vg,E:)(p).
Projecting orthogonally onto Image d¢, then establishes that
Dg.E;= DgE;.

Using this symmetry, we compute the partial derivatives of the g;,:

0y
% = VE;(EE . E,‘) = (DEjEi) ‘E,+E;- (DEj Ek)
J

a
ai’k Ve(E; - E)) = (DgE) - E, + E; - (Dg,Ey)

dgi
ag: (Dg,E) E; +E; - (Dg,E)) = (Dg,Ey)  E; + E; * (Dg Ey).
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Thus |
ogu Ogx Og
_‘—7;‘% + -535,! - 6x‘j (DEJEf) E, + (D k)" E
= Z(D& E j) Ek ¢ D

Corollary 1. Covariant differentiation is intrinsic.

ProoF. It suffices to check this along a parametrized n-surface @: U — R"**.
Given a smooth veetor field X along ¢, we may express X as a linear
combination of the coordinate vector fields E; of ¢, '

; x- frm
where f: U-»Rforie{l,...,n}. Thus,fcrveR’;,peU
D,X=D, ( Z!f,Ei)

= 3 (V. fIEp) + £P)D, E)

i=1

- & 580) + ) o0uane)

where v=(p, vy, ..., v,,). Since all the quantities in this last expression can
be. computed from intrinsic information along ¢ (Dgp E, can be determined
from the set of dot products {(Dg, E:) - Ex(p)} which can be calculated from
the formula of Theorem 1), D, )£ is intrinsic. O

: Cmﬂny 2. Pamile! transpm-t is mmnsm N

PROOF. Immediate from Corollary 1 smce X is parallel along « if and only if
X =0 O

'lheorem 2. The GauSs-Kroheckcr cuwat#m of an oriented néswface SinRr+!
is intrinsic, for n even..

Proor. It suffices to work with a parametnzed n-surface ¢: U - 8. For E;
the coordinate vector fields along ¢ and Z any smooth tangent vector field
along ¢, we have

(VE,VEJZ)(P)' = (‘P(P)’ &fi zng (P)) = (Vg, Vg, Z)(P)v

VeVe,Z — Vg, Ve, Z =0
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for all i and j. We shall compute the tangential component of the left hand
side of this equation; the theorem will follow from the fact that this tangen-
tial component must be zero. Since

Ve,Ve,Z = Ve(Dg,Z + ((Ve,Z) - N)N)
= Dg,Dg,Z + ((Vg;Z) - N)Vg, N + (a multiple of N)
= Dg,Dg,Z — (Z - Vg, N)Vg, N + (a multiple of N),
we find that, for pe U,
(Ve,Ve, Z)() = (DD, Z)(0) — (L{E,(p)) - Z)L,(E:(p))
+ (a multiple of N(p)).

Interchanging i and j, subtracting, and using the fact that the tangential
component of the result must be zero, we obtain the equation

(DEiDEjZ — Dg, D, Z)(p) = (L,(E{p)) - Z(p))L,(E«(p))
~ (Ly(Ei(p)) - Z(P))L,(E(p))
Since the left hand side of this last equation is intrinsic, so is the right, for all i

and j. Using the linearity of L,, we see that given any three vectors X, y,
z€S,, p € S, the vector R(x, y, z) € S, defined by

R(x, y, z) = [L,(y) - Z]L,(x) — [L,(x) - Z]L,(y)

is intrinsic. This map R which assigns to each triple (x, y, z) of vectorsin S,,,
p € S, the vector R(x, y, z) in S, is called the Riemann tensor of S; it belongs
to the intrinsic geometry of S.

Now, if n = 2 and {e,, e,} is an orthonormal basis for S, p € S, then the
Gaussian curvature K at p is given by

K(p)=det L, = [L,(e)" e[L,(e;) - e2] — [Ly(e) - e J[Ly(e;) - €]
=R(e;, e, )" €

so K is intrinsic, as claimed. If n > 2, but n even, and {e,, ..., e,} is an
orthonormal basis for S,, expansion of the determinant

K(p) = det L, = det[L,(e;) - e]
in terms of its 2 x 2 minors yields

K(pp)=((— 1)"/2/2"/2"!); £(0)e(t) [R(es1)» €o2)> €1) * 2]

[R(ea(n—1)9 €;n)> e':(n—l)) : et(n)]

where the sum is over all permutations ¢ and 7 of {1, ..., n} and ¢(c) denotes
the sign of the permutation ¢. Hence K is intrinsic, for n even.
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EXERCISES

231
232,

233.
234.

