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Preface

Analysis forms an essential basis of both mathematics and statistics, as well as most
of the natural sciences. Moreover, and to an ever increasing extent, mathematics has
been used to underpin our understanding of the social sciences. It was Galileo’s
insight that “Nature’s great book is written in the language of mathematics.” And it
is the theory of analysis (specifically, differentiation and integration) that was
created for the express purpose of describing the universe in the language of
mathematics. Working out the precise mathematical theory took almost 300 years,
with a large portion of this time devoted to creating definitions that encapsulate the
essence of limit and continuity. This task was neither easy nor self-evident.

In postsecondary education, analysis is a foundational requirement whenever
mathematics is an integral component of a degree program. Mastering the concepts
of analysis can be a difficult process. This is one of the reasons why introductory
analysis courses and textbooks introduce the material at many different levels and
employ various methods of presenting the main ideas. This book is not meant to be
a first course in analysis, for we assume that the reader already knows the funda-
mental definitions and basic results of one-variable analysis, as is discussed, for
example, in [7]. In most of the cases we present the necessary definitions and
theorems of one-variable analysis, and refer to the volume [7], where a detailed
discussion of the relevant material can be found.

In this volume we discuss the differentiation and integration of functions of
several variables, infinite numerical series, and sequences and series of functions.
We place strong emphasis on presenting applications and interpretations of the
results, both in mathematics itself, like the notion and computation of arc length,
area, and volume, and in physics, like the flow of fluids. In several cases, the
applications or interpretations serve as motivation for formulating relevant mathe-
matical definitions and insights. In Chapter 8 we present applications of analysis in
apparently distant fields of mathematics.

It is important to see that although the classical theory of analysis is now more
than 100 years old, the results discussed here still inspire active research in a broad
spectrum of scientific areas. Due to the nature of the book we cannot delve into such
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matters with any depth; we shall mention only a small handful of unsolved
problems.

Many of the definitions, statements, and arguments of single-variable analysis
can be generalized to functions of several variables in a straightforward manner,
and we occasionally omit the proof of a theorem that can be obtained by repeating
the analogous one-variable proof. In general, however, the study of functions of
several variables is considerably richer than simple generalizations of one-variable
theorems. In the realm of functions of several variables, new phenomena and new
problems arise, and the investigations often lead to other branches of mathematics,
such as differential geometry, topology, and measure theory. Our intent is to present
the relevant definitions, theorems, and their proofs in full detail. However, in some
cases the seemingly intuitively obvious facts about higher-dimensional geometry
and functions of several variables prove remarkably difficult to prove in full gen-
erality. When this occurs (for example, in Chapter 5, during the discussion of the
so-called integral theorems) with results that are too important for either the theory
or its applications, we present the facts, but not the full proofs.

Our explicit intent is to present the material gradually, and to develop precision
based on intuition with the help of well-designed examples. Mastering this material
demands full student involvement, and to this end we have included about 600
exercises. Some of these are routine, but several of them are problems that call for
an increasingly deep understanding of the methods and results discussed in the text.
The most difficult exercises require going beyond the text to develop new ideas;
these are marked by ð�Þ. Hints and/or complete solutions are provided for many
exercises, and these are indicated by (H) and (S), respectively.

Budapest, Hungary Miklós Laczkovich
February 2017 Vera T. Sós
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Functions of Several Variables

Functions of several variables are needed in order to describe complex processes.
A detailed meteorological relief map indicating the temperature as it changes during
the day needs four variables: three coordinates of the place (longitude, latitude,
altitude) and one coordinate of the time. The mathematical description of complex
systems, e.g., the motion of gases or fluids, may need millions of variables.

If a system depends on p parameters, then we can describe a quantity determined
by the system using a function that assigns the value of the quantity to the
sequences of length p that characterize the state of the system.

We say that f is a function of p variables if every element of the domain of f is
a sequence of length p. For example, if we assign to every date (year, month, day)
the corresponding day of the week, then we obtain a function of three variables, for
which f (2016, July, 18) = Monday.

In the sequel we will mainly consider functions that depend on sequences of real
parameters.

ix



Chapter 1
R

p → R functions

1.1 Euclidean Spaces

In mathematical analysis, points of the plane are associated with ordered pairs of
real numbers, and the plane itself is associated with the set R × R = R

2. We will
proceed analogously in representing three-dimensional space. The coordinate sys-
tem in three-dimensional space can be described as follows. We consider three lines
in space intersecting at a point that are mutually perpendicular, which we call the
x-, y-, and z-axes.We call the plane spanned by the x- and y-axes the xy-plane, and
we have similar definitions for the xz- and yz-planes. We assign an ordered triple
(a, b, c) to every point P in space, in which a, b, and c denote the distance (with pos-
itive or negative sign) of the point from the yz-, xz-, and xy-planes, respectively.
We call the numbers a, b, and c the coordinates of P . The geometric properties
of space imply that the map P �→ (a, b, c) that we obtain in this way is a bijection.
This justifies our representation of three-dimensional space by ordered triples of real
numbers.

Thus if we want to deal with questions both in the plane and in space, we need
to deal with sets that consist of ordered p-tuples of real numbers, where p = 2 or
p = 3. We will see that the specific value of p does not usually play a role in the
definitions and proofs that arise. Therefore, for every positive integer pwe can define
p-dimensional Euclidean space, by which we simply mean the set of all sequences
of real numbers of length p, with the appropriately defined addition, multiplication
by a constant, absolute value, and distance. If p = 1, then this Euclidean space is
just the real line; if p = 2, then it is the plane; and if p = 3, then it is 3-dimensional
space. For p > 3, p-dimensional space does not have an observable meaning, but it
is very important for both theory and applications.

Definition 1.1. R
p denotes the set of ordered p-tuples of real numbers, that is,

R
p = {(x1, . . . , xp) : x1, . . . , xp ∈ R}.

c© Springer Science+Business Media LLC 2017
M. Laczkovich and V.T. Sós, Real Analysis, Undergraduate Texts
in Mathematics, https://doi.org/10.1007/978-1-4939-7369-9 1
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2 1 R
p → R functions

The points of the set Rp are sometimes called p-dimensional vectors. The sum of
the vectors x = (x1, . . . , xp) and y = (y1, . . . , yp) is the vector

x + y = (x1 + y1, . . . , xp + yp),

and the product of the vector x and a real number c is the vector

c · x = (cx1, . . . , cxp).

The absolute value of the vector x is the nonnegative real number

|x| =
√

x2
1 + · · · + x2

p.

(The absolute value of the vector x is also called the norm of the vector x. In order
to be consistent with the usage of [7], we will use the term absolute value.)

It is clear that for all x ∈ R
p and c ∈ R we have |cx| = |c| · |x|. It is also easy to

see that if x = (x1, . . . , xp), then

|x| ≤ |x1| + · · · + |xp|. (1.1)

The triangle inequality also holds:

|x + y| ≤ |x| + |y| (x, y ∈ R
p). (1.2)

To prove this it suffices to show that |x + y|2 ≤ (|x| + |y|)2, since both sides are
nonnegative. By the definition of the absolute value this is exactly

(x1 + y1)2 + · · · + (xp + yp)2 ≤
(x2

1 + · · · + x2
n) + 2 ·

√
x2
1 + · · · + x2

p ·
√

y2
1 + · · · + y2

p + y2
1 + · · · + y2

p,

that is,

x1y1 + · · · + xpyp ≤
√

x2
1 + · · · + x2

p ·
√

y2
1 + · · · + y2

p,

which is the Cauchy1–Schwarz2–Bunyakovsky3 inequality (see [7, Theorem 11.19]).

The distance between the vectors x and y is the number |x − y|. By (1.2) it is
clear that

∣∣|x| − |y|∣∣ ≤ |x − y| and |x − y| ≤ |x − z| + |z − y|

1 Augustin Cauchy (1789–1857), French mathematician.
2 Hermann Amandus Schwarz (1843–1921), German mathematician.
3 Viktor Yakovlevich Bunyakovsky (1804–1889), Russian mathematician.



1.2 Real Functions of Several Variables and Their Graphs 3

for all x, y, z ∈ R
p. We can consider these to be variants of the triangle inequality.

If we apply (1.1) to the difference of the vectors x = (x1, . . . , xp) and y =
(y1, . . . , yp), then we get that

||x| − |y|| ≤ |x − y| ≤ |x1 − y1| + · · · + |xp − yp|. (1.3)

The scalar product of the vectors x = (x1, . . . , xp) and y = (y1, . . . , yp) is the
real number

∑p
i=1 xiyi, which we denote by 〈x, y〉. One can prove that if x �= 0 and

y �= 0, then 〈x, y〉 = |x| · |y| · cos α, where α denotes the angle enclosed by the two
vectors. (For p = 2 see [7, Remark 14.57].) We say that the vectors x, y ∈ R

p are
orthogonal if 〈x, y〉 = 0.

1.2 Real Functions of Several Variables and Their Graphs

We say that f is a p-variable real function if D(f) ⊂ R
p and R(f) ⊂ R. (Recall

that D(f) denotes the domain and R(f) denotes the range of the function f .)
Similarly to the case of single-variable functions, multivariable functions are

best illustrated by their graphs. The graph of a function f : H → R is the set
of pairs (u, f(u)), where u ∈ H . If H ⊂ R

p, then graph f ⊂ R
p × R; in other

words, graph f is the set of pairs ((x1, . . . , xp), xp+1), where (x1, . . . , xp) ∈ H
and xp+1 = f(x1, . . . , xp). In this case it is useful to “identify” Rp × R as the set
R

p+1 in the sense that instead of the pair ((x1, . . . , xp), xp+1), we consider the vec-
tor (x1, . . . , xp, xp+1) ∈ R

p+1. From now on, if f : H → R, where H ⊂ R
p, then

by the graph of f we mean the set

graph f = {(x1, . . . , xp, xp+1) : (x1, . . . , xp) ∈ H and xp+1 = f(x1, . . . , xp)}.

For example, if f : H → R, where H ⊂ R
2, then graph f ⊂ R

3. Just as we can
visualize the graph of a function as a curve in the plane in the p = 1 case, we can
also visualize the graph of a function as a surface in three-dimensional space in the
p = 2 case.

Aside from using the usual coordinate notation (x1, x2) and (x1, x2, x3), we will
also use the traditional notation (x, y) and (x, y, z) in the p = 2 and p = 3 cases,
respectively.

Example 1.2. 1. The graph of the constant function f(x, y) = c is a horizontal plane
(in other words, it is parallel to the xy-plane). (See Figure 1.1.)
2. The graph of the function f(x, y) = x2 is an infinite trough-shaped surface,
whose intersections with the planes orthogonal to the y-axis are parabolas. (See
Figure 1.2.)



4 1 R
p → R functions

1.1. Figure 1.2. Figure

1.3. Figure 1.4. Figure

3. The graph of the function f(x, y) = |(x, y)| =
√

x2 + y2 is a cone. (See
Figure 1.3.)
4. The graph of the function f(x, y) = xy is called a saddle surface. (See
Figure 1.4.)

We may ask whether multivariable analysis is “more difficult” or more compli-
cated than its single-variable counterpart. The answer is twofold. On the one hand,
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the answer is that it is not harder at all, since it makes no difference whether we
define our mappings4 on subsets of R or on subsets of Rp. On the other hand, the
answer is “to a great extent,” since we have “much more room” in a multidimen-
sional space; that is, the relative positions of points in space can be much more
complicated than their relative positions on a line. On the real line, a point can be to
the left or to the right to another point, and there is no other option.

There is truth to both answers. While it is true that the relative positions of
points can be much more complicated in a multidimensional space, this compli-
cation mostly falls in the topics of geometry and topology. For a good portion of our
studies of multivariable analysis we can follow the guideline that more variables
only complicate the notation but not the ideas themselves. We will warn the reader
when this guideline is no longer applicable.

1.3 Convergence of Point Sequences

Definition 1.3. We say that a sequence (xn) of the points xn ∈ R
p converges to

a point a ∈ R
p if for every ε > 0 there exists n0 such that |xn − a| < ε holds for

every n > n0. We denote this fact by limn→∞ xn = a or simply by xn → a. We say
that the sequence of points (xn) is convergent if there exists an a ∈ R

p to which it
converges. In this case we say that a is the limit of the sequence (xn). If a sequence
of points is not convergent, then it is divergent.

We denote by B(a, r) the open ball centered at a with radius r: B(a, r) =
{x ∈ R

p : |x − a| < r}. Note that if p = 1, then B(a, r) is the open interval
(a − r, a + r), and if p = 2, then B(a, r) is the open disk with center a and radius
r.

Theorem 1.4. The following statements are equivalent:

(i) xn → a.

(ii) For every ε > 0 there are only finitely many points of the sequence (xn) that
fall outside of the open ball B(a, ε).

(iii) |xn − a| → 0.

Proof. The implication (i)⇒(ii) is clear from the definition of xn → a.
Suppose (ii), and let ε > 0 be given. Then there is an n0 such that |xn − a| < ε

holds for every n > n0. By the definition of the convergence of sequences of real
numbers, this means that |xn − a| → 0; that is, (iii) holds.

Now suppose (iii), and let ε > 0 be given. Then there is an n0 such that
|xn − a| < ε holds for every n > n0. By the definition of the convergence of
sequences of points of Rp, this means that xn → a; that is, (i) holds. �

The following theorem states that the convergence of a sequence of points is
equivalent to the convergence of the sequences of their coordinates.

4 We use the terms function and mapping interchangeably.



6 1 R
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Theorem 1.5. Let xn = (xn,1, . . . , xn,p) ∈ R
p for every n = 1, 2, . . ., and let a =

(a1, . . . , ap). The sequence (xn) converges to a if and only if limn→∞ xn,i = ai for
every i = 1, . . . , p.

Proof. Suppose xn → a. Since 0 ≤ |xn,i − ai| ≤ |xn − a| for every i = 1, . . . , p
and |xn − a| → 0, we have that |xn,i − ai| → 0 follows from the squeeze theorem
(see [7, Theorem 5.7]).

On the other hand, if |xn,i − ai| → 0 for every i = 1, . . . , p, then the inequality

|xn − a| ≤
p∑

i=1

|xn,i − ai|

and the repeated use of the squeeze theorem give us xn → a. �

We can generalize several theorems for sequences of real numbers to sequences
of points of Rp with the help of the above theorem. The proofs of the next two the-
orems (which are left to the reader) are just applications of the respective theorems
for sequences of real numbers to sequences of coordinates of a point-sequence.

Theorem 1.6.

(i) If a sequence of points is convergent, then the deletion of finitely many of its
terms, addition of finitely many new terms, or the reordering of its terms affect
neither the convergence of the sequence nor the value of its limit.

(ii) If a sequence of points is convergent, then its limit is unique.

(iii) If a sequence of points converges to a, then each of its subsequences also con-
verges to a.

�

Theorem 1.7. If xn → a and yn → b, then xn + yn → a + b and c · xn → c · a,
for every c ∈ R. �

Theorem 1.8. (Cauchy’s criterion) A sequence of points (xn) is convergent if and
only if for every ε > 0 there exists an index N such that |xn − xm| < ε for every
n,m ≥ N .

Proof. If |xn − a| < ε for every n > N , then |xn − xm| < 2ε for every n,m ≥ N .
This proves the “only if” direction of our statement.

Let ε > 0 be given, and suppose that |xn − xm| < ε for every n,m ≥ N . If xn =
(xn,1, . . . , xn,p) (n = 1, 2, . . .), then for every i = 1, . . . , p and n,m > N we have

|xn,i − xm,i| ≤ |xn − xm| < ε.

This means that for every fixed i = 1, . . . , p the sequence (xn,i) satisfies Cauchy’s
criterion (for real sequences), and thus it is convergent. Therefore, (xn) is conver-
gent by Theorem 1.5. �
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We say that a set A ⊂ R
p is bounded if there exists a box [a1, b1]× . . . ×[ap, bp]

that covers (contains) it. It is obvious that a set A is bounded if and only if the
set of the ith coordinates of its points is bounded in R, for every i = 1, . . . , p (see
Exercise 1.1).

A sequence of points (xn) is bounded if the set of its terms is bounded.

Theorem 1.9. (Bolzano5–Weierstrass6 theorem) Every bounded sequence of
points has a convergent subsequence.

Proof. Let us assume that the sequence of points (xn) is bounded, and let xn =
(xn,1, . . . , xn,p) (n = 1, 2, . . .). The sequence of the ith coordinates (xn,i) is boun-
ded for every i = 1, . . . , p. Based on the Bolzano–Weierstrass theorem for real
sequences (see [7, Theorem 6.9]), we can choose a convergent subsequence (xnk,1)
from (xn,1). The sequence (xnk,2) is bounded, since it is a subsequence of the
bounded sequence (xn,2). Thus, we can choose a convergent subsequence (xnkl

,2)
of (xnk,2). If p ≥ 3, then (xnkl

,3) is bounded, since it is a subsequence of the
sequence (xn,3). Therefore, we can choose another convergent subsequence again.
Repeating the process p times yields a subsequence (mj) of the indices for which
the ith coordinate sequence of (xmj

) is convergent for every i = 1, . . . , p. Thus, by
Theorem 1.5, the subsequence (xmj

) is convergent. �

Exercises

1.1. Prove that for every set A ⊂ R
p, the following statements are equivalent.

(a) The set A is bounded.
(b) There exists an r > 0 such that A ⊂ B(0, r).
(c) For all i = 1, . . . , p the ith coordinates of the points of A form a bounded set

in R.

1.2. Show that

(a) if xn → a, then |xn| → |a|;
(b) if xn → a and yn → b, then 〈xn, yn〉 → 〈a, b〉.
(Here xn, yn ∈ R

p and 〈xn, yn〉 is the scalar product of xn and yn.)

1.3. Show that xn ∈ R
p does not have a convergent subsequence if and only if

|xn| → ∞.

1.4. Show that if every subsequence of (xn) has a convergent subsequence converg-
ing to a, then xn → a.

1.5. Show that if xn ∈ R
p and |xn+1 − xn| ≤ 2−n for every n, then (xn) is con-

vergent.

5 Bernhard Bolzano (1781–1848), Italian-German mathematician, and
6 Karl Weierstrass (1815–1897), German mathematician.
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1.6. Let x0 = (0, 0), xn+1 = xn + (2−n, 0) if n is even, and xn+1 = xn +
(0, 2−n) if n is odd. Show that (xn) is convergent. What is its limit?

1.7. Construct a sequence xn ∈ R
2 having a subsequence that converges to x ∈ R

2

for every x.

1.4 Basics of Point Set Theory

In order to describe the basic properties of subsets of the space R
p, we need to

introduce a few notions. We define some of these by generalizing the corresponding
notions from the case p = 1 to an arbitrary p. Since we do not exclude the p = 1
case from our definitions, everything we say below holds for the real line as well.

First, we generalize the notion of neighborhoods of points. The neighborhoods
of a point a ∈ R

p are the open balls B(a, r), where r is an arbitrary positive real
number.

By fixing an arbitrary set A ⊂ R
p, we can divide the points of Rp into three

classes.

1.5. Figure

The first class consists of the points
that have a neighborhood that is a sub-
set of A. We call these points the interior
points of A, and denote the set of all inte-
rior points of A by int A. That is,

int A = {x ∈ R
p : ∃ r > 0, B(x, r) ⊂ A}.

The second class consists of those points that have a neighborhood that is disjoint
from A. We call these points the exterior points of A, and denote the set of all
exterior points of A by ext A. That is,

ext A = {x ∈ R
p : ∃ r > 0, B(x, r) ∩ A = ∅}.

The third class consists of the points that do not belong to any of the first two classes.
We call these points the boundary points of A. In other words, a point x is a bound-
ary point of A if every neighborhood of x has a nonempty intersection with both A
and the complement of A. We denote the set of all boundary points of A by ∂A.
That is,

∂A = {x ∈ R
p : ∀ r > 0, B(x, r) ∩ A �= ∅ and B(x, r) \ A �= ∅}.

It is easy to see that ext A = int (Rp \ A), int A = ext (Rp \ A), and ∂A =
∂(Rp \ A) hold for every set A ⊂ R

p.

Example 1.10. 1.a. Every point of the open ball B(a, r) is an interior point. Indeed,
if x ∈ B(a, r), then |x − a| < r. Let δ = r − |x − a|. Now δ > 0 and
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B(x, δ) ⊂ B(a, r), since y ∈ B(x, δ) implies |y − x| < δ, and thus

|y − a| ≤ |y − x| + |x − a| < δ + |x − a| = r,

i.e., y ∈ B(a, r).
1.b. If |x − a| > r, then x is an exterior point of the open ball B(a, r). Indeed,
η = |x − a| − r > 0 and B(x, η) ∩ B(a, r) = ∅, since if y ∈ B(x, η), then
|y − x| < η and

|y − a| ≥ |x − a| − |y − x| > |x − a| − η = r.

1.c. We now prove that the boundary of B(a, r) is the set S(a, r) = {x ∈ R
p :

|x − a| = r} (Figure 1.6). (In the case p = 1, the set S(a, r) consists of the points
a − r and a + r, while in the case p = 2 the set S(a, r) consists of the boundary of
the circle with center a and radius r. In the case p = 3, S(a, r) contains the surface
of the ball with center a and radius r.)

Indeed, if x ∈ S(a, r), then x /∈ B(a, r); therefore, every neighborhood of x has
nonempty intersection with the complement of B(a, r). We show that every neigh-
borhood of x also has nonempty intersection with B(a, r). Intuitively, it is clear
that for every ε > 0, the open sphere B(x, ε) contains those points of the segment
connecting a and x that are close enough to x.

To formalize this idea, it is enough to show that for a well-chosen η ∈ (0, 1) we
have x − t(x − a) ∈ B(a, r) ∩ B(x, ε) if t ∈ (0, η). Since

|(x − t(x − a)) − a| = (1 − t) · |x − a| = (1 − t) · r < r,

it follows that x − t(x − a) ∈ B(a, r). On the other hand,

|(x − t(x − a)) − x| = t · |x − a| < η · r < ε

for η < ε/r, and then x − t(x − a) ∈ B(x, ε) also holds for every t ∈ (0, η).

1.6. Figure 1.7. Figure
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2. By an axis-parallel rectangle in R
p, or just a rectangle or a box for short, we

will mean a set of the form

[a1, b1] × · · · × [ap, bp],

where ai < bi for every i = 1, . . . , p. The boxes in the Euclidean spaces R, R2, and
R

3 are the nondegenerate and bounded closed intervals, the axis-parallel rectangles,
and the rectangular boxes, respectively.

The interior of the box

R = [a1, b1] × . . . × [ap, bp] (1.4)

is the open box
(a1, b1) × . . . × (ap, bp). (1.5)

For every point x = (x1, . . . , xp) of this open box, we have ai < xi < bi for every
i = 1, . . . , p. If δ > 0 is small enough, then

ai < xi − δ < xi < xi + δ < bi (1.6)

for every i = 1, . . . , p. ThenB(x, δ) ⊂ R, since y = (y1, . . . , yp) ∈ B(x, δ) implies
|y − x| < δ, which gives |yi − xi| < δ for every i, and thus, by (1.6), ai < yi < bi

for every i.
If the point x = (x1, . . . , xp) is not in the open box defined in (1.5), then x is not

an interior point of R. Indeed, if there exists an i such that xi < ai or xi > bi, then
we can find an appropriate neighborhood of x that is disjoint from R. Therefore,
in this case x is an exterior point. On the other hand, if x ∈ R and there exists i
such that xi = ai or xi = bi, then every neighborhood of x intersects both R and its
complement, and thus x is a boundary point of R (Figure 1.7).
3. Let Qp be the set of those points x ∈ R

p for which every coordinate of x is
rational. We show that

int Qp = ext Qp = ∅.

First, we prove that Qp intersects every box in R
p. Indeed, we know that the set

of rational numbers is everywhere dense; i.e., there are rational numbers in every
interval. (See [7, Theorem 3.2].) IfR is the box defined in (1.4) and xi ∈ [ai, bi] ∩ Q

for every i = 1, . . . , p, then the point x = (x1, . . . , xp) is an element of bothQp and
R. Thus, Qp intersects every box. From this it follows that Qp intersects every ball.
This is true, since every ball contains a box: if a = (a1, . . . , ap) and r > 0, then for
every η < r/p,

[a1 − η, a1 + η] × . . . × [ap − η, ap + η] ⊂ B(a, r). (1.7)

Indeed, if x = (x1, . . . , xp) is an element of the left-hand side of (1.7), then
|xi − ai| ≤ η for each i, and thus
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|x − a| ≤
p∑

i=1

|xi − ai| ≤ pη < r,

and x ∈ B(a, r). We have proved thatQp intersects every ball, and thus extQp = ∅.
Now we prove that each ball B(a, r) has a point that is not an element ofQp. We

need to find a point in B(a, r) that has at least one irrational coordinate. We can,
however, go further and find a point that has only irrational coordinates. We know
that the set of irrational numbers is also dense everywhere (see [7, Theorem 3.12]).
Thus we can repeat the same steps as above, and then int Qp = ∅ follows.

In the end we get that Qp has neither interior nor exterior points, i.e., every point
x ∈ R

p is a boundary point of Qp.

Definition 1.11. We say that a point a ∈ R
p is a limit point of the set A ⊂ R

p if
every neighborhood of the point a contains infinitely many points of A. We call the
set of all limit points of the set A the derived set of A, and denote it by A′.

We say that a point a ∈ R
p is an isolated point of A if there exists r > 0 such

that B(a, r) ∩ A = {a}.
Remark 1.12. 1. The limit points of A are not necessarily elements of the set A. For
example, every point y that satisfies |y − x| = r is a limit point of the ball B(x, r)
(see Example 1.10.1.c). Thus S(a, r) ⊂ B(a, r)′. However, S(a, r) ∩ B(a, r) = ∅.
2. By our definitions, the isolated points of A need to be elements of A. It is easy
to see that the set of all isolated points of A is nothing other than the set A \ A′. It
follows that every point of A is either an isolated point or a limit point of A.
3. It is also easy to see that a point a is a limit point of the set A if and only if there
exists a sequence xn ∈ A \ {a} that converges to a.

We say that the set A ⊂ R
p is open if every point of A is an interior point of A,

i.e., if A = int A. The open balls and open boxes are indeed open sets by Example
1.10.1a and Example 1.10.2. The empty set and R

p are also open.
Obviously, the set A is open if and only if A ∩ ∂A = ∅.

Theorem 1.13. The following hold for an arbitrary set A ⊂ R
p:

(i) int A and ext A are open sets;

(ii) int A is the largest open set contained by A.

Proof. Part (i) follows from the definition and from the fact that every ball is an
open set.

If G ⊂ A is open and x ∈ G, then there exists r > 0 such that B(x, r) ⊂ G. In
this case, B(x, r) ⊂ A also holds, and thus x ∈ int A. We have proved that int A
contains every open set contained by A. Since int A is also open by part (i), it
follows that (ii) holds. �

Theorem 1.14. The intersection of finitely many open sets and the union of arbi-
trarily many open sets are also open.
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Proof. If A and B are open sets and x ∈ A ∩ B, then x ∈ int A, and x ∈ int B
means that there exist positive numbers r and s such thatB(x, r) ⊂ A andB(x, s) ⊂
B. In this case, B(x,min(r, s)) ⊂ A ∩ B, and thus x ∈ int (A ∩ B). We have
proved that every point of A ∩ B is an interior point of A ∩ B, and thus the set
A ∩ B is open. By induction we have that the intersection of n open sets is open,
for every n ∈ N

+.
Let Gi be an open set for each i ∈ I , where I is an arbitrary (finite or infinite)

index set, and let G =
⋃

i∈I Gi. If x ∈ G, then x is in one of the sets Gi0 . Since
Gi0 is open, it follows that x ∈ int Gi0 , i.e., B(x, r) ⊂ Gi0 for some r > 0. Now
B(x, r) ⊂ G holds, and thus x ∈ int G. This is true for every x ∈ G, which implies
that the set G is open. �

Remark 1.15. The intersection of infinitely many open sets is not necessarily open.
For example, the intersection of the sets B(x, 1/n) is the singleton {x}. This set is
not open, since its interior is empty.

We say that a ball B(x, r) is a rational ball if each of the coordinates of its
center x, along with its radius, is a rational number.

Lemma 1.16. Every open set is the union of rational balls.

Proof. Let G be an open set and x ∈ G. Then B(x, r) ⊂ G holds for some r > 0.
As shown in Example 1.10.3, every ball contains a point with rational coordinates.
Let y ∈ B(x, r/2) be such a point. If s ∈ Q and |x − y| < s < r/2, then B(y, s)
is a rational ball that contains x, since |x − y| < s. On the other hand, B(y, s) ⊂
B(x, r), since z ∈ B(y, s) implies

|z − x| ≤ |z − y| + |y − x| < s + (r/2) < r.

We have proved that every point in G is in a rational ball contained by G. There-
fore, G is equal to the union of all the rational balls it contains. �

We say that a set A ⊂ R
p is closed if it contains each of its boundary points,

i.e., ∂A ⊂ A. Thus every box is closed. The set B(a, r) = {x ∈ R
p : |x − a| ≤ r}

is also closed. We call this set the closed ball with center a and radius r.

Theorem 1.17. For every set A ⊂ R
p the following are equivalent:

(i) A is a closed set.

(ii) R
p \ A is an open set.

(iii) If xn ∈ A for every n and xn → a, then a ∈ A.

Proof. (i)⇒(ii): If A is closed and x /∈ A, then x /∈ int A and x /∈ ∂A, and thus
x ∈ ext A. Thus B(x, r) ∩ A = ∅ holds for some r > 0, i.e., B(x, r) ⊂ R

p \ A.
We have shown that every point of Rp \ A is an interior point of Rp \ A; that is,
R

p \ A is open.
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(ii)⇒(iii): We prove by contradiction. Assume that xn → a, where xn ∈ A for every
n, but a /∈ A, i.e., a ∈ R

p \ A. Since R
p \ A is open, B(a, r) ⊂ R

p \ A for some
r > 0. On the other hand, as xn → a, we have xn ∈ B(a, r) ⊂ R

p \ A for every n
large enough. This is a contradiction, since xn ∈ A for every n.
(iii)⇒(i): Let a ∈ ∂A. Then for every n ∈ N

+ we have B(a, 1/n) ∩ A �= ∅. Choose
a point xn ∈ B(a, 1/n) ∩ A for each n. Then xn → a, and thus a ∈ A by (iii). We
have proved that ∂A ⊂ A, i.e., A is closed. �

It follows from our previous theorem that the boundary of every set is a closed
set. Indeed, ∂A = R

p \ (int A ∪ ext A), and by Theorems 1.13 and 1.14, int A ∪
ext A is open. It is also easy to see that the set of limit points of an arbitrary set is
closed (see Exercise 1.22).

Theorem 1.18. The union of finitely many closed sets and the intersection of arbi-
trarily many closed sets is also a closed set.

Proof. This follows from Theorems 1.14 and 1.17. �

Obviously, there are sets that are neither open nor closed (for example, the set Q
as a subset of R). On the other hand, the empty set and Rp are both open and closed
at the same time. We will show that there is no other set in Rp that is both open and
closed.

For every a, b ∈ R
p we denote by [a, b] the set {t ∈ [0, 1] : a + t(b − a)}. It is

clear that [a, b] is the segment connecting the points a and b.

Theorem 1.19. If A ⊂ R
p, a ∈ A, and b ∈ R

p \ A, then the segment [a, b] inter-
sects the boundary of A, i.e., [a, b] ∩ ∂A �= ∅.
Proof. Let T = {t ∈ [0, 1] : a + t(b − a) ∈ A}. The set T is nonempty (since 0 ∈
T ) and bounded; thus it has a least upper bound. Let t0 = supT . We show that the
point x0 = a + t0(b − a) is in the boundary set ofA. Obviously, for every ε > 0, the
interval (t0 − ε, t0 + ε) intersects both T and [0, 1] \ T . (This is also true in the case
t0 = 1, since 1 /∈ T .) If t ∈ (t0 − ε, t0 + ε) ∩ T , then the point x = a + t(b − a) is
an element of A, and |x − x0| < ε · |b − a|. However, if t ∈ (t0 − ε, t0 + ε) \ T ,
then the point y = a + t(b − a) is not an element of A, and |y − x0| < ε · |b − a|.
We have proved that every neighborhood of x0 intersects both A and the comple-
ment of A, i.e., x0 ∈ ∂A. �

Corollary 1.20. If a set A ⊂ R
p is both open and closed, then A = ∅ or A = R

p.

Proof. If A is an open set, then A ∩ ∂A = ∅. If, however, A is a closed set, then
∂A ⊂ A. Only if ∂A = ∅ can these conditions both hold. Now Theorem 1.19 states
that if ∅ �= A �= R

p, then ∂A �= ∅. �

The connected open sets play an important role in multivariable analysis.

Definition 1.21. We say that an open set G ⊂ R
p is connected if G cannot be

represented as the union of two disjoint nonempty open sets.
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Theorem 1.22.

(i) An open set G is connected if and only if every pair of its points can be con-
nected with a polygonal line7 contained entirely in G.

(ii) Every open set can be written as the union of pairwise disjoint connected open
sets (the number of which can be finite or infinite).

Proof.

1.8. Figure

Let G ⊂ R
p be an open set. We call the points

x, y ∈ G equivalent if they can be connected
by a polygonal line that lies entirely in G.
We will denote this fact by x ∼ y. Obviously,
this is an equivalence relation in G. If x ∈ G,
then B(x, r) ⊂ G for some r > 0. The point
x is equivalent to every point y of B(x, r),
since [x, y] ⊂ B(x, r) ⊂ G. It follows that every
equivalence class (the set of points equivalent to
an arbitrary fixed point) is an open set. Since the different equivalence classes are
disjoint, we have a system of pairwise disjoint open sets whose union is G.

If G is connected, then there is only one equivalence class, for otherwise, we
could write G as the union of two disjoint nonempty open sets (e.g., take a single
class and the union of the rest). Thus we have proved that if G is connected, then
every pair of its points are equivalent to each other.

To prove the converse, let us assume that every pair of points in G are equivalent
to each other, butG is not connected. LetG = A ∪ B, whereA andB are nonempty
disjoint open sets. Let x ∈ A, y ∈ B, and let T be a polygonal line connecting the
two points. Let T be the union of the segments [xi−1, xi] (i = 1, . . . , n), where
x0 = x and xn = y. Since x0 ∈ A and xn /∈ A, there exists i such that xi−1 ∈ A
and xi /∈ A. The segment [xi−1, xi] contains a boundary point of A by Theorem
1.19. This is impossible, since every point of [xi−1, xi] is either an exterior or
an interior point of A, as implied by [xi−1, xi] ⊂ G = A ∪ B. This contradiction
proves (i).

We showed that an arbitrary open set G can be written as the union of pairwise
disjoint open setsGi, where eachGi contains every point from the same equivalence
class. We also proved that each Gi is also a connected set, which proves (ii). �

We call the connected open sets domains.
The proof of Theorem 1.22 also shows that the decomposition in part (ii) of the

theorem is unique: the open sets of the composition are just the equivalence classes
of the x ∼ y equivalence relation. We call the domains of this decomposition of the
set G the components of G.

Definition 1.23. We call the set A ∪ ∂A the closure of the set A, and use the nota-
tion cl A.

7 By a polygonal line we mean a set of the form [a0, a1] ∪ [a1, a2] ∪ . . . ∪ [an−1, an], where
a0, . . . , an are arbitrary points in R

n.
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Theorem 1.24. For an arbitrary set A ⊂ R
p, the following hold.

(i) the point x is in cl A if and only if every neighborhood of x intersects A;

(ii) cl A = A ∪ A′;

(iii) cl A = R
p \ ext A = R

p \ int (Rp \ A);

(iv) cl A is the smallest closed set containing A.

Proof. We leave the proof of (i)–(iii) to the reader, while (iv) follows from (iii) and
Theorem 1.13. �

Our next theorem is a generalization of Cantor’s axiom8 (see [7, p. 33]). Note
that Cantor’s axiom states only that if the sets A1 ⊃ A2 ⊃ . . . are closed intervals in
R, then their intersection is nonempty. As the following theorem shows, it follows
from Cantor’s axiom and from the other axioms of the real numbers that the state-
ment is also true in R

p (for every p) and for much more general sets. From now on,
we consider only subsets of Rp.

Theorem 1.25. (Cantor’s Theorem) If the sets A1 ⊃ A2 ⊃ . . . are bounded,
closed, and nonempty, then the set

⋂∞
n=1 An is also nonempty.

Proof. Choose a point xn from each set An. The sequence (xn) is bounded, since
it is contained in the bounded set A1. The Bolzano–Weierstrass theorem (Theo-
rem 1.9) states that (xn) has a convergent subsequence. Let (xnk

) be one such sub-
sequence, and let its limit be a. We show that a ∈ ⋂∞

n=1 An.
Let n be fixed. For k large enough, we have nk > n, and thus xnk

∈ Ank
⊂ An.

Therefore, the sequence (xnk
) is contained in An, except for at most finitely many

of its points. Since An is closed, we have a ∈ An (Theorem 1.17). Also, since n
was arbitrary, it follows that a ∈ ⋂∞

n=1 An. �

Theorem 1.26. (Lindelöf’s9 Theorem) If the set A is covered by the union of
some open sets, then we can choose countably many of those open sets whose union
also covers A.

Lemma 1.27. The set of rational balls is countable.

Proof. Let (rn)∞
n=1 be an enumeration of the rational numbers. If x = (rn1 , . . . ,

rnp
) and r = rm, then we call n1 + . . . + np + m the weight ofB(x, r). Obviously,

there are only finitely many balls with a given weight w for every w ≥ p + 1. It
follows that there exists a sequence that contains every rational ball. Indeed, first
we enumerate the rational balls with weight p + 1 (there is at most one such ball).
Then we list the rational balls with weight p + 2, and so on. In this way we list every
rational ball in a single infinite sequence, which proves that the set of rational balls
is countable. �

8 Georg Cantor (1845–1918), German mathematician.
9 Ernst Lindelöf (1870–1946), Finnish mathematician.
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Remark 1.28. The proof above also shows that the set Qp (the set of points with
rational coordinates) is countable. Combining this result with Example 1.10.3, we
get that there exists a set in Rp that is countable and everywhere dense.

Proof of Theorem 1.26. Let (Bn)∞
n=1 be an enumeration of the rational balls. (By

Lemma 1.27, there is such a sequence.)
Let G be a system of open sets whose union covers A. For every ball Bn that is

contained by at least one of the open setsG ∈ G we choose an open setGn ∈ G such
that Bn ⊂ Gn. In this way we have chosen the countable subsystem {Gn} of G. The
union of the sets of this subsystem is the same as the union of all sets in G. Indeed,
if x ∈ ⋃ G, then there is a set G ∈ G containing x. By Lemma 1.16, there is a ball
Bn such that x ∈ Bn ⊂ G. Since Bn ⊂ Gn holds, it follows that x ∈ ⋃

n=1 Gn.
Therefore, if the union of G covers A, then the union of the sets Gn also

covers A. �

Example 1.29. 1. The balls B(0, r) cover the whole space Rp. Lindelöf’s theorem
claims that countably many of these also cover Rp, e.g.,

⋃∞
n=1 B(0, n) = R

p. On
the other hand, it is obvious that finitely many of the balls B(0, r) cannot cover the
whole of Rp.
2. The open sets Gr = R

p \ B(0, r) = {x ∈ R
p : |x| > r} cover the set

A = R
p \ {0}. Lindelöf’s theorem claims that countably many of these also cover

A, e.g.,
⋃∞

n=1 G1/n = A. On the other hand, it is obvious that finitely many of the
sets Gr do not cover A.

The examples above show that we cannot replace the word “countable” by
“finite” in Lindelöf’s theorem. That is, we cannot always choose a finite subcov-
ering system from a covering system of open sets. The sets that satisfy this stronger
condition form another important class of sets.

Definition 1.30. We call a set A ⊂ R
p compact if we can choose a finite covering

system from each of its covering systems of open sets.

Theorem 1.31. (Borel’s10 Theorem) A set A ⊂ R
p is compact if and only if it is

bounded and closed.

Proof. Let A be compact. Since A ⊂ R
p =

⋃∞
n=1 B(0, n), there exists N such that

A ⊂ ⋃N
n=1 B(0, n) = B(0, N) (this follows from the compactness of A). Thus A

is bounded.
Now we prove that A is closed. We shall do so by showing that Rp \ A is open.

Let a ∈ R
p \ A. Then

A ⊂ R
p \ {a} =

∞⋃
k=1

(
R

p \ B(a, 1/k)
)

10 Émile Borel (1871–1956), French mathematician.
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is an open cover of A, and then, by the compactness of A, there exists an integer K
such that

A ⊂
K⋃

k=1

(
R

p \ B(a, 1/k)
)

= R
p \ B(a, 1/K).

Thus B(a, 1/K) ∩ A = ∅ and B(a, 1/K) ⊂ R
p \ A. Since a ∈ R

p \ A was arbi-
trary, this proves that Rp \ A is open.

Now suppose that A is bounded and closed; we shall show that A is compact.
Let G be a system of open sets covering A. By Lindelöf’s theorem there exists a
countable subsystem {G1, G2, . . .} of G that also covers A. Let

Fn = A \
n⋃

i=1

Gi = A ∩
(
R

p \
n⋃

i=1

Gi

)

for each n. The sets Fn are closed (since
⋃n

i=1 Gi is open, An = R
p \ ⋃n

i=1 Gi

is closed, and thus Fn = A ∩ An is also closed), and they are bounded (since
they are contained in A), and F1 ⊃ F2 ⊃ . . . holds. If the sets Fn are all non-
empty, then by Cantor’s theorem, their intersection A \ ⋃∞

i=1 Gi is also nonempty.
However, this is impossible, since A ⊂ ⋃∞

i=1 Gi. Thus, there exists n such that
Fn = A \ ⋃n

i=1 Gi = ∅; that is, A ⊂ ⋃n
i=1 Gi. This shows that finitely many of the

sets Gi cover A. �
If A and B are nonempty sets in Rp, then the distance between A and B is

dist(A,B) = inf{|x − y| : x ∈ A, y ∈ B}.

The distance between two disjoint closed sets can be zero (see Exercise 1.36). Our
next theorem shows that this is possible only if neither A nor B is bounded.

Theorem 1.32. Let A and B be disjoint nonempty closed sets, and suppose that at
least one of them is bounded. Then

(i) there exist points a ∈ A and b ∈ B such that dist(A,B) = |a − b|, and
(ii) dist(A,B) > 0.

Proof. Let dist(A,B) = d, and let the points an ∈ A and bn ∈ B be chosen such
that |an − bn| < d + (1/n) (n = 1, 2, . . .). Since at least one of the sets A and B is
bounded, it follows that both of the sequences (an) and (bn) are bounded.

By the Bolzano–Weierstrass theorem (Theorem 1.9) we can select a convergent
subsequence of (an). Replacing (an) by this subsequence, we may assume that (an)
itself is convergent. Then we select a convergent subsequence of (bn). Turning to
this subsequence, we may assume that (an) and (bn) are both convergent.

If an → a and bn → b, then a ∈ A and b ∈ B, since A and B are both closed.
Now |a − b| = limn→∞ |an − bn| ≤ d. Using the definition of the distance between
sets, we get |a − b| ≥ d, and thus |a − b| = d. This proves (i), while (ii) follows
immediately from (i). �
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Exercises

1.8. Let p = 2. Find int A, ext A, and ∂A for each of the sets below.

(a) {(x, y) ∈ R
2 : x, y > 0, x + y < 1};

(b) {(x, 0) ∈ R
2 : 0 < x < 1};

(c) {(x, y) ∈ R
2 : x = 1/n (n = 1, 2, . . .), 0 < y < 1}.

1.9. Figure

1.9. Find every set A ⊂ R
p such that int A has exactly three elements. (S)

1.10. Show that ∂(A ∪ B) ⊂ ∂A ∪ ∂B and ∂(A ∩ B) ⊂ ∂A ∪ ∂B hold for every
A,B ⊂ R

p-re. (S)

1.11. Is there a set A ⊂ R
2 such that ∂A = {(1/n, 0) : n = 1, 2, . . .}?

1.12. Let A ⊂ R
2 be a closed set. Show that A = ∂H for a suitable set H ⊂ R

2.

1.13. Show that ∂ ∂A ⊂ ∂A for every set A ⊂ R
p. Also show that ∂ ∂A = ∂A is

not always true.

1.14. Show that if the set A ⊂ R
p is open or closed, then ∂ ∂A = ∂A and

int ∂A = ∅.

1.15. Show that the union of infinitely many closed sets is not necessarily closed.

1.16. Show that every open set of Rp can be written as the union of countable many
boxes.

1.17. What are the sets whose boundary consists of exactly three points?

1.18. Show that if A ⊂ R
p, where p > 1, and if ∂A is countable, then one of A and

R
p \ A is countable.
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1.19. Which are the sets satisfying

(a) intA = ∂A?
(b) int A = cl A?
(c) ext A = cl A?

1.20. Show that every infinite bounded set has a limit point.

1.21. What are the sets with no limit points? What are the sets with exactly three
limit points?

1.22. Show that for every set A ⊂ R
p, the set A′ is closed. (S)

1.23. Find every set A ⊂ R
2 that satisfies A′ = A and (R2 \ A)′ = R

2 \ A.

1.24. Let A ⊂ R
2 be bounded, G ⊂ R

2 open, and let A′ ⊂ G. Show that A \ G is
finite.

1.25. Construct a set A such that the sets A, A′, A′′, etc. are distinct.

1.26. Is there a bounded infinite set every point of which is an isolated point?

1.27. Show that the number of isolated points of an arbitrary set is countable. (H)

1.28. A set A ⊂ R
p is called everywhere dense if it has a point in every ball.

Construct an everywhere dense set A ⊂ R
2 that does not contain three collinear

points.

1.29. Decompose R2 into infinitely many pairwise disjoint everywhere dense sets.

1.30. Construct a function f : R → R whose graph is everywhere dense in R2.

1.31. We call a set A ⊂ R
2 a star if it is the union of three segments that have a

common endpoint but are otherwise disjoint. Show that every system of pairwise
disjoint stars is countable. (∗ H)

1.32. Show that a system of pairwise disjoint stars in R2 cannot cover a line. (∗)
1.33. Construct a sequence of sets A1 ⊃ A2 ⊃ . . . that satisfy

⋂∞
n=1 An = ∅ and

are

(a) bounded and nonempty;
(b) closed and nonempty.

1.34. Show that a set A ⊂ R
p is bounded and closed if and only if every sequence

xn ∈ A has a subsequence converging to a point of A.

1.35. Is there a sequence xn ∈ R such that [0, 1] ⊂ ⋃∞
n=1(xn − 2−n, xn + 2−n)?

How about a sequence with [0, 1] ⊂ ⋃∞
n=1(xn − 2−n−1, xn + 2−n−1)? (H)
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1.36. Give examples of two disjoint nonempty closed sets with distance zero (a) in
R

2, and (b) in R. (S)

1.37. A set G ⊂ R
p is called a regular open set if G = int cl G. Show that for

every G ⊂ R
p the following statements are equivalent.

(i) The set G is regular open.
(ii) There is a set A with G = int cl A.
(iii) There is a set A with G = ext int A.
(iv) G = ext ext G.

1.38. Which of the following sets in R2 are regular open?

(i) {(x, y) : x2 + y2 < 1}.
(ii) {(x, y) : 0 < x2 + y2 < 1}.
(iii) {(x, y) : x2 + y2 < 1, y �= 0}.
(iv) {(x, y) : x2 + y2 ∈ [0, 1) \ {1/2}}.
1.39. Show that for every set A ⊂ R

p the following are true:

ext ext ext ext A = ext ext A, ext ext ext int A = ext int A,

ext ext int ∂A = int ∂A, ext ext ∂A = int ∂A,

∂ ext ext int A = ∂ ext int A, ∂ ext ext ext A = ∂ ext ext A,

∂ ext int ∂A = ∂ int ∂A.

(1.8)

1.40. Show that applying the operations int , ext , ∂ to an arbitrary set A ⊂ R
p

(repeated an arbitrary number of times and in an arbitrarily chosen order) cannot
result in more than 25 different sets. (* H)

1.41. Show that the estimate in the previous exercise is sharp; i.e., give an exam-
ple of a set A ⊂ R

p such that we get 25 different sets by applying the operations
int, ext, ∂ an arbitrary number of times and in an arbitrarily chosen order.

1.42. Show that applying the operations int , ext , ∂ together with the closure
operation and the complement operation on an arbitrary set A ⊂ R

p (repeated an
arbitrary number of times and in an arbitrarily chosen order) cannot result in more
than 34 different sets.

1.5 Limits

At the core of multivariable analysis—as in the case of one-variable analysis—lies
the investigation and application of the limit, continuity, differentiation, and integra-
tion of functions.

The concept of limit of a multivariable function—similarly to the single-variable
case—is the idea that if x is close to a point a, then the value of the function at x is
close to the limit.
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Definition 1.33. Let the real-valued function f be defined on the set A ⊂ R
p,

and let a be a limit point of A. We say that the limit of the function f at the
point a restricted to the set A is b ∈ R if the following condition is satisfied. For
every ε > 0 there exists δ > 0 such that whenever x ∈ A and 0 < |x − a| < δ, then
|f(x) − b| < ε. Notation: limx→a, x∈A f(x) = b.

If the domain of f is A (i.e., if D(f) is not larger than A), then we can omit the
part “restricted to the set A” from the definition and instead we can say that the limit
of the function f at the point a is b. In this case, the notation is limx→a f(x) = b or
f(x) → b as x → a.

Example 1.34. 1. Let p = 2. We show that lim(x,y)→(0,0)
x2y

x2+y2 = 0. For ε > 0

fixed, 0 < |(x, y)| =
√

x2 + y2 < ε implies |y| < ε; thus

∣∣∣∣
x2y

x2 + y2

∣∣∣∣ ≤ |y| < ε.

2. We show that the limit lim(x,y)→(0,0)
xy

x2+y2 does not exist.
Since the function is zero on the axes, there exists a point in every neighborhood

of (0, 0) where the function is zero. On the other hand, the function is 1/2 at the
points of the line y = x, whence there exists a point in every neighborhood of (0, 0)
where the function is 1/2. This implies that the limit does not exist: we cannot find
an appropriate δ for ε = 1/4, regardless of the value of b. (See Figure 1.10.)

Note, however, that the function xy/(x2 + y2) has a limit at the origin when
restricted to a line that passes through it, since the function is constant on every
such line (aside from the origin itself).

Definition 1.35. Let the function f be defined on the set A ⊂ R
p, and let a be a

limit point of A. We say that the limit of the function f at the point a restricted
to the set A is infinity (negative infinity) if for every K there exists δ > 0 such
that f(x) > K (f(x) < K) for every x ∈ A satisfying 0 < |x − a| < δ. Notation:
limx→a, x∈A f(x) = ∞ (−∞).

If the domain of f is A (i.e., if it is not larger than A), then we can omit the part
“restricted to the set A” of the definition and instead we can say that the limit of the
function f at the point a is infinity (negative infinity). In this case, the notation is
limx→a f(x) = ∞ (−∞).

Example 1.36. Let A be the {(x, y) : y > x} half-plane.
Then lim (x,y)→(0,0)

(x,y)∈A

1
y−x = ∞. Indeed, if K > 0 is fixed and 0 < |(x, y)| =

√
x2 + y2 < 1/K, then |x|, |y| < 1/K, thus |y − x| < 2/K. On the other hand,

if (x, y) ∈ A also holds, then x < y and 0 < y − x < 2/K, and thus 1/(y − x) >
K/2.

By the same argument, lim (x,y)→(0,0)
(x,y)∈B

1
y−x = −∞, whereB = {(x, y) : y < x}.

It also follows that the limit lim(x,y)→(0,0)
1

y−x does not exist.
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1.10. Figure

These three kinds of limits can be
described by a single definition with the
help of punctured neighborhoods (some-
times called deleted neighborhoods). The
punctured neighborhoods of a point a ∈
R

p are the sets B(a, r) \ {a}, where r is an
arbitrary positive number.

Recall that the neighborhoods of ∞ and
−∞ are defined as the half-lines (a,∞)
and (−∞, a), respectively.

Theorem 1.37. Let the function f be
defined on the set A ⊂ R

p, and let a be a
limit point of A. Let β be a real number b
or one of ±∞. Then limx→a, x∈A f(x) = β holds if and only if for every neighbor-
hood V of β, there exists a punctured neighborhood U̇ of a such that f(x) ∈ V for
every x ∈ A ∩ U̇ . �

The proof of the following theorem is exactly the same as the proof of its single-
variable counterpart (see [7, Theorem 10.19]).

Theorem 1.38. (Transference principle) Let the function f be defined on the set
A ⊂ R

p, and let a be a limit point ofA. Let β be a real number b or one of±∞. Then
limx→a, x∈A f(x) = β holds if and only if for every sequence (xn) with xn → a
and xn ∈ A \ {a} for every n, we have that f(xn) → β. �

The following three statements follow easily from the definitions and from the
theorems above, combined with their single-variable counterparts. (See [7, Theo-
rems 10.29-10.31].)

Theorem 1.39.

(i) (Squeeze theorem) If f(x) ≤ g(x) ≤ h(x) for every x∈A \ {a} and

lim
x→a
x∈A

f(x) = lim
x→a
x∈A

h(x) = β,

then limx→a, x∈A g(x) = β.

(ii) If
lim
x→a
x∈A

f(x) = b < c = lim
x→a
x∈A

g(x),

then there exists a punctured neighborhood U̇ of a such that f(x) < g(x) holds
for every x ∈ U̇ ∩ A.

(iii) If the limits limx→a, x∈A f(x) = b and limx→a, x∈A g(x) = c exist, and fur-
thermore, if f(x) � g(x) holds at the points of the set A \ {a}, then b ≤ c. �
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From the squeeze theorem and from the corresponding theorems on real sequen-
ces we obtain the following.

Theorem 1.40. Let the limits limx→a, x∈A f(x) = b and limx→a, x∈A g(x) = c
exist and be finite. Then we have limx→a, x∈A(f(x) + g(x)) = b + c, limx→a, x∈A

(f(x) · g(x)) = b · c, and, assuming also c �= 0, limx→a, x∈A(f(x)/g(x)) =
b/c. �

Remark 1.41. In the case of one-variable functions, one can define 15 kinds of lim-
its, considering five different options for the location of the limit (a finite point, left-
or right-sided limit at a finite point, ∞, and −∞), and three options for the value of
the limit (finite, ∞, and −∞).

In the case of multivariable functions the notion of left- and right-sided limits
and limits at ∞ and −∞ are meaningless. The reason is clear; for p > 1 we have
infinitely many directions in R

p, instead of merely two. Obviously, it would be
pointless to define limits for every direction; if we really need to talk about limits
in a given direction, we can simply take the limit of the function restricted to the
corresponding line.

The limit at infinity in a given direction can be viewed as the limit at ∞ of an
appropriate single-variable function. For example, if v is a unit vector in the plane,
then a half-line starting from the origin in the direction of v is the set of vectors
tv (t > 0). Thus the limit of a function at infinity in the direction of v can be viewed
as the limit of the single-variable function t �→ f(tv) at infinity.

Exercises

1.43. Evaluate the following limits or prove that the limits do not exist for the fol-
lowing two-variable functions at the given points. If the limit exists, find a suitable
δ for every ε > 0 (based on the definition of the limit).

(a)
x − 2
y − 3

, (2, 3); (b)
x2y

x2 + y
, (0, 0);

(c) x · sin
1
y
, (0, 0); (d)

x2 − y2

x2 + y2
, (0, 0);

(e) x +
1
y
, (3, 2); (f)

sin xy

y
, (0, 0);

(g) xy (x > 0, y ∈ R), (0, 0); (h) (1 + x)y , (0, 0);

(i)
x2y2

x + y
, (0, 0); (j)

xy − 1
x − 1

, (1, 1);
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(k)
log x

x − 1
, (1, 1); (l)

3
√

x2y5

x2 + y2
, (0, 0);

(m)
sin x − sin y

x − y
, (0, 0).

1.44. Show that ifA ⊂ R
p is countable, then there exists a function f : A → R such

that limx→a f(x) = ∞ for every point a ∈ A′.

1.45. Show that if A ⊂ R
p, f : A → R, and limx→a f(x) = ∞ for every point

a ∈ A′, then A is countable. (H)

1.6 Continuity

Definition 1.42. Let the function f be defined on the set A ⊂ R
p, and let a ∈ A.

We say that f is continuous at the point a restricted to the set A if for every ε > 0,
there exists δ > 0 such that x ∈ A, |x − a| < δ imply |f(x) − f(a)| < ε.

If the domain of f is equal to A, we can omit the part “restricted to the set A” in
the above definitions, and instead we can say that f is continuous at a.

If the function f is continuous at every point a ∈ A, we say that f is continuous
on the set A.

Intuitively, the continuity of a function f at a point a means that the graph of f
at the point (a, f(a)) “does not break.”

Remark 1.43. It is obvious from the definition that f is continuous at a point a
restricted to the set A if and only if one of the following statements holds:

(i) the point a is an isolated point of A;
(ii) a ∈ A ∩ A′ and limx→a, x∈A f(x) = f(a).

We can easily prove the following theorem, called the transference principle
for continuity, with the help of Theorem 1.38.

Theorem 1.44. The function f is continuous at the point a restricted to the set
A if and only if for every sequence (xn) with xn → a and xn ∈ A we have
f(xn) → f(a). �

While investigating multivariable functions, fixing certain variables at a given
value and considering our original function as a function of the remaining vari-
ables can make the investigation considerably easier. The functions we get this in
way are the sections of the original function. For example, the sections of the two-
variable function f(x, y) are the single-variable functions y �→ fa(y) = f(a, y) and
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x �→ f b(x) = f(x, b), for every a, b ∈ R. The section fa is defined at those points
y for which the point (a, y) is in the domain D(f) of the function f . Similarly, the
section f b is defined at those points x for which (x, b) ∈ D(f).

Remark 1.45. It is easy to see that if a function is continuous at the point
(a1, . . . , ap), then fixing a subset of the coordinates at the appropriate numbers ai,
we obtain a section that is continuous at (ai1 , . . . , ais), where the i1, . . . , is denote
the indices of the nonfixed coordinates. For example, if a two-variable function f is
continuous at the point (a, b), then the section fa is continuous at b, and the section
f b is continuous at a. The converse of the statement is not true. The continuity of
the sections does not imply the continuity of the original function.

Consider the function f : R2 → R, where f(x, y) = xy/(x2 + y2) if (x, y) �=
(0, 0), and f(0, 0) = 0. (See Figure 1.10.) Every section of f is continuous. Indeed,
if a �= 0, then the function fa(y) = ay/(a2 + y2) is continuous everywhere, since it
can be written as a rational function whose denominator is never zero (see Theorem
1.48 below). However, for a = 0 the function fa is constant, with the value zero,
and thus it is continuous as well. Similarly, the section f b is continuous for every b.

On the other hand, the function f is not continuous at the point (0, 0), since by
Example 1.34.2, it does not even have a limit at (0, 0).

Theorem 1.40 implies the following theorem.

Theorem 1.46. If the functions f and g are continuous at the point a restricted to
the set A, then the same is true for the functions f + g and f · g. Furthermore, if
g(a) �= 0, then the function f/g is also continuous at the point a. �

Definition 1.47. We call the function x = (x1, . . . , xp) �→ xi, defined on R
p, the

ith coordinate function.
We call the function f : Rp → R a p-variable polynomial function (polynomial

for short) if we can obtain f from the coordinate functions x1, . . . , xp and constants
using only addition and multiplication. Clearly, the polynomials are finite sums of
terms of the form c · xn1

1 · · · xnp
p , where the c coefficients are real numbers and the

exponents n1, . . . , np are nonnegative integers.
We call the quotients of two p-variable polynomials p-variable rational functions.

Theorem 1.48. The polynomials are continuous everywhere. The rational func-
tions are continuous at every point of their domain.

Proof. First we show that the coordinate functions are continuous everywhere. This
follows from the fact that if |x − a| < ε, where x = (x1, . . . , xp) and
a = (a1, . . . , ap), then |xi − ai| < ε for every i = 1, . . . , p. From this it is clear, by
Theorem 1.46, that the polynomials are continuous everywhere.

If p and q are polynomials, then the domain of the rational function p/q consists
of the points where q is not zero. Again, Theorem 1.46 gives that p/q is continuous
at those points. �
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The following theorem concerns the limits of composite functions.

Theorem 1.49. Suppose that

(i) A ⊂ R
p, g : A → R and limx→a g(x) = γ, where γ is a real number or one

of ±∞;

(ii) g(A) ⊂ H ⊂ R, f : H → R, and limy→γ f(y) = β, where β is a real number
or one of ±∞;

(iii) g(x) �= γ in a punctured neighborhood of a, or γ ∈ H and f is continuous at
γ restricted to H .

Then
lim
x→a

f(g(x)) = β. (1.9)

Proof. By the transference principle, we have to show that if xn → a is a sequence
with xn ∈ A \ {a} for each n, then f(g(xn)) → β.

It follows from Theorem 1.38 that g(xn) → γ. If g(x) �= γ in a punctured neigh-
borhood of a, then g(xn) �= γ for every n large enough. Then, applying Theo-
rem 1.38 again, we find that f(g(xn)) → β. Also, if f is continuous at γ, then
Theorem 1.44 gives f(g(xn)) → f(γ) = β. Therefore, applying Theorem 1.38, we
obtain (1.9). �

Corollary 1.50. If g is continuous at a point a ∈ R
p restricted to the set A ⊂ R

p

and if the single-variable function f is continuous at g(a) restricted to g(A), then
f ◦ g is also continuous at a restricted to A. �

This corollary implies that all functions obtained from the coordinate functions
using elementary functions11 are continuous on their domain. For example, the
three-variable function

(x, y, z) �→ ecos(x
2+y) − z

1 − xyz

is continuous at every point (x, y, z) such that xyz �= 1.
The familiar theorems concerning continuous functions on bounded and closed

intervals (see [7, Theorems 10.52 and 10.55]) can be generalized as follows.

Theorem 1.51. (Weierstrass’s theorem) Let A ⊂ R
p be nonempty, bounded, and

closed, and let f : A → R be continuous. Then f is bounded on the set A, and the
range of f has a greatest as well as a least element.

Proof. Let M = sup f(A). If f is not bounded from above, then M = ∞, and for
every n there exists a point xn ∈ A such that f(xn) > n. On the other hand, if
f is bounded from above, then M is finite, and for every positive integer n there

11 By the elementary functions we mean the polynomial, rational, exponential, power, logarithmic,
hyperbolic, and trigonometric functions and their inverses, and all functions that can be obtained
from these using basic operations and composition.
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exists a point xn ∈ A such that f(xn) > M − (1/n). In both cases we have found
a sequence xn ∈ A with the property f(xn) → M .

The sequence (xn) is bounded (since its terms are in A). Then, by the Bolzano–
Weierstrass theorem, it has a convergent subsequence (xnk

). Let limk→∞ xnk
= a.

Since A is closed, it follows that a ∈ A by Theorem 1.17. Now, f is continuous at
a, and thus the transference principle implies f(xnk

) → f(a). Thus M = f(a). We
obtain that M is finite, whence f is bounded from above, and that M ∈ f(A); that
is, M = max f(A).

The proof of the existence of min f(A) is similar. �
Definition 1.52. We say that a function f is uniformly continuous on the set
A ⊂ R

p if for every ε > 0 there exists a uniform δ, i.e., a δ > 0 independent of
the location in A such that x, y ∈ A and |x − y| < δ imply |f(x) − f(y)| < ε.

Theorem 1.53. (Heine’s12 theorem) Let A ⊂ R
p be bounded and closed, and let

f : A → R be continuous. Then f is uniformly continuous on A.

Proof. We prove the statement by contradiction. Suppose that f is not uniformly
continuous in A. Then there exists ε0 > 0 for which there does not exist a “good”
δ > 0; that is, there is no δ satisfying the requirement formulated in the definition
of uniform continuity. Then in particular, δ = 1/n is not “good” either, that is, for
every n there exist αn, βn ∈ A for which |αn − βn| < 1/n but |f(αn) − f(βn)| ≥
ε0.

Since {αn} ⊂ A and A is bounded, there exists a convergent subsequence (αnk
)

whose limit, α, is also in A, since A is closed. Now we have

βnk
= (βnk

− αnk
) + αnk

→ 0 + α = α.

Since f is continuous on A, it is continuous at α (restricted to A). Thus, by the
transference principle, f (αnk

) → f(α) and f (βnk
) → f(α), so

lim
k→∞

(f (αnk
) − f (βnk

)) = 0.

This, however, contradicts |f(αn) − f(βn)| ≥ ε0. �
In many different applications of analysis we need to replace the functions

involved by simpler functions that approximate the original one and are much easier
to handle. An important example is the Weierstrass approximation theorem, which
in the one-variable case states that if f : [a, b] → R is continuous, then for every
ε > 0 there exists a polynomial g such that |f(x) − g(x)| < ε for every x ∈ [a, b].
(See [7, Theorem 13.19].) Our next theorem is the generalization of this theorem to
continuous functions of several variables.

Theorem 1.54. (Weierstrass’s approximation theorem) Let the real-valued func-
tion f be continuous on the box R ⊂ R

p. Then for every ε > 0 there exists a
p-variable polynomial g such that |f(x) − g(x)| < ε for every x ∈ R.

12 Heinrich Eduard Heine (1821–1881), German mathematician.
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Proof. We prove the theorem by induction on p. The case p = 1 is covered by
[7, Theorem 13.19]. (See also Remark 7.85 of this volume, where we give an inde-
pendent proof.) We now consider the p = 2 case.

Let R = [a, b] × [c, d], and let 0 < ε < 1 be fixed. If f is continuous on R, then
by Heine’s theorem (Theorem 1.53), f is uniformly continuous on R. Choose a
positive δ such that |f(x1, y1) − f(x2, y2)| < ε holds for every (x1, y1), (x2, y2) ∈
R satisfying |(x1, y1) − (x2, y2)| < δ. We fix an integer n > 2(b − a)/δ and divide
the interval [a, b] into n equal subintervals. Let a = t0 < t1 < . . . < tn = b be the
endpoints of these subintervals.

For every i = 0, . . . , n, let ui denote the continuous one-variable function that
is zero everywhere outside of (ti−1, ti+1), equals 1 at the point ti, and is linear
on the intervals [ti−1, ti] and [ti, ti+1]. (The numbers t−1 < a and tn+1 > b can
be arbitrarily chosen for the functions u0 and un.) The functions u0, . . . , un are
continuous, and

∑n
i=0 ui(x) = 1 for every x ∈ [a, b]. Consider the function

f1(x, y) =
n∑

i=0

f(ti, y) · ui(x). (1.10)

We show that |f(x, y) − f1(x, y)| < ε for every (x, y) ∈ R. For a fixed (x, y) ∈ R,
ui(x) is nonzero only if |ti − x| < 2(b − a)/n < δ. For every such factor ui(x)
we have |(ti, y) − (x, y)| < δ, and thus |f(ti, y) − f(x, y)| < ε by the choice of δ.
Since the sum of the numbers ui(x) is 1, it follows that

|f1(x, y) − f(x, y)| =

∣∣∣∣∣
n∑

i=0

(f(ti, y) − f(x, y)) · ui(x)

∣∣∣∣∣ ≤

≤
∑

ui(x) �=0

ε · ui(x) = ε ·
n∑

i=0

ui(x) = ε.

By the single-variable version of Weierstrass’s approximation theorem, we can
choose the polynomials gi and hi such that |f(ti, y) − gi(y)| < ε/(n + 1) for every
y ∈ [c, d], and |ui(x) − hi(x)| < ε/(n + 1) for every x ∈ [a, b] (i = 1, . . . , n).
Consider the two-variable polynomial g(x, y) =

∑n
i=0 gi(y) · hi(x). We show that

g approximates f1 well on R. Indeed,

|f(ti, y) · ui(x) − gi(y) · hi(x)| ≤
≤ |f(ti, y) − gi(y)| · ui(x) + |gi(y)| · |ui(x) − hi(x)|
≤ (ε/(n + 1)) · 1 + (K + ε) · (ε/(n + 1)) ≤ (K + 2)ε/(n + 1),

where K denotes an upper bound of |f | on R. Thus

|f1(x, y) − g(x, y)| ≤
n∑

i=0

|f(ti, y) · ui(x) − gi(y) · hi(x)| ≤ (K + 2)ε

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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for every (x, y) ∈ R. We get |f − g| ≤ |f − f1| + |f1 − g| < (K + 3)ε for each
point in the box R. Since ε was arbitrary, we have proved the theorem for p = 2.

In the general case of the induction step a similar argument works. We leave the
details to the reader. �

Remark 1.55. In the previous theorem one can replace the box R by an arbitrary
bounded and closed set. More precisely, the following is true: if the set A ⊂ R

p is
bounded and closed, and the function f : A → R is continuous, then for every
ε > 0 there exists a p-variable polynomial g such that |f(x) − g(x)| < ε holds
for every x ∈ A. See Exercises 1.59–1.63.

Exercises

1.46. Let f(x, y) = xy/(x2 + y2)α if (x, y) �= 0, and f(0, 0) = 0. For what values
of α will f be continuous at the origin?

1.47. Let f(x, y) = |x|α|y|β if x �= 0 and y �= 0, and let f(x, y) = 0 otherwise. For
what values of α, β will f be continuous at the origin?

1.48. LetA ⊂ R
p and f : A → R. Show that if the limit g(x) = limy→x f(y) exists

and is finite for every x ∈ A, then g is continuous on A.

1.49. Construct a function f : R2 → R such that f is continuous when restricted to
any line, but f is not continuous everywhere. (H)

1.50. Let the function f : R2 → R be such that the section fa is continuous for
every a, and the section f b is monotone and continuous for every b. Show that f is
continuous everywhere.

1.51. Let the set A ⊂ R
p be such that every continuous function f : A → R is

bounded. Show that A is bounded and closed.

1.52. Is there a two-variable polynomial with range (0,∞)? (H S)

1.53. Show that if A ⊂ R
p is closed and f : A → R is continuous, then the graph

of f is a closed set in Rp+1.

1.54. True or false? If the graph of f : [a, b] → R is a closed set in R
2, then f is

continuous on [a, b]. (H)

1.55. Let A ⊂ R
p and f : A → R. Show that the graph of f is bounded and closed

in Rp+1 if and only if A is bounded and closed, and f is continuous on A.

1.56. Let A ⊂ R
p. Which of the following statements is true?
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(a) If every function f : A → R is continuous, then A is closed.
(b) If every function f : A → R is continuous, then A is bounded.
(c) If every function f : A → R is uniformly continuous, then A is closed.
(d) If every function f : A → R is uniformly continuous, then A is bounded.

1.57. LetA ⊂ R
p. Show that the function f : A → R is continuous onA if and only

for every open interval I ⊂ R there exists an open set G ⊂ R
p such that f−1(I) =

A ∩ G.

1.58. Show that if f : Rp → R is continuous and g1, . . . , gp : [a, b] → R are inte-
grable on [a, b], then the function x �→ f(g1(x), . . . , gp(x)) is also integrable on
[a, b].

In the next five exercisesA ⊂ R
p is a fixed bounded and closed set, and f : A→R

is a fixed continuous function.

1.59. Show that for every polynomial h and ε > 0, there exists a polynomial g such
that ||h(x)| − g(x)| < ε for every x ∈ A. (S)

1.60. Let h1, . . . , hn be polynomials. Show that for every ε > 0, there exist polyno-
mials g1, g2 such that |max(h1(x), . . . , hn(x)) − g1(x)| < ε and |min(h1(x), . . . ,
hn(x)) − g2(x)| < ε for every x ∈ A. (S)

1.61. Show that for every a, b ∈ A there exists a polynomial ga,b such that ga,b(a) =
f(a) and ga,b(b) = f(b). (S)

1.62. Let ε > 0 be fixed. Show that for every a ∈ A, there exists a polynomial ga

such that ga(x) > f(x) − ε for every x ∈ A, and ga(a) < f(a) + ε. (S)

1.63. Show that if A ⊂ R
p is a bounded and closed set and f : A → R is a contin-

uous function, then for every ε > 0 there exists a p-variable polynomial g such that
|f(x) − g(x)| < ε, for every x ∈ A. (S)

1.7 Partial Derivatives

Differentiation of multivariable functions shows more diversity than limits or con-
tinuity. Although some of the equivalent definitions of differentiability of one-
variable functions have a straightforward generalization to functions of several vari-
ables, the notion of derivative is more complicated than that for functions of one
variable. For this reason we postpone the discussion of differentiability and the
derivative of functions of several variables to the next section and begin with those
derivatives that we get by fixing all but one variable and differentiating the resulting
single-variable function.
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Definition 1.56. Let the function f be defined in a neighborhood of the point
a = (a1, . . . , ap) ∈ R

p. Let us fix each of the coordinates a = (a1, . . . , ap), except
for the ith one, and consider the corresponding section of the function:

t �→ fi(t) = f(a1, . . . , ai−1, t, ai+1, . . . , ap). (1.11)

We call the derivative of the single-variable function fi at the point ai (when it
exists) the ith partial derivative of the function f at a, and use any of the following
notation:13

∂f

∂xi
(a), f ′

xi
(a), fxi

(a), Dxi
f(a), Dif(a).

So, for example,

Dif(a) = lim
t→ai

f(a1, . . . , ai−1, t, ai+1, . . . , ap) − f(a)
t − ai

, (1.12)

assuming that the (finite or infinite) limit exists.
Let the function f be defined on a subset of Rp. By the ith partial derivative

function of f we mean the function Dif , where Dif is defined at every point a,
where the ith partial derivative of f exists and is finite, and its value is Dif(a) at
these points.

Example 1.57. We get the partial derivatives by fixing all but one of the variables
and differentiating the resulting function as a single-variable function. For example,
if f(x, y) = xy(x2 + y2 − 1), then

∂f

∂x
= D1f(x, y) = y(x2 + y2 − 1) + xy · 2x = y · (3x2 + y2 − 1)

and

∂f

∂y
= D2f(x, y) = x(x2 + y2 − 1) + xy · 2y = x · (x2 + 3y2 − 1)

at every point (x, y).

Remark 1.58. Continuity does not follow from the existence of finite partial deriva-
tives. Let f(x, y) = xy/(x2 + y2) if (x, y) �= (0, 0), and let f(0, 0) = 0. Both par-
tial derivatives of f exist at the origin, and they are both zero, since the sections f0
and f0 are both constant with value zero. (It is also clear that the partial derivatives
of f exist and are finite at every other point (x, y) �= (0, 0).)

However, by Example 1.34.2, f is not continuous at the origin.

13 Each of these symbols appears in practice. The symbol ∂f/∂xi is used mostly by engineers
and physicists and in older books on mathematics; the symbol fxi appears in the field of partial
differential equations. The symbol Di is used in contemporary pure mathematics; most of the time
(though not exclusively) we will also write Di for the ith partial derivative.
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According to one of the most important applications of differentiation of one-
variable functions, if a is a local extremum point of the function f and if f is differ-
entiable at a, then f ′(a) = 0. (See [7, Theorem 12.44, part (v)].) This theorem can
easily be generalized to multivariable functions.

Definition 1.59. We say that a function f has a local maximum (or local minimum)
at the point a if a has a neighborhood U such that f is defined on U and for every
x ∈ U we have f(x) ≤ f(a) (or f(x) ≥ f(a)). In this case we say that the point a
is a local maximum point (or local minimum point) of the function f .

1.11. Figure

If for every point x ∈ U \ {a} we have f(x) < f(a) (or f(x) > f(a)), then we
say that a is a strict local maximum point (or strict local minimum point).

We call the local maximum and local minimum the local extrema, while we call
the local maximum points and local minimum points local extremal points, collec-
tively.

Let f have a local maximum at the point a = (a1, . . . , ap). Obviously, for every
i = 1, . . . , p, the function fi defined by (1.11) also has a local maximum at ai. If fi

is differentiable at ai, then f ′
i(ai) = 0. It is easy to see that f ′

i(ai) = ±∞ cannot
happen, and thus we have proved the following theorem.

Theorem 1.60. If the function f has a local extremum at the point a ∈ R
p, and if

the partial derivatives of f exist at a, then Dif(a) = 0 for each i = 1, . . . , p. �

Applying Theorems 1.51 and 1.60, we can determine the extrema of functions
that are continuous on a bounded and closed set A and have partial derivatives in
the interior of A. This method, described in the next theorem, corresponds to the
technique that finds the extrema of functions of one variable that are continuous on
an interval [a, b] and differentiable in (a, b). (See Example 12.46, Remark 12.47,
and Example 12.48 in [7].)

Theorem 1.61. Let A ⊂ R
p be bounded and closed, let f : A → R be continuous,

and let the partial derivatives of f exist at every internal point of A. Every point
where f takes its greatest (least) value is either a boundary point of A, or else an
internal point ofA where the partial derivativesDif are zero for every i = 1, . . . , p.
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Proof. By Weierstrass’s theorem (Theorem 1.51), f has a maximal value on A. Let
a ∈ A be a point where f is the largest. If a ∈ ∂A, then we are done. If, on the
other hand, a ∈ int A, then f has a local maximum at a. By the assumptions of the
theorem, the partial derivatives of f exist at the point a; thus Dif(a) = 0 for every
i = 1, . . . , p by Theorem 1.60. �

Example 1.62. 1. Find the maximum value of the function f(x, y) = xy(x2 + y2 −
1) on the disk K = {(x, y) : x2 + y2 ≤ 1}. In Example 1.10.1.c we saw that the
boundary of K is the circle S = {(x, y) : x2 + y2 = 1}. Since S ⊂ K, it follows
that K is closed. The function f is a polynomial; thus it is continuous (see Theo-
rem 1.48), and then, by Weierstrass’s theorem, f has a maximal value on K. The
value of f is zero on the whole set S. Since the function f is positive for every
(x, y) ∈ int K, x > 0, y < 0, it follows that f takes its largest value somewhere in
the interior of K.

Let (a, b) ∈ int K be a point where the value of f is the largest. Now,
0 = D1f(a, b) = b · (3a2 + b2 − 1) and 0 = D2f(a, b) = a · (a2 + 3b2 − 1).

If a = 0, then b = 0 (since |b| < 1), which is impossible, since the value of the
function at the origin is zero, even though its maximal value is positive. Similarly,
we can exclude the b = 0 case. So, a �= 0 �= b, whence a2 + 3b2 − 1 = 3a2 + b2 −
1 = 0, and we get a = ±1/2 and b = ±1/2. Of these cases, f takes the value 1/8 at
the points (±1/2,∓1/2), while it takes the value −1/8 at the points (±1/2,±1/2).
Thus, the largest value of f is 1/8, and f takes this value at two points, namely at
(±1/2,∓1/2).
2. Find the triangle with largest area that can be inscribed in a circle with a fixed
radius.

Consider a triangle H defined by its three vertices that lie on the circle
S = {(u, v) : u2 + v2 = 1}. If the angles between the segments connecting the ori-
gin and the vertices are x, y, z, then we can compute the area of H with the help
of the formula (sin x + sin y + sin z)/2. (This follows from the fact that if the
two equal sides of an isosceles triangle are of unit length, and the angle between
these two sides is α, then the area of the triangle is 1

2 · sin α.) This is true even if
one of the angles x, y, z is larger than π. Since z = 2π − x − y, we need to find
the maximum value of the function f(x, y) = sinx + sin y − sin(x + y) on the set
A = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 2π}.

1.12. Figure
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The set A is nothing other than the triangle defined by the points (0, 0), (2π, 0),
and (0, 2π). Obviously, this is a bounded and closed set, and thus Theorem 1.61 can
be applied.

It is easy to see that the function f is zero on the boundary of the set A. Since f
takes a positive value (e.g., at the point (π/2, π/2)), it follows that f takes its maxi-
mum at an internal point (x, y), for whichD1f(x, y) = cos x − cos(x + y) = 0 and
D2f(x, y) = cos y − cos(x + y) = 0. We get cos x = cos y, so either y = 2π − x
or y = x. In the first case, (x, y) lies on the boundary of A, which is impossi-
ble. Thus y = x and cos x = cos 2x. Since x = 2x is not possible (it would imply
that x = 0, whence (x, y) would be on the boundary of A again), we must have
2x = 2π − x, and x = y = 2π/3. We have proved that the triangle with the largest
area that can be inscribed in a circle with fixed radius is an equilateral triangle. �

Exercises

1.64. Find the points where the partial derivatives of the following two-variable
functions exist.

(a) |x + y|;
(b) 3

√
x3 + y3;

(c) f(x, y) = x if x ∈ Q, f(x, y) = y if x /∈ Q.

1.65. Show that the partial derivatives of the function f(x, y) = xy/
√

x2 + y2,
f(0, 0) = 0 exist and are bounded everywhere in the plane.

1.66. Construct a two-variable function whose partial derivatives exist everywhere,
but the function is unbounded in every neighborhood of the origin.

1.67. Let f : R2 → R. Show that if D1f ≡ 0, then f depends only on the variable
y. If D2f ≡ 0, then f depends only on the variable x.

1.68. Show that if f : R2 → R, D1f ≡ 0, and D2f ≡ 0, then f is constant.

1.69. Show that if G ⊂ R
p is a connected open set, the partial derivatives of the

function f : G → R exist everywhere, and D1f(x) = . . . = Dpf(x) = 0 for every
x ∈ G, then f is constant. (H)

1.70. Show that if the partial derivatives of the function f : R2 → R exist every-
where and |D1f | ≤ 1, |D2f | ≤ 1 everywhere, then f is continuous. (Furthermore,
f has the Lipschitz property.)14

14 Rudolph Otto Sigismund Lipschitz (1832–1903), German mathematician. A function f is said
to have the Lipschitz property (is Lipschitz, for short) on a set A if there exists a constant K ≥ 0

such that |f(x1) − f(x0)| ≤ K · |x1 − x0| for all x0, x1 ∈ A.
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1.71. Construct a two-variable polynomial that has two local maximum points but
no local minimum points. (H S)

1.72. Find the local extremal points of the function x2 + xy + y2 − 4 log x −
10 log y.

1.73. Find the maximum of x3 + y2 − xy on the square [0, 1] × [0, 1].

1.74. Find the minimum of x + y2

4x + z2

y + 2
z in the octant x, y, z > 0. (First prove

that the function can be restricted to a bounded and closed set.)

1.75. Find the minimum of (x3 + y3 + z3)/(xyz) on the set {(x, y, z ∈ R
3 :

x, y, z > 0}.
1.76. Find the maximum and minimum values of xy · log(x2 + y2) on the disk
x2 + y2 ≤ R2.

1.77. Find the maximum of x
√
2 · ye · zπ restricted to x, y, z ≥ 0 and x + y + z=1.

1.78. Find the minimum value of the function 2x4 + y4 − x2 − 2y2.

1.79. What is the minimum value of xy + 50
x + 20

y on the set x, y > 0?

1.8 Differentiability

Weierstrass’s approximation theorem states that if f is a continuous function defined
on a box (or, more generally, on a closed and bounded set), then f can be approx-
imated by polynomials (see Theorem 1.54 and Exercises 1.59–1.63). However, we
cannot control the degree of the approximating polynomials: in general, it may hap-
pen that we need polynomials of arbitrarily high degrees for the approximation. The
situation is different in the case of local approximation, when we want to approxi-
mate a function in a neighborhood of a given point. For an important class of func-
tions, good local approximation is possible using polynomials of first degree.

In the case of single-variable analysis, differentiability is equivalent to local
approximability by first-degree polynomials (see [7, Theorem 12.9]). For multivari-
able functions, differential quotients do not have an immediate equivalent (since we
cannot divide by vectors), and therefore, we cannot define differentiability via the
limits of differential quotients. Approximability by first-degree polynomials, how-
ever, can be generalized verbatim to multivariable functions.

We call the function 
 : Rp → R a linear function if there exist real numbers
α1, . . . , αp such that 
(x) = α1x1 + . . . + αpxp for every x = (x1, . . . , xp) ∈ R

p.

Definition 1.63. Let the function f be defined in a neighborhood of the point
a ∈ R

p. We say that f is differentiable at the point a if there exists a linear func-
tion 
(x) such that

f(x) = f(a) + 
(x − a) + ε(x) · |x − a| (1.13)

for every x ∈ D(f), where ε(x) → 0 as x → a.
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Remark 1.64. 1. It is clear that the function f is differentiable at the point a if and
only if it is defined in a neighborhood of a ∈ R

p and there exists a linear function

(x) such that

lim
x→a

f(x) − f(a) − 
(x − a)
|x − a| = 0.

2. If p = 1, then the notion of differentiability defined above is equivalent to the
“usual” definition, that is, to the existence of a finite limit of the differential quotient
(f(x) − f(a))/(x − a) as x → a.
3. If a function depends only on one of its variables, then the differentiability
of the function is equivalent to the differentiability of the corresponding single-
variable function. More precisely, let a1 ∈ R, and let a single-variable function f be
defined in a neighborhood of a1. Let g(x1, . . . , xp) = f(x1) for every x1 ∈ D(f)
and x2, . . . , xp ∈ R. For arbitrary a2, . . . , ap, the function g is differentiable at the
point a = (a1, . . . , ap) if and only if f is differentiable at a1 (see Exercise 1.82).

Example 1.65. 1. It follows from the definition that every polynomial of degree at
most one is differentiable everywhere.
2. Let f(x, y) = x2y2

x2+y2 if (x, y) �= (0, 0), and let f(0, 0) = 0. We prove that f is
differentiable at the origin. Indeed, if 
 is the constant zero function and (x, y) �=
(0, 0), then we have

∣∣∣∣
f(x, y) − 
(x, y)

|(x, y)|
∣∣∣∣ =

x2y2

(x2 + y2) ·
√

x2 + y2
=

x2y2

(x2 + y2)3/2
≤

≤ max(x2, y2)2

max(x2, y2)3/2
= max(x2, y2)1/2,

and (1.13) holds.

We know that every single-variable, differentiable function is continuous (see [7,
Theorem 12.4]). The following theorem generalizes this fact for functions with an
arbitrary number of variables.

Theorem 1.66. If the function f is differentiable at a point a, then f is continuous
at a.

Proof. Since the right-hand side of (1.13) converges to f(a) as x → a, it follows
that

lim
x→a

f(x) = f(a). �

The following fundamental theorem represents the linear functions of the defini-
tion of differentiability with the help of partial derivatives.
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Theorem 1.67. If a function f is differentiable at a point a = (a1, . . . , ap) ∈ R
p,

then

(i) every partial derivative of f exists and is finite at a, and furthermore,

(ii) there is only one function 
 satisfying Definition 1.63, namely the function


(x) = D1f(a)x1 + . . . + Dpf(a)xp.

Proof. Suppose that (1.13) holds for the linear function 
 = α1x1 + . . . + αpxp.
Let i be fixed, and apply (1.13) with the point x = (a1, . . . , ai−1, t, ai+1, . . . , ap).
We get that

fi(t) = f(a) + αi(t − ai) + ε(x) · |t − ai|,

where fi is the function defined at (1.11). Since fi(ai) = f(a), we have

fi(t) − fi(ai)
t − ai

= αi ± ε(x),

and thus by limx→a ε(x) = 0, we obtain that fi is differentiable at the point ai, and
f ′

i(ai) = αi. Therefore, by the definition of the partial derivatives, Dif(a) = αi.
This is true for every i = 1, . . . , p, and thus (i) and (ii) are proved. �

Corollary 1.68. Let f be defined in a neighborhood of a ∈ R
p. The function f is

differentiable at the point a ∈ R
p if and only if all partial derivatives of f exist at a,

they are finite, and

f(x) = f(a) + D1f(a)(x1 − a1) + . . . + Dpf(a)(xp − ap) + ε(x) · |x − a|
(1.14)

for every x ∈ D(f), where limx→a ε(x) = 0. �

Example 1.69. 1.We show that the function f(x, y) = xy is differentiable at (1, 2).
Since D1f(1, 2) = 2 and D2f(1, 2) = 1, we need to prove

lim
(x,y)→(1,2)

xy − 2 − 2(x − 1) − (y − 2)√
(x − 1)2 + (y − 2)2

= 0.

Considering that the numerator is (x − 1)(y − 2) and

∣∣∣∣∣
(x − 1)(y − 2)√

(x − 1)2 + (y − 2)2

∣∣∣∣∣ ≤ |y − 2| → 0

as (x, y) → (1, 2), we obtain that indeed, f is differentiable at (1, 2).
2. The function |x| is continuous but not differentiable at 0. This is true in the mul-

tivariable case as well. Indeed, the partial derivatives of |x| =
√

x2
1 + . . . + x2

p do

not exist at the origin. Since |x| = |t| at the point x = (0, . . . , 0, t, 0, . . . , 0), the
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fraction of the right-hand side on (1.12) is |t|−|0|
t−0 , which does not have a limit as

t → 0. Therefore, by Theorem 1.67, |x| is not differentiable at the origin.
3. Consider the function f(x, y) =

√|xy| on R
2. By Corollary 1.50, f is continu-

ous everywhere. We prove that f is not differentiable at the origin. In contrast to our
previous example, the partial derivatives do exist at the origin. Indeed, the sections
f0 and f0 are both zero, and hence their derivatives are also constant and equal to
zero, i.e., D1f(0, 0) = D2f(0, 0) = 0.

1.13. Figure The graph of the function
√|xy|/

√
x2 + y2

Now, f is differentiable at the origin if and only if

lim
(x,y)→(0,0)

√|xy|√
x2 + y2

= 0 (1.15)

holds (see Corollary 1.68). However, the value of the fraction on the line y = x is
1/

√
2, and consequently, there exists a point in every neighborhood of (0, 0) where

the fraction is 1/
√

2. Thus (1.15) does not hold, and f is not differentiable at the
point (0, 0).

The right-hand side of the equality (1.14) can be simplified if we notice that
D1f(a)(x1 − a1) + . . . + Dpf(a)(xp − ap) is nothing other than the scalar prod-
uct of the vectors (D1f(a), . . . , Dpf(a)) and x − a. This motivates the following
definition.

Definition 1.70. If f is differentiable at the point a ∈ R
p, then the vector

(D1f(a), . . . , Dpf(a))

is said to be the derivative vector of f at a and is denoted by f ′(a).
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Using the notation above, (1.14) becomes f(x) = f(a) + 〈f ′(a), x − a〉 + ε(x) ·
|x − a|. In the single-variable case this is the well-known formula f(x) = f ′(a) ·
(x − a) + f(a) + ε(x) · |x − a|.

The following theorem gives a useful sufficient condition for differentiability.

Theorem 1.71. Let f be defined in a neighborhood of a ∈ R
p. If the partial deriv-

atives of f exist in a neighborhood of a and they are continuous at a, then f is
differentiable at a.

Proof. We prove the result for p = 3. It is straightforward to generalize the proof
for an arbitrary p.

Let ε > 0 be fixed. Since the partial derivatives of f exist in a neighborhood of
a and they are continuous at a, there exists δ > 0 such that |Dif(x) − Dif(a)| < ε
for every x ∈ B(a, δ) and i = 1, 2, 3.

Let us fix x = (x1, x2, x3) ∈ B(a, δ) and connect the points a = (a1, a2, a3) and
x with a polygonal line consisting of at most three segments, each parallel to one of
the axes. Let u = (x1, a2, a3) and v = (x1, x2, a3). The segment [a, u] is parallel to
the x-axis (including the possibility that it is reduced to a point), the segment [u, v]
is parallel to the y-axis, and the segment [v, x] is parallel to the z-axis.

The partial derivative D1f exists and is finite at each point of the segment [a, u],
and thus the section t �→ f(t, a2, a3) is differentiable on the interval [a1, x1], and
its derivative is D1f(t, a2, a3) there. By the mean value theorem,15 there is a point
c1 ∈ [a1, x1] such that

f(u) − f(a) = f(x1, a2, a3) − f(a1, a2, a3) = D1f(c1, a2, a3) · (x1 − a1).

Since (c1, a2, a3) ∈ B(a, δ), we have |D1f(c1, a2, a3) − D1f(a)| < ε, and thus

|f(u) − f(a) − D1f(a)(x1 − a1)| ≤ ε · |x1 − a1| ≤ ε · |x − a| (1.16)

follows. Similarly, the partial derivative D2f exists and is finite everywhere on
the segment [u, v]; thus the section t �→ f(x1, t, a3) is differentiable on the inter-
val [a2, x2], and its derivative is D2f(x1, t, a3) there. By the mean value theorem,
there is a point c2 ∈ [a2, x2] such that

f(v) − f(u) = f(x1, x2, a3) − f(x1, a2, a3) = D2f(x1, c2, a3) · (x2 − a2).

Since (x1, c2, a3) ∈ B(a, δ), it follows that |D2f(x1, c2, a3) − D2f(a)| < ε, and

|f(v) − f(u) − D2f(a)(x2 − a2)| ≤ ε · |x2 − a2| ≤ ε · |x − a|. (1.17)

15 The mean value theorem states that if g : [a, b] → R is continuous on [a, b] and differentiable on
(a, b), then there is a point c ∈ (a, b) such that g′(c) = (g(b) − g(a))/(b − a). See [7, Theorem
12.50].
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By the same argument we obtain

|f(x) − f(v) − D3f(a)(x3 − a3)| ≤ ε · |x − a|. (1.18)

Applying the triangle inequality yields

∣∣f(x) − (D1f(a)(x1 − a1)+D2f(a)(x2 − a2) + D3f(a)(x3 − a3) + f(a))
∣∣ ≤

≤ |f(u) − f(a) − D1f(a)(x1 − a1)|+
+ |f(v) − f(u) − D2f(a)(x2 − a2)|+
+ |f(x) − f(v) − D3f(a)(x3 − a3)|,

whence the approximations (1.16), (1.17), and (1.18) give

∣∣f(x) − (D1f(a)(x1 − a1) + D2f(a)(x2 − a2) + D3f(a)(x3 − a3) + f(a))
∣∣ ≤ 3ε · |x − a|.

1.14. Figure

Since ε was arbitrary, we have

lim
x→a

f(x)−(D1f(a)(x1−a1)+D2f(a)(x2−a2)+D3f(a)(x3−a3)+f(a))
|x − a| = 0,

and f is differentiable at the point a. �

Corollary 1.72. The polynomial functions are differentiable everywhere. The ratio-
nal functions are differentiable at every point of their domain.

Proof. The partial derivative functions of a polynomial p are also polynomials, and
by Theorem 1.48, they are continuous everywhere. Hence, by Theorem 1.71, p is
differentiable everywhere.
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The partial derivative functions of a rational function r are also rational functions,
and they have the same domain as r. These partial derivatives are continuous in the
domain of r by Theorem 1.48, and thus Theorem 1.71 gives that r is differentiable
on its whole domain. �

Remark 1.73. By Theorems 1.66, 1.67, and 1.71 we have the following:

(i) if f is differentiable at a point a, then f is continuous at a, and its partial
derivatives exist and are finite at a; furthermore,

(ii) if the partial derivatives of f exist in a neighborhood of a and are continuous
at a, then f is differentiable at a.

We prove that the converses of these implications are not true.
Let f(x, y) = x2y

x2+y2 if (x, y) �= (0, 0), and let f(0, 0) = 0. In Example 1.34.1
we proved that the limit of f at (0, 0) is zero, and thus f is continuous at the origin.
(Furthermore, f is continuous everywhere by Theorem 1.48.) The partial deriva-
tives of f exist everywhere. If a �= 0, then the section fa(y) = a2y/(a2 + y2) is
differentiable everywhere, and if a = 0, then fa is zero everywhere; thus it is also
differentiable everywhere. The same is true for the sections f b. Thus the partial
derivatives D1f, D2f exist everywhere and D1f(0, 0) = D2f(0, 0) = 0.

By Theorem 1.67, f is differentiable at the origin if and only if

lim
(x,y)→(0,0)

x2y

(x2 + y2)
√

x2 + y2
= 0. (1.19)

However, the value of the fraction is ±1/2
√

2 at every point of the line y = x, and
hence there exists a point in every neighborhood of (0, 0) where the fraction takes
the value ±1/2

√
2. Therefore, (1.19) does not hold, and f is not differentiable at

(0, 0). We have shown that the converse of statement (i) is not true.
One can check that the function f(x) = x2 · sin(1/x), f(0) = 0, is differen-

tiable everywhere on R, but its derivative is not continuous at zero (see [7, Exam-
ple 13.43])). This function shows that the converse of statement (ii) is not true for
single-variable functions. By Remark 1.64.3, g(x1, . . . , xp) = f(x1) is differen-
tiable everywhere on R

p, and since D1g(x1, . . . , xp) = f ′(x1) for every x ∈ R
p,

the partial derivative D1g is not continuous at the origin. We have therefore shown
that the converse of (ii) is also not true for p-variable functions.

If f is a differentiable function of one variable, then the graph of the first-degree
polynomial approximating f in a neighborhood of a is nothing but the tangent of
the graph of f at the point (a, f(a)). We want to find an analogous statement in the
multivariable case.

In three dimensions, planes are given by equations of the form a1x1 + a2x2 +
a3x3 = b, where at least one of the coefficients a1, a2, a3 is nonzero. This can be
shown as follows. Let S be a plane and let c be a point in S. Let a be a nonzero vector
perpendicular to the plane S. We know that a point x is a point of the plane S if and
only if the vector x − c is perpendicular to a, i.e., if 〈x − c, a〉 = 0. Thus, x ∈ S
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if and only if 〈a, x〉 = 〈a, c〉. Using the notation x = (x1, x2, x3), a = (a1, a2, a3),
and c = (c1, c2, c3) we have that x ∈ S if and only if a1x1 + a2x2 + a3x3 = b,
where b = 〈a, c〉.

Now suppose that a1, a2, a3, b ∈ R, and at least one of a1, a2, a3 is nonzero.
Let a = (a1, a2, a3). Choose a vector c such that 〈a, c〉 = b. Obviously, the equality
a1x1 + a2x2 + a3x3 = b holds if and only if 〈x − c, a〉 = 0, i.e., if the vector x − c
is perpendicular to a. We get that a1x1 + a2x2 + a3x3 = b is the equation of the
plane containing the point c and perpendicular to the vector a.

Let g(x1, x2) = a1x1 + a2x2 + b be a first-degree polynomial. Then the graph
of g, i.e., the set {(x1, x2, x3) : x3 = a1x1 + a2x2 + b}, is a plane. Conversely, if
a1x1 + a2x2 + a3x3 = b is the equation of a plane S that satisfies a3 �= 0, then S
is the graph of the first-degree polynomial g(x1, x2) = −(a1/a3)x1 − (a2/a3)x2 +
(b/a3).

We can now generalize the definition of the tangent to the case of two-variable
functions. Let us switch from the coordinate notation (x1, x2, x3) to the notation
(x, y, z).

Definition 1.74. Let (a, b) ∈ R
2 be fixed, and let f be defined in a neighborhood

of the point (a, b). We say that the plane S is the tangent plane of graph f at the
point (a, b, f(a, b)) if S contains the point (a, b, f(a, b)), and S is the graph of a
first-degree polynomial g that satisfies

lim
(x,y)→(a,b)

f(x, y) − g(x, y)
|(x, y) − (a, b)| = 0.

1.15. Figure

It is clear from Remark 1.64.1 that the
graph of f has a tangent plane at the point
(a, b, f(a, b)) if and only if f is differen-
tiable at (a, b). Using the definition above
and Corollary 1.68, it is also obvious that the
equation of the tangent plane is

z =D1f(a, b)(x − a)+D2f(a, b)(y − b)+ f(a, b).

These concepts can be generalized to
functions with an arbitrary number of vari-
ables. We call the set of points of the space
R

p+1 that satisfy the equality a1x1 + . . . +
ap+1xp+1 = b a hyperplane ofRp+1, where
at least one of the coefficients a1, . . . , ap+1

is nonzero.
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Definition 1.75. Let f be defined in a neighborhood of the point u = (u1, . . . , up)
∈ R

p. We say that the hyperplane H ⊂ R
p+1 is the tangent hyperplane of the graph

graph f at the point v = (u1, . . . , up, f(u1, . . . , up)) if S contains the point v, and
H is the graph of a first-degree polynomial g that satisfies

lim
x→u

(f(x) − g(x))/|x − u| = 0.

It is easy to see that the graph of f has a tangent hyperplane at the point v if and
only if f is differentiable at u. In this case, the equation of the tangent hyperplane
is xp+1 = 〈f ′(a), x − a〉 + f(a).

Note that the concept of the tangent and the tangent plane can be defined for
every subset of Rp. The tangent and the tangent plane of the graph of a function are
just special cases of the general definition. The reader can find more on this in the
appendix of this chapter.

Let f be defined in a neighborhood of a ∈ R
p, and let v ∈ R

p be a unit vector.
The function t �→ f(a + tv) (t ∈ R) is defined in a neighborhood of 0. The value
of f(a + tv) is the height of the graph of the function f at the point a + tv. (If
p = 2, then the graph of the function t �→ f(a + tv) can be illustrated by intersect-
ing the graph of f by the vertical plane containing the line a + tv (t ∈ R) and the
point (a, f(a)) of the graph.) In this way, t �→ f(a + tv) describes the “climbing”
we do as we start from the point (a, f(a)) on the graph of f and walk in the direc-
tion of v. Intuitively it is clear that the derivative of the function t �→ f(a + tv)
at the point 0 (if it exists) tells us how steep a slope we need to climb at the
point (a, f(a)). We are descending when the derivative is negative, and ascending

1.16. Figure

when the derivative is positive.

Definition 1.76. Let v ∈ R
p be a unit vec-

tor. We call the derivative of the function
t �→ f(a + tv) at the point 0 (if it exists) the
directional derivative of the function f at
the point a and in the direction v. Notation:
∂f
∂v (a) or Dvf(a). In other words,

Dvf(a) = lim
t→0

f(a + tv) − f(a)
t

,

assuming that the limit exists.

Theorem 1.77. If the function f is differ-
entiable at a ∈ R

p, then the single-variable
function t �→ f(a + tv) is differentiable at 0
for every vector v ∈ R

p, and its derivative is
〈f ′(a), v〉. In particular, if |v| = 1, then the
directional derivative Dvf(a) exists and its
value is Dvf(a) = 〈f ′(a), v〉.
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Proof. By Corollary 1.68 we have

f(a + tv) = f(a) + 〈f ′(a), tv〉 + ε(a + tv) · |tv|,

i.e.,
f(a + tv) − f(a)

t
= 〈f ′(a), v〉 ± ε(a + tv) · |v|

for every t �= 0 satisfying a + tv ∈ D(f). Since limx→a ε(x) = 0 implies limt→0

ε(a + tv) = 0, we have (f(a + tv) − f(a))/t → 〈f ′(a), v〉 as t → 0. Thus we have
proved the first statement of the theorem. The second statement is obvious from the
first one. �
Remark 1.78. 1. The partial derivative Dif(a) is the same as the directional deriv-
ative in the direction vi, where vi is the vector whose coordinates are all zero
except for its ith coordinate, which is 1. This follows directly from the defini-
tions. Furthermore, if f is differentiable at a, this also follows from the formula
Dvf(a) = 〈f ′(a), v〉.
2. Suppose that at least one of the partial derivatives Dif(a) is nonzero, i.e.,
the derivative vector f ′(a) is not the zero vector. If |v| = 1, then 〈f ′(a), v〉 =
|f ′(a)| · cos α, where α is the angle between vectors f ′(a) and v (see page 3). There-
fore, 〈f ′(a), v〉 ≤ |f ′(a)|, and equality holds only if the directions of the vectors v
and f ′(a) are the same. In other words, the “climbing” of the graph of f is the steep-
est in the direction of the vector f ′(a). Because of this, we also call the derivative
vector f ′(a) the gradient.
3. It is possible that the directional derivative Dvf(a) exists for every |v| = 1 yet f
is not differentiable at a (see Exercise 1.89).

As an important corollary of Theorem 1.77, we obtain the mean value theorem
for multivariable functions.

Theorem 1.79. (Mean value theorem) Let the function f be differentiable at the
points of the segment [a, b], where a, b ∈ R

p. Then

(i) the single-variable function F (t) = f(a + t(b − a)) (t ∈ [0, 1]) is differen-
tiable in [0, 1], F ′(t) = 〈f ′(a + t(b − a)), b − a〉 for every t ∈ [0, 1], and

(ii) there exists a point c ∈ [a, b] such that f(b) − f(a) = 〈f ′(c), b − a〉.
Proof. Let t0 ∈ [0, 1], and apply Theorem 1.77 to the point a + t0(b − a) and the
vector v=b−a. We find that the function

t �→f(a + (t0 + t)(b − a))

is differentiable at the point 0, and its derivative is 〈f ′(a + t0(b − a)), b − a〉 there.
Thus F ′(t0) = 〈f ′(a + t0(b − a)), b − a〉, which proves (i).

By the single-variable version of the mean value theorem, there exists a point
u ∈ [0, 1] such that F (1) − F (0) = F ′(u). Since F (0) = f(a) and F (1) = f(b),
by applying (i) we have f(b) − f(a) = 〈f ′(c), b − a〉, where c = a + u(b − a). �
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Exercises

1.80. Which of the following functions are differentiable at the origin?

(a)
√

x2 + y2; (b)
√|x2 − y2|;

(c)
√|x3 − y3|; (d)

√|x3 + y3|;
(e)

√|x2y + xy2|;
(f) f(x, y) = xy/

√
x2 + y2, f(0, 0) = 0;

(g) 3
√

x3 + y3; (h) 3
√

x3 + y4 (H S);

(i) x · √|y|;
(j) f(x, y) = xy(x2 − y2)/(x2 + y2), f(0, 0) = 0;
(k) f(x, y) = (x3 + y5)/(x2 + y4), f(0, 0) = 0;
(l) f(x, y) = x2 · sin(x2 + y2)−1, f(0, 0) = 0;

(m) f(x, y) = x3

x2+y2 , f(0, 0) = 0; (n)
3
√

x2y5√
x2+y2

, f(0, 0) = 0.

(o) f(x, y) = x · sin 1
y , f(x, 0) = 0.

1.81. Let f(x, y) = |x|α · |y|β if xy �= 0, and let f(x, y) = 0 if xy = 0. For what
values of α, β is f differentiable at the origin? For what values of α, β is f differ-
entiable everywhere?

1.82. Show that if f : R → R is differentiable at a, then the function g(x, y) = f(x)
is differentiable at (a, b) for every b. (S)

1.83. For what functions f : R2 → R will the function x · f(x, y) be differentiable
at the origin?

1.84. Show that if the function f : R2 → R is differentiable at the origin, then for
every c∈R the single-variable function g(x)=f(x, cx) is differentiable at 0.

1.85. Show that if the function f : Rp → R is differentiable at a and f(a) =
D1f(a) = . . . = Dpf(a) = 0, then f · g is also differentiable at a for every bounded
function g : R → R.

1.86. True or false? If f is differentiable at a ∈ R
2 and f has a strict local minimum

at a restricted to every line going through a, then f has a strict local minimum at
a. (H)

1.87. Find the directional derivatives of f(x, y) = 3
√

x3 + y3 at the origin. Can we
choose the vector a such that the directional derivative in the direction u equals
〈a, u〉 for every |u| = 1? Prove that f is not differentiable at the origin.

1.88. Find the directional derivatives of f(x, y) = x3

x2+y2 , f(0, 0) = 0, at the ori-
gin. Can we choose a vector a such that the directional derivative in the direction u
equals 〈a, u〉 for every |u| = 1?
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1.89. Construct two-variable functions f whose every directional derivative at the
origin is 0, but

(a) f is not differentiable at the origin,
(b) f is not continuous at the origin,
(c) there does not exist a neighborhood of the origin on which f is bounded.

1.90. Let G ⊂ R
p be a connected open set, and let f : Rp → R be differentiable.

Show that if f ′(x) = 0 for every x ∈ G, then f is a constant function. (H)

1.91. Let f : R
2 → R be differentiable in the plane, and let D1f(x, x) =

D2f(x, x) = 0, for every x. Show that f(x, x) is a constant function.

1.92. Let the real functions f and g be differentiable at the point a ∈ R
p. Find a

formula for the partial derivatives of the functions f · g and (when g(a) �= 0) of f/g
at the point a in terms of the partial derivatives of f and g.

1.93. Verify that the gradient of
√

x2 + y2 at (a, b) �= (0, 0) is parallel to and points
in the same direction as (a, b). Why is this obvious intuitively?

1.94. Verify that the gradient of
√

1 − x2 − y2 at the point (a, b) is parallel to and
points in the opposite direction as (a, b) when 0 < a2 + b2 < 1. Why is this obvious
intuitively?

1.95. Let a, b > 0, and let Ta,b denote the tetrahedron bounded by the xy, xz, yz
coordinate planes and by the tangent plane of the graph of the function f(x, y) =
1/(xy) at the point (a, b). Show that the volume of Ta,b is independent of a and b.

1.9 Higher-Order Derivatives

Definition 1.80. Let f be defined in a neighborhood of a ∈ R
p. If the partial deriv-

ative Djf exists in a neighborhood of a and the ith partial derivative of Djf exists
at a, then we call this the ijth second-order partial derivative of the function f at
the point a, and we use any of the following notations:

∂2f

∂xi∂xj
(a), f ′′

xjxi
(a), fxjxi

(a), DiDjf(a), Dijf(a).

(The function f has at most p2 different second-order partial derivatives at the
point a.)
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Example 1.81. 1. The partial derivatives of the two-variable function f(x, y) =
sin(x2y) exist everywhere, with D1f(x, y) = cos(x2y) · (2xy) and D2f
(x, y) = cos(x2y) · x2 for every (x, y). Since the partial derivatives of these func-
tions exist everywhere, each of f ’s four second-order derivatives exist everywhere,
with

D11f(x, y) = D1D1f(x, y) = − sin(x2y) · 4x2y2 + cos(x2y) · 2y,

D21f(x, y) = D2D1f(x, y) = − sin(x2y) · 2x3y + cos(x2y) · 2x,

D12f(x, y) = D1D2f(x, y) = − sin(x2y) · 2x3y + cos(x2y) · 2x,

D22f(x, y) = D2D2f(x, y) = − sin(x2y) · x4.

Note that D12f(x, y) = D21f(x, y) everywhere. This is surprising, since there is
no obvious reason why the two calculations should lead to the same results. Our
next example shows that D12f = D21f is not always true.
2. Let f(x, y) = xy · (x2 − y2)/(x2 + y2) if (x, y) �= (0, 0), and let f(0, 0) = 0.
First we prove that the partial derivative D1f exists everywhere. The section f0 is
zero everywhere, and thus D1f(x, 0) exists for every x, and its value is zero every-
where. If b �= 0, then the section f b is differentiable everywhere; thus D1f(x, b)
also exists for every x. If b �= 0, then

D1f(0, b) = lim
x→0

f(x, b) − f(0, b)

x
= lim

x→0

xb · (x2 − b2)

(x2 + b2) · x = b · lim
x→0

x2 − b2

x2 + b2
= −b.

We have shown that D1f(x, y) exists everywhere, and D1f(0, y) = −y for every
y. It follows that D21f(0, 0) = D2D1f(0, 0) = −1.

Now let us consider the partial derivatives D2f . The section f0 is zero every-
where, and thusD2f(0, y) exists for all y, and its value is zero everywhere. If a �= 0,
then fa is differentiable everywhere; thusD2f(a, y) also exists for every y. If a �= 0,
then

D2f(a, 0) = lim
y→0

f(a, y) − f(a, 0)
y

= lim
y→0

ay · (a2 − y2)
(a2 + y2) · y

= a · lim
y→0

a2 − y2

a2 + y2
= a.

We have shown that D2f(x, y) exists everywhere, and D2f(x, 0) = x for every x.
It follows thatD12f(0, 0) = D1D2f(0, 0) = 1, and thusD12f(0, 0) �= D21f(0, 0).
�

The following theorem explains whyD12f = D21f was true for Example 1.81.1.

Theorem 1.82. (Young’s16 theorem) Let f(x, y) be a two-variable function. If
the partial derivative functions D1f(x, y) and D2f(x, y) exist in a neighborhood
of (a, b) ∈ R

2 and they are differentiable at (a, b), then D12f(a, b) = D21f(a, b).

16 William Henry Young (1863–1942), British mathematician.
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Lemma 1.83.

(i) If the partial derivative D1f(x, y) exists in a neighborhood of (a, b) and it is
differentiable at (a, b), then

lim
t→0

f(a + t, b + t) − f(a + t, b) − f(a, b + t) + f(a, b)
t2

= D21f(a, b).
(1.20)

(ii) If the partial derivative D2f(x, y) exists in a neighborhood of (a, b) and it is
differentiable on (a, b), then

lim
t→0

f(a + t, b + t) − f(a + t, b) − f(a, b + t) + f(a, b)
t2

= D12f(a, b).
(1.21)

Proof. (i) Let us use the notation

H(t) = (f(a + t, b + t) − f(a + t, b)) − (f(a, b + t) − f(a, b))

and, for a fixed t, F (u) = f(u, b + t) − f(u, b). Clearly, H(t) = F (a + t) − F (a).
The main idea of the proof is to use the mean value theorem for the latter formula,
and then use the differentiability of D1f at a to show that H(t) is close to D21f(a) ·
t2 when t is small.

Let ε > 0 be fixed. Since D1f(x, y) is differentiable at (a, b), we can choose
δ > 0 such that

∣∣D1f(x, y) − (D11f(a, b)(x − a) + D21f(a, b)(y − b) + D1f(a, b))
∣∣ ≤

≤ ε · (|x − a| + |y − b|) (1.22)

holds for every point (x, y) ∈ B((a, b), δ).

1.17. Figure

Let 0 < |t| < δ/2 be fixed. The func-
tion F is differentiable in the interval
[a, a + t], since u ∈ [a, a + t] implies

(u, b + t) ∈ B((a, b), δ)

and
(u, b) ∈ B((a, b), δ).

Furthermore, the sections f b+t and
f b are differentiable at [a, a + t], with
derivatives D1f(u, b + t) and D1f(u, b),
respectively. Thus F ′(u) = D1f(u, b +
t) − D1f(u, b) for every u ∈ [a, a + t]. By the mean value theorem we have

F (a + t) − F (a) = (D1f(c, b + t) − D1f(c, b)) · t
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for an appropriate choice of c ∈ [a, a + t], and thus

H(t) = (D1f(c, b + t) − D1f(c, b)) · t. (1.23)

Plugging (x, y) = (c, b + t) and (x, y) = (c, b) into (1.22), we get

∣∣D1f(c, b + t) − (D11f(a, b)(c − a)+D21f(a, b)t + D1f(a, b))
∣∣ ≤

≤ ε · (|c − a| + |t|) ≤ 2ε · t

and

∣∣D1f(c, b) − (D11f(a, b)(c − a)+D1f(a, b))
∣∣ ≤

≤ ε · |c − a| ≤ ε · |t|,

respectively. Applying the triangle inequality yields

|D1f(c, b + t) − D1f(c, b) − D21f(a, b)t| ≤ 3ε · |t|.

