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Preface

This book is about matrix and linear algebra, and their applications. For
many students the tools of matrix and linear algebra will be as fundamental
in their professional work as the tools of calculus; thus it is important to
ensure that students appreciate the utility and beauty of these subjects as
well as the mechanics. To this end, applied mathematics and mathematical
modeling ought to have an important role in an introductory treatment of
linear algebra. In this way students see that concepts of matrix and linear
algebra make concrete problems workable.

In this book we weave significant motivating examples into the fabric of
the text. I hope that instructors will not omit this material; that would be
a missed opportunity for linear algebra! The text has a strong orientation
toward numerical computation and applied mathematics, which means that
matrix analysis plays a central role. All three of the basic components of lin-
ear algebra — theory, computation, and applications — receive their due.
The proper balance of these components gives students the tools they need
as well as the motivation to acquire these tools. Another feature of this text
is an emphasis on linear algebra as an experimental science; this emphasis is
found in certain examples, computer exercises, and projects. Contemporary
mathematical software make ideal “labs” for mathematical experimentation.
Nonetheless, this text is independent of specific hardware and software plat-
forms. Applications and ideas should take center stage, not software.

This book is designed for an introductory course in matrix and linear
algebra. Here are some of its main goals:

• To provide a balanced blend of applications, theory, and computation that
emphasizes their interdependence.

• To assist those who wish to incorporate mathematical experimentation
through computer technology into the class. Each chapter has computer
exercises sprinkled throughout and an optional section on computational
notes. Students should use the locally available tools to carry out the ex-
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periments suggested in the project and use the word processing capabilities
of their computer system to create reports of results.

• To help students to express their thoughts clearly. Requiring written re-
ports is one vehicle for teaching good expression of mathematical ideas.

• To encourage cooperative learning. Mathematics educators are becoming
increasingly appreciative of this powerful mode of learning. Team projects
and reports are excellent vehicles for cooperative learning.

• To promote individual learning by providing a complete and readable text.
I hope that readers will find the text worthy of being a permanent part of
their reference library, particularly for the basic linear algebra needed in
the applied mathematical sciences.

An outline of the book is as follows: Chapter 1 contains a thorough develop-
ment of Gaussian elimination. It would be nice to assume that the student is
familiar with complex numbers, but experience has shown that this material is
frequently long forgotten by many. Complex numbers and the basic language
of sets are reviewed early on in Chapter 1. Basic properties of matrix and de-
terminant algebra are developed in Chapter 2. Special types of matrices, such
as elementary and symmetric, are also introduced. About determinants: some
instructors prefer not to spend too much time on them, so I have divided the
treatment into two sections, the second of which is marked as optional and not
used in the rest of the text. Chapter 3 begins with the “standard” Euclidean
vector spaces, both real and complex. These provide motivation for the more
sophisticated ideas of abstract vector space, subspace, and basis, which are
introduced largely in the context of the standard spaces. Chapter 4 introduces
geometrical aspects of standard vector spaces such as norm, dot product, and
angle. Chapter 5 introduces eigenvalues and eigenvectors. General norm and
inner product concepts for abstract vector spaces are examined in Chapter 6.
Each section concludes with a set of exercises and problems.

Each chapter contains a few more “optional” topics, which are indepen-
dent of the nonoptional sections. Of course, one instructor’s optional is an-
other’s mandatory. Optional sections cover tensor products, linear operators,
operator norms, the Schur triangularization theorem, and the singular value
decomposition. In addition, each chapter has an optional section of compu-
tational notes and projects. I employ the convention of marking sections and
subsections that I consider optional with an asterisk.

There is more than enough material in this book for a one-semester course.
Tastes vary, so there is ample material in the text to accommodate different
interests. One could increase emphasis on any one of the theoretical, applied,
or computational aspects of linear algebra by the appropriate selection of
syllabus topics. The text is well suited to a course with a three-hour lecture
and lab component, but computer-related material is not mandatory. Every
instructor has her/his own idea about how much time to spend on proofs, how
much on examples, which sections to skip, etc.; so the amount of material
covered will vary considerably. Instructors may mix and match any of the
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optional sections according to their own interests, since these sections are
largely independent of each other. While it would be very time-consuming to
cover them all, every instructor ought to use some part of this material. The
unstarred sections form the core of the book; most of this material should
be covered. There are 27 unstarred sections and 10 optional sections. I hope
the optional sections come in enough flavors to please any pure, applied, or
computational palate.

Of course, no one size fits all, so I will suggest two examples of how one
might use this text for a three-hour one-semester course. Such a course will
typically meet three times a week for fifteen weeks, for a total of 45 classes.
The material of most of the unstarred sections can be covered at a rate of
about one and one-half class periods per section. Thus, the core material
could be covered in about 40 class periods. This leaves time for extra sections
and in-class exams. In a two-semester course or a course of more than three
hours, one could expect to cover most, if not all, of the text.

If the instructor prefers a course that emphasizes the standard Euclidean
spaces, and moves at a more leisurely pace, then the core material of the first
five chapters of the text are sufficient. This approach reduces the number of
unstarred sections to be covered from 27 to 23.

I employ the following taxonomy for the reader tasks presented in this
text. Exercises constitute the usual learning activities for basic skills; these
come in pairs, and solutions to the odd-numbered exercises are given in an
appendix. More advanced conceptual or computational exercises that ask for
explanations or examples are termed problems, and solutions for problems
are not given, but hints are supplied for those problems marked with an as-
terisk. Some of these exercises and problems are computer-related. As with
pencil-and-paper exercises, these are learning activities for basic skills. The
difference is that some computing equipment (ranging from a programmable
scientific calculator to a workstation) is required to complete such exercises
and problems. At the next level are projects. These assignments involve ideas
that extend the standard text material, possibly some numerical experimen-
tation and some written exposition in the form of brief project papers. These
are analogous to lab projects in the physical sciences. Finally, at the top
level are reports. These require a more detailed exposition of ideas, consid-
erable experimentation — possibly open ended in scope — and a carefully
written report document. Reports are comparable to “scientific term papers.”
They approximate the kind of activity that many students will be involved
in throughout their professional lives. I have included some of my favorite
examples of all of these activities in this textbook. Exercises that require
computing tools contain a statement to that effect. Perhaps projects and re-
ports I have included will provide templates for instructors who wish to build
their own project/report materials. In my own classes I expect projects to be
prepared with text processing software to which my students have access in a
mathematics computer lab.
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About numbering: exercises and problems are numbered consecutively in
each section. All other numbered items (sections, theorems, definitions, etc.)
are numbered consecutively in each chapter and are prefixed by the chapter
number in which the item occurs.

Projects and reports are well suited for team efforts. Instructors should
provide background materials to help the students through local system-
dependent issues. When I assign a project, I usually make available a Maple,
Matlab, or Mathematica notebook that amounts to a brief background lec-
ture on the subject of the project and contains some of the key commands
students will need to carry out the project. This helps students focus more
on the mathematics of the project rather than computer issues. Most of the
computational computer tools that would be helpful in this course fall into
three categories and are available for many operating systems:

• Graphing calculators with built-in matrix algebra capabilities such as the
HP 48, or the TI 89 and 92.

• Computer algebra systems (CAS) such as Maple, Mathematica, and Mac-
syma. These software products are fairly rich in linear algebra capabilities.
They prefer symbolic calculations and exact arithmetic, but can be coerced
to do floating-point calculations.

• Matrix algebra systems (MAS) such as Matlab, Octave, and Scilab. These
software products are specifically designed to do matrix calculations in
floating-point arithmetic and have the most complete set of matrix com-
mands of all categories.

In a few cases I include in this text software-specific information for some
projects for purpose of illustration. This is not to be construed as an endorse-
ment or requirement of any particular software or computer. Projects may
be carried out with different software tools and computer platforms. Each
system has its own strengths. In various semesters I have obtained excellent
results with all these platforms. Students are open to all sorts of technology
in mathematics. This openness, together with the availability of inexpensive
high-technology tools, has changed how and what we teach in linear algebra.

I would like to thank my colleagues whose encouragement has helped me
complete this project, particularly David Logan. I would also like to thank
my wife, Muriel Shores, for her valuable help in proofreading and editing the
text, and Dr. David Taylor, whose careful reading resulted in many helpful
comments and corrections. Finally, I would like to thank the outstanding staff
at Springer, particularly Mark Spencer, Louise Farkas, and David Kramer, for
their support in bringing this project to completion.

I continue to develop a linear algebra home page of material such as project
notebooks, supplementary exercises, errata sheet, etc., for instructors and stu-
dents using this text. This site can be reached at

http://www.math.unl.edu/˜tshores1/mylinalg.html
Suggestions, corrections, or comments are welcome. These may be sent to me
at tshores1@math.unl.edu.
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1

LINEAR SYSTEMS OF EQUATIONS

The two central problems about which much of the theory of linear algebra
revolves are the problem of finding all solutions to a linear system and that
of finding an eigensystem for a square matrix. The latter problem will not be
encountered until Chapter 4; it requires some background development and
even the motivation for this problem is fairly sophisticated. By contrast, the
former problem is easy to understand and motivate. As a matter of fact, simple
cases of this problem are a part of most high-school algebra backgrounds. We
will address the problem of when a linear system has a solution and how to
solve such a system for all of its solutions. Examples of linear systems appear
in nearly every scientific discipline; we touch on a few in this chapter.

1.1 Some Examples
Here are a few elementary examples of linear systems:

Example 1.1. For what values of the unknowns x and y are the following
equations satisfied?

x + 2y = 5
4x + y = 6.

Solution. The first way that we were taught to solve this problem was the
geometrical approach: every equation of the form ax+by+c = 0 represents the
graph of a straight line. Thus, each equation above represents a line. We need
only graph each of the lines, then look for the point where these lines intersect,
to find the unique solution to the graph (see Figure 1.1). Of course, the two
equations may represent the same line, in which case there are infinitely many
solutions, or distinct parallel lines, in which case there are no solutions. These
could be viewed as exceptional or “degenerate” cases. Normally, we expect
the solution to be unique, which it is in this example.

We also learned how to solve such an equation algebraically: in the present
case we may use either equation to solve for one variable, say x, and substitute
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the result into the other equation to obtain an equation that is easily solved
for y. For example, the first equation above yields x = 5−2y and substitution
into the second yields 4(5 − 2y) + y = 6, i.e., −7y = −14, so that y = 2. Now
substitute 2 for y in the first equation and obtain that x = 5 − 2(2) = 1. ��
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y
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4 53 621

��
��
��
��(1,2)

x + 2y = 5

4x + y = 6

Fig. 1.1. Graphical solution to Example 1.1.

Example 1.2. For what values of the unknowns x, y, and z are the following
equations satisfied?

x + y + z = 4
2x + 2y + 5z = 11
4x + 6y + 8z = 24.

Solution. The geometrical approach becomes impractical as a means of ob-
taining an explicit solution to our problem: graphing in three dimensions on a
flat sheet of paper doesn’t lead to very accurate answers! The solution to this
problem can be discerned roughly in Figure 1.2. Nonetheless, the geometrical
approach gives us a qualitative idea of what to expect without actually solving
the system of equations.

With reference to our system of three equations in three unknowns, the
first fact to take note of is that each of the three equations is an instance of the
general equation ax+ by + cz +d = 0. Now we know from analytical geometry
that the graph of this equation is a plane in three dimensions. In general,
two planes will intersect in a line, though there are exceptional cases of the
two planes represented being identical or distinct and parallel. Similarly, three
planes will intersect in a plane, line, point, or nothing. Hence, we know that
the above system of three equations has a solution set that is either a plane,
line, point, or the empty set.

Which outcome occurs with our system of equations? Figure 1.2 suggests
a single point, but we need the algebraic point of view to help us calculate the
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solution. The matter of dealing with three equations and three unknowns is
a bit trickier than the problem of two equations and unknowns. Just as with
two equations and unknowns, the key idea is still to use one equation to solve
for one unknown. In this problem, subtract 2 times the first equation from
the second and 4 times the first equation from the third to obtain the system

3z = 3
2y + 4z = 8,

which is easily solved to obtain z = 1 and y = 2. Now substitute back into
the first equation x + y + z = 4 and obtain x = 1. ��

(1,2,1)
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x + y + z = 4
4x + 6y + 8z = 24

2x + 2y + 5z = 11

Fig. 1.2. Graphical solution to Example 1.2.

Some Key Notation

Here is a formal statement of the kind of equation that we want to study
in this chapter. This formulation gives us the notation for dealing with the
general problem later on.

Definition 1.1. A linear equation in the variables x1, x2, . . . , xn is an equation
of the form Linear

Equationa1x1 + a2x2 + ... + anxn = b

where the coefficients a1, a2, . . . , an and term b of the right-hand side are given
constants.

Of course, there are many interesting and useful nonlinear equations, such as
ax2+bx+c = 0, or x2+y2 = 1. But our focus is on systems that consist solely
of linear equations. In fact, our next definition gives a fancy way of describing
a general linear system.
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Definition 1.2. A linear system of m equations in the n unknowns x1, x2, . . . , xn

is a list of m equations of the formLinear System

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2

...
...

...
ai1x1 + ai2x2 + · · · + aijxj + · · · + ainxn = bi

...
...

...
am1x1 + am2x2 + · · · + amjxj + · · · + amnxn = bm.

(1.1)

Notice how the coefficients are indexed: in the ith row the coefficient of the
jth variable, xj , is the number aij , and the right-hand side of the ith equation
is bi. This systematic way of describing the system will come in handy later,Row and

Column Index when we introduce the matrix concept. About indices: it would be safer —
but less convenient — to write ai,j instead of aij , since ij could be construed
to be a single symbol. In those rare situations where confusion is possible,
e.g., numeric indices greater than 9, we will separate row and column number
with a comma.

* Examples of Modeling Problems

It is easy to get the impression that linear algebra is only about the simple
kinds of problems such as the preceding examples. So why develop a whole
subject? We shall consider a few examples whose solutions are not so apparent
as those of the previous two examples. The point of this chapter, as well as that
of Chapters 2 and 3, is to develop algebraic and geometrical methodologies
that are powerful enough to handle problems like these.

Diffusion Processes
Consider a diffusion process arising from the flow of heat through a homoge-
neous material. A basic physical observation is that heat is directly propor-
tional to temperature. In a wide range of problems this hypothesis is true,
and we shall assume that we are modeling such a problem. Thus, we can
measure the amount of heat at a point by measuring temperature since they
differ by a known constant of proportionality. To fix ideas, suppose we have
a rod of material of unit length, say, situated on the x-axis, on 0 ≤ x ≤ 1.
Suppose further that the rod is laterally insulated, but has a known internal
heat source that doesn’t change with time. When sufficient time passes, the
temperature of the rod at each point will settle down to “steady-state” values,
dependent only on position x. Say the heat source is described by a function
f(x), 0 ≤ x ≤ 1, which gives the additional temperature contribution per unit
length per unit time due to the heat source at the point x. Also suppose that
the left and right ends of the rod are held at fixed temperatures yleft and
yright, respectively.
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x

Fig. 1.3. Discrete approximation to temperature function (n = 5).

How can we model a steady state? Imagine that the continuous rod of
uniform material is divided up into a finite number of equally spaced points,
called nodes, namely x0 = 0, x1, x2, . . . , xn+1 = 1, and that all the heat is
concentrated at these points. Assume that the nodes are a distance h apart.
Since spacing is equal, the relation between h and n is h = 1/ (n + 1). Let
the temperature function be y (x) and let yi = y (xi) . Approximate y (x) in
between nodes by connecting adjacent points (xi, yi) with a line segment. (See
Figure 1.3 for a graph of the resulting approximation to y (x) .) We know that
at the end nodes the temperature is specified: y (x0) = yleft and y (xn+1) =
yright. By examining the process at each interior node, we can obtain the
following linear equation for each interior node index i = 1, 2, . . . , n involving
a constant k called the conductivity of the material. A derivation of these
equations is given in Section 1.5, following two related project descriptions:

k
−yi−1 + 2yi − yi+1

h2 = f (xi)

or

−yi−1 + 2yi − yi+1 =
h2

k
f (xi) . (1.2)

Example 1.3. Suppose we have a rod of material of conductivity k = 1 and
situated on the x-axis, for 0 ≤ x ≤ 1. Suppose further that the rod is laterally
insulated, but has a known internal heat source and that both the left and
right ends of the rod are held at 0 degrees Fahrenheit. What are the steady-
state equations approximately for this problem?

Solution. Follow the notation of the discussion preceding this example. Notice
that in this case xi = ih. Remember that y0 and yn+1 are known to be 0, so
the terms y0 and yn+1 disappear. Thus we have from equation (1.2) that there
are n equations in the unknowns yi, i = 1, 2, . . . , n.

It is reasonable to expect that the smaller h is, the more accurately yi

will approximate y(xi). This is indeed the case. But consider what we are
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confronted with when we take n = 5, i.e., h = 1/(5 + 1) = 1/6, which is
hardly a small value of h. The system of five equations in five unknowns
becomes

2y1 −y2 = f (1/6) /36
−y1 +2y2 −y3 = f (2/6) /36

−y2 +2y3 −y4 = f (3/6) /36
−y3 +2y4 −y5 = f (4/6) /36

−y4 +2y5 = f (5/6) /36.

This problem is already about as large as we might want to work by hand,
if not larger. The basic ideas of solving systems like this are the same as in
Examples 1.1 and 1.2. For very small h, say h = .01 and hence n = 99, we
clearly would need some help from a computer or calculator. ��
Leontief Input–Output Models
Here is a simple model of an open economy consisting of three sectors that
supply each other and consumers. Suppose the three sectors are (E)nergy,
(M)aterials, and (S)ervices and suppose that the demands of a sector are
proportional to its output. This is reasonable; if, for example, the materials
sector doubled its output, one would expect its needs for energy, material, and
services to likewise double. We require that the system be in equilibrium in the
sense that total output of the sector E should equal the amounts consumed
by all sectors and consumers.

Example 1.4. Given the following input–output table of demand constants
of proportionality and consumer (D)emand (a fixed quantity) for the output
of each sector, express the equilibrium of the system as a system of equations.

Consumed by
E M S D

E
Produced by M

S

0.2 0.3 0.1 2
0.1 0.3 0.2 1
0.4 0.2 0.1 3

Solution. Let x, y, z be the total outputs of the sectors E, M, and S respec-
tively. Consider how we balance the total supply and demand for energy. The
total output (supply) is x units. The demands from the three sectors E, M, and
S are, according to the table data, 0.2x, 0.3y, and 0.1z, respectively. Further,
consumers demand 2 units of energy. In equation form,

x = 0.2x + 0.3y + 0.1z + 2.

Likewise we can balance the input/output of the sectors M and S to arrive at
a system of three equations in three unknowns:
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x = 0.2x + 0.3y + 0.1z + 2
y = 0.1x + 0.3y + 0.2z + 1
z = 0.4x + 0.2y + 0.1z + 3.

The questions that interest economists are whether this system has solutions,
and if so, what they are. ��

Next, consider the situation of a closed economic system, that is, one in
which everything produced by the sectors of the system is consumed by those
sectors.

Example 1.5. An administrative unit has four divisions serving the inter-
nal needs of the unit, labeled (A)ccounting, (M)aintenance, (S)upplies, and
(T)raining. Each unit produces the “commodity” its name suggests, and
charges the other divisions for its services. The input–output table of de-
mand rates is given by the following table. Express the equilibrium of this
system as a system of equations.

Consumed by
A M S T

A
Produced by M

S
T

0.2 0.3 0.3 0.2
0.1 0.2 0.2 0.1
0.4 0.2 0.2 0.2
0.4 0.1 0.3 0.2

Solution. Let x, y, z, w be the total outputs of the sectors A, M, S, and T,
respectively. The analysis proceeds along the lines of the previous example
and results in the system

x = 0.2x + 0.3y + 0.3z + 0.2w

y = 0.1x + 0.2y + 0.2z + 0.1w

z = 0.4x + 0.2y + 0.2z + 0.2w

w = 0.4x + 0.1y + 0.3z + 0.2w.

There is an obvious, but useless, solution to this system. One hopes for non-
trivial solutions that are meaningful in the sense that each variable takes on
a nonnegative value. ��
Note 1.1. In some of the exercises and projects in this text you will find
references to “your computer system.” This may be a scientific calculator that
is required for the course or a computer system for which you are given an
account. This textbook does not depend on any particular system, but certain
exercises require a computational device. The abbreviation “MAS” stands for
a matrix algebra system like Matlab, Scilab, or Octave. The shorthand “CAS”
stands for a computer algebra system like Maple, Mathematica, or MathCad.
A few of the projects are too large for most calculators and will require a CAS
or MAS.
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1.1 Exercises and Problems

Exercise 1. Solve the following systems algebraically.

(a)
x + 2y = 1
3x − y = −4 (b)

x − y + 2z = 6
2x − z = 3
y + 2z = 0

(c)
x − y = 1
2x − y = 3
x + y = 3

Exercise 2. Solve the following systems algebraically.

(a)
x − y = −3
x + y = 1 (b)

x − y + 2z = 0
x − z = −2

z = 0
(c)

x + 2y = 1
2x − y = 2
x + y = 2

Exercise 3. Determine whether each of the following systems of equations is
linear. If so, put it in standard format.

(a)
x + 2 = y + z
3x − y = 4 (b)

xy + 2 = 1
2x − 6 = y

(c)
x + 2y = −2y

2x = y
2 = x + y

Exercise 4. Determine whether each of the following systems of equations is
linear. If so, put it in standard format.

(a)
x + 2 = 1
x + 3 = y2 (b)

x + 2z = y
3x − y = y

(c)
x + y = −3y

2x = xy

Exercise 5. Express the following systems of equations in the notation of the
definition of linear systems by specifying the numbers m, n, aij , and bi.

(a)
x1 − 2x2 + x3 = 2

x2 = 1
−x1 + x3 = 1

(b)
x1 − 3x2 = 1

x2 = 5

Exercise 6. Express the following systems of equations in the notation of the
definition of linear systems by specifying the numbers m, n, aij , and bi.

(a)
x1 − x2 = 1
2x1 − x2 = 3
x2 + x1 = 3

(b)
−2x1 + x3 = 1

x2 − x3 = 5

Exercise 7. Write out the linear system that results from Example 1.3 if we
take n = 4 and f (x) = 3y (x).

Exercise 8. Write out the linear system that results from Example 1.5 if we
take n = 3 and f (x) = xy (x) + x2.

Exercise 9. Suppose that in the input–output model of Example 1.4 each pro-
ducer charges a unit price for its commodity, say p1, p2, p3, and that the EMS
columns of the table represent the fraction of each producer commodity needed
by the consumer to produce one unit of its own commodity. Derive equations
for prices that achieve equilibrium, that is, equations that say that the price
received for a unit item equals the cost of producing it.
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Exercise 10. Suppose that in the input–output model of Example 1.5 each
producer charges a unit price for its commodity, say p1, p2, p3, p4 and that the
columns of the table represent fraction of each producer commodity needed by
the consumer to produce one unit of its own commodity. Derive equilibrium
equations for these prices.

Problem 11. Use a symbolic calculator or CAS to solve the systems of Exam-
ples 1.4 and 1.5. Comment on your solutions. Are they sensible?

Problem 12. A polynomial y = a0 + a1x + a2x
2 is required to interpolate a

function f(x) at x = 1, 2, 3, where f(1) = 1, f(2) = 1, and f(3) = 2. Express
these three conditions as a linear system of three equations in the unknowns
a0, a1, a2. What kind of general system would result from interpolating f (x)
with a polynomial at points x = 1, 2, . . . , n where f (x) is known?

*Problem 13. The topology of a certain network is indicated by the following
graph, where five vertices (labeled vj) represent locations of hardware units
that receive and transmit data along connection edges (labeled ej) to other
units in the direction of the arrows. Suppose the system is in a steady state
and that the data flow along each edge ej is the nonnegative quantity xj . The
single law that these flows must obey is this: net flow in equals net flow out at
each of the five vertices (like Kirchhoff’s first law in electrical circuits). Write
out a system of linear equations satisfied by variables x1, x2, x3, x4, x5, x6, x7.

v3

v2

v4

e2

e1v1

e6

e7

e3

e4

e5

Problem 14. Use your calculator, CAS, or MAS to solve the system of Exam-
ple 1.3 with conductivity k = 1 and internal heat source f(x) = x and graph
the approximate solution by connecting the nodes (xj , yj) as in Figure 1.3.

1.2 Notation and a Review of Numbers

The Language of Sets

The language of sets pervades all of mathematics. It provides a convenient
shorthand for expressing mathematical statements. Loosely speaking, a set
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can be defined as a collection of objects, called the members of the set. This
definition will suffice for us. We use some shorthand to indicate certain re-
lationships between sets and elements. Usually, sets will be designated by
uppercase letters such as A, B, etc., and elements will be designated by low-
ercase letters such as a, b, etc. As usual, set A is a subset of set B if every
element of A is an element of B, and a proper subset if it is a subset but not
equal to B. Two sets A and B are said to be equal if they have exactly the
same elements. Some shorthand:

∅ denotes the empty set, i.e., the set with no members.
a ∈ A means “a is a member of the set A.”
A = B means “the set A is equal to the set B.”Set Symbols
A ⊆ B means “A is a subset of B.”
A ⊂ B means “A is a proper subset of B.”

There are two ways in which we may define a set: we may list its elements,
such as in the definition A = {0, 1, 2, 3}, or specify them by rule such as in
the definition A = {x | x is an integer and 0 ≤ x ≤ 3}. (Read this as “A is
the set of x such that x is an integer and 0 ≤ x ≤ 3.”) With this notation we
can give formal definitions of set intersections and unions:

Definition 1.3. Let A and B be sets. Then the intersection of A and B is
defined to be the set A∩B = {x | x ∈ A or x ∈ B}. The union of A and B isSet Union and

Intersection the set A ∪ B = {x | x ∈ A or x ∈ B} (inclusive or, which means that x ∈ A
or x ∈ B or both.) The difference of A and B is the set A − B = {x | x ∈ A
and x 
∈ B}.

Example 1.6. Let A = {0, 1, 3} and B = {0, 1, 2, 4}. Then

A ∪ ∅ = A,

A ∩ ∅ = ∅,

A ∪ B = {0, 1, 2, 3, 4},

A ∩ B = {0, 1},

A − B = {3}.

About Numbers

One could spend a whole course fully developing the properties of number
systems. We won’t do that, of course, but we will review some of the basic sets
of numbers, and assume that the reader is familiar with properties of numbers
we have not mentioned here. At the start of it all is the kind of numbers that
everyone knows something about: the natural or counting numbers. This is
the setNatural

Numbers N = {1, 2, . . .} .

One could view most subsequent expansions of the concept of number as
a matter of rising to the challenge of solving new equations. For example, we
cannot solve the equation
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x + m = n, m, n ∈ N,

for the unknown x without introducing subtraction and extending the notion
of natural number that of integer. The set of integers is denoted by Integers

Z = {0,±1,±2, . . .} .

Next, we cannot solve the equation

ax = b, a, b ∈ Z,

for the unknown x without introducing division and extending the notion of
integer to that of rational number. The set of rationals is denoted by Rational

Numbers
Q = {a/b | a, b ∈ Z and b 
= 0} .

Rational-number arithmetic has some characteristics that distinguish it from
integer arithmetic. The main difference is that nonzero rational numbers have
multiplicative inverses: the multiplicative inverse of a/b is b/a. Such a number
system is called a field of numbers. In a nutshell, a field of numbers is a system
of objects, called numbers, together with operations of addition, subtraction,
multiplication, and division that satisfy the usual arithmetic laws; in partic-
ular, it must be possible to subtract any number from any other and divide
any number by a nonzero number to obtain another such number. The asso-
ciative, commutative, identity, and inverse laws must hold for each of addition
and multiplication; and the distributive law must hold for multiplication over
addition. The rationals form a field of numbers; the integers don’t since divi-
sion by nonzero integers is not always possible if we restrict our numbers to
integers.

The jump from rational to real numbers cannot be entirely explained by
algebra, although algebra offers some insight as to why the number system
still needs to be extended. An equation like

x2 = 2

does not have a rational solution, since
√

2 is irrational. (Story has it that
this is lethal knowledge, in that followers of a Pythagorean cult claim that the
gods threw overboard from a ship one of their followers who was unfortunate
enough to discover that fact.) There is also the problem of numbers like π and
the mathematical constant e which do not satisfy any polynomial equation.
The heart of the problem is that if we consider only rationals on a number
line, there are many “holes” that are filled by numbers like π and

√
2. Filling

in these holes leads us to the set R of real numbers, which are in one-to-one Real Numbers
correspondence with the points on a number line. We won’t give an exact
definition of the set of real numbers. Recall that every real number admits
a (possibly infinite) decimal representation, such as 1/3 = 0.333 . . . or π =
3.14159 . . . . This provides us with a loose definition: real numbers are numbers
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that can be expressed by a decimal representation, i.e., limits of finite decimal
expansions.

There is one more problem to overcome. How do we solve a system like

x2 + 1 = 0

over the reals? The answer is we can’t: if x is real, then x2 ≥ 0, so x2 +1 > 0.
We need to extend our number system one more time, and this leads to the
set C of complex numbers. We define i to be a quantity such that i2 = −1 andComplex

Numbers
C = {a + bi | a, b ∈ R } .

r

r

��
��
��
��

��

a

θ

−θ

−b

b

x

y

z = a − bi = reiθ

z = a + bi = reiθ

Fig. 1.4. Standard and polar coordinates in the complex plane.

If the complex number z = a+ bi is given, then we say that the form a+ bi
is the standard form of z. In this case the real part of z is 
 (z) = a and theStandard

Form imaginary part is defined as �(z) = b. (Notice that the imaginary part of z is
a real number: it is the real coefficient of i.) Two complex numbers are equal
precisely when they have the same real part and the same imaginary part.
All of this could be put on a more formal basis by initially defining complex
numbers to be ordered pairs of real numbers. We will not do so, but the fact
that complex numbers behave like ordered pairs of real numbers leads to an
important geometrical insight: complex numbers can be identified with points
in the plane. Instead of an x- and y-axis, one lays out a real and an imaginaryReal and

Imaginary
Parts

axis (which are still usually labeled with x and y) and plots complex numbers
a + bi as in Figure 1.4. This results in the so-called complex plane.

Arithmetic in C is carried out using the usual laws of arithmetic for R

and the algebraic identity i2 = −1 to reduce the result to standard form. InAbsolute
Value addition, there are several more useful ideas about complex numbers that we

will need. The length, or absolute value, of a complex number z = a + bi is
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defined as the nonnegative real number |z| =
√

a2 + b2, which is exactly the
length of z viewed as a plane vector. The complex conjugate of z is defined
as z = a − bi (see Figure 1.4). Thus we have the following laws of complex
arithmetic:

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i

a + bi = a − bi
|a + bi| =

√
a2 + b2

Laws of
Complex
Arithmetic

In particular, notice that complex addition is exactly like the vector ad-
dition of plane vectors, that is, it is coordinatewise. Complex multiplication
does not admit such a simple interpretation.

Example 1.7. Let z1 = 2 + 4i and z2 = 1 − 3i. Compute z1 − 3z2.

Solution. We have that

z1 − 3z2 = (2 + 4i) − 3(1 − 3i) = 2 + 4i − 3 + 9i = −1 + 13i. �

Here are some easily checked and very useful facts about absolute value
and complex conjugation:

|z1z2| = |z1| |z2|
|z1 + z2| ≤ |z1| + |z2|

|z|2 = zz
z1 + z2 = z1 + z2
z1z2 = z1 z2

z1
z2

= z1z2
|z2|2

Laws of
Conjugation
and Absolute
Value

Example 1.8. Let z1 = 2 + 4i and z2 = 1 − 3i. Verify that |z1z2| = |z1| |z2|.
Solution. First calculate that z1 z2 = (2 + 4i) (1 − 3i) = (2 + 12) + (4 − 6) i,
so that |z1 z2| =

√
142 + (−2)2 =

√
200, while |z1| =

√
22 + 42 =

√
20 and

|z2| =
√

12 + (−3)2 =
√

10. It follows that |z1z2| =
√

10
√

20 = |z1| |z2|. ��
Example 1.9. Verify that the product of conjugates is the conjugate of the
product.

Solution. This is just the last fact in the preceding list. Let z1 = x1 +iy1 and
z2 = x2 + iy2 be in standard form, so that z1 = x1 − iy1 and z2 = x2 − iy2.
We calculate

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1),

so that
z1z2 = (x1x2 − y1y2) − i(x1y2 + x2y1).
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Also,

z1 z2 = (x1 − iy1)(x2 − iy2) = (x1x2 − y1y2) − i(x1y2 − x2y1) = z1z2. �

The complex number z = i solves the equation z2 + 1 = 0 (no surprise
here: it was invented expressly for that purpose). The big surprise is that
once we have the complex numbers in hand, we have a number system so
complete that we can solve any polynomial equation in it. We won’t offer a
proof of this fact ; it’s very nontrivial. Suffice it to say that nineteenth-century
mathematicians considered this fact so fundamental that they dubbed it the
“Fundamental Theorem of Algebra,” a terminology we adopt.

Theorem 1.1. Let p(z) = anzn +an−1z
n−1 + · · ·+a1z +a0 be a nonconstantFundamental

Theorem of
Algebra

polynomial in the variable z with complex coefficients a0, . . . , an. Then the
polynomial equation p(z) = 0 has a solution in the field C of complex numbers.

Note that the fundamental theorem doesn’t tell us how to find a root of a
polynomial, only that it can be done. As a matter of fact, there are no general
formulas for the roots of a polynomial of degree greater than four, which
means that we have to resort to numerical approximations in most practical
cases.

In vector space theory the numbers in use are sometimes called scalars,
and we will use this term. Unless otherwise stated or suggested by the presence
of i, the field of scalars in which we do arithmetic is assumed to be the field of
real numbers. However, we shall see later, when we study eigensystems, that
even if we are interested only in real scalars, complex numbers have a way of
turning up quite naturally.

Let’s do a few more examples of complex-number manipulation.

Example 1.10. Solve the linear equation (1 − 2i) z = (2 + 4i) for the complex
variable z. Also compute the complex conjugate and absolute value of the
solution.

Solution. The solution requires that we put the complex number z = (2 +
4i)/(1 − 2i) in standard form. Proceed as follows: multiply both numerator
and denominator by (1 − 2i) = 1 + 2i to obtain that

z =
2 + 4i
1 − 2i

=
(2 + 4i)(1 + 2i)
(1 − 2i)(1 + 2i)

=
2 − 8 + (4 + 4)i

1 + 4
=

−6
5

+
8
5
i.

Next we see that

z =
−6
5

+
8
5
i = −6

5
− 8

5
i

and

|z| =
∣∣∣∣15(−6 + 8i)

∣∣∣∣ =
1
5

|(−6 + 8i)| =
1
5

√
(−6)2 + 82 =

10
5

= 2. �
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Practical Complex Arithmetic

We conclude this section with a discussion of the more advanced aspects of
complex arithmetic. This material will not be needed until Chapter 4. Recall
from basic algebra the so-called roots theorem: the linear polynomial z−a is a
factor of a polynomial f(z) = a0 +a1z + · · ·+anzn if and only if a is a root of
the polynomial, i.e., f(a) = 0. If we team this fact up with the Fundamental
Theorem of Algebra, we see an interesting fact about factoring polynomials
over C: every polynomial can be completely factored into a product of linear
polynomials of the form z − a times a constant. The numbers a that occur
are exactly the roots of f(z). Of course, these roots could be repeated roots,
as in the case of f(z) = 3z2 − 6z + 3 = 3(z − 1)2. But how can we use the
Fundamental Theorem of Algebra in a practical way to find the roots of a
polynomial? Unfortunately, the usual proofs of the Fundamental Theorem of
Algebra don’t offer a clue, because they are nonconstructive, i.e., they prove
that solutions must exist, but do not show how to explicitly construct such a
solution. Usually, we have to resort to numerical methods to get approximate
solutions, such as the Newton’s method used in calculus. For now, we will
settle on a few ad hoc methods for solving some important special cases.

First-degree equations offer little difficulty: the solution to az = b is
z = b/a, as usual. There is one detail to attend to: what complex number
is represented by the expression b/a? We saw how to handle this by the trick
of “rationalizing” the denominator in Example 1.10.

Quadratic equations are also simple enough: use the quadratic formula,
which says that the solutions to az2 + bz + c = 0 are given by Quadratic

formula

z =
−b ± √

b2 − 4ac

2a
.

One little catch: what does the square root of a complex number mean?
What we are really asking is this: how do we solve the equation z2 = d for
z, where d is a complex number? Let’s try for a little more: how do we solve
zn = d for all possible solutions z, where d is a given complex number? In
a few cases, such an equation is quite easy to solve. We know, for example,
that z = ±i are solutions to z2 = −1, so these are all the solutions. Similarly,
one can check by hand that ±1,±i are all solutions to z4 = 1. Consequently,
z4−1 = (z−1)(z+1)(z− i)(z+i). Roots of the equation zn = 1 are sometimes
called the nth roots of unity. Thus the 4th roots of unity are ±1 and ±i. But
what about something like z3 = 1 + i?

The key to answering this question is another form of a complex number
z = a+ bi. In reference to Figure 1.4 we can write z = r(cos θ + i sin θ) = reiθ,
where θ is a real number, r is a nonnegative real, and eiθ is defined by the
following expression, which is called Euler’s formula:

Definition 1.4. eiθ = cos θ + i sin θ. Polar form
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Notice that |eiθ| =
√

cos2 θ + sin2 θ = 1, so that |reiθ| = |r||eiθ| = r, provided
r is nonnegative. The expression reiθ with r = |z| and the angle θ measured
counterclockwise in radians is called the polar form of z. The number θ is
sometimes called an argument of z. It is important to notice that θ is not
unique. If the angle θ0 works for the complex number z, then so does θ =
θ0 + 2πk, for any integer k, since sin θ and cos θ are periodic of period 2π.
It follows that a complex number may have more than one polar form. For
example, i = eiπ/2 = ei5π/2 (here r = 1). In fact, the most general polar
expression for i is i = ei(π/2+2kπ), where k is an arbitrary integer.

Example 1.11. Find the possible polar forms of 1 + i.

Solution. Draw a picture of the num-
ber 1 + i as in Figure 1.5. We see that the
angle θ0 = π/4 works fine as a measure of
the angle from the positive x-axis to the ra-
dial line from the origin to z. Moreover, the
absolute value of z is

√
1 + 1 =

√
2. Hence,

a polar form for z is z =
√

2eiπ/4. However,
we can adjust the angle θ0 by any multi-
ple of 2π, a full rotation, and get a polar
form for z. So the most general polar form
for z is z =

√
2ei(π/4+2kπ), where k is any

integer. �

x
0 1

1 + i

√
2

π/4

y

1

Fig. 1.5: Polar form of 1 + i.

As the notation suggests, polar forms obey the laws of exponents. A simple
application of the laws for the sine and cosine of a sum of angles shows that
for angles θ and ψ we have the identity

ei(θ+ψ) = eiθeiψ.

By using this formula n times, we obtain that einθ =
(
eiθ

)n, which can also
be expressed as de Moivre’s Formula:

(cos θ + i sin θ)n = cos nθ + i sinnθ.

Now for solving zn = d: First, find the general polar form of d, say d =
aei(θ0+2kπ), where θ0 is the so-called principal angle for d, i.e., 0 ≤ θ0 < 2π,
and a = |d|. Next, write z = reiθ, so that the equation to be solved becomes

rneinθ = aei(θ0+2kπ).

Taking absolute values of both sides yields that rn = a, whence we obtain the
unique value of r = n

√
a = n

√|d|. What about θ? The most general form for
nθ is
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nθ = θ0 + 2kπ.

Hence we obtain that
θ =

θ0

n
+

2kπ

n
.

Notice that the values of ei2kπ/n start repeating themselves as k passes a
multiple of n, since ei2π = e0 = 1. Therefore, one gets exactly n distinct
values for eiθ, namely

θ =
θ0

n
+

2kπ

n
, k = 0, . . . , n − 1.

These points are equally spaced around the unit circle in the complex plane,
starting with the point eiθ0 . Thus we have obtained n distinct solutions to the
equation zn = d, namely

z = a1/nei(θ0/n+2kπ/n), k = 0, . . . , n − 1, where d = aeiθ0

General
solution to
zn = d

Example 1.12. Solve the equation z3 = 1 + i for the unknown z.

Solution. The solution goes as follows: We have seen that 1 + i has a polar
form

1 + i =
√

2eiπ/4.

Then according to the previous formula, the three solutions to our cubic are

z = (
√

2)1/3ei(π/4+2kπ)/3 = 21/6ei(1+8k)π/12, k = 0, 1, 2.

See Figure 1.6 for a graph of these complex roots. ��

��
��
��
��

����

��
��
��
��

−1

−1 1

1

21/6

21/6eiπ/12

21/2eiπ/4

y

x

21/6ei9π/12

21/6ei17π/12

Fig. 1.6. Roots of z3 = 1 + i.
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We conclude with a little practice with square roots and the quadratic
formula. In regard to square roots, notice that the expression w =

√
d is

ambiguous. With a positive real number d this means the positive root of
the equation w2 = d. But when d is complex (or even negative), it no longer
makes sense to talk about “positive” and “negative” roots of w2 = d. In this
case we simply interpret

√
d to be one of the roots of w2 = d.

Example 1.13. Compute
√−4 and

√
i.

Solution. Observe that −4 = 4 · (−1). It is reasonable to expect the laws of
exponents to continue to hold, so we should have (−4)1/2 = 41/2 · (−1)1/2.
Now we know that i2 = −1, so we can take i = (−1)1/2 and obtain that√−4 = (−4)1/2 = 2i. Let’s check it: (2i)2 = 4i2 = −4.

We have to be a bit more careful with
√

i. We’ll just borrow the idea of
the formula for solving zn = d. First, put i in polar form as i = 1 · eiπ/2. Now
raise each side to the 1/2 power to obtain

√
i = i1/2 = 11/2 · (eiπ/2)1/2

= 1 · eiπ/4 = cos(π/4) + i sin(π/4)

=
1√
2
(1 + i).

A quick check confirms that ((1 + i)/
√

2)2 = 2i/2 = i. ��
Example 1.14. Solve the equation z2 + z + 1 = 0.

Solution. According to the quadratic formula, the answer is

z =
−1 ± √

12 − 4
2

= −1 ± i
√

3
2

. �

Example 1.15. Solve z2 + z + 1 + i = 0 and factor this polynomial.

Solution. This time we obtain from the quadratic formula that

z =
−1 ± √

1 − 4(1 + i)
2

=
−1 ± √−(3 + 4i)

2
.

What is interesting about this problem is that we don’t know the polar angle
θ for z = −(3 + 4i). Fortunately, we don’t have to. We know that sin θ =
−4/5 and cos θ = −3/5. We also have the standard half angle formulas from
trigonometry to help us:

cos2 θ/2 =
1 + cos θ

2
=

1
5

and sin2 θ/2 =
1 − cos θ

2
=

4
5
.

Since θ is in the third quadrant of the complex plane, θ/2 is in the second, so
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cos θ/2 =
−1√

5
and sin θ/2 =

2√
5
.

Now notice that | − (3 + 4i)| = 5. It follows that a square root of −(3 + 4i) is
given by

s =
√

5
(−1√

5
+

2√
5
i
)

= −1 + 2i.

Check that s2 = −(3 + 4i), so the two roots to our quadratic equation are
given by

z =
−1 ± (−1 + 2i)

2
= −1 + i, −i.

In particular, we see that z2 + z + 1 + i = (z + 1 − i)(z + i). ��

1.2 Exercises and Problems

In the following exercises, z is a complex number, and answers should be
expressed in standard form if possible.

Exercise 1. Determine the following sets, given that A =
{
x |x ∈ R and x2 < 3

}
and B = {x |x ∈ Z and x > −1}:
(a) A ∩ B (b) B − A (c) Z − B (d) N ∪ B (e) R ∩ A

Exercise 2. Given that C = {x |x ∈ Z and x2 > 4} and D = {x |x ∈
Z and x > −1}, determine the following sets:
(a) C ∪ D (b) D − C (c) D ∩ ∅ (d) R ∪ D

Exercise 3. Put the following complex numbers into polar form and sketch
them in the complex plane:
(a) −i (b) 1 + i (c) −1 + i

√
3 (d) 1 (e) 2 − 2i (f) 2i (g) π

Exercise 4. Put the following complex numbers into polar form and sketch
them in the complex plane:
(a) 3 + i (b) i (c) 1 + i

√
3 (d) −1 (e) 3 − i (f) −π (g) eπ

Exercise 5. Calculate the following:

(a) (4 + 2i) − (3 − 6i) (b) (2 + 4i) (3 − i) (c)
2 + i
2 − i

(d)
1 − 2i
1 + 2i

(e) 7 (6 − i)

Exercise 6. Calculate the following:
(a) |2 + 4i| (b) −7i2 + 6i3 (c) (3 + 4i) (7 − 6i) (d) i (1 − i)

Exercise 7. Solve the following systems for the unknown z:

(a) (2 + i)z = 4 − 2i (b) z4 = −16 (c)
z + 1

z
= 2 (d) (z + 1)(z2 + 1) = 0
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Exercise 8. Solve the equations for the unknown z:
(a) (2 + i)z = 1 (b) −iz = 2z + 5 (c) �(z) = 2
(z) + 1 (d) z = z

Exercise 9. Find the polar and standard form of the complex numbers:

(a)
1

1 − i
(b) −2eiπ/3 (c) i

(
i +

√
3
)

(d) −i/2 (e) ieπ/4

Exercise 10. Find the polar and standard form of the complex numbers:
(a) (2 + 4i) (3 − i) (b) (2 + 4i) (3 − i) (c) 1/i (d) −1 + i (e) ieπ/4

Exercise 11. Find all solutions to the following equations:
(a) z2 + z + 3 = 0 (b) z2 − 1 = iz (c) z2 − 2z + i = 0 (d) z2 + 4 = 0

Exercise 12. Find the solutions to the following equations:
(a) z3 = 1 (b) z3 = −8 (c) (z − 1)3 = −1 (d) z4 + z2 + 1 = 0

Exercise 13. Describe and sketch the set of complex numbers z such that
(a) |z| = 2 (b) |z + 1| = |z − 1| (c) |z − 2| < 1
Hint: It’s easier to work with absolute value squared.

Exercise 14. What is the set of complex numbers z such that
(a) |z + 1| = 2 (b) |z + 3| = |z − 1| (c) |z − 2| > 2

Sketch these sets in the complex plane.

Exercise 15. Let z1 = 2 + 4i and z2 = 1 − 3i. Verify for this z1 and z2 that
z1 + z2 = z1 + z2.

Exercise 16. Let z1 = 2 + 3i and z2 = 2 − 3i. Verify for this z1 and z2 that
z1z2 = z1 z2.

Exercise 17. Find the roots of the polynomial p(z) = z2 − 2z + 2 and use this
to factor the polynomial. Verify the factorization by expanding it.

Exercise 18. Show that 1 + i, 1 − i, and 2 are roots of the polynomial p(z) =
z3 − 4z2 + 6z − 4 and use this to factor the polynomial.

Problem 19. Write out the values of ik in standard form for integers k =
−1, 0, 1, 2, 3, 4 and deduce a formula for ik consistent with these values.

Problem 20. Verify that for any two complex numbers, the sum of the conju-
gates is the conjugate of the sum.

*Problem 21. Use the notation of Example 1.9 to show that |z1z2| = |z1| |z2|.
Problem 22. Use the definitions of exponentials along with the sum of angles
formulas for sin(θ+ψ) and cos(θ+ψ) to verify the law of addition of exponents:
ei(θ+ψ) = eiθeiψ.

Problem 23. Use a computer or calculator to find all roots to the polynomial
equation z5 + z +1 = 0. How many roots (counting multiplicities) should this
equation have? How many of these roots can you find with your system?

*Problem 24. Show that if w is a root of the polynomial p (z), that is, p (w) = 0,
where p (z) has real coefficients, then w is also a root of p (z).
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1.3 Gaussian Elimination: Basic Ideas

We return now to the main theme of this chapter, which is the systematic
solution of linear systems, as defined in equation (1.1) of Section 1.1. The
principal methodology is the method of Gaussian elimination and its variants,
which we introduce by way of a few simple examples. The idea of this process is
to reduce a system of equations by certain legitimate and reversible algebraic
operations (called “elementary operations”) to a form in which we can easily
see what the solutions to the system are, if there are any. Specifically, we
want to get the system in a form where the first equation involves all the
variables, the second equation involve all but the first, and so forth. Then
it will be simple to solve for each variable one at a time, starting with the
last equation, which will involve only the last variable. In a nutshell, this is
Gaussian elimination.

One more matter that will have an effect on our description of solutions
to a linear system is that of the number system in use. As we noted earlier, it
is customary in linear algebra to refer to numbers as “scalars.” The two basic
choices of scalar fields are the real number system and the complex number
system. Unless complex numbers occur explicitly in a linear system, we will
assume that the scalars to be used in finding a solution come from the field of
real numbers. Such will be the case for most of the problems in this chapter.

An Example and Some Shorthand

Example 1.16. Solve the simple system

2x − y = 1
4x + 4y = 20.

(1.3)

Solution. First, let’s switch the equations to obtain

4x + 4y = 20
2x − y = 1.

(1.4)

Next, multiply the first equation by 1/4 to obtain

x + y = 5
2x − y = 1.

(1.5)

Now, multiply a copy of the first equation by −2 and add it to the second. We
can do this easily if we take care to combine like terms as we go. In particular,
the resulting x term in the new second equation will be −2x + 2x = 0, the y
term will be −2y − y = −3y, and the constant term on the right-hand side
will be −2 · 5 + 1 = −9. Thus we obtain

x + y = 5
0x − 3y = −9.

(1.6)
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This completes the first phase of Gaussian elimination, which is called “for-
ward solving.” Note that we have put the system in a form in which only the
first equation involves the first variable and only the first and second involve
the second variable. The second phase of Gaussian elimination is called “back
solving,” and it works like it sounds. Use the last equation to solve for the last
variable, then work backward, solving for the remaining variables in reverse
order. In our case, the second equation is used to solve for y simply by dividing
by −3 to obtain that

y =
−9
−3

= 3.

Now that we know what y is, we can use the first equation to solve for x, and
we obtain

x = 5 − y = 5 − 3 = 2. �
The preceding example may seem like too much work for such a simple

system. We could easily scratch out the solution in much less space. But what
if the system is larger, say 4 equations in 4 unknowns, or more? How do we
proceed then? It pays to have a systematic strategy and notation. We also
had an ulterior motive in the way we solved this system. All of the operations
we will ever need to solve a linear system were illustrated in the preceding
example: switching equations, multiplying equations by nonzero scalars, and
adding a multiple of one equation to another.

Before proceeding to another example, let’s work on the notation a bit.
Take a closer look at the system of equations (1.3). As long as we write
numbers down systematically, there is no need to write out all the equal signs
or plus signs. Isn’t every bit of information that we require contained in the
following table of numbers? [

2 −1 1
4 4 20

]
.

Of course, we have to remember that each row of numbers represents an equa-
tion, the first two columns of numbers are coefficients of x and y, respectively,
and the third column consists of terms on right-hand side. So we could em-
bellish the table with a few reminders in an extra top row:

x y = r.h.s.[
2 −1 1
4 4 20

]
With a little practice, we will find that the reminders are usually unnecessary,
so we dispense with them. Rectangular tables of numbers are very useful in
representing a system of equations. Such a table is one of the basic objects
studied in this text. As such, it warrants a formal definition.

Definition 1.5. A matrix is a rectangular array of numbers. If a matrix hasMatrices and
Vectors m rows and n columns, then the size of the matrix is said to be m × n. If the

matrix is 1 × n or m × 1, it is called a vector. If m = n, then it is called a
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square matrix of order n. Finally, the number that occurs in the ith row and
jth column is called the (i, j)th entry of the matrix.

The objects we have just defined are basic “quantities” of linear algebra and
matrix analysis, along with scalar quantities. Although every vector is itself
a matrix, we want to single vectors out when they are identified as such.
Therefore, we will follow a standard typographical convention: matrices are
usually designated by capital letters, while vectors are usually designated by
boldface lowercase letters. In a few cases these conventions are not followed,
but the meaning of the symbols should be clear from context.

We shall need to refer to parts of a matrix. As indicated above, the location
of each entry of a matrix is determined by the index of the row and column
it occupies.

The statement “A = [aij ]” means that A is a matrix whose (i, j)th entry
is denoted by aij . Generally, the size of A will be clear from context. If we
want to indicate that A is an m × n matrix, we write

A = [aij ]m,n .

Similarly, the statement “b = [bi]” means that b is a n-vector whose ith
entry is denoted by bi. In case the type of the vector (row or column) is not
clear from context, the default is a column vector. Many of the matrices we Order of

Square Matrixencounter will be square, that is, n×n. In this case we say that n is the order
of the matrix. Another term that we will use frequently is the following.

Definition 1.6. The leading entry of a row vector is the first nonzero element Leading Entry
of that vector. If all entries are zero, the vector has no leading entry.

The equations of (1.3) have several matrices associated with them. First is
the full matrix that describes the system, which we call the augmented matrix
of the system. In our previous example, this is the 2 × 3 matrix[

2 −1 1
4 4 20

]
.

Note, for example, that we would say that the (1, 1)th entry of this matrix is
2, which is also the leading entry of the first row, and the (2, 3)th entry is 20.
Next, there is the submatrix consisting of coefficients of the variables. This
is called the coefficient matrix of the system, and in our case it is the 2 × 2
matrix [

2 −1
4 4

]
.

Finally, there is the single column matrix of right-hand-side constants, which
we call the right-hand-side vector. In our example, it is the 2 × 1 vector[

1
20

]
.
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How can we describe the matrices of the general linear system of equa-
tion (1.1)? First, there is the m × n coefficient matrixCoefficient

Matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

...
...

...
...

ai1 ai2 · · · aij · · · ain

...
...

...
...

am1 am2 · · · amj · · · amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that the way we subscripted entries of this matrix is really very descrip-
tive: the first index indicates the row position of the entry, and the second, the
column position of the entry. Next, there is the m × 1 right-hand-side vector
of constantsRight-Hand-

Side
Vector

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
bi

...
bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, stack this matrix and vector along side each other (we use a vertical
bar below to separate the two symbols) to obtain the m × (n + 1) augmented
matrixAugmented

Matrix

Ã = [A | b] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1j · · · a1n b1
a21 a22 · · · a2j · · · a2n b2
...

...
...

...
...

ai1 ai2 · · · aij · · · ain bi

...
...

...
...

...
am1 am2 · · · amj · · · amn bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Elementary Row Operations

Here is more notation that we will find extremely handy in the sequel. This
notation is related to the operations that we performed on the preceding
example. Now that we have the matrix notation, we could just as well perform
these operations on each row of the augmented matrix, since a row corresponds
to an equation in the original system. Three types of operations were used.
We shall catalog these and give them names, so that we can document our
work in solving a system of equations in a concise way. Here are the three
elementary operations we shall use, described in terms of their action on rows
of a matrix; an entirely equivalent description applies to the equations of the
linear system whose augmented matrix is the matrix below.
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• Eij : This is shorthand for the elementary operation of switching the ith
and jth rows of the matrix. For instance, in Example 1.16 we moved from
equation (1.3) to equation (1.4) by using the elementary operation E12.

• Ei(c): This is shorthand for the elementary operation of multiplying the ith Notation for
Elementary
Operations

row by the nonzero constant c. For instance, we moved from equation (1.4)
to (1.5) by using the elementary operation E1(1/4).

• Eij(d): This is shorthand for the elementary operation of adding d times
the jth row to the ith row. (Read the symbols from right to left to get the
right order.) For instance, we moved from equation (1.5) to equation (1.6)
by using the elementary operation E21(−2).

Now let’s put it all together. The whole forward-solving phase of Example 1.16
could be described concisely with the notation we have developed:[

2 −1 1
4 4 20

]−−→
E12

[
4 4 20
2 −1 1

]−−−−−−→
E1(1/4)

[
1 1 5
2 −1 1

]−−−−−−→
E21(−2)

[
1 1 5
0 −3 −9

]
.

This is a big improvement over our first description of the solution. There is
still the job of back solving, which is the second phase of Gaussian elimination.
When doing hand calculations, we’re right back to writing out a bunch of extra
symbols again, which is exactly what we set out to avoid by using matrix
notation.

Gauss–Jordan Elimination

Here’s a better way to do the second phase by hand: stick with the augmented
matrix. Starting with the last nonzero row, convert the leading entry (this
means the first nonzero entry in the row) to a 1 by an elementary operation,
and then use elementary operations to convert all entries above this 1 entry to
0’s. Now work backward, row by row, up to the first row. At this point we can
read off the solution to the system. Let’s see how it works with Example 1.16.
Here are the details using our shorthand for elementary operations:[

1 1 5
0 −3 −9

]−−−−−−−→
E2(−1/3)

[
1 1 5
0 1 3

]−−−−−−→
E12(−1)

[
1 0 2
0 1 3

]
.

All we have to do is remember the function of each column in order to read off
the answer from this last matrix. The underlying system that is represented
is

1 · x + 0 · y = 2
0 · x + 1 · y = 3.

This is, of course, the answer we found earlier: x = 2, y = 3.
The method of combining forward and back solving into elementary op-

erations on the augmented matrix has a name: it is called Gauss–Jordan
elimination, and it is the method of choice for solving many linear systems.
Let’s see how it works on an example from Section 1.1.
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Example 1.17. Solve the following system by Gauss–Jordan elimination:

x + y + z = 4
2x + 2y + 5z = 11
4x + 6y + 8z = 24

Solution. First form the augmented matrix of the system, the 3 × 4 matrix⎡⎣ 1 1 1 4
2 2 5 11
4 6 8 24

⎤⎦ .

Now forward solve:⎡⎣1 1 1 4
2 2 5 11
4 6 8 24

⎤⎦ −−−−−−→
E21(−2)

⎡⎣ 1 1 1 4
0 0 3 3
4 6 8 24

⎤⎦−−−−−−→
E31(−4)

⎡⎣1 1 1 4
0 0 3 3
0 2 4 8

⎤⎦−−→
E23

⎡⎣1 1 1 4
0 2 4 8
0 0 3 3

⎤⎦ .

Notice, by the way, that the row switch of the third step is essential. Otherwise,
we cannot use the second equation to solve for the second variable, y. Next
back solve: ⎡⎣ 1 1 1 4

0 2 4 8
0 0 3 3

⎤⎦−−−−−→
E3(1/3)

⎡⎣ 1 1 1 4
0 2 4 8
0 0 1 1

⎤⎦−−−−−→
E23(−4)

⎡⎣1 1 1 4
0 2 0 4
0 0 1 1

⎤⎦
−−−−−→
E13(−1)

⎡⎣ 1 1 0 3
0 2 0 4
0 0 1 1

⎤⎦−−−−−→
E2(1/2)

⎡⎣ 1 1 0 3
0 1 0 2
0 0 1 1

⎤⎦−−−−−→
E12(−1)

⎡⎣1 0 0 1
0 1 0 2
0 0 1 1

⎤⎦ .

At this point we read off the solution to the system: x = 1, y = 2, z = 1. ��

Systems with Nonunique Solutions

Next, we consider an example that will pose a new kind of difficulty, namely,
that of infinitely many solutions. Here is some handy terminology. An entryPivots
of a matrix used to zero out entries above or below it by means of elementary
row operations is called a pivot.

The entries that we use in Gaussian or Gauss–Jordan elimination for piv-
ots are always leading entries in the row that they occupy. For the sake of
emphasis, in the next few examples we will put a circle around the pivot
entries as they occur.

Example 1.18. Solve for the variables x, y, and z in the system

x+ y+ z = 2
2x+ 2y+ 4z = 8

z = 2.

.
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Solution. Here the augmented matrix of the system is⎡⎣ 1 1 1 2
2 2 4 8
0 0 1 2

⎤⎦ .

Now proceed to use Gaussian elimination on the matrix:⎡⎣ 1 1 1 2
2 2 4 8
0 0 1 2

⎤⎦−−−−−→
E21(−2)

⎡⎣ 1 1 1 2
0 0 2 4
0 0 1 2

⎤⎦
What do we do next? Neither the second nor the third row corresponds to
equations that involve the variable y. Switching the second and third equations
won’t help, either. Here is the point of view that we adopt in applying Gaussian
elimination to this system: The first equation has already been “used up” and
is reserved for eventually solving for x. We now restrict our attention to the
“unused” second and third equations. Perform the following operations to do
Gauss–Jordan elimination on the system:⎡⎢⎣ 1 1 1 2

0 0 2 4
0 0 1 2

⎤⎥⎦−−−−−−→
E2(1/2)

⎡⎢⎣ 1 1 1 2

0 0 1 2
0 0 1 2

⎤⎥⎦
−−−−−−→
E32(−1)

⎡⎢⎣ 1 1 1 2

0 0 1 2
0 0 0 0

⎤⎥⎦−−−−−−→
E12(−1)

⎡⎢⎣ 1 1 0 0

0 0 1 2
0 0 0 0

⎤⎥⎦ .

How do we interpret this result? We take the point of view that the first row
represents an equation to be used in solving for x since the leading entry of the
row is in the column of coefficients of x. Similarly, the second row represents
an equation to be used in solving for z, since the leading entry of that row is in
the column of coefficients of z. What about y? Notice that the third equation
represented by this matrix is simply 0 = 0, which carries no information. The
point is that there is not enough information in the system to solve for the
variable y, even though we started with three distinct equations. Somehow,
they contained redundant information. Therefore, we take the point of view Free and

Bound
Variables

that y is not to be solved for; it is a free variable in the sense that we can assign
it any value whatsoever and obtain a legitimate solution to the system. On
the other hand, the variables x and z are bound in the sense that they will be
solved for in terms of constants and free variables. The equations represented
by the last matrix above are

x + y = 0
z = 2
0 = 0.
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Use the first equation to solve for x and the second to solve for z to obtain
the general form of a solution to the system:

x = −y

z = 2
y is free. �

In the preceding example y can take on any scalar value. For example,
x = 0, z = 2, y = 0 is a solution to the original system (check this). Likewise,
x = −5, z = 2, y = 5 is a solution to the system. Clearly, we have an infinite
number of solutions to the system, thanks to the appearance of free variables.
Up to this point, the linear systems we have considered had unique solutions,
so every variable was solved for, and hence bound. Another point to note,
incidentally, is that the scalar field we choose to work with has an effect on
our answer. The default is that y is allowed to take on any real value from R.
But if, for some reason, we choose to work with the complex numbers as our
scalars, then y would be allowed to take on any complex value from C. In this
case, another solution to the system would be given by x = −3 − i, z = 2,
y = 3 + i, for example.

To summarize, once we have completed Gauss–Jordan elimination on an
augmented matrix, we can immediately spot the free and bound variables of
the system: the column of a bound variable will have a pivot in it, while the
column of a free variable will not. Another example will illustrate the point.

Example 1.19. Suppose the augmented matrix of a linear system of three
equations involving variables x, y, z, w becomes, after applying suitable ele-
mentary row operations, ⎡⎣ 1 2 0 −1 2

0 0 1 3 0
0 0 0 0 0

⎤⎦ .

Describe the general solution to the system.

Solution. We solve this problem by observing that the first and third columns
have pivots in them, which the second and fourth do not. The fifth column
represents the right-hand side. Put our little reminder labels in the matrix,
and we obtain ⎡⎢⎢⎢⎣

x y z w rhs
1 2 0 −1 2

0 0 1 3 0
0 0 0 0 0

⎤⎥⎥⎥⎦ .

Hence, x and z are bound variables, while y and w are free. The two nontrivial
equations that are represented by this matrix are

x + 2y − w = 2
z + 3w = 0.
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Use the first to solve for x and the second to solve for z to obtain the
general solution

x = 2 − 2y + w

z = −3w

y, w are free. �

We have seen so far that a linear system may have exactly one solution or
infinitely many. Actually, there is only one more possibility, which is illustrated
by the following example.

Example 1.20. Solve the linear system

x + y = 1
2x + y = 2

3x + 2y = 5.

Solution. We extract the augmented matrix and proceed with Gauss–Jordan
elimination. This time we’ll save a little space by writing more than one ele-
mentary operation between matrices. It is understood that they are done in
order, starting with the top one. This is a very efficient way of doing hand
calculations and minimizing the amount of rewriting of matrices as we go:⎡⎣ 1 1 1

2 1 2
3 2 5

⎤⎦ −−−−−−→
E21(−2)
E31(−3)

⎡⎣ 1 1 1
0 −1 0
0 −1 2

⎤⎦−−−−−→
E32(−1)

⎡⎣1 1 1
0 −1 0
0 0 2

⎤⎦ .

Stop everything! We aren’t done with Gauss–Jordan elimination yet, since
we’ve only done the forward-solving portion. But something strange is going
on here. Notice that the third row of the last matrix above stands for the
equation 0x+0y = 2, i.e., 0 = 2. This is impossible. What this matrix is telling
us is that the original system has no solution, i.e., it is inconsistent. A system
can be identified as inconsistent as soon as one encounters a leading entry in
the column of constant terms. For this always means that an equation of the
form 0 = nonzero constant has been formed from the system by legitimate
algebraic operations. Thus, one need proceed no further. The system has no
solutions. ��
Definition 1.7. A system of equations is consistent if it has at least one Consistent

Systemssolution. Otherwise it is called inconsistent.

Our last example is one involving complex numbers explicitly.

Example 1.21. Solve the following system of equations:

x + y = 4
(−1 + i)x + y = −1.
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Solution. The procedure is the same, no matter what the field of scalars is.
Of course, the arithmetic is a bit harder. Gauss–Jordan elimination yields[

1 1 4
−1 + i 1 −1

]−−−−−−−→
E21(1 − i)

[
1 1 4
0 2 − i 3 − 4i

]
−−−−−−−−−→
E2(1/(2 − i))

[
1 1 4
0 1 2 − i

]−−−−−→
E12(−1)

[
1 0 2 + i
0 1 2 − i

]
.

Here we used the fact that

3 − 4i
2 − i

=
(3 − 4i)(2 + i)
(2 − i)(2 + i)

=
10 − 5i

5
= 2 − i.

Thus, we see that the system has the unique solution

x = 2 + i
y = 2 − i. �

1.3 Exercises and Problems

Exercise 1. For each of the following matrices identify the size and the (i, j)th
entry for all relevant indices i and j:

(a)
[

1 −1 2 1
−2 2 1 1

]
(b)

⎡⎣ 0 1
2 −1
0 2

⎤⎦ (c)
[−2

3

]
(d) [1 + i]

Exercise 2. For each of the following matrices identify the size and the (i, j)th
entry for all relevant indices i and j:

(a)
[

1 −1 0
0 2 0

]
(b)

[
1 0
0 2

]
(c)

[
2 1 3

]
(d)

[
3
i

]
Exercise 3. Exhibit the augmented matrix of each system and give its size.
Then use Gaussian elimination and back solving to find the general solution
to the systems.

(a) 2x + 3y = 7 (b) 3x1 + 6x2 − x3 = −4 (c) x1 + x2 = −2
x + 2y = −2 −2x1 − 4x2 + x3 = 3 5x1 + 2x2 = 5

x3 = 1 x1 + 2x2 = −7

Exercise 4. Use Gaussian elimination and back solving to find the general so-
lution to the systems.

(a) x + 3y = 7 (b) 2x1 + 6x2 = 2 (c) x1 + x2 = −2
x + 2y = 1 −2x1 + x2 = 1 5x1 + 2x2 = 5

x1 + 2x2 = −7
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Exercise 5. Use Gauss–Jordan elimination to find the general solution to the
systems. Show the elementary operations you use.

(a) x1 + x2 = 1 (b) x3 + x4 = 1 (c) x1 + x2 + 3x3 = 2
2x1 + 2x2 + x3 = 1 −2x1 − 4x2 + x3 = 0 2x1 + 5x2 + 9x3 = 1

2x1 + 2x2 = 2 3x1 + 6x2 + x4 = 0 x1 + 2x2 + 4x3 = 1

(d) x1 − x2 = i (e) x1 + x2 + x3 − x4 = 0
2x1 + x2 = 3 + i −2x1 − 4x2 + x3 = 0

x1 + 6x2 − x3 + x4 = 0

Exercise 6. Use Gauss–Jordan elimination to find the general solution to the
systems.

(a) x1 + x2 + x4 = 1 (b) x3 + x4 = 0 (c) x1 + x2 + 3x3 = 2
2x1 + 2x2 + x3 + x4 = 1 −2x1 − 4x2 + x3 = 0 2x1 + 5x2 + 9x3 = 1

2x1 + 2x2 + 2x4 = 2 −x3 + x4 = 0 x1 + 2x2 + 4x3 = 1

(d) 2x1 + x2 + 7x3 = −1
3x1 + 2x2 − 2x4 = 1

2x1 + 2x2 + 2x3 − 2x4 = 4

(e) x1 + x2 + x3 = 2
2x1 + x2 = i

2x1 + 2x2 + ix3 = 4

Exercise 7. Each of the following matrices results from applying Gauss–Jordan
elimination to the augmented matrix of a linear system. In each case, write
out the general solution to the system or indicate that it is inconsistent.

(a)

⎡⎣1 0 0 4
0 0 1 −2
0 0 0 0

⎤⎦ (b)

⎡⎣ 1 0 0 1
0 1 0 2
0 0 1 2

⎤⎦ (c)

⎡⎣1 0 0 1
0 1 0 2
0 0 0 1

⎤⎦ (d)

⎡⎣1 0 0 1
0 0 0 0
0 0 0 0

⎤⎦
Exercise 8. Write out the general solution to the system with the following
augmented matrix or indicate that it is inconsistent.

(a)

⎡⎣1 0 0 0
0 0 1 2
0 0 0 0

⎤⎦ (b)

⎡⎣ 1 0 0 −1
0 0 0 0
0 0 1 2

⎤⎦ (c)

⎡⎣1 0 0 1
0 1 0 −2
1 0 0 1

⎤⎦ (d)

⎡⎣1 0 0 1
0 0 0 2
0 0 0 0

⎤⎦
Exercise 9. Use any method to find the solution to each of the following sys-
tems. Here, b1, b2 are constants and x1, x2 are the unknowns.

(a) x1 − x2 = b1 (b) x1 − x2 = b1 (c) ix1 − x2 = b1
x1 + 2x2 = b2 2x1 − 2x2 = b2 2x1 + 2x2 = b2

Exercise 10. Apply the operations used in Exercise 5 (a), (c) in the same order

to the right-hand-side vector b =

⎡⎣ b1
b2
b3

⎤⎦. What does this tell you about each

system’s consistency?
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Exercise 11. Find the general solution for the system of equations in Exercise 9
of Section 1. Is there a solution to this problem with nonnegative entries?

Exercise 12. Find the general solution for the system of equations in Exer-
cise 10 of Section 1. Is there meaningful solution to this problem?

Exercise 13. Solve the three systems

(a) x1 − x2 = 1 (b) x1 − x2 = 0 (c) x1 − x2 = 2
x1 − 2x2 = 0 x1 − 2x2 = 1 x1 − 2x2 = 3

by using a single augmented matrix that has all three right-hand sides in it.

Exercise 14. Set up a single augmented matrix for the three systems

(a) x1 + x2 = 1 (b) x1 + x2 = 0 (c) x1 + x2 = 2
x2 + 2x3 = 0 x2 + 2x3 = 0 x2 + 2x3 = 3
2x2 + x3 = 0 2x2 + x3 = 0 2x2 + x3 = 3

and use it to solve the three systems simultaneously.

Exercise 15. Show that the following nonlinear systems become linear if we
view the unknowns as 1/x, 1/y, and 1/z rather than x, y, and z. Use this to
find the solution sets of the nonlinear systems. (You must also account for the
possibilities that one of x, y, z is zero.)

(a) 2x − y + 3xy = 0
4x + 2y − xy = 0

(b) yz + 3xz − xy = 0
yz + 2xy = 0

Exercise 16. Show that the following nonlinear systems become linear if we
make the right choice of unknowns from x, y, z, 1/x, 1/y, and 1/z rather
than x, y, and z. Use this to find the solution sets of these nonlinear systems.

(a) 3x − xy = 1
4x − xy = 2

(b) 2xy = 1
y + z − 3yz = 0

xz − 2z = −1

*Problem 17. Suppose that the input–output table of Example 1.5 is modified
so that all entries are nonnegative, but the sum of the entries in each row is
smaller than 1. Show that the only solution to the problem with nonnegative
values is the solution with all variables equal to zero.

Problem 18. Use a CAS, MAS, or other software to solve the system of Exam-
ple 1.3 with f(x) = sin (πx) . Graph this approximation along with the true
solution, which is y (x) = sin (πx) /π2.
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*Problem 19. Suppose the function f(x) is to be interpolated at three inter-
polating points x0, x1, x2 by a quadratic polynomial p(x) = a+ bx+ cx2, that
is, f(xi) = p(xi), i = 0, 1, 2. As in Exercise 12 of Section 1.1, this leads to a
system of three linear equations in the three unknowns a, b, c.
(a) Solve these equations in the case that f(x) = ex, 0 ≤ x ≤ 1, and
xj = 0, 1

2 , 1.
(b) Plot the error function f(x) − p(x) and estimate the largest value of the
error function (in absolute value).
(c) Use trial and error to find three points x1, x2, x3 on the interval 0 ≤ x ≤ 1
for which the resulting interpolating quadratic gives an error function with a
largest absolute error that is less than half of that found in part (b).

Problem 20. Solve the network system of Problem 13 of Section 1 and exhibit
all physically meaningful solutions.

Problem 21. Suppose one wants to solve the integral equation
∫ 1
0 estx(s)ds =

1 + t2 for the unknown function x(t). If we only want to approximate the
values of x(t) at x = 0, 1

2 , 1, derive and solve a system of equations for these
three values by evaluating the integral equation at t = 0, 1

2 , 1, and using
the trapezoidal method to approximate the integrals with the values of x(s),
s = 0, 1

2 , 1.

1.4 Gaussian Elimination: General Procedure

The preceding section introduced Gaussian elimination and Gauss–Jordan
elimination at a practical level. In this section we will see why these methods
work and what they really mean in matrix terms. Then we will find conditions
of a very general nature under which a linear system has either no, one, or
infinitely many solutions. A key idea that comes out of this section is the
notion of the rank of a matrix.

Equivalent Systems

The first question to be considered is this: how is it that Gaussian elimination
or Gauss–Jordan elimination gives us every solution of the system we begin
with and only solutions to that system? To see that linear systems are special,
consider the following nonlinear system of equations.

Example 1.22. Solve for the real roots of the system

x + y = 2√
x = y.



34 1 LINEAR SYSTEMS OF EQUATIONS

Solution. Let’s follow the Gauss–Jordan elimination philosophy of using one
equation to solve for one unknown. The first equation enables us to solve for y
to get y = 2−x. Substitute this into the second equation to obtain

√
x = 2−x.

Then square both sides to obtain x = (2 − x)2, or

0 = x2 − 5x + 4 = (x − 1)(x − 4).

Now x = 1 leads to y = 1, a solution to the system. But x = 4 gives y = −2,
which is not a solution to the system since

√
x cannot be negative. ��

What went wrong in this example is that the squaring step, which does
not correspond to any elementary operation, introduced extraneous solutions
to the system. Is Gaussian or Gauss–Jordan elimination safe from this kind
of difficulty? The answer lies in examining the kinds of operations we perform
with these methods. First, we need some terminology. Up to this point we
have always described a solution to a linear system in terms of a list of equa-
tions. For general problems this is a bit of a nuisance. Since we are using the
matrix/vector notation, we may as well go all the way and use it to concisely
describe solutions as well. We will use column vectors to define solutions as
follows.

Definition 1.8. A solution vector for the general linear system given by equa-Solution
Vector tion (1.1) is a vector

x =

⎡⎢⎢⎢⎣
s1
s2
...

sn

⎤⎥⎥⎥⎦
such that the resulting equations are satisfied for these choices of the variables.
The set of all such solutions is called the solution set of the linear system, and
two linear systems are said to be equivalent if they have the same solution
set.

We will want to make frequent reference to vectors without having to display
them in the text. Of course, for 1 × n row vectors this is no problem. ToTuple

Convention save space in referring to column vectors, we shall adopt the convention that
a column vector will also be denoted by a tuple with the same entries. The
n-tuple (x1, x2, . . . , xn) is a shorthand for the n × 1 column vector x with

entries x1, x2, . . . , xn. For example, we can write (1, 3, 2) in place of

⎡⎣1
3
2

⎤⎦.

Example 1.23. Describe the solution sets of all the examples worked out in
the previous section.

Solution. Here is the solution set to Example 1.16. It is the singleton set

S =
{[

2
3

]}
= {(2, 3)} .
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The solution set for Example 1.17 is S = {(1, 2, 1)}; remember that we can
designate column vectors by tuples if we wish.

For Example 1.18 the solution set requires some fancier set notation, since
it is an infinite set. Here it is:

S =

⎧⎨⎩
⎡⎣−y

y
2

⎤⎦ | y ∈ R

⎫⎬⎭ = {(−y, y, 2) | y ∈ R} .

Example 1.20 is an inconsistent system, so has no solutions. Hence its solution
set is S = ∅. Finally, the solution set for Example 1.21 is the singleton set
S = {(2 + i, 2 − i)}. ��

A key question about Gaussian elimination and equivalent systems: what
happens to a system if we change it by performing one elementary row opera-
tion? After all, Gaussian and Gauss–Jordan elimination amount to a sequence
of elementary row operations applied to the augmented matrix of a given lin-
ear system. Answer: nothing happens to the solution set!

Theorem 1.2. Suppose a linear system has augmented matrix Ã upon which
an elementary row operation is applied to yield a new augmented matrix
B̃ corresponding to a new linear system. Then these two linear systems are
equivalent, i.e., have the same solution set.

Proof. If we replace the variables in the system corresponding to Ã by the
values of a solution, the resulting equations will be satisfied. Now perform
the elementary operation in question on this system of equations to obtain
that the equations for the system corresponding to the augmented matrix B̃
are also satisfied. Thus, every solution to the old system is also a solution to
the new system resulting from performing an elementary operation. For the
converse, it is sufficient for us to show that the old system can be obtained
from the new one by another elementary operation. In other words, we need
to show that the effect of any elementary operation can be undone by another
elementary operation. This will show that every solution to the new system
is also a solution to the old system. If E represents an elementary operation,
then the operation that undoes it could reasonably be designated as E−1,
since the effect of the inverse operation is rather like canceling a number by
multiplying by its inverse. Let us examine each elementary operation in turn.

• Eij : The elementary operation of switching the ith and jth rows of the
matrix. Notice that the effect of this operation is undone by performing
the same operation, Eij , again. This switches the rows back. Symbolically
we write E−1

ij = Eij .
• Ei(c): The elementary operation of multiplying the ith row by the nonzero

constant c. This elementary operation is undone by performing the ele- Inverse
Elementary
Operations

mentary operation Ei(1/c); in other words, by multiplying the ith row by
the nonzero constant 1/c. We write Ei(c)−1 = Ei(1/c).
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• Eij(d): The elementary operation of adding d times the jth row to the ith
row. This operation is undone by adding −d times the jth row to the ith
row. We write Eij(d)−1 = Eij(−d).

Thus, in all cases the effects of an elementary operation can be undone by
applying another elementary operation of the same type, which is what we
wanted to show. ��

The inverse notation we used here doesn’t do much for us yet. In Chapter
2 this notation will take on an entirely new and richer meaning.

The Reduced Row Echelon Form

Theorem 1.2 tells us that the methods of Gaussian and Gauss–Jordan elim-
ination do not alter the solution set we are interested in finding. Our next
objective is to describe the end result of these methods in a precise way. That
is, we want to give a careful definition of the form of the matrix that these
methods lead us to, starting with the augmented matrix of the original sys-
tem. Recall that the leading entry of a row is the first nonzero entry of that
row. (So a row of zeros has no leading entry.)

Definition 1.9. A matrix R is said to be in reduced row form if:Reduced Row
Form (1) The nonzero rows of R precede the zero rows.

(2) The column numbers of the leading entries of the nonzero rows, say rows
1, 2, . . . , r, form an increasing sequence of numbers c1 < c2 < · · · < cr.

The matrix R is said to be in reduced row echelon form if in addition to the
above:Reduced Row

Echelon Form (3) Each leading entry is a 1.
(4) Each leading entry has only zeros above it.

Example 1.24. Consider the following matrices (whose leading entries are
enclosed in a circle). Which are in reduced row form? Reduced row echelon
form?

(a)

[
1 2

0 3

]
(b)

[
1 2 0

0 0 3

]
(c)

[
0 0 0
1 0 0

]

(d)

⎡⎢⎣ 1 2 0

0 0 1
0 0 0

⎤⎥⎦ (e)

⎡⎢⎢⎣
1 0 0

0 0 1

0 1 0

⎤⎥⎥⎦
Solution. Checking through (1)–(2), we see that (a), (b), and (d) fulfill all the
conditions for reduced row matrices. But (c) fails, since a zero row precedes the
nonzero ones; matrix (e) fails to be in reduced row form because the column
numbers of the leading entries do not form an increasing sequence. Matrices
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(a) and (b) don’t satisfy (3), so matrix (d) is the only one that satisfies (3)–(4).
Hence, it is the only matrix in the list in reduced row echelon form. ��

We can now describe the goal of Gaussian elimination as follows: use ele-
mentary row operations to reduce the augmented matrix of a linear system to
reduced row form; then back solve the resulting system. On the other hand,
the goal of Gauss–Jordan elimination is to use elementary operations to re-
duce the augmented matrix of a linear system to reduced row echelon form.
From this form one can read off the solution(s) to the system.

Is it always possible to reduce a matrix to a reduced row form or row
echelon form? If so, to how many such forms? These are important questions.
If we take the matrix in question to be the augmented matrix of a linear
system, what we are really asking becomes, does Gaussian elimination always
work on a linear system? If so, does it lead us to answers that have the same
form? Notice how the last question was phrased. We know that the solution
set of a linear system is unaffected by elementary row operations. Therefore,
the solution sets we obtain will always be the same with either method, as
sets. But couldn’t the form that describes this set change? For instance, in
Example 1.18 we obtained a form for the general solution that involved one
free variable, y, and two bound variables x and z. Is it possible that by a
different sequence of elementary operations we could have reduced to a form
where there were two free variables and only one bound variable? This would
be a rather different form, even though it might lead to the same solution set.

Certainly, matrices can be transformed by elementary row operations to
different reduced row forms, as the following simple example shows:

A =
[

1 2 4
0 2 −1

]−−−−−→
E12(−1)

[
1 0 5
0 2 −1

]−−−−−→
E2(1/2)

[
1 0 5
0 1 −1/2

]
.

Every matrix of this example is already in reduced row form. The last matrix
is also in reduced row echelon form. Yet all three of these matrices can be
obtained from each other by elementary row operations. It is significant that
only one of the three matrices is in reduced row echelon form. As a matter
of fact, any matrix can be reduced by elementary row operations to one and
only one reduced row echelon form, which we can call the reduced row echelon
form of the given matrix. The example above shows that the matrix A has as
its reduced row echelon form the matrix E =

[ 1 0 5
0 1 −1/2

]
. Our assertions are

justified by the following fundamental theorem about matrices.

Theorem 1.3. Every matrix can be reduced by a sequence of elementary row Uniqueness of
Reduced Row
Echelon Form

operations to one and only one reduced row echelon form.

Proof. First we show that every m × n matrix A can be reduced to some
reduced row echelon form. Here is the algorithm we have been using: given
that the first s columns of A are in reduced row echelon form with r nonzero
rows and that r < m and s < n, find the smallest column number j such
that aij 
= 0 and i > r, j > s. If none is found, A is already in reduced row
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echelon form. Otherwise, interchange rows i and r+1, then use elementary row
operations to convert ar+1,j to 1 and to zero out the entries above and below
this one. Now set s = j and increment r by one. Continue this procedure until
r = m or s = n. This must occur at some point since both r and s increase
with each step, and when it occurs, the resulting matrix is in reduced row
echelon form.

Next, we prove uniqueness. Suppose that some matrix could be reduced
to two distinct reduced row echelon forms. We show this is impossible. If it
were possible, we could find such an m × n matrix Ã with the fewest possible
columns n; that is, the theorem is true for every matrix with fewer columns.
Then n > 1, since a single column matrix can be reduced to only one reduced
row echelon form, namely either the 0 column or a column with first entry
1 and the other entries 0. We are assuming that Ã can be reduced to two
different reduced row echelon forms, say R1 and R2, with R1 
= R2. Write
Ã = [A | b], so that we can think of Ã as the augmented matrix of a linear
system (1.1). Now for i = 1, 2 write each Ri as Ri = [Li | bi], where bi is the
last column of the m × n matrix Ri, and Li is the m × (n − 1) matrix formed
from the first n − 1 columns of Ri. Each Li satisfies the definition of reduced
row echelon form, since each Ri is in reduced row echelon form. Also, each Li

results from performing elementary row operations on the matrix A, which
has only n − 1 columns. By the minimum columns hypothesis, we have that
L1 = L2. There are two possibilities to consider.

Case 1: The last column bi of either Ri has a leading entry in it. Then
the system of equations represented by Ã is inconsistent. It follows that both
columns bi have a leading entry in them, which must be a 1 in the first row
whose portion in Li consists of zeros, and the entries above and below this
leading entry must be 0. Since L1 = L2, it follows that b1 = b2, and thus
R1 = R2, a contradiction. So this case can’t occur.

Case 2: Each bi has no leading entry in it. Then the system of equations
represented by Ã is consistent. Both augmented matrices have the same basic
and free variables since L1 = L2. Hence we obtain the same solution with ei-
ther augmented matrix by setting the free variables of the system equal to 0.
When we do so, the bound variables are uniquely determined: the first equa-
tion says that the first bound variable equals the first entry in the right-hand-
side vector since all other variables will either be zero or have zero coefficient
in the first equation of the system. Similarly, the second says that the second
bound variable equals the second entry in the right-hand-side vector, and so
forth. Whether we use R1 or R2 to solve the system, we obtain the same re-
sult, since we can manipulate one such solution into the other by elementary
row operations. Therefore, b1 = b2 and thus R1 = R2, a contradiction again.
Hence, there can be no counterexample to the theorem, which completes the
proof. ��

The following consequence of the preceding theorem is a fact that we will
find helpful in Chapter 2.
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Corollary 1.1. Let the matrix B be obtained from the matrix A by performing
a sequence of elementary row operations on A. Then B and A have the same
reduced row echelon form.

Proof. We can obtain the reduced row echelon form of B in the following
manner: First perform the elementary operations on B that undo the ones
originally performed on A to get B. The matrix A results from these opera-
tions. Now perform whatever elementary row operations are needed to reduce
A to its reduced row echelon form. Since B can be reduced to one and only
one reduced row echelon form, the reduced row echelon forms of A and B
coincide, which is what we wanted to show. ��

Rank and Nullity of a Matrix

Now that we have Theorem 1.3 in hand, we can introduce the notion of rank
of a matrix, for it says that A has exactly one reduced row echelon form.

Definition 1.10. The rank of a matrix A is the number of nonzero rows of Rank of
Matrixthe reduced row echelon form of A. This number is written as rank A.

There are other ways to describe the rank of a matrix. For example, rank can
also be defined as the number of nonzero rows in any reduced row form of
a matrix. One has to check that any two reduced row forms have the same
number of nonzero rows. Rank can also be defined as the number of columns of
the reduced row echelon form with leading entries in them, since each leading
entry of a reduced row echelon form occupies a unique column. We can count
up the other columns as well.

Definition 1.11. The nullity of a matrix A is the number of columns of the Nullity
reduced row echelon form of A that do not contain a leading entry. This
number is written as nullA.

In the case that A is the coefficient matrix of a linear system, we can interpret
the rank of A as the number of bound variables of the system and the nullity
of A as the number of free variables of the system. One has to be a little
careful about this idea of rank. Consider the following example.

Example 1.25. Find the rank and nullity of the matrix

A =

⎡⎣ 1 1 2
2 2 5
3 3 2

⎤⎦ .

Solution. We know that the rank is at most 3 by the definition of rank.
Elementary row operations give⎡⎣1 1 2

2 2 5
3 3 2

⎤⎦−−−−−−→
E21(−2)

⎡⎣ 1 1 2
0 0 1
3 3 2

⎤⎦−−−−−−→
E31(−3)

⎡⎣1 1 2
0 0 1
0 0 −4

⎤⎦−−−−−−→
E32(4)

E12(−2)

⎡⎣1 1 0
0 0 1
0 0 0

⎤⎦ .
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From the reduced row echelon form of A at the far right we see that the rank
of A is 2, that is, rankA = 2. Since only one column does not contain a pivot,
we see that the nullity of A is 1, that is, nullA = 1. ��

The point that the previous example makes is that one cannot determine
the rank of a matrix by counting nonzero rows of the original matrix.

Caution: Remember that the rank of A is the number of nonzero rows in one
of its reduced row forms, and not the number of nonzero rows of A itself.

The rank of a matrix is a nonnegative number, but it could be 0! This
happens if the matrix has only zero entries, so that it has no nonzero rows. In
this case, the nullity of the matrix is as large as possible, namely the number
of columns of the matrix. Here are some simple limits on the size of rank A
and nullA. We need a notation that occurs frequently throughout the text,
so we explain it first.

Definition 1.12. Given a list of real numbers a1, a2, . . . , am, the smallestMax and Min
number in the list is min{a1, a2, . . . , am}, and max{a1, a2, . . . , am} is the
largest number in the list.

Theorem 1.4. Let A be an m × n matrix. Then

(1) 0 ≤ rankA ≤ min{m, n}.
(2) rankA + nullA = n.

Proof. By definition, rankA is the number of nonzero rows of the reduced
row echelon form of A, which is itself an m×n matrix. There can be no more
leading entries than rows; hence rankA ≤ m. Also, each leading entry of a
matrix in reduced row echelon form is the unique nonzero entry in its column.
So there can be no more leading entries than columns n. Since rankA is less
than or equal to both m and n, it is less than or equal to their minimum,
which is the first inequality. The number of pivot columns is rankA and the
number of nonpivot columns is nullA. The sum of these numbers is n. ��

In words, item (1) of Theorem 1.4 says that the rank of a matrix cannot
exceed the number of rows or columns of the matrix. If the rank of a ma-Full Column

Rank trix equals its column number we say that the matrix has full column rank.
Similarly, a matrix has full row rank if its rank equals the row number of the
matrix. For example, matrix A of Example 1.25 is 3 × 3 of rank 2. Since this
rank is smaller than 3, A does not have full column or row rank. Here is an
application of the rank concept to systems.

Theorem 1.5. The general linear system 1.1 with m × n coefficient matrixConsistency in
Terms of

Rank
A, right-hand-side vector b, and augmented matrix Ã = [A | b] is consistent
if and only if rankA = rank Ã, in which case either

(1) rankA = n, in which case the system has a unique solution, or
(2) rankA < n, in which case the system has infinitely many solutions.
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Proof. We can reduce Ã to reduced row echelon form by first doing the el-
ementary operations that reduce the A part of the matrix to reduced row
echelon form, then attending to the last column. Hence, it is always the case
that rankA ≤ rank Ã. The only way to get strict inequality is to have a leading
entry in the last column, which means that some equation in the equivalent
system corresponding to the reduced augmented matrix is 0 = 1, which im-
plies that the system is inconsistent. On the other hand, we have already seen
(in the proof of Theorem 1.3, for example) that if the last column does not
contain a leading entry, then the system is consistent. This establishes the
first statement of the theorem.

Now suppose that rankA = rank Ã, so that the system is consistent. By
Theorem 1.4, rankA ≤ n, so that either rank A < n or rankA = n. The
number of variables of the system is n. Also, the number of leading entries
(equivalently, pivots) of the reduced row form of Ã, which is rankA, is equal
to the number of bound variables; the remaining n − rankA variables are the
free variables of the system. Thus, to say that rank A = n is to say that no
variables are free; that is, solving the system leads to a unique solution. And
to say that rankA < n is to say that there is at least one free variable, in
which case the system has infinitely many solutions. ��

Here is an example of how this theorem can be put to work. It confirms
our intuition that if a system does not have “enough” equations, then it can’t
have a unique solution.

Corollary 1.2. If a consistent linear system of equations has more unknowns
than equations, then the system has infinitely many solutions.

Proof. In the notation of the previous theorem, the hypothesis simply means
that m < n. But we know from Theorem 1.4 that rankA ≤ min{m, n}. Thus
rankA < n and the last part of Theorem 1.5 yields the desired result. ��

Of course, there is still the question of when a system is consistent. In
general, there isn’t an easy way to see when this is so outside of explicitly
solving the system. However, in special cases there is an easy answer. One
such important special case is given by the following definition.

Definition 1.13. The general linear system (1.1) with m×n coefficient matrix Homogeneous
SystemsA and right-hand-side vector b is said to be homogeneous if the entries of b

are all zero. Otherwise, the system is said to be inhomogeneous.

The nice feature of homogeneous systems is that they are always consistent!
In fact, it is easy to exhibit a specific solution to the system, namely, take the
value of all the variables to be zero. For obvious reasons this solution is called
the trivial solution to the system. Thus, the previous corollary implies that Trivial

Solutiona homogeneous linear system with fewer equations than unknowns must have
infinitely many solutions. Of course, if we want to find all the solutions, we will
have to do the work of Gauss–Jordan elimination. However, we acquire a small
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notational convenience in dealing with homogeneous systems. Notice that the
right-hand side of zeros is never changed by an elementary row operation. So
why bother writing out the augmented matrix of such a system? It suffices
to perform elementary operations on the coefficient matrix alone. In the end,
the right-hand side is still a column of zeros.

Example 1.26. Solve and describe the solution set of the homogeneous sys-
tem

x1 + x2 + x4 = 0
x1 + x2 + 2x3 = 0

x1 + x2 = 0.

Solution. In this case we perform only row operations on the coefficient ma-
trix to obtain⎡⎣1 1 0 1

1 1 2 0
1 1 0 0

⎤⎦ −−−−−−→
E21(−1)
E31(−1)

⎡⎣ 1 1 0 1
0 0 2 −1
0 0 0 −1

⎤⎦ −−−−−→
E2(1/2)
E3(−1)

⎡⎣1 1 0 1
0 0 1 −1/2
0 0 0 1

⎤⎦−−−−−−→
E23(1/2)
E13(−1)

⎡⎣1 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ .

One has to be a little careful here: the leading entry in the last column does
not indicate that the system is inconsistent, since we deleted the right-hand-
side column. Had we carried it along in the calculations above, we would have
obtained ⎡⎣ 1 1 0 0 0

0 0 1 0 0
0 0 0 1 0

⎤⎦ ,

which is the matrix of a consistent system. We see from the reduced row
echelon form of the coefficient matrix that x2 is free and the other variables
are bound. The general solution is

x1 = −x2

x3 = 0
x4 = 0
x2 is free.

Finally, the solution set S of this system can be described as

S = {(−x2, x2, 0, 0) | x2 ∈ R} . �

1.4 Exercises and Problems

Exercise 1. Circle leading entries and determine which of the following matrices
are in reduced row form or reduced row echelon form.

(a)

⎡⎣0 1
0 0
0 0

⎤⎦ (b)

⎡⎣ 1 0 0 1
0 1 0 2
0 0 0 1

⎤⎦ (c)
[

0 1 0 1
1 0 0 2

]
(d)

⎡⎣1 2 0
0 1 0
0 0 0

⎤⎦
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(e)
[

1 0 2
0 0 0

]
(f)

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (g)

⎡⎣1 0 0 4
0 0 0 0
0 0 1 2

⎤⎦ (h) [1 3]

Exercise 2. Circle leading entries and determine which of the following matri-
ces can be put into reduced row echelon form with at most one elementary
operation.

(a)

⎡⎣1 0 0 1
0 0 0 0
0 0 1 0

⎤⎦ (b)

⎡⎣ 1 0 0 1
0 1 0 2
0 0 1 1

⎤⎦ (c)
[

0 1 0 1
1 0 0 2

]

(d)
[

2 0 2
0 0 0

]
(e)

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ (f)

⎡⎣1
0
2

⎤⎦
Exercise 3. The rank of the following matrices can be determined by inspec-
tion. Inspect these matrices and specify their rank.

(a)

⎡⎣1 −1 0
0 1 1
0 0 2

⎤⎦ (b)

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ (c)

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦ (d)

⎡⎣3
1
1

⎤⎦ (e)
[

1 0
1 0

]

Exercise 4. Inspect these matrices and specify their rank without pencil and
paper calculation.

(a)

⎡⎣1 3 3
0 1 1
0 1 1

⎤⎦ (b)

⎡⎣ 0 0 0
0 2 0
0 2 0

⎤⎦ (c)

⎡⎣0 0 1 1
0 1 0 1
1 0 0 1

⎤⎦ (d)

⎡⎣0
0
0

⎤⎦
Exercise 5. Show that the elementary operations you use to find the reduced
row echelon form of the following matrices. Give the rank and nullity of each
matrix.

(a)

⎡⎣1 −1 2
1 3 4
2 2 6

⎤⎦ (b)

⎡⎣ 3 1 9 2
−3 0 6 −5

0 0 1 2

⎤⎦ (c)
[

0 1 0 1
2 0 0 2

]

(d)

⎡⎣2 4 2
4 9 3
2 3 3

⎤⎦ (e)
[

2 2 5 6
1 1 −2 2

]
(f)

⎡⎣2 1 1
1 2 1
1 1 2

⎤⎦
Exercise 6. Compute a reduced row form that can be reached in a minimum
number of steps and the reduced row echelon forms of the following matrices.
Given that the matrices are augmented matrices for a linear system, write out
the general solution to the system.

(a)
[

0 −1 2
0 3 4

]
(b)

⎡⎣ 3 0 0 2
−3 1 6 −5

3 0 1 1

⎤⎦ (c)
[

0 0 0 1
2 0 0 2

]

(d)

⎡⎣2 4 2
2 1 1
1 1 3

⎤⎦ (e)
[

2 2
3 3

]
(f)

⎡⎣2 2
1 2
1 1

⎤⎦
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Exercise 7. Find the rank of the augmented and coefficient matrix of the fol-
lowing linear systems and the solution sets to the following systems. Are these
systems equivalent?

(a) x1 + x2 + x3 − x4 = 2 (b) x3 + x4 = 0
2x1 + x2 − 2x4 = 1 −2x1 − 4x2 = 0

2x1 + 2x2 + 2x3 − 2x4 = 4 3x1 + 6x2 − x3 + x4 = 0

Exercise 8. Show that the following systems are equivalent and find a sequence
of elementary operations that transforms the augmented matrix of (a) into
that of (b).

(a) x1 + x2 + x3 − x4 = 2 (b) x1 + x2 + x3 − x4 = 2
2x1 + x2 − 2x4 = 1 4x1 + 3x2 + 2x3 − 4x4 = 5

2x1 + 2x2 + 2x3 − 2x4 = 4 7x1 + 6x2 + 5x3 − 7x4 = 11

Exercise 9. Find upper and lower bounds on the rank of the 4 × 3 matrix A,
given that some system with coefficient matrix A has infinitely many solutions.

Exercise 10. Find upper and lower bounds on the rank of matrix A, given that
A has four rows and some system of equations with coefficient matrix A has
a unique solution.

Exercise 11. For what values of c are the following systems inconsistent, with
unique solution or with infinitely many solutions?

(a) x2 + cx3 = 0 (b) x1 + 2x2 − x1 = c (c) cx1 + x2 + x3 = 2
x1 − cx2 = 1 x1 + 3x2 + x3 = 1 x1 + cx2 + x3 = 2

3x1 + 7x2 − x3 = 4 x1 + x2 + cx3 = 2

Exercise 12. Consider the system

ax + by = c

bx + cy = d

in the unknowns x, y, where a 
= 0. Use the reduced row echelon form to
determine conditions on the other constants such that the system has no,
one, or infinitely many solutions.

Exercise 13. Consider the system

x1 + 2x2 = a

x1 + x2 + x3 − x4 = b

2x3 + 2x4 = c

in the unknowns x1, x2, x3, x4. Solve this system by reducing the augmented
matrix to reduced row echelon form. This system will have solutions for any
right-hand side. Justify this fact in terms of rank.
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Exercise 14. Give a rank condition for a homogeneous system that is equivalent
to the system having a unique solution. Justify your answer.

Exercise 15. Fill in the blanks:

(a) If A is a 3 × 7 matrix then the rank of A is at most .
(b) Equivalent systems have the same .
(c) The inverse of the elementary operation E23 (5) is .
(d) The rank of a nonzero 3×3 matrix with all entries equal is .

Exercise 16. Fill in the blanks:

(a) If A is a 4×8 matrix, then the nullity of A is larger than .
(b) The rank of a nonzero 4 × 3 matrix with constant entries in each column

is .
(c) An example of a matrix with nullity 1 and rank 2 is .

(d) The size of the matrix
[

0 −1 2
0 3 4

]
is .

*Problem 17. Answer True/False and explain your answers:

(a) If a linear system is inconsistent, then the rank of the augmented matrix
exceeds the number of unknowns.

(b) Any homogeneous linear system is consistent.
(c) A system of 3 linear equations in 4 unknowns has infinitely many solutions.
(d) Every matrix can be reduced to only one matrix in reduced row form.
(e) Any homogeneous linear system with more equations than unknowns has

a nontrivial solution.

Problem 18. Show that a system of linear equations has a unique solution if
and only if every column, except the last one, of the reduced row echelon form
of the augmented matrix has a pivot entry in it.

Problem 19. Prove or disprove by example: if two linear systems are equivalent,
then they must have the same size augmented matrix.

*Problem 20. Use Theorem 1.3 to show that any two reduced row forms for a
matrix A must have the same number of nonzero rows.

Problem 21. Suppose that the matrix C can be written in the augmented form
C = [A |B], where the matrix B may have more than one column. Prove that
rankC ≤ rankA + rankB.
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1.5 *Computational Notes and Projects

Roundoff Errors

In many practical problems, calculations are not exact. There are several
reasons for this unfortunate fact. For one, scientific calculators are by their
very nature only finite-precision machines. That is, only a fixed number of
significant digits of the numbers we are calculating may be used in any given
calculation. For instance, verify this simple arithmetic fact on a calculator
or computational software such as Matlab (but excluding computer algebra
systems such as Derive, Maple, and Mathematica — since symbolic calculation
is the default on these systems, they will give the correct answer):((

2
3

+ 100
)

− 100
)

− 2
3

= 0.

In many cases this calculation will not yield 0. The problem is that if, for
example, a calculator uses 6-digit accuracy, then 2

3 is calculated as 0.666667,
which is really incorrect. Even if arithmetic calculations were exact, the data
that form the basis of our calculations are often derived from scientific mea-
surements that themselves will almost certainly be in error. Starting with
erroneous data and doing an exact calculation can be as bad as starting with
exact data and doing an inexact calculation. In fact, in a certain sense they
are equivalent to each other. Error resulting from truncating data for storage
or finite-precision arithmetic calculations is called roundoff error.Roundoff

Error We will not give an elaborate treatment of roundoff error. A thorough
analysis can be found in the Golub and Van Loan text [9] of the bibliography,
a text that is considered a standard reference work. The subject of this book,
numerical linear algebra, is a part of an entire field of applied mathematics
known as numerical analysis. The text [13] is an excellent introductory treat-
ment of this subject. We will consider this question: Could roundoff error be
a significant problem in Gaussian elimination? It isn’t at all clear that there
is a problem. After all, even in the above example, the final error is relatively
small. Is it possible that with all the arithmetic performed in Gaussian elimi-
nation the errors pile up and become large? The answer is yes. With the advent
of computers came a heightened interest in these questions. In the early 1950s
numerical analysts intensified efforts to determine whether Gaussian elimina-
tion can reliably solve larger linear systems. In fact, we don’t really have to
look at complicated examples to realize that there are potential difficulties.
Consider the following example.

Example 1.27. Let ε be a number so small that our calculator yields 1+ε = 1.
This equation appears a bit odd, but from the calculator’s point of view it may
be perfectly correct; if, for example, our calculator performs 6-digit decimal
arithmetic, then ε = 10−6 will do nicely. Notice that with such a calculator,
1 + 1/ε = (ε + 1)/ε = 1/ε. Now solve the linear system
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εx1 + x2 = 1
x1 − x2 = 0.