23.5.
236.

23.7.

238.

Show that if y: S — § is an isometry, then sois Y "1: § = §. .
Which of the followitig maps are local isometries?

(a) The map ¢ defined by y(p)=2p, mapping the n-sphere xi +-:-
+ x2,, =1 onto the n-sphere x} + -+ + x2,; = 4.

(b) The map ¥ defined by y(p) = —p, mapping the n-sphere x3} + -
+ x2,, = 1 onto itself.

(c)- The map defined by

¥(cos 6, sin 6, u) = ((a + b cos u)cos 0, (a + b cos u)sin 6, b sin u),

mapping the cylinder x? + x} = 1in R? onto the torus ((x} + x3)'/2 — a)?
+x3=>b>inR® (a>b>0)
(d) The map y defined by ‘
‘ y(cos 6, sin 0, u) = (cos 0, sin 6, cos u, sin u),
mapping the cylinder x} + x3 = 1 in R® onto the torus

x} +x3=1
. x3 4+ x§ =1
in R*, , .
Show that the cyhnders x2 + x} = 4 and x? + x} = 1 in R? are not isometric,

but that the map ¢ defined by (2 cos 6, 2 sin 6, t) = (cos 28 sin 26, t)is a
local 1sometry from the first cyhnder onto the second.

Show that ;f‘,«VV {(x1, x2) € R?: x, > 0}, then the restriction ¥ |y of the map ¢
in Example 4 to .V is an isometry of the upper half plane onto the cone
3xi +3x3 —xi = 0x3>0mR3thhahnetemove¢

Sketch the images of the parametrized 2-surfaces y and ¥ in R® de-
fined by Y(6, ¢) = (sinh 6 cos ¢, sinh 8 sin ¢, ¢) (helicoid) and §(8, ¢) =
(cosh 8 cos ¢, cosh 8 sin ¢, 6) (catenoid). Show that the map which sends
¥(9, 6) to ¥(9, 0) is a local isometry from the first onto the second.

(a) Show that given any connected plane curve C, there exists a local isometry
¥: I - C, for some open interval ] < R.

(b) Show that two compact connected plane curves are isometric if and only
if they have the same length. ;

Let X = Y., f;E, be a tangent vector field along the parametrized n-surface
@: U— R*** and let a: I - U. Show that

xoay= £ |2 Ghom+ § (rt,oaxﬁca)—](n.oa)
where a(t) = (x l(t) ,Xut)) and the T}:U—-R are sul:h that
Dg,E;=Y}3-y THE:. (The % are called Christoffel symbols along ¢).

Show that if h: § — R is a smooth function on the n-surface § = R**! then the
vector field grad h and the Hessian J¢ , at a critical point p of h are both part
of the intrinsic geometry of S.
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23.9.

23.10.

23.11.

23.12.

23.13.
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Show that the Gauss-Kronecker curvature of an oriented 1-surface in R? is
not intrinsic.

Let S be an oriented n-surface in R**!. For X and Y smooth tangent vector
fields on S, let [X, Y] denote the Lie bracket of X and Y (see Exercise 9.12)
defined by

[X, Y]=VxY - VyX
Show that [X, Y] is also given by the formula
[X, Y] =DxY — DyX
and hence the Lie bracket is part of the intrinsic geometry of S.

Show that the Riemann tensor R of an oriented n-surface S = R**! has the
following properties:

(a) R(x7 Y, Z) TW= R(z’ W, X) A
(b) R(x,y,z)- w= —R(y, x,z) - w= —R(x, y, W) - z, and
(C) R(X, Yy, Z) + R(ya z, X) + R(z’ X, y) =0

forallx,y,z,weS,,peS.

Let S be an oriented n-surface in R*** and let x, y,z € S,, p € S. Show that the
value on x, y, z of the Riemann tensor R of S at p is given by the intrinsic
formula

R(x,y,z)=DxDyZ — DyDxZ — Dix nZ

where X, Y, and Z are any smooth tangent vector fields on S such that
X(p) = x, Y(p) =y, and Z(p) = z, and [X, Y] is the Lie bracket of X and Y
(Exercise 23.10). [Hint: Choose a local parametrization ¢ of S with pe U =
Image ¢, express the restrictions to U of X, Y, and Z as linear combinations
(with smooth coefficients) of the coordinate vector fields E; of ¢, and
compute.]