Comparing with (1.23), we get

∣∣∣∣
H(t)
t2

− D21f(a, b)
∣∣∣∣ ≤ 3ε.

Since ε was arbitrary, and this is true for every 0 < |t| < δ/2, (1.20) is proved.
(ii) Let 0 < |t| < δ/2 be fixed, and let G(v) = f(a + t, v) − f(a, v) for every
v for which f is defined at the points (a + t, v) and (a, v). We have H(t) =
G(b + t) − F (b) for every t small enough. Repeating the steps of the proof of (i),
we get (1.21). �

Proof of Theorem 1.82. By the assumptions of the theorem, the conditions of both
statements of Lemma 1.83 are satisfied. Therefore, both of (1.20) and (1.21) hold,
and thus D12f(a, b) = D21f(a, b). �

Let us revisit Example 1.81.1. One can see that the second-order partial deriv-
atives of f are continuous everywhere. By Theorem 1.71 this implies that the
first-order partial derivatives of f are differentiable. Thus, by Young’s theorem,
D12f = D21f everywhere.

Definition 1.84. Let f be differentiable in a neighborhood of a ∈ R
p. If the partial

derivative functions of f are differentiable at a, then we say that f is twice differen-
tiable at the point a.

Lemma 1.85. Let p > 2, let f be defined in a neighborhood of a = (a1, a2, . . . , ap)
∈ R

p, and consider the section

g(u, v) = f(u, v, a3, . . . , ap).
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If f is twice differentiable at a, then g is twice differentiable at (a1, a2) ∈ R
2. Fur-

thermore, D21g(a1, a2) = D21f(a) and D12g(a1, a2) = D12f(a).

Proof. From the definition of the partial derivative, we have D1g(u, v) = D1

f(u, v, a3, . . . , ap) andD2g(u, v) = D2f(u, v, a3, . . . , ap)whenever the right-hand
sides exist. Thus, D1g and D2g are defined in a neighborhood of (a1, a2). By
assumption, D1f is differentiable at a, and thus

D1f(x) = D1f(a) +
p∑

i=1

Di1f(a)(xi − ai) + ε(x) · |x − a|,

where ε(x) → 0 as x → a. Applying this with x = (u, v, a3, . . . , ap), we obtain

D1g(u, v) =D1g(a1, a2) + D11f(a)(u − a1) + D21f(a)(v − a2)+
+ ε(u, v, a3, . . . , ap) · |(u, v) − (a1, a2)|.

Since ε(u, v, a3, . . . , ap) → 0 if (u, v) → (a1, a2), it follows that D1g is differen-
tiable at (a1, a2), and D21g(a1, a2) = D21f(a). Similarly, D2g is differentiable at
(a1, a2), and D12g(a1, a2) = D12f(a). �

Theorem 1.86. If f is twice differentiable at a ∈ R
p, then Dijf(a) = Djif(a) for

every i, j = 1, . . . , p.

Proof. We may assume i �= j. Since the role of the coordinates is symmetric, we
may also assume, without loss of generality, that i = 1 and j = 2. Consider the
section

g(u, v) = f(u, v, a3, . . . , ap).

Combining Young’s theorem and our previous lemma yields D12g(a1, a2) = D21

g(a1, a2), and thus D12f(a) = D21f(a). �

Definition 1.87. We define the kth-order partial derivatives recursively on k.
Assume that we have already defined the kth-order partial derivatives of the function
f . Then we define the (k + 1)st-order partial derivatives as follows.

Let 1 ≤ i1, . . . , ik+1 ≤ p be arbitrary indices, and suppose that the kth-order
partial derivative Di2...ik+1f(x) exists and is finite in a neighborhood of a ∈ R

p.
If the i1th partial derivative of the function x �→ Di2...ik+1f(x) exists at a, then
we call this the (k + 1)st-order partial derivative of f at a, and use the notation
Di1...ik+1f(a). (Obviously, f has at most pk different kth-order partial derivatives
at a.)

Some other usual notation for Di1...ikf(a):

∂kf

∂xi1 . . . ∂xik

(a), f (k)
xik

...xi1
(a), fxik

...xi1
(a), Di1 . . . Dikf(a).
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Definition 1.88. Suppose that we have already defined k-times differentiability.
(We did so in the cases of k = 1 and k = 2.) We say that a function f is (k + 1)
times differentiable at a ∈ R

p if f is k times differentiable on a neighborhood of a,
furthermore, every kth-order partial derivative of f exists and is finite in a neighbor-
hood of a, and these partial derivatives are differentiable at a.

Thus, we have defined k times differentiability for every k.
We say that a function f is infinitely differentiable at a if f is k times differen-

tiable at a for every k = 1, 2, . . ..

Remark 1.89. It follows from Theorem 1.67 that if f is k times differentiable at a,
then every kth-order partial derivative of f exists and is finite at a.

Theorem 1.90. The polynomials are infinitely differentiable everywhere. The ratio-
nal functions are infinitely differentiable at every point of their domains.

Proof. By Corollary 1.72, polynomials are differentiable everywhere. Suppose we
have already proved that polynomials are k times differentiable. Since the kth-order
partial derivatives of a polynomial are also polynomials, these are differentiable,
showing that the polynomials are also (k + 1) times differentiable. Thus, the poly-
nomials are infinitely differentiable.

The proof for rational functions is similar. �

Theorem 1.91. Let the function f be k times differentiable at a ∈ R
p. If the ordered

k-tuples (i1, . . . , ik) and (j1, . . . , jk) are permutations of each other (i.e., each i =
1, . . . , p appears the same number of times in both k-tuples), then Di1...ikf(a) =
Dj1...jkf(a).

Proof. The statement is trivial for the k = 1 case, and the k = 2 case is covered
by Theorem 1.86. For k > 2, the statement can be proved by induction by applying
Theorem 1.86. �

Exercises

1.96. Find every function f : R2 → R such that D2(D1f) is zero everywhere. (H)

1.97. Young’s theorem implies that the function f(x, y) = xy · (x2 − y2)/(x2 +
y2), f(0, 0) = 0, cannot be twice differentiable at the origin. Verify, without using
the theorem, that D1f is not differentiable at the origin.

1.98. For what values of α, β > 0 is |x|α · |y|β twice differentiable at the origin?

1.99. Show that if D12f and D21f exist in a neighborhood of (a, b) and are contin-
uous at (a, b), then D12f(a, b) = D21f(a, b).
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1.100. Let the partial derivatives D1f , D2f , and D12f exist in a neighborhood of
(a, b), and let D12f be continuous at (a, b). Show that D21f(a, b) exists and is equal
to D12f(a, b) (Schwarz’s theorem).

1.101. Let f : R2 → R be twice differentiable everywhere. Show that if D21f is
nonnegative everywhere, then f(b, d) − f(a, d) − f(b, c) + f(a, c) ≥ 0 for every
a < b and c < d.

1.10 Applications of Differentiation

The most important applications of differentiation—in the cases of multi- and
single-variable functions alike—is the analysis of functions, finding the greatest
and the smallest values, and finding good approximations using simpler functions
(e.g., polynomials).

Since each of the applications below is based on Taylor17 polynomials, our first
task is to define these polynomials for p-variable functions and establish their most
important properties. This proves to be surprisingly simple. The notation in the mul-
tivariable case is necessarily more complicated, but the notion of the Taylor polyno-
mials, as well as their basic properties, is basically the same as in the single-variable
case.

By a monomial we mean a product of the form c · xs1
1 · · · xsp

p , where c is a
nonzero real number and the exponents s1, . . . , sp are nonnegative integers.

The degree of the monomial c · xs1
1 · · · xsp

p is s1 + . . . + sp. Every p-variable
polynomial can be written as the sum of monomials. Obviously, if a polynomial is
not the constant zero function, then it can be written in a way that the p-element
sequences of the exponents of its corresponding monomials are distinct. By induc-
tion on p one can easily prove that this representation of the polynomials is unique.
We call it the canonical form of the polynomial.

We say that the degree of a nonidentically zero polynomial is the highest degree
of the monomials in its canonical form. The constant zero polynomial does not have
a degree. Still, when we speak about the set of polynomials of degree at most n, we
will include the identically zero polynomial among them.

Lemma 1.92. Let

g(x) =
∑

s1,...,sp≥0
s1+...+sp≤n

cs1...sp
· (x1 − a1)s1 · · · (xp − ap)sp . (1.24)

Then g(a) = c0...0, and furthermore, for every k ≤ n and 1 ≤ i1, . . . , ik ≤ p we
have

Di1...ikg(a) = s1! · · · sp! · cs1...sp
, (1.25)

17 Brook Taylor (1685–1731), English mathematician.
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where s1, . . . , sp denotes the number of indices of 1, . . . , p in the sequence
(i1, . . . , ik).

Proof. The equality g(a) = c0...0 is obvious. Let the indices 1 ≤ i1, . . . , ik ≤ p be
fixed, with k ≤ n. For simplicity, we write D instead of Di1...ik . It is easy to see
that if g1 and g2 are polynomials, then D(g1 + g2) = Dg1 + Dg2 and D(λg1) = λ ·
Dg1 for every λ ∈ R. Thus, the kth-order partial derivative Dg(a) can be computed
by applying D to each of the terms on the right-hand side of (1.24) and summing
the values of the resulting partial derivatives at the point a. Consider the kth-order
partial derivative

D(x1 − a1)t1 · · · (xd − ad)tp (1.26)

and its value at a: (D(x1 − a1)t1 · · · (xd − ad)tp
)
(a). (1.27)

It is easy to see that if the index i is present in the sequence (i1, . . . , ik) more than
ti times, then 1.26 is constant and equal to zero. On the other hand, if there is an
index i such that i is present in the sequence (i1, . . . , ik) fewer than ti times, then
the polynomial 1.26 is divisible by xi − ai, and thus the value of (1.27) is zero.
Therefore, in applying D to the right-hand side of (1.24) and taking its value at a,
we get a nonzero term only if (t1, . . . , tp) = (s1, . . . , sp).

Furthermore, since D(x1 − a1)s1 · · · (xd − ad)sp is equal to the constant func-
tion s1! · · · sp!, it follows that (1.25) holds. �

Let f be n times differentiable at a. By Theorem 1.91, if n ≤ k, then the kth-
order partial derivative Di1...ikf(a) does not depend on the order of the indices
i1, . . . , ik, and only on the number of times these indices are present in the sequence
(i1, . . . , ik). Let s1, . . . , sp be nonnegative integers, with s1 + . . . + sp ≤ n. We
denote by Ds1...spf(a) the number Di1...ikf(a), where the indices 1, . . . , p are
present in the sequence (i1, . . . , ik) exactly s1, . . . , sp times, respectively. Let
D0...0f(a) = f(a).

Theorem 1.93. Suppose that the function f is n times differentiable at
a = (a1, . . . , ap) ∈ R

p, and let

tn(x) =
∑

s1,...,sp≥0
s1+...+sp≤n

1
s1! · · · sp!

· Ds1...spf(a) · (x1 − a1)s1 · · · (xp − ap)sp . (1.28)

The polynomial tn is the only polynomial of degree at most n such that tn(a) =
f(a), and

Di1...iktn(a) = Di1...ikf(a) (1.29)

for every 1 ≤ k ≤ n and 1 ≤ i1, . . . , ik ≤ p.

Proof. It follows from Lemma 1.92 that tn(a) = f(a) and (1.29) holds for the poly-
nomial tn.
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Let g be a polynomial of degree at most n, and suppose that g satisfies g(a) =
f(a) and Di1...ikg(a) = Di1...ikf(a) for every k ≤ n and 1 ≤ ij ≤ p (1 ≤ j ≤ k).
Then the polynomial q = g(x1 + a1, . . . , xp + ap) has degree at most n. Write q
as the sum of the monomials c · xs1

1 · · · xsp
p (with c �= 0). Then s1 + . . . + sp ≤ n

holds for each term. If we replace xi by xi − ai in g for every i = 1, . . . , p, then we
get that (1.24) is true for suitable coefficients cs1...sp

. Then by Lemma 1.92 we have

s1! · · · sp! · cs1...sp
= Di1...ikg(a) = Di1...ikf(a)

for every (i1, . . . , ik), i.e., g = tn. �
We can see that

t1(x) = f(a) + D1f(a) · (x1 − a1) + . . . + Dpf(a) · (xp − ap),

i.e., the graph of the polynomial t1 is the tangent plane of graph f at (a, f(a)).
The polynomial t2 in the cases p = 2 and p = 3 can be written as follows:

t2(x, y) = f(a, b) + f ′
x(a, b) · (x − a) + f ′

y(a, b) · (y − b)+

+
1
2

· f ′′
xx(a, b) · (x − a)2 + f ′′

xy(a, b) · (x − a)(y − b) +
1
2

· f ′′
yy(a, b) · (y − b)2,

or

t2(x, y, z) = f(a, b, c) + f ′
x(a, b, c) · (x − a) + f ′

y(a, b, c) · (y − b)+

+ f ′
z(a, b, c) · (z − c)+

+
1
2

· f ′′
xx(a, b, c) · (x − a)2+

+
1
2

· f ′′
yy(a, b, c) · (y − b)2 +

1
2

· f ′′
zz(a, b, c) · (z − c)2+

+ f ′′
xy(a, b, c) · (x − a)(y − b) + f ′′

xz(a, b, c) · (x − a)(z − c)+

+ f ′′
yz(a, b) · (y − b)(z − c),

respectively.

Remark 1.94. If the function f is n times differentiable at a, then the polynomial in
(1.28) can be written in the following alternative form:

tn(x) = f(a) +
p∑

i=1

Dif(a) · (xi − ai)+

+
1
2!

p∑
i1,i2=1

Di1i2f(a) · (xi1 − ai1)(xi2 − ai2) + . . . + (1.30)

+
1
n!

p∑
i1,...,in=1

Di1...inf(a) · (xi1 − ai1) · · · (xin − ain).
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Indeed, suppose that the index i occurs in the sequence (i1, . . . , ik) exactly si times
(i = 1, . . . , p). Then s1, . . . , sp are nonnegative integers with s1 + . . . + sp = k. It
is well known (and easy to show) that the number of possible permutations of the
sequence (i1, . . . , ik) is k!

s1!···sp!
. Using the notation of Theorem 1.93, we can see

that the term Ds1...sp(x1 − a1)s1 · · · (xp − ap)sp occurs k!
s1!···sp!

times on the right-
hand side of (1.30). This proves that (1.28) and (1.30) define the same polynomial.

Definition 1.95. We call the polynomial tn defined by (1.28) (or by (1.30)) the nth
Taylor polynomial of the function f at the point a.

The following notion makes it possible to represent the multivariable Taylor poly-
nomials in a simple form similar to that in the single-variable case.

Definition 1.96. If the function f is n times differentiable at a ∈ R
p, then we call

the polynomial

∑
s1,...,sp≥0

s1+...+sp=k

k!
s1! · · · sp!

· Ds1...spf(a) · xs1
1 · · · xsp

p =

=
p∑

i1,...,ik=1

Di1...ikf(a) · xi1 · · · xik (1.31)

the kth differential of the function f at a, and we use the notation dkf(a) (k ≤ n).
Thus dkf(a) is not a real number, but a p-variable polynomial. If b = (b1, . . . , bp) ∈
R

p, then dkf(a)(b) is the value the polynomial dkf(a) takes at b; that is,

dkf(a)(b) =
p∑

i1,...,ik=1

Di1...ikf(a) · bi1 · · · bik .

For p = 2 and k = 2 we have

d2f(a)(b) = f ′′
xx(a)b21 + 2f ′′

xy(a)b1b2 + f ′′
yy(a)b22.

We can write the nth Taylor polynomial in the form

tn(x) = f(a) + d1f(a)(x − a) +
1
2!

d2f(a)(x − a) + . . . +
1
n!

dnf(a)(x − a)

using differentials. Again, dkf(a)(x − a) is the value dkf(a) takes at x − a.

Theorem 1.97. (Taylor’s formula) Let the function f be (n + 1) times differen-
tiable at the points of the segment [a, b], where a, b ∈ R

p. Then there exists a point
c ∈ [a, b] such that
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f(b) = tn(b) +
1

(n + 1)!
dn+1f(c)(b − a). (1.32)

Lemma 1.98. Let the function f be n times differentiable at the points of the seg-
ment [a, b], where a, b ∈ R

p. If F (t) = f(a + t · (b − a)) (t ∈ [0, 1]), then the func-
tion F is n times differentiable on the interval [0, 1], and

F (k)(t) = dkf(a + t(b − a))(b − a) (1.33)

for every k ≤ n and t ∈ [0, 1].

Proof. We prove the lemma by induction on k. If k = 0, then the statement is
true, since F (0)(t) = F (t) = f(a + t(b − a)), and d0f(a + t(b − a)) is the con-
stant polynomial f(a + t(b − a)). If k = 1, then (1.33) is exactly part (i) of Theo-
rem 1.79.

Let 1 ≤ k < n, and suppose that (1.33) is true for every t ∈ [0, 1]. By the defini-
tions of the differential dkf , we have

F (k)(t) =
p∑

i1,...,ik=1

Di1...ikf(a + t(b − a)) · (bi1 − ai1) · · · (bik − aik) (1.34)

for every t ∈ [0, 1]. Since f is n > k times differentiable at the points of [a, b], every
kth-order partial derivative Di1...ikf is differentiable there. By part (i) of Theo-
rem 1.79, the function t �→ Di1...ikf(a + t(b − a)) is differentiable at [0, 1], and its
derivative is

p∑
i=1

Di,i1...ikf(a + t(b − a)) · (bi − ai).

This holds for every term on the right-hand side of (1.34). Thus F (k) is differentiable
at [0, 1], and its derivative is

F (k+1)(t) =
p∑

i1,...,ik+1=1

Di1...ik+1f(a + t(b − a)) · (bi1 − ai1) · · · (bik+1 − aik+1).

Therefore, (1.33) holds for (k + 1), and (1.33) has been proved for every
k ≤ n. �

Proof of Theorem 1.97. Let F (t) = f(a + t · (b − a)), for every t ∈ [0, 1]. By
Lemma 1.98, F is (n + 1) times differentiable on the interval [0, 1], and (1.33)
holds for every k ≤ n + 1 and t ∈ [0, 1]. If we apply (the single-variable version of)
Taylor’s formula with Lagrange remainder (see [7, 13.7]), we get (1.32). �

Theorem 1.99. Let the function f be n times differentiable at a = (a1, . . . , ap) ∈
R

p, and let tn be the nth Taylor polynomial of f at a. Then
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lim
x→a

f(x) − tn(x)
|x − a|n = 0. (1.35)

Conversely, if a polynomial q with degree at most n satisfies

lim
x→a

f(x) − q(x)
|x − a|n = 0, (1.36)

then q = tn. (In other words, among the polynomials of degree at most n, tn is the
one that approximates the function f best locally at the point a.)

Proof. For n = 1, equation (1.35) is exactly the definition of differentiability of f
at a. Thus, we may assume that n ≥ 2.

Let f be n times differentiable at a. The function g = f − tn is also n times
differentiable at a, and by Theorem 1.93, the partial derivatives of g of order at most
n are all zero at a. The (n − 1)st-order partial derivatives of g are differentiable at
a, and for the same reason as we mentioned above, both their values at a and the
values of their partial derivatives at a are zero. By the definition of differentiability,
for every ε > 0 there exists δ > 0 such that if |x − a| < δ, then

∣∣Di1...in−1g(x)
∣∣ ≤ ε · |x − a| (1.37)

for every 1 ≤ ij ≤ p (j = 1, . . . , n − 1). Let us apply the (n − 2)nd Taylor formula
for g. We find that for every x ∈ B(a, δ) there exists c ∈ [a, x] such that

g(x) =
1

(n − 1)!
dn−1g(c)(x − a) =

=
1

(n − 1)!
·

p∑
i1,...,in−1=1

Di1...in−1g(c)(xi1 − ai1) · · · (xin−1 − ain−1).

Since |c − a| < δ, it follows from (1.37) that

|g(x)| ≤ pn−1

(n − 1)!
· ε · |c − a| · |x − a|n−1 ≤ pn−1

(n − 1)!
· ε · |x − a|n.

This implies
|f(x) − tn(x)|

|x − a|n ≤ pn−1

(n − 1)!
· ε

for every 0 < |x − a| < δ. Since ε was arbitrary, (1.35) has been proved.
Now let’s assume that (1.36) holds for a polynomial q with degree at most n.

Then r = q − tn is a polynomial of degree at most n, and

lim
x→a

r(x)/|x − a|n = 0. (1.38)
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We need to prove that r is the constant zero function. If p = 1, then (1.38) implies
that a is a root of r with multiplicity at least (n + 1). Since the degree of r is at most
n, this is possible only if r is identically zero.

Let p > 1 and let s(t) = r(a + ty) (t ∈ R), where y is a fixed p-dimensional
nonzero vector. It is obvious that s is a polynomial in the variable t of degree at
most n. Applying Theorem 1.49 on the limit of composite functions, we obtain
limt→0 s(t)/|ty|n = 0 and limt→0 s(t)/|t|n = 0. As we saw above, this implies that
s(t) = 0 for every t. Then r(a + y) = s(1) = 0 for every vector y ∈ R

p, y �= 0.
Thus r ≡ 0, since r is continuous at the point a. �

Let f be a function of one variable, and suppose that f is twice differentiable at
the point a ∈ R. It is well known that if f ′(a) = 0 and f ′′(a) > 0, then f has a strict
local minimum at the point a, and if f ′(a) = 0 and f ′′(a) < 0, then f has a strict
local maximum at the point a. (See [7, Theorem 12.60].) This implies that if f has a
local minimum at the point a, then necessarily f ′′(a) ≥ 0. The following application
of Taylor’s formula gives a generalization of these results to multivariable functions.

To state our theorem, we need to introduce a few concepts from the field of
algebra. We say that a p-variable polynomial is a quadratic form if every term of
its canonical form is of degree two. In other words, a polynomial is a quadratic
form if it can be written as

∑p
i,j=1 cijxixj . Note that if f is twice-differentiable

at a, then the second differential d2f(a) is a quadratic form, since d2f(a)(x) =∑p
i,j=1 Dijf(a) · xixj .

Definition 1.100. A quadratic form q is positive (negative) definite if q(x) > 0
(q(x) < 0) for every x �= 0.

A quadratic form q is positive (negative) semidefinite if q(x) ≥ 0 (q(x) ≤ 0) for
every x ∈ R

p.
A quadratic form q is indefinite if it takes both positive and negative values.

Theorem 1.101. Let f be twice differentiable at a ∈ R
p, and let Dif(a) = 0 for

every i = 1, . . . , p.

(i) If f has a local minimum (maximum) at a, then the quadratic form d2f(a) is
positive (negative) semidefinite.

(ii) If the quadratic form d2f(a) is positive (negative) definite, then f has a strict
local minimum (maximum) at a.

Proof. (i) We prove the result by contradiction. Let f have a local minimum
at a, and suppose that there exists a point x0 such that d2f(a)(x0) < 0. Since
Dif(a) = 0 for every i= 1, . . . , p, we have d1f(a)= 0, and t2(x)=f(a)+ 1

2 · d2f(a)
(x − a) for every x. According to Theorem 1.99,

lim
x→a

f(x) − t2(x)
|x − a|2 = 0. (1.39)
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For t small enough, (1.39) implies

|f(a + tx0) − t2(a + tx0)| <
|d2f(a)(x0)|

2
· t2.

On the other hand,

t2(a + tx0) = f(a) +
t2

2
· d2f(a)(x0),

and thus

f(a + tx0) < t2(a + tx0) +
|d2f(a)(x0)|

2
· t2 =

= f(a) +
t2

2
· d2f(a)(x0) +

|d2f(a)(x0)|
2

· t2 = f(a),

for every t small enough. This means that if d2f(a) takes a negative value, then f
takes a value less than f(a) in every neighborhood of a, which is a contradiction.

We can prove similarly that if f has a local maximum at a, then d2f(a) is nega-
tive semidefinite. Thus (i) is proved.

Now let d2f(a) be positive definite. The function d2f(a) is positive and con-
tinuous on the set S(0, 1) = {x ∈ R

p : |x| = 1}. Since S(0, 1) is bounded and
closed, Theorem 1.51 implies that d2f(a) takes a least value on S(0, 1). Let this
value be m; then m > 0 and d2f(a)(x) ≥ m for every x ∈ S(0, 1). If x �= 0, then
x/|x| ∈ S(0, 1), and thus

d2f(a)(x) = |x|2 · d2f(a)(x/|x|) ≥ m · |x|2. (1.40)

By (1.39), there exists δ > 0 such that |f(x) − t2(x)| < (m/2) · |x − a|2 for every
0 < |x − a| < δ. If 0 < |x − a| < δ then (1.40) implies

f(x) > t2(x) − (m/2) · |x − a|2 ≥ f(a) + 1
2

· m · |x − a|2 − (m/2) · |x − a|2 = f(a).

This proves that f has a strict local minimum at a. Similarly, if d2f(a) is negative
definite, then f has a strict local maximum at a, which proves (ii). �

Remark 1.102. 1. For p = 1, we have d2f(a)(x) = f ′′(a) · x2, which is posi-
tive definite if f ′′(a) > 0, negative definite if f ′′(a) < 0, positive semidefinite
if f ′′(a) ≥ 0, and negative semidefinite if f ′′(a) ≤ 0. (For single-variable func-
tions every quadratic form is semidefinite; there are no indefinite quadratic forms.)
Thus, (i) of Theorem 1.101 gives the statement we quoted above: if f ′(a) = 0 and
f ′′(a) > 0, then f has a strict local minimum at the point a.

Note that for p > 1, there exist indefinite quadratic forms (e.g., x1x2).
2. We show that neither of the converses of the statements of Theorem 1.101 is
true. Obviously, every first- and second-order partial derivative of the polynomial
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f(x1, . . . , xp) = x3
1 is zero at the origin. Thus the quadratic form d2f(0) is constant

and equal to zero. Consequently, it is positive semidefinite. Still, the function f
does not have a local minimum at the origin, since it takes negative values in every
neighborhood of the origin.

Now consider the polynomial g(x1, . . . , xp) = x4
1 + . . . + x4

p, which has a strict
local minimum at the origin. Since every second-order partial derivative of g is zero
at the origin, the quadratic form d2g(0) is constant and equal to zero, and is therefore
not positive definite.
3. The quadratic form ax2 + bxy + cy2 is positive definite if and only if a > 0 and
b2 − 4ac < 0. A classic theorem of abstract algebra states that for every quadratic
form (of an arbitrary number of variables) an appropriate matrix (or rather the signs
of its subdeterminants) formed from the coefficients of the quadratic form can tell
us whether the quadratic form is positive (negative) definite, or positive (negative)
semidefinite. For a mathematically precise statement see [6, Theorem 7.3.4].

A single-variable differentiable function f is convex on an interval if and only
if each of the tangents of graph f is under the graph of the function (see [7, The-
orem 12.64]). Also, a twice-differentiable function is convex on an interval if and
only if its second derivative is nonnegative everywhere on the interval (see [7, The-
orem 12.65]). Both statements can be generalized in the multivariable case.

Definition 1.103. We say that the set H ⊂ R
p is convex if H contains every seg-

ment whose endpoints are in H .

Every ball is convex. Indeed, if x, y ∈ B(a, r), then

|x + t(y − x) − a| = |(1 − t)(x − a) + t(y − a)| ≤
≤ (1 − t)|x − a| + t|y − a| <

< (1 − t)r + tr = r

for every t ∈ [0, 1], i.e., every point of the segment [x, y] is in B(a, r).
A similar argument shows that every closed ball is convex. It is also easy to see

that every open or closed box is also convex.

Definition 1.104. Let H ⊂ R
p be convex. We say that the function f : H → R is

convex on the set H if for every x, y ∈ H , the single-variable function t �→ f(x +
t(y − x)) is convex on the interval [0, 1]. That is, f is convex on H if

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y)

for every x, y ∈ H and t ∈ [0, 1].
We say that the function f : H → R is concave on the set H if −f is convex

on H .
Figure 1.18 shows an example of a convex function.
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Theorem 1.105. Let f be differentiable on the convex and open set G ⊂ R
p. The

function f is convex on G if and only if the graph of f is above the tangent hyper-
plane at the point (a, f(a)) for every a ∈ G. In other words, f is convex on G if and
only if

f(x) ≥ f(a) + 〈f ′(a), x − a〉 (1.41)

for every a, x ∈ G.

Proof. Let f be convex on G, and let a and x be different points of G. By Theo-
rem 1.79, the single-variable function F (t) = f(a + t(x − a)) is differentiable at
[0, 1], and F ′(t) = 〈f ′(a + t(x − a)), x − a〉 for every t ∈ [0, 1]. Since F is convex
on [0, 1] (by our assumption), we have

f(x) = F (1) ≥ F (0) + F ′(0) = f(a) + 〈f ′(a), x − a〉,

which is exactly (1.41). (We applied here [7, Theorem 12.64]).
Now suppose (1.41) for every a, x ∈ G. Let F be the same function as above.

We have to prove that F is convex on [0, 1]. By [7, Theorem 12.65], it is enough
to show that F (t) ≥ F (t0) + F ′(t0)(t − t0) for every t, t0 ∈ [0, 1]. Since F ′(t) =
〈f ′(a + t(x − a)), x − a〉, we have

f(a + t(x − a)) ≥ f(a + t0(x − a)) + 〈f ′(a + t0(x − a)), (t − t0) · (x − a)〉.

However, this follows from (1.41) if we apply it with a + t0(x − a) and a + t
(x − a) in place of a and x, respectively. �

Theorem 1.106. Let f be twice differentiable on the convex and open set G ⊂ R
p.

The function f is convex on G if and only if the quadratic form d2f(a) is positive
semidefinite for every a ∈ G.

Proof. Let f be convex on G, and let a and b be different points of G. By
Lemma 1.98, the function F (t) = f(a + t(b − a)) is twice differentiable on the
interval [0, 1], and F ′′(0) = d2f(a)(b − a). Since F is convex on [0, 1] (by our
assumption), we have F ′′(0) = d2f(a)(b − a) ≥ 0. This is true for every b ∈ G,
showing that d2f(a) is positive semidefinite. Indeed, since G is open, we must have
B(a, r) ⊂ G for a suitable r > 0. For every x ∈ R

p we have a + tx ∈ B(a, r) if t
is small enough, i.e., d2f(a)(tx) ≥ 0 for every t small enough. Since d2f(a)(tx) =
t2 · d2f(a)(x), it follows that d2f(a)(x) ≥ 0, and d2f(a) is positive semidefinite.

Now let d2f(a) be positive semidefinite for every a ∈ G. Let a and b be distinct
points ofG, and let F (t) = f(a + t(b − a)) (t ∈ [0, 1]). By Lemma 1.98, F is twice
differentiable on the interval [0, 1], and F ′′(t) = d2f(a + t(b − a))(b − a) ≥ 0,
since d2f(a + t(b − a)) is positive semidefinite. This implies that F is convex
on [0, 1]. Since this is true for every a, b ∈ G, a �= b, this means that f is convex
on G. �
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Remark 1.107. It is clear how to change the conditions of Theorems 1.105 and
1.106 in order to get necessary and sufficient conditions for concavity of a function.

1.18. Figure

Example 1.108. Let p = 2. The graph of the
polynomial f(x, y) = x2 + y2 is a rotated paraboloid,
since it can be obtained by rotating the graph of the
single-variable function z = x2 around the z-axis.
We show that f is convex in the plane.
For every (a, b) ∈ R

2 we have

D1,1f(a, b) = 2,

D2,1f(a, b) = D1,2f(a, b) = 0,

and D2,2f(a, b) = 2.

Thus d2f(a, b)(x, y) = 2x2 + 2y2. Since this
quadratic form is positive definite, it follows from
Theorem 1.106 that f is convex.

Exercises

1.102. What are the third Taylor polynomials of the following functions?

(a) x/y at (1, 1);
(b) x3 + y3 + z3 − 3xyz at (1, 1, 1);
(c) sin(x + y) at (0, 0);
(d) xy at (1, 0).

1.103. Find the local extremum points and also the least and greatest values (if they
exist) of the following two-variable functions:

(a) x2 + xy + y2 − 3x − 3y; (b) x3y2(2 − x − y);

(c) x3 + y3 − 9xy; (d) x4 + y4 − 2x2 + 4xy − 2y2.

1.104. Let H ⊂ R
p be convex. Show that the function f : H → R is convex if and

only if the set
{(x, y) ∈ R

p+1 : x ∈ H, y ≥ f(x)} ⊂ R
p+1

is convex.

1.105. Let G ⊂ R
p be convex and open. Show that if f : G → R is convex, then it

is continuous.
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1.106. Let G ⊂ R
p be convex and open. Show that the function f : G → R is con-

vex if and only if it is continuous and if

f

(
x + y

2

)
≤ f(x) + f(y)

2

holds for every x, y ∈ G.

1.11 Appendix: Tangent Lines and Tangent Planes

In our previous investigations we introduced the notions of tangent lines and tan-
gent planes in connection with approximations by linear functions. However, the
intuitive notion of tangent lines also involves the idea that tangents are the “limits
of the secant lines.” Let, for example, f be a one-variable function differentiable
at a. The slope of the line (the “secant”) intersecting the graph of f at the points
(a, f(a)) and (x, f(x)) is (f(x) − f(a))/(x − a). This slope converges to f ′(a) as
x → a, and thus the secant “converges” to the line with slope f ′(a) that contains
point (a, f(a)), i.e., to the tangent line. More precisely, if x converges to a from
the right or from the left, then the half-line with endpoint (a, f(a)) that intersects
(x, f(x)) “converges” to one of the half-lines that are subsets of the tangent and lie
above [a,∞) or (−∞, a], respectively. This property will be used for a more general
definition of the tangent.

Let x0 and x be different points of Rp. The half-line −−→x0x with endpoint x0 and
passing through x consists of the points x0 + t(x − x0) (t ∈ R, t ≥ 0). We say that
the unit vector (x − x0)/|x − x0| is the direction vector of this half-line. Let xn →
x0 and xn �= x0, for every n, and let (xn − x0)/|xn − x0| → v. In this case we say
that the sequence of half-lines −−−→x0xn converges to the half-line {x0 + tv : t ≥ 0}.

Let H ⊂ R
p, and let x0 ∈ H ′. If xn ∈ H \ {x0} and xn → x0, then by the

Bolzano–Weierstrass theorem (Theorem 1.9), the sequence of unit vectors
(xn − x0)/|xn − x0| has a convergent subsequence. We say that the contingent
of the set H at x0 is the set of vectors v for which there exists a sequence
xn ∈ H \ {x0} such that xn → x0 and (xn − x0)/|xn − x0| → v. We denote the
contingent of the set H at x0 by Cont (H;x0). It is clear that Cont (H;x0) �= ∅ for
every x0 ∈ H ′.

In the next three examples we investigate the contingents of curves. By a curve
we mean a map g : [a, b] → R

p (see [7, p. 380]).

Example 1.109. 1. If the single-variable function f is differentiable at a, then
Cont (graph f ; (a, f(a))) contains exactly two unit vectors, namely the vector

(
1√

1 + (f ′(a))2
,

f ′(a)√
1 + (f ′(a))2

)

with slope f ′(a) and its negative.
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2. Let g : [a, b] → R
p be a curve, and let g be differentiable at t0 ∈ (a, b) with

g′(t0) �= 0. The contingent of the set Γ = g([a, b]) at g(t0) contains the unit vec-
tors ±g′(t0)/|g′(t0)|. Indeed, if tn → t0, then

g(tn) − g(t0)
tn − t0

→ g′(t0).

We have ∣∣∣∣
g(tn) − g(t0)

tn − t0

∣∣∣∣ → |g′(t0)|,

which implies

g(tn) − g(t0)
|g(tn) − g(t0)| =

(g(tn) − g(t0))/(tn − t0)
|g(tn) − g(t0)|/(tn − t0)

→ g′(t0)
|g′(t0)|

if tn > t0. Therefore, g′(t0)/|g′(t0)| ∈ Cont (Γ, g(t0)). If tn converges to t0 from
the left-hand side, we get −g′(t0)/|g′(t0)| ∈ Cont (Γ, g(t0)) in the same way.
3. Let g be a curve that passes through the point g(t0) only once, i.e., g(t) �= g(t0)
for every t �= t0. It is easy to see that g(tn) → g(t0) is true only if tn → t0. If
we also assume that g′(t0) �= 0, then we obtain that the contingent Cont (Γ, g(t0))
consists of the unit vectors ±g′(t0)/|g′(t0)|.

The examples above motivate the following definition of the tangent.

Definition 1.110. Let x0 ∈ H ′, and let |v| = 1. We say that the line {x0 + tv : t ∈
R} is the tangent line of the set H at the point x0 if Cont (H;x0) = {v,−v}.

By this definition, the graph of the function f has a tangent line at the point
(a, f(a)) not only when f is differentiable at a, but also when f ′(a) = ∞ or f ′(a) =
−∞. On the other hand, if f ′

−(a) = −∞ and f ′
+(a) = ∞, then graph f does not

have a tangent line at (a, f(a)).
We can easily generalize Definition 1.110 to tangent planes.

Definition 1.111. Let x0 ∈ H ′, and let S be a plane containing the origin (i.e., let S
be a two-dimensional subspace). We say that a plane {x0 + s : s ∈ S} is the tangent
plane of the set H at the point x0 if Cont (H;x0) consists of exactly the unit vectors
of S.

Let the function f : R2 → R be differentiable at (a, b) ∈ R
2. It is not very dif-

ficult to show (though some computation is involved) that the contingent of the set
graph f at the point (a, b, f(a, b)) consists of the unit vectors (v1, v2, v3) ∈ R

3 for
which v3 = D1f(a, b)v1 + D2f(a, b)v2.
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Then by Definition 1.74, the plane

z = D1f(a, b)(x − a) + D2f(a, b)(y − b) + f(a, b)

is the tangent plane of the graph of f at (a, b, f(a, b)). One can see that this plane is
the tangent plane of the graph of f according to Definition 1.111 as well.

We can define the notion of tangent hyperplanes in R
p similarly. One can show

that for a graph of a function, the notion of tangent hyperplane according to Defini-
tion 1.75 corresponds to Definition 1.111, generalized to R

p.



Chapter 2
Functions from R

p to Rq

Consider a function f : H → R
q , whereH is an arbitrary set, and let the coordinates

of the vector f(x) be denoted by f1(x), . . . , fq(x) for every x ∈ H . In this way we
define the functions f1, . . . , fq , where fi : H → R for every i = 1, . . . , q. We call
fi the ith coordinate function or component of f .

The above defined concept is a generalization of the coordinate functions intro-
duced by Definition 1.47. Indeed, let f be the identity function on R

p, i.e., let
f(x) = x for every x ∈ R

p. Then the coordinate functions of f : Rp → R
p are

nothing but the functions x = (x1, . . . , xp) �→ xi (with i = 1, . . . , p).
Now let f : H → R

q with H ⊂ R
p. The coordinate functions of f are real-

valued functions defined on the set H; therefore, they are p-variable real-valued
functions. The limits, continuity, and differentiability of the function f could be
defined using the corresponding properties of f ’s coordinate functions. However, it
is easier, shorter, and more to the point to define these concepts directly for f , just
copying the corresponding definitions for real-valued functions. Fortunately, as we
shall see, the two approaches are equivalent to each other.

2.1 Limits and Continuity

Definition 2.1. Let H ⊂ E ⊂ R
p, and let a be a limit point of H . The limit of the

function f : E → R
q at a restricted to H is b ∈ R

q if for every ε > 0 there exists
δ > 0 such that |f(x) − b| < ε whenever x ∈ H and 0 < |x − a| < δ. Notation:
limx→a, x∈H f(x) = b.

If the domain of the function f is equal to H (i.e., it is not greater than H), then
we omit the part “restricted to the set H” of the definition above, and we simply say
that the limit of f at a is b, with notation limx→a f(x) = b or f(x) → b, if x → a.

c© Springer Science+Business Media LLC 2017
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Obviously, limx→a, x∈H f(x) = b if and only if for every neighborhood V of b

there exists a punctured neighborhood U̇ of a such that f(x) ∈ V if x ∈ H ∩ U̇ .

Theorem 2.2. Let H ⊂ E ⊂ R
p, let a be a limit point of H , and let b =

(b1, . . . , bq) ∈ R
q . For every function f : E → R

q , we have limx→a, x∈H f(x) = b
if and only if limx→a, x∈H fi(x) = bi (i = 1, . . . , q) holds for every coordinate
function fi of f .

Proof. The statement follows from the definitions, using the fact that for every
point y = (y1, . . . , yq) ∈ R

q, we have |y − b| ≤ |y1 − b1| + . . . + |yq − bq| and
|yi − bi| ≤ |y − b|, for each i = 1, . . . , q. �

The transference principle follows from the theorem above: limx→a, x∈Hf(x)= b
if and only if for every sequence xn ∈ H \ {a}, we have that xn → a implies
f(xn) → b. (This statement is a generalization of the corresponding one dimen-
sional theorem [7, Theorem 10.19].)

It is clear from Theorems 1.40 and 2.2 that if limx→a, x∈H f(x) = b and
limx→a, x∈H g(x) = c, where b, c ∈ R

q, then limx→a, x∈H λf(x) = λb for every
λ ∈ R. Furthermore, limx→a, x∈H(f(x) + g(x)) = b + c and limx→a, x∈H〈f(x),
g(x)〉 = 〈b, c〉.
Definition 2.3. Let a ∈ H ⊂ E ⊂ R

p. We say that the function f : E → R
q is con-

tinuous at a restricted to the set H if for every ε > 0 there exists δ > 0 such that if
x ∈ H and |x − a| < δ, then |f(x) − f(a)| < ε.

If the domain of f is equal to H , then we can omit the part “restricted to the set
H” from the definition.

If f is continuous at every point a ∈ H , then we say that f is continuous on the
set H .

The following theorem follows from Theorem 2.2.

Theorem 2.4. The function f is continuous at a point a restricted to the set H if
and only if this is true for every coordinate function of f . �

Clearly, f is continuous at a restricted to H if and only if one of the following two
conditions holds:

(i) a is an isolated point of H;
(ii) a ∈ H ∩ H ′ and limx→a, x∈H f(x) = f(a).

The transference principle for continuity can be easily verified: the function
f : H → R

p is continuous at the point a ∈ H restricted to the set H if and only if
f(xn) → f(a) holds for every sequence xn ∈ H with xn → a.

This implies the following statement: if the functions f and g are continuous at
the point a restricted to the set H , then so are the functions f + g, 〈f, g〉 and λf
for every λ ∈ R.

A theorem about the limit of composite functions follows.

Theorem 2.5. Suppose that

(i) H ⊂ R
p, g : H → R

q and limx→a g(x) = c, where a is a limit point of H;

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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(ii) g(H) ⊂ E ⊂ R
q, f : E → R

s and limx→c f(x) = b;

(iii) g(x) 
= c in a punctured neighborhood of a, or c ∈ E and f is continuous at c
restricted to the set g(H).

Then
lim
x→a

f(g(x)) = b. � (2.1)

Corollary 2.6. If g is continuous at a restricted to H , and f is continuous at the
point g(a) restricted to the set g(H), then f ◦ g is also continuous at a restricted
to H . �

If we wish to generalize Weierstrass’s theorem (Theorem 1.51) to functions map-
ping to R

q, we have to keep in mind that for q > 1 there is no natural ordering of
the points of Rq. Therefore, we cannot speak about the largest or smallest value of a
function. However, the statement on the boundedness still holds; moreover, we can
state more.

Theorem 2.7. Let H ⊂ R
p be bounded and closed, and let f : H → R

q be contin-
uous. Then the set f(H) is bounded and closed in Rq.

Proof. Applying Weierstrass’s theorem (Theorem 1.51) to the coordinate functions
of f yields that the set f(H) is bounded.

In order to prove that f(H) is also closed we will use part (iii) of Theorem 1.17.
Suppose that yn ∈ f(H) and yn → b. For every n we can choose a point xn ∈ H
such that f(xn) = yn. The sequence (xn) is bounded (since H is bounded). Thus,
by the Bolzano–Weierstrass theorem, (xn) has a convergent subsequence (xnk

).
If xnk

→ a, then a ∈ H , because the set H is closed. Since the function f is con-
tinuous, it follows that

b = lim
k→∞

ynk
= lim

k→∞
f(xnk

) = f(a),

and thus b ∈ f(H). Then, by Theorem 1.17, the set f(H) is closed. �

Recall the definition of injective functions. A mapping is injective (or one-to-
one) if it takes on different values at different points of its domain. The following
theorem states another important property of continuous functions with bounded
and closed domains.

Theorem 2.8. Let H ⊂ R
p be bounded and closed, and let f : H → R

q be contin-
uous. If f is injective on the set H , then f−1 is continuous on the set f(H).

Proof. Let yn ∈ f(H) and yn → b ∈ f(H). Then we have b = f(a) for a suitable
a ∈ H . Let xn = f−1(yn) for every n; we need to prove that xn → f−1(b) = a.

We prove by contradiction. Let us assume that the statement is not true. Then
there exists ε > 0 such that xn /∈ B(a, ε), i.e., |xn − a| ≥ ε for infinitely many n.
We may assume that this holds for every n, for otherwise, we could delete the terms

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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of the sequence for which it does not hold. The sequence (xn) is bounded (since
H is bounded), and then, by the Bolzano–Weierstrass theorem, it has a convergent
subsequence (xnk

). If xnk
→ c. And then c ∈ H , since H is closed. Also, c 
= a,

since
|c − a| = lim

k→∞
|xnk

− a| ≥ ε.

Since the function f is continuous, it follows that

f(c) = lim
k→∞

f(xnk
) = lim

k→∞
ynk

= b = f(a),

which contradicts the assumption that f is injective. �

Remark 2.9. The condition of the boundedness of the set H cannot be omitted from
the previous theorem, i.e., the inverse of a continuous and injective function on a
closed domain is not necessarily continuous. Consider the following example. Let
p = q = 1, H = N and let f : N → R be the function with f(0) = 0 and f(n) =
1/n for every n = 1, 2, . . .. The set H is closed (since every convergent sequence of
H is constant begining from some index), the function f is continuous on H (since
every point of H is an isolated point), and f is injective. On the other hand, f−1 is
not continuous, since

0 = f−1(0) 
= lim
n→∞ f−1(1/n) = lim

n→∞ n = ∞.

(The condition of closedness of H cannot be omitted from the theorem either; see
Exercise 2.2.)

Uniform continuity can be defined in the same way as in the case of real-valued
functions.

Definition 2.10. We say that the function f is uniformly continuous on the set H ⊂
R

p if for every ε > 0 there exists δ > 0 such |f(x) − f(y)| < ε holds whenever
x, y ∈ H and |x − y| < δ (where δ is independent of x and y).

Heine’s theorem remains valid: if H ⊂ R
p is a bounded and closed set and the

function f : H → R
q is continuous, then f is uniformly continuous on H .

2.2 Differentiability

To define differentiability for an R
q-valued function, we proceed as in the cases of

limits and continuity; that is, we simply copy Definition 1.63. However, since we
are dealing with functions that map from R

p to R
q, we need to define linear maps

from R
p to Rq . For this reason we recall some basic notions of linear algebra.

We say that a function A : Rp → R
q is a linear mapping or a linear transfor-

mation if A(x + y) = A(x) + A(y) and A(λx) = λA(x) hold for every x, y ∈ R
p

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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and λ ∈ R. Clearly, the mapping A : Rp → R
q is linear if and only if each of its

coordinate functions is linear.
Let ai1x1 + . . . + aipxp be the ith coordinate function of the mapping A (i =

1, . . . , q). We call ⎛
⎜⎜⎜⎝

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

...
aq1 aq2 . . . aqp

⎞
⎟⎟⎟⎠ (2.2)

the matrix of the mapping A. The matrix has q rows and p columns, and the ith row
contains the coefficients of the ith coordinate function of A.

It is easy to see that if x = (x1, . . . , xp) ∈ R
p, then the vector y = A(x) is the

product of the matrix of A and the column vector consisting of the coordinates of x.
That is,

A(x) =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

...
aq1 aq2 . . . aqp

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y1
y2
...

yq

⎞
⎟⎟⎟⎠ . (2.3)

In other words, the ith coordinate of A(x) is the scalar product of the ith row of A
and x.

Definition 2.11. Let H ⊂ R
p and a ∈ intH . We say that the function f : H → R

q

is differentiable at the point a if there exists a linear mapping A : Rp → R
q such

that
f(x) = f(a) + A(x − a) + ε(x) · |x − a| (2.4)

for every x ∈ H , where ε(x) → 0 if x → a. (Here ε : H → R
q .)

Remark 2.12. Since the function ε can be defined to be 0 at the point a, the differ-
entiability of the function f is equivalent to (2.4) for an appropriate linear mapping
A, where ε(a) = 0 and ε is continuous at a.

We can formulate another equivalent condition: for an appropriate linear map-
ping A we have (f(x) − f(a) − A(x − a))/|x − a| → 0 as x → a.

Theorem 2.13. The function f : H → R
q (H ⊂ R

p) is differentiable at the point
a ∈ intH if and only if every coordinate function fi of f is differentiable at a. The
jth entry of the ith row of the matrix of A from (2.4) is equal to the partial derivative
Djfi(a) for every i = 1, . . . , q and j = 1, . . . , p.

Proof. Suppose that (2.4) holds for every x ∈ H , where ε(x) → 0 as x → a. Since
the vectors of the two sides of (2.4) are equal, their corresponding coordinates are
equal as well. Thus, fi(x) = fi(a) + Ai(x − a) + εi(x) · |x − a| for every x ∈ H
and i=1, . . . , q, where fi, Ai, εi denote the ith coordinate functions of f, A, and ε,
respectively. Since Ai is linear and εi(x) → 0 as x → a (following from the fact
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that |εi(x)| ≤ |ε(x)| for every x), we get that fi is differentiable at a. By
Theorem 1.67, the jth coefficient of the linear function Ai is the Djfi(a) partial
derivative, which also proves the statement about the matrix A.

Now suppose that every coordinate function fi of f is differentiable at a. By
Theorem 1.67, fi(x) = fi(a) + Ai(x − a) + εi(x), where Ai(x) = D1fi(a)x1 +
. . . + Dpfi(a)xp and εi(x) → 0 as x → a. Let A(x) = (A1(x), . . . , Aq(x)) for
every x ∈ R

p, and let ε(x) = (ε1(x), . . . , εq(x)) for every x ∈ H . The mapping
A : Rp → R

q is linear, and ε(x) → 0 as x → a by Theorem 2.2. In addition, (2.4)
holds for every x ∈ H . This proves that f is differentiable at the point a. �

Corollary 2.14. If f is differentiable at a, then the linear mapping A from (2.4) is
unique. �

Definition 2.15. Let f : H → R
q with H ⊂ R

p, and let f be differentiable at a ∈
intH . We say that the linear mapping A : Rp → R

q from (2.4) is the derivative of
the function f at the point a, and we use the notation f ′(a). We call the matrix
of the linear mapping f ′(a), i.e., the matrix of the partial derivatives Djfi(a) (j =
1, . . . , p, i = 1, . . . , q)

⎛
⎜⎜⎜⎝

D1f1(a) D2f1(a) . . . Dpf1(a)
D1f2(a) D2f2(a) . . . Dpf2(a)

...
...

...
D1fq(a) D2fq(a) . . . Dpfq(a),

⎞
⎟⎟⎟⎠

the Jacobian matrix1 of the function f at the point a.

The following statements are clear from Theorems 1.66, 1.67, 1.71, and 2.13.

Theorem 2.16.

(i) If the function f is differentiable at the point a, then f is continuous at a.
Furthermore, every partial derivative of every coordinate function of f exists
and is finite at a.

(ii) If every partial derivative of every coordinate function of f exists and is finite
in a neighborhood of the point a and is continuous at a, then f is differentiable
at a. �

Example 2.17. Consider the mapping

f(x, y) = (ex cos y, ex sin y) ((x, y) ∈ R
2).

1 Carl Jacobi (1804–1851), German mathematician.
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The partial derivatives of f ’s coordinate functions are

D1f1(x, y) = ex cos y, D2f1(x, y) = −ex sin y,

D1f2(x, y) = ex sin y, D2f2(x, y) = ex cos y

for every (x, y) ∈ R
2. Since these partial derivatives are continuous everywhere, it

follows from Theorem 2.16 that f is differentiable at every point (a, b) in the plane,
and f ’s Jacobian matrix is

(
ea cos b −ea sin b
ea sin b ea cos b

)
.

Thus, the derivative of f at (a, b) is the linear mapping

A(x, y) = ((ea cos b)x − (ea sin b)y, (ea sin b)x + (ea cos b)y).

Remark 2.18. Let us summarize the different objects we obtain by differentiating
different kinds of mappings.

The derivative of a single-variable real function at a fixed point is a real number,
namely the limit of the differential quotients.

The derivative of a curve g : [a, b] → R
q at a given point is a vector of Rq whose

coordinates are the derivatives of g’s coordinate functions (see [7, Remark 16.22]).
The derivative of a p-variable real function is a vector of Rp (the gradient vector)

whose components are the partial derivatives of the function at a given point.
Definition 2.15 takes another step toward further abstraction: the derivative of a

map R
p → R

q is neither a number nor a vector, but a mapping.
As a consequence of this diversity, the derivative of a function f : R → R is a

real number (if we consider f a function) but also a vector of dimension one (if we
consider f a curve mapping into R).

What’s worse, the derivative of a mapping R
p → R

q is a vector for q = 1, but it
is also a linear mapping, and for p = q = 1 it is a real number as well.

We should realize, however, that the essence of the derivative is the linear map-
ping with which we approximate the function, and the way we represent this lin-
ear mapping is less important. For a single-variable function f , the approximating
linear function is f(a) + f ′(a)(x − a) defining the tangent line. This function is
uniquely characterized by the coefficient f ′(a) (since it has to take the value f(a)
at a). Similarly, a linear function approximating a p-variable real function is the
function f(a) +

∑p
i=1 Dif(a)(xi − ai) defining the tangent hyperplane. This can

be characterized by the vector of its coefficients.
We could have circumvented these inconsistencies by defining the derivative of

a function f : Rp → R
q not by a linear mapping, but by its matrix (i.e., its Jacobian
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matrix).2 In most cases it is much more convenient to think of the derivative as a
mapping and not as a matrix, which we will see in the next section. When we talk
about mappings between more general spaces (called normed linear spaces), the
linear mappings do not always have a matrix. In these cases we have to define the
derivative as the linear mapping itself.

We have to accept the fact that the object describing the derivative depends on the
dimensions of the corresponding spaces. Fortunately enough, whether we consider
the derivative to be a number, a vector, or a mapping will always be clear from the
context.

2.3 Differentiation Rules

Theorem 2.19. If the functions f and g mapping to R
q are differentiable at the

point a ∈ R
p, then the functions f + g and λf are also differentiable at a. Further-

more, (f + g)′(a) = f ′(a) + g′(a) and (λf)′(a) = λf ′(a) for every λ ∈ R.

Proof. The statement is obvious from Theorem 2.13. �
The following theorem concerns the differentiability of a composite function and

its derivative.

Theorem 2.20. Suppose that

(i) H ⊂ R
p, g : H → R

q , and g is differentiable at the point a ∈ intH;

(ii) g(a) ∈ intE ⊂ R
q, f : E → R

s, and f is differentiable at the point g(a).

Then the composite function f ◦ g is differentiable at a, with

(f ◦ g)′(a) = f ′(g(a)) ◦ g′(a).

To prove this theorem we first need to show that every linear mapping has the
Lipschitz property.

Lemma 2.21. For every linear mapping A : Rp → R
q there exists a K ≥ 0 such

that |A(x) − A(y)| ≤ K · |x − y| for every x, y ∈ R
p.

Proof. Let e1, . . . , ep be a basis of Rp, and let M = max1≤i≤p |A(ei)|. Then, for
every x = (x1, . . . , xp) ∈ R

p we have

|A(x)| =
∣∣∣∣∣

p∑
i=1

xi · A(ei)

∣∣∣∣∣ ≤
p∑

i=1

|xi| · M ≤ Mp · |x|.

Thus |A(x) − A(y)| = |A(x − y)| ≤ Mp · |x − y| for every x, y ∈ R
p, and hence

K = M p satisfies the requirements of the lemma. �

2 However, the inconsistencies would not have disappeared entirely. For p = 1 (i.e., for curves
mapping to R

q) the Jacobian matrix is a 1 × q matrix, in other words, it is a column vector, while
the derivative of the curve is a row vector.
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Let KA denote the set of numbers K ≥ 0 that satisfy the conditions of
Lemma 2.21. Obviously, the set KA has a smallest element. Indeed, if K0 =
inf KA, then |A(x) − A(y)| ≤ K0 · |x − y| also holds for every x, y ∈ R

p, and thus
K0 ∈ KA.

Definition 2.22. The smallest number, K, satisfying the conditions of Lemma 2.21
is called the norm of A, and is denoted by ‖A‖.
Proof of Theorem 2.20. Let g′(a) = A and f ′(g(a)) = B. We know that if x is
close to a, then g(a) + A(x − a) approximates g(x) well, and if y is close to g(a),
then f(g(a)) + B(y − g(a)) approximates f(y) well. Therefore, intuitively, if x is
close to a, then

f(g(a)) + B(g(a) + A(x − a) − g(a)) = f(g(a)) + (BA)(x − a)

approximates f(g(x)) well; i.e., (f ◦ g)′(a) = BA. Below we make this argument
precise.

Since g′(a) = A, it follows that

g(x) = g(a) + A(x − a) + ε(x) · |x − a|, (2.5)

where limx→a ε(x) = 0. Let us choose δ > 0 such that |x − a| < δ implies x ∈ H
and |ε(x)| < 1. Then

|g(x) − g(a)| ≤ |A(x − a)| + |ε(x)| · |x − a| ≤ ‖A‖ · |x − a| + |x − a| =
= (‖A‖ + 1) · |x − a| (2.6)

for every |x − a| < δ. On the other hand, f ′(g(a)) = B implies

f(y) = f(g(a)) + B(y − g(a)) + η(y) · |y − g(a)|, (2.7)

where limy→g(a) η(y) = η(g(a)) = 0. Now g is continuous at the point a by (2.6)
(or by Theorem 2.16), whence g(x) ∈ E if x is close enough to a. Applying (2.7)
with y = g(x) and using also (2.5), we get

f(g(x))−f(g(a)) = B(g(x) − g(a)) + η(g(x)) · |g(x) − g(a)| =
= B(A(x − a)) + B(ε(x)) · |x − a| + η(g(x)) · |g(x) − g(a)| =
= (B ◦ A)(x − a) + r(x), (2.8)

where r(x) = B(ε(x)) · |x − a| + η(g(x)) · |g(x) − g(a)|. Then, by (2.6),

|r(x)| ≤ ‖B‖ · |ε(x)| · |x − a| + |η(g(x))| · (‖A‖ + 1) · |x − a| = θ(x) · |x − a|,

where
θ(x) = ‖B‖ · |ε(x)| + (‖A‖ + 1) · |η(g(x))| → 0
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if x → a, since η(g(a)) = 0 and η is continuous at g(a). Therefore, (2.8) implies
that the function f ◦ g is differentiable at a, and (f ◦ g)′(a) = B ◦ A. �

Corollary 2.23. (Differentiation of composite functions)
Suppose that the real-valued function f is differentiable at the point b=(b1, . . . , bq) ∈
R

q, and the real-valued functions g1, . . . , gq are differentiable at the point a ∈ R
p,

where gi(a) = bi for every i = 1, . . . , q. Then the function F (x) = f(g1(x), . . . ,
(gq(x)) is differentiable at the point a, and

DjF (a) =
q∑

i=1

Dif(b) · Djgi(a) (2.9)

holds for every j = 1, . . . , p.

Proof. Let g1, . . . , gq be defined in B(a, δ), and let G(x) = (g1(x), . . . , gq(x)) for
every x ∈ B(a, δ). By Theorem 2.13, the mapping G : B(a, δ) → R

q is differen-
tiable at a. Since F = f ◦ G, Theorem 2.20 implies that F is differentiable at a and
its Jacobian matrix (i.e., the vector F ′(a)) is equal to the product of the Jacobian
matrix of f at the point b (i.e., the vector f ′(b)) and the Jacobian matrix of G at the
point a. The jth coordinate of the vector F ′(a) is equal to DjF (a). On the other
hand (by the rules of matrix multiplication), the jth coordinate of the vector F ′(a)
is equal to the scalar product of the vector f ′(b) and the jth column of the Jacobian
matrix of G. This is exactly equation (2.9). �

Remark 2.24. The formula (2.9) is easy to memorize in the following form. Let
y1, . . . , yq denote the variables of f , and let us write also yi instead of gi. We get

∂F

∂xj
=

∂f

∂y1
· ∂y1
∂xj

+
∂f

∂y2
· ∂y2
∂xj

+ . . . +
∂f

∂yq
· ∂yq

∂xj
.

The differentiability of products and fractions follows easily from Corollary 2.23.

Theorem 2.25. Let f and g be real-valued functions differentiable at the point
a ∈ R

p. Then f · g, and assuming g(a) 
= 0, f/g is also differentiable at a.

Proof. The function ϕ(x, y) = x · y is differentiable everywhere on R
2. Since

f(x) · g(x) = ϕ(f(x), g(x)), Corollary 2.23 gives the differentiability of f · g at a.
The differentiability of f/g follows similarly, using the fact that the rational func-
tion x/y is differentiable on the set {(x, y) ∈ R

2 : y 
= 0}. �

Note that the partial derivatives of f · g and f/g can be obtained using (2.9) (or
using the rules of differentiating single-variable functions). (See Exercise 1.92.)

The differentiation rule for the inverse of one-variable functions (see [7, Theorem
12.20]) can be generalized to multivariable functions as follows.

Theorem 2.26. Suppose that H ⊂ R
p, the function f : H → R

p is differentiable at
the point a ∈ intH , and the mapping f ′(a) is invertible. Let f(a) = b, δ > 0, and

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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let g : B(b, δ) → R
p be a continuous function that satisfies g(b) = a and f(g(x)) =

x for every x ∈ B(b, δ).
Then the function g is differentiable at b, and g′(b) = (f ′(a))−1, where (f ′(a))−1

is the inverse of the linear mapping f ′(a).

Proof. Without loss of generality, we may assume that a = b = 0 (otherwise, we
replace the functions f and g by f(x + a) − b and g(x + b) − a, respectively).

First we also assume that f ′(0) is the identity mapping. Then |f(x) − x|/|x| → 0
as x → 0. Since limx→0 g(x) = 0 and g 
= 0 on the set B(0, δ) \ {0}, it follows
from Theorem 2.5 on the limit of composite functions that |f(g(x)) −
g(x)|/|g(x)| → 0 as x → 0. Since f(g(x)) = x, we find that |x − g(x)|/|g(x)| →
0 as x → 0.

Now we prove that g′(0) is also the identity mapping, i.e., limx→0 |g(x) −
x|/|x| = 0. First note that |x − g(x)| ≤ |g(x)|/2 for every x ∈ B(0, δ′) for a small
enough δ′. Thus x ∈ B(0, δ′) implies

|g(x)| ≤ |g(x) − x| + |x| ≤ (|g(x)|/2) + |x|,

whence |g(x)| ≤ 2|x|, and

|x − g(x)|
|x| =

|x − g(x)|
|g(x)| · |g(x)|

|x| ≤ 2 · |x − g(x)|
|g(x)| .

Therefore, limx→0 |g(x) − x|/|x| = 0 holds. We have proved that g is differentiable
at the origin, and its derivative is the identity mapping there.

Now we consider the general case (still assuming a = b = 0). Let f ′(0) = A.
By Theorem 2.20, f1 = A−1 ◦ f is differentiable at the origin, and its derivative is
the linear mapping A−1 ◦ A, which is the identity. The function g1 = g ◦ A is con-
tinuous in a neighborhood of the origin, with f1(g1(x)) = x in this neighborhood.
Thus, the special case proved above implies that g′

1(0) is also the identity mapping.
Since g = g1 ◦ A−1, Theorem 2.20 on the differentiability of composite functions
implies that g is differentiable at the origin, and its derivative is A−1 there. �

Exercises

2.1. Let H ⊂ R
p. Show that the mapping f : H → R

q is continuous on H if and
only if for every open set V ⊂ R

q there is an open set U ⊂ R
p such that f−1(V ) =

H ∩ U .

2.2. Give an example of a bounded setH ⊂ R
p and a continuous, injective function

f : H → R
q such that f−1 is not continuous on the set f(H).
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2.3. Show that if A = (aij) (i = 1, . . . , q, j = 1, . . . , p), then

‖A‖ ≤
√√√√

q∑
i=1

p∑
j=1

a2
ij .

Give an example when strict inequality holds.

2.4. Show that if A = (aij) (i = 1, . . . , q, j = 1, . . . , p), then

max
1≤i≤q, 1≤j≤p

|aij | ≤ ‖A‖,

furthermore,

max
1≤i≤q

√√√√
p∑

j=1

a2
ij ≤ ‖A‖.

Give an example when strict inequality holds.

2.5. Let the linear mapping A : Rp → R
p be invertible. Show the existence of some

δ > 0 andK ≥ 0 such that ‖B−1 − A−1‖ ≤ K · ‖B − A‖ for everyB that satisfies
‖B − A‖ < δ.

2.6. Let 1 ≤ i ≤ q and 1 ≤ j ≤ p be fixed. Show that aij is a continuous (fur-
thermore, Lipschitz) function of A, i.e., there exists K such that |aij − bij | ≤
K · ‖A − B‖. (Here aij and bij are the jth entries of the ith row of the matrices
A and B, respectively.)

2.7. Find all differentiable functions f : R2 → R that satisfy D1f ≡ D2f . (S)

2.8. Let the function f : R
2 → R be differentiable on the plane, and let

D1f(x, x2) = D2f(x, x2) = 0 for every x. Show that f(x, x2) is constant.

2.9. Let f : R2 → R be differentiable on the plane. Let f(0, 0) = 0, D1f(x, x3) =
x and D2f(x, x3) = x3 for every x. Find f(1, 1).

2.10. Let H ⊂ R
p, and let f : H → R be differentiable at the point a ∈ intH . We

call the set S = {x ∈ R
p : f(x) = f(a)} the contour line corresponding to a. Show

that the contour line is perpendicular to the gradient f ′(a) in the following sense:
if g : (c, d) → R

p is a differentiable curve whose graph lies in S and g(t0) = a for
some t0 ∈ (c, d), then g′(t0) and f ′(a) are perpendicular to each other. (The zero
vector is perpendicular to every vector.)

2.11. We say that the function f : Rp \ {0} → R is a homogeneous function
with degree k (where k is a fixed real), if f(tx) = tk · f(x) holds for every
x ∈ R

p \ {0} and t ∈ R, t > 0. Euler’s theorem3 states that if f : Rp \ {0} → R is

3 Leonhard Euler (1707–1783), Swiss mathematician.
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differentiable and homogeneous with degree k, then x1 · D1f + . . . + xp · Dpf =
k · f for every x = (x1, . . . , xp) ∈ R

p \ {0}.
Double-check the theorem for some particular functions (e.g., xy/

√
x2 + y2, xy/

(x2 + y2),
√

x2 + y2, etc.).

2.12. Prove Euler’s theorem.

2.13. Let the function f : Rp → R
q be differentiable at the points of the seg-

ment [a, b], where a, b ∈ R
p. True or false? There exists a point c ∈ [a, b] such that

f(b) − f(a) = f ′(c)(b − a). (I.e., can we generalize the mean value theorem (The-
orem 1.79) for vector valued functions?) (H S)

2.4 Implicit and Inverse Functions

Solving an equation means that the unknown quantity, given only implicitly by the
equation, is made explicit. For example, x is defined implicitly by the quadratic
equation ax2 + bx + c = 0, and as we solve this equation, we express x explicitly
in terms of the parameters a, b, c. In order to make the nature of this problem more
transparent, let’s write x1, x2, x3 in place of a, b, c and y in place of x. Then we
are given the functionf(x1, x2, x3, y) = x1y

2 + x2y + x3 of four variables, and we
have to find a function ϕ(x1, x2, x3) satisfying

f(x1, x2, x3, ϕ(x1, x2, x3)) = 0. (2.10)

In this case we say that the function y = ϕ(x1, x2, x3) is the solution of
equation (2.10). As we know, there is no solution on the set A = {(x1, x2, x3) :
x2
2 − 4x1x3 < 0} ⊂ R

3, and there are continuous solutions on the set B = {(x1,
x2, x3) : x1 
= 0, x2

2 − 4x1x3 ≥ 0} ⊂ R
3, namely each of the functions

ϕ1 = (−x2 +
√

x2
2 − 4x1x3)/(2x1), ϕ2 = (−x2 −

√
x2
2 − 4x1x3)/(2x1)

is a continuous solution on B.
Finding the inverse of a function means solving an equation as well. A function

ϕ is the inverse of the function g exactly when the unique solution of the equation
x − g(y) = 0 is y = ϕ(x).

In general, we cannot expect that the solution y can be given by a (closed) for-
mula of the parameters. Even f(x, y) is not always defined by a closed formula.
However, even assuming that f(x, y) is given by a formula, we cannot ensure
that y belongs to the same family of functions that we used to express f . For
example, f(x, y) = x − y3 is a polynomial, but the solution y = 3

√
x of the equa-

tion f(x, y) = 0 cannot. Based on this observation, it is not very surprising that
there exists a function f(x, y) such that f can be expressed by elementary func-
tions, but the solution y of the equation f(x, y) = 0 is not. Consider the function
g(x) = x + sinx. Then g is strictly monotonically increasing and continuous on

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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the real line, and furthermore it assumes every real value, and thus it has an inverse
on R. It can be shown that the inverse of g cannot be expressed by elementary func-
tions only. That is, the equation x − y − sin y = 0 has a unique solution, but the
solution is not an elementary function.

The same phenomenon is illustrated by a famous theorem of algebra stating that
the roots of a general quintic polynomial cannot be obtained from the coefficients by
rational operations and by extractions of roots. That is, there does not exist a func-
tion y = ϕ(x1, . . . , x6) defined only by the basic algebraic operations and extrac-
tion of roots of the coordinate functions x1, . . . , x6 such that y is the solution of the
equation x1y

5 + . . . + x5y + x6 = 0 on a nonempty, open subset of R6.
Therefore, solving y explicitly does not necessarily mean expressing y by a

(closed) formula; it means only establishing the existence or nonexistence of the
solution and describing its properties when it does exist. The simplest related theo-
rem is the following.

Theorem 2.27. Let f be a two-variable real function such that f is zero at the point
(a, b) ∈ R

2 and continuous on the square [a − η, a + η] × [b − η, b + η] for an
appropriate η > 0. If the section fx is strictly monotone at every x ∈ [a − η, a + η],
then there exists a positive real δ such that

(i) for every x ∈ (a − δ, a + δ), there exists a unique ϕ(x) ∈ (b − η, b + η) such
that f(x, ϕ(x)) = 0, and furthermore,

(ii) the function ϕ is continuous on the interval (a − δ, a + δ).

Proof. We know that the section fa is strictly monotonically. Without loss of gener-
ality, we may assume that fa is strictly monotone increasing (the proof of the other
case is exactly the same), and thus fa(b − η) < fa(b) = f(a, b) = 0 < fa(b + η).

2.1. Figure

Let ε > 0 be small enough to imply fa(b − η) < −ε and ε < fa(b + η).
Since f is continuous at the points (a, b − η), (a, b + η), there exists 0 < δ < η

such that |f(x, b − η) − f(a, b − η)| < ε and |f(x, b + η) − f(a, b + η)| < ε for
every x ∈ (a − δ, a + δ). That is, if x ∈ (a − δ, a + δ), then

f(x, b − η) < 0 < f(x, b + η).
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Since fx is strictly monotone and continuous on the interval [b − η, b + η], it fol-
lows from Bolzano’s theorem that there is a unique ϕ(x) ∈ (b − η, b + η) such that
f(x, ϕ(x)) = 0. Thus, we have proved statement (i).

Let x0 ∈ (a − δ, a + δ) and ε > 0 be fixed. Choose positive numbers δ1 and
η1 < ε such that

(x0 − δ1, x0 + δ1) ⊂ (a − δ, a + δ)

and
(ϕ(x0) − η1, ϕ(x0) + η1) ⊂ (b − η, b + η)

hold. Following the steps of the first part, we end up with a number 0 < δ′ < δ1
such that for every x ∈ (x0 − δ′, x0 + δ′) there exists a unique

y ∈ (ϕ(x0) − η1, ϕ(x0) + η1) ⊂ (b − η, b + η)

with f(x, y) = 0. By (i), ϕ(x) is the only such number, and hence y = ϕ(x). Thus,
for |x − x0| < δ′ we have |ϕ(x) − ϕ(x0)| < η1 < ε. Therefore, ϕ is continuous
at x0. �
Corollary 2.28. (Implicit function theorem for single-variable functions)
Suppose that the two-variable function f is zero at the point (a, b) ∈ R

2 and contin-
uous in a neighborhood of (a, b). Let the partial derivative D2f exist and be finite
and nonzero in a neighborhood of (a, b). Then there exist positive numbers δ and η
such that

(i) for every x ∈ (a − δ, a + δ) there exists a unique number ϕ(x) ∈ (b − η,
b + η) with f(x, ϕ(x)) = 0, furthermore,

(ii) the function ϕ is continuous in the interval (a − δ, a + δ).

Proof. It follows from the assumptions that there is a rectangle (a1, a2) × (b1, b2)
containing (a, b) in its interior such that f is continuous, D2f exists and is finite and
nonzero in (a1, a2) × (b1, b2). The section fx is strictly monotone in the interval
(b1, b2) for every x ∈ (a1, a2), since it is differentiable and, by Darboux’s theorem4

[7, Theorem 13.44], its derivative must be everywhere positive or everywhere neg-
ative in the interval (b1, b2). Then an application of Theorem 2.27 to the rectangle
(a1, a2) × (b1, b2) finishes the proof. �
Remark 2.29. We will see later that if f is continuously differentiable at (a, b), then
the function ϕ is continuously differentiable at the point a (see Theorem 2.40).

For the single-variable case, it is not difficult to show that the differentiability of f
at (a, b) andD2f(a, b) 
= 0 implies the differentiability ofϕ at a (see Exercise 2.15).
We can calculate ϕ′(a) by applying the differentiation rule of composite functions.
Since f(x, ϕ(x)) = 0 in a neighborhood of the point a, its derivative is also zero
there. Thus,

4 Jean Gaston Darboux (1842–1917), French mathematician. Darboux’s theorem states that if
f : [a, b] → R is differentiable, then f ′ takes on every value between f ′(a) and f ′(b).
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D1f(a, b) · 1 + D2f(a, b) · ϕ′(a) = 0

holds, from which we obtain ϕ′(a) = −D1f(a, b)/D2f(a, b).

Example 2.30. The function f(x, y) = x2 + y2 − 1 is continuous and (infinitely)
differentiable everywhere. If a2 + b2 = 1 and −1 < a < 1, then D2f(a, b) = 2b 
=
0, and the conditions of Corollary 2.28 are satisfied. Thus, there exists some function
φ such that φ is continuous in a neighborhood of a, ϕ(a) = b, and x2 + ϕ(x)2 −
1=0. Namely, if b > 0, then the function ϕ(x) =

√
1 − x2 on the interval (−1, 1)

is such a function. If, however, b < 0, then the function ϕ(x) = −√
1 − x2 satisfies

the conditions on the interval (−1, 1).
On the other hand, if a = 1, then there is no such function in any neighborhood

of a, since x > 1 implies x2 + y2 − 1 > 0 for every y. The conditions of Corol-
lary 2.28 are not satisfied here, since a = 1 implies b = 0 and D2f(1, 0) = 0. The
same happens in the a = −1 case.

Our next goal is to generalize Corollary 2.28 to multivariable functions.
Corollary 2.28 gives a sufficient condition for the existence of the inverse of

a function—at least locally. The inverse of an arbitrary function g is given by
the solution of the equation f(x, y) = 0, where f(x, y) = x − g(y). Let g(b) = a;
thus f(a, b) = 0. By Corollary 2.28, if g is differentiable in a neighborhood of b
such that g′(x) 
= 0 in this neighborhood, then there exists a continuous function
ϕ in a neighborhood (a − δ, a + δ) of a such that ϕ(a) = b and g(ϕ(x)) = x on
(a − δ, a + δ).

We expect that a generalization of Corollary 2.28 to multivariable functions
would also give a sufficient condition for the existence of the inverse locally. There-
fore, we first consider the question of the existence of the inverse function.

Proving the existence of the inverse of a multivariable function is substantially
more difficult than for one-variable functions; this is a case in which the analogy
with the single-variable case exists but is far from being sufficient. The question
is how to decide whether or not a given function is injective on a given set. For a
continuous single-variable, real function defined on an interval, the answer is quite
simple: the function is injective if it is strictly monotone. (This follows from the
Bolzano–Darboux theorem,5 see [7, Theorem 10.57].) It is not clear, however, how
to generalize this condition to continuous multivariable, or vector-valued functions.

Yet another problem is related to the existence of a “global” inverse. Let f : I→R

be continuous, where I ⊂ R is an interval. Given that every point of I has a
neighborhood on which the function f is injective, we can easily show that f is
injective on the whole interval. Thus, global injectivity follows from local injec-
tivity for single-variable continuous real functions. However, this does not hold
for vector-valued or multivariable functions! Let g : R → R

2 be a curve with
g(t) = (cos t, sin t) for every t ∈ R. The mapping g is injective on every interval

5 The Bolzano–Darboux’s theorem states that if f : [a, b] → R is continuous, then f takes on every
value between f(a) and f(b).
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shorter than 2π (and maps to the unit circle), but g is not injective globally, since
it is periodic with period 2π. Similarly, let f(x, y) = (ex cos y, ex sin y) for every
(x, y) ∈ R

2. The mapping f : R2 → R
2 is injective on every disk of the plane with

radius less than π, but f is not injective globally, since f(x, y + 2π) = f(x, y) for
every (x, y) ∈ R

2.
Unfortunately, we cannot help this; it seems that there are no natural, simple

sufficient conditions for the global injectivity of a vector-valued or multivariable
function. Thus, we have to restrict our investigations to the question of local injec-
tivity.

Let the mapping f be differentiable in a neighborhood of the point a. Since the
mapping f(a) + f ′(a)(x − a) approximates f well locally, we might think that
given the injectivity of the linear mapping f ′(a), f will also be injective on a
neighborhood of a. However, this is not always so, not even in the simple spe-
cial case of p = q = 1. There are everywhere differentiable functions f : R → R

such that f ′(0) 
= 0, but f is nonmonotone on every neighborhood of 0. (See [7,
Remark 12.45.4].) Let f ′(0) = b. By the general definition of the derivative, f ′(0)
is the linear mapping x �→ b · x, which is injective. Nonetheless, f is not injective
on any neighborhood of 0.

Thus, we need to have stricter assumptions if we wish to prove the local injec-
tivity of f . One can show that if the linear mapping f ′(x) is injective for every x in
a neighborhood of a, then f is injective in a neighborhood of a. The proof involves
more advanced topological tools, and hence it is omitted here. We will prove only
the special case in which the partial derivatives of f are continuous at a.

Definition 2.31. Let H ⊂ R
p and f : H → R

q. We say that the mapping f is con-
tinuously differentiable at the point a ∈ intH if f is differentiable in a neighbor-
hood of a, and the partial derivatives of the coordinate functions of f are continuous
at a.

Theorem 2.32. (Local injectivity theorem) Let H ⊂ R
p and f : H → R

q, with
p ≤ q. If f is continuously differentiable at the point a ∈ intH and the linear map-
ping f ′(a) : Rp → R

q is injective, then f is injective in a neighborhood of a.

Lemma 2.33. Let H ⊂ R
p, and let the function f : H → R

q be differentiable at
the points of the segment [a, b] ⊂ H . If |Djfi(x)| ≤ K for every i = 1, . . . , q, j =
1, . . . , p and x ∈ [a, b], then |f(b) − f(a)| ≤ Kpq · |b − a|.
Proof. Applying the mean value theorem (Theorem 1.79) to the coordinate function
fi yields

fi(b) − fi(a) =
p∑

j=1

Djfi(ci)(bi − ai)

for an appropriate point ci ∈ [a, b]. Thus,

|fi(b) − fi(a)| ≤
p∑

j=1

K · |bi − ai| ≤ Kp · |b − a|

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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for every i, and

|f(b) − f(a)| ≤
q∑

i=1

|fi(b) − fi(a)| ≤ Kpq · |b − a|. �

Proof of Theorem 2.32. First, we assume that p = q and f ′(a) is the identity
map, i.e., f ′(a)(x) = x for every x ∈ R

p. By the definition of the derivative this
means that limx→a |g(x)|/|x − a| = 0, where g(x) = f(x) − f(a) − (x − a) for
every x ∈ H . Obviously, g is continuously differentiable at the point a, and g′(a)
is the constant zero mapping. It follows that Djgi(a) = 0 for every i, j = 1, . . . , p.
Since g is continuously differentiable at a, we can choose some δ > 0 such that
|Djgi(x)| ≤ 1/(2p2) holds for every x ∈ B(a, δ) and every i, j = 1, . . . , p. By
Lemma 2.33, we have |g(x) − g(y)| ≤ |x − y|/2 for every x, y ∈ B(a, δ). If x, y ∈
B(a, δ) and x 
= y, then f(x) 
= f(y); otherwise, f(y) = f(x) would imply g(y) −
g(x) = x − y, which is impossible. We have proved that f is injective on the ball
B(a, δ).

Consider the general case. Let A denote the injective linear mapping f ′(a). Let
the range of A be V ; it is a linear subspace of Rq (including the case V = R

q). Let
B(y) = A−1(y) for every y ∈ V . Obviously, B is a well-defined linear mapping
from V to R

p. Extend B linearly to R
q , and let us denote this extension by B as

well. (The existence of such an extension is easy to show.) Then the mapping B ◦ A
is the identity map on Rp.

Clearly, the derivative of the linear mapping B is itself B everywhere. Then,
it follows from Theorem 2.20 on the differentiation rules of composite functions
that B ◦ f is differentiable in a neighborhood of a with (B ◦ f)′(x) = B ◦ f ′(x)
there. Then the Jacobian matrix of B ◦ f at the point x is equal to the (matrix)
product of the matrices of B and f ′(x). Thus, every partial derivative of every
coordinate function of B ◦ f is a linear combination of the partial derivatives
Djfi. This implies that B ◦ f is continuously differentiable at the point a. Since
(B ◦ f)′(a) = B ◦ f ′(a) = B ◦ A is the identity, the already proven special case
implies the injectivity of B ◦ f in a neighborhood of a. Then f itself has to be
injective in this neighborhood. �

Remarks 2.34. 1. Let A : Rp → R
q be a linear mapping. It is well known that A

cannot be injective if p > q. Indeed, in this case the dimension of the null space of
A, i.e, the linear subspace {x ∈ R

p : A(x) = 0}, is p − q > 0, and thus there exists
a point x 
= 0 such that A(x) = 0. This implies that A can be injective only when
p ≤ q.
2. The local injectivity theorem turns the question of a function’s local injectivity
into a question of the injectivity of a linear mapping. The latter is easy to answer.
A linear mapping A : Rp → R

q is injective if and only if A(x) 
= 0 for every vector
x ∈ R

p, x 
= 0. Furthermore, it is well known that A is injective if and only if the
rank of its matrix is p. This means that the matrix of A has p linearly independent
rows, or equivalently, the matrix has a nonzero p × p subdeterminant.
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A linear mapping A : Rp → R
q is called surjective , if its range is Rq. Since the

range of A can be at most p-dimensional, A can be surjective only if p ≥ q. The
following statement is the dual of Theorem 2.32.

Theorem 2.35. Let H ⊂ R
p and let f : H → R

q, where p ≥ q. If f is continuously
differentiable at the point a ∈ intH and the linear mapping f ′(a) : Rp → R

q is
surjective, then the range of f contains a neighborhood of f(a).

We need to show that if b is close to f(a), then the equation f(x) = b has a
solution. We prove this with the help of iterates, which are useful in several cases of
solving equations6.

The most widely used version of this method is given by the following theorem.
We say that the mapping f : H → H has a fixed point at x ∈ H if f(x) = x.

Let f : H → R
q, where H ⊂ R

p. The mapping f is called a contraction, if there
exists a number λ < 1 such that |f(y) − f(x)| ≤ λ · |y − x| for every x, y ∈ H .
(That is, f is contraction if it is Lipschitz with a constant less than 1.)

Theorem 2.36. (Banach’s7 fixed-point theorem) If H ⊂ R
p is a nonempty closed

set, then every contraction f : H → H has a fixed point.

Proof. Let |f(y) − f(x)| ≤ λ · |y − x| for every x, y ∈ H , with 0 < λ < 1. Let
x0 ∈ H be an arbitrarily chosen point, and consider the sequence of points xn

defined by the recurrence xn = f(xn−1) (n = 1, 2, . . .). (Since f maps H into
itself, xn is defined for every natural number n.) We prove that the sequence xn

is convergent and tends to a fixed point of f .
Let |x1 − x0| = d. By induction, we get |xn+1 − xn| ≤ λnd for every n ≥ 0.

Indeed, this is clear for n = 0, and if it holds for (n − 1), then

|xn+1 − xn| = |f(xn) − f(xn−1)| ≤ λ · |xn − xn−1| ≤ λ · λn−1d = λnd.

Now we show that (xn) satisfies the Cauchy criterion (Theorem 1.8). Indeed, for
every ε > 0, the convergence of the infinite series

∑
λn implies the existence of

some indexN such that |λn + . . . + λm| < ε holds for everyN ≤ n < m. ForN ≤
n < m we have

|xm − xn| ≤ |xn+1 − xn| + |xn+2 − xn+1| + . . . + |xm − xm−1| ≤
≤ |λn + . . . + λm−1|d < εd.

Thus, by Theorem 1.8, (xn) is convergent. If xn → c, then c ∈ H follows from
the fact that H is closed. Since |xn+1 − f(c)| = |f(xn) − f(c)| ≤ λ · |xn − c|, we
have xn+1 → f(c), which implies f(c) = c, i.e., c is a fixed point of f . �

6 Regarding the solution of equations using iterates, see Exercises 6.4 and 6.5 of [7]. In (a)–(d)
of Exercise 6.4 the equations x =

√
a+ x, x = 1/(2 − x), x = 1/(4 − x), x = 1/(1 + x) are

solved using iterates by defining sequences converging to the respective solutions. The solution of
the equation x2 = a using the same method can be found in Exercise 6.5.
7 Stefan Banach (1892–1945), Polish mathematician.
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Proof of Theorem 2.35. We may assume that a = 0 and f(a) = 0 (otherwise, we
replace f by the function f(x + a) − f(a)).

First, assume that p = q and f ′(0) is the identity map. Let g(x) = f(x) − x for
every x ∈ H . As we saw in the proof of Theorem 2.32, there exists a δ > 0 such
that |g(x) − g(y)| ≤ |x − y|/2 for every x, y ∈ B(0, δ). We may assume that this
inequality also holds for every x, y ∈ B(0, δ), for otherwise, we could choose a
smaller δ. We prove that the range of f contains the ball B(0, δ/2).

Let b ∈ B(0, δ/2) be fixed. The mapping h(x) = b − g(x) maps the closed ball
B(0, δ) into itself, since |x| ≤ δ implies

|h(x)| ≤ |b| + |g(x)| ≤ (δ/2) + |x|/2 ≤ δ.

Furthermore, since |h(x) − h(y)|= |g(x) − g(y)| ≤ |x − y|/2 for every
x ∈ B(0, δ), it follows that h is a contraction, and then, by Banach’s fixed point
theorem, it has a fixed-point. If x is such a fixed point, then x = h(x) = b − g(x) =
b + x − f(x), i.e., f(x) = b.

Now consider the general case p ≤ q. (still assuming a = 0 and f(a) = 0). Let
e1, . . . , eq be a basis of the linear space Rq, and let the points x1, . . . , xq ∈ R

p be
such that f ′(0)(xi) = ei (i = 1, . . . , q). (Such points exist, since the linear mapping
f ′(0) is surjective.) There exists a linear mapping A : Rq → R

p such that A(ei) =
xi (i = 1, . . . , q).

Since 0 ∈ intH , we must have B(0, r) ⊂ H for an appropriate r > 0. The
mapping A is linear, and thus it is continuous, even Lipschitz by Lemma 2.21.
Thus, there exists an η > 0 such that |A(x)| < r for every |x| < η. Applying
Theorem 2.20 (the differentiation rule for composite functions), we obtain that
f ◦ A : B(0, η) → R

q is differentiable in the ball B(0, η) ⊂ R
q. We have (f ◦

A)′(0) = f ′(0) ◦ A (since the derivative of the linear mapping A is itself), which
is the identity on R

q, by the construction of A. It is easy to see that f ◦ A is con-
tinuously differentiable at the origin. Thus, by the already proven special case, the
range of f ◦ A contains a neighborhood of the origin. Then the same is true for f . �

Corollary 2.37. (Open mapping theorem) Let H ⊂ R
p be an open set, and let

f : H → R
q be continuously differentiable at the points of H . If the linear mapping

f ′(x) is surjective for every x ∈ H , then f(H) is an open set in Rq .

Proof. If H 
= ∅, then the assumptions imply p ≥ q. Let b ∈ f(H) be arbitrary.
Then b = f(a) for a suitable a ∈ H . By Theorem 2.35, f(H) contains a neighbor-
hood of b. Since this is true for every b ∈ f(H), it follows that f(H) is open. �

The name of Corollary 2.37 comes from the fact that a function f : Rp → R
q is

called an open mapping if f(G) is an open set for every open set G ⊂ R
p.

Using Theorems 2.32 and 2.35 one obtains a sufficient condition for the existence
of a local inverse.
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Theorem 2.38. (Inverse function theorem) Let H ⊂ R
p and a ∈ intH . If

f : H → R
p is continuously differentiable at a and the linear mapping

f ′(a) : Rp → R
p is invertible, then there exist positive numbers δ and η such that

(i) for every x ∈ B(f(a), δ) there exists a unique ϕ(x) ∈ B(a, η) such that
f(ϕ(x)) = x,

(ii) the function ϕ defined this way is differentiable on the ball B(f(a), δ) and is
continuously differentiable at the point f(a), and furthermore,

(iii) f ′(x) is invertible at every x ∈ B(a, η), and ϕ′(f(x)) = f ′(x)−1 for every
x ∈ B(f(a), δ).

If f is continuously differentiable in a neighborhood of a, then we can choose δ
and η such that ϕ is continuously differentiable in B(f(a), δ).

Proof. By Theorem 2.32, f is injective on some ball B(a, η). We may assume that
f is differentiable and injective on the closed ball B(a, η), since otherwise, we
could choose a smaller η. Let K = f(B(a, η)). For every x ∈ K let ϕ(x) denote
the unique point in B(a, η) such that f(ϕ(x)) = x. It follows from Theorem 2.8
that the function ϕ is continuous on the set K.

2.2. Figure

Since an invertible linear mapping that maps Rp into itself is necessarily surjec-
tive as well, we find, by Theorem 2.35, that f(B(a, η)) contains a ball B(f(a), δ).
Obviously, for every point x ∈ B(f(a), δ) there exists a unique point in B(a, η)
whose image by f equals x, namely, the point ϕ(x). This proves (i).

A linear mapping that maps Rp to itself is injective if and only if the determinant
of the mapping’s matrix is nonzero. By assumption, the determinant of f ’s Jacobian
matrix at the point a is nonzero. Since the Jacobian matrix is a polynomial in the
partial derivatives Djfi, it follows that the determinant of the Jacobian matrix is
continuous at a, implying that it is nonzero in a neighborhood of a. We have proved
that the linear mapping f ′(x) is injective for every point x close enough to a. By
taking a smaller η if necessary, we may assume that f ′(x) is injective for every
x ∈ B(a, η).

Then it follows from Theorem 2.26 (the differentiation rule for inverse functions)
that ϕ is differentiable in B(f(a), δ) and (iii) holds on this ball.
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We now prove that ϕ is continuously differentiable at the point f(a). This fol-
lows from the equality ϕ′(f(x)) = f ′(x)−1. Indeed, this implies that the partial
derivative Djϕi(x) equals the jth entry of the ith row in the matrix of the inverse of
f ′(ϕ(x)). Now it is well known that the jth element of the ith row of the inverse of a
matrix is equal to Aij/D, where Aij is an appropriate subdeterminant and D is the
determinant of the matrix itself (which is nonzero). The point is that the entries of
the inverse matrix can be written as rational functions of the entries of the original
matrix. Since Djfi(ϕ(x)), i.e., the entries of the matrix of the mapping f ′(ϕ(x))
are continuous at f(a), their rational functions are also continuous at f(a).

Thus, if f is continuously differentiable on the ball B(a, η), then ϕ is continu-
ously differentiable on B(f(a), δ). �

Now we turn to what is called the implicit function theorem, that is, to the gen-
eralization of Corollary 2.28 to multivariable functions. Intuitively, the statement of
the theorem is the following. Let the equations

f1(x1, . . . , xp, y1, . . . , yq) = 0,
f2(x1, . . . , xp, y1, . . . , yq) = 0,

... (2.11)

fq(x1, . . . , xp, y1, . . . , yq) = 0

be given, together with a solution (a1, . . . , ap, b1, . . . , bq). Our goal is to express the
unknowns y1, . . . , yq as functions of the variables x1, . . . , xp in a neighborhood of
the point a = (a1, . . . , ap). In other words, we want to prove that there are functions
yj = yj(x1, . . . , xp) (j = 1, . . . , q) with the following properties: they satisfy (2.11)
in a neighborhood of a, and yj(a1, . . . , ap) = bj for every j = 1, . . . , q.

Let us use the following notation. If x = (x1, . . . , xp) ∈ R
p and

y = (y1, . . . , yq) ∈ R
q, then (x, y) denotes the vector (x1, . . . , xp, y1, . . . , yq) ∈

R
p+q.
If the function f is defined on a subset of Rp+q and a = (a1, . . . , ap) ∈ R

p,
then fa denotes the section function, obtained by putting a1, . . . , ap in place of
x1, . . . , xp. That is, fa is defined at the points y = (y1, . . . , yq) ∈ R

q that satisfy
(a, y) ∈ D(f), and fa(y) = f(a, y) for every such point y. The section f b can be
defined for b = (b1, . . . , bq) ∈ R

q in a similar manner. The following lemma is the
generalization of the fact that differentiability implies partial differentiability.

Lemma 2.39. Let H ⊂ R
p+q, and let the function f : H → R

s be differentiable
at the point (a, b) ∈ intH , where a ∈ R

p and b ∈ R
q. Then the section function

fa is differentiable at the point b, and the section function f b is differentiable at
the point a. If (f b)′(a) = A, (fa)′(b) = B, and f ′(a, b) = C, then A(x) = C(x, 0)
and B(y) = C(0, y) for every x ∈ R

p and y ∈ R
q.

Proof. Let r(x, y) = f(x, y) − f(a, b) − C(x − a, y − b). Since f ′(a, b) = C, we
have r(x, y)/|(x, y) − (a, b)| → 0 if (x, y) → (a, b). Since f(a, y) − f(a, b) −
C(0, y − b) = r(a, y), it follows that (fa)′(b) equals the linear mapping y �→
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C(0, y) (y ∈ R
q). A similar argument shows that (f b)′(a)(x) = C(x, 0) for every

x ∈ R
p. �

Theorem 2.40. (Implicit function theorem) Let H ⊂ R
p+q and (a, b) ∈ intH ,

where a ∈ R
p and b ∈ R

q. Suppose that the function f : H → R
q vanishes at the

point (a, b) (i.e., f(a, b) is the null vector of Rq). If f is continuously differentiable
at (a, b) and the linear mapping (fa)′(b) is injective, then there are positive numbers
δ and η such that

(i) for every x ∈ B(a, δ) there exists a unique point ϕ(x) ∈ B(b, η) such that
f(x, ϕ(x)) = 0,

(ii) the function ϕ defined this way is differentiable in the ball B(a, δ) and contin-
uously differentiable at the point a.

Proof. Let F (x, y) = (x, f(x, y)) for every (x, y) ∈ H , where x ∈ R
p and y ∈ R

q.
Then F maps the set H into R

p+q. We will prove that F is continuously differen-
tiable at the point (a, b), and the linear mapping F ′(a, b) is invertible.

Let us proceed with the proof of the theorem, assuming the statements above.
Note that F (a, b) = (a, 0). Applying the inverse function theorem to F , we obtain
positive numbers δ and η such that F ′(x, y) is injective for every (x, y) ∈
B((a, b), η), for every point (x, z) ∈ B((a, 0), δ) there exists a unique point
(x, ψ(x, z)) ∈ B((a, b), η) such that F (x, ψ(x, z)) = (x, z), and furthermore, the
function ψ defined this way is differentiable on the ball B((a, 0), δ) and is contin-
uously differentiable at the point (a, 0). From the definition of the mapping F it
follows that f(x, ψ(x, z)) = z for every point (x, z) ∈ B((a, 0), δ).

(x, ψ(x, z))

2.3. Figure

Let ϕ(x) = ψ(x, 0) for every point x ∈ R
p with |x − a| < δ. The definition

makes sense, since |x − a| < δ implies (x, 0) ∈ B((a, 0), δ). It is clear that ϕ is
differentiable on the ball B(a, δ) of Rp and continuously differentiable at the point
a, and f(x, ϕ(x)) = 0 holds for every x ∈ B(a, δ).

We now prove the claims on F . First we prove that if f is differentiable at a point
(x0, y0) and its derivative there is f ′(x0, y0) = C, then F is also differentiable at the
given point and F ′(x0, y0) = E, with E(x, y) = (x,C(x, y)) for every x ∈ R

p and
y ∈ R

q. Indeed, by the definition of the derivative, lim(x,y)→(x0,y0) r(x, y)/|(x, y) −
(x0, y0)| = 0, where

r(x, y) = f(x, y) − f(x0, y0) − C(x − x0, y − y0)
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for every (x, y) ∈ H . Thus,

F (x, y) − F (x0, y0) = (x, f(x, y)) − (x0, f(x0, y0)) =
= (x − x0, f(x, y) − f(x0, y0)) =
= (x − x0, C(x − x0, y − y0) + r(x, y)) =
= E(x − x0, y − y0) + t(x, y)

follows, where t(x, y) = (0, r(x, y)). Obviously,

lim
(x,y)→(x0,y0)

t(x, y)/|(x, y) − (x0, y0)| = 0,

where E is indeed the derivative of the mapping F at the point (x0, y0). This proves
that F is differentiable in a neighborhood of the point (a, b).

We now prove that if (fx0)
′(y0) is injective, then F ′(x0, y0) = E is also injec-

tive. Since the mappingE is linear, we need to prove that if the vector (x, y) ∈ R
p+q

is nonzero, thenE(x, y) 
= 0. By Lemma 2.39, (fx0)
′(y0) is equal to the linear map-

ping (x, y) �→ C(0, y) (x ∈ R
p, y ∈ R

q). By assumption, this mapping is injective
on R

q , thus C(0, y) 
= 0 holds if y 
= 0. We know that E(x, y) = (x,C(x, y)) for
every x ∈ R

p, y ∈ R
q. If x 
= 0, then E(x, y) 
= 0 is clear. On the other hand, if x =

0 and y 
= 0, then E(0, y) = (0, C(0, y)) 
= 0, since C(0, y) 
= 0. We have proved
that (x, y) 
= 0 implies E(x, y) 
= 0, i.e., E is injective. Since we assumed the
injectivity of (fa)′(b), t follows that F ′(a, b) is also injective.

Let the coordinate functions of F and f be Fi and fi, respectively.
Obviously, Fi(x, y) = xi for every i = 1, . . . , p, and Fi(x, y) = fi−p(x, y) for
every i = p + 1, . . . , q. Since the partial derivatives Djfi are continuous at the point
(a, b), it follows that the partial derivatives DjFi(x, y) are also continuous at the
point (a, b) for every i, j = 1, . . . , p + q. Therefore, F is continuously differentiable
at (a, b). �

Remarks 2.41. 1. It is easy to compute the derivative of the function ϕ of The-
orem 2.40. Let c ∈ R

p, |c − a| < δ, and let ϕ(c) = d. It is easy to see that the
derivative of the mapping x �→ (x, ϕ(x)) at the point c is the linear mapping
x �→ (x,A(x)) with ϕ′(c) = A.

Let f ′(c, d) = C. It follows from the derivation rule for composite functions
that the derivative of the function f(x, ϕ(x)) at the point c is the linear function
C(x,A(x)). Since f(x, ϕ(x)) = 0 for every |x − a| < δ, this derivative is zero, i.e.,

0 = C(x,A(x)) = C(x, 0) + C(0, A(x)).

By Lemma 2.39, C(x, 0) = (fd)′(c)(x) and C(0, y) = (fc)′(d)(y), i.e., the linear
mapping (fd)′(c) + (fc)′(d) ◦ A is identically zero. This implies

ϕ′(c) = A = − ((fc)′(d))−1 ◦ (fd)′(c).
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We get
ϕ′(x) = − (f ′

x(ϕ(x)))
−1 ◦ (fϕ(x))′(x)

for every x ∈ B(a, δ).
2. If f satisfies the conditions of Theorem 2.40 and f is continuously differentiable
in a neighborhood of the point (a, b), then we can choose δ and η such that ϕ is
continuously differentiable on the ball B(a, δ).

It suffices to choose δ and η such that in addition to parts (i) and (ii) of the the-
orem, we also require that f be continuously differentiable on the ball B((a, b), η).
In this case ϕ will be continuously differentiable at every point (c, d) of the ball
B(a, δ). This follows from Theorem 2.40 applied to the point (c, d) instead of the
point (a, b).

As an important application of the implicit function theorem we give a method
for finding the conditional extremal points of a function.

Definition 2.42. Let a ∈ H ⊂ R
p, F : H → R

q , and let F (a) = 0. Let the
p-variable real function f be defined in a neighborhood of a, and let δ > 0 be such
that f(x) ≤ f(a) for every point x ∈ B(a, δ) that satisfies F (x) = 0. Then we say
that the function f has a conditional local maximum point at the point a with the
condition F = 0. Conditional local minima can be defined in a similar manner. If
f has a conditional local maximum or minimum at the point a with the condition
F = 0, then we say that f has a conditional local extremum at the point a with the
condition F = 0.

Example 2.43. Suppose we want to find the maximum of the function f(x, y, z) =
x + 2y + 3z on the sphere S = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}. By Weier-
stras’s theorem, f has a maximal value on the bounded and closed set S. If f takes
on this greatest value at the point a, then f has a conditional local maximum at a
with the condition x2 + y2 + z2 − 1 = 0.

Theorem 2.44. (Lagrange8 multiplier method) Let H ⊂ R
p, and suppose that

F : H → R
q vanishes and is continuously differentiable at the point a ∈ intH . Let

us denote the coordinate functions of F by F1, . . . , Fq .
If the p-variable real function f is differentiable at a and f has a conditional

local extremum at the point a with the condition F = 0, then there are real numbers
λ, λ1, . . . , λq such that at least one of these numbers is nonzero, and the partial
derivatives of the function λf + λ1F1 + . . . + λqFq are zero at a.

The p = 2, q = 1 special case of the theorem above states that the gradients of
f and F are parallel to each other at the conditional local extremum points. Intu-
itively, this can be proved as follows. Condition F (x, y) = 0 defines a curve in the
plane. If we move along this curve, then we move perpendicularly to the gradient
of F at each point of the curve (see Exercise 2.10). As we reach a conditional local

8 Joseph-Louis Lagrange (1736–1813), Italian-French mathematician.
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extremum point of f , we go neither upward nor downward on the graph of f , and
thus the gradient of f is also perpendicular to the curve. That is, the two gradients
are parallel to each other.

Proof of Theorem 2.44. Consider the matrix
⎛
⎜⎜⎜⎜⎜⎝

D1F1(a) D2F1(a) . . . DpF1(a)
D1F2(a) D2F2(a) . . . DpF2(a)

...
... . . .

...
D1Fq(a) D2Fq(a) . . . DpFq(a)
D1f(a) D2f(a) . . . Dpf(a)

⎞
⎟⎟⎟⎟⎟⎠

. (2.12)

We need to prove that the rows of this matrix are linearly dependent. Indeed, in
this case there are real numbers λ1, . . . , λq, λ such that at least one of these num-
bers is nonzero, and the linear combination of the row vectors with coefficients
λ1, . . . , λq, λ is zero. Then every partial derivative of λ1F1 + . . . + λqFq + λf is
zero at a, and this is what we want to prove.

If p ≤ q, then the statement holds trivially. Indeed, the matrix has p columns, and
its rank is at most p. Thus, q + 1 > p row vectors must be linearly dependent.

Therefore, we may assume that p > q. We may also assume that the first q row
vectors of the matrix (the gradient vectors F ′

1(a), . . . , F
′
q(a)) are linearly indepen-

dent, since otherwise, there would be nothing to prove.
The vectors F ′

1(a), . . . , F
′
q(a) are the row vectors of the Jacobian matrix of F at

the point a. Since these are linearly independent, the rank of the Jacobian matrix is q,
and the matrix has q linearly independent column vectors. Permuting the coordinates
of Rq if necessary, we may assume that the last q columns of the Jacobian matrix
are linearly independent.

Let s = p − q. Put b = (a1, . . . , as) ∈ R
s and c = (as+1, . . . , ap); then a =

(b, c). The Jacobian matrix of the section Fb : Rq → R
q at the point c consists of

the last q column vectors of the matrix of F ′(a). Since these are linearly indepen-
dent, the linear mapping (F ′

b)(c) is injective. Therefore, we may apply the implicit
function theorem. We obtain δ > 0 and a differentiable function ϕ : B(b, δ) → R

q

such that ϕ(b) = c and F (x, ϕ(x)) = 0 for every x ∈ B(b, δ). (Here, B(b, δ)
denotes the ball with center b and radius δ in Rs.)

We know that f has a conditional local extremum point at a = (b, c) with the
condition F = 0. Let us assume that this is a local maximum. This means that
if x ∈ R

s, y ∈ R
q and the point (x, y) is close enough to a, and F (x, y) = 0,

then f(x, y) ≤ f(a). Consequently, if x is close enough to b, then f(x, ϕ(x)) ≤
f(b, ϕ(b)). In other words, the function f(x, ϕ(x)) has a local maximum at the
point b. By Theorem 1.60, the partial derivatives of f(x, ϕ(x)) are zero at the point
b. If ϕ1, . . . , ϕq are the coordinate functions of ϕ, then applying Corollary 2.23, we
find that for every i = 1, . . . , s we have

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Dif(a) +
q∑

j=1

Ds+jf(a) · Diϕj(b) = 0. (2.13)

For every k = 1, . . . , q the function Fk(x, ϕ(x)) is constant and equal to zero in a
neighborhood of the point b, thus its partial derivatives are zero at b. We get

DiFk(a) +
q∑

j=1

Ds+jFk(a) · Diϕj(b) = 0 (2.14)

for every k = 1, . . . , q and i = 1, . . . , s. Equations (2.13) and (2.14) imply that the
first s column vectors of the matrix of (2.12) are linear combinations of the last q
column vectors. In other words, the rank of the matrix is at most q. Since the matrix
has q + 1 rows, they are linearly dependent. �
Remark 2.45. If we want to find the conditional local extremum points a of the
function f with condition F = 0, then according to Theorem 2.44, we need to
find λ, λ1, . . . , λq such that λDif(a) + λ1DiF1(a) + . . . + λqDiFq(a) = 0 for
every i = 1, . . . , p. These equations, together with the conditions Fk(a) = 0 (k =
1, . . . , q), form a set of p + q equations in p + q + 1 unknowns
a1, . . . , ap, λ, λ1, . . . , λq. We can also add the equation

λ2 + λ2
1 + . . . + λ2

q = 1

to our system of equations, since instead of λ, λ1, . . . , λq , we could also take
ν · λ, ν · λ1, . . . , ν · λq, where ν = 1/(λ2 + λ2

1 + . . . + λ2
q). We now have exactly

as many equations as unknowns. Should we be lucky enough, these equations are
“independent” and they have only a finite number of solutions. Checking these
solutions one by one, we can find, in principle, the set of actual conditional local
extremum points.

Example 2.46. In Example 2.43 we have seen that the function f(x, y, z) = x +
2y + 3z has a greatest value on the sphere S = {(x, y, z) ∈ R

3 : x2 + y2 + z2 =
1}. If f takes on this greatest value at the point a = (u, v, w), then f has a con-
ditional local maximum at a with the condition x2 + y2 + z2 − 1 = 0. Each of
the functions mentioned above is continuously differentiable, and thus we can
apply Theorem 2.44. We get that there are real numbers λ, μ such that they
are not both zero and the partial derivatives of the function λ(x + 2y + 3z) +
μ(x2 + y2 + z2 − 1) are zero at the point (u, v, w). Thus, the equations

λ + 2μu = 0, 2λ + 2μv = 0, 3λ + 2μw = 0, (2.15)

and u2 + v2 + w2 = 1 hold. The Equations (2.15) imply μ 
= 0, since μ = 0 would
imply λ = 0. Thus, applying (2.15) again gives us v = 2u and w = 3u, implying
u2 + (2u)2 + (3u)2 = 1, u = ±1/

√
14, i.e., (u, v, w) = (1/

√
14, 2/

√
14, 3/

√
14)

or (u, v, w) = (−1/
√
14,−2/

√
14,−3/

√
14).
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The function f(x, y, z) = x + 2y + 3z also has a least value on the sphere S.
Since f is not constant on S, the points where f takes its maximum and its
minimum must be different. This means that there are at least two conditional
local extremal points. Our calculations above imply that there are exactly two such
extremal points, and it is also clear that f assumes its greatest value at the point
(1/

√
14, 2/

√
14, 3/

√
14) while it takes its least value at the point

(−1/
√
14,−2/

√
14,−3/

√
14) on S.

Exercises

2.14. Show that in Corollary 2.28 the condition on the finiteness of the partial deriv-
ative D2f can be omitted. (H)

2.15. Let the function f of Corollary 2.28 be differentiable at the point (a, b). Show
directly (i.e., without applying Theorem 2.40) that the function ϕ is differentiable at
the point a and ϕ′(a) = −D1f(a, b)/D2f(a, b).

2.16. Let f : I → R be continuous, where I ⊂ R is an interval. Show that if every
point of I has a neighborhood where f is injective, then f is injective on the whole
interval.

2.17. Let f(x, y) = (ex cos y, ex sin y) for every (x, y) ∈ R
2.

(a) Show that f ′(a, b) is injective at every (a, b) ∈ R
2.

(b) Show that f is injective in every open disk with radius π.
(c) LetG = {(x, y) ∈ R

2 : x > 0}. Define a continuous map ϕ : G → R
2 such that

ϕ(1, 0) = (0, 0) and f ◦ ϕ is the identity on G. (S)

2.18. Show that a contraction can have at most one fixed point.

2.19. Let B ⊂ R
p be an open ball. Show that there exists a contraction f : B → B

with no fixed points.

2.20. We call the mapping f : R
p → R

p a similarity with ratio λ if
|f(x) − f(y)| = λ · |x − y| holds for every x, y ∈ R

p. Show that if 0 < λ < 1, then
every similarity with ratio λ has exactly one fixed point.

2.21. Find the largest value of x − y + 3z on the ellipsoid x2 + y2

2 + z2

3 = 1.

2.22. Find the largest value of xy with the condition x2 + y2 = 1.

2.23. Find the largest value of xyz with the condition x2 + y2 + z2 = 3.

2.24. Find the largest value of xyz with the condition x + y + z = 5,
xy + yz + xz = 8.



Chapter 3
The Jordan Measure

3.1 Definition and Basic Properties of the Jordan Measure

One of the main goals of mathematical analysis, besides applications in physics, is
to compute the measure of sets (arc length, area, surface area, and volume).

We deal with the concepts of area and volume at once; we will use the word
measure instead. We will actually define measure in every space R

p, and area and
volume will be the special cases when p = 2 and p = 3.

We call the sets A and B nonoverlapping if they do not share any interior points.
If we want to convert the intuitive meaning of measure into a precise notion,

then we should first list our expectations for the concept. Measure has numerous
properties which we consider natural. We choose three out of these:

(a) The measure of the box R = [a1, b1] × · · · × [ap, bp] equals the product of
its sides lengths, that is, (b1 − a1) · · · (bp − ap).

(b) If we decompose a set into the union of finitely many nonoverlapping sets,
then the measure of the set is the sum of the measures of the parts.

(c) If A ⊂ B then the measure of A is not greater than the measure of B.

We will see that these requirements naturally determine to which sets we can assign
a measure, and what that measure should be.

Definition 3.1. If R = [a1, b1] × · · · × [ap, bp], then we let μ(R) denote the prod-
uct (b1 − a1) · · · (bp − ap).

Let A be an arbitrary bounded set in R
p. Cover A in every possible way by

finitely many boxes R1, . . . , RK , and form the sum
∑K

i=1 μ(Ri) for each cover.
The outer measure of the set A is defined as the infimum of the set of all the sums
we obtain this way. We denote the outer measure of the set A by μ(A).

If A does not have an interior point, then we define the inner measure to be equal
to zero. If A does have an interior point, then choose every combination of finitely

c© Springer Science+Business Media LLC 2017
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96 3 The Jordan Measure

many boxes R1, . . . , RK in A such that they are pairwise nonoverlapping, and form
the sum

∑K
i=1 μ(Ri) each time. The inner measure of A is defined as the supremum

of the set of all such sums. The inner measure of the set A will be denoted by μ(A).

It is intuitively clear that for any bounded set A, the values μ(A) and μ(A) are
finite, moreover 0 ≤ μ(A) ≤ μ(A). (We shall prove these statements shortly.) Now
by restrictions (a) and (c) above, it is clear that the measure of the set A should
fall between μ(A) and μ(A). If μ(A) < μ(A), then without further inspection, it is
not clear which number (between μ(A) and μ(A)) we should consider the measure
of A to be. Therefore, when speaking about sets having measure, we will restrict
ourselves to sets for which μ(A) = μ(A), and this shared value will be called the
measure of A.

