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Preface

This book came into being as lecture notes for a course at Reed College on
multivariable calculus and analysis. The setting is n-dimensional Euclidean
space, with the material on differentiation culminating in the inverse function
theorem and its consequences, and the material on integration culminating
in the general fundamental theorem of integral calculus (often called Stokes’s
theorem) and some of its consequences in turn. The prerequisite is a proof-
based course in one-variable calculus and analysis. Some familiarity with the
complex number system and complex mappings is occasionally assumed as
well, but the reader can get by without it.

The book’s aim is to use multivariable calculus to teach mathematics as
a blend of reasoning, computing, and problem-solving, doing justice to the
structure, the details, and the scope of the ideas. To this end, I have tried to
write in an informal style that communicates intent early in the discussion of
each topic rather than proceeding coyly from opaque definitions. Also, I have
tried occasionally to speak to the pedagogy of mathematics and its effect on
the process of learning the subject. Most importantly, I have tried to spread
the weight of exposition among figures, formulas, and words. The premise is
that the reader is eager to do mathematics resourcefully by marshaling the
skills of

geometric intuition (the visual cortex being quickly instinctive)

algebraic manipulation (symbol-patterns being precise and robust)

and incisive use of natural language (slogans that encapsulate central ideas
enabling a large-scale grasp of the subject).

Thinking in these ways renders mathematics coherent, inevitable, and fluid.
In my own student days I learned this material from books by Apostol,
Buck, Rudin, and Spivak, books that thrilled me. My debt to those sources
pervades these pages. There are many other fine books on the subject as well,
too many for a short list here to do them justice. Indeed, nothing in these
notes is claimed as new. Whatever effectiveness this exposition has acquired
over time is due to innumerable ideas from my students, and from discussion
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with colleagues, especially Joe Buhler, Paul Garrett, Ray Mayer, and Tom
Wieting. After many years of tuning my presentation of this subject matter
to serve the needs in my classroom, I hope that now this book can serve
other teachers and their students too. I welcome suggestions for improving it,
especially because some of its parts are more tested than others. Comments
and corrections should be sent to jerry@reed.edu.

By way of a warmup, Chapter 1 reviews some ideas from one-variable
calculus, and then covers the one-variable Taylor’s theorem in detail.

Chapters 2 and 3 cover what might be called multivariable precalculus, in-
troducing the requisite algebra, geometry, analysis, and topology of Euclidean
space, and the requisite linear algebra, for the calculus to follow. A pedagogical
theme of these chapters is that mathematical objects can be better understood
from their characterizations than from their constructions. Vector geometry
follows from the intrinsic (coordinate-free) algebraic properties of the vector
inner product, with no reference to the inner product formula. The fact that
passing a closed and bounded subset of Euclidean space through a continuous
mapping gives another such set is clear once such sets are characterized in
terms of sequences. The multiplicativity of the determinant and the fact that
the determinant indicates whether a linear mapping is invertible are conse-
quences of the determinant’s characterizing properties. The geometry of the
cross product follows from its intrinsic algebraic characterization. Further-
more, the only possible formula for the (suitably normalized) inner product,
or for the determinant, or for the cross product, is dictated by the relevant
properties. As far as the theory is concerned, the only role of the formula is
to show that an object with the desired properties exists at all. The intent
here is that the student who is introduced to mathematical objects via their
characterizations will see quickly how the objects work, and that how they
work makes their constructions inevitable.

In the same vein, Chapter 4 characterizes the multivariable derivative as a
well-approximating linear mapping. The chapter then solves some multivari-
able problems that have one-variable counterparts. Specifically, the multivari-
able chain rule helps with change of variable in partial differential equations,
a multivariable analogue of the max/min test helps with optimization, and
the multivariable derivative of a scalar-valued function helps to find tangent
planes and trajectories.

Chapter 5 uses the results of the three chapters preceding it to prove the
inverse function theorem, then the implicit function theorem as a corollary,
and finally the Lagrange multiplier criterion as a consequence of the implicit
function theorem. Lagrange multipliers help with a type of multivariable op-
timization problem that has no one-variable analogue, optimization with con-
straints. For example, given two curves in space, what pair of points—one
on each curve—are closest to each other? Not only does this problem have
six variables (the three coordinates of each point), but furthermore, they are
not fully independent: the first three variables must specify a point on the
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first curve, and similarly for the second three. In this problem, x; through xg
vary though a subset of six-dimensional space, conceptually a two-dimensional
subset (one degree of freedom for each curve) that is bending around in the
ambient six dimensions, and we seek points of this subset where a certain
function of x; through zg is optimized. That is, optimization with constraints
can be viewed as a beginning example of calculus on curved spaces.

For another example, let n be a positive integer, and let ey,...,e, be
positive numbers with e; 4+ - -+ + e, = 1. Maximize the function

flz, .. xn) =2 - apr,  x; >0 for all 4,
subject to the constraint that
eir1+---+e,ry =1,

As in the previous paragraph, since this problem involves one condition on
the variables z; through z,, it can be viewed as optimizing over an (n — 1)-
dimensional space inside n dimensions. The problem may appear unmotivated,
but its solution leads quickly to a generalization of the arithmetic-geometric
mean inequality vab < (a + b)/2 for all nonnegative a and b,

ait---apr <ejpay + -+ epa, for all nonnegative aq, ..., ap.

Moving to integral calculus, Chapter 6 introduces the integral of a scalar-
valued function of many variables, taken over a domain of its inputs. When the
domain is a box, the definitions and the basic results are essentially the same as
for one variable. However, in multivariable calculus we want to integrate over
regions other than boxes, and ensuring that we can do so takes a little work.
After this is done, the chapter proceeds to two main tools for multivariable
integration: Fubini’s theorem and the change of variable theorem. Fubini’s
theorem reduces one n-dimensional integral to n one-dimensional integrals,
and the change of variable theorem replaces one n-dimensional integral with
another that may be easier to evaluate. Using these techniques, one can show,
for example, that the ball of radius r in n dimensions has volume
n/2

T pn=1,2,3,4,....

vol (B, (r)) = WT ,

The meaning of the (n/2)! in the display when n is odd is explained by a
function called the gamma function. The sequence begins

Chapter 7 discusses the fact that continuous functions, or differentiable
functions, or twice-differentiable functions, are well approximated by smooth
functions, meaning functions that can be differentiated endlessly. The approx-
imation technology is an integral called the convolution. One point here is that



xii Preface

the integral is useful in ways far beyond computing volumes. The second point
is that with approximation by convolution in hand, we feel free to assume in
the sequel that functions are smooth. The reader who is willing to grant this
assumption in any case can skip Chapter 7.

Chapter 8 introduces parametrized curves as a warmup for Chapter 9
to follow. The subject of Chapter 9 is integration over k-dimensional parame-
trized surfaces in n-dimensional space, and parametrized curves are the special
case k = 1. Aside from being one-dimensional surfaces, parametrized curves
are interesting in their own right. Chapter 8 focuses on the local description
of a curve in an intrinsic coordinate system that continually adjusts itself as
it moves along the curve, the Frenet frame.

Chapter 9 presents the integration of differential forms. This subject poses
the pedagogical dilemma that fully describing its structure requires an in-
vestment in machinery untenable for students who are seeing it for the first
time, whereas describing it purely operationally is unmotivated. The approach
here begins with the integration of functions over k-dimensional surfaces in
n-dimensional space, a natural tool to want, with a natural definition suggest-
ing itself. For certain such integrals, called flow and flux integrals, the inte-
grand takes a particularly workable form consisting of sums of determinants
of derivatives. It is easy to see what other integrands—including integrands
suitable for n-dimensional integration in the sense of Chapter 6, and includ-
ing functions in the usual sense—have similar features. These integrands can
be uniformly described in algebraic terms as objects called differential forms.
That is, differential forms assemble the smallest coherent algebraic structure
encompassing the various integrands of interest to us. The fact that differen-
tial forms are algebraic makes them easy to study without thinking directly
about the analysis of integration. The algebra leads to a general version of
the fundamental theorem of integral calculus that is rich in geometry. The
theorem subsumes the three classical vector integration theorems: Green’s
theorem, Stokes’s theorem, and Gauss’s theorem, also called the divergence
theorem.

The following two exercises invite the reader to start engaging with some
of the ideas in this book immediately.

Exercises

0.0.1. (a) Counsider two surfaces in space, each surface having at each of its
points a tangent plane and therefore a normal line, and consider pairs of
points, one on each surface. Conjecture a geometric condition, phrased in
terms of tangent planes and/or normal lines, about the closest pair of points.

(b) Consider a surface in space and a curve in space, the curve having at
each of its points a tangent line and therefore a normal plane, and consider
pairs of points, one on the surface and one on the curve. Make a conjecture
about the closest pair of points.

(¢) Make a conjecture about the closest pair of points on two curves.
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0.0.2. (a) Assume that the factorial of a half-integer makes sense, and grant
the general formula for the volume of a ball in n dimensions. Explain why
it follows that (1/2)! = \/7/2. Further assume that the half-integral factorial
function satisfies the relation

l=x-(zx—1)! forx=3/2,5/2,7/2,....

Subject to these assumptions, verify that the volume of the ball of radius r
in three dimensions is %m"?’ as claimed. What is the volume of the ball of
radius 7 in five dimensions?

(b) The ball of radius r in n dimensions sits inside a circumscribing box
with sides of length 2r. Draw pictures of this configuration for n = 1,2, 3.
Determine what portion of the box is filled by the ball in the limit as the
dimension n gets large. That is, find

lim vol (B, (1)) '

n—o00 (27‘)"



1

Results from One-Variable Calculus

We begin with a quick review of some ideas from one-variable calculus. The
material of Sections 1.1 and 1.2 in assumed to be familiar. Section 1.3 discusses
Taylor’s theorem at greater length, not assuming that the reader has already
seen it.

1.1 The Real Number System

We assume that there is a real number system, a set R that contains two
distinct elements 0 and 1 and is endowed with the algebraic operations of
addition,

+ :RxR—R,

and multiplication,
RxR—R.

The sum +(a,b) is written a + b, and the product -(a,b) is written a - b or
simply ab.

Theorem 1.1.1 (Field axioms for (R,+,-)). The real number system,
with its distinct 0 and 1 and with its addition and multiplication, is assumed
to satisfy the following set of axioms.

(al) Addition is associative: (x +y) + 2z =x + (y + 2) for all z,y,z € R.

(a2) 0 is an additive identity: 0 +x = x for all x € R.

(a3) FEuxistence of additive inverses: for each x € R there exists y € R such
that y +z = 0.

ad) Addition is commutative: x +y =1y + x for all z,y € R.

ml) Multiplication is associative: (xy)z = x(yz) for all x,y,z € R.

m?2) 1 is a multiplicative identity: 1o = x for all x € R.

m3) Existence of multiplicative inverses: for each nonzero x € R there exists
y € R such that yr = 1.

(m4) Multiplication is commutative: xy = yx for all x,y € R.

(
(
(
(

© Springer International Publishing AG 2016 1
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2 1 Results from One-Variable Calculus

(d1) Multiplication distributes over addition: (x+y)z = xz+yz for allx,y, z €
R.

All of basic algebra follows from the field axioms. Additive and multi-
plicative inverses are unique, the cancellation law holds, 0 - x = 0 for all real
numbers x, and so on.

Subtracting a real number from another is defined as adding the additive
inverse. In symbols,

—:RxR—R, z—y=z+ (—y) forall z,yeR.

We also assume that R is an ordered field. That is, we assume that there
is a subset R* of R (the positive elements) such that the following axioms
hold.

Theorem 1.1.2 (Order axioms).

(ol) Trichotomy aziom: for every real number x, exactly one of the following
conditions holds:

reRT, —x € RT, x=0.

(02) Closure of positive numbers under addition: for all real numbers x and y,
if z € RT and y € R then also x +y € RT.

(03) Closure of positive numbers under multiplication: for all real numbers x
and y, if v € RT and y € RT then also vy € RT.

For all real numbers = and y, define
<y

to mean
y—2x€RT.

The usual rules for inequalities then follow from the axioms.

Finally, we assume that the real number system is complete. Complete-
ness can be phrased in various ways, all logically equivalent. A version of
completeness that is phrased in terms of binary search is as follows.

Theorem 1.1.3 (Completeness as a binary search criterion). FEvery
binary search sequence in the real number system converges to a unique limit.

Convergence is a concept of analysis, and therefore so is completeness.
Another version of completeness is phrased in terms of set-bounds.

Theorem 1.1.4 (Completeness as a set-bound criterion). FEvery non-
empty subset of R that is bounded above has a least upper bound.
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Both statements of completeness are existence statements.
A subset S of R is inductive if

(i1) 0 € S,
(i2) Forallz e R, if z € S then 2+ 1 € S.

Every intersection of inductive subsets of R is again inductive. The set of
natural numbers, denoted N, is the intersection of all inductive subsets
of R, i.e., N is the smallest inductive subset of R. There is no natural number
between 0 and 1 (because if there were then deleting it from N would leave a
smaller inductive subset of R), and so

N={0,1,2,...}.

A proposition is a statement P that is either true or false. A proposition
form defined over N is an expression P(n), with n a formal symbol, that
becomes a proposition when any particular natural number is substituted
for n. For instance, the proposition form P(n) = “n is even” becomes the
true proposition “0 is even” when 0 is substituted for n, and it becomes the
false proposition “1 is even” when 1 is substituted for n.

Theorem 1.1.5 (Induction theorem). Let P(n) be a proposition form de-
fined over N. Suppose that

o P(0) is true.
o Foralln €N, if P(n) is true then so is P(n+ 1).

Then P(n) is true for all natural numbers n.

Indeed, the hypotheses of the theorem say that P(n) is true for a subset
of N that is inductive, and so the theorem follows from the definition of N as
the smallest inductive subset of R.

The Archimedean property of the real number system states that the
subset N of R is not bounded above. Equivalently, the sequence {1, %, %, .
converges to 0: there are no infinitesimal real numbers greater than 0 but less
than every reciprocal positive integer. The Archimedean property follows from
the assumption that R is complete in the sense of binary search sequences or
in the sense of set-bounds.

A third version of completeness is phrased in terms of monotonic se-
quences. Again it is an existence statement.

Theorem 1.1.6 (Completeness as a monotonic sequence criterion).
Every bounded monotonic sequence in R converges to a unique limit.

This version of completeness follows from either of the other two. How-
ever, it does not imply the other two unless we also assume the Archimedean
property.

The set of integers, denoted Z, is the union of the natural numbers and

their additive inverses,
Z={0,%£1,%+2,...}.
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Exercises
1.1.1. Referring only to the field axioms, show that 0z = 0 for all z € R.

1.1.2. Prove that in every ordered field, 1 is positive. Prove that the complex
number field C cannot be made an ordered field.

1.1.3. Use a completeness property of the real number system to show that 2
has a positive square root.

1.1.4. (a) Prove by induction that

1)(2 1
ZiQ:n(n+ )6( nt1) foralln e ZT.

(b) (Bernoulli’s inequality) For every real number r > —1, prove that
(1+7r)">1+rn forallneNlN.
(c) For what positive integers n is 2" > n3?

1.1.5. (a) Use the induction theorem to show that for every natural num-
ber m, the sum m+n and the product mn are again natural for every natural
number n. Thus N is closed under addition and multiplication, and conse-
quently so is Z.
(b) Which of the field axioms continue to hold for the natural numbers?
(¢) Which of the field axioms continue to hold for the integers?

1.1.6. For every positive integer n, let Z/nZ denote the set {0,1,...,n — 1}
with the usual operations of addition and multiplication carried out taking
remainders on division by n. That is, add and multiply in the usual fashion
but subject to the additional condition that n = 0. For example, in Z/5Z we
have 2+4 =1 and 2 -4 = 3. For what values of n does Z/nZ form a field?

1.2 Foundational and Basic Theorems

This section reviews the foundational theorems of one-variable calculus. The
first two theorems are not theorems of calculus at all, but rather are theorems
about continuous functions and the real number system. The first theorem
says that under suitable conditions, an optimization problem is guaranteed to
have a solution.

Theorem 1.2.1 (Extreme value theorem). Let I be a nonempty closed
and bounded interval in R, and let f : I — R be a continuous function. Then
f takes a minimum value and a maximum value on I.
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The second theorem says that under suitable conditions, every value
trapped between two output values of a function must itself be an output
value.

Theorem 1.2.2 (Intermediate value theorem). Let I be a nonempty in-
terval in R, and let f : I — R be a continuous function. Let y be a real
number, and suppose that

flx) <y for somex el

and
f(@') >y for somex’ €.

Then
fle)=y for somecel.

The mean value theorem relates the derivative of a function to values of
the function itself with no reference to the fact that the derivative is a limit,
but at the cost of introducing an unknown point.

Theorem 1.2.3 (Mean value theorem). Let a and b be real numbers with
a < b. Suppose that the function f : [a,b] — R is continuous and that f is
differentiable on the open subinterval (a,b). Then

f(b) = f(a)

b—a f'(c) for some c € (a,b).

The fundamental theorem of integral calculus quantifies the idea that inte-
gration and differentiation are inverse operations. In fact, two different results
are both called the fundamental theorem, one a result about the derivative
of the integral and the other a result about the integral of the derivative.
“Fundamental theorem of calculus,” unmodified, usually refers to the second
of the next two results.

Theorem 1.2.4 (Fundamental theorem of integral calculus I). Let
be a nonempty interval in R, let a be a point of I, and let f : I — R be a
continuous function. Define a second function,

F:I—R, F(az):/wf(t)dt.

Then F is differentiable on I with derivative F'(x) = f(z) for all x € I.

Theorem 1.2.5 (Fundamental theorem of integral calculus ITI). Let I
be a nonempty interval in R, and let f : I — R be a continuous function.
Suppose that the function F : I — R has derivative f. Then for every closed
and bounded subinterval |a,b] of I,

b
/ F(@)dz = F(b) — F(a).



6 1 Results from One-Variable Calculus
Exercises

1.2.1. Use the intermediate value theorem to show that 2 has a positive square
root.

1.2.2. Let f:[0,1] — [0, 1] be continuous. Use the intermediate value theo-
rem to show that f(z) = « for some z € [0, 1].

1.2.3. Let a and b be real numbers with a < b. Suppose that f : [a,b] — R
is continuous and that f is differentiable on the open subinterval (a,b). Use
the mean value theorem to show that if f' > 0 on (a,b) then f is strictly
increasing on [a,b]. (Note: The quantities called @ and b in the mean value
theorem when you cite it to solve this exercise will not be the a and b given
here. It may help to review the definition of “strictly increasing.”)

1.2.4. For the extreme value theorem, the intermediate value theorem, and
the mean value theorem, give examples to show that weakening the hypotheses
of the theorem gives rise to examples for which the conclusion of the theorem
fails.

1.3 Taylor’s Theorem

Let I C R be a nonempty open interval, and let a € I be any point. Let n be a
nonnegative integer. Suppose that the function f : I — R has n continuous
derivatives,

f M T — R

Suppose further that we know the values of f and its derivatives at a, the
n + 1 numbers

f@), fa), f'a), ... f").

(For instance, if f : R — R is the cosine function, and a = 0 and n is even,
then the numbers are 1, 0, —1, 0, ..., (—=1)*/2))

Question 1 (Existence and uniqueness): Is there a polynomial p of
degree n that mimics the behavior of f at a in the sense that

pla) = f(a), p'(a) = f'(a), p"(a)=f"(@); ..., Pp™(a)=f"(a)?

Is there only one such polynomial?
Question 2 (Accuracy of approximation, granting existence and
uniqueness): How well does p(z) approximate f(z) for  # a?

Question 1 is easy to answer. Consider a polynomial of degree n expanded
about x = a,

p(z) = ag +a1(x —a) +ax(x —a)® +az(x —a)® +- +a,(z —a)".
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The goal is to choose the coefficients ag,...,a, to make p behave like the
original function f at a. Note that p(a) = ag. We want p(a) to equal f(a), so
set

ap = f(a).
Differentiate p to obtain
p'(x) = a1 + 2az(x — a) + 3az(x — a)* + - - - + na,(xr — a)"
so that p/(a) = a;. We want p/(a) to equal f/(a), so set
a1 = f'(a).
Differentiate again to obtain
p"(x) = 2a9 +3 - 2a3(x —a) + - +n(n — Vay(z —a)" "2,
so that p”(a) = 2a2. We want p”(a) to equal f”(a), so set

/@
(G

Differentiate again to obtain
p" () =3-2a3+---+n(n—1)(n—2)a,(z —a)" 3,

so that p"’(a) = 3 - 2a3. We want p"’(a) to equal f"'(a), so set

f"(a)

3-2°

Continue in this fashion to obtain ay = f®(a)/4! and so on up to a, =

£ (a)/n!. That is, the desired coefficients are

f®(a)
k!

Thus the answer to the existence part of Question 1 is yes. Furthermore, since
the calculation offered us no choices en route, these are the only coefficients
that can work, and so the approximating polynomial is unique. It deserves a
name.

az =

ap = fork=0,...,n

Definition 1.3.1 (nth-degree Taylor polynomial). Let I C R be a
nonempty open interval, and let a be a point of I. Let n be a nonnegative
integer. Suppose that the function f : I — R has n continuous derivatives.
Then the nth-degree Taylor polynomial of f at a is

" (n)
T(@) = J0) + P @ —a) + T @4 Ty
In more concise notation,
n f(k)
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For example, if f(x) = e*

following table:

and a = 0 then it is easy to generate the

(k)
o f(0)
B0 @)
0 v 1
1 x 1
1
2| e” —
2
. 1
3 e g
. 1
n| e —
n!

From the table we can read off the nth-degree Taylor polynomial of f at 0,

2 3

x x " D gk
Tn(x):1+x+?+§+m+ﬁzgﬁ.

Recall that the second question is how well the polynomial T}, (x) approxi-
mates f(x) for  # a. Thus it is a question about the difference f(z)— T, ().
Giving this quantity its own name is useful.

Definition 1.3.2 (nth-degree Taylor remainder). Let I C R be a non-
empty open interval, and let a be a point of I. Let n be a nonnegative integer.
Suppose that the function f: I — R has n continuous derivatives. Then the
nth-degree Taylor remainder of f at a is

Ry (z) = f(z) = Tn(x).

So the second question is to estimate the remainder R, (x) for points z € I.
The method to be presented here for doing so proceeds very naturally but it
is perhaps a little surprising, because although the Taylor polynomial T, (z)
is expressed in terms of derivatives, as is the expression to be obtained for the
remainder R, (z), we obtain the expression by using the fundamental theorem
of integral calculus repeatedly.

The method requires a calculation, and so, guided by hindsight, we first
carry it out so that then the ideas of the method itself will be uncluttered.
For every positive integer k and every z € R define a k-fold nested integral,

xT T Tk—1
Ik(x):/ / / dzy, - - -dxy dz;.
z1=a Jxo2=a TEr=a

This nested integral is a function only of x because a is a constant and x;
through z; are dummy variables of integration. That is, I} depends only on
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the upper limit of integration of the outermost integral. Although I, may
appear daunting, it unwinds readily if we start from the simplest case. First,

T
=T —a.

Tr1=a

L(z) z/ dzy =21

1=a

Move one layer out and use this result to get

T T T
IQ(I’) = / / de dl’l = / Il(ml)dxl
Tr1=a ro2=a r1=a

:/ (ml—a)dm:%(ml—a)Q :%(ac—a)2.

r1=a

Again move out and quote the previous calculation,

T 1 To x
[3(.’11‘) :/ / / de‘g diL‘g dxl :/ Ig(xl)dl‘l
x1=a Jro=a Jxr3=a Tr1=a

|

1 ’ 1
:/7 f(xl—a)delzﬁ(xl—a)g zﬁ(x—a)?’.

r1=a

The method and pattern are clear, and the answer in general is

1
r—a)k, keZT.

Iy (z) = ﬁ(

Note that this is part of the kth term (f*)(a)/k!)(z — a)¥ of the Taylor
polynomial, the part that makes no reference to the function f. That is,
f®)(a)I(x) is the kth term of the Taylor polynomial for k =1,2,3,....

With the formula for I;(z) in hand, we return to using the fundamental
theorem of integral calculus to study the remainder R, (x), the function f(z)
minus its nth-degree Taylor polynomial T, (x). According to the fundamental
theorem,

@) = @)+ [ " (o) don.

That is, f(x) is equal to the constant term of the Taylor polynomial plus an
integral,

f(2) = To(a) + / " (o) dor.

By the fundamental theorem again, the integral is in turn

/: f(x1)dzy = /ax (f/(a) + /:1 f”(xQ)de) da;.

The first term of the outer integral is f'(a)l;(z), giving the first-order term
of the Taylor polynomial and leaving a doubly nested integral,
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/ f(z1)dzy = f(a)(z — a) +/ / I (x2) dzo daq.
In other words, the calculation so far has shown that
x X1
f@) = 1@+ F@@-a)+ [ [ (o) deada
R o a a
= Tl(l‘) + / / f”(l'z) dxo dx;.
a a

Once more by the fundamental theorem, the doubly nested integral is

/aw /a"’”l " (x2)dzyday = /aI /:1 <f”(a) + /;2 1" (x3) dx3> dzo dzq,

and the first term of the outer integral is f”(a)l>(z), giving the second-order
term of the Taylor polynomial and leaving a triply nested integral,

/: /jl f(x2) dazo day = f”2(a) (x —a)? + /ar /am1 /:2 " (z5) das das day.

So now the calculation so far has shown that

f(z) =T2(a:)+[ /: /j " (x3) des dag day.

Continuing this process through n iterations shows that f(z) is T, (x) plus an
(n + 1)-fold iterated integral,

f(:E) :Tn<.’1,‘)+/ / / ’f(n+1)<$n+1)d$n+1"'d$2 dCL‘l.

In other words, the remainder is the integral,

x 1 T
Rn(‘r) = / / e / f(n+1)($n+1) dl’nJrl ce d.’l?g d.’L'l. (1.1)
a Ja a

Note that we now are assuming that f has n + 1 continuous derivatives.

For simplicity, assume that z > a. Since f("*+1) is continuous on the closed
and bounded interval [a,z], the extreme value theorem says that it takes a
minimum value m and a maximum value M on the interval. That is,

m < f("+1)(xn+1) <M, zp41 € [a,z].

Integrate these two inequalities n + 1 times to bound the remainder inte-
gral (1.1) on both sides by multiples of the integral that we have evaluated,

mlp1(z) < Ry(x) < My (2),

and therefore by the precalculated formula for I, (x),
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(.’E _ a>n+1 (.’L‘ _ a)n+1
— < R,(x) <M~—-—"—. 1.2

M S @) S MEre (12)
Recall that m and M are particular values of f("t1). Define an auxiliary
function that will therefore assume the sandwiching values in (1.2),

(x —a)"*!

g:law] — R, g(t) =[O0

That is, since there exist values t,,, and ¢/ in [a, 2] such that f®+D(¢,,) =m
and f(" D (t3,) = M, the result (1.2) of our calculation can be rephrased as

g(tm) < Rn(x) < g(tM)'

The inequalities show that the remainder is an intermediate value of g. And g
is continuous, so by the intermediate value theorem, there exists some point
¢ € [a,x] such that g(¢) = R,(x). In other words, g(c) is the desired remain-
der, the function minus its Taylor polynomial. We have proved the following
theorem.

Theorem 1.3.3 (Taylor’s theorem). Let I C R be a nonempty open inter-
val, and let a € I. Let n be a nonnegative integer. Suppose that the function
f:I — R has n+ 1 continuous derivatives. Then for each x € I,

f(z) =Ty (x) + Rn(z)

where

f(n+1)(c)

Fnle) =Gy

(x —a)"™ for some c between a and .

We have proved Taylor’s theorem only when z > a. It is trivial for z = a.
If < a, then rather than repeat the proof while keeping closer track of signs,
with some of the inequalities switching direction, we may define

fi-T—R, f(-2)=f(z).

Since f = f o neg, where neg is the negation function, a small exercise with
the chain rule shows that

fB(—z) = (=1)*f®)(z), fork=0,...,n+1and —z € —1.