Let S be an oriented n-surface in R"*! (n> 1), let pe S, and let P be a
2-dimensional subspace of S .

(a) Show that the real number o(P) defined by
G(P) = R(el, €z, ez) c ey,

where {e,, €,} is an orthonormal basis for P, is independent of the choice
of orthonormal basis. [Hint: Use Exercise 23.11 to show that if {€,, &,} is
another basis for P then R(&;, &,, &)+ & = (det a;;)’R(ey, €5, €;) - ¢;
where (a;;) is the change of basis matrix.]

(b) Show that if n = 2 then (S ) is equal to the Gaussian curvature of S at p.

The number ¢(P) is called the Riemannian curvature, or sectional curvature, of
SonP.
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The intrinsic geometric features of an n-surface S depend only on dot prod-
ucts of vectors tangent to S and derivatives along parametrized curves in §
- of functions obtained as dot products' of vector fields tangent to S along
these curves. In other words, given the dot product on each tangent space
S,, p € S, the intrinsic geometry of S can be studied without reference to the
way in which § sits in R** 1. If we are told what the dot product isoneach S,
then we can compute, for example, the lengths of curves in S, the volume of
S, the geodesm in S, parallel transport along curves in S, and the Gauss-
Kronecker curvature of S (if n is even) without any knowledge of how S
curves around in R**1. In fact, if we are given a dot product on each tangent
space S, different from the one which comes from R%**, we can still do these
mtnnsnc computations but of course the results of our computations will
depend on the dot products used, and the geometry we find will in general be
quite different from the geometry we are familiar with. The geometry ob-
tained from such dot products is called Riemannian geometry; the collection
of dot products on the tangent spaces S, from whxch the geometry is derived
is called a Riemannian metric. =

. A Riemannian metric on an n-surface S is a functwn g which assigns to
each pair {v, w} of vectors in S,, p € S, a real number g(v, w) such that for
each v, w, andxeS,,peS and 1 e R,

(i) g(v, w) = g(w, v) |
(ii) g(v + w, x) = g(v, x) + g(w x), gv, w + x) g(v, w) + g(v, x)
(iii) g(Av, w) = Ag(v, w), g(v, Aw) = Ag(v, W)
(iv) g(v,v) =0, g(v, v)=0if and only if v=10

and such that for each pair {X, Y} of smooth tangent vector fields defined on

231
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an open subset U of S the function g(X, Y): U — R defined by [¢(X, Y)](p)
= g(X(p), Y(p)) is smooth.

Properties (i)-(iv) are familiar properties of the dot product and, in fact,
given g we can define a dot product on each S, by v+ w=g(v, w). The
smoothness property of g assures that we can do the differential calculus
computations required to investigate the geometry of (S, g).

EXAMPLE 1. Let S be an n-surface in R"**. For pe S and v, w € S, define
g(v, w) by g(v, w) = v - w (usual dot product of vectors in R}**). Then g is a
Riemannian metric on S. This g is called the usual metric on S.

ExampLE 2. Let §: S' — {q} > R" denote stereographic projection from the
north pole {g} of the unit n-sphere S" = R"*! onto the equatorial hyperplane
R" = R"*!. Define a Riemannian metric on " — {g} by

glv, w)=dy(v) - dy(w) (v weS;,peS —{g})

where the dot product on the right hand side is the usual dot product in
Ry - Thus the metric g is defined precisely so that y is an isometry (dy
preserves dot products) from S* — {g} with the metric g to R* with its usual
metric. From the fact that ¢ is an isometry, and hence preserves all intrin-

sic geometric features of the surface, we can deduce the following facts
about the geometry of (S* — {q}, 9):

(i) The geodesics of (S" — {g}, g) will be the images under the isometry
@ =y~ of the geodesics of R (see Figure 24.1). Hence the family of

NS

Figure 24.1 A typical geodesic on the 2-sphere S? (north pole deleted) with its
stereographic metric.

maximal geodesics in (S" — {g}, g) will be the family of (appropriately
parametrized) circles in " passing through g, with the point g removed.
(ii) The length of each parametrized curve a: (a, b)— S —{q} with
lim, ., a(t) = g will be infinite since I(} o ) = oo for all such a.
(iii) For n even, the Gauss-Kronecker curvature K of (S' — {g}, g) will be
identically zero.
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ExAMPLE 3. Let ¢: R” — & denote the inverse of stereographic projection
from the north pole g of the unit n-sphere S" to the equatorial hyperplane.
Define a Riemannian metric g on R” by '