(1.7)

Solution. Let’s solve this system by Gauss–Jordan elimination with our cal-
culator to obtain[

ε 1 1
1 −1 0

]−−−−−−−→
E21

(
−1

ε

)[
ε 1 1
0 1

ε − 1
ε

]−−−→
E2(ε)

[
ε 1 1
0 1 1

]−−−−−→
E12(−1)

[
ε 0 0
0 1 1

]−−−−−→
E1

(
1
ε

)[
1 0 0
0 1 1

]
.

Thus we obtain the calculated solution x1 = 0, x2 = 1. This answer is spec-
tacularly bad! If ε = 10−6 as above, then the correct answer is

x1 = x2 =
1

1 + ε
= 0.99999909999990 . . . .

Our calculated answer is not even good to one digit. So we see that there can
be serious problems with Gaussian or Gauss–Jordan elimination on finite-
precision machines. ��

It turns out that information that would be significant for x1 in the first
equation is lost in the truncated arithmetic that says that 1+1/ε = 1/ε. There
is a fix for problems such as this, namely a technique called partial pivoting.
The idea is fairly simple: Do not choose the next available column entry for
a pivot. Rather, search down the column in question for the largest entry (in Pivoting

Strategiesabsolute value). Then switch rows, if necessary, and use this entry as a pivot.
For instance, in the preceding example, we would not pivot off the ε entry of
the first column. Since the entry of the second row, first column, is larger in
absolute value, we would switch rows and then do the usual Gaussian elim-
ination step. Here is what we would get (remember that with our calculator
1 + ε = 1):[

ε 1 1
1 −1 0

]−−→
E21

[
1 −1 0
ε 1 1

]−−−−−→
E21(−ε)

[
1 −1 0
0 1 1

]−−−−→
E12(1)

[
1 0 1
0 1 1

]
.

Now we get the quite acceptable answer x1 = x2 = 1.
But partial pivoting is not a panacea for numerical problems. In fact, it can

be easily defeated. Multiply the second equation by ε2, and we get a system for
which partial pivoting still picks the wrong pivot. Here the problem is a matter
of scale. It can be cured by dividing each row by the largest entry of the row
before beginning the Gaussian elimination process. This procedure is known
as row scaling. The combination of row scaling and partial pivoting overcomes
many of the numerical problems of Gaussian and Gauss–Jordan elimination
(but not all!). There is a more drastic procedure, known as complete pivoting.
In this procedure one searches all the unused rows (excluding the right-hand
sides) for the largest entry, then uses it as a pivot for Gaussian elimination.
The columns used in this procedure do not move in that left-to-right fashion we
are used to seeing in system solving. It can be shown rigorously that the error
of roundoff propagates in a predictable and controlled fashion with complete
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pivoting; in contrast, we do not really have a satisfactory explanation as to
why row scaling and partial pivoting work well. Yet in most cases they do
reasonably well. Since this combination involves much less calculation than
complete pivoting, it is the method of choice for many problems.

There are deeper reasons for numerical problems in solving some systems
than the one the preceding example illustrates. One difficulty has to do with
the “sensitivity” of the coefficient matrix to small changes. That is, in some
systems, small changes in the coefficient matrix lead to dramatic changes in
the exact answer. The practical effect of roundoff error can be shown to be
equivalent to introducing small changes in the coefficient matrix and obtaining
an exact answer to the perturbed (changed) system. There is no cure for these
difficulties, short of computing in higher precision. A classical example of this
type of problem, the Hilbert matrix, is discussed in one of the projects below.
We will attempt to quantify this “sensitivity” in Chapter 6.

Computational Efficiency of Gaussian Elimination

How much work is it to solve a linear system and how does the amount of
work grow with the dimensions of the system? The first thing we need is a unit
of work. In computer science one of the principal units of work in numerical
computation is a flop (floating point operation), namely a single +,−,×, orFlop
÷. For example, we say that the amount of work in computing e + π or e × π
is one flop, while the work in calculating e + 3 × π is two flops. The following
example is extremely useful.

Example 1.28. How many flops does it cost to add a multiple of one row to
another, as in Gaussian elimination, given that rows have n elements?

Solution. A little experimentation with an example or two shows that the
answer should be 2n. Here is a justification of that count. Say that row a is
to be multiplied by the scalar α, and added to the row b. Designate the row
a = [ai] and the row b = [bi]. We have n entries to worry about. Consider a
typical one, say the ith one. The ith entry of b, namely bi, will be replaced
by the quantity bi + αai. The amount of work in this calculation is two flops.
Since there are n entries to compute, the total work is 2n flops. ��

Our goal is to determine the expense of solving a system by Gauss–Jordan
elimination. For the sake of simplicity, let’s assume that the system under
consideration has n equations in n unknowns and the coefficient matrix has
rank n. This ensures that we will have a pivot in every row of the matrix. We
won’t count row exchanges either, since they don’t involve any flops. (This
may not be realistic on a fast computer, since memory fetches and stores may
not take significantly less time than a floating-point operation.) Now consider
the expense of clearing out the entries under the first pivot. A picture of the
augmented matrix looks something like this, where an × is an entry that may
not be 0 and an × is a nonzero pivot entry:
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⎡⎢⎢⎢⎢⎣
× × · · · ×
× × · · · ×
...

...
...

...
× × · · · ×

⎤⎥⎥⎥⎥⎦
−−−−−−→

n − 1
el. ops.

⎡⎢⎢⎢⎢⎢⎣
× × · · · ×
0 × · · · ×
...

...
...

...
0 × · · · ×

⎤⎥⎥⎥⎥⎥⎦ .

Each elementary operation will involve adding a multiple of the first row,
starting with the second entry, since we don’t need to do arithmetic in the
first column — we know what goes there — to the n − 1 subsequent rows.
By the preceding example, each of these elementary operations will cost 2n
flops. Add 1 flop for the cost of determining the multiplier to obtain 2n + 1.
So the total cost of zeroing out the first column is (n − 1)(2n + 1) flops. Now
examine the lower unfinished block in the above figure. Notice that it’s as
though we were starting over with the row and column dimensions reduced
by 1. Therefore, the total cost of the next phase is (n − 2)(2(n − 1) + 1) flops.
Continue in this fashion, and we obtain a count of

0 +
n∑

j=2

(j − 1)(2j + 1) =
n∑

j=1

(j − 1)(2j + 1) =
n∑

j=1

2j2 − j − 1

flops. Recall the identities for sums of consecutive integers and their squares:

n∑
j=1

j =
n(n + 1)

2
and

n∑
j=1

j2 =
n(n + 1)(2n + 1)

6
.

Thus we have a total flop count of

n∑
j=1

2j2 − 3j + 1 = 2
n(n + 1)(2n + 1)

6
− n(n + 1)

2
− n =

2n3

3
+

n2

2
− 7n

6
.

This is the cost of forward solving. Now let’s simplify our answer a bit more.
For large n we have that n3 is much larger than n or n2 (e.g., for n = 10
compare 1000 to 10 or 100). Hence, we ignore the lower-degree terms and arrive
at a simple approximation to the number of flops required to forward solve a
linear system of n equations in n unknowns using Gauss–Jordan elimination.
There remains the matter of back solving. We leave as an exercise to show that
the total work of back solving is quadratic in n. Therefore the “leading-order”
approximation that we found for forward solving remains unchanged. Hence
we have the following estimate of the complexity of Gaussian elimination.

Theorem 1.6. The number of flops required to solve a linear system of n
equations in n unknowns using Gaussian or Gauss–Jordan elimination without
row exchanges is approximately 2n3/3.

Thus, for example, the work of forward solving a system of 21 equations in 21
unknowns is approximately 2 · 213/3 = 6174 flops. Exact answer: 6374.
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Project Topics

In this section we give a few samples of project material. These projects
provide an opportunity to explore a subject in a greater depth than exercises
permit. Your instructor will define her/his own expectations for projects. Also,
the computing platform used for the projects will vary. We cannot discuss
every platform in this text, so we will give a few examples of implementation
notes that an instructor might supply.

About writing project/reports: Here are a few suggestions.

• Know your audience. Usually, you may assume that your report will be
read by your supervisors, who are technical people such as yourself. There-
fore, you should write a brief statement of the problem and discussion of
methodology. In practice, reports assume physical laws and assumptions
without further justification, but in real life you would be expected to offer
some explanation of physical principles used in your model.

• Structure your paper. Stream of consciousness doesn’t work here. Have in
mind a target length for your paper. Don’t clutter your work with long lists
of numbers and try to keep the length at a minimum rather than maximum.
Generally, a discourse should have three parts: beginning, middle, and end.
Roughly, a beginning should consist of introductory material. In the middle
you develop the ideas described or theses proposed in the introduction, and
in the end you summarize your work and tie up loose ends.

• Pay attention to appearance and neatness, but don’t be overly concerned
about your writing style. Remember that “simpler is better.” Prefer short
and straightforward sentences to convoluted ones. Use a vocabulary with
which you are comfortable. Use a spell-checker if one is available.

• Pay attention to format. A given project/report assignment may be sup-
plied with a report template by your instructor or carry explicit instruc-
tions about format, intended audience, etc. Read and follow these instruc-
tions carefully.

• Acknowledge your sources. Use every available resource, of course. In par-
ticular, we all know that the worldwide web is a gold mine of information
(and disinformation!). Utilize it and other resources fully, but give appro-
priate references and credits, just as you would with a textbook source.

Of course, rules about paper writing are not set in concrete. Also, a part can
be quite short; for example, an introduction might only be a paragraph or two.
Here is a sample skeleton for a report (perhaps rather more elaborate than
you need): 1. Introduction (title page, summary, and conclusions); 2. Main
sections (problem statement, assumptions, methodology, results, conclusions);
3. Appendices (such as mathematical analysis, graphs, possible extensions,
etc.), and References.
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Project: Heat Flow I
Problem Description: You are working for the firm Universal Dynamics on a
project that has a number of components. You have been assigned the anal-
ysis of a component that is similar to a laterally insulated rod. The problem:
part of the specs for the rod dictate that no point of the rod should stay at
temperatures above 60 degrees Celsius for a long period of time. You must de-
cide whether any of the materials listed below are acceptable for making the
rod and write a report on your findings. You may assume that the rod is of
unit length. Suppose further that internal heat sources come from a position-
dependent function f(x), 0 ≤ x ≤ 1, and that heat is also generated at each
point in amounts proportional to the temperature at the point. Also suppose
that the left and right ends of the rod are held at 0 and 50 degrees Celsius,
respectively. When sufficient time passes, the temperature of the rod at each
point will settle down to “steady-state” values, dependent only on position
x. These are the temperatures you are interested in. Refer to the discussion
in Section 1.1 for the details of the descriptive equations that result from
discretizing the problem into finitely many nodes. Here k is the thermal con-
ductivity of the rod, which is a property associated with the material used to
make the rod. For your problem take the source term to be f(x) = 200 cos(x2).
Here are the conductivity constants for the materials under consideration for
the rod. Which of these materials (if any) are acceptable?

Platinum: k = .17 Aluminum: k = .50
Pure iron: k = .19 Gold: k = .75

Zinc: k = .30 Silver: k = 1.00

Procedure: For the solution of the problem, formulate a discrete approxima-
tion to the BVP just as in Example 1.3. Choose an integer n and divide the in-
terval [0, 1] into n+1 equal subintervals with endpoints 0 = x0, x1, . . . , xn+1 =
1. Then the width of each subinterval is h = 1/(n + 1). Next let ui be your
approximation to u(xi) and proceed as in Example 1.3 . There results a linear
system of n equations in the n unknowns u1, u2, . . . , un. For this problem di-
vide the rod into 4 equally sized subintervals and take n = 3. Use the largest
ui as an estimate of the highest temperature at any point in the rod. Now
double the number of subintervals and see whether your values for u change
appreciably at a given value of x. If they do, you may want to repeat this
procedure until you obtain numbers that you judge to be satisfactory.

Implementation Notes (for users of Mathematica): Set up the coefficient
matrix A and right-hand side b for the system. Both the coefficient matrix and
the right-hand side can be set up using the Table command of Mathematica.
For b, the command 100* hˆ2*Table[Cos[(i h)ˆ 2,{i,n}]/k will generate b,
except for the last coordinate. Use the command b[[14]] = b[[14]] + 50 to
add u(1) to the right-hand side of the system and get the correct b. For A, the
command Table[Switch[i-j,1,-1,0,2,-1,-1, ,0],{i,n},{j,n}] will generate
a matrix of the desired form. (Use the Mathematica on-line help for all com-
mands you want to know more about.) For floating-point numbers, you want
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to simulate ordinary floating-point calculations on Mathematica. You will get
some symbolic expressions that you don’t want, e.g., for b. To turn b into
floating-point approximation, use the command b = N[b]. The N[ ] function
turns the symbolic values of b into numbers, with a precision of about 16
digits if no precision is specified. For solving linear systems use the command
u = LinearSolve[a,b], which will solve the system with coefficient matrix a
and right-hand side b, and store the result in u. About vectors: Mathemat-
ica does not distinguish between row vectors and column vectors unless you
insist on it. Hardcopy: You can get hardcopy from Mathematica. Be sure to
make a presentable solution for the project. You should describe the form of
the system you solved and summarize your results. This shouldn’t be a tome
(don’t simply print out a transcript of your session), nor should it be a list of
numbers.

Project: Heat Flow II
Problem Description: You are given a laterally insulated rod of a homogeneous
material whose conductivity properties are unknown. The rod is laid out on
the x-axis, 0 ≤ x ≤ 1. A current is run through the rod, which results in a heat
source of 10 units of heat (per unit length) at each point along the rod. The rod
is held at zero temperature at each end. After a time, the temperatures in the
rod settle down to a steady state. A single measurement is taken at x = 0.3,
which results in a temperature reading of approximately 11 units. Based on
this information, determine the best estimate you can for the true value of
the conductivity constant k of the material. Also try to guess a formula for
the shape of the temperature function on the interval [0, 1] that results when
this value of the conductivity is used.

Methodology: You should use the model that is presented in Section 1.1.
This will result in a linear system, which Maple can solve. One way to proceed
is simply to use trial and error until you think you’ve hit on the right value
of k, that is, the one that gives a value of approximately 11 units at x = 0.3.
Then plot the resulting approximate function doing a dot-to-dot on the node
values. You should give some thought to step size h.

Output: Return your results in the form of an annotated Maple notebook,
which should have the name of the team members at the top of the file and
an explanation of your solution in text cells interspersed between input cells
that the user can happily click his/her way through. This explanation should
be intelligible to your fellow students.

Comments: This project introduces you to a very interesting area of math-
ematics called “inverse theory.” The idea is, rather than proceeding from prob-
lem (the governing equations for temperature values) to solution (temperature
values), you are given the “solution,” namely the measured solution value at
a point, and are to determine from this information the “problem,” that is,
the conductivity coefficient that is needed to define the governing equations.
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Derivation of the Diffusion Equations for Steady-State Flow

We follow the notation that has already been developed, except that the
values yi will refer to quantity of heat rather than temperature (this will yield
equations for temperature, since heat is a constant times temperature). The
explanation requires one more experimentally observed law known as Fourier’s
heat law. For a one-dimensional flow, it says that the flow of heat per unit
length from one point to another is proportional to the negative rate of change
in temperature with respect to (directed) distance from the one point to the
other. The positive constant of proportionality k is known as the conductivity
of the material. In addition, we interpret the heat created at node xi to be
hf(xi), since f measures heat created per unit length. Thus, at node xi the
net flows per unit length from the left node xi−1 to xi and from xi to the
right node xi+1 are given by

left flow = −k
yi−1 − yi

h
, right flow = −k

yi − yi+1

h
.

In order to balance heat flowing through the ith node with heat created at
node xj per unit length at this node, we should have

left flow + right flow = −k
yi−1 − yi

h
− k

yi+1 − yi

h
= hf (xi) .

In other words,

k
−yi−1 + 2yi − yi+1

h2 = f (xi) , or − yi−1 + 2yi − yi+1 =
h2

k
f (xi) .

Project: The Accuracy of Gaussian Elimination
Problem Description: This project is concerned with determining the accuracy
of Gaussian elimination as applied to two linear systems, one of which is known
to be difficult to solve numerically. Both of these systems will be square (equal
number of unknowns and equations) and have a unique solution. Also, both
of these systems are to be solved for various sizes, namely n = 4, 8, 12, 16. In
order to get a handle on the error, our main interest, we shall start with a
known answer. The answer shall consist in setting all variables equal to 1. So
it is the solution vector (1, 1, . . . , 1). The coefficient matrix shall be one of two
types:

(1) A Hilbert matrix, i.e., an n×n matrix given by the formula Hn =
[

1
i+j−1

]
.

(2) An n × n matrix with random entries between 0 and 1.

The right-hand-side vector b is uniquely determined by the coefficient matrix
and solution. In fact, the entries of b are easy to obtain: simply add up all the
entries in the ith row of the coefficient matrix to obtain the ith entry of b.

The problem is to measure the error of Gaussian elimination. This is done
by finding the largest (in absolute value) difference between the computed
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value of each variable and actual value, which in all cases is 1. Discuss your
results and draw conclusions from your experiments.

Implementation Notes (for users of Maple): Maple has a built-in pro-
cedure for defining a Hilbert matrix A of size n, as in the command A :=
hilbert(n);. Before executing this command (and most other linear alge-
bra commands), you must load the linear algebra package by the command
with(linalg);. A vector of 1’s of size n can also be constructed by the single
command x := vector(n,1);. To multiply this matrix and vector together
use the command evalm(A &* x); . There is a feature that all computer al-
gebra systems have: they do exact arithmetic whenever possible. Since we are
trying to gauge the effects of finite-precision calculations, we don’t want ex-
act answers (such as 425688/532110), but rather, finite-precision floating-point
answers (such as 0.8). Therefore, it would be a good idea at some point to force
the quantities in question to be finite-precision numbers by encapsulating their
definitions in an evaluate-as floating-point command, e.g., evalf(evalm(A &*
x));. This will force the CAS to do finite-precision arithmetic.

1.5 Exercises and Problems

Problem 1. Carry out the calculation ((2
3 + 100) − 100) − 2

3 on a scientific
calculator. Do you get the correct answer?

Problem 2. Use Gaussian elimination with partial pivoting and calculations
with four significant digits to solve the system (1.7) with ε = 10−4. How
many digits of accuracy does your answer contain?

*Problem 3. Enter the matrix A given below into a computer algebra system
and use the available commands to compute (a) the rank of A and (b) the
reduced row echelon form of A. (For example, in Maple the relevant commands
are rref(A) and rank(A).) Now convert A into its floating-point form and
execute the same commands. Do you get the same answers? If not, which is
correct?

A =

⎡⎢⎢⎣
1 3 −2 0 2 0 0
6 18 −15 −6 12 −9 −3
0 0 5 10 0 15 5
2 6 0 8 4 18 6

⎤⎥⎥⎦
*Problem 4. Show that the flop count for back solving an n × n system is
quadratic in n.

Problem 5. Compare the strategy of Gauss–Jordan elimination by using each
pivot to zero out all entries above and below before proceeding to the next
pivot to the forward solve/back solve strategy. Which is computationally more
expensive? Illustrate both strategies with the matrix

[
3 1 9 2−3 0 6 −5
6 1 3 0

]
.
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MATRIX ALGEBRA

In Chapter 1 we used matrices and vectors as simple storage devices. In this
chapter matrices and vectors take on a life of their own. We develop the
arithmetic of matrices and vectors. Much of what we do is motivated by a
desire to extend the ideas of ordinary arithmetic to matrices. Our notational
style of writing a matrix in the form A = [aij ] hints that a matrix could be
treated like a single number. What if we could manipulate equations with
matrix and vector quantities in the same way that we do equations with
scalars? We shall see that this is a useful idea. Matrix arithmetic gives us new
powers for formulating and solving practical problems. In this chapter we will
use it to find effective methods for solving linear and nonlinear systems, solve
problems of graph theory and analyze an important modeling tool of applied
mathematics called a Markov chain.

2.1 Matrix Addition and Scalar Multiplication

To begin our discussion of arithmetic we consider the matter of equality of
matrices. Suppose that A and B represent two matrices. When do we declare
them to be equal? The answer is, of course, if they represent the same matrix!
Thus we expect that all the usual laws of equalities will hold (e.g., equals
may be substituted for equals) and in fact, they do. There are times, however,
when we need to prove that two symbolic matrices are equal. For this purpose,
we need something a little more precise. So we have the following definition,
which includes vectors as a special case of matrices.

Definition 2.1. Two matrices A = [aij ] and B = [bij ] are said to be equal if Equality of
Matricesthese matrices have the same size, and for each index pair (i, j), aij = bij ,

that is, corresponding entries of A and B are equal.

Example 2.1. Which of the following matrices are equal, if any?

(a)
[

0
0

]
(b)

[
0 0

]
(c)

[
0 1
0 2

]
(d)

[
0 1

1 − 1 1 + 1

]
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Solution. The answer is that only (c) and (d) have any chance of being equal,
since they are the only matrices in the list with the same size (2 × 2). As a
matter of fact, an entry-by-entry check verifies that they really are equal. ��

Matrix Addition and Subtraction

How should we define addition or subtraction of matrices? We take a clue
from elementary two- and three-dimensional vectors, such as the type we
would encounter in geometry or calculus. There, in order to add two vectors,
one condition has to hold: the vectors have to be the same size. If they are
the same size, we simply add the vectors coordinate by coordinate to obtain
a new vector of the same size. That is precisely what the following definition
does.

Definition 2.2. Let A = [aij ] and B = [bij ] be m × n matrices. Then theMatrix
Addition and
Subtraction

sum of the matrices, denoted by A + B, is the m × n matrix defined by the
formula

A + B = [aij + bij ] .

The negative of the matrix A, denoted by −A, is defined by the formula

−A = [−aij ] .

Finally, the difference of A and B, denoted by A−B, is defined by the formula

A − B = [aij − bij ] .

Notice that matrices must be the same size before we attempt to add them.
We say that two such matrices or vectors are conformable for addition.

Example 2.2. Let

A =
[

3 1 0
−2 0 1

]
and B =

[−3 2 1
1 4 0

]
.

Find A + B, A − B, and −A.

Solution. Here we see that

A + B =
[

3 1 0
−2 0 1

]
+

[−3 2 1
1 4 0

]
=

[
3 − 3 1 + 2 0 + 1

−2 + 1 0 + 4 1 + 0

]
=

[
0 3 1

−1 4 1

]
.

Likewise,

A − B =
[

3 1 0
−2 0 1

]
−

[−3 2 1
1 4 0

]
=

[
3 − −3 1 − 2 0 − 1
−2 − 1 0 − 4 1 − 0

]
=

[
6 −1 −1

−3 −4 1

]
.

The negative of A is even simpler:

−A =
[ −3 −1 −0

− − 2 −0 −1

]
=

[−3 −1 0
2 0 −1

]
. �
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Scalar Multiplication

The next arithmetic concept we want to explore is that of scalar multiplica-
tion. Once again, we take a clue from the elementary vectors, where the idea
behind scalar multiplication is simply to “scale” a vector a certain amount by
multiplying each of its coordinates by that amount. That is what the following
definition says.

Definition 2.3. Let A = [aij ] be an m × n matrix and c a scalar. Then the
product of the scalar c with the matrix A, denoted by cA, is defined by the
formula Scalar

MultiplicationcA = [caij ] .

Recall that the default scalars are real numbers, but they could also be com-
plex numbers.

Example 2.3. Let

A =
[

3 1 0
−2 0 1

]
and c = 3.

Find cA, 0A, and −1A.

Solution. Here we see that

cA = 3
[

3 1 0
−2 0 1

]
=

[
3 · 3 3 · 1 3 · 0

3 · −2 3 · 0 3 · 1

]
=

[
9 3 0

−6 0 3

]
,

while

0A = 0
[

3 1 0
−2 0 1

]
=

[
0 0 0
0 0 0

]
and

(−1)A = (−1)
[

3 1 0
−2 0 1

]
=

[−3 −1 0
2 0 −1

]
= −A. �

Linear Combinations

Now that we have a notion of scalar multiplication and addition, we can blend
these two ideas to yield a very fundamental notion in linear algebra, that of
a linear combination.

Definition 2.4. A linear combination of the matrices A1, A2, . . . , An is an Linear
Combinationsexpression of the form

c1A1 + c2A2 + · · · + cnAn

where c1, c2, . . . , cn are scalars and A1, A2, . . . , An are matrices all of the same
size.
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Example 2.4. Given that

A1 =

⎡⎣ 2
6
4

⎤⎦ , A2 =

⎡⎣ 2
4
2

⎤⎦ , and A3 =

⎡⎣ 1
0

−1

⎤⎦ ,

compute the linear combination −2A1 + 3A2 − 2A3.

Solution. The solution is that

−2A1 + 3A2 − 2A3 = −2

⎡⎣ 2
6
4

⎤⎦ + 3

⎡⎣2
4
2

⎤⎦ − 2

⎡⎣ 1
0

−1

⎤⎦
=

⎡⎣ −2 · 2 + 3 · 2 − 2 · 1
−2 · 6 + 3 · 4 − 2 · 0

−2 · 4 + 3 · 2 − 2 · (−1)

⎤⎦ =

⎡⎣0
0
0

⎤⎦ . �

It seems like too much work to write out objects such as the vector (0, 0, 0)
that occurred in the last equation; after all, we know that all the entries are
all 0. So we make the following notational convention for convenience. A zeroZero Matrix
matrix is a matrix whose every entry is 0. We shall denote such matrices by
the symbol 0.

Caution: This convention makes the symbol 0 ambiguous, but the meaning
of the symbol will be clear from context, and the convenience gained is worth
the potential ambiguity. For example, the equation of the preceding example
is stated very simply as −2A1 + 3A2 − 2A3 = 0, where we understand from
context that 0 has to mean the 3 × 1 column vector of zeros. If we use bold-
face for vectors, we will also then use boldface for the vector zero, so some
distinction is regained.

Example 2.5. Suppose that a linear combination of matrices satisfies the
identity −2A1 + 3A2 − 2A3 = 0, as in the preceding example. Use this fact to
express A1 in terms of A2 and A3.

Solution. To solve this example, just forget that the quantities A1, A2, A3
are anything special and use ordinary algebra. First, add −3A2 +2A3 to both
sides to obtain

−2A1 + 3A2 − 2A3 − 3A2 + 2A3 = −3A2 + 2A3,

so that
−2A1 = −3A2 + 2A3,

and multiplying both sides by the scalar − 1
2 yields the identity

A1 =
−1
2

(−2A1) =
−1
2

(−3A2 + 2A3) =
3
2
A2 − A3. �
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The linear combination idea has a really useful application to linear sys-
tems, namely, it gives us another way to express the solution set of a linear
system that clearly identifies the role of free variables. The following example
illustrates this point.

Example 2.6. Suppose that a linear system in the unknowns x1, x2, x3, x4
has general solution (x2 + 3x4, x2, 2x2 − x4, x4), where the variables x2, x4
are free. Describe the solution set of this linear system in terms of linear
combinations with free variables as coefficients.

Solution. The trick here is to use only the parts of the general solution
involving x2 for one vector and the parts involving x4 as the other vectors in
such a way that these vectors add up to the general solution. In our case we
have ⎡⎢⎢⎣

x2 + 3x4
x2

2x2 − x4
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x2
x2

2x2
0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
3x4

0
−x4

x4

⎤⎥⎥⎦ = x2

⎡⎢⎢⎣
1
1
2
0

⎤⎥⎥⎦ + x4

⎡⎢⎢⎣
3
0

−1
1

⎤⎥⎥⎦ .

Now simply define vectors A1 = (1, 1, 2, 0), A2 = (3, 0,−1, 1), and we see that
since x2 and x4 are arbitrary, the solution set is

S = {x2A1 + x4A2 | x2, x4 ∈ R} .

In other words, the solution set to the system is the set of all possible linear
combinations of the vectors A1 and A2. ��

The idea of solution sets as linear combinations is an important one that
we will return to in later chapters. You might notice that once we have the
general form of a solution vector we can see that there is an easier way to
determine the constant vectors A1 and A2. Simply set x2 = 1 and the other
free variable(s) equal to zero—in this case just x4—to get the solution vector
A1, and set x4 = 1 and x2 = 0 to get the solution vector A2.

Laws of Arithmetic

The last example brings up an important point: to what extent can we rely on
the ordinary laws of arithmetic and algebra in our calculations with matrices
and vectors? For matrix multiplication there are some surprises. On the other
hand, the laws for addition and scalar multiplication are pretty much what
we would expect them to be. Here are the laws with their customary names.
These same names can apply to more than one operation. For instance, there
is a closure law for addition and one for scalar multiplication as well.
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Let A, B, C be matrices of the same size m × n, 0 the m × n zero
matrix, and c and d scalars.
(1) (Closure Law) A + B is an m × n matrix.
(2) (Associative Law) (A + B) + C = A + (B + C)
(3) (Commutative Law) A + B = B + A
(4) (Identity Law) A + 0 = A
(5) (Inverse Law) A + (−A) = 0
(6) (Closure Law) cA is an m × n matrix.
(7) (Associative Law) c(dA) = (cd)A
(8) (Distributive Law) (c + d)A = cA + dA
(9) (Distributive Law) c(A + B) = cA + cB
(10) (Monoidal Law) 1A = A

Laws of
Matrix

Addition and
Scalar

Multiplication

It is fairly straightforward to prove from definitions that these laws are
valid. The verifications all follow a similar pattern, which we illustrate by
verifying the commutative law for addition: let A = [aij ] and B = [bij ] be
given m × n matrices. Then we have that

A + B = [aij + bij ]
= [bij + aij ]
= B + A,

where the first and third equalities come from the definition of matrix addition,
and the second equality follows from the fact that for all indices i and j,
aij + bij = bij + aij by the commutative law for addition of scalars.

2.1 Exercises and Problems

Exercise 1. Calculate the following where possible.

(a)
[

1 2 −1
0 2 2

]
−

[
3 1 0
1 1 1

]
(b) 2

[
1
3

]
− 5

[
2
2

]
+ 3

[
4
1

]
(c) 2

[
1 4
0 0

]
+ 3

[
0 0
2 1

]

(d) a

[
1 1
1 1

]
+ b

[
1
1

]
(e)

⎡⎣ 1 2 −1
0 0 2
0 2 −2

⎤⎦ + 2

⎡⎣3 1 0
5 2 1
1 1 1

⎤⎦ (f) x

⎡⎣1
3
0

⎤⎦ −
⎡⎣2

2
1

⎤⎦ + y

⎡⎣4
1
0

⎤⎦
Exercise 2. Calculate the following where possible.

(a) 8

⎡⎣1 2 −1
1 0 0
2 −1 3

⎤⎦ (b) −
[

2
3

]
+ 3

[
2

−1

]
(c)

[
1 4 2
1 0 3

]
+ (−4)

[
0 0 1
2 1 −2

]

(d) 4

⎡⎣0 1 −1
2 0 2
0 2 0

⎤⎦ − 2

⎡⎣ 0 2 0
−3 0 1
1 −2 0

⎤⎦ (e) 2

⎡⎣2
0
1

⎤⎦ + u

⎡⎣−2
2
3

⎤⎦ + v

⎡⎣0
1
2

⎤⎦
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Exercise 3. Let A =
[

1 0 −1
1 1 2

]
, B =

[
2 2
1 −2

]
, C =

[
1 1 0
2 1 0

]
, and compute the

following, where possible.
(a) A + 3B (b) 2A − 3C (c) A − C (d) 6B + C (e) 2C − 3 (A − 2C)

Exercise 4. With A, B, C as in Exercise 3, solve for the unknown matrix X in
the equations

(a) X + 3A = C (b) A − 3X = 3C (c) 2X +
[

2 2
1 −2

]
= B.

Exercise 5. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, or z.

(a)
[

x + 2y
2x − z

]
(b)

[
x − y

2x + 3y

]
(c)

⎡⎣ 3x + 2y
−z

x + y + 5z

⎤⎦ (d)

⎡⎣x − 3y
4x + z
2y − z

⎤⎦
Exercise 6. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, z, or w.

(a)
[

3x + y
x + y + z

]
(b)

⎡⎣ 3x + 2y − w
w − z

x + y − 2w

⎤⎦ (c)
[

x + 3y
2y − x

]
(d)

⎡⎣ x − 2y
4x + z
3w − z

⎤⎦
Exercise 7. Find scalars a, b, c such that[

c b
0 c

]
=

[
a − b c + 2
a + b a − b

]
.

Exercise 8. Find scalars a, b, c, d such that[
d 2a
2d a

]
=

[
a − b b + c
a + b c − b + 1

]
.

Exercise 9. Express the matrix
[

a b
c d

]
as a linear combination of the four ma-

trices
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
, and

[
0 0
0 1

]
.

Exercise 10. Express the matrix D =
[

3 3
1 −3

]
as a linear combination of the

matrices A =
[

1 1
1 0

]
, B =

[
0 1
1 1

]
, and C =

[
0 2
0 −1

]
.

Exercise 11. Verify that the associative law and commutative laws for addition
hold for

A =
[−1 0 −1

0 1 2

]
, B =

[
1 2 −1
4 1 3

]
, C =

[−1 0 −1
1 −1 0

]
.
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Exercise 12. Verify that both distributive laws for addition hold for c = 2,
d = −3, and A, B, and C as in Exercise 11.

Problem 13. Show by examples that it is false that for arbitrary matrices A
and B, and constant c,
(a) rank (cA) = rankA (b) rank (A + B) ≥ rankA + rankB.

Problem 14. Prove that the associative law for addition of matrices holds.

Problem 15. Prove that both distributive laws hold.

*Problem 16. Prove that if A and B are matrices such that 2A − 4B = 0 and
A + 2B = I, then A = 1

2I.

Problem 17. Prove the following assertions for m × n matrices A and B by
using the laws of matrix addition and scalar multiplication. Clearly specify
each law that you use.
(a) If A = −A, then A = 0.
(b) If cA = 0 for some scalar c, then either c = 0 or A = 0.
(c) If B = cB for some scalar c 
= 1, then B = 0.

2.2 Matrix Multiplication

Matrix multiplication is somewhat more subtle than matrix addition and
scalar multiplication. Of course, we could define matrix multiplication to be
a coordinatewise operation, just as addition is (there is such a thing, called
Hadamard multiplication). But our motivation is not merely to make defini-
tions, but rather to make useful definitions for basic problems.

Definition of Multiplication

To motivate the definition, let us consider a single linear equation

2x − 3y + 4z = 5.

We will find it handy to think of the left-hand side of the equation as a “prod-
uct” of the coefficient matrix [2,−3, 4] and the column matrix of unknowns[

x
y
z

]
. Thus, we have that the product of this row and column is

[2,−3, 4]

⎡⎣x
y
z

⎤⎦ = [2x − 3y + 4z] .

Notice that we have made the result of the product into a 1 × 1 matrix. This
introduces us to a permanent abuse of notation that is almost always used in
linear algebra: we don’t distinguish between the scalar a and the 1× 1 matrix
[a], though technically perhaps we should. In the same spirit, we make the
following definition.
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Definition 2.5. The product of the 1 × n row [a1, a2, . . . , an] with the n × 1 Row Column
Product

column

⎡⎣ b1
b2
...

bn

⎤⎦ is defined to be the 1 × 1 matrix [a1b1 + a2b2 + · · · + anbn].

It is this row-column product strategy that guides us to the general definition.
Notice how the column number of the first matrix had to match the row
number of the second, and that this number disappears in the size of the
resulting product. This is exactly what happens in general.

Definition 2.6. Let A = [aij ] be an m × p matrix and B = [bij ] a p × n Matrix
Productmatrix. Then the product of the matrices A and B, denoted by AB, is the

m × n matrix whose (i, j)th entry, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, is the entry
of the product of the ith row of A and the jth column of B; more specifically,
the (i, j)th entry of AB is

ai1b1j + ai2b2j + · · · + aipbpj .

Notice that, in contrast to the case of addition, two matrices may be of differ-
ent sizes when we can multiply them together. If A is m×p and B is p×n, we
say that A and B are conformable for multiplication. It is also worth noticing
that if A and B are square and of the same size, then the products AB and
BA are always defined.

Some Illustrative Examples

Let’s check our understanding with a few examples.

Example 2.7. Compute, if possible, the products AB of the following pairs
of matrices A, B.

(a)
[

1 2 1
2 3 −1

]
,

⎡⎣ 4 −2
0 1
2 1

⎤⎦ (b)
[

1 2 3
2 3 −1

]
,

[
2
3

]
(c)

[
1 2

]
,

[
0
0

]
(d)

[
0
0

]
,
[
1 2

]
(e)

[
1 0
0 1

]
,

[
1 2 1
2 3 −1

]
(f)

[
1 1
1 1

]
,

[
1 1

−1 −1

]
Solution. In part (a) A is 2× 3 and B is 3× 2. First check conformability for
multiplication. Stack these dimensions alongside each other and see that the
3’s match; now “cancel” the matching middle 3’s to obtain that the dimension
of the product is 2× 
 3 
 3 × 2 = 2 × 2. To obtain, for example, the (1, 2)th
entry of the product matrix, multiply the first row of A and second column
of B to obtain

[1, 2, 1]

⎡⎣−2
1
1

⎤⎦ = [1 · (−2) + 2 · 1 + 1 · 1] = [1] .
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The full product calculation looks like this:

[
1 2 1
2 3 −1

]⎡⎣ 4 −2
0 1
2 1

⎤⎦ =
[

1 · 4 + 2 · 0 + 1 · 2 1 · (−2) + 2 · 1 + 1 · 1
2 · 4 + 3 · 0 + (−1) · 2 2 · (−2) + 3 · 1 + (−1) · 1

]

=
[

6 1
6 −2

]
.

A size check of part (b) reveals a mismatch between the column number of
the first matrix (3) and the row number (2) of the second matrix. Thus these
matrices are not conformable for multiplication in the specified order. Hence[

1 2 3
2 3 −1

] [
2
3

]
is undefined.

In part (c) a size check shows that the product has size 2× 
 1 
 1×2 = 2×2.
The calculation gives[

0
0

] [
1 2

]
=

[
0 · 1 0 · 2
0 · 1 0 · 2

]
=

[
0 0
0 0

]
.

For part (d) the size check shows gives 1× 
 2 
 2 × 1 = 1 × 1. Hence the
product exists and is 1 × 1. The calculation gives

[
1 2

] [0
0

]
= [1 · 0 + 2 · 0] = [0] .

Something very interesting comes out of parts (c) and (d). Notice that AB
and BA are not the same matrices—never mind that their entries are all 0’s—
the important point is that these matrices are not even the same size! Thus a
very familiar law of arithmetic, the commutativity of multiplication, has just
fallen by the wayside.Matrix

Multiplication
Not

Commutative
or

Cancellative

Things work well in (e), where the size check gives 2× 
 2 
 2 × 3 = 2 × 3
as the size of the product. As a matter of fact, this is a rather interesting
calculation:[

1 0
0 1

] [
1 2 1
2 3 −1

]
=

[
1 · 1 + 0 · 2 1 · 2 + 0 · 3 1 · 1 + 0 · (−1)
0 · 1 + 1 · 2 0 · 2 + 1 · 3 0 · 1 + 1 · (−1)

]
=

[
1 2 1
2 3 −1

]
.

Notice that we end up with the second matrix in the product. This is similar
to the arithmetic fact that 1·x = x for a given real number x. So the matrix on
the left acted like a multiplicative identity. We’ll see that this is no accident.

Finally, for the calculation in (f), notice that[
1 1
1 1

] [
1 1

−1 −1

]
=

[
1 · 1 + 1 · −1 1 · 1 + 1 · −1
1 · 1 + 1 · −1 1 · 1 + 1 · −1

]
=

[
0 0
0 0

]
.
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There’s something very curious here, too. Notice that two nonzero matrices
of the same size multiplied together to give a zero matrix. This kind of thing
never happens in ordinary arithmetic, where the cancellation law assures that
if a · b = 0 then a = 0 or b = 0. ��

The calculation in (e) inspires some more notation. The left-hand matrix
of this product has a very important property. It acts like a “1” for matrix
multiplication. So it deserves its own name. A matrix of the form Identity

Matrix

In =

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0
0 1 0
...

. . .
1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ = [δij ]

is called an n×n identity matrix. The (i, j)th entry of In is designated by the Kronecker
SymbolKronecker symbol δij , which is 1 if i = j and 0 otherwise. If n is clear from

context, we simply write I in place of In.
So we see in the previous example that the left-hand matrix of part (e) is[

1 0
0 1

]
= I2.

Linear Systems as a Matrix Product

Let’s have another look at a system we examined in Chapter 1. We’ll change
the names of the variables from x, y, z to x1, x2, x3 in anticipation of a notation
that will work with any number of variables.

Example 2.8. Express the following linear system as a matrix product:

x1 + x2 + x3 = 4
2x1 + 2x2 + 5x3 = 11
4x1 + 6x2 + 8x3 = 24

Solution. Recall how we defined multiplication of a row vector and column
vector at the beginning of this section. We use that as our inspiration. Define

x =

⎡⎣x1
x2
x3

⎤⎦ , b =

⎡⎣ 4
11
24

⎤⎦ , and A =

⎡⎣1 1 1
2 2 5
4 6 8

⎤⎦ .

Of course, A is just the coefficient matrix of the system and b is the right-
hand-side vector, which we have seen several times before. But now these take
on a new significance. Notice that if we take the first row of A and multiply
it by x we get the left-hand side of the first equation of our system. Likewise
for the second and third rows. Therefore, we may write in the language of
matrices that
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Ax =

⎡⎣ 1 1 1
2 2 5
4 6 8

⎤⎦⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣ 4
11
24

⎤⎦ = b.

Thus the system is represented very succinctly as Ax = b. ��
Once we understand this example, it is easy to see that the general abstract

system that we examined in Section 1.1 can just as easily be abbreviated. Now
we have a new way of looking at a system of equations: it is just like a simple
first-degree equation in one variable. Of course, the catch is that the symbols
A,x,b now represent an m×n matrix, and n×1 and m×1 vectors, respectively.
In spite of this, the matrix multiplication idea is very appealing. For instance,
it might inspire us to ask whether we could somehow solve the system Ax = b
by multiplying both sides of the equation by some kind of matrix “1/A” so
as to cancel the A and get

(1/A)Ax = Ix = x = (1/A)b.

We’ll follow up on this idea in Section 2.5.
Here is another perspective on matrix–vector multiplication that gives a

powerful way of thinking about such multiplications.

Example 2.9. Interpret the matrix product of Example 2.8 as a linear com-
bination of column vectors.

Solution. Examine the system of this example and we see that the column
(1, 2, 4) appears to be multiplied by x1. Similarly, the column (1, 2, 6) is mul-
tiplied by x2 and the column (1, 5, 8) by x3. Hence, if we use the same right-
hand-side column (4, 11, 24) as before, we obtain that this column can be
expressed as a linear combination of column vectors, namely

x1

⎡⎣ 1
2
4

⎤⎦ + x2

⎡⎣ 1
2
6

⎤⎦ + x3

⎡⎣1
5
8

⎤⎦ =

⎡⎣ 4
11
24

⎤⎦ . �

We could write the equation of the previous example very succinctly as
follows: let A have columns a1,a2,a3, so that A = [a1,a2,a3], and let x =Matrix-Vector

Multiplication (x1, x2, x3). Then
Ax = x1a1 + x2a2 + x3a3.

This formula extends to general matrix–vector multiplication. It is extremely
useful in interpreting such products, so we will elevate its status to that of a
theorem worth remembering.

Theorem 2.1. Let A = [a1,a2, . . . ,an] be an m × n matrix with columns
a1,a2, . . . ,an ∈ Rm and let x = (x1, x2, . . . , xn). Then

Ax = x1a1 + x2a2 + · · · + xnan.
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Laws of Arithmetic

We have already seen that the laws of matrix arithmetic may not be quite the
same as the ordinary arithmetic laws that we are used to. Nonetheless, as long
as we don’t assume a cancellation law or a commutative law for multiplication,
things are pretty much what one might expect.

Let A, B, C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c
and d scalars.
(1) (Closure Law) The product AB is a matrix.
(2) (Associative Law) (AB)C = A(BC)
(3) (Identity Law) AI = A and IB = B
(4) (Associative Law for Scalars) c(AB) = (cA)B = A(cB)
(5) (Distributive Law) (A + B)C = AC + BC
(6) (Distributive Law) A(B + C) = AB + AC

Laws of
Matrix
Multiplication

One can formally verify these laws by working through the definitions. For
example, to verify the first half of the identity law, let A = [aij ] be an m × n
matrix, so that I = [δij ] has to be In in order for the product AI to make
sense. Now we see from the formal definition of matrix multiplication that

AI =

[
n∑

k=1

aikδkj

]
= [aij · 1] = A.

The middle equality follows from the fact that δkj is 0 unless k = j. Thus the
sum collapses to a single term. A similar calculation verifies the other laws.

We end our discussion of matrix multiplication with a familiar-looking
notation that will prove to be extremely handy in the sequel. This notation
applies only to square matrices. Let A be a square n × n matrix and k a Exponent

Notationnonnegative integer. Then we define the kth power of A to be

Ak =

⎧⎪⎪⎨⎪⎪⎩
In if k = 0,

A · A · · ·A︸ ︷︷ ︸ if k > 0.

k times

As a simple consequence of this definition we have the standard exponent
laws.

For nonnegative integers i, j and square matrix A:
(1) Ai+j = Ai · Aj

(2) Aij = (Ai)j

Laws of
Exponents

Notice that the law (AB)i = AiBi is missing. It won’t work with matrices.
Why not? The following example illustrates a very useful application of the
exponent notation.
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Example 2.10. Let f (x) = 1 − 2x + 3x2 be a polynomial function. Use the
definition of matrix powers to derive a sensible interpretation of f (A), where
A is a square matrix. Evaluate f

([
2 −1
0 1

])
explicitly with this interpretation.

Solution. Let’s take a closer look at the polynomial expression

f (x) = 1 − 2x + 3x2 = 1x0 − 2x + 3x2.

Once we’ve rewritten the polynomial in this form, we recall that A0 = I and
that other matrix powers make sense since A is square, so the interpretation
is easy:

f (A) = A0 − 2A1 + 3A2 = I − 2A + 3A2.

In particular, for a 2 × 2 matrix we take A = I = [ 1 0
0 1 ] and obtain

f

([
2 −1
0 1

])
= I − 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

]2

=
[

1 0
0 1

]
− 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

] [
2 −1
0 1

]
=

[
1 0
0 1

]
−

[
4 −2
0 2

]
+

[
12 −9
0 3

]
=

[
9 −7
0 2

]
. �

2.2 Exercises and Problems

Exercise 1. Carry out these calculations or indicate they are impossible, given

that a =
[

2
1

]
, b =

[
3 4

]
, and C =

[
2 1 + i
0 −1

]
.

(a) bCa (b) ab (c) Cb (d) (aC)b (e) Ca (f) C (ab) (g) ba (h) C (a + b)

Exercise 2. For each pair of matrices A, B, calculate the product AB or indi-
cate that the product is undefined.

(a)
[

1 0
0 1

]
,

[
3 −2 0

−2 5 8

]
(b)

[
2 1 0
0 8 2

]
,

[
1 1
2 2

]
(c)

⎡⎣3 1 2
1 0 0
4 3 2

⎤⎦ ,

⎡⎣−5 4 −2
−2 3 1

1 0 4

⎤⎦
(d)

⎡⎣3 1
1 0
4 3

⎤⎦ ,

[−5 4 −2
−2 3 1

]
(e)

⎡⎣ 3
1
4

⎤⎦ ,

[−5 4
−2 3

]
(f)

[
2 0
2 3

]
,

[
3
1

]

Exercise 3. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 − 2x2 + 4x3 = 3 (b) x − y − 3z = 3 (c) x − 3y + 1 = 0
x2 − x3 = 2 2x + 2y + 4z = 10 2y = 0

−x1 + 4x4 = 1 −x + z = 3 −x + 3y = 0
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Exercise 4. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 + x3 = −1 (b) x − y − 3z = 1 (c) x − 4y = 0
x2 + x3 = 0 z = 0 2y = 0
x1 + x3 = 1 −x + y = 3 −x + 3y = 0

Exercise 5. Let A =

⎡⎣ 2 −1 1
2 3 −2
4 2 −2

⎤⎦, b =

⎡⎣ 2
−3

1

⎤⎦, x =

⎡⎣x
y
z

⎤⎦, and X =

⎡⎣x 0 0
0 y 0
0 0 z

⎤⎦.

Find the coefficient matrix of the linear system XAb + Ax =

⎡⎣3
1
2

⎤⎦ in the

variables x, y, z.

Exercise 6. Let A =
[

1 −1
2 0

]
and X =

[
x y
z w

]
. Find the coefficient matrix of

the linear system AX − XA = I2 in the variables x, y, z, w.

Exercise 7. Let u = (1, 1, 0), v = (0, 1, 1), and w = (1, 3, 1). Write each of the
following expressions as single matrix product.
(a) 2u − 4v − 3w (b) w − v + 2iu (c) x1u − 3x2v + x3w

Exercise 8. Express the following matrix products as linear combinations of
vectors.

(a)

⎡⎣2 1
0 1
0 2

⎤⎦[x
y

]
(b)

⎡⎣ 1 1 1
0 0 0
1 2 2

⎤⎦⎡⎣ 2
−5

1

⎤⎦ (c)
[

1 1
1 1 + i

] [
x1

−x2

]

Exercise 9. Let A =
[

0 2
1 1

]
, f (x) = 1+x+x2, g (x) = 1−x, and h (x) = 1−x3.

Verify that f (A) g (A) = h (A).

Exercise 10. Let A =
[

1 2
−1 1

]
and B =

⎡⎣ 0 1 0
0 0 1
5
2 − 3

2 0

⎤⎦. Compute f(A) and f(B),

where f(x) = 2x3 + 3x − 5.

Exercise 11. Find all possible products of two matrices from among the follow-
ing:

A =
[

1 −2
1 3

]
B =

[
2 4

]
C =

[
1
5

]
D =

[
1 3 0

−1 2 1

]
Exercise 12. Find all possible products of three matrices from among the fol-
lowing:

A =
[−1 2

0 2

]
B =

⎡⎣ 2 1
1 0
2 3

⎤⎦ C =
[−3

2

]
D =

[
2 3 −1
1 2 1

]
E =

[−2 4
]
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Exercise 13. A square matrix A is said to be nilpotent if there is a positive
integer k such that Ak = 0. Determine which of the following matrices are
nilpotent. (You may assume that if A is n × n nilpotent, then An = 0.)

(a)

⎡⎣0 2 0
0 0 2
0 0 0

⎤⎦ (b)
[

1 1
1 1

]
(c)

[
0 0
1 0

]
(d)

⎡⎣ 2 2 −4
−1 0 2

1 1 −2

⎤⎦ (e)

⎡⎢⎢⎣
1 1 0 0
0 −1 1 0
0 0 1 1

−1 0 −2 −1

⎤⎥⎥⎦
Exercise 14. A square matrix A is idempotent if A2 = A. Determine which of
the following matrices are idempotent.

(a)
[

1 2
0 1

]
(b)

[
1 0
0 1

]
(c)

[
0 0

−1 0

]
(d)

⎡⎣0 0 2
1 1 −2
0 0 1

⎤⎦ (e)

⎡⎢⎢⎣
1 0 0 0

−1 0 0 0
0 0 1 0
0 0 −1 0

⎤⎥⎥⎦
Exercise 15. Show by example that a sum of nilpotent matrices need not be
nilpotent.

Exercise 16. Show by example that a product of idempotent matrices need not
be idempotent.

Exercise 17. Verify that the product uv, where u = (1, 0, 2) and v =
[−1 1 1

]
,

is a rank-one matrix.

Exercise 18. Verify that the product uv + wu, where u = (1, 0, 2), v =[−1 1 1
]
, and w = (1, 0, 1), is a matrix of rank at most two.

Exercise 19. Verify that both associative laws of multiplication hold for

c = 4, A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Exercise 20. Verify that both distributive laws of multiplication hold for

A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Problem 21. Find examples of 2 × 2 matrices A and B that fulfill each of the
following conditions.

(a) (AB)2 
= A2B2 (b) AB 
= BA

Problem 22. Find examples of nonzero 2 × 2 matrices A, B, and C that fulfill
each of the following conditions.

(a) A2 = 0, B2 = 0 (b) (AB)2 
= 0

*Problem 23. Show that if A is a 2 × 2 matrix such that AB = BA for every
2 × 2 matrix B, then A is a multiple of I2.

Problem 24. Prove that the associative law for scalars is valid.
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Problem 25. Prove that both distributive laws for matrix multiplication are
valid.

Problem 26. Show that if A is a square matrix such that Ak+1 = 0, then

(I − A)
(
I + A + A2 + · · · + Ak

)
= I.

*Problem 27. Show that if two matrices A and B of the same size have the
property that Ab = Bb for every column vector b of the correct size for
multiplication, then A = B.

2.3 Applications of Matrix Arithmetic

We next examine a few more applications of the matrix multiplication idea
that should reinforce the importance of this idea and provide us with some
interpretations of matrix multiplication.

Matrix Multiplication as Function

The function idea is basic to mathematics. Recall that a function f is a rule of
correspondence that assigns to each argument x in a set called its domain, a
unique value y = f(x) from a set called its target. Each branch of mathematics
has its own special functions; for example, in calculus differentiable functions
f(x) are fundamental. Linear algebra also has its special functions. Suppose
that T (u) represents a function whose arguments u and values v = T (u) are
vectors.

We say that the function T is linear if T preserves linear combinations,
that is, for all vectors u,v in the domain of T, and scalars c, d, we have that
cu + dv is in the domain of T and Linear

Functions
T (cu + dv) = cT (u) + dT (v) .

Example 2.11. Show that the function T , whose domain is the set of 2 × 1
vectors and definition is given by

T

([
x
y

])
= x,

is a linear function.

Solution. Let (x, y) and (z, w) be two elements in the domain of T and c, d
any two scalars. Now compute
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T

(
c

[
x
y

]
+ d

[
z
w

])
= T

([
cx
cy

]
+

[
dz
dw

])
= T

([
cx + dz
cy + dw

])
= cx + dz = cT

([
x
y

])
+ dT

([
z
w

])
.

Thus, T satisfies the definition of linear function. ��
One can check that the function T just defined can be expressed as a

matrix multiplication, namely, T ([ x
y ]) = [ 1 0 ] [ x

y ]. This example gives yet an-
other reason for defining matrix multiplication in the way that we do. Here is
a general definition for these kinds of functions (also known as linear trans-
formations or linear operators).

Definition 2.7. Let A be an m × n matrix. The function TA that maps n × 1
vectors to m × 1 vectors according to the formulaMatrix

Operator
TA(u) = Au

is called the linear function (operator or transformation) associated with the
matrix A or simply a matrix operator.

Let’s verify that this function T actually is linear. Use the definition of TA

along with the distributive law of multiplication and associative law for scalars
to obtain that

TA(cu + dv) = A(cu + dv)
= A(cu) + A(dv)
= c(Au) + d(Av)
= cTA(u) + dTA(v).

Thus multiplication of vectors by a fixed matrix A is a linear function. Notice
that this result contains Example 2.11 as a special case.Function

Composition
Notation

Recall that the composition of functions f and g is the function f ◦g whose
definition is (f ◦ g) (x) = f (g (x)) for all x in the domain of g.

Example 2.12. Use the associative law of matrix multiplication to show that
the composition of matrix multiplication functions corresponds to the matrix
product.

Solution. For all vectors u and for suitably sized matrices A, B, we have by
the associative law that A(Bu) = (AB)u. In function terms, this means that
TA(TB(u)) = TAB(u). Since this is true for all arguments u, it follows that
TA ◦ TB = TAB , which is what we were to show. ��

We will have more to say about linear functions in Chapters 3 and 6, where
they will go by the name of linear operators. Here is an example that gives
another slant on why the “linear” in “linear function.”
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Example 2.13. Describe the action of the matrix operator TA on the x-axis

and y-axis, where A =
[

2 1
4 2

]
.

Solution. A typical element of the x-axis has the form v = (x, 0). Thus we
have that T (v) = T ((x, 0)). Now calculate

T (v) = TA ((x, 0)) = Av =
[

2 1
4 2

] [
x
0

]
=

[
2x
4x

]
= x

[
2
4

]
.

Thus the x-axis is mapped to all multiples of the vector (2, 4). Set t = 2x, and
we see that x (2, 4) = (t, 2t). Hence, these are simply points on the line given
by x = t, y = 2t. Equivalently, this is the line y = 2x. Similarly, one checks
that the y-axis is mapped to the line y = 2x as well. ��
Example 2.14. Let L be set of points (x, y) defined by the equation y = x+1

and let TA(L) = {T (((x, y)) | (x, y) ∈ L}, where A =
[

2 1
4 2

]
. Describe and

sketch these sets in the plane.

Solution. Of course, the set L is just the straight line defined by the linear
equation y = x + 1. To see what TA(L) looks like, write a typical element of
L in the form (x, x + 1). Now calculate

TA((x, x + 1)) =
[

2 1
4 2

] [
x

x + 1

]
=

[
3x + 1
6x + 2

]
.

Next make the substitution t = 3x + 1, and we see that a typical element of
TA(L) has the form (t, 2t), where t is any real number. We recognize these
points as exactly the points on the line y = 2x. Thus, the function TA maps
the line y = x + 1 to the line y = 2x. Figure 2.1 illustrates this mapping as
well as the fact that TA maps the line segment from

(−1
3 , 2

3

)
to

( 1
6 , 7

6

)
on L

to the line segment from (0, 0) to
( 3

2 , 3
)

on TA (L). ��
Graphics specialists and game programmers have a special interest in real-

time rendering, the discipline concerned with algorithms that create synthetic Real-Time
Renderingimages fast enough that the viewer can interact with a virtual environment.

For a comprehensive treatment of this subject, consult the text [2]. A num-
ber of fundamental matrix-defined operators are used in real-time rendering,
where they are called transforms. Here are a few examples of such operators.
A scaling operator is effected by multiplying each coordinate of a point by a Scaling and

Shearing
Graphics
Transforms

fixed (positive) scale factor. A shearing operator is effected by adding a con-
stant shear factor times one coordinate to another coordinate of the point.
A rotation operator is effected by rotating each point a fixed angle θ in the
counterclockwise direction about the origin.

Example 2.15. Let the scaling operator S on points in two dimensions have
scale factors of 3

2 in the x-direction and 1
2 in the y-direction. Let the shearing
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Fig. 2.1. Action of TA on line L given by y = x + 1, points on L, and the segment
between them.

operator H on these points have a shear factor of 1
2 by the y-coordinate on

the x-coordinate. Express these operators as matrix operators and graph their
action on four unit squares situated diagonally from the origin.

Solution. First consider the scaling operator. The point (x, y) will be trans-
formed into the point

( 3
2x, 1

2y
)
. Observe that

S ((x, y)) =
[ 3

2x
1
2y

]
=

[ 3
2 0
0 1

2

] [
x
y

]
= TA ((x, y)) ,

where A =
[

3
2 0
0 frac12

]
. Similarly, the shearing operator transforms the point

(x, y) into the point
(
x + 1

2y, y
)
. Thus we have

H ((x, y)) =
[

x + 1
2y

y

]
=

[
1 1

2
0 1

] [
x
y

]
= TB ((x, y)) ,

where B =
[

1 1
2

0 1

]
. The action of these operators on four unit squares is illus-

trated in Figure 2.2. ��
Example 2.16. Express the concatenation S ◦ H of the scaling operator S
and shearing operator H of Example 2.15 as a matrix operator and graph the
action of the concatenation on four unit squares situated diagonally from the
origin.

Solution. From Example 2.15 we have that S = TA, where A =
[ 3

2 0
0 1

2

]
,

and H = TB , where B =
[

1 1
2

0 1

]
. From Example 2.12 we know that function

composition corresponds to matrix multiplication, that is,
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S

(a) Scaling in x-direction by
3
2 , y-direction by 1

5

4

3

2

1

0 1 2 4 53 6
x

y

H

(b) Shearing in x-direction
by y, shear factor 1

2

5

4

3

2

1

0 1 2 4 53 6 7
x

y

S ◦ H

(c) Concatenation of S and H

Fig. 2.2. Action of scaling operator, shearing operator, and concatenation.

S ◦ H ((x, y)) = TA ◦ TB ((x, y)) = TAB ((x, y))

=
[ 3

2 0
0 1

2

] [
1 1

2
0 1

] [
x
y

]
=

[ 3
2

3
4

0 1
2

] [
x
y

]
= TC ((x, y)) ,

where C = AB =
[ 3

2
3
4

0 1
2

]
. The action of S◦H on four unit squares is illustrated

in Figure 2.2. ��
Example 2.17. Describe the rotation operator (about the origin) for the
plane.

Solution. Consult Figure 2.3. Observe that if the point (x, y) is given by
(r cos φ, r sinφ) in polar coordinates, then the rotated point (x′, y′) has co-
ordinates (r cos (θ + φ) , r sin (θ + φ)). Now use the double-angle formula for
angles and obtain that[

x′

y′

]
=

[
r cos (θ + φ)
r sin (θ + φ)

]
=

[
r cos θ cos φ − r sin θ sinφ
r sin θ cos φ + r cos θ sinφ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r cos φ
r sinφ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Now define the rotation matrix R (θ) by Rotation
Matrix

R (θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

It follows that (x′, y′) = TR(θ) ((x, y)). ��

Discrete Dynamical Systems

Discrete dynamical systems are an extremely useful modeling tool in a wide
variety of disciplines. Here is the definition of such a system.
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θ
θ

w

φ

φ

y

x

v

R(θ)w
R(θ)v

Fig. 2.3. Action of rotation matrix R (θ) on vectors v and w.

Definition 2.8. A discrete linear dynamical system is a sequence of vectorsDiscrete
Dynamical

System
x(k), k = 0, 1, . . ., called states, which is defined by an initial vector x(0) and
by the rule

x(k+1) = Ax(k), k = 0, 1, . . . ,

where A is a given fixed square matrix, called the transition matrix of the
system.

A Markov chain is a certain type of discrete dynamical system. Here is an
example.

Example 2.18. Suppose two toothpaste companies compete for customers
in a fixed market in which each customer uses either Brand A or Brand B.
Suppose also that a market analysis shows that the buying habits of the
customers fit the following pattern in the quarters that were analyzed: each
quarter (three-month period), 30% of A users will switch to B, while the rest
stay with A. Moreover, 40% of B users will switch to A in a given quarter, while
the remaining B users will stay with B. If we assume that this pattern does not
vary from quarter to quarter, we have an example of what is called a Markov
chain model. Express the data of this model in matrix–vector language.

Solution. Notice that if a0 and b0 are the fractions of the customers using A
and B, respectively, in a given quarter, a1 and b1 the fractions of customers
using A and B in the next quarter, then our hypotheses say that

a1 = 0.7a0 + 0.4b0

b1 = 0.3a0 + 0.6b0.

We could figure out what happens in the quarter after this by replacing the
indices 1 and 0 by 2 and 1, respectively, in the preceding formula. In general,
we replace the indices 1, 0 by k, k + 1, to obtain

ak+1 = 0.7ak + 0.4bk

bk+1 = 0.3ak + 0.6bk.

We express this system in matrix form as follows: let
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x(k) =
[

ak

bk

]
and A =

[
0.7 0.4
0.3 0.6

]
.

Then the system may be expressed in the matrix form

x(k+1) = Ax(k). �

The state vectors x(k) of the preceding example have the following prop-
erty: Seach coordinate is nonnegative and all the coordinates sum to 1. Such Probability

Distribution
Vector

a vector is called a probability distribution vector. Also, the matrix A has the
property that each of its columns is a probability distribution vector. Such
a square matrix is called a stochastic matrix. In these terms we now give a Stochastic

Matrixprecise definition of a Markov chain.

Definition 2.9. A Markov chain is a discrete dynamical system whose initial Markov Chain
state x(0) is a probability distribution vector and whose transition matrix A
is stochastic, that is, each column of A is a probability distribution vector.

Let us return to Example 2.18. The state vectors and transition matrices

x(k) =
[

ak

bk

]
and A =

[
0.7 0.4
0.3 0.6

]
should play an important role. And indeed they do, for in light of our interpre-
tation of a linear system as a matrix product, we see that the two equations of
Example 2.18 can be written simply as x(1) = Ax(0). A little more calculation
shows that

x(2) = Ax(1) = A · (Ax(0)) = A2x(0)

and in general,

x(k) = Ax(k−1) = A2x(k−2) = · · · = Akx(0).

In fact, this is true of any discrete dynamical system, and we record this as a
key fact:

For any positive integer k and discrete dynamical system with transi-
tion matrix A and initial state x(0), the k-th state is given by

x(k) = Akx(0).

Computing
DDS States

Now we really have a very good handle on the Markov chain problem.
Consider the following instance of our example.

Example 2.19. In the notation of Example 2.18 suppose that initially Brand
A has all the customers (i.e., Brand B is just entering the market). What are
the market shares 2 quarters later? 20 quarters? Answer the same questions
if initially Brand B has all the customers.
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Solution. To say that initially Brand A has all the customers is to say that
the initial state vector is x(0) = (1, 0). Now do the arithmetic to find x(2):[

a2
b2

]
= x(2) = A2x(0) =

[
0.7 0.4
0.3 0.6

] ([
0.7 0.4
0.3 0.6

] [
1
0

])
=

[
0.7 0.4
0.3 0.6

] [
0.7
0.3

]
=

[
.61
.39

]
.

Thus, Brand A will have 61% of the market and Brand B will have 39% of
the market in the second quarter. We did not try to do the next calculation
by hand, but rather used a computer to get the approximate answer:

x(20) =
[

0.7 0.4
0.3 0.6

]20 [1
0

]
=

[
.57143
.42857

]
.

Thus, after 20 quarters, Brand A’s share will have fallen to about 57% of the
market and Brand B’s share will have risen to about 43%. Now consider what
happens if the initial scenario is completely different, i.e., x(0) = (0, 1). We
compute by hand to find that

x(2) =
[

0.7 0.4
0.3 0.6

] ([
0.7 0.4
0.3 0.6

] [
0
1

])
=

[
0.7 0.4
0.3 0.6

] [
0.4
0.6

]
=

[
.52
.48

]
.

Then we use a computer to find that

x(20) =
[

0.7 0.4
0.3 0.6

]20 [0
1

]
=

[
.57143
.42857

]
.

Surprise! For k = 20 we get the same answer as we did with a completely
different initial condition. Coincidence? We will return to this example again
in Chapters 3 and 5, where concepts introduced therein will cast new light on
this model (no, it isn’t a coincidence). Another curious feature of these state
vectors: each one is a probability distribution vector. This is no coincidence
either (see Problem 18). ��

Another important type of model is a so-called structured population
model. In such a model a population of organisms is divided into a finiteStructured

Population
Model

number of disjoint states, such as age by year or weight by pound, so that the
entire population is described by a state vector that represents the population
at discrete times that occur at a constant period such as every day or year.
A comprehensive development of this concept can be found in Hal Caswell’s
text [4]. Here is an example.

Example 2.20. A certain insect has three life stages: egg, juvenile, and adult.
A population is observed in a certain environment to have the following prop-
erties in a two-day time span: 20% of the eggs will not survive, and 60% will
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move to the juvenile stage. In the same time-span 10% of the juveniles will
not survive, and 60% will move to the adult stage, while 80% of the adults
will survive. Also, in the same time-span adults will product about 0.25 eggs
per adult. Assume that initially, there are 10, 8, and 6 eggs, juveniles, and
adults (measured in thousands), respectively. Model this population as a dis-
crete dynamical system and use it to compute the population total in 2, 10,
and 100 days.

Solution. We start time at day 0 and the kth stage is day 2k. Here the time
period is two days and a state vector has the form x(k) = (ak, bk, ck), where ak

is the number of eggs, bk the number of juveniles, and ck the number of adults
(all in thousands) on day 2k. We are given that x(0) = (10, 8, 6). Furthermore,
the transition matrix has the form

A =

⎡⎣ 0.2 0 0.25
0.6 0.3 0
0 0.6 0.8

⎤⎦ .

The first column says that 20% of the eggs will remain eggs over one time
period, 60% will progress to juveniles, and the rest do not survive. The second
column says that juveniles produce no offspring, 30% will remain juveniles,
60% will become adults, and the rest do not survive. The third column says
that .25 eggs results from one adult, no adult becomes a juvenile, and 80%
survive. Now do the arithmetic to find the state x(1) on day 2:

x(1) =

⎡⎣a1
b1
c1

⎤⎦ = A1x(0) =

⎡⎣ 0.2 0 0.25
0.6 0.3 0
0 0.6 0.8

⎤⎦⎡⎣10
8
6

⎤⎦ =

⎡⎣3.5
8.4
9.6

⎤⎦ .

For the remaining calculations we use a computer (you should check these
results with your own calculator or computer) to obtain approximate answers
(we use ≈ for approximate equality)

x(10) =

⎡⎣a10
b10
c10

⎤⎦ = A10x(0) ≈
⎡⎣3.33

2.97
10.3

⎤⎦ ,

x(100) =

⎡⎣a100
b100
c100

⎤⎦ = A100x(0) ≈
⎡⎣0.284

0.253
0.877

⎤⎦ .

It appears that the population is declining with time. ��

Calculating Power of Graph Vertices

Example 2.21. (Dominance Directed Graphs) You have incomplete data
about four teams who have played each other in matches. Each match pro-
duces a winner and a loser, with no score attached. Identify the teams by
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labels 1, 2, 3, and 4. We could describe a match by a pair of numbers (i, j),
where team i played and defeated team j (no ties allowed). Here are the given
data:

{(1, 2), (1, 4), (3, 1), (2, 3), (4, 2)} .

Give a reasonable graphical representation of these data.

Solution. We can draw a picture of all the data that we are given by repre-
senting each team as a point called a “vertex” and each match by connecting
two points with an arrow, called a “directed edge,” which points from the
winner toward the loser in the match. See Figure 2.4. ��

Edge 4Edge 2

Edge 5

Edge 3

Vertex 4 Vertex 3

Vertex 2Vertex 1 Edge 1

Fig. 2.4. Data from Example 2.21.

Consider the following question relating to Example 2.21. Given this in-
complete data about the teams, how would we determine a ranking of each
team in some sensible way? In order to answer this question, we are going to
introduce some concepts from graph theory that are useful modeling tools for
many problems.

The data of Figure 2.4 is an example of a directed graph, a modeling tool
that can be defined as follows.

Definition 2.10. A directed graph (digraph for short) is a set V whose ele-Directed
Graph ments are called vertices, together with a set or list (to allow for repeated

edges) E of ordered pairs with coordinates in V , whose elements are called
(directed) edges.

Another useful idea for us is the following: a walk in the digraph G is a se-Walk
quence of digraph edges (v0, v1), (v1, v2), . . . , (vm−1, vm) that goes from vertex
v0 to vertex vm. The length of the walk is m.

Here is an interpretation of “power” that has proved to be useful in many
situations. The power of a vertex in a digraph is the number of walks of length
1 or 2 originating at the vertex. In our example, the power of vertex 1 is 4.
Why only walks of length 1 or 2? One good reason is that walks of length 3
introduce the possibility of loops, i.e., walks that “loop around” to the same
point. It isn’t very informative to find out that team 1 beat team 2 beat team
3 beat team 1.
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The digraph of Example 2.21 has no edges from a vertex to itself (so-called
self-loops), and for a pair of distinct vertices, at most one edge connecting the
two vertices. In other words, a team doesn’t play itself and plays another team
at most once. Such a digraph is called a dominance-directed graph. Although Dominance

Directed
Graph

the notion of power of a point is defined for any digraph, it makes the most
sense for dominance-directed graphs.

Example 2.22. Find the power of each vertex in the graph of Example 2.21
and use this information to rank the teams.

Solution. In this example we could find the power of all points by inspection
of Figure 2.4. Let’s do it: simple counting gives that the power of vertex 1 is 4,
the power of vertex 3 is 3, and the power of vertices 2 and 4 is 2. Consequently,
teams 2 and 4 are tied for last place, team 3 is in second place, and team 1 is
first. ��

One can imagine situations (like describing the structure of the commu-
nications network pictured in Figure 2.5) in which the edges shouldn’t really
have a direction, since connections are bidirectional. For such situations a
more natural tool is the concept of a graph, which can be defined as follows:
a graph is a set V , whose elements are called vertices, together with a set or Graph
list (to allow for repeated edges) E of unordered pairs with coordinates in V ,
called edges.

v1 v2

v3v4 v5

v6
e2

e3

e6

e7

e1

e4

e5

e8

Fig. 2.5. A communications network graph.

Just as with digraphs, we define a walk in the graph G as a sequence of di-
graph edges (v0, v1), (v1, v2), . . . , (vm−1, vm) that goes from vertex v0 to vertex
vm. The length of the walk is m. For example, the graph of Figure 2.5 has ver-
tex set V = {v1, v2, v3, v4, v5, v6} and edge set E = {e1, e2, e3, e4, e5, e6, e7, e8},
with e1 = (v1, v2), etc, as in the figure. Also, the sequence e1, e4, e6 is a walk
from vertex v1 to v5 of length 3. As with digraphs, we can define the power of
a vertex in any graph as the number of walks of length at most 2 originating
at the vertex.

A practical question: how could we write a computer program to compute
powers? More generally, how can we compute the total number of walks of
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a certain length? Here is a key to the answer: all the information about our
graph (or digraph) can be stored in its adjacency matrix. In general, this isAdjacency

Matrix defined to be a square matrix whose rows and columns are indexed by the
vertices of the graph and whose (i, j)th entry is the number of edges going
from vertex i to vertex j (it is 0 if there are none). Here we understand that
a directed edge of a digraph must start at i and end at j, while no such
restriction applies to the edges of a graph.

Just for the record, if we designate the adjacency matrix of the digraph of
Figure 2.4 by A and the adjacency matrix of the graph of Figure 2.5 by B,
then

A =

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 1
1 1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Notice that we could reconstruct the entire digraph or graph from this matrix.
Also notice that in the adjacency matrix for a graph, an edge gets accounted
for twice, since it can be thought of as proceeding from one vertex to the
other, or from the other to the one.

For a general graph with n vertices and adjacency matrix A = [aij ], we
can use this matrix to compute powers of vertices without seeing a picture of
the graph. To count up the walks of length 1 emanating from vertex i, simply
add up the elements of the ith row of A. Now what about the paths of length
2? Observe that there is an edge from i to k and then from k to j precisely
when the product aikakj is equal to 1. Otherwise, one of the factors will be 0
and therefore the product is 0. So the number of paths of length 2 from vertex
i to vertex j is the familiar sum

ai1a1j + ai2a2j + · · · + ainanj .

This is just the (i, j)th entry of the matrix A2. A similar argument shows the
following fact:

Theorem 2.2. If A is the adjacency matrix of the graph G, then the (i, j)thVertex Power
entry of Ar gives the number of walks of length r starting at vertex i and
ending at vertex j.

Since the power of vertex i is the number of all paths of length 1 or 2 emanating
from vertex i, we have the following key fact:

Theorem 2.3. If A is the adjacency matrix of the digraph G, then the power
of the ith vertex is the sum of all entries in the ith row of the matrix A + A2.

Example 2.23. Use the preceding facts to calculate the powers of all the
vertices in the digraph of Example 2.21.
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Solution. Using the matrix A above we calculate that

A + A2 =

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 2 1 1
1 0 1 0
1 1 0 1
0 1 1 0

⎤⎥⎥⎦ .

An easy way to sum each row is to multiply A+A2 on the right by a column
of 1’s, but in this case we see immediately that the power of vertex 1 is 4,
the power of vertex 3 is 3, and the power of vertices 2 and 4 is 2, which is
consistent with what we observed earlier by inspection of the graph. ��

Difference Equations

The idea of a difference equation has numerous applications in mathematics
and computer science. In the latter field, these equations often go by the
name of “recurrence relations.” They can be used for a variety of applications
ranging from population modeling to analysis of complexity of algorithms. We
will introduce them by way of a simple financial model.

Example 2.24. Suppose that you invest in a contractual fund where you must
invest in the funds for three years before you can receive any return on your
investment (with a positive first-year investment). Thereafter, you are vested
in the fund and may remove your money at any time. While you are vested in
the fund, annual returns are calculated as follows: money that was in the fund
one year ago earns nothing, while money that was in the fund two years ago
earns 6% of its value and money that was in the fund three years ago earns
12% of its value. Find an equation that describes your investment’s growth.

Solution. Let ak be the amount of your investment in the kth year. The
numbers a0, a1, a2 represent your investments for the first three years (we’re
counting from 0). Consider the third year amount a3. According to your con-
tract, your total funds in the third year will be

a3 = a2 + 0.06a1 + 0.12a0.

Now it’s easy to write out a general formula for ak+3 in terms of the preceding
three terms, using the same line of thought, namely

ak+3 = ak+2 + 0.06ak+1 + 0.12ak, k = 0, 1, 2, . . . . (2.1)

This is the desired formula. ��
In general, a homogeneous linear difference equation (or recurrence rela- Homogeneous

Linear
Difference
Equation

tion) of order m in the variables a0, a1, . . . is an equation of the form

ak+m + cm−1ak+m−1 + · · · + c1ak+1 + c0ak = 0, k = 0, 1, 2, . . . .
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Notice that such an equation cannot determine the numbers a0, a1, . . . , ak−1.
These values have to be initially specified, just as in our fund example. Notice
that in our fund example, we have to bring all terms of equation (2.1) to the
left-hand side to obtain the difference equation form

ak+3 − ak+2 − 0.06ak+1 − 0.12ak = 0.

Now we see that c2 = −1, c1 = −0.06, and c0 = −0.12.
There are many ways to solve difference equations. We are not going to

give a complete solution to this problem at this point; we postpone this issue
to Chapter 5, where we introduce eigenvalues and eigenvectors. However, we
can now show how to turn a difference equation as given above into a matrix
equation. Consider our fund example. The secret is to identify the right vector
variables. To this end, define an indexed vector xk by the formula

xk =

⎡⎣ak+2
ak+1
ak

⎤⎦ , k = 0, 1, 2, . . . .

Thus

xk+1 =

⎡⎣ak+3
ak+2
ak+1

⎤⎦ ,

from which it is easy to check that since ak+3 = ak+2 +0.06ak+1 +0.12ak, we
have

xk+1 =

⎡⎣ 1 0.06 0.12
1 0 0
0 1 0

⎤⎦xk = Axk.

This is the matrix form we seek. It appears to have a lot in common with
the Markov chains examined earlier in this section, in that we pass from one
“state vector” to another by multiplication by a fixed “transition matrix” A.

2.3 Exercises and Problems

Exercise 1. Determine the effect of the matrix operator TA on the x-axis, y-
axis, and the points (±1,±1), where A is one of the following.

(a)
[

1 0
0 −1

]
(b) 1

5

[−3 −4
−4 3

]
(c)

[
0 −1

−1 0

]
(d)

[
1 −1
0 1

]
Exercise 2. Determine the effect of the matrix operator TA on the x-axis, y-
axis, and the points (±1,±1), where A is one of the following. Plot the images
of the squares with corners (±1,±1).

(a)
[

1 0
0 0

]
(b)

[
1 −1

−1 1

]
(c)

[
1 0
1 1

]
(d)

[
2 3
3 1

]
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Exercise 3. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2)) = (x1 + x2, 2x1, 4x2 − x1) (b) T ((x1, x2)) = (x1 + x2, 2x1x2)
(c) T ((x1, x2, x3)) = (2x3,−x1) (d) T ((x1, x2, x3)) = (x2 − x1, x3, x2 + x3)

Exercise 4. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2, x3)) = x1 − x3 + 2x2 (b) T ((x1, x2)) = (|x1| , 2x2, x1 + 3x2)
(c) T ((x1, x2)) = (x1, 2x1,−x1) (d) T ((x1, x2, x3)) = (−x3, x1, 4x2)

Exercise 5. A linear operator on R2 is defined by first applying a scaling oper-
ator with scale factors of 2 in the x-direction and 4 in the y-direction, followed
by a counterclockwise rotation about the origin of π/6 radians. Express this
operator and the operator that results from reversing the order of the scaling
and rotation as matrix operators.

Exercise 6. A linear operator on R2 is defined by first applying a shear in the
x-direction with a shear factor of 3 followed by a clockwise rotation about
the origin of π/4 radians. Express this operator and the operator that results
from reversing the order of the shear and rotation as matrix operators.

Exercise 7. A fixed-point of a linear operator TA is a vector x such that
TA (x) = x. Find all fixed points, if any, of the linear operators in Exercise 3.

Exercise 8. Find all fixed points, if any, of the linear operators in Exercise 4.

Exercise 9. Given transition matrices for discrete dynamical systems

(a)

⎡⎣ .1 .3 0
0 .4 1
.9 .3 0

⎤⎦ (b)

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ (c)

⎡⎣ .5 .3 0
0 .4 0
.5 .3 1

⎤⎦ (d)

⎡⎣ 0 0 0.9
0.5 0 0

0 0.5 0.1

⎤⎦
and initial state vector x(0) = 1

2 (1, 1, 0), calculate the first and second state
vector for each system and determine whether it is a Markov chain.

Exercise 10. For each of the dynamical systems of Exercise 9, determine by
calculation whether the system tends to a limiting steady-state vector. If so,
what is it?

Exercise 11. A digraph G has vertex set V = {1, 2, 3, 4, 5} and edge set E =
{(2, 1), (1, 5), (2, 5), (5, 4), (4, 2), (4, 3), (3, 2)}. Sketch a picture of the graph G
and find its adjacency matrix. Use this to find the power of each vertex of the
graph and determine whether this graph is dominance-directed.

Exercise 12. A digraph has the following adjacency matrix:⎡⎢⎢⎢⎢⎣
1 0 0 1 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0
1 1 0 1 0

⎤⎥⎥⎥⎥⎦ .

Sketch a picture of this digraph and compute the total number of walks in
the digraph of length at most 3.



86 2 MATRIX ALGEBRA

Exercise 13. Convert these difference equations into matrix–vector form.
(a) 2ak+3 + 3ak+2 − 4ak+1 + 5ak = 0 (b) ak+2 − ak+1 + 2ak = 1

Exercise 14. Convert these difference equations into matrix–vector form.
(a) 2ak+3 + 2ak+1 − 3ak = 0 (b) ak+2 + ak+1 − 2ak = 3

*Problem 15. Show that if A =
[

a b
c d

]
is a real 2 × 2 matrix, then the matrix

multiplication function maps a line through the origin onto a line through the
origin or a point.

Problem 16. Show how the transition matrix
[

a b
c d

]
for a Markov chain can

be described using only two variables.

*Problem 17. Use the definition of matrix multiplication function to show that
if TA = TB , then A = B.

Problem 18. Show that if the state vector x(k) = (ak, bk, ck) in a Markov chain
is a probability distribution vector, then so is x(k+1).

Problem 19. Suppose that in Example 2.24 you invest $1,000 initially (the
zeroth year) and no further amounts. Make a table of the value of your in-
vestment for years 0 to 12. Also include a column that calculates the annual
interest rate that your investment is earning each year, based on the current
and previous year’s values. What conclusions do you draw? You will need a
computer or calculator for this exercise.

2.4 Special Matrices and Transposes

There are certain types of matrices that are so important that they have
acquired names of their own. We are going to introduce some of these in
this section, as well as one more matrix operation that has proved to be a
very practical tool in matrix analysis, namely the operation of transposing a
matrix.

Elementary Matrices and Gaussian Elimination

We are going to show a new way to execute the elementary row operations
used in Gaussian elimination. Recall the shorthand we used:

• Eij : The elementary operation of switching the ith and jth rows of the
matrix.

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c.
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• Eij(d): The elementary operation of adding d times the jth row to the ith
row.

From now on we will use the very same symbols to represent matrices. The
size of the matrix will depend on the context of our discussion, so the notation
is ambiguous, but it is still very useful.

An elementary matrix of size n is obtained by performing the correspond- Elementary
Matrixing elementary row operation on the identity matrix In. We denote the re-

sulting matrix by the same symbol as the corresponding row operation.

Example 2.25. Describe the following elementary matrices of size n = 3:
(a) E13(−4) (b) E21(3) (c) E23 (d) E1( 1

2 )

Solution. We start with

I3 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

For part (a) we add −4 times the 3rd row of I3 to its first row to obtain

E13(−4) =

⎡⎣1 0 −4
0 1 0
0 0 1

⎤⎦ .

For part (b) add 3 times the first row of I3 to its second row to obtain

E21(3) =

⎡⎣1 0 0
3 1 0
0 0 1

⎤⎦ .

For part (c) interchange the second and third rows of I3 to obtain that

E23 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ .

Finally, for part (d) we multiply the first row of I3 by 1
2 to obtain

E1

(
1
2

)
=

⎡⎣ 1
2 0 0
0 1 0
0 0 1

⎤⎦ . �

What good are these matrices? One can see that the following fact is true:

Theorem 2.4. Let C = BA be a product of two matrices and perform an ele-
mentary row operation on C. Then the same result is obtained if one performs
the same elementary operation on the matrix B and multiplies the result by
A on the right.
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We won’t give a formal proof of this statement, but it isn’t hard to see why it
is true. For example, suppose one interchanges two rows, say the ith and jth,
of C = BA to obtain a new matrix D. How do we get the ith or jth row of C?
Answer: multiply the corresponding row of B by the matrix A. Therefore, we
would obtain D by interchanging the ith and jth rows of B and multiplying
the result by the matrix A, which is exactly what the theorem says. Similar
arguments apply to the other elementary operations.

Now take B = I, and we see from the definition of elementary matrix and
Theorem 2.4 that the following is true.

Corollary 2.1. If an elementary row operation is performed on a matrix A
to obtain a matrix A′, then A′ = EA, where E is the elementary matrix
corresponding to the elementary row operation performed.

The meaning of this corollary is that we accomplish an elementary row oper-
ation by multiplying by the corresponding elementary matrix on the left. Of
course, we don’t need elementary matrices to accomplish row operations; but
they give us another perspective on row operations.Elementary

Operations as
Matrix

Multiplication

Example 2.26. Express these calculations of Example 1.16 in matrix product
form: [

2 −1 1
4 4 20

]−−→
E12

[
4 4 20
2 −1 1

]−−−−−→
E1 (1/4)

[
1 1 5
2 −1 1

]
−−−−−−→
E21 (−2)

[
1 1 5
0 −3 −9

]−−−−−−−→
E2 (−1/3)

[
1 1 5
0 1 3

]−−−−−−→
E12 (−1)

[
1 0 2
0 1 3

]
.

Solution. One point to observe: the order of elementary operations. We com-
pose the elementary matrices on the left in the same order that the operations
are done. Thus we may state the above calculations in the concise form[

1 0 2
0 1 3

]
= E12 (−1)E2 (−1/3)E21 (−2)E1 (1/4) E12

[
2 −1 1
4 4 20

]
. �

It is important to read the preceding line carefully and understand how it
follows from the long form above. This conversion of row operations to matrix
multiplication will prove to be very practical in the next section.

Some Matrices with Simple Structure

Certain types of matrices have already turned up in our discussions. For exam-
ple, the identity matrices are particularly easy to deal with. Another example
is the reduced row echelon form. So let us classify some simple matrices and
attach names to them. The simplest conceivable matrices are zero matrices.
We have already seen that they are important in matrix addition arithmetic.
What’s next? For square matrices, we have the following definitions, in as-
cending order of complexity.
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Definition 2.11. Let A = [aij ] be a square n × n matrix. Then A is Simple
Structure
Matrices

• Scalar if aij = 0 and aii = ajj for all i 
= j. (Equivalently: A = cIn for
some scalar c, which explains the term “scalar.”)

• Diagonal if aij = 0 for all i 
= j. (Equivalently: off-diagonal entries of A
are 0.)

• (Upper) triangular if aij = 0 for all i > j. (Equivalently: subdiagonal
entries of A are 0.)

• (Lower) triangular if aij = 0 for all i < j. (Equivalently: superdiagonal
entries of A are 0.)

• Triangular if the matrix is upper or lower triangular.
• Strictly triangular if it is triangular and the diagonal entries are also zero.
• Tridiagonal if aij = 0 when j > i + 1 or j < i − 1. (Equivalently: entries

off the main diagonal, first subdiagonal, and first superdiagonal are zero.)

The index conditions that we use above have
simple interpretations. For example, the entry aij

with i > j is located further down than over, since
the row number is larger than the column number.
Hence, it resides in the “lower triangle” of the ma-
trix. Similarly, the entry aij with i < j resides in
the “upper triangle.” Entries aij with i = j reside
along the main diagonal of the matrix. See Fig-
ure 2.6 for a picture of these triangular regions of
the matrix.

i < j

i > j

i = j

Fig. 2.6: Matrix regions.

Example 2.27. Classify the following matrices (elementary matrices are un-
derstood to be 3 × 3) in the terminology of Definition 2.11.

(a)

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦ (b)

⎡⎣ 2 0 0
0 2 0
0 0 2

⎤⎦ (c)

⎡⎣1 1 2
0 1 4
0 0 2

⎤⎦ (d)

⎡⎣0 0 0
1 −1 0
3 2 2

⎤⎦

(e)

⎡⎣0 2 3
0 0 4
0 0 0

⎤⎦ (f) E21 (3) (g) E2 (−3) (h)

⎡⎢⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎥⎦
Solution. Notice that (a) is not scalar, since diagonal entries differ from each
other, but it is a diagonal matrix, since the off-diagonal entries are all 0. On
the other hand, the matrix of (b) is really just 2I3, so this matrix is a scalar
matrix. Matrix (c) has all terms below the main diagonal equal to 0, so this
matrix is triangular and, specifically, upper triangular. Similarly, matrix (d)
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is lower triangular. Matrix (e) is clearly upper triangular, but it is also strictly
upper triangular since the diagonal terms themselves are 0. Finally, we have

E21(3) =

⎡⎣ 1 0 0
3 1 0
0 0 1

⎤⎦ and E2(−3) =

⎡⎣1 0 0
0 −3 0
0 0 1

⎤⎦ ,

so that E21(3) is (lower) triangular and E2(−3) is a diagonal matrix. Matrix
(h) comes from Example 1.3, where we saw that an approximation to a certain
diffusion problem led to matrices of that form. Moreover, if we want more
accurate solutions to the original problem, we would need to solve systems
with a similar, but larger, coefficient matrix. This matrix is clearly tridiagonal.
In fact, note that the matrices of (a), (b), (f), and (g) also can be classified
as tridiagonal. ��

Block Matrices

Another type of matrix that occurs frequently enough to be discussed is a
block matrix. Actually, we already used the idea of blocks when we described
the augmented matrix of the system Ax = b as the matrix Ã = [A |b]. We
say that Ã has the block, or partitioned, form [A,b]. What we are really doing
is partitioning the matrix Ã by inserting a vertical line between elements.
There is no reason we couldn’t partition by inserting more vertical lines or
horizontal lines as well, and this partitioning leads to the blocks. The main
point to bear in mind when using the block notation is that the blocks mustBlock

Notation be correctly sized so that the resulting matrix makes sense. The main virtue
of the block form that results from partitioning is that for purposes of matrix
addition or multiplication, we can treat the blocks rather like scalars, provided
the addition or multiplication that results makes sense. We will use this idea
from time to time without fanfare. One could go through a formal description
of partitioning and proofs; we won’t. Rather, we’ll show how this idea can be
used by example.

Example 2.28. Use block multiplication to simplify the following multiplica-
tion: ⎡⎣ 1 2 0 0

3 4 0 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

0 0 2 1
0 0 1 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

Solution. The blocking we want to use makes the column numbers of the
blocks on the left match the row numbers of the blocks on the right and looks
like this: ⎡⎢⎢⎣ 1 2

3 4
0 0
0 0

0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0 0
0 0

2 1
−1 1

0 0
0 0

1 0
0 1

⎤⎥⎥⎥⎥⎦ .
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We see that these submatrices are built from zero matrices and these
blocks:

A =
[

1 2
3 4

]
, B =

[
1 0

]
, C =

[
2 1
−1 1

]
, I2 =

[
1 0
0 1

]
.

Now we can work this product out by interpreting it as[
A 0
0 B

] [
0 C
0 I2

]
=

[
A · 0 + 0 · 0 A · C + 0 · I2
0 · 0 + B · 0 0 · C + B · I2

]
=

⎡⎣0 0 0 3
0 0 2 7
0 0 1 0

⎤⎦ . �

For another (important!) example of block arithmetic, examine Exam-
ple 2.9 and the discussion following it. There we view a matrix as blocked into
its respective columns, and a column vector as blocked into its rows, to obtain

Ax = [a1,a2,a3]

⎡⎣x1
x2
x3

⎤⎦ = a1x1 + a2x2 + a3x3.

Transpose of a Matrix

Sometimes we prefer to work with a different form of a given matrix that
contains the same information. Transposes are operations that allow us to do
that. The idea is simple: interchange rows and columns. It turns out that for
complex matrices, there is an analogue that is not quite the same thing as
transposing, though it yields the same result when applied to real matrices.
This analogue is called the conjugate (Hermitian) transpose. Here are the
appropriate definitions.

Definition 2.12. Let A = [aij ] be an m × n matrix with (possibly) complex
entries. Then the transpose of A is the n × m matrix AT obtained by inter- Transpose and

Conjugate
Matrices

changing the rows and columns of A, so that the (i, j)th entry of AT is aji.
The conjugate of A is the matrix A = [aij ] . Finally, the conjugate (Hermitian)
transpose of A is the matrix A∗ = A

T
.

Notice that in the case of a real matrix (that is, a matrix with real entries)
A there is no difference between transpose and conjugate transpose, since in
this case A = A. Consider these examples.

Example 2.29. Compute the transpose and conjugate transpose of the fol-
lowing matrices:

(a)
[

1 0 2
0 1 1

]
, (b)

[
2 1
0 3

]
, (c)

[
1 1 + i
0 2i

]
.

Solution. For matrix (a) we have[
1 0 2
0 1 1

]∗
=

[
1 0 2
0 1 1

]T

=

⎡⎣1 0
0 1
2 1

⎤⎦ .
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Notice, by the way, how the dimensions of a transpose get switched from the
original.

For matrix (b) we have[
2 1
0 3

]∗
=

[
2 1
0 3

]T

=
[

2 0
1 3

]
,

and for matrix (c) we have[
1 1 + i
0 2i

]∗
=

[
1 0

1 − i −2i

]
,

[
1 1 + i
0 2i

]T

=
[

1 0
1 + i 2i

]
.

In this case, transpose and conjugate transpose are not the same. ��
Even when dealing with vectors alone, the transpose notation is handy.

For example, there is a bit of terminology that comes from tensor analysis
(a branch of higher linear algebra used in many fields including differential
geometry, engineering mechanics, and relativity) that can be expressed very
concisely with transposes:

Definition 2.13. Let u and v be column vectors of the same size, say n × 1.Inner and
Outer

Products
Then the inner product of u and v is the scalar quantity uT v, and the outer
product of u and v is the n × n matrix uvT .

Example 2.30. Compute the inner and outer products of the vectors

u =

⎡⎣ 2
−1

1

⎤⎦ and v =

⎡⎣ 3
4
1

⎤⎦ .

Solution. Here we have the inner product

uT v = [2,−1, 1]

⎡⎣ 3
4
1

⎤⎦ = 2 · 3 + (−1)4 + 1 · 1 = 3,

while the outer product is

uvT =

⎡⎣ 2
−1

1

⎤⎦ [3, 4, 1] =

⎡⎣ 2 · 3 2 · 4 2 · 1
−1 · 3 −1 · 4 −1 · 1

1 · 3 1 · 4 1 · 1

⎤⎦ =

⎡⎣ 6 8 2
−3 −4 −1

3 4 1

⎤⎦ . �

Here are a few basic laws relating transposes to other matrix arithmetic
that we have learned. These laws remain correct if transpose is replaced by
conjugate transpose, with one exception: (cA)∗ = cA∗.

Let A and B be matrices of the appropriate sizes so that the following
operations make sense, and c a scalar.

(1) (A + B)T = AT + BT

(2) (AB)T = BT AT

(3) (cA)T = cAT

(4) (AT )T = A

Laws of
Matrix

Transpose
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These laws are easily verified directly from definition. For example, if A =
[aij ] and B = [bij ] are m × n matrices, then we have that (A + B)T is the
n × m matrix given by

(A + B)T = [aij + bij ]
T = [aji + bji]

= [aji] + [bji]

= AT + BT .

The other laws are proved similarly.
We will require explicit formulas for transposes of the elementary matrices

in some later calculations. Notice that the matrix Eij (c) is a matrix with 1’s
on the diagonal and 0’s elsewhere, except that the (i, j)th entry is c. Therefore,
transposing switches the entry c to the (j, i)th position and leaves all other
entries unchanged. Hence Eij (c)T = Eji (c). With similar calculations we
have these facts: Transposes of

Elementary
Matrices• ET

ij = Eij

• Ei (c)T = Ei (c)
• Eij (c)T = Eji (c)

These formulas have an interesting application. Up to this point we have Elementary
Column
Operations

considered only elementary row operations. However, there are situations in
which elementary column operations on the columns of a matrix are useful. If
we want to use such operations, do we have to start over, reinvent elementary
column matrices, and so forth? The answer is no and the following example
gives an indication of why the transpose idea is useful. This example shows
how to do column operations in the language of matrix arithmetic. Here’s
the basic idea: suppose we want to do an elementary column operation on a
matrix A corresponding to elementary row operation E to get a new matrix
B from A. To do this, turn the columns of A into rows, do the row operation,
and then transpose the result back to get the matrix B that we want. In
algebraic terms

B =
(
EAT

)T
=

(
AT

)T
ET = AET .

So all we have to do to perform an elementary column operation is multiply
by the transpose of the corresponding elementary row matrix on the right.
Thus we see that the transposes of elementary row matrices could reasonably Elementary

Column
Matrix

be called elementary column matrices.

Example 2.31. Let A be a given matrix. Suppose that we wish to express the
result B of swapping the second and third columns of A, followed by adding
−2 times the first column to the second, as a product of matrices. How can
this be done? Illustrate the procedure with the matrix

A =
[

1 2 −1
1 −1 2

]
.
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Solution. Apply the preceding remark twice to obtain that

B = AET
23E21 (−2)T = AE23E12 (−2) .

Thus we have

B =
[

1 2 −1
1 −1 2

]⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦⎡⎣1 −2 0
0 1 0
0 0 1

⎤⎦
as a matrix product. ��

A very important type of special matrix is one that is invariant under
the operation of transposing. These matrices turn up naturally in applied
mathematics. They have some very remarkable properties that we will study
in Chapters 4, 5, and 6.

Definition 2.14. The matrix A is said to be symmetric if AT = A and Hermi-
tian if A∗ = A. (Equivalently, aij = aji and aij = aji, for all i, j, respectively.)Symmetric

and Hermitian
Matrices From the laws of transposing elementary matrices above we see right away

that Eij and Ei(c) supply us with examples of symmetric matrices. Here are
a few more.

Example 2.32. Are the following matrices symmetric or Hermitian?

(a)
[

1 1 + i
1 − i 2

]
, (b)

[
2 1
1 3

]
, (c)

[
1 1 + i

1 + i 2i

]
Solution. For matrix (a) we have[

1 1 + i
1 − i 2

]∗
=

[
1 1 + i

1 − i 2

]T

=
[

1 1 + i
1 − i 2

]
.

Hence this matrix is Hermitian. However, it is not symmetric since the (1, 2)th
and (2, 1)th entries differ. Matrix (b) is easily seen to be symmetric by inspec-
tion. Matrix (c) is symmetric since the (1, 2)th and (2, 1)th entries agree, but
it is not conjugate Hermitian since[

1 1 + i
1 − i 2i

]∗
=

[
1 1 + i

1 − i 2i

]T

=
[

1 1 + i
1 − i −2i

]
,

and this last matrix is clearly not equal to matrix (c). ��
Example 2.33. Consider the quadratic form (this means a homogeneous
second-degree polynomial in the variables)

Q(x, y, z) = x2 + 2y2 + z2 + 2xy + yz + 3xz.

Express this function in terms of matrix products and transposes.
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Solution. Write the quadratic form as

x(x + 2y + 3z) + y(2y + z) + z2 =
[
x y z

] ⎡⎣x + 2y + 3z
2y + z

z

⎤⎦
=

[
x y z

] ⎡⎣1 2 3
0 2 1
0 0 1

⎤⎦⎡⎣x
y
z

⎤⎦ = xT Ax,

where

x = (x, y, z) and A =

⎡⎣ 1 2 3
0 2 1
0 0 1

⎤⎦. ��

Rank of the Matrix Transpose

A basic question is how the rank of a matrix transpose (or Hermitian trans-
pose) is connected to the rank of the matrix. There is a nice answer. We will
focus on transposes. First we need the following theorem.

Theorem 2.5. Let A, B be matrices such that the product AB is defined.
Then

rankAB ≤ rankA.

Proof. Let E be a product of elementary matrices such that EA = R, where
R is the reduced row echelon form of A. If rankA = r, then the first r rows
of R have leading entries of 1, while the remaining rows are zero rows. Also,
we saw in Chapter 1 that elementary row operations do not change the rank
of a matrix, since according to Corollary 1.1 they do not change the reduced
row echelon form of a matrix. Therefore,

rankAB = rankE(AB) = rank(EA)B = rankRB.

Now the matrix RB has the same number of rows as R, and the first r of these
rows may or may not be nonzero, but the remaining rows must be zero rows,
since they result from multiplying columns of B by the zero rows of R. If we
perform elementary row operations to reduce RB to its reduced row echelon
form we will possibly introduce more zero rows than R has. Consequently,
rankRB ≤ r = rankA, which completes the proof. ��
Theorem 2.6. For any matrix A, Rank

Invariant
Under
Transpose

rankA = rankAT .

Proof. As in the previous theorem, let E be a product of elementary matri-
ces such that EA = R, where R is the reduced row echelon form of A. If
rankA = r, then the first r rows of R have leading entries of 1 whose column



96 2 MATRIX ALGEBRA

numbers form an increasing sequence, while the remaining rows are zero rows.
Therefore, RT = AT ET is a matrix whose columns have leading entries of 1
and whose row numbers form an increasing sequence. Use elementary row op-
erations to clear out the nonzero entries below each column with a leading 1
to obtain a matrix whose rank is equal to the number of such leading entries,
i.e., equal to r. Thus, rankRT = r.

From Theorem 2.5 we have that rank AT ET ≤ rankAT . It follows that

rankA = rankRT = rankAT ET ≤ rankAT .

If we substitute the matrix AT for the matrix A in this inequality, we obtain
that

rankAT ≤ rank(AT )T = rankA.

It follows from these two inequalities that rankA = rankAT , which is what
we wanted to show. ��

It is instructive to see how a specific example might work out in the pre-
ceding proof. For example, R might look like this, where an x designates an
arbitrary entry:

R =

⎡⎢⎢⎣
1 0 x 0 x
0 1 x 0 x
0 0 0 1 x
0 0 0 0 0

⎤⎥⎥⎦ ,

so that RT would given by

RT =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
x x 0 0
0 0 1 0
x x x 0

⎤⎥⎥⎥⎥⎦ .

Thus if we use elementary row operations to zero out the entries below a
column pivot, all entries to the right and below this pivot are unaffected by
these operations. Now start with the leftmost column and proceed to the right,
zeroing out all entries under each column pivot. The result is a matrix that
looks like ⎡⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Now swap rows to move the zero rows to the bottom if necessary, and we see
that the reduced row echelon form of RT has exactly as many nonzero rows
as did R, that is, r nonzero rows.

A first application of this important fact is to give a fuller picture of the
rank of a product of matrices than that given by Theorem 2.5:
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Corollary 2.2. If the product AB is defined, then Rank of
Matrix
ProductrankAB ≤ min{rankA, rankB}.

Proof. We know from Theorem 2.5 that

rankAB ≤ rankA and rankBT AT ≤ rankBT .

Since BT AT = (AB)T , Theorem 2.6 tells us that

rankBT AT = rankAB and rankBT = rankB.

Put all this together, and we have

rankAB = rankBT AT ≤ rankBT = rankB.

It follows that rankAB is at most the smaller of rank A and rankB, which is
what the corollary asserts. ��

2.4 Exercises and Problems

Exercise 1. Convert the following 3 × 3 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) E23 (3) (b) E13 (c) E3 (2) (d) ET

23 (−1)

(e)

⎡⎣1 3 0
0 1 0
0 0 1

⎤⎦ (f)

⎡⎣ 1 0 0
0 1 0

−a 0 1

⎤⎦ (g)

⎡⎣1 0 0
0 3 0
0 0 1

⎤⎦ (h)

⎡⎣1 0 0
0 1 0
2 0 1

⎤⎦
Exercise 2. Convert the following 4 × 4 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) ET

24 (b) E4 (−1) (c) ET
3 (2) (d) E14 (−1)

(e)

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ (f)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

⎤⎥⎥⎦ (g)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

−3 0 0 1

⎤⎥⎥⎦
Exercise 3. Describe the effect of multiplying the 3×3 matrix A by each matrix
in Exercise 1 on the left.