If x <ain I then —x > —a in —I, and so we know by the version of Taylor’s
theorem that we have already proved that

f(=2) = To(—2) + Ru(-2)

where
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_ " FR) (g
T =3 T o (capy
k=0 )

R,(—2)=4f—— " (—x — (—a))"™" for some —c between —a and —z.

But f(—x) = f(x), and Tn(—m) is precisely the desired Taylor polyno-

k!
k=0
n o (Z1)k R (g ®)(q
=Y SR e =3 et = 1w

and similarly R, (—z) works out to the desired form of R, (z),

5 e

R,(—x) = W(l‘ —a)"™  for some ¢ between a and .

Thus we obtain the statement of Taylor’s theorem in the case x < a as well.

Whereas our proof of Taylor’s theorem relies primarily on the fundamental
theorem of integral calculus, and a similar proof relies on repeated integration
by parts (Exercise 1.3.6), many proofs rely instead on the mean value theorem.
Our proof neatly uses three different mathematical techniques for the three
different parts of the argument:

e To find the Taylor polynomial T, (x), we differentiated repeatedly, using a
substitution at each step to determine a coefficient.

e To get a precise (if unwieldy) expression for the remainder R, (z) = f(z)—
T, (z), we integrated repeatedly, using the fundamental theorem of integral
calculus at each step to produce a term of the Taylor polynomial.

e To express the remainder in a more convenient form, we used the extreme
value theorem and then the intermediate value theorem once each. These
foundational theorems are not results from calculus but (as we will discuss
in Section 2.4) from an area of mathematics called topology.

The expression for R, (x) given in Theorem 1.3.3 is called the Lagrange
form of the remainder. Other expressions for R, (z) exist as well. Whatever
form is used for the remainder, it should be something that we can estimate
by bounding its magnitude.

For example, we use Taylor’s theorem to estimate In(1.1) by hand to within
1/500000. Let f(z) = In(1 + z) on (—1,00), and let a = 0. Compute the
following table:
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(k)
k f(k)(x) / k'(o)
0 In(1 + ) 0
1
L (1+x) L
5 | 1 1
1+ 2)2 2
2 1
3 1t 2 3
31 1
YloTarer | T
[T
(1+ax)" n
(=1)™n!
e I

Next, read off from the table that for n > 1, the nth-degree Taylor polynomial
is

x? 28 z" " xk
T — o Sl _ n—liz _1\k—12
W@ =o = T (D Sy
k=1
and the remainder is
(_1)nwn+1

R, (z) = for some ¢ between 0 and z.

(I1+¢e)"t i (n+1)

This expression for the remainder may be a bit much to take in, because
it involves three variables: the point x at which we are approximating the
logarithm, the degree n of the Taylor polynomial that is providing the ap-
proximation, and the unknown value ¢ in the error term. But we are in-
terested in = 0.1 in particular (since we are approximating In(1.1) using
f(z) =1In(1 + z)), so that the Taylor polynomial specializes to

(0.0 (01

and we want to bound the remainder in absolute value, so we write

(0.1)7+!
(14 ) (n+1)

|R,(0.1)] = for some ¢ between 0 and 0.1.

Now the symbol x is gone. Next, note that although we don’t know the value
of ¢, the smallest possible value of the quantity (1+¢)"! in the denominator
of the absolute remainder is 1, because ¢ > 0. And since this value occurs in
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the denominator, it lets us write the greatest possible value of the absolute
remainder with no reference to c¢. That is,

(0.1)n+1

IRa(0.D)] < o

and the symbol ¢ is gone as well. The only remaining variable is n, and the
goal is to approximate In(1.1) to within 1/500000. Set n = 4 in the previous
display to get

R,(0.1)] < .
[Ra )|—’500000

That is, the fourth-degree Taylor polynomial
1 1 1 1
7,01)=——— 4+ — — ——
1(0-1) 10 200 + 3000 40000’

which numerically is

T4(0.1) = 0.10000000. ..
—0.00500000. ..
+0.00033333. ..
—0.00002500.. ..

= 0.09530833.. .,

agrees with In(1.1) to within 0.00000200. .., so that
0.09530633 - - - < In(1.1) < 0.09531033....

Any computer should confirm this. The point here is not that we have ob-
tained impressively many digits of In(1.1), or that we would want to continue
carrying out such calculations by hand, but that we see how Taylor’s theo-
rem guarantees correct computation to a specified accuracy using only basic
arithmetic.

Continuing to work with the function f(z) = In(1 + z) for z > —1, set
x = 1 instead to get that for n > 1,

and

1
|R,(1)| = (EP =Ty for some ¢ between 0 and 1.

Thus |R,(1)] < 1/(n + 1), and this goes to 0 as n — oo. Therefore In(2) is
expressible as an infinite series,

1 1 1
M2 =1—=4=—=f....
n(2) 53 1"

This example illustrates an important general principle:
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To check whether the Taylor polynomial T,,(x) converges to f(x) asn
grows, i.e., to check whether the infinite Taylor series

% 4(k)(g
T(@) = tim Tu(r) = 3 LD 0 -
k=0 '

reproduces f(x), check whether the remainder R, (x) converges to 0.
To show that the remainder R, (x) converges to 0, estimate |Ry(z)| in
a way that gets rid of the unknown c and then show that the estimate
goes to 0.

To repeat a formula from before, the nth-degree Taylor polynomial of the
function In(1 + z) is

2 3 n

T T " xk
Tn — _ — — ... -1 n—12 = —1 k=12 .
@) =a= G+ ek (O =D

The graphs of the natural logarithm In(x) and the first five Taylor polynomials
T,(x — 1) are plotted from 0 to 2 in Figure 1.1. (The switch from In(1 + z)
to In(x) places the logarithm graph in its familiar position, and then the switch
from T,,(x) to T, (x — 1) is forced in consequence to fit the Taylor polynomials
through the repositioned function.) A good check of your understanding is to
see whether you can determine which graph is which in the figure.

0.5 1 15 9

Figure 1.1. The natural logarithm and its Taylor polynomials

For another example, return to the exponential function f(z) = e* and
let a = 0. For every z, the difference between f(z) and the nth-degree Taylor
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polynomial T, (x) satisfies

xn+1

(n+1)!

If £ > 0 then e® could be as large as e*, while if x < 0 then e could be as
large as €?. The worst possible case is therefore

e’ for some ¢ between 0 and z.

[ R ()| =

|1.|n+1

IR, (2)| < max{l,ﬁ}m.

As n — oo (while z remains fixed, albeit arbitrary) the right side goes to 0,
because the factorial growth of (n + 1)! dominates the polynomial growth
of |z|"*1, and so we have in the limit that e® is expressible as a power series,

372 3 " x xk
—1+x+—+§+ H+"':ZH'

The power series here can be used to define e, but then obtaining the prop-
erties of e depends on the technical fact that a power series can be differenti-
ated term by term in its open interval (or disk if we are working with complex
numbers) of convergence.

The power series in the previous display also allows a small illustration of
the utility of quantifiers. Since it is valid for every real number z, it is valid
with 22 in place of z,

R 220 > .2k
e =1+ 22 +—+§+ +W+~-~=kzﬂ for every z € R.
=0

There is no need here to introduce the function g(x) = emz, then work out its
Taylor polynomial and remainder, then analyze the remainder.

We end this chapter by sketching two cautionary examples. First, work
from earlier in the section shows that the Taylor series for the function In(1+x)
at a =01is

2 3

T T " >
T e s 1n1 k
() == 2—|—3 +(-1) ;}:1

1.”[]

The ratio test shows that this series converges absolutely when |z| < 1, and

the nth-term test shows that the series diverges when = > 1. The series also

converges at x = 1, as observed earlier. Thus, while the domain of the func-

tion In(1 + ) is (—1,00), the Taylor series has no chance to match the func-

tion outside of (—1,1]. As for whether the Taylor series matches the function
n (—1,1], recall the Lagrange form of the remainder,

(71)nxn+1
1+t (n+1)

R, (z) = for some ¢ between 0 and x.
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Consequently, the absolute value of the Lagrange form of the remainder is

By = 2 (YT between 0 and
)| = or some ¢ between 0 and x.
" n+1\1+c

From the previous display, noting that |z| is the distance from 0 to x while
1 + ¢ is the distance from —1 to ¢, we see that:

If0<ax<1then |z|] <1<1+¢, and so R,(x) goes to 0 as n gets large.
If —-1/2 <z <0 then |z| <1/2 <1+e¢, and so again R, (x) goes to 0 as
n gets large.

e Butif —1 < & < —1/2 then possibly 1 4+ ¢ < |z|, and so possibly R,,(z)
does not go to 0 as n gets large.

That is, we have shown that
In(l1+2)=T(x) forxe[-1/2,1],

but the Lagrange form does not readily show that the equality in the previous
display also holds for € (—1,—1/2). Figure 1.1 suggests why: the Taylor
polynomials are converging more slowly to the original function the farther
left we go on the graph. However, a different form of the remainder, given in
Exercise 1.3.6, proves that indeed the equality holds for all z € (—1,1]. Also,
the geometric series relation
1

1+2
gives the relation In(1 + z) = T'(x) for = € (—1, 1) upon integrating termwise
and then setting x = 0 to see that the resulting constant term is 0; but this
argument’s invocation of the theorem that a power series can be integrated
termwise within its interval (or disk) of convergence is nontrivial.

For the last example, define f : R — R by

e/ if g 0,
flx) = . d
0 if z =0.

=l—-z422-23+..., —-l<z<l

It is possible to show that f is infinitely differentiable and that every derivative
of f at 0is 0. That is, f*)(0) = 0 for k = 0,1,2, . ... Consequently, the Taylor
series for f at 0 is

T(x) =040z + 0z -+ 02" +--- .

That is, the Taylor series is the zero function, which certainly converges for all
x € R. But the only value of x for which it converges to the original function f
is = 0. In other words, although this Taylor series converges everywhere,
it fails catastrophically to equal the function it is attempting to match. The
problem is that the function f decays exponentially, and since exponential be-
havior dominates polynomial behavior, any attempt to discern f using poly-
nomials will fail to see it. Figures 1.2 and 1.3 plot f to display its rapid decay.
The first plot is for € [—25,25] and the second is for € [-1/2,1/2].
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20 10 10 20

Figure 1.2. Rapidly decaying function, wide view

04 02 0.2 0.4

Figure 1.3. Rapidly decaying function, zoom view

Exercises

1.3.1. (a) Let n € N. What is the (2n + 1)st-degree Taylor polynomial
Topy1(z) for the function f(z) = sinz at 0?7 (The reason for the strange
indexing here is that every second term of the Taylor polynomial is 0.) Prove
that sinz is equal to the limit of To,11(2z) as n — oo, similarly to the argu-
ment in the text for e*. Also find T5,(z) for f(r) = cosx at 0, and explain
why the argument for sin shows that cos z is the limit of its even-degree Taylor
polynomials as well.

(b) Many years ago, the author’s high-school physics textbook asserted,
bafflingly, that the approximation sinz ~ z is good for = up to 8°. Decon-
struct.

1.3.2. What is the nth-degree Taylor polynomial T,,(x) for the following func-
tions at 07
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(a) f(z) = arctan z. (This exercise is not just a matter of routine mechan-
ics. One way to proceed involves the geometric series, and another makes use
of the factorization 1+ 22 = (1 —ix)(1 +ix).)

(b) f(z) = (1 4+ x)“ where a € R. (Although the answer can be written
in a uniform way for all «, it behaves differently when a € N. Introduce the
generalized binomial coefficient symbol

(a) ala—1)(@—2)(a—k+1)

B = X , keN

to help produce a tidy answer.)

1.3.3. (a) Further tighten the numerical estimate of In(1.1) from this section
by reasoning as follows. As n increases, the Taylor polynomials T;,(0.1) add
terms of decreasing magnitude and alternating sign. Therefore T4(0.1) un-
derestimates In(1.1). Now that we know this, it is useful to find the smallest
possible value of the remainder (by setting ¢ = 0.1 rather than ¢ = 0 in the for-
mula). Then In(1.1) lies between T4(0.1) plus this smallest possible remainder
value and T4(0.1) plus the largest possible remainder value, obtained in the
section. Supply the numbers, and verify by machine that the tighter estimate
of In(1.1) is correct.

(b) In Figure 1.1, identify the graphs of T} through T5 and the graph of In
near = 0 and near x = 2.

1.3.4. Working by hand, use the third-degree Taylor polynomial for sin(z)
at 0 to approximate a decimal representation of sin(0.1). Also compute the
decimal representation of an upper bound for the error of the approximation.
Bound sin(0.1) between two decimal representations.

1.3.5. Use a second-degree Taylor polynomial to approximate v/4.2. Use Tay-
lor’s theorem to find a guaranteed accuracy of the approximation and thus to
find upper and lower bounds for v/4.2.

1.3.6. (a) Another proof of Taylor’s Theorem uses the fundamental theorem
of integral calculus once and then integrates by parts repeatedly. Begin with
the hypotheses of Theorem 1.3.3, and let € I. By the fundamental theorem,

f@) = f@)+ [ foa

Let u = f/(t) and v = t — z, so that the integral is fax udv, and integrating
by parts gives

f(@) = fla) + f'(a)(z —a) — /w f1(@)(t —x)dt.

Let u = f"(t) and v = 1(t — 2)2, so that again the integral is [ udv, and
integrating by parts gives
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— )2 z 2
f@) = f@) + P @ -+ @55+ [ oSS

Show that after n steps, the result is

f@) = Tuta) + -1 [ 0=
Whereas the expression for f(z) — T, (x) in Theorem 1.3.3 is called the La-
grange form of the remainder, this exercise has derived the integral form
of the remainder. Use the extreme value theorem and the intermediate value
theorem to derive the Lagrange form of the remainder from the integral form.
(b) Use the integral form of the remainder to show that

In(l+42z)=T(z) forzxe (—1,1].
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Euclidean Space

FEuclidean space is a mathematical construct that encompasses the line, the
plane, and three-dimensional space as special cases. Its elements are called
vectors. Vectors can be understood in various ways: as arrows, as quantities
with magnitude and direction, as displacements, or as points. However, along
with a sense of what vectors are, we also need to emphasize how they interact.
The axioms in Section 2.1 capture the idea that vectors can be added together
and can be multiplied by scalars, with both of these operations obeying fa-
miliar laws of algebra. Section 2.2 expresses the geometric ideas of length
and angle in Euclidean space in terms of vector algebra. Section 2.3 discusses
continuity for functions (also called mappings) whose inputs and outputs are
vectors rather than scalars. Section 2.4 introduces a special class of sets in
Euclidean space, the compact sets, and shows that compact sets are preserved
under continuous mappings.

2.1 Algebra: Vectors

Let n be a positive integer. The set of all ordered n-tuples of real numbers,
Rn:{(l'l,...’xn):xi e]:RfOI‘Z’:17...7"7‘}7

constitutes n-dimensional Euclidean space. When n = 1, the parentheses
and subscript in the notation (x1) are superfluous, so we simply view the
elements of R! as real numbers = and write R for R!. Elements of R? and
of R3 are written (z,y) and (x,v, 2) to avoid needless subscripts. These first
few Euclidean spaces, R, R2, and R3, are conveniently visualized as the line,
the plane, and space itself. (See Figure 2.1.)

Elements of R are called scalars, of R™, vectors. The origin of R™,
denoted 0, is defined to be

0=1(0,...,0).

© Springer International Publishing AG 2016 23
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Figure 2.1. The first few Euclidean spaces

Sometimes the origin of R™ will be denoted 0,, to distinguish it from other
origins that we will encounter later.

In the first few Euclidean spaces R, R?, R3, one can visualize a vector as
a point x or as an arrow. The arrow can have its tail at the origin and its
head at the point x, or its tail at any point p and its head correspondingly
translated to p + x. (See Figure 2.2. Most illustrations will depict R or R2.)

pt+x

Figure 2.2. Various ways to envision a vector

To a mathematician, the word space doesn’t connote volume but instead
refers to a set endowed with some structure. Indeed, Euclidean space R™ comes
with two algebraic operations. The first is vector addition,

+:R" x R" — R",
defined by adding the scalars at each component of the vectors,
(xla"'wrn) + (ylv"‘ayn) = (xl + Y1, T +yn)

For example, (1,2,3) + (4,5,6) = (5,7,9). Note that the meaning of the “+”
sign is now overloaded: on the left of the displayed equality, it denotes the
new operation of vector addition, whereas on the right side it denotes the old
addition of real numbers. The multiple meanings of the plus sign shouldn’t
cause problems, because the meaning of “4” is clear from context, i.e., the
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meaning of “+” is clear from whether it sits between vectors or scalars. (An
expression such as “(1,2,3) +4,” with the plus sign between a vector and a
scalar, makes no sense according to our grammar.)

The interpretation of vectors as arrows gives a geometric description of
vector addition, at least in R2. To add the vectors z and y, draw them as
arrows starting at 0 and then complete the parallelogram P that has x and y
as two of its sides. The diagonal of P starting at O is then the arrow depicting
the vector = + y. (See Figure 2.3.) The proof of this is a small argument with
similar triangles, left to the reader as Exercise 2.1.2.

Figure 2.3. The parallelogram law of vector addition

The second operation on Euclidean space is scalar multiplication,
R xR™ — R,
defined by
a-(z1,...,2,) = (ax1,...,azy,).

For example, 2-(3,4,5) = (6,8, 10). We will almost always omit the symbol “”
and write ax for a - x. With this convention, juxtaposition is overloaded as
“+” was overloaded above, but again this shouldn’t cause problems.

Scalar multiplication of the vector z (viewed as an arrow) by a also has a
geometric interpretation: it simply stretches (i.e., scales) x by a factor of a.
When a is negative, ax turns  around and stretches it in the other direction
by |a|. (See Figure 2.4.)

-3z

2z

Figure 2.4. Scalar multiplication as stretching
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With these two operations and distinguished element 0, Euclidean space
satisfies the following algebraic laws.

Theorem 2.1.1 (Vector space axioms).

(Al) Addition is associative: (x +y) + z =x + (y + 2) for all z,y,z € R™.

(A2) 0 is an additive identity: 0+ x = x for all x € R".

(A3) FExistence of additive inverses: for each x € R™ there exists y € R™ such
that y +x = 0.

(A4) Addition is commutative: x +y =y + x for all x,y € R™.

(M1) Scalar multiplication is associative: a(bx) = (ab)x for all a,b € R, x €
R™.

(M2) 1 is a multiplicative identity: lx = x for all x € R™.

(D1) Scalar multiplication distributes over scalar addition: (a+b)x = ax + bz
foralla,b e R, x € R™.

(D2) Scalar multiplication distributes over vector addition: a(x+vy) = ax+ay
foralla e R, z,y € R™.

All of these are consequences of how “+” and “” and 0 are defined for R™
in conjunction with the fact that the real numbers, in turn endowed with “+”
and “” and containing 0 and 1, satisfy the field axioms (see Section 1.1). For
example, to prove that R™ satisfies (M1), take any scalars a,b € R and any
vector © = (x1,...,%,) € R™. Then

(b(x1, ... 2n)) by definition of z

(bxq,...,bxy,) by definition of scalar multiplication
a(bxy),...,a(br,)) by definition of scalar multiplication
(ab)zy,...,(ab)x,) by n applications of (ml) in R

= (ab)(xz1,...,2p) by definition of scalar multiplication

ab)x by definition of z.

The other vector space axioms for R™ can be shown similarly, by unwinding
vectors to their coordinates, quoting field axioms coordinatewise, and then
bundling the results back up into vectors (see Exercise 2.1.3). Nonetheless,
the vector space axioms do not perfectly parallel the field axioms, and you
are encouraged to spend a little time comparing the two axiom sets to get a
feel for where they are similar and where they are different (see Exercise 2.1.4).
Note in particular that

Forn > 1, R" is not endowed with vector-by-vector multiplication.

Although one can define vector multiplication on R™ componentwise, this mul-
tiplication does not combine with vector addition to satisfy the field axioms
except when n = 1. The multiplication of complex numbers makes R? a field,
and in Section 3.10 we will see an interesting noncommutative multiplication
of vectors for R3, but these are special cases.
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One benefit of the vector space axioms for R™ is that they are phrased
intrinsically, meaning that they make no reference to the scalar coordinates
of the vectors involved. Thus, once you use coordinates to establish the vector
space axioms, your vector algebra can be intrinsic thereafter, making it lighter
and more conceptual. Also, in addition to being intrinsic, the vector space
axioms are general. While R” is the prototypical set satisfying the vector space
axioms, it is by no means the only one. In coming sections we will encounter
other sets V' (whose elements may be, for example, functions) endowed with
their own addition, multiplication by elements of a field F', and distinguished
element 0. If the vector space axioms are satisfied with V" and F' replacing R™
and R then we say that V is a vector space over F.

The pedagogical point here is that although the similarity between vector
algebra and scalar algebra may initially make vector algebra seem uninspiring,
in fact the similarity is exciting. It makes mathematics easier, because familiar
algebraic manipulations apply in a wide range of contexts. The same symbol-
patterns have more meaning. For example, we use intrinsic vector algebra to
prove a result from Euclidean geometry, that the three medians of a triangle
intersect. (A median is a segment from a vertex to the midpoint of the opposite
edge.) Consider a triangle with vertices z, y, and z, and form the average of

the three vertices,
rT+y+z

3
This algebraic average will be the geometric center of the triangle, where
the medians meet. (See Figure 2.5.) Indeed, rewrite p as

2 (y+=z
p—x+3( 9 —33).

The displayed expression for p shows that it is two-thirds of the way from x
along the line segment from z to the average of y and z, i.e., that p lies on
the triangle median from vertex z to side yz. (Again see the figure. The idea
is that (y+ 2)/2 is being interpreted as the midpoint of y and z, each of these
viewed as a point, while on the other hand, the little mnemonic

head minus tail

helps us to remember quickly that (y + z)/2 — = can be viewed as the arrow-
vector from x to (y + z)/2.) Since p is defined symmetrically in z, y, and z,
and it lies on one median, it therefore lies on the other two medians as well.
In fact, the vector algebra has shown that it lies two-thirds of the way along
each median. (As for how a person might find this proof, it is a matter of
hoping that the geometric center (z + y + z)/3 lies on the median by taking
the form = + ¢((y + 2)/2 — x) for some ¢ and then seeing that indeed ¢ = 2/3
works.)

The standard basis of R" is the set of vectors
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Figure 2.5. Three medians of a triangle

2
Yy
{e1,ea,...,en}
where

er =(1,0,...,0), ex=(0,1,...,0), ..., en=1(0,0,...,1).

(Thus each e; is itself a vector, not the ith scalar entry of a vector.) Every
vector © = (x1,x2,...,%,) (where the z; are scalar entries) decomposes as

x=(r1,22,...,2Tp)
:(3’51,0,...,0)+(O,JI2,...7O)+-~-+(O,O,...,.’En>
= 21(1,0,...,0) + 22(0,1,...,0) + -+ 2,(0,0,...,1)

=x1€1 + X282 + -+ Tpey,

or more succinctly,
n
T = ine,;. (2.1)
i=1

Note that in equation (2.1), 2 and the e; are vectors, while the z; are scalars.
The equation shows that every = € R"™ is expressible as a linear combination
(sum of scalar multiples) of the standard basis vectors. The expression is
unique, for if also x = > | #e; for some scalars 2, ..., 2], then the equality
says that x = (24, 25,...,2}), so that 2}, = x; fori =1,...,n.

(The reason that the geometric-sounding word linear is used here and
elsewhere in this chapter to describe properties having to do with the alge-
braic operations of addition and scalar multiplication will be explained in
Chapter 3.)

The standard basis is handy in that it is a finite set of vectors from which
each of the infinitely many vectors of R™ can be obtained in exactly one way
as a linear combination. But it is not the only such set, nor is it always the
optimal one.
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Definition 2.1.2 (Basis). A set of vectors {f;} is a basis of R™ if every
x € R” is uniquely expressible as a linear combination of the f;.

For example, the set {f1, fo} = {(1,1),(1,—1)} is a basis of R2. To see
this, consider an arbitrary vector (z,y) € R2. This vector is expressible as a
linear combination of f; and fs if and only if there are scalars a and b such
that

(.’I},y) = afl + bf2
Since f; = (1,1) and fo = (1, —1), this vector equation is equivalent to a pair
of scalar equations,
r=a-+b,
y=a—>.

Add these equations and divide by 2 to get a = (x 4 y)/2, and similarly
b= (x —y)/2. In other words, we have found that

rry
2

(z.) = 52 (1L, 1) + (1, -1),
and the coefficients ¢ = (z + y)/2 and b = (z — y)/2 on the right side of
the equation are the only possible coefficients a and b for the equation to
hold. That is, scalars a and b exist to express the vector (z,y) as a linear
combination of { f1, fo}, and the scalars are uniquely determined by the vector.
Thus {fi, f2} is a basis of R?, as claimed.

The set {g1,92} = {(1,3),(2,6)} is not a basis of R?, because every lin-
ear combination ag; + bgs takes the form (a + 2b,3a + 6b), with the second
entry equal to three times the first. The vector (1,0) is therefore not a linear
combination of g; and gs.

Nor is the set {hy, ho, hs} = {(1,0),(1,1),(1,—1)} a basis of R?, because
h3 = 2hy — hg, so that hs is a nonunique linear combination of the h;.

See Exercises 2.1.9 and 2.1.10 for practice with bases.

Exercises

2.1.1. Write down any three specific nonzero vectors u, v, w from R? and any
two specific nonzero scalars a, b from R. Compute u+wv, aw, b(v+w), (a+b)u,
u + v + w, abw, and the additive inverse to u.

2.1.2. Working in R2, give a geometric proof that if we view the vectors z
and y as arrows from 0 and form the parallelogram P with these arrows as
two of its sides, then the diagonal z starting at 0 is the vector sum = + y
viewed as an arrow.

2.1.3. Verify that R™ satisfies vector space axioms (A2), (A3), (D1).
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2.1.4. Are all the field axioms used in verifying that Euclidean space satisfies
the vector space axioms?

2.1.5. Show that 0 is the unique additive identity in R™. Show that each vector
x € R™ has a unique additive inverse, which can therefore be denoted —zx.
(And it follows that vector subtraction can now be defined,

—:R" xR" — R, r—y=a+(—y) foralzyeR")
Show that Ox = 0 for all x € R".

2.1.6. Repeat the previous exercise, but with R" replaced by an arbitrary
vector space V over a field F. (Work with the axioms.)

2.1.7. Show the uniqueness of the additive identity and the additive inverse
using only (A1), (A2), (A3). (This is tricky; the opening pages of some books
on group theory will help.)

2.1.8. Let x and y be noncollinear vectors in R3. Give a geometric description
of the set of all linear combinations of x and y.

2.1.9. Which of the following sets are bases of R3?

S1 =4(1,0,0),(1,1,0),
(1,0,0),(0,1,0),
(1a 1a O)) (07 17 1)}7
(1,1,0),(0,1,1),(1,0,—1)}.

1,1,1)},

(
(0,0,1),(1,1,1)},

Sy ={
Sz ={
Sy =1
How many elements do you think a basis for R” must have? Give (without
proof) geometric descriptions of all bases of R?, of R3.

2.1.10. Recall the field C of complex numbers. Define complex n-space C"
analogously to R":

C"={(z1,-..,2n) :zs€Cfori=1,...,n},

and endow it with addition and scalar multiplication defined by the same
formulas as for R”. You may take for granted that under these definitions, C"
satisfies the vector space axioms with scalar multiplication by scalars from R,
and also C™ satisfies the vector space axioms with scalar multiplication by
scalars from C. That is, using language that was introduced briefly in this
section, C" can be viewed as a vector space over R and also, separately, as a
vector space over C. Give a basis for each of these vector spaces.
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Brief Pedagogical Interlude

Before continuing, a few comments about how to work with these notes may
be helpful.