) gv, w)=do(v) - dp(w) (v, weR;, peR’)

where the dot product on the right hand side is the usual dot product in
Sim  Rir . Thus @ is an isometry from (R", g) to §' — {g} with its usual
metric. From the fact that ¢ is an isometry we can deduce that:

(i) The geodesics of (R”, g) will be the images under the isometry y = ¢~ *
of the geodesics of S (see Figure 24.2). The maximal geodesics radiating

Figure 24.2 A typical geodesic on thé plane R? with its stereographic metric.

from the origin will be straight lines in R", suitably parametrized; each of
these geodesics will have finite length (2z) relative to the metric g. All
other maximal geodesics will be circles in R", suitably parametrized (see
Figure 24.3 and Exercise 24.1); each of these geodesics will be periodic
with period 27. ' :

(ii) For n even, the Gauss-Kronecker curvature K of (R", g) will be
constant, equal to 1. :

The most interesting Riemannian metrics will not be related by isometries
to “usual metrics”. We shall consider now one of the most important of
these, the hyperbolic metric on the unit disc in R3. This metric is suggested
by the stereographic metrics on R". ,

Let S be the n-sphere x2 + -+ 4+ x2,, = r? of radius r > 0in R"**. Just as
with the unit n-sphere S, we can use the usual metric on the n-sphere S
together with stereographic projection to define a Riemannian metric on R".
Let us derive an explicit formula for this metric. For p € R", the line through ‘
(p, 0) and the north pole g = (0, ..., 0, r)in S is a(t) = (¢p, (1 — t)r). Tis line
~cuts S when |ja(t)|? = r*; that is, when t = 2r*/(|p|?* + r*), so the map
@: R? > § inverse to stereographic projection onto the hyperplane x, ., =0
is given by

o(p) = (2r*p, r(|lp|* — )/(llp)* + %)
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4 Xy

(i
\

Figure 243 Geodesics passing through (1, 0) in the plane R? with its stereographic
metric.

Forv=(p,v)eR,,pe R’
d
do(v) = (<P(P), pr Orp(p + tv))

= 2*/(lp? + *P)e), ([P +r*)o — 2(p - v)p, 2r(p * v))
so, for v, w e R}, we find

4
do(v) - do(w) = 1+ (“sz/rz))z vVow

Thus the Riemannian metric g on R" obtained from the usual metric on the

sphere S of radius r via stereographic projection into the equatorial hyperplane
is given by

4
g(v,w)=(l—Wv-w (vwweR,,peR")

where the dot product on the right hand side is the usual dot product on Rj,.
When n = 2, this formula can be rewritten as

— 4 2 2
g(v,w)—(1+KHp”2)2v w (vwwe R, pe R?)
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where K = 1/r? is the Gaussian curvature of (R?, g) (since 1/r? is the Gaus-
&an curvature of § and @ is an isometry)

The above discussion shows that a Riemannian metric g on R? with
constant Gaussian curvature K > 0 can be obtained by defining

(v ) = ___4_— VW
N T 1T A
If we take K = 0 in this formula we obtain a constant multiple of the usual

metric on R? and it is easy to check that (R? g) for this g has Gaussian
curvature identically zero. One would hope that if we took K to be a con-

(v, we R2, pe R?).

stant <O in this formula then we would find that (R? g) had constant .

negative Gaussian curvature K. This is indeed the case, except that this
formula defines a Riemannian metric not on. R? but only on the disc
{(x4, xz) € R%: x3 + x3 < 1/|K|}-

" Theorem 1. Given K € R, K <0, let U = {(x,, x,) e R?: x? + x < V|K][},
and let g be the Riemannian metric on U defined by

g(v,w):-»-(l—:ﬂﬂz—)zv-w (vvwe R2, pe U)

where the dot product on the right hand side is the usual dot product in R2.
Then (U, g) has constant Gaussian curvature K < 0.

PROOF. Let h: U — R be defined by h(p) = 4(1 + K||p||?) so that g(v, w)-
(1/(r(p))*)v - w for all v, we R2, p e U. Using the intrinsic formulas of
Chapter 23, we shall derive a formula for the Gaussian curvature of (U, g) in
terms of the function h and its derivatives.

