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Preface

Analysis forms an essential basis of both mathematics and statistics, as well as most
of the natural sciences. Moreover, and to an ever increasing extent, mathematics has
been used to underpin our understanding of the social sciences. It was Galileo’s
insight that “Nature’s great book is written in the language of mathematics.” And it
is the theory of analysis (specifically, differentiation and integration) that was
created for the express purpose of describing the universe in the language of
mathematics. Working out the precise mathematical theory took almost 300 years,
with a large portion of this time devoted to creating definitions that encapsulate the
essence of limit and continuity. This task was neither easy nor self-evident.

In postsecondary education, analysis is a foundational requirement whenever
mathematics is an integral component of a degree program. Mastering the concepts
of analysis can be a difficult process. This is one of the reasons why introductory
analysis courses and textbooks introduce the material at many different levels and
employ various methods of presenting the main ideas. This book is not meant to be
a first course in analysis, for we assume that the reader already knows the funda-
mental definitions and basic results of one-variable analysis, as is discussed, for
example, in [7]. In most of the cases we present the necessary definitions and
theorems of one-variable analysis, and refer to the volume [7], where a detailed
discussion of the relevant material can be found.

In this volume we discuss the differentiation and integration of functions of
several variables, infinite numerical series, and sequences and series of functions.
We place strong emphasis on presenting applications and interpretations of the
results, both in mathematics itself, like the notion and computation of arc length,
area, and volume, and in physics, like the flow of fluids. In several cases, the
applications or interpretations serve as motivation for formulating relevant mathe-
matical definitions and insights. In Chapter 8 we present applications of analysis in
apparently distant fields of mathematics.

It is important to see that although the classical theory of analysis is now more
than 100 years old, the results discussed here still inspire active research in a broad
spectrum of scientific areas. Due to the nature of the book we cannot delve into such
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matters with any depth; we shall mention only a small handful of unsolved
problems.

Many of the definitions, statements, and arguments of single-variable analysis
can be generalized to functions of several variables in a straightforward manner,
and we occasionally omit the proof of a theorem that can be obtained by repeating
the analogous one-variable proof. In general, however, the study of functions of
several variables is considerably richer than simple generalizations of one-variable
theorems. In the realm of functions of several variables, new phenomena and new
problems arise, and the investigations often lead to other branches of mathematics,
such as differential geometry, topology, and measure theory. Our intent is to present
the relevant definitions, theorems, and their proofs in full detail. However, in some
cases the seemingly intuitively obvious facts about higher-dimensional geometry
and functions of several variables prove remarkably difficult to prove in full gen-
erality. When this occurs (for example, in Chapter 5, during the discussion of the
so-called integral theorems) with results that are too important for either the theory
or its applications, we present the facts, but not the full proofs.

Our explicit intent is to present the material gradually, and to develop precision
based on intuition with the help of well-designed examples. Mastering this material
demands full student involvement, and to this end we have included about 600
exercises. Some of these are routine, but several of them are problems that call for
an increasingly deep understanding of the methods and results discussed in the text.
The most difficult exercises require going beyond the text to develop new ideas;
these are marked by (x). Hints and/or complete solutions are provided for many
exercises, and these are indicated by (H) and (S), respectively.

Budapest, Hungary Mikloés Laczkovich
February 2017 Vera T. Sés
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Functions of Several Variables

Functions of several variables are needed in order to describe complex processes.
A detailed meteorological relief map indicating the temperature as it changes during
the day needs four variables: three coordinates of the place (longitude, latitude,
altitude) and one coordinate of the time. The mathematical description of complex
systems, e.g., the motion of gases or fluids, may need millions of variables.

If a system depends on p parameters, then we can describe a quantity determined
by the system using a function that assigns the value of the quantity to the
sequences of length p that characterize the state of the system.

We say that f is a function of p variables if every element of the domain of f is
a sequence of length p. For example, if we assign to every date (year, month, day)
the corresponding day of the week, then we obtain a function of three variables, for
which f (2016, July, 18) = Monday.

In the sequel we will mainly consider functions that depend on sequences of real
parameters.

ix



Chapter 1
R? — R functions

1.1 Euclidean Spaces

In mathematical analysis, points of the plane are associated with ordered pairs of
real numbers, and the plane itself is associated with the set R x R = R2. We will
proceed analogously in representing three-dimensional space. The coordinate sys-
tem in three-dimensional space can be described as follows. We consider three lines
in space intersecting at a point that are mutually perpendicular, which we call the
x-, y-, and z-axes. We call the plane spanned by the - and y-axes the xy-plane, and
we have similar definitions for the zz- and yz-planes. We assign an ordered triple
(a, b, ¢) to every point P in space, in which a, b, and ¢ denote the distance (with pos-
itive or negative sign) of the point from the yz-, xz-, and zy-planes, respectively.
We call the numbers a, b, and c the coordinates of P. The geometric properties
of space imply that the map P — (a, b, ¢) that we obtain in this way is a bijection.
This justifies our representation of three-dimensional space by ordered triples of real
numbers.

Thus if we want to deal with questions both in the plane and in space, we need
to deal with sets that consist of ordered p-tuples of real numbers, where p = 2 or
p = 3. We will see that the specific value of p does not usually play a role in the
definitions and proofs that arise. Therefore, for every positive integer p we can define
p-dimensional Euclidean space, by which we simply mean the set of all sequences
of real numbers of length p, with the appropriately defined addition, multiplication
by a constant, absolute value, and distance. If p = 1, then this Euclidean space is
just the real line; if p = 2, then it is the plane; and if p = 3, then it is 3-dimensional
space. For p > 3, p-dimensional space does not have an observable meaning, but it
is very important for both theory and applications.

Definition 1.1. RP denotes the set of ordered p-tuples of real numbers, that is,
RP = {(z1,...,2p): ®1,...,2p € R}
© Springer Science+Business Media LLC 2017 1
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2 1 RP — R functions

The points of the set RP are sometimes called p-dimensional vectors. The sum of
the vectors x = (x1,...,xp) and y = (y1,...,Yp) is the vector

SL'-’-yZ (x1+y17"°71.p+yp)7
and the product of the vector x and a real number c is the vector
c-x=(cx1,...,cTp).

The absolute value of the vector x is the nonnegative real number
_ 2 2
|z| = /27 + - + 22

(The absolute value of the vector x is also called the norm of the vector x. In order
to be consistent with the usage of [7], we will use the term absolute value.)

It is clear that for all z € RP and ¢ € R we have |cz| = || - |z|. It is also easy to
see that if x = (x1,...,xp), then
lz| < |z1| + -+ |2yl (1.1)

The triangle inequality also holds:
lz+yl <lz|+ 1yl (2,5 €R?). (1.2)

To prove this it suffices to show that |z + y|? < (o] + |y|)?, since both sides are
nonnegative. By the definition of the absolute value this is exactly

(T14+31)° + -+ (zp +yp)° <

(T4 +a))+2- :c%—i—---—kxz%-\/y%+~-~+y§+yf+-~-+y§7

that is,

x1y1+...+xpyp§ x%+.+x%\/y%+..+y12ﬂ
which is the Cauchy'-Schwarz’~Bunyakovsky? inequality (see [7, Theorem 11.19]).

The distance between the vectors « and y is the number |2 — y|. By (1.2) it is
clear that

el = lyl| <le—yl  and  |o—y[<|o—z|+ |z -yl

! Augustin Cauchy (1789-1857), French mathematician.
2 Hermann Amandus Schwarz (1843—-1921), German mathematician.
3 Viktor Yakovlevich Bunyakovsky (1804—1889), Russian mathematician.
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for all x, y, 2 € RP. We can consider these to be variants of the triangle inequality.
If we apply (1.1) to the difference of the vectors z = (x1,...,2p) and y =
(y1,-..,Yp), then we get that

2| = lyll <z =yl <lzr =yl + -+ |2p — ypl. (1.3)

The scalar product of the vectors z = (x1,...,2p) and y = (y1,...,Yp) is the
real number >, z;y;, which we denote by (z, y). One can prove that if 2 # 0 and
y # 0, then (z,y) = |z| - |y| - cos o, where o denotes the angle enclosed by the two
vectors. (For p = 2 see [7, Remark 14.57].) We say that the vectors =,y € RP are
orthogonal if (z,y) = 0.

1.2 Real Functions of Several Variables and Their Graphs

We say that f is a p-variable real function if D(f) C R? and R(f) C R. (Recall
that D(f) denotes the domain and R(f) denotes the range of the function f.)

Similarly to the case of single-variable functions, multivariable functions are
best illustrated by their graphs. The graph of a function f: H — R is the set
of pairs (u, f(u)), where w € H. If H C RP, then graph f C RP x R; in other
words, graph f is the set of pairs ((x1,...,2p), Tpt1), where (z1,...,2,) € H
and zp41 = f(z1,...,xp). In this case it is useful to “identify” R” x R as the set
RP*1 in the sense that instead of the pair ((z1, ..., %},), Zp+1), we consider the vec-
tor (z1,...,%p, Tpt1) € RP*!. From now on, if f: H — R, where H C RP, then
by the graph of f we mean the set

graph f = {(z1,...,%p, Tpt1): (T1,...,2p) € Hand zpyq1 = f(z1,...,2p)}

For example, if f: H — R, where H C R?, then graph f C R>. Just as we can
visualize the graph of a function as a curve in the plane in the p = 1 case, we can
also visualize the graph of a function as a surface in three-dimensional space in the
p = 2 case.

Aside from using the usual coordinate notation (x1, x3) and (z1, 22, x3), we will
also use the traditional notation (z,y) and (z,y, z) in the p = 2 and p = 3 cases,
respectively.

Example 1.2. 1. The graph of the constant function f(z,y) = cis a horizontal plane
(in other words, it is parallel to the zy-plane). (See Figure 1.1.)

2. The graph of the function f(z,y) = 22 is an infinite trough-shaped surface,
whose intersections with the planes orthogonal to the y-axis are parabolas. (See
Figure 1.2.)
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1.1. Figure 1.2. Figure

AR S
Wy
Wi
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1.3. Figure 1.4. Figure

3. The graph of the function f(z,y) = |(x,y)| = +/2?+y? is a cone. (See
Figure 1.3.)

4. The graph of the function f(x,y) = xy is called a saddle surface. (See
Figure 1.4.)

We may ask whether multivariable analysis is “more difficult” or more compli-
cated than its single-variable counterpart. The answer is twofold. On the one hand,
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the answer is that it is not harder at all, since it makes no difference whether we
define our mappings* on subsets of R or on subsets of R”. On the other hand, the
answer is “to a great extent,” since we have “much more room” in a multidimen-
sional space; that is, the relative positions of points in space can be much more
complicated than their relative positions on a line. On the real line, a point can be to
the left or to the right to another point, and there is no other option.

There is truth to both answers. While it is true that the relative positions of
points can be much more complicated in a multidimensional space, this compli-
cation mostly falls in the topics of geometry and topology. For a good portion of our
studies of multivariable analysis we can follow the guideline that more variables
only complicate the notation but not the ideas themselves. We will warn the reader
when this guideline is no longer applicable.

1.3 Convergence of Point Sequences

Definition 1.3. We say that a sequence (x,,) of the points z,, € R? converges to
a point a € R? if for every € > 0 there exists ng such that |z, — a| < € holds for
every n > ng. We denote this fact by lim,, o, #,, = a or simply by z,, — a. We say
that the sequence of points (z,,) is convergent if there exists an a € R? to which it
converges. In this case we say that a is the limit of the sequence (x,,). If a sequence
of points is not convergent, then it is divergent.

We denote by B(a,r) the open ball centered at a with radius r: B(a,r) =
{r € RP: |x —a| <r}. Note that if p =1, then B(a,r) is the open interval
(a —r,a+r),and if p = 2, then B(a,r) is the open disk with center ¢ and radius
T.

Theorem 1.4. The following statements are equivalent:
1) z, — a

(ii) For every € > 0 there are only finitely many points of the sequence (x,,) that
fall outside of the open ball B(a, ).

(iii) |zn —al — 0.

Proof. The implication (i)=-(ii) is clear from the definition of x,, — a.

Suppose (ii), and let € > 0 be given. Then there is an ng such that |z, — a| < ¢
holds for every n > ng. By the definition of the convergence of sequences of real
numbers, this means that |z, — a| — 0; that is, (iii) holds.

Now suppose (iii), and let € > 0 be given. Then there is an ng such that
|x,, — a| < e holds for every n > ng. By the definition of the convergence of
sequences of points of R?, this means that x,, — a; that is, (i) holds. O

The following theorem states that the convergence of a sequence of points is
equivalent to the convergence of the sequences of their coordinates.

4 We use the terms function and mapping interchangeably.
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Theorem 1.5. Let x,, = (zp1,...,Tnp) € RP foreveryn =1,2,..., and let a =
(a1, ..., ap). The sequence (x,,) converges to a if and only iflim,,_. ©, ; = a; for
everyt=1,...,p.

Proof. Suppose x,, — a. Since 0 < |z, ; — a;| < |z, —a| forevery i =1,...,p
and |z, — a| — 0, we have that |z,, ; — a;| — 0 follows from the squeeze theorem
(see [7, Theorem 5.7]).

On the other hand, if |z,, ; — a;| — 0 forevery i = 1, ..., p, then the inequality

p
|z —al < Z |T0,i — ai
1=1

and the repeated use of the squeeze theorem give us x,, — a. (]

We can generalize several theorems for sequences of real numbers to sequences
of points of R? with the help of the above theorem. The proofs of the next two the-
orems (which are left to the reader) are just applications of the respective theorems
for sequences of real numbers to sequences of coordinates of a point-sequence.

Theorem 1.6.

(1) If a sequence of points is convergent, then the deletion of finitely many of its
terms, addition of finitely many new terms, or the reordering of its terms affect
neither the convergence of the sequence nor the value of its limit.

(ii) If a sequence of points is convergent, then its limit is unique.

(iii) If a sequence of points converges to a, then each of its subsequences also con-

verges to a.
(]

Theorem 1.7. If x,, — a and y,, — b, then x,, +y, — a+band c-x, — c-q,
for every c € R. (]

Theorem 1.8. (Cauchy’s criterion) A sequence of points (x.,) is convergent if and
only if for every € > 0 there exists an index N such that |x,, — x| < € for every
n,m > N.

Proof. If |z, — a| < e forevery n > N, then |x,, — 2| < 2¢ forevery n,m > N.
This proves the “only if” direction of our statement.

Lete > 0be given, and suppose that |z,, — x,,,| < ¢ foreveryn,m > N.Ifx,, =
(Tn1s- oy Znyp) (n=1,2,...), thenforevery i = 1,...,pand n,m > N we have

|xn,i - xm,i| < |-Tn - .Tm| < €.
This means that for every fixed i = 1,. .., p the sequence (z,,;) satisfies Cauchy’s

criterion (for real sequences), and thus it is convergent. Therefore, (x,,) is conver-
gent by Theorem 1.5. (]
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We say that a set A C R? is bounded if there exists a box [a1,b1]% ... X[ay, by]
that covers (contains) it. It is obvious that a set A is bounded if and only if the
set of the ¢th coordinates of its points is bounded in R, for every ¢ = 1, ..., p (see
Exercise 1.1).

A sequence of points (x,,) is bounded if the set of its terms is bounded.

Theorem 1.9. (Bolzano’—Weierstrass® theorem) FEvery bounded sequence of
points has a convergent subsequence.

Proof. Let us assume that the sequence of points (x,,) is bounded, and let z,, =
(Tn,1s-- -+ Znyp) (n=1,2,...). The sequence of the ith coordinates (x,, ;) is boun-
ded for every ¢ = 1,...,p. Based on the Bolzano—Weierstrass theorem for real
sequences (see [7, Theorem 6.9]), we can choose a convergent subsequence (zy,, 1)
from (z,,1). The sequence (z,,2) is bounded, since it is a subsequence of the
bounded sequence (z,, 2). Thus, we can choose a convergent subsequence (a:nkl 2)
of (zpn,2). If p> 3, then (LEnkl,g) is bounded, since it is a subsequence of the
sequence (x,, 3). Therefore, we can choose another convergent subsequence again.
Repeating the process p times yields a subsequence (m;) of the indices for which

the ith coordinate sequence of (x,,, ) is convergent for every i = 1, ..., p. Thus, by
Theorem 1.5, the subsequence (z,,,) is convergent. (|
Exercises

1.1. Prove that for every set A C RP, the following statements are equivalent.

(a) The set A is bounded.

(b) There exists an 7 > 0 such that A C B(0, r).

(¢c) Forall i =1,...,p the ith coordinates of the points of A form a bounded set
in R.

1.2. Show that

(a) if z, — a, then |z,| — |a;
(b) if x,, — a and y, — b, then (x,,y,) — (a,b).

(Here x,,, Y, € R? and (x,,, y,,) is the scalar product of z,, and y,.)

1.3. Show that z,, € RP does not have a convergent subsequence if and only if

1.4. Show that if every subsequence of (x,, ) has a convergent subsequence converg-
ing to a, then z,, — a.

1.5. Show that if z,, € RP and |2,,41 — | < 27" for every n, then (z,,) is con-
vergent.

5 Bernhard Bolzano (1781-1848), Italian-German mathematician, and
6 Karl Weierstrass (1815-1897), German mathematician.
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1.6. Let xo = (0,0), Tpt1 =2, +(27",0) if n is even, and x,41 = 2, +
(0,27™) if n is odd. Show that (z,,) is convergent. What is its limit?

1.7. Construct a sequence z,, € R? having a subsequence that converges to = € R?
for every x.

1.4 Basics of Point Set Theory

In order to describe the basic properties of subsets of the space RP, we need to
introduce a few notions. We define some of these by generalizing the corresponding
notions from the case p = 1 to an arbitrary p. Since we do not exclude the p =1
case from our definitions, everything we say below holds for the real line as well.

First, we generalize the notion of neighborhoods of points. The neighborhoods
of a point a € RP are the open balls B(a,r), where r is an arbitrary positive real
number.

By fixing an arbitrary set A C RP, we can divide the points of R” into three
classes.

The first class consists of the points
that have a neighborhood that is a sub-
set of A. We call these points the interior
points of A, and denote the set of all inte-
rior points of A by int A. That is,

int A={z eR:3r >0, B(z,r) C A}

1.5. Figure

The second class consists of those points that have a neighborhood that is disjoint
from A. We call these points the exterior points of A, and denote the set of all
exterior points of A by ext A. That is,

ext A={x € RP: 3r >0, B(z,r)N A= 0}.

The third class consists of the points that do not belong to any of the first two classes.
We call these points the boundary points of A. In other words, a point z is a bound-
ary point of A if every neighborhood of x has a nonempty intersection with both A
and the complement of A. We denote the set of all boundary points of A by 0A.
That is,

OA={xz €RP:Vr >0, B(z,r)NA#Dand B(z,r)\ A # 0}.

It is easy to see that ext A = int (RP \ A), int A = ext (RP\ A), and 0A =
O(RP \ A) hold for every set A C RP.

Example 1.10. 1.a.Every point of the open ball B(a, r) is an interior point. Indeed,
if e B(a,r), then |[r—a|<r. Let d=r—|z—al. Now >0 and
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B(z,0) C B(a,r), since y € B(z,d) implies |y — x| < §, and thus
ly—al<ly—a|+|z—al <d+[z—al=r,

ie.,y € B(a,r).
1.b. If |x —a| > r, then x is an exterior point of the open ball B(a,r). Indeed,
n=|r—al—r>0 and B(z,n)N B(a,r) =0, since if y € B(x,n), then
ly — | < nand

ly—al =z —al—|y—z[>|z—a|—n=r

1.c. We now prove that the boundary of B(a,r) is the set S(a,r) = {z € RP:
| — a| = r} (Figure 1.6). (In the case p = 1, the set S(a, r) consists of the points
a — r and a + r, while in the case p = 2 the set S(a, r) consists of the boundary of
the circle with center ¢ and radius r. In the case p = 3, S(a, r) contains the surface
of the ball with center a and radius r.)

Indeed, if z € S(a,r), then = ¢ B(a,r); therefore, every neighborhood of z has
nonempty intersection with the complement of B(a, ). We show that every neigh-
borhood of x also has nonempty intersection with B(a,r). Intuitively, it is clear
that for every € > 0, the open sphere B(x,¢) contains those points of the segment
connecting a and x that are close enough to x.

To formalize this idea, it is enough to show that for a well-chosen 7 € (0, 1) we
have z — t(x — a) € B(a,r) N B(x,¢) if t € (0,7n). Since

[z —tlx—a))—al=1—-t) - |z—al=(1—t)-r<r,
it follows that z — t(x — a) € B(a,r). On the other hand,
[(x —t(x —a)) —z|=t-|Jz—a/<n-r<e

forn < e/r, and then x — t(z — a) € B(z,¢) also holds for every ¢ € (0, ).

R

S

i~
~ O

1.6. Figure 1.7. Figure
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2. By an axis-parallel rectangle in R”, or just a rectangle or a box for short, we
will mean a set of the form

[al,bl] X o+ X [ap,pr

where a; < b; forevery i = 1, ..., p. The boxes in the Euclidean spaces R, R?, and
IR3 are the nondegenerate and bounded closed intervals, the axis-parallel rectangles,
and the rectangular boxes, respectively.

The interior of the box

R = [al,bl] X ... X [ap,bp] (14)

is the open box
(al,bl) X ... X (ap,bp). (1.5)
For every point z = (x1, ..., ;) of this open box, we have a; < x; < b; for every

t=1,...,p. If § > 0 is small enough, then
a; <w;—0<x;<xi+0<b; (1.6)

foreveryi =1,...,p. Then B(z,d) C R,sincey = (y1,--.,Yp) € B(x,d) implies
ly — x| < 6, which gives |y; — x;| < § for every 4, and thus, by (1.6), a; < y; < b;
for every 1.

If the point ¢ = (21, ..., ;) is not in the open box defined in (1.5), then x is not
an interior point of R. Indeed, if there exists an ¢ such that z; < a; or =; > b;, then
we can find an appropriate neighborhood of x that is disjoint from R. Therefore,
in this case x is an exterior point. On the other hand, if z € R and there exists ¢
such that x; = a; or x; = b;, then every neighborhood of x intersects both R and its
complement, and thus z is a boundary point of R (Figure 1.7).

3. Let QP be the set of those points x € RP for which every coordinate of x is
rational. We show that

int QP = ext QP = .

First, we prove that QP intersects every box in RP. Indeed, we know that the set
of rational numbers is everywhere dense; i.e., there are rational numbers in every
interval. (See [7, Theorem 3.2].) If R is the box defined in (1.4) and z; € [a;,b;] N Q

foreveryi =1,...,p, thenthe pointx = (x1, ..., zp) is an element of both Q and
R. Thus, QP intersects every box. From this it follows that QP intersects every ball.
This is true, since every ball contains a box: if a = (a1, ..., a,) and r > 0, then for

every n < r/p,
[a1 —n,a1 +n] X ... X [ap —n,a, + 1] C B(a,r). 1.7)

Indeed, if © = (x1,...,2p) is an element of the left-hand side of (1.7), then
|x; — a;| < n for each ¢, and thus
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p
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i=1

and x € B(a, ). We have proved that QP intersects every ball, and thus ext QP = ().

Now we prove that each ball B(a, r) has a point that is not an element of Q7. We
need to find a point in B(a, ) that has at least one irrational coordinate. We can,
however, go further and find a point that has only irrational coordinates. We know
that the set of irrational numbers is also dense everywhere (see [7, Theorem 3.12]).
Thus we can repeat the same steps as above, and then int QP = () follows.

In the end we get that QP has neither interior nor exterior points, i.e., every point
z € RP is a boundary point of QP.

Definition 1.11. We say that a point a € R? is a limit point of the set A C R? if
every neighborhood of the point a contains infinitely many points of A. We call the
set of all limit points of the set A the derived set of A, and denote it by A’.

We say that a point a € RP is an isolated point of A if there exists r > 0 such
that B(a,r) N A = {a}.

Remark 1.12. 1. The limit points of A are not necessarily elements of the set A. For
example, every point y that satisfies |y — x| = r is a limit point of the ball B(x,r)
(see Example 1.10.1.c). Thus S(a,r) C B(a,r). However, S(a,7) N B(a,r) = 0.
2. By our definitions, the isolated points of A need to be elements of A. It is easy
to see that the set of all isolated points of A is nothing other than the set A\ A’. It
follows that every point of A is either an isolated point or a limit point of A.

3. It is also easy to see that a point a is a limit point of the set A if and only if there
exists a sequence x,, € A \ {a} that converges to a.

We say that the set A C RP is open if every point of A is an interior point of A,
i.e., if A = int A. The open balls and open boxes are indeed open sets by Example
1.10.1a and Example 1.10.2. The empty set and R? are also open.

Obviously, the set A is open if and only if AN HA = ().

Theorem 1.13. The following hold for an arbitrary set A C RP:

(i) int A and ext A are open sets;

(ii) int A is the largest open set contained by A.

Proof. Part (i) follows from the definition and from the fact that every ball is an
open set.

If G C Aisopen and x € G, then there exists » > 0 such that B(x,r) C G. In
this case, B(x,r) C A also holds, and thus = € int A. We have proved that int A
contains every open set contained by A. Since int A is also open by part (i), it
follows that (ii) holds. ([l

Theorem 1.14. The intersection of finitely many open sets and the union of arbi-
trarily many open sets are also open.
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Proof. If A and B are open sets and z € AN B, then x € int A, and x € int B
means that there exist positive numbers r and s such that B(z,7) C Aand B(z,s) C
B. In this case, B(z, min(r,s)) C AN B, and thus = € int (AN B). We have
proved that every point of AN B is an interior point of AN B, and thus the set
AN B is open. By induction we have that the intersection of n open sets is open,
for every n € NT.

Let GG; be an open set for each ¢ € I, where I is an arbitrary (finite or infinite)
index set, and let G = Uie[ G;. If x € G, then z is in one of the sets G;,,. Since
G, is open, it follows that € int G;,, i.e., B(x,r) C G, for some r > 0. Now
B(z,r) C G holds, and thus = € int G. This is true for every € G, which implies
that the set G is open. O

Remark 1.15. The intersection of infinitely many open sets is not necessarily open.
For example, the intersection of the sets B(z, 1/n) is the singleton {z}. This set is
not open, since its interior is empty.

We say that a ball B(x,r) is a rational ball if each of the coordinates of its
center x, along with its radius, is a rational number.

Lemma 1.16. Every open set is the union of rational balls.

Proof. Let G be an open set and « € G. Then B(x,r) C G holds for some r > 0.
As shown in Example 1.10.3, every ball contains a point with rational coordinates.
Let y € B(x,r/2) be such a point. If s € Q and |z — y| < s < r/2, then B(y, )
is a rational ball that contains z, since |« — y| < s. On the other hand, B(y, s) C
B(z,r), since z € B(y, s) implies

lz—z| <|z—yl+|ly—z| <s+(r/2) <

We have proved that every point in G is in a rational ball contained by G. There-
fore, GG is equal to the union of all the rational balls it contains. O

We say that a set A C R” is closed if it contains each of its boundary points,
i.e., 0A C A. Thus every box is closed. The set B(a,r) = {x € RP: |z —a| < r}
is also closed. We call this set the closed ball with center a and radius 7.

Theorem 1.17. For every set A C RP the following are equivalent:

(i) Aisaclosed set.
(ii) RP\ A is an open set.
(iii) If x,, € A for every n and x,, — a, then a € A.
Proof. ())=-(ii): If A is closed and = ¢ A, then = ¢ int A and x ¢ JA, and thus
z € ext A. Thus B(z,7) N A = 0 holds for some r > 0, i.e., B(z,r) C RP \ A.

We have shown that every point of R” \ A is an interior point of R \ A; that is,
RP \ A is open.
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(i1)=-(iii): We prove by contradiction. Assume that x,, — a, where z,, € A for every
n,but a ¢ A, ie., a € RP\ A. Since RP \ A is open, B(a,r) C RP \ A for some
r > 0. On the other hand, as z,, — a, we have x,, € B(a,r) C R? \ A for every n
large enough. This is a contradiction, since z,, € A for every n.

(ii))=-(i): Let a € DA. Then for every n € N we have B(a, 1/n) N A # (. Choose
a point x,, € B(a,1/n) N A for each n. Then x,, — a, and thus a € A by (iii). We
have proved that 0A C A, i.e., A is closed. O

It follows from our previous theorem that the boundary of every set is a closed
set. Indeed, A = RP \ (int A U ext A), and by Theorems 1.13 and 1.14, int A U
ext A is open. It is also easy to see that the set of limit points of an arbitrary set is
closed (see Exercise 1.22).

Theorem 1.18. The union of finitely many closed sets and the intersection of arbi-
trarily many closed sets is also a closed set.

Proof. This follows from Theorems 1.14 and 1.17. O

Obviously, there are sets that are neither open nor closed (for example, the set Q
as a subset of R). On the other hand, the empty set and R? are both open and closed
at the same time. We will show that there is no other set in R” that is both open and
closed.

For every a,b € RP we denote by [a,b] the set {t € [0,1]: a +t(b—a)}. It is
clear that [a, b] is the segment connecting the points a and b.

Theorem 1.19. If ACRP, a € A and b € RP \ A, then the segment [a,b] inter-
sects the boundary of A, i.e., [a,b] N A # (.

Proof. Let T = {t € [0,1]: a + t(b — a) € A}. The set T' is nonempty (since 0 €
T) and bounded; thus it has a least upper bound. Let ¢, = sup 7. We show that the
point xg = a + to(b — a) is in the boundary set of A. Obviously, for every € > 0, the
interval (tg — e, to + ) intersects both T and [0, 1] \ 7. (This is also true in the case
to=1,since 1 ¢ T)Ift € (tg — €,tp + ) NT, then the point z = a + (b — a) is
an element of A, and |x — x¢| < € |b — a|]. However, if ¢t € (tg —e,t0 +¢)\ T,
then the point y = a + ¢(b — a) is not an element of A, and |y — x¢| < e - |b— al.
We have proved that every neighborhood of x( intersects both A and the comple-
ment of A, i.e., g € 0A. O

Corollary 1.20. Ifa set A C RP? is both open and closed, then A = () or A = RP.

Proof. If A is an open set, then AN JA = (). If, however, A is a closed set, then
OA C A. Only if 9A = () can these conditions both hold. Now Theorem 1.19 states
that if ) # A # RP, then A # (). a

The connected open sets play an important role in multivariable analysis.

Definition 1.21. We say that an open set G C R? is connected if G cannot be
represented as the union of two disjoint nonempty open sets.
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Theorem 1.22.

(i) An open set G is connected if and only if every pair of its points can be con-
nected with a polygonal line’ contained entirely in G.

(i1) Every open set can be written as the union of pairwise disjoint connected open
sets (the number of which can be finite or infinite).

Proof.

Let G C RP be an open set. We call the points

z,y € G equivalent if they can be connected

by a polygonal line that lies entirely in G.

We will denote this fact by x ~ y. Obviously,

this is an equivalence relation in G. If z € G,

then B(x,r) C G for some r > 0. The point

x is equivalent to every point y of B(z,r),

since [z,y] C B(z,r) C G. It follows that every 1.8. Figure
equivalence class (the set of points equivalent to

an arbitrary fixed point) is an open set. Since the different equivalence classes are
disjoint, we have a system of pairwise disjoint open sets whose union is G.

If G is connected, then there is only one equivalence class, for otherwise, we
could write G as the union of two disjoint nonempty open sets (e.g., take a single
class and the union of the rest). Thus we have proved that if GG is connected, then
every pair of its points are equivalent to each other.

To prove the converse, let us assume that every pair of points in G are equivalent
to each other, but GG is not connected. Let G = A U B, where A and B are nonempty
disjoint open sets. Let x € A, y € B, and let 1" be a polygonal line connecting the
two points. Let 7' be the union of the segments [z;_1,2;] (i =1,...,n), where
xo =z and x,, = y. Since x¢ € A and z,, ¢ A, there exists ¢ such that z;_; € A
and z; ¢ A. The segment [z;_1, x;] contains a boundary point of A by Theorem
1.19. This is impossible, since every point of [z;_1,x;] is either an exterior or
an interior point of A, as implied by [z;_1,2;] C G = AU B. This contradiction
proves (i).

We showed that an arbitrary open set G can be written as the union of pairwise
disjoint open sets GG;, where each GG; contains every point from the same equivalence
class. We also proved that each G is also a connected set, which proves (ii). (Il

We call the connected open sets domains.

The proof of Theorem 1.22 also shows that the decomposition in part (ii) of the
theorem is unique: the open sets of the composition are just the equivalence classes
of the x ~ y equivalence relation. We call the domains of this decomposition of the
set GG the components of G.

Definition 1.23. We call the set A U O A the closure of the set A, and use the nota-
tion cl A.

7 By a polygonal line we mean a set of the form [ag,a1] U [a1,a2]U. ..U [an—1,an], where
ao, . .. ,an are arbitrary points in R™.
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Theorem 1.24. For an arbitrary set A C RP, the following hold.

(i) the point x is in cl A if and only if every neighborhood of © intersects A;
(i) clA=AUA;
(ili) cl A=RP\ ext A=RP\ int (RP\ A);

(iv) cl A is the smallest closed set containing A.

Proof. We leave the proof of (i)—(iii) to the reader, while (iv) follows from (iii) and
Theorem 1.13. O

Our next theorem is a generalization of Cantor’s axiom?® (see [7, p- 33]). Note
that Cantor’s axiom states only that if the sets A; D Ay D ... are closed intervals in
R, then their intersection is nonempty. As the following theorem shows, it follows
from Cantor’s axiom and from the other axioms of the real numbers that the state-
ment is also true in R? (for every p) and for much more general sets. From now on,
we consider only subsets of RP.

Theorem 1.25. (Cantor’s Theorem) If the sets Ay D As D ... are bounded,
closed, and nonempty, then the set (-, A,, is also nonempty.

Proof. Choose a point x,, from each set A,,. The sequence (,,) is bounded, since
it is contained in the bounded set A;. The Bolzano—Weierstrass theorem (Theo-
rem 1.9) states that (x,,) has a convergent subsequence. Let (z,,, ) be one such sub-
sequence, and let its limit be a. We show that a € (), A,.

Let n be fixed. For k large enough, we have nj > n, and thus z,,, € A4, C A,.
Therefore, the sequence (zy, ) is contained in A,,, except for at most finitely many
of its points. Since A,, is closed, we have a € A,, (Theorem 1.17). Also, since n
was arbitrary, it follows that a € (2, A,,. ]

Theorem 1.26. (Lindelof’s’ Theorem) If the set A is covered by the union of
some open sets, then we can choose countably many of those open sets whose union
also covers A.

Lemma 1.27. The set of rational balls is countable.

Proof. Let (r,,)22; be an enumeration of the rational numbers. If = = (r,,, ...,
Tp,)and r = rp,, then we call ny + ... 4 n, + m the weight of B(z, r). Obviously,
there are only finitely many balls with a given weight w for every w > p+ 1. It
follows that there exists a sequence that contains every rational ball. Indeed, first
we enumerate the rational balls with weight p + 1 (there is at most one such ball).
Then we list the rational balls with weight p + 2, and so on. In this way we list every
rational ball in a single infinite sequence, which proves that the set of rational balls
is countable. 0

8 Georg Cantor (1845-1918), German mathematician.
9 Ernst Lindel6f (1870-1946), Finnish mathematician.
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Remark 1.28. The proof above also shows that the set QP (the set of points with
rational coordinates) is countable. Combining this result with Example 1.10.3, we
get that there exists a set in R? that is countable and everywhere dense.

Proof of Theorem 1.26. Let (B,,)22; be an enumeration of the rational balls. (By
Lemma 1.27, there is such a sequence.)

Let G be a system of open sets whose union covers A. For every ball B,, that is
contained by at least one of the open sets G € G we choose an open set G, € G such
that B,, C G,. In this way we have chosen the countable subsystem {G, } of G. The
union of the sets of this subsystem is the same as the union of all sets in G. Indeed,
if x € |G, then there is a set G € G containing x. By Lemma 1.16, there is a ball
B, such that z € B,, C G. Since B,, C G,, holds, it follows that z € | J,,_; G».

Therefore, if the union of G covers A, then the union of the sets G,, also
covers A. O

Example 1.29. 1. The balls B(0,r) cover the whole space R?. Lindelof’s theorem
claims that countably many of these also cover R?, e.g., | J;-; B(0,n) = RP. On
the other hand, it is obvious that finitely many of the balls B(0,r) cannot cover the
whole of RP.

2. The open sets G,=RP\B(0,r)={x €RP: |z| >r} cover the set
A =RP \ {0}. Lindel6f’s theorem claims that countably many of these also cover
Aeg, U, G1/n = A. On the other hand, it is obvious that finitely many of the
sets GG,- do not cover A.

The examples above show that we cannot replace the word “countable” by
“finite” in Lindelof’s theorem. That is, we cannot always choose a finite subcov-
ering system from a covering system of open sets. The sets that satisfy this stronger
condition form another important class of sets.

Definition 1.30. We call a set A C R? compact if we can choose a finite covering
system from each of its covering systems of open sets.

Theorem 1.31. (Borel’s'® Theorem) A set A C RP is compact if and only if it is
bounded and closed.

Proof. Let A be compact. Since A C R? = |J;~_, B(0,n), there exists N such that
AcC Ule B(0,n) = B(0, N) (this follows from the compactness of A). Thus A
is bounded.

Now we prove that A is closed. We shall do so by showing that R? \ A is open.
Leta € RP\ A. Then

(@

ACRP\{a} = (R”\ B(a,1/k))

k

1

10 Emile Borel (1871-1956), French mathematician.
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is an open cover of A, and then, by the compactness of A, there exists an integer K
such that

K
Ac | R\ B(a,1/k)) = R\ B(a,1/K).
k=1

Thus B(a,1/K)NA={( and B(a,1/K) C RP\ A. Since a € RP \ A was arbi-
trary, this proves that RP \ A is open.

Now suppose that A is bounded and closed; we shall show that A is compact.
Let G be a system of open sets covering A. By Lindelof’s theorem there exists a
countable subsystem {G1, Ga, ...} of G that also covers A. Let

FnA\OGiArT(]RP\OGi)

for each n. The sets F;, are closed (since |J]_, G; is open, A,, = R\ JI, G;
is closed, and thus F,, = AN A, is also closed), and they are bounded (since
they are contained in A), and F; D Fy D ... holds. If the sets Fj, are all non-
empty, then by Cantor’s theorem, their intersection A \ Uzoil G is also nonempty.
However, this is impossible, since A C Ufil G;. Thus, there exists n such that
F, =A\U;_, Gi = 0; thatis, A C |J;"_, G;. This shows that finitely many of the
sets G; cover A. O

If A and B are nonempty sets in R?, then the distance between A and B is
dist(A4, B) = inf{|z —y|: z € A, y € B}.

The distance between two disjoint closed sets can be zero (see Exercise 1.36). Our
next theorem shows that this is possible only if neither A nor B is bounded.

Theorem 1.32. Let A and B be disjoint nonempty closed sets, and suppose that at
least one of them is bounded. Then

(i) there exist points a € A and b € B such that dist(A, B) = |
(i) dist(A, B) > 0.

Proof. Let dist(A, B) = d, and let the points a,, € A and b,, € B be chosen such
that |a, — by| < d+ (1/n) (n =1,2,...). Since at least one of the sets A and B is
bounded, it follows that both of the sequences (a,,) and (b,,) are bounded.

By the Bolzano—Weierstrass theorem (Theorem 1.9) we can select a convergent
subsequence of (a,,). Replacing (a,,) by this subsequence, we may assume that (a, )
itself is convergent. Then we select a convergent subsequence of (b,,). Turning to
this subsequence, we may assume that (a,,) and (b,,) are both convergent.

If a,, > aand b, — b, then a € A and b € B, since A and B are both closed.
Now |a — b| = lim;, 0 |an, — by| < d. Using the definition of the distance between
sets, we get |a — b| > d, and thus |a — b| = d. This proves (i), while (ii) follows
immediately from (i). [l

, and
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Exercises

1.8. Let p = 2. Find int A, ext A, and JA for each of the sets below.

@ {(z,y) eR*: 2,y >0, x+y<1};
b) {(z,0)eR%:0< 2 <1}
© {(z,y) eR?:z=1/n(n=1,2,..),0<y <1}

(a) 1‘ (c) 1“.

() X

1.9. Figure

1.9. Find every set A C RP such that int A has exactly three elements. (S)

1.10. Show that 9(AU B) C 0AUIB and d(AN B) C A U 9B hold for every
A, B C RP-re. (S)

1.11. Is there a set A C R? such that 9A = {(1/n,0): n =1,2,...}?
1.12. Let A C R? be a closed set. Show that A = OH for a suitable set H C R2.

1.13. Show that 9 A C 0A for every set A C RP. Also show that 00A = 0A is
not always true.

1.14. Show that if the set A C RP is open or closed, then d9A = 0A and
int 9A = 0.

1.15. Show that the union of infinitely many closed sets is not necessarily closed.

1.16. Show that every open set of RP can be written as the union of countable many
boxes.

1.17. What are the sets whose boundary consists of exactly three points?

1.18. Show thatif A C RP?, where p > 1, and if QA is countable, then one of A and
RP \ A is countable.
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1.19. Which are the sets satisfying
(a) int A =0A?

(b) int A =cl A?

(c) ext A=cl A?

1.20. Show that every infinite bounded set has a limit point.

1.21. What are the sets with no limit points? What are the sets with exactly three
limit points?

1.22. Show that for every set A C RP, the set A’ is closed. (S)
1.23. Find every set A C R? that satisfies A’ = A and (R?\ 4) = R? \ A.

1.24. Let A C R? be bounded, G C R? open, and let A’ C G. Show that A \ G is
finite.

1.25. Construct a set A such that the sets A, A’, A", etc. are distinct.
1.26. Is there a bounded infinite set every point of which is an isolated point?
1.27. Show that the number of isolated points of an arbitrary set is countable. (H)

1.28. A set A C RP? is called everywhere dense if it has a point in every ball.
Construct an everywhere dense set A C R? that does not contain three collinear
points.

1.29. Decompose R? into infinitely many pairwise disjoint everywhere dense sets.
1.30. Construct a function f: R — R whose graph is everywhere dense in R2.

1.31. We call a set A C R? a star if it is the union of three segments that have a
common endpoint but are otherwise disjoint. Show that every system of pairwise
disjoint stars is countable. (x H)

1.32. Show that a system of pairwise disjoint stars in R? cannot cover a line. ()

1.33. Construct a sequence of sets A; D Ay O ... that satisfy ()7, A, = 0 and
are

(a) bounded and nonempty;
(b) closed and nonempty.

1.34. Show that a set A C RP is bounded and closed if and only if every sequence
T, € A has a subsequence converging to a point of A.

1.35. Is there a sequence z;,, € R such that [0,1] C U, —, (z, — 27", 2, +277)?
How about a sequence with [0,1] € U, (z, — 27" 1 2, + 277712 (H)
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1.36. Give examples of two disjoint nonempty closed sets with distance zero (a) in
R2, and (b) in R. (S)

1.37. A set G C RP is called a regular open set if G = int cl G. Show that for
every G C RP the following statements are equivalent.

(i) The set G is regular open.
(ii) There is a set A with G = int cl A.
(iii) There is a set A with G = ext int A.
(iv) G =extext G.
1.38. Which of the following sets in R? are regular open?
@ {(z,y): 2* +y* <1},
(i) {(z,y): 0<2?+9y? <1}.
(iii) {(z,y):2*+y> <1, y#0}
V) {(z,y): 2® +y* € [0,1)\ {1/2}}.
1.39. Show that for every set A C RP? the following are true:

ext ext ext ext A = ext ext A, ext ext ext int A = ext int A,
ext ext int A = int 0A, ext ext 0A = int 0 A, (1.8)
Odext ext int A = Jext int A, Odext ext ext A = dext ext A, ’

Oext int 0A = 0int 0A.

1.40. Show that applying the operations int , ext , O to an arbitrary set A C R?
(repeated an arbitrary number of times and in an arbitrarily chosen order) cannot
result in more than 25 different sets. (* H)

1.41. Show that the estimate in the previous exercise is sharp; i.e., give an exam-
ple of a set A C R? such that we get 25 different sets by applying the operations
int, ext, O an arbitrary number of times and in an arbitrarily chosen order.

1.42. Show that applying the operations int , ext , O together with the closure
operation and the complement operation on an arbitrary set A C R? (repeated an
arbitrary number of times and in an arbitrarily chosen order) cannot result in more
than 34 different sets.

1.5 Limits

At the core of multivariable analysis—as in the case of one-variable analysis—Ilies
the investigation and application of the limit, continuity, differentiation, and integra-
tion of functions.

The concept of limit of a multivariable function—similarly to the single-variable
case—is the idea that if z is close to a point a, then the value of the function at z is
close to the limit.
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Definition 1.33. Let the real-valued function f be defined on the set A C R?,
and let a be a limit point of A. We say that the limit of the function f at the
point a restricted to the set A is b € R if the following condition is satisfied. For
every € > 0 there exists § > 0 such that whenever 2 € Aand 0 < |z — a| < J, then
|f(z) — b| < e. Notation: lim,_., ,ca f(z) =Db.

If the domain of f is A (i.e., if D(f) is not larger than A), then we can omit the
part “restricted to the set A” from the definition and instead we can say that the limit
of the function [ at the point a is b. In this case, the notation is lim,_,, f(z) = bor
fl@) = basz — a.

Example 1.34. 1. Let p = 2. We show that lim(,. ) _(0,0) 7% = 0. For € > 0
fixed, 0 < |(z,y)| = /22 + y? < e implies |y| < ¢; thus

1‘2y

— | <|yl<e.
g <lyl<e

2. We show that the limit lim,, ;) (0,0) % does not exist.

Since the function is zero on the axes, there exists a point in every neighborhood
of (0,0) where the function is zero. On the other hand, the function is 1/2 at the
points of the line y = x, whence there exists a point in every neighborhood of (0, 0)
where the function is 1/2. This implies that the limit does not exist: we cannot find
an appropriate 0 for £ = 1/4, regardless of the value of b. (See Figure 1.10.)

Note, however, that the function xy/(x? + y?) has a limit at the origin when
restricted to a line that passes through it, since the function is constant on every

such line (aside from the origin itself).

Definition 1.35. Let the function f be defined on the set A C R?, and let a be a
limit point of A. We say that the limit of the function f at the point a restricted
to the set A is infinity (negative infinity) if for every K there exists § > 0 such
that f(z) > K (f(z) < K) forevery x € A satisfying 0 < |x — a| < 4. Notation:
limg 4, zea f(x) = 00 (—00).

If the domain of f is A (i.e., if it is not larger than A), then we can omit the part
“restricted to the set A” of the definition and instead we can say that the limit of the
function [ at the point a is infinity (negative infinity). In this case, the notation is
limg .4 f(l‘) =0 (—OO)

Example 1.36. Let A be the {(x,y): y > z} half-plane.
Then lim (; 4)—(0,0) ﬁ = oco. Indeed, if K >0 is fixed and 0 < |(z,y)| =
(z,y)€A

Va2 +y? < 1/K, then x|, |y| < 1/K, thus |y — x| < 2/K. On the other hand,
if (z,y) € A also holds, then z < y and 0 < y — x < 2/K, and thus 1/(y — z) >
K/2.

By the same argument, lim ;. ) (0,0) 725 = —00, Where B = {(z,9): y < z}.

(z,y)€EB

It also follows that the limit lim; ) (0,0 ﬁ does not exist.
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These three kinds of limits can be
described by a single definition with the
help of punctured neighborhoods (some-
times called deleted neighborhoods). The
punctured neighborhoods of a point a €
RP are the sets B(a,r) \ {a}, where r is an
arbitrary positive number.

Recall that the neighborhoods of co and
—oo are defined as the half-lines (a,oc0)
and (—oo, a), respectively.

oy
AR

Theorem 1.37. Let the function f be
defined on the set A C RP, and let a be a 1.10. Figure

limit point of A. Let 3 be a real number b

or one of £oo. Thenlim,_., ,ea f(x) = B holds if and only if for every neighbor-
hood V' of B, there exists a punctured neighborhood U of a such that f(x) € V for
everyx e ANU. O

The proof of the following theorem is exactly the same as the proof of its single-
variable counterpart (see [7, Theorem 10.19]).

Theorem 1.38. (Transference principle) Let the function f be defined on the set
A C RP, and let a be a limit point of A. Let ( be a real number b or one of +00. Then
lim,_.q zea f(x) = B holds if and only if for every sequence (z,,) with x,, — a
and x,, € A\ {a} for every n, we have that f(x,) — S. O

The following three statements follow easily from the definitions and from the
theorems above, combined with their single-variable counterparts. (See [7, Theo-
rems 10.29-10.31].)

Theorem 1.39.
(i) (Squeeze theorem) If f(z) < g(z) < h(z) for every z€ A\ {a} and

lim f(z) = lim h(x) = 3,

r—a r—a

z€A z€A

then lim, ., zca g(x) = B.

(i) If
lim f(z)=b<c= lim g(z),
z€A T€EA

then there exists a punctured neighborhood U of a such that f(z) < g(z) holds
foreveryxz € U N A.

(iil) If the limits lim,_.q yea f(x) =b and lim,_., zca g(x) = c exist, and fur-
thermore, if f(x) < g(x) holds at the points of the set A\ {a}, thenb < c¢. O
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From the squeeze theorem and from the corresponding theorems on real sequen-
ces we obtain the following.

Theorem 1.40. Let the limits lim,_,, zeca f(z) =b and lim,_., 4eca g(z) =c
exist and be finite. Then we have lim,_., zca(f(z) + g(x)) =b+ ¢ limy .4, zeca

(f(x)-g(x)) =b-¢ and, assuming also c#0, limg, .4 zea(f(x)/g(x)) =
b/c. O

Remark 1.41. 1In the case of one-variable functions, one can define 15 kinds of lim-
its, considering five different options for the location of the limit (a finite point, left-
or right-sided limit at a finite point, oo, and —o0), and three options for the value of
the limit (finite, oo, and —o0).

In the case of multivariable functions the notion of left- and right-sided limits
and limits at co and —oo are meaningless. The reason is clear; for p > 1 we have
infinitely many directions in RP, instead of merely two. Obviously, it would be
pointless to define limits for every direction; if we really need to talk about limits
in a given direction, we can simply take the limit of the function restricted to the
corresponding line.

The limit at infinity in a given direction can be viewed as the limit at co of an
appropriate single-variable function. For example, if v is a unit vector in the plane,
then a half-line starting from the origin in the direction of v is the set of vectors
tv (¢ > 0). Thus the limit of a function at infinity in the direction of v can be viewed
as the limit of the single-variable function ¢ — f(¢v) at infinity.

Exercises

1.43. Evaluate the following limits or prove that the limits do not exist for the fol-
lowing two-variable functions at the given points. If the limit exists, find a suitable
0 for every € > 0 (based on the definition of the limit).

x—2 22y
5 (2,3); )
@ - —3(23) ®) 5 (0.0
o1 2 .2
(c) %-sin, (0,0); () %, (0,0);
1 sin xy
+ -, (3,2); ,(0,0);
(e) z ) (3,2) () ” (0,0)
(&) =¥ (x>0, y €R),(0,0); () (1+2)%,(0,0);
2,2 -1
0 2 (0,0); G . (1)

x4y z—1"
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log 3/024/5
. Yy .
) —=. (1,1); (1) x2+y2,(0,0),
sinx — sin
m) 2R 0, 0).

r—=y

1.44. Show thatif A C RP is countable, then there exists a function f: A — R such
that lim, ., f(x) = oo for every pointa € A’.

1.45. Show that if A CRP, f: A — R, and lim,_,, f(z) = oo for every point
a € A’, then A is countable. (H)

1.6 Continuity

Definition 1.42. Let the function f be defined on the set A C R?, and let a € A.
We say that f is continuous at the point a restricted to the set A if for every € > 0,
there exists § > O such thatx € A, |z — a| < § imply |f(z) — f(a)| < e.

If the domain of f is equal to A, we can omit the part “restricted to the set A” in
the above definitions, and instead we can say that f is continuous at a.

If the function f is continuous at every point a € A, we say that f is continuous
on the set A.

Intuitively, the continuity of a function f at a point a means that the graph of f
at the point (a, f(a)) “does not break.”

Remark 1.43. Tt is obvious from the definition that f is continuous at a point a
restricted to the set A if and only if one of the following statements holds:

(i) the point a is an isolated point of A;
(i) ae€ AN A and lim,_.,, zea f(x) = f(a).

We can easily prove the following theorem, called the transference principle
for continuity, with the help of Theorem 1.38.

Theorem 1.44. The function f is continuous at the point a restricted to the set
A if and only if for every sequence (x,) with x, — a and x,, € A we have

f(@n) — f(a). O

While investigating multivariable functions, fixing certain variables at a given
value and considering our original function as a function of the remaining vari-
ables can make the investigation considerably easier. The functions we get this in
way are the sections of the original function. For example, the sections of the two-
variable function f(x,y) are the single-variable functions y — f,(y) = f(a,y) and
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x — fP(x) = f(x,b), for every a,b € R. The section f, is defined at those points
y for which the point (a,y) is in the domain D(f) of the function f. Similarly, the
section f* is defined at those points = for which (z,b) € D(f).

Remark 1.45. 1t is easy to see that if a function is continuous at the point
(a1, ..., ap), then fixing a subset of the coordinates at the appropriate numbers a;,
we obtain a section that is continuous at (a;,, ..., a;, ), where the i1, ..., s denote
the indices of the nonfixed coordinates. For example, if a two-variable function f is
continuous at the point (a, b), then the section f, is continuous at b, and the section
f? is continuous at a. The converse of the statement is not true. The continuity of
the sections does not imply the continuity of the original function.

Consider the function f: R? — R, where f(z,y) = zy/(2* + y?) if (z,y) #
(0,0), and f(0,0) = 0. (See Figure 1.10.) Every section of f is continuous. Indeed,
if a # 0, then the function f,(y) = ay/(a® + y?) is continuous everywhere, since it
can be written as a rational function whose denominator is never zero (see Theorem
1.48 below). However, for a = 0 the function f, is constant, with the value zero,
and thus it is continuous as well. Similarly, the section f? is continuous for every b.

On the other hand, the function f is not continuous at the point (0, 0), since by
Example 1.34.2, it does not even have a limit at (0, 0).

Theorem 1.40 implies the following theorem.

Theorem 1.46. If the functions f and g are continuous at the point a restricted to
the set A, then the same is true for the functions f + g and f - g. Furthermore, if
g(a) # 0, then the function f /g is also continuous at the point a. O

Definition 1.47. We call the function © = (z1,...,2,) — x;, defined on RP, the
ith coordinate function.

We call the function f: RP — R a p-variable polynomial function (polynomial
for short) if we can obtain f from the coordinate functions x1, ..., x, and constants
using only addition and multiplication. Clearly, the polynomials are finite sums of
terms of the form ¢ - x71"1 . xZ‘“, where the ¢ coefficients are real numbers and the
exponents 11, ..., n, are nonnegative integers.

We call the quotients of two p-variable polynomials p-variable rational functions.

Theorem 1.48. The polynomials are continuous everywhere. The rational func-
tions are continuous at every point of their domain.

Proof. First we show that the coordinate functions are continuous everywhere. This
follows from the fact that if |z —a|<e, where == (z1,...,2,) and
a=(ai,...,ap), then |x; — a;| < e forevery i =1, ..., p. From this it is clear, by
Theorem 1.46, that the polynomials are continuous everywhere.

If p and q are polynomials, then the domain of the rational function p/q consists
of the points where g is not zero. Again, Theorem 1.46 gives that p/q is continuous
at those points. ([l
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The following theorem concerns the limits of composite functions.

Theorem 1.49. Suppose that

(i) ACRP, g: A— Randlim,_,, g(x) =, where 7y is a real number or one
of o0,

(i) g(A) CHCR, f: H— R, andlim,_.., f(y) = B, where (3 is a real number
or one of +00;

(iii) g(x) # v in a punctured neighborhood of a, or v € H and f is continuous at
v restricted to H.

Then

xhg}l flg(x)) = B. (1.9)
Proof. By the transference principle, we have to show that if z,, — a is a sequence
with x,, € A\ {a} for each n, then f(g(x,)) — 5.

It follows from Theorem 1.38 that g(x,,) — ~.If g(x) # ~ in a punctured neigh-
borhood of a, then g(x,) # ~ for every n large enough. Then, applying Theo-
rem 1.38 again, we find that f(g(x,)) — 8. Also, if f is continuous at 7, then
Theorem 1.44 gives f(g(x,,)) — f(7) = . Therefore, applying Theorem 1.38, we
obtain (1.9). ([l

Corollary 1.50. If g is continuous at a point a € RP restricted to the set A C RP
and if the single-variable function f is continuous at g(a) restricted to g(A), then
f o g is also continuous at a restricted to A. ([

This corollary implies that all functions obtained from the coordinate functions
using elementary functions'! are continuous on their domain. For example, the
three-variable function
ecos(m2+y) —z
T,Y,2) > ————————
(2,9,2) [
is continuous at every point (x, y, z) such that zyz # 1.
The familiar theorems concerning continuous functions on bounded and closed
intervals (see [7, Theorems 10.52 and 10.55]) can be generalized as follows.

Theorem 1.51. (Weierstrass’s theorem) Let A C RP be nonempty, bounded, and
closed, and let f: A — R be continuous. Then f is bounded on the set A, and the
range of f has a greatest as well as a least element.

Proof. Let M = sup f(A). If f is not bounded from above, then M = oo, and for
every n there exists a point x,, € A such that f(z,) > n. On the other hand, if
f is bounded from above, then M is finite, and for every positive integer n there

11 By the elementary functions we mean the polynomial, rational, exponential, power, logarithmic,
hyperbolic, and trigonometric functions and their inverses, and all functions that can be obtained
from these using basic operations and composition.
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exists a point x,, € A such that f(z,) > M — (1/n). In both cases we have found
a sequence x,, € A with the property f(z,) — M.

The sequence (z,,) is bounded (since its terms are in A). Then, by the Bolzano—
Weierstrass theorem, it has a convergent subsequence (z,,,, ). Let limg_,o @p, = a.
Since A is closed, it follows that a € A by Theorem 1.17. Now, f is continuous at
a, and thus the transference principle implies f(x,, ) — f(a). Thus M = f(a). We
obtain that M is finite, whence f is bounded from above, and that M € f(A); that
is, M = max f(A).

The proof of the existence of min f(A) is similar. O

Definition 1.52. We say that a function f is uniformly continuous on the set
A C RP if for every € > 0 there exists a uniform J, i.e., a § > 0 independent of
the location in A such that z,y € A and |z — y| < 0 imply |f(z) — f(y)| < e.

Theorem 1.53. (Heine’s'? theorem) Ler A C R? be bounded and closed, and let
f: A — R be continuous. Then f is uniformly continuous on A.

Proof. We prove the statement by contradiction. Suppose that f is not uniformly
continuous in A. Then there exists g > 0 for which there does not exist a “good”
0 > 0; that is, there is no ¢ satisfying the requirement formulated in the definition
of uniform continuity. Then in particular, 6 = 1/n is not “good” either, that is, for
every n there exist o, 3, € A for which |ay, — 8| < 1/nbut |f(ay) — f(Bn)] >
€0-

Since {a,,} C A and A is bounded, there exists a convergent subsequence (c,, )
whose limit, «, is also in A, since A is closed. Now we have

ﬂnk:(ﬁnk_ank)+ank —04+a=a.

Since f is continuous on A, it is continuous at « (restricted to A). Thus, by the
transference principle, f (v, ) — f(«) and f (B,,) — f(«@), so

k—o0

This, however, contradicts | f(a,) — f(8n)| > €o- O

In many different applications of analysis we need to replace the functions
involved by simpler functions that approximate the original one and are much easier
to handle. An important example is the Weierstrass approximation theorem, which
in the one-variable case states that if f: [a,b] — R is continuous, then for every
€ > 0 there exists a polynomial g such that | f(x) — g(z)| < € for every x € [a, D].
(See [7, Theorem 13.19].) Our next theorem is the generalization of this theorem to
continuous functions of several variables.

Theorem 1.54. (Weierstrass’s approximation theorem) Let the real-valued func-
tion f be continuous on the box R C RP. Then for every ¢ > 0 there exists a
p-variable polynomial g such that |f(x) — g(z)| < € for every x € R.

12 Heinrich Eduard Heine (1821-1881), German mathematician.
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Proof. We prove the theorem by induction on p. The case p = 1 is covered by
[7, Theorem 13.19]. (See also Remark 7.85 of this volume, where we give an inde-
pendent proof.) We now consider the p = 2 case.

Let R = [a,b] X [¢,d], and let 0 < € < 1 be fixed. If f is continuous on R, then
by Heine’s theorem (Theorem 1.53), f is uniformly continuous on R. Choose a
positive d such that | f(z1,y1) — f(z2,y2)| < € holds for every (z1,y1), (z2,y2) €
R satisfying |(z1,y1) — (22, y2)| < 6. We fix an integer n > 2(b — a) /¢ and divide
the interval [a, b] into n equal subintervals. Let a = tg < t; < ... < t, = b be the
endpoints of these subintervals.

For every ¢ = 0,...,n, let u; denote the continuous one-variable function that
is zero everywhere outside of (¢;_1,t;41), equals 1 at the point ¢;, and is linear
on the intervals [t;_1,t;] and [t;,t;+1]. (The numbers ¢t_; < a and t,41 > b can
be arbitrarily chosen for the functions uy and u,.) The functions uyg, ..., u, are
continuous, and »_" , u;(z) = 1 for every z € [a, b]. Consider the function

= f(ti,y)  wi(@). (1.10)
=0

We show that | f(z,y) — fi(x,y)| < € for every (z,y) € R. For a fixed (z,y) € R,
u;(x) is nonzero only if |t; — x| < 2(b— a)/n < . For every such factor u,(x)
we have |(t;,y) — (x,y)| < ¢, and thus | f(¢;,y) — f(z,y)| < € by the choice of J.
Since the sum of the numbers u;(z) is 1, it follows that

n

|f1(:c,y) - f($7y)| = Z(f(ti>y) - f(may» . ’u’l(m) <

i=0
< Z 5~ui(x)=€~Zui(:v)=5.
u; (x)#0 i=0

By the single-variable version of Weierstrass’s approximation theorem, we can
choose the polynomials g; and h; such that | f(¢;,y) — ¢:(y)| < €/(n + 1) for every
y € [e,d], and |u;(x) — hi(x)| <e/(n+1) for every = € [a,b] (i=1,...,n).
Consider the two-variable polynomial g(z,y) = >, gi(y) - hi(x). We show that
g approximates f; well on R. Indeed,

[f(tiy) - wi() = gi(y) - haz)| <
<[t y) = 9@ - wilz) +gi ()] - ui(x) = hi(2)]
<(e/(n+1)) 1+ (K +e) (¢/(n+1)) < (K +2)e/(n+1),

where K denotes an upper bound of | f| on R. Thus

n

|f1(z,y) Z (ti,y) - wi(x) — gi(y) - hi(z)| < (K +2)e

i=0


http://dx.doi.org/10.1007/978-1-4939-7369-9_7

1.6 Continuity 29

for every (x,y) € R. We get |f —g| <|f — fil + |f1 — g| < (K + 3)e for each
point in the box R. Since € was arbitrary, we have proved the theorem for p = 2.

In the general case of the induction step a similar argument works. We leave the
details to the reader. (]

Remark 1.55. In the previous theorem one can replace the box R by an arbitrary
bounded and closed set. More precisely, the following is true: if the set A C RP is
bounded and closed, and the function f: A — R is continuous, then for every
€ > 0 there exists a p-variable polynomial g such that |f(x) — g(z)| < € holds
for every x € A. See Exercises 1.59-1.63.

Exercises

1.46. Let f(z,y) = xy/(2% + y?)¥if (z,y) # 0, and f(0,0) = 0. For what values
of a will f be continuous at the origin?

1.47. Let f(x,y) = |2|*|y|? if * # 0and y # 0, and let f(x,y) = 0 otherwise. For
what values of «, 3 will f be continuous at the origin?

1.48. Let A C RPand f: A — R. Show that if the limit g(z) = lim, ., f(y) exists
and is finite for every x € A, then g is continuous on A.

1.49. Construct a function f: R? — R such that f is continuous when restricted to
any line, but f is not continuous everywhere. (H)

1.50. Let the function f: R? — R be such that the section f, is continuous for
every a, and the section f° is monotone and continuous for every b. Show that f is
continuous everywhere.

1.51. Let the set A C RP be such that every continuous function f: A — R is
bounded. Show that A is bounded and closed.

1.52. Ts there a two-variable polynomial with range (0, 00)? (H S)

1.53. Show that if A C R? is closed and f: A — R is continuous, then the graph
of f is a closed set in RPt!,

1.54. True or false? If the graph of f: [a,b] — R is a closed set in R?, then f is
continuous on [a, b]. (H)

1.55. Let A C RP and f: A — R. Show that the graph of f is bounded and closed
in RP+1 if and only if A is bounded and closed, and f is continuous on A.

1.56. Let A C RP. Which of the following statements is true?
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(a) If every function f: A — R is continuous, then A is closed.

(b) If every function f: A — R is continuous, then A is bounded.

(c) Ifevery function f: A — R is uniformly continuous, then A is closed.
(d) If every function f: A — R is uniformly continuous, then A is bounded.

1.57. Let A C RP. Show that the function f: A — R is continuous on A if and only
for every open interval I C R there exists an open set G C RP such that f~1(I) =
ANG.

1.58. Show that if f: R? — R is continuous and g1,...,g,: [a,b] — R are inte-
grable on [a, b], then the function « — f(g1(x),...,gp(z)) is also integrable on
[a, b].

In the next five exercises A C R is a fixed bounded and closed set, and f: A—R
is a fixed continuous function.

1.59. Show that for every polynomial & and € > 0, there exists a polynomial g such
that ||h(x)| — g(z)| < e for every z € A. (S)

1.60. Lethy,...,h, be polynomials. Show that for every ¢ > 0, there exist polyno-
mials g1, g2 such that | max(hq(z), ..., hn(x)) — g1(x)| < € and | min(hq (), ...,
hin(x)) — g2(2)| < € forevery z € A. (S)

1.61. Show that for every a, b € A there exists a polynomial g, ; such that g, ,(a) =
f(a) and gq.5(b) = f(D). (S)

1.62. Let ¢ > 0 be fixed. Show that for every a € A, there exists a polynomial g,
such that g, (z) > f(z) — e forevery x € A, and g,(a) < f(a) +¢. (S)

1.63. Show that if A C RP? is a bounded and closed set and f: A — R is a contin-
uous function, then for every € > 0 there exists a p-variable polynomial g such that
|f(z) — g(z)| < e, forevery z € A.(S)

1.7 Partial Derivatives

Differentiation of multivariable functions shows more diversity than limits or con-
tinuity. Although some of the equivalent definitions of differentiability of one-
variable functions have a straightforward generalization to functions of several vari-
ables, the notion of derivative is more complicated than that for functions of one
variable. For this reason we postpone the discussion of differentiability and the
derivative of functions of several variables to the next section and begin with those
derivatives that we get by fixing all but one variable and differentiating the resulting
single-variable function.
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Definition 1.56. Let the function f be defined in a neighborhood of the point
a=(ai,...,ap) € RP. Let us fix each of the coordinates a = (a1, ..., a,), except
for the ith one, and consider the corresponding section of the function:

t— fz(t) = f(al, N ,ai,l,t7ai+1, ey ap). (111)
We call the derivative of the single-variable function f; at the point a; (when it

exists) the ith partial derivative of the function f at a, and use any of the following
notation:'?

9 /
L@, @), fola), Daf(@), Dista),
So, for example,
Dif(a) = lim f(al"“’ai‘l’tt’ Cizla”) = #a) (1.12)

assuming that the (finite or infinite) limit exists.

Let the function f be defined on a subset of RP. By the ith partial derivative
Sfunction of f we mean the function D; f, where D; f is defined at every point a,
where the ith partial derivative of f exists and is finite, and its value is D; f(a) at
these points.

Example 1.57. We get the partial derivatives by fixing all but one of the variables
and differentiating the resulting function as a single-variable function. For example,
if f(z,y) = xy(2® + y> — 1), then

0

8%:le(x,y):y(w2+y2*1)+wy~2x:y‘(3z2+y2*1)
and

0

afi:sz(x,y):x(wz+y2—1)+zy-2y:x-(x2+3y2—1)

at every point (x,y).

Remark 1.58. Continuity does not follow from the existence of finite partial deriva-
tives. Let f(z,y) = zy/(2® + y?) if (z,y) # (0,0), and let £(0,0) = 0. Both par-
tial derivatives of f exist at the origin, and they are both zero, since the sections fj
and fY are both constant with value zero. (It is also clear that the partial derivatives
of f exist and are finite at every other point (z,y) # (0,0).)

However, by Example 1.34.2, f is not continuous at the origin.

13 Each of these symbols appears in practice. The symbol 9f/9z; is used mostly by engineers
and physicists and in older books on mathematics; the symbol f.., appears in the field of partial
differential equations. The symbol D; is used in contemporary pure mathematics; most of the time
(though not exclusively) we will also write D; for the ith partial derivative.
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According to one of the most important applications of differentiation of one-
variable functions, if @ is a local extremum point of the function f and if f is differ-
entiable at a, then f’(a) = 0. (See [7, Theorem 12.44, part (v)].) This theorem can
easily be generalized to multivariable functions.

Definition 1.59. We say that a function f has a local maximum (or local minimum)
at the point « if ¢ has a neighborhood U such that f is defined on U and for every
x € U we have f(z) < f(a) (or f(x) > f(a)). In this case we say that the point a
is a local maximum point (or local minimum point) of the function f.

1.11. Figure

If for every point x € U \ {a} we have f(z) < f(a) (or f(x) > f(a)), then we
say that a is a strict local maximum point (or strict local minimum point).

We call the local maximum and local minimum the local extrema, while we call
the local maximum points and local minimum points local extremal points, collec-
tively.

Let f have a local maximum at the point @ = (a1, ..., a,). Obviously, for every
i=1,...,p, the function f; defined by (1.11) also has a local maximum at a;. If f;
is differentiable at a;, then f/(a;) = 0. It is easy to see that f/(a;) = +00 cannot
happen, and thus we have proved the following theorem.

Theorem 1.60. If the function f has a local extremum at the point a € RP, and if
the partial derivatives of f exist at a, then D, f(a) = 0 foreachi=1,...,p. O

Applying Theorems 1.51 and 1.60, we can determine the extrema of functions
that are continuous on a bounded and closed set A and have partial derivatives in
the interior of A. This method, described in the next theorem, corresponds to the
technique that finds the extrema of functions of one variable that are continuous on
an interval [a, b] and differentiable in (a,b). (See Example 12.46, Remark 12.47,
and Example 12.48 in [7].)

Theorem 1.61. Let A C RP be bounded and closed, let f: A — R be continuous,
and let the partial derivatives of f exist at every internal point of A. Every point
where f takes its greatest (least) value is either a boundary point of A, or else an
internal point of A where the partial derivatives D, f are zero foreveryi =1,...,p.
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Proof. By Weierstrass’s theorem (Theorem 1.51), f has a maximal value on A. Let
a € A be a point where f is the largest. If a € 0A, then we are done. If, on the
other hand, a € int A, then f has a local maximum at a. By the assumptions of the
theorem, the partial derivatives of f exist at the point a; thus D; f(a) = 0 for every
t=1,...,p by Theorem 1.60. (I

Example 1.62. 1.Find the maximum value of the function f(z,y) = zy(2? + y? —
1) on the disk K = {(x,y): 2% + y? < 1}. In Example 1.10.1.c we saw that the
boundary of K is the circle S = {(z,y): #? + y* = 1}. Since S C K, it follows
that K is closed. The function f is a polynomial; thus it is continuous (see Theo-
rem 1.48), and then, by Weierstrass’s theorem, f has a maximal value on K. The
value of f is zero on the whole set S. Since the function f is positive for every
(z,y) € int K, > 0, y < 0, it follows that f takes its largest value somewhere in
the interior of K.

Let (a,b) €int K be a point where the value of f is the largest. Now,
0=Dif(a,b) =b-(3a®>+b*>—1)and 0 = Dy f(a,b) = a- (a® + 3b*> — 1).

If a = 0, then b = 0 (since |b| < 1), which is impossible, since the value of the
function at the origin is zero, even though its maximal value is positive. Similarly,
we can exclude the b = 0 case. So, a # 0 # b, whence a? + 3b%> — 1 = 3a? + b —
1=0,andwegeta = £1/2 and b = £1/2. Of these cases, f takes the value 1/8 at
the points (£1/2, F1/2), while it takes the value —1/8 at the points (£1/2, £1/2).
Thus, the largest value of f is 1/8, and f takes this value at two points, namely at
(£1/2,71/2).

2. Find the triangle with largest area that can be inscribed in a circle with a fixed
radius.

Consider a triangle H defined by its three vertices that lie on the circle
S = {(u,v): u* + v? = 1}. If the angles between the segments connecting the ori-
gin and the vertices are z,y, z, then we can compute the area of H with the help
of the formula (sinx + siny + sin z)/2. (This follows from the fact that if the
two equal sides of an isosceles triangle are of unit length, and the angle between
these two sides is «, then the area of the triangle is % - sin «v.) This is true even if
one of the angles x,y, z is larger than 7. Since z = 27 — x — y, we need to find
the maximum value of the function f(z,y) = sinx + siny — sin(x + y) on the set
A={(z,y):z>0,y>0, z+y <27}

NSNS}

1.12. Figure
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The set A is nothing other than the triangle defined by the points (0, 0), (27, 0),
and (0, 27). Obviously, this is a bounded and closed set, and thus Theorem 1.61 can
be applied.

It is easy to see that the function f is zero on the boundary of the set A. Since f
takes a positive value (e.g., at the point (7/2, 7/2)), it follows that f takes its maxi-
mum at an internal point (z, y), for which D1 f(z,y) = cosx — cos(xz + y) = O and
Dy f(x,y) = cosy — cos(x + y) = 0. We get cosx = cosy, so either y = 27 — x
or y = x. In the first case, (z,y) lies on the boundary of A, which is impossi-
ble. Thus y = x and cosz = cos 2z. Since x = 2z is not possible (it would imply
that = = 0, whence (z,y) would be on the boundary of A again), we must have
2x =27 — x,and & = y = 27/3. We have proved that the triangle with the largest
area that can be inscribed in a circle with fixed radius is an equilateral triangle. []

Exercises

1.64. Find the points where the partial derivatives of the following two-variable
functions exist.

@ |z+y

(b) V2% 4y
© flr,y)=zifz€Q, f(z,y) =yifz ¢ Q.

1.65. Show that the partial derivatives of the function f(x,y) = zy/v/x? + y2,
f(0,0) = 0 exist and are bounded everywhere in the plane.

1.66. Construct a two-variable function whose partial derivatives exist everywhere,
but the function is unbounded in every neighborhood of the origin.

1.67. Let f: R? — R. Show that if D, f = 0, then f depends only on the variable
y. If Do f =0, then f depends only on the variable x.

1.68. Show thatif f: R? — R, D, f =0, and Dy f = 0, then f is constant.

1.69. Show that if G C RP is a connected open set, the partial derivatives of the
function f: G — R exist everywhere, and D, f(z) = ... = D, f(x) = 0 for every
x € G, then f is constant. (H)

1.70. Show that if the partial derivatives of the function f: R? — R exist every-
where and |D; f| < 1, | D2 f] < 1 everywhere, then f is continuous. (Furthermore,
f has the Lipschitz property.)'*

14 Rudolph Otto Sigismund Lipschitz (1832-1903), German mathematician. A function f is said
to have the Lipschitz property (is Lipschitz, for short) on a set A if there exists a constant K > 0
such that | f(z1) — f(z0)| < K - |1 — xo] for all zg,z1 € A.
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1.71. Construct a two-variable polynomial that has two local maximum points but
no local minimum points. (H S)

1.72. Find the local extremal points of the function z? + zy + y? — 4logx —
10logy.

1.73. Find the maximum of 2 + y? — xy on the square [0, 1] x [0, 1].

. . . 2 2 . .
1.74. Find the minimum of = + - + =~ + % in the octant x, y, z > 0. (First prove
that the function can be restricted to a bounded and closed set.)

1.75. Find the minimum of (z® + 3 + 23)/(zyz) on the set {(z,y, 2 € R3:
x,y,z > 0}.

1.76. Find the maximum and minimum values of zy - log(z? + y?) on the disk
2?4+ y? < R2.
1.77. Find the maximum of V2 - y© - 2" restricted to x,y, z > Oand z + y + 2=1.

2 2

— 2y°.

1.79. What is the minimum value of zy + ‘1—9 + % on the set z,y > 0?

1.78. Find the minimum value of the function 2z% + y* — z

1.8 Differentiability

Weierstrass’s approximation theorem states that if f is a continuous function defined
on a box (or, more generally, on a closed and bounded set), then f can be approx-
imated by polynomials (see Theorem 1.54 and Exercises 1.59-1.63). However, we
cannot control the degree of the approximating polynomials: in general, it may hap-
pen that we need polynomials of arbitrarily high degrees for the approximation. The
situation is different in the case of local approximation, when we want to approxi-
mate a function in a neighborhood of a given point. For an important class of func-
tions, good local approximation is possible using polynomials of first degree.

In the case of single-variable analysis, differentiability is equivalent to local
approximability by first-degree polynomials (see [7, Theorem 12.9]). For multivari-
able functions, differential quotients do not have an immediate equivalent (since we
cannot divide by vectors), and therefore, we cannot define differentiability via the
limits of differential quotients. Approximability by first-degree polynomials, how-
ever, can be generalized verbatim to multivariable functions.

We call the function /: R? — R a linear function if there exist real numbers
ai,...,apsuchthat £(z) = a1z1 + ... + apz, forevery x = (21,...,2,) € RP.

Definition 1.63. Let the function f be defined in a neighborhood of the point
a € RP. We say that f is differentiable at the point a if there exists a linear func-
tion £(x) such that

f(@) = fa) + Uz —a) +&(z) - |z — af (1.13)

forevery z € D(f), where e(z) — O as x — a.
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Remark 1.64. 1.1t is clear that the function f is differentiable at the point a if and
only if it is defined in a neighborhood of a € RP and there exists a linear function

£(z) such that
o T@) = f0) ~ o~ a)

=0.
z—a | — al

2. If p =1, then the notion of differentiability defined above is equivalent to the
“usual” definition, that is, to the existence of a finite limit of the differential quotient
(f(a) - f(@)/(z —a)asz — a.

3. If a function depends only on one of its variables, then the differentiability
of the function is equivalent to the differentiability of the corresponding single-
variable function. More precisely, let a; € R, and let a single-variable function f be
defined in a neighborhood of aq. Let g(x1,...,zp) = f(x1) for every z1 € D(f)
and x», ..., 7, € R. For arbitrary a», ..., a,, the function g is differentiable at the
pointa = (a1,...,a,) if and only if f is differentiable at a; (see Exercise 1.82).