Exercise 4. Describe the effect of multiplying the 4×4 matrix A by each matrix
in Exercise 2 on the right.

Exercise 5. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)
[

1 2
1 3

]
(b)

⎡⎣ 1 1 0
0 1 1
0 2 2

⎤⎦ (c)
[

1 1 0
1 1 −2

]
(3)

[
0 1 + i i
1 0 −2

]
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Exercise 6. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)

⎡⎣2 1
0 1
0 2

⎤⎦ (b)

⎡⎣ 1 1 1
0 0 0
1 2 2

⎤⎦ (c)
[

1 1
1 1 + i

]
(d)

[
2 2 0 2
1 1 −4 3

]

Exercise 7. Identify the minimal list of simple structure descriptions that apply
to these matrices (e.g., if “upper triangular,” omit “triangular.”)

(a)

⎡⎣0 0 0
0 0 3
0 0 0

⎤⎦ (b)

⎡⎢⎢⎣
2 1 4 2
0 2 1 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦ (c) I3 (d)
[

1 0
0 −1

]
(e)

[
2 0
3 1

]

Exercise 8. Identify the minimal list of simple structure descriptions that apply
to these matrices.

(a)
[

2 1
3 2

]
(b)

⎡⎢⎢⎣
2 0 0 0
1 2 0 0
0 0 1 0
1 0 1 1

⎤⎥⎥⎦ (c)

⎡⎣0 0 0
0 0 3
0 0 0

⎤⎦ (d)

⎡⎢⎢⎣
−2 1 0 0

1 −2 1 0
0 1 −2 1
0 0 1 −2

⎤⎥⎥⎦
Exercise 9. Identify the appropriate blocking and calculate the matrix product
AB using block multiplication, where

A =

⎡⎢⎢⎣
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
4 1 2 1 3

⎤⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0 0 −1 0
0 0 0 −1
0 0 1 2
2 2 −1 1
1 1 3 2

⎤⎥⎥⎥⎥⎦ ,

and as many submatrices that form scalar matrices or zero matrices are
blocked out as possible.

Exercise 10. Confirm that sizes are correct for block multiplication and calcu-
late the matrix product AB, where

A =
[

R 0
S T

]
, B =

[
U
V

]
, R =

[
1 1 0

]
, S =

[
1 1 1
1 2 1

]
, T =

[
1 −1
2 2

]
, U =⎡⎣1 0

1 2
1 1

⎤⎦, and V =
[

3 1
0 1

]
.

Exercise 11. Express the matrix

⎡⎣ 1 2 1
0 0 0
2 4 2

⎤⎦ as an outer product of two vectors.
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Exercise 12. Express the rank-two matrix

⎡⎣1 −1 1
0 0 0
2 0 0

⎤⎦ as the sum of two outer

products of vectors.

Exercise 13. Compute the transpose and conjugate transpose of the following
matrices and determine which are symmetric or Hermitian.

(a)
[
1 −3 2

]
(b)

⎡⎣ 2 1
0 3
1 −4

⎤⎦ (c)
[

1 i
−i 2

]
(d)

⎡⎣1 1 3
1 0 0
3 0 2

⎤⎦
Exercise 14. Determine which of the following matrices are symmetric or Her-
mitian.

(a)

⎡⎣ 1 −3 2
−3 0 0

2 0 1

⎤⎦ (b)
[

1 1 1
1 1 1

]
(c)

[
i 1

−1 i

]
(d)

⎡⎣1 0 0
0 4 1
0 1 2

⎤⎦
Exercise 15. Answer True/False.
(a) Eij (c)T = Eji (c).
(b) Every elementary matrix is symmetric.
(c) The rank of the matrix A may differ from the rank of AT .
(d) Every real diagonal matrix is Hermitian.
(e) For matrix A and scalar c, (cA)∗ = cA∗.

Exercise 16. Answer True/False and give reasons.
(a) For matrices A, B, (AB)T = BT AT .
(b) Every diagonal matrix is symmetric.
(c) rank (AB) = min {rankA, rankB}.
(d) Every diagonal matrix is Hermitian.
(e) Every tridiagonal matrix is symmetric.

Exercise 17. Express the quadratic form Q(x, y, z) = 2x2 + y2 + z2 + 2xy +
4yz − 6xz in the matrix form xT Ax, where A has as few nonzero entries as
possible.

Exercise 18. Express the quadratic form Q(x, y, z) = x2 + y2 − z2 + 4yz − 6xz
in the matrix form xT Ax, where A is a lower triangular matrix.

Exercise 19. Let A =
[−2 1 − 2i

0 3

]
and verify that both A∗A and AA∗ are

Hermitian.

Exercise 20. A square matrix A is called normal if A∗A = AA∗. Determine
which of the following matrices are normal.

(a)
[

2 i
1 2

]
(b)

⎡⎣ 1 0 0
0 1 −1
0 −1 1

⎤⎦ (c)
[

1 i
1 2 + i

]
(d)

[
1 −√

3√
3 1

]
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Problem 21. Show that a triangular and symmetric matrix is a diagonal ma-
trix.

*Problem 22. Let A and C be square matrices and suppose that the matrix

M =
[

A B
0 C

]
is in block form. Show that for some matrix D, M2 =

[
A2 D
0 C2

]
.

Problem 23. Show that if C =
[

A 0
0 B

]
in block form, then rankC = rankA +

rankB.

Problem 24. Prove from the definition that (AT )T = A.

Problem 25. Let A be an m × n matrix. Show that both A∗A and AA∗ are
Hermitian.

Problem 26. Use Corollary 2.2 to prove that the outer product of any two
vectors is either a rank-one matrix or zero.

Problem 27. Let A be a square real matrix. Show the following.
(a) The matrix B = 1

2

(
A + AT

)
is symmetric.

(b) The matrix C = 1
2

(
A − AT

)
is skew-symmetric (a matrix C is skew-

symmetric if CT = −C.)
(c) The matrix A can be expressed as the sum of a symmetric matrix and a
skew-symmetric matrix.
(d) With B and C as in parts (a) and (b), show that for any vector x of
conformable size, xT Ax = xT Bx.

(e) Express A =

⎡⎣ 2 2 −6
0 1 4
0 0 1

⎤⎦ as a sum of a symmetric and a skew-symmetric

matrix.

Problem 28. Find all 2 × 2 idempotent upper triangular matrices A (idempo-
tent means A2 = A).

*Problem 29. Let D be a diagonal matrix with distinct entries on the diagonal
and B any other matrix of the same size. Show that DB = BD if and only if
B is diagonal.

Problem 30. Show that an n×n strictly upper triangular matrix N is nilpotent.
(It might help to see what happens in a 2 × 2 and a 3 × 3 case first.)

Problem 31. Use Problem 27 to show that every quadratic form Q(x) = xT Ax
defined by matrix A can be defined by a symmetric matrix B = (A + AT )/2
as well. Apply this result to the matrix of Example 2.33.

*Problem 32. Suppose that A = B +C, where B is a symmetric matrix and C
is a skew-symmetric matrix. Show that B = 1

2 (A + AT ) and C = 1
2 (A − AT ).
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2.5 Matrix Inverses

Definitions

We have seen that if we could make sense of “1/A,” then we could write the
solution to the linear system Ax = b as simply x = (1/A)b. We are going
to tackle this problem now. First, we need a definition of the object that we
are trying to uncover. Notice that “inverses” could work only on one side. For
example, [

1 2
] [−1

1

]
= [1] =

[
2 3

] [−1
1

]
,

which suggests that both
[
1 2

]
and

[
2 3

]
should qualify as left inverses of the

matrix
[−1

1

]
], since multiplication on the left by them results in a 1×1 identity

matrix. As a matter of fact, right and left inverses are studied and do have
applications. But they have some unusual properties such as nonuniqueness.
We are going to focus on a type of inverse that is closer to the familiar inverses
in fields of numbers, namely, two-sided inverses. These make sense only for
square matrices, so the nonsquare example above is ruled out.

Definition 2.15. Let A be a square matrix. Then a (two-sided) inverse for Invertible
MatrixA is a square matrix B of the same size as A such that AB = I = BA. If such

a B exists, then the matrix A is said to be invertible.

Of course, any nonsquare matrix is noninvertible. Square matrices are classi-
fied as either “singular,” i.e., noninvertible, or “nonsingular,” i.e., invertible. Nonsingular

MatrixSince we will mostly be concerned with two-sided inverses, the unqualified
term “inverse” will be understood to mean a “two-sided inverse.” Notice that
this definition is actually symmetric in A and B. In other words, if B is an
inverse for A, then A is an inverse for B.

Examples of Inverses

Example 2.34. Show that B =
[

1 1
1 2

]
is an inverse for A =

[
2 −1

−1 1

]
.

Solution. All we have to do is check the definition. But remember that there
are two multiplications to confirm. (We’ll show later that this isn’t necessary,
but right now we are working strictly from the definition.) We have

AB =
[

2 −1
−1 1

] [
1 1
1 2

]
=

[
2 · 1 − 1 · 1 2 · 1 − 1 · 2

−1 · 1 + 1 · 1 −1 · 1 + 1 · 2

]
=

[
1 0
0 1

]
= I

and similarly

BA =
[

1 1
1 2

] [
2 −1

−1 1

]
=

[
1 · 2 + 1 · (−1) 1 · (−1) + 1 · 1
1 · 2 + 2 · (−1) 1 · (−1) + 2 · 1

]
=

[
1 0
0 1

]
= I.

Therefore the definition for inverse is satisfied, so that A and B work as in-
verses to each other. ��
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Example 2.35. Show that the matrix A =
[

1 1
1 1

]
cannot have an inverse.

Solution. How do we get our hands on a “noninverse”? We try an indirect
approach. If A had an inverse B, then we could always find a solution to the
linear system Ax = b by multiplying each side on the left by B to obtain that
BAx = Ix = x = Bb, no matter what right-hand-side vector b we used. Yet
it is easy to come up with right-hand-side vectors for which the system has
no solution. For example, try b = (1, 2). Since the resulting system is clearly
inconsistent, there cannot be an inverse matrix B, which is what we wanted
to show. ��

The moral of this last example is that it is not enough for every entry of a
matrix to be nonzero for the matrix itself to be invertible. Our next example
contains a gold mine of invertible matrices, namely any elementary matrix we
can construct.

Example 2.36. Find formulas for inverses of all the elementary matrices.

Solution. Recall from Corollary 2.1 that left multiplication by an elementary
matrix is the same as performing the corresponding elementary row operation.
Furthermore, from the discussion following Theorem 1.2 we see the following:

• Eij : The elementary operation of switching the ith and jth rows is undone
by applying Eij . Hence

EijEij = EijEijI = I,

so that Eij works as its own inverse. (This is rather like −1, since (−1) ·
(−1) = 1.)Elementary

Matrix
Inverses

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c, is undone by applying Ei(1/c). Hence

Ei(1/c)Ei(c) = Ei(1/c)Ei(c)I = I.

• Eij(d): The elementary operation of adding d times the jth row to the ith
row is undone by applying Eij(−d). Hence

Eij(−d)Eij(d) = Eij(−d)Eij(d)I = I. �

More examples of invertible matrices:

Example 2.37. Show that if D is a diagonal matrix with nonzero diagonal
entries, then D is invertible.Diagonal

Matrix Inverse Solution. Suppose that

D =

⎡⎢⎢⎢⎣
d1 0 · · · 0
0 d2 0 0
... 0

. . .
...

0 0 · · · dn

⎤⎥⎥⎥⎦ .



2.5 Matrix Inverses 103

For a convenient shorthand, we write D = diag {d1, d2, . . . , dn} . It is easily Diagonal
Matrix
Shorthand

checked that if E = diag {e1, e2, . . . , en}, then

DE = diag {d1e1, d2e2, . . . , dnen} = diag {e1d1, e2d2, . . . , endn} = ED.

Therefore, if di 
= 0, for i = 1, . . . , n, then

diag {d1, d2, . . . , dn} diag {1/d1, 1/d2, . . . , 1/dn} = diag {1, 1, . . . , 1} = In,

which shows that diag {1/d1, 1/d2, . . . , 1/dn} is an inverse of D. ��

Laws of Inverses

Here are some of the basic laws of inverse calculations.

Let A, B, C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c
a nonzero scalar. Then
(1) (Uniqueness) If the matrix A is invertible, then it has only one

inverse, which is denoted by A−1.
(2) (Double Inverse) If A is invertible, then

(
A−1

)−1 = A.
(3) (2/3 Rule) If any two of the three matrices A, B, and AB are

invertible, then so is the third, and moreover, (AB)−1 = B−1A−1.
(4) If A is invertible, then (cA)−1 = (1/c)A−1.
(5) (Inverse/Transpose) If A is invertible, then (AT )−1 = (A−1)T and

(A∗)−1 = (A−1)∗.
(6) (Cancellation) Suppose A is invertible. If AB = AC or BA = CA,

then B = C.

Laws of
Matrix
Inverses

Notes: Observe that the 2/3 rule reverses order when taking the inverse of
a product. This should remind you of the operation of transposing a product.
A common mistake is to forget to reverse the order. Secondly, notice that the
cancellation law restores something that appeared to be lost when we first
discussed matrices. Yes, we can cancel a common factor from both sides of an
equation, but (1) the factor must be on the same side and (2) the factor must
be an invertible matrix.

Verification of Laws: Suppose that both B and C work as inverses to the
matrix A. We will show that these matrices must be identical. The associative
and identity laws of matrices yield

B = BI = B(AC) = (BA)C = IC = C.

Henceforth, we shall write A−1 for the unique (two-sided) inverse of the square Matrix Inverse
Notationmatrix A, provided of course that there is an inverse at all (remember that

existence of inverses is not a sure thing).
The double inverse law is a matter of examining the definition of inverse:
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AA−1 = I = A−1A

shows that A is an inverse matrix for A−1. Hence, (A−1)−1 = A.
Now suppose that A and B are both invertible and of the same size. Using

the laws of matrix arithmetic, we see that

AB(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and that

(B−1A−1)AB = B−1(A−1A)B = B−1IB = B−1B = I.

In other words, the matrix B−1A−1 works as an inverse for the matrix AB,
which is what we wanted to show. We leave the remaining cases of the 2/3
rule as an exercise.

Suppose that c is nonzero and perform the calculation

(cA)(1/c)A−1 = (c/c)AA−1 = 1 · I = I.

A similar calculation on the other side shows that (cA)−1 = (1/c)A−1.
Next, apply the transpose operator to the definition of inverse (equa-

tion (2.15)) and use the law of transpose products to obtain that

(A−1)T AT = IT = I = AT (A−1)T .

This shows that the definition of inverse is satisfied for (A−1)T relative to AT ,
that is, that (AT )−1 = (A−1)T , which is the inverse/transpose law. The same
argument works with conjugate transpose in place of transpose.

Finally, if A is invertible and AB = AC, then multiply both sides of this
equation on the left by A−1 to obtain that

A−1(AB) = (A−1A)B = B = A−1(AC) = (A−1A)C = C,

which is the cancellation that we want. ��
We can now extend the power notation to negative exponents. Let A be

an invertible matrix and k a positive integer. Then we writeNegative
Matrix Power

A−k = A−1A−1 · · ·A−1,

where the product is taken over k terms.
The laws of exponents that we saw earlier can now be expressed for ar-

bitrary integers, provided that A is invertible. Here is an example of how we
can use the various laws of arithmetic and inverses to carry out an inverse
calculation.

Example 2.38. Let

A =

⎡⎣ 1 2 0
0 1 1
0 0 1

⎤⎦ .

Show that (I − A)3 = 0 and use this to find A−1.
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Solution. First we calculate that

(I − A) =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ −
⎡⎣ 1 2 0

0 1 1
0 0 1

⎤⎦ =

⎡⎣0 −2 0
0 0 −1
0 0 0

⎤⎦
and check that

(I − A)3 =

⎡⎣ 0 −2 0
0 0 −1
0 0 0

⎤⎦⎡⎣0 −2 0
0 0 −1
0 0 0

⎤⎦⎡⎣0 −2 0
0 0 −1
0 0 0

⎤⎦
=

⎡⎣ 0 0 2
0 0 0
0 0 0

⎤⎦⎡⎣ 0 −2 0
0 0 −1
0 0 0

⎤⎦ =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ .

Next we do some symbolic algebra, using the laws of matrix arithmetic:

0 = (I − A)3 = (I − A)(I2 − 2A + A2) = I − 3A + 3A2 − A3.

Subtract all terms involving A from both sides to obtain that

3A − 3A2 + A3 = A · 3I − 3A2 + A3 = A(3I − 3A + A2) = I.

Since A(3I − 3A + A2) = (3I − 3A + A2)A, we see from definition of inverse
that

A−1 = 3I − 3A + A2 =

⎡⎣1 −2 2
0 1 −1
0 0 1

⎤⎦ . �

Notice that in the preceding example we were careful not to leave a “3”
behind when we factored out A from 3A. The reason is that 3+3A+A2 makes
no sense as a sum, since one term is a scalar and the other two are matrices.

Rank and Inverse Calculation

Although we can calculate a few examples of inverses such as the last example,
we really need a general procedure. So let’s get right to the heart of the
matter. How can we find the inverse of a matrix, or decide that none exists?
Actually, we already have done all the hard work necessary to understand
computing inverses. The secret is in the notions of reduced row echelon form
and rank. (Remember, we use elementary row operations to reduce a matrix
to its reduced row echelon form. Once we have done so, the rank of the matrix
is simply the number of nonzero rows in the reduced row echelon form.) Let’s
recall the results of Example 2.24:[

1 0 2
0 1 3

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1 1
4 4 20

]
.
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Now remove the last column from each of the matrices at the right of each
side and we have this result:[

1 0
0 1

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1
4 4

]
.

This suggests that if A =
[

2 −1
4 4

]
, then

A−1 = E12(−1)E2(−1/3)E21(−2)E1(1/4)E12.

To prove this, we argue in the general case as follows: let A be an n×n matrix
and suppose that by a succession of elementary row operations E1, E2, . . . , Ek,
we reduce A to its reduced row echelon form R, which happens to be I. In
the language of matrix multiplication, what we have obtained is

I = EkEk−1 · · ·E1A.

Now let B = EkEk−1 · · ·E1. By repeated application of the 2/3 rule, we see
that a product of any number of invertible matrices is invertible. Since each
elementary matrix is invertible, it follows that B is. Multiply both sides of
the equation I = BA by B−1 to obtain that B−1I = B−1 = B−1BA = A.
Therefore, A is the inverse of the matrix B, hence is itself invertible.

Here’s a practical trick for computing this product of elementary matri-
ces on the fly: form what we term the superaugmented matrix [A | I]. If weSuperaug-

mented
Matrix

perform the elementary operation E on the superaugmented matrix, we have
the same result as

E[A | I] = [EA | EI] = [EA | E].

So the matrix occupied by the I part of the superaugmented matrix is just the
product of the elementary matrices that we have used so far. Now continue
applying elementary row operations until the part of the matrix originally
occupied by A is reduced to the reduced row echelon form of A. We end up
with this schematic picture of our calculations:[

A | I
]−−−−−−−−−−→

E1, E2, . . . , Ek

[
R | B

]
,

where R is the reduced row echelon form of A and B = EkEk−1 · · ·E1 is the
product of the various elementary matrices we used, composed in the correct
order of usage. We can summarize this discussion with the following algorithm:

Given an n × n matrix A, to compute A−1:
(1) Form the superaugmented matrix Ã = [A | In].
(2) Reduce the first n columns of Ã to reduced row echelon form by

performing elementary operations on the matrix Ã resulting in the
matrix [R | B].

(3) If R = In then set A−1 = B, otherwise, A is singular and A−1 does
not exist.

Inverse
Algorithm
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Example 2.39. Use the inverse algorithm to compute the inverse of Exam-
ple 2.8,

A =

⎡⎣ 1 2 0
0 1 1
0 0 1

⎤⎦ .

Solution. Notice that this matrix is already upper triangular. Therefore, as
in Gaussian elimination, it is a bit more efficient to start with the bottom
pivot and clear out entries above in reverse order. So we compute

[A | I3] =

⎡⎣ 1 2 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

⎤⎦−−−−−→
E23(−1)

⎡⎣ 1 2 0 1 0 0
0 1 0 0 1 −1
0 0 1 0 0 1

⎤⎦−−−−−−→
E1,2(−2)

⎡⎣1 0 0 1 −2 2
0 1 0 0 1 −1
0 0 1 0 0 1

⎤⎦ .

We conclude that A is indeed invertible and

A−1 =

⎡⎣ 1 −2 2
0 1 −1
0 0 1

⎤⎦ . �

There is a simple formula for the inverse of a 2×2 matrix A =
[

a b
c d

]
. Set

D = ad − bc. It is easy to verify that if D 
= 0, then Two by Two
Inverse

A−1 =
1
D

[
d −b

−c a

]
.

Example 2.40. Use the 2×2 inverse formula to find the inverse of the matrix

A =
[

1 −1
1 2

]
, and verify that the same answer results if we use the inverse

algorithm.

Solution. First we apply the inverse algorithm:[
1 −1 1 0
1 2 0 1

]−−−−−−→
E21(−1)

[
1 −1 1 0
0 3 −1 1

]−−−−−→
E3(1/3)

[
1 −1 1 0
0 1 −1/3 1/3

]
−−−−→
E12(1)

[
1 0 2/3 1/3
0 1 −1/3 1/3

]
.

Thus we have found that[
1 −1
1 2

]−1

= 1
3

[
2 1

−1 1

]
.

To apply the inverse formula, calculate D = 1 ·2−1 · (−1) = 3. Swap diagonal
entries of A, negate the off-diagonal entries, and divide by D to get the same
result as in the preceding equation for the inverse. ��

The formula of the preceding example is well worth memorizing, since we
will frequently need to find the inverse of a 2 × 2 matrix. Notice that in order
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for it to make sense, we have to have D nonzero. The number D is called the
determinant of the matrix A. We will have more to say about this number in
the next section. It is fairly easy to see why A must have D 
= 0 in order for
its inverse to exist if we look ahead to the next theorem. Notice in the above
elementary operation calculations that if D = 0 then elementary operations
on A lead to a matrix with a row of zeros. Therefore, the rank of A will be
smaller than 2. Here is a summary of our current knowledge of the invertibility
of a square matrix.

Theorem 2.7. The following are equivalent conditions on the square n × nConditions for
Invertibility matrix A:

(1) The matrix A is invertible.
(2) There is a square matrix B such that BA = I.
(3) The linear system Ax = b has a unique solution for every right-hand-side

vector b.
(4) The linear system Ax = b has a unique solution for some right-hand-side

vector b.
(5) The linear system Ax = 0 has only the trivial solution.
(6) rankA = n.
(7) The reduced row echelon form of A is In.
(8) The matrix A is a product of elementary matrices.
(9) There is a square matrix B such that AB = I.

Proof. The method of proof is to show that each of conditions (1)–(7) implies
the next, and that condition (8) implies (1). This connects (1)–(8) in a circle,
so that any one condition will imply any other and therefore all are equivalent
to each other. Finally, we show that (9) is equivalent to (1)–(8). Here is our
chain of reasoning:

(1) implies (2): Assume A is invertible. Then the choice B = A−1 certainly
satisfies condition (2).

(2) implies (3): Assume (2) is true. Given a system Ax = b, we can
multiply both sides on the left by B to get that Bb = BAx = Ix = x.
So there is only one solution, if any. On the other hand, if the system were
inconsistent then we would have rankA < n. By Corollary 2.2, rankBA < n,
contradicting the fact that rank In = n. Hence, there is a solution, which
proves (3).

(3) implies (4): This statement is obvious.
(4) implies (5): Assume (4) is true. Say the unique solution to Ax = b is

x0. If the system Ax = 0 had a nontrivial solution, say z, then we could add
z to x0 to obtain a different solution x0 + z of the system Ax = b (check:
A(z + x0) = Az + Ax0 = 0 + b = b). This is impossible since (4) is true, so
(5) follows.

(5) implies (6): Assume (5) is true. We know from Theorem 1.5 that the
consistent system Ax = 0 has a unique solution precisely when the rank of A
is n. Hence (6) must be true.
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(6) implies (7): Assume (6) is true. The reduced row echelon form of A is
the same size as A, that is, n × n, and must have a row pivot entry 1 in every
row. Also, the pivot entry must be the only nonzero entry in its column. This
exactly describes the matrix In, so that (7) is true.

(7) implies (8): Assume (7) is true. We know that the matrix A is reduced
to its reduced row echelon form by applying a sequence of elementary opera-
tions, or what amounts to the same thing, by multiplying the matrix A on the
left by elementary matrices E1, E2, . . . , Ek, say. Then E1E2 · · ·EkA = I. But
we know from Example 2.36 that each elementary matrix is invertible and
that their inverses are themselves elementary matrices. By successive multi-
plications on the left we obtain that A = E−1

k E−1
k−1 · · ·E−1

1 I, showing that A
is a product of elementary matrices, which is condition (8).

(8) implies (1): Assume (8) is true. Repeated application of the 2/3 rule
shows that the product of any number of invertible matrices is itself invertible.
Since elementary matrices are invertible, condition (1) must be true.

(9) is equivalent to (1): Assume (1) is true. Then A is invertible and the
choice B = A−1 certainly satisfies condition (9). Conversely, if (9) is true, then
IT = I = (AB)T = BT AT , so that AT satisfies (2), which is equivalent to (1).
However, we already know that if a matrix is invertible, so is its transpose (Law
(5) of Matrix Inverses), so

(
AT

)T = A is also invertible, which is condition
(1). ��

Notice that Theorem 2.7 relieves us of the responsibility of checking that a
square one-sided inverse of a square matrix is a two-sided inverse: this is now
automatic in view of conditions (2) and (9). Another interesting consequence
of this theorem that has been found to be useful is an either/or statement, so
it will always have something to say about any square linear system. This type
of statement is sometimes called a Fredholm alternative. Many theorems go by
this name, and we’ll state another one in Chapter 5. Notice that a matrix is
not invertible if and only if one of the conditions of the theorem fails. Certainly
it is true that a square matrix is either invertible or not invertible. That’s all
the Fredholm alternative really says, but it uses the equivalent conditions (3)
and (5) of Theorem 2.7 to say it in a different way:

Corollary 2.3. Given a square linear system Ax = b, either the system has Fredholm
Alternativea unique solution for every right-hand-side vector b or there is a nonzero

solution x = x0 to the homogeneous system Ax = 0.

We conclude this section with an application to the problem of solving non-
linear equations. Although we focus on two equations in two unknowns, the
same ideas can be extended to any number of equations in as many unknowns.

Recall from calculus that we could solve the one-variable equation f(x) = 0
for a solution point x1 at which f(x1) = 0 from a given “nearby” point x0 by
setting dx = x1 − x0, and assuming that the change in f is
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∆f = f(x1) − f(x0) = 0 − f(x0)
≈ df = f ′(x0) dx = f ′(x0)(x1 − x0).

Now solve for x1 in the equation −f(x0) = f ′(x0)(x1−x0) and get the equation

x1 = x0 − f(x0)
f ′(x0)

.

Replace 1 by n + 1 and 0 by n to obtain the famous Newton formula

xn+1 = xn − f(xn)
f ′(xn)

. (2.2)

The idea is to start with x0,use the formula to get x1 and if f(x1) is not
close enough to 0, then repeat the calculation with x1 in place of x0, and so
forth until a satisfactory value of x = xn is reached. How does this relate to
a two-variable problem? We illustrate the basic idea in two variables.

Example 2.41. Describe concisely an algorithm analogous to Newton’s method
in one variable to solve the two-variable problemNewton’s

Method for
Systems x2 + sin (πxy) = 1

x + y2 + ex+y = 3.

Solution. Our problem can be written as a system of two (nonlinear) equa-
tions in two unknowns, namely

f (x, y) = x2 + sin (πxy) − 1 = 0

g (x, y) = x + y2 + ex+y − 3 = 0.

Now we can pull the same trick with differentials as in the one-variable prob-
lem by setting dx = x1 −x0, dy = y1 −y0, where f (x1, y1) = 0, approximating
the change in both f and g by total differentials, and recalling the definition
of these total differentials in terms of partial derivatives. This leads to the
system

fx (x0, y0) dx + fy (x0, y0) dy = −f ((x0, y0))
gx (x0, y0) dx + gy (x0, y0) dy = −g ((x0, y0)) .

Next, write everything in vector style, say

F (x) =
[

f (x)
g (x)

]
, x(0) =

[
x0
y0

]
, x(1) =

[
x1
y1

]
.

Now we can write the vector differentials in the forms

dF =
[

df
dg

]
and dx =

[
dx
dy

]
=

[
x1 − x0
y1 − x0

]
= x(1) − x(0).
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The original Newton equations now look like a matrix multiplication involving
dx, F, and a matrix of derivatives of F, namely the so-called Jacobian matrix

JF (x0, y0) =
[

fx ((x0, y0)) fy ((x0, y0))
gx ((x0, y0)) gy ((x0, y0))

]
.

Specifically, we see from the definition of matrix multiplication that the New-
ton equations are equivalent to the vector equations

dF = JF(x0) dx = −F
(
x(0)

)
.

If the Jacobian matrix is invertible, then

x(1) − x(0) = JF

(
x(0)

)−1
F
(
x(0)

)
,

whence by adding x0 to both sides we see that

x(1) = x(0) − JF

(
x(0)

)−1
F
(
x(0)

)
.

Now replace 1 by n + 1 and 0 by n to obtain the famous Newton formula in
vector form: Newton’s

Formula in
Vector Form

x(n+1) = x(n) − JF

(
x(n)

)−1
F
(
x(n)

)
.

This beautiful analogy to the Newton formula of (2.2)needs the language and
algebra of vectors and matrices. One can now calculate the Jacobian for our
particularF ([ x

y ]) and apply this formula. We leave the details as an exercise.
��

2.5 Exercises and Problems

Exercise 1. Find the inverse or show that it does not exist.

(a)

⎡⎣ 1 −2 1
0 2 0

−1 0 1

⎤⎦ (b)
[

1 i
0 4

]
(c)

⎡⎣ 2 −2 1
0 2 0
2 0 1

⎤⎦ (d)

⎡⎢⎢⎣
2 1 0 0
0 1 −2 1
0 0 2 0
0 0 0 1

⎤⎥⎥⎦ (e)
[

cos θ − sin θ
sin θ cos θ

]

Exercise 2. Find the inverse or show that it does not exist.

(a)

⎡⎣1 3 0
0 4 10
9 3 0

⎤⎦ (b)

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ (c)

⎡⎣ 1 1 1
0 1 1

−1 0 1

⎤⎦ (d)
[

1 a
a 1

]
(e)

[
i + 1 0

1 i

]
Exercise 3. Express the following systems in matrix form and solve by inverting
the coefficient matrix of the system.

(a) 2x + 3y = 7 (b) 3x1 + 6x2 − x3 = −4 (c) x1 + x2 = −2
x + 2y = −2 −2x1 + x2 + x3 = 3 5x1 + 2x2 = 5

x3 = 1



112 2 MATRIX ALGEBRA

Exercise 4. Solve the following systems by matrix inversion.

(a) 2x1 + 3x2 = 7 (b) x1 + 6x2 − x3 = 4 (c) x1 − x2 = 2
x2 + x3 = 1 x1 + x2 = 0 x1 + 2x2 = 11
x2 − x3 = 1 x2 = 1

Exercise 5. Express inverses of the following matrices as products of elementary
matrices using the notation of elementary matrices.

(a)

⎡⎣1 0 0
3 1 0
0 0 1

⎤⎦ (b)
[

1 0
0 −2

]
(c)

⎡⎣ 0 0 1
1 1 0
1 0 0

⎤⎦ (d)

⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦ (e)
[−1 0

i 3

]
Exercise 6. Show that the following matrices are invertible by expressing them
as products of elementary matrices.

(a)
[

2 0
0 2

]
(b)

⎡⎣ 1 0 2
0 1 1
0 0 1

⎤⎦ (c)

⎡⎣ 1 0 1
1 1 0
1 0 0

⎤⎦ (d)
[−1 0

3 3

]
(e)

⎡⎣1 0 0
1 1 0
1 1 1

⎤⎦

Exercise 7. Find A−1C if A =

⎡⎣ 1 2 −3
0 −1 1
2 5 −6

⎤⎦ and C =

⎡⎣1 0 0 2
0 −1 1 1
2 0 −6 0

⎤⎦.

Exercise 8. Solve AX = B for X, where A =
[

1 2
2 5

]
and B =

[
1 1 0 −2
2 −1 1 1

]
.

Exercise 9. Verify the matrix law
(
AT

)−1 =
(
A−1

)T with A =

⎡⎣1 2 0
1 0 1
0 2 1

⎤⎦.

Exercise 10. Verify the matrix law (A∗)−1 =
(
A−1

)∗ with A =
[

2 1 − 2i
0 i

]
.

Exercise 11. Verify the matrix law (AB)−1 = B−1A−1 in the case that A =⎡⎣1 2 −3
1 0 1
2 4 −2

⎤⎦ and B =

⎡⎣ 1 0 2
0 −3 1
0 0 1

⎤⎦ .

Exercise 12. Verify the matrix law (cA)−1 = (1/c)A−1 in the case that A =⎡⎣1 2 − i 0
1 0 0
0 0 2

⎤⎦ and c = 2 + i.

Exercise 13. Determine for what values of k the following matrices are invert-
ible and find the inverse in that case.

(a)
[

1 k
0 −1

]
(b)

⎡⎣ 1 0 1
0 1 1
k 0 1

⎤⎦ (c)

⎡⎢⎢⎣
1 0 0 1
0 −1 0 0
0 0 −6 0
0 0 0 k

⎤⎥⎥⎦
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Exercise 14. Determine the inverses for the following matrices in terms of the
parameter c and conditions on c for which the matrix has an inverse.

(a)
[

1 2
c −1

]
(b)

⎡⎣ 1 2 c + 1
0 1 1
0 0 c

⎤⎦ (c)

⎡⎣1 0 c + i
0 −1 0
0 c c

⎤⎦
Exercise 15. Give a 2 × 2 example showing that the sum of invertible matrices
need not be invertible.

Exercise 16. Give a 2 × 2 example that the sum of singular matrices need not
be singular.

Exercise 17. Problem 26 of Section 2.2 yields a formula for the inverse of the
matrix I−N, where N is nilpotent, namely, (I − N)−1 = I+N+N2+· · ·+Nk.

Apply this formula to matrices (a)

⎡⎣ 1 −1 2
0 1 1
0 0 1

⎤⎦ and (b)

⎡⎣1 0 0
0 1 0
1 0 1

⎤⎦.

Exercise 18. If a matrix can be written as A = D (I − N), where D is diagonal
with nonzero entries and N is nilpotent, then A−1 = (I − N)−1

D−1. Use this
fact and the formulas of Exercise 17 and Example 2.37 to find inverses of the

matrices (a)

⎡⎣ 2 2 4
0 2 −2
0 0 3

⎤⎦ and (b)
[

2 0
i 3

]
.

Exercise 19. Solve the nonlinear system of equations of Example 2.41 by using
nine iterations of the vector Newton formula (2.5), starting with the initial
guess x(0) = (0, 1). Evaluate F

(
x(9)

)
.

Exercise 20. Find the minimum value of the function F (x, y) =
(
x2 + y + 1

)2+
x4 + y4 by using the Newton method to find critical points of the function
F (x, y), i.e., points where f (x, y) = Fx (x, y) = 0 and g(x, y) = Fy(x, y) = 0.

*Problem 21. Show from the definition that if a square matrix A satisfies the
equation A3 − 2A + 3I = 0, then the matrix A must be invertible.

Problem 22. Verify directly from the definition of inverse that the two by two
inverse formula gives the inverse of a 2 × 2 matrix.

Problem 23. Assume that the product of invertible matrices is invertible and
deduce that if A and B are invertible matrices of the same size and both B
and AB are invertible, then so is A.

*Problem 24. Let A be an invertible matrix. Show that if the product of ma-
trices AB is defined, then rank (AB) = rank (B), and if BA is defined, then
rank (BA) = rank (B).
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Problem 25. Prove that if D = ABC, where A, C, and D are invertible ma-
trices, then B is invertible.

Problem 26. Given that C =
[

A 0
0 B

]
in block form with A and B square,

show that C is invertible if and only if A and B are, in which case C−1 =[
A−1 0
0 B−1

]
.

Problem 27. Let T be an upper triangular matrix, say T = D + M , where D
is diagonal and M is strictly upper triangular.
(a) Show that if D is invertible, then T = D(I − N), where N = D−1M is
strictly upper triangular.
(b) Assume that D is invertible and use part (a) and Exercise 26 to obtain a
formula for T−1 involving D and N.

Problem 28. Show that if the product of matrices BA is defined and A is
invertible, then rank(BA) = rank(B).

*Problem 29. Given the matrix M =
[

A B
0 C

]
, where the blocks A and C are

invertible matrices, find a formula for M−1 in terms of A, B, and C.

2.6 Basic Properties of Determinants

What Are They?

Many students have already had some experience with determinants and may
have used them to solve square systems of equations. Why have we waited
until now to introduce them? In point of fact, they are not really the best tool
for solving systems. That distinction goes to Gaussian elimination. Were it
not for the theoretical usefulness of determinants they might be consigned to
a footnote in introductory linear algebra texts as a historical artifact of linear
algebra.

To motivate determinants, consider Example 2.40. Something remarkable
happened in that example. Not only were we able to find a formula for the

inverse of a 2 × 2 matrix A =
[

a b
c d

]
, but we were able to compute a single

number D = ad − bc that told us whether A was invertible. The condition
of noninvertibility, namely that D = 0, has a very simple interpretation: this
happens exactly when one row of A is a multiple of the other, since the example
showed that this is when elementary operations use the first row to zero out
the second row. Can we extend this idea? Is there a single number that will
tell us whether there are dependencies among the rows of the square matrix
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A that cause its rank to be smaller than its row size? The answer is yes. This
is exactly what determinants were invented for. The concept of determinant
is subtle and not intuitive, and researchers had to accumulate a large body of
experience before they were able to formulate a “correct” definition for this
number. There are alternative definitions of determinants, but the following
will suit our purposes. It is sometimes referred to as “expansion down the first
column.”

Definition 2.16. The determinant of a square n × n matrix A = [aij ] is the Determinant
scalar quantity det A defined recursively as follows: if n = 1 then det A = a11;
otherwise, we suppose that determinants are defined for all square matrices
of size less than n and specify that

det A =
n∑

k=1

ak1(−1)k+1Mk1(A)

= a11M11(A) − a21M21(A) + · · · + (−1)n+1an1Mn1(A),

where Mij(A) is the determinant of the (n−1)×(n−1) matrix obtained from
A by deleting the ith row and jth column of A.

Caution: The determinant of a matrix A is a scalar number. It is not a matrix
quantity.

Example 2.42. Describe the quantities M21(A) and M22 (A), where

A =

⎡⎣ 2 1 0
1 1 −1
0 1 2

⎤⎦ .

Solution. If we erase the second row and first column of A we obtain some-
thing like ⎡⎣ 1 0

1 2

⎤⎦ .

Now collapse the remaining entries together to obtain the matrix[
1 0
1 2

]
.

Therefore

M21(A) = det
[

1 0
1 2

]
.

Similarly, erase the second row and column of A to obtain⎡⎣ 2 0

0 2

⎤⎦ .
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Now collapse the remaining entries together to obtain

M22(A) = det
[

2 0
0 2

]
. �

Now how do we calculate these determinants? Part (b) of the next example
answers the question.

Example 2.43. Use the definition to compute the determinants of the follow-
ing matrices.

(a) [−4] (b)
[

a b
c d

]
(c)

⎡⎣2 1 0
1 1 −1
0 1 2

⎤⎦
Solution. (a) From the first part of the definition we see that

det[−4] = −4.

For (b) we set A =
[

a b
c d

]
=

[
a11 a12
a21 a22

]
and use the formula of the definition

to obtain that

det
[

a b
c d

]
= a11M11 (A) − a21M21 (A) = adet [d] − cdet [b] = ad − cb.

This calculation gives a handy formula for the determinant of a 2 × 2 matrix.
For (c) use the definition to obtain that

det

⎡⎣2 1 0
1 1 −1
0 1 2

⎤⎦ = 2 det
[

1 −1
1 2

]
− 1 det

[
1 0
1 2

]
+ 0 det

[
1 0
1 −1

]
= 2(1 · 2 − 1 · (−1)) − 1(1 · 2 − 1 · 0) + 0(1 · (−1) − 1 · 0)
= 2 · 3 − 1 · 2 + 0 · (−1)
= 4.

A point worth observing here is that we didn’t really have to calculate the
determinant of any matrix if it is multiplied by a zero. Hence, the more zeros
our matrix has, the easier we expect the determinant calculation to be! ��

Another common symbol for det A is |A|, which is also written with respect
to the elements of A by suppressing matrix brackets:

detA = |A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.

This notation invites a certain oddity, if not abuse, of language: we some-
times refer to things like the “second row” or “(2, 3)th element” or the “size”
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of the determinant. Yet the determinant is only a number and in that sense
doesn’t really have rows or entries or a size. Rather, it is the underlying ma-
trix whose determinant is being calculated that has these properties. So be
careful of this notation; we plan to use it frequently because it’s handy, but
you should bear in mind that determinants and matrices are not the same
thing! Another reason that this notation can be tricky is the case of a one-
dimensional matrix, say A = [a11]. Here it is definitely not a good idea to
forget the brackets, since we already understand |a11| to be the absolute value
of the scalar a11, a nonnegative number. In the 1 × 1 case use |[a11]| for the
determinant, which is just the number a11 and may be positive or negative.

The number Mij (A) is called the (i, j)th minor of the matrix A. If we Minors and
Cofactorscollect the sign term in the definition of determinant together with the minor

we obtain the (i, j)th cofactor Aij = (−1)i+j
M (A) of the matrix A. In the

terminology of cofactors,

det A =
n∑

k=1

ak1Ak1.

Laws of Determinants

Our primary goal here is to show that determinants have the magical property
we promised: a matrix is singular exactly when its determinant is 0. Along
the way we will examine some useful properties of determinants. There is
a lot of clever algebra that can be done here; we will try to keep matters
straightforward (if that’s possible with determinants). In order to focus on
the main ideas, we place most of the proofs of key facts in the last section for
optional reading. Also, a concise summary of the basic determinantal laws is
given at the end of this section. Unless otherwise stated, we assume throughout
this section that matrices are square, and that A = [aij ] is an n × n matrix.

For starters, let’s observe that it’s very easy to calculate the determinant
of upper triangular matrices. Let A be such a matrix. Then ak1 = 0 if k > 1,
so

det A =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

0 a22 · · · a2n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2n

0 a33 · · · a3n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= · · · = a11 · a22 · · · ann.

Hence we have established our first determinantal law:
D1: If A is an upper triangular matrix, then the determinant of A is the

product of all the diagonal elements of A.
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Example 2.44. Compute D =

∣∣∣∣∣∣∣∣
4 4 1 1
0 −1 2 3
0 0 2 3
0 0 0 2

∣∣∣∣∣∣∣∣ and |In| = det In.

Solution. By D1 we can do this at a glance: D = 4 · (−1) · 2 · 2 = −16. Since
In is diagonal, it is certainly upper triangular. Moreover, the entries down the
diagonal of this matrix are 1’s, so D1 implies that |In| = 1. ��

Next, suppose that we notice a common factor of the scalar c in a row,
say for convenience, the first one. How does this affect the determinantal
calculation? In the case of a 1 × 1 determinant, we could simply factor it out
of the original determinant. The general situation is covered by this law:

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.

Here is a simple illustration:

Example 2.45. Compute D =

∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣.
Solution. Put another way, D2 says that scalars may be factored out of
individual rows of a determinant. So use D2 on the first and second rows and
then use the definition of determinant to obtain∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 ·
∣∣∣∣∣∣
1 0 2
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 · 5 ·
∣∣∣∣∣∣
1 0 2
1 1 1
0 0 2

∣∣∣∣∣∣ = 25 ·
(

1 ·
∣∣∣∣ 1 1
0 2

∣∣∣∣ − 1 ·
∣∣∣∣ 0 2
0 2

∣∣∣∣ + 0 ·
∣∣∣∣ 0 2
1 1

∣∣∣∣)
= 50.

One can easily check that this is the same answer we get by working the
determinant directly from the definition. ��

Next, suppose we interchange two rows of a determinant.
D3: If B is obtained from A by interchanging two rows of A , then detB =

−det A.

Example 2.46. Use D3 to show the following handy fact: if a determinant
has a repeated row, then it must be 0.

Solution. Suppose that the ith and jth rows of the matrix A are identical,
and B is obtained by switching these two rows of A. Clearly B = A. Yet,
according to D3, detB = −det A. It follows that detA = −det A, i.e., if we
add det A to both sides, 2 · det A = 0, so that detA = 0, which is what we
wanted to show. ��

What happens to a determinant if we add a multiple of one row to another?
D4: If B is obtained from A by adding a multiple of one row of A to

another row of A, then detB = det A.
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Example 2.47. Compute D =

∣∣∣∣∣∣∣∣
1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣.
Solution. What D4 really says is that any elementary row operation Eij(c)
can be applied to the matrix behind a determinant and the determinant will
be unchanged. So in this case, add −1 times the first row to the second and
− 1

2 times the third row to the fourth, then apply D1 to obtain∣∣∣∣∣∣∣∣
1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 4 1 1
0 −5 1 2
0 0 2 3
0 0 0 1/2

∣∣∣∣∣∣∣∣ = 1 · (−5) · 2 · 1
2

= −5. �

Example 2.48. Use D3 to show that a matrix with a row of zeros has zero
determinant.

Solution. Suppose A has a row of zeros. Add any other row of the matrix A
to this zero row to obtain a matrix B with repeated rows. ��

We now have enough machinery to establish the most important property
of determinants. First of all, we can restate laws D2–D4 in the language of
elementary matrices as follows:

• D2: det(Ei(c)A) = c ·det A (remember that for Ei(c) to be an elementary Determinant
of Elementary
Matrices

matrix, c 
= 0).
• D3: det(EijA) = −det A.
• D4: det(Eij(s)A) = detA.

Apply a sequence of elementary row operations on the n × n matrix A to
reduce it to its reduced row echelon form R, or equivalently, multiply A on
the left by elementary matrices E1, E2, . . . , Ek and obtain

R = E1E2 · · ·EkA.

Take the determinant of both sides to obtain

det R = det(E1E2 · · ·EkA) = ±(nonzero constant) · det A.

Therefore, detA = 0 precisely when det R = 0. Now the reduced row echelon
form of A is certainly upper triangular. In fact, it is guaranteed to have zeros
on the diagonal, and therefore have zero determinant by D1, unless rankA =
n, in which case R = In. According to Theorem 2.7 this happens precisely
when A is invertible. Thus:

D5: The matrix A is invertible if and only if detA 
= 0.
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Example 2.49. Determine whether the following matrices are invertible with-
out actually finding the inverse.

(a)

⎡⎣ 2 1 0
1 1 −1
0 1 2

⎤⎦ (b)

⎡⎣2 1 0
1 1 −1
0 −1 2

⎤⎦
Solution. Compute the determinants:∣∣∣∣∣∣

2 1 0
1 1 −1
0 1 2

∣∣∣∣∣∣ = 2
∣∣∣∣1 −1
1 2

∣∣∣∣ − 1
∣∣∣∣ 1 0
1 2

∣∣∣∣ = 2 · 3 − 2 = 4,

∣∣∣∣∣∣
2 1 0
1 1 −1
0 −1 2

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ − 1
∣∣∣∣ 1 0
−1 2

∣∣∣∣ = 2 · 1 − 1 · 2 = 0.

Hence by D5, matrix (a) is invertible and matrix (b) is not invertible. ��
There are two more surprising properties of determinants that we now

discuss. Their proofs involve using determinantal properties of elementary
matrices (see the next section for details).

D6: Given matrices A, B of the same size,

det AB = det A det B.

Example 2.50. Verify D6 in the case that A =
[

1 0
1 1

]
and B =

[
2 1
0 1

]
. How

do det(A + B) and detA + det B compare in this case?

Solution. We have easily that det A = 1 and det B = 2. Therefore, det A +
det B = 1 + 2 = 3, while detA · det B = 1 · 2 = 2. On the other hand,

AB =
[

1 0
2 1

] [
2 1
0 1

]
=

[
2 1
4 3

]
,

A + B =
[

1 0
1 1

]
+

[
2 1
0 1

]
=

[
3 1
1 2

]
,

so that det AB = 2 · 3 − 4 · 1 = 2 = det A · det B, as expected. On the other
hand, we have that det(A + B) = 3 · 2 − 1 · 1 = 5 
= detA + det B. ��

This example raises a very important point.

Caution: In general, detA+det B 
= det(A+B), though there are occasional
exceptions.

In other words, determinants do not distribute over sums. (It is true, how-
ever, that the determinant is additive in one row at a time. See the proof of
D4 for details.)

Finally, we ask how det AT compares to det A. Simple cases suggest that
there is no difference in determinant. This is exactly what happens in general.

D7: For all square matrices A, det AT = det A.
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Example 2.51. Compute D =

∣∣∣∣∣∣∣∣
4 0 0 0
4 1 0 0
1 2 −2 0
1 0 1 2

∣∣∣∣∣∣∣∣ .
Solution. By D7 and D1 we see immediately that D = 4 · 1 · (−2) · 2 = −16.
��

D7 is a very useful fact. Let’s look at it from this point of view: trans-
posing a matrix interchanges the rows and columns of the matrix. Therefore,
everything that we have said about rows of determinants applies equally well
to the columns, including the definition of determinant itself ! Therefore, we
could have given the definition of determinant in terms of expanding across
the first row instead of down the first column and gotten the same answers.
Likewise, we could perform elementary column operations instead of row op-
erations and get the same results as D2–D4. Furthermore, the determinant
of a lower triangular matrix is the product of its diagonal elements thanks
to D7+D1. By interchanging rows or columns then expanding by first row
or column, we see that the same effect is obtained by simply expanding the
determinant down any column or across any row. We have to alternate signs
starting with the sign (−1)i+j of the first term we use.

Now we can really put it all together and compute determinants to our
heart’s content with a good deal less effort than the original definition spec-
ified. We can use D1–D4 in particular to make a determinant calculation no
worse than Gaussian elimination in the amount of work we have to do. We
simply reduce a matrix to triangular form by elementary operations, then take
the product of the diagonal terms.

Example 2.52. Calculate D =

∣∣∣∣∣∣∣∣
3 0 6 6
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣ .
Solution. We are going to do this calculation two ways. We may as well use
the same elementary operation notation that we have employed in Gaussian
elimination. The only difference is that we have equality instead of arrows,
provided that we modify the value of the new determinant in accordance with
the laws D1–D3. So here is the straightforward method:

D = 3

∣∣∣∣∣∣∣∣
1 0 2 2
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣ =
E21(−1)
E31(−2)
E41(1)

3

∣∣∣∣∣∣∣∣
1 0 2 2
0 0 0 −1
0 0 −4 −3
0 2 2 2

∣∣∣∣∣∣∣∣ =
E24

−3

∣∣∣∣∣∣∣∣
1 0 2 2
0 2 2 2
0 0 −4 −3
0 0 0 −1

∣∣∣∣∣∣∣∣ = −24.

Here is another approach: let’s expand the determinant down the second col-
umn, since it is mostly 0’s. Remember that the sign in front of the first minor
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must be (−1)1+2 = −1. Also, the coefficients of the first three minors are 0,
so we need only write down the last one in the second column:

D = +2

∣∣∣∣∣∣
3 6 6
1 2 1
2 0 1

∣∣∣∣∣∣ .
Expand down the second column again:

D = 2
(

−6
∣∣∣∣1 1
2 1

∣∣∣∣ + 2
∣∣∣∣3 6
2 1

∣∣∣∣) = 2(−6 · (−1) + 2 · (−9)) = −24. �

An Inverse Formula

Let A = [aij ] be an n × n matrix. We have already seen that we can expand
the determinant of A down any column of A (see the discussion following
Example 2.51). These expansions lead to cofactor formulas for each column
number j:

det A =
n∑

k=1

akjAkj =
n∑

k=1

Akjakj .

This formula resembles a matrix multiplication formula. Consider the slightly
altered sum

n∑
k=1

Akiakj = A1ia1j + A2ia2j + · · · + Anianj .

The key to understanding this expression is to realize that it is exactly what
we would get if we replaced the ith column of the matrix A by its jth column
and then computed the determinant of the resulting matrix by expansion
down the ith column. But such a matrix has two equal columns and therefore
has a zero determinant, which we can see by applying Example 2.46 to the
transpose of the matrix and using D7. So this sum must be 0 if i 
= j. We can
combine these two sums by means of the Kronecker delta (δij = 1 if i = j andKronecker

Delta 0 otherwise) in the formula

n∑
k=1

Akiakj = δij det A.

In order to exploit this formula we make the following definitions:

Definition 2.17. The matrix of minors of the n × n matrix A = [aij ] is theAdjoint,
Minor, and

Cofactor
Matrices

matrix M(A) = [Mij(A)] of the same size. The matrix of cofactors of A is the
matrix Acof = [Aij ] of the same size. Finally, the adjoint matrix of A is the
matrix adjA = AT

cof.
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Example 2.53. Compute the determinant, minors, cofactors, and adjoint ma-

trices for A =

⎡⎣ 1 2 0
0 0 −1
0 2 1

⎤⎦ and compute A adjA.

Solution. The determinant is easily seen to be 2. Now for the matrix of
minors:

M(A) =

⎡⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣0 −1
2 1

∣∣∣∣ ∣∣∣∣0 −1
0 1

∣∣∣∣ ∣∣∣∣ 0 0
0 2

∣∣∣∣∣∣∣∣2 0
2 1

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣ ∣∣∣∣ 1 2
0 2

∣∣∣∣∣∣∣∣2 0
0 −1

∣∣∣∣ ∣∣∣∣1 0
0 −1

∣∣∣∣ ∣∣∣∣ 1 2
0 0

∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣ 2 0 0
2 1 2

−2 −1 0

⎤⎦ .

To get the matrix of cofactors, simply overlay M(A) with the following

“checkerboard” of +/−’s

⎡⎣+ − +
− + −
+ − +

⎤⎦ to obtain the matrix Acof =

⎡⎣ 2 0 0
−2 1 −2
−2 1 0

⎤⎦.

Now transpose Acof to obtain

adjA =

⎡⎣ 2 −2 −2
0 1 1
0 −2 0

⎤⎦ .

We check that

A adjA =

⎡⎣ 1 2 0
0 0 −1
0 2 1

⎤⎦⎡⎣ 2 −2 −2
0 1 1
0 −2 0

⎤⎦ =

⎡⎣2 0 0
0 2 0
0 0 2

⎤⎦ = (detA)I3. �

Of course, the example simply confirms the formula that preceded it since
this formula gives the (i, j)th entry of the product (adjA)A. If we were to
do determinants by row expansions, we would get a similar formula for the
(i, j)th entry of A adjA. We summarize this information in matrix notation
as the following determinantal property:

D8: For a square matrix A, Adjoint
Formula

A adjA = (adjA)A = (detA)I.

What does this have to do with inverses? We already know that A is invertible
exactly when det A 
= 0, so the answer is staring at us! Just divide the terms
in D8 by detA to obtain an explicit formula for A−1:

D9: For a square matrix A such that det A 
= 0, Inverse
Formula

A−1 =
1

det A
adjA.
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Example 2.54. Compute the inverse of the matrix A of Example 2.53 by the
inverse formula.

Solution. We already computed the adjoint matrix of A, and the determinant
of A is just 2, so we have that

A−1 =
1

det A
adjA =

1
2

⎡⎣2 −2 −2
0 1 1
0 −2 0

⎤⎦ . �

Example 2.55. Interpret the inverse formula in the case of the 2 × 2 matrix

A =
[

a b
c d

]
.

Solution. We have M(A) =
[

d c
b a

]
, Acof =

[
d −c

−b a

]
and adjA =

[
d −b

−c a

]
,

so that the inverse formula becomes

A−1 =
1

det A

[
d −b

−c a

]
.

As you might expect, this is exactly the same as the formula we obtained in
Example 2.40. ��

Cramer’s Rule

Thanks to the inverse formula, we can now find an explicit formula for solving
linear systems with a nonsingular coefficient matrix. Here’s how we proceed.
To solve Ax = b we multiply both sides on the left by A−1 to obtain that
x = A−1b. Now use the inverse formula to obtain

x = A−1b =
1

det A
adj(A)b.

The explicit formula for the ith coordinate of x that comes from this fact is

xi =
1

det A

n∑
j=1

Ajibj .

The summation term is exactly what we would obtain if we started with the
determinant of the matrix Bi obtained from A by replacing the ith column of
A by b and then expanding the determinant down the ith column. Therefore,
we have arrived at the following rule:

Theorem 2.8. Let A be an invertible n×n matrix and b an n×1 column vec-
tor. Denote by Bi the matrix obtained from A by replacing the ith column of A
by b. Then the linear system Ax = b has unique solution x = (x1, x2, . . . , xn),
whereCramer’s Rule

xi =
det Bi

det A
, i = 1, 2, . . . , n.
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Example 2.56. Use Cramer’s rule to solve the system

2x1 − x2 = 1
4x1 + 4x2 = 20.

Solution. The coefficient matrix and right-hand-side vectors are

A =
[

2 −1
4 4

]
and b =

[
1

20

]
,

so that
det A = 8 − (−4) = 12,

and therefore

x1 =

∣∣∣∣2 1
4 20

∣∣∣∣∣∣∣∣2 −1
4 4

∣∣∣∣ =
36
12

= 3 and x2 =

∣∣∣∣ 1 −1
20 4

∣∣∣∣∣∣∣∣ 2 −1
4 4

∣∣∣∣ =
24
12

= 2. �

Summary of Determinantal Laws

Now that our list of the basic laws of determinants is complete, we record
them in a concise summary. Laws of

Determinants
Let A, B be n × n matrices.
D1: If A is upper triangular, detA is the product of all the diagonal

elements of A.
D2: det(Ei(c)A) = c · det A.
D3: det(EijA) = −det A.
D4: det(Eij(s)A) = detA.
D5: The matrix A is invertible if and only if detA 
= 0.
D6: det AB = det A det B.
D7: det AT = det A.
D8: A adjA = (adjA)A = (detA)I.

D9: If det A 
= 0, then A−1 =
1

det A
adjA.

2.6 Exercises and Problems

Exercise 1. Compute all cofactors for these matrices.

(a)
[

1 2
2 −1

]
(b)

[
1 3
0 1

]
(c)

⎡⎣1 0 −1
0 0 0
0 0 4

⎤⎦ (d)
[

1 1 − i
0 1

]
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Exercise 2. Compute all minors for these matrices.

(a)
[

2 2
2 2

]
(b)

⎡⎣ 1 −3 0
−2 1 0
0 −2 0

⎤⎦ (c)
[

1 i + 1
i 1

]
(d)

⎡⎣3 1 −1
0 2 −2
0 0 1

⎤⎦
Exercise 3. Compute these determinants. Which of the matrices represented
are invertible?

(a)
∣∣∣∣2 −1
1 1

∣∣∣∣ (b)

∣∣∣∣∣∣
1 −1 0
0 1 1
0 0 1 + i

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
1 1 0
1 0 1
2 1 1

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣∣∣
1 −1 4 2
0 1 0 3
0 0 2 7

−2 3 4 6

∣∣∣∣∣∣∣∣ (e)
∣∣∣∣−1 −1

1 1 − 2i

∣∣∣∣
Exercise 4. Use determinants to determine which of these matrices are invert-
ible.

(a)

⎡⎢⎢⎣
1 0 0 0
1 1 0 0
2 0 2 0

−2 3 4 6

⎤⎥⎥⎦ (b)

⎡⎣ 0 1 0
1 0 −1
0 1 1

⎤⎦ (c)

⎡⎢⎢⎣
1 1 0 1
1 2 1 1
0 0 1 3
1 1 2 7

⎤⎥⎥⎦ (d)

⎡⎣1 0 1
2 1 1
0 1 3

⎤⎦ (e)
[

cos θ sin θ
− sin θ cos θ

]

Exercise 5. Verify by calculation that determinantal law D7 holds for the fol-
lowing choices of A.

(a)

⎡⎣−2 1 0
1 2 1
0 0 1

⎤⎦ (b)

⎡⎣ 1 −1 1
1 2 0

−1 0 1

⎤⎦ (c)

⎡⎢⎢⎣
1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤⎥⎥⎦ (d)
[

1 3
1 4

]

Exercise 6. Let A = B and verify by calculation that determinantal law D6
holds for the following choices of A.

(a)

⎡⎣−2 1 0
1 2 1
0 0 1

⎤⎦ (b)

⎡⎣ 1 −1 1
1 2 0

−1 0 1

⎤⎦ (c)
[

1 3
−1 2

]
(d)

⎡⎢⎢⎣
1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤⎥⎥⎦
Exercise 7. Use determinants to find conditions on the parameters in these
matrices under which the matrices are invertible.

(a)
[

a 1
ab 1

]
(b)

⎡⎣ 1 1 −1
1 c 1
0 0 1

⎤⎦ (c)

⎡⎣ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤⎦
Exercise 8. Find conditions on the parameters in these matrices under which
the matrices are invertible.

(a)

⎡⎢⎢⎣
a b 0 0
0 a 0 0
0 0 b a
0 0 −a b

⎤⎥⎥⎦ (b)

⎡⎣λ − 1 0 0
1 λ − 2 1
3 1 λ − 1

⎤⎦ (c) λI2 −
[

0 1
−c0 −c1

]
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Exercise 9. For each of the following matrices calculate the adjoint matrix and
the product of the matrix and its adjoint.

(a)

⎡⎣ 2 1 0
−1 1 2

1 2 2

⎤⎦ (b)

⎡⎣ 1 0 3
0 1 0
1 0 −1

⎤⎦ (c)
[

1 3
−1 2

]
(d)

⎡⎢⎢⎣
1 2 0 0
1 2 0 0
0 0 1 3
0 0 2 6

⎤⎥⎥⎦
Exercise 10. For each of the following matrices calculate the adjoint matrix
and the product of the adjoint and the matrix.

(a)

⎡⎣−1 1 1
0 0 2
0 0 2

⎤⎦ (b)

⎡⎣ 2 −1 0
−1 2 0

0 0 −1

⎤⎦ (c)
[

1 1 + i
1 − i 2

]
(d)

⎡⎢⎢⎣
1 1 0 3
0 2 0 0
0 0 1 1
0 0 0 −3

⎤⎥⎥⎦
Exercise 11. Find the inverse of following matrices by adjoints.

(a)
[

1 1
3 4

]
(b)

⎡⎣ 1 0 0
2 2 1
1 0 1

⎤⎦ (c)

⎡⎣ 1 −2 2
−1 2 −1

1 −3 1

⎤⎦ (d)
[

1 i
−2i 1

]

Exercise 12. For each of the following matrices, find the inverse by superaug-
mented matrices and by adjoints.

(a)
[

1 0
2 2

]
(b)

⎡⎣ 1 −1 3
2 2 −4
1 1 1

⎤⎦ (c)

⎡⎢⎣ 1
2

√
3

2 0
−

√
3

2
1
2 0

0 0 1

⎤⎥⎦ (d)
[

1 2
2 2

]

Exercise 13. Use Cramer’s Rule to solve the following systems.

(a)
x − 3y = 2
2x + y = 11 (b)

2x1 + x2 = b1
2x1 − x2 = b2

(c)
3x1 + x3 = 2
2x1 + 2x2 = 1

x1 + x2 + x3 = 6

Exercise 14. Use Cramer’s Rule to solve the following systems.

(a)
x + y + z = 4

2x + 2y + 5z = 11
4x + 6y + 8z = 24

(b)
x1 − 2x2 = 2
2x1 − x2 = 4 (c)

x1 + x2 + x3 = 2
x1 + 2x2 = 1
x1 − x3 = 2

Problem 15. Verify that

∣∣∣∣∣∣∣∣
a b 0 0
c d 0 0
0 0 e f
0 0 g h

∣∣∣∣∣∣∣∣ =
∣∣∣∣a b
c d

∣∣∣∣ ∣∣∣∣ e f
g h

∣∣∣∣ .

Problem 16. Confirm that the determinant of the matrix A =

⎡⎣1 0 2
2 1 1
1 0 1

⎤⎦ is −1.

We can now assert without any further calculation that the inverse matrix of
A has integer coefficients. Explain why in terms of laws of determinants.
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*Problem 17. Let

V =

⎡⎣ 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

⎤⎦ .

(Such a matrix is called a Vandermonde matrix.) Express detV as a product
of factors (xj − xk).

Problem 18. Show by example that detA∗ 
= det A and prove that in general
det A∗ = det A.

*Problem 19. Use a determinantal law to show that det (A) det
(
A−1

)
= 1 if

A is invertible.

Problem 20. Use the determinantal laws to show that any matrix with a row
of zeros has zero determinant.

*Problem 21. If A is a 5 × 5 matrix, then in terms of det(A), what can we say
about det(−2A)? Explain and express a law about a general matrix cA, c a
scalar, that contains your answer.

Problem 22. Let A be a skew-symmetric matrix, that is, AT = −A. Show that
if A has odd order n, i.e., A is n × n, then A must be singular.

*Problem 23. Show that if

M =
[

A B
0 C

]
then det M = det A · det C.

*Problem 24. Let Jn be the n×n counteridentity, that is, Jn is a square matrix
with ones along the counterdiagonal (the diagonal that starts in the lower left
corner and ends in the upper right corner), and zeros elsewhere. Find a formula
for det Jn. (Hint: show that J2

n = In, which narrows down det Jn.)

Problem 25. Show that the companion matrix of the polynomial f(x) = c0 +
c1x + · · · + cn−1x

n−1 + xn, which is defined to be

C (f) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−c0 −c1 · · · −cn−2 −cn−1

⎤⎥⎥⎥⎥⎥⎦ ,

is invertible if and only if c0 
= 0.
Prove that if the matrix A is invertible, then det(AT A)̇ > 0.

Problem 26. Suppose that the square matrix A is singular. Prove that if the
system Ax = b is consistent, then (adj A)b = 0.
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LU Factorization

Here is a problem: suppose we want to solve a nonsingular linear system
Ax = b repeatedly, with different choices of b. A perfect example of this kind
of situation is the heat flow problem Example 1.3, where the right-hand side
is determined by the heat source term f(x). Suppose that we need to exper-
iment with different source terms. What happens if we do straight Gaussian
elimination or Gauss–Jordan elimination? Each time we carry out a complete
calculation on the augmented matrix Ã = [A | b] we have to resolve the whole
system. Yet, the main part of our work is the same: putting the part of Ã corre-
sponding to the coefficient matrix A into reduced row echelon form. Changing
the right-hand side has no effect on this work. What we want here is a way
to somehow record our work on A, so that solving a new system involves very
little additional work. This is exactly what the LU factorization is all about.

Definition 2.18. Let A be an n × n matrix. An LU factorization of A is a
pair of n × n matrices L, U such that LU

Factorization
(1) L is lower triangular.
(2) U is upper triangular.
(3) A = LU.

Even if we could find such beasts, what is so wonderful about them? The
answer is that triangular systems Ax = b are easy to solve. For example, if A
is upper triangular, we learned that the smart thing to do was to use the last
equation to solve for the last variable, then the next-to-last equation for the
next-to-last variable, etc. This is the secret of Gaussian elimination! But lower
triangular systems are just as simple: use the first equation to solve for the
first variable, the second equation for the second variable, and so forth. Now
suppose we want to solve Ax = b and we know that A = LU. The original
system becomes LUx = b. Introduce an intermediate variable y = Ux. Now
perform these steps:

1. (Forward solve) Solve lower triangular system Ly = b for the variable y.
2. (Back solve) Solve upper triangular system Ux = y for the variable x.

This does it! Once we have the matrices L, U , we don’t have to worry about
right-hand sides, except for the small amount of work involved in solving two
triangular systems. Notice, by the way, that since A is assumed nonsingular,
we have that if A = LU , then detA = det Ldet U 
= 0. Therefore, neither
triangular matrix L or U can have zeros on its diagonal. Thus, the forward
and back solve steps can always be carried out to give a unique solution.
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Example 2.57. You are given that

A =

⎡⎣ 2 1 0
−2 0 −1

2 3 −3

⎤⎦ =

⎡⎣ 1 0 0
−1 1 0

1 2 1

⎤⎦⎡⎣2 1 0
0 1 −1
0 0 −1

⎤⎦ .

Use this fact to solve Ax = b, where b = [1, 0, 1]T or b = [−1, 2, 1]T .

Solution. Set x = [x1, x2, x3]T and y = [y1, y2,y3]T . For b = [1, 0, 1]T , forward
solve ⎡⎣ 1 0 0

−1 1 0
1 2 1

⎤⎦⎡⎣ y1
y2
y3

⎤⎦ =

⎡⎣1
0
1

⎤⎦
to get y1 = 1, then y2 = 0 + 1y1 = 1, then y3 = 1 − 1y1 − 2y2 = −2. Then
back solve ⎡⎣ 2 1 0

0 1 −1
0 0 −1

⎤⎦⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣ 1
1

−2

⎤⎦
to get x3 = −2/(−1) = 2, then x2 = 1 + x3 = 3, then x1 = (1 − 1x2)/2 = −1.

For (b) forward solve ⎡⎣ 1 0 0
−1 1 0

1 2 1

⎤⎦⎡⎣ y1
y2
y3

⎤⎦ =

⎡⎣−1
2
1

⎤⎦
to get y1 = −1, then y2 = 0 + 1y1 = −1, then y3 = 1 − 1y1 − 2y2 = 4. Then
back solve ⎡⎣ 2 1 0

0 1 −1
0 0 −1

⎤⎦⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣−1
−1

4

⎤⎦
to get x3 = 4/(−1) = −4, then x2 = 1 + x3 = −3, then x1 = (1 − 1x2)/2 = 2.
��

Notice how simple the previous example was, given the LU factorization.
Now how do we find such a factorization? In general, a nonsingular matrix
may not have such a factorization. A good example is the matrix [ 0 1

1 0 ] How-
ever, if Gaussian elimination can be performed on the matrix A without row
exchanges, then such a factorization is really a by-product of Gaussian elim-
ination. In this case let [a(k)

ij ] be the matrix obtained from A after using the

kth pivot to clear out entries below it (thus A = [a(0)
ij ]). Remember that in

Gaussian elimination we need only two types of elementary operations, namely
row exchanges and adding a multiple of one row to another. Furthermore, the
only elementary operations of the latter type that we use are of this form:
Eij(−a

(k)
jj /a

(k)
ij ), where [a(k)

ij ] is the matrix obtained from A from the various

elementary operations up to this point. The numbers mij = −a
(k)
jj /a

(k)
ij , where

i > j, are sometimes called multipliers. In the way of notation, let us call aMultipliers
triangular matrix a unit triangular matrix if its diagonal entries are all 1’s.
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Theorem 2.9. If Gaussian elimination is used without row exchanges on the
nonsingular matrix A, resulting in the upper triangular matrix U , and if L
is the unit lower triangular matrix whose entries below the diagonal are the
negatives of the multipliers mij , then A = LU.

Proof. The proof of this theorem amounts to noticing that the product of
all the elementary operations that reduces A to U is a unit lower triangular
matrix L̃ with the multipliers mij in the appropriate positions. Thus L̃A = U.
To undo these operations, multiply by a matrix L with the negatives of the
multipliers in the appropriate positions. This results in

LL̃A = A = LU

as desired. ��
The following example shows how one can write an efficient program to

implement LU factorization. The idea is this: as we do Gaussian elimination,
the U part of the factorization gradually appears in the upper parts of the
transformed matrices A(k). Below the diagonal we replace nonzero entries with
zeros, column by column. Instead of wasting this space, use it to store the
negative of the multipliers in place of the element it zeros out. Of course, this
storage part of the matrix should not be changed by subsequent elementary
row operations. When we are finished with elimination, the diagonal and upper
part of the resulting matrix is just U , and the strictly lower triangular part on
the unit lower triangular matrix L is stored in the lower part of the matrix.

Example 2.58. Use the shorthand of the preceding discussion to compute an
LU factorization for

A =

⎡⎣ 2 1 0
−2 0 −1

2 3 −3

⎤⎦ .

Solution. Proceed as in Gaussian elimination, but store negative multipliers:⎡⎣ 2 1 0
−2 0 −1

2 3 −3

⎤⎦ −−−−−−→
E21(1)

E31(−1)

⎡⎣ 2 1 0
−1 1 −1

1 2 −3

⎤⎦ −−−−−−→
E32(−2)

⎡⎣ 2 1 0
−1 1 −1

1 2 −1

⎤⎦ .

Now we read off the results from the last matrix:

L =

⎡⎣ 1 0 0
1 1 0

−1 2 1

⎤⎦ and U =

⎡⎣ 2 1 0
0 1 −1
0 0 −1

⎤⎦ . ��

What can be said if row exchanges are required (for example, we might
want to use a partial pivoting strategy)? Take the point of view that we could
see our way to the end of Gaussian elimination and store the product P of all Permutation

Matrixrow-exchanging elementary operations that we use along the way. A product of
such matrices is called a permutation matrix ; such a matrix is invertible, since
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it is a product of invertible matrices. Thus if we apply the correct permutation
matrix P to A we obtain a matrix for which Gaussian elimination will succeed
without further row exchanges. Consequently, we have a theorem that applies
to all nonsingular matrices. Notice that it does not limit the usefulness of
LU factorization since the linear system Ax = b is equivalent to the system
PAx = Pb. The following theorem could be called the “PLU factorization
theorem.”

Theorem 2.10. If A is a nonsingular matrix, then there exists a permutation
matrix P , upper triangular matrix U , and unit lower triangular matrix L such
that PA = LU.

There are many other useful factorizations of matrices that numerical analysts
have studied, e.g., LDU and Cholesky. We will stop at LU, but there is one last
point we want to make. The amount of work in finding the LU factorization
is the same as Gaussian elimination itself, which is approximately 2n3/3 flops
(see Section 1.5). The additional work of back and forward solving is about 2n2

flops. So the dominant amount of work is done by computing the factorization
rather than the back and forward solving stages.

Efficiency of Determinants and Cramer’s Rule in Computation

The truth of the matter is that Cramer’s Rule and adjoints are good only forComputa-
tional

Efficiency of
Determinants

small matrices and theoretical arguments. For if you evaluate determinants in
a straightforward way from the definition, the work in doing so is about n · n!
flops for an n × n system. (Recall that a “flop” in numerical linear algebra is
a single addition or subtraction, or multiplication or division.) For example,
it is not hard to show that the operation of adding a multiple of one row
vector of length n to another requires 2n flops. This number n · n! is vast
when compared to the number 2n3/3 flops required for Gaussian elimination,
even with “small” n, say n = 10. In this case we have 2 · 103/3 ≈ 667, while
10 · 10! = 36, 288, 000.

On the other hand, there is a clever way to evaluate determinants that
requires much less work than the definition: use elementary row operations
together with D2, D6, and the elementary operations that correspond to these
rules to reduce the determinant to that of a triangular matrix. This requires
about 2n3/3 flops. As a matter of fact, it is tantamount to Gaussian elimina-
tion. But to use Cramer’s Rule, you will have to calculate n+1 determinants.
So why bother with Cramer’s Rule on larger problems when it still will take
about n times as much work as Gaussian elimination? A similar remark ap-
plies to computing adjoints instead of using Gauss–Jordan elimination on the
superaugmented matrix of A.

Proofs of Some of the Laws of Determinants

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.
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To keep the notation simple, assume that the first row is multiplied by c,
the proof being similar for other rows. Suppose we have established this for all
determinants of size less than n (this is really another “proof by induction,”
which is how most of the following determinantal properties are established).
For an n × n determinant we have

det B =

∣∣∣∣∣∣∣∣∣
c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= c · a11

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

...
an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
+

n∑
k=2

ak1(−1)k+1Mk1(B).

But the minors Mk1(B) all are smaller and have a common factor of c in the
first row. Pull this factor out of every remaining term and we get that∣∣∣∣∣∣∣∣∣

c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= c ·

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.

Thus we have shown that property D2 holds for all matrices.
D3: If B is obtained from A by interchanging two rows of A , then detB =

−det A.
To keep the notation simple, assume we switch the first and second rows. In

the case of a 2×2 determinant, we get the negative of the original determinant
(check this for yourself). Suppose we have established that the same is true
for all matrices of size less than n. For an n × n determinant we have

det B =

∣∣∣∣∣∣∣∣∣∣∣

a21 a22 · · · a2n

a11 a12 · · · a1n

a31 a32 · · · a3n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
= a21M11(B) − a11M21(B) +

n∑
k=3

ak1(−1)k+1Mk1(B)

= a21M21(A) − a11M11(A) +
n∑

k=3

ak1(−1)k+1Mk1(B).

But all the determinants in the summation sign come from a submatrix of A
with the first and second rows interchanged. Since they are smaller than n,
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each is just the negative of the corresponding minor of A. Notice that the first
two terms are just the first two terms in the determinantal expansion of A,
except that they are out of order and have an extra minus sign. Factor this
minus sign out of every term and we have obtained D3. ��

D4: If B is obtained from A by adding a multiple of one row of A to
another row of A, then detB = det A.

Actually, it’s a little easier to answer a slightly more general question:
what happens if we replace a row of a determinant by that row plus some
other row vector r (not necessarily a row of the determinant)? Again, simply
for convenience of notation, we assume that the row in question is the first.
The same argument works for any other row. Some notation: let B be the
matrix that we obtain from the n × n matrix A by adding the row vector
r = [r1, r2, . . . , rn] to the first row and C the matrix obtained from A by
replacing the first row by r. The answer turns out to be that |B| = |A| + |C|.
So we can say that the determinant function is “additive in each row.” Let’s
see what happens in the one dimensional case:

|B| = |[a11 + r1]| = a11 + r1 = |[a11]| + |[r1]| = |A| + |C|.
Suppose we have established that the same is true for all matrices of size less
than n and let A be n × n. Then the minors Mk1(B), with k > 1, are smaller
than n, so the property holds for them. Hence we have

det B =

∣∣∣∣∣∣∣∣∣
a11 + r1 a12 + r2 · · · a1n + rn

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= (a11 + r1)M11(A) +

n∑
k=2

ak1(−1)k+1Mk1(B)

= (a11 + r1)M11(A) +
n∑

k=2

ak1(−1)k+1(Mk1(A) + Mk1(C))

=
n∑

k=1

ak1(−1)k+1Mk1(A) + r1M11(C) +
n∑

k=2

ak1(−1)k+1Mk1(C)

= det A + det C.

Now what about adding a multiple of one row to another in a determinant?
For notational convenience, suppose we add s times the second row to the first.
In the notation of the previous paragraph,

det B =

∣∣∣∣∣∣∣∣∣
a11 + s · a21 a12 + s · a22 · · · a1n + s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
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and

det C =

∣∣∣∣∣∣∣∣∣
s · a21 s · a22 · · · s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= s ·

∣∣∣∣∣∣∣∣∣
a21 a22 · · · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= 0,

where we applied D2 to pull the common factor s from the first row and the
result of Example 2.46 to get the determinant with repeated rows to be 0.
But |B| = |A| + |C|. Hence we have shown D4. ��

D6: Given matrices A, B of the same size, det AB = det A det B.
The key here is that we now know that determinant calculation is inti-

mately connected with elementary matrices, rank, and the reduced row ech-
elon form. First let’s reinterpret D2–D4 still one more time. First of all take
A = I in the discussion of the previous paragraph, and we see that

• det Ei(c) = c
• det Eij = −1
• det Eij(s) = 1

Therefore, D2–D4 can be restated (yet again) as

• D2: det(Ei(c)A) = detEi(c) · det A (here c 
= 0.)
• D3: det(EijA) = detEij · det A
• D4: det(Eij(s) = detEij(s) · det A

In summary: For any elementary matrix E and arbitrary matrix A of the same
size, det(EA) = det(E) det(A).

Now let’s consider this question: how does det(AB) relate to det(A) and
det(B)? If A is not invertible, rankA < n by Theorem 2.7 and so rank AB < n
by Corollary 2.2. Therefore, det(AB) = 0 = detA · det B in this case. Next
suppose that A is invertible. Express it as a product of elementary matrices,
say A = E1E2 · · ·Ek, and use our summary of D1–D3 to disassemble and
reassemble the elementary factors:

det(AB) = det(E1E2 · · ·EkB) = (detE1 det E2 · · ·det Ek) det B

= det(E1E2 · · ·Ek) det B = det A · det B.

Thus we have shown that D6 holds. ��
D7: For all square matrices A, det AT = det A.
Recall these facts about elementary matrices:

• det ET
ij = det Eij

• det Ei(c)T = det Ei(c)
• det Eij(c)T = det Eji(c) = 1 = det Eij(c)
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Therefore, transposing does not affect determinants of elementary matrices.
Now for the general case observe that since A and AT are transposes of each
other, one is invertible if and only if the other is by the Transpose/Inverse
law. In particular, if both are singular, then detAT = 0 = det A. On the
other hand, if both are nonsingular, then write A as a product of elementary
matrices, say A = E1E2 · · ·Ek, and obtain from the product law for transposes
that AT = ET

k ET
k−1 . . . ET

1 , so by D6

det AT = det ET
k det ET

k−1 · · ·det ET
1 = det Ek det Ek−1 · · ·det E1

= det E1 det E2 · · ·det Ek = det A. �

Tensor Product of Matrices

How do we solve a system of equations in which the unknowns can be organized
into a matrix X and the linear system in question is of the form

AX − XB = C, (2.3)

where A, B, C are given matrices? We call this equation the Sylvester equa-Sylvester
Equation tion. Such systems occur in a number of physical applications; for example,

discretizing certain partial differential equations in order to solve them nu-
merically can lead to such a system. Of course, we could simply expand each
system laboriously. This direct approach offers us little insight as to the nature
of the resulting system.

We are going to develop a powerful “bookkeeping” method that will rear-
range the variables of Sylvester’s equation automatically. The first basic idea
needed here is that of the tensor product of two matrices, which is defined as
follows:

Definition 2.19. Let A = [aij ] be an m × p matrix and B = [bij ] an n × qTensor
Product matrix. Then the tensor product of A and B is the mn × pq matrix A ⊗ B

that can be expressed in block form as

A ⊗ B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B · · · a1jB · · · a1pB
a21B a22B · · · a2jB · · · a2pB

...
...

...
...

ai1B ai2B · · · aijB · · · aipB
...

...
...

...
am1B am2B · · · amjB · · · ampB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 2.59. Let A =
[

1 3
2 1

]
and B =

[
4

−1

]
. Exhibit A ⊗ B, B ⊗ A, and

I2 ⊗ A and conclude that A ⊗ B 
= B ⊗ A.
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Solution. From the definition,

A ⊗ B =
[

1B 3B
2B 1B

]
=

⎡⎢⎢⎣
4 12

−1 −3
8 4

−2 −1

⎤⎥⎥⎦ , B ⊗ A =
[

4A
−1A

]
=

⎡⎢⎢⎣
4 12

−8 −2
−1 −3
−2 −1

⎤⎥⎥⎦ ,

and I2 ⊗ A =
[

1A 0A
0A 1A

]
=

⎡⎢⎢⎣
1 3 0 0
2 1 0 0
0 0 1 3
0 0 2 1

⎤⎥⎥⎦ . �

The other ingredient that we need to solve equation (2.3) is an operator
that turns matrices into vectors. It is defined as follows.

Definition 2.20. Let A be an m × n matrix. Then the mn × 1 vector vec A Vec Operator
is obtained from A by stacking the n columns of A vertically, with the first
column at the top and the last column of A at the bottom.

Example 2.60. Let A =
[

1 3
2 1

]
. Compute vec A.

Solution. There are two columns to stack, yielding vec A = [1, 2, 3, 1]T . ��
The vec operator is linear (vec (aA + bB) = a vec A + b vec B). We leave

the proof, along proofs of the following simple tensor facts, to the reader.

Theorem 2.11. Let A, B, C, D be suitably sized matrices. Then

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C
(2) A ⊗ (B + C) = A ⊗ B + A ⊗ C
(3) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
(4) (A ⊗ B)T = AT ⊗ BT

(5) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(6) (A ⊗ B)−1 = A−1 ⊗ B−1

The next theorem lays out the key bookkeeping between tensor products and
the vec operator.

Theorem 2.12. If A, X, B are matrices conformable for multiplication, then Bookkeeping
Theorem

vec (AXB) =
(
BT ⊗ A

)
vec X.

Corollary 2.4. The following linear systems in the unknown X are equivalent.

(1) A1XB1 + A2XB2 = C
(2)

((
BT

1 ⊗ A1
)

+
(
BT

2 ⊗ A2
))

vec X = vec C
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For Sylvester’s equation, note that AX − XB = IAX + (−I) XB.
The following is a very basic application of the tensor product. Suppose

we wish to model a two-dimensional heat diffusion process on a flat plate that
occupies the unit square in the xy-plane. We proceed as we did in the one-
dimensional process described in the introduction. To fix ideas, we assume that
the heat source is described by a function f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
that the temperature is held at 0 at the boundary of the unit square. Also, the
conductivity coefficient is assumed to be the constant k. Cover the square with
a uniformly spaced set of grid points (xi, yj), 0 ≤ i, j ≤ n + 1, called nodes,
and assume that the spacing in each direction is a width h = 1/(n + 1). Also
assume that the temperature function at the (i, j)th node is uij = u(xi, yj)
and that the source is fij = f(xi, yj). Notice that the values of u on boundary
grid points is set at 0. For example, u01 = u20 = 0. By balancing the heat
flow in the horizontal and vertical directions, one arrives at a system of linear
equations, one for each node, of the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 =
h2

k
fij , i, j = 1, . . . , n. (2.4)

Observe that values of boundary nodes are zero, so these are not unknowns,
which is why the indexing of the equations starts at 1 instead of 0. There are
exactly as many equations as unknown grid point values. Each equation has
a “molecule” associated with it that is obtained by circling the nodes that
occur in the equation and connecting these circles. A picture of a few nodes
is given in Figure 2.7.

x1x0 x2 x3 x4

y2

y3

y4

y0

y1

Fig. 2.7. Molecules for (1, 1)th and (3, 2)th grid points.

Example 2.61. Set up and solve a system of equations for the two-dimensional
heat diffusion problem described above.

Solution. Equation (2.4) gives us a system of n2 equations in the n2 unknowns
uij , i, j = 1, 2, . . . , n. Rewrite equation (2.4) in the form

(−ui−1,j + 2uij − ui+1,j) + (−ui,j−1 + 2uij − ui,j+1) =
h2

k
fij .
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Now form the n × n matrices

Tn =

⎡⎢⎢⎢⎢⎣
2 −1 0 0

−1 2
. . . 0

0
. . . . . . −1

0 0 −1 2

⎤⎥⎥⎥⎥⎦ .

Set U = [uij ] and F = [fij ], and the system can be written in matrix form as

TnU + UTn = TnUIn + InUTn =
h2

k
F.

However, we can’t as yet identify a coefficient matrix, which is where Corol-
lary 2.4 comes in handy. Note that both In and Tn are symmetric and apply
the corollary to obtain that the system has the form

(In ⊗ Tn + Tn ⊗ In) vec U = vec
h2

k
F.

Now we have a coefficient matrix, and what’s more, we have an automatic
ordering of the doubly indexed variables uij , namely

u1,1, u2,1, . . . , un,1, u1,2, u2,2, . . . , un,2, . . . , u1,n, u2,n, . . . , un,n.

This is sometimes called the “row ordering,” which refers to the rows of the
nodes in Figure 2.7, and not the rows of the matrix U. ��

Here is one more example of a problem in which tensor notation is an
extremely helpful bookkeeper. This is a biological model that gives rise to an
inverse theory problem. (“Here’s the answer, what’s the question?”)

Example 2.62. Refer to Example 2.20, where a three-state insect (egg, juve-
nile, adult) is studied in stages spaced at intervals of two days. One might ask
how the entries of the matrix were derived. Clearly, observation plays a role.
Let us suppose that we have taken samples of the population at successive
stages and recorded our estimates of the population state. Suppose we have
estimates of states x(0) through x(4). How do we translate these observations
into transition matrix entries?

Solution. We postulate that the correct transition matrix has the form

A =

⎡⎣ P1 0 F
G1 P2 0
0 G2 P3

⎤⎦ .

Theoretically, we have the transition equation x(k+1) = Ax(k) for k = 0, 1, 2, 3.
Remember that this is an inverse problem, where the “answers,” population
states x(k), are given, and the question “What are populations given A?” is
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unknown. We could simply write out each transition equation and express
the results as linear equations in the unknown entries of A. However, this
is laborious and not practical for problems involving many states or larger
amounts of data.

Here is a better idea: assemble all of the transition equations into a single
matrix equation by setting

M =
[
x(0),x(1),x(2),x(3)

]
= [mij ] and N =

[
x(1),x(2),x(3),x(4)

]
= [nij ] .

The entire ensemble of transition equations becomes AM = N with M and
N known matrices. Here A is 3 × 3 and both M,N are 3 × 4. Next, write the
transition equation as I3AM = N and invoke the bookkeeping theorem to
obtain the system

vec (I3AM) =
(
MT ⊗ I3

)
vec A = vec N.

This is a system of 12 equations in 9 unknowns. We can simplify it a bit by
deleting the third, fourth, and eighth entries of vecA and the same columns
of the coefficient matrix, since we know that the variables a31, a12, and a23
are zero. We thus end up with a system of 12 equations in 6 unknowns, which
will determine the nonzero entries of A. ��

Project Topics

Project: LU Factorization
Write a program module that implements Theorem 2.10 using partial pivot-
ing and implicit row exchanges. This means that space is allocated for the
n × n matrix A = [a[i, j]] and an array of row indices, say indx[i]. Initially,
indx should consist of the integers 1, 2, . . . , n. Whenever two rows need to be
exchanged, say the first and third, then the indices indx[1] and indx[3] are
exchanged. References to array elements throughout the Gaussian elimina-
tion process should be indirect: refer to the (1, 4)th entry of A as the ele-
ment a [indx[1], 4]. This method of reference has the same effect as physically
exchanging rows, but without the work. It also has the appealing feature
that we can design the algorithm as though no row exchanges have taken
place provided we replace the direct reference a[i, j] by the indirect reference
a[indx[i], j]. The module should return the lower/upper matrix in the format
of Example 2.58 as well as the permuted array indx[i]. Effectively, this index
array tells the user what the permutation matrix P is.

Write an LU system solver module that uses the LU factorization to solve
a general linear system. Also write a module that finds the inverse of an n×n
matrix A by first using the LU factorization module, then making repeated
use of the LU system solver to solve Ax(i) = ei, where ei is the ith column of
the identity. Then we will have

A−1 = [x(1),x(2), . . . ,x(n)].
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Be sure to document and test your code and report on the results.

Project: Markov Chains
Refer to Example 2.18 and Section 2.3 for background. Three automobile
insurance firms compete for a fixed market of customers. Annual premiums
are sold to these customers. Label the companies A, B, and C. You work for
Company A, and your team of market analysts has done a survey that draws
the following conclusions: in each of the past three years, the number of A
customers switching to B is 20%, and to C is 30%. The number of B customers
switching to A is 20%, and to C is 20%. The number of C customers switching
to A is 30%, and to B is 10%. Those who do not switch continue to use their
current company’s insurance for the next year. Model this market as a Markov
chain. Display the transition matrix for the model. Illustrate the workings of
the model by showing what it would predict as the market shares three years
from now if currently A, B, and C owned equal shares of the market.

The next part of your problem is as follows: your team has tested two
advertising campaigns in some smaller test markets and are confident that
the first campaign will convince 20% of the B customers who would otherwise
stay with B in a given year to switch to A. The second advertising campaign
would convince 20% of the C customers who would otherwise stay with C
in a given year to switch to A. Both campaigns have about equal costs and
would not change other customers’ habits. Make a recommendation, based on
your experiments with various possible initial state vectors for the market.
Will these campaigns actually improve your company’s market share? If so,
which one do you recommend? Write up your recommendation in the form of
a report, with supporting evidence. It’s a good idea to hedge on your bets a
little by pointing out limitations to your model and claims, so devote a few
sentences to those points.

It would be a plus to carry the analysis further (your manager might ap-
preciate that). For instance, you could turn the additional market share from,
say B customers, into a variable and plot the long-term gain for your company
against this variable. A manager could use this data to decide whether it was
worthwhile to attempt gaining more customers from B.

Project: Affine Transforms in Real-Time Rendering
Refer to the examples in Section 2.3 for background. Graphics specialists
find it important to distinguish between vector objects and point objects in
three-dimensional space. They simultaneously manipulate these two kinds of
objects with invertible linear operators, which they term transforms. To this
end, they use the following clever ruse: identify three-dimensional vectors in
the usual way, that is, by their coordinates x1, x2, x3. Do the same with three-
dimensional points. To distinguish between the two, embed them in the set
of 4 × 1 vectors x = (x1, x2, x3, x4), called homogeneous vectors, with the Homogeneous

Vectorunderstanding that if x4 = 0, then x represents a three-dimensional vector
object, and if x4 
= 0, then the vector represents a three-dimensional point
whose coordinates are x1/x4, x2/x4, x3/x4.
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Transforms (invertible linear operators) have the general form

TM (x) =

⎡⎢⎢⎣
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ .

If m44 = 1 and the remaining entries of the last row and column are zero, the
transform is called a homogeneous transform. If m44 = 1 and the remaining
entries of the last row are zero, the transform is called affine. If the transformHomogeneous

and Affine
Transforms

matrix M takes the block form M =
[

I3 t
0 1

]
, the transform TM is called a

translation by the vector t. All other operators are called nonaffine.
In real-time rendering it is sometimes necessary to invert an affine trans-

form. Computational efficiency is paramount in these calculations (after all,
this is real time!). So your objective in this project is to design an algorithm
that accomplishes this inversion with a minimum number of flops. Preface
discussion of your algorithm with a description of affine transforms. Give a
geometrical explanation of what homogeneous and translation transforms do
to vectors and points. You might also find it helpful to show that every affine
transform is the composition of a homogeneous and a translation transform.
Illustrate the algorithm with a few examples. Finally, you might discuss the
stability of your algorithm. Could it be a problem? If so, how would you
remedy it? See the discussion of roundoff error in Section 1.5.

Project: Modeling with Directed Graphs I
Refer to Example 2.21 and Section 2.3 for background. As a social scien-
tist you have studied the influence factors that relate seven coalition groups.
For simplicity, we will label the groups as 1, 2, 3, 4, 5, 6, 7. Based on empiri-
cal studies, you conclude that the influence factors can be well modeled by a
dominance-directed graph with each group as a vertex. The meaning of the
presence of an edge (i, j) in the graph is that coalition group i can dominate,
i.e., swing coalition group j its way on a given political issue. The data you
have gathered suggest that the appropriate edge set is the following:

E = {(1, 2), (1, 3), (1, 4), (1, 7), (2, 4), (2, 6), (3, 2), (3, 5), (3, 6),
(4, 5), (4, 7), (5, 1), (5, 6), (5, 7), (6, 1), (6, 4), (7, 2), (7, 6)}.

Do an analysis of this power structure. This should include a graph. (It might
be a good idea to arrange the vertices in a circle and go from there.) It should
also include a power rating of each coalition group. Now suppose you were an
adviser to one of these coalition groups, and by currying certain favors, this
group could gain influence over another coalition group (thereby adding an
edge to the graph or reversing an existing edge of the graph). In each case, if
you could pick the best group for your client to influence, which would that
be? Explain your results in the context of matrix multiplication if you can.
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2.7 Exercises and Problems

Exercise 1. Use LU factorization of A =

⎡⎣2 −1 1
2 3 −2
4 2 −2

⎤⎦ to solve Ax = b, where

(a) b = (6,−8,−4) (b) b = (2,−1, 2) (c) b = (1, 2, 4)) (d) b = (1, 1, 1).

Exercise 2. Use PLU factorization of A =

⎡⎣0 −1 1
2 3 −2
4 2 −2

⎤⎦ to solve Ax = b,

(a) b = (3, 1, 4) (b) b = (2,−1, 3) (c) b = (1, 2, 0)) (d) b = (1, 0, 0).

Exercise 3. Let A =

⎡⎣ 1 0 0
2 2 1
1 0 1

⎤⎦ and B =
[

2 −1
1 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)A−1 ⊗ B−1 (d)(A ⊗ B)−1

Exercise 4. Let A =
[

1 0 −1
1 2 1

]
and B =

[
3 −3
3 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)AT ⊗ BT (d)(A ⊗ B)T

Exercise 5. With A and B as in Exercise 3, C =

⎡⎣2 −1
1 0
1 3

⎤⎦, and X = [xij ] a

3 × 2 matrix of unknowns, use tensor products to determine the coefficient
matrix of the linear system AX + XB = C in matrix–vector form.
Exercise 6. Use the matrix A and methodology of Example 2.62 with x(0) =
(1, 2, 3), x(0) = (0.9, 1.2, 3.6), and x(0) = (1, 1.1, 3.4) to express the resulting
system of equations in the six unknown nonzero entries of A in matrix–vector
form.
*Problem 7. Show that if A is a nonsingular matrix with a zero (1, 1)th entry,
then A does not have an LU factorization.
Problem 8. Prove that if A is n × n, then det(−A) = (−1)n det A.

Problem 9. Let A and B be invertible matrices of the same size. Use determi-
nantal law D9 to prove that adjA−1 = (adjA)−1 and adj(AB) = adjA adjB.
Problem 10. Verify parts 1 and 4 of Theorem 2.11.
Problem 11. Verify parts 5 and 6 of Theorem 2.11.
Problem 12. If heat is transported with a horizontal velocity v as well as dif-
fused in Example 2.61, a new equation results at each node in the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 − vh

2k
(ui+1,j − ui−1,j) =

h2

k
fij

for i, j = 1, . . . , n. Vectorize the system and use tensor products to identify
the coefficient matrix of this linear system.
*Problem 13. Prove the Bookkeeping Theorem (Theorem 2.12).
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VECTOR SPACES

It is hard to overstate the importance of the idea of a vector space, a concept
that has found application in mathematics, engineering, physics, chemistry,
biology, the social sciences, and other areas. What we encounter is an ab-
straction of the idea of vector space that we studied in calculus or high school
geometry. These “geometrical vectors” can easily be visualized. In this chap-
ter, abstraction will come in two waves. The first wave, which could properly
be called generalization, consists in generalizing the familiar ideas of geomet-
rical vectors of calculus to vectors of size greater than three. The second wave
consists in abstracting the vector idea to entirely different kinds of objects.
Abstraction can sometimes be difficult. For some, the study of abstract ideas
is its own reward. For others, the natural reaction is to expect some payoff for
the extra effort required to master abstraction. In the case of vector spaces
we are happy to report that both kinds of students will be satisfied: vector
space theory really is a thing of beauty in itself and there is indeed a payoff
for its study. It is a practical tool that enables us to understand phenomena
that would otherwise escape our comprehension. Examples abound: the the-
ory will be used in network analysis, for “best” solutions to an inconsistent
system (least squares), for studying functions as systems of vectors, and to
obtain new perspectives on our old friend Ax = b.

3.1 Definitions and Basic Concepts

Generalization

We begin with the most concrete form of vector spaces, one that is closely
in tune with what we learned when we were first introduced to two- and
three-dimensional vectors using real numbers as scalars. However, we have
seen that the complex numbers are a perfectly legitimate and useful field of
numbers to work with. Therefore, our concept of a vector space must include
the selection of a field of scalars. The requirements for such a field are that it
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have binary operations of addition and multiplication that satisfy the usual
arithmetic laws: Both operations are closed, commutative, and associative;
have identities and satisfy distributive laws. And there exist additive inverses
and multiplicative inverses for nonzero elements. Although other fields are
possible, for our purposes the only fields of scalars are F = R and F = C.
Unless there is some indication to the contrary, the field of scalars will be
assumed to be the default, the real numbers R.

A formal definition of vector space will come later. For now we describe a
“vector space” over a field of scalars F as a nonempty set V of vectors of the
same size, together with the binary operations of scalar multiplication and
vector addition, subject to the following laws: for all vectors u,v ∈ V and
scalars a ∈ F, (a) (Closure of vector addition) u + v ∈ V. (b) (Closure ofVector

Negatives and
Subtraction

scalar multiplication) av ∈ V . For vectors u,v, we define −u = (−1)u and
u − v = u + (−v).

Very simple examples are R2 and R3, which we discuss below. An-
other is any line through the origin in R2, which takes the form V =
{c (x0, y0) | c ∈ R}.

Geometrical vector spaces. We may have already seen the vector ideaGeometrical
Vectors in geometry or calculus. In those contexts, a vector was supposed to represent

a direction and a magnitude in two- or three-dimensional space, which is not
the same thing as a point, that is, location in space. At first, one had to deal
with these intuitive definitions until they could be turned into something more
explicitly computational, namely the displacements of a vector in coordinate
directions. This led to the following two vector spaces over the field of real
numbers:

R2 = {(x, y) |x, y ∈ R} ,

R3 = {(x, y, z) |x, y, z ∈ R} .

The distinction between vector spaces and points becomes a little hazy here.
Once we have set up a coordinate system, we can identify each point in two-
or three-dimensional space with its coordinates, which we write in the form
of a tuple, i.e., a vector. The arithmetic of these two vector spaces is just the
standard coordinatewise vector addition and scalar multiplication. One can
visualize the direction represented by a vector (x, y) by drawing an arrow, i.e.,
directed line segment, from the origin of the coordinate system to the point
with coordinates (x, y). The magnitude of this vector is the length of the arrow,
which is just

√
x2 + y2. The arrows that we draw only represent the vector

we are thinking of. More than one arrow could represent the same vector
as in Figure 3.1. The definitions of vector arithmetic could be represented
geometrically too. For example, to get the sum of vectors u and v, one places
a representative of vector u in the plane, then places a representative of v
whose tail is at the head of v, and the vector u + v is then represented by
the third leg of this triangle, with base at the base of u. To get a scalar
multiple of a vector w one scales w in accordance with the coefficient. See
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Figure 3.1. Though instructive, this version of vector addition is not practical
for calculations.

32
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1

y
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R

4 5
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uw
2w

vu− v
u + v

v

Fig. 3.1. Displacement vectors and graphical vector operations.

As a practical matter, it is also convenient to draw directed line segments
connecting points; such a vector is called a displacement vector. For example,
see Figure 3.1 for representatives of a displacement vector w =

−−→
PQ from the Displacement

and Position
Vector

point P with coordinates (1, 2) to the point Q with coordinates (3, 3). One of
the first nice outcomes of vector arithmetic is that this displacement vector
can be deduced from a simple calculation,

w = (3, 3) − (1, 2) = (3 − 1, 3 − 2) = (2, 1) .

A displacement vector of the form w =
−−→
OR, where O is the origin, is called a

position vector.
Geometrical vector spaces look a lot like the object we studed in Chapter

2 with the tuple notation as a shorthand for column vectors. The arithmetic
of R2 and R3 is the same as the standard arithmetic for column vectors. Now,
even though we can’t draw real geometrical pictures of vectors with four or
more coordinates, we have seen that larger vectors are useful in our search for
solutions of linear systems. So the question presents itself, why stop at three?
The answer is that we won’t! We will use the familiar pictures of R2 and R3

to guide our intuition about vectors in higher-dimensional spaces, which we
now define.

Definition 3.1. Given a positive integer n, we define the standard vector space
of dimension n over the reals to be the set of vectors Standard Real

Vector Space
Rn = {(x1, x2, . . . , xn) |x1, x2, . . . , xn ∈ R}

together with the standard vector addition and scalar multiplication. (Recall
that (x1, x2, . . . , xn) is shorthand for the column vector [x1, x2, . . . , xn]T .)

We see immediately from the definition that the required closure properties
of vector addition and scalar multiplication hold, so these really are vector
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spaces in the sense defined above. The standard real vector spaces are often
called the real Euclidean vector spaces once the notion of a norm (a notion of
length covered in the next chapter) is attached to them.

Homogeneous vector spaces. Graphics specialists and others find it
important to distinguish between geometrical vectors and points (locations) in
three-dimensional space. They want to be able to simultaneously manipulate
these two kinds of objects, in particular, to do vector arithmetic and operator
manipulation that reduces to the ordinary vector arithmetic when applied to
geometrical vectors.