Definition 3.2. We call the bounded set A ⊂ R
d Jordan1 measurable if μ(A) =

μ(A). The Jordan measure of the set A (the measure of A, for short) is the common
value μ(A) = μ(A), which we denote by μ(A).

If p ≥ 3 then instead of Jordan measure we can say volume, if p = 2 then area,
and if p = 1 then we can say length as well. If we want to emphasize that we are
talking about the inner, outer, or Jordan measure of a p dimensional set, then instead
of μ(A), μ(A), or μ(A) we may write μ

p
(A), μp(A), or μp(A).

Before proceeding with the investigation of measurable sets and the calculation
of their measure, we will now consider a different approach to define measure.

Finding the (approximate) area of a plane figure can be done by covering the
plane by a very fine square-grid, and counting the number of small squares inter-
secting the figure. Our next goal is translating this idea into a precise notion. From
now on, |V | denotes the cardinality of a finite set V .

We call the box R = [a1, b1] × . . . × [ap, bp] ⊂ R
p a cube with side length s, if

b1 − a1 = . . . = bp − ap = s. (For p = 1 and p = 2 the cubes with side length s are
nothing else than the closed intervals of length s, and the squares with side length
s, respectively.)

We denote by Kn the set of cubes
[

i1−1
n , i1

n

] × . . . ×
[

ip−1
n ,

ip
n

]
with side length

1/n, where i1, . . . , ip are arbitrary integers. These cubes are mutually nonoverlap-
ping, and their union covers the whole R

p space.

For every set A ⊂ R
p, the cubes of Kn belong to one of three separate classes.

The cube K is an interior cube, or an exterior cube, if K⊂ int A or K ⊂ ext A,
respectively. If a cube is neither an interior, nor an exterior cube, it is called a bound-
ary cube. Since the sets int A, ext A and ∂A are pairwise disjoint, every cube that
intersects the boundary of A is necessarily a boundary cube.

1 Camille Jordan (1838–1922), French mathematician.
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3.1. Figure

In fact, the bound-
ary cubes are exactly
the ones with K ∩
∂A �= ∅. In order to
prove this statement,
let us assume that a
boundary cube K does
not intersect ∂A. Then
K ⊂ intA ∪ ext A.
Since K is neither an
interior nor an exte-
rior cube, hence it con-
tains some points x
and y such that x ∈
intA and y ∈ ext A. Since K is a convex set, it contains the whole segment [x, y].
We know that every segment connecting a point of A and another point of Rp \ A
always contains a boundary point of A (see Theorem 1.19). Thus K ∩ ∂A �= ∅, and
we reached contradiction.

Obviously, a cube is an interior or a boundary cube exactly when it intersects the
set ( int A) ∪ (∂A), i.e., the closure of A.

We denote the total measure of interior boxes by μ(A,n). In other words,

μ(A,n) =
|{K ∈ Kn : K ⊂ intA}|

np
.

We denote the total measure of interior and boundary boxes by μ(A,n). That is,

μ(A,n) =
|{K ∈ Kn : K ∩ cl A �= ∅}|

np
.

We will now show that for every bounded set A, the sequences μ(A,n) and μ(A,n)
converge to the inner measure and the outer measure of A, respectively.

Lemma 3.3. For every box R = [a1, b1] × . . . × [ap, bp] we have
limn→∞ μ(R,n) = limn→∞ μ(R,n) =

∏p
j=1 (bj − aj).

Proof. Let n be fixed. There are integers pj , qj such that

(pj − 1)/n < aj ≤ pj/n and (qj − 1)/n ≤ bj < qj/n (j = 1, . . . , p).

One can easily see that a cube
[

i1−1
n , i1

n

] × . . . ×
[

ip−1
n ,

ip
n

]
intersects the closure

of R (i.e., R itself) if pj ≤ ij ≤ qj (j = 1, . . . , p). Therefore,

μ(R,n) = n−p ·
p∏

j=1

(qj − pj + 1),

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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which implies that

μ(R,n) ≤
p∏

j=1

(

bj +
1
n

− aj +
1
n

)

,

and μ(R,n) ≥ ∏p
j=1 (bj − aj). Since both estimate of μ(R,n) converge to μ(R)

as n → ∞, the squeeze theorem implies that μ(R,n) → μ(R). We can prove
μ(R,n) → μ(R) similarly. �

Theorem 3.4. For every bounded set A ∈ R
p the following hold.

(i) limn→∞ μ(A,n) = μ(A),

(ii) limn→∞ μ(A,n)(A) = μ(A),

(iii) μ(A) ≤ μ(A).

Proof. (i) Let ε > 0 be fixed. Then there are boxes R1, . . ., RN covering A such that∑N
i=1 μ(Ri) < μ(A) + ε. The union of the cubes of Kn intersecting the closure of

A cover A itself, thus the definition of μ(A) implies μ(A,n) ≥ μ(A). On the other
hand, a cube intersecting the closure of A also intersects one of the boxes Ri, thus

μ(A,n) ≤
N∑

i=1

μ(Ri, n).

By Lemma 3.3, limn→∞
∑N

i=1 μ(Ri, n) =
∑N

i=1 μ(Ri) < μ(A) + ε, and thus
there exists an integer n0 such that μ(A,n) ≤ ∑N

i=1 μ(Ri, n) < μ(A) + ε for every
n > n0. We obtain that μ(A) ≤ μ(A,n) < μ(A) + ε for n > n0. Since ε was arbi-
trary, we get limn→∞ μ(A,n) = μ(A).

(ii) If the interior of the set A is empty, then μ(A) = 0 and μ(A,n) = 0 for every
n, thus μ(A,n) → μ(A). Suppose int A �= ∅, and let ε > 0 be fixed. There exist

nonoverlapping boxes R1, . . . , RN in A such that
∑N

i=1 μ(Ri) > μ(A) − ε. Then

μ(A,n) ≥
N∑

i=1

μ(Ri, n), (3.1)

since if a cube is in the interior of Ri then it has to be an interior cube of A as well.
By Lemma 3.3,

lim
n→∞

N∑

i=1

μ(Ri, n) =
N∑

i=1

μ(Ri) > μ(A) − ε,

and thus there exists an integer n0 such that
∑N

i=1 μ(Ri, n) > μ(A) − ε for every
n > n0. Now (3.1) implies μ(A,n) > μ(A) − ε for n > n0. On the other hand
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μ(A,n) ≤ μ(A), since the total volume of the cubes of Kn in the interior of A
is at most μ(A) by the definition of μ(A). We proved that μ(A,n) → μ(A).

Statement (iii) is obvious from (i), (ii), and from the inequality μ(A,n) ≤ μ(A,n).

�

Remark 3.5. We should realize that if R is a box, then μ(R) ≤ μ(R) and μ(R) ≥
μ(R) follow immediately from the definition, and thus, by μ(R) ≤ μ(R) we have
μ(R) = μ(R) = μ(R). As a result, R is measurable, and Definition 3.2 gives the
same value for μ(R) as the original definition of μ(R).

Theorem 3.6. Let A and B be bounded sets. Then

(i) μ(A ∪ B) ≤ μ(A) + μ(B),

(ii) if A and B are nonoverlapping, then μ(A ∪ B) ≥ μ(A) + μ(B), and

(iii) if A ⊂ B, then μ(A) ≤ μ(B) and μ(A) ≤ μ(B).

Proof. It is clear that μ(A ∪ B,n) ≤ μ(A,n) + μ(B,n) holds for every n. Then
we get (i) by letting n → ∞. If A and B are nonoverlapping, then μ(A ∪ B,n) ≥
μ(A,n) + μ(B,n), which yields (ii). Suppose A ⊂ B. Every box in A is also in B,
thus μ(A) ≤ μ(B). Finally, if the union of a set of boxes cover B it also covers A,
which implies μ(B) ≥ μ(A). �

Theorem 3.7. For every bounded set A,

μ(A) = μ( cl A) = μ(A) + μ(∂A).

Proof. Recall that μ(A,n) denotes the total volume of the interior and boundary
cubes of Kn. Since ∂A is closed, the cubes intersecting the closure of ∂A are the
same as the cubes intersecting ∂A, and thus the total volume of the boundary cubes
is μ(∂A, n). We obtain

μ(A) = μ( cl A,n) = μ(A,n) + μ(∂A, n).

Then, letting n → ∞ yields the desired equality. �

Definition 3.8. We say that a set A ⊂ R
p is a null set, if μ(A) = 0.

Theorem 3.9. A set A ⊂ R
p is measurable if and only if it is bounded and its

boundary is a null set.

Proof. The statement is clear from μ(A) − μ(A) = μ(∂A). �

For our further discussion of the theory of measurable sets, it is necessary to give
conditions for being a null set.
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Definition 3.10. The diameter of a bounded set A ⊂ R
p is the number

diam A = sup{|x − y| : x, y ∈ A}.

The diameter of the empty set is zero by definition.

Example 3.11. The diameter of the cubes of R
p with side length s is s · √p.

Indeed, let R = [a1, b1] × . . . × [ap, bp] ⊂ R
p, where b1 − a1 = . . . = bp − ap =

s. If x = (x1, . . . , xp) ∈ R and y = (y1, . . . , yp) ∈ R, then xi, yi ∈ [ai, bi] and
yi − xi ≤ bi − ai = s, for every i = 1, . . . , p, and

|x − y| =

√
√
√
√

p∑

i=1

(xi − yi)2 ≤
√

p · s2 = s · √
p

follows. Thus diam R ≤ s · √
p. On the other hand, the distance of the points a =

(a1, . . . , ap) and b = (b1, . . . , bp) is exactly s · √p, which implies diam R = s ·√
p.

Lemma 3.12. Let a positive number δ be given. Then every box can be decomposed
into finitely many nonoverlapping boxes with diameter smaller than δ.

Proof. Let the box R be fixed. If n >
√

p/δ, then every cube with side length
1/n has diameter smaller than δ. Consider the cubes K ∩ R, where K ∈ Kn

and int K ∩ intR �= ∅ (there is only finitely many such cubes). These cubes are
nonoverlapping, and their (common) diameter is smaller than δ. Since their union
covers the interior of R and it is closed, it also covers R. �

Theorem 3.13. Let H ⊂ R
p be bounded and closed, and let f : H → R be contin-

uous. Then graph f has measure zero in Rp+1.

3.2. Figure

Proof. Let ε > 0 be fixed.
By Heine’s theorem
(Theorem 1.53), there exists
δ > 0 such that |f(x) −
f(y)| < ε for every x, y ∈
H with |x − y| < δ.

Since H is bounded,
it can be covered by a
box R. Using Lemma 3.12,
we can decompose R into
finitely many nonoverlap-
ping boxes R1, . . . , Rn with
diameter less than δ. Let I
denote the set of indices i

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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with Ri ∩ H �= ∅. If i ∈ I , then the set Ai = Ri ∩ H is bounded, closed, and non-
empty. Then, by Weierstrass’ theorem, f has a smallest and a largest value on
Ai. If mi = minx∈Ai

f(x) and Mi = maxx∈Ai
f(x), then diam Ai < δ implies

Mi − mi < ε.
The union of the boxes Ri × [mi,Mi] (i ∈ I) covers graph f . Thus

μp+1( graph f) ≤
∑

i∈I

μp(Ri) · (Mi − mi) ≤
∑

i∈I

μp(Ri) · ε ≤ μp(R) · ε, (3.2)

since Ri are nonoverlapping, and then
∑n

i=1 μp(Ri) ≤ μp(R) by statement (ii) of
Theorem 3.6. (Here μp+1( graph f) and μp(Ri) are the outer measures of the set
graph f in R

p+1 and the measure of Ri in R
p, respectively.) Since ε was arbitrary,

graph f has measure zero. �

Corollary 3.14. Every ball is measurable.

Proof. The ball B(a, r) is bounded, with boundary S(a, r). It is easy to see
that S(a, r) is the union of the graphs of the functions f(x1, . . . , xp−1) =√

r2 − ∑p−1
i=1 x2

i and g(x1, . . . , xp−1) = −
√

r2 − ∑p−1
i=1 x2

i defined on the set

A =

{

(x1, . . . , xp−1) ∈ R
p−1 :

p−1∑

i=1

(xi − ai)2 ≤ r2

}

.

Since A is bounded and closed in R
p−1, furthermore f and g are continuous on A,

hence Theorem 3.13 and part (i) of Theorem 3.6 imply that S(a, r) has measure
zero. Thus B(a, r) is measurable by Theorem 3.9. �

Intuitively, it is clear (and also not too hard to prove), that a hyperplane does not
have interior points. Thus, the inner measure of a bounded subset of a hyperplane is
always zero. We show that the outer measure of such a set is also zero.

Lemma 3.15. Every bounded subset of a hyperplane ofRp has measure zero inRp.

Proof. Let our hyperplane be the set

H = {(x1, . . . , xp) ∈ R
p : a1x1 + . . . + apxp = b},

where not every ai is zero. We may assume that ap �= 0. Indeed, in the case of
ap = 0 and ai �= 0 we could simply swap the corresponding coordinates. Obviously,
the mapping

(x1, . . . , xi, . . . , xp) 
→ (x1, . . . , xp, . . . , xi)

does not change the volume of a box, thus it also leaves the inner and outer measures
of every set unchanged as well. The image of a hyperplane is a hyperplane and the
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image of a bounded set is a bounded set, i.e., we get that the assumption of ap �= 0
is indeed justified.

Let A ⊂ H be a bounded set. The set A can be covered by some box R. Let
R = R1 × [c, d], where R1 is a box in R

p−1. With these assumptions, A is a subset
of the graph of the function

f(x1, . . . , xp−1) =

(

b −
p−1∑

i=1

aixi

)

/ap ((x1, . . . , xp−1) ∈ R1),

which has measure zero, by Theorem 3.13. �
Since every polyhedron is bounded and its boundary can be covered by finitely

many number of hyperplanes, it follows that every polyhedron is measurable.
The p = 2 case yields that every polygon is measurable.
One can show that every bounded and convex set is also measurable. The proof

can be found in the appendix.

We continue with a closer inspection of the measurable sets.

Theorem 3.16. If A and B are measurable sets, then A ∪ B, A ∩ B, and A \ B
are also measurable.

Proof. Since A and B are bounded, so are the sets listed in the statement of the
theorem. Thus, it is enough to show that the boundaries of these sets have mea-
sure zero. Since A and B are measurable, we have μ(∂A) = μ(∂B) = 0, and thus
μ((∂A) ∪ (∂B)) ≤ μ(∂A) + μ(∂B) = 0, that is (∂A) ∪ (∂B) has measure zero.
Then every subset of (∂A) ∪ (∂B) also has measure zero. Therefore, it is enough
to show that the boundaries of the sets A ∪ B, A ∩ B, and A \ B are subsets
of (∂A) ∪ (∂B). This is easy to check using the definition of the boundary (see
Exercise 1.10). �

We denote the set of all Jordan-measurable sets in R
p by J . The previous

theorem states that if A,B ∈ J , then A ∪ B, A ∩ B, A \ B are also in J . The
statements of the following theorem can be summarized as follows: the function
μ : J → R is non-negative, additive, translation-invariant, and normalized.

Theorem 3.17.

(i) μ(A) ≥ 0 for every A ∈ J .

(ii) If A,B ∈ J are nonoverlapping then μ(A ∪ B) = μ(A) + μ(B).

(iii) If A ∈ J and B is a translation of the set A (i.e., there exists a vector v such
that B = A + v = {x + v : x ∈ A}), then B ∈ J and μ(B) = μ(A).

(iv) μ([0, 1]p) = 1.

Proof. Part (i) is obvious, since μ(A) ≥ 0 for every bounded set. If A,B ∈ J , then
(without additional conditions)

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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μ(A ∪ B) = μ(A ∪ B) ≤ μ(A) + μ(B) = μ(A) + μ(B).

(The first equality follows from Theorem 3.16.) If A and B are nonoverlapping,
then

μ(A ∪ B) = μ(A ∪ B) ≥ μ(A) + μ(B) = μ(A) + μ(B)

also holds. The two inequalities together imply (ii).
Part (iii) follows from the fact that if the set R′ is a translation of the box R,

then R′ is also a box, and μ(R′) = μ(R), obviously. Thus, if the set B is a trans-
lation of the set A, then μ(B) = μ(A), since μ(B) and μ(A) are the infima of the
same set of numbers. Similarly, μ(B) = μ(A). If A is measurable, then μ(B) =
μ(A) = μ(A) = μ(B), and B is also measurable with μ(B) = μ(A). Finally, part
(iv) follows from the fact that [0, 1]p is a box. �

According to the following theorem, the function μ is the only set function satis-
fying these four conditions.

Theorem 3.18. Let the function t : J → R be non-negative, additive, translation-
invariant, and normalized. (I.e., let t satisfy the conditions of the previous theorem.)
Then t(A) = μ(A) for every set A ∈ J .

Proof. First we show that t is monotone; that is, A,B ∈ J , A ⊂ B implies t(A) ≤
t(B). Indeed, the additivity and non-negativity of t imply

t(B) = t(A ∪ (B \ A)) = t(A) + t(B \ A) ≥ t(A).

The cubes of Kn are translations of each other, thus the translation-invariance of t
implies that t(K) = t(K ′) for every K,K ′ ∈ Kn. Since [0, 1]p is the union of np

nonoverlapping cubes of Kn, hence the additivity of t and the fact that t is normal-
ized imply

1 = t([0, 1]p) = np · t(K),

i.e., t(K) = 1/np for every K ∈ Kn. Let A ∈ J be arbitrary, and let Bn be
the union of the cubes of Kn which lie in the interior of A. We have μ(Bn) =
μ(A,n). Since t is monotone, additive, and t is the same as μ on the cubes of
Kn, it follows that t(A) ≥ t(Bn) = μ(Bn) = μ(A,n). Let Cn be the union of
the cubes of Kn intersecting the closure of A. We have μ(Cn) = μ(A,n), and
again, since t is monotone, additive, and t is the same as μ on the cubes of Kn,
we have t(A) ≤ t(Cn) = μ(Cn) = μ(A,n). Thus, μ(A,n) ≤ t(A) ≤ μ(A,n) for
every n. Since μ(A,n) → μ(A) and μ(A) → μ(A) as n → ∞, it follows that
t(A) = μ(A). �

Later we will see that the Jordan measure is not only translation-invariant, but it
also is isometry-invariant (Theorem 3.36)2. This is easy to show for some special
isometries.

2 By an isometry we mean a distance preserving bijection from R
p onto itself (see page 115).
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Let φa(x) = 2a − x for every x, a ∈ R
p. The mapping φa is called the reflection

through the point a.

Lemma 3.19. For every bounded set A ⊂ R
p and for every point a ∈ R

p we have
μ(φa(A)) = μ(A) and μ(φa(A)) = μ(A). If A ⊂ R

p is measurable, then φa(A) is
also measurable with μ(φa(A)) = μ(A).

Proof. If R′ = φa(R), where R is a box, then R′ is also a box and μ(R′) = μ(R). It
follows that if B = φa(A), then μ(B) = μ(A), since μ(B) and μ(A) are the infima
of the same set of numbers. We get μ(B) = μ(A) similarly. If A is measurable, then
μ(B) = μ(A) = μ(A) = μ(B), thus B is also measurable, with μ(B) = μ(A). �

For every positive number λ and for every point a ∈ R
p we say that the mapping

ψλ,a(x) = λx + a (x ∈ R
p) is a homothetic transformation with ratio λ.

Lemma 3.20. For every bounded set A ⊂ R
p and for every point a ∈ R

p we have
μ(ψλ,a(A)) = λp · μ(A) and μ(ψλ,a(A)) = λp · μ(A). If A ⊂ R

p is measurable,
then ψλ,a(A) is also measurable with μ(ψλ,a(A)) = λp · μ(A).

Proof. For every box R, ψλ,a(R) is also a box, with side-lengths λ times the corre-
sponding side lengths of R. Thus μ(ψλ,a(R)) = λp · μ(R).

Now, A ⊂ R1 ∪ . . . ∪ Rn if and only if ψλ,a(A) ⊂ ψλ,a(R1) ∪ . . . ∪ ψλ,a(Rn),
which implies μ(ψλ,a(A)) = λp · μ(A). The inequality μ(ψλ,a(A)) = λp · μ(A)
can be proven similarly. The case of measurable sets should be clear. �

Exercises

3.1. For every 0 ≤ a ≤ b find a set H ⊂ R
2 such that μ(H) = a and μ(H) = b.

3.2. (a) Is there a non-measurable set whose boundary is measurable?
(b) Does the measurability of the closure, the interior, and the boundary of a set

imply the measurability of the set itself?
(c) Does the measurability of a set imply the measurability of its closure, interior,

and boundary?

3.3. Let (rn) be an enumeration of all rational number in [0, 1]. Is⋃∞
n=1 ([rn, rn + (1/n)] × [0, 1/n]), as a subset of R2 measurable?

3.4. Show that if A is bounded, then μ(A) = μ(int A).

3.5. Prove that for every bounded set A ⊂ R
p and for every ε > 0 there is an open

set G such that A ⊂ G and μ(G) < μ(A) + ε. (S)



3.1 Definition and Basic Properties of the Jordan Measure 105

3.6. (a) Show that if A and B are bounded and nonoverlapping sets, then μ(A ∪
B) ≥ μ(A) + μ(B).

(b) Give an example of two sets A and B with the property μ(A ∪ B) > μ(A) +
μ(B).

3.7. Let the function f : [a, b] → R be non-negative, bounded, and let A be the
domain under the graph of f ; i.e., A = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}. Show
that μ(A) and μ(A) are equal to the lower and upper integral of f , respectively.

3.8. Let f : [a, b] → R be bounded. Is it true that if the graph of f is measurable,
then f is integrable?

3.9. Construct a function f : [0, 1] → [0, 1] whose graph is not measurable.

3.10. Let H ⊂ R, where R is a box. Show that μ(H) = μ(R) − μ(R \ H).

3.11. Show that if A is measurable and H ⊂ A, then μ(H) = μ(A) − μ(A \ H).

3.12. Let A be a bounded set. Show that A is measurable if and only if, for every
bounded set H we have μ(H) = μ(H ∩ A) + μ(H \ A).

3.13. Let (an, bn) (n = 1, 2, . . .) be open intervals, with a bounded union. Show
that μ (∪∞

n=1(an, bn)) ≤ ∑∞
n=1(bn − an). (S)

3.14. For every ε > 0, construct a bounded, open subset G of the real line such that
μ(G) < ε and μ(G) ≥ 1. (S)

3.15. Construct a bounded and closed subset F of the real line such that μ(F ) = 0
and μ(F ) ≥ 1. (S)

3.16. Let m(H) = (μ(H) + μ(H))/2 for every bounded set H ⊂ R
2. Show that

m is not additive.

3.17. Show that omitting any one of the conditions being additive, translation-
invariant, normalized, or non-negative, the remaining properties do not imply that a
function defined on J with these properties is necessarily the Jordan-measure. (∗ S)

3.18. Let A and B be bounded sets. Show that the following statements are equiv-
alent.

(a) μ(A ∪ B) = μ(A) + μ(B).
(b) For every ε > 0 there exist M, N measurable sets such that A ⊂ M , B ⊂ N

and μ(M ∩ N) < ε.
(c) (∂A) ∩ (∂B) has measure zero.
(d) There exists a measurable set M such that A ⊂ M and μ(M ∩ B) = 0. (∗)

3.19. Let A and B be bounded sets such that μ(A) = 1, μ(A) = 6, μ(B) = 2,
μ(B) = 4, μ(A ∪ B) = 10. What values can μ(A ∪ B) take?
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3.20. Let A1, . . . , An be measurable sets in the unit cube, and let the sum of their
measures be larger then 100. Show that there exists a point which belongs to more
than 100 of these sets.

3.21. Let F1 ⊃ F2 ⊃ . . . be bounded and closed sets, and let
⋂∞

n=1 Fn consist of a
single point. Show that μ(Fn) → 0.

3.22. Let A1 ⊂ A2 ⊂ . . . be measurable sets in R
p with a bounded union. Which

of the following statements is true?
(a) μ (

⋃∞
n=1 An) = limn→∞ μ(An); (b) μ (

⋃∞
n=1 An) = limn→∞ μ(An).

3.23. Let A1 ⊃ A2 ⊃ . . . be measurable sets in R
p. Which of the following state-

ments is true?
(a) μ (

⋂∞
n=1 An) = limn→∞ μ(An); (b) μ (

⋂∞
n=1 An) = limn→∞ μ(An).

3.24. Let An (n = 1, 2, . . .) be nonoverlapping measurable sets in R
p with a

bounded union. Which of the following statements is true?

(a) μ (
⋃∞

n=1 An) ≤ ∑∞
n=1 μ(An); (b) μ (

⋃∞
n=1 An) ≥ ∑∞

n=1 μ(An);
(c) μ (

⋃∞
n=1 An) ≤ ∑∞

n=1 μ(An); (d) μ (
⋃∞

n=1 An) ≥ ∑∞
n=1 μ(An).

3.2 The measure of a Few Particular Sets

Example 3.21. Let f be a non-negative bounded function on the interval [a, b], and
let Af = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)} be the set under the graph of f . We
show that if f is integrable on [a, b], then the set Af is Jordan measurable and

μ(Af ) =
∫ b

a
f dx.

Indeed, let F : a = x0 < x1 < . . . < xn = b be an arbitrary partition of the
interval [a, b], and let mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1

≤ x ≤ xi} for every i = 1, . . . , n. Since the rectangles Ri = [xi−1, xi] × [0,mi]
(i = 1, . . . , n) are nonoverlapping and are subsets of Af , it follows that

sF =
n∑

i=1

mi(xi − xi−1) =
n∑

i=1

μ(Ri) ≤ μ(Af ).

On the other hand, the rectangles Ti = [xi−1, xi] × [0,Mi] (i = 1, . . . , n) cover Af ,
and thus

SF =
n∑

i=1

Mi(xi − xi−1) =
n∑

i=1

μ(Ti) ≥ μ(Af ).

Therefore, we have sF ≤ μ(Af ) ≤ μ(Af ) ≤ SF for every partition F . The supre-
mum of the set of numbers sF , when F runs through all partitions of [a, b] equals
∫ b

a
f dx, and thus

∫ b

a
f dx ≤ μ(Af ). On the other hand, the infimum of the set of
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numbers SF also equals
∫ b

a
f dx, and thus

∫ b

a
f dx ≥ μ(Af ). This implies μ(Af ) =

μ(Af ) =
∫ b

a
f dx; that is, Af is measurable, and μ(Af ) =

∫ b

a
f dx.

The converse of the statement above is also true: if Af is measurable, then f is
integrable. This follows from Theorem 3.25 to be proved presently. Indeed, applying
the theorem for p = 2 and with the coordinates x and y interchanged, we obtain that
if Af is measurable, then the function x 
→ μ((Af )x) = f(x) is integrable on [a, b].

Example 3.22. (The Cantor set) We start with a well-known subset of the real line.
Remove from the interval [0, 1] its open middle third, i.e., cut the interval (1/3, 2/3)
out. Remove the open middle thirds of the remaining closed intervals, i.e., cut the
intervals (1/9, 2/9) and (7/9, 8/9) out. Continue the process infinitely many times,
each time cutting out the open middle thirds of the remaining closed intervals. The
set of the remaining points is the Cantor set, denoted by C.

3.3. Figure

The set C is closed, since the [0, 1] \ C is a union of open interval, thus [0, 1] \ C
is open. The elements of C can be described using the ternary representation of
numbers. In these representations every digit is one of 0, 1 and 2. It is easy to see
that during the first step of the construction of C we removed those points whose
first digit is 1 (in both ternary representations, if there are more than one). During the
second step we remove the numbers whose second digit is 1 (in both representations,
if there are more than one), and so on. Thus, x ∈ [0, 1] is in C if and only if all digits
of its ternary representation are 0 or 2. (If there are two representations of x then
one of them must be of this form.) It follows that the cardinality of C is continuum.
Indeed, we can define a one-to-one mapping between the subsets of N+ and C, if we
map every set H ⊂ N

+ into the ternary representation 0, a1a2 . . . such that ai = 2
if i ∈ H and ai = 0 if i /∈ H . Since the cardinality of the system of all subsets of
N

+ is continuum, we get that the cardinality of C is continuum as well.
Now we show that C has measure zero. After the nth step of the construction

we are left with 2n closed intervals of length 3−n, whose union covers C. Thus,
the outer measure of C is at most (2/3)n. Since (2/3)n → 0 as n → ∞, it follows
that μ(C) = 0. Therefore, the cardinality of the Cantor set is continuum, yet it has
measure zero. (In other words, C, as a subset of the real line, has the largest possible
cardinality and the smallest possible measure.)

Example 3.23. (Triangles and polygons) Let H be a triangle whose AB side is
parallel to the x axis. As Figure 3.4 shows, if neither of the angles at the vertices A
and B is obtuse, then H can be decomposed into three pieces that can be rearranged
to form a rectangle, whose base is AB and whose altitude is half the length of the
altitude of the triangle.
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3.4. Figure

The pieces of the triangle are measur-
able sets (since they are polygons), and the
applied transformations (the identity, and
two reflections through points) do not change
the measurability of these sets, and leave
their area unchanged. Therefore, the area of
H is equal to the product of the length of AB
and half the length of the altitude with foot
AB. (If one of the angles at A or B is obtuse,
then we can represent H as the difference of
two triangles with no such obtuse angles, and
deduce the same formula for its area.)

3.5. Figure

We will soon see that no isom-
etry changes the measurability nor
the measures of a set. It follows that
the area of every triangle equals half
the product of the length of one of
its sides and the corresponding alti-
tude.

It is also easy to show that
every polygon can be cut up into
finitely many nonoverlapping trian-
gles (see Exercises 3.30 and 3.31).
This implies that the Jordan mea-
sure of a polygon is the same as its
area as defined in geometry.

Example 3.24. (Sierpiński’s3 carpet) The Sierpiński carpet, one of the analogues
of the Cantor set in the plane, is defined as follows. Let us start with the closed unit
square, i.e., the set [0, 1] × [0, 1]. Divide this set into 9 equal squares, and remove the
center open square, i.e., cut out the set (1/3, 2/3) × (1/3, 2/3). Repeat this step on
each of the remaining 8 closed squares, then keep repeating infinitely many times.
The set of the remaining points is the Sierpiński carpet (Figure 3.5). The outer
measure of this carpet is zero, since it can be covered by 8n squares with area 9−n

for every n, and (8/9)n → 0 if n → ∞.

The most important tool for computing the measure of sets is provided by the
next theorem.

If A ⊂ R
p and x ∈ R, then we denote by Ay the set

{(x1, . . . , xp−1 ∈ R
p−1 : (x1, . . . , xp−1, y) ∈ A},

and call it the section of A with height y.

3 Wacław Sierpiński (1882–1969), Polish mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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Theorem 3.25. Let A⊂R⊂R
p, where A is measurable and R=[a1, b1]×. . .

×[ap, bp]. The functions y 
→ μp−1(Ay) and y 
→ μ
p−1

(Ay) are integrable on

[ap, bp], and

μp(A) =

bp∫

ap

μp−1(A
y) dy =

bp∫

ap

μ
p−1

(Ay) dy. (3.3)

Proof. We will prove the theorem in the case of p = 2. The proof in the general case
is similar.

Let A ⊂ R
2 be a measurable set such that A ⊂ [a, b] × [c, d]. We have to prove

that the functions y 
→ μ1(Ay) and x 
→ μ
1
(Ay) are integrable in [a, b], and

μ2(A) =
∫ b

a

μ1(A
y) dx =

∫ b

a

μ
1
(Ay) dx.

As we saw in the proof of Lemma 3.15, the role of the coordinates is symmetric;
interchanging the x- and y-coordinates does not affect the measure of sets. There-
fore, it is enough to prove the following: if A ⊂ [a, b] × [c, d] is measurable, then
the functions x 
→ μ1(Ax) and x 
→ μ

1
(Ax) are integrable in [a, b], and

μ2(A) =
∫ b

a

μ1(Ax) dx =
∫ b

a

μ
1
(Ax) dx. (3.4)

3.6. Figure

Since A ⊂ [a, b] × [c, d], we have
Ax ⊂ [c, d] for all x ∈ [a, b]. It fol-
lows that if x ∈ [a, b] then μ

1
(Ax) ≤

μ1(Ax) ≤ d − c, so the functions
μ
1
(Ax) and μ1(Ax) are bounded in

[a, b].
Let ε > 0 be given, and pick rec-

tangles Ti = [ai, bi] × [ci, di] (i =

1, . . . , n) such that A ⊂
n⋃

i=1

Ti and
∑n

i=1 μ2(Ti) < μ2(A) + ε. We may
assume that [ai, bi] ⊂ [a, b] for all
i = 1, . . . , n. Let

fi(x) =

{
0, if x /∈ [ai, bi],
di − ci, if x ∈ [ai, bi]

(i = 1, . . . , n).

Then fi is integrable in [a, b], and
∫ b

a
fi dx = μ2(Ti). For arbitrary x ∈ [a, b] the

sections Ax are covered by those intervals [ci, di] which correspond to indices i for
which x ∈ [ai, bi]. Thus, by the definition of the outer measure,
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μ1(Ax) ≤
∑

x∈[ai,bi]
(di − ci) =

n∑

i=1

fi(x).

It follows that

∫ b

a

μ1(Ax) dx ≤
∫ b

a

∑n

i=1
fi dx =

∫ b

a

∑n

i=1
fi dx =

=
∑n

i=1
μ2(Ti) < μ2(A) + ε.

(3.5)

Now let Ri = [pi, qi] × [ri, si] (i = 1, . . . , m) be non-overlapping rectangles such

that A ⊃ ⋃m
i=1 Ri and

∑m
i=1 μ2(Ri) > μ2(A) − ε. Then [pi, qi] ⊂ [a, b] for all i =

1, . . . ,m. Let

gi(x) =

{
0, if x /∈ [pi, qi],
si − ri, if x ∈ [pi, qi]

(i = 1, . . . , m).

Then gi is integrable in [a, b], and
∫ b

a
gi dx = μ2(Ri). If x ∈ [a, b] then the section

Ax contains all the intervals [ri, si] whose indices i satisfy x ∈ [ai, bi]. We can also
easily see that if x is distinct from all points pi, qi, then these intervals are non-
overlapping. Then by the definition of the inner measure

μ
1
(Ax) ≥

∑

x∈[pi,qi]
(si − ri) =

∑m

i=1
gi(x).

It follows that

∫ b

a

μ
1
(Ax) dx ≥

∫ b

a

∑m

i=1
gi dx =

∫ b

a

∑m

i=1
gi dx =

=
∑m

i=1
μ2(Ri) > μ2(A) − ε.

(3.6)

Now μ
1
(Ax) ≤ μ1(Ax) for all x, so by (3.5) and (3.6) we get that

μ2(A) − ε <

∫ b

a

μ
1
(Ax) dx ≤

∫ b

a

μ
1
(Ax) dx ≤

∫ b

a

μ1(Ax) dx < μ2(A) + ε.

Since this holds for all ε,
∫ b

a
μ
1
(Ax) dx =

∫ b

a
μ
1
(Ax) dx = μ2(A), which means

that the function x 
→ μ
1
(Ax) is integrable on [a, b] with integral μ2(A). We obtain

∫ b

a
μ1(Ax) dx = μ2(A) the same way. �
We call the set A ⊂ R

p a cone with base H and vertex c if H ⊂ R
p−1, c ∈ R

p,
and A is the union of the segments [x, c] (x ∈ H × {0}).
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Theorem 3.26. Let the set H ⊂ R
p−1 be bounded and convex, and let

c = (c1, . . . , cp) ∈ R
p, where cp > 0. Then the cone with base H and vertex c is

measurable, and μp(A) = 1
p · μp−1(H) · cp.

3.7. Figure

Proof. It is easy to see that A is bounded and
convex. Thus, by Theorem 3.37 of the appendix,
A is measurable.

Let 0 ≤ y < 1 and x ∈ H . The vector
(1 − y) · (x, 0) + y · c is in A, and its last coor-
dinate is y · cp. Conversely, if (v, y · cp) ∈ A,
then v = (1 − y) · x + y · d, where x ∈ H and
d = (c1, . . . , cp−1). This implies

Ay·cp = {(1 − y) · x + y · d : x ∈ H}.

In other words, the section Ay·cp can be obtained
by applying a homothetic transformation with
ratio (1 − y) to H , then translating the resulting

set by the vector y · d. By Theorem 3.17 and Lemma 3.20, the measure of this set is
(1 − y)p−1 · μp−1(H). Applying Theorem 3.25 yields the measure of A:

μp(A) =

cp∫

0

μp−1 (Au) du =

1∫

0

μp−1 (Ay·cp) · cp dy =

=

1∫

0

(1 − y)p−1 · μp−1(H) · cp dt = μp−1(H) · cp · 1
p
. �

Remark 3.27. Since cp is the height of the cone, hence the volume of the cone is
the product of the area of its base and its height, divided by the dimension. This
yields the formula for the area of a triangle in the case of p = 2, and the well-known
formula of the volume of cones of the three dimensional space in the case of p = 3.

Our next aim is to compute the measure of balls. The unit balls of R
p are

translations of each other, thus, by Theorem 3.17, their measure is the same. Let
us denote this measure by γp. A ball with radius r can be obtained by applying
a homothetic transformation with ratio r to the unit ball, thus, by Lemma 3.20,
μp(B(x, r)) = γp · rp for every x ∈ R

p and r > 0. It is enough to find the con-
stants γp.

Theorem 3.28.

(i) γ2k = πk

k! for every positive integer k, and

(ii) γ2k+1 = πk·22k+1·k!
(2k+1)! for every non-negative integer k.
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Proof. Let In =
∫ π

0
sinn x dx. It is well-known that

I2k = π · 1
2

· 3
4

· . . . · 2k − 1
2k

and I2k+1 = 2 · 2
3

· 4
5

· . . . · 2k

2k + 1
.

(See [7, Theorem 15.12].) If −1 ≤ y ≤ 1, then the section of the ball B(0, 1) ⊂ R
p

with height y, i.e., B(0, 1)y is a (p − 1)-dimensional ball with radius
√

1 − y2.
Then, by Theorem 3.25,

γp =

1∫

−1

γp−1 ·
(√

1 − y2
)p−1

dy = γp−1

π∫

0

(sin t)p dt = γp−1 · Ip.

The statement of the theorem follows by induction, using the fact that γ1 = 2. �
Remarks 3.29. 1. It is easy to see that the sequence In is strictly decreasing, and
I5 = 16/15 > 1 > I6 = 10π/32. It follows that

γ1 < γ2 < γ3 < γ4 < γ5 > γ6 > γ7 > . . . ,

thus the volume of the 5-dimensional unit ball is the largest.

2. The sequence γp converges to zero at a rate faster than exponential. By applying
Stirling’s4 formula5 one can check that

γp ∼
(

2πe

p

)p/2

· (πp)−1/2

as p → ∞. This is surprising, since the smallest box containing the unit ball has
volume 2p, which converges to infinity at an exponential rate. This phenomenon
can be formulated as follows: in high dimensions the ball only covers a very small
part of the box that contains it.

Next we compute the measure of parallelepipeds.

Definition 3.30. Let x1, . . . , xk ∈ R
p be vectors (k ≤ p). We call the set

{λ1x1 + . . . + λkxk : 0 ≤ λ1, . . . , λk ≤ 1}

the parallelepiped spanned by the vectors xi, and use the notation P (x1, . . . , xk).
If k < p or k = p and the vectors x1, . . . , xp are linearly dependent, then we say
that the parallelepiped P (x1, . . . , xk) is degenerated. If the vectors x1, . . . , xp are
linearly independent, then the parallelepiped P (x1, . . . , xp) is non-degenerated.

4 James Stirling (1692–1770), Scottish mathematician.
5 Stirling’s formula is the statement n! ∼ (n/e)n · √

2πn (n → ∞). See [7, Theorem 15.15].
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Since the parallelepipeds are bounded and convex sets, they are measurable by
Theorem 3.37 of the appendix. The next theorem gives the geometric interpretation
of the determinant.

Theorem 3.31. If xi = (ai,1, . . . , ai,p) (i = 1, . . . , p), then the volume of the paral-

lelepipedP (x1, . . . , xp) is the absolute value of the determinant

∣
∣
∣
∣
∣
∣
∣

a1,1 a1,2 . . . a1,p

...
... . . .

...
ap,1 ap,2 . . . ap,p

∣
∣
∣
∣
∣
∣
∣
.

Proof. Let D(x1, . . . , xp) denote the value of the determinant. If D(x1, . . . , xp)=
0, then the parallelepiped is degenerated. It is easy to see that every degenerated
parallelepiped can be covered by a hyperplane. Thus, by Lemma 3.15, every degen-
erated parallelepiped has measure zero. Therefore, the statement of the theorem
holds in this case.

Thus we may assume that D(x1, . . . , xp) �= 0, i.e., the vectors x1, . . . , xp are
linearly independent. The statement of the theorem is obvious for p = 1, thus we
may also assume that p ≥ 2.

We know that the value of D(x1, . . . , xp) does not change if we add a constant
multiple of one of its rows to another row. Now we show that these operations
also leave the volume of parallelepiped P (x1, . . . , xp) unchanged. What we prove
is that the parallelepiped P (x1 + λx2, x2, . . . , xp) can decomposed into pieces

3.8. Figure

which can be reassembled to give the origi-
nal parallelepiped P (x1, . . . , xp), implying the
equality of the two volumes. We denote by A +
a the translation of the set A ⊂ R

p by a vector
a ∈ R

p. That is, A + a = {x + a : x ∈ A}.
First consider the case of p = 2. For every

u, v ∈ R
2 let T (u, v) denote the triangle with

vertices 0, u and v. Let the vectors x1, x2 ∈ R
2

be linearly independent, and let λ > 0. It is easy
to see that

P (x1 + λx2, x2) ∪ T (x1, x1 + λx2) =
= P (x1, x2) ∪ (T (x1, x1 + λx2) + x2),

(3.7)

with non-overlapping sets on both sides. Since

μ (T (x1, x1 + λx2) + x2) = μ (T (x1, x1 + λx2)) ,

hence μ (P (x1 + λx2, x2)) = μ (P (x1, x2)), and we are done.

For the p > 2 case, let us use the notation A + B = {x + y : x ∈ A, y ∈ B}.
Let x1, . . . , xp ∈ R

p be linearly independent vectors, and let λ > 0. It is easy to see
that
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P (x1, . . . , xp) = P (x1, x2) + P (x3, . . . , xp),

furthermore, each element of P (x1, . . . , xp) can by uniquely written as x + y,
where x ∈ P (x1, x2) and y ∈ P (x3, . . . , xp). Thus, by (3.7) we obtain

P (x1 + λx2, x2, x3, . . . , xp) ∪ [T (x1, x1 + λx2) + P (x3, . . . , xp)] =
= P (x1, . . . , xp) ∪ ([T (x1, x1 + λx2) + P (x3, . . . , xp)] + x2) ,

with nonoverlapping convex polyhedra on both sides. Since the volume is translation-
invariant, hence the measures of the second sets of both sides are equal, implying

μ (P (x1 + λx2, x2, x3, . . . , xp)) = μ (P (x1, x2, x3, . . . , xp)) . (3.8)

3.9. Figure

Replacing xi by xi + λxj for
λ > 0 yields a similar results.
If λ < 0, then plugging λ 
→ −λ,
x1 
→ x1 + λx2 into (3.8) gives us
the desired result.

One of the vectors x1, . . . , xp

has a non-zero first coordinate.
Multiplying this vector by appropri-
ate constants, subtracting the result-
ing vectors from the other vectors
and rearranging the vectors if nec-
essary, we can achieve a1,1 �= 0 and
ai,1 = 0 (i = 2, . . . , p). One of the
new x2, . . . , xp vectors has a non-
zero second coordinate. Multiply-
ing this vector by appropriate con-
stants, subtracting the results from

the other vectors and rearranging the vectors if necessary, we can achieve a2,2 �= 0
and ai,2 = 0 (i �= 2). Repeating this process for each of the other coordinates results
in a system that satisfies ai,j �= 0 ⇐⇒ i = j. This system satisfies the statement
of the theorem, since the box P (x1, . . . , xp) has volume

∏p
j=1 |aj,j |, and the value

of the determinant is
∏p

j=1 aj,j . Since neither the value of the determinant, nor
the measure of the parallelepiped were changed by our operations, the theorem is
proved. �

Exercises

3.25. Let C be the Cantor set. Show, that {x + y : x, y ∈ C} = [0, 2] and {x −
y : x, y ∈ C} = [−1, 1].
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3.26. Are there points of the Cantor set (apart from 0 and 1) with finite decimal
expansion? (S)

3.27. We define a function f : C → [0, 1] as follows. If x ∈ C and the ternary rep-
resentation of x is 0, a1a2 . . ., where ai = 0 or ai = 2 for every i, then we define

f(x) =
∞∑

i=1

ai

2i+1
.

In other words, the value of f(x) is obtained by dividing the digits of the ternary
representation of x by 2, and reading the result as a binary representation. Show
that

(a) the function f maps C onto [0, 1];
(b) the function f is monotone increasing on C;
(c) if a, b ∈ C, a < b, and (a, b) ∩ C = ∅, then f(a) = f(b).

3.28. Extend f to the interval [0, 1] such that if a, b ∈ C, a < b, and (a, b) ∩ C = ∅,
then let f be equal to the constant f(a) = f(b) on the interval (a, b). Denote this
new function by f , also. The function f defined above is the Cantor function.
Show that

(a) the function f is monotone increasing on [0, 1];
(b) the function f is continuous on [0, 1]. (H)

3.29. Let D7 denote the set of numbers x ∈ [0, 1] whose decimal (in the scale of
10) do not have a digit 7. Show that D7 is closed and has measure zero.

3.30. Show that every polygon can be decomposed into finitely many nonoverlap-
ping triangles. (H)

3.31. Show that every polygon can be decomposed into finitely many nonoverlap-
ping triangles with the added condition that the set of vertices of each triangle of the
decomposition is a subsets of the set of vertices of the polygon. (∗)

3.32. Let H ⊂ R
p be convex, and let c ∈ R

p. Show that the union of the segments
[x, c] (x ∈ H) is convex.

3.33. Let the set H ⊂ R
p−1 be measurable (not necessarily convex), and let c =

(c1, . . . , cp) ∈ R
p, with cp > 0. Show that the cone A with base H and vertex c is

measurable, and μp(A) = 1
p · μp−1(H) · cp. (H)

3.3 Linear Transformations and the Jordan Measure

Our next aim is to prove that the measure is not only translation-invariant, but is
invariant under all isometries. We prove this in two steps. First we show that every
isometry can be written as the composition of a special linear transformation and a
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translation, then we figure out how linear transformations change the measure of a
set. The isometry invariance of the Jordan measure will follow from these two steps.

First we summarize the basics on isometries. We say that a mapping f : Rp →
R

p is distance preserving, if |f(x) − f(y)| = |x − y| for every x, y ∈ R
p. The

mapping f : Rp → R
p is an isometry, if it is a distance preserving bijection of Rp

onto itself. We denote the set of all isometries of Rp by Gp. (Therefore, a mapping
f is an isometry if it is distance preserving, and its range is the whole space Rp. We
will show presently that every distance preserving mapping is an isometry.) The sets
A and B are called congruent if there is an isometry f such that B = f(A).

It is easy to see that the inverse of an isometry is also an isometry, and the com-
position of two isometries is also an isometry. (In other words, Gp forms a group
with respect to the composition operation.) We denote the set of all translations of
R

p (i.e., the mappings x 
→ x + c (x ∈ R
p)) by Tp. It is clear that every translation

is an isometry; i.e., Tp ⊂ Gp.

We say that a linear transformation A mapping R
p into itself is orthogonal, if it

preserves the scalar product, i.e., if 〈Ax,Ay〉 = 〈x, y〉 for every x, y ∈ R
p. Since

〈Ax,Ay〉 = 〈x,AT Ay〉 (where AT denotes the transpose of A), hence A is orthog-
onal if and only if AT A = I , were I is the identity transformation. Therefore, A
is orthogonal if and only if the column vectors of the matrix of A are orthonor-
mal; that is, they are pairwise orthogonal unit vectors. The conditions AT A = I
and AAT = I are equivalent, hence A is orthogonal if and only if the row vectors
of the matrix of A are orthonormal. We denote the set of all the orthogonal linear
transformations of Rp by Op.

If A ∈ Op, then |Ax|2 = 〈Ax,Ax〉 = 〈x, x〉 = |x|2, thus |Ax| = |x| for every
x ∈ R

p. Consequently, |Ax − Ay| = |A(x − y)| = |x − y| for every x, y ∈ R
p.

Thus every orthogonal linear transformation is an isometry: Op ⊂ Gp.

Lemma 3.32. Let a, b ∈ R
p be distinct points. Then the set {x ∈ R

p : |x − a| =
|x − b|} is a hyperplane (called the orthogonal bisector hyperplane of the points
a and b.

Proof. For every x ∈ R
p we have

|x − a| = |x − b| ⇐⇒ |x − a|2 = |x − b|2 ⇐⇒
⇐⇒ 〈x − a, x − a〉 = 〈x − b, x − b〉 ⇐⇒
⇐⇒ |x|2 − 2〈a, x〉 + |a|2 = |x|2 − 2〈b, x〉 + |b|2 ⇐⇒
⇐⇒ 〈2(b − a), x〉 = |b|2 − |a|2 ⇐⇒

⇐⇒
p∑

i=1

cixi = |b|2 − |a|2,

where 2(b − a) = (c1, . . . , cp). �
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Lemma 3.33. Let f : Rp → R
p be distance preserving, and let g ∈ Gp. If the val-

ues of f and g are equal at p + 1 points of general position (i.e., if the points cannot
be covered by a single hyperplane), then f ≡ g.

Proof. Suppose that f(x) �= g(x). If f(y) = g(y), then |y − x| = |f(y) − f(x)| =
|g(y) − f(x)| = |y − (g−1 ◦ f)(x)|. This implies that the set {y : f(y) = g(y)} is
a subset of the orthogonal bisector hyperplane of the points x and (g−1 ◦ f)(x),
which contradicts our assumption. �

Theorem 3.34.

(i) The mapping f : Rp → R
p is an orthogonal linear transformation if and only

if f(0) = 0 and f is distance preserving.

(ii) Every distance preserving map f : Rp → R
p is an isometry.

(iii) Gp = {f ◦ g : g ∈ Op, f ∈ Tp}.
Proof. (i) We have already proved that an orthogonal linear transformation f
is an isometry (and thus, distance preserving). Clearly, f(0) = 0 also holds for
every linear map. Now we show that if f : Rp → R

p is distance preserving and
f(0) = 0, then f ∈ Op. Let ei = (0, . . . , 0, 1

i
, 0, . . . , 0) and vi = f(ei) for every

i = 1, . . . , p. Let g denote the linear transformation whose matrix has the column
vectors v1, . . . , vp.

These column vectors are orthonormal. Indeed, on the one hand

|vi − 0| = |f(ei) − f(0)| = |ei − 0| = 1

for every i. On the other hand, for i �= j we have

|vi − vj | = |f(ei) − f(ej)| = |ei − ej | =
√

2,

and −2〈vi, vj〉 = |vi − vj |2 − |vi|2 − |vj |2 = 0. Thus g ∈ Op.
Now, the distance preserving map f and the isometry g are equal at the points

0, e1, . . . , ep. It is easy to see that these points are of general position and thus, by
Lemma 3.33, f ≡ g.

(ii) Let h : Rp → R
p be distance preserving. Let f be the translation by h(0), and

let g(x) = h(x) − h(0) (x ∈ R
p). Then g is distance preserving and g(0) = 0, thus

g ∈ Op by (i). Therefore, g is an isometry and, since h = f ◦ g, we find that h is
also an isometry. This also proves (iii). �

Let Λ: Rp → R
p be a linear transformation, and let the determinant of Λ be det Λ.

The following theorem gives the measure theoretic meaning of this determinant.

Theorem 3.35. For every bounded A ⊂ R
p and for every linear transformation

Λ: Rp → R
p we have μ(Λ(A)) = |det Λ| · μ(A) and μ(Λ(A)) = |det Λ| · μ(A).

If A is measurable, then Λ(A) is also measurable, and μ(Λ(A)) = |det Λ| · μ(A).
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Proof. First we compute the measure of Λ(R), where R = [0, a1] × . . . × [0, ap].
Obviously, Λ(R) is the parallelepiped spanned by the vectors Λ(a1e1), . . . ,Λ(apep),
where ei = (0, . . . , 0, 1

i
, 0, . . . , 0) (i = 1, . . . , p). Since the determinant of a matrix

with row vectors Λ(aiei) = aiΛ(ei) is a1 · · · ap · det Λ, Theorem 3.31 gives

μ(Λ(R)) = |a1 · · · ap · det Λ| = |det Λ| · μ(R).

Then, using the translation invariance of the Jordan measure and the linearity of Λ
we get that μ(Λ(R)) = |det Λ| · μ(R) for every box R.

Let det Λ be denoted by D, and let A be a bounded set. If D = 0, then the range
of Λ is a proper linear subspace of Rp. Every such subspace can be covered by a
(p − 1) dimensional subspace, that is, by a hyperplane. Thus Λ(A) ⊂ Λ(Rp) is part
of a hyperplane. By Lemma 3.15 we obtain that μ(Λ(A)) = 0 = |D| · μ(A) and
μ(Λ(A)) = 0 = |D| · μ(A).

Suppose now D �= 0. Then Λ is invertible. Let {R1, . . . , Rn} be a system of
nonoverlapping boxes in A. The parallelepipeds Λ(Ri) (i = 1, . . . , n) are also
nonoverlapping6, and are subsets of Λ(A). Thus

μ(Λ(A)) ≥
n∑

i=1

μ(Λ(Ri)) =
n∑

i=1

|D| · μ(Ri) = |D| ·
n∑

i=1

μ(Ri). (3.9)

Since μ(A) is the supremum of the set of numbers
∑n

i=1 μ(Ri), hence (3.9) implies
μ(Λ(A)) ≥ |D| · μ(A).

The linear transformation Λ−1 maps the set Λ(A) into the set A, thus switch-
ing Λ(A) and A in the previous argument gives μ(A) ≥ |det Λ−1| · μ(Λ(A)) =
|D−1| · μ(Λ(A)). Thus, μ(A) · |D| ≥ μ (Λ(A)), and μ(Λ(A)) = |D| · μ(A).

We get μ(Λ(A)) = |D| · μ(A) by a similar argument.
If A is measurable, then A is bounded and μ(A) = μ(A) = μ(A). In this case,

Λ(A) is also bounded, and μ(Λ(A)) = |D| · μ(A) = |D| · μ(A) = μ(Λ(A)). It fol-
lows that Λ(A) is measurable and μ(Λ(A)) = |D| · μ(A). �

Theorem 3.36. Let the bounded sets A,B ⊂ R
p be congruent. Then μ(A) = μ(B)

and μ(A) = μ(B).
If A is measurable, then B is also measurable and μ(A) = μ(B).

Proof. We know that translations do not change the outer and inner measures of
sets. By part (iii) of Theorem 3.34, it is enough to prove the statement for orthogonal
linear transformations.

If Λ ∈ Op, then (det Λ)2 = det (ΛT Λ)=det I = 1, thus det Λ = ±1. Therefore,
the statement follows from the previous theorem. �

6 This needs some consideration, see Exercise 3.37.
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Exercises

3.34. Show that if A ⊂ R
p is bounded, then among the open balls contained by A

there is one with maximum radius.

3.35. Let A ⊂ R
p be a bounded set with a non-empty interior. Let B1 = B(a1, r1)

be (one of) the open ball(s) in A with maximum radius. Suppose we have already
chosen the balls B1, . . . , Bn−1, and that the interior of A \ (B1 ∪ . . . ∪ Bn−1) is
non-empty. Then let Bn = B(an, rn) be (one of) the open ball(s) in A \ (B1 ∪ . . . ∪
Bn−1) with maximum radius. Suppose we chose infinitely many balls during this
process.
Prove the following statements.

(a) int A ⊂ ⋃N
n=1 B(an, rn) ∪ ⋃∞

n=N+1 B(an, 2 · rn) for every N ≥ 1. (∗)
(b) μ (

⋃∞
n=1 Bn) = μ(A).

(c) If A is measurable, then μ (
⋃∞

n=1 Bn) = μ(A).

3.36. Using the results of the previous exercise, give a new proof of the isometry
invariance of the inner and outer measure of sets.

3.37. Let A,B ⊂ R
p be nonoverlapping sets. Show that Λ(A) and Λ(B) are also

nonoverlapping for every linear transformation Λ: Rp → R
p. (S)

3.4 Appendix: The Measurability of Bounded Convex Sets

Our aim is to prove the following theorem.

Theorem 3.37. Every bounded convex set is measurable.

Lemma 3.38. If F ⊂ G ⊂ R
p, where F is closed and G is bounded and open, then

μ(F ) ≤ μ(G).

Proof. For every x ∈ F we have x ∈ G, thus there exists r(x) > 0 such that
B(x, r(x)) ⊂ G. The open balls B(x, r(x)) cover F . Then, by Borel’s theorem
(Theorem 1.31), finitely many of these balls also cover F . Let H be the union
of these (finitely many) balls. The set H is measurable and F ⊂ H ⊂ G, hence
μ(F ) ≤ μ(H) = μ(H) ≤ μ(G). �

Remark 3.39. In general F ⊂ G does not imply μ(F ) ≤ μ(G). E.g., if F = G is
bounded and non-measurable, then μ(F ) > μ(G).

Lemma 3.40. Let A ⊂ R
p be convex. If a ∈ cl A and b ∈ intA, then the points of

segment [a, b] are in int A (with the possible exception of a).

http://dx.doi.org/10.1007/978-1-4939-7369-9_1


120 3 The Jordan Measure

3.10. Figure

Proof. Let c ∈ [a, b] \ {a} be arbi-
trarily. Then c = (1 − t)a + tb, where
0 < t ≤ 1. Since b ∈ int A, there
exists r > 0 such that B(b, r) ⊂ A.
Let δ = tr/2; we show that B(c, δ) ⊂
A, which will prove that c ∈ int A.

Let y ∈ B(c, δ) be arbitrary; we
show that y ∈ A. Since a ∈ cl A, the
set B(a, δ) ∩ A is non-empty. Pick a
point z ∈ B(a, δ) ∩ A. Clearly, there
exists a unique point x such that
y = (1 − t)z + tx. We show that
x ∈ B(b, r), i.e., |x − b| < r.

Indeed, tx = y − (1 − t)z and tb = c − (1 − t)a. Subtracting the two equations
from each other and taking the absolute value of both sides we find

t|x − b| = |tx − tb| = |y − c − ((1 − t)z − (1 − t)a)| ≤
∗ ≤ |y − c| + (1 − t)|z − a| < δ + (1 − t)δ ≤ 2δ = tr,

thus |x − b| < r, and x ∈ B(b, r) ⊂ A. Since z ∈ A and A is convex, it follows that
y = tx + (1 − t)z ∈ A. �

Lemma 3.41. Let A ⊂ R
p be convex. If int A = ∅, then A can be covered by a

hyperplane.

Proof. We may assume 0 ∈ A, since otherwise we can take an appropriate trans-
lated copy of A. Let V be the linear subspace of Rp generated by A. It is enough to
show that V �= R

p, since in this case V is the subset of a (p − 1)-dimensional linear
subspace, which is a hyperplane containing A.

Suppose V = R
p. Then A is a generating system in R

p, and then it contains
the linearly independent vectors u1, . . . , up. Since A is convex and 0 ∈ A, hence
t1u1 + . . . + tpup ∈ A for t1, . . . , tn ≥ 0 and t1 + . . . + tp ≤ 1. It follows that A
contains the parallelepiped P = P (u1/p, . . . , up/p). The parallelepiped P is mea-
surable with a positive measure, thus its interior is non-empty. Since int P ⊂ int A,
hence the interior of A is also non-empty, which contradicts the assumption. �

Proof of Theorem 3.37. Let A ⊂ R
p be bounded and convex. We distinguish

between two cases.

I: int A �= ∅. We may assume that 0 ∈ intA, otherwise we could take an appro-
priate translated copy of A. For every t ∈ R and x ∈ R

p, let φt(x) = t · x. Now
φt( cl A) ⊂ int A holds for every 0 < t < 1. Indeed, if x ∈ cl A, then tx =
tx + (1 − t)0 ∈ int A, since 0 ∈ int A, and we can apply Lemma 3.40.

The mapping φt is continuous, and the set cl A is bounded and closed. Then, by
Theorem 2.7, the set φt( cl A) is also bounded and closed. Thus, by Lemma 3.38,

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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we have μ(φt( cl A)) ≤ μ( int A). Since A ⊂ cl A and intA ⊂ A, it follows that
μ(φt(A)) ≤ μ(A). Applying Lemma 3.20 we find that tp · μ(A) ≤ μ(A). This
holds for every 0 < t < 1, thus μ(A) ≤ μ(A), i.e., A is measurable.

II: int A = ∅. Then, by Lemma 3.41, A is the subset of a hyperplane. By Lemma 3.15
it follows that the set A has measure zero and, consequently, it is measurable. �



Chapter 4
Integrals of Multivariable Functions I

4.1 The Definition of the Multivariable Integral

The concept of the integral of a multivariable function arose as an attempt to solve
some problems in mathematics, physics, and in science in general, similarly to the
case of the integral of a single-variable function. We give an example from physics.

Finding the weight of an object via its density. Given is a rectangular plate
made of an inhomogeneous material, whose density is known everywhere. That is,
we know the ratio of its weight and its area in a small neighborhood of each of its
points. Our job is to find the weight of the plate.

We assume that the weight is a monotone function of the density, which means
that if we change the material of the plate in such a way that the density does not
decrease at any of its points, then the weight of the whole plate will not decrease
either.

Let the plate be expressed in coordinates as R = [a, b] × [c, d], and let f(x, y) be
its density at the point (x, y) ∈ R. Let a = x0 < x1 < . . . < xn = b and c = y0 <
y1 < . . . < yk = d be arbitrary partitions, and let ρij denote the weight of the region
Rij = [xi−1, xi] × [yj−1, yj ] for every 1 ≤ i ≤ n and 1 ≤ j ≤ k. Let

mij = inf{f(x, y) : (x, y) ∈ Rij} and Mij = sup{f(x, y) : (x, y) ∈ Rij}.

If the density of the region Rij was mij at every point of Rij , the weight of Rij

would be mij · μ(Rij) (by the definition of density). The monotonicity condition
implies that ρij ≥ mij · μ(Rij). Similarly, we get that ρij ≤ Mij · μ(Rij) for every
1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus, if the weight of R is ρ, then we have

n∑

i=1

k∑

j=1

mij · μ(Rij) ≤ ρ ≤
n∑

i=1

k∑

j=1

Mij · μ(Rij).
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These inequalities hold for every partition a = x0 < x1 < . . . < xn = b and c =
y0 < y1 < . . . < yk = d. If we are lucky, only one number satisfies these inequali-
ties, and that will be the value of the weight.

The argument above is similar to the reasoning that led to the concept of the
Riemann1 integral of a single-variable function. Accordingly, the definition of the
integral of a multivariable function is obtained as an immediate generalization of
the Riemann integral of a single-variable function.

Definition 4.1. The partition of a rectangle R = [a, b] × [c, d] is a system
of rectangles Rij = [xi−1, xi] × [yj−1, yj ], where a = x0 < x1 < . . . < xn = b
and c = y0 < y1 < . . . < yk = d. We call the points xi and yj the base points, and
the rectangles Rij the division rectangles of the partition.

Let f : R → R be a bounded function and let

mij = inf{f(x, y) : (x, y) ∈ Rij}
and Mij = sup{f(x, y) : (x, y) ∈ Rij}

4.1. Figure

for every 1 ≤ i ≤ n and 1 ≤
j ≤ k. We call the sums

sF (f) =
n∑

i=1

k∑

j=1

mij · μ(Rij)

and

SF (f) =
n∑

i=1

k∑

j=1

Mij · μ(Rij)

the lower and upper sums of the
function f with partition F =

{Rij}. If f is given, and it is obvious which function we are talking about, we
will use the notation sF and SF instead of sF (f) and SF (f), respectively.

Similarly to the case of single-variable Riemann integration, we say that a func-
tion is integrable if there exists only one number between its lower and upper sums.
First we show that for every bounded function f , there exists a number between
every lower and every upper sum of f .

The proof goes similarly to the single-variable case. We say that a partition F ′ is
a refinement of the partition F if every base point of F is also a base point of F ′.

1 Georg Friedrich Bernhard Riemann (1826–1866), German mathematician.
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Lemma 4.2. Let f : R → R be bounded, and let the partition F ′ be a refinement
of the partition F . Then we have sF ≤ sF ′ and SF ≥ SF ′ .

Proof. First we show that if F ′ is obtained by adding one new base point to F ,
then sF ′ ≥ sF . This follows from the fact that if a division rectangle Rij of F
is cut into two rectangles by the new partition, then the infimum of f is at least
mij = inf{f(x) : x ∈ Rij} on both of the new rectangles, and thus the correspond-
ing contribution of the lower sum to these two pieces is at least mij · t(Rij).

Then the statement of the lemma is proved by induction on the number of new
base points, since every added base point either increases the lower sum or leaves it
unchanged.

The proof of the inequality on the upper sums is similar. �

Lemma 4.3. Let f : R → R be bounded. If F1 and F2 are arbitrary partitions of
[a, b], then sF1 ≤ SF2 .

Proof. Let F be the union of the partitions F1 and F2, i.e., let the set of the base
points of F consist of the base points of F1 and F2. The partition F is a refinement
of both F1 and F2. Clearly, we have sF ≤ SF (since mij ≤ Mij for every i, j).
Then, by Lemma 4.2, we obtain sF1 ≤ sF ≤ SF ≤ SF2 . �

Let F denote the set of partitions of the rectangle R. The lemma above states
that for every partition F2 ∈ F the upper sum SF2 is an upper bound of the set
{sF : F ∈ F}. Therefore, the least upper bound of this set, i.e., supF∈F sF , is not
larger than SF2 for all F2 ∈ F . In other words, supF∈F sF is a lower bound of the
set {SF : F ∈ F}, and we get

sup
F∈F

sF ≤ inf
F∈F

SF . (4.1)

It is clear that for every real number I we have sF ≤ I ≤ SF for every partition F
if and only if

sup
F∈F

sF ≤ I ≤ inf
F∈F

SF . (4.2)

This proves that for every bounded function f there exists a number between the set
of its lower sums and the set of its upper sums.

Definition 4.4. Let f : R → R be a bounded function. The function f is called
integrable on the rectangle R if supF∈F sF = infF∈F SF . We call the number
supF∈F sF = infF∈F SF the integral of the function f on the rectangle R, and
denote it by

∫
R

f(x, y) dxdy.
We introduce new notation for the numbers supF∈F sF and infF∈F SF .
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Definition 4.5. Let f : R → R be a bounded function. We call supF∈F sF the
lower integral of f and denote it by

∫
R

f(x, y) dxdy. We call infF∈F SF the upper

integral of f and denote it by
∫
R

f(x, y) dxdy.

We can summarize (4.1) and (4.2) with the help of the new notation.

Theorem 4.6.

(i) For every bounded function f : R → R we have
∫
R

f(x, y) dx dy ≤
∫
R

f(x, y) dx dy.

(ii) For every real number I , the inequalities sF ≤ I ≤ SF hold for every partition
F if and only if

∫
R

f(x, y) dx dy ≤ I ≤∫
R

f(x, y) dx dy.

(iii) The bounded function f is integrable on R if and only if
∫
R

f(x, y) dx

dy =
∫
R

f(x, y) dx dy, and then

∫

R

f(x, y) dx dy =
∫

R

f(x, y) dx dy =
∫

R

f(x, y) dx dy.

�

The definitions, theorems, and arguments used in the case of the integral of a
single-variable function can be copied almost word by word for the integrals of two-
variable functions. Moreover, these notions and theorems can be easily generalized
to p-variable functions as well.

Definition 4.7. Let R = [a1, b1] × . . . × [ap, bp] ⊂ R
p be a box. If ai = xi,0 <

xi,1 < . . . < xi,ni
= bi for every i = 1, . . . , p, then we call the system of boxes

Rj1...jp = [x1,j1−1, x1,j1 ] × . . . × [
xp,jp−1, xp,jp

]

(where 1 ≤ ji ≤ ni for every i = 1, . . . , p) a partition of the box R. If f is bounded
on R, we can define its lower and upper sums in the same way that we did in the
two-variable case.

The proof of sF1 ≤ SF2 for a pair of arbitrary partitions F1 and F2 is exactly the
same as in the two-variable case. With these in hand, we can define the lower and
upper integrals, integrability, and the value of the integral of a function f in the same
way that we did in Definitions 4.5 and 4.4. We denote the integral of the function f
on the box R by

∫
R

f(x1, . . . , xp) dx1 · · · dxp, or
∫

R
f(x) dx and

∫
R

f dx for short.

Below we give a list of theorems on integrals of multivariable functions whose
proofs closely follow the arguments of their corresponding counterparts in the
single-variable case. (As for the latter, see, e.g., the theorems of Section 14.3 of
[7].) We suggest the reader check these proofs again in this more general context.
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This could be useful for more than one reason: it helps in understanding the new
notions, and it also makes clear that the ideas used in the multivariable case are
essentially the same as those applied to functions of one variable.

A bounded function f : R → R is integrable and its integral equals I if and only
if for every ε > 0 there exists a partition F such that

I − ε < sF ≤ SF < I + ε.

A bounded function f : R → R is integrable if and only if for every ε > 0 there
exists a partition F with SF − sF < ε.

We introduce a new notation for SF − sF , just as in the single-variable case.
Let H be a nonempty set, and let f : H → R be a bounded function. We call the
quantity

ω(f ;H) = sup f(H) − inf f(H) = sup{|f(x) − f(y)| : x, y ∈ H}

the oscillation of the function f on H .
The oscillatory sum of a bounded function f : R → R corresponding to the par-

tition F is
ΩF (f) =

∑
ω(f ;Rj1...jp) · μ

(
Rj1...jp

)
,

where Rj1...jp runs through the division boxes of the partition F . Obviously,
ΩF (f) = SF − sF .

A bounded function f : R → R is integrable if and only if for every ε > 0 there
exists a partition F such that ΩF < ε.

The approximating sums of a bounded function f corresponding to the partition
F are the sums

σF

(
f ; (cj1...jp)

)
=

∑
f

(
cj1...jp

) · μ
(
Rj1...jp

)
,

for every choice of the points cj1...jp ∈ Rj1...jp .

For every bounded function f : R → R and partition F ,

inf
(c1,...,cn)

σF = sF and sup
(c1,...,cn)

σF = SF .

That is, the infimum and the supremum of the approximating sums (over all possible
choices of the points ci) are sF and SF , respectively.
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A bounded function f : R → R is integrable and its integral equals I if and only
if for every ε > 0 there exists a partition F such that every approximating sum σF

has |σF − I| < ε.

If f is continuous on the box R, then f is integrable on R.

If f is integrable on the box R, then the function cf is also integrable on R, and∫
R

cf dx = c
∫

R
f dx.

If f and g are integrable on the box R, then f + g is also integrable on R, and∫
R
(f + g) dx =

∫
R

f dx +
∫

R
g dx.

If f and g are integrable on the box R, then the functions |f | and f · g are also
integrable on R, and furthermore, if |g(x)| ≥ δ > 0 for every x ∈ R, then f/g is
also integrable on R.

Let g be integrable on the box R, and let f be a continuous real-valued function
on an interval [α, β] containing the range of g (i.e., containing the set g(R)). Then
the function f ◦ g is also integrable on R.

Exercise

4.1. Let A ⊂ R ⊂ R
p, where R is a box, and let

f(x) =

{
1, if x ∈ A,

0, ifx ∈ R \ A
.

Show that

(a)
∫
R

f dx = μ(A) and
∫
R

f dx = μ(A), and furthermore,

(b) f is integrable on R if and only if A is measurable, and then∫
R

f dx = μ(A).

4.2 The Multivariable Integral on Jordan
Measurable Sets

So far we have defined the multivariable integral of functions only on boxes. How-
ever, the definition of the integral and most of our previous theorems hardly used
the fact that the underlying sets and the parts of their partitions are boxes. Since we
often encounter problems in which those conditions are not met, it will be useful to
generalize the definition of the integral to a more general situation.
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Definition 4.8. Let A ⊂ R
p be a Jordan measurable set. A system of sets F =

{A1, . . . , An} is called a partition of the set A if A1, . . . , An are nonoverlapping
and nonempty measurable sets whose union is A.

We say that the partition {B1, . . . , Bm} is a refinement of the partition
{A1, . . . , An} if for every j ∈ {1, . . . , m} there is an i ∈ {1, . . . , n} such that
Bj ⊂ Ai.

Let f : A → R be a bounded function. We say that the lower sum of f cor-
responding to the partition F is the sum sF =

∑n
i=1 mi · μ(Ai), where mi =

inf{f(x) : x ∈ Ai} (i = 1, . . . , n). The upper sum of the function f corresponding
to the partition F is the sum SF =

∑n
i=1 Mi · μ(Ai), where Mi = sup{f(x) : x ∈

Ai} (i = 1, . . . , n).

Lemma 4.9. Let A ⊂ R
p be nonempty and Jordan measurable, and let f : A → R

be bounded.

(i) If F1 and F2 are partitions of A and F2 is a refinement of F1, then sF2 ≥ sF1

and SF2 ≤ SF1 .
(ii) If F1 and F2 are arbitrary partitions of A, then sF1 ≤ SF2 .

Proof. (i) Let F1 = {A1, . . . , An} and F2 = {B1, . . . , Bm}. Clearly, inf
{f(x) : x ∈ Bj} ≥ inf{f(x) : x ∈ Ai} (i = 1, . . . , n) whenever Bj ⊂ Ai. If F2 is
a refinement of F1, then each Ai is the union of the sets Bj that are subsets of
Ai. From these observations the inequality sF2 ≥ sF1 easily follows. The inequality
SF2 ≤ SF1 is obtained similarly.

(ii) The sets Ai ∩ Bj (i = 1, . . . , n, j = 1, . . . , m) are nonoverlapping, and their
union is also A. Let C1, . . . , Ck be an enumeration of the sets Ai ∩ Bj that are
nonempty. Then the partition F = {C1, . . . , Ck} is a common refinement of F1 and
F2. Then by (i), we have sF1 ≤ sF ≤ SF ≤ SF2 . �

Definition 4.10. Let A ⊂ R
p be nonempty and Jordan measurable, and let F

denote the set of all partitions of A. If f : A → R is bounded, then the number
supF∈F sF is said to be the lower integral of f and is denoted by

∫
A

f dx. Simi-

larly, we say that infF∈F SF is the upper integral of f and denote it by
∫
A

f dx.

As a corollary of Lemma 4.9 we have
∫
A

f dx ≤∫
A

f dx for every bounded func-

tion f : A → R. We say that a function f is integrable on the set A if
∫
A

f dx =
∫
A

f dx. We call
∫
A

f dx =
∫
A

f dx the integral of the function f on the set A, and

denote it by
∫

A
f dx or

∫
A

f dx1 . . . dxp.
If A = ∅, then we define

∫
A

f dx to be zero.

Note that if the set A is a box and f : A → R is bounded, then we have defined
the integrability and the integral of f twice, first in Definition 4.7 using partitions of
boxes, and then in Definition 4.10 using partitions of measurable sets. We will see
presently that the two definitions are equivalent (see Remark 4.13).
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We call the sum

ΩF = SF − sF =
n∑

i=1

ω(f ;Ai) · t(Ai)

the oscillatory sum of the bounded function f : A → R corresponding to a partition
F = {A1, . . . , An}.

The proofs of the following theorems are the same as their respective counter-
parts for the single-variable case.

A bounded function f is integrable on A if and only if for every ε > 0 there exists
a partition F such that ΩF < ε.

If a function is integrable on the set A, then it is also integrable on every non-
empty Jordan measurable subset of A.

Let f be defined on A ∪ B, where A,B are nonoverlapping Jordan measurable
sets. If f is integrable on both A and B, then f is integrable on A ∪ B, and

∫

A∪B

f(x) dx =
∫

A

f(x) dx +
∫

B

f(x) dx. (4.3)

Using the last two theorems, we can reduce integration on an arbitrary measur-
able set A to integration on boxes. Indeed, pick a box R containing A. We extend
the given function f : A → R to R by setting it zero everywhere on R \ A:

f(x) =

{
f(x), if x ∈ A,

0, ifx ∈ R \ A.

Clearly, f is integrable on A if and only if f is integrable on R, and then
∫

A
f dx =∫

R
f dx.
Since the integral of the constant function equal to 1 on A is μ(A), we have the

following theorem.

Theorem 4.11. Let A ⊂ R ⊂ R
p, where A is measurable and R is a box. Then the

function

f(x) =

{
1, if x ∈ A,

0, ifx ∈ R \ A,

is integrable on R, and its integral equals μ(A). �
See Exercise 4.1. for the converse of this theorem.

Let f : [a, b] → R be integrable with integral I . Then for every ε > 0 there exists
δ > 0 such that for every partition F finer than δ we have I − ε < sF ≤ I ≤ SF <
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I + ε (see [7, Theorem 14.23]). This fact can be generalized to multivariable func-
tions.

Recall that the diameter of a nonempty set A is diam A = sup{|x − y| : x,
y ∈ A}. We say that the mesh of a partition F = {A1, . . . , An} is δ(F ) =
max1≤i≤n diam Ai. The partition F is finer than η if δ(F ) < η.

Theorem 4.12.

(i) Let A ⊂ R
p be Jordan measurable, and let f : A → R be bounded. For every

partition F0 of the set A and for every ε > 0, there exists δ > 0 such that

sF0 − ε < sF ≤ SF < SF0 + ε

for every partition F finer than δ.

(ii) Let f be integrable on the set A and let
∫

A
f dx = I . For every ε > 0 there

exists δ > 0 such that I − ε < sF ≤ SF < I + ε for every partition F finer
than δ.

We will prove Theorem 4.12 in the first appendix.

Remarks 4.13. 1. If the set A is a box and the function f : A → R is bounded,
then the integrability of f and its integral are defined in both of Definitions 4.7 and
4.10, first with the help of subdividing boxes, then with the help of subdividing
measurable sets. We will now prove that these two definitions are equivalent.

Let us call Definition 4.7 the box partition definition, and call Definition 4.10
the general definition. Clearly, it is enough to prove that the upper and the lower
integrals are the same in the two cases.

Since every partition of the box partition definition is also a partition of the gen-
eral definition, the upper integral of f based on the box partition definition cannot
be smaller then the upper integral of f based on the general definition.

Let F0 = {A1, . . . , AN} be a partition of the general definition. It is enough to
prove that for every ε > 0 there exists a box partition F such that SF < SF0 + ε.
By (i) of Theorem 4.12, SF < SF0 + ε for F fine enough. Since by Lemma 3.12
the box A has an arbitrarily fine partition, Definition 4.7 proves our claim.

The equality of the lower integrals can be proved similarly.

2. Do we really need both definitions? The question is only natural, since we have
just proved their equivalence. As a matter of fact, we do not need both, and we could
get by using either. However, what justifies the first definition is the simplicity of
the box partition definition and the fact that it is a natural generalization of the
single-variable integral in that boxes are the natural generalizations of intervals. On
the other hand, the existence of the general definition is justified by the fact that it is
independent of the definition of boxes and, consequently, of the choice of coordinate
system. Also, some arguments and ideas are simpler and more natural in the general
context.

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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It is well known that if f is bounded on [a, b] and continuous there except at
finitely many points, then f is integrable on [a, b]. (See [7, Theorem 14.43].) We
generalize this theorem below. Note that this theorem gives a much stronger state-
ment even in the one-dimensional case than the theorem quoted above.

Theorem 4.14. Let A ⊂ R
p be nonempty and Jordan measurable. If the function

f : A → R is bounded and continuous on A except at the points of a set of measure
zero, then f is integrable on A.

Proof. Let |f(x)| ≤ K for every x ∈ A. Since A is Jordan measurable, ∂A has
measure zero. By assumption, the set D = {x ∈ A : f is not continuous at x} also
has measure zero, and thus μ((∂A) ∪ D) = 0.

Let ε > 0 be fixed. By Exercise 3.5, there exists an open set G such that
(∂A) ∪ D ⊂ G and μ(G) < ε. Since ∂A ⊂ G, we have A \ G = (cl A) \ G =
cl A ∩ (Rp \ G), and thus A \ G is closed. The function f is continuous at every
point of A \ G, since D ⊂ G. Since A \ G is bounded and closed, it follows
from Heine’s theorem (see page 70) that f is uniformly continuous on A \ G,
i.e., that there exists δ > 0 such that |f(x) − f(y)| < ε for every x, y ∈ A \ G
with |x − y| < δ. Let the partition {F1, . . . , Fk} of A \ G be finer than δ. (We
can construct such a partition by choosing n > δ/

√
p and taking the intersections

K ∩ (A \ G), where K ∈ Kn and K ∩ (A \ G) �= ∅.)
Consider the partition F = {F1, . . . , Fk, A ∩ G} of the set A. By the choice of

the sets Fi, we have ω(f ;Fi) < ε for every i = 1, . . . , k. Thus,

ΩF =
k∑

i=1

ω(f ;Fi) · μ(Fi) + ω(f ;A ∩ G) · μ(A ∩ G) ≤

≤ ε · μ

(
k⋃

i=1

Fi

)
+ 2K · μ(A ∩ G) ≤

≤ ε · μ(A) + 2K · ε = (μ(A) + 2K) · ε.

Since ε was arbitrary, this proves the integrability of f on A. �

Remarks 4.15. 1. As a corollary of the theorem, we can see that if
f : [0, 1] → R is bounded and is continuous everywhere outside of the points of
the Cantor set, then f is integrable on [0, 1], since the Cantor set is of measure zero
(see Example 3.22). Such a function is, e.g., the function with f(x) = 1 for every
x ∈ C and f(x) = 0 for every x ∈ [0, 1] \ C. Since the cardinality of the Cantor set
is that of the continuum, we can see that there exist integrable functions that are not
continuous at uncountably many points.

2. The converse of the theorem does not hold: an integrable function is not necessar-
ily continuous everywhere outside of a set of measure zero. Consider, for example,
the Riemann function, which is defined as follows. If x ∈ R is irrational, then we
define f(x) = 0. If x ∈ R is rational and x = p/q, where p, q are coprime integers

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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and q > 0, then we define f(x) = 1/q. It is well known that the Riemann function
is integrable on every interval [a, b]. See [7, Example 14.45]. The Riemann func-
tion is integrable on [0, 1], yet it is discontinuous at every rational point, and the set
Q ∩ [0, 1] is not of measure zero.

The integral of a nonnegative function of one variable gives the area under the
graph of the function (see Example 3.21.1). More generally, the area of a normal
domain (see below) is the difference between the integrals of the functions defining
the domain (see [7, Theorem 16.5]). This result can be generalized to multivariable
integrals as well.

Let f and g be integrable functions defined on a nonempty measurable set B ⊂
R

p such that f(x) ≤ g(x) for every x ∈ B. The set

A = {(x, y) ∈ R
p+1 : x ∈ B, f(x) ≤ z ≤ g(x)} (4.4)

is the normal domain defined by f and g.
It is easy to see that every ball is a normal domain. One can prove that every

bounded, closed, and convex set is also a normal domain (see Exercise 4.3).

Theorem 4.16.

(i) If B ⊂ R
p is nonempty and measurable, f and g are integrable on B, and

f(x) ≤ g(x) for every x ∈ B, then the normal domain defined by (4.4) is mea-
surable, and its measure is

∫
B

(g − f) dx.

(ii) Let the function f : B → R be nonnegative and bounded. The set

Af = {(x, y) : x ∈ B, 0 ≤ y ≤ f(x)}

is measurable if and only if f is integrable on B, and the measure of Af is∫
B

f(x) dx.

Proof. (i) First we assume that B is a box. For a given ε > 0 choose partitions (into
boxes) F1 and F2 of B such that ΩF1(f) < ε and ΩF2(g) < ε. Let the partition
F be a refinement of F1 and F2, and let the division boxes of the partition F be
R1, . . . , Rn. Then we have ΩF (f) < ε and ΩF (g) < ε. Let mi(f), mi(g), Mi(f),
and Mi(g) be the infimum and supremum of the functions f and g respectively on
the box Ri. Then the boxes Ri × [mi(f),Mi(g)] (i = 1, . . . , n) cover the set A, so

μp+1(A) ≤
n∑

i=1

(Mi(g) − mi(f)) · μp(Ri) =

= SF (g) − sF (f) <

<

∫

B

g dx + ε −
(∫

B

f dx − ε

)
=

=
∫

B

(g − f) dx + 2ε. (4.5)

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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Let I denote the set of indices i that satisfy Mi(f) ≤ mi(g). Then the boxes Ri ×
[Mi(f),mi(g)] (i ∈ I) are contained in A and are nonoverlapping, so

μ
p+1

(A) ≥
∑

i∈I

(mi(g) − Mi(f)) · μp(Ri) ≥

≥
n∑

i=1

(mi(g) − Mi(f)) · μ2(Ri) =

= sF (g) − SF (f) >

>

∫

B

g dx − ε −
∫

B

f dx − ε =

=
∫

B

(g − f) dx − 2ε. (4.6)

Since ε was arbitrary, by (4.5) and (4.6) it follows that A is measurable and has
volume

∫
B

(g − f) dx. This proves (i) in the case that B is a rectangle.
If B is measurable, then let R be a box containing B, and extend f and g to R

by putting f(x) = g(x) = 0 (x ∈ R \ B). Then f, g are integrable on R, and thus
by what we proved above, the normal domain

A′ = {(x, y) ∈ R
p+1 : x ∈ R, f(x) ≤ y ≤ g(x)}

is measurable, and its volume is
∫

R
(g − f) dx =

∫
B

(g − f) dx. The set A′ \ A is
a bounded subset of the hyperplane {(x1, . . . , xp+1) : xp+1 = 0}. Consequently,
μp+1(A′ \ A) = 0 by Lemma 3.15. Therefore, A = A′ \ (A′ \ A) is measurable
and μp+1(A) = μp+1(A′), which completes the proof of (i).

(ii) Let f be nonnegative and integrable on B. Then Af is the normal domain deter-
mined by the functions 0 and f . Therefore, by (i), the set Af is measurable, and its
volume equals

∫
B

f(x, y) dx dy.
Finally, if Af is measurable, then the integrability of f follows from Theorem

3.25. �

Exercise

4.2. Let A ⊂ R
p be measurable and let f : A → R be nonnegative and bounded.

Show that if
∫

A
f dx = 0, then μ({x ∈ A : f(x) ≥ a}) = 0 for every a > 0. Does

the converse of this statement also hold?

4.3. Prove that every bounded, closed, and convex set is a normal domain. (∗)
Consider a set A ⊂ R

p made of a homogeneous material. Then the weight of
every measurable subset of A is d times the volume of the subset, where d is a
positive constant (the density). Let {A1, . . . , An} be a partition of A, and let the

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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points ci ∈ Ai be arbitrary. If the partition is fine enough, then concentrating the
weight d · μ(Ai) at the point ci for every i creates a system of points with weight
distribution close to that of A. We expect the center of mass of this system to be
close to the center of mass of the original set.

The center of mass of the system of points ci is 1
μ(A) · ∑n

i=1 μ(Ai) · ci. If the par-

tition is fine enough, then the jth coordinate of this point is close to 1
μ(A) · ∫

A
xj dx.

This motivates the following definition: the center of mass of a measurable set
A ⊂ R

p with positive measure is the point

⎛

⎝ 1
μ(A)

∫

A

x1 dx, . . . ,
1

μ(A)

∫

A

xp dx

⎞

⎠ .

4.4. Let s(A) denote the center of mass of the measurable setA of positive measure.
Show that if A and B are nonoverlapping measurable sets with positive measure,
then s(A ∪ B) = μ(A)

μ(A)+μ(B) · s(A) + μ(B)
μ(A)+μ(B) · s(B).

4.5. Suppose a point r(A) ∈ R
p is assigned to every Jordan measurable set with

positive measure A ⊂ R
p and that the following conditions are satisfied:

(i) if A ⊂ R, where R is a box, then r(A) ∈ R; furthermore,
(ii) if A and B are nonoverlapping measurable sets with positive measure, then

r(A ∪ B) = μ(A)
μ(A)+μ(B) · r(A) + μ(B)

μ(A)+μ(B) · r(B).

Show that r(A) equals the center of mass of A for every measurable set A with
positive measure.

4.3 Calculating Multivariable Integrals

The most important method of calculating multivariable integrals is provided by
the next theorem. It states that every integral can be reduced to lower-dimensional
integrals.

Let us use the following notation. If x = (x1, . . . , xp) ∈ R
p and y = (y1, . . . , yq)

∈ R
q , then let (x, y) be the vector2 (x1, . . . , xp, y1, . . . , yq) ∈ R

p+q.
Let A ⊂ R

p, B ⊂ R
q and f : (A × B) → R. Recall that the sections of f are

defined by fx(y) = fy(x) = f(x, y). More precisely, this means that for every
x ∈ A the function fx is defined on B and fx(y) = f(x, y) for every y ∈ B. Simi-
larly, for every y ∈ B the function fy is defined onA and fy(x) = f(x, y) for every
x ∈ A.

Theorem 4.17. Let A ⊂ R
p and B ⊂ R

q be a pair of boxes and let f : (A × B) →
R be integrable on the box A × B. Then

2 We already used this notation in the implicit function theorem.
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(i) the functions y �→∫
A

fy dx and y �→ ∫
A

fy dx are integrable on B, and

∫

A×B

f dx dy =
∫

B

(∫

A

fy dx

)
dy =

∫

B

( ∫

A

fy dx

)
dy;

(ii) the functions x �→∫
B

fx dy and x �→ ∫
B

fx dy are integrable on A, and

∫

A×B

f dx dy =
∫

A

(∫

B

fx dy

)
dx =

∫

A

( ∫

B

fx dy

)
dx.

Proof. Since (i) and (ii) are transformed into each other if we switch the roles of x
and y, it is enough to prove (ii).

Let
∫

A×B
f dx dy = I . For ε > 0 fixed, there exists a partition of the box

A × B (in the sense of Definition 4.7) such that I − ε < sF ≤ SF < I + ε. From
the definition of partition it is clear that there exist partitions F1 = {A1, . . . , An}
and F2 = {B1, . . . , Bm} of the boxes A and B, respectively, such that F consists
of the boxes Ai × Bj (i = 1, . . . , n, j = 1, . . . ,m). Let

mij = inf{f(x, y) : (x, y) ∈ Ai × Bj} and Mij = sup{f(x, y) : (x, y) ∈ Ai × Bj}

for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. If x ∈ Ai, then the upper sum of the function
fx : B → R corresponding to the partition F2 is at most

∑m
j=1 Mij ·

μ(Bj), since fx(y) = f(x, y) ≤ Mij for every y ∈ Bj . This implies that

∫

B

fx dy ≤ SF2(fx) ≤
m∑

j=1

Mij · μ(Bj)

for every x ∈ Ai. In other words, the right-hand side is an upper bound on the
values of the function x �→∫

B
fx dy on the set Ai for every i = 1, . . . , n. There-

fore, the upper sum of this function corresponding to the partition F1 is at most
∑n

i=1

(∑m
j=1 Mij · μ(Bj)

)
· μ(Ai). Thus

∫

A

(∫

B

fx dy

)
dx ≤

n∑

i=1

m∑

j=1

Mij · μ(Ai) · μ(Bj) = SF < I + ε. (4.7)

On the other hand, if x ∈ Ai, then the lower sum of the function fx : B → R corre-
sponding to the partition F2 is at least

∑m
j=1 mij · μ(Bj), since fx(y) = f(x, y) ≥

mij for every y ∈ Bj . This implies that



4.3 Calculating Multivariable Integrals 137

∫

B

fx dy ≥ sF2(fx) ≥
m∑

j=1

mij · μ(Bj)

for every x ∈ Ai. That is, the right-hand side is a lower bound for the values of the
function x �→ ∫

B
fx dy on the set Ai for every i = 1, . . . , n; hence the lower sum of

this function corresponding to the partitionF1 is at least
∑n

i=1

(∑m
j=1 mij · μ(Bj)

)
·

μ(Ai). This proves

∫

A

( ∫

B

fx dy

)
dx ≥

n∑

i=1

m∑

j=1

mij · μ(Ai) · μ(Bj) = sF > I − ε. (4.8)

Combining the inequalities (4.7) and (4.8), we get

I − ε <

∫

A

( ∫

B

fx dy

)
dx ≤

∫

A

(∫

B

fx dy

)
dx < I + ε

for every ε > 0. Consequently, we have

∫ ( ∫

B

fx dy

)
dx =

∫

A

(∫

B

fx dy

)
dx = I, (4.9)

which also implies

∫

A

( ∫

B

fx dy

)
dx =

∫

A

( ∫

B

fx dy

)
dx = I.

Therefore, the function x �→ ∫
B

fx dy is integrable on A and its integral is I .

We obtain from (4.9) by a similar argument that x �→∫
B

fx dy is also integrable
on A and its integral is I . �

As an application, we can reduce the integrals of functions defined on normal
domains to lower-dimensional integrals.

Theorem 4.18. Suppose that

A = {(x, y, z) : (x, y) ∈ B, f(x, y) ≤ z ≤ g(x, y)},

where B ⊂ R
2 is measurable, f and g are integrable on B, and f(x, y) ≤ g(x, y)

for every (x, y) ∈ B. If h is continuous on A, then

∫

A

h(x, y, z) dx dy dz =
∫

B

(∫ g(x,y)

f(x,y)

h(x, y, z) dz

)
dx dy. (4.10)
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Proof. Since B is bounded and the functions f, g are bounded on B, there exists a
boxR = [a1, b1] × [a2, b2] × [a3, b3] containingA. Let h be zero everywhere on the
set

(
[a1, b1] × [a2, b2]

) \ B. If (x, y) ∈ (
[a1, b1] × [a2, b2]

) \ B, then h(x, y, z) =
0 for every z ∈ [a3, b3]. If, however, (x, y) ∈ B, then

∫ b3

a3

h(x, y, z) dz =
∫ g(x,y)

f(x,y)

h(x, y, z) dz.

Thus, part (ii) of Theorem 4.17 applied to the case p = 2, q = 1 gives (4.10). �
Note that Theorem 4.16 is a special case of our previous theorem applied to the

function h ≡ 1. It is clear that both the notion of normal domains and the previous
theorem can be generalized to higher dimensions.

Applying Theorem 4.17 successively, we obtain the following corollary.

Corollary 4.19. (Theorem of successive integration) Let f be integrable on the
box R = [a1, b1] × . . . × [ap, bp] ⊂ R

p. Then

∫

R

f dx =

bp∫

ap

. . .

⎛

⎝
b2∫

a2

⎛

⎝
b1∫

a1

f(x1, . . . , xp) dx1

⎞

⎠ dx2

⎞

⎠ . . . dxp,

assuming that the corresponding sections are integrable. �

Example 4.20. The function ex+y is integrable on the square [0, 1] × [0, 1], since it
is continuous. By the theorem of successive integration, its integral is

∫

[0,1]×[0,1]

ex+y dx dy =

1∫

0

⎛

⎝
1∫

0

ex+y dy

⎞

⎠ dx =

1∫

0

ex ·
⎛

⎝
1∫

0

ey dy

⎞

⎠ dx =

=

1∫

0

ex · (e − 1) dx = (e − 1)2.

Remarks 4.21. 1. By generalizing Example 4.20, we can show that if the single-
variable functions f : [a, b] → R and g : [c, d] → R are integrable, then the func-

tion f(x) · g(y) is integrable on [a, b] × [c, d] and its integral is
(∫ b

a
f(x) dx

)
·

(∫ d

c
g(y) dy

)
(see Exercise 4.8).

2. The existence of the integrals
∫

B
fx dy and

∫
A

fy dx (for every y and x, respec-
tively) does not necessarily follow from the integrability of the function f . In other
words, the lower and upper integrals in Theorem 4.17 cannot be replaced by inte-
grals. Take the following example.
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Let f be the Riemann function. Since
∫ 1

0
f(x) dx = 0, it follows from statement

(ii) of Theorem 4.16 that the set A = {(x, y) : 0 ≤ y ≤ f(x)} has measure zero.
Let B be the set of points (x, y) ∈ A whose coordinates are rational. Since B has
measure zero, it is measurable. By Theorem 4.11, the function

g(x, y) =

{
1, if (x, y) ∈ B,

0, if (x, y) /∈ B,
(4.11)

is integrable on [0, 1] × [0, 1], and its integral is zero. However, the section gx is
not integrable on [0, 1] if x ∈ [0, 1] and x is rational. Indeed, let x = p/q. Then
gx(y) = 0 for every irrational number y and gx(y) = 1 for every rational number

y ∈ [0, 1/q]. Consequently,
∫ 1

0
gx dy = 0 and

∫ 1

0
gx dy > 0, and thus gx is not inte-

grable.
However, one can prove that if f is integrable on the rectangle [a, b] × [c, d], then

the set of points x ∈ [a, b] where fx is integrable on [c, d] is everywhere dense in
[a, b], and the set of points y ∈ [c, d] where fy is integrable on [a, b] is everywhere
dense in [c, d] (see Exercise 4.9).

3. Let f be integrable on the rectangle [a, b] × [c, d]. If fx is integrable on [c, d] for
every x ∈ [a, b], and fy is integrable on [a, b] for every y ∈ [c, d], then Theorem 4.17
implies

b∫

a

⎛

⎝
d∫

c

fx dy

⎞

⎠ dx =

d∫

c

⎛

⎝
b∫

a

fydx

⎞

⎠ dy. (4.12)

We emphasize that without the assumption of the integrability of f , (4.12) is not nec-
essarily true, not even if every integral in (4.12) exists. For example, let f(x, y) =
(x2 − y2)/(x2 + y2)2 and f(0, 0) = 0, and let [a, b] = [c, d] = [0, 1]. Then the left-
hand side of (4.12) is π/4, while the right-hand side is −π/4. Another example
is the following. Let f(x, y) = (x − y)/(x + y)3 if x + y �= 0 and f(x, y) = 0 if
x + y = 0, and let [a, b] = [c, d] = [0, 1]. Then the two sides of (4.12) are −1/2 and
1/2, respectively (see Exercise 4.11).

4. It can also happen that f is not integrable, despite the fact that (4.12) holds. It
is not difficult to construct a set A ⊂ [0, 1] × [0, 1] that contains a point from every
box but does not contain three collinear points. If f(x, y) = 1, where (x, y) ∈ A
and f(x, y) = 0 otherwise, then both sides of (4.12) are zero, but f is not integrable
on [0, 1] × [0, 1] (see Exercise 4.12).

5. Theorem 4.17 holds for arbitrary measurable sets A ⊂ R
p, B ⊂ R

q in place of
boxes. This can be proved either by repeating the original proof of Theorem 4.17
almost verbatim or by reducing the statement to Theorem 4.17. Indeed, let A ⊂
R

p, B ⊂ R
q be measurable, and let f be integrable on A × B. Let R ⊂ R

p and
S ⊂ R

q be boxes with A ⊂ R and B ⊂ S, and let f be defined as zero everywhere
on (R × S) \ (A × B). Applying Theorem 4.17 to the box R × S, we obtain the
desired statement by (4.3).
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Similarly to the single-variable case, using appropriate substitutions to find a
more easily computable integral is an important method of finding the value of a
multivariable integral. The theorem of integration by substitution in this context is
as follows.

Theorem 4.22. (Integration by substitution) LetG ⊂ R
p be open, and let g : G →

R
p be continuously differentiable. If H is measurable, cl H ⊂ G, and g is injective

on int H , then g(H) is also measurable, and

μ(g(H)) =
∫

H

|det g′(x)| dx. (4.13)

Furthermore, if f : g(H) → R is bounded, then

∫

g(H)

f dt =
∫

H

f(g(x)) · |det g′(x)| dx (4.14)

in the sense that if either the left-hand side or the right-hand side exists, then the
other side exists as well and they are equal.

The proof is given in the second appendix.

Remarks 4.23. 1. The right-hand side of the formulas (4.13) and (4.14) contain
the absolute value of g’s Jacobian determinant (i.e., the determinant of its Jaco-
bian matrix). This might look surprising at first, since the integration by substitution
formula for single-variable functions is

∫ g(b)

g(a)

f dt =
∫ b

a

f(g(x)) · g′(x) dx, (4.15)

and it has g′ instead of |g′|. To resolve this “paradox,” let us consider (4.14) in the
case that p = 1 and H = [a, b].

Let g : [a, b] → R be continuously differentiable on an open interval contain-
ing [a, b], and let g be injective on (a, b). It is easy to see that g has to be strictly
monotone on [a, b], and thus the sign of g′ does not change on this interval. If g′ is
nonnegative on [a, b], then g is monotonically increasing with g(H) = [g(a), g(b)].
Then (4.14) gives (4.15).

If, however, g′ is nonpositive on [a, b], then g is monotonically decreasing, and
thus g(H) = [g(b), g(a)]. Then (4.14) implies

g(a)∫

g(b)

f dt =

b∫

a

f(g(x)) · (−g′(x)) dx.

Multiplying both sides by −1, we get (4.15).
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We can see from this latter case that if we omitted the absolute value, (4.14)
would give the wrong result.

2. If the mapping g : Rp → R
p is linear, then the function |det g′(x)| is constant,

and (4.13) turns into the statement of Theorem 3.35.

Remarks 4.24. 1. An important step in the proof of Theorem 4.22 is to show that if
H ⊂ R

p is measurable,G ⊂ R
p is open, cl H ⊂ G, and g : G → R

p is continuously
differentiable, then g(H) is measurable (see Theorem 4.30). Let’s examine to what
extent we can relax the conditions on g in this theorem.

The following simple example shows that the continuous image of a measurable
set is not necessarily measurable. Let A = {1/n : n ∈ N

+}. Then A is a measurable
subset of the real line (and it has measure zero). Since every point of A is an isolated
point, every function g : A → R is continuous on A. Let g(1/n) = rn, where (rn)
is an enumeration of the set of rational numbers in [0, 1]. Then g(A) = [0, 1] ∩ Q,
and thus g is not measurable.

Slightly modifying the example above, we can make g differentiable on an open
set containing A. Choose mutually disjoint open intervals around the points 1/n
(e.g., In =

(
1
n − 1

3n2 , 1
n + 1

3n2

)
(n ∈ N

+) will work). Then G =
⋃∞

n=1 In is an
open set containing A. Let g(x) = rn for every x ∈ In and n = 1, 2, . . .. Obvi-
ously, g is differentiable at every point of G (and its derivative is zero everywhere),
but g(A) = [0, 1] ∩ Q is not measurable.

The next example gives a continuous mapping defined on a closed interval and
a measurable subset of the interval whose image is not measurable. Let C be the
Cantor set and f the Cantor function (see Exercise 3.28). We know that f is con-
tinuous on [0, 1], and f(C) = [0, 1]. Let B be an arbitrary nonmeasurable subset of
[0, 1]. The set A = C ∩ f−1(B) is measurable, since it has measure zero. On the
other hand, f(A) = B is not measurable. In this example we can choose B to be a
closed set (see Exercise 3.15). This makes A also closed, since f is continuous.

2. Let us show some positive results now. One can prove that if H ⊂ R
p is mea-

surable, G ⊂ R
p is open, cl H ⊂ G, and g : G → R

p is differentiable, then g(H)
is also measurable. That is, we can omit the condition on the continuity of the
derivative g′ from Theorem 4.30; the differentiability of g is sufficient. The proof
requires some advanced topological and measure-theoretic tools. The same holds
for the following theorem: if H ⊂ R

p is measurable and g : H → R
p has the

Lipschitz property, then g(H) is also measurable. In the case p = 1 both state-
ments are provable using tools that are already at our disposal (see Exercises
4.15 and 4.16).

Below, we present an important application of the theorem on integration by
substitution.

Theorem 4.25. (Substitution by polar coordinates)Let P (r, ϕ)= (r cos ϕ, r sin ϕ)
for every r, ϕ ∈ R. If the set A ⊂ [0,∞) × [0, 2π] is measurable, then P (A) is
also measurable, and μ(P (A)) =

∫
A

r dr dϕ. Furthermore, if f : P (A) → R is
bounded, then

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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∫

P (A)

f(x, y) dx dy =
∫

A

f(r cos ϕ, r sin ϕ) · r dr dϕ (4.16)

holds in the sense that if either the left-hand side or the right-hand side exist, then
the other side exists as well, and they are equal.

Proof. Consider the mapping

P (x, y) = (x cos y, x sin y) ((x, y) ∈ R
2).

Obviously, P is continuously differentiable on R
2. We show that P is injective on

the open set G = {(x, y) ∈ R
2 : x > 0, 0 < y < 2π}.

Let (x1, y1), (x2, y2) ∈ G and P (x1, y1) = P (x2, y2). Then

x1 = |P (x1, y1)| = |P (x2, y2)| = x2,

and thus cos y1 = cos y2 and sin y1 = sin y2. Using 0 < y1, y2 < 2π, we get
y1 = y2.

The Jacobian determinant of the mapping P is

det P ′(x, y) =
∣∣∣∣
cos y −x sin y
sin y x cos y

∣∣∣∣ = x.

Applying Theorem 4.22 with g = P and using the notation x = r, y = ϕ, we obtain
the statements of the theorem. �

Examples 4.26. 1. Let BR be the closed disk of radius R, centered at the origin. We
have BR = P ([0, R] × [0, 2π]). By Theorem 4.25 the area of the disk BR is

μ(BR) =
∫

[0,R]×[0,2π]

r dr dϕ.

The integral can be calculated easily using successive integration:

∫

[0,R]×[0,2π]

r dr dϕ =

2π∫

0

⎛

⎝
R∫

0

r dr

⎞

⎠ dϕ =

2π∫

0

(R2/2) dϕ = R2π.

2. According to Theorem 4.25, for every bounded function f : BR → R we have

∫

BR

f(x, y) dx dy =
∫

[0,R]×[0,2π]

f(r cos ϕ, r sin ϕ) · r · dr dϕ (4.17)
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in the sense that if either the right-hand side or the left-hand side exists, then so
does the other, and they are equal. For example, let f(x, y) =

√
R2 − x2 − y2. The

integral of f is the volume of a hemisphere (cf. Corollary 3.14). Applying (4.17),
we obtain

∫

BR

√
R2 − x2 − y2 dx dy =

∫

[0,R]×[0,2π]

√
R2 − r2 · r · dr dϕ =

= 2π ·
R∫

0

√
R2 − r2 · r · dr = 2π ·

[
−1

3
(R2 − r2)3/2

]R

0

=
2R3π

3
,

and thus the volume of a ball with radius R is 4R3π/3.

3. It is a well-known fact that the primitive function of e−x2
is not an elemen-

tary function (see, e.g., [7, Section 15.5]). Still, one can calculate the value of the
improper integral

∫ ∞
0

e−x2
dx using the theory of the Γ function. (See Example

19.21 and Exercise 19.45 of [7]. As for the Γ function, see Definition 8.39 and the
subsequent discussion in Chapter 8 of this volume). Now we present a direct method
of finding the value of this integral. We show that

∫ ∞
−∞ e−x2

dx =
√

π.

By applying (4.17) to the function f(x, y) = e−x2−y2
we get

∫

BR

e−x2−y2
dx dy =

∫

[0,R]×[0,2π]

e−r2 · r dr dϕ =

= 2π ·
R∫

0

e−r2
r dr =

= 2π ·
[
−1

2
e−r2

]R

0

= π ·
(
1 − e−R2

)
.

(4.18)

Since [−R/2, R/2]2 ⊂ BR ⊂ [−R,R]2 and the function e−x2−y2
is everywhere

positive, it follows that

∫

[−R/2,R/2]2

e−x2−y2
dx dy ≤

∫

BR

e−x2−y2
dx dy ≤

∫

[−R,R]2

e−x2−y2
dx dy.

(4.19)
Now, by Remark 4.21.1 we have

∫

[−R,R]2

e−x2−y2
dx dy =

⎛

⎝
R∫

−R

e−x2
dx

⎞

⎠
2

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
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and
∫

[−R/2,R/2]2

e−x2−y2
dx dy =

⎛

⎜⎝
R/2∫

−R/2

e−x2
dx

⎞

⎟⎠

2

.

Comparing (4.19) and (4.18) gives

⎛

⎜⎝
R/2∫

−R/2

e−x2
dx

⎞

⎟⎠

2

≤ π ·
(
1 − e−R2

)
≤

⎛

⎝
R∫

−R

e−x2
dx

⎞

⎠
2

(4.20)

for every R > 0. We know that the improper integral
∫ ∞

−∞ e−x2
dx is convergent.

Thus, if R converges to infinity in (4.20), then

⎛

⎝
∞∫

−∞
e−x2

dx

⎞

⎠
2

≤ π ≤
⎛

⎝
∞∫

−∞
e−x2

dx

⎞

⎠
2

,

and thus
∫ ∞

−∞ e−x2
dx =

√
π.

Exercises

4.6. Compute the following integrals:

(a)
∫

A
(x2 + y2) dx dy, A = {(x, y) : x, y ≥ 0, x + y ≤ 1};

(b)
∫

A

√
x2 + y2 dx dy, A = {(x, y) : x, y > 0, x2 + y2 ≤ x};

(c)
∫

A

√
y − x2 dx dy, A = {(x, y) : x2 ≤ y ≤ 4};

(d)
∫

A
sin(x2 + y2) dx dy, A = {(x, y) : π2 ≤ x2 + y2 ≤ 4π2};

(e)
∫

A
1√

2a−x
dx dy, where A is the part of the disk of center (a, a) and radius a

that lies in the half-plane x ≤ a (a > 0);

(f)
∫

A
sinx·

√
1+ex2y2

ch x·ch y dx dy, whereA is the disk with center at the origin and radius
R;

(g)
∫

A
|xyz| dx dy dz, with A = {(x, y, z) : x2 + y2

4 + z2

9 ≤ 1}. (H)
4.7. Let f be the Riemann function. Which of the following integrals exists?

(a)
∫
[0,1]×[0,1]

f(x) dx dy;

(b)
∫ 1

0

(∫ 1

0
f(x) dy

)
dx;

(c)
∫ 1

0

(∫ 1

0
f(x) dx

)
dy.
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4.8. Show that if the single-variable functions f : [a, b] → R and g : [c, d] → R are
integrable, then the function f(x) · g(y) is integrable on the rectangle [a, b] × [c, d],
and its integral is

(∫ b

a
f(x) dx

)
·
(∫ d

c
g(y) dy

)
.

4.9. Show that if f is integrable on the rectangle [a, b] × [c, d], then the set of points
x ∈ [a, b] where fx is integrable on [c, d] is everywhere dense in [a, b], and the set
of points y ∈ [c, d] where fy is integrable on [a, b] is everywhere dense in [c, d]. (H)

4.10. Let f be twice continuously differentiable on the rectangle R. Find
∫

R
D12f

dx dy.

4.11. Double-check that equation (4.12) does not hold on the square [0, 1] × [0, 1]
for the functions below:
(a) f(x, y) = (x2 − y2)/(x2 + y2)2, if |x| + |y| �= 0 and f(0, 0) = 0;
(b) f(x, y) = (x − y)/(x + y)3 if x + y �= 0 and f(x, y) = 0 if x + y = 0.

4.12. Suppose that the set A ⊂ [0, 1] × [0, 1] has a point in every box but does not
contain three collinear points. Show that if f(x, y) = 1 for every (x, y) ∈ A and
f(x, y) = 0 otherwise, then both sides of (4.12) are zero, but f is not integrable on
[0, 1] × [0, 1].

4.13. Find the center of mass of the following sets:
(a) {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}, where f is nonnegative and integrable on

[a, b];
(b) {(x, y) : x, y ≥ 0, y ≤ x2, x + y ≤ 1};
(c) {(x, y) : x, y ≥ 0,

√
x +

√
y ≤ 1};

(d) {(x, y) : (x2 + y2)3 ≤ 4x2y2};
(e) {(r, ϕ) : r ≤ R, ϕ ∈ [α, β]};
(f) {(r, ϕ) : r ≤ 1 + cos ϕ, ϕ ∈ [0, π/2]};
(g) {(x, y, z) : x, y ≥ 0, x2 + y2 ≤ z ≤ x + y}.
4.14. Let 0 ≤ α < β ≤ 2π, and let f : [α, β] → R be nonnegative and integrable.
Prove, using Theorem 4.25, that the sector-like region

{(r cos ϕ, r sin ϕ) : 0 ≤ r ≤ r(ϕ), α ≤ ϕ ≤ β}

is measurable, and its area is 1
2

∫ β

α
r2(ϕ) dϕ.

4.15. Let f : [a, b] → R have the Lipschitz property. Show that

(a) if A ⊂ [a, b] has measure zero, then f(A) also has measure zero, and
(b) if A ⊂ [a, b] is measurable, then f(A) is also measurable.

4.16. Let f : [a, b] → R be differentiable. Show that

(a) if A ⊂ [a, b] has measure zero, then f(A) also has measure zero, and
(b) if A ⊂ [a, b] is measurable, then f(A) is also measurable. (∗∗)
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4.17. Let T be the trapezoid bounded by the lines y = a − x, y = b − x, y =
αx, y = βx, with a < b and 0 < α < β. Find the area of T by representing T
in the form f([a, b] × [α, β]), where f is the inverse of the mapping (x, y) �→
(x + y, y/x), and applying the first statement of Theorem 4.22.

4.18. Let D be the region bounded by the hyperbolas xy = a2, xy = 2a2 and the
lines y = x, y = 2x. Find the area of D by representing it in the form f([a2, 2a2] ×
[1, 2]), where f is the inverse of the mapping (x, y) �→ (xy, y/x).

4.19. Let N = [a, b] × [c, d] with 0 < a < b and 0 < c < d, and let f(x, y) =
(y2/x,

√
xy). Find the area of f(N).

4.20. Prove that

(a) 1 + 1
32 + 1

52 + . . . = π2

8 and

(b) 1 + 1
22 + 1

32 + . . . = π2

6 ,

using the following exercises. Let T denote the open triangle with vertices (0, 0),
(0, π/2), (π/2, 0), and let f(x, y) = (sin x/ cos y, sin y/ cos x) for every (x, y) ∈
T . Show that

(c) f is one-to-one, mapping T onto the open square N = (0, 1) × (0, 1);
(d) f−1 is continuously differentiable on N , and det(f−1)′(x, y) = 1

1−x2y2 for
every (x, y) ∈ N ;

(e) if Nn = (0, 1 − (1/n)) × (0, 1 − (1/n)), then f−1(Nn) is measurable with
area

∫
Nn

1/(1 − x2y2) dx dy;
(f) μ(f−1(Nn)) → μ(T ) = π2/8 as n → ∞;

(g) lim
n→∞

∫

Nn

1
1 − x2y2

dx dy = 1 +
1
32

+
1
52

+ . . ..