Example 1.65. 1. It follows from the definition that every polynomial of degree at
most one is differentiable everywhere.

2. Let f(x,y) = 525 if (x,y) # (0,0), and let £(0,0) = 0. We prove that [ is
differentiable at the origin. Indeed, if ¢ is the constant zero function and (x,y) #
(0,0), then we have

flz,y) —Llz,y)| z?y? o xy?

= <
|(z,y)| (22 +y?) - \/m (22 +y2)3/2 =

max(x?,y?)?

~ max(x2,y2)3/2 = max(z?,y*)"/?,

and (1.13) holds.

We know that every single-variable, differentiable function is continuous (see [7,
Theorem 12.4]). The following theorem generalizes this fact for functions with an
arbitrary number of variables.

Theorem 1.66. If the function f is differentiable at a point a, then f is continuous
at a.

Proof. Since the right-hand side of (1.13) converges to f(a) as  — a, it follows
that
lim f(z) = f(a). O
The following fundamental theorem represents the linear functions of the defini-
tion of differentiability with the help of partial derivatives.
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Theorem 1.67. If a function f is differentiable at a point a = (a1, ...,a,) € R?,
then
(i) every partial derivative of | exists and is finite at a, and furthermore,

(ii) there is only one function { satisfying Definition 1.63, namely the function
l(x) =Dif(a)z1 + ...+ Dpf(a)zy.

Proof. Suppose that (1.13) holds for the linear function ¢ = oy z1 + ... 4+ 7).
Let ¢ be fixed, and apply (1.13) with the point = (a1, ...,a;—1,t, Git1, ..., Gp).
We get that

fi(t) = fla) + ou(t — as) + () - [t — adl,

where f; is the function defined at (1.11). Since f;(a;) = f(a), we have

fi(t) — fias)

=q; & )
ra— a; e(x)

and thus by lim,_,, £(z) = 0, we obtain that f; is differentiable at the point a;, and
fl(a;) = a;. Therefore, by the definition of the partial derivatives, D, f(a) = a.
This is true for every 2 = 1,.. ., p, and thus (i) and (ii) are proved. U

Corollary 1.68. Let f be defined in a neighborhood of a € RP. The function f is
differentiable at the point a € RP if and only if all partial derivatives of f exist at a,
they are finite, and

f(@) = f(a) + Dif(a)(z1 — a1) + ... + Dy fa)(zp — ap) + () - [x — a
(1.14)
Sor every x € D(f), where lim,_,, e(x) = 0. O

Example 1.69. 1. We show that the function f(x,y) = xy is differentiable at (1, 2).
Since D; f(1,2) = 2 and Dy f(1,2) = 1, we need to prove
2y—2—-2(x—-1)—(y—2)

im =0.
@y—-12)  /(zr—1)2+ (y —2)2

Considering that the numerator is (z — 1)(y — 2) and

(- Dy-2)
V- 12+ (-2

as (x,y) — (1,2), we obtain that indeed, f is differentiable at (1, 2).
2. The function || is continuous but not differentiable at 0. This is true in the mul-

<ly—2—0

tivariable case as well. Indeed, the partial derivatives of |z| = /2% + ... + x2 do

not exist at the origin. Since |z| = |¢| at the point = (0,...,0,¢,0,...,0), the
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fraction of the right-hand side on (1.12) is %LO‘, which does not have a limit as
t — 0. Therefore, by Theorem 1.67, |z| is not differentiable at the origin.

3. Consider the function f(x,y) = +/|zy| on R2. By Corollary 1.50, f is continu-
ous everywhere. We prove that f is not differentiable at the origin. In contrast to our
previous example, the partial derivatives do exist at the origin. Indeed, the sections
fo and f© are both zero, and hence their derivatives are also constant and equal to

zero, i.e., D1f(0,0) = D2f(0,0) = 0.

1.13. Figure The graph of the function \/|zy|//22 + y2

Now, f is differentiable at the origin if and only if

: Vizyl
lim ——=0 (1.15)
(2,9)—(0,0) \/22 + 12
holds (see Corollary 1.68). However, the value of the fraction on the line y = x is
1/4/2, and consequently, there exists a point in every neighborhood of (0, 0) where

the fraction is 1/ v/2. Thus (1.15) does not hold, and f is not differentiable at the
point (0, 0).

The right-hand side of the equality (1.14) can be simplified if we notice that
D, f(a)(z1 —a1) + ...+ Dpf(a)(xp — ap) is nothing other than the scalar prod-
uct of the vectors (D1 f(a),...,D,f(a)) and 2 — a. This motivates the following
definition.

Definition 1.70. If f is differentiable at the point @ € RP, then the vector

(D1f(a),...,Dypf(a))

is said to be the derivative vector of f at a and is denoted by f'(a).
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Using the notation above, (1.14) becomes f(x) = f(a) + (f'(a),x — a) + () -
|& — al. In the single-variable case this is the well-known formula f(z) = f’(a) -
(z—a) + f(a) + e(2) - o — al.

The following theorem gives a useful sufficient condition for differentiability.

Theorem 1.71. Let f be defined in a neighborhood of a € RP. If the partial deriv-
atives of f exist in a neighborhood of a and they are continuous at a, then [ is
differentiable at a.

Proof. We prove the result for p = 3. It is straightforward to generalize the proof
for an arbitrary p.

Let £ > 0 be fixed. Since the partial derivatives of f exist in a neighborhood of
a and they are continuous at a, there exists 6 > 0 such that |D; f(z) — D; f(a)| < ¢
for every « € B(a,d)and i = 1,2, 3.

Letus fix x = (21,22, 23) € B(a,d) and connect the points a = (a1, az, as) and
x with a polygonal line consisting of at most three segments, each parallel to one of
the axes. Let u = (21, as,a3) and v = (21, x2, ag). The segment [a, u] is parallel to
the x-axis (including the possibility that it is reduced to a point), the segment [u, v]
is parallel to the y-axis, and the segment [v, x| is parallel to the z-axis.

The partial derivative D1 f exists and is finite at each point of the segment [a, u],
and thus the section t — f(t, a2, a3) is differentiable on the interval [aq, 2], and
its derivative is Dy f (¢, as, az) there. By the mean value theorem,'” there is a point
¢1 € a1, 1] such that

f(u) - f(a) = f(xlaa%a:i) - f(al,az,ag) = le(01,a2,a3) : ($1 - a1)-

Since (c1, a2, a3) € B(a,d), we have | D1 f(c1,az2,a3) — D1 f(a)| < &, and thus
|f(u) = f(a) = Dif(a)(z1 —a1)| <e- |y —ar| <e- |z —aq (1.16)
follows. Similarly, the partial derivative D5 f exists and is finite everywhere on
the segment [u, v]; thus the section t — f(x1,t,a3) is differentiable on the inter-

val [az, x2), and its derivative is Ds f(x1,t, ag) there. By the mean value theorem,
there is a point ¢z € [ag, 2] such that

f() = f(u) = f(z1,22,a3) — f(21,02,a3) = D2 f(x1,2,0a3) - (v2 — az).
Since (21, c2, a3) € B(a,d), it follows that |Da f (21, ¢2, a3) — Daf(a)| < &, and

|f(v) = f(u) — Daf(a)(x2 —az)| <e-|xg —as| <e-|z—al. (1.17)

15 The mean value theorem states that if g: [a, b] — R is continuous on [a, b] and differentiable on
(a, b), then there is a point ¢ € (a,b) such that g’(c) = (g(b) — g(a))/(b — a). See [7, Theorem
12.50].
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By the same argument we obtain
|f(z) = f(v) = Dsf(a)(xs —as)| < e |z —al. (1.18)

Applying the triangle inequality yields

| f(z) = (D1 f(a)(z1 — a1)+Daf(a)(x2 — az) + D f(a)(zs — as) + f(a))| <
< |f(u) = f(a) = D1 f(a)(z1 — a1)|+
+[f(v) = f(u) = Daf(a) (22 — az)|+
+|f(z) — f(v) — Dsf(a)(zs — a3)|,

whence the approximations (1.16), (1.17), and (1.18) give

|f(x) = (D1f(a)(@1 — a1) + Daf(a)(z2 — az) + D3f(a)(x3 — az) + f(a))| < 3¢ |z — al.

alay. az. az)

1.14. Figure

Since € was arbitrary, we have

f(x)=(D1f(a)(w1—a1)+Daf(a)(v2—az)+Dsf(a)(zz—a3)+ f(a))

lim = Oa
z—a |z — al
and f is differentiable at the point a. O

Corollary 1.72. The polynomial functions are differentiable everywhere. The ratio-
nal functions are differentiable at every point of their domain.

Proof. The partial derivative functions of a polynomial p are also polynomials, and
by Theorem 1.48, they are continuous everywhere. Hence, by Theorem 1.71, p is
differentiable everywhere.
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The partial derivative functions of a rational function r are also rational functions,
and they have the same domain as r. These partial derivatives are continuous in the
domain of r by Theorem 1.48, and thus Theorem 1.71 gives that r is differentiable
on its whole domain. ]

Remark 1.73. By Theorems 1.66, 1.67, and 1.71 we have the following:

(1) if f is differentiable at a point a, then f is continuous at a, and its partial
derivatives exist and are finite at a; furthermore,

(ii) if the partial derivatives of f exist in a neighborhood of a and are continuous
at a, then f is differentiable at a.

We prove that the converses of these implications are not true.

Let f(z,y) = 752z if (2,y) # (0,0), and let £(0,0) = 0. In Example 1.34.1
we proved that the limit of f at (0, 0) is zero, and thus f is continuous at the origin.
(Furthermore, f is continuous everywhere by Theorem 1.48.) The partial deriva-
tives of f exist everywhere. If a # 0, then the section f,(y) = a?y/(a® + y?) is
differentiable everywhere, and if ¢ = 0, then f, is zero everywhere; thus it is also
differentiable everywhere. The same is true for the sections f°. Thus the partial
derivatives D1 f, D5 f exist everywhere and D1 f(0,0) = D2 f(0,0) = 0.
By Theorem 1.67, f is differentiable at the origin if and only if

2
1 Y —0. (1.19)

im =
(z,9)—(0,0) (xz + y2)\/m

However, the value of the fraction is &=1/2+/2 at every point of the line y = z, and
hence there exists a point in every neighborhood of (0,0) where the fraction takes
the value +1/ 2v/2. Therefore, (1.19) does not hold, and f is not differentiable at
(0,0). We have shown that the converse of statement (i) is not true.

One can check that the function f(z) = 2% -sin(1/z), f(0) =0, is differen-
tiable everywhere on R, but its derivative is not continuous at zero (see [7, Exam-
ple 13.43])). This function shows that the converse of statement (ii) is not true for
single-variable functions. By Remark 1.64.3, g(z1,...,2,) = f(z1) is differen-
tiable everywhere on RP, and since Dyg(x1,...,x,) = f/'(x1) for every x € RP,
the partial derivative D1 g is not continuous at the origin. We have therefore shown
that the converse of (ii) is also not true for p-variable functions.

If f is a differentiable function of one variable, then the graph of the first-degree
polynomial approximating f in a neighborhood of a is nothing but the tangent of
the graph of f at the point (a, f(a)). We want to find an analogous statement in the
multivariable case.

In three dimensions, planes are given by equations of the form a2 + asxs +
asx3z = b, where at least one of the coefficients a1, as, az is nonzero. This can be
shown as follows. Let S be a plane and let ¢ be a point in S. Let a be a nonzero vector
perpendicular to the plane S. We know that a point x is a point of the plane S if and
only if the vector x — ¢ is perpendicular to a, i.e., if (x — ¢,a) = 0. Thus, z € S
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if and only if (a, ) = (a, ¢). Using the notation x = (z1, z2,x3), a = (a1, a2, as),
and ¢ = (c1,¢2,c3) we have that x € S if and only if ajx1 + asxe + azzs =,
where b = (a, ¢).

Now suppose that a1, a9,as,b € R, and at least one of aj,as,as is nonzero.
Let a = (a1, az, as). Choose a vector ¢ such that (a, ¢) = b. Obviously, the equality
a1y + asxs + azrs = bholds if and only if (x — ¢, a) = 0, i.e., if the vector  — ¢
is perpendicular to a. We get that a1x7 + asx2 + azxz = b is the equation of the
plane containing the point ¢ and perpendicular to the vector a.

Let g(x1,x2) = a1x1 + asxo + b be a first-degree polynomial. Then the graph
of g, i.e., the set {(z1,x2,x3): 3 = a121 + asxs + b}, is a plane. Conversely, if
a1x1 + asrs 4+ azrs = b is the equation of a plane .S that satisfies a3 # 0, then S
is the graph of the first-degree polynomial g(x1, x2) = —(a1/as)x1 — (az/az)ze +
(b/as).

We can now generalize the definition of the tangent to the case of two-variable
functions. Let us switch from the coordinate notation (1,2, z3) to the notation

(z,y,2).

Definition 1.74. Let (a,b) € R? be fixed, and let f be defined in a neighborhood
of the point (a, b). We say that the plane S is the tangent plane of graph f at the
point (a, b, f(a,b)) if S contains the point (a,b, f(a,b)), and S is the graph of a
first-degree polynomial g that satisfies

It is clear from Remark 1.64.1 that the
graph of f has a tangent plane at the point
(a,b, f(a,b)) if and only if f is differen-
tiable at (a,b). Using the definition above
and Corollary 1.68, it is also obvious that the
equation of the tangent plane is

z=D1f(a,b)(z —a) + D2f(a,b)(y —b) + f(a,b).

These concepts can be generalized to
functions with an arbitrary number of vari-
ables. We call the set of points of the space

RP*! that satisfy the equality ayzq + ...+ (a, b)
ap+17p+1 = bahyperplane of RP*1, where x
at least one of the coefficients ay, ..., ap+1 1.15. Figure

is nonzero.
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Definition 1.75. Let f be defined in a neighborhood of the point v = (uq,. .., up)
€ RP. We say that the hyperplane H C RP*! is the tangent hyperplane of the graph
graph f at the point v = (u1, ..., up, f(u1,...,up)) if S contains the point v, and
H is the graph of a first-degree polynomial g that satisfies

lim (f(2) = g(2)/|z — u| = 0.

It is easy to see that the graph of f has a tangent hyperplane at the point v if and
only if f is differentiable at w. In this case, the equation of the tangent hyperplane
is 2,1 = (f'(a),2 — a) + f(a).

Note that the concept of the tangent and the tangent plane can be defined for
every subset of RP. The tangent and the tangent plane of the graph of a function are
just special cases of the general definition. The reader can find more on this in the
appendix of this chapter.

Let f be defined in a neighborhood of a € RP, and let v € R? be a unit vector.
The function ¢ — f(a + tv) (¢t € R) is defined in a neighborhood of 0. The value
of f(a+ tv) is the height of the graph of the function f at the point a + tv. (If
p = 2, then the graph of the function ¢ — f(a + tv) can be illustrated by intersect-
ing the graph of f by the vertical plane containing the line a + tv (¢ € R) and the
point (a, f(a)) of the graph.) In this way, ¢ — f(a + tv) describes the “climbing”
we do as we start from the point (a, f(a)) on the graph of f and walk in the direc-
tion of v. Intuitively it is clear that the derivative of the function ¢ — f(a + tv)
at the point 0 (if it exists) tells us how steep a slope we need to climb at the
point (a, f(a)). We are descending when the derivative is negative, and ascending
when the derivative is positive.

Definition 1.76. Let v € R” be a unit vec-
tor. We call the derivative of the function A~ f(z, v)
t — f(a+ tv) at the point O (if it exists) the
directional derivative of the function f at
the point a and in the direction v. Notation:
%(a) or D, f(a). In other words,

v

fla+tv) = f(a)

va(a) = tlg% ¢ )
assuming that the limit exists. y
Theorem 1.77. If the function f is differ- " (a, b) -
entiable at a € RP, then the single-variable o ?
Sunction t — f(a + tv) is differentiable at 0 " L v
for every vector v € R?, and its derivative is ~ __— ~

(f'(a),v). In particular, if |v| = 1, then the \
directional derivative D, f(a) exists and its ‘
value is D, f(a) = (f'(a), v). 1.16. Figure
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Proof. By Corollary 1.68 we have
fla+tv) = f(a) + (f'(a),tv) +e(a + tv) - [tv],

ie.,
fla+tv) — f(a)

. = (f'(a),v) £e(a+tv) - [v]

for every ¢ # 0 satisfying a + tv € D(f). Since lim,_,, e(x) = 0 implies lim;_,o
g(a+ tv) =0, wehave (f(a + tv) — f(a))/t — (f'(a),v) ast — 0. Thus we have
proved the first statement of the theorem. The second statement is obvious from the
first one. ]

Remark 1.78. 1. The partial derivative D; f(a) is the same as the directional deriv-
ative in the direction v;, where v; is the vector whose coordinates are all zero
except for its ¢th coordinate, which is 1. This follows directly from the defini-
tions. Furthermore, if f is differentiable at a, this also follows from the formula
Dy f(a) = (f'(a),v).

2. Suppose that at least one of the partial derivatives D, f(a) is nonzero, i.e.,
the derivative vector f’(a) is not the zero vector. If |v| = 1, then {f’(a),v) =
|f'(a)] - cos o, where «v is the angle between vectors f/(a) and v (see page 3). There-
fore, (f'(a),v) < |f'(a)l, and equality holds only if the directions of the vectors v
and f'(a) are the same. In other words, the “climbing” of the graph of f is the steep-
est in the direction of the vector f'(a). Because of this, we also call the derivative
vector f’(a) the gradient.

3. It is possible that the directional derivative D,, f (a) exists for every |v| = 1 yet f
is not differentiable at a (see Exercise 1.89).

As an important corollary of Theorem 1.77, we obtain the mean value theorem
for multivariable functions.

Theorem 1.79. (Mean value theorem) Let the function f be differentiable at the
points of the segment [a, b, where a,b € RP. Then
(i) the single-variable function F(t) = f(a+t(b—a)) (¢t € [0,1]) is differen-
tiable in [0,1], F'(t) = (f'(a + t(b — a)),b — a) for every t € [0,1], and
(ii) there exists a point ¢ € [a, b] such that f(b) — f(a) = (f'(c),b— a).
Proof. Let to € [0,1], and apply Theorem 1.77 to the point a + to(b — a) and the
vector v=b—a. We find that the function

t—f(a+ (to +t)(b—a))

is differentiable at the point 0, and its derivative is (f(a + to(b — a)), b — a) there.
Thus F'(to) = (f'(a + to(b — a)),b — a), which proves (i).

By the single-variable version of the mean value theorem, there exists a point
u € [0,1] such that F(1) — F'(0) = F’(u). Since F(0) = f(a) and F(1) = f(b),
by applying (i) we have f(b) — f(a) = (f'(¢),b — a), where ¢ = a + u(b — a). O
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Exercises

1.80. Which of the following functions are differentiable at the origin?
(@ x?+y% (®) l]z? —y);

©) Vl]z3 —v3; d l]2? + 93

(&) Vl]z%y + xy?|;
® flx,y) =zy//2* + 2, £(0,0) = 0;

(e v+ (h) /a3 +y* (HS);

i) z-lyl;

G flz,y) =zy(z® —y*)/(2* +y), £(0,0) = 0;

&) flz,y) = («® +9°)/(=* +y*), £(0,0) = 0;

) flz,y) =2?-sin(z® +y*)~", f(0,0) = 0;
(m) f(z,y) = 5%, £(0,0) = 0; () ;ny £(0,0) = 0.
© fla,y) =@ sink, f(z,0)=0.

1.81. Let f(z,y) = |z|* - |y|? if xy # 0, and let f(x,y) = 0 if 2y = 0. For what
values of «, 3 is f differentiable at the origin? For what values of «, § is f differ-
entiable everywhere?

1.82. Show thatif f: R — Ris differentiable at a, then the function g(x, y) = f(z)
is differentiable at (a, b) for every b. (S)

1.83. For what functions f: R? — R will the function z - f(z, y) be differentiable
at the origin?

1.84. Show that if the function f: R? — R is differentiable at the origin, then for
every c€R the single-variable function g(z)=f(x, cx) is differentiable at 0.

1.85. Show that if the function f: RP — R is differentiable at a and f(a) =
Dif(a) =...= D,f(a) = 0,then f - g is also differentiable at a for every bounded
functiong: R — R.

1.86. True or false? If f is differentiable at @ € R? and f has a strict local minimum
at a restricted to every line going through a, then f has a strict local minimum at
a. (H)

1.87. Find the directional derivatives of f(z,y) = /23 + y3 at the origin. Can we
choose the vector a such that the directional derivative in the direction u equals
(a,u) for every |u| = 1? Prove that f is not differentiable at the origin.

1.88. Find the directional derivatives of f(z,y) = IZI—J;Q, £(0,0) = 0, at the ori-
gin. Can we choose a vector a such that the directional derivative in the direction u
equals (a, u) for every |u| = 1?
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1.89. Construct two-variable functions f whose every directional derivative at the
origin is 0, but

(a) f is not differentiable at the origin,
(b) f is not continuous at the origin,
(c) there does not exist a neighborhood of the origin on which f is bounded.

1.90. Let G C R? be a connected open set, and let f: RP — R be differentiable.
Show that if f/(x) = 0 for every « € G, then f is a constant function. (H)

1.91. Let f: R?> — R be differentiable in the plane, and let D;f(z,z) =
D5 f(x,2) = 0, for every x. Show that f(x, z) is a constant function.

1.92. Let the real functions f and g be differentiable at the point a € RP. Find a
formula for the partial derivatives of the functions f - g and (when g(a) # 0) of f/g
at the point ¢ in terms of the partial derivatives of f and g.

1.93. Verify that the gradient of \/x2 + y? at (a, b) # (0, 0) is parallel to and points
in the same direction as (a, b). Why is this obvious intuitively?

1.94. Verify that the gradient of /1 — 22 — y? at the point (a, b) is parallel to and
points in the opposite direction as (a, b) when 0 < a? + b? < 1. Why is this obvious
intuitively?

1.95. Let a,b > 0, and let T ; denote the tetrahedron bounded by the xy, xz, yz
coordinate planes and by the tangent plane of the graph of the function f(x,y) =
1/(xy) at the point (a, b). Show that the volume of T} ; is independent of a and b.

1.9 Higher-Order Derivatives

Definition 1.80. Let f be defined in a neighborhood of a € R?. If the partial deriv-
ative D; f exists in a neighborhood of @ and the ith partial derivative of D, f exists
at a, then we call this the ijth second-order partial derivative of the function f at
the point a, and we use any of the following notations:

O f
Omiaxj

(a)a fg/cl7m7(a)v fmjmi(a)a DiDjf(a)v ngf(a)

(The function f has at most p? different second-order partial derivatives at the
point a.)
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Example 1.81. 1. The partial derivatives of the two-variable function f(z,y) =
sin(x?y) exist everywhere, with D;f(z,y) = cos(z?y) - (2ry) and Df
(x,9) = cos(x?y) - 22 for every (x,y). Since the partial derivatives of these func-
tions exist everywhere, each of f’s four second-order derivatives exist everywhere,
with

Dy f(x,y) = D1D: f(x,y) = —sin(z?y) - 422y? + cos(z?y) - 2y,
Doy f(x,y) = DyDy f(2,y) = —sin(2?y) - 203y + cos(z%y) - 2,
Diof(x,y) = D1Dof(z,y) = —sin(z?y) - 223y + cos(z%y) - 2,
Do f(x,y) = D2 D f(x,y) = —sin(a?y) - z™.

Note that D1of(x,y) = Doy f(z,y) everywhere. This is surprising, since there is
no obvious reason why the two calculations should lead to the same results. Our
next example shows that D15 f = Doy f is not always true.

2. Let f(x,y) = 2y - (% — y?)/(2® + y?) if (z,9) # (0,0), and let £(0,0) = 0.
First we prove that the partial derivative D1 f exists everywhere. The section f© is
zero everywhere, and thus D f(x, 0) exists for every x, and its value is zero every-
where. If b # 0, then the section f* is differentiable everywhere; thus D f(x, b)
also exists for every x. If b # 0, then

xb - (2 — b?) .z —b?

D1f(07b)—i%4x —ilf%, 22+ 02) - =0 ilg%)x?qu? =0

We have shown that Dy f(z,y) exists everywhere, and D1 f(0,y) = —y for every
y. It follows that Doy f(0,0) = D2 D1 f(0,0) = —1.

Now let us consider the partial derivatives D5 f. The section fj is zero every-
where, and thus D f (0, y) exists for all y, and its value is zero everywhere. If a # 0,
then f,, is differentiable everywhere; thus D5 f (a, y) also exists for every y. If a # 0,
then

— (a2 o2 2,2
Daf(a,0) = lim L@ =F@0 oy —y) oy
y=0 y y=0 (a®+y?) -y y—0 a2 +y?

We have shown that Dy f(x, y) exists everywhere, and D f(z,0) = « for every x.
It follows that D12f(0, 0) = Dngf(O, O) =1, and thus Dlgf(07 0) 7é Dglf(o, 0)
U

The following theorem explains why D1s f = Doy f was true for Example 1.81.1.

Theorem 1.82. (Young’s'® theorem) Let f(x,y) be a two-variable function. If
the partial derivative functions D1 f(x,y) and D f(x,y) exist in a neighborhood
of (a,b) € R? and they are differentiable at (a,b), then D12 f(a,b) = Doy f(a,b).

16 William Henry Young (1863-1942), British mathematician.
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Lemma 1.83.

(i) If the partial derivative D1 f(x,y) exists in a neighborhood of (a,b) and it is
differentiable at (a,b), then

lim fla+t,b+t)— fla+t,b) — fla,b+1t)+ f(a,b)

t—0 t2 = D21 f(a,b).

(1.20)
(i) If the partial derivative Do f(x,y) exists in a neighborhood of (a,b) and it is
differentiable on (a,b), then

. fla+t,b+t)— fla+tb)— f(a,b+1)+ f(a,b)
tE}(lJ t2

= Dlgf(a, b)
(1.21)

Proof. (i) Let us use the notation
H(t) = (fla+t,b+1t) = fla+t,b) — (fla,b+1) — fla,b))

and, for a fixed t, F'(u) = f(u,b+t) — f(u,b).Clearly, H(t) = F(a +t) — F(a).
The main idea of the proof is to use the mean value theorem for the latter formula,
and then use the differentiability of Dy f at a to show that H (t) is close to Da; f(a) -
2 when t is small.

Let € > 0 be fixed. Since D, f(x,y) is differentiable at (a,b), we can choose
0 > 0 such that

|D1f(2,y) — (D11f(a,b)(x — a) + Da1 f(a,b)(y — b) + D1 f(a,b))] <
<e-(lo—al+|y—0]) (1.22)

holds for every point (z,y) € B((a,b),0).

Let 0 < |t| < §/2 be fixed. The func-
tion F' is differentiable in the interval
[a,a + t], since u € [a, a + t] implies (a,b+1) (a+tb+1)
- ¥
(u,b+t) € B((a,b),0)
and .
u,b) € B((a,b),9). —
(u,b) € B((a,b),0) (0.5) @t
Furthermore, the sections f’** and
fY are differentiable at [a,a + t], with z
derivatives D1 f(u, b + t) and D1 f (u, b), 1.17. Figure

respectively. Thus F'(u) = Dy f(u,b+
t) — Dy f(u,b) for every u € [a,a + t]. By the mean value theorem we have

Fla+1t) — F(a) = (D1 f(e,;b+1t) — Dy f(e,b)) - t
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for an appropriate choice of ¢ € [a, a + t], and thus

H(t) = (Dif(c,b+1t) — D1f(c,b)) - t. (1.23)
Plugging (z,y) = (¢,b+t) and (x,y) = (¢, b) into (1.22), we get

|D1f(C, b+ t) — (an(a, b)(C — a)+D21f(a, b)t + le(a, b))| <

<e-(le—al+t]) <2e-t
and

|D1f(c,b) = (D11f(a,b)(c — a)+D1 f(a,b))| <
<e-le—al<e-|t],

respectively. Applying the triangle inequality yields
|D1f(c,b+1t) = Dif(c,b) = Doy f(a, b)t| < 3¢ - Jt].
Comparing with (1.23), we get

H{(t)
t2

— Dglf(a, b) § 3e.

Since e was arbitrary, and this is true for every 0 < || < /2, (1.20) is proved.

(i) Let 0 < |t| < /2 be fixed, and let G(v) = f(a +t,v) — f(a,v) for every
v for which f is defined at the points (a +t,v) and (a,v). We have H(t) =
G(b+t) — F(b) for every t small enough. Repeating the steps of the proof of (i),
we get (1.21). O

Proof of Theorem 1.82. By the assumptions of the theorem, the conditions of both
statements of Lemma 1.83 are satisfied. Therefore, both of (1.20) and (1.21) hold,
and thus Dlgf(a,b) = Dglf(a,b). O

Let us revisit Example 1.81.1. One can see that the second-order partial deriv-
atives of f are continuous everywhere. By Theorem 1.71 this implies that the
first-order partial derivatives of f are differentiable. Thus, by Young’s theorem,
D15 f = Do f everywhere.

Definition 1.84. Let f be differentiable in a neighborhood of a € RP. If the partial
derivative functions of f are differentiable at a, then we say that f is twice differen-
tiable at the point a.

Lemma 1.85. Letp > 2, let f be defined in a neighborhood of a = (a1, az, . .., ap)
€ RP, and consider the section

g(U,’U) = f(u,v,ag,...,ap).
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If f is twice differentiable at a, then g is twice differentiable at (a1, as) € R2. Fur-
thermore, Do1g(a1,as) = Doy f(a) and Dyag(ay,az) = Diaf(a).

Proof. From the definition of the partial derivative, we have D;g(u,v) = D;
f(u,v,as,...,ap)and Dag(u,v) = Da f(u,v,as, ..., a,) whenever the right-hand
sides exist. Thus, D1g and Dog are defined in a neighborhood of (ai,as). By
assumption, D1 f is differentiable at a, and thus

Dy f(x) = Dy f(a +ZDﬂf v —a;) +e(@) - o —al,

where e(z) — 0 as x — a. Applying this with = = (u,v, as, ..., a,), we obtain

D1g(u,v) =D1g(ai,az) + D11 f(a)(u —ar) + Doy f(a)(v — az)+
|

+e(w,v,as,...,ap) - |(u,v) — (a1, a2)].

Since e(u,v,as3,...,ap) — 0if (u,v) — (a1, az), it follows that D, g is differen-
tiable at (a1, as), and Da1g(a1,as) = Doy f(a). Similarly, Dog is differentiable at
(al, ag), and Dlgg(al, a2) = Dlgf(a). |

Theorem 1.86. If f is twice differentiable at a € RP, then D;; f(a) = D;; f(a) for
everyi,j=1,...,p.

Proof. We may assume i # j. Since the role of the coordinates is symmetric, we
may also assume, without loss of generality, that ¢ = 1 and j = 2. Consider the
section

g(u,v) = f(u,v,as,...,ap).

Combining Young’s theorem and our previous lemma yields D1sg(a1,as) = Doy
g(al, ag), and thus Dlgf(a) = Dglf(a). |:|

Definition 1.87. We define the kth-order partial derivatives recursively on k.
Assume that we have already defined the kth-order partial derivatives of the function
f. Then we define the (k + 1)st-order partial derivatives as follows.

Let 1 <4y,...,%k+1 < p be arbitrary indices, and suppose that the kth-order
partial derivative Dy, ;, f(x) exists and is finite in a neighborhood of a € RP.
If the i;th partial derivative of the function = +— D;, ;.. f(x) exists at a, then
we call this the (k + 1)st-order partial derivative of f at a, and use the notation
Di, ..ix,, f(a). (Obviously, f has at most p" different kth-order partial derivatives
ata.)

Some other usual notation for D;, _;, f(a):

ok f

o —(a), fi¥) wi(a), Dy, ... Dy, f(a).
al'il . al‘ik (a)’ fa: - Tig (0)7 fx’k"'I’Ll (Cl), 21 ik f(a’>

'k
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Definition 1.88. Suppose that we have already defined k-times differentiability.
(We did so in the cases of k =1 and k = 2.) We say that a function f is (k + 1)
times differentiable at a € RP if f is k times differentiable on a neighborhood of «,
furthermore, every kth-order partial derivative of f exists and is finite in a neighbor-
hood of a, and these partial derivatives are differentiable at a.

Thus, we have defined k times differentiability for every k.

We say that a function f is infinitely differentiable at a if f is k times differen-
tiable at a forevery k = 1,2,. . ..

Remark 1.89. 1t follows from Theorem 1.67 that if f is k times differentiable at a,
then every kth-order partial derivative of f exists and is finite at a.

Theorem 1.90. The polynomials are infinitely differentiable everywhere. The ratio-
nal functions are infinitely differentiable at every point of their domains.

Proof. By Corollary 1.72, polynomials are differentiable everywhere. Suppose we
have already proved that polynomials are k times differentiable. Since the kth-order
partial derivatives of a polynomial are also polynomials, these are differentiable,
showing that the polynomials are also (k + 1) times differentiable. Thus, the poly-
nomials are infinitely differentiable.

The proof for rational functions is similar. (|

Theorem 1.91. Let the function f be k times differentiable at a € RP. Ifthe ordered

k-tuples (i1, ... ,i) and (j1,. .., Ji) are permutations of each other (i.e., each i =
1,...,p appears the same number of times in both k-tuples), then D;, ;, f(a) =

Proof. The statement is trivial for the kK = 1 case, and the £ = 2 case is covered
by Theorem 1.86. For k& > 2, the statement can be proved by induction by applying
Theorem 1.86. (]

Exercises

1.96. Find every function f: R? — R such that Dy(D; f) is zero everywhere. (H)

1.97. Young’s theorem implies that the function f(z,y) = zy - (2% —y?)/(z? +
y?), £(0,0) = 0, cannot be twice differentiable at the origin. Verify, without using
the theorem, that D, f is not differentiable at the origin.

1.98. For what values of o, 3 > 0 is |z|® - |y|? twice differentiable at the origin?

1.99. Show that if D15 f and Do f exist in a neighborhood of (a, b) and are contin-
uous at (a, b), then D15 f(a,b) = Doy f(a,b).
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1.100. Let the partial derivatives D1 f, D5 f, and D15 f exist in a neighborhood of
(a,b), and let D12 f be continuous at (a, b). Show that Doy f(a, b) exists and is equal
to D12 f(a,b) (Schwarz’s theorem).

1.101. Let f: R? — R be twice differentiable everywhere. Show that if Dy f is
nonnegative everywhere, then f(b,d) — f(a,d) — f(b,c) + f(a,c) > 0 for every
a < bandc < d.

1.10 Applications of Differentiation

The most important applications of differentiation—in the cases of multi- and
single-variable functions alike—is the analysis of functions, finding the greatest
and the smallest values, and finding good approximations using simpler functions
(e.g., polynomials).

Since each of the applications below is based on Taylor!'” polynomials, our first
task is to define these polynomials for p-variable functions and establish their most
important properties. This proves to be surprisingly simple. The notation in the mul-
tivariable case is necessarily more complicated, but the notion of the Taylor polyno-
mials, as well as their basic properties, is basically the same as in the single-variable
case.

By a monomial we mean a product of the form c- z3' ---x,”, where c is a
nonzero real number and the exponents s1,. .., s, are nonnegative integers.

The degree of the monomial ¢ - 23! ---z}" is s1 + ...+ sp. Every p-variable
polynomial can be written as the sum of monomials. Obviously, if a polynomial is
not the constant zero function, then it can be written in a way that the p-element
sequences of the exponents of its corresponding monomials are distinct. By induc-
tion on p one can easily prove that this representation of the polynomials is unique.
We call it the canonical form of the polynomial.

We say that the degree of a nonidentically zero polynomial is the highest degree
of the monomials in its canonical form. The constant zero polynomial does not have
a degree. Still, when we speak about the set of polynomials of degree at most n, we
will include the identically zero polynomial among them.

Lemma 1.92. Let

g@) = Y o, (@1 —a)T (2, —ap) (1.24)

81,-.4,8p>0

s1+...+sp<n
Then g(a) = co..0, and furthermore, for every k <n and 1 <'iy,... i < p we
have
Dil...ikg(a) = 51!"'5p! 'csl...sp7 (125)

17 Brook Taylor (1685-1731), English mathematician.
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where si,...,s, denotes the number of indices of 1,...,p in the sequence
(i1, ..y ik).
Proof. The equality g(a) = co.. o is obvious. Let the indices 1 < i1,...,i; < p be

fixed, with k& < n. For simplicity, we write D instead of D;, ;,. It is easy to see
that if g; and g5 are polynomials, then D(g; + g2) = Dg1 + Dg2 and D(Ag1) = A -
Dy, for every A € R. Thus, the kth-order partial derivative Dg(a) can be computed
by applying D to each of the terms on the right-hand side of (1.24) and summing
the values of the resulting partial derivatives at the point a. Consider the kth-order
partial derivative

D(xy —ay)™ - (g —ag)' (1.26)

and its value at a:
(D(xl —a)" - (2g — ad)tp) (a). (1.27)

It is easy to see that if the index ¢ is present in the sequence (i1, ..., %) more than
t; times, then 1.26 is constant and equal to zero. On the other hand, if there is an
index 4 such that i is present in the sequence (i1, ..., %) fewer than ¢; times, then
the polynomial 1.26 is divisible by z; — a;, and thus the value of (1.27) is zero.
Therefore, in applying D to the right-hand side of (1.24) and taking its value at a,

we get a nonzero term only if (¢1,...,%,) = (s1,...,Sp).
Furthermore, since D(x1 — a1)®' --- (x4 — aq)®® is equal to the constant func-
tion s1!- - - s,!, it follows that (1.25) holds. O

Let f be n times differentiable at a. By Theorem 1.91, if n < k, then the kth-
order partial derivative D;, ;, f(a) does not depend on the order of the indices
i1,...,%, and only on the number of times these indices are present in the sequence
(41,...,1k). Let s1,..., s, be nonnegative integers, with s1 + ...+ s, <n. We
denote by D*'*» f(a) the number D;, ,;, f(a), where the indices 1,...,p are
present in the sequence (i1,...,7;) exactly sq,...,s, times, respectively. Let

D0 f(a) = f(a)

Theorem 1.93. Suppose that the function f is n times differentiable at
a=(ay,...,ap) € R, and let

1 $1...8 s s
@)= 30 o D) (e a) s (=) (128)
81,..4,8p>0 P
s1+...+s5p<n

The polynomial t,, is the only polynomial of degree at most n such that t,,(a) =
f(a), and

foreveryl <k <mandl <iy,...,ix <p.

Proof. It follows from Lemma 1.92 that ¢,,(a) = f(a) and (1.29) holds for the poly-
nomial £,,.
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Let g be a polynomial of degree at most n, and suppose that g satisfies g(a) =
fla)and Dy, 4, 9(a) = Dy, 4, f(a) forevery k <mand1 <i; <p(1<j<k).

Then the polynomial ¢ = g(x1 + a1,. .., 2, + ap) has degree at most n. Write ¢
as the sum of the monomials ¢ - zj* - - -x;" (with ¢ #0). Then 51 + ...+ 5, <n
holds for each term. If we replace x; by z; — a; in g foreveryi = 1,..., p, then we

get that (1.24) is true for suitable coefficients cs, .. s,. Then by Lemma 1.92 we have
spl--- Sp! *Csy.s, = Dil...ikg(a) = Dil...ikf(a)

for every (iy,..., i), 1.e.,, g = tp. O

We can see that
ti(z) = f(a) + D1 f(a) - (x1 —a1) + ...+ Dypf(a) - (x, —ap),

i.e., the graph of the polynomial ¢; is the tangent plane of graph f at (a, f(a)).
The polynomial ¢5 in the cases p = 2 and p = 3 can be written as follows:

ta(x,y) = f(a,b) + fr(a,b) - (z — a) + f,(a,b) - (y — b)+

+ 1 : falclx(a7b) : (l‘ - a)2 + falc/y(a7b) : (1‘ - a)(y - b) + 1 . fély(aab) : (y - b)Q’

2 2
or
tQ(l',y,Z) = f(aa b, C) + fa/:(avbac) : (ZL’ - (L) + f;(a,b, C) ’ (y - b)+
+ fl(a,b,c) - (2 — o)+
g Fh(ab o) (- af+
+ % ’ f?;/y(aﬁbac) . (y - b)2 + % : f;/z(a’ b,C) : (Z - C)2+
+ fa/:/y(aabv C) : (x - a)(y - b) + f;/z(avbv C) : (CL‘ - a)(z - C)+
+ fy=(a,b) - (y = b)(z — o),
respectively.

Remark 1.94. 1f the function f is n times differentiable at a, then the polynomial in
(1.28) can be written in the following alternative form:

tn(z) = f(a) + ZDif(a) (@ —a;)+

1 P
+ E 4 Z Di]izf(a) . (l‘il — ail)(ﬂiiz — U,iQ) +...4+ (1.30)
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Indeed, suppose that the index ¢ occurs in the sequence (i1, . . . , ix) exactly s; times
(i=1,...,p). Then sq,..., s, are nonnegative integers with s; + ... 4+ s, = k. It
is well known (and easy to show) that the number of possible permutations of the
sequence (i1,...,0) is Sl,ki'sp, Using the notation of Theorem 1.93, we can see

that the term D' % (z1 — a1)®* - - - (x, — ap)® occurs % times on the right-
hand side of (1.30). This proves that (1.28) and (1.30) define the same polynomial.

Definition 1.95. We call the polynomial ¢,, defined by (1.28) (or by (1.30)) the nth
Taylor polynomial of the function f at the point a.

The following notion makes it possible to represent the multivariable Taylor poly-
nomials in a simple form similar to that in the single-variable case.

Definition 1.96. If the function f is n times differentiable at a € RP, then we call
the polynomial

k! 51...8 s1 s
Z 7'D ..-pf(a).xl ...xpP:

p
= > Diifla) i, (1.31)

i1y =1
the kth differential of the function f at a, and we use the notation d* f(a) (k <
b

Thus d* f(a) is not a real number, but a p-variable polynomial. If b = (by, ...,
RP, then d* f(a)(b) is the value the polynomial d* f(a) takes at b; that is,

dkf(a‘)(b) = ‘ Z Dlllkf(a)bll blk

For p = 2 and k = 2 we have
& f(a)(b) = fro(a)bF +2f7, (a)biba + fy, (a)b5.
We can write the nth Taylor polynomial in the form
1 1 2 1 n
tn(z) = fla) + d"f(a)(z — a) + 5;d" fla)(z —a) + ... + —d" f(a)(z — a)

using differentials. Again, d* f(a)(z — a) is the value d¥ f(a) takes at z — a.

Theorem 1.97. (Taylor’s formula) Let the function f be (n+ 1) times differen-
tiable at the points of the segment |a,b], where a,b € RP. Then there exists a point
¢ € [a,b] such that
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1
(n+1)!

f(b) =ta(b) + " f(e)(b—a). (1.32)
Lemma 1.98. Let the function f be n times differentiable at the points of the seg-
ment [a,b], where a,b € RP.IfF(t) = f(a+1t- (b—a)) (t € [0,1]), then the func-
tion F' is n times differentiable on the interval [0, 1], and

F® @)y =d*fla+td—a))(b—a) (1.33)
Sforeveryk <mandt € |0,1].

Proof. We prove the lemma by induction on k. If £ = 0, then the statement is
true, since F(O(t) = F(t) = f(a+t(b—a)), and d°f(a+ t(b — a)) is the con-
stant polynomial f(a + t(b — a)). If k = 1, then (1.33) is exactly part (i) of Theo-
rem 1.79.

Let 1 < k < n, and suppose that (1.33) is true for every ¢ € [0, 1]. By the defini-
tions of the differential d* f, we have

p
FR@W) = Y Diaflattd—a)- (b —ai)--- (b, —ay) (1.34)

11,0t =1

forevery ¢ € [0, 1]. Since f isn > k times differentiable at the points of [a, b], every
kth-order partial derivative D;, ;, f is differentiable there. By part (i) of Theo-
rem 1.79, the function ¢ — D;, _;, f(a + t(b — a)) is differentiable at [0, 1], and its

derivative is
p

ZDi,il...ikf(a +t(b—a))- (b — ai).

i=1

This holds for every term on the right-hand side of (1.34). Thus F'(*) is differentiable
at [0, 1], and its derivative is

P
F(k+1)(t) = Z Dil---ik+1 f(a + t(b - a)) : (b71 - a’il) e (bik+1 - aik+1)'

Therefore, (1.33) holds for (k+ 1), and (1.33) has been proved for every
k<n. O

Proof of Theorem 1.97. Let F(t) = f(a+t-(b—a)), for every t € [0,1]. By
Lemma 1.98, F' is (n + 1) times differentiable on the interval [0, 1], and (1.33)
holds forevery k < n + landt € [0, 1]. If we apply (the single-variable version of)
Taylor’s formula with Lagrange remainder (see [7, 13.7]), we get (1.32). (]

Theorem 1.99. Let the function f be n times differentiable at a = (a1, ..., ap) €
RP, and let t,, be the nth Taylor polynomial of f at a. Then
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i @) = tal@)
T—a |x — a|”

=0. (1.35)

Conversely, if a polynomial q with degree at most n satisfies

lim f@) —a(z) _ 0, (1.36)

T—a |_’17 — aln
then q = t,. (In other words, among the polynomials of degree at most n, t,, is the
one that approximates the function f best locally at the point a.)

Proof. For n = 1, equation (1.35) is exactly the definition of differentiability of f
at a. Thus, we may assume that n > 2.

Let f be n times differentiable at a. The function g = f — t,, is also n times
differentiable at a, and by Theorem 1.93, the partial derivatives of g of order at most
n are all zero at a. The (n — 1)st-order partial derivatives of ¢ are differentiable at
a, and for the same reason as we mentioned above, both their values at a and the
values of their partial derivatives at a are zero. By the definition of differentiability,
for every € > 0 there exists ¢ > 0 such that if |z — a| < J, then

’Dil,,,inflg(x)‘ <e-|lr—ad (1.37)

foreveryl1 <i; <p(j=1,...,n—1).Letusapply the (n — 2)nd Taylor formula
for g. We find that for every « € B(a, ) there exists ¢ € [a, z] such that

This implies
@) —ta@ __p"

|z —al®  — (n—1)!

- €

for every 0 < |z — a| < . Since € was arbitrary, (1.35) has been proved.
Now let’s assume that (1.36) holds for a polynomial ¢ with degree at most n.
Then r = g — t,, is a polynomial of degree at most n, and

lim r(z)/|x —a|™ = 0. (1.38)

r—a
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We need to prove that r is the constant zero function. If p = 1, then (1.38) implies
that a is a root of r with multiplicity at least (n + 1). Since the degree of r is at most
n, this is possible only if r is identically zero.

Let p > 1 and let s(t) = r(a + ty) (¢t € R), where y is a fixed p-dimensional
nonzero vector. It is obvious that s is a polynomial in the variable ¢ of degree at
most n. Applying Theorem 1.49 on the limit of composite functions, we obtain
limg 0 s(t)/|ty|™ = 0and lim;_,q s(t)/|t|™ = 0. As we saw above, this implies that
s(t) = 0 for every t. Then r(a + y) = s(1) = 0 for every vector y € RP, y # 0.
Thus r = 0, since r is continuous at the point a. O

Let f be a function of one variable, and suppose that f is twice differentiable at
the point a € R. It is well known that if f/(a) = 0 and f”(a) > 0, then f has a strict
local minimum at the point a, and if f’(a) = 0 and f”(a) < 0, then f has a strict
local maximum at the point a. (See [7, Theorem 12.60].) This implies that if f has a
local minimum at the point a, then necessarily f”/(a) > 0. The following application
of Taylor’s formula gives a generalization of these results to multivariable functions.

To state our theorem, we need to introduce a few concepts from the field of
algebra. We say that a p-variable polynomial is a quadratic form if every term of
its canonical form is of degree two. In other words, a polynomial is a quadratic
form if it can be written as Zf j—1 Cijriz;. Note that if f is twice-differentiable
at a, then the second differential d*f(a) is a quadratic form, since d*f(a)(z) =

b o1 Dijf(a) - wiz;.

Definition 1.100. A quadratic form ¢ is positive (negative) definite if q(x) > 0
(¢(x) < 0) for every x # 0.

A quadratic form q is positive (negative) semidefinite if q(x) > 0 (¢(z) < 0) for
every x € RP.

A quadratic form q is indefinite if it takes both positive and negative values.

Theorem 1.101. Ler f be twice differentiable at a € RP, and let D, f(a) = 0 for
everyi=1,...,p.

() If f has a local minimum (maximum) at a, then the quadratic form d*f(a) is
positive (negative) semidefinite.

(ii) If the quadratic form d? f (a) is positive (negative) definite, then f has a strict
local minimum (maximum) at a.

Proof. (i) We prove the result by contradiction. Let f have a local minimum
at a, and suppose that there exists a point o such that d?f(a)(xo) < 0. Since
D;f(a)=0foreveryi=1,...,p,wehave d! f(a)=0,and ts(z)=f(a)+3 - d*f(a)
(x — a) for every x. According to Theorem 1.99,

i £~ ()

z—a |z — al?

—0. (1.39)



1.10  Applications of Differentiation 59

For ¢ small enough, (1.39) implies

|f(a+txg) — ta(a + txg)| < WM 12,
On the other hand,
oo+ 1) = 1) + 5 - f(a)(wo)
and thus
fla+tzo) < ta(a+ tag) + 7|d2f(‘;)<xo)| 2=
= o)+ & fla)(ao) + PO 2 i)

for every ¢ small enough. This means that if d°f(a) takes a negative value, then f
takes a value less than f(a) in every neighborhood of a, which is a contradiction.

We can prove similarly that if f has a local maximum at a, then d* f(a) is nega-
tive semidefinite. Thus (i) is proved.

Now let d?f(a) be positive definite. The function d?f(a) is positive and con-
tinuous on the set S(0,1) = {x € RP: |z| = 1}. Since S(0,1) is bounded and
closed, Theorem 1.51 implies that d* f(a) takes a least value on S(0,1). Let this
value be m; then m > 0 and d? f(a)(z) > m for every x € S(0,1). If z # 0, then
x/|z| € S(0,1), and thus

d*f(a)(z) = [o? - d*f(a)(a/Iz]) = m - |af*. (1.40)

By (1.39), there exists > 0 such that |f(z) — ta(x)| < (m/2) - |z — a|? for every
0<|z—al<d.If0 < |z —a|] < ¢ then (1.40) implies

f(@) > ta(x) = (m/2) - [& —a* > f(a) + 5 -m- |z —af* = (m/2) - |z — af* = f(a).

This proves that f has a strict local minimum at a. Similarly, if d* f(a) is negative
definite, then f has a strict local maximum at a, which proves (ii). ]

Remark 1.102. 1. For p =1, we have d?f(a)(z) = f"(a) - x?, which is posi-
tive definite if f”(a) > 0, negative definite if f”’(a) < 0, positive semidefinite
if f”(a) > 0, and negative semidefinite if f”(a) < 0. (For single-variable func-
tions every quadratic form is semidefinite; there are no indefinite quadratic forms.)
Thus, (i) of Theorem 1.101 gives the statement we quoted above: if f/(a) = 0 and
f"(a) > 0, then f has a strict local minimum at the point a.
Note that for p > 1, there exist indefinite quadratic forms (e.g., x122).

2. We show that neither of the converses of the statements of Theorem 1.101 is
true. Obviously, every first- and second-order partial derivative of the polynomial



60 1 RP — R functions
f(z1,...,2,) = x? is zero at the origin. Thus the quadratic form d? f (0) is constant
and equal to zero. Consequently, it is positive semidefinite. Still, the function f
does not have a local minimum at the origin, since it takes negative values in every
neighborhood of the origin.

Now consider the polynomial g(1, ..., x,) = 2] + ... + 2, which has a strict

local minimum at the origin. Since every second-order partial derivative of g is zero
at the origin, the quadratic form d?¢(0) is constant and equal to zero, and is therefore
not positive definite.
3. The quadratic form az? + bzy + cy? is positive definite if and only if @ > 0 and
b? — 4ac < 0. A classic theorem of abstract algebra states that for every quadratic
form (of an arbitrary number of variables) an appropriate matrix (or rather the signs
of its subdeterminants) formed from the coefficients of the quadratic form can tell
us whether the quadratic form is positive (negative) definite, or positive (negative)
semidefinite. For a mathematically precise statement see [6, Theorem 7.3.4].

A single-variable differentiable function f is convex on an interval if and only
if each of the tangents of graph f is under the graph of the function (see [7, The-
orem 12.64]). Also, a twice-differentiable function is convex on an interval if and
only if its second derivative is nonnegative everywhere on the interval (see [7, The-
orem 12.65]). Both statements can be generalized in the multivariable case.

Definition 1.103. We say that the set H C RP is convex if H contains every seg-
ment whose endpoints are in H.

Every ball is convex. Indeed, if z,y € B(a,r), then

|z +t(y —x) —al =[(L = t)(z —a) + t(y —a)| <
<(A-=t)xr—al+tly—al <
<(A-tyr+tr=r

forevery t € [0, 1], i.e., every point of the segment [x, y] is in B(a, 7).
A similar argument shows that every closed ball is convex. It is also easy to see
that every open or closed box is also convex.

Definition 1.104. Let H C RP be convex. We say that the function f: H — R is
convex on the set H if for every x,y € H, the single-variable function ¢ — f(z +
t(y — x)) is convex on the interval [0, 1]. That is, f is convex on H if

f((A=t)z +ty) < (1 —1)f(x) +1f(y)

forevery z,y € H and ¢ € [0, 1].

We say that the function f: H — R is concave on the set H if — f is convex
on H.

Figure 1.18 shows an example of a convex function.
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Theorem 1.105. Let f be differentiable on the convex and open set G C RP. The
Sfunction f is convex on G if and only if the graph of [ is above the tangent hyper-
plane at the point (a, f(a)) for every a € G. In other words, f is convex on G if and
only if

f(@) = f(a) +(f'(a),z — a) (1.41)
forevery a,x € G.

Proof. Let f be convex on G, and let a and z be different points of G. By Theo-
rem 1.79, the single-variable function F'(t) = f(a + t(z — a)) is differentiable at
[0,1],and F'(t) = (f'(a + t(x — a)),x — a) forevery ¢ € [0, 1]. Since F' is convex
on [0, 1] (by our assumption), we have

flx) =F(1) = F(0) + F'(0) = f(a) + (f'(a), — a),

which is exactly (1.41). (We applied here [7, Theorem 12.64]).

Now suppose (1.41) for every a,z € G. Let F' be the same function as above.
We have to prove that F' is convex on [0, 1]. By [7, Theorem 12.65], it is enough
to show that F'(t) > F(to) + F'(to)(t — to) for every t,ty € [0,1]. Since F'(t) =
(f'(a+t(x —a)),z — a), we have

fla+1t(e —a) = fla+tole — a) + (' (a + tola — a)), (t — to) - (x — a)).

However, this follows from (1.41) if we apply it with a + to(z —a) and a + ¢
(z — a) in place of @ and x, respectively. O

Theorem 1.106. Let f be twice differentiable on the convex and open set G C RP.
The function f is convex on G if and only if the quadratic form d? f(a) is positive
semidefinite for every a € G.

Proof. Let f be convex on G, and let a and b be different points of G. By
Lemma 1.98, the function F'(t) = f(a+ t(b— a)) is twice differentiable on the
interval [0,1], and F”(0) = d*f(a)(b — a). Since F is convex on [0,1] (by our
assumption), we have F”(0) = d*f(a)(b — a) > 0. This is true for every b € G,
showing that d f(a) is positive semidefinite. Indeed, since G is open, we must have
B(a,r) C G for a suitable r > 0. For every = € R? we have a + tx € B(a,r) if ¢
is small enough, i.e., d? f(a)(tx) > 0 for every ¢ small enough. Since d f(a)(tx) =
t? - d? f(a)(x), it follows that d® f(a)(x) > 0, and d? f(a) is positive semidefinite.
Now let d° f(a) be positive semidefinite for every a € G. Let a and b be distinct
points of G, and let F'(t) = f(a + t(b— a)) (t € [0,1]). By Lemma 1.98, F'is twice
differentiable on the interval [0,1], and F"(t) = d*>f(a + t(b—a))(b—a) >0,
since d?f(a+t(b— a)) is positive semidefinite. This implies that F' is convex
on [0, 1]. Since this is true for every a,b € G, a # b, this means that f is convex
onG. g
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Remark 1.107. 1t is clear how to change the conditions of Theorems 1.105 and
1.106 in order to get necessary and sufficient conditions for concavity of a function.

Example 1.108. Let p = 2. The graph of the
polynomial f(x,y) = 22 + y? is arotated parabolmd ST
since it can be obtained by rotating the graph of the |-

single-variable function z = 22 around the z-axis.
We show that f is convex in the plane.

For every (a,b) € R? we have

Dl,lf(ayb) - 27
D2,1f(a7b) = D1,2f(a7b) = 07
and D2,2f(a,b> = 2.

Thus d?f(a,b)(z,y) = 22? + 2y*. Since this
quadratic form is positive definite, it follows from
Theorem 1.106 that f is convex.

1.18. Figure

Exercises

1.102. What are the third Taylor polynomials of the following functions?

(@) z/yat(1,1);

(b) 23+ 9%+ 23 — 3zyzat (1,1,1);
(c) sin(x + y) at (0,0);

@ z¥at (1,0).

1.103. Find the local extremum points and also the least and greatest values (if they
exist) of the following two-variable functions:

(@) 22+ 2y +1y? -3z — 3y; (b) 23y*(2 -z —y);

(c) 23+ 93— 9xy; (d) z*+y* — 222 + 4oy — 22,

1.104. Let H C RP be convex. Show that the function f: H — R is convex if and

only if the set
{(z,y) eRP* :z € H, y > f(x)} CRPF!

is convex.

1.105. Let G C RP be convex and open. Show that if f: G — R is convex, then it
is continuous.
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1.106. Let G C RP be convex and open. Show that the function f: G — R is con-
vex if and only if it is continuous and if

; (x;y) < 1)+ 1)

holds for every z,y € G.

1.11 Appendix: Tangent Lines and Tangent Planes

In our previous investigations we introduced the notions of tangent lines and tan-
gent planes in connection with approximations by linear functions. However, the
intuitive notion of tangent lines also involves the idea that tangents are the “limits
of the secant lines.” Let, for example, f be a one-variable function differentiable
at a. The slope of the line (the “secant”) intersecting the graph of f at the points
(a, f(a)) and (z, f(x)) is (f(z) — f(a))/(xz — a). This slope converges to f’(a) as
x — a, and thus the secant “converges” to the line with slope f’(a) that contains
point (a, f(a)), i.e., to the tangent line. More precisely, if = converges to a from
the right or from the left, then the half-line with endpoint (a, f(a)) that intersects
(z, f(x)) “converges” to one of the half-lines that are subsets of the tangent and lie
above [a, 00) or (—o0, al, respectively. This property will be used for a more general
definition of the tangent.

Let 2 and z be different points of RP. The half-line Zoz with endpoint x and
passing through x consists of the points z¢ + t(x — x¢) (t € R, ¢ > 0). We say that
the unit vector (z — x¢)/|x — x| is the direction vector of this half-line. Let z,, —
xo and x,, # xo, for every n, and let (x,, — x¢)/|x,, — ©o| — v. In this case we say
that the sequence of half-lines ZoZy converges to the half-line {z( + tv: ¢ > 0}.

Let H C R?, and let 2o € H'. If z,, € H \ {0} and z,, — x¢, then by the
Bolzano—Weierstrass theorem (Theorem 1.9), the sequence of unit vectors
(zn, — x0)/|zn — 20| has a convergent subsequence. We say that the contingent
of the set H at xzy is the set of vectors v for which there exists a sequence
xn € H\ {xo} such that z,, — z¢ and (z,, — x¢)/|xs — xo| — v. We denote the
contingent of the set H at zo by Cont (H; zo). It is clear that Cont (H; o) # 0 for
every zg € H'.

In the next three examples we investigate the contingents of curves. By a curve
we mean a map g: [a,b] — RP (see [7, p. 380]).

Example 1.109. 1. If the single-variable function f is differentiable at a, then
Cont (graph f; (a, f(a))) contains exactly two unit vectors, namely the vector

( 1 f'(a) )
VIF ()2 1+ (f(a))?

with slope f/(a) and its negative.
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2. Let g: [a,b] — RP be a curve, and let g be differentiable at ¢ty € (a,b) with
g'(to) # 0. The contingent of the set I' = ¢([a, b]) at g(to) contains the unit vec-
tors +¢’(t0)/|g’(to)|. Indeed, if t,, — to, then

g(tn) — g(to)

/
to)-
£ — to — g'(to)
We have () (to)
gtn _gtO
280 g ).
n — L0

which implies

9(tn) —gto) _ (9(tn) = 9(t0))/(tn —to) =~ ¢'(to)
l9(tn) = g(to)l  lg(tn) — g(to)l/(tn —t0) 19’ (t0)]

if t,, > to. Therefore, ¢'(to)/|g'(to)| € Cont (T, g(to)). If ¢,, converges to to from
the left-hand side, we get —g’(t0) /]9’ (t0)| € Cont (T, g(to)) in the same way.

3. Let g be a curve that passes through the point g(¢y) only once, i.e., g(t) # g(to)
for every t # to. It is easy to see that g(¢,) — g(to) is true only if ¢, — to. If
we also assume that ¢’(¢9) # 0, then we obtain that the contingent Cont (T, g(t¢))
consists of the unit vectors ¢’ (to)/|g' (to)]-

The examples above motivate the following definition of the tangent.

Definition 1.110. Let 2o € H’, and let [v| = 1. We say that the line {z¢ + tv: t €
R} is the tangent line of the set H at the point xq if Cont (H;x¢) = {v, —v}.

By this definition, the graph of the function f has a tangent line at the point
(a, f(a)) not only when f is differentiable at a, but also when f’(a) = oo or f/(a) =
—00. On the other hand, if f/ (a) = —oco and f’, (a) = oo, then graph f does not
have a tangent line at (a, f(a)).

We can easily generalize Definition 1.110 to tangent planes.

Definition 1.111. Letxzg € H’, and let S be a plane containing the origin (i.e., let S
be a two-dimensional subspace). We say that a plane {xo + s: s € S} is the tangent

plane of the set H at the point x if Cont (H; x() consists of exactly the unit vectors
of S.

Let the function f: R? — R be differentiable at (a,b) € R2. It is not very dif-
ficult to show (though some computation is involved) that the contingent of the set
graph f at the point (a, b, f(a, b)) consists of the unit vectors (v1,v2,v3) € R3 for
which v3 = Dy f(a, b)vy + Do f(a, b)vs.
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Then by Definition 1.74, the plane
Z = le("’ab)(x - (l) + DQf(avb)(y - b) + f(aab)

is the tangent plane of the graph of f at (a, b, f(a,b)). One can see that this plane is
the tangent plane of the graph of f according to Definition 1.111 as well.

We can define the notion of tangent hyperplanes in R? similarly. One can show
that for a graph of a function, the notion of tangent hyperplane according to Defini-
tion 1.75 corresponds to Definition 1.111, generalized to R”.



Chapter 2
Functions from RP to [R?

Consider a function f: H — R?, where H is an arbitrary set, and let the coordinates
of the vector f(z) be denoted by f1(x), ..., fq(x) for every z € H. In this way we
define the functions fi,..., f,, where f;: H — Rforeveryi=1,...,q. We call
fi the ith coordinate function or component of f.

The above defined concept is a generalization of the coordinate functions intro-
duced by Definition 1.47. Indeed, let f be the identity function on RP, i.e., let
f(z) =z for every € RP. Then the coordinate functions of f: R? — RP are
nothing but the functions « = (z1,...,2,) — 2; (withi =1,...,p).

Now let f: H — R? with H C RP. The coordinate functions of f are real-
valued functions defined on the set H; therefore, they are p-variable real-valued
functions. The limits, continuity, and differentiability of the function f could be
defined using the corresponding properties of f’s coordinate functions. However, it
is easier, shorter, and more to the point to define these concepts directly for f, just
copying the corresponding definitions for real-valued functions. Fortunately, as we
shall see, the two approaches are equivalent to each other.

2.1 Limits and Continuity

Definition 2.1. Let H C E C RP, and let a be a limit point of H. The limit of the
Sfunction f: E — RY? at a restricted to H is b € R? if for every € > 0 there exists
d > 0 such that |f(z) — b| < € whenever x € H and 0 < |z — a| < 0. Notation:
limmﬂa, zeH f(!E) =b.

If the domain of the function f is equal to H (i.e., it is not greater than H), then
we omit the part “restricted to the set H” of the definition above, and we simply say
that the limit of f at a is b, with notation lim,_,, f(z) =bor f(z) — b, if x — a.
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Obviously, lim,_., zem f(x) = b if and only if for every neighborhood V' of b
there exists a punctured neighborhood U of a such that f(x) € Viifx € HNU.

Theorem 2.2. Let H C E CRP, let a be a limit point of H, and let b=
(b1,...,bq) € RYL For every function f: E — RY, we have lim,_., zem f(z) =b
if and only if imy_.q zem fi(x) =b; (i =1,...,q) holds for every coordinate
function f; of f.

Proof. The statement follows from the definitions, using the fact that for every
point y = (y1,...,¥yq) € R, we have |y —b| <|y1 —bi|+ ...+ |ys — bg| and
ly; — b;| < |y —bl|,foreachi=1,...,q. O

The transference principle follows from the theorem above: lim,_.q zepf(2) =5
if and only if for every sequence x,, € H \ {a}, we have that z, — a implies
f(x,) — b. (This statement is a generalization of the corresponding one dimen-
sional theorem [7, Theorem 10.19].)

It is clear from Theorems 1.40 and 2.2 that if lim, ., ccm f(x) =0 and
limg_.q, zem g(x) = ¢, where b,c € RY, then limy_., zem Af(x) = Ab for every
X € R. Furthermore, limy_. gep(f(z) + g(x)) = b+ c and lim,_.o, zeu(f(x),
g9(x)) = (b,c).

Definition 2.3. Leta € H C E C RP. We say that the function f: E — R?is con-
tinuous at a restricted to the set H if for every € > 0 there exists § > 0 such that if
x € H and |z — a| < 4§, then |f(x) — f(a)] <e.

If the domain of f is equal to H, then we can omit the part “restricted to the set
H” from the definition.

If f is continuous at every point a € H, then we say that f is continuous on the
set H.

The following theorem follows from Theorem 2.2.

Theorem 2.4. The function f is continuous at a point a restricted to the set H if
and only if this is true for every coordinate function of f. O

Clearly, f is continuous at a restricted to H if and only if one of the following two
conditions holds:

(1) a is an isolated point of H,
(i) a € HNH andlimy,_., zen f(z) = f(a).

The transference principle for continuity can be easily verified: the function
f: H — RP is continuous at the point a € H restricted to the set H if and only if
f(x,) — f(a) holds for every sequence x,, € H with x,, — a.

This implies the following statement: if the functions f and g are continuous at
the point a restricted to the set H, then so are the functions f + g, (f,g) and \f
for every \ € R.

A theorem about the limit of composite functions follows.

Theorem 2.5. Suppose that
(i) HCRP, g: H— R?andlim,_., g(x) = ¢, where a is a limit point of H;
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(i) g(H) C ECRY, f: E — R® and lim,_.. f(x) = b,

(iii) g(z) # cin a punctured neighborhood of a, or ¢ € E and f is continuous at ¢
restricted to the set g(H).

Then
lim f(g(z)) =b.0 (2.1)
Corollary 2.6. If g is continuous at a restricted to H, and f is continuous at the

point g(a) restricted to the set g(H), then f o g is also continuous at a restricted
to H. O

If we wish to generalize Weierstrass’s theorem (Theorem 1.51) to functions map-
ping to RY, we have to keep in mind that for ¢ > 1 there is no natural ordering of
the points of R?. Therefore, we cannot speak about the largest or smallest value of a
function. However, the statement on the boundedness still holds; moreover, we can
state more.

Theorem 2.7. Let H C RP be bounded and closed, and let f: H — RY? be contin-
uous. Then the set f(H) is bounded and closed in RY.

Proof. Applying Weierstrass’s theorem (Theorem 1.51) to the coordinate functions
of f yields that the set f(H ) is bounded.

In order to prove that f(H) is also closed we will use part (iii) of Theorem 1.17.
Suppose that y,, € f(H) and y,, — b. For every n we can choose a point z,, € H
such that f(z,) = y,. The sequence (x,,) is bounded (since H is bounded). Thus,
by the Bolzano—Weierstrass theorem, (z,,) has a convergent subsequence (., ).
If x,,, — a, then a € H, because the set H is closed. Since the function f is con-
tinuous, it follows that

b= klim Yny, = klim flzn,) = f(a),

and thus b € f(H). Then, by Theorem 1.17, the set f(H) is closed. O

Recall the definition of injective functions. A mapping is injective (or one-to-
one) if it takes on different values at different points of its domain. The following
theorem states another important property of continuous functions with bounded
and closed domains.

Theorem 2.8. Let H C R? be bounded and closed, and let f: H — R? be contin-
uous. If f is injective on the set H, then f~" is continuous on the set f(H).

Proof. Lety, € f(H)andy, — b € f(H). Then we have b = f(a) for a suitable
a € H.Letz, = f~!(y,) for every n; we need to prove that z,, — f~1(b) = a.
We prove by contradiction. Let us assume that the statement is not true. Then
there exists £ > 0 such that z,, ¢ B(a,¢), i.e., |x,, — a| > ¢ for infinitely many n.
We may assume that this holds for every n, for otherwise, we could delete the terms
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of the sequence for which it does not hold. The sequence (x,,) is bounded (since
H is bounded), and then, by the Bolzano—Weierstrass theorem, it has a convergent
subsequence (x,, ). If 2, — ¢. And then ¢ € H, since H is closed. Also, ¢ # a,
since
lc—a|l = lim |x,, —a| >e.
k—oo

Since the function f is continuous, it follows that

f(c) = lim f(xnk) = kli—{go Yny, = b= f(a)’

k—o0o

which contradicts the assumption that f is injective. U

Remark 2.9. The condition of the boundedness of the set I cannot be omitted from
the previous theorem, i.e., the inverse of a continuous and injective function on a
closed domain is not necessarily continuous. Consider the following example. Let
p=¢q=1, H=Nandlet f: N — R be the function with f(0) =0 and f(n) =
1/n forevery n = 1,2, .... The set H is closed (since every convergent sequence of
H is constant begining from some index), the function f is continuous on H (since
every point of H is an isolated point), and f is injective. On the other hand, f~! is
not continuous, since

0=f"10) # lim f~t1/n) = lim n = oo.

(The condition of closedness of H cannot be omitted from the theorem either; see
Exercise 2.2.)

Uniform continuity can be defined in the same way as in the case of real-valued
functions.

Definition 2.10. We say that the function f is uniformly continuous on the set H C
R? if for every € > 0 there exists 6 > 0 such |f(x) — f(y)| < & holds whenever
x,y € H and |z — y| < 0 (where ¢ is independent of x and y).

Heine’s theorem remains valid: if H C RP? is a bounded and closed set and the
function f: H — RY is continuous, then f is uniformly continuous on H.

2.2 Differentiability

To define differentiability for an R%-valued function, we proceed as in the cases of
limits and continuity; that is, we simply copy Definition 1.63. However, since we
are dealing with functions that map from R? to R?, we need to define linear maps
from RP to R?. For this reason we recall some basic notions of linear algebra.

We say that a function A: RP — RY is a linear mapping or a linear transfor-
mation if A(x + y) = A(z) + A(y) and A(Ax) = AA(x) hold for every z,y € RP
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and A € R. Clearly, the mapping A: RP — R? is linear if and only if each of its
coordinate functions is linear.

Let aj1z1 + ... + a;px, be the ith coordinate function of the mapping A (i =
1,...,q). We call

(2.2)
Gq1 Qg2 - .. Agp

the matrix of the mapping A. The matrix has ¢ rows and p columns, and the ith row
contains the coefficients of the ith coordinate function of A.

It is easy to see that if x = (x1,...,x,) € RP?, then the vector y = A(x) is the
product of the matrix of A and the column vector consisting of the coordinates of x.
That is,

aix @12 ...0a1p € Y1
a1y a2 ... a2p T2 Y2

A@)=| . ] : =11 (2.3)
Qq1 Qg2 - Agp Tp Yq

In other words, the ith coordinate of A(z) is the scalar product of the ith row of A
and z.

Definition 2.11. Let H C RP and a € int H. We say that the function f: H — R4
is differentiable at the point a if there exists a linear mapping A: RP — RY such
that

f(z) = fla)+ Az —a) +e(z) - |z — a (2.4)

forevery © € H, where ¢(z) — 0if z — a. (Heree: H — R%.)

Remark 2.12. Since the function € can be defined to be 0 at the point a, the differ-
entiability of the function f is equivalent to (2.4) for an appropriate linear mapping
A, where e(a) = 0 and € is continuous at a.

We can formulate another equivalent condition: for an appropriate linear map-
ping A we have (f(z) — f(a) — A(x —a))/|lzr —a] = O0asx — a.

Theorem 2.13. The function f: H — R? (H C RP) is differentiable at the point
a € int H if and only if every coordinate function f; of f is differentiable at a. The
jth entry of the ith row of the matrix of A from (2.4) is equal to the partial derivative
D;fi(a) foreveryi=1,....,qandj=1,...,p.

Proof. Suppose that (2.4) holds for every x € H, where e(x) — 0 as ¢ — a. Since
the vectors of the two sides of (2.4) are equal, their corresponding coordinates are
equal as well. Thus, f;(z) = fi(a) + Ai(z — a) +&;(z) - |x — a| for every x € H
andi=1,...,q,where f;, A;, ¢; denote the ith coordinate functions of f, A, and ¢,
respectively. Since A; is linear and ¢;(z) — 0 as  — a (following from the fact
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that |g;(z)| < |e(x)| for every x), we get that f; is differentiable at a. By
Theorem 1.67, the jth coefficient of the linear function A; is the D, f;(a) partial
derivative, which also proves the statement about the matrix A.

Now suppose that every coordinate function f; of f is differentiable at a. By
Theorem 1.67, fi(z) = fi(a) + A;(x — a) + g;(x), where A;(z) = D1 fi(a)z1 +
...+ D,fi(a)x, and g;(x) — 0 as z — a. Let A(z) = (4A1(x),...,Ay(z)) for
every x € RP, and let e(x) = (e1(x),...,e4(x)) for every x € H. The mapping
A: RP — RY is linear, and e(z) — 0 as * — a by Theorem 2.2. In addition, (2.4)
holds for every x € H. This proves that f is differentiable at the point a. (]

Corollary 2.14. If f is differentiable at a, then the linear mapping A from (2.4) is
unique. O

Definition 2.15. Let f: H — R? with H C RP, and let f be differentiable at a €
int H. We say that the linear mapping A: RP — RY from (2.4) is the derivative of
the function f at the point a, and we use the notation f’(a). We call the matrix
of the linear mapping f’(a), i.e., the matrix of the partial derivatives D, f;(a) (j =

1,...,p,i=1,...,q)

Difi(a) D:zfi(a) ... Dyfi(a)
Difa(a)  Dafa(a) ... Dyfa(a)

Dy fy(a) Dafy(a) ... Dyfq(a),
the Jacobian matrix' of the function f at the point a.
The following statements are clear from Theorems 1.66, 1.67, 1.71, and 2.13.

Theorem 2.16.

(1) If the function f is differentiable at the point a, then f is continuous at a.
Furthermore, every partial derivative of every coordinate function of f exists
and is finite at a.

(ii) If every partial derivative of every coordinate function of [ exists and is finite
in a neighborhood of the point a and is continuous at a, then f is differentiable
at a. O
Example 2.17. Consider the mapping

f(z,y) = (" cosy, e” siny) ((z,y) € RQ).

! Carl Jacobi (1804—1851), German mathematician.
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The partial derivatives of f’s coordinate functions are

Dy fi(z,y) = e“cosy, Dafi(x,y) = —e"siny,
D1 fo(w,y) = e"siny, Dafa(x,y) =e"cosy

for every (z,y) € R2. Since these partial derivatives are continuous everywhere, it
follows from Theorem 2.16 that f is differentiable at every point (a, b) in the plane,
and f’s Jacobian matrix is

e*cosb —e“sinb
e*sinb  e*cosb |-
Thus, the derivative of f at (a,b) is the linear mapping

A(z,y) = ((e® cosb)x — (e sinb)y, (e“ sinb)x + (e cosb)y).

Remark 2.18. Let us summarize the different objects we obtain by differentiating
different kinds of mappings.

The derivative of a single-variable real function at a fixed point is a real number,
namely the limit of the differential quotients.

The derivative of a curve g: [a,b] — R? at a given point is a vector of R? whose
coordinates are the derivatives of g’s coordinate functions (see [7, Remark 16.22]).

The derivative of a p-variable real function is a vector of R? (the gradient vector)
whose components are the partial derivatives of the function at a given point.

Definition 2.15 takes another step toward further abstraction: the derivative of a
map RP — RY is neither a number nor a vector, but a mapping.

As a consequence of this diversity, the derivative of a function f: R — R is a
real number (if we consider f a function) but also a vector of dimension one (if we
consider f a curve mapping into R).

What’s worse, the derivative of a mapping R? — RY is a vector for ¢ = 1, but it
is also a linear mapping, and for p = ¢ = 1 it is a real number as well.

We should realize, however, that the essence of the derivative is the linear map-
ping with which we approximate the function, and the way we represent this lin-
ear mapping is less important. For a single-variable function f, the approximating
linear function is f(a) + f/(a)(x — a) defining the tangent line. This function is
uniquely characterized by the coefficient f’(a) (since it has to take the value f(a)
at a). Similarly, a linear function approximating a p-variable real function is the
function f(a) + >_%_, D;f(a)(x; — a;) defining the tangent hyperplane. This can
be characterized by the vector of its coefficients.

We could have circumvented these inconsistencies by defining the derivative of
a function f: RP — R not by a linear mapping, but by its matrix (i.e., its Jacobian
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matrix).” In most cases it is much more convenient to think of the derivative as a
mapping and not as a matrix, which we will see in the next section. When we talk
about mappings between more general spaces (called normed linear spaces), the
linear mappings do not always have a matrix. In these cases we have to define the
derivative as the linear mapping itself.

‘We have to accept the fact that the object describing the derivative depends on the
dimensions of the corresponding spaces. Fortunately enough, whether we consider
the derivative to be a number, a vector, or a mapping will always be clear from the
context.

2.3 Differentiation Rules

Theorem 2.19. If the functions f and g mapping to R? are differentiable at the
point a € RP, then the functions f + g and \f are also differentiable at a. Further-

more, (f + g)'(a) = f'(a) + ¢'(a) and (\f)'(a) = Nf'(a) for every X € R.
Proof. The statement is obvious from Theorem 2.13. O

The following theorem concerns the differentiability of a composite function and
its derivative.