The subject-matter of Chapters 2 through 5 is largely cumulative, with
the main theorem of Chapter 5 being proved with main results of Chapters 2,
3, and 4. Each chapter is largely cumulative internally as well. To acquire
detailed command of so much material and also a large-scale view of how it
fits together, the trick is to focus on each section’s techniques while studying
that section and working its exercises, but thereafter to use the section’s
ideas freely by reference. Specifically, after the scrutiny of vector algebra in
the previous section, one’s vector manipulations should be fluent from now
on, freeing one to concentrate on vector geometry in the next section, after
which the geometry should also be light while one is concentrating on the
analytical ideas of the following section, and so forth.

Admittedly, the model that one has internalized all the prior material
before moving on is idealized. For that matter, so is the model that a body of
interplaying ideas is linearly cumulative. In practice, focusing entirely on the
details of whichever topics are currently active while using previous ideas by
reference isn’t always optimal. One might engage with the details of previous
ideas because one is coming to understand them better, or because the current
ideas showcase the older ones in a new way. Still, the paradigm of technical
emphasis on the current ideas and fluent use of the earlier material does help
a person who is navigating a large body of mathematics to conserve energy
and synthesize a larger picture.

2.2 Geometry: Length and Angle

The geometric notions of length and angle in R™ are readily described in terms
of the algebraic notion of inner product.

Definition 2.2.1 (Inner product). The inner product is a function from
pairs of vectors to scalars,

(, ):R"xR" — R,
defined by the formula

(1, yxn)y Y1y vy Yn)) = leyz
i=1

For example,

1
<(1’ 17 R 1)’ (1727' A 7n)> = %,
(x,ej) =x; wherex = (21,...,2,) and j € {1,...,n},

(es,€5) = d;; (this means 1 if ¢ = j, 0 otherwise).
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Proposition 2.2.2 (Inner product properties).

(IP1) The inner product is positive definite: (x,x) > 0 for all x € R™, with
equality if and only if © = 0.

(IP2) The inner product is symmetric: (x,y) = (y,z) for all z,y € R™.

(IP3) The inner product is bilinear:

(x+a'y) = (x,y) + (@), (az,y) = a(z,y),
(,y+y) = (@) + (x,y), (2,by) =blz,y)

foralla,beR, x,2',y,y € R™.
Proof. Exercise 2.2.4. 0O

The reader should be aware that:
In general, (x + ',y +y') does not equal (x,y) + {2/, /).

Indeed, expanding (x + x’,y + ¢’} carefully with the inner product properties
shows that the cross-terms (z,y’) and (2/,y) are present in addition to (z,y)
and (z',y’).

Like the vector space axioms, the inner product properties are phrased
intrinsically, although they need to be proved using coordinates. As mentioned
in the previous section, intrinsic methods are neater and more conceptual than
using coordinates. More importantly:

The rest of the results of this section are proved by reference to the
inner product properties, with no further reference to the inner product
formula.

The notion of an inner product generalizes beyond Euclidean space—this will
be demonstrated in Exercise 2.3.4, for example—and thanks to the displayed
sentence, once the properties (IP1) through (IP3) are established for any inner
product, all of the pending results in the section will follow automatically with
no further work. (But here a slight disclaimer is necessary. In the displayed
sentence, the word results does not refer to the pending graphic figures. The
fact that the length and angle to be defined in this section will agree with prior
notions of length and angle in the plane, or in three-dimensional space, does
depend on the specific inner product formula. In Euclidean space, the inner
product properties do not determine the inner product formula uniquely. This
point will be addressed in Exercise 3.5.1.)

Definition 2.2.3 (Modulus). The modulus (or absolute value) of a vec-

tor x € R™ is defined as
|| = V(z, z).

Thus the modulus is defined in terms of the inner product, rather than by
its own formula. The inner product formula shows that the modulus formula
is
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(1, oy xp)| =23+ + 22,

so that some particular examples are

(1,2,...,m)] = \/”(”+1)6(2n+1)7

|€i‘ =1.

However, the definition of the modulus in terms of inner product combines
with the inner product properties to show, with no reference to the inner prod-
uct formula or the modulus formula, that the modulus satisfies the following
properties (Exercise 2.2.5).

Proposition 2.2.4 (Modulus properties).
(Mod1) The modulus is positive: |x| > 0 for all x € R™, with equality if and

only if ¢ = 0.
(Mod2) The modulus is absolute-homogeneous: |ax| = |a||z| for all a € R and
x € R™.

Like other symbols, the absolute value signs are now overloaded, but their
meaning can be inferred from context, as in property (Mod2). When n is 1, 2,
or 3, the modulus |z| gives the distance from 0 to the point z, or the length
of z viewed as an arrow. (See Figure 2.6.)

Figure 2.6. Modulus as length

The following relation between inner product and modulus will help to
show that distance in R™ behaves as it should, and that angle in R™ makes
sense. Since the relation is not obvious, its proof is a little subtle.

Theorem 2.2.5 (Cauchy—Schwarz inequality). For all z,y € R",

[z, y)| < || yl,

with equality if and only if one of x, y is a scalar multiple of the other.
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Note that the absolute value signs mean different things on each side of
the Cauchy-Schwarz inequality. On the left side, the quantities = and y are
vectors, their inner product (z,y) is a scalar, and [{x, y)| is its scalar absolute
value, while on the right side, |z| and |y| are the scalar absolute values of
vectors, and |z||y| is their product. That is, the Cauchy—Schwarz inequality
says:

The size of the product is at most the product of the sizes.

The Cauchy—Schwarz inequality can be written out in coordinates if we

temporarily abandon the principle that we should avoid reference to formulas,

(11 + -+ Tnyn)” < @7+ +22) (Wi + -+ yp).

And this inequality can be proved unconceptually as follows (the reader is
encouraged only to skim the following computation). Rewrite the desired in-

equality as
2
(Sew) <Xt a2
i i j
where the indices of summation run from 1 to n. Expand the square to get

Z wy? + Z LYy < Z U
i i,J 2
i#]

and canceling the terms common to both sides reduces it to

inyﬂjyj < szzy?,

i#] i#]
or

Z(xfyf — 2y 75y;) > 0.

i
Rather than sum over all pairs (4,7) with ¢ # j, sum over the pairs with

i < j, collecting the (7, j)-term and the (j,7)-term for each such pair, and the
previous inequality becomes

Z(:ﬁfng + x?yf —2x,y;x;y;) > 0.
i<j
Thus the desired inequality has reduced to a true inequality,
Z(Ziyj — z;y;)? > 0.
i<y

So the main proof is done, although there is still the question of when equality
holds.

But surely the previous paragraph is not the graceful way to argue. The
computation draws on the minutiae of the formulas for the inner product and
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the modulus, rather than using their properties. It is uninformative, making
the Cauchy—-Schwarz inequality look like a low-level accident. It suggests that
larger-scale mathematics is just a matter of bigger and bigger formulas. To
prove the inequality in a way that is enlightening and general, we should
work intrinsically, keeping the scalars (x,y) and |z| and |y| notated in their
concise forms, and we should use properties, not formulas. The idea is that the
calculation in coordinates reduces to the fact that squares are nonnegative.
That is, the Cauchy—Schwarz inequality is somehow quadratically hard, and its
verification amounted to completing many squares. The argument to be given
here is guided by this insight to prove the inequality by citing facts about
quadratic polynomials, facts established by completing one square back in
high-school algebra at the moment that doing so was called for. Thus we
eliminate redundancy and clutter. So the argument to follow will involve an
auxiliary object, a judiciously chosen quadratic polynomial, but in return it
will become coherent.

Proof. The result is clear when x = 0, so assume x # 0. For every a € R,

0 < {ax —y,ax —y) by positive definiteness
=a(z,ax —y) — (y,ax — y) by linearity in the first variable
= a*(z,z) — alz,y) — aly,z) + (y,y) by linearity in the second variable

= a?|z|* — 2a(x,y) + |y|? by symmetry, definition of modulus.

View the right side as a quadratic polynomial in the scalar variable a, where
the scalar coefficients of the polynomial depend on the generic but fixed vec-
tors x and vy,

fla) = |al’a® = 2(z, y)a + y|*.

We have shown that f(a) is always nonnegative, so f has at most one root.
Thus by the quadratic formula its discriminant is nonpositive,

4z, y)? — 4lzPly* <0,

and the Cauchy-Schwarz inequality |(z,y)| < |z||y| follows. Equality holds
exactly when the quadratic polynomial f(a) = |az — y|? has a root a, i.e.,
exactly when y = az for some a € R. O

Geometrically, the condition for equality in Cauchy—Schwarz is that the
vectors x and y, viewed as arrows at the origin, are parallel, though perhaps
pointing in opposite directions. A geometrically conceived proof of Cauchy—
Schwarz is given in Exercise 2.2.15 to complement the algebraic argument
that has been given here.

The Cauchy—Schwarz inequality shows that the modulus function satisfies
the triangle inequality.

Theorem 2.2.6 (Triangle inequality). For all z,y € R™,
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|z +yl < [z] + |yl

with equality if and only if one of x, y is a nonnegative scalar multiple of the
other.

Proof. To show this, compute

| +y1* = (@ +y,2+y)
= |z|* + 2(z,y) + |y[* Dy bilinearity
< |z|® +2|z||ly| + |y|* by Cauchy-Schwarz
= (|| + ly))?,
proving the inequality. Equality holds exactly when (x,y) = |z||y|, or equiva-

lently when [{x,y)| = |z||y| and (x,y) > 0. These hold when one of z, y is a
scalar multiple of the other and the scalar is nonnegative. ]

While the Cauchy—Schwarz inequality says that the size of the product is
at most the product of the sizes, the triangle inequality says:

The size of the sum is at most the sum of the sizes.

The triangle inequality’s name is explained by its geometric interpretation
in R%. View z as an arrow at the origin, ¥ as an arrow with tail at the head
of z, and x + y as an arrow at the origin. These three arrows form a triangle,
and the assertion is that the lengths of two sides sum to at least the length of
the third. (See Figure 2.7.)

Tty

T

Figure 2.7. Sides of a triangle

The full triangle inequality says that for all z,y € R",
el = [yl < |z +y| < fa] + [yl

The proof is Exercise 2.2.7.

A small argument, which can be formalized as induction if one is painstak-
ing, shows that the basic triangle inequality extends from two vectors to any
finite number of vectors. For example,
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[z +y+ 2z <l|z+yl+ |z < ||+ [yl + [2].

The only obstacle to generalizing the basic triangle inequality in this fashion
is notation. The argument can’t use the symbol n to denote the number of
vectors, because n already denotes the dimension of the Fuclidean space where
we are working; and furthermore, the vectors can’t be denoted with subscripts
since a subscript denotes a component of an individual vector. Thus, for now
we are stuck writing something like

@ oo 2 ®] < D £ g 2B for all 2D, 2®) € RP,

or
k

32t

i=1

k
< Z |x(i)|, PAS NG
=1

As our work with vectors becomes more intrinsic, vector entries will demand
less of our attention, and we will be able to denote vectors by subscripts. The
notation-change will be implemented in the next section.

For every vector © = (z1,...,x,) € R", useful bounds on the modulus ||
in terms of the scalar absolute values |z;| are as follows.

Proposition 2.2.7 (Size bounds). For every j € {1,...,n},

n
] < Jal < Jail.
i=1

The proof (by quick applications of the Cauchy—Schwarz inequality and
the triangle inequality) is Exercise 2.2.8.
The modulus gives rise to a distance function on R™ that behaves as dis-
tance should. Define
d:R" xR" — R
by
For example, d(e;, ;) = v2(1 — d;5).

Theorem 2.2.8 (Distance properties).

(D1) Distance is positive: d(z,y) > 0 for all z,y € R™, and d(z,y) = 0 if and
only if v =vy.

(D2) Distance is symmetric: d(x,y) = d(y,z) for all z,y € R".

(D3) Triangle inequality: d(x, z) < d(x,y) + d(y, z) for all x,y,z € R™.

(D1) and (D2) are clearly desirable as properties of a distance function.
Property (D3) says that you can’t shorten your trip from x to z by making a
stop at y.
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Proof. Exercise 2.2.9. a

The Cauchy—Schwarz inequality also lets us define the angle between two
nonzero vectors in terms of the inner product. If x and y are nonzero vectors
in R"™, define their angle 6, , by the condition

@Y g p < (2.2)
|yl

cosly, = Ty S

The condition is sensible because —1 < I<§HZ>I < 1 by the Cauchy-Schwarz

inequality. For example, cos 0 0),(1,1) = 1/4/2, and so 0(1,0),(1,1) = 7/4. In
particular, two nonzero vectors z and y are orthogonal when (x,y) = 0.
Naturally, we would like 8, ,, to correspond to the usual notion of angle, at least
in R?, and indeed it does—see Exercise 2.2.10. For convenience, define any
two vectors x and y to be orthogonal if (x,y) = 0, thus making 0 orthogonal
to all vectors.

Rephrasing geometry in terms of intrinsic vector algebra not only extends
the geometric notions of length and angle uniformly to any dimension, it also
makes some low-dimensional geometry easier. For example, vectors show in a
natural way that the three altitudes of every triangle must meet. Let 2 and y
denote two sides of the triangle, making the third side x —y by the head minus
tail mnemonic. Let ¢ be the point where the altitudes to z and y meet. (See
Figure 2.8, which also shows the third altitude.) Thus

g—ylx and g—2x Ly.
We want to show that ¢ also lies on the third altitude, i.e., that
qlx—y.
To rephrase matters in terms of inner products, we want to show that
Ln—raof = wrmne

Since the inner product is linear in each of its arguments, a further rephrasing
is that we want to show that

{ (q,2) = (y, @)

(¢,y) = (z,y)

} = (¢,7) =(q,y)-

And this is immediate because the inner product is symmetric: (g, z) and (g, y)
both equal (z,y), and so they equal each other as desired. The point ¢ where
the three altitudes meet is called the orthocenter of the triangle. In general,
the orthocenter of a triangle is not the geometric center that we considered
in the previous section.
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A
N\

Figure 2.8. Three altitudes of a triangle

Exercises

2.2.1. Let x = (‘{,—%,O), y = ( i 1), z = (1,1,1). Compute (x,x),
l

1
2
(@,9), (v, 2), ||, [yl, |2], Oa,ys Oyoers Ozpe

2.2.2. Show that the points z = (2,-1,3,1), y = (4,2,1,4), z = (1,3,6,1)
form the vertices of a triangle in R* with two equal angles.

2.2.3. Explain why for all z € R", 2 = 377_, (z,¢;)e;.
2.2.4. Prove the inner product properties.

2.2.5. Use the inner product properties and the definition of the modulus in
terms of the inner product to prove the modulus properties.

2.2.6. In the text, the modulus is defined in terms of the inner product. Prove
that this can be turned around by showing that for every x,y € R™,

lz +y]> — |z —yf?

<$7y> = 4

2.2.7. Prove the full triangle inequality: for every x,y € R",
[zl =Tyl < e £yl <]+ |y|.

Do not do this by writing three more variants of the proof of the triangle in-
equality, but by substituting suitably into the basic triangle inequality, which
is already proved.

2.2.8. Let © = (x1,...,2,) € R™ Prove the size bounds: for every j €

{1,...,n},
n
;] < Ja] < Jail.
i=1

(One approach is to start by noting that z; = (x,e;) and recalling equa-
tion (2.1).) When can each “<” be an “="7
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2.2.9. Prove the distance properties.

2.2.10. Working in R?, depict the nonzero vectors x and y as arrows from the
origin and depict x — y as an arrow from the endpoint of y to the endpoint
of z. Let 0 denote the angle (in the usual geometric sense) between z and y.
Use the law of cosines to show that

',I:’
cosf = <7y>’
|z ly|

so that our notion of angle agrees with the geometric one, at least in R2.
2.2.11. Prove that for every nonzero z € R™, 3" | cos? 0, ¢, = 1.

2.2.12. Prove that two nonzero vectors z, y are orthogonal if and only if
|z +y? = [z” + [yl

2.2.13. Use vectors in R? to show that the diagonals of a parallelogram are
perpendicular if and only if the parallelogram is a rhombus.

2.2.14. Use vectors to show that every angle inscribed in a semicircle is right.

2.2.15. Let x and y be vectors, with x nonzero. Define the parallel component
of y along x and the normal component of y to = to be

(z,y)
|22

Y(ll) = and  Y(ia) =Y = Y(la)-
(a) Show that y = y(|jz) +¥(Lx); show that y(| 4 is a scalar multiple of z; show
that y(1,) is orthogonal to x. Show that the decomposition of y as a sum of
vectors parallel and perpendicular to x is unique. Draw an illustration.
(b) Show that
Wl1* = lyqo))* + v -

What theorem from classical geometry does this encompass?
(¢) Explain why it follows from (b) that

[y | < 1yl

with equality if and only if y is a scalar multiple of . Use this inequality to
give another proof of the Cauchy—Schwarz inequality. This argument gives the
geometric content of Cauchy—Schwarz: the parallel component of one vector
along another is at most as long as the original vector.

(d) The proof of the Cauchy—Schwarz inequality in part (c) refers to parts
(a) and (b), part (a) refers to orthogonality, orthogonality refers to an angle,
and as explained in the text, the fact that angles make sense depends on the
Cauchy—Schwarz inequality. And so the proof in part (¢) apparently relies on
circular logic. Explain why the logic is in fact not circular.
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2.2.16. Given nonzero vectors xi,xs,...,Z, in R™ the Gram—Schmidt
process is to set

T = T3 — (T2)(Ja))

ay = x5 — (23)(lay) — (£3) (1))

Ty =T = (Tn)(2,_) =~ (@) (lap)-

(a) What is the result of applying the Gram—Schmidt process to the vectors
x1 = (1,0,0), 2 = (1,1,0), and x5 = (1,1,1)7

(b) Returning to the general case, show that z,...,a] are pairwise or-
thogonal and that each 33; has the form

/
T; = a;171 + Qj2T2 —+ -4 Qjj—1%Tj—1 + Tj.

Thus every linear combination of the new {z’} is also a linear combination
of the original {x;}. The converse is also true and will be shown in Exer-
cise 3.3.13.

2.3 Analysis: Continuous Mappings

A mapping from R"™ to R™ is some rule that assigns to each point z in R” a
point in R™. Generally, mappings will be denoted by letters such as f, g, h.
When m = 1, we usually say function instead of mapping.

For example, the mapping

f:R? —R?

defined by
f(xvy) = (‘Tz - y2a 2xy)

takes the real and imaginary parts of a complex number z = x+1iy and returns
the real and imaginary parts of 2. By the nature of multiplication of complex
numbers, this means that each output point has modulus equal to the square
of the modulus of the input point and has angle equal to twice the angle of
the input point. Make sure that you see how this is shown in Figure 2.9.
Mappings expressed by formulas may be undefined at certain points (e.g.,
f(@) = 1/|x| is undefined at 0), so we need to restrict their domains. For
a given dimension n, a given set A C R™, and a second dimension m,
let M(A,R™) denote the set of all mappings f: A — R™. This set forms a
vector space over R (whose points are functions) under the operations

+ M(A,R™) x M(A,R™) — M(A,R™),
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1 -1 1

Figure 2.9. The complex square as a mapping from R? to R?

defined by
(f+9)(z) = f(z) + g(z) forallx € A,
and
R x M(A,R™) — M(A,R™),
defined by
(@-f)(x)=a- f(z) forall xzec A
As usual, “+” and “” are overloaded: on the left they denote operations

on M(A,R™), while on the right they denote the operations on R™ de-
fined in Section 2.1. Also as usual, the “” is generally omitted. The origin
in M(A,R™) is the zero mapping, 0: A — R™ defined by

0(z) =0, forallze A

For example, to verify that M (A, R™) satisfies (A1), consider any mappings
fyg,h € M(A,R™). For every x € A,

(f+9)+h)(z)=(f+9g)(x)+ h(x) by definition of “+” in M(A,R™)
(f(z) + g(x)) + h(z) by definition of “+” in M(A,R™)
= f(z) + (g(z) + h(z)) by associativity of “+” in R™

= f(z)+ (g +h)(x) by definition of “+” in M(A,R™)
=(f+(g+h))(x) by definition of “+” in M(A,R™).

Since z is arbitrary, (f +g) +h = f+ (g + h).

Let A be a subset of R™. A sequence in A is an infinite list of vectors
{z1,29,235,...} in A, often written {z,}. (The symbol n is already in use,
so its Greek counterpart y—pronounced nu—is used as the index-counter.)
Since a vector has n entries, each vector x, in the sequence takes the form
(xl,,,, ‘e ,xn,y).

Definition 2.3.1 (Null Sequence). The sequence {x,} in R™ is null if for
every € > 0 there exists some vy such that
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if v > v then |z,] < e.

That is, a sequence is null if for every e > 0, all but finitely many terms of
the sequence lie within distance € of 0y, .

Quickly from the definition, if {z,} is a null sequence in R™ and {y, } is a
sequence in R™ such that |y, | < |z, | for all v then also {y, } is null.

Let {z,} and {y, } be null sequences in R", and let ¢ be a scalar. Then the
sequence {z, + y, } is null because |z, + y,| < |x,| + |y, | for each v, and the
sequence {cz,} is null because |cz,| = |c||z,| for each v. These two results
show that the set of null sequences in R™ forms a vector space.

For every vector € R™ the absolute value |z| is a nonnegative scalar, and
so no further effect is produced by taking the scalar absolute value in turn,

||x||:|$|7 r € R",

and so a vector sequence {z,} is null if and only if the scalar sequence {|z, |}
is null.

Lemma 2.3.2 (Componentwise nature of nullness). The vector sequence
{(x1,0,---s2nw)} is null if and only if each of its component scalar sequences

{z;n} (G €A{1,...,n}) is null.

Proof. By the observation just before the lemma, it suffices to show that
{{(z1,0,...,2n,)|} is null if and only if each {|z; .|} is null. The size bounds
give for every j € {1,...,n} and every v,

n
|xj71/ < |(x1,w cee axn,v” < Z |4,0]
i=1

If {|(x1,,...,%n,)|} is null then by the first inequality, so is each {|z;,|}. On
the other hand, if each {|z;,|} is null then so is {} ., |z; .|}, and thus by
the second inequality, {|(z1,,,...,Zn,)|} is null as well. O

We define the convergence of vector sequences in terms of null sequences.

Definition 2.3.3 (Sequence convergence, sequence limit). Let A be a
subset of R™. Consider a sequence {x,} in A and a point p € R™. The sequence
{z,} converges to p (or has limit p), written {x,} — p, if the sequence
{x,—p} is null. When the limit p is a point of A, the sequence {x,} converges
in A.

If a sequence {x, } converges to p and also converges to p’ then the constant
sequence {p’ —p} is the difference of the null sequences {x, —p} and {x, —p'},
hence null, forcing p’ = p. Thus a sequence cannot converge to two distinct
values.

Many texts define convergence directly rather than by reference to nullness,
the key part of the definition being
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if v > vy then |z, — p| < e.

In particular, a null sequence is a sequence that converges to 0,,. However, in
contrast to the situation for null sequences, for p # 0,, it is emphatically false
that if {|x,|} converges to |p| then necessarily {z,} converges to p or even
converges at all. Also, for every nonzero p, the sequences that converge to p
do not form a vector space.

Vector versions of the sum rule and the constant multiple rule for con-
vergent sequences follow immediately from the vector space properties of null
sequences:

Proposition 2.3.4 (Linearity of convergence). Let {z,} be a sequence
in R™ converging to p, let {y,} be a sequence in R™ converging to q, and let ¢
be a scalar. Then the sequence {x, +y,} converges to p+ q, and the sequence
{cx,} converges to cp.

Similarly, since a sequence {z,} converges to p if and only if {z, — p}
is null, we have the following corollary in consequence of the componentwise
nature of nullness (Exercise 2.3.5):

Proposition 2.3.5 (Componentwise nature of convergence). The vec-

tor sequence {(x1,u,...,%n,)} converges to the vector (p1,...,pn) if and only
if each component scalar sequence {z;,} (j = 1,...,n) converges to the
scalar pj.

Continuity, like convergence, is typographically indistinguishable in R
and R™.

Definition 2.3.6 (Continuity). Let A be a subset of R™, let f : A — R™
be a mapping, and let p be a point of A. Then f is continuous at p if for
every sequence {x,} in A converging to p, the sequence {f(x,)} converges
to f(p). The mapping f is continuous on A (or just continuous when A is
clearly established) if it is continuous at each point p € A.

For example, the modulus function
| |:R* —R

is continuous on R™. To see this, consider any point p € R” and consider any
sequence {z,} in R™ that converges to p. We need to show that the sequence
{|z,|} in R converges to |p|. But by the full triangle inequality,

2w | = Ipl] < |2 = pl.

Since the right side is the vth term of a null sequence, so is the left, giving
the result.

For another example, let a € R™ be any fixed vector and consider the
function defined by taking the inner product of this vector with other vectors,
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T:R" — R, T(x) = (a,z).

This function is also continuous on R™. To see this, again consider any p € R"
and any sequence {z,} in R™ converging to p. Then the definition of T, the
bilinearity of the inner product, and the Cauchy—Schwarz inequality combine
to show that

T(xy) = T(p)| = [{a, z,) = (a,p)| = [{a, 2, = p)| < |a] [z, —p|.

Since |a| is a constant, the right side is the vth term of a null sequence,
whence so is the left, and the proof is complete. We will refer to this example
in Section 3.1. Also, note that as a special case of this example we may take
any j € {1,...,n} and set the fixed vector a to ej, showing that the jth
coordinate function map,

. n .
Wj.R —)R, 7Tj(.’E1,...7(L'n)—ZL'j,
is continuous.

Proposition 2.3.7 (Vector space properties of continuity). Let A be a
subset of R™, let f,g: A — R™ be continuous mappings, and let ¢ € R. Then
the sum and the scalar multiple mappings

f+g, cf : A—R"

are continuous. Thus the set of continuous mappings from A to R™ forms a
vector subspace of M(A,R™).

The vector space properties of continuity follow immediately from the
linearity of convergence and from the definition of continuity. Another conse-
quence of the definition of continuity is as follows.

Proposition 2.3.8 (Persistence of continuity under composition). Let
A be a subset of R, and let f : A — R™ be a continuous mapping. Let B
be a superset of f(A) in R™, and let g : B — R be a continuous mapping.
Then the composition mapping

go f: A— Rz
1S continuous.

The proof is Exercise 2.3.7.

Let A be a subset of R". Every mapping f : A — R™ decomposes as m
functions f1, ..., fm, with each f; : A — R, by the formula

f(ﬂ?) - (fl(x)7 .- afm(x))

For example, if f(x,y) = (2% —y?, 2xy) then fi(x,y) = 22 —y? and fo(z,y) =
2zy. The decomposition of f can also be written
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m

fl@) =" fil)es,

i=1

or equivalently, the functions f; are defined by the condition
filx) = f(z); fori=1,...,m.

Conversely, given m functions fi,..., f;, from A to R, each of the preceding
three displayed formulas assembles a mapping f : A — R™. Thus, each map-
ping f determines and is determined by its component functions fi,..., fn,.
Conveniently, to check continuity of the vector-valued mapping f we only need
to check its scalar-valued component functions.

Theorem 2.3.9 (Componentwise nature of continuity). Let A C R”,
let f: A — R™ have component functions f1,..., fm, and let p be a point
in A. Then

f is continuous at p <= each f; is continuous at p.

The componentwise nature of continuity follows from the componentwise
nature of convergence and is left as Exercise 2.3.6.

Let A be a subset of R”, let f and g be continuous functions from A to R,
and let ¢ € R. Then the familiar sum rule, constant multiple rule, product
rule, and quotient rule for continuous functions hold. That is, the sum f + g,
the constant multiple cf, the product fg, and the quotient f/g (at points
p € A such that g(p) # 0) are again continuous. The first two of these facts
are special cases of the vector space properties of continuity. The proofs of
the other two are typographically identical to their one-variable counterparts.
With the various continuity results obtained thus far in hand, it is clear that
a function such as

(ST -2+ 2
f:R® —R, f(xvyvz):sm( Zhy + )

exy+z

is continuous. The continuity of such functions, and of mappings with such
functions as their components, will go without comment from now on.