4.4 First Appendix: Proof of Theorem 4.12

If A ⊂ R
p and δ > 0, we call the set

U(A, δ) =
⋃

x∈A

B(x, δ)

the neighborhood of the set A with radius δ. In other words, U(A, δ) is the set of
points y for which there exists a point x ∈ A such that |x − y| < δ. Since U(A, δ)
is the union of open sets, it is itself open.

Lemma 4.27. If A ⊂ R
p is bounded, then for every ε > 0 there exists δ > 0 such

that μ(U(A, δ)) < μ(A) + ε, where μ is the (Jordan) outer measure.
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Proof. Let ε > 0 be fixed, and choose the boxes Ri=[ai,1, bi,1] × . . . × [ai,p, bi,p]
(i=1, . . . , n) such that A ⊂ ⋃n

i=1 Ri and
∑n

i=1 μ(Ri) < μ(A) + ε. Let Ri(δ) =
[ai,1 − δ, bi,1 + δ] × . . . × [ai,p − δ, bi,p + δ] for every δ > 0. Obviously, for δ
small enough,

∑n
i=1 μ(Ri(δ)) < μ(A) + ε. Fix such a δ. Since U(A, δ) ⊂ ⋃n

i=1

Ri(δ), it follows that μ(U(A, δ)) < μ(A) + ε. �
Proof of (i) of Theorem 4.12. We show that SF < SF0 + ε for every F fine enough.
We may assume that f is nonnegative; otherwise, we add a large enough constant c
to f . It is easy to see that by adding a constant c to f we increase the value of every
upper sum by the same number (namely, by c · μ(A)). Thus, if SF < SF0 + ε holds
for the function f + c, then the same inequality holds for f as well.

Let 0 ≤ f(x) ≤ K for every x ∈ A, and let F0 = {A1, . . . , AN}. Let F =
{B1, . . . , Bn} be a partition finer than δ, and let’s calculate how much larger SF

can be, compared to SF0 .
Let Mi = sup{f(x) : x ∈ Ai} (i = 1, . . . , N ) and M ′

j = sup{f(x) : x ∈ Bj}
(j = 1, . . . , n). Now, SF0 =

∑N
i=1 Mi · μ(Ai) and SF =

∑n
j=1 M ′

j · μ(Bj).
We partition the set of indices j into two classes, based on whether the set Bj

is or is not a subset of one of the sets Ai. Let J1 and J2 denote the two classes,
respectively. If j ∈ J1 and Bj ⊂ Ai, then clearly M ′

j ≤ Mi. The sum of the prod-
ucts M ′

j · μ(Bj) for which Bj ⊂ Ai is at most Mi · μ (
⋃{Bj : Bj ⊂ Ai}). Now,

Mi ≥ 0 implies that the sum is at most Mi · μ(Ai). By summing these upper esti-
mates for every i = 1, . . . , N we get

∑
j∈J1

M ′
j · μ(Bj) ≤ SF0 .

We now show that
⋃

j∈J2

Bj ⊂ U

(
N⋃

i=1

∂Ai, δ

)
. (4.21)

Indeed, if j ∈ J2, then Bj is not a subset of any of the sets Ai. For every x ∈ Bj ,
x is in one of the sets Ai, because x ∈ A =

⋃N
i=1 Ai. Since Bj is not a subset of

Ai, there exists a point y ∈ Bj such that y is not in Ai. We know that the segment
[x, y] intersects the boundary of Ai; let z ∈ [x, y] ∩ ∂Ai. By assumption, F is finer
than δ, i.e., diam Bj < δ. Thus, we have |x − y| < δ, which implies |x − z| < δ.
We have proved that if j ∈ J2, then every point of Bj is closer than δ to a boundary
point of at least one of the Ai, which is exactly (4.21).

The sets Ai are measurable, and thus, by Theorems 3.9 and 3.6, the set
⋃N

i=1 ∂Ai

has measure zero. Then, by Lemma 4.27, we can choose δ > 0 such that the right-
hand side of (4.21) is less than ε.

Therefore, if the partition F is finer than δ, then

∑

j∈J2

M ′
j · μ(Bj) ≤ K ·

∑

j∈J2

μ(Bj) = K · μ

⎛

⎝
⋃

j∈J2

Bj

⎞

⎠ ≤ K · ε,

and
SF =

∑

j∈J1

M ′
j · μ(Bj) +

∑

j∈J2

M ′
j · μ(Bj) ≤ SF0 + K · ε.

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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A similar argument proves that SF ≥ sF0 − K · ε for every fine enough
partition F . �

Proof of (ii) of Theorem 4.12. Since f is integrable, there is a partition F0 such that
ΩF0 < ε/2. Then we have

I − (ε/2) < sF0 ≤ SF0 < I + (ε/2).

Therefore, an application of statement (i) completes the proof. �

4.5 Second Appendix: Integration by Substitution
(Proof of Theorem 4.22)

We know that if Q is a cube and A is a linear map, then the volume of the paral-
lelepiped A(Q) is |det A| · μ(Q). (See Theorem 3.31.) It seems plausible that if the
mapping g is close to the linear map A on the cube Q, then the measure of g(Q) is
close to |det A| · μ(Q). In the next lemma we show that the outer measure of g(Q)
is not much larger than |det A| · μ(Q).

Lemma 4.28. Let A : Rp → R
p be a linear map, let Q ⊂ R

p be a cube, c ∈ Q,
0 < δ < 1, and let g : Q → R

p be a mapping such that |g(x) − g(c) − A(x − c)|
< δ|x − c| for every x ∈ Q, x �= c. Then

μ(g(Q)) ≤ (|det A| + Cδ) · μ(Q), (4.22)

where the constant C depends only on p and A.

Proof. LetP = A(Q − c) + g(c). ThenP is a (possibly degenerate) parallelepiped.
If x ∈ Q, then y = A(x − c) + g(c) ∈ P and

|g(x) − y| = |g(x) − g(c) − A(x − c)| < δ|x − c| ≤ √
p · hδ,

where h is the side length of Q. (See Example 3.11.) Thus g(x) ∈ U(P,
√

p · hδ)
for every x ∈ Q, i.e.,

g(Q) ⊂ U(P, r), where r =
√

p · hδ. (4.23)

We show that
U(P, r) ⊂ P ∪ U(∂P, r). (4.24)

Indeed, if the points x ∈ U(P, r) \ P and y ∈ P satisfy |x − y| < r, then [x, y] ∩
∂P �= ∅, since x �= P and y ∈ P . If z ∈ [x, y] ∩ ∂P , then |x − z| < r, and thus
x ∈ U(∂P, r).

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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The boundary of the parallelepiped P can be covered by 2p hyperplanes. Namely,
ifP = P (u1, . . . , up), then the hyperplanes Sj

i = {t1u1 + . . . + tpup : ti = j} (i =
1, . . . , p, j = 0, 1) (these are the images of the sides of the cube Q) cover ∂P -t.
Therefore,

U(P, r) ⊂ P ∪ U(∂P, r) ⊂ P ∪
p⋃

i=1

[
U(S0

i ∩ P, r) ∪ U(S1
i ∩ P, r)

]
. (4.25)

Next we prove
μ(U(Sj

i ∩ P, r)) ≤ (M + 2r)p−1 · 2r (4.26)

for every i = 1, . . . , p and j = 0, 1, where M = diam P . Indeed, for i and j fixed,
the set H = Sj

i ∩ P lies in a hyperplane, and diam H ≤ diam P = M . Since the
outer measure is invariant under isometries, we may assume that H ⊂ R

p−1 ×
{0}. There exists a (p − 1)-dimensional cube N with side length M such that
P ⊂ N × {0}. Thus, U(P, r) ⊂ N ′ × [−r, r], where N ′ is a (d − 1)-dimensional
cube with side length M + 2r, which implies (4.26).

If x, y ∈ Q, then |Ax − Ay| ≤ ‖A‖ · |x − y| ≤ ‖A‖√p · h, which implies M =
diam P ≤ ‖A‖√p · h. Comparing (4.23)–(4.26), we get

μ(g(Q)) ≤ μ(U(P, r)) ≤ μ(P ) + 4p(M + 2r)p−1 · r =

= |det A| · hp + 4p(M + 2
√

p · hδ)p−1 · √
p · hδ ≤

≤ |det A| · hp + 4p(
√

p · h)p · (‖A‖ + 2δ)p−1 · δ ≤
≤

(
|det A| + 4(‖A‖ + 2)p−1p(p/2)+1 · δ

)
· μ(Q),

which proves (4.22). �

Lemma 4.29. Let H ⊂ G ⊂ R
p, where H is a bounded and closed set and G is

open. Suppose that g : G → R
p is differentiable at the points ofH , and |det g′(x)| ≤

K for every x ∈ H . Then μ(g(H)) ≤ K · μ(H).

Proof. It is enough to prove that μ(g(Q ∩ H)) ≤ K · μ(Q) for every cube Q ∈
K2n . Indeed, from this we obtain

μ(g(H)) ≤
∑

Q∈K2n

Q∩H 
=∅

μ(g(Q ∩ H)) ≤
∑

Q∈K2n

Q∩H 
=∅

K · μ(Q) = K · μ(H, 2n),

and the right-hand side converges to K · μ(H) as n → ∞. (Here, μ(H, 2n) denotes
the sum of the volumes of the cubes of K2n that intersect H .)

We prove by contradiction. Assume that the statement does not hold. Then there
exist n ∈ N, Q1 ∈ K2n , and 0 < η < 1 such that μ(g(Q1 ∩ H)) >
(K + η) · μ(Q1). Since
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∑

Q∈K2n+1
Q⊂Q1

(K + η) · μ(Q) = (K + η) · μ(Q1) < μ(g(Q1 ∩ H)) ≤

≤
∑

Q∈K2n+1
Q⊂Q1

μ(g(Q ∩ H)),

there is a cube Q2 ∈ K2n+1 such that μ(g(Q2 ∩ H)) > (K + η) · μ(Q2).
Repeating this argument, we obtain a sequence of nested cubes Qi ∈ K2n+i−1 such
that

μ(g(Qi ∩ H)) > (K + η) · μ(Qi) (4.27)

for every i. Let
⋂∞

i=1 Qi = {c}. Since (4.27) implies Qi ∩ H �= ∅ and H is closed,
it follows that c ∈ H . By assumption, f is differentiable at c, and |det g′(c)| ≤ K.
Fix 0 < δ < η/C, where C is the constant appearing in (4.22), depending only on
g′(c) and p. Since diam Qi → 0, we have Qi ⊂ G and

|g(x) − g(c) − g′(c)(x − c)| ≤ δ · |x − c| (x ∈ Qi) (4.28)

for every i large enough. By Lemma 4.28, it follows that

μ(g(Qi ∩ H)) ≤ μ(g(Qi)) ≤ (K + C · δ) · μ(Qi) < (K + η) · μ(Qi),

which contradicts (4.27). �

Theorem 4.30. Let G ⊂ R
p be open, and let g : G → R

p be continuously differen-
tiable. If H is measurable and cl H ⊂ G, then g(H) is also measurable, and

μ(g(H)) ≤
∫

H

|det g′(x)| dx. (4.29)

Proof. First we prove the measurability of g(H). Since g is continuous and cl H
is bounded and closed, it follows from Theorem 2.7, that g(cl H) is also bounded
and closed. Thus g(H) is bounded as well. It is enough to prove that ∂(g(H)) has
measure zero.

Let X = {x ∈ G : det g′(x) = 0}. We show that

∂(g(H)) ⊂ g(∂H) ∪ g(X ∩ cl H). (4.30)

Since g(cl H) is closed, cl g(H) ⊂ g(cl H) and ∂(g(H)) ⊂ cl g(H) ⊂ g(cl H).
Let y ∈ ∂(g(H)), i.e., y = g(x) for a suitable x ∈ cl H . If x ∈ ∂H , then g(x) ∈
g(∂H). If, however, x /∈ ∂H , then x ∈ int H . In this case, det g′(x) = 0, since
if det g′(x) �= 0, then by the open mapping theorem (Corollary 2.37), y = g(x) ∈
int g(H), which is impossible. Thus x ∈ X , which proves (4.30).

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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Now, ∂H is closed and det g′ is bounded on ∂H , since it is continuous. By
Lemma 4.29 it follows that μ(g(∂H)) = 0, since μ(∂H) = 0 by the measurabil-
ity of H . The set X ∩ cl H is also closed, since det g′ is continuous on cl H .
Since |det g′(x)| = 0 for every x ∈ X , it follows from Lemma 4.29 that μ(g(X ∩
cl H)) = 0. Then we have μ(∂(g(H))) = 0 by (4.30), which proves the measura-
bility of g(H).

We turn now to the proof of (4.30). Since the function |det g′| is continuous and
bounded, it is integrable on H . Let cl H =

⋃n
i=1 Hi be a partition, where the sets

Hi are closed. If Mi = sup{|det g′(x)| : x ∈ Hi}, then

μ(g(H)) ≤ μ(g(cl H)) ≤
n∑

i=1

μ(g(Hi)) ≤
n∑

i=1

Mi · μ(Hi)

by Lemma 4.29. The right-hand side will be arbitrarily close to
∫

H
|det g′| if the

partition is fine enough, which proves (4.30). �

Proof of Theorem 4.22. First we assume that g : G → R
p is a continuously differ-

entiable injective map with det g′(x) �= 0 for every x ∈ G. By the open mapping
theorem it follows that g(G) is open, and by the inverse function theorem, the map
g−1 : g(G) → G is continuously differentiable. Therefore, if A ⊂ G and x ∈ G,
then x ∈ int A ⇐⇒ g(x) ∈ int g(A) and x ∈ ∂A ⇐⇒ g(x) ∈ ∂(g(A)).

Let H be measurable with cl H ⊂ G. Then g(H) is also measurable by The-
orem 4.30. Let f be a nonnegative and bounded function on g(H). Let ε > 0 be
fixed and let F : g(H) =

⋃n
i=1 Ai be a partition such that the sets A1, . . . , An are

mutually disjoint, and sF (f) >
∫
g(H)

f − ε. The setsHi = g−1(Ai) (i = 1, . . . , n)

form a partition of H into disjoint sets. (The measurability of the sets Hi follows
from Theorem 4.30 applied to the mapping g−1.) Let mi = inf{f(x) : x ∈ Ai} =
inf{f(g(x)) : x ∈ Hi}, and let γ denote the function defined by γ(x) = mi for
x ∈ Hi. By Theorem 4.30 we have

( ∫

g(H)

f

)
− ε < sF (f) =

n∑

i=1

mi · μ(Ai) =
n∑

i=1

mi · μ(g(Hi)) ≤

≤
n∑

i=1

mi ·
∫

Hi

|det g′(x)| dx =

=
∫

H

γ(x) · |det g′(x)| dx ≤

≤
∫

H

f(g(x)) · |det g′(x)| dx, (4.31)

since γ ≤ f ◦ g. This is true for every ε, whence
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∫

g(H)

f ≤
∫

H

f(g(x)) · |det g′(x)| dx. (4.32)

The function ϕ = g−1 is again continuously differentiable, and we also know that

det g′(ϕ(x)) · det ϕ′(x) = 1 (4.33)

for every x ∈ g(G). (This is a corollary of the differentiation rule for composite
functions (Theorem 2.20), using the fact that g(ϕ(x)) = x for every x ∈ g(G).) If
we apply (4.32) with ϕ in place of g, with g(H) in place H , and with (f ◦ g) ·
|det g′| in place of f , then we get

∫

H

f(g(x)) · |det g′(x)| dx ≤
∫

g(H)

f.

(Note that (f ◦ g) · |det g′| is bounded and nonnegative on g(H), and (f ◦ g)
(ϕ(x)) = f(x). We also used (4.33).) Comparing this with (4.32), we get

∫

g(H)

f =
∫

H

f(g(x)) · |det g′(x)| dx. (4.34)

Applying this to the function f ≡ 1, we obtain (4.13). It follows that if (4.34) holds
for a function f , then it also holds for f + c with an arbitrary choice of the con-
stant c. Thus, (4.34) holds for every bounded function. Applying (4.34) for −f and
multiplying both sides by (−1) gives

∫

g(H)

f =
∫

H

f(g(x)) · |det g′(x)| dx (4.35)

for every bounded function f . Obviously, if either the left-hand side or the right-
hand side of (4.14) exists, then the other side exists as well and they are equal.
Thus, we have proved the theorem assuming that g is injective on G and det g′ �= 0.

If we assume that g is injective only on intH and we also allow the case
det g′ = 0, then we argue as follows. Let X = {x ∈ G : det g′(x) = 0}. Since
det g′ is uniformly continuous on cl H , we have that for a fixed ε > 0 there exists
δ > 0 such that x, y ∈ cl H and |x − y| < δ implies |det g′(x) − det g′(y)| < ε.
For n fixed, let

A =
⋃

{Q ∈ Kn : Q ⊂ (int H) \ X},

B =
⋃

{Q ∈ Kn : Q ⊂ intH, Q ∩ X �= ∅},
D =

⋃
{Q ∈ Kn : Q ∩ ∂H �= ∅}.

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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If n >
√

p/δ, then the diameter of the cubes is less than δ, and |det g′(x)| < ε
for every x ∈ B. By Lemma 4.29, μ(g(B)) ≤ ε · μ(B)) ≤ ε · μ(H). Since μ(D) =
μ(∂H, n), it follows that μ(D) < ε also holds for n large enough. This implies
μ(g(cl H ∩ D)) ≤ M · ε, where M = maxx∈clH |det g′(x)|.

For an arbitrary bounded function f : g(H) → R we have

∫

g(A)

f =
∫

A

f(g(x)) · |det g′(x)| dx,

since g is injective on the open set (int H) \ X and det g′ �= 0 there. Furthermore,
A ⊂ (int H) \ X , and we already proved the theorem in this case. Since

g(H) \ g(A) ⊂ g(H ∩ B) ∪ g(H ∩ D)

implies μ(g(H) \ g(A)) ≤ (μ(H) + M) · ε, we have that
∫
g(A)

f and
∫
g(H)

f dif-

fer from each other by at most K · (μ(H) + M) · ε, where K = supx∈g(H) |f(x)|.
We show that the lower integrals of the function F = (f ◦ g) · |det g′| on the

sets H and A differ from each other by at most K · (μ(H) + M) · ε. Indeed, H =
A ∪ B ∪ (H ∩ D) is a partition of the set H , and thus

∫

H

F =
∫

A

F +
∫

B

F +
∫

H∩D

F.

Now,
∣∣∣
∫
B

F
∣∣∣ ≤ K · ε · μ(B), since |det g′| < ε, and |F | ≤ K · ε on the set B. Fur-

thermore,
∣∣∣

∫
H∩D

F
∣∣∣ ≤ K · M · μ(H ∩ D) < KMε, which implies our statement.

Summing up, we get that the two sides of (4.34) can differ from each other by at
most 2K · (μ(H) + M) · ε. Since ε was arbitrary, (4.34) holds for every bounded
function. As we have shown above, (4.14) follows, which proves Theorem 4.22. �



Chapter 5
Integrals of Multivariable Functions II

5.1 The Line Integral

The notion of the line integral was motivated by some problems in physics. One of
these problems is the computation of the work done by a force that changes while
moving a point. The mathematical model describing the situation is the following.

Let G ⊂ R
3 be an open set, and let a force act at every point x of G. This force

is described by f(x) ∈ R
3 in the sense that the magnitude of the force is |f(x)|,

and its direction is the same as the direction of the vector f(x). We say that the
pair (G, f) describes a field of force or briefly a field. For example, let us place a
point at the origin having mass m. By Newton’s1 law of gravity, this point attracts
a unit-weight point x �= 0 with a force of magnitude κ · m/|x|2 and of direction
opposite to that of x (where κ is the gravitational constant). This field—called the
gravitational field—is defined by the open set G = R

3 \ {0} and by the function
f(x) = −κm · x/|x|3.

Suppose that the force moves a point. We want to find the work that the force
exerts along the direction of motion. We know that if the motion is linear and the
force is constant and acts in the direction of the point’s motion, then the work is the
product of the force’s magnitude and the displacement of the point. If the force acts
in the opposite direction to the motion, then the work is the negative of this product.

Now let the motion of the point be linear and the force constant, but let the force
act in a direction different from that of the motion. If the motion is perpendicular to
the direction of the force, then by a law of physics, there is no work done2.

1 Isaac Newton (1643–1727), English mathematician, astronomer, and physicist.
2 The direction of the motion of a planet traveling in a circular orbit around the sun is always
perpendicular to the direction of the force acting toward the center of the circle. Therefore, no
work is done during the motion of the planet, and this is the reason why the planets can keep on
orbiting indefinitely, at least in theory.

c© Springer Science+Business Media LLC 2017
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By a law of physics, work is additive in the following sense: the work done by
the sum of two forces is the sum of the works done by each force. Let a point
move along the segment [u, v] from u to v while a constant f force acts on it. Let
f = h1 + h2, where h1 is parallel to v − u and h2 is perpendicular to v − u. The
work done is |h1| · |v − u| + 0 if the direction of h1 is the same as that of the vector
(v − u), and −|h1| · |v − u| + 0 if the direction of g is opposite to that of the vector
(v − u). We can see that the amount of work done is equal to the scalar product
〈f, v − u〉 in both cases.

5.1. Figure

In the general case, the motion of the
point is described by a curve g : [a, b] →
R

3. Suppose that a force of magnitude and
direction f(g(t)) acts at the point at g(t)
for every t ∈ [a, b]. Consider a fine par-
tition a = t0 < t1 < . . . < tn = b, and
suppose that the subarc γi of g cor-
responding to the interval [ti−1, ti] is
well approximated by the segment
[g(ti−1), g(ti)]. Furthermore, let the force
be close to a constant on the arc γi. (If the
curve is continuously differentiable and
the function f is continuous, then these

conditions hold for a fine enough partition.) Then the work done by the force on
the arc γi will be close to the scalar product 〈f(g(ci)), g(ti) − g(ti−1)〉, where
ci ∈ [ti−1, ti] is arbitrary. Since the total amount of work done by the force is the
sum of the works done along the arcs γi, the work can be approximated by the sums∑n

i=1〈f(g(ci)), g(ti) − g(ti−1)〉. Clearly, if there exists a number I such that these
sums get arbitrarily close to I a the partition becomes increasingly finer, then I is
the amount of the total work. This motivates the following definition of the line
integral.

Definition 5.1. Let g : [a, b] → R
p be a curve mapping toRp, and let f : g([a, b]) →

R
p. We say that the line integral

∫
g
〈f, dx〉 exists and its value is the number I if

for every ε > 0 there exists δ > 0 such that for every partition a = t0 < t1 < . . .
< tn = b finer than δ and for arbitrary points ci ∈ [ti−1, ti] (i = 1, . . . , n) we have

∣
∣
∣
∣
∣
I −

n∑

i=1

〈f(g(ci)), g(ti) − g(ti−1)〉
∣
∣
∣
∣
∣
< ε. (5.1)

Let the coordinate functions of f and g be f1, . . . , fp and g1, . . . , gp, respectively.
The sum in (5.1) becomes
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n∑

i=1

p∑

j=1

fj(g(ci)) · (gj(ti) − gj(ti−1)) =

=
p∑

j=1

(
n∑

i=1

fj(g(ci)) · (gj(ti) − gj(ti−1))

)
def=

p∑

j=1

Sj . (5.2)

The sums Sj are nothing but than the approximation sums of the Stieltjes3 integral4
∫ b

a
(fj ◦ g) dgj . Obviously, if every Sj is close to a number Ij if the partition is fine

enough, then their sum is close to I = I1 + . . . + Ip. This observation motivates the
following concept.

Definition 5.2. Let g = (g1, . . . , gp) : [a, b] → R
p be a curve mapping to R

p, let a
real function h be defined on the set g([a, b]), and let 1 ≤ j ≤ p be fixed. We say
that the line integral

∫
g
h dxj exists (with respect to xj) and it is equal to I , if the

Stieltjes integral
∫ b

a
(h ◦ g) dgj exists and equals I .

For p = 2, we may write
∫

g
h dx and

∫
g
h dy instead of

∫
g
h dx1 and

∫
g
h dx2,

respectively. For p = 3, we may also use the notation
∫

g
h dz instead of

∫
g
h dx3.

Remarks 5.3. 1. Let 1 ≤ j ≤ p be fixed and let the coordinate function gj be con-
tinuous and strictly monotone on the parameter interval [a, b]. One can show that the
existence of the line integral

∫
g
h dxj is equivalent to the existence of the Riemann

integral
∫ gj(b)

gj(a)
H(u) du, where the function H is the composition of the mappings

[gj(a), gj(b)] → [a, b] → g([a, b]) → R.

The first mapping is the inverse of gj , the second is g, and the third is h. (See [7,
Theorem 18.5].)

2. If a segment is parallel to the x1-axis then among the p line integrals taken
on this segment, only the one with respect to dx1 can be nonzero. Indeed, let
a = (a1, a2, . . . , ap), b = (b1, a2, . . . , ap), and let g : [a1, b1] → R

p be an arbitrary
parametrization of the segment [a, b]; i.e., let g([a1, b1]) = [a, b]. For every function

3 Thomas Joannes Stieltjes (1856–1894), Dutch mathematician.
4 Let f, g : [a, b] → R. We say that the Stieltjes integral

∫ b
a

f dg exists and its value equals I if
for every ε > 0 there exists δ > 0 such that if F : a = x0 < x1 < . . . < xn = b is a partition of
[a, b] with mesh smaller than δ and ci ∈ [xi−1, xi] (i = 1, . . . , n) are arbitrary inner points, then∣
∣σF

(
f, g; (ci)

) − I
∣
∣ < ε, where σF

(
f, g; (ci)

)
=

∑n
i=1 f(ci) · (g(xi) − g(xi−1)). For the basic

properties of the Stieltjes integral, see [7, Chapter 18].
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h : [a, b] → R and j �= 1, the line integral
∫

g
h dxj exists and its value is zero, since

j �= 1 implies that the coordinate function gj is constant, and thus every approxima-
tion sum is zero.

Similar statements are true for segments parallel to the other axes.

3. Let a = (a1, a2, . . . , ap), b = (b1, a2, . . . , ap), and let g : [a1, b1] → R
p be a one-

to-one continuous parametrization of the segment [a, b]; i.e., let g be a continuous
bijection between [a1, b1] and [a, b] with g(a1) = a and g(b1) = b. (For example,
the function g(t) = (t, a2, . . . , ap) (t ∈ [a1, b1]) has this property.)

For every function h : [a, b] → R, the line integral
∫

g
h dx1 exists if and only if

the section h(a2,...,ap)(t) = h(t, a2, . . . , ap) is Riemann integrable on the segment

[a1, b1], and the line integral is equal to the Riemann integral
∫ b1

a1
h(a2,...,ap)(t) dt.

This follows from the fact that the line integral and the Riemann integral have
the same approximation sums.

4. Based on Definitions 5.1 and 5.2 it is clear that if

f = (f1, . . . , fp) : g([a, b]) → R
p

and the line integrals
∫

g
fj dxj exist for every j = 1, . . . , p, then the line integral

∫
g
〈f, dx〉 also exists and

∫

g

〈f, dx〉 =
p∑

j=1

∫

g

fj dxj . (5.3)

5. The converse of the statement above is not true, since if f is perpendicular to
g(u) − g(t) for every t, u ∈ [a, b], then the left-hand side of (5.3) exists and it is
zero (since every approximating sum is zero), while the line integrals

∫
g
fj dxj do

not necessarily exist.
For example, let p = 2, g(t) = (t, t) for every t ∈ [0, 1], and f(t, t) =

(h(t),−h(t)) for every t ∈ [0, 1], where h : [0, 1] → R is an arbitrary function. The
left-hand side of (5.3) exists and is equal to zero. On the other hand, the line integral
∫

g
f1 dx1 exists if and only if the Riemann integral

∫ 1

0
h(t) dt also exists.

It is well known that if f : [a, b] → R is continuous and g : [a, b] → R is of
bounded variation, then the Stieltjes integral

∫ b

a
f dg exists. Furthermore, if g is

differentiable and g′ is integrable on [a, b], then the value of the Stieltjes integral is
∫ b

a
f · g′ dx. (See [7, Theorems 18.10 and 18.12].) These results together with the

connection between line integrals and Stieltjes integrals give the following.
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Theorem 5.4. Let g = (g1, . . . , gp) : [a, b] → R
p be a continuous and rectifiable5

curve, and let the function h : g([a, b]) → R be continuous on the set g([a, b]). The
line integral

∫
g
h dxj exists for every j = 1, . . . , p. �

Theorem 5.5. Let g = (g1, . . . , gp) : [a, b] → R
p be a differentiable curve, and let

g′
j be integrable on [a, b] for every j = 1, . . . , p. If the function h : g([a, b]) → R

is continuous on the set g([a, b]), then the line integral
∫

g
h dxj exists, and it is

∫ b

a
h(g(t)) · g′

j(t) dt, for every j = 1, . . . , p. �
Remark 5.6. If we also assume that gj is strictly monotone on the parameter interval
[a, b] then by Remark 5.3.1, it follows that

∫
g
h dxj is equal to the Riemann integral

∫ gj(b)

gj(a)
H(u) du, where H = h ◦ g ◦ (gj)−1. It is easy to see that this latter integral

turns into
∫ b

a
h(g(t)) · g′

j(t) dt, with the substitution u = gj(t).

Example 5.7. Let g(t) = (R cos t, R sin t) (t ∈ [0, 2π]) be the usual parametriza-
tion of the circle centered at the origin with radius R. Find the line integrals∫

g
x2y dx and

∫
g
xy2 dy. Since the conditions of Theorem 5.5 hold, the value of

the first integral is

2π∫

0

R3 cos2 t · sin t·(−R sin t) dt = −R4

4

2π∫

0

(sin 2t)2 dt =

= −R4

8

2π∫

0

(1 − cos 4t) dt = −R4π/4,

and similarly
∫

g
xy2 dy = R4π/4.

We could have guessed, without any calculation, that the two values need to
be the negatives of each other. Indeed, the sum M =

∫
g
x2y dx +

∫
g
xy2 dy is the

work done by the force (x2y, y2x) along the circle centered at the origin with radius
R. Since the vector (x2y, y2x) is parallel to (x, y), which is perpendicular to the
tangent to the circle at the point (x, y), there is no work done, i.e., M = 0.

Combining Theorem 5.5 and (5.3), we obtain the following theorem.

Theorem 5.8. Let g = (g1, . . . , gp) : [a, b] → R
p be a differentiable curve, and let

g′
j be integrable on [a, b] for every j = 1, . . . , p. If the function f : g([a, b]) → R

p

is continuous on the set g([a, b]), then the line integral
∫

g
〈f, dx〉 exists and equals

∫ b

a
〈f(g(t)), g′(t)〉 dt. �
Our next aim is to prove the analogue of the Newton–Leibniz6 formula for line

integrals. First, we need to generalize the notion of primitive function to multivari-
able functions.

5 We say that a curve is rectifiable if its length is finite. See [7, Definition 16.15].
6 Gottfried Wilhelm (von) Leibniz (1646–1716), German mathematician and philosopher.
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Definition 5.9. Let G ⊂ R
p be open and let f = (f1, . . . , fp) : G → R

p. We say
that the function F : G → R is a primitive function of the function f if F is differ-
entiable on G and F ′ = f , i.e., if DjF = fj (j = 1, . . . , p) on the set G.

Example 5.10. Let p = 3, G = R
3 \ {(0, 0, 0)}, and let

f(x, y, z) =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)

,

for every (x, y, z) ∈ G. The function F (x, y, z) = −1/
√

x2 + y2 + z2 is a primi-
tive function of f on G.

Theorem 5.11. (The Newton–Leibniz formula (for line integrals)) Let G ⊂ R
p

be open and let F : G → R be a primitive function of the continuous function
f : G → R

p. Then for every continuous and rectifiable curve g : [a, b] → G we have∫
g
〈f, dx〉 = F (g(b)) − F (g(a)).

Proof. The set K = g([a, b]) is a bounded and closed subset of the open set G.
First, we prove that there exist a bounded and closed set D and a positive number
r with the following properties: K ⊂ D ⊂ G and B(z, r) ⊂ D for every z ∈ K,
where B(z, r) denotes the ball with center z and radius r.

Choose a positive number rz for every point z ∈ K such that B(z, rz) ⊂ G.
The balls B(z, rz/3) (z ∈ K) cover the set K. Since K is compact, it follows
from Borel’s covering theorem (see Theorem 1.31) that finitely many of these
balls cover K. Suppose that the balls B(zi, rzi

/3) (i = 1, . . . , N) cover K. Let
Bi = B(zi, 2rzi

/3) for every (i = 1, . . . , N). The set

D = B1 ∪ . . . ∪ BN

is bounded and closed, it contains K, and it is a subset of G, since

Bi ⊂ B(zi, rzi
) ⊂ G

for every i. Let r denote the minimum of the numbers rzi
/3 (i = 1, . . . , N). Let

z ∈ K be arbitrary. Since the balls B(zi, rzi
/3) cover K, there exists i such that

z ∈ B(zi, rzi
/3). Thus by r ≤ rzi

/3 we have

B(z, r) ⊂ B(zi, r + rzi
/3) ⊂ B(zi, 2rzi

/3) ⊂ D.

We have proved that the set D and the number r have the desired properties.
Since D is bounded and closed, it follows from Heine’s theorem (Theorem 1.53)

that f is uniformly continuous on D. Let ε > 0 be fixed, and choose 0 < η < r such
that |f(x) − f(y)| < ε holds for every x, y ∈ D with |x − y| < η.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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The function g is uniformly continuous on [a, b]; thus there exists δ > 0 such that
|g(u) − g(v)| < η, whenever u, v ∈ [a, b] and |u − v| < δ.

By Theorem 5.4, the line integral
∫

g
〈f, dx〉 exists; let its value be I . Choose a

partition a = t0 < t1 < . . . < tn = b finer than δ and such that

∣
∣
∣
∣
∣
I −

n∑

i=1

〈f(g(ci)), g(ti) − g(ti−1)〉
∣
∣
∣
∣
∣
< ε

for arbitrary points ci ∈ [ti−1, ti]. Denote the point g(ti) by yi for every i =
1, . . . , n. By the choice of δ, we have |yi − yi−1| < η < r, and thus the segment
[yi−1, yi] is contained by D, since yi ∈ K and |y − yi| < r for every y ∈ [yi−1, yi].
Then by the mean value theorem (Theorem 1.79), there is a point di ∈ [yi−1, yi]
such that

F (yi) − F (yi−1) = 〈F ′(di), yi − yi−1〉 = 〈f(di), yi − yi−1〉. (5.4)

Since ci ∈ [ti−1, ti], we have that |ci − ti−1| < δ and |ci − ti| < δ, and then
|g(ci) − yi−1| < η and |g(ci) − yi| < η follow. Therefore, [yi−1, yi] ⊂
B(g(ci), η) (since every ball is convex), which implies di ∈ B(g(ci), η), i.e.,
|g(ci) − di| < η. Thus |f(g(ci)) − f(di)| < ε. Then by (5.4) we obtain

∣
∣F (yi) − F (yi−1)−〈f(g(ci)), yi − yi−1〉

∣
∣ = |〈f(di) − f(g(ci)), yi − yi−1〉| ≤

≤ |f(di) − f(g(ci))| · |yi − yi−1| ≤
≤ ε · |yi − yi−1|.

Summing these inequalities yields

∣
∣
∣
∣
∣
F (g(b)) − F (g(a)) −

n∑

i=1

〈f(g(ci)), yi − yi−1〉
∣
∣
∣
∣
∣
≤ ε ·

n∑

i=1

|yi − yi−1| ≤ ε · L,

where L denotes the length of the curve g. Thus |F (g(b)) − F (g(a)) − I| ≤ ε ·
(L + 1), and since ε was arbitrary, we get F (g(b)) − F (g(a)) = I . �

Remarks 5.12. 1. If every component gj of the curve g is differentiable with an
integrable derivative on [a, b], then

∫
g
〈f, dx〉 = F (g(b)) − F (g(a)) easily follows

from Theorem 5.8. Indeed, the differentiation rule of composite functions (Corol-
lary 2.23) gives

(F ◦ g)′ = D1F (g) · g′
1 + . . . + DpF (g) · g′

p = f1(g) · g′
1 + . . . + fp(g) · g′

p.

Thus the derivative of the single-variable function F ◦ g is 〈f ◦ g, g′〉; in other
words, F ◦ g is a primitive function of 〈f ◦ g, g′〉 on [a, b]. Then the (one-variable)
Newton–Leibniz formula gives

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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∫

g

〈f, dx〉 =

b∫

a

〈f(g(t)), g′(t)〉 dt = F (g(b)) − F (g(a)).

2. The interpretation of Theorem 5.11 from the point of view of physics is as fol-
lows: if the function describing a field has a primitive function, then the work done
along any (continuous and rectifiable) curve depends only on the initial point and
the endpoint of the curve, and the amount of work done is the increment of the prim-
itive function between these two points. In this context the negative of the primitive
function is called the potential function.7

If a field has a potential function, we call it a conservative field. By Exam-
ple 5.10, the gravitational field of a point mass is conservative. (We will soon see
that not every continuous mapping has a primitive function; see Example 5.162.)

Exercises

5.1. Find the following line integrals.8

(a)
∫

g
(x2 + y2) dx, with g(t) = (t, t) (t ∈ [0, 1]);

(b)
∫

g
ex dx, where g : [a, b] → R

2 is an arbitrary continuous and rectifiable curve;

(c)
∫

g
ex dy, where g(t) = (t, t2) (t ∈ [0, 1]);

(d)
∫

g
sin y dy, where g : [a, b] → R

2 is an arbitrary continuous and rectifiable
curve;

(e)
∫

g
(x2 − 2xy) dx − ∫

g
(x2 − 3y2) dy, where g : [a, b] → R

2 is an arbitrary con-
tinuous and rectifiable curve;

(f)
∫

g
(x2 − 2xy) dx, where g(t) = (t, t2) (t ∈ [0, 1]);

(g)
∫

g
f(x) dx +

∫
g
h(y) dy, where f, h : R → R are continuous functions, and

g : [a, b] → R
2 is a continuous and rectifiable curve;

(h)
∫

g
arc tg (ex − sin x) dy, where g is a parametrization of the boundary of the

rectangle [a, b] × [c, d];

(i)
∫

g
f(x2 + y2) · x dx +

∫
g
f(x2 + y2) · y dy, where f : R → R is continuous,

and g : [a, b] → R
2 is a continuous and rectifiable curve.

7 The work increases the energy, and thus the difference of the values of the potential function
between two points is nothing but the increment of the potential energy between the points. This
motivates the nomenclature.
8 A note on notation: we use the notation tg x and ctg x for the functions sinx/ cosx and
cosx/ sinx. The inverse of the restriction of tg x to (−π/2, π/2) is denoted by arc tg x.
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5.2. Let G ⊂ R
p be a connected open set, and suppose that the mapping f : G →

R
p has a primitive function on G. Show that the difference of any two primitive

functions of f is constant. (H)

5.3. Let a < b < c, let u, v ∈ R
p be nonzero perpendicular vectors, and let g1(t) =

u if a ≤ t < b, g1(b) = g2(b) = 0, g2(t) = v if b < t ≤ c. Furthermore, let g(t) =
g1(t) if t ∈ [a, b], and g(t) = g2(t) if t ∈ [b, c]. Show that if f(0) = f(u) = u and
f(v) = 0, then the line integrals

∫
g1

〈f, dx〉 and ∫
g2

〈f, dx〉 exist, but ∫
g
〈f, dx〉 does

not exist.

5.4. Let g1 : [a, b] → R
p and g2 : [b, c] → R

p be continuous curves with g1(b) =
g2(a). Let g(t) = g1(t) if t ∈ [a, b], and g(t) = g2(t) if t ∈ [b, c]. Show that if f is
bounded and the line integrals

∫
g1

〈f, dx〉 and ∫
g2

〈f, dx〉 exist, then ∫
g
〈f, dx〉 also

exists and
∫

g
〈f, dx〉 =

∫
g1

〈f, dx〉 +
∫

g2
〈f, dx〉.

5.5. Let the function ϕ : [a, b] → R be continuous, and let g(t) = (t, ϕ(t)) for
every t ∈ [a, b]. Show that for every continuous function f : (graph ϕ) → R, the
line integral

∫
g
f dx exists and equals

∫ b

a
f(t, ϕ(t)) dt.

5.2 Conditions for the Existence of the Primitive Function

We call a curve g : [a, b] → R
p a closed curve if g(a) = g(b). By Theorem 5.11,

if a continuous function f has a primitive function on an open set G, then the line
integral of f on every continuous and rectifiable closed curve lying in G is zero. Our
next aim is to prove the converse of this statement.

Let the curve g1 start at the point x and end at the point y, and let the curve g2
start at the point y and end at the point z. Intuitively it is clear that if we join the
curves g1 and g2, then the integral along the resulting curve g is equal to the sum of
the integrals along the curves g1 and g2 (think of the additivity of the work done).
We prove that this statement indeed holds under certain extra conditions (but not
without them; see Exercise 5.3).

Lemma 5.13. Let g1 : [a, b] → R
p and g2 : [b, c] → R

p be continuous rectifiable
curves, with a < b < c and g1(b) = g2(b). Let g(t) = g1(t) if t ∈ [a, b], and g(t) =
g2(t) if t ∈ [b, c]. Then the curve g : [a, c] → R

p is also continuous and rectifiable;
furthermore, for every continuous function f : g([a, c]) → R

p we have

∫

g

〈f, dx〉 =
∫

g1

〈f, dx〉 +
∫

g2

〈f, dx〉. (5.5)

Proof. We leave the proof of the continuity and rectifiability of g to the reader. The
integral of (5.5) exists by Theorem 5.4. Let F be a fine partition of the interval [a, c]
in which b is one of the division points. Then the approximating sum for F will be
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close to the left-hand side of (5.5). On the other hand, dividing the sum into two parts
gives a pair of approximating sums corresponding to the intervals [a, b] and [b, c],
respectively, which are close to the corresponding terms on the right-hand side of
(5.5). Hence, equation (5.5) follows. The precise proof is again left to the reader. �

Note that equation (5.5) holds even if we relax some of the conditions (see Exer-
cise 5.4). Sufficient conditions for the existence of the primitive function of a con-
tinuous function can now be easily proven.

Theorem 5.14. Let G ⊂ R
p be a nonempty open set, and let f : G → R

p be con-
tinuous. The function f has a primitive function on G if and only if

∫
g
〈f, dx〉 = 0

holds for every continuous and rectifiable closed curve lying in G.

Proof. The necessity of the condition follows from Theorem 5.11. To prove suf-
ficiency, first we assume that G is connected (see Definition 1.21). Let x0 ∈ G be
fixed. Every point x ∈ G can be reached from x0 by a continuous and rectifiable
curve of G. (Indeed, it follows from Theorem 1.22 that we can connect x0 and x
by a polygonal line T . It is easy to see that there exists a continuous and rectifiable
curve g : [a, b] → R

p with g([a, b]) = T .)
Let F (x) =

∫
g1

〈f, dx〉, where g1 : [a, b] → G is a continuous and rectifiable
curve lying in G and such that g1(a) = x0 and g1(b) = x. We show that F does
not depend on the choice of g1. Let h : [c, d] → R be another continuous and rectifi-
able curve in G with h(c) = x0 and h(d) = x. Moving along the curve g1 from x0

to x, then moving along the curve h from x to x0 results in a closed curve. Since the
line integral along a closed curve is zero, it follows that f has the same line integral
along the two curves h and g1.

More precisely, let g2(t) = h(d + b − t) for t ∈ [b, b + (d − c)]. (The curve g2
“goes along” the curve h backward and its parameter interval connects to [a, b].) It is
easy to check that the curve g2 : [b, b + (d − c)] → G is continuous and rectifiable,
g2(b) = x, g2(b + (d − c)) = x0, and

∫
g2

〈f, dx〉 = − ∫
h
〈f, dx〉. The last equality

follows from the fact that every approximating sum of
∫

g2
〈f, dx〉 is equal to the

negative of an approximating sum of
∫

h
〈f, dx〉.

Let g(t) = g1(t) for t ∈ [a, b], and g(t) = g2(t) for t ∈ [b, b + (d − c)]. Then by
Lemma 5.13, we have (5.5). The left-hand side is zero, since we integrate along a
continuous, rectifiable, and closed curve of G. The right-hand side is

∫
g1

〈f, dx〉 −
∫

h
〈f, dx〉; thus ∫

h
〈f, dx〉 =

∫
g1

〈f, dx〉.
We have shown that F (x) is well defined, i.e., that it depends only on x (if x0 is

fixed). By Lemma 5.13, we have F (v) − F (u) =
∫

g
〈f, dx〉 whenever u, v ∈ G and

g is a continuous rectifiable curve moving from u to v.
Now we show that D1F (y) = f1(y) for every y ∈ G. Since G is open, there

exists r > 0 such that B(y, r) ⊂ G. Let y = (y1, . . . , yp), u = (y1 − r, y2, . . . ,
yp), and v = (y1 + r, y2, . . . , yp). The segment [u, v] is contained by the closed ball
B(y, r); thus it is also contained by G. For z = (z1, y2, . . . , yp) ∈ [u, v] we have
F (z) − F (y) =

∫
g
〈f, dx〉, where g is any continuous and rectifiable parametriza-

tion of the segment [y, z]. By Remark 5.3.1, if this parametrization is one-to-one,
then the line integral is equal to the Riemann integral of the section function

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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∫ z1

y1
f
(y2,...,yp)
1 dt. Since f1 is continuous on [u, v], it follows that the function z1 �→

∫ z1

y1
f
(y2,...,yp)
1 dt is differentiable at y1, and its derivative is f

(y2,...,yp)
1 (y1) = f1(y)

there. (See [7, Theorem 15.5].) This means that

lim
z1→y1

F (z1, y2, . . . , yp) − F (y)
z1 − y1

= f1(y),

i.e., D1f(y) = f1(y).
The equality DjF (y) = fj(y) can be proved similarly for every j = 2, . . . , p.

Thus the partial derivatives of F exist everywhere on G. Since they are also contin-
uous, it follows from Theorem 1.71 that F is differentiable everywhere on G, and
F is a primitive function of f .

We have proved our theorem in the case that G is connected. In the general case,
let us present G as the union of mutually disjoint, nonempty, and connected open
sets Gi (i ∈ I). For every i there exists a function Fi : Gi → R such that Fi is
differentiable on Gi and its derivative is f (restricted to Gi). Let F (x) = Fi(x) for
every x ∈ Gi and i ∈ I . Obviously, F is a primitive function of f on the set G. �

Remark 5.15. In the proof above we could have restricted the definition of F (x) =∫
g
〈f, dx〉 to integrals along polygonal lines between x0 and x. That is, having

∫
g
〈f, dx〉 = 0 for every closed polygonal line lying in G is a sufficient condition for

the existence of the primitive function. Moreover, having
∫

g
〈f, dx〉 = 0 for every

simple closed polygonal line is also sufficient. (A closed polygonal line is called
simple if it does not intersect itself.) Indeed, every closed polygonal line T is the
union of finitely many simple closed polygonal lines Ti, and the line integral of
every function along T is the sum of its line integrals along Ti (see Exercise 5.6).
Therefore, if f is continuous on an open set G and if

∫
g
〈f, dx〉 = 0 holds for every

simple closed polygonal line lying in G, then f has a primitive function on G.

Examples 5.16. 1. Let us consider g(t) = (R cos t, R sin t) (t ∈ [0, 2π]), the usual
parametrization of the circle centered at the origin and of radius R. Let’s compute
the line integrals

∫
g

x
x2+y2 dx and

∫
g

y
x2+y2 dy. Applying Theorem 5.5 gives us

∫

g

x

x2 + y2
dx =

2π∫

0

cos t

R
· (−R sin t) dt = 0

and

∫

g

y

x2 + y2
dy =

2π∫

0

sin t

R
· (R cos t) dt = 0.

Thus the line integral of the function f(x, y) =
(

x
x2+y2 , y

x2+y2

)
is zero along the

circle with center 0 and radius R. This has to be so, since the function f has a
primitive function on the set R2 \ {(0, 0)}; namely, the function 1

2 log(x2 + y2) is
a primitive function.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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2. Find the line integrals
∫

g
−y

x2+y2 dx and
∫

g
x

x2+y2 dy along the same circle. Apply-
ing Theorem 5.5 gives us

∫

g

−y

x2 + y2
dx =

2π∫

0

− sin t

R
· (−R sin t) dt = π

and

∫

g

x

x2 + y2
dy =

2π∫

0

cos t

R
· (R cos t) dt = π.

Thus the line integral of the function

f(x, y) =
( −y

x2 + y2
,

x

x2 + y2

)

(5.6)

along a circle with radius R is not zero. Therefore, the function f does not have a
primitive function on the set R2 \ {(0, 0)}.

These examples show an important difference between single- and multivariable
analysis. We know that every continuous single-variable function always has a prim-
itive function (see [7, Theorem 15.5]). In contrast, the function defined in (5.6) does
not have a primitive function on G, even though it is both continuous and differen-
tiable on G = R

2 \ {(0, 0)}.
Another necessary condition for the existence of a primitive function is given by

the following theorem.

Theorem 5.17. Let f : G → R
p be differentiable on an open set G ⊂ R

p. If f has
a primitive function on G, then

Difj(x) = Djfi(x) (5.7)

for every x ∈ G and i, j = 1, . . . , p. In other words, if the differentiable function f
has a primitive function on an open set G, then its Jacobian matrix is symmetric at
every point x ∈ G.

Proof. Let F be a primitive function of f on G. Then the function F is twice dif-
ferentiable on G and thus, by Theorem 1.86, we have

Difj(x) = DiDjF (x) = DijF (x) = Djif(x) = DjDiF (x) = Djfi(x)

for every x ∈ G and i, j = 1, . . . , p. �

Remark 5.18. In general, the conditions of the previous theorem are not sufficient
for the existence of a primitive function. The function defined by (5.6) is differen-
tiable on the set G = R

2 \ {(0, 0)}, with D2f1 = D1f2 (check this!). But as we
saw, the function does not have a primitive function on G.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1


5.2 Conditions for the Existence of the Primitive Function 167

We shall see presently that the cause of this phenomenon is that G “has a hole
in it.” We will prove that the conditions of Theorem 5.17 are sufficient for the exis-
tence of a primitive function for open sets of a simpler structure (what are called
1-connected sets).

First, let us find the linear transformations having a primitive function.

Theorem 5.19. A linear transformation A : Rp → R
p has a primitive function if

and only if the matrix of A is symmetric.

Proof. Every linear transformation is differentiable, and its derivative is itself
everywhere, and thus its Jacobian matrix is the same as its matrix. Then by The-
orem 5.17, if a linear transformation A has a primitive function, its matrix is sym-
metric.

Now let us assume that the matrix of A is symmetric, and let this matrix be
(aij) with aij = aji (i, j = 1, . . . , p). The ith coordinate of the vector A(x) is
∑p

j=1 aijxj for every vector x = (x1, . . . , xp) ∈ R
p. It is easy to see that the

function F (x) = 1
2 · ∑p

i=1

∑p
j=1 aijxixj is a primitive function of the mapping

A. Indeed, F is differentiable, since it is a polynomial (see Theorem 1.90). For
every 1 ≤ i ≤ p, we have DiF (x) =

∑p
j=1 aijxj , i.e., DiF (x) is the same as

the ith coordinate function of A(x). That is, F is a primitive function of the
mapping A. �

Lemma 5.20. (Goursat’s9 lemma) Let G ⊂ R
p be open, and let a, b, c be points

of G such that the convex hull H of the set {a, b, c} is in G.10

Let g denote the closed polygonal line [a, b] ∪ [b, c] ∪ [c, a]. Suppose that for
every x ∈ H , f : G → R

p is differentiable at x with a symmetric Jacobian matrix.
Then

∫
g
〈f, dx〉 = 0.

5.2. Figure

For the proof we need the following
lemma, called a trivial estimate.

Lemma 5.21. Let g : [a, b] → R
p be a con-

tinuous and rectifiable curve, and let the
function h : g([a, b]) → R be continuous on
g([a, b]). Then

∣
∣
∣
∣

∫

g

〈h, dx〉
∣
∣
∣
∣ ≤ K · s(g),

whereK is an upper bound of the function |h|
on the set g([a, b]), and s(g) is the arc length
of g.

9 Édouard Jean-Baptiste Goursat (1858–1936), French mathematician.
10 The convex hull H is nothing other than the triangle with vertices a, b, c.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1


168 5 Integrals of Multivariable Functions II

Proof. For every partition a = t0 < t1 < . . . < tn = b and for every choice of the
inner points ci ∈ [ti−1, ti] (i = 1, . . . , n) we have

∣
∣
∣
∣
∣

n∑

i=1

〈h(g(ci)), g(ti) − g(ti−1)〉
∣
∣
∣
∣
∣
≤

n∑

i=1

K · |g(ti) − g(ti−1)| ≤ K · s(g).

Thus the statement follows from Definition 5.1. �

Proof of Goursat’s lemma. Let
∫

g
〈f, dx〉 = I0; we need to prove that I0 = 0.

The midpoints of the sides of the triangle H are (a + b)/2, (b + c)/2, (c + a)/2.
The three segments connecting these midpoints cut H into congruent triangles
H1,1, . . . , H1,4. Let g1,i denote the polygon whose edges are the sides of the tri-
angle H1,i. With an appropriate direction of g1,i we have

I0 =
∫

g

〈f, dx〉 =
4∑

i=1

∫

g1,i

〈f, dx〉. (5.8)

Indeed, we integrate twice (in opposite directions) along every side of the polygons
g1,i contained in the interior of H (i.e., along the segments connecting the mid-
points), so their contributions cancel on the right-hand side of (5.8). The union of
the remaining segments is exactly g. Thus (given an appropriate direction of the
polygons g1,i) the sum of their corresponding terms is I0. Let

∫
g1,i

〈f, dx〉 = I1,i

(i = 1, 2, 3, 4). Then I0 = I1,1 + I1,2 + I1,3 + I1,4 by (5.8). Therefore, we have
|I1,i| ≥ |I0|/4 for at least one i. Choose an i that satisfies this condition and let
us denote the triangle H1,i by H1, the closed polygon g1,i by g1, and I1,i by I1.

The segments connecting the midpoints of the sides of the triangle H1 cut H1

into the isomorphic triangles H2,1, . . . , H2,4. Let g2,i denote the polygon whose
edges are the sides of the triangle H2,i. With an appropriate direction of g2,i we
have

I1 =
∫

g1

〈f, dx〉 =
4∑

i=1

∫

g2,i

〈f, dx〉.

Let
∫

g2,i
〈f, dx〉 = I2,i (i = 1, 2, 3, 4). Then I1 = I2,1 + I2,2 + I2,3 + I2,4, and thus

|I2,j | ≥ |I1|/4 for at least one j. Pick some j that satisfies this condition and let us
denote the triangle H2,j by H2, the closed polygon g2,j by g2, and I2,j by I2.

By repeating this process we get a sequence of nested triangles H = H0,H1,
H2, . . ., a sequence of polygons gk defined by the sides of these triangles, and a
sequence Ik =

∫
gk

〈f, dx〉 of numbers such that |Ik+1| ≥ |Ik|/4 for every k. We
have

|I0| ≤ 4 · |I1| ≤ 42 · |I2| ≤ . . . ,

i.e., |I0| ≤ 4k · |Ik| for every k.
Let sk be the length of the perimeter of the triangle Hk, i.e., the arc length

of the polygon gk. Since the triangle Hk+1 is similar to the triangle Hk with its
sized halved (i.e., with ratio 1/2), we have sk+1 = sk/2 for every k, and thus
sk = s0/2k (k = 1, 2, . . .).
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Now, H,H1,H2, . . . are nested nonempty closed sets, and thus it follows from
Cantor’s theorem (Theorem 1.25) that their intersection is nonempty. Let d ∈⋂∞

k=1 Hk.
Let ε > 0 be fixed. Since f is differentiable at the point d, there exists δ > 0 such

that

f(x) = f(d) + f ′(d)(x − d) + η(x),

where |η(x)| < ε · |x − d| for each |x − d| < δ. Now, d ∈ Hk and the length of
Hk’s perimeter is s0/2k; thus every point of gk is closer to d than s0/2k. For a large
enough k, we have gk ⊂ B(d, δ) and

Ik =
∫

gk

〈f, dx〉 =
∫

gk

〈f(d) + f ′(d)(x − d), dx〉 +
∫

gk

〈η, dx〉. (5.9)

By assumption, the matrix of the linear transform f ′(d) is symmetric. Then, by The-
orem 5.19, the mapping f ′(d)(x) has a primitive function. Let c = f(d) − f ′(d)(d).
The constant mapping c also has a primitive function: if c = (c1, . . . , cp), then the
function c1x1 + . . . + cpxp works. Thus the mapping f(d) + f ′(d)(x − d) also has
a primitive function on Rp. Therefore, by Theorem 5.14, its integral is zero on every
continuous, closed, and rectifiable curve. Thus the value of the first integral on the
right-hand side of (5.9) is zero. On the other hand, the trivial estimate (Lemma 5.21)
gives

∣
∣
∣
∣

∫

gk

〈η, dx〉
∣
∣
∣
∣ ≤ ε · s2k,

since every point x of the triangle Hk satisfies |x − d| ≤ sk, and thus |η(x)| ≤ ε ·
|x − d| < ε · sk. We have proved |Ik| < ε · s20 · 4−k, which implies

|I0| ≤ 4k · |Ik| < ε · s20.

This is true for every ε > 0, and thus I0 = 0, which completes the proof. �

Theorem 5.22. Let G ⊂ R
p be a convex open set. A differentiable mapping

f : G → R
p has a primitive function on G if and only if its Jacobian matrix is sym-

metric at every point x ∈ G.

Proof. The necessity of the condition follows from Theorem 5.17.
To prove sufficiency, let the Jacobian matrix of f be symmetric at every point

of G. In order to prove the existence of a primitive function it is enough to show
that the integral of f is zero on every closed polygon in G (see Theorem 5.14 and
Remark 5.15). Let a0, a1, . . . , an = a0 be points of G; we show that the integral of
f along the polygon p = [a0, a1] ∪ . . . ∪ [an−1, a0] is zero. (The polygon p lies in
G, since by the convexity of G we have [ai−1, ai] ⊂ G for every i = 1, . . . , n.) We
now employ induction on n. For n = 0, the polygon is reduced to a single point, and
the integral of any function on a singleton (i.e., along a constant curve) is zero. For
n = 1, the integral of f on p is zero, since we integrate along the segment [a0, a1]
twice, first from a0 to a1 and then from a1 to a0. The sum of these two integrals is
zero.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Let n > 1 and suppose that the statement is true for n − 1. Then the integral
of f along the closed polygon p′ = [a0, a1] ∪ . . . ∪ [an−3, an−2] ∪ [an−2, a0] is
zero. The integral of f is also zero along the closed polygon g = [an−2, an−1] ∪
[an−1, a0] ∪ [a0, an−2]. Indeed, ifH is the convex hull of the points an−2, an−1, a0,
then g is a closed polygon consisting of the sides of the triangle H . Since the Jaco-
bian matrix of f is symmetric at every point of H (since it is symmetric at every
point of G), it follows from Goursat’s lemma that the integral of f along g is zero.
Now we have

∫

p

〈f, dx〉 =
∫

p′
〈f, dx〉 +

∫

g

〈f, dx〉. (5.10)

Indeed, the union of the segments of p′ and g is p together with the segment
[an−2, a0] counted twice, with two different directions. Since the integrals over a
segment with two different directions are the negatives of each other, we obtain
(5.10). Since both terms of the right-hand side of (5.10) are zero, we have∫

p
〈f, dx〉 = 0, which proves the theorem. �

Example 5.23. Consider the function f defined by (5.6). Then f is differentiable
on the set G = R

2 \ {(0, 0)} with D2f1 = D1f2 there (see Remark 5.18). Thus the
Jacobian matrix of f is symmetric at every point x ∈ G, and thus by the previous
theorem, f has a primitive function on every convex and open subset of G. We can
prove this directly.

Indeed, the function arc tg (y/x) is a primitive function of f on each of the con-
vex open sets {(x, y) : x > 0} and {(x, y) : x < 0} (check this fact). On the other
hand, the function −arc tg (x/y) is a primitive function of the function f on each of
the convex open sets {(x, y) : y > 0} and {(x, y) : y < 0} (check this fact as well).

Using these two functions, we can find the primitive function of f on an
arbitrary convex and open subset of the domain G as follows. First, note that
arc tg x + arc tg (1/x) = π/2 for x > 0, and arc tg x + arc tg (1/x) = −π/2 for
x < 0. (These follow from the fact that for 0 < α < π/2 we have 1/tg α = ctg α =
tg ((π/2) − α). With the help of these formulas one can easily see that the function

F (x, y) =

⎧
⎪⎨

⎪⎩

arc tg (y/x), if x > 0,
−arc tg (x/y) + π/2, if y > 0,

arc tg (y/x) + π, if x < 0

is well defined and is differentiable on the open set G′ = R
2 \ {(0, y) : y ≤ 0}, with

F ′ = f there. (That is, F is the primitive function of f on G′. Note that by Exer-
cise 5.2, all the primitive functions of f on G′ are of the form F + c, where c is a
constant.) A similar construction can be applied for the complement of every half-
line starting from the origin. Thus f has a primitive function on every such open
set.

It is also easy to see that if H ⊂ G is convex, then there is a half-line L with
endpoint at the origin such that H ⊂ R

2 \ L. This shows that f has a primitive
function on every convex and open subset of the open set G, in accordance with
Theorem 5.22.



5.2 Conditions for the Existence of the Primitive Function 171

This example illustrates another—just as remarkable—fact. By Example 5.16.2,
the integral of the function f along an arbitrary origin-centered circle is the same
number. Next we show that this follows from the fact that f has a primitive function
on every disk lying in G.

Definition 5.24. Let G ⊂ R
p be open, and let g1, g2 : [a, b] → G be continuous

closed curves. We say that the curves g1 and g2 can be continuously deformed
into each other or in other words, g1 and g2 are homotopic curves in G, if
there exists a continuous mappingϕ : ([a, b] × [0, 1]) → G such thatϕ(t, 0) = g1(t)
and ϕ(t, 1) = g2(t) for every t ∈ [a, b]. Furthermore, ϕ(a, u) = ϕ(b, u) for every
u ∈ [0, 1].

Example 5.25. Let p = 2 and G = R
2 \ {(0, 0)}. Then

g1(t) = (R1 cos t, R1 sin t) (t ∈ [0, 2π])

and

g2(t) = (R2 cos t, R2 sin t) (t ∈ [0, 2π])

are homotopic curves in G for every R1, R2 > 0. Indeed, the mapping

ϕ(t, u) = ((R1 + (R2 − R1)u) cos t, (R1 + (R2 − R1)u) sin t) , t ∈ [0, 2π], u ∈ [0, 1]

satisfies the conditions of Definition 5.24.

Theorem 5.26. Let G ⊂ R
p be open, let f : G → R

p be continuous, and suppose
that every x ∈ G has a neighborhood on which f has a primitive function. Then we
have ∫

γ1

〈f, dx〉 =
∫

γ2

〈f, dx〉 (5.11)

whenever γ1 and γ2 are continuous rectifiable homotopic closed curves lying in G.

Proof. Let T = [a, b] × [0, 1], and let ϕ : T → G be a mapping satisfying the con-
ditions of Definition 5.24.

If a point moves around the perimeter of the rectangle T in the positive direction
starting from the vertex (a, 0), then the image of this point by the mapping ϕ is
a continuous closed curve γ that consists of four parts: the curve γ1, a continuous
curve ρ going from the endpoint of γ1 to the endpoint of γ2, the curve γ2 traversed
in the opposite direction, and the curve ρ, also traversed in the opposite direction. It
follows that

∫

γ

〈f, dx〉 =
∫

γ1

〈f, dx〉 −
∫

γ2

〈f, dx〉. (5.12)

Thus it is enough to show that the left-hand side of (5.12) is zero.
The main idea of the proof is the following. Cut T into congruent rectangles Ti

(i = 1, . . . , n2). Let gi denote the image of the perimeter of Ti by the map ϕ. Then
we have

∫

γ

〈f, dx〉 =
n2
∑

i=1

∫

gi

〈f, dx〉. (5.13)
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Indeed, the right-hand side is the sum of the integrals of f along the images of the
sides of the rectangles Ti by ϕ. The integrals corresponding to the sides of Ti that
lie inside of T appear twice with opposing signs. Thus these integrals cancel, and
the right-hand side of (5.13) is the integral

∫
γ
〈f, dx〉.

Now, for n large enough, the diameters of Ti and gi are small enough for gi to be
covered by a ball in which f has a primitive function. It follows from Theorem 5.14
that every term on the right-had side of (5.13) is zero; thus the left-hand side is also
zero.

Now we turn to the precise proof. In the argument we also have to handle the
problem of the existence of the integrals on the right-hand side of (5.13), since the
maps gi are continuous, but not necessarily rectifiable. A simple solution of this
problem is replacing the nonrectifiable images of the sides of Ti by segments.

Since the set [a, b] × [0, 1] is bounded and closed, and the mapping ϕ is continu-
ous, the set H = ϕ([a, b] × [0, 1]) is also bounded and closed (see Theorem 2.7).

Now we prove that for a suitable δ > 0, the function f has a primitive func-
tion in the ball B(x, δ) for every x ∈ H . Suppose there is no such δ. Then for
every positive integer n there exists xn ∈ H such that f does not have a primi-
tive function in the ball B(xn, 1/n). Since the set H is bounded, it follows from
the Bolzano–Weierstrass theorem (Theorem 1.9) that the sequence (xn) has a con-
vergent subsequence (xnk

). If xnk
→ x, then x ∈ H ⊂ G (since H is closed), and

there exists r > 0 such that f has a primitive function in the ball B(x, r). For k
large enough we have |xnk

− x| < r/2 and 1/nk < r/2. For such a k, we have
B(xnk

, 1/nk) ⊂ B(x, r), and consequently, f has a primitive function in the ball
B(xnk

, 1/nk). This, however, contradicts the choice of xnk
. This contradiction

proves the existence of δ > 0 such that f has a primitive function in the ball B(x, δ)
for every x ∈ H . Fix such a δ.

By Heine’s theorem (Theorem 1.53), there exists η > 0 such that |ϕ(x) − ϕ(y)| <
δ whenever x, y ∈ [a, b] × [0, 1] and |x − y| < η. Let n be large enough to satisfy
both (b − a)/n < η/2 and 1/n < η/2.

Cut T into congruent rectangles Ti (i = 1, . . . , n2), and let gi denote the image
of the boundary of Ti by the map ϕ. By the choice of n, the diameter of Ti is smaller
than η, and then by the choice of η, the diameter of gi is smaller than δ.

Let x ∈ gi be arbitrary. Then gi ⊂ B(x, δ), and f has a primitive function in the
ball B(x, δ) by the choice of δ. Thus

∫
gi

〈f, dx〉 = 0, assuming that gi is rectifiable.
However, gi is not necessarily rectifiable, and thus we replace gi by a rectifiable
curve g′

i as follows. Whenever the image of a side [u, v] of some rectangle Ti by ϕ
is not rectifiable, we replace it by the segment [ϕ(u), ϕ(v)]. In this way we obtain
a rectifiable curve g′

i that is also contained in the ball B(x, δ), since every ball is
convex. Then by Theorem 5.14,

∫
g′
i
〈f, dx〉 = 0 for every i. On the other hand, a

proof similar to that of (5.13) gives

∫

γ

〈f, dx〉 =
n2
∑

i=1

∫

g′
i

〈f, dx〉.

Therefore, we have
∫

γ
〈f, dx〉 = 0. �

Definition 5.27. Let G ⊂ R
p be open, and let g : [a, b] → G be a continuous closed

curve. We say that the curve g can be continuously deformed into a point, or g is

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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null-homotopic inG, if there is a point c ∈ G such that g and the curve with constant
value c are homotopic to each other in G.

The open set G ⊂ R
p is called simply connected or 1-connected if it is connected

and every continuous closed curve in G is null-homotopic in G.

Remarks 5.28. 1. Every convex open set is simply connected. Indeed, let g : [a, b] →
G be an arbitrary continuous closed curve in G. Choose a point c ∈ G, and let
ϕ(t, u) = u · c + (1 − u) · g(t) for every (t, u) ∈ [a, b] × [0, 1]. Obviously, ϕ satis-
fies the conditions of Definition 5.24 on the curves g1 = g and g2 ≡ c. That is, g is
homotopic to the curve with constant value c in G. This is true for every continuous
closed curve of G, and thus G is simply connected.
2. One can prove that a connected open set of the plane is simply connected if and
only if it is the bijective and continuous image of a convex open set (of the plane).

This statement is not true for higher-dimensional spaces. Consider the open set
G = {x ∈ R

3 : r < |x| < R} of three-dimensional space, where 0 < r < R. It is
easy to see that every continuous closed curve of G can be continuously deformed
into a point, i.e., G is simply connected. It is clear intuitively that G is not a contin-
uous bijective map of (a three-dimensional) convex open set. However, the proof of
this is not easy.

Corollary 5.29. Let G ⊂ R
p be open, let f : G → R

p be continuous, and let every
point x ∈ G have a neighborhood in which f has a primitive function. Then we have∫

g
〈f, dx〉 = 0 whenever g is a null-homotopic continuous, rectifiable, and closed

curve in G.

Proof. The claim follows trivially from Theorem 5.26, since the integral of every
function along a constant curve is zero. �

Corollary 5.30. Let G ⊂ R
p be a simply connected open set, let f : G → R

p be
continuous, and suppose that every x ∈ G has a neighborhood in which f has a
primitive function. Then the function f has a primitive function on G.

Proof. The statement follows immediately from Corollary 5.29 and
Theorem 5.14. �

Remark 5.31. The condition on the continuity of f can be omitted; see Exer-
cise 5.12.

Theorem 5.32. Let G ⊂ R
p be a simply connected open set. A differentiable map-

ping f : G → R
p has a primitive function on G if and only if the Jacobian matrix

of f is symmetric at every point x ∈ G.

Proof. The statement follows immediately from Theorem 5.22 and from Corol-
lary 5.30. �
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Exercises

5.6. Show that every closed polygonal line T can be decomposed into finitely many
non-self-intersecting polygonal lines Ti. (Therefore, the line integral of an arbitrary
function along T equals the sum of the line integrals along Ti.) (H)

5.7. Find the continuously differentiable functions F : R2 → R for which

(a)
∫

g
F dx = 0 for every continuous rectifiable closed curve;

(b)
∫

g
F dx +

∫
g
F dy = 0 for every continuous rectifiable closed curve.

5.8. Decide whether the following mappings have a primitive function on their
respective domains. If a mapping has a primitive function, find one.

(a) (x + y, x − y); (b) (x2 + y, x + ctg y);

(c) (x2 − 2xy, y2 − x2); (d)
(

x2−y2

(x2+y2)2 , 2xy
(x2+y2)2

)
;

(e)

(
x√

x2+y2
, y√

x2+y2

)

; (f)

(
y√

x2+y2
, x√

x2+y2

)

;

(g)

(
−y√
x2+y2

, x√
x2+y2

)

; (h)
(
log

√
x2 + y2, arc tg (x/y)

)
;

(i)
(
arc tg (x/y),− log

√
x2 + y2

)
;

(j)
(

y
1+x2 + x, arc tg x + z

y , log y + z
)
;

(k)
(

z
x − sin z

x2y , z
y − sin z

xy2 , log(xy) + cos z
xy

)
.

5.9. (a) Find the continuously differentiable functions f : R2 → R for which the
mapping (f, f) : R2 → R

2 has a primitive function.
(b) Find the continuously differentiable functions f, g : R2 → R for which the map-

pings (f, g) : R2 → R
2 and (g, f) : R2 → R

2 both have a primitive function.

5.10. Compute the line integral of the mapping f(x, y) = (log
√

x2 + y2,
arc tg (x/y)) along the curve g(t) = (sh t, 1 + ch t) (t ∈ [0, 1]).

5.11. Let G = R
2 \ {(0, 0)}, and let f = (f1, f2) : G → R

2 be a continuously dif-
ferentiable function such that D2f1 = D1f2. Let the line integral of f on the unit
circle (oriented in the positive direction) be I . Show that the line integral of f along
every continuous rectifiable closed curve g : [a, b] → G is n · I , for some integer n.
What is the intuitive meaning of n?

5.12. Let G ⊂ R
p be a simply connected open set, and let f : G → R

p be a map-
ping such that every x ∈ G has a neighborhood on which f has a primitive function.
Show that f also has a primitive function in G. (*)

5.13. Let G = R
2 \ {(0, 0)}, and let f = (f1, f2) : G → R

2 be differentiable.
Show that if D2f1 = D1f2 on G, then f has a primitive function on every set that
is the complement of a half-line whose endpoint is the origin.
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5.3 Green’s Theorem

The multivariable variants of the Newton–Leibniz formula are called integral theo-
rems. As we will see presently, these are especially useful and important for appli-
cations.

When discussing the topic of integral theorems, we necessarily have to wander
into the fields of differential geometry and topology. Consequently, we have to take
for granted several facts in these areas and cannot explain some ideas and results
that look intuitively clear. The reason is that in order to present a precise proof
of several theorems to come, we would need to develop some parts of geometric
measure theory, topology, and differential geometry in such depth that would fill an
entire book in itself while drifting away from the topic of this book significantly.

Therefore, at times we will need to give up the principle—to which we have kept
ourselves so far—of not using anything in our proofs that we have not proved before
(except the axioms, of course). The reader is warned either to consider this part of
the book a popular introduction or to read the books [12] and [1] for further details.

The topic of simple closed curves is the first on which we have to accept some
facts without proofs.

Definition 5.33. We call a curve g : [a, b] → R
p a simple closed curve if g is a

continuous closed curve that is injective on the set [a, b). In other words, the curve
g : [a, b] → R

p is a simple closed curve if and only if it is continuous and for every
a ≤ t < u ≤ b we have g(t) = g(u) if and only if t = a and u = b.

It is intuitively clear that if g : [a, b] → R
2 is a simple closed plane curve, then

the open set R2 \ g([a, b]) has exactly two components, whose common boundary
is the set g([a, b]). Furthermore, exactly one of these two components is bounded.
This statement is known as the Jordan curve theorem. However, the proof of this
theorem is far form being simple. The reader can find a proof in [9]. Other proofs
can be found in [11] and [13]. From now on, we will take the Jordan curve theorem
for granted.

For a simple closed plane curve g : [a, b] → R
2, the bounded component of

R
2 \ g([a, b]) is called the bounded domain with boundary g.
We need to define the direction of a simple closed curve. Intuitively, if we move

along the simple closed curve g, then the bounded domain with boundary g is either
to our left-hand side or our right-hand side. In the first case we call the direction
of the curve positive, and in the second case the direction is negative. The precise
definition is the following.

First, we define the directed angle of a pair of nonzero vectors a = (a1, a2) and
b = (b1, b2). Intuitively, the angle is positive or negative according to whether the
half-line �b starting from the origin and going through b can be reached by a positive
or negative rotation from the half-line �a starting from the origin and going through

a. We can check that the sign of the determinant

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ is different in the two cases.

This motivates the following definition.
We say that the undirected angle of the vectors a and b is the angle γ ∈ [0, π]

of the half-lines �a and �b. (We can also define this angle by the formula 〈a, b〉 =
|a| · |b| · cos γ.) We say that the directed angle of the vectors a and b is γ if the
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determinant

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ is nonnegative, and −γ if the determinant

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ is negative.

(Obviously, the directed angle depends on the order of a and b.)

5.3. Figure

Let g : [a, b] → R
2 be a continuous

plane curve, let Γ = g([a, b]), and let x ∈
R

2 \ Γ. We define the winding number
w(g;x) of the curve g around point x as
follows. Let a = t0 < t1 < . . . < tn = b
be a partition such that diam g([ti−1, ti])
≤ dist (x,Γ) holds for every i. Let us
denote by γi the directed angle of the vec-
tors g(ti−1) − x and g(ti) − x, and let
w(g;x) =

∑n
i=1 γi. One can prove that

the value of w(g;x) is the same for every
such partition.

One can also prove that if g is a simple
closed curve andA is the bounded domain

with boundary g, then either w(g;x) = 2π for every x ∈ A or w(g;x) = −2π for
every x ∈ A. In the first case we say that the direction of the curve is positive, and
in the second case we say that the direction of the curve is negative.

We can now discuss the integral theorems of the plane. Let f be a two-variable
function. From now on we will use the notation ∂f

∂x instead of D1f and ∂f
∂y instead

of D2f . (This notation makes the theorems easier to memorize.)

Theorem 5.34. (Green’s11 theorem) Let g be a continuous rectifiable positively
oriented simple closed plane curve, and let A be the bounded domain with boundary
g. Let cl A ⊂ G, where G is open, and let f : G → R be continuous.

(i) If ∂f
∂y exists and is continuous on cl A, then

∫

g

f dx = −
∫

A

∂f

∂y
dx dy. (5.14)

(ii) If ∂f
∂x exists and is continuous on cl A, then

∫

g

f dy =
∫

A

∂f

∂x
dx dy. (5.15)

Remark 5.35. Formula (5.15) can be memorized by “deleting” ∂x and dx on the
right-hand side (since these “cancel each other out”).

Switching x and y turns formula (5.15) into (5.14). Switching the coordinate
axes is nothing other than the reflection about the line y = x, and reflections change
the direction of simple closed curves. Since (5.14) is also about positively oriented
curves, we need to take the negative of one of the sides.

We can memorize the negative sign in (5.14) by first switching dx and dy on the
right-hand side before the cancellation of ∂y and dy, which causes a negative sign.

These operations can be endowed with precise mathematical meaning using the
theory of differential forms. See, e.g., Chapter 10 of the book [12].

11 George Green (1793–1841), British mathematician and physicist.



5.3 Green’s Theorem 177

Sketch of the proof of Theorem 5.34. First, we prove statement (i) in the special
case that A is the interior of a normal domain.

Let ϕ and ψ be continuous functions on the interval [c, d] and let ϕ(x) < ψ(x),
for every x ∈ (c, d). Let

A = {(x, y) : c < x < d ϕ(x) < y < ψ(x)}.

5.4. Figure

Let g be be a continuous posi-
tively oriented simple closed curve
that parametrizes the boundary of A.
This means that g can be divided into
the continuous curves g1, g2, g3, g4,
where g1 parametrizes the graph of
the function ϕ such that the first com-
ponent of g1 is strictly monotoni-
cally increasing, g2 is the (possibly
degenerate) vertical segment connect-
ing the points (d, ϕ(d)) and (d, ψ(d)),
g3 parametrizes the graph of the func-
tion ψ such that the first component of
g3 is strictly monotonically decreas-
ing, and finally, g4 is the vertical seg-
ment connecting the points (c, ψ(c))
and (c, ϕ(c)). It is easy to see that

∫

g1

f dx =
∫ d

c

f(x, ϕ(x)) dx and
∫

g3

f dx = −
∫ d

c

f(x, ψ(x)) dx

(see Exercise 5.5). By Remark 5.3.2,
∫

g2
f dx =

∫
g4

f dx = 0, and thus the value of
the left-hand side of (5.14) is

d∫

c

(f(x, ϕ(x)) − f(x, ψ(x))) dx.

On the other hand, according to the theorem of successive integration, the value of
the right-hand side of (5.14) is

−
d∫

c

⎛

⎜
⎝

ψ(x)∫

ϕ(x)

∂f

∂y
dy

⎞

⎟
⎠ dx = −

d∫

c

[f(x, y)]ψ(x)
y=ϕ(x) dx =

= −
d∫

c

(f(x, ψ(x)) − f(x, ϕ(x))) dx,

i.e., (5.14) holds.
Note that every triangle is a normal region, and thus (i) holds for every triangle.
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Now we prove (i) for every polygon, that is, for every simple closed polygonal
line. It is easy to see that every polygon can be partitioned into nonoverlapping
triangles (see Exercise 3.30). We also know that (5.14) holds for every triangle of
this partition. Summing these equations yields our statement for polygons. Indeed, it
follows from (4.3) that the sum of the right-hand sides equals the right-hand side of
(5.14). The line integrals along those segments that lie in the interior of the polygon
cancel each other out on the left-hand side, since every such segment belongs to two
triangles, and we take the line integrals along them twice, with opposing directions.

Thus we have proved (5.14) for every polygon.
In the general case, we approximate the curve g by a sequence of suitable poly-

gons. In order to construct these polygons we need to show that for every δ > 0
there is a partition F of the parameter interval that is finer than δ and such that the
polygonal line corresponding to F does not intersect itself, i.e., it is a simple closed
polygon (see Exercise 5.17). Next, we need to prove that if we apply (5.14) to these
polygons, then the sequence of the left-hand sides converges to

∫
g
f dx, and the

sequence of the right-hand sides converges to − ∫
A

∂f
∂y dx dy. We skip the details of

this argument.
Part (ii) can be proved similarly. The only difference lies in the very first step;

instead of proving the statement for normal domains, we prove it for sets of the form

{(x, y) : c < y < d, ϕ(y) < x < ψ(y)},

where ϕ and ψ are continuous functions on [c, d] and ϕ(y) < ψ(y), for every
y ∈ (c, d). �

Remark 5.36. According to Theorem 5.32, if G ⊂ R
p is a simply connected open

set, the mapping f : G → R
p is differentiable, and the Jacobian matrix of f is sym-

metric for every x ∈ G, then f has a primitive function on G. Applying Green’s
theorem, we can give a new proof for the p = 2 special case of this theorem (adding
the extra assumption that f is continuously differentiable).

We will need the intuitively obvious fact that a connected open set G ⊂ R
2 is

simply connected if and only if G has “no holes” in it; that is, for every simple
closed curve g in G, the bounded domain with boundary g is a subset of G. (The
statement is false in higher dimensions; see Remark 5.28.2.)

Let G ⊂ R
2 be a simply connected open set and let f = (f1, f2) : G → R

2 be
continuously differentiable. We show that if D2f1(x, y) = D1f2(x, y) holds for
every (x, y) ∈ G, then f has a primitive function on G.

It is enough to show that the line integral of f is zero for every polygon S in
G. Let g : [a, b] → G be a continuous and rectifiable parametrization of the poly-
gon S ⊂ G. Now, g is a simple closed curve. We may assume that g is positively
directed, for otherwise, we could switch to the curve g1(t) = g(−t) (t ∈ [−b,−a]).
The curve g1 also parametrizes S (in the opposite direction), and if the integral of f
along g1 is zero, then it is also zero along g, since the two integrals are the negatives
of each other.

The value of the line integral of f along g is the sum
∫

g
f1 dx +

∫
g
f2 dy. Let

A denote the bounded domain with boundary g. Since G is simply connected, we
have that A ⊂ G, and thus clA = A ∪ ∂A = A ∪ g([a, b]) ⊂ G. Thus the partial
derivatives of f1 and f2 exist and they are continuous on an open set containing clA
(namely, on G), and we can apply Green’s theorem. We get

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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∫

g

f1 dx +
∫

g

f2 dy = −
∫

A

∂f1
∂y

dx dy +
∫

A

∂f2
∂x

dx dy = 0,

since our conditions imply ∂f1
∂y = ∂f2

∂x everywhere in G. �

An application from physics. An important interpretation of Green’s theorem in
physics is related to the flow of fluids. Let some fluid flow in a region G of the plane
and let the direction and speed of the flow be constant at every point (x, y) ∈ G.
By that we mean the following: there exists a unit vector v = v(x, y) such that the
fluid passing through the point (x, y) always flows in the direction of v, and there
exists a number c = c(x, y) ≥ 0 such that the amount of fluid flowing during a unit
of time through every segment containing (x, y) perpendicular to v with length h
short enough is h · c. We put f(x, y) = c(x, y) · v(c, y). Then at every point (x, y),
the direction of the flow is the same as the direction of f(x, y), while its speed is the
absolute value of f(x, y).

Let g : [a, b] → G be a positively oriented simple closed curve, and let the
bounded domain with boundary g be A. Let us find the amount of fluid flowing
through the boundary of the domain A (i.e., through the set Γ = g([a, b])) in a unit
of time.

Consider a fine partition a = t0 < t1 < . . . < tn = b, and let ci ∈ [ti−1, ti]
(i = 1, . . . , n) be inner points of this partition. Let us assume that the subarc Γi

of Γ corresponding to the interval [ti−1, ti] of the partition is close to the segment
Ji = [g(ti−1), g(ti)], and that f is close to the vector f(di) on the subarc Γi, where
di = g(ci). If Ji is perpendicular to f(di), then the amount of fluid flowing though
Ji in unit time is approximately mi = |Ji| · |f(di)|, where |Ji| = |g(ti) − g(ti−1)|
is the length of the segment Ji. If Ji is not perpendicular to f(di), then it is easy to
see that the amount mi of fluid flowing through Ji equals the amount of fluid flow-
ing through J ′

i , where J ′
i is the projection of Ji to the line perpendicular to f(di).

Let the coordinate functions of v be v1 and v2. We obtain the vector ṽ = (−v2, v1)
by rotating v by 90 degrees in the positive direction. Thus the length of the segment
J ′

i is the absolute value of the scalar product 〈g(ti) − g(ti−1), ṽ(di)〉, and mi is the
absolute value of

〈g(ti) − g(ti−1), ṽ(di)〉 · |f(ci)| = 〈g(ti) − g(ti−1), |f(ci)| · ṽ(di)〉 =

= 〈g(ti) − g(ti−1), f̃(ci)〉,
where f̃ = (−f2, f1).

It is easy to see that the scalar product 〈g(ti) − g(ti−1), f̃(ci)〉 is positive when
the flow through the subarcs Γi is of outward direction from A, and negative when
the flow is of inward direction into A. It follows that the signed sum

∑n
i=1〈g(ti) −

g(ti−1), f̃(g(ci))〉 is approximately equal to the amount of fluid going either into A

or out from A. Clearly, if the line integral of the function f̃ along g exists, then the
value of this integral,

∫

g

(−f2) dx +
∫

g

f1 dy, (5.16)

is equal to this amount.
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Now let us assume that f is continuously differentiable and compute the amount
of fluid flowing through a small rectangle R = [x1, x2] × [y1, y2] in unit time, using
another method.

The amount of fluid flowing through the horizontal segment [(x1, y), (x2, y)] in
unit time is approximately (x2 − x1)f2, while the amount of fluid flowing through
the vertical segment [(x, y1), (x, y2)] is approximately (y2 − y1)f1. It follows that
for a rectangle R small enough, the amount of fluid flowing through R’s opposite
sides is approximately the same.

We are interested in this small difference between the amounts flowing through
the vertical sides. The difference is

(y2 − y1) · f1

(

x2,
y1 + y2

2

)

− (y2 − y1) · f1

(

x1,
y1 + y2

2

)

≈

≈ (y2 − y1)(x2 − x1) · ∂f1
∂x

= t(R) · ∂f1
∂x

,

where the partial derivative is taken at some inside point using the single-variable
version of Lagrange’s mean value theorem. Similarly, the difference between the
amounts of fluid flowing through the two horizontal sides is approximately
t(R) · ∂f2

∂y .
Thus the amount of fluid flowing through the sides of the rectangle is approxi-

mately t(R) ·
(

∂f1
∂x + ∂f2

∂y

)
. We call

∂f1
∂x

+
∂f2
∂y

the divergence of f and denote it by div f . It is clear from the argument above that
the physical meaning of the divergence is the amount of fluid flowing from an area
(as a source) if div f > 0 or flowing into the area (as a sink) when div f < 0) of unit
size in unit time. That is, the amount of fluid “created” in the setA is

∫
A

div f dx dy.
Comparing this with the amount (5.16), we get that

∫

g

(−f2) dx +
∫

g

f1 dy =
∫

A

(
∂f1
∂x

+
∂f2
∂y

)

dx dy. (5.17)

Note that this is nothing other than the two statements of Green’s theorem combined,
and it formulates the natural physical phenomenon that the amount of fluid flowing
from a domain is the same as the amount of fluid flowing through its boundary.

Returning to the physical meaning of the divergence, we should note that if div f
is constant and equal to zero on A, then the amount of fluid flowing through the
boundary of the domain A is zero, i.e., the amount of fluid flowing into A is the
same as the amount of fluid leaving A.

If div f(x0, y0) > 0, then div f is positive in a small neighborhood of the point
(x0, y0), and fluid flows from a small neighborhood of the point, i.e., (x0, y0) is a
source. On the other hand, if div f(x0, y0) < 0, then fluid flows into a small neigh-
borhood of the point, i.e., (x0, y0) is a sink.

One can guess that the formulas of Green’s theorem are variants of the Newton–
Leibniz formula. The analogy, however, is not entirely immediate. It is useful to
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write the integrals
∫

g
f dx and

∫
g
f dy in another form that makes the analogy clear.

To do this, we define a new integral and also illustrate it with an example from
physics.

Let a frictional force of magnitude f(x) hinder the motion at every point of
the domain G. How much work does a solid do while it moves along the curve
g : [a, b] → G? Let a = t0 < t1 < . . . < tn = b be a partition, and let the arc of the
curve g corresponding to the division interval [ti−1, ti] be well approximated by the
segment [g(ti−1), g(ti)]. Furthermore, let the force f be nearly constant on the arc
γi. Since the frictional force is independent of the direction of motion, the amount
of work done along the arc γi is approximately f(g(ci)) · |g(ti) − g(ti−1)|, where
ci ∈ [ti−1, ti] is an arbitrary inner point. Thus the total work can be approximated
by the sum

∑n
i=1 f(g(ci)) · |g(ti) − g(ti−1)|. If there exists a number I such that

this sum approximates I arbitrarily well for a fine enough partition, then I is the
total amount of work done.

Definition 5.37. Let g : [a, b] → R
p be a curve and let the real function f be defined

on the set g([a, b]). We say that the line integral with respect to arc length
∫

g
f ds

exists and its value is I if for every ε > 0 there exists δ > 0 such that
∣
∣
∣
∣
∣
I −

n∑

i=1

f(g(ci)) · |g(ti) − g(ti−1)|
∣
∣
∣
∣
∣
< ε

holds for every partition a = t0 < t1 < . . . < tn = b finer than δ and for arbitrary
inner points ci ∈ [ti−1, ti] (i = 1, . . . , n).

The proof of the following theorem on the existence and value of the line integral
with respect to arc length can be proved similarly to Theorem 16.20 of [7].

Theorem 5.38. Let g be a continuous and rectifiable curve, and let the function f
be continuous on the set g([a, b]). Then the line integral with respect to arc length∫

g
f ds exists. If the components of g are differentiable and their derivatives are

integrable on [a, b], then we have

∫

g

f ds =

b∫

a

f(g(t)) · |g′(t)| dt.

We would like to compress formulas (5.14) and (5.15) into a single formula.
This requires the introduction of some new notation. First, we extend the integrals
that have been defined for real-valued functions to functions mapping into R

q. The
extended integral is evaluated component by component. For example, for a mea-
surable set H ⊂ R

p and a mapping f = (f1, . . . , fq) : H → R
q whose components

are integrable on H , let

∫

H

f dt =

⎛

⎝
∫

H

f1 dt, . . . ,

∫

H

fq dt

⎞

⎠ .

Let g : [a, b] → R
p be an arbitrary curve. The integral with respect to arc length

of the function f : g([a, b]) → R
q is also defined component by component, i.e.,

we put
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∫

g

f ds =

⎛

⎝
∫

g

f1 ds, . . . ,

∫

g

fq ds

⎞

⎠ .

Now let us revisit Green’s formulas. Let g = (g1, g2) : [a, b] → R
2 be a differ-

entiable positively oriented simple closed curve, and let A be the bounded domain
with boundary g. If g′(t) �= 0 at some point t, then the vector g′(t) = (g′

1(t), g
′
2(t))

has the same direction as the tangent to the curve g at the point g(t). By rotating
the tangent-directed unit vector by 90 degrees in the negative direction, we get the
outer normal vector of the curve, i.e., the unit vector perpendicular to the tangent
and pointing outward from the domain A. We denote the outer normal vector at the
point g(t) by n(g(t)). Again, this is the unit vector with direction (g′

2(t),−g′
1(t)),

and

n(g(t)) =
1

|g′(t)| · (g′
2(t),−g′

1(t)).

For f : g([a, b]) → R, we have
∫

g

fn ds =

b∫

a

f(g(t))
|g′(t)| · (g′

2(t),−g′
1(t)) · |g′(t)| dt =

=

⎛

⎝

b∫

a

f(g(t))g′
2(t) dt,−

b∫

a

f(g(t))g′
1(t) dt

⎞

⎠ =

=

⎛

⎝
∫

g

f dy,−
∫

g

f dx

⎞

⎠ . (5.18)

Comparing this to Green’s theorem, we have the following theorem.

Theorem 5.39. Let g : [a, b] → R
2 be a positively oriented simple closed plane

curve that is the union of finitely many continuously differentiable arcs. Let A be
the bounded domain with boundary g, and let G ⊃ clA be open. If f : G → R is
continuously differentiable, then

∫

g

fn ds =
∫

A

f ′ dx dy. (5.19)

The formula states that the integral of the derivative of a function f on the set A
is the same as the integral with respect to arc length of the mapping fn along the
boundary of A.

Note that equality (5.19), using formula (5.18), is equivalent to Green’s theorem
in the sense that the equality of the two components gives the two statements of
Green’s theorem.

Remark 5.40. Equality (5.19) can be viewed as the two-dimensional variant of the
Newton–Leibniz formula. According to the original Newton–Leibniz formula, the
integral of the function f ′ on the interval [a, b] is equal to the signed “integral”
of f along the boundary of [a, b], i.e., the difference f(b) − f(a). Since we can
say that the vector (number) 1 is the outer normal at the point b of the interval,
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and the vector −1 is the outer normal at the point a of the interval, it follows that
f(b) − f(a) = f(a) · n(a) + f(b) · n(b), which is the exact analogue of the left-
hand side of (5.19).

Exercises

5.14. Let g be a continuous rectifiable positively oriented simple closed plane
curve, and let A be the bounded domain with boundary g. Show that both of the
line integrals

∫
g
x dy and − ∫

g
y dx are equal to the area of A.

5.15. Test the statement of the previous exercise for the following curves:

(a) g(t) = (a · cos t, b · sin t) (t ∈ [0, 2π]) (ellipse);
(b) an arbitrary parametrization of the rectangle [a, b] × [c, d] satisfying the condi-

tions.

5.16. Find the area of the bounded domains with the following boundaries:

(a) g(t) = (2t − t2, 2t2 − t3) (t ∈ [0, 2]);
(b) g(t) = (a · cos3 t, a · sin3 t) (t ∈ [0, 2π]).

5.17. Show that every simple closed plane curve has an arbitrarily fine non-self-
intersecting inscribed polygon (that is, there are arbitrarily fine partitions of the
parameter interval such that the corresponding polygonal line does not intersect
itself). (H S)

5.18. Let g and A satisfy the conditions of Green’s theorem. Show that if f =
(f1, f2) is continuously differentiable on an open set containing clA, then the line
integral of f along g is

∫
A
(D1f2 − D2f1) dx dy.

5.19. Let g : [a, b] → R
p be a differentiable curve whose coordinate functions are

integrable on [a, b]. Show that the center of mass of g is
⎛

⎝ 1
L

∫

g

x1 ds, . . . ,
1
L

∫

g

xp ds

⎞

⎠ ,

where L is the length of the curve.

5.4 Surface and Surface Area

Determining the surface area of surfaces is a much harder task than finding the
area of planar regions or the volume of solids; the definition of surface area itself
already causes difficulties. To define surface area, the method used to define area—
bounding the value from above and below—does not work. The method of defining
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arc length (the supremum of the lengths of the inscribed polygonal lines) cannot be
applied to define surface area either. This already fails in the simplest cases: one
can show that the inscribed polygonal surfaces of a right circular cylinder can have
arbitrarily large surface area. In some special cases, such as surfaces of revolution,
the definition and computation of the surface area is simpler; see, e.g., Section 16.6
of [7]. To precisely define surface area in the general case, we need the help of
multivariable differentiation and integration. Since these are now at our disposal,
we may start to define surfaces and to compute their area.

Curves are defined as mappings defined on intervals. Analogously,
(although slightly more generally) we define surfaces as mappings from a mea-
surable subset of the plane. More precisely—to avoid conflict with other surface
definitions from differential geometry and topology—we will call these maps para-
metrized surfaces. Therefore, we will say that the mappings g : A → R

p, where
A ⊂ R

2 is measurable, are parametrized surfaces in R
p. A parametrized surface

g is said to be continuous or differentiable or continuously differentiable if the
mapping g has the corresponding property on the set A.

To define surface areas, we first compute the areas of parallelograms. We know
the area of the parallelogram P (a, b) spanned by the vectors a = (a1, a2) and b =

(b1, b2) of the plane: it is the absolute value of the determinant

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ , i.e., |a1b2 −

a2b1| (see Theorem 3.31). With some simple algebra, we have

(a1b2 − a2b1)2 = (a2
1 + a2

2)(b
2
1 + b22) − (a1b1 + a2b2)2 = |a|2|b|2 − 〈a, b〉2,

i.e., the area of the parallelogram spanned by the plane vectors a, b is

√
|a|2|b|2 − 〈a, b〉2.

Let a and b be arbitrary vectors of R3. There exists an isometry g such that g
maps a and b into the set {(x1, x2, x3) : x3 = 0}. Identifying this set with R

2, we
obtain that the area of the parallelogram spanned by the vectors g(a) and g(b) is√|g(a)|2|g(b)|2 − 〈g(a), g(b)〉2. Now, isometries change neither the length nor the
scalar product of vectors; this latter is true, since 2〈x, y〉 = |x + y|2 − |x|2 − |y|2
for each x, y ∈ R

3. Assuming that isometries do not change the area of parallelo-
grams either, we can say that the area of the parallelogram spanned by the vectors
a, b ∈ R

3 is
√|a|2|b|2 − 〈a, b〉2. This area can be defined with the vector multi-

plication of the vectors a and b in R
3. For a pair of vectors a = (a1, a2, a3) and

b = (b1, b2, b3) in R3, we call the vector

(a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2)

the vector product of a and b. We can memorize this with the help of the formula

a × b
def=

∣
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3

b1 b2 b3

∣
∣
∣
∣
∣
∣
∣

,

where i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1). One can check that the length of
a × b is exactly

√|a|2|b|2 − 〈a, b〉2.

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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Let A ⊂ R
2 be measurable, and let g : A → R

3 be a continuously differen-
tiable parametrized surface. Choose a square N = [a, a + h] × [b, b + h] in A and
a point (c, d) ∈ N . Since g is continuously differentiable, g is approximated by
g(c, d) + g′(c, d)(x − c, y − d) on N well enough such that—assuming any rea-
sonable definition of the surface area—we expect that the surface area of g(N) is
close to the area of the parallelogram g′(c, d)(N) if N is small enough.

Now we compute the area of g′(c, d)(N). Let the components of g be g1, g2, g3
and let us introduce the notation

D1g = (D1g1,D1g2,D1g3) and D2g = (D2g1,D2g2,D2g3).

Then the vectors D1g and D2g are the same as the column vectors of g’s Jacobian
matrix. It is easy to see that g′(c, d)([0, h] × [0, h]) is the parallelogram spanned by
the vectors h · D1g(c, d) and h · D2g(c, d); thus g′(c, d)(N) is a translation of this
parallelogram. Therefore, the area of g′(c, d)(N) is

|h · D1g(c, d) × h · D2(c, d)| = |D1g(c, d) × D2g(c, d)| · h2.

We get that the surface area of g(N) is (supposedly) close to
|D1g(c, d) × D2g(c, d)| · t(N), for a small enough square N . Thus, for n large
enough, this holds for every square N ∈ Kn in the interior of A. Let N1, . . . , Nk

be an enumeration of the squares in the interior of A. Let us choose a point (ci, di)
from every squareNi, and take the sum S =

∑ |D1g(ci, di) × D2g(ci, di)| · t(Ni).
This sum will be close to the surface area g(A).

When A is a square, this suggests that the surface area of the parametrized sur-
face g is the number approximated by the above sums S if A is partitioned into
small enough squares. Since these sums are also the approximating sums of the
integral

∫
A

|D1g × D2g| dx dy, the value of the integral gives the surface area we
were looking for.

One can expect the integral to be equal to the surface area even when A ⊂ R
2 is

an arbitrary measurable set. This follows from the fact that the sum S is the same as
the approximating sum of the function |D1g × D2g| corresponding to the partition

{N1, . . . , Nk, A \
k⋃

i=1

Ni}, save for a single term. The missing term is small, since

μ

(

A \
k⋃

i=1

Ni

)

= μ(A) − μ(A,n) → 0 as n → ∞. Thus the value of the surface

area needs to be
∫

A
|D1g × D2g| dx dy.

From what we have above, it should be more or less clear how to define the sur-
face area with the help of approximating sums. To avoid some technical problems,
we define the surface area by the result of the argument; that is, by the integral itself.

Definition 5.41. Let A ⊂ R
2 be measurable and let g : A → R

3 be a continuously
differentiable parametrized surface. If the function |D1g × D2g| is integrable on A,
then we say that the surface area of g exists and is equal to

∫

A

|D1g × D2g| dx dy. (5.20)

Example 5.42. Let us consider the quarter-disk A = {(x, y) : x, y ≥ 0, x2 + y2 ≤
R2} and find the area of the part of the saddle surface z = xy lying over the
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set A. Consider the parametrization g(x, y) = (x, y, xy) ((x, y) ∈ A). We have
D1g = (1, 0, y), D2g = (0, 1, x), which gives

|D1g × D2g| =
√

(1 + y2)(1 + x2) − x2y2 =
√

1 + x2 + y2,

and the surface area is F =
∫

A

√
1 + x2 + y2 dx dy. This integral can be computed

by substituting with polar coordinates:

F =

π/2∫

0

R∫

0

√
1 + r2 · r dr dϕ =

π

2
·
[
1
3
(1 + r2)3/2

]R

0

=
π

6
·
(
(1 + R2)3/2 − 1

)
.

Remarks 5.43. 1. By assumption, |D1g × D2g| is continuous on A. Then the inte-
gral in (5.20) exists if and only if |D1g × D2g| is bounded on the set A (see The-
orem 4.14). This is satisfied automatically if A is closed; i.e., the surface area of g
exists in this case. The same can be said if g is defined and is continuously differen-
tiable on an open set containing clA.

2. Let f : [a, b] → [0,∞) be a continuously differentiable function. The natural
parametrization of the surface of revolution we get by rotating graph f is the map-
ping g(x, ϕ) = (x, f(x) cos ϕ, f(x) sin ϕ) ((x, ϕ) ∈ [a, b] × [0, 2π]). On comput-
ing the surface area of the parametrized surface g using Definition 5.41, we obtain

2π

∫ b

a

f(x)
√

1 + (f ′(x))2 dx. (5.21)

(See Exercise 5.20); cf. [7, Theorem 16.31].)

3. One can show that for one-to-one continuously differentiable parametrizations
defined on bounded and closed sets H ⊂ R

3, the area of the surface is independent
of the parametrization.12

The exact meaning of this statement is the following. Let A and B be measurable
closed sets in the plane, and let g : A → R

3, h : B → R
3 be injective and continu-

ously differentiable mappings. If g(A) = h(B), then we have
∫

A

|D1g × D2g| dx dy =
∫

B

|D1h × D2h| dx dy. (5.22)

See Exercise 5.21 for the proof.

Theorem 5.44. Let A ⊂ R
2 be a measurable closed set and let f : A → R be con-

tinuously differentiable. Then the surface area of the graph of f is
∫

A

√
1 + (D1f)2 + (D2f)2 dx dy. (5.23)

Proof. The mapping g(x, y) = (x, y, f(x, y)) ((x, y) ∈ A) is a continuously dif-
ferentiable parametrization of the graph of f . Since D1g = (1, 0,D1f) and D2g =
(0, 1,D2f), we get

12 For the analogous statement concerning arcs, see [7, Theorem 16.18].

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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|D1g × D2g|2 = (1 + (D1f)2)(1 + (D2f)2) − (D1f)2(D2f)2 = 1 + (D1f)2 + (D2f)2,

and we obtain the statement by the definition of the surface area. �

Remark 5.45. The area of the parallelogram P (a, b) is
√

|a|2|b|2 − 〈a, b〉2 (5.24)

not only for vectors a, b belonging to R
2 or R3, but also for vectors in R

p for every
p > 3. The proof is the same as in the case of p = 3.

For an arbitrary p, let us denote the value of (5.24) by |a × b|. (When p �= 3,
the notation |a × b| is not the absolute value of the vector a × b, since we defined
the vector product a × b in only three dimensions. For p �= 3, the notation |a × b|
should be considered the abbreviation of (5.24), motivated by the case of the vectors
of R3.)

The ideas of the argument introducing Definition 5.41 can be applied to every
parametrized surface mapping into Rp. This justifies the following definition.

Let A ⊂ R
2 be measurable and let g : A → R

p be a continuously differentiable
parametrized surface. If the function |D1g × D2g| is integrable on A, then we say
that the surface area of g exists and its value is∫

A

|D1g × D2g| dx dy.

Exercises

5.20. Let f : [a, b] → [0,∞) be a continuously differentiable function. Show that
the surface area of the surface of revolution obtained by rotating graph f about the
x-axis and parametrized by g(x, ϕ) = (x, f(x) cos ϕ, f(x) sin ϕ) (x, ϕ) ∈ [a, b] ×
[0, 2π] is given by (5.21).

5.21. Let A and B be measurable closed sets of the plane and let g : A → R
p,

h : B → R
p be injective and continuously differentiable mappings with g(A) =

h(B). Show that

∫

A

|D1g × D2g| dx dy =
∫

B

|D1h × D2h| dx dy. (H)

5.5 Integral Theorems in Three Dimension

Theorem 5.39 can be generalized to every dimension p > 2. Unfortunately, even the
precise formulation of these generalizations causes difficulties, because the required
definition of the necessary notions (e.g., that of the outer normal) is rather compli-
cated. For this reason we restrict ourselves to the case p = 3, where we have an
intuitive picture of these notions.
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First we need to define the surface integral. This integral is the generalization of
the integral with respect to arc length to parametrized surfaces.13

Let A ⊂ R
2 be measurable, let g : A → R

p be a continuously differentiable
parametrized surface, and let f : g(A) → R. Let {A1, . . . , An} be a fine partition
of the set A, let (ci, di) ∈ Ai be inner points, and take the approximating sum∑n

i=1 f(g(ci, di)) · F (g(Ai)), where F denotes the surface area. The value of the
surface integral

∫
A

f dF is the number I that these approximating sums approxi-
mate when the partition is fine enough.

We have seen that for a small square N ⊂ intA and (c, d) ∈ N , the surface area
of g(N) is approximately |D1g(c, d) × D2g(c, d)| · t(N). Consider the partition

{

N1, . . . , Nk, A \
k⋃

i=1

Ni

}

,

where N1, . . . , Nk denote the squares of the square grid Kn lying in intA. The
approximating sum corresponding to this partition differs in only a single term (of
small magnitude) from the sum

∑k
i=1 |D1g(ci, di) × D2g(ci, di)| · f(g(ci, di)) ·

μ(N), which is close to the integral
∫

A
(f ◦ g) · |D1g × D2g| dx dy for n large

enough.
Therefore, it seems reasonable to define the surface integral not in terms of the

approximating sums, but by an integral, similarly to the definition of the surface
area.

Definition 5.46. Let g : A → R
p be a continuously differentiable parametrized sur-

face, where A ⊂ R
2 is measurable, and let f : g(A) → R. The value of the sur-

face integral
∫

A
f dF is, by definition, the value of the integral

∫
A
(f ◦ g) · |D1g ×

D2g| dx dy, assuming that the latter integral exists.

One can show that for a measurable and closed set A and an injective parame-
trization g, the value of

∫
A

f dF is independent of the parametrization in the sense
that if B ⊂ R

2 is measurable and closed, h : B → R
p is injective and continuously

differentiable, and g(A) = h(B), then∫

A

(f ◦ g) · |D1g × D2g| dx dy =
∫

B

(f ◦ h) · |D1h × D2h| dx dy.

Thus we can talk about surface integrals with respect to surfaces. If H ⊂ R
p and

f : H → R, then the surface integral
∫

H
f dF is, by definition, the integral

∫
g
f dF ,

where g : A → R
p is a continuously differentiable and injective mapping on the

measurable and closed set with g(A) = H . Of course, we need to assume that the
set H has such a parametrization. When this holds, then we say that H is a contin-
uously differentiable surface.

We need one more notion: the generalization of Definition 5.46 from real-valued
functions to vector-valued functions.

13 We do not cover the generalization of the line integral defined in Definition 5.1 to surfaces. Note
that in the two-variable case the line integral can be expressed in terms of the integral with respect
to arc length for continuously differentiable curves; see formula (5.18).
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For f : H → R
q , by the integral

∫
H

f dF we mean the vector

∫

H

f dF
def=

⎛

⎝
∫

H

f1 dF, . . . ,

∫

H

fq dF

⎞

⎠ ,

where f1, . . . , fq denote the coordinate functions of f .
Let the boundary of a bounded set K ⊂ R

3 be the union of finitely many contin-
uously differentiable surfaces. If ∂K has a tangent plane at the point x ∈ ∂K, we
call the unit vector starting from K, perpendicular to the tangent plane, and pointing
outward from K the outer normal of K. We denote the outer normal at the point
x ∈ ∂K by n(x). The outer normal is not defined on the boundary curves of the
surfaces whose union is ∂K; here n(x) is defined as an arbitrary unit vector.

We can now state the three-dimensional variant of the Newton–Leibniz formula.

Theorem 5.47. Let the bounded set K ⊂ R
3 be the union of finitely many continu-

ously differentiable surfaces. If the real-valued function f is continuously differen-
tiable on clK, then we have

∫

∂K

fn dF =
∫

K

f ′ dx dy dz, (5.25)

that is,

( ∫

∂K

fn1 dF,

∫

∂K

fn2 dF,

∫

∂K

fn3 dF

)

=

=
( ∫

K

∂f

∂x
dx dy dz,

∫

K

∂f

∂y
dx dy dz,

∫

K

∂f

∂z
dx dy dz

)

,

(5.26)

where n = (n1, n2, n3).

Proof. We may assume that K is a polyhedron. (We obtain the general case by
approximating K with a suitable sequence of polyhedra.) We may also assume that
K is a convex polyhedron. Indeed, we can represent every polyhedron K as the
union of nonoverlapping convex polyhedra by cutting it along the planes of the
faces of K. Let K = K1 ∪ . . . ∪ Kn be such a partition, and suppose that

∫

∂Ki

fn dF =
∫

Ki

f ′ dx dy dz (5.27)

holds for every i = 1, . . . , n. Summing these equalities yields (5.25). Indeed, it fol-
lows from (4.3) that the sum of the right-hand sides of (5.27) is the same as the
right-hand side of (5.25). On summing the left-hand sides, those terms that corre-
spond to the faces of the polyhedra Ki lying in the interior of K cancel each other
out.

To prove this, consider a face L of the polyhedron Ki lying in the interior of K,
and let S be the plane containing L. There are polyhedra Kj that have a face in S
such that Ki and Kj lie on opposite sides of S. For such a polyhedron Kj , the outer
normals of the faces of the polyhedra Ki and Kj that lie on S are the opposites of

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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each other. Thus the surface integrals on the intersection of these faces are also the
opposites of each other, and consequently, their sum is zero. Therefore, by summing
the surface integrals

∫
∂Ki

fn dF , the integrals on the faces of ∂K are the only ones
that do not cancel out, and the sum of these is exactly the integral

∫
∂K

fn dF .
Thus we may assume that K is a convex polyhedron. We prove the equality

(5.26) component by component. By symmetry, it is enough to show that the terms
corresponding to z are equal to each other on the two sides of (5.26), i.e.,

∫

∂K

fn3 dF =
∫

K

∂f

∂z
dx dy dz, (5.28)

where n = (n1, n2, n3). Let B be the projection of the polyhedron K on the
xy-plane. Then B is a convex polygon, and for every (x, y) ∈ B the section
K(x,y) = {z ∈ R : (x, y, z) ∈ K} is a segment. Let K(x,y) = [m(x, y),M(x, y)]
for every (x, y) ∈ B. Then

K = {(x, y, z) : (x, y) ∈ B, m(x, y) ≤ z ≤ M(x, y)},

i.e., K is a normal domain in R
3. By Theorem 4.18, the integral on the right-hand

side of (5.28) is equal to the integral
∫

B

(∫ M(x,y)

m(x,y)

∂f

∂z
dz

)

dx dy.

By the Newton–Leibniz formula, the inner integral is f(M(x, y)) − f(m(x, y)),
and thus

∫

K

∂f

∂z
dx dy dz =

∫

B

f(M(x, y)) dx dy −
∫

B

f(m(x, y)) dx dy. (5.29)

Let the sides of K be A1, . . . , An. Then the integral on the left-hand side of (5.28)
equals

n∑

i=1

∫

Ai

fn3 dF. (5.30)

The outer normal is n(x), and its third coordinate restricted to the interior of each
side is constant. We form three classes of sides according to whether n3 is zero,
positive, or negative on their interior. The terms of (5.30) corresponding to the first
class are zero, and thus their sum is also zero. We show that

∑

n3>0

∫

Ai

fn3 dF =
∫

B

f(M(x, y)) dx dy (5.31)

and

∑

n3<0

∫

Ai

fn3 dF = −
∫

B

f(m(x, y)) dx dy. (5.32)

From these and from (5.29) the statement of the theorem will follow immediately.

http://dx.doi.org/10.1007/978-1-4939-7369-9_4


5.5 Integral Theorems in Three Dimension 191

The second class consists of the sides Ai with n3 > 0. In other words, these
are the sides whose outer normal points upward (toward the positive direction of
the z-axis). It is easy to see that the projections of these sides to the xy-plane are
nonoverlapping convex polygons whose union is B. If Bi denotes the projection
of the side Ai, then the right-hand side of (5.31) is

∑
n3>0

∫
Bi

f(M(x, y)) dx dy.
Therefore, in order to prove (5.31), it is enough to show that

∫

Ai

fn3 dF =
∫

Bi

f(M(x, y)) dx dy (5.33)

for every side Ai belonging to the second class. Let Ai be such a side. Obviously,
if the point (x, y, z) is in Ai, then z = M(x, y). This means that Ai is the graph of
the function M restricted to Bi.