Theorem 2.20. Suppose that
(i) HCRP, g: H— RY and g is differentiable at the point a € int H;
(i) g(a) €eint E CRY, f: E — R® and f is differentiable at the point g(a).

Then the composite function f o g is differentiable at a, with

(fog)'(a) = f'(g(a)) o g '(a).
To prove this theorem we first need to show that every linear mapping has the
Lipschitz property.

Lemma 2.21. For every linear mapping A: RP — RY there exists a K > 0 such
that |A(x) — A(y)| < K - |x — y| for every z,y € RP.

Proof. Letey, ..., e, be a basis of R?, and let M = max;<;<, |A(e;)|. Then, for
every x = (Z1,...,%p) € RP we have
p p
|A(x)] = > wi- Ales)| < || - M < Mp- |z,
i=1 i=1

Thus |A(z) — A(y)| = |A(x — y)] < Mp- |z — y| for every z,y € RP, and hence
K = M p satisfies the requirements of the lemma. (]

2 However, the inconsistencies would not have disappeared entirely. For p = 1 (i.e., for curves
mapping to R?) the Jacobian matrix is a 1 x ¢ matrix, in other words, it is a column vector, while
the derivative of the curve is a row vector.
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Let K4 denote the set of numbers K > 0 that satisfy the conditions of
Lemma 2.21. Obviously, the set K4 has a smallest element. Indeed, if K, =
inf K4, then |A(x) — A(y)| < Ko - |x — y| also holds for every z, y € RP, and thus
Ky € K4

Definition 2.22. The smallest number, K, satisfying the conditions of Lemma 2.21
is called the norm of A, and is denoted by || A4]|.

Proof of Theorem 2.20. Let ¢'(a) = A and f'(g(a)) = B. We know that if x is
close to a, then g(a) + A(x — a) approximates g(z) well, and if y is close to g(a),
then f(g(a)) + B(y — g(a)) approximates f(y) well. Therefore, intuitively, if x is
close to a, then

flg(a)) + B(g(a) + Az — a) — g(a)) = f(g9(a)) + (BA)(z — a)

approximates f(g(x)) well; i.e., (f o g)’(a) = BA. Below we make this argument
precise.
Since ¢'(a) = A, it follows that

g9(x) = g(a) + A(x —a) +e(2) - |z — al, (2.5)

where lim,_,, £(z) = 0. Let us choose 6 > 0 such that |x — a| < ¢ implies z € H
and |e(x)| < 1. Then

9(x) = g(a)| < [A(x — a)| + [e(@)] - [« — a| <|A|l - [& —al + & —a =
= (Al +1) - |z = af (2.6)

for every |« — a| < §. On the other hand, f'(g(a)) = B implies

f(y) = f(g(a)) + By — g(a)) +n(y) - ly — g(a)l, (2.7)

where lim,_ 4y 7(y) = 1(g(a)) = 0. Now g is continuous at the point a by (2.6)
(or by Theorem 2.16), whence g(x) € E if z is close enough to a. Applying (2.7)
with y = g(«) and using also (2.5), we get

f(g(x))—f(g(a)) = B(g(z) — g(a)) + n(g(z)) - [9(x) — g(a)| =
= B(A(z — a)) + B(e(2)) - |z — a[ + n(g(z)) - [9(x) — g(a)| =
=(BoA)(x —a)+r(z), (2.8)

where r(z) = B(e(x)) - |z — al +n(g(z)) - |[g(x) — g(a)|. Then, by (2.6),
r(@) < |IBI - e(@)] - |« — al + [n(g(@))] - (|Al + 1) - [z — a| = O(z) - |« —al,

where
0(x) = || B| - [e(2)[ + ([[All + 1) - [n(g(x))| — 0
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if x — a, since 7(g(a)) = 0 and 7 is continuous at g(a). Therefore, (2.8) implies

that the function f o g is differentiable at a, and (f o g)’(a) = B o A. O
Corollary 2.23. (Differentiation of composite functions)

Suppose that the real-valued function f is differentiable at the point b=(b1, ..., b,) €
RY, and the real-valued functions g1, ..., g, are differentiable at the point a € RP,

where g;(a) = b; for every i = 1,...,q. Then the function F(z) = f(¢1(z),...,
(gq(x)) is differentiable at the point a, and

DjF(a) =Y D;f(b)- D;gi(a) (2.9)

holds for every j =1,...,p.

Proof. Let g1,..., g, be defined in B(a,d), and let G(z) = (¢1(x), . .., g4(x)) for
every = € B(a,d). By Theorem 2.13, the mapping G: B(a,d) — RY is differen-
tiable at a. Since F' = f o GG, Theorem 2.20 implies that F is differentiable at ¢ and
its Jacobian matrix (i.e., the vector F”’(a)) is equal to the product of the Jacobian
matrix of f at the point b (i.e., the vector f’(b)) and the Jacobian matrix of G at the
point a. The jth coordinate of the vector F'(a) is equal to D;F(a). On the other
hand (by the rules of matrix multiplication), the jth coordinate of the vector F’(a)
is equal to the scalar product of the vector f’(b) and the jth column of the Jacobian
matrix of G. This is exactly equation (2.9). ]

Remark 2.24. The formula (2.9) is easy to memorize in the following form. Let
Y1, - ., Yq denote the variables of f, and let us write also y; instead of g;. We get

OF _Of Oy Of Oy Of %y,
dx; Oy1 Ox; Oy Ox; 1 Oy, Oz,

The differentiability of products and fractions follows easily from Corollary 2.23.

Theorem 2.25. Let [ and g be real-valued functions differentiable at the point
a € RP. Then f - g, and assuming g(a) # 0, f/g is also differentiable at a.

Proof. The function o(x,y) = x -y is differentiable everywhere on R2. Since
f(x) - g(x) = o(f(x),g(x)), Corollary 2.23 gives the differentiability of f - g at a.
The differentiability of f/g follows similarly, using the fact that the rational func-
tion x/y is differentiable on the set {(z,y) € R?: y # 0}. O

Note that the partial derivatives of f - g and f/g can be obtained using (2.9) (or
using the rules of differentiating single-variable functions). (See Exercise 1.92.)

The differentiation rule for the inverse of one-variable functions (see [7, Theorem
12.20]) can be generalized to multivariable functions as follows.

Theorem 2.26. Suppose that H C RP?, the function f: H — RP is differentiable at
the point a € int H, and the mapping f'(a) is invertible. Let f(a) = b, 6 > 0, and
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let g: B(b,0) — RP be a continuous function that satisfies g(b) = a and f(g(x)) =
x for every x € B(b,9).

Then the function g is differentiable at b, and g'(b) = (f’(a)) ™!, where (f'(a))™*
is the inverse of the linear mapping f'(a).

Proof. Without loss of generality, we may assume that a = b = 0 (otherwise, we
replace the functions f and g by f(x + a) — b and g(x + b) — a, respectively).

First we also assume that f/(0) is the identity mapping. Then |f(z) — z|/|z] — 0
as  — 0. Since lim,_,¢ g(z) = 0 and g # 0 on the set B(0,4) \ {0}, it follows
from Theorem 2.5 on the limit of composite functions that |f(g(z))—
9(x)|/lg(x)| — 0 as = — 0. Since f(g(x)) = , we find that [z — g(2)]/|g(z)| —
Oasz — 0.

Now we prove that ¢’(0) is also the identity mapping, i.e., lim, ¢ |g(x) —
x|/|z| = 0. First note that |z — g(z)| < |g(«)|/2 for every 2 € B(0,¢") for a small
enough ¢’. Thus z € B(0,¢’) implies

l9(@)| < lg(z) — x| + [z] < (lg(2)[/2) + =],
whence |g(z)| < 2|x|, and

|z — g(2)] _ |z — g(x) . lg(z)] <2.

[z — g(=)|
] l9(x)] ] '

l9(x)]

Therefore, lim,_.q |g(x) — x|/|x| = 0holds. We have proved that g is differentiable
at the origin, and its derivative is the identity mapping there.

Now we consider the general case (still assuming a = b = 0). Let f/(0) = A.
By Theorem 2.20, f; = A~ o f is differentiable at the origin, and its derivative is
the linear mapping A~! o A, which is the identity. The function g; = g o A is con-
tinuous in a neighborhood of the origin, with f;(g1(x)) = x in this neighborhood.
Thus, the special case proved above implies that g} (0) is also the identity mapping.
Since g = g; o A~1, Theorem 2.20 on the differentiability of composite functions
implies that g is differentiable at the origin, and its derivative is A~ there. (]

Exercises

2.1. Let H C RP. Show that the mapping f: H — R? is continuous on H if and
only if for every open set V' C RY there is an open set U C R such that f~1(V) =
HNU.

2.2. Give an example of a bounded set H C RP and a continuous, injective function
f: H — RY such that f~! is not continuous on the set f(H).
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2.3. Show thatif A = (a;;) (i=1,...,q, j=1,...,p), then

q P
2
PP

i=1 j=1

Al <

Give an example when strict inequality holds.

2.4. Show thatif A = (a;;) (i =1,...,¢,7=1,...,p), then

<
193%1,&1)(951)'“”' < [14l

furthermore,

max
1<i<q

p
> a < |lAll.
j=1

Give an example when strict inequality holds.

2.5. Let the linear mapping A: R? — RP be invertible. Show the existence of some
§>0and K > Osuchthat |[B~! — A7!|| < K - || B — A|| for every B that satisfies
|B— Al <.

26. Let 1 <i¢<gqand 1<j<p be fixed. Show that a;; is a continuous (fur-
thermore, Lipschitz) function of A, i.e., there exists K such that |aij — bij\ <
K -||A— B||. (Here a;; and b;; are the jth entries of the ith row of the matrices
A and B, respectively.)

2.7. Find all differentiable functions f: R? — R that satisfy Dy f = Do f. (S)

2.8. Let the function f: R2 — R be differentiable on the plane, and let
Dy f(z,2%) = Dof(x,2?) = 0 for every x. Show that f(z, 2?) is constant.

2.9. Let f: R? — R be differentiable on the plane. Let £(0,0) = 0, Dy f(x,2%) =
x and Dy f (z,2%) = a3 for every x. Find f(1,1).

2.10. Let H C R?, and let f: H — R be differentiable at the point a € int H. We
calltheset S = {x € RP: f(x) = f(a)} the contour line corresponding to a. Show
that the contour line is perpendicular to the gradient f’(a) in the following sense:
if g: (¢,d) — RP is a differentiable curve whose graph lies in S and ¢(¢¢) = a for
some ty € (¢, d), then ¢'(t9) and f’(a) are perpendicular to each other. (The zero
vector is perpendicular to every vector.)

2.11. We say that the function f: R?”\ {0} — R is a homogeneous function
with degree k (where k is a fixed real), if f(tx) =t*. f(x) holds for every
x € RP\ {0} andt € R, ¢ > 0. Euler’s theorem® states thatif f: R” \ {0} — Ris

3 Leonhard Euler (1707-1783), Swiss mathematician.
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differentiable and homogeneous with degree k, then 1 - D1 f + ... + 2, - Dpf =
k- f forevery x = (z1,...,x,) € RP\ {0}.
Double-check the theorem for some particular functions (e.g., zy/+/z2 + y2, xy/

(22 +y?), /22 + 92, etc.).
2.12. Prove Euler’s theorem.

2.13. Let the function f: RP — RY be differentiable at the points of the seg-
ment [a, b], where a,b € RP. True or false? There exists a point ¢ € [a, b] such that
f(b) = f(a) = f'(¢)(b — a). (Le., can we generalize the mean value theorem (The-
orem 1.79) for vector valued functions?) (H S)

2.4 Implicit and Inverse Functions

Solving an equation means that the unknown quantity, given only implicitly by the
equation, is made explicit. For example, = is defined implicitly by the quadratic
equation ax? + bx + ¢ = 0, and as we solve this equation, we express z explicitly
in terms of the parameters a, b, c. In order to make the nature of this problem more
transparent, let’s write x1,zo, z3 in place of a,b, ¢ and y in place of z. Then we
are given the functionf (z1, z2, z3,y) = x1y2 + 22y + x3 of four variables, and we
have to find a function (21, z2, x3) satisfying

f(x1, w2, 23, (21, T2, 23)) = 0. (2.10)

In this case we say that the function y = p(z1,22,23) is the solution of
equation (2.10). As we know, there is no solution on the set A = {(z1,x2, x3):
23 — 4r123 <0} C R3, and there are continuous solutions on the set B = {(z1,
To,x3) 1 w1 # 0, v3 — w13 > 0} C R3, namely each of the functions

¢1 = (—a2 + /23 — dw123)/(221), 2 = (—xg — /25 — 4z123)/(221)

is a continuous solution on B.

Finding the inverse of a function means solving an equation as well. A function
( is the inverse of the function g exactly when the unique solution of the equation
z—g(y) =0isy = p().

In general, we cannot expect that the solution y can be given by a (closed) for-
mula of the parameters. Even f(x,y) is not always defined by a closed formula.
However, even assuming that f(x,y) is given by a formula, we cannot ensure
that y belongs to the same family of functions that we used to express f. For
example, f(z,y) = x — y* is a polynomial, but the solution y = &/ of the equa-
tion f(x,y) = 0 cannot. Based on this observation, it is not very surprising that
there exists a function f(x,y) such that f can be expressed by elementary func-
tions, but the solution y of the equation f(z,y) = 0 is not. Consider the function
g(z) = x + sinzx. Then g is strictly monotonically increasing and continuous on
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the real line, and furthermore it assumes every real value, and thus it has an inverse
on R. It can be shown that the inverse of g cannot be expressed by elementary func-
tions only. That is, the equation z — y — siny = 0 has a unique solution, but the
solution is not an elementary function.

The same phenomenon is illustrated by a famous theorem of algebra stating that
the roots of a general quintic polynomial cannot be obtained from the coefficients by
rational operations and by extractions of roots. That is, there does not exist a func-
tion y = p(x1, ..., xs) defined only by the basic algebraic operations and extrac-
tion of roots of the coordinate functions x1, ..., xg such that y is the solution of the
equation 1> + ... + x5y + 26 = 0 on a nonempty, open subset of RS.

Therefore, solving y explicitly does not necessarily mean expressing y by a
(closed) formula; it means only establishing the existence or nonexistence of the
solution and describing its properties when it does exist. The simplest related theo-
rem is the following.

Theorem 2.27. Let f be a two-variable real function such that f is zero at the point
(a,b) € R? and continuous on the square [a —n,a+n] x [b —n,b+n] for an
appropriate ) > 0. If the section f is strictly monotone at every x € [a — n,a + 1),
then there exists a positive real § such that

(1) forevery x € (a — d,a+ 0), there exists a unique p(x) € (b —n,b+n) such
that f(z,p(x)) = 0, and furthermore,

(ii) the function ¢ is continuous on the interval (a — 0, a + 0).
Proof. We know that the section f, is strictly monotonically. Without loss of gener-

ality, we may assume that f, is strictly monotone increasing (the proof of the other
case is exactly the same), and thus f, (b — 1) < fo(b) = f(a,b) =0 < f,(b+n).

£>0
b+np——-
p(x)e
h—phb———
! R
a—90 Ta+6
2.1. Figure

Let ¢ > 0 be small enough to imply f,(b —7n) < —eand e < f,(b+ 7).

Since f is continuous at the points (a,b — 1), (a,b+n), there exists 0 < 6 <7
such that |f(z,b—n) — f(a,b—n)| <e and |f(x,b+n) — f(a,b+n)| < e for
every « € (a — d,a + 9). Thatis, if ¢ € (a — J,a + J), then

f(fab_ﬂ)<0<f($,b+n)
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Since f, is strictly monotone and continuous on the interval [b — 1, b + 7], it fol-
lows from Bolzano’s theorem that there is a unique ¢(z) € (b — 1,b + 1) such that
f(z, o(x)) = 0. Thus, we have proved statement (i).
Let zp € (a —d,a+0) and £ > 0 be fixed. Choose positive numbers d; and
11 < € such that
(330 —51,$0+(51) C (a—é,a—i—é)

and
(p(w0) — M, p(w0) +m1) C (b—n,b+n)

hold. Following the steps of the first part, we end up with a number 0 < §’ < §;
such that for every = € (xg — 0’, zo + ¢’) there exists a unique

y € (p(zo) —m1, p(z0) +m1) C (b—n,b+n)

with f(z,y) = 0. By (i), ¢(x) is the only such number, and hence y = (). Thus,
for |z — o] < ¢’ we have |p(x) — p(z0)| < m1 < €. Therefore, ¢ is continuous
at xg. O

Corollary 2.28. (Implicit function theorem for single-variable functions)
Suppose that the two-variable function f is zero at the point (a,b) € R? and contin-
uous in a neighborhood of (a,b). Let the partial derivative D5 f exist and be finite
and nonzero in a neighborhood of (a,b). Then there exist positive numbers § and 7
such that

(i) for every x € (a — 6,a+ ) there exists a unique number o(x) € (b—n,
b+ n) with f(x,p(x)) = 0, furthermore,
(ii) the function ¢ is continuous in the interval (a — 9, a + 0).

Proof. It follows from the assumptions that there is a rectangle (a1, az) x (b1,b2)
containing (a, b) in its interior such that f is continuous, D5 f exists and is finite and
nonzero in (ay,az) X (by,bs). The section f, is strictly monotone in the interval
(b1, by) forevery x € (a1, az), since it is differentiable and, by Darboux’s theorem®
[7, Theorem 13.44], its derivative must be everywhere positive or everywhere neg-
ative in the interval (b1, by). Then an application of Theorem 2.27 to the rectangle
(a1, az2) x (b1, be) finishes the proof. a

Remark 2.29. We will see later that if f is continuously differentiable at (a, b), then
the function ¢ is continuously differentiable at the point a (see Theorem 2.40).

For the single-variable case, it is not difficult to show that the differentiability of f
at (a,b) and D5 f(a,b) # 0 implies the differentiability of ¢ at a (see Exercise 2.15).
We can calculate ¢’ (a) by applying the differentiation rule of composite functions.
Since f(x,¢(z)) = 0 in a neighborhood of the point a, its derivative is also zero
there. Thus,

4 Jean Gaston Darboux (1842-1917), French mathematician. Darboux’s theorem states that if
f: [a,b] — R is differentiable, then f’ takes on every value between f’(a) and f’(b).
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Dif(a,b) -1+ Dayf(a,b) - ¢'(a) =0

holds, from which we obtain ¢’(a) = —D; f(a,b)/Daf(a,b).

Example 2.30. The function f(z,y) = 2% + y? — 1 is continuous and (infinitely)
differentiable everywhere. If a? + > = 1 and —1 < a < 1, then Dy f(a,b) = 2b #
0, and the conditions of Corollary 2.28 are satisfied. Thus, there exists some function
¢ such that ¢ is continuous in a neighborhood of a, p(a) = b, and 22 + p(x)? —
1=0. Namely, if b > 0, then the function ¢(x) = v/1 — 22 on the interval (—1,1)
is such a function. If, however, b < 0, then the function ¢(z) = —v/1 — 22 satisfies
the conditions on the interval (—1,1).

On the other hand, if a = 1, then there is no such function in any neighborhood
of a, since > 1 implies 22 + y?> — 1 > 0 for every y. The conditions of Corol-
lary 2.28 are not satisfied here, since @ = 1 implies b = 0 and D5 f(1,0) = 0. The
same happens in the a = —1 case.

Our next goal is to generalize Corollary 2.28 to multivariable functions.

Corollary 2.28 gives a sufficient condition for the existence of the inverse of
a function—at least locally. The inverse of an arbitrary function g is given by
the solution of the equation f(z,y) = 0, where f(z,y) =« — g(y). Let g(b) = a;
thus f(a,b) = 0. By Corollary 2.28, if g is differentiable in a neighborhood of b
such that ¢'(z) # 0 in this neighborhood, then there exists a continuous function
 in a neighborhood (a — ¢, a + 0) of a such that p(a) = b and g(p(z)) = x on
(a —d,a+9).

We expect that a generalization of Corollary 2.28 to multivariable functions
would also give a sufficient condition for the existence of the inverse locally. There-
fore, we first consider the question of the existence of the inverse function.

Proving the existence of the inverse of a multivariable function is substantially
more difficult than for one-variable functions; this is a case in which the analogy
with the single-variable case exists but is far from being sufficient. The question
is how to decide whether or not a given function is injective on a given set. For a
continuous single-variable, real function defined on an interval, the answer is quite
simple: the function is injective if it is strictly monotone. (This follows from the
Bolzano-Darboux theorem,® see [7, Theorem 10.57].) It is not clear, however, how
to generalize this condition to continuous multivariable, or vector-valued functions.

Yet another problem is related to the existence of a “global” inverse. Let f: I—R
be continuous, where I C R is an interval. Given that every point of I has a
neighborhood on which the function f is injective, we can easily show that f is
injective on the whole interval. Thus, global injectivity follows from local injec-
tivity for single-variable continuous real functions. However, this does not hold
for vector-valued or multivariable functions! Let g: R — R? be a curve with
g(t) = (cost,sint) for every t € R. The mapping g is injective on every interval

3 The Bolzano-Darboux’s theorem states that if f: [a,b] — R is continuous, then f takes on every
value between f(a) and f(b).
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shorter than 27 (and maps to the unit circle), but g is not injective globally, since
it is periodic with period 27. Similarly, let f(z,y) = (e” cosy, e siny) for every
(x,7) € R2. The mapping f: R? — R? is injective on every disk of the plane with
radius less than 7, but f is not injective globally, since f(z,y + 27) = f(x,y) for
every (z,y) € R

Unfortunately, we cannot help this; it seems that there are no natural, simple
sufficient conditions for the global injectivity of a vector-valued or multivariable
function. Thus, we have to restrict our investigations to the question of local injec-
tivity.

Let the mapping f be differentiable in a neighborhood of the point a. Since the
mapping f(a) 4+ f'(a)(x — a) approximates f well locally, we might think that
given the injectivity of the linear mapping f’(a), f will also be injective on a
neighborhood of a. However, this is not always so, not even in the simple spe-
cial case of p = g = 1. There are everywhere differentiable functions f: R — R
such that f/(0) # 0, but f is nonmonotone on every neighborhood of 0. (See [7,
Remark 12.45.4].) Let f/(0) = b. By the general definition of the derivative, f(0)
is the linear mapping = +— b - z, which is injective. Nonetheless, f is not injective
on any neighborhood of 0.

Thus, we need to have stricter assumptions if we wish to prove the local injec-
tivity of f. One can show that if the linear mapping f'(z) is injective for every x in
a neighborhood of a, then f is injective in a neighborhood of a. The proof involves
more advanced topological tools, and hence it is omitted here. We will prove only
the special case in which the partial derivatives of f are continuous at a.

Definition 2.31. Let H C R? and f: H — R%. We say that the mapping f is con-
tinuously differentiable at the point a € int H if f is differentiable in a neighbor-
hood of a, and the partial derivatives of the coordinate functions of f are continuous
at a.

Theorem 2.32. (Local injectivity theorem) Let H C RP and f: H — RY, with
p < q. If f is continuously differentiable at the point a € int H and the linear map-
ping f'(a): RP — R is injective, then f is injective in a neighborhood of a.

Lemma 2.33. Let H C RP, and let the function f: H — RY be differentiable at
the points of the segment [a,b] C H. If |D; fi(z)| < K foreveryi=1,...,q, j =
1,...,pand x € [a,b], then |f(b) — f(a)| < Kpq - |b— al.

Proof. Applying the mean value theorem (Theorem 1.79) to the coordinate function
fi yields

fi(b) = fi(a) = ZDjfi(Ci)(bi —a;)

for an appropriate point ¢; € [a, b]. Thus,

P
|fi(b) = fi(a)] < ZK' b; — ai| < Kp-|b—a

j=1
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for every ¢, and
q
| f(b) Z a)l < Kpg-[b—al. O

Proof of Theorem 2.32. First, we assume that p = ¢ and f’(a) is the identity
map, i.e., f'(a)(x) = x for every € RP. By the definition of the derivative this
means that lim,_., |g(z)|/|x — a| = 0, where g(x) = f(x) — f(a) — (z — a) for
every © € H. Obviously, g is continuously differentiable at the point a, and ¢’(a)
is the constant zero mapping. It follows that D;g;(a) = 0 forevery i,j =1,...,p.
Since g is continuously differentiable at a, we can choose some ¢ > 0 such that
|D;gi(z)] <1/(2p*) holds for every = € B(a,d) and every i,j =1,...,p. By
Lemma 2.33, we have |g(x) — g(y)| < |z —y|/2 forevery z,y € B(a,d). Ifx,y €
B(a, ) and x # y, then f(x) # f(y); otherwise, f(y) = f(x) would imply g(y) —
g(x) = & — y, which is impossible. We have proved that f is injective on the ball
B(a,d).

Consider the general case. Let A denote the injective linear mapping f’(a). Let
the range of A be V; it is a linear subspace of RY (including the case V' = RY). Let
B(y) = A~1(y) for every y € V. Obviously, B is a well-defined linear mapping
from V to RP. Extend B linearly to R?, and let us denote this extension by B as
well. (The existence of such an extension is easy to show.) Then the mapping B o A
is the identity map on RP.

Clearly, the derivative of the linear mapping B is itself B everywhere. Then,
it follows from Theorem 2.20 on the differentiation rules of composite functions
that B o f is differentiable in a neighborhood of a with (B o f)'(x) = Bo f'(x)
there. Then the Jacobian matrix of B o f at the point = is equal to the (matrix)
product of the matrices of B and f’(x). Thus, every partial derivative of every
coordinate function of B o f is a linear combination of the partial derivatives
D f;. This implies that B o f is continuously differentiable at the point a. Since
(Bo f)(a)=Bo f'(a) = Bo A is the identity, the already proven special case
implies the injectivity of B o f in a neighborhood of a. Then f itself has to be
injective in this neighborhood. O

Remarks 2.34. 1. Let A: RP — RY be a linear mapping. It is well known that A
cannot be injective if p > q. Indeed, in this case the dimension of the null space of
A, i.e, the linear subspace {x € RP: A(z) = 0}, is p — ¢ > 0, and thus there exists
a point = # 0 such that A(z) = 0. This implies that A can be injective only when
P=q.

2. The local injectivity theorem turns the question of a function’s local injectivity
into a question of the injectivity of a linear mapping. The latter is easy to answer.
A linear mapping A: R? — R? is injective if and only if A(z) # 0 for every vector
x € RP, x # 0. Furthermore, it is well known that A is injective if and only if the
rank of its matrix is p. This means that the matrix of A has p linearly independent
rows, or equivalently, the matrix has a nonzero p x p subdeterminant.
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A linear mapping A: RP — R? is called surjective , if its range is R?. Since the
range of A can be at most p-dimensional, A can be surjective only if p > ¢. The
following statement is the dual of Theorem 2.32.

Theorem 2.35. Let H C RP andlet f: H — RY, where p > q. If f is continuously
differentiable at the point a € int H and the linear mapping f'(a): RP — RY is
surjective, then the range of f contains a neighborhood of f(a).

We need to show that if b is close to f(a), then the equation f(z) =b has a
solution. We prove this with the help of iterates, which are useful in several cases of
solving equations®.

The most widely used version of this method is given by the following theorem.

We say that the mapping f: H — H has a fixed point at = € H if f(x) = a.
Let f: H — RY, where H C RP”. The mapping f is called a contraction, if there
exists a number A < 1 such that |f(y) — f(x)] < A |y — x| for every =,y € H.

(That is, f is contraction if it is Lipschitz with a constant less than 1.)

Theorem 2.36. (Banach’s’ fixed-point theorem) If H C RP? is a nonempty closed
set, then every contraction f: H — H has a fixed point.

Proof. Let |f(y) — f(x)| < A-|y — | for every z,y € H, with 0 < A < 1. Let
o € H be an arbitrarily chosen point, and consider the sequence of points z,,
defined by the recurrence z,, = f(x,—1) (n =1,2,...). (Since f maps H into
itself, x,, is defined for every natural number n.) We prove that the sequence z,,
is convergent and tends to a fixed point of f.

Let |21 — 20| = d. By induction, we get |2, 11 — x| < A™d for every n > 0.
Indeed, this is clear for n = 0, and if it holds for (n — 1), then

‘xn-i-l - -rn| - |f(xn) - f(xn—l)| S )\ : |In - xn—1| S A : /\n_ld - And

Now we show that (z,,) satisfies the Cauchy criterion (Theorem 1.8). Indeed, for
every € > 0, the convergence of the infinite series >, A" implies the existence of
some index N such that|A™ + ...+ A\™| < e holds forevery N < n < m.For N <
n < m we have

‘xm *xn| § |93n+1 *xn| + |xn+2 *xn+1| +...+ |=Tm *zm—1| S
SN L+ AT < ed

Thus, by Theorem 1.8, (z,,) is convergent. If z,, — ¢, then ¢ € H follows from
the fact that H is closed. Since |z,,+1 — f(c)| = |f(zn) — f(c)| < A+ |z, — |, we
have 2,11 — f(c), which implies f(¢) = ¢, i.e., ¢ is a fixed point of f. O

6 Regarding the solution of equations using iterates, see Exercises 6.4 and 6.5 of [7]. In (a)—(d)
of Exercise 6.4 the equations z = va +z, t=1/(2—2), t=1/(4—2x), z=1/(1+x) are
solved using iterates by defining sequences converging to the respective solutions. The solution of
the equation 2 = a using the same method can be found in Exercise 6.5.

7 Stefan Banach (1892-1945), Polish mathematician.
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Proof of Theorem 2.35. We may assume that a = 0 and f(a) = 0 (otherwise, we
replace f by the function f(z + a) — f(a)).

First, assume that p = ¢ and f’(0) is the identity map. Let g(z) = f(x) — x for
every x € H. As we saw in the proof of Theorem 2.32, there exists a § > 0 such
that |g(z) — g(y)| < |z — y|/2 for every x,y € B(0,d). We may assume that this
inequality also holds for every x,y € B(0,d), for otherwise, we could choose a
smaller §. We prove that the range of f contains the ball B(0,4/2).

Let b € B(0,d/2) be fixed. The mapping h(z) = b — g(x) maps the closed ball
B(0,9) into itself, since |z| < § implies

h(@)] < [b] + |g(2)] < (6/2) +|z]/2 < 6.

Furthermore, since |h(x) — h(y)|=lg9(z) — g(y)| < |x —y|/2 for every
x € E(O, 0), it follows that h is a contraction, and then, by Banach’s fixed point
theorem, it has a fixed-point. If x is such a fixed point, then z = h(z) = b — g(z) =
b+x— f(x),ie., f(x) =0.

Now consider the general case p < q. (still assuming a = 0 and f(a) = 0). Let
€1,...,¢eq be a basis of the linear space RY, and let the points x1,...,z, € R? be
such that f'(0)(z;) = e; (i = 1,...,¢). (Such points exist, since the linear mapping
17(0) is surjective.) There exists a linear mapping A: R? — RP such that A(e;) =
P (i: 1,...,(]).

Since 0 € int H, we must have B(0,r) C H for an appropriate r > 0. The
mapping A is linear, and thus it is continuous, even Lipschitz by Lemma 2.21.
Thus, there exists an 7 > 0 such that |A(z)| < r for every |x| < 7. Applying
Theorem 2.20 (the differentiation rule for composite functions), we obtain that
foA: B(0,n) — RY is differentiable in the ball B(0,7) C R?. We have (f o
A)'(0) = f'(0) o A (since the derivative of the linear mapping A is itself), which
is the identity on RY, by the construction of A. It is easy to see that f o A is con-
tinuously differentiable at the origin. Thus, by the already proven special case, the
range of f o A contains a neighborhood of the origin. Then the same is true for f. [

Corollary 2.37. (Open mapping theorem) Let H C RP be an open set, and let
f: H — R? be continuously differentiable at the points of H. If the linear mapping
1'(x) is surjective for every x € H, then f(H) is an open set in RY.

Proof. If H # (), then the assumptions imply p > q. Let b € f(H) be arbitrary.
Then b = f(a) for a suitable a € H. By Theorem 2.35, f(H) contains a neighbor-
hood of b. Since this is true for every b € f(H), it follows that f(H)is open. [

The name of Corollary 2.37 comes from the fact that a function f: R? — R is
called an open mapping if f(G) is an open set for every open set G C RP.

Using Theorems 2.32 and 2.35 one obtains a sufficient condition for the existence
of a local inverse.
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Theorem 2.38. (Inverse function theorem) Let H C RP and a € int H. If
f: H—RP is continuously differentiable at a and the linear mapping
f'(a): RP — RP js invertible, then there exist positive numbers § and 1) such that

(i) for every x € B(f(a),d) there exists a unique o(x) € B(a,n) such that
flp(x)) =,

(i) the function ¢ defined this way is differentiable on the ball B(f(a),d) and is
continuously differentiable at the point f(a), and furthermore,

(i) f’(z) is invertible at every x € B(a,n), and ¢'(f(x)) = f'(x)~! for every
z € B(f(a),9).

If f is continuously differentiable in a neighborhood of a, then we can choose §
and 1 such that @ is continuously differentiable in B(f(a), 9).

Proof. By Theorem 2.32, f is injective on some ball B(a, 7). We may assume that
f is differentiable and injective on the closed ball B(a,n), since otherwise, we
could choose a smaller 7. Let K = f(B(a,n)). For every z € K let (z) denote
the unique point in B(a,n) such that f(yp(x)) = . It follows from Theorem 2.8
that the function ¢ is continuous on the set K.

K = f(B(a,n)

2.2. Figure

Since an invertible linear mapping that maps RP? into itself is necessarily surjec-
tive as well, we find, by Theorem 2.35, that f(B(a,7)) contains a ball B(f(a),?).
Obviously, for every point 2 € B(f(a), ) there exists a unique point in B(a,n)
whose image by f equals 2, namely, the point ¢(z). This proves (i).

A linear mapping that maps RP to itself is injective if and only if the determinant
of the mapping’s matrix is nonzero. By assumption, the determinant of f’s Jacobian
matrix at the point a is nonzero. Since the Jacobian matrix is a polynomial in the
partial derivatives D; f;, it follows that the determinant of the Jacobian matrix is
continuous at a, implying that it is nonzero in a neighborhood of a. We have proved
that the linear mapping f’(z) is injective for every point x close enough to a. By
taking a smaller 7 if necessary, we may assume that f’(z) is injective for every
x € Bla,n).

Then it follows from Theorem 2.26 (the differentiation rule for inverse functions)
that ¢ is differentiable in B(f(a), d) and (iii) holds on this ball.
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We now prove that ¢ is continuously differentiable at the point f(a). This fol-
lows from the equality ¢'(f(x)) = f’(x)~!. Indeed, this implies that the partial
derivative D;; (x) equals the jth entry of the ith row in the matrix of the inverse of
f'(¢(x)). Now it is well known that the jth element of the ith row of the inverse of a
matrix is equal to A;; /D, where A;; is an appropriate subdeterminant and D is the
determinant of the matrix itself (which is nonzero). The point is that the entries of
the inverse matrix can be written as rational functions of the entries of the original
matrix. Since D f;(¢(x)), i.e., the entries of the matrix of the mapping f(p(x))
are continuous at f(a), their rational functions are also continuous at f(a).

Thus, if f is continuously differentiable on the ball B(a,n), then ¢ is continu-
ously differentiable on B(f(a), ). O

Now we turn to what is called the implicit function theorem, that is, to the gen-
eralization of Corollary 2.28 to multivariable functions. Intuitively, the statement of
the theorem is the following. Let the equations

fl(xlw")xpvyla"'ayq) O
f2(-r17"'7$p7y15"'?yq) O

: 2.11)
fq(x17"'amp7y17"'7yq) =0

be given, together with a solution (a1, ..., ap, b1, ..., by). Our goal is to express the
unknowns ¥, .. ., Y, as functions of the variables x1, ..., z, in a neighborhood of
the point @ = (aa, . . ., a,). In other words, we want to prove that there are functions
y; =yi(z1,...,2p) (G = 1,..., q) with the following properties: they satisfy (2.11)
in a neighborhood of @, and y;(a1,...,a,) = b; forevery j =1,...,q.

Let us use the following notation. If z = (xy,...,2p) € RP and
y=(y1,-.-,Yq) € RY, then (z,y) denotes the vector (x1,...,Zp,Y1,...,Yq) €
RPHY,

If the function f is defined on a subset of RP*? and a = (ay,...,a,) € R?,
then f, denotes the section function, obtained by putting ay,...,a, in place of
Z1,...,zp. That is, f, is defined at the points y = (y1,...,¥y,) € R? that satisfy
(a,y) € D(f), and f,(y) = f(a,y) for every such point y. The section f can be
defined for b = (by,...,b,) € RY in a similar manner. The following lemma is the
generalization of the fact that differentiability implies partial differentiability.

Lemma 2.39. Let H C RPT4, and let the function f: H — R® be differentiable
at the point (a,b) € int H, where a € RP and b € RY. Then the section function
fa is differentiable at the point b, and the section function f° is differentiable at
the point a. If (f°)'(a) = A, (f.)'(b) = B, and f'(a,b) = C, then A(z) = C(x,0)
and B(y) = C(0,y) for every x € R? and y € R

Proof. Letr(z,y) = f(z,y) — f(a,b) — C(x — a,y — b). Since f'(a,b) = C, we

have r(z,y)/|(z,y) — (a,b)| = 0 if (2,y) — (a,b). Since f(a,y) — f(a,b) —
C(0,y —b) =r(a,y), it follows that (f,)’(b) equals the linear mapping y
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C(0,y) (y € R?). A similar argument shows that (f*)’(a)(z) = C(z,0) for every
z € RP. O

Theorem 2.40. (Implicit function theorem) Ler H C RP*Y and (a,b) € int H,
where a € RP and b € RY. Suppose that the function f: H — RY vanishes at the
point (a,b) (i.e., f(a,b) is the null vector of RY). If f is continuously differentiable
at (a, b) and the linear mapping (f,)’ (b) is injective, then there are positive numbers
6 and m such that

(i) for every x € B(a,d) there exists a unique point p(x) € B(b,n) such that
f(z, ¢(x)) =0,

(i) the function p defined this way is differentiable in the ball B(a, ¢) and contin-
uously differentiable at the point a.

Proof. Let F(x,y) = (z, f(z,y)) forevery (z,y) € H, wherex € RP and y € R
Then F maps the set H into RPT4, We will prove that F is continuously differen-
tiable at the point (a, b), and the linear mapping F”(a, b) is invertible.

Let us proceed with the proof of the theorem, assuming the statements above.
Note that F'(a,b) = (a,0). Applying the inverse function theorem to F', we obtain
positive numbers 6 and 7 such that F’(x,y) is injective for every (x,y) €
B((a,b),n), for every point (z,z) € B((a,0),0) there exists a unique point
(x,9(x,2)) € B((a,b),n) such that F(z,v¢(z,z)) = (z,z), and furthermore, the
function 1 defined this way is differentiable on the ball B((a,0),¢) and is contin-
uously differentiable at the point (a,0). From the definition of the mapping F' it
follows that f(z,%(x, z)) = z for every point (z, z) € B((a,0),9).

F

2.3. Figure

Let ¢(x) = ¢(x,0) for every point & € R? with |z —a| < 6. The definition
makes sense, since |z — a| < § implies (x,0) € B((a,0),0). It is clear that ¢ is
differentiable on the ball B(a,d) of RP and continuously differentiable at the point
a, and f(z, p(x)) = 0 holds for every z € B(a, ).

We now prove the claims on F'. First we prove that if f is differentiable at a point
(20, yo0) and its derivative there is f'(x0,y0) = C, then F is also differentiable at the
given point and F”(xg,y0) = E, with E(x,y) = (z,C(z,y)) for every € R? and
y € RY.Indeed, by the definition of the derivative, lim ;. ) (z0,y0) 7(7, ¥)/|(z, ¥) —
(x0,Y0)| = 0, where

r(z,y) = f(x,y) — f(x0,90) — C(x — w0,y — yo)
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for every (x,y) € H. Thus,

F(z,y) — F(zo,y0) = (@, f(z,y)) — (w0, [ (0, %0)) =
= (z — z0, f(z,y) — f(%0,%0)) =
= (v —20,C(x — 20,y — o) +7(z,y)) =
= E(xr — 20,y — yo) + t(x,y)

follows, where ¢(x,y) = (0,7(z,y)). Obviously,

lim t(z,y)/|(x,y) - ($0,y0)| = Oa
(z,y)—(z0,y0)

where F is indeed the derivative of the mapping F’ at the point (xg, yo). This proves
that F is differentiable in a neighborhood of the point (a, b).

We now prove that if (fz,)(yo) is injective, then F”(xo,y0) = E is also injec-
tive. Since the mapping F is linear, we need to prove that if the vector (x,y) € RPT¢
is nonzero, then E(z,y) # 0. By Lemma 2.39, (f2,)  (yo) is equal to the linear map-
ping (z,y) — C(0,y) (z € RP, y € R?). By assumption, this mapping is injective
on RY, thus C(0,y) # 0 holds if y # 0. We know that E(z,y) = (z,C(x,y)) for
every x € RP,y € R%.If x # 0, then E(x,y) # 0is clear. On the other hand, if x =
0 and y # 0, then E(0,y) = (0,C(0,y)) # 0, since C(0,y) # 0. We have proved
that (z,y) # 0 implies E(z,y) # 0, i.e., E is injective. Since we assumed the
injectivity of (f,)’(b), t follows that F’(a, ) is also injective.

Let the coordinate functions of F and f be F; and f;, respectively.
Obviously, Fi(z,y) =z, for every i =1,...,p, and F;(x,y) = fi_p(x,y) for
everyi¢ =p + 1,...,q. Since the partial derivatives D, f; are continuous at the point
(a,b), it follows that the partial derivatives D; F;(x,y) are also continuous at the
point (a, b) forevery i,j = 1,...,p + q. Therefore, F is continuously differentiable
at (a, b). O

Remarks 2.41. 1. Tt is easy to compute the derivative of the function ¢ of The-
orem 2.40. Let ¢ € RP, |¢c —a| < §, and let ¢(c) = d. It is easy to see that the
derivative of the mapping x — (z,(z)) at the point ¢ is the linear mapping
x +— (z, A(z)) with ¢’(c) = A.

Let f'(¢,d) = C. Tt follows from the derivation rule for composite functions
that the derivative of the function f(z,p(x)) at the point ¢ is the linear function
C(z, A(x)). Since f(x,¢(x)) = 0forevery |x — a| < ¢, this derivative is zero, i.e.,

0= C(z, A(z)) = C(,0) + C(0, A(x)).

By Lemma 2.39, C(z,0) = (f)'(c)(z) and C(0,y) = (f.)'(d)(y), i.e., the linear
mapping (f%)'(c) + (f.)'(d) o A is identically zero. This implies

¢'(c) = A=—((f)(d) "o (f) (o)
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We get
¢'(@) = = (fole(@) o (f) ()

for every x € B(a,0).

2. If f satisfies the conditions of Theorem 2.40 and f is continuously differentiable
in a neighborhood of the point (a,b), then we can choose § and 7 such that ¢ is
continuously differentiable on the ball B(a, ).

It suffices to choose § and 7 such that in addition to parts (i) and (ii) of the the-
orem, we also require that f be continuously differentiable on the ball B((a, b), 7).
In this case ¢ will be continuously differentiable at every point (¢, d) of the ball
B(a, §). This follows from Theorem 2.40 applied to the point (¢, d) instead of the
point (a, b).

As an important application of the implicit function theorem we give a method
for finding the conditional extremal points of a function.

Definition 2.42. Let a € H CRP, F: H —RY and let F(a)=0. Let the
p-variable real function f be defined in a neighborhood of a, and let § > 0 be such
that f(z) < f(a) for every point = € B(a, ¢) that satisfies F'(x) = 0. Then we say
that the function f has a conditional local maximum point at the point a with the
condition F = 0. Conditional local minima can be defined in a similar manner. If
f has a conditional local maximum or minimum at the point a with the condition
F =0, then we say that f has a conditional local extremum at the point a with the
condition F' = 0.

Example 2.43. Suppose we want to find the maximum of the function f(z,y, z) =
T + 2y + 3z on the sphere S = {(z,y,2) € R3: 2% + y? + 22 = 1}. By Weier-
stras’s theorem, f has a maximal value on the bounded and closed set S. If f takes
on this greatest value at the point a, then f has a conditional local maximum at a
with the condition 22 + y% + 22 — 1 = 0.

Theorem 2.44. (Lagrange® multiplier method) Let H C R?, and suppose that
F: H — R vanishes and is continuously differentiable at the point a € int H. Let
us denote the coordinate functions of F' by Iy, ..., F,.

If the p-variable real function f is differentiable at a and [ has a conditional
local extremum at the point a with the condition F' = 0, then there are real numbers
A, A1, ..., Ag Such that at least one of these numbers is nonzero, and the partial
derivatives of the function \f + M Fy + ...+ A\ F, are zero at a.

The p = 2, ¢ = 1 special case of the theorem above states that the gradients of
f and F' are parallel to each other at the conditional local extremum points. Intu-
itively, this can be proved as follows. Condition F'(x,y) = 0 defines a curve in the
plane. If we move along this curve, then we move perpendicularly to the gradient
of F' at each point of the curve (see Exercise 2.10). As we reach a conditional local

8 Joseph-Louis Lagrange (1736-1813), Italian-French mathematician.
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extremum point of f, we go neither upward nor downward on the graph of f, and
thus the gradient of f is also perpendicular to the curve. That is, the two gradients
are parallel to each other.

Proof of Theorem 2.44. Consider the matrix

DlFl(CL) DQFl(CL) N DpFl((I)
DlFQ(Q) D2F2(a) . DpFQ((I)
; - (2.12)
D.Fy(a) DyFy(a)... DyFy(a)
Dif(a)  Daf(a) ... Dpf(a)

We need to prove that the rows of this matrix are linearly dependent. Indeed, in
this case there are real numbers A1, ..., Ay, A such that at least one of these num-
bers is nonzero, and the linear combination of the row vectors with coefficients
Aly...; Ag, A is zero. Then every partial derivative of A\ Fy + ...+ A\gFy, + Af is
zero at a, and this is what we want to prove.

If p < q, then the statement holds trivially. Indeed, the matrix has p columns, and
its rank is at most p. Thus, ¢ + 1 > p row vectors must be linearly dependent.

Therefore, we may assume that p > ¢q. We may also assume that the first ¢ row
vectors of the matrix (the gradient vectors I{(a), ..., I} (a)) are linearly indepen-
dent, since otherwise, there would be nothing to prove.

The vectors F(a), ..., F;(a) are the row vectors of the Jacobian matrix of F" at
the point a. Since these are linearly independent, the rank of the Jacobian matrix is g,
and the matrix has ¢ linearly independent column vectors. Permuting the coordinates
of R? if necessary, we may assume that the last ¢ columns of the Jacobian matrix
are linearly independent.

Let s=p—gq. Put b= (as,...,as) € R® and ¢ = (as41,...,ap); then a =
(b, ¢). The Jacobian matrix of the section Fj,: R? — R? at the point ¢ consists of
the last ¢ column vectors of the matrix of F”(a). Since these are linearly indepen-
dent, the linear mapping (F})(c) is injective. Therefore, we may apply the implicit
function theorem. We obtain ¢ > 0 and a differentiable function ¢: B(b,0) — R?
such that ¢(b) = ¢ and F(z,¢(x)) =0 for every x € B(b,d). (Here, B(b,?)
denotes the ball with center b and radius 6 in R%.)

We know that f has a conditional local extremum point at a = (b, ¢) with the
condition F' = 0. Let us assume that this is a local maximum. This means that
if z € R®, y € R? and the point (x,y) is close enough to a, and F(x,y) =0,
then f(z,y) < f(a). Consequently, if z is close enough to b, then f(x,p(x)) <
f(b,(b)). In other words, the function f(z,¢(x)) has a local maximum at the
point b. By Theorem 1.60, the partial derivatives of f(z, ¢(z)) are zero at the point
b.If 1, ..., @4 are the coordinate functions of ¢, then applying Corollary 2.23, we
find that for every i = 1, ..., s we have
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q
Dif(a)+ Y Dayjf(a) - Dip;(b) = 0. (2.13)

j=1
For every k =1, ..., ¢ the function Fj(z,¢(x)) is constant and equal to zero in a

neighborhood of the point b, thus its partial derivatives are zero at b. We get

q
DiFi(a)+ Y DyyjFi(a) - Dip;(b) =0 (2.14)

j=1

forevery k=1,...,qand 7 =1,...,s. Equations (2.13) and (2.14) imply that the
first s column vectors of the matrix of (2.12) are linear combinations of the last ¢
column vectors. In other words, the rank of the matrix is at most ¢. Since the matrix
has ¢ + 1 rows, they are linearly dependent. (I

Remark 2.45. If we want to find the conditional local extremum points a of the
function f with condition F' = 0, then according to Theorem 2.44, we need to
find A, A1,..., Ay such that AD;f(a) + MiD;Fi(a)+ ...+ X\gD;Fy(a) =0 for
every i = 1,...,p. These equations, together with the conditions Fj,(a) =0 (k =
1,...,q9), form a set of p+g¢ equations in p+¢g+1 unknowns
a1,...,Gp, A A1, ..., Ag. We can also add the equation

NN+ A2 =1

to our system of equations, since instead of X\, Aq,..., A, we could also take
Ve v AL, v A where v = 1/(A2 4+ A% + ...+ A2). We now have exactly
as many equations as unknowns. Should we be lucky enough, these equations are
“independent” and they have only a finite number of solutions. Checking these
solutions one by one, we can find, in principle, the set of actual conditional local
extremum points.

Example 2.46. In Example 2.43 we have seen that the function f(z,y,z) =« +
2y + 3z has a greatest value on the sphere S = {(z,y,2) € R®: 22 + ¢y? + 22 =
1}. If f takes on this greatest value at the point ¢ = (u,v,w), then f has a con-
ditional local maximum at a with the condition z? + y? + 22 — 1 = 0. Each of
the functions mentioned above is continuously differentiable, and thus we can
apply Theorem 2.44. We get that there are real numbers A, p such that they
are not both zero and the partial derivatives of the function A(z + 2y + 3z) +
p(x? + y? 4+ 2% — 1) are zero at the point (u, v, w). Thus, the equations

A+ 2pu =0, 2\ +2pv =0, 3N+ 2pw =0, (2.15)

and u? + v? + w? = 1 hold. The Equations (2.15) imply x # 0, since ;1 = 0 would
imply A = 0. Thus, applying (2.15) again gives us v = 2u and w = 3u, implying
w? + (2u)? + (3u)? = 1, u = +1/V14, ie., (u,v,w) = (1/v14,2//14,3//14)
or (u,v,w) = (—1/3/14,-2/\/14, -3//14).
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The function f(x,y,z) = x + 2y + 3z also has a least value on the sphere S.
Since f is not constant on .S, the points where f takes its maximum and its
minimum must be different. This means that there are at least two conditional
local extremal points. Our calculations above imply that there are exactly two such
extremal points, and it is also clear that f assumes its greatest value at the point
(1/v/14,2/+/14,3/\/14) while it takes its least value at the point
(—1/y/14,-2/+/14,-3/+/14) on S.

Exercises

2.14. Show that in Corollary 2.28 the condition on the finiteness of the partial deriv-
ative D5 f can be omitted. (H)

2.15. Let the function f of Corollary 2.28 be differentiable at the point (a, b). Show
directly (i.e., without applying Theorem 2.40) that the function ¢ is differentiable at
the point a and ¢'(a) = — D1 f(a,b)/D2f(a,b).

2.16. Let f: I — R be continuous, where I C R is an interval. Show that if every
point of I has a neighborhood where f is injective, then f is injective on the whole
interval.

2.17. Let f(z,y) = (e cosy, e® siny) for every (z,y) € R2.

(a) Show that f'(a,b) is injective at every (a,b) € R2.

(b) Show that f is injective in every open disk with radius 7.

(c) LetG = {(z,y) € R?: = > 0}. Define a continuous map ¢: G' — R? such that
©(1,0) = (0,0) and f o ¢ is the identity on G. (S)

2.18. Show that a contraction can have at most one fixed point.

2.19. Let B C RP be an open ball. Show that there exists a contraction f: B — B
with no fixed points.

2.20. We call the mapping f: RP — RP a similarity with ratio A if
|f(z) = f(y)] = A |z — y| holds for every ;, y € RP. Show thatif 0 < A < 1, then
every similarity with ratio A has exactly one fixed point.

2.21. Find the largest value of © — y + 3z on the ellipsoid 22 + % + % = 1.
2.22. Find the largest value of 2y with the condition 2% + y? = 1.
2.23. Find the largest value of zyz with the condition 22 + 3% + 22 = 3.

2.24. Find the largest value of xyz with the condition z+y+ 2 =25,
zy +yz+xz=_8.



Chapter 3
The Jordan Measure

3.1 Definition and Basic Properties of the Jordan Measure

One of the main goals of mathematical analysis, besides applications in physics, is
to compute the measure of sets (arc length, area, surface area, and volume).

We deal with the concepts of area and volume at once; we will use the word
measure instead. We will actually define measure in every space RP, and area and
volume will be the special cases when p = 2 and p = 3.

We call the sets A and B nonoverlapping if they do not share any interior points.

If we want to convert the intuitive meaning of measure into a precise notion,
then we should first list our expectations for the concept. Measure has numerous
properties which we consider natural. We choose three out of these:

(a) The measure of the box R = [a1,b1] X - -+ X [a,, by] equals the product of
its sides lengths, that is, (b1 — a1) - - - (bp — ap).

(b) If we decompose a set into the union of finitely many nonoverlapping sets,
then the measure of the set is the sum of the measures of the parts.

(¢) If A C B then the measure of A is not greater than the measure of B.

We will see that these requirements naturally determine to which sets we can assign
a measure, and what that measure should be.

Definition 3.1. If R = [a1,b1] X --- X [ap, by], then we let p(R) denote the prod-
uct (b1 —a1) - (bp — ap).

Let A be an arbitrary bounded set in RP. Cover A in every possible way by
finitely many boxes R1,..., Ry, and form the sum ZZK:1 w(R;) for each cover.
The outer measure of the set A is defined as the infimum of the set of all the sums
we obtain this way. We denote the outer measure of the set A by f(A).

If A does not have an interior point, then we define the inner measure to be equal
to zero. If A does have an interior point, then choose every combination of finitely
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96 3 The Jordan Measure

many boxes R1, ..., Rx in A such that they are pairwise nonoverlapping, and form
the sum Zszl u(R;) each time. The inner measure of A is defined as the supremum
of the set of all such sums. The inner measure of the set A will be denoted by (A).

It is intuitively clear that for any bounded set A, the values p(A) and 71(A) are
finite, moreover 0 < u(A) < 7i(A). (We shall prove these statements shortly.) Now
by restrictions (a) and (c) above, it is clear that the measure of the set A should
fall between p(A) and fi(A). If 4(A) < 7(A), then without further inspection, it is
not clear which number (between 4i(A) and 7i(A)) we should consider the measure
of A to be. Therefore, when speaking about sets having measure, we will restrict
ourselves to sets for which u(A) = fi(A), and this shared value will be called the
measure of A. B

Definition 3.2. We call the bounded set A C R Jordan' measurable if p(A) =
7i(A). The Jordan measure of the set A (the measure of A, for short) is the common
value pu(A) = fi(A), which we denote by u(A).

If p > 3 then instead of Jordan measure we can say volume, if p = 2 then area,
and if p = 1 then we can say length as well. If we want to emphasize that we are
talking about the inner, outer, or Jordan measure of a p dimensional set, then instead
of u(A), 7i(A), or u(A) we may write Hp(A)’ i, (A), or pp(A).

Before proceeding with the investigation of measurable sets and the calculation
of their measure, we will now consider a different approach to define measure.

Finding the (approximate) area of a plane figure can be done by covering the
plane by a very fine square-grid, and counting the number of small squares inter-
secting the figure. Our next goal is translating this idea into a precise notion. From
now on, |V| denotes the cardinality of a finite set V.

We call the box R = [a1,b1] X ... X [ap, by] C R a cube with side length s, if
by —a1 =...=by, —a, = s.(Forp = 1and p = 2 the cubes with side length s are
nothing else than the closed intervals of length s, and the squares with side length
s, respectively.)

We denote by KC,, the set of cubes [%, %} X oo X [%, %} with side length
1/n, where i1, . . ., i, are arbitrary integers. These cubes are mutually nonoverlap-
ping, and their union covers the whole R” space.

For every set A C RP, the cubes of IC,, belong to one of three separate classes.
The cube K is an interior cube, or an exterior cube, if K Cint A or K C ext A,
respectively. If a cube is neither an interior, nor an exterior cube, it is called a bound-
ary cube. Since the sets int A, ext A and JA are pairwise disjoint, every cube that
intersects the boundary of A is necessarily a boundary cube.

! Camille Jordan (1838-1922), French mathematician.
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In fact, the bound-
ary cubes are exactly [] I
the ones with K N
OA#(. In order to
prove this statement, —
let us assume that a Y
boundary cube K does ]
not intersect A. Then /
K C int AU ext A. [
Since K is neither an 1 —— ]
interior nor an exte- -
rior cube, hence it con- " s
tains some points z 3.1. Figure
and y such that z €
int A and y € ext A. Since K is a convex set, it contains the whole segment [z, y].
We know that every segment connecting a point of A and another point of R? \ A
always contains a boundary point of A (see Theorem 1.19). Thus K N A # (), and
we reached contradiction.

Obviously, a cube is an interior or a boundary cube exactly when it intersects the
set (int A) U (0A), i.e., the closure of A.

We denote the total measure of interior boxes by (A, n). In other words,

[] exterior cube

B interior cube

=~

[] boundary cube

K €K,: K C int A}

npbP

(A, n)

We denote the total measure of interior and boundary boxes by 7z(A, n). That is,

_ HK el KnclA#0}

npbP

(A, n)

We will now show that for every bounded set A, the sequences ji(A, n) and 7i(A, n)
converge to the inner measure and the outer measure of A, respectively.

Lemma 3.3. For every box R=][a1,bi]x...%X[ap,b,] we have
limy, oo i( R, n) = limy, oo (R, m) = H?Zl (b; — aj).

Proof. Letn be fixed. There are integers p;, g; such that

(pj —1)/n <a; <pj/n and (g; —1)/n<bj <g;/n(j=1,....p)

. i — i i,—1 1 .
One can easily see that a cube [“n L %] X ... X [“’T, %’] intersects the closure

of R (ie., Ritself)if p; <i; <gq; (j=1

...+, p). Therefore,

P
A(R,n) =n""[[(g —p; + 1),
j=1
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which implies that

p
_ 1 1
/L(R,n)g II <bj+n—aj+n>,
j=1

and fi(R,n) > H§=1 (bj — a;). Since both estimate of 7i(R,n) converge to p(R)
as n — oo, the squeeze theorem implies that f(R,n) — u(R). We can prove
(R, n) — p(R) similarly. O

Theorem 3.4. For every bounded set A € RP the following hold.
(i) lim, oo 7i(A, 1) = Ti(A),
(i) lim, oo p(A,n)(A) = u(A),
(i) p(A) < Fi(A).
Proof. (i) Lete > 0 be fixed. Then there are boxes Ry, ..., Ry covering A such that
Z£\;1 w(R;) < Ti(A) + e. The union of the cubes of /C,, intersecting the closure of

A cover A itself, thus the definition of 77(A) implies (A, n) > fi(A). On the other
hand, a cube intersecting the closure of A also intersects one of the boxes R;, thus

N
n(A,n) §Z (Ri,n).

By Lemma 3.3, lim,_, Zl LA(Ri,n) = Z 1 1(R;) < (A) + €, and thus
there exists an integer ng such that 7(A,n) <> ;" ,u(R“ n) < G(A) + ¢ for every
n > ng. We obtain that 7(A) < fi(A,n) < i(A) + € for n > ng. Since ¢ was arbi-
trary, we get lim,, o (A, n) = u(A).

<
I

(ii) If the interior of the set A is empty, then ;i(A) = 0 and (A, n) = 0 for every
n, thus p(A,n) — p(A). Suppose int A # (), and let € > 0 be fixed. There exist

nonoverlapping boxes Ry, ..., Ry in A such that Zi\il p(R;) > p(A) — e. Then

N
A n) > Z (Ri,n), 3.1

since if a cube is in the interior of R; then it has to be an interior cube of A as well.
By Lemma 3.3,

N N
Jim Z (Riyn) = Zlu<Ri>>g<A>—e,
g —

and thus there exists an integer ng such that Zf\il u(Ri,n) > pu(A) — e for every
n > ng. Now (3.1) implies p(A,n) > pu(A) — e for n > ng. On the other hand
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(A, n) < p(A), since the total volume of the cubes of KC,, in the interior of A
is at most ;1(A) by the definition of y(A). We proved that p(A,n) — u(A).

Statement (iii) is obvious from (i), (ii), and from the inequality (A, n) < (A, n).
O

Remark 3.5. 'We should realize that if R is a box, then fi(R) < u(R) and u(R) >
w(R) follow immediately from the definition, and thus, by u(R) < 7i(R) we have
7i(R) = u(R) = u(R). As a result, R is measurable, and Definition 3.2 gives the
same value for j(R) as the original definition of (R).

Theorem 3.6. Let A and B be bounded sets. Then

() r(AUB) <H(A) +(B),

(i) if A and B are nonoverlapping, then (AU B) > pu(A) + p(B), and
(i) if A C B, then p(A) < u(B) and i(A) < [i(B).
Proof. It is clear that i(A U B, n) < (A, n) 4+ (B, n) holds for every n. Then
we get (i) by letting n — oo. If A and B are nonoverlapping, then (AU B, n) >
1(A,n) + p(B,n), which yields (ii). Suppose A C B. Every box in A is also in B,

thus p1(A) < p(B). Finally, if the union of a set of boxes cover B it also covers A,
which implies z(B) > f(A). O

Theorem 3.7. For every bounded set A,

i(A) = Ti( el A) = p(A) + IO A).

Proof. Recall that 7i(A,n) denotes the total volume of the interior and boundary
cubes of IC,,. Since OA is closed, the cubes intersecting the closure of JA are the
same as the cubes intersecting 0 A, and thus the total volume of the boundary cubes
is i(0A, n). We obtain

A(A) = i(cl A,n) = p(A,n) + (0, n).
Then, letting n — oo yields the desired equality. (]

Definition 3.8. We say that a set A C R? is a null set, if i(A) = 0.

Theorem 3.9. A set A C RP is measurable if and only if it is bounded and its
boundary is a null set.

Proof. The statement is clear from 7z(A) — u(A) = [r(0A). O

For our further discussion of the theory of measurable sets, it is necessary to give
conditions for being a null set.



100 3 The Jordan Measure
Definition 3.10. The diameter of a bounded set A C RP is the number
diam A = sup{|z — y|: x,y € A}.

The diameter of the empty set is zero by definition.

Example 3.11. The diameter of the cubes of RP with side length s is s-./p.

Indeed, let R = [a1,b1] X ... X [ap,by] C RP, where by —a; = ... =b, —ap =
s. If x=(x1,...,2p) € R and y = (Y1,...,Yp) € R, then z;,y; € [a;,b;] and
Y, —x; < b;—a; =s,foreveryi=1,...,p, and
P
w—yl= > (@i—v)> <Vp-s>=s-/p
i=1

follows. Thus diam R < s - /P- On the other hand, the distance of the points a =
(a1,...,a,) and b = (b1,...,bp) is exactly s-,/p, which implies diam R=s -

\/D-

Lemma 3.12. Let a positive number 6 be given. Then every box can be decomposed
into finitely many nonoverlapping boxes with diameter smaller than 0.

Proof. Let the box R be fixed. If n > /p/0, then every cube with side length
1/n has diameter smaller than 6. Consider the cubes K N R, where K € IC,,
and int K N int R # () (there is only finitely many such cubes). These cubes are
nonoverlapping, and their (common) diameter is smaller than . Since their union
covers the interior of R and it is closed, it also covers R. |

Theorem 3.13. Let H C RP be bounded and closed, and let f : H — R be contin-
uous. Then graph f has measure zero in RPH1,

Proof. Let ¢ > 0 be fixed.
By Heine’s theorem
(Theorem 1.53), there exists
0>0 such that |f(z)-—
f(y)| <e for every z,y €
H with |z — y| < 4.
Since H is bounded,
Y it can be covered by a
box R. Using Lemma 3.12,
we can decompose R into
finitely many nonoverlap-
ping boxes R, ..., R, with
diameter less than §. Let
denote the set of indices 1

3.2. Figure
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with R; N H # (. If i € I, then the set A; = R; N H is bounded, closed, and non-
empty. Then, by Weierstrass’ theorem, f has a smallest and a largest value on
A If my; = mingea, f(z) and M; = max.eca, f(x), then diam A; < § implies
M; —m; < e.

The union of the boxes R; X [m;, M;] (i € I) covers graph f. Thus

i1 (graph f) < Zup(Ri) ~(M; —m;) < ZMp(Ri) e < pp(R)-e, (32)
il il

since R; are nonoverlapping, and then Y., u,(R;) < p1,,(R) by statement (ii) of
Theorem 3.6. (Here i, ( graph f) and ju,(R;) are the outer measures of the set
graph f in RP*! and the measure of R; in RP, respectively.) Since ¢ was arbitrary,
graph f has measure zero. O

Corollary 3.14. Every ball is measurable.

Proof. The ball B(a,r) is bounded, with boundary S(a,r). It is easy to see
that S(a,r) is the union of the graphs of the functions f(z1,...,2p-1) =

\/mand g(T1,. . 1) = —m%ﬁned on the set

p—1
A= {($17--~79€p1) e RPL: Z(wl —a;)* < 7‘2}.

i=1

Since A is bounded and closed in R?~1, furthermore f and g are continuous on A,
hence Theorem 3.13 and part (i) of Theorem 3.6 imply that S(a,r) has measure
zero. Thus B(a, r) is measurable by Theorem 3.9. O

Intuitively, it is clear (and also not too hard to prove), that a hyperplane does not
have interior points. Thus, the inner measure of a bounded subset of a hyperplane is
always zero. We show that the outer measure of such a set is also zero.

Lemma 3.15. Every bounded subset of a hyperplane of RP has measure zero in RP.

Proof. Let our hyperplane be the set
H={(z1,...,xp) e RP: ayz1 + ... + apxp = b},

where not every a; is zero. We may assume that a, # 0. Indeed, in the case of
ap = 0 and a; # 0 we could simply swap the corresponding coordinates. Obviously,
the mapping

(@1, @iy, ) = (T1, 0, Ty, )

does not change the volume of a box, thus it also leaves the inner and outer measures
of every set unchanged as well. The image of a hyperplane is a hyperplane and the
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image of a bounded set is a bounded set, i.e., we get that the assumption of a), # 0
is indeed justified.

Let A C H be a bounded set. The set A can be covered by some box R. Let
R = Ry X [c,d], where Ry is a box in RP~!. With these assumptions, A is a subset
of the graph of the function

p—1
f(xl,...,xp_l) = (b— Zai%) /U,p ((1‘1,...,.1‘[)_1) S Rl),
=1

which has measure zero, by Theorem 3.13. O

Since every polyhedron is bounded and its boundary can be covered by finitely
many number of hyperplanes, it follows that every polyhedron is measurable.

The p = 2 case yields that every polygon is measurable.

One can show that every bounded and convex set is also measurable. The proof
can be found in the appendix.

We continue with a closer inspection of the measurable sets.

Theorem 3.16. If A and B are measurable sets, then AU B, ANB, and A\ B
are also measurable.

Proof. Since A and B are bounded, so are the sets listed in the statement of the
theorem. Thus, it is enough to show that the boundaries of these sets have mea-
sure zero. Since A and B are measurable, we have 71(0A) = (0B) = 0, and thus
((0A) U (0B)) <Ti(0A) + m(0B) = 0, that is (0A) U (0B) has measure zero.
Then every subset of (0A) U (OB) also has measure zero. Therefore, it is enough
to show that the boundaries of the sets AU B, AN B, and A\ B are subsets
of (OA) U (0B). This is easy to check using the definition of the boundary (see
Exercise 1.10). O

We denote the set of all Jordan-measurable sets in R” by J. The previous
theorem states that if A,B € 7, then AUB, AN B, A\ B are also in J. The
statements of the following theorem can be summarized as follows: the function
w: J — Ris non-negative, additive, translation-invariant, and normalized.

Theorem 3.17.
(1) p(A) > 0forevery Ac J.
(i) If A, B € J are nonoverlapping then j1(AU B) = u(A) + p(B).

(iii) If A € J and B is a translation of the set A (i.e., there exists a vector v such
that B=A+v={x+wv:z € A}) then B € J and n(B) = u(A).

(iv) ([0, 1]7) = 1.

Proof. Part (i) is obvious, since p1(A) > 0 for every bounded set. If A, B € 7, then
(without additional conditions)
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(AU B) = (AU B) < Ti(A) +7i(B) = p(A) + u(B).

(The first equality follows from Theorem 3.16.) If A and B are nonoverlapping,
then

(AU B) = p(AUB) > p(A) + u(B) = p(A) + u(B)
also holds. The two inequalities together imply (ii).

Part (iii) follows from the fact that if the set R’ is a translation of the box R,
then R’ is also a box, and u(R') = u(R), obviously. Thus, if the set B is a trans-
lation of the set A, then (B) = f(A), since fi(B) and fi(A) are the infima of the
same set of numbers. Similarly, (B) = p(A). If A is measurable, then fi(B) =
fi(A) = p(A) = pu(B), and B is also measurable with yi(B) = 1(A). Finally, part
(iv) follows from the fact that [0, 1]” is a box. O

According to the following theorem, the function p is the only set function satis-
fying these four conditions.

Theorem 3.18. Let the function t: J — R be non-negative, additive, translation-
invariant, and normalized. (Le., let t satisfy the conditions of the previous theorem.)

Then t(A) = u(A) for every set A € J.

Proof. First we show that ¢ is monotone; thatis, A, B € J, A C B implies t(A) <
t(B). Indeed, the additivity and non-negativity of ¢ imply

#H(B) = t(AU (B\ A)) = t(A) + t(B\ A) > t(A).

The cubes of K,, are translations of each other, thus the translation-invariance of ¢
implies that t(K) = t(K') for every K, K’ € ,,. Since [0, 1]? is the union of n?
nonoverlapping cubes of /C,,, hence the additivity of ¢ and the fact that ¢ is normal-
ized imply

1= t([0, 1) = n” - 4(K),

ie., t(K)=1/nP for every K € K,,. Let A € J be arbitrary, and let B,, be
the union of the cubes of /C,, which lie in the interior of A. We have u(B,,) =
(A, n). Since ¢ is monotone, additive, and ¢ is the same as u on the cubes of
K, it follows that t(A) > t(B,) = u(B,) = u(A,n). Let C,, be the union of
the cubes of K, intersecting the closure of A. We have u(C,) = fi(A,n), and
again, since ¢ is monotone, additive, and ¢ is the same as y on the cubes of /C,,,
we have t(A) < t(C) = u(Cy) = (A, n). Thus, T(A,n) < t(A) <T(A,n) for
every n. Since fi(A,n) — pu(A) and p(A) — u(A) as n — oo, it follows that
t(A) = u(A). O

Later we will see that the Jordan measure is not only translation-invariant, but it
also is isometry-invariant (Theorem 3.36)>. This is easy to show for some special
isometries.

2 By an isometry we mean a distance preserving bijection from R? onto itself (see page 115).



104 3 The Jordan Measure

Let ¢, (z) = 2a — x forevery x, a € RP. The mapping ¢, is called the reflection
through the point a.

Lemma 3.19. For every bounded set A C RP and for every point a € RP we have
Mi(pa(A)) = 1(A) and p(pa(A)) = p(A). If A C RP is measurable, then ¢,(A) is
also measurable with (¢ (A)) = p(A).

Proof. If R' = ¢,(R), where R is abox, then R’ is also abox and u(R') = pu(R). It
follows that if B = ¢, (A), then 7i(B) = 7i(A), since 7i(B) and fi( A) are the infima
of the same set of numbers. We get ;1(B) = p(A) similarly. If A is measurable, then
7(B) = 1(A) = u(A) = u(B), thus B is also measurable, with u(B) = u(A). O

For every positive number A and for every point a € R? we say that the mapping
¥xa(z) = Az + a (z € RP) is a homothetic transformation with ratio \.

Lemma 3.20. For every bounded set A C RP and for every point a € RP we have
w(hra(A)) = N - pu(A) and Ti(Yx,o(A)) = NP - Ti(A). If A C RP is measurable,
then 1 q(A) is also measurable with (1(1)x o(A)) = AP - u(A).

Proof. For every box R, ¢y ,(R) is also a box, with side-lengths A times the corre-
sponding side lengths of R. Thus p(¢ o(R)) = AP - u(R).

Now, A C RiU...UR, ifandonly if ¢y 4(A) C ¥xo(R1) U... U q(Ry),
which implies 7i(1)x q(A)) = AP - i(A). The inequality p(1x,qa(A4)) = AP - pu(A)
can be proven similarly. The case of measurable sets should be clear. O

Exercises

3.1. Forevery 0 < a <bfindaset H C R? such that u(H) = a and fi(H) = b.

3.2. (a) Is there a non-measurable set whose boundary is measurable?

(b) Does the measurability of the closure, the interior, and the boundary of a set
imply the measurability of the set itself?

(c) Does the measurability of a set imply the measurability of its closure, interior,
and boundary?

33. Let (r,) be an enumeration of all rational number in [0,1]. Is
U2, ([rn,7n + (1/n)] x [0,1/n]), as a subset of R? measurable?

n=1

3.4. Show that if A is bounded, then y1(A) = p(int A).

3.5. Prove that for every bounded set A C RP and for every € > 0 there is an open
set G such that A C G and 1i(G) < Ti(A) + . (S)
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3.6. (a) Show that if A and B are bounded and nonoverlapping sets, then (A U
B) > fi(A) + u(B).

(b) Give an example of two sets A and B with the property (AU B) > 1u(A) +
w(B).

3.7. Let the function f: [a,b] — R be non-negative, bounded, and let A be the
domain under the graph of f;ie., A= {(z,y): z € [a,b], 0 <y < f(z)}. Show
that 11(A) and 7i(A) are equal to the lower and upper integral of f, respectively.

3.8. Let f: [a,b] — R be bounded. Is it true that if the graph of f is measurable,
then f is integrable?

3.9. Construct a function f: [0,1] — [0, 1] whose graph is not measurable.
3.10. Let H C R, where R is a box. Show that u(H) = u(R) — (R \ H).
3.11. Show that if A is measurable and H C A, then u(H) = pu(A) — (A \ H).

3.12. Let A be a bounded set. Show that A is measurable if and only if, for every
bounded set H we have i(H) = w(H N A) + a(H \ A).

3.13. Let (an, bn) (n=1,2,...) be open intervals, with a bounded union. Show
that 11 (U732, (@, bn)) < ZOO (b — an). (S)

3.14. For every € > 0, construct a bounded, open subset G of the real line such that
w(G) <eand fi(G) > 1.(S)

3.15. Construct a bounded and closed subset I of the real line such that ;(F) = 0
and i(F) > 1. (S)

3.16. Let m(H) = (u(H) + p(H))/2 for every bounded set H C R?. Show that
m is not additive.

3.17. Show that omitting any one of the conditions being additive, translation-
invariant, normalized, or non-negative, the remaining properties do not imply that a
function defined on [ with these properties is necessarily the Jordan-measure. (x S)

3.18. Let A and B be bounded sets. Show that the following statements are equiv-
alent.

(@) F(AUB) = (4) + (B).

(b) For every € > 0 there exist M, N measurable sets such that A C M, B C N
andz(M NN) < e.

(c) (0A) N (OB) has measure zero.

(d) There exists a measurable set M such that A C M and @(M N B) = 0. ()

3.19. Let A and B be bounded sets such that p(A) =1, fi(A) =6, u(B) = 2,
fi(B) = 4, i(A U B) = 10. What values can p(A U B) take?
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3.20. Let Aq,..., A, be measurable sets in the unit cube, and let the sum of their
measures be larger then 100. Show that there exists a point which belongs to more
than 100 of these sets.

3.21. Let F} D F5 D ... be bounded and closed sets, and let ﬂff:l F, consist of a
single point. Show that z(F},) — 0.

3.22. Let A; C Ay C ... be measurable sets in R? with a bounded union. Which
of the following statements is true?

@7 (UpZ; An) = limy—oo p(An); - (b) H (Unzy An) = limy— o0 p(Ay).

3.23. Let A; D Ay D ... be measurable sets in R?. Which of the following state-
ments is true?

@7 (Moo An) =limy oo 1(An); () o (My An) = limy oo p1(Ar).

3.24. Let A, (n=1,2,...) be nonoverlapping measurable sets in R? with a
bounded union. Which of the following statements is true?

@7 (Upey An) < 3o A(AR); - O Uz An) = 20,2 A(An);
©p (UZO:1 Ap) < ZZO:1 H(An>; (d) p (Uoo Ap) > EZO:1 H(An)~

3.2 The measure of a Few Particular Sets

Example 3.21. Let f be a non-negative bounded function on the interval [a, b], and
let A ={(z,y): € [a,b], 0 <y < f(x)} be the set under the graph of f. We
show that if f is integrable on [a,b], then the set Ay is Jordan measurable and

Ap) = [2 fda.

Indeed, let F':a=2¢p <21 <...<uz, =0b be an arbitrary partition of the
interval [a, b], and let m; = inf{f(x): ;1 <z < x;} and M; = sup{f(x): x;—1
< ax < a;} for every i = 1,...,n. Since the rectangles R; = [z;_1,x;] X [0,m;]
(¢ =1,...,n) are nonoverlapping and are subsets of Ay, it follows that

sp=Y_ mi(z; — ;1) Zu ) < pu(Ay).
i=1

On the other hand, the rectangles T; = [z;_1, z;] % [0, M;] (i = 1,...,n) cover Ay,
and thus

n n

Sp =Y M(zi—zi1) =Y u(T;) > alAp).

i=1 i=1

Therefore, we have sp < pu(Ay) < 7i(Ay) < S for every partition F'. The supre-
mum of the set of numbers sz, when F runs through all partitions of [a, b] equals

ff f dx, and thus ff fdx < pu(Ay). On the other hand, the infimum of the set of
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numbers Sr also equals f: f dz, and thus f; fdx > Ti(Ay). This implies p(Ay) =

u(Ay) = f; f dz; that is, Ay is measurable, and p(Af) = ff fdux.

The converse of the statement above is also true: if A is measurable, then f is
integrable. This follows from Theorem 3.25 to be proved presently. Indeed, applying
the theorem for p = 2 and with the coordinates x and y interchanged, we obtain that
if Ay is measurable, then the function z — p((Ay),) = f(x) is integrable on [a, b].

Example 3.22. (The Cantor set) We start with a well-known subset of the real line.
Remove from the interval [0, 1] its open middle third, i.e., cut the interval (1/3,2/3)
out. Remove the open middle thirds of the remaining closed intervals, i.e., cut the
intervals (1/9,2/9) and (7/9, 8/9) out. Continue the process infinitely many times,
each time cutting out the open middle thirds of the remaining closed intervals. The
set of the remaining points is the Cantor set, denoted by C.