However, the continuity of functions of n variables also has new, subtle
features when n > 1. In R, a sequence {z,} can approach the point p in only
two essential ways: from the left and from the right. But in R™ for n > 2, {z, }
can approach p along a line from infinitely many directions, or not approach
along a line at all, and so the convergence of {f(z,)} can be trickier. For
example, consider the function f : R?> — R defined by

2xy .
—— if 0
f(x,y) — 1‘2 + y2 1 (a:,y) 7£ ’

b if (x,y) = 0.
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Can the constant b be specified to make f continuous at 07
It can’t. Take a sequence {(x,,y,)} approaching 0 along the line y = mx
of slope m. For every point (z,,y,) of this sequence,

2x,mx, 2mx12, 2m
F@vye) = flay,may) = 22+ m2x2  (1+m2)a2  1+m?’

Thus, as the sequence of inputs {(z,,y,)} approaches 0 along the line of
slope m, the corresponding sequence of outputs {f(z,,y,)} holds steady
at 2m/(1 +m?), and so f(0) needs to take this value for continuity. Taking
input sequences {(z,,¥,)} that approach 0 along lines of different slope shows
that f(0) needs to take different values for continuity, and hence f cannot be
made continuous at 0. The graph of f away from 0 is a sort of spiral staircase,
and no height over 0 is compatible with all the stairs. (See Figure 2.10. The
figure displays only the portion of the graph for slopes between 0 and 1 in the
input plane.) The reader who wants to work a virtually identical example can
replace the formula 2zy/(z? + y?) in f by (22 — y?)/(2* + y?) and run the
same procedure as in this paragraph.

Figure 2.10. A spiral staircase

The previous example was actually fairly simple in that we only needed to
study f(z,y) as (x,y) approached 0 along straight lines. Consider the function
g : R? — R defined by

7y
g(z,y) = ¢ z* +y?
b if (z,y) = 0.

For a nonzero slope m, take a sequence {(z,,y,)} approaching 0 along the
line y = mz. Compute that for each point of this sequence,

3
mx
g(xanV) = g(x”’mx”) - SL‘,% “1‘77;23?12, - .T,% +m2’

mz,




48 2 Euclidean Space

This quantity tends to 0 as x, goes to 0. That is, as the sequence of inputs
{(z,y,)} approaches 0 along the line of slope m, the corresponding sequence
of outputs {g(z,,y,)} approaches 0, and so g(0) needs to take the value 0
for continuity. Since g is 0 at the nonzero points of either axis in the (x,y)-
plane, this requirement extends to the cases that {(z,, y,)} approaches 0 along
a horizontal or vertical line. However, next consider a sequence {(x,,v,)}
approaching 0 along the parabola y = 2. For each point of this sequence,
x 1

Q(Iuyyu) = Q(ID;IZ) - m - 5
Thus, as the sequence of inputs {(z,,y,)} approaches 0 along the parabola,
the corresponding sequence of outputs {g(x,,y,)} holds steady at 1/2, and so
g(0) needs to be 1/2 for continuity as well. Thus g cannot be made continuous
at 0, even though approaching 0 only along lines suggests that it can. The
reader who wants to work a virtually identical example can replace the formula
2%y /(x* +9?) in g by 23y/(2% + »?) and run the same procedure as in this
paragraph but using the curve y = 23.

Thus, given a function f : R? — R, letting {(z,,v,)} approach 0 along
lines can disprove continuity at 0, but it can only suggest continuity at 0, not
prove it. To prove continuity, the size bounds may be helpful. For example,
let

z° .
b if (x,y) =0.

Can b be specified to make h continuous at 07 The estimate |z| < |(z,y)| gives
for every (z,y) # 0,

@l P @)l

A e A v

so as a sequence {(x,,y,)} of nonzero input vectors converges to 0, the cor-
responding sequence of outputs {h(x,,y,)} is squeezed to 0 in absolute value
and hence converges to 0. Setting b = 0 makes h continuous at 0. The reader
who wants to work a virtually identical example can replace the formula
23/(z% + y?) in h by 2%y?/(2* + y?) and run the same procedure as in this
paragraph but applying the size bounds to vectors (22,1, ).

Returning to the spiral staircase example,

22y .
5 . 9 f ) 07
fay) =@+ @9) #

b if (z,y) =0,
the size bounds show that that for every (z,y) # 0,

el 2wy
0@l =1 )E < Jwyr = >
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The display tells us only that as a sequence of inputs {(x,,y,)} approaches 0,

the sequence of outputs {f(x,,y,)} might converge to some limit between —2

and 2. The outputs needn’t converge to 0 (or converge at all), but according

to this diagnostic they possibly could. Thus the size bounds tell us only that

f could be discontinuous at (0,0), but they give no conclusive information.
In sum, these examples illustrate three ideas.

e The straight line test can prove that a limit does not exist, or it can
determine the only candidate for the value of the limit, but it cannot
prove that the candidate value is the limit.

e When the straight line test determines a candidate value of the limit,
approaching along a curve can further support the candidate, or it can
prove that the limit does not exist by determining a different candidate as
well.

e The size bounds can prove that a limit does exist, but they can only suggest
that a limit does not exist.

The next proposition is a handy encoding of an intuitively plausible prop-
erty of continuous mappings. The result is so natural that it often is tacitly
taken for granted, but it is worth stating and proving carefully.

Proposition 2.3.10 (Persistence of inequality). Let A be a subset of R"
and let f: A — R™ be a continuous mapping. Let p be a point of A, let b be
a point of R™, and suppose that f(p) #b. Then there exists some € > 0 such
that

for all x € A such that |x —p| <e, f(x) #Db.

Proof. Assume that the displayed statement in the proposition fails for ev-
ery € > 0. Then in particular, it fails for e = 1/v for v =1,2,3,.... So there
is a sequence {z,} in A such that

|z, —p| < 1/v and f(x,)=b, v=1,2,3,....

Since f is continuous at p, this condition shows that f(p) = b. But in fact
f(p) # b, and so our assumption that the displayed statement in the propo-
sition fails for every € > 0 leads to a contradiction. Therefore the statement
holds for some € > 0, as desired. ]

Exercises

2.3.1. For A C R”, partially verify that M(A,R™) is a vector space over R
by showing that it satisfies vector space axioms (A4) and (D1).

2.3.2. Define multiplication % : M(A,R)xM(A,R) — M(A,R). Is M(A,R)
a field with “+” from the section and this multiplication? Does it have a sub-
space that is a field?
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2.3.3. For A C R™ and m € Z™T define a subspace of the space of mappings
from A to R™,

C(A,R™) ={f e M(A,R™): fis continuous on A}.
Briefly explain how this section has shown that C(A,R™) is a vector space.

2.3.4. Define an inner product and a modulus on C([0,1],R) by

(f.9) = / fgtyae, |f] = V.

Do the inner product properties (IP1), (IP2), and (IP3) (see Proposition 2.2.2)
hold for this inner product on C([0,1],R)? How much of the material from
Section 2.2 on the inner product and modulus in R” carries over to C([0, 1], R)?
Express the Cauchy—Schwarz inequality as a relation between integrals.

2.3.5. Use the definition of convergence and the componentwise nature of
nullness to prove the componentwise nature of convergence. (The argument is
short.)

2.3.6. Use the definition of continuity and the componentwise nature of con-
vergence to prove the componentwise nature of continuity.

2.3.7. Prove the persistence of continuity under composition.
2.3.8. Define f : Q — R by the rule

1 ifa?<2
f(x)_{o if 22 > 2.

Is f continuous?

2.3.9. Which of the following functions on R? can be defined continuously
at 07

Z'4 _ y4 xQ B y3
- g f y 0, - < f , 07
f(z,y) =< (22 4 y2)? if (z,y) # g@y) = 212 if (x,y)
b if (2,y) = 0, b if (2,y) = 0,
x3 _ y3 ny
" f
haey) =3 2 +y2 (@.9) 70, k(z,y) =4 22 +40 (z,9) 70,
b if (,y) =0, b if (,y) = 0.

2.3.10. Let f(z,y) = g(zy), where g : R — R is continuous. Is f continuous?

2.3.11. Let f,g € M(R™,R) be such that f + g and fg are continuous. Are
f and g necessarily continuous?
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2.4 Topology: Compact Sets and Continuity

The extreme value theorem from one-variable calculus states:

Let I be a nonempty closed and bounded interval in R, and let f :
I — R be a continuous function. Then f takes a minimum value
and a mazimum value on I.

This section generalizes the theorem from scalars to vectors. That is, we want
a result that if A is a set in R™ with certain properties, and if f: A — R™
is a continuous mapping, then the output set f(A) will also have certain
properties. The questions are, for what sorts of properties do such statements
hold, and when they hold, how do we prove them?

The one-variable theorem hypothesizes two data, the nonempty closed and
bounded interval I and the continuous function f. Each of these is described
in its own terms—I takes the readily recognizable but static form [a, b] where
a < b, while the continuity of f is a dynamic assertion about convergence
of sequences. Because the two data have differently phrased descriptions, a
proof of the extreme value theorem doesn’t suggest itself immediately: no
ideas at hand bear obviously on all the given information. Thus the work of
this section is not only to define the sets to appear in the pending theorem, but
also to describe them in terms of sequences, compatibly with the sequential
description of continuous mappings. The theorem itself will then be easy to
prove. Accordingly, most of the section will be spent describing sets in two
ways—in terms that are easy to recognize, and in sequential language that
dovetails with continuity.

We begin with a little machinery to quantify the intuitive notion of near-
ness.

Definition 2.4.1 (e-ball). For every point p € R™ and every positive real
number € > 0, the e-ball centered at p is the set

B(p,e) ={x €eR": |z —p| < e}.
(See Figure 2.11.)

~_ _-

Figure 2.11. Balls in various dimensions

With e-balls it is easy to describe the points that are approached by a
set A.
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Definition 2.4.2 (Limit point). Let A be a subset of R™, and let p be a
point of R™. The point p is a limit point of A if every e-ball centered at p
contains some point x € A such that x # p.

A limit point of A need not belong to A (Exercise 2.4.2). On the other
hand, a point in A need not be a limit point of A (Exercise 2.4.2 again); such
a point is called an isolated point of A. Equivalently, p is an isolated point
of Aif p € A and there exists some € > 0 such that B(p,e) N A = {p}. The
next lemma justifies the nomenclature of the previous definition: limit points
of A are precisely the (nontrivial) limits of sequences in A.

Lemma 2.4.3 (Sequential characterization of limit points). Let A be
a subset of R™, and let p be a point of R™. Then p is the limit of a sequence
{z,} in A with each x, # p if and only if p is a limit point of A.

Proof. (=) If p is the limit of a sequence {z,} in A with each z, # p then
every e-ball about p contains an z,, (in fact, infinitely many), so p is a limit
point of A.

( <= ) Conversely, if p is a limit point of A then B(p,1/2) contains some
x1 € A, x1 # p. Let e9 = |z1 — p|/2. The ball B(p,e3) contains some x4 € A,

x9 # p. Let e3 = |xo — p|/2 and continue defining a sequence {z,} in this
fashion with |z, — p| < 1/2¥ for all v. This sequence converges to p, and
x, # p for each x,. O

The lemma shows that Definition 2.4.2 is more powerful than it appears—
every e-ball centered at a limit point of A contains not only one but infinitely
many points of A.

Definition 2.4.4 (Closed set). A subset A of R™ is closed if it contains
all of its limit points.

For example, the z;-axis is closed as a subset of R™, because every point
off the axis is surrounded by a ball that misses the axis—that is, every point
off the axis is not a limit point of the axis, i.e., the axis is not missing any
of its limit points, i.e., the axis contains all of its limit points. The interval
(0,1) is not closed because it does not contain the limit points at its ends.
These examples illustrate the fact that with a little practice it becomes easy
to recognize quickly whether a set is closed. Loosely speaking, a set is closed
when it contains all the points that it seems to want to contain.

Proposition 2.4.5 (Sequential characterization of closed sets). Let A
be a subset of R™. Then A is closed if and only if every sequence in A that
converges in R™ in fact converges in A.

Proof. ( = ) Suppose that A is closed, and let {z,} be a sequence in A
converging in R™ to p. If z, = p for some v then p € A because x, € A; and
if x,, # p for all v then p is a limit point of A by “ = ” of Lemma 2.4.3, and
so p € A because A is closed.
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( <) Conversely, suppose that every convergent sequence in A has its
limit in A. Then all limit points of A are in A by “ <= " of Lemma 2.4.3,
and so A is closed. O

The proposition equates an easily recognizable condition that we can un-
derstand intuitively (a set being closed) with a sequential characterization
that we can use in further arguments. Note that the sequential characteriza-
tion of a closed set A refers not only to A but also to the ambient space R™
in which A lies. We will return to this point later in this section.

Closed sets do not necessarily have good properties under continuous map-
pings. So next we describe another class of sets, the bounded sets. Bounded-
ness is again an easily recognizable condition that also has a characterization
in terms of sequences. The sequential characterization will turn out to be
complementary to the sequential characterization of closed sets, foreshadow-
ing that the properties of being closed and bounded will work well together.

Definition 2.4.6 (Bounded set). A set A in R™ is bounded if A C
B(0, R) for some R > 0.

Thus a bounded set is enclosed in some finite corral centered at the origin,
possibly a very big one. For example, every ball B(p,€), not necessarily cen-
tered at the origin, is bounded, by a nice application of the triangle inequality
(Exercise 2.4.5). On the other hand, the Archimedean property of the real
number system says that Z is an unbounded subset of R. The size bounds
show that a subset of R™ is bounded if and only if the jth coordinates of its
points form a bounded subset of R for each j € {1,...,n}. The geometric
content of this statement is that a set sits inside a ball centered at the origin
if and only if it sits inside a box centered at the origin.

Blurring the distinction between a sequence and the set of its elements
allows the definition of boundedness to apply to sequences. That is, a sequence
{z,} is bounded if there is some R > 0 such that |z,| < R for all v € Z*. The
proof of the next fact in R™ is symbol-for-symbol the same as in R (or in C),
o it is only sketched.

Proposition 2.4.7 (Convergence implies boundedness). If the sequence
{z,} converges in R™ then it is bounded.

Proof. Let {x,} converge to p. Then there exists a starting index v such that
x, € B(p,1) for all v > 1. Consider any real number R such that

R > max{|z1],..., |z, |p| + 1}

Then clearly z, € B(0, R) for v = 1,...,1p, and the triangle inequality shows
that also z,, € B(0, R) for all v > vy. Thus {x,} C B(0, R) as a set. 0

Definition 2.4.8 (Subsequence). A subsequence of the sequence {z,} is
a sequence consisting of some (possibly all) of the original terms, in ascending
order of indices.
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Since a subsequence of {x,} consists of terms x,, only for some values of v,
it is often written {x,, }, where now k is the index variable. For example, given
the sequence

{1, 22, 23,24, 5,...},

a subsequence is
{$2,$3,$5,x77$11, e }7

with 1y =2, vy = 3, v3 = 5, and generally v, = the kth prime.

Lemma 2.4.9 (Persistence of convergence). Let {z,} converge to p.
Then every subsequence {x,,} also converges to p.

Proof. The hypothesis that {z,} converges to p means that for every given
€ > 0, only finitely many sequence-terms x,, lie outside the ball B(p,¢). Con-
sequently, only finitely many subsequence-terms z,, lie outside B(p, €), which
is to say that {x,, } converges to p. a

The sequence property that characterizes bounded sets is called the
Bolzano—Weierstrass property. Once it is proved in R, the result follows
in R™ by arguing one component at a time.

Theorem 2.4.10 (Bolzano—Weierstrass property in R). Let A be a
bounded subset of R. Then every sequence in A has a convergent subsequence.

Proof. Let {x,} be a sequence in A. Call a term x, of the sequence a max-
point if it is at least as big as all later terms, i.e., z, > x, for all © > v.
(For visual intuition, draw a graph plotting x, as a function of v, with line
segments connecting consecutive points. A max-point is a peak of the graph at
least as high as all points to its right.) If there are infinitely many max-points
in {z,} then these form a decreasing sequence. If there are only finitely many
max-points then {x,} has an increasing sequence starting after the last max-
point—this follows almost immediately from the definition of max-point. In
either case, {z, } has a monotonic subsequence that, being bounded, converges
because the real number system is complete. ]

Theorem 2.4.11 (Bolzano—Weierstrass property in R™: sequential
characterization of bounded sets). Let A be a subset of R™. Then A
is bounded if and only if every sequence in A has a subsequence that converges
i R™.

Proof. ( = ) Suppose that A is bounded. Consider any sequence {z,}
in A, written as {(z1,,...,%n,)}. The real sequence {z1,} takes values in
a bounded subset of R and thus has a convergent subsequence, {z1,, }. The
subscripts are getting out of hand, so keep only the vith terms of the orig-
inal sequence and relabel it. In other words, we may as well assume that
the sequence of first components, {x1,}, converges. The real sequence of
second components, {z2,}, in turn has a convergent subsequence, and by
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Lemma 2.4.9 the corresponding subsequence of first components, {z1,}, con-
verges too. Relabeling again, we may assume that {z;,} and {z3,} both
converge. Continuing in this fashion n — 2 more times exhibits a subsequence
of {z,} that converges at each component.

( <= ) Conversely, suppose that A is not bounded. Then there is a se-
quence {z,} in A with |z, | > v for all v. This sequence has no bounded subse-
quence, and hence it has no convergent subsequence by Proposition 2.4.7. O

Note how the sequential characterizations in Proposition 2.4.5 and in the
Bolzano—Weierstrass property complement each other. The proposition char-
acterizes every closed set in R™ by the fact that if a sequence converges in the
ambient space then it converges in the set. The Bolzano—Weierstrass property
characterizes every bounded set in R™ by the fact that every sequence in the
set has a subsequence that converges in the ambient space but not necessarily
in the set. Both the sequential characterization of a closed set and the sequen-
tial characterization of a bounded set refer to the ambient space R™ in which
the set lies. We will return to this point once more in this section.

Definition 2.4.12 (Compact set). A subset K of R™ is compact if it is
closed and bounded.

Since the static notions of closed and bounded are reasonably intuitive, we
can usually recognize compact sets on sight. But it is not obvious from how
compact sets look that they are related to continuity. So our program now
has two steps: first, combine Proposition 2.4.5 and the Bolzano—Weierstrass
property to characterize compact sets in terms of sequences, and second, use
the characterization to prove that compactness is preserved by continuous
mappings.

Theorem 2.4.13 (Sequential characterization of compact sets). Let
K be a subset of R™. Then K is compact if and only if every sequence in K
has a subsequence that converges in K.

Proof. ( = ) We show that the sequential characterizations of closed and
bounded sets together imply the claimed sequential characterization of com-
pact sets. Suppose that K is compact and {x,} is a sequence in K. Then K is
bounded, so by “ =" of the Bolzano-Weierstrass property, {x, } has a con-
vergent subsequence. But K is also closed, so by “ =" of Proposition 2.4.5,
this subsequence converges in K.

( <) Conversely, we show that the claimed sequential characterization of
compact sets subsumes the sequential characterizations of closed and bounded
sets. Thus, suppose that every sequence in K has a subsequence that converges
in K. Then in particular, every sequence in K that converges in R™ has a sub-
sequence that converges in K. By Lemma 2.4.9 the limit of the sequence is
the limit of the subsequence, so the sequence converges in K. That is, every
sequence in K that converges in R™ converges in K, and hence K is closed
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by “ <=7 of Proposition 2.4.5. Also in consequence of the claimed sequen-
tial property of compact sets, every sequence in K has a subsequence that
converges in R™. Thus K is bounded by “ <= " of the Bolzano—Weierstrass
Property. (]

By contrast to the sequential characterizations of a closed set and of a
bounded set, the sequential characterization of a compact set K makes no
reference to the ambient space R™ in which K lies. A set’s property of being
compact is innate in a way that a set’s property of being closed or of being
bounded is not.

The next theorem is the main result of this section. Now that all of the
objects involved are described in the common language of sequences, its proof
is natural.

Theorem 2.4.14 (The continuous image of a compact set is com-
pact). Let K be a compact subset of R™ and let f : K — R™ be continuous.
Then f(K), the image set of K under f, is a compact subset of R™.

Proof. Let {y,} be any sequence in f(K); by “ <=7 of Theorem 2.4.13, it
suffices to exhibit a subsequence converging in f(K). Each y, has the form
f(z,), and this defines a sequence {z,} in K. By “ =" of Theorem 2.4.13,
since K is compact, {z, } necessarily has a subsequence {z,, } converging in K,
say to p. By the continuity of f at p, the sequence {f(z,, )} converges in f(K)
to f(p). Since {f(z,, )} is a subsequence of {y, }, the proof is complete. O

Again, the sets in Theorem 2.4.14 are defined with no direct reference to
sequences, but the theorem is proved entirely using sequences. The point is
that with the theorem proved, we can easily see that it applies in particular
contexts without having to think any longer about the sequences that were
used to prove it.

A corollary of Theorem 2.4.14 generalizes the theorem that was quoted to
begin the section:

Theorem 2.4.15 (Extreme value theorem). Let K be a nonempty com-
pact subset of R™ and let the function f : K — R be continuous. Then f
takes a minimum and a mazimum value on K.

Proof. By Theorem 2.4.14, f(K) is a compact subset of R. As a nonempty
bounded subset of R, f(K) has a greatest lower bound and a least upper
bound by the completeness of the real number system. Each of these bounds
is an isolated point or a limit point of f(K), since otherwise some e-ball about
it would be disjoint from f(K), giving rise to greater lower bounds or lesser
upper bounds of f(K). Because f(K) is also closed, it contains its limit points,
so in particular it contains its greatest lower bound and its least upper bound.
This means precisely that f takes a minimum and a maximum value on K.
O
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Even when n = 1, Theorem 2.4.15 generalizes the extreme value theorem
from the beginning of the section. In the theorem here, K can be a finite union
of closed and bounded intervals in R rather than only one interval, or K can
be a more complicated set, provided only that it is compact.

A topological property of sets is a property that is preserved under continu-
ity. Theorem 2.4.14 says that compactness is a topological property. Neither
the property of being closed nor the property of being bounded is in itself
topological. That is, the continuous image of a closed set need not be closed,
and the continuous image of a bounded set need not be bounded; for that
matter, the continuous image of a closed set need not be bounded, and the
continuous image of a bounded set need not be closed (Exercise 2.4.8).

The nomenclature continuous image in the slogan-title of Theorem 2.4.14
and in the previous paragraph is, strictly speaking, inaccurate: the image of
a mapping is a set, and the notion of a set being continuous doesn’t even
make sense according to our grammar. As stated correctly in the body of the
theorem, continuous image is short for image under a continuous mapping.

The property that students often have in mind when they call a set continu-
ous is in fact called connectedness. Loosely, a set is connected if it has only one
piece, so that a better approximating word from everyday language is contigu-
ous. To define connectedness accurately, we would have to use methodology
exactly opposite that of this section: rather than relate sets to continuous
mappings by characterizing the sets in terms of sequences, the idea is to turn
the whole business around and characterize continuous mappings in terms of
sets, specifically in terms of open balls. However, the process of doing so, and
then characterizing compact sets in terms of open balls as well, is trickier
than characterizing sets in terms of sequences; and so we omit it because we
do not need connectedness. Indeed, the remark after Theorem 2.4.15 points
out that connectedness is unnecessary even for the one-variable extreme value
theorem.

However, it deserves passing mention that connectedness is also a topologi-
cal property: again using language loosely, the continuous image of a connected
set is connected. This statement generalizes another theorem that underlies
one-variable calculus, the intermediate value theorem. For a notion related
to connectedness that is easily shown to be a topological property, see Exer-
cise 2.4.10.

The ideas of this section readily extend to broader environments. The first
generalization of Euclidean space is a metric space, a set with a well-behaved
distance function. Even more general is a topological space, a set with some
of its subsets designated as closed. Continuous functions, compact sets, and
connected sets can be defined meaningfully in these environments, and the
theorems remain the same: the continuous image of a compact set is compact,
and the continuous image of a connected set is connected.
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Exercises

2.4.1. Are the following subsets of R™ closed, bounded, compact?

a) B(0,1),

b) {(z, y) €ER?:y— 22 =0},

c){(azy,)ER?’ 2?2+ y?+22-1=0},

d) {x: f(z) = 0,,}, where f € M(R"™,R™) is continuous (this generalizes
d (C)),

(b) an
(e) Q™ where Q denotes the rational numbers,
(£) {(z1,. - wn) @y + - 2, > 0}

2.4.2. Give a set A C R™ and limit point b of A such that b ¢ A. Give a set
A C R™ and a point a € A such that a is not a limit point of A.

2.4.3. Let A be a closed subset of R"” and let f € M(A,R™). Define the

graph of f to be
G(f) ={(a, f(a)) : a € A},

a subset of R"™™, Show that if f is continuous then its graph is closed.

(
(
(
(

2.4.4. Prove the closed set properties: (1) the empty set () and the full space
R™ are closed subsets of R™; (2) every intersection of closed sets is closed; (3)
every finite union of closed sets is closed.

2.4.5. Prove that every ball B(p,¢) is bounded in R"™.

2.4.6. Show that A is a bounded subset of R™ if and only if for each j €
{1,...,n}, the jth coordinates of its points form a bounded subset of R.

2.4.7. Show by example that a closed set need not satisfy the sequential char-
acterization of bounded sets, and that a bounded set need not satisfy the
sequential characterization of closed sets.

2.4.8. Show by example that the continuous image of a closed set need not
be closed, that the continuous image of a closed set need not be bounded,
that the continuous image of a bounded set need not be closed, and that the
continuous image of a bounded set need not be bounded.

2.4.9. A subset A of R™ is called discrete if each of its points is isolated.
(Recall that the term isolated was defined in this section.) Show or take for
granted the (perhaps surprising at first) fact that every mapping whose do-
main is discrete must be continuous. Is discreteness a topological property?
That is, need the continuous image of a discrete set be discrete?

2.4.10. A subset A of R” is called path-connected if for every two points
x,y € A, there is a continuous mapping
v:[0,1] — A

such that «(0) = z and (1) = y. (This  is the path that connects z and y.)
Draw a picture to illustrate the definition of a path-connected set. Prove that
path-connectedness is a topological property.
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Linear Mappings and Their Matrices

The basic idea of differential calculus is to approximate smooth-but-curved
objects in the small by straight ones. To prepare for doing so, this chapter
studies the multivariable analogues of lines. With one variable, lines are easily
manipulated by explicit formulas (e.g., the point-slope form is y = mx + b),
but with many variables we want to use the language of mappings. Section 3.1
gives an algebraic description of “straight” mappings, the linear mappings,
proceeding from an intrinsic definition to a description in coordinates. Each
linear mapping is described by a box of numbers called a matriz, so Section 3.2
derives mechanical matrix manipulations corresponding to the natural ideas of
adding, scaling, and composing linear mappings. Section 3.3 discusses in ma-
trix terms the question whether a linear mapping has an inverse, i.e., whether
there is a second linear mapping such that each undoes the other’s effect. Sec-
tion 3.5 discusses the determinant, an elaborate matrix-to-scalar function that
extracts from a linear mapping a single number with remarkable properties:

e (Linear invertibility theorem) The mapping is invertible if and only if the
determinant is nonzero.

e An explicit formula for the inverse of an invertible linear mapping can be
written using the determinant (Section 3.7).

e The factor by which the mapping magnifies volume is the absolute value
of the determinant (Section 3.8).

e The mapping preserves or reverses orientation according to the sign of the
determinant (Section 3.9). Here orientation is an algebraic generalization of
clockwise versus counterclockwise in the plane and of right-handed versus
left-handed in space.