We know that the integral on the left-hand side of (5.33) does not depend on the
parametrization of Ai, assuming that it is continuous and injective. Hence we may
assume that the parametrization of Ai is

g(x, y) = (x, y,M(x, y)) ((x, y) ∈ Bi),

and the integral on the left-hand side of (5.33) is equal to the integral
∫

Bi

f(M(x, y)) · n3 · |D1M × D2M | dx dy.

Since Ai lies in a plane, the function M restricted to Bi is of the form ax + by + c,
where a, b, c are constants. The vectors D1M = (a, 0, 0) and D2M = (0, b, 0) are
constant, and |D1M × D2M | is also constant on the set Bi. Since the area of Ai is∫

Bi
|D1M × D2M | dx dy, the constant |D1M × D2M | is the ratio of the areas of

Ai and Bi. We show that this ratio is exactly 1/n3, which will prove (5.33).
Let the plane containing the side Ai be S. If S is parallel to the xy-plane, then

the areas of Ai and Bi are equal to each other. Since n3 = 1 in this case, the claim
holds. Now assume that S is not parallel to the xy-plane, and let � be the line where
S and the xy-plane intersect.

5.5. Figure

If a segment of length u of the plane
S is perpendicular to �, then its projec-
tion on the xy-plane is a segment of
length u′ = u · n3. Indeed, take a look at
Figure 5.5, whose plane is perpendicular
to the line �. The equality u′ = u · n3 fol-
lows from the similarity of the two right
triangles of the figure.

Let H be a triangle in the plane S that
has a side perpendicular to � and of length
u. The projection of the triangle H to the
xy-plane is a triangle H ′ whose side per-
pendicular to � is of length u′ = u · n3.
Since the altitude corresponding to this
side of H is not changed by this projec-
tion, the ratio of the areas of H and H ′
is 1/n3.
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Now, every polygon is the union of nonoverlapping triangles that have a side of
fixed direction. Therefore, the ratio of the areas of Ai and Bi is also 1/n3. We have
proved (5.33) for every i, and as we have seen, (5.31) follows immediately.

Equality (5.32) can be proved entirely similarly, or it can be reduced to (5.31) by
reflecting K to the xy-plane. �
Theorem 5.48. Let the boundary of the bounded setK ⊂ R

3 be the union of finitely
many continuously differentiable surfaces. If f = (f1, f2, f3) : clK → R

3 is contin-
uously differentiable, then

∫

∂K

〈f, n〉 dF =
∫

K

div f dx dy dz, (5.34)

where div f
def= D1f1 + D2f2 + D3f3, and∫

∂K

(f × n) dF = −
∫

K

rot f dx dy dz, (5.35)

where rot f
def= (D2f3 − D3f2,D3f1 − D1f3,D1f2 − D2f1).

Proof. Applying (5.25) to f1, f2, and f3, and taking the first component of the
first resulting equality, the second component of the second resulting equality, and
the third component of the third resulting equality and then summing the equalities
obtained, we obtain (5.34). Equality (5.35) can be proved similarly. �

Traditionally, the formula (5.34) is known as the Gauss14–Ostrogradsky15 the-
orem or divergence theorem, , and the formula (5.35) is known as Stokes’s16

theorem. These formulas are of fundamental importance in physics, e.g., in the
theory of the flow of fluids and also in electrodynamics. The physical interpretation
of Stokes’s theorem is more complicated than that of Green’s theorem for the flow
of fluids. If f(x) describes the direction and velocity of the flow of a fluid, then
rot f(x) gives the direction of the axis of rotation and the velocity of the rotation at
the point x of the flow.

Exercises

5.22. Show that for every a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ R
p we have

|a × b|2 =
∑

i<j

∣
∣
∣
∣
ai aj

bi bj

∣
∣
∣
∣

2

.

5.23. Show that every polyhedron can be expressed as the union of finitely many
nonoverlapping tetrahedra. (H)

5.24. Prove Green’s theorem following the argument used in the proof of
Theorem 5.47.

14 Carl Friedrich Gauss (1777–1855), German mathematician.
15 Mikhail Vasilyevich Ostrogradsky (1801–1862), Russian mathematician.
16 George Gabriel Stokes (1819–1903), British mathematician and physicist.



Chapter 6
Infinite Series

6.1 Basics on Infinite Series

If we add infinitely many numbers (that is, if we take the sum of an infinite sequence
of numbers), then we get an infinite series. Mathematicians in India investigated infi-
nite series as early as the fifteenth century, while European mathematics caught up
with them only in the seventeenth century. Although deep and important discoveries
were made both in India and later in Europe, for several centuries the exact notion of
convergent series was lacking, and this led to strange or even contradictory results.
(For details on the history of infinite series see the “Brief Historical Introduction”
of [7], and also the appendix of this chapter.) The debates concerning these contra-
dictions lasted until the nineteenth century, when Augustin-Louis Cauchy defined
the sum of an infinite series as the limit of its partial sums. We begin with Cauchy’s
definition.

Definition 6.1. The partial sums of the infinite series
∑∞

n=1 an are the numbers
sn =

∑n
i=1 ai (n = 1, 2, . . .). If the sequence of partial sums (sn) is convergent

with limit A, then we say that the infinite series
∑∞

n=1 an is convergent, and its sum
is A. We denote this by

∑∞
n=1 an = A.

If the sequence of partial sums (sn) is divergent, then we say that the series∑∞
n=1 an is divergent.
If limn→∞ sn = ∞ (or −∞), then we say that the sum of the series

∑∞
n=1 an

is ∞ (or −∞).We denote this by
∑∞

n=1 an = ∞ (or −∞).

Example 6.2. 1. The nth partial sum of the series 1 + 1/2 + 1/4 + 1/8 + . . . is
sn =

∑n−1
i=0 2−i = 2 − 2−n+1. Since limn→∞ sn = 2, the series is convergent, and

its sum is 2.
2. The nth partial sum of the series 3/10 + 3/100 + 3/1000 + . . . is

sn =
n∑

i=1

3 · 10−i =
3
10

· 1 − 10−n

1 − (1/10)
.
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Since limn→∞ sn = 3/9 = 1/3, the series is convergent, and its sum is 1/3.
3. The nth partial sum of the series 1 + 1 + 1 + . . . is sn = n. Since limn→∞ sn =
∞, the sequence is divergent (and its sum is ∞).
4. The (2k)th partial sum of the series 1 − 1 + 1 − . . . is zero, while the (2k + 1)th
partial sum is 1 for all k ∈ N. Since the sequence (sn) is oscillating at infinity, the
series is divergent (and has no sum).
5. The kth partial sum of the series

1 − 1
2
+

1
3

− 1
4
+ . . . (6.1)

is

sk = 1 − 1
2
+

1
3

− 1
4
+ . . . + (−1)k−1 · 1

k
.

If n < m, then we can see that

|sn − sm| =
∣
∣
∣
∣
1
n

− 1
n + 1

+ . . . + (−1)m · 1
m

∣
∣
∣
∣ <

1
n

.

It follows that the sequence (sn) satisfies Cauchy’s criterion, so it is convergent.
This shows that the series (6.1) is convergent. Since 1/2 < sk < 1 for every k > 2,
it follows that the sum s of the series (6.1) satisfies 1/2 ≤ s ≤ 1.

It is well known that in fact, s = log 2. See Exercise 12.92, Remark 13.16, and
Example 14.25 of [7].

Remark 6.3. The second example above is a special case of the following fact: if
the infinite decimal expansion of x is m.a1a2 . . ., then the infinite series

m +
a1

10
+

a2

102
+ . . . (6.2)

is convergent, and its sum is x.
In some books on mathematical analysis the decimal fraction m.a1a2 . . . is

defined as the sum of the infinite series (6.2). In this case, the fact above is just
the definition. However, decimal expansions can be defined without the notion of
infinite series. For example, we can say that m.a1a2 . . . is the decimal expansion of
x if

m.a1 . . . an ≤ x ≤ m.a1 . . . an +
1

10n
(6.3)

holds for all n. (See, e.g., [7, p. 36].) If we accept this as the definition of deci-
mals, then the statement above becomes a theorem proved as follows. The (n + 1)st
partial sum of the series (6.2) is m.a1 . . . an. Now it is clear from (6.3) that
limn→∞ m.a1 . . . an = x. Therefore, by the definition of the sum of infinite series,
we obtain that the series (6.2) is convergent, and its sum is x.
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The sum appearing in Example 6.2.1 is a special case of the following theorem.

Theorem 6.4. The series 1 + x + x2 + . . . is convergent if and only if |x| < 1, and
then its sum is 1/(1 − x).

Proof. We already saw that in the case x = 1 the series is divergent, so we may
assume that x �= 1. Then the nth partial sum of the series is sn =

∑n−1
i=0 xi =

(1 − xn)/(1 − x). If |x| < 1, then xn → 0 and sn → 1/(1 − x). Thus the series
is convergent with sum 1/(1 − x).

If x > 1, then sn → ∞, so the series is divergent (and its sum is ∞). If, however,
x ≤ −1, then the sequence (sn) oscillates at infinity, so the series is divergent (with
no sum). �

Theorem 6.5. If the series
∑∞

n=1 an is convergent, then limn→∞ an = 0.

Proof. Let the sum of the series be A. Since

an = (a1 + . . . + an) − (a1 + . . . + an−1) = sn − sn−1,

we have an → A − A = 0. �

Remark 6.6. The theorem above states that the condition an → 0 is necessary for
the convergence of the infinite series

∑∞
n=1 an. It is important to note that this con-

dition is in no way sufficient, since there are many divergent series whose terms
tend to zero. A simple example is provided by the following series. The terms of
the series

∑∞
i=0

(√
i + 1 − √

i
)
tend to zero, since

√
i + 1 − √

i = 1/(
√

i + 1 +√
i) < 1/

√
i, and

√
i → ∞.

On the other hand, the nth partial sum is
∑n−1

i=0

(√
i + 1 − √

i
)
=

√
n, which

approaches ∞ as n → ∞, so the series is divergent.

Another well-known example of a divergent series whose terms tend to zero is
the series

∑∞
n=1 1/n, which is called the harmonic series.

Theorem 6.7. The series
∑∞

n=1
1
n is divergent.

Proof. If n > 2k then

sn ≥ 1 +
1
2
+ + . . . +

1
2k

=

= 1 +
1
2
+

(
1
3
+

1
4

)

+
(
1
5
+ . . . +

1
8

)

+ . . . +
(

1
2k−1 + 1

+ . . . +
1
2k

)

≥

≥ 1 +
1
2
+ 2 · 1

4
+ 4 · 1

8
+ . . . + 2k−1 · 1

2k
=

= 1 + k · 1
2
.

Thus limn→∞ sn = ∞, so the series is divergent and its sum is ∞. �
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Theorem 6.8.

(i) A series consisting of nonnegative terms is convergent if and only if the
sequence of its partial sums is bounded (from above).

(ii) If a series consisting of nonnegative terms is divergent, then its sum is infinite.

Proof. By the assumption that the terms of the series are nonnegative, we clearly
get that the sequence of partial sums of the series is monotonically increasing. If
this sequence is bounded from above, then it is convergent, since every bounded
and monotone sequence is convergent. (See [7, Theorem 6.2].) Then the series in
question is convergent.

If, however, the sequence of partial sums is not bounded from above, then it tends
to infinity. Indeed, if a sequence is increasing and is not bounded, then it tends to
infinity (see [7, Theorem 6.3]). So the series will be divergent and its sum will be
infinity. �

We emphasize that by the above theorem a series consisting of nonnegative terms
always has a sum: either a finite number (if the series converges) or infinity (if the
series diverges).

Example 6.9. The series
∑∞

i=1 1/i2 is convergent, because its nth partial sum is

n∑

i=1

1
i2

≤ 1 +
n∑

i=2

1
(i − 1) · i

= 1 +
n∑

i=2

(
1

i − 1
− 1

i

)

= 2 − 1
n

< 2.

According to Exercise 4.20, the sum of the series
∑∞

i=1 1/i2 equals π2/6. We will
give two more proofs of this statement; see Example 7.80 and Theorem 7.92.

In the general case, the following theorem gives an exact condition for the con-
vergence of a series.

Theorem 6.10. (Cauchy’s criterion) The infinite series
∑∞

n=1 an is convergent if
and only if for every ε > 0 there exists an index N such that for every N ≤ n < m,

|an+1 + an+2 + . . . + am| < ε.

Proof. Since an+1 + an+2 + . . . + am = sm − sn, the statement is clear by
Cauchy’s criterion for sequences (see Theorem 6.13 of [7]). �

Exercises

6.1. For a fixed ε > 0, give threshold indices above which the partial sums of the
following series differ from their actual sums by less than ε.

(a)
∑∞

n=0 1/2
n; (b)

∑∞
n=0(−2/3)n;

(c)
∑∞

n=1(−1)n−1/n; (d)
∑∞

n=1 1/(n
2 + n).

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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6.2. (a)
∑∞

n=1 1/(n
2 + 2n) =? (b)

∑∞
n=1 1/(n

2 + 4n + 3) =?
(c)

∑∞
n=2 1/(n

3 − n) =?(H S)

6.3. Show that
(
1 + 1

2c + . . . + 1
nc

) (
1 − 2

2c

)
< 1

for all n = 1, 2, . . . and c > 0. Deduce from this that the series
∑∞

n=1 1/nc is con-
vergent for all c > 1. (H)

6.4. Let a1, a2, . . . be an enumeration of the positive integers that do not contain
the digit 7 (in decimal representation). Prove that

∑∞
n=1 1/an is convergent. (H)

6.5. Prove that if the series
∑∞

n=1 an is convergent, then

limn→∞ a1+2a2+...+nan

n = 0. (S)

6.2 Operations on Infinite Series

The example of the infinite series 1 − 1 + 1 − 1 + . . . shows that we cannot manip-
ulate infinite series the way we deal with finite sums. For example, the series
(1 − 1) + (1 − 1) + . . . is convergent with sum zero (every term of the sum is zero,
and thus every partial sum is zero), but omitting the parentheses results in a diver-
gent series, 1 − 1 + 1 − 1 + . . .. We will see presently that reordering the terms of
an infinite series can change the sum of the series; it can even destroy convergence.

We need to find the “allowed” operations, i.e., the operations that change neither
the convergence of a series nor its sum; we should also find out which operations
are not (or not always) allowed.

First we consider some simple operations that are allowed in the sense described
above.

Theorem 6.11.

(i) Let
∑∞

n=1 an be a convergent infinite series with sum A. Then the series∑∞
n=1 c · an is also convergent and its sum is c · A, for every c ∈ R.

(ii) Let
∑∞

n=1 an and
∑∞

n=1 bn be a pair of convergent infinite series with sums A
and B, respectively. Then the infinite series

∑∞
n=1(an + bn) is also convergent

and its sum is A + B.

Proof. (i) If the nth partial sum of the series
∑∞

n=1 an is sn, then the nth par-
tial sum of the infinite series

∑∞
n=1 c · an is c · sn. The statement follows from

limn→∞ c · sn = c · limn→∞ sn = c · A.
(ii) If sn and tn are the nth partial sums of the two infinite series, then the nth partial
sum of the infinite series

∑∞
n=1(an + bn) is sn + tn. The statement follows from

limn→∞(sn + tn) = limn→∞ sn + limn→∞ tn = A + B. �
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Remark 6.12. The proof of the following statements are similar to the proofs of (i)
and (ii) above.

If
∑∞

n=1 an = ±∞ and c > 0, then
∑∞

n=1 c · an = ±∞; if
∑∞

n=1 an = ±∞
and c < 0, then

∑∞
n=1 c · an = ∓∞.

If
∑∞

n=1 an = ±∞ and
∑∞

n=1 bn is convergent, then
∑∞

n=1(an + bn) = ±∞.

Theorem 6.13.

(i) Deleting an arbitrary number of 0’s (possibly infinitely many) from, or inserting
an arbitrary number of 0’s (possibly infinitely many) into a convergent infinite
series does not change its convergence or its sum.

(ii) Removing finitely many terms from, inserting finitely many terms into, or
changing finitely many terms of a convergent infinite series does not change
its convergence (but it might change its sum).

Proof. (i) Let the nth partial sum of the convergent infinite series
∑∞

n=1 an be
sn. Deleting an arbitrary number of 0’s from the series makes the new sequence of
partial sums a subsequence of (sn). (If the series is of the form a1 + . . . + aN + 0 +
0 + . . ., we need to assume that we kept infinitely many 0’s.) On the other hand, on
inserting an arbitrary number of 0’s into the series, we obtain a series whose partial
sums have the same elements as the sequence (sn), with some elements sn being
repeated. (The partial sum sn will be repeated if we insert a 0 after an.) Therefore, (i)
follows from the fact that if the sequence (sn) is convergent, then the new sequence
of partial sum is also convergent with the same limit. (See [7, Theorems 5.2, 5.5].)
(ii) Let us assume that we have removed ak from the terms of the series

∑∞
n=1 an.

For n ≥ k, the nth partial sum of the new series is sn − ak, i.e., the sequence of the
new partial sums converges to A − ak. On the other hand, inserting c between the
kth and (k + 1)st terms changes the nth partial sum of the new series to sn + c, for
n > k. Thus, the sequence of the partial sums of the new series converges to A + c.
Neither of these operations changes the convergence of the series. Therefore, repeat-
ing these operations finitely many times also results in a convergent series. Changing
finitely many terms of the series can be obtained by first removing the terms to be
changed and then inserting the new elements into their respective places. By what
we proved above, it follows that the operation does not change the convergence of
the series. �

We say that the infinite series
∑∞

n=1 cn is obtained by interleaving the series∑∞
n=1 an and

∑∞
n=1 bn if the sequence (cn) is the union of the sequences an and

bn, and the order of the an’s and bn’s in the sequence (cn) is unchanged. (More
precisely, the sequence of the indices (1, 2, . . .) should be divided into two disjoint
and strictly monotone subsequences (ik) and (jk) such that ak = cik and bk = cjk

for every k.)

Theorem 6.14. If the series
∑∞

n=1 an and
∑∞

n=1 bn are convergent with the sums
A and B, respectively, then every series obtained by interleaving these series is also
convergent with the sum A + B.
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Proof. Every series obtained by interleaving the series
∑∞

n=1 an and
∑∞

n=1 bn can
be obtained by inserting 0’s into both series at suitable places and then adding the
two resulting series. Thus the statement follows from Theorems 6.11 and 6.13. �

Remark 6.15. Similarly, we can show that if
∑∞

n=1 an = ±∞ and
∑∞

n=1 bn is
convergent, then the sum of every series obtained by interleaving

∑∞
n=1 an and∑∞

n=1 bn is ±∞.

By adding parentheses to an infinite series we mean the following: we remove
some consecutive terms of the series and replace them by their sum. This operation
can be applied to several, even infinitely many, blocks of consecutive terms, assum-
ing that every term of the series belongs to at most one such block. We now give a
mathematically precise definition.

Definition 6.16. We call an infinite series of the form
∑∞

i=1

(∑ni−1
n=ni−1

an

)
a

bracketing of the infinite series
∑∞

n=1 an, where 1 = n0 < n1 < . . . is an arbitrary
strictly increasing sequence of indices.

Theorem 6.17. Bracketing a convergent series does not change its convergence,
nor does it change its sum.

Proof. Let (sn) be the sequence of partial sums of the series. The sequence of par-
tial sums of the bracketed series is a subsequence of (sn), from which the statement
is clear. (See [7, Theorem 5.2].) �

Example 6.18. The series 1 − 1
2 + 1

3 − 1
4 + . . . is convergent and its sum is log 2

(see Example 6.2.5). According to the previous theorem, the series

(

1 − 1
2

)

+
(
1
3

− 1
4

)

+
(
1
5

− 1
6

)

+ . . .

is also convergent and its sum is log 2. Since 1
n − 1

n+1 = 1/(n · (n + 1)) for every
n, we have that

1
1 · 2 +

1
3 · 4 +

1
5 · 6 + . . . = log 2. (6.4)

Exercise 6.13 gives an interesting geometric interpretation of this equality.

Now, we consider the operations that do not preserve the convergence of con-
vergent series. Such operations are, e.g., the deletion of parentheses when some of
the terms of the series are bracketed sums. In general, the convergence of the series
∑∞

n=1 an does not follow from the convergence of the series
∑∞

i=1

(∑ni−1
n=ni−1

an

)
.

For example, as we mentioned before, the series (1 − 1) + (1 − 1) + . . . is con-
vergent, but the series 1 − 1 + 1 − 1 + . . . is divergent. However, if removing the
brackets of a convergent series results in another convergent series, then the sums of
the two series are the same; this follows from Theorem 6.17.

The following operation we consider is that of reordering the terms of a series.
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Definition 6.19. We call a series of the form
∑∞

i=1 aσ(i) a reordering of the infinite
series

∑∞
n=1 an if σ : N+ → N

+ is an arbitrary one-to-one mapping (i.e., a permu-
tation) of the set of indices to itself.

Example 6.20. 1. Consider the series

1 − 1
2

− 1
4
+

1
3

− 1
6

− 1
8
+

1
5

− 1
10

− 1
12

+ . . . . (6.5)

Every positive integer appears in exactly one of the denominators, and both the odd
and even numbers appear in a monotonically increasing order. An odd integer is
followed by two even integers in the denominators, and a positive term is followed
by two negative terms. Obviously, (6.5) is a reordering of the infinite series

1 − 1
2
+

1
3

− 1
4
+ . . . , (6.6)

where the bijection σ is defined by the sequence (1, 2, 4, 3, 6, 8, 5, 10, 12, . . .). We
show that the series (6.5) is convergent with sum 1

2 · log 2 (which is half the sum of
(6.6)). Let sn be the nth partial sum of the series. Then we have

s3k =
(

1 − 1
2

)

− 1
4
+

(
1
3

− 1
6

)

− 1
8
+ . . . +

(
1

2k − 1
− 1

4k − 2

)

− 1
4k

=

=
1
2

− 1
4
+

1
6

− 1
8
+ . . . +

1
4k − 2

− 1
4k

=

=
1
2

·
(

1 − 1
2
+

1
3

− 1
4
+ . . . − 1

2k

)

;

thus limk→∞ s3k = 1
2 · log 2. Since s3k+1 − s3k = 1/(2k + 1) → 0 and s3k+2 −

s3k = (1/(2k + 1)) − (1/(4k + 2)) → 0 as k → ∞, it follows that sn → 1
2 · log 2

as n → ∞, which is exactly what we wanted to prove.
2. Consider the series

1 − 1
2
+

1
3

− 1
4
+

1
5

− 1
6

− 1
8
+

1
7

− 1
10

− 1
12

− 1
14

− 1
16

+
1
9

− . . . . (6.7)

We obtain this series by writing the first two terms of (6.6); then for every k ≥ 2, we
write the term 1/(2k − 1) followed by the terms −1/(2i) (with 2k−1 + 2 ≤ 2i ≤
2k). The series (6.7) is another reordering of the series (6.6), where the bijection
σ is defined by the sequence (1, 2, 3, 4, 5, 6, 8, 7, 10, 12, 14, 16, . . .). We show that
the series (6.7) is divergent. Indeed, the sum of the absolute values of the terms
with denominators 2k−1 + 2, 2k−1 + 4, . . . , 2k is at least (2k−1/2) · 2−k = 1/4,
for every k. Thus the series does not satisfy the Cauchy criterion.

These examples prove that we do not have commutativity in adding infinitely
many numbers: the sum may depend on the order of its terms, and what is more, the
order of the terms can influence the existence of the sum.
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Exercises

6.6. Let
∑

an be a convergent series of positive terms. Show the existence of a
sequence cn → ∞ such that

∑
cn · an is also convergent.

6.7. Let
∑

an be a divergent series of positive terms. Show the existence of a
sequence cn → 0 such that

∑
cn · an is also divergent.

6.8. Show that if
∑

an is a convergent series of nonnegative terms, then
∑√

an/n
is also convergent. (H)

6.9. Show that if
∑

an is convergent and (an) is monotone, then n · an → 0. (H)

6.10. Let
∑∞

n=1 an be a divergent series of positive terms, and let sn be its nth
partial sum. Show that

∑∞
n=1 an/(sn)c is convergent if and only if c > 1. (H)

6.11. Let
∑∞

n=1 an be a convergent series of positive terms, and let rn = an +
an+1 + . . ., for every n. Show that

∑∞
n=1 an/(rn)c is convergent if and only if

c < 1. (H)

6.12. Let the two series a1 + a2 + . . . and a1 − a2 + a3 − a4 + . . . be convergent.
Does it follow that the series a1 + a2 − a3 + a4 + a5 − a6 + a7 + a8 − a9 + . . . is
also convergent?

6.13. Let H be the set {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1/x}. Show that H can be
tiled by rectangles with areas 1/(1 · 2), 1/(3 · 4), 1/(5 · 6), . . .. More precisely,
show that we can find nonoverlapping rectangles in H with areas 1

(2n−1)·2n such
that their union covers the set {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y < 1/x}. (H)
6.14. Let k and m be given positive integers, and consider the series

∑∞
n=1 ±1/n,

where k positive terms are followed by m negative terms. Thus the series corre-
sponding to the case k = m = 2 is

1 + 1
2 − 1

3 − 1
4 + 1

5 + 1
6 − . . . ,

and the series corresponding to the case k = 2, m = 1 is

1 + 1
2 − 1

3 + 1
4 + 1

5 − 1
6 + . . . .

For what values of k and m will the series be convergent? (H)

6.15. Suppose that
∑

an is convergent, and its sum is A. Let σ be a permutation of
the set N+ such that |σ(n) − n| ≤ 100 for every n. Prove that

∑
aσ(n) is conver-

gent, and its sum is A.
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6.3 Absolute and Conditionally Convergent Series

We will now show that the strange phenomena presented above in connection with
reordering the terms do not occur in an important class of infinite series.

Definition 6.21. We say that the infinite series
∑∞

n=1 an is absolutely convergent
if the series

∑∞
n=1 |an| is convergent.

Theorem 6.22.

(i) Every absolutely convergent series is convergent.

(ii) Every reordering of an absolutely convergent series is also absolutely conver-
gent, and its sum equals the sum of the original series.

Proof. Let
∑∞

n=1 an be absolutely convergent. Then by the Cauchy criterion, for
every ε > 0 there exists N such that |an+1| + |an+2| + . . . + |am| < ε for every
N ≤ n < m. By applying the triangle inequality, we get

|an+1 + an+2 + . . . + am| ≤ |an+1| + |an+2| + . . . + |am| < ε,

i.e.,
∑∞

n=1 an also satisfies the Cauchy criterion. This proves (i).
Let

∑∞
n=1 bn be a reordering of the series

∑∞
n=1 an. For ε > 0 fixed, choose N

such that |aN+1| + |aN+2| + . . . + |am| < ε for every m > N . The terms
a1, . . . , aN are present in the series

∑∞
n=1 bn (possibly with different indices). If

the maximum of their (new) indices is M , then for k > M , the indices of the terms
bM+1, . . . , bk in the series

∑∞
n=1 an are greater than N . Thus, for m large enough

these terms occur among the terms aN+1, . . . , am. This implies

|bM+1| + |bM+2| + . . . + |bk| ≤ |aN+1| + |aN+2| + . . . + |am| < ε,

showing that the series
∑∞

n=1 |bn| also satisfies the Cauchy criterion. Hence, it is
convergent; that is, the series

∑∞
n=1 bn is also absolutely convergent. Then by (i), it

is convergent.
Let

∑∞
n=1 an = A and

∑∞
n=1 bn = B. For ε > 0 fixed, letN andM be the same

as above. Let k > max(N,M) be arbitrary, and let

dk = (a1 + . . . + ak) − (b1 + . . . + bk).

Clearly, in the sum dk the terms a1, . . . , aN are canceled, and thus dk is a sum of
terms of the form ±an, where n > N . Therefore, with m large enough, we have

|dk| ≤ |aN | + |aN+1| + . . . + |am| < ε.

We have proved limk→∞ dk = 0. However, limk→∞ dk = A − B, i.e., A = B. �
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Remarks 6.23. 1. The converse of part (i) of Theorem 6.22 is not true: a conver-
gent series is not necessarily absolutely convergent. For example, the series (6.6) is
convergent, but the sum of the absolute values of its terms (the harmonic series) is
divergent. In other words, the set of absolutely convergent series is a proper subset
of the set of convergent series.
2. Reordering the terms of a series of nonnegative terms does not change the sum
of the series. Indeed, if a series of nonnegative terms is convergent, then it is also
absolutely convergent, and we can apply part (ii) of Theorem 6.22. On the other
hand, if a series of nonnegative terms is divergent, then every reordering of the series
is also divergent, for otherwise, the reordered series would be convergent, and the
original series itself would also be convergent (as a reordered series of a convergent
series). Thus, the sum of both series is infinity.

The following theorem gives a simple characterization of absolutely convergent
series. In order to state the theorem, we need to introduce some notation.

Notation 6.24. For every number x, let

x+ = max(x, 0) =

{
x, if x ≥ 0,
0, if x < 0,

and

x− = max(−x, 0) =

{
0, if x ≥ 0,
−x, if x < 0.

We call the numbers x+ and x− the positive and negative parts of x, respectively.
It is easy to see that

x = x+ − x−, |x| = x+ + x−, x+ =
|x| + x

2
, x− =

|x| − x

2

hold for every x ∈ R.

Theorem 6.25. The series
∑∞

n=1 an is absolutely convergent if and only if the
series

∑∞
n=1 a+

n and
∑∞

n=1 a−
n are both convergent.

Proof. If
∑∞

n=1 an is absolutely convergent, then by Theorem 6.22, it is convergent.
The convergence of the series

∑∞
n=1 a+

n and
∑∞

n=1 a−
n follows from the formulas

a+
n =

|an| + an

2
and a−

n =
|an| − an

2

and from Theorem 6.11.
The proof of the converse is similar, using the fact that |an| = a+

n + a−
n for

every n. �
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Theorem 6.26.

(i) If
∑∞

n=1 a+
n = ∞, then the series

∑∞
n=1 an has a reordering whose sum is

positive infinity.

(ii) For
∑∞

n=1 a−
n = ∞, the series

∑∞
n=1 an has a reordering whose sum is nega-

tive infinity.

Proof. (i) The condition implies that the series
∑∞

n=1 an has infinitely many pos-
itive terms. Let b1, b2, . . . be the positive terms of the series, keeping the original
order of their indices. Then

∑∞
n=1 bn =

∑∞
n=1 a+

n = ∞. If the series
∑∞

n=1 an has
only finitely many nonpositive terms, then clearly, the sum of the series is positive
infinity. Thus, we may assume that the series has infinitely many nonpositive terms;
let these terms be c1, c2, . . ., keeping the order of their indices. Since

∑∞
n=1 bn =

∞, there exist indices 1 = N1 < N2 < . . . such that
∑Ni+1−1

n=Ni
bn > |ci| + 1, for

every i = 1, 2, . . .. It is easy to check that the sum of the series

bN1 + . . . + bN2−1 + c1 + bN2 + . . . + bN3−1 + c2 + . . .

is a reordering of
∑∞

n=1 an, and its sum is infinity. Part (ii) can be proved
similarly. �

Our next aim is to determine the set of sums of all reorderings of a given series.

Theorem 6.27.

(i) If the series
∑∞

n=1 a+
n and

∑∞
n=1 a−

n are convergent, then every reordering of
the series

∑∞
n=1 an is convergent with the same sum.

(ii) If
∑∞

n=1 a+
n = ∞ and

∑∞
n=1 a−

n is convergent, then the sum of every reorder-
ing of the series

∑∞
n=1 an is positive infinity.

(iii) If
∑∞

n=1 a+
n is convergent and

∑∞
n=1 a−

n = ∞, then the sum of every reorder-
ing of the series

∑∞
n=1 an is negative infinity.

(iv) If
∑∞

n=1 a+
n = ∞ and

∑∞
n=1 a−

n = ∞, then the series
∑∞

n=1 an has a reorder-
ing whose sum is infinity, and

∑∞
n=1 an also has a reordering whose sum is

negative infinity. Furthermore, assuming also an → 0, the series
∑∞

n=1 an has
a reordering whose sum is A, for every given A ∈ R.

Proof. Statement (i) follows from Theorems 6.25 and 6.22.
Let σ be a bijection on the positive integers. If the conditions of (ii) hold, then
it follows from Theorem 6.22 and Remark 6.23.2 that

∑∞
n=1(aσ(n))+ = ∞ and

∑∞
n=1(aσ(n))− is convergent. Since aσ(n) = a+

σ(n) − a−
σ(n) for every n, Remark

6.12 implies
∑∞

n=1 aσ(n) = ∞.

Statement (iii) can be proved similarly.
By Theorem 6.26, we have only to prove the second half of (iv). Let

∑∞
n=1 a+

n =∑∞
n=1 a−

n = ∞ and an → 0. Then clearly, the series
∑∞

n=1 an has infinitely many
positive and infinitely many negative terms. Let b1, b2, . . . be the sequence of its
positive terms (keeping the order of their indices); then we have

∑∞
n=1 bn = ∞.
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If c1, c2, . . . are the negative terms of
∑∞

n=1 an (also keeping the order of their
indices), then

∑∞
n=1 cn = −∞. Let A ∈ R be fixed.

Since
∑∞

n=1 bn = ∞, there exists an index N such that
∑N

n=1 bn > A. Let N1 be
the smallest such N .
Since

∑∞
n=1 cn = −∞, there exists an index M such that

∑N1
n=1 bn +

∑M
n=1 cn <

A. Let M1 be the smallest such M .
As

∑∞
n=1 bn = ∞, there exists an index N > N1 such that

∑N1
n=1 bn +

∑M1
n=1 cn +

∑N
n=N1+1 bn > A. Let N2 be the smallest such N .

As
∑∞

n=1 cn = −∞, there exists an index M > M1 such that
∑N1

n=1 bn +
∑M1

n=1 cn +
∑N2

n=N1+1 bn +
∑M

n=M1+1 cn < A. Let M2 be the smallest such M .
Repeating the process, we obtain the indices N1 < N2 < . . . and M1 < M2

< . . .. Consider the infinite series

b1 + . . . + bN1 + c1 + . . . + cM1 + bN1+1 + . . . + bN2 + cM1+1 + . . . + cM2 + . . . .
(6.8)

Obviously, this is a reordering of the series
∑∞

n=1 an. We show that the sum of this
new series is A.

Let ε > 0 be fixed. Since an → 0, there exists K such that |an| < ε, when n >
K. It follows that bn < ε and |cn| < ε for all n > K, since the indices of the terms
bn and cn in the original series

∑∞
n=1 an are at least n; thus for n > K, these indices

are also larger than K.
Let sn be the nth partial sum of the series (6.8). By our choices of the indices

Ni, we have
sMi−1+Ni−1 ≤ A < sMi−1+Ni

.

Then for Ni > K it follows that

A < sMi−1+Ni
= sMi−1+Ni−1 + bNi

< A + ε, (6.9)

and thus |sMi−1+Ni
− A| < ε. Similarly, we obtain |sNi+Mi

− A| < ε, assuming
that Mi > K. Therefore, |sNi+Mi−1 − A| < ε and |sNi+Mi

− A| < ε for every i
large enough.

For a fixed i, the values of sn for the indices Ni + Mi−1 < n ≤ Ni + Mi

decrease, since we get sn by adding a negative number (one of the cj’s) to sn−1.
Thus, the value of sn is between the value of sNi+Mi−1 and that of sNi+Mi

.
We have proved that for min(Ni,Mi) > K, we have |sn − A| < ε. Similarly, for
min(Ni,Mi) > K, we have |sn − A| < ε for every Ni + Mi < n ≤ Ni+1 + Mi.
We have proved |sn − A| < ε for every n large enough. Since ε was arbitrary, it
follows that the sum of the series (6.8) is A. �

We can now rephrase and supplement Theorem 6.22 as follows.
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Theorem 6.28. For every infinite series, the following statements are equivalent:

(i) The series is absolutely convergent.

(ii) Every reordering of the series is absolutely convergent.

(iii) Every reordering of the series is convergent.

(iv) Every reordering of the series is convergent, and its sum is the same as the sum
of the original series. �

The infinite series
∑∞

n=1 an is said to be conditionally convergent if it is conver-
gent, but not absolutely convergent. It is clear from Theorems 6.22 and 6.27 that for
a conditionally convergent series

∑∞
n=1 an we have

∑∞
n=1 a+

n =
∑∞

n=1 a−
n = ∞.

Since an → 0 is also true (based on Theorem 6.5), part (iv) of Theorem 6.27 implies
the following theorem, called Riemann’s reordering theorem.

Theorem 6.29. If the series
∑∞

n=1 an is conditionally convergent, then it has a
reordering with any prescribed sum (positive infinity, negative infinity, or A for
every A ∈ R), and it also has a divergent reordering with no sum. �

(For a proof of the last statement, see Exercise 6.18.)
The following theorem says that associativity holds for absolutely convergent

series in its most general form (i.e., even for sums of infinitely many terms).

Theorem 6.30. Let
∑∞

i=1 bi be an absolutely convergent series, where (bi)∞i=1 is
an enumeration of the numbers ak,n (k, n = 1, 2, . . .). Then the series

∑∞
n=1 ak,n

is also absolutely convergent for every k, and furthermore, if
∑∞

n=1 ak,n = Ak (k =
1, 2, . . .) and

∑∞
i=1 bi = A, then the series

∑∞
k=1 Ak is also absolutely convergent,

and
∑∞

k=1 Ak = A.

Proof. Let
∑∞

i=1 |bi| = B. For every k, each partial sum of the series
∑∞

n=1 |ak,n|
is less than or equal to a suitable partial sum of the series

∑∞
i=1 |bi|. Therefore, no

partial sum of
∑∞

n=1 |ak,n| is larger than B. Thus, the sequence of the partial sums
of the series

∑∞
n=1 |ak,n| is bounded, and then the series is convergent. For every

n,m, we have

|a1,1 + . . . + a1,n| + . . . + |am,1 + . . . + am,n| ≤
m∑

i=1

n∑

j=1

|ai,j |, (6.10)

and the right-hand side is at most B. If n → ∞ on the left-hand side of (6.10),
then we obtain |A1| + . . . + |Am| ≤ B. Since this holds for every m, it follows that∑∞

k=1 Ak is absolutely convergent.
Let ε > 0 be fixed. Since

∑∞
i=1 |bi| is convergent, by the Cauchy criterion (The-

orem 6.10) it follows that there is an index N such that
∑n

i=N+1 |bi| < ε holds for
every n > N . Since (bi)∞i=1 is an enumeration of the numbers ak,n (k, n = 1, 2, . . .),
there exists an index M ≥ N such that each of the terms b1, . . . , bN appears among
the terms ak,n (k, n ≤ M). We show that
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∣
∣
∣
∣
∣

m∑

k=1

(ak,1 + . . . + ak,n) − (b1 + . . . + bn)

∣
∣
∣
∣
∣
< ε (6.11)

for every m,n > M . Indeed, by the choice of the index M , the terms ak,i (k ≤ m,
i ≤ n) include each of b1, . . . , bN . Subtracting b1 + . . . + bn, we get a sum whose
terms are of the form ±bi, where the indices i are distinct and are larger than N .
Let p be the largest of these indices. Then the left-hand side of (6.11) is at most
|bN+1| + . . . + |bp| < ε by the choice of the index N .

Fixing m > M and letting n approach infinity in (6.11) we obtain

∣
∣
∣
∣
∣

m∑

k=1

Ak − A

∣
∣
∣
∣
∣
≤ ε.

Since this is true for every m > M , it follows that
∑∞

k=1 Ak = A. �

In most of the applications of this theorem we have an infinite array of numbers
whose terms, in a suitable order, form an absolutely convergent series. Then, adding
the array column by column or row by row also gives an absolutely convergent
series whose sum is the same as the sum of all the terms of the array.

Example 6.31. 1. We prove

∞∑

n=1

n · xn−1 =
1

(1 − x)2
, (6.12)

for every |x| < 1.
We know that 1 + x + x2 + . . . = 1/(1 − x) for every |x| < 1. Multiplying by

xi for every i ≥ 0 and appending i zeros into each row yields

1 + x + x2 + x3 + . . . =
1

1 − x
0 + x + x2 + x3 + . . . =

x

1 − x

0 + 0 + x2 + x3 + . . . =
x2

1 − x

0 + 0 + 0 + x3 + . . . =
x3

1 − x
...

...
...

...
...

...

(6.13)

These equalities also hold for |x| in place of x. Thus, the sum of finitely many of
the absolute values of the terms of this array is at most

N∑

n=0

|x|n
1 − |x| ,
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for an appropriate N . This sum is smaller than 1/(1 − |x|)2, which proves that the
terms on the left-hand side of (6.13) form an absolutely convergent series, regardless
of the order in which they are listed. Then, by Theorem 6.30, the sum of this series is

∞∑

n=0

xn

1 − x
=

1
(1 − x)2

.

Adding the terms of the table column by column and applying Theorem 6.30 implies
(6.12). For example,

∑∞
n=1

n
2n = 2.

2. Theorem 6.30 supplies us with a new proof of the fact that the harmonic series is
divergent. Consider the following equalities:

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + . . . = 1

0 +
1

2 · 3 +
1

3 · 4 + . . . =
1
2

0 + 0 +
1

3 · 4 + . . . =
1
3

...
...

...
...

...

If the harmonic series were convergent, the terms on the left-hand side would form
an absolutely convergent series with the sum

∑∞
n=1(1/n). However, adding the

table column by column and applying Theorem 6.30, we would get

1
2
+

1
3
+

1
4
+ . . . = 1 +

1
2
+

1
3
+

1
4
+ . . . ,

which is impossible.

Exercises

6.16. Show that every convergent series can be bracketed such that the resulting
series is absolutely convergent.

6.17. Construct a series that can be bracketed such that the sum of the resulting
series is A, for every given real number A. (S)

6.18. Show that every conditionally convergent series has a divergent reorder-
ing. (H)

6.19. Let the series
∑∞

n=1 an be conditionally convergent. Show that for every real
number A, there exists a sequence of the indices n1 < n2 < . . . such that the series∑∞

k=1 ank
is convergent with sum A.
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6.20. Find the sums
∑∞

n=1 n2xn and
∑∞

n=1 n3xn, for every |x| < 1. Find the sums
of the series

∑∞
n=1 n2/2n and

∑∞
n=1 n3/2n.

6.21. Let an ∈ R
p for every n = 1, 2, . . .. We say that the infinite series

∑∞
n=1 an

is convergent and its sum is the vector a ∈ R
p if the sequence of its partial sums

converges to a. Show that if
∑

an is convergent, then an → 0.

6.22. Show that if an ∈ R
p and

∑ |an| < ∞ (i.e., if
∑

an is absolutely conver-
gent), then

∑
an is convergent.

6.23. Let an ∈ R
2 be an arbitrary sequence of points ofR2, and let S denote the set

of the sums of the reorderings of the series
∑

an that are convergent. Prove that one
of the following cases holds: S is empty; S consists of a single element (this holds
exactly when the series is absolutely convergent); S consists of a line; S contains
the whole plane R2. (∗)

6.4 Other Convergence Criteria

Despite the fact that the Cauchy criterion gives an exact condition for convergence,
we can rarely use it in practice, since its condition is hard to check. Thus, we need
other criteria that are considerably easier to verify, even if it means that in most
cases, we get only sufficient, but not necessary, conditions for convergence.

We say that the series
∑∞

n=1 bn is a majorant of the series
∑∞

n=1 an, if |an| ≤
bn holds for every n large enough. The following important convergence criterion
is called themajorant criterion.

Theorem 6.32. If the infinite series
∑∞

n=1 an has a convergent majorant, then∑∞
n=1 an is absolutely convergent.

Proof. Let
∑∞

n=1 bn be a convergent majorant of
∑∞

n=1 an. Then by definition,
|an| ≤ bn holds for every n large enough. Changing finitely many terms does not
influence the convergence of the series; thus we may assume that |an| ≤ bn holds for
every n. Then the partial sums of the series

∑∞
n=1 |an| are not larger than the corre-

sponding partial sums of the series
∑∞

n=1 bn. The sequence of the latter is bounded
from above, since

∑∞
n=1 bn is convergent. Thus, the sequence of the partial sums

of
∑∞

n=1 |an| is also bounded from above, and then, by Theorem 6.8,
∑∞

n=1 |an| is
convergent. �

Example 6.33. The series
∑∞

n=1(sinn)/n2 is convergent, since |(sinn)/n2| ≤
1/n2 for every n, and the series

∑∞
n=1 1/n2 is convergent by Example 6.11.1.

The next corollary is obtained by a simple application of the majorant criterion.

Corollary 6.34. Every bracketed series of an absolutely convergent series is also
absolutely convergent.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Proof. Every bracketed series obtained from
∑∞

n=1 an has a majorant that is the
appropriately bracketed series obtained from

∑∞
n=1 |an|. If ∑∞

n=1 |an| is conver-
gent, then by Theorem 6.17, this majorant series is also convergent. Thus the state-
ment follows from Theorem 6.32. �

The next two convergence criteria are used mostly for certain series having terms
of a special form.

Theorem 6.35. (Root criterion)

(i) If there exists a number q < 1 such that n
√|an| < q holds for every n large

enough, then the series
∑∞

n=1 an is absolutely convergent.

(ii) If limn→∞ n
√|an| < 1, then the series

∑∞
n=1 an is absolutely convergent.

Proof. (i) We have |an| < qn for every n large enough. Since by Theorem 6.4, the
series

∑∞
n=1 qn is convergent, we can apply the majorant criterion.

(ii) Choose a number q such that limn→∞ n
√|an| < q < 1. Then n

√|an| < q holds
for every n large enough, and thus by (i), the series

∑∞
n=1 an is absolutely conver-

gent. �

Example 6.36. For |x| < 1, the series
∑∞

n=1 n · xn is absolutely convergent.
Indeed, n

√|n · xn| = |x| · n
√

n → |x| < 1 as n → ∞. (For the sum of the series,
see Example 6.31.1.)

Remarks 6.37. 1. The conditions of the root criterion are not necessary for a
series to be convergent: the series

∑∞
n=1 1/n2 is convergent, despite the fact that

limn→∞ n
√

1/n2 = 1, and thus there exists no q < 1 such that n
√

1/n2 < q for
every n large enough.
2. For the convergence of the series

∑∞
n=1 an it is not enough to have n

√|an| < 1 for
every n large enough (or even for every n). This condition means only that |an| < 1
for every n large enough, and it does not follow that an → 0, which is a necessary
condition for convergence.
3. If limn→∞ n

√|an| > 1, then the series
∑∞

n=1 an is divergent, since |an| > 1 for
every n large enough.
4. From the condition limn→∞ n

√|an| = 1we can infer neither the convergence nor
the divergence of the series. The series

∑∞
n=1 1/n2 is convergent, while the series

∑∞
n=1 1/n is divergent, even though limn→∞ n

√
1/n2 = limn→∞ n

√
1/n = 1.

Theorem 6.38. (Quotient criterion) Let an �= 0 for n large enough.

(i) If there exists a number q < 1 such that
∣
∣
∣
an+1
an

∣
∣
∣ < q holds for every n large

enough, then the series
∑∞

n=1 an is absolutely convergent.

(ii) If limn→∞
∣
∣
∣
an+1
an

∣
∣
∣ < 1, then the series

∑∞
n=1 an is absolutely convergent.
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Proof. (i) If an �= 0 and |an+1/an| < q for every n ≥ n0, then

|an0+1| ≤ q · |an0 |,
|an0+2| ≤ q · |an0+1| ≤ q2 · |an0 |,
|an0+3| ≤ q · |an0+2| ≤ q3 · |an0 |, (6.14)

and so on. That is, we have |an| ≤ qn−n0 · |an0 | for every n > n0. Let c = q−n0 ·
|an0 |. Then |an| ≤ c · qn for every n > n0. Therefore, we can apply the majorant
criterion, since by Theorems 6.4 and 6.11, the series

∑∞
n=1 c · qn is convergent.

(ii) Choose a number q such that limn→∞ |an+1/an| < q < 1. Then |an+1/an| < q
for every n large enough, and thus by (i), the series

∑∞
n=1 an is absolutely conver-

gent. �

The root criterion is stronger than the quotient criterion in that if a series satisfies
the quotient criterion, then it satisfies the root criterion as well; but the converse of
this is not true (see Exercise 6.25). However, the quotient criterion is still widely
used, because it is often easier to apply than the root criterion.

Example 6.39. 1. The convergence of the series
∑∞

n=1 nxn can be also verified
when |x| < 1 by applying the quotient criterion:

|(n + 1) · xn+1|/|n · xn| = |x| · (n + 1)/n → |x| < 1

as n → ∞.
2. The series

∑∞
n=1 n!/nn is convergent, since

(n + 1)!
(n + 1)n+1

:
n!
nn

=
n + 1

(n + 1) · (1 + 1
n

)n =
1

(
1 + 1

n

)n → 1
e

< 1

as n → ∞.

Remarks 6.40. 1. The conditions of the quotient criterion are not necessary for
the convergence of a series: the series

∑∞
n=1 1/n2 is convergent, even though

limn→∞ n2/(n + 1)2 = 1, and thus there exists no q < 1 such that n2/(n + 1)2 <
q for every n large enough.

2. It is not enough for the convergence of the series
∑∞

n=1 an to have
∣
∣
∣
an+1
an

∣
∣
∣ < 1

for every n large enough (or even for every n). This condition means only that
|an+1| < |an| for every n large enough, which does not even imply an → 0, which
is a necessary condition of the convergence of the series.

3. If limn→∞ |an+1/an| > 1, then the series
∑∞

n=1 an is divergent, since |an+1| >
|an| for every n large enough, and then an �→ 0.

4. From the condition limn→∞ |an+1/an| = 1 we can infer neither the conver-
gence nor the divergence of the series itself. The series

∑∞
n=1 1/n is divergent,
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while the series
∑∞

n=1 1/n2 is convergent, even though limn→∞ n/(n + 1) =
limn→∞ n2/(n + 1)2 = 1.

The next two criteria can be applied only if the terms of the series are nonnegative
and form a monotonically decreasing sequence. At the same time, these criteria give
us not only sufficient, but also necessary, conditions for the convergence of a series.

Theorem 6.41. (Integral criterion) Let a be an integer, and let f be a monoton-
ically decreasing nonnegative function on the half-line [a,∞). The infinite series∑∞

n=a f(n) is convergent if and only if the improper integral
∫ ∞

a
f(x) dx is con-

vergent.

Proof. Let n > a be a fixed integer, and consider the partition of the interval [a, n]
by the integers a, a + 1, . . . , n. Let sn and Sn denote the lower and upper sums of
the function f corresponding to this partition. Then

n∑

i=a+1

f(i) = sn ≤
n∫

a

f(x) dx ≤ Sn =
n−1∑

i=a

f(i), (6.15)

since—recalling that f is monotonically decreasing—the smallest and the largest
values of f on the interval [i − 1, i] are f(i) and f(i − 1), respectively. Since f is
nonnegative, the function ω �→ ∫ ω

a
f(x) dx is monotonically increasing, and thus

the improper integral
∫ ∞

a
f(x) dx exists: the limit is either finite (when the integral

is convergent) or infinite (when the integral is divergent). If the integral is conver-
gent, then the sequence n �→ ∫ n

a
f(x) dx is bounded (since it is convergent). The

first inequality of (6.15) implies that the sequence (sn) is also bounded. Then by
Theorem 6.10, the series

∑∞
n=a f(n) is convergent.

On the other hand, if the integral is divergent, then the sequence n �→ ∫ n

a
f(x) dx

converges to infinity. The second inequality of (6.15) implies that the sequence (Sn)
also converges to infinity, and then the series

∑∞
n=a f(n) is divergent. �

Example 6.42. For every c > 0, the terms of the series
∑∞

n=2 1/(n · logc n) are
positive and form a monotonically decreasing sequence. Thus, the series is conver-
gent if and only if the integral

∫ ∞
2

1/(x · logc x) dx is convergent, i.e., if and only
if c > 1. (See Example 19.5.1 of [7].)

Theorem 6.43. (Condensation criterion) Suppose that the sequence (an) is non-
negative and monotonically decreasing. Then the series

∑∞
n=1 an and

∑∞
n=1 2

n ·
a2n are either both convergent or both divergent.

Proof. Let the partial sums of
∑∞

n=1 an and
∑∞

n=1 2
n · a2n be denoted by sn and

Sn, respectively. We put S0 = 0. Since a2n ≥ ai for every i > 2n, we have

Sn − Sn−1 = 2n · a2n ≥
2n+1
∑

i=2n+1

ai = s2n+1 − s2n

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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for every n, and thus

Sn =
n∑

k=1

(Sk − Sk−1) ≥
n∑

k=1

(s2k+1 − s2k) = s2n+1 − s2.

It follows that if the partial sums of
∑∞

n=1 2
n · a2n are bounded, then the partial

sums of the series
∑∞

n=1 an are also bounded. Similarly, a2n ≤ ai for every i ≤ 2n,
and thus

Sn − Sn−1 = 2n · a2n ≤ 2 ·
2n∑

i=2n−1+1

ai = 2 · (s2n − s2n−1).

Then

Sn =
n∑

k=1

(Sk − Sk−1) ≤ 2 ·
n∑

k=1

(s2k − s2k−1) = s2n − s1.

Therefore, if the partial sums of the series
∑∞

n=1 an are bounded, then the partial
sums of

∑∞
n=1 2

n · a2n are also bounded. Thus, we can apply Theorem 6.10. �

Example 6.44. Consider the series
∑∞

n=2 1/(n · logc n), where c > 0. The con-
densation criterion states that the series is convergent if and only if the series∑∞

n=2 2
n/2n · logc 2n =

∑∞
n=2 1/

(
(logc 2) · nc

)
is also convergent, i.e., if and

only if c > 1.

Our criteria so far have given conditions for the absolute convergence of a series.
Another similar criterion can be found in Exercise 6.40. We now introduce a couple
of convergence criteria, applicable to series having terms of a certain special form,
that do not guarantee the absolute convergence of the series.

Theorem 6.45. (Leibniz criterion) For every monotone sequence (an) converging
to zero, the series

∑∞
n=1(−1)n−1an is convergent.

Proof. Wemay assume that the sequence (an) is decreasing. (Otherwise, we turn to
the sequence (−an).) Let sn denote the nth partial sum of the series. The conditions
imply

s2 ≤ s4 ≤ . . . s2n ≤ s2n−1 ≤ s2n−3 ≤ . . . ≤ s3 ≤ s1

for every n. Thus the sequence (s2n) is monotonically increasing and bounded from
above, and the sequence (s2n−1) is monotonically decreasing and bounded from
below. Therefore, both sequences are convergent. Furthermore, s2n − s2n−1 =
a2n → 0, and thus limn→∞ s2n = limn→∞ s2n−1. It follows that the sequence (sn)
is convergent, which is exactly what we wanted to prove. �

Example 6.46. The series 1 − 1
3 + 1

5 − 1
7 + . . . satisfies the conditions of the Leib-

niz criterion, and thus it is convergent. The sum of the series is π/4. This is obtained
by applying the formula

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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arc tg x = x − x3

3
+

x5

5
− . . . ,

for x = 1 (see Example 7.41.2.).

Theorem 6.47. (Dirichlet1 criterion) Suppose that

(i) the sequence (an) is monotonically decreasing and converges to zero, and

(ii) the partial sums of the series
∑∞

n=1 bn are bounded.

Then the series
∑∞

n=1 anbn is convergent.

Note that the Leibniz criterion is a special case of the Dirichlet criterion (let
bn = (−1)n−1).

Proof of Theorem 6.47. Let sn be the nth partial sum of the series
∑∞

n=1 bn,
and suppose that |sn| ≤ K for every n. Let ε > 0 be given. Since an → 0, we can
choose an index N such that |an| < ε/K holds for every n ≥ N . If N ≤ n < m,
then Abel’s2 inequality3 gives

−ε < (−K) · an ≤ anbn + . . . + ambm ≤ K · an < ε,

i.e., |anbn + . . . + ambm| < ε. Thus the series
∑∞

n=1 anbn satisfies the condition
of the Cauchy criterion, and so it is convergent. �

Example 6.48. If x �= 2kπ (k ∈ Z) and c > 0, then the series
∑∞

n=1(cosnx)/nc

is convergent. Indeed, the sequence (n−c) is decreasing and tends to zero. On the
other hand, for x �= 2kπ the partial sums of the series

∑∞
n=1 cosnx are bounded, as

seen from the identity

cosx + cos 2x + · · · + cosnx =
sin(nx/2)
sin(x/2)

· cos (n + 1)x
2

.

Thus the Dirichlet criterion applies.

Theorem 6.49. (Abel’s criterion) Suppose that

(i) the sequence (an) is monotone and bounded, and

(ii) the series
∑∞

n=1 bn is convergent.

Then the series
∑∞

n=1 anbn is also convergent.

1 Lejeune Dirichlet (1805–1859), German mathematician.
2 Niels Henrik Abel (1802–1829), Norwegian mathematician.
3 Abel’s inequality states that if c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 and m ≤ d1 + · · · + dk ≤ M for all
k = 1, . . . , n, then c1 · m ≤ c1d1 + · · · + cndn ≤ c1 · M . (See [7, Theorem 14.54].)

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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Proof. We may assume that the sequence (an) is monotonically decreasing, since
otherwise we may replace the sequence (an) by (−an). Let limn→∞ an = a. Then
(an − a) is decreasing and converges to zero. Since the series

∑∞
n=1 bn is conver-

gent, the sequence of its partial sums is bounded. Thus, by the Dirichlet criterion,
the series

∑∞
n=1(an − a)bn is convergent. The series

∑∞
n=1 anbn is obtained by

adding the series
∑∞

n=1 a · bn term by term to the series
∑∞

n=1(an − a)bn. There-
fore,

∑∞
n=1 anbn is convergent by Theorem 6.11. �

For example, it follows from Abel’s criterion that the convergence of
∑∞

n=1 bn

implies the convergence of
∑∞

n=1
n
√
2 · bn.

Exercises

6.24. Find an example of a convergent series with positive terms that satisfies none
of the conditions of the root criterion, quotient criterion, and integral criterion.

6.25. Suppose that an �= 0 for every n large enough.

(a) Show that limn→∞
∣
∣
∣
an+1
an

∣
∣
∣ < 1 implies limn→∞ n

√|an| < 1.

(b) Find a sequence (an) such that limn→∞ n
√|an| < 1, but

limn→∞
∣
∣
∣
an+1
an

∣
∣
∣ < 1 is not true. Can we also find an example such that the limit

limn→∞
∣
∣
∣
an+1
an

∣
∣
∣ exists?

6.26. Let an > 0, bn > 0 for every n, and let an/bn → 1. Show that
∑

an is con-
vergent if and only if

∑
bn is convergent. Find an example to show that this is not

true if we omit the condition an > 0, bn > 0.

6.27. Let
∑

an and
∑

bn be series of positive terms, and suppose that an+1/an ≤
bn+1/bn for every n large enough. Show that if

∑
bn is convergent, then

∑
an is

also convergent.

6.28. Show that if an ≥ 0 and
∑

an = ∞, then
∑

an/(1 + an) = ∞.

6.29. Show that
∑

arc tg an is convergent whenever
∑

an is a convergent series
of positive terms.

6.30. Show that if an ≥ 0 for every n, and
∑

an is convergent, then
∑

a2
n is also

convergent. Show that the condition an ≥ 0 cannot be omitted.

6.31. Let
∑

an and
∑

bn be convergent series of positive terms. Does it follow
that (a)

∑
anbn, and (b)

∑
max(an, bn) is also convergent?

6.32. Show that if
∑

an is convergent and (an) is monotone, then
∑

n · a2
n is also

convergent. Show that the condition of monotonicity cannot be omitted.
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6.33. Decide, for each of the following series, whether it is convergent.

(a)
∑

n10/(3n − 2n); (b)
∑

1/
√

n · (n + 1);
(c)

∑
n100 · qn (|q| < 1); (d)

∑
1/(logn +

√
n);

(e)
∑ (

1 − cos 1
n

)
; (f)

∑
(log n)/n2;

(g)
∑

1/(n + 1000
√

n); (h)
∑

n2 · e−√
n;

(i)
∑

1√
n

· sin 1
n
; (j)

∑
1√
n

· cos 1
n
;

(k)
∑ log(n!)

n3 ; (l)
∑

(
√

n + log7 n)/(n3 − log7 n);

(m)
∑

n/
√

n4 − log2 n; (n)
∑ (√

n2 + 1 − n
)
;

(o)
∑ (√

n + 1 − 4
√

n2 + 1
)
; (p)

∑ (
n1/n2 − 1

)
;

(q)
∑ (

n
√
2 − 1

)
; (r)

∑ logn
n

· (
n
√
2 − 1

)
;

(s)
∑

(logn)log logn/n2; (t)
∑

nn+ 1
n /

(
n + 1

n

)n
;

(u)
∑

(log logn)logn/(log n)
√
n;

(v)
∑

(log n)
√
n/(nlog logn + (log log n)logn).

6.34. Decide, for each of the following series, whether it is convergent.

(a)
∑(

1 − 1
n

)n2

; (b)
∑(

n+200
2n+5

)n

(c)
∑

n7/7n; (d)
∑

nlog n/(log n)n;

(e)
∑(

n−1
n+1

)n2−n

; (f)
∑

nn2+25/(n + 1)n
2
;

(g)
∑(

1
2 + 1

n

)n ; (h)
∑

nn+ 1
n /

(
n + 1

n

)n ;

(i)
∑

(log n)log n/2n; (j)
∑(

1+cosn
2+cosn

)2n

;

(k)
∑(

sinn
esinn

)n
.

6.35. Decide, for each of the following series, whether it is convergent.

(a)
∑

2n · n!/nn; (b)
∑

(n!)2/2n2
;

(c)
∑ 1001·1002···(1000+n)

1·3···(2n−1) ; (d)
∑

n10/10n;
(e)

∑
1/

(
2n
n

)
; (f)

∑
nc/(1 + ε)n (ε > 0).

6.36. Is the series
∑

1/(n +
√

n + 3
√

n + . . . + n
√

n) convergent? (H)

6.37. Show that if
∑∞

n=1 an is a convergent series of positive terms, then∑∞
n=2(an)1−(1/ log n) is also convergent. (H)

6.38. Show that the series
∑∞

n=3 1/(n · log n · log logc n) is convergent if and only
if c > 1.

6.39. Let e0 = 1, and let ek+1 = eek for every k ≥ 0. Furthermore, let �0(x) ≡ x
and �k+1(x) = log(�k(x)) for every k ≥ 0 and x > ek.
(a) Show that for every k, the series
∑

n>ek
1/(�0(n) · �1(n) · · · �k(n) · (�k+1(n))c)

is convergent if and only if c > 1.
(b) Let L(x) = k if ek ≤ x < ek+1 (k = 1, 2, . . .). Show that the series∑∞

n=3 1/(�0(n) · �1(n) · · · �L(n)(n) · (L(n))c) is convergent if and only if c > 1.
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6.40. Let the terms of the series
∑∞

n=1 an be positive.

(a) Show that if limn→∞ n ·
(

an

an+1
− 1

)
> 1, then the series

∑∞
n=1 an is conver-

gent.

(b) Show that if n ·
(

an

an+1
− 1

)
≤ 1 for every n large enough, then the series

∑∞
n=1 an is divergent. (Raabe’s ratio test)4 (H)

6.41. Suppose that the sequence (an) is monotonically decreasing and tends to
zero. Does this imply that the series a1 + a2 − a3 − a4 + a5 + a6 − . . . is conver-
gent?

6.42. Is the series
∑∞

n=2
(−1)n· n

√
n

log n convergent? Is it absolutely convergent?

6.43. Is the series
∑∞

n=1 log
(
1 + (−1)n+1

n

)
convergent? Is it absolutely conver-

gent?

6.44. Show that for c > 0, the series
∑∞

n=1
sinnx

nc is convergent for every x ∈ R.

6.45. We say that the sequence (an) is of bounded variation if
∑∞

n=1 |an+1 − an| < ∞.

Show that every sequence of bounded variation is convergent. Find an example of a
convergent sequence that is not of bounded variation.

6.46. Show that the sequence (an) is of bounded variation if and only if there exist
monotone and bounded sequences (bn) and (cn) such that an = bn − cn for every n.

6.47. Let (an) be a sequence of bounded variation tending to zero, and suppose that
the partial sums of the series

∑
bn are bounded. Show that

∑
anbn is convergent.

6.48. Let (an) be of bounded variation, and let
∑

bn be convergent. Show that∑
anbn is also convergent.

6.49. Let a1 < a2 < . . . be a sequence of positive integers such that
|{k : ak ≤ x}| ≥ cx/ log x for every x ≥ 2 with a constant c > 0. Show that∑

1/ak = ∞. (∗)

6.5 The Product of Infinite Series

Multiplying infinite series is much more complicated than the operations we have
explored so far, to such an extent that even defining the operation can be prob-
lematic. One way to compute the product of the finite sums a1 + . . . + ak and

4 Joseph Ludwig Raabe (1801–1859), Swiss mathematician.
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b1 + . . . + bn is to add all the products ai · bj . (This follows from the distributiv-
ity of addition and multiplication, combined with the commutativity of addition and
multiplication.) By the commutativity of addition, the summation of the ai · bj can
be performed in an arbitrary order. However, in dealing with infinite series, we have
to sum infinitely many products ai · bj , and (as we saw before) the order of the addi-
tions can influence the value of the sum. Thus, when we define the product of two
infinite series we need to also define the order of the addition of the products ai · bj ,
and then we need to check whether the operation defined in this way satisfies the
condition that the sum of the product of two infinite series is the same as the product
of the two sums.

Definition 6.50. We call the series

a1b1 + a2b1 + a2b2 + a1b2 + . . .+ anb1 + anb2 + . . .+ anbn + an−1bn + . . .+ a1bn + . . .

the square product of the series
∑∞

n=1 an and
∑∞

n=1 bn. More precisely, the
square product of the series

∑∞
n=1 an and

∑∞
n=1 bn contains every product aibj

in the order max(i, j), and for max(i, j) = n we first write the terms anbj for
j = 1, . . . , n, followed by the terms aibn for i = n − 1, n − 2, . . . , 1. (In other
words, we list the entries of the following table by going along the sides of its upper
left squares, first from left to right, then from bottom to top.)

a1b1 a1b2 . . . a1bn . . .
↑

a2b1 a2b2 . . . a2bn . . .
↑

. . . . . . . . . . . . . . .
↑

anb1 → anb2 → . . . → anbn . . .
. . . . . . . . . . . . . . .

(6.16)

Theorem 6.51. If the series
∑∞

n=1 an and
∑∞

n=1 bn are convergent with sums A
and B, respectively, then the square product of

∑∞
n=1 an and

∑∞
n=1 bn is also con-

vergent, and its sum is A · B.

Proof. Let the nth partial sum of
∑∞

n=1 an,
∑∞

n=1 bn and of their square prod-
uct be denoted by rn, sn, and tn, respectively. Obviously, tk2 = rk · sk holds for
every k, implying that limk→∞ tk2 = A · B. We need to show that the sequence
(tn) converges to A · B.

Let ε > 0 be fixed. We show that |tn − A · B| < 2ε for every n large enough.
We know that rn → A and sn → B. In particular, these sequences are bounded.

Let |rn| ≤ K and |sn| ≤ K for every n, where K > 0. By Theorem 6.6 we have
an → 0 and bn → 0, and thus there existsN1 such that |an| < ε/K and |bn| < ε/K
for every n ≥ N1.

Since limk→∞ tk2 = A · B, there existsN2 such that |tk2 − A · B| < ε for every
k ≥ N2.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6


6.5 The Product of Infinite Series 219

Let n ≥ max(N2
1 , N2

2 ) be arbitrary. If k = [
√

n], then we have k ≥ max
(N1, N2) and k2 ≤ n < (k + 1)2. Now, either n = k2 + j, where 0 ≤ j ≤ k, or
n = (k + 1)2 − j, where 0 < j ≤ k.

If n = k2 + j with 0 ≤ j ≤ k, then (by the definition of the square product) we
have

tn = tk2 + ak+1b1 + . . . + ak+1bj = tk2 + ak+1 · sj ,

which implies

|tn − A · B| ≤ |tn − tk2 | + |tk2 − A · B| < |ak+1| · |sj | + ε ≤ ε

K
· K + ε = 2ε.

On the other hand, if n = (k + 1)2 − j with 0 < j ≤ k, then we have

tn = t(k+1)2 − (ajbk+1 + . . . + a1bk+1) = t(k+1)2 − bk+1 · rj ,

which implies

|tn − A · B| ≤ |tn − t(k+1)2 | + |t(k+1)2 − A · B| < |bk+1| · |rj | + ε ≤ ε

K
· K + ε = 2ε.

We have proved that |tn − A · B| < 2ε for every n large enough. Since ε was arbi-
trary, we have tn → A · B. �

We now prove that for absolutely convergent series, the order of the terms of the
product series does not affect the sum.

Theorem 6.52. Let
∑∞

n=1 an and
∑∞

n=1 bn be absolutely convergent series with
sums A and B, respectively. Then adding the terms aibj (i, j = 1, 2, . . .) in any
order, we obtain an absolutely convergent series, whose sum is A · B.

Proof. Let the square sum of the series
∑∞

n=1 an and
∑∞

n=1 bn be
∑∞

n=1 cn. By
assumption, the series

∑∞
n=1 |an| and ∑∞

n=1 |bn| are convergent, and then, by The-
orem 6.51, their square product is also convergent. On the other hand, this square
product is nothing other than the series

∑∞
n=1 |cn|, since |ai| · |bj | = |aibj | for every

i and j. With this we have proved that
∑∞

n=1 cn is absolutely convergent, and the
statement of the theorem follows from Theorem 6.22. �

An important class of infinite series consists of the series of the form
∑∞

n=0 anxn,
whose terms depend on the value of x. These series are called power series. Of the
series we have seen so far, the series

∑∞
n=0 xn and

∑∞
n=0(n + 1) · xn are power

series.
If we want to find the product of the power series

∑∞
n=0 anxn and

∑∞
n=0 bnxn,

we need to add up the terms aix
i · bjx

j = aibj · xi+j . In this case, it is only natural
not to follow the order of the square sum, but rather to group the terms based on the
value of i + j, and then to add these groups, resulting in another power series. This
method results in the power series

∑∞
n=0 (

∑n
i=0 aibn−i) · xn.
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The previous reordering can be done for every pair of infinite series. To follow
the notation of the power series, we will start the indices of the series from zero
from now on.

Definition 6.53. We say that the Cauchy product of the infinite series
∑∞

n=0 an

and
∑∞

n=0 bn is the infinite series

∞∑

n=0

(
n∑

i=0

aibn−i

)

.

(That is, we compute the terms of the Cauchy product by adding the terms along the
diagonals in the following table.)

a0b0 a0b1 . . . . . . a0bn . . .
↗

a1b0 a1b1 . . . a1bn−1 . . . . . .
↗

...
...

...
...

...
...

↗
... an−1b1 . . . . . . . . . . . .

↗
anb0 anb1 . . . . . . anbn . . .
...

...
...

...
...

...

(6.17)

Theorem 6.54. Suppose that the series
∑∞

n=0 an and
∑∞

n=0 bn are absolutely con-
vergent, and let their sums be A and B, respectively. Then the Cauchy product of
these series is also absolutely convergent, and its sum is A · B.

Proof. Since the Cauchy series is the result of reordering and bracketing the square
sum, our claim follows from Theorems 6.51, 6.22, 6.17, Corollary 6.34, and Theo-
rem 6.52. �

Example 6.55. If |x| < 1, then the series
∑∞

n=0 |x|n is convergent by Theorem 6.5,
and thus the series

∑∞
n=0 xn is absolutely convergent. By taking the Cauchy prod-

uct of this series with itself we get
∑∞

n=0(n + 1) · xn =
∑∞

n=1 n · xn−1, and our
previous theorem implies

∞∑

n=1

n · xn−1 =
1

(1 − x)2
,

for every |x| < 1 (as we saw in Example 6.31).

We now show that the Cauchy product of two convergent series can be divergent.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Example 6.56. The series
∑∞

n=0
(−1)n+1
√

n+1
is convergent, since it satisfies the Leibniz

criterion. Let
∑∞

i=0 cn be the Cauchy product of this series with itself, i.e., let

cn = (−1)n
n∑

i=0

1√
i + 1 · √

n + 1 − i
.

By the arithmetic–geometric means inequality, we have

√
(i + 1) · (n + 1 − i) ≤ (n + 2)

2

for every i, which implies |cn| ≥ (n + 1) · 2
n+2 ≥ 1 for every n. It follows that the

series
∑∞

i=0 cn is divergent.

Thus, the Cauchy product of two convergent series can be divergent if the series
are not absolutely convergent. As an improvement on Theorem 6.54 we now show
that if at least one of the two series is absolutely convergent, then their Cauchy
product will be convergent.

Theorem 6.57. (Mertens’s5 theorem) Let the series
∑∞

n=0 an and
∑∞

n=0 bn be
convergent with sums A and B, respectively. If at least one of these two series is
also absolutely convergent, then their Cauchy product is convergent and its sum is
A · B.

Proof. Let the Cauchy product of the series
∑∞

n=0 an and
∑∞

n=0 bn be
∑∞

k=0 ck,
and let us denote the nth partial sums of the series

∑∞
n=0 an and

∑∞
n=0 bn by rn

and sn, respectively. Furthermore, let Sn = rn · sn − ∑n
k=0 ck. (This is the sum of

terms of Table (6.17) forming a triangle.) Since rn → A and sn → B, it is enough
to prove that Sn → 0. We may assume that

∑∞
n=1 an is absolutely convergent, since

the roles of the two series are symmetric. Let
∑∞

n=1 |an| = M . It is clear that

Sn =
n∑

i=0

ai ·
n∑

j=0

bj −
∑

i+j≤n

aibj ,

i.e., Sn is the sum of the terms aibj satisfying i ≤ n, j ≤ n and n < i + j. Thus
we have

Sn =
n∑

i=1

n∑

j=n+1−i

aibj =
n∑

i=1

ai · (sn − sn−i). (6.18)

The idea of the proof is that if n is large, then sn − sn−i is small for small i (since
(sn) is convergent), while for large i the sum

∑ |ai| is small (since the series∑∞
n=1 an is absolutely convergent). That is, Sn is small when n is large. In the

sequel we turn this idea into a mathematically precise proof.

5 Franz Carl Joseph Mertens (1840–1927), Polish–Austrian mathematician.
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The series (sn) is bounded, since it is convergent. Let |sn| ≤ K for every n.
Let ε > 0 be fixed, and apply the Cauchy criterion to both the convergent sequence
(sn) and the convergent series

∑∞
n=1 |an|. We obtain an N such that for every

N ≤ m < n, we have both |sn − sm| < ε and
∑n

i=m |ai| < ε.
Let n > 2N be arbitrary. If i ≤ N , then n − i > N and |sn − sn−i| < ε, which

implies ∣
∣
∣
∣
∣

N∑

i=1

ai · (sn − sn−i)

∣
∣
∣
∣
∣
≤ ε ·

N∑

i=1

|ai| ≤ ε · M.

On the other hand,

∣
∣
∣
∣
∣

n∑

i=N+1

ai · (sn − sn−i)

∣
∣
∣
∣
∣
≤

n∑

i=N+1

|ai| · 2K ≤ ε · 2K.

Adding these two estimates, we obtain, by (6.18), that |Sn| ≤ (2K + M) · ε for
every n > 2N . Since ε > 0 was arbitrary, this proves Sn → 0. �

Note that Theorem 6.57 does not claim the absolute convergence of the Cauchy
product of two series satisfying the conditions. In fact, this is false in general; see
Exercise 6.50.

Exercises

6.50. Show that the Cauchy product of the series
∑∞

n=0
(−1)n

(n+1)2 and
∑∞

n=0
(−1)n

(n+1)

is not absolutely convergent.

6.51. Find the square and Cauchy products of the series 1 − 1
2 − 1

4 − 1
8 − . . . and

1 + 1 + . . ..

6.52. Find the Cauchy product of the series
∑∞

n=0 xn/n! and
∑∞

n=0 yn/n!.

6.53. Show that the series
∑∞

n=1 n2 · xn is absolutely convergent for every |x| < 1,
and find its sum. Do the same with the series

∑∞
n=1 n3 · xn.

6.54. In the series 1 − 1
2 + 1

4 − 1
8 − 1

16 + 1
32 − . . ., the nth positive term is fol-

lowed by n negative terms. Find the sum of the series.

6.6 Summable Series

It was realized already by Euler that the investigation of certain divergent series can
lead to useful results for convergent series as well (see the appendix of this chapter).
Therefore, it would not be wise to banish all divergent series from mathematical
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analysis, and it would be useful to assign sum-like values to certain divergent series
in a noncontradictory manner. The nineteenth century saw the emergence of sev-
eral such methods. Here we discuss only the simplest of these, which requires only
the convergence of the averages of the partial sums of a series, instead of the con-
vergence of the partial sums themselves. Later, while exploring the topic of power
series we will discuss another, much more general, method.

Definition 6.58. We say that the infinite series
∑∞

n=1 an is summable with sum A
if the partial sums sn =

∑n
i=1 ai satisfy

lim
n→∞

s1 + . . . + sn

n
= A. (6.19)

Example 6.59. The series 1 − 1 + 1 − 1 − . . . is summable with sum 1/2. Indeed,
the partial sums satisfy

sn =

{
1 if n is odd,

0 if n is even.

If n → ∞, then we have

∣
∣
∣
∣
s1 + . . . + sn

n
− 1

2

∣
∣
∣
∣ ≤ 1

n
→ 0.

Consistency requires that we not assign different numbers to the same infinite
series. In other words, it is a natural requirement that if a series is convergent and
summable at the same time, then the two sums should be equal. We show that this
is true; furthermore, we show that the convergence of a series automatically implies
its summability.

Theorem 6.60. If the infinite series
∑∞

n=1 an is convergent and its sum is A, then
the series is also summable with sum A.

Proof. Let sn denote the nth partial sum of the series. We have to prove that if
sn → A, then (s1 + . . . + sn)/n → A. For a given ε > 0 there exists an N such
that if n ≥ N , then |sn − A| < ε. Let |s1 − A| + . . . + |sN − A| = K. If n ≥ N ,
then

|sn − A| =
∣
∣
∣
∣
(s1 − A) + . . . + (sn − A)

n

∣
∣
∣
∣ ≤ |s1 − A| + . . . + |sn − A|

n
≤

≤K + nε

n
< 2ε,

given that n > K/ε. Thus sn → A. �

By the previous theorem, the set of summable series is larger than the set of
convergent series: if a series is convergent, it is also summable, while the converse
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is not necessarily true, as we can see from the example of 1 − 1 + 1 − 1 − . . .. Of
course, the summable series constitute but a very small subset of the full set of all
infinite series. One can show that if the infinite series

∑∞
n=1 an is summable, then

an/n → 0 (see Exercise 6.56).
The following theorem of Tauber6 describes the exact relationship between

summable and convergent series.

Theorem 6.61. The infinite series
∑∞

n=1 an is convergent if and only if it is
summable and satisfies

lim
n→∞

a1 + 2a2 + . . . + nan

n
= 0. (6.20)

Proof. If a series is convergent, then it is also summable by Theorem 6.60, while
(6.20) follows from Exercise 6.5.

Now let
∑∞

n=1 an be summable with sum A, and let sn denote the nth partial
sum of the series. Then

s1 + . . . + sn−1

n
=

n − 1
n

· s1 + . . . + sn−1

n − 1
→ 1 · A = A

as n → ∞. Since

a1 + 2a2 + . . . + nan

n
=

sn + (sn − s1) + . . . + (sn − sn−1)
n

=

= sn − s1 + . . . + sn−1

n
,

it follows that (6.20) implies sn → A, i.e., the series is convergent and its sum
is A. �

The following corollary is also due to Tauber.

Corollary 6.62. If the series
∑∞

n=1 an is summable and n · an → 0, then it is con-
vergent.

Proof. It is easy to see that if n · an → 0, then (6.20) holds. (See the proof of The-
orem 6.60.) Therefore, we can apply Theorem 6.61. �

Hardy7 and Landau8 recognized that it is enough to assume the boundedness of
n · an in the previous theorem (see Exercise 6.60).

It is not hard to prove that the series
∑∞

n=1 sinnx is divergent for every x �= kπ,
while the series

∑∞
n=1 cosnx is divergent for every x (see Exercise 6.61). We now

show that for x �= 2kπ both series are summable, and we find their sums.

6 Alfred Tauber (1866–1942), Austrian mathematician.
7 Godfrey Harold Hardy (1877–1947), British mathematician.
8 Edmund Georg Hermann Landau (1877–1938), German mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Theorem 6.63.

(i) The series
∑∞

n=1 sinnx is summable for every x ∈ R, and its sum is zero if
x = 2kπ (k ∈ Z), and (1/2) · ctg(x/2) if x �= 2kπ (k ∈ Z).

(ii) The series
∑∞

n=1 cosnx is summable for every x �= 2kπ (k ∈ Z) and its sum
is −1/2.

Lemma 6.64. For x �= 2kπ (k ∈ Z) we have

|sinx + . . . + sinnx| ≤ 1
| sin(x/2)| and |cosx + . . . + cosnx| ≤ 1

| sin(x/2)|

for every n = 1, 2, . . ..

Proof. Adding the identities

2 sin
x

2
sin jx = cos

(
jx − x

2

)
− cos

(
jx +

x

2

)

and
2 sin

x

2
cos jx = sin

(
jx +

x

2

)
− sin

(
jx − x

2

)

for j = 1, . . . , n and dividing them by 2 sin(x/2) yields

sinx + . . . + sinnx =
cos x

2 − cos
(
nx + x

2

)

2 sin x
2

(6.21)

and

cosx + . . . + cosnx =
sin

(
nx + x

2

) − sin x
2

2 sin x
2

, (6.22)

from which the statements of the lemma follow immediately. �

Proof of Theorem 6.63. For x = 2kπ, every term of the series
∑∞

n=1 sinnx is
zero, and thus each of its partial sums and its sum are also zero. Thus we may
assume that x �= 2kπ (k ∈ Z). Let us use the notation sn = sn(x) =

∑n
j=1 sin jx

and cn = cn(x) =
∑n

j=1 cos jx. Slightly rewriting (6.21) and (6.22) gives

sn(x) =
1
2
ctg

x

2
− 1

2
ctg

x

2
· cosnx +

1
2

· sinnx

and

cn(x) = −1
2
+

1
2
ctg

x

2
· sinnx +

1
2

· cosnx.
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Therefore, we have

s1 + . . . + sn

n
=

1
2
ctg

x

2
− 1

2
ctg

x

2
· cn(x)

n
+

1
2

· sn(x)
n

(6.23)

and
c1 + . . . + cn

n
= −1

2
+

1
2
ctg

x

2
· sn(x)

n
+

1
2

· cn(x)
n

. (6.24)

Since the sequences (sn) and (cn) are bounded by Lemma 6.64, we obtain

s1 + . . . + sn

n
→ 1

2
ctg

x

2

and
c1 + . . . + cn

n
→ −1

2

as n → ∞. This is what we wanted to prove. �

Exercises

6.55. Is the series 1 − 2 + 3 − 4 + 5 − . . . summable?

6.56. Show that if the series
∑∞

n=1 an is summable, then an/n → 0. (S)

6.57. Show that if a series of nonnegative terms is summable, then it is also con-
vergent.

6.58. Show that if a1 ≥ a2 ≥ . . . ≥ 0, then the series a1 − a2 + a3 − a4 + . . . is
summable.

6.59. Show that if x, y ∈ [0, 2π] and x �= y, then the series
∑∞

n=1 sinnx sinny is
summable with sum zero. (H)

6.60. Show that if the series
∑∞

n=1 an is summable and the sequence (n · an) is
bounded from below or bounded from above, then the series is convergent. (∗ H S)

6.61. (a) Show that the series
∑∞

n=1 sinnx is convergent if and only if x = kπ
(k ∈ Z).
(b) Show that the series

∑∞
n=1 cosnx is divergent for every x.

(c) Show that the series
∑∞

n=1 sinn2x is convergent if and only if x = kπ
(k ∈ Z). (H S)
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6.7 Appendix: On the History of Infinite Series

The mathematicians of the eighteens and nineteenth centuries believed that infinite
series had fixed “predestined” sums, and that the arithmetic of infinite series was
more or less the same as that of finite series. (See the historical introduction of [7].)
The resulting oddities (such as the formula 1 + 2 + 4 + . . . = −1) and contradic-
tions (such as the question of the sum of the series 1 − 1 + 1 − 1 + . . .) were widely
known, and they caused heated debates. Leonhard Euler explores these problems in
detail in his book Introduction to Differentiation, published in 1755 (see p. 61 of
[4]). Euler adds the examples

1 − 2 + 4 − 8 + 16 − . . . =
1
3

(6.25)

and

1 − 3 + 9 − 27 + 81 − . . . =
1
4

(6.26)

to 1 + 2 + 4 + . . . = −1. (All these equations follow from the formula 1 + x +
x2 + . . . = 1/(1 − x) by plugging in x = −2, x = −3, and x = −1, respectively.)
Then he says:

“It is clear that the sum of the series (6.25) cannot be equal to 1/3, since the more
terms we actually sum, the farther away the result gets from 1/3. But the sum of any
series ought to be a limit the closer to which the partial sums should approach, the
more terms are added.

From this we conclude that series of this kind, which are called divergent, have
no fixed sums, since the partial sums do not approach any limit that would be the
sum for the infinite series.”

Yet Euler does not reject the idea of working with divergent series. Moreover,
he argues that the sums attributed to the divergent series can help us find true and
important results, and so, in a certain sense, the sums similar to Examples (6.25)
and (6.26) are also correct. Euler writes ([4, p. 61]):

“[T]hese sums, even though they seem not to be true, never lead to error. Indeed,
if we allow them, then we can discover many excellent results that we would not
have if we rejected them out of hand. Furthermore, if these sums were really false,
they would not consistently lead to true results . . . .”

Of course, Euler’s statement claiming that these sums never lead to errors can
be disproved easily: when we “derived” from the formula 1 + x + x2 + . . . =
1/(1 − x) that the sum of the series 1 − 1 + 1 − 1 − . . . is on the one hand 1/2,
while on the other hand the sum is either zero or 1, we could only be right at most
once, and we made errors at least twice. Euler based his claims on his own experi-
ence: his brilliant mathematical intuition led to great results based on his operations
on divergent series. However, we cannot be convinced of the truth of these results
until we support Euler’s claims with precise definitions and flawless proofs.
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Euler thought that the root of the problem was that the sum of a series is under-
stood as one of two different things: the result of a formal operation (which also
led to the formula 1 + x + x2 + . . . = 1/(1 − x)), and, in the case of convergent
series, the value to which the sequence of the partial sums converges. In the end,
he suggests that we work with divergent series as well, but always keeping in mind
whether the actual series is convergent (i.e., whether the sequence of its partial sums
converges to the sum of the series) or divergent.

Euler’s attitude did not dissolve the uncertainties surrounding infinite series at all.
In 1826, Abel still wrote: “In the field of mathematics we can hardly find a single
infinite series whose sum is strictly defined.”

The solution of the problem can be credited to Cauchy, who, in his book Alge-
braic Analysis turned Euler’s distinction between convergent and divergent series
into a strict mathematical definition and rejected the idea that a divergent series can
have a finite sum. This definition weeded out the anomalies regarding infinite series,
and Cauchy’s definition became generally accepted.

In the end, however, Euler was also right: with the help of the theory of summable
series and its generalizations, divergent series became legitimate objects of mathe-
matical analysis.



Chapter 7
Sequences and Series of Functions

We have seen several sequences and series whose terms depended on a parameter or
variable. Such sequences are an, n

√
a, an/n!,

(
1 + a

n

)n
and every power series. Now

we turn to the systematic investigation of those sequences and series that depend on
a variable.

7.1 The Convergence of Sequences of Functions

Definition 7.1. Let f1, f2, . . . be real valued functions defined on the set H . (We
do not assume that H ⊂ R.) We say that the sequence of functions (fn) converges
pointwise to the function f : H → R, if limn→∞ fn(x) = f(x) for every x ∈ H .
We use the notation fn → f .

Examples 7.2. 1. Let H = [0, 1] and fn(x) = xn for every x ∈ [0, 1] and n = 1,
2, . . .. Then the sequence of functions (fn) converges pointwise to the function

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1
(7.1)

(see [7, Theorem 4.16]).

2. Let H = R and fn(x) = arc tg (nx) for every x ∈ R and n = 1, 2, . . .. Since
limx→±∞ arc tg x = ±π/2 and arc tg 0 = 0, the sequence of functions (fn) con-
verges pointwise to the function

f(x) =

⎧
⎪⎨

⎪⎩

−π/2 if x < 0,

0 if x = 0,

π/2 if x > 0
. (7.2)

c© Springer Science+Business Media LLC 2017
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These examples show that the pointwise limit of continuous functions is not nec-
essarily continuous. This may be surprising, since a seemingly convincing argument
claims the exact opposite. Indeed, let the sequence of functions (fn) be convergent
pointwise to the function f , and let every function fn be continuous at the point a.
If x is close to a, then fn(x) is close to fn(a) since the functions fn are continuous
at a. Furthermore, for n large enough fn(x) is close to f(x), and fn(a) is close to
f(a) (since fn(x) → f(x) and fn(a) → f(a)). Since

|f(x) − f(a)| ≤ |f(x) − fn(x)| + |fn(x) − fn(a)| + |fn(a) − f(a)|,

we might believe that f(x) has to be close to f(a) if x is close to a; i.e., that f is
continuous at a.

Examples 7.2 show that this argument cannot be correct. The problem is the fact
that while for a fixed n and ε there exists some δ such that |fn(x) − fn(a)| < ε for
|x − a| < δ is true, but this δ might depend not only on ε, but also on n. For x fixed,
|f(x) − fn(x)| < ε holds for some n > n0, but this n0 may depend on x itself, and
it is also possible that the δ = δn depending on the indices n > n0 is so small that x
is not in the interval (a − δn, a + δn), and |fn(x) − fn(a)| < ε does not necessarily
hold.

Our previous examples illustrate the fallacies of this incorrect argument. Let
fn(x) = xn, a = 1, and let ε be 1/2. If |fn(x) − fn(a)| = |xn − 1| < 1/2, then
we have n

√
1/2 < x. However, for x < 1 fixed |f(x) − fn(x)| = |0 − xn| < 1/2

holds if and only if x < n
√

1/2, and |fn(x) − fn(a)| < 1/2 does not hold for these
values of n.

If we want to ensure the continuity of the limit function, it suffices to assume
that the numbers δn have a common, positive lower bound (i.e., there is some δ that
works for every n), or the indices n0 have a common upper bound (i.e., there is
some n0 that works for all x). We give a definition for both conditions below.

Definition 7.3. Let f1, f2, . . . be real functions defined on H ⊂ R
p. We say that

the sequence of functions (fn) is uniformly equicontinuous on H , if for every ε > 0
there exists a δ > 0 such that whenever x, y ∈ H and |x − y| < δ, then |fn(x) −
fn(y)| < ε for all n.

Theorem 7.4. Let the sequence of functions (fn) be uniformly equicontinuous on
H ⊂ R

p. If fn → f pointwise on H , then f is continuous on H .

Proof. Let ε > 0 be fixed, and let δ > 0 be chosen according to the definition of
the uniform equicontinuity of (fn). If x, y ∈ H and |x − y| < δ, then we have
|fn(x) − fn(y)| < ε for all n. Since fn(x) → f(x) and fn(y) → f(y), it fol-
lows that |f(x) − f(y)| ≤ ε. Obviously, this implies the (uniform) continuity of f
on H . �

Unfortunately, the condition of uniform equicontinuity is very hard to verify and
check. (For an exception, see Exercise 7.18.) In general, the condition requiring the
existence of a common n0, for every x, is more useful.
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Definition 7.5. Let f1, f2, . . . be real functions defined on H . (We do not assume
H ⊂ R

p.) We say that the sequence of functions (fn) is uniformly convergent to
the function f : H → R, if for every ε > 0 there exists an n0 such that |fn(x) −
f(x)| < ε for every x ∈ H and every n ≥ n0.

(Note that, while the conditions of Definitions 7.3 and 7.5 are different, these defi-
nitions coincide in some cases; see Exercise 7.19.)

Examples 7.6. 1. The sequence of functions xn converges uniformly to the constant
zero function on the interval [0, a], for every 0 < a < 1. Indeed, for ε > 0 fixed,
an → 0 implies the existence of some n0 such that an0 < ε. We have

xn ≤ an ≤ an0 < ε

for all x ∈ [0, a] and n ≥ n0, which implies our claim.

2. The sequence of functions xn does not converge uniformly to the constant zero
function on [0, 1). Indeed, for every n there is an x ∈ [0, 1) such that xn > 1/2
(every number works between n

√
1/2 and 1), thus there is no n0 for ε = 1/2 such

that |xn − 0| < ε holds for every x ∈ [0, 1) and n ≥ n0.

3. The sequence of functions arc tg (nx) converges uniformly to the constant
π/2 function on the interval [a,∞), for every a > 0. Indeed, let ε > 0 be given.
Since limx→∞ arc tg x = π/2, there is an n0 such that π/2 − ε < arc tg (na) <
π/2 for all n ≥ n0. If x ≥ a and n ≥ n0, then we have π/2 − ε < arc tg (na) ≤
arc tg (nx) < π/2, proving the uniform convergence on [a,∞).

4. The sequence of functions arc tg (nx) does not converge uniformly to the constant
π/2 function on the interval (0,∞). Indeed, limx→0 arc tg x = 0 implies the exis-
tence of c > 0 such that arc tg c < 1. Thus arc tg (nx) < 1 for every n at the point
x = c/n > 0, and there is no n0 for ε = 1/2 such that |arc tg nx − (π/2)| < ε
holds for every x ∈ (0,∞) and n ≥ n0.

Remark 7.7. Obviously, if the sequence of functions (fn) is uniformly convergent
on the set H , then (fn) is also uniformly convergent on every subset of H .

On the other hand, Examples 7.6 show that a sequence of functions can be uni-
formly convergent on every closed subinterval of an interval I , without being uni-
formly convergent on I itself.

Weierstrass’ approximation theorem states that for every continuous function
f : B → R defined on a box B ⊂ R

p and for every ε > 0 there exists a polyno-
mial p such that |f(x) − p(x)| < ε for every x ∈ B. (See Theorem 1.54 and Exer-
cises 1.59–1.63. See also Remark 7.85, where we give another proof of the one
dimensional case.) We can reformulate this theorem as follows.

Theorem 7.8. LetB ⊂ R
p be a box. Then, for every continuous function f : B →R

there exists a sequence of polynomials (pn) such that (pn) converges uniformly to
f on B.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Proof. By Weierstrass’ approximation theorem, for every n there exists a polyno-
mial pn such that |f(x) − pn(x)| < 1/n for every x ∈ B. Obviously, the sequence
of polynomials (pn) converges uniformly to f on B. �

The following theorem gives the precise condition for the uniform convergence –
without even knowing the limit function.

Theorem 7.9. (Cauchy criterion) The sequence of functions (fn) is uniformly
convergent on the set H if and only if for every ε > 0 there exists an N such that

|fn(x) − fm(x)| < ε (7.3)

for every x ∈ H and n,m ≥ N .

Proof. Let fn → f be uniformly convergent on the set H . For ε > 0 fixed, let N be
an index such that |fn(x) − f(x)| < ε/2 for every x ∈ H and n ≥ N . Obviously,
(7.3) holds for every x ∈ H and n,m ≥ N .

Now let (fn) satisfy the condition of the theorem. Then for every x ∈ H fixed,
(fn(x)) is a Cauchy sequence of real numbers, thus it is convergent. Let f(x) =
limn→∞ fn(x) for every x ∈ H .

In this way we defined the function f : H → R. We now prove that fn → f
uniformly on the set H . Let ε > 0 be fixed, and let N be an index such that (7.3)
holds for every x ∈ H and n,m ≥ N . For n ≥ N fixed, (7.3) implies

|fn(x) − f(x)| = lim
m→∞ |fn(x) − fm(x)| ≤ ε

for every x ∈ H , proving our statement. �

Theorem 7.10. Let the sequence of functions (fn) converge uniformly to the func-
tion f on the set H ⊂ R

p, and let α be a limit point of H . (For p = 1, i.e., when
H ⊂ R, we allow the cases α = ∞ and α = −∞ as well.) If limx→α, x∈H fn(x) =
bn exists and it is finite for every n, then the finite limit limx→α, x∈H f(x) = b also
exists and limn→∞ bn = b.

Proof. Let ε > 0 be fixed, and choose the index N such that |fn(x) − fm(x)| < ε
holds for every x ∈ H and n,m ≥ N . Then

|bn − bm| = lim
x→α
x∈H

|fn(x) − fm(x)| ≤ ε

for every n,m ≥ N . This shows that the sequence (bn) satisfies the Cauchy condi-
tion, and hence it is convergent. Let b = limn→∞ bn.

Let ε > 0 be given, and choose an index n such that |fn(x) − f(x)| < ε for every
x ∈ H and, furthermore, |bn − b| < ε also holds. (Every large enough n works.)
Since
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lim
x→α
x∈H

fn(x) = bn,

α has a punctured neighborhood U̇ such that |fn(x) − bn|< ε for every x ∈ H ∩ U̇ .
Then

|f(x) − b| ≤ |f(x) − fn(x)| + |fn(x) − bn| + |bn − b| < 3ε

for every x ∈ H ∩ U̇ , which proves limx→α, x∈H f(x) = b. �

Remarks 7.11. 1. The previous theorem can be formalized as follows. When we
have uniform convergence, then

lim
n→∞ lim

x→α
x∈H

fn(x) = lim
x→α
x∈H

lim
n→∞ fn(x),

i.e., the limits x → α and n → ∞ are interchangeable.

2. Examples 7.2 show that the statement of the theorem is not necessarily true when
we assume pointwise convergence only. For example,

lim
n→∞ lim

x→1−0
xn = 1 
= 0 = lim

x→1−0
lim

n→∞ xn,

and
lim

n→∞ lim
x→0+0

arc tg (nx) = 0 
= π/2 = lim
x→0+0

lim
n→∞ arc tg (nx).

Theorem 7.12. Let the sequence of functions (fn) converge uniformly to the func-
tion f on the set H ⊂ R

p. If each fn is continuous at a point a ∈ H restricted to
H , then f is also continuous at a restricted to H .

Proof. If a is an isolated point of H , then there is nothing to prove, since every
function is continuous at a restricted to H (see Remark 1.43). On the other hand,
when a is a limit point of H , then we have fn(a) = limx→a, x∈H fn(x) for every
n. By Theorem 7.10, this gives

lim
x→a
x∈H

f(x) = lim
n→∞ fn(a) = f(a),

and thus f is continuous at a. �

Remark 7.13. Our previous theorem states that the uniform limit of continuous
functions is also continuous. In general, uniform convergence of a sequence of func-
tions is not necessary for the continuity of the limit function to hold. Consider the
functions fn(x) = xn − x2n. It is easy to see that the sequence of functions (fn)

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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is pointwise convergent to the constant zero function on the interval [0, 1]. Thus the
limit function is continuous. However, the convergence is not uniform, since

fn

(
n
√

1/2
)

=
1
2

− 1
4

=
1
4

for every n, and the condition of uniform convergence does not hold for ε < 1/4.
The following theorem shows that, in some special cases, the continuity of the

limit function implies uniform convergence.

Theorem 7.14. (Dini’s1 theorem) Let the functions fn be continuous on a bounded
and closed set K ⊂ R

p, and suppose that f1(x) ≤ f2(x) ≤ . . . for every x ∈ K. If
the sequence of functions (fn) is pointwise convergent to a continuous function on
K, then the convergence is uniform.

Proof. Let the sequence of functions (fn) be pointwise convergent to the function
f , and let f be continuous on K. We may assume that f is the constant zero function
on K, since otherwise we could switch to the sequence of functions (fn − f).

Obviously, fn(x) ≤ 0 for every x ∈ K and every n. Suppose that the conver-
gence is not uniform. Then there exists an ε > 0 such that, for infinitely many n,
there is a point xn ∈ K with fn(xn) < −ε. We may assume that there is such an xn

for every n, because we can remove the functions fn from the sequence for which
such an xn does not exist. Since K is bounded, so is (xn), and thus (xn) has a con-
vergent subsequence by the Bolzano-Weierstrass theorem. We may assume that the
sequence (xn) is convergent itself, since may remove those functions fn for which
n does not belong to the subsequence (nk).

Let limn→∞ xn = c. Then, as K is closed, we have c ∈ K and, by assumption,
the functions fn are continuous at c. Since fn(c) → 0, there exists an index N
such that |fN (c)| < ε. As the function fN is continuous at c, there is a neighbor-
hood U of c such that |fN (x)| < ε for every x ∈ U ∩ K. Since xn → c, we have
xn ∈ U for every n large enough. Choose n such that n ≥ N and xn ∈ U . Then
−ε < fN (xn) ≤ fn(xn). On the other hand, fn(xn) < −ε by the choice of xn. We
reached a contradiction, which proves the theorem. �

Now we consider the possibility of interchanging the limit operation and integra-
tion.

Examples 7.15. 1. Let fn(x) = (n + 1) · xn for 0 ≤ x < 1, and fn(1) = 0 for
every n. We have fn(x) → 0 for every x ∈ [0, 1], i.e., the sequence of functions
(fn) is pointwise convergent to the constant zero function on [0, 1]. However,∫ 1

0
fn(x) dx = 1 for every n, thus

lim
n→∞

1∫

0

fn(x) dx = 1 
= 0 =

1∫

0

(
lim

n→∞ fn(x)
)

dx.

1 Ulisse Dini (1845–1918), Italian mathematician.
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2. Let fn(0) = fn(1/n) = f(1) = 0, fn(1/(2n)) = n, and let fn be linear on
each of the intervals [0, 1/(2n)], [1/(2n), 1/n], [1/n, 1] for every n = 1, 2, . . ..

7.1. Figure

We have fn(x) → 0 for every x ∈ [0, 1]. Indeed,
this is obvious for x = 0. For 0 < x ≤ 1, how-
ever, we have fn(x) = 0 for every n > 2/x. On
the other hand,

∫ 1

0
fn(x) dx = 1/2 for every n,

and thus

lim
n→∞

1∫

0

fn(x) dx =
1

2
�= 0 =

1∫

0

(
lim

n→∞ fn(x)
)
dx.

By the following theorem, uniform convergence is
a remedy for this problem as well.

Theorem 7.16. Let the sequence of functions
(fn) be uniformly convergent to the function f on

the nonempty and Jordan measurable set A ⊂ R
p. If fn is integrable on A for every

n, then f is also integrable on A, and

∫

A

f(x) dx = lim
n→∞

∫

A

fn(x) dx. (7.4)

Proof. By uniform convergence, there exists an index N(ε) for every ε > 0 such
that |fn(x) − f(x)| < ε for every x ∈ A and n ≥ N(ε). Since the functions fn are
bounded, f is also bounded. Let ε > 0 and n ≥ N(ε) be fixed. Let ω(g;B) denote
the oscillation of the function g on the nonempty set B, and let ΩF (g) denote the
oscillatory sum of the function g corresponding to the partition F . Since fn is inte-
grable on A, there is a partition F = {A1, . . . , An} such that ΩF (fn) < ε. Since
|f(x) − fn(x)| < ε for every x ∈ A, we have ω(f ;Ai) ≤ ω(fn;Ai) + 2ε for every
i. Thus we have

ΩF (f) ≤ ΩF (fn) + 2εμ(A) < ε · (1 + 2μ(A)).

Because this is true for every ε > 0, it follows that f is integrable on A.
Let

∫
A

fn(x) dx = In and
∫

A
f(x) dx = I . If n ≥ N(ε), then

|In − I| =
∣
∣
∣
∣

∫

A

(fn − f) dx

∣
∣
∣
∣ ≤

∫

A

|fn − f | dx ≤ ε · μ(A).

This is true for every ε > 0 and for every n ≥ N(ε), and thus we have In → I . �



236 7 Sequences and Series of Functions

Finally, we consider the possibility of interchanging the limit operation and dif-
ferentiation.

Examples 7.17. 1. Let fn(x) =
(
sin(nx)

)
/n for every x ∈ R and n = 1, 2, . . ..

Then fn → 0 uniformly on R. Indeed, for ε > 0 fixed, we have

∣
∣
∣
∣
sin(nx)

n

∣
∣
∣
∣ ≤ 1

n
< ε

for every x ∈ R and n > 1/ε. Thus (limn→∞ fn)′ ≡ 0. On the other hand, f ′
n(x) =

cos(nx) does not converges to zero for any x (see Exercise 6.61(b)). Therefore,

lim
n→∞ f ′

n 
=
(

lim
n→∞ fn

)′
.

Moreover, for x = 0 we have limn→∞ f ′
n(x) = 1, while (limn→∞ fn)′ (x) = 0.

2. By theorem 7.8, there exists a sequence of polynomials that converges uniformly
to the function f(x) = |x| on the interval [−1, 1]. (This can be proved directly; see
Exercise 7.3.) This example shows that the limit of a sequence of differentiable
functions is not necessarily differentiable. Moreover, since there are continuous and
nowhere differentiable functions (see Theorem 7.38), Theorem 7.8 implies the exis-
tence of a uniformly convergent sequence of differentiable functions (and even poly-
nomials) whose limit is nowhere differentiable.

As we saw above, taking the derivative and taking the limit are not interchange-
able operations, not even for uniformly convergent sequences. We now prove that
assuming the uniform convergence of the sequence of the derivatives implies the
interchangeability of these operations.

Theorem 7.18. Let the functions fn be continuously differentiable on a bounded
interval I , and suppose that

(i) the sequence of functions (f ′
n) is uniformly convergent to the function g on I ,

and

(ii) there exists at least one point x0 ∈ I such that the sequence (fn(x0)) is con-
vergent.

Then the sequence of functions (fn) converges uniformly to a function f on I ,
the function f is differentiable, and f ′(x) = g(x) for every x ∈ I .

Proof. By Theorem 7.12, g is continuous on I . Let f(x) =
∫ x

x0
g(t) dt for every

x ∈ I . The uniform convergence of the sequence of functions (f ′
n) implies that for

every ε > 0 there exists an index N such that |f ′
n(x) − g(x)| < ε for every x ∈ I

and n ≥ N . Let |I| denote the length of the interval I . Then, for every x ∈ I and
n ≥ N we have

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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|fn(x) − fn(x0) − f(x)| =
∣
∣
∣
∣

∫ x

x0

(f ′
n(t) − g(t)) dt

∣
∣
∣
∣ ≤ ε · |x − x0| ≤ ε · |I|.

Therefore, we have fn → f + b uniformly on I , where b = limn→∞ fn(x0). Since
g is continuous and f is the integral function of g, we have f ′ = g (see [7, part (iii)
of Theorem 15.5]), and the theorem is proved. �

Remark 7.19. The conditions of the theorem above can be relaxed: instead of the
continuous differentiability of the functions fn it is enough to assume that fn is
differentiable for every n (see Exercise 7.17).

Exercises

7.1. Show that the sequence of functions (cos nx) is only convergent at the points
x = 2kπ (k ∈ Z), and that the sequence of functions (sin nx) is only convergent at
the points x = kπ (k ∈ Z).

7.2. Find the points of convergence of the following sequences of functions. Find
the intervals where these sequences of functions are uniformly convergent.

(a) n
√|x|, (b) xn/n!, (c) xn − xn+1,

(d) xn/(1 + x2n), (e)
(
1 + x

n

)n
, (f) n

√
1 + x2n,

(g)
√

x2 + n−2.

7.3. Let p0 ≡ 0 and let pn+1(x) = pn(x) + (x2 − p2n(x))/2 for every x ∈ R

and n = 0, 1, . . .. Show that 0 ≤ |x| − pn(x) ≤ 2/(n + 1) for every n and
x ∈ [−1, 1]. (H)

7.4. Let fn : [a, b] → R be continuous for every n = 1, 2, . . .. Show that if (fn) is
uniformly convergent on (a, b), then it is uniformly convergent on [a, b].

7.5. Let fn : R → R be continuous for every n = 1, 2, . . .. Show that if (fn) is
uniformly convergent on Q, then it is uniformly convergent on R.

7.6. Construct a pointwise convergent sequence of continuous functions fn :
[0, 1] → R such that the limit function has a point of discontinuity at every ratio-
nal point of [0, 1].

7.7. Construct a sequence of continuous functions fn : [0, 1] → R such that fn → 0
pointwise on [0, 1], but no subsequence of (fn) converges uniformly on any subin-
terval of [0, 1]. (∗ H)

7.8. Show that if the sequence of functions fn : H → R is uniformly convergent on
every countable subset of H , then (fn) is also uniformly convergent on H .
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7.9. Let fn → 0 uniformly on H . Show that the sequence of functions gn = max
(f1, . . . , fn) converges uniformly on H .

7.10. Find an example of a sequence of continuous functions fn : [0, 1] → [0, 1]
such that (fn) does not have a pointwise convergent subsequence (on any inter-
val). (H)

7.11. Let fn : [a, b] → R be monotone for every n = 1, 2 . . .. Show that if the
sequences (fn(a)) and (fn(b)) are bounded, then (fn) has a pointwise convergent
subsequence. (H)

7.12. Let fn : [a, b] → R be monotone for every n. Show that if (fn) is pointwise
convergent to a continuous function on [a, b], then (fn) is uniformly convergent on
[a, b]. (H)

7.13. Let fn(x) = n2(xn−1 − xn) (x ∈ [0, 1]). Show that fn → 0 pointwise, but
not uniformly on [0, 1]. Check that

∫ 1

0
fn dx does not converge to zero.

7.14. Let f : [0, 1] → R be continuous. Show that the sequence of functions

fn(x) =
1
n

·
(

f
(x

n

)
+ f

(
x + 1

n

)
+ . . . + f

(
x + n − 1

n

))

is uniformly convergent on [0, 1]. What is the limit of this sequence of functions?

7.15. Does there exist a sequence of continuously differentiable functions fn :
R → R such that fn(x) → x and f ′

n(x) → 0 for every x? (∗)
7.16. Let fn : R → R be continuously differentiable functions, and let fn → f
pointwise, where f is an everywhere differentiable function. Show that there exists
a point x and a sequence of indices n1 < n2 < . . . such that limk→∞ f ′

nk
(x) =

f ′(x). (H)

7.17. Let the functions fn be differentiable on a bounded interval I . Suppose that
the sequence of functions (f ′

n) converges to the function g uniformly on I , and
there is a point x0 ∈ I such that the sequence (fn(x0)) is convergent. Show that the
sequence of functions (fn) converges to a function f uniformly on I , where f is
differentiable, and f ′(x) = g(x) for every x ∈ I . (S)

7.18. Show that if H ⊂ R, K > 0, and the functions fn : H → R have the prop-
erty |fn(x) − fn(y)| ≤ K · |x − y|, for every x, y ∈ H and n = 1, 2 . . ., then the
sequence of functions (fn) is uniformly equicontinuous.

7.19. Let fn : [a, b] → R be continuous functions, and let the sequence of functions
(fn) be pointwise convergent to the function f on [a, b]. Show that the fn → f
convergence is uniform on [a, b] if and only if the sequence of functions (fn) is
uniformly equicontinuous. (I.e., the conditions of Definitions 7.3 and 7.5 are the
same in this special case.) (H)
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7.2 The Convergence of Series of Functions

So far we considered sequences of functions defined on a set H . Now we turn to
infinite series of functions defined on a set; we call them series of functions.

Definition 7.20. Let f1, f2, . . . be real valued functions defined on the set H . We
say that the series of functions

∑∞
n=1 fn is pointwise convergent, and its sum is the

function f : H → R, if the infinite series
∑∞

n=1 fn(x) is convergent, and its sum is
f(x) for every x ∈ H . We use the notation

∑∞
n=1 fn = f .

Obviously,
∑∞

n=1 fn = f if and only if the sequence of functions sn =
∑n

i=1 fi

is pointwise convergent to the function f on H .

Definition 7.21. Let
∑∞

n=1 fn = f on the setH . We say that the series of functions∑∞
n=1 fn is uniformly convergent on H , if the sequence of functions sn =

∑n
i=1 fi

is uniformly convergent to f on H .

Examples 7.22. 1.We show that the power series
∑∞

n=0 xn is uniformly convergent
on the interval [−a, a], for every 0 < a < 1. We know that

∑∞
n=0 xn = 1/(1 − x)

for every x ∈ (−1, 1). Since sn(x) =
∑n−1

i=0 xi = (1 − xn)/(1 − x), we have

∣
∣
∣
∣sn(x) − 1

1 − x

∣
∣
∣
∣ =

|x|n
1 − x

≤ an

1 − a

for every |x| ≤ a. Since an → 0, it follows that for every ε > 0 there exists some n0

such that an0/(1 − a) < ε. Therefore, |sn(x) − (1/(1 − x))| < ε for every |x| ≤ a
and n > n0.

2. The convergence of the power series
∑∞

n=0 xn is not uniform on the interval
(−1, 1). Indeed, the function sn is bounded on (−1, 1) (because sn is a polynomial).
On the other hand, 1/(1 − x) is not bounded on (−1, 1), and thus, for any ε, there
does not exists n such that |sn(x) − (1/(1 − x))| < ε holds for every x ∈ (−1, 1).

We know that every reordering of an infinite series is convergent if and only if
the series is absolutely convergent, and its sum is the same as the sum of the original
series. (See 6.28.) It follows that every reordering of a series of functions

∑∞
n=1 fn

is pointwise convergent on the set H if and only if the series of functions
∑∞

n=1 |fn|
is pointwise convergent on H .

Definition 7.23. We say that the series of functions
∑∞

n=1 fn is absolutely conver-
gent on the set H if

∑∞
n=1 |fn| is pointwise convergent on H .

Remark 7.24. The absolute and uniform convergence of series of functions are two
independent properties, i.e., neither follows from the other. E.g., the power series∑∞

n=0 xn is absolutely convergent, but it is not uniformly convergent on the interval
(−1, 1) (see Example 7.22.2.). On the other hand, it is easy to see, that if

∑∞
n=0 an

is a convergent infinite series, where fn is the constant an function for every n on
a non-empty set H , then the series of functions

∑∞
n=1 fn is uniformly convergent

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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on H . Choosing an = (−1)n−1/n yields a uniformly convergent series of functions
that is not absolutely convergent.

The exact condition of the uniform convergence of a series of functions is given
by the following theorem.