3.3. Figure

The set C'is closed, since the [0, 1] \ C is a union of open interval, thus [0, 1] \ C'
is open. The elements of C' can be described using the ternary representation of
numbers. In these representations every digit is one of 0,1 and 2. It is easy to see
that during the first step of the construction of C' we removed those points whose
first digit is 1 (in both ternary representations, if there are more than one). During the
second step we remove the numbers whose second digit is 1 (in both representations,
if there are more than one), and so on. Thus, x € [0, 1] is in C' if and only if all digits
of its ternary representation are 0 or 2. (If there are two representations of = then
one of them must be of this form.) It follows that the cardinality of C' is continuum.
Indeed, we can define a one-to-one mapping between the subsets of N™ and C, if we
map every set H C N7 into the ternary representation 0, ajas . .. such that a; = 2
ifi € Hand a; =0 if ¢ ¢ H. Since the cardinality of the system of all subsets of
N7 is continuum, we get that the cardinality of C' is continuum as well.

Now we show that C' has measure zero. After the nth step of the construction
we are left with 2" closed intervals of length 37", whose union covers C'. Thus,
the outer measure of C'is at most (2/3)™. Since (2/3)™ — 0 as n — o0, it follows
that Z(C') = 0. Therefore, the cardinality of the Cantor set is continuum, yet it has
measure zero. (In other words, C', as a subset of the real line, has the largest possible
cardinality and the smallest possible measure.)

Example 3.23. (Triangles and polygons) Let H be a triangle whose AB side is
parallel to the z axis. As Figure 3.4 shows, if neither of the angles at the vertices A
and B is obtuse, then H can be decomposed into three pieces that can be rearranged
to form a rectangle, whose base is AB and whose altitude is half the length of the
altitude of the triangle.
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The pieces of the triangle are measur-
able sets (since they are polygons), and the
applied transformations (the identity, and
two reflections through points) do not change
the measurability of these sets, and leave
their area unchanged. Therefore, the area of
H is equal to the product of the length of AB
and half the length of the altitude with foot
AB. (If one of the angles at A or B is obtuse, A B
then we can represent H as the difference of 3.4. Figure
two triangles with no such obtuse angles, and
deduce the same formula for its area.)

We will soon see that no isom-
etry changes the measurability nor
the measures of a set. It follows that
the area of every triangle equals half
the product of the length of one of
its sides and the corresponding alti-
tude.

It is also easy to show that
every polygon can be cut up into
finitely many nonoverlapping trian-
gles (see Exercises 3.30 and 3.31).
This implies that the Jordan mea-
sure of a polygon is the same as its
area as defined in geometry.

Example 3.24. (Sierpinski’s® carpet) The Sierpifiski carpet, one of the analogues
of the Cantor set in the plane, is defined as follows. Let us start with the closed unit
square, i.e., the set [0, 1] x [0, 1]. Divide this set into 9 equal squares, and remove the
center open square, i.e., cut out the set (1/3,2/3) x (1/3,2/3). Repeat this step on
each of the remaining 8 closed squares, then keep repeating infinitely many times.
The set of the remaining points is the Sierpinski carpet (Figure 3.5). The outer
measure of this carpet is zero, since it can be covered by 8" squares with area 97"
for every n, and (8/9)" — 0 if n — oo.

The most important tool for computing the measure of sets is provided by the
next theorem.
If A C RP and = € R, then we denote by AY the set

{(z1,...,2p_1 € RPL. (1,...,2p-1,y) € A},

and call it the section of A with height y.

3 Wactaw Sierpinski (1882-1969), Polish mathematician.
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Theorem 3.25. Let AC RCRP, where A is measurable and R=[a1,b1]X...
xlap, by The functions y+— T, 1(AY) and y Hﬁp—1(Ay) are integrable on

[ap, by], and
bp bp
i) = [ (andy= [, (40 d. (33)

Proof. We will prove the theorem in the case of p = 2. The proof in the general case
is similar.

Let A C R? be a measurable set such that A C [a, b] x [c, d]. We have to prove
that the functions y + 71, (AY) and = — p, (AY) are integrable in [a, b], and

()= [ "1 (AY) da = / "y (A

As we saw in the proof of Lemma 3.15, the role of the coordinates is symmetric;
interchanging the z- and y-coordinates does not affect the measure of sets. There-
fore, it is enough to prove the following: if A C [a, b] X [c, d] is measurable, then
the functions = — iy (A;) and x — p (A;) are integrable in [a, b], and

b b
MQ(A):/ ﬂl(Aw)dx:/ 1, (Ay) da. (3.4)

Since A C [a, ] X [c, d], we have
A, C [c,d] for all z € [a,b]. It fol-  di T
lows thatif z € [a, ] then pt (A;) <
1(Az) <d—c¢, so the functions
#, (Az) and 7i; (A;) are bounded in

L C[' —+
[a,b].
. . L EEE——
Let € > 0 be given, and pick rec-
tangles T; = [a;, b;] x [c; 7ndi] (i= di —¢;
1,...,n) such that A C |J 7; and i
i=1 O O
>oicy p2(Ti) < pa(A) + e. We may ai bi
assume that [a;,b;] C [a,b] for all
i=1,...,n Let 3.6. Figure

07 lf(E ¢ [ai,bi], .
i(r) = . 1=1,...,n).
f ( ) {dz —c¢, ifxe [ai,bi] ( )

Then f; is integrable in [a,b], and f: fidx = pa(T;). For arbitrary x € [a, b] the
sections A, are covered by those intervals [¢;, d;] which correspond to indices i for

which = € [a;, b;]. Thus, by the definition of the outer measure,
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It follows that

—b

b n
/a 1 (Ay) dex </ ZZ, Jidx = /a Zi:l fide = (3.5)

Now let R; = [pi, qi] X [ri,si] (i = 1,...,m) be non-overlapping rectangles such
that A D /2, R; and >"1" | o (R;) > po(A) — e. Then [p;, ¢;] C [a, b] for all i =
1,...,m.Let

gi(x) = {O’ it @ ¢ piail (i=1,...,m).

s — 1y, if 2 € [pi, ¢

Then g; is integrable in [a, b], and | ’ gi dx = pa(R;). If z € [a, b] then the section
A, contains all the intervals [rz, s;] whose indices i satisfy = € [a;, b;]. We can also
easily see that if x is distinct from all points p;, g;, then these intervals are non-
overlapping. Then by the definition of the inner measure

Bl (Ax) = Zze[m,%] (81 a Ti) - Zz’:l gl(x)

It follows that

Now 4, (A,) <1, (A,) for all , so by (3.5) and (3.6) we get that

b —b —b
Ja(A) — £ < / 1, (Ay) da g/ 1, (Ay) da g/ 7y (Ay) dz < pa(A) +e.
—b
Since this holds for all ¢, Jab py (Az)de = [, p (Ay) dz = pio(A), which means
that the function x — i (A;) is integrable on [a, b] with integral 1i2(A). We obtain
f 711 (Ay) dz = p(A) the same way. O

We call the set A C RP a cone with base H and vertex cif H C RP~! ¢ € RP,
and A is the union of the segments [z, c] (x € H x {0}).
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Theorem 3.26. Let the set H C RP™! be bounded and convex, and let
c=(c1,...,¢p) € RP, where ¢, > 0. Then the cone with base H and vertex c is
measurable, and 1,(A) = ]% pp—1(H) - cp.

c=(c1, ¢, €3) Proof. It is easy to see that A is bounded and
convex. Thus, by Theorem 3.37 of the appendix,

A is measurable.
Let 0<y<1 and z € H. The vector
(1—y)-(z,0)+y-cisin A, and its last coor-

z

v dinate is y - ¢,. Conversely, if (v,y-c¢p) € A,
then v =(1—y) -2 +y-d, where x € H and
. d=(c1,...,cp—1). This implies

A"JCP:{(lfy).T‘i’yder}

In other words, the section AY°» can be obtained
by applying a homothetic transformation with
ratio (1 — y) to H, then translating the resulting
set by the vector y - d. By Theorem 3.17 and Lemma 3.20, the measure of this set is
(1 —y)P~ 1 p,—1(H). Applying Theorem 3.25 yields the measure of A:

Cp 1
pp(A) = /,up 1 / 1 (AV) - epdy =
0

3.7. Figure

1
— [0 )yt = () . O
/ p

Remark 3.27. Since c,, is the height of the cone, hence the volume of the cone is

the product of the area of its base and its height, divided by the dimension. This

yields the formula for the area of a triangle in the case of p = 2, and the well-known

formula of the volume of cones of the three dimensional space in the case of p = 3.

Our next aim is to compute the measure of balls. The unit balls of R” are
translations of each other, thus, by Theorem 3.17, their measure is the same. Let
us denote this measure by 7,. A ball with radius 7 can be obtained by applying
a homothetic transformation with ratio r to the unit ball, thus, by Lemma 3.20,
pp(B(z,7)) =, - rP for every x € R? and r > 0. It is enough to find the con-
stants ,,.

Theorem 3.28.
1) yor = T;C—T for every positive integer k, and

.. k . 92k+1 1. . .
(1) yor+1 = % for every non-negative integer k.
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Proof. Let I, = foﬂ sin” x dz. It is well-known that

1 3 2k —1 2 4 2k

L d I =2-2.2. L .
21 ok NG ek 35 % + 1

(See [7, Theorem 15.12].) If —1 < y < 1, then the section of the ball B(0,1) C R?
with height y, i.e., B(0,1)¥ is a (p — 1)-dimensional ball with radius /1 — y2.
Then, by Theorem 3.25,

s

1
dy = vp—1 /(sint)p dt =vyp_1 - Ip.
0

%Zj%1(%“ﬁf

The statement of the theorem follows by induction, using the fact that v, = 2. [

Remarks 3.29. 1. It is easy to see that the sequence I, is strictly decreasing, and
Is =16/15 > 1 > Is = 107/32. It follows that

T <7Y2<7Y<7%M<Y>%>7Y>. ..,

thus the volume of the 5-dimensional unit ball is the largest.

2. The sequence -, converges to zero at a rate faster than exponential. By applying
Stirling’s* formula® one can check that

2me p/2 _
%N(p) (mp) /2

as p — oo. This is surprising, since the smallest box containing the unit ball has
volume 2P, which converges to infinity at an exponential rate. This phenomenon
can be formulated as follows: in high dimensions the ball only covers a very small
part of the box that contains it.

Next we compute the measure of parallelepipeds.

Definition 3.30. Let x1,...,x; € RP be vectors (k < p). We call the set
{A1x1+...+)\kxk: 0<A,..., e < 1}

the parallelepiped spanned by the vectors x;, and use the notation P(z1,...,xy).
If £ < p or k = p and the vectors z1,...,x, are linearly dependent, then we say
that the parallelepiped P(z1, ..., xy) is degenerated. If the vectors x1, ..., z, are
linearly independent, then the parallelepiped P(x1, ..., ) is non-degenerated.

4 James Stirling (1692—-1770), Scottish mathematician.
5 Stirling’s formula is the statement n! ~ (n/e)™ - v/2mn (n — 00). See [7, Theorem 15.15].
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Since the parallelepipeds are bounded and convex sets, they are measurable by
Theorem 3.37 of the appendix. The next theorem gives the geometric interpretation
of the determinant.

Theorem 3.31. Ifz; = (ai1,...,a;p) (i =1,...,p), then the volume of the paral-
ai,1 a12 ... 0a1p

lelepiped P(x1, . .., xp) is the absolute value of the determinant

Ap,1 Gp,2 .- App

Proof. Let D(z1, ..., x,) denote the value of the determinant. If D(xq,...,zp)=
0, then the parallelepiped is degenerated. It is easy to see that every degenerated
parallelepiped can be covered by a hyperplane. Thus, by Lemma 3.15, every degen-
erated parallelepiped has measure zero. Therefore, the statement of the theorem
holds in this case.

Thus we may assume that D(z1,...,2,) # 0, ie., the vectors x1,...,x, are
linearly independent. The statement of the theorem is obvious for p = 1, thus we
may also assume that p > 2.

We know that the value of D(x1,...,x,) does not change if we add a constant
multiple of one of its rows to another row. Now we show that these operations
also leave the volume of parallelepiped P(z1,...,x,) unchanged. What we prove
is that the parallelepiped P(x1 + Ax2,22,...,2,) can decomposed into pieces
which can be reassembled to give the origi-
nal parallelepiped P(z1,...,2,), implying the
equality of the two volumes. We denote by A +
a the translation of the set A C RP by a vector
a € RP. Thatis, A+ a={z+a:x € A}

First consider the case of p = 2. For every
u,v € R? let T(u,v) denote the triangle with
vertices 0, « and v. Let the vectors 1, 25 € R?
be linearly independent, and let A > 0. It is easy
to see that

X9
X1 4+ Axo
X1

P(xy + Axg, 20) UT (21,21 + Axg) =

= P(Il, .’L‘Q) U (T(xl,xl + )\.’L‘g) + 1‘2),
(3.7

3.8. Figure

with non-overlapping sets on both sides. Since
w(T(xy, 21 + Axe) + x2) = p (T(x1, 21 + A\x2)),

hence p (P(x1 + Axg, 2)) = pu (P(x1,22)), and we are done.

For the p > 2 case, let us use the notation A+ B={x+y: z € A, y € B}.
Letxy,...,x, € RP be linearly independent vectors, and let A > 0. It is easy to see
that
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P(l‘l)"wxp) :P($1,$2)+P($3,...,$p),

furthermore, each element of P(xy,...,2zp) can by uniquely written as x + y,
where v € P(z1,22) and y € P(xs,...,xp). Thus, by (3.7) we obtain

P(l‘l + )\xg,l'g,xg,...,l‘p) U [T(xl,xl + )\1?2) +P(l‘3,. .. ,xp)] =
=P(z1,...,2p) U([T(x1,21 + Ax2) + P(23,...,2,)] + 22),

with nonoverlapping convex polyhedra on both sides. Since the volume is translation-
invariant, hence the measures of the second sets of both sides are equal, implying

(P + Avg, o, 3, ..., xp)) = p (P21, 22, T3, ..., 2p)) . (3.8)

Replacing z; by z; + Az; for
A >0 yields a similar results.
If A <0, then plugging A\ — —A\,
x1 — 21 + Azg into (3.8) gives us
the desired result.

One of the vectors x1,...,7),
has a non-zero first coordinate.
Multiplying this vector by appropri-
ate constants, subtracting the result-
ing vectors from the other vectors
and rearranging the vectors if nec-
essary, we can achieve a1,; # 0 and
a;,1 =0 (i =2,...,p). One of the

9] - Al new o,...,x, vectors has a non-
zero second coordinate. Multiply-
3.9. Figure ing this vector by appropriate con-

stants, subtracting the results from
the other vectors and rearranging the vectors if necessary, we can achieve as o # 0
and a; o = 0 (¢ # 2). Repeating this process for each of the other coordinates results
in a system that satisfies a; ; # 0 <= 4 = j. This system satisfies the statement
of the theorem, since the box P(z1,...,,) has volume [[/_, |a; ;|, and the value
of the determinant is Hﬁ’:l aj ;. Since neither the value of the determinant, nor
the measure of the parallelepiped were changed by our operations, the theorem is
proved. (]

Exercises

3.25. Let C be the Cantor set. Show, that {z +y: =,y € C} =[0,2] and {x —
y:z,y € Ct=[-1,1].
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3.26. Are there points of the Cantor set (apart from 0 and 1) with finite decimal
expansion? (S)

3.27. We define a function f: C' — [0, 1] as follows. If z € C' and the ternary rep-
resentation of x is 0, a1 as . . ., where a; = 0 or a; = 2 for every ¢, then we define

f@) =3 g

i=1

In other words, the value of f(x) is obtained by dividing the digits of the ternary
representation of = by 2, and reading the result as a binary representation. Show
that

(a) the function f maps C onto [0, 1];
(b) the function f is monotone increasing on C
(c) ifa,be C, a <b,and (a,b) NC =0, then f(a) = f(b).

3.28. Extend f to the interval [0, 1] such thatifa,b € C, a < b,and (a,b) N C = 0,
then let f be equal to the constant f(a) = f(b) on the interval (a,b). Denote this
new function by f, also. The function f defined above is the Cantor function.
Show that

(a) the function f is monotone increasing on [0, 1];
(b) the function f is continuous on [0, 1]. (H)

3.29. Let D7 denote the set of numbers x € [0, 1] whose decimal (in the scale of
10) do not have a digit 7. Show that D~ is closed and has measure zero.

3.30. Show that every polygon can be decomposed into finitely many nonoverlap-
ping triangles. (H)

3.31. Show that every polygon can be decomposed into finitely many nonoverlap-
ping triangles with the added condition that the set of vertices of each triangle of the
decomposition is a subsets of the set of vertices of the polygon. (x)

3.32. Let H C RP be convex, and let ¢ € RP. Show that the union of the segments
[x,¢] (x € H) is convex.

3.33. Let the set H C RP~! be measurable (not necessarily convex), and let ¢ =
(c1,...,¢p) € RP, with ¢, > 0. Show that the cone A with base H and vertex c is
measurable, and ji,,(A) = & - pp—1(H) - ¢p. (H)

3.3 Linear Transformations and the Jordan Measure

Our next aim is to prove that the measure is not only translation-invariant, but is
invariant under all isometries. We prove this in two steps. First we show that every
isometry can be written as the composition of a special linear transformation and a
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translation, then we figure out how linear transformations change the measure of a
set. The isometry invariance of the Jordan measure will follow from these two steps.

First we summarize the basics on isometries. We say that a mapping f: R? —
R? is distance preserving, if |f(x) — f(y)| = |z — y| for every x,y € RP. The
mapping f: RP — RP is an isometry, if it is a distance preserving bijection of RP
onto itself. We denote the set of all isometries of R” by G,,. (Therefore, a mapping
f is an isometry if it is distance preserving, and its range is the whole space R”. We
will show presently that every distance preserving mapping is an isometry.) The sets
A and B are called congruent if there is an isometry f such that B = f(A).

It is easy to see that the inverse of an isometry is also an isometry, and the com-
position of two isometries is also an isometry. (In other words, G}, forms a group
with respect to the composition operation.) We denote the set of all translations of
RP? (i.e., the mappings = — x + ¢ (x € RP)) by T),. It is clear that every translation
is an isometry; i.e., T, C G,.

We say that a linear transformation A mapping R? into itself is orthogonal, if it
preserves the scalar product, i.e., if (Ax, Ay) = (x,y) for every z,y € RP. Since
(Ax, Ay) = (x, AT Ay) (where AT denotes the transpose of A), hence A is orthog-
onal if and only if AT A = I, were I is the identity transformation. Therefore, A
is orthogonal if and only if the column vectors of the matrix of A are orthonor-
mal; that is, they are pairwise orthogonal unit vectors. The conditions A7 A = T
and AAT = I are equivalent, hence A is orthogonal if and only if the row vectors
of the matrix of A are orthonormal. We denote the set of all the orthogonal linear
transformations of R” by O,,.

If A€ O,, then |Az|*> = (Ax, Az) = (z,z) = |z|?, thus |Az| = |z| for every
x € RP. Consequently, |Ax — Ay| = |A(x —y)| = |z —y| for every x,y € RP.
Thus every orthogonal linear transformation is an isometry: O, C G,,.

Lemma 3.32. Ler a,b € RP be distinct points. Then the set {x € RP: |z —a| =
|& — b} is a hyperplane (called the orthogonal bisector hyperplane of the points
a and b.

Proof. For every x € RP we have

|t —a|=|r—b <= |z —a|®* =]z - b <=
— (r—-ax—a)={(x—br—-b) —
— |z|* = 2(a,z) + |a]® = |z]* — 2(b,z) + |b]? =
= (2(b—a),z) = b’ —|a]® =

P
= Zcixi = |b]* — |a]?,
i=1

where 2(b — a) = (c1,...,¢p). O
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Lemma 3.33. Let f: RP — RP? be distance preserving, and let g € Gy, If the val-
ues of f and g are equal at p + 1 points of general position (i.e., if the points cannot
be covered by a single hyperplane), then f = g.

Proof. Suppose that f(z) # g(x).If f(y) = g(y). then [y — z| = |f(y) — f
lg(y) — f(x)| = |y — (¢ o f)(x)]. This implies that the set {y: f(y) =g

a subset of the orthogonal bisector hyperplane of the points = and (g~ ' o f)(x),
which contradicts our assumption. ]
Theorem 3.34.

(i) The mapping f: RP — RP is an orthogonal linear transformation if and only
if f(0) =0 and f is distance preserving.

(ii) Every distance preserving map f: RP — RP is an isometry.
(i) Gp={fog:9€0,, feT,}

Proof. (i) We have already proved that an orthogonal linear transformation f
is an isometry (and thus, distance preserving). Clearly, f(0) =0 also holds for
every linear map. Now we show that if f: RP — RP? is distance preserving and
f(0) =0, then f € Op. Let e; = (0,...,0,1,0,...,0) and v; = f(e;) for every
i=1,...,p. Let g denote the linear transformation whose matrix has the column

Vectors vy, . .., Up.
These column vectors are orthonormal. Indeed, on the one hand

lvi =0 = [f(e:) = f(0)| = [es = O] =1
for every i. On the other hand, for i # j we have
[os = 3] = [F(e0) = fleg)] = le: = e = V2,

and 72<U¢,’Uj> = |Ui — ’Uj|2 — |’Ui|2 — |Uj|2 = 0. Thus g € Op

Now, the distance preserving map f and the isometry g are equal at the points
0, e1,...,ep. Itis easy to see that these points are of general position and thus, by
Lemma 3.33, f = g.

(ii) Let h: R? — R? be distance preserving. Let f be the translation by h(0), and
let g(x) = h(z) — h(0) (x € RP). Then g is distance preserving and g(0) = 0, thus
g € Oy, by (i). Therefore, g is an isometry and, since h = f o g, we find that & is
also an isometry. This also proves (iii). (]

Let A: R? — RP be a linear transformation, and let the determinant of A be det A.
The following theorem gives the measure theoretic meaning of this determinant.

Theorem 3.35. For every bounded A C RP and for every linear transformation
A: RP — RP we have u(A(A)) = [det A| - u(A) and [i(A(A)) = | det A| - fi(A).
If A is measurable, then A(A) is also measurable, and ;((A(A)) = | det A] - p(A).
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Proof. First we compute the measure of A(R), where R = [0,a1] X ... x [0,a,].
Obviously, A(R) is the parallelepiped spanned by the vectors A(ase1), ..., A(ape,),
where e; = (0,...,0,1,0,...,0) (i =1,...,p). Since the determinant of a matrix

with row vectors A(aze;) = a;A(e;) is aq - - - ap, - det A, Theorem 3.31 gives
H(A(R)) = |a1---ap - det A] = | det A| - u(R).

Then, using the translation invariance of the Jordan measure and the linearity of A
we get that 1(A(R)) = | det A| - p(R) for every box R.

Let det A be denoted by D, and let A be a bounded set. If D = 0, then the range
of A is a proper linear subspace of RP. Every such subspace can be covered by a
(p — 1) dimensional subspace, that is, by a hyperplane. Thus A(A4) C A(RP) is part
of a hyperplane. By Lemma 3.15 we obtain that u(A(A)) =0=|D|- u(A) and
A(A(A)) = 0= |D| - (4).

Suppose now D # 0. Then A is invertible. Let {R;,..., R,} be a system of
nonoverlapping boxes in A. The parallelepipeds A(R;) (i =1,...,n) are also
nonoverlapping®, and are subsets of A(A). Thus

#(A(A) =D p(A(R:)) =Y D] w(Ri) = D] - u(Ry). (3.9)
=1 i=1 i=1

Since 4u(A) is the supremum of the set of numbers Y ., y(R;), hence (3.9) implies

#(A(A) = D] - p(A).

The linear transformation A~! maps the set A(A) into the set A, thus switch-
ing A(A) and A in the previous argument gives j(A) > |det A=Y - u(A(A)) =
(D! u(A(A)). Ths, u(4) -|D| > p (A(4)), and p(A(4)) = D] - u(A).

We get i(A(A)) = |D| - i(A) by a similar argument.

If A is measurable, then A is bounded and p(A) = pu(A) = (A). In this case,
A(A) is also bounded, and ;(A(A)) = |D| - u(A) = |D| - 7i(A) = (A(A)). It fol-
lows that A(A) is measurable and 1(A(A)) = |D| - u(A). O

Theorem 3.36. Let the bounded sets A, B C RP be congruent. Then i(A) = i(B)
and ji(A) = p(B).
If A is measurable, then B is also measurable and ji(A) = p(B).

Proof. We know that translations do not change the outer and inner measures of
sets. By part (iii) of Theorem 3.34, it is enough to prove the statement for orthogonal
linear transformations.

If A € O,, then (det A)? = det (AT A)=det I = 1, thus det A = +1. Therefore,
the statement follows from the previous theorem. O

6 This needs some consideration, see Exercise 3.37.
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Exercises

3.34. Show that if A C RP is bounded, then among the open balls contained by A
there is one with maximum radius.

3.35. Let A C R? be a bounded set with a non-empty interior. Let By = B(ay,71)
be (one of) the open ball(s) in A with maximum radius. Suppose we have already
chosen the balls By, ..., B,_1, and that the interior of A\ (B;U...UB,_1) is
non-empty. Then let B,, = B(ay, ) be (one of) the open ball(s)in A\ (B; U...U
B,,—1) with maximum radius. Suppose we chose infinitely many balls during this
process.

Prove the following statements.

(@) intAcC UnN:1 B(an, ) UUpZ 1 Blan,2-r,) forevery N > 1. (%)

(0) p(UpZy Bn) = p(A).
(c) If A is measurable, then 1z (|~ By) = p(A).

3.36. Using the results of the previous exercise, give a new proof of the isometry
invariance of the inner and outer measure of sets.

3.37. Let A, B C R? be nonoverlapping sets. Show that A(A) and A(B) are also
nonoverlapping for every linear transformation A: R? — RP. (S)

3.4 Appendix: The Measurability of Bounded Convex Sets

Our aim is to prove the following theorem.
Theorem 3.37. Every bounded convex set is measurable.

Lemma 3.38. If ' C G C RP, where F is closed and G is bounded and open, then
A(F) < p(G).

Proof. For every z € F' we have x € G, thus there exists 7(z) > 0 such that
B(z,r(z)) C G. The open balls B(x,r(x)) cover F. Then, by Borel’s theorem
(Theorem 1.31), finitely many of these balls also cover F'. Let H be the union
of these (finitely many) balls. The set H is measurable and F' C H C G, hence
A(F) < fi(H) = p(H) < p(G). 0

Remark 3.39. In general F' C G does not imply fi(F) < u(G). E.g., if /=G is
bounded and non-measurable, then fi(F) > u(G).

Lemma 3.40. Let A C RP be convex. If a € cl A and b € int A, then the points of
segment [a,b] are in int A (with the possible exception of a).
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Proof. Let c € [a,b] \ {a} be arbi-
trarily. Then ¢ = (1 — t)a + tb, where
0<t<1. Since b€ int A, there
5 exists > 0 such that B(b,r) C A.
ﬁ , Let 0 = ¢r/2; we show that B(c, §) C
Yv ‘ A, which will prove that ¢ € int A.
Let y € B(c,d) be arbitrary; we
show that y € A. Since a € cl A, the
set B(a,d) N A is non-empty. Pick a
point z € B(a, ) N A. Clearly, there
exists a unique point z such that
y=(1—t)z+tx. We show that
x € B(b,r),ie., |z —bl <r.
Indeed, tx =y — (1 — t)z and tb = ¢ — (1 — t)a. Subtracting the two equations
from each other and taking the absolute value of both sides we find

3.10. Figure

tle —bl=lte—th|=ly—c— (1 —t)z— (1 = t)a)| <
«<|y—c+(1—-t)z—al<d+(1—1t)<20=tr,

thus |z — b| < r,and z € B(b,r) C A.Since z € A and A is convex, it follows that
y=tr+(1—t)z € A O

Lemma 3.41. Let A C R? be convex. If int A =), then A can be covered by a
hyperplane.

Proof. We may assume 0 € A, since otherwise we can take an appropriate trans-
lated copy of A. Let V be the linear subspace of R” generated by A. It is enough to
show that V' # RP, since in this case V' is the subset of a (p — 1)-dimensional linear
subspace, which is a hyperplane containing A.

Suppose V' = RP. Then A is a generating system in R?, and then it contains
the linearly independent vectors uq, ..., u,. Since A is convex and 0 € A, hence
tiug + ... +tpup € Aforty,...,t, > 0and t; +...+t, < 1. It follows that A
contains the parallelepiped P = P(u;/p,...,u,/p). The parallelepiped P is mea-
surable with a positive measure, thus its interior is non-empty. Since int P C int A,
hence the interior of A is also non-empty, which contradicts the assumption. []

Proof of Theorem 3.37. Let A C R? be bounded and convex. We distinguish
between two cases.

I: int A # (). We may assume that 0 € int A, otherwise we could take an appro-
priate translated copy of A. For every ¢t € R and = € RP, let ¢(z) =t - 2. Now
¢¢(clA) C int A holds for every 0 <t < 1. Indeed, if = € cl A, then tx =
te+ (1 —¢)0 € int A, since 0 € int A, and we can apply Lemma 3.40.

The mapping ¢ is continuous, and the set cl A is bounded and closed. Then, by
Theorem 2.7, the set ¢;(cl A) is also bounded and closed. Thus, by Lemma 3.38,
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we have 7i(¢:(cl A)) < u(int A). Since A C cl A and int A C A, it follows that
7i(pi(A)) < u(A). Applying Lemma 3.20 we find that ¢7 - 7i(A) < p(A). This
holds for every 0 < ¢ < 1, thus 7i(A) < u(A), i.e., A is measurable.

II: int A = ). Then, by Lemma 3.41, A is the subset of a hyperplane. By Lemma 3.15
it follows that the set A has measure zero and, consequently, it is measurable. [



Chapter 4
Integrals of Multivariable Functions I

4.1 The Definition of the Multivariable Integral

The concept of the integral of a multivariable function arose as an attempt to solve
some problems in mathematics, physics, and in science in general, similarly to the
case of the integral of a single-variable function. We give an example from physics.

Finding the weight of an object via its density. Given is a rectangular plate
made of an inhomogeneous material, whose density is known everywhere. That is,
we know the ratio of its weight and its area in a small neighborhood of each of its
points. Our job is to find the weight of the plate.

We assume that the weight is a monotone function of the density, which means
that if we change the material of the plate in such a way that the density does not
decrease at any of its points, then the weight of the whole plate will not decrease
either.

Let the plate be expressed in coordinates as R = [a, b] X [c, d], and let f(x,y) be
its density at the point (z,y) € R.Leta =29 <1 < ... < ax, =band c=yg <
y1 < ... <y = dbe arbitrary partitions, and let p;; denote the weight of the region
Rij = [wi—1, 2] X [yj—1,y;] forevery 1 <i<mnand1 <j <k Let

m;; = inf{f(z,y): (z,y) € Ry}  and  M;; =sup{f(z,y): (=,y) € Ri;}.

If the density of the region I2;; was m,; at every point of R;;, the weight of R;;
would be m;; - u(R;;) (by the definition of density). The monotonicity condition
implies that p;; > m;; - p(R;;). Similarly, we get that p;; < M;; - u(R;;) for every
1 <i<nand1 < j < m. Thus, if the weight of R is p, then we have

n k
ZZ 1] /u‘ ] <p<ZZMw p z]

1=1 j=1
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These inequalities hold for every partition a =29 < 21 < ... <z, =b and c =
Yo < y1 < ... <y = d. If we are lucky, only one number satisfies these inequali-
ties, and that will be the value of the weight.

The argument above is similar to the reasoning that led to the concept of the
Riemann! integral of a single-variable function. Accordingly, the definition of the
integral of a multivariable function is obtained as an immediate generalization of
the Riemann integral of a single-variable function.

Definition 4.1. The partition of a rectangle R = [a,b] X [¢,d] is a system
of rectangles R;; = [x;—1,%;] X [y;—1,y;], where a =29 <21 <...<x, =b
and c = yp < y1 < ... <y = d. We call the points ; and y; the base points, and
the rectangles R;; the division rectangles of the partition.

Let f: R — R be a bounded function and let

mi; = inf{f(z,y): (z,y) € Ri;}
and Mij = SuP{f(%y)i (x,y) € RU}

d=yi for every 1<i:<mn and 1<
j < k. We call the sums

n k
se(f) =3 mij - u(Rij)

Rij i=1j=1
and
Y1
n k
c=yo Sr(f) = Z Z M;j - p(Riz)
a=xg X| b=x, i=1 j=1
4.1. Figure the lower and upper sums of the

function f with partition F' =

{R;;}. If f is given, and it is obvious which function we are talking about, we
will use the notation sy and S instead of sp(f) and Sg(f), respectively.

Similarly to the case of single-variable Riemann integration, we say that a func-
tion is integrable if there exists only one number between its lower and upper sums.
First we show that for every bounded function f, there exists a number between
every lower and every upper sum of f.

The proof goes similarly to the single-variable case. We say that a partition F” is
arefinement of the partition F if every base point of F is also a base point of F”.

! Georg Friedrich Bernhard Riemann (1826-1866), German mathematician.
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Lemma 4.2. Let f: R — R be bounded, and let the partition F' be a refinement
of the partition F. Then we have sp < sgr and Sp > Spr.

Proof. First we show that if F’ is obtained by adding one new base point to F,
then sg/ > sp. This follows from the fact that if a division rectangle R;; of F'
is cut into two rectangles by the new partition, then the infimum of f is at least
m;; = inf{f(z): x € R;;} on both of the new rectangles, and thus the correspond-
ing contribution of the lower sum to these two pieces is at least m;; - t(R;;).

Then the statement of the lemma is proved by induction on the number of new
base points, since every added base point either increases the lower sum or leaves it
unchanged.

The proof of the inequality on the upper sums is similar. (]

Lemma 4.3. Let f: R — R be bounded. If Fy and F5 are arbitrary partitions of
[a,b], then sp, < Sp,.

Proof. Let F' be the union of the partitions F} and F5, i.e., let the set of the base
points of F' consist of the base points of F} and F5. The partition F' is a refinement
of both F and F5. Clearly, we have sp < Sp (since m;; < M;; for every i, j).
Then, by Lemma 4.2, we obtain sp, < sp < Sp < Sp,. O

Let F denote the set of partitions of the rectangle R. The lemma above states
that for every partition F5 € F the upper sum Sp, is an upper bound of the set
{sp: F € F}. Therefore, the least upper bound of this set, i.e., SUP e SF, 18 not
larger than Sp, for all F; € F. In other words, suppc 7 55 is a lower bound of the
set {Sp: F € F}, and we get

3 < inf Sp. 4.1
;EE:SF_FHGI}'F 4.1)

It is clear that for every real number I we have sp < I < Sp for every partition F'
if and only if

< I < inf Sp. 4.2
IEEI}SF_ < iof Sp 4.2)

This proves that for every bounded function f there exists a number between the set
of its lower sums and the set of its upper sums.

Definition 4.4. Let f: R — R be a bounded function. The function f is called
integrable on the rectangle R if suppcrsp = infper Sp. We call the number
Suppcr sp = infper SF the integral of the function f on the rectangle R, and
denote it by [, f(z,y) dxdy.

We introduce new notation for the numbers suppc r sF and infpe 7 Sp.
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Definition 4.5. Let f: R — R be a bounded function. We call supp.rsr the
lower integral of f and denote it by fR f(z,y) dedy. We call inf pe x S the upper

integral of f and denote it by TR f(z,y) dxdy.
We can summarize (4.1) and (4.2) with the help of the new notation.
Theorem 4.6.

(i) For every bounded function f: R— R we have JR flz,y)dedy <

fR x,y) da dy.
(ii) For every real number I, the inequalities sp < I < Sp hold for every partition
lfandonlylff flz,y dxdy<]<fR x,y) da dy.

(iii) The bounded function f is integrable on R if and only if jR f(z,y) dz
dy = fR x,y) d dy, and then

/R f(x,y)do:dy/Rf<x,y>dxdy /Rf<z,y)dxdy.

O

The definitions, theorems, and arguments used in the case of the integral of a
single-variable function can be copied almost word by word for the integrals of two-
variable functions. Moreover, these notions and theorems can be easily generalized
to p-variable functions as well.

Definition 4.7. Let R = [a1,b1] X ... X [ap,b,] CRP be a box. If a; = x;0 <
i1 <...<Zip, =b;foreveryi=1,...,p, then we call the system of boxes

Ry gy = [T10-1,150) X oo X [T, 15T, )

(where 1 < j; < n; foreveryi = 1,...,p) apartition of the box R. If f is bounded
on R, we can define its lower and upper sums in the same way that we did in the
two-variable case.

The proof of s, < Sp, for a pair of arbitrary partitions F; and F5 is exactly the
same as in the two-variable case. With these in hand, we can define the lower and
upper integrals, integrability, and the value of the integral of a function f in the same
way that we did in Definitions 4.5 and 4.4. We denote the integral of the function f
onthe box Rby [, f(x1,...,2,)dxy - dxy,or [, f(z)drand [, f dx for short.

Below we give a list of theorems on integrals of multivariable functions whose
proofs closely follow the arguments of their corresponding counterparts in the
single-variable case. (As for the latter, see, e.g., the theorems of Section 14.3 of
[7].) We suggest the reader check these proofs again in this more general context.
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This could be useful for more than one reason: it helps in understanding the new
notions, and it also makes clear that the ideas used in the multivariable case are
essentially the same as those applied to functions of one variable.

A bounded function f: R — R is integrable and its integral equals I if and only
if for every € > 0 there exists a partition F' such that

I —e<sp<Sp<I+e.

A bounded function f: R — R is integrable if and only if for every € > 0 there
exists a partition F' with Sp — sp < €.

We introduce a new notation for Sp — sp, just as in the single-variable case.
Let H be a nonempty set, and let f: H — R be a bounded function. We call the
quantity

w(f; H) = sup f(H) — inf f(H) = sup{|f(x) — f(y)|: x,y € H}

the oscillation of the function f on H.
The oscillatory sum of a bounded function f: R — R corresponding to the par-

tition F'is
Qe(f) =Y w(fiRigy) 1 (Rjs.j,)
where R ;, rtuns through the division boxes of the partition F. Obviously,

QF(f) = SF — SF.

A bounded function f: R — R is integrable if and only if for every € > 0 there
exists a partition F' such that Qp < €.

The approximating sums of a bounded function f corresponding to the partition
F are the sums

or(f;(cih.g,)) = Zf (¢irodp) 1 (Rjy. ) s

for every choice of the points ¢;, gy € R e

For every bounded function f: R — R and partition F,

inf op=sp and sup op = Sp.
(€1,--vCn) (€1,--vn)

That is, the infimum and the supremum of the approximating sums (over all possible
choices of the points c;) are sp and Sp, respectively.
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A bounded function f: R — R is integrable and its integral equals I if and only
if for every € > 0 there exists a partition I such that every approximating sum o g
has|op — I| < e.

If f is continuous on the box R, then f is integrable on R.

If f is integrable on the box R, then the function cf is also integrable on R, and
Jpefde=c [, fdx.

If f and g are integrable on the box R, then f + g is also integrable on R, and
[p(f+9)de = [, fdx+ [, gde.

If f and g are integrable on the box R, then the functions |f| and f - g are also
integrable on R, and furthermore, if |g(x)| > § > 0 for every x € R, then f/g is
also integrable on R.

Let g be integrable on the box R, and let f be a continuous real-valued function
on an interval [, 3] containing the range of g (i.e., containing the set g(R)). Then
the function f o g is also integrable on R.

Exercise

4.1. Let A C R C RP, where R is a box, and let

1, ifze A,
f(x)_{o, ifz e R\ A’

Show that
(a) fR fdr = p(A) andfR fdx = 1i(A), and furthermore,

(b) f 1is integrable on R if and only if A is measurable, and then

fRfdx = :u(A)

4.2 The Multivariable Integral on Jordan
Measurable Sets

So far we have defined the multivariable integral of functions only on boxes. How-
ever, the definition of the integral and most of our previous theorems hardly used
the fact that the underlying sets and the parts of their partitions are boxes. Since we
often encounter problems in which those conditions are not met, it will be useful to
generalize the definition of the integral to a more general situation.
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Definition 4.8. Let A C RP be a Jordan measurable set. A system of sets F' =
{A1,..., A} is called a partition of the set A if Ay,..., A, are nonoverlapping
and nonempty measurable sets whose union is A.

We say that the partition {Bi,..., B} is a refinement of the partition
{Ay,..., A,} if for every j € {1,...,m} there is an i € {1,...,n} such that
Bj C Al

Let f: A — R be a bounded function. We say that the lower sum of f cor-
responding to the partition F' is the sum sp =Y . m; - u(A;), where m; =
inf{f(z): z € A;} (i =1,...,n). The upper sum of the function f corresponding
to the partition F is the sum Sp = > | M; - u(A;), where M; = sup{f(z): = €
Ay (i=1,...,n).

Lemma 4.9. Let A C R? be nonempty and Jordan measurable, and let f: A — R
be bounded.

() If Fy and F; are partitions of A and F is a refinement of Fi, then sp, > Sp
and Sp, < Sp,.
(ii) If F1 and Fs are arbitrary partitions of A, then sp, < Sp,.

Proof. (i) Let Fy; ={Ai,...,A,} and F,={Bi,...,Bn}. Cleary, inf
{f(z): z € Bj} >inf{f(x): x € A;} (i =1,...,n) whenever B; C A;. If F5 is
a refinement of F}, then each A; is the union of the sets B; that are subsets of
A;. From these observations the inequality sz, > sp, easily follows. The inequality
Sk, < Sp, is obtained similarly.

(i) The sets A; N B; (i=1,...,n, j=1,...,m) are nonoverlapping, and their
union is also A. Let C4,...,C) be an enumeration of the sets A; N B; that are
nonempty. Then the partition F' = {C1, ..., C}} is a common refinement of F; and
F5. Then by (i), we have s, < sp < Sp < Sp,. O

Definition 4.10. Let A C R? be nonempty and Jordan measurable, and let F
denote the set of all partitions of A. If f: A — R is bounded, then the number
Suppc 7 sr is said to be the lower integral of f and is denoted by fA fdx. Simi-
larly, we say that inf pc x SF is the upper integral of f and denote it by TA fdz.

As a corollary of Lemma 4.9 we have JA fde <[ 4 J dx for every bounded func-
tion f: A — R. We say that a function f is integrable on the set A if fA fdx =

IA fdx. We call :fA fdx = IA f dx the integral of the function f on the set A, and

denoteitby [, fdxor [, fdxy... dx,.
If A = (), then we define fA f dx to be zero.

Note that if the set A is a box and f: A — R is bounded, then we have defined
the integrability and the integral of f rwice, first in Definition 4.7 using partitions of
boxes, and then in Definition 4.10 using partitions of measurable sets. We will see
presently that the two definitions are equivalent (see Remark 4.13).
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We call the sum

n

Qp =Sp —sp = Zw(ﬁAi) “t(A;)

i=1
the oscillatory sum of the bounded function f: A — R corresponding to a partition
F={A,...,A,}.

The proofs of the following theorems are the same as their respective counter-
parts for the single-variable case.

A bounded function f is integrable on A if and only if for every € > 0 there exists
a partition F such that Qp < €.

If a function is integrable on the set A, then it is also integrable on every non-
empty Jordan measurable subset of A.

Let [ be defined on AU B, where A, B are nonoverlapping Jordan measurable
sets. If [ is integrable on both A and B, then f is integrable on AU B, and

/ f(x)da:z/f(x)dm—&—/f(x)dac. 4.3)
A B

AUB

Using the last two theorems, we can reduce integration on an arbitrary measur-
able set A to integration on boxes. Indeed, pick a box R containing A. We extend
the given function f: A — R to R by setting it zero everywhere on R \ A:

- f(z), ifzxeA,
0, ifzeR\A

Clearly, f is integrable on A if and only if f is integrable on R, and then i) 4 fdx =
f fdx.
R

Since the integral of the constant function equal to 1 on A is ;1(A4), we have the
following theorem.

Theorem 4.11. Let A C R C RP, where A is measurable and R is a box. Then the
function

1, ifxe A,
f(x)_{o, ifr € R\ A,

is integrable on R, and its integral equals p(A). O
See Exercise 4.1. for the converse of this theorem.

Let f: [a,b] — R be integrable with integral I. Then for every £ > 0 there exists
0 > 0 such that for every partition F' finer than d wehave I — e < sp < I < Sp <
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I + € (see [7, Theorem 14.23]). This fact can be generalized to multivariable func-
tions.

Recall that the diameter of a nonempty set A is diam A = sup{|z — y|: =z,
y € A}. We say that the mesh of a partition F' = {4;,...,A,} is 6(F) =
maxi<;<, diam A,. The partition F is finer than 7 if §(F') < 7.

Theorem 4.12.

(i) Let A C R? be Jordan measurable, and let f: A — R be bounded. For every
partition Fy of the set A and for every € > 0, there exists 6 > 0 such that

sp,—e<sp <Sp <Sp,+e¢

for every partition F finer than 0.

(ii) Let f be integrable on the set A and let fA fdx = 1I. For every € > 0 there
exists 0 > 0 such that I — e < sp < Sp < I + ¢ for every partition F finer
than é.

We will prove Theorem 4.12 in the first appendix.

Remarks 4.13. 1. If the set A is a box and the function f: A — R is bounded,
then the integrability of f and its integral are defined in both of Definitions 4.7 and
4.10, first with the help of subdividing boxes, then with the help of subdividing
measurable sets. We will now prove that these two definitions are equivalent.

Let us call Definition 4.7 the box partition definition, and call Definition 4.10
the general definition. Clearly, it is enough to prove that the upper and the lower
integrals are the same in the two cases.

Since every partition of the box partition definition is also a partition of the gen-
eral definition, the upper integral of f based on the box partition definition cannot
be smaller then the upper integral of f based on the general definition.

Let Fy = {A;,..., AN} be a partition of the general definition. It is enough to
prove that for every ¢ > 0 there exists a box partition £ such that Sp < Sg, + €.
By (i) of Theorem 4.12, Sp < SF, + € for F' fine enough. Since by Lemma 3.12
the box A has an arbitrarily fine partition, Definition 4.7 proves our claim.

The equality of the lower integrals can be proved similarly.

2. Do we really need both definitions? The question is only natural, since we have
just proved their equivalence. As a matter of fact, we do not need both, and we could
get by using either. However, what justifies the first definition is the simplicity of
the box partition definition and the fact that it is a natural generalization of the
single-variable integral in that boxes are the natural generalizations of intervals. On
the other hand, the existence of the general definition is justified by the fact that it is
independent of the definition of boxes and, consequently, of the choice of coordinate
system. Also, some arguments and ideas are simpler and more natural in the general
context.
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It is well known that if f is bounded on [a, b] and continuous there except at
finitely many points, then f is integrable on [a, b]. (See [7, Theorem 14.43].) We
generalize this theorem below. Note that this theorem gives a much stronger state-
ment even in the one-dimensional case than the theorem quoted above.

Theorem 4.14. Let A C RP be nonempty and Jordan measurable. If the function
f: A — R is bounded and continuous on A except at the points of a set of measure
zero, then f is integrable on A.

Proof. Let |f(z)| < K for every « € A. Since A is Jordan measurable, 0A has
measure zero. By assumption, the set D = {2z € A: f is not continuous at 2} also
has measure zero, and thus p((0A) U D) = 0.

Let € > 0 be fixed. By Exercise 3.5, there exists an open set G such that
(0A)UD C G and 7i(G) < e. Since 9A C G, we have A\ G = (clA)\ G =
cl AN (RP\ G), and thus A\ G is closed. The function f is continuous at every
point of A\ G, since D C G. Since A\ G is bounded and closed, it follows
from Heine’s theorem (see page 70) that f is uniformly continuous on A\ G,
i.e., that there exists § > 0 such that |f(xz) — f(y)| < ¢ for every z,y € A\ G
with |z —y| < J. Let the partition {F},...,F} of A\ G be finer than J. (We
can construct such a partition by choosing n > ¢/,/p and taking the intersections
KN (A\G),where K € K, and KN (A\ G) #(.)

Consider the partition F' = {F},..., Fy, AN G} of the set A. By the choice of
the sets F;, we have w(f; F;) < e forevery i = 1,..., k. Thus,

Qp

k
> w(fiFy) - p(Fy) + w(f; ANG) - p(ANG) <
=1

k
<5-u<UFi>+2K-u(AﬂG)<
<e-pu(A)+2K - = (u(A) +2K) - e.

Since ¢ was arbitrary, this proves the integrability of f on A. O

Remarks 4.15. 1. As a corollary of the theorem, we can see that if
f:0,1] — R is bounded and is continuous everywhere outside of the points of
the Cantor set, then f is integrable on [0, 1], since the Cantor set is of measure zero
(see Example 3.22). Such a function is, e.g., the function with f(z) = 1 for every
x € Cand f(z) = 0forevery 2 € [0, 1] \ C. Since the cardinality of the Cantor set
is that of the continuum, we can see that there exist integrable functions that are not
continuous at uncountably many points.

2. The converse of the theorem does not hold: an integrable function is not necessar-
ily continuous everywhere outside of a set of measure zero. Consider, for example,
the Riemann function, which is defined as follows. If x € R is irrational, then we
define f(x) = 0. If x € R is rational and = = p/q, where p, ¢ are coprime integers
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and ¢ > 0, then we define f(x) = 1/¢. It is well known that the Riemann function
is integrable on every interval [a, b]. See [7, Example 14.45]. The Riemann func-
tion is integrable on [0, 1], yet it is discontinuous at every rational point, and the set
QN 0, 1] is not of measure zero.

The integral of a nonnegative function of one variable gives the area under the
graph of the function (see Example 3.21.1). More generally, the area of a normal
domain (see below) is the difference between the integrals of the functions defining
the domain (see [7, Theorem 16.5]). This result can be generalized to multivariable
integrals as well.

Let f and g be integrable functions defined on a nonempty measurable set B C
RP such that f(x) < g(z) for every = € B. The set

A={(z,y) eRF 2 € B, f(z) <z<g2)} 4.4)

is the normal domain defined by f and g.
It is easy to see that every ball is a normal domain. One can prove that every
bounded, closed, and convex set is also a normal domain (see Exercise 4.3).

Theorem 4.16.

(i) If B C RP is nonempty and measurable, f and g are integrable on B, and
f(z) < g(x) for every x € B, then the normal domain defined by (4.4) is mea-
surable, and its measure is [,(g — f) dx.

(ii) Let the function f: B — R be nonnegative and bounded. The set
Ap={(z,y):2€B,0<y < f(x)}

is measurable if and only if f is integrable on B, and the measure of Ay is
I f(z) da.

Proof. (i) First we assume that B is a box. For a given € > 0 choose partitions (into
boxes) Fy and Fy of B such that Qp, (f) < € and Qp,(g) < €. Let the partition
F' be a refinement of F; and F5, and let the division boxes of the partition /' be
Ry,...,R,. Then we have Qp(f) < e and Qp(g) < €. Let m;(f), mi(g), M;(f),
and M;(g) be the infimum and supremum of the functions f and g respectively on
the box R;. Then the boxes R; x [m;(f), M;(g)] (i =1,...,n) cover the set A4, so

Tiper(4) £ D (Milg) = (1) - (o) =

= Sr(g9) —sr(f) <

</Bgdx+s—(/dex—g>:

_ / (g — f)de + 2. (4.5)
B
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Let I denote the set of indices 4 that satisfy M;(f) < m;(g). Then the boxes R; X
[M;(f),m;i(g)] (i € I)are contained in A and are nonoverlapping, so

i1 (A) 2 S (milg) — Mi(£)) - (R, =

= / (9— f)dz — 2e. (4.6)
B

Since € was arbitrary, by (4.5) and (4.6) it follows that A is measurable and has
volume [};(g — f) da. This proves (i) in the case that B is a rectangle.

If B is measurable, then let R be a box containing B, and extend f and g to R
by putting f(x) = g(x) =0 (z € R\ B). Then f, g are integrable on R, and thus
by what we proved above, the normal domain

A ={(z,y) eRPT 2 € R, f(x) <y <g(z)}

is measurable, and its volume is [,(g — f) dz = [(g — f) dz. The set A"\ A is
a bounded subset of the hyperplane {(z1,...,2p+1): Tp+1 = 0}. Consequently,
tpt1(A’\ A) =0 by Lemma 3.15. Therefore, A = A"\ (A" \ A) is measurable
and fup41(A) = pp41(A”"), which completes the proof of (i).

(ii) Let f be nonnegative and integrable on B. Then Ay is the normal domain deter-
mined by the functions 0 and f. Therefore, by (i), the set A is measurable, and its
volume equals [, f(z,y) dx dy.

Finally, if Ay is measurable, then the integrability of f follows from Theorem
3.25. O

Exercise

4.2. Let A C R? be measurable and let f: A — R be nonnegative and bounded.
Show that if [, fdx =0, then u({z € A: f(x) > a}) = 0 for every a > 0. Does
the converse of this statement also hold?

4.3. Prove that every bounded, closed, and convex set is a normal domain. ()
Consider a set A C RP made of a homogeneous material. Then the weight of

every measurable subset of A is d times the volume of the subset, where d is a

positive constant (the density). Let {A;,..., A, } be a partition of A, and let the
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points ¢; € A; be arbitrary. If the partition is fine enough, then concentrating the
weight d - u(A;) at the point ¢; for every i creates a system of points with weight
distribution close to that of A. We expect the center of mass of this system to be
close to the center of mass of the original set.

The center of mass of the system of points ¢; is ﬁ > 1(A;) - ¢ If the par-

tition is fine enough, then the jth coordinate of this point is close to ﬁ - f 4 Tjdr.

This motivates the following definition: the center of mass of a measurable set
A C RP with positive measure is the point

1 1
—_ xdm,...,—/x dx
ﬂ(A)/ 1 u(dy )
A A

4.4. Let s(A) denote the center of mass of the measurable set A of positive measure.

Show that if A and B are nonoverlapping measurable sets with positive measure,
_ _uA) w(B)

4.5. Suppose a point r(A) € RP is assigned to every Jordan measurable set with

positive measure A C R” and that the following conditions are satisfied:

(i) if A C R, where R is a box, then r(A) € R; furthermore,
(i) if A and B are nonoverlapping measurable sets with positive measure, then
— A w(B)
r(AUB) = s A+ e 8-
Show that r(A) equals the center of mass of A for every measurable set A with
positive measure.

4.3 Calculating Multivariable Integrals

The most important method of calculating multivariable integrals is provided by
the next theorem. It states that every integral can be reduced to lower-dimensional
integrals.

Let us use the following notation. If © = (z1,...,2,) € RPandy = (y1,...,Yq)
€ RY, then let (z,y) be the vector® (z1,...,Tp, Y1, . .,Ys) € RPTL

Let ACRP, BCR?and f: (A x B) — R. Recall that the sections of f are
defined by f.(y) = f¥(x) = f(z,y). More precisely, this means that for every
x € A the function f, is defined on B and f,(y) = f(x,y) for every y € B. Simi-
larly, for every y € B the function f¥ is defined on A and f¥(z) = f(x,y) for every
r e A

Theorem 4.17. Let A C R? and B C RY be a pair of boxes and let | : (A x B) —
R be integrable on the box A x B. Then

2 We already used this notation in the implicit function theorem.
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(i) the functions y — IA fY¥dx and y — JA fY dx are integrable on B, and

/AXdexdy:/B(/Afydx) dy:/B</Afyda:> dy;

(ii) the functions x — TB fzdy and © — fB [z dy are integrable on A, and

farsear= (] ) | (o)

Proof. Since (i) and (ii) are transformed into each other if we switch the roles of x
and y, it is enough to prove (ii).

Let [ axp fdrdy=1. For € >0 fixed, there exists a partition of the box
A x B (in the sense of Definition 4.7) such that I — ¢ < sp < Sp < I 4+ ¢. From
the definition of partition it is clear that there exist partitions F; = {A4;,..., A, }
and F, = {B1,..., B} of the boxes A and B, respectively, such that F' consists
of theboxes A; x B; (i =1,...,n, j=1,...,m). Let

mi; = inf{f(z,y): (z,y) € A; x B;} and M;; =sup{f(z,y): (z,y) € A; x B;}

forevery 1 <i<mand1 < j <m.lIfz € A;, then the upper sum of the function
fz: B — R corresponding to the partition Fp is at most Z;”Zl M;; -
w(B;), since f(y) = f(z,y) < M,; for every y € B;. This implies that

/ Jody < 51, (02) < 3_ M

for every x € A;. In other words, the right-hand side is an upper bound on the
values of the function z || p Jz dy on the set A; for every ¢ = 1,...,n. There-
fore, the upper sum of this function corresponding to the partition £} is at most

> (2211 M;; '#(Bj)> - w(A;). Thus

/A(/fody) dwgzz i W(As) - u(Bj) =Sp < I+e. 4.7

On the other hand, if = € A;, then the lower sum of the function f,.: B — R corre-
sponding to the partition F5 is at least Z ~,mi; - pu(Bj), since fr(y) = f(x,y) >
m,; for every y € Bj. This implies that
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m

/fa:dy>5Fz fz) >Zmu' Bj)
Jj=1

for every x € A;. That is, the right-hand side is a lower bound for the values of the
function x — fB fzdy onthe set A; foreveryi = 1,...,n; hence the lower sum of

this function corresponding to the partition F} is atleast >, (Z;’L:l mi; - u(B;j )) .
1(A;). This proves

/(/fwdy> dxzzz mij - W(Ai) - u(By) =sp > 1 —c.  (4.8)
<~ A \<B i=1 j=1

Combining the inequalities (4.7) and (4.8), we get

1-:—:</A (/fody> d;cg/A </fody> dv<T+e

for every € > 0. Consequently, we have

/ </Bfmdy> dm:/A (/Bfmdy> de =1, 4.9)

which also implies

[ ([ )] (] rit) aer

Therefore, the function x +— » dy is integrable on A and its integral is 1.
5 g g

We obtain from (4.9) by a similar argument that x — IB fx dy is also integrable
on A and its integral is I. |

As an application, we can reduce the integrals of functions defined on normal
domains to lower-dimensional integrals.

Theorem 4.18. Suppose that

where B C R? is measurable, f and g are integrable on B, and f(x,y) < g(x,y)
Sor every (x,y) € B. If h is continuous on A, then

g(z,y)
/h(x,y,z) dacdydz:/ (/ h(z,y,z) dz> dz dy. (4.10)
A B f(zy)
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Proof. Since B is bounded and the functions f, g are bounded on B, there exists a
box R = [a1,b1] X [az, b2] X [as, bs] containing A. Let h be zero everywhere on the
set ([a1,b1] x [az,b2]) \ B. If (2,y) € ([a1,b1] X [az,b2]) \ B, then h(z,y, z) =
0 for every z € [as, bs]. If, however, (x,y) € B, then

bs 9(z,y)
/ h(z,y,z)dz = / h(zx,y,z)dz.

asz f(z.y)

Thus, part (ii) of Theorem 4.17 applied to the case p = 2, ¢ = 1 gives (4.10). U

Note that Theorem 4.16 is a special case of our previous theorem applied to the
function h = 1. It is clear that both the notion of normal domains and the previous
theorem can be generalized to higher dimensions.

Applying Theorem 4.17 successively, we obtain the following corollary.

Corollary 4.19. (Theorem of successive integration) Letr [ be integrable on the
box R = [a1,b1] X ... X [ap,by] C RP. Then

b2 b1
/fdmf/ / /fa:l,..., Ydxi | dxo | ... dxp,
R
assuming that the corresponding sections are integrable. (I

Example 4.20. The function e*1¥ is integrable on the square [0, 1] x [0, 1], since it
is continuous. By the theorem of successive integration, its integral is

1 1

1 /1
em+ydzdy:/ /e”ydy dx:/e‘”~ /eydy dxr =
0 \o

[0,11x[0,1] 0 0

e’ (e—1)dr = (e —1)2

o _

Remarks 4.21. 1. By generalizing Example 4.20, we can show that if the single-
variable functions f: [a,b] — R and g: [¢,d] — R are integrable, then the func-

tion f(z)-g(y) is integrable on [a,b] X [c,d] and its integral is (f: f(z) dac) .
(fcd 9(y) dy) (see Exercise 4.8).

2. The existence of the integrals [ p fz dy and / 4 ¥ dx (for every y and z, respec-
tively) does not necessarily follow from the integrability of the function f. In other
words, the lower and upper integrals in Theorem 4.17 cannot be replaced by inte-
grals. Take the following example.
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Let f be the Riemann function. Since fol f(z) dx = 0, it follows from statement
(ii) of Theorem 4.16 that the set A = {(z,y): 0 <y < f(x)} has measure zero.
Let B be the set of points (x,y) € A whose coordinates are rational. Since B has
measure zero, it is measurable. By Theorem 4.11, the function

)1, if(x,y) € B,
g(x,y) = {0’ if(r.1) ¢ B. 4.11)

is integrable on [0, 1] x [0,1], and its integral is zero. However, the section g, is
not integrable on [0,1] if « € [0,1] and z is rational. Indeed, let = p/q. Then
9. (y) = 0 for every irrational number y and g.(y) = 1 for every rational number
y € [0,1/q|. Consequently, j(;l gedy =0 andfo1 ge dy > 0, and thus g, is not inte-
grable. -

However, one can prove that if f is integrable on the rectangle [a, b] X [c, d], then
the set of points « € [a,b] where f, is integrable on [c, d] is everywhere dense in
[a, b], and the set of points y € [c, d] where fV is integrable on [a, b] is everywhere
dense in [c, d] (see Exercise 4.9).

3. Let f be integrable on the rectangle [a, b] X [c, d]. If f, is integrable on [, d] for
every = € [a,b], and f¥ is integrable on [a, b] for every y € [c, d], then Theorem 4.17

implies
b/ d d /b
/ /fi dy dgc:/ /fydx dy. (4.12)
a c a

(&

We emphasize that without the assumption of the integrability of f, (4.12) is not nec-
essarily true, not even if every integral in (4.12) exists. For example, let f(x,y) =
(22 —y?) /(2% + y*)? and £(0,0) = 0, and let [a, b] = [c, d] = [0, 1]. Then the left-
hand side of (4.12) is 7/4, while the right-hand side is —7 /4. Another example
is the following. Let f(z,y) = (z —y)/(z +y)? if 2 + y # 0 and f(z,y) = 0 if
x4y =0,andlet [a,b] = [¢,d] = [0, 1]. Then the two sides of (4.12) are —1/2 and
1/2, respectively (see Exercise 4.11).

4. It can also happen that f is not integrable, despite the fact that (4.12) holds. It
is not difficult to construct a set A C [0, 1] x [0, 1] that contains a point from every
box but does not contain three collinear points. If f(z,y) = 1, where (z,y) € A
and f(z,y) = 0 otherwise, then both sides of (4.12) are zero, but f is not integrable
on [0, 1] x [0, 1] (see Exercise 4.12).

5. Theorem 4.17 holds for arbitrary measurable sets A C RP, B C R? in place of
boxes. This can be proved either by repeating the original proof of Theorem 4.17
almost verbatim or by reducing the statement to Theorem 4.17. Indeed, let A C
RP, B C R? be measurable, and let f be integrable on A x B. Let R C R? and
S C R? be boxes with A C Rand B C S, and let f be defined as zero everywhere
on (R x S)\ (A x B). Applying Theorem 4.17 to the box R x S, we obtain the
desired statement by (4.3).



140 4 Integrals of Multivariable Functions I

Similarly to the single-variable case, using appropriate substitutions to find a
more easily computable integral is an important method of finding the value of a
multivariable integral. The theorem of integration by substitution in this context is
as follows.

Theorem 4.22. (Integration by substitution) Ler G C R? be open, and let g: G —
RP be continuously differentiable. If H is measurable, cl H C G, and g is injective
onint H, then g(H) is also measurable, and

lgl#) = [ |det (@) o (4.13)
H

Furthermore, if f: g(H) — R is bounded, then

/ fdi = / f(9(x)) - | det g/ (x)] dx 4.14)

g(H)

in the sense that if either the left-hand side or the right-hand side exists, then the
other side exists as well and they are equal.

The proof is given in the second appendix.

Remarks 4.23. 1. The right-hand side of the formulas (4.13) and (4.14) contain
the absolute value of ¢’s Jacobian determinant (i.e., the determinant of its Jaco-
bian matrix). This might look surprising at first, since the integration by substitution
formula for single-variable functions is

g(b) b
/ fdt = / o) - ' (@) da, 4.15)
g(a) a

and it has ¢’ instead of |¢’|. To resolve this “paradox,” let us consider (4.14) in the
case that p = 1 and H = [a, b].

Let g: [a,b] — R be continuously differentiable on an open interval contain-
ing [a, b], and let g be injective on (a, b). It is easy to see that g has to be strictly
monotone on [a, b], and thus the sign of ¢’ does not change on this interval. If ¢’ is
nonnegative on [a, b], then g is monotonically increasing with g(H) = [g(a), g(b)].
Then (4.14) gives (4.15).

If, however, ¢’ is nonpositive on [a, b, then g is monotonically decreasing, and
thus g(H) = [g(b), g(a)]. Then (4.14) implies

g(a) b
/ fdi = / f(9(@)) - (~g'(x)) da
g(b) a

Multiplying both sides by —1, we get (4.15).
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We can see from this latter case that if we omitted the absolute value, (4.14)
would give the wrong result.

2. If the mapping g: R? — RP? is linear, then the function |det ¢’(x)| is constant,
and (4.13) turns into the statement of Theorem 3.35.

Remarks 4.24. 1. An important step in the proof of Theorem 4.22 is to show that if
H C RPis measurable, G C RPisopen,cl H C G,and g: G — RP is continuously
differentiable, then g(H ) is measurable (see Theorem 4.30). Let’s examine to what
extent we can relax the conditions on g in this theorem.

The following simple example shows that the continuous image of a measurable
set is not necessarily measurable. Let A = {1/n: n € N*}. Then A is a measurable
subset of the real line (and it has measure zero). Since every point of A is an isolated
point, every function g: A — R is continuous on A. Let g(1/n) = r,,, where (r,)
is an enumeration of the set of rational numbers in [0, 1]. Then g(A4) = [0,1] N Q,
and thus g is not measurable.

Slightly modifying the example above, we can make g differentiable on an open
set containing A. Choose mutually disjoint open intervals around the points 1/n
(g, In= (% — 35,1 + 355) (n € N*) will work). Then G = |, ; I, is an
open set containing A. Let g(x) =, for every z € I, and n =1,2,.... Obvi-
ously, g is differentiable at every point of GG (and its derivative is zero everywhere),
but g(A) = [0,1] N Q is not measurable.

The next example gives a continuous mapping defined on a closed interval and
a measurable subset of the interval whose image is not measurable. Let C' be the
Cantor set and f the Cantor function (see Exercise 3.28). We know that f is con-
tinuous on [0, 1], and f(C) = [0, 1]. Let B be an arbitrary nonmeasurable subset of
[0,1]. The set A = C' N f~1(B) is measurable, since it has measure zero. On the
other hand, f(A) = B is not measurable. In this example we can choose B to be a
closed set (see Exercise 3.15). This makes A also closed, since f is continuous.

2. Let us show some positive results now. One can prove that if H C R? is mea-
surable, G C R? is open, | H C G, and g: G — RP is differentiable, then g(H)
is also measurable. That is, we can omit the condition on the continuity of the
derivative ¢’ from Theorem 4.30; the differentiability of g is sufficient. The proof
requires some advanced topological and measure-theoretic tools. The same holds
for the following theorem: if H C R? is measurable and g: H — RP has the
Lipschitz property, then g(H) is also measurable. In the case p = 1 both state-
ments are provable using tools that are already at our disposal (see Exercises
4.15 and 4.16).

Below, we present an important application of the theorem on integration by
substitution.

Theorem 4.25. (Substitution by polar coordinates)Let P(r, p)= (r cos o, r sin ¢)
Sor every r, p € R. If the set A C [0,00) X [0,27] is measurable, then P(A) is
also measurable, and j1(P(A)) = [, rdrdp. Furthermore, if f: P(A) — R is
bounded, then
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/ flz,y)dedy = /f(rcosga,rsingp) crdrdp (4.16)
P(A) A

holds in the sense that if either the left-hand side or the right-hand side exist, then
the other side exists as well, and they are equal.

Proof. Consider the mapping
P(z,y) = (zcosy,xsiny)  ((z,y) € R?).
Obviously, P is continuously differentiable on R?. We show that P is injective on

the open set G = {(x,y) € R*: 2 >0, 0 < y < 27}
Let (z1,41), (22,y2) € G and P(z1,y1) = P(x2,y2). Then

L1 = |P(I1,y1)| = |P(x27y2)| = T2,
and thus cosy; = cosys and siny; = sinys. Using 0 < yp,y2 < 27, we get
Y1 = Y2.

The Jacobian determinant of the mapping P is

cosy —xsiny
siny T Ccosy

det P'(z,y) =

Applying Theorem 4.22 with ¢ = P and using the notation z = r, y = ¢, we obtain
the statements of the theorem. O

Examples 4.26. 1. Let Bp be the closed disk of radius R, centered at the origin. We
have Br = P([0, R] x [0, 27]). By Theorem 4.25 the area of the disk Bp is

w(Br) = / rdrde.

[0,R]x[0,27]

The integral can be calculated easily using successive integration:

27 R 27
[ rarde= [ [rar) do= [0 = r2m.
[0,R] x[0,27] 0 0 0

2. According to Theorem 4.25, for every bounded function f: Br — R we have

/f(x,y) dxdy = / flrcosp,rsing) - r-drde (4.17)
Br [0,R]x [0,27]
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in the sense that if either the right-hand side or the left-hand side exists, then so
does the other, and they are equal. For example, let f(x,y) = y/R? — 22 — y2. The
integral of f is the volume of a hemisphere (cf. Corollary 3.14). Applying (4.17),
we obtain

/\/RQ—xz—yzda:dy: / VRZ2—1r2.r.-drdp=
Br

[0,R] x[0,27]

R
1 .
:2W'/\/ﬂ~r'dr:2w~ [3(R2r2)5/2]
0

R - 2R3

0 37

and thus the volume of a ball with radius R is 4R37/3.

3. It is a well-known fact that the primitive function of e~ is not an elemen-
tary function (see, e.g., [7, Section 15.5]). Still, one can calculate the value of the

improper integral fooo e da using the theory of the I' function. (See Example
19.21 and Exercise 19.45 of [7]. As for the I" function, see Definition 8.39 and the
subsequent discussion in Chapter 8 of this volume). Now we present a direct method
of finding the value of this integral. We show that [~ e~ dz = /7.

By applying (4.17) to the function f(z,y) = e we get

2 2 .2
/e_"L “Vodrdy = / e srdrde =

Br [0,R] x[0,27]
R
=27 - /efﬂﬂdr — (4.18)
0
=27 |:—16T2:| " =T~ (1 — e*R2) .
2 0

Since [~R/2, R/2)? C Br C [~R, R]? and the function e=* %" is everywhere
positive, it follows that

e dy dy < / e~V gy dy < / e~V 4y dy.

[-R/2,R/2)2 Br [—R,R]?
4.19)
Now, by Remark 4.21.1 we have

R
2 2 2
e YV drdy = /e*g” dx
[-R,R]? R
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and
R/2 2
22 2
e " Y dedy = e ¥ dx
(-R/2,R/2)? —R/2
Comparing (4.19) and (4.18) gives
R/2 2 R 2
_ 2 _R2 _z2
e da §7r~(1—e )g e d (4.20)
—R/2 R

for every R > 0. We know that the improper integral [ fooo e~ dx is convergent.
Thus, if R converges to infinity in (4.20), then

7{172 71)2
e dzx <7< e dr |
— OO — OO

and thus [*_e™*" dz = /.

Exercises

4.6. Compute the following integrals:

@ [, +y?)dedy, A={(z,y): 2,y>0, z+y <1}
®) [ Va2+ydedy, A={(z,y): 2,y >0, 2> +y? < a};

(c) fA\/y—xQdaEdy,Az{(x,y):x2§y§4};
(d) fAsinz +y)drdy, A= {(z,y): 7% < x?+y? < 4n?};
e [ A ﬁdz dy, where A is the part of the disk of center (a,a) and radius a

2a—x

that lies in the half-plane z < a (a > 0);

31 . 372 2 . . . . . .
O [, g Vzljheyy dx dy, where A is the disk with center at the origin and radius

(@) [,lzyz|dedydz, with A = {(z,y,2): 2* + % + % <1}. (H)
4.7. Let f be the Riemann function. Which of the following integrals exists?

(a f[o 1]><[O 1] (@) dx dy;
M | dy) d:

o (o !
© Jy (Jo f(2)dz) dy.

~
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4.8. Show that if the single-variable functions f: [a,b] — R and g: [¢,d] — R are
integrable, then the function f(x) - g(y) is integrable on the rectangle [a, b] X [c, d],

and its integral is (f: f(x) dx) . (fcdg(y) dy).

4.9. Show thatif f is integrable on the rectangle [a, b] X [c, d], then the set of points
x € [a,b] where f, is integrable on [c, d] is everywhere dense in [a, b], and the set
of points y € [c, d] where fY is integrable on [a, b] is everywhere dense in [c, d]. (H)

4.10. Let f be twice continuously differentiable on the rectangle R. Find [ rD12f
dx dy.

4.11. Double-check that equation (4.12) does not hold on the square [0, 1] x [0, 1]
for the functions below:

@ f(z,y) = (2% —y?)/(@® +y*)% if [z + [y| # 0 and £(0,0) = 0;

®) f(z.y)=(z-y)/(@+y)?’ifz+y#0and f(z,y) =0ifz +y =0.

4.12. Suppose that the set A C [0, 1] x [0, 1] has a point in every box but does not
contain three collinear points. Show that if f(z,y) =1 for every (x,y) € A and
f(x,y) = 0 otherwise, then both sides of (4.12) are zero, but f is not integrable on
[0,1] x [0,1].

4.13. Find the center of mass of the following sets:
@ {(z,y):a<xz<b, 0<y< f(r)}, where f is nonnegative and integrable on
[a, b];

,bl;
®) {(z,y):z,y>0,y<a2® r+y<1}
© {(z,y):2,y>0, Vo +/y <1}
@) {(z,y): (2% +y°)° < da”y?}
@© {(re):r <R, ¢e€laplh
® {(r,@):r<14cosp, ¢ €[0,7/2]};
(g) {(x,y,z): x,y > 0, $2+y2 <z< I+y}

4.14. Let 0 < a < < 2m, and let f: [, 5] — R be nonnegative and integrable.
Prove, using Theorem 4.25, that the sector-like region

{(recosep, rsing) : 0 <r <r(p), a << g}

. . .1 B
is measurable, and its area is 5 [ r?(¢) de.

4.15. Let f: [a,b] — R have the Lipschitz property. Show that

(a) if A C [a,b] has measure zero, then f(A) also has measure zero, and
(b) if A C [a, D] is measurable, then f(A) is also measurable.

4.16. Let f: [a,b] — R be differentiable. Show that

(a) if A C [a,b] has measure zero, then f(A) also has measure zero, and
(b) if A C [a,b] is measurable, then f(A) is also measurable. (xx)
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4.17. Let T be the trapezoid bounded by the lines y=a—x, y=b—z, y=
ax, y = Pz, with a < b and 0 < o < (3. Find the area of T" by representing 7'
in the form f([a,b] X [« 3]), where f is the inverse of the mapping (x,y) —
(z +y,y/x), and applying the first statement of Theorem 4.22.

4.18. Let D be the region bounded by the hyperbolas zy = a2, zy = 2a? and the
lines y = x, y = 2x. Find the area of D by representing it in the form f([a?,2a?] x
[1,2]), where f is the inverse of the mapping (z,y) — (zy,y/z).

4.19. Let N = [a,b] X [¢,d] with 0 <a <b and 0 <c<d, and let f(z,y) =
(y?/x, \/7y). Find the area of f(N).

4.20. Prove that

(a) 1+3%+5%+...:%2and
2

®) 1+H+5m+...=%

using the following exercises. Let T denote the open triangle with vertices (0, 0),

(0,7/2), (7/2,0), and let f(z,y) = (sinx/ cosy,siny/ cosz) for every (z,y) €
T'. Show that

(c) f is one-to-one, mapping T onto the open square N = (0,1) x (0, 1);

(d) f~!is continuously differentiable on N, and det(f 1)’ ( ,Y) = gryz for
every (x,y) € N; ‘

(e) if N, =(0,1—(1/n)) x (0,1—(1/n)), then f~1(N,) is measurable with
area [ 1/(1 —a?y?) da dy;

® w(f~H(Nn)) = p(T) = 72 /8asn — oo

. 1 1 1

4.4 First Appendix: Proof of Theorem 4.12

If A C RP and § > 0, we call the set

= |J B(=,9)

z€A

the neighborhood of the set A with radius ¢. In other words, U (A, 0) is the set of
points y for which there exists a point z € A such that |x — y| < ¢. Since U(A, 0)
is the union of open sets, it is itself open.

Lemma 4.27. If A C RP is bounded, then for every € > O there exists 6 > 0 such
that (U (A, §)) < (A) + €, where Tu is the (Jordan) outer measure.
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Proof. Let ¢ > 0 be fixed, and choose the boxes R;=[a; 1, bi 1] X ... X [a;p, b; p]
(i=1,...,n) such that A C |J;_, R; and Y, p(R;) < fi(A) + e. Let R;(8) =
[@i1 —6,bi1+ 6] x...x[a;p—9,b;p+ 0] for every § > 0. Obviously, for §
small enough, Y"1 | 1(R;(8)) < 72(A) + €. Fix such a . Since U(A,4) C Ui,
R;(9), it follows that 77(U (A, 0)) < 1z(A) + ¢. O

Proof of (i) of Theorem 4.12. We show that S < S, + € for every F' fine enough.
We may assume that f is nonnegative; otherwise, we add a large enough constant ¢
to f.Itis easy to see that by adding a constant ¢ to f we increase the value of every
upper sum by the same number (namely, by ¢ - (A)). Thus, if Sp < SE, + € holds
for the function f + ¢, then the same inequality holds for f as well.

Let 0 < f(x) < K for every = € A, and let Fy = {A4y,...,Ax}. Let F =
{Bi,...,B,} be a partition finer than ¢, and let’s calculate how much larger Sp
can be, compared to Sg,.

Let M; =sup{f(z): * € A;} (i=1,...,N) and M} =sup{f(z): = € B;}
(G=1,...,n).Now, Sp, = >N M; - u(A;) and Sp = dojo1 M- pu(By).