Here’s the idea that neatly does the trick: set up a coordinate system and
identify geometrical vectors in the usual way, that is, by their coordinates
x1, x2, x3. Do the same with geometrical points. To distinguish between the
two, embed them as vectors x = (x1, x2, x3, x4) ∈ R4 with the understand-
ing that if x4 = 0, then x represents a geometrical vector, and if x4 = 1,
then x represents a geometrical point. The vector x is called a homogeneous
vector and R4 with the standard vector operations is called homogeneous
space. If x4 
= 0, then the vector represents a point whose coordinates areHomogeneous

Vectors and
Points

x1/x4, x2/x4, x3/x4, and this point is said to be obtained from the vector
x by normalizing the vector. Notice that the line through the origin that
passes through the point P = (x1, x2, x3, 1) consists of vectors of the form
(tx1, tx2, tx3, t), where t is any real number. Conversely, any such nonzero vec-
tor is normalized (tx1/t, tx2/t, tx3/t, t/t) = P . In this way, such lines through
the origin correspond to points. (Readers who have seen projective spaces
before may recognize this correspondence as identifying finite points in pro-
jective space with lines through the origin in R4. The ideas of homogeneous
space actually originate in projective geometry.)

Now the standard vector arithmetic for R4 allows us to do arithmetic on
geometrical vectors, for if x = (x1, x2, x3, 0) and y = (y1, y2, y3, 0) are such
vectors, then as elements of R4 we have

x + y = (x1, x2, x3, 0) + (y1, y2, y3, 0) = (x1 + y1, x2 + y2, x3 + y3, 0) ,

cx = c (x1, x2, x3, 0) = (cx1, cx2, cx3, 0) ,

which result in geometrical vectors.

Example 3.1. Interpret the result of adding a point and vector in homoge-
neous space.

Solution. Notice that we can’t add two points and obtain a point without
some extra normalization; however, addition of a point x = (x1, x2, x3, 1) and
vector y = (y1, y2, y3, 0) yields

x + y = (x1, x2, x3, 1) + (y1, y2, y3, 0) = (x1 + y1, x2 + y2, x3 + y3, 1) .

This has a rather elegant interpretation as the translation of the point x by
the vector y to another point x + y. It reinforces the idea that geometrical
vectors are simply displacements from one point to another. ��
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We can’t draw pictures of R4, of course. But we can get an intuitive feeling
for how homogenization works by moving down one dimension. Regard R3 as
homogeneous space for the plane that consists of points (x1, x2, 1). Figure 3.2
illustrates this idea.

x1

x2

x3

(0, 0, 0)

(0, 0, 1)

x + y = (x1 + y1, x2 + y2, 1)

x = (x1, x2, 1)

(tx1, tx2, t)

y = (y1, y2, 0)

Fig. 3.2. Homogeneous space for planar points and vectors.

As in Chapter 2, we don’t have to stop at the reals. For those situations in
which we want to use complex numbers, we have the following vector spaces:

Definition 3.2. Given a positive integer n, we define the standard vector space Standard
Complex
Vector Space

of dimension n over the complex numbers to be the set of vectors

Cn = {(x1, x2, . . . , xn) |x1, x2, . . . , xn ∈ C}

together with the standard vector addition and scalar multiplication.

The standard complex vector spaces are also sometimes called Euclidean
spaces. It’s rather difficult to draw honest spatial pictures of complex vec-
tors. The space C1 isn’t too bad: complex numbers can be identified by points
in the complex plane. What about C2? Where can we put (1 + 2i, 3 − i)? It
seems that we need four real coordinates, namely the real and imaginary parts
of two independent complex numbers, to keep track of the point. This is too
big to fit in real three-dimensional space, where we have only three indepen-
dent coordinates. We don’t let this technicality deter us. We can still draw
fake vector pictures of elements of C2 to help our intuition, but do the algebra
of vectors exactly from the definition.

Example 3.2. Find the displacement vector from the point P with coordi-
nates (1 + 2i, 1 − 2i) to the point Q with coordinates (3 + i, 2i).
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Solution. We compute
−−→
PQ = (3 + i, 2i) − (1 + 2i, 1 − 2i)

= (3 + i − (1 + 2i) , 2i − ((1 − 2i))
= (2 − i,−1 + 4i) . �

Abstraction

We can see hints of a problem with the coordinate way of thinking about
geometrical vectors. Suppose the vector in question represents a force. In one
set of coordinates the force might have coordinates (1, 0, 1). In another, it
could have coordinates (0, 1, 1). Yet the the force doesn’t change, only its rep-
resentation. This suggests an idea: why not think about geometrical vectors
as independent of any coordinate representation? From this perspective, geo-
metrical vectors are really more abstract than the row or column vectors we
have studied so far.

This line of thought leads us to consider an abstraction of our concept of
vector space. First we have to identify the essential vector space properties,
enough to make the resulting structure rich, but not so much that it is tied
down to an overly specific form. We saw in Chapter 2 that many laws hold for
the standard vector spaces. The essential laws were summarized in Section 2.1.
These laws become the basis for our definition of an abstract vector space.

Definition 3.3. An (abstract) vector space is a nonempty set V of elementsAbstract
Vector Space called vectors, together with operations of vector addition (+) and scalar

multiplication ( · ), such that the following laws hold for all vectors u,v,w ∈ V
and scalars a, b ∈ F:

(1) (Closure of vector addition) u + v ∈ V.
(2) (Commutativity of addition) u + v = v + u.
(3) (Associativity of addition) u + (v + w) = (u + v) + w.
(4) (Additive identity) There exists an element 0 ∈ V such that u+ 0 = u =

0 + u.
(5) (Additive inverse) There exists an element −u ∈ V such that u+(−u) =

0 = (−u) + u.
(6) (Closure of scalar multiplication) a · u ∈ V.
(7) (Distributive law) a · (u + v) = a · u + a · v.
(8) (Distributive law) (a + b) · u = a · u + b · u.
(9) (Associative law) (ab) · u = a · (b · u) .
(10) (Monoidal law) 1 · u = u.

About notation: just as in matrix arithmetic, for vectors u,v ∈ V, we un-
derstand that u − v = u + (−v). We also suppress the dot (·) of scalar
multiplication and usually write au instead of a · u.

Examples of these abstract vector spaces are the standard spaces just in-
troduced, and these will be our main focus in this section. Yet, if we squint a
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bit, we can see vector spaces everywhere. There are other, entirely nonstan-
dard examples, that make the abstraction worthwhile. Here are just a few
such examples. Our first example is closely related to the standard spaces,
though strictly speaking it is not one of them. It blurs the distinction between
matrices and vectors in Chapter 2, since it makes matrices into “vectors” in
the abstract sense of the preceding definition.

Example 3.3. Let Rm,n denote the set of all m×n matrices with real entries. Matrices as
Vector SpaceShow that this set, with the standard matrix addition and scalar multiplica-

tion, forms a vector space.

Solution. We know that any two matrices of the same size can be added to
yield a matrix of that size. Likewise, a scalar times a matrix yields a matrix
of the same size. Thus the operations of matrix addition and scalar multi-
plication are closed. Indeed, these laws and all the other vector space laws
are summarized in the laws of matrix addition and scalar multiplication of
page 60. ��

The next example is important in many areas of higher mathematics and is
quite different from the standard vector spaces. Yet it is a perfectly legitimate
vector space. All the same, at first it seems odd to think of functions as
“vectors” even though this is meant in the abstract sense.

Example 3.4. Let C [0, 1] denote the set of all real-valued functions that are Function
Spacecontinuous on the interval [0, 1] and use the standard function addition and

scalar multiplication for these functions. That is, for f (x) , g (x) ∈ C [0, 1] and
real number c, we define the functions f + g and cf by

(f + g) (x) = f (x) + g (x)
(cf) (x) = c (f (x)) .

Show that C [0, 1] with the given operations is a vector space.

Solution. We set V = C[0, 1] and check the vector space axioms for this V.
For the rest of this example, we let f, g, h be arbitrary elements of V. We know
from calculus that the sum of any two continuous functions is continuous and
that any constant times a continuous function is also continuous. Therefore
the closure of addition and that of scalar multiplication hold. Now for all x
such that 0 ≤ x ≤ 1, we have from the definition and the commutative law of
real number addition that

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

Since this holds for all x, we conclude that f + g = g + f, which is the
commutative law of vector addition. Similarly,

((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x)
= f(x) + (g(x) + h(x)) = (f + (g + h))(x).
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Since this holds for all x, we conclude that (f + g) + h = f + (g + h), which
is the associative law for addition of vectors.

Next, if 0 denotes the constant function with value 0, then for any f ∈ V
we have that for all 0 ≤ x ≤ 1,

(f + 0)(x) = f(x) + 0 = f(x).

(We don’t write the zero element of this vector space in boldface because it’s
customary not to write functions in bold.) Since this is true for all x we have
that f + 0 = f , which establishes the additive identity law. Also, we define
(−f)(x) = −(f(x)) so that for all 0 ≤ x ≤ 1,

(f + (−f))(x) = f(x) − f(x) = 0,

from which we see that f + (−f) = 0. The additive inverse law follows. For
the distributive laws note that for real numbers a, b and continuous functions
f, g ∈ V , we have that for all 0 ≤ x ≤ 1,

a(f + g)(x) = a(f(x) + g(x)) = af(x) + ag(x) = (af + ag)(x),

which proves the first distributive law. For the second distributive law, note
that for all 0 ≤ x ≤ 1,

((a + b)g)(x) = (a + b)g(x) = ag(x) + bg(x) = (ag + bg)(x),

and the second distributive law follows. For the scalar associative law, observe
that for all 0 ≤ x ≤ 1,

((ab)f)(x) = (ab)f(x) = a(bf(x)) = (a(bf))(x),

so that (ab)f = a(bf), as required. Finally, we see that

(1f)(x) = 1f(x) = f(x),

from which we have the monoidal law 1f = f. Thus, C [0, 1] with the pre-
scribed operations is a vector space. ��

The preceding example could have just as well been C [a, b], the set of all
continuous functions on the interval a ≤ x ≤ b. Indeed, most of what we
say about C [0, 1] is equally applicable to the more general space C [a, b]. We
usually stick to the interval 0 ≤ x ≤ 1 for simplicity. The next example is also
based on the “functions as vectors” idea.

Example 3.5. One of the two sets V = {f (x) ∈ C [0, 1] | f(1/2) = 0} and
W = {f (x) ∈ C [0, 1] | f(1/2) = 1}, with the operations of function addition
and scalar multiplication as in Example 3.4, forms a vector space over the
reals, while the other does not. Determine which.
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Solution. Notice that we don’t have to check the commutativity of addition,
associativity of addition, distributive laws, associative law, or monoidal law.
The reason is that we already know from the previous example that these laws
hold when the operations of the space C [0, 1] are applied to any elements of
C [0, 1], whether they belong to V or W or not. So the only laws to be checked
are the closure laws and the identity laws.

First let f(x), g(x) ∈ V and let c be a scalar. By definition of the set V
we have that f(1/2) = 0 and g(1/2) = 0. Add these equations together and
we obtain

(f + g)(1/2) = f(1/2) + g(1/2) = 0 + 0 = 0.

It follows that V is closed under addition with these operations. Furthermore,
if we multiply the identity f(1/2) = 0 by the real number c we obtain that

(cf)(1/2) = c · f(1/2) = c · 0 = 0.

It follows that V is closed under scalar multiplication. Now certainly the
zero function belongs to V , since this function has value 0 at any argument.
Therefore, V contains an additive identity element. Finally, we observe that
the negative of a function f(x) ∈ V is also an element of V , since

(−f)(1/2) = −1 · f(1/2) = −1 · 0 = 0.

Therefore, the set V with the given operations satisfies all the vector space
laws and is an (abstract) vector space in its own right.

When we examine the set W in a similar fashion, we run into a roadblock
at the closure of addition law. If f(x), g(x) ∈ W , then by definition of the set
W we have that f(1/2) = 1 and g(1/2) = 1. Add these equations together
and we obtain

(f + g)(1/2) = f(1/2) + g(1/2) = 1 + 1 = 2.

This means that f +g is not in W, so the closure of addition fails. We need go
no further. If only one of the vector space axioms fails, then we do not have a
vector space. Hence, W with the given operations is not a vector space. ��

There is a certain economy in this example. A number of laws did not
need to be checked by virtue of the fact that the sets in question were subsets
of existing vector spaces with the same vector operations. Here are two more
examples that utilize this economy.

Example 3.6. Show that the set P2 of all polynomials of degree at most two Polynomial
Spacewith the standard function addition and scalar multiplication forms a vector

space.

Solution. Certainly, polynomials are continuous functions on [0, 1] (actually,
continuous everywhere, but a polynomial will be uniquely determined by its
values on [0, 1]). As in the preceding example, we don’t have to check the com-
mutativity of addition, associativity of addition, distributive laws, associative
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law, or monoidal law since we know that these laws hold for all continuous
functions. Let f, g ∈ P2, say f (x) = a1+b1x+c1x

2 and g (x) = a2+b2x+c2x
2.

Let c be any scalar. Then we have both

(f + g) (x) = f (x) + g (x) = (a1 + a2) + (b1 + b2) x + (c1 + c2) x2 ∈ P2

and

(cf) (x) = cf (x) = c
(
a1 + b1x + c1x

2) = ca1 + cb1x + cc1x
2 ∈ P2.

Hence P2 is closed under the operations of function addition and scalar mul-
tiplication. Furthermore, the zero function is a constant, hence a polynomial
of degree at most two. Also, the negative of a polynomial of degree at most
two is also a polynomial of degree at most two. So all of the laws for a vector
space are satisfied and P2 is an (abstract) vector space. ��
Example 3.7. Show that the set Sn of all n×n real symmetric matrices with
the standard matrix addition and scalar multiplication form a vector space.

Solution. Just as in the preceding example, we don’t have to check the com-
mutativity of addition, associativity of addition, distributive laws, associative
law, or monoidal law since we know that these laws hold for any matrices,
symmetric or not. Now let A, B ∈ Sn. This means by definition that A = AT

and B = BT . Let c be any scalar. Then we have both

(A + B)T = AT + BT = A + B

and
(cA)T = cAT = cA.

It follows that the set Sn is closed under the operations of matrix addition and
scalar multiplication. Furthermore, the zero n×n matrix is clearly symmetric,
so the set Sn has an additive identity element. Finally, (−A)T = −AT = −A,
so each element of Sn has an additive inverse as well. Therefore, all of the
laws for a vector space are satisfied, so Sn together with these operations is
an (abstract) vector space. ��

One of the virtues of abstraction is that it allows us to cover many cases
with one statement. For example, there are many simple facts that are de-
ducible from the vector space laws alone. With the standard vector spaces,
these facts seem transparently clear. For abstract spaces, the situation is not
quite so obvious. Here are a few examples of what can be deduced from the
definition.

Example 3.8. Let v ∈ V, a vector space, and 0 the vector zero. Deduce from
the vector space properties alone that 0v = 0.

Solution. Certainly we have the scalar identity 0+0 = 0. Multiply both sides
on the right by the vector v to obtain that



3.1 Definitions and Basic Concepts 155

(0 + 0)v = 0v.

Now use the distributive law to obtain

0v + 0v = 0v.

Next add −(0v) to both sides (remember, we don’t know it’s 0 yet), use the
associative law of addition to regroup, and obtain that

0v + (0v + (−0v)) = 0v + (−0v).

Now use the additive inverse law to obtain that

0v + 0 = 0.

Finally, use the identity law to obtain

0v = 0,

which is what we wanted to show. ��
Example 3.9. Show that the vector space V has only one zero element.

Solution. Suppose that both 0 and 0∗ act as zero elements in the vector
space. Use the additive identity property of 0 to obtain that 0∗ + 0 = 0∗,
while the additive identity property of 0∗ implies that 0 + 0∗ = 0. By the
commutative law of addition, 0∗ + 0 = 0+ 0∗. It follows that 0∗ = 0, whence
there can be only one zero element. ��

There are several other such arithmetic facts that we want to identify,
along with the one of this example. In the case of standard vectors, these
facts are obvious, but for abstract vector spaces, they require a proof similar
to the one we have just given. We leave these as exercises.

Let v be a vector in some vector space V and let c be any scalar. Then

(1) 0v = 0.
(2) c0 = 0.
(3) (−c)v = c(−v) = −(cv).
(4) If cv = 0, then v = 0 or c = 0.
(5) A vector space has only one zero element.
(6) Every vector has only one additive inverse.

Laws of
Vector
Arithmetic

Linear Operators

We were introduced in Section 2.3 to the idea of a linear function in the
context of standard vectors. Now that we have a notion of an abstract vector
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space, we can examine linearity in this larger setting. We have seen that some
of our “vectors” can themselves be functions, as in the case of the vector
space C[0, 1] of continuous functions on the interval [0, 1]. In order to avoid
confusion in cases like this, we prefer to designate linear functions by the term
linear operator. Other common terms for this object are linear mapping and
linear transformation.

Before giving the definition of linear operator, let us recall some notation
that is associated with functions in general. We identify a function f with
the notation f : D → T , where D and T are the domain and target of the
function, respectively. This means that for each x in the domain D, the value
f(x) is a uniquely determined element in the target T. We want to emphasizeDomain,

Range and
Target

at the outset that there is a difference here between the target of a function
and its range. The range of the function f is defined as the subset of the target

range(f) = {y | y = f(x) for some x ∈ D} ,

which is just the set of all possible values of f(x). A function is said to be
one-to-one if, whenever f (x) = f (y), then x = y. Also, a function is said to beOne-to-One

and Onto
Function

onto if the range of f equals its target. For example, we can define a function
f : R → R by the formula f(x) = x2. It follows from our specification of f
that the target of f is understood to be R, while the range of f is the set of
nonnegative real numbers. Therefore, f is not onto. Moreover, f (−1) = f (1)
and −1 
= 1, so f is not one-to-one either.

A function that maps elements of one vector space into another, say f :
V → W , is sometimes called an operator or transformation. One of the
simplest mappings of a vector space V is the so-called identity function idV :
V → V given by idV (v) = v, for all v ∈ V . Here domain, range, and targetIdentity

Function all agree. Of course, matters can become more complicated. For example, the
operator f : R2 → R3 might be given by the formula

f

([
x
y

])
=

⎡⎣ x2

xy
y2

⎤⎦ .

Notice in this example that the target of f is R3, which is not the same as
the range of f, since elements in the range have nonnegative first and third
coordinates. From the point of view of linear algebra, this function lacks the
essential feature that makes it really interesting, namely linearity.

Definition 3.4. A function T : V → W from the vector space V into the
space W over the same field of scalars is called a linear operator (mapping,Linear

Operator transformation) if for all vectors u,v ∈ V and scalars c, d, we have

T (cu + dv) = cT (u) + dT (v).

By taking c = d = 1 in the definition, we see that a linear function T is
additive, that is, T (u + v) = T (u) + T (v). Also, by taking d = 0 in the
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definition, we see that a linear function is outative, that is, T (cu) = cT (u).
As a matter of fact, these two conditions imply the linearity property, and so Additive and

Outative
Operator

are equivalent to it. We leave this fact as an exercise.
By repeated application of the linearity definition, we can extend the lin-

earity property to any linear combination of vectors, not just two terms. This
means that for any scalars c1, c2, . . . , cn and vectors v1,v2, . . . ,vn, we have

T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn).

Example 3.10. Determine whether T : R2 → R3 is a linear operator, where
T is given by the formula

(a) T ((x, y)) = (x2, xy, y2) or (b) T ((x, y)) =
[

1 0
1 −1

] [
x
y

]
.

Solution. If T is defined by (a) then we show by a simple example that T
fails to be linear. Let us calculate

T ((1, 0) + (0, 1)) = T ((1, 1)) = (1, 1, 1),

while
T ((1, 0)) + T ((0, 1)) = (1, 0, 0) + (0, 0, 1) = (1, 0, 1).

These two are not equal, so T fails to satisfy the linearity property.
Next consider the operator T defined as in (b). Write

A =
[

1 0
1 −1

]
and v =

[
x
y

]
,

and we see that the action of T can be given as T (v) = Av. Now we have
already seen in Section 2.3 that the operation of multiplication by a fixed
matrix is a linear operator. ��

Example 3.11. Let t = (t1, t2, t3), A = [aij ] and M =
[

A t
0 1

]
. Show that the

linear operator TM : R4 → R4 mapping homogeneous space into itself maps
points to points and geometrical vectors to vectors.

Solution. Let x = (x1, x2, x3, x4) = (v, x4) with v = (x1, x2, x3) and use
block arithmetic to obtain that

TM (x) =
[

A t
0 1

] [
v
x4

]
=

[
Av + x4t

x4

]
.

Thus if x is a vector, which means x4 = 0, then so is TM (x). Likewise, if x is
a point, which means x4 = 1, then so is TM (x). ��

Recall that an operator f : V → W is said to be invertible if there is
an operator g : W → V such that the composition of functions satisfies
f ◦ g = idW and g ◦ f = idV . In other words, f (g (w)) = w and g (f (v)) = v Invertible

Operatorfor all w ∈ W and v ∈ V . We write g = f−1 and call f−1 the inverse of f . One
can show that for any operator f , linear or not, being invertible is equivalent
to being both one-to-one and onto.



158 3 VECTOR SPACES

Example 3.12. Show that if f : V → W is an invertible linear operator on
vector spaces, then f−1 is also a linear operator.

Solution. We need to show that for u,v ∈ W , the linearity property
f−1 (cu + dv) = cf−1 (u) + df−1 (v) is valid. Let w = cf−1 (u) + df−1 (v).
Apply the function f to both sides and use the linearity of f to obtain that

f (w) = f
(
cf−1 (u) + df−1 (v)

)
= cf

(
f−1 (u)

)
+ df

(
f−1 (v)

)
= cu + dv.

Apply f−1 to obtain that w = f−1 (f (w)) = f−1 (cu + dv), which proves the
linearity property. ��

In Chapter 2 the following useful fact was shown, which we now restate
for standard real vector spaces. It is also valid for standard complex spaces.

Theorem 3.1. Let A be an m × n matrix and define an operator TA : Rn →
Rm by the formula T (v) = Av, for all v ∈ Rn. Then TA is a linear operator.

One can use this theorem and Example 3.12 to deduce the following fact,
whose proof we leave as an exercise.

Corollary 3.1. Let A be an n×n matrix. The matrix operator TA is invertible
if and only if A is an invertible matrix.

Abstraction gives us a nice framework for certain key properties of mathe-
matical objects, some of which we have seen before. For example, in calculus
we were taught that differentiation has the “linearity property.” Now we can
express this assertion in a larger context: let V be the space of differentiable
functions and define an operator T on V by the rule T (f((x)) = f ′ (x). Then
T is a linear operator on the space V.

3.1 Exercises and Problems

In Exercises 1–2 the x-axis points east, y-axis north, and z-axis upward.

Exercise 1. Express the following geometric vectors as elements of R3.
(a) The displacement vector from the origin to the point P with coordinates
−2, 3, 1.
(b) The displacement vector from the point P with coordinates 2, 1, 3 to a
location 3 units north, 4 units east, and 6 units upward.

Exercise 2. Express the following geometric points and vectors as elements of
homogeneous space R4.
(a) The vectors of Exercise 1.
(b) The point situated 2 units upward, 4 units west, and −5 units north of
the point with coordinates 1, 2, 0.

In Exercises 3–10 determine whether the given set and operations define a
vector space. If not, indicate which laws fail.
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Exercise 3. V =
{[

a b
0 a + b

]
| a, b ∈ R

}
with the standard matrix addition and

scalar multiplication.

Exercise 4. V =
{[

a 0
0 1

]
| a ∈ R

}
with the standard matrix addition and

scalar multiplication.

Exercise 5. V = {[a, b, ā] | a, b ∈ C} with the standard matrix addition and
scalar multiplication. In this example the scalar field is the complex numbers.

Exercise 6. V consists of all continuous functions f(x) on the interval [0, 1] such
that f(0) = 0 with the standard function addition and scalar multiplication
(see Example 3.4).

Exercise 7. V consists of all quadratic polynomial functions f(x) = ax2 + bx+
c, a 
= 0 with the standard function addition and scalar multipication.

Exercise 8. V consists of all continuous functions f(x) on the interval [0, 1] such
that f(0) = f(1) with the standard function addition and scalar multipication.

Exercise 9. V is the set of complex vectors (z1, z2, z3, 0) in space C4 with the
standard vector addition and scalar multiplication.

Exercise 10. V is the set of points (z1, z2, z3, 1), z1, z2, z3 ∈ C, with scalar
multiplication and vector addition given by c (x1, x2, x3, 1) = (cx1, cx2, cx3, 1)
and (x1, x2, x3, 1) + (y1, y2, y3, 1) = (x1 + y1, x2 + y2, x3 + y3, 1).

Exercise 11. Determine which of the these formulas for T : R3 → R2 is a linear
operator. If so, write the operator as a matrix multiplication and determine
whether the target of T equals its range. Here x = (x, y, z) and T (x) follows.
(a) (x, x + 2y − 4z) (b) (x + y, xy) (c) (y, y) (d) x (0, y) (e) (sin y, cos z)

Exercise 12. Repeat Exercise 11 for the following formulas for T : R3 → R3.
(a) (−y, z, −x) (b) (x, y, 1) (c) (y − x + z, 2x + z, 3x − y − z) (d)

(
x2, 0, z2

)
Exercise 13. Let V = C[0, 1] and define an operator T : V → V by the follow-
ing formulas for T (f) as a function of the variable x. Which of these operators
is linear? If so, is the target V of the operator equal to its range?
(a) f(1)x2 (b) f2 (x) (c) 2f(x) (d)

∫ x

0 f(s) ds

Exercise 14. Let V = R2,2 and define an operator T with domain V by the

following formulas for T

([
a11 a12
a21 a22

])
. Which of these operators is linear?

(a) a22 (b)
[

a22 −a12
−a21 a11

]
(c) det A (d) [a11a22, 0]



160 3 VECTOR SPACES

Exercise 15. Given an arbitrary vector space V , is the identity operator idV :
V → V linear? Invertible? If so, specify its inverse.

Exercise 16. Given arbitrary vector spaces U and V over the same scalars, is
the zero operator 0U,V : U → V given by 0U,V (v) = 0 linear? Invertible? If
so, specify its inverse.

Exercise 17. A transform of homogeneous space is given by

M =
[

I3 t
0 1

]
with t = (2,−1, 3). Calculate and describe in words the action

of TM on the point x = (x1, x2, x3, 1). Find the inverse of this transform.

Exercise 18. A transform of homogeneous space is given by M =
[

A t
0 1

]
with

t = (2,−1, 3) and A =

⎡⎣ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤⎦. Calculate and describe in words

the action of TM on the point x = (x1, x2, x3, 1). Find the inverse of this
transform. (See Example 2.17 in Chapter 2.)

*Problem 19. Use the definition of vector space to prove the vector law of
arithmetic (2): c0 = 0.

Problem 20. Use the definition of vector space to prove the vector law of arith-
metic (3): (−c)v = c(−v) = −(cv).

Problem 21. Use the definition of vector space to prove the vector law of arith-
metic (4): If cv = 0, then v = 0 or c = 0.

Problem 22. Let u,v ∈ V, where V is a vector space. Use the vector space laws
to prove that the equation x + u = v has one and only one solution vector
x ∈ V, namely x = v − u.

Problem 23. Let U and V be vector spaces over the same field of scalars and
form the set U × V consisting of all ordered pairs (u,v) where u ∈ U and
v ∈ V . We can define an addition and scalar multiplication on these ordered
pairs as follows:

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2) ,

c · (u1,v1) = (cu1, cv1) .

Verify that with these operations U ×V becomes a vector space over the same
field of scalars as U and V .

Problem 24. Show that for any vector space V , the identity function idV :
V → V is a linear operator.
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Problem 25. Let T : R3 → P2 be defined by T ((a, b, c)) = a + bx + cx2. Show
that T is a linear operator whose range is P2.

Problem 26. Prove the remark following Definition 3.4: if a function T : V →
W between vector spaces V and W is additive and outative, then it is linear.

*Problem 27. Prove Corollary 3.1.

*Problem 28. Transforms of homogeneous space are given by

M1 =
[

I3 t
0 1

]
, t = (t1, t2, t3) and M2 =

[
A 0
0 1

]
,

where A is an invertible 3 × 3 matrix. Show that the transform TM1 (called a
translation transform) and TM2 (called a homogeneous transform) commute
with each other, that is, TM1 ◦ TM2 = TM2 ◦ TM1 .

3.2 Subspaces

We now turn our attention to the concept of a subspace, which is a rich source
for examples of vector spaces. It frequently happens that a certain vector space
of interest is a subset of a larger, and possibly better understood, vector space,
and that the vector operations are the same for both spaces. An example of
this situation is given by the vector space V of Example 3.5, which is a subset
of the larger vector space C[0, 1] with both spaces sharing the same definitions
of vector addition and scalar multiplication. Here is a precise formulation of
the subspace idea.

Definition 3.5. A subspace of the vector space V is a subset W of V such Subspace
that W , together with the binary operations it inherits from V , forms a vector
space (over the same field of scalars as V ) in its own right.

Given a subset W of the vector space V , we can apply the definition of vector
space directly to the subset W to obtain the following very useful test.

Theorem 3.2. Let W be a subset of the vector space V. Then W is a subspace
of V if and only if Subspace Test

(1) W contains the zero element of V.
(2) (Closure of addition) For all u,v ∈ W, u + v ∈ W.
(3) (Closure of scalar multiplication) For all u ∈ W and scalars c, cu ∈ W.

Proof. Let W be a subspace of the vector space V. Then the closure of addition
and scalar multiplication are automatically satisfied by the definition of vector
space. For condition (1), we note that W must contain a zero element by
definition of vector space. Let 0∗ be this element, so that 0∗ + 0∗ = 0∗. Add
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the negative of 0∗ (as an element of V ) to both sides, cancel terms and we
see that 0∗ = 0, the zero of V . This shows that W satisfies condition (1).

Conversely, suppose that W is a subset of V satisfying the three condi-
tions. Since the operations of W are those of the vector space V , and V is
a vector space, most of the laws for W are automatic. Specifically, the laws
of commutativity, associativity, distributivity, and the monoidal law hold for
elements of W. The additive identity law follows from condition (1).

The only law that needs any work is the additive inverse law. Let w ∈ W.
By closure of scalar multiplication, (−1)w is in W. By the laws of vector
arithmetic in the preceding section, this vector is simply −w. This proves
that every element of W has an additive inverse in W, which shows that W
is a subspace of V. ��

One notable point that comes out of the subspace test is that every sub-
space of V contains the zero vector. This is certainly not true of arbitrary
subsets of V and serves to remind us that although every subspace is a subset
of V, not every subset is a subspace. Confusing the two is a common mistake,
so much so that we issue the following caution:

Caution: Every subspace of a vector space is a subset, but not every subset
is a subspace.

Example 3.13. Which of the following subsets of the standard vector space
V = R3 are subspaces of V ?

(a) W1 = {(x, y, z) |x − 2y + z = 0} (b) W2 = {(x, y, z) |x, y, z are positive}
(c) W3 = {(0, 0, 0)} (d) W4 =

{
(x, y, z) |x2 − y = 0

}
Solution. (a) Take w = (0, 0, 0) and obtain that

0 − 2 · 0 + 0 = 0,

so that w ∈ W1. Next, check closure of W1 under addition. Let’s name two
general elements from W1, say u = (x1, y1, z1) and v = (x2, y2, z2). Then we
know from the definition of W1 that

x1 − 2y1 + z1 = 0
x2 − 2y2 + z2 = 0.

We want to show that u + v = (x1 + x2, y1 + y2, z1 + z2) ∈ W1. So add the
two equations above and group terms to obtain

(x1 + x2) − 2(y1 + y2) + (z1 + z2) = 0.

This equation shows that the coordinates of u + v fit the requirement for
being an element of W1, i.e., u + v ∈ W1. Similarly, if c is a scalar then we
can multiply the equation that says u ∈ W1, i.e., x1 − 2y1 + z1 = 0, by c to
obtain
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(cx1) − 2(cy1) + (cz1) = c0 = 0.

This shows that the coordinates of cv fit the requirement for being in W1,
i.e., cu ∈ W1. It follows that W1 is closed under both addition and scalar
multiplication, so it is a subspace of R3.

(b) This one is easy. Any subspace must contain the zero vector (0, 0, 0).
Clearly W2 does not. Hence it cannot be a subspace. Another way to see it is
to notice that closure under scalar multiplication fails (try multiplying (1, 1, 1)
by −1).

(c) The only possible choice for arbitrary elements u,v, in this space is
u = v = (0, 0, 0). But then we see that W3 obviously contains the zero vector
and for any scalar c,

(0, 0, 0) + (0, 0, 0) = (0, 0, 0),
c(0, 0, 0) = (0, 0, 0).

Therefore W3 is a subspace of V by the subspace test.
(d) First of all, 02 − 0 = 0, which means that (0, 0, 0) ∈ W4. Likewise we

see that (1, 1, 0) ∈ W4 as well. But (1, 1, 0) + (1, 1, 0) = (2, 2, 0), which is not
an element of W4 since 22 −2 
= 0. Therefore, closure of addition fails and W4
is not a subspace of V by the subspace test. ��

Part (c) of this example highlights part of a simple fact about vector
spaces. Every vector space V must have at least two subspaces, namely, {0},
where 0 is the zero vector in V , and V itself. These are not terribly surprising Trivial

Subspacessubspaces, so they are commonly called the trivial subspaces.

Example 3.14. Show that the subset P of C[0, 1] consisting of all polynomial
functions is a subspace of C[0, 1] and that the subset Pn consisting of all
polynomials of degree at most n is a subspace of P.

Solution. Certainly P is a subset of C[0, 1], since every polynomial is contin-
uous on the interval [0, 1] and P contains the zero constant function, which
is a polynomial function. Let f and g be two polynomial functions on the
interval [0, 1], say

f(x) = a0 + a1x + · · · + anxn,

g(x) = b0 + b1x + · · · + bnxn,

where n is an integer equal to the maximum of the degrees of f(x) and g(x).
Let c be any real number, and we see that

(f + g)(x) = (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn,

(cf)(x) = ca0 + ca1x + · · · + canxn,

which shows that P is closed under function addition and scalar multiplication.
By the subspace test, P is a subspace of C[0, 1]. The equations above also show
that the subset Pn passes the subspace test, so it is a subspace of C[0, 1]. ��
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Example 3.15. Show that the set of all upper triangular matrices (see
page 89) in the vector space V = Rn,n of n × n real matrices is a subspace of
V.

Solution. Since the zero matrix is upper triangular, the subset W of all
upper triangular matrices contains the zero element of V. Let A = [ai,j ] and
B = [bi,j ] be any two matrices in W and let c be any scalar. By the definition
of upper triangular, we must have ai,j = 0 and bi,j = 0 if i > j. However,

A + B = [ai,j + bi,j ] ,
cA = [cai,j ] ,

and for i > j we have ai,j + bi,j = 0+0 = 0 and cai,j = c0 = 0, so that A+B
and cA are also upper triangular. It follows that W is a subspace of V by the
subspace test. ��

There is an extremely useful type of subspace that requires the notion of
a linear combination of the vectors v1,v2, . . . ,vn in the vector space V : an
expression of the form

c1v1 + c2v2 + · · · + cnvn,

where c1, c2, . . . , cn are scalars. We can consider the set of all possible linear
combinations of a given list of vectors, which is what our next definition is
about.

Definition 3.6. Let v1,v2, . . . ,vn be vectors in the vector space V. The span
of these vectors, denoted by span {v1,v2, . . . ,vn}, is the subset of V consisting
of all possible linear combinations of these vectors, i.e.,Linear

Combinations
and Span span {v1,v2, . . . ,vn} = {c1v1 + c2v2 + · · · + cnvn | c1, c2, . . . , cn are scalars}

.

Caution: The scalars we are using really make a difference. For example, if
v1 = (1, 0) and v2 = (0, 1) are viewed as elements of the real vector space R2,
then

span {v1,v2} = {c1(1, 0) + c2(0, 1) | c1, c2 ∈ R}
= {(c1, c2) | c1, c2 ∈ R}
= R2.

Similarly, if we view v1 and v2 as elements of the complex vector space C2,
then we see that span {v1,v2} = C2. Now R2 consists of those elements of
C2 whose coordinates have zero imaginary parts, so R2 is a subset of C2; but
these are certainly not equal sets. By the way, R2 is definitely not a subspace
of C2 either, since the subset R2 is not closed under multiplication by complex
scalars.
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We should take note here that the definition of span would work perfectly
well with infinite sets, as long as we understand that linear combinations in the
definition would be finite and therefore not involve all the vectors in the span.
A situation in which this extension is needed is as follows: consider the space
P of all polynomials with the standard addition and scalar multiplication. It
makes perfectly good sense to write

P = span
{
1, x, x2, x3, . . . , xn, . . .

}
,

since every polynomial is a finite linear combination of various monomials xk.

Example 3.16. Interpret the following linear spans in R3 geometrically:

W1 = span

⎧⎨⎩
⎡⎣ 1

2
1

⎤⎦⎫⎬⎭ , W2 = span

⎧⎨⎩
⎡⎣1

2
1

⎤⎦ ,

⎡⎣2
0
0

⎤⎦⎫⎬⎭.

Solution. Elements of W1 are simply scalar multiples of the single vector
(1, 2, 1). The set of all such multiples gives us a line through the origin (0, 0, 0) .
On the other hand, elements of W2 give all possible linear combinations of two
vectors (1, 2, 1) and (2, 0, 0). The locus of points generated by these combina-
tions is a plane in R3 containing the origin, so it is determined by the points
with coordinates (0, 0, 0), (1, 2, 1), and (2, 0, 0). See Figure 3.3 for a picture of
a portion of these spans. ��
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1
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21

2

span{(1, 2, 1)}

(2, 0, 0)

(1, 2, 1)

x

z

y

span{(2, 0, 0), (1, 2, 1)}

Fig. 3.3. Shaded portion of span {(2, 0, 0) , (1, 2, 1)} and dashed span {(1, 2, 1)}.

Spans are the premier examples of subspaces. In a certain sense, it can
be said that every subspace is the span of some of its vectors. The following
important fact is a very nice application of the subspace test.
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Theorem 3.3. Let v1,v2, . . . ,vn be vectors in the vector space V. Then W =
span {v1,v2, . . . ,vn} is a subspace of V .

Proof. First, we observe that the zero vector can be expressed as the linear
combination 0v1 + 0v2 + · · · + 0vn, which is an element of W. Next, let c be
any scalar and form general elements u,v ∈ W , say

u = c1v1 + c2v2 + · · · + cnvn,

v = d1v1 + d2v2 + · · · + dnvn.

Add these vectors and collect like terms to obtain

u + v = (c1 + d1)v1 + (c2 + d2)v2 + · · · + (cn + dn)vn.

Thus u+v is also a linear combination of v1,v2, . . . ,vn, so W is closed under
vector addition. Finally, form the product cu to obtain

cu = (cc1)v1 + (cc2)v2 + · · · + (ccn)vn,

which is again a linear combination of v1,v2, . . . ,vn, so W is closed under
scalar multiplication. By the subspace test, W is a subspace of V . ��

If W = span {v1,v2, . . . ,vn}, we say that {v1,v2, . . . ,vn} is a spanning
set for the vector space W , and that W is spanned by the vectors v,v2, . . . ,vn.Spanning Set
There are a number of simple properties of spans that we will need from time
to time. One of the most useful is this basic fact.

Theorem 3.4. Let v1,v2, . . . ,vn be vectors in the vector space V and let
w1,w2, . . . ,wk be vectors in span {v1,v2, . . . ,vn}. Then

span {w1,w2, . . . ,wk} ⊆ span {v1,v2, . . . ,vn} .

Proof. Suppose that for each index j = 1, 2, . . . k,

wj = c1jv1 + c2jv2 + · · · + cnjvn.

Write a linear combination of the wj ’s by regrouping the coefficients of each
vk as

d1w1 + d2w2 + · · · + dkwk = d1(c11v1 + c21v2 + · · · + cn1vn)

+d2(c12v1 + c22v2 + · · · + cn2vn) + · · · + dk(c1kv1 + c2kv2 + · · · + cnkvn)

=

(
k∑

i=1

dic1i

)
v1 +

(
k∑

i=1

dic2i

)
v2 + · · · +

(
k∑

i=1

dicni

)
vn.

It follows that each element of span {w1,w2, . . . ,wk} belongs to the vector
space span {v1,v2, . . . ,vn}, as desired. ��
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Here is a simple application of this theorem: if vi1 ,vi2 , . . . ,vik
is a subset

of v1,v2, . . . ,vn, then

span {vi1 ,vi2 , . . . ,vik
} ⊆ span {v1,v2, . . . ,vn} .

The reason is that for j = 1, 2, . . . , k,

wj = vij
= 0v1 + 0v2 + · · · + 1vij

+ · · · + 0vn,

so that the theorem applies to these vectors. Put another way, if we enlarge
the list of spanning vectors, we enlarge the spanning set. However, we may
not obtain a strictly larger spanning set, as the following example shows.

Example 3.17. Show that

span
{[

1
0

]
,

[
1
1

]}
= span

{[
1
0

]
,

[
1
1

]
,

[
1
2

]}
.

Why might one prefer the first spanning set?

Solution. Label vectors v1 =
[

1
0

]
, v2 =

[
1
1

]
, and v3 =

[
1
2

]
. Every element

of span {v1,v2} belongs to span {v1,v2,v3}, since we can write c1v1 +c2v2 =
c1v1+c2v2+0v3. So we certainly have that span {v1,v2} ⊆ span {v1,v2,v3}.
However, a little fiddling with numbers reveals this fact:[

1
2

]
= (−1)

[
1
0

]
+ 2

[
1
1

]
.

In other words v3 = −v1+2v2. Therefore any linear combination of v1,v2,v3
can be written as

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(−v1 + 2v2)
= (c1 − c3)v1 + (c2 + 2c3)v2.

Thus any element of span {v1,v2,v3} belongs to span {v1,v2}, so the two
spans are equal. This is an algebraic representation of the geometric fact that
the three vectors v1,v2,v3 belong to the same plane in R2 that is spanned by
the two vectors v1,v2. It seems reasonable that we should prefer the spanning
set v1,v2 to the set v1,v2,v3, since the former is smaller yet carries just as
much information as the latter. As a matter of fact, we would get the same
span if we used v1,v3 or v2,v3. The spanning set v1,v2,v3 has “redundant”
vectors in it. ��

As another application of vector spans, let’s consider the problem of de-
termining all subspaces of the vector space R2, the plane, from a geometrical
perspective. First, we have the trivial subspaces {(0, 0)} and R2. Next, con- Subspaces of

Geometrical
Spaces

sider the subspace V = span {v}, where v 
= 0. It’s easy to see that the set
of all multiples of v constitutes a straight line through the origin. Finally,
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consider the subspace V = span {v,w}, where w /∈ span {v}. We can see that
any point in the plane can be a corner of a parallelogram with edges that are
multiples of v and w. Hence V = R2. Consequently, the only subspaces of R2

are {(0, 0)}, R2, and lines through the origin. In a similar fashion, you can
convince yourself that the only subspaces of R3 are {(0, 0.0)}, lines through
the origin, planes through the origin, and R3.

3.2 Exercises and Problems

In Exercises 1–10, determine whether the subset W is a subspace of the vector
space V.

Exercise 1. V = R3 and W = {(a, b, a − b + 1) | a, b ∈ R}.

Exercise 2. V = R3 and W = {(a, 0, a − b) | a, b ∈ R}.

Exercise 3. V = R3 and W = {(a, b, c) | 2a − b + c = 0}.

Exercise 4. V = R2,3 and W =
{[

a b 0
b a 0

]
| a, b ∈ R

}
.

Exercise 5. V = C[0, 1] and W = {f(x) ∈ C[0, 1] | f(1) + f(1/2) = 0}.

Exercise 6. V = C[0, 1] and W = {f(x) ∈ C[0, 1] | f(1) ≤ 0}.

Exercise 7. V = Rn,n and W is the set of all invertible matrices in V.

Exercise 8. V = R2,2 and W is the set of all matrices A =
[

a b
−b c

]
, for some

scalars a, b, c. (Such matrices are called skew-symmetric since AT = −A.)

Exercise 9. V is the subset of geometrical vectors (x1, x2, x3, 0) in homogeneous
space W = R4 with the standard vector addition and scalar multiplication.

Exercise 10. V is the subset of geometrical points (x1, x2, x3, 1) in homoge-
neous space W = R4 with vector addition and scalar multiplication given by
(x1, x2, x3, 1) + (y1, y2, y3, 1) = (x1 + y1, x2 + y2, x3 + y3, 1) and
c (x1, x2, x3, 1) = (cx1, cx2, cx3, 1).

Exercise 11. Show that span
{[

1
0

]
,

[
0
1

]}
= span

{[
1
0

]
,

[−2
1

]}
.

Exercise 12. Show that span

⎧⎨⎩
⎡⎣ 1

0
0

⎤⎦ ,

⎡⎣ 0
1
1

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭ = span

⎧⎨⎩
⎡⎣ 0

−1
−1

⎤⎦ ,

⎡⎣1
2
2

⎤⎦⎫⎬⎭.
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Exercise 13. Which of the following spans equal the space P2 of polynomials
of degree at most 2? Justify your answers.
(a) span

{
1, 1 + x, x2

}
(b) span

{
x, 4x − 2x2, x2

}
(c) span

{
1 + x + x2, 1 + x, 3

}
(d) span

{
1 − x2, 1

}
Exercise 14. Which of the following spans equal the space R2? Justify your
answers.
(a) span {(1, 0) , (−1,−1)} (b) span {(1, 2) , (2, 4)}
(c) span {(1, 0) , (0, 0) , (0,−1)} (d) span {(−1,−2) , (−1,−1)}

Exercise 15. Let u = (2,−1, 1), v = (0, 1, 1), and w = (2, 1, 3) . Show that
span {u + w,v − w} ⊆ span {u,v,w} and determine whether or not these
spans are actually equal.

Exercise 16. Find two vectors v,w ∈ R3 such that if u = (1,−1, 1), then
R3 = span {u,v,w}.

*Problem 17. Let U and V be subspaces of W . Use the subspace test to prove
the following.

(a) The set intersection U ∩ V is a subspace of W.
(b) The sum of the spaces, U + V = {u + v |u ∈ U and v ∈ V }, is a

subspace of W.
(c) The set union U ∪ V is not a subspace of W unless one of U or V is

contained in the other.

Problem 18. Let V and W be subspaces of R3 given by

V = {(x, y, z) |x = y = z ∈ R} and W = {(x, y, 0) |x, y ∈ R} .

Show that V + W = R3 and V ∩ W = {0}.

*Problem 19. Prove that if V = Rn,n, then the set of all diagonal matrices is
a subspace of V.

*Problem 20. Let V be the space of 2 × 2 matrices and associate with each
A ∈ V the vector vec(A) ∈ R4 obtained from A by stacking the columns of

A underneath each other. (For example, vec
([

1 2
−1 1

])
= (1,−1, 2, 1).) Show

the following.
(a) The vec operation establishes a one-to-one correspondence between

matrices in V and vectors in R4.
(b) The vec operation, vec : R2,2 → R4, is a linear operator.
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Problem 21. You will need a computer algebra system (CAS) such as Mathe-
matica or Maple for this exercise. Use the matrix

A =

⎡⎣ 1 0 2
1 −1 0
1 0 1

⎤⎦
and the vec method of the preceding exercise to turn powers of A into vectors.
Then use your CAS to find a spanning set (or basis, which is a special spanning
set) for subspaces Vk = span

{
A0, A1, . . . , Ak

}
, k = 1, 2, 3, 4, 5, 6. Based on

this evidence, how many matrices will be required for a span of Vk? (Remember
that A0 = I.)

Problem 22. Show that the set C1 [0, 1] of continuous functions that have a
continuous derivative on the interval [0, 1] is a subspace of the vector space
C [0, 1].

3.3 Linear Combinations

We have seen in Section 3.2 that linear combinations give us a rich source of
subspaces for a vector space. In this section we will take a closer look at linear
combinations.

Linear Dependence

First we need to make precise the idea of redundant vectors that we encoun-
tered in Example 3.17. About lists and sets: Lists involve an ordering of ele-
ments (they can just as well be called finite sequences), while sets don’t reallyLists and Sets
imply any ordering of elements. Thus, every list of vectors, e.g., v1,v2,v3,
gives rise to a unique set of vectors {v1,v2,v3}. A different list v1,v3,v2
may define the same set {v1,v3,v2} = {v1,v2,v3}. Lists can have repeats in
them, while sets don’t. For instance, the list v1,v2,v1 defines the set {v1,v2}.
The default meaning of the terminology “the vectors v1,v2,v3” is “the list
of vectors v1,v2,v3,” although occasionally it means a set or even both. For
example, the definitions below work perfectly well for either sets or lists.

Definition 3.7. The vector vi is redundant in the vectors v1,v2, . . . ,vn if theRedundant
Vectors linear span span{v1,v2, . . . ,vn} does not change when vi is removed.

Example 3.18. Which vectors are redundant in the set consisting of v1 =[
1
0

]
, v2 =

[
1
1

]
, v3 =

[
1
2

]
?
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Solution. As in Example 3.17, we notice that

v3 = (−1)v1 + 2v2.

Thus any linear combination involving v3 can be expressed in terms of v1 and
v2. Therefore, v3 is redundant in the list v1,v2,v3. But there is more going
on here. Let’s write the equation above in a form that doesn’t single out any
one vector:

0 = (−1)v1 + 2v2 + (−1)v3.

Now we see that we could solve for any of v1,v2,v3 in terms of the remaining
two vectors. Therefore, each of these vectors is redundant in the set. However,
this doesn’t mean that we can discard all three and get the same linear span.
This is obviously false. What we can do is discard any one of them, then start
over and examine the remaining set for redundant vectors. ��

This example shows that what really counts for redundancy is that the
vector in question occurs with a nonzero coefficient in a linear combination
that equals 0. This situation warrants a name:

Definition 3.8. The vectors v1,v2, . . . ,vn are said to be linearly dependent if Linearly
Dependent or
Independent
Vectors

there exist scalars c1, c2, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0. (3.1)

Otherwise, the vectors are called linearly independent.

This fact inspires some notation: we will call a linear combination trivial if Trivial and
Nontrivial
Linear
Combination

every coefficient is zero; otherwise it is nontrivial. We say that a linear combi-
nation has value zero if it sums to zero. Thus linear dependence is equivalent
to the existence of a nontrivial linear combination with value zero. Just as
with redundancy, linear dependence or independence is a property of the list
or set in question, not of the individual vectors. Here is the key connection Zero Value

Linear
Combination

between linear dependence and redundancy.

Theorem 3.5. The list of vectors v1,v2, . . . ,vn of a vector space has redun-
dant vectors if and only if it is linearly dependent, in which case the redundant Redundancy

Testvectors are those that occur with nonzero coefficient in some linear combina-
tion with value zero.

Proof. Observe that if (3.1) holds and some scalar, say c1, is nonzero, then we
can use the equation to solve for v1 as a linear combination of the remaining
vectors to obtain

v1 =
−1
c1

(c2v2 + c3v3 + · · · + cnvn) .

Thus we see that any linear combination involving v1,v2, . . . ,vn can be ex-
pressed using only v2,v3, . . . ,vn. It follows that
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span{v2,v3, . . . ,vn} = span{v1,v2, . . . ,vn}.

Conversely, if these spans are equal then v1 belongs to the left-hand side, so
there are scalars d2, d3, . . . , dn such that

v1 = d2v2 + d3v3 + · · · + dnvn.

Now bring all terms to the right-hand side and obtain the nontrivial linear
combination

−v1 + d2v2 + d3v3 + · · · + dnvn = 0.

All of this works equally well for any index other than 1, so the theorem is
proved. ��

It is instructive to examine the simple case of two vectors v1,v2. What
does it mean to say that these vectors are linearly dependent? Simply that one
of the vectors can be expressed in terms of the other, in other words, that each
vector is a scalar multiple of the other. However, matters are more complex
when we proceed to three or more vectors, a point that is often overlooked.
So we issue a warning here.

Caution: If we know that v1,v2, . . . ,vn is linearly dependent, it does not
necessarily imply that one of these vectors is a multiple of one of the others
unless n = 2. In general, all we can say is that one of these vectors is a linear
combination of the others.

Example 3.19. Which of the following lists of vectors have redundant vectors,
i.e., are linearly dependent?

(a)

⎡⎣1
1
0

⎤⎦ ,

⎡⎣ 0
1
1

⎤⎦ ,

⎡⎣ 1
−1
−2

⎤⎦ (b)

⎡⎣ 0
1
0

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦ (c)

⎡⎣1
1
0

⎤⎦ ,

⎡⎣2
1
0

⎤⎦ ,

⎡⎣1
1
0

⎤⎦
Solution. Let’s try to see the big picture. Consider the vectors in each

list to be designated as v1,v2,v3. Define matrix A = [v1,v2,v3] and vector
c = (c1, c2, c3). Then the general linear combination can be written as

c1v1 + c2v2 + c3v3 = [v1,v2,v3]

⎡⎣ c1
c2
c3

⎤⎦ = A c.

This is the key idea of “linear combination as matrix–vector multiplication”
that we saw in Theorem 2.1. Now we see that a nontrivial linear combination
with value zero amounts to a nontrivial solution to the homogeneous equation
Ac = 0. We know how to find these! In case (a) we have that⎡⎣ 1 0 1

1 1 −1
0 1 −2

⎤⎦−−−−−−→
E21(−1)

⎡⎣ 1 0 1
0 1 −2
0 1 −2

⎤⎦−−−−−−→
E32(−1)

⎡⎣1 0 1
0 1 −2
0 0 0

⎤⎦ ,
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so that the solutions to the homogeneous system are c = (−c3, 2c3, c3) =
c3(−1, 2, 1). Take c3 = 1 and we have that

−1v1 + 2v2 + 1v3 = 0,

which shows that v1,v2,v3 is a linearly dependent list of vectors.
We’ll solve (b) by a different method. Notice that

det

⎡⎣ 0 1 0
1 1 1
0 0 1

⎤⎦ = −1 det
[

1 0
0 1

]
= −1.

It follows that A is nonsingular, so the only solution to the system Ac = 0 is
c = 0. Since every linear combination of the columns of A takes the form Ac,
the vectors v1,v2,v3 must be linearly independent.

Finally, we see by inspection in (c) that since v3 is a repeat of v1, we have
that

v1 + 0v2 − v3 = 0.

Thus, this list of vectors is linearly dependent. Notice, by the way, that not
every coefficient ci has to be nonzero. ��
Example 3.20. Show that any list of vectors that contains the zero vector is
linearly dependent.

Solution. Let v1,v2, . . . ,vn be such a list and suppose that for some index
j, vj = 0. Examine the following linear combination:

0v1 + 0v2 + · · · + 1vj + · · · + 0vn = 0.

This linear combination of value zero is nontrivial because the coefficient of
the vector vj is 1. Therefore this list is linearly dependent by the definition
of dependence. ��

The Basis Idea

We are now ready for one of the big ideas of vector space theory, the notion
of a basis. We already know what a spanning set for a vector space V is.
This is a set of vectors v1,v2, . . . ,vn such that V = span{v1,v2, . . . ,vn}.
However, we saw back in Example 3.17 that some spanning sets are better
than others because they are more economical. We know that a set of vectors
has no redundant vectors in it if and only if it is linearly independent. This
observation is the inspiration for the following definition.

Definition 3.9. A basis for the vector space V is a spanning set of vectors Basis of
Vector Spacev1,v2, . . . ,vn that is a linearly independent set.
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We should take note here that we could have just as well defined a basis as aBasis Is
Minimal

Spanning Set
minimal spanning set, by which we mean a spanning set such that any proper
subset is not a spanning set. The proof that this is equivalent to our definition
of basis is left as an exercise.

Usually we think of a basis as a set of vectors and the order in which we
list them is convenient but not important. Occasionally, ordering is important.Ordered Basis
In such a situation we speak of an ordered basis of v, by which we mean a
spanning list of vectors v1,v2, . . . ,vn that is a linearly independent list.

Example 3.21. Which subsets of {v1,v2,v3} =
{[

1
0

]
,

[
1
1

]
,

[
1
2

]}
yield

bases of the vector space R2?

Solution. These are just the vectors of Example 3.17 and Example 3.18.
Referring back to that example, we saw that

−v1 + 2v2 − v3 = 0,

which told us that we could remove any one of these vectors and get the same
span. Moreover, we saw that these three vectors span R2, so the same is true
of any two of them. Clearly, a single vector cannot span R2, since the span
of a single vector is a line through the origin. Therefore, the subsets {v1,v2},
{v2,v3}, and {v1,v3} are all bases of R2. ��
Example 3.22. Which subsets of

{
1 + x, x + x2, 1, x

}
yield bases of the vec-

tor space P2 of all polynomials of degree at most two?

Solution. Any linear combination of 1+x, 1, and x yields a linear polynomial,
so cannot equal x2. Hence x + x2 must be in the basis. On the other hand,
any element of the set {x, 1 + x, 1} can be expressed as a combination of
the other two, so is redundant in the set. Discard redundant vectors from
this set and we obtain three candidates for bases of P2:

{
x + x2, 1 + x, 1

}
,{

x + x2, x, 1
}
, and

{
x + x2, x, 1 + x

}
. It’s easy to see that the span of any

one of these sets contains 1, x, and x2, so is a spanning set for P2. We leave
it to the reader to check that each set contains no redundant vectors, hence
is linearly independent. Therefore, each of these sets forms a basis of P2. ��

An extremely important generic type of basis is provided by the columns
of the identity matrix. For future reference, we establish this notation. TheStandard

Basis standard basis of Rn or Cn is the set {e1, e2, . . . , en}, where ej is the column
vector of size n whose jth entry is 1 and all other entries 0.

Example 3.23. Let V be the standard vector space Rn or Cn. Verify that the
standard basis really is a basis of this vector space.

Solution. Let v = (c1, c2, . . . , cn) be a vector from V so that c1, c2, . . . , cn are
scalars of the appropriate type. Now we have
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v =

⎡⎢⎢⎢⎣
c1
c2
...

cn

⎤⎥⎥⎥⎦ = c1

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ + c2

⎡⎢⎢⎢⎣
0
1
...
0

⎤⎥⎥⎥⎦ + · · · + cn

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦
= c1e1 + c2e2 + · · · + cnen.

This equation tells us two things: first, every vector in V is a linear combina-
tion of the ej ’s, so V = span {e1, e2, . . . , en}. Second, if some linear combi-
nation of vectors has value zero, then each scalar coefficient of the combina-
tion is 0. Therefore, these vectors are linearly independent. Therefore the set
{e1, e2, . . . , en} is a basis of V. ��

Coordinates

In the case of the standard basis e1, e2, , e3 of R3 we know that it is very easy
to write out any other vector v = (c1, c2, c3) in terms of the standard basis:

v =

⎡⎣ c1
c2
c3

⎤⎦ = c1e1 + c2e2 + c3e3.

We call the scalars c1, c2, c3 the coordinates of the vector v. Up to this point,
this is the only sense in which we have used the term “coordinates.” We can
see that these coordinates are strongly tied to the standard basis. Yet R3 has
many bases. Is there a corresponding notion of “coordinates” relative to other
bases? The answer is a definite yes, thanks to the following fact.

Theorem 3.6. Let v1,v2, . . . ,vn be a basis of the vector space V . Then every
v ∈ V can be expressed uniquely as a linear combination of v1,v2, . . . ,vn, up
to order of terms.

Proof. To see this, note first that since Uniqueness of
Coordinates

V = span {v1,v2, . . . ,vn} ,

there exist scalars c1, c2, . . . , cn such that

v = c1v1 + c2v2 + · · · + cnvn.

Suppose that we could also write

v = d1v1 + d2v2 + · · · + dnvn.

Subtract these two equations and obtain

0 = (c1 − d1)v1 + (c2 − d2)v2 + · · · + (cn − dn)vn.

However, a basis is a linearly independent set, so it follows that each coefficient
of this equation is zero, whence cj = dj , for j = 1, 2, . . . , n. ��

In view of this fact, we may speak of coordinates of a vector relative to a
basis. Here is the notation that we employ:



176 3 VECTOR SPACES

Definition 3.10. If v1,v2, . . . ,vn is a basis B of the vector space V and v ∈ VVector
Coordinates

and
Coordinate

Vector

with v = c1v1 + c2v2 + · · · + cnvn, then the scalars c1, c2, . . . , cn are called
the coordinates of v with respect to the basis v1,v2, . . . ,vn. The coordinate
vector of v with respect to B is [v]B = (c1, c2, . . . , cn).

As we have noted, coordinates of a vector with respect to the standard basis
are what we have referred to as “coordinates” so far in this text. Perhaps
we should call these the standard coordinates of a vector, but we will usuallyStandard

Coordinates stick to the convention that an unqualified reference to a vector’s coordinates
assumes that we mean standard coordinates unless otherwise stated. Normally,
vectors in Rn are given explicitly in terms of their standard coordinates, so
these are trivial to identify. Coordinates with respect to other bases are fairly
easy to calculate if we have enough information about the structure of the
vector space.

Example 3.24. The following vectors form a basis of P2: B =
{
x + x2, 1 + x, 1

}
(see Example 3.22). Find the coordinate vector of p (x) = 2 − 2x − x2 with
respect to this basis.

Solution. The coordinates are c1, c2, c3, where

2 − 2x − x2 = c1
(
x + x2) + c2 (1 + x) + c3 · 1 = (c2 + c3) + (c1 + c2) x + c1x

2.

We note here that the order in which we list the basis elements matters for the
coordinates. Now we simply equate coefficients of like powers of x to obtain
that c2 +c3 = 2, c1 +c2 = −2, and c1 = −1. It follows that c2 = −2−c1 = −1
and that c3 = 2 − c2 = 3. Thus, [p (x)]B = (−1,−1, 3). Incidentally, we
note here that the order in which we list the basis elements matters for the
coordinates. ��
Example 3.25. The following vectors form a basis B of R3: v1 = (1, 1, 0),
v2 = (0, 2, 2), and v3 = (1, 0, 1). Find the coordinate vector of v = (2, 1, 5)
with respect to this basis.

Solution. Notice that the basis v1,v2,v3 was given in terms of standard
coordinates. Begin by writing

v =

⎡⎣ 2
1
5

⎤⎦ = c1v1 + c2v2 + c3v3

= [v1,v2,v3]

⎡⎣ c1
c2
c3

⎤⎦ =

⎡⎣1 0 1
1 2 0
0 2 1

⎤⎦⎡⎣ c1
c2
c3

⎤⎦ ,

where the coordinates c1, c2, c3 of v relative to the basis v1,v2,v3 are to
be determined. This is a straightforward system of equations with coefficient
matrix A = [v1,v2,v3] and right-hand side v. It follows that the solution we
want is given by
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⎡⎣ c1
c2
c3

⎤⎦ =

⎡⎣ 1 0 1
1 2 0
0 2 1

⎤⎦−1 ⎡⎣ 2
1
5

⎤⎦ =

⎡⎣ 1
2

1
2 − 1

2− 1
4

1
4

1
4

1
2 − 1

2
1
2

⎤⎦⎡⎣2
1
5

⎤⎦ =

⎡⎣−1
1
3

⎤⎦ .

This shows us that

v = −1

⎡⎣ 1
1
0

⎤⎦ + 1

⎡⎣0
2
2

⎤⎦ + 3

⎡⎣1
0
1

⎤⎦ .

It does not prove that v = (−1, 1, 3), which is plainly false. Only in the case
of the standard basis can we expect that a vector actually equals its vector
of coordinates with respect to the basis. What we have is that the coordinate
vector of v with respect to basis B is [v]B = (−1, 1, 3). ��

In general, vectors v1,v2, . . . ,vn ∈ Rn are linearly independent if and only
if the system Ac = 0 has only the trivial solution, where A = [v1,v2, . . . ,vn].
This in turn is equivalent to the matrix A being of full column rank n (see
Theorem 2.7, where we see that these are equivalent conditions for a matrix
to be invertible). We can see how this idea can be extended, and doing so
tells us something remarkable. Let v1,v2, . . . ,vk be a basis of V = Rn and
form the n × k matrix A = [v1,v2, . . . ,vk]. By the same reasoning as in the
example, for any b ∈ V there is a unique solution to the system Ax = b.
In view of Theorem 1.5 we see that A has full column rank k. Therefore,
k ≤ n. On the other hand, we can take b to be any one of the standard basis
vectors ej , j = 1, 2, . . . , n, solve the resulting systems, and stack the solution
vectors together to obtain a solution to the system AX = In. From our rank
inequalities, we see that Dimension

Theorem for
Rnn = rank In = rankAX ≤ rankA = k.

What this shows is that k = n, that is, every basis of Rn has exactly n
elements in it, which would justify calling n the dimension of the space Rn.
Amazing! Does this idea extend to abstract vector spaces? Indeed it does,
and we shall return to this issue in Section 3.5. Among other things, we have
shown the following handy fact, which gives us yet one more characterization
of invertible matrices to add to Theorem 2.7.

Theorem 3.7. An n × n real matrix A is invertible if and only if its columns
are linearly independent, in which case they form a basis of Rn.

Here is a problem that comes to us straight from analytical geometry (clas-
sification of conics) and shows how the matrix and coordinate tools we have
developed can shed light on geometrical problems.

Example 3.26. Suppose we want to understand the character of the graph
of the curve x2 − xy + y2 − 6 = 0. It is suggested to us that if we execute a
change of variables by rotating the xy-axis by π/4 to get a new x′y′-axis, the
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graph will become more intelligible. OK, we do it. The algebraic connection
between the coordinate pairs x, y and x′, y′ representing the same point in
the plane and resulting from a rotation of θ can be worked out using a bit of
trigonometry (which we omit) to yield

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ.

Use matrix methods to formulate these equations and execute the change of
variables.

Solution. First, we write the change of variable equations in matrix form
as

x′ =
[

x′

y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
= G (θ)x.

(Such a matrix G (θ) is often referred to as a Givens matrix.) This matrixGivens and
Rotation

Matrix
isn’t exactly what we need for substitution into our curve equation. Rather,
we need x, y explicitly. That’s easy enough. Simply invert G(θ) to obtain the
rotationmatrix R(θ) as

G(θ)−1 = R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

Therefore x = G(θ)−1x′ = R(θ)x′. Now observe that the original equation
can be put in the form (as in Example 2.33)

x2 − xy + y2 − 6 = xT

[
1 − 1

2− 1
2 1

]
x − 6

= (x′)T R(θ)T

[
1 − 1

2− 1
2 1

]
R(θ)x′ − 6.

We leave it as an exercise to check that with θ = π/4, so that cos θ = 1/
√

2 =
sin θ, the equation reduces to 1

2 (x′2 + 3y′2) − 6 = 0 or equivalently

x′2

12
+

y′2

4
= 1.

This curve is an ellipse with semimajor axis of length 2
√

3 and semiminor axis
of length 2. With respect to the x′y′-axes, this ellipse is in so-called standard
form. For a graph of the ellipse, see Figure 3.4. ��

The change of variables we have just seen can be interpreted as a change of
coordinates in the following sense: the variables x and y are just the standard
coordinates (with respect to the standard basis B = {e1, e2}) of a general
vector

x =
[

x
y

]
= x

[
1
0

]
+ y

[
0
1

]
= xe1 + ye2.



3.3 Linear Combinations 179

2 4

4

2

2

4

θ
e1

e2

x

y

x
′

y
′

θ

u1u2

Fig. 3.4. Change of variables and the curve x2 − xy + y2 − 6 = 0.

The meaning of the variables x′ and y′ becomes clear when we set x′ = (x′, y′)
and write the matrix equation x = R(θ)x′ out in detail as a linear combination
of the columns of R(θ):

x = R(θ)x′ = x′
[

cos θ
sin θ

]
+ y′

[− sin θ
cos θ

]
= x′v1 + y′v2.

Thus the numbers x′ and y′ are just the coordinates of the vector x with
respect to a new basis C = {v1,v2} of R2. This basis consists of unit vectors
in the direction of the x′ and y′ axes. See Figure 3.4 for a picture of the two
bases. For these reasons, the matrix R(θ) is sometimes called a change of
coordinates matrix.

The matrix R(θ) is also called a change of basis matrix, due to the fact
that the coordinate equation above is equivalent to [x]B = R (θ) [x]C . Thus
R(θ) shows us how to change from the standard basis B = {e1, e2} to another
basis C = {v1,v2}. What makes a change of basis desirable is that sometimes
a problem looks a lot easier if we look at it using a basis other than the
standard one, such as in our example.

From a change of coordinates perspective, the vectors x and x′ simply
represent different coordinates for the same point and are connected by way
of the formula x = R(θ)x′. This is to be contrasted with the use of the
rotation matrix R (θ) in Example 2.17. In that example we have only one
coordinate system — the standard one — and we move a vector x by way
of a rotation of θ in the counterclockwise direction to a new vector y. This
defined a linear operator, and the connection between the two vectors is that
y = R(θ)x = TR(θ) (x).

In general, a change of basis matrix from basis B to basis C of vector Change of
Basis Matrixspace V is a matrix P such that for any vector v ∈ V , [v]B = P [v]C . These
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matrices are treated in more detail in Section 4.4. However, we will record
this simple fact about change of basis matrices.

Theorem 3.8. If V = Rn, B is the standard basis, and C = {v1,v2, . . . ,vn}Change of
Basis Formula any other basis, then the change of basis matrix from basis B to C is P =

[v1,v2, . . . ,vn].

Proof. To see this, note first that for any v ∈ V , we have v = [v]B since B is
the standard basis. Let

v = c1v1 + c2v2 + · · · + cnvn,

so that c1, c2, . . . , cn are the coordinates of v relative to C. Then

v = [v]B = [v1,v2, . . . ,vn] [c1, c2, . . . , cn]T = P [ui]C ,

which shows that P is the change of basis matrix from B to C. ��

3.3 Exercises and Problems

Exercise 1. Find the redundant vectors, if any, in the following lists.
(a) (1, 0, 1), (1,−1, 1) (b) (1, 2, 1), (2, 1, 1), (3, 3, 2), (2, 0, 1)
(c) (1, 0,−1), (1, 1, 0), (1,−1,−2) (d) (0, 1,−1), (1, 0, 0), (−1, 1, 3)

Exercise 2. Find the redundant vectors, if any, in the following lists.
(a) x, 5x (b) 2, 2 − x, x2, 1 + x2

(c) 1 + x, 1 + x2, 1 + x + x2 (d) x − 1, x2 − 1, x + 1

Exercise 3. Which of the following sets are linearly independent in V = P3? If
not linearly independent, which vectors are redundant in the lists?
(a) 1, x, x2, x3 (b) 1 + x, 1 + x2, 1 + x3

(c) 1 − x2, 1 + x, 1 − x − 2x2 (d) x2 − x3, x,−x + x2 + 3x3

Exercise 4. Which of the following sets are linearly independent in V = R3? If
not linearly independent, which vectors are redundant in the lists?
(a) (1,−1, 0, 1) , (−2, 2, 1, 1)(b) (1, 1, 0, 0) , (1, 0, 1, 0) , (1, 0, 0, 1) , (−1, 1,−2, 0)
(c) (0, 1,−1, 2) , (0, 1, 3, 4) , (0, 2, 2, 6) (d) (1, 1, 1, 1) , (0, 2, 0, 0) , (0, 2, 1, 1)

Exercise 5. Find the coordinates of v with respect to the following bases:
(a) v = (−1, 1), basis (2, 1), (2,−1) of R2.

(b) v =2 + x2, basis 1 + x, x + x2, 1 − x of P2.

(c) v =
[

a b
b c

]
, basis

[
0 1
1 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
of the space of real symmetric

2 × 2 matrices.
(d) v = (1, 2), basis (2 + i, 1), (−1, i) of C2.
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Exercise 6. Find the coordinate vector of v with respect to the following bases:
(a) v = (0, 1, 2), basis (2, 0, 1), (−1, 1, 0), (0, 1, 1) of R3.

(b)v =
[

1 2
0 1

]
, basis

[
0 1
0 0

]
,

[
1 0
0 1

]
,

[
0 0
0 1

]
of the space of upper triangular

2 × 2 matrices.
(c) v = (1, i, i), basis (1, 1, 0), (0, 1, 1), (0, 0, i) of C3.

(d) v =4, basis 1 + 2x, 1 − x of P1.

Exercise 7. Let u1 = (1, 0, 1) and u2 = (1,−1, 1).
(a) Determine whether v = (2, 1, 2) belongs to the space span {u1,u2}.
(b) Find a basis of R3 that contains u1 and u2.

Exercise 8. Let u1 = 1 − x + x2 and u2 = x + 2x2.

(a) Determine whether v = 4 − 7x − x2 belongs to the space span {u1,u2}.
(b) Find a basis of P2 that contains u1 and u2.

Exercise 9. Given the information v2 + 2v3 = 0, find all subsets of the vectors
{v1,v2,v3} that could form a minimal spanning set of span {v1,v2,v3}.

Exercise 10. Given the information 2v1 + v3 + v4 = 0 and v2 + v3 = 0, find
all subsets of the vectors {v1,v2,v3,v4} that could form a minimal spanning
set of span {v1,v2,v3,v4}.

Exercise 11. For what values of the parameter c is the set of vectors (1, 1, c),
(2, c, 4), (3c + 1, 3,−4) in R3 linearly independent?

Exercise 12. For what values of the parameter λ is the set of vectors
(
1, λ2, 1, 2

)
,

(2, λ, 4, 8), (0, 0, 1, 2) in R4 linearly dependent?

Exercise 13. Let eij be a matrix with a one in the (i, j)th entry and zeros
elsewhere. Which 2 × 2 matrices eij can be added to the set below to form a
basis of R2,2?

A =
[

0 1
1 1

]
, B =

[
0 1
1 0

]
, C =

[
0 0
1 1

]
Exercise 14. Which 2 × 2 matrices ei,j can be added to the set below to form
a basis of R2,2?

A =
[

1 1
0 1

]
, B =

[
0 1
1 0

]
, C =

[
1 1
1 1

]
Exercise 15. The Wronskian of smooth functions f(x), g(x), h(x) is defined as

W (f, g, h)(x) = det

⎡⎣ f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

⎤⎦ .

(A similar definition can be made for any number of functions.) Calculate the
Wronskians of the polynomial functions of Exercise 2 (c) and (d). What does
Problem 24 tell you about these calculations?
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Exercise 16. Show that the functions ex, x3, and sin(x) are linearly indepen-
dent in C[0, 1] in two ways:
(a) Use Problem 24.
(b) Assume that a linear combination with value zero exists and evaluate it
at various points to obtain conditions on the coefficients.

Exercise 17. Let R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
and A =

[
1 −1

2−1
2 1

]
. Calculate R(θ)T AR(θ)

in the case that θ = π/4.

Exercise 18. Use matrix methods as in Example 3.26 to express the equation
of the curve 11x2 + 10

√
3xy + y2 − 16 = 0 in new variables x′, y′ obtained by

rotating the xy-axis by an angle of π/4.

Problem 19. Let V = Rn,n be the vector space of real n × n matrices and let
A, B ∈ Rn,n be such that both are nonzero matrices, A is nilpotent (some
power of A is zero), and B is idempotent (B2 = B). Show that the subspace
W = span{A, B} cannot be spanned by a single element of W.

Problem 20. Show that a basis is a minimal spanning set and conversely.

Problem 21. Let V be a vector space whose only subspaces are {0} and V.
Show that V is the span of a single vector.

*Problem 22. Prove that a list of vectors v1,v2, . . . ,vn with repeated vectors
in it is linearly dependent.

Problem 23. Suppose that v1,v2, . . . ,vk are linearly independent elements of
Rn and A = [v1,v2, . . . ,vk]. Show that rankA = k.

*Problem 24. Show that smooth functions f(x), g(x), h(x) are linearly depen-
dent if and only if for all x, W (f, g, h)(x) = 0.

Problem 25. Show that a linear operator T : V → W maps a linearly depen-
dent set v1,v2, . . . ,vn to linearly dependent set T (v1), T (v2), . . . , T (vn), but
if v1,v2, . . . ,vn are linearly independent, T (v1), T (v2), . . . , T (vn) need not
be linearly independent (give a specific counterexample).

*Problem 26. Suppose that a linear change of variables from old coordinates
x1, x2 to new coordinates x′

1, x
′
2 is defined by the equations

x1 = p11x
′
1 + p12x

′
2,

x2 = p21x
′
1 + p22x

′
2,

where the 2 × 2 change of basis matrix P = [pij ] is invertible. Show that if a
linear matrix multiplication function TA : R2 → R2 is given in old coordinates
by

y =
[

y1
y2

]
= TA

([
x1
x2

])
= TA(x) =Ax,

where A = [aij ] is any 2 × 2 matrix, then it is given by y′=P−1APx′ =
TP −1AP (x′) in new coordinates.
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3.4 Subspaces Associated with Matrices and Operators

Certain subspaces are a rich source of information about the behavior of a
matrix or a linear operator. We define and explore the properties of these
subspaces in this section.

Subspaces Defined by Matrices

There are three very useful subspaces that can be associated with a given
matrix A. Understanding these subspaces is a great aid in vector space cal-
culations that might have nothing to do with matrices per se, such as the
determination of a minimal spanning set for a vector space. Each definition
below is followed by an illustration using the following example matrix:

A =
[

1 1 1 −1
0 1 2 1

]
. (3.2)

We make the default assumption that the scalars are the real numbers, but the
definitions we will give can be stated just as easily for the complex numbers.

Caution: Do not confuse any of the spaces defined below with the matrix
A itself. They are objects that are derived from the matrix, but do not even
uniquely determine the matrix A.

Definition 3.11. The column space of the m × n matrix A is the subspace Column Space
C(A) of Rm spanned by the columns of A.

Example 3.27. Describe the column space of the matrix A in equation (3.2).

Solution. Here we have that C(A) ⊆ R2. Also

C(A) = span
{[

1
0

]
,

[
1
1

]
,

[
1
2

]
,

[−1
1

]}
.

Technically, this describes the column space in question, but we can do better.

We saw in Example 3.17 that the vector
[

1
2

]
was really redundant since it is

a linear combination of the first two vectors. We also see that[−1
1

]
= −2

[
1
0

]
+ 1

[
1
1

]
,

so that Theorem 3.4 shows us that

C(A) = span
{[

1
0

]
,

[
1
1

]}
.

This description is much better, in that it exhibits a basis of C(A). It also
shows that not all the columns of the matrix A are really needed to span the
entire subspace C(A). ��
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Definition 3.12. The row space of the m × n matrix A is the subspace R(A)Row Space
of Rn spanned by the transposes of the rows of A.

The “transpose” part of the preceding definition seems a bit odd. Why would
we want rows to look like columns? It’s a technicality, but later it will be
convenient for us to have the row spaces live inside a Rn instead of an (Rn)T .
Remember, we had to make a choice about Rn consisting of rows or columns.
Just to make the elements of a row space look like rows, we can always adhere
to the tuple notation instead of matrix notation. We gain one convenience:
R(A) = C(AT ), so that whatever we understand about column spaces can be
applied to row spaces.

Example 3.28. Describe the row space of A in equation (3.2).

Solution. We have from the definition that

R(A) = span {(1, 1, 1,−1), (0, 1, 2, 1)} ⊆ R4.

Now it’s easy to see that neither one of these vectors can be expressed as a
multiple of the other (if we had c(1, 1, 1,−1) = (0, 1, 2, 1), then read the first
coordinates and obtain c = 0), so that span is given as economically as we
can do, that is, the two vectors listed constitute a basis of R(A). ��
Definition 3.13. The null space of the m × n matrix A is the subset N (A)Null Space
of Rn defined by

N (A) = {x ∈ Rn |Ax = 0} .

Observe that N (A) is the solution set to the homogeneous linear system Ax =
0. This means that null spaces are really very familiar. We were computing
these solution sets way back in Chapter 1. We didn’t call them subspaces at
the time. Here is an application of this concept. Let A be a square matrix.
We know that A is invertible exactly when the system Ax = 0 has only
the trivial solution (see Theorem 2.7). Now we can add one more equivalent
condition to the long list of equivalences for invertibility: A is invertible exactly
if N (A) = {0}. We next justify the subspace property implied by the term
“null space.”

Example 3.29. Use the subspace test to verify that N (A) really is a subspace
of Rn.

Solution. Since A0 = 0, the zero vector is in N (A). Now let c be a scalar and
u,v ∈ Rn arbitrary elements of N (A). By definition, Au = 0 and Av = 0.
Add these two equations to obtain that

0 = 0 + 0 = Au + Av = A(u + v).

Therefore u + v ∈ N (A). Next multiply the equation Au = 0 by the scalar c
to obtain
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0 = c0 = c(Au) = A(cu).

Thus we see from that definition that cu ∈ N (A). The subspace test implies
that N (A) is a subspace of Rn. ��
Example 3.30. Describe the null space of the matrix A of equation (3.2).

Solution. Proceed as in Section 1.4. We find the reduced row echelon form
of A, identify the free variables, and solve for the bound variables using the
implied zero right-hand side and solution vector x = [x1, x2, x3, x4]T :[

1 1 1 −1
0 1 2 1

] −−−−−−→
E12(−1)

[
1 0 −1 −2
0 1 2 1

]
.

Pivots are in the first and second columns, so it follows that x3 and x4 are
free, x1 and x2 are bound, and

x1 = x3 + 2x4

x2 = −2x3 − x4.

Let’s write out the form of a general solution in terms of the free variables as
a combination of x3 times some vector plus x4 times another vector:⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x3 + 2x4

−2x3 − x4
x3
x4

⎤⎥⎥⎦ = x3

⎡⎢⎢⎣
1

−2
1
0

⎤⎥⎥⎦ + x4

⎡⎢⎢⎣
2

−1
0
1

⎤⎥⎥⎦ .

We have seen this clever trick before in Example 2.6. Remember that free
variables can take on arbitrary values, so we see that the general solution to
the homogeneous system has the form of an arbitrary linear combination of
the two vectors on the right. In other words,

N (A) = span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
−2

1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
2

−1
0
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ⊆ R4.

Neither of these vectors is a multiple of the other, so this is as economical an
expression for N (A) as we can hope for. In other words, we have exhibited a
minimal spanning set, that is, a basis of N (A). ��

The following example relates null spaces to the idea of a limiting state
for a Markov chain as discussed in Example 2.19. Recall that in that example
we observed that the sequence of state vectors x(k), k = 0, 1, 2, . . ., appeared
to converge to a steady-state vector x, no matter what the initial (probability
distribution) state vector x(0). A stochastic matrix (Markov chain transition Ergodic

Matrixmatrix) A that has this property is called ergodic. Null spaces can tell us
something about such matrices.
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Example 3.31. Suppose that a Markov chain has an ergodic transition matrix

A =
[

0.7 0.4
0.3 0.6

]
. Determine the steady-state vector for the Markov chain

x(k+1) = Ax(k).

Solution. We reason as follows: since the limit of the state vectors x(k) is x,
and the state vectors are related by the formula

x(k+1) = Ax(k),

we can take the limits of both sides of this matrix equation and obtain that

x = Ax.

Therefore
0 = x − Ax = Ix − Ax = (I − A)x.

It follows that x ∈ N (I − A). Now

I − A =
[

1 0
0 1

]
−

[
0.7 0.4
0.3 0.6

]
=

[
0.3 −0.4

−0.3 0.4

]
.

Calculate the null space by Gauss–Jordan elimination:[
0.3 −0.4

−0.3 0.4

]−−−−−−−→
E21(1)

E1(1/0.3)

[
1 −4/3
0 0

]
.

Therefore the null space of I − A is spanned by the single vector (4/3, 1). In
particular, any multiple of this vector qualifies as a possible limiting vector. If
we want a limiting vector whose entries are nonnegative and sum to 1 (which
is required for states in a Markov chain), then the only choice is the vector
resulting from dividing (4/3, 1) by the sum of its coordinates to obtain

(3/7)(4/3, 1) = (4/7, 3/7) ≈ (0.57143, 0.42857) .

Interestingly enough, this is the vector that was calculated on page 78. ��
Caution: We have no guarantee that the transition matrix A of the preceding
example is actually ergodic. We have only experimental evidence so far. We
will prove ergodicity using eigenvalue ideas in Chapter 5.

Here is a way of thinking about C(A). The key is the “linear combination as
matrix–vector multiplication” idea that was first introduced in Example 2.9
and formalized in Theorem 2.1. Recall that it asserts that if matrix A has
columns a1, . . . ,an, i.e., A = [a1,a2, . . . ,an], and if x = [x1, x2, ..., xn]T , then

Ax = x1a1 + x2a2 + · · · + xnan.

This equation shows that the column space of the matrix A can be thought
of as the set of all possible matrix products Ax, i.e.,
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C(A) = {Ax |x ∈ Rn} .

An insight that follows from these observations: the linear combination of
columns of A with coefficients from the vector x is zero exactly when x ∈
N (A). Thus we can use null space calculations to identify redundant vectors
in a set of column vectors, as in the next example.

Example 3.32. Find all possible linear combinations with value zero of the
columns of matrix A of equation (3.2) and use this information to find a basis
of C(A).

Solution. As in Example 3.30 we find the reduced row echelon form of A,
identify the free variables, and solve for the bound variables using the implied
zero right-hand side. The result is a solution vector x = (x1, x2, x3, x4) =
(x3 + 2x4,−2x3 − x4, x3, x4). Write A = [a1,a2,a3,a4], and we see that the
linear combinations of A are just

0 = x1a1 +x2a2 +x3a3 +x4a4 = (x3 + 2x4)a1 − (2x3 + x4)a2 +x3a3 +x4a4.

Here we think of x3 and x4 as free variables. Take x3 = 1 and x4 = 0,
and we obtain 0 = a1 − 2a2 + a3, so that a3 is a linear combination of
a1 and a2. Similarly, take x3 = 0 and x4 = 1, and we obtain 0 = 2a1 −
a2 + a4, so that a4 is a linear combination of a1 and a2. Hence, C(A) =

span {a1,a2} = span
{[

1
0

]
,

[
1
1

]}
, the same conclusion we reached by trial

and error in Example 3.27. ��

Subspaces Defined by a Linear Operator

Suppose we are given a linear operator T : V → W. We immediately have
three spaces we can associate with the operator, namely, the domain V, target
W , and range {y |y = T (x) for some x ∈ V } of the operator. The domain
and range are vector spaces by definition of linear operator. That the range
is a vector space is a nice example of using the subspace test.

Example 3.33. Show that if T : V → W is a linear operator, then range(T )
is a subspace of W.

Solution. Apply the subspace test. First, we observe that range(T ) contains
T (0). We leave it as an exercise for the reader to check that T (0) is the zero
element of W. Next let y and z be in range(T ), say y = T (u) and z = T (v).
We show closure of range(T ) under addition: by the linearity property of T ,

y + z = T (u) + T (v) = T (u + v) ∈ range(T ),

where the latter term belongs to range(T ) by the definition of image. Finally,
we show closure under scalar multiplication: let c be a scalar, and we obtain
from the linearity property of T that
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cy = cT (u) = T (cu) ∈ range(T ),

where the latter term belongs to range(T ) by the definition of range. Thus,
the subspace test shows that range(T ) is a subspace of W. ��

Here is another space that has proven to be very useful in understanding
the nature of a linear operator.

Definition 3.14. The kernel of the linear operator T : V → W is the subspace
of V given byKernel of

Operator ker(T ) = {x ∈ V |T (x) = 0}.

The definition claims that the kernel is a subspace and not merely a subset
of the domain. This is true, and a proof of this fact is left to the exercises. In
fact, we have been computing kernels since the beginning of the text. To see
this, suppose that the linear transformation T : Rn → Rm is given by matrix
multiplication, that is, T (x) = TA (x) = Ax, for all x ∈ Rn. Then

ker (T ) = {x ∈ Rn |TA(x) = 0}
= {x ∈ Rn |Ax = 0}
= N (A) .

In other words, for matrix operators kernels are the same thing as null spaces.
Here is one very nice application of kernels. Suppose we are interested in

knowing whether a given operator T : V → W is one-to-one, i.e., whether the
equation T (u) = T (v) always implies that u = v. For general functions this
is a nontrivial question. If, for example, V = W = R, then we could graph
the function T and try to determine whether a horizontal line cut the graph
twice. But for linear operators, the answer is very simple:

Theorem 3.9. The linear operator T : V → W is one-to-one if and only if
ker(T ) = {0}.

Proof. If T is one-to-one, then only one element can map to 0 under T. Thus,
ker(T ) can consist of only one element. However, we know that ker(T ) contains
the zero vector since it is a subspace of the domain of T. Therefore, ker(T ) =
{0}.

Conversely, suppose that ker(T ) = {0}. If u and v are such that T (u) =
T (v), then subtract terms and use the linearity of T to obtain that

0 = T (u) − T (v) = T (u) + (−1)T (v) = T (u − v).

It follows that u−v ∈ ker(T ) = {0}. Therefore, u−v = 0 and so u = v. ��
Before we leave the topic of one-to-one linear mappings, let’s digest its

significance in a very concrete case. The space P2 = span{1, x, x2} of poly-Polynomials
as Standard

Vectors
nomials of degree at most 2 has a basis of three elements, like R3, and it
seems very reasonable to think that P2 is “just like” R3 in that a polyno-
mial p(x) = a + bx + cx2 is uniquely described by its vector of coefficients
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(a, b, c) ∈ R3, and corresponding polynomials and vectors add and scalar mul-
tiply in a corresponding way. Here is the precise version of these musings:
Define an operator T : P2 → R3 by the formula T (a + bx + cx2) = (a, b, c).
One can check that T is linear, the range of T is its target, R3, and ker(T ) = 0.
By Theorem 3.9 the function T is one-to-one. Hence, it describes a one-to-one
correspondence between elements of P2 and elements of R3 such that sums
and scalar products in one space correspond to the corresponding sums and
scalar products in the other. In plain words, this means we can get one of the
vector spaces from the other simply by relabeling elements of one of the spaces.
So, in a very real sense, they are “the same thing.” More generally, whenever
there is a one-to-one linear mapping of one vector space onto another, we say Isomorphic

Vector Spacesthat the two vector spaces are isomorphic, which is a fancy way of saying that
they are the same, up to a relabeling of elements. The mapping T itself is
called an isomorphism. Actually, we have already encountered isomorphisms Isomorphism
in the form of invertible linear operators. The following theorem, whose proof
we leave as an exercise, explains the connection between these ideas.

Theorem 3.10. The linear operator T : V → W is an isomorphism if and
only if T is an invertible linear operator.

In summary, there are four important subspaces associated with a linear op-
erator T : V → W , the domain, target, kernel, and range. In symbols:

domain(T ) = V

target(T ) = W

ker(T ) = {v ∈ V |T (v) = 0}
range(T ) = {T (v) |v ∈ V } .

There are important connections between these subspaces and those as-
sociated with a matrix. Let A be an m × n matrix and TA : Rn → Rm the
corresponding matrix operator defined by multiplication by A. We have

domain(TA) = Rn

target(TA) = Rm

ker(TA) = N (A)
range(TA) = C(A).

The proofs of these are left to the exercises. One last example of subspaces
associated with a linear operator T : V → W is really a whole family of
subspaces. Suppose that U is a subspace of the domain V. Then we define the
image of U under T to be the set

T (U) = {T (u) |u ∈ U} .

One can show that T (U) is always a subspace of range (T ). We leave the
proof of this fact as an exercise. What this says is that a linear operator maps
subspaces of its domain into subspaces of its range.
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3.4 Exercises and Problems

Exercise 1. Find bases for null spaces of the following matrices.

(a)
[

2 −1 0 3
4 −2 1 3

]
(b)

[
1 4

−1 −4

]
(c)

⎡⎣ 1 1 2
−2 −1 −5

1 2 1

⎤⎦ (d)

⎡⎣2 −1 0
4 −2 1
1 1 −1

⎤⎦
Exercise 2. Find bases for null spaces of the following matrices.

(a)
[

1 −1
2 −1

]
(b)

⎡⎣ 2 4
−1 −2

0 1

⎤⎦ (c)

⎡⎣3 1 1
0 0 0
6 2 2

⎤⎦ (d)
[

2 −1 i
2 −2 2 − i

]

Exercise 3. Find bases for the column spaces of the matrices in Exercise 1.

Exercise 4. Find bases for the column spaces of the matrices in Exercise 2.

Exercise 5. Find bases for the row spaces of the matrices in Exercise 1.

Exercise 6. Find bases for the row spaces of the matrices in Exercise 2.

Exercise 7. For the following matrices find the null space of I − A and find
state vectors with nonnegative entries that sum to 1 in the null space, if any.
Are these matrices ergodic (yes/no)?

(a) A =

⎡⎣0.5 0 1
0.5 0.5 0

0 0.5 0

⎤⎦ (b) A =
[

0 1
1 0

]

Exercise 8. Find the null space of I − A and find state vectors (nonnegative

entries that sum to 1) in the null space, if any, for the matrix A =

⎡⎣1 0 1/3
0 1 1/3
0 0 1/3

⎤⎦.

Is this matrix ergodic? Explain your answer.

Exercise 9. For each of the following linear operators, find the kernel and range
of the operator. Is the operator one-to-one? onto?

(a) T : R3 → R3 and T ((x1, x2, x3)) =

⎡⎣ x1 − 2x2 + x3
x1 + x2 + x3

2x1 − x2 + 2x3

⎤⎦
(b) T : P2 → R and T (p (x)) = p (1)

Exercise 10. For each of the following linear operators, find the kernel and
range of the operator. Is the operator one-to-one? onto?
(a) T : P2 → P3 and T

(
a + bx + cx2

)
= ax + bx2/2 + cx3/3.

(b) T : R3 → R2 and T ((x1, x2, x3)) =
[

2x2
3x3

]
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Exercise 11. The linear operator T : V → R2 is such that T (v1) = (−1, 1),
T (v2) = (1, 1), and T (v3) = (2, 0), where v1,v2,v3 is a basis of V . Compute
ker T and rangeT . Is T one-to-one? onto? an isomorphism? (Hint: For the
kernel calculation use Theorem 3.6 and find conditions on coefficients such
that T (c1v1 + c2v2 + c3v3) = 0.)

Exercise 12. Let v1,v2,v3 be a basis of the vector space V and let the linear
operator T : V → R3 be such that T (v1) = (0, 1, 1), T (v2) = (1, 1, 0), and
T (v3) = (−1, 0, 1). Compute kerT and rangeT . Is T one-to-one? onto? an
isomorphism?

Problem 13. Let TA : Rn → Rm be the matrix multiplication operator defined
by the m × n matrix A. Show that kerTA = N (A) and rangeT = C(A).

Problem 14. Prove that if T is a linear operator, then for all u,v in the domain
of T and scalars c and d, we have T (cu − dv) = cT (u) − dT (v).

*Problem 15. Show that if T : V → W is a linear operator, then T (0) = 0.

Problem 16. Show that if T : V → W is a linear operator, then the kernel of
T is a subspace of V.

*Problem 17. Let the function T : R3 → P2 be defined by

T ([c1, c2, c3]
T ) = c1x + c2(x − 1) + c3x

2.

Show that T is an isomorphism of vector spaces.

Problem 18. Let T : V → W be a linear operator and U a subspace of V .
Show that the image of U, T (U) = {T (v) |v ∈ U}, is a subspace of W .

*Problem 19. Prove that if A is a nilpotent matrix then N (A) 
= {0} and
N (I − A) = {0}.

Problem 20. Let V be a vector space over the reals with basis v1,v2, . . . ,vn.
Show that the linear operator T : Rn → V given by

T ((c1, c2, . . . , cn)) = c1v1 + c2v2 + · · · + cnvn

is an isomorphism of vector spaces.

3.5 Bases and Dimension

We have used the word “dimension” many times already, without really mak-
ing the word precise. Intuitively, it makes sense when we say that R2 is “two-
dimensional” or that R3 is “three-dimensional,” for we reason that it takes
two coordinate numbers to determine a vector in R2 and three for a vector
in R3. What can we say about general vector spaces? Is there some number
that is a measure of the size of the vector space? We answer these questions
in this section. In the familiar cases of geometrical vector spaces, the answers
will confirm our intuition.
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The Basis Theorem

We know that the standard vector spaces always have a basis: the standard
basis. What about subspaces of a standard space? Or, for that matter, abstract
vector spaces? It turns out that the answer in all cases is yes, but we will be
satisfied to answer the question for a special class of abstract vector spaces.
The following concept turns out to be helpful.

Definition 3.15. The vector space V is called finite-dimensional if V has aFinite-
Dimensional

Vector Space
finite spanning set.

Examples of finite-dimensional vector spaces are the standard spaces Rn and
Cn. As a matter of fact, we will see shortly that every subspace of a finite-
dimensional vector space is finite-dimensional, and this includes most of the
vector spaces we have studied so far. However, some very important vec-
tor spaces are not finite-dimensional, and accordingly, we call them infinite-
dimensional spaces. Here is an example.

Example 3.34. Show that the space of all polynomial functions P is not a
finite-dimensional space, while the subspaces Pn are finite-dimensional.

Solution. If P were a finite-dimensional space, then there would be a finite
spanning set of polynomials p1(x), p2(x), . . . , pm(x) for P. This means that
any other polynomial could be expressed as a linear combination of these
polynomials. Let m be the maximum of all the degrees of the polynomials
pj(x). Notice that any linear combination of polynomials of degree at most m
must itself be a polynomial of degree at most m. (Remember that polynomial
multiplication plays no part here, only addition and scalar multiplication.)
Therefore, it is not possible to express the polynomial q(x) = xm+1 as a
linear combination of these polynomials, which means that they cannot be a
basis. Hence, the space P has no finite spanning set.

On the other hand, it is obvious that the polynomial

p(x) = a0 + a1x + · · · + anxn

is a linear combination of the monomials 1, x, . . . , xn from which it follows
that Pn is a finite-dimensional space. ��

Here is the first basic result about these spaces. It is simply a formalization
of what we have already done with preceding examples.

Theorem 3.11. Every finite-dimensional vector space has a basis.Basis
Theorem Proof. To see this, suppose that V is a finite-dimensional vector space with

V = span {v1,v2, . . . ,vn} .

Now if the set {v1,v2, . . . ,vn} has a redundant vector in it, discard it and
obtain a smaller spanning set of V. Continue discarding vectors until you
reach a spanning set for V that has no redundant vectors in it. (Since you
start with a finite set, this can’t go on indefinitely.) By the redundancy test,
this spanning set must be linearly independent. Hence it is a basis of V. ��
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The Dimension Theorem

No doubt you have already noticed that every basis of the vector space R2

must have exactly two elements in it. Similarly, one can reason geometrically
that any basis of R3 must consist of exactly three elements. These numbers
somehow measure the “size” of the space in terms of the degrees of freedom
(number of coordinates) one needs to describe a general vector in the space.
The dimension theorem asserts that this number can be unambiguously de-
fined. As a matter of fact, the discussion on page 177 shows that every basis of
Rn has exactly n elements. Our next stop: arbitrary finite-dimensional vector
spaces. Along the way, we need a very handy theorem that is sometimes called
the Steinitz substitution principle. This principle is a mouthful to swallow, so
we will precede its statement with an example that illustrates its basic idea.

Example 3.35. Let w1 = (1,−1, 0), w2 = (0,−1, 1), v1 = (0, 1, 0), v2 =
(1, 1, 0), and v3 = (0, 1, 1). Then w1,w2 form a linearly independent set and
v1,v2,v3 form a basis of V = R3 (assume this). Show how to substitute both
w1 and w2 into the set v1,v2,v3 while substituting out some of the vj ’s and
at the same time retaining the basis property of the set.

Solution. Since R3 = span{v1,v2,v3}, we can express w1 as a linear com-
bination of these vectors. We have a formal procedure for finding such com-
binations, but in this case we don’t have to work too hard. A little trial and
error shows that

w1 =

⎡⎣ 1
−1

0

⎤⎦ = −2

⎡⎣ 0
1
0

⎤⎦ + 1

⎡⎣1
1
0

⎤⎦ = −2v1 + 1v2 + 0v3,

so that 1w1 +2v1 −v2 − 0v3 = 0. It follows that v1 or v2 is redundant in the
set w1,v1,v2,v3. So discard, say, v2, and obtain a spanning set w1,v1,v3.
In fact, it is actually a basis of V since two vectors can span only a plane.
Now start over: express w2 as a linear combination of this new basis. Again,
a little trial and error shows that

w2 =

⎡⎣ 0
−1

1

⎤⎦ = −2

⎡⎣ 0
1
0

⎤⎦ +

⎡⎣0
1
1

⎤⎦ = 0w1 − 2v1 + 1v3.

Therefore v1 or v3 is redundant in the set w1,w2,v1,v3. So discard, say, v3,
and obtain a spanning set w1,w2,v1. Again, this set is actually a basis of V
since two vectors can span only a plane; and this is the kind of set we were
looking for. ��
Theorem 3.12. Let w1,w2, . . . ,wr be a linearly independent set in the space Steinitz

Substitution
Principle

V and let v1,v2, . . . ,vn be a basis of V. Then r ≤ n and we may substitute all
of the wi’s for some of the vj ’s in such a way that the resulting set of vectors
is still a basis of V.
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Proof. Let’s do the substituting one step at a time. Suppose that k < r and
that we have relabeled the remaining vi’s so that

V = span {w1,w2, . . . ,wk,v1,v2, . . . ,vs}

with k + s ≤ n and w1,w2, . . . ,wk,v1,v2, . . . ,vs is a basis of V. (Notice that
k = 0 and s = n when we start, so k + s = n.)

We show how to substitute the next vector wk+1 into the basis. Certainly

V = span {w1,w2, . . . ,wk,wk+1,v1,v2, . . . ,vs}

as well, but this spanning set is linearly dependent since wk+1 is linearly
dependent on w1,w2, . . . ,wk,v1,v2, . . . ,vs. Also, there have to be some vi’s
left if k < r, for otherwise a proper subset of the wj ’s would be a basis of V .
Now use the redundancy test to discard, one at a time, as many of the vj ’s
from this spanning set as possible, all the while preserving the span. Again
relabel the vj ’s that are left so as to obtain for some t ≤ s a spanning set

w1,w2, . . . ,wk+1,v1,v2, . . . ,vt

of V from which no vj can be discarded without shrinking the span. Could this
set be linearly dependent? If so, there must be some equation of linear depen-
dence among the vectors such that none of the vectors vj occurs with a nonzero
coefficient; otherwise, according to the redundancy test, such a vj could be dis-
carded and the span preserved. Therefore, there is an equation of dependency
involving only the wj ’s. This means that the vectors w1,w2, . . . ,wr form a
linearly dependent set, contrary to hypothesis. Hence, there is no such linear
combination and the vectors w1,w2, . . . ,wk+1,v1,v2, . . . ,vt are linearly in-
dependent, as well as a spanning set of V. Now we must have discarded at
least one of the vi’s since w1,w2, . . . ,wk,wk+1, v1,v2, . . . ,vs is a linearly
dependent set. Therefore, t ≤ s − 1. It follows that

(k + 1) + t ≤ k + 1 + s − 1 ≤ k + s ≤ n.

Now continue this process until k = r. ��
Here is a nice application of the Steinitz substitution principle.

Corollary 3.2. Every linearly independent set in a finite-dimensional vector
space can be expanded to a basis of the space.

Proof. Let w1,w2, . . . ,wr be a linearly independent set in V and v1,v2, . . . ,vn

a basis of V. Apply the Steinitz substitution principle to the linearly indepen-
dent set w1,w2, . . . ,wr and the basis v1,v2, . . . ,vn to obtain the desired basis
of V that includes w1,w2, . . . ,wr. ��

Next the dimension theorem is an easy consequence of Steinitz substitu-
tion, which has done the hard work for us.
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Theorem 3.13. Let V be a finite-dimensional vector space. Then any two Dimension
Theorembases of V have the same number of elements, which is called the dimension

of the vector space and denoted by dim V .

Proof. Let w1,w2, . . . ,wr and v1,v2, . . . ,vn be two given bases of V. Apply
the Steinitz substitution principle to the linearly independent set w1,w2, . . . ,wr

and the basis v1,v2, . . . ,vn to obtain that r ≤ n. Now reverse the roles of
these two sets in the substitution principle to obtain the reverse inequality
n ≤ r. We conclude that r = n, as desired. ��

Remember that a vector space always carries a field of scalars with it. If
we are concerned about that field we could specify it explicitly as part of the
dimension notation. For instance, we could write

dim Rn = dimR Rn or dim Cn = dimC Cn.