Theorem 7.25. (Cauchy criterion) The series of functions
∑∞

n=1 fn is uniformly
convergent on the set H if and only if, for every ε > 0, there exists an N such that

∣
∣
∣
∣
∣

m∑

i=n+1

fi(x)

∣
∣
∣
∣
∣
< ε

holds for every x ∈ H and N ≤ n < m.

Proof. This is immediate from Theorem 7.9. �

Theorem 7.25 implies that if
∑∞

n=1 |fn| is uniformly convergent on the set H ,
then

∑∞
n=1 fn is also uniformly convergent on H . The following theorem goes one

step further.

Theorem 7.26. If
∑∞

n=1 |fn| is uniformly convergent on the set H , then every
reordering of the series of functions

∑∞
n=1 fn is also uniformly convergent on H .

Proof. Let ε > 0 be fixed. By the Cauchy criterion, there exists an N such that∑m
i=N+1 |fi(x)| < ε for every x ∈ H and N < m.

Let
∑∞

k=1 fnk
be a reordering of our original series of functions. For K large

enough, the indices n1, . . . , nK contain each of the numbers 1, . . . , N , and thus
nk > N for every k ≥ K. If K ≤ p < q and m = maxp<k≤q nk, then N <
nk ≤ m for every p < k ≤ q. Thus

∣
∣
∣
∣
∣
∣

q∑

k=p+1

fnk
(x)

∣
∣
∣
∣
∣
∣
≤

q∑

k=p+1

|fnk
(x)| ≤

m∑

i=N+1

|fi(x)| < ε

for every x ∈ H . Hence, the series of functions
∑∞

n=1 fnk
is uniformly convergent

on H by the Cauchy criterion. �

The converse of this theorem is also true: if every reordering of a series of func-
tions

∑∞
n=1 fn is uniformly convergent, then

∑∞
n=1 |fn| is also uniformly conver-

gent (see Exercise 7.24). Using this statement it is not difficult to show that there
exists a series of functions

∑∞
n=1 fn such that

∑∞
n=1 fn is absolutely and uniformly

convergent on H , but it has a non-uniformly convergent reordering. E.g., the series
of functions

∑∞
n=1(−x)n(1 − x) on the interval [0, 1] has this property (see Exer-

cise 7.25).
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Since the conditions of the Cauchy criterion are (generally) hard to verify, it is
important to have some sufficient criteria for the uniform convergence that are easy
to check. The following theorem is the most important of these.

Theorem 7.27. (Weierstrass criterion) Suppose we have real numbers an and an
index n0 such that the infinite series

∑∞
n=1 an is convergent, and |fn(x)| ≤ an for

every x ∈ H and n ≥ n0. Then the series of functions
∑∞

n=1 fn is uniformly con-
vergent on the set H .

Proof. Let ε > 0 be fixed. By the Cauchy criterion for infinite series (Theo-
rem 6.10) there exists an index N such that

|an+1 + an+2 + . . . + am| < ε

for every N ≤ n < m. Obviously, for every x ∈ H and n ≥ max(n0, N), we have

|fn+1(x) + fn+2(x) + . . . + fm(x)| < ε,

and thus the uniform convergence of the series of functions
∑∞

n=1 fn follows from
Theorem 7.25. �

In Example 7.22.1. we saw that the power series
∑∞

n=0 xn is uniformly con-
vergent of on the interval [−a, a], for every 0 < a < 1. We now prove a similar
statement for every power series with the help of the Weierstrass criterion.

Theorem 7.28. If x0 
= 0 and the infinite series
∑∞

n=0 anxn
0 is convergent, then

the power series
∑∞

n=0 anxn is absolutely and uniformly convergent on the interval
[−q|x0|, q|x0|], for every 0 < q < 1.

Proof. Since
∑∞

n=0 anxn
0 is convergent, the sequence (anxn

0 ) converges to zero,
and thus there exists an n0 such that |anxn

0 | ≤ 1 for every n ≥ n0. If x ∈ [−q|x0|,
q|x0|], then

|anxn| = |anxn
0 | ·

∣
∣
∣
∣

x

x0

∣
∣
∣
∣

n

≤ 1 · qn

for every n ≥ n0. Since the series
∑∞

n=0 qn is convergent, it follows from theWeier-
strass criterion that

∑∞
n=0 |anxn| is uniformly convergent on [−q|x0|, q|x0|]. �

We say that the sequence of functions (fn) is uniformly bounded on H , if there
exists a number K such that |fn(x)| ≤ K for every n and x ∈ H . The following
two criteria can also be used in many cases.

Theorem 7.29. Let fn and gn (n = 1, 2, . . .) be real valued functions on the set H ,
and suppose that

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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(i) the sequence (fn(x)) is monotone decreasing for every x ∈ H ,

(ii) fn → 0 uniformly on H , and

(iii) the partial sums of the series
∑∞

n=1 gn are uniformly bounded on H .

Then the series of functions
∑∞

n=1 fngn is uniformly convergent on H .

Proof. Let the nth partial sum of the series
∑∞

n=1 gn be sn, and let |sn(x)| ≤ K
for every n and every x ∈ H with K > 0. Let ε > 0 be fixed. By condition (ii),
we can pick an index N such that |fn(x)| < ε/K for every n ≥ N and x ∈ H . If
N ≤ n < m then, by the Abel inequality (see p. 214), we have

−ε < fn(x) · (−K) ≤ fn(x)gn(x) + . . . + fm(x)gm(x) ≤ fn(x) · K < ε,

that is, |fn(x)gn(x) + . . . + fm(x)gm(x)| < ε for every x ∈ H . Therefore, the
series

∑∞
n=1 fngn satisfies the conditions of the Cauchy criterion, hence it is uni-

formly convergent. �

Corollary 7.30. (Dirichlet criterion) Let (λn) be a monotone decreasing sequence
of real numbers that converges to zero. If the series of the partial sums of the series
of functions

∑∞
n=1 gn is uniformly bounded on H , then

∑∞
n=1 λngn is uniformly

convergent on H . �

Example 7.31. For c > 0, the series of functions
∑∞

n=1(sin nx)/nc and
∑∞

n=1

(cos nx)/nc are uniformly convergent on the interval [δ, 2π − δ], for every 0<δ<π.
Indeed, on one hand, the sequence (n−c) is monotone decreasing and con-

verges to zero, on the other hand, by Lemma 6.64, the partial sums of the series∑∞
n=1 sin nx and

∑∞
n=1 cos nx are uniformly bounded on [δ, 2π − δ].

Theorem 7.32. Let fn and gn (n = 1, 2, . . .) be real valued functions on the set H ,
and suppose that

(i) the sequence of functions (fn) is uniformly bounded on H ,

(ii) the sequence (fn(x)) is monotone for every x ∈ H , and

(iii) the series of functions
∑∞

n=1 gn is uniformly convergent on H .

Then the series of functions
∑∞

n=1 fngn is also uniformly convergent on H .

Proof. We use the following variant of Abel’s inequality: if c1, . . . , cn is a mono-
tone sequence of real numbers and |d1 + . . . + dk| ≤ M for every k = 1, . . . , n,
then ∣

∣
∣
∣
∣

n∑

i=1

cidi

∣
∣
∣
∣
∣
≤ (|c1| + 2|cn|) · M.

In order to prove this we may assume that c1 ≥ . . . ≥ cn, since otherwise we could
switch to the numbers −ci. We have c1 − cn ≥ . . . ≥ cn−1 − cn ≥ 0. Thus, by
Abel’s inequality,

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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∣
∣
∣
∣
∣

n∑

i=1

(ci − cn)di

∣
∣
∣
∣
∣
≤ (c1 − cn) · M,

and
∣
∣
∣
∣
∣

n∑

i=1

cidi

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

n∑

i=1

(ci − cn)di

∣
∣
∣
∣
∣
+ |cn| ·

∣
∣
∣
∣
∣

n∑

i=1

di

∣
∣
∣
∣
∣
≤

≤ (c1 − cn + |cn|) · M ≤ (|c1| + 2|cn|) · M.

Nowwe turn to the proof of our theorem. Let |fn(x)| < K for every n, and let ε > 0
be fixed. The uniform convergence of the series of functions

∑∞
n=1 gn implies the

existence of an N such that |∑m
i=n gi(x)| < ε/(3K) for every N ≤ n < m and

x ∈ H . Since the sequence (fi(x)) is monotone, the inequality above implies

∣
∣
∣
∣
∣

m∑

i=n

fi(x)gi(x)

∣
∣
∣
∣
∣
≤ (|fn(x)| + 2|fm(x)|) · (ε/(3K)) ≤ ε

for everyN ≤ n < m and x ∈ H . Applying the Cauchy criterion yields the uniform
convergence of

∑∞
n=1 fngn on H . �

Corollary 7.33. (Abel’s criterion) Suppose that the sequence of functions (fn) is
uniformly bounded on H , and the sequence (fn(x)) is monotone for every x ∈ H . If
the infinite series

∑∞
n=1 μn is convergent, then the series of functions

∑∞
n=1 μnfn

is uniformly convergent on H . �

The following application of Abel’s criterion is a supplement to Theorem 7.28.

Theorem 7.34. Let x0 
= 0, and let the infinite series
∑∞

n=0 anxn
0 be convergent.

Then the power series
∑∞

n=0 anxn is uniformly convergent on the interval [0, x0].

Proof. Apply Abel’s criterion with μn = anxn
0 and fn(x) = (x/x0)n. �

Similarly to the case of the sequences of functions, we need to know whether
certain properties of the terms of a series of functions can be transmitted to the
sum. We know that the properties of continuity, integrability and differentiability
are inherited by finite sums. As for infinite sums, Theorems 7.10 and 7.12 imply the
following.

Theorem 7.35. Suppose that
∑∞

n=1 fn = f uniformly on the set H ⊂ R
p, and let

α be a limit point of the set H . (For H ⊂ R, we also allow α = ∞ and α = −∞.) If
the limit limx→α, x∈H fn(x) = bn exists and it is finite for every n, then the infinite
series

∑∞
n=1 bn is convergent, and limx→α, x∈H f(x) =

∑∞
n=1 bn. �

Theorem 7.36. Suppose that
∑∞

n=1 fn = f uniformly on the set H ⊂ R
p. If the

functions fn are continuous at a point a ∈ H restricted to H , then f is also contin-
uous at a restricted to H . �
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Examples 7.37. 1. Consider the series
∑∞

k=0 bk cos(akx) and
∑∞

k=0 bk sin(akx),
where |b| < 1 and a ∈ R is arbitrary. Both series of functions are uniformly con-
vergent on R, since they satisfy the conditions of Weierstrass’ criterion. Thus, by
Theorem 7.36, both sums are continuous.

2. Let 〈x〉 denote the distance of the real number x to the closest integer. The func-
tion 〈x〉 is continuous and periodic with the period 1 on the real line. The function

T (x) =
∞∑

n=0

〈2nx〉
2n

is called the Takagi function2 (named after its first “inventor”). (Figure 7.2 shows
the restriction of the Takagi function to [0, 1]. Note that the figure is only an approx-
imation. If fact, the function has infinitely many local extrema in every interval.)
Since the series of functions above also satisfies the conditions of the Weierstrass
criterion and its terms are continuous, it follows by Theorem 7.36, that the Takagi
function is continuous on the real line.

We hinted at the existence of everywhere continuous but nowhere differentiable
functions several times so far. Example 7.37.2. presents one such function.

Theorem 7.38. The Takagi function is continuous everywhere, but it is nowhere
differentiable.

7.2. Figure

Proof. We only have to prove that T is not differentiable at any point a ∈ R. Let
a ∈ R be arbitrary, and let xi denote the largest number k/2i such that k ∈ Z

and k/2i ≤ a. Also, let yi denote the smallest number k/2i such that k ∈ Z and
k/2i >a. Then we have xi ≤ a < yi and yi − xi = 1/2i for every i. Suppose that
T is differentiable at a. Then

2 Takagi Teiji (1875–1960), Japanese mathematician.
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lim
i→∞

T (yi) − T (xi)
yi − xi

= T ′(a). (7.5)

Indeed if xi < a, for every i, then this follows from Exercise 7.33. On the other
hand, if xi = a for some i, then xn = a for every n ≥ i, and (7.5) follows from the
definition of differentiability. Now we have

T (yi) − T (xi)
yi − xi

=
∞∑

n=0

〈2nyi〉 − 〈2nxi〉
2n(yi − xi)

=
i−1∑

n=0

〈2nyi〉 − 〈2nxi〉
2n−i

(7.6)

for every i, since 2nyi and 2nxi are integers for n ≥ i, and 〈2nyi〉 = 〈2nxi〉 = 0.
If n < i, then 2nyi and 2nxi are rational numbers with denominator 2i−n such that
their numerators are adjacent integers. Thus 〈2nyi〉 − 〈2nxi〉 = ±1/2i−n, and each
of the terms of the sum on the right-hand side of (7.6) is either 1 or −1. It follows
that (T (yi) − T (xi))/(yi − xi) is an integer. Furthermore, this integer is even if i
is even, and odd if i is odd. A sequence with these properties cannot be convergent,
which proves that (7.5) cannot hold. �

The combination of Theorems 7.36 and 7.34 imply the following.

Theorem 7.39. (Abel’s continuity theorem) Let x0 
= 0, and let the infinite series∑∞
n=0 anxn

0 be convergent. Then the sum of the power series
∑∞

n=0 anxn is con-
tinuous on the interval [0, x0]. �

The following theorem is an immediate corollary of Theorem 7.16.

Theorem 7.40. (Term by term integrability) Suppose that
∑∞

n=1 fn = f uni-
formly on the Jordan measurable set A ⊂ R

p. If fn is integrable on A for every
n, then f is also integrable on A, and

∫

A

f(x) dx =
∞∑

n=1

∫

A

fn(x) dx.

�
Examples 7.41. 1. We know that

∑∞
n=0 xn = 1/(1 − x) for every |x| < 1, and the

convergence is uniform on every closed subinterval of (−1, 1) (see Example 7.22.1.
and Theorem 7.28). Thus we can integrate the series term by term on the interval
[0, x] for every |x| < 1. We obtain

− log(1 − x) =
∞∑

n=1

1
n

· xn (7.7)

for every |x| < 1. Since the series is also convergent at x = −1, Abel’s continuity
theorem (Theorem 7.39) implies that (7.7) holds for every x ∈ [−1, 1). For x = −1
we get the well-known identity

∑∞
n=1(−1)n−1/n = log 2.
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2. Since
∑∞

n=0(−1)nx2n = 1/(1 + x2), for every |x| < 1 and the convergence is
uniform on every closed subinterval of (−1, 1) (by Theorem 7.28), we can integrate
this series term by term on the interval [0, x] for every |x| < 1. We get

arc tg x =
∞∑

n=1

(−1)n−1

2n − 1
· x2n−1 (7.8)

for every |x| < 1. Since the series is also convergent at x = ±1, Abel’s continuity
theorem (Theorem 7.39) implies that (7.8) holds for every |x| ≤ 1. Putting x = 1
we get

π

4
= 1 − 1

3
+

1
5

− 1
7

+ . . . .

The following theorem is an immediate corollary of Theorem 7.18.

Theorem 7.42. (Term by term differentiation) Let the functions fn be continu-
ously differentiable on a bounded interval I . Suppose that

(i)
∑∞

n=1 f ′
n = g uniformly on the interval I , and

(ii) there exist a point x0 ∈ I such that the infinite series
∑∞

n=1 fn(x0) is conver-
gent.

Then the series of functions
∑∞

n=1 fn is uniformly convergent on I . If
∑∞

n=1 fn =
f , then f is differentiable, and f ′(x) = g(x), for every x ∈ I . That is, we have

( ∞∑

n=1

fn

)′
(x) =

∞∑

n=1

f ′
n(x),

for every x ∈ I . �

Note that we can relax the condition of continuous differentiability of the func-
tions fn: it is enough to assume that the functions fn are differentiable (see Remark
7.19).

Example 7.43. For 0 < b < 1 and |ab| < 1, the functions
∑∞

k=0 bk cos(akx) and∑∞
k=0 bk sin(akx) are differentiable everywhere. Indeed, the series we get from dif-

ferentiating term by term are uniformly convergent, and we can apply Theorem 7.42.
One can show (though the proof is rather complicated) that, for every 0 < b < 1

and |ab| ≥ 1, the functions
∑∞

k=0 bk cos(akx) and
∑∞

k=0 bk sin(akx) are nowhere
differentiable.

If we assume that a is an odd integer and ab > 2π + 1, then the proof of the
nowhere differentiability of

∑∞
k=0 bk cos(akx) is simpler; see Exercise 7.35.

Examples 7.44. Let f be infinitely differentiable at 0. How fast can the sequence
of numbers |f (n)(0)| grow? If f(x) = eax with a > 1, then we have f (n)(0) = an,
and so the growth of the sequence is exponential. With the help of Theorem 7.42
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we can construct functions with the property that |f (n)(0)| converges to infinity at a
rate faster than exponential.

1. Let

f(x) =
∞∑

k=1

1
2k

· cos
(
kx +

π

4

)

for every x. Obviously, this series is everywhere convergent. By taking the term by
term derivative of the series n times, we get one of the series

±
∞∑

k=1

kn

2k
· cos

(
kx +

π

4

)
, ±

∞∑

k=1

kn

2k
· sin

(
kx +

π

4

)
, (7.9)

depending on the remainder of n when divided by 4. The resulting series is uni-
formly convergent on R in each case. Indeed, for n fixed we have 2k > kn+2 for
every k large enough. Thus, for each n, the absolute values of the kth term of the
nth series is less than 1/k2 for every k large enough, and we may apply Weier-
strass’ criterion. Applying Theorem 7.42 n times implies that f is n times differ-
entiable on R, and its nth derivative is the sum of one of the series of (7.9). Since
cos(π/4) = sin(π/4) =

√
2/2, we obtain

|f (n)(0)| =
∞∑

k=1

kn

2k
·
√

2
2

>
1
2

· nn

2n
=

1
2

·
(n

2

)n

,

which grows faster than any exponential sequence.

2. Consider the function

g(x) =
∞∑

k=1

2
2k

· cos
(
k2x +

π

4

)
.

Repeating the argument above, we get that g is infinitely differentiable, and |g(n)
(0)| > n2n/2n for every n.

We can easily modify the construction to yield a functions f such that |f (n)(0)|
converges to infinity faster than an arbitrary given sequence. The function

∑∞
k=1 ak ·

cos
(
bkx + π

4

)
will have the desired properties, for an appropriate choice of the

sequences ak → 0 and bk → ∞.
In fact, for every sequence (ak), there exists an infinitely differentiable function

f with f (k)(0) = ak for every k. See Exercises 7.36 and 7.37.
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Exercises

7.20. At which points x are the following series of functions convergent? On which
intervals are they uniformly convergent?

(a)
∑

xn/(1 + xn), (b)
∑

n/xn, (c)
∑

nx,

(d)
∑(

1+x
1−x

)n

, (e)
∑

(log n)x, (f)
∑

ne−nx,

(g)
∑

sin(xn)/n2, (h)
∑

n
√

x2n + 1/2n, (i)
∑

x2e−nx,

(j)
∑

sin(x/n2), (k)
∑

(arc tg (nx))/(n2 + x2),
(l)

∑
(−1)n/(x + 2n), (m)

∑
x/(x2 + n3).

7.21. Show that the uniform convergence of the series
∑∞

n=1 fn on the set H
implies that fn → 0 uniformly on H . Show that the converse of this statement is
not true.

7.22. Let
∑∞

n=1 fn be uniformly convergent on [a, b]. Is it true that the series∑∞
n=1 sup{|fn(x)| : x ∈ [a, b]} is necessarily convergent? What happens if we

assume the continuity of the functions fn? (H)

7.23. Find an example of a uniformly convergent series of functions which does not
satisfy the conditions of the Weierstrass criterion.

7.24. Show that if every reordering of the series of functions
∑∞

n=1 fn is uniformly
convergent on H , then

∑∞
n=1 |fn| is also uniformly convergent on H .

7.25. Show that the series of functions
∑∞

n=1(−x)n(1 − x) is both absolutely and
uniformly convergent on [0, 1], but it has a reordering that is not uniformly conver-
gent on [0, 1].

7.26. Show that we cannot omit any of the three conditions of Theorem 7.29. Show
the same for Theorem 7.32.

7.27. Prove that the series of functions
∑∞

n=1(sin nx)/n is not uniformly conver-
gent on R. (H)

7.28. Let the functions fn : [a, b] → R be continuous, and suppose that the series∑∞
n=1 fn(x) satisfy the Leibniz criterion for series of real numbers with alternating

sign for every x ∈ [a, b]. (That is, |f1(x)| ≥ |f2(x)| ≥ . . ., fn(x) → 0 as n → ∞,
fn(x) is nonnegative for every n even, and fn(x) is nonpositive for every n odd for
every x ∈ [a, b].) Show that the series of functions

∑∞
n=1 fn is uniformly convergent

on [a, b].

7.29. Show that the function f(x) =
∑∞

n=1 e−n2x is infinitely differentiable on
(0,∞).

7.30. Show that the partial sums of
∑∞

k=1 sin kx are not bounded on (0, 2π).



7.3 Taylor Series and Power Series 249

7.31. Show that there exist continuous functions fn : [a, b] → R such that, for every
continuous function f : [a, b] → R, there is a bracketing of the series

∑∞
n=1 fn

whose sum equals f on [a, b].

7.32. Show that the statement of the previous exercise is not true if we omit the
condition of continuity of both f and fn.

7.33. Let f differentiable at the point a. Prove that if xn < a < yn for all n, and if
yn − xn → 0, then

lim
n→∞

f(yn) − f(xn)
yn − xn

= f ′(a). (H S)

7.34. Let T be the Takagi-function (Example 7.37.2.). Show that if a = k/2n with
k ∈ Z and n ∈ N, then T ′

+(a) = ∞ and T ′
−(a) = −∞.

7.35. Show that if 0 < b < 1 and a is an odd integer such that ab > 2π + 1, then
the function f(x) =

∑∞
k=0 bk cos(akx) (x ∈ R) is continuous everywhere, but it is

nowhere differentiable. (H S)

7.36. Show that for every positive integer n, a ∈ R and ε, K > 0, there exists an
infinitely differentiable function g such that g(n)(0) = a, g(i)(0) = 0 for every 0 ≤
i < n, and |g(i)(x)| < ε for every 0 ≤ i < n and |x| < K. (H S)

7.37. Show that for every sequence of numbers (ak) there exists an infinitely dif-
ferentiable function f such that f (k)(0) = ak for every k. (∗ H S)

7.3 Taylor Series and Power Series

Recall the definitions of the Taylor polynomials and Taylor series of functions of a
single variable: if f is n times differentiable at the point x0, we call the polynomial

n∑

k=0

f (k)(x0)
k!

(x − x0)k

the nth Taylor polynomial of the function f corresponding to the point x0. If f is
infinitely differentiable at point x0, then we call the infinite series

∞∑

k=0

f (k)(x0)
k!

(x − x0)k

the Taylor series of the function f corresponding to the the point x0. (See [7, Defi-
nitions 13.6 and 13.8]).

If a Taylor series is convergent at a point x and its sum is f(x), we say that the
Taylor series represents f at the point x.
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Examples 7.45. 1. Every polynomial p is represented everywhere by its Taylor
series corresponding to every point x0. Indeed, if the degree of the polynomial p
is n, then p(k) ≡ 0, for every k > n, and by Taylor’s formula3 we have

p(x) =
n∑

k=0

p(k)(x0)
k!

(x − x0)k (7.10)

for every x.

2. It is easy to check that the Taylor series of the function 1/(1 − x) at the point
x0 = 0 is exactly the geometric series

∑∞
n=0 xn. Thus the function 1/(1 − x) is

represented on the interval (−1, 1) by its Taylor series corresponding to the point
x0 = 0.

3. An easy consequence of Taylor’s formula is the following theorem. If f is
infinitely differentiable on the interval I and there exists a K such that |f (n)(x)| �
K for every x ∈ I and n ≥ 1, then the Taylor series of f corresponding to every
point x0 ∈ I represents f everywhere on I . (See [7, Theorem 13.9].)

It follows that the functions ex, sinx, cos x, sh x, ch x are represented every-
where by their Taylor series corresponding to every point x0 ∈ R. For x0 = 0 we
obtain the following formulas.

sinx = x − x3

3!
+

x5

5!
− . . . +

x4n+1

(4n + 1)!
− . . . ,

cos x = 1 − x2

2!
+

x4

4!
− . . . +

x4n

(4n)!
− . . . ,

ex = 1 + x +
x2

2!
+ . . . +

xn

n!
+ . . . ,

sh x = x +
x3

3!
+

x5

5!
+ . . . +

x2n+1

(2n + 1)!
+ . . . ,

ch x = 1 +
x2

2!
+

x4

4!
+ . . . +

x2n

(2n)!
+ . . . .

(See Example 13.14 of [7].)

3 Taylor’s formula (with the Lagrange remainder) states the following. Let the function f be (n+ 1)
times differentiable on the interval [a, x] (or, on [x, a] if x < a). Then there exists a number c ∈
(a, x) (or c ∈ (x, a)) such that

f(x) =

n∑

k=0

f (k)(a)

k!
(x − a)k +

f (n+1)(c)

(n+ 1)!
(x − a)n+1.

See Theorem 13.7 of [7].
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4. According to Example 7.41.1., the function log(1 − x) is represented everywhere
on the interval [−1, 1) by its Taylor series corresponding to x0 = 0.

However, not every function is represented by its Taylor series on an (arbitrarily
small) neighborhood of the point x0.

Examples 7.46. 1.By Example 7.44.2., there exists an infinitely differentiable func-
tion g such that |g(n)(0)| > n2n/2n for every n. Then the Taylor series of the func-
tion g at 0 is not convergent at any x 
= 0, since x 
= 0 implies

∣
∣
∣
∣
g(n)(0)

n!
· xn

∣
∣
∣
∣ >

n2n

2n · nn
· |x|n =

(
n|x|
2

)n

→ ∞

as n → ∞.
One can prove that there exists a function f such that f is infinitely differentiable

everywhere, and the Taylor series of f corresponding to any point x0 is divergent at
every x 
= x0.

2. It is also possible that the Taylor series is convergent, but it does not represents
the function. One can show that the function f(x) = e−1/x2

, f(0) = 0 is infinitely
differentiable on R, and f (n)(0) = 0 for every n. (See [7, Remark 13.17].) Then
the Taylor series of f corresponding to the point 0 is the

∑∞
n=0 0 series, which is

convergent everywhere, but it does not represent f at any x 
= 0. This also shows
that different functions can have the same Taylor series.

Definition 7.47. We say that the function f is analytic at the point x0, if f is
infinitely differentiable at x0, and its Taylor series at the point x0 represents f in
a neighborhood of x0.

For example, the functions ex, sin x, cos x, sh x, ch x are everywhere ana-
lytic functions, and the functions log(1 + x) and 1/(1 − x) are analytic at the point
x0 = 0. (In fact, the function log(1 + x) is analytic at every point x0 > −1, and the
function 1/(1 − x) is analytic at every point x0 
= 1; see Examples 7.56).

The following theorem gives a sufficient condition for the analiticity of a func-
tion.

Theorem 7.48. Let f be infinitely differentiable on the open interval I , and suppose
that there is a positive number c such that |f (n)(x)| ≤ (cn)n for every x ∈ I and
n > 0. Then f is analytic at every point of the interval I .

Proof. Let x0 ∈ I be arbitrary. Applying Taylor’s formula with the Lagrange
remainder we get that, for every n and x ∈ I \ {x0}, there exists a d ∈ I such that

∣
∣
∣
∣
∣
f(x) −

n−1∑

k=0

f (k)(x0)
k!

(x − x0)k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
f (n)(d)

n!

∣
∣
∣
∣ · |x − x0|n. (7.11)

Since n! > (n/e)n and |f (n)(d)| ≤ (cn)n by assumption, the right-hand side of
(7.11) is at most (ec · |x − x0|)n. Put η = 1/(ec). If |x − x0| < η and x ∈ I , then
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the right-hand side of (7.11) converges to zero as n → ∞. This means that the Taylor
series of f at the point x0 represents f on the interval (x0 − η, x0 + η) ∩ I . �

We will later see that the converse of the Theorem above holds as well. That
is, if f is analytic at x0, then the conditions of Theorem 7.48 are satisfied in a
neighborhood of x0. In order to prove this, however, we first need to get acquainted
with the theory of power series. We have already seen several results about power
series (see Theorems 7.28, 7.34, and 7.39). We will now systematically explore the
topic in more details.

We say that the domain of convergence of the power series
∑∞

n=0 anxn is the set
of numbers x ∈ R such that the series is convergent at x. Let T denote the domain of
convergence of the series. Note that T 
= ∅, since every power series is convergent at
the point x = 0, i.e., 0 ∈ T . We call the number R = supT (which can be infinite,
when T is not bounded from above) the radius of convergence of the power series.

By Theorem 7.28, if the power series is convergent at a point x0, then it is con-
vergent at every point x ∈ (−|x0|, |x0|). From this it is clear that inf T = −R. The
statements (i)-(iii) of the following theorem are also easy consequences of Theo-
rem 7.28.

Theorem 7.49. Let R be the radius of convergence of the power series∑∞
n=0 anxn. Then the following are true.

(i) If R = 0, then the domain of convergence of the series is the single-element set
{0}.

(ii) If 0 < R < ∞, then the domain of convergence of the series is one of the inter-
vals [−R,R], [−R,R), (−R,R], or (−R,R).

(iii) If R = ∞, then the domain of convergence of the series is the whole real
line. �

Examples 7.50. 1. The domain of convergence of the power series
∑∞

n=0 n! · xn is
the single-element set {0}. Indeed, for x 
= 0, the terms of the series do not converge
to zero, and thus the series is divergent.

2. The domain of convergence of the power series
∑∞

n=0 xn is the interval (−1, 1)
(see Theorem 6.4).

3. The domain of convergence of the power series
∑∞

n=1((−1)n−1/n)xn is the
interval (−1, 1] by Example 7.41.

4. The domain of convergence of the series
∑∞

n=1(1/n)xn is the interval [−1, 1).
This follows trivially from the previous example.

5. The domain of convergence of the power series
∑∞

n=1(1/n2)xn is the interval
[−1, 1]. It is clear that the series is convergent at every point x ∈ [−1, 1]. However,
for |x| > 1, the terms of the series do not converge to zero, thus the series is diver-
gent there.

6. The domain of convergence of the power series
∑∞

n=0(1/n!)xn is the whole real
line (see Example 7.45.3).

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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These examples suggest that the radius of convergence of the power series∑∞
n=1 anxn depends on the order of magnitude of the sequence |an|. The famous

Cauchy–Hadamard4 formula gives a precise mathematical formulation of this state-
ment. The formula is discussed in the first appendix of this chapter.

The statement of the following theorem is an immediate consequence of Theo-
rems 7.28 and 7.39.

Theorem 7.51. Every power series is uniformly convergent on every bounded and
closed subinterval of its domain of convergence. The sum of every power series is
continuous on its whole domain of convergence. �

Much more is true in the interior of the domain of convergence of a power series.

Theorem 7.52. Let the radius of convergence R of the power series
∑∞

n=0 anxn

be positive (or the infinity), and let f(x) =
∑∞

n=0 anxn for every |x| < R. Then f
is infinitely differentiable on the interval (−R,R) and

f (k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1) · an · xn−k (7.12)

for every |x| < R and k ≥ 1.

Proof. We first prove that the power series
∑∞

n=1 n · an · xn−1 is uniformly con-
vergent on the interval [−q, q] for every 0 < q < R. Let q < r < R be fixed. Since
the series

∑∞
n=0 anrn is convergent, it follows that limn→∞ anrn = 0. Thus there

exists an n0 such that |an| < r−n, for every n > n0. Therefore, if |x| ≤ q, then

|n · an · xn−1| ≤ q−1n(q/r)n

for every n > n0. Since the series
∑∞

n=1 n(q/r)n is convergent by Example 6.36,
applying the Weierstrass criterion we obtain that the power series

∑∞
n=1 n · anxn−1

is uniformly convergent on [−q, q]. Since this is true for every 0 < q < R, Theo-
rem 7.42 implies that the sum of the power series

∑∞
n=0 anxn (i.e., the function f )

is differentiable on (−R,R), and its derivative is
∑∞

n=1 n · anxn−1 there. Repeat-
ing this argument for this latter power series we get that f ′ is also differentiable on
(−R,R), and its derivative is

∑∞
n=2 n(n − 1)anxn−2 there. Applying induction on

k we get (7.12) for every k. �

Example 7.53. Applying Theorem 7.52 for the power series
∑∞

n=0 xn we obtain
that ∞∑

n=k

n(n − 1) · · · (n − k + 1) · xn−k =
k!

(1 − x)k+1
(7.13)

4 Jacques Hadamard (1865–1963), French mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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for every |x| < 1 and k ≥ 0. (We have seen the special case k = 1 in Examples
6.31.1. and 6.55.)

From now on, we will also call the series of form
∑∞

n=0 an(x − x0)n power
series (more precisely, power series around the point x0). It follows immediately
from Theorem 7.52 that if the power series

∑∞
n=0 an(x − x0)n is convergent on the

interval (x0 − R, x0 + R) and its sum is f(x) there, then f is infinitely differen-
tiable on (x0 − R, x0 + R), and

f (k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1) · an · (x − x0)n−k (7.14)

for every x ∈ (x0 − R, x0 + R) and k ≥ 0. The following theorem is a simple, but
important corollary of this fact.

Theorem 7.54. Let the power series
∑∞

n=0 an(x − x0)n be convergent on (x0 −R,
x0 + R), where R > 0, and let its sum be f(x) there. Then an = f (n)(x0)/n! for
every n. In other words, the power series is equal to the Taylor series of its sum
corresponding to the point x0.

Proof. Apply (7.14) to x = x0. �

Corollary 7.55. A function f is analytic at the point x0 if and only if there exists a
power series around x0 which represents f on a neighborhood of x0. �

We say that the function f : I → R is analytic on the open interval I , if f is
analytic at every point of I . Examples 7.45 showed that the polynomials and the
functions ex, sin x, cos x, sh x, and ch x are each analytic everywhere. We will
now prove that several other elementary functions are analytic on their respective
domain.

Examples 7.56. 1. We show that the function 1/x is analytic at every point a 
= 0.
Let |x − a| < |a|. We have

1
x

=
1

a + (x − a)
=

1
a

· 1
1 + (x − a)/a

=
1
a

·
∞∑

n=0

(−1)n

an
· (x − a)n.

Thus 1/x is represented by a power series on the interval (0, 2a) (or on the interval
(−2a, 0), if a < 0). Thus, by Corollary 7.55, 1/x is analytic at a.

2. Generalizing the previous example we show that every rational function is ana-
lytic everywhere on its domain. Let S = p/q, where p =

∑n
i=0 aix

i and
q =

∑m
j=0 bjx

j are polynomials. First we prove that if q(0) 
= 0, then S is analytic
at 0.

We may assume that q(0) = 1; then q(x) = 1 − r(x), where r(x) =
−∑m

j=1 bjx
j . The function

∑m
j=1 |bj | · |x|j is continuous and vanishes at the point

0. Therefore, we can choose a δ > 0 such that
∑m

j=1 |bj | · |x|j < 1 holds for every
|x| < δ. Then |r(x)| < 1 for every x ∈ (−δ, δ), and thus

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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p(x)
q(x)

=

(
n∑

i=0

aix
i

)

· 1
1 − r(x)

=

(
n∑

i=0

aix
i

)

·
∞∑

k=0

r(x)k =

=

(
n∑

i=0

aix
i

)

·
∞∑

k=0

⎛

⎝
m∑

j=1

cjx
j

⎞

⎠

k

.

By performing the multiplications and reordering the resulting terms according to
the exponents of x we get a power series. This operation does not change the sum of
the series since, by

∑m
j=1 |bj | · |x|j < 1 it follows that each of the series appearing

in the argument is absolute convergent, and we can apply Theorem 6.30. We leave
the details to the reader. In this way we represented the function S on the interval
(−δ, δ) by the sum of a power series. Thus, by Corollary 7.55, the function S is
analytic at 0.

Now, let x0 be an arbitrary point where q is non-zero. The function S1(x) =
S(x + x0) is also a rational function which does not disappear at 0. If S1(x) =∑∞

n=0 cnxn for every |x| < δ, then S(x) =
∑∞

n=0 cn(x − x0)n for every
|x − x0| < δ. Thus S is analytic at x0.

3. With the help of Theorem 7.54 we can give a new proof of the fact that every
exponential function is analytic on R. Indeed, for a > 0 and x0 ∈ R we have

ax = ax0 · elog a·(x−x0) = ax0 ·
∞∑

n=0

(log a)n

n!
(x − x0)n.

Thus ax is represented by a power series around x0, i.e., ax is analytic at x0.

4.We now show that the function (1 + x)c is analytic at 0 for every c ∈ R. The nth
derivative of the function at 0 is c(c − 1) · · · (c − n + 1), and the Taylor series at 0
is ∞∑

n=0

c(c − 1) · · · (c − n + 1)
n!

xn. (7.15)

We prove that the series represents the function on the interval (−1, 1).
If c is a non-negative integer, then by the binomial theorem the sum of the series

(7.15) is (1 + x)c for every x. Thus we may assume that c /∈ N.
We first show that the series (7.15) is convergent for every |x| < 1. Indeed, for

x 
= 0, the ratio of the n + 1st and nth terms of the series is (x · (c − n))/(n + 1).
Since this converges to −x as n → ∞, it follows from the ratio test that the series
is convergent for |x| < 1. Let the sum of the series be f(x). By Theorem 7.52, f is
differentiable on (−1, 1), and

f ′(x) =
∞∑

n=1

n · c(c − 1) · · · (c − n + 1)
n!

xn−1 (7.16)

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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there. The power series on the right-hand side is convergent on (−1, 1), thus it is
also absolutely convergent there. Multiplying the series by (1 + x), then reordering
it according to the exponents of x yields, by doing some algebra, c-times the series
(7.15). The absolute convergence ensures that reordering does not change the sum
of the series, thus we proved that (1 + x)f ′(x) = cf(x), for every |x| < 1. Then we
have

(
f(x) · (1 + x)−c

)′ = f ′(x) · (1 + x)−c − c · f(x) · (1 + x)−c−1 =

= (1 + x)−c−1 · ((1 + x)f ′(x) − cf(x)) = 0,

and thus f(x)/(1 + x)c is constant on (−1, 1). Since f(0) = 1, we necessarily have
f(x)/(1 + x)c = 1 and f(x) = (1 + x)c, which is what we wanted to prove. �

To emphasize the analogy with the binomial theorem, let us use the notation

c(c − 1) · · · (c − n + 1)
n!

=
(

c

n

)

for every c ∈ R and n ∈ N. (If n = 0, let
(

c
0

)
= 1 for every c.) We call the numbers(

c
n

)
generalized binomial coefficients. Using this notation, the previously proved

statement has the form

(1 + x)c =
∞∑

n=0

(
c

n

)
xn (7.17)

for every c ∈ R and |x| < 1. The series on the right-hand side is called binomial
series.

5.We prove that the power function xc is analytic on (0,∞) for every c. Indeed, for
a > 0 and |x − a| < a, we have

xc = ac ·
(

1 +
x − a

a

)c

= ac ·
∞∑

n=0

(
c

n

)(
x − a

a

)n

,

i.e., xc is represented on the interval (0, 2a) by a power series around a. Thus, by
Corollary 7.55, xc is analytic at a.

6.We prove that the function log x is analytic on (0,∞). Let a > 0 and |x − a| < a.
We have

log x = log a + log
x

a
= log a + log

(
1 +

x − a

a

)
=

= log a +
∞∑

n=1

(−1)n−1

n · an
· (x − a)n.

Thus log x is represented on the interval (0, 2a) by a power series, i.e., log x is
analytic at a.
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Remark 7.57. Let f be analytic on the open interval I . For every x0 ∈ I let r(x0)
denote the largest positive number (or the infinity) such that the Taylor series of f
at x0 represents f on the neighborhood of x0 of radius r(x0).

Let us determine the value of r(x0) for the functions of Examples 7.45 and 7.56.
For polynomials, and for the functions ex, sin x, cos x, sh x and ch x, we have
r(x0) = ∞ for every x0. For the functions 1/x, (1 + x)c, log(1 + x), we proved
that r(x0) = x0 for every x0 > 0, and thus r(x0) is the largest number such that f
is analytic on the neighborhood of x0 with radius r(x0). We might believe that this
is always true, that is, if f is analytic on the interval (a, b), then r(x0) ≥ min(x0 −
a, b − x0) for every x0 ∈ (a, b).

However, this conjecture is false. Consider the function f(x) = 1/(1 + x2) on
R. By Example 7.56.2, f is analytic everywhere. On the other hand, the Taylor
series of f at 0 is the series

∑∞
n=0(−1)nx2n. Indeed, this power series represents

f on the interval (−1, 1) and thus, by Theorem 7.54, this is the Taylor series of
the function corresponding to the point zero. However, this series is divergent for
|x| ≥ 1, therefore, r(x0) = 1. We find that the function f is analytic everywhere,
but its Taylor series corresponding to 0 represents f only on the interval (−1, 1).

This phenomenon might be very surprising at first. What could determine the
value of the radius r(x0) if not the largest interval where f is analytic? In order
to answer this question, we have to step out to the complex plane. See the second
appendix of this chapter for the details.

We now return to the converse of Theorem 7.48.

Lemma 7.58. Let the power series
∑∞

n=0 an(x − x0)n be convergent on (x0 −
R, x0 + R) (R > 0), and let its sum be f(x). Then, for every 0 < q < R, there
exists a c > 0 such that |f (k)(x)| ≤ (ck)k for every |x − x0| ≤ q and k > 0.

Proof. Let q < r < R be fixed. Since the series
∑∞

n=0 anrn is convergent, we have
anrn → 0. Then there exists aK > 1 such that |an| ≤ K/rn for every n > 0. Thus,
if |x − x0| ≤ q then, using (7.14) and (7.13) we get

∣
∣
∣f (k)(x)

∣
∣
∣ ≤

∞∑

n=k

n(n − 1) · · · (n − k + 1) · |an| · |x − x0|n−k ≤

≤
∞∑

n=k

n(n − 1) · · · (n − k + 1) · K

rn
· qn−k =

=
K

rk
·

∞∑

n=k

n(n − 1) · · · (n − k + 1) · (q/r)n−k =

=
K · k!

rk · (1 − (q/r))k+1
<

rK

r − q
·
(

k

r − q

)k

for every k > 0.
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Thus
∣
∣f (k)(x)

∣
∣ ≤ (ck)k, where c = rK/(r − q)2. Since this is true for every

k > 0, the lemma is proved. �

The previous lemma has important consequences.

Theorem 7.59. The function f is analytic at the point x0 if and only if there exist
positive numbers δ and c such that f is infinitely differentiable on (x0 − δ, x0 + δ),
and |f (n)(x)| ≤ (cn)n for every x ∈ (x0 − δ, x0 + δ) and n > 0.

Proof. We proved the “if” part of the theorem in Theorem 7.48. The “only if part”
follows from Lemma 7.58. �

Theorem 7.60. If the power series
∑∞

n=0 an(x − x0)n is convergent on (x0 − R,
x0 + R), then its sum is analytic at every point of the interval (x0 − R, x0 + R).

Proof. This is clear by Lemma 7.58 and Theorem 7.48. �

We note that the theorem can also be proved directly (see Exercise 7.58).

Example 7.61. By applying the previous theorem, we show that the function arcsin x
is analytic on (−1, 1). Apply (7.17) with c = −1/2 and with −x2 in place of x. We
get

1√
1 − x2

=
∞∑

n=0

(−1)n ·
(−1/2

n

)
x2n

for every |x| < 1. If |x| < 1, then the series on the right-hand side is uniformly
convergent on the interval [0, x], and thus, by Theorem 7.40, we may integrate the
series term-by-term there. We obtain

arcsin x =

x∫

0

dt√
1 − t2

=
∞∑

n=0

(−1)n ·
(−1/2

n

)
· 1
2n + 1

x2n+1

for every x ∈ (−1, 1). Therefore, by Theorem 7.60, arcsin x is analytic on (−1, 1).
Note that

(−1/2
n

)
= (−1)n

(
2n
n

)
/4n, which gives

arcsin x =
∞∑

n=0

(
2n
n

)

4n(2n + 1)
· x2n+1 (7.18)

for every |x| < 1.
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Remark 7.62. Let f be infinitely differentiable on the open interval I . For every
x0 ∈ I , let R(x0) denote the radius of convergence of the Taylor series
∑∞

n=0
f(n)(x0)

n! (x − x0)n. If f is analytic on I , then R(x0) > 0 for every x0 ∈ I ,
since the Taylor series has to represent f on a neighborhood of x0. The converse
of this is not true: R(x0) > 0 (x0 ∈ I) does not imply that f is analytic at every
point of the interval I . E.g., let f(x) = e−1/x2

and f(0) = 0. As we saw in Exam-
ples 7.46.2, f is not analytic at 0, but we have R(x0) > 0 for every x0. Indeed,
R(0) = ∞, since the Taylor series at 0 is convergent everywhere. On the other hand,
f is analytic on both of the half lines (−∞, 0) and (0,∞); this easily follows from
Exercise 7.60. Thus R(x0) > 0 for every x0 
= 0.

If we want to ensure that f is analytic on I , we need to assume more than
R(x0) > 0 (x0 ∈ I). With the help of Theorem 7.59, it easy to see that if for every
bounded and closed interval J ⊂ I , we have

inf{R(x0) : x0 ∈ J} > 0, (7.19)

then f is analytic on I (see Exercise 7.64). The converse of this claim is also true:
if f is analytic on I , then (7.19) holds for every bounded and closed interval J ⊂ I
(see Exercise 7.65).

The following theorem presents an important property of analytic functions.

Theorem 7.63. Let f : I → R be analytic on the open interval I . If there exists a
sequence (xn) of roots of f converging to a point x0 ∈ I such that x0 
= xn for
every n, then f is the constant zero function.

Proof. We know that f is infinitely differentiable on I . Thus f is continuous, which
implies f(x0) = 0. Applying Rolle’s theorem (see [7, Theorem 12.49]) succes-
sively, we get that for every k > 0 there exists a sequence converging to x0, and such
that its terms are different from x0, and f (k) is zero at each term of the sequence.
Since f (k) is continuous, it follows that f (k)(x0) = 0 for every k.

This means that the Taylor series of f at x0 is constant zero. Since f is analytic at
x0, we have that f is constant zero on a neighborhood of x0. Let b be the supremum
of the set of those points x for which x > x0, x ∈ I , and f is constant zero on
the interval [x0, x]. Put b = sup I . Then b = sup I . Indeed, suppose this is not true;
that is, b < sup I . Then b ∈ I and f is constant zero on the interval [x0, b). Then
it follows that f (k)(b) = 0 for every k, and thus the sum of the Taylor series of the
function f corresponding to the point b is constant zero. Since f is analytic at b, f is
constant zero on a neighborhood of b. However, this contradicts the definition of b.

We proved that b = sup I , i.e., f(x) = 0 for every point x > x0, x ∈ I . We can
prove f(x) = 0 for x < x0, x ∈ I similarly. �

Remark 7.64. Theorem 7.63 can be rephrased as follows. If f is analytic on the
open interval I and I has a bounded and closed subinterval where f has infinitely
many roots, then f is the constant zero function.
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It is easy to see that if the functions f and g are analytic on the interval I , then
f − g is also analytic on I . Applying Theorem 7.63 to f − g yields the following.

Theorem 7.65. Let f and g be analytic on the open interval I , and let f(xn) =
g(xn) for every n, where xn → x0 ∈ I , and x0 
= xn for every n. Then f(x) = g(x)
for every x ∈ I . �

Remarks 7.66. 1. The previous theorem states that if I is an open interval,
xn → x0 ∈ I , and x0 
= xn for every n, then every function that is analytic on I
is determined by its values at the points xn. For this reason, we call Theorem 7.65
the unicity theorem. (The statement of the unicity theorem is the analogue of the
fact that if two kth order polynomials are equal at (k + 1) points, then they are equal
to each other.)

2. It is important to note that in Theorems 7.63 and 7.65 the condition requiring that
the limit of the sequence (xn) is in I is essential. One can prove that the function
sin(1/x) is analytic on the half line (0,∞) (see Exercise 7.61). This function is
zero at the points xn = 1/(nπ), where xn → 0. Still, the function sin(1/x) is not
the constant zero function.
3. The properties described by Theorems 7.63 and 7.65 are shared neither by the
class of continuous, nor the class of differentiable functions. Moreover, these prop-
erties are not shared even by the functions that are infinitely differentiable. E.g., let
f(x) = 0 if x ≤ 0 and f(x) = e−1/x2

if x > 0. One can show that f is infinitely
differentiable on the whole real line (and f (n)(0) = 0 for every n). (See [7, Remark
13.17].) Now, if xn < 0, xn → 0, then f(xn) = 0, since f is zero on (−∞, 0], but
f is not constant on R.

Exercises

7.38. Find the radius of convergence of the following power series.

(a)
∑

ncxn, (b)
∑

xn/(an + bn),

(c)
∑

n!xn, (d)
∑

n!xn2
,

(e)
∑

xn/
(
2n
n

)
, (f)

∑
((log n)log n/2n)xn,

(g)
∑

(1 + 1
n )n2

xn, (h)
∑

(nn/n!)xn,

(i)
∑

2−n2
xn, (j)

∑
2−nn

xn!.

7.39. Find power series that represent the following functions on a neighborhood
of the given points:
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(a) 1/x2, x0 = 3; (b) (2x−5)/(x2−5x + 6), x0=0;

(c) 3x, x0 = 0; (d) 3x, x0 = 2;

(e) log x, x0 = 10; (f) ex3
, x0 = 0;

(g) log(1 + x2), x0 = 0; (h) log(1 + x + x2), x0 = 0;

(i) sinx2, x0 = 0; (j) sh (1 + x3), x0 = 0;

(k) f(x) = ch
√

x if x ≥ 0, and f(x) = cos
√−x if x < 0, x0 = 0;

(l) 1/(1 + x2), x0 = 1; (m) 1/(1 + x2)2, x0 = 0;

(n) x · arc tg x − log
√

1 + x2, x0 = 0;

(o) 1/
√

x, x0 = 2.

7.40. Find the 357th derivative of arc tg x at 0. Find the 42nd derivative of ex2

at 0. Find the 78th derivative of log(1 + x + x2) at 0. Find the 80th derivative of
(arc tg x)2 at 0.

7.41. Find the sum of the following infinite series:

(a)
∑∞

n=1 n/3n, (b)
∑∞

n=1 1/(n · 2n),

(c)
∑∞

n=1 n2/5n, (d)
∑∞

n=0 1/(2n + 1)!,

(e)
∑∞

n=1 4n/(2n)!, (f)
∑∞

n=0 1/((2n + 1)2n),

(g)
∑∞

n=1(1 − √
e)n/n.

7.42. Find the value of the limit

lim
n→∞

(
1 +

1
n

)n2

· e−n.

7.43. Find those pairs of numbers (a, b) for which the sequence

na

(

e −
(

1 +
1
n

)n+b
)

is convergent. (H)

7.44. Let f(x) =
∑∞

n=0 anxn, for every |x| < r, where the coefficients an are non-
negative. Show that the power series is convergent at r if and only if f is bounded
on (−r, r).

7.45. Evaluate the sum
∑∞

n=0

(
1

3n+1 − 1
3n+2

)
. (H)
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7.46. Find the sums of the following power series in (−1, 1):

(a)
∑∞

n=0
1

3n+1xn, (b)
∑∞

n=1
xn

n·(n+1) .

7.47. Show that if c > −1, then

2c = 1 +
(

c

1

)
+

(
c

2

)
+ . . . .

Prove also that the series on the right-hand side is divergent for c ≤ −1. (H)

7.48. Show that if c ≥ 0, then

1 −
(

c

1

)
+

(
c

2

)
− . . . = 0.

Prove also that the series on the left-hand side is divergent for c < 0. (H)

7.49. Show that the power series of arcsin x is convergent at x = 1. Use this to
prove

π

2
=

∞∑

n=0

(
2n
n

)

4n(2n + 1)
. (H)

7.50. Prove the converse of Abel’s theorem: if
∑∞

n=0 anxn is uniformly convergent
on [0, x0), then it is convergent at x0.

7.51. Construct a function f such that f is infinitely differentiable everywhere, the
Taylor series of f at 0 is convergent everywhere, and the Taylor series represents f
on [−1, 1], but does not represent f anywhere else.

7.52. True or false? If a power series is convergent at the point x0 > 0, then its sum
is differentiable from the left at x0. (H)

7.53. True or false? If a power series is convergent at the point x0 > 0, then the
(finite or infinite) left-hand side derivative of its sum exists at x0. (∗ H)

7.54. Show that if f is analytic on the open interval I , then the primitive function
of f is also analytic on I .

7.55. Show that the function arc tg x is analytic on R.

7.56. Show that if f is analytic on R, then its graph consists of finitely many mono-
tone segments over every bounded and closed interval.

7.57. Show that if f is analytic onR, then its graph consists of finitely many convex
or concave segments over every bounded and closed interval.
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7.58. Let f(x) =
∑∞

n=0 anxn for every x ∈ (−r, r). Show that for every
x0 ∈ (−r, r), the Taylor series of f corresponding to x0 represents f on the interval
(x0 − δ, x0 + δ), where δ = min(x0 + r, r − x0). (H)

7.59. Show that if f and g are analytic on (a, b), then f + g, f · g, and (whenever
g 
= 0) f/g are also analytic there.

7.60. (a) Suppose that the function f is represented by the power series∑∞
k=0 ak(x − a)k on the interval (a − δ, a + δ), f(a) = b, and the function g is

represented by the power series
∑∞

n=0 bn(x − b)n on the interval (b − ε, b + ε).
Suppose further that

∑∞
k=1 |ak| · |x − a|k < ε for every x ∈ (a − δ, a + δ). Show

that the function g ◦ f is represented by its Taylor series corresponding to the point
a on the interval (a − δ, a + δ). (H)
(b) Let f be analytic on the open interval I , and let g be analytic on the open interval
J , where Jf (I). Show that g ◦ f is analytic on I .

7.61. Show that the function sin(1/x) is analytic on the half-line (0,∞).

7.62. Show that if f is infinitely differentiable on (a, b) and f (n)(x) ≥ 0 for every
x ∈ (a, b) and every n, then f is analytic on (a, b). (∗)
7.63. Show that if f is infinitely differentiable on (a, b) and the sign of f (n) is the
same everywhere on (a, b) for every n, then f is analytic on (a, b). (∗)
7.64. Let f be infinitely differentiable on the open interval I , and suppose that for
every bounded and closed interval J ⊂ I there is a δ > 0 such that, for every x0 ∈
J , the radius of convergence of the Taylor series of the function f corresponding to
the point x0 is at least δ. Show that f is analytic on I . (H)

7.65. Show that if f is analytic on an open interval I , then for every bounded and
closed interval J ⊂ I there exists a δ > 0 such that for every x0 ∈ J , the radius of
convergence of the Taylor series of f corresponding to the point x0 is at least δ. (H)

7.66. Show that for every continuous function f : R → R there exists an every-
where analytic function g such that g(x) > f(x) for every x. (∗ H)

In the following exercises we consider sequences with the property that every term
of the sequence equals a linear combination of the previous k terms with coefficients
independent of the term. E.g., the Fibonacci5 sequence6 is such a sequence. The
precise definition is as follows. We say that the sequence (an)∞

n=0 satisfies a linear
recursion, if there exist real numbers c1, . . . , ck such that

an = c1an−1 + . . . + ckan−k (7.20)

holds for every n ≥ k.

5 Fibonacci (Leonardo Pisano) (about 1170–1240), Italian mathematician.
6 The sequence (un) of the Fibonacci numbers is defined by u0 = 0, u1 = 1 and un = un−1 +

un−2 (n ≥ 2).



264 7 Sequences and Series of Functions

7.67. Let un denote the nth Fibonacci number. Show that the radius of convergence
of the power series

∑∞
n=0 unxn is positive. Find the sum of the power series, find

the Taylor series of this sum corresponding to 0, and use these to give a closed
formula for the Fibonacci number un.

7.68. Show that the sequence (an)∞
n=0 satisfies a linear recursion if and only if the

radius of convergence of the power series
∑∞

n=0 anxn is positive, and its sum is a
rational function.

7.69. Let 0.a1a2 . . . be the number t ∈ [0, 1], written as a decimal. Show that the
sum of

∑∞
n=0 anxn is a rational function if and only if t is a rational number.

7.70. Let c1, . . . , ck ≥ 0 and c1 + . . . + ck = 1. Show that if the sequence (an)∞
n=0

satisfies the recursion (7.20), then (an) is convergent.

7.71. Let C0 = C1 = 1, and for n ≥ 2, let Cn denote the number of triangulations
of a convex n + 2-vertex polygon.

(i) Show that Cn+1 =
∑n

i=0 CiCn−i for every n ≥ 0.
(ii) Show that the power series

∑∞
n=0 Cnxn is convergent in a neighborhood of 0.

(iii) Show that if
∑∞

n=0 Cnxn = f(x), then we have f(x) − xf2(x) − 1 = 0 and

f(x) = (1 − √
1 − 4x)/(2x).

(iv) Show that Cn = 1
n+1

(
2n
n

)
for every n ≥ 0. (H)

The numbers Cn are called the Catalan numbers7.

7.4 Abel Summation

When discussing summable series in the previous chapter, we defined a class of
divergent infinite series (namely, the set of summable series) to which we assigned
sum-like values. This was done as follows: instead of the sequence of partial sums
sn, we considered the sequence of their arithmetic means (tn), and if this was con-
vergent, we said that the limit of the sequence (tn) was the sum of the series.

In fact, this method is only one of several methods assigning a sum-like value to
divergent series. An infinite system of such methods was presented by Hölder8.

Hölder’s idea was the following. The series 1 − 2 + 3 − 4 + . . . is not summable,
since the sequence of its partial sums is

(sn) = (1,−1, 2,−2, 3,−3, . . .),

7 Eugène Charles Catalan (1814–1894), Belgian mathematician.
8 Otto Ludwig Hölder (1859–1937), German mathematician.
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and the sequence of their arithmetic means is

(tn) = (1, 0, 2/3, 0, 3/5, 0, . . . , n/(2n − 1), 0, . . .).

The series (tn) is divergent, since the subsequence of its even terms converges to 0,
while the subsequence of its odd terms converges to 1/2. This means that the series
1 − 2 + 3 − 4 + . . . is not summable. (This also follows from the fact that an/n
does not tend to zero; see Exercise 6.56).)

But if we take the arithmetic means of the sequence (tn), the resulting sequence
is convergent and converges to 1/4. This motivated the following definition. Let
sn denote the partial sums of the infinite series

∑∞
n=1 an, furthermore, let tn =

(s1 + . . . + sn)/n and un = (t1 + . . . + tn)/n for every n. If the sequence (un) is
convergent with limit A, then we say that the infinite series

∑∞
n=1 an is (H, 2)

summable, and its (H, 2) sum is A. The series 1 − 2 + 3 − 4 + . . . is (H, 2)
summable and its (H, 2) sum is 1/4.

The process can be continued: take the arithmetic mean of the sequence of partial
sums, then take the arithmetic mean of the resulting sequence, and continue this
method for k steps. If the sequence we get after the kth step is convergent with limit
A, then we say that the infinite series

∑∞
n=1 an is (H, k) summable, and its (H, k)

sum is A.
Since the sequence of the arithmetic means of a convergent sequence also con-

verges to the same limit, it is obvious that if an infinite series is (H, k) summable,
then it is also (H,m) summable for every m > k, and its (H,m) sum is the same as
its (H, k) sum. Therefore, these summation methods are more and more efficient in
the sense that they assign a sum-like value to a wider and wider set of infinite series.
The previous example shows that the set of (H, 2) summable series is strictly larger
than the set of (H, 1) summable (i.e., the summable in the original sense) series.
One can show that in general the set of (H, k + 1) summable series is strictly larger
than the set of (H, k) summable sets (see Exercise 7.77).

As another application of the theory of power series we now introduce another,
even more effective, summing method. It follows from Theorem 7.39 that if the
series

∑∞
n=0 an is convergent with sum A, then

lim
x→1−0

∞∑

n=0

anxn = A. (7.21)

This observation motivates the following definition.

Definition 7.67. We say that the infinite series
∑∞

n=0 an is Abel summable and its
Abel sum is A, if the power series

∑∞
n=0 anxn is convergent on (−1, 1) and (7.21)

holds.

Thus it follows from Theorem 7.39 that if a series is convergent and its sum is A,
then the series is Abel summable and its Abel sum is also A. Even more is true.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Theorem 7.68. If an infinite series is summable and its sum is A, then the series is
Abel summable and its Abel sum is also A.

Proof. Let the infinite series
∑∞

n=0 an be summable. By Exercise 6.56 we have
an/n → 0, and thus the power series

∑∞
n=0 anxn is convergent on (−1, 1), since it

can be majorized by the series
∑

n · |x|n. Let the sum of the series
∑∞

n=0 anxn be
f(x). We need to show that limx→1−0 f(x) = A.

Let sn =
∑n

i=0 ai. It is easy to check that the Cauchy product of the series∑∞
n=0 xn and

∑∞
n=0 anxn is the series

∑∞
n=0 snxn. Since the series are absolutely

convergent on (−1, 1), it follows that their Cauchy product is also absolutely con-
vergent, and its sum is the product of the sums of the two original series. (See The-
orem 6.54.) Therefore,

f(x)
1 − x

=
∞∑

n=0

snxn (7.22)

for every x ∈ (−1, 1), where the series on the right-hand side is absolutely conver-
gent. Taking the Cauchy product of the right-hand side of (7.22) and

∑∞
n=0 xn, we

obtain
f(x)

(1 − x)2
=

∞∑

n=0

(s0 + . . . + sn)xn (7.23)

for every x ∈ (−1, 1). By assumption, the series
∑∞

n=0 an is summable. If its sum
is A, then (s0 + . . . + sn)/(n + 1) → A, i.e., the sequence

cn =
s0 + . . . + sn

n + 1
− A

converges to zero. Writing the terms of the series on the right-hand side of (7.23) in
terms of the numbers cn, we get

∞∑

n=0

((n + 1)A + (n + 1)cn)xn = A ·
∞∑

m=1

mxm−1 +
∞∑

n=0

(n + 1)cnxn =

=
A

(1 − x)2
+

∞∑

n=0

(n + 1)cnxn.

Multiplying (7.23) by (1 − x)2 we get

f(x) = A + (1 − x)2 ·
∞∑

n=0

(n + 1)cnxn.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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To finish our proof, we need to show that

lim
x→1−0

(1 − x)2 ·
∞∑

n=0

(n + 1)cnxn = 0.

Let ε > 0 be fixed. Since cn → 0, there exists an index N such that |cn| < ε holds
for every n ≥ N . Now we have

∣
∣
∣
∣
∣
(1 − x)2 ·

∞∑

n=N

(n + 1)cnxn

∣
∣
∣
∣
∣
< ε · (1 − x)2 ·

∞∑

n=N

(n + 1)xn <

< ε · (1 − x)2 ·
∞∑

n=0

(n + 1)xn = ε. (7.24)

Since limx→1−0(1 − x)2 · ∑N−1
n=0 (n + 1)cnxn = 0, hence

∣
∣
∣
∣
∣
(1 − x)2 ·

N−1∑

n=0

(n + 1)cnxn

∣
∣
∣
∣
∣
< ε (7.25)

for 1 − δ < x < 1. Finally, comparing (7.24) and (7.25) we obtain

∣
∣
∣
∣
∣
(1 − x)2 ·

∞∑

n=0

(n + 1)cnxn

∣
∣
∣
∣
∣
< 2ε

if 1 − δ < x < 1. This is what we wanted to prove. �

Remark 7.69. The previous theorem (along with its proof) can be easily general-
ized to show that if an infinite series is (H, k) summable for a k, then the series is
necessarily Abel summable and its Abel sum is the same as its (H, k) sum.

For example, the series 1 − 2 + 3 − 4 + . . . is Abel summable, since

∞∑

n=0

(−1)n · (n + 1)xn =
1

(1 + x)2

for every x ∈ (−1, 1), and the right-hand side converges to 1/4 as x → 1 − 0. This
agrees with the fact that the (H, 2) sum of the series is 1/4.

Thus the Abel summation is more “efficient” than all (H, k) summation. Further-
more, as the following example shows, there are Abel summable series that are not
(H, k) summable for any k.

Example 7.70. The function e1/(1+x) is analytic on (−1, 1), and its Taylor series at
0 represents the function there (see Exercise 7.60 (a)). Let this series be∑∞

n=0 anxn. Then
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lim
x→1−0

∞∑

n=0

anxn = lim
x→1−0

e1/(1+x) = e1/2,

i.e., the series
∑∞

n=0 an is Abel summable (and its Abel sum is e1/2).
On the other hand, the series

∑∞
n=0 an is not (H, k) summable for any k. This

follows from the fact that every (H, k) summable series satisfies limn→∞ an/nk =
0 (see Exercise 7.76); however, this is not true for the series above (see Exer-
cise 7.78).

Exercises

7.72. Show that if a series of non-negative terms is (H, k) summable, then it is
convergent.

7.73. Show that if a series of non-negative terms is Abel summable, then it is con-
vergent.

7.74. Show that the series 12 − 22 + 32 − 42 + 52 − . . . is (H, 3) summable and
find its (H, 3) sum.

7.75. Check that the series 12 − 22 + 32 − 42 + 52 − . . . is Abel summable and its
Abel sum is the same as its (H, 3) sum.

7.76. Show that if the series
∑∞

n=0 an is (H, k) summable then

lim
n→∞ an/nk = 0.

(H)

7.77. Show that the series 1k − 2k + 3k − 4k + 5k − . . . is Abel summable, but it
is not (H, k) summable.

7.78. Let
∑∞

n=0 anxn be the Taylor series of the function e1/(1+x) corresponding
to the point 0. Show that the sequence (an/nk) (n = 1, 2, . . .) is not bounded for
any k. (H)

7.5 Fourier Series

The development of the theory of differentiation and integration in the seventeenth
century was mostly motivated by physics-based problems. Physics retained its key
role in the motivation of analysis: in the eighteenth and nineteenth centuries several
physics-based problem arose that elucidated some basic notions of analysis (such as
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functions, limits and infinite series), and also helped the emergence of new math-
ematical theories. Such problems were to find the equation of a vibrating string or
the equation of heat conduction9, which led to the following question. The series of
the form

a0 +
∞∑

n=1

(an cos nx + bn sin nx) (7.26)

(where an and bn are constants) are called trigonometric series. Since the functions
cos nx and sin nx are 2π-periodic for every n ∈ N, it follows that if the series (7.26)
is convergent everywhere, then its sum is also 2π-periodic. Now the question is:
can we write every 2π-periodic function in this form? If not, which 2π-periodic
function can be written as the sum of a trigonometric series? These question led to
the emergence of the theory of the Fourier series. The answers were found as late as
in the twentieth century.

Proving the uniqueness of the representation was easier than showing its exis-
tence. Georg Cantor proved in 1870 that if a function can be written as the sum of
a series of the form (7.26), then the representation is unique, i.e., the coefficients
an and bn are uniquely determined. We only prove Cantor’s theorem for the case
when the series (7.26) is uniformly convergent (for the general case, see [16, (3.1)
Theorem].

Theorem 7.71. Let the series (7.26) be uniformly convergent on R, and let f(x) be
the sum of the series. Then f is continuous, and we have

a0 =
1
2π

2π∫

0

f(x) dx (7.27)

and

an =
1
π

2π∫

0

f(x) cos nx dx, bn =
1
π

2π∫

0

f(x) sin nx dx, (n ≥ 1). (7.28)

Lemma 7.72. For every integer n ≥ 1 we have

2π∫

0

sin2 nx dx =

2π∫

0

cos2 nx dx = π. (7.29)

9 For the details, see the third appendix of this chapter.
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For every pair of integers n and m we have

2π∫

0

sinnx cos mxdx = 0. (7.30)

For every pair of distinct integers n and m we have

2π∫

0

cos nx cos mxdx =

2π∫

0

sin nx sin mxdx = 0. (7.31)

Proof. The statements follow from the identities

cos2 x = (1 + cos 2x)/2, sin2 x = (1 − cos 2x)/2,

cos x cos y = 1
2 (cos(x + y) + cos(x − y)) ,

sin x sin y = 1
2 (cos(x − y) − cos(x + y)) ,

sin x cos y = 1
2 (sin(x + y) + sin(x − y)) ,

using the fact that
∫ 2π

0
cos kx dx =

∫ 2π

0
sin kx dx = 0 for every integer k 
= 0. �

Proof of Theorem 7.71. Since the terms of the series (7.26) are continuous, the con-
tinuity of the sum f follows from Theorem 7.36. By Theorem 7.40, the series (7.26)
is integrable term by term on the interval [0, 2π], which gives (7.27) immediately.

We now prove that the series

a0 cos mx +
∞∑

n=1

(an cos nx cos mx + bn sin nx cos mx) (7.32)

is also uniformly convergent on R for every m > 0. Let ε > 0 be fixed. By the
uniform convergence of the series (7.26), there exists an N such that the nth partial
sum of the series is closer to its sum than ε for every n > N and for every x ∈ R.
Since | cos mx| ≤ 1, the nth partial sum of the series (7.32) is also closer to its
sum (i.e., to f(x) cos mx) than ε for every n > N and for every x ∈ R. Thus the
series (7.32) is indeed uniformly convergent, and then it is term by term integrable
on [0, 2π]. Therefore, by Lemma 7.72 we obtain

∫ 2π

0
f(x) cos mxdx = π · am. We

get
∫ 2π

0
f(x) sin mxdx = π · bm in the same way, which proves (7.28). �

Remark 7.73. In the formulas (7.27) and (7.28) we could integrate f on any interval
of length 2π and not just on the interval [0, 2π]. This follows from the fact that if f
is p-periodic for some p > 0, and integrable on [0, p], then it is integrable on every
interval [a, a + p], and
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a+p∫

a

f dx =

p∫

0

f dx. (7.33)

This can be proved as follows. Let (k − 1)p ≤ a < kp, where k is an integer. The

periodicity of f implies
∫ kp

a
f dx =

∫ p

a−(k−1)p
f dx and

∫ a+p

kp
f dx =

∫ a−(k−1)p

0

f dx, and thus (7.33) follows.

Formulas (7.27) and (7.28) were already known by Euler. However, their system-
atic investigation started with the work of Fourier10, who used (7.27) and (7.28) and
the series of the form (7.26) to solve the equation of the heat conduction.

Definition 7.74. Let f : R → R be 2π-periodic and integrable on [0, 2π]. The num-
bers defined by (7.27) and (7.28) are called the Fourier coefficients of f , and the
series (7.26) written with these coefficients is called the Fourier series of f .

If the Fourier series of f is convergent at a point x and its sum is f(x), then we
say that the Fourier series represents f at the point x.

Examples 7.75. 1. Let f be the 2π-periodic function such that f(x) = x2 for every
x ∈ [−π, π]. Obviously, f is an even function.

It follows that the coefficients bn of the Fourier series of the function (i.e., the
coefficients of the terms sin nx) are zero. Indeed, by Remark 7.73,

bn =
1
π

π∫

−π

f(x) sin nx dx.

Now, the value of the integral is zero, since on the right-hand side we integrate an
odd function on the interval [−π, π].

Let us find the coefficients an. First, we have

a0 =
1
2π

π∫

−π

x2 dx =
π2

3
.

If n > 0, then using integration by parts yields

an =
1
π

π∫

−π

x2 cos nx dx =
1
π

·
[
x2 · sin nx

n

]π

−π

− 2
πn

π∫

−π

x sinnx dx =

= 0 +
2

πn2
[x cos nx]π−π − 2

πn2

π∫

−π

cos nx dx =

= (−1)n 4
n2

.

10 Jean Baptiste Fourier (1768–1830), French mathematician.
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Thus the Fourier series of the function is

π2

3
− 4 ·

(
cos x − cos 2x

22
+

cos 3x

32
− . . .

)
. (7.34)

Later we will see that this series represents the function everywhere (see Exam-
ple 7.80).

2. Let f be the 2π-periodic function such that f(x) = (π − x)/2 for every x ∈
(0, 2π), and f(kπ) = 0 for every integer k. Integration by parts gives an = 0 for
every n and bn = 1/n for every n > 0. I.e., the Fourier series of f is the series∑∞

n=1(sin nx)/n. This series also represents the function everywhere (see Theo-
rem 7.86).

3. Let f be the 2π-periodic function such that f(x) = (x2/4) − (πx/2) + (π2/6)
for every x ∈ [0, 2π]. Performing integration by parts twice, we obtain bn = 0 for
every n and an = 1/n2 for every n > 0. Thus the Fourier series of f is the series∑∞

n=1(cos nx)/n2. This series also represents the function everywhere (see Theo-
rem 7.79).

Theorem 7.71 can be rephrased as follows. If a trigonometric series is uniformly
convergent, then the series is necessarily the Fourier series of its sum.

In general, we cannot expect that the Fourier series of every function represents
the function. Indeed, if we change the value of the function f at a single point, then
the integrals of (7.27) and (7.28) do not change, thus the Fourier series and its sum
are also unchanged. Thus we can always force a function not to be represented by
its Fourier series at a fixed point. The real question is, whether a continuous and
2π-periodic function is represented by its Fourier series, or not?

In order to understand the nature of this question better, let us recall some results
on power series and Taylor series. In this context, we can draw a parallel between
trigonometric series and power series on one hand, and the Fourier series of con-
tinuous functions and the Taylor series of infinitely differentiable functions on the
other hand. According to this analogy, the statement corresponding to Theorem 7.71
is that a convergent power series is always equal to the Taylor series of its sum (The-
orem 7.54). On the other hand, we know that the function f(x) = e−1/x2

, f(0) = 0
is infinitely differentiable, its Taylor series is convergent everywhere, but the sum
of its Taylor series is equal to the function at no point (except for the origin). The
analogous statement would be that there exists a continuous function whose Fourier
series is convergent, but its sum is not equal to the function anywhere. Is this true? In
Example 7.46.1. we defined a function which is infinitely differentiable, and whose
Taylor series is divergent everywhere (except for the origin). Is there a continuous
function whose Fourier series is divergent everywhere?

These questions were not answered until the end of the nineteenth century and
in the twentieth century. Lipót Fejér11 proved the following theorem in 1900 (the
proof of which goes beyond the limits of this book.)

11 Lipót Fejér (1880–1959), Hungarian mathematician.
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Theorem 7.76. (Fejér’s theorem) The Fourier series of a continuous and 2π-
periodic function is summable everywhere, and its sum is equal to the function itself.
Consequently, if the Fourier series of a continuous function is convergent at a point,
then its sum must be the value of the function at that point.

The first examples of continuous functions whose Fourier series were divergent
at some points were constructed in the nineteenth century. It was unsolved until 1966
whether the Fourier series of a continuous function can be divergent everywhere or
not. Carleson12 proved that this is impossible: the Fourier series of every continuous
(further, every integrable) function converges to the value of the function almost
everywhere (in a certain, well-defined way; see Chapter 8). I.e., the Fourier series
behave better than the Taylor series in both sense.

Several sufficient conditions are known that guarantee the representation of a
function by its Fourier series. E.g., it follows from the results of Dirichlet and Rie-
mann that if f is continuous and monotone on an interval (a, b), then its Fourier
series represents f there. It follows immediately that the functions of Examples 7.75
are represented by their Fourier series everywhere. (We will prove this presently
without using the results of Dirichlet and Riemann.)

In lack of space, we cannot delve into the theory of the Fourier series. The topic
is explored by several books; see [15], [2], or [16]. We will prove, however, that if
the Fourier series of a continuous function is uniformly convergent, then the Fourier
series represents the function everywhere. We prove this in two steps. First, we show
that if the Fourier series of a continuous function is the constant zero function, then
the function is also identically zero. (The analogue of this statement for Taylor series
is false: the Taylor series of the function f(x) = e−1/x2

, f(0) = 0 is the constant
zero function.)

Theorem 7.77. Let f : R → R be continuous and 2π-periodic. If every Fourier
coefficient of f is zero, then f is the constant zero function.

Proof. I. The function cosn x can be written as
∑n

k=0 ck cos kx with suitable con-
stants c0, . . . , cn. We prove this by induction on n. The claim is true for n = 1. If it
is true for n and

cosn x =
n∑

k=0

ck cos kx,

then

cosn+1 x =
n∑

k=0

ck cos kx cos x.

Using the identity cos kx cos x = 1
2 · (cos(k + 1)x + cos(k − 1)x) for every k and

reordering the resulting terms yield the statement for n + 1.
From this observation it follows that if all the Fourier coefficients of the function

f are zero, then
∫ 2π

0
f(x) cosn x dx = 0 for every non-negative integer n. Which,

12 Lennart Carleson (1928–), Swedish mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_8
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in turn, implies that
2π∫

0

f(x) · p(cos x) dx = 0,

for every polynomial p.

II. We now show that if f is continuous, 2π-periodic, and every Fourier coefficient of
f is zero, then f(0) = 0. Suppose that f(0) 
= 0. Since the Fourier coefficients of the
function 1

f(0) · f(x) are also zero, we may assume that f(0) = 1. By the continuity
of f , there exists a 0 < δ < π/2 such that f(x) > 1/2 for every |x| < δ. The idea
of the proof is to find a polynomial p such that p(cos x) is greater than 1 around
the point 0, positive on (−δ, δ), and small enough on [−π, π] \ (−δ, δ) to make
the integral

∫ π

−π
f(x) · p(cos x) dx positive. (By Remark 7.73, we may integrate

on any interval of length 2π.) Since the integral has to be zero, this will lead to a
contradiction.

We show that the polynomial p(x) = (x + ε)N satisfies the conditions if ε is
small enough and N is large enough. Let 0 < ε < 1 small enough for (cos δ) + ε <
1 to hold. Let ϕ(x) = (cos x) + ε. Since ϕ(0) > 1, there exists some η > 0 such
that ϕ(x) > 1 for every |x| < η. Obviously, ϕ(x) > 0 is also true for every |x| < δ.
Note that ε and η only depend on δ.

For x ∈ [δ, π]we have−1 + ε ≤ ϕ(x) ≤ (cos δ) + ε, and thus |ϕ(x)| ≤ q, where
q = max(1 − ε, (cos δ) + ε) < 1. Therefore, if x ∈ [δ, π], then |ϕ(x)N | ≤ qN .
Since ϕ is even, this is also true on [−π,−δ]. Let |f(x)| ≤ K for every x ∈ [−π, π].
Then we have

∣
∣
∣
∣
∣
∣

π∫

δ

f(x) · ϕ(x)N dx

∣
∣
∣
∣
∣
∣
≤ π · K · qN and

∣
∣
∣
∣
∣
∣

−δ∫

−π

f(x) · ϕ(x)N dx

∣
∣
∣
∣
∣
∣
≤ π · K · qN .

On the other hand,

δ∫

−δ

f(x) · ϕ(x)N dx >

η∫

−η

f(x) · ϕ(x)N dx >

η∫

−η

f(x) dx >
1
2

· 2η = η.

Thus
∫ π

−π
f(x) · ϕ(x)N dx > η − 2πKqN > 0 for N large enough, which is a con-

tradiction.

III. Let f be continuous and 2π-periodic, and let every Fourier coefficients of f
be zero. Then, for every fixed a ∈ R, the function f(x + a) is also continuous and
2π-periodic We show that the Fourier coefficients of f(x + a) are also zero. Indeed,
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2π∫

0

f(x+a) cos nx dx =

2π+a∫

a

f(x) cos(n(x − a)) dx =

=

2π∫

0

f(x)(cos nx cos a + sin nx sin a) dx =

= cos a ·
2π∫

0

f(x) cos nx dx + sin a ·
2π∫

0

f(x) sin nx dx =

= (cos a) · 0 + (sin a) · 0 = 0,

and we can prove
∫ 2π

0
f(x + a) sin nx dx = 0 similarly. Part II. of our proof implies

that f(0 + a) = 0. Since this is true for every a, the function f is identically zero. �
Remark 7.78. We say that the integrable functions f, g : [a, b] → R are orthogonal
if

∫ b

a
f · g dx = 0. (As for the motivation of this notion, see [7, Remark 14.57].)

Using this terminology, formulas (7.30) and (7.31) state that on the interval [0, 2π]
any two of the functions cos nx (n = 0, 1, . . .) and sinnx (n = 1, 2, . . .) are orthog-
onal. Now Theorem 7.77 states that if a continuous and 2π-periodic function f is
orthogonal to every one of these functions, then f is identically zero. Thus Theo-
rem 7.77 says that the system of trigonometric functions cannot be extended with
respect to their orthogonality, i.e, the trigonometric function form a complete sys-
tem. For this reason we also call Theorem 7.77 the completeness theorem.

We can now easily prove that if the Fourier series of a function is uniformly
convergent, then it represents the function.

Theorem 7.79. Let f : R → R be continuous and 2π-periodic. If the Fourier series
of f is uniformly convergent on R, then its sum is equal to f(x) everywhere.

Proof. Let the sum of the Fourier series of f be g. By Theorem 7.71, g is contin-
uous, and the Fourier coefficient of f and g are the same. It follows easily that the
Fourier coefficients of the continuous and 2π-periodic function (f − g) are zero.
Then, by Theorem 7.77, f − g = 0, i.e., f = g. �
Example 7.80. From Theorem 7.79 it follows that the Fourier series of the function
of Example 7.75.1. represents the function everywhere, since the function is contin-
uous, and its Fourier series is uniformly convergent by the Weierstrass criterion. We
get that

π2

3
− 4 ·

(
cos x − cos 2x

22
+

cos 3x

32
− . . .

)
= x2

for every |x| ≤ π. Plugging x = π we obtain that
∑∞

n=1 1/n2 = π2/6.

We now prove that every smooth enough function is represented by its Fourier
series.
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Lemma 7.81. If the function f : R → R is 2π-periodic and k times continuously
differentiable on R, then there exists an M > 0 such that

|an| ≤ M/nk, and |bn| ≤ M/nk (7.35)

hold for the Fourier coefficients of f for every n ≥ 1.

Proof. We prove by induction on k. For k = 0 the condition simply means (by
definition) that f is continuous on [0, 2π]. In this case, f is bounded. Suppose that
|f(x)| ≤ K for every x ∈ [0, 2π] with an appropriate positive number K. Then it
follows from (7.28) that |an| ≤ 2K and |bn| ≤ 2K for every n ≥ 1. (Actually, it is
also true that the coefficients an and bn converge to zero as n → ∞, but we will not
need this. See Exercise 7.96.)

Suppose that the statement of the theorem is true for k, and let f : R → R be
2π-periodic and (k + 1)-times continuously differentiable. Then f ′ is k-times con-
tinuously differentiable and, by the induction hypothesis, the Fourier coefficients of
f ′ satisfy the inequalities (7.35) with an appropriate M > 0. Integration by parts
gives

2π∫

0

f(x) cos nx dx =
[
f(x) · sinnx

n

]2π

0

−
2π∫

0

f ′(x) · sinnx

n
dx =

= 0 − 1
n

·
2π∫

0

f ′(x) · sinnx dx,

and ∣
∣
∣
∣
∣
∣

2π∫

0

f(x) cos nx dx

∣
∣
∣
∣
∣
∣
≤ M/nk+1.

Similarly (by using f(2π) = f(0)), we get that

∣
∣
∣
∣
∣
∣

2π∫

0

f(x) sin nx dx

∣
∣
∣
∣
∣
∣
≤ M/nk+1

for every n ≥ 1. �

Theorem 7.82. If f : R → R is 2π-periodic and twice continuously differentiable,
then it is represented by its Fourier series everywhere.

Proof. By Lemma 7.81, the Fourier coefficients of f satisfy |an| ≤ M/n2 and
|bn| ≤ M/n2 with an appropriate M . Thus, by the Weierstrass criterion, the Fourier
series of f is uniformly convergent, and we can apply Theorem 7.79. �
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Remark 7.83. The conditions of the theorem can be significantly relaxed. For exam-
ple, it follows from Dirichlet’s convergence theorems that every differentiable and
2π-periodic function is represented by its Fourier series.

We call the finite sums of the form a0 +
∑n

k=1(ak cos kx + bk sin kx) (where ak

and bk are constants) trigonometric polynomials. Every trigonometric polynomial
is continuous and 2π-periodic. Therefore, if a function f : R → R can be written as
the uniform limit of a sequence of trigonometric polynomials, then f is continuous
(and of course 2π-periodic). We now show that the converse is also true.

Theorem 7.84. (Weierstrass’ 2nd approximation theorem) If f : R → R is con-
tinuous and 2π-periodic, then for every ε > 0 there exists a trigonometric polyno-
mial t such that |f(x) − t(x)| < ε holds for every x.

Proof. If f is twice continuously differentiable, then f is represented by its Fourier
series everywhere by Theorem 7.82. In the proof of Theorem 7.82 we also showed
that the Fourier series of f is uniformly convergent. Thus, for every ε > 0, the nth
partial sum of the Fourier series satisfies the conditions of the theorem, if n is large
enough.

Therefore, it is enough to prove that if f is continuous and 2π-periodic, then f
can be uniformly approximated by twice continuously differentiable and
2π-periodic functions.

Let ε > 0 be fixed. Since f is uniformly continuous on [0, 2π], there exists a
δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ [0, 2π] and |x − y| < δ. Fix
a partition 0 = x0 < x1 < . . . < xn = 2π of the interval [0, 2π] finer than δ. For
every i = 1, . . . , n choose a function ϕi : [xi−1, xi] → R with the following prop-
erties:

(i) ϕi is continuously differentiable on [xi−1, xi],
(ii) ϕi(xi−1) = ϕ′

i(xi−1) = ϕi(xi) = ϕ′
i(xi) = 0,

(iii) the sign of ϕi does not change on (xi−1, xi), and
(iv)

∫ xi

xi−1
ϕi(x) dx = f(xi) − f(xi−1).

It is easy to see that the function c · (x − xi−1)2 · (xi − x)2 has these properties
with a suitable constant c.

Let ϕ(x) = ϕi(x) for every x ∈ [xi−1, xi] and every i = 1, . . . , n, and let us
extendϕ periodically toR. Clearly,ϕ is continuously differentiable and 2π-periodic.
Let g(x) = f(0) +

∫ x

0
ϕ(t) dt for every x ∈ R. It is easy to see that g is twice con-

tinuously differentiable. We show that g is 2π-periodic and |f(x) − g(x)| < ε for
every x. The 2π-periodicity of the function g follows from

2π∫

0

ϕ(t) dt =
n∑

i=1

xi∫

xi−1

ϕi(x) dx =
n∑

i=1

(
f(xi) − f(xi−1)

)
= f(2π) − f(0) = 0.
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The values of the functions f and g are equal at the points xi. Indeed,

g(xi) = f(0) +

xi∫

0

ϕ(t) dt = f(0) +
i∑

j=1

(
f(xj) − f(xj−1)

)
= f(xi).

If x ∈ [xi−1, xi], then |f(x) − f(xi−1)| < ε and |f(x) − f(xi)| < ε, since |xi −
xi−1| < δ implies |x − xi−1| < δ and |x − xi| < δ. On the other hand g(x) lies
between the numbers g(xi−1) = f(xi−1) and g(xi) = f(xi), since the sign of ϕi

does not change, and thus g is monotone on [xi−1, xi]. Thus we have |g(x) −
f(x)| < ε. Since f and g are 2π-periodic, this is true for every x. �
Remark 7.85. Using Theorem 7.84 we can give a new proof of Weierstrass’ (first)
approximation theorem, i.e., Theorem 7.8, for functions of one variable. Let
f : [0, 1] → R be continuous, and let ε > 0 be fixed. We will construct a polyno-
mial p such that |f − p| < ε on the interval [0, 1].

Extend f continuously to the interval [0, 2π] in such a way that f(2π) = f(0)
also holds. (E.g., let f be linear on the interval [1, 2π].) Extend the resulting func-
tion to R 2π-periodically, and denote the resulting function also by f . Since f is
continuous on R, it follows from Theorem 7.84 that there exists a trigonometric
polynomial t such that |f(x) − t(x)| < ε/2 for every x. We know that the functions
cos x and sin x are represented everywhere by their Taylor series corresponding
to the point zero, and that these Taylor series are uniformly convergent on every
bounded interval. From this it follows easily that the trigonometric polynomial t is
also represented everywhere by its Taylor series corresponding to the point zero,
and this Taylor series is uniformly convergent on [0, 1]. Thus, if pn denotes the nth
partial sum of the Taylor series of t, then for n large enough, |t(x) − pn(x)| < ε/2
holds for every x ∈ [0, 1]. Then |f(x) − pn(x)| < 2ε for every x ∈ [0, 1], which
proves the statement.

Finally, we find the sum of two important trigonometric series.

Theorem 7.86.

(i) The series
∑∞

n=1(sin nx)/n is convergent for every x ∈ R, and its sum is 2π-
periodic. The sum of the series is zero for x = kπ (k ∈ Z), and

∞∑

n=1

sin nx

n
=

π − x

2
(7.36)

for every 0 < x < 2π.

(ii) The series
∑∞

n=1(cos nx)/n is divergent for every x = 2kπ (k ∈ Z), and con-
vergent with sum ∞∑

n=1

cos nx

n
= − log

∣
∣
∣2 sin

x

2

∣
∣
∣ (7.37)

for every x 
= 2kπ (k ∈ Z).
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Proof. Let the derivative of the nth partial sums of the two series be sn(x) =∑n
j=1 sin jx and cn(x) =

∑n
j=1 cos jx, respectively. By Lemma 6.64, the seque-

nces (|sn(x)|) and (|cn(x)|) are bounded if x 
= 2kπ (their upper bound is
1/| sin(x/2)|). Now the convergence of the two series follow from Dirichlet’s crite-
rion (Theorem 6.47).

It is clear that the sum of the series
∑∞

n=1(sin nx)/n at the points x = 2kπ is
zero. Since the function on the right-hand side of (7.37) is 2π-periodic, it is enough
to show that (7.36) and (7.37) hold for every 0 < x < 2π.

Let 0 < δ < π be fixed. If δ ≤ x ≤ 2π − δ, then sin(x/2) ≥ sin(δ/2) and
|ctg (x/2)| ≤ 1/ sin(δ/2). It follows from (6.23) and (6.24) that

∣
∣
∣
∣
s1(x) + . . . + sn(x)

n
− 1

2
ctg

x

2

∣
∣
∣
∣ ≤ 1

2 sin2(δ/2)
· 1
n

+
1

2 sin(δ/2)
· 1
n

and ∣
∣
∣
∣
c1(x) + . . . + cn(x)

n
+

1
2

∣
∣
∣
∣ ≤ 1

2 sin2(δ/2)
· 1
n

+
1

2 sin(δ/2)
· 1
n

,

for every x ∈ [δ, 2π − δ]. This means that the sequence of functions (s1 + . . . +
sn)/n converges uniformly to the function 1

2ctg (x/2), and the sequence of func-
tions (c1 + . . . + cn)/n converges uniformly to the constant −1/2 function on the
interval [δ, 2π − δ]. By Theorem 7.16 this implies

x∫

π

s1(t) + . . . + sn(t)
n

dt →
x∫

π

1
2

ctg
t

2
dt = log sin

x

2
(7.38)

and
x∫

π

c1(t) + . . . + cn(t)
n

dt → π − x

2
(7.39)

for every x ∈ [δ, 2π − δ] as n → ∞.
Let Sn(x) =

∑n
j=1(sin jx)/j and Cn(x) =

∑n
j=1(cos jx)/j. Then

x∫

π

cn(t) dt =

x∫

π

(cos t + . . . + cos nt) dt =
[
sin t + . . . +

sin nt

n

]x

π

= Sn(x)

and

x∫

π

sn(t) dt =

x∫

π

(sin t + . . . + sinnt) dt =

[
− cos t − . . . − cosnt

n

]x

π

= −Cn(x)− αn,

where αn = 1 − (1/2) + . . . + (−1)n−1(1/n).

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Thus Sn(x) =
∫ x

π
cn(t) dt and Cn(x) = −

x∫

π

sn(t) dt − αn, and we have

S1(x) + . . . + Sn(x)
n

=

x∫

π

c1(t) + . . . + cn(t)
n

dt

and

C1(x) + . . . + Cn(x)
n

= −
x∫

π

s1(t) + . . . + sn(t)
n

dt − α1 + . . . + αn

n
.

Taking (7.38) and (7.39) into account we find that (S1(x) + . . . + Sn(x))/n →
(π − x)/2 and (C1(x) + . . . + Cn(x))/n → − log sin(x/2) − log 2 for every
x ∈ [δ, 2π − δ], since αn → log 2, and thus (α1 + . . . + αn)/n → log 2. Therefore,
the series

∑∞
n=1(sin nx)/n and

∑∞
n=1(cos nx)/n are summable, and their sum is

(π − x)/2 and − log
(
2 sin(x/2)

)
, respectively. We have already proved that these

series are convergent. Thus, by Theorem 6.60, their sum coincides with their sum
as summable series. Since this holds for every x ∈ [δ, 2π − δ] and every 0 < δ < π,
the theorem is proved. �

Remark 7.87. Statement (i) of the theorem says that the function of Example 7.75.2
is represented everywhere by its Fourier series.

Exercises

7.79. Each of the following functions is defined on an interval of length 2π. Extend
the functions to R as 2π-periodic functions, and find their Fourier series.
(a) f(x) = x (x ∈ [−π, π));
(b) f(x) = |x| (x ∈ [−π, π));
(c) f(x) = x(π − |x|) (x ∈ [−π, π));
(d) f(x) = x (x ∈ [0, 2π));
(e) f(x) = x2 (x ∈ [0, 2π))
(f) f(x) = 1 (x ∈ [0, π)) and f(x) = −1 (x ∈ [−π, 0));
(g) f(x) = (x − π)2 (x ∈ [0, π)) and f(x) = (x + π)2 (x ∈ [−π, 0));
(h) f(x) = | sin x| (x ∈ [0, 2π));
(i) f(x) = cos x (|x| ≤ π/2) and f(x) = 0 (π/2 < |x| ≤ π)).

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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7.80. Find the points where the functions of the previous exercise are represented
by their respective Fourier series. (H)

7.81. Show that if the 2π-periodic function f is even (odd), then its Fourier series
has bn = 0 (an = 0) for every n ≥ 1.

7.82. Find the sum of the following series:

(a)
∑∞

n=1 qn sinnx (|q| < 1); (b)
∑∞

n=1 qn cos nx (|q| < 1);

(c)
∑∞

n=2
sinnx

n(n−1) ; (d)
∑∞

n=2
cosnx

n(n−1) ;

(e) sinx + sin 2x
2! + sin 3x

3! + . . .; (f) sin x + sin 3x
3 + sin 5x

5 + . . .;

(g) sinx − sin 3x
3 + sin 5x

5 − . . .; (h) cos 2x
1·3 + cos 4x

3·5 + . . .;

(i) sinx + sin 3x
33 + sin 5x

53 + . . ..

7.83. Find the functions whose Fourier series is of the form

(a)
∑∞

n=1 an cos 2nx; (b)
∑∞

n=1 an cos(2n + 1)x;

(c)
∑∞

n=1 an sin 2nx; (d)
∑∞

n=1 an sin(2n + 1)x.

7.84. Show that the trigonometric polynomial
∑N

n=1(an cos nx + bn sin nx) has a
root.

7.85. Show that if f(x) = 1 +
∑N

n=1(an cos nx + bn sin nx) ≥ 0 for every x, then
f(x) ≤ N + 1 for every x. (∗ H)

7.86. Show that if
∑n

i=0 |ai|2 = 1, then

∫ 1

0

|a0 + a1x + . . . + anxn| dx ≤ π/2.

7.87. Show that if n1, . . . , nk are distinct integers, then

1
2π

2π∫

0

| cos n1x + . . . + cos nkx| dx ≤
√

k

2
.
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7.88. Let the function f be 2π-periodic, and suppose that the Fourier series of the
functions f(x) and f(x + 1) are the same. Show that the Fourier series of f has
an = bn = 0 for every n ≥ 1.

7.89. Construct a 2π-periodic and continuous function f such that the sequence
(n · an) is not bounded, where an is the coefficient of cos nx in the Fourier series
of f . (H)

7.90. Let (an) be a sequence such that
∑∞

n=1 |an cos nx| ≤ 1 at every point of a
non-degenerated interval. Show that

∑∞
n=1 |an| < ∞. (∗ H)

7.91. Let (an) and (bn) be sequences such that

∞∑

n=1

|an cos nx + bn sinnx| ≤ 1

at every point of a non-degenerated interval. Show that
∑∞

n=1(|an| + |bn|) <
∞. (∗ H)

7.92. Let (an) be a monotone decreasing sequence that converges to zero. Show
that the partial sums of

∑∞
n=1 an sinnx are bounded if and only if the sequence

(n · an) is bounded. (∗ H)

7.93. Let (an) be a monotone decreasing sequence that converges to zero. Show
that

∑∞
n=1 an sin nx is uniformly convergent on R if and only if n · an → 0. (∗ H)

7.94. Let f be continuously differentiable on [0, π]. Show that if
∫ π

0
f dx = 0 or

f(0) = f(π) = 0, then
∫ π

0
f2 dx ≤ ∫ π

0
(f ′)2 dx.

7.95. Let f : R → R be 2π-periodic and suppose that f is a piecewise constant
function on [0, 2π]. Show that the sequence of the Fourier coefficients of f converges
to zero.

7.96. Let f : R → R be 2π-periodic and integrable on [0, 2π]. Show that the
sequence of the Fourier coefficients of f converges to zero. (Riemann’s lemma) (H)

7.97. Let f : R → R be 2π-periodic and integrable on [0, 2π]. Show that if every
Fourier coefficient of f is zero, then f(x) = 0 at every point x, where f is continu-
ous.

7.98. Let f : R → R be 2π-periodic and integrable on [0, 2π]. Show that if the
Fourier series of f is uniformly convergent, then the sum of this series is f(x) at
every point x, where f is continuous.
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7.6 Further Applications

The infinite series
∑∞

i=1 1/is is convergent for every s > 1; we denote its sum
by ζ(s) (see Exercise 6.3). The above defined ζ function (defined on the half line
(1,∞)) is one of the most investigated functions of mathematics. The motive behind
this interest is the discovery, made by Riemann in 1859, that the function ζ can be
extended to the complex plane (except for the point 1) as a differentiable function,
and that the properties of this extended function are in close relation with the dis-
tribution of the prime numbers. A famous (and after 150 years still unsolved) con-
jecture of Riemann claims that the real part of every non-real root of the complex
extension of the ζ function is 1/2 [19].

We know that ζ(2) = π2/6 (see Exercise 4.20 and Example 7.80.) Our next goal
it to find the value of ζ(2k) for every positive integer k (see Theorem 7.92). To do
this, we need to define a sequence of polynomials which also appears in other fields
of mathematics (e.g., in combinatorics and probability theory).

Theorem 7.88. There exists a uniquely defined sequence of polynomials B0(x),
B1(x), . . . with the following properties: B0(x) ≡ 1, furthermore, B′

n(x) =
Bn−1(x) and

∫ 1

0
Bn(x) dx = 0, for every n > 0.

Proof. We prove the existence and uniqueness of the polynomials Bn(x) by induc-
tion. Let n > 0 and let the polynomial Bn−1(x) be given. Let F (x) =

∫ x

0
Bn−1

(t) dt. Clearly, there is a unique function f such that f ′(x) = Bn−1(x) and
∫ 1

0
f

dx = 0, namely, the function f(x) = F (x) − c, where c =
∫ 1

0
F (x) dx. It is also

obvious that f is a polynomial. �

We call the polynomials given by the previous theorem the Bernoulli13 polyno-
mials. The first five Bernoulli polynomials are the following:

B0(x) = 1, B1(x) = x − 1
2
, B2(x) =

1
2
x2 − 1

2
x +

1
12

,

B3(x) =
1
6
x3 − 1

4
x2 +

1
12

x, B4(x) =
1
24

x4 − 1
12

x3 +
1
24

x2 − 1
720

.

For n > 1, we have

Bn(1) − Bn(0) =
∫ 1

0

B′
n(x) dx =

∫ 1

0

Bn−1(x) dx = 0,

thus
Bn(0) = Bn(1) (n = 2, 3, . . .). (7.40)

13 Jacob Bernoulli (1654–1705), Swiss mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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It is clear from the construction of the Bernoulli polynomials that Bn(x) is an nth-
order polynomial with rational coefficients. We call the numbers Bn = n! · Bn(0)
Bernoulli numbers. Below, we list the first few Bernoulli numbers:

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0,

B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0,

B8 = −1/30, B9 = 0, B10 = 5/66, B11 = 0,

B12 = −691/2730, B13 = 0, B14 = 7/6, B15 = 0,

B16 = −3617/510, B17 = 0 B18 = 43 867/798. (7.41)

Let us return to the topic of Fourier series. By Theorem 7.79, the function in
Example 7.75.3 is represented everywhere by its Fourier series, since the function
is continuous and its Fourier series is uniformly convergent by the Weierstrass cri-
terion. We get that

x2

4
− π

2
x +

π2

6
=

∞∑

n=1

cos nx

n2
,

for every x ∈ [0, 2π]. The left-hand side of the formula can be simplified if we
replace x by 2πx:

x2 − x +
1
6

=
∞∑

n=1

cos 2nπx

π2n2
(x ∈ [0, 1]). (7.42)

This formula can be generalized the following way.

Theorem 7.89. For every x ∈ [0, 1] and every positive integer k, we have

B2k+1(x) = (−1)k−1
∞∑

n=1

2 sin 2nπx

(2nπ)2k+1
(7.43)

and

B2k(x) = (−1)k−1
∞∑

n=1

2 cos 2nπx

(2nπ)2k
. (7.44)

Proof. Since the left-hand side of (7.42) is 2 · B2(x), thus (7.44) holds for k = 1.
Now, consider the series

∑∞
n=1(2 sin 2nπx)/(2nπ)3. By Weierstrass’ criterion, the

series is uniformly convergent on R, and then its sum – which we denote by f –
is everywhere continuous. By differentiating term by term we get a series which
is 1/2-times the right-hand side of (7.42), which is a uniformly convergent series.
Thus, applying Theorem 7.42, we obtain that f is everywhere differentiable and its
derivative is B2(x) for every x ∈ [0, 1]. By the definition of the polynomial B3(x),
we have B′

3(x) = B2(x), and thus f(x) = B3(x) + c on the interval [0, 1]. The
series defining f is term by term integrable on every interval (because it is uniformly
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convergent), thus we have
∫ 1

0
f dx = 0, since the integral of each term of the series

is zero on [0, 1]. It follows that

0 =

1∫

0

f dx =

1∫

0

(B3(x) + c) dx = c,

because
∫ 1

0
B3(x) dx = 0 by the definition of B3(x). We get that c = 0 and f(x) =

B3(x) on the interval [0, 1], which proves (7.43), for k = 1.
Now, consider the series

∑∞
n=1(2 cos 2nπx)/(2nπ)4. Repeating the argument

above (nearly word by word), we get that the sum of the series is B4(x), for
every x ∈ [0, 1]. Continuing the process yields (7.43) and (7.44), for every positive
integer k. �

Remarks 7.90. 1. Replacing x by 2πx in the equality (7.36), we get

x − 1
2

= −
∞∑

n=1

sin 2nπx

nπ
, (7.45)

for every x ∈ (0, 1). As B1(x) = x − 1
2 , this means that the equality (7.43) is also

true for k = 0, at least when x ∈ (0, 1). The equality does not hold for x = 0 and
x = 1, since the right-hand side of (7.45) is zero at these points.

2. According to Example 7.31, the right-hand side of (7.45) is uniformly convergent
on the interval [δ, 2π − δ] for every 0 < δ < π. Using this fact, we can give a new
proof of Theorem 7.89. Consider the series

∑∞
n=1(2 cos 2nπx)/(2nπ)2, and let its

sum be denoted by f . By taking the term by term derivative of the series, we get
the right-hand side of (7.45), and thus f ′(x) = B1(x) for every x ∈ (0, 1). We get
that f(x) = B2(x) + c on the interval (0, 1). Since f and B2(x) are continuous
everywhere, we obtain that f(x) = B2(x) + c for every x ∈ [0, 1]. Now, integrating
the series defining f term by term, we get

∫ 1

0
f dx = 0, i.e., f(x) = B2(x) for every

x ∈ [0, 1]. The rest of the proof is the same as the original proof of Theorem 7.89.

Theorem 7.89 has several interesting corollaries. First, plugging x = 0 into
(7.43) implies the following theorem.

Theorem 7.91. We have B2k+1 = 0, for every integer k ≥ 1. �

On the other hand, by plugging x = 0 into (7.44), the right-hand side becomes
(−1)k−1ζ(2k) · 2/(2π)2k, while the left-hand side is B2k/(2k)!. This gives the for-
mula proved by Euler:

Theorem 7.92. We have

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k
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for every k ≥ 1. �

E.g., ζ(2) = π2/6, ζ(4) = π4/90 and ζ(6) = π6/945. Theorem 7.92 also
implies that B2k is positive when k is odd, and is negative when k is even.

Our next goal is to prove the following formula.

Theorem 7.93.

πctg πx = lim
N→∞

N∑

n=−N

1
x − n

, (7.46)

for every x ∈ R \ Z.

An important ingredient of the proof is the fact that the function f(x) = ctg πx
satisfies the functional equation

f
(x

2

)
+ f

(
x + 1

2

)
= 2f(x) (7.47)

for every x ∈ R \ Z (check this fact). We note that there exists several elementary
functions that satisfy similar equations. We say that the function f is k-replicative,
if there exists a constant ak such that

f
(x

k

)
+ f

(
x + 1

k

)
+ . . . + f

(
x + k − 1

k

)
= akf(x) (7.48)

for every x ∈ D(f). (E.g., the function ctg πx is 2-replicative with a2 = 2.) It is
easy to see that the function x − 1

2 is k-replicative for every k > 1 with the constant
ak = 1. By induction on n it is not too hard to see that the Bernoulli polynomial
f(x) = Bn(x) is also k-replicative for every k > 1 with the constant ak = k1−n

(see Exercise 7.103). One can prove that this property characterizes the Bernoulli
polynomials in the following sense: if a polynomial p is k-replicative for any k > 1,
then p is a constant multiple of a Bernoulli polynomial (see Exercise 7.104).

The function f(x) = ctg πx is also k-replicative for every k > 1; this follows
from either Theorem 6.63 or Theorem 7.93 (see Exercise 7.105). If k is a power of
2 then this follows immediately from (7.47) (see Exercise 7.107). For the proof of
Theorem 7.93 we only need the k = 2 case, that is, (7.47).

Lemma 7.94. If the function f : [0, 1] → R is continuous and satisfies (7.47) for
every x ∈ [0, 1], then f is constant.

Proof. Let the greatest value of f be M , and let M = f(x) for some x ∈ [0, 1].
Each term on the left-hand side of (7.47) is at most M , and thus (7.47) can hold only
if f(x/2) = M . Repeating this argument for x/2, we get that f(x/4) = M and, in
general f(x/2n) = M for every n. Now f is continuous from the right at 0, and
hence f(0) = M . By a similar argument we get that f(0) = min{f(x) : x ∈ [0, 1]},
and thus f ≡ f(0). �

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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Proof of Theorem 7.93. We show that the limit on the right-hand side of (7.46)
exists for every x /∈ Z. By doing some simple algebra, we get that

N∑

n=−N

1
x − n

=
1
x

+
N∑

n=1

2x

x2 − n2
. (7.49)

If K > 0, |x| ≤ K and n > 2K, then x2 < n2/2, |x2 − n2| > n2/2, and thus

∣
∣
∣
∣

2x

x2 − n2

∣
∣
∣
∣ <

2K

n2/2
=

4K

n2
.

This implies that the series of functions
∑∞

n=1 2x/(x2 − n2) satisfies the Weier-
strass criterion on ([−K,K] \ Z) ∪ {0}. Thus the series is uniformly convergent on
this set. This is true for every K > 0, which implies that the series is convergent
for every x ∈ (R \ Z) ∪ {0}, and its sum is continuous there. Thus the limit on the
right-hand side of (7.46) exists if x /∈ Z. Denote the limit by g(x). We can see that
g is continuous on R \ Z, and

lim
x→0

(
g(x) − 1

x

)
= 0. (7.50)

Now we show that the function g is 1-periodic. Indeed, for x /∈ Z we have

g(x + 1) − g(x) = lim
N→∞

(
N∑

n=−N

1
x + 1 − n

−
N∑

n=−N

1
x − n

)

=

= lim
N→∞

(
1

x + 1 + N
− 1

x − N

)
= 0.

We now prove that the function g satisfies the functional equation (7.47). For a fixed
N we have

N∑

n=−N

1
(x/2) − n

+
N∑

n=−N

1
((x + 1)/2) − n

− 2 ·
2N∑

n=−2N

1
x − n

=

=
N∑

n=−N

2
x − 2n

+
N∑

n=−N

2
x + 1 − 2n

−
2N∑

n=−2N

2
x − n

=

=
2

x + 1 + 2N
.

Since this converges to g
(

x
2

)
+ g

(
x+1
2

) − 2g(x) on the one hand and to zero on
the other hand as N → ∞, we can see that g satisfies (7.47) as we stated. Thus the
same is true for the function h(x) = πctg πx − g(x).
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Applying the L’Hospital rule, we get that

lim
x→0

(
πctg πx − 1

x

)
= 0. (7.51)

Thus (7.50) implies limx→0 h(x) = 0. Since h is 1-periodic (because πctg πx and
g are also 1-periodic), hence limx→1 h(x) = 0 is also true. Therefore, if we define
the function h to be 0 at the points 0 and 1, then this extended function (which we
also denote by h) is continuous on [0, 1]. We know that h

(
x
2

)
+ h

(
x+1
2

)
= 2h(x),

for every x ∈ (0, 1). The continuity of h implies that this holds for x = 0 and x = 1
as well. Then, by Lemma 7.94, h = 0 on the interval [0, 1]. Since h is 1-periodic, it
follows that h(x) = 0 for every x /∈ Z, and the theorem is proved. �

Comparing the statement of the previous theorem with (7.49), we get that

πctg πx =
1
x

+
∞∑

n=1

2x

x2 − n2
(7.52)

for every x ∈ R \ Z. If |x| < 1 and n ∈ N
+, then

1
n2 − x2

=
1
n2

· 1
1 − x

n
2 =

∞∑

i=1

1
n2i

· x2i−2.

Since the series
∑∞

n=1 1/(n2 − x2) is convergent, it follows from Theorem 6.30
that the terms x2i−2/n2i written in any order form an (absolutely) convergent
series of sum

∑∞
n=1 1/(n2 − x2). Now, for i fixed, we have

∑∞
n=1 x2i−2/n2i =

ζ(2i) · x2i−2. Then using Theorem 6.30 again we obtain

∞∑

n=1

1
n2 − x2

=
∞∑

i=1

ζ(2i) · x2i−2.

By comparing this with (7.52) we have the following theorem.

Theorem 7.95. For every |x| < 1, we have

πctg πx =
1
x

− 2 ·
∞∑

i=1

ζ(2i) · x2i−1. � (7.53)

We can use this to find the power series of the tangent function with respect to the
point 0. It is easy to see that

tg x = ctg x − 2 · ctg (2x)

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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for every x 
= kπ/2. Thus, applying (7.53) to x and 2x and taking the difference of
the two series term by term we obtain

πtg πx =
∞∑

i=1

2ζ(2i)(22i − 1) · x2i−1

for every |x| < 1/2. If we express ζ(2i) with the help of the Bernoulli numbers
using Theorem 7.92 and replace πx by x, then we obtain the power series of the
function tg x around 0.

Theorem 7.96. For every |x| < π/2, we have

tg x =
∞∑

i=1

(−1)i−1 (22i − 1)22iB2i

(2i)!
· x2i−1. � (7.54)

Next, we prove Euler’s celebrated product formula.

Theorem 7.97. For every x ∈ R, we have

sinπx = πx · lim
N→∞

N∏

n=1

(
1 − x2

n2

)
. (7.55)

Proof. Using (7.49), we can reformulate the statement of Theorem 7.93 as follows:

∞∑

n=1

2x

x2 − n2
= πctg πx − 1

x
(7.56)

for every x /∈ Z. In the proof of Theorem 7.93 we showed that the series on the left-
hand side is uniformly convergent on the interval (−1, 1). Thus the equation (7.56)
can be integrated term by term on the interval [0, x] for every 0 < x < 1. Since

x∫

0

2t

t2 − n2
dt =

[
log(n2 − t2)

]x

0
= log(n2 − x2) − log(n2) = log

(
1 − x2

n2

)
,

we find that the integral of the left-hand side of (7.56) equals

lim
N→∞

N∑

n=1

log
(

1 − x2

n2

)
= lim

N→∞
log

N∏

n=1

(
1 − x2

n2

)
. (7.57)
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At the same time, the integral of the right-hand side of (7.56) is

x∫

0

(
πctg πt − 1

t

)
dt = [log sin πt − log t]x0 = (7.58)

=
[
log

sinπt

t

]x

0

= log
sin πx

πx
.

If we compare (7.57) with (7.58), then raise e to the power of the two equal sides of
the resulting equality and rearrange the result, then we get (7.55).

The proof is still not complete yet, since we only proved the equality for

x ∈ (0, 1). Let PN (x) denote the product x · ∏N
n=1

(
1 − x2

n2

)
. Then

PN (x) =
(−1)N

(n!)2
·

N∏

n=−N

(x − n), (7.59)

and thus
PN (x + 1)

PN (x)
=

x + N + 1
x − N

→ −1

as N → ∞, for every x /∈ Z. Since sinπ(x + 1) = − sin πx, this implies that if
(7.55) holds for some x /∈ Z, then it holds for x + 1 as well, and the converse is also
true. It is clear from this that (7.55) holds for every x /∈ Z. Since both sides of (7.55)
are zero when x ∈ Z, the theorem is proved. �

Exercises

7.99. Show that the function ζ(x) is infinitely differentiable on (1,∞).

7.100. Show that

Bn(x) =
xn

n!
+

B1

1!
· xn−1

(n − 1)!
+ . . . +

Bn

n!
(n = 1, 2, . . .).

7.101. Show that

1 +
(

n

1

)
B1 +

(
n

2

)
B2 + . . . +

(
n

n − 1

)
Bn−1 = 0 (n = 2, 3, . . .).