We partition the set of indices j into two classes, based on whether the set B;
is or is not a subset of one of the sets A;. Let J; and J3 denote the two classes,
respectively. If j € J; and B; C A;, then clearly M ]’ < M;. The sum of the prod-
ucts M - pu(B;) for which B; C A; is at most M; - u (U{B;: B; C A;}). Now,
M; > 0 implies that the sum is at most M; - pu(A;). By summing these upper esti-
mates forevery i =1,..., N we get ) M; - u(Bj) < Sk,

We now show that

JEJ1

UBjcu (U 8A1,6> 4.21)

JE€J2

Indeed, if j € J, then B; is not a subset of any of the sets A;. For every z € B},
x is in one of the sets A;, because v € A = vazl Aj;. Since Bj is not a subset of
Aj;, there exists a point y € B; such that y is not in A;. We know that the segment
[, y] intersects the boundary of A;; let z € [z, y] N OA;. By assumption, F is finer
than ¢, i.e., diam B; < . Thus, we have | — y| < §, which implies |z — z| < 0.
We have proved that if j € .J», then every point of B; is closer than 0 to a boundary
point of at least one of the A;, which is exactly (4.21).

The sets A; are measurable, and thus, by Theorems 3.9 and 3.6, the set Uf;l 0A;
has measure zero. Then, by Lemma 4.27, we can choose § > 0 such that the right-
hand side of (4.21) is less than €.

Therefore, if the partition F' is finer than ¢, then

S MjouB)<K-> wB)=K-u||JB|<K-e,

JjEJ2 JEJ2 JjEJ2

and
Sp=Y M -uBj)+ > M -uB;) < Sp+K- e
JjeJ1 jeJ2
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A similar argument proves that Sp > sp, — K -¢ for every fine enough
partition F'. O

Proof of (ii) of Theorem 4.12. Since f is integrable, there is a partition F{y such that
Qp, < ¢/2. Then we have
I—(e/2) < sp, < Sp, <I+(g/2).

Therefore, an application of statement (i) completes the proof. (]

4.5 Second Appendix: Integration by Substitution
(Proof of Theorem 4.22)

We know that if () is a cube and A is a linear map, then the volume of the paral-
lelepiped A(Q) is | det A| - u(Q). (See Theorem 3.31.) It seems plausible that if the
mapping g is close to the linear map A on the cube @, then the measure of g(Q) is
close to |det A| - 4(@Q). In the next lemma we show that the outer measure of g(Q)
is not much larger than | det A| - u(Q).

Lemma 4.28. Let A: RP — RP be a linear map, let Q C RP be a cube, ¢ € Q,
0<6<1,andlet g: Q — RP be a mapping such that |g(x) — g(c) — A(z — ¢)
< Olx — c| for every x € Q, x # c. Then

i(9(Q)) < (| det Al + C6) - u(Q), (4.22)

where the constant C' depends only on p and A.

Proof. Let P = A(Q — ¢) + g(c¢). Then P is a (possibly degenerate) parallelepiped.
Ifz € Q,theny = A(z — ¢) + g(c) € P and

9(z) =yl = lg(x) = g(c) = A(z = ¢)| < |z —c| < /p-hd,

where £ is the side length of Q. (See Example 3.11.) Thus g(x) € U(P,/p - hd)
forevery x € Q, i.e.,

9(Q) CcU(P,r), where r=/p-hé. (4.23)

We show that
U(P,r) C PUU(OP,r). (4.24)

Indeed, if the points x € U(P,r) \ P and y € P satisfy |x — y| < r, then [z, y] N
OP # (), since x # P and y € P. If z € [x,y] N IP, then |z — z| < r, and thus
x e U(OP,r).
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The boundary of the parallelepiped P can be covered by 2p hyperplanes. Namely,
if P = P(uy,...,up), then the hyperplanes S} = {tjuy + ... +tpu,: t; = j} (i =
1,...,p, 7 =0,1) (these are the images of the sides of the cube @) cover JP-t.
Therefore,

U(Pr)CPUU(&'Pr)CPUU (USSP NP ryuUSI NP ). (425

=1

Next we prove ‘
a(U(S! NPr)) < (M +2r)P~ 1. 2r (4.26)

foreveryi=1,...,pand j = 0,1, where M = diam P. Indeed, for i and j fixed,
the set H = S} N P lies in a hyperplane, and diam H < diam P = M. Since the
outer measure is invariant under isometries, we may assume that H C RP—1 x
{0}. There exists a (p — 1)-dimensional cube N with side length M such that
P C N x {0}. Thus, U(P,r) C N’ x [—r,r|, where N’ is a (d — 1)-dimensional
cube with side length M + 2r, which implies (4.26).

If 2,y € Q, then [Ax — Ay| < ||A|| - |x — y| < ||Al|\/P - h, which implies M =
diam P < [[Al|\/p - h. Comparing (4.23)—(4.26), we get

w(g(@Q) <mU(P,r)) < u(P)+4p(M + Q,r)pfl =
:‘detAl'hp+4p(M+2\/]3-h5)p_l~\/ﬁ-hég
< |det Al - B +4p(\/p-h)? - (| A]| +20)P -6 <

< (et Al + 4 Al + 22 5) - (@),

which proves (4.22). U

Lemma 4.29. Let H C G C RP, where H is a bounded and closed set and G is
open. Suppose that g: G — RP is differentiable at the points of H, and | det ¢’ (x)| <
K foreveryx € H. ThenTi(g(H)) < K - fi(H).

Proof. It is enough to prove that 7i(g(Q N H)) < K - ;1(Q) for every cube Q €
Kon. Indeed, from this we obtain

f(g(H) < Y me@nNH)< Y K-u@Q) =K-nuH?2"),
QEKn QEKn
QNH#(D QNHH#D

and the right-hand side converges to K - 7i(H ) as n — oo. (Here, i(H, 2™) denotes
the sum of the volumes of the cubes of /Co» that intersect H.)

We prove by contradiction. Assume that the statement does not hold. Then there
exist neN, @1 €Kan, and 0<n<1 such that 7(g(QiNH)) >
(K +n) - 1(Q1). Since
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> (E+n)-p(Q) = (K +n) (@) < lg(Q N H)) <

Qe yn+1
QCQ
< > mg@NH)),
Qe yn+1
QCQ1

there is a cube Q3 € Kont1 such that 7i(g(Q2 N H)) > (K +n) - u(Q2).
Repeating this argument, we obtain a sequence of nested cubes (); € Kon+i—1 such
that

A(g(QiNH)) > (K +n) - u(Q:) (4.27)

for every i. Let (2, @; = {c}. Since (4.27) implies Q; N H # () and H is closed,
it follows that ¢ € H. By assumption, f is differentiable at ¢, and | det ¢'(c)| < K.
Fix 0 < 6 < n/C, where C'is the constant appearing in (4.22), depending only on
¢'(c) and p. Since diam @Q); — 0, we have @); C G and

l9(x) —g(c) —=g'(O)(x —c)| <d-Jx—c|  (z€Q)) (4.28)

for every ¢ large enough. By Lemma 4.28, it follows that

g(Qi N H)) < (g(Qi)) < (K4 C-6) - u(Qi) < (K +n) - u(Qi),
which contradicts (4.27). [l

Theorem 4.30. Let G C RP be open, and let g: G — RP be continuously differen-
tiable. If H is measurable and cl H C G, then g(H) is also measurable, and

u(g(H)) < / | det ¢/ (z)| dz. (4.29)
H

Proof. First we prove the measurability of g(H). Since g is continuous and cl H
is bounded and closed, it follows from Theorem 2.7, that g(cl H) is also bounded
and closed. Thus g(H) is bounded as well. It is enough to prove that 9(g(H)) has
measure Zero.

Let X = {z € G: det¢'(z) = 0}. We show that

d(g(H)) C g(0H)Ug(X Necl H). (4.30)

Since g(cl H) is closed, clg(H) C g(cl H) and 9(g(H)) C clg(H) C g(cl H).
Let y € O(g9(H)), i.e., y = g(x) for a suitable x € cl H. If © € 0H, then g(x) €
g(0H). If, however, © ¢ OH, then x € int H. In this case, det ¢’(z) = 0, since
if det ¢’(z) # 0, then by the open mapping theorem (Corollary 2.37), y = g(z) €
int g(H), which is impossible. Thus x € X, which proves (4.30).
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Now, OH is closed and det ¢’ is bounded on OH, since it is continuous. By
Lemma 4.29 it follows that p(g(0H)) = 0, since p(0H) = 0 by the measurabil-
ity of H. The set X Ncl H is also closed, since det ¢’ is continuous on cl H.
Since | det ¢’'(z)| = 0 for every x € X, it follows from Lemma 4.29 that u(g(X N
cl H)) = 0. Then we have 1(9(g(H))) = 0 by (4.30), which proves the measura-
bility of g(H).

We turn now to the proof of (4.30). Since the function | det ¢’| is continuous and
bounded, it is integrable on H. Let ¢l H = |J;_, H; be a partition, where the sets
H; are closed. If M; = sup{|det ¢’(z)|: € H;}, then

p(g(H)) < p(g(cl H)) <> pu(g(Hy)) <> M,
i=1

i=1

by Lemma 4.29. The right-hand side will be arbitrarily close to [}, | det ¢'| if the
partition is fine enough, which proves (4.30). ]

Proof of Theorem 4.22. First we assume that g: G — RP is a continuously differ-
entiable injective map with det ¢’(x) # 0 for every = € G. By the open mapping
theorem it follows that g(G) is open, and by the inverse function theorem, the map
g 1 9(G) — G is continuously differentiable. Therefore, if A C G and « € G,
thenz € int A <= g(z) € intg(A)andx € 9A <= g(x) € 9(g(A)).

Let H be measurable with ¢l H C G. Then g(H) is also measurable by The-
orem 4.30. Let f be a nonnegative and bounded function on g(H). Let £ > 0 be
fixed and let F': g(H) = [J;_, A; be a partition such that the sets Ay, ..., A, are
mutually disjoint, and s (f) > L(H) f—eThesets H; =g 1(A)(i=1,...,n)
form a partition of H into disjoint sets. (The measurability of the sets H; follows
from Theorem 4.30 applied to the mapping g~1.) Let m; = inf{f(z): x € A;} =
inf{f(g(x)): x € H;}, and let v denote the function defined by ~(x) = m; for
x € H;. By Theorem 4.30 we have

( / f) —€<8F(f):Zmi'M(Ai):Zmi',u(g(Hi))S
2 g(H) i i=1
<3 /\detgm\dx:

)| det ' (2)|da <

Il
\

H
/ )« |det ¢’ (x)|dz, 4.31)

since v < f o g. This is true for every e, whence
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/ f < / f(g(x)) - | det ¢ (z)] da 4.32)
—~g(H)

L H
The function ¢ = g~! is again continuously differentiable, and we also know that
det ¢'(p(x)) - det ¢'(z) = 1 (4.33)

for every x € g(G). (This is a corollary of the differentiation rule for composite
functions (Theorem 2.20), using the fact that g(p(x)) = z for every = € g(G).) If
we apply (4.32) with ¢ in place of g, with g(H) in place H, and with (f o g) -
| det ¢’| in place of f, then we get

/H Flg(x)) - | det g'(z)| da < / .

—~g(H)

(Note that (f og)-|detg’| is bounded and nonnegative on g(H), and (f o g)
(¢(z)) = f(x). We also used (4.33).) Comparing this with (4.32), we get

/ f= / f(g(x)) - | det ¢ (z)]| da. 4.34)
2 g(H) ~~H

Applying this to the function f = 1, we obtain (4.13). It follows that if (4.34) holds
for a function f, then it also holds for f 4 ¢ with an arbitrary choice of the con-
stant c. Thus, (4.34) holds for every bounded function. Applying (4.34) for — f and
multiplying both sides by (—1) gives

[ i=] et |detg@)ds (435)
9(H) H

for every bounded function f. Obviously, if either the left-hand side or the right-
hand side of (4.14) exists, then the other side exists as well and they are equal.
Thus, we have proved the theorem assuming that g is injective on G and det ¢’ # 0.

If we assume that g is injective only on int [/ and we also allow the case
det ¢’ = 0, then we argue as follows. Let X = {x € G: det¢'(z) = 0}. Since
det ¢’ is uniformly continuous on cl H, we have that for a fixed ¢ > 0 there exists
d > 0 such that z,y € cl H and |z — y| < ¢ implies |det ¢'(z) — det ¢'(y)| < e.
For n fixed, let

A= J{QeK,: QcC (intH)\ X},
B=|H{QeK.: QCintH, QN X # 0},
D= Qe K,: QnoH # 0}.
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If n > ,/p/d, then the diameter of the cubes is less than §, and |det ¢'(z)| <
forevery z € B. By Lemma4.29, u(g(B)) <e-u(B)) <e-p(H). Since u(D) =
(0H,n), it follows that x(D) < € also holds for n large enough. This implies
w(g(clHN D)) < M - e, where M = maxyea g | det ¢’ ().

For an arbitrary bounded function f: g(H) — R we have

= x)) - |det ¢’ ()| dz,
Mﬁﬁmmﬂtﬂﬂ

since ¢ is injective on the open set (int H) \ X and det ¢’ # 0 there. Furthermore,
A C (int H) \ X, and we already proved the theorem in this case. Since

9(H)\ g(A) C g(HNB)Ug(HND)

implies p(g(H) \ g(A)) < (u(H) + M) - &, we have that f(A) f and f(H) f dif-
~g ~g
fer from each other by at most K - (u(H) + M) - €, where K = sup,¢,cpy | f(@)].
We show that the lower integrals of the function F' = (f o g) - |det ¢’| on the
sets H and A differ from each other by at most K - (u(H) + M) - €. Indeed, H =
AU BU (H N D) is a partition of the set H, and thus

[Fr=[Fr+[Fre [ F
Ju LA B -~ HND

Now, ’ fB F’ < K -e-pu(B),since |det ¢'| < €,and |F| < K - ¢ on the set B. Fur-

JHQD F‘ < K-M - pu(HnN D)< KMe, which implies our statement.

Summing up, we get that the two sides of (4.34) can differ from each other by at
most 2K - (u(H) + M) - €. Since € was arbitrary, (4.34) holds for every bounded
function. As we have shown above, (4.14) follows, which proves Theorem 4.22. [

thermore,



Chapter 5
Integrals of Multivariable Functions II

5.1 The Line Integral

The notion of the line integral was motivated by some problems in physics. One of
these problems is the computation of the work done by a force that changes while
moving a point. The mathematical model describing the situation is the following.

Let G C R? be an open set, and let a force act at every point 2 of G. This force
is described by f(z) € R? in the sense that the magnitude of the force is | f(z)|,
and its direction is the same as the direction of the vector f(x). We say that the
pair (G, f) describes a field of force or briefly a field. For example, let us place a
point at the origin having mass m. By Newton’s' law of gravity, this point attracts
a unit-weight point z # 0 with a force of magnitude x - m/|x|? and of direction
opposite to that of = (where « is the gravitational constant). This field—called the
gravitational field—is defined by the open set G = R?® \ {0} and by the function
flx) = —km-a/|x|3.

Suppose that the force moves a point. We want to find the work that the force
exerts along the direction of motion. We know that if the motion is linear and the
force is constant and acts in the direction of the point’s motion, then the work is the
product of the force’s magnitude and the displacement of the point. If the force acts
in the opposite direction to the motion, then the work is the negative of this product.

Now let the motion of the point be linear and the force constant, but let the force
act in a direction different from that of the motion. If the motion is perpendicular to
the direction of the force, then by a law of physics, there is no work done’.

! Isaac Newton (1643—1727), English mathematician, astronomer, and physicist.

2 The direction of the motion of a planet traveling in a circular orbit around the sun is always
perpendicular to the direction of the force acting toward the center of the circle. Therefore, no
work is done during the motion of the planet, and this is the reason why the planets can keep on
orbiting indefinitely, at least in theory.

© Springer Science+Business Media LLC 2017 155
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By a law of physics, work is additive in the following sense: the work done by
the sum of two forces is the sum of the works done by each force. Let a point
move along the segment [u, v] from u to v while a constant f force acts on it. Let
f = hi1 + ho, where h; is parallel to v — u and ho is perpendicular to v — u. The
work done is |h1| - |v — u| + 0 if the direction of h4 is the same as that of the vector
(v —u),and —|hq]| - [v — u| 4 0 if the direction of g is opposite to that of the vector
(v —u). We can see that the amount of work done is equal to the scalar product
(f,v — u) in both cases.

In the general case, the motion of the
point is described by a curve g: [a,b] —
IR3. Suppose that a force of magnitude and
direction f(g(t)) acts at the point at g(t)
for every t € [a,b]. Consider a fine par-
tition a =ty <t; <...<t,=0>b, and
suppose that the subarc v; of g cor-
responding to the interval [t;_1,t;] is

Slgle))

t + + } i well approximated by the segment
a fim1 G ki o [g(ti—1), g(t;)]. Furthermore, let the force
be close to a constant on the arc ;. (If the

5.1. Figure curve is continuously differentiable and

the function f is continuous, then these
conditions hold for a fine enough partition.) Then the work done by the force on
the arc ; will be close to the scalar product (f(g(c;)),g(t;) — g(ti—1)), where
¢i € [ti—1,1;] is arbitrary. Since the total amount of work done by the force is the
sum of the works done along the arcs +;, the work can be approximated by the sums
S (f(g(e:)), g(t:) — g(ti—1)). Clearly, if there exists a number I such that these
sums get arbitrarily close to I a the partition becomes increasingly finer, then [ is
the amount of the total work. This motivates the following definition of the line
integral.

Definition 5.1. Letg: [a,b] — RP be a curve mapping to R?, and let f: g([a,b]) —
RP. We say that the line integral jg(f, dx) exists and its value is the number I if
for every € > 0 there exists § > 0 such that for every partition a = tg < t1 < ...

< t,, = b finer than ¢ and for arbitrary points ¢; € [t;_1,t;] (i = 1,...,n) we have
1= 5" (F(gle)) g(t) — gltion)| < <. (5.1)

i=1
Let the coordinate functions of f and gbe f1,..., fpand g1, ..., gp, respectively.

The sum in (5.1) becomes
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szj g5(t:) — gj(ti1)) =
= (Z filg(ei)) - (g (ti) — g;(t ) I )

Jj=1

h

The sums S; are nothing but than the approximation sums of the Stieltjes® integral*

fab( fj o g) dg,. Obviously, if every S; is close to a number I; if the partition is fine
enough, then their sum is close to I = Iy + ... + I,. This observation motivates the
following concept.

Definition 5.2. Let g = (g1,....9p): [a,b] — R? be a curve mapping to R?, let a
real function h be defined on the set g([a,b]), and let 1 < j < p be fixed. We say
that the line integral fg hdx; exists (with respect to x;) and it is equal to I, if the

Stieltjes integral fab(h o g) dg; exists and equals I.

For p = 2, we may write f hdz and f h dy instead of f hdz, and f hdzs,
respectively. For p = 3, we may also use the notation f h dz instead of f hdxs.

Remarks 5.3. 1. Let 1 < j < p be fixed and let the coordinate function g; be con-
tinuous and strictly monotone on the parameter interval [a, b]. One can show that the
existence of the line integral f hdx; is equivalent to the existence of the Riemann

integral f 9 J( ) (u) du, where the function H is the composition of the mappings

[gj(a)7gj(b)] - [a’b] - g([aab]) —R

The first mapping is the inverse of g;, the second is g, and the third is h. (See [7,
Theorem 18.5].)

2. If a segment is parallel to the x;-axis then among the p line integrals taken
on this segment, only the one with respect to dz; can be nonzero. Indeed, let
a=(a,as,...,ap),b=(b1,az,...,a,), andlet g: [a1,b1] — RP be an arbitrary
parametrization of the segment [a, b]; i.e., let g([a1, b1]) = [a, b]. For every function

3 Thomas Joannes Stieltjes (1856—1894), Dutch mathematician.

4 Let f,g: [a,b] — R. We say that the Stieltjes integral f; f dg exists and its value equals [ if
for every € > 0 there exists 6 > 0 such that if F': a =29 < z1 < ... < x,, = b is a partition of
[a, b] with mesh smaller than § and ¢; € [z;—1, ;] (¢ = 1,...,n) are arbitrary inner points, then
|O’F (f,95(ci)) — I| < e, where op (f,g;(ci)) = 0, flei) - (g(ws) — g(wi—1)). For the basic
properties of the Stieltjes integral, see [7, Chapter 18].



158 5 Integrals of Multivariable Functions II

h: [a,b] — Rand j # 1, the line integral f h dz; exists and its value is zero, since
J # 1 implies that the coordinate function g; is constant, and thus every approxima-
tion sum is zero.

Similar statements are true for segments parallel to the other axes.

3.Leta = (ar,az2,...,ap),b=(b1,az,...,ap),andlet g: [a1,b1] — RP be a one-
to-one continuous parametrization of the segment [a, b; i.e., let g be a continuous
bijection between [aj, b1] and [a, b] with g(a;) = a and g(b;) = b. (For example,
the function ¢(t) = (¢, a2, ..., ap) (t € [a1, b1]) has this property.)

For every function h: [a,b] — R, the line integral fg h dxq exists if and only if
the section h(92:+%)(¢) = h(t,as, ..., a,) is Riemann integrable on the segment
[a1,D1], and the line integral is equal to the Riemann integral f;ll h(a2ap) (1) dt.

This follows from the fact that the line integral and the Riemann integral have
the same approximation sums.

4. Based on Definitions 5.1 and 5.2 it is clear that if

f=f fp)g((a;b]) — R

and the line integrals fg fjdx; exist for every j =1,...,p, then the line integral

i) g< f, dx) also exists and
/f,dx = /fj dz;. (5.3)
9

5. The converse of the statement above is not true, since if f is perpendicular to
g(u) — g(t) for every t,u € [a,b], then the left-hand side of (5.3) exists and it is
zero (since every approximating sum is zero), while the line integrals fg fjdx; do
not necessarily exist.

For example, let p =2, g(t) = (t,t) for every t < [0,1], and f(t,t) =
(h(t), —h(t)) forevery t € [0,1], where h: [0, 1] — R is an arbitrary function. The
left-hand side of (5.3) exists and is equal to zero. On the other hand, the line integral
f f1 dxq exists if and only if the Riemann integral fo t) dt also exists.

It is well known that if f: [a,b] — R is continuous and g¢: [a,b] — R is of
bounded variation, then the Stieltjes integral f; f dg exists. Furthermore, if g is
differentiable and ¢’ is integrable on [a, b], then the value of the Stieltjes integral is
fab f ¢ dx. (See [7, Theorems 18.10 and 18.12].) These results together with the
connection between line integrals and Stieltjes integrals give the following.
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Theorem 5.4. Let g = (g1,...,9p): [a,b] — RP be a continuous and rectifiable’®
curve, and let the function h: g([a,b]) — R be continuous on the set g([a,b]). The
line integral fq hdzx; exists for every j =1,...,p. O

Theorem 5.5. Let g = (g1,...,9p): [a,b] — RP be a differentiable curve, and let
g; be integrable on [a,b] for every j =1,...,p. If the function h: g([a,b]) — R
is continuous on the set g([a, b)), then the line integral fg hdx; exists, and it is

b .
[, h(g(t) - g;(t) dt, for every j =1,...,p. O
Remark 5.6. If we also assume that g, is strictly monotone on the parameter interval
[a, b] then by Remark 5.3.1, it follows that fg hdx; is equal to the Riemann integral

;Qg H (u) du, where H = ho go (g;)~'. Itis easy to see that this latter integral
J

turns into f: h(g(t)) - g;(t) dt, with the substitution u = g;(t).

Example 5.7. Let g(t) = (Rcost, Rsint) (t € [0,27]) be the usual parametriza-
tion of the circle centered at the origin with radius R. Find the line integrals
fg 22y dx and fg xy? dy. Since the conditions of Theorem 5.5 hold, the value of
the first integral 1s

2 2
R4

/R3 cos?t - sint-(—Rsint) dt = 1 /(sin2t)2 dt =
0 0

2m

R4
=—5 (1 — cos4t)dt = —R'r /4,
0

and similarly fg ry? dy = Rir /4.

We could have guessed, without any calculation, that the two values need to
be the negatives of each other. Indeed, the sum M = fg a:zy dx + fg :::y2 dy is the
work done by the force (z2y, y2x) along the circle centered at the origin with radius
R. Since the vector (x%y,y?z) is parallel to (x,y), which is perpendicular to the
tangent to the circle at the point (z,y), there is no work done, i.e., M = 0.

Combining Theorem 5.5 and (5.3), we obtain the following theorem.
Theorem 5.8. Let g = (g1,...,0p): [a,b] — RP be a differentiable curve, and let
g be integrable on [a,b] for every j = 1,...,p. If the function f: g([a,b]) — RP
is continuous on the set g([a,bl), then the line integral fg( f,dx) exists and equals

J2(f(9(0)), 9/ (1)) dt. O

Our next aim is to prove the analogue of the Newton—Leibniz® formula for line
integrals. First, we need to generalize the notion of primitive function to multivari-
able functions.

> We say that a curve is rectifiable if its length is finite. See [7, Definition 16.15].
6 Gottfried Wilhelm (von) Leibniz (1646-1716), German mathematician and philosopher.
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Definition 5.9. Let G C RP be open and let f = (f1,..., fp): G — RP. We say
that the function F': G — R is a primitive function of the function f if F is differ-
entiable on G and F’ = f,ie.,if D,F = f; (j =1,...,p) onthe set G.

Example 5.10. Letp =3,G =R3\ {(0,0,0)}, and let

o = (st y )

(1'2 + y2 + 22)3/27 (1.2 + y2 + 22)3/2’ (1.2 + y2 + 22)3/2

for every (x,y, z) € G. The function F(x,y,z) = —1/+/a? + y? + 22 is a primi-
tive function of f on G.

Theorem 5.11. (The Newton-Leibniz formula (for line integrals)) Ler G C RP
be open and let I': G — R be a primitive function of the continuous function
f+ G — RP. Then for every continuous and rectifiable curve g: [a,b] — G we have

J,(f dzx) = F(g(b)) = F(g(a)).

Proof. The set K = g([a, b]) is a bounded and closed subset of the open set G.
First, we prove that there exist a bounded and closed set D and a positive number
r with the following properties: K C D C G and B(z,r) C D for every z € K,
where B(z, r) denotes the ball with center z and radius 7.

Choose a positive number 7, for every point z € K such that B(z,r,) C G.
The balls B(z,7,/3) (2 € K) cover the set K. Since K is compact, it follows
from Borel’s covering theorem (see Theorem 1.31) that finitely many of these
balls cover K. Suppose that the balls B(z;,r,,/3) (i=1,...,N) cover K. Let
B; = B(z,2r,,/3) forevery (i = 1,..., N). The set

D=B,U...UBy
is bounded and closed, it contains K, and it is a subset of (7, since
Ei - B(Zi,’f'zi) cG
for every i. Let r denote the minimum of the numbers 7., /3 (i = 1,..., N). Let
z € K be arbitrary. Since the balls B(z;,r,/3) cover K, there exists ¢ such that
z € B(z;,1,/3). Thus by r < r,, /3 we have
B(z,r) C B(z,r+1,,/3) C B(z;,2r.,/3) C D.
We have proved that the set D and the number 7 have the desired properties.
Since D is bounded and closed, it follows from Heine’s theorem (Theorem 1.53)

that f is uniformly continuous on D. Let £ > 0 be fixed, and choose 0 < 1 < r such
that | f(x) — f(y)| < € holds for every z,y € D with |x —y| < n.
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The function g is uniformly continuous on [a, b]; thus there exists 6 > 0 such that
lg(u) — g(v)| < n, whenever u, v € [a,b] and |u — v| < 4.

By Theorem 5.4, the line integral fq( f,dx) exists; let its value be I. Choose a
partition a = ty < t; < ... < t, = b finer than § and such that

n

I— Z<f(9(0i))79(ti) —g(ti-1))| <e

i=1

for arbitrary points ¢; € [t;—1,t;]. Denote the point g(t;) by y; for every i =
1,...,n. By the choice of 4, we have |y; — y;—1| < 1 < r, and thus the segment
[yi—1,y:] is contained by D, since y; € K and |y — y;| < r forevery y € [y;i—1, yi].
Then by the mean value theorem (Theorem 1.79), there is a point d; € [y;—1, ¥i]
such that

F(yi) — F(yi—1) = (F'(di), yi — yi—1) = (f(di),yi — yi-1)- (5.4

Since ¢; € [t;—1,t;], we have that |¢; —¢;—1| < ¢ and |¢; — t;| < J, and then
lg(ci) —yi—1| <m and |g(¢;) —yi| <n follow. Therefore, [yi—1,y:] C
B(g(ci),nm) (since every ball is convex), which implies d; € B(g(c;),n), ie.,
lg(¢;) — d;| <m. Thus |f(g(c;)) — f(d;)| < e. Then by (5.4) we obtain

|F(y:) — F(yim1)—(f(9(ci)), yi — yim1)| = 1{(F(di) — f(g(ci)), yi — yi—1)| <
< [f(di) = flgle))| - |lyi — yi—1l <
<e-lyi —yiaal

Summing these inequalities yields

n

F(g(b)) — F(g(a)) - Z(f(g(cz)), Yi —yi-1)| <€~ Z lyi —yi-1| <e- L,

i=1 =1

where L denotes the length of the curve g. Thus |F(g(b)) — F(g(a)) —I| <e-
(L 4 1), and since £ was arbitrary, we get F'(g(b)) — F'(g(a)) = I. O

Remarks 5.12. 1. If every component g; of the curve g is differentiable with an
integrable derivative on [a, b], then fg( fydx)y = F(g(b)) — F(g(a)) easily follows
from Theorem 5.8. Indeed, the differentiation rule of composite functions (Corol-
lary 2.23) gives

(Fog) =DiF(9) gy +...+DyF(9) - g, = f1(9) - g1 + ... + [u(9) - g

Thus the derivative of the single-variable function F' o g is (f o g, ¢’); in other
words, F' o g is a primitive function of {(f o g, ¢’) on [a, b]. Then the (one-variable)
Newton—Leibniz formula gives
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b

/ (f, da) = / (F(g(t)). g (1) dt = F(g(b)) — F(g(a).

g a

2. The interpretation of Theorem 5.11 from the point of view of physics is as fol-
lows: if the function describing a field has a primitive function, then the work done
along any (continuous and rectifiable) curve depends only on the initial point and
the endpoint of the curve, and the amount of work done is the increment of the prim-
itive function between these two points. In this context the negative of the primitive
function is called the potential function.’

If a field has a potential function, we call it a conservative field. By Exam-
ple 5.10, the gravitational field of a point mass is conservative. (We will soon see
that not every continuous mapping has a primitive function; see Example 5.162.)

Exercises

5.1. Find the following line integrals.®

@) [,(2?+y?)dw, with g(t) = (t,¢) (t € [0,1]);

(b) fg e® dx, where g: [a,b] — R? is an arbitrary continuous and rectifiable curve;

(©) fg e® dy, where g(t) = (¢,12) (t € [0,1]);

(d) fg siny dy, where g: [a,b] — R? is an arbitrary continuous and rectifiable
curve;

(e) fg(x2 — 2xy) dw — fg(m2 — 3y?) dy, where g: [a,b] — R? is an arbitrary con-
tinuous and rectifiable curve;

O [, (a* - 22y) dz, where g(t) = (t,*) (t € [0, 1]);

(2) fg f(x)dz + fg h(y) dy, where f,h: R — R are continuous functions, and
g: [a,b] — R? is a continuous and rectifiable curve;

(h) fg arctg (e* — sinz) dy, where g is a parametrization of the boundary of the

rectangle [a, b] X [c, d];

fg f(x? +9?)  xvdr + fg f(x? +9?) - ydy, where f: R — R is continuous,

and g: [a,b] — R? is a continuous and rectifiable curve.

e

—
~

7 The work increases the energy, and thus the difference of the values of the potential function
between two points is nothing but the increment of the potential energy between the points. This
motivates the nomenclature.

8 A note on notation: we use the notation tga and ctgax for the functions sinz/cosx and
cosz/sinz. The inverse of the restriction of tg x to (—m/2,7/2) is denoted by arc tg .
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5.2. Let G C RP be a connected open set, and suppose that the mapping f: G —
RP has a primitive function on G. Show that the difference of any two primitive
functions of f is constant. (H)

5.3. Leta < b < ¢, letu,v € R? be nonzero perpendicular vectors, and let g (t) =
wifa <t <b, g1(b) = g2(b) =0, g2(t) = v if b < t < c. Furthermore, let g(t) =
g1(t) if t € [a,b], and g(t) = ga2(¢) if t € [b, c]. Show that if f(0) = f(u) = u and
f(v) = 0, then the line integrals f (f,dz) and f (f,dz) exist, but f f,dx) does
not exist.

54. Let g1: [a,b] — R? and go: [b,¢] — RP be continuous curves with g1 (b) =
g2(a). Let g(t) = g1 (¢t) if t € [a,b], and g(t) = g2(t) if t € [b, c]. Show that if f is
bounded and the line integrals f (f,dz) and f (f,dz) exist, then f (f,dzx) also
exists and [ (f,dz) = [, (f,dz) —l—fg (f,dx).

5.5. Let the function ¢: [a,b] — R be continuous, and let g(t) = (¢, p(t)) for
every t € [a,b]. Show that for every continuous function f: (graph¢) — R, the

line integral [ f dx exists and equals f; f(t,o(t)) dt.

5.2 Conditions for the Existence of the Primitive Function

We call a curve g: [a,b] — RP a closed curve if g(a) = g(b). By Theorem 5.11,
if a continuous function f has a primitive function on an open set GG, then the line
integral of f on every continuous and rectifiable closed curve lying in G is zero. Our
next aim is to prove the converse of this statement.

Let the curve g; start at the point x and end at the point ¥y, and let the curve go
start at the point y and end at the point z. Intuitively it is clear that if we join the
curves g; and g, then the integral along the resulting curve g is equal to the sum of
the integrals along the curves g; and go (think of the additivity of the work done).
We prove that this statement indeed holds under certain extra conditions (but not
without them; see Exercise 5.3).

Lemma 5.13. Let g1: [a,b] — R? and g5: [b,c] — RP be continuous rectifiable
curves, with a < b < c and g1(b) = g2(b). Let g(t) = q1(t) if t € [a,b], and g(t) =
92(t) if t € [b,c]. Then the curve g: [a,c] — RP is also continuous and rectifiable;
furthermore, for every continuous function f: g([a, c]) — RP we have

/(f,dx> =/<f,da:>+/<f,dx>. 5.5)

g g1 g2

Proof. We leave the proof of the continuity and rectifiability of g to the reader. The
integral of (5.5) exists by Theorem 5.4. Let F be a fine partition of the interval [a, ]
in which b is one of the division points. Then the approximating sum for F will be
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close to the left-hand side of (5.5). On the other hand, dividing the sum into two parts
gives a pair of approximating sums corresponding to the intervals [a, b] and [b, ¢],
respectively, which are close to the corresponding terms on the right-hand side of
(5.5). Hence, equation (5.5) follows. The precise proof is again left to the reader. [

Note that equation (5.5) holds even if we relax some of the conditions (see Exer-
cise 5.4). Sufficient conditions for the existence of the primitive function of a con-
tinuous function can now be easily proven.

Theorem 5.14. Let G C RP be a nonempty open set, and let f: G — RP be con-
tinuous. The function [ has a primitive function on G if and only if fg( fodx) =0
holds for every continuous and rectifiable closed curve lying in G.

Proof. The necessity of the condition follows from Theorem 5.11. To prove suf-
ficiency, first we assume that G is connected (see Definition 1.21). Let xy € G be
fixed. Every point € GG can be reached from zy by a continuous and rectifiable
curve of GG. (Indeed, it follows from Theorem 1.22 that we can connect xy and x
by a polygonal line 7. It is easy to see that there exists a continuous and rectifiable
curve g: [a,b] — R? with g([a,b]) =T.)

Let F(z) = fm(f, dx), where ¢1: [a,b] — G is a continuous and rectifiable
curve lying in G and such that g;(a) = ¢ and g1 (b) = . We show that F' does
not depend on the choice of g1. Let h: [¢,d] — R be another continuous and rectifi-
able curve in G with h(c) = zg and h(d) = x. Moving along the curve g; from xg
to x, then moving along the curve h from x to z( results in a closed curve. Since the
line integral along a closed curve is zero, it follows that f has the same line integral
along the two curves h and g .

More precisely, let go(t) = h(d + b —t) for t € [b,b+ (d — ¢)]. (The curve go
“goes along” the curve h backward and its parameter interval connects to [a, b].) It is
easy to check that the curve go: [b,b + (d — ¢)] — G is continuous and rectifiable,
92(b) =z, ga(b+ (d — ¢)) = wo, and [ (f,dz) = — [, (f,dz). The last equality
follows from the fact that every approximating sum of ng (f,dx) is equal to the

negative of an approximating sum of [, (f,dx).

Let g(t) = g1(t) for t € [a,b], and g(t) = g2(t) fort € [b,b + (d — ¢)]. Then by
Lemma 5.13, we have (5.5). The left-hand side is zero, since we integrate along a
continuous, rectifiable, and closed curve of G. The right-hand side is fql (f,dz) —

fh<f, dz); thus fh<f,dx> = f(h(f,dx).

We have shown that F'(z) is well defined, i.e., that it depends only on z (if z is
fixed). By Lemma 5.13, we have F'(v) — F(u) = fg(f, dx) whenever u,v € G and
g is a continuous rectifiable curve moving from u to v.

Now we show that D F(y) = f1(y) for every y € G. Since G is open, there
exists 7 > 0 such that B(y,r) C G. Let y = (y1,...,yp), u= (1 —1,¥2,...,
Yp)sand v = (y1 + 7, Y2, ..., yp). The segment [u, v] is contained by the closed ball
B(y,r); thus it is also contained by G. For z = (z1,¥2, ..., yp) € [u,v] we have
F(z)—F(y) = fg( f,dx), where g is any continuous and rectifiable parametriza-
tion of the segment [y, z]. By Remark 5.3.1, if this parametrization is one-to-one,
then the line integral is equal to the Riemann integral of the section function
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fyzll 1(y2""’y” ) dt. Since fy is continuous on [u,v], it follows that the function z;

f;ll fl(yz""’yp) dt is differentiable at y;, and its derivative is fl(yz""’y")(yl) = f1(y)
there. (See [7, Theorem 15.5].) This means that

F e - F
hm (Zla Yo, ayp) (y)
Z1—Y1 21—

ie., Dif(y) = fi(y).

The equality D; F(y) = f;(y) can be proved similarly for every j =2,...,p.
Thus the partial derivatives of F' exist everywhere on G. Since they are also contin-
uous, it follows from Theorem 1.71 that F' is differentiable everywhere on G, and
F'is a primitive function of f.

We have proved our theorem in the case that GG is connected. In the general case,
let us present G as the union of mutually disjoint, nonempty, and connected open
sets G; (i € I). For every i there exists a function F;: G; — R such that F; is
differentiable on G; and its derivative is f (restricted to G;). Let F'(z) = F;(x) for
every € GG; and ¢ € 1. Obviously, F' is a primitive function of f on the set G. [

= fi(y),

Remark 5.15. In the proof above we could have restricted the definition of F'(z) =
fg( f,dx) to integrals along polygonal lines between z¢ and x. That is, having
fg (f,dx) = 0 for every closed polygonal line lying in G is a sufficient condition for
the existence of the primitive function. Moreover, having fg( f,dx) = 0 for every
simple closed polygonal line is also sufficient. (A closed polygonal line is called
simple if it does not intersect itself.) Indeed, every closed polygonal line T is the
union of finitely many simple closed polygonal lines 75, and the line integral of
every function along 7' is the sum of its line integrals along 7T; (see Exercise 5.6).
Therefore, if f is continuous on an open set G and if fg( f,dx) = 0 holds for every
simple closed polygonal line lying in G, then f has a primitive function on G.

Examples 5.16. 1. Let us consider g(t) = (Rcost, Rsint) (¢ € [0, 27]), the usual
parametrization of the circle centered at the origin and of radius R. Let’s compute

the line integrals fg 77,7 dv and fg w7+ dy. Applying Theorem 5.5 gives us
27
T cost .
g 0
and
2 .
Y sint
/x2+y2 dy = /T - (Rcost)dt = 0.
g 0

Thus the line integral of the function f(z,y) = (#w, mz%yz) is zero along the

circle with center 0 and radius R. This has to be so, since the function f has a
primitive function on the set R? \ {(0,0)}; namely, the function # log(z? + y?) is
a primitive function.
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2. Find the line integrals [ ——%> dx and fg dy along the same circle. Apply-

—y
. ; g 22+y
ing Theorem 5.5 gives us

__z _
24y?

27
—y sint .
/az2+y2 dx = —?%—Rsmt)dt:ﬂ'
g 0
and
27
T cost
g 0

Thus the line integral of the function

f(aay)—( Y . ) (5.6)

!L‘2+y27$2+y2

along a circle with radius R is not zero. Therefore, the function f does not have a
primitive function on the set R? \ {(0,0)}.

These examples show an important difference between single- and multivariable
analysis. We know that every continuous single-variable function always has a prim-
itive function (see [7, Theorem 15.5]). In contrast, the function defined in (5.6) does
not have a primitive function on G, even though it is both continuous and differen-
tiable on G = R? \ {(0,0)}.

Another necessary condition for the existence of a primitive function is given by
the following theorem.

Theorem 5.17. Let f: G — RP be differentiable on an open set G C RP. If f has
a primitive function on G, then

D;fj(z) = D;fi(x) (5.7

forevery x € Gandi,j=1,...,p. In other words, if the differentiable function f
has a primitive function on an open set G, then its Jacobian matrix is symmetric at
every point x € G.

Proof. Let F' be a primitive function of f on G. Then the function F' is twice dif-
ferentiable on G and thus, by Theorem 1.86, we have

Difj(x) = D;D;F(z) = D F(x) = Dj; f(x) = D;D; F(z) = D fi(x)
foreveryx € Gandi,j =1,...,p. O

Remark 5.18. In general, the conditions of the previous theorem are not sufficient
for the existence of a primitive function. The function defined by (5.6) is differen-
tiable on the set G = R?\ {(0,0)}, with Do f; = D; fo (check this!). But as we
saw, the function does not have a primitive function on G.


http://dx.doi.org/10.1007/978-1-4939-7369-9_1

5.2 Conditions for the Existence of the Primitive Function 167

We shall see presently that the cause of this phenomenon is that G “has a hole
in it.” We will prove that the conditions of Theorem 5.17 are sufficient for the exis-
tence of a primitive function for open sets of a simpler structure (what are called
1-connected sets).

First, let us find the linear transformations having a primitive function.

Theorem 5.19. A linear transformation A: RP — RP has a primitive function if
and only if the matrix of A is symmetric.

Proof. Every linear transformation is differentiable, and its derivative is itself
everywhere, and thus its Jacobian matrix is the same as its matrix. Then by The-
orem 5.17, if a linear transformation A has a primitive function, its matrix is sym-
metric.

Now let us assume that the matrix of A is symmetric, and let this matrix be
(ai;) with a;; =aj; (i,j =1,...,p). The ith coordinate of the vector A(z) is
> %y aija; for every vector x = (z1,...,1,) € RP. It is easy to see that the

2
A. Indeed, F' is differentiable, since it is a polynomial (see Theorem 1.90). For
every 1 <i <p, we have D;F(z) = Z?Zl a;;xj, ie., D;F(x) is the same as
the ith coordinate function of A(z). That is, F' is a primitive function of the
mapping A. O

function F(z) = 1 - b Z?Zl ai;r;x; is a primitive function of the mapping

Lemma 5.20. (Goursat’s’ lemma) Let G C RP be open, and let a,b, c be points
of G such that the convex hull H of the set {a,b, c} is in G.'°

Let g denote the closed polygonal line [a,b] U [b,c] U [c,al. Suppose that for
everyx € H, f: G — RP is differentiable at x with a symmetric Jacobian matrix.

Then [ (f.dz) = 0.

For the proof we need the following
lemma, called a trivial estimate.

Lemma 5.21. Let g: [a,b] — R? be a con-
tinuous and rectifiable curve, and let the
Sunction h: g([a,b]) — R be continuous on

f g([a,b]). Then

/g (h, dz)

where K is an upper bound of the function |h|
on the set g([a,b]), and s(g) is the arc length

of g.

< K- s(g),

5.2. Figure

9 Edouard Jean-Baptiste Goursat (1858-1936), French mathematician.
10 The convex hull H is nothing other than the triangle with vertices a, b, c.
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Proof. For every partition a=1ty <ty <...<t,=>and for every choice of the

inner points ¢; € [t;—1,t;] (i = 1,...,n) we have
> (hlg(ei)), g(t:) — g(ti-1) <ZK —g(ti-1)| < K - s(g).
i=1
Thus the statement follows from Deﬁmtlon 5. 1. U

Proof of Goursat’s lemma. Let fg( f,ydx) = Ip; we need to prove that Iy = 0.

The midpoints of the sides of the triangle H are (a + b)/2, (b+¢)/2, (¢c+ a)/2.
The three segments connecting these midpoints cut H into congruent triangles
Hyq,...,Hy 4. Let g1 ; denote the polygon whose edges are the sides of the tri-
angle [ ;. With an appropriate direction of g; ; we have

4

Io= /g (frda) =" / (f.dz). (5.8)

i=1 Y 91,i
Indeed, we integrate twice (in opposite directions) along every side of the polygons
g1,; contained in the interior of H (i.e., along the segments connecting the mid-
points), so their contributions cancel on the right-hand side of (5.8). The union of
the remaining segments is exactly g. Thus (given an appropriate direction of the
polygons g; ;) the sum of their corresponding terms is Iy. Let f (f,dx) =1,

(1=1,2,3,4). Then Io =111+ 12+ 113+ 114 by (5.8). Therefore we have
|11,4] 2 |IO| /4 for at least one 7. Choose an ¢ that satisfies this condition and let
us denote the triangle H; ; by H;, the closed polygon g, ; by g1, and Iy ; by I;.

The segments connecting the midpoints of the sides of the triangle H; cut H;
into the isomorphic triangles Hs 1,...,H 4. Let g2 ; denote the polygon whose
edges are the sides of the triangle H> ;. With an appropriate direction of gs ; we
have

4
h= [ (e =3 [ (o)
91 i=1v92,i
Letf f,dl’> —IQZ(Z— 1,2, 3, 4) Then I fI21+I22+123+IQ4,andthus

|12, > |I1]/4 for at least one j. Pick some j that satisfies this condition and let us
denote the triangle H; ; by Hs, the closed polygon g ; by g2, and I ; by I5.

By repeating this process we get a sequence of nested triangles H = Hy, H,
Hs, ..., a sequence of polygons g; defined by the sides of these triangles, and a
sequence [, = qu (f,dz) of numbers such that |Iy1| > |Ix|/4 for every k. We
have

o] <4-|L|<4% L] < ...,

ie., [Io| < 4F - |I;| for every k.

Let si be the length of the perimeter of the triangle Hy, i.e., the arc length
of the polygon gj. Since the triangle Hy; is similar to the triangle Hj with its
sized halved (i.e., with ratio 1/2), we have s = s;/2 for every k, and thus
sp=50/2" (k=1,2,...).
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Now, H, Hy, Ho, . .. are nested nonempty closed sets, and thus it follows from
Cantor’s theorem (Theorem 1.25) that their intersection is nonempty. Let d €
ﬂliil Hy.

Let ¢ > 0 be fixed. Since f is differentiable at the point d, there exists § > 0 such
that

f@) = f(d) + f'(d)(x — d) + n(z),

where |n(x)| < e - |z — d| for each |z — d| < §. Now, d € Hj, and the length of
Hy.’s perimeter is s /2"; thus every point of gy is closer to d than sq/2". For a large
enough k, we have g, C B(d,0) and

I — / (f. dz) = / ((d) + f(d)(x — d), dz) + / (n.dz). (59

9k 9k

By assumption, the matrix of the linear transform f(d) is symmetric. Then, by The-
orem 5.19, the mapping f’(d)(x) has a primitive function. Let ¢ = f(d) — f/(d)(d).
The constant mapping ¢ also has a primitive function: if ¢ = (c1, ..., ¢p), then the
function ¢1z1 + . .. + ¢z, works. Thus the mapping f(d) + f'(d)(xz — d) also has
a primitive function on RP. Therefore, by Theorem 5.14, its integral is zero on every
continuous, closed, and rectifiable curve. Thus the value of the first integral on the
right-hand side of (5.9) is zero. On the other hand, the trivial estimate (Lemma 5.21)

gives
/ (n, dz)
9k

since every point z of the triangle H}, satisfies |z — d| < si, and thus |n(z)| < e -
|z — d| < & - s1. We have proved |I},| < € - s3 - 4%, which implies

§5'8i7

[Io| < 4% - |I| < e s2.

This is true for every € > 0, and thus Iy = 0, which completes the proof. (]

Theorem 5.22. Let G C RP be a convex open set. A differentiable mapping
f: G — RP has a primitive function on G if and only if its Jacobian matrix is sym-
metric at every point x € G.

Proof. The necessity of the condition follows from Theorem 5.17.

To prove sufficiency, let the Jacobian matrix of f be symmetric at every point
of GG. In order to prove the existence of a primitive function it is enough to show
that the integral of f is zero on every closed polygon in G (see Theorem 5.14 and
Remark 5.15). Let ag, a1, . .., a, = ag be points of GG; we show that the integral of
f along the polygon p = [ag,a1]U... U [an_1,a9] is zero. (The polygon p lies in
G, since by the convexity of G we have [a;_1,a;] C G foreveryi=1,...,n.) We
now employ induction on n. For n = 0, the polygon is reduced to a single point, and
the integral of any function on a singleton (i.e., along a constant curve) is zero. For
n = 1, the integral of f on p is zero, since we integrate along the segment [ag, a]
twice, first from ag to a; and then from a; to ag. The sum of these two integrals is
Zero.
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Let n > 1 and suppose that the statement is true for n — 1. Then the integral
of f along the closed polygon p’ = [ap,a1]U...U[an—3,an—2] U[an—_2,agl is
zero. The integral of f is also zero along the closed polygon g = [ay,—2, ap—1] U
[an—1,a0] Ulag, an—2]. Indeed, if H is the convex hull of the points a,,—2, a,—1, ag,
then g is a closed polygon consisting of the sides of the triangle H. Since the Jaco-
bian matrix of f is symmetric at every point of H (since it is symmetric at every
point of (7), it follows from Goursat’s lemma that the integral of f along g is zero.
Now we have

/p(f,dx> :/p/<f,dsc)+/g<f,dx>. (5.10)

Indeed, the union of the segments of p’ and g is p together with the segment
[an—2, ag] counted twice, with two different directions. Since the integrals over a
segment with two different directions are the negatives of each other, we obtain
(5.10). Since both terms of the right-hand side of (5.10) are zero, we have
fp( f,dx) = 0, which proves the theorem. O

Example 5.23. Consider the function f defined by (5.6). Then f is differentiable
on the set G = R?\ {(0,0)} with Dy f; = D f> there (see Remark 5.18). Thus the
Jacobian matrix of f is symmetric at every point = € G, and thus by the previous
theorem, f has a primitive function on every convex and open subset of G. We can
prove this directly.

Indeed, the function arc tg (y/x) is a primitive function of f on each of the con-
vex open sets {(z,y): x > 0} and {(z,y): < 0} (check this fact). On the other
hand, the function —arc tg (2/y) is a primitive function of the function f on each of
the convex open sets {(z,y): y > 0} and {(z,y): y < 0} (check this fact as well).

Using these two functions, we can find the primitive function of f on an
arbitrary convex and open subset of the domain G as follows. First, note that
arctgxz + arctg (1/x) = /2 for © > 0, and arctgx + arctg (1/x) = —7/2 for
2 < 0. (These follow from the fact that for 0 < o < m/2 we have 1/tg o = ctgar =
tg ((7/2) — «). With the help of these formulas one can easily see that the function

arctg (y/x), if x>0,
F(z,y) = ¢ —arctg (z/y) + /2, ify >0,
arctg (y/z) + m, ifex <0

is well defined and is differentiable on the open set G’ = R? \ {(0,%): y < 0}, with
F' = f there. (That is, F' is the primitive function of f on G’. Note that by Exer-
cise 5.2, all the primitive functions of f on G’ are of the form F' + ¢, where c is a
constant.) A similar construction can be applied for the complement of every half-
line starting from the origin. Thus f has a primitive function on every such open
set.

It is also easy to see that if H C G is convex, then there is a half-line L with
endpoint at the origin such that H C R?\ L. This shows that f has a primitive
function on every convex and open subset of the open set GG, in accordance with
Theorem 5.22.
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This example illustrates another—just as remarkable—fact. By Example 5.16.2,
the integral of the function f along an arbitrary origin-centered circle is the same
number. Next we show that this follows from the fact that f has a primitive function
on every disk lying in G.

Definition 5.24. Let G C R? be open, and let g1, g2: [a,b] — G be continuous
closed curves. We say that the curves g; and go can be continuously deformed
into each other or in other words, g¢; and g, are homotopic curves in G, if
there exists a continuous mapping ¢: ([a,b] x [0,1]) — G such that o(t,0) = g1 (t)
and ¢(t,1) = ga(t) for every t € [a, b]. Furthermore, ¢(a,u) = (b, u) for every
u € [0,1].

Example 5.25. Letp =2and G = R?\ {(0,0)}. Then

g1(t) = (Ry cost, Ry sint) (t €10,27])

and

g2(t) = (R cost, Rysint) (t €10,2m))
are homotopic curves in G for every R, Ry > 0. Indeed, the mapping

e(t,u) = ((R1 + (R2 — R1)u) cost, (R1 + (R2 — R1)u)sint), t € [0,27], u € [0,1]
satisfies the conditions of Definition 5.24.

Theorem 5.26. Let G C RP be open, let f: G — RP be continuous, and suppose
that every x € G has a neighborhood on which f has a primitive function. Then we

have
ydz) = ,dx (5.11)
/n (f,dx) /W2 (f,dz)

whenever 1 and o are continuous rectifiable homotopic closed curves lying in G.

Proof. Let T = [a,b] x [0, 1], and let p: T'— G be a mapping satisfying the con-
ditions of Definition 5.24.

If a point moves around the perimeter of the rectangle 7" in the positive direction
starting from the vertex (a,0), then the image of this point by the mapping ¢ is
a continuous closed curve -y that consists of four parts: the curve ~y1, a continuous
curve p going from the endpoint of 7; to the endpoint of 5, the curve ~5 traversed
in the opposite direction, and the curve p, also traversed in the opposite direction. It

follows that
) = 5 d — 3 dx). (512)
[y<f (1.13) [M <f l‘> /’;2 <f l‘>

Thus it is enough to show that the left-hand side of (5.12) is zero.

The main idea of the proof is the following. Cut 7" into congruent rectangles 7;
(i=1,...,n%). Let g; denote the image of the perimeter of T} by the map . Then
we have

L(f, dx) = ij:l/l<f7dx> (5.13)
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Indeed, the right-hand side is the sum of the integrals of f along the images of the
sides of the rectangles T; by ¢. The integrals corresponding to the sides of T; that
lie inside of T" appear twice with opposing signs. Thus these integrals cancel, and
the right-hand side of (5.13) is the integral [_ (f, dz).

Now, for n large enough, the diameters of 7; and g; are small enough for g; to be
covered by a ball in which f has a primitive function. It follows from Theorem 5.14
that every term on the right-had side of (5.13) is zero; thus the left-hand side is also
Zero.

Now we turn to the precise proof. In the argument we also have to handle the
problem of the existence of the integrals on the right-hand side of (5.13), since the
maps ¢; are continuous, but not necessarily rectifiable. A simple solution of this
problem is replacing the nonrectifiable images of the sides of 7; by segments.

Since the set [a, b] x [0, 1] is bounded and closed, and the mapping ¢ is continu-
ous, the set H = ¢([a, b] x [0, 1]) is also bounded and closed (see Theorem 2.7).

Now we prove that for a suitable § > 0, the function f has a primitive func-
tion in the ball B(z,d) for every x € H. Suppose there is no such §. Then for
every positive integer n there exists x,, € H such that f does not have a primi-
tive function in the ball B(z,, 1/n). Since the set H is bounded, it follows from
the Bolzano—Weierstrass theorem (Theorem 1.9) that the sequence (z;,) has a con-
vergent subsequence (z,, ). If 2, — x, then x € H C G (since H is closed), and
there exists ~ > 0 such that f has a primitive function in the ball B(x,r). For k
large enough we have |x,, — x| < r/2 and 1/n; < r/2. For such a k, we have
B(xp,,,1/ny) C B(z,r), and consequently, f has a primitive function in the ball
B(xy,,,1/ny). This, however, contradicts the choice of x,,. This contradiction
proves the existence of § > 0 such that f has a primitive function in the ball B(x, )
for every x € H. Fix such a J.

By Heine’s theorem (Theorem 1.53), there exists 7 > 0 such that |p(z) — ¢(y)| <
d whenever z,y € [a,b] x [0,1] and |z — y| < 7. Let n be large enough to satisfy
both (b —a)/n < n/2and 1/n < n/2.

Cut T into congruent rectangles 7; (i = 1,...,n?), and let g; denote the image
of the boundary of T;; by the map (. By the choice of n, the diameter of 7 is smaller
than 7, and then by the choice of 7, the diameter of g; is smaller than 6.

Let z € g; be arbitrary. Then g; C B (:v 0),and f has a primitive function in the
ball B(z, §) by the choice of . Thus f (f,dx) = 0, assuming that g, is rectifiable.

However, g; is not necessarily rectiﬁable and thus we replace g; by a rectifiable
curve g, as follows. Whenever the image of a side [u, v] of some rectangle T; by ¢
is not rectifiable, we replace it by the segment [p(u), ¢(v)]. In this way we obtain
a rectifiable curve g; that is also contained in the ball B (x d), since every ball is
convex. Then by Theorem 5.14, f (f,dz) = 0 for every . On the other hand, a

proof similar to that of (5.13) gives

Jan =3 [ an
R i=1
Therefore, we have fﬂ/( f,dz) = 0. O

Definition 5.27. Let G C RP be open, and let g: [a, b] — G be a continuous closed
curve. We say that the curve g can be continuously deformed into a point, or g is
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null-homotopic in G, if there is a point ¢ € G such that g and the curve with constant
value c are homotopic to each other in G.

The open set G C RP? is called simply connected or 1-connected if it is connected
and every continuous closed curve in G is null-homotopic in G.

Remarks 5.28. 1.Every convex open set is simply connected. Indeed, let g: [a,b] —
G be an arbitrary continuous closed curve in GG. Choose a point ¢ € GG, and let
o(t,u) =u-c+ (1 —u)-g(t) forevery (¢,u) € [a,b] x [0, 1]. Obviously, ¢ satis-
fies the conditions of Definition 5.24 on the curves g; = g and g2 = c. That is, g is
homotopic to the curve with constant value c in G. This is true for every continuous
closed curve of GG, and thus G is simply connected.
2. One can prove that a connected open set of the plane is simply connected if and
only if it is the bijective and continuous image of a convex open set (of the plane).
This statement is not true for higher-dimensional spaces. Consider the open set
G ={z € R3: r < |x| < R} of three-dimensional space, where 0 < r < R. It is
easy to see that every continuous closed curve of G can be continuously deformed
into a point, i.e., G is simply connected. It is clear intuitively that G is not a contin-
uous bijective map of (a three-dimensional) convex open set. However, the proof of
this is not easy.

Corollary 5.29. Let G C RP be open, let f: G — RP be continuous, and let every
point x € G have a neighborhood in which f has a primitive function. Then we have
fg( f,dx) = 0 whenever g is a null-homotopic continuous, rectifiable, and closed

curve in G.

Proof. The claim follows trivially from Theorem 5.26, since the integral of every
function along a constant curve is zero. (]

Corollary 5.30. Let G C RP be a simply connected open set, let f: G — RP be
continuous, and suppose that every x € G has a neighborhood in which f has a
primitive function. Then the function f has a primitive function on G.

Proof. The statement follows immediately from Corollary 5.29 and
Theorem 5.14. g

Remark 5.31. The condition on the continuity of f can be omitted; see Exer-
cise 5.12.

Theorem 5.32. Let G C RP be a simply connected open set. A differentiable map-
ping f : G — RP has a primitive function on G if and only if the Jacobian matrix
of f is symmetric at every point x € G.

Proof. The statement follows immediately from Theorem 5.22 and from Corol-
lary 5.30. (]
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Exercises

5.6. Show that every closed polygonal line 7" can be decomposed into finitely many
non-self-intersecting polygonal lines T;. (Therefore, the line integral of an arbitrary
function along 7" equals the sum of the line integrals along 7;.) (H)

5.7. Find the continuously differentiable functions F': R? — R for which
(a) fg F dx = 0 for every continuous rectifiable closed curve;

(b) fg Fdx + fg F dy = 0 for every continuous rectifiable closed curve.

5.8. Decide whether the following mappings have a primitive function on their
respective domains. If a mapping has a primitive function, find one.

@ (z+y,z—y); (b) (2% +y, 2+ ctgy);
(C) (1‘2721':'/73427392); (d) (( 21 2)2a(g;2+;jz)2>
© (72 7); 0 (2= 72 )
_ z . h 2+ t
(2) (\/?;/Tﬂ,w> (h) ( x? +y?, arc g(x/y))

() (arct (a/y), ~log /72 + 47 );

) (H?fzz +z,arctgx + 2 1ogy+z);

Lo s s jog(y) + S ).

5.9. (a) Find the continuously differentiable functions f: R? — R for which the
mapping (f, f): R? — R? has a primitive function.

(b) Find the continuously differentiable functions f, g: R? — R for which the map-

pings (f,9): R? — R? and (g, f): R? — R? both have a primitive function.

5.10. Compute the line integral of the mapping f(x,y) = (log /2% + y2,
arctg (x/y)) along the curve g(t) = (sht, 1+ cht) (¢t € [0, 1])

5.11. LetG =R?\ {(0,0)},and let f = (f1, f2): G — R? be a continuously dif-
ferentiable function such that Dy f; = D; fs. Let the line integral of f on the unit
circle (oriented in the positive direction) be 7. Show that the line integral of f along
every continuous rectifiable closed curve g: [a,b] — G is n - I, for some integer n.
What is the intuitive meaning of n?

5.12. Let G C RP? be a simply connected open set, and let f: G — RP be a map-
ping such that every x € G has a neighborhood on which f has a primitive function.
Show that f also has a primitive function in G. (*)

5.13. Let G =R?\ {(0,0)}, and let f = (f1,f2): G — R? be differentiable.
Show that if Do f1 = D; fo on G, then f has a primitive function on every set that
is the complement of a half-line whose endpoint is the origin.
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5.3 Green’s Theorem

The multivariable variants of the Newton—Leibniz formula are called integral theo-
rems. As we will see presently, these are especially useful and important for appli-
cations.

When discussing the topic of integral theorems, we necessarily have to wander
into the fields of differential geometry and topology. Consequently, we have to take
for granted several facts in these areas and cannot explain some ideas and results
that look intuitively clear. The reason is that in order to present a precise proof
of several theorems to come, we would need to develop some parts of geometric
measure theory, topology, and differential geometry in such depth that would fill an
entire book in itself while drifting away from the topic of this book significantly.

Therefore, at times we will need to give up the principle—to which we have kept
ourselves so far—of not using anything in our proofs that we have not proved before
(except the axioms, of course). The reader is warned either to consider this part of
the book a popular introduction or to read the books [12] and [1] for further details.

The topic of simple closed curves is the first on which we have to accept some
facts without proofs.

Definition 5.33. We call a curve g: [a,b] — RP a simple closed curve if g is a
continuous closed curve that is injective on the set [a, b). In other words, the curve
g: la,b] — RP? is a simple closed curve if and only if it is continuous and for every
a<t<u<bwehave g(t) = g(u) if and only if t = a and u = b.

It is intuitively clear that if g: [a,b] — R? is a simple closed plane curve, then
the open set R? \ g([a,b]) has exactly two components, whose common boundary
is the set g([a,b]). Furthermore, exactly one of these two components is bounded.
This statement is known as the Jordan curve theorem. However, the proof of this
theorem is far form being simple. The reader can find a proof in [9]. Other proofs
can be found in [11] and [13]. From now on, we will take the Jordan curve theorem
for granted.

For a simple closed plane curve g: [a,b] — R?, the bounded component of
R?\ g([a, b)) is called the bounded domain with boundary g.

We need to define the direction of a simple closed curve. Intuitively, if we move
along the simple closed curve g, then the bounded domain with boundary g is either
to our left-hand side or our right-hand side. In the first case we call the direction
of the curve positive, and in the second case the direction is negative. The precise
definition is the following.

First, we define the directed angle of a pair of nonzero vectors a = (a1, as) and
b = (b1, b2). Intuitively, the angle is positive or negative according to whether the
half-line ¢, starting from the origin and going through b can be reached by a positive
or negative rotation from the half-line ¢, starting from the origin and going through
ai az

. . asz|. .. .
a. We can check that the sign of the determinant b bl S different in the two cases.
1 02

This motivates the following definition.

We say that the undirected angle of the vectors ¢ and b is the angle v € [0, 7]
of the half-lines ¢, and ¢;,. (We can also define this angle by the formula (a, b) =
|a] - |b] - cos~y.) We say that the directed angle of the vectors a and b is ~y if the
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1S negative.
by by &

(Obviously, the directed angle depends on the order of a and b.)
Let g: [a,b] — R? be a continuous
g(t:) plane curve, let I' = g([a, b]), and let €
R?\ T. We define the winding number
w(g; x) of the curve g around point = as
follows. Let a =tg <t1 < ...<t, =b
be a partition such that diam g([t;_1, t;])
< dist (z,T") holds for every i. Let us
denote by ~; the directed angle of the vec-
tors g(t;—1) —« and g(t;) — x, and let
w(g;z) =Y. ;7. One can prove that
the value of w(g; x) is the same for every
such partition.

One can also prove that if g is a simple
closed curve and A is the bounded domain
with boundary g, then either w(g; x) = 27 for every x € A or w(g; x) = —2x for
every x € A. In the first case we say that the direction of the curve is positive, and
in the second case we say that the direction of the curve is negative.

We can now discuss the integral theorems of the plane. Let f be a two-variable

function. From now on we will use the notation gf instead of Dy f and f instead

of D5 f. (This notation makes the theorems easier to memorize.)

b b

determinant ‘ ‘ is nonnegative, and — if the determinant

5.3. Figure

Theorem 5.34. (Green’s'! theorem) Let g be a continuous rectifiable positively
oriented simple closed plane curve, and let A be the bounded domain with boundary
g. Let c1 A C G, where G is open, and let f: G — R be continuous.

G If %3]; exists and is continuous on cl A, then

/ fdi = / O g dy. (5.14)

(ii) If " exists and is continuous on cl A, then

/fdy:/—dmdy. (5.15)
oz
g A

Remark 5.35. Formula (5.15) can be memorized by “deleting” dx and dx on the
right-hand side (since these “cancel each other out™).

Switching x and y turns formula (5.15) into (5.14). Switching the coordinate
axes is nothing other than the reflection about the line y = x, and reflections change
the direction of simple closed curves. Since (5.14) is also about positively oriented
curves, we need to take the negative of one of the sides.

We can memorize the negative sign in (5.14) by first switching dx and dy on the
right-hand side before the cancellation of Jy and dy, which causes a negative sign.

These operations can be endowed with precise mathematical meaning using the
theory of differential forms. See, e.g., Chapter 10 of the book [12].

1 George Green (1793-1841), British mathematician and physicist.
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Sketch of the proof of Theorem 5.34. First, we prove statement (i) in the special
case that A is the interior of a normal domain.

Let ¢ and v be continuous functions on the interval [c, d] and let o(z) < ¢ (z),
for every = € (¢, d). Let

A={(z,y): c<z<do(r)<y<y(x)}.

Let g be be a continuous posi-
tively oriented simple closed curve "
that parametrizes the boundary of A.
This means that g can be divided into
the continuous curves g1, g2, 93, 94,
where ¢, parametrizes the graph of
the function ¢ such that the first com-
ponent of g; is strictly monotoni-
cally increasing, go is the (possibly 0
degenerate) vertical segment connect-
ing the points (d, ¢(d)) and (d, ¥ (d)), ¢ d x
gs parametrizes the graph of the func-
tion v such that the first component of
gs is strictly monotonically decreas-
ing, and finally, g, is the vertical seg- 5.4. Figure
ment connecting the points (¢, ¥(c))
and (¢, p(c)). It is easy to see that

; fdr = /Cdf(x,ga(x))dx and /g fdz = /cdf(z,w(x))dx

(see Exercise 5.5). By Remark 5.3.2, ng fdx = fg4 f dz = 0, and thus the value of
the left-hand side of (5.14) is

d

/(f(m,so(x)) — f(z,¥(x))) de.

C

On the other hand, according to the theorem of successive integration, the value of
the right-hand side of (5.14) is

d w(w)af d
— ¥(w) —
*/ / @dy dr = */[f(%y)]y:gp(z) dr =
¢ \p(z) c

d
. / (., (2)) — (@ o)) de,

i.e., (5.14) holds.
Note that every triangle is a normal region, and thus (i) holds for every triangle.
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Now we prove (i) for every polygon, that is, for every simple closed polygonal
line. It is easy to see that every polygon can be partitioned into nonoverlapping
triangles (see Exercise 3.30). We also know that (5.14) holds for every triangle of
this partition. Summing these equations yields our statement for polygons. Indeed, it
follows from (4.3) that the sum of the right-hand sides equals the right-hand side of
(5.14). The line integrals along those segments that lie in the interior of the polygon
cancel each other out on the left-hand side, since every such segment belongs to two
triangles, and we take the line integrals along them twice, with opposing directions.

Thus we have proved (5.14) for every polygon.

In the general case, we approximate the curve g by a sequence of suitable poly-
gons. In order to construct these polygons we need to show that for every § > 0
there is a partition F’ of the parameter interval that is finer than § and such that the
polygonal line corresponding to F' does not intersect itself, i.e., it is a simple closed
polygon (see Exercise 5.17). Next, we need to prove that if we apply (5.14) to these
polygons, then the sequence of the left-hand sides converges to fg f dz, and the

sequence of the right-hand sides converges to — [ A % dx dy. We skip the details of
this argument.

Part (ii) can be proved similarly. The only difference lies in the very first step;
instead of proving the statement for normal domains, we prove it for sets of the form

{(z,y): e<y <d, oly) <z <p(y)},

where o and 1) are continuous functions on [c,d] and p(y) < ¥(y), for every
y € (¢,d). O

Remark 5.36. According to Theorem 5.32, if G C RP” is a simply connected open
set, the mapping f: G — RP is differentiable, and the Jacobian matrix of f is sym-
metric for every « € G, then f has a primitive function on G. Applying Green’s
theorem, we can give a new proof for the p = 2 special case of this theorem (adding
the extra assumption that f is continuously differentiable).

We will need the intuitively obvious fact that a connected open set G C R? is
simply connected if and only if G' has “no holes” in it; that is, for every simple
closed curve g in G, the bounded domain with boundary g is a subset of . (The
statement is false in higher dimensions; see Remark 5.28.2.)

Let G C R? be a simply connected open set and let f = (fi, f2): G — R? be
continuously differentiable. We show that if Dy fi(z,y) = D1 fa(x,y) holds for
every (z,y) € G, then f has a primitive function on G.

It is enough to show that the line integral of f is zero for every polygon S in
G. Let g: [a,b] — G be a continuous and rectifiable parametrization of the poly-
gon S C G. Now, g is a simple closed curve. We may assume that g is positively
directed, for otherwise, we could switch to the curve g1 (t) = g(—t) (¢ € [-b, —a]).
The curve g; also parametrizes S (in the opposite direction), and if the integral of f
along g is zero, then it is also zero along g, since the two integrals are the negatives
of each other.

The value of the line integral of f along ¢ is the sum fg fidx + fg fady. Let
A denote the bounded domain with boundary g. Since G is simply connected, we
have that A C G, and thus clA = AUJA = AU g([a,b]) C G. Thus the partial
derivatives of f; and f> exist and they are continuous on an open set containing cl A
(namely, on (7), and we can apply Green’s theorem. We get
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/fldx+/f2dy=—/—a 1dxdy+/—a 2 dxdy =0,
dy ox
g g A A

since our conditions imply % = % everywhere in G. ]
An application from physics. An important interpretation of Green’s theorem in
physics is related to the flow of fluids. Let some fluid flow in a region G of the plane
and let the direction and speed of the flow be constant at every point (x,y) € G.
By that we mean the following: there exists a unit vector v = v(x,y) such that the
fluid passing through the point (z,y) always flows in the direction of v, and there
exists a number ¢ = ¢(x,y) > 0 such that the amount of fluid flowing during a unit
of time through every segment containing (x,y) perpendicular to v with length h
short enough is h - ¢. We put f(z,y) = ¢(z,y) - v(e,y). Then at every point (z, y),
the direction of the flow is the same as the direction of f(,y), while its speed is the
absolute value of f(z,y).

Let g: [a,b] — G be a positively oriented simple closed curve, and let the
bounded domain with boundary g be A. Let us find the amount of fluid flowing
through the boundary of the domain A (i.e., through the set I" = g([a, b])) in a unit
of time.

Consider a fine partition a =19 <t; <...<t, =b, and let ¢; € [t;_1,1;]
(i=1,...,n) be inner points of this partition. Let us assume that the subarc I';
of T" corresponding to the interval [t;_1,t;] of the partition is close to the segment
Ji = [g(ti—1), g(t;)], and that f is close to the vector f(d;) on the subarc I';, where
d; = g(¢;). If J; is perpendicular to f(d;), then the amount of fluid flowing though
J; in unit time is approximately m; = |J;| - | f(d;)|, where |J;| = |g(t;) — g(ti—1)]
is the length of the segment J;. If J; is not perpendicular to f(d;), then it is easy to
see that the amount m; of fluid flowing through .J; equals the amount of fluid flow-
ing through J/, where J/ is the projection of J; to the line perpendicular to f(d;).
Let the coordinate functions of v be v and vo. We obtain the vector o = (—vg, v1)
by rotating v by 90 degrees in the positive direction. Thus the length of the segment
J] is the absolute value of the scalar product (g(t;) — g(t;—1),9(d;)), and m; is the
absolute value of

(9(ti) — g(ti—1),0(d:)) - | f(ci)| = (g(t:i) — g(ti=1), |f(c:i)| - 0(di)) =

where [ = (—fa2, f1)- )

It is easy to see that the scalar product (g(¢;) — g(t;—1), f(c;)) is positive when
the flow through the subarcs I'; is of outward direction from A, and negative when
the flow is of inward direction into A. It follows that the signed sum Y. (g(¢;) —

g(ti—1), f(g(c;:))) is approximately equal to the amount of fluid going either into A

or out from A. Clearly, if the line integral of the function f along g exists, then the
value of this integral,

/(—fz)dw+/f1 dy, (5.16)
g g

is equal to this amount.
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Now let us assume that f is continuously differentiable and compute the amount
of fluid flowing through a small rectangle R = [z1, 2] X [y1, y2] in unit time, using
another method.

The amount of fluid flowing through the horizontal segment [(z1,y), (z2,y)] in
unit time is approximately (z2 — 1) f2, while the amount of fluid flowing through
the vertical segment [(z,y1), (z,y2)] is approximately (y2 — y1)f1. It follows that
for a rectangle R small enough, the amount of fluid flowing through R’s opposite
sides is approximately the same.

We are interested in this small difference between the amounts flowing through
the vertical sides. The difference is

=) i (22 22 ) — ) o (20, 22 )

2 2
of of

~ (y2 — 1) (22 — 21) - o =t(R)- o

where the partial derivative is taken at some inside point using the single-variable
version of Lagrange’s mean value theorem. Similarly, the difference between the
amounts of fluid flowing through the two horizontal sides is approximately
t(R)- Yz

Thus the amount of fluid flowing through the sides of the rectangle is approxi-
mately ¢(R) - (% + %’;2). We call

ofi | 0f2
or + 0y

the divergence of f and denote it by div f. It is clear from the argument above that

the physical meaning of the divergence is the amount of fluid flowing from an area

(as asource) if div f > 0 or flowing into the area (as a sink) when div f < 0) of unit

size in unit time. That is, the amount of fluid “created” in the set A is [ 4 div fdz dy.
Comparing this with the amount (5.16), we get that

/(—fg)d:c+/f1 dy = / (%J;HL 88];2) dx dy. (5.17)
g A

g

Note that this is nothing other than the two statements of Green’s theorem combined,
and it formulates the natural physical phenomenon that the amount of fluid flowing
from a domain is the same as the amount of fluid flowing through its boundary.

Returning to the physical meaning of the divergence, we should note that if div f
is constant and equal to zero on A, then the amount of fluid flowing through the
boundary of the domain A is zero, i.e., the amount of fluid flowing into A is the
same as the amount of fluid leaving A.

If div f (20, yo) > 0, then div f is positive in a small neighborhood of the point
(20,y0), and fluid flows from a small neighborhood of the point, i.e., (g, yo) is a
source. On the other hand, if div f (¢, y0) < 0, then fluid flows into a small neigh-
borhood of the point, i.e., (g, yo) is a sink.

One can guess that the formulas of Green’s theorem are variants of the Newton—
Leibniz formula. The analogy, however, is not entirely immediate. It is useful to
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write the integrals fg fdx and fg f dy in another form that makes the analogy clear.
To do this, we define a new integral and also illustrate it with an example from
physics.

Let a frictional force of magnitude f(x) hinder the motion at every point of
the domain GG. How much work does a solid do while it moves along the curve
g:la,b] = G?Leta =ty <t < ... <t, = bbeapartition, and let the arc of the
curve g corresponding to the division interval [t;_1,t;] be well approximated by the
segment [g(t;—1), g(¢;)]. Furthermore, let the force f be nearly constant on the arc
v;. Since the frictional force is independent of the direction of motion, the amount
of work done along the arc +y; is approximately f(g(c;)) - |g(t:) — g(ti—1)|, where
¢; € [ti—1,t;] is an arbitrary inner point. Thus the total work can be approximated
by the sum Y " | f(g(c;)) - |g(t;) — g(ti—1)|. If there exists a number I such that
this sum approximates I arbitrarily well for a fine enough partition, then I is the
total amount of work done.

Definition 5.37. Letg: [a,b] — RP be a curve and let the real function f be defined
on the set g([a, b]). We say that the line integral with respect to arc length fq fds

exists and its value is I if for every £ > 0 there exists 6 > 0 such that

- Zf(g(cm gt) — g(timy)]| <

holds for every part1t1on a=ty <ty <...<t,=>finer than § and for arbitrary
inner points ¢; € [t;—1,t;] (i =1,...,n).

The proof of the following theorem on the existence and value of the line integral
with respect to arc length can be proved similarly to Theorem 16.20 of [7].

Theorem 5.38. Let g be a continuous and rectifiable curve, and let the function f
be continuous on the set g([a,b]). Then the line integral with respect to arc length
fg f ds exists. If the components of g are differentiable and their derivatives are

integrable on |a, b, then we have

/fds—/f (1)l dt.