Usually, the field of scalars is clear from context and we don’t need the sub-
script notation.

As a first application of the dimension theorem, let’s dispose of the stan-
dard spaces. We already know from Example 3.23 that these vector spaces
have a basis consisting of n elements, namely the standard basis e1, e2, . . . , en.
According to the dimension theorem, this is all we need to specify the dimen-
sion of these spaces.

Corollary 3.3. For the standard spaces we have

dim Rn = n

dim Cn = n.

There is one more question we want to answer. How do dimensions of
a finite-dimensional vector space V and a subspace W of V relate to each
other? At the outset, we don’t even know whether W is finite-dimensional.
Our intuition tells us that subspaces should have smaller dimension. Sure
enough, our intuition is right this time!

Corollary 3.4. If W is a subspace of the finite-dimensional vector space V ,
then W is also finite-dimensional and

dimW ≤ dimV,

with equality if and only if V = W .

Proof. Let w1,w2, . . . ,wr be a linearly independent set in W and suppose
that dimV = n. According to the Steinitz substitution principle, r ≤ n. So
there is an upper bound on the number of elements of a linearly independent
set in W. Now if the span of w1,w2, . . . ,wr were smaller than W , then we
could find a vector wr+1 in W but not in span{w1,w2, . . . ,wr}. The new
set w1,w2, . . . ,wr,wr+1 would also be linearly independent (we leave this
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fact as an exercise). Since we cannot continue adding vectors indefinitely, we
have to conclude that at some point we obtain a basis w1,w2, . . . ,ws for
W. So W is finite-dimensional and furthermore, s ≤ n, so we conclude that
dimW ≤ dimV. Finally, if we had equality, then a basis of W would be the
same size as a basis of V. However, Steinitz substitution ensures that any
linearly independent set can be expanded to a basis of V. It follows that a
basis for W is also a basis for V , whence W = V. ��

If U and V are subspaces of the vector space W , then U + V =
{u + v |u ∈ U and v ∈ V } is also a subspace of W . These corollaries can be
used to show how to calculate the dimension of U + V .

Corollary 3.5. If U and V are subspaces of the finite-dimensional vector space
W , then dim(U + V ) = dimU + dimV − dimU ∩ V .

Proof. Corollary 3.4 shows that U , V , and U ∩V are all finite-dimensional, say
dimU = m and dimV = n. Since U∩V is also a subspace of both U and V , U∩
V has a basis, say w1,w2, . . . ,wr, with r ≤ m and r ≤ n. Apply Corollary 3.2
to this basis to expand this basis to bases w1,w2, . . . ,wr,u1,u2, . . . ,us of U
and w1,w2, . . . ,wr,v1,v2, . . . ,vt of V . Then r+s = m and r+t = n. We leave
it as a exercise to verify that w1,w2, . . . ,wr,u1,u2, . . . ,us,v1,v2, . . . ,vt is a
basis of U + V . Thus

dim (U + V ) = r + s + t = m + n − r = dimU + dimV − dimU ∩ V. �

3.5 Exercises and Problems

Exercise 1. Find all possible subsets of the following sets of vectors that form
a basis of R3.

(a) (1, 0, 1) , (1,−1, 1) (b) (1, 2, 1) , (2, 1, 1) , (3, 4, 1) , (2, 0, 1)
(c) (2, −3, 1) , (4,−2,−3) , (0,−4, 5) , (1, 0, 0) , (0, 0, 0)

Exercise 2. Find all possible subsets of the following sets of vectors that form
a basis of R2,2.

(a)
[

1 0
1 −1

]
,

[
1 1
0 −1

]
,

[
1 0
0 −1

]
,

[
0 1
1 −1

]
(b)

[
1 0
1 −1

]
,

[
1 0
1 −1

]
,

[
1 0
1 −1

]
(c)

[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 2
0 0

]
,

[
1 0
1 −1

]
,

[
1 0
1 0

]
,

[
1 0
1 −1

]
Exercise 3. Let V = R3 and w1 = (2, 1, 0), v1 = (1, 3, 1), v2 = (4, 2, 0). The set
v1,v2 is linearly independent in V . Determine which vj ’s could be replaced
by w1 while retaining the linear independence of the resulting set.

Exercise 4. Let V = R3 and w1 = (0, 1, 0), w2 = (1, 1, 1), v1 = (1, 3, 1),
v2 = (2,−1, 1), v3 = (1, 0, 1). The set v1,v2,v3 is a basis of V . Determine
which vj ’s could be replaced by w1, and which vj ’s could be replaced by both
w1 and w2, while retaining the basis property.
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Exercise 5. Let V = C [0, 1] and w1 = sin2 x, w2 = cos x, v1 = sin x, v2 =
cos2 x, v3 = 1. The set v1,v2,v3 is linearly independent in V . Determine
which vj ’s could be replaced by w1, and which vj ’s could be replaced by both
w1 and w2, while retaining the linear independence of the resulting set.

Exercise 6. Let V = P2 and w1 = x, w2 = x2, v1 = 1 − x, v2 = 2 + x,
v3 = 1 +x2. The set v1,v2,v3 is a basis of V . Determine which vj ’s could be
replaced by w1, and which vj ’s could be replaced by both w1 and w2, while
retaining the basis property.

Exercise 7. Let w1 = (0, 1, 1). Expand {w1} to a basis of R3.

Exercise 8. Let w1 = x + 1. Expand {w1} to a basis of P2.

Exercise 9. Assume that S = {v1,v2, . . . ,vk} ⊆ V , where V is a vector space
of dimension n. Answer True/False to the following:
(a) If S is a basis of V then k = n.
(b) If S spans V then k ≤ n.
(c) If S is linearly independent then k ≤ n.
(d) If S is linearly independent and k = n then S spans V .
(e) If S spans V and k = n then S is a basis for V .
(f) If A is a 5 by 5 matrix and detA = 2, then the first 4 columns of A span
a 4 dimensional subspace of R5.

Exercise 10. Assume that V is a vector space of dimension n and S =
{v1,v2, . . . ,vk} ⊆ V . Answer True/False to the following:
(a) S is either a basis or contains redundant vectors.
(b) A linearly independent set contains no redundant vectors.
(c) If V = span{v2,v3} and dimV = 2, then {v1,v2,v3} is a linearly depen-
dent set.
(d) A set of vectors containing the zero vector is a linearly independent set.
(e) Every vector space is finite-dimensional.
(f) The set of vectors [i, 0]T , [0, i]T , [1, i]T in C2 contains redundant vectors.

Problem 11. Let V = {0}, a vector space with a single element. Explain why
the element 0 is not a basis of V and the dimension of V must be 0.

*Problem 12. Let w1,w2, . . . ,wr be linearly independent vectors in the vec-
tor space W . Show that if w ∈ W and w 
∈ span {w1,w2, . . . ,wr} , then
w1,w2, . . . ,wr,w is a linearly independent set.

*Problem 13. Let ei,j be the m×n matrix with a unit in the (i, j)th entry and
zeros elsewhere. Show that {ei,j | i = 1, . . . , m, j = 1, . . . , n} is a basis of the
vector space Rm,n.
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*Problem 14. Complete the proof of Corollary 3.5.

Problem 15. Let u1,u2, . . . ,um and v1,v2, . . . ,vn be bases of U and V , respec-
tively, where U and V are subspaces of the vector space W. Show by example
that if u1,u2, . . . ,um and v1,v2, . . . ,vn are bases of U and V , respectively,
and if U ∩ V 
= {0}, then their union need not be a basis if U + V .

*Problem 16. Determine the dimension of the subspace of R3,3 consisting of
all symmetric matrices by exhibiting a basis.

Problem 17. Let U be the subspace of W = R3,3 consisting of all symmetric
matrices and V the subspace of all skew-symmetric matrices.
(a) Show that U ∩ V = {0} and U + V = W.

(b) Use Exercises 13, 16 and Corollary 3.5 to calculate dim V .

Problem 18. Show that the functions 1, x, x2, . . . , xn form a basis for the space
Pn of polynomials of degree at most n.

Problem 19. Show that C[0, 1] is an infinite-dimensional space.

Problem 20. Let T : V → W be a linear operator such that rangeT = W and
ker T = {0}. Let v1,v2, . . . ,vn be a basis of V. Show that T (v1), T (v2), . . . , T (vn)
is a basis of W.

*Problem 21. Let p(x) = c0+c1x+ · · ·+cmxm be a polynomial and A an n×n
matrix. Use the result of Problem 13 to show that there exists a polynomial
p(x) of degree at most n2 for which p(A) = 0. (Aside: this estimate is actually
much too pessimistic. The Cayley–Hamilton theorem shows that n works in
place of n2.)

Problem 22. Show that a set of vectors v1,v2, . . . ,vn in the vector space V is
a basis if and only if it is a minimal spanning set, that is, it is a spanning set
and no proper subset is a spanning set.

Problem 23. Let T : V → W be a linear operator where V is a finite-
dimensional space and U is a subspace of V. Show that dimT (U) ≤ dimU.
(Show that the image of a spanning set for U under T is a spanning set for
T (U).)

Problem 24. Prove Corollary 3.2.
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3.6 Linear Systems Revisited

We now have some very powerful tools for understanding the nature of solution
sets of the standard linear system Ax = b. This understanding will help us
design practical computational methods for finding dimension and bases for
vector spaces and other problems as well.

The first business at hand is to describe solution sets of inhomogeneous
systems. Recall that every homogeneous system is consistent since it has the
trivial solution. Inhomogeneous systems are another matter. We already have
one criterion, namely that the rank of augmented matrix and coefficient matrix
of the system must agree. Here is one more way to view the consistency of
such a system in the language of vector spaces.

Theorem 3.14. The linear system Ax = b of m equations in n unknowns is Consistency in
Terms of
Column Space

consistent if and only if b ∈ C(A).

Proof. The key to this fact is Theorem 2.1, which says that the vector Ax
is a linear combination of the columns of A with the entries of x as scalar
coefficients. Therefore, to say that Ax = b has a solution is simply to say that
some linear combination of columns of A adds up to b, i.e., b ∈ C(A). ��

The next example shows how to to determine whether a given vector be- Inclusion in a
Spanlongs to a subspace specified by a spanning set of standard vectors.

Example 3.36. One of the following vectors belongs to the space V spanned
by v1 = (1, 1, 3, 3), v2 = (0, 2, 2, 4), and v3 = (1, 0, 2, 1). The vectors in
question are u = (2, 1, 5, 4) and w = (1, 0, 0, 0). Which and why?

Solution. Theorem 3.14 tells us that if A = [v1,v2,v3], then we need only
determine whether the systems Ax = u and Ax = w are consistent. In the in-
terests of efficiency, we may as well do both at once by forming the augmented
matrix for both right-hand sides at once as

[A |u |w] =

⎡⎢⎢⎣
1 0 1 2 1
1 2 0 1 0
3 2 2 5 0
3 4 1 4 0

⎤⎥⎥⎦ .

The reduced row echelon form of this matrix (whose calculation we leave as
an exercise) is ⎡⎢⎢⎣

1 0 1 2 0
0 1 −1

2 − 1
2 0

0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎦ .

Observe that there is a pivot in the fifth column but not in the fourth column.
This tells us that the system with augmented matrix [A |u] is consistent,
but the system with augmented matrix [A |w] is not consistent. Therefore
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u ∈ span{v1,v2,v3}, but w /∈ span{v1,v2,v3}. As a matter of fact, the
reduced row echelon form of [A |u] tells us what linear combinations will
work, namely

u = (2 − c3)v1 − 1
2
(1 − c3)v2 + c3v3,

where c3 is an arbitrary scalar. The reason for nonuniqueness of the coordi-
nates of u is that the vectors v1,v2,v3 are not linearly independent. ��

The next item of business is a description of the solution space itself, given
that it is not empty. We already have a pretty good conceptual model for the
solution of a homogeneous system Ax = 0. Remember that this is just the
null space, N (A), of the matrix A. In fact, the definition of N (A) is the set of
vectors x such that Ax = 0. The important point here is that we proved that
N (A) really is a subspace of the appropriate n-dimensional standard space
Rn or Cn. As such we can really picture it when n is 2 or 3: N (A) is either
the origin, a line through the origin, a plane through the origin, or in the case
A = 0, all of R3. What can we say about an inhomogeneous system? Here is
a handy way of understanding these solution sets.

Theorem 3.15. Suppose the system Ax = b is consistent with a particular
solution x∗. Then the general solution x to this system can be described by
the equationForm of

General
Solution

x = x∗ + z,

where z runs over all elements of N (A).

Proof. On the one hand, suppose we are given a vector of the form x = x∗+z,
where Ax∗ = b and z ∈ N (A). Then

Ax = A(x∗ + z) = Ax∗ + Az = b + 0 = b.

Thus x is a solution to the system. Conversely, suppose we are given any
solution x to the system and that x∗ is a particular solution to the system.
Then

A(x − x∗) = Ax − Ax∗ = b − b = 0.

Thus x − x∗ = z ∈ N (A), so that x has the required form x∗ + z. ��
This is really a pretty fact, so let’s be clear about what it is telling us. It

says that the solution space to a consistent system, as a set, can be described
as the set of all translates of elements in the null space of A by some fixed
vector. Such a set is sometimes called an affine set or a flat. When n is 2 or 3
this says that the solution set is either a single point, a line or a plane—not
necessarily through the origin!

Example 3.37. Describe geometrically the solution sets to the system

x + 2y = 3
x + y + z = 3.
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Solution. First solve the system, which has augmented matrix[
1 2 0 3
1 1 1 3

]−−−−−→
E21(−1)

[
1 2 0 3
0 −1 1 0

]−−−−−→
E12(2)
E2(−1)

[
1 0 2 3
0 1 −1 0

]
.

The general solution to the system is given in terms of the free variable z,
which we will relabel as z = t to obtain

x = 3 − 2t

y = t

z = t.

We may recognize this from calculus as a parametric representation of a line
in three-dimensional space R3. Notice that this line does not pass through the
origin since z = 0 forces x = 3. So the solution set is definitely not a subspace
of R3. ��

Now we turn to another computational matter. How do we find bases of
vector spaces that are prescribed by a spanning set? How do we find the
linear dependencies in a spanning set or implement the Steinitz substitution
principle in a practical way? We have all the tools we need now to solve these
problems. Let’s begin with the question of finding a basis. We are going to
solve this problem in two ways. Each has its own merits. First we examine
the row space approach. We require two simple facts.

Theorem 3.16. Let A be any matrix and E an elementary matrix. Then

R (A) = R (EA) .

Proof. Suppose the rows of A are the vectors r1, r2, . . . , rn, so that we have
R(A) = span

{
rT
1 , rT

2 , . . . , rT
n

}
. If E = Eij , then the effect of multiplication

by E is to switch the ith and jth rows, so the rows of EA are simply the rows
of A in a different order. Hence, R(A) = R(EA) in this case. If E = Ei(a),
with a a nonzero scalar, then the effect of multiplication by E is to replace
the ith row by a nonzero multiple of itself. Clearly, this doesn’t change the
span of the rows either. To simplify notation, consider the case E = E12(a).
Then the first row r1 is replaced by r1 + ar2, so that any combination of the
rows of EA is expressible as a linear combination of the rows of A. Conversely,
since r1 = r1 + ar2 − ar2, we see that any combination of r1, r2, . . . , rn can
be expressed in terms of the rows of EA. This proves the theorem. ��
Theorem 3.17. If the matrix R is in a reduced row form, then the transposes
of the nonzero rows of R form a basis of R(R).

Proof. Suppose the rows of R are given as r1, r2, . . . , rn, so that we have
R(R)T = span

{
rT
1 , rT

2 , . . . , rT
k

}
, where the first k rows of R are nonzero and

the remaining rows are zero rows. So certainly the nonzero rows span R(R). In
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order for these vectors to form a basis, they must also be a linearly independent
set. If some linear combination of these vectors has value zero, say

0 = c1r1 + · · · + ckrk,

we examine the first coordinate of this linear combination, corresponding to
the column in which the first pivot appears. In that column r1 has a nonzero
coordinate value and all other rj have a value of zero. Therefore, the linear
combination above yields that c1 = 0. Repeat this argument for each index
and we obtain that all ci = 0. Hence the nonzero rows must be linearly
independent. It follows that transposes of these vectors form a basis of R(R).
��

These theorems are the foundations for the following algorithm for finding
a basis for a vector space.

Given V = span{v1,v2, . . . ,vm} ⊆ Rn or Cn.

(1) Form the m × n matrix A whose rows are vT
1 ,vT

2 , . . . ,vT
m.

(2) Find a reduced row form R of A.
(3) List the nonzero rows of R. Their transposes form a basis of V.

Row Space
Algorithm

Note 3.1. If unique answers are desired, we must use the reduced row echelon
form of A, which is itself unique, rather than a reduced row form.

Example 3.38. Given that the vector space V is spanned by vectors v1 =
(1, 1, 3, 3), v2 = (0, 2, 2, 4), v3 = (1, 0, 2, 1), and v4 = (2, 1, 5, 4), find a basis
of V by the row space algorithm.

Solution. Form the matrix whose rows are these vectors:

A =

⎡⎢⎢⎣
1 1 3 3
0 2 2 4
1 0 2 1
2 1 5 4

⎤⎥⎥⎦ .

Now find the reduced row echelon form of A:⎡⎢⎢⎣
1 1 3 3
0 2 2 4
1 0 2 1
2 1 5 4

⎤⎥⎥⎦
−−−−−−→
E31(−1)
E41(−2)
E2(1/2)

⎡⎢⎢⎣
1 1 3 3
0 1 1 2
0 −1 −1 −2
0 −1 −1 −2

⎤⎥⎥⎦
−−−−−−→
E32(1)
E42(1)

E12(−1)

⎡⎢⎢⎣
1 0 2 1
0 1 1 2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

From this we see that the vectors (1, 0, 2, 1) and (0, 1, 1, 2) form a basis for
the row space of A. ��

The second algorithm for computing a basis does more than find a basis: it
formalizes an idea we encountered in Section 3.4 that determines when linear
combinations have value zero.



3.6 Linear Systems Revisited 203

Theorem 3.18. Let A be a matrix with columns a1,a2, . . . ,an. Suppose the
indices of the nonpivot columns in the reduced row echelon form of A are
i1, i2, . . . , ik. Then every linear combination of value zero,

0 = c1a1 + c2a2 + · · · + cnan,

of the columns of A is uniquely determined by the values of ci1 , ci2 , . . . , cik
. In

particular, if these coefficients are 0, then all the other coefficients must be 0.

Proof. Express the linear combination in the form

0 = c1a1 + c2a2 + · · · + cnan = [a1,a2, . . . ,an]c = Ac,

where c = (c1, c2, . . . , cn) and A = [a1,a2, . . . ,an]. In other words, the column
c of coefficients is in the null space of A. Every solution c to this system is
uniquely specified as follows: assign arbitrary values to the free variables, then
use the rows of the reduced row echelon form of A to solve for each bound
variable. This is exactly what we wanted to show. ��

In view of this theorem, we see that the columns of A corresponding to
pivot columns in the reduced row echelon form of A must be themselves a
linearly independent set. We also see from the proof that we can express any
column corresponding to a nonpivot column in terms of columns correspond-
ing to pivot columns by setting the free variable corresponding to the nonpivot
column to 1, and all other free variables to 0. Therefore, the columns of A cor-
responding to pivot columns form a basis of C(A). This justifies the following
algorithm for finding a basis for a vector space.

Given V = span{v1,v2, . . . ,vn} ⊆ Rm or Cm.

(1) Form the m × n matrix A whose columns are v1,v2, . . . ,vn.
(2) Find a reduced row form R of A.
(3) List the columns of A that correspond to pivot columns of R.

These form a basis of V.

Column Space
Algorithm

Caution: It is not the columns (or the rows) of the reduced row echelon form
matrix R that yield the basis vectors for V. In fact, if E is an elementary
matrix, in general we have C(A) 
= C(EA).

Example 3.39. Given that the vector space V is spanned by vectors v1 =
(1, 1, 3, 3), v2 = (0, 2, 2, 4), v3 = (1, 0, 2, 1), and v4 = (2, 1, 5, 4), find a basis
of V by the column space algorithm.

Solution. Form the matrix A whose columns are these vectors and reduce
the matrix to its reduced row echelon form:
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1 0 1 2
1 2 0 1
3 2 2 5
3 4 1 4

⎤⎥⎥⎦
−−−−−−→
E21(−1)
E31(−3)
E41(−3)

⎡⎢⎢⎣
1 0 1 2
0 2 −1 −1
0 2 −1 −1
0 4 −2 −2

⎤⎥⎥⎦
−−−−−−→
E32(−1)
E42(−2)
E2(1/2)

⎡⎢⎢⎣
1 0 1 2
0 1 −1/2 −1/2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

We can see from this calculation that the first and second columns will be pivot
columns, while the third and fourth will not be. According to the column space
algorithm, C(A) is a two-dimensional space with the first two columns of A
for a basis. ��
Note 3.2. While any reduced row form suffices, what is gained by the re-
duced row echelon form is the ability to use Theorem 3.18 to determine linear
combinations of value zero easily.

Consider Example 3.39. From the first two rows of the reduced row echelon
form of A we see that if c = (c1, c2, c3, c4) and Ac = 0, then

c1 = − (c3 + 2c4) ,

c2 =
1
2

(c3 + c4) ,

and c3, c4 are free. Hence, the general linear combination with value zero is

− (c3 + 2c4)v1 +
1
2

(c3 + c4)v2 + c3v3 + c4v4 = 0.

For example, take c3 = 0 and c4 = 1 to obtain

−2v1 +
1
2
v2 + 0v3 + 1v4 = 0,

so that v4 = 2v1 − 1
2v2. A similar calculation with c3 = 1 and c4 = 0 shows

that v3 = v1 − 1
2v2.

Finally, we consider the problem of finding a basis for a null space. Actu-
ally, we have already dealt with this problem in an earlier example (Exam-
ple 3.30), but now we will justify what we did there.

Theorem 3.19. Let A be an m × n matrix such that rankA = r. Sup-
pose the general solution to the homogeneous equation Ax = 0 with x =
(x1, x2, . . . , xn) is written in the form

x = xi1w1 + xi2w2 + · · · + xin−rwn−r,

where xi1 , xi2 , . . . , xin−r are the free variables. Then w1,w2, . . . ,wn−r form a
basis of N (A).

Proof. The vector x = 0 occurs precisely when all the free variables are set
equal to 0, for the bound variables are linear combinations of the free variables.
This means that the only linear combinations with value zero of the vectors



3.6 Linear Systems Revisited 205

w1,w2, . . . ,wn−r are those for which all the coefficients xi1 , xi2 , . . . , xin−r
are

0. Hence these vectors are linearly independent. They span N (A) since every
element x ∈ N (A) is a linear combination of them. Therefore, w1,w2, . . . ,wn−r

form a basis of N (A). ��
The formula in Theorem 3.19 shows that each of the vectors w1,w2, . . . ,wn−r

is recovered from the general solution by setting one free variable to one and
the others to zero. It also shows that the following algorithm is valid.

Given an m × n matrix A.

(1) Compute the reduced row echelon form R of A.
(2) Use R to find the general solution to the homogeneous system

Ax = 0.
(3) Write the general solution x = (x1, x2, . . . , xn) to the homoge-

neous system in the form

x = xi1w1 + xi2w2 + · · · + xin−rwn−r,

where xi1 , xi2 , . . . , xin−r are the free variables.
(4) List the vectors w1,w2, . . . ,wn−r. These form a basis of N (A).

Null Space
Algorithm

Example 3.40. Find a basis for the null space of the matrix A in Exam-
ple 3.39 by the null space algorithm.

Solution. We already found the reduced row echelon form of A as

R =

⎡⎢⎢⎣
1 0 1 2
0 1 −1/2 −1/2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

The variables x3 and x4 are free, while x1 and x2 are bound. Hence the general
solution of Ax = 0 can be written as

x1 = −x3 − 2x4,

x2 =
1
2
x3 +

1
2
x4,

x3 = x3,

x4 = x4,

which becomes, in vector notation,⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ = x3

⎡⎢⎢⎣
−1
1/2

1
0

⎤⎥⎥⎦ + x4

⎡⎢⎢⎣
−2
1/2

0
1

⎤⎥⎥⎦ .

Hence w1 = (−1, 1/2, 1, 0) and w1 = (−2, 1/2, 0, 1) form a basis of N (A). ��
A summary of key dimensional facts that we have learned in this section:



206 3 VECTOR SPACES

Theorem 3.20. Let A be an m × n matrix such that rankA = r. ThenRank
Theorem (1) dim C(A) = r

(2) dimR(A) = r
(3) dimN (A) = n − r

The following example is an application of vector space tools to matrix com-
putation issues.

Example 3.41. Show that every rank-one matrix can be expressed as an outerRank-One
Matrix as

Outer
Product

product of vectors.

Solution. Let A be an m × n rank-one matrix. Let the rows of A be
r1, r2, . . . , rm. Since dimR(A) = 1, the row space of A is spanned by a single
row of A, say the kth one. Hence there are constants c1, c2, . . . , cm such that
rj = cj rk, k = 1, . . . , m. Let c = [c1, c2, . . . , cm]T and d = rT

k , and it follows
that A and the outer product of c and d, cdT , have the same rows, hence are
equal. ��

3.6 Exercises and Problems

Exercise 1. Use the fact that B is a reduced row form of A to find bases for
the row and column spaces of A with no calculations, and null space with

minimum calculations, where A =

⎡⎣ 3 5 −1 5 1
1 2 −1 2 0
2 3 0 3 1

⎤⎦ and B =

⎡⎣1 0 3 0 2
0 1 −2 1 −1
0 0 0 0 0

⎤⎦.

Exercise 2. Let A =

⎡⎢⎢⎣
3 1 −2 0 1 2 1
1 1 0 −1 1 2 2
3 2 −1 1 1 8 9
0 2 2 −1 1 6 8

⎤⎥⎥⎦, B =

⎡⎢⎢⎣
2 0 −2 0 0 −4 −6
0 2 2 0 0 4 6
0 0 0 −2 2 4 4
0 0 0 0 1 6 7

⎤⎥⎥⎦, and

repeat Exercise 1.

Exercise 3. Find two bases for the space spanned by each of the following sets
of vectors by using the row space algorithm and column space algorithm with
the reduced row echelon form.
(a) (0,−1, 1), (2, 1, 1) in R3.
(b) (2,−1, 1), (2, 0, 1), (−4, 2,−2) in R3.
(c) (1, −1), (2, 2), (−1, 2), (2, 0) in R2.
(d) 1+x2, −2−x+3x2, 5+x, 4+4x2 in P2. (Hint: See the discussion following
Theorem 3.9 of Section 3.4 for a way of thinking of polynomials as vectors.)

Exercise 4. Find two bases for each of the following sets of vectors by using
the row space algorithm and the column space algorithm.
(a) (1,−1), (1, 1), (2, 0) in R2.
(b) (2, 2,−4), (−4,−4, 8) in R3.
(c) (1, 0, 0), (1 + i, 2, 2 − i), (−1, 0, i) in C3.
(d) 1 + 2x + 2x3, −2 − 5x + 5x2 + 6x3, −x + 5x2 + 6x3, x − 5x2 + 4x3 in P3.
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Exercise 5. Find bases for the row, column, and null space of each of the fol-
lowing matrices.

(a) [2, 0,−1] (b)

⎡⎣ 1 2 0 0 1
1 2 1 1 1
3 6 2 2 3

⎤⎦ (c)

⎡⎢⎢⎣
1 2 0 4 0
1 3 5 2 1
2 3 −5 10 0
2 4 0 8 1

⎤⎥⎥⎦ (d)

⎡⎣2 −3 −1
0 2 0
2 4 1

⎤⎦
Exercise 6. Find bases for the row, column, and null space of the following.

(a)

⎡⎣1 2 −1 0 −1
0 0 0 1 1
2 4 1 1 1

⎤⎦ (b)

⎡⎢⎢⎣
2 4 0 −4 0 −2
2 4 1 0 0 0
1 2 1 2 1 5
1 2 0 −2 0 −1

⎤⎥⎥⎦ (c)
[

1 i 0
1 2 1

]
(d)

[
1 2 0 0
3 6 2 2

]

Exercise 7. Find all possible linear combinations with value zero of the follow-
ing sets of vectors and the dimension of the space spanned by them.
(a) (0, 1, 1), (2, 0, 1), (2, 2, 3), (0, 2, 2) in R3.
(b) x, x2 + x, x2 − x in P2.
(c) (1, 1, 2, 2), (0, 2, 0, 2), (1, 0, 2, 1), (2, 1, 4, 4) in R4.

Exercise 8. Repeat Exercise 7 for the following sets of vectors.
(a) (1, 1, 3, 3), (0, 2, 2, 4), (1, 0, 2, 1), (2, 1, 5, 4) in R4.
(b) 1 + x, 1 + x − x2, 1 + x + x2, x − x2, 1 + 2x in P2.
(c) cos (2x), sin2 x, cos2 x, 2 in C [0, 1].

Exercise 9. Let A =

⎡⎣ 5 2 −1
3 1 0

−1 0 −1

⎤⎦, B =

⎡⎣ 4 −3
−2 3

1 −2

⎤⎦, U = C(A), and V = C(B).

(a) Compute dim U and dimV .
(b) Use the column algorithm on the matrix [A, B] to compute dim (U + V ).
(c) Use Corollary 3.5 of Section 3.5 to determine dim U ∩ V .

Exercise 10. Repeat Exercise 9 with A =

⎡⎣4 3 5
5 4 3
2 1 9

⎤⎦, B =

⎡⎣ 1 1 3
−2 −1 −4

7 5 17

⎤⎦.

Exercise 11. Find a basis of U ∩ V in Exercise 9. (Hint: solve the system[
A B

] [x
y

]
= 0 and use the fact that any nonzero solution will give an

element in the intersection, namely Ax or By. Now just look for the right
number of linearly independent elements in the intersection.)

Exercise 12. Find a basis of U ∩ V in Exercise 10.

*Problem 13. Suppose that the linear system Ax = b is a consistent system
of equations, where A is an m × n matrix and x = [x1, . . . , xn]T . Prove that
if the set of columns of A has redundant vectors in it, then the system has
more than one solution.
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Problem 14. Use Theorem 3.16 and properties of invertible matrices to show
that if P and Q are invertible and PAQ is defined, then rankPAQ = rankA.

*Problem 15. Let A be an m × n matrix of rank r. Suppose that there exists
a vector b ∈ Rm such that the system Ax = b is inconsistent. Use the consis-
tency and rank theorems of this section to deduce that the system AT y = 0
must have nontrivial solutions.

Problem 16. Use the rank theorem and Problem 14 to prove that if P and Q
are invertible and PAQ is defined, then dimN (PAQ) = dimN (A).

3.7 *Computational Notes and Projects

Spaces Associated with a Directed Graph

An example will illustrate some of the basic ideas. You should also review the
material of page 79.

Example 3.42. Suppose we have a communications network that connects
five nodes, which we label 1, 2, 3, 4, 5. Communications between points are not
necessarily two-way. We specify the network by listing ordered pairs (i, j), the
meaning of which is that information can be sent from point i to point j. For
our problem the connection data is the set

E = {(1, 2), (3, 1), (1, 4), (2, 3), (3, 4), (3, 5), (4, 2), (5, 3)} .

A loop means a walk that starts and ends at the same node, i.e., a sequence
that connects a node to itself. For example, the sequence (3, 5), (5, 3) is a
loop in our example. It is important to be able to account for loops in such
a network. They give us subsets of nodes for which two-way communication
between any two points is possible (start at one point and follow the arrows
until you reach the other). Find all the loops of this example and formulate
an algorithm that one could program to compute all the loops of the network.

Solution. These are data that can be modeled by a directed graph as in
Example 2.18. Thus, nodes are vertices in the graph and connections are
edges. See Figure 3.5 for a picture of this graph.

It isn’t so simple to eyeball this picture and count all loops. In fact, if
you count going around and around in the same loop as different from the
original loop, there are infinitely many loops. Perhaps we should be a bit more
systematic. Let’s count the smallest loops only, that is, the loops that are not
themselves a sum of other loops. It appears that there are only three of these,
namely,

L1 : (3, 5), (5, 3), L2 : (2, 3), (3, 4), (4, 2), L3 : (1, 2), (2, 3), (3, 1).
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Edge 5 Vertex 5

Edge 8

Edge 3

Edge 7

Vertex 3Vertex 4

Vertex 2Vertex 1 Edge 1

Edge 2

Edge 6

Edge 4

Fig. 3.5. Data from Example 3.42.

There are other loops, e.g., L4 : (2, 3), (3, 5), (5, 3), (3, 4), (4, 2). But this loop
is built up out of L1 and L2. In a certain sense, L4 = L1 + L2. This sug-
gests a “calculus of loops.” Lurking in the background is another matrix,
different from the adjacency matrix that we encountered in Section 2.3, that
describes all the data necessary to construct the graph. It is called the inci-
dence matrix of the graph and is given as follows: the incidence matrix has
its rows indexed by the vertices of the graph and its columns by the edges.
If the edge (i, j) is in the graph, then the column corresponding to this edge
has a −1 in its ith row and a +1 in its jth row. All other entries are 0. In
our example we see that the vertex set is V = {1, 2, 3, 4, 5}, the edge set is
E = {(1, 2), (2, 3), (3, 4), (4, 2), (1, 4), (1, 3), (3, 5), (5, 3)}, and so the incidence
matrix is A =

[
v1 v2 v3 v4 v5 v6 v7 v8

]
with reduced row echelon form E,

where

A =

⎡⎢⎢⎢⎢⎣
−1 0 0 0 −1 1 0 0

1 −1 0 1 0 0 0 0
0 1 −1 0 0 −1 −1 1
0 0 1 −1 1 0 0 0
0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎦ and E =

⎡⎢⎢⎢⎢⎣
1 0 0 0 1 −1 0 0
0 1 0 −1 1 −1 0 0
0 0 1 −1 1 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

We leave the calculation of E to the reader.
We can now describe all loops. Each column of A defines an edge. Thus,

linear combinations of these columns with integer coefficients, say v = c1v1 +
· · · + c8v8 = Ac, represent a listing of edges, possibly with repeats. Consider
such a linear combination with defining vector of coefficients c = (c1, . . . , c8).
When will such a combination represent a loop? For one thing, the coefficients
should all be nonnegative integers. But this isn’t enough. Here’s the key idea:
examine this combination locally, that is, at each vertex. There we expect
the total number of “in-arrows” (−1’s) to be exactly canceled by the total
number of “out-arrows” (+1’s). In other words, each coordinate of v should
be 0 and so c ∈ N (A). Now find a basis of N (A) using the reduced row
echelon form E of A. We see that the free variables are c4, c5, c6, c8. The
general form of an element of the null space takes the form c = c4w4 +
c5w5 +c6w6 +c8w8, where the columns are by the null space algorithm: w4 =
(0, 1, 1, 1, 0, 0, 0, 0), w5 = (−1,−1,−1, 0, 1, 0, 0, 0), w6 = (1, 1, 0, 0, 0, 1, 0, 0),
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and w8 = (0, 0, 0, 0, 0, 0, 1, 1). Now we see that the “loop vectors” w8,w4,w6
represent the loops L1, L2, L3, respectively. The vector v5 doesn’t represent
a loop in the sense that we originally defined them, since we allowed loops to
move only in the direction of the edge arrow. However, we need w5 to describe
all loops. For example, w4 + w5 + w6 = (0, 1, 0, 1, 1, 1, 0, 0) represents a loop
that cannot be represented in terms of w4,w6,w8 alone. ��

This null space calculation is trying to tell us something, namely that if we
allowed for paths that moved against the direction of the edge arrows when
the coefficient of the edge is negative, we would have four independent loops.
These “algebraic” loops include our original “graphical” loops. They are much
easier to calculate since we don’t have to worry about all the coefficients ci

being positive. They may not be directly useful in the context of communica-
tions networks, since they don’t specify a flow of information unless they are
graphical; but in the context of electrical circuits they are very important. In
fact, the correct definition of a “loop” in electrical circuit theory is an element
N (A) with integer coefficients.

Project: Modeling with Directed Graphs II
Project Description: This assignment introduces you to another application
of (directed) graph as mathematical modeling tool. You are given that the
(directed) graph G has vertex set V = {1, 2, 3, 4, 5, 6} and edge set
E = {(2, 1), (1, 5), (2, 5), (5, 4), (3, 6), (4, 2), (4, 3), (3, 2), (6, 4), (6, 1)}. We can
draw a picture as in Figure 3.5. Answer the following questions about G.

1. What does the picture of this graph look like? You may leave space in
your report and draw this by hand, or if you prefer, you may use the computer
drawing applications available to you on your system.

2. Find N (A) and N (AT ) using a computer algebra system available to
you. What does the former tell you about the loop structure of the circuit?
Distinguish between graphical and “algebraic” loops.

3. Think of the digraph as representing an electrical circuit where an edge
represents some electrical object like a resistor or capacitor. Each node repre-
sents the circuit space between these objects. and we can attach a potential
value to each node, say the potentials are x1, . . . , x6. The potential difference
across an edge is the potential value of head minus tail. Kirchhoff’s second law
of electrical circuits says that the sum of potential differences around a circuit
loop must be zero. Use the fact that Ax = b implies that for all y ∈ N (AT ),
yT b = 0 to find conditions that a vector b must satisfy in order for it to be a
vector of potential differences for some potential distribution on the vertices.

4. Across each edge of a circuit a current flows. Thus we can assign to each
edge a “weight,” namely the current flow along the edge. This is an example
of a weighted digraph. However, not just any set of current weights will do,
since Kirchhoff’s first law of circuits says that the total flow of current in and
out of any node should be 0. Use this law to find a matrix condition that must
be satisfied by the currents.
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GEOMETRICAL ASPECTS OF STANDARD
SPACES

The standard vector spaces have many important extra features that we have
ignored up to this point. These extra features made it possible to do sophis-
ticated calculations in the spaces and enhanced our insight into vector spaces
by appealing to geometry. For example, in the geometrical spaces R2 and
R3 that were studied in calculus, it was possible to compute the length of a
vector and angles between vectors. These are visual concepts that feel very
comfortable to us. In this chapter we are going to generalize these ideas to the
standard spaces and their subspaces. We will abstract these ideas to general
vector spaces in Chapter 6.

4.1 Standard Norm and Inner Product

Throughout this chapter vector spaces will be assumed to be subspaces of the
standard vector spaces Rn and Cn.

The Norm Idea

We dealt with sequences of vectors in Chapters 2 and 3 in an informal way.
Consider this problem. How do we formulate precisely the idea of a sequence
of vectors ui converging to a limit vector u, i.e.,

lim
n→∞ un = u,

in standard spaces? A reasonable answer is to mean that the distance between
the vectors should tend to 0 as n → ∞. By distance we mean the length of
the difference. So what we need is some idea about the length, i.e., norm, of a
vector. We have seen such an idea in the geometrical spaces R2 and R3. There
are different ways to measure length. We shall begin with the most standard
method. It is one of the outcomes of geometry and the Pythagorean theorem.
As with standard spaces, there is no compelling reason to stop at geometrical
dimensions of two or three, so here is the general definition.
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Definition 4.1. Let u = (x1, x2, . . . , xn) ∈ Rn. The (standard) norm of u isStandard Real
Vector Norm the nonnegative real number

‖u‖ =
√

x2
1 + x2

2 + · · · + x2
n.

Example 4.1. Compute the norms of the vectors u = (1,−1, 3) and v =
[2,−1, 0, 4, 2]T .

Solution. From the definition,

‖u‖ =
√

12 + (−1)2 + 32 =
√

11 ≈ 3.3166,

and
‖v‖ =

√
22 + (−1)2 + 02 + 42 + 22 =

√
25 = 5. �

Even though we can’t really “see” the five-dimensional vector y of this
example, it is interesting to note that calculating its length is just as rou-
tine as calculating the length of the three-dimensional vector x. What about
complex vectors? Shouldn’t there be an analogous definition for such objects?
The answer is yes, but we have to be a little careful. We can’t use the same
definition that we did for real vectors. Consider the vector x = (1, 1 + i). The
sum of the squares of the coordinates is just

12 + (1 + i)2 = 1 + 1 + 2i − 1 = 1 + 2i.

This isn’t good. We don’t want “length” to be measured in complex numbers.
The fix is very simple. We already have a way of measuring the length of a
complex number z, namely the absolute value |z|, so length squared is |z|2.
That is the inspiration for the following definition, which is entirely consistent
with our first definition when applied to real vectors:

Definition 4.2. Let u = (z1, z2, . . . , zn) ∈ Cn. The (standard) norm of u isStandard
Complex

Vector Norm
the nonnegative real number

‖u‖ =
√

|z1|2 + |z2|2 + · · · + |zn|2.

Notice that |z|2 = zz. (Remember that if z = a + bi, then z = a − bi and
zz = a2 + b2 = |z|2.) Therefore,

‖u‖ =
√

z1z1 + z2z2 + · · · + znzn.

Example 4.2. Compute the norms of the vectors u = (1, 1 + i) and v =
(2,−1, i, 3 − 2i).

Solution. From the definition,

‖u‖ =
√

12 + (1 − i) (1 + i) =
√

1 + 1 + 1 ≈ 1.7321
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and

‖v‖ =
√

22 + (−1)2 + (−i)i + (3 + 2i)(3 − 2i)

=
√

4 + 1 + 1 + 9 + 4 =
√

19 ≈ 4.3589.

��
Here are the essential properties of the norm concept:

Let c be a scalar and u,v ∈ V where the vector space V has the
standard norm ‖ ‖. Then the following hold.

(1) ‖u ‖ ≥ 0 with ‖u ‖ = 0 if and only if u = 0.
(2) ‖ cu ‖ = | c | ‖u ‖.
(3) (Triangle Inequality) ‖u + v ‖ ≤ ‖u ‖ + ‖v ‖.

Basic Norm
Laws

That (1) is true is immediate from the definition of ‖u‖ as a sum
of the lengths squared of the coordinates of u. This sum is zero exactly
when each term is zero. Condition (2) is fairly straightforward too. Suppose
u = (z1, z2, . . . , zn), so that

‖cu‖ =
√

(cz1)cz1 + (cz2)cz2 + · · · + (czn)czn

=
√

(cc)(z1z1 + z2z2 + · · · + znzn)

=
√

|c|2√z1z1 + z2z2 + · · · + znzn

= |c| · ‖u‖.

The triangle inequality (which gets its name from the triangle with represen-
tatives of the vectors u,v,u + v as its sides) can be proved easily in two- or
three-dimensional geometrical space by appealing to the fact that the sum of
lengths of any two sides of a triangle is greater that the length of the third
side. A justification for higher dimensions is a nontrivial bit of algebra that
we postpone until after the introduction of inner products below.

First we consider a few applications of the norm concept. We say that
two vectors determine the same direction if one is a positive multiple of the
other and determine opposite directions if one is a negative multiple of the
other. The first application is the idea of “normalizing” a vector. This means Unit Vectors
finding a unit vector, which means a vector of length 1, that has the same
direction as a given vector. This process is sometimes called “normalization.”
The following simple fact shows us how to do it.

Theorem 4.1. Let u be a nonzero vector. Then the vector

w =
1

‖u‖u

is a unit vector in the same direction as u.
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Proof. Since ‖u‖ is positive, we see immediately that w and u determine the
same direction. Now check the length of w by using the basic norm law 2 to
obtain that

‖w‖ =
∥∥∥∥ 1

‖u‖u
∥∥∥∥ =

∣∣∣∣ 1
‖u‖

∣∣∣∣ ‖u‖ =
‖u‖
‖u‖ = 1.

Hence w is a unit vector, as desired. ��
Example 4.3. Use the normalization procedure to find unit vectors in the
directions of vectors u = (2,−1, 0, 4) and v = (−4, 2, 0,−8). Conclude that
these vectors determine opposite directions.

Solution. Let us find a unit vector in the same direction of each vector. We
have norms

‖u‖ =
√

22 + (−1)2 + 02 + 42 =
√

21

and
‖v‖ =

√
−42 + (2)2 + +02 + (−8)2 =

√
84 = 2

√
21.

It follows that unit vectors in the directions of u and v, respectively, are

w1 = (2,−1, 0, 4)/
√

21,

w2 = (−4, 2, 0,−8)/(2
√

21) = −(2,−1, 0, 4)/
√

21 = −w1.

Therefore u and v determine opposite directions. ��
Example 4.4. Find a unit vector in the direction of the vector v = (2 + i, 3).

Solution. We have
‖u‖ =

√
22 + 12 + 32 =

√
14.

It follows that a unit vector in the direction of v is

w =
1√
14

(2 + i, 3). �

In order to work the next example we must express the idea of vector
convergence of a sequence u1,u2, . . . to the vector u in a sensible way. The
norm idea makes this straightforward: to say that the un’s approach the vector
u should mean that the distance between u and un goes to 0 as n → ∞. But
norm measures distance. Therefore the correct definition is as follows:

Definition 4.3. Let u1,u2, . . . be a sequence of vectors in the vector space V
and u also a vector in V. We say that the sequence converges to u and writeConvergence

of Vectors
lim

n→∞ un = u

if the sequence of real numbers ‖un − u‖ converges to 0, i.e.,

lim
n→∞ ‖un − u‖ = 0.
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Example 4.5. Use the norm concept to justify the statement that

lim
n→∞ un = u,

where un =
(
1 + 1/n2, 1/(n2 + 1), sinn/n

)
and u = (1, 0, 0).

Solution. In our case we have

un − u =

⎡⎣ 1 + 1/n2

1/(n2 + 1)
sinn/n

⎤⎦ −
⎡⎣1

0
0

⎤⎦ =

⎡⎣ 1/n2

1/(n2 + 1)
sinn/n

⎤⎦ ,

so

‖un − u‖ =

√(
1
n2

)2

+
(

1
(n2 + 1)

)2

+
(

sinn

n

)2

→
n→∞

√
0 + 0 + 0 = 0,

which is what we wanted to show. ��

The Inner Product Idea

In addition to the norm concept we have another fundamental tool in our
arsenal when we tackle two- and three-dimensional geometrical vectors. This
tool is the so-called dot product of two vectors. It has many handy appli-
cations, but the most powerful of these is the ability to determine the angle
between two vectors. In fact, some authors use this idea to define dot products
as follows: let θ be the angle between representatives of the vectors u and v.
(See Figure 4.1.) The dot product of u and v is defined to be the quantity
‖u‖ ‖v‖ cos θ. It turns out that with some trigonometry (the law of cosines)
and algebra, one can use this definition to derive a very convenient form for
inner products; for example, if u = (u1, u2, u3) and v = (v1, v2, v3), then

u · v = u1v1 + u2v2 + u3v3. (4.1)

This makes the calculation of dot products vastly easier since we don’t have
to use any trigonometry to compute it. A particularly nice application is that
we can determine cos θ quite easily from the dot product, namely

cos θ =
u · v

‖u‖ ‖v‖ . (4.2)

It is useful to try to extend these geometrical ideas to higher dimensions even
if we can’t literally use trigonometry and the like. So what we do is reverse
the sequence of ideas we’ve discussed and take equation (4.1) as the prototype
for our next definition. As with norms, we are going to have to distinguish
carefully between the cases of real and complex scalars. First we focus on the
more common case of real coefficients.



216 4 GEOMETRICAL ASPECTS OF STANDARD SPACES

θ

v

u

Fig. 4.1. Angle θ between vectors u and v.

Definition 4.4. Let u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn) be vectorsDot Product
in Rn. The (standard) inner product, also called the dot product of u and v,
is the real number

u · v = uT v = x1y1 + x2y2 + · · · + xnyn.

We can see from the first form of this definition where the term “inner prod-
uct” came from. Recall from Section 2.4 that the matrix product uT v is called
the inner product of these two vectors.

Example 4.6. Compute the dot product of the vectors u = (1,−1, 3, 2) and
v = (2,−1, 0, 4) in R4.

Solution. From the definition,

u · v = 1 · 2 + (−1) · (−1) + 3 · 0 + 2 · 4 = 11. �

There is a wonderful connection between the standard inner product and
the standard norm for vectors that is immediately evident from the definitions.
Here it is:

‖u‖ =
√

u · u. (4.3)

Thus computing norms amounts to an inner product calculation followed by a
square root. Actually, we can even avoid the square root and put the equation
in the form

‖u‖2 = u · u.

We say that the standard norm is induced by the standard inner product.
We would like this property to carry over to complex vectors. Now we have
to be a bit careful. In general, the quantity uT u may not even be a real
number, or may be negative. This means that

√
uT u could be complex, which

doesn’t seem like a good idea for measuring “length.” So how can we avoid
this problem? Recall that when we introduced transposes, we also introduced
conjugate transposes and remarked that for complex vectors, this is a more
natural tool than the transpose. Now we can back up that remark! Recall the
definition for complex norm: for u = (z1, z2, . . . , zn) ∈ Cn, the norm of u is
the nonnegative real number

‖u‖ =
√

z1z1 + z2z2 + · · · + znzn =
√

u∗u.

Therefore, in our definition of complex “dot products” we had better replace
transposes by conjugate transposes. This inspires the following definition
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Definition 4.5. Let u = (w1, w2, . . . , wn) and v = (z1, z2, . . . , zn) be vectors Complex Dot
Productin Cn. The (standard) inner product, also called the dot product of u and v,

is the complex number

u · v = w1z1 + w2z2 + · · · + wnzn = u∗v.

With this definition we still have the close connection given above in equation
(4.3) between norm and standard inner product of complex vectors.

Example 4.7. Compute the dot product of the vectors u = (1 + 2i, i, 1) and
v = (i,−1 − i, 0) in C3.

Solution. Simply apply the definition:

u · v = (1 + 2i)i + ī(−1 − i) + 1 · 0 = (1 − 2i)i − i(−1 − i) = 1 + 2i. �

What are the essential defining properties of these standard inner prod-
ucts? It turns out that we can answer the question for both real and complex
inner products at once. However, we should bear in mind that in most cases we
will be dealing with real dot products, and in such cases all the dot products
in question are real numbers, so that any reference to a complex conjugate
can be omitted.

Let c be a scalar and u,v,w ∈ V , where V is a vector space with the
standard inner product. Then the following hold:

(1) u · u ≥ 0 with u · u = 0 if and only if u = 0.
(2) u · v = v · u.
(3) u · (v + w) = u · v + u · w.
(4) u · (cv) = c(u · v).

Basic Inner
Product Laws

That (1) is true is immediate from the fact that u · u = u∗u is a sum of
the lengths squared of the coordinates of u. This sum is zero exactly when
each term is zero. Condition (2) follows from this line of calculation:

v · u = v∗u =
(
v∗u

)T = (v∗u)∗ = u∗v = u · v.

One point that stands out in this calculation is the following:

Caution: A key difference between real and complex inner products is in the
commutative law u ·v = v ·u, which holds for real vectors but not for complex
vectors, where instead u · v = v · u.

Conditions (3) and (4) are similarly verified and left to the exercises. We
can also use (4) to prove this fact for real vectors:

(cu) · v = v · (cu) = c(v · u) = c(u · v).

If we are dealing with complex dot products, matters are a bit trickier. One
can show then that

(cu) · v = c(u · v),

so we don’t quite have the symmetry that we have for real products.
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The Cross Product Idea

We complete this discussion of vector arithmetic with a tool that can be used
only in three dimensions, the cross product of vectors. It has more sophis-
ticated relatives, called wedge products, that operate in higher-dimensional
spaces; this is an advanced topic in multilinear algebra that we shall not pur-
sue. Unlike the dot product, cross products transform vectors into vectors.

In the traditional style of three-dimensional vector analysis, we use the
symbols i, j, and k to represent the standard basis e1, e2, e3 of R3. Here is the
definition of cross product along with a handy determinant mnemonic.

Definition 4.6. Let u = u1i + u2j + u3k and v = v1i + v2j + v3k be vectorsCross Product
of Vectors in R3. The cross product u × v of these vectors is defined to be the vector in

R3 given by

u × v = (u2v3 − u3v2) i + (u3v1 − u1v3) j + (u1v2 − u2v1)k =

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
Strictly speaking, the “determinant” of this definition is not a determinant in
the usual sense. However, formal calculations with it are perfectly valid and
provide us with useful insights. For example:

(1) Vectors u and v are parallel if and only if u×v = 0, since a determinant
with one row a multiple of another is zero. In particular, u × u = 0.

(2) w · u × v =

∣∣∣∣∣∣
w1 w2 w3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ , since the result of dotting w = u1i + u2j + u3k

with u × v using the first form of the definition of cross product is equal
to this determinant. (Note: parentheses are not needed since the only
interpretation of w · u × v that makes sense is w · (u × v).)

(3) u · u × v = 0 and v · u × v = 0, since a determinant with repeated rows
is zero.

(4) u × v = −v × u, since interchanging two rows of a determinant changes
its sign.

(5) i × j = k, j × k = i, k × i = j, as a direct calculation with the definition
shows. Thus the products follow a circular pattern, with the product of
any successive two yielding the next vector in the loop i → j → k → i.

Example 4.8. Confirm by direct calculation that u·u×v = 0 and v·u×v = 0
if u = (2,−1, 3) and v = (1, 1, 0).

Solution. We calculate that

u × v =

∣∣∣∣∣∣
i j k
2 −1 3
1 1 0

∣∣∣∣∣∣ = (−1 · 0 − 1 · 3) i − (2 · 0 − 3 · 1) j + (2 · 1 − (−1) 1)k

= −3i + 3j + 3k.
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Thus

u · u × v = (2i − 1j + 3k) · (−3i + 3j + 3k) = −6 − 3 + 3 = 0
v · u × v = (i + j) · (−3i + 3j + 3k) = −3 + 3 = 0.

��
Here is a summary of some of the basic laws of cross products:

Let u,v,w ∈ R3 and c ∈ R. Then

(1) u × v = −v × u.
(2) (cu) × v = c (u × v) = u × (cv).
(3) u × (v + w) = u × v + u × w.
(4) (u + v) × w = u × w + v × w.
(5) (Scalar triple product) u · v × w = u × v · w.
(6) (Vector triple product) u × (v × w) = (u · v)w − (u · v)w.
(7) ‖u × v‖ = ‖u‖ ‖v‖ sin θ, where θ is the angle between u and v.

Laws of Cross
Products

Items (1)–(7) can be verified directly from the definition of cross product and,
in the case of item (7), trigonometric identities.

4.1 Exercises and Problems

Exercise 1. For the following pairs of vectors, calculate u · v, ‖u‖, and ‖v‖.
(a) (3,−5), (2, 4) (b) (1, 1, 2), (2,−1, 3) (c) (2, 1,−2,−1), (3, 0, 1,−4)
(d) (1 + 2i, 2 + i), (4 + 3i, 1) (e) (3, 1, 2,−4), (2, 0, 1, 1) (f) (2, 2,−2), (2, 1, 5)

Exercise 2. For the following pairs of vectors, calculate u · v and unit vectors
in the direction of u and v.
(a) (4,−2, 2), (1, 3, 2) (b) (1, 1), (2,−2) (c) (4, 0, 1, 2 − 3i), (1, 1 − 2i, 1, i)
(d) (i,−i), (3i, 1) (e) (1, −1, 1,−1), (2, 2, 1, 1) (f) (4, 1, 2), (1, 0, 0)

Exercise 3. Let θ be the angle between the following pairs of real vectors and
compute cos θ using dot products.
(a) (2,−5), (4, 2) (b) (3, 4), (4,−3) (c) (1, 1, 2), (2,−1, 3) (d) j + k, 2i + k

Exercise 4. Compute an angle θ between the following pairs of real vectors.
(a) (4, 5), (−4, 4) (b) i − 5j, i + k (c) (4, 0, 2), (1, 1, 1)

Exercise 5. Compute the cross product of the vector pairs in Exercise 4. (Ex-
press two-dimensional vectors in terms of i and j first.)

Exercise 6. Compute sin θ, where θ is the angle between the following pairs of
real vectors, using cross products.
(a) 3i − 5j, 2i + 4j (b)3i − 5j + 2k, 2i − 4k (c) (−4, 2, 4), (4, 1,−5)
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Exercise 7. Let c = 3, u = (4,−1, 2, 3), and v = (−2, 2,−2, 2). Verify that the
three basic norm laws hold for these vectors and scalars.

Exercise 8. Let c = 2, u = (−3, 2, 1), v = (4, 2,−3), and w = (1,−2, 1). Verify
the four basic inner product laws for these vectors and scalars.

Exercise 9. Let c = −2, u = (0, 2, 1), v = (4, 0,−3), and w = (1,−2, 1). Verify
cross product laws (1)–(4) for these vectors and scalars.

Exercise 10. Let u = (1, 2, 2), v = (0, 2,−3), and w = (1, 0, 1). Verify cross
product laws (5)–(7) for these vectors and scalars.

Exercise 11. Verify that un = [2/n, (1 + n2)/(2n2 + 3n + 5)]T , n = 1, 2, . . .,
converges to a limit vector u by using the norm definition of vector limit.

Exercise 12. Let un = [i,
(
n2i + 1

)
/
(
(ni)2 + n

)
], n = 1, 2, . . ., and verify that

un converges to a limit vector u.

*Problem 13. Show that for real vectors u, v and real number c one has

(cu) · v = v · (cu) = c(v · u) = c(u · v).

Problem 14. Prove this basic norm law: ‖u‖ ≥ 0 with equality if and only if
u = 0.

Problem 15. Show that if u,v,w ∈ Rn (or Cn) and c is a scalar, then
(a) u · (v + w) = u · v + u · w (b) u·(cv) = c(u · v)

Problem 16. Show from the definition that if limn→∞ un = u, where un =
(xn, yn) ∈ R2 and u = (x, y), then limn→∞ xn = x and limn→∞ yn = y.

*Problem 17. Prove that if v is a vector and c is a positive real, then normaliz-
ing v and normalizing cv yield the same unit vector. How are the normalized
vectors related if c is negative?

Problem 18. Show that if A is a real n × n matrix and u,v are vectors in Rn,
then

(
AT u

) · v = u · (Av).

*Problem 19. Show that |‖u‖ − ‖v‖| ≤ ‖u − w‖ for any two vectors u,v in the
same space.
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4.2 Applications of Norms and Inner Products

Projections and Angles

Now that we have dot products under our belts we can tackle geometrical
issues such as angles between vectors in higher dimensions. For the matter of
angles, we will stick to real vector spaces, though we could do it for complex
vector spaces with a little extra work. What we would like to do is take
equation (4.2) as the definition of the angle between two vectors. There’s one
slight problem: how do we know that it will give a quantity that could be a
cosine? After all, cosines take on only values between −1 and 1. We could use
some help and the Cauchy–Bunyakovsky–Schwarz inequality (CBS for short)
is just what we need:

Theorem 4.2. For vectors u,v ∈ Rn, CBS
Inequality|u · v| ≤ ‖u‖ ‖v‖ .

Proof. Let c be an arbitrary real number and compute the nonnegative quan-
tity

f(c) = ‖u + cv‖2

= (u + cv) · (u + cv)
= u · u + u · (cv) + (cv) · u + (cv) · (cv)

= ‖u‖ + 2c(u · v) + c2 ‖v‖ .

The function f (c) is therefore a quadratic in the variable c with nonnegative
values. The low point of this quadratic occurs where f ′ (c) = 0, that is, where

0 = 2(u · v) + 2c ‖v‖ ,

that is,

c =
−(u · v)

‖v‖2 .

Evaluate f at this point to get that

0 ≤ ‖u‖2 − 2
(u · v)2

‖v‖2 +
(u · v)2

‖v‖4 ‖v‖2 = ‖u‖2 − (u · v)2

‖v‖2 .

Now add (u · v)2/ ‖v‖2 to both sides and multiply by ‖v‖2 to obtain that

(u · v)2 ≤ ‖u‖2 ‖v‖2
.

Take square roots and we have the desired inequality. ��
This inequality has a number of useful applications. Because of it we can

articulate a definition of angle between vectors. Note that there is a certain
ambiguity in discussing the angle between vectors, since more than one angle
works. It is the cosine of these angles that is actually unique.
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Definition 4.7. For vectors u,v ∈ Rn we define the angle between u and v
to be any angle θ satisfyingAngle

Between
Vectors cos θ =

u · v
‖u‖ ‖v‖ .

Thanks to the CBS inequality, we know that |u · v| /(‖u‖ ‖v‖) ≤ 1, so that
this formula for cos θ makes sense.

Example 4.9. Find the angle between the vectors u = (1, 1, 0, 1) and v =
(1, 1, 1, 1) in R4.

Solution. We have that

cos θ =
(1, 1, 0, 1) · (1, 1, 1, 1)

‖(1, 1, 0, 1)‖ ‖(1, 1, 1, 1)‖ =
3

2
√

3
=

√
3

2
.

Hence we can take θ = π/6. ��
Example 4.10. Use the laws of inner products and the CBS inequality to ver-
ify the triangle inequality for vectors u and v. What happens to this inequality
if we also know that u · v = 0?

Solution. Here the trick is to avoid square roots. Square both sides of equa-
tion (4.3) to obtain that

‖u + v‖2 = (u + v) · (u + v)
= u · u + u · v + v · u + v · v
= ‖u‖2 + 2(u · v) + ‖v‖2

≤ ‖u‖2 + 2 |u · v| + ‖v‖2

≤ ‖u‖2 + 2 ‖u‖ ‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2 ,

where the last inequality follows from the CBS inequality. If u · v = 0, then
the single inequality can be replaced by an equality. ��

We have just seen a very important case of angles between vectors that
warrants its own name. Recall from geometry that two vectors are perpen-
dicular or orthogonal if the angle between them is π/2. Since cos π/2 = 0,
we see that this amounts to the equation u · v = 0. Now we can extend the
perpendicularity idea to arbitrary vectors, including complex vectors.

Definition 4.8. Two vectors u and v in the same vector space are orthogonalOrthogonal
Vectors if u · v = 0. In this case we write u ⊥ v.

In the case that one of the vectors is the zero vector, we have the little oddity
that the zero vector is orthogonal to every other vector, since the dot product
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is always 0 in this case. Some authors require that u and v be nonzero as
part of the definition. It’s a minor point and we won’t worry about it. When
u and v are orthogonal, i.e., u · v = 0, we see from the third equality in the
derivation of CBS above that Pythagorean

Theorem‖u + v‖2 = ‖u‖2 + ‖v‖2
,

which is really the Pythagorean theorem for vectors in Rn.

Example 4.11. Determine whether the following pairs of vectors are orthog-
onal.

(a) u = (2,−1, 3, 1) and v = (1, 2, 1,−2)
(b) u = (1 + i, 2) and v = (−2i, 1 + i).

Solution. For (a) we calculate

u · v = 2 · 1 + (−1)2 + 3 · 1 + 1(−2) = 1,

so that u is not orthogonal to v. For (b) we calculate

u · v = (1 − i)(−2i) + 2(1 + i) = −2i − 2 + 2 + 2i = 0,

so that u is orthogonal to v in this case. ��
The next example illustrates a handy little trick well worth remembering.

Example 4.12. Given a vector (a, b) in R2 or C2, find a vector orthogonal to
(a, b).

Solution. Simply interchange coordinates, conjugate them (this does noth-
ing if the entries are real), and insert a minus sign in front of one of the
coordinates, say the first. We obtain (−b, a). Now check that

(a, b) · (−b, a) = a(−b) + ba = 0. �

By parallel vectors we mean two vectors that are nonzero scalar multiples Parallel
Vectorsof each other. Notice that parallel vectors may determine the same or opposite

directions. Our next application of the dot product relates back to a fact that
we learned in geometry: given two nonzero vectors in the plane, it is always
possible to resolve one of them into a sum of a vector parallel to the other
and a vector orthogonal to the other (see Figure 4.2). The parallel component
is called the projection of one vector along the other. This idea is useful, for
example, in physics problems where we want to resolve a force into orthogonal
components. As a matter of fact, we can develop this same idea in arbitrary
standard vector spaces. That is the content of the following useful fact.

Theorem 4.3. Let u and v be vectors in a vector space with v 
= 0. Let Projection
Formula for
Vectorsp =

v · u
v · vv and q = u − p.

Then p is parallel to v, q is orthogonal to v, and u = p + q.
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θu

p

v

u− p

Fig. 4.2. Angle between vectors u and v, projection p of u along v and (u − p) ⊥v.

Proof. Let p = cv, an arbitrary multiple of v. Then p is automatically parallel
to v. Impose the constraint that q = u − p be orthogonal to v. This means,
by definition, that

0 = v · q = v · (u − p) = v · u − v · (cv).

Add v · (cv) to both sides and pull the scalar c outside the dot product to
obtain that

c(v · v) = v · u
and therefore

c =
v · u
v · v .

So for this choice of c, q is orthogonal to p. Clearly, u = p + u − p, so the
proof is complete. ��

It is customary to call the vector p of this theorem the (parallel) projection
of u along v. As above, we writeProjection

Vector
projv u =

v · u
v · vv.

The projection of one vector along another is itself a vector quantity. A scalar
quantity that is frequently associated with these calculations is the so-called
component of u along v. It is defined asComponent

of Vector
compv u =

v · u
‖v‖ .

The connection between these two quantities is that

projv u = compv u
v

‖v‖ .

Notice that v/ ‖v‖ is a unit vector in the same direction as v. Therefore,
compv u is the signed magnitude of the projection of u along v and will be
negative if the angle between u and v exceeds π/2.
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The vector q of Theorem 4.3 that is orthogonal to v also has a name: the
orthogonal projection of u to v. We write Orthogonal

Projection
orthv u = u − projv u.

Note, however, that the default meaning of “projection” is “parallel projec-
tion.”

Example 4.13. Calculate the projection and component of u = (1,−1, 1, 1)
along v = (0, 1,−2,−1) and verify that u − p ⊥ v.

Solution. We have that

v · u = 0 · 1 + 1(−1) + (−2)1 + (−1)1 = −4,

v · v = 02 + 12 + (−2)2 + (−1)2 = 6,

so that
p = projv u =

−4
6

(0, 1,−2,−1) =
1
3
(0,−2, 4, 2).

It follows that
u − p =

1
3
(3,−1,−1, 1)

and
(u − p) · v =

1
3
(3 · 0 + 1(−1) + (−1)(−2) + 1(−1)) = 0.

Also, the component of u along v is

compv u =
v · u
‖v‖ =

−4√
6
. �

A hyperplane is a basic geometrical object on which inner product tools
can shed light. Here is the definition.

Definition 4.9. A hyperplane in Rn is the set of all x ∈ Rn such that a·x = b, Hyperplane in
Rnwhere the nonzero vector a ∈ Rn and scalar b are given.

These are familiar objects. For example, a hyperplane in R3 is the set of
points (x, y, z) that satisfy an equation ax + by + cz = d, which is simply a
plane in three dimensions. A hyperplane in R2 is the set of points (x, y) that
satisfy an equation ax+by = c, which is just a line in two dimensions. (Notice
that in the absence of homogeneous space, a tuple like (x, y, z) has a dual
interpretation as point or vector.) Here is a general geometrical interpretation
of hyperplanes.

Theorem 4.4. Let H be the hyperplane in Rn defined by the equation a·x = Geometry of
Hyperplanesb and let x∗ ∈ H. Then

(1) a⊥ = {y ∈ Rn |a · y = 0} is a subspace of Rn of dimension n − 1.
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(2) H = x∗ + a⊥ =
{
x∗ + y |y ∈ a⊥}

.

Proof. For (1), observe that a⊥ = N (
aT

)
, which is a subspace of Rn. Accord-

ing to the projection formula for vectors, any element of Rn can be expressed
as a sum of a multiple of a and a vector orthogonal to a. Therefore, Rn is
spanned by a basis of a⊥ and a. Since dim Rn = n, a basis of a⊥ must have
at least n − 1 elements. If it had n elements, then we would have a⊥ = Rn,
which would imply that a · a = 0 and therefore a = 0, which is false. There-
fore, dima⊥ = n. Part (2) follows from Theorem 3.15 since x∗ is a particular
solution to the linear system aT x = 0. ��

Notice that the vector a can be read off immediately from the defining
equation. For example, we see by inspection that a vector orthogonal to the
plane given by 2x−3y + z = 4 is a = (2,−3, 1). Finding the defining equation
is a bit more work.

Example 4.14. Find an equation that defines the plane containing the three
(noncollinear) points P , Q, and R with coordinates (1, 0, 2), (2, 1, 0), and
(3, 1, 1), respectively.

Solution. First calculate displacement vectors

−−→
PQ = (2, 1, 0) − (1, 0, 2) = (1, 1,−2)
−→
PR = (3, 1, 1) − (1, 0, 2) = (2, 1,−1) .

These vectors are parallel to the plane. Therefore, their cross product, which
is orthogonal to each vector, will be orthogonal to the plane. We calculate

u × v =

∣∣∣∣∣∣
i j k
1 1 −2
2 1 −1

∣∣∣∣∣∣ = i − 3j − k.

Hence the equation of the plane is x − 3y − z = b. To determine b, plug in
the coordinates of P and obtain that 1 · 1 − 3 · 0 − 2 · 1 = −1 = b. Hence an
equation of the plane is x − 3y − z = −1. ��

Least Squares

Example 4.15. You are using a pound scale to measure weights for produce
sales when you notice that your scale is broken. The vendor at the next stall is
leaving and lends you another scale as she departs. You then realize that the
new scale is in units you don’t recognize. You happen to have some known
weights that are approximately 2, 5, and 7 pounds respectively. When you
weigh these items on the new scale you get the numbers 0.7, 2.4, and 3.2.
You get your calculator out and hypothesize that the unit of weight should
be some constant multiple of pounds. Model this information as a system of
equations. Is it clear from this system what the units of the scale are?
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Solution. Express the relationship between the weight p in pounds and the
weight w in unknown units as w · c = p, where c is an unknown constant of
proportionality. Your data show that we have

0.7c = 2
2.4c = 5
3.4c = 7.

As a system of three equations in one unknown you see immediately that
this overdetermined system (too many equations) is inconsistent. After all,
the pound weights were only approximate and there is always some error
in measurement. What to do? You could just average the three inconsistent
values of c, thereby obtaining

c = (2/0.7 + 5/2.4 + 7/3.4)/3 = 2.3331.

It isn’t at all clear that this should be a good strategy. ��
There really is a better way, and it will lead to a slightly different estimate

of the number c. This method, called the method of least squares, was invented Method of
Least Squaresby C. F. Gauss to handle uncertainties in orbital calculations in astronomy.

Here is the basic problem: suppose we have data that leads to a system of
equations for unknowns that we want to solve for, but the data has errors in
it and consequently leads to an inconsistent linear system

Ax = b.

How do we find the “best” approximate solution? One could answer this in
many ways. One of the most commonly accepted ideas is one that Gauss
proposed: the so-called residual r = b−Ax should be 0, so its departure from Residual

Vector0 is a measure of our error. Thus we should try to find a value of the unknown
x that minimizes the norm of the residual squared, i.e., a “solution” x such
that

‖b − Ax‖2

is minimized. Such a solution is called a “least squares” solution to the system.
This technique is termed “linear regression” by statisticians, who use it in
situations in which one has many estimates for unknown parameters that
taken together are not perfectly consistent. It can be shown that if errors
are normally distributed and the least squares solution unique, then it is an
unbiased estimator of the true value in the statistical sense.

Let’s try to get a fix on this problem. Even the one-variable case is instruc-
tive, so let’s use the preceding example. In this case the coefficient matrix A
is the column vector a = [0.7, 2.4, 3.4]T , and the right-hand-side vector is
b = [2, 5, 7]T . What we are really trying to find is a value of the scalar x = c
such that b−Ax = b−xa is a minimum. Here is a geometrical interpretation:
we want to find the multiple of the vector a that is closest to b. Geometry
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suggests that this minimum occurs when b − xa is orthogonal to a, in other
words, when xa is the projection of b along a. Inspection of the projection
formula shows us that we must have

x =
a · b
a · a =

0.7 · 2 + 2.4 · 5 + 3.4 · 7
0.7 · 0.7 + 2.4 · 2.4 + 3.4 · 3.4

≈ 2.0887.

Notice that this value doesn’t solve any of the original equations exactly, but it
is, in a certain sense, the best approximate solution to all three equations taken
together. Also, this solution is not the same as the average of the solutions to
the three equations, which we computed to be approximately 2.3331.

V

b

a2

a1

b − Ax

x1a1 + x2a2 = Ax

Fig. 4.3. The vector in the subspace C(A) nearest to b.

Now how do we tackle the more general system Ax = b? Since Ax is just
a linear combination of the columns, what we should find is the vector of
this form that is closest to the vector b. See Figure 4.3 for a picture of the
situation with n = 2. Our experience with the 1-dimensional case suggests
that we should require that the residual be orthogonal to each column of A,
that is, ai · (b−Ax) = aT

i (b−Ax) = 0, for all columns ai of A. Each column
gives rise to one equation. We can write all these equations at once in the
form of the so-called normal equations:Normal

Equations
AT Ax = AT b.

In fact, this is the same set of equations we get if we apply calculus to the
scalar function of variables x1, x2, . . . , xn given as f(x) = ‖b − Ax‖2 and
search for a local minimum by setting all partials equal to 0. Any solution toPositive

Semidefinite
Matrix

this system will minimize the norm of b−Ax as x ranges over all elements of
Rn. The coefficient matrix B = AT A of the normal system has some pleasant
properties. For one, it is a symmetric matrix. For another, it is a positive
semidefinite matrix , by which we mean that B is a square n × n matrix such



4.2 Applications of Norms and Inner Products 229

that xT Bx ≥ 0 for all vectors x ∈ Rn. In fact, in some cases B is even better
behaved because it is a positive definite matrix , by which we mean that B is a Positive

Definite
Matrix

square n × n matrix such that xT Bx > 0 for all nonzero vectors x ∈ Rn. (For
complex matrices, the condition is x∗Bx > 0 for all nonzero vectors x ∈ Cn.)

Does there exist a solution to the normal equations? The answer is yes.
In general, any solution to the normal equations minimizes the residual norm Least Squares

Solutionand is called a least squares solution to the problem Ax = b. Since we now
have two versions of “solution” for the system Ax = b, we should distinguish
between them in situations that may refer to either. If the vector x actually
satisfies the equation Ax = b, we call x a genuine solution to the system to Genuine

Solutioncontrast it with a least squares solution. Certainly, every genuine solution is a
least squares solution, but the converse will not be true if the original system
is inconsistent. We leave the verifications as exercises.

The normal equations are guaranteed to be consistent—a nontrivial fact—
and will have infinitely many solutions if AT A is a singular matrix. Consider
the most common case, namely that in which A is a rank-n matrix. Recall that
in this case we say that A has full column rank. We can show that the n × n
matrix AT A is also of rank n. This means that it is an invertible matrix and
therefore the solution to the normal equations is unique. Here is the necessary
fact.

Theorem 4.5. Suppose that the real m × n matrix A has full column rank
n. Then the n × n matrix AT A also has rank n and is invertible.

Proof. Assume that A has rank n. Now suppose that for some vector x we
have

0 = AT Ax.

Multiply on the left by xT to obtain that

0 = xT 0 = xT AT Ax = (Ax)T (Ax) = ‖Ax‖2
,

so that Ax = 0. However, we know by Theorem 1.5 that the homogeneous
system with A as its coefficient matrix must have a unique solution. Of course,
this solution is the zero vector. Therefore, x = 0. It follows that the square
matrix AT A has rank n and is also invertible by Theorem 2.7. ��
Example 4.16. Two parameters, x1 and x2, are linearly related. Three sam-
ples are taken that lead to the system of equations

2x1 + x2 = 0
x1 + x2 = 0

2x1 + x2 = 2.

Show that this system is inconsistent, and find the least squares solution for
x = (x1, x2). What is the minimum norm of the residual b− Ax in this case?
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Solution. In this case it is obvious that the system is inconsistent: the first
and third equations have the same quantity, 2x1 +x2, equal to different values
0 and 2. Of course, we could have set up the augmented matrix of the system
and found a pivot in the right-hand-side column as well. We see that the (rank
2) coefficient matrix A and right-hand side b are

A =

⎡⎣ 2 1
1 1
2 1

⎤⎦ , and b =

⎡⎣0
0
2

⎤⎦ .

Thus

AT A =
[

2 1 2
1 1 1

]⎡⎣2 1
1 1
2 1

⎤⎦ =
[

9 5
5 3

]
and

AT b =
[

2 1 2
1 1 1

]⎡⎣0
0
2

⎤⎦ =
[

4
2

]
.

As predicted by the preceding theorem, AT A is invertible, and we use the
2 × 2 formula for the inverse:

(AT A)−1 =
[

9 5
5 3

]−1

=
1
2

[
3 −5

−5 9

]
,

so that the unique least squares solution is

x = (AT A)−1AT b =
1
2

[
3 −5

−5 9

] [
4
2

]
=

[
1

−1

]
.

The minimum value for the residual b − Ax occurs when x is a least squares
solution, so we get

b − Ax =

⎡⎣ 0
0
2

⎤⎦ −
⎡⎣ 2 1

1 1
2 1

⎤⎦[
1

−1

]⎡⎣0
0
2

⎤⎦ −
⎡⎣1

0
1

⎤⎦ =

⎡⎣−1
0
1

⎤⎦ ,

and therefore
‖b − Ax‖ =

√
2 ≈ 1.414.

This isn’t terribly small, but it’s the best we can do with this system. This
number tells us that the system is badly inconsistent. ��

4.2 Exercises and Problems

In the following exercises, all vectors are real unless otherwise indicated.

Exercise 1. Find the angle θ in radians between the following pairs of vectors.
(a) (2,−5), (3, 4) (b) (4, 5,−3, 4), (2,−4, 1, 3) (c) (1, −2, 3, 4, 1), (2, 3, 1, 5, 5)
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Exercise 2. Find the angle θ between the following pairs of vectors.
(a) (1, 0, 1, 0, 2), (2, 1,−3, 2, 4) (b) (7,−3, 1, 1, 2,−2), (2, 3,−4,−3, 2, 2)

Exercise 3. Find the projection and component of u along v, where the pair
u,v are
(a) (−4, 3), (2, 1) (b) (3, 0, 4), (2, 2,−1) (c) (1, 0,−5, 2) , (1, 1, 1, 1)

Exercise 4. Find the orthogonal projection of u to v, where the pair u,v are
(a) (1,−√

3), (2, 1) (b) (2, 1, 3), (8, 2,−4) (c) (3, 2, 1, 1, 1) , (1, 1, 1, 0, 1)

Exercise 5. Verify the CBS inequality for the vectors u and v, where the pair
u,v are
(a) i − 2j, i + j − k (b) (3,−2, 3), (1,−5, 2) (c) (3, −2), (−6, 4)

Exercise 6. Determine whether the following pairs of vectors u, v are orthog-
onal, and if so, verify that the Pythagorean theorem holds for the pair.
(a) (−2, 1, 3), (1, 2, 0) (b) (1, 1, 0,−1), (1,−1, 3, 0) (c) (i, 2), (2, i)

Exercise 7. For the following orthogonal pairs u,v and matrix M =

⎡⎣1 0 −1
0 1 0
0 0 1

⎤⎦,

determine whether Mu and Mv are orthogonal.
(a) (2, 1, 1), (1, 0,−2) (b) (1, 1, 1), (1,−1, 1) (c) (3, 1,−2), (1, 3, 3)

Exercise 8. For each of the pairs of Exercise 7, determine whether Mu and(
M−1

)T
v are orthogonal.

Exercise 9. Find equations for the following planes in R3.
(a) The plane containing the points (1, 1, 2), (−1, 3, 2), (2, 4, 3).
(b) The plane containing the points (−2, 1, 1) and (0, 1, 2) and orthogonal to
the plane 2x − y + z = 3.

Exercise 10. Find equations for the following hyperplanes in R4.
(a) The plane parallel to the plane 2x1 + x2 − 3x3 + x4 = 2 and containing
the point (2, 1, 1, 3).
(b) The plane through the origin and orthogonal to the vector (1, 0, 2, 1).

Exercise 11. For each pair A, b, solve the normal equations for the system
Ax = b and find the residual vector and its norm. Are there any genuine
solutions to the system?

(a)
[

1 3
1 0

]
,
[

1
3

]
(b)

⎡⎣ 2 −2
1 1
3 1

⎤⎦,

⎡⎣ 2
−1

1

⎤⎦ (c)

⎡⎢⎢⎣
0 2 2
1 1 0

−1 1 2
1 −2 −3

⎤⎥⎥⎦,

⎡⎢⎢⎣
3
1
0
0

⎤⎥⎥⎦
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Exercise 12. For each pair A, b, solve the normal equations for the system
Ax = b and find the residual vector and its norm. (Note: normal equations
may not have unique solutions.)

(a)

⎡⎣−1
1
3

⎤⎦,

⎡⎣ 1
−1
−2

⎤⎦ (b)

⎡⎣ 1 −1 0
1 1 2
1 2 3

⎤⎦,

⎡⎣1
1
3

⎤⎦ (c)

⎡⎣1 2 0
1 0 2
1 2 3

⎤⎦,

⎡⎣1
1
3

⎤⎦
Exercise 13. (Linear regression) You have collected data points (xk, yk) that
are theoretically linearly related by a line of the form y = ax + b. Each
data point gives an equation for a and b. The collected data points are
(0, .3), (1, 1.1), (2, 2), (3, 3.5), and (3.5, 3.6). Write out the resulting system of
5 equations, solve the normal equations to find the line that best fits this data,
and calculate the residual norm. A calculator or computer might be helpful.

Exercise 14. (Text retrieval) You are given the following term-by-document
matrix, that is, a matrix whose (i, j)th entry is the number of times term
i occurs in document j. Columns of this matrix are document vectors, as is
a query. We measure the quality of a match between query and document by
the cosine of the angle θ between the two vectors, larger cosine being bet-
ter. Which of the following nine documents Di matches the query (0, 1, 0, 1, 1)
above the threshhold value cos θ ≥ 0.5? Which is the best match to the query?

D1 D2 D3 D4 D5 D6 D7 D8 D9

t1 1 1 2 0 1 0 1 0 1
t2 0 1 0 1 0 1 1 0 0
t3 0 2 0 2 0 1 0 1 1
t4 1 0 1 0 1 0 2 1 0
t5 1 2 1 0 0 1 0 0 1

*Problem 15. Show that if two vectors u and v satisfy the equation ‖u + v‖2 =
‖u‖2 + ‖v‖2, then u and v must be orthogonal.

Problem 16. Show that the CBS inequality is valid for complex vectors u and
v by evaluating the nonnegative expression ‖u + cv‖2 with the complex dot
product and evaluating it at c = ‖u‖2

/ (u · v) in the case u · v 
= 0.

Problem 17. Let A be an m×n real matrix and B = AT A. Show the following:
(a) The matrix B is symmetric and positive semidefinite.
(b) If A has full column rank, then B is positive definite.

Problem 18. Show that if A is a real matrix and AT A is positive definite then
A has full column rank.

Problem 19. In Example 4.15 two values of c are calculated: The average value
and the least squares value. Calculate each resulting residual and its norm.
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Problem 20. Let u and v be vectors of the same length. Show that u − v is
orthogonal to u + v. Sketch a picture in the plane and interpret it geometri-
cally.

*Problem 21. Show that if A is a rank-one real matrix, then the normal equa-
tions with coefficient matrix A are consistent.

Problem 22. Show that if A is a complex matrix, then A∗A is Hermitian and
positive semidefinite.

*Problem 23. Show that Theorem 4.3 is valid for complex vectors.

Problem 24. It is hypothesized that sales of a certain product are linearly
related to three factors. The sales output is quantified as z and the three
factors as x1, x2, and x3. Six samples are taken of the sales and the factor
data. Results are contained in the following table. Does the hypothesis of a
linear relationship seem reasonable? Explain your answer.

z x1 x2 x3

527 13 5 6
711 6 17 7
1291 12 16 23
625 11 13 4
1301 12 27 14
1350 5 14 31

4.3 Orthogonal and Unitary Matrices

Orthogonal Sets of Vectors

In our discussion of bases in Section 3.3, we saw that linear independence of
a set of vectors was a key idea for understanding the nature of vector spaces.
One of our examples of a linearly independent set was the standard basis
e1, e2, . . . , en of Rn. Here ei is the vector with a 1 in the ith coordinate and
zeros elsewhere. In the case of geometrical vectors and n = 3, these are just
the familiar vectors i, j,k. These vectors have some particularly nice properties
that go beyond linear independence. For one, each is a unit vector with respect
to the standard norm. Furthermore, these vectors are mutually orthogonal to
each other. These properties are so desirable that we elevate them to the
status of a definition.

Definition 4.10. The set of vectors v1,v2, . . . ,vn in a standard vector space Orthogonal
and
Orthonormal
Set of Vectors

are said to be an orthogonal set if vi · vj = 0 whenever i 
= j. If, in addition,
each vector has unit length, i.e., vi · vi = 1, then the set of vectors is said to
be an orthonormal set of vectors.
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Example 4.17. Which of the following sets of vectors are orthogonal? Or-
thonormal? Use the standard inner product in each case.

(a){(3/5, 4/5), (−4/5, 3/5)} (b) {(1,−1, 0), (1, 1, 0), (0, 0, 1)} (c) {(1, i) , (i, 1)}
Solution. For (a) let v1 = (3/5, 4/5), v2 = (−4/5, 3/5) to obtain that

v1 · v2 =
−12
25

+
12
25

= 0 and v1 · v1 =
9
25

+
16
25

= 1 = v2 · v2.

It follows that the first set of vectors is an orthonormal set.
For (b) let v1 = (1,−1, 0),v2 = (1, 1, 0),v3 = (0, 0, 1) and check that

v1 · v2 = 1 · 1 − 1 · 1 + 0 · 0 = 0 and v1 · v3 = 1 · 0 − 1 · 0 + 0 · 1 = 0 = v2 · v3.

Hence this set of vectors is orthogonal, but v1 ·v1 = 1 ·1+(−1) · (−1)+0 = 2,
which is sufficient to show that the vectors do not form an orthonormal set.

For (c) let v1 = (1, i), v2 = (i, 1) to obtain that

v1 · v2 = 1̄i + i1 = i − i = 0 and v1 · v1 = 1 + 1 = 2 = v2 · v2.

It follows that this set is orthogonal, but not orthonormal. ��
One of the principal reasons that orthogonal sets are so desirable is the

following key fact, which we call the orthogonal coordinates theorem.

Theorem 4.6. Let v1,v2, . . . ,vn be an orthogonal set of nonzero vectors andOrthogonal
Coordinates

Theorem
suppose that v ∈ span {v1,v2, . . . ,vn}. Then v can be expressed uniquely (up
to order) as a linear combination of v1,v2, . . . ,vn, namely

v =
v1 · v
v1 · v1

v1 +
v2 · v
v2 · v2

v2 + · · · +
vn · v
vn · vn

vn.

Proof. Since v ∈ span {v1,v2, . . . ,vn}, we know that v is expressible as some
linear combination of the vi’s, say

v = c1v1 + c2v2 + · · · + cnvn.

Now we carry out a simple but wonderful trick that is used frequently with
orthogonal sets, namely, take the inner product of both sides with the vector
vk. Since vk · vj = 0 if j 
= k, we obtain

vk · v = vk · (c1v1 + c2v2 + . . . · · · + cnvn)
= c1vk · v1 + c2vk · v2 + · · · + cnvk · vn = ckvk · vk.

Since vk 
= 0, we have ‖vk‖2 = vk · vk 
= 0, so solve for ck to obtain that

ck =
vk · v
vk · vk

.

This proves that the coefficients ck are unique and establishes the formula of
the theorem. ��
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The vector
vk · v
vk · vk

vk should look familiar. In fact, it is the projection of

the vector v along the vector vk. Thus, Theorem 4.6 says that any linear com-
bination of an orthogonal set of nonzero vectors is the sum of its projections
in the direction of each vector in the set.

The coefficients ck of Theorem 4.6 are also familiar: they are the co-
ordinates of v relative to the basis B = {v1,v2, . . . ,vn}, so that [v]B =
(c1, c2, . . . , cn). This terminology was introduced in Section 3.3. Theorem 4.6
shows us that coordinates are rather easy to calculate with respect to an
orthogonal basis. Contrast this with Example 3.25.

Corollary 4.1. Every orthogonal set of nonzero vectors is linearly indepen-
dent.

Proof. Consider a linear combination of the vectors v1,v2, . . . ,vn. If some
linear combination were to have value zero, say

0 = c1v1 + c2v2 + · · · + cnvn,

it would follow from the preceding theorem that

ck =
vk · 0
vk · vk

= 0.

It follows from the definition of linear independence that vectors v1,v2, . . . ,vn

are linearly independent. ��
Caution: The converse of the corollary is false, that is, not every linearly
independent set of vectors is orthogonal.

For an example, consider the linearly independent vectors v1 = (1, 0),
v2 = (1, 1) in V = R2.

Given an orthogonal set of nonzero vectors, it is easy to manufacture an
orthonormal set of vectors from them. Simply replace every vector in the
original set by the vector divided by its length. The formula of Theorem 4.6
simplifies very nicely if the vectors v1,v2, . . . ,vn form an orthonormal set
(which automatically consists of nonzero vectors!), namely

v = (v1 · v) v1 + (v2 · v) v2 + · · · + (vn · v) vn.

The following theorem gives us a nice analogue to the fact that every
linearly independent set of vectors can be expanded to a basis.

Theorem 4.7. Every orthogonal set of nonzero vectors in a standard vector
space can be expanded to an orthogonal basis of the space.

Proof. Suppose that we have expanded our original orthogonal set in Rn to the
orthogonal set of nonzero vectors v1,v2, . . . ,vk, where k < n. We show how
to add one more element. This is sufficient, because by repeating this step we
eventually fill up Rn. Let A = [v1,v2, . . . ,vk]T and let vk+1 be any nonzero
solution to Ax = 0, which exists since k < n. This vector is orthogonal to
v1,v2, . . . ,vk. ��
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In general, if we want to determine the coordinates of a vector b with respect
to a certain basis of vectors in Rn or Cn, we stack the basis vectors together to
form a matrix A, then solve the system Ax = b for the vector of coordinates
x of b with respect to this basis. In fact, x = A−1b. Now we have seen
that if the basis vectors happen to form an orthonormal set, the situation
is much simpler and we certainly don’t have to find A−1. Is this simplicity
reflected in properties of the matrix A? The answer is yes and we can see
this as follows: suppose that u1,u2, . . . ,un is an orthonormal basis of Rn and
let A = [u1,u2, . . . ,un]. Orthonormality says that uT

i uj = δij , where δij is
the Kronecker delta. This means that the matrix AT A, whose (i, j)th entry
is uT

nun, is simply [δij ] = I, that is, AT A = I. Now recall that Theorem 2.7
shows that a square one-sided inverse of a square matrix is really the two-sided
inverse. Hence, A−1 = AT . A similar argument works if u1,u2, . . . ,un is an
orthonormal basis of Cn except that we use conjugate transpose instead of
transpose. Matrices with these properties are important enough to be named.

Definition 4.11. A square real matrix Q is called orthogonal if QT = Q−1.Orthogonal
and Unitary

Matrix
A square matrix U is called unitary if U∗ = U−1.

One could allow orthogonal matrices to be complex as well, but these are not
particularly useful for us, so in this text we will always assume that orthogonal
matrices have real entries. For real matrices Q, we have Q∗ = QT . Hence we
see from the definition that orthogonal matrices are exactly the real unitary
matrices. The naming of orthogonal matrices is traditional in matrix theory,
but a bit unfortunate because it can be a source of confusion.

Caution: Do not confuse “orthogonal vectors” and “orthogonal matrix.” The
objects and meaning are different.

By orthogonal vectors we mean a set of vectors with a certain relationship
to each other, while an orthogonal matrix is a real matrix whose inverse
is its transpose. To make matters more confusing, there actually is a close
connection between the two terms, because a square matrix is orthogonal
exactly when its columns form an orthonormal set.

Example 4.18. Show that the matrix U = 1√
2

[
1 i
i 1

]
is unitary and that for

any angle θ, the matrix R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
is orthogonal.

Solution. It is sufficient to check that U∗U = I and R(θ)T R(θ) = I. So we
calculate

U∗U =
(

1√
2

[
1 i
i 1

])∗ 1√
2

[
1 i
i 1

]
=

1√
2

[
1 −i

−i 1

]
1√
2

[
1 i
i 1

]
=

1
2

[
1 − i2 i − i
−i + i 1 − i2

]
=

[
1 0
0 1

]
,
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which shows that U is unitary. For the real matrix R(θ) we have

R(θ)T R(θ) =
([

cos θ − sin θ
sin θ cos θ

])T [
cos θ − sin θ
sin θ cos θ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

− cos θ sin θ + sin θ cos θ cos2 θ + sin2 θ

]
=

[
1 0
0 1

]
,

which shows that R(θ) is orthogonal. ��
Orthogonal and unitary matrices have a certain “rigidity” quality about

them that is nicely illustrated by the rotation matrix R(θ). We first saw
this matrix in Example 2.17 of Chapter 2. The effect of multiplying a vector
x ∈ R2 by R(θ) is to rotate the vector counterclockwise through an angle of
θ. This is illustrated in Figure 2.3 of Chapter 2. In particular, angles between
vectors and lengths of vectors are preserved by such a multiplication. This is
no accident of R(θ), but rather a property of orthogonal and unitary matrices
in general. Here is a statement of these properties for orthogonal matrices. An
analogous fact holds for complex unitary matrices with vectors in Cn.

Theorem 4.8. Let Q be an orthogonal n × n matrix and x,y ∈ Rn with the
standard inner (dot) product. Then

‖Qx‖ = ‖x‖ and Qx · Qy = x · y.

Proof. We calculate the norm of Qx:

‖Qx‖2 = Qx · Qx = (Qx)T
Qx = xT QT Qx = xT x = ‖x‖2

,

which proves the first assertion, while similarly

Qx · Qy = (Qx)T
Qy = xT QT Qy = xT y = x · y. �

Here is another kind of orthogonal matrix that has turned out to be very
useful in numerical calculations and has a very nice geometrical interpreta-
tion as well. As with rotation matrices, it gives us a simple way of forming
orthogonal matrices directly without explicitly constructing an orthonormal
basis.

Definition 4.12. A matrix of the form Hv = I − 2(vvT )/(vT v), where Householder
Matrixv ∈ Rn, is called a Householder matrix.

Example 4.19. Let v = (3, 0, 4) and compute the Householder matrix Hv.
What is the effect of multiplying it by the vector v?
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Solution. We calculate Hv to be

I − 2
vT v

vvT =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ − 2
32 + 42

⎡⎣3
0
4

⎤⎦ [
3 0 4

]

=

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ − 2
25

⎡⎣ 9 0 12
0 0 0
12 0 16

⎤⎦ =
1
25

⎡⎣ 7 0 −24
0 25 0

−24 0 −7

⎤⎦ .

Therefore multiplying Hv by v gives

Hvv =
1
25

⎡⎣ 7 0 −24
0 25 0

−24 0 −7

⎤⎦⎡⎣ 3
0
4

⎤⎦ =
1
25

⎡⎣ −75
0

−100

⎤⎦ = −
⎡⎣3

0
4

⎤⎦ . �

Multiplication by a Householder matrix can be thought of as a geometrical
reflection that reflects the vector v to −v and leaves any vector orthogonal to
v unchanged. This is implied by the following theorem. For a picture of this
geometrical interpretation, see Figure 4.4. Notice that in this figure V is the
plane perpendicular to v and the reflections are across this plane.

Theorem 4.9. Let Hv be the Householder matrix defined by v ∈ Rn and let
w ∈ Rn be written as w = p + u, where p is the projection of w along v and
u = w − p. Then

Hvw = −p + u.

Proof. With notation as in the statement of the theorem, we have p =
vT w
vT v

v
and w = p + u. We calculate that

Hvw =
(

I − 2
vT v

vvT

)
(p + u) = p + u − 2

vT w

(vT v)2
vvT v − 2

vT w
vT v

vvT u

= p + u − 2
vT w
vT v

v − 0 = p + u − 2p = u − p. �

Example 4.20. Let v = (3, 0, 4) and Hv the corresponding Householder ma-
trix (as in Example 4.19). The columns of this matrix form an orthonormal
basis for the space R3. Find the coordinates of the vector w = (2, 1,−4)
relative to this basis.

Solution. We have already calculated Hv = [u1,u2,u3] in Example 4.19. The
vector c = (c1, c2, c3) of coordinates of w must satisfy the equations

w = c1u1 + c2u2 + c3u3 = Hvc.

Since Hv is orthogonal, it follows that
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wp

Hw

v

−p

V = v⊥

Fig. 4.4. Action of Hv on w as a reflection across the plane V perpendicular to v.

c = H−1
v w = HT

v w =
1
25

⎡⎣ 7 0 −24
0 25 0

−24 0 −7

⎤⎦⎡⎣ 2
1

−4

⎤⎦ =

⎡⎣ 4.4
1.0

−0.8

⎤⎦ . �

Usually we work with real Householder matrices. Occasionally complex
numbers are a necessary part of the scenery. In such situations we can define
the complex Householder matrix by the formula Hv = I −2(vv∗)/(v∗v). The
projection formula (Theorem 4.3) remains valid for complex vectors, so that
the proof of Theorem 4.9 carries over to complex vectors provided that we
replace all transposes by conjugate transposes.

Our last example is to generate orthogonal matrices with specified columns.

Example 4.21. Find orthogonal matrices with these orthonormal vectors as
columns: (a) 1√

3
(1, 1, 1) (b) 1

3 (1, 2, 2, 0), 1
3 (−2, 1, 0, 2)

Solution. For (a), set u1 = 1√
3

(1, 1, 1), and we see by inspection that a
second orthonormal vector is u2 = 1√

2
(1,−1, 0). To obtain a third, take the

cross product u3 = u1 × u2 = 1√
6

(1, 1,−2). This vector is orthogonal to u1

and u2 and has unit length. Hence the desired matrix is

P = [u1,u2,u3] =
1√
6

⎡⎣
√

2
√

2 1√
2 −√

2 1√
2 0 −2

⎤⎦ .

To keep the arithmetic simple in (b), form the system Ax = 0 where the
rows of A are (1, 2, 2, 0) and (−2, 1, 0, 2). These are nonzero orthogonal vectors.
Solve the system to get a general solution (the reader should check this) x =(− 2

5x3 + 4
5x4,− 4

5x3 − 2
5x4, x3, x4

)
. So take x3 = 5, x4 = 0 and get a particular
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solution (−2,−4, 5, 0). Take x3 = 0, x4 = 5 and get a particular solution
(4,−2, 0, 5). Normalize all four vectors to obtain the desired orthogonal matrix

P = [u1,u2,u3,u4] =
1

3
√

5

⎡⎢⎢⎣
√

5 −2
√

5 −2 4
2
√

5
√

5 −4 −2
2
√

5 0 5 0
0 2

√
5 0 5

⎤⎥⎥⎦ . �

We’ll see an efficient way to perform this calculation when we study the Gram–
Schmidt algorithm in Chapter 6.

4.3 Exercises and Problems

Exercise 1. Determine whether the following sets of vectors are orthogonal,
orthonormal, or linearly independent.
(a) (1,−1, 2),(2, 2, 0) (b) (3,−1, 1),(1, 2,−1), (2,−1, 0) (c) 1

5 (3, 4), 1
5 (4,−3)

Exercise 2. Determine whether these sets are orthogonal or orthonormal. If
orthogonal but not orthonormal, normalize the set to form an orthonormal
set.
(a) (2,−3, 2, 1), (2, 1,−1, 1) (b) 1

3 (2, 2, 1), 1√
5

(1, 0,−2)(c)(1 + i,−1), (1, 1 − i)

Exercise 3. Let v1 = (1, 1, 0), v2 = (−1, 1, 1), and v3 = 1
2 (1,−1, 2). Show that

this set is an orthogonal basis of R3 and find the coordinates of the follow-
ing vectors v with respect to this basis by using the orthogonal coordinates
theorem.
(a) (1, 2,−2) (b) (1, 0, 0) (c) (4, −3, 2)

Exercise 4. Let v1 = (−1, 1, 1) and v2 = (1,−1, 2). Determine whether each
of the following vectors v is in span {v1,v2} by testing the orthogonal co-
ordinates theorem (if v ∈ span {v1,v2} then Theorem 4.6 should yield an
equality).
(a) (1,−1, 8) (b) (−2, 1, 3) (c) (−4, 4, 1)

Exercise 5. Determine whether the following matrices are orthogonal or uni-
tary and if so, find their inverse.

(a) 1
5

[
3 4
4 −3

]
(b) 1√

2

⎡⎣ 1 0 −1
0

√
2 0

−1 0 1

⎤⎦ (c)

⎡⎣1 0 0
0 1 −1
0 1 1

⎤⎦
(d) 1

2

⎡⎢⎢⎣
1 1 −1 1
1 −1 1 1

−1 1 −1 1
−1 −1 1 1

⎤⎥⎥⎦ (e) 1√
2

⎡⎣ 1 0 1
0

√
2i 0

i 0 −i

⎤⎦ (f) 1√
3

[
1 + i i

i 1 − i

]
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Exercise 6. Find the coordinates of the following vectors with respect to the
basis of column vectors of the corresponding matrices of Exercise 5.
(a) (2, 4) (b) (3, 1, 1) (c) (4, −3, 1)
(d) (3,−2, 4, 1) (e) (i, −2, 1) (f) (1, 2)

Exercise 7. Let u = (1, 2,−2), w = (3, 0, 0), and v = u − w. Construct the
Householder matrix Hv and calculate Hvu and Hvw.

Exercise 8. Find a matrix reflecting vectors in R3 across the plane x+y+z = 0.

Exercise 9. Find orthogonal or unitary matrices that include the following or-
thonormal vectors in their columns.
(a) 1√

6
(1, 2,−1), 1√

3
(−1, 1, 1) (b) 1

5 (−4, 3) (c) (0, i)

Exercise 10. Repeat Exercise 9 for these vectors.
(a) 1

3 (1, 2,−2) (b) 1
2 (1, 1,−1,−1), 1

2 (1,−1, 1,−1) (c) 1
2 (1 + i, 1 − i)

Exercise 11. Let P = 1
2

⎡⎣ 1 0 −1
0 0 0

−1 0 1

⎤⎦ . Verify that P is a projection matrix ,

that is, PT = P and P 2 = P . Also verify that that R = I − 2P is a reflection
matrix, that is, R is a symmetric orthogonal matrix.

Exercise 12. Let R =

⎡⎣ 0 0 1
0 −1 0
1 0 0

⎤⎦ and P = 1
2 (I−R). Verify that R is a reflection

matrix and P is a projection matrix.

Problem 13. Show that if the real n × n matrix M is invertible and u,v ∈ Rn

are orthogonal, then so are Mu and
(
MT

)−1
v. What does this imply for

orthogonal matrices?

*Problem 14. Show that if P is an orthogonal matrix, then eiθP is a unitary
matrix for any real θ.

Problem 15. Let P be a real projection matrix and R = I − 2P. Prove that R
is a reflection matrix. (See Exercise 11 for definitions.)

Problem 16. Let R be a reflection matrix. Prove that P = 1
2 (I − R) is a

projection matrix.

Problem 17. Prove that every Householder matrix is a reflection matrix.

Problem 18. Show that the product of orthogonal matrices is orthogonal, and
by example that the sum need not be orthogonal.

Problem 19. Let the quadratic function f : Rn → R be defined by the formula
y = f(x) = xT Ax, where A is a real matrix. Suppose that an orthogonal
change of variables is made in the domain, say x = Qx′, where Q is orthogonal.
Show that in the new coordinates y = x′T (QT AQ)x′.
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4.4 *Change of Basis and Linear Operators

How much information do we need to uniquely identify an operator? For a gen-
eral operator the answer is a lot! Specifically, we don’t really know everything
about it until we know how to find its value at every possible argument. This
is an infinite amount of information. Yet we know that in some circumstances
we can do better. For example, to know a polynomial function completely, we
need only a finite amount of data, namely the coefficients of the polynomial.
We have already seen that linear operators are special. Are they described by
a finite amount of data? The answer is a resounding yes in the situation in
which the domain and target are finite-dimensional.

Let’s begin with some notation. We will indicate that T : V → W is a linear
operator, B = {v1,v2, . . . ,vn} is a basis of V , and C = {w1,w2, . . . ,wm} is
a basis of W with the notation

T : VB → WC or VB
T→ WC .