Note that the identity map from U into itself is a global parametrization
of U with coordinate vector fields given by E,(p) = (p, 1, 0) and E,(p) =
(p, 0, 1) for p € U. The metric coefficients g;;: U — R of g are given by

g11=9E, E)=1/r* g, =g(E,, E;)=0
gn = g(Ez, Ex) =0 g22 = Q(Ez» E;) = 1/’

so, using the formula of ’Ihe‘orem I,:Chapter 23, we find

L oh 1 oh
((DEx El)’ El) e ;;_'é.'x_l g((l)gl El), EZ) = h3 ax
1 oh 18
HDeEb B)= ~ 55 (D Ex) Ea)= - mﬁ
1 oh 1 oh
9(De, E 1)’ El)" T Wox, 9((Dg,E,), E;) = ~Pox,

1 oh 1 oh
g((DEzEZ)’ El)"',? g«DEzEZ)’ E2)= —?ax :



236 24 Riemannian Metrics

Since {E,, E,} is orthogonal (but not orthonormal!) with respect to the
metric g (9, = g(E,, E,) = 0), each vector field X on U can be expressed as
X =/,E, +/,E, where f; = (1/9,,)9(X,E,) and f, = (1/922)9(X, E;). In
particular,

1 oh 1 oh
DeBr= =55 B oy,
1 oh 1 0h
DeiBa = Do By = =5 B T hax,
1 oh 1 oh
DE2E2 b Eax_l El - E—axz Ez.

Hence the Gaussian curvature of (U, g), according to the intrinsic formula
for Gaussian curvature derived in Chapter 23,.is equal to

g(R(E2/||E2 ", El/”El ”, E1/||E1 " ) Ez/"Ez ")
= (1/E, |*||E. |*)g(R(E2, Ey, Ey), Ey)
= (1/911922)0(DE2DE1E1 — Dg,Dg, E,, Ez)

1 oh 1 6h
= (1/911922)9(13152(_ ﬁa_xlE‘ + Ea_x;Ez)

1 0h 10h
0B e B B

_h(ﬂJrQ’_")_ Oh 2"_)2

T \ox? T oox: 0x, ox,) |

Finally, since h(x,, x,) = (1 + K(x} + x3)), we find that the Gaussian cur-
vature of (U, g) is precisely K. o

When K = — 1, Theorem 1 describes a Riemannian metric g with con-
stant Gaussian curvature —1 on the unit disc x} +x3 <1 in R? by
g(v, w) = 4v - w/(1 — ||p||*)*. This metric is called the hyperbolic metric.
In order to gain insight into the geometry of this metric, it is convenient, if
not absolutely necessary, to use some of the ideas from the elementary
theory of functions of a complex variable. Rather than do that here (see,
however, Exercises 24.5 and 24.6) we shall study a related metric on the
upper half plane.

For p = (x, y)€ R? with y >0 and v, we R}, define g(v, w)=v - w/y*
where the dot product on the right hand side is the usual dot product on R2.
Then g is a Riemannian metric on the upper half plane U = {(x, y)€
R2: y > 0}. This metric g called the Poincaré metric on U. Note that U, 9)
has constant Gaussian curvature — 1 since, taking h(xy, X») = x, , we have
g(v, w) = (1/h(p)*)v - w for v, we RZ, pe U, and hence, just as in the proof
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of Theorem 1, the Gaussian curvature is given by

o*h  0%h oh\?> [(oh)\?
k=nfaz +53) - () + ())-
~ Each of the following maps y: U - U is an isometry from the upper half

plane U with its Peincaré metric onto itself:

@) ¥(x, y) = (x + 4, y) where A is any real number,
(i) ¥(x, y) = (Ax, Ay) where 1 is any positive real number,

(i) (x, y) = (~x, y), and
(i) ¥lx, ¥) = (/7 + 52), p/e? + y2).

Indeed letv,we Rf,, pe U. Fory defined as in (i) or (iii) we have
- g@Y0), dpw) = dy () - dy(w)y* = v - W/y =g(v, W),
and for ¥ defined as in (ii) we' have
G@bE), dy (W) = d¥(v) - dy(wY/(Ry)
= AV * Aw/A2y? = v - w/y? = g(v, w),

as required for an isometry. For y defined as in (iv) we have, where
E(x, y) = (x, y, 1, 0) and E,(x, y) = (x, y,O 1),

W, )= (Vi) yf,z )
dY (E,(x, y)) = (‘l’( ) (x +yz)zs 2 ;;22)2)

OB ) B )= /(x L) -3
“ = g(E(x, y), E(x, y))

fori=1or2 and ,
9(V(E4(x, y)), dU(Ey(x, y)) = 0 = g(Ey (%, y) Ex(x, 1));

thus dy preserves dot products of basis vectors, and hence of all pairs of
tangent vectors, as required for an isometry.