We would like to compress formulas (5.14) and (5.15) into a single formula.
This requires the introduction of some new notation. First, we extend the integrals
that have been defined for real-valued functions to functions mapping into R?. The
extended integral is evaluated component by component. For example, for a mea-
surable set H C R? and a mapping f = (f1,..., fy): H — R? whose components
are integrable on H, let

!fdt: Jfldt,...,lijdt

Let g: [a,b] — RP? be an arbitrary curve. The integral with respect to arc length
of the function f: g([a,b]) — R? is also defined component by component, i.e.,
we put
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/fds: /flds,...,/fqu

g

Now let us revisit Green’s formulas. Let g = (g1, ¢92): [a,b] — R? be a differ-
entiable positively oriented simple closed curve, and let A be the bounded domain
with boundary g. If ¢’ (t) # 0 at some point ¢, then the vector ¢’ (t) = (g} (t), g5(t))
has the same direction as the tangent to the curve g at the point g(¢). By rotating
the tangent-directed unit vector by 90 degrees in the negative direction, we get the
outer normal vector of the curve, i.e., the unit vector perpendicular to the tangent
and pointing outward from the domain A. We denote the outer normal vector at the
point g(t) by n(g(t)). Again, this is the unit vector with direction (g5(t), —g}(t)),
and

1

l9'(t)]

n(g(t)) =
For f: g([a,b]) — R, we have

b
_ f(g(t)) (A 0 A _
g/ Frds = / ol b0~k (0) -1y’ ()] dr =

~(g2(t), —g1(£)).

£l
b

b
/ Flg(t))gh(t) dt, — / Fa()gh(t)dt | =

a

/fdyr/fdx . (5.18)

g g
Comparing this to Green’s theorem, we have the following theorem.

Theorem 5.39. Let g: [a,b] — R? be a positively oriented simple closed plane
curve that is the union of finitely many continuously differentiable arcs. Let A be
the bounded domain with boundary g, and let G D clA be open. If f: G — R is
continuously differentiable, then

/fnds:/f’dzdy. (5.19)
g A

The formula states that the integral of the derivative of a function f on the set A
is the same as the integral with respect to arc length of the mapping fn along the
boundary of A.

Note that equality (5.19), using formula (5.18), is equivalent to Green’s theorem
in the sense that the equality of the two components gives the two statements of
Green’s theorem.

Remark 5.40. Equality (5.19) can be viewed as the two-dimensional variant of the
Newton—Leibniz formula. According to the original Newton—Leibniz formula, the
integral of the function f’ on the interval [a,b] is equal to the signed “integral”
of f along the boundary of [a,b], i.e., the difference f(b) — f(a). Since we can
say that the vector (number) 1 is the outer normal at the point b of the interval,
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and the vector —1 is the outer normal at the point a of the interval, it follows that
f(b) = f(a) = f(a) - n(a) + f(b) - n(b), which is the exact analogue of the left-
hand side of (5.19).

Exercises

5.14. Let g be a continuous rectifiable positively oriented simple closed plane
curve, and let A be the bounded domain with boundary g. Show that both of the
line integrals | T dy and — [ Y dz are equal to the area of A.

5.15. Test the statement of the previous exercise for the following curves:

(@ g(t) = (a-cost,b-sint) (t € [0,27]) (ellipse);
(b) an arbitrary parametrization of the rectangle [a, b] x [c, d] satisfying the condi-
tions.

5.16. Find the area of the bounded domains with the following boundaries:

(@) g(t) = (2t — 12,2t — %) (¢t € [0,2));
() g(t) = (a-cos®t,a-sint) (t € [0,27)).

5.17. Show that every simple closed plane curve has an arbitrarily fine non-self-
intersecting inscribed polygon (that is, there are arbitrarily fine partitions of the
parameter interval such that the corresponding polygonal line does not intersect
itself). (H S)

5.18. Let g and A satisfy the conditions of Green’s theorem. Show that if f =
(f1, f2) is continuously differentiable on an open set containing clA, then the line
integral of f along g is [,(D1f2 — Daf1) dx dy.

5.19. Let g: [a,b] — RP be a differentiable curve whose coordinate functions are
integrable on [a, b]. Show that the center of mass of g is

1 1
E/xlds,...,f/xpds ,

g g

where L is the length of the curve.

5.4 Surface and Surface Area

Determining the surface area of surfaces is a much harder task than finding the
area of planar regions or the volume of solids; the definition of surface area itself
already causes difficulties. To define surface area, the method used to define area—
bounding the value from above and below—does not work. The method of defining
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arc length (the supremum of the lengths of the inscribed polygonal lines) cannot be
applied to define surface area either. This already fails in the simplest cases: one
can show that the inscribed polygonal surfaces of a right circular cylinder can have
arbitrarily large surface area. In some special cases, such as surfaces of revolution,
the definition and computation of the surface area is simpler; see, e.g., Section 16.6
of [7]. To precisely define surface area in the general case, we need the help of
multivariable differentiation and integration. Since these are now at our disposal,
we may start to define surfaces and to compute their area.

Curves are defined as mappings defined on intervals. Analogously,
(although slightly more generally) we define surfaces as mappings from a mea-
surable subset of the plane. More precisely—to avoid conflict with other surface
definitions from differential geometry and topology—we will call these maps para-
metrized surfaces. Therefore, we will say that the mappings g: A — RP, where
A C R? is measurable, are parametrized surfaces in RP. A parametrized surface
g is said to be continuous or differentiable or continuously differentiable if the
mapping ¢ has the corresponding property on the set A.

To define surface areas, we first compute the areas of parallelograms. We know
the area of the parallelogram P(a, b) spanned by the vectors a = (a1, az) and b =

(b1, bo) of the plane: it is the absolute value of the determinant ,i.e., |ajby —

1 a2
b bo

asb1| (see Theorem 3.31). With some simple algebra, we have

(a1by — azb1)® = (af + a3) (b7 + b3) — (a1by + asbs)® = |al?|b]> — (a,b)?,

i.e., the area of the parallelogram spanned by the plane vectors a, b is

|al?[b]? — {a, b)?.

Let a and b be arbitrary vectors of R®. There exists an isometry ¢ such that g
maps a and b into the set {(z1, ¥, 73): x3 = 0}. Identifying this set with R?, we
obtain that the area of the parallelogram spanned by the vectors g(a) and g(b) is
V109(a)[?1g(b)]2 — (g(a), g(b))2. Now, isometries change neither the length nor the
scalar product of vectors; this latter is true, since 2{x,y) = |v + y|* — |z|> — |y|?
for each x,y € R3. Assuming that isometries do not change the area of parallelo-
grams either, we can say that the area of the parallelogram spanned by the vectors
a,b € R3 is \/|a|?|b|? — (a, b)2. This area can be defined with the vector multi-
plication of the vectors a and b in R®. For a pair of vectors a = (a1, az,a3) and
b = (b1, ba,b3) in R, we call the vector

(a2bz — baaz, biaz — a1bs, a1by — bras)
the vector product of ¢ and b. We can memorize this with the help of the formula
i ok
def
axb= |ay as ag|,
by by bs
where ¢ = (1,0,0), j = (0,1,0), k = (0,0,1). One can check that the length of

a x bis exactly v/|a|?|b|2 — (a, b)?.
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Let A C R? be measurable, and let g: A — R? be a continuously differen-
tiable parametrized surface. Choose a square N = [a,a + h] x [b,b+ h] in A and
a point (¢,d) € N. Since g is continuously differentiable, ¢ is approximated by
g(c,d) + ¢'(¢,d)(x — ¢,y —d) on N well enough such that—assuming any rea-
sonable definition of the surface area—we expect that the surface area of g(IN) is
close to the area of the parallelogram ¢’ (¢, d)(N) if N is small enough.

Now we compute the area of ¢’ (¢, d)(N). Let the components of g be g1, g2, g3
and let us introduce the notation

Dig = (D1g1,D1g2,D193) and  Dyg = (D2g1, D2ga2, D2gs).

Then the vectors D g and Dsyg are the same as the column vectors of ¢g’s Jacobian
matrix. It is easy to see that ¢’(c, d)([0, k] x [0, h]) is the parallelogram spanned by
the vectors h - D1g(c,d) and h - Dag(c,d); thus ¢'(c, d)(IN) is a translation of this
parallelogram. Therefore, the area of ¢'(c, d)(N) is

|h ' Dlg(cvd) X h - DQ(Ca d)| = |Dlg(ca d) X D29(67d>| : h2'

We get that the surface area of g¢(N) is (supposedly) close to
|D1g(c,d) x Dag(e,d)|-t(N), for a small enough square N. Thus, for n large
enough, this holds for every square N € /C,, in the interior of A. Let Ny,..., Ny
be an enumeration of the squares in the interior of A. Let us choose a point (¢;, d;)
from every square N;, and take the sum S = > |D1g(c;, d;) X Dag(cq, d;)| - t(N;).
This sum will be close to the surface area g(A).

When A is a square, this suggests that the surface area of the parametrized sur-
face ¢ is the number approximated by the above sums .S if A is partitioned into
small enough squares. Since these sums are also the approximating sums of the
integral f 4 |D1g x Dag|dx dy, the value of the integral gives the surface area we
were looking for.

One can expect the integral to be equal to the surface area even when A C R? is
an arbitrary measurable set. This follows from the fact that the sum S is the same as
the approximating sum of the function |D1g x Dsg| corresponding to the partition

k
{Ny,...,Ni, A\ U N;}, save for a single term. The missing term is small, since
i=1

k
1 (A\ U NZ) = pn(A) — p(A,n) — 0 as n — oco. Thus the value of the surface
i=1 -

area needs to be fA |D1g x Dag|dx dy.

From what we have above, it should be more or less clear how to define the sur-
face area with the help of approximating sums. To avoid some technical problems,
we define the surface area by the result of the argument; that is, by the integral itself.

Definition 5.41. Let A C R? be measurable and let g: A — R3 be a continuously
differentiable parametrized surface. If the function | D1g X Dag| is integrable on A,
then we say that the surface area of g exists and is equal to

/|D1g X Dog| dz dy. (5.20)
A

Example 5.42. Let us consider the quarter-disk A = {(z,y): 2,y > 0, 22 +¢* <
R?} and find the area of the part of the saddle surface z = zy lying over the
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set A. Consider the parametrization g(z,y) = (x,y,zy) ((z,y) € A). We have
D1g = (1,0,y), D2g = (0,1, x), which gives

|D1g x Dag| = \/(1 +y2)(1 4 22) —a2y? = \/1 + 22 + 92,

and the surface area is F' = [ 4 V1 + 2%+ y? dx dy. This integral can be computed
by substituting with polar coordinates:

/2 R

R
1
F= //\/1+r2 crdrde = g {3(1—1—7‘2)3/2} = % . ((1—|—R2)3/2 — 1).
0 o0 0

Remarks 5.43. 1. By assumption, |D1g x Dasg| is continuous on A. Then the inte-
gral in (5.20) exists if and only if |[D1g x Dsg| is bounded on the set A (see The-
orem 4.14). This is satisfied automatically if A is closed; i.e., the surface area of g
exists in this case. The same can be said if ¢ is defined and is continuously differen-
tiable on an open set containing clA.

2. Let f: [a,b] — [0,00) be a continuously differentiable function. The natural
parametrization of the surface of revolution we get by rotating graph f is the map-

ping g(z, ) = (z, f(x) cos ¢, f(x) singp) ((x,¢) € [a,b] x [0,27]). On comput-
ing the surface area of the parametrized surface g using Definition 5.41, we obtain

b
27r/ f@)\/1+ (f'(x))? d. (5.21)

(See Exercise 5.20); cf. [7, Theorem 16.31].)

3. One can show that for one-to-one continuously differentiable parametrizations
defined on bounded and closed sets H C R3, the area of the surface is independent
of the parametrization.'?

The exact meaning of this statement is the following. Let A and B be measurable
closed sets in the plane, and let g: A — R3, h: B — R? be injective and continu-
ously differentiable mappings. If g(A) = h(B), then we have

/|D1g X Dag|dx dy = / |D1h x Dah|dx dy. (5.22)
A B
See Exercise 5.21 for the proof.

Theorem 5.44. Let A C R? be a measurable closed set and let f: A — R be con-
tinuously differentiable. Then the surface area of the graph of f is

/ V1+ (Dif)?+ (Daof)? dzdy. (5.23)
A

Proof. The mapping ¢(z,y) = (z,y, f(x,y)) ((x,y) € A) is a continuously dif-
ferentiable parametrization of the graph of f. Since D1g = (1,0, D1 f) and Dyg =
(0,1, D2 f), we get

12 For the analogous statement concerning arcs, see [7, Theorem 16.18].
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|D1g x Dag|* = (14 (D1f)*)(1 + (D2f)?) = (D1f)*(D2f)? = 1+ (D1f)? + (D2f)?,
and we obtain the statement by the definition of the surface area. ([

Remark 5.45. The area of the parallelogram P(a, b) is

|a|?]b]2 — (a, b)? (5.24)

not only for vectors a, b belonging to R? or R3, but also for vectors in R? for every
p > 3. The proof is the same as in the case of p = 3.

For an arbitrary p, let us denote the value of (5.24) by |a x b|. (When p # 3,
the notation |a x b| is not the absolute value of the vector a X b, since we defined
the vector product a X b in only three dimensions. For p # 3, the notation |a X b|
shou?l)d be considered the abbreviation of (5.24), motivated by the case of the vectors
of R°.)

The ideas of the argument introducing Definition 5.41 can be applied to every
parametrized surface mapping into RP. This justifies the following definition.

Let A C R? be measurable and let g: A — RP? be a continuously differentiable
parametrized surface. If the function |D1g x Dag| is integrable on A, then we say
that the surface area of g exists and its value is

/|Dlg X Dag|dx dy.
A

Exercises

5.20. Let f: [a,b] — [0,00) be a continuously differentiable function. Show that
the surface area of the surface of revolution obtained by rotating graph f about the
x-axis and parametrized by g(x, p) = (x, f(z) cos g, f(z)sinp) (z,¢) € [a,b] X
[0, 27] is given by (5.21).

5.21. Let A and B be measurable closed sets of the plane and let g: A — RP,
h: B — RP be injective and continuously differentiable mappings with g(A) =
h(B). Show that

/ |D1g x Dag|dxdy = / |D1h x Doh|dx dy. (H)
A B

5.5 Integral Theorems in Three Dimension

Theorem 5.39 can be generalized to every dimension p > 2. Unfortunately, even the
precise formulation of these generalizations causes difficulties, because the required
definition of the necessary notions (e.g., that of the outer normal) is rather compli-
cated. For this reason we restrict ourselves to the case p = 3, where we have an
intuitive picture of these notions.
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First we need to define the surface integral. This integral is the generalization of
the integral with respect to arc length to parametrized surfaces.!?

Let A C R? be measurable, let g: A — R? be a continuously differentiable
parametrized surface, and let f: g(A) — R. Let {A;,..., A,} be a fine partition
of the set A, let (¢;,d;) € A; be inner points, and take the approximating sum
Yoy flg(ei,di)) - F(g(A;)), where F' denotes the surface area. The value of the
surface integral | 4 [ dF is the number I that these approximating sums approxi-
mate when the partition is fine enough.

We have seen that for a small square N C int A and (¢, d) € N, the surface area
of g(N) is approximately | D1 g(c,d) x Dag(e,d)| - t(IN). Consider the partition

k
{va"'aNka A \ UN’L}a
i=1
where Ny, ..., Nj denote the squares of the square grid /C,, lying in int A. The
approximating sum corresponding to this partition differs in only a single term (of
small magnitude) from the sum Zle |D1g(ci,d;i) x Dag(ei,d;i)| - f(g(ci,dyi)) -
p(NN), which is close to the integral [,(fog)-|D1g x Dag|dxdy for n large
enough.
Therefore, it seems reasonable to define the surface integral not in terms of the
approximating sums, but by an integral, similarly to the definition of the surface
area.

Definition 5.46. Let g: A — RP be a continuously differentiable parametrized sur-
face, where A C R? is measurable, and let f: g(A) — R. The value of the sur-
face integral fA f dF is, by definition, the value of the integral fA(f og)-|Dyg x
Doyg| dx dy, assuming that the latter integral exists.

One can show that for a measurable and closed set A and an injective parame-
trization g, the value of [ 4 J dF is independent of the parametrization in the sense

that if B C R? is measurable and closed, h: B — RP? is injective and continuously
differentiable, and g(A) = h(B), then

/(fog) - |D1g X Dag|dxdy = /(foh) - |D1h x Dah|dzx dy.
A B

Thus we can talk about surface integrals with respect to surfaces. If H C RP and
[+ H — R, then the surface integral | y J dF is, by definition, the integral fg fdF,
where g: A — RP is a continuously differentiable and injective mapping on the
measurable and closed set with g(A) = H. Of course, we need to assume that the
set H has such a parametrization. When this holds, then we say that H is a contin-
uously differentiable surface.

We need one more notion: the generalization of Definition 5.46 from real-valued
functions to vector-valued functions.

13 We do not cover the generalization of the line integral defined in Definition 5.1 to surfaces. Note
that in the two-variable case the line integral can be expressed in terms of the integral with respect
to arc length for continuously differentiable curves; see formula (5.18).
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For f: H — RY, by the integral [,, f dF we mean the vector

H/ded—ef I[fldF,...,I!fqu ,

where fi,..., f, denote the coordinate functions of f.

Let the boundary of a bounded set K C R3 be the union of finitely many contin-
uously differentiable surfaces. If 9K has a tangent plane at the point x € 0K, we
call the unit vector starting from K, perpendicular to the tangent plane, and pointing
outward from K the outer normal of K. We denote the outer normal at the point
2 € 0K by n(x). The outer normal is not defined on the boundary curves of the
surfaces whose union is OK; here n(x) is defined as an arbitrary unit vector.

We can now state the three-dimensional variant of the Newton—Leibniz formula.

Theorem 5.47. Let the bounded set K C R? be the union of finitely many continu-
ously differentiable surfaces. If the real-valued function f is continuously differen-
tiable on clK, then we have

/fndF: /f’dxdydz, (5.25)
0K K
that is,

( 84 fna dF,aé fnng,al fnng> -

_ of of of
= < o dxdydz,/ 3y d:l:dydz,/ ER drdydz |,
K K K

where n = (n1,ng,ns).

(5.26)

Proof. We may assume that K is a polyhedron. (We obtain the general case by
approximating K with a suitable sequence of polyhedra.) We may also assume that
K is a convex polyhedron. Indeed, we can represent every polyhedron K as the
union of nonoverlapping convex polyhedra by cutting it along the planes of the
faces of K. Let K = K; U...U K, be such a partition, and suppose that

/fnsz/f’dxdydz (5.27)
oK. K,

holds for every ¢ = 1, ..., n. Summing these equalities yields (5.25). Indeed, it fol-
lows from (4.3) that the sum of the right-hand sides of (5.27) is the same as the
right-hand side of (5.25). On summing the left-hand sides, those terms that corre-
spond to the faces of the polyhedra K; lying in the interior of K cancel each other
out.

To prove this, consider a face L of the polyhedron K; lying in the interior of K,
and let S be the plane containing L. There are polyhedra K that have a face in S
such that K; and K lie on opposite sides of .S. For such a polyhedron K, the outer
normals of the faces of the polyhedra K; and K; that lie on .S are the opposites of
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each other. Thus the surface integrals on the intersection of these faces are also the
opposites of each other, and consequently, their sum is zero. Therefore, by summing
the surface integrals |, ok, JndF, the integrals on the faces of K are the only ones

that do not cancel out, and the sum of these is exactly the integral |, ox fndF.
Thus we may assume that K is a convex polyhedron. We prove the equality

(5.26) component by component. By symmetry, it is enough to show that the terms

corresponding to z are equal to each other on the two sides of (5.26), i.e.,

/fnng:/g—fda:dydz7 (5.28)
z
oK K

where n = (ni,n2,n3). Let B be the projection of the polyhedron K on the
zy-plane. Then B is a convex polygon, and for every (x,y) € B the section
Ky = {2 €R: (z,y,2) € K} is a segment. Let K,y = [m(z,y), M(z,y)]
for every (z,y) € B. Then

K ={(z,y,2): (z,y) € B, m(z,y) <z < M(z,y)},

i.e., K is a normal domain in R3. By Theorem 4.18, the integral on the right-hand
side of (5.28) is equal to the integral

M (z,y)
/ / ﬁdz dx dy.
B \Jm@y 0%

By the Newton-Leibniz formula, the inner integral is f(M (z,y)) — f(m(z,v)),
and thus

/gﬁdwdydz/Bf(M(xay))dl"dy/Bf(m(oz,y))dxdy. (5.29)

Let the sides of K be Ay, ..., A,. Then the integral on the left-hand side of (5.28)
equals

> / fnsdF. (5.30)

i:lAi

The outer normal is n(z), and its third coordinate restricted to the interior of each
side is constant. We form three classes of sides according to whether ng is zero,
positive, or negative on their interior. The terms of (5.30) corresponding to the first
class are zero, and thus their sum is also zero. We show that

fnsdF = | f(M(z,y))dxdy (5.31)
n§>:0‘4[ ’ /B
and
fnsdF=— [ f(m(z,y))dzdy. (5.32)
n;Z<OA/1 ’ /B

From these and from (5.29) the statement of the theorem will follow immediately.
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The second class consists of the sides A; with n3 > 0. In other words, these
are the sides whose outer normal points upward (toward the positive direction of
the z-axis). It is easy to see that the projections of these sides to the xy-plane are
nonoverlapping convex polygons whose union is B. If B; denotes the projection
of the side A;, then the right-hand side of (5.31)is >, *fBi f(M(z,y)) dzx dy.

Therefore, in order to prove (5.31), it is enough to show that

/ frgdF — / F(M(z,y)) dz dy (5.33)
A B;

for every side A; belonging to the second class. Let A; be such a side. Obviously,
if the point (z, vy, z) is in A;, then z = M (z, y). This means that A; is the graph of
the function M restricted to B;.

We know that the integral on the left-hand side of (5.33) does not depend on the
parametrization of A;, assuming that it is continuous and injective. Hence we may
assume that the parametrization of A; is

g(xvy) = (.’E,y,M(S&y)) ((.’E,y) 631)7
and the integral on the left-hand side of (5.33) is equal to the integral

/ f(M(z,y)) - nz-|D1M x DoM|dx dy.
B;

Since A; lies in a plane, the function M restricted to B; is of the form ax + by + ¢,
where a, b, ¢ are constants. The vectors D1 M = (a,0,0) and Do M = (0,b,0) are
constant, and | Dy M x Dy M| is also constant on the set B;. Since the area of A; is
fBi |D1M x Dy M| dx dy, the constant | D1 M x Dy M| is the ratio of the areas of

A; and B;. We show that this ratio is exactly 1/n3, which will prove (5.33).

Let the plane containing the side A; be S. If S is parallel to the zy-plane, then
the areas of A; and B; are equal to each other. Since n3 = 1 in this case, the claim
holds. Now assume that .S is not parallel to the xy-plane, and let ¢ be the line where
S and the zy-plane intersect.

If a segment of length u of the plane
S is perpendicular to ¢, then its projec-
tion on the xy-plane is a segment of
length v’ = u - n3. Indeed, take a look at
Figure 5.5, whose plane is perpendicular
to the line ¢. The equality v’ = u - ng fol-
lows from the similarity of the two right
triangles of the figure.

U Let H be a triangle in the plane S that
has a side perpendicular to ¢ and of length
u. The projection of the triangle H to the
xy-plane is a triangle H’ whose side per-
pendicular to £ is of length v’ = u - ng.
. Since the altitude corresponding to this
u =u-ng side of H is not changed by this projec-

tion, the ratio of the areas of H and H’

5.5. Figure 18 1/n3'
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Now, every polygon is the union of nonoverlapping triangles that have a side of
fixed direction. Therefore, the ratio of the areas of A; and B; is also 1/n3. We have
proved (5.33) for every 7, and as we have seen, (5.31) follows immediately.

Equality (5.32) can be proved entirely similarly, or it can be reduced to (5.31) by
reflecting K to the xy-plane. g

Theorem 5.48. Let the boundary of the bounded set K C R3 be the union of finitely
many continuously differentiable surfaces. If f = (f1, fa, f3): clK — R3 is contin-
uously differentiable, then

/ (f,n)dF z/ div fdx dy dz, (5.34)
oK K
where div f def D1 fi1 + Ds fo + D3 f3, and
/ (f xn)dF = —/ rot f dx dy dz, (5.35)
oK K

def
where rot f = (D2 f3 — Dsfa, D3 fiy — D1 f3, D1 fo — Da f1).

Proof. Applying (5.25) to f1, fa, and f3, and taking the first component of the
first resulting equality, the second component of the second resulting equality, and
the third component of the third resulting equality and then summing the equalities
obtained, we obtain (5.34). Equality (5.35) can be proved similarly. ]

Traditionally, the formula (5.34) is known as the Gauss'*—Ostrogradsky'® the-
orem or divergence theorem, , and the formula (5.35) is known as Stokes’s'®
theorem. These formulas are of fundamental importance in physics, e.g., in the
theory of the flow of fluids and also in electrodynamics. The physical interpretation
of Stokes’s theorem is more complicated than that of Green’s theorem for the flow
of fluids. If f(x) describes the direction and velocity of the flow of a fluid, then
rot f(z) gives the direction of the axis of rotation and the velocity of the rotation at
the point x of the flow.

Exercises

5.22. Show that for every a = (a1, ...,ap), b = (b1,...,b,) € RP we have

2
\axb\sz

i<j

aq j

b b,

5.23. Show that every polyhedron can be expressed as the union of finitely many
nonoverlapping tetrahedra. (H)

5.24. Prove Green’s theorem following the argument used in the proof of
Theorem 5.47.

14 Carl Friedrich Gauss (1777-1855), German mathematician.
15 Mikhail Vasilyevich Ostrogradsky (1801-1862), Russian mathematician.
16 George Gabriel Stokes (1819-1903), British mathematician and physicist.



Chapter 6
Infinite Series

6.1 Basics on Infinite Series

If we add infinitely many numbers (that is, if we take the sum of an infinite sequence
of numbers), then we get an infinite series. Mathematicians in India investigated infi-
nite series as early as the fifteenth century, while European mathematics caught up
with them only in the seventeenth century. Although deep and important discoveries
were made both in India and later in Europe, for several centuries the exact notion of
convergent series was lacking, and this led to strange or even contradictory results.
(For details on the history of infinite series see the “Brief Historical Introduction”
of [7], and also the appendix of this chapter.) The debates concerning these contra-
dictions lasted until the nineteenth century, when Augustin-Louis Cauchy defined
the sum of an infinite series as the limit of its partial sums. We begin with Cauchy’s
definition.

Definition 6.1. The partial sums of the infinite series Z _, Gy, are the numbers
Sp =i a; (n=1,2,...). If the sequence of partial sums (s,) is convergent
with limit A, then we say that the infinite series ZZOZI an is convergent, and its sum
is A. We denote this by >~ | a,, = A.

If the sequence of partial sums (s,,) is divergent, then we say that the series
Soo2 | an is divergent.

If lim,, 0 S = 00 (or —00), then we say that the sum of the series Zzo:l an
is oo (or —oo). We denote this by Zzo:l a, = 0o (or —oo0).

Example 6.2. 1 The nth partial sum of the series 1 +1/2+1/44+1/8+4 ... 1is
Sp= Do 01 27 =2 — 27" Since lim,,_ o 5, = 2, the series is convergent, and
its sum is 2.

2. The nth partial sum of the series 3/10 + 3/100 + 3/1000 + ... is

Zg 10~ = ﬂ
10 1—(1/10)°
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194 6 Infinite Series

Since lim,, o0 S, = 3/9 = 1/3, the series is convergent, and its sum is 1/3.

3. The nth partial sum of the series 1 + 141+ ...1is s,, = n. Since lim,, ., $, =
00, the sequence is divergent (and its sum is co).

4. The (2k)th partial sum of the series 1 — 1 + 1 — ... is zero, while the (2k + 1)th
partial sum is 1 for all £ € N. Since the sequence (s,,) is oscillating at infinity, the
series is divergent (and has no sum).

5. The kth partial sum of the series

1 1 1
1——4+=-—==+... 6.1
2+3 4+ .1
is 1 1 1 1
=1—-=4+=-——-—+4... 1)kt =
ok 53 gt DT
If n < m, then we can see that
1 1 1 1
n—Sm|l=1—— -D"m. -] < —.
|$n — Sml e HEDT <

It follows that the sequence (s,,) satisfies Cauchy’s criterion, so it is convergent.
This shows that the series (6.1) is convergent. Since 1/2 < s < 1 for every k > 2,
it follows that the sum s of the series (6.1) satisfies 1/2 < s < 1.

It is well known that in fact, s = log 2. See Exercise 12.92, Remark 13.16, and
Example 14.25 of [7].

Remark 6.3. The second example above is a special case of the following fact: if
the infinite decimal expansion of x is m.ajas . . ., then the infinite series

ay a2
m+ —+—+... 6.2
10 102 ©.2)
is convergent, and its sum is x.

In some books on mathematical analysis the decimal fraction m.ajas... is
defined as the sum of the infinite series (6.2). In this case, the fact above is just
the definition. However, decimal expansions can be defined without the notion of
infinite series. For example, we can say that m.ajas . . . is the decimal expansion of
x if

m.al...angxgm.al...an—klo—n (6.3)
holds for all n. (See, e.g., [7, p. 36].) If we accept this as the definition of deci-
mals, then the statement above becomes a theorem proved as follows. The (n + 1)st
partial sum of the series (6.2) is m.aj...a,. Now it is clear from (6.3) that
lim,,_ o m.ay ...a, = x. Therefore, by the definition of the sum of infinite series,
we obtain that the series (6.2) is convergent, and its sum is z.
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The sum appearing in Example 6.2.1 is a special case of the following theorem.

Theorem 6.4. The series 1 + x + x2 + ... is convergent if and only if |x| < 1, and
then its sum is 1/(1 — x).

Proof. We already saw that in the case = = 1 the series is divergent, so we may
assume that = # 1. Then the nth partial sum of the series is s, = Z?;Ol Tt =

(I—2™)/(1—=x).If |z| <1, then 2™ — 0 and s,, — 1/(1 — z). Thus the series
is convergent with sum 1/(1 — z).

If x > 1, then s,, — o0, so the series is divergent (and its sum is c0). If, however,
2 < —1, then the sequence (s,,) oscillates at infinity, so the series is divergent (with
no sum). O

Theorem 6.5. If the series Zzo:l an, Is convergent, then lim,, .~ a,, = 0.

Proof. Let the sum of the series be A. Since
ap=(a1+...+ay)—(a1+...+an_1) = Sy — Sn—1,

we have a,, = A — A =0. O

Remark 6.6. The theorem above states that the condition a,, — 0 is necessary for
the convergence of the infinite series -, ay,. It is important to note that this con-
dition is in no way sufficient, since there are many divergent series whose terms
tend to zero. A simple example is provided by the following series. The terms of
the series > ;o (Vi + 1 — /i) tend to zero, since vi+1—+i=1/(vi+1+
\ﬂ) < 1/\@, and Vi — oo.

On the other hand, the nth partial sum is Z;:Ol (\/i +1- \ﬁ) = y/n, which
approaches co as n — o0, so the series is divergent.

Another well-known example of a divergent series whose terms tend to zero is
the series Y-, 1/n, which is called the harmonic series.

Theorem 6.7. The series ., , % is divergent.

Proof. If n > 2% then

1 1
sn21+2++ tor =
71+1+ +... 4 1 + +1 >
5 Tt 2
1 1 1 1
>1 2. - 4+4.= ok=1. — —
toteg gt 2k
1
=14+k-=
thg

Thus lim,, ., s, = 00, so the series is divergent and its sum is co. [l
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Theorem 6.8.

(i) A series consisting of nonnegative terms is convergent if and only if the
sequence of its partial sums is bounded (from above).

(1) If a series consisting of nonnegative terms is divergent, then its sum is infinite.

Proof. By the assumption that the terms of the series are nonnegative, we clearly
get that the sequence of partial sums of the series is monotonically increasing. If
this sequence is bounded from above, then it is convergent, since every bounded
and monotone sequence is convergent. (See [7, Theorem 6.2].) Then the series in
question is convergent.

If, however, the sequence of partial sums is not bounded from above, then it tends
to infinity. Indeed, if a sequence is increasing and is not bounded, then it tends to
infinity (see [7, Theorem 6.3]). So the series will be divergent and its sum will be
infinity. (|

We emphasize that by the above theorem a series consisting of nonnegative terms
always has a sum: either a finite number (if the series converges) or infinity (if the
series diverges).

Example 6.9. The series y .-, 1/i? is convergent, because its nth partial sum is

1
)—2<2

According to Exercise 4.20, the sum of the series >_ .-, 1/i% equals 72 /6. We will
give two more proofs of this statement; see Example 7.80 and Theorem 7.92.

n n

SreeY o+ (i

i=1 =2

In the general case, the following theorem gives an exact condition for the con-
vergence of a series.

Theorem 6.10. (Cauchy’s criterion) The infinite series y | a, is convergent if
and only if for every € > 0 there exists an index N such that for every N < n < m,

|ant1 + ango + ... +am| <e.

Proof. Since an+1 + antio+ ...+ aym = Sy — Sn, the statement is clear by
Cauchy’s criterion for sequences (see Theorem 6.13 of [7]). ([l

Exercises

6.1. For a fixed € > 0, give threshold indices above which the partial sums of the
following series differ from their actual sums by less than €.

(@) >0 1/2%; (b) 220 (=2/3)";
(€)X (=D g (d) 3255, 1/(n® +n).
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6.2. (a)Y°%, 1/(n? +2n) =? (b) 00, 1/(n? + 4n + 3) =2
(€) Yonip 1/(n® —n) =7(HS)

6.3. Show that
I+x+...+5)(1-2)<1

forallm =1,2,... and ¢ > 0. Deduce from this that the series >~ 1/n° is con-
vergent for all ¢ > 1. (H)

6.4. Let ay,ao,... be an enumeration of the positive integers that do not contain
the digit 7 (in decimal representation). Prove that > | 1/a,, is convergent. (H)

6.5. Prove that if the series Zzozl an,, 1s convergent, then

limy, o GF202ttne — (g (g)

6.2 Operations on Infinite Series

The example of the infinite series 1 — 141 — 1 + ... shows that we cannot manip-
ulate infinite series the way we deal with finite sums. For example, the series
(I=1)4+ (1 —=1)+...is convergent with sum zero (every term of the sum is zero,
and thus every partial sum is zero), but omitting the parentheses results in a diver-
gent series, 1 — 1+ 1 — 1+ .... We will see presently that reordering the terms of
an infinite series can change the sum of the series; it can even destroy convergence.

We need to find the “allowed” operations, i.e., the operations that change neither
the convergence of a series nor its sum; we should also find out which operations
are not (or not always) allowed.

First we consider some simple operations that are allowed in the sense described
above.

Theorem 6.11.

(i) Let > °° , ay be a convergent infinite series with sum A. Then the series
o0 . . .
Y mq € Gy is also convergent and its sum is ¢ - A, for every c € R.

(i) Let> > a,and . | b, bea pair of convergent infinite series with sums A
and B, respectively. Then the infinite series y =~ (an + by,) is also convergent
and its sum is A + B.

Proof. (i) If the nth partial sum of the series > -, a, is s,, then the nth par-
tial sum of the infinite series >, ¢-ay is ¢- s,. The statement follows from
lim, oo €S, = c-lim, o0 S, = ¢+ A.

(ii) If s,, and t,, are the nth partial sums of the two infinite series, then the nth partial
sum of the infinite series Ziozl(an + by) is s, + t,. The statement follows from
lmy, o0 (Sn + trn) = limy, o0 S + limy, oo t, = A+ B. O
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Remark 6.12. The proof of the following statements are similar to the proofs of (i)
and (ii) above.

If Y a, =400 and ¢ >0, then Y~ ¢-a, = xoo; if Y " | ap = 00
and ¢ <0, then Y °  c¢-a, = Foo.

If >>° a, = tooand Y - by is convergent, then -

n=1

(an + bp) = £o0.
Theorem 6.13.

(1) Deleting an arbitrary number of 0’s (possibly infinitely many) from, or inserting
an arbitrary number of 0’s (possibly infinitely many) into a convergent infinite
series does not change its convergence or its sum.

(ii)) Removing finitely many terms from, inserting finitely many terms into, or
changing finitely many terms of a convergent infinite series does not change
its convergence (but it might change its sum).

Proof. (i) Let the nth partial sum of the convergent infinite series 220:1 an be
sn. Deleting an arbitrary number of 0’s from the series makes the new sequence of
partial sums a subsequence of (s,,). (If the series is of the forma; + ... +ay + 0 +
0+ ..., we need to assume that we kept infinitely many 0’s.) On the other hand, on
inserting an arbitrary number of 0’s into the series, we obtain a series whose partial
sums have the same elements as the sequence (s,,), with some elements s,, being
repeated. (The partial sum s,, will be repeated if we insert a 0 after a,,.) Therefore, (i)
follows from the fact that if the sequence (s,,) is convergent, then the new sequence
of partial sum is also convergent with the same limit. (See [7, Theorems 5.2, 5.5].)

(ii) Let us assume that we have removed aj, from the terms of the series > - | ay,.
For n > k, the nth partial sum of the new series is s,, — ay, i.e., the sequence of the
new partial sums converges to A — ay. On the other hand, inserting ¢ between the
kth and (k + 1)st terms changes the nth partial sum of the new series to s,, + ¢, for
n > k. Thus, the sequence of the partial sums of the new series converges to A + c.
Neither of these operations changes the convergence of the series. Therefore, repeat-
ing these operations finitely many times also results in a convergent series. Changing
finitely many terms of the series can be obtained by first removing the terms to be
changed and then inserting the new elements into their respective places. By what
we proved above, it follows that the operation does not change the convergence of
the series. (]

We say that the infinite series >~ ¢, is obtained by interleaving the series
oo a, and Y07 | b, if the sequence (c,,) is the union of the sequences a,, and
by, and the order of the a,,’s and b,,’s in the sequence (c,) is unchanged. (More
precisely, the sequence of the indices (1,2, ...) should be divided into two disjoint
and strictly monotone subsequences (i) and (ji) such that a;, = ¢;, and b, = ¢;,
for every k.)

Theorem 6.14. If the series Y .~ | a, and Y -, by, are convergent with the sums
A and B, respectively, then every series obtained by interleaving these series is also
convergent with the sum A + B.
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Proof. Every series obtained by interleaving the series Y~ | a, and Y, b,, can
be obtained by inserting 0’s into both series at suitable places and then adding the
two resulting series. Thus the statement follows from Theorems 6.11 and 6.13. [

Remark 6.15. Similarly, we can show that if > 2  a, = +oc and Y, by is
convergent, then the sum of every series obtained by interleaving 2?21 a, and
S o2 by is £oo.

By adding parentheses to an infinite series we mean the following: we remove
some consecutive terms of the series and replace them by their sum. This operation
can be applied to several, even infinitely many, blocks of consecutive terms, assum-
ing that every term of the series belongs to at most one such block. We now give a
mathematically precise definition.

Definition 6.16. We call an infinite series of the form ;= (Zzzfnlli] an) a
bracketing of the infinite series Y- | a,,, where 1 =ng < nq < ... 1is an arbitrary
strictly increasing sequence of indices.

Theorem 6.17. Bracketing a convergent series does not change its convergence,
nor does it change its sum.

Proof. Let (s,) be the sequence of partial sums of the series. The sequence of par-
tial sums of the bracketed series is a subsequence of (s,, ), from which the statement
is clear. (See [7, Theorem 5.2].) U

Example 6.18. The series 1 — % + % — % + ... is convergent and its sum is log 2
(see Example 6.2.5). According to the previous theorem, the series

1 1 + 1 1 + 1 1 +
2 3 4 5 6)
is also convergent and its sum is log 2. Since - — =5 = 1/(n - (n + 1)) for every
n, we have that

1 1 1
—t—t—

1232 5.6Jr...:1og2. (6.4)

Exercise 6.13 gives an interesting geometric interpretation of this equality.

Now, we consider the operations that do not preserve the convergence of con-
vergent series. Such operations are, e.g., the deletion of parentheses when some of
the terms of the series are bracketed sums. In general, the convergence of the series

Y02, a,, does not follow from the convergence of the series > .-, (ZZ;;_I an) :

For example, as we mentioned before, the series (1 — 1) + (1 —1) 4 ... is con-
vergent, but the series 1 — 141 — 1+ ... is divergent. However, if removing the
brackets of a convergent series results in another convergent series, then the sums of
the two series are the same; this follows from Theorem 6.17.

The following operation we consider is that of reordering the terms of a series.
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Definition 6.19. We call a series of the form }_.° | a,(;) a reordering of the infinite
series » ", a, if 0: N* — N7 is an arbitrary one-to-one mapping (i.e., a permu-
tation) of the set of indices to itself.

Example 6.20. 1. Consider the series

1
e 6.5
i G + + (6.5)

Every positive integer appears in exactly one of the denominators, and both the odd
and even numbers appear in a monotonically increasing order. An odd integer is
followed by two even integers in the denominators, and a positive term is followed
by two negative terms. Obviously, (6.5) is a reordering of the infinite series

1l— =4+ = —>+... 6.6
+3 +..., (6.6)

where the bijection o is defined by the sequence (1,2,4,3,6,8,5,10,12,...). We

show that the series (6.5) is convergent with sum % - log 2 (which is half the sum of

(6.6)). Let s,, be the nth partial sum of the series. Then we have

YR N L N Y G S S BN S
3k = 2) 2" \376) 8T T \k—1 wk—2) 4
1 1

thus limy,_, o S31 = % -log 2. Since sgp+1 — S3k = 1/(2k +1) — 0 and s3p42 —
sse = (1/(2k + 1)) — (1/(4k +2)) — 0 as k — oo, it follows that s, — 3 - log 2
as n — oo, which is exactly what we wanted to prove.

2. Consider the series

1 1
-4 -S4 -2 - Tl — - —.... (67

We obtain this series by writing the first two terms of (6.6); then for every k > 2, we
write the term 1/(2k — 1) followed by the terms —1/(24) (with 2F~1 42 < 2i <
2%). The series (6.7) is another reordering of the series (6.6), where the bijection
o is defined by the sequence (1,2, 3,4,5,6,8,7,10,12,14, 16, ...). We show that
the series (6.7) is divergent. Indeed, the sum of the absolute values of the terms
with denominators 28=1 42, 28=1 14 2k is at least (28~1/2)-27F =1/4,
for every k. Thus the series does not satisfy the Cauchy criterion.

These examples prove that we do not have commutativity in adding infinitely
many numbers: the sum may depend on the order of its terms, and what is more, the
order of the terms can influence the existence of the sum.
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Exercises

6.6. Let > a, be a convergent series of positive terms. Show the existence of a
sequence ¢, — oo such that " ¢, - a,, is also convergent.

6.7. Let > a, be a divergent series of positive terms. Show the existence of a
sequence ¢, — 0 such that " ¢, - a,, is also divergent.

6.8. Show thatif >_ a,, is a convergent series of nonnegative terms, then > \/a,, /n
is also convergent. (H)

6.9. Show that if > a,, is convergent and (a,,) is monotone, then n - a,, — 0. (H)

6.10. Let > 7 | a, be a divergent series of positive terms, and let s,, be its nth
partial sum. Show that >~ ; a,,/(s,,)¢ is convergent if and only if ¢ > 1. (H)

6.11. Let ) °  a, be a convergent series of positive terms, and let r,, = a,, +
Ant1 + ..., for every n. Show that > >~ , a,/(r,)¢ is convergent if and only if
c<1.(H)

6.12. Letthe two series a; + as + ... and a1 — as + as — a4 + . .. be convergent.
Does it follow that the series a1 + a2 —as + a4 +as —ag + a7y +ag —ag +...1s
also convergent?

6.13. Let H be the set {(x,y): 1 <a <2, 0<y<1/z}. Show that H can be
tiled by rectangles with areas 1/(1-2), 1/(3-4), 1/(5-6),.... More precisely,
show that we can find nonoverlapping rectangles in H with areas m such

that their union covers the set {(z,y): 1 <2 <2, 0 <y < 1/z}. (H)

6.14. Let k and m be given positive integers, and consider the series Y~ | +1/n,

where k positive terms are followed by m negative terms. Thus the series corre-
sponding to the case k = m = 2 is

and the series corresponding to the case k = 2, m = 1 is
1+3—24+1+2-2+....
For what values of k£ and m will the series be convergent? (H)

6.15. Suppose that > a,, is convergent, and its sum is A. Let o be a permutation of
the set N* such that |o(n) — n| < 100 for every n. Prove that ) a,,,) is conver-
gent, and its sum is A.
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6.3 Absolute and Conditionally Convergent Series

We will now show that the strange phenomena presented above in connection with
reordering the terms do not occur in an important class of infinite series.

Definition 6.21. We say that the infinite series Y -, a,, is absolutely convergent
if the series >~ | |a,| is convergent.

Theorem 6.22.

(i) Every absolutely convergent series is convergent.

(i1) Every reordering of an absolutely convergent series is also absolutely conver-
gent, and its sum equals the sum of the original series.

Proof. Let > 7, a, be absolutely convergent. Then by the Cauchy criterion, for
every ¢ > 0 there exists IV such that |a, 1| + |ani2| + ... + |am| < & for every
N < n < m. By applying the triangle inequality, we get

|ant1 + anta + oo+ am] < lapta| + |anpe| + ..o+ |am] <&,

i.e., > o2 ay also satisfies the Cauchy criterion. This proves (i).

Let Y~ , by, be a reordering of the series Y-, a,,. For £ > 0 fixed, choose N
such that |ani1]|+ |ant2|+ ...+ |am| <e for every m > N. The terms
ai,...,ay are present in the series » ., b, (possibly with different indices). If
the maximum of their (new) indices is M, then for £ > M, the indices of the terms
bars+1, ..., by in the series > | a,, are greater than N. Thus, for m large enough

these terms occur among the terms an 41, - - . , Gy,. This implies

[bar+1| + [barsa] + .o+ bk] < lant1] + lans2| + ...+ |am] <&,
showing that the series Y-, |b,| also satisfies the Cauchy criterion. Hence, it is
convergent; that is, the series ) -, by, is also absolutely convergent. Then by (i), it
is convergent.

Letd >  a,=Aand) - b, = B.Fore > 0 fixed, let N and M be the same
as above. Let k > max(N, M) be arbitrary, and let

de(a1+...+ak)—<b1+...+bk>.

Clearly, in the sum dy, the terms a1, ...,ay are canceled, and thus dj, is a sum of
terms of the form +a,,, where n > N. Therefore, with m large enough, we have

lde| < lan| + lansi]l+ .-+ |am] < e

We have proved limy ., dx, = 0. However, limy_ ... d, = A — B,ie, A= B. O
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Remarks 6.23. 1. The converse of part (i) of Theorem 6.22 is not true: a conver-
gent series is not necessarily absolutely convergent. For example, the series (6.6) is
convergent, but the sum of the absolute values of its terms (the harmonic series) is
divergent. In other words, the set of absolutely convergent series is a proper subset
of the set of convergent series.

2. Reordering the terms of a series of nonnegative terms does not change the sum
of the series. Indeed, if a series of nonnegative terms is convergent, then it is also
absolutely convergent, and we can apply part (ii) of Theorem 6.22. On the other
hand, if a series of nonnegative terms is divergent, then every reordering of the series
is also divergent, for otherwise, the reordered series would be convergent, and the
original series itself would also be convergent (as a reordered series of a convergent
series). Thus, the sum of both series is infinity.

The following theorem gives a simple characterization of absolutely convergent
series. In order to state the theorem, we need to introduce some notation.

Notation 6.24. For every number z, let

) if > 07
7 = max(z,0) = N l v=
0, if x <0,

and
0, if £ >0,
x~ =max(—x,0) = T
—z, if x <O0.
We call the numbers z+ and = the positive and negative parts of x, respectively.
It is easy to see that

r=zt -2, |z|=2T +27, a:+:L|2+x, x_:7|x|2—x

hold for every z € R.

Theorem 6.25. The series Y., a,, is absolutely convergent if and only if the
series Y o, a} and Y, a, are both convergent.

Proof. If Y7 | a, is absolutely convergent, then by Theorem 6.22, it is convergent.
The convergence of the series Y -, a;t and >_°° | a,, follows from the formulas
lan| + a _ an] —a
a: = % and a, = %
and from Theorem 6.11.
The proof of the converse is similar, using the fact that |a,| = a} + a, for
every n. ([
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Theorem 6.26.

() If Y,°, ab = oo, then the series Y - | a, has a reordering whose sum is
positive infinity.

(i) For) .., a, = oo, the seriesy . | a, has a reordering whose sum is nega-
tive infinity.

Proof. (i) The condition implies that the series >, a,, has infinitely many pos-

itive terms. Let b1, ba, ... be the positive terms of the series, keeping the original
order of their indices. Then Y, b, = >, a;b = oo. If the series Y~ a,, has

only finitely many nonpositive terms, then clearly, the sum of the series is positive
infinity. Thus, we may assume that the series has infinitely many nonpositive terms;

let these terms be cq, co, . . ., keeping the order of their indices. Since Ef;l b, =
oo, there exist indices 1 = Ny < Ny < ... such that > = 1“7 by, > |c;| + 1, for
every i = 1,2, .... Itis easy to check that the sum of the serles

le+...+bN2,1+Cl+bN2+...+bN3,1+CQ+...

is a reordering of E;’ozl an, and its sum is infinity. Part (ii) can be proved
similarly. (]

Our next aim is to determine the set of sums of all reorderings of a given series.

Theorem 6.27.

(1) If the series En Lab and Y| a, are convergent, then every reordering of
the series Z _1 Gy Is convergent with the same sum.

(i) IfY,° af =ocand Y | a, is convergent, then the sum of every reorder-

ing of the series Y | ay, is positive infinity.
(i) If> 07, alb is convergentand " " | a,, = oo, then the sum of every reorder-
ing of the series anl ay, IS negative infinity.

. oo + _ o0 - _ . o0
iv) Ify ., ay =ocandy >~ a, = oo, then the series )~ | ay has a reorder-
ing whose sum is infinity, and | a, also has a reordering whose sum is
negative infinity. Furthermore, assuming also a,, — 0, the series y . | a,, has
a reordering whose sum is A, for every given A € R.

Proof. Statement (i) follows from Theorems 6.25 and 6.22.
Let o be a bijection on the positive integers. If the conditions of (ii) hold, then
it follows from Theorem 6.22 and Remark 6.23.2 that " | (ay(,)) " = 0o and
Zflozl(aa(n))’ is convergent. Since a,(,) = aj(n) — Ay for every n, Remark
6.12 implies 7 | 4y (n) = 00

Statement (iii) can be proved similarly.

By Theorem 6.26, we have only to prove the second half of (iv). Let > 7

n=1 n -
Zzo 1 @, = oo and a, — 0. Then clearly, the series Zn 1 Gn, has infinitely many
positive and infinitely many negative terms. Let by, bo, ... be the sequence of its

positive terms (keeping the order of their indices); then we have Zn 1 by = 00.
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If ¢, o, ... are the negative terms of >~ | a, (also keeping the order of their

indices), then > | ¢, = —oo. Let A € R be fixed.

Since 3% | b, = oo, there exists an index N such that - b, > A. Let Ny be

the smallest such N.

Since Znoozl ¢, = —00, there exists an index M such that Zg;l by, + ZnM:1 cn <

A. Let M, be the smallest such M.

As 3% | b, = oo, there exists an index N' > Ny such that >0 b, + M ¢, +

Zf:[: Nyt10n > A. Let N3 be the smallest such N.

As > ¢, = —o0, there exists an index M > M, such that SN b, +

SM e+ Z,ILV;MH bn + Zﬁ[:M1+1 ¢, < A.Let M, be the smallest such M.
Repeating the process, we obtain the indices N3 < No < ... and M; < M,

< .... Consider the infinite series

bi+...+bv, +ar+.. . +emy HON o+ b e e o
(6.8)
Obviously, this is a reordering of the series Zle a,,. We show that the sum of this
new series is A.

Let € > 0 be fixed. Since a,, — 0, there exists K such that |a,| < &, when n >
K. It follows that b,, < € and |¢,,| < ¢ for all n > K, since the indices of the terms
b, and ¢,, in the original series ZZO:1 a,, are at least n; thus for n > K, these indices
are also larger than K.

Let s,, be the nth partial sum of the series (6.8). By our choices of the indices
N;, we have

SMi14+N;—1 < A< SM;_1+N;-

Then for N; > K it follows that
A< Sy, 4N, = SM_+N,—1 H by, < A+, (6.9)

and thus |spr, ,+n, — A| < e. Similarly, we obtain |sy,+r, — A| < €, assuming
that M; > K. Therefore, |sn,+n,_, — A| < & and |sy, 4+, — A| < € for every @
large enough.

For a fixed 4, the values of s, for the indices N; + M;_1 <n < N; + M;
decrease, since we get s,, by adding a negative number (one of the ¢;’s) to s,_1.
Thus, the value of s,, is between the value of sy,;ns, , and that of sy, 4.
We have proved that for min(N;, M;) > K, we have |s,, — A| < . Similarly, for
min(N;, M;) > K, we have |s,, — A| < € for every N; + M; <n < N;y1 + M;.
We have proved |s,, — A| < ¢ for every n large enough. Since ¢ was arbitrary, it
follows that the sum of the series (6.8) is A. O

We can now rephrase and supplement Theorem 6.22 as follows.
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Theorem 6.28. For every infinite series, the following statements are equivalent:

(1) The series is absolutely convergent.
(i1) Every reordering of the series is absolutely convergent.
(iii) Every reordering of the series is convergent.
(iv) Every reordering of the series is convergent, and its sum is the same as the sum

of the original series. O

The infinite series 220:1 ay, is said to be conditionally convergent if it is conver-
gent, but not absolutely convergent. It is clear from Theorems 6.22 and 6.27 that for
a conditionally convergent series > - | a, we have Y~ at =3 >  a, = oc.
Since a,, — 0is also true (based on Theorem 6.5), part (iv) of Theorem 6.27 implies
the following theorem, called Riemann’s reordering theorem.

Theorem 6.29. If the series Y -, a, is conditionally convergent, then it has a

n=1
reordering with any prescribed sum (positive infinity, negative infinity, or A for
every A € R), and it also has a divergent reordering with no sum. (I

(For a proof of the last statement, see Exercise 6.18.)
The following theorem says that associativity holds for absolutely convergent
series in its most general form (i.e., even for sums of infinitely many terms).

Theorem 6.30. Let Y -, b; be an absolutely convergent series, where (b;)32 is
an enumeration of the numbers ay, ,, (k,n =1,2,...). Then the series ZZO:1 Qf.m
is also absolutely convergent for every k, and furthermore, if Zzozl apn = A (k=
1,2,...)and Zfil b; = A, then the series Z;’;l Ay is also absolutely convergent,
and Y 72 A = A.

Proof. Let ) ;°, |b;| = B. For every k, each partial sum of the series >~ | |ax.»|
is less than or equal to a suitable partial sum of the series Y .-, |b;|. Therefore, no
partial sum of ) | |ag,,,| is larger than B. Thus, the sequence of the partial sums
of the series Y~ |a,n| is bounded, and then the series is convergent. For every
n,m, we have

toHlamat ot amal <D0 ail, (6.10)

i=1j=1

|a1)1 +...F+a1n

and the right-hand side is at most B. If n — oo on the left-hand side of (6.10),
then we obtain |A;| + ... + |A4,,| < B. Since this holds for every m, it follows that
> he; Ag is absolutely convergent.

Lete > 0 be fixed. Since .~ |b;| is convergent, by the Cauchy criterion (The-
orem 6.10) it follows that there is an index N such that " ., [bs| < ¢ holds for
every n > N. Since (b;)52, is an enumeration of the numbers ay, ,, (k,n = 1,2,...),
there exists an index M > N such that each of the terms by, . . ., by appears among
the terms ay, ,, (k,n < M). We show that
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> aka+.. tagn) = (br+...+by)|<e (6.11)
k=1

for every m,n > M. Indeed, by the choice of the index M, the terms ay, ; (k < m,
t < n) include each of by, ...,by. Subtracting b; + ...+ b,,, we get a sum whose
terms are of the form +b;, where the indices i are distinct and are larger than V.
Let p be the largest of these indices. Then the left-hand side of (6.11) is at most
[bn+1] 4 ...+ |by| < e by the choice of the index N.

Fixing m > M and letting n approach infinity in (6.11) we obtain

S Ap-Al<e
k=1
Since this is true for every m > M, it follows that ZZO:I A, = A. |

In most of the applications of this theorem we have an infinite array of numbers
whose terms, in a suitable order, form an absolutely convergent series. Then, adding
the array column by column or row by row also gives an absolutely convergent
series whose sum is the same as the sum of all the terms of the array.

Example 6.31. 1. We prove

- 1
n—1
. = — 6.12
; n-a T (6.12)
for every |z| < 1.
We know that 1 + z + 22 + ... = 1/(1 — z) for every |x| < 1. Multiplying by
x" for every i > 0 and appending i zeros into each row yields

1
1 + =z + 22 + 2% + =
15.13
0 + = + 22 + 23 + =
1—-=z
.1‘2
0 + 0 + 22 + 2* + = 7 (6.13)
‘1?350
0+ 0 + 0 + a% + =

These equalities also hold for |z| in place of x. Thus, the sum of finitely many of
the absolute values of the terms of this array is at most
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for an appropriate N. This sum is smaller than 1/(1 — |x|)?, which proves that the
terms on the left-hand side of (6.13) form an absolutely convergent series, regardless
of the order in which they are listed. Then, by Theorem 6.30, the sum of this series is

o0 n 1

Zlf:v: (1—x)2

n=0

Adding the terms of the table column by column and applying Theorem 6.30 implies
(6.12). For example, >~ | 2% = 2.
2. Theorem 6.30 supplies us with a new proof of the fact that the harmonic series is

divergent. Consider the following equalities:

1

+ ! + ! + = 1

1-2 2.3 3.4 -
S S S
2.3 3.4 )
1 1
O—|—0+%+ :g

w
e

If the harmonic series were convergent, the terms on the left-hand side would form
an absolutely convergent series with the sum »_ > (1/n). However, adding the
table column by column and applying Theorem 6.30, we would get

1+1+1+ —1+1+1+1+
2 3 4 2 3 4 7

which is impossible.

Exercises

6.16. Show that every convergent series can be bracketed such that the resulting
series is absolutely convergent.

6.17. Construct a series that can be bracketed such that the sum of the resulting
series is A, for every given real number A. (S)

6.18. Show that every conditionally convergent series has a divergent reorder-
ing. (H)

6.19. Let the series >~ a,, be conditionally convergent. Show that for every real
number A, there exists a sequence of the indices n; < ny < ... such that the series
> pe | an, is convergent with sum A.
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6.20. Find the sums > >~ n?z"and ) -, n®z™, forevery || < 1.Find the sums
of the series > >, n?/2" and Y77 n®/2".

6.21. Leta, € R? forevery n = 1,2,.... We say that the infinite series Zle an
is convergent and its sum is the vector a € RP if the sequence of its partial sums
converges to a. Show that if » a,, is convergent, then a,, — 0.

6.22. Show that if a,, € R? and }_ |a,| < oo (i.e., if > ay, is absolutely conver-
gent), then Y a,, is convergent.

6.23. Leta,, € R? be an arbitrary sequence of points of R?, and let S denote the set
of the sums of the reorderings of the series > a,, that are convergent. Prove that one
of the following cases holds: S is empty; .S consists of a single element (this holds
exactly when the series is absolutely convergent); S consists of a line; S contains
the whole plane R2. ()

6.4 Other Convergence Criteria

Despite the fact that the Cauchy criterion gives an exact condition for convergence,
we can rarely use it in practice, since its condition is hard to check. Thus, we need
other criteria that are considerably easier to verify, even if it means that in most
cases, we get only sufficient, but not necessary, conditions for convergence.

We say that the series Y-, by, is a majorant of the series Y~ an, if |a,| <
b, holds for every n large enough. The following important convergence criterion
is called the majorant criterion.

Theorem 6.32. If the infinite series Z:il an has a convergent majorant, then

>0 ay, is absolutely convergent.

Proof. Let Y | b, be a convergent majorant of »_~ , a,. Then by definition,
|ar| < b, holds for every n large enough. Changing finitely many terms does not
influence the convergence of the series; thus we may assume that |a,,| < b, holds for
every n. Then the partial sums of the series >~ | |a,| are not larger than the corre-
sponding partial sums of the series 220:1 b.,. The sequence of the latter is bounded
from above, since Zle b, is convergent. Thus, the sequence of the partial sums
of > | |a,| is also bounded from above, and then, by Theorem 6.8, >"°" | |a,| is

convergent.

Example 6.33. The series > - (sinn)/n? is convergent, since |(sinn)/n?| <
1/n? for every n, and the series o1/ n? is convergent by Example 6.11.1.

The next corollary is obtained by a simple application of the majorant criterion.

Corollary 6.34. Every bracketed series of an absolutely convergent series is also
absolutely convergent.
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Proof. Every bracketed series obtained from Zzozl an has a majorant that is the
appropriately bracketed series obtained from Y~ | |a,|. If >°°7 | |a,| is conver-
gent, then by Theorem 6.17, this majorant series is also convergent. Thus the state-
ment follows from Theorem 6.32. (]

The next two convergence criteria are used mostly for certain series having terms
of a special form.

Theorem 6.35. (Root criterion)

(i) If there exists a number q < 1 such that {/|a,| < q holds for every n large
. oo .
enough, then the series )~ ay is absolutely convergent.

(i) Iflimy, oo V/|an| < 1, then the series Zfﬁ:l an, is absolutely convergent.

Proof. (i) We have |a,,| < ¢" for every n large enough. Since by Theorem 6.4, the
series > _—_, ¢™ is convergent, we can apply the majorant criterion.

(ii) Choose a number ¢ such that lim,, .~ V/|a,| < ¢ < 1. Then {/|a,| < ¢ holds
for every n large enough, and thus by (i), the series fozl a,, s absolutely conver-
gent. (]

Example 6.36. For |x| <1 the series » .~ n-z" is absolutely convergent.

Indeed, {/|n-am| = |x|- — |z| < 1 as n — oo. (For the sum of the series,
see Example 6.31.1.)

Remarks 6.37. 1. The conditions of the root criterion are not necessary for a
series to be convergent: the series 220:1 1/n? is convergent, despite the fact that
lim, . ¥/1/n? =1, and thus there exists no ¢ < 1 such that {/1/n2? < ¢ for
every n large enough.

2. For the convergence of the series Y | a,, itis not enough to have {/|a,| < 1 for
every n large enough (or even for every n). This condition means only that |a,,| < 1
for every n large enough, and it does not follow that a,, — 0, which is a necessary
condition for convergence.

3.If lim, . {/|an| > 1, then the series -, a,, is divergent, since |a,| > 1 for
every n large enough.

4. From the condition lim,,_,~, {/|a,| = 1 we can infer neither the convergence nor
the divergence of the series. The series > 1/ n? is convergent, while the series

>0, 1/nis divergent, even though lim,, .o {/1/n? = lim,_. Q/1/7 =1.
Theorem 6.38. (Quotient criterion) Let a,, # 0 for n large enough.

(1) If there exists a number q < 1 such that GZA

< q holds for every n large

enough, then the series | a,, is absolutely convergent.

(11) Ifhmn—>oo

An+1
(e

< 1, then the series Z _1 Gn is absolutely convergent.
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Proof. (i) If a,, # 0 and |a,+1/a,| < g for every n > ng, then

|ano+1| <gq- |an0|;
|a710+2| <q- |a7’bo+1| < q2 : |a710|’

|a‘n0+3| <gq- |ano+2| < q3 : |ann|7 (614)

and so on. That is, we have |a,| < ¢"~ " - |ay,,| for every n > ng. Letc = ¢~ ™ -
|an,|. Then |a,| < c¢- ¢™ for every n > ng. Therefore, we can apply the majorant
criterion, since by Theorems 6.4 and 6.11, the series 270;1 c - q" is convergent.

(ii) Choose a number g such that lim,, o |an41/an| < g < 1. Then |ay,+1/an| < ¢
for every n large enough, and thus by (i), the series Y | a,, is absolutely conver-
gent. [

The root criterion is stronger than the quotient criterion in that if a series satisfies
the quotient criterion, then it satisfies the root criterion as well; but the converse of
this is not true (see Exercise 6.25). However, the quotient criterion is still widely
used, because it is often easier to apply than the root criterion.

Example 6.39. 1. The convergence of the series 220:1 nx™ can be also verified
when |z| < 1 by applying the quotient criterion:

((n+1) - 2"/ -a"| = Ja| - (n+1)/n — |a] <1

asn — oo.
2. The series Y-, n!/n™ is convergent, since

(n+1)! n! n+1 1 1
T n = —— v = = - <1
(n+1) n (n+1)-(1+3) (1+43) €

n

asn — oQ.

Remarks 6.40. 1. The conditions of the quotient criterion are not necessary for
the convergence of a series: the series Zle 1/n? is convergent, even though
lim,, o, n?/(n + 1)% = 1, and thus there exists no ¢ < 1 such that n?/(n + 1)? <
q for every n large enough.

an

2. It is not enough for the convergence of the series » - ; a,, to have ’¢ <1

for every n large enough (or even for every n). This condition means only that
|ant1| < |an| for every n large enough, which does not even imply a,, — 0, which
is a necessary condition of the convergence of the series.

a

3.If limy, oo |@n41/ay| > 1, then the series Y | a,, is divergent, since |a, 1| >
|a,,| for every n large enough, and then a,, /4 0.

4. From the condition lim, . |an+1/an| =1 we can infer neither the conver-
gence nor the divergence of the series itself. The series 220:1 1/n is divergent,
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while the series > -, 1/n? is convergent, even though lim, .. n/(n+1) =
lim, .o n?/(n+1)% = 1.

The next two criteria can be applied only if the terms of the series are nonnegative
and form a monotonically decreasing sequence. At the same time, these criteria give
us not only sufficient, but also necessary, conditions for the convergence of a series.

Theorem 6.41. (Integral criterion) Let a be an integer, and let f be a monoton-
ically decreasing nonnegative function on the half-line [a,c). The infinite series
Sooo ., f(n) is convergent if and only if the improper integral faoo f(x)dx is con-

vergent.

Proof. Let n > a be a fixed integer, and consider the partition of the interval [a, n]
by the integers a, a + 1,...,n. Let s,, and .S,, denote the lower and upper sums of
the function f corresponding to this partition. Then

n n n—1
S F0) = sn < / f@)de < Su = 3 £4), (6.15)

i=a+1

since—recalling that f is monotonically decreasing—the smallest and the largest
values of f on the interval [i — 1,4] are f(¢) and f(i — 1), respectively. Since f is
nonnegative, the function w +— f: f(z) dx is monotonically increasing, and thus
the improper integral faoo f(x) dx exists: the limit is either finite (when the integral
is convergent) or infinite (when the integral is divergent). If the integral is conver-
gent, then the sequence n +— fan f(z) dz is bounded (since it is convergent). The
first inequality of (6.15) implies that the sequence (s,,) is also bounded. Then by
Theorem 6.10, the series >~ f(n) is convergent.

On the other hand, if the integral is divergent, then the sequence n +— fan f(x)dx
converges to infinity. The second inequality of (6.15) implies that the sequence (.S,,)
also converges to infinity, and then the series » - f(n) is divergent. O

Example 6.42. For every ¢ > 0, the terms of the series Y. -, 1/(n-logn) are
positive and form a monotonically decreasing sequence. Thus, the series is conver-
gent if and only if the integral f;o 1/(z - log® x) dx is convergent, i.e., if and only
if ¢ > 1. (See Example 19.5.1 of [7].)

Theorem 6.43. (Condensation criterion) Suppose that the sequence (ay,) is non-
negative and monotonically decreasing. Then the series Zzozl an and Zzo:l 27 .
agn are either both convergent or both divergent.

Proof. Let the partial sums of >_°°  a,, and > > | 2" - as» be denoted by s,, and
Sy, respectively. We put Sy = 0. Since agn > a; for every ¢ > 2™, we have

2n+1

Sn — S’n—l =2". Qagn Z E A; = Sgn+1 — Sgn
i=2"+41


http://dx.doi.org/10.1007/978-1-4939-7369-9_6

6.4 Other Convergence Criteria 213

for every n, and thus

Sy = Z(Sk - Sp-1) > Z(S2k+1 — 8gk) = Sgn+1 — S2.

k=1 k=1

It follows that if the partial sums of Z;il 2™ - agn are bounded, then the partial
sums of the series fo:l a,, are also bounded. Similarly, as» < a; for every ¢ < 27",
and thus

on
Sn_Snfl :2n'a2n §2 Z ai:2'(82n _82n—1).
i=2n—141

Then . §
Su =3 Sk~ Sio1) <23 (a1 — 8301) = 830 — 51

k=1 k=1

Therefore, if the partial sums of the series Zf;l a,, are bounded, then the partial
sums of 2211 2™ - agn are also bounded. Thus, we can apply Theorem 6.10. ]

Example 6.44. Consider the series Y.~ ,1/(n -log®n), where ¢ > 0. The con-
densation criterion states that the series is convergent if and only if the series
S, 2m/2m og2m =307 ,1/((log®2) - n¢) is also convergent, i.e., if and
only if ¢ > 1.

Our criteria so far have given conditions for the absolute convergence of a series.
Another similar criterion can be found in Exercise 6.40. We now introduce a couple
of convergence criteria, applicable to series having terms of a certain special form,
that do not guarantee the absolute convergence of the series.

Theorem 6.45. (Leibniz criterion) For every monotone sequence (a,,) converging
. o0 n—1 .
to zero, the series y >~ (—1)"""ay is convergent.

Proof. We may assume that the sequence (a,, ) is decreasing. (Otherwise, we turn to
the sequence (—a,,).) Let s,, denote the nth partial sum of the series. The conditions
imply

S2 <84 < ...S2m < Sap—1 < S2p-3 < ... <83 <51

for every n. Thus the sequence (s2,,) is monotonically increasing and bounded from
above, and the sequence (S3,_1) is monotonically decreasing and bounded from
below. Therefore, both sequences are convergent. Furthermore, ss,, — Son—1 =
agy, — 0, and thus lim,,_, S2, = lim, 00 S2,,—1. It follows that the sequence (s,,)
is convergent, which is exactly what we wanted to prove. (]

Example 6.46. The series 1 — % + + — 4 + ... satisfies the conditions of the Leib-
niz criterion, and thus it is convergent. The sum of the series is 7 /4. This is obtained
by applying the formula
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x> b

tgr=o0— —+——...,
arctger = x 3+5

for x = 1 (see Example 7.41.2.).

Theorem 6.47. (Dirichlet' criterion) Suppose that

(i) the sequence (a,,) is monotonically decreasing and converges to zero, and

(ii) the partial sums of the series >, by, are bounded.

Then the series y . | anby, is convergent.

Note that the Leibniz criterion is a special case of the Dirichlet criterion (let
b, = (—=1)"71).

Proof of Theorem 6.47. Let s,, be the nth partial sum of the series > -, by,
and suppose that |s,,| < K for every n. Let € > 0 be given. Since a,, — 0, we can
choose an index N such that |a,,| < €/K holds for every n > N.If N <n < m,
then Abel’s? inequality® gives

—e < (=K) - an <apbp+...+anbn <K-a, <e,

ie., [anby, + ... + amby,| < e. Thus the series >~ | a,b, satisfies the condition
of the Cauchy criterion, and so it is convergent. (]

Example 6.48. If x # 2km (k € Z) and ¢ > 0, then the series Y~ (cosnz)/n®
is convergent. Indeed, the sequence (n~¢) is decreasing and tends to zero. On the
other hand, for « # 2k the partial sums of the series ) | cos nz are bounded, as
seen from the identity

i 2 1
cosT + cos2x + - - - + cosnx = Sl?(nx/ ) - COS (n+ Dz
sin(z/2) 2

Thus the Dirichlet criterion applies.

Theorem 6.49. (Abel’s criterion) Suppose that
(i) the sequence (ay,) is monotone and bounded, and
(ii) the series 220:1 by, is convergent.

Then the series y .- | anby, is also convergent.

! Lejeune Dirichlet (1805-1859), German mathematician.
2 Niels Henrik Abel (1802-1829), Norwegian mathematician.

3 Abel’s inequality states that if ¢; > co > - > cp > 0and m < dy + -+ + dj, < M for all
k=1,...,n,thenc; -m < cidy + -+ ¢cndn < c1 - M. (See [7, Theorem 14.54].)
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Proof. We may assume that the sequence (a,,) is monotonically decreasing, since
otherwise we may replace the sequence (a,,) by (—a,,). Let lim,, .~ a, = a. Then
(an — a) is decreasing and converges to zero. Since the series y .~ , b, is conver-
gent, the sequence of its partial sums is bounded. Thus, by the Dirichlet criterion,
the series Y~ | (an — a)b,, is convergent. The series Y a,b, is obtained by
adding the series Y - | a - b, term by term to the series > (a, — a)by,. There-
fore, >°°° | a,b, is convergent by Theorem 6.11. ]

For example, it follows from Abel’s criterion that the convergence of » > | b,
implies the convergence of >~ | /2 - by,.

Exercises

6.24. Find an example of a convergent series with positive terms that satisfies none
of the conditions of the root criterion, quotient criterion, and integral criterion.

6.25. Suppose that a,, # 0 for every n large enough.
(a) Show that lim,, "% < 1 implies limy oo /Jan] < 1.
(b) Find a sequence (a,) such that lim, . V/|an] <1, but

An41
an,

lim,, < 1 is not true. Can we also find an example such that the limit

An+1

lim, 00 exists?

n

6.26. Leta, > 0, b, > 0 for every n, and let a,, /b, — 1. Show that > a,, is con-
vergent if and only if >_ b,, is convergent. Find an example to show that this is not
true if we omit the condition a,, > 0, b,, > 0.

6.27. Let ) a, and ) b, be series of positive terms, and suppose that a,,41/a, <
bnt1/by for every n large enough. Show that if > b,, is convergent, then > a,, is
also convergent.

6.28. Show that if a,, > 0 and > a,, = oo, then > a, /(1 + a,) = oo.

6.29. Show that > arctga,, is convergent whenever »  a,, is a convergent series
of positive terms.

6.30. Show that if a,, > 0 for every n, and > a,, is convergent, then » a% is also
convergent. Show that the condition a,, > 0 cannot be omitted.

6.31. Let > a, and >_ b, be convergent series of positive terms. Does it follow
that (a) > anby, and (b) " max(ay,, by,) is also convergent?

6.32. Show that if 3" a,, is convergent and (a,,) is monotone, then >_n - a2 is also
convergent. Show that the condition of monotonicity cannot be omitted.
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6.33. Decide, for each of the following series, whether it is convergent.
(

a) Yn'0/(3" —2"); (b) S 1/y/n (n + 1);

() > n'-q" (lg] < 1); (d) S 1/(logn + v/n);

(€)X (1 —cosy); (f) X(logn)/n*;

(g) >21/(n 4 1000+/n); (h) Y n?-e vV,

()3 o -sin 4 ()32 J - cos &

(k) 3o o () (v +log"n)/(n® —log’ n);
(m) S n/v/nt — log” n; () T (V7 1)

()X (VaF1— Vn?+1); ()% (" = 1)

(@)X (V2-1); (r) Y B (Y2 - 1),

(s) X (logn)'oe 8™ /n?; )X n™n/ (n+ )"

S (loglog n)'°&™ /(log n)v™;
(v) X (logn) Y™ /(n'*8'°8™ + (loglog n)'>5™).

DY (1-1)7 ()3 (:22)"
)Yt/ (d) 3o n'e™ /(logn)™;
9x(a:)" (05 2 o+ 1)
9T 1+ )" A
i) 3 (log n)loE™ /2m; 03 (re2)

.35. Decide, for each of the following series, whether it is convergent.

a) > 2™ - nl/n™; (b) Z(n!)2/2n25
S 1001~11.gf)?(~-2-7(Ll_0%0+n); (d) Y nt0/10™;

)1/ (%) (£) 22n®/(L+2)" (e >0).
6.36. Is the series ) 1/(n + /n+ ¢/n+ ...+ {/n) convergent? (H)

(
(
(
(
(
()3 (sh%)".
6
(
(
(

6.37. Show that if > ° a, is a convergent series of positive terms, then
S, (an)t~(1/ 108 ™) g also convergent. (H)

6.38. Show that the series Y - 5 1/(n - logn - loglog® n) is convergent if and only
ifc> 1.

6.39. Leteg = 1, and let e = e+ for every k > 0. Furthermore, let /o (z) = x
and {11 (z) = log(¢(x)) for every k > 0 and = > ey.
(a) Show that for every k, the series

Yonse, 1/ bo(n) - ta(n) - - £ (n) - (y1(n))%)

is convergent if and only if ¢ > 1.

(b) Let L(z)=k if ep <x<ery1 (k=1,2,...). Show that the series
Soni s 1/(lo(n) - £1(n) -+ Lriny(n) - (L(n))¢) is convergent if and only if ¢ > 1.
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6.40. Let the terms of the series Y~ | a,, be positive.

(a) Show that if lim,, oo 7 - aiﬁ — 1) > 1, then the series Zzozl a, is conver-
gent.

(b) Show that if n - (#ﬂ — 1) < 1 for every n large enough, then the series
ZOO ay, is divergent. (Raabe’s ratio test)* (H)

n=1

6.41. Suppose that the sequence (a,,) is monotonically decreasing and tends to
zero. Does this imply that the series a1 + as — a3 — a4 + a5 + ag — . .. is conver-
gent?

6.42. Is the series >, % convergent? Is it absolutely convergent?

6.43. Is the series >~ log (1 + #) convergent? Is it absolutely conver-
gent?

6.44. Show that for ¢ > 0, the series Y - | SZ j5 convergent for every = € R.

nC
6.45. We say that the sequence (a,,) is of bounded variation if
D onet lant1 — an| < co.
Show that every sequence of bounded variation is convergent. Find an example of a

convergent sequence that is not of bounded variation.

6.46. Show that the sequence (a,,) is of bounded variation if and only if there exist
monotone and bounded sequences (b,,) and (¢, ) such that a,, = b,, — ¢, forevery n.

6.47. Let (ay,) be a sequence of bounded variation tending to zero, and suppose that
the partial sums of the series > b,, are bounded. Show that >_ a,,b,, is convergent.