Now let v ∈ V be given. We know that there exists a unique set of scalars,
the coordinates c1, c2, . . . , cn of v with respect to this basis, such that

v = c1v1 + c2v2 + · · · + cnvn.

Thus by linearity of T we see that

T (v) = T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn).

It follows that we know everything about the linear operator T if we know
the vectors T (v1), T (v2), . . . , T (vn).

Now go a step further. Each vector T (vj) can be expressed uniquely as a
linear combination of w1,w2, . . . ,wm, namely

T (vj) = a1,jw1 + a2,jw2 + · · · + am,jwm. (4.4)

In other words, the scalars a1,j , a2,j , . . . , am,j are the coordinates of T (vj)
with respect to the basis w1,w2, . . . ,wm. Stack these in columns and we now
have the m×n matrix A = [ai,j ], which contains everything we need to know
in order to compute T (v). In fact, with the above terminology, we have

T (v) = c1T (v1) + c2T (v2) + · · · + cnT (vn)
= c1 (a1,1w1 + a2,1w2 + · · · + am,1wm) +

· · · + cn(a1,nw1 + a2,nw2 + · · · + am,nwm)
= (a1,1c1 + a1,2c2 + · · · + a1,ncn)w1+

· · · + (am,1c1 + am,2c2 + · · · + am,ncn)wm.

Look closely and we see that the coefficients of these vectors are themselves
coordinates of a matrix product, namely the matrix A times the column vector
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of coordinates of v with respect to the chosen basis of V. The result of this
matrix multiplication is a column vector whose entries are the coordinates of
T (v) relative to the chosen basis of W. So in a certain sense, computing the
value of a linear operator amounts to no more than multiplying a (coordinate)
vector by the matrix A. Now we make the following definition.

Definition 4.13. The matrix of the linear operator T : VB → WC relative to
the bases B and C is the matrix [T ]B,C = [ai,j ] whose entries are specified by Matrix of

Linear
Operator

equation (4.4). In the case that B = C, we simply write [T ]B .

Recall that we denote the coordinate vector of a vector v with respect to a
basis B by [v]B . Then the above calculation of T (v) can be stated succinctly
in matrix/vector terms as

[T (v)]C = [T ]B,C [v]B . (4.5)

This equation has a very interesting application to the standard spaces. Standard
Matrix of
Linear
Operator

Recall that a matrix operator is a linear operator TA : Rn → Rm defined
by the formula TA (x) = Ax, where A is an m × n matrix. It turns out that
every linear operator on the standard vector spaces is a matrix operator. The
matrix A for which T = TA is called the standard matrix of T .

Theorem 4.10. If T : Rn → Rm is a linear operator, B and C the standard Linear
Operator on
Standard
Spaces Is
Matrix
Operator

bases for Rn and Rm, respectively, and A = [T ]B,C , then T = TA.

Proof. The proof is straightforward: for vectors x, y = T (x) in standard
spaces with standard bases B, C, we have x = [x]B and y = [y]C . There-
fore,

T (x) = y = [y]C = [T (x)]C = [T ]B,C [x]B = [T ]B,C x = Ax,

which proves the theorem. ��
Even in the case of an operator as simple as the identity function idV (v) =

v, the matrix of a linear operator can be useful and interesting.

Definition 4.14. Let idV : VC → VB be the identity function of V. Then the Change of
Basis Matrixmatrix [idV ]C,B is called the change of basis matrix from the basis B to the

basis C.

Observe that this definition is consistent with the discussion in Section 3.3,
since equation (4.5) shows us that for any vector v ∈ V ,

[v]B = [idV (v)]B = [idV ]C,B [v]C .

Also note that change of basis matrix from basis B to basis C is quite easy if
B is a standard basis: simply form the matrix that has the vectors of C listed
as its columns.
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Example 4.22. Let V = R2. What is the change of basis matrix from stan-

dard basis B = {e1, e2} to the basis C =
{
v1 =

[
cos θ
sin θ

]
,v2 =

[− sin θ
cos θ

]}
?

Solution. We see that

v1 = cos θ e1 + sin θ e2

v2 = − sin θ e1 + cos θ e2.

Compare these equations to (4.4) and we see that the change of basis matrix
is

[idV ]C,B =
[

cos θ − sin θ
sin θ cos θ

]
= R (θ) .

As predicted, we have to form only the matrix that has the vectors of C listed
as its columns. Now compare this to the discussion following Example 3.26.
��

Next, suppose that T : V → W and S : U → V are linear operators. Can
we relate the matrices of T, S and the function composition of these operators,
T ◦ S? The answer to this question is a very fundamental fact.

Theorem 4.11. If UD
S→ VC

T→ WD, then [T ◦ S]D,C = [T ]B,C [S]D,B .Matrix of
Operator

Composition Proof. Given a vector u ∈ U , set v = S (u). With the notation of equa-
tion (4.5) we have that [T ◦ S]D,C [u]D = [(T ◦ S) (u)]C and by definition of
function composition that (T ◦ S) (u) = T (S (u)) = T (v). Therefore

[T ◦ S]D,C [u]D = [(T ◦ S) (u)]C = [T (S (u))]C = [T (v)]C .

On the other hand, equation (4.5) also implies that [T (v)]C = [T ]B,C [v]B
and [S (u)]B = [S] D,C [u]D. Hence, we deduce that

[T ◦ S]D,C [u]D = [T ]B,C [v]B = [T ]B,C [S] D,C [u]D .

If we choose u such that ej = [u]D, where ej is the jth standard vector, then
we obtain that the jth columns of left- and right-hand side agree for all j.
Hence the matrices themselves agree, which is what we wanted to show. ��

We can now also see exactly what happens when we make a change of
basis in the domain and target of a linear operator and recalculate the matrix
of the operator. Specifically, suppose that T : V → W and that B, B′ are
bases of V and C, C ′ are bases of W. Let P and Q be the change of basis
matrices from B′ to B and C ′ to C, respectively. From Problem 7 we obtainOperator

Matrix Under
Change of

Bases

that Q−1 is the change of basis matrix from C to C ′. Identify a matrix with
its operator action by multiplication, and we have a chain of operators

VB′
idV→ VB

T→ WC
idW→ WC′ .

Application of the theorem shows that
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[T ]B′,C′ = [idW ]C,C′ [T ]B,C [idV ]B′,B = Q−1[T ]B,CP.

We have just obtained a very important insight into the matrix of a linear
transformation. Here is the form it takes for the standard spaces.

Corollary 4.2. Let T : Rn → Rm be a linear operator, B a basis of Rn, and C Change of
Basis for
Matrix
Operator

a basis of Rm. Let P and Q be the change of basis matrices from the standard
bases to the bases B and C, respectively. If A is the matrix of T with respect
to the standard bases and M the matrix of T with respect to the bases B and
C, then

M = Q−1AP.

Example 4.23. Given the linear operator T : R4 → R2 by the rule

T (x1, x2, x3, x4) =
[

x1 + 3x2 − x3
2x1 + x2 − x4

]
,

find the standard matrix of T.

Solution. We see that

T (e1) =
[

1
2

]
, T (e2) =

[
3
1

]
, T (e3) =

[−1
0

]
, T (e4) =

[
0

−1

]
.

Since the standard coordinate vector of a standard vector is itself, we have

[T ] =
[

1 3 −1 0
2 1 0 −1

]
. �

Example 4.24. With T as above, find the matrix of T with respect to the
domain basis B = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} and range basis
C = {(1, 1), (1,−1)}
Solution. Let A be the matrix of the previous example, so it represents the
standard matrix of T. Let B′ = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
and C ′ = {(1, 0), (0, 1)} be the standard bases for the domain and target of
T. Then we have

A = [T ] = [T ]B′,C′ .

Further, we have only to stack columns of B and C to obtain change of basis
matrices

P = [idR4 ]B,B′ =

⎡⎢⎢⎣
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ and Q = [idR2 ]C,C′ =
[

1 1
1 −1

]
.

Now apply Corollary 4.2 to obtain that



246 4 GEOMETRICAL ASPECTS OF STANDARD SPACES

[T ]B,C = Q−1AP

= −1
2

[−1 −1
−1 1

] [
1 3 −1 0
2 1 0 −1

]⎡⎢⎢⎣
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
=

[ 3
2

7
2 1 1

− 1
2

1
2 −1 0

]
.

��

4.4 Exercises and Problems

Exercise 1. Find the standard matrix, kernel, and range of the linear operator
T : R3 → R3 given by T ((x, y, z)) = (x + 2y, x − y, y + z).

Exercise 2. Find the standard matrix, kernel, and range of the linear operator
T : R4 → R2 given by T ((x1, x2, x3, x4)) = (x2 − x4 + 3x3, 3x2 − x4 + x3).

Exercise 3. Bases B = {(1, 1) , (1,−1)} = {u1,u2} and B′ = {(2, 0) , (3, 1)} =
{u′

1,u
′
2} of R2 are given.

(a) Find the change of basis from the standard basis to each of these bases.
(b) Use (a) to compute the change of basis matrix from B to B′ by applying
Corollary 4.2 to T = idR2 .
(c) Given that w = 3u1 + 4u2, use (b) to express w as a linear combination
of u′

1 and u′
2.

Exercise 4. Given bases B = {(0, 1, 1) , (1, 0, 1) , (1, 0,−1)} = {u1,u2,u3} and
B′ = {(0, 0,−1) , (0, 3, 1) , (2, 0, 0)} = {u′

1,u
′
2,u

′
3} of R3, find the change of

basis matrix from B to B′ and use it to express w′ = 2u′
1 +u′

2 −2u′
3 in terms

of u1,u2,u3.

Exercise 5. Find the matrix of the operator TA : R3 → R2, where A =[
2 0 −1
1 1 0

]
, with respect to the bases B = {(1, 0, 1) , (1,−1, 0)) , (0, 0, 2)} and

C = {(3, 4) , (4,−3)}.

Exercise 6. Find the matrix of the operator T : P3 → P2, where T is given
by T

(
a + bx + cx2 + dx3

)
= b + 2cx + 3dx2, with respect to the bases B ={

1, x, x2, x3
}

and C =
{
1, x, 2x2 − 1

}
.

Problem 7. Suppose the finite-dimensional vector space V has bases B and C.
Let T : VB → VC be an invertible linear operator. Use Theorem 4.11 to show
that [T ]−1

B,C =
[
T−1

]
C,B

.
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Problem 8. Two n × n matrices A and B are called similar if there exists
an invertible matrix P such that B = P−1AP . Use Corollary 4.2 to show
that similar matrices A and B are both matrices of the same linear operator,
namely TA, with respect to different bases.

Problem 9. Show that a change of basis matrix from one orthonormal basis
to another is an orthogonal matrix. Use this to simplify the change of basis
formula of Corollary 4.2 in the case that C is an orthonormal basis.

*Problem 10. Define the determinant of a linear operator T : V → V to be
the determinant of [T ]B , where B is any basis of the finite-dimensional vector
space V. Show that this definition is independent of the basis B.

Problem 11. Let λ be a scalar and A, B similar n × n matrices, i.e., for some
invertible matrix P , B = P−1AP . Show that

dimN (λI − A) = dimN (λI − B) .

4.5 *Computational Notes and Projects

Project: Least Squares
The Big Eight needs your help! Below is a table of scores from the games
played thus far: The (i, j)th entry is team i’s score in the game with team j.
Your assignment is twofold. First, write a notebook (or script) in a CAS or
MAS available to you that obtains team ratings and predicted point spreads
based on the least squares and graph theory ideas you have seen. Include
instructions for the illiterate on how to plug in data. Second, you are to write
a brief report (one to three pages) on your project that describes the problem,
your solution to it, its limitations, and the ideas behind it.

CU IS KS KU MU NU OS OU
CU 24 21 45 21 14
IS 12 42 21 16 7
KS 12 21 3 27 24
KU 9 14 30 10 14
MU 8 3 52 18 21
NU 51 48 63 26 63
OS 41 45 49 42 28
OU 17 35 70 63 31

Implementation Notes: You will need to set up a suitable system of equa-
tions, form the normal equations, and have a computer algebra system solve
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the problem. For purposes of illustration, we assume in this project that the
tool in use is Mathematica. If not, you will need to replace these commands
with the appropriate ones that your computational tools provide. The equa-
tions in question are formed by letting the variables be a vector x of “po-
tentials” x (i) , one for each team i, so that the “potential differences” best
approximate the actual score differences (i.e., point spreads) of the games. To
find the vector x of potentials you solve the system Ax = b, where b is the
vector of observed potential differences. N.B: the matrix A is not the table
given above. You will get one equation for each game played. For example, by
checking the (1, 2)th and (2, 1)th entries, we see that CU beat IS by a score of
24 to 12. So the resulting equation for this game is x (1)−x(2) = 24−12 = 12.
Ideally, the resulting potentials would give numbers that would enable you to
predict the point spread of an as yet unplayed game: all you would have to
do to determine the spread for team i versus team j is calculate the differ-
ence x (j) − x (i). Of course, it doesn’t really work out this way, but this is a
reasonable use of the known data. When you set up this system, you obtain
an inconsistent system. This is where least squares enter the picture. You will
need to set up and solve the normal equations, one way or another. You might
notice that the null space of the resulting coefficient matrix is nontrivial, so
this matrix does not have full column rank. This makes sense: potentials are
unique only up to a constant. To fix this, you could arbitrarily fix the value
of one team’s potential, that is, set the weakest team’s potential value to zero
by adding one additional equation to the system of the form x(i) = 0.

Note to the Instructor: the data above came from the now defunct Big
Eight Conference. This project works better when adapted to your local en-
vironment. Pick a sport in season at your institution or locale. Have students
collect the data themselves, make out a data table as above, and predict the
spread for some (as yet) unplayed games of local interest. It can be very inter-
esting to make it an ongoing project, where for a number of weeks the students
collect the previous week’s data and make predictions for the following week
based on all data collected to date.

Project: Rotations in Computer Graphics I
Problem Description: the objective of this project is to implement a counter-
clockwise rotation of θ radians about an axis specified by the nonzero three-
dimensional vector v using matrix multiplication. Assume that you are given
this vector. Show how to calculate the appropriate matrix Rv and offer some
justification (proofs aren’t required). Illustrate the method with examples.

Implementation Notes: in principle, the desired matrix can be constructed
in three steps: (1) Construct an orthonormal set of vectors v1,v2,v3 such that
v1 × v2 = v3 = v/ ‖v‖. (2) Construct the orthogonal matrix P that maps
v1,v2,v3 to e1, e2, e3. (3) To construct Rv, apply P , do a rotation θ of the
xy-plane about the z-axis via R (θ), then apply P−1. Your job is to elaborate
on the details of these steps and illustrate the result with examples.
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Project: Rotations in Computer Graphics II
Problem Description: the objective of this project is to implement a counter-
clockwise rotation of θ radians about an axis specified by the nonzero three-
dimensional vector v using quaternions. Assume that you are given this vector.
Show how to calculate the appropriate quaternion qv. Illustrate the method
(and your mastery of quaternion arithmetic) with examples.

Background: Quaternions have a long and storied history in mathematics Quaternions
dating back to 1843, when they were discovered by Sir William Rowan Hamil-
ton as a generalization of complex numbers. Three-dimensional vector dot
and cross products originated as aids to quaternion arithmetic. In 1985 Ken
Shoemake showed that quaternions were well suited for certain transforms
in computer graphics, namely rotations about an axis in three-dimensional
space. A quaternion that does the job requires only four numbers, in contrast
to the nine needed for an orthogonal transform.

Implementation Notes: A quick google of “quaternions” will give you more
than enough information. A brief précis: quaternion objects are simply ele-
ments of H = R4, homogeneous space (see Section 3.1.) As such, H immedi-
ately has a vector space structure, standard inner product, and norm. Stan-
dard basis elements are denoted by i = e1, j = e2, k = e3, and h = e4. Hence
quaternions can be written as q = qxi+ qyj+ qzk+ qwh = qv + qwh. The vec-
tor qv is called the “imaginary” part of q, and qwh the “real” part. Inspired
by complex numbers, we define the conjugate quaternion q∗ = qw − qv. Un-
like homogeneous space, H carries a multiplicative structure. Multiplication
is indicated by juxtaposition. We only need to know how to multiply basis
elements, since the rest follows from using distributive and associative laws,
which we assume to hold for quaternions (of course, everything can be proved
formally). Here are the fundamental rules:

i2 = j2 = k2 = ijk = −h = −h2.

It is a customary abuse of language to identify h with 1 and write q = qv+qw.
From these laws we can deduce that ij = k, jk = i, ki = j, ik = −j, kj =
−i and ji = −k, which is everything we need to know to do arithmetic.
A remarkable property of quaternions is that every nonzero element has a
multiplicative inverse, namely

q−1 =
1

‖q‖2 q∗.

Finally, the connection to rotations can be spelled out as follows: let p,q ∈
H, with q a unit quaternion, i.e., ‖q‖ = 1, and p a quaternion that represents
a geometrical point or vector in homogeneous space. Then (1) we can write
q = cos φ + sin φqv for some angle φ and unit vector qv and (2) qpq−1 is the
result of rotating p counterclockwise about the axis qv through an angle of
2φ. Your job is elaborate on the details of this calculation and illustrate the
result with examples. As an exercise in manipulation, prove item (1) (it isn’t
hard), but assume everything else.
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THE EIGENVALUE PROBLEM

The first major problem of linear algebra is to understand how to solve the
basis linear system Ax = b and what the solution means. We have explored
this system from three points of view: In Chapter 1 we approached the problem
from an operational point of view and learned the mechanics of computing
solutions. In Chapter 2, we took a more sophisticated look at the system from
the perspective of matrix theory. Finally, in Chapter 3, we viewed the problem
from the vantage of vector space theory.

Now we begin a study of the second major problem of linear algebra,
namely the eigenvalue problem. We had to tackle linear systems first because
the eigenvalue problem is more sophisticated and will require most of the tools
that we have thus far developed. This subject has many important applica-
tions, such as the analysis of discrete dynamical systems that we have seen in
earlier chapters.

5.1 Definitions and Basic Properties

What Are They?

Good question. Let’s get right to the point.

Definition 5.1. Let A be a square n × n matrix. An eigenvector of A is a Eigenvector,
Eigenvalue,
and Eigenpair

nonzero vector x in Rn (or Cn, if we are working over complex numbers) such
that for some scalar λ, we have

Ax = λx.

The scalar λ is called an eigenvalue of the matrix A, and we say that the
vector x is an eigenvector belonging to the eigenvalue λ. The pair {λ,x} is
called an eigenpair for the matrix A.
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Eigenvalues and eigenvectors are also known as characteristic values and char-
acteristic vectors. In fact, the word “eigen” means (among other things) “char-
acteristic” in German.

Eigenvectors of A, as defined above, are also called right eigenvectors of
A. Notice that if AT x = λx, thenRight and

Left
Eigenvectors λxT = (λx)T =

(
AT x

)T
= xT A.

For this reason, eigenvectors of AT are called left eigenvectors of A.
The only kinds of matrices for which these objects are defined are square

matrices, so we’ll assume throughout this chapter that we are dealing with
such matrices.

Caution: Be aware that the eigenvalue λ is allowed to be the 0 scalar, butZero Not
Eigenvector an eigenvector x is, by definition, never the 0 vector.

As a matter of fact, it is quite informative to have an eigenvalue 0. This
says that the system Ax = 0x = 0 has a nontrivial solution x. Therefore A is
not invertible by Theorem 2.7. There are other reasons for the usefulness of
the eigenvector/value concept that we will develop later, but we already see
that knowledge of eigenvalues tells us about invertibility of a matrix.

Here are a few simple examples of eigenvalues and eigenvectors. Let A =[
7 4
3 6

]
, x = (−1, 1), and y = (4, 3). One checks that Ax = (−3, 3) = 3x and

Ay = (40, 30) = 10y. It follows that x and y are eigenvectors corresponding
to eigenvalues 3 and 10, respectively.

Why should we have any interest in these quantities? A general answer
goes something like this: knowledge of eigenvectors and eigenvalues gives us
deep insights into the structure of the matrix A. Here is just one example:
suppose that we would like to have a better understanding of the effect of
multiplication of a vector x by powers of the matrix A, that is, of Akx. Let’s
start with the first power, Ax. If we knew that x were an eigenvector of A,
then we would have that for some scalar λ,

Ax = λx

A2x = A(Ax) = Aλx = λAx = λ2x
...

Akx = A(Ak−1x) = · · · = λkx.

This is very nice, because it reduces something complicated, namely matrix–
vector multiplication, to something simple, namely scalar–vector multiplica-
tion.

We need some handles on these quantities. Let’s ask how we could figure
out what they are for specific matrices. Here are some of the basic points
about eigenvalues and eigenvectors.
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Theorem 5.1. Let A be a square n × n matrix. Then

(1) The eigenvalues of A are all the scalars λ that are solutions to the nth-
degree polynomial equation

det(λI − A) = 0.

(2) For a given eigenvalue λ, the eigenvectors of the matrix A belonging to
that eigenvalue are all the nonzero elements of N (λI − A).

Proof. Note that λx = λIx. Thus we have the following chain of thought: A
has eigenvalue λ if and only if Ax = λx, for some nonzero vector x, which is
true if and only if

0 = λx − Ax = λIx − Ax = (λI − A)x

for some nonzero vector x. This last statement is equivalent to the assertion
that 0 
= x ∈ N (λI−A). The matrix λI−A is square, so it has a nontrivial null
space precisely when it is singular (recall the characterizations of nonsingular
matrices in Theorem 2.7). This occurs only when det(λI − A) = 0. If we
expand this determinant down the first column, we see that the highest-order
term involving λ that occurs is the product of the diagonal terms (λ − aii), so
that the degree of the expression det(λI − A) as a polynomial in λ is n. This
proves (1).

We saw from this chain of thought that if λ is an eigenvalue of A, then the
eigenvectors belonging to that eigenvalue are precisely the nonzero vectors x
such that (λI − A)x = 0, that is, the nonzero elements of N (λI − A), which
is what (2) asserts. ��

Here is some terminology that we will use throughout this chapter. We
call a polynomial monic if the leading coefficient is 1.For example, λ2 +2λ+3 Monic

Polynomialis a monic polynomial in λ while 2λ2 + λ + 1 is not.

Definition 5.2. Given a square n×n matrix A, the equation det(λI−A) = 0 Characteristic
Equation and
Polynomial

is called the characteristic equation of A, and the nth-degree monic polynomial
p(λ) = det(λI − A) is called the characteristic polynomial of A.

Suppose we already know the eigenvalues of A and want to find the eigenvalues
of something like 3A + 4I. Do we have to start over to find them? The next
calculation is really a useful tool for answering such questions.

Theorem 5.2. If B = cA + dI for scalars d and c 
= 0, then the eigenvalues
of B are of the form µ = cλ + d, where λ runs over the eigenvalues of A, and
the eigenvectors of A and B are identical.

Proof. Let x be an eigenvector of A corresponding to the eigenvalue λ. Then
by definition, x 
=0 and

Ax = λx.
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Also, we have that
dIx = dx.

Now multiply the first equation by the scalar c and add these two equations
to obtain

(cA + dI)x = Bx = (cλ + d)x.

It follows that every eigenvector of A belonging to λ is also an eigenvector of
B belonging to the eigenvalue cλ + d. Conversely, if y is an eigenvector of B
belonging to µ, then

By = µy = (cA + dI)y.

Now solve for Ay to obtain that

Ay =
1
c
(µ − d)y,

so that λ = (µ − d)/c is an eigenvalue of A with corresponding eigenvector y.
It follows that A and B have the same eigenvectors, and their eigenvalues are
related by the formula µ = cλ + d. ��

Example 5.1. Let A =
[

7 4
3 6

]
, x = (−1, 1), and y = (4, 3), so that

Ax = (−3, 3) = 3x and Ay = (40, 30) = 10y. Find the eigenvalues and
corresponding eigenvectors for the matrix B = 3A + 4I.

Solution. From the calculations given to us, we observe that x and y are
eigenvectors corresponding to the eigenvalues 3 and 10, respectively, for A.
These are all the eigenvalues of A, since the characteristic polynomial of A is
of degree 2, so has only two roots. According to Theorem 5.2, the eigenvalues of
3A+4I must be µ1 = 3·3+4 = 13 with corresponding eigenvector x = (−1, 1),
and µ2 = 3 · 10 + 4 = 34 with corresponding eigenvector y = (4, 3). ��
Definition 5.3. Given an eigenvalue λ of the matrix A, the eigenspaceEigenspace
corresponding to λ is the subspace N (λI − A) of Rn (or Cn). We write
Eλ(A) = N (λI − A).

Definition 5.4. By an eigensystem of the matrix A, we mean a list of allEigensystem
the eigenvalues of A and, for each eigenvalue λ, a complete description of the
eigenspace corresponding to λ.

The usual way to give a complete description of an eigenspace is to list a basis
for the space. Remember that there is one vector in the eigenspace N (λI −A)
that is not an eigenvector, namely 0. In any case, the computational route
is now clear. To call it an algorithm is really an abuse of language, since we
don’t have a complete computational description of the root-finding phase,
but here it is:
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Let A be an n × n matrix. To find an eigensystem of A:

(1) Find the scalars that are roots to the characteristic equation
det(λI − A) = 0.

(2) For each scalar λ in (1), use the null space algorithm to find a
basis of the eigenspace N (λI − A).

Eigensystem
Algorithm

As a matter of convenience, it is sometimes a little easier to work with
A − λI when calculating eigenspaces (because there are fewer extra minus
signs to worry about). This is perfectly OK, since N (A − λI) = N (λI − A).
It doesn’t affect the eigenvalues either, since det(λI − A) = ± det(A − λI).
Here is our first eigensystem calculation.

Example 5.2. Find an eigensystem for the matrix A =
[

7 4
3 6

]
.

Solution. First solve the characteristic equation

0 = det(λI − A) = det
[

λ − 7 −4
−3 λ − 6

]
= (λ − 7)(λ − 6) − (−3)(−4)

= λ2 − 13λ + 42 − 12

= λ2 − 13λ + 30
= (λ − 3)(λ − 10).

Hence the eigenvalues are λ = 3, 10. Next, for each eigenvector calculate the
corresponding eigenspace.

λ = 3: Then A − 3I =
[

7 − 3 4
3 6 − 3

]
=

[
4 4
3 3

]
and row reduction gives

[
4 4
3 3

]−−−−−−−−→
E21(−3/4)
E1(1/4)

[
1 1
0 0

]
,

so the general solution is[
x1
x2

]
=

[−x2
x2

]
= x2

[−1
1

]
.

Therefore a basis of E3(A) is {(−1, 1)}.

λ = 10: Then A − 10I =
[

7 − 10 4
3 6 − 10

]
=

[−3 4
3 −4

]
and row reduction

gives [−3 4
3 −4

]−−−−−−−→
E21(1)

E1(−1/3)

[
1 −4/3
0 0

]
,

so the general solution is
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x1
x2

]
=

[
(4/3)x2

x2

]
= x2

[
4/3

1

]
.

Therefore a basis of E10(A) is {(4/3, 1)}. ��
Concerning this example, there are several observations worth noting:

• Since the 2 × 2 matrix A − λI is singular for the eigenvalue λ, one row
should always be a multiple of the other. Knowing this, we didn’t have to
do even the little row reduction we did above. However, its a good idea to
check; it helps you avoid mistakes. Remember: any time that row reduction
of A − λI leads to full rank (only trivial solutions), you have either made
an arithmetic error or you do not have an eigenvalue.

• This matrix is familiar. In fact, B = (0.1)A is the Markov chain transition
matrix from Example 2.18. Therefore the eigenvalues of B are 0.3 and 1,
by Example 5.2 with c = 0.1 and d = 0. The eigenvector belonging to
λ = 1 is just a solution to the equation Bx = x, which was discussed in
Example 3.31.

• The vector

x =
[

4/7
3/7

]
=

3
7

[
4/3

1

]
is an eigenvector of A belonging to the eigenvalue λ = 10 of A, so that
from Ax = 10x we see that Bx = 1x. Hence, x ∈ E1(B).

Example 5.3. How do we find eigenvalues of a triangular matrix? Illustrate

the method with A =

⎡⎣ 2 1 1
0 1 1
0 0 −1

⎤⎦ .

Solution. Eigenvalues are just the roots of the characteristic equation det(λI−
A) = 0. Notice that −A is triangular if A is. Also, the only entries in λI − A
that are any different from the entries of −A are the diagonal entries, which
change from −aii to λ−aii. Therefore, λI −A is triangular if A is. We already
know that the determinant of a triangular matrix is easy to compute: just form
the product of the diagonal entries. Therefore, the roots of the characteristic
equation are the solutions to

0 = det(λI − A) = (λ − a11)(λ − a22) · · · (λ − ann),

that is, λ = a11, a22, . . . , ann. In other words, for a triangular matrix the
eigenvalues are simply the diagonal elements! In particular, for the example A
given above, we see with no calculations that the eigenvalues are λ = 2, 1,−1.
��

Notice, by the way, that we don’t quite get off the hook in the preceding
example if we are required to find the eigenvectors. It will still be some work
to compute each of the relevant null spaces, but much less than for a general
matrix.
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Example 5.3 can be used to illustrate another very important point. The
reduced row echelon form of the matrix of that example is clearly the identity
matrix I3. This matrix has eigenvalues 1, 1, 1, which are not the same as the
eigenvalues of A (would that eigenvalue calculations were so easy!). In fact, a
single elementary row operation on a matrix can change the eigenvalues. For
example, simply multiply the first row of A above by 1

2 . This point warrants
a warning, since it is the source of a fairly common mistake.

Caution: The eigenvalues of a matrix A and the matrix EA, where E is an
elementary matrix, need not be the same.

Example 5.4. Find an eigensystem for the matrix A =
[

1 −1
1 1

]
.

Solution. For eigenvalues, compute the roots of the equation

0 = det(A − λI) = det
[

1 − λ −1
1 1 − λ

]
= (1 − λ)2 − (−1) = λ2 − 2λ + 2.

Now we have a little problem. Do we allow complex numbers? If not, we are
stuck because the roots of this equation are

λ =
−(−2) ± √

(−2)2 − 4 · 2
2

= 1 ± i.

In other words, if we did not enlarge our field of scalars to the complex num-
bers, we would have to conclude that there are no eigenvalues or eigenvectors!
Somehow, this doesn’t seem like a good idea. It is throwing information away.
Perhaps it comes as no surprise that complex numbers would eventually fig-
ure into the eigenvalue story. After all, finding eigenvalues is all about solving
polynomial equations, and complex numbers were invented to overcome the
inability of real numbers to provide solutions to all polynomial equations.
Let’s allow complex numbers as the scalars. Now our eigenspace calculations
are really going on in the complex space C2 instead of R2.

λ = 1 + i: Then A − (1 + i)I =
[

1 − (1 + i) −1
1 1 − (1 + i)

]
=

[−i −1
1 −i

]
and

row reduction gives (recall that 1/i = −i)[−i −1
1 −i

]−−−−−−−−→
E21(−i)

E1(1/(−i))

[
1 −i
0 0

]
,

so the general solution is [
z1
z2

]
=

[
iz2
z2

]
= z2

[
i
1

]
.
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Therefore a basis of E1+i(A) is {(i, 1)}.

λ = 1 − i: Then A − (1 − i)I =
[

1 − (1 − i) −1
1 1 − (1 − i)

]
=

[
i −1
1 i

]
and

row reduction gives [
i −1
1 i

]−−−−−→
E21(i)
E1(1/i)

[
1 i
0 0

]
,

so the general solution is[
z1
z2

]
=

[−iz2
z2

]
= z2

[−i
1

]
.

Therefore a basis of E1+i(A) is {(−i, 1)}. ��
In view of the previous example, we are going to adopt the following prac-

tice: if the eigenvalue calculation leads us to complex numbers, we take the
point of view that the field of scalars should be enlarged to include the complex
numbers and the eigenvalues in question. One small consolation for having to
deal with complex eigenvalues is that in some cases our work may be cut in
half.

Example 5.5. Show that if {λ,x} is an eigenpair for real matrix A, then so
is

{
λ,x

}
.

Solution. By hypothesis, Ax = λx. Apply complex conjugation to both sides
and use the fact that A is real to obtain

Ax = Ax = Ax = λx = λx.

Thus
{
λ,x

}
is also an eigenpair for A. ��

In view of this fact, we could have stopped with the calculation of eigenpair
{1 + i, (i, 1)} in Example 5.4, since we automatically have that {1 − i, (−i, 1)}
is also an eigenpair.

Multiplicity of Eigenvalues

The following example presents yet another curiosity about eigenvalues and
eigenvectors.

Example 5.6. Find an eigensystem for the matrix A =
[

2 1
0 2

]
.

Solution. Here the eigenvalues are easy. This matrix is triangular, so they
are λ = 2, 2. Next we calculate eigenvectors.

λ = 2: Then A − 2I =
[

2 − 2 1
0 2 − 2

]
=

[
0 1
0 0

]
and row reduction is not

necessary here. Notice that the variable x1 is free here, while x2 is bound. The
general solution is
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x1
x2

]
=

[
x1
0

]
= x1

[
1
0

]
.

Therefore a basis of E2(A) is {(1, 0)}. ��
The manner in which we list the eigenvalues in this example is intentional.

The number 2 occurs twice on the diagonal, suggesting that it should be
counted twice. As a matter of fact, λ = 2 is a root of the characteristic
equation (λ − 2)2 = 0 of multiplicity 2. Yet there is a curious mismatch here.
In all of our examples to this point, we have been able to come up with as many
eigenvectors as eigenvalues, namely the size of the matrix if we allow complex
numbers. In this case there is a deficiency in the number of eigenvectors, since
there is only one eigenspace and it is one-dimensional. Does this failing always
occur with multiple eigenvalues? The answer is no. The situation is a bit more
complicated, as the following example shows.

Example 5.7. Discuss the eigenspace corresponding to the eigenvalue λ = 2
for these two matrices:

(a)

⎡⎣ 2 1 2
0 1 −2
0 0 2

⎤⎦ (b)

⎡⎣2 1 1
0 1 1
0 0 2

⎤⎦
Solution. Notice that each of these matrices has eigenvalues λ = 1, 2, 2. Now
for the eigenspace E2(A).

(a) For this eigenspace calculation we have

A − 2I =

⎡⎣ 2 − 2 1 2
0 1 − 2 −2
0 0 2 − 2

⎤⎦ =

⎡⎣0 1 2
0 −1 −2
0 0 0

⎤⎦ ,

and row reduction gives⎡⎣ 0 1 2
0 −1 −2
0 0 0

⎤⎦−−−−→
E21(1)

⎡⎣0 1 2
0 0 0
0 0 0

⎤⎦ ,

so that free variables are x1, x3 and the general solution is⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣ x1
−2x3
x3

⎤⎦ = x1

⎡⎣1
0
0

⎤⎦ + x3

⎡⎣ 0
−2

1

⎤⎦ .

Thus a basis for E2(A) is {(1, 0, 0), (0,−2, 1)}. Notice that in this case we get
as many independent eigenvectors as the number of times that the eigenvalue
λ = 2 occurs.

(b) For this eigenspace calculation we have

A − 2I =

⎡⎣ 2 − 2 1 1
0 1 − 2 1
0 0 2 − 2

⎤⎦ =

⎡⎣0 1 1
0 −1 1
0 0 0

⎤⎦
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and row reduction gives⎡⎣ 0 1 1
0 −1 1
0 0 0

⎤⎦−−−−→
E21(1)

⎡⎣ 0 1 1
0 0 2
0 0 0

⎤⎦−−−−−−→
E2(1/2)
E12(−1)

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ ,

so that the only free variable is x1 and the general solution is⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣x1
0
0

⎤⎦ = x1

⎡⎣1
0
0

⎤⎦ .

Thus a basis for E2(A) is {(1, 0, 0)}. Notice that in this case we don’t get as
many independent eigenvectors as the number of times that the eigenvalue
λ = 2 occurs. ��

This example shows that there are two kinds of “multiplicities” of an
eigenvector. On the one hand there is the number of times that the eigenvalue
occurs as a root of the characteristic equation. On the other hand there is
the dimension of the corresponding eigenspace. One of these is algebraic in
nature, the other is geometric. Here are the appropriate definitions.

Definition 5.5. Let λ be a root of the characteristic equation det(λI − A) =Algebraic and
Geometric

Multiplicity
0. The algebraic multiplicity of λ is the multiplicity of λ as a root of the
characteristic equation. The geometric multiplicity of λ is the dimension of
the space Eλ(A) = N (λI − A).

We categorize eigenvalues as simple or repeated, according to the following
definition.

Definition 5.6. The eigenvalue λ of A is said to be simple if its algebraicSimple
Eigenvalue multiplicity is 1, that is, the number of times it occurs as a root of the char-

acteristic equation is 1. Otherwise, the eigenvalue is said to be repeated.

In Example 5.7 we saw that the repeated eigenvalue λ = 2 has algebraic
multiplicity 2 in both (a) and (b), but geometric multiplicity 2 in (a) and 1
in (b). What can be said in general? The following theorem summarizes the
facts. In particular, (2) says that algebraic multiplicity is always greater than
or equal to geometric multiplicity. Item (1) is immediate since a polynomial
of degree n has n roots, counting complex roots and multiplicities. We defer
the proof of (2) to Section 5.3.

Theorem 5.3. Let A be an n×n matrix with characteristic polynomial p(λ) =
det(λI − A). Then:

(1) The number of eigenvalues of A, counting algebraic multiplicities and com-
plex numbers, is n.

(2) For each eigenvalue λ of A, if m(λ) is the algebraic multiplicity of λ, then

1 ≤ dim Eλ(A) ≤ m(λ).
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Now when we wrote that each of the matrices of Example 5.7 has eigenvalues
λ = 1, 2, 2, what we intended to indicate was a complete listing of the eigen-
values of the matrix, counting algebraic multiplicities. In particular, λ = 1 is
a simple eigenvalue of the matrices, while λ = 2 is not. The geometric multi-
plicities of (a) are identical to the algebraic multiplicities in (a) but not those
in (b). The latter kind of matrix is harder to deal with than the former. Fol-
lowing a time-honored custom of mathematicians, we call the more difficult
matrix by a less than flattering name, namely, “defective.”

Definition 5.7. A matrix is defective if one of its eigenvalues has geometric Defective
Matrixmultiplicity less than its algebraic multiplicity.

Notice that the sum of the algebraic multiplicities of an n × n matrix is the
size n of the matrix. This is due to the fact that the characteristic polynomial
of the matrix has degree n, hence exactly n roots, counting multiplicities.
Therefore, the sum of the geometric multiplicities of a defective matrix will
be less than n.

5.1 Exercises and Problems

Exercise 1. Exhibit all eigenvalues of these matrices.

(a)
[

7 −10
5 −8

]
(b)

⎡⎣−1 0 0
1 −1 0
0 1 −1

⎤⎦ (c)

⎡⎣2 1 1
0 3 1
0 0 2

⎤⎦ (d)
[

0 2
2 0

]
(e)

[
0 −2
2 0

]
Exercise 2. Compute the eigenvalues of these matrices.

(a)

⎡⎣2 0 1
0 0 0
1 0 2

⎤⎦ (b)

⎡⎣ 2 0 0
0 3 1
0 6 2

⎤⎦ (c)
[

1 + i 3
0 i

]
(d)

⎡⎣ 1 −2 1
−2 4 −2

0 0 1

⎤⎦ (e)

⎡⎢⎢⎣
2 1 −1 −2
0 1 −1 −2
0 0 0 1
0 0 1 0

⎤⎥⎥⎦
Exercise 3. Find eigensystems for the matrices of Exercise 1. Specify the alge-
braic and geometric multiplicity of each eigenvalue.

Exercise 4. Find eigensystems for the matrices of Exercise 2 and identify any
defective matrices.

Exercise 5. You are given that the matrix A =
[

0 1
1 0

]
has eigenvalues 1,−1

and respective eigenvectors (1, 1), (1,−1). Use Theorem 5.2 to determine an

eigensystem for B =
[

3 −5
−5 3

]
without further eigensystem calculations.

Exercise 6. You are given that A =

⎡⎣ 2 −2 0
1 0 1
0 0 2

⎤⎦ and that {2, (−1, 0, 1)} and

{1 + i, (2, 1 − i, 0)} are eigenpairs of A. Determine an eigensystem of A without
further eigensystem calculations.
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Exercise 7. The trace of a matrix A is the sum of all the diagonal entries of
the matrix and is denoted by trA. Find the trace of each matrix in Exercise 1
and verify that it is the sum of the eigenvalues of the matrix.
Exercise 8. For each of the matrices in Exercise 2 show that the product of all
eigenvalues is the determinant of the matrix.
Exercise 9. Show that for each matrix A of Exercise 1, A and AT have the
same eigenvalues.
Exercise 10. Find all left eigenvectors of each matrix in Exercise 1. Are right
and left eigenspaces for each eigenvalue the same?
Exercise 11. For each matrix A of Exercise 1 determine whether AT A and A2

have the same eigenvalues. (Hint: test eigenvalues of one matrix on the other.)
Exercise 12. For each matrix A of Exercise 2 show that the matrix B = A∗A
has nonnegative eigenvalues.

Exercise 13. Let A =
[

1 1
0 2

]
, B =

[
1 1
1 2

]
, and let α be an eigenvalue of A,

β an eigenvalue of B. Confirm or deny the hypotheses that (a) α + β is an
eigenvalue of A + B, and (b) αβ is an eigenvalue of AB.

Exercise 14. Let A =
[

1 1
0 2

]
and B =

[
1 1
1 2

]
. Confirm or deny the hypothesis

that eigenvalues of AB and BA are the same.
Problem 15. Show that if A is Hermitian, then right and left eigenvalues ane
eigenvectors coincide.
Problem 16. Show from the definition of eigenvector that if x is an eigenvector
for the matrix A belonging to the eigenvalue λ, then so is cx for any scalar
c 
= 0.

*Problem 17. Prove that if A is invertible and λ is an eigenvalue of A, then
1/λ is an eigenvalue of A−1.
Problem 18. Show that if λ is an eigenvalue of an orthogonal matrix P, then
|λ| = 1.

*Problem 19. Let A be a matrix whose eigenvalues are all less than 1 in ab-
solute value. Show that every eigenvalue of I − A is nonzero and deduce that
I − A is invertible.
*Problem 20. Show that A and AT have the same eigenvalues.
Problem 21. Let A be a real matrix and {λ,x} an eigenpair for A. Show that{
λ,x

}
is also an eigenpair for A.

*Problem 22. Show that if A and B are the same size, then AB and BA have
the same eigenvalues.
Problem 23. Let Tk be the k ×k tridiagonal matrix whose diagonal entries are
2 and off-diagonal nonzero entries are −1. Use a MAS or CAS to build an
array y of length 30 whose kth entry is the minimum of the absolute value of
the eigenvalues of Tk+1. Plot this array. Use the graph as a guide and try to
approximate y (k) as a simple function of k.
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5.2 Similarity and Diagonalization

Diagonalization and Matrix Powers

Eigenvalues: why are they important? This is a good question and has many
answers. We will try to demonstrate their importance by focusing on one
special class of problems, namely, discrete linear dynamical systems, which Discrete

Linear
Dynamical
System

were defined in Section 2.3. We have seen examples of this kind of system
before, namely in Markov chains and difference equations. Here is the sort
of question that we would like to answer: when is it the case that there is a
limiting vector x for this sequence of vectors, and if so, how does one compute
this vector? The answer to this question will explain the behavior of the
Markov chain that was introduced in Example 2.18.

If there is such a limiting vector x for a Markov chain, we saw in Exam-
ple 3.31 how to proceed: find the null space of the matrix I − A, that is, the
set of all solutions to the system (I −A)x = 0. However, the question whether
all initial states x(0) lead to this limiting vector is a more subtle issue, which
requires the insights of the next section. We’ve already done some work on
this problem. We saw in Section 2.3 that the entire sequence of vectors is
uniquely determined by the initial vector and the transition matrix A in the
explicit formula

x(k) = Akx(0).

Before proceeding further, let’s consider another example that will indicate
why we would be interested in limiting vectors.

Example 5.8. By some unfortunate accident a new species of frog has been
introduced into an area where it has too few natural predators. In an attempt
to restore the ecological balance, a team of scientists is considering introducing
a species of bird that feeds on this frog. Experimental data suggests that the
population of frogs and birds from one year to the next can be modeled by
linear relationships. Specifically, it has been found that if the quantities Fk

and Bk represent the populations of the frogs and birds in the kth year, then

Bk+1 = 0.6Bk + 0.4Fk,

Fk+1 = −rBk + 1.4Fk,

is a system that models their joint behavior reasonably well. Here the positive
number r is a kill rate that measures the consumption of frogs by birds. It
varies with the environment, depending on factors such as the availability of
other food for the birds. Experimental data suggests that in the environment
where the birds are to be introduced, r = 0.35. The question is this: in the
long run, will the introduction of the birds reduce or eliminate growth of the
frog population?

Solution. The discrete dynamical system concept introduced in the preceding
discussion fits this situation very nicely. Let the population vector in the kth
year be x(k) = (Bk, Fk). Then the linear relationship above becomes
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Bk+1
Fk+1

]
=

[
0.6 0.4

−0.35 1.4

] [
Bk

Fk

]
,

which is a discrete linear dynamical system. Notice that this is different from
the Markov chains we studied earlier, since one of the entries of the coefficient
matrix is negative. Before we can finish solving this example we need to have
a better understanding of discrete dynamical systems and the relevance of
eigenvalues. ��

Let’s try to understand how state vectors change in the general discrete
dynamical system. We have x(k) = Akx(0). So what we really need to know
is how the powers of the transition matrix A behave. In general, this is very
hard!

Here is an easy case we can handle: what if A = [aij ] is diagonal? Since
we’ll make extensive use of diagonal matrices, let’s recall a notation that was
introduced in Chapter 2. The matrix diag {λ1, λ2, . . . , λn} is the n×n diagonal
matrix with entries λ1, λ2, . . . , λn down the diagonal. For example,

diag {λ1, λ2, λ3} =

⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦ .

By matching up the ith row and jth column of A we see that the only
time we could have a nonzero entry in A2 is when i = j, and in that case the
entry is a2

ii. A similar argument applies to any power of A. In summary, we
have this handy fact.

Theorem 5.4. If D = diag {λ1, λ2, . . . , λn}, then Dk = diag
{
λk

1 , λk
2 , . . . , λk

n

}
,

for all positive integers k.

Just as an aside, this theorem has a very interesting consequence. We have
seen in some exercises that if f(x) = a0 + a1x + · · · + anxn is a polynomial,
we can evaluate f(x) at the square matrix A as long as we understand that
the constant term a0 is evaluated as a0I. In the case of a diagonal A, the
following fact reduces evaluation of f(A) to scalar calculations.

Corollary 5.1. If D = diag {λ1, λ2, . . . , λn} and f (x) is a polynomial, then

f (D) = diag {f (λ1) , f (λ2) , . . . , f (λn)} .

Proof. Observe that if f(x) = a0 +a1x+ · · ·+anxn, then f(D) = a0I +a1D+
· · · + anDn. Now apply the preceding theorem to each monomial Dk and add
up the resulting terms in f(D). ��

Now for the powers of a more general A. For ease of notation, let’s consider
a 3×3 matrix A. What if we could find three linearly independent eigenvectors
v1,v2,v3? We would have Av1 = λ1v1, Av2 = λ2v2, and Av3 = λ3v3. In
matrix form,
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A[v1,v2,v3] = [v1,v2,v3]

⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦ = [v1,v2,v3] diag {λ1, λ2, λ3} .

Now set P = [v1,v2,v3] and D = diag {λ1, λ2, λ3}. Then P is invertible
since the columns of P are linearly independent. (Remember that any nonzero
solution to Ax = 0 would give rise to a nontrivial linear combination of the
column of A that sums to 0.) So the equation AP = PD, if multiplied on the
left by P−1, gives the equation

P−1AP = D.

This is a beautiful equation, because it makes the powers of A simple to
understand. The procedure we just went through is reversible as well. In other
words, if P is an invertible matrix such that P−1AP = D, then we deduce
that AP = PD, identify the columns of P by the equation P = [v1,v2,v3],
and conclude that the columns of P are linearly independent eigenvectors
of A. We make the following definition and follow it with a simple but key
theorem relating similar matrices.

Definition 5.8. A matrix A is said to be similar to matrix B if there exists Similar
Matricesan invertible matrix P such that

P−1AP = B.

The matrix P is called a similarity transformation matrix.

A simple size check shows that similar matrices have to be square and of the
same size. Furthermore, if A is similar to B, then B is similar to A. To see
this, suppose that P−1AP = B and multiply by P on the left and P−1 on
the right to obtain that

A = PP−1APP−1 = PBP−1 = (P−1)−1BP−1.

Similar matrices have much in common. For example, suppose that B =
P−1AP and λ is an eigenvalue of A, say Ax = λx. One calculates

Ax = λP−1x = P−1Ax = P−1AP
(
P−1x

)
,

from which it follows that λ is an eigenvalue of B. Here is a slightly stronger
statement.

Theorem 5.5. Suppose that A is similar to B, say P−1AP = B. Then:

(1) For every polynomial q (x),

q (B) = P−1q (A)P.

(2) The matrices A and B have the same characteristic polynomial, hence the
same eigenvalues.
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Proof. We see that successive terms P−1P cancel out in the k-fold product

Bk = (P−1AP )(P−1AP ) · · · (P−1AP )

to give that
Bk = P−1AkP.

It follows easily that

a0I + a1B + · · · + amBm = P−1 (a0I + a1A + · · · + amAm) P,

which proves (1). For (2), remember that the determinant distributes over
products, so that we can pull this clever little trick:

det(λI − B) = det(λP−1IP − P−1AP )

= det(P−1(λI − A)P )

= det(P−1) det(λI − A) det(P )

= det(λI − A) det(P−1P )
= det(λI − A).

This proves (2). ��
Now we can see the significance of the equation P−1AP = D, where D

is diagonal. It follows from this equation that for any positive integer k, we
have P−1AkP = Dk, so multiplying on the left by P and on the right by P−1

yields
Ak = PDkP−1. (5.1)

As we have seen, the term PDkP−1 is easily computed. This gives us a way
of constructing a formula for Ak.

We can also use this identity to extend part (1) to transcendental func-
tions like sin x, cos x, and ex, which can be defined in terms of an infiniteFunctions of

Matrices series (a limit of polynomials functions). One can show that for such func-
tions f (x), if f (D) is defined, then f (A) = Pf (D) P−1 uniquely defines
f (A). In particular, if D = diag {λ1, λ2, . . . , λn}, then we have f (D) =
diag {f (λ1) , f (λ2) , . . . , f (λn)}. Thus we can define f (A) for any matrix A
similar to a diagonal matrix provided that f (x) is defined for all scalars x.

Example 5.9. Illustrate the preceding discussion with the matrix in part (a)
of Example 5.7 and f (x) = sin

(
π
2 x

)
.

Solution. The eigenvalues of this problem are λ = 1, 2, 2. We already found
the eigenspace for λ = 2. Denote the two basis vectors by v1 = (1, 0, 0) and
v2 = (0,−2, 1). For λ = 1, apply Gauss–Jordan elimination to the matrix

A − 1I =

⎡⎣ 2 − 1 1 2
0 1 − 1 −2
0 0 2 − 1

⎤⎦ =

⎡⎣1 1 2
0 0 −2
0 0 1

⎤⎦−−−−−−→
E23(2)

E13(−2)
E23

⎡⎣1 1 0
0 0 1
0 0 0

⎤⎦ ,
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which gives a general eigenvector of the form⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣−x2
x2
0

⎤⎦ = x2

⎡⎣−1
1
0

⎤⎦ .

Hence the eigenspace E1(A) has basis {(−1, 1, 0)}. Now set v3 = (−1, 1, 0).
Form the matrix

P = [v1,v2,v3] =

⎡⎣1 0 −1
0 −2 1
0 1 0

⎤⎦ .

This matrix is nonsingular since detP = −1, and a calculation, which we
leave to the reader, shows that

P−1 =

⎡⎣ 1 1 2
0 0 1
0 1 2

⎤⎦ .

The discussion of the first part of this section shows us that P is a similarity
transformation matrix that diagonalizes A, that is,

P−1AP =

⎡⎣ 2 0 0
0 2 0
0 0 1

⎤⎦ = D.

As we have seen, this means that for any positive integer k, we have

Ak = PDkP−1

=

⎡⎣ 1 0 −1
0 −2 1
0 1 0

⎤⎦⎡⎣ 2k 0 0
0 2k 0
0 0 1k

⎤⎦⎡⎣1 1 2
0 0 1
0 1 2

⎤⎦
=

⎡⎣ 2k 2k − 1 2k+1 − 2
0 1 −2k+1 + 2
0 0 2k

⎤⎦ .

This is the formula we were looking for. It’s much easier than calculating Ak

directly!
To compute sin

(
π
2 A

)
, use the identity f (A) = Pf (D) P−1. Thus

sin (πA) =

⎡⎣ 1 0 −1
0 −2 1
0 1 0

⎤⎦⎡⎣ sin (π) 0 0
0 sin (π) 0
0 0 sin

(
π
2

)
⎤⎦⎡⎣1 1 2

0 0 1
0 1 2

⎤⎦ =

⎡⎣0 −1 −2
0 1 2
0 0 0

⎤⎦ .

Similarly, we could evaluate this matrix A at any transcendental function. ��
This example showcases some very nice calculations. Given a general ma-

trix A, when can we pull off the same sort of calculation? First, let’s give the
favorable case a name.
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Definition 5.9. The matrix A is diagonalizable if it is similar to a diagonalDiagonaliz-
able

Matrix
matrix, that is, there is an invertible matrix P and diagonal matrix D such
that P−1AP = D. In this case we say that P is a diagonalizing matrix for A
or that P diagonalizes A.

Can we be more specific about when a matrix is diagonalizable? We can. As
a first step, notice that the calculations that we began the section with can
easily be written in terms of an n × n matrix instead of a 3 × 3 matrix. What
these calculations prove is the following basic fact.

Theorem 5.6. The n×n matrix A is diagonalizable if and only if there existsDiagonaliza-
tion

Theorem
a linearly independent set of eigenvectors v1,v2, . . . ,vn of A, in which case
P = [v1,v2, . . . ,vn] is a diagonalizing matrix for A.

Can we be more specific about when a linearly independent set of eigenvectors
exists? Actually, we can. Clues about what is really going on can be gleaned
from a reexamination of Example 5.7.

Example 5.10. Apply the results of the preceding discussion to the matrix
in part (b) of Example 5.7 or explain why they fail to apply.

Solution. The eigenvalues of this problem are λ = 1, 2, 2. We already found
the eigenspace for λ = 2. Denote the single basis vector of E2(A) by v1 =
(1, 0, 0) . For λ = 1, apply Gauss–Jordan elimination to the matrix

A − 1I =

⎡⎣ 2 − 1 1 1
0 1 − 1 1
0 0 2 − 1

⎤⎦ =

⎡⎣1 1 1
0 0 1
0 0 1

⎤⎦−−−−−−→
E32(−1)
E21(−1)

⎡⎣1 1 0
0 0 1
0 0 0

⎤⎦ ,

which gives a general eigenvector of the form⎡⎣x1
x2
x3

⎤⎦ =

⎡⎣−x2
x2
0

⎤⎦ = x2

⎡⎣−1
1
0

⎤⎦ .

Hence the eigenspace E1(A) has basis {(−1, 1, 0)}. All we could come up with
here is two eigenvectors. As a matter of fact, they are linearly independent
since one is not a multiple of the other. But they aren’t enough and there is
no way to find a third eigenvector, since we have found them all! Therefore
we have no hope of diagonalizing this matrix according to the diagonalization
theorem. The problem is that A is defective, since the algebraic multiplicity
of λ = 2 exceeds the geometric multiplicity of this eigenvalue. ��

It would be very handy to have some working criterion for when we can
manufacture linearly independent sets of eigenvectors. The next theorem gives
us such a criterion.

Theorem 5.7. Let v1,v2, . . . ,vk be a set of eigenvectors of the matrix A
such that corresponding eigenvalues are all distinct. Then the set of vectors
v1,v2, . . . ,vk is linearly independent.
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Proof. Suppose the set is linearly dependent. Discard redundant vectors until
we have a smallest linearly dependent subset such as v1,v2, . . . ,vm with vi

belonging to λi. All the vectors have nonzero coefficients in a linear combina-
tion that sums to zero, for we could discard the ones that have zero coefficient
in the linear combination and still have a linearly dependent set. So there is
some linear combination of the form

c1v1 + c2v2 + · · · + cmvm = 0 (5.2)

with each cj 
= 0 and vj belonging to the eigenvalue λj . Multiply (5.2) by λ1
to obtain the equation

c1λ1v1 + c2λ1v2 + · · · + cmλ1vm = 0. (5.3)

Next multiply (5.2) on the left by A to obtain

0 = A(c1λ1v1 + c2λ1v2 + · · · + cmλ1vm) = c1Av1 + c2Av2 + · · · + cmAvm,

that is,
c1λ1v1 + c2λ2v2 + · · · + ckλmvm = 0. (5.4)

Now subtract (5.4) from (5.3) to obtain

0v1 + c2(λ1 − λ2)v2 + · · · + ck(λ1 − λm)vm = 0.

This is a new nontrivial linear combination (since c2(λ1 − λ2) 
= 0) of fewer
terms, that contradicts our choice of v1,v2, . . . ,vk. It follows that the original
set of vectors must be linearly independent. ��

Actually, a little bit more is true: if v1,v2, . . . ,vk is such that for any
eigenvalue λ of A, the subset of all these vectors belonging to λ is linearly
independent, then the conclusion of the theorem is valid. We leave this as an
exercise. Here’s an application of the theorem that is useful for many problems.

Corollary 5.2. If the n × n matrix A has n distinct eigenvalues, then A is
diagonalizable.

Proof. We can always find one nonzero eigenvector vi for each eigenvalue λi

of A. By the preceding theorem, the set v1,v2, . . . ,vn is linearly independent.
Thus A is diagonalizable by the diagonalization theorem. ��

Caution: Just because the n × n matrix A has fewer than n distinct eigen-
values, you may not conclude that it is not diagonalizable.

A simple example is the identity matrix, which is certainly diagonalizable
(it’s already diagonal!) but has only 1 as an eigenvalue.
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5.2 Exercises and Problems

Exercise 1. Are the following matrices diagonalizable?

(a)

⎡⎣2 0 1
0 0 0
0 0 1

⎤⎦ (b)

⎡⎣ 1 3 0
0 2 1
0 1 1

⎤⎦ (c)
[

2 1
0 3

]
(d)

⎡⎣ 1 0 0
−2 1 0

1 0 1

⎤⎦ (e)
[

2 1
−1 2

]

Exercise 2. Use eigensystems to determine whether the following matrices are
diagonalizable.

(a)

⎡⎣2 0 1
0 1 0
0 0 1

⎤⎦ (b)

⎡⎣ 2 1 1
0 1 1
0 1 1

⎤⎦ (c)
[

2 0
3 2

]
(d)

⎡⎢⎢⎣
2 1 −1 −1
0 1 0 2
0 0 1 1
0 0 0 2

⎤⎥⎥⎦
Exercise 3. Find a matrix P such that P−1AP is diagonal.

(a)

⎡⎣2 0 1
0 1 0
0 0 3

⎤⎦ (b)

⎡⎣ 1 2 2
0 0 0
0 2 2

⎤⎦ (c)
[

1 2
3 2

]
(d)

[
0 2
2 0

]
(e)

⎡⎢⎢⎣
2 1 0 0
0 0 −1 0
0 0 3 1
0 0 0 1

⎤⎥⎥⎦
Exercise 4. For each matrix A in Exercise 3 use the matrix P to find a formula
for Ak, k a positive integer.

Exercise 5. Given a matrix A, let q (x) be the product of linear factors x − λ,
where λ runs over each eigenvalue of A exactly once. For each of the follow-
ing matrices, confirm or deny the hypothesis that if p (A) = 0, then A is
diagonalizable.

(a)
[

2 0
3 3

]
(b)

[
2 0
3 2

]
(c)

⎡⎣2 1 1
0 1 0
0 0 1

⎤⎦ (d)

⎡⎣2 0 1
0 1 1
0 0 1

⎤⎦
Exercise 6. Given a matrix A, let p (x) be the characteristic polynomial of A.
For each of the matrices of Exercise 5, confirm or deny the hypothesis that if
p (A) = 0, then A is diagonalizable.

Exercise 7. Show that the matrix Jλ(2) =
[

λ 1
0 λ

]
is not diagonalizable for

any scalar λ and calculate the second, third, and fourth powers of the matrix.
What is a formula for Jλ(2)k, k a positive integer, based on these calculations?

Exercise 8. Show that the matrix Jλ(3) =

⎡⎣λ 1 0
0 λ 1
0 0 λ

⎤⎦ is not diagonalizable and

calculate the third, fourth, and fifth powers of the matrix. What is a formula
for Jλ(3)k, k > 2, based on these calculations?
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Exercise 9. Show that the matrices A =
[

0 2
2 0

]
and B =

[
2 6
0 −2

]
are similar

as follows: find diagonalizing matrices P, Q for A, B, respectively, that yield
identical diagonal matrices, set S = PQ−1, and confirm that S−1AS = B.

Exercise 10. Repeat Exercise 9 for the pair A =

⎡⎣2 1 1
0 3 0
0 0 3

⎤⎦ and B =

⎡⎣3 2 2
0 3 0
0 −1 2

⎤⎦.

Exercise 11. Compute sin
(

π
6 A

)
and cos

(
π
6 A

)
, where A =

[
2 4
0 −3

]
.

Exercise 12. Compute exp (A) and arctan (A), where A =

⎡⎣1 1 1
0 −1

2 0
0 0 1

2

⎤⎦.

*Problem 13. Show that any upper triangular matrix with identical diagonal
entries is diagonalizable if and only if it is already diagonal.

Problem 14. Suppose that A is an invertible matrix that is diagonalized by the
matrix P, that is, P−1AP = D is a diagonal matrix. Use this information to
find a diagonalization for A−1.

*Problem 15. Show that if A has no repeated eigenvalues, then the only ma-
trices B that commute with A (i.e., AB = BA) are scalar matrices B = cI.

Problem 16. Show that if A is diagonalizable, then so is A∗.

*Problem 17. Prove the Cayley–Hamilton theorem for diagonalizable matrices:
show that if p(x) is the characteristic polynomial of the diagonalizable matrix
A, then A satisfies its characteristic equation, that is, p(A) = 0.

Problem 18. Adapt the proof of Theorem 5.7 to prove that if eigenvectors
v1,v2, . . . ,vk are such that for any eigenvalue λ of A, the subset of all these
vectors belonging to λ is linearly independent, then the vectors v1,v2, . . . ,vk

are linearly independent.

*Problem 19. The thirteenth-century mathematician Leonardo Fibonacci dis-
covered the sequence of integers 1, 1, 2, 3, 5, 8, . . . called the Fibonacci sequence.
These numbers have a way of turning up in many applications. They can be
specified by the formulas

f0 = 1
f1 = 1

fk+2 = fk+1 + fk, k = 0, 1, . . . .

(a) Let x(k) = (fk+1, fk) and show that these equations are equivalent to
the matrix equations x(0) = (1, 1) and x(k+1) = Ax(k), n = 0, 1, . . . , where

A =
[

1 1
1 0

]
.

(b) Use part (a) and the diagonalization theorem to find an explicit formula
for the kth Fibonacci number.
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Problem 20. Suppose that the kill rate r of Example 5.8 is viewed as a variable
positive parameter. There is a value of the number r for which the eigenvalues
of the corresponding matrix are equal.

(a) Find this value of r and the corresponding eigenvalues by examining
the characteristic polynomial of the matrix.

(b) Use the available MAS (or CAS) to determine experimentally the long-
term behavior of populations for the value of r found in (a). Your choices of
initial states should include [100, 1000].

*Problem 21. Let A and B be matrices of the same size and suppose that A
has no repeated eigenvalues. Show that AB = BA if and only if A and B are
simultaneously diagonalizable, that is, a single matrix P diagonalizes both A
and B.

5.3 Applications to Discrete Dynamical Systems

Now we have enough machinery to come to a fairly complete understanding
of the discrete dynamical system

x(k+1) = Ax(k).

Diagonalizable Transition Matrix

Let us first examine the case that A is diagonalizable. So we assume that the
n×n matrix A is diagonalizable and that v1,v2, . . . ,vn is a complete linearly
independent set of eigenvectors of A belonging to the distinct eigenvalues
λ1, λ2, . . . , λn of A. Let us further suppose that these eigenvalues are ordered
so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| .
The eigenvectors v1,v2, . . . ,vn form a basis of Rn or Cn, whichever is

appropriate. In particular, we may write x(0) as a linear combination of these
vectors by solving the system [v1,v2, . . . ,vn] c = x(0) to obtain the coefficients
c1, c2, . . . , cn of the equation

x(0) = c1v1 + c2v2 + · · · + cnvn. (5.5)

Now we can see what the effect of multiplication by A is:

Ax(0) = A(c1v1 + c2v2 + · · · + cnvn)
= c1(Av1) + c2(Av2) + · · · + cn(Avn)
= c1λ1v1 + c2λ2v2 + · · · + cnλnvn.

Now apply A on the left repeatedly. Since x(k) = Akx(0), we see that
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x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn. (5.6)

Equation (5.6) is the key to understanding how the state vector changes
in a discrete dynamical system. Now we can see clearly that it is the size of
the eigenvalues that governs the growth of successive states. Because of this
fact, a handy quantity that can be associated with a matrix A (whether it is
diagonalizable or not) is the following.

Definition 5.10. The spectral radius ρ (A) of a matrix A with eigenvalues Spectral
Radiusλ1, λ2, . . . , λn is defined to be the number

ρ(A) = max {|λ1| , |λ2| , . . . , |λn|} .

If λk = ρ (A) and λk is the only eigenvalue with this property, then λk is the
dominant eigenvalue of A.

Thus ρ(A) is the largest absolute value of the eigenvalues of A. We summarize
a few of the conclusions about a matrix that can be drawn from the spectral
radius.

Theorem 5.8. Let the transition matrix for a discrete dynamical system be
the n × n diagonalizable matrix A as described above. Let x(0) be an initial
state vector given as in equation (5.5). Then the following are true:

(1) If ρ(A) < 1, then limk→∞ x(k) = 0.
(2) If ρ(A) = 1, then the sequence of norms

{∥∥x(k)
∥∥}∞

k=0 is bounded.
(3) If ρ(A) = 1 and the only eigenvalues λ of A with |λ| = 1 are λ = 1, then

limk→∞ x(k) is an element of E1(A), hence either an eigenvector or 0.
(4) If ρ(A) > 1, then for some choices of x(0) we have limk→∞ ‖x‖ = ∞.

Proof. Suppose that ρ(A) < 1. Then for all i, λk
i → 0 as k → ∞, so we see

from equation (5.6) that x(k) → 0 as k → ∞, which is what (1) says. Next
suppose that ρ(A) = 1. Then take norms of equation (5.6) to obtain that,
since each |λi| ≤ 1,∥∥∥x(k)

∥∥∥ =
∥∥c1λ

k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn

∥∥
≤ |λ1|k ‖c1v1‖ + |λ2|k ‖c2v2‖ + · · · + |λn|k ‖cnvn‖
≤ ‖c1v1‖ + ‖c2v2‖ + · · · + ‖cnvn‖ .

Therefore the sequence of norms
∥∥x(k)

∥∥ is bounded by a constant that depends
only on

∥∥x(0)
∥∥, which proves (2). The proof of (3) follows from inspection of

(5.6): observe that the eigenvalue powers λk
j are equal to 1 if λ = 1, and

otherwise the powers tend to zero, since all other eigenvalues are less than 1
in absolute value. Hence if any coefficient cj of an eigenvector vj corresponding
to 1 is not zero, the limiting vector is an eigenvector corresponding to λ = 1.
Otherwise, the coefficients all tend to 0 and the limiting vector is 0. Finally,
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if ρ(A) > 1, then for x(0) = c1v1, we have that x(k) = c1λ
k
1v1. However,

|λ1| > 1, so that
∣∣λk

1

∣∣ → ∞, as k → ∞, from which the desired conclusion for
(4) follows. ��

We should note that the cases of the preceding theorem are not quite
exhaustive. One possibility that is not covered is the case that ρ(A) = 1
and A has other eigenvalues of absolute value 1. In this case the sequence of
vectors x(k) is bounded in norm, i.e.,

∥∥x(k)
∥∥ ≤ K for some constant K and

indices k = 0, 1, . . ., but need not converge to anything. An example of this
phenomenon is given in Example 5.13.

Example 5.11. Apply the preceding theory to the population of Example 5.8.

Solution. We saw in this example that the transition matrix is

A =
[

0.6 0.4
−0.35 1.4

]
.

The characteristic equation of this matrix is

det
[

0.6 − λ 0.4
−0.35 1.4 − λ

]
= (0.6 − λ)(1.4 − λ) + 0.35 · 0.4

= λ2 − 2λ + 0.84 + 0.14

= λ2 − 2λ + 0.98,

whence we see that the eigenvalues of A are

λ = 1.0 ± √
4 − 3.92/2 ≈ 1.1414, 0.85858.

A calculation that we leave to the reader also shows that the eigenvectors of
A corresponding to these eigenvalues are approximately v1 = (1.684, 2.2794)
and v2 = (.8398, .54289), respectively. Since ρ(A) ≈ 1.1414 > 1, it follows
from (1) of Theorem 5.8 that for every initial state except a multiple of v2,
the limiting state will grow without bound. Now if we imagine an initial state
to be a random choice of values for the coefficients c1 and c2, we see that
the probability of selecting c1 = 0 is for all practical purposes 0. Therefore,
with probability 1, we will make a selection with c1 
= 0, from which it follows
that the subsequent states will tend to arbitrarily large multiples of the vector
v1 = (1.684, 2.2794).

Finally, we can offer some advice to the scientists who are thinking of
introducing a predator bird to control the frog population of this example:
don’t do it! Almost any initial distribution of birds and frogs will result in a
population of birds and frogs that grows without bound. Therefore, we will
be stuck with both nonindigenous frogs and birds. To drive the point home,
start with a population of 10,000 frogs and 100 birds. In 20 years we will have
a population state of
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[
0.6 0.4

−0.35 1.4

]20 [ 100
10,000

]
≈

[
197,320
267,550

]
.

In view of our eigensystem analysis, we know that these numbers are no fluke.
Almost any initial population will grow similarly. The conclusion is that we
should try another strategy or leave well enough alone in this ecology. ��
Example 5.12. Apply the preceding theory to the Markov chain Exam-
ple 2.18.

Solution. Recall that this example led to a Markov chain whose transition
matrix is given by

A =
[

0.7 0.4
0.3 0.6

]
.

Conveniently, we have already computed the eigenvalues and vectors of 10A
in Example 5.2. There we found eigenvalues λ = 10, 3, with corresponding
eigenvectors v2 = (1,−1) and v1 = (4/3, 1), respectively. It follows from Ex-
ample 5.2 that the eigenvalues of A are λ = 1, 0.3, with the same eigenvectors.
Therefore 1 is the dominant eigenvalue. Any initial state will necessarily in-
volve v1 nontrivially, since multiples of v2 are not probability distribution
vectors (the entries are of opposite signs). Thus we may apply part 3 of The-
orem 5.8 to conclude that for any initial state, the only possible nonzero
limiting state vector is some multiple of v1. Which multiple? Since the sum
of the entries of each state vector x(k) sum to 1, the same must be true of the
initial vector. Since

x(0) = c1v1 + c2v2 = c1

[
4/3
1

]
+ c2

[
1

−1

]
=

[
c1 (4/3) + c21
c11 + c2 (−1)

]
,

we see that

1 = c1 (4/3) + c21 + c11 + c2 (−1) = c1(7/3),

so that c1 = 3/7. Now use the facts that λ1 = 1, λ2 = 0.3, and equation (5.6)
with n = 2 to see that the limiting state vector is

lim
k→∞

c11kv1 + c2 (4/3)k v2 = c1v1 =
[

4/7
3/7

]
≈

[
.57143
.42857

]
.

Compare this vector with the result obtained by direct calculation in Exam-
ple 2.19. ��

When do complex eigenvalues occur and what do they mean? In general,
all we can say is that the characteristic polynomial of a matrix, even if it
is real, may have complex roots. This is an unavoidable fact, but it can be
instructive. To see how this is so, consider the following example.



276 5 THE EIGENVALUE PROBLEM

Example 5.13. Suppose that a discrete dynamical system has transition ma-

trix A =
[

0 a
−a 0

]
, where a is a positive real number. What can be said about

the states x(k), k = 1, 2, . . ., if the initial state x(0) is an arbitrary nonzero
vector?

Solution. The eigenvalues of A are ±ai. Now if a < 1, then according to part
1 of Theorem 5.8 the limiting state is 0. Part 3 of that theorem cannot occur
for our matrix A since 1 cannot be an eigenvalue. So suppose a ≥ 1. Since the
eigenvalues of A are distinct, there is an invertible matrix P such that

P−1AP = D =
[

ai 0
0 −ai

]
.

So we see from equation (5.1) that

Ak = PDkP−1 = P

[
(ai)k 0

0 (−ai)k

]
P−1.

The columns of P are eigenvectors of A, hence complex. We may take real
parts of the matrix Dk to get a better idea of what the powers of A do. Now
i = ei π

2 , so we may use de Moivre’s formula to get


((ai)k) = ak cos(k
π

2
) = (−1)k/2ak if k is even.

We know that x(k) = Akx(0). In view of the above equation, we see that
the states x(k) will oscillate around the origin. In the case that a = 1 we
expect the states to remain bounded, but if a > 1, we expect the values to
become unbounded and oscillate in sign. This oscillation is fairly typical of
what happens when complex eigenvalues are present, though it need not be
as rapid as in this example. ��

Nondiagonalizable Transition Matrix

How can a matrix be nondiagonalizable? All the examples we have considered
so far suggest that nondiagonalizability is the same as being defective. Put
another way, diagonalizable equals nondefective. This is exactly right, as the
following shows.

Theorem 5.9. The matrix A is diagonalizable if and only if the geometric
multiplicity of every eigenvalue equals its algebraic multiplicity.

Proof. Suppose that the n × n matrix A is diagonalizable. According to the
diagonalization theorem, there exists a complete linearly independent set of
eigenvectors v1,v2, . . . ,vn of the matrix A. The number of these vectors be-
longing to a given eigenvalue λ of A is a number d(λ) at most the geometric



5.3 Applications to Discrete Dynamical Systems 277

multiplicity of λ, since they form a basis of the eigenspace Eλ(A). Hence their
number is at most the algebraic multiplicity m(λ) of λ by Theorem 5.3. Since
the sum of all the numbers d (λ) is n, as is the sum of all the algebraic mul-
tiplicities m(λ), it follows that the sum of the geometric multiplicities must
also be n. The only way for this to happen is that for each eigenvalue λ,
we have that geometric multiplicity equals algebraic multiplicity. Thus, A is
nondefective.

Conversely, if geometric multiplicity equals algebraic multiplicity, we can
produce m(λ) linearly independent eigenvectors belonging to each eigenvalue
λ. Assemble all of these vectors and we have n eigenvectors such that for any
eigenvalue λ of A, the subset of all these vectors belonging to λ is linearly
independent. Therefore, the entire set of eigenvectors is linearly independent
by the remark following Theorem 5.7. Now apply the diagonalization theorem
to obtain that A is diagonalizable. ��

The last item of business in our examination of diagonalization is to prove
part 2 of Theorem 5.3, which asserts: for each eigenvalue µ of A, if m(µ) is
the algebraic multiplicity of µ, then

1 ≤ dim Eµ(A) ≤ m(µ).

To see why this is true, suppose the eigenvalue µ has geometric multiplicity
k and that v1,v2, . . . ,vk is a basis for the eigenspace Eµ(A). We know from
the Steinitz substitution theorem that this set can be expanded to a basis of
the vector space Rn (or Cn), say

v1,v2, . . . ,vk,vk+1, . . . ,vn.

Form the nonsingular matrix

S = [v1,v2, . . . ,vn].

Let

B = [S−1Avk+1, S
−1Avk+2, . . . , S

−1Avn] =
[

F
G

]
,

where F consists of the first k rows of B and G the remaining rows. Thus we
obtain that

AS = [Av1, Av2, . . . , Avn]
= [µv1, µv2, . . . , µvk, Avk+1, . . . , Avn]

= S

[
µIk F
0 G

]
.

Now multiply both sides on the left by S−1, and we have

C = S−1AS =
[

µIk F
0 G

]
.
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We see that the block upper triangular matrix C is similar to A. By part 2 of
Theorem 5.5 we see that A and C have the same characteristic polynomial.
However, the characteristic polynomial of C is

p(λ) = det
(

λIn −
[

µIk F
0 G

])
= det

([
(λ − µ)Ik F

0 G − λIn−k

])
= det(λ − µ)Ik · det (G − λIn−k)

= (λ − µ)k det (G − λIn−k) .

The product term above results from Exercise 23 of Section 2.6. It follows
that the algebraic multiplicity of µ as a root of p(λ) is at least as large as k,
which is what we wanted to prove.

Our newfound insight into nondiagonalizable matrices is somewhat of a
negative nature: they are defective. Unfortunately, this isn’t much help in
determining the behavior of discrete dynamical systems with a nondiagonal-
izable transition matrix. If matrices are not diagonalizable, what simple kind
of matrix are they reducible to? There is a very nice answer to this question;
this answer requires the notion of a Jordan block, which can be defined as a
d × d matrix of the form

Jd(λ) =

⎡⎢⎢⎢⎢⎣
λ 1

λ
. . .
. . . 1

λ

⎤⎥⎥⎥⎥⎦ ,

where the entries off the main diagonal and first superdiagonal are understood
to be zeros. This matrix is very close to being a diagonal matrix. Its true value
comes from the following classical theorem, the proof of which is somewhat
beyond the scope of this text. We refer the reader to the textbooks [12] and [11]
of the bibliography for a proof. These texts are excellent references for higher-
level linear algebra and matrix theory.

Theorem 5.10. Every matrix A is similar to a block diagonal matrix thatJordan
Canonical

Form
Theorem

consists of Jordan blocks down the diagonal. Moreover, these blocks are
uniquely determined by A up to order.

In particular, if J = S−1AS, where J consists of Jordan blocks down the
diagonal, we call J “the” Jordan canonical form of the matrix A, which sug-
gests there is only one. This is a slight abuse of language, since the order of
occurrence of the Jordan blocks of J could vary. To fix ideas, let’s consider an
example.

Example 5.14. Find all possible Jordan canonical forms for a 3 × 3 matrix
A whose eigenvalues are −2, 3, 3.
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Solution. Notice that each Jordan block Jd(λ) contributes d eigenvalues λ
to the matrix. Therefore, there can be only one 1 × 1 Jordan block for the
eigenvalue −2 and either two 1 × 1 Jordan blocks for the eigenvalue 3 or one
2 × 2 block for the eigenvalue 3. Thus, the possible Jordan canonical forms
for A (up to order of blocks) are⎡⎣−2 0 0

0 3 0
0 0 3

⎤⎦ and

⎡⎣−2 0 0
0 3 1
0 0 3

⎤⎦ . �

Notice that if all Jordan blocks are 1×1, then the Jordan canonical form of
a matrix is simply a diagonal matrix. Thus, another way to say that a matrix
is diagonalizable is to say that its Jordan blocks are 1 × 1. In reference to the
previous example, we see that if the matrix has the first Jordan canonical form,
then it is diagonalizable, while if it has the second, it is nondiagonalizable.

Now suppose that the matrix A is a transition matrix for a discrete dy-
namical system and A is not diagonalizable. What can one say? For one thing,
the Jordan canonical form can be used to recover part 1 of Theorem 5.8. Part
4 remains valid as well; the proof we gave does not depend on A being diag-
onalizable. Unfortunately, things are a bit more complicated as regards parts
(2) and (3). In fact, they fail to be true, as the following example shows.

Example 5.15. Let A = J2(1). Show how parts (2) and (3) of Theorem 5.8
fail to be true for this matrix.

Solution. We check that

A2 =
[

1 1
0 1

] [
1 1
0 1

]
=

[
1 2
0 1

]
,

A3 =
[

1 2
0 1

] [
1 1
0 1

]
=

[
1 3
0 1

]
,

and in general,

Ak =
[

1 k
0 1

]
.

Now take x(0) = (0, 1), and we see that

x(k) = Akx(0) =
[

1 k
0 1

] [
0
1

]
=

[
k
1

]
.

It follows that the norms
∥∥x(k)

∥∥ =
√

k2 + 1 are not a bounded sequence,
so that part 2 of the theorem fails to be true. Also, the sequence of vectors
x(k) does not converge to any vector in spite of the fact that 1 is the largest
eigenvalue of A. Thus (3) fails as well. ��

In spite of this example, the news is not all negative. It can be shown by
way of the Jordan canonical form that a restricted version of (3) holds. This
kind of result is known as an ergodic theorem. Recall that stochastic matrices Ergodic

Matrixfor which this theorem holds are called ergodic.
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Theorem 5.11. If A is the transition matrix for a discrete dynamical systemErgodic
Theorem and 1 is the dominant eigenvalue of A, then there is a vector x∗ such that

limk→∞ x(k) = cx∗, where the scalar c is uniquely determined by x(0).

5.3 Exercises and Problems

Exercise 1. Find the spectral radius of each of the following matrices and de-
termine whether there is a dominant eigenvalue.

(a)
[

2 0
1 1

]
(b)

[
2 4

−1 −2

]
(c)

⎡⎣ 3 4 −1
−2 −2 2

1 1 −1

⎤⎦ (d) 1
2

⎡⎣1 0 0
0 −4 3
0 −2 1

⎤⎦ (e)
[

0 1
0 −1

2

]

Exercise 2. Find the spectral radius and dominant eigenvalue, if any.

(a)
[−7 −6

9 8

]
(b) 1

3

[
1 3
2 0

]
(c)

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦ (d) 1
2

⎡⎣1 0 1
1 0 0
0 2 1

⎤⎦ (e)
[

1 1
−1 −1

]

Exercise 3. For initial state x(0)and transition matrix A below find an eigen-
system of A and use this to produce a formula for the kth state x(k) in the
form of equation (5.6).

(a)
[

1
0

]
, 1

2

[
3 2

−4 −3

]
(b)

⎡⎣ 1
2
1

⎤⎦,

⎡⎣ 2 0 0
0 3 1
0 0 2

⎤⎦ (c)
[

3
2

]
,
[

0 −2
3 5

]

Exercise 4. Repeat Exercise 3 for these pairs x(0), A.

(a)
[

0
2

]
, 1

2

[
3 0
8 −1

]
(b)

⎡⎣ 1
3
2

⎤⎦,

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ (c)

⎡⎣1
0
1

⎤⎦,

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦
Exercise 5. If the matrices of Exercise 1 are transition matrices, for which do
all x(k) approach 0 as k → ∞? Does the ergodic theorem apply to any of
these?

Exercise 6. If the matrices of Exercise 2 are transition matrices, for which do
all x(k) remain bounded as k → ∞? Are any of these matrices ergodic?

Exercise 7. You are given that a 5×5 matrix has eigenvalues 2, 2, 3, 3, 3. What
are the possible Jordan canonical forms for this matrix?

Exercise 8. What are the possible Jordan canonical forms for a 6 × 6 matrix
with eigenvalues −1,−1,−1, 4, 4, 4?

Exercise 9. Let A = J3(2), a Jordan block. Show that the Cayley–Hamilton
theorem is valid for A, that is, p (A) = 0, where p (x) is the characteristic
polynomial of A.
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Exercise 10. Let A =
[

J2 (1) 0
0 J2 (1)

]
. Verify that p (A) = 0, where p (x) is the

characteristic polynomial of A, and find a polynomial q (x) of degree less than
4 such that q (A) = 0.

Exercise 11. The three-state insect model of Example 2.20 yields a transition
matrix

A =

⎡⎣0.2 0 0.25
0.6 0.3 0
0 0.6 0.8

⎤⎦.

Use a CAS or MAS to calculate the eigenvalues of this matrix. Deduce that A
is diagonalizable and determine the approximate growth rate from one state
to the next, given a random initial vector.

Exercise 12. The financial model of Example 2.24 gives rise to a discrete dy-
namical system x(k+1) = Ax(k), where the transition matrix is

A =

⎡⎣1 0.06 0.12
1 0 0
0 1 0

⎤⎦.

Use a CAS or MAS to calculate the eigenvalues of this matrix. Deduce that A
is diagonalizable and determine the approximate growth rate from one state
to the next, given a random initial vector. Compare the growth rate with a
flat interest rate.

Exercise 13. A (two) age structured population model results in a transition

matrix A =
[

0 f2
s1 0

]
with positive per-capita reproductive rate f2 and survival

rate s1. There exists a positive eigenpair (λ,p) for A. Assume this and use
the equation Ap = λp to express p = (p1, p2) in terms of p1, and to find a
polynomial equation in terms of birth and survival rates that λ satisfies.

Exercise 14. Repeat Exercise 13 for the (three) age structured model with
transition matrix

A =

⎡⎣ 0 f2 f3
s1 0 0
0 s2 0

⎤⎦
where f2, f3, s1, s2 are all positive.

*Problem 15. Let A be a 2 × 2 transition matrix of a Markov chain where A
is not the identity matrix.

(a) Show that A can be written in the form A =
[

1 − a b
a 1 − b

]
for suitable

real numbers 0 ≤ a, b ≤ 1.
(b) Show that (b, a) and (1,−1) are eigenvectors for A.
(c) Find a formula for the kth state x(k) in the form of equation (5.6).
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Problem 16. Let A =
[

a −b
b a

]
be a transition matrix for a discrete dynamical

system. Show that A is not ergodic for any choice of a, b ∈ R.

Problem 17. Part (3) of Theorem 5.8 suggests that two possible limiting values
are possible. Use your CAS or MAS to carry out this experiment: Compute
a random 2 × 1 vector and normalize it by dividing by its length. Let the
resulting initial vector be x(0) = (x1, x2) and compute the state vector x(20)

using the transition matrix A of Example 5.12. Do this for a large number of
times (say 500) and keep count of the number of times x(20) is close to 0, say
‖x(20)‖ < 0.1. Conclusions?

Problem 18. Use a CAS or MAS to construct a 3× 10 table whose jth column
is Ajx, where x = (1, 1, 1) and

A =

⎡⎣ 10 17 8
−8 −13 −6

4 7 4

⎤⎦ .

What can you deduce about the eigenvalues of A based on inspection of this
table? Give reasons. Check your claims by finding the eigenvalues of A.

Problem 19. A species of bird can be divided into three age groups: age less
than 2 years for group 1, age between 2 and 4 years for group 2, and age
between 4 and 6 years for the third group. Assume that these birds have at
most a 6-year life span. It is estimated that the survival rates for birds in
groups 1 and 2 are 50% and 75%, respectively. Also, birds in groups 1, 2, and
3 produce 0, 1, and 3 offspring on average in any biennium (period of 2 years).
Model this bird population as a discrete dynamical system and analyze the
long-term change in the population. If the survival rates are unknown, but
the population is known to be stable, assume that survival rates for groups 2
and 3 are equal and estimate this number.

5.4 Orthogonal Diagonalization

We are going to explore some very remarkable facts about Hermitian and
real symmetric matrices. These matrices are diagonalizable, and moreover,Unitarily and

Orthogonally
Diagonaliz-

able
Matrices

diagonalization can be accomplished by a unitary (orthogonal if A is real)
matrix. This means that P−1AP = P ∗AP is diagonal. In this situation we say
that the matrix A is unitarily (orthogonally) diagonalizable. Orthogonal and
unitary matrices are particularly attractive since the calculation is essentially
free and error-free as well: P−1 = P ∗.
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Eigenvalue of Hermitian Matrices

As a first step, we need to observe a curious property of Hermitian matrices.
It turns out that their eigenvalues are guaranteed to be real, even if the matrix
itself is complex. This is one reason that one might prefer to work with these
matrices.

Theorem 5.12. If A is a Hermitian matrix, then the eigenvalues of A are
real.

Proof. Let λ be an eigenvalue of A with corresponding nonzero eigenvector x,
so that Ax = λx. Form the scalar c = x∗Ax. We have that

c = c∗ = (x∗Ax)∗ = x∗A∗(x∗)∗ = x∗Ax = c.

It follows that c is a real number. However, we also have that

c = x∗λx = λx∗x = λ ‖x‖2

so that λ = c/ ‖x‖2 is also real. ��

Example 5.16. Show that Theorem 5.12 is applicable if A =
[

1 1 − i
1 + i 0

]
and verify the conclusion of the theorem.

Solution. First notice that

A∗ =
[

1 1 − i
1 + i 0

]∗
=

[
1 1 + i

1 − i 0

]T

=
[

1 1 − i
1 + i 0

]
= A.

It follows that A is Hermitian and the preceding theorem is applicable. Now
we compute the eigenvalues of A by solving the characteristic equation

0 = det(A − λI) = det
[

1 − λ 1 − i
1 + i −λ

]
= (1 − λ)(−λ) − (1 + i) (1 − i)

= λ2 − λ − 2 = (λ + 1)(λ − 2).

Hence the eigenvalues of A are λ = −1, 2, which are real. ��
Caution: Although the eigenvalues of a Hermitian matrix are guaranteed to
be real, the eigenvectors may not be real unless the matrix in question is real.

The Principal Axes Theorem

A key fact about Hermitian matrices is the so-called principal axes theorem; its
proof is a simple consequence of the Schur triangularization theorem which is
proved in Section 5.5. We will content ourselves here with stating the theorem
and supplying a proof for the case that the eigenvalues of A are distinct. This
proof also shows us one way to carry out the diagonalization process.
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Theorem 5.13. Every Hermitian matrix is unitarily diagonalizable, and ev-Principal Axes
Theorem ery real symmetric matrix is orthogonally diagonalizable.

Proof. Let us assume that the eigenvalues of the n × n matrix A are distinct.
We saw in Theorem 5.12 that the eigenvalues of A are real. Let these eigen-
values be λ1, λ2, . . . , λn. Now find an eigenvector vk for each eigenvalue λk.
We can assume that each vk is of unit length by replacing it by the vector
divided by its length if necessary. We now have a diagonalizing matrix, as
prescribed by Theorem 5.6 (the diagonalization theorem), namely the matrix
P = [v1,v2, . . . ,vn].

Recalling that Avj = λjvj , Avk = λkvk, and that A∗ = A, we see that

λkv∗
jvk = v∗

j λkvk = v∗
j Avk = (Avj)∗vk = (λjvj)∗vk = λjv∗

jvk.

Now bring both terms to one side of the equation and factor out the term
v∗

jvk to obtain
(λk − λj)v∗

jvk = 0.

Thus if λk 
= λj , it follows that vj · vk = v∗
jvk = 0. In other words the

eigenvectors v1,v2, . . . ,vn form an orthonormal set. Therefore, the matrix
P is unitary. If A is real, then so are the vectors v1,v2, . . . ,vn and P is
orthogonal in this case. ��

The proof we have just given suggests a practical procedure for diagonal-
izing a Hermitian or real symmetric matrix. The only additional information
that we need for the complete procedure is advice on what to do if the eigen-
value λ is repeated. This is a sticky point. What we need to do in this case is
find an orthogonal basis of the eigenspace Eλ(A) = N (A − λI). It is always
possible to find such a basis using the so-called Gram–Schmidt algorithm,
which is discussed in Chapter 6. For the hand calculations that we do in this
chapter, the worst situation that we will encounter is that the eigenspace
Eλ is two-dimensional, say with a basis v1,v2. In this case replace v2 by
v∗

2 = v2 − projv1
v2. We know that v∗

2 is orthogonal to v1 (see Theorem 6.4),
so that v1,v∗

2 is an orthogonal basis of Eλ(A). We illustrate the procedure
with a few examples.

Example 5.17. Find an eigensystem for the matrix A =

⎡⎣1 2 0
2 4 0
0 0 5

⎤⎦ and use

this to orthogonally diagonalize A.

Solution. Notice that A is real symmetric, so diagonalizable by the principal
axes theorem. First calculate the characteristic polynomial of A as

|A − λI| =

∣∣∣∣∣∣
1 − λ 2 0

2 4 − λ 0
0 0 5 − λ

∣∣∣∣∣∣
= ((1 − λ)(4 − λ) − 2 · 2) (5 − λ)

= −λ(λ − 5)2,
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so that the eigenvalues of A are λ = 0, 5, 5.
Next find eigenspaces for each eigenvalue. For λ = 0, we find the null space

by row reduction,

A − 0I =

⎡⎣ 1 2 0
2 4 0
0 0 5

⎤⎦−−−−−−→
E21(−2)

⎡⎣1 2 0
0 0 0
0 0 5

⎤⎦−−−−→
E23

E2( 1
5 )

⎡⎣1 2 0
0 0 1
0 0 0

⎤⎦ ,

so that the null space is spanned by the vector (−2, 1, 0). Normalize this vector
to obtain v1 = (−2, 1, 0)/

√
5. Next compute the eigenspace for λ = 5 via row

reductions,

A − 5I =

⎡⎣−4 2 0
2 −1 0
0 0 0

⎤⎦−−−−−−→
E21(1/2)

⎡⎣−4 2 0
0 0 0
0 0 0

⎤⎦−−−−−−−→
E1(−1/4)

⎡⎣1 −1/2 0
0 0 0
0 0 0

⎤⎦ ,

which gives two eigenvectors, (1/2, 1, 0) and (0, 0, 1). Normalize these to get
v2 = (1, 2, 0)/

√
5 and v3 = (0, 0, 1). In this case v2 and v3 are already or-

thogonal, so the diagonalizing matrix can be written as

P = [v1,v2,v3] =
1√
5

⎡⎣−2 1 0
1 2 0
0 0

√
5

⎤⎦ .

We leave it to the reader to check that PT AP =

⎡⎣0 0 0
0 5 0
0 0 5

⎤⎦. ��

Example 5.18. Let A =
[

1 1 − i
1 + i 0

]
as in Example 5.16. Unitarily diago-

nalize this matrix.

Solution. In Example 5.16 we computed the eigenvalues to be λ = −1, 2.
Next find eigenspaces for each eigenvalue. For λ = −1, we find the null space
by row reduction,

A + I =
[

2 1 − i
1 + i 1

]−−−−−−−−−−−−→
E21(−(1 + i)/2)

[
2 1 − i
0 0

] −−−−−→
E1(1/2)

[
1 (1 − i)/2
0 0

]
,

so that the null space is spanned by the vector ((−1 + i) /2, 1). A similar
calculation shows that a basis of eigenvectors for λ = 2 consists of the vector
((−1 − i) /2, 1). Normalize these vectors to obtain u1 = ((−1 + i) /2, 1) /

√
3/2

and u2 = (−1, (−1 − i) /2) /
√

3/2. So set

U =

√
2
3

[ −1+i
2 −1

1 −1−i
2

]
and obtain that (the reader should check this)
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U−1AU = U∗AU =
[−1 0

0 2

]
. �

5.4 Exercises and Problems

Exercise 1. Show that the following matrices are real symmetric and find or-
thogonal matrices that diagonalize these matrices.

(a)
[−2 2

2 1

]
(b)

[
2 36

36 23

]
(c)

⎡⎣1 2 0
2 1 0
0 0 1

⎤⎦ (d)

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦
Exercise 2. Show that the following matrices are Hermitian and find unitary
matrices that diagonalize these matrices.

(a)
[

1 1 + i
1 − i 2

]
(b)

[
3 i

−i 0

]
(c)

⎡⎣0 1 0
1 0 i
0 −i

⎤⎦ (d)

⎡⎣ 1 1 + i 0
1 − i 0 0

0 0 2

⎤⎦
Exercise 3. Show that these matrices are orthogonal and compute their eigen-
values. Determine whether it is possible to orthogonally or unitarily diagonal-
ize these matrices. (Hint: look for orthogonal sets of eigenvectors.)

(a)

⎡⎣ 0 1 0
−1 0 0

0 0 −1

⎤⎦ (b) 1√
2

[
1 1

−1 1

]
(c)

⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦
Exercise 4. Show that these matrices are unitary and compute their eigenval-
ues. Unitarily diagonalize these matrices.

(a) 1√
5

[
2 −1
1 2

]
(b)

⎡⎣ 0 i 0
−1 0 0

0 0 −i

⎤⎦ (c) 1
5
√

2

[
5 −3 + 4i

3 + 4i 5

]

Exercise 5. A square matrix A is called normal if AA∗ = A∗A. Which of the
matrices in Exercises 3 and 1 are normal?

Exercise 6. Which of the matrices in Exercise 4 are normal or Hermitian?

Exercise 7. Use orthogonal diagonalization to find a formula for the kth power

of A =

⎡⎣1 1 1
1 0 0
1 0 0

⎤⎦.

Exercise 8. Use unitary diagonalization to find a formula for the kth power of

A =
[

3 i
−i 3

]
.
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Exercise 9. Let A =

⎡⎣ 2 1 0
1 3 −1
0 −1 2

⎤⎦. The eigenvalues of A are 1, 2, and 4. Find

an orthogonal matrix P that diagonalizes A to D = diag {1, 2, 4}, calculate
B = P diag

{
1,

√
2, 4

}
PT , and show that B is a symmetric positive definite

square root of A, that is, B2 = A and B is symmetric positive definite.

Exercise 10. Let A =

⎡⎣ 1 −1 0
−1 2 −i

0 i 1

⎤⎦. The eigenvalues of A are 0, 1, and 3. Find

a unitary matrix P that diagonalizes A to D = diag {0, 1, 3} and confirm that
B = P diag

{
0, 1,

√
3
}

P ∗ is a Hermitian square root of A.

Problem 11. Show that if A is orthogonally diagonalizable, then so is AT .

*Problem 12. Let B be a Hermitian matrix. Show that the eigenvalues of B
are positive if and only if B is a positive definite matrix.

Problem 13. Show that if the real matrix A is orthogonally diagonalizable,
then A is symmetric.

Problem 14. Show that if the real matrix A is skew-symmetric (AT = −A),
then iA is Hermitian.

Problem 15. Suppose that A is symmetric and orthogonal. Prove that the only
possible eigenvalues of A are ±1.

*Problem 16. Let A be real symmetric positive definite matrix. Show that A
has a real symmetric positive definite square root, that is, there is a symmetric
positive definite matrix S such that S2 = A.

*Problem 17. Let A be any square real matrix and show that the eigenvalues
of AT A are all nonnegative.

5.5 *Schur Form and Applications

Recall that matrices A and B are similar if there is an invertible matrix S such
that B = S−1AS; if the transformation matrix S is unitary, then S−1 = S∗.
The main object of this section is to prove a famous theorem in linear algebra
that provides a nice answer to the following question: if we wish to use only
orthogonal (or unitary) matrices as similarity transformation matrices, what
is the simplest form to which a given matrix A can be transformed? It would
be nice if we could say something like “diagonal” or “Jordan canonical form.”
Unfortunately, neither is possible. However, upper triangular matrices are very
nice special forms of matrices. In particular, we can see the eigenvalues of an
upper triangular matrix at a glance. That makes the following theorem ex-
tremely attractive. Its proof is also very interesting, in that it actually suggests
an algorithm for computing the so-called Schur triangular form.
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Theorem 5.14. Let A be an arbitrary square matrix. Then there exists aSchur Trian-
gularization

Theorem
unitary matrix U such that U∗AU is an upper triangular matrix. If A and its
eigenvalues are real, then U can be chosen to be orthogonal.

Proof. To get started, take k = 0 and V0 = I. Suppose we have reached the
kth stage where we have a unitary matrix Vk such that

V ∗
k AVk =

⎡⎢⎢⎢⎣
λ1 ∗ · · · ∗
...

. . . ∗ ...
0 · · · λk ∗
0 · · · 0 B

⎤⎥⎥⎥⎦ =
[

Rk C
0 B

]

with the submatrix Rk upper triangular. Compute an eigenvalue λk+1 of the
submatrix B and a corresponding eigenvector w of unit length in the standard
norm. Compute an eigenvalue λk+1 of B and a corresponding eigenvector w
of unit length in the standard norm. We may assume that the first coordinate
of w is real. If not, replace w by e−iθw where θ is a polar argument of the
first coordinate of w. This does not affect the length of w, and any multiple
of w is still an eigenvector of A. Now let v = w−e1, where e1 = (1, 0, . . . , 0).
Form the (possibly complex) Householder matrix Hv. Since w · e1 is real, it
follows from Exercise 5 that Hvw = e1. Now recall that Householder matrices
are unitary and symmetric, so that H∗

v = Hv = H−1
v . Hence

H∗
vBHve1 = HvBH−1

v e1 = HvBw = Hvλ1w = λ1e1.

Therefore, the entries under the first row and in the first column of H∗
vBHv

are zero. Form the unitary matrix

Vk+1 =
[

Ik 0
0 Hv

]
Vk

and obtain that

V ∗
k+1AVk+1 =

[
Ik 0
0 Hv

]
V ∗

k AVk

[
Ik 0
0 Hv

]
=

[
Ik 0
0 Hv

] [
Rk C
0 B

] [
Ik 0
0 Hv

]
=

[
Rk CHv

0 H∗
vBHv

]
.

This new matrix is upper triangular in the first k + 1 columns, so we can
continue in this fashion until we reach the last column, at which point we set
U = Vn to obtain that UHAU is upper triangular.

Finally, notice that if the eigenvalues and eigenvectors that we calculate
are real, which would certainly be the case if A and the eigenvalues of A were
real, then the Householder matrices used in the proof are all real, so that the
matrix U is orthogonal. ��

Of course, the upper triangular matrix T and triangularizing matrix U are
not unique. Nonetheless, this is a very powerful theorem. Consider what it
says in the case that A is Hermitian: the principal axes theorem is a simple
special case of it.
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Corollary 5.3. Every Hermitian matrix is unitarily (orthogonally, if the ma-
trix is real) diagonalizable. Principal Axes

Theorem
Proof. Let A be Hermitian. According to the Schur triangularization theorem
there is a unitary matrix U such that U∗AU = R is upper triangular. We
check that

R∗ = (U∗AU)∗ = U∗A∗ (U∗)∗ = U∗AU = R.

Therefore R is both upper and lower triangular. This makes R a diagonal
matrix. If A is real symmetric, then A and its eigenvalues are real. By the
triangularization theorem U can be chosen orthogonal. ��

Another application of the Schur triangularization theorem is that we can
show the real significance of normal matrices. This term has appeared in Normal

Matrixseveral exercises. Recall that a matrix A is normal if A∗A = AA∗. Clearly,
every Hermitian matrix is normal.

Corollary 5.4. A matrix is unitarily diagonalizable if and only if it is normal.

Proof. We leave it as an exercise to show that a unitarily diagonalizable ma-
trix is normal. Conversely, let A be normal. According to the Schur triangu-
larization theorem there is a unitary matrix U such that U∗AU = R is upper
triangular. But then we have that R∗ = U∗A∗U, so that

R∗R = U∗A∗UU∗AU = U∗A∗AU = U∗AA∗U = U∗AUU∗A∗U = RR∗.

Therefore R commutes with R∗, which means that R is diagonal by Prob-
lem 11 at the end of this section. This completes the proof. ��

Our last application extends Theorem 5.2 to rational functions.

Corollary 5.5. Let f(x) and g(x) be polynomials and A a square matrix such
that g(A) is invertible. Then the eigenvalues of the matrix f(A)g(A)−1 are of
the form f(λ)/g(λ), where λ runs over the eigenvalues of A.

Proof. We sketch the proof. As a first step, we make two observations about
upper triangular matrices S and T with diagonal terms λ1, λ2, . . . , λn, and
µ1, µ2, . . . , µn, respectively. First, ST is upper triangular with diagonal terms
λ1µ1, λ2µ2, . . . , λnµn. Next, if S is invertible, then S−1 is also an upper tri-
angular matrix, whose diagonal terms are 1/λ1, 1/λ2, . . . , 1/λn.

Now, we have seen in Theorem 5.5 that for any invertible P of the
right size, P−1f (A)P = f

(
P−1AP

)
. Similarly, if we multiply the identity

g(A)g(A)−1 = I by P−1 and P, we see that P−1g(A)−1P = g(P−1AP )−1.
Thus, if P is a matrix that unitarily diagonalizes A, then

P−1f (A) g (A)−1
P = f

(
P−1AP

)
g
(
P−1AP

)−1
,

so that by our first observations, this matrix is upper triangular with diagonal
entries of the required form. Since similar matrices have the same eigenvalues,
it follows that the eigenvalues of f(A)g(A)−1 are of the required form. ��
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5.5 Exercises and Problems
Use a calculator or software for the following exercises.