Finally, Section 3.10 defines the cross product (a vector-by-vector multiplica-
tion special to three dimensions) and uses it to derive formulas for lines and
planes in space.
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3.1 Linear Mappings

The simplest interesting mappings from R™ to R™ are those whose output is
proportional to their input, the linear mappings. Proportionality means that
a linear mapping should take a sum of inputs to the corresponding sum of
outputs,

Tx+y)=T(x)+T(y) foralz,yeR", (3.1)

and a linear mapping should take a scaled input to the correspondingly scaled
output,
T(az) =aT(xz) foralla € R, z € R™ (3.2)

(Here we use the symbol « because a will be used heavily in other ways during
this chapter.) More formally, the definition of a linear mapping is as follows.

Definition 3.1.1 (Linear mapping). The mapping T : R* — R™ s

linear if
k k
T (Z aia:i) = ZO@T(%‘)
i=1 i=1

for all positive integers k, all real numbers oy through oy, and all vectors x;
through xy,.

The reader may find this definition discomfiting. It does not say what form
a linear mapping takes, and this raises some immediate questions. How are we
to recognize linear mappings when we encounter them? Or are we supposed to
think about them without knowing what they look like? For that matter, are
there even any linear mappings to encounter? Another troublesome aspect of
Definition 3.1.1 is semantic: despite the geometric sound of the word linear,
the definition is in fact algebraic, describing how T behaves with respect to
the algebraic operations of vector addition and scalar multiplication. (Note
that on the left of the equality in the definition, the operations are set in R,
while on the right they are in R™.) So what is the connection between the
definition and actual lines? Finally, how exactly do conditions (3.1) and (3.2)
relate to the condition in the definition?

On the other hand, Definition 3.1.1 has the virtue of illustrating the prin-
ciple that to do mathematics effectively we should characterize our objects
rather than construct them. The characterizations are admittedly guided by
hindsight, but there is nothing wrong with that. Definition 3.1.1 says how
a linear mapping behaves. It says that whatever form linear mappings will
turn out to take, our reflex should be to think of them as mappings through
which we can pass sums and constants. (This idea explains why one of the
inner product properties is called bilinearity: the inner product is linear as a
function of either of its two vector variables when the other variable is held
fixed.) The definition of linearity tells us how to use linear mappings once we
know what they are, or even before we know what they are. Another virtue
of Definition 3.1.1 is that it is intrinsic, making no reference to coordinates.
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Some of the questions raised by Definition 3.1.1 have quick answers. The
connection between the definition and actual lines will quickly emerge from our
pending investigations. Also, an induction argument shows that (3.1) and (3.2)
are equivalent to the characterization in the definition, despite appearing
weaker (Exercise 3.1.1). Thus, to verify that a mapping is linear, we only
need to show that it satisfies the easier-to-check conditions (3.1) and (3.2);
but to derive properties of mappings that are known to be linear, we may want
to use the more powerful condition in the definition. As for finding linear map-
pings, the definition suggests a two-step strategy: first, derive the form that
a linear mapping necessarily takes in consequence of satisfying the definition;
and second, verify that the mappings of that form are indeed linear, i.e., show
that the necessary form of a linear mapping is also sufficient for a mapping
to be linear. We now turn to this.

The easiest case to study is linear mappings from R to R. Following the
strategy, first we assume that we have such a mapping and determine its form,
obtaining the mappings that are candidates to be linear. Second, we show
that all the candidates are indeed linear mappings. Thus suppose that some
mapping T : R — R is linear. The mapping determines a scalar, a = T'(1).
And then for every x € R,

T(z)=T(x-1) sincex-l==z
=2T(1) by (3.2)
=za by definition of a

=azr since multiplication in R commutes.

Thus, T is simply multiplication by a, where a = T'(1). But to reiterate, this
calculation does not show that any mapping is linear. Rather, it tells us what
form a mapping must necessarily have if it is assumed or known to be linear,
and therefore it gives us all candidate linear mappings. But we don’t yet know
that any linear mappings exist at all.

So the next thing to do is show that conversely, every mapping of the
derived form is indeed linear—the necessary condition is also sufficient. Fix
a real number a and define a mapping 7' : R — R by T'(z) = az. Then the
claim is that T is linear and T'(1) = a. Let’s partially show this by verifying
that T satisfies (3.2). For every @ € R and every x € R,

T(az) = aax by definition of T
= aax since multiplication in R commutes
=T (z) by definition of T,

as needed. You can check (3.1) similarly, and the calculation that T'(1) = a is
immediate. These last two paragraphs combine to prove the following result.

Proposition 3.1.2 (Description of linear mappings from scalars to
scalars). The linear mappings T : R — R are precisely the mappings
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T(z) = ax

where a € R. That is, each linear mapping T : R — R is multiplication by a
unique a € R and conversely.

The slogan encapsulating the formula T'(z) = az (read “T of = equals a
times z”) in the proposition is:

For scalar input and scalar output, linear OF is scalar TIMES.

That is, given = € R, the effect of a linear mapping T : R — R on x
is simply to multiply = by a scalar a € R associated with 7T". This may seem
trivial, but the issue is that at times our methodology will be to study a linear
mapping by its defining properties, i.e., the rules T(z +y) = T(x) + T (y) and
T(ax) = oT(x), while at other times we will profit from studying a linear
mapping computationally, i.e., as a mapping that simply multiplies its inputs
by something—Dby a scalar here, but by a vector or by a matrix later in this
section. The slogan displayed just above, as well as its two variants to follow
below, gives the connection between the two ways to think about a linear
mapping.

Also, the proposition explains the term linear: the graphs of linear map-
pings from R to R are lines through the origin. (Mappings f(x) = ax + b with
b # 0 are not linear according to our definition even though their graphs are
also lines. However, see Exercises 3.1.15 and 3.2.6.) For example, a typical
linear mapping from R to R is T'(z) = (1/2)z. Figure 3.1 shows two ways
of visualizing this mapping. The left half of the figure plots the domain axis
and the codomain axis orthogonally to each other in one plane, the familiar
way to graph a function. The right half of the figure plots the axes separately,
using the spacing of the dots to describe the mapping instead. The uniform
spacing along the rightmost axis depicts the fact that T(x) = 2T(1) for all
x € Z, and the spacing is half as big because the multiplying factor is 1/2.
Figures of this second sort can generalize up to three dimensions of input and
three dimensions of output, whereas figures of the first sort can display at
most three dimensions of input and output combined.

T(x)

Figure 3.1. A linear mapping from R to R

Next consider a linear mapping T : R™ — R. Recall the standard basis
vectors of R™,
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e1 =(1,0,...,0), ..., e,=(0,0,...,1).
Take the n real numbers
a1 =T(er), ..., an="T(en),

and define the vector a = (a1,...,a,) € R™". Every z € R™ can be written

n
x:(ml,...,xn)zg zie;, each z; € R.

i=1

(So here each z; is a scalar entry of the vector x, whereas in Definition 3.1.1,
each x; was itself a vector. The author does not know any graceful way to
avoid this notation collision, the systematic use of boldface or arrows to adorn
vector names being heavyhanded, and the systematic use of the Greek letter
& rather than its Roman counterpart z to denote scalars being alien. Since
mathematics involves finitely many symbols and infinitely many ideas, the
reader will in any case eventually need the skill of discerning meaning from
context, a skill that may as well start receiving practice now.) Returning to
the main discussion, since z = Z?:l z;e; and T is linear, Definition 3.1.1
shows that

T(x)=T (Z $i6i> = inT(ei) = Zwiai = (z,a) = (a, ).

Again, the only possibility for the linear mapping is multiplication by an

element a, where now a = (T'(e1),...,T(ey)) is a vector and the multiplication
is an inner product, but we don’t yet know that such a mapping is linear.
However, fix a vector a = (ay,...,a,) and define the corresponding mapping

T :R™ — R by T'(z) = (a,z). Then it is straightforward to show that indeed
T is linear and T'(e;) = a; for j = 1,...,n (Exercise 3.1.3). Thus we have the
following proposition.

Proposition 3.1.3 (Description of linear mappings from vectors to
scalars). The linear mappings T : R™ — R are precisely the mappings

T(z) = (a,)

where a € R™. That is, each linear mapping T : R™ — R is multiplication by
a unique a € R™ and conversely.

The slogan encapsulating the formula T'(x) = {a,z) of the proposition is:
For vector input and scalar output, linear OF is vector TIMES.

In light of the proposition, you should be able to recognize linear mappings
from R™ to R on sight. For example, the mapping T : R> — R given by
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T(x,y,2) = mx + ey + /22 is linear, being multiplication by the vector
(7,e.V2).

In the previous chapter, the second example after Definition 2.3.6 showed
that every linear mapping T : R™ — R is continuous. You are encouraged to
reread that example now before continuing.

A depiction of a linear mapping from R? to R can again plot the domain
plane and the codomain axis orthogonally to each other or separately. See
Figures 3.2 and 3.3 for examples of each type of plot. The first figure suggests
that the graph forms a plane in R® and that a line of inputs is taken to
the output value 0. The second figure shows more clearly how the mapping
compresses the plane into the line. As in the right half of Figure 3.1, the idea
is that T'(z,y) = «T(1,0) + yT(0,1) for all z,y € Z. The compression is that
although (1,0) and (0, 1) lie on separate input axes, T'(1,0) and 7'(0,1) lie on
the same output axis.

Figure 3.2. The graph of a linear mapping from R? to R

%

Figure 3.3. Second depiction of a linear mapping from R? to R

The most general mapping is T : R — R™. Such a mapping decomposes
as T = (T1,...,Ty) where each T; : R® — R is the ith component function
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of T. The next proposition reduces the linearity of such T to the linearity of
its components T;, which we already understand.

Proposition 3.1.4 (Componentwise nature of linearity). The vector-
valued mapping T = (T1,...,Ty) : R — R™ is linear if and only if each
scalar-valued component function T; : R™ — R is linear.

Proof. For every x,y € R™,

and

T(z)+T(y) = (Ti(z),....Tm(2)) + (Ti(y),...,Tm(y))
= (Tv(x) +T1(y), ..., Tw(x)+Tu(y)).

But T satisfies (3.1) exactly when the left sides are equal, the left sides are
equal exactly when the right sides are equal, and the right sides are equal
exactly when each T; satisfies (3.1). A similar argument with (3.2), left as
Exercise 3.1.5, completes the proof. ]

The componentwise nature of linearity combines with the fact that scalar-
valued linear mappings are continuous (as observed after Proposition 3.1.3)
and with the componentwise nature of continuity to show that all linear map-
pings are continuous. Despite being so easy to prove, this fact deserves a
prominent statement.

Theorem 3.1.5 (Linear mappings are continuous). Let the mapping T :
R™ — R™ be linear. Then T s continuous.

By the previous proposition, a mapping 7' : R® — R™ is linear if and only
if each T; determines n real numbers a;1,...,a;, as just discussed. Putting
all mn numbers a;; into a box with m rows and n columns gives a matrix

ailr ai2 - Qin
a21 a2z *-- Q2n

A=| T . (3.3)
Am1 Gm2 *** Omn

whose ith row is the vector determined by T;, and whose (%, j)th entry (this
means ith row, jth column) is thus given by

aij = Ti(e;). (3.4)

Sometimes one saves writing by abbreviating the right side of (3.3) to [@;;]mxn,
or even just [a;;] when m and n are firmly established.
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The set of all m x n matrices (those with m rows and n columns) of real
numbers is denoted M,, ,,(R). The n X n square matrices are denoted M, (R).
Euclidean space R™ is often identified with M,, ;1(R) and vectors written as
columns,

T1

(T1,...,2pn) =

Tn

This typographical convention may look odd, but it is useful. The idea is that
a vector in parentheses is merely an ordered list of entries, not inherently a
row or a column; but when a vector—or, more generally, a matrix—is enclosed
by square brackets, the distinction between rows and columns is significant.
To make the linear mapping 7" : R” — R™ be multiplication by its matrix
A € My, »(R), we need to define multiplication of an m x n matrix A by an
n X 1 vector x appropriately. That is, the only sensible definition is as follows.

Definition 3.1.6 (Matrix-by-vector multiplication). Let A € M,, »,(R)
and let x € R™. The product Ax € R™ is defined to be the vector whose ith
entry is the inner product of A’s ith row and x,

€1
aip aiz - v a1n Zo a11T1 + -+ A1y
azy Qg2 -t Qa2n . a21T1 + -+ a2,y
Ax = =
Am1 QGm2 * - Amn : Am1T1 + -+ AmnTn
Tn

For example,

456/ |13 T l4-745.8+6-9 122

g ] -Ernasg - [

Definition 3.1.6 is designed to give the following theorem, which encompasses
Propositions 3.1.2 and 3.1.3 as special cases.

Theorem 3.1.7 (Description of linear mappings from vectors to vec-
tors). The linear mappings T : R™ — R™ are precisely the mappings

T(z) = Az

where A € M,,, o(R). That is, each linear mapping T : R" — R™ is multi-
plication by a unique A € My, »,(R) and conversely.

The slogan encapsulating the formula T'(x) = Ax of the proposition is:

For vector input and vector output, linear OF is matriz TIMES.
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Recall the meaning of the rows of a matrix A that describes a correspond-
ing linear mapping T":

The ith row of A describes T;, the ith component function of T.

The columns of A also have a description in terms of T'. Indeed, the jth column

1S
ayj T (e )

Umj T (e5)

That is:
The jth column of A is T'(e;), i.e., is T of the jth standard basis vector.

For an example using this last principle, let r : R? — R? be the mapping
that rotates the plane counterclockwise through the angle 7 /6. It is geomet-
rically evident that r is linear: rotating the parallelogram P with sides x
and zo (and thus with diagonal x1 +xz5) by 7/6 yields the parallelogram r(P)
with sides r(z1) and r(x2), so the diagonal of r(P) is equal to both r(x1 + x2)
and r(x1) + r(x2). Thus r satisfies (3.1). The geometric verification of (3.2)
is similar. (See Figure 3.4.)

r(z1 +x2) = r(x1) + r(w2)
1+ o
€To 7"(332) 7“(331)

€

Figure 3.4. The rotation mapping is linear

To find the matrix A of r, simply compute that its columns are
_ _[V3/2 B _[-1/2
ren=ro) = M) e =0 =[]

and thus \[/ /
3/2 —1/2
A= sl

So now we know 7, because the rows of A describe its component functions,
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wn= [ G- gy - (e dniee )

Figures 3.5 through 3.8 show more depictions of linear mappings between
spaces of various dimensions. Note that although these mappings stretch and
torque their basic input grids, the grids still get taken to configurations of
straight lines. Contrast this to how the nonlinear mapping of Figure 2.9 bends

the basic grid lines into curves.

Figure 3.5. A linear mapping from R to R?

Figure 3.6. A linear mapping from R? to R?

We end this section by returning from calculations to intrinsic methods.
The following result could have come immediately after Definition 3.1.1, but
it has been deferred to this point for the sake of presenting some of the objects
more explicitly first, to make them familiar. However, it is most easily proved
intrinsically.

Let L(R™,R™) denote the set of all linear mappings from R™ to R™. Not
only does this set sit inside the vector space M(R™,R™), it is a vector space
in its own right:

Proposition 3.1.8 (L(R™,R™) forms a vector space). Suppose that
S, T :R"™ — R™ are linear and that a € R. Then the mappings

S+T,aS:R" —s R™
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Figure 3.8. A linear mapping from R? to R?

are also linear. Consequently, the set of linear mappings from R™ to R™ forms
a vector space.

Proof. The mappings S and T satisfy (3.1) and (3.2). We must show that
S + T and aS do the same. Compute for x,y € R",

(S+T)(z+vy)
=Sx+y)+T(x+y) by definition of “4+” in M(R"™, R™)
=S(x)+S(y)+T(x)+T(y) since S and T satisfy (3.1)

=S8(z)+T(x)+ S(y)+T(y) since addition in R™ commutes
=S +T)(x)+ (S+T)(y) by definition of “4+” in M(R"™,R™).

Thus S + T satisfies (3.1). The other three statements about S + T and aS
satisfying (3.1) and (3.2) are similar and are left as Exercise 3.1.12. Once those
are established, the rest of the vector space axioms in L(R", R™) are readily
seen to be inherited from M(R™ R™). O

Also, linearity is preserved under composition. That is, if S : R" — R™
and T : R? — R™ are linear then so is S o T : R? — R™ (Exercise 3.1.13).
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Exercises

3.1.1. Prove that T : R” — R™ is linear if and only if it satisfies (3.1)
and (3.2). (It may help to rewrite (3.1) with the symbols z; and x2 in place
of z and y. Then prove one direction by showing that (3.1) and (3.2) are
implied by the defining condition for linearity, and prove the other direction
by using induction to show that (3.1) and (3.2) imply the defining condition.
Note that as pointed out in the text, one direction of this argument has a bit
more substance than the other.)

3.1.2. Suppose that T : R” — R™ is linear. Show that 7(0,) = 0,,. (An
intrinsic argument is nicer.)

3.1.3. Fix a vector a € R™. Show that the mapping T : R® — R given by
T(z) = (a,z) is linear, and that T(e;) = a; for j =1,...,n.

3.1.4. Find the linear mapping 7' : R® — R such that 7(0,1,1) = 1,
T(1,0,1) = 2, and T(1,1,0) = 3.

3.1.5. Complete the proof of the componentwise nature of linearity.

3.1.6. Carry out the matrix-by-vector multiplications

100] J1 ab (0 1-1 0] 1
110] 2|, |ed m [ xa] | 1|, 0 1-1| |1
111 |3 ef " -1 0 1] |1

3.1.7. Prove that the identity mapping ¢d : R — R" is linear. What is its
matrix? Explain.

3.1.8. Let 6 denote a fixed but generic angle. Argue geometrically that the
mapping R : R?> — R? given by counterclockwise rotation by @ is linear, and
then find its matrix.

3.1.9. Show that the mapping @ : R? — R? given by reflection through the
z-axis is linear. Find its matrix.

3.1.10. Show that the mapping P : R? — R? given by orthogonal projection
onto the diagonal line x = y is linear. Find its matrix. (See Exercise 2.2.15.)

3.1.11. Draw the graph of a generic linear mapping from R? to R3.

3.1.12. Continue the proof of Proposition 3.1.8 by proving the other three
statements about S + T and aS satisfying (3.1) and (3.2).

3.1.13. If S € L(R",R™) and T € L(RP,R"), show that SoT : R? — R™
lies in L(RP,R™).
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3.1.14. (a) Let S € L(R™,R™). Its transpose is the mapping
ST:R™ — R"
defined by the characterizing condition
(x,8"(y)) = (S(x),y) for all z € R" and y € R™.

Granting that indeed a unique such ST exists, use the characterizing condition
to show that

STy +y)=5"(y) +5T(y) forallyy eR™
by showing that
(x,8T(y+19)) = (x,ST(y) + ST(¢)) for all z € R" and y,y’ € R™.

A similar argument (not requested here) shows that ST(ay) = aST(y) for
all @ € R and y € R™, and so the transpose of a linear mapping is linear.

(b) Keeping S from part (a), now further introduce T' € L(RP,R"), so
that also S oT € L(RP,R™). Show that the transpose of the composition is
the composition of the transposes in reverse order,

(SoT)T =170 ST,
by showing that
(z,(SoT)"(2)) = (z,(TT 0 ST)(2)) for all € R” and z € R™.

3.1.15. A mapping f : R" — R™ is called affine if it has the form f(z) =
T(z) + b, where T' € L(R™,R™) and b € R™. State precisely and prove: the
composition of affine mappings is affine.

3.1.16. Let T : R™ — R™ be a linear mapping. Note that since T is continu-
ous and since the absolute value function on R™ is continuous, the composite
function

IT|: R* — R

is continuous.

(a) Let S = {x € R™: |z| = 1}. Explain why S is a compact subset of R™.
Explain why it follows that |T'| takes a maximum value ¢ on S.

(b) Show that |T'(x)| < c|z| for all z € R™. This result is the linear
magnification boundedness lemma. We will use it in Chapter 4.

3.1.17. Let T : R™ — R™ be a linear mapping.

(a) Explain why the set D = {x € R™ : |z| = 1} is compact.

(b) Use part (a) of this exercise and part (b) of the preceding exercise
to explain why therefore the set {|T'(z)| : * € D} has a maximum. This
maximum is called the norm of T and is denoted ||T||.



72 3 Linear Mappings and Their Matrices

(¢) Explain why ||T|| is the smallest value K that satisfies the condition
from part (b) of the preceding exercise, |T'(z)| < K|z| for all x € R™.
(d) Show that for every S,T € L(R™,R™) and every a € R,

[S+T| <|S[I+ 7] and [aT'|| = |al |T].
Define a distance function
d: LR"R™) x LR",R™) — R, d(S,T)=|T-25]|.

Show that this function satisfies the distance properties of Theorem 2.2.8.
(e) Show that for every S € L(R™,R™) and every T € L(RP,R"),

ST < ISIIIT-

3.2 Operations on Matrices

Having described abstract objects, the linear mappings T € L(R™, R™), with
explicit ones, the matrices A € M,,, ,,(R) with (¢, j)th entry a;; = T;(e;), we
naturally want to study linear mappings via their matrices. The first step
is to develop rules for matrix manipulation corresponding to operations on
mappings. Thus if

S, T:R" — R™

are linear mappings having matrices
A, B € My, (R),
and if @ is a real number, then the matrices for the linear mappings
S+T:R* — R™ and aS :R" — R™
naturally should be denoted
A+ B e M, n(R) and aA € M,, »(R).

So “4+” and “” (or juxtaposition) are about to acquire new meanings yet
again,
+ : My 0 (R) X My, (R) — M, o (R)

and
R x My, o (R) — My, 0 (R).

To define the sum, fix j between 1 and n. Then
the jth column of A+ B = (5 +T)(e;)
= 5(e;) + T'(e;)
= the sum of the jth columns of A and B.
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And since vector addition is simply coordinatewise scalar addition, it follows
that for every i between 1 and m and every j between 1 and m, the (i, j)th
entry of A+ B is the sum of the (4, j)th entries of A and B. (One can reach
the same conclusion in a different way by thinking about rows rather than
columns.) Thus the definition for matrix addition must be as follows.

Definition 3.2.1 (Matrix addition).

IfA = [aij]an and B = [bij]mxn then A —+ B = [aij —+ bij]mxn'

sal 2] = 53

A similar argument shows that the appropriate definition to make for scalar
multiplication of matrices is as follows.

For example,

Definition 3.2.2 (Scalar-by-matrix multiplication).

Ifa € R and A = [ajj]mxn then cA = [aa;;]mxn-

[i2]- 124

The zero matrix 0,,, € M,, ,(R), corresponding to the zero mapping in
L(R™,R™), is the obvious one, with all entries 0. The operations in M,, ,,(R)
precisely mirror those in L(R™, R™), giving the following result.

For example,

Proposition 3.2.3 (M, ,(R) forms a vector space). The set M,, ,(R)
of m x n matrices forms a vector space over R.

The remaining important operation on linear mappings is composition. As
shown in Exercise 3.1.13, if

S:R" —R"™ and T:RP — R"
are linear then their composition
SoT:RP — R™
is linear as well. Suppose that S and T respectively have matrices
AeM,,(R) and BeM,,(R).

Then the composition SoT has a matrix in M,, ,(R) that is naturally defined
as the matrix-by-matrix product

AB € M,, ,(R),
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the order of multiplication being chosen for consistency with the composition.
Under this specification,
(A times B)’s jth column = (S o T)(e;)
= 5(T(e;))
= A times (B’s jth column).

And A times (B’s jth column) is a matrix-by-vector multiplication, which
we know how to carry out: the result is a column vector whose ith entry for
i =1,...,m is the inner product of the ith row of A and the jth column of B.
In sum, the rule for matrix-by-matrix multiplication is as follows.

Definition 3.2.4 (Matrix multiplication). Given two matrices
AeMy,,(R) and BeM,p(R)
such that A has as many columns as B has rows, their product,
AB € M, »,(R),

has for its (i, 7)th entry (for every (i,7) € {1,...,m} x {1,...,p}) the inner
product of the ith row of A and the jth column of B. In symbols,

(AB);; = (ith row of A, jth column of B),

or, at the level of individual entries,

If A= [aijlmxn and B = [b;j]nxp then AB =

n
E aikbr;
k=1

Inevitably, matrix-by-matrix multiplication subsumes matrix-by-vector
multiplication, with vectors viewed as one-column matrices. Also, once we
have the definition of matrix-by-matrix multiplication, we can observe that in
complement to the already-established rule that for every j € {1,...,n},

mxp

(A times B)’s jth column equals A times (B’s jth column),
also, for every i € {1,...,m},
ith row of (A times B) equals (ith row of A) times B.

Indeed, both quantities in the previous display are the 1 x p vector whose jth
entry is the inner product of the ith row of A and the jth column of B.
For example, consider the matrices

1-2
123 45
R P
456 3 67
111

x
D=1011|, E=]Jabc], F=|y
001 z
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Some products among these (verify!) are

-8 -9

14 —20 136
AB:{ }, BC = |-10 —-11{, AD:{ ],

32 —47 12 13 4915

6 —9 azr bx cx

_ B | z+2y+ 3z .

DB=|5-T7], AF_LLx—i—E)y—&—GZ}’ FE = |ay by cy| ,

3 —4 az bz cz

EF =ax+ by + cz.

Matrix multiplication is not commutative. Indeed, when the product AB
is defined, the product BA may not be, or it may be but have different di-
mensions from AB; cf. EF and FE above. Even when A and B are both
n X n, so that AB and BA are likewise n X n, the products need not agree.

For example,
[01] [00}:{10] {00} {01}:[00}
00|10 00|’ 10/(00 01"
Of particular interest is the matrix associated with the identity mapping,
id :R" — R", id(z) = z.

Naturally, this matrix is called the identity matrix; it is written I,,. Since
idi(ej) = (Sij,

01---0
In:[(sij}nxn: - :

Although matrix multiplication fails to commute, it does have the following
properties.

Proposition 3.2.5 (Properties of matrix multiplication). Matriz mul-
tiplication is associative,

A(BC) = (AB)C for Ae M,, »(R), B M, ,(R), C € M,,(R).
Matriz multiplication distributes over matrixz addition,

AB+C)=AB+ AC for A€ My, (R), B,C € M, ,(R),
(A+ B)C = AC + BC'  for A, B € My 1(R), C € M, ,(R).

Scalar multiplication passes through matriz multiplication,
a(AB) = (aA)B = A(aB) foraeR, Ae M, ,(R), BeM,,R).
The identity matriz is a multiplicative identity,

In,A=A=AI, forAeM,,(R).
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Proof. The right way to prove these is intrinsic, by recalling that addition,
scalar multiplication, and multiplication of matrices precisely mirror addition,
scalar multiplication, and composition of mappings. For example, if A, B, C
are the matrices of the linear mappings S € L(R",R™), T' € L(RP,R"), and
U € L(R?,RP), then (AB)C and A(BC) are the matrices of (SoT)oU and
S o (ToU). But these two mappings are the same, because the composition
of mappings (mappings in general, not only linear mappings) is associative.
To verify the associativity, we cite the definition of four different binary com-
positions to show that the ternary composition is independent of parentheses,
as follows. For every x € RY,

((SoT)oU)(x) =(SoT)(U(x)) by definition of Ro U where R=SoT
S(T(U(x))) by definition of SoT

)
(

(ToU)(x)) by definition of T'o U
o(ToU))(xz) by definition of SoV where V=ToU.

So indeed ((SoT)oU)=(So (T oU)), and consequently (AB)C = A(BC).
Alternatively, one can verify the equalities elementwise by manipulating
sums. Adopting the notation M;; for the (7, j)th entry of a matrix M, we have

n n P n p
(A(BC))ij =Y  Au(BC)rj =Y A Y _BuCrj = Y AinBiCl;
k=1 k=1 =1 k=10=1
p_n P
=D > AwBuCiy =Y (AB)uCy; = ((AB)C)y;.
(=1 k=1 =1

The steps here are not explained in detail because the author finds this method
as grim as it is gratuitous: the coordinates work because they must, but their
presence only clutters the argument. The other equalities are similar. O

Composing mappings is most interesting when all the mappings in ques-
tion take a set S to the same set S, for the set of such mappings is closed
under composition. In particular, L(R™, R™) is closed under composition. The
corresponding statement about matrices is that M, (R) is closed under multi-
plication.