One consequence of the fact that the maps (i) and (ii) are isometries is
that, just as the geometry of " looks the same from every point ofiS" as it
does from the north pole (0, 0, 1), the geometry of U with the Poincaré
metric looks the same from every point of U as it does from the point
©, l)e U. This is because given any point p e U there is an isometry
Y2 oy, of U, where y, is an isometry of type (i) and y, is one of type (ii),
which sends (0, 1) onto p (see Figure 24.4).In particular, all points of U must
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p=¥3°¥1(0,1)

(0, De—>9y (0, 1)

—
>

S|

Figure 24.4 For each point p in the upper half plane U there is an isometry from U
with its Poincaré metric onto itself which sends (0, 1) to p.

be the same (intrinsic) distance from the edge of U (the x,-axis). This per-
haps surprising phenomenon is due to the fact that, in the geometry of the
metric g, these distances are infinite. Thus for example, if we compute the
length, relative to the Poincaré metric, of the curve a: [0, 1) —» U defined by
a(t) = (0, 1 — t) we find

1

J lae)] dt—j glale), &(t)))V? dt = f ‘1‘—7‘1 =

We can use the fact that the maps (i)-(iv) above are isometries also to
identify the geodesics in U relative to the Poincaré metric.

Theorem. Let U be an open set in R?, let g be a Riemannian metric on U, and
let y:U—U be an isometry of (U,g). Suppose the fixed point set
F={pe U:y(p)=p} of ¥ is a connected plane curve. Then F is (the image
of ) a geodesic of (U, g).

PROOF. Let a: I - F be a unit speed (g(&, &) = 1) global parametrization of
F, constructed as in Chapter 11. We shall show that « is a geodesic, thereby
establishing the theorem.

It will suffice to show that for each t, € I the restriction of « to some
interval about ¢, is a geodesic. So let ¢, € I, let v = a(t,), and let «, denote
the maximal geodesic of (U, g) with initial velocity v. We shall show that
a(t) = a,(t — to) for all ¢ € I such that t — t, is in the domain of a, .

Note first that Image a, — F. This is because y - a, is a geodesic (since y
is an isometry) with initial velocity v (since ¥ |5 is the identity map and hence
dy |r, is the identity map so ¢ ¢ a(0) = dy/(&(0)) = dy(v) = v) so Y - a, and
o, are geodesics with the same initial velocity. By uniqueness of geodesics,
¥ o a, = a, and so Image a, = F.

Now a and a, , being unit speed curves in F with &(t,) = &,(0), are integral
curves of the same unit tangent vector field on F. By uniqueness of integral
curves, a(t) = a,(t — o) for all ¢ in the interval

{tel:t—ty, e domain a,}
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about t, . It follows that the restriction of « to this interval is a geodesic, and,
since t, € I was arbitrary, that « is a geodesic. -

Remark. We have implicitly used, in this proof, the fact that the existence
and uniqueness theorem for geodesics is valid for surfaces with arbitrary
Riemannian metrics. Although our proof of this theorem in Chapter 7 is
valid only for the usual metric on an n-surface, it can be modified to work for
any Riemannian metric. The important observation here is that the intrinsic
geodesic equation & =0 is still a second order ordinary differential
equation. '

Corollary. The geodesics in the upper half plane U relative to the Poincare
metric are (i) vertical lines, and (ii) semi-circles centered on the x,-axis,
suitably parametrized (see Figure 24.5).

v

4

Figure 24.5 Typical geodesics in the upper half plane with its Poincaré metric.