Exercise 1. Apply one step of Schur triangularization to the following specified
eigenvalues.

(a) λ = −3, A =

⎡⎣−1 2 2
2 −1 2
2 2 −1

⎤⎦ (b) λ =
√

2, A =

⎡⎣0 1 0
1 0 i
0 −i 0

⎤⎦
Exercise 2. Apply Schur triangularization to the following matrices.

(a)

⎡⎣ 4 4 1
−1 0 0

0 0 2

⎤⎦ (b)

⎡⎣ i 0 2
0 0 −1
0 1 0

⎤⎦ (c) =
[

0 1
2 1

]
Exercise 3. Use Schur triangularization to find eigenvalues of the following ma-
trices.

(a)

⎡⎣ 5 6 18
11 6 24
−4 −2 −8

⎤⎦ (b)

⎡⎣ 3 8 20
3 14 32

−1 −5 −11

⎤⎦ (c)

⎡⎢⎢⎣
4 20 42 12
8 32 72 15

−3 −14 −31 −6
−1 −6 −12 −4

⎤⎥⎥⎦
Exercise 4. Find a unitary matrix that upper triangularizes the following ma-
trices.

(a)

⎡⎣3 6 2
1 4 2
4 2 1

⎤⎦ (b)

⎡⎣ 4 8 10
3 14 0

−1 5 1

⎤⎦ (c) =

⎡⎢⎢⎣
1 2 0 0

−2 2 0 0
0 −2 2 2
0 0 −2 1

⎤⎥⎥⎦
Exercise 5. Verify Corollary 5.5 in the case that A =

[
22 10

−50 −23

]
, f (x) =

x2 − 1, and g (x) = x2 + 1 by calculating the eigenvalues f (A) /g (A) directly
and comparing them to f (λ) /g (λ), where λ runs over the eigenvalues of A.

Exercise 6. Verify that Corollary 5.5 fails in the case that A =
[

22 10
−50 −23

]
,

f (x) = x − 1, and g (x) = x2 + 4x + 3 and explain why.

Problem 7. Show that every unitary matrix is normal. Give an example of a
unitary matrix that is not Hermitian.

*Problem 8. Let A be an invertible matrix. Use Schur triangularization to
reduce the problem Ax = b to a problem with triangular coefficient matrix.

Problem 9. Show that every unitarily diagonalizable matrix is normal.

Problem 10. Use Corollary 5.3 to show that the eigenvalues of a Hermitian
matrix must be real.

*Problem 11. Prove that if an upper triangular matrix commutes with its Her-
mitian transpose, then the matrix must be diagonal.
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5.6 *The Singular Value Decomposition

The object of this section is to develop yet one more factorization of a matrix
that provides valuable information about the matrix. For simplicity, we stick
with the case of a real matrix A and orthogonal matrices. However, the fac-
torization we are going to discuss can be done with complex A and unitary
matrices. This factorization is called the singular value decomposition (SVD
for short). It has a long history in matrix theory, but was popularized in the
1960s as a powerful computational tool. We will see in Section 6.4 that multi-
plication on one side by an orthogonal matrix can produce an upper triangular
matrix. This is called the QR factorization. Here is the basic question that
the SVD answers: if multiplication on one side by an orthogonal matrix can
produce an upper triangular matrix, how simple a matrix can be produced by
multiplying on each side by a (possibly different) orthogonal matrix? The an-
swer, as you might guess, is a matrix that is both upper and lower triangular,
that is, diagonal. However, verification of this fact is much more subtle than
that of the one-sided QR factorization of Section 6.4. Here is the key result:

Theorem 5.15. Let A be an m × n real matrix. Then there exist an m × m Singular Value
Decomposi-
tion
Theorem

orthogonal matrix U , an n × n orthogonal matrix V , and an m × n diagonal
matrix Σ with diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, with p = min {m, n},
such that UT AV = Σ. Moreover, the numbers σ1, σ2, . . . , σp are uniquely
determined by A.

Proof. There is no loss of generality in assuming that n = min {m, n}. For if
this is not the case, we can prove the theorem for AT , and by transposing the
resulting SVD for AT , obtain a factorization for A. Form the n × n matrix
B = AT A. This matrix is symmetric and its eigenvalues are nonnegative
(we leave these facts as exercises). Because they are nonnegative, we can
write the eigenvalues of B in decreasing order of magnitude as the squares of
nonnegative real numbers, say as σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n. Now we know from the
principal axes theorem that we can find an orthonormal set of eigenvectors
corresponding to these eigenvalues, say Bvk = σ2

kvk, k = 1, 2, . . . , n. Let
V = [v1,v2, . . . ,vn]. Then V is an orthogonal n × n matrix. We may assume
for some index r that σr+1, σr+2, . . . , σn are zero, while σr 
= 0.

Next set uj = 1
σj

Avj , j = 1, 2, . . . , r. These are orthonormal vectors in
Rm since

uT
j uk =

1
σjσk

vT
j AT Avk =

1
σjσk

vT
j Bvk =

σ2
k

σjσk
vT

j vk =
{

0, if j 
= k,
1, if j = k.

Now expand this set to an orthonormal basis u1,u2, . . . ,um of Rm. This is
possible by Theorem 4.7 in Section 4.3. Set U = [u1,u2, . . . ,um]. This matrix
is orthogonal. We calculate that if k > r, then uT

j Avk = 0 since Avk = 0,
and if k < r, then

uT
j Avk = σkuT

j uk =
{

0, if j 
= k,
σk, if j = k.
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It follows that UT AV = [uT
j Avk] = Σ, which is the desired SVD.

Finally, if U, V are orthogonal matrices such that UT AV = Σ, then A =
UΣV T and therefore

B = AT A = V ΣUT UΣV T = V Σ2V T ,

so that the squares of the diagonal entries of Σ are the eigenvalues of B. It
follows that the numbers σ1, σ2, . . . , σn are uniquely determined by A. ��

The numbers σ1, σ2, . . . , σp are called the singular values of the matrix A,
the columns of U are the left singular vectors of A, and the columns of V are
the right singular values of A.

There is an interesting geometrical interpretation of this theorem from
the perspective of linear transformations and change of basis as developed in
Section 4.4. It can be stated as follows.

Corollary 5.6. Let T : Rn → Rm be a linear transformation with matrix
A with respect to the standard bases. Then there exist orthonormal bases
u1,u2, . . . ,um and v1,v2, . . . ,vn of Rm and Rn, respectively, such that the
matrix of T with these bases is diagonal with nonnegative entries down the
diagonal.

Proof. First observe that if U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vn],
then U and V are the change of basis matrices from the standard bases to
the bases u1,u2, . . . ,um and v1,v2, . . . ,vn of Rm and Rn, respectively. Also,
U−1 = UT . Now apply Corollary 4.2 of Section 4.4, and the result follows.
��
Corollary 5.7. Let UT AV = Σ be the SVD of A and suppose that σr 
= 0
and σr+1 = 0. Then

(1) rankA = r.
(2) A = [u1,u2, . . . ,ur] diag {σ1, σ2, . . . , σr} [v1,v2, . . . ,vr]

T .
(3) N (A) = span {vr+1,vr+2, . . . ,vn}.
(4) C (A) = span {u1,u2, . . . ,ur}.
(5) If A† is given by

A† = [v1,v2, . . . ,vr] diag {1/σ1, 1/σ2, . . . , 1/σr} [u1,u2, . . . ,ur]
T

,

then x = A†b is a least squares solution to Ax = b.
(6) A = σ1u1vT

1 + σ2u2vT
2 + · · · + σrurvT

r .

Proof. Multiplication by invertible matrices does not change rank, and the
rank of Σ is clearly r, so (1) follows. For (2), multiply the SVD equation by
U on the left and V T on the right to obtain

A = UΣV T = [σ1u1, σ2u2, . . . , σrur,0, . . . ,0] [v1,v2, . . . ,vn]T

=
r∑

k=1

σkukvT
k = [u1,u2, . . . ,ur] diag {σ1, σ2, . . . , σr} [v1,v2, . . . ,vr]

T
.
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This also proves item (6). The remaining items are left as exercises. ��
Item (2) is called the compact SVD form for A. The matrix A† of (5) Compact SVD

and
Pseudoinverse

is called the pseudoinverse of A and behaves in many ways like an inverse
for matrices that need not be invertible or even square. Item (5) presents
an important application of the pseudoinverse. We have only scratched the
surface of the many facets of the SVD. Like most good ideas, it is rich in
applications. We mention one more. It is based on item (6), which says that
a matrix A of rank r can be written as a sum of r rank-one matrices. In fact,
it can be shown that this representation is the most economical in the sense
that the partial sums

σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k , k = 1, 2, . . . , r,

give the rank-k approximation to A that is closest among all rank-k approxi-
mations to A. This suggests an intriguing way to compress data in a lossy way
(i.e., with some loss of data). For example, suppose A is a matrix of floating-
point numbers representing a picture. We might get a reasonably good ap-
proximation to the picture using only the σk larger than a certain threshold.
Thus, with a 1,000×1,000 matrix A that has a very small σ21, we could get by
with the data σk,uk,vk, k = 1, 2, . . . , 20. Consequently, we would store only
these quantities, which add up to 1,000×40+20 = 40,020 numbers. Contrast
this with storing the full matrix of 1,000 × 1,000 = 1,000,000 entries, and you
can see the gain in economy.

5.6 Exercises and Problems

Exercise 1. Exhibit a singular value decomposition for the following matrices.

(a)
[

3 0 0
0 −1 0

]
(b)

⎡⎣−2 0
0 1
0 −1

⎤⎦ (c)

⎡⎣1 0 0
0 0 0
0 −1 2

⎤⎦ (d)
[

0 −2 0
2 0 0

]

Exercise 2. Calculate a singular value decomposition for the following matrices.

(a)
[

1 1 0
0 −1 0

]
(b)

⎡⎣ 1 1
0 0

−1 1

⎤⎦ (c)

⎡⎣1 0 1
0 0 0
0 0 2

⎤⎦
Exercise 3. Use a CAS or MAS to compute an orthonormal basis for the null
space and column space of the following matrices with the SVD and Corol-
lary 5.7. You will have to decide which nearly-zero terms are really zero.

(a)

⎡⎢⎢⎣
1 1 3
0 −1 0
1 −2 2
3 0 2

⎤⎥⎥⎦ (b)

⎡⎣ 3 1 2
4 0 1

−1 1 1

⎤⎦ (c)

⎡⎢⎢⎣
1 0 1 0 −3
1 2 1 −5 2
0 1 0 −3 1
0 2 −3 1 4

⎤⎥⎥⎦
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Exercise 4. Use the pseudoinverse to find a least squares solution Ax = b,
where A is a matrix from Exercise 3 with corresponding right-hand side below.
(a) (2, 2, 6, 5) (b) (2, 3, 1) (c) (4, 1, 2, 3)

*Problem 5. Prove (3) and (4) of Corollary 5.7.

Problem 6. Show that if A is invertible, then A−1 is the pseudoinverse of A.

*Problem 7. Prove (5) of Corollary 5.7.

Problem 8. Digitize a picture into a 640 × 400 (standard VGA) matrix of
grayscale pixels, where the value of each pixel is a number x, 0 ≤ x ≤ 1,
with black corresponding to x = 0 and white to x = 1. Compute the SVD
of this image matrix and display various approximations using 10, 20, and 40
of the singular values and vector pairs. Do any of these give a good visual
approximation to the picture? If not, find a minimal number that works. You
will need computer support for this exercise.

5.7 *Computational Notes and Projects

Computation of Eigensystems

Nowadays, one can use an MAS such as Matlab or Octave on a home PC to
find a complete eigensystem for, say a 100 × 100 matrix, in a fraction of a
second. That’s pretty remarkable and, to some extent, a tribute to the fast
cheap hardware commonly available to the public. But hardware is only part
of the story. Bad computational algorithms can bring the fastest computer
to its knees. The rest of the story concerns the remarkable developments in
numerical linear algebra over the past fifty years that have given us fast reliable
algorithms for eigensystem calculation. We can only scratch the surface of
these developments in this brief discussion. At the outset, we rule out the
methods developed in this chapter as embodied in the eigensystem algorithm
(page 254). These are for simple hand calculations and theoretical purposes.
In a few special cases we can derive general formulas for eigenvectors and
eigenvalues. One such example is a Toeplitz matrix (a matrix with constant
entries down each diagonal) that is also tridiagonal. We outline the approach
in a problem at the end of this section, but these complete solution formulas
are the exception, not the rule.

We are going to examine some iterative methods for selectively finding
eigenpairs of a real matrix whose eigenvalues are real and distinct. Hence
the matrix A is diagonalizable. The hypothesis of diagonalizability may seem
too constraining, but there is this curious aphorism that “numerically every
matrix is diagonalizable.” The reason is as follows: once you store and per-
form numerical calculations on the entries of A, you perturb them a small
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essentially random amount. This has the effect of perturbing the eigenvalues
of the calculated A a small random amount. Thus, the probability that any
two eigenvalues of A are numerically equal is quite small. To focus matters,
consider the test matrix

A =

⎡⎣−8 −5 8
6 3 −8

−3 1 9

⎤⎦ .

Just for the record, the actual eigenvalues of A are −2, −1, and 5. Now we
ask three questions about A:

1. How can we get a ballpark estimate of the location of the eigenvalues of
A?

2. How can we estimate the dominant eigenpair (λ,x) of A? (Recall that
“dominant” means that λ is larger in absolute value than any other eigen-
value of A.)

3. Given a good estimate of any eigenvalue λ of A, how can we improve the
estimate and compute a corresponding eigenvector?

An answer to question (1) is the following theorem, which predates modern
numerical analysis, but has proved to be quite useful. Because it helps locate
eigenvalues, it is called a “localization theorem.”

Theorem 5.16. Let A = [aij ] be an n × n matrix and define disks Dj in the Gershgorin
Circle
Theorem

complex plane by

rj =
n∑

k=1
k �=j

|ajk|,

Dj = {z | |z − ajj | ≤ rj} .

(1) Every eigenvalue of A is contained in some disk Dj .
(2) If k of the disks are disjoint from the others, then exactly k eigenvalues

are contained in the union of these disks.

Proof. To prove (1), let λ be an eigenvalue of A and x = (x1, x2, . . . , xn) an
eigenvector corresponding to λ. Suppose that xj is the largest coordinate of x
in absolute value. Divide x by this entry to obtain an eigenvector whose largest
coordinate is xj = 1. Without loss of generality, this vector is x. Consider the
jth entry of the zero vector λx − Ax, which is

(λ − ajj)1 +
n∑

k=1
k �=j

ajkxk = 0.

Bring the sum to the right-hand side and take absolute values to obtain
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|λ − ajj | = |
n∑

k=1
k �=j

ajkxk | ≤
n∑

k=1
k �=j

| ajk | |xk | ≤ rj ,

since |xk| ≤ 1 for each xk. This shows that λ ∈ Dj , which proves (1). We
will not prove (2), since it requires some complex analysis (see the Horn and
Johnson text [11], page 344, for a proof.)

Example 5.19. Apply the Gershgorin circle theorem to the test matrix A
and sketch the resulting Gershgorin disks.

Solution. The disks are easily seen to be

D1 = { z | |z + 8| ≤ 13} ,

D2 = { z | |z − 3| ≤ 14} ,

D3 = { z | |z − 9| ≤ 4} .

A sketch of them is provided in Figure 5.1. ��

−8 93

13 14

4
x

y

Fig. 5.1. Gershgorin disks for A.

Now we turn to question (2). One answer to it is contained in the following
algorithm, known as the power method.
Power Method: To compute an approximate eigenpair (λ,x) of A with
‖x‖ = 1 and λ the dominant eigenvalue.Power

Method
(1) Input an initial guess x0 for x
(2) For k = 0, 1, . . . until convergence of λ(k)’s:

(a) y = Axk,
(b) xk+1 =

y
‖y‖ ,

(c) λ(k+1) = xT
k+1Axk+1.

That’s all there is to it! Why should this algorithm converge? The secret to this
algorithm lies in a formula we saw earlier in our study of discrete dynamical
systems, namely equation (5.6) which we reproduce here:
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x(k) = Akx(0) = c1λ
k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn.

Here it is understood that v1,v2, . . . ,vn is a basis of eigenvectors correspond-
ing to eigenvalues λ1λ2, . . . , λn, which, with no loss of generality, we can as-
sume to be unit-length vectors. Notice that at each stage of the power method
we divided the computed iterate y by its length to get the next xk+1, and
this division causes no directional change. Thus we would get exactly the same
vector if we simply set xk+1 = x(k+1)/

∥∥x(k+1)
∥∥. Now for large k the ratios

(λj/λ1)k can be made as small as we please, so we can rewrite the above
equation as

x(k) = Akx(0) = λk
1

{
c1v1 + c2

(
λ2

λ1

)k

v2 + · · · + cn

(
λn

λ1

)k

vn

}
≈ λk

1c1v1.

Assuming that c1 
= 0, which is likely if x0 is randomly chosen, we see that

xk+1 =
Ax(k)∥∥Ax(k)

∥∥ ≈ λk
1c1λ1v1∣∣λk
1c1λ1

∣∣ = ±v1,

λ(k+1) = xT
k+1Axk+1 ≈ (±v1)T A(±v1) = λ1.

Thus we see that the sequence of λ(k)’s converges to λ1 and the sequence of
xk’s converges to ±v1. The argument (it isn’t rigorous enough to be called a
proof) we have just given shows that the oscillation in sign in the entries of
xk occurs in the case λ < 0. You might notice also that the argument doesn’t
require the initial guess to be a real vector. Complex vectors are permissible.

If we apply the power method to our test problem with an initial guess of
x0 = (1, 1, 1), we get every third value as follows:

k λ(k) xk

0 (1, 1, 1)
3 5.7311 (0.54707,−0.57451, 0.60881)
6 4.9625 (0.57890,−0.57733, 0.57581)
9 5.0025 (0.57725,−0.57735, 0.57745)
12 4.9998 (0.57736,−0.57735, 0.57734)

Notice that the eigenvector looks a lot like a multiple of (1,−1, 1), and the
eigenvalue looks a lot like 5. This is an exact eigenpair, as one can check.

Finally, we turn to question (3). One answer to it is contained in the
following algorithm, known as the inverse iteration method.
Inverse Iteration Method: To compute an approximate eigenpair (λ,x) of
A with ‖x‖ = 1. Inverse

Iteration
Method(1) Input an initial guess x0 for x and a close approximation µ = λ0 to λ.

(2) For k = 0, 1, . . . until convergence of the λ(k)’s:
(a) y = (A − µI)−1xk,
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(b) xk+1 =
y

‖y‖ ,

(c) λ(k+1) = xT
k+1Axk+1.

Notice that the inverse iteration method is simply the power method applied
to the matrix (A − µI)−1. In fact, it is sometimes called the inverse power
method. The scalar µ is called a shift. Here is the secret of success for this
method: we assume that µ is closer to a definite eigenvalue λ of A than to
any other eigenvalue. But we don’t want too much accuracy! We need µ 
= λ.
Theorem 5.2 in Section 1 of this chapter shows that the eigenvalues of the
matrix A − µI are of the form σ − µ, where σ runs over the eigenvalues of
A. Thus the matrix A − µI is nonsingular since no eigenvalue is zero, and
Exercise 17 of Section 5.1 shows us that the eigenvalues of (A − µI)−1 are of
the form 1/(σ−µ), where σ runs over the eigenvalues of A. Since µ is closer to
λ than to any other eigenvalue of A, the eigenvalue 1/(λ−µ) is the dominant
eigenvalue of (A − µI)−1, which is exactly what we need to make the power
method work on (A − µI)−1. Indeed, if µ is very close (but not equal!) to λ,
convergence should be very rapid.

In a general situation, we could now have the Gershgorin circle theorem
team up with inverse iteration. Gershgorin would put us in the right ballpark
for values of µ, and inverse iteration would finish the job. Let’s try this with
our test matrix and choices of µ in the interval suggested by Gershgorin. Let’s
try µ = 0. Here are the results in tabular form:

k λ(k) xk with µ = 0.0
0 0.0 (1, 1, 1)
3 0.77344 (−0.67759, 0.65817,−0.32815)
6 1.0288 (−0.66521, 0.66784,−0.33391)
9 0.99642 (−0.66685, 0.66652,−0.33326)
12 1.0004 (−0.66664, 0.66668,−0.33334)

It appears that inverse iteration is converging to λ = 1 and the eigenvec-
tor looks suspiciously like a multiple of (−2, 2,−1). This is in fact an exact
eigenpair.

There is much more to modern eigenvalue algorithms than we have in-
dicated here. Central topics include deflation, the QR algorithm, numerical
stability analysis, and many other issues. The interested reader might consult
more advanced texts such as references [9], [7], [13], and [6], to name a few.

Project Topics

Project: Solving Polynomial Equations
In homework problems we solve for the roots of the characteristic polyno-
mial in order to get eigenvalues. To this end we can use algebra methods or
even Newton’s method for numerical approximations to the roots. This is the
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conventional wisdom usually proposed in introductory linear algebra. But for
larger problems than the simple 2 × 2 or 3 × 3 matrices we encounter, this
method can be too slow and inaccurate. In fact, numerical methods hiding
under the hood in a MAS (and some CASs) for finding eigenvalues are so ef-
ficient that it is better to turn this whole procedure on its head. Rather than
find roots to solve linear algebra (eigenvalue) problems, we can use (numeri-
cal) linear algebra to find roots of polynomials. In this project we discuss this
methodology and document it in a fairly nontrivial example.

Given a polynomial f(x) = c0 + c1x + · · · + cn−1x
n−1 + xn, form the

companion matrix of f(x),

C (f) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−c0 −c1 · · · −cn−2 −cn−1

⎤⎥⎥⎥⎥⎥⎦ .

It is a key fact that the eigenvalues of C (f) are precisely the roots of the
equation f(x) = 0. Experiment with n = 2, 3, 4 and try to find a proof by
expansion across the bottom row of det(A−λI) that this result is true for all
n.

Then use a CAS (or MAS) to illustrate this method by finding approximate
roots of three polynomials: a cubic and quartic of your choice and then the
polynomial

f(x) = 5 + 11x + 4x2 + 6x3 + x4 − 15x5 + 5x6 − 3x7 − 2x8 + 8x9 − 5x10 + x11.

In each case use Newton’s method to improve the values of some of the roots (it
works with complex numbers as well as reals, provided one starts close enough
to a root). Check your answers to this problem by evaluating the polynomial.
Use your results to write the polynomial as a product of the linear factors
x − λ, where λ is a root and check the correctness of this factorization.

Project: Finding a Jordan Canonical Form
A challenge: Find the Jordan canonical form of the 10 × 10 matrix A, which
is given exactly as follows. The solution will require some careful work with a
CAS or (preferably) MAS.
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −2 1 −1 2 −2 4 −3
−1 2 3 −4 2 −2 4 −4 8 −6
−1 0 5 −5 3 −3 6 −6 12 −9
−1 0 3 −4 4 −4 8 −8 16 −12
−1 0 3 −6 5 −4 10 −10 20 −15
−1 0 3 −6 2 −2 12 −12 24 −18
−1 0 3 −6 2 −5 15 −13 28 −21
−1 0 3 −6 2 −5 15 −11 32 −24
−1 0 3 −6 2 −5 15 −14 37 −26
−1 0 3 −6 2 −5 15 −14 36 −25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Your main task is to devise a strategy for identifying the Jordan canonical
form matrix J . Do not expect to find the invertible matrix S for which J =
S−1AS. However, a key fact to keep in mind is that if A and B are similar
matrices, i.e., A = S−1BS for some invertible S, then rankA = rankB. In
particular, if S is a matrix that puts A into Jordan canonical form, then
J = S−1AS.

First prove this rank fact for A and B. Show that it applies to A − cI and
B − cI as well, for any scalar c. Then extend it to powers of A and B.

Now you have the necessary machinery for determining numerically the
Jordan canonical form. As a first step, one can use a CAS or MAS to find
the eigenvalues of A. Of course, these will only be approximate, so one has to
decide how many eigenvalues are really repeated.

Next, one has to determine the number of Jordan blocks of a given type.
Suppose λ is an eigenvalue and find the rank of various powers of A − λI.
It would help greatly in understanding how all this counts blocks if you first
experiment with a matrix already in Jordan canonical form, say, for example,

J =

⎡⎣J1(2) 0 0
0 J2(2) 0
0 0 J1(3)

⎤⎦ .

Project: Classification of Quadratic Forms
You should review the change of coordinates material from Example 3.26 of

Chapter 3. Recall from calculus that in order to classify all quadratic equations
in x and y one went through roughly three steps. First, perform a rotation
transformation of coordinates to get rid of mixed terms such as 2xy in the
quadratic equation x2 + 2xy − y2 + x − 3y = 4. Second, do a translation
of coordinates to put the equation in a “standard form.” Third, identify the
curve by your knowledge of the shape of a curve in the given standard form.
Standard forms are equations like x2/4 + y2/2 = 1, an ellipse with its axes
along the x- and y-axes. Also recall that it is the second-degree terms alone
that determine the nature of a quadratic. For example, the second-degree
terms of the equation above are x2, 2xy, and y2. The discriminant of the
equation is determined by these terms. In this case the discriminant is 8, which
tells us that the curve represented by this equation is a hyperbola. Finally,
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recall that when it comes to quadric equations, i.e., quadratic equations in 3
unknowns, your text simply provides some examples in “standard form” (six
of them to be exact) and perhaps suggested something about this list being
essentially all surfaces represented by quadric equations.

Now you’re ready for the rest of the story. Just as with curves in x and y,
the basic shape of the surface of a quadric equation in x, y, and z is determined
by the second-degree terms. Since this is so, we will focus on an example with
no first-degree terms, namely,

Q (x, y, z) = 2x2 + 4y2 + 6z2 − 4xy − 2xz + 2yz = 1.

The problem is this: find a change of coordinates that will make it clear which
of the six standard forms is represented by this surface. Here is how to proceed:
first you must express the so-called quadratic form Q (x, y, z) in matrix form as
Q (x, y, z) = [x, y, z]A[x, y, z]T . It is easy to find such matrices A. But not any
such A will do. Next, you must replace A by the equivalent matrix (A+AT )/2.
(Check that if A specifies the quadratic form Q, then so will (A + AT )/2.)
The advantage of this latter matrix is that it is symmetric. Now our theory
of symmetric matrices can be brought to bear. In particular, we know that
there is an orthogonal matrix P such that PT AP is diagonal, provided A is
symmetric. So make the linear change of variables [x, y, z]T = P [x′, y′, z′]T and
deduce that Q (x, y, z) = [x′, y′, z′]PT AP [x′, y′, z′]T . But when the matrix in
the middle is diagonal, we end up with squares of x′, y′ and z′, and no mixed
terms.

Find a symmetric A for this problem and use the CAS or MAS available
to you to calculate the eigenvalues of this A. From this data alone you will
be able to classify the surface represented by the above equation. Also find
unit-length eigenvectors for each eigenvalue. Put these together to form the
desired orthogonal matrix P that eliminates mixed terms.

An outstanding reference on this topic and many others relating to matrix
analysis is the recently republished textbook [3] by Richard Bellman, which
is widely considered to be a classic in the field.

Report: Management of Sheep Populations
Description of the problem: You are working for the New Zealand Department
of Agriculture on a project for sheep farmers. The species of sheep that these
shepherds raise have a life span of 12 years. Of course, some live longer,
but they are sufficiently few in number and their reproductive rate is so low
that they may be ignored in your population study. Accordingly, you divide
sheep into 12 age classes, namely those in the first year of life, etc. You have
conducted an extensive survey of the demographics of this species of sheep
and obtained the following information about the demographic parameters fi

and si, where fi is the per-capita reproductive rate for sheep in the ith age
class and si is the survival rate for sheep in that age class, i.e., the fraction
of sheep in that age class that survive to the (i + 1)th class. (As a matter of
fact, this table is related to real data. The interested reader might consult the
article [5] in the bibliography.)
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i 1 2 3 4 5 6 7 8 9 10 11 12
fi .000 .023 .145 .236 .242 .273 .271 .251 .234 .229 .216 .210
si .845 .975 .965 .950 .926 .895 .850 .786 .691 .561 .370 -

The problem is as follows: in order to maintain a constant population of
sheep, shepherds will harvest a certain number of sheep each year. Harvesting
need not mean slaughter; it can be accomplished by selling animals to other
shepherds, for example. It simply means removing sheep from the population.
Denote the fraction of sheep that are removed from the ith age group at the
end of each growth period (a year in our case) by hi. If these numbers are
constant from year to year, they constitute a harvesting policy. If, moreover,
the yield of each harvest, i.e., total number of animals harvested each year, is
a constant and the age distribution of the remaining populace is essentially
constant after each harvest, then the harvesting policy is called sustainable. If
all the hi’s are the same, say h, then the harvesting policy is called uniform.
An advantage of uniform policies is that they are simple to implement: One
selects the sheep to be harvested at random.

Your problem: Find a uniform sustainable harvesting policy to recommend
to shepherds, and find the resulting distribution of sheep that they can ex-
pect with this policy. Shepherds who raise sheep for sale to markets are also
interested in a sustainable policy that gives a maximum yield. If you can find
such a policy that has a larger annual yield than the uniform policy, then
recommend it. On the other hand, shepherds who raise sheep for their wool
may prefer to minimize the annual yield. If you can find a sustainable policy
whose yield is smaller than that of the uniform policy, make a recommenda-
tion accordingly. In each case find the expected distribution of your harvesting
policies. Do you think there are optimum harvesting policies of this type? Do
you think that there might be other economic factors that should be taken
into account in this model? Organize your results for a report to be read by
your supervisor and an informed public.

Procedure: Express this problem as a discrete linear dynamical system
x(k+1) = Lx(k), where L is a so-called Leslie matrix of the form

L =

⎡⎢⎢⎢⎢⎢⎣
f1 f2 f3 · · · fn−1 fn

s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · sn−1 0

⎤⎥⎥⎥⎥⎥⎦ .

It is understood that 0 < si ≤ 1, 0 ≤ fi, and at least one fi is nonzero.
The facts you need to know (and may assume as standard facts about Leslie
matrices) are as follows: such a matrix will have exactly one positive eigen-
value, which turns out to be a simple eigenvalue (not repeated). Moreover, if
at least two adjacent entries of the first row are positive, this eigenvalue will
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be a dominant eigenvalue, i.e., it is strictly larger than any other eigenvalue in
absolute value. In particular, if the positive eigenvalue is 1, then we know from
Theorem 5.11 (ergodic theorem) that starting from any nonzero initial state
with nonnegative entries, successive states converge to an eigenvector belong-
ing to the eigenvalue 1. This eigenvector has all nonnegative entries since L
and x(0) are nonnegative. Scale this vector by dividing it by the sum of its
components and one obtains an eigenvector that is a probability distribution
vector, i.e., its entries are nonnegative and sum to 1. The entries of this vector
give the long-term distribution of the population in the various age classes.

In regard to harvesting, let H be a diagonal matrix with the harvest
fractions hi down the diagonal. (Here 0 ≤ hi ≤ 1.) Then the popula-
tion that results from this harvesting at the end of each period is given by
xk+1 = Lxk −HLxk = (I −H)Lxk. But the matrix (I −H)L is itself a Leslie
matrix, so the theory applies to it as well. There are other theoretical tools,
but all you need to do is to find a matrix H = hI such that 1 is the positive
eigenvalue of (I − H)L. You can do this by trial and error, a method that is
applicable to any harvesting policy, uniform or not. However, in the case of
uniform policies it’s simpler to note that (I − H)L = (1 − h)L, where h is the
diagonal entry of H.

Implementation Notes: your instructor may add local notes here and dis-
cuss available aids. For example, when I give this assignment under Maple or
Mathematica, I create a notebook that has the correct vector of fi’s and si’s
in it to avoid a very common problem: data entry error.

5.7 Exercises and Problems

Exercise 1. The matrix of (c) below may have complex eigenvalues. Use the
Gershgorin circle theorem to locate eigenvalues and the iteration methods of
this section to compute an approximate eigensystem.

(a)

⎡⎢⎢⎣
4 −1 0 2
0 5 0 −1

−1 −2 2 0
0 0 2 10

⎤⎥⎥⎦ (b)

⎡⎣ 3 1 2
2 0 1

−1 1 1

⎤⎦ (c)

⎡⎢⎢⎣
1 −2 0 0
2 4 −2 0
0 2 4 −2
0 0 2 1

⎤⎥⎥⎦
Exercise 2. Use the Gershgorin circle theorem to locate eigenvalues and the
iteration methods of this section to compute an approximate eigensystem.

(a)

⎡⎢⎢⎣
3 1 0 0
1 5 1 0
0 1 7 1
0 0 1 9

⎤⎥⎥⎦ (b)

⎡⎣ 3 1 −2
1 1 1
0 1 1

⎤⎦ (c)

⎡⎢⎢⎣
1 −2 −2 0
6 −7 21 −18
4 −8 22 −18
2 −4 13 −13

⎤⎥⎥⎦
*Problem 3. A square matrix is strictly diagonally dominant if in each row the
sum of the absolute values of the off-diagonal entries is strictly less than the
absolute value of the diagonal entry. Show that a strictly diagonally dominant
matrix is invertible.
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Problem 4. Let A be an n×n tridiagonal matrix with possibly complex entries
a, b, c down the first subdiagonal, main diagonal, and first superdiagonal,
respectively, where a, c 
= 0. Let v = (v1, . . . , vn) satisfy Av = λv.

(a) Show that v satisfies the difference equation avj−1+(b − λ) vj+cvj+1 =
0, j = 1, . . . , n, with v0 = 0 = vn+1.

(b) Show that vj = Arj
1 + Brj

2, where r1, r2 are (distinct) solutions to
the auxiliary equation a + (b − λ) r + cr2 = 0, is a solution to the difference
equation in (a).

(c) Determine that r1r2 = a/c, r1+r2 = (λ − b) /c, and (r1/r2)
n+1 = e2iπs,

s = 1, . . . , n. Use these to find all r1, r2, and λ. (It helps to use the conditions
v0 = 0 = vn+1 and examine the cases j = 0 and j = n + 1.)

(d) Conclude that a complete set of eigenpairs of A is given by

λj = b + 2c
(a

c

)1/2
cos

jπ

n + 1
and vj =

((a

c

)j/2
sin

sjπ

n + 1

)n

s=1
, j = 1, . . . , n.
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GEOMETRICAL ASPECTS OF ABSTRACT
SPACES

Two basic ideas that we learn in geometry are those of length of a line segment
and angle between lines. We have already seen how to extend these ideas to
the standard vector spaces. The objective of this chapter is to extend these
powerful ideas to general linear spaces. A surprising number of concepts and
techniques that we learned in a standard setting can be carried over, almost
word for word, to more general vector spaces. Once this is accomplished,
we will be able to use our geometrical intuition in entirely new ways. For
example, we will be able to have notions of size (length) and perpendicularity
for nonstandard vectors such as functions in a function space. We will be able
to give a sensible meaning to the size of the error incurred in solving a linear
system with finite-precision arithmetic. We shall see that there are many more
applications of this abstraction.

6.1 Normed Spaces

Definitions and Examples

The basic function of a norm is to measure length and distance, independent of
any other considerations, such as angles or orthogonality. There are different
ways to accomplish such a measurement. One method of measuring length
might be more natural for a given problem, or easier to calculate than another.
For these reasons, we would like to have the option of using different methods
of length measurement. You may recognize the properties listed below from
earlier in the text; they are the basic norm laws given in Section 4.1 for the
standard norm. We are going to abstract the norm idea to arbitrary vector
spaces.

Definition 6.1. A norm on the vector space V is a function ‖·‖ that assigns Abstract
Normto each vector v ∈ V a real number ‖v‖ such that for c a scalar and u,v ∈ V

the following hold:
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(1) ‖u‖ ≥ 0 with equality if and only if u = 0.
(2) ‖cu‖ = |c| ‖u‖.
(3) (Triangle Inequality) ‖u + v‖ ≤ ‖u‖ + ‖v‖.

A vector space V , together with a norm ‖·‖ on the space V , is called a normedNormed
Space space. If u,v ∈ V , the distance between u and v is defined to be d (u,v) =

‖u − v‖.Distance
Function Notice that if V is a normed space and W is any subspace of V , then W

automatically becomes a normed space if we simply use the norm of V on
elements of W. Obviously all the norm laws still hold, since they hold for
elements of the bigger space V.

Of course, we have already studied some very important examples of
normed spaces, namely the standard vector spaces Rn and Cn, or any subspace
thereof, together with the standard norms given byStandard

Norms
‖(z1, z2, . . . , zn)‖ =

√
z1z1 + z2z2 + · · · + znzn

=
(
|z1|2 + |z2|2 + · · · + |zn|2

)1/2
.

If the vectors are real then we can drop the conjugate bars. This norm is
actually one of a family of norms that are commonly used.

Definition 6.2. Let V be one of the standard spaces Rn or Cn and p ≥ 1 a
real number. The p-norm of a vector in V is defined by the formulap-norm

‖(z1, z2, . . . , zn)‖p = (|z1|p + |z2|p + · · · + |zn|p)1/p
.

Notice that when p = 2 we have the familiar example of the standard norm.
Another important case is that in which p = 1. The last important instance
of a p-norm is one that isn’t so obvious: p = ∞. It turns out that the value
of this norm is the limit of p-norms as p → ∞. To keep matters simple, we’ll
supply a separate definition for this norm.

Definition 6.3. Let V be one of the standard spaces Rn or Cn. The ∞-norm∞-norm
of a vector in V is defined by the formula

‖(z1, z2, . . . , zn)‖∞ = max {|z1| , |z2| , . . . , |zn|} .

Example 6.1. Calculate ‖v‖p, where p = 1, 2, or ∞ and v = (1,−3, 2,−1) ∈
R4.

Solution. We calculate:

‖(1,−3, 2,−1)‖1 = |1| + |−3| + |2| + |−1| = 7

‖(1,−3, 2,−1)‖2 =
√

|1|2 + |−3|2 + |2|2 + |−1|2 =
√

15

‖(1,−3, 2,−1))‖∞ = max {|1| , |−3| , |2| , |−1|} = 3. �
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It may seem a bit odd at first to speak of the same vector as having
different lengths. You should take the point of view that choosing a norm is
a bit like choosing a measuring stick. If you choose a yard stick, you won’t
measure the same number as you would by using a meter stick on an object.

Example 6.2. Calculate ‖v‖p, where p = 1, 2, or ∞ and v = (2 − 3i, 1 + i) ∈
C2.

Solution. We calculate:

‖(2 − 3i, 1 + i)‖1 = |2 − 3i| + |1 + i| =
√

13 +
√

2

‖(2 − 3i, 1 + i)‖2 =
√

|2 − 3i|2 + |1 + i|2 =
√

(2)2 + (−3)2 + 12 + 12 =
√

15

‖(2 − 3i, 1 + i)‖∞ = max {|2 − 3i| , |1 + i|} = max
{√

13,
√

2
}

=
√

13. �

Example 6.3. Verify that the norm properties are satisfied for the p-norm in
the case that p = ∞.

Solution. Let c be a scalar, and let u = (z1, z2, . . . , zn), and v = (w1, w2, . . . , wn)
be two vectors. Any absolute value is nonnegative, and any vector whose
largest component in absolute value is zero must have all components equal
to zero. Property (1) follows. Next, we have that

‖cu‖∞ = ‖(cz1, cz2, . . . , czn)‖∞
= max {|cz1| , |cz2| , . . . , |czn|}
= |c|max {|z1| , |z2| , . . . , |zn|} = |c| ‖u‖∞ ,

which proves (2). For (3) we observe that

‖u + v‖∞ = max {|z1| + |w1| , |z2| + |w2| , . . . , |zn| + |wn|}
≤ max {|z1| , |z2| , . . . , |zn|} + max {|w1| , |w2| , . . . , |wn|}
≤ ‖u‖∞ + ‖v‖∞ . �

Unit Vectors

Sometimes it is convenient to deal with vectors whose length is one. Such a Unit Vector
vector is called a unit vector. We saw in Chapter 3 that it is easy to concoct
a unit vector u in the same direction as a given nonzero vector v when using
the standard norm, namely take

u =
v

‖v‖ . (6.1)

The same formula holds for any norm whatsoever because of norm property
(2).
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Example 6.4. Construct a unit vector in the direction of v = (1,−3, 2,−1),
where the 1-norm, 2-norm, and ∞-norms are used to measure length.

Solution. We already calculated each of the norms of v in Example 6.1. Use
these numbers in equation (6.1) to obtain unit-length vectors

u1 =
1
7
(1,−3, 2,−1)

u2 =
1√
15

(1,−3, 2,−1)

u∞ =
1
3
(1,−3, 2,−1). �

From a geometric point of view there are certain sets of vectors in the
vector space V that tell us a lot about distances. These are the so-called balls
about a vector (or point) v0 of radius r, whose definition is as follows:

Br(v0) = {v ∈ V | ‖v − v0‖ ≤ r} .

Sometimes these are called closed balls, as opposed to open balls, which areBall in
Normed

Space
defined using strict inequality. Here is a situation in which these balls are
very helpful: imagine trying to find the distance from a given vector v0 to
a closed (this means it contains all points on its boundary) set S of vectors
that need not be a subspace. One way to accomplish this is to start with
a ball centered at v0 such that the ball avoids S. Then expand this ball by
increasing its radius until you have found a least radius r such that the ball
Br(v0) intersects S nontrivially. Then the distance from v0 to this set is this
number r. Actually, this is a reasonable definition of the distance from v0 to
the set S. One expects these balls, for a given norm, to have the same shape,
so it is sufficient to look at the unit balls, that is, the case r = 1.

Example 6.5. Sketch the unit balls centered at the origin for the 1-norm,
2-norm, and ∞-norms in the space V =R2.

Solution. In each case it’s easiest to determine the boundary of the ball B1(0),
i.e., the set of vectors v = (x, y) such that ‖v‖ = 1. These boundaries are
sketched in Figure 6.1, and the ball consists of the boundaries plus the interior
of each boundary. Let’s start with the familiar 2-norm. Here the boundary
consists of points (x, y) such that

1 = ‖(x, y)‖2 =
√

x2 + y2,

which is the familiar circle of radius 1 centered at the origin. Next, consider
the 1-norm, in which case

1 = ‖(x, y)‖1 = |x| + |y| .
It’s easier to examine this formula in each quadrant, where it becomes one of
the four possibilities
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±x ± y = 1.

For example, in the first quadrant we get x+y = 1. These equations give lines
that connect to form a square whose sides are diagonal lines. Finally, for the
∞-norm we have

1 = |(x, y)|∞ = max {|x| , |y|} ,

which gives four horizontal and vertical lines x = ±1 and y = ±1. These
intersect to form another square. Thus we see that the unit “balls” for the 1-
and ∞-norms have corners, unlike the 2-norm. See Figure 6.1 for a picture of
these balls. ��

x

y

‖v‖1 = 1

‖v‖2 = 1

‖v‖∞ = 1

Fig. 6.1. Boundaries of unit balls in various norms.

Recall from Section 4.1 that one of the important applications of the norm
concept is that it enables us to make sense out of the idea of limits and
convergence of vectors. In a nutshell, limn→∞ vn = v was taken to mean
that limn→∞ ‖vn − v‖ = 0. In this case we said that the sequence v1,v2, . . .
converges to v. Will we have to have a different notion of limits for different Limit and

Convergence
of Vectors

norms? For finite-dimensional spaces, the somewhat surprising answer is no.
The reason is that given any two norms ‖·‖a and ‖·‖b on a finite-dimensional
vector space, it is always possible to find positive real constants c and d such
that for any vector v,

‖v‖a ≤ c · ‖v‖b and ‖v‖b ≤ d ‖v‖a .

Hence, if ‖vn − v‖ tends to 0 in one norm, it will tend to 0 in the other
norm. For this reason, any two norms satisfying these inequalities are called
equivalent. It can be shown that all norms on a finite-dimensional vector space Equivalent

Normsare equivalent (see Section 6.5). Indeed, it can be shown that the condition
that ‖vn − v‖ tends to 0 in any one norm is equivalent to the condition that
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each coordinate of vn converges to the corresponding coordinate of v. We will
verify the limit fact in the following example.

Example 6.6. Verify that limn→∞ vn exists and is the same with respect to
both the 1-norm and 2-norm, where

vn =
[

(1 − n)/n
e−n + 1

]
.

Which norm is easier to work with?

Solution. First we have to know what the limit will be. Let’s examine the
limit in each coordinate. We have

lim
n→∞

1 − n

n
= lim

n→∞
1
n

− 1 = 0 − 1 = −1 and lim
n→∞ e−n + 1 = 0 + 1 = 1.

So we try to use v = (−1, 1) as the limiting vector. Now calculate

v − vn =
[−1

1

]
−

[ 1−n
n

e−n + 1

]
=

[ 1
n

e−n

]
,

so that

‖v − vn‖1 =
∣∣∣∣ 1n

∣∣∣∣ +
∣∣e−n

∣∣ −→
n→∞ 0

and

‖v − vn‖ =

√(
1
n

)2

+ (e−n)2 −→
n→∞ 0,

which shows that the limits are the same in either norm. In this case the
1-norm appears to be easier to work with, since no squaring and square roots
are involved. ��

Here are two examples of norms defined on nonstandard vector spaces:

Definition 6.4. Let V = Rm,n (or Cm,n). The Frobenius norm of an m × nFrobenius
Norm matrix A = [aij ] is defined by the formula

‖A‖F =

⎛⎝ m∑
i=1

n∑
j=1

|aij |2
⎞⎠1/2

.

We leave verification of the norm laws as an exercise.

Definition 6.5. The uniform (or infinity) norm on C[0, 1] is defined byUniform
(Infinity)
Norm on
Function

Space

‖f‖∞ = max0≤x≤1 |f(x)|.
This norm is well defined by the extreme value theorem, which guarantees
that the maximum value of a continuous function on a closed interval exists.
We leave verification of the norm laws as an exercise.



6.1 Normed Spaces 311

6.1 Exercises and Problems

Exercise 1. Find the 1-, 2-, and ∞-norms of each of the following real vectors
and the distance between these pairs in each norm.
(a) (2, 1, 3), (−3, 1,−1) (b) (1,−2, 0, 1, 3), (2, 2,−1,−1,−2)
Exercise 2. Find the 1-, 2-, and ∞-norms of each of the following complex
vectors and the distance between these pairs in each norm.
(a) (1 + i,−1, 0, 1),(1, 1, 2,−4) (b) (i, 0, 3 − 2i), (i, 1 + i, 0)
Exercise 3. Find unit vectors in the direction of each of the following vectors
with respect to the 1-, 2-, and ∞-norms.
(a) (1,−3,−1) (b) (3, 1,−1, 2) (c) (2, 1, 3 + i)
Exercise 4. Find a unit vector in the direction of f (x) ∈ C [0, 1] with respect
to the uniform norm, where f (x) is one of the following.
(a) sin (πx) (b) x (x − 1) (c) ex

Exercise 5. Verify the norm laws for the 1-norm in the case that c = −2,
u = (0, 2, 3, 1), and v = (1,−3, 2,−1) in V = R4.
Exercise 6. Verify the norm laws for the Frobenius norm in the case that c =

−4, u =
[

1 0 −1
1 2 0

]
and v =

[−2 0 2
1 0 −3

]
in V = R2,3.

Exercise 7. Find the distance from the point
(−1,− 1

2

)
to the line x + y = 2

using the ∞-norm by sketching a picture of the ball centered at that point
that touches the line.
Exercise 8. Find the constant function that is nearest the function f (x) =
4x (1 − x) ∈ V = C [0, 1] with the infinity norm. (Hint: examine a graph of
f (x) and a constant function.)

Exercise 9. Describe in words the unit ball B1

(
[1, 1, 1]T

)
in the normed space

V = R3 with the infinity norm.
Exercise 10. Describe in words the unit ball B1 (g (x)) in the normed space
V = C [0, 1] with the uniform norm and g (x) = 2.
Exercise 11. Verify that limn→∞ vn exists and is the same with respect to both
the 1- and 2-norms in V = R2, where vn = ((1 − n) /n, e−n + 1).
Exercise 12. Calculate limn→∞ fn using the uniform norm on V = C [0, 1],
where fn (x) = (x/2)n + 1.

*Problem 13. Given the matrix
[

a b
c d

]
, find the largest possible value of

||Ax||∞, where x ranges over the vectors whose ∞-norm is 1.

*Problem 14. Verify that the 1-norm satisfies the definition of a norm.
*Problem 15. Show that the Frobenius norm satisfies the norm properties.
Problem 16. Show that the infinity norm on C[0, 1] satisfies the norm proper-
ties.
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6.2 Inner Product Spaces

Definitions and Examples

We saw in Section 4.2 that the notion of a dot product of two vectors had
many handy applications, including the determination of the angle between
two vectors. This dot product amounted to the “standard” inner product of
the two standard vectors. We now extend this idea to a setting that allows
for abstract vector spaces.

Definition 6.6. An (abstract) inner product on the vector space V is a func-Abstract Inner
Product tion 〈·, ·〉 that assigns to each pair of vectors u,v ∈ V a scalar 〈u,v〉 such that

for c a scalar and u,v,w ∈ V the following hold:

(1) 〈u,u〉 ≥ 0 with 〈u,u〉 = 0 if and only if u = 0.
(2) 〈u,v〉 = 〈v,u〉
(3) 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉
(4) 〈u, cv〉 = c 〈u,v〉
A vector space V , together with an inner product 〈·, ·〉 on the space V , is
called an inner product space.Inner Product

Space
Notice that in the case of the more common vector spaces over real scalars,
property 2 becomes a commutative law: 〈u,v〉 = 〈v,u〉 . Also observe that if V
is an inner product space and W is any subspace of V , then W automatically
becomes an inner product space if we simply use the inner product of V on
elements of W. For all the inner product laws still hold, since they hold for
elements of the larger space V.

Of course, we have the standard examples of inner products, namely the
dot products on Rn and Cn. Here is an example of a nonstandard inner productStandard

Inner
Products

on a standard space that is useful in certain engineering problems.

Example 6.7. For vectors u = (u1, u2) and v = (v1, v2) in V = R2, define an
inner product by the formula

〈u,v〉 = 2u1v1 + 3u2v2.

Show that this formula satisfies the inner product laws.

Solution. First we see that

〈u,u〉 = 2u2
1 + 3u2

2,

so the only way for this sum to be 0 is for u1 = u2 = 0. Hence (1) holds. For
(2) calculate

〈u,v〉 = 2u1v1 + 3u2v2 = 2v1u1 + 3v2u2 = 〈v,u〉 = 〈v,u〉,
since all scalars in question are real. For (3) let w = (w1, w2) and calculate



6.2 Inner Product Spaces 313

〈u,v + w〉 = 2u1 (v1 + w1) + 3u2 (v2 + w2)
= 2u1v1 + 3u2v2 + 2u1w1 + 3u2 = 〈u,v〉 + 〈u,w〉 .

For the last property, check that for a scalar c,

〈u, cv〉 = 2u1cv1 + 3u2cv2 = c (2u1v1 + 3u2v2) = c 〈u,v〉 . �

It follows that this “weighted” inner product is indeed an inner product
according to our definition. In fact, we can do a whole lot more with even less
effort. Consider this example, of which the preceding is a special case.

Example 6.8. Let A be an n × n Hermitian matrix (A = A∗) and define the
product 〈u,v〉 = u∗Av for all u,v ∈V , where V is Rn or Cn. Show that this
product satisfies inner product laws (2), (3), and (4) and that if, in addition,
A is positive definite, then the product satisfies (1) and is an inner product.

Solution. As usual, let u,v,w ∈ V and let c be a scalar. For (2), remember
that for a 1 × 1 scalar quantity q, q∗ = q, so we calculate

〈v,u〉 = v∗Au = (u∗Av)∗ = 〈u,v〉∗ = 〈u,v〉.
For (3), we calculate

〈u,v + w〉 = u∗A(v + w) = u∗Av + u∗Aw = 〈u,v〉 + 〈u,w〉 .

For (4), we have that

〈u, cv〉 = u∗Acv = cu∗Av = c 〈u,v〉 .

Finally, if we suppose that A is also positive definite, then by definition,

〈u,u〉 = u∗Au > 0, for u 
= 0,

which shows that inner product property (1) holds. Hence, this product defines
an inner product. ��

We leave it to the reader to check that if we take

A =
[

2 0
0 3

]
,

then the inner product defined by this matrix is exactly the inner product of
Example 6.7.

There is an important point to be gleaned from the previous example,
namely, that a given vector space may have more than one inner product on
it. In particular, V = R2 could have the standard inner product, i.e., dot
product or something else like the previous example. The space V , together
with each one of these inner products, provides us with two separate inner
product spaces.

Here is a rather more exotic example of an inner product involving a
nonstandard vector space.
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Example 6.9. Let V = C [a, b], the space of continuous functions on the
interval [a, b] with the usual function addition and scalar multiplication. Show
that the formula

〈f, g〉 =
∫ b

a

f(x)g(x) dx

defines an inner product on the space V .

Solution. Certainly 〈f, g〉 is a real number. Now if f(x) is a continuous func-
tion then f (x)2 is nonnegative on [a, b] and therefore

∫ 1
0 f(x)2dx = 〈f, f〉 ≥ 0.

Furthermore, if f(x) is nonzero, then the area under the curve y = f (x)2 must
also be positive since f (x) will be positive and bounded away from 0 on some
subinterval of [a, b]. This establishes property (1) of inner products.

Now let f(x), g(x), h(x) ∈ V . For property (2), notice that

〈f, g〉 =
∫ b

a

f(x)g(x)dx =
∫ b

a

g(x)f(x)dx = 〈g, f〉 .

Also,

〈f, g + h〉 =
∫ b

a

f(x)(g(x) + h(x))dx

=
∫ b

a

f(x)g(x)dx +
∫ b

a

f(x)h(x)dx = 〈f, g〉 + 〈f, h〉 ,

which establishes property (3). Finally, we see that for a scalar c,

〈f, cg〉 =
∫ b

a

f(x)cg(x) dx = c

∫ b

a

f(x)g(x) dx = c 〈f, g〉 ,

which shows that property (4) holds. ��
We shall refer to this inner product on a function space as the standard

inner product on the function space C [a, b]. (Most of our examples and exer-Function
Space

Standard
Inner Product

cises involving function spaces will deal with polynomials, so we remind the
reader of the integration formula

∫ b

a
xm dx = 1

m+1

(
bm+1 − am+1

)
and special

case
∫ 1
0 xm dx = 1

m+1 for m ≥ 0.)
Following are a few simple facts about inner products that we will use

frequently. The proofs are left to the exercises.

Theorem 6.1. Let V be an inner product space with inner product 〈·, ·〉 .
Then we have that for all u,v,w ∈ V and scalars a,

(1) 〈u,0〉 = 0 = 〈0,u〉,
(2) 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉,
(3) 〈au,v〉 = a〈u,v〉.
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Induced Norms and the CBS Inequality

It is a striking fact that we can accomplish all the goals we set for the standard
inner product using general inner products: we can introduce the ideas of
angles, orthogonality, projections, and so forth. We have already seen much
of the work that has to be done, though it was stated in the context of the
standard inner products. As a first step, we want to point out that every inner
product has a “natural” norm associated with it.

Definition 6.7. Let V be an inner product space. For vectors u ∈ V , the
norm defined by the equation

‖u‖ =
√

〈u,u〉

is called the norm induced by the inner product 〈·, ·〉 on V . Induced Norm

As a matter of fact, this idea is not really new. Recall that we introduced the
standard inner product on V = Rn or Cn with an eye toward the standard
norm. At the time it seemed like a nice convenience that the norm could be
expressed in terms of the inner product. It is, and so much so that we have
turned this cozy relationship into a definition. Just calling the induced norm
a norm doesn’t make it so. Is the induced norm really a norm? We have some
work to do. The first norm property is easy to verify for the induced norm:
from property (1) of inner products we see that 〈u,u〉 ≥ 0, with equality if
and only if u = 0. This confirms norm property (1). Norm property (2) isn’t
too hard either: let c be a scalar and check that

‖cu‖ =
√

〈cu, cu〉 =
√

cc 〈u,u〉 =
√

|c|2
√

〈u,u〉 = |c| ‖u‖ .

Norm property (3), the triangle inequality, remains. This one isn’t easy to
verify from first principles. We need a tool that we have seen before, the
Cauchy–Bunyakovsky–Schwarz (CBS) inequality. We restate it below as the
next theorem. Indeed, the very same proof that is given in Theorem 4.2 carries
over word for word to general inner products over real vector spaces. We need
only replace dot products u · v by abstract inner products 〈u,v〉. We can
also replace dot products by inner products in Problem 16 of Chapter 4,
which establishes CBS for complex inner products. Similarly, the proof of
the triangle inequality as given in Example 4.10, carries over to establish the
triangle inequality for abstract inner products. Hence property (3) of norms
holds for any induced norm.

Theorem 6.2. Let V be an inner product space. For u,v ∈ V , if we use the CBS
Inequalityinner product of V and its induced norm, then

|〈u,v〉| ≤ ‖u‖ ‖v‖ .
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Henceforth, when the norm sign ‖·‖ is used in connection with a given inner
product, it is understood that this norm is the induced norm of this inner
product, unless otherwise stated.

Just as with the standard dot products, we can formulate the following
definition thanks to the CBS inequality.

Definition 6.8. For vectors u,v ∈ V, a real inner product space, we defineAngle
Between
Vectors

the angle between u and v to be any angle θ satisfying

cos θ =
〈u,v〉

‖u‖ ‖v‖ .

We know that |〈u,v〉| / (‖u‖ ‖v‖) ≤ 1, so that this formula for cos θ makes
sense.

Example 6.10. Let u = (1,−1) and v = (1, 1) be vectors in R2. Compute
an angle between these two vectors using the inner product of Example 6.7.
Compare this to the angle found when one uses the standard inner product
in R2.

Solution. According to 6.7 and the definition of angle, we have

cos θ =
〈u,v〉

‖u‖ ‖v‖ =
2 · 1 · 1 + 3 · (−1) · 1√

2 · 12 + 3 · (−1)2
√

2 · 12 + 3 · 12
=

−1
5

.

Hence the angle in radians is

θ = arccos
(−1

5

)
≈ 1.7722.

On the other hand, if we use the standard norm, then

〈u,v〉 = 1 · 1 + (−1) · 1 = 0,

from which it follows that u and v are orthogonal and θ = π/2 ≈ 1.5708. ��
In the previous example, it shouldn’t be too surprising that we can arrive at

two different values for the “angle” between two vectors. Using different inner
products to measure angle is somewhat like measuring length with different
norms. Next, we extend the perpendicularity idea to arbitrary inner product
spaces.

Definition 6.9. Two vectors u and v in the same inner product space areOrthogonal
Vectors orthogonal if 〈u,v〉 = 0.

Note that if 〈u,v〉 = 0, then 〈v,u〉 = 〈u,v〉 = 0. Also, this definition makes
the zero vector orthogonal to every other vector. It also allows us to speak
of things like “orthogonal functions.” One has to be careful with new ideas
like this. Orthogonality in a function space is not something that can be
as easily visualized as orthogonality of geometrical vectors. Inspecting the
graphs of two functions may not be quite enough. If, however, graphical data
is tempered with a little understanding of the particular inner product in use,
orthogonality can be detected.
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Example 6.11. Show that f(x) = x and g(x) = x − 2
3 are orthogonal ele-

ments of C [0, 1] with the inner product of Example 6.9 and provide graphical
evidence of this fact.

Solution. According to the definition of inner product in this space,

〈f, g〉 =
∫ 1

0
f(x)g(x)dx =

∫ 1

0
x

(
x − 2

3

)
dx =

(
x3

3
− x2

3

)∣∣∣∣1
0

= 0.

It follows that f and g are orthogonal to each other. For graphical evidence,
sketch f(x), g(x), and f(x)g(x) on the interval [0, 1] as in Figure 6.2. The
graphs of f and g are not especially enlightening; but we can see in the graph
that the area below f · g and above the x-axis to the right of (2/3, 0) seems
to be about equal to the area to the left of (2/3, 0) above f · g and below the
x-axis. Therefore the integral of the product on the interval [0, 1] might be
expected to be zero, which is indeed the case. ��

1

1

y

−1

x

g(x) = x − 2
3

f(x) = x

2
3

f(x) · g(x)

Fig. 6.2. Graphs of f , g, and f · g on the interval [0, 1].

Some of the basic ideas from geometry that fuel our visual intuition extend
very elegantly to the inner product space setting. One such example is the
famous Pythagorean theorem, which takes the following form in an inner
product space.

Theorem 6.3. Let u,v be orthogonal vectors in an inner product space V. Pythagorean
TheoremThen ‖u‖2 + ‖v‖2 = ‖u + v‖2.

Proof. Compute

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉 + 〈u,v〉 + 〈v,u〉 + 〈v,v〉
= 〈u,u〉 + 〈v,v〉 = ‖u‖2 + ‖v‖2

. �



318 6 GEOMETRICAL ASPECTS OF ABSTRACT SPACES

Here is an example of another standard geometrical fact that fits well in
the abstract setting. This is equivalent to the law of parallelograms, which
says that the sum of the squares of the diagonals of a parallelogram is equal
to the sum of the squares of all four sides.

Example 6.12. Use properties of inner products to show that if we use theLaw of Paral-
lelograms induced norm, then

‖u + v‖2 + ‖u − v‖2 = 2
(
‖u‖2 + ‖v‖2

)
.

Solution. The key to proving this fact is to relate induced norm to inner
product. Specifically,

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉 + 〈u,v〉 + 〈v,u〉 + 〈v,v〉 ,

while

‖u − v‖2 = 〈u − v,u − v〉 = 〈u,u〉 − 〈u,v〉 − 〈v,u〉 + 〈v,v〉 .

Now add these two equations and obtain by using the definition of induced
norm again that

‖u + v‖2 + ‖u − v‖2 = 2 〈u,u〉 + 2 〈v,v〉 = 2
(
‖u‖2 + ‖v‖2

)
,

which is what was to be shown. ��
It would be nice to think that every norm on a vector space is induced from

some inner product. Unfortunately, this is not true, as the following example
shows.

Example 6.13. Use the result of Example 6.12 to show that the infinity norm
on V = R2 is not induced by any inner product on V .

Solution. Suppose the infinity norm were induced by some inner product on
V. Let u = (1, 0) and v = (0, 1/2). Then we have

‖u + v‖2
∞ + ‖u − v‖2

∞ = ‖(1, 1/2)‖2
∞ + ‖1,−1/2‖2

∞ = 2,

while
2
(
‖u‖2 + ‖v‖2

)
= 2 (1 + 1/4) = 5/2.

This contradicts Example 6.12, so that the infinity norm cannot be induced
from an inner product. ��

One last example of a geometrical idea that generalizes to inner product
spaces is the notion of projections of one vector along another. The projec-
tion formula for vectors in Section 4.2 works perfectly well for general inner
products. Since the proof of this fact amounts to replacing dot products by
inner products in the original formulation of the theorem (see Theorem 4.3),
we omit it and simply state the result.
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Theorem 6.4. Let u and v be vectors in an inner product space with v 
= 0. Projection
Formula for
Vectors

Define the projection of u along v as

projv u =
〈v,u〉
〈v,v〉v

and let p = projv u, q = u − p. Then p is parallel to v, q is orthogonal to v,
and u = p + q.

As with the standard inner product, it is customary to call the vector projv u
of this theorem the (parallel) projection of u along v. Likewise, components
and orthogonal projections are defined as in the standard case. In summary,
we have the two vector and one scalar quantities

Projection

projv u =
〈v,u〉
〈v,v〉v,

Orthogonal
Projectionorthv u = u − projv u,

Componentcompv u =
〈v,u〉
‖v‖ .

Orthogonal Sets of Vectors

We have already seen the development of the ideas of orthogonal sets of vectors
and bases in Chapter 4. Much of this development can be abstracted easily
to general inner product spaces, simply by replacing dot products by inner
products. Accordingly, we can make the following definition.

Definition 6.10. The set of vectors v1,v2, . . . ,vn in an inner product space Orthogonal
and
Orthonormal
Set of Vectors

is said to be an orthogonal set if 〈vi,vj〉 = 0 whenever i 
= j. If, in addition,
each vector has unit length, i.e., 〈vi,vi〉 = 1 for all i, then the set of vectors
is said to be an orthonormal set of vectors.

The proof of the following key fact and its corollary are the same as those of
Theorem 4.6 in Section 4.3. All we have to do is replace dot products by inner
products. The observations that followed the proof of this theorem are valid
for general inner products as well. We omit the proofs and refer the reader to
Chapter 4.

Theorem 6.5. Let v1,v2, . . . ,vn be an orthogonal set of nonzero vectors and
suppose that v ∈ span {v1,v2, . . . ,vn}. Then v can be expressed uniquely
(up to order) as a linear combination of v1,v2, . . . ,vn, namely Orthogonal

Coordinates
Formulav =

〈v1,v〉
〈v1,v1〉v1 +

〈v2,v〉
〈v2,v2〉v2 + · · · +

〈vn,v〉
〈vn,vn〉vn.
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Corollary 6.1. Every orthogonal set of nonzero vectors is linearly indepen-
dent.

Another useful corollary is the following fact about the length of a vector,
whose proof is left as an exercise.

Corollary 6.2. If v1,v2, . . . ,vn is an orthogonal set of vectors and v = c1v1+
c2v2 + · · · + cnvn, then

‖v‖2 = c2
1 ‖v1‖2 + c2

2 ‖v2‖2 + · · · + c2
n ‖vn‖2

.

Example 6.14. Find an orthogonal basis of V = R2 with respect to the inner
product of Example 6.7 that includes v1 = (1,−1). Calculate the coordinates
of v = (1, 1) with respect to this basis and verify the formula of Corollary 6.2.

Solution. Recall that the inner product is given by 〈u,v〉 = 2u1v1 + 3u2v2.
Use the induced norm for ‖·‖. Let w be a nonzero solution to the equation

0 = 〈v1,w〉 = 2 · 1 · w1 + 3 · (−1)w2,

say w = (3, 2). Then v1 and v2 = w are orthogonal, hence linearly indepen-
dent and a basis of the two-dimensional space V . Now ‖v1‖2 = 2 · 12 + 3 ·
(−1)2 = 5 and ‖v2‖2 = 2 · 32 + 3 · 22 = 30. The coordinates of v are easily
calculated:

c1 =
〈v1,v〉
〈v1,v1〉 =

1
5

(2 · 1 · 1 + 3(−1) · 1) =
−1
5

c2 =
〈v2,v〉
〈v2,v2〉 =

1
30

(2 · 3 · 1 + 3 · 2 · 1) =
2
5
.

From the definition we have that ‖v‖2 = 2 · 12 + 3 · 12 = 5. Similarly, we
calculate that

c2
1 ‖v1‖2 + c2

2 ‖v2‖2 =
(−1

5

)2

5 +
(

2
5

)2

30 = 5 = ‖v‖2
. �

Note 6.1. In all exercises of this chapter use the standard inner products and
induced norms for Rn and C [a, b] unless otherwise specified.

6.2 Exercises and Problems

Exercise 1. Verify the Cauchy–Bunyakovsky–Schwarz inequality and calculate
the angle between the vectors for the following pairs of vectors u, v and
specified inner product.
(a) u = (2, 3), v = (−1, 2), inner product 〈(x, y) , (w, z)〉 = 4xw + 9yz on R2.
(b) u = x, v = x3, inner product of Example 6.9 on C [0, 1].
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Exercise 2. Verify the CBS inequality and calculate the angle between the vec-
tors for the following pairs of vectors and inner product.
(a) (1,−1, 1), (−1, 2, 3), inner product 〈(x, y, z) , (u, v, w)〉 = xu + 2yv + zw.
(b) (2, 3), (−1, 2), inner product 〈(x, y) , (w, z)〉 = 2xw + xz + yw + yz.

Exercise 3. For each of the pairs u,v of vectors in Exercise 1, calculate the
projection, component, and orthogonal projection of u to v using the specified
inner product.

Exercise 4. For each of the pairs u,v of vectors in Exercise 2, calculate the
projection, component, and orthogonal projection of u to v using the specified
inner product.

Exercise 5. Find an equation for the hyperplane defined by 〈a,x〉 = 2 in R3

with inner product of Exercise 2(a) and a = (4,−1, 2).

Exercise 6. Find an equation for the hyperplane defined by 〈f, g〉 = 2 in P3
with the standard inner product of C [0, 1], f (x) = x + 3, and g (x) = c0 +
c1x + c2x

2 + c3x
3.

Exercise 7. The formula
〈
[x1, x2]T , [y1, y2]T

〉
= 3x1y1 −2x2y2 fails to define an

inner product on R2. What laws fail?

Exercise 8. Do any inner product laws fail for the formula 〈(x1, x2), (y1, y2)〉 =

x1y1 − x1y2 − x2y1 + 2x2y2 on R2. (Hint:
[

1 0
−1 1

] [
1 −1
0 1

]
=

[
1 −1

−1 2

]
.)

Exercise 9. Which of the following are orthogonal or orthonormal sets?
(a) (2,−1, 2), (2, 2, 0) in R3 with the inner product of Exercise 2(a).
(b) 1, x, x2 as vectors in C [−1, 1] with the standard inner product.
(c) 1

5 (−2, 1), 1
30 (9, 8) in R2 with the inner product of Exercise 1(a).

Exercise 10. Determine whether the following sets of vectors are linearly inde-
pendent, orthogonal, or orthonormal.
(a) 1

10 (3, 4), 1
10 (4,−3) in R2 with inner product 〈(x, y) , (w, z)〉 = 4xw + 4yz.

(b) 1, cos(x), sin(x) in C [−π, π] with the standard inner product.

(c) (2, 4), (1, 0) in R2 with inner product 〈x,y〉 = xT

[
2 −1

−1 2

]
y.

Exercise 11. Let v1 = (1, 3, 2) and v2 = (−4, 1,−1). Show that v1 and v2 are
orthogonal with respect to the inner product of Exercise 2(a) and use this to
determine whether the following vectors v belong to V = span {v1,v2} by
checking whether Theorem 6.5 is satisfied.
(a) (11, 7, 8) (b) (5, 1, 3) (c) (5, 2, 3)
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Exercise 12. Confirm that p1 (x) = x and p2 (x) = 3x2 − 1 are orthogonal
elements of C [−1, 1] with the standard inner product and determine whether
the following polynomials belong to span {p1 (x) , p2 (x)} using Theorem 6.5.
(a) x2 (b) 1 + x − 3x2 (c) 1 + 3x − 3x2

Exercise 13. Let v1 = (1, 0, 0), v2 = (−1, 2, 0), v3 = (1,−2, 3). Let V =
R3 with inner product defined by the formula 〈x,y〉 = xT Ay, where A =⎡⎣2 1 0

1 2 1
0 1 2

⎤⎦. Verify that v1, v2, v3 form an orthogonal basis of V and find the

coordinates of the following vectors with respect to this basis.
(a) (3, 1, 1) (b) (0, 0, 1) (c) (0, 2, 0)

Exercise 14. Let v1 = (1, 3, 2), v2 = (−4, 1,−1), and v3 = (10, 7,−26). Verify
that v1, v2, v3 form an orthogonal basis of R3 with the inner product of Exer-
cise 2(a). Convert this basis to an orthonormal basis and find the coordinates
of the following vectors with respect to this basis.
(a) (1, 1, 0) (b) (2, 1, 1) (c) (0, 2, 2) (c) (0, 0,−1)

Exercise 15. Let x = (a, b) and y = (c, d). Let V = R2 with inner product

defined by the formula 〈x,y〉 = xT Ay, where A =
[

1 1
2

1
2

1
3

]
. Calculate a formula

for 〈x,y〉 in terms of coordinates a, b, c, d.

Exercise 16. Let f (x) = a + bx and g (x) = c + dx. Let V = P1, the space of
linear polynomials, with the standard function space inner product. Calculate
a formula for 〈f, g〉 in terms of coordinates a, b, c, d. Compare with Exercise 15.
Conclusions?

*Problem 17. Show that any inner product on R2 can be expressed as 〈u,v〉 =
uT Av for some symmetric positive definite matrix A.

*Problem 18. Show that ‖·‖1 is not an induced norm on R2.

*Problem 19. Let V =Rn or Cn and let u,v ∈ V. Let A be a fixed n × n
nonsingular matrix. Show that the matrix A defines an inner product by the
formula 〈u,v〉 = (Au)∗

Av.

*Problem 20. Prove Theorem 6.1.

Problem 21. Prove Corollary 6.2.

*Problem 22. Let V be a real inner product space with inner product 〈·, ·〉 and
induced norm ‖·‖ . Prove the polarization identity , which recovers the inner
product from its induced norm:

〈u,v〉 =
1
4

{
‖u + v‖2 − ‖u − v‖2

}
.
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*Problem 23. Let V = C1 [0, 1], the space of continuous functions with a con-
tinuous derivative on the interval [0, 1] (see Exercise 22 of Section 3.2). Show
that the formula

〈f, g〉 =
∫ 1

0
f ′(x)g′(x)dx +

∫ 1

0
f(x)g(x)dx

defines an inner product on V (called the Sobolev inner product).

6.3 Gram–Schmidt Algorithm

We have seen that orthogonal bases have some very pleasant properties, such
as easy coordinate calculations. Our goal in this section is the following: given
a subspace V of some inner product space and a basis w1,w2, . . . ,wn of V ,
to turn this basis into an orthogonal basis. The tool we need is the Gram–
Schmidt algorithm.

Description of the Algorithm

Theorem 6.6. Let w1,w2, . . . ,wn be a basis of the inner product space V. Gram–
Schmidt
Algorithm

Define vectors v1,v2, . . . ,vn recursively by the formula

vk = wk − 〈v1,wk〉
〈v1,v1〉 v1 − 〈v2,wk〉

〈v2,v2〉 v2 −· · ·− 〈vk−1,wk〉
〈vk−1,vk−1〉vk−1, k = 1, . . . , n.

Then

(1) The vectors v1,v2, . . . ,vk form an orthogonal set.
(2) For each index k = 1, . . . , n,

span {w1,w2, . . . ,wk} = span {v1,v2, . . . ,vk} .

Proof. In the case k = 1, we have that the single vector v1 = w1 is an
orthogonal set and certainly span {w1} = span {v1}. Now suppose that for
some index k > 1 we have shown that v1,v2, . . . ,vk−1 is an orthogonal set
such that span {w1,w2, . . . ,wk−1} = span {v1,v2, . . . ,vk−1}. Then it is true
that 〈vr,vs〉 = 0 for any indices r, s both less than k. Take the inner product
of vk, as given by the formula above, with the vector vj , where j < k, and
we obtain

〈vj ,vk〉 =
〈
vj ,wk − 〈v1,wk〉

〈v1,v1〉 v1 − 〈v2,wk〉
〈v2,v2〉 v2 − · · · − 〈vk−1,wk〉

〈vk−1,vk−1〉vk−1

〉
= 〈vj ,wk〉 − 〈v1,wk〉 〈vj ,v1〉

〈v1,v1〉 − · · · − 〈vk−1,wk〉 〈vj ,vk−1〉
〈vk−1,vk−1〉

= 〈vj ,wk〉 − 〈vj ,wk〉 〈vj ,vj〉
〈vj ,vj〉 = 0.
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It follows that v1,v2, . . . ,vk is an orthogonal set. The Gram–Schmidt formula
show us that one of vk or wk can be expressed as a linear combination of the
other and v1,v2, . . . ,vk−1. Therefore

span {w1,w2, . . . ,wk−1,wk} = span {v1,v2, . . . ,vk−1,wk}
= span {v1,v2, . . . ,vk−1,vk} ,

which is the second part of the theorem. Repeat this argument for each index
k = 2, . . . , n to complete the proof of the theorem. ��

The Gram–Schmidt formula is easy to remember: subtract from the vector
wk all of the projections of wk along the directions v1,v2, . . . ,vk−1 to obtain
the vector vk.

Example 6.15. Let C[0, 1] be the space of continuous functions on the in-
terval [0, 1] with the usual function addition and scalar multiplication, and
(standard) inner product given by

〈f, g〉 =
∫ 1

0
f(x)g(x)dx

as in Example 6.9. Let V = P2 = span{1, x, x2} and apply the Gram–Schmidt
algorithm to the basis 1, x, x2 to obtain an orthogonal basis for the space of
quadratic polynomials.

Solution. Set w1 = 1, w2 = x, w3 = x2 and calculate the Gram–Schmidt
formulas:

v1 = w1 = 1,

v2 = w2 − 〈v1,w2〉
〈v1,v1〉 v1 = x − 1/2

1
1 = x − 1

2
,

v3 = w3 − 〈v1,w3〉
〈v1,v1〉 v1 − 〈v2,w3〉

〈v2,v2〉 v2

= x2 − 1/3
1

1 − 1/12
1/12

(x − 1
2
) = x2 − x +

1
6
. �

Had we used C[−1, 1] and required that each polynomial have value 1 at
x = 1, the same calculations would have given us the first three well-known
functions called Legendre polynomials. These polynomials are used extensivelyLegendre

Polynomials in approximation theory and applied mathematics.
If we prefer to have an orthonormal basis rather than an orthogonal basis,

then, as a final step in the orthogonalizing process, simply replace each vector
vk by the normalized vector uk = vk/ ‖vk‖. Here is an example to illustrate
the whole scheme.

Example 6.16. Let V = C(A) with the standard inner product and compute
an orthonormal basis of V , where
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A =

⎡⎢⎢⎣
1 2 0 −1
1 −1 3 2
1 −1 3 2

−1 1 −3 1

⎤⎥⎥⎦ .

Solution. We know that V is spanned by the four columns of A. However,
the Gram–Schmidt algorithm requests a basis of V and we don’t know that
the columns are linearly independent. We leave it to the reader to check that
the reduced row echelon form of A is the matrix

R =

⎡⎢⎢⎣
1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ .

It follows from the column space algorithm that columns 1, 2, and 4 of the
matrix A yield a basis of V . So let w1 = (1, 1, 1,−1), w2 = (2,−1,−1, 1),
w3 = (−1, 2, 2, 1), and apply the Gram–Schmidt algorithm to obtain

v1 = w1 = (1, 1, 1,−1),

v2 = w2 − 〈v1,w2〉
〈v1,v1〉 v1

= (2,−1,−1, 1) − −1
4

(1, 1, 1,−1) =
1
4
(9,−3,−3, 3),

v3 = w3 − 〈v1,w3〉
〈v1,v1〉 v1 − 〈v2,w3〉

〈v2,v2〉 v2

= (−1, 2, 2, 1) − 2
4
(1, 1, 1,−1) − −18

108
(9,−3,−3, 3)

=
1
4
(−4, 8, 8, 4) − 1

4
(2, 2, 2,−2) +

1
4
(6,−2,−2, 2) = (0, 1, 1, 2) .

Finally, normalize each vector to obtain the orthonormal basis

u1 =
v1

‖v1‖ =
1
2
(1, 1, 1,−1),

u2 =
v2

‖v2‖ =
1√
108

(9,−3,−3, 3) =
1

2
√

3
(3,−1,−1, 1),

u3 =
v3

‖v3‖ =
1√
6
(0, 1, 1, 2). �

There are several useful observations about the preceding example that
are particularly helpful for hand calculations:

• If one encounters an inconvenient fraction, such as the 1
4 in v2, replace the

calculated v2 by 4v2, thereby eliminating the fraction, and yet achieving
the same results in subsequent calculations. The idea here is that for any
nonzero scalar c,
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〈v2,w〉
〈v2,v2〉v2 =

〈cv2,w〉
〈cv2, cv2〉cv2.

So we could have replaced 1
4 (9,−3,−3, 3) by (3,−1,−1, 1) and achieved

the same results.
• The same remark applies to the normalizing process, since in general,

v2

‖v2‖ =
cv2

‖cv2‖ .

The Gram–Schmidt algorithm is robust enough to handle linearly dependent
spanning sets gracefully. We illustrate this fact with the following example:

Example 6.17. Suppose we had used all the columns of A in Example 6.16
instead of linearly independent ones, labeling them w1,w2,w3,w4. How would
the Gram–Schmidt calculation work out?

Solution. Everything would have proceeded as above until we reached the
calculation of v3, which would then yield

v3 = w3 − 〈v1,w3〉
〈v1,v1〉 v1 − 〈v2,w3〉

〈v2,v2〉 v2

= (0, 3, 3,−3) − 9
4
(1, 1, 1,−1) +

1
4
(9,−3,−3, 3)

=
1
4
(0, 12, 12,−12) +

9
4
(−1,−1,−1, 1) − −27

108
(9,−3,−3, 3)

= (0, 0, 0, 0) .

This tells us that v3 is a linear combination of v1 and v2, which mirrors
the fact that w3 is a linear combination of w1 and w2. Now discard v3 and
continue the calculations to get that

v4 = w4 − 〈v1,w4〉
〈v1,v1〉 v1 − 〈v2,w4〉

〈v2,v2〉 v2

= (−1, 2, 2, 1) − 2
4
(1, 1, 1,−1) − −18

108
(9,−3,−3, 3) = (0, 1, 1, 2) . �

Interestingly enough, this calculation yields the same third vector that
we obtained in Example 6.16. The upshot of this calculation is that Gram–
Schmidt can be applied to any spanning set, provided that one discards any
zero vectors that result from the formula. The net result is still an orthogonal
basis.

Application to Projections

We can use the machinery of orthogonal vectors to give a nice solution to
a very practical and important question that can be phrased as follows (see
Figure 6.3 for a graphical interpretation of it):
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The Projection Problem: Given a finite-dimensional subspace V of a real
inner product space W , together with a vector b ∈ W , to find the vector
v ∈ V which is closest to b in the sense that ‖b − v‖2 is minimized.

Observe that the quantity ‖b − v‖2 will be minimized exactly when
‖b − v‖ is minimized, since the latter is always nonnegative. The squared
term has the virtue of avoiding square roots that computing ‖b − v‖ requires.

The projection problem looks vaguely familiar. It reminds us of the least
squares problem of Chapter 4, which was to minimize the quantity ‖b − Ax‖2,
where A is an m × n real matrix and b,x are standard vectors. Recall that
v = Ax is a typical element in the column space of A. Therefore, the quantity
to be minimized is

‖b − Ax‖2 = ‖b − v‖2
,

where on the left-hand side x runs over all standard n-vectors and on the
right-hand side v runs over all vectors in the space V = C(A). The difference
between least squares and the projection problem is this: in the least squares
problem we want to know the vector x of coefficients of v as a linear combi-
nation of columns of A, whereas in the projection problem we are interested
only in v. Knowing v doesn’t tell us what x is, but knowing x easily gives v
since v = Ax.

V
v

c1v1

c2v2

projV b = v

b − v b

Fig. 6.3. Projection v of b into the subspace V spanned by the orthogonal vectors
v1,v2.

To solve the projection problem we need the following key concept.

Definition 6.11. Let v1,v2, . . . ,vn be an orthogonal basis for the subspace
V of the inner product space W. For any b ∈ W, the (parallel) projection of
b into the subspace V is the vector Projection

Formula for
SubspacesprojV b =

〈v1,b〉
〈v1,v1〉v1 +

〈v2,b〉
〈v2,v2〉v2 + · · · +

〈vn,b〉
〈vn,vn〉vn.
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Notice that in the case of n = 1 the definition amounts to a familiar friend,
the projection of b along the vector v1.

It appears that the definition of projV depends on the basis vectors
v1,v2, . . . ,vn, but we see from the next theorem that this is not the case.

Theorem 6.7. Let v1,v2, . . . ,vn be an orthogonal basis for the subspace VProjection
Theorem of the inner product space W. For any b ∈ W, the vector v = projV b is the

unique vector in V that minimizes ‖b − v‖2.

Proof. Let v be a solution to the projection problem and p the projection of
b − v to any vector in V . Use the Pythagorean theorem to obtain that

‖b − v‖2 = ‖b − v − p‖2 + ‖p‖2
.

However, v +p ∈ V , so that ‖b − v‖ cannot be the minimum distance b to a
vector in V unless ‖p‖ = 0. It follows that b−v is orthogonal to any vector in
V . Now let v1,v2, . . . ,vn be an orthogonal basis of V and express the vector
v in the form

v = c1v1 + c2v2 + · · · + cnvn.

Then for each vk we must have

0 = 〈vk,b − v〉 = 〈vk,b − c1v1 − c2v2 − · · · − cnvn〉
= 〈vk,b〉 − c1 〈vk,v1〉 − c2 〈vk,v2〉 − · · · cn 〈vk,vn〉
= 〈vk,b〉 − ck 〈vk,vk〉 ,

from which we deduce that ck = 〈vk,b〉 / 〈vk,vk〉. It follows that

v =
〈v1,b〉
〈v1,v1〉v1 +

〈v2,b〉
〈v2,v2〉v2 + · · · +

〈vn,b〉
〈vn,vn〉vn = projV b.

This proves that there can be only one solution to the projection problem,
namely the one given by the projection formula above.

To finish the proof one has to show that projV b actually solves the pro-
jection problem. This is left to the exercises. ��

The projection has the same nice properties that we observed in the case
of standard inner products, namely, p = projV b ∈ V and b−p is orthogonal
to every v ∈ V . For the latter assertion, notice that for any j,

〈vj ,b − p〉 = 〈vj ,b〉 −
n∑

k=1

〈
vj ,

〈vk,b〉
〈vk,vk〉vk

〉
= 〈vj ,b〉 − 〈vj ,vj〉

〈vj ,vj〉 〈vj ,b〉 = 0.

One checks that the same is true if vj is replaced by a v ∈ V . In analogy with
the standard inner products, we define the orthogonal projection of b to V
by the formulaOrthogonal

Projection orthV b = b − projV b.
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Let’s specialize to standard real vectors and inner products and take
a closer look at the formula for the projection operator in the case that
v1,v2, . . . ,vn is an orthonormal set. We then have 〈vj ,vj〉 = 1, so

projV b = 〈v1,b〉v1 + 〈v2,b〉v2 + · · · + 〈vn,b〉vn

=
(
vT

1 b
)
v1 +

(
vT

2 b
)
v2 + · · · +

(
vT

nb
)
vn

= v1vT
1 b + v2vT

2 b + · · · + vnvT
nb

=
(
v1vT

1 + v2vT
2 + · · · + vnvT

n

)
b

= Pb.

Thus we have the following expression for the matrix P : Projection
Matrix
FormulaP = v1vT

1 + v2vT
2 + · · · + vnvT

n .

The significance of this expression for projections in standard spaces over
the reals with the standard inner product is as follows: computing the projec-
tion of a vector into a subspace amounts to multiplying the vector by a matrix
P that can be computed from V . Even in the one-dimensional case this gives
us a new slant on projections:

projV u = (vvT )u = Pu.

Similarly, we see that the orthogonal projection has a matrix representation
as

orthV u = u − Pu = (I − P )u.

The general projection matrix P has some interesting properties. It is sym-
metric, i.e., PT = P, and idempotent, i.e., P 2 = P. Therefore, this notation is
compatible with the definition of projection matrix introduced in earlier ex-
ercises (see Exercise 11 of Section 4.3). Symmetry follows from the fact that(
vkvT

k

)T = vkvT
k . For idempotence, notice that(
vjvT

j

) (
vkvT

k

)
=

(
vT

j vk

) (
vkvT

j

)
= δj,kvkvT

j .

It follows that P 2 = P . One can show that the converse is true: if P is real
symmetric and idempotent, then it is the projection matrix for the subspace
C(P ) (see Problem 16 at the end of this section.)

Example 6.18. Find the projection matrix for the subspace of R3 spanned
by the orthonormal vectors v1 = (1/

√
2)[1,−1, 0]T and v2 = (1/

√
3)[1, 1, 1]T

and use it to solve the projection problem with V = span {v1,v2} and b =
[2, 1,−3]T .

Solution. Use the formula developed above for the projection matrix

P = v1vT
1 + v2vT

2 =
1
2

⎡⎣ 1
−1

0

⎤⎦ [ 1 −1 0 ] +
1
3

⎡⎣1
1
1

⎤⎦ [ 1 1 1 ] =

⎡⎣ 5
6 − 1

6
1
3− 1

6
5
6

1
3

1
3

1
3

1
3

⎤⎦ .
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Thus the solution to the projection problem for b is given by

v = Pb =

⎡⎣ 5
6 − 1

6
1
3− 1

6
5
6

1
3

1
3

1
3

1
3

⎤⎦⎡⎣ 2
1

−3

⎤⎦ =

⎡⎣ 1
2− 1
2

0

⎤⎦ . �

The projection problem is closely related to another problem that we have
seen before, namely the least squares problem of Section 4.2 in Chapter 4.
Recall that the least squares problem amounted to minimizing the function
f(x) = ‖b − Ax‖2, which in turn led to the normal equations. Here A is an
m × n real matrix. Now consider the projection problem for the subspace
V = C(A) of Rm, where b ∈ Rm. We know that elements of C(A) can be
written in the form v = Ax, where x ∈ Rn. Therefore, ‖b − Ax‖2 = ‖b − v‖2,
where v ranges over elements of V . It follows that when we solve a least squaresLeast Squares

as Projection
Problem

problem, we are really solving a projection problem as well in the sense that
the vector Ax is the element of C(A) closest to the right-hand-side vector b.

The normal equations give us another way to generate projection matrices
in the case of standard vectors and inner products. As above, let V = C(A) ⊆
Rm, and b ∈ Rm. Assume that the columns of A are linearly independent,
i.e., that A has full column rank. Then, as we have seen in Theorem 4.5, the
matrix AT A is invertible and the normal equations AT Ax = AT b have the
unique solution

x = (AT A)−1AT b.

Consequently, the solution to the projection problem is

v = Ax = A(AT A)−1AT b.

It is also true that v = Pb; since this holds for all vectors b, it follows that
the projection matrix for this subspace is given by the formulaColumn Space

Projection
Formula P = A(AT A)−1AT .

Example 6.19. Find the projection matrix for the subspace V = span {w1,w2}
of R3 with w1 = (1,−1, 0) and w2 = (2, 0, 1).

Solution. Let A = [w1,w2], so that

AT A =
[

1 −1 0
2 0 1

]⎡⎣ 1 2
−1 0

0 1

⎤⎦ =
[

2 2
2 5

]
.

Thus

P = A(AT A)−1AT

=

⎡⎣ 1 2
−1 0

0 1

⎤⎦ 1
6

[
5 −2

−2 2

] [
1 −1 0
2 0 1

]
=

⎡⎣ 5
6 − 1

6
1
3− 1

6
5
6

1
3

1
3

1
3

1
3

⎤⎦ . �
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Curiously, this is exactly the same matrix as the projection matrix found
in the preceding example. What is the explanation? Notice that w1 =

√
2v1

and w2 =
√

2v1 +
√

3v2, so that V = span {w1,w2} = span {v1,v2}. Hence
the subspaces of both examples, though specified by different bases, are the
same subspace. Therefore we should expect the projection operators to be the
same.

6.3 Exercises and Problems

Exercise 1. Apply the Gram–Schmidt algorithm to the columns of the following
matrices in left-to-right order using the standard inner product.

(a)

⎡⎣ 1 −1 1
1 2 3

−1 2 1

⎤⎦ (b)

⎡⎣ 1 2 1
0 0 4
1 2 0

⎤⎦ (c)
[

1 1
1 2

]
(d)

⎡⎢⎢⎣
1 0 2 1
1 1 2 2

−1 1 1 3
−1 0 0 1

⎤⎥⎥⎦
Exercise 2. Apply the Gram–Schmidt algorithm to the following vectors using
the specified inner product:
(a) (1,−2, 0), (0, 1, 1), (1, 0, 2) in R3, inner product of Exercise 2, Section 6.2.
(b) (1, 0, 0), (1, 1, 0), (1, 1, 1) in R3, inner product of Exercise 13, Section 6.2.
(c) 1, x, x2 in C1[0, 1], inner product of Problem 23, Section 6.2.

Exercise 3. Find the projection matrix for the column space of each of the
following matrices using the projection matrix formula (you will need an or-
thonormal basis).

(a)
[

1 −2
−1 2

]
(b)

⎡⎣ 2 1 1
0 2 4

−1 2 0

⎤⎦ (c)

⎡⎢⎢⎣
3 0 1
0 2 0
0 1 1
1 0 1

⎤⎥⎥⎦ (d)

⎡⎣1 2 1
0 0 2
1 2 0

⎤⎦
Exercise 4. Redo Exercise 3 using the column space projection formula (re-
member to use a matrix of full column rank for this formula, so you may have
to discard columns).

Exercise 5. Let V = span {(1,−1, 1), (1, 1, 0)}⊆ R3. Compute projV w and
orthV w for the following w.
(a) (4,−1, 2) (b) (1, 1, 1) (c) (0, 0, 1)

Exercise 6. Repeat Exercise 5 using the inner product 〈(x, y, z), (u, v, w)〉 =
2xu − xv − yu + 3yv + zw.

Exercise 7. Find the projection of the polynomial f (x) = x3 into the subspace
V = span {1, x} of C [0, 1] with the standard inner product and calculate
‖f − projV f‖.
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Exercise 8. Repeat Exercise 7 using the Sobolev inner product of Problem 23,
Section 6.2.

Exercise 9. Use the Gram–Schmidt algorithm to expand the orthogonal vectors
w1 = (−1,−1, 1, 1) and w2 = (1, 1, 1, 1) to an orthogonal basis of R4 (you will
need to supply additional vectors).

Exercise 10. Expand the unit vector w1 = 1
3 (1, 1, 1) of R3 to an orthonormal

basis of R3 with the inner product 〈(x, y, z), (u, v, w)〉 = 2xu + 2yv + zw.

Exercise 11. Show that the matrices A =

⎡⎣1 3 4
1 4 2
1 1 8

⎤⎦ and B =

⎡⎣4 3 1
5 7 0
2 −5 3

⎤⎦ have

the same column space by computing the projection matrices into these col-
umn spaces.

Exercise 12. Use projection matrices to determine whether the row spaces of

the matrices A =

⎡⎣ 3 −4 7 2
0 5 −5 −1
1 0 0 1

⎤⎦ and B =

⎡⎣1 2 −1 0
1 −3 4 1
3 1 2 1

⎤⎦ are equal; if not,

exhibit vectors in one space but not the other, if possible.

Problem 13. Show that if P is a projection matrix, then so is I − P .

*Problem 14. Show that if u1,u2,u3 is an orthonormal basis of R3, then
u1uT

1 + u2uT
2 + u3uT

3 = I3.

Problem 15. Assume A has full column rank. Verify directly that if P =
A(AT A)−1AT , then P is symmetric and idempotent.

*Problem 16. Show that if P is an n × n projection matrix, then for every
v ∈ Rn, Pv ∈ C(P ) and v − Pv is orthogonal to every element of C(P ).

Problem 17. Write out a proof of the Gram–Schmidt algorithm in the case
that n = 3.

*Problem 18. Complete the proof of the Projection theorem (Theorem 6.7) by
showing that projV b solves the projection problem.

Problem 19. How does the orthogonal projection formula on page 329 have to
be changed if the vectors in question are complex? Illustrate your answer with
the orthonormal vectors v1 = ((1 + i)/2, 0, (1 + i)/2), v2 = (0, 1, 0) in C2.

Problem 20. Let W = C [−1, 1] with the standard function space inner prod-
uct. Suppose V is the subspace of linear polynomials and b = ex.
(a) Find an orthogonal basis for V .
(b) Find the projection p of b into V .
(c) Compute the “mean error of approximation” and compare it to the mean
error of approximation ‖b − q‖, where q is the first-degree Taylor series of b
centered at 0.
(d) Use a CAS or MAS to plot b − p and b − q.
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6.4 Linear Systems Revisited

Once again we revisit our old friend, Ax = b, where A is an m × n matrix.
The notions of orthogonality can shed still more light on the nature of this
system of equations, especially in the case of a homogeneous system Ax = 0.
The kth entry of the column vector Ax is simply the kth row of A multiplied
by the column vector x. Designate this row by rT

k , and we see that

rk · x = 0, k = 1, . . . , n.

In other words, Ax = 0, that is, x ∈ N (A), precisely when x is orthog-
onal (with the standard inner product) to every row of A. We will see in
Theorem 6.10 below that this means that x will be orthogonal to any linear
combination of the rows of A. Thus, we could say

N (A) = {x ∈ Rn | r · x = 0 for every r ∈ R(A)} . (6.2)

We are going to digress and put this equation in a more general context. Then
we will return to linear systems with a new perspective on their meaning.

Orthogonal Complements and Homogeneous Systems

Definition 6.12. Let V be a subspace of an inner product space W. Then the Orthogonal
Complementorthogonal complement of V in W is the set

V ⊥ = {w ∈ W | 〈v,w〉 = 0 for all v ∈ V } .

We can see from the subspace test that V ⊥ is a subspace of W. Recall that if
U and V are two subspaces of the vector space W , then two other subspaces
that we can construct are the intersection and sum of these subspaces. The
former is just the set intersection of the two subspaces, and the latter is the
set of elements of the form u + v, where u ∈ U and v ∈ V . One can use the
subspace test to verify that these are indeed subspaces of W (see Problem 17 of
Section 3.2). In fact, it isn’t too hard to see that U + V is the smallest space
containing all elements of both U and V. Basic facts about the orthogonal
complement of V are summarized as follows.

Theorem 6.8. Let V be a subspace of the finite-dimensional inner product
space W. Then the following are true:

(1) V ⊥ is a subspace of W .
(2) V ∩ V ⊥ = {0}.
(3) V + V ⊥ = W .
(4) dimV + dimV ⊥ = dimW .
(5)

(
V ⊥)⊥ = V .
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Proof. We leave (1) and (2) as exercises. To prove (3), we notice that V +V ⊥ ⊆
W since W is closed under sums. Now suppose that w ∈ W . Let v = projV w.
We know that v ∈ V and w−v is orthogonal to every element of V. It follows
that w−v ∈ V ⊥. Therefore every element of W can be expressed as a sum of
an element in V and an element in V ⊥. This shows that W ⊆ V + V ⊥, from
which it follows that V + V ⊥ = W .

To prove (4), let v1,v2, . . . ,vr be a basis of V and w1,w2, . . . ,ws a basis
of V ⊥. Certainly the union of the two sets spans V because of (3). Now if there
were an equation of linear dependence, we could gather all terms involving
v1,v2, . . . ,vr on one side of the equation, those involving w1,w2, . . . ,ws on
the other side, and deduce that each is equal to zero separately, in view of
(2). It follows that the union of these two bases must be an independent set.
Therefore it forms a basis of W. It follows that dimW = r + s = dimV +
dimV ⊥.

Finally, apply (4) to V ⊥ in place of V and obtain that dim
(
V ⊥)⊥ =

dimW − dimV ⊥. But (4) implies directly that dimV = dimW − dimV ⊥,
so that dim

(
V ⊥)⊥ = dimV . Now if v ∈ V , then certainly 〈w,v〉 = 0 for all

w ∈ V ⊥. Hence V ⊆ (
V ⊥)⊥. Since these two spaces have the same dimension,

they must be equal, which proves (5). ��
Orthogonal complements of the sum and intersections of two subspaces

have an interesting relationship to each other, whose proofs we leave as exer-
cises.

Theorem 6.9. Let U and V be subspaces of the inner product space W. Then
the following are true:

(1) (U ∩ V )⊥ = U⊥ + V ⊥.
(2) (U + V )⊥ = U⊥ ∩ V ⊥.

The following fact greatly simplifies the calculation of an orthogonal comple-
ment. It says that a vector is orthogonal to every element of a vector space if
and only if it is orthogonal to every element of a spanning set of the space.

Theorem 6.10. Let V = span {v1,v2, . . . ,vn} be a subspace of the inner
product space W. Then

V ⊥ = {w ∈ W | 〈w,vj〉 = 0, j = 1, 2, . . . , n} .

Proof. Let v ∈ V, so that for some scalars c1, c2, . . . , cn,

v = c1v1 + c2v2 + · · · + cnvn.

Take the inner product of both sides with a vector w. We see by the linearity
of inner products that

〈w,v〉 = c1〈w,v1〉 + c2〈w,v2〉 + · · · + cn〈w,vn〉,
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so that if 〈w,vj〉 = 0 for each j then certainly 〈w,v〉 = 0. Conversely, if
〈w,vj〉 = 0, for j = 1, 2, . . . , n, then clearly 〈w,vj〉 = 0, which proves the
theorem. ��
Example 6.20. Compute V ⊥, where

V = span {(1, 1, 1, 1), (1, 2, 1, 0)} ⊆ R4

with the standard inner product on R4.

Solution. Form the matrix A with the two spanning vectors of V as rows.
According to Theorem 6.10, V ⊥ is the null space of this matrix. We have

A =
[

1 1 1 1
1 2 1 0

]−−−−−−→
E21(−1)

[
1 1 1 1
0 1 0 −1

]−−−−−−→
E12(−1)

[
1 0 1 2
0 1 0 −1

]
,

from which it follows that the null space of A consists of vectors of the form⎡⎢⎢⎣
−x3 − 2x4

x4
x3
x4

⎤⎥⎥⎦ = x3

⎡⎢⎢⎣
−1

0
1
0

⎤⎥⎥⎦ + x4

⎡⎢⎢⎣
−2

1
0
1

⎤⎥⎥⎦ .

Therefore V ⊥ = span {(−1, 0, 1, 0) , (−2, 1, 0, 1)}. ��
Nothing prevents us from considering more exotic inner products as well.

The arithmetic may be a bit more complicated, but the underlying principles
are the same. Here is such an example.

Example 6.21. Let V = span {1, x} ⊂ W = P2, where the space P2 of
polynomials of degree at most 2 has the same standard inner product as
C [0, 1]. Compute V ⊥ and use this to verify that dim V + dimV ⊥ = dimW .

Solution. According to Theorem 6.10, V ⊥ consists of those polynomials
p(x) = c0 + c1x + c2x

2 for which

0 = 〈p, 1〉 =
∫ 1

0

(
c0 + c1x + c2x

2) 1 dx = c0

∫ 1

0
1 dx+c1

∫ 1

0
x dx+c2

∫ 1

0
x2 dx,

0 = 〈p, x〉 =
∫ 1

0

(
c0 + c1x + c2x

2)x dx = c0

∫ 1

0
x dx+c1

∫ 1

0
x2 dx+c2

∫ 1

0
x3 dx.

Integrate, and we obtain the system of equations

c0 +
1
2
c1 +

1
3
c2 = 0,

1
2
c0 +

1
3
c1 +

1
4
c2 = 0.

Solve this system to obtain c0 = 1
6c2, c1 = −c2, and c2 is free. Therefore, V ⊥

consists of polynomials of the form
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p(x) =
1
6
c2 − c2x + c2x

2 = c2

(
1
6

− x + x2
)

.

It follows that V ⊥ = span
{ 1

6 − x + x2
}
. In particular, dimV ⊥ = 1, and since

{1, x} is a linearly independent set, dimV = 2. Therefore, dimV + dim V ⊥ =
dimP2 = dimW . ��

Finally, we return to solutions to the homogeneous system Ax = 0. We
have seen that the null space of A consists of elements that are orthogonal
to the rows of A. One could turn things around and ask what we can say
about a vector that is orthogonal to every element of the null space of A.
This question has a surprisingly simple answer. In fact, there is a fascinating
interplay between row spaces, column spaces, and null spaces that can be
summarized in the following theorem:

Theorem 6.11. For a matrix A,Orthogonal
Complements

Theorem
(1) R(A)⊥ = N (A).
(2) N (A)⊥ = R(A).
(3) N (AT )⊥ = C(A).

Proof. We have already seen item (1) in the discussion at the beginning of this
section, where it was stated in equation (6.2). For item (2) we take orthogonal
complements of both sides of (1) and use part (5) of Theorem 6.8 to obtain
that

N (A)⊥ =
(R(A)⊥)⊥

= R(A),

which proves (2). Finally, for (3) we observe that R(AT ) = C(A). Apply (2)
with AT in place of A and the result follows. ��

The connections spelled out by this theorem are powerful ideas. Here is one
example of how they can be used. Consider the following problem: suppose we
are given subspaces U and V of the standard space Rn with the standard inner
product (the dot product) in some concrete form, and we want to compute
a basis for the subspace U ∩ V . How do we proceed? One answer is to use
part (1) of Theorem 6.9 to see that (U ∩ V )⊥ = U⊥ + V ⊥. Now use part (5)
of Theorem 6.8 to obtain that

U ∩ V = (U ∩ V )⊥⊥ = (U⊥ + V ⊥)⊥.