7.102. Formulate a conjecture for the value of the denominator of B2n with the
help of table (7.41) (and, if necessary, using also the values of some other Bernoulli
numbers). (S)
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7.103. Show that the Bernoulli polynomial Bn(x) is k-replicative with the constant
ak = k1−n for every k > 1.

7.104. Show that if a polynomial p is k-replicative (for any k > 1), then p is a
constant multiple of a Bernoulli polynomial.

7.105. Show that the function ctg πx is k-replicative for every k > 1. (H)

7.106. Show that if a function f is k1-replicative and k2-replicative, then it is k2 ·
k2-replicative.

7.107. (i) Let (an) be a sequence defined by the following recursion. Let a0 =
a1 = 1, and let

2(n + 1)an+1 =
n∑

i=0

aian−i (n ≥ 1). (7.60)

Show that (a) 0 < an ≤ 1/2 for every n ≥ 2, and (b) n! · an is an integer for
every n. (H)

(ii) It follows from (i) that the power series
∑∞

n=0 anxn is convergent on (−1, 1).
Let the sum of this power series be f(x).
Show that 1 + f(x)2 = 2f ′(x) for every x ∈ (−1, 1).

(iii) Solve the differential equation 1 + y2 = 2y′, and show that

f(x) = tg
(x

2
+

π

4

)
= tg x +

1
cos x

for every x ∈ (−1, 1).
(iv) Show that

tg x =
∞∑

n=1

a2n−1x
2n−1 and 1/ cos x =

∞∑

n=0

a2nx2n

for every x ∈ (−1, 1).

7.108. With the help of the previous exercise and of (7.54), show that (22n − 1)22n

B2n/(2n) is an integer for every n.

7.109. Show that the denominator of B2n divides 22n(22n − 1).

7.110. Show that if p > 3 is prime, then p divides the numerator of B2p.

7.111. Check that (7.55) yields Wallis’ formula14:

π = lim
n→∞

(
2 · 4 · · · 2n

1 · 3 · · · (2n − 1)

)2

· 1
n

,

when applied with x = 1/2.

14 John Wallis (1616–1703), English mathematician.
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7.7 First Appendix: The Cauchy–Hadamard Formula

In this appendix our aim is to prove the Cauchy–Hadamard formula (see Theorem
7.101 below) that gives the radius of convergence of a power series

∑∞
n=0 anxn in

terms of the coefficients an.
We say that α is a cluster point of the sequence (an) if (an) has a subsequence

that converges to α. (Here α can be a real number, or either one of ∞ and −∞.)
From now on, it is useful to extend the ordering of the real numbers to ∞ and −∞.
We define the extended ordering by putting −∞ < a < ∞ for every real a.

Theorem 7.98. Every sequence has a largest cluster point. α is the largest cluster
point of the sequence (an) if and only if, for every b < α infinitely many terms of
the sequence are larger than b, and for every b > α only finitely many terms of the
sequence are larger than b.

Proof. First suppose that the sequence (an) is not bounded from above. Then (an)
has a subsequence converging to the infinity, thus its largest cluster point is ∞.
Clearly, the statement of the theorem is true in this case.

Now let (an) be bounded from above. Let S be the set of numbers b ∈ R such
that infinitely many terms an are larger than b. If S = ∅, then an → −∞, and the
only cluster point of the series is −∞. In this case the statement of the theorem
holds again.

Therefore, we may assume that S is non-empty and is bounded from above. Let
α = supS. If b < α, then there exists a b′ ∈ S such that b < b′ < α. Then infinitely
many terms an are larger than b′, thus infinitely many terms are larger than b as well.
It is clear that α is the only value with the property that the sequence has infinitely
many terms larger than b, when b < α, while the sequence only has finitely many
terms larger than b, when b > α.

We still need to prove that α is the largest cluster point of the sequence (an).
For every k, infinitely many an satisfies an > α − (1/k), and only finitely many
of these satisfy an > α + (1/k). Thus we can choose the terms ank

such that α −
(1/k) < ank

≤ α + (1/k). Since we can choose from infinitely many n at every
step, may can also assume that n1 < n2 < . . .. The resulting subsequence (ank

)
converges to α, thus α is a cluster point of the sequence.

On the other hand, if β is a cluster point and ank
→ β, then ank

> b holds for
every b < β when k is large enough. Thus infinitely many terms of the sequence
are larger than b, and it follows that b ∈ S and α ≥ b. This is true for every b < β,
hence α ≥ β. Therefore, α is the largest cluster point of the sequence. �

By modifying Theorem 7.98 in the obvious way, we get that every sequence has
a smallest cluster point, and this smallest cluster point α has the following property:
the sequence has infinitely many terms smaller than b for every b > α, while the
sequence has only finitely many terms smaller than b for every b < α.
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Definition 7.99. The largest cluster point of the sequence (an) is called the limit
superior of the sequence, denoted by lim supn→∞ an.

The smallest cluster point of the sequence (an) is called the limit inferior of the
sequence, denoted by lim infn→∞ an.

It is easy to see that for every sequence (an) we have

lim sup
n→∞

an = lim
n→∞ (sup{an, an+1, . . .}) . (7.61)

In the case when sup{an, an+1, . . .} = ∞ for every n, (7.61) means that the left-
hand side equals ∞. Similarly, for every sequence (an), we have

lim inf
n→∞ an = lim

n→∞ (inf{an, an+1, . . .}) (7.62)

(see Exercise 7.114).

Theorem 7.100. For every (an) we have lim infn→∞ an ≤ lim supn→∞ an. The
equality lim infn→∞ an = lim supn→∞ an holds if and only if the sequence has a
(finite or infinite) limit, and then

lim
n→∞ an = lim inf

n→∞ an = lim sup
n→∞

an. (7.63)

Proof. It is clear from the definition that lim infn→∞ an ≤ lim supn→∞ an, and if
limn→∞ an exists, then (7.63) holds.

On the other hand, if lim infn→∞ an = lim supn→∞ an = α, then α is the only
cluster point of the sequence. In this case it is clear from Theorem 7.98 that
limn→∞ an = α. �

The following theorem gives the radius of convergence of power series in terms
of the coefficients.

Theorem 7.101. (Cauchy–Hadamard formula) The radius of convergence of the
power series

∑∞
n=0 anxn is

R =
1

lim supn→∞
n
√|an| .

In the case when lim supn→∞
n
√|an| = 0 the formula should be interpreted asR =

∞, and if lim supn→∞
n
√|an| = ∞, then the formula means R = 0.

Proof. Let R0 = 1/ lim supn→∞
n
√|an| and let R denote the radius of conver-

gence of the power series. We need to prove that R = R0.
IfR0 < x, then lim supn→∞

n
√|an| > 1/x, and thus n

√|an| > 1/x for infinitely
many n. For every such n, we have |anxn| > 1, which means that the absolute
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value of infinitely many terms of the power series is larger than 1, hence the series
is divergent. Thus the power series is divergent at every point x > R0, i.e., R ≤ R0.
For R0 = 0, this implies R = R0.

If R0 > 0 and 0 < x < R0, then lim supn→∞
n
√|an| < 1/x. Fix a number q

such that

lim sup
n→∞

n
√

|an| < q <
1
x

.

Then n
√|an| ≤ q holds for every n large enough. Thus |anxn| ≤ (qx)n for n large

enough, and then, by the majorant criterion, we find that the power series is conver-
gent at x. Since this is true for every 0 < x < R0, we have R ≥ R0. Since R ≤ R0

is also true, we have R = R0. �

Exercises

7.112. Find the lim sup and lim inf of the following sequences.

(a) (−1)n,

(b) (n + (−2)n)/(n + 2n),
(c) sinn,

(d) an = 2
√

n2 + 2 if n is even, and an = 3 3
√

n3 + 3 if n is odd.

7.113. Let {x} denote the fractional part of x. Show that the value of the Riemann
function at the point x is equal to 1 − lim sup{nx}.
7.114. Show that (7.61) and (7.62) are true for every sequence.

7.115. Show that for arbitrarily sequences (an) and (bn) the following is true:

lim inf an + lim inf bn ≤ lim inf(an + bn) ≤ lim inf an + lim sup bn ≤
≤ lim sup(an + bn) ≤ lim sup an + lim sup bn.

7.116. Show that if an > 0 for every n, then

lim sup(an)1/n ≤ lim sup(an+1/an).

Use this to prove (again) that the root criterion is stronger than the ratio criterion.

7.117. Let an denote the nth decimal digit of the number
√

2. Find (i) lim sup n
√

an

and (ii) lim inf n
√

an. (H)

7.118. Suppose that (an+1 − an) → 0. Show that for every number

s ∈ [lim inf an, lim sup an]
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there is a subsequence (ank
) such that ank

→ s.

7.119. Let (an) be a sequence such that an+m ≤ an + am for every n,m. Show
that the (finite or infinite) limit of the sequence (an/n) exists. (H)

7.120. Show that the function f : R → R satisfies f(lim sup an) = lim sup f(an)
for every bounded sequence (an) if and only if f is continuous and monotone
increasing.

7.121. Let A1, A2, . . . be subsets of X , and let χH denote the characteristic func-
tion of the set H ⊂ X , i.e., let χH(x) = 1 for x ∈ H , and χH(x) = 0 for x /∈ H .
Find the sets B and C that satisfy lim sup χAn

(x) = χB(x) and lim inf χAn
(x) =

χC(x) for every x ∈ X .

7.8 Second Appendix: Complex Series

We define the absolute value of the complex number a + bi as |a + bi| =
√

a2 + b2.
One can prove that the usual properties of the absolute value function are satisfied,
thus |u + v| ≤ |u| + |v| and |uv| = |u| · |v| holds for every pair of complex num-
bers u and v.

Recall that we can define convergence for sequences of complex numbers: we
say that the sequence of complex numbers zn = an + bni converges to the complex
number z = a + bi, if an → a and bn → b both hold. (See the second appendix of
Chapter 11 of [7].) This condition is equivalent to |zn − z| → 0.

The theory of infinite series can also be extended to series of complex terms.
We say that the complex infinite series

∑∞
n=1 an is convergent and its sum is A,

if the sequence of its partial sums sn = a1 + . . . + an converges to A. The series∑∞
n=1 an is called divergent, it it is not convergent. It is easy to check that most of

the theorems we proved about infinite series in Chapter 6 are also true for complex
series as well, without any changes.

However, the complex case of Riemann’s reordeing theorem needs some mod-
ifications. It is still true that a series is absolutely convergent if and only if each
of its reordered series is convergent with the same sum. But if a complex series is
conditionally convergent, we cannot claim that for every complex number A, there
is a reordering of the series with the sum A. (E.g., if every term of the series is real,
then the sum of every reordering is also real.) The correct statement is that if a series
is conditionally convergent, then the sums of its convergent reorderings constitute a
line, or cover the whole complex plane.

The theory of the power series can also be extended to complex series. The the-
orem corresponding to Theorem 7.49 states that for every power series

∑∞
n=0 anzn

there exists a 0 ≤ R ≤ ∞ such that the power series is convergent at every point z
with |z| < R, and the power series is divergent at every point z with |z| > R. Thus
the domain of convergence of a power series can be either the origin (if R = 0),
an open disk, possibly with some of its boundary points (if 0 < R < ∞), or the

http://dx.doi.org/10.1007/978-1-4939-7369-9_6
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whole convex plane (if R = ∞). One can show (with an identical proof) that the
Cauchy–Hadamard formula is also true for complex power series.

It is also true that the sum f of a power series is continuous on the interior of
its domain of convergence. This means that if zn → z and |z| < R, then f(zn) →
f(z).15.

This is what explains why the radius of convergence of the Taylor series of the
function 1/(1 + x2) corresponding to the point 0 is 1 (and not larger), despite the
fact that the function is analytic on the whole real line. The Taylor series in question
is the series

∑∞
n=0(−1)n · x2n. It is easy to see that this series is also convergent

at every complex number whose absolute value is less than 1, with the sum 1/(1 +
x2). If the radius of convergence of the series was larger than 1, the sum would
be continuous in the open disc B(0, R) with some R > 1. Thus the sum would be
continuous at the complex number i, which is impossible, since the sum of the series
at x = ti is

1
1 + (ti)2

=
1

1 − t2

for every t ∈ (0, 1), and this can be arbitrarily large when t is close enough to 1.
The definition of the differentiability of a complex function is the same as it was

in the real case. I.e., the differential quotient f ′(a) is nothing else than the limit
of the difference quotient (f(z) − f(a))/(z − a) as z → a. Complex differentia-
bility is a much stronger assumption than real differentiability. Cauchy discovered
that if the function f is differentiable on the interior of a disk, then f is infinitely
differentiable, furthermore, f is analytic there.

Let the radius of convergence of the power series
∑∞

n=0 anzn be positive, and let
the sum of the power series be f(z) on a small (real) neighborhood of the origin. It
follows from Cauchy’s theorem, that the radius of convergence of the power series
is the largest number R (or the infinity) such that f can be extended analytically to
the interior of the origin-centered disk with radius R.

With the help of complex power series we can also extend numerous elementary
functions to the complex plane. E.g., the power series

∑∞
n=0 zn/n! is convergent

for every complex z. The sum of this series is the extension of the ex function to the
complex plane. One can show that the sum of the series is the same as the limit of the
sequence

(
1 + z

n

)n
for every complex number z, i.e., ez (see the second appendix

of Chapter 11 of [7]).
The power series of sinx, cos x, sh x, and ch x are also convergent on the whole

complex plane, and their corresponding sums define extensions of these functions
to the complex plane. (These extensions coincide with the extensions introduced in
the second appendix of Chapter 11 of [7]).)

Since these results fall into the field of complex function theory, they are outside
the scope of this book. However, we can see that the topic of power series is an
important common point of real and complex analysis.

15 In the general case, as opposed to Theorem 7.51, it is not true that the sum is also continuous at
the boundary points of the convergence domain.
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7.9 Third Appendix: On the History of the Fourier Series

As we mentioned before, part of the motivating factors behind the emergence of the
theory of Fourier series were two problems from physics: the equation of a vibrating
string and the equation of heat conduction.

Suppose a string is spanned between the points 0 and L of the real line. How
can we describe the motion of the vibrating string? As early as in 1715, Taylor
already found the equation of the motion a vibrating string has to satisfy. He argued
as follows. We may assume that every particle of the string only makes small, ver-
tical motions. By Newton’s law, the acceleration of a particle is proportional to the
force acting on it. Now, the force acting on the particle comes from the fact that the
string “wants to straighten out”, thus it acts with a force proportional to the string’s
curvature16.

Suppose that the function c(t) · f(x) describes the motion of the string in the
sense that at time t the shape of the string is described by the graph of the function
x �→ c(t) · f(x) (x ∈ [0, L]). The acceleration of the particle above the point (x, 0)
is c′′(t) · f(x), while the curvature of the string is c(t) · f ′′(x). By Newton’s law,
we have

c′′(t) · f(x) = ρ · c(t) · f ′′(x), (7.64)

where ρ 
= 0 is a constant.
Since the endpoints of the string are fixed, we have c(t)f(0) = c(t)f(L) = 0 for

every t. We may assume that c is not constant zero, and thus

f(0) = f(L) = 0. (7.65)

Fix a t such that c(t) 
= 0. Then, by (7.64), f satisfies the differential equation
f ′′(x) = b · f(x) for every x ∈ [0, L], where b = c′′(t)/(ρ · c(t)). If b = 0, then f is
linear and, according to (7.65), f is constant zero. We can exclude this case (which
describes the situation when the string is not moving).

If b > 0 and b = a2, then we have f(x) = αeax + βe−ax. (See [7, Chapter 13,
p. 280].) This solution only satisfies the conditions of (7.65) when α = β = 0, so it
can also be excluded.

Thus, necessarily, we have b < 0 and b = −a2. Then we have f(x) = α sin
(ax) + β cos(ax) (see also [7, Chapter 13, p. 280]). As f(0) = f(L) = 0, we have
β = 0 and aL = nπ, where n is an integer.

16 The curvature of the string is the change of the steepness of its tangent, i.e., the second derivative
of the function describing the shape of the string. In fact, when calculating the curvature, we need
to take the arc length of the graph (of the string) into consideration as well. If s(g; [a, b]) denotes the
arc length of graph g on the interval [a, b], then the curvature of the graph of g at the point (a, g(a))
is limx→a(g′(x) − g′(a))/s(g; [a, x]). Since limx→a s(g; [a, x])/(x − a) =

√
1 + (g′(a))2 (see

[7, Theorem 13.41]), it follows that if g is twice-differentiable on a neighborhood of a, then the
curvature is equal to g′′(a)/

√
1 + (g′(a))2. However, in our case the function describes the shape

of the string, thus its derivative is small, and we can neglect the term (g′(a))2 of the denominator.
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We get that if the motion of the string is described by a function of the form
c(t) · f(x), then f(x) = sin nπ

L x (and c satisfies the differential equation c′′ =
(−ρa2) · c). These solutions correspond to what are called the standing waves of
the string.

In 1747 d’Alembert17 discovered that if ϕ is a 2L-periodic function, then the
function ϕ(at + x) − ϕ(at − x) is zero at the points x = 0 and x = L, furthermore,
ϕ satisfies the motion equation given by Taylor in the sense that its second deriva-
tive with respect to t is equal to a constant times its second derivative with respect
to x. d’Alembert concluded that the formulas ϕ(at + x) − ϕ(at − x) describe the
motion of a vibrating string, where ϕ is an “arbitrary” 2L-periodic function.

In 1753 Daniel Bernoulli18, following the ideas of Taylor and taking into con-
sideration the physical phenomenon that any sound is made of its harmonics,
claimed that the motion of a vibrating string is described by formulas of the
form

∑∞
n=1 cn(t) sin nπ

L x, for appropriate coefficient functions cn(t). However,
d’Alembert did not accept this statement on the basis that, combined with his results,
this would imply that “every” periodical function can be written as a sum of trigono-
metric functions, which is “obviously” impossible. Several well-known mathemati-
cians joined the discussion (including Euler and Lagrange).

In 1822 Fourier published his book on heat conduction, which investigated the
following problem – among many others. Given a homogeneous rod, insulated from
its surroundings in such a way that heat only flows in the inside of the rod and
not between the rod and its surroundings. The problem is to describe the change of
temperature in the interior of the rod.

It is known that the quantity of heat stored by a solid depends on the mass and
the temperature of the solid: the larger the temperature, the larger the stored amount
of heat. More precisely, the quantity of heat is proportional to the mass and the
temperature (using an appropriate scaling for the temperature). In other words, the
quantity of heat of a solid of mass m is α · m · T , where α is a constant (called
specific heat), and T is the temperature.

Returning to Fourier’s problem, the homogeneousness of the rod means that the
mass of a segment [a, b] of the rod is γ · (b − a), where γ is a constant (density).
Thus the quantity of heat stored by the segment [a, b] is δ · (b − a) · T , where δ is
the product of the specific heat and the density, and T is the temperature of the
segment. If the temperature changes along the segment, namely the temperature of
the rod is T (x) at the point x, then following a familiar argument we can see that
the amount of heat of the segment is

∫ b

a
δ · T (x) dx. (See, e.g., the computation of

the work and pressure in Chapter 14 of [7].)
For simplicity, let us assume that the temperature of the rod is given by the func-

tion c(t) · f(x) in the sense that the temperature at the time t of the point x of the
rod is c(t) · f(x). Then, at time t, the quantity of heat of the segment [a, b] is

17 Jean d’Alembert (1717–1783), French natural scientist.
18 Daniel Bernoulli (1700–1782), Swiss mathematician.
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H =

b∫

a

δ · c(t)f(x) dx = δ · c(t) ·
b∫

a

f(x) dx.

The quantity of heat of a segment [a, b] changes in time because the segment loses
or gains heat through its endpoints. If, at a given moment, the temperature as the
function of the place is decreasing in a small neighborhood of the point b, then the
segment [a, b] loses heat at that point; if the temperature is an increasing function
of the place, then the segment gains heat through b. Fourier assumed (rightly so)
that the speed of heat conduction at the point b is proportional with the derivative
of the temperature (as a function of the place) at the point b, in other words, the
speed of the heat conduction is κ · c(t) · f ′(b), where κ is a positive constant (the
conductivity constant). The situation is reversed at the point a: if the temperature
is decreasing in a neighborhood of a then the segment [a, b] of the rod gains heat,
and if the temperature is increasing, the segment loses heat. Thus the rate of heat
conduction at the point a is −κ · c(t) · f ′(a). In the end, we get that the rate of
change of the quantity of heat H is H ′(t) = κ · c(t) · f ′(b) − κ · c(t) · f ′(a), i.e.,

δ · c′(t) ·
b∫

a

f(x) dx = κ · c(t) · (f ′(b) − f ′(a)).

Dividing by b − a and taking the limit as b → a, we get that δ · c′(t) · f(a) =
κ · c(t) · f ′′(a). This is true for every a, thus we have

c′(t) · f(x) = ρ · c(t) · f ′′(x) (7.66)

for every x, where ρ > 0 is a constant.
Following Fourier’s argument, let us consider another simplification of our prob-

lem: let the temperature at the endpoints of the rod be 0 degrees. (Imagine that the
endpoints of the rod are glued to a large tank of temperature 0, which guarantees the
constant 0 degree temperature at the endpoints.) Let L be the length of the rod; then
c(t)f(0) = c(t)f(L) = 0 for every t. We may assume that c is not constant zero,
thus we have

f(0) = f(L) = 0. (7.67)

We can solve the equation (7.66) similarly to (7.64). Fix a t such that c(t) 
= 0. By
(7.66), f satisfies the differential equation f ′′(x) = b · f(x) for every x ∈ [0, L],
where b = c′(t)/(ρ · c(t)). If b = 0, then f is linear, and then, by (7.67), f is the
constant zero function. We may exclude this case (which corresponds to the case
when the temperature of the rod is zero everywhere all the time). If b > 0 and b =
a2, then f(x) = αeax + βe−ax. This solution satisfies the condition (7.67) only
when α = β = 0, thus it can also be excluded. Necessarily, we have b < 0 and b =
−a2. Then f(x) = α sin(ax) + β cos(ax). Since f(0) = 0, we have β = 0, and, by
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f(L) = 0, aL = nπ, where n is an integer. We found that if the temperature of the
rod is described by a function of the form c(t) · f(x), then f(x) = sin nπ

L x (and c
satisfies the differential equation c′ = (−ρa2) · c).

Based on this argument Fourier concluded that the temperature of the rod in the
general case is described by functions of the form

∑∞
n=1 cn(t) sin nπ

L x, similarly to
the case of the equation of a vibrating string. Then Fourier claimed – sharing the
opinion of Bernoulli – that “every” 2π-periodic function can be written in the form∑∞

n=0(an cos nx + bn sin nx).
The debate concerning trigonometric series – considered to be the most famous

dispute of great consequence in the history of mathematics – involved several top-
ics. First of all, the notion of a function was not cleared up. In Fourier’s work one
can detect the enormous conceptual difficulties that had to be overcome in order to
arrive from the concept of function as a formula to the concept of function as cor-
respondence. At one place, Fourier wrote: “It is remarkable that we can express by
convergent series . . . the ordinates of lines and surfaces which are not subject to a
continuous law. Or elsewhere: “A function [can be] completely arbitrary, that is to
say a succession of given values, subject or not to a common law, and answering to
all the values of x . . .. The function represents a succession of values or ordinates
each of which is arbitrary . . . They succeed each other in any manner whatever, and
each of them is given as if it were a single quantity.”

Still, from other details of the proofs given by Fourier (which, in general, are
devoid of any precision) it is obvious, that the most general functions imaginable
by Fourier are defined by not a single, but by several formulas on some consecutive
intervals. This is, and not more, what he meant that “the values do not follow a
single, common rule.”

Another unclear notion was that of continuity. For Euler, the continuous func-
tions were the ones defined by an “analytic formula”. He called the functions whose
graph can be written by a “freely moving hand” connected functions. In the end,
Cauchy cleared up the definition of continuity (in the modern sense). However,
Cauchy thought – and also proved (albeit incorrectly) – that an infinite sum of con-
tinuous functions is also necessarily continuous. This meant further complications,
since it was realized by several people that the sum of the trigonometric series

sin x +
sin 3x

3
+

sin 5x

5
+ . . .

is the constant π/4 function on the interval (0, π), while it is the constant −π/4
function on the interval (π, 2π). Fourier tried to help this by claiming that the graph
of this function consists of vertical segments (!) at the points kπ, saving continuity.

In the end it was Dirichlet who cleared things up. In a seminal paper written in
1829, he introduced the modern definition of a function (= correspondence) (and
illustrated it with a function now bearing his name), and he also gave precise proof
of the first convergence theorems of Fourier series. The mathematical theory of the
Fourier series starts with Dirichlet.
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In fact, set theory also owes to the theory of the Fourier series for its existence.
When Cantor proved in 1870 that every function can be written as the sum of a
trigonometric function in at most one way, he started to think about what happens if
this is only true save for a few particular points. Investigating these exceptional sets
led Cantor to invent ordinal numbers, countable sets, and finally set theory.



Chapter 8
Miscellaneous Topics

8.1 Approximation of Sums

As we saw in Theorem 7.92, the sum of the series
∑∞

n=1 1/n2k can be given explic-
itly for every positive integer k. These series, however, are exceptions: in general,
the sum of an arbitrary series cannot be expressed in closed form. In fact, no closed
expression is known for the sum

∑∞
n=1 1/n3.

The same is true for finite sums. Finding the sum of many terms can be, in gen-
eral, a very hard problem. It can happen that we find a “closed formula” for a finite
sum (as in the cases of the arithmetic and the geometric series), but in most cases it
is impossible.

Thus, it is imperative to determine the sums at least approximately. In fact, this
is useful even when there is a closed formula available, since a good approximation
can sometimes be more valuable in practice than a formula.

In this section we introduce some methods of approximating sums.

Theorem 8.1. Let a < b be integers, and let f : [a, b] → R be monotonically increas-
ing. Then

∫ b

a

f(x) dx + f(a) ≤
b∑

i=a

f(i) ≤
∫ b

a

f(x) dx + f(b). (8.1)

If f is monotonically decreasing, then the reverse inequalities hold.

Proof. If f is monotonically increasing, then f(i) ≤ f(x) ≤ f(i + 1) for
every x ∈ [i, i + 1], and thus f(i) ≤ ∫ i+1

i
f dx ≤ f(i + 1). Adding these

inequalities for i = a, a + 1, . . . , b − 1 gives

b∑

i=a

f(i) − f(b) ≤
∫ b

a

f(x) dx ≤
b∑

i=a

f(i) − f(a),
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from which (8.1) is clear. The case of a decreasing f is similar, or it can be reduced
to the case of increasing functions by applying it to −f . �
Example 8.2. 1. Let us apply Theorem 8.1 to [a, b] = [0, n] and f(x) = xk (k =
1, 2, 3). We get

n2

2
≤

n∑

i=1

i ≤ n2

2
+ n;

n3

3
≤

n∑

i=1

i2 ≤ n3

3
+ n2;

n4

4
≤

n∑

i=1

i3 ≤ n4

4
+ n3.

(8.2)

2. Applying the theorem to the same interval and f(x) =
√

x gives

2
3

· n3/2 ≤
n∑

i=1

√
i ≤ 2

3
· n3/2 +

√
n. (8.3)

3. Let [a, b] = [1, n] and f(x) = 1/x. We get

log n <

n∑

i=1

1
i

≤ log n + 1. (8.4)

(We applied the theorem to the monotonically decreasing function f and omitted
the 1/n term on the left-hand side.)

4. Finally, let [a, b] = [1, n] and f(x) = log x. We have
∫ n

1
log x dx = n log n −

n + 1, and thus

n log n − n + 1 ≤
n∑

i=1

log i ≤ n log n − n + log n + 1.

Exponentiating of all three “sides” of the inequalities results in

e ·
(n

e

)n

≤ n! ≤ e · n ·
(n

e

)n

. (8.5)

This approximation is rather crude; we will see much finer estimates later. (Note
also that the inequalities (n/e)n ≤ n! and n! ≤ n · (n/e)n (n ≥ 7) can be proved
by induction on n.)

In order to improve Theorem 8.1 we will now prove an often used formula.

Theorem 8.3. (Euler’s summation formula) Let a < b be integers, let f be dif-
ferentiable on [a, b], and let f ′ be integrable on [a, b]. Then

b∑

i=a

f(i) =
∫ b

a

f(x) dx +
f(a) + f(b)

2
+
∫ b

a

(

{x} − 1
2

)

· f ′(x) dx. (8.6)
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Proof. If i is an integer and x ∈ [i, i + 1), then {x} = x − i, and thus

∫ i+1

i

(

{x} − 1
2

)

· f ′(x) dx =
∫ i+1

i

(

x − i − 1
2

)

· f ′(x) dx =

=
[(

x − i − 1
2

)

· f(x)
]i+1

i

−
∫ i+1

i

f(x) dx = (8.7)

=
f(i) + f(i + 1)

2
−
∫ i+1

i

f(x) dx.

Adding the equations above for i = a, a + 1, . . . , b − 1, we get (8.6). �

Now we turn to improving Theorem 8.1. Naturally, if we want a sharper bound
than that of (8.1), we need to have stricter assumptions than just the monotonicity
of f .

Theorem 8.4. Let a < b be integers and let f : [a, b] → R be differentiable,
monotonically decreasing, and convex. Then

∫ b

a

f(x) dx +
f(a) + f(b)

2
≤

b∑

i=a

f(i) ≤
∫ b

a

f(x) dx +
f(a) + f(b)

2
− f ′(a)/8.

(8.8)

The reverse inequalities hold if f is a differentiable, monotonically increasing, and
concave function.

Proof. If f is differentiable, monotonically decreasing, and convex, then f ′ is
monotonically increasing and nonpositive. Thus, applying the second mean value
theorem of integration (see [7, Theorem 15.8]), we obtain

∫ b

a

(

{x} − 1
2

)

· f ′(x) dx = f ′(a) ·
∫ c

a

(

{x} − 1
2

)

dx (8.9)

with a suitable real number c ∈ [a, b]. Let d = {c}. Then

0 ≥
∫ d

0

(

x − 1
2

)

dx = (d2 − d)/2 ≥ −1/8.

Since
∫ n

n−1

({x} − 1
2

)
dx = 0 for every integer n, we have

0 ≥
∫ c

a

(

{x} − 1
2

)

dx ≥ − 1
8 . (8.10)

Comparing this to (8.9) and (8.6), we obtain (8.8). �
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Example 8.5. 1. Let us apply Theorem 8.4 with [a, b] = [1, n] and f(x) =
√

x.
Since f is concave and increasing, we obtain

2
3

· n3/2 +
√

n

2
− 1

6
− 1

16
≤

n∑

i=1

√
i ≤ 2

3
· n3/2 +

√
n

2
− 1

6
, (8.11)

which is much sharper than (8.3).
2. Applying (8.8) to the function 1/x on the interval [1, n], we get

log n +
1
2

<

n∑

i=1

1
i

≤ log n +
5
8

+
1
2n

. (8.12)

3. Let [a, b] = [1, n] and f(x) = log x. Again, we get

n log n − n + 1 +
log n

2
− 1

8
≤ log n! ≤ n log n − n + 1 +

log n

2
.

Putting all three “sides” into the exponent of e yields

c1 ·
(n

e

)n

· √
n ≤ n! ≤ c2 ·

(n

e

)n

· √
n, (8.13)

for some positive constants c1 and c2. We will make this inequality more precise in
Theorem 8.10.

According to Stirling’s formula, the sequence (n/e)n
√

n/n! is convergent (and
converges to 1/

√
2π). The following theorem is a generalization of this statement.

Theorem 8.6.

(i) Let f be differentiable, monotonically decreasing, and convex on [a,∞). Then
the sequence

an =
n∑

i=a

f(i) −
∫ n

a

f(x) dx − f(a) + f(n)
2

(n = a, a + 1, . . .)

is monotonically increasing and convergent.

(ii) Let f be differentiable, monotonically decreasing, and convex, and let
limx→∞ f ′(x) = 0. Then the improper integral

∫∞
a

({x} − 1
2

) · f ′(x) dx is
convergent, and

lim
n→∞ an =

∫ ∞

a

(

{x} − 1
2

)

· f ′(x) dx. (8.14)
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Proof. (i) Let f be differentiable, monotonically decreasing, and convex. Then f ′ is
monotonically increasing and nonpositive on the half-line [a,∞). By (8.6) we have

an+1 − an =
∫ n+1

n

(

{x} − 1
2

)

· f ′(x) dx.

Thus, by the second mean value theorem of integration and by (8.10) we obtain

an+1 − an = f ′(n) ·
∫ c

n

(

{x} − 1
2

)

dx ≥ 0,

since the right-hand side is the product of two nonpositive numbers. Thus the
sequence (an) is monotonically increasing. On the other hand, (an) is bounded
from above by (8.8). Therefore, (an) is convergent.

(ii) Suppose that limx→∞ f ′(x) = 0 in addition to the conditions of (i). We claim
that the improper integral on the right-hand side of (8.14) is convergent. Indeed, it
is known that the improper integral

∫∞
a

g(x)h(x) dx is convergent, provided that f
is monotone, limx→∞ g(x) = 0, and the function x �→ ∫ x

a
h(t) dt is bounded. (See

[7, Theorem 19.22].) These conditions are satisfied for f ′ = g and {x} − 1/2 = h;
see (8.10). Therefore, (8.14) follows from (8.6). �

Remark 8.7. 1. If the function f is monotonically increasing and concave, then the
sequence an is decreasing and convergent. The proof is similar or can be reduced to
part (i) of the theorem. It is also obvious that part (ii) also holds for differentiable
monotonically increasing concave functions whose derivative converges to zero at
infinity.

2. Applying the theorem above to the function log x, we obtain that the sequence

log n! − log
((n

e

)n √
n
)

= log
(
n!/
(n

e

)n √
n
)

is convergent. Therefore, the sequence (n/e)n
√

n/n! is also convergent. Its limit,
according to Stirling’s formula, is

√
2π.

Example 8.8. 1. Theorem 8.6 implies that the sequence

(
n∑

i=1

√
i

)

− 2
3

· n3/2 −
√

n

2

is decreasing and convergent. Its limit lies between −1/6 and −1/4 by (8.11).
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2. By Theorem 8.6, the sequence (
∑n

i=1 1/i) − log n − (1 + (1/n))/2 is conver-
gent. Thus the sequence (

∑n
i=1 1/i) − log n is also convergent. We denote the limit

of this sequence by γ (Euler’s constant). It follows from (8.14) that

γ =
1
2

−
∫ ∞

1

{x} − (1/2)
x2

dx = 1 −
∫ ∞

1

{x}
x2

dx. (8.15)

By the inequality (8.12), 0.5 ≤ γ ≤ 0.625. This constant appears in analysis and
also in number theory. It is known that γ = 0.5772157 . . .; in fact, millions of deci-
mal digits of Euler’s constant are known. However, it is a longstanding open problem
whether the number γ is rational or irrational.

We are now going to improve our approximations of (8.2). Since for k > 1, the
function xk is increasing and convex on [1, n], our current methods are not applica-
ble. However, by improving Euler’s summation formula, we can handle these sums
as well.

At the core of the proof of Euler’s summation formula lies a partial integration.
It is a natural idea to make the formula more precise by further partial integrations.
The function Bm(x) appearing in the next theorem is the mth Bernoulli polynomial
(see Theorem 7.88).

Theorem 8.9. (Euler’s summation formula, general form) Let a < b andm ≥ 1
be integers. If the function f is m times differentiable, and f (m) is integrable on
[a, b], then

b∑

i=a

f(i) =
∫ b

a

f(x) dx +
f(a) + f(b)

2
+

B2

2!
· (f ′(b) − f ′(a)) + . . . +

+
Bm

m!
·
(
f (m−1)(b) − f (m−1)(a)

)
+
∫ b

a

Bm({x}) · f (m)(x) dx.

(8.16)

Proof. We prove the result by induction on m. If m = 1, then Theorem 8.3 implies
the statement, since B1({x}) = {x} − 1

2 . In the induction step it is enough to prove
that if f is (m + 1) times differentiable and f (m+1) is integrable on [a, b], then

∫ b

a

Bm({x}) · f (m)(x) dx =
Bm+1

(m + 1)!
·
(
f (m)(b) − f (m)(a)

)
+

+
∫ b

a

Bm+1({x}) · f (m+1)(x) dx.

(8.17)

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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Let a ≤ i < b be an integer. Using partial integration, we get

∫ i+1

i

Bm({x}) · f (m)(x) dx =
∫ i+1

i

B′
m+1(x − i) · f (m)(x) dx =

=
[
Bm+1(x − i) · f (m)(x)

]i+1

i
−
∫ i+1

i

Bm+1(x − i) · f (m+1)(x) dx =

=
Bm+1

(m + 1)!
·
(
f (m)(i + 1) − f (m)(i)

)
−

−
∫ i+1

i

Bm+1({x}) · f (m+1)(x) dx,

(8.18)

since by (7.40),Bm+1(1) = Bm+1(0) = Bm+1/(m + 1)!. Adding equations (8.18)
for i = a, a + 1, . . . , b − 1, we obtain (8.17). �

Using Theorem 8.9, we can give sharper estimates of the sums 1k + 2k + . . . +
nk in (8.2); moreover, we can write these sums as polynomials in n. Applying the
theorem with the choices of a = 0, b = n, f(x) = xk, m = k + 1 results in

1k + 2k + . . . + nk =
1

k + 1
· nk+1 +

1
2

· nk +
k

2!
B2 · nk−1 + . . . +

k!
k!

Bk · n.

This is Bernoulli’s famous formula1:

1k + 2k + . . . + nk =
1

k + 1
· nk+1 +

1
2

· nk+

+
1

k + 1
·
((

k + 1
2

)

B2 · nk−1 + . . . +
(

k + 1
k

)

Bk · n

)

.
(8.19)

Notice that the right-hand side is a (k + 1)th-degree polynomial in n.

We will now apply Theorem 8.9 to estimate n!, by improving (8.13). The next
result also gives a quantitative version of Stirling’s formula.

Theorem 8.10. For every positive integer n, we have

(n

e

)n

·
√

2πn ≤ n! ≤
(n

e

)n

·
√

2πn · e1/(12n). (8.20)

Proof. Let an = (n/e)n
√

2πn/n! for every n. It follows from Theorem 8.6 and
Remark 8.8 that the sequence (an) is strictly monotonically increasing. By Stirling’s
formula, it converges to 1. Hence an < 1 for every n, and thus the first inequality of
(8.20) holds.

1 The formula was introduced by Jacob Bernoulli in his book on probability theory (1713).

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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The second inequality is equivalent to log an ≥ −1/(12n) for every n. In order
to prove this, apply Theorem 8.9 to the function f(x) = log x on the interval [1, n]
for m = 3. Since B2 = 1/6 and B3 = 0, we obtain

log n! =
∫ n

1

log x dx +
log n

2
+

1
12

(
1
n

− 1
)

+ 2 ·
∫ n

1

B3({x})
x3

dx. (8.21)

By
∫ n

1
log x dx = n log n − n + 1 = log(n/e)n + 1, (8.21) gives

log an = a − 1
12n

− 2 ·
∫ n

1

B3({x})
x3

dx (8.22)

for some constant a. Since an → 1, (8.22) implies

0 = a − 2 ·
∫ ∞

1

B3({x})
x3

dx.

Subtracting this from (8.22), we obtain

log an = − 1
12n

+ 2 ·
∫ ∞

n

B3({x})
x3

dx. (8.23)

In order to complete the proof, we have to show that

∫ ∞

n

B3({x})
x3

dx ≥ 0

for every n. It is enough to prove that

∫ k+1

k

B3({x})
x3

dx ≥ 0

for every k ≥ 1. Since the function 1/x3 is monotonically decreasing and nonnega-
tive on the interval [k, k + 1], the second mean value theorem of integration gives

∫ k+1

k

B3({x})
x3

dx = k−3 ·
∫ c

k

B3({x}) dx = k−3 ·
∫ d

0

B3(x) dx,

where c ∈ [k, k + 1] and d = c − k ∈ [0, 1]. It is enough to show that
∫ d

0
B3(x)dx ≥ 0 for every d ∈ [0, 1].
A simple computation shows that 0, 1/2, and 1 are all roots of the polyno-

mial B3(x) = (x3/6) − (x2/4) + (x/12). Since B3(x) cannot have more roots,
the sign of the polynomial B3(x) does not change on the intervals (0, 1/2) and
(1/2, 1). The polynomial B3(x) is locally decreasing at 1/2, since B′

3(1/2) =
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B2(1/2) < 0. Therefore, B3(x) > 0 for every x ∈ (0, 1/2), and B3(x) < 0 for
every x ∈ (1/2, 1). Thus

∫ d

0
B3(x) dx ≥ 0 for every d ∈ [0, 1/2]. On the other

hand, if d ∈ [1/2, 1], then

∫ d

0

B3(x) dx = −
∫ 1

d

B3(x) dx ≥ 0,

and the theorem is proved. �

Exercises

8.1. Show that

1 +
1
2

+ . . . +
1
n

− log n = γ +
1
2n

− 1
12n2

− 6 ·
∫ ∞

n

B3({x})
x4

dx

for every positive integer n. Show that the absolute value of the integral is at most
c/n4.

8.2. Double check that the right-hand sides of (8.19), for k = 1, 2, 3, are
n(n + 1)/2, n(n + 1)(2n + 1)/6, and (n(n + 1)/2)2, respectively.

8.3. Show that

1k + 2k + . . . + (n − 1)k = k! · (Bk+1(n) − Bk+1(0)) .

8.2 Approximation of Definite Integrals

It is well known that the indefinite integral of an elementary function is not necessar-
ily elementary (see, e.g., [7, Section 15.5]). The same is true for definite integrals: it
is not guaranteed that we can express the definite integral of an elementary function
in “closed form,” i.e., by a formula containing only known functions and constants
(and no limits). In fact, it is the exception when we can express the value of a definite
integral in closed form2.

So far, the simplest method for finding definite integrals has proven to be the
Newton–Leibniz formula. However, as we saw above, we cannot always use this
method. Furthermore, even when the Newton–Leibniz formula is applicable, the
computation is not always feasible.

2 It might happen that the indefinite integral of an elementary function is not elementary, yet we can
express its definite integral in closed form on some intervals. For example, the indefinite integrals
of the functions x · ctg x and x2/ sin2 x are not elementary, but the value of their integrals on the
interval [0, π/2] are π · log 2 and 2π · log 2, respectively. See Problems 19.20 and 19.22 in [7].
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Another method for finding definite integrals is using the definition itself. How-
ever, working with upper and lower sums can be quite messy (except for finding the
integrals of monotone functions), and thus it is natural to approximate the integral
with the help of approximating sums. We know that if Fn is a sequence of partitions
of [a, b] such that the mesh of Fn tends to zero, then

b∫

a

f(x) dx = lim
n→∞ σFn

,

with arbitrary approximating sums σFn
(see [7, (iii) of Theorem 14.23]). How-

ever, we still need to estimate the precision of the approximation, i.e., the error∣
∣
∣
∣
∣

b∫

a

f(x) dx − σFn

∣
∣
∣
∣
∣
. In the sequel we give methods of approximation of integrals

with estimates of the error depending on some conditions on the function. Recall that
the mesh of a partitionF : a = x0 < x1 < . . . < xn = b is δ(F ) = max1≤i≤n(xi −
xi−1). The approximating sums corresponding to the partition F are the sums

σF = σF (f ; (ci)) =
n∑

i=1

f(ci)(xi − xi−1),

where ci ∈ [xi−1, xi] for every i = 1, . . . , n.

Theorem 8.11. If f is monotone on [a, b], then

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx − σF

∣
∣
∣
∣
∣
∣
≤ δ(F ) · (f(b) − f(a))

for every partition F of [a, b], and for every approximating sum σF corresponding
to F .

Proof. We may assume that f is increasing. Then the lower and upper
sums corresponding to F are sF =

∑n
i=1 f(xi−1)(xi − xi−1) and

SF =
∑n

i=1 f(xi)(xi − xi−1). Let I =
∫ b

a
f dx. Then sF ≤ I ≤ SF and sF ≤

σF ≤ SF , and thus

|I − σF | ≤ SF − sF =
n∑

i=1

(f(xi) − f(xi−1))(xi − xi−1) ≤

≤ δ(F ) ·
n∑

i=1

(f(xi) − f(xi−1)) = δ(F ) · (f(b) − f(a)).

�
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Our next two theorems concern the approximation of the integrals of Lipschitz
functions. By the mean value theorem, if f is differentiable on [a, b] and |f ′(x)| ≤
K at every point x ∈ [a, b], then |f(x) − f(y)| ≤ K · |x − y| for every x, y ∈ [a, b].
This means that the Lipschitz condition is satisfied whenever |f ′(x)| ≤ K for every
x ∈ [a, b].

Theorem 8.12. Let f be Lipschitz on [a, b] and let |f(x) − f(y)| ≤ K · |x − y| for
every x, y ∈ [a, b]. Then for every partition F and every corresponding approximat-
ing sum σF we have

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx − σF

∣
∣
∣
∣
∣
∣
≤ K

2
· δ(F ) · (b − a). (8.24)

Proof. Let a ≤ α < β ≤ b and c ∈ [α, β]. Since |f(x) − f(c)| ≤ K · |x − c| for
every x, we have

∣
∣
∣
∣
∣

β∫

α

f(x) dx − f(c) · (β − α)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

β∫

α

(f(x) − f(c)) dx

∣
∣
∣
∣
∣
∣
≤ K ·

β∫

α

|x − c| dx =

= K ·
c∫

α

(c − x) dx + K ·
β∫

c

(x − c) dx = (8.25)

= K ·
(

1
2
(c − α)2 +

1
2
(β − c)2

)

≤ K

2
· (β − α)2.

Applying this to the subintervals [xi−1, xi] and using that

b∫

a

f(x) dx =
n∑

i=1

xi∫

xi−1

f(x) dx,

we get

∣
∣
∣
∣
∣

b∫

a

f(x)dx−
n∑

i=1

f(ci)(xi − xi−1)

∣
∣
∣
∣
∣
≤

n∑

i=1

K

2
· (xi − xi−1)2 ≤

≤ K

2
·

n∑

i=1

δ(F ) · (xi − xi−1) =

=
K

2
· δ(F ) · (b − a). �
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By choosing c = (α + β)/2 we can improve the upper estimate of (8.25) to
(K/4) · (β − α)2. Therefore, taking ci = (xi−1 + xi)/2 for every i, we obtain the
following.

Theorem 8.13. Let f be Lipschitz on [a, b], and let |f(x) − f(y)| ≤ K · |x − y|
for every x, y ∈ [a, b]. Then for every partition F : a = x0 < . . . < xn = b we have

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx −
n∑

i=1

f

(
xi−1 + xi

2

)

· (xi − xi−1)

∣
∣
∣
∣
∣
∣
≤ K

4
· δ(F ) · (b − a). �

Notice that the sum

n∑

i=1

f((xi−1 + xi)/2) · (xi − xi−1)

is the approximating sum corresponding to the midpoints of the subintervals
[xi−1, xi]. If f ≥ 0, this is the sum of the areas of the rectangles with the appro-
priate heights (see Figure 8.1).

8.1. Figure

We now show that we can achieve
similar precision using the sum of the
areas of trapezoids defined by consecu-
tive base points and the corresponding
points of the graph. In the following the-
orem we assume a little more than the
Lipschitz property. In fact, the Lipschitz
property would be sufficient (see Exer-
cise 8.4).

Theorem 8.14. Let f be differentiable
and suppose that f ′ is integrable on the

interval [a, b], and let |f ′(x)| ≤ K for every x ∈ [a, b]. Then for every partition
F : a = x0 < . . . < xn = b we have

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx −
n∑

i=1

(
f(xi−1) + f(xi)

2

)

· (xi − xi−1)

∣
∣
∣
∣
∣
∣
≤ K

4
· δ(F ) · (b − a).

(8.26)
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Proof. Let a ≤ α < β ≤ b and γ = (α + β)/2. We have

∫ β

α

f(x) dx =
∫ β

α

f(x) · (x − γ)′ dx =

= [f(x) · (x − γ)]βα −
∫ β

α

f ′(x)(x − γ) dx =

=
f(α) + f(β)

2
· (β − α) −

∫ β

α

f ′(x)(x − γ) dx,

(8.27)

and thus
∣
∣
∣
∣
∣

∫ β

α

f(x) dx − f(α) + f(β)
2

· (β − α)

∣
∣
∣
∣
∣
≤
∫ β

α

K · |x − γ| dx =
K

4
· (β − α)2.

Applying this inequality to the subintervals [xi−1, xi], we obtain (8.26) in the same
way as in the proof of Theorem 8.12. �

Intuitively, the smoother the function, the better it is approximated by its inscribed
polygons, and the sum of the areas of the corresponding trapezoids approximates the
integral better. For similar reasons, we also expect that the areas of the rectangles
corresponding to the midpoints of the partition intervals approximate the integral
better, with the same precision. We now prove both statements. In particular, we
prove that the error is quadratic in δ(F ) for every twice-differentiable function.

Theorem 8.15. Let f be twice differentiable on [a, b] and let |f ′′(x)| ≤ K for every
x ∈ [a, b]. Then for every partition F : a = x0 < . . . < xn = b we have

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx −
n∑

i=1

f

(
xi−1 + xi

2

)

· (xi − xi−1)

∣
∣
∣
∣
∣
∣
≤ K

24
· δ(F )2 · (b − a). (8.28)

Proof. Let a ≤ α < β ≤ b and γ = (α + β)/2. Applying Taylor’s formula yields

f(x) = f(γ) + f ′(γ) · (x − γ) +
f ′′(c)

2
· (x − γ)2,

and thus

|f(x) − f(γ) − f ′(γ) · (x − γ)| ≤ K

2
· (x − γ)2
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for every x. Since
∫ β

α
(x − γ) dx = 0, we have

∣
∣
∣
∣
∣

β∫

α

f(x) dx−f(γ) · (β − α)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

β∫

α

(f(x) − f(γ) − f ′(γ)(x − γ)) dx

∣
∣
∣
∣
∣
∣
≤

≤ K

2
·
∫ β

α

(x − γ)2dx =
K

24
· (β − α)3.

Applying this to the subintervals [xi−1, xi] and summing the results gives (8.28) as
before. �

In order to get some further estimates, we need the following theorem.

Theorem 8.16. (Taylor’s formula with integral remainder) Let the function f be
(n + 1) times differentiable, and let f (n+1) be integrable on the interval [a, x]. Then

f(x) =f(a) +
f ′(a)

1!
(x − a) + . . . +

f (n)(a)
n!

(x − a)n+

+
1
n!

·
∫ x

a

f (n+1)(t) · (x − t)n dt.

(8.29)

We allow both x < a and x > a.

Proof. We prove the result only for a < x; the proof of the x < a case is similar.
Let

R(t) =
[

f(t) +
f ′(t)
1!

(x − t) + · · · +
f (n)(t)

n!
(x − t)n

]

− f(x)

for every t ∈ [a, x]. An easy computation gives R′(t) = f(n+1)(t)
n! (x − t)n. Thus, by

the Newton–Leibniz formula we get

R(a) = R(a) − R(x) =
1
n!

·
∫ a

x

f (n+1)(t) · (x − t)n dt,

which is exactly (8.29). �

Theorem 8.17. Let f be twice differentiable, and let f ′′ be integrable on [a, b]. If
|f ′′(x)| ≤ K for every x ∈ [a, b], then for every partition F : a = x0 < . . . < xn =
b we have

∣
∣
∣
∣
∣
∣

b∫

a

f(x) dx −
n∑

i=1

(
f(xi−1) + f(xi)

2

)

· (xi − xi−1)

∣
∣
∣
∣
∣
∣
≤ K

12
· δ(F )2 · (b − a).

(8.30)
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Proof. Let a ≤ α < β ≤ b. We show that

∣
∣
∣
∣
∣

∫ β

α

f(x) dx − f(α) + f(β)
2

· (β − α)

∣
∣
∣
∣
∣
≤ K

12
· (β − α)3. (8.31)

Let F (x) =
∫ x

α
f(t) dt for every x ∈ [α, β]. Then F ′ = f , and thus F is three times

differentiable on [α, β]. Taylor’s formula (8.29) gives

∫ β

α

f(x) dx = F (β) = f(α)(β − α) +
1

2
f ′(α)(β − α)2 +

1

2
·
∫ β

α

f ′′(t)(β − t)2 dt.

(8.32)
Applying formula (8.29) to f yields

f(β) = f(α) + f ′(α)(β − α) +
∫ β

α

f ′′(t)(β − t) dt. (8.33)

If we multiply (8.33) by (β − α)/2 and subtract the result from (8.32), we obtain

∫ β

α

f(x) dx−f(α) + f(β)
2

· (β − α) =

=
1
2

·
∫ β

α

f ′′(t)(β − t)2 dt − 1
2

·
∫ β

α

f ′′(t)(β − t)(β − α) dt =

= −
∫ β

α

f ′′(t) · ϕ(t) dt,

(8.34)
where ϕ(t) = 1

2 (β − t)(t − α). The function ϕ is continuous and nonnegative on
[α, β]. Applying the general equation (8.34) to the function f0(x) = (x − α)2 gives
−(β − α)3/6 = −2 · ∫ β

α
ϕ(t) dt, i.e.,

∫ β

α
ϕ(t) dt = (β − α)3/12.

Now, if |f ′′| ≤ K, then (8.34) implies

∣
∣
∣
∣
∣

∫ β

α

f(x) dx − f(α) + f(β)
2

· (β − α)

∣
∣
∣
∣
∣
≤
∫ β

α

K · ϕ(t) dt = K · (β − α)3/12,

which proves (8.31). We get (8.30) following the usual argument. �

Remark 8.18. 1. We can omit the integrability condition on f ′′ of the previous the-
orem. Moreover, it is enough to assume that f is differentiable and f ′ is Lipschitz,
i.e., |f ′(x) − f ′(y)| ≤ K · |x − y| for every x, y ∈ [a, b] (see Exercise 8.5).

2. Applying Theorem 8.17, we can give a new proof of the convergence of
(n/e)n · √

n/n!. Let
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an =
∫ n+1

n

log x dx − log n + log(n + 1)
2

for every n > 0. Since log x is concave, we have an ≥ 0. On the other hand, the
absolute value of the second derivative of log x is | − 1/x2| ≤ 1/n2 for every x ∈
[n, n + 1], and thus (8.31) implies 0 ≤ an ≤ 1/(12n2). It follows that the sequence
∑n−1

k=1 ak is monotonically increasing and bounded, hence convergent. Since

n−1∑

k=1

ak =
∫ n

1

log x dx −
n∑

k=1

log k + (log n)/2 =

= n log n − n + 1 + (log n)/2 − log n! =

= 1 + log
(

(n/e)n
√

n

n!

)

,

it follows that the sequence (n/e)n
√

n/n! is convergent. �

The core idea of approximating with trapezoids (Theorem 8.17) is to replace
the function f on every interval [xi−1, xi] by a linear function whose value is the
same as that of f at xi−1 and xi. We can expect to get a better approximation using
polynomials of higher degree instead of linear functions. Let us see what happens if
we approximate the function f on the interval [xi−1, xi] by the (at most) quadratic
polynomial whose value at the points α = xi−1, β = xi, and γ = (xi−1 + xi)/2 is
the same as that of f . It is easy to see that if p is an (at most) quadratic polynomial,
then

β∫

α

p(x) dx =
p(α) + 4p(γ) + p(β)

6
· (β − α), (8.35)

where γ = (α + β)/2 (see Exercise 8.6). The question is how accurately the quan-
tity (f(α) + 4f(γ) + f(β)) · (β − α)/6 approximates the integral of f on [α, β].

Lemma 8.19. (Simpson’s3 approximation) Let f be four times differentiable and
let f (4) be integrable on [α, β]. If |f (4)(x)| ≤ K for every x ∈ [α, β], then

∣
∣
∣
∣
∣

∫ β

α

f(x) dx − f(α) + 4f(γ) + f(β)
6

· (β − α)

∣
∣
∣
∣
∣
≤ K

2880
· (β − α)5, (8.36)

where γ = (α + β)/2.

3 Thomas Simpson (1710–1761), British mathematician.
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Proof. The proof is analogous to the proof of Theorem 8.17. To simplify the com-
putation, let us consider the α = −1, β = 1 case first. Let F (x) =

∫ x

0
f(t) dt for

every x ∈ [−1, 1]. Then F ′ = f , and F is five times differentiable on [−1, 1]. Thus,
formula (8.29) gives

F (x) = f(0)x +
1

2
f ′(0)x2 +

1

6
f ′′(0)x3 +

1

24
f ′′′(0)x4 +

1

24
·
∫ x

0

f (4)(t)(x − t)4 dt,

and

∫ 1

−1
f(x) dx = F (1) − F (−1) =

= 2f(0) +
1

3
f ′′(0) +

1

24
·
∫ 1

0
f (4)(t)(1 − t)4 dt − 1

24
·
∫ −1

0
f (4)(t)(−1 − t)4 dt.

Applying formula (8.29) to f , we get

f(x) = f(0) + f ′(0)x +
1
2
f ′′(0)x2 +

1
6
f ′′′(0)x3 +

1
6

·
∫ x

0

f (4)(t)(x − t)3 dt,

and thus

f(−1) + 4f(0) + f(1)
3

=

= 2f(0) +
1
3
f ′′(0) +

1
18

·
∫ 1

0

f (4)(t)(1 − t)3 dt +
1
18

·
∫ −1

0

f (4)(t)(−1 − t)3 dt.

Therefore,

∫ 1

−1

f(x) dx − f(−1) + 4f(0) + f(1)
3

=

=
∫ 1

0

f (4)(t)
[

1
24

(1 − t)4 − 1
18

(1 − t)3
]

dt+

+
∫ 0

−1

f (4)(t)
[

1
24

(1 + t)4 − 1
18

(1 + t)3
]

dt =

= −
∫ 1

−1

f (4)(t) · ψ(t) dt,

(8.37)

where ψ(t) = 1
72 (1 − |t|)3(1 + 3|t|). The function ψ is continuous and nonnegative

on [−1, 1]. Applying (8.37) to the function f(x) = x4, we find that (2/5) − (2/3) =
−24 · ∫ 1

−1
ψ(t) dt, i.e.,

∫ 1

−1
ψ(t) dt = 1/90. If |f ′′| ≤ K, then (8.37) implies
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∣
∣
∣
∣

∫ 1

−1

f(x) dx − f(−1) + 4f(0) + f(1)
3

∣
∣
∣
∣ ≤

∫ 1

−1

K · ψ(t) dt = K/90. (8.38)

Now consider the general case, and let f : [α, β] → R satisfy the conditions of the
lemma. Applying (8.38) to the function

f(x) = f

(
α + β

2
+ x · β − α

2

)

(x ∈ [−1, 1]),

we get (8.36). �

The following theorem is obtained from the previous lemma by applying the
argument above.

Theorem 8.20. Let f be four-times differentiable on [a, b], and let |f (4)(x)|
≤ K, for every x ∈ [a, b]. Then for every partition F : a = x0 < . . . < xn = b, we
have

∣
∣
∣
∣
∣

b∫

a

f(x) dx −
n∑

i=1

f(xi−1) + 4f ((xi−1 + xi)/2) + f(xi)
6

· (xi − xi−1)

∣
∣
∣
∣
∣
≤

≤ K

2880
· δ(F )4 · (b − a).

In numerical computations it is simplest to work with the uniform partition of
the interval [a, b]. The base points of this partition are xi = a + (b − a) · i/n (i =
0, . . . , n), and the mesh of the partition is (b − a)/n. Therefore, applying Theorems
8.11, 8.14, 8.17, and 8.20, we obtain the following theorem.

Theorem 8.21.

(i) If f is monotone on [a, b], then

∣
∣
∣
∣
∣

∫ b

a

f(x) dx − b − a

n
·

n∑

i=1

f(xi)

∣
∣
∣
∣
∣
≤ f(b) − f(a)

n
· (b − a).

(ii) Let f be differentiable and f ′ integrable on [a, b]. If |f ′(x)| ≤ K for every
x ∈ [a, b], then

∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
(

f(a) + f(b)
2

+
n−1∑

i=1

f(xi)

)

· b − a

n

∣
∣
∣
∣
∣
≤ K

4n
· (b − a)2.

(iii) Let f be twice differentiable and f ′′ integrable on [a, b]. If |f ′′(x)| ≤ K for
every x ∈ [a, b], then
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∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
(

f(a) + f(b)
2

+
n−1∑

i=1

f(xi)

)

· b − a

n

∣
∣
∣
∣
∣
≤ K

12n2
· (b − a)3.

(iv) (Simpson’s formula). Let f be four times differentiable and f (4) integrable
on [a, b]. If |f (4)(x)| ≤ K for every x ∈ [a, b], then

∣
∣
∣
∣
∣

∫ b

a

f(x) dx−
(

f(a) + f(b) + 2 ·
k−1∑

i=1

f(x2i) + 4 ·
k−1∑

i=0

f(x2i+1)

)

· b − a

6n

∣
∣
∣
∣
∣
≤

≤ K

2880n4
· (b − a)5, �

for n = 2k.

Exercises

8.4. Show that if |f(x) − f(y)| ≤ K · |x − y| for every x, y ∈ [a, b], g is differen-
tiable, and g′ is integrable on [a, b], then

∣
∣
∣
∣
∣

∫ b

a

fg′ dx − [fg]ba

∣
∣
∣
∣
∣
≤ K ·

∫ b

a

|g′| dx. (H)

8.5. Show that we can relax the conditions of Theorem 8.14 to |f(x) − f(y)| ≤
K · |x − y| for every x, y ∈ [a, b].

8.6. Show that we can relax the conditions of Theorem 8.17 to f being differen-
tiable and |f ′(x) − f ′(y)| ≤ K · |x − y| for every x, y ∈ [a, b].

8.7. Show that (8.35) holds for every at most cubic polynomial p.

8.3 Parametric Integrals

When we say that
∫ 1

0
xc dx = 1/(c + 1) for every c 	= −1, we consider an integral

depending on the parameter c. Similarly, when we state that the improper integral∫∞
1

xc dx is convergent if c < −1 and is divergent if c ≥ −1, we consider the inte-
gral

∫∞
1

xc dx depending on the different values of the parameter c. In general, by
a parametric integral we mean an integral of the form

∫
H

f(t, x) dx, where T is
an interval, f is defined on the set T × H , and we integrate the section function
ft on H . Here, H can be a Jordan measurable set on which the section function
x �→ ft(x) = f(t, x) is integrable, or an interval on which the improper integral of
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the section ft is convergent for every t ∈ T .4 In the first case we are talking about
parametric Riemann integrals, while in the second case, we are talking about
parametric improper integrals5.

The parametric integrals play an important role in both the applications of
analysis and the solutions of certain theoretical problems. In some cases,
considering a definite integral as a special case of some parametric integral might
be very useful for calculating its value. Consider, for example, the integral

∫ 1

0

x − 1
log x

dx. (8.39)

The function (x − 1)/ log x is integrable on [0, 1], since it is both bounded and
continuous on (0, 1). Indeed, we have log x < x − 1 < 0 for 0 < x < 1, and thus
0 < (x − 1)/ log x < 1. Since the primitive function of (x − 1)/ log x is not an ele-
mentary function (see Exercise 8.8), calculating the exact value of the integral might
look hopeless at first. However, if our goal is calculating the value of the parametric
integral

F (t) =
∫ 1

0

xt − 1
log x

dx, (8.40)

with parameter t ≥ 0, then it is only natural to calculate the derivative of F (t). We
get

F ′(t) =
∫ 1

0

∂

∂t

(
xt − 1
log x

)

dx =
∫ 1

0

xt dx =
1

t + 1
. (8.41)

It remains to be seen whether this step is justified, i.e., whether we can take the
derivative “behind” the integral. We will have our answer presently. If, however,
(8.41) is correct, then F (t) = log(t + 1) + c for some constant c. Since F (0) =
∫ 1

0
0 dx = 0, we have c = 0, i.e., F (t) = log(t + 1) for every t ≥ 0. Thus, the value

of the integral (8.39) is F (1) = log 2.
Let us now consider the integral

∫ ∞

0

e−x − e−2x

x
dx, (8.42)

4 Obviously, the parameter can be denoted by any letter. In choosing the letter t (instead of the
letter c) we want to indicate that we consider the parameter to be a variable, i.e., we want to think
of the value of the integral as a function of t.
5 The two cases do not exclude each other: if H is a bounded interval and ft is Riemann integrable
on H for every t ∈ T , then the integral

∫
f(t, x) dx is both a parametric Riemann integral and a

parametric improper integral. See [7, Remark 19.4.2].
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whose convergence is easy to see. We can calculate the integral by reducing it to
(8.39) using the substitution e−x = y, but we can also use the method applied above.
Consider the parametric improper integral

G(t) =
∫ ∞

0

e−x − e−tx

x
dx (8.43)

with parameter t > 0, and calculate its derivative:

G′(t) =
∫ ∞

0

∂

∂t

(
e−x − e−tx

x

)

dx =
∫ ∞

0

−e−tx · (−x)
x

dx =

=
∫ ∞

0

e−tx dx =
[

−e−tx

t

]∞

x=0

=
1
t
.

(8.44)

We should check whether this step is justifiable, similarly to the case of our previ-
ous example. But if (8.44) holds, then G(t) = log t + c, and by G(1) = 0, we have
G(t) = log t for every t > 0. Thus, the value of the integral (8.42) is G(2) = log 2.

In the arguments above we need to justify why the derivatives of F and G equal
the integrals of the derivatives of the respective integrands. In other words, the ques-
tion is whether the results of the integration with respect to x and the derivation with
respect to t of the functions (xt − 1)/ log x and (e−x − e−tx)/x are independent of
the order of these operations. Similar questions can be asked about any functions
f(t, x), and not only about derivation but also about taking limits or integration.

First, we want to find conditions that ensure the continuity, integrability, and
differentiability of a parametric Riemann integral. That is, we consider the case that
H is a Jordan measurable set, possibly in Rp.

In the following three theorems we make the following assumptions: H ⊂ R
p is

a Jordan measurable set, f is defined on the set [a, b] × H , and the section function
x �→ f(t, x) is integrable on H for every t ∈ [a, b]. Let

F (t) =
∫

H

f(t, x) dx (t ∈ [a, b]).

Theorem 8.22. If f is continuous and bounded on [a, b] × H , then F is continuous
on [a, b].

Proof. First, let us assume that H is closed. Then [a, b] × H is also closed. Since H
is bounded (because it is Jordan measurable), [a, b] × H is bounded as well. Thus,
by Heine’s theorem (Theorem 1.53), f is uniformly continuous on [a, b] × H .

Let t0 ∈ [a, b] and ε > 0 be fixed. By the uniform continuity, there exists δ > 0
such that |f(u, x) − f(v, y)| < εwhenever (u, x), (v, y) ∈ [a, b] × H and |(u, x) −
(v, y)| < δ. Thus, if t ∈ [a, b] and |t − t0| < δ, then |f(t, x) − f(t0, x)| < ε for
every x ∈ H . Therefore,

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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|F (t) − F (t0)| =
∣
∣
∣
∣

∫

H

(f(t, x) − f(t0, x)) dx

∣
∣
∣
∣ ≤

∫

H

|f(t, x) − f(t0, x)| dx ≤

≤ ε · μ(H),

where μ(H) denotes the Jordan measure of H . This proves that F is continuous at
t0.

We now consider the general case, in which H is not necessarily closed (but
Jordan measurable and consequently bounded). Let f be bounded and continuous.
Suppose that |f(t, x)| ≤ K for every (t, x) ∈ [a, b] × H , and let ε > 0 be fixed.
Since H is Jordan measurable, there exists a set A ⊂ H such that μ(A) > μ(H) −
ε, and A is the union of finitely many closed boxes. Then A is bounded and closed,
and thus the function F1(t) =

∫
A

f(t, x) dx is continuous on [a, b] (by what we
proved above). Furthermore, applying the formula (4.3), we get

|F (t) − F1(t)| =
∣
∣
∣
∣

∫

H

f(t, x) dx −
∫

A

f(t, x) dx

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∫

H\A

f(t, x) dx

∣
∣
∣
∣
∣
≤

≤ K · μ(H \ A) < K · ε

for every t ∈ [a, b]. It follows that F can be obtained as the uniform limit
of a sequence of continuous functions. Then, by Theorem 7.12, F itself is con-
tinuous. �

The following theorem is a straightforward application of Theorem 4.17 on cal-
culating the integral of a multivariable function. We know that the section func-
tions of a two-variable integrable function are not necessarily integrable, whence
the upper and lower integrals in the statement of the following theorem (see
Remark 4.21.2).

Theorem 8.23. If f is integrable on [a, b] × H , then F is also integrable on [a, b],
and

∫ b

a

F (t) dt =
∫

H

(∫ b

a

f(t, x) dt

)

dx =
∫

H

( ∫ b

a

f(t, x) dt

)

dx.

Proof. Let B ⊂ R
p be a box containing the set H . Define f to be zero at the points

of the set [a, b] × (B \ H). The section function x �→ f(t, x) of this extended func-
tion f is integrable on B, with

∫
B

f(t, x) dx = F (t) for every t ∈ [a, b] (see (4.3)).
Now the statement of this theorem follows from Theorem 4.17. �

Recall that if the section function t �→ f(t, x) (t ∈ [a, b]) is differentiable for a
fixed x ∈ H , then its derivative is called the partial derivative of the function f with
respect to t, and it is denoted by either ∂

∂tf or D1f .

Theorem 8.24. If the partial derivative D1f exists and is continuous and bounded
on [a, b] × H , then F is differentiable on [a, b], and F ′(t) =∫

H
D1f(t, x) dx for every t ∈ [a, b].

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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Proof. Let I(t) =
∫

H
D1f(t, x) dx for every t ∈ [a, b]. By Theorem 8.22, I is con-

tinuous on [a, b].
Let u ∈ [a, b] be arbitrary. Applying Theorem 8.23 to the interval [a, u] and the

function D1f yields6

∫ u

a

I(t) dt=
∫

H

(∫ u

a

D1f dt

)

dx=
∫

H

(f(u, x) − f(a, x)) dx = F (u) − F (a).

Thus, the function F − F (a) is the integral function of the function I . Since I is
continuous, it follows that F is differentiable, and F ′(t) = I(t) for every t ∈ [a, b].
(See [7, Theorem 15.5].) �
Remark 8.25. One can show that the condition on the continuity of the partial
derivative function D1f can be omitted from Theorem 8.24.

Example 8.26. Let us take another look at the integral (8.39). For every t ≥ 0
the function x �→ f(t, x) = (xt − 1)/ log x is integrable on (0, 1), since it is con-
tinuous and bounded. The function D1f(t, x) = xt is continuous and bounded
on the set [0, b] × (0, 1) for every b > 0. Thus, by Theorem 8.24, the function
F (t) =

∫ 1

0
((xt − 1)/ log x) dx is differentiable, and (8.41) holds. Then, as we saw,

F (t) = log(t + 1) follows, and thus F (1) = log 2.

Now we turn to the investigation of parametric improper integrals. These inte-
grals are more important for applications than the parametric Riemann integrals.
Unfortunately, the results on these integrals are more complicated, in that they
require stricter conditions on the integrands. This is unavoidable: if, for example,
we want to generalize Theorem 8.22 to parametric improper integrals, we need to
assume more than continuity and boundedness of the function f . Consider the fol-
lowing simple example.

Example 8.27. The two-variable function f(t, x) = t · e−tx is continuous and
bounded on the set [0, 1] × [0,∞), and the improper integral F (t) =∫∞
0

f(t, x) dx is convergent for every t ≥ 0. If t > 0, then

F (t) =
∫ ∞

0

t · e−tx dx =
[−e−tx

]∞
0

= 1.

On the other hand, F (0) = 0, and thus the function F is not continuous at the point
t = 0.

Now consider the analogue of Theorem 8.23 for improper integrals. Let f be
defined on the set [a, b] × [c,∞), and let the improper integral F (t) =∫∞

c
f(t, x) dx be convergent for every t ∈ [a, b]. We need conditions that guarantee

that

6 The function D1f is integrable on [a, b] × H, since it is bounded and continuous there. See
Theorem 4.14.

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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∫ b

a

F (t) dt =
∫ ∞

c

(∫ b

a

f(t, x) dt

)

dx (8.45)

holds. The condition of the integrability of f on the set [a, b] × [c,∞) is out of
the question, since we defined the integral of multivariable functions only on Jor-
dan measurable (and hence bounded) sets. However, (8.45) does not necessarily
hold without adding extra conditions—not even in the case that f is continuous and
bounded, and every integral appearing in the theorem exists. This is illustrated by
the following example.

Example 8.28.
Consider the open boxes Pk =

(
2−k, 2−k+1

)× (2k−1, 2k) and Nk =
(
2−k,

2−k+1
)× (2k, 2k+1) for every k = 1, 2, . . .. Let

g(t, x) =

⎧
⎪⎨

⎪⎩

2, if (t, x) ∈ Pk (k = 1, 2, . . .);
−1, if (t, x) ∈ Nk (k = 1, 2, . . .);

0 otherwise.

We show thatG(t) =
∫∞
0

g(t, x) dx = 0 for every t. This is obvious if t is not in any
of the intervals

(
2−k, 2−k+1

)
, since in that case, g(t, x) = 0 for every x. If, however,

t ∈ (2−k, 2−k+1
)
, then the section function gt is 2 on the interval (2k−1, 2k), −1 on

the interval (2k, 2k+1), and 0 everywhere else, and thus its integral is indeed zero.
Thus, G(t) = 0 for every t, which implies

∫ 1

0
G(t) dt = 0.

We now show that
∫∞
0

(∫ 1

0
g(t, x) dt

)
dx 	= 0. Let I(x) =

∫ 1

0
g(t, x) dt. If x ∈

(0, 1), then g(t, x) = 0 for every t ∈ [0, 1], giving I(x) = 0. If x ∈ (1, 2), then
I(x) =

∫ 1

1/2
2 dt = 1. If, however, x ∈ (2k, 2k+1) for some positive integer k, then

I(x) =
∫ 2−k+1

2−k

(−1) dt +
∫ 2−k

2−k−1
2 dt = 0.

This implies
∫ ∞

0

(∫ 1

0

g(t, x) dt

)

dx =
∫ ∞

0

I(x) dx = 1.

In the previous example the function g is not continuous, but it can be made
continuous by a simple alteration of the construction. Let

f(t, x) =

⎧
⎪⎨

⎪⎩

2 · sin(2kπt) · sin(2−k+1πx), if (t, x) ∈ Pk (k = 1, 2, . . .);
− sin(2kπt) · sin(2−kπx), if (t, x) ∈ Nk (k = 1, 2, . . .);
0, otherwise.
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It is easy to check that f is continuous and bounded on the set [0, 1] × [0,∞),
F (t) =

∫∞
0

f(t, x) dx = 0 for every t, but
∫∞
0

(∫ 1

0
f(t, x) dt

)
dx > 0.

Example 8.29. Let h(t, x) =
∫ t

0
f(u, x) du for every (t, x) ∈ R

2, where f is the
function from the previous example. It is easy to check that h is continuous every-
where, and the improper integral H(t) =

∫∞
0

h(t, x) dx is convergent for every
t ∈ [0, 1]. This follows from the fact that for every t ∈ [0, 1], we have h(t, x) = 0 if
x is large enough.

Now, D1h = f is continuous and bounded on [0, 1] × [0,∞). However, H ′(t) =∫∞
0

D1h(t, x) dx =
∫∞
0

f(t, x) dx = 0 cannot hold for every t ∈ [0, 1], since that
would imply that H is constant. However, H(0) = 0 and

H(1) =
∫ ∞

0

h(1, x) dx =
∫ ∞

0

(∫ 1

0

f(t, x) dt

)

dx > 0.

This shows that Theorem 8.24 does not hold for improper integrals, not even when
D1f is continuous and bounded on the set [a, b] × [c,∞).

The questions about the continuity, differentiability, and integrability of paramet-
ric improper integrals are analogous to similar questions for series of functions. In
fact, the connection is more than simple analogy. Consider the series of functions∑∞

n=1 fn(t), convergent on the interval [a, b]. Let f be the sum of the series on
[a, b]. Let f(t, x) = fn(t) for every t ∈ [a, b], n ≤ x < n + 1, and n = 1, 2, . . .. It
is easy to see that

∫ ∞

1

f(t, x) dx =
∞∑

n=1

fn(t) = f(t)

for every t ∈ [a, b]. Thus, if we establish sufficient conditions that ensure that∫∞
1

∂f
∂t (t, x) dx = f ′(t), then we also have sufficient conditions for the term-by-

term differentiability of the function series
∑∞

n=1 fn(t). The same holds for the
continuity of the integral or its integrability.

Since uniform continuity played a pivotal role in the corresponding theorems
(Theorems 7.40 and 7.42) for function series, it is not at all surprising that we need
a similar notion for the case of parametric improper integrals.

Definition 8.30. Let f be defined on the set [a, b] × [c, γ), with a, b, c ∈ R, a < b,
and c < γ ≤ ∞. Suppose that the Riemann integral

∫ d

c
f(t, x) dx exists for every

t ∈ [a, b] and c < d < γ.
We say that the parametric improper integral

∫ γ

c
f(t, x) dx is uniformly con-

vergent on [a, b] if the improper integral
∫ γ

c
f(t, x) dx is convergent for every

t ∈ [a, b], and for every ε > 0 there exists d ∈ (c, γ) such that
∣
∣
∫ γ

ω
f(t, x)dx

∣
∣

< ε for every d ≤ ω < γ and t ∈ [a, b].

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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Remark 8.31. Let ε > 0 be fixed. For a fixed t, the convergence of the improper
integral

∫ γ

c
f(t, x) dx implies that for every ε > 0 there exists d ∈ (c, γ) such that∣

∣
∫ γ

ω
f(t, x) dx

∣
∣ < ε for every d ≤ ω < γ. However, the d “threshold” depends not

only on ε, but also on t. Thus, it is possible that for a fixed ε the supremum of the d
threshold values, corresponding to different parameters t ∈ [a, b], is γ, and there is
no d < γ that works for every parameter t. The uniform convergence of the integral∫ γ

c
f(t, x) dx on [a, b] means exactly the existence of such a common threshold,

independent of t, for every ε > 0.

In each of the following three theorems, we assume that f is defined on the set
[a, b] × [c, γ), that for every t ∈ [a, b] the Riemann integral

∫ d

c
f(t, x) dx exists for

each c < d < γ, and furthermore, that the improper integral∫ γ

c
f(t, x) dx is convergent and its value is F (t).

Theorem 8.32. Let f be continuous on the set [a, b] × [c, γ). If the improper inte-
gral

∫ γ

c
f(t, x) dx is uniformly convergent on [a, b], then F is continuous on [a, b].

Proof. Choose a sequence of numbers c < dn < γ such that limn→∞ dn = γ. Let
Fn(t) =

∫ dn

c
f(t, x) dx for every t ∈ [a, b] and n = 1, 2, . . .. By Theorem 8.22, Fn

is continuous for every n.
If we can prove that the sequence of functions Fn converges uniformly to F on

the interval [a, b], then Theorem 7.12 will imply the continuity of F on [a, b].
Let ε > 0 be fixed. Since the integral

∫ γ

c
f(t, x) dx is uniformly convergent on

[a, b], there exists c < d < γ such that
∣
∣
∫ γ

ω
f(t, x) dx

∣
∣ < ε for every d ≤ ω < γ and

t ∈ [a, b]. However, dn → γ, and thus there exists n0 such that d < dn < γ for every
n ≥ n0. Then for every n ≥ n0 and t ∈ [a, b], we have

|F (t) − Fn(t)| =

∣
∣
∣
∣
∣

∫ γ

c

f(t, x) dx −
∫ dn

c

f(t, x) dx

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

∫ γ

dn

f(t, x) dx

∣
∣
∣
∣ < ε.

This proves that Fn converges uniformly to F on the interval [a, b]. �

Theorem 8.33. Let f be integrable on the box [a, b] × [c, d] for every c < d < γ.
If the improper integral

∫ γ

c
f(t, x) dx is uniformly convergent on [a, b], then F is

integrable on [a, b], and

∫ b

a

F (t) dt =
∫ γ

c

(∫ b

a

f(t, x) dt

)

dx, (8.46)

meaning also that the improper integral on the right-hand side exists.

Proof. Again, choose a sequence of numbers c < dn < γ such that limn→∞
dn = γ, and let Fn(t) =

∫ dn

c
f(t, x) dx for every t ∈ [a, b] and n = 1, 2, . . .. By

Theorem 8.23, Fn is integrable on [a, b], and

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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∫ b

a

Fn(t) dt =
∫ dn

c

(∫ b

a

f(t, x) dt

)

dx (8.47)

for every n. In the proof of Theorem 8.32 we showed that the sequence of functions
Fn converges uniformly to F on the interval [a, b]. Thus by Theorem 7.16, F is
integrable on [a, b], and limn→∞

∫ b

a
Fn(t) dt = I , where I =

∫ b

a
F dt. This means

that the sequence of integrals on the right-hand side of (8.47) converges to I as n →
∞. This holds for every sequence dn < γ, dn → γ, and then, by the transference
principle, we find that the limit

lim
ω→γ−0

∫ ω

a

(∫ b

a

f(t, x) dt

)

dx

exists, and its value is I . (If γ = ∞, then by ω → γ − 0 we mean ω → ∞.) In other
words, the improper integral on the right-hand side of (8.46) is convergent, and its
value is I . �

Theorem 8.34. Suppose that the partial derivative D1f exists and is continuous on
the set [a, b] × [c, γ), and that the improper integral

∫ γ

c
D1f(t, x) dx is uniformly

convergent on [a, b]. Then F is differentiable on [a, b], and F ′(t) =
∫ γ

c
D1f(t, x) dx

for every t ∈ [a, b].

Proof. Let I(t) =
∫ γ

c
D1f(t, x) dx for every t ∈ [a, b]. By Theorem 8.32, the func-

tion f is continuous on [a, b].
Let u ∈ [a, b] be arbitrary. Applying Theorem 8.33 to the interval [a, u] and to

the function D1f , we get that

∫ u

a

I(t) dt =

∫ γ

c

(∫ u

a

D1f dt

)
dx =

∫ γ

c

(f(u, x) − f(a, x)) dx = F (u) − F (a).

Therefore, the function F − F (a) is the integral function of the function I . Since
I is continuous, it follows that F is differentiable, and F ′(t) = I(t), for every t ∈
[a, b]. (See [7, Theorem 15.5].) �

Remark 8.35. One can show that in Theorem 8.34, the condition on the continuity
of the partial derivative D1f can be replaced by the condition that D1f is bounded
on the box [a, b] × [c, d] for every c < d < γ.

In order to apply Theorems 8.32–8.34, we need conditions that guarantee the
uniform convergence of parametric improper integrals and are easy to check. The
following theorem formalizes one such condition.

Theorem 8.36. Let the Riemann integral
∫ d

c
f(t, x) dx exist for every c < d < γ

and t ∈ [a, b]. If there is a function M : [c, γ) → R such that |f(t, x)| ≤ M(x)
holds for every t ∈ [a, b] and x ∈ [c, γ), and if furthermore, the improper integral

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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∫ γ

c
M(x) dx is convergent, then the parametric improper integral

∫ γ

c
f(t, x) dx is

uniformly convergent on [a, b].

Proof. By the majorization principle for improper integrals, the improper inte-
gral

∫ γ

c
f(t, x) dx is convergent for every t ∈ [a, b]. (See [7, Theorem 19.18].) Let

ε > 0 be fixed. Since
∫ γ

c
M(x) dx is convergent, there exists c < d < γ such that

∫ γ

d
M(x) dx < ε. Now, |f(t, x)| ≤ M(x) holds for every (t, x) ∈ [a, b] × [c, γ),

and thus
∣
∣
∣
∣

∫ γ

ω

f(t, x) dx

∣
∣
∣
∣ ≤

∫ γ

ω

|f(t, x)| dx ≤
∫ γ

ω

M(x) dx < ε,

for every t ∈ [a, b] and d ≤ ω < γ. �
Example 8.37. Let f(t, x) = (e−x − e−tx)/x for every positive t, x. Then
D1f(t, x) = e−tx is continuous, and the parametric improper integral

∫∞
0

e−tx dx
is uniformly convergent on [a, b] for every 0 < a < b. Indeed, |e−tx| ≤ e−ax holds
for every t ∈ [a, b] and x > 0. Since the improper integral

∫∞
0

e−axdx is conver-
gent, we can apply Theorem 8.36.

Thus, it follows from Theorem 8.34 that our calculations in (8.44) was justified
for every positive t, and thus the value of the integral

∫∞
0

e−x−e−tx

x dx is indeed
log t for every t > 0.

A more general result can be found in Exercise 8.10 (which does not use Theo-
rems 8.36 and 8.34).

Example 8.38. Let f(t, x) = (xt − 1)/ log x for every t and x > 0. The function
D1f(t, x) = xt is continuous, and the parametric improper integral

∫ 1

0
xt dx is uni-

formly convergent on [a, b] for every −1 < a < b. Indeed, |xt| ≤ xa holds for every
t ∈ [a, b] and 0 < x ≤ 1, and the improper integral

∫ 1

0
xa dx is convergent. Thus, we

can apply Theorem 8.36. (Of course, we apply the theorem to a (γ, c]-type interval,
instead of a [c, γ)-type interval, but it should be obvious that this is irrelevant.)

Thus, it follows from Theorem 8.34 that our calculations in (8.41) were justified
for every t > −1. We get, in fact, that

∫ 1

0
xt−1
log x dx = log(t + 1) holds for every

t > −1.

As an application of the theorems above, we will investigate the Γ function,
defined by a parametric improper integral as follows.

We show that the integral
∫∞
0

xt−1 · e−xdx is convergent if t > 0. Let us inspect
the integrals

∫ 1

0
and

∫∞
1

separately. The integral
∫∞
1

xt−1 e−xdx is convergent
for all t. We can prove this using the majorization principle: For every t, we
have xt−1 e−x < x−2 if x is large enough. Since

∫∞
1

x−2 dx is convergent, so is
∫∞
1

xt−1 · e−xdx.

If t ≥ 1, then
∫ 1

0
xt−1 · e−xdx is an ordinary Riemann integral. If 0 < t < 1,

then we can apply the majorization principle: since if x ∈ (0, 1], then |xt−1 · e−x| ≤
xt−1 and the integral

∫ 1

0
xt−1 dx is convergent, we know that the integral

∫ 1

0
xt−1 ·

e−xdx is also convergent.
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Definition 8.39. The value of the integral
∫∞
0

xt−1 · e−xdx is denoted by Γ(t) for
every t > 0.

Thus the Γ function is defined on (0,∞). The Γ function appears in many appli-
cations, and it is the most important special function among the nonelementary func-
tions. First we show that

Γ(t + 1) = t · Γ(t) (8.48)

for all t > 0. Using integration by parts we obtain

∫ b

a

xt · e−xdx = −
∫ b

a

xt · (e−x)′dx = − [xte−x
]b
a

+ t ·
∫ b

a

xt−1 · e−xdx

for every 0 < a < b. Letting a → 0 and b → ∞, we obtain, for every t > 0,

∫ ∞

0

xt · e−xdx = t ·
∫ ∞

0

xt−1 · e−xdx.

That is, we get (8.48).
Next we show that Γ(n) = (n − 1)! for every positive integer n. Since Γ(1) =∫∞

0
e−xdx = 1 = 0!, this is true if n = 1. If Γ(n) = (n − 1)!, then (8.48) gives

Γ(n + 1) = n · Γ(n) = n · (n − 1)! = n!, and so the statement follows by induc-
tion.

Now we turn to the investigation of the Γ function in detail.

Theorem 8.40. The function Γ is infinitely differentiable on the half-line (0,∞),
and

Γ(k)(t) =
∫ ∞

0

xt−1 · (log x)k · e−x dx (8.49)

for every t > 0 and every nonnegative integer k.

Proof. Let 0 < a < b and k ∈ N be fixed. By applying Theorem 8.36, we prove
that the integrals

∫∞
1

xt−1 · (log x)k · e−x dx and
∫ 1

0
xt−1 · (log x)k · e−x dx are

uniformly convergent on [a, b]. It is enough to find functions f : [1,∞) → R and
g : (0, 1] → R such that the improper integrals

∫∞
1

f dx and
∫ 1

0
g dx are conver-

gent, and xt−1 · (log x)k · e−x ≤ f(x) and xt−1 · | log x|k · e−x ≤ g(x) hold for
every x ≥ 1 and x ∈ (0, 1]. If t ∈ [a, b] and x ≥ 1, then

xt−1 · (log x)k · e−x ≤ xb−1 · (log x)k · e−x, (8.50)

and thus we can choose f to be the function on the right-hand side of (8.50). The
convergence of the improper integral

∫∞
1

f dx follows from the fact that f(x) ≤
1/x2 for x large enough. If t ∈ [a, b] and 0 < x ≤ 1, then

xt−1 · | log x|k · e−x ≤ xa−1 · | log x|k. (8.51)



332 8 Miscellaneous Topics

Therefore, we can choose g to be the function on the right-hand side of (8.51). The
convergence of the improper integral

∫∞
1

g dx follows from the fact that g(x) ≤
x(a/2)−1 holds for x small enough and the integral

∫ 1

0
x(a/2)−1 dx is convergent.

Let Γ1(x) =
∫∞
1

xt−1e−x dx. Applying Theorem 8.34 repeatedly, we find that

the function Γ1 is infinitely differentiable on the interval [a, b], and Γ(k)
1 (x) =∫∞

1
xt−1 · (log x)k · e−x dx for every t ∈ [a, b] and every positive integer k. Sim-

ilarly, if Γ0(x) =
∫ 1

0
xt−1e−x dx, then Theorem 8.34 implies that the function Γ0

is infinitely differentiable on the interval [a, b], and Γ(k)
0 (x) =

∫ 1

0
xt−1 · (log x)k ·

e−x dx for every t ∈ [a, b] and every positive integer k. Since Γ = Γ0 + Γ1 and
0 < a < b was arbitrary, it follows that Γ is differentiable on (0,∞), and (8.49)
holds. �

It follows from the previous theorem that Γ′′(t) =
∫∞
0

xt−1(log x)2 · e−x dx for
every t > 0. Thus, Γ′′ is positive, i.e., Γ is strictly convex on the half-line (0,∞).
Now we show that

lim
x→0+0

Γ(x) = lim
x→∞ Γ(x) = ∞. (8.52)

Indeed,

Γ(t) >

∫ 1

0

xt−1 · e−x dx >

∫ 1

0

xt−1 · e−1 dx =
1
et

for every t > 0, and

Γ(t) >

∫ ∞

2

xt−1 · e−x dx >

∫ ∞

2

2t−1 · e−x dx =
2t

2e2

for every t > 1, from which (8.52) is obvious. Now, (8.52) implies that Γ cannot be
monotone on the whole half-line (0,∞); hence Γ′ has a root. Furthermore, since Γ′

is strictly increasing on (0,∞), Γ′ has exactly one root. Let this root be t0. Then
Γ is strictly decreasing on (0, t0) and strictly increasing on (t0,∞). The equalities
Γ(1) = Γ(2) = 1 imply 1 < t0 < 2.

It is simple to check that if t, s > 0, then the integral
∫ 1

0
xt−1(1 − x)s−1 dx is

convergent. If t or s is a positive integer, then the value of the integral can be com-
puted easily (see [7, Exercise 19.42]). Our next aim is to compute the integral for
every t, s > 0.

Notation 8.41. We denote the value of the integral
∫ 1

0
xt−1(1 − x)s−1 dx byB(t, s)

for every t, s > 0.

Theorem 8.42. For every t, s > 0 we have

B(t, s) =
Γ(t) · Γ(s)
Γ(t + s)

. (8.53)
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Proof. Let t, s be fixed positive numbers. The substitution x = cos2 ϕ transforms
the integral

∫ 1

0
xt−1(1 − x)s−1 dx into

B(t, s) = 2 ·
∫ π/2

0

(cos ϕ)2t−1(sin ϕ)2s−1 dϕ. (8.54)

The substitution x = u2 transforms the integral defining Γ(t) into Γ(t) =
2 · ∫∞

0
u2t−1e−u2

du. Similarly, Γ(s) = 2 · ∫∞
0

v2s−1e−v2
du.

Let AR denote the intersection of the disk centered at the origin with radius R
and the first plane quadrant. In other words, let AR be the set of points given by
the polar coordinates (r, ϕ) that satisfy 0 ≤ r ≤ R and 0 ≤ ϕ ≤ π/2. Consider the
two-variable function f(u, v) = u2t−1v2s−1e−u2−v2

on the set AR. Applying the
theorem on substitution by polar coordinates (Theorem 4.25), we obtain
∫

AR

f(u, v) du dv =
∫

[0,R]×[0,π/2]

f(r cos ϕ, r sin ϕ) · r · dr dϕ =

=
∫

[0,R]×[0,π/2]

(cos ϕ)2t−1(sin ϕ)2s−1 · r2(t+s)−1e−r2
dr dϕ =

=
∫ π/2

0

(cos ϕ)2t−1(sin ϕ)2s−1 dϕ ·
∫ R

0

r2(t+s)−1e−r2
dr =

=
1
2

· B(t, s) ·
∫ R

0

r2(t+s)−1e−r2
dr.

(8.55)
If R → ∞, then the last integral of (8.55) converges to Γ(t + s)/2, and thus

lim
R→∞

∫

AR

f(u, v) du dv =
1
4

· B(t, s) · Γ(t + s). (8.56)

Since [0, R/2]2 ⊂ AR ⊂ [0, R]2 and f is nonnegative, we have
∫

[0,R/2]2
f(u, v) du dv ≤

∫

AR

f(u, v) du dv ≤
∫

[0,R]2
f(u, v) du dv. (8.57)

The value of the integral on the left-hand side is

∫

[0,R/2]2
u2t−1v2s−1e−u2−v2

du dv =
∫ R/2

0

u2t−1e−u2
du ·

∫ R/2

0

v2s−1e−v2
dv,

which converges to Γ(t)Γ(s)/4 as R → ∞. Similarly, the integral on the right-hand
side of (8.57) also converges to Γ(t)Γ(s)/4 asR → ∞. The squeeze theorem claims
that

lim
R→∞

∫

AR

f(u, v) du dv =
1
4

· Γ(t) · Γ(s).

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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Comparing this with (8.56) gives the statement of the theorem. �

Our next result presents an interesting connection between the sine function and
the function Γ.

Theorem 8.43. For every x ∈ (0, 1), we have

Γ(x) · Γ(1 − x) =
π

sin πx
. (8.58)

Proof. Let Pn(x) = x ·∏n
n=1

(
1 − x2

n2

)
. Then by Theorem 7.97, we have

limn→∞ Pn(x) = (sin πx)/π for every x ∈ R. It is well known that

Γ(x) = lim
n→∞

nxn!
x(x + 1) · · · (x + n)

(8.59)

(see Exercise 19.43 of [7]). If we apply this equality with 1 − x in place of x and
then take the product of the equality obtained and (8.59), we get

Γ(x) · Γ(1 − x) = lim
n→∞

1
Pn(x)

· n

n + 1 − x
=

π

sinπx
· 1. �

For more on the function Γ see Exercises 8.16–8.24. (See also exercises 19.40–
19.46 in [7].)

It is easy to see that the improper integral
∫∞
1

(sin x/x) dx is convergent (see
[7, Example 19.20.3]). Since (sin x)/x is continuous and bounded on (0, 1], it is
integrable there. Thus, the improper integral

∫∞
0

(sin x/x) dx is also convergent. As
another application of parametric integration we compute the exact value of this
integral.

Theorem 8.44. ∫ ∞

0

sin x

x
dx =

π

2
.

The proof uses the following theorem, which gives a sufficient condition for uni-
form convergence. Notice that this criterion is similar to the Abel criterion (Corol-
lary 7.33), which gives a sufficient condition for the uniform convergence of series
of functions. (For another criterion—the analogue to the Dirichlet criterion—see
Exercise 8.12.)

Theorem 8.45. Let the function g(t, x) be defined and bounded on the set [a, b] ×
[c, γ), and let the section function gt be monotone for every t ∈ [a, b]. If the
improper integral

∫ γ

c
h(x) dx is convergent, then the parametric improper integral

∫ γ

c
g(t, x) · h(x) dx is uniformly convergent on [a, b].

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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Proof. Let |g(t, x)| ≤ K for every (t, x) ∈ [a, b] × [c, γ). Let ε > 0 be fixed, and
choose c < d < γ such that

∣
∣
∫ v

u
h(x) dx

∣
∣ < ε for every d ≤ u < v < γ. Let t ∈

[a, b] and d ≤ ω < γ be given. By the second mean value theorem of integration
[7, Theorem 15.8], for every ω < Ω < γ there exists ω < u < Ω such that

∫ Ω

ω

g(t, x) · h(x) dx = g(t, ω) ·
∫ u

ω

h(x) dx + g(t,Ω) ·
∫ Ω

u

h(x) dx,

and thus ∣
∣
∣
∣
∣

∫ Ω

ω

g(t, x) · h(x) dx

∣
∣
∣
∣
∣
≤ 2K · ε. (8.60)

This holds for every d ≤ ω < Ω < γ. Then by the Cauchy criterion for improper
integrals [7, Theorem 19.15], the improper integral

∫ γ

c
g(t, x) · h(x) dx is conver-

gent.
If Ω converges to γ from the left, then (8.60) gives

∣
∣
∣
∣

∫ γ

ω

g(t, x) · h(x) dx

∣
∣
∣
∣ ≤ 2K · ε

for every t ∈ [a, b] and d ≤ ω < γ. This proves the uniform convergence of the
improper integral in question. �

Proof of Theorem 8.44. Consider the function etx sin x, where t is a nonzero con-
stant. The indefinite integral of this function can be computed by partial integration.
We get that ∫

etx sinx dx =
etx

1 + t2
· (t sin x − cos x) + c, (8.61)

which can also be double-checked directly. If t < 0, then limx→∞ etx = 0, and
applying the Newton–Leibniz formula for improper integrals [7, Theorem 19.8]
yields ∫ ∞

0

etx sin x dx =
1

1 + t2
. (8.62)

Now consider the function

f(t, x) = etx · sinx

x
(x 	= 0), f(t, 0) = 1.

By Theorem 8.45, the parametric improper integral
∫∞
0

f(t, x) dx is uniformly con-
vergent on the interval [−K, 0] for every K > 0, since (t, x) ∈ [−K, 0] × [0,∞)
implies etx ≤ 1, etx is monotone as a function of x for every t, and the improper
integral

∫∞
0

(sin x/x) dx is convergent. Let
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F (t) =
∫ ∞

0

etx · sin x

x
dx

for every t ≤ 0. By Theorem 8.32, F is continuous on [−K, 0] for every K > 0.
Thus F is continuous on the half-line (−∞, 0].

Let a < b < 0. Then D1f(t, x) = etx sin x is continuous, and the improper inte-
gral

∫∞
0

etx sin x dx is uniformly convergent on [a, b], since |D1f(t, x)| ≤ etx ≤
ebx there, and the improper integral

∫∞
0

ebx dx is convergent.
Thus, applying Theorem 8.34 and (8.62), we obtain that F is differentiable on

the interval [a, b], and F ′(t) = 1/(1 + t2) there. Since this holds for every a < b <
0, we have F ′(t) = 1/(1 + t2) for every t < 0. Therefore, F (t) = arc tg t + c for
every t < 0 with an appropriate constant c.

Now, |F (t)| ≤ ∫∞
0

etx dx = 1/t for every t < 0 and limt→−∞ F (t) = 0. It fol-
lows that c = π/2 and F (t) = arc tg t + (π/2) for every t < 0. Since F is contin-
uous from the left at 0, we get

∫ ∞

0

sin x

x
dx = F (0) =

π

2
,

which proves the theorem. �

Exercises

8.8. Show that the primitive function of (x − 1)/ log x is not an elementary func-
tion. (Use the following generalization of Liouville’s theorem [7, Theorem 15.31].
Let f1, . . . , fn, g1, . . . , gn be rational functions, and suppose that fi − fj is not con-
stant for every 1≤ i < j ≤n. If

∫ ∑n
i=1 efigi dx can be expressed in terms of ele-

mentary functions, then each of the indefinite integrals
∫

efigi dx can be expressed
in terms of elementary functions.) (S)

8.9. Let f(t, x) = t/(1 + (tx)2) for every t, x ∈ R. Show that the improper integral∫∞
0

f(t, x) dx is convergent for every t, but its value (as a function of t) is not
continuous at t = 0 from either side.

8.10. Let f : [0,∞) → R be continuous, and let the improper integral
∫∞
1

f(x)
x dx be convergent. Show that

∫ ∞

0

f(ax) − f(bx)
x

dx = f(0) · log
b

a

for every a, b > 0. (H)
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8.11. Find the value of the following integrals for all a, b > 0.

(i)
∫∞
0

(
e−ax − e−bx

x

)2

dx;

(ii)
∫∞
0

e−ax − e−bx

x
· sin cx dx (c ∈ R);

(iii)
∫∞
0

e−ax − e−bx

x
· cos cx dx (c ∈ R).

8.12. Suppose that

(i) the function g(t, x) is defined on the set [a, b] × [c, γ),
(ii) the section function gt is monotone for every t ∈ [a, b],
(iii) the sequence of functions g(t, xn) (n = 1, 2, . . .) converges to 0 uniformly on

[a, b] for every xn < γ, xn → γ,
(iv) h : [c, γ) → R is integrable on [c, d] for every c < d < γ, and

(v) there exists K > 0 such that
∣
∣
∣
∫ d

c
h(x) dx

∣
∣
∣ ≤ K for every c < d < γ.

Show that the parametric improper integral
∫ γ

c
g(t, x) · h(x) dx is uniformly

convergent on [a, b].

8.13. Let r, c be positive numbers. Show that the area of the domain whose bound-

ary is the curve |x|c + |y|c = rc is 2
c · Γ(1/c)2

Γ(2/c) · r2. Check that the case c = 2 gives
the area of the disk.

8.14. Find the integral F (t) =
∫ π/2

0
log(1 + t · sin2 x) dx for every t > −1. (S)

8.15. Show that the integral in the previous exercise is also convergent for t = −1
and its value is −π · (log 2). (This gives a new solution for part (b) of [7, Exercise
19.20].) (H)

8.16. Show that
∫∞
0

xt−1

(1 + x)t+s
=

Γ(t) · Γ(s)
Γ(t + s)

for every t, s > 0. (H)

8.17. Show that

(i)
∫∞
0

x−t

1 + x
dx =

π

sin πt
for every 0 < t < 1, and

(ii)
∫∞
0

dx

1 + xt
=

π/t

sin(π/t)
for every t > 1. (H)

8.18. Show that
∫ π/2

0
(sin ϕ)2x−1 dϕ = 22x−2 · Γ(x)2

Γ(2x) for every x > 0. Compare

this with the value of
∫ π/2

0
(sin x)n dx for integer values of n given by [7, Theo-

rem 15.12]. (See the proof of Theorem 3.28.) (H)

8.19. Show that
∫ π/2

0
(tg ϕ)2x−1 dϕ = 1

2 · π
sin πx for every 0 < x < 1. (H)

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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8.20. The aim of the following exercises is to prove

∫ ∞

0

sin t

ts
dt =

π

2Γ(s) sin sπ
2

(8.63)

for 0 < s < 2.

(i) Show that Γ(s) = ts · ∫∞
0

xs−1e−tx dx for every t > 0.
(ii) Show that for 0 < a < b, we have

∫ b

a

sin t

ts
dt =

1
Γ(s)

·
∫ b

a

(∫ ∞

0

xs−1e−tx sin t dx

)

dt.

(iii) Show that for 0 < a < b, the improper integral F (t) =
∫∞
0

xs−1e−tx

sin t dx is uniformly convergent on [a, b]. Use this to prove

∫ b

a

sin x

xs
dx =

1
Γ(s)

·
∫ ∞

0

xs−1 ·
(∫ b

a

e−tx sin t dt

)

dx.

(iv) Show that for 0 < a < b, we have

∫ b

a

sin t

ts
dt = − 1

Γ(s)
·
∫ ∞

0

xs−1

1 + x2
· e−bx · (x · sin b + cos b) dx+

+
1

Γ(s)
·
∫ ∞

0

xs−1

1 + x2
· e−ax · (x · sin a + cos a) dx.

(v) Show that

lim
b→∞

∫ ∞

0

xs−1

1 + x2
· e−bx · (x · sin b + cos b) dx = 0

and

lim
a→0

∫ ∞

0

xs−1

1 + x2
· e−ax · (x · sin a + cos a) dx =

∫ ∞

0

xs−1

1 + x2
dx.

(vi) Show that ∫ ∞

0

sinx

xs
dx =

1
Γ(s)

·
∫ ∞

0

xs−1

1 + x2
dx.

(vii) Show that ∫ ∞

0

xs−1

1 + x2
dx =

π

2 sin sπ
2

,

using the results of Exercise 8.17.
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8.21. Show that for 0 < s < 1, we have
∫ ∞

0

cos t

ts
dt =

π

2Γ(s) cos sπ
2

.

8.22. Show that for 1 < s < 3, we have
∫ ∞

0

cos t − 1
ts

dt =
π

2Γ(s) cos sπ
2

. (H)

8.23. Show that for every s > 1, the improper integral
∫∞
0

sin xs dx is convergent,
and its value is 1

s · Γ
(

1
s

) · sin π
2s . (H)

8.24. Show that for every s > 1, the improper integral
∫∞
0

cos xs dx is convergent,
and its value is 1

s · Γ
(

1
s

) · cos π
2s .

8.4 Sets with Lebesgue Measure Zero and the Lebesgue
Criterion for Integrability

As we saw before, if a bounded function is continuous apart from the points of
a set of Jordan measure zero, then the function is integrable (see Theorem 4.14).
However, this condition is not necessary for a function to be integrable. For example,
every monotone function f : [a, b] → R is integrable, but the set of points where a
monotone function is not continuous can be dense in [a, b], and such a set is not
of measure zero. Another example is provided by the Riemann function, which is
integrable on every interval but is discontinuous on Q, an everywhere dense set.

Still, it is true that if a function f is bounded, then the integrability of f depends
on how small the set of its points of discontinuity is. The precise form of this state-
ment is given by Lebesgue’s7 theorem (Theorem 8.52 below), and our next aim is
to prove this result. The monotone functions and the Riemann function have only
countably many discontinuities, and thus their integrability will also follow imme-
diately from Lebesgue’s theorem. In fact, as we will see presently, every bounded
function having only countably many points of discontinuity is necessarily inte-
grable.

A set A ⊂ R
p has Jordan measure zero if and only if for every ε > 0 there

exist finitely many boxes B1, . . . , Bn whose union covers A and
∑n

i=1 μ(Bi) < ε.
Lebesgue realized that allowing countably many covering boxes turns the condition
of having measure zero into a notion that suits our goals perfectly.

Definition 8.46. A set A ⊂ R
p is said to have Lebesgue measure zero if for every

ε > 0 there exist countably many boxes such that the sum of their Jordan measures
is smaller than ε, and their union covers A.

7 Henri Lebesgue (1875–1941), French mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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Remark 8.47. We can also require the covering boxes to be open in the definition
of Lebesgue measure zero. Indeed, choose boxes B1, B2, . . . such that they cover A
and

∑∞
i=1 μ(Bi) < ε/2. Then replace every Bi with an open box Ri containing Bi

and having μ(Ri) = 2 · μ(Bi).

Lemma 8.48. If a set A has Jordan measure zero, then it also has Lebesgue mea-
sure zero.

Proof. The statement is clear from the definitions. (Recall that every finite set is
countable.) �

According to the following theorem, the converse of Lemma 8.48 is not true.

Theorem 8.49. Every countable set has Lebesgue measure zero.

Proof. Let A ⊂ R
p be countable, and let (ak) be an enumeration of the elements

of A. For a given ε > 0, cover ak with a box Bk of Jordan measure ε/2k (k =
1, 2, . . .). Then the boxes Bk cover A, and

∑∞
k=1 μ(Bk) = ε. Since ε was arbitrary,

it follows that A has Lebesgue measure zero. �

We know that not every countable set has Jordan measure zero (e.g., if the set is
not bounded or dense in a box); thus there exist sets with Lebesgue measure zero
whose Jordan measure is not zero. However, we will show that the two definitions
of having measure zero are equivalent to each other for an important class of sets.

Theorem 8.50. If the set A is bounded, closed, and has Lebesgue measure zero,
then it has Jordan measure zero.

Proof. Let ε > 0 be fixed. By Remark 8.47, there exist open boxes R1, R2, . . .
that cover A and also satisfy

∑∞
k=1 μ(Rk) < ε. Applying Borel’s theorem (The-

orem 1.31), we get that A ⊂ ⋃N
k=1 Rk for N large enough, and thus μ(A) ≤ ε.

Since ε was arbitrary, we have μ(A) = 0. �

Before proving Lebesgue’s theorem, we need to prove one more lemma.

Lemma 8.51. If the set An has Lebesgue measure zero for every n = 1, 2, . . ., then
the set A =

⋃∞
n=1 An also has Lebesgue measure zero.

Proof. Let ε > 0 be fixed. Since An has Lebesgue measure zero, there exist boxes
Bn,1, Bn,2, . . . that cover An and also satisfy

∑∞
k=1 μ(Bn,k) < ε/2n. The boxes

Bn,k (n, k = 1, 2, . . .) cover A.
We know that the boxes Bn,k (n, k = 1, 2, . . .) can be listed in a single sequence

Ji (i = 1, 2, . . .) (see [7, Theorem 8.5]). By Theorem 6.30,

∞∑

i=1

μ(Ji) =
∞∑

n=1

∞∑

k=1

μ(Bn,k) ≤
∞∑

n=1

ε

2n
= ε,

which proves our statement. �

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Theorem 8.52. (Lebesgue’s theorem) Let A ⊂ R
p be Jordan measurable. A func-

tion f : A → R is integrable on A if and only if it is bounded and the set of its points
of discontinuity has Lebesgue measure zero.

Proof. Let f : A → R be given, and let D denote the set of points where f is not
continuous. If x ∈ D, then there is an ε > 0 such that every neighborhood of x has
a point y with |f(y) − f(x)| > ε. Let us denote by Dn the set of points x ∈ D
that satisfy this condition for ε = 1/n. In other words, x ∈ Dn if and only if every
neighborhood of x has a point y such that |f(y) − f(x)| > 1/n. Obviously, D =⋃∞

n=1 Dn.
First we show that if f is integrable, then D has Lebesgue measure zero. By

Lemma 8.51, it is enough to prove that Dn has Lebesgue measure zero for every n.
Let n and ε > 0 be fixed. Since f is integrable, we have ΩF (f) < ε/n for a suitable
partition F = {A1, . . . , Ak}.

Since A1, . . . , Ak are Jordan measurable, it follows from Theorem 3.9 that
μ(∂Ai) = 0 for every i. Let E =

⋃k
i=1 ∂Ai. Then μ(E) = 0.

Suppose that Ai ∩ (Dn \ E) 	= ∅, and let x ∈ Ai ∩ (Dn \ E). Then x /∈ ∂Ai

(since x /∈ E), and thus x ∈ intAi ∩ Dn. Therefore, by the definition of Dn, there
exists a point y ∈ intAi such that |f(y) − f(x)| > 1/n. This implies that
ω(f ;Ai) = Mi − mi ≥ 1/n. If J denotes the set of indices i that satisfy Ai ∩
(Dn \ E) 	= ∅, then

ε

n
> ΩF (f) =

k∑

i=1

(Mi − mi) · μ(Ai) ≥
∑

i∈J

(Mi − mi) · μ(Ai) ≥

≥
∑

i∈J

1
n

· μ(Ai),

and thus
∑

i∈J μ(Ai) < ε. We have proved that Dn \ E can be covered by the
union of finitely many Jordan measurable sets of total measure less than ε (namely,
by the sets Ai (i ∈ J)). Since Dn ⊂ (Dn \ E) ∪ E and μ(E) = 0, it follows that
μ(Dn) ≤ ε. Since ε was arbitrary, it follows that μ(Dn) = 0. Therefore, the set Dn

has Lebesgue measure zero by Lemma 8.48, and this is what we wanted to prove.
Now let f be bounded and let D have Lebesgue measure zero; we prove that f

is integrable. It is enough to prove that f has arbitrarily small oscillatory sums.
Let ε > 0 be fixed. Since A is Jordan measurable, there are boxes B1, . . . ,

BN ⊂ A such that μ(A \ K) < ε, where K =
⋃N

i=1 Bi. Note that K is a bounded
and closed set.

By Remark 8.47, there are open boxes R1, R2, . . . that cover D and satisfy∑∞
k=1 μ(Rk) < ε. If x ∈ K \ D, then f is continuous at x, and thus there exists

δ(x) > 0 such that |f(y) − f(x)| < ε for every y ∈ B(x, δ(x)).
The union of the open boxes Rk (k = 1, 2, . . .) and open balls B(x, δ(x))

(x ∈ K \ D) cover K. By Borel’s theorem (Theorem 1.31), there exist finitely
many of these open sets that also cover K. Consider such a finite covering sys-
tem E1, . . . , Em. Let A0 = A \ K and Ai = (Ei ∩ K) \⋃j<i Ej for every i =

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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1, . . . ,m. Then F = {A0, A1, . . . , Am} is a partition of A. Note that for every
1 ≤ i ≤ m, Ai is a subset of one of the sets E1, . . . , Em.

Let J denote the set of indices i such that Ai ⊂ Ej , where Ej is one of the open
boxes Rk (k = 1, 2, . . .). Since

∑∞
k=1 μ(Rk) < ε, we have

∑
i∈J μ(Ai) < ε.

If i /∈ J and Ai ⊂ Ej , then Ej is necessarily one of the balls B(x, δ(x)). Now,
|f(y) − f(x)| < ε holds for every y ∈ B(x, δ(x)), and thus ω(f ;Ai) = Mi −
mi ≤ 2ε.

Let |f(x)| ≤ M for every x ∈ A. Then we have

ΩF (f) =

m∑

i=0

(Mi − mi) · μ(Ai) =

= (M0 − m0) · μ(A0) +
∑

i∈J

(Mi − mi) · μ(Ai) +
∑

i/∈J

(Mi − mi) · μ(Ai) ≤

≤ 2M · ε + 2M · ε + 2ε · μ(A) =

= 2(2M + μ(A)) · ε.

Since ε was arbitrary, this implies that f is integrable. �

Corollary 8.53. If f : A → R is bounded and the set of points where f is not con-
tinuous is countable, then f is integrable on A.