6.48. Let (a,,) be of bounded variation, and let ) b, be convergent. Show that
> anby, is also convergent.

6.49. Let a3 <az <... be a sequence of positive integers such that
{k: ar < x}| > cx/logx for every = > 2 with a constant ¢ > 0. Show that

> 1/ap = 0. ()

6.5 The Product of Infinite Series

Multiplying infinite series is much more complicated than the operations we have
explored so far, to such an extent that even defining the operation can be prob-
lematic. One way to compute the product of the finite sums a; + ...+ a; and

4 Joseph Ludwig Raabe (1801-1859), Swiss mathematician.
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by 4 ...+ by, is to add all the products a; - b;. (This follows from the distributiv-
ity of addition and multiplication, combined with the commutativity of addition and
multiplication.) By the commutativity of addition, the summation of the a; - b; can
be performed in an arbitrary order. However, in dealing with infinite series, we have
to sum infinitely many products a; - b;, and (as we saw before) the order of the addi-
tions can influence the value of the sum. Thus, when we define the product of two
infinite series we need to also define the order of the addition of the products a; - b;
and then we need to check whether the operation defined in this way satisfies the
condition that the sum of the product of two infinite series is the same as the product
of the two sums.

Definition 6.50. We call the series
a1by + a2b1 + a2bz +a1bs + ...+ anbit +anba + ...+ anbn + an—1bp + ... +a1bp + ...

the square product of the series » ., a, and » , b,. More precisely, the
square product of the series Y -, a,, and >~ b, contains every product a;b;
in the order max(i, ), and for max(i, j) = n we first write the terms a,b; for
j=1,... n, followed by the terms a;b, for i=n—1, n—2,...,1. (In other
words, we list the entries of the following table by going along the sides of its upper
left squares, first from left to right, then from bottom to top.)

a1b1 a1b2 albn
T

agbl agbz . agbn N
f (6.16)
T

anby — apbs — ... — a,b,

Theorem 6.51. If the series > ., a, and Y., b, are convergent with sums A
and B, respectively, then the square product of >, a, and Y~ by, is also con-
vergent, and its sum is A - B.

oo

Proof. Let the nth partial sum of " | a,, > .-, b, and of their square prod-
uct be denoted by r,,, s,, and t,,, respectively. Obviously, ;2 = r - s holds for
every k, implying that limy_, ., tg2 = A - B. We need to show that the sequence
(t,,) converges to A - B.

Let € > 0 be fixed. We show that |¢,, — A - B| < 2¢ for every n large enough.

We know that r,, — A and s,, — B. In particular, these sequences are bounded.
Let |r,| < K and |s,| < K for every n, where K > 0. By Theorem 6.6 we have
a, — 0andb,, — 0, and thus there exists N7 such that |a,,| < ¢/K and |b,| < e/ K
for every n > Nj.

Since limy_, o, t32 = A - B, there exists N such that |¢,2 — A - B| < ¢ for every
k > Ns.
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Let n > max(NZ, N7) be arbitrary. If k= [/n], then we have k > max
(N1, N3) and k% < n < (k + 1)2. Now, either n = k? + j, where 0 < j < k, or
n=(k+1)?—j, where 0 < j < k.

Ifn=kK+ 7 with 0 < 5 < k, then (by the definition of the square product) we
have

ty =12 + ap1bt + ...+ app1b; =tz + ags1 - S5,

which implies
th — A B| < [tn — tga| + [tz — A+ Bl <|ag41] - [s;] +€ < %'K+5:25.
On the other hand, if n = (k + 1)2 — j with 0 < j < k, then we have
tn =tz — (@jbrg1 + .o+ arbpy1) = tegr)2 — brgr - 75,
which implies

€
[tn = A~ Bl < [tn = tgernz] + b2 — A Bl < bt -rjl +e < - K +e=2e
We have proved that |t,, — A - B| < 2¢ for every n large enough. Since ¢ was arbi-
trary, we have t,, — A - B. O

We now prove that for absolutely convergent series, the order of the terms of the
product series does not affect the sum.

Theorem 6.52. Let ZZO:1 an and 220:1 by, be absolutely convergent series with
sums A and B, respectively. Then adding the terms a;b; (i,j =1,2,...) in any
order, we obtain an absolutely convergent series, whose sum is A - B.

o0

Proof. Let the square sum of the series Y~ a, and Y.~ b, be Y07 | ¢,. By
assumption, the series >~ |a,| and Y |b,| are convergent, and then, by The-
orem 6.51, their square product is also convergent. On the other hand, this square

product is nothing other than the series > -, |c,|, since |a;| - |b;| = |a;b;| for every
i and j. With this we have proved that > ¢, is absolutely convergent, and the
statement of the theorem follows from Theorem 6.22. ]

An important class of infinite series consists of the series of the formzzozo anpx™,
whose terms depend on the value of x. These series are called power series. Of the
series we have seen so far, the series > >~ (2™ and Y~ (n + 1) - 2" are power
series.

If we want to find the product of the power series >~ ; a,a™ and Y7 ( by,
we need to add up the terms a;x" - bjz? = a;b; - "7 In this case, it is only natural
not to follow the order of the square sum, but rather to group the terms based on the
value of ¢ + j, and then to add these groups, resulting in another power series. This
method results in the power series Y~ o (3°1  a;b,—;) - 2™
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The previous reordering can be done for every pair of infinite series. To follow
the notation of the power series, we will start the indices of the series from zero
from now on.

Definition 6.53. We say that the Cauchy product of the infinite series Y.~ an
and Y7 b, is the infinite series

i < Y aibn_i> .
n=0 \i=0

(That is, we compute the terms of the Cauchy product by adding the terms along the
diagonals in the following table.)

aobo a0b1 ce c. aobn ce
/!
albo a161 . albn_l
/
e ' S (6.17)
ap—1b1
/
anbo a, b1 ... - anb, ...

Theorem 6.54. Suppose that the series ZZO:() an and ZZO:O by, are absolutely con-
vergent, and let their sums be A and B, respectively. Then the Cauchy product of
these series is also absolutely convergent, and its sum is A - B.

Proof. Since the Cauchy series is the result of reordering and bracketing the square
sum, our claim follows from Theorems 6.51, 6.22, 6.17, Corollary 6.34, and Theo-
rem 6.52. (I

Example 6.55. 1f |z| < 1, then the series >~ ||™ is convergent by Theorem 6.5,
and thus the series )~ ;2" is absolutely convergent. By taking the Cauchy prod-
uct of this series with itself we get > >0 (n+1)-2" =3 "7 n-2""!, and our
previous theorem implies

(1—-z)*

for every |z| < 1 (as we saw in Example 6.31).

We now show that the Cauchy product of two convergent series can be divergent.
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n+1
Example 6.56. The series Y ( \/L is convergent, since it satisfies the Leibniz

criterion. Let ). ¢, be the Cauchy product of this series with itself, i.e., let

Z\/erl \/nJrlfz

By the arithmetic—geometric means inequality, we have

2
Vit 19 < %
for every 4, which implies |c,,| > (n + 1) - %ﬁ > 1 for every n. It follows that the
series Y .~ ¢y is divergent.

Thus, the Cauchy product of two convergent series can be divergent if the series
are not absolutely convergent. As an improvement on Theorem 6.54 we now show
that if at least one of the two series is absolutely convergent, then their Cauchy
product will be convergent.

Theorem 6.57. (Mertens’s® theorem) Let the series > .., a, and > oo, by, be
convergent with sums A and B, respectively. If at least one of these two series is

also absolutely convergent, then their Cauchy product is convergent and its sum is
A-B.

Proof. Let the Cauchy product of the series Y~ ;a, and >~ (b, be D7 cx,
and let us denote the nth partial sums of the series > ° a, and Y b, by ry
and s, respectively. Furthermore, let S,, = r, - s, — Z:o ¢k (This is the sum of
terms of Table (6.17) forming a triangle.) Since r,, — A and s,, — B, it is enough
to prove that S,, — 0. We may assume that 22,11 a, is absolutely convergent, since
the roles of the two series are symmetric. Let Y, |a,| = M. It is clear that

Sn = iai . zn:bj — Z aib]-7
=0 7=0

i+j<n

i.e., S, is the sum of the terms a;b; satisfying i <mn, j <n and n <14+ j. Thus

we have
Sn = Z Z aib; = Zaz — Sni). (6.18)

1=1 j=n+1—1

The idea of the proof is that if n is large, then s,, — s,,—; is small for small ¢ (since
(sn) is convergent), while for large ¢ the sum > |a;| is small (since the series
>0, ay, is absolutely convergent). That is, S, is small when n is large. In the
sequel we turn this idea into a mathematically precise proof.

3 Franz Carl Joseph Mertens (1840-1927), Polish-Austrian mathematician.
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The series (s,,) is bounded, since it is convergent. Let |s,,| < K for every n.
Let € > 0 be fixed, and apply the Cauchy criterion to both the convergent sequence
(s5,) and the convergent series » - |a,|. We obtain an N such that for every
N <'m < n, we have both |s,, — $,,| < eand > |a;| <e.

Letn > 2N be arbitrary. If ¢ < N, thenn — ¢ > N and |s,, — $,—;| < &, which

implies

N N

Zai'(sn_sn—i) SE-Z\(M <e-M.

=1 i=1
On the other hand,

n n
Z a; - (Sp — Sn—i)| < Z la;| - 2K < ¢-2K.
i=N+1 i=N+1

Adding these two estimates, we obtain, by (6.18), that |S,| < (2K + M) - ¢ for
every n > 2N. Since ¢ > 0 was arbitrary, this proves .S,, — 0. ([

Note that Theorem 6.57 does not claim the absolute convergence of the Cauchy
product of two series satisfying the conditions. In fact, this is false in general; see
Exercise 6.50.

Exercises

6.50. Show that the Cauchy product of the series > % and Y %
is not absolutely convergent.

6.51. Find the square and Cauchy products of the series 1 — 5 — = — 3 — ...and
1+1+....

6.52. Find the Cauchy product of the series Y~ ;2" /nland Y " y"/nl.

6.53. Show that the series Y-, n? - 2™ is absolutely convergent for every |z| < 1,

and find its sum. Do the same with the series > - n® - 2™

6.54. In the series 1 — % + i — é — % + 3% — ..., the nth positive term is fol-

lowed by n negative terms. Find the sum of the series.

6.6 Summable Series

It was realized already by Euler that the investigation of certain divergent series can
lead to useful results for convergent series as well (see the appendix of this chapter).
Therefore, it would not be wise to banish all divergent series from mathematical
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analysis, and it would be useful to assign sum-like values to certain divergent series
in a noncontradictory manner. The nineteenth century saw the emergence of sev-
eral such methods. Here we discuss only the simplest of these, which requires only
the convergence of the averages of the partial sums of a series, instead of the con-
vergence of the partial sums themselves. Later, while exploring the topic of power
series we will discuss another, much more general, method.

Definition 6.58. We say that the infinite series Y | a,, is summable with sum A
if the partial sums s,, = Y| a; satisfy

S1+ ...+ 58,

lim =A. (6.19)
n—oo n
Example 6.59. The series 1 — 1+ 1 — 1 — ... is summable with sum 1/2. Indeed,
the partial sums satisfy
1 if n isodd,
Sp =

0 if niseven.

If n — oo, then we have

sl+...+sn71 <
n 2| —

— 0.

3=

Consistency requires that we not assign different numbers to the same infinite
series. In other words, it is a natural requirement that if a series is convergent and
summable at the same time, then the two sums should be equal. We show that this
is true; furthermore, we show that the convergence of a series automatically implies
its summability.

Theorem 6.60. If the infinite series 22021 ay, is convergent and its sum is A, then
the series is also summable with sum A.

Proof. Let s,, denote the nth partial sum of the series. We have to prove that if
Sp — A, then (s1 + ...+ s,)/n — A. For a given € > 0 there exists an N such
thatif n > N, then |s, — A| <e.Let|sy —A|+...+|sy —A|=K.Ifn> N,
then

(s1—A)+...4+ (s, — A) < [s1 — Al + ...+ |sn — A4 -

|Sn - A| = =
n n
MHne o
given that n > K /e. Thus s, — A. O

By the previous theorem, the set of summable series is larger than the set of
convergent series: if a series is convergent, it is also summable, while the converse
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is not necessarily true, as we can see from the exampleof 1 —1+1—1—.... Of
course, the summable series constitute but a very small subset of the full set of all
infinite series. One can show that if the infinite series Zzozl a,, is summable, then
an/m — 0 (see Exercise 6.56).

The following theorem of Tauber® describes the exact relationship between
summable and convergent series.

Theorem 6.61. The infinite series ZZO:1 an is convergent if and only if it is
summable and satisfies

. a1+2a2+...+nan
lim

n— 00 n

=0. (6.20)

Proof. If a series is convergent, then it is also summable by Theorem 6.60, while
(6.20) follows from Exercise 6.5.
Now let >°>° | a,, be summable with sum A, and let s,, denote the nth partial
sum of the series. Then
S1+ ...+ Sp—1 n—l.sl—i—...—i—sn,l

- S1- A=A
n n n—1

as n — oo. Since

ap +2az+...+na, syt (sp—s1) ...+ (5n—Sn-1)

n n
S1+...+8,-1
- S’IL -
n
it follows that (6.20) implies s,, — A, i.e., the series is convergent and its sum
is A. O

The following corollary is also due to Tauber.

Corollary 6.62. If the series | a, is summable and n - a,, — 0, then it is con-
vergent.

Proof. It is easy to see that if n - a,, — 0, then (6.20) holds. (See the proof of The-
orem 6.60.) Therefore, we can apply Theorem 6.61. O

Hardy’ and Landau® recognized that it is enough to assume the boundedness of
n - a, in the previous theorem (see Exercise 6.60).

It is not hard to prove that the series ) ., sin na is divergent for every x # km,
while the series Y ; cosnz is divergent for every x (see Exercise 6.61). We now
show that for x # 2k7 both series are summable, and we find their sums.

6 Alfred Tauber (1866—1942), Austrian mathematician.
7 Godfrey Harold Hardy (1877-1947), British mathematician.
8 Edmund Georg Hermann Landau (1877-1938), German mathematician.
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Theorem 6.63.

(i) The series Y, sinnx is summable for every x € R, and its sum is zero if
x =2km (k € Z), and (1/2) - ctg(x/2) if v # 2k (k € Z).

(ii) The series Y .- | cosnx is summable for every x # 2kw (k € Z) and its sum
is —1/2.

Lemma 6.64. For x # 2kn (k € Z) we have

1 1
|sinz + ...+ sinnz| < Tsn(z/2)] and |cosz + ...+ cosnz| < TSn(z/2)]
foreveryn =1,2,....
Proof. Adding the identities
sin —sin jx = cos (jz — =) —cos (jx + =
g " T TS
and
2sin z cos jx = sin (ja: + E) — sin (jac — f)
2 2 2
for j = 1,...,n and dividing them by 2 sin(z/2) yields
) . cos 5 — cos (na:—&—%)
sinx + ...+ sinnx = — (6.21)
2sin 5
and
sin (nx + £) —sin
cosT + ...+ cosnx = ( .2)1 2 (6.22)
2sin 5
from which the statements of the lemma follow immediately. O

Proof of Theorem 6.63. For x = 2k, every term of the series Y -, sinnz is
zero, and thus each of its partial sums and its sum are also zero. Thus we may

assume that « # 2km (k € Z). Let us use the notation s,, = s, (z) = 2?21 sin ja

and ¢, = ¢ (2) = Z;’Zl cos jx. Slightly rewriting (6.21) and (6.22) gives

1 x 1 x 1 .
Sn(x) = 3 ctg§ —5 ctg§ -cosnx + 5 sinnz

and

1 1 T 1
en(z) = D) + ictg§ - sinnx + 3 COS N
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Therefore, we have

s1+...+s, 1 1 .z cp(x) 1 sp(x)
AT T Z e ctgl = 2
- 2ctg2 2ctg2 +2 (6.23)
" 1 () 1 enla)
c1+...+cy xr Splx Cnlx
AT T D4 et = . 6.24
n 3 T35 T3 (624
Since the sequences (s,,) and (c,,) are bounded by Lemma 6.64, we obtain
S14+...+s, 1 ¢ T
AT T el
n 2“8
and
ci+...+¢cy, 1
ar-.-Tt 2
n 2
as n — oo. This is what we wanted to prove. ]
Exercises
6.55. Istheseriesl —2+3 —4+45— ... summable?

6.56. Show that if the series ), | a,, is summable, then a,, /n — 0. (S)

6.57. Show that if a series of nonnegative terms is summable, then it is also con-
vergent.

6.58. Show that if a1 > as > ... > 0, then the series a1 — as + a3 —ag + ... 18
summable.

6.59. Show thatif z,y € [0, 2] and x # y, then the series Y, sin nx sinny is
summable with sum zero. (H)

6.60. Show that if the series ) a, is summable and the sequence (n - a,) is
bounded from below or bounded from above, then the series is convergent. (x H S)

6.61. (a) Show that the series ) -  sinnz is convergent if and only if z = k7
(kez).

(b) Show that the series Y-, cos nx is divergent for every x.

(c) Show that the series . -, sinn?z is convergent if and only if z = kx
(keZ).HS)
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6.7 Appendix: On the History of Infinite Series

The mathematicians of the eighteens and nineteenth centuries believed that infinite
series had fixed “predestined” sums, and that the arithmetic of infinite series was
more or less the same as that of finite series. (See the historical introduction of [7].)
The resulting oddities (such as the formula 1 +2 + 4 + ... = —1) and contradic-
tions (such as the question of the sum of the series 1 — 1 + 1 — 1 + .. .) were widely
known, and they caused heated debates. Leonhard Euler explores these problems in
detail in his book Introduction to Differentiation, published in 1755 (see p. 61 of
[4]). Euler adds the examples

1
1—2+4—8+16—...:§ (6.25)

and L
1_3+9_27+81_”':Z (6.26)
to14+2+4+...= —1. (All these equations follow from the formula 1+ = +
2?2 +...=1/(1 — ) by plugging in v = —2, z = —3, and = —1, respectively.)

Then he says:

“It is clear that the sum of the series (6.25) cannot be equal to 1/3, since the more
terms we actually sum, the farther away the result gets from 1/3. But the sum of any
series ought to be a limit the closer to which the partial sums should approach, the
more terms are added.

From this we conclude that series of this kind, which are called divergent, have
no fixed sums, since the partial sums do not approach any limit that would be the
sum for the infinite series.”

Yet Euler does not reject the idea of working with divergent series. Moreover,
he argues that the sums attributed to the divergent series can help us find true and
important results, and so, in a certain sense, the sums similar to Examples (6.25)
and (6.26) are also correct. Euler writes ([4, p. 61]):

“[T]hese sums, even though they seem not to be true, never lead to error. Indeed,
if we allow them, then we can discover many excellent results that we would not
have if we rejected them out of hand. Furthermore, if these sums were really false,
they would not consistently lead to true results ....”

Of course, Euler’s statement claiming that these sums never lead to errors can
be disproved easily: when we “derived” from the formula 14+ + 22 +... =
1/(1 — z) that the sum of the series 1 —1+1—1— ... is on the one hand 1/2,
while on the other hand the sum is either zero or 1, we could only be right at most
once, and we made errors at least twice. Euler based his claims on his own experi-
ence: his brilliant mathematical intuition led to great results based on his operations
on divergent series. However, we cannot be convinced of the truth of these results
until we support Euler’s claims with precise definitions and flawless proofs.
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Euler thought that the root of the problem was that the sum of a series is under-
stood as one of two different things: the result of a formal operation (which also
led to the formula 1+ x + 22 4 ... = 1/(1 — z)), and, in the case of convergent
series, the value to which the sequence of the partial sums converges. In the end,
he suggests that we work with divergent series as well, but always keeping in mind
whether the actual series is convergent (i.e., whether the sequence of its partial sums
converges to the sum of the series) or divergent.

Euler’s attitude did not dissolve the uncertainties surrounding infinite series at all.
In 1826, Abel still wrote: “In the field of mathematics we can hardly find a single
infinite series whose sum is strictly defined.”

The solution of the problem can be credited to Cauchy, who, in his book Alge-
braic Analysis turned Euler’s distinction between convergent and divergent series
into a strict mathematical definition and rejected the idea that a divergent series can
have a finite sum. This definition weeded out the anomalies regarding infinite series,
and Cauchy’s definition became generally accepted.

In the end, however, Euler was also right: with the help of the theory of summable
series and its generalizations, divergent series became legitimate objects of mathe-
matical analysis.



Chapter 7
Sequences and Series of Functions

We have seen several sequences and series whose terms depended on a parameter or
variable. Such sequences are a”, {/a, a" /n!, (1 + %)n and every power series. Now
we turn to the systematic investigation of those sequences and series that depend on
a variable.

7.1 The Convergence of Sequences of Functions

Definition 7.1. Let fi, fo,... be real valued functions defined on the set H. (We
do not assume that H C R.) We say that the sequence of functions (f,,) converges
pointwise to the function f: H — R, if lim,, . fn(z) = f(x) for every x € H.
We use the notation f, — f.

Examples 7.2. 1. Let H = [0,1] and f,(x) = 2™ for every x € [0,1] and n = 1,

2,.... Then the sequence of functions ( f,,) converges pointwise to the function
0 if 0<z<1
x) = - ’ 7.1
/(@) {1 if zx=1 .

(see [7, Theorem 4.16]).

2. Let H =R and f,(x) = arctg (nz) for every z € R and n =1,2,.... Since
lim, 1o arctgz = £7/2 and arctg 0 = 0, the sequence of functions (f,,) con-
verges pointwise to the function

/2 if z <0,
flx)y=40 it x=0,. (7.2)
/2 if >0
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These examples show that the pointwise limit of continuous functions is not nec-
essarily continuous. This may be surprising, since a seemingly convincing argument
claims the exact opposite. Indeed, let the sequence of functions (f,,) be convergent
pointwise to the function f, and let every function f,, be continuous at the point a.
If « is close to a, then f,,(z) is close to f,,(a) since the functions f,, are continuous
at a. Furthermore, for n large enough f,, () is close to f(x), and f,(a) is close to

f(a) (since f,(x) — f(x) and f,(a) — f(a)). Since
|f(z) = fla)] < [f (@) = fu(x)] + [fu(z) = fula)] + [fnla) — f(a)],

we might believe that f(x) has to be close to f(a) if x is close to a; i.e., that f is
continuous at a.

Examples 7.2 show that this argument cannot be correct. The problem is the fact
that while for a fixed n and ¢ there exists some ¢ such that | f,,(z) — f,(a)| < ¢ for
|z — a| < 0 is true, but this 6 might depend not only on &, but also on n. For x fixed,
|f(z) — fu(z)| < e holds for some n > ny, but this ny may depend on x itself, and
it is also possible that the = §,, depending on the indices n > ng is so small that =
is not in the interval (@ — 0, a + d,,), and | f,,(z) — fn(a)| < € does not necessarily
hold.

Our previous examples illustrate the fallacies of this incorrect argument. Let
fa(x)=2", a=1, and let € be 1/2. If |f,,(x) — fn(a)| = |2™ — 1] < 1/2, then
we have {/1/2 < . However, for z < 1 fixed |f(z) — fu(z)| = |0 — 2" < 1/2
holds if and only if z < %/1/2, and | f,,(2) — f.(a)| < 1/2 does not hold for these
values of n.

If we want to ensure the continuity of the limit function, it suffices to assume
that the numbers d,, have a common, positive lower bound (i.e., there is some § that
works for every n), or the indices ng have a common upper bound (i.e., there is
some ng that works for all ). We give a definition for both conditions below.

Definition 7.3. Let f1, f,... be real functions defined on H C RP. We say that
the sequence of functions ( f,,) is uniformly equicontinuous on H, if for every € > 0
there exists a 6 > 0 such that whenever x,y € H and |z — y| < 4, then |f,,(z) —
fn(y)| < e for all n.

Theorem 7.4. Let the sequence of functions (f,,) be uniformly equicontinuous on
H CRP.If f, — f pointwise on H, then f is continuous on H.

Proof. Let € > 0 be fixed, and let 6 > 0 be chosen according to the definition of
the uniform equicontinuity of (f,). If x,y € H and |x — y| < §, then we have
|fn(z) — ful(y)] < e for all n. Since f,(x) — f(z) and f,(y) — f(y), it fol-
lows that | f(x) — f(y)| < e. Obviously, this implies the (uniform) continuity of f
on H. (]

Unfortunately, the condition of uniform equicontinuity is very hard to verify and
check. (For an exception, see Exercise 7.18.) In general, the condition requiring the
existence of a common ng, for every x, is more useful.
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Definition 7.5. Let f1, fo,... be real functions defined on H. (We do not assume
H C RP.) We say that the sequence of functions (f,,) is uniformly convergent to
the function f: H — R, if for every € > 0 there exists an ng such that |f,,(x) —
f(z)| < e forevery x € H and every n > ny.

(Note that, while the conditions of Definitions 7.3 and 7.5 are different, these defi-
nitions coincide in some cases; see Exercise 7.19.)

Examples 7.6. 1. The sequence of functions =" converges uniformly to the constant
zero function on the interval [0, a], for every 0 < a < 1. Indeed, for ¢ > 0 fixed,
a™ — 0 implies the existence of some 7 such that a™° < . We have

" <a"<a" <e

for all z € [0, a] and n > ng, which implies our claim.

2. The sequence of functions 2™ does not converge uniformly to the constant zero
function on [0, 1). Indeed, for every n there is an x € [0,1) such that 2™ > 1/2
(every number works between ’{/ﬁ and 1), thus there is no ng for € = 1/2 such
that |z — 0| < € holds for every z € [0,1) and n > ny.

3. The sequence of functions arctg (nx) converges uniformly to the constant
/2 function on the interval [a, 00), for every a > 0. Indeed, let € > 0 be given.
Since lim,_, o, arctgx = 7/2, there is an ng such that 7/2 — e < arctg (na) <
/2 for all n > ng. If x > a and n > nyp, then we have 7/2 — ¢ < arctg (na) <
arctg (nx) < m/2, proving the uniform convergence on [a, 50).

4. The sequence of functions arc tg (nx) does not converge uniformly to the constant
/2 function on the interval (0, c0). Indeed, lim,_,q arc tgz = 0 implies the exis-
tence of ¢ > 0 such that arc tg ¢ < 1. Thus arc tg (nx) < 1 for every n at the point
x =¢/n >0, and there is no ng for e = 1/2 such that |arctgnx — (7/2)| < ¢
holds for every = € (0,00) and n > ng.

Remark 7.7. Obviously, if the sequence of functions (f,,) is uniformly convergent
on the set H, then ( f,,) is also uniformly convergent on every subset of H.

On the other hand, Examples 7.6 show that a sequence of functions can be uni-
formly convergent on every closed subinterval of an interval I, without being uni-
formly convergent on [ itself.

Weierstrass’ approximation theorem states that for every continuous function
f: B — R defined on a box B C RP and for every € > 0 there exists a polyno-
mial p such that |f(z) — p(z)| < ¢ for every « € B. (See Theorem 1.54 and Exer-
cises 1.59-1.63. See also Remark 7.85, where we give another proof of the one
dimensional case.) We can reformulate this theorem as follows.

Theorem 7.8. Let B C RP be a box. Then, for every continuous function f: B — R

there exists a sequence of polynomials (p,,) such that (p,) converges uniformly to
f on B.
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Proof. By Weierstrass’ approximation theorem, for every n there exists a polyno-
mial p,, such that |f(z) — p,(z)| < 1/n for every € B. Obviously, the sequence
of polynomials (p,,) converges uniformly to f on B. (]

The following theorem gives the precise condition for the uniform convergence —
without even knowing the limit function.

Theorem 7.9. (Cauchy criterion) The sequence of functions (fy) is uniformly
convergent on the set H if and only if for every € > 0 there exists an N such that

|fo(®) = fm(2)] <& (7.3)
foreveryx € H andn,m > N.

Proof. Let f,, — f be uniformly convergent on the set H. For ¢ > 0 fixed, let IV be
an index such that | f,,(z) — f(x)| < e/2 for every x € H and n > N. Obviously,
(7.3) holds for every x € H and n,m > N.

Now let (f,,) satisfy the condition of the theorem. Then for every x € H fixed,
(fn(z)) is a Cauchy sequence of real numbers, thus it is convergent. Let f(z) =
lim,, o, fn(x) forevery z € H.

In this way we defined the function f: H — R. We now prove that f,, — f
uniformly on the set H. Let ¢ > 0 be fixed, and let N be an index such that (7.3)
holds for every x € H and n,m > N.Forn > N fixed, (7.3) implies

[fu(2) = f2)] = lim [fn(z) = fm(2)] <€

for every x € H, proving our statement. (]

Theorem 7.10. Let the sequence of functions (f,,) converge uniformly to the func-
tion f on the set H C RP, and let o be a limit point of H. (For p =1, i.e., when
H C R, we allow the cases a = 00 and o = —oo as well.) Iflim, ., yer fn(x) =
by, exists and it is finite for every n, then the finite limit lim,_.., ,en f(z) = b also
exists and lim,, . b,, = b.

Proof. Let ¢ > 0 be fixed, and choose the index N such that | f,,(z) — fi(z)] < e
holds for every x € H and n,m > N. Then

b = bn| = lim | fu(2) — fin(2)[ < €
zeH

for every n, m > N. This shows that the sequence (b,,) satisfies the Cauchy condi-
tion, and hence it is convergent. Let b = lim,, o by,.

Lete > 0 be given, and choose an index n such that | f,, (z) — f(x)| < € for every
x € H and, furthermore, |b,, — b| < £ also holds. (Every large enough n works.)
Since
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rT—a

ceH

o has a punctured neighborhood U such that | f,, () — b,,| < & forevery z € H N U.
Then

for every x € H N U, which proves lim, .o, zenm f(z) =D 0

Remarks 7.11. 1. The previous theorem can be formalized as follows. When we
have uniform convergence, then

zeH zeH

i.e., the limits z — « and n — oo are interchangeable.

2. Examples 7.2 show that the statement of the theorem is not necessarily true when
we assume pointwise convergence only. For example,

lim lim 2"=1#0= lim lim 2",
n—oo x—1—0 r—1—0n—oo
and

nan;o wEIOI}rO arctg (nx) =0#£7/2 = gﬂggnw nlin;o arc tg (nx).

Theorem 7.12. Let the sequence of functions (f,,) converge uniformly to the func-
tion f on the set H C RP. If each f, is continuous at a point a € H restricted to
H, then f is also continuous at a restricted to H.

Proof. If a is an isolated point of H, then there is nothing to prove, since every
function is continuous at a restricted to H (see Remark 1.43). On the other hand,
when a is a limit point of H, then we have f,,(a) = lim,_.q, zer fn(x) for every
n. By Theorem 7.10, this gives

lim f(z) = lim f,(a)= f(a),

r—a n—oo
xeH

and thus f is continuous at a. O

Remark 7.13. Our previous theorem states that the uniform limit of continuous
functions is also continuous. In general, uniform convergence of a sequence of func-
tions is not necessary for the continuity of the limit function to hold. Consider the
functions f,,(z) = 2™ — x2™. It is easy to see that the sequence of functions (f,,)
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is pointwise convergent to the constant zero function on the interval [0, 1]. Thus the
limit function is continuous. However, the convergence is not uniform, since

b (V) =553

for every n, and the condition of uniform convergence does not hold for ¢ < 1/4.
The following theorem shows that, in some special cases, the continuity of the
limit function implies uniform convergence.

Theorem 7.14. (Dini’s' theorem) Let the functions f,, be continuous on a bounded
and closed set K C RP, and suppose that f1(x) < fa(x) < ... for every z € K. If
the sequence of functions () is pointwise convergent to a continuous function on
K, then the convergence is uniform.

Proof. Let the sequence of functions (f,,) be pointwise convergent to the function
f,and let f be continuous on K. We may assume that f is the constant zero function
on K, since otherwise we could switch to the sequence of functions (f,, — f).

Obviously, f,(x) <0 for every x € K and every n. Suppose that the conver-
gence is not uniform. Then there exists an € > 0 such that, for infinitely many n,
there is a point z;,, € K with f,,(x,) < —e. We may assume that there is such an x,,
for every n, because we can remove the functions f, from the sequence for which
such an x,, does not exist. Since K is bounded, so is (), and thus (z,,) has a con-
vergent subsequence by the Bolzano-Weierstrass theorem. We may assume that the
sequence (x,,) is convergent itself, since may remove those functions f,, for which
n does not belong to the subsequence (ny).

Let lim,, . x,, = c. Then, as K is closed, we have ¢ € K and, by assumption,
the functions f, are continuous at c. Since f,(c) — 0, there exists an index N
such that | fx(c)| < e. As the function fy is continuous at ¢, there is a neighbor-
hood U of ¢ such that | fy(z)| < € for every x € U N K. Since x,, — ¢, we have
yn € U for every n large enough. Choose n such that n > N and x,, € U. Then
—& < fn(zn) < fu(xy). On the other hand, f,(z,) < —e by the choice of x,,. We
reached a contradiction, which proves the theorem. |

Now we consider the possibility of interchanging the limit operation and integra-
tion.

Examples 7.15. 1. Let fp(x) =(n+1) 2™ for 0 <z <1, and f,(1) =0 for

every n. We have f,(z) — 0 for every = € [0, 1], i.e., the sequence of functions
(fn) is pointwise convergent to the constant zero function on [0,1]. However,

fol fn(z) dx = 1 for every n, thus

1 1

lim [ fo(z)de=1+#£0= / ( lim fn(x)) dx.

n—oo n—oo

0 0

! Ulisse Dini (1845-1918), Italian mathematician.
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2. Let f,(0) = fn(1/n) = f(1) =0, f.(1/(2n)) =n, and let f, be linear on
each of the intervals [0,1/(2n)], [1/(2n),1/n], [1/n,1] for every n=1,2,....
We have f,(z) — 0 for every = € [0, 1]. Indeed,
this is obvious for x = 0. For 0 < x < 1, how-
ever, we have f,(x) =0 for every n > 2/z. On
the other hand, fol fn(x)dx =1/2 for every n,
and thus

n+

1

1
Jim [ fule) do = % £0= /( lim fn(cc)> da.
0

0

€L

1 By the following theorem, uniform convergence is
2n

a remedy for this problem as well.

S |-

Theorem 7.16. Let the sequence of functions
(fn) be uniformly convergent to the function f on
the nonempty and Jordan measurable set A C RP. If f,, is integrable on A for every
n, then f is also integrable on A, and

7.1. Figure

n—oo

/ f(x)dz = lim [ f.(z)dz. (7.4)
A A
Proof. By uniform convergence, there exists an index N () for every € > 0 such
that | f,,(z) — f(x)| < e forevery x € A and n > N (). Since the functions f,, are
bounded, f is also bounded. Let € > 0 and n > N(¢) be fixed. Let w(g; B) denote
the oscillation of the function g on the nonempty set B, and let 2 (g) denote the
oscillatory sum of the function g corresponding to the partition F'. Since f,, is inte-
grable on A, there is a partition F' = {A;,..., A, } such that Qr(f,) < €. Since
|f(z) = fn(z)| < eforevery x € A, we have w(f; A;) < w(fn; A;) + 2¢ for every
t. Thus we have

Q(f) < Qp(fa) + 2e(A) < = - (1 +20(A)).

Because this is true for every € > 0, it follows that f is integrable on A.
Let [, fu(x)de =1, and [, f(x)dx = 1.1fn > N(e), then

/A(fn — f)da

This is true for every € > 0 and for every n > N(¢), and thus we have I,, — I. O

‘IH_HZ

S/Alfn—fldxée-u(fl)-
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Finally, we consider the possibility of interchanging the limit operation and dif-
ferentiation.

Examples 7.17. 1. Let f,(x) = (sin(nx))/n for every z € R and n =1,2,....
Then f,, — 0 uniformly on R. Indeed, for ¢ > 0 fixed, we have

sin(nx) - 1 -

n

forevery € Rand n > 1/e. Thus (lim,, ., f,)" = 0. On the other hand, f’ (z) =
cos(na) does not converges to zero for any x (see Exercise 6.61(b)). Therefore,

i 7,4 (i 1)

n—o0

Moreover, for z = 0 we have lim,, o f,,(z) = 1, while (lim,_, fn) (x) =0.

2. By theorem 7.8, there exists a sequence of polynomials that converges uniformly
to the function f(z) = |z| on the interval [—1, 1]. (This can be proved directly; see
Exercise 7.3.) This example shows that the limit of a sequence of differentiable
functions is not necessarily differentiable. Moreover, since there are continuous and
nowhere differentiable functions (see Theorem 7.38), Theorem 7.8 implies the exis-
tence of a uniformly convergent sequence of differentiable functions (and even poly-
nomials) whose limit is nowhere differentiable.

As we saw above, taking the derivative and taking the limit are not interchange-
able operations, not even for uniformly convergent sequences. We now prove that
assuming the uniform convergence of the sequence of the derivatives implies the
interchangeability of these operations.

Theorem 7.18. Let the functions f, be continuously differentiable on a bounded
interval I, and suppose that

(i) the sequence of functions (f!) is uniformly convergent to the function g on I,
and

(ii) there exists at least one point xo € I such that the sequence (fy, (o)) is con-
vergent.

Then the sequence of functions (fy) converges uniformly to a function f on I,
the function f is differentiable, and f'(x) = g(x) for every x € I.

Proof. By Theorem 7.12, g is continuous on I. Let f(x) = f;o g(t) dt for every
x € I. The uniform convergence of the sequence of functions (f},) implies that for
every € > 0 there exists an index N such that | f},(z) — g(z)| < € for every x € [
and n > N. Let |I| denote the length of the interval I. Then, for every x € I and
n > N we have
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[fn(2) = fulzo) — f(2)] =

/z(fé(t) g dt| <e-le—wol <11,

0

Therefore, we have f,, — f -+ b uniformly on I, where b = lim,, ., f5(z¢). Since
g is continuous and f is the integral function of g, we have f’ = g (see [7, part (iii)
of Theorem 15.5]), and the theorem is proved. O

Remark 7.19. The conditions of the theorem above can be relaxed: instead of the
continuous differentiability of the functions f,, it is enough to assume that f, is
differentiable for every n (see Exercise 7.17).

Exercises

7.1. Show that the sequence of functions (cos nx) is only convergent at the points
x = 2kmw (k € Z), and that the sequence of functions (sin nz) is only convergent at
the points z = kn (k € Z).

7.2. Find the points of convergence of the following sequences of functions. Find
the intervals where these sequences of functions are uniformly convergent.

@ {/]xl, (b) z™/nl, (c) z™ —a"t,
(d z"/(1+ "), © (1+%)" () VI+a2n,

(&) va*+n2

7.3. Let po =0 and let p,i1(x) = po(z) + (22 — p2(x))/2 for every x € R
and n=0,1,.... Show that 0 < |z| —p,(x) <2/(n+1) for every n and
€ [~1,1]. (H)

7.4. Let f,: [a,b] — R be continuous for every n = 1,2,. ... Show that if (f,,) is
uniformly convergent on (a, b), then it is uniformly convergent on [a, b].

7.5. Let f,: R — R be continuous for every n = 1,2,.... Show that if (f,) is
uniformly convergent on QQ, then it is uniformly convergent on R.

7.6. Construct a pointwise convergent sequence of continuous functions f,:
[0,1] — R such that the limit function has a point of discontinuity at every ratio-
nal point of [0, 1].

7.7. Construct a sequence of continuous functions f,,: [0, 1] — Rsuchthat f,, — 0
pointwise on [0, 1], but no subsequence of (f,,) converges uniformly on any subin-
terval of [0, 1]. (x H)

7.8. Show that if the sequence of functions f,,: H — R is uniformly convergent on
every countable subset of H, then (f,,) is also uniformly convergent on H.
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7.9. Let f,, — 0 uniformly on H. Show that the sequence of functions g,, = max
(f1,--., fn) converges uniformly on H.

7.10. Find an example of a sequence of continuous functions f,,: [0,1] — [0, 1]
such that (f,,) does not have a pointwise convergent subsequence (on any inter-
val). (H)

7.11. Let f,: [a,b] — R be monotone for every n =1,2.... Show that if the
sequences (f,,(a)) and (f,, (b)) are bounded, then (f,,) has a pointwise convergent
subsequence. (H)

7.12. Let f,: [a,b] — R be monotone for every n. Show that if (f,,) is pointwise
convergent to a continuous function on [a, b], then (f,,) is uniformly convergent on

[a, b]. (H)

7.13. Let f,(z) =n?(z"! — ") (z € [0,1]). Show that f,, — 0 pointwise, but
not uniformly on [0, 1]. Check that fol fn dx does not converge to zero.

7.14. Let f: [0,1] — R be continuous. Show that the sequence of functions

=3 (1@ s (5 s (252)

is uniformly convergent on [0, 1]. What is the limit of this sequence of functions?

7.15. Does there exist a sequence of continuously differentiable functions f,,:
R — R such that f,,(z) — x and f, (x) — 0 for every ? (x)

7.16. Let f,,: R — R be continuously differentiable functions, and let f,, — f
pointwise, where f is an everywhere differentiable function. Show that there exists
a point = and a sequence of indices n; < ng < ... such that limy_, f,'% (z) =

f'(@). (H)

7.17. Let the functions f,, be differentiable on a bounded interval I. Suppose that
the sequence of functions (f},) converges to the function g uniformly on I, and
there is a point xy € I such that the sequence (f,,(x¢)) is convergent. Show that the
sequence of functions (f,,) converges to a function f uniformly on I, where f is
differentiable, and f’(x) = g(x) for every x € I. (S)

7.18. Show that if H C R, K > 0, and the functions f,: H — R have the prop-
erty | fn(z) — fu(y)] < K - |z — vy, for every x,y € H and n = 1,2.. ., then the
sequence of functions ( f,,) is uniformly equicontinuous.

7.19. Let f,,: [a,b] — R be continuous functions, and let the sequence of functions
(fn) be pointwise convergent to the function f on [a,b]. Show that the f, — f
convergence is uniform on [a, b] if and only if the sequence of functions (f,,) is
uniformly equicontinuous. (Le., the conditions of Definitions 7.3 and 7.5 are the
same in this special case.) (H)
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7.2 The Convergence of Series of Functions

So far we considered sequences of functions defined on a set H. Now we turn to
infinite series of functions defined on a set; we call them series of functions.

Definition 7.20. Let f1, f, ... be real valued functions defined on the set H. We
say that the series of functions Y~ [, is pointwise convergent, and its sum is the
function f: H — R, if the infinite series Y -, f,(z) is convergent, and its sum is
f(z) for every x € H. We use the notation Y~ f,, = f.

Obviously, >~ , f,, = f if and only if the sequence of functions s,, = > " fi

is pointwise convergent to the function f on H.

Definition 7.21. Let ) | f, = f onthe set H. We say that the series of functions
>0 | fn is uniformly convergent on H, if the sequence of functions s,, = >, fi
is uniformly convergent to f on H.

Examples 7.22. 1. We show that the power series >~ 2™ is uniformly convergent
on the interval [—a, al, forevery 0 < a < 1. Weknow that >~ 2" =1/(1 — x)

forevery z € (—1,1). Since s, (z) = Z?;OI ' = (1 —2")/(1 — x), we have

n

1

|z[" a
— = <
1—2x

Sn(x)

T 1l-z " 1-a

forevery |z| < a. Since a™ — 0, it follows that for every € > 0 there exists some ng
such that a™ /(1 — a) < €. Therefore, |s, () — (1/(1 — z))| < e forevery |z| < a
and n > ng.

2. The convergence of the power series Y.~ ;2" is not uniform on the interval
(—1,1). Indeed, the function s,, is bounded on (—1, 1) (because s,, is a polynomial).
On the other hand, 1/(1 — z) is not bounded on (—1, 1), and thus, for any ¢, there
does not exists n such that |s,, (x) — (1/(1 — x))| < ¢ holds for every x € (—1,1).

We know that every reordering of an infinite series is convergent if and only if
the series is absolutely convergent, and its sum is the same as the sum of the original
series. (See 6.28.) It follows that every reordering of a series of functions fo:l fn
is pointwise convergent on the set H if and only if the series of functions >, | f,.|
is pointwise convergent on H.

Definition 7.23. We say that the series of functions Y | f,, is absolutely conver-
genton the set H if Y | f,| is pointwise convergent on H.

Remark 7.24. The absolute and uniform convergence of series of functions are two

independent properties, i.e., neither follows from the other. E.g., the power series
0 . . .

> o™ is absolutely convergent, but it is not uniformly convergent on the interval

(—1,1) (see Example 7.22.2.). On the other hand, it is easy to see, thatif >~ ay,

is a convergent infinite series, where f,, is the constant a,, function for every n on

a non-empty set H, then the series of functions Zzozl fn is uniformly convergent
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on H. Choosing a,, = (—1)"~!/n yields a uniformly convergent series of functions
that is not absolutely convergent.

The exact condition of the uniform convergence of a series of functions is given
by the following theorem.

Theorem 7.25. (Cauchy criterion) The series of functions Y | f, is uniformly
convergent on the set H if and only if, for every € > 0, there exists an N such that

Y fil)

1=n+1

<e

holds for every x € H and N <n < m.

Proof. This is immediate from Theorem 7.9. O

Theorem 7.25 implies that if Y | | f,,| is uniformly convergent on the set H,
then > | f, is also uniformly convergent on H. The following theorem goes one
step further.

Theorem 7.26. If Y " | |fn| is uniformly convergent on the set H, then every
reordering of the series of functions Y-, [, is also uniformly convergent on H.

Proof. Let € > 0 be fixed. By the Cauchy criterion, there exists an /N such that
Yot N | filw)] < eforevery z € Hand N < m.

Let ZZO:1 fn, be a reordering of our original series of functions. For K large
enough, the indices n1,...,nx contain each of the numbers 1,..., N, and thus
ni > N for every k> K. If K <p<gq and m = max,<r<qni, then N <
ng < mforevery p < k < ¢q. Thus

q q m
3 @< 3 @< Y fi@)l<e
k=p+1 k=p+1 i=N-+1

for every x € H. Hence, the series of functions Y, f,, is uniformly convergent
on H by the Cauchy criterion. [

The converse of this theorem is also true: if every reordering of a series of func-
tions >, f, is uniformly convergent, then Y, | f,| is also uniformly conver-
gent (see Exercise 7.24). Using this statement it is not difficult to show that there
exists a series of functionsy ., fn suchthaty | f, is absolutely and uniformly
convergent on H, but it has a non-uniformly convergent reordering. E.g., the series
of functions Y7, (—z)™(1 — z) on the interval [0, 1] has this property (see Exer-
cise 7.25).
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Since the conditions of the Cauchy criterion are (generally) hard to verify, it is
important to have some sufficient criteria for the uniform convergence that are easy
to check. The following theorem is the most important of these.

Theorem 7.27. (Weierstrass criterion) Suppose we have real numbers a,, and an
index ng such that the infinite series y .| an is convergent, and | f,(z)| < a,, for
every x € H and n > ng. Then the series of functions >, [, is uniformly con-
vergent on the set H.

Proof. Let € > 0 be fixed. By the Cauchy criterion for infinite series (Theo-
rem 6.10) there exists an index /N such that

‘an-‘rl + An42 + ...+ anL| <e

for every N < n < m. Obviously, for every x € H and n > max(ng, V), we have

[fra1(2) + frso(@) +.. 4 fm(2)] <,

and thus the uniform convergence of the series of functions ZZO=1 fn follows from
Theorem 7.25. ]

In Example 7.22.1. we saw that the power series >, z" is uniformly con-
vergent of on the interval [—a, al, for every 0 < a < 1. We now prove a similar
statement for every power series with the help of the Weierstrass criterion.

Theorem 7.28. If xg # 0 and the infinite series ZZO:O anx( is convergent, then
the power series Z:;O anx™ is absolutely and uniformly convergent on the interval
[—alzol, qlzol], for every 0 < q < 1.

Proof. Since fo:o anx{ is convergent, the sequence (a,x{) converges to zero,
and thus there exists an ng such that |a,zj| < 1 for every n > ng. If z € [—q|zo|,
q|zol], then

n
<1-¢"

x
|anz"| = |anzg]| - ‘CCO

for every n > ny. Since the series >~ ¢" is convergent, it follows from the Weier-
strass criterion that ) |a,z™] is uniformly convergent on [—g|zo|, g|zo[]. O

We say that the sequence of functions ( f,,) is uniformly bounded on H, if there
exists a number K such that | f,,(x)] < K for every n and « € H. The following
two criteria can also be used in many cases.

Theorem 7.29. Let f,, and g, (n = 1,2, ...) be real valued functions on the set H,
and suppose that
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(1) the sequence (f,(x)) is monotone decreasing for every v € H,
(i1) f,, — O uniformly on H, and

(iii) the partial sums of the series Znoozl gn, are uniformly bounded on H.
Then the series of functions Zzozl fngn is uniformly convergent on H.

Proof. Let the nth partial sum of the series > > | g, be s, and let |s,, (z)| < K
for every n and every z € H with K > 0. Let ¢ > 0 be fixed. By condition (ii),
we can pick an index N such that | f,,(z)| < ¢/K for every n > N and x € H. If
N < n < m then, by the Abel inequality (see p. 214), we have

=& < ful®) - (=K) < fu(2)gn(z) + ... + fin (@) g (7) < ful2) - K <,

that is, |fn(2)gn(x) + ...+ fm(2)gm(z)| < € for every x € H. Therefore, the
series y | fngn satisfies the conditions of the Cauchy criterion, hence it is uni-
formly convergent. O

Corollary 7.30. (Dirichlet criterion) Ler (\,,) be a monotone decreasing sequence
of real numbers that converges to zero. If the series of the partial sums of the series
of functions ZZO:1 Gn 1S uniformly bounded on H, then 220:1 Angn IS uniformly
convergent on H. (I

Example 7.31. For ¢ > 0, the series of functions Y 7 (sinnz)/n® and >,
(cosnx)/nc are uniformly convergent on the interval [0, 2 — 4], for every 0<d <.

Indeed, on one hand, the sequence (n~¢) is monotone decreasing and con-
verges to zero, on the other hand, by Lemma 6.64, the partial sums of the series
S0 sinnzand Y~ | cos nz are uniformly bounded on [6, 27 — 4].

Theorem 7.32. Let f,, and g, (n = 1,2, ...) be real valued functions on the set H,
and suppose that

(i) the sequence of functions (f,) is uniformly bounded on H,

(ii) the sequence (fn(x)) is monotone for every x € H, and

(iii) the series of functions Y| gy is uniformly convergent on H.

Then the series of functions Zzozl fngn is also uniformly convergent on H.

Proof. We use the following variant of Abel’s inequality: if c1, ..., ¢, is a mono-
tone sequence of real numbers and |dy + ...+ di| < M for every k=1,...,n,
then

n

Z Cidi

=1

< (Jea] + 2lea]) - M.

In order to prove this we may assume that ¢c; > ... > ¢,, since otherwise we could
switch to the numbers —c;. We have ¢y — ¢, > ... > ¢y—1 — ¢ > 0. Thus, by
Abel’s inequality,
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and

n

Z(Ci *Cn)di idi
i=1 i=1

< (1 —entlenl) - M < (lea| + 2fenl) - M.

< + lenl - <

n
g cid;
i=1

Now we turn to the proof of our theorem. Let | f,,(z)| < K for every n, and lete > 0
be fixed. The uniform convergence of the series of functions > | g, implies the
existence of an N such that |y ;" g:(x)| < e/(3K) for every N < n < m and
x € H. Since the sequence ( f;(x)) is monotone, the inequality above implies

< (Ifn(@)] +2[fm(2)]) - (¢/BK)) < e

Z fi(@)gi(x)

forevery N <n < mandx € H. Applying the Cauchy criterion yields the uniform
convergence of >~ | f,g, on H. (]

Corollary 7.33. (Abel’s criterion) Suppose that the sequence of functions (f,) is
uniformly bounded on H, and the sequence ( f,,(x)) is monotone for every x € H. If
the infinite series Y .-, ji, is convergent, then the series of functions > | fin fn
is uniformly convergent on H. (I

The following application of Abel’s criterion is a supplement to Theorem 7.28.

Theorem 7.34. Let o # 0, and let the infinite series y ., an,xfy be convergent.
Then the power series ZZO:O anx™ is uniformly convergent on the interval [0, zg].

Proof. Apply Abel’s criterion with p,, = anxf and f,,(z) = (x/x0)". O

Similarly to the case of the sequences of functions, we need to know whether
certain properties of the terms of a series of functions can be transmitted to the
sum. We know that the properties of continuity, integrability and differentiability
are inherited by finite sums. As for infinite sums, Theorems 7.10 and 7.12 imply the
following.

Theorem 7.35. Suppose that Y ., fn = f uniformly on the set H C R?, and let
a be a limit point of the set H. (For H C R, we also allow o = 0o and ow = —o0.) If
the limit lim, .o wem fn(z) = by, exists and it is finite for every n, then the infinite
series Y o, by is convergent, and limy .o zep f(x) =Y o0y bn. |

Theorem 7.36. Suppose that Y " | fn = f uniformly on the set H C RP. If the
Sfunctions f,, are continuous at a point a € H restricted to H, then f is also contin-
uous at a restricted to H. (Il
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Examples 7.37. 1. Consider the series >, b* cos(a®z) and > 72 b¥ sin(a*z),
where |b] < 1 and a € R is arbitrary. Both series of functions are uniformly con-
vergent on R, since they satisfy the conditions of Weierstrass’ criterion. Thus, by
Theorem 7.36, both sums are continuous.

2. Let () denote the distance of the real number z to the closest integer. The func-
tion (z) is continuous and periodic with the period 1 on the real line. The function

is called the Takagi function® (named after its first “inventor”). (Figure 7.2 shows
the restriction of the Takagi function to [0, 1]. Note that the figure is only an approx-
imation. If fact, the function has infinitely many local extrema in every interval.)
Since the series of functions above also satisfies the conditions of the Weierstrass
criterion and its terms are continuous, it follows by Theorem 7.36, that the Takagi
function is continuous on the real line.

We hinted at the existence of everywhere continuous but nowhere differentiable
functions several times so far. Example 7.37.2. presents one such function.

Theorem 7.38. The Takagi function is continuous everywhere, but it is nowhere
differentiable.

7.2. Figure

Proof. We only have to prove that T is not differentiable at any point a € R. Let
a € R be arbitrary, and let z; denote the largest number k/2¢ such that k € Z
and k/2° < a. Also, let y; denote the smallest number /2% such that k € Z and
k/2! > a. Then we have z; < a < y; and y; — x; = 1/2¢ for every 7. Suppose that
T is differentiable at a. Then

2 Takagi Teiji (1875-1960), Japanese mathematician.
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T(y;) — T (x;
lim Tly) = T(x:) _ T'(a). (1.5)
1o Yi — T4
Indeed if x; < a, for every i, then this follows from Exercise 7.33. On the other
hand, if x; = a for some ¢, then z,, = a for every n > ¢, and (7.5) follows from the
definition of differentiability. Now we have

Yi — T N nz::o 2" (y; — x;) n nE::o on—1i (7.6)

for every 4, since 2"y; and 2"x; are integers for n > 4, and (2"y;) = (2"x;) = 0.
If n < i, then 2"y; and 2" x; are rational numbers with denominator 2/~™ such that
their numerators are adjacent integers. Thus (2"y;) — (2"x;) = £1/2°"", and each
of the terms of the sum on the right-hand side of (7.6) is either 1 or —1. It follows
that (T'(y;) — T'(z;))/(y; — 2;) is an integer. Furthermore, this integer is even if ¢
is even, and odd if 7 is odd. A sequence with these properties cannot be convergent,
which proves that (7.5) cannot hold. U

The combination of Theorems 7.36 and 7.34 imply the following.

Theorem 7.39. (Abel’s continuity theorem) Let xo # 0, and let the infinite series
fo:o anx( be convergent. Then the sum of the power series ZZC:O anx™ is con-
tinuous on the interval [0, zg]. O

The following theorem is an immediate corollary of Theorem 7.16.

Theorem 7.40. (Term by term integrability) Suppose that Y. | fn = f uni-
formly on the Jordan measurable set A C RP. If f, is integrable on A for every
n, then f is also integrable on A, and

Af(x)dxi/f‘fn(x)dx.

n=1

O

Examples 7.41. 1. We know that Y > jx™ = 1/(1 — z) for every |z| < 1, and the
convergence is uniform on every closed subinterval of (—1, 1) (see Example 7.22.1.
and Theorem 7.28). Thus we can integrate the series term by term on the interval
[0, ] for every |z| < 1. We obtain

— 1
—log(l—2) = — " .
g(l—a)=)_ ~ (7.7)
n=1
for every |z| < 1. Since the series is also convergent at x = —1, Abel’s continuity

theorem (Theorem 7.39) implies that (7.7) holds for every z € [—1,1). Forx = —1
we get the well-known identity Y -, (—1)""!/n = log 2.
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2. Since Y07 (—1)"z*" = 1/(1 + x?), for every |z| < 1 and the convergence is
uniform on every closed subinterval of (—1, 1) (by Theorem 7.28), we can integrate
this series term by term on the interval [0, x] for every |z| < 1. We get

— (=D
arctgxzzi'x” (7.8)
—~ 2n —1

for every |x| < 1. Since the series is also convergent at = 41, Abel’s continuity
theorem (Theorem 7.39) implies that (7.8) holds for every |z| < 1. Putting = = 1

we get
1

I_l 1+1 +
4 3 5 7

The following theorem is an immediate corollary of Theorem 7.18.

Theorem 7.42. (Term by term differentiation) Ler the functions f,, be continu-
ously differentiable on a bounded interval I. Suppose that

() >0, fr = g uniformly on the interval I, and

(ii) there exist a point x € I such that the infinite series . | fn(xo) is conver-
gent.

oo

Then the series of functions Y | fn is uniformly convergenton I. If > ">~ | f, =
f, then f is differentiable, and f'(x) = g(x), for every x € I. That is, we have

(Z f’rb) (x) = Z f;z(x)v
n=1 n=1

foreveryx € 1. (I

Note that we can relax the condition of continuous differentiability of the func-
tions f,: it is enough to assume that the functions f;, are differentiable (see Remark
7.19).

Example 7.43. For 0 < b < 1 and |ab| < 1, the functions Y .-, b" cos(a*z) and
> re V¥ sin(a”z) are differentiable everywhere. Indeed, the series we get from dif-
ferentiating term by term are uniformly convergent, and we can apply Theorem 7.42.

One can show (though the proof is rather complicated) that, forevery 0 < b < 1
and |ab| > 1, the functions Y- b* cos(a*x) and Y";7  b* sin(a*x) are nowhere
differentiable.

If we assume that @ is an odd integer and ab > 27 + 1, then the proof of the
nowhere differentiability of Y-, b* cos(a”z) is simpler; see Exercise 7.35.

Examples 7.44. Let f be infinitely differentiable at 0. How fast can the sequence
of numbers | £ (0)| grow? If f(x) = e® with a > 1, then we have f(™)(0) = a",
and so the growth of the sequence is exponential. With the help of Theorem 7.42



7.2 The Convergence of Series of Functions 247

we can construct functions with the property that | f(")(0)| converges to infinity at a
rate faster than exponential.

1. Let -
flx) = Z 2% - cos <k1:+ g)

k=1

for every x. Obviously, this series is everywhere convergent. By taking the term by
term derivative of the series n times, we get one of the series

Sy T iy T
:I:;%-cos(kx—kll), i;%-mn(kx—l—zl), (7.9)

depending on the remainder of n when divided by 4. The resulting series is uni-
formly convergent on R in each case. Indeed, for n fixed we have 2% > k"*2 for
every k large enough. Thus, for each n, the absolute values of the kth term of the
nth series is less than 1/k? for every k large enough, and we may apply Weier-
strass’ criterion. Applying Theorem 7.42 n times implies that f is n times differ-
entiable on R, and its nth derivative is the sum of one of the series of (7.9). Since
cos(m/4) = sin(m/4) = V/2/2, we obtain

TEIOTES PLAE

nn
.27

which grows faster than any exponential sequence.

2. Consider the function

g(xz) = i% - cos (k2x+ Z) .

k=1

Repeating the argument above, we get that g is infinitely differentiable, and (™)
(0)| > n2" /2" for every n.

We can easily modify the construction to yield a functions f such that | f(™) (0)]
converges to infinity faster than an arbitrary given sequence. The function Y, ; aj, -
cos (bkx + %) will have the desired properties, for an appropriate choice of the
sequences a; — 0 and by — oo.

In fact, for every sequence (ay), there exists an infinitely differentiable function
f with f*)(0) = ay, for every k. See Exercises 7.36 and 7.37.
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Exercises

7.20. At which points z are the following series of functions convergent? On which
intervals are they uniformly convergent?

@ > a"/(L+am), () Yon/z, (c) > n”,

@y () © e ® S nene,
(2) Ysin(z")/n? (h) SV +1/2n, () Sale e,
G) > sin(x/n?), k) Y (arctg (nx))/(n? + z?),
W) S (-1 /(o +2m), ) S /(@ +nd).

7.21. Show that the uniform convergence of the series Y. -, f, on the set H
implies that f,, — O uniformly on H. Show that the converse of this statement is
not true.

7.22. Let Y7, f, be uniformly convergent on [a,b]. Is it true that the series
S sup{|fn(x)|: = € [a,b]} is necessarily convergent? What happens if we
assume the continuity of the functions f,,? (H)

7.23. Find an example of a uniformly convergent series of functions which does not
satisfy the conditions of the Weierstrass criterion.

7.24. Show that if every reordering of the series of functions >~ , f,, is uniformly
convergent on H, then Y7 | | f,,| is also uniformly convergent on H.

7.25. Show that the series of functions >~ , (—x)"(1 — z) is both absolutely and
uniformly convergent on [0, 1], but it has a reordering that is not uniformly conver-
genton [0, 1].

7.26. Show that we cannot omit any of the three conditions of Theorem 7.29. Show
the same for Theorem 7.32.

7.27. Prove that the series of functions ) -, (sinnz)/n is not uniformly conver-
gent on R. (H)

7.28. Let the functions f,,: [a,b] — R be continuous, and suppose that the series
>0 | fa(x) satisfy the Leibniz criterion for series of real numbers with alternating
sign for every « € [a,b]. (That is, | f1(z)| > |f2(x)] > ..., fu(x) — 0 as n — oo,
fn(2x) is nonnegative for every n even, and f,,(z) is nonpositive for every n odd for
every z € [a, b].) Show that the series of functions ) - | f, is uniformly convergent
on [a, b].

7.29. Show that the function f(z) =", e~"’% is infinitely differentiable on
(0, 00).

7.30. Show that the partial sums of ) -, sin kz are not bounded on (0, 27).
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7.31. Show that there exist continuous functions f,, : [a, b] — R such that, for every
continuous function f: [a,b] — R, there is a bracketing of the series >~ fn
whose sum equals f on [a, b].

7.32. Show that the statement of the previous exercise is not true if we omit the
condition of continuity of both f and f,.

7.33. Let f differentiable at the point a. Prove that if x,, < a < y,, for all n, and if
Yn — T, — 0, then

lim M = f'(a). (HS)

n—0o0 Yn — Tn
7.34. Let T be the Takagi-function (Example 7.37.2.). Show that if a = k/2™ with
k € Zandn € N, then T" (a) = oo and T (a) = —oo.

7.35. Show that if 0 < b < 1 and « is an odd integer such that ab > 27 + 1, then
the function f(z) = Y ;= b* cos(a*z) (z € R) is continuous everywhere, but it is
nowhere differentiable. (H S)

7.36. Show that for every positive integer n, a € R and €, K > 0, there exists an
infinitely differentiable function g such that (™ (0) = a, g(”(0) = 0 for every 0 <
i < n,and [¢)(z)| < eforevery 0 <i <mnand|z| < K.(HS)

7.37. Show that for every sequence of numbers (ay) there exists an infinitely dif-
ferentiable function f such that f(*)(0) = ay, for every k. (x HS)

7.3 Taylor Series and Power Series

Recall the definitions of the Taylor polynomials and Taylor series of functions of a
single variable: if f is n times differentiable at the point x(, we call the polynomial

i f(k)(iﬂo)

mo o)

k=0

the nth Taylor polynomial of the function f corresponding to the point z¢. If f is
infinitely differentiable at point ¢, then we call the infinite series

(k)
> ! k(le) (z = 20)"
k=0 ’

the Taylor series of the function f corresponding to the the point xg. (See [7, Defi-
nitions 13.6 and 13.8]).

If a Taylor series is convergent at a point 2 and its sum is f(z), we say that the
Taylor series represents f at the point x.
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Examples 7.45. 1. Every polynomial p is represented everywhere by its Taylor
series corresponding to every point zg. Indeed, if the degree of the polynomial p
is n, then p(*) = 0, for every k > n, and by Taylor’s formula® we have

)
pla) = pT(EO)(x — 20)* (7.10)

for every x.

2. It is easy to check that the Taylor series of the function 1/(1 — z) at the point
zo = 0 is exactly the geometric series Y~ ,z". Thus the function 1/(1 — z) is
represented on the interval (—1,1) by its Taylor series corresponding to the point
o = 0.
3. An easy consequence of Taylor’s formula is the following theorem. If f is
infinitely differentiable on the interval I and there exists a K such that | f™ (z)| <
K for every x € I and n > 1, then the Taylor series of f corresponding to every
point xo € I represents f everywhere on I. (See [7, Theorem 13.9].)

It follows that the functions e*, sinz, cosx, shx, chx are represented every-
where by their Taylor series corresponding to every point xy € R. For ¢ = 0 we
obtain the following formulas.

£C3 £C5 x4n+l
Sln‘T—x—g‘F +m_,
. $2+I4 N x4n
2 "
—1+17+§+ +H—|—...,
L — +JZ‘3+.’E5+ - $2n+1 N
shax = 31 51 (2n+1)' ceey
2 1,4 Z,Zn
hr=1+—+ — ..
cho =1+ g0+ Jr+o 4 oo+

(See Example 13.14 of [7].)

3 Taylor’s formula (with the Lagrange remainder) states the following. Let the function f be (n + 1)
times differentiable on the interval [a,x] (o1, on [z, a] if x < a). Then there exists a number ¢ €
(a,z) (or ¢ € (z,a)) such that

B AR IC PR
Z_: + W(w - CL) +1.

See Theorem 13.7 of [7].
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4. According to Example 7.41.1., the function log(1 — x) is represented everywhere
on the interval [—1, 1) by its Taylor series corresponding to zo = 0.

However, not every function is represented by its Taylor series on an (arbitrarily
small) neighborhood of the point z.

Examples 7.46. 1.By Example 7.44.2., there exists an infinitely differentiable func-
tion g such that [g(™ (0)| > n?" /2" for every n. Then the Taylor series of the func-
tion g at 0 is not convergent at any = # 0, since x # 0 implies

L ()"

- |\ = _— — OO
2n . pn 2
asn — oQ.

One can prove that there exists a function f such that f is infinitely differentiable
everywhere, and the Taylor series of f corresponding to any point z is divergent at
every T # xg.

(n)
’9 ©)  n
n!

2. It is also possible that the Taylor series is convergent, but it does not represents
the function. One can show that the function f(z) = e~*/%", f(0) = 0 is infinitely
differentiable on R, and f(”)(O) = 0 for every n. (See [7, Remark 13.17].) Then
the Taylor series of f corresponding to the point 0 is the >~ 0 series, which is
convergent everywhere, but it does not represent f at any x # 0. This also shows
that different functions can have the same Taylor series.

Definition 7.47. We say that the function f is analytic at the point xg, if f is
infinitely differentiable at x(, and its Taylor series at the point x( represents f in
a neighborhood of .

For example, the functions e”, sinx, cosx, shx, chx are everywhere ana-
lytic functions, and the functions log(1 4 x) and 1/(1 — x) are analytic at the point
2o = 0. (In fact, the function log(1 + x) is analytic at every point 2o > —1, and the
function 1/(1 — ) is analytic at every point z¢ # 1; see Examples 7.56).

The following theorem gives a sufficient condition for the analiticity of a func-
tion.

Theorem 7.48. Let f be infinitely differentiable on the open interval 1, and suppose
that there is a positive number ¢ such that | f™ (z)| < (en)™ for every x € I and
n > 0. Then f is analytic at every point of the interval I.

Proof. Let xo € I be arbitrary. Applying Taylor’s formula with the Lagrange
remainder we get that, for every n and z € I\ {x(}, there exists a d € I such that

() (4

n—1 (k) z
flz) - Z fT(,O)(l‘ — )"
k=0

Since n! > (n/e)™ and |f(™(d)| < (cn)™ by assumption, the right-hand side of
(7.11) is at most (ec - |z — xo|)™. Put n = 1/(ec). If |z — x| < n and x € I, then
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the right-hand side of (7.11) converges to zero as n — oo. This means that the Taylor
series of f at the point z( represents f on the interval (xg — 7, z¢ + 1) N 1. O

We will later see that the converse of the Theorem above holds as well. That
is, if f is analytic at x, then the conditions of Theorem 7.48 are satisfied in a
neighborhood of xg. In order to prove this, however, we first need to get acquainted
with the theory of power series. We have already seen several results about power
series (see Theorems 7.28, 7.34, and 7.39). We will now systematically explore the
topic in more details.

We say that the domain of convergence of the power series >~ a,z™ is the set
of numbers x € R such that the series is convergent at z. Let T" denote the domain of
convergence of the series. Note that T' # (), since every power series is convergent at
the point z = 0, i.e., 0 € T. We call the number R = sup 7" (which can be infinite,
when 7' is not bounded from above) the radius of convergence of the power series.

By Theorem 7.28, if the power series is convergent at a point xg, then it is con-
vergent at every point € (—|xo|, |xo|). From this it is clear that inf T' = —R. The
statements (i)-(iii) of the following theorem are also easy consequences of Theo-
rem 7.28.

Theorem 7.49. Let R be the radius of convergence of the power series
Soo2 o anx™. Then the following are true.

(i) If R = 0, then the domain of convergence of the series is the single-element set
{0}.

(i) If0 < R < oo, then the domain of convergence of the series is one of the inter-
vals [-R, R, [-R, R), (—R, R, or (—R, R).

(iii) If R = oo, then the domain of convergence of the series is the whole real
line. ]

Examples 7.50. 1. The domain of convergence of the power series »_ - o n!- z™ is
the single-element set {0}. Indeed, for 2 # 0, the terms of the series do not converge
to zero, and thus the series is divergent.

2. The domain of convergence of the power series -, 2" is the interval (—1,1)
(see Theorem 6.4).

3. The domain of convergence of the power series > -, ((—1)""!/n)z™ is the
interval (—1, 1] by Example 7.41.

4. The domain of convergence of the series >~ ;(1/n)a™ is the interval [—1,1).
This follows trivially from the previous example.

5. The domain of convergence of the power series > ., (1/n?)a™ is the interval
[—1,1]. Tt is clear that the series is convergent at every point « € [—1, 1]. However,
for || > 1, the terms of the series do not converge to zero, thus the series is diver-
gent there.

6. The domain of convergence of the power series >~ (1/n!)z™ is the whole real
line (see Example 7.45.3).
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These examples suggest that the radius of convergence of the power series
>0, anx™ depends on the order of magnitude of the sequence |ay,|. The famous
Cauchy-Hadamard* formula gives a precise mathematical formulation of this state-

ment. The formula is discussed in the first appendix of this chapter.

The statement of the following theorem is an immediate consequence of Theo-
rems 7.28 and 7.39.

Theorem 7.51. Every power series is uniformly convergent on every bounded and
closed subinterval of its domain of convergence. The sum of every power series is
continuous on its whole domain of convergence. (Il

Much more is true in the interior of the domain of convergence of a power series.

Theorem 7.52. Let the radius of convergence R of the power series >, anz"
be positive (or the infinity), and let f(x) = > .- a,z" for every |x| < R. Then f
is infinitely differentiable on the interval (— R, R) and

oo

fB@) = nn=1)-(n—k+1)-a, """ (7.12)
n=k

forevery|z| < Rand k > 1.

Proof. We first prove that the power series >~ n - ay, - 2"~ ! is uniformly con-
vergent on the interval [—g, ¢] for every 0 < ¢ < R. Let ¢ < r < R be fixed. Since
the series ZZOZO an,r™ is convergent, it follows that lim,, ., a,7™ = 0. Thus there
exists an ng such that |a,,| < r~", for every n > nyg. Therefore, if |z| < ¢, then

In-an-2" ' < q 'n(g/r)"

for every n > ny. Since the series Y-, n(g/r)" is convergent by Example 6.36,
applying the Weierstrass criterion we obtain that the power series Z:O=1 n-apz” !
is uniformly convergent on [—g¢, ¢]. Since this is true for every 0 < ¢ < R, Theo-
rem 7.42 implies that the sum of the power series >~ a,z™ (i.e., the function f)
is differentiable on (—R, R), and its derivative is Y-, n - a,z™ " there. Repeat-
ing this argument for this latter power series we get that f’ is also differentiable on
(=R, R), and its derivative is >~ , n(n — 1)a, 2™ there. Applying induction on
k we get (7.12) for every k. ]

Example 7.53. Applying Theorem 7.52 for the power series Z?:o " we obtain
that

= k!
Zn(n—l)”'(n—k‘—Fl)'l‘n_k:m (7.13)
n==k

4 Jacques Hadamard (1865-1963), French mathematician.
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for every |z| < 1 and k£ > 0. (We have seen the special case k = 1 in Examples
6.31.1. and 6.55.)

From now on, we will also call the series of form Y~ a,(z — zo)" power
series (more precisely, power series around the point x). It follows immediately
from Theorem 7.52 that if the power series Y~ an(z — x0)™ is convergent on the
interval (z¢9 — R, o + R) and its sum is f(z) there, then f is infinitely differen-
tiable on (zg — R, zo + R), and

o0

£ () Z (n—1)--(n—k+1)-a,-(xr—x5)"F (7.14)

for every x € (zg — R,z¢ + R) and k > 0. The following theorem is a simple, but
important corollary of this fact.

Theorem 7.54. Let the power seriesy . a,(x — xo)™ be convergent on (xo — R,
xo + R), where R > 0, and let its sum be f(x) there. Then a,, = f™ (xq)/n! for
every n. In other words, the power series is equal to the Taylor series of its sum
corresponding to the point x.

Proof. Apply (7.14) to z = xg. ]

Corollary 7.55. A function f is analytic at the point x if and only if there exists a
power series around xy which represents f on a neighborhood of x. O

We say that the function f: I — R is analytic on the open interval [, if f is
analytic at every point of I. Examples 7.45 showed that the polynomials and the
functions e”, sinz, cosx, shz, and chx are each analytic everywhere. We will
now prove that several other elementary functions are analytic on their respective
domain.

Examples 7.56. 1. We show that the function 1/x is analytic at every point a # 0.
Let |z — a| < |a|. We have

3

[
@\»—*

(x—a)".

LS

Thus 1/z is represented by a power series on the interval (0, 2a) (or on the interval
(—2a,0), if @ < 0). Thus, by Corollary 7.55, 1/« is analytic at a.

2. Generalizing the previous example we show that every rational function is ana-
lytic everywhere on its domain. Let S =p/q, where p=> "  ja;z' and
q =Y~y bja’ are polynomials. First we prove that if ¢(0) # 0, then S is analytic
at 0.

We may assume that ¢(0) =1; then ¢(z)=1-r(z), where r(z)=
—>_j2, bjx?. The function 37", [b;] - |z|7 is continuous and vanishes at the point
0. Therefore we can choose a 5 > 0 such that ijl |bj| - |z]? < 1 holds for every
|z] < 6. Then |r(x)| < 1 for every x € (—4d,0), and thus
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@_ na.xi .#: na»x"’ -Oorxkz
q(z) (; ! ) 1—r(x) (Z v ) Z ()
. (Zox> S (3o

k=0 \j=1

By performing the multiplications and reordering the resulting terms according to
the exponents of = we get a power series. This operation does not change the sum of
the series since, by >7, [b;] - |z} < 1 it follows that each of the series appearing
in the argument is absolute convergent, and we can apply Theorem 6.30. We leave
the details to the reader. In this way we represented the function .S on the interval
(—6,0) by the sum of a power series. Thus, by Corollary 7.55, the function S is
analytic at 0.

Now, let 2y be an arbitrary point where ¢ is non-zero. The function S;(z) =
S(x + xo) is also a rational function which does not disappear at 0. If Sy (z) =
S gena™ for every |z| <4, then S(z) =37 cy(x —x9)" for every
| — xo| < 0. Thus S is analytic at xg.

3. With the help of Theorem 7.54 we can give a new proof of the fact that every
exponential function is analytic on R. Indeed, for ¢ > 0 and z¢ € R we have

oo
a® = g% . eloga(z—z0) _ %o Z (loiila)n(x — )"
n=0 ’

Thus a” is represented by a power series around xg, i.e., a” is analytic at .

4. We now show that the function (1 + x)€ is analytic at 0 for every ¢ € R. The nth
derivative of the function at 0 is ¢(¢ — 1) - - - (¢ — n + 1), and the Taylor series at 0

1S
o0

ZC(C—U'”(C—”“)J:". (7.15)

n!

n=0

We prove that the series represents the function on the interval (—1,1).

If ¢ is a non-negative integer, then by the binomial theorem the sum of the series
(7.15) is (1 + z)° for every x. Thus we may assume that ¢ ¢ N.

We first show that the series (7.15) is convergent for every |z| < 1. Indeed, for
x # 0, the ratio of the n + 1st and nth terms of the series is (z - (¢ — n))/(n + 1).
Since this converges to —z as n — oo, it follows from the ratio test that the series
is convergent for |z| < 1. Let the sum of the series be f(xz). By Theorem 7.52, f is
differentiable on (—1, 1), and

f’(x):in- 0(0_1)";1('0_”“%"—1 (7.16)
n=1 '
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there. The power series on the right-hand side is convergent on (—1, 1), thus it is
also absolutely convergent there. Multiplying the series by (1 + x), then reordering
it according to the exponents of x yields, by doing some algebra, c-times the series
(7.15). The absolute convergence ensures that reordering does not change the sum
of the series, thus we proved that (1 + z) f/(x) = cf(z), for every |x| < 1. Then we
have

(fx)- (1+2)") = f(2) A+a) " —c- f(z) (1+z)*" =
(L4 2)™7 (L +2)f'(2) = ef (2)) = 0,

and thus f(x)/(1 + )¢ is constant on (—1, 1). Since f(0) = 1, we necessarily have
f(@)/(14+2)¢=1and f(z) = (14 z)°, which is what we wanted to prove. [

To emphasize the analogy with the binomial theorem, let us use the notation

clc—1)--(c—n+1) <c>

n! n

forevery c € Randn € N. (If n = 0, let (§) = 1 for every c.) We call the numbers
( ) generalized binomial coefficients. Using this notation, the previously proved

(L+a)=>" (;) " (7.17)

statement has the form
n=0

for every ¢ € R and |z| < 1. The series on the right-hand side is called binomial
series.

5. We prove that the power function z¢ is analytic on (0, o) for every c¢. Indeed, for
a>0and |z — a| < a, we have

e 55 e SO

n=0

i.e., z° is represented on the interval (0,2a) by a power series around a. Thus, by
Corollary 7.55, =€ is analytic at a.

6. We prove that the function log z is analytic on (0, c0). Leta > O and |z — a| < a.
We have

loggnzlogaJrlogE = loga + log (1+ m—a) =
a

a
— 1 _ n
oga—i—nE:l - (x—a)

Thus log x is represented on the interval (0,2a) by a power series, i.e., logx is
analytic at a.
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Remark 7.57. Let f be analytic on the open interval I. For every z¢ € I let r(x0)
denote the largest positive number (or the infinity) such that the Taylor series of f
at x represents f on the neighborhood of x( of radius r ().