The strategy that this equation suggests is this: Express U and V as row
spaces of matrices and compute bases for the null spaces of each. Put these
bases together to obtain a spanning set for U⊥ + V ⊥. Use this spanning set
as the rows of a matrix B. Then the complement of this space is, on the one
hand, U ∩ V , but by part (1) of the orthogonal complements theorem, it is
also N (B). Therefore U ∩ V = N (B), so all we have to do is calculate a basis
for N (B), which we know how to do.
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Example 6.22. Find a basis for U ∩V, where these subspaces of R4 are given
as follows:

U = span {(1, 2, 1, 2), (0, 1, 0, 1)}
V = span {(1, 1, 1, 1), (1, 2, 1, 0)} .

Solution. We have already determined in Example 6.20 that V ⊥ has a basis
(−1, 0, 1, 0) and (−2, 1, 0, 1). Form the matrix A with the two spanning vectors
of U as rows. By Theorem 6.10, U⊥ = N (A). We have

A =
[

1 2 1 2
0 1 0 1

]−−−−−−→
E12(−2)

[
1 0 1 0
0 1 0 1

]
,

from which it follows that the null space of A consists of vectors of the form⎡⎢⎢⎣
−x3
−x4
x3
x4

⎤⎥⎥⎦ = x3

⎡⎢⎢⎣
−1

0
1
0

⎤⎥⎥⎦ + x4

⎡⎢⎢⎣
0

−1
0
1

⎤⎥⎥⎦ .

Therefore U⊥ has basis (−1, 0, 1, 0) and (0,−1, 0, 1). The vector (−1, 0, 1, 0)
of this basis is repeated in the basis of V ⊥, so we only to need list it once.
Form the matrix B whose rows are (−1, 0, 1, 0), (−2, 1, 0, 1), and (0,−1, 0, 1),
then calculate the reduced row echelon form of B:

B =

⎡⎣−1 0 1 0
−2 1 0 1

0 −1 0 1

⎤⎦−−−−−−→
E21(−2)
E1(−1)

⎡⎣1 0 −1 0
0 1 −2 1
0 −1 0 1

⎤⎦
−−−−→
E32(1)

⎡⎣ 1 0 −1 0
0 1 −2 1
0 0 −2 2

⎤⎦−−−−−−−→
E3(−1/2)

E23(2)
E13(1)

⎡⎣1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤⎦ .

It follows that N (B) consists of vectors of the form⎡⎢⎢⎣
x4
x4
x4
x4

⎤⎥⎥⎦ = x4

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ .

Therefore, U ∩ V = N (B) is a one-dimensional space spanned by the vector
(1, 1, 1, 1). ��

Our last application of the orthogonal complements theorem is another
Fredholm alternative theorem (compare this to Corollary 2.3.)

Corollary 6.3. Given a square real linear system Ax = b, where b 
= 0, either Fredholm
Alternativethe system is consistent or there is a solution y to the homogeneous system

AT y = 0 such that yT b 
= 0.
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Proof. Let V = C(A). By (3) of Theorem 6.8, Rn = V + V ⊥, where Rn has
the standard inner product. From (3) of the orthogonal complements theorem,
C(A) = N (AT )⊥. Take complements again and use (5) of Theorem 6.8 to get
that V ⊥ = N (AT ). Now the system either has a solution or does not. If the
system has no solution, then by Theorem 3.14, b does not belong to V = C(A).
Since b 
∈ V, we can write b = v + y, where y 
= 0, y ∈ V ⊥ and v ∈ V. It
follows that

〈y,b〉 = y · b = y · (v + y) = 0 + y · y 
= 0.

On the other hand, if the system has a solution x, then for any vector y ∈
N (A) we have yT Ax = yT b. It follows that if yT A = 0, then yT b = 0. This
completes the proof. ��

The QR Factorization

We are going to use orthogonality ideas to develop one more way of solving
the linear system Ax = b, where the m × n real matrix A has full column
rank. In fact, if the system is inconsistent, then this method will find the
unique least squares solution to the system. Here is the basic idea: express the
matrix A in the form A = QR, where the columns of the m × n matrix Q are
orthonormal vectors and the n×n matrix R is upper triangular with nonzero
diagonal entries. Such a factorization of A is called a QR factorization of A.
It follows that the product QT Q is equal to In. Now multiply both sides of
the linear system on the left by QT to obtain that

QT Ax = QT QRx = IRx = Rx = QT b.

The net result is a simple square system with a triangular matrix, which we
can solve by back solving. That is, we use the last equation to solve for xn,
then the next to the last to solve for xn−1, and so forth. This is the back
solving phase of Gaussian elimination as we first learned it in Chapter 1,
before we were introduced to Gauss–Jordan elimination.

One has to wonder why we have any interest in such a factorization, since
we already have Gauss–Jordan elimination for system solving. Furthermore, it
can be shown that finding a QR factorization is harder by a factor of about 2,
that is, requires about twice as many floating-point operations to accomplish.
So why bother? There are many answers. For one, it can be shown that using
the QR factorization has an advantage of higher accuracy than Gauss–Jordan
elimination in certain situations. For another, QR factorization gives us a
method for solving least squares problems. We’ll see an example of this method
at the end of this section.

Where can we find such a factorization? As a matter of fact, we already
have the necessary tools, compliments of the Gram–Schmidt algorithm. To
explain matters, let’s suppose that we have a matrix A = [w1,w2,w3] with
linearly independent columns. Application of the Gram–Schmidt algorithm
leads to orthogonal vectors v1,v2,v3 by the following formulas:
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v1 = w1

v2 = w2 − 〈v1,w2〉
〈v1,v1〉 v1

v3 = w3 − 〈v1,w3〉
〈v1,v1〉 v1 − 〈v2,w3〉

〈v2,v2〉 v2.

Next, solve for w1,w2,w3 in the above equations to obtain

w1 = v1

w2 =
〈v1,w2〉
〈v1,v1〉 v1 + v2

w3 =
〈v1,w3〉
〈v1,v1〉 v1 +

〈v2,w3〉
〈v2,v2〉 v2 + v3.

In matrix form, these equations become

A = [w1,w2,w3] = [v1,v2,v3]

⎡⎢⎣1 〈v1,w2〉
〈v1,v1〉

〈v1,w3〉
〈v1,v1〉

0 1 〈v2,w3〉
〈v2,v2〉

0 0 1

⎤⎥⎦ .

Now normalize the vj ’s by setting qj = vj/ ‖vj‖ and observe that

A = [q1,q2,q3]

⎡⎣ ‖v1‖ 0 0
0 ‖v2‖ 0
0 0 ‖v3‖

⎤⎦
⎡⎢⎣1 〈v1,w2〉

〈v1,v1〉
〈v1,w3〉
〈v1,v1〉

0 1 〈v2,w3〉
〈v2,v2〉

0 0 1

⎤⎥⎦
= [q1,q2,q3]

⎡⎢⎣ ‖v1‖ 〈v1,w2〉
‖v1‖

〈v1,w3〉
‖v1‖

0 ‖v2‖ 〈v2,w3〉
‖v2‖

0 0 ‖v3‖

⎤⎥⎦ .

This gives our QR factorization, which can be alternatively written as

A = [w1,w2,w3] = [q1,q2,q3]

⎡⎣ ‖v1‖ 〈q1,w2〉 〈q1,w3〉
0 ‖v2‖ 〈q2,w3〉
0 0 ‖v3‖

⎤⎦ = QR.

In general, the columns of A are linearly independent exactly when A has full
column rank. It is easy to see that the argument we have given extends to any
such matrix, so we have the following theorem.

Theorem 6.12. If A is an m × n full-column-rank matrix, then A = QR, QR
Factorizationwhere the columns of the m × n matrix Q are orthonormal vectors and the

n × n matrix R is upper triangular with nonzero diagonal entries.

Example 6.23. Let the full-column-rank matrix A be given as
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A =

⎡⎢⎢⎣
1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤⎥⎥⎦ .

Find a QR factorization of A and use this to find the least squares solution to
the problem Ax = b, where b = (1, 1, 1, 1). What is the norm of the residual
r = b − Ax in this problem?

Solution. Notice that the columns of A are just the vectors w1,w2,w3 of
Example 6.16. Furthermore, the vectors u1,u2,u3 calculated in that example
are just the q1,q2,q3 that we require. Thus we have from those calculations
that

‖v1‖ = ‖(1, 1, 1,−1)‖ = 2 and q1 =
1
2
(1, 1, 1,−1),

‖v2‖ =
∥∥∥∥1

4
(9,−3,−3, 3)

∥∥∥∥ =
3
2

√
3 and q2 =

1
2
√

3
(3,−1,−1, 1),

‖v3‖ = ‖(0, 1, 1, 2)‖ =
√

6 and q3 =
1√
6
(0, 1, 1, 2).

Now we calculate

〈q1,w2〉 =
1
2
(1, 1, 1,−1) · (2,−1,−1, 1) = −1

2

〈q1,w3〉 =
1
2
(1, 1, 1,−1) · (−1, 2, 2, 1) = 1

〈q2,w3〉 =
1

2
√

3
(3,−1,−1, 1) · (−1, 2, 2, 1) = −

√
3.

It follows that

A =

⎡⎢⎢⎣
1/2 3/(2

√
3) 0

1/2 −1/(2
√

3) 1/
√

6
1/2 −1/(2

√
3) 1/

√
6

−1/2 1/(2
√

3) 2/
√

6

⎤⎥⎥⎦
⎡⎣2 −1/2 1

0 3
2

√
3 −√

3
0 0

√
6

⎤⎦ = QR.

Solving the system Rx = QT b, where b = (1, 1, 1, 1), by hand is rather tedious
even though the system is a simple triangular one. We leave the detailed
calculations to the reader. Better yet, use a CAS or MAS to obtain the solution
x =

( 1
3 , 2

3 , 2
3

)
. Thus,

r = b − Ax =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ −

⎡⎢⎢⎣
1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤⎥⎥⎦
⎡⎣1/3

2/3
2/3

⎤⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ .

It follows that the system Ax = b is actually consistent, since the least squares
solution turns out to be a genuine solution to the problem. ��
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Does this method really solve least squares problems? It does, and to see QR as Least
Squares
Solver

why, observe that with the above notation we have AT = (QR)T = RT QT ,
so that the normal equations for the system Ax = b (which are given by
AT Ax = AT b) become

AT Ax = RT QT QRx = RT IRx = RT Rx = AT b = RT QT b.

But the triangular matrix R is invertible because its diagonal entries are
nonzero; cancel it and obtain that the normal equations are equivalent to
Rx = QT b, which is exactly what the method we have described solves.

6.4 Exercises and Problems

Exercise 1. Let V = span {(1,−1, 2, 0) , (2, 0,−1, 1)} ⊂ R4 = W . Compute V ⊥

and use it to verify that V + V ⊥ = R4.

Exercise 2. Let V = span {(1,−1, 2)} ⊂ R3 = W . Compute V ⊥ and use it to
verify that V ∩ V ⊥ = {0}.

Exercise 3. Let V = span
{
1 + x, x2

} ⊂ W = P2, where the space P2 of poly-
nomials of degree at most 2 has the standard inner product of C[0, 1]. Compute
V ⊥.

Exercise 4. Let V = span
{
1 + x + x3

} ⊂ W = P3, where P3 has the standard
inner product of C[0, 1] and compute V ⊥.

Exercise 5. Let V = span {(1, 0, 2), (0, 2, 1)} ⊂ R3 = W . Compute V ⊥and
verify that

(
V ⊥)⊥ = V .

Exercise 6. Let V = span {(4, 1,−2)} ⊂ R3 = W , where W has the weighted
inner product 〈(x, y, z), (u, v, w)〉 = 2xu + 3yv + zw. Compute V ⊥and verify
that

(
V ⊥)⊥ = V .

Exercise 7. Use Gram–Schmidt to find QR factorizations for these matrices
and use them to compute the least squares solutions of Ax = b with these
A,b.

(a)

⎡⎣3 2
0 1
4 1

⎤⎦,

⎡⎣ 0
−2

5

⎤⎦ (b)

⎡⎣ 1 2 2
0 1 2

−2 1 6

⎤⎦,

⎡⎣1
2
8

⎤⎦ (c)

⎡⎢⎢⎣
1 0 2
1 1 2

−1 1 1
−1 0 0

⎤⎥⎥⎦,

⎡⎢⎢⎣
−4

1
3
1

⎤⎥⎥⎦
Exercise 8. Carry out the method of computing U∩V discussed on page 335 us-
ing the subspaces U = span {(1, 2, 1), (2, 1, 0)} and V = span {(1, 1, 1), (1, 1, 3)}
of W = R3.
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Problem 9. Show that if V is a subspace of the inner product space W , then
so is V ⊥.

Problem 10. Show that if V is a subspace of the inner product space W , then
V ∩ V ⊥ = {0}.

*Problem 11. Let U and V be subspaces of the inner product space W . Prove
the following.
(a) (U ∩ V )⊥ = U⊥ + V ⊥ (b) (U + V )⊥ = U⊥ ∩ V ⊥

*Problem 12. Use the Fredholm alternative of this section to prove that the
normal equations AT Ax = AT b are consistent for any matrix A.

6.5 *Operator Norms

The object of this section is to develop a useful notion of the norm of a
matrix. For simplicity, we stick with real matrices, but all of the results in
this section carry over to complex matrices. In Chapters 3 and 5 we studied
the concept of a vector norm, which gave us a way of thinking about the
“size” of a vector. We could easily extend this to matrices, just by thinking of
a matrix as a vector that had been chopped into segments of equal length and
re-stacked as a matrix. Thus, every vector norm on the space Rmn of vectors
of length mn gives rise to a vector norm on the space Rm,n of m×n matrices.
Experience has shown that with one exception—the standard norm—from
which follows the Frobenius norm, this is not the best way to look for norms
of matrices. After all, matrices are deeply intertwined with the operation of
matrix multiplication. It would be too much to expect norms to distribute over
products. The following definition takes a middle ground that has proved to
be useful for many applications.

Definition 6.13. A vector norm ‖·‖ that is defined on the vector space Rm,nMatrix Norm
of m × n matrices, for any pair m, n, is said to be a matrix norm if for all
pairs of matrices A, B that are conformable for multiplication,

‖AB‖ ≤ ‖A‖ ‖B‖ .

Our first example of such a norm is the Frobenius norm, which was introduced
in Section 6.1; it is the one exception that we mentioned above.

Theorem 6.13. The Frobenius norm is a matrix norm.

Proof. Let A and B be matrices conformable for multiplication and sup-
pose that the rows of A are aT

1 ,aT
2 , . . . ,aT

m, while the columns of B are
b1,b2, . . . ,bn. Then we have that AB =

[
aT

i bj

]
, so that by applying the

definition and the CBS inequality, we obtain that
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‖AB‖F =

⎛⎝ m∑
i=1

n∑
j=1

∣∣aT
i bj

∣∣2⎞⎠1/2

≤
⎛⎝ m∑

i=1

n∑
j=1

‖ai‖2 ‖bj‖2

⎞⎠1/2

≤
(
‖A‖2

F ‖B‖2
F

)1/2
= ‖A‖F ‖B‖F . �

The most common multiplicative norms come from a rather general notion.
Just as every inner product “induces” a norm in a natural way, every norm
on the standard spaces induces a norm on matrices in a natural way. First
recall that an upper bound for a set of real numbers is a number greater than
or equal to any number in the set, and the supremum of a set of reals is the Supremum
least (smallest) upper bound. We abbreviate this to “sup.” For example, the
sup of the open interval (0, 1) is 1.

Definition 6.14. The operator norm induced on matrices by a norm on the Operator
Normstandard spaces is defined by the formula

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ .

A useful fact about these norms is the following equivalence:

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ = sup

x�=0

∥∥∥∥A
x

‖x‖
∥∥∥∥ = sup

‖v‖=1
‖Av‖ .

Theorem 6.14. Every operator norm is a matrix norm.

Proof. For a given matrix A clearly ‖A‖ ≥ 0 with equality if and only if
Ax = 0 for all vectors x, which is equivalent to A = 0. The remaining two
norm properties are left as exercises. Finally, if A and B are conformable for
multiplication, then

‖AB‖ = sup
x�=0

‖ABx‖
‖x‖ ≤ ‖A‖ sup

x�=0

‖Bx‖
‖x‖ = ‖A‖ · ‖B‖ . �

Incidentally, one difference between the Frobenius norm and operator
norms is how the identity In is handled. Notice that ‖In‖F =

√
n, while

with any operator norm ‖·‖ we have from the definition that ‖In‖ = 1.
How do we compute these norms? The next result covers the most common

cases.

Theorem 6.15. If A = [aij ]m,n, then

(1) ‖A‖1 = max1≤i≤m{∑n
j=1 |aij |}

(2) ‖A‖∞ = max1≤j≤n{∑m
i=1 |aij |}

(3) ‖A‖2 = ρ(AT A)1/2
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Proof. Items (1) and (3) are left as exercises. For the proof of (2), use the fact
that ‖A‖∞ = sup‖v‖∞=1 ‖Av‖∞ . Now a vector has infinity norm 1 if each of
its coordinates is 1 in absolute value. Notice that we can make the ith entry
of Av as large as possible simply by choosing v, so that the jth coordinate
of v is ±1 and agrees with the sign of aij . Hence the infinity norm of Av is
the maximum of the row sums of the absolute values of the entries of A, as
stated in (2). ��

One of the more important applications of the idea of a matrix norm is
the famous Banach lemma. Essentially, it amounts to a matrix version of the
familiar geometric series.

Theorem 6.16. If M is a square matrix such that ‖M‖ < 1 for some operatorBanach
Lemma norm ‖·‖, then I − M is invertible. Moreover,

∥∥∥(I − M)−1
∥∥∥ ≤ 1/(1 − ‖M‖)

and
(I − M)−1 = I + M + M2 + · · · + Mk + · · · .

Proof. Form the telescoping series

(I − M)
(
I + M + M2 + · · · + Mk

)
= I − Mk+1,

so that
I − (I − M)

(
I + M + M2 + · · · + Mk

)
= Mk+1.

Now by the multiplicative property of matrix norms and fact that ‖M‖ < 1,∥∥Mk+1
∥∥ ≤ ‖M‖k+1 → 0, as k → ∞.

It follows that the matrix limk→∞
(
I + M + M2 + · · · + Mk

)
= B exists and

that I − (I − M) B = 0, from which it follows that B = (I − M)−1. Finally,
note that∥∥I + M + M2 + · · · + Mk

∥∥ ≤ ‖I‖ + ‖M‖ + ‖M‖2 + · · · + ‖M‖k

≤ 1 + ‖M‖ + ‖M‖2 + · · · + ‖M‖k

≤ 1
1 − ‖M‖ .

Now take the limit as k → ∞ to obtain the desired result. ��
A fundamental idea in numerical linear algebra is the notion of the con-

dition number of a matrix A. Roughly speaking, the condition number mea-Condition
Number sures the degree to which changes in A lead to changes in solutions of systems

Ax = b. A large condition number means that small changes in A may lead
to large changes in x. In the case of an invertible matrix A, the condition
number of A is defined to be

cond(A) = ‖A‖∥∥A−1
∥∥ .

Of course this quantity is norm dependent. In the case of an operator norm,
the Banach lemma has a nice application.
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Corollary 6.4. If A = I + N, where ‖N‖ < 1, then

cond(A) ≤ 1 + ‖N‖
1 − ‖N‖ .

We leave the proof as an exercise.
We conclude with a very fundamental result for numerical linear algebra.

Here is the scenario: we desire to solve the linear system Ax = b, where A is
invertible. Due to arithmetic error or possibly input data error, we end up with
a value x+δx that solves exactly a “nearby” system (A+δA)(x+δx) = b+δb.
(It can be shown using an idea called “backward error analysis” that this is
really what happens when many algorithms are used to solve a linear system.)
The question is, what is the size of the relative error ‖δx‖ / ‖x‖? As long as the
perturbation matrix ‖δA‖ is reasonably small, there is a very elegant answer.

Theorem 6.17. Suppose that A is invertible, Ax = b, (A + δA)(x + δx) = Perturbation
Theoremb + δb, and

∥∥A−1δA
∥∥ = c < 1 with respect to some operator norm. Then

A + δA is invertible and

‖δx‖
‖x‖ ≤ cond (A)

1 − c

{‖δA‖
‖A‖ +

‖δb‖
‖b‖

}
.

Proof. That the matrix I + A−1δA is invertible follows from hypothesis and
the Banach lemma. Since A is also invertible by hypothesis, A

(
I + A−1δA

)
=

A + δA is also invertible. Expand the perturbed equation to obtain

(A + δA)(x + δx) = Ax + δAx + Aδx + δA δx = b + δb.

Now subtract the terms Ax = b from each side and solve for δx to obtain

(A + δA)δx = A−1(I + A−1δA)δx = −δA · x + δb,

so that
δx = (I + A−1δA)−1A−1 {−δA · x + δb} .

Take norms and use the additive and multiplicative properties and the Banach
lemma to obtain

‖δx‖ ≤
∥∥A−1

∥∥
1 − c

{‖δA‖ ‖x‖ + ‖δb‖} .

Next divide both sides by ‖x‖ to obtain

‖δx‖
‖x‖ ≤

∥∥A−1
∥∥

1 − c

{
‖δA‖ +

‖δb‖
‖x‖

}
.

Finally, notice that ‖b‖ ≤ ‖A‖ ‖x‖. Therefore, 1/ ‖x‖ ≤ ‖A‖ / ‖b‖. Replace
1/ ‖x‖ in the right hand side by ‖A‖ / ‖b‖ and factor out ‖A‖ to obtain
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‖δx‖
‖x‖ ≤ ‖A‖ ∥∥A−1

∥∥
1 − c

{‖δA‖
‖A‖ +

‖δb‖
‖b‖

}
,

which completes the proof, since by definition, cond A = ‖A‖ ∥∥A−1
∥∥. ��

If we believe that the inequality in the perturbation theorem can be sharp
(it can!), then it becomes clear how the condition number of the matrix A
is a direct factor in how relative error in the solution vector is amplified by
perturbations in the coefficient matrix.

Here is one more useful observation about operator norms that can be
couched in very general terms.

Definition 6.15. Two norms ‖·‖ and ‖|·|‖ on the vector space V are said toEquivalent
Norms be equivalent if there exist positive constants C, D such that for all x ∈ V ,

C ‖x‖ ≤ ‖|x|‖ ≤ D ‖x‖ .

It is easily seen that this relation is symmetric, for we deduce from the defi-
nition that

1
D

‖|x|‖ ≤ ‖x‖ ≤ 1
C

‖|x|‖ .

Similarly, one checks that equivalence is a transitive relation, that is, if norm
‖·‖a is equivalent to ‖·‖b and ‖·‖b is equivalent to ‖·‖c, then ‖·‖a is equivalent
to ‖·‖c. Roughly speaking, the definition says that equivalent norms yield
the same value up to fixed upper and lower scale factors. The significance of
equivalence of norms is that convergence of a sequence of vectors in one norm
implies convergence in the other equivalent norm. In general, a vector space
can have inequivalent norms. However, in order to do so, the space must be
infinite-dimensional. The following theorem applies to all finite-dimensional
vector spaces, so it certainly applies to the space of n × n matrices Rn,n with
a given operator norm. Thus, all operator norms are equivalent in the above
sense.

Theorem 6.18. All norms on a finite-dimensional space are equivalent.

We sketch a proof. Let V be a finite-dimensional vector space. We know that
there is an arithmetic preserving one-to-one correspondence between elements
x of V and their coordinate vectors with respect to some basis of V , so that
elements of V are identified with some Rn. Without loss of generality V = Rn.
Now let ‖·‖ be any norm on V . First, one establishes that‖·‖ : V → R is a
continuous function by proving that for all x, y ∈ V , |‖x‖ − ‖y‖| ≤ ‖x − y‖.
The proof of Problem 19, Section 4.1, shows this inequality.

Next, one observes that the unit ball B1(0) in the infinity norm in V is a
closed and bounded set that does not contain the origin. By the extreme value
theorem of analysis, the function ‖·‖ assumes its maximum and minimum
values on the ball, and these must be positive, say C, D. Thus for all nonzero
vectors x we have
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C ≤
∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≤ D.

Multiply through by ‖x‖∞, and we see that C ‖x‖∞ ≤ ‖x‖ ≤ D ‖x‖∞, which
proves the equivalence of the given norm to the infinity norm. It follows from
transitivity of the equivalence property that all norms are equivalent to each
other. ��

6.5 Exercises and Problems

Exercise 1. Compute the Frobenius, 1-, and ∞-norms of the following matrices.

(a)
[

3 2
0 1

]
(b)

⎡⎣−1 2 2
2 −1 2
2 2 −1

⎤⎦ (c)

⎡⎢⎢⎣
1 2 2 0
1 −3 0 −1
1 1 −2 0

−2 1 6 1

⎤⎥⎥⎦
Exercise 2. Compute the condition number of each matrix in Exercise 1 using
the infinity norm.

Exercise 3. Verify that the perturbation theorem is valid for A =

⎡⎣1 2 0
0 1 −2
0 −2 1

⎤⎦,

b =

⎡⎣−5
1

−3

⎤⎦, δA = 0.05A, and δb = 0.05b.

Exercise 4. Verify the inequality of Corollary 6.4 using the infinity norm and

N = 1
3

[
1 1

−1 0

]
.

*Problem 5. Prove Corollary 6.4.

*Problem 6. Show that if A is invertible and ‖A−1δA‖ < 1, then so is A+ δA.

Problem 7. Prove that ‖A‖1 = max1≤i≤m

{∑n
j=1 |aij |

}
.

Problem 8. Prove that ‖A‖2 = ρ(AT A)1/2.

Problem 9. Suppose we want to approximately solve a system of the form
Ax = b, where A = I − M and ‖M‖ < 1 for some operator norm. Use
the Banach lemma to devise such a scheme involving only a finite number of
matrix additions and multiplications.

*Problem 10. Show that for any any operator norm ‖ · ‖, ρ(A) ≤ ‖A‖.
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*Problem 11. Show that a square matrix A is power bounded, that is, ‖Am‖2 ≤
C for all positive m and some constant C independent of m, if every eigenvalue
of A is either strictly less than 1 in absolute value or of absolute value equal
to 1 and simple.

Problem 12. Does it follow from Problem 11 and the equivalence of operator
norms that power bounded in one operator norm implies power bounded in
any other? Justify your answer.

*Problem 13. Let A be a real matrix and U, V orthogonal matrices.
(a) Show from the definition that

∥∥UT AV
∥∥

2 = ‖A‖2.
(b) Determine ‖Σ‖2 if Σ is a diagonal matrix with nonnegative entries.
(c) Use (a) and (b) to express ‖A‖2 in terms of the singular values of A.

6.6 *Computational Notes and Projects

Error and Limit Measurements

We are going to consider a situation where infinity norms are both more
natural to a problem and easier to use than the standard norm. This material
is a simplified treatment of some of the concepts introduced in Section 6.5
and is independent of that section. The theorem below provides a solution to
this question: how large an error in the solution to a linear system can there
be, given that we have introduced an error in the right-hand side whose size
we can estimate? (Such an error might be due to experimental error or input
error.) The theorem, called a perturbation theorem, requires an extension of
the idea of vector infinity norm to matrices for its statement.

Definition 6.16. Let A be an n × n matrix whose rows are rT
1 , rT

2 , . . . , rT
n .Matrix Infinity

Norm The infinity norm of the matrix A is defined as

‖A‖∞ = max {‖r1‖1 , ‖r2‖1 , . . . , ‖rn‖1} .

If, moreover, A is invertible, then the condition number of A is defined to be

cond (A) = ‖A‖∞
∥∥A−1

∥∥
∞ .

Example 6.24. Let A =
[

1 10
10 101

]
. Find ‖A‖∞,

∥∥A−1
∥∥

∞, and cond (A).

Solution. We see that A−1 =
[

101 −10
−10 1

]
. From the preceding definition we

obtain that
‖A‖∞ = max {|1| + |10| , |10| + |101|} = 111

and ∥∥A−1
∥∥

∞ = max {|101| + |−10| , |−10| + |1|} = 111,

so it follows that cond (A) = 111 · 111 = 12321. ��
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Theorem 6.19. Suppose that the n × n matrix A is nonsingular, Ax = b,
and A(x + δx) = b + δb. Then Perturbation

Theorem
‖δx‖∞
‖x‖∞

≤ cond(A)
‖δb‖∞
‖b‖∞

.

Proof. Subtract the first equation of the statement of the theorem from the
second one to obtain that

A(x + δx) − Ax = Aδx = b + δb − b = δb,

from which it follows that δx = A−1δb. Now write A−1 = [cij ], δb = [di], and
compute the ith coordinate of δx:

(δx)i =
n∑

j=1

cijdj ,

so that if ri = (ci1, ci2, . . . , cin) is the ith row of A−1, then

|(δx)i| ≤
n∑

j=1

|cij | |dj | ≤ max {|d1| , . . . , |dn|}
n∑

j=1

|cij | ≤ ‖δb‖∞ ‖ri‖1 .

Therefore,
||δx||∞ ≤ ‖δb‖∞

∥∥A−1
∥∥

∞ . (6.3)

A similar calculation shows us that since b = Ax, ‖b‖∞ ≤ ‖x‖∞ ‖A‖∞.
Divide both sides by ‖b‖∞ ‖x‖∞ and obtain that

1
‖x‖∞

≤ ‖A‖∞
1

‖b‖∞
. (6.4)

Now multiply the inequalities 6.3 and 6.4 together to obtain the desired in-
equality. ��

Allowing perturbations δA of the matrix A is a more complicated issue
that is covered by Theorem 6.17.

Example 6.25. Suppose we wish to solve the nonsingular system Ax = b
exactly, where the coefficient matrix A is as in Example 6.24 but the right-
hand-side vector b is determined from measured data. Suppose also that the
error of measurement is such that the ratio of the largest error in any coordi-
nate of b to the largest coordinate of b (this ratio is called the relative error)
is no more than 0.01 in absolute value. Estimate the size of the relative error
in the solution.

Solution. In matrix notation, we can phrase the problem in this manner:
let the correct value of the right-hand side be b and the measured value
of the right-hand side be b̃, so that the error of measurement is the vector
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δb = b̃ − b. Rather than solving the system Ax = b, we end up solving the
system Ax̃ = b̃ = b + δb, where x̃ = x + δx. The relative error in data is the
quantity ‖δb‖∞ / ‖b‖∞, while the relative error in the computed solution is
‖δx‖∞ / ‖x‖∞. This sets up very nicely for an application of Theorem 6.19.
We calculated cond (A) = 12321 in Example 6.24. It follows that the relative
error in the solution satisfies the inequality

‖δx‖∞
‖x‖∞

≤ 12321 · 0.01 = 123.21.

In other words, the relative error in our computed solution could be as large
as 12321% which, of course, would make it quite worthless. Worthless answers
do happen (see Exercise 2). ��

A Practical QR Algorithm

In the preceding section we saw that the QR factorization can be used to solve
systems including least squares. We also saw the factorization as a consequence
of the Gram–Schmidt algorithm. As a matter of fact, the classical Gram–
Schmidt algorithm that we have presented has certain numerical stability
problems when used in practice. There is a so-called modified Gram–Schmidt
algorithm that performs better. However, there is another approach to QR
factorization that avoids Gram–Schmidt altogether. This approach uses the
Householder matrices we introduced in Section 4.3. It is more efficient and
stable than Gram–Schmidt. If you use an MAS to find the QR factorization
of a matrix, it is likely that this is the method used by the system.

The basic idea behind this Householder QR is to use a succession of House-
holder matrices to zero out the lower triangle of a matrix, one column at a
time. The key fact about Householder matrices is the following application of
these matrices:

Theorem 6.20. Let x,y be nonzero vectors in Rn of the same length. Then
there is a Householder matrix Hv such that Hvx = y.

Proof. Let v = x − y. Then we see that

(x + y)T (x − y) = xT x − xT y + yT x − yT y = xT x − yT y = 0,

since x and y have the same length. Now write

x =
1
2

{(x − y) + (x + y)} = p + u

and obtain from Theorem 4.9 that

Hvx = −p + u =
1
2

{− (x − y) + (x + y)} =
2y
2

= y,

which is what we wanted to show. ��
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Now we have a tool for massively zeroing out entries in a vector of the
form x = (x1, x2, . . . , xn). Set y = (± ‖x‖ , 0, . . . , 0) and apply the preceding
theorem to construct Householder H such that Hvx = y. It is standard to
choose the ± to be the negative of the sign of x1. In this way, the first term
will not cause any loss of accuracy to subtractive cancellation. However, any
choice of ± works fine in theory. We can picture this situation schematically
very nicely by representing possibly nonzero entries by an × in the following
simple version:

x =

⎡⎢⎢⎣
×
×
×
×

⎤⎥⎥⎦ −−−−→
Hv

⎡⎢⎢⎣
± ‖x‖

0
0
0

⎤⎥⎥⎦ = Hvx.

We can extend this idea to zeroing out lower parts of x only, say

x =
[

z
w

]
=

⎡⎢⎢⎣
z
×
×
×

⎤⎥⎥⎦ by using y =

⎡⎢⎢⎣
z

± ‖w‖
0
0

⎤⎥⎥⎦ so v =

⎡⎢⎢⎣
0
×
×
×

⎤⎥⎥⎦ and Hvx =

⎡⎢⎢⎣
0
×
0
0

⎤⎥⎥⎦ .

We can apply this idea to systematically zero out subdiagonal entries by suc-
cessive multiplication by Householder (hence orthogonal) matrices; schemati-
cally we have this representation of a full-rank m × n matrix A:

A =

⎡⎢⎢⎣
× × ×
× × ×
× × ×
× × ×

⎤⎥⎥⎦ −−−−→
H1

⎡⎢⎢⎣
× × ×
0 × ×
0 × ×
0 × ×

⎤⎥⎥⎦ −−−−→
H2

⎡⎢⎢⎣
× × ×
0 × ×
0 0 ×
0 0 ×

⎤⎥⎥⎦−−−−→
H3

⎡⎢⎢⎣
× × ×
0 × ×
0 0 ×
0 0 0

⎤⎥⎥⎦ = R,

so that H3H2H1A = R. Now we can check easily from the definition of
a Householder matrix H that HT = H = H−1. Thus, if we set Q =
H−1

1 H−1
2 H−1

3 = H1H2H3, it follows that A = QR. Notice that we don’t
actually have to carry out the multiplications to compute Q unless they are
needed, and the vectors needed to define these Householder matrices are them-
selves easily stored in a single matrix. What we have here is just a bit different
from the QR factorization discussed in the last section. Here the matrix Q
is a full m × m matrix and R is the same size as A. Even if A is not of full
column rank, this procedure will work, provided we simply skip construction
of H in the case that there are no nonzero elements to zero out in some col-
umn. Consequently, we have essentially proved the following theorem, which
is sometimes called a full QR factorization, in contrast to the reduced QR
factorization of Theorem 6.12.

Theorem 6.21. Let A be a real m × n matrix. Then there exist an m × m Full QR
Factorizationorthogonal matrix Q and an m × n upper triangular matrix R such that

A = QR.

All of the results we have discussed regarding QR factorization work for com-
plex matrices, provided we use unitary matrices and conjugate transpose.
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Project Topics

Project: Testing Least Squares Solvers
The object of this project is to test the quality of the solutions of three different
methods for solving least squares problems Ax = b:

1. Solution by solving the normal equations by Gaussian elimination.
2. Solution by reduced QR factorization obtained by Gram–Schmidt.
3. Solution by full QR factorization by Householder matrices.

Here is the test problem: suppose we want to approximate the curve f(x) =
esin(6x), 0 ≤ x ≤ 1, by a tenth-degree polynomial. The input data will be
the sampled values of f(x) at equally spaced nodes xk = kh, k = 0, 1, . . . , 20,
h = 0.05. This gives 21 equations f(xk) = c0 + c1xk + · · · + c10x

10
k for the 11

unknown coefficients ck, k = 0, 1, . . . , 20. The coefficient matrix that results
from this problem is called a Vandermonde matrix. Your MAS should have a
built-in command for construction of such a matrix.

Procedure: First set up the system matrix A and right-hand-side vector b.
Method (a) is easily implemented on any CAS or MAS. The built-in procedure
for computing a QR factorization will very likely be Householder matrices,
which will take care of (c). You will need to check the documentation to
verify this. The Gram–Schmidt method of finding QR factorization will have
to be programmed by you.

Once you have solved the system by these three methods, make out a table
that has the computed coefficients for each of the three methods. Then make
plots of the difference between the function f(x) and the computed polynomial
for each method. Discuss your results.

There are a number of good texts that discuss numerical methods for
least squares; see, e.g., references [6], [7], [9]. More advanced treatments can
be found in references [1] and [10]. Or you can read from the master himself
in [8] (Gauss’s original text conveniently translated from the Latin with a very
enlightening supplement by G. W. Stewart).

Project: Approximation Theory
Suppose you work for a manufacturer of calculators, and are involved in the
design of a new calculator. The problem is this: as one of the “features” of
this calculator, the designers decided that it would be nice to have a key that
calculated a transcendental function, namely, f(x) = sin(πx), −1 ≤ x ≤ 1.
Your job is to come up with an adequate way of calculating f(x), say with an
error no worse than .001

Polynomials are a natural idea for approximating functions. From a de-
signer’s point of view they are particularly attractive because they are so easy
to implement. Given the coefficients of a polynomial, it is easy to design a
very efficient and compact algorithm for calculating values of the polynomial.
Such an algorithm, together with the coefficients of the polynomial, would fit
nicely into a small ROM for the calculator, or could even be microcoded into
the chip.
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Your task is to find a low-degree polynomial that approximates sin(πx)
to within the specified accuracy. For comparison, find a Taylor polynomial of
lowest degree for sin x that gives sufficient accuracy. Next, use the projection
problem idea to project the function sinx ∈ C[−1, 1] with the standard inner
product, into the subspace Pn of polynomials of degree at most n. You will
need to find the smallest n that gives a projection whose difference from sin x
is at most 0.001 on the interval [−1, 1]. Is it of lower degree than the best
Taylor polynomial approximation?

Use a CAS to do the computations and graphics. Then report on your
findings. Include graphs that will be helpful in interpreting your conclusions.
Also, give suggestions on how to compute this polynomial efficiently.

Report: Fourier Analysis
This project will introduce you to a very fascinating and important topic
known as Fourier analysis. The setting is as follows: we are interested in
finding approximations to functions in the vector space C2π of continuous
periodic functions on the closed interval [−π, π]. This vector space becomes
an inner product space with the usual definition

〈f, g〉 =
∫ π

−π

f(x)g(x) dx.

In this space the sequence of trigonometric functions

1√
2π

,
cos x√

π
,
sinx√

π
,
cos 2x√

π
,
sin 2x√

π
, . . . ,

cos kx√
π

,
sin kx√

π
, . . .

forms an orthonormal set. Therefore, we can form the finite-dimensional sub-
spaces Vn spanned by the first 2n+1 of these elements and immediately obtain
an orthonormal basis of Vn. We can also use the machinery of projections to
approximate any function f(x) ∈ C2π by its projection into the various sub-
spaces Vn. The coefficients of the orthonormal basis functions in the projection
formula of Definition 6.11 as applied to a function f(x) are called the Fourier
coefficients of f(x). They are traditionally designated by the symbols

a0

2
, a1, b1, a2, b2, . . . , ak, bk, . . . .

In the first part of this project you will write a brief introduction to Fourier
analysis in which you exhibit formulas for the Fourier coefficients of a function
f(x) and explain the form and meaning of the projection formula in this
setting. Try to prove that the trigonometric functions given above are an
orthonormal set. At minimum provide a proof for the first three functions.

In the second part you will explore the quality of these approximations
for the following test functions. The functions are specified on the interval
[−π, π], and then each graph is replicated on adjacent intervals of length 2π,
yielding periodic functions:



354 6 GEOMETRICAL ASPECTS OF ABSTRACT SPACES

(1) f (x) = sin
x2

π
, (2) g(x) = x (x − π) (x + π) , (3) h (x) = x.

Notice that the last function violates the continuity condition.
For each test function you should prepare a graph that includes the test

function and at least two projections of it into the Vn, n = 0, 1, . . .. Discuss
the quality of the approximations and report on any conclusions that you
can draw from this data. You will need an MAS or CAS to carry out the
calculations and graphs, since the calculations are very detailed. If you are
allowed to do so, you could write up your report in the form of a notebook.

6.6 Exercises and Problems

Exercise 1. Let A = [ 2 7
3 10 ], b = [5.7, 8.2]T and solve the system Ax = b for

x. Next, let δb = [0.096;−0.025] and x + δx the solution to A (x + δx) =
(b + δb). Compute ‖δx‖∞ / ‖x‖∞ and compare it to cond (A) ‖δb‖∞ / ‖b‖∞.
Exercise 2. Repeat Exercise 1 with A the matrix of Example 6.25, b =
[0.985, 9.95]T , and δb = [−0.0995; 0.00985]. How good is the solution?

Exercise 3. Let A =
[

3 2
0 1
4 1

]
and use Householder matrices to find a full QR

factorization of A. Use this result to find the least squares solution to the
system Ax = b, where b = (1, 2, 3), and resulting residual.

Exercise 4. Calculate a full QR factorization of A =
[

1 10 20
10 100 201

1000 10001 20001

]
with an

MAS. Inspect the R matrix and estimate the rank of A. Use QR to find the
least squares solution to Ax = b, where b = (1, 2, 3), and resulting residual.
Problem 5. The following is a simplified description of the QR algorithm
(which is separate from the QR factorization, but involves it) for a real n × n
matrix A :

T0 = A, Q0 = In

for k = 0, 1, . . .
Tk = Qk+1Rk+1 (QR factorization of Tk)
Tk+1 = Rk+1Qk+1

end
Apply this algorithm to the following two matrices and, based on your results,
speculate about what it is supposed to compute. You will need a CAS or MAS
for this exercise and you will stop in a finite number of steps, but expect to
take more than a few.

(a) A =

⎡⎣1 2 0
2 1 −2
0 −2 1

⎤⎦ (b) A =

⎡⎣−8 −5 8
6 3 −8

−3 1 9

⎤⎦
Problem 6. Example 6.25 gives an upper bound on the error propagated to
the solution of a system due to right-hand-side error. How pessimistic is it?
Experiment with various random different erroneous right-hand-sides with
your choice of error tolerance and compare actual error with estimated error.
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Solutions to Selected Exercises

Section 1.1, Page 8

1 (a) x = −1, y = 1 (b) x = 2, y = −2,
z = 1 (c) x = 2, y = 1

3 (a) linear, x − y − z = −2, 3x − y = 4
(b) nonlinear (c) linear, x + 4y = 0,
2x − y = 0, x + y = 2

5 (a) m = 3, n = 3, a11 = 1, a12 = −2,
a13 = 1, b1 = 2, a21 = 0, a22 = 1,
a23 = 0, b2 = 1, a31 = −1, a32 = 0,
a33 = 1, b3 = 1 (b) m = 2, n = 2,

a11 = 1, a12 = −3, b1 = 1, a21 = 0,
a22 = 1, b2 = 5

7 47
25y1 − y2 = 0, −y1 + 47

25y2 − y3 = 0,
−y2 + 47

25y3 − y4 = 0, −y3 + 47
25y4 = 0

9 p1 = 0.2p1+0.1p2+0.4p3, p2 = 0.3p1+
0.3p2 + 0.2p3, p3 = 0.1p1 + 0.2p2 + 0.1p3

13 Counting inflow as positive, the equa-
tion for vertex v1 is x1 − x4 − x5 = 0.

Section 1.2, Page 19

1 (a) {0, 1} (b) {x | x ∈ Z and x > 1}
(c) {x | x ∈ Z and x ≤ −1} (d)
{0, 1, 2, . . .} (e) A

3 (a) e3πi/2 (b)
√

2eπi/4 (c) 2e2πi/3 (d)
e0ior 1 (e) 2

√
2e7πi/4 (f) 2eπi/2 (g) eπe0i

or eπ

5 (a) 1 + 8i (b) 10 + 10i (c) 3
5 + 4

5 i (d)
− 3

5 − 4
5 i (e) 42 + 7i

7 (a) 6
5 − 8

5 i, (b) ±√
2 ± i

√
2, (c) z = 1

(d) z = −1, ±i

9 (a) 1
2 + 1

2 i = 1
2

√
2eπi/4 (b) −1− i

√
3 =

2e4πi/3 (c) −1+ i
√

3 = 2e2πi/3 (d) − 1
2 i =

1
2e3πi/2 (e) ieπ/4 = eπ/4eπi/2

11 (a) z = −1
2 ±

√
11
2 i, (b) z = ±

√
3

2 + 1
2 i

(c) z = 1 ± (−
√

2
√

2+2
2 −

√
2
√

2−2
2 i) (d)

±2i

13 (a) Circle of radius 2, center at ori-
gin (b) � (z) = 0, the imaginary axis
(c) Interior of circle of radius 1, center
at z = 2.

15 2 + 4i+1 − 3i = 2−4i+1+3i = 3− i
and (2 + 4i) + (1 − 3i) = 3 + i = 3 − i

17 z = 1± i, (z − (1 + i)) (z − (1 − i)) =
z2 − 2z + 2

21 Use |z|2 = zz̄ and z1z2 = z1z2.

24 Write p (w) = a0+a1w+· · ·+anwn =
0 and conjugate both sides.
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Section 1.3, Page 30

1 (a) Size 2×4, a11 = a14 = a23 = a24 =
1, a12 = −1, a21 = −2, a13 = a22 = 2
(b) Size 3 × 2, a11 = 0, a12 = 1, a21 = 2,
a22 = −1, a31 = 0, a32 = 2 (c) Size
2 × 1 , a11 = −2, a21 = 3 (d) Size 1 × 1,
a11 = 1 + i

3 (a) 2×3 augmented matrix
[

2 3 7
1 2 −2

]
,

x = 20, y = −11 (b) 3×4 augmented ma-

trix

⎡⎣ 3 6 −1 −4
−2 −4 1 3
0 0 1 1

⎤⎦, x1 = −1−2x2, x2

free, x3 = 1, (c) 3 × 3 augmented matrix⎡⎣ 1 1 −2
5 2 5
1 2 −7

⎤⎦, x1 = 3, x2 = −5

5 (a) x1 = 1 − x2, x3 = −1, x2 free
(b) x1 = −1 − 2x2, x3 = −2, x4 = 3,
x2 free (c) x1 = 3 − 2x3, x2 = −1 − x3,
x3 free (d) x1 = 1 + 2

3 i, x2 = 1 − 1
3 i

(e) x1 = 7
11x4, x2 = −2

11 x4, x3 = 6
11x4,

x4 free

7 (a) x1 = 4, x3 = −2, x2 free (b) x1 =
1, x2 = 2, x3 = 2 (c) Inconsistent system
(d) x1 = 1, x2 and x3 free

9 (a) x1 = 2
3 b1 + 1

3 b2, x2 = −1
3 b1 + 1

3 b2

(b) Inconsistent if b2 �= 2b1, otherwise
solution is x1 = b1 + x2 and x2 arbi-
trary. (c) x1 = 1

4 (2b1 + b2) (1 − i), x2 =
1
4 (ib2 − 2b1) (1 − i)

11 The only solution is the trivial solu-
tion p1 = 0, p2 = 0, and p3 = 0, which
has nonnegative entries.

13 Augmented matrix with three right-

hand sides reduces to
[

1 0 2 −1 −3
0 1 1 −1 −3

]
given solutions (a) x1 = 2, x2 = 1 (b)
x1 = −1, x2 = −1 (c) x1 = −3, x2 = −3.

15 (a) x = 0, y = 0 or divide by xy and
get y = −8/5, x = 4/7 (b) Either two
of x, y, z are zero and the other arbitrary
or all are nonzero, divide by xyz and ob-
tain x = −2z, y = z, and z is arbitrary
nonzero.

17 Suppose not and consider such a so-
lution (x, y, z, w). At least one variable
is positive and largest. Now examine the
equation corresponding to that variable.

19 (a) Equation for x2 = 1/2 is a + b ·
1/2 + c · (1/2)2 = e1/2.

Section 1.4, Page 42

1 (b) and (d) are in reduced row form,
(a), (e), (f), and (h) are in reduced row
echelon form. Leading entries (a) (1, 1),
(3, 3) (b) (1, 1), (2, 2), (3, 4) (c) (1, 2),
(2, 1) (d) (1, 1), (2, 2) (e) (1, 1) (f) (1, 1),
(2, 2), (3, 3) (g) (1, 2) (h) (1, 1)

3 (a) 3 (b) 0 (c) 3, (d) 1 (e) 1

5 (a) E21 (−1), E31 (−2), E32 (−1),

E2
( 1

4

)
, E12 (1),

⎡⎣ 1 0 5
2

0 1 1
2

0 0 0

⎤⎦, rank 2, nul-

lity 1 (b) E21 (1), E23 (−15), E13 (−9),

E12 (−1), E1
( 1

3

)
,

⎡⎣ 1 0 0 17
3

0 1 0 −33
0 0 1 2

⎤⎦, rank 3,

nullity 1 (c) E12, E1
( 1

2

)
,

[
1 0 0 1
0 1 0 1

]
,

rank 2, nullity 2 (d) E1
( 1

2

)
, E21 (−4),

E31 (−2), E32 (1), E12 (−2),

⎡⎣ 1 0 3
0 1 −1
0 0 0

⎤⎦,

rank 2, nullity 1 (e) E12, E21 (−2),

E2
( 1

9

)
, E12 (2)

[
1 1 0 22

9
0 0 1 2

9

]
, rank 2, nul-

lity 2 (f) E12, E31 (−1), E23, E2 (−1),
E32 (3), E3

(−1
4

)
, E23 (1), E13 (−1),

E12 (−2),

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦, rank 3, nullity 0
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7 Systems are not equivalent since
(b) has trivial solution, (a) does not.
(a) rank

(
Ã

)
= 2, rank (A) = 2,

{(−1 + x3 + x4, 3 − 2x2, x3, x4) | x3, x4 ∈ R}
(b) rank

(
Ã

)
= 3, rank (A) = 3,

{(−2x2, x2, 0, 0) | x2 ∈ R}
9 0 < rank (A) < 3

11 (a) Infinitely many solutions for all c
(b) Inconsistent for all c (c) Inconsistent
if c = −2, unique solution otherwise

13 Rank of augmented matrix equals
rank of coefficient matrix independently

of right-hand side, so system is always
consistent. Solution is x1 = −a+2b−c+
4x4, x2 = −b+a+ 1

2c−2x4, x3 = 1
2c−x4,

x4 free.

15 (a) 3 (b) solution set (c) E23 (−5)
(d) 0 or 1

17 (a) false, (b) true, (c) false, (d) false,
(e) false

20 Consider what you need to do to go
from reduced row form to reduced row
echelon form.

Section 1.5, Page 54

3 (a) rank A = 3, (b)

⎡⎢⎢⎣
1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤⎥⎥⎦ .

4 Work of jth stage: j +
2 [(n − 1) + (n − 2) + · · · + (n − j)].

Section 2.1, Page 60

1 (a)
[ −2 1 −1

−1 1 1

]
(b)

[
4

−1

]
(c)[

2 8
6 3

]
(d) not possible (e)

⎡⎣ 7 4 −1
10 4 4
2 4 0

⎤⎦
(f)

⎡⎣ x − 2 + 4y
3x − 2 + y

−1

⎤⎦

3 (a) not possible (b)
[ −1 −3 −2

−4 −1 4

]
(c)

[
0 −1 −1

−1 0 2

]
(d) not possible

(e)
[

5 8 3
13 5 −6

]

5 (a) x

[
1
2

]
+ y

[
2
0

]
+ z

[
0

−1

]
(b) x

[
1
2

]
+y

[ −1
3

]
(c) x

⎡⎣ 3
0
1

⎤⎦+y

⎡⎣ 2
0
1

⎤⎦+

z

⎡⎣ 0
−1
5

⎤⎦ (d) x

⎡⎣ 1
4
0

⎤⎦+y

⎡⎣ −3
0
2

⎤⎦+z

⎡⎣ 0
1

−1

⎤⎦
7 a = −2

3 , b = 2
3 , c = −4

3

9
[

a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+c

[
0 0
1 0

]
+

d

[
0 0
0 1

]

11 A + (B + C) =
[ −1 2 −3

5 1 5

]
=

(A + B)+C, A+B =
[

0 2 −2
4 2 5

]
= B+A

16 Solve for A in terms of B with the
first equation and deduce B = 1

4I.
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Section 2.2, Page 68

1 (a) [11 + 3i], (b)
[

6 8
3 4

]
, (c) impossi-

ble (d) impossible (e)
[

15 + 3i 20 + 4i
−3 −4

]
(f) impossible (g) [10] (h) impossible

3 (a)

⎡⎣ 1 −2 4 0
0 1 −1 0

−1 0 0 4

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎣ 3
2
1

⎤⎦
(b)

⎡⎣ 1 −1 −3
2 2 4

−1 0 1

⎤⎦ ⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 3
10
3

⎤⎦
(c)

⎡⎣ 1 −3 0
0 2 0

−1 3 0

⎤⎦ ⎡⎣ x
y
z

⎤⎦ =

⎡⎣ −1
0
0

⎤⎦

5

⎡⎣ 10 −1 1
2 −4 −2
4 2 −2

⎤⎦ ⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 3
1
2

⎤⎦

7 (a)

⎡⎣ 1 0 1
1 1 3
0 1 1

⎤⎦ ⎡⎣ 2
−4
−3

⎤⎦ (b)

⎡⎣ 1 0 1
3 1 1
1 1 0

⎤⎦ ⎡⎣ 1
−1
2i

⎤⎦
(c)

⎡⎣ 10 −1 1
−4 2 −2

4 2 −2

⎤⎦ ⎡⎣ x1

−3x2

x3

⎤⎦

9 f (A) =
[

3 4
2 5

]
, g (A) =

[
1 −2

−1 0

]
,

h (A) =
[ −1 −6

−3 −4

]

11 A2 =
[

3 8
4 11

]
, BA =

[
6 16

]
, AC =[

11
16

]
, AD =

[ −1 7 2
−2 9 3

]
, BC = [22],

CB =
[

2 4
10 20

]
, BD =

[ −2 14 4
]

13 (b) is not nilpotent, the others are.

15 A =
[

0 1
0 0

]
and B =

[
0 0
1 0

]
are nilpo-

tent, A + B =
[

0 1
1 0

]
is not nilpotent.

17 uv =

⎡⎣ −1 1 1
0 0 0

−2 2 2

⎤⎦ −−−−−−→
E1(−1)
E31(−2)

⎡⎣ 1 −1 −1
0 0 0
0 0 0

⎤⎦,

so rankuv = 1

19 A (BC) =
[

4 8
1 2

]
= (AB) C,

c (AB) =
[

0 16
0 4

]
= (cA) B = A (cB)

23 Let A =
[

a b
c d

]
and try simple B like[

1 0
0 0

]
.

27 Let Am×n = [aij ] and Bm×n = [bij ].

If b = [1, 0, . . . , 0]T ,

⎡⎢⎣ a11 0 · · · 0
...

...
am1 0 · · · 0

⎤⎥⎦ =

⎡⎢⎣ b11 0 · · · 0
...

...
bm1 0 · · · 0

⎤⎥⎦ so a11 = b11, etc. By simi-

lar computations, you can show that for
each i, j, aij = bij .

Section 2.3, Page 84

1 (±1, ±1) map to (a) (±1, ∓1)
(b) ± ( 7

5 , 1
5

)
, ± (−1

5 , 7
5

)
(c) ± (1, 1),

± (1, −1) (d) ± (2, −1), ± (0, 1)

3 (a) A =

⎡⎣ 1 1
2 0
4 −1

⎤⎦ (b) nonlinear

(c)
[

0 0 2
−1 0 0

]
(d)

⎡⎣ −1 1 0
0 0 1
0 1 1

⎤⎦
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5 Operator is TA, A =
[ √

3 −2
1 2

√
3

]
, and

in reverse order TB , B =
[ √

3 −1
2 2

√
3

]
.

7 (d) is the only candidate and the only
fixed point is (0, 0, 0).

9 (a), (b) and (c) are Markov. First
and second states are (a) (0.2, 0.2, 0.6),
(0.08, 0.68, 0.24) (b) 1

2 (0, 1, 1), 1
2 (1, 1, 0)

(c) (0.4, 0.3, 0.4), (0.26, 0.08, 0.66)
(d) (0, 0.25, 0.25), (0.225, 0, 0.15)

11 Powers of vertices 1–5 are 2,
4, 3, 5, 3, respectively. Graph is
dominance directed, adjacency ma-

trix is

⎡⎢⎢⎢⎢⎣
0 0 0 0 1
1 0 0 0 1
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ and picture:

v1 v2

v5

e2 e3

e4

e6

e7

e1

e5

v4 v3

13 (a)

⎡⎣ ak+3

ak+2

ak+1

⎤⎦ =

⎡⎣ − 3
2 2 − 5

2
1 0 0
0 1 0

⎤⎦ ⎡⎣ ak+2

ak+1

ak

⎤⎦
(b)

[
ak+2

ak+1

]
=

[
1 −2
1 0

] [
ak+1

ak

]
+

[
1
0

]
15 Points on a nonvertical line through
the origin have the form (x, mx).

17 Use Exercise 27 of Section 2 and the
definition of matrix operator.

Section 2.4, Page 97

1 (a)

⎡⎣ 1 0 0
0 1 3
0 0 1

⎤⎦ (b)

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ (c)

⎡⎣ 1 0 0
0 1 0
0 0 2

⎤⎦
(d)

⎡⎣ 1 0 0
0 1 0
0 −1 1

⎤⎦(e) E12 (3) (f) E31 (−a)

(g) E2 (3) (h) E31 (2)

3 (a) add 3 times third row to second
(b) switch first and third rows (c) mul-
tiply third row by 2 (d) add −1 times
second row to third (e) add 3 times sec-
ond row to first (f) add −a times first
row to third (g) multiply second row by
3 (h) add 2 times first row to third

5 (a) I2 = E12(−2)E21(−1)
[

1 2
1 3

]
(b)⎡⎣ 1 0 −1

0 1 1
0 0 0

⎤⎦ = E12 (−1) E32 (−2)

⎡⎣ 1 1 0
0 1 1
0 2 2

⎤⎦

(c)
[

1 1 0
0 0 1

]
= E2

(−1
2

)
E21 (−1)

[
1 1 0
1 1 −2

]
(d)

[
1 0 −2
0 1 1

2 (1 + i)

]
= E

(
1

1+i

)
E12

[
0 1 + i i
1 0 −2

]

7 (a) strictly upper triangular, tridiago-
nal (b) upper triangular (c) upper and
lower triangular, scalar (d) upper and
lower triangular, diagonal (e) lower tri-

angular, tridiagonal
[

2 0
3 1

]

9 A =
[

0 2I3

C D

]
with C = [4, 1],

D = [2, 1, 3], B =
[

0 −I2

E F

]
with

E =

⎡⎣ 0 0
2 2
1 1

⎤⎦ and F =

⎡⎣ 1 2
−1 1
3 2

⎤⎦,
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AB =
[

0 + 2I3E 0 (−I2) + 2I3F
C 0 + DE C (−I2) + DF

]
=

[
2E 2F
DE −C + DF

]
=

⎡⎢⎢⎣
0 0 2 4
4 4 −2 2
2 2 6 4
5 5 6 10

⎤⎥⎥⎦
11

[
1 0 2

]T [
1 2 1

]
13 (a) (1, −3, 2), (1, −3, 2), not sym-

metric or Hermitian (b)
[

2 0 1
1 3 −4

]
,[

2 0 1
1 3 −4

]
, not symmetric or Hermi-

tian (c)
[

1 −i
i 2

]
,
[

1 i
−i 2

]
, Hermitian, not

symmetric (d)

⎡⎣ 1 1 3
1 0 0
3 0 2

⎤⎦,

⎡⎣ 1 1 3
1 0 0
3 0 2

⎤⎦, sym-

metric and Hermitian

15 (a) true (b) false (c) false (d) true
(e) false

17 Q(x, y, z) = xT Ax with x = [x, y, z]T

and A =

⎡⎣ 2 2 −6
0 1 4
0 0 1

⎤⎦
19 A∗A =

[
4 −2 + 4i

−2 − 4i 14

]
=

(A∗A)∗ and AA∗ =
[

9 3 − 6i
3 + 6i 9

]
=

(AA∗)∗

22 Since A and C are square, you can
confirm that block multiplication applies
and use it to square M .

29 Compare (i, j)th entries of each side.

32 Substitute the expressions for A into
the right-hand sides and simplify them.

Section 2.5, Page 111

1 (a)

⎡⎣ 1
2

1
2 − 1

2
0 1

2 0
1
2

1
2

1
2

⎤⎦ (b)
[

1 −i
4

0 1
4

]
(c) does

not exist (DNE) (d)

⎡⎢⎢⎣
1
2 − 1

2 − 1
2

1
2

0 1 1 −1
0 0 1

2 0
0 0 0 1

⎤⎥⎥⎦
(e)

[
cos θ sin θ

− sin θ cos θ

]

3 (a)
[

2 3
1 2

]
,

[
2 −3

−1 2

]
,

[
20
−11

]
(b)

⎡⎣ 3 6 −1
−2 1 1

0 0 1

⎤⎦, 1
15

⎡⎣ 1 −6 7
2 3 −1
0 0 15

⎤⎦,

⎡⎣ −1
0
1

⎤⎦
(c)

[
1 1
5 2

]
, 1

3

[ −2 1
5 −1

]
,
[

3
−5

]

5 (a) E21 (−3) (b) E2(−1/2)
(c) E21 (−1) E13 (d) E12 (1) E23 (1)
(e) E3

(−1
3

)
E1 (−1) E21 (i)

7

⎡⎣ 1 −3 −3 1
0 0 −6 −4
0 −1 −5 −3

⎤⎦

9 Both sides give 1
4

⎡⎣ 2 1 −2
2 −1 2

−2 1 2

⎤⎦.

11 Both sides give 1
12

⎡⎣ 18 12 9
0 2 −1

−6 0 3

⎤⎦.

13 (a) any k,
[ −1 −k

0 1

]
(b) k �= 1, 1

k−1

⎡⎣ −1 0 1
−k k − 1 1

k 0 −1

⎤⎦
(c) k �= 0,

⎡⎢⎢⎣
1 0 0 −1

k

0 −1 0 0
0 0 −1

6 0
0 0 0 1

k

⎤⎥⎥⎦

15 Let A =
[

1 0
0 1

]
, B =

[ −1 0
0 −1

]
, so

both invertible, but A + B =
[

0 0
0 0

]
, not

invertible.
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17 (a) N =

⎡⎣ 0 1 −2
0 0 −1
0 0 0

⎤⎦, I + N + N2 +

N3 =

⎡⎣ 1 1 −3
0 1 −1
0 0 1

⎤⎦ (b) N =

⎡⎣ 0 0 0
0 0 0

−1 0 0

⎤⎦,

I + N =

⎡⎣ 1 0 0
0 1 0

−1 0 1

⎤⎦
19 x = (x, y), x(9) ≈

[
1.00001

−0.99999

]
,

F
(
x(9)

)
≈ 10−6

[ −1.3422
2.0226

]
, F (x) =

[
x2 + sin (πxy) − 1
x + y2 + ex+y − 3

]
, JF (x) =[

2x + cos (πxy) , πy cos (πxy) πx
1 + ex+y, 2y + ex+y

]
21 Move constant term to right-hand
side and factor A on left.

24 Multiplication by elementary matri-
ces does not change rank.

29 Assume M−1 has the same form as
M and solve for the blocks in M using
MM−1 = I.

Section 2.6, Page 125

1 (a) A11 = −1, A12 = −2, A21 = −2,
A22 = 1 (b) A11 = 1, A12 = 0, A21 = −3,
A22 = 1 (c) A22 = 4, all others are 0
(d)A11 = 1, A12 = 0, A21 = −1 + i,
A22 = 1

3 All except (c) are invertible. (a) 3, (b)
1 + i, (c) 0, (d) −70, (e) 2i

5 Determinants of A and AT are (a) −5
(b) 5 (c) 1 (d) 1

7 (a) a �= 0 and b �= 1(b) c �= 1 (c) any θ

9 (a)

⎡⎣ −2 −2 2
4 4 −4

−3 −3 3

⎤⎦, 03,3 (b)⎡⎣ −1 0 −3
0 −4 0

−1 0 1

⎤⎦, −4I3 (c)
[

2 −3
1 1

]
, 5I2

(d) 04,4, 04,4

11 (a)
[

4 −1
−3 1

]
(b)

⎡⎣ 1 0 0
− 1

2
1
2 − 1

2
−1 0 1

⎤⎦
(c)

⎡⎣ −1 −4 −2
0 −1 −1
1 1 0

⎤⎦ (d)
[ −1 i

−2i −1

]

13 (a) x = 5, y = 1 (b) x1 = 1
4 (b1 + b2),

x2 = 1
2 (b1 − b2) (c) x1 = −7

6 , x2 = 5
3 ,

x3 = 11
2

17 Use elementary operations to clear
the first column and factor out as many
(xj − xk) as possible in the resulting de-
terminant.

19 Take determinants of both sides of
the identity AA−1 = I.

21 Factor a term of −2 out of each row.
What remains?

23 Use row operations to make the diag-
onal submatrices triangular.

24 Show that J2
n = In, which narrows

down det Jn.

Section 2.7, Page 143

1 L =

⎡⎣ 1 0 0
1 1 0
2 1 1

⎤⎦, U =

⎡⎣ 2 −1 1
0 4 −3
0 0 −1

⎤⎦,

(a) x = (1, −2, 2) (b) x = 1
4 (3, −6, −4)

(c) x = 1
4 (3, −2, −4) (d) x = 1

8 (3, 6, 8)



364 Solutions to Selected Exercises

3

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0
1 0 0 0 0 0
4 −2 4 −2 2 −1
2 0 2 0 1 0
2 −1 0 0 2 −1
1 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 0 −1 0 0
4 4 2 −2 −2 −1
2 0 2 −1 0 −1
1 0 0 0 0 0
2 2 1 0 0 0
1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0 2 0 −1 0 0
−2 4 0 0 0 0

0 −1 0 1 0 −1
1 −2 −1 2 1 −2
0 −2 0 0 0 2
2 −4 0 0 −2 4

⎤⎥⎥⎥⎥⎥⎥⎦ for (a), (b),

(c), (d) same as (c)

5

⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0 1 0 0
2 4 1 0 1 0
1 0 3 0 0 1

−1 0 0 1 0 0
0 −1 0 2 2 1
0 0 −1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x12

x22

x32

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

2
1
1

−1
0
3

⎤⎥⎥⎥⎥⎥⎥⎦
7 If so, each factor must be nonsingular.
Check the (1, 1)th entry of an LU prod-
uct.

13 For matrices M, N , block arith-
metic gives MN = [Mn1, . . . , Mnn].
Use this to show that vec (MN) =
(I ⊗ M) vec (N). Also, Mnj = n1jm1 +
· · · + npjmp. Use this to show that
vec (MN) =

(
NT ⊗ I

)
vec (M). Then

apply these to AXB = A (XB).

Section 3.1, Page 158

1 (a)(−2, 3, 1) (b) (6, 4, 9)

3 V is a vector space.

5 V is not a vector space because it is
not closed under scalar multiplication.

7 V is not a vector space because it is
not closed under vector addition or scalar
multiplication.

9 V is a vector space.

11 (a) T = TA, A =
[

1 0 0
1 2 −4

]
, linear

with range C (A) = R
2, equal to target

(b) not linear (c) T = TA, A =
[

0 1 0
0 1 0

]
,

linear with range C (A) = span {(1, 1)},
not equal to target (d) not linear (e) not
linear

13 (a) linear, range not V (b) not linear,
(c) linear, range is V (d) linear, range not
V

15 (a) identity operator is linear and
invertible, (idV )−1 = idV

17 Mx = (x1 + 2, x2 − 1, x3 + 3, 1), so
action of M is to translate the point
in direction of vector (2, −1, 3). M−1 =[

I3 −t
0 1

]
(think inverse action)

19 Write c0 = c (0 + 0) = c0 + c0
by identity and distributive laws. Add
− (c0) to both sides.

27 Use the fact that TA ◦TB = TAB and
TI = id

28 Use the fact that TA ◦TB = TAB and
do matrix arithmetic.

Section 3.2, Page 168

1 W is not a subspace of V because W
is not closed under addition and scalar
multiplication.

3 W is a subspace.

5 W is a subspace.

7 Not a subspace, since W doesn’t con-
tain the zero element.

9 W is a subspace of V.
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11 span {(1, 0) , (0, 1)} = R
2 and[

1 −2
0 1

]
x = b always has solution

since coefficient matrix is invertible. So
span {(1, 0) , (−2, 1)} = R

2 and spans
agree.

13 Write ax2 + bx + c = c1 + c2x + c3x
2

as matrix system Ac = (a, b, c) by equat-
ing coefficients and see whether A is in-
vertible, or use an ad hoc argument.
(a) Spans P2. (b) Does not span P2

(can’t get 1). (c) Spans P2. (d) Does not
span P2 (can’t get x).

15 u + w = (4, 0, 4) and v − w =
(−2, 0, −2) so span {u + w,v − w} =
span {(1, 0, 1)} ⊂ span {u,v,w}, since
u + v,v − w ∈ span {u,v,w}. u is not
a multiple of (1, 0, 1), so spans are not
equal.

17 (a) If x,y ∈ U and x,y ∈ V ,
x,y ∈ U ∩ V . Then cx ∈ U and cx ∈ V
so cx ∈ U ∩ V , and x + y ∈ U and
x + y ∈ V so x + y ∈ U ∩ V . (b) Let
u1 +v1,u2 +v2 ∈ U +V , where u1,u2 ∈
U and v1,v2 ∈ V . Then cu1 ∈ U and
cv1 ∈ V so c(u1 + v1) = cu1 + cv1 ∈
U + V , and similarly for sums.

19 Let A and B be n × n diagonal ma-
trices. Then cA is diagonal matrix and
A + B is diagonal matrix so the set of
diagonal matrices is closed under matrix
addition and scalar multiplication.

20 (a) If A = [aij ], vec(A) =
(a11, a21, a12, a22) so for A there ex-
ists only one vec(A). If vec(A) =
(a11, a21, a12, a22), A = [aij ] so for
vec(A) there exists only one A. Thus vec
operation establishes a one-to-one cor-
respondence between matrices in V and
vectors in R

4.

Section 3.3, Page 180

1 (a) none (b) (1, 2, 1), (2, 1, 1), (3, 3, 2)
(c) every vector redundant (d) none

3 (a) linearly independent (b) linearly
independent, (c) every vector redundant
(d) linearly independent

5 (a)
( 1

4 , −3
4

)
(b)

( 1
2 , 1, 3

2

)
(c) (b, a, c)

(d)
( 1

2 − i, 1 − 3
2 i

)
7 (a) v = 3u1 − u2 ∈ span {u1,u2},
(b) u1, u2, (1, 0, −1)

9 With the given information, {v1,v2}
and {v1,v3} are possible minimal span-
ning sets.

11 All values except c = 0, 2 or − 7
3

13 e11

15 (c) W = −2, polynomials are linearly
independent (d) W = 4, polynomials are
linearly independent

17
[ 1

1 0
0 3

2

]
22 Assume vi = vj . Then there exists
ci = −cj �= 0 such that c1v1 + c2v2 +
· · · + civi + · · · + cjvj + · · · + cnvn = 0.

24 Start with a nontrivial linear com-
bination of the functions that sums to 0
and differentiate it.

26 Domain and range elements x and y
are given in terms of old coordinates. Ex-
press them in terms of new coordinates
x′, y′ (x = Px′ and y = Py′.)
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Section 3.4, Page 190

1 (a)
{(− 3

2 , 0, 3, 1
)
,
( 1

2 , 1, 0, 0
)}

(b) {(−4, 1)} (c) {(−3, 1, 1)} (d) { }
3 (a) {(2, 4) , (0, 1)} (b) {(1, −1)}
(c) {(1, −2, 1) , (1, −1, 2)}
(d) {(2, 4, 1) , (−1, −2, 1) , (0, 1, −1)}
5 (a) {(2, −1, 0, 3) , (4, −2, 1, 3)}
(b) {(1, 4)} (c) {(1, 1, 2) , (2, 1, 5)}
(d) {(2, −1, 0) , (4, −2, 1) , (1, 1, −1)}
7 (a) span {(2, 2, 1)},

( 2
5 , 2

5 , 1
5

)
, yes

(b) span {(1, 1)},
( 1

2 , 1
2

)
, no

9 (a) kernel span {(1, 0, −1)},
range span {(1, 1, 2) , (−2, 1, −1)},
not onto or one-to-one (b) kernel{
a + bx + cx2 | a + b + c = 0

}
, range R

onto but not one-to-one

11 ker T = span {v1 − v2 + v3},
range T = R

2, T is onto but not one-
to-one, hence not an isomorphism.

15 Calculate T (0 + 0).

17 Use definition of isomorphism, The-
orem 3.9 and for onto, solve c1x+ c2(x−
1) + c3x

2 = a + bx + cx2 for ci’s.

19 Since A is nilpotent, there exists
m such that Am = 0 so det(Am) =
(det A)m = 0 and det A = 0. Also since
A is nilpotent, by Exercise 17 of Sec-
tion 2.4, (I − A)−1 = I + A + A2 + . . . +
Am−1.

Section 3.5, Page 196

1 (a) None (b) Any subset
of three vectors (c) Any two of
{(2, −3, 1) , (4, −2, −3) , (0, −4, 5)} and
(1, 0, 0)

3 w1 could replace v2.

5 w1 could replace v2 or v3, w2 could re-
place any of v1,v2,v3 and w1,w2 could
replace any two of v1,v2,v3.

7 (0, 1, 1), (1, 0, 0), (0, 1, 0) is one choice
among many.

9 (a) true (b) false (c) true (d) true
(e) true (f) true

12 Suppose not and form a nontrivial
linear combination of w1,w2, . . . ,wr,w.
Could the coefficient of w be nonzero?

13 If c1,1e1,1+· · ·+cn,nen,n = 0, ca,b = 0
for each a, b because ea,b is the only ma-
trix with a nonzero entry in the (a, b)th
position.

14 The union of bases for U and V will
work. The fact that if u + v = 0, u ∈ U ,
v ∈ V , then u = v = 0, helps.

16 Dimension of the space is n(n+1)/2.

21
{

I, A, A2, . . . , An2
}

must be linearly

dependent since dim(Rn,n) = n2 . Exam-
ine a nontrivial linear combination sum-
ming to zero.

Section 3.6, Page 206

1 Bases for row, column, and null
spaces: {(1, 0, 3, 0, 2) , (0, 1, −2, 1, −1)},
{(3, 1, 2) , (5, 2, 3)}, {(−3, 2, 1, 0, 0) ,
(0, −1, 0, 1, 0) , (−2, 1, 0, 0, 1)}

3 Bases by row and column al-
gorithms: (a) {(1, 0, 1) , (0, 1, −1)},
{(0, −1, 1) , (2, 1, 1)}
(b)

{(
1, 0, 1

2

)
, (0, 1, 0)

}
,

{(2, −1, 1) , (2, 0, 1))} (c) {(1, 0) , (0, 1)},
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{(1, −1) , (2, 2)} (d)
{
1 + x2, x − 5x2},{

1 + x2, −2 − x + 3x2}
5 Bases for row, column, and null spaces:
(a) {(2, 0, −1)}, {1},

{( 1
2 , 0, 1

)
, (0, 1, 0)

}
(b) {(1, 2, 0, 0, 1) , (0, 0, 1, 1, 0)},
{(1, 1, 3), (0, 1, 2)}, {(−2, 1, 0, 0, 0) ,
(0, 0, −1, 1, 0) , (−1, 0, 0, 0, 1)}
(c) {(1, 0, −10, 8, 0) , (0, 1, 5, −2, 0) ,
(0, 0, 0, 0, 1)},
{(1, 1, 2, 2) , (2, 3, 3, 4) , (0, 1, 0, 1)},
{(10, −5, 1, 0, 0) , (−8, 2, 0, 1, 0)}
(d) {e1, e2, e3}, {e1, e2, e3}, { }
7 (a) c1v1+c2v2+c3v3+c4v4 = 0, where
c1 = −2c3 − 2c4, c2 = −c3, and c3, c4

are free, dim span {v1,v2,v3,v4} = 2
(b) c1x + c2

(
x2 + x

)
+ c3

(
x2 − x

)
= 0

where c1 = 2c3, c2 = −c3, and c3

is free, dim span
{
x, x2 + x, x2 − x

}
= 2

(c) c1v1 + c2v2 + c3v3 + c4v4 = 0, where
c1 = −c3, c2 = 1

2c3, c4 = 0 and c3 is free,
dim span {v1,v2,v3,v4} = 3

9 (a) dim C(A) = 2, dim C(B) = 2
(b) dim C ([

A B
])

= 3 (c) dim C(A) ∩
C(B) = 2 + 2 − 3 = 1

11 C(A) ∩ C(B) = span {(1, 1, −1)}
13 Since Ax = b is a consistent, b ∈
C(A). If {ai}, the set of columns of A,
has redundant vectors in it, c1a1+c2a2+
· · · + cnan = 0 for some nontrivial c.

15 What does b /∈ C(A) tell you about
r and m?

Section 4.1, Page 219

1 (a) −14,
√

34, 2
√

5 (b) 7,
√

6,
√

14
(c) 8,

√
10,

√
26 (d) 12 − 6i,

√
10,

√
26

(e) 4,
√

30,
√

6 (f) −4, 2
√

3,
√

30

3 (a)
√

145/145 (b) 0 (c)
√

21/6
(d)

√
10/10

5 (a) 36k (b) −5i−j+5k (c) (−2, −2, 4)

7 ‖u‖ =
√

30, ‖cu‖ = 3
√

30,‖v‖ =
4,‖u + v‖ =

√
30, ‖u + v‖ ≤ ‖u‖ +

‖v‖ = 4 +
√

30

9 u×v = (−6, 4, −8), v×u = (6, −4, 8),
(cu) × v = c (u × v) = u × (cv) =
(12, −8, 16), u×w = (4, 1, −2), v ×w =
− (6, 7, 8) u × (v + w) = (−2, 5, −10),
(u + v) × w = − (2, 6, 10)

11 un =
(

2
n
,

1
n2 +1

2+ 3
n

+ 5
n2

)
→ (

0, 1
2

)
13 Let u = (u1, . . . , un) ∈ R

n, v =
(v1, . . . , vn) ∈ R

n, and c ∈ R. Then
(cu) · v =(cu1)v1 + · · · + (cun)vn and
v · (cu) = v1(cu1) + · · · + vn(cun) so
(cu) · v = v · (cu). Similarly, show (cu) ·
v = v · (cu) = c(v · u) = c(u · v).

17 ‖cv‖ = |c| ‖v‖ by basic norm law (2).
Since c ∈ R and c > 0, ‖cv‖ = c ‖v‖.
So a unit vector in direction of cv is
cv/c ‖v‖ = v/ ‖v‖.

19 Apply the triangle inequality to
u + (v − u) and v + (u − v).

Section 4.2, Page 230

1 (a) 2.1176 (b) 1.6383 (c) 1.0018

3 (a) (−2, −1), −√
5 (b) 10

9 (2, 2, 1), 10
3

(c) −1
2 (1, 1, 1, 1), −1

5 (a) |v1 · v2| = 1 ≤ ‖v1‖ ‖v2‖ =
√

15
(b) |v1 · v2| = 0 ≤ ‖v1‖ ‖v2‖ =

√
6

(c) |v1 · v2| = 19 ≤ ‖v1‖ ‖v2‖ = 2
√

165

7 (a) (Mu) · (Mv) = 1, no (b) (Mu) ·
(Mv) = 0, yes (c) (Mu) · (Mv) = −13,
no

9 (a) x + y − 4z = −6 (b) x − 2z = −4

11 (a) x =
(
3, − 2

3

)
, b − Ax =

0, ‖b − Ax‖ = 0, yes (b) x =
1
21 (9, −14), b − Ax = 1

21 (−4, −16, 8),
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‖b − Ax‖ =
√

336
21 , no (c) x =(

x3 + 12
13 , −x3 + 23

26 , x3
)

where x3 is free,
b−Ax = 1

26 (32, −21, 1, 22), ‖b − Ax‖ =√
1950
26 , no

13 b = 0.3, a + b = 1.1, 2a + b = 2,
3a+ b = 3.5, 3.5a+ b = 3.6, least squares
solution a ≈ 1.00610, b ≈ 0.18841, resid-
ual norm is ‖b − Ax‖ ≈ 0.39962

15 Express each norm in terms of dot
products.

21 Use Example 3.41.

23 Examine the proof of Theorem 4.3
for points where real and complex dots
might differ.

Section 4.3, Page 240

1 (a) orthogonal, linearly independent
(b) linearly independent (c) orthonor-
mal, orthogonal, linearly independent

3 v1 · v2 = 0, v1 · v3 = 0, and
v2 · v3 = 0 so {v1,v2,v3} is an orthog-
onal basis. v1 · v1 = 2, v2 · v2 = 3,
and v3 · v3 = 3

2 . Coordinates with re-
spect to {v1,v2,v3} are (a)

( 3
2 , −1

3 , −5
3

)
(b)

( 1
2 , −1

3 , 1
3

)
(c)

( 1
2 , −5

3 , 11
3

)
5 (a) orthogonal, 1

5

[
3 4
4 −3

]
(b) not or-

thogonal (c) not orthogonal (d) not or-

thogonal (e) unitary, 1√
2

⎡⎣ 1 0 −i
0 −√

2i 0
1 0 i

⎤⎦
(f) unitary, 1√

3

[
1 − i −i

−i 1 + i

]

7 Hv = 1
3

⎡⎣ 1 2 −2
2 1 2

−2 2 1

⎤⎦, Hvu = (3, 0, 0),

Hvw = (1, 2, −2)

9 (a)

⎡⎢⎣
√

6
6 −

√
3

3

√
2

2√
6

3

√
3

3 0
−

√
6

6

√
3

3

√
2

2

⎤⎥⎦ (b) 1
5

[
3 −4
4 3

]

(c)
[

i 0
0 1

]
11 Calculate both sides of each equa-
tion.

14 Let u,v be columns of P , calculate∥∥eiθu
∥∥ and

(
eiθu

) · (
eiθv

)
.

Section 4.4, Page 246

1

⎡⎣ 1 2 0
1 −1 0
0 1 1

⎤⎦, range (T ) =

span {(1, 1, 0), (2, −1, 1), (0, 0, 1)},
ker(T ) = {0}

3 (a) P =
[

1 1
1 −1

]
, Q =

[
2 3
0 1

]
(b) [id]B,B′ = Q−1I2P =

[ −1 2
1 −1

]
(c) [w]B′ = [id]B,B′

[
3
4

]
=

[
5

−1

]

5 1
25

[
7 6 −6
1 8 −8

]
10 Let B′ be any other basis and use the
chain of operators VB′

idV→ VB
T→ VB

idV→
VB′ .
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Section 5.1, Page 261

1 (a) −3, 2 (b) −1, −1, −1 (c) 2, 2, 3
(d) −2, 2 (e) −2i, 2i

3 Eigenvalue, algebraic multiplicity, ge-
ometric multiplicity, bases: (a) λ = −3,
1, 1, {(2, 1)}, λ = 2, 1, 1, {(1, 1)}
(b) λ = −1, 3, 1, {(0, 0, 1)}, (c) λ = 2,
2, 2, {(1, 0, 0) , (0, −1, 1)}, λ = 3, 1, 1,
{(1, 1, 0)} (d) λ = −2, 1, 1, {(−1, 1)},
λ = 2, 1, 1, {(1, 1)} (e) λ = −2i, 1, 1,
{(i, −1)}, λ = 2i, 1, 1, {(i, 1)}
5 B = 3I − 5A, so eigensystem for
B consists of eigenpairs {−2, (1, 1)} and
{8, (1, −1)}.

7 (a) tr A = 7 − 8 = −1 = −3 + 2,
(b) tr A = −1 − 1 − 1 = −3, (c) tr A =
7 = 2+2+3 (d) tr A = 0+0 = 0 = −1+1
(e) tr A = 0 + 0 = 0 = −2i + 2i

9 Eigenvalues of A and AT are the same.

11 (a) No (b) No (c) No (d) Yes (e) No

13 Eigenvalues of A are 1, 2. Eigenval-
ues of B are 1

2

(
3 ± √

5
)
. Eigenvalues of

A+B are 3±√
3. Eigenvalues of AB are

3 ± √
7. (a) Deny – 3 +

√
3 not sum of 1

or 2 plus 1
2

(
3 ± √

5
)
. (b) Deny – 3 +

√
7

not product of 1 or 2 times 1
2

(
3 ± √

5
)
.

17 If A is invertible, λ �= 0, then
A−1Av = A−1λv.

19 For λ eigenvalue of A with eigenvec-
tor v, (I − A)v = Iv − Av = v − λv =
(1 − λ)v. Since |λ| < 1, 1 − λ > 0.

20 Use part (1) of Theorem 5.1.

22 Deal with the 0 eigenvalue separately.
If λ is an eigenvalue of AB, multiply the
equation ABx = λx on the left by B.

Section 5.2, Page 270

1 All except (d) have distinct eigenval-
ues, so are diagonalizable. For λ = 1 (d)
has eigenspace of dimension two, so is not
diagonalizable.

3 (a)

⎡⎣ 1 1 0
0 0 1
0 1 0

⎤⎦ (b)

⎡⎣ 1 2 0
0 0 −1
0 1 1

⎤⎦
(c)

[ 2
3 −1
1 1

]
(d)

[ −1 1
1 1

]
(e)

⎡⎢⎢⎣
1 −1 1 −1

−2 1 0 −1
0 −1 0 3
0 2 0 0

⎤⎥⎥⎦
5 True in every case. (a), (b), and (c)
satisfy p (A) = 0 and are diagonalizable,
(d) is not diagonalizable and p (A) �= 0.

7 Eλ (Jλ (2)) = span {(1, 0)}, so Jλ (2)
is not diagonalizable (not enough eigen-

vectors). Jλ (2)2 =
[

λ2 2λ
0 λ2

]
, Jλ (2)3 =[

λ3 3λ2

0 λ3

]
, Jλ (2)4 =

[
λ4 4λ3

0 λ4

]
, which

suggests Jλ (2)k =
[

λk kλk−1

0 λk

]
.

9 P =
[ −1 1

1 1

]
, Q =

[ −3 1
2 0

]
, S =[

1 1
1 2

]
, S−1 =

[
2 −1

−1 1

]

11 sin
(

π
6 A

)
=

[
1
2

√
3 4

5 + 2
5

√
3

0 −1

]
,

cos
(

π
6 A

)
=

[ 1
2

2
5

0 0

]
13 Similar matrices have the same eigen-
values.

15 Examine DB = BD, with D diago-
nal and no repeated diagonal entries.

17 You may find Exercise 16 and Corol-
lary 5.1 helpful.

19 (b) fn = ( 1+
√

5
2 )n( 5+

√
5

10 ) +
( 1−√

5
2 )n( 5−√

5
10 ).

21 In one direction use the fact that di-
agonal matrices commute. In the other
direction, prove it for a diagonal A first,
then use the diagonalization theorem.
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Section 5.3, Page 280

1 (a) 2, dominant eigenvalue 2 (b) 0, no
dominant eigenvalue (c) 0, no dominant
eigenvalue (d) 1, dominant eigenvalue −1
(e) 1

2 , dominant eigenvalue −1
2

3 (a) x(k) =

[
2

( 1
2

)k − (−1
2

)k

−2
( 1

2

)k + 2
(−1

2

)k

]

(b) x(k) =

⎡⎣ 2k

3k+1 − 2k

2k

⎤⎦ (c) x(k) =[
13 · 2k − 10 · 3k

−13 · 2k + 15 · 3k

]
5 (b), (c), and (e) give matrices for
which all x(k) → 0 as k → ∞. Ergodic
theorem applies to (d).

7 diag {A, B}, where possibili-
ties for A are diag {J2 (1) , J2 (1)},
J2 (2) and possibilities for B are

diag {J3 (1) , J3 (1) , J3 (1)},
diag {J3 (1) , J3 (2)}, diag {J3 (3)}
9 Characteristic polynomial for J3 (2)
is (λ − 2)3 and (J3 (2) − 2I3)3 =⎡⎣ 0 1 0

0 0 1
0 0 0

⎤⎦3

= 0.

11 Eigenvalues are λ ≈ 0.1636 ±
0.3393i, 0.973 with absolute values
0.3766 and 0.973. So population will de-
cline at rate of approximately 2.7% per
time period.

13 λ2 = s1f2 , p = p1

(
1,

√
s1/f2

)
15 (a) Sum of each column is 1. (c)
Since a and b are nonnegative, (a, b) and
(1, −1) are linearly independent eigen-
vectors. Use diagonalization theorem.

Section 5.4, Page 286

1 A is real and A = AT

in each case. (a) 1√
5

[
2 1

−1 2

]

(b) 1
5

[ −4 3
3 4

]
(c) 1√

2

⎡⎣ −1 0 1
1 0 1
0

√
2 0

⎤⎦
(d)

⎡⎢⎣ −
√

2
2

√
6

6

√
3

3√
2

2

√
6

6

√
3

3

0 −
√

6
3

√
3

3

⎤⎥⎦

3 P T P = I in each case. (a) Unitar-

ily diagonalizable by 1√
2

⎡⎣ 0 −i i
0 1 1√
2 0 −1

⎤⎦
(b) Unitarily diagonalizable by
1√
2

[ −i i
1 1

]
(c) Orthogonally diagonal-

izable by 1√
2

⎡⎣ −1 0 1
1 0 1
0

√
2 0

⎤⎦

5 All of these matrices are normal.

7 Orthogonalize by

⎡⎢⎣ −
√

3
3

√
6

3 0√
3

3

√
6

6 −
√

2
2√

3
3

√
6

6

√
2

2

⎤⎥⎦,

let a = (−1)k + 2k+1, b = (−1)k−1 + 2k,

c = (−1)k + 2k−1 and Ak = 1
3

⎡⎣ a b b
b c c
b c c

⎤⎦

9 P =

⎡⎢⎣ −
√

3
3

√
2

2
−√

6
6√

3
3 0 −√

6
3√

3
3

√
2

2

√
6

6

⎤⎥⎦,

B = P diag
{
1,

√
2, 4

}
P T

=

⎡⎢⎣ 2
3 +

√
2

2
1
3

−2
3 +

√
2

2
1
3

5
3

−1
3

−2
3 +

√
2

2
−1
3

2
3 +

√
2

2

⎤⎥⎦
12 Use orthogonal diagonalization and
change of variable x = Py for a general
B to reduce the problem to one of a di-
agonal matrix.

16 First show it for a diagonal matrix
with positive diagonal entries. Then use
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Exercise 12 and the principal axes theo-
rem.

17 AT A is symmetric. Now calculate
‖Ax‖2 for an eigenvector x.

Section 5.5, Page 287

1 (a)

⎡⎣ −3 0 0
0 −2.5764 −1.5370
0 −1.5370 2.5764

⎤⎦
(b)

⎡⎣ 1.41421 0 0
0 −1.25708 0.44444i
0 −0.44444i −0.15713

⎤⎦

3 (a) −2, 3, 2 (b) 3, 1, 2 (c) 2, −1, ±√
2

5 Eigenvalues of A are 2, −3 and eigen-
values of f (A) /g (A) are 0.6, 0.8.

8 Do a change of variables x = Py,
where P upper triangularizes A.

11 Equate (1, 1)th coefficients of the
equation R∗R = RR∗ and see what can
be gained from it. Proceed to the (2, 2)th
coefficient, etc.

Section 5.6, Page 291

1 (a) U = E2(−1), Σ =
[

3 0 0
0 1 0

]
, V = I3

(b) U =

⎡⎢⎣ −1 0 0
0

√
2

2
−√

2
2

0
√

2
2

√
2

2

⎤⎥⎦,

⎡⎣ 2 0
0

√
2

0 0

⎤⎦, V =

I2 (c) U = E12E23, Σ =

⎡⎣ √
5 0 0
0 1 0
0 0 0

⎤⎦, V =⎡⎢⎣ 0 1 0√
5

5 0 2
√

5
5

−2
√

5
5 0

√
5

5

⎤⎥⎦ (d) U = E12E2 (−1),

[
2 0 0
0 2 0

]
, V = I3

3 Calculate U , Σ, V , null space, column
space bases: (a) First three columns of
U, { } (b) First two columns of U , third
column of V

5 For (3), use a change of variables
x = V y.

7 Use a change of variables x =
V y and check that ‖b − Ax‖ =∥∥UT (b − Ax)

∥∥ =
∥∥UT b − UT AV y

∥∥.

Section 5.7, Page 294

1 (a) −0.04283, 5.08996, 2.97644 ±
0.5603 (b) −0.48119, 3.17009, 1.3111
(c) 3.3123 ± 2.8466i, 1.6877 ± 0.8466i

3 Use Gershgorin to show that 0 is not
an eigenvalue of the matrix.

Section 6.1, Page 311

1 (a) 1-norms 6, 5, 2-norms
√

14,
√

11,
∞-norms 3, 3, distance (‖(−5, 0, −4)‖)
in each norm 9,

√
41, 5 (b) 1-norms 7,

8, 2-norms
√

15,
√

14, ∞-norms 3, 2, dis-
tance (‖(1, 4, −1, −2, −5)‖) in each norm
13,

√
47, 5

3 (a) 1
5 (1, −3, −1), 1√

11
(1, −3, −1),

1
3 (1, −3, 1) (b) 1

7 (3, 1, −1, 2),
1√
15

(3, 1, −1, 2), 1
3 (3, 1, −1, 2)

(c) 1
3+

√
10

(2, 1, 3 + i), 1√
15

(2, 1, 3 + i),
1√
10

(2, 1, 3 + i)
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5 ‖u‖1 = 6, ‖v‖1 = 7,
(1) ‖u‖1 > 0, ‖v‖1 > 0 (2)
‖−2 (0, 2, 3, 1)‖1 = 12 = |−2| 6 (3)
‖(0, 2, 3, 1) + (1, −3, 2, −1)‖1 = 7 ≤ 6+7

7 Ball of radius 7/4 touches the line, so
distance from point to line in ∞-norm is
7/4.

�
�
�
�

����

�
�
�
�

2

321

3

1

−1

−1

(3/4,5/4)

(0,0)

(−1,−1/2)

7/4

7/4

x + y = 2

x

y

9 Unit ball B1 ((1, 1, 1)) in R
3 with in-

finity norm is set of points (x, y, z) which

are between the pairs of planes (1) x = 0,
x = 2, (2) y = 0, y = 2 and (3) z = 0,
z = 2.

11 Set v = (−1, 1), v −
vn =

(−1
n

, −e−n
)

so ‖v − vn‖1 =( 1
n

+ e−n
)

−−−−−→n−→∞0 and ‖v − vn‖2 =√
( 1

n
)2 + (e−n)2 → 0, as n → ∞. So

limn→∞ vn is the same in both norms.

13 Answer: max{| {|a| + |b| , |c| + |d|}.
Note that a vector of length one has one
coordinate equal to ±1 and the other at
most 1 in absolute value.

14 Let u = (u1, . . . , un), v =
(v1, . . . , vn), so |u1|+ · · ·+ |un| ≥ 0. Also
|cu1|+ · · ·+ |cun| = |c| |u1|+ · · ·+ |c| |un|
and |u1 + v1| + · · · + |un + vn| ≤ |u1| +
· · · + |un| + |v1| + · · · + |vn|.
15 Observation that ‖A‖F = ‖vec (A)‖2
enables you to use known properties of
the 2-norm.

Section 6.2, Page 320

1 (a) |〈u,v〉| = 46, ‖u‖ =
√

97,
‖v‖ =

√
40 and 46 ≤ √

94
√

40 ≈ 61.32
(b) |〈u,v〉| = 1

5 , ‖u‖ = 1√
3
, ‖v‖ = 1

2 and
1
5 = 0.2 ≤ 1

2
√

3
≈ 0.288

3 projv u, compv u, orthv u:
(a)

(−23
20 , 23

10

)
, 46√

40
,

( 63
20 , 7

10

)
(b) 4

5x3,
2
5 , x − 4

5x3

5 If x = (x, y, z), equation is 4x − 2y +
2z = 2.

7 Only (1), since if, e.g., x = (0, 1), then
〈x,x〉 = −2 < 0.

9 (a) orthogonal (b) not orthogonal or
orthonormal (c) orthonormal

11 1(−4) + 2 · 3 · 1 + 2 (−1) =
0. For each v calculate 〈v1,v〉

〈v1,v1〉v1 +
〈v2,v〉
〈v2,v2〉v2. (a) (11, 7, 8), (11, 7, 8) ∈

V (b)
( 2255

437 , 486
437 , 1129

437

)
, (5, 1, 3) /∈ V

(c) (5, 2, 3), (5, 2, 3) ∈ V

13 vT
i Avj = 0 for i �= j. Coordi-

nate vectors: (a)
( 7

2 , 5
6 , 1

3

)
(b)

(
0, 1

3 , 1
3

)
(c) (1, 1, 0)

15 ac + 1
2 (ad + bc) + 1

3 bd

17 Express u and v in terms of the stan-
dard basis e1, e2 and calculate 〈u,v〉.
18 Use the same technique as in Exam-
ple 6.13.

19 Follow Example 6.8 and use the fact
that ‖Au‖2 = (Au)∗ Au.

20 (1) Calculate 〈u,0 + 0〉. (2) Use
norm law (2), (3) and (2) on 〈u + v,w〉.
22 Express ‖u + v‖2 and ‖u − v‖2 in
terms of inner products and add.

23 Imitate the steps of Example 6.9.



Solutions to Selected Exercises 373

Section 6.3, Page 331

1 (a) (1, 1, −1), 1
3 (−2, 7, 5), 1

13 (8, −2, 6)
(b) (1, 0, 1), 1

2 (1, 8, −1) (c) (1, 1),
1
2 (−1, 1) (d) (1, 1, −1, −1), (0, 1, 1, 0),
1
4 (5, −1, 1, 3)

3 (a) 1
2

[
1 −1

−1 1

]
(b)

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
(c) 1

15

⎡⎢⎢⎣
14 1 −2 3
1 14 2 −3

−2 2 11 6
3 −3 6 6

⎤⎥⎥⎦ (d) 1
9

⎡⎣ 5 2 4
2 8 −2
4 −2 5

⎤⎦
5 projV w, orthV w: (a) 1

6 (23, −5, 7),
1
6 (1, −1, −2) (b) 1

3 (4, 2, 1), 1
3 (−1, 1, 2)

(c) 1
3 (1, −1, 1), 1

3 (−1, 1, 2)

7 projV x3 = 1
10 (9x − 2),∥∥x3 − 1

10 (9x − 2)
∥∥ = 3

10
√

7

9 Use Gram–Schmidt algorithm on
w1 = (−1, 1, 1, −1), w2 = (1, 1, 1, 1),
w3 = (1, 0, 0, 0), w4 = (0, 0, 1, 0) to ob-
tain orthogonal basis v1 = (−1, 1, 1, −1),

v2 = (1, 1, 1, 1), v3 =
( 1

2 , 0, 0, −1
2

)
, v4 =(

0, −1
2 , 1

2 , 0
)
.

11 Use Gram–Schmidt on columns
of A and normalize to obtain or-
thonormal 1√

3
(1, 1, 1) and 1√

42
(1, 2, −5),

then projection matrix 1
14

⎡⎣ 5 6 3
6 10 −2
3 −2 13

⎤⎦.

Use Gram–Schmidt on columns of B
and normalize to obtain orthonormal

1
3
√

5
(4, 5, 2), 1

3
√

70
(−1, 10, −23), then ob-

tain same projection matrix.

14 If a vector x ∈ R
3 is projected into

R
3, the result is x.

16 Use matrix arithmetic to calculate
〈Pu,v − Pv〉.
18 For any v ∈ V , write b − v =
(b − p) + (p − v), note that b − p is or-
thogonal to p − v, which belongs to V ,
and take norms.

Section 6.4, Page 341

1 V ⊥ = span
{( 1

2 , 5
2 , 1, 0

)
,
(−1

2 , −1
2 , 0, 1

)}
and if A consists of the columns( 1

2 , 5
2 , 1, 0

)
,

(−1
2 , −1

2 , 0, 1
)
, (1, −1, 2, 0),

(2, 0, −1, 1), then det A = 18 which
shows that the columns of A are linearly
independent, hence a basis of R

4.

3 V ⊥ = span
{ 3

14 − 38
35x + x2}

5 V ⊥ = span
{(−2, −1

2 , 1
)}

and(
V ⊥)⊥

= span
{( 1

2 , 0, 1
)
,
(−1

4 , 1, 0
)}

which is V since (1, 0, 2) = 2
( 1

2 , 0, 1
)

and
(0, 2, 1) =

( 1
2 , 0, 1

)
+ 2

(−1
4 , 1, 0

)
.

7 Q, R, x: (a)

⎡⎢⎣
3
5

4
5
√

2
0 1√

2
4
5

−3
5
√

2

⎤⎥⎦,
[

5 2
0

√
2

]
,

[ 9
5−5

2

]
(b) Caution: this ma-

trix is rank deficient.

⎡⎢⎣
1√
5

2√
6

0 1√
6−2√

5
1√
6

⎤⎥⎦,

[√
5 0 −10√

5
0

√
6 12√

6

]
,

⎡⎣ 2x3 − 3
−2x3 + 2

x3

⎤⎦, x3 free

(c) 1
2

⎡⎢⎢⎣
1 0 5

3
1

√
2 −1

3
−1

√
2 1

3
−1 0 1

⎤⎥⎥⎦,

⎡⎣ 2 0 3
2

0
√

2 3
2

√
2

0 0 3
2

⎤⎦,

⎡⎣ −1
2
9
2−5

3

⎤⎦
11 (a) Inclusion U⊥ + V ⊥ ⊂ (U ∩
V )⊥follows from the definition and in-
clusion U ∩V ⊂ U +V . For the converse,
show that (v − projU v) is orthogonal to
all u ∈ U . (b) Use (a) on U⊥, V ⊥.

12 Show that if AT Ay = 0, then Ay =
0.
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Section 6.5, Page 347

1 Frobenius, 1-, and ∞-norms:
(a)

√
14, 3, 5 (b) 3

√
3, 5, 5 (c) 2

√
17,

10, 9

⎡⎢⎢⎣
1 2 2 1
1 −3 0 −1
1 1 −2 0

−2 1 6 0

⎤⎥⎥⎦
3 Verify that the perturbation the-

orem is valid for A =

⎡⎣ 1 2 0
0 1 −2
0 −2 1

⎤⎦,

b =

⎡⎣ −5
1

−3

⎤⎦, δA = 0.05A, and δb =

−0.1b. Calculate c =
∥∥A−1δA

∥∥ =
0.05 ‖I3‖ = 0.05 < 1, ‖δA‖

‖A‖ = 0.05,
‖δb‖
‖b‖ = 0.05, cond (A) ≈ 6.7807. Hence,
cond(A)

1−c

[
‖δA‖
‖A‖ + ‖δb‖

‖b‖

]
≈ 0.71376. Now

calculate ‖δx‖
‖x‖ = 1

7 and 1
7 ≈ 0.142 <

0.71376.

5 Use the triangle inequality on A and
and Banach lemma on A−1.

6 Factor out A and use Banach lemma.

10 Examine ‖Ax‖ with x an eigenvector
belonging to λ with ρ (A) = |λ| and use
definition of matrix norm.

11 If eigenvalue λ satisfies |λ| > 1, con-
sider ‖Amx‖ with x an eigenvector be-
longing to λ. For the rest, use the Jordan
canonical form theorem.

13 (a) Make change of variables x = V y
and note

∥∥UT AV x
∥∥

2 = ‖Ay‖2, ‖x‖ =
‖V y‖. (c) Use SVD of A.

Section 6.6, Page 354

1 x = (0.4, 0.7), ‖δx‖∞ / ‖x‖∞ =
1.6214, cond (A) ‖δb‖∞ / ‖b‖∞ = 1.8965 3 Q =

√
2

10

⎡⎣ 3
√

2 4 −4
0 5 5

4
√

2 −3 3

⎤⎦, R =

⎡⎣ 5 2
0

√
2

0 0

⎤⎦, x = 1
10 (4, 5), ‖b − Ax‖2 =√

9
2
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Eigensystem 254
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roundoff 46
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Fourier analysis 355
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solution 229
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Matrix
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