Exercises
3.2.1. Justify Definition 3.2.2 of scalar multiplication of matrices.

3.2.2. Carry out the matrix multiplications
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e

- 0100
fab] [ d—b] Lo 0010
ed] |- al’ (21 @2 3] 3222 ; 0001 (e=2,3,4),
373 0000
1117 [100] 100] 111
011|110/, |110]/]011
001 [111) 111|001

3.2.3. Prove more of Proposition 3.2.5, that A(B+C) = AB+ AC, (¢A)B =
A(aB), and I,, A = A for suitable matrices A, B,C' and any scalar «.

3.2.4. (If you have not yet worked Exercise 3.1.14 then do so before working
this exercise.) Let A = [a;;] € M, »(R) be the matrix of S € L(R™,R™). Its
transpose AT € M,, ,,,(R) is the matrix of the transpose mapping ST. Since
S and ST act respectively as multiplication by A and AT, the characterizing
property of ST from Exercise 3.1.14 gives

(x,AVy) = (Az,y) for all z € R" and y € R™.

Make specific choices of 2 and y to show that the transpose AT € M,, ,,,(R) is
obtained by flipping A about its northwest—southeast diagonal; that is, show
that the (i,7)th entry of AT is aj;. It follows that the rows of AT are the
columns of A, and the columns of AT are the rows of A.

(Similarly, let B € M,, ,(R) be the matrix of 7 € L(RP,R"), so that BT
is the matrix of T'T. Because matrix multiplication is compatible with linear
mapping composition, we know immediately from Exercise 3.1.14(b), with no
reference to the concrete description of the matrix transposes AT and BT in
terms of the original matrices A and B, that the transpose of the product is
the product of the transposes in reverse order,

(AB)T = BTAT for all A € M,, ,(R) and B € M,, ,(R).

That is, by characterizing the transpose mapping in Exercise 3.1.14, we eas-
ily derived the construction of the transpose matrix here and obtained the
formula for the product of transpose matrices with no reference to their con-
struction.)

3.2.5. The trace of a square matrix A € M, (R) is the sum of its diagonal

elements,
n
tI‘(A) = Z Qi; -
i=1

Show that
tr(AB) = tr(BA), A,B e M,(R).

(This exercise may entail double subscripts.)
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3.2.6. For every matrix A € M,,, ,(R) and column vector a € R™, define the
affine mapping (cf. Exercise 3.1.15)

Affy, :R" — R™

by the rule Affs ,(z) = Az + a for all x € R™, viewing z as a column vector.
(a) Explain why every affine mapping from R" to R™ takes this form.
(b) Given such A and a, define the matrix A" € My;,4+1 n+1(R) to be
Aa
[
A= [On J |

Show that for all x € R™,

o[- ]

Thus, affine mappings, like linear mappings, behave as matrix-by-vector mul-
tiplications but where the vectors are the usual input and output vectors
augmented with an extra “1” at the bottom.

(c) The affine mapping Affp; : R? — R™ determined by B € M, ,(R)
and b € R™ has matrix

Bb
r_
oo

Show that Aff4 , o Affg;, : RP — R™ has matrix A’B’. That is, matrix
multiplication is compatible with composition of affine mappings.

3.2.7. The exponential of a square matrix A is the infinite matrix sum
1 1
A _ Lo s
e —I+A+2!A —|—3!A—|— .

Compute the exponentials of the following matrices:

X100
A10

A=, A=[MY a=loat], a=|0r10

0 A oo 001

000\

What is the general pattern?
3.2.8. Let a, b, d be real numbers with ad = 1. Show that

o= o] [0d]-

Let a,b, ¢, d be real numbers with ¢ # 0 and ad — bc = 1. Show that

- (R

Thus this exercise has shown that all matrices [‘g Z] with ad — bc = 1 can
be expressed in terms of matrices [} #] and matrices [§ %1 ] and the matrix

01 01
[1 0]'
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3.3 The Inverse of a Linear Mapping

Given a linear mapping S : R® — R™, does it have an inverse? That is, is
there a mapping T : R™ — R"™ such that

SoT =1id,, and ToS=1id,?

If so, what is T'?

The symmetry of the previous display shows that if 7" is an inverse of S
then S is an inverse of T' in turn. Also, the inverse T, if it exists, must be
unique, for if 77 : R™ — R™ also inverts S then

T'=Toidy, =T 0o(SoT)=(T"08)oT =id, o T =T.

Thus 7 can unambiguously be denoted S~!. In fact, this argument has shown
a little bit more than claimed: if 77 inverts S from the left and T inverts S
from the right then 77 = T'. On the other hand, the argument does not show
that if T inverts S from the left then 7" also inverts S from the right—this is
not true.

If the inverse T exists then it too is linear. To see this, note that the
elementwise description of S and T being inverses of one another is that every
y € R™ takes the form y = S(z) for some 2 € R", every € R™ takes the
form xz = T(y) for some y € R™, and

for all z € R™ and y € R™, y=58(x) < x=T(y).
Now compute that for every y1,y2 € R™,

T(y1 +y2) = T(S(x1) + S(x2)) for some z1, 25 € R”
=T(S(z1 + x2)) since S is linear
=21+ 29 since T inverts S
=T(y1) + T(y2) since y1 = S(z1) and y2 = S(z2).

Thus T satisfies (3.1). The argument that T satisfies (3.2) is similar.

Since matrices are more explicit than linear mappings, we replace the
question at the beginning of this section with its matrix counterpart: given a
matrix A € My, ,(R), does it have an inverse matrix, a matrix B € M,, ,,,(R)
such that

AB=1, and BA=1,"

As above, if the inverse exists then it is unique, and so it can be denoted A~".

The first observation to make is that if the equation Az = 0,, has a
nonzero solution x € R™ then A has no inverse. Indeed, also A0,, = 0,,, so an
inverse A~! would have to take 0,, both to = and to 0,,, which is impossible.
And so we are led to a subordinate question: when does the matrix equation
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have nonzero solutions x € R™?
For example, let A be the 5 x 6 matrix

5 1 17 261 55

-3 -1-13-200 —-28
A=|-2 1 3 50 3
-2 0 -4 -60-10

5 0 10 151 42

If there is a nonzero « € R such that Az = 05 then A is not invertible.
Left multiplication by certain special matrices will simplify the matrix A.

Definition 3.3.1 (Elementary matrices). There are three kinds of ele-
mentary matrices. For every i,j € {1,...,m} (i # j) and every a € R, the
m X m (i;7,a) recombine matrix is

1

Risja =

1

(Here the a sits in the (i, j)th position, the diagonal entries are 1 and all other
entries are 0. The a is above the diagonal as shown only when © < j; otherwise
it is below.)

For every i € {1,...,m} and every nonzero a € R, the m x m (i,a) scale
matrix is

1

1

(Here the a sits in the ith diagonal position, all other diagonal entries are 1,
and all other entries are 0.)

For everyi,j € {1,...,m} (i # j), the mxm (i; j) transposition matrix
18
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- 1_

(Here the diagonal entries are 1 except the ith and jth, the (i,j)th and (j,4)th
entries are 1, and all other entries are 0.)

The plan is to study the equation Az = 0,, by using these elementary
matrices to reduce A to a nicer matrix F and then solve the equation Ex = 0,
instead. Thus we are developing an algorithm rather than a formula. The next
proposition describes the effect that the elementary matrices produce by left
multiplication.

Proposition 3.3.2 (Effects of the elementary matrices). Let M be an
m X n matriz; call its rows ri. Then:

(1) The m x n matriz R;.; oM has the same rows as M except that its ith row
18 T +arj.

(2) The m x n matriz S; M has the same rows as M except that its ith row
s ar;.

(3) The m x n matriz T;,; M has the same rows as M except that its ith row
is r; and its jth row is r;.

Proof. (1) As observed immediately after Definition 3.2.4, each row of R;,; o M
equals the corresponding row of R;.;, times M. For every row index k # i,
the only nonzero entry of the row is a 1 in the kth position, so the product
of the row and M simply picks out the kth row of M. Similarly, the ith row
of R;;jq has a 1 in the ith position and an a in the jth, so the row times M
equals the ith row of M plus a times the jth row of M.

The proofs of statements (2) and (3) are similar, left as Exercise 3.3.2. O

To get a better sense of why the statements in the proposition are true, it
may be helpful to do the calculations explicitly with some moderately sized
matrices. But then, the point of the proposition is that once one believes it, left
multiplication by elementary matrices no longer requires actual calculation.
Instead, one simply carries out the appropriate row operations. For example,

R [123] _[131721
12371456 45 6|’
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because R;.2 3 adds 3 times the second row to the first. The slogan here is:
Elementary matriz TIMES is row operation ON.

Thus we use the elementary matrices to reason about this material, but for
hand calculation we simply carry out the row operations.

The next result is that performing row operations on A doesn’t change the
set of solutions z to the equation Az = 0,,.

Lemma 3.3.3 (Invertibility of products of the elementary matrices).
Products of elementary matrices are invertible. More specifically:

(1) The elementary matrices are invertible by other elementary matrices.
Specifically,

(Rijja) ' = Rij—a; (Sia) ™" = Sia1, (Tij) ™" =Ty

(2) If the m x m matrices M and N are invertible by M~' and N~1, then the
product matriz M N is invertible by N—*M~1. (Note the order reversal.)
(3) Every product of elementary matrices is invertible by another such product,
specifically the product of the inverses of the original matrices, but taken
in reverse order.
Proof. (1) To prove that R —aRija = Iy, note that R;; , is the identity
matrix I, with a times its jth row added to its ith row, and multiplying this
from the left by R;;; _, subtracts off a times the jth row from its ith row,
restoring I,,,. The proof that R;.; ,R;.;,—o = I, is either done similarly or by
citing the proof just given with a replaced by —a. The rest of (1) is similar.
(2) Compute

(MN)(NT*M™Y) = M(NN-YM~ ' =MI,M'=MM=1,,

and similarly for (N"'M~1)(MN) = I,,,.
(3) This is immediate from (1) and (2). O

Proposition 3.3.4 (Persistence of solution). Let A be an m x n matrix
and let P be a product of m x m elementary matrices. Then the equations

Az =0, and (PA)x =0,
are satisfied by the same vectors x in R™.

Proof. Suppose that the vector x € R" satisfies the left equation, Az = 0,,.
Then
(PA)x = P(Az) = PO, = 0,,.

Conversely, suppose that x satisfies (PA)x = 0,,,. Lemma 3.3.3 says that P
has an inverse P~1, so

Az = I,Ax = (P"'P)Az = P"'(PA)z = P7'0,, = 0,,.
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The machinery is in place to solve the equation Az = 05, where as before,

5 1 17 261 55

-3 -1-13 -200 —28
A=]-2 1 3 50 3
-2 0 -4 -60-10

5 0 10 151 42

Scale A’s fourth row by —1/2 and transpose A’s first and fourth rows; call the

result B:
1 0 2 30 5

-3 -1-13-200 —-28

T1;4S4’,1/2A - —2 ]. 3 5 0 3 - B
5 1 17 261 535
5 0 10 1561 42

Note that B has a 1 as the leftmost entry of its first row. Recombine various
multiples of the first row with the other rows to put 0’s beneath the leading 1
of the first row; call the result C:

102 30 5
0—1-7-110-13

Rsa, 5By _sRs1oRsasB= |0 1 7 110 13| =C
0 1 7 111 30
000 01 17

Recombine various multiples of the second row with the others to put 0’s
above and below its leftmost nonzero entry; scale the second row to make its
leading nonzero entry a 1; call the result D:

102 30 5

01711013
52,71R4;2’1R3;2,1C= 000 00 O =D.

000 0117

000 0117

Transpose the third and fifth rows; put 0’s above and below the leading 1 in
the third row; call the result E:

102 30 5
01711013

Rys 1Ts5D=[000 0117 | =E.
000 00 0
000 00 0

Matrix F is a prime example of a so-called echelon matriz. (The term will be
defined precisely in a moment.) Its virtue is that the equation Ex = 05 is now
easy to solve. This equation expands out to
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102 30 51 |™ 1 4 223 + 3x4 + Sxg 0
01711013 |™ To 4+ Txs + 11xg + 1326 0
Ex= {000 0117 ff’ - 25+ 1726 | = | 0
000 00 O x“ 0 0
000 00 0 > 0 0

Te

Matching the components in the last equality gives

T = —21‘3 — 3%‘4 — 5.’1,‘6
To = —71}3 — 111‘4 — 131‘6
T5 = - 17%6

Thus, z3, x4, and xg are free variables that can take any values we wish, but
then z1, xo, and x5 are determined from these equations. For example, setting
x3 = —b, x4 = 3, xg = 2 gives the solution z = (-9, —24, -5, 3, -34,2).

Definition 3.3.5 (Echelon matrix). A matriz E is called echelon if it has
the form

Here the x’s are arbitrary entries, and all entries below the stairway are 0.
Thus each row’s first nonzero entry is a 1, each row’s leading 1 is farther right
than that of the row above it, each leading 1 has a column of 0’s above it, and
any rows of 0’s are at the bottom.

Note that the identity matrix I is a special case of an echelon matrix.

The algorithm for reducing a matrix A to echelon form by row operations
should be fairly clear from the previous example. The interested reader may
want to codify it more formally, perhaps in the form of a computer program.
Although different sequences of row operations may reduce A to echelon form,
the resulting echelon matrix F will always be the same. This result can be
proved by induction on the number of columns of A, and its proof is in many
linear algebra books.

Theorem 3.3.6 (Matrices reduce to echelon form). Fvery matriz A row
reduces to a unique echelon matriz E.

In an echelon matrix F, the columns with leading 1’s are called new
columns, and all others are old columns. The recipe for solving the equation
Ex =0, is then as follows.

1. Freely choose the entries in x that correspond to the old columns of E.
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2. Then each nonzero row of F will determine the entry of = corresponding
to its leading 1 (which sits in a new column). This entry will be a linear
combination of the free entries to its right.

Let’s return to the problem of determining whether A € M,, »(R) is in-
vertible. The idea was to see whether the equation Az = 0,, has any nonzero
solutions x, in which case A is not invertible. Equivalently, we may check
whether Ez = 0,, has nonzero solutions, where E is the echelon matrix to
which A row reduces. The recipe for solving EFxz = 0, shows that there are
nonzero solutions unless all of the columns are new.

If A e M,,,(R) has more columns than rows then its echelon matrix E
must have old columns. Indeed, each new column comes from the leading 1 in
a distinct row, so

new columns of £ < rows of E < columns of F,

showing that not all the columns are new. Thus A is not invertible when
m < n. On the other hand, if A € M, ,(R) has more rows than columns and
it has an inverse matrix A=! € M,, ,,(R), then A~! in turn has inverse A, but
this is impossible, because A~ has more columns than rows. Thus A is also
not invertible when m > n.

The remaining case is that A is square. The only square echelon matrix
with all new columns is I, the identity matrix (Exercise 3.3.10). Thus, unless
A’s echelon matrix is I, A is not invertible. On the other hand, if A’s echelon
matrix is I, then PA = [ for some product P of elementary matrices. Multiply
from the left by P~! to get A = P~!; this is invertible by P, giving A~! = P.
This discussion is summarized in the following theorem.

Theorem 3.3.7 (Invertibility and echelon form for matrices). A non-
square matriz A is never invertible. A square matriz A is invertible if and
only if its echelon form is the identity matrix.

When A is square, the discussion above gives an algorithm that simulta-
neously checks whether it is invertible and finds its inverse when it is.

Proposition 3.3.8 (Matrix inversion algorithm). Given A € M,,(R), set
up the matriz
B=[A]|I]

in My, 2, (R). Carry out row operations on this matriz to reduce the left side
to echelon form. If the left side reduces to I,, then A is invertible and the right
side is A™L. If the left side doesn’t reduce to I,, then A is not invertible.

The algorithm works because if B is left multiplied by a product P of
elementary matrices, the result is

PB = [PA|P].



86 3 Linear Mappings and Their Matrices

As discussed, PA = I,, exactly when P = A~ 1.
For example, the calculation

1-1 0100 100|111
Ri21R23: |0 1-1]010|=]010(011
0 0 1({001 001001
shows that .
1-1 0 111
0 1-1 =011/,
0 0 1 001

and one readily checks that the claimed inverse really works. Since arithmetic
by hand is so error-prone a process, one always should confirm one’s answer
from the matrix inversion algorithm.

We now have an algorithmic answer to the question at the beginning of
the section.

Theorem 3.3.9 (Echelon criterion for invertibility). The linear map-
ping S : R — R™ is invertible only when m = n and its matriz A has
echelon matriz I,,, in which case its inverse S™' is the linear mapping with
matriz A7L.

Exercises

3.3.1. Write down the following 3 x 3 elementary matrices and their inverses:
R3.9 7, 53,3, T3:9, To;3.

3.3.2. Finish the proof of Proposition 3.3.2.

3.3.3. Let A= [é zx]. Evaluate the following products without actually mul-

tiplying matrices: Rs3.2 r A, S33A4, T5.2A, To.3A.
3.3.4. Finish the proof of Lemma 3.3.3, part (1).

3.3.5. What is the effect of right multiplying the m x n matrix M by an n xn
matrix R;; 7 By Sio? By T%;57

3.3.6. Recall the transpose of a matrix M (cf. Exercise 3.2.4), denoted M.
Prove: RZ-T;jya = Rjiia; S}y = Siai TlTJ = T;,;. Use these results and the

formula (AB)T = BTAT to redo the previous problem.

3.3.7. Are the following matrices echelon? For each matrix M, solve the equa-
tion Mz = 0.

00
103] oo fiool i 1000 011
0L o000l foo11|® |o1]|> |OFEO), |LO3
001 0010 000

00
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3.3.8. For each matrix A solve the equation Ax = 0.

~114 2-1 32 3-12
138, |1 4 01|, |2 11
125 2 6-15 1-30

3.3.9. Balance the chemical equation
Ca+ H3PO4 — CasP50g + Hs.

3.3.10. Prove by induction that the only square echelon matrix with all new
columns is the identity matrix.

3.3.11. Are the following matrices invertible? Find the inverse when possible,
and then check your answer.

1-11 2 5-1 1%%
2 01, |4-1 2, %?%
3 01 6 4 1 31:

3.3.12. The matrix A is called lower triangular if a;; = 0 whenever ¢ < j.
If A is a lower triangular square matrix with all diagonal entries equal to 1,
show that A is invertible and A~ takes the same form.

3.3.13. This exercise refers back to the Gram—Schmidt exercise in Chapter 2.
That exercise expresses the relation between the vectors {z’;} and the vectors
{z;} formally as 2’ = Az, where 2’ is a column vector whose entries are the
vectors i, ..., x}, x is the corresponding column vector of z;’s, and A is an
n X n lower triangular matrix.

Show that each x; has the form

! / / / I / /
Tj = Q0] + Qo + -+ 55 1T 1 + Ty,

and thus every linear combination of the original {x;} is also a linear combi-
nation of the new {z/}.

3.4 Inhomogeneous Linear Equations

The question whether a linear mapping 7T is invertible led to solving the linear
equation Az = 0, where A was the matrix of T'. Such a linear equation, with
right side 0, is called homogeneous. An inhomogeneous linear equation
has nonzero right side,

Ar =b, AeM,,,(R), zeR" beR™, b#0.

The methods of the homogeneous case apply here too. If P is a product of m x
m elementary matrices such that PA is echelon (call it E), then multiplying
the inhomogeneous equation from the left by P gives

Ex = Pb,

and since Pb is just a vector, the solutions to this can be read off as in the
homogeneous case. There may not always be solutions, however.
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Exercises

3.4.1. Solve the inhomogeneous equations

1-12 1 1-2 1 2 1
2 02|x=|1], 1 1-1 1|x=|2
1-34 2 1 -5 — 3

3.4.2. For what values b1, by, bs does the equation

3-12] by
2 11| z=|bs
1-30] bs

have a solution?

3.4.3. A parent has a son and a daughter. The parent is four times as old
as the daughter, and the daughter is four years older than the son. In three
years, the parent will be five times as old as the son. How old are the parent,
daughter, and son?

3.4.4. Show that to solve an inhomogeneous linear equation, one may solve
a homogeneous system in one more variable and then restrict to solutions for
which the last variable is equal to —1.

3.5 The Determinant: Characterizing Properties and
Their Consequences

In this section all matrices are square, n x n. The goal is to define a function
that takes such a matrix, with its n? entries, and returns a single number.
The putative function is called the determinant,

det : M, (R) — R.

For every square matrix A € M, (R), the scalar det(A) should contain as
much algebraic and geometric information about the matrix as possible. Not
surprisingly, so informative a function is complicated to encode.

This context nicely demonstrates a pedagogical principle already men-
tioned in Section 3.1: characterizing a mathematical object illuminates its
construction and its use. Rather than beginning with a definition of the de-
terminant, we will stipulate a few natural behaviors for it, and then we will
eventually see that

there is a function with these behaviors (existence),

there is only one such function (uniqueness), and, most importantly,
these behaviors, rather than the definition, further show how the function
works (consequences).
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We could start at the first bullet (existence) and proceed from the construction
of the determinant to its properties, but when a construction is complicated
(as the determinant’s construction is), it fails to communicate intent, and
pulling it out of thin air as the starting point of a long discussion is an obstacle
to understanding. A few naturally gifted readers will see what the unexplained
idea really is, enabling them to skim the ensuing technicalities and go on to
start using the determinant effectively; some other tough-minded readers can
work through the machinery and then see its operational consequences; but
it is all too easy for the rest of us to be defeated by disorienting detail-fatigue
before the presentation gets to the consequential points and provides any
energizing clarity.

Another option would be to start at the second bullet (uniqueness), letting
the desired properties of the determinant guide our construction of it. This
process wouldn’t be as alienating as starting with existence, but deriving
the determinant’s necessary construction has only limited benefit, because
we intend to use the construction as little as possible. Working through the
derivation would still squander our energy on the internal mechanisms of the
determinant before getting to its behavior, when its behavior is what truly
lets us understand it. We first want to learn to use the determinant easily and
artfully. Doing so will make its internals feel of secondary importance, as they
should.

The upshot is that in this section we will pursue the third bullet (conse-
quences), and then the next section will proceed to the second bullet (unique-
ness) and finally the first one (existence).

Instead of viewing the determinant only as a function of a matrix A €
M,,(R) with n? scalar entries, view it also as a function of A’s n rows, each of
which is an n-vector. If A has rows r1,...,7,, write det(r1,...,7,) for det(A).
Thus, det is now being interpreted as a function of n vectors, i.e., the domain
of det is n copies of R"™,

det : R" x --- x R" — R.

The advantage of this viewpoint is that now we can impose conditions on
the determinant, using language already at our disposal in a natural way.
Specifically, we make three requirements:

(1) The determinant is multilinear, meaning that it is linear as a function
of each of its vector variables when the rest are held fixed. That is, for all
vectors r1,...,Tk, T, - - -, T, and every scalar a,

det(ri,...,ark +7h, .oy mn) = adet(ry, .., Thy ooy Th)

+det(ry, ..., sy ).

(2) The determinant is skew-symmetric as a function of its vector vari-
ables, meaning that exchanging any two inputs changes the sign of the
determinant,
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det(ri, ..., 75, .. Ty, ) = —det(r, ..., 7o Ty, e ).

(Here i # j.) Consequently, the determinant is also alternating, meaning
that if two inputs r; and 7; are equal then det(ry,...,m) =0.
(3) The determinant is normalized, meaning that the standard basis has

determinant 1,
det(ey,...,e,) = 1.

Condition (1) does not say that det(a«A+A’) = acdet(A)+det(A’) for scalars «
and square matrices A, A’. Especially, the determinant is not additive,

det(A + B) is in general not det(A) + det(B). (3.5)

What the condition does say is that if all rows but one of a square matrix are
held fixed, then the determinant of the matrix varies linearly as a function
of the one row. By induction, an equivalent statement of multilinearity is the
more cluttered

det(rq, .. .7Zairk’i, cey ) = Zai det(r1, .- s This- - 5Tn)s
i i

but to keep the notation manageable, we work with the simpler version.
We will prove the following theorem in the next section.

Theorem 3.5.1 (Existence and uniqueness of the determinant). One,
and only one, multilinear skew-symmetric normalized function from the n-fold
product of R™ to R exists. This function is the determinant,

det : R" x --- x R — R.

Furthermore, all multilinear skew-symmetric functions from the n-fold product
of R™ to R are scalar multiples of of the determinant. That is, every multilinear
skew-symmetric function § : R™ x --- x R®» — R is

0=c-det where c=9d(e1,...,ep).

In more structural language, Theorem 3.5.1 says that the multilinear skew-
symmetric functions from the n-fold product of R™ to R form a 1-dimensional
vector space over R, and {det} is a basis.

The reader may object that even if the conditions of multilinearity, skew-
symmetry, and normalization are grammatically natural, they are concep-
tually opaque. Indeed, they reflect considerable hindsight, since the idea of
a determinant originally emerged from explicit calculations. But again, the
payoff is that characterizing the determinant rather than constructing it illu-
minates its many useful properties. The rest of the section can be viewed as
an amplification of this idea.

For one quick application of the existence of the determinant, consider the
standard basis of R™ taken in order,
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(e1,... en).

Suppose that some succession of m pair-exchanges of the vectors in this or-
dered n-tuple has no net effect, i.e., after the m pair-exchanges, the vectors are
back in their original order. By skew-symmetry each pair-exchange negates
the determinant, and so after all m pair-exchanges the net result is

(=1)™det(eq, ..., e,) = det(er, ..., en).

Since det is normalized, it follows that (—1)™ = 1, i.e., m is even. That is, no
odd number of pair-exchanges can leave an ordered n-tuple in its initial order.
Consequently, if two different sequences of pair-exchanges have the same net
effect then their lengths are both odd or both even—this is because running
one sequence forward and then the other backward has no net effect and
hence comes to an even number of moves. In other words, although a net
rearrangement of an n-tuple does not determine a unique succession of pair-
exchanges to bring it about, or even a unique number of such exchanges, it does
determine the parity of any such number: the net rearrangement requires an
odd number of exchanges, or it requires an even number. (For reasons related
to this, an old puzzle involving fifteen squares that slide in a 4 x 4 grid can
be made unsolvable by popping two pieces out and exchanging them.)

The fact that the parity of a rearrangement is well defined may be easy
to believe, perhaps so easy that the need for a proof is hard to see, but a
proof really is required. The determinant’s skewness and normalization are so
powerful that they give the result essentially as an afterthought. See Exer-
cise 3.5.2 for an elementary proof that does not invoke the existence of the
determinant. To summarize clearly, with reference to the exercise:

Independently of the determinant, every rearrangement of n objects
has a well-defined parity, meaning that for every rearrangement of the
objects, either all sequences of pairwise exchanges that put the objects
back in order have even length or all such sequences have odd length.

Easy though it is to use the determinant to show that parity is well defined,
in the next section we will need the fact that parity is well defined to show
that the determinant is unique. Thus Exercise 3.5.2 keeps us from arguing in
a circle.

The next result is a crucial property of the determinant.

Theorem 3.5.2 (The determinant is multiplicative). For all matrices
A, B € M, (R),

det(AB) = det(A) det(B).
In particular, if A is invertible then the determinant of the matriz inverse is
the scalar inverse of the determinant,

det(A™1) = (det(A))~.
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Multilinearity says that the determinant behaves well additively and
scalar-multiplicatively as a function of each of n vectors, while (3.5) says that
the determinant does not behave well additively as a function of one matrix.
Theorem 3.5.2 says that the determinant behaves perfectly well multiplica-
tively as a function of one matrix. Also, the theorem tacitly says that if A is
invertible then det(A) is nonzero. Soon we will establish the converse as well.

Proof. Let B € M,,(R) be fixed. Consider the function
0:M,(R) — R, 0(A) = det(AB).
As a function of the rows of A, § is the determinant of the rows of AB,
0:R"x--- xR" — R, 8(riy...,mn) =det(r1B,...,rB).