Let us determine the value of r(z) for the functions of Examples 7.45 and 7.56.
For polynomials, and for the functions e*, sinx, cosz, shz and chz, we have
r(zp) = oo for every xg. For the functions 1/z, (1 + )¢, log(1 + ), we proved
that r(zo) = ¢ for every zp > 0, and thus r(xg) is the largest number such that f
is analytic on the neighborhood of ¢ with radius r(z¢). We might believe that this
is always true, that is, if f is analytic on the interval (a, b), then r(xg) > min(xzg —
a,b — xo) for every zg € (a,b).

However, this conjecture is false. Consider the function f(z) = 1/(1 + 22) on
R. By Example 7.56.2, f is analytic everywhere. On the other hand, the Taylor
series of f at 0 is the series »_~ ,(—1)"z*". Indeed, this power series represents
f on the interval (—1, 1) and thus, by Theorem 7.54, this is the Taylor series of
the function corresponding to the point zero. However, this series is divergent for
|x| > 1, therefore, r(x¢) = 1. We find that the function f is analytic everywhere,
but its Taylor series corresponding to 0 represents f only on the interval (—1, 1).

This phenomenon might be very surprising at first. What could determine the
value of the radius r(x¢) if not the largest interval where f is analytic? In order
to answer this question, we have to step out to the complex plane. See the second
appendix of this chapter for the details.

‘We now return to the converse of Theorem 7.48.

Lemma 7.58. Let the power series y .- a,(x — x0)™ be convergent on (xo —
R,x0+ R) (R >0), and let its sum be f(x). Then, for every 0 < ¢ < R, there
exists a c > 0 such that | f*) ()| < (ck)* for every |z — 0| < q and k > 0.

Proof. Let g < r < R be fixed. Since the series Y~ a,,r™ is convergent, we have
anr™ — 0. Then there exists a K > 1 such that |a, | < K/r" forevery n > 0. Thus,
if |z — 0| < ¢ then, using (7.14) and (7.13) we get

FO@)| <3 nn = 1) (0= k4 1) - faa] o a0l <
n==k
SZn(n—l)u-(n—k—f—l)-g-q”—k:

k

“
3
I

AN

Z (n—1)---(n—k+1)-(¢/r)" % =

K-k rK E "
ok (1= (g/r)FT? <rq'(rq>

for every k > 0.
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Thus |f®(x)| < (ck)¥, where ¢ = rK/(r — q)2. Since this is true for every
k > 0, the lemma is proved. O

The previous lemma has important consequences.

Theorem 7.59. The function f is analytic at the point xq if and only if there exist
positive numbers § and ¢ such that f is infinitely differentiable on (¢ — 6,0 + 0),
and | f) (x)| < (en)™ for every x € (zg — 6,20 + 6) and n > 0.

Proof. We proved the “if”” part of the theorem in Theorem 7.48. The “only if part”
follows from Lemma 7.58. ]

Theorem 7.60. If the power series > - a,(z — xo)™ is convergent on (zoy — R,
xo + R), then its sum is analytic at every point of the interval (vog — R, zo + R).

Proof. This is clear by Lemma 7.58 and Theorem 7.48. ]

We note that the theorem can also be proved directly (see Exercise 7.58).

Example 7.61. By applying the previous theorem, we show that the function arcsin z
is analytic on (—1,1). Apply (7.17) with ¢ = —1/2 and with —2? in place of z. We

et
g S ()

for every |z| < 1. If |x| < 1, then the series on the right-hand side is uniformly
convergent on the interval [0, 2], and thus, by Theorem 7.40, we may integrate the
series term-by-term there. We obtain

[odt > ~1/2 1
. _ _ 2 —1)". . 2n+1
Arestn / V-2 0( ) ( n ) 2n + 1"
0 n=

for every © € (—1, 1). Therefore, by Theorem 7.60, arcsin x is analytic on (—1, 1).
Note that (~/ ) = (=1)"(*") /4", which gives

o] 2n
arcsinz = Z 4”(;21—1) g2t (7.18)
n=0

for every |z| < 1.
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Remark 7.62. Let f be infinitely differentiable on the open interval I. For every
xg € I, let R(zp) denote the radius of convergence of the Taylor series

S %(m —x0)". If f is analytic on I, then R(z() > 0 for every z¢ € I,
since the Taylor series has to represent f on a neighborhood of xy. The converse
of this is not true: R(zg) > 0 (xg € I) does not imply that f is analytic at every
point of the interval I. E.g., let f(x) = e=1/" and f(0) = 0. As we saw in Exam-
ples 7.46.2, f is not analytic at 0, but we have R(xzo) > 0 for every x(. Indeed,
R(0) = oo, since the Taylor series at 0 is convergent everywhere. On the other hand,
f is analytic on both of the half lines (—o0, 0) and (0, 00); this easily follows from
Exercise 7.60. Thus R(xg) > 0 for every xg # 0.

If we want to ensure that f is analytic on I, we need to assume more than
R(xg) > 0 (zo € I). With the help of Theorem 7.59, it easy to see that if for every
bounded and closed interval J C I, we have

inf{R(zo): zo € J} > 0, (7.19)

then f is analytic on I (see Exercise 7.64). The converse of this claim is also true:
if f is analytic on I, then (7.19) holds for every bounded and closed interval J C [
(see Exercise 7.65).

The following theorem presents an important property of analytic functions.

Theorem 7.63. Let f: I — R be analytic on the open interval 1. If there exists a
sequence (x,,) of roots of [ converging to a point xo € I such that xo # x,, for
every n, then f is the constant zero function.

Proof. We know that f is infinitely differentiable on I. Thus f is continuous, which
implies f(xzp) = 0. Applying Rolle’s theorem (see [7, Theorem 12.49]) succes-
sively, we get that for every & > 0 there exists a sequence converging to xg, and such
that its terms are different from z¢, and f(*) is zero at each term of the sequence.
Since f(*) is continuous, it follows that f*) () = 0 for every k.

This means that the Taylor series of f at xg is constant zero. Since f is analytic at
x0, we have that f is constant zero on a neighborhood of x. Let b be the supremum
of the set of those points = for which x > xg, © € I, and [ is constant zero on
the interval [z, z]. Put b = sup I. Then b = sup I. Indeed, suppose this is not true;
that is, b < sup I. Then b € I and f is constant zero on the interval [z¢, b). Then
it follows that f(¥)(b) = 0 for every k, and thus the sum of the Taylor series of the
function f corresponding to the point b is constant zero. Since f is analytic at b, f is
constant zero on a neighborhood of b. However, this contradicts the definition of b.

We proved that b = sup I, i.e., f(x) = 0 for every point 2 > x¢, z € I. We can
prove f(x) = 0 for x < xg, « € I similarly. O

Remark 7.64. Theorem 7.63 can be rephrased as follows. If f is analytic on the
open interval I and I has a bounded and closed subinterval where f has infinitely
many roots, then f is the constant zero function.
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It is easy to see that if the functions f and g are analytic on the interval I, then
f — g is also analytic on I. Applying Theorem 7.63 to f — g yields the following.

Theorem 7.65. Let f and g be analytic on the open interval I, and let f(x,) =
g(xy,) for every n, where x,, — x¢ € I, and xo # x,, for everyn. Then f(x) = g(x)
foreveryx € I. O

Remarks 7.66. 1. The previous theorem states that if I is an open interval,
Tn — xo € I, and xy # x,, for every n, then every function that is analytic on
is determined by its values at the points x,,. For this reason, we call Theorem 7.65
the unicity theorem. (The statement of the unicity theorem is the analogue of the
fact that if two kth order polynomials are equal at (k + 1) points, then they are equal
to each other.)

2. It is important to note that in Theorems 7.63 and 7.65 the condition requiring that
the limit of the sequence (z,,) is in I is essential. One can prove that the function
sin(1/x) is analytic on the half line (0,00) (see Exercise 7.61). This function is
zero at the points x,, = 1/(nm), where x,, — 0. Still, the function sin(1/z) is not
the constant zero function.

3. The properties described by Theorems 7.63 and 7.65 are shared neither by the
class of continuous, nor the class of differentiable functions. Moreover, these prop-
erties are not shared even by the functions that are infinitely differentiable. E.g., let
flz)=0if x <0 and f(z) = e=1/7* if 2 > 0. One can show that f is infinitely
differentiable on the whole real line (and f(™) (0) = 0 for every n). (See [7, Remark
13.17].) Now, if ,, < 0, z,, — 0, then f(z,) = 0, since f is zero on (—o0, 0], but
f is not constant on R.

Exercises

7.38. Find the radius of convergence of the following power series.

(@) > nz", (b) S z"/(a™ + b"),
() > nla", @ S nlz™,

@ /(%) ® S ((logn)een /2m)zm,
@ Y+ 1) an, M) (" /n)am,

i) Y2, B Y2,

7.39. Find power series that represent the following functions on a neighborhood
of the given points:
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(@) 1/2%, z9=3; (b) (22—5)/(22—5x 4 6), 20=0;
(©) 3%, 2o =0; (d) 3%, mo =23

(e) logz, ¢ = 10; §3) e””s, zo = 0;

(2) log(1+2?), zo = 0; (h) log(1 + z + 22), 2o = 0;

() sinz?, o = 0; () sh(1+2%), 20 =0;

(k) f(z) =chy/rifr >0,and f(z) = cos/—zifx <0, zo = 0;

M 1/(1+2?), 20 =1 (m) 1/(1+ 2%)2, 29 = 0;

(n) z-arctgx —logv1+ a2, xg =0;
(0) 1/Vx, zp = 2.

7.40. Find the 357th derivative of arctga at 0. Find the 42nd derivative of e’
at 0. Find the 78th derivative of log(1 + z + %) at 0. Find the 80th derivative of
(arctg x)? at 0.

7.41. Find the sum of the following infinite series:

@ 32,2, n/3" (b) YL, 1/(n-2"),
(c) fo‘:l n2/5”, (d) ZZO:O 1/(2n+ 1)1,
() 2nL,4"/(2n)!, (B o 1/((2n+1)27),

(® Yool (1—=+e)"/n.

7.42. Find the value of the limit

. "
lim 1+ — e .
n—oo n

7.43. Find those pairs of numbers (a, b) for which the sequence
1 n+b
n® (e — (1 + > >
n

7.44. Let f(x) =Y., a,z", forevery |z| < r, where the coefficients a,, are non-
negative. Show that the power series is convergent at r if and only if f is bounded
on (—r,r).

is convergent. (H)

7.45. Evaluate the sum Y > (ﬁ — ng+Q> (H)
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7.46. Find the sums of the following power series in (—1,1):

[e%] 1 ] "
(a) Zn:O 3n+1xn’ (b) Zn:l n-(fL+1)'

7.47. Show that if ¢ > —1, then

=1+ (7)+ (5)+ -

Prove also that the series on the right-hand side is divergent for ¢ < —1. (H)

7.48. Show that if ¢ > 0, then

= (D) (5) -

Prove also that the series on the left-hand side is divergent for ¢ < 0. (H)

7.49. Show that the power series of arcsinz is convergent at = 1. Use this to
prove

o0 2n
m ()
5= oy ()
2 an(2n+ 1)
7.50. Prove the converse of Abel’s theorem: if » .~ a, 2™ is uniformly convergent
on [0, zg), then it is convergent at z.

7.51. Construct a function f such that f is infinitely differentiable everywhere, the
Taylor series of f at 0 is convergent everywhere, and the Taylor series represents f
on [—1, 1], but does not represent f anywhere else.

7.52. True or false? If a power series is convergent at the point zy > 0, then its sum
is differentiable from the left at . (H)

7.53. True or false? If a power series is convergent at the point z¢ > 0, then the
(finite or infinite) left-hand side derivative of its sum exists at xg. (x H)

7.54. Show that if f is analytic on the open interval I, then the primitive function
of f is also analytic on 1.

7.55. Show that the function arc tg « is analytic on R.

7.56. Show that if f is analytic on R, then its graph consists of finitely many mono-
tone segments over every bounded and closed interval.

7.57. Show that if f is analytic on R, then its graph consists of finitely many convex
or concave segments over every bounded and closed interval.
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7.58. Let f(z) =) " anz" for every z € (—r,r). Show that for every
2o € (—r, 1), the Taylor series of f corresponding to x represents f on the interval
(zo — 0,20 + 9), where 6 = min(zo + r,r — x9). (H)

7.59. Show that if f and g are analytic on (a, b), then f + g, f - g, and (whenever
g # 0) f/g are also analytic there.

7.60. (a) Suppose that the function f is represented by the power series
> neoar(z —a)® on the interval (a — &, a + d), f(a) = b, and the function g is
represented by the power series > - b,(z — b)™ on the interval (b —¢e,b+¢).
Suppose further that >~ | |ak| - |# — a|* < ¢ for every z € (a — &, a + J). Show
that the function g o f is represented by its Taylor series corresponding to the point
a on the interval (a — §,a + ¢). (H)

(b) Let f be analytic on the open interval I, and let g be analytic on the open interval
J, where .J/(I). Show that g o f is analytic on I.

7.61. Show that the function sin(1/z) is analytic on the half-line (0, c0).

7.62. Show that if f is infinitely differentiable on (a, b) and £ (z) > 0 for every
x € (a,b) and every n, then f is analytic on (a, b). (*)

7.63. Show that if f is infinitely differentiable on (a, b) and the sign of f (") is the
same everywhere on (a, b) for every n, then f is analytic on (a, b). (x)

7.64. Let f be infinitely differentiable on the open interval I, and suppose that for
every bounded and closed interval J C I there is a § > 0 such that, for every zy €
J, the radius of convergence of the Taylor series of the function f corresponding to
the point z is at least . Show that f is analytic on I. (H)

7.65. Show that if f is analytic on an open interval I, then for every bounded and
closed interval J C [ there exists a § > 0 such that for every o € J, the radius of
convergence of the Taylor series of f corresponding to the point x is at least 6. (H)

7.66. Show that for every continuous function f: R — R there exists an every-
where analytic function g such that g(z) > f(x) for every . (x H)

In the following exercises we consider sequences with the property that every term
of the sequence equals a linear combination of the previous k terms with coefficients
independent of the term. E.g., the Fibonacci® sequence® is such a sequence. The
precise definition is as follows. We say that the sequence (a,, )52, satisfies a linear
recursion, if there exist real numbers ¢y, ..., ¢; such that

Ap = ClUp—1+ ...+ Cp_p (7.20)

holds for every n > k.

5 Fibonacci (Leonardo Pisano) (about 1170—1240), Italian mathematician.

6 The sequence (un) of the Fibonacci numbers is defined by ug = 0, w1 = 1 and un = un—1 +
Un—2 (TL > 2)
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7.67. Let u,, denote the nth Fibonacci number. Show that the radius of convergence
of the power series ZZO:O u,x™ is positive. Find the sum of the power series, find
the Taylor series of this sum corresponding to 0, and use these to give a closed
formula for the Fibonacci number u,,.

7.68. Show that the sequence (a,, )22, satisfies a linear recursion if and only if the
radius of convergence of the power series » .~ a,z" is positive, and its sum is a
rational function.

7.69. Let 0.aqaz ... be the number ¢ € [0, 1], written as a decimal. Show that the
sum of Y a,x™ is a rational function if and only if ¢ is a rational number.

7.70. Letcy,...,c; > 0andcy + ...+ ¢ = 1. Show that if the sequence (a,, )52
satisfies the recursion (7.20), then (a,,) is convergent.

7.71. Let Cy = C; = 1, and for n > 2, let C,, denote the number of triangulations
of a convex n + 2-vertex polygon.

(i) Show that Cy,4q = Y 1 C;C,,—; forevery n > 0.
(ii) Show that the power series Y~ Cy, 2" is convergent in a neighborhood of 0.
(iii) Show that if > ° / Crz™ = f(z), then we have f(z) — zf?(z) —1 =0 and
flx)=(1-+1—4x)/(22).

(iv) Show that C,, = 2 (*") for every n > 0. (H)

The numbers C,, are called the Catalan numbers’.

7.4 Abel Summation

When discussing summable series in the previous chapter, we defined a class of
divergent infinite series (namely, the set of summable series) to which we assigned
sum-like values. This was done as follows: instead of the sequence of partial sums
$n, we considered the sequence of their arithmetic means (t,,), and if this was con-
vergent, we said that the limit of the sequence (¢,,) was the sum of the series.

In fact, this method is only one of several methods assigning a sum-like value to
divergent series. An infinite system of such methods was presented by Holder®.

Holder’s idea was the following. The series 1 — 2 + 3 — 4 + ... is not summable,
since the sequence of its partial sums is

(Sn) = (13 717 27 723 33 737 . ')7

7 Bugene Charles Catalan (1814—1894), Belgian mathematician.
8 Otto Ludwig Holder (1859-1937), German mathematician.
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and the sequence of their arithmetic means is
(tn) =(1,0,2/3,0,3/5,0,...,n/(2n —1),0,...).

The series (t,,) is divergent, since the subsequence of its even terms converges to 0,
while the subsequence of its odd terms converges to 1/2. This means that the series
1—2+43—4+...is not summable. (This also follows from the fact that a,,/n
does not tend to zero; see Exercise 6.56).)

But if we take the arithmetic means of the sequence (t,,), the resulting sequence
is convergent and converges to 1/4. This motivated the following definition. Let
s, denote the partial sums of the infinite series Znoozl a,,, furthermore, let ¢,, =
(s1+...4+sn)/nand u, = (1 + ...+ t,)/n for every n. If the sequence (u,,) is
convergent with limit A, then we say that the infinite series > - | a, is (H,2)
summable, and its (H,2) sum is A. The series 1 —2+3 -4+ ... is (H,2)
summable and its (H, 2) sum is 1/4.

The process can be continued: take the arithmetic mean of the sequence of partial
sums, then take the arithmetic mean of the resulting sequence, and continue this
method for k steps. If the sequence we get after the kth step is convergent with limit
A, then we say that the infinite series Y ; a,, is (H, k) summable, and its (H, k)
sum is A.

Since the sequence of the arithmetic means of a convergent sequence also con-
verges to the same limit, it is obvious that if an infinite series is (H, k) summable,
then it is also (H,m) summable for every m > k, and its (H, m) sum is the same as
its (H, k) sum. Therefore, these summation methods are more and more efficient in
the sense that they assign a sum-like value to a wider and wider set of infinite series.
The previous example shows that the set of (H, 2) summable series is strictly larger
than the set of (H, 1) summable (i.e., the summable in the original sense) series.
One can show that in general the set of (H, k + 1) summable series is strictly larger
than the set of (H, k) summable sets (see Exercise 7.77).

As another application of the theory of power series we now introduce another,
even more effective, summing method. It follows from Theorem 7.39 that if the
series ZZO:() an is convergent with sum A, then

lim Z a,x" = A. (7.21)

This observation motivates the following definition.

Definition 7.67. We say that the infinite series Y~ a,, is Abel summable and its
Abel sum is A, if the power series >~ a,z" is convergent on (—1,1) and (7.21)
holds.

Thus it follows from Theorem 7.39 that if a series is convergent and its sum is A,
then the series is Abel summable and its Abel sum is also A. Even more is true.
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Theorem 7.68. If an infinite series is summable and its sum is A, then the series is
Abel summable and its Abel sum is also A.

Proof. Let the infinite series fozo a, be summable. By Exercise 6.56 we have
ar/m — 0, and thus the power series fo:o anx™ is convergent on (—1, 1), since it
can be majorized by the series Y n - |z|™. Let the sum of the series Y - ; a,z" be
f(x). We need to show that lim,_,1_¢ f(z) = A.

Let s, = > ., a;. It is easy to check that the Cauchy product of the series
Yoo ox™and > 7 ana™ is the series Y~ s,2™. Since the series are absolutely
convergent on (—1,1), it follows that their Cauchy product is also absolutely con-
vergent, and its sum is the product of the sums of the two original series. (See The-

orem 6.54.) Therefore,

f@) _ Y s (7.22)
n=0

1—=x

for every z € (—1, 1), where the series on the right-hand side is absolutely conver-
gent. Taking the Cauchy product of the right-hand side of (7.22) and ) ™, we
obtain
f(x) S
— = et osp)a” 7.23
— D (ot ot sn)z (7.23)

n=0

for every z € (—1,1). By assumption, the series >~ a,, is summable. If its sum
is A, then (so+ ...+ s,)/(n+ 1) — A, i.e., the sequence

so+...+sn_
n+1

n =

converges to zero. Writing the terms of the series on the right-hand side of (7.23) in
terms of the numbers c,,, we get

o0 o0 o
Z((n + DA+ (n+1)c,)z" = A- Z ma™ ! 4+ Z(n + Depa™ =
n=0 m=1 n=0

A oo
=t e e
n=0

Multiplying (7.23) by (1 — x)? we get

o0

flx)y=A+(1—-2)* Z(n + 1D)eya™.

n=0
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To finish our proof, we need to show that

. _ 2 . n _
wgrln_o(l x) ,;)(n + Depz™ = 0.

Let & > 0 be fixed. Since ¢,, — 0, there exists an index N such that |¢,| < £ holds
for every n > N. Now we have

(1—x)%- Z(nJrl)cna:" <e-(1-x)%. Z(nJrl)x" <
n=N n=N
<e (1-2)? > (n+l)a"=e (124
n=0

Since lim, _1_o(1 — )% - >N ' (n + 1)c,a™ = 0, hence

n=0
N-1
(1—x)*- Z (n+Deya™| <e (7.25)
n=0

for 1 — § < x < 1. Finally, comparing (7.24) and (7.25) we obtain

(1—2)2- Z(n + 1epa™| < 2e
n=0
if 1 — 0 < x < 1. This is what we wanted to prove. (]

Remark 7.69. The previous theorem (along with its proof) can be easily general-
ized to show that if an infinite series is (H, k) summable for a k, then the series is
necessarily Abel summable and its Abel sum is the same as its (H, k) sum.

For example, the series 1 — 2 + 3 — 4 + ... is Abel summable, since

- n n __ 1
;(71) S(n+ 1)z = T3

for every z € (—1, 1), and the right-hand side converges to 1/4 as x — 1 — 0. This
agrees with the fact that the (H, 2) sum of the series is 1/4.

Thus the Abel summation is more “efficient” than all (H, k) summation. Further-
more, as the following example shows, there are Abel summable series that are not
(H, k) summable for any k.

Example 7.70. The function e'/(1*%) is analytic on (—1, 1), and its Taylor series at
0 represents the function there (see Exercise 7.60 (a)). Let this series be
> g anx™. Then
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oo
lim E anz” = lim Y/ (+®) = ¢l/2,
r—1—0 0 x—1—-0

n—

i.e., the series > °  a,, is Abel summable (and its Abel sum is e'/2).

On the other hand, the series Y~  a, is not (H, k) summable for any k. This
follows from the fact that every (H, k) summable series satisfies lim,, oo @,/ nk =
0 (see Exercise 7.76); however, this is not true for the series above (see Exer-
cise 7.78).

Exercises

7.72. Show that if a series of non-negative terms is (H, k) summable, then it is
convergent.

7.73. Show that if a series of non-negative terms is Abel summable, then it is con-
vergent.

7.74. Show that the series 12 — 22 4+ 32 — 42 + 52 — ... is (H, 3) summable and
find its (H, 3) sum.

7.75. Check that the series 12 — 22 + 32 — 42 4+ 52 — . is Abel summable and its
Abel sum is the same as its (H, 3) sum.

7.76. Show that if the series > a,, is (H, k) summable then

lim an/nk =0.

(H)

7.77. Show that the series 1% — 2% + 3% — 4k 4+ 5% — _is Abel summable, but it
is not (H, k) summable.

7.78. Let > .°°  a,x" be the Taylor series of the function e'/(1+2) corresponding
to the point 0. Show that the sequence (a,,/n*) (n =1,2,...) is not bounded for
any k. (H)

7.5 Fourier Series

The development of the theory of differentiation and integration in the seventeenth
century was mostly motivated by physics-based problems. Physics retained its key
role in the motivation of analysis: in the eighteenth and nineteenth centuries several
physics-based problem arose that elucidated some basic notions of analysis (such as
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functions, limits and infinite series), and also helped the emergence of new math-
ematical theories. Such problems were to find the equation of a vibrating string or
the equation of heat conduction’, which led to the following question. The series of
the form

ao + Z(an cos nx + by, sinnx) (7.26)

n=1

(where a,, and b,, are constants) are called trigonometric series. Since the functions
cos nx and sin nx are 2m-periodic for every n € N, it follows that if the series (7.26)
is convergent everywhere, then its sum is also 27-periodic. Now the question is:
can we write every 2m-periodic function in this form? If not, which 27-periodic
function can be written as the sum of a trigonometric series? These question led to
the emergence of the theory of the Fourier series. The answers were found as late as
in the twentieth century.

Proving the uniqueness of the representation was easier than showing its exis-
tence. Georg Cantor proved in 1870 that if a function can be written as the sum of
a series of the form (7.26), then the representation is unique, i.e., the coefficients
an and b,, are uniquely determined. We only prove Cantor’s theorem for the case
when the series (7.26) is uniformly convergent (for the general case, see [16, (3.1)
Theorem)].

Theorem 7.71. Let the series (7.26) be uniformly convergent on R, and let f(x) be
the sum of the series. Then f is continuous, and we have

2m
1
ag = — /f(x) dx (7.27)
2m
0
and
1 2 1 2m
an = f/f(x)cos na dr, b, = — /f(a;) sin na dz, (n>1). (7.28)
i 7r
0 0

Lemma 7.72. For every integer n > 1 we have

2m 2m
/sin2 nedr = /cos2 nrdr = . (7.29)
0 0

° For the details, see the third appendix of this chapter.
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For every pair of integers n and m we have

2

/ sinnx cosmx dr = 0. (7.30)
0

For every pair of distinct integers n and m we have

2w 2T

/cosmc cosmz dr = /Sinnm sinmax dx = 0. (7.31)
0 0

Proof. The statements follow from the identities
cos’z = (1 + cos2x)/2, sin®x = (1 — cos2z)/2,

3 (cos(z +y) + cos(z — y)) ,
sinzsiny = § (cos(z — y) — cos(z +y)),

1

2

(sin(z +y) +sin(z — y)),

COSx COSY =

sinx cosy =

using the fact that fo% coskx dr = fo% sin kx do = 0 for every integer k # 0. O

Proof of Theorem 7.71. Since the terms of the series (7.26) are continuous, the con-

tinuity of the sum f follows from Theorem 7.36. By Theorem 7.40, the series (7.26)

is integrable term by term on the interval [0, 2], which gives (7.27) immediately.
We now prove that the series

(o]
ag cosmx + E (ay, cos nx cos mx + by, sin nx cos mx) (7.32)

n=1

is also uniformly convergent on R for every m > 0. Let £ > 0 be fixed. By the
uniform convergence of the series (7.26), there exists an N such that the nth partial
sum of the series is closer to its sum than ¢ for every n > N and for every = € R.
Since | cosma| < 1, the nth partial sum of the series (7.32) is also closer to its
sum (i.e., to f(z) cosmaz) than € for every n > N and for every = € R. Thus the
series (7.32) is indeed uniformly convergent, and then it is term by term integrable
on [0, 27]. Therefore, by Lemma 7.72 we obtain fozﬂ f(z)cosmzdx =7 - a,. We

get fo% f(z)sinma dx = 7 - by, in the same way, which proves (7.28). O

Remark 7.73. In the formulas (7.27) and (7.28) we could integrate f on any interval
of length 27 and not just on the interval [0, 27]. This follows from the fact that if f
is p-periodic for some p > 0, and integrable on [0, p|, then it is integrable on every
interval [a, a + p], and
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a+p D

/fdx:/fd:r. (7.33)
a 0

This can be proved as follows. Let (k — 1)p < a < kp, where k is an integer. The
periodicity of f implies fakp fdx = f;’_(k_l)pfdx and f;pﬂjfdx = foaf(kfl)p
f dx, and thus (7.33) follows.

Formulas (7.27) and (7.28) were already known by Euler. However, their system-
atic investigation started with the work of Fourier'®, who used (7.27) and (7.28) and
the series of the form (7.26) to solve the equation of the heat conduction.

Definition 7.74. Let f: R — R be 27-periodic and integrable on [0, 27]. The num-
bers defined by (7.27) and (7.28) are called the Fourier coefficients of f, and the
series (7.26) written with these coefficients is called the Fourier series of f.

If the Fourier series of f is convergent at a point = and its sum is f(x), then we
say that the Fourier series represents f at the point x.

Examples 7.75. 1. Let f be the 2r-periodic function such that f(x) = 22 for every
x € [—m, m]. Obviously, f is an even function.

It follows that the coefficients b,, of the Fourier series of the function (i.e., the
coefficients of the terms sin nx) are zero. Indeed, by Remark 7.73,

by, = l/f(glc) sin nx dx.
T

Now, the value of the integral is zero, since on the right-hand side we integrate an
odd function on the interval [—m, 7].
Let us find the coefficients a,,. First, we have

1 T 9 2
27 var 3

—T

ao

If n > 0, then using integration by parts yields

s - s
1 9 1 5 sinnx 2 .
a, =— | x“cosnxdr = — - [x°- — — | xsinnzdx =
T T n . T
—T — T

P - 2
=0+ — [zcosnz]”  — j/cosnxdx =
™m ™m

—T

10 Jean Baptiste Fourier (1768—1830), French mathematician.
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Thus the Fourier series of the function is

72 cos2xr  cos3zx
3—4~(cosx—22+32—...>. (7.34)

Later we will see that this series represents the function everywhere (see Exam-
ple 7.80).

2. Let f be the 27-periodic function such that f(z) = (7 — x)/2 for every z €
(0,27), and f(kw) = 0 for every integer k. Integration by parts gives a,, = 0 for
every n and b, = 1/n for every n > 0. Le., the Fourier series of f is the series
>-o2 (sinnz)/n. This series also represents the function everywhere (see Theo-
rem 7.86).

3. Let f be the 27-periodic function such that f(z) = (22/4) — (7z/2) + (72/6)
for every « € [0, 27]. Performing integration by parts twice, we obtain b,, = 0 for
every n and a,, = 1/n? for every n > 0. Thus the Fourier series of f is the series
>-o°  (cosnz)/n?. This series also represents the function everywhere (see Theo-
rem 7.79).

Theorem 7.71 can be rephrased as follows. If a trigonometric series is uniformly
convergent, then the series is necessarily the Fourier series of its sum.

In general, we cannot expect that the Fourier series of every function represents
the function. Indeed, if we change the value of the function f at a single point, then
the integrals of (7.27) and (7.28) do not change, thus the Fourier series and its sum
are also unchanged. Thus we can always force a function not to be represented by
its Fourier series at a fixed point. The real question is, whether a continuous and
2m-periodic function is represented by its Fourier series, or not?

In order to understand the nature of this question better, let us recall some results
on power series and Taylor series. In this context, we can draw a parallel between
trigonometric series and power series on one hand, and the Fourier series of con-
tinuous functions and the Taylor series of infinitely differentiable functions on the
other hand. According to this analogy, the statement corresponding to Theorem 7.71
is that a convergent power series is always equal to the Taylor series of its sum (The-
orem 7.54). On the other hand, we know that the function f(z) = e='/*, £(0) =0
is infinitely differentiable, its Taylor series is convergent everywhere, but the sum
of its Taylor series is equal to the function at no point (except for the origin). The
analogous statement would be that there exists a continuous function whose Fourier
series is convergent, but its sum is not equal to the function anywhere. Is this true? In
Example 7.46.1. we defined a function which is infinitely differentiable, and whose
Taylor series is divergent everywhere (except for the origin). Is there a continuous
function whose Fourier series is divergent everywhere?

These questions were not answered until the end of the nineteenth century and
in the twentieth century. Lipét Fejér!! proved the following theorem in 1900 (the
proof of which goes beyond the limits of this book.)

1 Lip6t Fejér (1880-1959), Hungarian mathematician.
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Theorem 7.76. (Fejér’s theorem) The Fourier series of a continuous and 27-
periodic function is summable everywhere, and its sum is equal to the function itself.
Consequently, if the Fourier series of a continuous function is convergent at a point,
then its sum must be the value of the function at that point.

The first examples of continuous functions whose Fourier series were divergent
at some points were constructed in the nineteenth century. It was unsolved until 1966
whether the Fourier series of a continuous function can be divergent everywhere or
not. Carleson'? proved that this is impossible: the Fourier series of every continuous
(further, every integrable) function converges to the value of the function almost
everywhere (in a certain, well-defined way; see Chapter 8). L.e., the Fourier series
behave better than the Taylor series in both sense.

Several sufficient conditions are known that guarantee the representation of a
function by its Fourier series. E.g., it follows from the results of Dirichlet and Rie-
mann that if f is continuous and monotone on an interval (a, b), then its Fourier
series represents f there. It follows immediately that the functions of Examples 7.75
are represented by their Fourier series everywhere. (We will prove this presently
without using the results of Dirichlet and Riemann.)

In lack of space, we cannot delve into the theory of the Fourier series. The topic
is explored by several books; see [15], [2], or [16]. We will prove, however, that if
the Fourier series of a continuous function is uniformly convergent, then the Fourier
series represents the function everywhere. We prove this in two steps. First, we show
that if the Fourier series of a continuous function is the constant zero function, then
the function is also identically zero. (The analogue of this statement for Taylor series
is false: the Taylor series of the function f(z) = e~/ o f (0) = 0 is the constant
zero function.)

Theorem 7.77. Let f: R — R be continuous and 2m-periodic. If every Fourier
coefficient of f is zero, then f is the constant zero function.

Proof. 1. The function cos™ z can be written as » ,_ ¢ cos kz with suitable con-
stants c, . . . , ¢,. We prove this by induction on n. The claim is true for n = 1. If it
is true for n and

n
cos" x = E ¢ cos kx,
k=0

then

n
cos" T = Z ¢l cos kx cos x.
k=0
Using the identity cos kz cosz = 3 - (cos(k + 1)z + cos(k — 1)z) for every k and
reordering the resulting terms yield the statement for n + 1.
From this observation it follows that if all the Fourier coefficients of the function
f are zero, then f027r f(x) cos™ x dx = 0 for every non-negative integer n. Which,

12 ennart Carleson (1928-), Swedish mathematician.
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in turn, implies that
27
/f(;l:) -p(cosx) dx = 0,

0

for every polynomial p.

I1. We now show that if f is continuous, 27-periodic, and every Fourier coefficient of
fis zero, then £(0) = 0. Suppose that f(0) # 0. Since the Fourier coefficients of the
function f(O) - f(x) are also zero, we may assume that f(0) = 1. By the continuity
of f, there exists a 0 < § < 7/2 such that f(z) > 1/2 for every |z| < §. The idea
of the proof is to find a polynomial p such that p(cos ) is greater than 1 around
the point 0, positive on (—4,9), and small enough on [—m, 7]\ (—4,0) to make
the integral [”_ f(x)- p(cosz)dx positive. (By Remark 7.73, we may integrate
on any interval of length 27.) Since the integral has to be zero, this will lead to a
contradiction.

We show that the polynomial p(x) = (x + )V satisfies the conditions if ¢ is
small enough and NV is large enough. Let 0 < ¢ < 1 small enough for (cos d) + ¢ <
1 to hold. Let p(x) = (cosx) + €. Since ¢(0) > 1, there exists some 1 > 0 such
that o(x) > 1 for every |z| < 1. Obviously, ¢(z) > 0is also true for every |z| < d.
Note that ¢ and 7 only depend on 4.

Forz € [§, 7] wehave —1 + ¢ < ¢(z) < (cosd) + €, and thus |p(z)| < g, where
q =max(1 — ¢, (cosd) +¢) < 1. Therefore, if = € [§,n], then |p(z)V| < ¢V
Since ¢ is even, this is also true on [—7, —d]. Let | f(z)| < K forevery x € [—7,7].
Then we have

[ @) o) do| <7k g /f Wl <m0 kg,
5
On the other hand,
/ 1
/f() dx>/f dx>/f d;v>§ 2n =.

Thus [*_f(z) - ¢(x)N dz > n — 27 K¢" > 0 for N large enough, which is a con-
tradiction.

III. Let f be continuous and 27-periodic, and let every Fourier coefficients of f
be zero. Then, for every fixed a € R, the function f(z + a) is also continuous and
2m-periodic We show that the Fourier coefficients of f(x + a) are also zero. Indeed,
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27 2m+a
/f(x+a) cosnx dr = / f(z)cos(n(z — a)) de =
0 a

2m

= [ f(z)(cosnzcosa + sinnzsina)dr =

0

2 27
:cosa'/f(x)cosmcdx—l—sinw/f(x)sinm:dx:
0 0

= (cosa) -0+ (sina) -0 =0,

and we can prove |, 02 " f(z + a) sin na dr = 0 similarly. Part II. of our proof implies
that f(0 4 a) = 0. Since this is true for every a, the function f is identically zero. [

Remark 7.78. We say that the integrable functions f, g: [a,b] — R are orthogonal

if f; f-gdx =0. (As for the motivation of this notion, see [7, Remark 14.57].)
Using this terminology, formulas (7.30) and (7.31) state that on the interval [0, 27]
any two of the functions cosnz (n = 0,1, ...) and sinnx (n = 1,2, .. .) are orthog-
onal. Now Theorem 7.77 states that if a continuous and 27-periodic function f is
orthogonal to every one of these functions, then f is identically zero. Thus Theo-
rem 7.77 says that the system of trigonometric functions cannot be extended with
respect to their orthogonality, i.e, the trigonometric function form a complete sys-
tem. For this reason we also call Theorem 7.77 the completeness theorem.

We can now easily prove that if the Fourier series of a function is uniformly
convergent, then it represents the function.

Theorem 7.79. Let f: R — R be continuous and 27-periodic. If the Fourier series
of f is uniformly convergent on R, then its sum is equal to f(x) everywhere.

Proof. Let the sum of the Fourier series of f be g. By Theorem 7.71, g is contin-
uous, and the Fourier coefficient of f and g are the same. It follows easily that the
Fourier coefficients of the continuous and 27-periodic function (f — g) are zero.
Then, by Theorem 7.77, f — g =0, 1i.e., f = g. O

Example 7.80. From Theorem 7.79 it follows that the Fourier series of the function
of Example 7.75.1. represents the function everywhere, since the function is contin-
uous, and its Fourier series is uniformly convergent by the Weierstrass criterion. We

get that
2

™ cos2x  cos3x 9
374 COS$7272+3727... =

for every |z| < . Plugging x = 7 we obtain that ) -, 1/n? = 72/6.

We now prove that every smooth enough function is represented by its Fourier
series.
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Lemma 7.81. If the function f: R — R is 2w-periodic and k times continuously
differentiable on R, then there exists an M > 0 such that

|an| < M/n", and |b,| < M/n* (7.35)

hold for the Fourier coefficients of f for every n > 1.

Proof. We prove by induction on k. For k = 0 the condition simply means (by
definition) that f is continuous on [0, 27]. In this case, f is bounded. Suppose that
|f(z)] < K for every = € [0, 27] with an appropriate positive number K. Then it
follows from (7.28) that |a,,| < 2K and |b,| < 2K for every n > 1. (Actually, it is
also true that the coefficients a,, and b,, converge to zero as n — oo, but we will not
need this. See Exercise 7.96.)

Suppose that the statement of the theorem is true for k, and let f: R — R be
27r-periodic and (k + 1)-times continuously differentiable. Then f’ is k-times con-
tinuously differentiable and, by the induction hypothesis, the Fourier coefficients of
f' satisfy the inequalities (7.35) with an appropriate M > 0. Integration by parts
gives

2 2

. 2m .
/f(x) cosnx dr = {f(a;) : smmc} - /f'(a:) CRNE =
no o n
0 0
1 27
=0- — /f’(x) -sinnz dz,
0
and
2m
/f(x)cosnxda: < M/nkt1,
0
Similarly (by using f(27) = f(0)), we get that
2
/f(x) sinnx de| < M/n*+1
0
for every n > 1. O

Theorem 7.82. If f: R — R is 2w-periodic and twice continuously differentiable,
then it is represented by its Fourier series everywhere.

Proof. By Lemma 7.81, the Fourier coefficients of f satisfy |a,| < M/n? and
|b,,| < M /n? with an appropriate M. Thus, by the Weierstrass criterion, the Fourier
series of f is uniformly convergent, and we can apply Theorem 7.79. (]
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Remark 7.83. The conditions of the theorem can be significantly relaxed. For exam-
ple, it follows from Dirichlet’s convergence theorems that every differentiable and
2m-periodic function is represented by its Fourier series.

We call the finite sums of the form ag + >, _, (a), cos kx + by, sin kz) (where ay,
and by, are constants) trigonometric polynomials. Every trigonometric polynomial
is continuous and 2m-periodic. Therefore, if a function f: R — R can be written as
the uniform limit of a sequence of trigonometric polynomials, then f is continuous
(and of course 2m-periodic). We now show that the converse is also true.

Theorem 7.84. (Weierstrass’ 2nd approximation theorem) If f: R — R is con-
tinuous and 2m-periodic, then for every € > 0 there exists a trigonometric polyno-
mial t such that | f(x) — t(x)| < € holds for every .

Proof. If f is twice continuously differentiable, then f is represented by its Fourier
series everywhere by Theorem 7.82. In the proof of Theorem 7.82 we also showed
that the Fourier series of f is uniformly convergent. Thus, for every € > 0, the nth
partial sum of the Fourier series satisfies the conditions of the theorem, if n is large
enough.

Therefore, it is enough to prove that if f is continuous and 27-periodic, then f
can be uniformly approximated by twice continuously differentiable and
2m-periodic functions.

Let € > 0 be fixed. Since f is uniformly continuous on [0, 27], there exists a
d > 0 such that |f(z) — f(y)| < ¢ whenever z,y € [0,27] and |z — y| < J. Fix
a partition 0 = 29 < 1 < ... < &, = 27 of the interval [0, 2] finer than 0. For
every i = 1,...,n choose a function ¢;: [x;_1, ;] — R with the following prop-
erties:

(i) ; is continuously differentiable on [x;_1, z;],
(i) @i(zi-1) = @i(wi-1) = (i) = @i(z:) =0,
(iii) the sign of <pl does not change on (x;_1,;), and

(iv) f r)dx = f(x;) — f(wi-1).

It is easy to see that the function ¢ - (x — z;_1)? - (z; — x)? has these properties
with a suitable constant c.

Let p(x) = ¢;(x) for every x € [z;_1, ;] and every i = 1,...,n, and let us
extend <p periodically to R Clearly,  is continuously differentiable and 27-periodic.
Let g(z) )+ fo t) dt for every x € R. It is easy to see that g is twice con-

tinuously d1fferent1able We show that g is 2m-periodic and |f(x) — g(z)| < € for
every x. The 2m-periodicity of the function g follows from
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The values of the functions f and g are equal at the points x;. Indeed,

Zq

alai) = £0)+ [ o(t)dt = F0)+ 3 (F(ay) = Flas)) = Fla)

0

If v € [x;_1,2;], then |f(z) — f(xi—1)| < e and |f(x) — f(z:)] <&, since |z; —
x;—1| < ¢ implies |z — z;_1| < ¢ and |x — ;| < d. On the other hand g(z) lies
between the numbers g(x;—1) = f(z;-1) and g(x;) = f(x;), since the sign of ¢;
does not change, and thus ¢ is monotone on [z;_1,;]. Thus we have |g(z) —
f(z)| < e. Since f and g are 27-periodic, this is true for every z. O

Remark 7.85. Using Theorem 7.84 we can give a new proof of Weierstrass’ (first)
approximation theorem, i.e., Theorem 7.8, for functions of one variable. Let
f:10,1] — R be continuous, and let ¢ > 0 be fixed. We will construct a polyno-
mial p such that | f — p| < ¢ on the interval [0, 1].

Extend f continuously to the interval [0, 27] in such a way that f(27) = f(0)
also holds. (E.g., let f be linear on the interval [1, 27].) Extend the resulting func-
tion to R 27-periodically, and denote the resulting function also by f. Since f is
continuous on R, it follows from Theorem 7.84 that there exists a trigonometric
polynomial ¢ such that | f(x) — t(x)| < /2 for every 2. We know that the functions
cosz and sinx are represented everywhere by their Taylor series corresponding
to the point zero, and that these Taylor series are uniformly convergent on every
bounded interval. From this it follows easily that the trigonometric polynomial ¢ is
also represented everywhere by its Taylor series corresponding to the point zero,
and this Taylor series is uniformly convergent on [0, 1]. Thus, if p,, denotes the nth
partial sum of the Taylor series of ¢, then for n large enough, |t(z) — p,(z)| < €/2
holds for every = € [0, 1]. Then |f(x) — pn(z)| < 2¢ for every x € [0, 1], which
proves the statement.

Finally, we find the sum of two important trigonometric series.
Theorem 7.86.

(i) The series Y. | (sinnx)/n is convergent for every = € R, and its sum is 27-
periodic. The sum of the series is zero for ¢ = kr (k € ), and

. sinnzr w—=x
> = (7.36)
n 2

n=1

for every 0 < x < 2.
(ii) The series > . (cosnx)/n is divergent for every x = 2k (k € 7Z), and con-

n=1
vergent with sum

n

S g ‘2sing‘ (7.37)
n=1

for every x # 2k (k € Z).
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Proof. Let the derivative of the mnth partial sums of the two series be s,(x) =
> iy sinjz and ¢, (z) = Y77 cos jz, respectively. By Lemma 6.64, the seque-
nces (|s,(x)|) and (|c,(z)|) are bounded if x # 2km (their upper bound is
1/]sin(x/2)]). Now the convergence of the two series follow from Dirichlet’s crite-
rion (Theorem 6.47).

It is clear that the sum of the series ), (sinnz)/n at the points z = 2km is
zero. Since the function on the right-hand side of (7.37) is 27-periodic, it is enough
to show that (7.36) and (7.37) hold for every 0 < x < 2.

Let 0 <0 < be fixed. If § <x <27 — 4, then sin(z/2) > sin(d/2) and
|ctg (x/2)] < 1/sin(d/2). It follows from (6.23) and (6.24) that

si(@) 4+ ...+ sp(x) 1 x 1 1 1 1
_Z < - -
n 2ctg2 ~ 2sin?(6/2) n+2sin(5/2) n
and
n 2| 7 2sin®(6/2) n  2sin(6/2) n

for every x € [d, 2m — ¢]. This means that the sequence of functions (s; + ...+
sn)/n converges uniformly to the function 1ctg (z/2), and the sequence of func-
tions (¢; + ...+ ¢,)/n converges uniformly to the constant —1/2 function on the
interval [§, 2 — §]. By Theorem 7.16 this implies

[ s1(t) + ... n(t r1 ot
/81( )+ +s ()dtﬁ/fctgfdt:logsing (7.38)
n 2 2 2

™ ™

and .
t (T -
/cl()+ tenl) yy T2 (7.39)
n
for every x € [0, 2m — 0] as n — o0.
Let Sy, (z) = 3°7_, (sinjx)/j and Cy,(x) = 377, (cos jx)/j. Then
/cn(t) dt = /(costJr ...+ cosnt)dt = [sintJr e ] = Sn(z)
n s
and
/sn(t) dt = /(sintJr ...+ sinnt)dt = [f cost—...— coint} = —Ch(z) — an,

where o, =1 — (1/2) + ...+ (—=1)""1(1/n).
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Thus S, (z) = f: cn(t)dt and Gy (2) = — f sn(t) dt — o, and we have

x

Si(z)+ ...+ Su(x) /cl(t)+...+cn(t)d

= t
n

and

Ci(z)+ ...+ Ch(x) _/sl(t)+...+sn(t)dt_a1—|—...—|—0¢n.

Taking (7.38) and (7.39) into account we find that (Si(z) + ...+ Sy(z))/n —
(m—2)/2 and (Ci(z)+ ...+ Cn(z))/n — —logsin(z/2) —log2 for every
x € [0, 2m — ], since o, — log 2, and thus (a3 + ... + ;) /n — log 2. Therefore,
the series ) > (sinnz)/n and Y~ (cosnz)/n are summable, and their sum is
(m — x)/2 and — log (2sin(z/2)), respectively. We have already proved that these
series are convergent. Thus, by Theorem 6.60, their sum coincides with their sum
as summable series. Since this holds for every z € [J, 2 — ¢] and every 0 < 6 < ,
the theorem is proved. ]

Remark 7.87. Statement (i) of the theorem says that the function of Example 7.75.2
is represented everywhere by its Fourier series.

Exercises

7.79. Each of the following functions is defined on an interval of length 27. Extend
the functions to R as 27-periodic functions, and find their Fourier series.
@ f(z) = (@ € [-7, 7))

®) f(z) = |z| (x € [-7,7));

© f(z) = z(r — |z|) @€ [-m, 7))

@) f(z) ==z (z €[0,2m));

(e) f(x) = 2% (x €0,27))

0 f(x)=1 (x €[0,m)) and f(z) = =1 (z € [-7,0));

@ f(z) = (x—m)?% (@ €[0,n) and f(x) = (z + 7)? (z € [-m,0));
(h) f(z) = |sinz| (z € [0,27));

() f(z) = cosz (Jx| < w/2) and f(x) =0 (7/2 < |z| < 7)).
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7.80. Find the points where the functions of the previous exercise are represented
by their respective Fourier series. (H)

7.81. Show that if the 27-periodic function f is even (odd), then its Fourier series
has b,, = 0 (a,, = 0) for every n > 1.

7.82. Find the sum of the following series:

(@ >ooo,q"sinnz (¢ < 1); () >0 q"cosnz (Jq] < 1);
© T, @ T,

(e) sinz + 51n2x + sirzlﬂ?)w +.. (f) sinz + sin33w 4 sin55x +...
(g) sinr — i1n337" + sin55m - (h) colegr + C(?;g’l‘ +..

(i) sing 4 LI 4 S 4

7.83. Find the functions whose Fourier series is of the form

(@) D02 ayncos2nw; (b) 07, ancos(2n + 1)z;
(©) Y07 aysin2na; (d) >07  apsin(2n + 1)z.

7.84. Show that the trigonometric polynomial ZnN:1 (an cosnz + by, sin nx) has a
root.

7.85. Show thatif f(z) =1+ ZnNzl(an cosnx + by, sinnz) > 0 forevery x, then
f(x) < N + 1 for every x. (x H)

7.86. Show that if 3.7 |a;|2 = 1, then

1
/ lap + a1z + ...+ apa™|de < /2.
0

7.87. Show that if nq, ..., ny are distinct integers, then

2T
1 k
— [ Jcosnix + ...+ cosnpzx|dr < 4/ =.
2m 2
0
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7.88. Let the function f be 27-periodic, and suppose that the Fourier series of the
functions f(z) and f(x + 1) are the same. Show that the Fourier series of f has
an, = b, = 0 foreveryn > 1.

7.89. Construct a 27-periodic and continuous function f such that the sequence
(n - ay) is not bounded, where a,, is the coefficient of cos nx in the Fourier series
of f. (H)

7.90. Let (a,) be a sequence such that > ° | |a, cosnz| < 1 at every point of a
non-degenerated interval. Show that Y7 | |a,,| < co. (x H)

7.91. Let (a,) and (b,,) be sequences such that

o0
Z |ay, cosnx + by, sinnx| < 1

n=1

at every point of a non-degenerated interval. Show that > 7 (|a,| + |b,]) <
oo. (x H)

7.92. Let (a,,) be a monotone decreasing sequence that converges to zero. Show
that the partial sums of Y7 | a, sinnz are bounded if and only if the sequence
(n - ay) is bounded. (x H)

7.93. Let (a,) be a monotone decreasing sequence that converges to zero. Show
that >~° | a,, sin na is uniformly convergent on R if and only if n - a,, — 0. (x H)

7.94. Let f be continuously differentiable on [0, 7r]. Show that if foﬂ fdx=0or
f(0) = f(m) = 0, then [ f*dz < [7(f')* dx.

7.95. Let f: R — R be 2m-periodic and suppose that f is a piecewise constant
function on [0, 27]. Show that the sequence of the Fourier coefficients of f converges
to zero.

7.96. Let f: R — R be 2m-periodic and integrable on [0,27]. Show that the
sequence of the Fourier coefficients of f converges to zero. (Riemann’s lemma) (H)

7.97. Let f: R — R be 2w-periodic and integrable on [0, 27]. Show that if every
Fourier coefficient of f is zero, then f(z) = 0 at every point 2, where f is continu-
ous.

7.98. Let f: R — R be 27w-periodic and integrable on [0, 27]. Show that if the
Fourier series of f is uniformly convergent, then the sum of this series is f(x) at
every point x, where f is continuous.
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7.6 Further Applications

The infinite series ) .-, 1/4% is convergent for every s > 1; we denote its sum
by ((s) (see Exercise 6.3). The above defined ¢ function (defined on the half line
(1, 00)) is one of the most investigated functions of mathematics. The motive behind
this interest is the discovery, made by Riemann in 1859, that the function { can be
extended to the complex plane (except for the point 1) as a differentiable function,
and that the properties of this extended function are in close relation with the dis-
tribution of the prime numbers. A famous (and after 150 years still unsolved) con-
jecture of Riemann claims that the real part of every non-real root of the complex
extension of the ¢ function is 1/2 [19].

We know that ((2) = 72 /6 (see Exercise 4.20 and Example 7.80.) Our next goal
it to find the value of ((2k) for every positive integer k (see Theorem 7.92). To do
this, we need to define a sequence of polynomials which also appears in other fields
of mathematics (e.g., in combinatorics and probability theory).

Theorem 7.88. There exists a uniquely defined sequence of polynomials By(x),
Bi(x ) ... with the following properties: Bo(x) =1, furthermore, B (x) =
B, _1(x) and fo w(x)dx =0, for every n > 0.

Proof. We prove the existence and uniqueness of the polynomials B,,(x) by induc-
tion. Let n > 0 and let the polynomial B,,_;(z) be given. Let F(m) Iy B
—1(@)

(t) dt. Clearly, there is a unique function f such that f’(z) = ) and fo

dx = 0, namely, the function f(z) = F(x) — ¢, where ¢ = fo )dx. It is also
obvious that f is a polynomial. O

We call the polynomials given by the previous theorem the Bernoulli'* polyno-
mials. The first five Bernoulli polynomials are the following:

1 1 11
By(x) =1, Bi(z) =z — 3 Bs(z) = §x2 — 530 + — 3’
1 1 1 1 1 1 1
B —— 377 2 _ B _ 477 - 2
a(z) = 577 = 7 g s(@) = g7t — o’ + e 720

For n > 1, we have

thus
B, (0) = B,(1) (n=2,3,...). (7.40)

13 Jacob Bernoulli (1654—1705), Swiss mathematician.
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It is clear from the construction of the Bernoulli polynomials that B,,(x) is an nth-
order polynomial with rational coefficients. We call the numbers B,, = n! - B,,(0)

Bernoulli numbers. Below, we list the first few Bernoulli numbers:

By =1, By = —1/2, By = 1/6, B3 =0,
By = —1/30, Bs =0, Bs = 1/42, B, =0,
Bs = —1/30, By =0, Bio = 5/66, By =0,
Bia = —691/2730, Biys =0, Bii =17/6, Bis =0,
Bis = —3617/510, Bir =0 Bis = 43867/798. (7.41)

Let us return to the topic of Fourier series. By Theorem 7.79, the function in
Example 7.75.3 is represented everywhere by its Fourier series, since the function
is continuous and its Fourier series is uniformly convergent by the Weierstrass cri-

terion. We get that
oo
7r cos Nx
NP P

for every z € [0, 27]. The left-hand side of the formula can be simplified if we
replace x by 27x:

o
4

o] =

1 . cos 2nwx
2 _
P oat =Y o0 (vef0.1)) (7.42)

m2n2
n=1

This formula can be generalized the following way.

Theorem 7.89. For every x: € [0, 1] and every positive integer k, we have

2sin2nmx
k 1
Bat+1(2) Z (2nm) 2R+ (7.43)
and
2 cos 2n7rx
Bog () Y-t Z L (7.44)

Proof. Since the left-hand side of (7.42) is 2 - Ba(x), thus (7.44) holds for k = 1.
Now, consider the series > - | (2sin 2nmz)/(2nm)?. By Weierstrass’ criterion, the
series is uniformly convergent on R, and then its sum — which we denote by f —
is everywhere continuous. By differentiating term by term we get a series which
is 1/2-times the right-hand side of (7.42), which is a uniformly convergent series.
Thus, applying Theorem 7.42, we obtain that f is everywhere differentiable and its
derivative is Bo () for every = € [0, 1]. By the definition of the polynomial Bs(x),
we have Bj(x) = Ba(z), and thus f(x) = Bs(x) + ¢ on the interval [0,1]. The
series defining f is term by term integrable on every interval (because it is uniformly
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convergent), thus we have fol f dz = 0, since the integral of each term of the series
is zero on [0, 1]. It follows that

O:/lfdx:/l(Bg(x)—l—c)dx:c,

because fol Bs(x) dx = 0 by the definition of Bs(x). We get that c = 0 and f(z) =
Bs(z) on the interval [0, 1], which proves (7.43), for k = 1.

Now, consider the series Y- | (2cos 2nmz)/(2nm)?. Repeating the argument
above (nearly word by word), we get that the sum of the series is By(x), for
every = € [0, 1]. Continuing the process yields (7.43) and (7.44), for every positive
integer k. (]

Remarks 7.90. 1. Replacing x by 27z in the equality (7.36), we get
1 > sin 2nmx
= it 7.45
- 2_:1 —, (7.45)

for every z € (0,1). As By(x) = & — 4, this means that the equality (7.43) is also
true for k = 0, at least when = € (0, 1). The equality does not hold for x = 0 and
x = 1, since the right-hand side of (7.45) is zero at these points.

2. According to Example 7.31, the right-hand side of (7.45) is uniformly convergent
on the interval [§, 27 — §] for every 0 < § < 7. Using this fact, we can give a new
proof of Theorem 7.89. Consider the series > -, (2 cos 2nmz)/(2nm)?, and let its
sum be denoted by f. By taking the term by term derivative of the series, we get
the right-hand side of (7.45), and thus f’(z) = Bj(x) for every z € (0,1). We get
that f(z) = Ba(z) + ¢ on the interval (0,1). Since f and Ba(x) are continuous
everywhere, we obtain that f(z) = Ba(x) + cforevery x € [0, 1]. Now, integrating
the series defining f term by term, we get fol fdx =0,ie., f(z) = Ba(x) for every
x € [0, 1]. The rest of the proof is the same as the original proof of Theorem 7.89.

Theorem 7.89 has several interesting corollaries. First, plugging = = 0 into
(7.43) implies the following theorem.

Theorem 7.91. We have By, = 0, for every integer k > 1. [l

On the other hand, by plugging x = 0 into (7.44), the right-hand side becomes
(—1)*=1¢(2k) - 2/(27)?*, while the left-hand side is By /(2k)!. This gives the for-
mula proved by Euler:

Theorem 7.92. We have

-1 (QW)%
C(2k) = (1) s B
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forevery k > 1. a

E.g., ((2) =m%/6, ((4)=7*/90 and ((6) = 7®/945. Theorem 7.92 also
implies that By, is positive when k is odd, and is negative when k is even.

Our next goal is to prove the following formula.

Theorem 7.93.
AR |
wetg T = A}gn E , (7.46)

e’} r—n
n=—N

foreveryx € R\ Z.

An important ingredient of the proof is the fact that the function f(z) = ctgnz
satisfies the functional equation

r(3)+r (xg 1) = 2f(x) (7.47)

for every x € R\ Z (check this fact). We note that there exists several elementary
functions that satisfy similar equations. We say that the function f is k-replicative,
if there exists a constant a; such that

f(z)+f<le)+...+f(x+:1>:ak.f(x) (7.48)

for every x € D(f). (E.g., the function ctg 7z is 2-replicative with as = 2.) It is
easy to see that the function x — % is k-replicative for every & > 1 with the constant
ar = 1. By induction on n it is not too hard to see that the Bernoulli polynomial
f(x) = B, (z) is also k-replicative for every k > 1 with the constant aj = k'~
(see Exercise 7.103). One can prove that this property characterizes the Bernoulli
polynomials in the following sense: if a polynomial p is k-replicative for any k£ > 1,
then p is a constant multiple of a Bernoulli polynomial (see Exercise 7.104).

The function f(z) = ctgmz is also k-replicative for every k > 1; this follows
from either Theorem 6.63 or Theorem 7.93 (see Exercise 7.105). If k is a power of
2 then this follows immediately from (7.47) (see Exercise 7.107). For the proof of
Theorem 7.93 we only need the k = 2 case, that is, (7.47).

Lemma 7.94. If the function f: [0,1] — R is continuous and satisfies (1.47) for
every x € [0,1], then f is constant.

Proof. Let the greatest value of f be M, and let M = f(z) for some z € [0, 1].
Each term on the left-hand side of (7.47) is at most M, and thus (7.47) can hold only
if f(x/2) = M. Repeating this argument for 2:/2, we get that f(2/4) = M and, in
general f(x/2") = M for every n. Now f is continuous from the right at 0, and
hence f(0) = M. By a similar argument we get that f(0) = min{f(z): z € [0,1]},
and thus f = f(0). O
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Proof of Theorem 7.93. We show that the limit on the right-hand side of (7.46)
exists for every x ¢ Z. By doing some simple algebra, we get that

N N
1 1 2x
> s it (7.49)
n=—N n=1

2/2, |2? — n?| > n?/2, and thus

_ 2K 4K
n2/2  n?’

2x
72 —n2

This implies that the series of functions Y -, 2z /(2% — n?) satisfies the Weier-
strass criterion on ([— K, K| \ Z) U {0}. Thus the series is uniformly convergent on
this set. This is true for every K > 0, which implies that the series is convergent
for every z € (R \ Z) U {0}, and its sum is continuous there. Thus the limit on the
right-hand side of (7.46) exists if = ¢ Z. Denote the limit by g(z). We can see that
g is continuous on R \ Z, and

lim (g(a:) - 1) = 0. (7.50)

Now we show that the function g is 1-periodic. Indeed, for = ¢ Z we have

N N 1
g(z +1) —g(x) :A}EHOO<Z - > :c—n)z

1 1
= 1. — :0.
N1—I>I<1>o($+1—|—N x—N)

We now prove that the function g satisfies the functional equation (7.47). For a fixed
N we have

N N 2N 1
Yot m‘Q'WZ_‘;N%n:
B _N N B 2N 9
n;N Z x—i—l n:z;sz_n:
2
z+1+2N’

Since this converges to g ( ) +g (GEH) — 2g(x) on the one hand and to zero on
the other hand as N — oo, we can see that g satisfies (7.47) as we stated. Thus the
same is true for the function h(z) = wctgmz — g(x).
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Applying the L'Hospital rule, we get that
) 1
lim (Wctg T — ) =0. (7.51)
x—0 X

Thus (7.50) implies lim, .o h(z) = 0. Since h is 1-periodic (because mctg wa and
g are also 1-periodic), hence lim, 1 h(x) = 0 is also true. Therefore, if we define
the function h to be 0 at the points 0 and 1, then this extended function (which we
also denote by h) is continuous on [0, 1]. We know that 4 (%) + h (25L) = 2h(x),
for every x € (0, 1). The continuity of / implies that this holds for z = 0 and x = 1
as well. Then, by Lemma 7.94, h = 0 on the interval [0, 1]. Since A is 1-periodic, it
follows that h(x) = 0 for every « ¢ Z, and the theorem is proved. O

Comparing the statement of the previous theorem with (7.49), we get that

I & 22
t = — —_ 7.52
metg ma erZxQ—nQ ( )

n=1

forevery z € R\ Z.If || < 1 and n € N, then

o0

1 11 1 5,
22—z 2 1-— 2:Zn2i'x :

z
n =1

Since the series Y -, 1/(n* — %) is convergent, it follows from Theorem 6.30
that the terms z2°=2/n2! written in any order form an (absolutely) convergent
series of sum » >, 1/(n* — z?). Now, for i fixed, we have Y 7 z%~2/n* =
¢(2i) - 2%'=2. Then using Theorem 6.30 again we obtain

——s = > _((2i) -2

By comparing this with (7.52) we have the following theorem.
Theorem 7.95. For every |z| < 1, we have
nctg mr = 1., i ¢(24) - 2%~ 0 (7.53)
r i=1

We can use this to find the power series of the tangent function with respect to the
point 0. It is easy to see that

tgx = ctgx — 2 - ctg (2x)
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for every « # km /2. Thus, applying (7.53) to = and 2z and taking the difference of
the two series term by term we obtain

mtgmr =Y 20(2i)(2% — 1) - 2*!
i=1

for every |z| < 1/2. If we express ((2i) with the help of the Bernoulli numbers
using Theorem 7.92 and replace wz by z, then we obtain the power series of the
function tg x around 0.

Theorem 7.96. For every |x| < 7/2, we have

&0 ) 227‘, -1 22iB i )
tgz =) (—1)’—1((21_))|2 220 (7.54)
i=1 ’

Next, we prove Euler’s celebrated product formula.

Theorem 7.97. For every x € R, we have

N 5
. . x
sinTx = T - 1\}51})0 I | (1 — n2> . (7.55)

n=1
Proof. Using (7.49), we can reformulate the statement of Theorem 7.93 as follows:

2 1

Y o =metgmr — — (7.56)
=t —n x

for every « ¢ Z. In the proof of Theorem 7.93 we showed that the series on the left-
hand side is uniformly convergent on the interval (—1, 1). Thus the equation (7.56)
can be integrated term by term on the interval [0, 2] for every 0 < a < 1. Since

/L dt = [log(n* — tz)]I = log(n? — 2?) — log(n?) = log (1 - x2)
0 TL2 ’

2 —n2
0

we find that the integral of the left-hand side of (7.56) equals

N x2 N $2
Jim_ leog (1 — n2> = Jlim log Ul (1 — n2> ) (7.57)
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At the same time, the integral of the right-hand side of (7.56) is

[ 1
/ <7rctg it — t) dt = [logsint — logt]; = (7.58)
0
sinmt]” sin rx
= |lo = log .
0 X

If we compare (7.57) with (7.58), then raise e to the power of the two equal sides of
the resulting equality and rearrange the result, then we get (7.55).
The proof is still not complete yet, since we only proved the equality for

x € (0,1). Let Py (x) denote the product x - ngl (1 - ;‘l—z) Then

DY 1
Py(x) = (nl)? -HEN(m —n), (7.59)
and thus
Py(z+1) z+N+1
= — —]_
PN(J?) r—N
as N — oo, for every = ¢ Z. Since sinm(x + 1) = —sin 7z, this implies that if

(7.55) holds for some x ¢ Z, then it holds for = + 1 as well, and the converse is also
true. It is clear from this that (7.55) holds for every x ¢ Z. Since both sides of (7.55)
are zero when = € Z, the theorem is proved. O

Exercises

7.99. Show that the function () is infinitely differentiable on (1, o).
7.100. Show that

" B wn—l Bn
! 4.4+ (n=1,2,..).

B () = w1 =) n!

7.101. Show that

n n n
1+<1>B1+<2)Bz+...+<n_1>3n1_0 (n=2,3,...).

7.102. Formulate a conjecture for the value of the denominator of Bs,, with the
help of table (7.41) (and, if necessary, using also the values of some other Bernoulli
numbers). (S)
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7.103. Show that the Bernoulli polynomial B, () is k-replicative with the constant
ap = k'~ forevery k > 1.

7.104. Show that if a polynomial p is k-replicative (for any k£ > 1), then p is a
constant multiple of a Bernoulli polynomial.

7.105. Show that the function ctg 7x is k-replicative for every k£ > 1. (H)

7.106. Show that if a function f is k;-replicative and ko-replicative, then it is ko -
ko-replicative.

7.107. (i) Let (a,) be a sequence defined by the following recursion. Let ag =
a1 = 1, and let

2(n+ Dans1 = Y aian_i  (n>1). (7.60)
i=0

Show that (a) 0 < a,, < 1/2 for every n > 2, and (b) n! - a,, is an integer for
every n. (H)

(ii) It follows from (i) that the power series Y a,z" is convergent on (—1, 1).
Let the sum of this power series be f(x).
Show that 1 + f(z)? = 2f’(z) for every x € (—1,1).

(iii) Solve the differential equation 1 + y? = 23/, and show that

T
—t C, ,):t
f(z) & 2+4 gm+COSSC

forevery z € (—1,1).
(iv) Show that

[ee] (o]
tgxr = Z Agp_1 22" and 1/cosx = Z agnz"

n=1 n=0
forevery z € (—1,1).

7.108. With the help of the previous exercise and of (7.54), show that (22" — 1)22"
Bs,,/(2n) is an integer for every n.

7.109. Show that the denominator of By, divides 227(22" — 1).
7.110. Show that if p > 3 is prime, then p divides the numerator of Byy,.
7.111. Check that (7.55) yields Wallis’ formula'#:

) 2.4...2n \? 1
T=lm |———— | - —,
n—oo \1-3---(2n—1) n

when applied with z = 1/2.

14 John Wallis (1616-1703), English mathematician.
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7.7 First Appendix: The Cauchy—-Hadamard Formula

In this appendix our aim is to prove the Cauchy—Hadamard formula (see Theorem
7.101 below) that gives the radius of convergence of a power series Y a,z™ in
terms of the coefficients a,,.

We say that « is a cluster point of the sequence (a,,) if (a,) has a subsequence
that converges to «.. (Here « can be a real number, or either one of co and —c0.)
From now on, it is useful to extend the ordering of the real numbers to oo and —oc.
We define the extended ordering by putting —oo < a < oo for every real a.

Theorem 7.98. Every sequence has a largest cluster point. « is the largest cluster
point of the sequence (a,,) if and only if, for every b < « infinitely many terms of
the sequence are larger than b, and for every b > « only finitely many terms of the
sequence are larger than b.

Proof. First suppose that the sequence (a,,) is not bounded from above. Then (a,,)
has a subsequence converging to the infinity, thus its largest cluster point is oo.
Clearly, the statement of the theorem is true in this case.

Now let (a,,) be bounded from above. Let S be the set of numbers b € R such
that infinitely many terms a,, are larger than b. If S = (), then a,, — —oo, and the
only cluster point of the series is —oo. In this case the statement of the theorem
holds again.

Therefore, we may assume that .S is non-empty and is bounded from above. Let
a =sup S.If b < «, then there exists a b’ € S such that b < ' < «. Then infinitely
many terms a,, are larger than &', thus infinitely many terms are larger than b as well.
It is clear that « is the only value with the property that the sequence has infinitely
many terms larger than b, when b < «, while the sequence only has finitely many
terms larger than b, when b > a.

We still need to prove that « is the largest cluster point of the sequence (a,,).
For every k, infinitely many a,, satisfies a,, > « — (1/k), and only finitely many
of these satisfy a,, > o + (1/k). Thus we can choose the terms a,,, such that o —
(1/k) < apn, < a+ (1/k). Since we can choose from infinitely many n at every
step, may can also assume that n; < ng < .... The resulting subsequence (ay, )
converges to «, thus « is a cluster point of the sequence.

On the other hand, if 3 is a cluster point and a,,, — 3, then a,, > b holds for
every b < 3 when k is large enough. Thus infinitely many terms of the sequence
are larger than b, and it follows that b € .S and « > b. This is true for every b < (3,
hence o > 3. Therefore, « is the largest cluster point of the sequence. O

By modifying Theorem 7.98 in the obvious way, we get that every sequence has
a smallest cluster point, and this smallest cluster point « has the following property:
the sequence has infinitely many terms smaller than b for every b > «, while the
sequence has only finitely many terms smaller than b for every b < a.
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Definition 7.99. The largest cluster point of the sequence (a,,) is called the limir
superior of the sequence, denoted by lim sup,,_, ., ax.

The smallest cluster point of the sequence (a,,) is called the limit inferior of the
sequence, denoted by lim inf,,_, o a,.

It is easy to see that for every sequence (a,,) we have

limsupa, = lim (sup{an,ani1,...}). (7.61)

In the case when sup{a,, a,+1,...} = co for every n, (7.61) means that the left-
hand side equals co. Similarly, for every sequence (a,,), we have

liminf a, = lim (inf{a,,ani1,...}) (7.62)

n—oo n—oo

(see Exercise 7.114).

Theorem 7.100. For every (a,) we have liminf,,_, . a, <limsup,,_, . a,. The
equality liminf,,_, a, = limsup,,_, . a, holds if and only if the sequence has a
(finite or infinite) limit, and then

lim a, = liminfa, = limsup a,. (7.63)
n—00 n—oo n—o0
Proof. It is clear from the definition that lim inf,,_, a,, <limsup,,_, ., an, and if
lim,, _, o a,, exists, then (7.63) holds.
On the other hand, if liminf,, .- a, = limsup,,_, ., a, = @, then « is the only
cluster point of the sequence. In this case it is clear from Theorem 7.98 that
lim,, oo @, = . O

The following theorem gives the radius of convergence of power series in terms

of the coefficients.

Theorem 7.101. (Cauchy-Hadamard formula) The radius of convergence of the
power series ZZO:O anx™ is

1

 limsup, .., V/Jan|

In the case when limsup,,_, ., {/|an| = 0 the formula should be interpreted as R =
oo, and if limsup,, . V/|an| = oo, then the formula means R = 0.

R

Proof. Let Ry = 1/limsup,,_, . {/|an| and let R denote the radius of conver-
gence of the power series. We need to prove that R = Rj.

If Ry < @, thenlimsup,, . V/|an| > 1/, and thus {/|a,| > 1/ for infinitely
many n. For every such n, we have |a,x™| > 1, which means that the absolute
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value of infinitely many terms of the power series is larger than 1, hence the series
is divergent. Thus the power series is divergent at every point x > Ry, i.e., R < Ry.
For Ry = 0, this implies R = Ry.

If Rp >0 and 0 < z < Ry, then limsup,,_,.. ¥/|an| < 1/z. Fix a number ¢

such that 1
limsup V/|an| < ¢ < —.
x

n—oo

Then {/|a,| < ¢ holds for every n large enough. Thus |a,z"| < (gz)™ for n large
enough, and then, by the majorant criterion, we find that the power series is conver-
gent at x. Since this is true for every 0 < x < Ry, we have R > Ry. Since R < Ry
is also true, we have R = Rg. (Il

Exercises

7.112. Find the lim sup and lim inf of the following sequences.

(@ (=1~

®) (1 (~2)7)/(n+ 27,

(c) sinn,

@) a, =2vn? +2ifniseven, and a,, = 3v/n3 + 3if n is odd.

7.113. Let {z} denote the fractional part of x. Show that the value of the Riemann
function at the point « is equal to 1 — lim sup{nz}.

7.114. Show that (7.61) and (7.62) are true for every sequence.

7.115. Show that for arbitrarily sequences (a,,) and (b,,) the following is true:

liminf a,, 4+ liminf b,, <liminf(a, + b,) < liminf a,, + lim sup b,, <
< limsup(a, + b,) < limsup a,, + lim sup b,,.

7.116. Show that if a,, > 0 for every n, then
lim sup(an,)l/n < limsup(an+1/an)-

Use this to prove (again) that the root criterion is stronger than the ratio criterion.

7.117. Let a,, denote the nth decimal digit of the number /2. Find (i) lim sup /a,,
and (ii) lim inf /a,,. (H)

7.118. Suppose that (a,+1 — a,) — 0. Show that for every number

s € [liminf a,, limsup a,]



7.8 Second Appendix: Complex Series 295

there is a subsequence (ay,, ) such that a,,, — s.

7.119. Let (a,) be a sequence such that a,, 1., < a, + a,, for every n, m. Show
that the (finite or infinite) limit of the sequence (a,,/n) exists. (H)

7.120. Show that the function f: R — R satisfies f(limsup a,,) = limsup f(a,)
for every bounded sequence (a,) if and only if f is continuous and monotone
increasing.

7.121. Let Ay, A, ... be subsets of X, and let y g denote the characteristic func-
tion of the set H C X, i.e., let xg(x) =1forxz € H, and xg(x) =0 for z ¢ H.
Find the sets B and C that satisfy limsup x4, (z) = xp(z) and iminf y 4, (z) =
xc(x) forevery z € X.

7.8 Second Appendix: Complex Series

We define the absolute value of the complex number a + bi as |a + bi| = va? + b2.
One can prove that the usual properties of the absolute value function are satisfied,
thus |u 4+ v| < |u| + |v| and |uv| = |u| - |v] holds for every pair of complex num-
bers u and v.

Recall that we can define convergence for sequences of complex numbers: we
say that the sequence of complex numbers z,, = a,, + b,,¢ converges to the complex
number z = a + b, if a,, — a and b,, — b both hold. (See the second appendix of
Chapter 11 of [7].) This condition is equivalent to |z,, — z| — 0.

The theory of infinite series can also be extended to series of complex terms.
We say that the complex infinite series Y~ ; a, is convergent and its sum is A,
if the sequence of its partial sums s,, = a; + ... + a, converges to A. The series
Zzozl an, is called divergent, it it is not convergent. It is easy to check that most of
the theorems we proved about infinite series in Chapter 6 are also true for complex
series as well, without any changes.

However, the complex case of Riemann’s reordeing theorem needs some mod-
ifications. It is still true that a series is absolutely convergent if and only if each
of its reordered series is convergent with the same sum. But if a complex series is
conditionally convergent, we cannot claim that for every complex number A, there
is a reordering of the series with the sum A. (E.g., if every term of the series is real,
then the sum of every reordering is also real.) The correct statement is that if a series
is conditionally convergent, then the sums of its convergent reorderings constitute a
line, or cover the whole complex plane.

The theory of the power series can also be extended to complex series. The the-
orem corresponding to Theorem 7.49 states that for every power series > a, 2"
there exists a 0 < R < oo such that the power series is convergent at every point z
with |z| < R, and the power series is divergent at every point z with |z| > R. Thus
the domain of convergence of a power series can be either the origin (if R = 0),
an open disk, possibly with some of its boundary points (if 0 < R < o), or the
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whole convex plane (if R = o0). One can show (with an identical proof) that the
Cauchy-Hadamard formula is also true for complex power series.

It is also true that the sum f of a power series is continuous on the interior of
its domain of convergence. This means that if z, — z and |z| < R, then f(z,) —
f(z).5,

This is what explains why the radius of convergence of the Taylor series of the
function 1/(1 + 2?) corresponding to the point 0 is 1 (and not larger), despite the
fact that the function is analytic on the whole real line. The Taylor series in question
is the series Y~ ((—1)" - 2?". It is easy to see that this series is also convergent
at every complex number whose absolute value is less than 1, with the sum 1/(1 +
x?). If the radius of convergence of the series was larger than 1, the sum would
be continuous in the open disc B(0, R) with some R > 1. Thus the sum would be
continuous at the complex number ¢, which is impossible, since the sum of the series
atx = tiis

1 1
L+ ()2 1—1¢2

for every t € (0,1), and this can be arbitrarily large when ¢ is close enough to 1.

The definition of the differentiability of a complex function is t