Proof. The statement follows from Theorems 8.49 and 8.52. �

Note that there exist integrable functions whose set of discontinuities is not
countable, for example, the function f that is defined as f(x) = 1 if x is in the
Cantor set C, and f(x) = 0 if x /∈ C (see Remark 4.15.1).

Remark 8.54. The difference between having Lebesgue measure zero and having
Jordan measure zero lies in allowing coverings by countably many boxes instead of
allowing coverings by finitely many boxes. As we saw, this seemingly small change
significantly expands the family of sets of zero measure.

We can alter the definition of the outer measure in a similar manner. Let us cover
the set A ⊂ R

p in every possible ways by countably many boxes, and take the sum∑∞
n=1 μ(Bn) of the Jordan measures of the covering boxes Bn. The infimum of

these sums is called the Lebesgue outer measure of the set A, and it is denoted by
λ(A).

Obviously, λ(A) ≤ μ(A) for every bounded set A. The equality does not always
hold; e.g., the setA = [0, 1] ∩ Q has λ(A) = 0 (sinceA is countable), but μ(A) = 1.

We have multiple ways of defining the Lebesgue inner measure. We know that
if B is Jordan measurable and A ⊂ B, then μ(A) = μ(B) − μ(B \ A) (see Exer-
cise 3.11). Based on this observation, we can define the Lebesgue inner measure of
the set A by the formula λ(A) = μ(B) − λ(B \ A), where B is an arbitrary box
covering A. If A ⊂ R

p is not bounded, then let λ(A) be the supremum of the num-
bers λ(C), where C is an arbitrary subset of A.

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
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Another possible definition of λ(A) is the supremum of the numbers λ(F ), where
F is an arbitrary closed subset of A. One can show that these two definitions give
the same number λ(A).

Following the analogy with Jordan measurability, we say that a bounded set A is
Lebesgue measurable if λ(A) = λ(A). The number λ(A) = λ(A) (or infinity) is
called the Lebesgue measure of the set A, denoted by λ(A).

There is a simpler method for finding the Lebesgue measurable sets. By Exer-
cise 3.12, the bounded set A is Jordan measurable if and only if μ(H) = μ(H ∩
A) + μ(H \ A) for every bounded set H . Following the analogy, we can say that
a set A ⊂ R

p (bounded or not) is Lebesgue measurable if λ(H) = λ(H ∩ A) +
λ(H \ A) for every set H ⊂ R

p. One can prove that for bounded sets these two
definitions of Lebesgue measurability are equivalent to each other.

It is easy to see that if A is bounded, then μ(A) ≤ λ(A) ≤ λ(A) ≤ μ(A). It
follows that every Jordan measurable set is automatically Lebesgue measurable
as well. In fact, the family of Lebesgue measurable sets is much bigger than the
family of Jordan measurable sets; e.g., every countable set is Lebesgue measur-
able, but there are countable sets that are not Jordan measurable, since countable
unbounded sets and the countable sets that are dense in a ball are not Jordan mea-
surable. Another useful property of Lebesgue measurability is the fact that if the
sets A1, A2, . . . are Lebesgue measurable, then their union is also Lebesgue mea-
surable. (The Jordan measure does not have this property, since the singletons are
Jordan measurable, but Q ∩ [0, 1] is not.) One can also prove that if the Lebesgue
measurable sets A1, A2, . . . are mutually disjoint, then

λ

( ∞⋃

n=1

An

)

=
∞∑

n=1

λ(An).

These properties make Lebesgue measure extremely useful. The Lebesgue measure
and the integral built on it (which is called the Lebesgue integral) form the basis of
measure theory.

8.5 Two Applications of Lebesgue’s Theorem

We know that if g : A → [c, d] is integrable on the box A and f : [c, d] → R is con-
tinuous, then f ◦ g is also integrable. (See [7, Theorem 14.35] and page 128 of this
volume.) Now with the help of Lebesgue’s theorem, we prove that if we switch the
order of the functions, then the statement does not remain true: plugging a continu-
ous function into an integrable function does not always yield an integrable function.

Theorem 8.55. There exist a continuous (moreover, differentiable) function
f : [0, 1] → [0, 1] and an integrable function g : [0, 1] → [0, 1] such that g ◦ f is not
integrable on [0, 1].

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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Proof. First we show that for every nonempty set F ⊂ R, the function dist({x},
F ) = inf{|x − y| : y ∈ F} is continuous and is furthermore Lipschitz on R. Let
x, y ∈ [0, 1] and let z ∈ F be arbitrary. Then

dist({y}, F ) ≤ |y − z| ≤ |y − x| + |x − z|.

Since this holds for every z ∈ F , we have dist({y}, F ) ≤ |y − x| + dist({x}, F ).
By switching the points x and y, we get dist({x}, F ) ≤ |y − x| + dist({y}, F ),
i.e., |dist({x}, F ) − dist({y}, F )| ≤ |x − y|. Thus the function dist({x}, F ) is
indeed Lipschitz.

Let F ⊂ [0, 1] be a fixed closed set that is not Jordan measurable. (Such a set
exists; see Exercise 3.15.) Consider the function f(x) =

∫ x

0
dist({t},

F ) dt (x ∈ [0, 1]). Obviously, f is monotonically increasing, f(0) = 0, and f(1)≤1.
Also, f is differentiable on [0, 1] by [7, Theorem 15.5]. We show that the set f(F )
has Jordan measure zero. Let 0 = x0 < x1 < . . . < xn = 1 be a partition of the
interval [0, 1] into n parts of equal length. IfF ∩ [xi−1, xi] 	= ∅, then dist({x}, F ) ≤
1/n for every x ∈ [xi−1, xi]-re, and thus

f(xi) − f(xi−1) =

xi∫

xi−1

dist({t}, F ) dt ≤ (xi − xi−1) · 1
n

=
1
n2

.

Since f(F ) is covered by the intervals [f(xi−1), f(xi)] for which F ∩ [xi−1,
xi] 	= ∅, we find that μ(f(F )) ≤ n/n2 = 1/n. This holds for every n, and thus
μ(f(F )) = 0.

We need another property of the function f . We prove that if x0 ∈ [0, 1] \ F ,
then f(x0) /∈ f(F ). Indeed, if x0 /∈ F , then (x0 − δ, x0 + δ) ∩ F = ∅ for an appro-
priate δ > 0. Then the function dist({x}, F ) is positive, and thus f is strictly
monotonically increasing on the interval (x0 − δ, x0 + δ). Since f is monotoni-
cally increasing, we have f(x) ≤ f(x0 − δ) < f(x0) if x ∈ F, x ≤ x0, and f(x) ≥
f(x0 + δ) > f(x0) if x ∈ F , x ≥ x0.

Let g(x) = 1 if x ∈ f(F ), and g(x) = 0 if x /∈ f(F ). By Theorem 2.7 the set
f(F ) is closed, and thus the function g is continuous everywhere outside of the
points of the set f(F ). Since μ(f(F )) = 0, it follows from Theorem 8.52 that g is
integrable on [0, 1].

Now we prove that g ◦ f is not integrable. If x0 ∈ ∂F , then x0 ∈ F , f(x0) ∈
f(F ) and g(f(x0)) = 1. On the other hand, every neighborhood of x0 has a point
x such that x /∈ F . As we saw, f(x) /∈ f(F ) in this case; thus g(f(x)) = 0. This
implies that g ◦ f is not continuous at the points of ∂F . Since F is not Jordan
measurable, it follows that ∂F does not have Jordan measure zero, by Theorem 3.9.
The set ∂F is bounded and closed, and thus by Theorem 8.50, ∂F cannot have
Lebesgue measure zero. Then, by Theorem 8.52, g ◦ f is not integrable on [0, 1]. �

We know that there exist unbounded derivatives (see [7, Example 13.46]). These
derivatives have a primitive function, but they are not integrable. By applying
Lebesgue’s theorem we will now construct a function whose derivative is bounded

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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but is not integrable. This gives an example of a bounded function that is not inte-
grable but still has a primitive function.

The underlying idea of the construction is the following. Let

f(x) =

{
x2 sin(1/x), if x 	= 0
0, if x = 0

.

This function is everywhere differentiable, its derivative is bounded on [−1, 1], but
f ′ is not continuous at 0 (see [7, Example 13.43]). With the help of this function,
we construct a function that behaves similarly at each point of a “big” set. For every
α < β, let

gα,β(x) =
(x − α)2(β − x)2

β − α
· sin

1
(x − α)(β − x)

for every x ∈ (α, β). Then gα,β is differentiable on (α, β), and

g′
α,β(x) =

2
β − α

· (x − α)(β − x)((α + β) − 2x) · sin
1

(x − α)(β − x)
+

+
2x − (β + α)

β − α
· cos

1
(x − α)(β − x)

for every x ∈ (α, β). It is easy to see that |g′
α,β(x)| ≤ 2(β − α)2 + 1 for every

x ∈ (α, β).
If (x − α)(β − x) = 1/(kπ) (k ∈ N

+), then

g′
α,β(x) =

2x − (β + α)
β − α

· (−1)k.

It is clear that in every right-hand-side neighborhood of α and in every left-hand-
side neighborhood of β the function g′

α,β takes values that are arbitrarily close to 1
and also takes values that are arbitrarily close to −1.

We need to prove the following facts for our construction.

Lemma 8.56. An open set G ⊂ R is connected if and only if it is an open interval.
Every open set G ⊂ R can be written as the union of disjoint open intervals.

Proof. Any two points of an open interval can be connected by a segment; thus
by part (i) of Theorem 1.22, it is connected. (Of course, this can also be proven
directly.)

We now prove that if the open setG ⊂ R is connected, thenG is an open interval.
Let α = inf G and β = supG. Then (α, β) ⊂ G, since x ∈ (α, β) \ G would imply
that ((α, x) ∩ G) ∪ ((x, β) ∩ G) is a partition of G into nonempty disjoint open
sets, but such a partition does not exist, since G is connected. Since G is open,
G ⊂ (α, β) is also true, and thus G = (α, β).

The second part of the lemma follows from the observation above and from The-
orem 1.22. �

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Theorem 8.57. There exists a differentiable function f : [0, 1] → R such that f ′ is
bounded but not integrable on [0, 1].

Proof. Let F be a bounded, closed, and not Jordan measurable set. (By Exer-
cise 3.15, such a set exists.) We may assume that F ⊂ (0, 1). Let G = (0, 1) \ F ;
thus G is open. Let us denote by G the set of the components of G. By Lemma 8.56,
every element of G is an open interval, and G =

⋃G.
Define the function f as follows. For x ∈ F ∪ {0, 1}, let f(x) = 0. If x ∈

(0, 1) \ F = G, then x is in one of the components of G. If x ∈ (α, β) ∈ G, then
let f(x) = gα,β(x). Thus we have defined f at every x ∈ [0, 1].

We show that f is everywhere differentiable. If x ∈ (0, 1) \ F , then x is in one of
the components (α, β). Since f(x) = gα,β(x) there, it is clear that f is differentiable
at x. For every such x, we have |f ′(x)| = |g′

α,β(x)| ≤ 2 · 12 + 1 = 3.
Next we prove that if x ∈ F , then f is differentiable at x, and f ′(x) = 0.

Let y ∈ [0, 1] be arbitrary. If y ∈ F ∪ {0, 1}, then f(y) = 0. If y ∈ (0, 1) \ F and
y ∈ (α, β) ∈ G, then |f(y)| ≤ (y − α)2 ≤ (y − x)2 for every x ≤ α, and |f(y)| ≤
(β − y)2 ≤ (x − y)2 for every x ≥ β. We have proved that |f(y)| ≤ (x − y)2 for
every y ∈ [0, 1]. It follows that

lim
y→x

f(y) − f(x)
y − x

= 0,

i.e., f ′(x) = 0. Thus, f is differentiable everywhere on [0, 1], with |f ′(x)| ≤ 3 for
every x ∈ [0, 1].

We prove that f ′ is discontinuous at every boundary point of F . If x0 ∈ ∂F , then
every neighborhood U of x intersects (0, 1) \ F , and thus it intersects one of the
intervals (α, β) ∈ G. It follows that U contains at least one of the points α and β.
Therefore, f takes values arbitrarily close to both 1 and −1 on U . This holds for
every neighborhood of x0, and thus f ′ is not continuous at x0.

Since F is not Jordan measurable, ∂F cannot have Jordan measure zero. Now ∂F
is bounded and closed, and thus by Theorem 8.50, ∂f does not have Lebesgue mea-
sure zero. By applying Theorem 8.52 we get that f ′ is not integrable on [0, 1]. �

8.6 Some Applications of Integration in Number Theory

Each of the applications we discuss in this section is based on the fact that the values
of certain integrals are small.

1. A lower estimate for the number of primes not greater than n. Let π(n)
denote the number of primes not greater than n. The celebrated prime number
theorem states that π(n) ∼ n/ log n; i.e.,

lim
n→∞

π(n)
n/ log n

= 1.

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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The theorem was proved independently by Hadamard and de la Vallée Poussin8 in
1896. Since 1896 many other proofs of the theorem have been found, but every
known proof is rather complicated. In this section we are concerned only with the
weaker statement that π(n) is at least a constant multiple of n/ log n.

Let [1, . . . , n] denote the least common multiple of the numbers 1, . . . , n.

Lemma 8.58. For every positive integer n we have [1, . . . , n] > 2n−2.

Proof. Since x − x2 > 0 for every x ∈ (0, 1) and x − x2 < 1/4 for every x ∈
(0, 1), x 	= 1/2, it follows that the value of the integral

∫ 1

0
(x − x2)k dx is between

0 and 1/4k. On the other hand,

1∫

0

(x − x2)k dx =

1∫

0

k∑

i=0

(−1)i

(
k

i

)

xk+i dx =
k∑

i=0

(−1)i

(
k

i

)

· 1
k + i + 1

=

=
A

[1, . . . , (2k + 1)]
,

whereA is an integer, since each of the numbers k + i + 1 (i = 0, . . . , k) is a divisor
of [1, . . . , (2k + 1)]. We know that the integral is positive, and thus A ≥ 1. There-
fore,

1
[1, . . . , (2k + 1)]

≤ A

[1, . . . , (2k + 1)]
=

1∫

0

(x − x2)k dx <
1
4k

follows, i.e., [1, . . . , (2k + 1)] > 4k. If n is odd and n = 2k + 1, then
[1, . . . , n] > 4k = 2n−1. However, if n is even and n = 2k, then [1, . . . , n] ≥ [1, . . . ,
(2k − 1)] > 4k−1 = 2n−2. �

With the help of this lemma, we can easily estimate the number of primes smaller
than n. Obviously, if m ≤ n, then every prime in the prime factorization of m is at
most n. It follows that [1, . . . , n] equals the product of prime powers pα, where
p ≤ n and α is the largest exponent such that pα ≤ n. Denote the number of primes
not larger than n by π(n). Then we have

[1, . . . , n] =
∏

p≤n

pα ≤
∏

p≤n

n = nπ(n),

and thus

π(n) ≥ log([1, . . . , n])
log n

. (8.64)

8 Charles Jean de la Vallée Poussin (1866–1962), Belgian mathematician.
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Comparing this to Lemma 8.58 yields π(n) > log 2 · (n − 2)/ log n. Since
log 2 > 0.69, we get the following lower estimate:

Theorem 8.59. For every n large enough we have π(n) > 0.69 · n
log n . �

The value of the integral
∫ 1

0
(x − x2)k dx can be computed exactly: it is easy

to prove, using integration by parts, that
1∫

0

xm(1 − x)n dx = m!·n!
(m+n+1)! for every

m,n ∈ N. (This also follows from Theorem 8.42.) Thus,
∫ 1

0
xk(1 − x)k dx =

(k!)2/(2k + 1)!. Applying Stirling’s formula, we get

1∫

0

(x − x2)k dx ∼
√

π

4k
· 1
4k

. (8.65)

Then the argument of the proof of Lemma 8.58 gives [1, . . . , n]/2n → ∞ if
n → ∞. However, the lower estimate of π(n) cannot be improved by this obser-
vation; (8.65) does not give a constant better than log 2. To improve the constant we
need an estimate of the form [1, . . . , n] ≥ cn, where c > 2.

The method above can be used to get such an estimate if in place of x − x2,
we choose an appropriate polynomial with integer coefficients. For example, let
f(x) = x(1 − x)(2x − 1). It is not hard to see that |f(x)| takes its maximum at the
points 1

2 ± 1
2
√

3
, and the value of its maximum is 1/(6

√
3). Thus, 0 <

∫ 1

0
f2k dx <

1/(6
√

3)2k. On the other hand, the argument used in the proof of Lemma 8.58 gives
that the integral is of the form A/[1, . . . , (6k + 1)], where A is a positive integer.
Thus

1/[1, . . . , (6k + 1)] < 1/(6
√

3)2k,

i.e., [1, . . . , (6k + 1)] > (6
√

3)2k for every k. Now, for every n ≥ 7 there exists
k ≥ 1 such that 6k + 1 ≤ n < 6k + 7. Then 2k > (n − 7)/3, and thus

[1, . . . , n] ≥ [1, . . . , (6k + 1)] > (6
√

3)2k ≥ cn−7,

where c = (6
√

3)1/3 = 3
√

2 · √3 = 2.1822 . . .. It follows that π(n) >
0.78 · n/ log n for every n large enough.

To further improve our estimate, we need polynomials with integer coefficients
that satisfy that ρ(f) = (max0≤x≤1 |f(x)|)1/d is as small as possible, where d is
the degree of the polynomial. (The value of ρ for the polynomial x − x2 is 1/2, and
for the polynomial x(1 − x)(2x − 1) is 1/2.1822 . . ..) Every value ρ(f) gives an
approximation [1, . . . , n] > (1/ρ(f))n−a with some constant a.

This method can be used to further improve on the constant 2.1822 . . ., but not
essentially. The truth is that for every ε > 0 we have

(e − ε)n < [1, . . . , n] < (e + ε)n
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for n large enough. This statement is basically equivalent to the prime number the-
orem in the sense that each statement follows easily from the other.

It is well known that the method described above does not give the approximation
[1, . . . , n] > (e − ε)n for every ε, since the infimum of the numbers ρ(f) is strictly
larger than 1/e.

However, it is not clear whether we can get a better estimate using multivariable
polynomials with integer coefficients. So far it has not been proved by this method
that the estimate [1, . . . , n] > (e − ε)n (n > n0(ε)) holds for every ε > 0. For the
details we refer to [10].

2. The irrationality of π and the transcendence of e. One can prove the irrational-
ity of e by the following argument. It is easy to check that for every positive integer
n, the value of the integral In =

∫ 1

0
xn · ex dx is a linear combination of the num-

bers 1 and e with integer coefficients. Therefore, if e = p/q, where p, q are positive
integers, then In = An/q for some positive integer An, and thus In ≥ 1/q for every
n. On the other hand, In → 0 if n → ∞, which is impossible.

Now we give a very similar (but somewhat more complicated) proof of the irra-
tionality of π. We consider the integral Jn =

∫ 1

0
f(x) sin rx dx, where r is a rational

number and f(x) = 1
n! · xn(1 − x)n.

Lemma 8.60. If g is a single-variable polynomial with integer coefficients and
h(x) = xng(x)/n!, then h(k)(0) is an integer for every k.

Proof. Let h(x) =
∑m

i=n
ci
n! · xi, where cn, . . . , cm are integers. Then

h(k)(0) = 0 for every k < n and k > m. On the other hand, if n ≤ k ≤ m, then
h(k)(0) = (ck/n!) · k! = ck(n + 1) · . . . · k is also an integer. �

Theorem 8.61. If 0 < r ≤ π is rational, then at least one of the numbers sin r and
cos r is irrational.

Proof. Let f(x) = 1
n! · xn(1 − x)n. Applying Lemma 8.60 to the polynomial

g(x) = (1 − x)n yields that the numbers f (k)(0) are integers for every k. Since
f(1 − x) = f(x), we have f (k)(1) = (−1)kf (k)(0), and thus the numbers f (k)(1)
are also integers.

We compute the integral Jn =
∫ 1

0
f(x) sin rx dx by applying partial integration

2n times, consecutively. We get that

Jn = −
[
f(x)

cos rx

r

]1

0
+

1
r

1∫

0

f ′(x) cos rx dx

= −1
r

[f(1) cos r − f(0)] +
1
r

[

f ′(x)
sin rx

r

]1

0

− 1
r2

1∫

0

f ′′(x) sin rx dx = . . .

= −1
r

[f(1) cos r − f(0)] +
1
r2

f ′(1) sin r − 1
r3

[f ′′(1) cos r − f ′′(0)] − . . .
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+
1

r2n+1

[
f (2n)(1) cos r − f (2n)(0)

]
. (8.66)

Let 0 < r ≤ π and suppose that each of the numbers r, sin r, cos r is rational. Let
q be the common denominator of the numbers 1/r, sin r, and cos r. Since f (k)(0)
and f (k)(1) are integers for every k, it follows from (8.66) that Jn = An/q2n+2,
where An is also an integer. Now, f(x) > 0 and sin rx > 0 for every x ∈ (0, 1)
(the latter follows from 0 < r ≤ π), and thus Jn > 0. Thus we have An ≥ 1 and
Jn ≥ 1/q2n+2.

On the other hand, f(x) sin rx ≤ 1/n! for x ∈ [0, 1], and thus Jn ≤ 1/n!. It
follows that 1/q2n+2 ≤ Jn ≤ 1/n!, which is impossible for n large enough, since
n!/q2n+2 → ∞. �

Corollary 8.62. The number π is irrational.

Proof. The numbers sin π, cos π are rational; thus, by Theorem 8.61, π cannot be
rational. �

The proof of the following theorem follows a similar argument. Recall that a
number is said to be algebraic if it is a root of a nonzero polynomial having integer
coefficients. A number is said to be transcendental, if it is not algebraic.

Theorem 8.63. The number e is transcendental.

Proof. Let us assume that e is an algebraic number. Then we would have

anen + an−1e
n−1 + . . . + a0 = 0, (8.67)

where a0, a1, . . . , an are integers, and a0 	= 0. Let f be an arbitrary polynomial. If
the degree of f is m, then by applying integration by parts m + 1 times we get

k∫

0

f(x)e−xdx = −(f(k) + f ′(k) + . . . + f (m)(k)
)
e−k+

+
(
f(0) + f ′(0) + . . . + f (m)(0)

)
. (8.68)

If we multiply (8.68) by akek and add the equations that we get for k = 0, 1, . . . , n,
then applying (8.67), we obtain

n∑

k=0

akek

k∫

0

f(x)e−xdx = −
n∑

k=0

ak

[
f(k) + f ′(k) + . . . + f (m)(k)

]
. (8.69)

Next we will construct a polynomial f such that the left-hand side of (8.69) is small,
while the right-hand side is a nonzero integer. The resulting contradiction will prove
our theorem.
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Let N be a positive integer. By Lemma 8.60, if g is a polynomial with inte-
ger coefficients and h(x) = xNg(x)/N !, then h(i)(0) is an integer for every i.
It follows that if g is a polynomial with integer coefficients, a is an integer, and
f(x) = (x − a)Ng(x)/(N − 1)!, then f (i)(a) is an integer and it is divisible by
N for every i. Indeed, f(x) = N · h(x − a), where h(x) = xNg(x + a)/N !. Since
g(x + a) is a polynomial with integer coefficients, h(i)(0) is an integer, and thus
f (i)(a) = N · h(i)(0) is divisible by N for every i.

Let N be a prime satisfying N > |a0| · n. Let

f(x) =
1

(N − 1)!
xN−1(x − 1)N (x − 2)N . . . (x − n)N .

Then f (i)(k) is an integer and is divisible by N for every i = 0, 1, . . . and k =
1, . . . , n. We prove that f (i)(0) is divisible byN for every i, except when i = N − 1
(this is why we have x with the exponent (N − 1) instead of N ).

Indeed, f(x) =
∑M

i=N−1 cix
i/(N − 1)!, where cN−1 = (±n!)N and

cN , . . . , cM are integers. It follows that

f (i)(0) =

⎧
⎪⎨

⎪⎩

0, if i ≤ N − 2,

(±n!)N , if i = N − 1,

ci · N · (N + 1) · · · i, if i ≥ N.

We can see that N | f (i)(0) for i 	= N − 1. On the other hand, f (N−1)(0) =
(±n!)N is not divisible by N , since N is a prime and n < N .

Based on what we have proved above, we can see that every term on the right-
hand side of (8.69) is divisible by N , except for the term a0f

(N−1)(0). Thus, the
right-hand side of (8.69) is a nonzero integer.

On the other hand, if 0 ≤ x ≤ n, then

|f(x)| ≤ 1
(N − 1)!

n(n+1)N =
AN

(N − 1)!
, where A = nn+1.

Thus, the absolute value of the left-hand side of (8.69) is at most

(n + 1)max (|a0|, |a1|, . . . , |an|) en · n · AN

(N − 1)!
= C · AN

(N − 1)!
,

where C and A are positive integers, independent of N . Since AN/(N − 1)
! → 0 as N → ∞, it follows that for N large enough, the absolute value of the left-
hand side of (8.69) is smaller than 1. However, the absolute value of the right-hand
side is at least 1, since the right-hand side is a nonzero integer. This is a contradic-
tion, proving the theorem. �

We remark that the number π is also transcendental. However, the proof of this
fact is more complicated.
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8.7 Brouwer’s Fixed-Point Theorem

The fixed-point theorems are important in analysis and its applications, since they
can often be used to prove the existence of certain numbers, vectors, or other math-
ematical objects. (We encountered an example in the proof of the open mapping
theorem, which used Banach’s fixed-point theorem (Theorem 2.36). The following
result—one of the fundamental theorems of the topology of Euclidean spaces—is
one of the most important fixed-point theorems.

Theorem 8.64. (Brouwer’s9 fixed-point theorem) Every continuous mapping that
maps a closed ball into itself has a fixed point.

In the single-variable case the theorem states that if f is a continuous function
mapping the interval [a, b] into itself, then f has a fixed point. This follows from
the Bolzano–Darboux theorem: if f : [a, b] → [a, b] and g(x) = f(x) − x for every
x ∈ [a, b], then g(a) ≥ 0 and g(b) ≤ 0. Since g is continuous, it must have a root in
[a, b], which is a fixed point of f . The theorem is much harder to prove in higher
dimensions. We give a proof that uses theorems on the differentiation of vector-
valued functions.

From now on, let us denote by Bp the open unit ball {x ∈ R
p : |x| < 1}, by Bp

the closed unit ball {x ∈ R
p : |x| ≤ 1}, and by Sp its boundary, i.e., let Sp = {x ∈

R
p : |x| = 1}. Clearly, it is enough to prove the theorem for Bp.
Brouwer’s fixed-point theorem is equivalent to the following statement.

Theorem 8.65. There is no continuous mapping f : Bp → Sp that leaves every
point of Sp fixed.

By equivalence we mean that these two theorems can be derived from each other.
If the mapping f : Bp → Sp is continuous and f(x) = x for every x ∈ Sp, then the
mapping g(x) = −f(x) is continuous, it maps the ball Bp into itself, but it does not
have a fixed point. Thus Theorem 8.65 follows from Theorem 8.64.

Now let f : Bp → Bp be continuous with no fixed points, i.e., let f(x) 	= x for

every x ∈ Bp. Consider the half-line
−−−−→
f(x), x starting from f(x) and going through

x. This intersects Sp at only one point other than f(x); let this point be g(x). It
is not hard to see that the function g is continuous on Bp. Thus, g : Bp → Sp is
continuous and g(x) = x for every x ∈ Sp. However, this is impossible, based on
Theorem 8.65. That is, Theorem 8.65 implies Theorem 8.64.

We begin the proof of Theorem 8.64 by proving Theorem 8.65 under stricter
conditions.

Lemma 8.66. There is no mapping f such that

(i) f is continuously differentiable on an open set containing Bp,
(ii) f(Bp) = Sp, and

9 Luitzen Egbertus Jan Brouwer (1881–1966), Dutch mathematician.

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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(iii) f(x) = x, for every x ∈ Sp.

Proof. Suppose that there exists such a mapping f . A sketch of the argument is as
follows. Let

ft(x) = (1 − t) · f(x) + t · x

for every t ∈ [0, 1] and x ∈ Bp. We show that if t < 1 and t is close enough to
1, then the mapping ft maps the ball Bp onto itself bijectively, and furthermore,
det f ′

t(x) > 0 for every x ∈ Bp. Then, using the integral transform formula, we get

γp =
∫

Bp

det f ′
t(x) dx, (8.70)

where γp denotes the measure of Bp. We also prove—and this is a key component
of the proof—that

∫
Bp

det f ′
t(x) dx is a polynomial in the variable t. Since (8.70)

holds on an interval (1 − δ, 1), it has to hold everywhere. Nevertheless, for t = 0 we
have ft = f and (as we will also show) det f ′ is zero everywhere, i.e., (8.70) does
not hold. This contradiction will prove our lemma.

Let us go into the details. Let the components of f be f1, . . . , fp. The par-
tial derivatives Difj are continuous on Bp; thus they are bounded there. Let
|Difj(x)| ≤ K for every x ∈ Bp and i, j = 1, . . . , p. By Lemma 2.33, |f(y) −
f(x)| ≤ Kp2 · |y − x| for every x, y ∈ Bp. It is clear that ft : Bp → Bp and ft(x) =
x for every x ∈ Sp and t ∈ [0, 1]. If x 	= y, then

|ft(y) − ft(x)| ≥ t · |y − x| − (1 − t) · |f(y) − f(x)| ≥
≥ t · |y − x| − (1 − t) · Kp2|y − x| =

= (t − (1 − t)Kp2) · |y − x| > 0,

assuming that t is close enough to 1. On the other hand, f ′
t(x) = (1 − t) · f ′(x) +

t · I (where I is the identity), and thus the matrix of f ′
t(x) is arbitrarily close to the

identity matrix if t is close enough to 1. Therefore, there exists δ > 0 such that if
1 − δ < t ≤ 1, then the mapping ft is injective on Bp and its Jacobian determinant
is positive for every x ∈ Bp.

Let 1 − δ < t ≤ 1 be fixed. We prove that ft(Bp) = Bp. By the open mapping
theorem, ft(Bp) is an open set, and thus ft(Bp) ⊂ Bp. Suppose that ft(Bp) 	= Bp,
and choose a point x ∈ Bp \ ft(Bp). Let y = ft(0); then y ∈ Bp and y ∈ ft(Bp).
Thus, the segment [x, y] intersects the boundary of ft(Bp); let z ∈ [x, y] ∩ ∂ft(Bp).
Then z ∈ Bp, and

z ∈ ∂ft(Bp) ⊂ clft(Bp) ⊂ clft(Bp) = ft(Bp),

since by Theorem 2.7, ft(Bp) is a closed set. Thus there exists a point u ∈ Bp such
that ft(u) = z. Here u ∈ Sp is impossible, since u ∈ Sp would imply ft(u) = u ∈

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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Sp. Thus u ∈ Bp. However, in this case z ∈ ft(Bp) and z /∈ ∂ft(Bp), since ft(Bp)
is an open set. This is a contradiction, which proves that ft(Bp) = Bp.

By the measure transform formula (Theorem 4.22, formula (4.13)), we have
(8.70). Note that this is true for every 1 − δ < t ≤ 1.

Now we prove that
∫

Bp
det f ′

t(x) dx is a polynomial in t. Indeed, in the matrix

of the mapping f ′
t(x) the ith term of the jth row is (1 − t) · Difj(x) if i 	= j, and

(1 − t) · Djfi(x) + t if i = j. Thus, the determinant det f ′
t(x) is a sum of the form

∑N
i=1 gi(t) · hi(x), where gi is a polynomial and hi is a continuous function for

every i. Integrating this with respect to x on the ball Bp yields the polynomial
P (t) =

∑N
i=1 ci · gi(t), where ci =

∫
Bp

hi(x) dx.

We know that P (t) = γp, for every 1 − δ < t ≤ 1. This is possible only if P is
the constant function equal to γp. In particular, for t = 0, we have

γp = P (0) =
∫

Bp

det f ′
0(x) dx =

∫

Bp

det f ′(x) dx.

However, by condition (ii) we have f(Bp) ⊂ Sp; thus the interior of f(Bp) is empty.
By the open mapping theorem it follows that f ′(x) cannot be injective at any point
x ∈ Bp. That is, det f ′(x) = 0 for every x ∈ Bp, and thus

∫
Bp

det f ′(x) dx = 0.
This is a contradiction, which proves that there is no function satisfying conditions
(i), (ii), and (iii). �

Proof of Theorem 8.64. Suppose that the mapping f : Bp → Bp is continuous but
has no fixed points. First we prove that there is a polynomial with the same proper-
ties. (From now on, by a polynomial we mean a mapping every component of which
is a polynomial.)

The function |f(x) − x| is continuous on Bp, and thus by Weierstrass’s theorem
(Theorem 1.51), it has a smallest value. Since, by assumption, f(x) 	= x for every
x ∈ Bp, this smallest value is positive; i.e., there exists δ > 0 such that |f(x) − x| >
δ for every x ∈ Bp.

We extend f to the whole space in the following way: let f(x) = f(x/|x|) for
|x| > 1. It is easy to see (using the fact that the mapping x �→ x/|x| is continuous on
the setRp \ {0} and f is continuous on Bp) that the extended function is continuous
everywhere.

Let ε > 0 be fixed, and apply Weierstrass’s approximation theorem (Theo-
rem 1.54) to a box containing Bp. We get that there exists a polynomial g such that
|f(x) − g(x)| < ε for every x ∈ Bp. Consider the polynomial h = (1 − ε) · g. If
|x| ≤ 1, then |h(x)| ≤ (1 − ε) · (1 + ε) = 1 − ε2 < 1, i.e., h maps the closed ball
Bp into itself. On the other hand, for every |x| ≤ 1, we have

|h(x) − x| ≥ |f(x) − x| − |f(x) − g(x)| − |g(x) − h(x)| > δ − ε − ε(1 + ε) > 0

http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_4
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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for ε small enough. We have constructed a polynomial h such that h maps Bp into
itself and h has no fixed point in Bp.

Since h is uniformly continuous on the closed sphere B(0, 2) and |h(x)| ≤ 1 −
ε2 for every |x| ≤ 1, there exists η > 0 such that |h(x)| < 1 for every |x| < 1 + η.
The polynomial h does not have a fixed point in the ball G = B(0, 1 + η), since
1 < |x| < 1 + η implies |h(x)| < 1, and thus h(x) 	= x.

For every |x| < 1 + η, consider the half-line
−−−−→
h(x), x with endpoint h(x) passing

through x. This half-line intersects Sp at a single point; let this point be s0(x). The
function s0 is defined in the ball G, it maps the ball Bp into Sp, and s0(x) = x for
every x ∈ Sp. If we can prove that s0 is continuously differentiable on G, then we
will obtain a contradiction to Lemma 8.66, and our proof will be complete.

Since the mapping h is continuously differentiable, the mapping s0 also has to
be continuously differentiable, intuitively. The precise proof goes as follows.

If x, y ∈ R
p and x 	= y, then the half-line−→y, x consists of the points y + t(x − y),

where t ≥ 0. The point y + t(x − y) is in Sp exactly if |y + t(x − y)| = 1. Let

q(x, y, t) = |y + t(x − y)|2 = 〈y + t(x − y), y + t(x − y)〉 =

= |y|2 + 2〈y, x − y〉 · t + |x − y|2 · t2.
(8.71)

We know that y + t(x − y) ∈ Sp if and only if q(x, y, t) = 1. For a fixed x, y, q
is a second-degree polynomial of the variable t, with a positive leading coefficient.
If |y| < 1, then q(x, y, 0) = |y|2 < 1, and thus there exists exactly one t ≥ 0 such
that q(t) = 1. We have proved that for every |y| < 1 and x 	= y the half-line −→y, x
intersects Sp at a single point. If this point of intersection is s(x, y), then s(x, y) =
y + t(x − y), where q(x, y, t) = 1.

The function s(x, y) is defined on the open set

U = {(x, y) : x ∈ R
p, |y| < 1, x 	= y} ⊂ R

2p.

If (x, y) ∈ U , then by (8.71), q(x, y, t) = 1 is a quadratic equation in t, which has
exactly one nonnegative root. By applying the formula for the roots of a quadratic
equation, we get t = R1 +

√
R2, where R1 and R2 are rational functions of the

variables x, y (defined everywhere on U ). Thus, s is continuously differentiable
on U .

Let us return to the polynomial h and the mapping s0. Since |x| < 1 + η implies
|h(x)| < 1 and h(x) 	= x, we have s0(x) = s(x, h(x)). Since both s(x, y) and h are
continuously differentiable, s0 is also continuously differentiable. �

As we saw, Theorem 8.65 is an easy consequence of Brouwer’s fixed-point the-
orem.

With the help of the method used in the previous proof we now prove an inter-
esting topological theorem, which can be formulated as follows. The surface of the
three-dimensional ball cannot be “combed” without having a “cowlick.” Let us say
that the surface of the sphere, i.e., the set S3, is covered by hair. Combing this hair
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means that for every x ∈ S3 the mop of hair at the point x leans on S3 in some
direction v(x), where the unit vector v(x) is a continuous function of the point x.
In other words, combing the sphere requires the existence of a continuous mapping
v : S3 → S3 such that v(x) is the unit vector perpendicular to x for every x ∈ Sp.

8.2. Figure 8.3. Figure

Theorem 8.67. If p is odd, then there is no continuous mapping v : Sp → Sp such
that 〈v(x), x〉 = 0 for every x ∈ Sp.

We give only an outline of the proof. The missing parts are similar to the proof of
Brouwer’s fixed-point theorem. Let us assume that there exists a continuous map-
ping v : Sp → Sp such that 〈v(x), x〉 = 0 for every x ∈ Sp. First we prove that there
also exists a continuously differentiable function with these properties.

Extend v to the whole space, using the formula v(rx) = rv(x) (|x| = 1, r ≥ 0).
The extended mapping v is everywhere continuous. Applying Weierstrass’s approx-
imation theorem (Theorem 1.54) to the coordinate functions of v on a cube contain-
ing Sp, we get a polynomial f : Rp → R

p satisfying |v(x) − f(x)| < 1/2 for every
x ∈ Sp. Let

g(x) = f(x) − 〈f(x), x〉 · x

for every x. Then the coordinate functions of g are also polynomials,
〈g(x), x〉 = 0 for every x ∈ Sp, and g 	= 0 on the set Sp. The latter statement fol-
lows from the fact that |x| = 1 implies 〈v(x), x〉 = 0, and thus

|〈f(x), x〉| = |〈f(x) − v(x), x〉| <
1
2
.

Therefore,

|g| ≥ |f | − 1
2

≥ |v| − |v − f | − 1
2

> 1 − 1
2

− 1
2

= 0

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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on the set Sp. Since f is continuous, g 	= 0 in an appropriate open set G contain-
ing the set Sp. The mapping w = g/|g| is continuously differentiable on G, and
〈w(x), x〉 = 0 for every x ∈ Sp.

We have proved that we can choose v to be continuously differentiable. We use
the notation v instead of w, and let v(rx) = rv(x) for every |x| = 1 and r ≥ 0.
The expanded function v is continuously differentiable on the set Rp \ {0}, and
|v(x)| = |x| for every x.

We now prove that for t > 0 small enough,

{x + tv(x) : |x| = r} = {x : |x| = r ·
√

1 + t2} (8.72)

for every 1 ≤ r ≤ 2. If |x| = r, then |x + tv(x)| =
√

r2 + t2r2 = r · √
1 + t2, since

v(x) is perpendicular to x and |v(x)| = r. We have proved that the left-hand
side of (8.72) is a subset of the right-hand side. To prove the other direction, let
|b| = r · √1 + t2, where 1 ≤ r ≤ 2. For t > 0 small enough, the mapping h(x) =
b − tv(x) maps the bounded and closed set F = {x : 1/2 ≤ |x| ≤ 3} into itself.
Since v is continuously differentiable on a neighborhood of the set F , it follows
that v is Lipschitz on F (this is easy to prove with the help of Lemma 2.33, using
the fact that F is bounded and closed). It follows that for t small enough, h is a
contraction on F . Thus, by Banach’s fixed-point theorem, there is x ∈ F such that
h(x) = x, i.e., x + tv(x) = b. Since x and v(x) are perpendicular to each other and
|v(x)| = |x|, we have |x| = r, and we have proved (8.72).

8.4. Figure

It also follows from v being Lipschitz that
for t small enough, the mapping Vt(x) =
x + tv(x) is injective on F . Now by (8.72),
the mapping Vt maps the set K = {x : 1 ≤
|x| ≤ 2} into the set {x :

√
1 + t2 ≤ |x| ≤

2
√

1 + t2}, whose measure is (1 + t2)p/2 ·
(2p − 1) · γp. According to the measure
transform formula,

∫

K

det V ′
t dx = (1 + t2)p/2 · (2p − 1) · γp

(8.73)

for every t small enough. (We use the fact that for t small enough, det V ′
t (x) is

positive.) However, the left-hand side of (8.73) is a polynomial in t. If p is odd, then
the right-hand side is not a polynomial in t for any interval (1, 1 + δ), which is a
contradiction. �

Remark 8.68. 1. If p is even, then Sp can be combed, i.e., there exists a continuous
mapping v : Sp → Sp such that 〈v(x), x〉 = 0 for every x ∈ Sp. For the p = 2 case,
see Figure 8.4. In general, if p = 2n, then the mapping

http://dx.doi.org/10.1007/978-1-4939-7369-9_2
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v(x1, . . . , x2n) =
= (x2,−x1, x4,−x3, . . . , x2n,−x2n−1)

works.

2. It is not hard to reduce Brouwer’s fixed-point theorem to Theorem 8.67; see
[8].

8.8 The Peano Curve

In 1890, Giuseppe Peano10 realized that there exists a continuous curve in the plane
that covers a whole square of the plane, i.e., whose range is an entire square of the
plane. A curve with this property is called a Peano curve. The existence of such
curves means that some continuous curves behave differently from what our intu-
ition would suggest. Therefore, if we want to ensure that a curve is as we imagine
curves in general, we need stronger conditions than continuity (e.g., differentiability
or rectifiability).

Below, we give two constructions of Peano curves.

8.5. Figure

I. Let Q = [0, 1] × [0, 1]. The lines defined by the equations x = k/2n and y =
k/2n (where k = 1, . . . , 2n − 1) divide the square Q into 4n squares of side
length 2−n. In the first step of our construction we enumerate these squares as
Qn

0 , . . . , Qn
4n−1 for every n, with the following properties.

(i) For every n and 0 < i ≤ 4n − 1 the squares Qn
i−1 and Qn

i are adjacent; i.e.,
they have a common side.

(ii) For every n and 0 < i ≤ 4n − 1, we have Qn
i = Qn+1

4i ∪ Qn+1
4i+1 ∪ Qn+1

4i+2 ∪
Qn+1

4i+3.

Let Q0
0 = Q. Let n ≥ 0, and suppose we have an enumeration Qn

0 , . . . ,
Qn

4n−1 satisfying (i). Divide Qn
0 into four nonoverlapping congruent squares. We

10 Giuseppe Peano (1858–1932), Italian mathematician.
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can enumerate these squares as Qn+1
0 , . . . , Qn+1

3 such that for every i = 1, 2, 3, the
squares Qn+1

i−1 and Qn+1
i are adjacent. Furthermore, one of the sides of Qn+1

3 lies
on the common side of the squares Qn

0 and Qn
1 . Now divide Qn

1 into four nonover-
lapping congruent squares and enumerate these smaller squares as Qn+1

4 , . . . , Qn+1
7

such that for each of i = 4, 5, 6, 7, the squares Qn+1
i−1 and Qn+1

i are adjacent. Fur-
thermore one of the sides of Qn+1

7 lies on the common side of the squares Qn
1 and

Qn
2 . (It is easy to see that this is always possible.) Continuing the process yields the

enumerationsQn+1
i (i = 0, . . . , 4n+1 − 1), which satisfy both (i) and (ii). Figure 8.5

gives a possible enumeration for n = 1 and n = 2.
Let t ∈ [0, 1], and let 0.a1a2 . . . denote the representation of t in the number

system of base 4. By property (ii), the squares Q1
a1

, Q2
4a1+a2

, Q3
42a1+4a2+a3

,
. . . are nested in each other (i.e., each contains the next one), and thus they have
a common point by Cantor’s theorem (Theorem 1.25). Let γ(t) denote the (single)
common point of these squares. Then γ maps the interval [0, 1] into the square Q.

For every point x ∈ Q, there exist nested squares Q1
i1

⊃ Q2
i2

⊃ . . . such that⋂∞
n=1 Qn

in
= {x}. Property (ii) implies that for suitable digits an = 0, 1, 2, 3 we

have in = 4n−1a1 + 4n−2a2 + . . . + an. Therefore, by the definition of γ, we have
γ(0, a1a2 . . .) = x. Since x ∈ Q was arbitrary, this proves γ([0, 1]) = Q.

We now prove that γ is continuous. We show that if |t2 − t1| < 1/4n, then

|γ(t2) − γ(t1)| ≤ 2
√

2/2n. (8.74)

Let t1 = 0.a1a2 . . . and t2 = 0.b1b2 . . .. The condition |t2 − t1| < 1/4n does not
necessarily imply that the first n digits of t1 and t2 are the same, but it is true that if
i = 4n−1a1 + 4n−2a2 + . . . + an and j = 4n−1b1 + 4n−2b2 + . . . + bn, then |i −
j| ≤ 1. Thus, Qn

i and Qn
j are either coincident or adjacent. Since γ(t1) ∈ Qn

i and

γ(t2) ∈ Qn
j , and furthermore, the diameter of Qn

i and Qn
j is

√
2/2n, (8.74) follows.

Let ε > 0 be arbitrary. If n is so large that 2
√

2/2n < ε holds, then (8.74) implies
|γ(t2) − γ(t1)| < ε whenever |t2 − t1| < 1/4n. Let γ = (f, g). Then |f(t2) −
f(t1)| < ε and |g(t2) − g(t1)| < ε for every pair of numbers t1, t2 ∈ [0, 1] that sat-
isfies |t2 − t1| < 1/4n. Therefore, f, g and γ are continuous.

II. First we construct a continuous map from the Cantor set C onto C × C. Let x ∈
C, and let the representation of x in the base-3 number system be x = 0.a1a2 . . .,
where ai ∈ {0, 2} for every i. Let ϕ(x) = 0.a1a3a5 . . . and ψ(x) = 0.a2a4a6 . . ..
Then ϕ and ψ map the set C into itself, and ϕ and ψ are continuous, since x, y ∈ C
and |x − y| < 1/32n imply |ϕ(x) − ϕ(y)| ≤ 1/3n and |ψ(x) − ψ(y)| ≤ 1/3n. It
can be easily verified that the map x �→ (ϕ(x), ψ(x)) (x ∈ C) maps C onto C × C.

Let f : [0, 1] → [0, 1] be the Cantor function (see Exercise 3.28), let g1(x) =
f(ϕ(x)), and let g2(x) = f(ψ(x)) for every x ∈ C. Then the map x �→ (

g1(x),
g2(x)

)
maps the set C onto [0, 1] × [0, 1].

Finally, extend g1 and g2 to the interval [0, 1] such that whenever (α, β) is an
interval contiguous to the set C (i.e., a component of the open set (0, 1) \ C), then
the extension is linear on the closed interval [α, β]. It is easy to show that the

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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resulting functions are continuous on [0, 1]. Then the mapping x �→ (g1(x), g2(x))
(x ∈ [0, 1]) defines a Peano curve.

By slightly altering the second construction we can map the interval [0, 1] con-
tinuously onto the unit cube of R3, or more generally, onto the unit cube of Rn as
well. Moreover, [0, 1] can be mapped continuously onto the “infinite-dimensional”
unit cube in the following sense.

Theorem 8.69. There exists an infinite sequence of continuous functions g1, g2, . . .
mapping the interval [0, 1] into itself with the following property: for every sequence
xi ∈ [0, 1] there exists a number t ∈ [0, 1] such that gi(t) = xi for every i =
1, 2, . . ..

Proof. Let the representation of x ∈ C in the base-3 number system be 0.a1a2 . . ..
Let us define the numbers ϕ1(x), ϕ2(x), . . . as follows. Partition the positive inte-
gers into infinitely many disjoint infinite subsets (e.g., let Ai = {2i · k − 2i−1 :
k ∈ N

+} (i = 1, 2, . . .)). If the ith set of the partition is {n1, n2, . . .}, then let
ϕi(x) = 0, an1an2 . . ..

Let gi(x) = f(ϕi(x)) for x ∈ C, and extend gi to [0, 1] such that the extension
is linear in the closure of each interval contiguous to C. It is easy to see that the
functions gi satisfy the conditions of the theorem. �



Chapter 9
Hints, Solutions

Hints

Chapter 1

1.27 Cover every isolated point of A with a ball B such that A ∩ B has a single
element, and apply Lindelöf’s theorem.

1.31 For every star A, choose an open ball B(a, r) such that B(a, r) contains the
center of the star A, its boundary intersects all three segments of A, and r and the
coordinates of a are rational numbers.

The set B \ A has three components. Choose points p1, p2, p3 from each compo-
nent having rational coordinates. Assign the quadruple (B, p1, p2, p3) to A. Show
that if A1 and A2 are disjoint, then their corresponding quadruples are different from
each other.

1.35 The answer to the second question is negative. Apply Borel’s theorem.

1.40 Let H(A) denote the sets we get from A in the way described in the exercise.
Using (1.8), show that we can get every element of H(A) by applying the operations
at most four times, and only the sets ext ∂ ext intA and ext ∂ ext ext A require four
operations.

1.45 Show that the set {x ∈ A : f(x) < n} is countable for every n, using Exer-
cise 1.27.

1.49 Notice that if f(x, y) = 0 for every point with y ≤ x2 or y ≥ 3x2, then
the function f restricted to any line that goes through the origin is continuous at
the origin. Construct such a function that is continuous everywhere outside of the
origin, but not continuous at the origin itself.

1.52 There exists such a polynomial. Try a polynomial of the form p2 + q2, where
p and q are polynomials, at every point at most one of them is zero, but they can
take small values simultaneously.

1.54 The statement is not true. Find a counterexample in which f is not bounded.
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1.69 First show that f is constant on every segment contained in G and parallel
to one of the axes. Using this, show that f is constant on every ball contained in G.
Finally, show that f is constant on G, using the condition that G is connected.

1.71 Try a polynomial of the form f(x) + g(y), with single-variable polynomials
f and g.

1.80 (h) The answer is yes. Show that v − u ≤ 3
√

4(v3 − u3) for every u < v;
then use this inequality to prove

lim
(x,y)→(0,0)

3
√

x3 + y4 − x
√

x2 + y2
= 0.

1.86 Show that (y − x2)(y − 2x2) is a counterexample.

1.90 Apply the results of Exercise 1.69.

1.96 These are the functions f(x, y) = g(x) + h(y), where g, h : R → R, and g
is differentiable.

Chapter 2

2.13 The statement is false. Find a counterexample for the case p = 1, q = 2.

2.14 We need to prove that if the (finite or infinite) derivative of the single-variable
continuous function f : [a, b] → R exists everywhere and f ′(x) �= 0 for every
x ∈ [a, b], then f is strictly monotone on [a, b].

Chapter 3

3.28 Part (a) is trivial. For proving part (b), notice that every monotone function
f : [a, b] → R is continuous if its range is an interval.

3.30 Show that the lines going through the sides of the polygon cut it into nonover-
lapping convex polygons and that every convex polygon can be cut into nonoverlap-
ping triangles using the diagonals starting from a vertex.

3.33 First show that if H has measure zero, then A also has measure zero. For
the proof use the fact that the statement of the exercise is true for convex sets by
Theorem 3.26. In the general case show that the boundary of A has measure zero.

Chapter 4

4.6 (g) Transform the set A into a ball using an appropriate substitution; then
substitute with polar coordinates.

4.9 The difference of the functions x �→ ∫ d

c
fx dy and x �→ ∫ d

c
fx dy is non-

negative, with integral zero on [a, b]. This reduces the statement to the follow-
ing: if g is nonnegative and integrable on [a, b] and

∫ b

a
g dx = 0, then the set

{x ∈ [a, b] : g(x) = o} is dense in [a, b]. See [7, Exercise 14.12].

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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Chapter 5

5.2 Let F and G be primitive functions. Apply the result of Exercise 1.90 to
F − G.

5.6 Start from a point x and walk along the closed polygonal line T until you
arrive at a vertex y that you have already reached before. Then, starting from y,
obtain a closed polygonal line T1 that does not intersect itself. Delete T1 from T ,
and repeat this process until T is exhausted.

5.17 Let δ be small enough and choose a contained polygon with minimal number
of vertices and diameter finer than δ. Show that the sides of this polygon do not
cross each other for δ small enough.

5.21 Apply the differentiation rule for inverse functions and the formula of the
integral transform.

5.23 The planes going through the sides of the polyhedron decompose it into con-
vex polyhedra. Connecting an interior point of a convex polyhedron P with the
vertices of P gives a partition of P into pyramids.

Chapter 6

6.2 (a) Give a closed form for the partial sums using the identity

1
n2 + 2n

=
1
2n

− 1
2(n + 2)

.

A similar method can be used for the series (b), (c), and (d).

6.3 The left-hand side of the inequality is less than 1 − 1
2c + 1

3c − . . . − 1
(2n)c .

Deduce from the inequality that if c > 1, then the sequence of the partial sums of
the series

∑∞
n=1 1/nc is bounded.

6.4 Give the upper bound N/10k−1 to the sum
∑

10k−1≤an<10k 1/an, where N
denotes how many numbers there are with k digits that do not contain the digit 7.

6.8 Apply the Cauchy–Schwarz–Bunyakovsky inequality ([7, Theorem 11.19]).

6.9 We can assume that (an) is monotonically decreasing. Show that an ≥ 0 for
every n, and apply limn→∞

∑2n
i=n ai = 0 (from the Cauchy criterion).

6.10 Let c > 1. Put Ik = {n : 2k ≤ sn < 2k+1}. Suppose that Ik �= ∅, and let
Ik = {a, a + 1, . . . , b}. Then

∑

n∈Ik

an

(sn)c
≤ 1

2ck
·

b∑

n=a

an =
sb − sa−1

2ck
≤ sb

2ck
≤ 2k+1

2ck
.

Deduce from this that
∑

an/(sn)c is convergent.

To prove the divergence of the series
∑

an/sn, estimate the sum∑
n∈Ik

an/sn from below, assuming that an/sn < 1/3 for every n large enough. If
an ≥ sn/3 for infinitely many n, then it is clear that

∑
an/sn is divergent.

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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6.11 Put Jk = {n : 2−k ≤ rn < 2−k+1}. For c < 1 estimate the sums∑
n∈Jk

an/(rn)c from above, and estimate the sum
∑

n∈Jk
an/rn from below.

6.13 Let [1, 2] × [0, 1/2] be the first rectangle. At every step, choose the largest
possible rectangle in H that does not overlap any of the previous rectangles and
such that the sequence of the upper right-hand points of these rectangles is

(
3

2
,
2

3

)
,

(
5

4
,
4

5

)
,

(
7

4
,
4

7

)
,

(
9

8
,
8

9

)
,

(
11

8
,
8

11

)
,

(
13

8
,
8

13

)
,

(
15

8
,
8

15

)
, . . .

in this order.

6.14 The series is convergent if and only if k = m. Show that for integers 0 <
a < b, we have

1
b

· log n ≤
n∑

i=0

1
ib + a

≤ 1
a

+
1
b

+
1
b

· log n.

6.18 Show that if the series is conditionally convergent, then it has a reordering
with arbitrarily large and arbitrarily small partial sums.

6.36 The series is divergent. By splitting the sum sn = n+
√

n+ 3
√

n+ . . .+ n
√

n
appropriately and estimating both parts, show that sn < n · log n for every n large
enough.

6.37 Let bn = (an)1−1/log n. Show that if an ≤ 1/n2, then bn ≤ c/n2, and if
an ≥ 1/n2, then bn ≤ c · an. Then use the majorization principle.

6.40 (a) Show that the series has a majorant of the form
∑

c/nb, where b > 1.

(b) Show that an ≥ c/n for every n large enough, with a constant c > 0.

6.59 Apply the formula sinx sin y = 1
2 (cos(x − y) − cos(x + y)).

6.60 Let sn be the nth partial sum of the series. By assumption, the sequence (s1+
. . .+sn)/n is convergent. Changing the first element of the series appropriately, we
can ensure that (s1 + . . . + sn)/n converges to zero. Let n · an be bounded from
below. Multiplying the series by a suitable positive number, we may assume that
an ≥ −1/n for every n.

We need to show that if an ≥ −1/n for every n and (s1 + . . . + sn)/n → 0,
then sn → 0. Let ε > 0 be fixed, and suppose that sn ≥ 2ε for infinitely many n.
Show that sn, sn+1, . . . , sn+k > ε for every such n and k < εn, which contradicts
(s1 + . . . + sn)/n → 0. Similarly, if sn ≤ −2ε, then sn, sn−1, . . . , sn−k < ε for
every k < εn, which leads to another contradiction.

6.61 Show that cos nx does not tend to zero for any x. Show that if x �= kπ, then
sinnx and sin n2x do not tend to zero. For the proof use the addition formula for
the sine function and the formula cos 2x = 2 cos2 x − 1.
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Chapter 7

7.3 Show that

|x| − pn+1(x) = (|x| − pn(x)) ·
(

1 − |x| + pn(x)
2

)

and

|x| − pn(x) ≤ |x| ·
(

1 − |x|
2

)n

for every n and for every |x| ≤ 1, respectively.

7.7 Let (rn) be an enumeration of Q∩ [0, 1]. For every n, choose disjoint intervals
In,1, . . . , In,n such that In,k ⊂ (rk, rk + (1/n)) for every k = 1, . . . , n. Let fn be
zero everywhere outside of the intervals In,k, and let the maximum of fn be 1/k on
In,k for every k = 1, . . . , n.

7.10 Show that the sequence of functions sinnx works.

7.11 Show that for every countable set H ⊂ [a, b], (fn) has a subsequence that is
convergent at every point of H . Apply this result to the set Q ∩ [a, b]. Let fnk

→ f
on the set Q∩ [a, b]. Show that the function f is monotone on Q∩ [a, b]. Extend f to
[a, b] as a monotone function, and let H be the set of points where f is discontinuous.
Show that if a subsequence of (fnk

) is convergent at the points of H , then it is
convergent on the whole of [a, b].

7.12 Let the limit function be f , and let ε > 0 be fixed. Choose δ > 0 according
to the uniform continuity of f . Show using the monotonicity of fn that if a = x0 <
. . . < xk = b is a partition of mesh < δ and |fn(xi) − f(xi)| < ε for every
i = 1, . . . , k, then |fn − f | < 2ε on [a, b].

7.16 Construct x as the intersection of a sequence of nested closed intervals. Let
a1 < b1, b1 − a1 < 1 be arbitrary. Choose the index n1 such that the difference
quotient of the function fn between the points a1, b1 is within distance 1 of the
difference quotient d1 of the function f between these points, for every n ≥ n1.
Choose c1 ∈ (a1, b1) such that |f ′

n1
(c1) − d1| < 1, and let a1 < a2 < c1 <

b2 < b1, b2 − a2 < 1/2 be points with |f ′
n1

(x) − d1| < 1 for every x ∈ [a2, b2].
Choose the index n2 > n1 such that the difference quotient of the functions fn

between the points a2, b2 is within distance 1/2 of the difference quotient d2 of the
function f between these points, for every n ≥ n2. Choose c2 ∈ (a1, b1) such that
|f ′

n2
(c2) − d2| < 1/2, and let a2 < a3 < c2 < b3 < b2, b3 − a3 < 1/3 be

points with |f ′
n2

(x) − d2| < 1 for every x ∈ [a3, b3]. Show that by repeating this
process we obtain a subsequence (fnk

) and a point x ∈ ⋂∞
k=1[ak, bk] that satisfy

the conditions.

7.19 Let limn→∞ fn = f , and let fn be uniformly equicontinuous. Let ε > 0 be
fixed, and choose a δ > 0 according to the uniform equicontinuity. Show that if fn
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is closer to f than ε at the base points of a partition of mesh < δ, then |fn −f | < 2ε
on [a, b]. Show that this implies the uniform convergence of the sequence.

If the sequence is uniformly convergent, then f is continuous. Let ε > 0 be
fixed, and choose n0 such that |fn(x) − f(x)| < ε holds for every n > n0 and
x ∈ [a, b]. Choose δ > 0 according to the uniform continuity of f1, . . . , fn0 , f .
Show that if x, y ∈ [a, b] and |x − y| < δ, then |fn(x) − fn(y)| < 3ε for every n
and x, y ∈ [a, b].

7.22 The statement is false even for continuous functions. Find an example in
which fn is zero outside of the interval In, where the intervals In are mutually
disjoint, and the maximum of fn on In is 1/n.

7.27 Show that the value of the sum
∑2n

k=n(sin kx)/k at the point x = π/(4n) is
larger than a positive number independent of n.

7.33 Show that (f(yn) − f(xn))/(yn − xn) falls between the numbers

min

(
f(xn)− f(a)

xn − a
,
f(yn)− f(a)

yn − a

)
and max

(
f(xn)− f(a)

xn − a
,
f(yn)− f(a)

yn − a

)
.

7.35 Let x be fixed. For every n ∈ N
+ and h �= 0 we have

f(x + h) − f(x)
h

=
n−1∑

i=0

bi cos(ai(x + h)) − cos(aix)
h

+

+ bn cos(an(x + h)) − cos(anx)
h

+

+
∞∑

i=n+1

bi cos(ai(x + h)) − cos(aix)
h

def=

def= An(h) + Bn(h) + Cn(h).

Construct a sequence hn → 0 such that (f(x + hn) − f(x))/hn → ∞ using the
following argument. Choose hn such that the middle term Bn(hn) is large, and
every term of Cn(hn) is nonnegative. The first term An(h) will not cause problems,
since

|An(h)| ≤
n−1∑

i=0

bi · |aih|
|h| =

(ab)n − 1
ab − 1

<
(ab)n

ab − 1

for every h �= 0, and we can choose Bn(h) to be larger than this.

7.36 Show that if n = 1, then the function g(x) = (a/s) · sin sx works, assuming
that s is large enough. For n > 1, define the functions fn recursively.

7.37 Let f be of the form
∑∞

n=0 fn, where each fn is infinitely differentiable,

and the series
∑∞

n=0 f
(k)
n of the kth derivatives is uniformly convergent on every
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bounded interval and for every k. Show that the functions fn can be chosen in such
a way that f satisfies the conditions of the exercise.

7.43 Write (1+(1/n))n+b in the form e(n+b)·log(1+(1/n)), and then use the power
series of log(1 + x) around 0 and the power series of ex around 1.

7.45 Put F (x) =
∑∞

n=0

(
x3n+1

3n+1 − x3n+2

3n+2

)
. Clearly, F can be obtained by inte-

grating the power series
∑∞

n=0(x
3n − x3n+1) term by term. Find the sum of this

power series, and use this to find F (x); then prove that the formula of F holds for
x = 1, and substitute x = 1.

7.47 Show that if c > −1, then the terms of the series have alternating signs
from some index on and the absolute values of the terms is monotone decreasing,
converging to 0. Thus the series is convergent. Then apply Abel’s continuity theorem
to calculate the sum.

Show that for c ≤ −1 the terms of the series do not converge to zero.

7.48 Show that for c > 0 the nth partial sum of the series is (−1)n
(
c−1
n

)
, and this

converges to zero as n → ∞.

Show that the sum of the series is infinity for c < 0.

7.49 Use Stirling’s formula to prove the convergence of the series.

7.52 The statement is not true. Show that if
∑∞

n=0 an is a convergent series of
nonnegative terms and if

∑∞
n=0 n · an is divergent, then the left-hand derivative of

the function f(x) =
∑∞

n=0 an · xn (|x| ≤ 1) at 1 is infinity.

7.53 The statement is false.

7.58 Let x0 ∈ (−r, r) and x ∈ (x0 − δ, x0 + δ) be fixed. Then we have |x0| +
|x − x0| < r. By the binomial theorem we have

xn =
n∑

i=0

(
n

i

)
xn−i
0 · (x − x0)i. (9.1)

Replace xn in the power series
∑∞

n=0 anxn by the right-hand side of (9.1), then
reorder the series according to the exponents of x−x0. Show that all series appearing
in the argument above are absolutely convergent, and thus the sum of the original
series does not change during these operations.

7.60 (a) Since a0 = f(a) = b, it follows that

g(f(x)) =
∞∑

n=0

bn

( ∞∑

k=1

ak · (x − a)k

)n

(9.2)

on (a − δ, a + δ). Let |x − a| < δ. Perform the exponentiation of the nth term on
the right-hand side of (9.2) (i.e., multiply the appropriate infinite series by itself n
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times), then reorder the resulting series according to the exponents of x − a. Prove
that all series appearing in the argument above are absolutely convergent, and thus
the sum of the original series does not change during these operations.
7.64 Let J be a bounded closed interval in I . Show that if x0 ∈ J and the radius of

convergence of the series
∑∞

n=0
f(n)(x0)

n! (x−x0)n is > δ, then |f (n)(x0)| ≤ (c ·n)n

for every n with some c depending only on δ. Then apply Theorem 7.48.

7.65 Let Ak denote the set of points x0 ∈ J for which there exists δ > 0 such that
|f (n)(x)| ≤ (k · n)n for every x ∈ (x0 − δ, x0 + δ) and n > 0. By Theorem 7.59,
J =

⋃∞
k=1 Ak. It is sufficient to prove that J = Ak for an appropriate k. Assume

that this is false, and let xk ∈ J \ Ak for every k. Choose a convergent subsequence
of (xk). Show that if this subsequence converges to x0, then x0 ∈ ⋃∞

k=1 Ak leads
to a contradiction.

7.66 Let M1 < M2 < . . . be positive even integers with Mk > max{|f(x)| :
|x| ≤ 2k + 2} (k = 1, 2, . . .). Show that the power series

∑∞
k=1(x/k)Mk is conver-

gent everywhere. Show that if its sum is g(x), then g(x) > f(x) for every |x| ≥ 1.

7.71 (iv) Apply the binomial theorem (7.17) to find the power series of
√

1 − 4x.

7.76 Let s
(0)
n = sn = a1 + . . . + an, s

(1)
n = s1+...+sn

n , s
(2)
n = s

(1)
1 +...+s(1)

n

n ,

etc. Suppose that s
(k)
n is convergent. Changing a1 if necessary, we may assume that

s
(k)
n → 0. Prove by induction on i that limn→∞ s

(k−i)
n /ni = 0 for every i =

1, . . . , k.

7.78 Suppose that |an/nk| ≤ C for every n = 1, 2, . . .. Then e1/(1+x) ≤ e +
C · ∑∞

n=0 nk|x|n for every |x| < 1. Show that if |x| < 1, then
∑∞

n=0 nkxk =
p(x)/(1 − x)k+1, where p is a polynomial. Thus (1 − |x|)k+1 · e1/(1+x) is bounded
on (−1, 1), which is impossible.

7.80 Use the fact (not proved in this book) that if the 2π-periodic function f is
continuous everywhere and is monotone on an open interval I , then its Fourier series
represents f at every point of I .

7.85 Show that

N∑

j=0

sin
(

2πn

N + 1
· j

)
=

N∑

j=0

cos
(

2πn

N + 1
· j

)
= 0

for every integer 1 ≤ n ≤ N . Deduce from this that f(0) ≤ N + 1 for the function
f given in the exercise; then apply this result to the function f(x + c).

7.89 Define the function as
∑∞

k=1 ak cos kx, with an absolutely convergent∑∞
k=1 ak.

7.90 Show that if
∑∞

n=1 |an cos nx| < ∞ at a point x = pπ/q, where p, q are
integers and q is odd, then

∑∞
n=1 |an| < ∞.

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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7.91 Show that for every n there exist cn and αn such that an = cn · cos αn

and bn = cn · sin αn. Then an cos nx + bn sin nx = cn · cos(nx − αn). Show
that if

∑∞
n=1 |an cos nx + bn sin nx| ≤ 1 on the interval I , then

∑∞
n=1

∫
I
|cn| ·

cos2(nx − αn) dx ≤ |I|. Show that
∫

I
cos(2nx − 2αn) dx → 0, and then use this

to prove
∑∞

n=1 |cn| < ∞. Finally, show that |an| + |bn| ≤ 2|cn| for every n.

7.92 Let
∣
∣∣
∑N

n=1 an sinnx
∣
∣∣ ≤ K for every x and N . Then

∣
∣∣
∑2N

n=N an sinnx
∣
∣∣ ≤

2K. Apply this to the point x = π/(4N) to get that (n · an) is bounded.

For the converse, see [2, 7.2.2, p. 114].

7.93 If the series is uniformly convergent, then

lim
N→∞

∣∣
∣∣∣

2N∑

n=N

an sinnx

∣∣
∣∣∣
= 0.

The argument applied in the previous exercise gives n · an → 0.

For the converse, see [2, 7.2.2, p. 114].

7.96 Let ε > 0 be fixed and let F : 0 = x0 < x1 < . . . < xn = 2π be a partition
with ΩF (f) < ε. Let g be a step function that takes the value mi on (xi−1, xi)
(i = 1, . . . , n). Show that the absolute value of every Fourier coefficient of f − g is
at most 2π · ε, then apply the result of the previous exercise.

7.105 In the proof of Theorem 7.93 we showed that the right-hand side of (7.46)
is 2-replicative. Use the same ideas here.

7.107 (i) (b): Multiply both sides of (7.60) by n!. Notice that every term, except
for the middle one, is present twice on the right-hand side when n is even. Notice
also that

(
2k
k

)
is an even number, since

(
2k
k

)
= 2 · (

2k−1
k−1

)
.

7.117 (i) Show that the decimal representation of
√

2 has infinitely many nonzero
digits. Use this to prove that the value of the lim sup is 1. (ii) The value of the
lim inf depends on whether the decimal representation of

√
2 has infinitely many

zero digits. If it has infinitely many zero digits, then the value of the lim inf is zero;
otherwise, its value is 1. Unfortunately, it is not known whether there are infinitely
many zero digits in the decimal representation of

√
2 (this is an old open problem

in number theory).

7.119 Show that the sequence an/n converges to lim infn→∞(an/n).

Chapter 8

8.4 If f is linear, then the statement is obtained by applying integration by parts.
Next prove the statement when f is piecewise linear. In the general case replace f
by a piecewise linear function that is equal to f at the base points of a fine partition
of [a, b], and estimate the difference.

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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8.10 First show that
∫ ∞

δ

(
f(ax) − f(bx)

)
/x dx =

∫ bδ

aδ
(f(t)/t) dt for every δ >

0. Find the limit of this integral, using that f(0) − ε < f(t) < f(0) + ε for every t
small enough.

8.15 Show that the improper integral
∫ π/2

0
log(t · sin2 x + 1) dx is uniformly con-

vergent on the interval [−1, 0].

8.16 Use the substitution x = y/(1 + y) in the integral defining B(t, s).

8.17 (i) Apply the result of the previous exercise with s = 1 − t; then apply
Theorem 8.43. (ii) Use the substitution xt = y.

8.18 Use (8.54) with t = 1/2 and s = x. If 2x − 1 is an even integer, then use the
formula 2

√
π · Γ(2x) = 4x · Γ(x)Γ (x + 1/2) (see [7, exercise 19.46]).

8.19 Use (8.54) with t = 1 − x and s = x; then apply Theorems 8.42 and 8.43.

8.22 Reduce the statement to (8.63) using integration by parts.

8.23 Reduce the statement to (8.63) using the substitution xs = y.

http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
http://dx.doi.org/10.1007/978-1-4939-7369-9_8
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Solutions

Chapter 1

1.9 There is no such set, since x ∈ int A implies that B(x, r) ⊂ int A, with an
appropriate r > 0.

1.10 (i) Let x /∈ ∂A ∪ ∂B; we need to prove that x /∈ ∂(A ∪ B). If B(x, r) ⊂ A
or B(x, r) ⊂ B for some r > 0, then B(x, r) ⊂ A ∪ B, and thus x ∈ int(A ∪ B),
and x /∈ ∂(A ∪ B). Suppose that B(x, r) �⊂ A and B(x, r) �⊂ B for every r > 0.
The condition x /∈ ∂A ∪ ∂B yields B(x, r) ∩ A = ∅ and B(x, r) ∩ B = ∅ for an
appropriate r > 0. Then B(x, r) ∩ (A ∪ B) = ∅, whence x /∈ ∂(A ∪ B).

(ii) Let Hc = R
p \ H for every set H ⊂ R

p. By the definition of a boundary
point, ∂Hc = ∂H for every H ⊂ R

p. Applying (i) to the sets Ac, Bc gives

∂(A ∩ B) = ∂((A ∩ B)c) = ∂(Ac ∪ Bc) ⊂ ∂Ac ∪ ∂Bc = ∂A ∪ ∂B.

1.22 By Theorem 1.17 it is enough to prove that if xn ∈ A′ and xn → x, then
x ∈ A′, i.e., x is a limit point of the set A. For every ε > 0 we have xn ∈ B(x, ε/2)
if n is large enough. For such an n the set B(xn, ε/2)∩A is infinite, since xn ∈ A′.
Since B(xn, ε/2) ⊂ B(x, ε), it follows that B(x, ε) ∩ A is infinite. This holds for
every ε > 0, and thus x ∈ A′.

1.36 (a) Let A ⊂ R
2 be the graph of 1/x, and let B be the x-axis.

(b) Let A = {n + (1/n) : n = 2, 3, . . .}, and let B = N.

1.52 The polynomial x2 + (xy − 1)2 works.

1.59 Since h is continuous on A, h is bounded there by Weierstrass’s theorem.
Suppose that |h(x)| ≤ M for every x ∈ A. By Weierstrass’s approximation the-
orem for single-variable continuous functions, there exists a single-variable poly-
nomial s such that ||t| − s(t)| < ε/M for every |t| ≤ 1. (This also follows from
Exercise 7.3.) The function g(x) = M · s(h(x)/M) is a polynomial, and

||h(x)| − g(x)| = M ·
∣∣∣∣

∣∣∣∣
h(x)
M

∣∣∣∣ − s

(
h(x)
M

)∣∣∣∣ < M · ε

M
= ε

for every x ∈ A.

1.60 First, let n = 2. By the previous exercise, there is a polynomial g such
that ||h1(x) − h2(x)| − g(x)| < ε for every x ∈ A. Then the polynomials g1 =
(h1 + h2 + g)/2 and g2 = (h1 + h2 − g)/2 satisfy the conditions, since

max(h1(x), h2(x)) = ((h1(x) + h2(x)) + |h1(x) − h2(x)|)/2

and
min(h1(x), h2(x)) = ((h1(x) + h2(x)) − |h1(x) − h2(x)|)/2

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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for every x. In the general case the statement of the exercise follows by induction
on n.

1.61 If a = b, then let ga,b be the constant function equal to f(a). If a =
(a1, . . . , ap) �= b = (b1, . . . , bp), then there is an index 1 ≤ i ≤ p such that ai �= bi.
It is easy to see that ga,b(x) = c · xi + d satisfies the conditions, for suitable real
numbers c, d.

1.62 For every b ∈ A let ga,b be as in the previous exercise. Since ga,b is con-
tinuous and ga,b(b) = f(b), there exists a neighborhood U(b) of b such that
ga,b(x) > f(x) − (ε/2) for every x ∈ U(b). The open sets U(b) (b ∈ A) cover
A, and thus by Borel’s theorem, finitely many of these also cover A. Let b1, . . . , bn

be points of A such that A ⊂ ⋃n
i=1 U(bi). Let Ga = max(ga,b1 , . . . , ga,bn). Then

Ga(a) = f(a), and Ga(x) > f(x) − (ε/2) for every x ∈ A. By the statement of
Exercise 1.60, there exists a polynomial ga such that |Ga(x) − ga(x)| < ε/2 for
every x ∈ A. Clearly, ga satisfies the conditions.

1.63 Let ga be as in the previous exercise. Since ga is continuous and ga(a) <
f(a) + ε, there exists a neighborhood V (a) of a such that ga(x) < f(x) + ε for
every x ∈ V (a). The open sets V (a) (a ∈ A) cover A, and thus by Borel’s theorem,
there exist finitely many of them that still cover A. Let a1, . . . , ak be points of A

such that A ⊂ ⋃k
i=1 V (ai). Let G = min(ga1 , . . . , gak

). Then f(x) − ε < G(x) <
f(x) + ε for every x ∈ A. By the statement of Exercise 1.60, there is a polynomial
g such that |G(x) − g(x)| < ε for every x ∈ A. Then we have |f(x) − g(x)| < 2ε
for every x ∈ A.

1.71 Let f be a single-variable polynomial that takes its local maxima at a and b
(a �= b) (e.g., the polynomial 2x2 − x4 takes its strict and absolute maximum at the
points ±1). The two-variable polynomial p(x, y) = f(x) − y2 has local maxima at
(a, 0) and (b, 0). But p does not have a local minimum, since the section function
pc(y) = f(c) − y2 does not have a local minimum at y = d for any (c, d).

1.80 (h) The answer is yes. First we show that v − u ≤ 3
√

4(v3 − u3) for every
u < v. It is easy to see that (v−u)2 ≤ 4(u2+uv+v2). Multiplying this by (v − u)
and taking the cube root of both sides yields the desired inequality.

Let f(x, y) = 3
√

x3 + y4. We have f ′
x(0, 0)=1 and f ′

y(0, 0)=0. Thus, in order
to prove that f is differentiable at the origin we have to show that

lim
(x,y)→(0,0)

3
√

x3 + y4 − x
√

x2 + y2
= 0. (9.3)

Applying the previous inequality to u = x and v = 3
√

x3 + y4 gives

0 ≤
3
√

x3 + y4 − x
√

x2 + y2
≤

3
√

4 · ((x3 + y4) − x3)
√

x2 + y2
=

3
√

4 · y4/3

√
x2 + y2

→ 0.

Then, by the squeeze theorem, we get (9.3).

http://dx.doi.org/10.1007/978-1-4939-7369-9_1
http://dx.doi.org/10.1007/978-1-4939-7369-9_1
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1.82 If f is differentiable at a, then f(x) = α · (x − a) + f(a) + ε(x)(x − a),
where α = f ′(a) and limx→a ε(x) = 0. For every b ∈ R and (x, y) ∈ R

2, we have

g(x, y) = α · (x − a) + 0 · (y − b) + η(x, y),

with η(x, y) = ε(x) · (x − a). Since

|η(x, y)|
|(x, y) − (a, b)| ≤ |ε(x)| · |x − a|

|x − a| = |ε(x)|,

we have

lim
(x,y)→(a,b)

η(x, y)
|(x, y) − (a, b)| = 0,

and thus g is differentiable at (a, b).

Chapter 2

2.7 These are the functions g(x + y) where g is differentiable. Indeed, for c fixed,
the derivative of hc(x) = f(x, c−x) is D1f(x, c−x)+D2f(x, c−x)·(−1) = 0 by
D1f = D2f . Thus h′

c = 0, and hc is constant. If hc = g(c), then f(x, c−x) = g(c)
for every c and x, and the substitution c = x + y gives f(x, y) = g(x + y).

2.13 The statement is false. Let f(t) = (cos t, sin t) for every t ∈ R. Now f(0) =
f(2π), but there is no c ∈ R such that f ′(c) is the vector (0, 0), since |f ′(c)| = 1
for every c.

2.17 (a) The determinant of the Jacobian matrix at the point (x, y) is e2x �= 0.

(b) Suppose that f(x, y) = f(u, v). Then ex = |f(x, y)| = |f(u, v)| = eu, and
thus x = u. From ex cos y = eu cos v and ex sin y = eu sin v we get cos y = cos v
and sin y = sin v, which implies v = y + 2kπ with an integer k. If (x, y) and (u, v)
are points of an open disk of radius π, then |v − y| < 2π, and y = v. (In fact, this
argument shows that f is injective in every horizontal open strip of width 2π.)

(c) The function ϕ(x, y) =
(
log

√
x2 + y2, arc tg(y/x)

)
works.

Chapter 3

3.5 There are boxes R1, . . . , Rn such that
∑n

i=1 μ(Ri) < μ(A) + ε/2. Let Ri =
[ai,1, bi,1] × . . . × [ai,p, bi,p] for every i, and put

Ri,δ = [ai,1 − δ, bi,1 + δ] × . . . × [ai,p − δ, bi,p + δ]

(i = 1, . . . , n). It is clear that if δ is small enough, then μ(Ri,δ) < μ(Ri) + ε/(2n)
for every i. Then G =

⋃n
i=1 int Ri,δ is open,

A ⊂
n⋃

i=1

Ri ⊂
n⋃

i=1

intRi,δ = G,
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and

μ(G) ≤
n∑

i=1

μ(Ri,δ) <

n∑

i=1

μ(Ri) + (ε/2) < μ + ε.

3.13 Let A =
⋃∞

n=1(an, bn). Suppose that I1, . . . , Ik ⊂ A are nonoverlap-
ping closed intervals. By Borel’s theorem, there exists N such that

⋃k
i=1 Ii ⊂

⋃N
n=1(an, bn). Then, by Theorem 3.6,

k∑

i=1

|Ii| ≤
N∑

n=1

(bn − an) <

∞∑

n=1

(bn − an).

Since this holds for every finite system of nonoverlapping closed intervals I1, . . . , Ik

of A, we have μ(A) ≤ ∑∞
n=1(bn − an) by the definition of the inner measure.

3.14 Let (rn) be an enumeration of Q∩ [0, 1]. If Jn is an open interval containing
rn and shorter than ε/2n, then the set G =

⋃∞
n=1 Jn works. Indeed, by the previous

exercise we have μ(G) < ε, and Q ∩ [0, 1] ⊂ G implies μ(G) ≥ 1.

3.15 Let G be the set defined in the previous exercise, with ε = 1/2. Then F =
[0, 1] \ G is closed. Since Q ∩ [0, 1] ⊂ G, the interior of F is empty, and thus
μ(F ) = 0. Now, μ(F ) = 1 − μ([0, 1] ∩ G) ≥ 1 − (1/2) (see Exercise 3.10).
Modifying the construction, we can have μ(F ) > 1.

3.17 (a) The constant 1 set function is nonadditive but is translation-invariant, nor-
malized, and nonnegative.

(b) Let H =
⋃

n∈Z
[n, n+(1/2)], and let m(A) = 2 ·μ(A∩H) for every Jordan

measurable set A ⊂ R. The function m is not translation-invariant, but is additive,
normalized, and nonnegative. We can construct a similar example in R

p as well.

(c) The set function m(A) = 2 · μ(A) is not normalized, but it is additive,
translation-invariant, and nonnegative.

(d) Constructing an additive, translation-invariant, normalized function that is
not nonnegative is more difficult. We need to use the fact that for every irrational
α > 0 there exists a function f : R → R such that f is additive (i.e., f(x + y) =
f(x) + f(y) for every x, y ∈ R), f(1) = 1, and f(α) = −1. (Such a function is
necessarily discontinuous at every point and not bounded on any interval; see [7,
Exercise 10.94]. Let m(A) = f(μ(A)) for every Jordan measurable set A ⊂ R. The
function m is translation-invariant, additive, and normalized. However, m(A) = −1
for every A with μ(A) = α.

3.26 The numbers 1/4, 3/4, 1/10, 3/10, 7/10, 9/10 are in C and have finite decimal
representations. Find more!

3.37 If Λ is not invertible, then its range is a proper linear subspace of Rp that
does not have interior points. (It is easy to see that the linear space generated by a

http://dx.doi.org/10.1007/978-1-4939-7369-9_3
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ball of Rp is Rp itself.) In this case the sets Λ(A) and Λ(B) have no interior points
either; thus they are nonoverlapping.

Let Λ be invertible, and suppose that Λ(A) and Λ(B) have a common interior
point y ∈ int Λ(A) ∩ int Λ(B). Then B(y, ε) ⊂ Λ(A) ∩ Λ(B) for a suitable
ε > 0. Let Λ−1(y) = x. Since Λ is continuous at x, there exists δ > 0 such
that Λ(B(x, δ)) ⊂ B(y, ε) ⊂ Λ(A) ∩ Λ(B). Since Λ is invertible, it follows that
B(x, δ) ⊂ A ∩ B. This is a contradiction, since we assumed that A and B were
nonoverlapping.

Chapter 5

5.17 Let g : [a, b] → R
2 be a simple closed curve, let Γ = g([a, b]), and let a

number 0 < δ < diam Γ be fixed. There exists δ1 > 0 such that if x, y ∈ Γ and
|x − y| < δ1, then one of the arcs connecting x and y in Γ has diameter less than δ.
Let P = (p0, p1, . . . , pn−1, pn = p0) be a polygon finer than δ1 (i.e., |pi−1 − pi| <
δ1 for every i = 1, . . . , n) with minimal number of vertices. We show that P does
not intersect itself. Suppose this is not true, that is, that there are segments [pi−1, pi]
and [pj−1, pj ] intersecting each other, where 1 ≤ i and i + 1 < j ≤ n. Then

|pi−1 − pj−1| + |pi − pj | ≤ |pi−1 − pi| + |pj−1 − pj | < 2δ1,

and thus min(|pi−1 − pj−1|, |pi − pj |) < δ1. If |pi−1 − pj−1| < δ1, then one
of the two arcs of the curve Γ between pi−1 and pj−1 has diameter less than δ.
Delete the part of the polygon P that lies on this arc, and replace it by the segment
[pi−1, pj−1]. We have obtained a polygon in Γ finer than δ1 and having a smaller
number of vertices than P , which is impossible. We handle the case |pi − pj | < δ1
similarly.

Chapter 6

6.2 (a) Since 1/
(
n2 + 2n

)
= (1/2) · (1/n − 1/(n + 2)), we have

N∑

n=1

1
n2 + 2n

=
1
2

·
N∑

n=1

(
1
n

− 1
n + 2

)
=

1
2

·
(

1 +
1
2

− 1
N + 1

− 1
N + 2

)
.

Thus the partial sums of the series tend to 3/4, so the series is convergent with sum
3/4.

(b) If we leave out the first term in the series in (a), then we get the series in
(b). Thus the partial sums of this new series tend to (3/4) − (1/3) = 5/12, so it is
convergent with sum 5/12.

(c) Since 1/(n3 − n) = (1/2) · (1/(n − 1) − 2/n + 1/(n + 1)), we have

N∑

n=2

1
n3 − n

=
1
2

·
N∑

n=2

(
1

n − 1
− 2

n
+

1
n + 1

)
=

1
2

·
(

1 − 1
2

− 1
N

+
1

N + 1

)
.
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Thus the partial sums of the series tend to 1/4, so the series is convergent with sum
1/4.
6.5 Let sn be the nth partial sum of the series. Then

a1 + 2a2 + . . . + nan = (a1 + . . . + an) + (a2 + . . . + an) + . . . + (an) =
= sn + (sn − s1) + . . . + (sn − sn−1) =
= (n + 1)sn − (s1 + . . . + sn)

and
a1 + 2a2 + . . . + nan

n
=

n + 1
n

sn − s1 + . . . + sn

n
. (9.4)

If limn→∞ sn = A, then (s1+ . . .+sn)/n → A, and so the right-hand side of (9.4)
converges to zero.

6.17 Let (rn) be an enumeration of the rational numbers, with r0 = 0. We show
that the series

∑∞
n=1(rn −rn−1) satisfies the condition. Indeed, for every real num-

ber A there exists a sequence rnk
of distinct rational numbers that converges to A.

By reordering the sequence we may assume that 0 = n0 < n1 < n2 < . . .. The

kth partial sum of
∑∞

k=1

(∑nk

n=nk−1+1(rn − rn−1)
)

is rnk
. Since rnk

→ A as

k → ∞, the bracketed series is convergent, and its sum is A.

6.56
an

n
=

s1 + . . . + sn

n
− s1 + . . . + sn−1

n
→ A − A = 0.

6.60 Let sn be the nth partial sum of the series. By assumption, (s1 + . . .+ sn)/n
is convergent. Changing the first element of the series appropriately, we may assume
that (s1 + . . . + sn)/n converges to zero. We may assume that n · an is bounded
from below; otherwise, we switch to the series

∑∞
n=1(−an). Multiplying the series

by a suitable positive number, we may also assume that an ≥ −1/n for every n.

We need to prove that if an ≥ −1/n for every n and (s1 + . . . + sn)/n → 0,
then sn → 0. Let 0 < ε < 1/2 be given, and suppose that sn ≥ 2ε for infinitely
many n. If sn ≥ 2ε and k ≤ εn, then

sn+k = sn + an+1 + . . . + an+k ≥ 2ε − k · 1
n + 1

> ε.

This implies

(s1 + . . . + sn+[εn]) − (s1 + . . . + sn) > [εn] · ε > ε2n − ε,

which is impossible for n large enough, since (s1+ . . . +sn+[εn])/n → 0, and
(s1 + . . . +sn)/n → 0.

Now let sn ≤ −2ε for infinitely many n. If sn ≤ −2ε and k < εn/2, then

sn−k = sn − an − . . . − an−k+1 ≤ −2ε + k · 1
n − k

< −ε.
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Thus

(s1 + . . . + sn) − (s1 + . . . + sn−[εn/2]) < −[εn/2] · ε < −ε2n

2
+ ε,

which is impossible for n large enough, since (s1 + . . . + sn−[εn])/n → 0, and
(s1 + . . . + sn)/n → 0. We have shown that |sn| < 2ε for every n large enough;
thus sn → 0.

6.61 We prove that cos nx does not converge to zero for any x. Indeed, if
cos nx → 0, then cos 2nx = 2 cos2 nx − 1 → −1, which is a contradiction.

Next we show that sin nx and sin n2x do not converge to zero for any x �= kπ.
Indeed, if sin nx → 0, then

cos nx · sin x = sin(n + 1)x − sinnx · cos x → 0.

Since cos nx does not converge to zero, it follows that sinx = 0 and x = kπ.
Finally, if sin n2x → 0, then

cos n2x · sin(2n + 1)x = sin(n + 1)2x − sin n2x · cos(2n + 1)x → 0.

Since | cos n2x| =
√

1 − sin2 n2x → 1, we have sin(2n + 1)x → 0. Thus,

2 sin 2nx · cos x = sin(2n + 1)x + sin(2n − 1)x → 0,

and either sin 2nx → 0 or cos x = 0. In both cases x = kπ/2. If k is odd, then
sinn2x = ±1 for every n odd, which is impossible. Hence k is even, and x =
(k/2) · π.

Chapter 7

7.17 Let ε > 0 be fixed. By the Cauchy criterion (Theorem 7.9), there exists N
such that |f ′

n(x) − f ′
m(x)| < ε for every x ∈ I and n,m ≥ N . Since (fn(x0))

is convergent, there exists an index M such that |fn(x0) − fm(x0)| < ε for every
n,m ≥ M . Let n,m ≥ max(N,M) and x ∈ I . Denote the function fn − fm by
hn,m. By our choices of N and M we have |h′

n,m(x)| < ε for every x ∈ I , and
|hn,m(x0)| < ε. By the mean value theorem, for every x ∈ I there is c ∈ [x0, x]
such that hn,m(x) − hn,m(x0) = h′

n,m(c) · (x − x0). Thus

|hn,m(x)| ≤ ε · |x − x0| + |hn,m(x0)| < ε · |I| + ε,

where |I| is the length of interval I . We have proved that |fn(x) − fm(x)| <
(|I| + 1) · ε holds for every x ∈ I and n,m ≥ N1, where N1 = max(N,M).
Since ε was arbitrary, it follows from Theorem 7.9 that the sequence of functions
(fn) converges uniformly to some function f on I .

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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We have to prove f ′(x) = g(x) for every x ∈ I . Let ε > 0 be fixed, and let N
be as above. For n,m ≥ N , we have |h′

n,m(x)| < ε for every x ∈ I and then, by
the mean value theorem,

|hn,m(y) − hn,m(x)| ≤ ε · |y − x|

for every x, y ∈ I . Since limm→∞ hn,m(z) = fn(z) − f(z) for every z ∈ I ,

|fn(y) − f(y) − fn(x) + f(x)| ≤ ε · |y − x|

follows, and thus
∣∣∣∣
fn(y) − fn(x)

y − x
− f(y) − f(x)

y − x

∣∣∣∣ ≤ ε (9.5)

for every x, y ∈ I, y �= x, and n ≥ N . Fix x. Since f ′
n(x) → g(x), we can choose

an index n ≥ N such that |f ′
n(x) − g(x)| < ε holds. According to the definition of

the derivative, there exists δ > 0 such that

∣
∣∣∣
fn(y) − fn(x)

y − x
− f ′

n(x)
∣
∣∣∣ < ε

for every y ∈ (x − δ, x + δ) \ {x}. Comparing this with (9.5), we get

∣∣
∣∣
f(y) − f(x)

y − x
− g(x)

∣∣
∣∣ ≤ ε +

∣∣
∣∣
fn(y) − fn(x)

y − x
− f ′

n(x)
∣∣
∣∣ + |f ′

n(x) − g(x)| < 3ε

for y ∈ (x − δ, x + δ), y �= x. Since ε was arbitrary, f is differentiable at x, and
f ′(x) = g(x).

7.33 Let

mn = min
(

f(xn) − f(a)
xn − a

,
f(yn) − f(a)

yn − a

)

and

Mn = max
(

f(xn) − f(a)
xn − a

,
f(yn) − f(a)

yn − a

)

for all n. It is clear that mn → f ′(a) and Mn → f ′(a) if n → ∞. Let pn =
(a − xn)/(yn − xn) and qn = (yn − a)/(yn − xn). Then pn, qn > 0 and pn +
qn = 1. Since

f(yn) − f(xn)
yn − xn

= pn · f(a) − f(xn)
a − xn

+ qn · f(yn) − f(a)
yn − a

,

we have mn ≤ (f(yn) − f(xn))/(yn − xn) ≤ Mn. Thus the statement follows by
the squeeze theorem.
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7.35 We proved the continuity of f in Example 7.37. Let x be fixed. For every
n ∈ N

+ and h �= 0 we have

f(x + h) − f(x)
h

=
n−1∑

i=0

bi cos(ai(x + h)) − cos(aix)
h

+

+ bn cos(an(x + h)) − cos(anx)
h

+

+
∞∑

i=n+1

bi cos(ai(x + h)) − cos(aix)
h

def=

def= An(h) + Bn(h) + Cn(h).

We construct a sequence hn → 0 with (f(x + hn) − f(x))/hn → ∞. The idea is
to choose hn such that Bn(hn) is large and every term of Cn(hn) is nonnegative.
The first sum An(hn) will not cause any problems. Indeed, by Theorem 10.24 the
cosine function has the Lipschitz property, and

|An(hn)| ≤
n−1∑

i=0

bi · |aihn|
|hn| =

(ab)n − 1
ab − 1

<
(ab)n

ab − 1

for every hn �= 0. The quantity Bn(hn) can be chosen to be larger than that.
We distinguish two cases. If cos(anx) ≤ 0, then let hn be the smallest positive

number such that an(x + hn) = 2kπ, where k is an integer. In other words, let k be
the integer such that 2(k−1)π ≤ anx < 2kπ, and let hn = (2kπ − anx)/an. Then
0 < hn < 2π/an. Since the numerator of the fraction in the definition of Bn(hn) is
at least 1, we must have

Bn(hn) ≥ bn · 1
hn

> bn · an

2π
=

(ab)n

2π
.

If i > n, then ai(x+hn) also has the form 2mπ with an integer m, since a is an inte-
ger. Thus the numerators of the terms of the series defining Cn(hn) are nonnegative,
and then the sum itself is nonnegative. Therefore, we have

f(x + hn) − f(x)
hn

> − (ab)n

ab − 1
+

(ab)n

2π
+ 0 = (ab)n

(
1
2π

− 1
ab − 1

)
. (9.6)

Next suppose that cos(anx) > 0. Let hn be the largest negative number such that
an(x + hn) = (2k − 1)π, where k is an integer. In other words, let k be the integer
such that (2k − 1)π < anx ≤ (2k + 1)π, and let hn = ((2k − 1)π − anx)/an.
Then 0 > hn > −2π/an. Since the numerator of the fraction in the definition of
Bn(hn) is at most −1, we have

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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|Bn(hn)| ≥ bn · 1
|hn| > bn · an

2π
=

(ab)n

2π
.

If i > n, then ai(x + hn) also has the form (2m − 1)π with an integer m, since a
was an odd integer. Thus the numerators of the terms of the series defining Cn(hn)
are nonpositive, and then the sum itself is again nonnegative, since hn < 0. Thus
(9.6) holds in this case as well. We have defined hn for every n. By assumption,
ab − 1 > 2π, and thus (9.6) implies (f(x + hn) − f(x))/hn → ∞ as n → ∞.
Clearly, this implies that f is not differentiable at x. Since x was arbitrary, f is
nowhere differentiable.

7.36 If n = 1, then g(x) = (a/s) · sin sx is a function satisfying the conditions,
assuming that s > (|a| + 1)/ε.

Let n > 1, and suppose that g is infinitely differentiable, g(n−1)(0) = a,
g(i)(0) = 0 for every 0 ≤ i < n − 1, and |g(i)(x)| < ε/K for every 0 ≤ i < n − 1
and |x| < K. Obviously, the function G(x) =

∫ x

0
g(t) dt is infinitely differentiable,

G(n)(0) = a, G(i)(0) = 0 for every 0 ≤ i < n, and |G(i)(x)| < ε for every
0 ≤ i < n and |x| < K.

7.37 We will give f in the form
∑∞

n=0 fn, where fn is infinitely differentiable for

every n, and the series
∑∞

n=0 f
(k)
n of the kth derivatives is uniformly convergent

on every bounded interval and for every k. By Theorem 7.42 it follows that f is
infinitely differentiable, and

f (k)(x) =
∞∑

n=0

f (k)
n (x) (9.7)

for every x. Let the sequence (an) be given, and let f0 be the constant function equal
to a0. If n > 0 and the functions f0, . . . , fn−1 are already defined, then choose a
function fn that is infinitely differentiable and such that

f (n)
n (0) = an −

n−1∑

i=0

f
(n)
i (0),

f
(i)
n (0) = 0 for every 0 ≤ i < n, and |f (i)

n (x)| < 1/2n for every 0 ≤ i < n
and |x| < n. (By the previous exercise, such a function exists.) In this way we have
defined functions fn for every n.

The series on the right-hand side of (9.7) is uniformly convergent on the interval
(−K,K) for every K > 0. Indeed, if n > max(K, k), then |f (k)

n (x)| < 1/2n

follows from our construction, for every |x| < K. Thus we can apply the Weierstrass
criterion. Then it follows from Theorem 7.42 that f is infinitely differentiable. By
(9.7) we have f (k)(0) = ak, since the right-hand side of (9.7) at x = 0 is

k−1∑

n=0

f (k)
n (0) + f

(k)
k (0) +

∞∑

n=k+1

0 = ak.

http://dx.doi.org/10.1007/978-1-4939-7369-9_7
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7.102 The denominator of B2n is the product of the primes p for which p − 1 | 2n.
This follows from the fact that B2n − ∑

p−1|2n 1/p is an integer. For a proof of this
statement see [5, Theorem 118, p. 91].

Chapter 8

8.8 Substituting x = et gives

∫
x − 1
log x

dx =
∫

e2t − et

t
dt.

Therefore, it is enough to prove that the right-hand side is not elementary. Using the
statement given in the exercise, this follows from the fact that the integral

∫
(et/t) dt

is not elementary. This is proved in [7, Examples 15.32.1].

8.14 The two-variable function log(1 + t · sin2 x) is continuous on the set A =
(−1,∞) × [0, π/2], and thus the integral exists for every t > −1. Since the partial
derivative

∂

∂t
log(t · sin2 x + 1) =

sin2 x

t · sin2 x + 1

is also continuous on the set A, it follows from Theorem 8.24 that F is differentiable,
and

F ′(t) =
∫ π/2

0

sin2 x

t · sin2 x + 1
dx

for every t > −1. We can calculate the integral on the right-hand side by the substi-
tution tg x = u. For t > −1 and t �= 0, we get

F ′(t) =
∫ ∞

0

u2/(1 + u2)

(tu2/(1 + u2)) + 1
· 1

1 + u2
du =

∫ ∞

0

u2

((t + 1)u2 + 1)(u2 + 1)
dx =

=
1

t
·
∫ ∞

0

[
1

u2 + 1
− 1

(t + 1)u2 + 1

]
du =

1

t
·
[
arc tg u − arc tg(

√
t + 1 · u)√

t + 1

]∞

0

=

=
π

2

(
1

t
− 1

t · √
t + 1

)
=

π

2
· 1

(1 +
√

t + 1) · √
t + 1

.

Since F (0) = 0, we have

F (t) =
π

2
·
∫ t

0

dt

(1 +
√

t + 1) · √t + 1
.

We can calculate this integral by the substitution v =
√

t + 1. We get that

F (t) = π · [
log(1 +

√
t + 1) − log 2

]
.

http://dx.doi.org/10.1007/978-1-4939-7369-9_8
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graphf , 3
xn → a, 5
B(a, r), 5
ext A, 8
int A, 8
∂A, 8
Qp, 10
A′, 11
B(a, r), 12
[a, b], 13
cl A, 14
dist (A,B), 17
limx→a, x∈A, 21
limx→a, x∈A f(x) = ∞, 21
U̇ , 22
f b, 25, 88
fa, 25, 88
Dif(a), 31
Dxi

f(a), 31
∂f
∂xi

(a), 31
f ′

xi
(a), 31

fxi
(a), 31

f ′(a), 39, 72
Dvf(a), 43
DiDjf(a), 46
Dijf(a), 46
f ′′

xjxi
(a), 46

∂2f
∂xi∂xj

(a), 46

fxjxi
(a), 46

Di1 . . . Dikf(a), 50
∂kf

∂xi1 ...∂xik
(a), 50

f
(k)
xik

...xi1
(a), 50

fxik
...xi1

(a), 50
tn(x), 53
limx→a, x∈H f(x), 67
‖A‖, 75
μ, 95
μ, 96
|V |, 96
K(n), 96
μ(A,n), 97
μ(A,n), 97
diamA, 100
Ay , 108
γp, 112
A + B, 113
Gp, 116
Op, 116
Tp, 116
det Λ, 117
Mij , 124
SF (f), 124
mij , 124
sF (f), 124∫

R
f(x, y) dxdy, 126

∫
R

f(x, y) dxdy, 126∫
R

f(x, y) dxdy, 126

ΩF (f), 127
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ω(f ;H), 127
σF (f ; (cj1...jp)), 127
ΩF , 130
s(A), 135
U(A, δ), 146∫

g
〈f, dx〉, 156

∫
g
h dxj , 157

tg x, 162
ctg x, 162
arc tg x, 162
w(g;x), 176
divf , 180∫

g
f ds, 181

n(g(t)), 182
a × b, 184∫

A
f dF , 188

n(x), 189
rot, 192
x+, 203

x−, 203∑∞
n=0 anxn, 219

〈x〉, 244∑∞
n=0 an(x − x0)n, 254(

c
n

)
, 256

Cn, 264
(H, 2), 265
Bn, 283
ζ(s), 283
lim infn→∞ an, 293
lim supn→∞ an, 293
Γ, 331
B(t, s), 332
λ(A), 343
λ(A), 343
λ(A), 343
π(n), 346
[1, . . . , n], 347
π(n), 347
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Symbols
(H, k) summable series, 265
1-connected open set, 173
k-times differentiability, 51
kth differential, 55
p-variable function, ix
p-variable real function, 3

A
Abel criterion, 214
Abel criterion (for the uniform convergence

of a series of functions), 243
Abel summable series, 265
Abel’s continuity theorem, 245
Abel’s inequality, 214
Abel, N.H., 214
absolutely convergent series of vectors, 209
absolute value (of a vector), 2
absolutely convergent infinite series, 202
additive set function, 102
algebraic number, 350
analytic function, 251, 254
approximating sum, 127
area, 96
axis-parallel rectangle, 10

B
Banach’s fixed point theorem, 85
Banach, S., 85
base point, 124
Bernoulli numbers, 284
Bernoulli polynomials, 283
Bernoulli, D., 298
Bernoulli, J., 283
binomial series, 256

Bolzano, B., 7
Bolzano–Darboux theorem, 82
Bolzano–Weierstrass theorem, 7
Borel’s theorem, 16
Borel, É., 16
boundary cube, 96
boundary point, 8
bounded domain with a simple closed curve

boundary, 175
bounded sequence, 7
bounded set, 7
box, 10
bracketing, 199
Brouwer’s fixed-point theorem, 352
Brouwer, L.E.J., 352
Bunyakovsky, V.Y., 2

C
canonical form, 52
Cantor function, 115
Cantor set, 107
Cantor’s theorem, 15
Cantor, G., 15
Carleson, L., 273
Catalan numbers, 264
Catalan, E.C., 264
Cauchy product, 220
Cauchy’s convergence criterion (for the uni-

form convergence of a sequence of
functions), 232

Cauchy’s criterion (for sequences), 6
Cauchy’s criterion (for the uniform conver-

gence of a series of functions), 240
Cauchy’s criterion (for uniform conver-

gence), 240
Cauchy’s criterion (series), 196
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Cauchy, A., 2
Cauchy–Hadamard formula, 293
Cauchy–Schwarz–Bunyakovsky inequality,

2
center of mass of a measurable set, 135
closed ball, 12
closed curve, 163
closed set, 12
closure of a set, 14
cluster point, 292
compact set, 16
complete system, 275
completeness of trigonometric functions,

275
completeness theorem, 275
complex series, 295
component (of a map), 67
components of an open set, 14
concave function, 60
condensation criterion, 212
conditional local maximum (minimum), 91
conditionally convergent series, 206
cone, 110
congruent sets, 116
connected open set, 13
conservative field, 162
contingent, 63
continuity, restricted to a set, 24, 68
continuously differentiable mapping, 83
continuously differentiable surface, 188
contour line, 78
contraction, 85
convergent sequence, 5
convergent series, 193
convergent series of vectors, 209
convex function, 60
convex set, 60
coordinate (of a point), 1
coordinate function, 25, 67
cube, 96
curvature, 297
curve, 63
curve continuously deformed into a point,

172
curves that can be continuously deformed

into each other, 171

D
d’Alembert, J., 298
Darboux’s theorem, 81
Darboux, J.G., 81
de la Vallée Poussin, C.J., 347

degree (of a monomial), 52
degree (of a polynomial), 52
derivative (of a map), 72
derivative vector, 38
derived set, 11
diameter, 100
differentiable function, 35
differentiable map, 71
differential, 55
differentiation rule of compositions, 75
differentiation rules, 74
Dini’s theorem, 234
Dini, U., 234
directed angle, 175
direction vector, 63
directional derivative, 43
Dirichlet criterion, 214
Dirichlet criterion (for the uniform conver-

gence of a series of functions), 242
Dirichlet, L., 214
distance of sets, 17
distance of vectors, 2
distance preserving map, 116
divergence, 180
divergence theorem, 192
divergent sequence, 5
divergent series, 193
division rectangle, 124
domain, 14
domain of convergence, 252

E
elementary function, 26
equation of a vibrating string, 297
Euclidean space, 1
Euler’s constant, 308
Euler’s summation formula, 304
Euler’s summation formula, general form,

308
Euler’s theorem, 78
Euler, L., 78
everywhere dense set, 19
exterior cube, 96
exterior point, 8

F
Fejér, L., 272
Fejér’s theorem, 272
Fibonacci, 263
Fibonacci numbers, 263
field of force, 155
fixed point, 85
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fluid flow, 179
Fourier coefficients, 271
Fourier series, 271
Fourier, J., 271
function of several real variables, 3
function of several variables, ix

G
Gauss, C.F., 192
Gauss–Ostrogradsky theorem, 192
generalized binomial coefficients, 256
Goursat’s lemma, 167
gradient, 44
graph of a function, 3
gravitational field, 155
Green’s theorem, 176
Green, G., 176

H
Hölder summability, 264
Hölder, O.L., 264
Hadamard, J., 253, 293
Hardy, G.H., 224
harmonic series, 195
Heine’s theorem, 27, 70
Heine, H.E., 27
Higher-order derivatives, 46
homogeneous function, 78
homothetic transformation, 104
homotopic curves, 171
hyperplane, 42

I
implicit function theorem, 89
Implicit-function theorem for single vari-

able functions, 81
indefinite quadratic form, 58
infinite series, 193
infinitely differentiable function, 51
injective mapping, 69
inner measure, 95
integrable function, 125, 129
integral, 129
integral criterion, 212
integral of a function, 125
integration by substitution, 140
interior cube, 96
interior point, 8
interleaving, 198
inverse function theorem, 86
irrationality (of π), 350

isolated point, 11
isometry, 103, 116

J
Jacobi, C., 72
Jacobian matrix, 72
Jordan curve theorem, 175
Jordan measurable set, 96
Jordan measure, 96
Jordan, C., 96

L
Lagrange multiplier method, 91
Lagrange, J-L., 91
Landau, E.G.H., 224
Lebesgue inner measure, 342
Lebesgue measurable set, 343
Lebesgue measure, 343
Lebesgue measure zero, 339
Lebesgue outer measure, 342
Lebesgue’s theorem, 341
Lebesgue, H., 339
Leibniz criterion, 213
Leibniz, G.W., 159
length, 96
limit function, 229
limit inferior, 293
limit of a function, 67
limit of a function (finite), 21
limit of a function (infinite), 21
limit of a sequence, 5
limit point, 11
limit superior, 293
Lindelöf’s theorem, 15
Lindelöf, E., 15
line integral, 156
line integral with respect to xj , 157
line integral with respect to arc length, 181
linear function, 35
linear mapping, 70
linear recursion, 263
linear transformation, 70
Lipót Fejér, 272
Lipschitz property, 34
Lipschitz, R.O.S., 34
local extremum, 32
local extremum point, 32
local injectivity theorem, 83
local maximum point, 32
local minimum point, 32
lower integral, 126, 129
lower sum, 124, 129
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M
majorant (of a series), 209
majorant criterion, 209
mean value theorem, 44
measure, 95, 96
Mertens’s theorem, 221
Mertens, F.C.J., 221
mesh of a partition, 131
monomial, 52
multivariable integral, 123, 128

N
negative direction (of a curve), 176
negative part, 203
neighborhood, 8
neighborhood (of a set), 146
Newton, I., 155
Newton–Leibniz formula, 189
Newton–Leibniz formula (for line inte-

grals), 160
nonoverlapping sets, 95
norm (of a vector), 2
norm of a linear map, 75
normal domain, 133
normalized set function, 102
null set, 99
null-homotopic curve, 173

O
one-to-one mapping, 69
open ball, 5
open box, 10
open mapping, 86
open mapping theorem, 86
open set, 11
orthogonal bisector hyperplane, 116
orthogonal linear transformation, 116
orthogonal vectors, 3
orthogonality (of functions), 275
orthonormal vectors, 116
oscillation, 127
oscillatory sum, 127, 130
Ostrogradsky, M.V., 192
outer measure, 95
outer normal, 189
outer normal vector, 182

P
parallelepiped, 112
parametric improper integral, 322

parametric integral, 321
parametric Riemann integral, 321, 322
parametrized surface, 184
partial derivative, 31
partial derivative function, 31
partial sum, 193
partition, 124, 129
Peano curve, 358
Peano, G., 358
pointwise convergent sequence of functions,

229
pointwise convergent series of functions,

239
polygonal line, 14
polynomial (vector-valued), 354
polynomial function, 25
positive (negative) definite quadratic form,

58
positive (negative) semidefinite quadratic

form, 58
positive direction (of a curve), 176
positive part, 203
potential energy, 162
potential function, 162
power series, 219
power series around a point, 254
prime number theorem, 346
primitive function, 160
punctured neighborhood, 22

Q
quadratic form, 58
quotient criterion, 210

R
Raabe’s ratio test, 217
Raabe, J.L., 217
radius of convergence, 252
rational ball, 12
rational function, 25
rectangle, 10
refinement (partition), 129
refinement of a partition, 124
reflection through a point, 104
regular open set, 20
reordering (of a series), 199
replicative function, 286
Riemann function, 132
Riemann’s lemma, 282
Riemann’s reordering theorem, 206
Riemann, G.F.B., 124
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root criterion, 210
rotated paraboloid, 62
rotation, 192

S
saddle surface, 4
scalar product, 3
Schwarz’s theorem, 52
Schwarz, H.A., 2
second order partial derivative, 46
section function, 88
section of a function, 24
section of a set, 108
sector-like region, 145
segment, 13
sequence of bounded variation, 217
series of functions, 239
Sierpiński’s carpet, 108
Sierpiński, W., 108
simple closed curve, 175
simply connected open set, 173
Simpson’s approximation, 318
Simpson T., 318
Simpson’s formula, 321
sink, 180
source, 180
square product, 218
squeeze theorem, 22
star, 19
Stieltjes integral, 157
Stieltjes, T.J., 157
Stirling’s formula, 112
Stirling, J., 112
Stokes’s theorem, 192
Stokes, G.G., 192
strict local maximum point, 32
strict local minimum point, 32
substitution by polar coordinates, 141
successive integration, 138
sum of a series, 239
summable series, 223
surface area, 185
surface integral, 188
surjective linear map, 85

T
Takagi function, 244
Takagi T., 244

tangent hyperplane, 43
tangent line (of a set), 64
tangent plane, 42
Tauber’s theorem, 224
Tauber, A., 224
Taylor polynomial, 55
Taylor series, 249
Taylor’s formula, 55
Taylor’s formula with integral remainder,

316
term by term differentiation, 246
term by term integrability, 245
transcendence of e, 350
transcendental number, 350
transference principle, 22, 68
transference principle for continuity, 24, 68
translation-invariance, 102
triangle inequality, 2
trigonometric polynomial, 277
trigonometric series, 269
trivial estimate, 167
twice differentiable function, 49

U
undirected angle, 175
unicity theorem, 260
uniform convergence (of a parametric

improper integral), 327
uniform convergence (of a sequence of

functions), 231
uniformly bounded series of functions, 241
uniformly continuous function, 27, 70
uniformly convergent series of functions,

239
uniformly equicontinuous sequence of func-

tions, 230
upper integral, 126, 129
upper sum, 124, 129

V
vector, 2
vector product, 184
volume, 96

W
Wallis’ formula, 291
Wallis, J., 291
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Weierstrass criterion, 241
Weierstrass’ (first) approximation theorem,

278
Weierstrass’s approximation theorem, 27
Weierstrass’ second approximation theo-

rem, 277
Weierstrass’s theorem, 26

Weierstrass, K., 7
winding number, 176

Y
Young’s theorem, 47
Young, W.H., 47
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