PrOOF. Applying the theorem to the isometry Y(x,, x;) = (—x4, X,) we see
that the line x; = 0, x, > 0, suitably parametrized, is a geodesic. Similarly,
from the isometry Y(xy, x;) = (x; /(x? + x3), x, /(x3 + x3)) we see that the
semicircle x} + x3 = 1, x, > 0, suitably parametrized, is a geodesic. Since
every vertical line in U is the image of the line x, = 0, x, > 0 under an
isometry Y(x,, x;) = (x; + 4, X,), it follows that every vertical linein Uis a
geodesic Similarly, since every semi-circle in U centered at the origin is the
image of the semi-circle x? + x2 = 1, x, > 0 under an isometry tl/(x X;) =
(Ax4, Ax,), A >0, these semicircles are geodesics. Fmally, every semlJclrcle in
U centered on the x;-axis is the image of a semi-circle in U centered at the
origin under an isometry ¥(x,, x;) = (x, + 4, x,) so they too are geodesics.
Note that every geodesic in U relative to the Poincaré metric must belong
to this family since given any point p of U and any tangent direction v at p
there is a geodesic in this family passing through p in the direction v. []
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Remark 1. The upper half plane U with its Poincaré metric is geodesically
complete; that is, every maximal geodesic in U has domain the whole real
line. See Exercise 24.4.

Remark 2. The upper half plane U with its Poincaré metric g provides an
example of a geometry in which Euclid’s parallel postulate fails. The parallel
postulate asserts that given any straight line / and any point p not on [ there
is a unique straight line through p which does not meet I If we define the
straight lines of (U, g) to be the images of maximal geodesics, then all of
Euclid’s axioms for geometry except the parallel postulate are valid for
(U, g). But, given any straight line / in (U, g) and point p not on /, there are
in fact infinitely many straight lines of (U, g) through p which do not meet I
(see Figure 24.6).

Figure 24.6 Euclid’s parallel postulate fails in the upper half plane with its Poincaré
metric.

EXERCISES

24.1. Let y: S* — {g} —» R denote stereographic projection from the north pole g of
the unit 2-sphere S? onto the equatorial plane.

(a) Show that y(x, y, z) = (x/(1 — z), y/(1 — z)) for all (x, y, z) e S* — {g}.

(b) Let e; = (1,0, 0), e = (0, cos ¢, sin @) where —n/2 < ¢ < n/2, and let
a: R — S? be the geodesic in S? given by (t) = (cos t)e, + (sin t)e,. Show
that the image of the parametrized curve Y o a: R —» R? is the circle

x} + (x, — tan ¢)? = sec? ¢.

(c) Use the symmetries of S to show that each great circle in S? not passing
through g is mapped by  onto a circle in R? obtained by rotating about the
origin one of the circles described in (b). Conclude that the geodesics of R?
relative to the stereographic metric of Example 3 are as in Figure 24.3.
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24.2.

243.

244

24.5.

24.6.

Find the length of the circle a,(t) = (r cos ¢, sin t),0 < t < 2=, relative to the
stereographic metric

4 | 2
g(v,w)—Wv w (vwweRZ peR?
on R? and show that lim,, , I(,) = 0.

Let S be the 2-sphere x? + x} + x3 = r? of radius r > 0 in R and let ¢: R —
S {q} be the inverse of stereographic projection from the north pole

= (0, 0, ) of S onto the tangent plane x; = —r at the south pole (0, 0, —r)
of S. (Thus, for p € R?, ¢(p) is the point of S different from q which lies on the
line through ¢ and (p, —r) in R3.) Show that the Riemannian metric on R?
defined by

g(v, w) =do(v) - dp(w) (v, we R2, pe R?),

where the dot product on the right hand side is the usual dot product in
Sow < R3), can be described explicitly by the formula

1

g(v, w) = % sv'w  (v,we R}, peR?)
T (1 K ) |

~ where K is the Gaussian curvature of S.

Let U be the upperhalfplaneandlctaz [0, 1)~ U and 8: [0 n/2)— U be
defined by a(t) = (0, 1 — t) and B(t) = (sin ¢, cos t). Show that both « and f
have infinite length relative to the Poincaré metric on U and use this fact to
show that the upper half plane with its Poincaré metric is geodesically
complete. ,

Show that each of the following maps is an isometry from the unit disc
x{ + x3 < 1 with its hyperbolic metric onto itself:

(i) tl/(x,y)v=(xcos&-ysme,xsm6+ycos0) (OEIR)‘
(i) ¥(x, y) = (x, —y)

Using the isometries (i) and (ii), show that radial straight lines in the unit disc,
suitably parametrized, are geodesics relative to the hyperbolic metric.

(a) Viewing R? as the set C of complex numbers by identifying (4, b) with '
a + bi, show that, for each A € R with —1 < 1 < 1, the function

z+4

VO =T &
is an isometry from the unit disc U with its hyperbolic metric onto itself.