The function § is multilinear and skew-symmetric. To show multilinearity,
compute (using the definition of § in terms of det, properties of vector—matrix
algebra, the multilinearity of det, and the definition of § again),

(ri,...,arg + 1y, ...,ry) =det(r1B, ..., (ary +7.)B,...,m,B)
=det(rB,...,aryB+71.B,...,r,B)
= adet(rB,...,rxB,...,r,B)
+det(r1B,...,7.B,...,1,B)
=ad(r1,. .y Thy---yTn)
F (T Thye ey ).
To show skew-symmetry, take two distinct indices ¢,5 € {1,...,n} and com-
pute similarly,
O0(r1s. s TjyeeyTiyenoyrp) =det(r1B,...,7;B,...,7B,...,r,B)
= —det(mB,...,rB,...,r;B,...,r,B)

= 7(5(7”‘17...,Ti,...,Tj,...,T'n).
Also compute that
d(er,...,en) =det(e1B,...,e,B) = det(B).

It follows from Theorem 3.5.1 that §(A) = det(B)det(A), and this is the
desired main result det(AB) = det(A)det(B) of the theorem. Finally, if A is
invertible then

det(A)det(A™) = det(AA™) = det(I) = 1.

That is, det(A™!) = (det(A))~!. The proof is complete. ]
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One consequence of the theorem is
det(A"*BA) = det(B), A,B € M,(R), A invertible.

And we note that the same result holds for the trace, introduced in Exer-
cise 3.2.5, in consequence of that exercise,

tr(A"'BA) = tr(B), A, B <€ M,(R), A invertible.

More facts about the determinant are immediate consequences of its char-
acterizing properties.

Proposition 3.5.3 (Determinants of elementary and echelon matri-
ces).

(1) det(Rij.0) =1 for alli,j € {1,...,n} (i # j) and a € R.
(2) det(Si0) = a for alli € {1,...,n} and nonzero a € R.
(3) det(Ty,;) = —1 for all i,j € {1,...,n} (i # j).

(4) If E is n x n echelon then

1 fE=1,
0 otherwise.

det(E) = {

Proof. (1) Compute

det(R;j,q) = det(er,...,e; +aej, ... €5, ..., €ey)
=det(er,...,€;,...,€5,...,en) +adet(er,...,ej,...,€5,...,€)
=1+a-0=1.

The proofs of statements (2) and (3) are similar. For (4), if £ = I then
det(E) = 1, because the determinant is normalized. Otherwise the bottom
row of E is 0, and because a linear function takes 0 to 0 it follows that

det(E) = 0. O

For one consequence of Theorem 3.5.2 and Proposition 3.5.3, recall that
every matrix A € M,,(R) has a transpose matrix AT, obtained by flipping A
about its northwest—southeast diagonal. The next theorem (whose proof is
Exercise 3.5.4) says that all statements about the determinant as a function
of the rows of A also apply to the columns. This fact will be used without
comment from now on. In particular, det(A) is the unique multilinear skew-
symmetric normalized function of the columns of A.

Theorem 3.5.4 (Determinant and transpose). For all A € M,(R),
det(AT) = det(A).
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We also give another useful consequence of the determinant’s characteriz-
ing properties. A type of matrix that has an easily calculable determinant is a
triangular matrix, meaning a matrix all of whose subdiagonal entries are 0
or all of whose superdiagonal entries are 0. (Lower triangular matrices have
already been introduced in Exercise 3.3.12.) For example, the matrices

ail a1z ai3 a;;r 0 0
0 22 4923 and a21 A22 0
0 0 ass asy asz ass

are triangular.

Proposition 3.5.5 (Determinant of a triangular matrix). The determi-
nant of a triangular matriz is the product of its diagonal entries.

Proof. We may consider only upper triangular matrices, because a lower tri-
angular matrix has an upper triangular matrix for its transpose. The 3 x 3
case makes the general argument clear. The determinant of a 3 x 3 upper
triangular matrix A is

3 3 3
det A = det( E 13, €4y E 245 €45, E a3i36i3),
i1=1 ip=2 i3=3

which, since the determinant is multilinear, is

3 3 3
det A = Z Z Z A14,A2i5,0345 det(eil,eiz,ei3).

i1=1ip=21i3=3
Because the summation-index i3 takes only the value 3, this is

3 3
det A = Z Z a14,02i,a33 det(eil s €iny 63),

i1=11y=2
and the terms with i1 = 3 or i, = 3 vanish because the determinant is
alternating, so the determinant further simplifies to
2
det A = Z a14,a22a33 det(eil , €2, 63).
i1=1
Now the term with ¢; = 2 vanishes similarly, leaving
det A = a11a22a33 det(el, €9, 63).
Finally, because the determinant is normalized, we have

det A = a11Qa922033.
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A far more important consequence of Theorem 3.5.2 and Proposition 3.5.3
is one of the main results of this chapter. Recall that every matrix A row
reduces as

Ry---RNA=F

where the Ry are elementary, F is echelon, and A is invertible if and only if
FE = I. Because the determinant is multiplicative,

det(Ry) - --det(Ry)det(A) = det(E). (3.6)

But each det(Ry) is nonzero, and det(E) is 1 if E = I and 0 otherwise, so
this gives the algebraic significance of the determinant:

Theorem 3.5.6 (Linear invertibility theorem). The matriz A € M,,(R)
is invertible if and only if det(A) # 0.

That is, the zeroness or nonzeroness of the determinant says whether the
matrix is invertible. Once the existence and uniqueness of the determinant
are established in the next section, we will continue to use the determinant
properties to interpret the magnitude and the sign of the determinant as well.

Not only does equation (3.6) prove the linear invertibility theorem, but
furthermore it describes an algorithm for computing the determinant of any
square matrix A: reduce A to echelon form by recombining, scaling, and trans-
position; if the echelon form is I then det(A) is the reciprocal product of the
scaling factors times —1 raised to the number of transpositions, and if the
echelon form is not I then det(A) = 0.

Exercises

3.5.1. Consider a scalar-valued function of pairs of vectors,
ip:R" xR" — R,

satisfying the following three properties.

(1) The function is bilinear,

ip(ax 4+ /2’ y) = aip(z,y) + o’ ip(a’, y),
ip(z, By + B'y') = Bip(z,y) + B ip(xz,y)

for all a,a/, 3,8 € R and z,2’,y,y € R™.
(2) The function is symmetric,

ip(z,y) =ip(y,z) for all z,y € R™.
(3) The function is normalized,
ip(e;j,ej) =6;; foralli,je{l,...,n}.

(The Kronecker delta d;; was defined in Section 2.2.)
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Compute that this function, if it exists at all, must be the inner product.
On the other hand, we already know that the inner product has these three
properties, so this exercise has shown that it is characterized by them.

3.5.2. Let n > 2. This exercise proves, without invoking the determinant,
that every succession of pair-exchanges of the ordered set

(1,2,...,n)

that has no net effect consists of an even number of exchanges.

To see this, consider a shortest-possible succession of an odd number of
pair-exchanges having in total no net effect. Certainly it must involve at least
three exchanges. We want to show that it can’t exist at all.

Let the notation

(ij) (where i # j)

stand for exchanging the elements in positions i and j. Then in particular,
the first two exchanges in the succession take the form

(.3) (¢ ),

meaning to exchange the elements in positions ¢ and j and then to exchange
the elements in another pair of positions. There are four cases,

7

(45),
(ik), k¢ {ij}
(G k), k¢ {ij}

(ij)(k0), k,0¢{ij}, k#L.

The first case gives a shorter succession of an odd number of pair-exchanges
having in total no net effect, and this is a contradiction. Show that the other
three cases can be rewritten in the form

where the first exchange does not involve the ith slot. Next we may apply
the same argument to the second and third exchanges, then to the third and
fourth, and so on. Eventually, either a contradiction arises from the first of
the four cases, or only the last pair-exchange involves the ith slot. Explain
why the second possibility is untenable, completing the argument.

(i
(i
(i

J

7

)
)
)
)

3.5.3. Let f:R" x---xR®” — R be a multilinear skew-symmetric function,
and let ¢ be a real number. Show that the function c¢f is again multilinear and
skew-symmetric.

3.5.4. This exercise shows that det(AT) = det(A) for every square matrix A.
(a) Show that det(R") = det(R) for every elementary matrix R. (That is,
R can be a recombine matrix, a scale matrix, or a transposition matrix.)
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(b) If E is a square echelon matrix then either E = I or the bottom row
of E is 0. In either case, show that det(ET) = det(E). (For the case E # I, we
know that E is not invertible. What is ETe,, and what does this say about
the invertibility of ET?)

(c) Use the formula (MN)T = NTMT, Theorem 3.5.2, and Proposi-
tion 3.5.3 to show that det(AT) = det(A) for all A € M,,(R).

3.5.5. The square matrix A is orthogonal if ATA = I. Show that if A is
orthogonal then det(A) = £1. Give an example with determinant —1.

3.5.6. The matrix A is skew-symmetric if AT = —A. Show that if A isnxn
skew-symmetric with n odd then det(A4) = 0.

3.6 The Determinant: Uniqueness and Existence

Recall that Theorem 3.5.1 asserts that exactly one multilinear skew-symmetric
normalized function from the n-fold product of R™ to R exists. That is, a
unique determinant exists.

We warm up for the proof of the theorem by using the three defining
conditions of the determinant to show that only one formula is possible for
the determinant of a general 2 x 2 matrix,

ab
A= [ d} |
The first row of this matrix is

r1 = (a,b) = a(1,0) + b(0,1) = ae; + bes,

and similarly its second row is 75 = ce; + des. Thus, since we view the deter-
minant as a function of rows, its determinant must be

det(A) = det(ry,re) = det(ae; + bea, ce; + des).
Since the determinant is linear in its first vector variable, this expands to
det(aey + bea, cer + des) = adet(eq, ce; + des) + bdet(ea, cer + dea),

and since the determinant is also linear in its second vector variable, this
expands further,

adet(ey,cer + deg) + bdet(es, cer + deg)
= acdet(ey,e1) + addet(ey, e3)
+ bedet(ez, e1) + bd det(ez, e2).

But since the determinant is skew-symmetric and alternating, this expanded
expression simplifies considerably,
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acdet(eq, e1) + addet(eq, ea) + bedet(ea, e1) + bd det (e, e2)
= (ad — bc) det(eq, e2).

And finally, since the determinant is normalized, we have found the only
possible formula for the 2 x 2 case,

det(A) = ad — be.

All three characterizing properties of the determinant were required to derive
this formula. More subtly (and in this context trivially), the fact that this
is the only possible formula tacitly relies on the fact that every sequence of
exchanges of e; and ey that leaves them in order has even length, and every
such sequence that exchanges their order has odd length.

As a brief digression, the reader can use the matrix inversion algorithm
from Section 3.3 to verify that the 2 x 2 matrix A is invertible if and only
if ad — bc is nonzero, showing that the formula for the 2 x 2 determinant
arises from considerations of invertibility as well as from our three conditions.
However, the argument requires cases, e.g., a # 0 and a = 0, making this
approach uninviting for larger matrices.

Returning to the main line of exposition, nothing here has yet shown that
a determinant function exists at all for 2 x 2 matrices. What it has shown is
that there is only one possibility,

det((a,b), (¢,d)) = ad — be.

But now that we have the only possible formula, checking that indeed it
satisfies the desired properties is purely mechanical. For example, to verify
linearity in the first vector variable, compute

det(a(a,b) + (a’, V), (¢,d)) = det((cwa + a’, ab + V'), (¢, d))
= (aa+a')d— (ab+V)ec
= a(ad — be) + (a'd — b'c)
= adet((a,b), (c,d)) + det((a’, V'), (c,d)).

For skew-symmetry,
det((c,d), (a,b)) = cb — da = —(ad — bc) = — det((a, b), (¢, d)).
And for normalization,
det(1,0),(0,1)) =1-1-0-0=1.

We should also verify linearity in the second vector variable, but this no longer
requires the defining formula. Instead, since the formula is skew-symmetric
and is linear in the first variable,
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det(ri,ary +15) = —det(ars + 15,71)
= —(adet(ra, 1) + det(rh, 1))
= —(— adet(ry,ry) — det(ry,75))
= adet(ry,r2) + det(ry,75).

This little trick illustrates the value of thinking in general terms: a slight
modification, inserting a few occurrences of “...” and replacing the subscripts
1 and 2 by 7 and j, shows that for every n, the three required conditions for
the determinant are redundant—linearity in one vector variable combines with
skew-symmetry to ensure linearity in all the vector variables.

One can similarly show that for a 1 x 1 matrix,

A= [a}a
the only possible formula for its determinant is
det(A) = a,

and that indeed this works. The result is perhaps silly, but the exercise of
working through a piece of language and logic in the simplest instance can
help one to understand its more elaborate cases. As another exercise, the same
techniques show that the only possible formula for a 3 x 3 determinant is

abc
det |de f| =aek+bfg+ cdh —afh — bdk — ceg.
ghk

And again, this is the only possible formula because parity is well defined for
all rearrangements of ey, e, and esg. This formula is complicated enough that
we should rethink it in a more systematic way before verifying that it has
the desired properties. And we may as well generalize it to arbitrary n in the
process. Here are some observations about the 3 x 3 formula:

It is a sum of 3-fold products of matrix entries.
Every 3-fold product contains one element from each row of the matrix.
Every 3-fold product also contains one element from each column of the
matrix. So every 3-fold product arises from the positions of three rooks
that don’t threaten each other on a 3 x 3 chessboard.

e Every 3-fold product comes weighted by a “4” or a “—”.

Similar observations apply to the 1x 1 and 2 x 2 formulas. Our general formula
should encode them. Making it do so is partly a matter of notation, but also
an idea is needed to describe the appropriate distribution of plus signs and
minus signs among the terms. The following language provides all of this.

Definition 3.6.1 (Permutation). A permutation of {1,2,...,n} is a vec-
tor
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= (n(1),7(2),...,7(n))

whose entries are {1,2,...,n}, each appearing once, in any order. An inver-
sion in the permutation 7 is a pair of entries with the larger one to the left.
The sign of the permutation w, written (—1)7, is —1 raised to the number of
inversions in w. The set of permutations of {1,...,n} is denoted S,.

Examples are the permutations = = (1,2,3,...,n), ¢ = (2,1,3,...,n),
and 7 = (5,4,3,2,1) (here n = 5). In these examples 7 has no inversions, o
has one, and 7 has ten. Thus (-1)" = 1, (-1)? = -1, and (-1)" = 1. In
general, the sign of a permutation with an even number of inversions is 1 and
the sign of a permutation with an odd number of inversions is —1. There are
n! permutations of {1,2,...,n}; that is, the set S,, contains n! elements.

As advertised, permutations and their signs provide the notation for the
only possible n x n determinant formula. Consider any n vectors

n
E a1;€4, To = E a2;€5, ey Tn = E Anp€p-
p=1

Every multilinear function § (if it exists at all) must satisfy

n n n
0(ri,ra, . yrn) =10 g ahez,g agjej,...,g Anp€p
i=1 j=1 p=1
n

=137

M:

n
Z 15025 - Anpd(€;, €5, ..., €p).

p=1

I
-

If 0 is also alternating then for every i,4,...,p € {1,...,n},
d(es,ej,...,ep) =0 if any two subscripts agree.

Thus we may sum only over permutations,

011,72,y oy Tn) = Z a13a2; - - - Gnp det(e;, e, ..., €p).
(3,4,---,P)ESn
Consider any permutation @ = (4,7,...,p). Suppose that 7 contains an in-

version, i.e., two elements are out of order. Then necessarily two elements in
adjacent slots are out of order. (For example, if i > p then either ¢ > j, giving
adjacent elements out of order as desired; or j > ¢ > p, so that j and p are
an out of order pair in closer slots than ¢ and p, and so on.) If a permutation
contains any inversions, then exchanging a suitable adjacent pair decreases
the number of inversions by one, changing the sign of the permutation, while
exchanging the corresponding two input vectors changes the sign of the de-
terminant. Repeating this process until the permutation has no remaining
inversions shows that
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d(es,ej,...,ep) = (—1)"d0(eq, ez, ..., en).

That is, a possible formula for a multilinear skew-symmetric function § is

0(ri,m2, ..., Tn) = Z (=) aysa9; - anp - €
7=(4,,-..,p)
where
c=4d(e1y...,en).
Especially, a possible formula for a multilinear skew-symmetric normalized
function is

det(ri,re,...,m0) = Z (—1)"ar;a2; - - - anp.
7=(%,,...,p)
And as we have discussed twice already in this section, the previous display
gives the unique possible formula for a multilinear skew-symmetric normalized
function because every method of rearranging (e;,e;, ..., ep) into order must

produce the same factor (—1)7.

Definition 3.6.2 (Determinant). The determinant function,
det : M, (R) — R,
is defined as follows. For every A € M,,(R) with entries (a;;),

det(A) = Z (_1)7ra17r(1)a27r(2) © pp(n)-
TES

The formula in the definition is indeed the formula computed a moment
ago, because for every permutation = = (4,4,...,p) € S, we have 7(1) = 1,
7(2) =7, ..., 7(n) = p.

As an exercise to clarify the formula, we use it to reproduce the 3 x 3 deter-
minant. Each permutation in S5 determines a rook placement, and the sign of
the permutation is the parity of the number of northeast—southwest segments
joining any two of its rooks. For example, the permutation (2,3, 1) specifies
that the rooks in the top, middle, and bottom rows are respectively in columns
2, 3, and 1, and the sign is positive because there are two northeast—southwest
segments. (See Figure 3.9.) The following table lists each permutation in S3
followed by the corresponding term in the determinant formula. For each per-
mutation, the term is its sign times the product of the three matrix entries
where its rooks are placed.

™ (_1>7ra17r(1)a27r(2)a37r(3)

) aek
) —afh
) “bdF
) bfg
)
)

cdh
—ceg
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~

Figure 3.9. The rook placement for (2,3, 1), showing the two inversions

The sum of the right column entries is the anticipated formula from before,

abc
det |[de f| =aek+bfg+ cdh —afh — bdk — ceg.
ghk

The same procedure reproduces the 2 x 2 determinant as well,

ab
det L d] = ad — be,
and even the silly 1 x 1 formula det[a] = a. The 2 x 2 and 3 x 3 cases

are worth memorizing. They can be visualized as adding the products along
northwest—southeast diagonals of the matrix and then subtracting the prod-
ucts along southwest—northeast diagonals, where the word diagonal connotes
wraparound in the 3 x 3 case. (See Figure 3.10.) But be aware that this
pattern of the determinant as the northwest—southeast diagonals minus the
southwest—northeast diagonals is valid only for n = 2 and n = 3.

Figure 3.10. The 3 x 3 determinant
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We have completed the program of the second bullet at the beginning of the
previous section, finding the only possible formula (the one in Definition 3.6.2)
that could satisfy the three desired determinant properties. We don’t yet know
that it does, just that it is the only formula that could. That is, we have
now proved the uniqueness but not yet the existence of the determinant in
Theorem 3.5.1.

The first bullet tells us to prove the existence by verifying that the com-
puted determinant formula indeed satisfies the three stipulated determinant
properties. Similarly to the 2 x 2 case, this is a mechanical exercise. The im-
pediments are purely notational, but the notation is admittedly cumbersome,
and so the reader is encouraged to skim the next proof.

Proposition 3.6.3 (Properties of the determinant).

(1) The determinant is linear as a function of each row of A.
(2) The determinant is skew-symmetric as a function of the rows of A.
(3) The determinant is normalized.

Proof. (1) If A has rows r; = (a1, - - -, @in) except that its kth row is the linear
combination ary + 7}, where 1, = (ag1, ..., Gkn) and r, = (a}y, . - -, ak,), then
its (i, 7)th entry is

Q5 if 4 75 ]{),
aag; + a;j if i = k.
Thus

/
det(ry,...,arg +rg, ..., ")

= > (=D a1r) - (Qkn() + Chngry) - Grn(m)
TES,

=« Z (_l)ﬂalﬂ(l) CrQkn(k) T Ana(n)

+ Z (—1)7Ta17r(1) - a;wr(k) O (n)
TESy

=adet(r1,..., Tk, ..., mn) +det(ry, .. Ty oy T0),
as desired.

(2) Let A have rows r1, ..., r, where r; = (a;1,. .., @i, ). Suppose that rows
k and k + 1 are exchanged. The resulting matrix has (i, j)th entry

aij ifi¢ {k k+1},
Ak+41,5 if i = k‘,
A ifi=Fk+1.

For each permutation 7 € S,,, define a companion permutation 7’ by exchang-
ing the kth and (k + 1)st entries,
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7 =(r(1),...,7(k+1),7(k),...,m(n)).

Thus 7'(k) = w(k + 1), #’(k 4+ 1) = n(k), and 7'(i) = = (i) for all other i.
As 7 varies through S,,, so does 7/, and for each m we have the relation
(=)™ = —(=1)" (Exercise 3.6.6). The defining formula of the determinant
gives

det(r1, .oy Tkt 1y Thy oy T'n)

= Z(_l)ﬂalﬂ-(l) S g (k) B (k1) G (n)
= - Z(—l)”/awu) Qg1 (1) Ok (k) © Gt ()

= —det(r1,...,Thy Tty - sTn)-

The previous calculation establishes the result when adjacent rows of A are
exchanged. To exchange rows k and ¢ in A where £ > k, carry out the following
adjacent row exchanges to trickle the kth row down to the ¢th and then bubble
the /th row back up to the kth, bobbing each row in between them up one
position and then back down:

rows k and k + 1, k and k + 1.
k+1and k+ 2, k+1andk+ 2,

ey 5

f—2and £—1, £—2and ¢ —1,
¢—1and ¢,

The display shows that the process carries out an odd number of exchanges
(all but the bottom one come in pairs), each of which changes the sign of the
determinant.

(3) This is left to the reader (Exercise 3.6.7). O

So a unique determinant function with the stipulated behavior exists. And
we have seen that every multilinear skew-symmetric function must be a scalar
multiple of the determinant. The last comment necessary to complete the
proof of Theorem 3.5.1 is that since the determinant is multilinear and skew-
symmetric, so are its scalar multiples. This fact was shown in Exercise 3.5.3.

The reader is invited to contemplate how unpleasant it would have been
to prove the various facts about the determinant in the previous section using
the unwieldy determinant formula, with its n! terms.

The previous section has already established that the determinant of a
triangular matrix is the product of the diagonal entries, but the result also
follows immediately from the determinant formula (Exercise 3.6.8). This fact
should be cited freely to save time.
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An algorithm for computing det(A) for every A € M,,(R) is now at hand.
Algebraically, the idea is that if

PLAP, = A,

where P; and P, are products of elementary matrices and A is a triangular
matrix, then since the determinant is multiplicative,

det(A) = det(P;) ! det(A) det(Py) .

Multiplying A by P, on the right carries out a sequence of column operations
on A, just as multiplying A by P; on the left carries out row operations. Recall
that the determinants of the elementary matrices are

det(Ri;j’a) = 1,
det(S;.4) = a,
det(T3;) = —1.

Procedurally, this all plays out as follows.

Proposition 3.6.4 (Determinant algorithm). Given A € M,,(R), use row
and column operations—recombines, scales, transpositions—to reduce A to a
triangular matriz A. Then det(A) is det(A) times the reciprocal of each scale
factor and times —1 for each transposition.

The only role that the determinant formula (as compared to the determi-
nant properties) played in obtaining this algorithm is that it gave the deter-
minant of a triangular matrix easily.

For example, the matrix

1/011/111/2! 1/3!
1/111/2!1/31 1/4!
1/2!11/3!11/4! 1/5!
1/311/41 1/5! 1/6!

A:

becomes, after scaling the first row by 3!, the second row by 4!, the third row
by 5!, and the fourth row by 6!,

6 631
24 1241
B = 60 2051

120306 1
Subtract the first row from each of the others to get

6 631
18 6 10
¢= 54 1420]°

11424 30
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and then scale the third row by 1/2 and the fourth row by 1/3, yielding

6 631
18610
271710
38810

D =

Next subtract the second row from the third row and the fourth rows, and
scale the fourth row by 1/2 to get

6 631
18610
9100
10100

FE =

Subtract the third row from the fourth, transpose the first and fourth columns,
and transpose the second and third columns, leading to

136 6
01618
0019
0001

This triangular matrix has determinant 1, and so according to the algorithm,

2:3-2 1

det(A) = = .
et(A) = GI5TaT3l ~ 1036800

In the following exercises, feel free to use the determinant properties and
the determinant formula in whatever combined way gives you the least work.

Exercises

3.6.1. For this exercise, let n and m be positive integers, not necessarily equal,
and let R™ x - - - x R™ denote m copies of R™. Consider any multilinear function

f:R"x--- xR" — R.

For any m vectors in R",

a; = (a11,~o~7a1n)7
ag = (a21;"'aa2n)7
A = (a"rnla ceey a?nn)7

explain why
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n n n

flar,az,... am) :ZZ"'ZQMQQJ'"'a7npf(eiaej7~-~aep)-

i=1j=1 p=1

Since each f(es;,e;,...,€p) is a constant (it depends on f, but not on the
vectors ay, . . ., Gy, ), the multilinear function f is a polynomial in the entries of
its vector-variables. Therefore, this exercise has shown that every multilinear
function is continuous.

3.6.2. Use the three desired determinant properties to derive the formulas in
this section for 1 x 1 and 3 x 3 determinants. Verify that the 1 x 1 formula
satisfies the properties.

3.6.3. For each permutation, count the inversions and compute the sign:
(2,3,4,1), (3,4,1,2), (5,1,4,2,3).

3.6.4. Explain why there are n! permutations of {1,...,n}.

3.6.5. Define the permutation p = (n,n —1,n —2,...,1) € S,. Show that u
has (n — 1)n/2 inversions and that

(1) = 1 if n has the form 4k or 4k + 1 (k € Z),
—1 otherwise.

’

3.6.6. Explain why (—1)™ = —(—1)" in the proof of part (2) of Proposi-
tion 3.6.3.

3.6.7. Use the defining formula of the determinant to reproduce the result
that det(I,) = 1.

3.6.8. Explain why in every term (—1)"a1(1)@2x(2) * * - Gnr(n) from the deter-
minant formula, >, (i) = Y ., i. Use this to reexplain why the determi-
nant of a triangular matrix is the product of its diagonal entries.

3.6.9. Calculate the determinants of the following matrices:

43-12 1-1 2 3
01 23 2 2 0 2
10 41}° 4 1-1-1
20 30 1 2 3 0

3.6.10. Show that the Vandermonde matrix,

1aa?
1b b2
lec?

9

has determinant (b — a)(c—a)(c—b). For what values of a, b, ¢ is the Vander-
monde matrix invertible? (The idea is to do the problem conceptually rather
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than writing out the determinant and then factoring it, so that the same ideas
would work for larger matrices. The determinant formula shows that the de-
terminant in the problem is a polynomial in a, b, and c¢. What is its degree in
each variable? Why must it vanish if any two variables are equal? Once you
have argued that that the determinant is as claimed, don’t forget to finish the
problem.)

3.6.11. Consider the following n x n matrix based on Pascal’s triangle:

1101 1 1 7
12 3 4--- n
13 6 10... otD

A=114 10 20---

SR
[1p 22t ]

Find det(A). (Hint: Row and column reduce.)

3.7 An Explicit Formula for the Inverse

Consider an invertible linear mapping
T:R*" — R"

having matrix
A e M, (R).

In Section 3.3 we discussed a process to invert A and thereby invert 7. Now,
with the determinant in hand, we can also write the inverse of A explicitly in
closed form. Because the formula giving the inverse involves many determi-
nants, it is hopelessly inefficient for computation. Nonetheless, it is of interest
to us for a theoretical reason (the pending Corollary 3.7.3) that we will need
in Chapter 5.