(b) Show that the image under ¢ of thé radial line x; = 0in U is the intersec-
tion with U of a circle oentered on the x,-axis, passing through (/y, 0), and
meeting the unit circle x} + xj = 1 orthogonally.

(c) Combining (b) with the result of Exercise 24.5, show that the geodesics in
the unit disc U relative to its hyperbolic metric are the intersections with
U of (i) radial straight lines and (ii) circles meeting the unit circle
x} + x3 = 1 orthogonally (see Figure 24.7).
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Figure 24.7 Typical geodesics in the unit disc with its hyperbolic metric.

24.7. Viewing R? as the set C of complex numbers by identifying (a, b) with a + bi,
show that the function

¥(z) =

z+1i

iz+1

is an isometry from the unit disc with its hyperbolic metric onto the upper half
plane with its Poincaré metric.

24.8. Let g be a Riemannian metric on an open set U of R". Suppose y: U — U is an
isometry of (U, g) whose fixed point set F={pe U:y(p)=p} is an
(n — 1)-surface in R". Show that F is totally geodesic in U that is, show that if
a: I - U is any geodesic of (U, g) with a(ty) € F and &(to) € Fuq,) for some
toeIthenat)e Fforallte I

249. The Poincaré metric on the half space U = {(x, ..., x,) € R": x, > 0} is
defined by

g(v, w) =v - w/x?

for v, we R}, and p = (x,, ..., x,) € U, where the dot product on the right
hand side is the usual dot product on Rj.

(a) Show that each of the following maps is an isometry of (U, g):

(i) ¥(xys .- Xp) = (@(xy, - .., X,—1), X,,) Where @ is any rigid motion of
R"™ l’ ’
(ii) ¥(p) = Ap, where 4 is any positive real number,
(i) Y(xg,-.r Xg) = (g5 op —Xj, ..., X,), Whereje{l,...,n — 1},
@iv) ¥(p) = p/llp|*.

(b) Use Exercise 24.8 to show that if F,, ..., F, are fixed point sets of isome-
tries ¥, ..., ¥, of U of types (iii) and (iv) above and if a: I > U is a
geodesic of (U, g) such that a(ty) € F; and d(to) € (Fj)ay, for all
je{l, ..., k} then a(t)e (=, F;forall tel.

{c) Conclude that the maximal geodesics of the half-space U with its Poin-
caré metric are

(i) vertical (i.e., parallel to the x,-axis) straight lines in U, and
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(ii) semi-circles centered on and orthogonal to the (n — 1)-plane x, = 0.
[Hint: First show that unit speed parametrizations of the plane curves

Xg=-=Xg_y =0

Xy >0

and
Xg=r=mXg_g =0
J 2a+xi=1
lx,.>0
s are geodesics of (U, g) and then consider the images of these geodesics
‘ under isometries of types (i) and (ii), part (a).]

24.10. Let S be the n-sphere x? + -+ + x2, =r? of radius » > 0 in R**! with its
_usual metric,

"(a) Show that the Riemann tensor R of § is given by
1
Rx,y,z)=5((y - zx - (x-2)y). .

(b) Show that the Riemannian sectional curvature (Exercise 23.13) of S is
constant: a(P) = 1/r* for each 2-dimensional subspace P of S, p € S.

(c) Conclude that the metric on R”" obtained from the usual metric on S via
stereographic projection onto the equatorial hyperplane has constant sec-
tional curvature K = I/r2 and that this metric is given by the formula

g(v,w)== 1+Kl[pll v-w (vweR;,peR

where the dot product on the right hand side is the usual dot producton R}.

(Remark. This formula with K < 0 defines a metnc g of constant negatlve

sectional curvature K on the n-discx} + -** + x3 < 1/|K|. When K = —1,

this metric is called the hyperbolic metric in the unit n-disc x} + -
C+x2<l)
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compactly supported 156
fixed endpoint 164
normal 156, 164
of a parametrized curve 163
of a parametrized surface 156
vector field 159, 163
Vector at a point 6
Vector field 7, 23
along a parametrized curve 38
along a map 113
complete 11 (Ex. 2.7)
coordinate 114
isolated singularity of 202
normal 23, 114
smooth 7, 23, 114
tangent 23, 45, 114
Vector part 114
Velocity 8
Volume
of a compact oriented n-surface
152, 182
of a parametrized n-surface 140
of a singular n-surface 142
Volume form 147, 180

Wéingarten map 55, 115
Winding number 77, 81 (Ex. 11.22)