Definition 3.7.1 (Classical adjoint). Let n > 2 be an integer, and let A €
M, (R) be an n x n matriz. For everyi,j € {1,...,n}, let

A € M,,_1(R)

be the (n — 1) x (n — 1) matriz obtained by deleting the ith row and the jth
column of A. The classical adjoint of A is the n X n matriz whose (i, j)th
entry is (—1)"7 times the determinant of AJ*,

A = [(=1)" det(A7)] € M, (R).
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The factor (—1)"™7 in the formula produces an alternating checkerboard
pattern of plus and minus signs, starting with a plus sign in the upper left cor-
ner of A*Y. Note that the (4,7)th entry of A24 involves A7 rather than A%,
For instance, in the 2 x 2 case,

s -1

Already for a 3 x 3 matrix, the formula for the classical adjoint is daunting,

ef bc bc
e det Wk —det ke det e f
df ac ac
de = | —det det —det

h;; e gk e gk e df
! det de —det | ¢ b det | © b
i gh gh de

ek — fh ch — bk bf —ce

= | fg—dkak—cgcd—af

| dh —eg bg — ah ae — bd

Returning to the 2 x 2 case, where

A_{“b} and Aadj_{ d_by

cd —c a
compute that

adi ad—bc 0 10
A A2 — |: 0 ad—bc] = (ad—bc) |:O 1:| :det(A)Ig.

The same result holds in general:

Proposition 3.7.2 (Classical adjoint identity). Let n > 2 be an integer,
let A€ M, (R) be an n x n matriz, and let A>Y be its classical adjoint. Then

A A = det(A)I,.
Especially, if A is invertible then

L1

_ adj
det(A)

The idea of the proof is that the inner product of the ith row of A and
the ith column of A% gives precisely the formula for det(A), while for i # j
the inner product of the ith row of A and the jth column of A*% gives the
formula for the determinant of a matrix having the ith row of A as two of its
rows. The argument is purely formal but notationally tedious, and so we omit
it.

In the 2 x 2 case the proposition gives us a slogan:
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To invert a 2 X 2 matrix, exchange the diagonal elements, change the
signs of the off-diagonal elements, and divide by the determinant.

Again, for n > 2 the explicit formula for the inverse is rarely of calculational
use. We care about it for the following reason.

Corollary 3.7.3. Let A € M, (R) be an invertible n x n matriz. Then each
entry of the inverse matriz A™' is a continuous function of the entries of A.

Proof. Specifically, the (i, j)th entry of A~! is
(A7), 5 = (=1)" det (A7) / det(A),

a rational function (ratio of polynomials) of the entries of A. As such it varies
continuously in the entries of A as long as A remains invertible. O

Exercise

3.7.1. Verify at least one diagonal entry and at least one off-diagonal entry
in the formula A A*Y = det(A)I, for n = 3.

3.8 Geometry of the Determinant: Volume

Consider a linear mapping from n-space to n-space,
T:R" — R".
This section discusses two ideas:

e The mapping T magnifies volume by a constant factor. (Here volume is
a pandimensional term that in particular means length when n = 1, area
when n = 2, and the usual notion of volume when n = 3.) That is, there
is some number ¢ > 0 such that if one takes a set,

& CR",
and passes it through the mapping to get another set,
TE C R™,
then the set’s volume is multiplied by ¢,
vol TE =1t - vol £.

The magnification factor ¢ depends on T but is independent of the set £.
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e Furthermore, if the matrix of T is A then the magnification factor associ-
ated to T is
t = |det A|.

That is, the absolute value of det A has a geometric interpretation as the
factor by which 7" magnifies volume.

(The geometric interpretation of the sign of det A will be discussed in the next
section.)

An obstacle to pursuing these ideas is that we don’t have a theory of
volume in R” readily at hand. In fact, volume presents real difficulties. For
instance, no notion of volume that has sensible properties can apply to all sets;
so either volume behaves unreasonably or some sets don’t have well-defined
volumes at all. Here we have been tacitly assuming that volume does behave
well and that the sets £ under consideration do have volumes. This section
will investigate volume informally by considering how it ought to behave,
stating assumptions as they arise and arriving only at a partial description.
The resulting arguments will be heuristic, and the skeptical reader will see
gaps in the reasoning. Volume will be discussed further in Chapter 6, but a
full treatment of the subject (properly called measure) is beyond the range of
this text.

The standard basis vectors eq,...,e, in R™ span the unit box,
B={aje1+ - +ape,:0<a; <1,...,0< a, <1}

Thus bor means interval when n = 1, rectangle when n = 2, and the usual
notion of box when n = 3. Let p be a point in R”, let aq,...,a, be positive
real numbers, and let B’ denote the box spanned by the vectors a;eq, ..., a,e,
and translated by p,

B ={ajaier + -+ apane, +p:0< a1 <1,...,0 < a,, < 1}

(See Figure 3.11. The figures of this section are set in two dimensions, but the
ideas are general and hence so are the figure captions.) A face of a box is the
set of its points such that some particular «; is held fixed at 0 or at 1 while
the others vary. A box in R™ has 2n faces.

D+ azeq

BI €9
p p+aier B

€1

Figure 3.11. Scaling and translating the unit box
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A natural definition is that the unit box has unit volume,
vol B =1.

We assume that volume is unchanged by translation. Also, we assume that box
volume is finitely additive, meaning that given finitely many boxes By, ..., By
that are disjoint except possibly for shared faces or shared subsets of faces,
the volume of their union is the sum of their volumes,

M M
vol U B; = Zvol B;. (3.7)
i=1 i=1

And we assume that scaling any spanning vector of a box affects the box’s
volume continuously in the scaling factor. It follows that scaling any spanning
vector of a box by a real number a magnifies the volume by |a|. To see this,
first note that scaling a spanning vector by an integer ¢ creates |¢| abutting
translated copies of the original box, and so the desired result follows in this
case from finite additivity. A similar argument applies to scaling a spanning
vector by a reciprocal integer 1/m (m # 0), since the original box is now |m)|
copies of the scaled one. These two special cases show that the result holds
for scaling a spanning vector by any rational number r = ¢/m. Finally, the
continuity assumption extends the result from the rational numbers to the
real numbers, since every real number is approached by a sequence of rational
numbers. Since the volume of the unit box is normalized to 1, since volume
is unchanged by translation, and since scaling any spanning vector of a box
by a magnifies its volume by |a|, the volume of the general box is (recalling
that ay,...,a, are assumed to be positive)

vol B =aq---an.

A subset of R™ that is well approximated by boxes plausibly has a volume.
To be more specific, a subset £ of R™ is well approximated by boxes if for every
€ > 0 there exist boxes By, ...,Bn,Bn+1,--., B, disjoint except possibly for
shared faces, such that £ is contained between a partial union of the boxes
and the full union,

N M
JBicec|UB, (3.8)
=1 =1

and such that the boxes that complete the partial union to the full union have

a small sum of volumes,
M

> vol B <e. (3.9)

i=N+1

(See Figure 3.12, where £ is an elliptical region, the boxes B; through By that
it contains are dark, and the remaining boxes By1 through By are light.)
To see that £ should have a volume, note that the first containment of (3.8)
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~———1

Figure 3.12. Inner and outer approximation of £ by boxes

says that a number at most big enough to serve as vol £ (a lower bound) is
L = vol Ui\il B;, and the second containment says that a number at least
big enough (an upper bound) is U = vol U£1 B;. By the finite additivity
condition (3.7), the lower and upper bounds are L = Zfil vol B; and U =
Zij\il vol B;. Thus they are close to each other by (3.9),

M
U—-L= Z vol B; < e.
i=N+1

Since ¢ is arbitrarily small, the bounds should be squeezing down on a unique
value that is the actual volume of &£, and so indeed £ should have a volume.
For now this is only a plausibility argument, but it is essentially the idea of
integration, and it will be quantified in Chapter 6.

Every set of n vectors vy,...,v, in R spans a parallelepiped

Pi,...,vp) ={a1v1 + -+ apvy, :0< o <1,...,0 < ap, < 1},

abbreviated to P when the vectors are firmly fixed. Again the terminology
is pandimensional, meaning in particular interval, parallelogram, and paral-
lelepiped in the usual sense for n = 1,2,3. We will also consider translations
of parallelepipeds away from the origin by offset vectors p,

P =P+p={v+p:veP}l

(See Figure 3.13.) A face of a parallelepiped is the set of its points such that
some particular «; is held fixed at 0 or at 1 while the others vary. A paral-
lelepiped in R™ has 2n faces. Boxes are special cases of parallelepipeds. The
methods of Chapter 6 will show that parallelepipeds are well approximated by
boxes, and so they have well-defined volumes. We assume that parallelepiped
volume is finitely additive, and we assume that every finite union of paral-
lelepipeds each having volume zero again has volume zero.

To begin the argument that the linear mapping 7' : R™ — R™ magnifies
volume by a constant factor, we pass the unit box B and the scaled translated
box B’ from earlier in the section through 7. The image of B under T is
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D+ v2

v
2 p+u

U1

Figure 3.13. Parallelepipeds

a parallelepiped TB spanned by T(e1),...,T(e,), and the image of B’ is a
parallelepiped TB’ spanned by T'(aye1),...,T(aye,) and translated by T'(p).
(See Figure 3.14.) Since T'(are1) = a1T(e1), - .., T(anen) = anT'(en), it follows
that scaling the sides of TB by aq,...,a, and then translating the scaled
parallelepiped by T'(p) gives TB’. As for boxes, scaling any spanning vector
of a parallelepiped by a real number a magnifies the volume by |a|, and so we

have
volTB =a;---a, - vol TB.

But recall that also
vol B =aq--an.

The two displays combine to give

vol TB’
vol B’

That is, the volume of the T-image of a box divided by the volume of the
box is constant, regardless of the box’s location or side lengths, the constant
being the volume of TB, the T-image of the unit box B. Call this constant
magnification factor ¢. Thus,

= vol TB.

vol TB' =t -vol B for all boxes B'. (3.10)

B/

L le

Figure 3.14. Linear image of the unit box and of a scaled translated box
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Figure 3.15. Inner and outer approximation of T'€ by parallelepipeds

We need one last preliminary result about volume. Again let £ be a subset
of R™ that is well approximated by boxes. Fix a linear mapping T : R —
R™. Very similarly to the argument for £, the set TE also should have a
volume, because it is well approximated by parallelepipeds. Indeed, the set
containments (3.8) are preserved under the linear mapping T,

N M
TUBiCTECTUBi.
i=1 i=1
In general, the image of a union is the union of the images, so this can be
rewritten as

N M

U TB; C TE C U TB;.

i=1 i=1
(See Figure 3.15.) As before, numbers at most big enough and at least big
enough for the volume of T are

N N M M
L =vol UTBizz:Vol TB;, U = vol UTBi:Zvol TB;.
i=1 i=1 i=1 i=1

The only new wrinkle is that citing the finite additivity of parallelepiped
volume here assumes that the parallelepipeds TB; either inherit from the
original boxes B; the property of being disjoint except possibly for shared
faces, or they all have volume zero. The assumption is valid because if T is
invertible then the inheritance holds, while if 7" is not invertible then we will
see later in this section that the TB; have volume zero, as desired. With this
point established, let ¢ be the factor by which T" magnifies box-volume. The
previous display and (3.10) combine to show that the difference of the bounds
is

M M M
U-L= Z vol TB; = Z t-vol B; =t- Z vol B; < te.
i=N+1 i=N+1 i=N+1

The inequality is strict if ¢ > 0, and it collapses to U — L = 0if t = 0. In
either case, since ¢ is arbitrarily small, the argument that T should have a
volume is the same as for £.
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To complete the argument that the linear mapping 7' : R® — R”™ mag-
nifies volume by a constant factor, we argue that for every subset £ of R"
that is well approximated by boxes, vol T'€ is t times the volume of £. Let
V = ol vazl B;. Then £ is contained between a set of volume V and a set of
volume less than V +¢ (again see Figure 3.12, where V is the shaded area and
V +¢ is the total area), and T is contained between a set of volume ¢tV and a
set of volume at most ¢(V +¢) (again see Figure 3.15, where ¢V is the shaded
area and t(V +¢) is the total area). Thus the volumes vol £ and vol TE satisfy
the condition

tvV vol TE  t(V +¢)
< < .
V+e ™ volE — Vv

Since € can be arbitrarily small, the left and right quantities in the display
can be arbitrarily close to ¢, and so the only possible value for the quantity in
the middle (which is independent of ¢) is . Thus we have the desired equality
announced at the beginning of this section,

vol TE =t - vol €.

In sum, subject to various assumptions about volume, T" magnifies the volumes
of all boxes and of all figures that are well approximated by boxes by the same
factor, which we have denoted t.

Now we investigate the magnification factor ¢ associated with the linear
mapping T, with the goal of showing that it is | det A|, where A is the matrix
of T'. As a first observation, if the linear mappings 5,7 : R” — R"™ magnify
volume by s and ¢ respectively, then their composition S o7 magnifies volume
by st. In other words, the magnification of linear mappings is multiplicative.
Also, recall that the mapping T is simply multiplication by the matrix A. Since
every matrix is a product of elementary matrices times an echelon matrix,
we only need to study the magnification of multiplying by such matrices.
Temporarily let n = 2.

The 2 x 2 recombine matrices take the form R = [} ¢] and R’ = [} 9] with
a € R. The standard basis vectors e; and e are taken by R to its columns, e
and aey + es. Thus R acts geometrically as a shear by a in the ej-direction,
magnifying volume by 1. (See Figure 3.16.) Note that 1 = | det R| as desired.
The geometry of R’ is left as an exercise.

The scale matrices are S = [¢ 9] and S’ = [} U]. The standard basis gets
taken by S to ae; and eg, so S acts geometrically as a scale in the e;-direction,
magnifying volume by |a|; this is | det S|, again as desired. (See Figure 3.17.)
The situation for S’ is similar.

The transposition matrix is 7 = [{ }]. It exchanges e; and es, acting as
a reflection through the diagonal, magnifying volume by 1. (See Figure 3.18.)
Since det T' = —1, the magnification factor is the absolute value of the deter-
minant.

Finally, the identity matrix £ = I has no effect, magnifying volume by 1,
and every other echelon matrix E has bottom row (0,0) and hence squashes
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Figure 3.16. Shear

Figure 3.17. Scale

Figure 3.18. Reflection

e1 and es to vectors whose last component is 0, magnifying volume by 0. (See
Figure 3.19.) The magnification factor is | det E| in both cases.

Figure 3.19. Squash
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The discussion for scale matrices, transposition matrices, and echelon ma-
trices generalizes effortlessly from 2 to n dimensions, but generalizing the dis-
cussion for recombine matrices R; ;. takes a small argument. Because trans-
position matrices have no effect on volume, we may multiply R;.;, from the
left and from the right by various transposition matrices to obtain R;.2 , and
study it instead. Multiplication by Ri,2 , preserves all of the standard basis
vectors except es, which is taken to ae; + ey as before. The resulting paral-
lelepiped P(e1,ae; +ea,e3,. .., e,) consists of the parallelogram shown in the
right side of Figure 3.16, extended one unit in each of the remaining orthogonal
n — 2 directions of R™. The n-dimensional volume of the parallelepiped is its
base (the area of the parallelogram, 1) times its height (the (n—2)-dimensional
volume of the unit box over each point of the parallelogram, again 1). That is,
the n x n recombine matrix still magnifies volume by 1, the absolute value of
its determinant, as desired. The base times height property of volume is yet
another invocation here, but it is a consequence of a theorem to be proved in
Chapter 6, Fubini’s theorem. Summarizing, we have the following result.

Theorem 3.8.1 (Geometry of linear mappings). Every linear mapping
T : R*" — R" is the composition of a possible squash followed by shears,
scales, and reflections. If the matriz of T is A then T magnifies volume
by | det A|.

Proof. The matrix A of T' is a product of elementary matrices and an echelon
matrix. The elementary matrices act as shears, scales, and reflections, and if
the echelon matrix is not the identity then it acts as a squash. This proves
the first statement. Each elementary or echelon matrix magnifies volume by
the absolute value of its determinant. The second statement follows since
magnification and |det | are both multiplicative. O

The work of this section has given a geometric interpretation of the mag-
nitude of det A: it is the magnification factor of multiplication by A. If the
columns of A are denoted ci,...,c, then Ae; = ¢; for j = 1,...,n, so that
even more explicitly | det A| is the volume of the parallelepiped spanned by
the columns of A. For instance, to find the volume of the 3-dimensional par-
allelepiped spanned by the vectors (1,2,3), (2,3,4), and (3,5,8), compute
that

123
|det [235] |=1.
348

Exercises

3.8.1. (a) This section states that the image of a union is the union of the
images. More specifically, let A and B be any sets, let f : A — B be any
mapping, and let A;,..., Ay be any subsets of A. Show that
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N N
f (U Ai> = U F(4).

(This exercise is purely set-theoretic, making no reference to our working
environment of R™.)

(b) Consider a two-point set A = {a1,as2} where a1 # as, a one-point
set B = {b}, and the only possible mapping f : A — B, given by
fla1) = f(az) = b. Let A1 = {a1} and Ay = {as}, subsets of A. What is
the intersection A; N A2? What is the image of the intersection, f(A4; N Az)?
What are the images f(A;) and f(As)? What is the intersection of the images,
f(A1) N f(A2)? Is the image of an intersection in general the intersection of
the images?

3.8.2. Describe the geometric effect of multiplying by the matrices R’ and S’
in this section. Describe the effect of multiplying by R and S if a < 0.

3.8.3. Describe the geometric effect of multiplying by the 3 x 3 elementary
matrices Ro.31, R3;1,2, and Sz _3.

3.8.4. (a) Express the matrix [(1) *é] as a product of recombine and scale
matrices (you may not need both types).

(b) Use part (a) to describe counterclockwise rotation of the plane through
the angle 7/2 as a composition of shears and scales.

3.8.5. Describe counterclockwise rotation of the plane through the angle 6
(where cosf # 0 and sin 6 # 0) as a composition of shears and scales.

3.8.6. In R3, describe the linear mapping that takes e; to ez, €3 to e3, and ez
to e; as a composition of shears, scales, and transpositions.

3.8.7. Let P be the parallelogram in R? spanned by (a,c) and (b,d). Cal-
culate directly that |det[2Y]| = area P. (Hint: area = base x height
= |(a, )| |(b,d)||sinO(q,c),(b,a)|- It may be cleaner to find the square of the
area.)

3.8.8. This exercise shows directly that |det | = volume in R?. Let P be the
parallelepiped in R? spanned by vy, v, v3, let P’ be spanned by the vectors
v, v4, vs obtained from performing the Gram—Schmidt process on the v;’s,
let A € M3(R) have rows v1, ve, vs, and let A’ € M3(R) have rows v}, v}, v5.

(a) Explain why det A’ = det A.

(b) Give a plausible geometric argument that vol P’ = vol P.

(¢) Show that

[oil* 0 0
AA =10 [P 0
0 0 o

Explain why therefore | det A’| = vol P’. It follows from parts (a) and (b) that
| det A| = vol P.
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3.9 Geometry of the Determinant: Orientation

Recall from Section 2.1 that a basis of R™ is a set of vectors {fi,..., f,} such
that every vector in R" is a unique linear combination of the {f;}. Though
strictly speaking, a basis is only a set, we adopt here the convention that the
basis vectors are given in the specified order indicated. Given such a basis,
view the vectors as columns and let F' denote the matrix in M,, ,(R) with
columns f1,..., fp. Thus the order of the basis vectors is now relevant. For
a standard basis vector e; of R”, the matrix-by-vector product Fe; gives the
jth column f; of F. Therefore, for every vector z = (z1,...,zp) € RP (viewed
as a column),

p p p
Fx=F- E Tj€j = E l‘jF@j = E Z‘jfj.
j=1 j=1 j=1

Thus, multiplying all column vectors © € RP by the matrix F' gives precisely
the linear combinations of f1,..., f,, and so we have the equivalences
{f1,---, fp} is a basis of R"
each y € R™ is uniquely expressible
as a linear combination of the {f;}
each y € R"™ takes the form
y = Fx for a unique x € R?

<= F is invertible
<= F is square (i.e., p=n) and det F' # 0.

These considerations have proved the following result.

Theorem 3.9.1 (Characterization of bases). FEvery basis of R™ has n
elements. The vectors {f1,..., fn} form a basis exactly when the matriz F
having them as its columns has nonzero determinant.

Let {f1,..., fn} be a basis of R, and let F be the matrix formed by their
columns. Abuse terminology and call det F' the determinant of the basis,
written det{fi,..., fn}. Again, this depends on the order of the {f;}. There
are then two kinds of bases of R", positive and negative bases, according

to the sign of their determinants. The standard basis {ey,...,e,} forms the
columns of the identity matrix I and is therefore positive.
The multilinear function det F is continuous in the n? entries of fi,..., f,

(see Exercise 3.6.1). If a basis { f1,- - , fn} can be smoothly deformed via other
bases to the standard basis then the corresponding determinants must change
continuously to 1 without passing through 0. Such a basis must therefore be
positive. Similarly, a negative basis cannot be smoothly deformed via other
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bases to the standard basis. It is also true but less clear (and not proved here)
that every positive basis deforms smoothly to the standard basis.

The plane R? is by convention drawn with {e;, es} forming a counterclock-
wise angle of /2. Two vectors {f1, fo} form a basis if they are not collinear.
Therefore the basis {f1, fa} can be deformed via bases to {e1,ea} exactly
when the angle 6y, ¢, goes counterclockwise from fi to fo. (Recall from equa-
tion (2.2) that the angle between two nonzero vectors is between 0 and 7.)
That is, in R?, the basis {f1, fo} is positive exactly when the angle from f;
to fa is counterclockwise. (See Figure 3.20.)

f2 fl

/i />

Figure 3.20. Positive and negative bases of R?

Three-space R? is by convention drawn with {e;, e2,e3} forming a right-
handed triple, meaning that when the fingers of your right hand curl from
e1 to e, your thumb forms an acute angle with es. Three vectors { f1, f2, f3}
form a basis if they are not coplanar. In other words, they must form a right-
or left-handed triple. Only right-handed triples deform via other nonplanar
triples to {e1, €a, e3}. Therefore in R3, the basis {f1, fa, f3} is positive exactly
when it forms a right-handed triple. (See Figure 3.21.)

JE

fa
’ =
h

fi fs

Figure 3.21. Positive and negative bases of R?

The geometric generalization to R™ of a counterclockwise angle in the plane
and a right-handed triple in space is not so clear, but the algebraic notion of
positive basis is the same for all n.
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Consider any invertible mapping 7" : R" — R"™ with matrix A € M,,(R),
and any basis {f1,..., fn} of R™. If F again denotes the matrix with columns
fis--., fn then AF has columns {Afy,..., Af,} ={T(f1),...,T(fn)}- These
form a new basis of R” with determinant

det{T'(f1),...,T(fn)} =det AF = det Adet F' = det Adet{f1,..., fn}

The calculation lets us interpret the sign of det A geometrically: if det A > 0
then T preserves the orientation of bases, and if det A < 0 then T reverses
orientation. For example, the mapping with matrix

0001
1000
0100
0010

reverses orientation in R*.

To summarize: Let A be an n X n matrix. Whether det A is nonzero says
whether A is invertible; the magnitude of det A is the factor by which A
magnifies volume; and (assuming that det A # 0) the sign of det A determines
how A affects orientation. The determinant is astonishing.

Exercises

3.9.1. Every invertible mapping 7" : R™ — R" is a composition of scales,
shears, and transpositions. Give conditions on such a composition to make
the mapping orientation-preserving, orientation-reversing.

3.9.2. Does the linear mapping T : R® — R" that takes e; to es, es to es,

.., en to e; preserve or reverse orientation? (The answer depends on n.)
More generally, if 7 is a permutation in S,,, does the linear mapping taking e;
t0 ex(1), - - -5 €n 1O €x(n) Preserve or reverse orientation? (This depends on 7.)

3.9.3. Argue geometrically in R? that every basis can be smoothly deformed
via other bases to the standard basis or to {e;, —es}. Do the same for R?
and {ej, ez, —e3}.

3.10 The Cross Product, Lines, and Planes in R3

Generally in R™ there is no natural way to associate to a pair of vectors u
and v a third vector. In R?, however, the plane specified by u and v has only
one orthogonal direction, i.e., dimension 3 is special because 3 —2 = 1. In R?
a normal vector to u and v can be specified by making suitable conventions
on its orientation vis-a-vis the other two vectors, and on its length. This will
give a vector-valued product of two vectors that is special to 3-dimensional
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space, called the cross product. The first part of this section develops these
ideas.

Given any two vectors u,v € R?, we want their cross product u x v € R3
to be orthogonal to v and v,

uXvlu and uxwv Lo (3.11)

There is the question of which way u x v should point along the line orthogonal
to the plane spanned by u and v. The natural answer is that the direction
should be chosen to make the ordered triple of vectors {u,v,u X v} positive
unless it is degenerate,

det(u,v,u x v) > 0. (3.12)

Also there is the question of how long u X v should be. With hindsight, we
assert that specifying the length to be the area of the parallelogram spanned
by v and v will work well. That is,

|u x v| = area P (u, v). (3.13)

The three desired geometric properties (3.11) through (3.13) seem to describe
the cross product completely. (See Figure 3.22.)

u

Figure 3.22. The cross product of u and v

The three geometric properties also seem disparate. However, they combine
into a uniform algebraic property, as follows. Since the determinant in (3.12) is
nonnegative, it is the volume of the parallelepiped spanned by u, v, and u X v.
The volume is the base times the height, and because u X v is normal to u
and v, the base is the area of P(u,v) and the height is |u X v|. Thus

det(u,v,u X v) = area P (u, v) |u x v|.
It follows from the previous display and (3.13) that

lu x v]* = det(u,v,u x v).
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Since orthogonal vectors have inner product 0, since the determinant is 0 when
two rows agree, and since the square of the absolute value is the vector’s inner
product with itself, we can rewrite (3.11) and this last display (obtained from
(3.12) and (3.13)) uniformly as equalities of the form (u x v, w) = det(u, v, w)
for various w,

(u x v,u) = det(u, v, u),

(u x v,v) = det(u,v,v), (3.14)

(u X v,u X vy = det(u,v,u X v).

Instead of saying what the cross product is, as an equality of the form u x v =
f(u,v) would, the three equalities of (3.14) say how the cross product interacts
with certain vectors—including itself—via the inner product. Again, the idea
is to characterize rather than construct.

(The reader may object to the argument just given that det(u,v,u X v) =
area P (u,v) |u x v|, on the grounds that we don’t really understand the area
of a 2-dimensional parallelogram in 3-dimensional space to start with, that
in R?® we measure volume rather than area, and the parallelogram surely has
volume zero. In fact, the argument can be viewed as motivating the formula
as the definition of the area. This idea will be discussed more generally in
Section 9.1.)

Based on (3.14), we leap boldly to an intrinsic algebraic characterization
of the cross product.

Definition 3.10.1 (Cross product). Let u and v be any two vectors in R3.
Their cross product u X v is defined by the property

(u x v,w) = det(u,v,w) for all w € R3.

That is, u x v is the unique vector x € R3 such that (x,w) = det(u,v,w) for
all w € R3.

As with the determinant earlier, we do not yet know that the characterizing
property determines the cross product uniquely, or even that a cross product
that satisfies the characterizing property exists at all. But also as with the
determinant, we defer those issues and first reap the consequences of the
characterizing property with no reference to an unpleasant formula for the
cross product. Of course the cross product will exist and be unique, but for
now the point is that graceful arguments with its characterizing property show
that it has all the further properties that we want it to have.

Proposition 3.10.2 (Properties of the cross product).

(CP1) The cross product is skew-symmetric: v x u = —u x v for all u,v € R3.
(CP2) The cross product is bilinear: for all scalars a,a’,b,b' € R and all vec-
tors u,u’,v,v’ € R3,
(au+a'u") x v =a(u x v) +d (v x v),
u X (bv+bv') =blu xv)+ b (uxv).
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(CP3) The cross product u X v is orthogonal to u and v.

(CP4) u x v =0 if and only if u and v are collinear (meaning that u = av or
v = au for some a € R).

(CP5) If u and v are not collinear then the triple {u,v,u X v} is right-handed.

(CP6) The magnitude |u x v| is the area of the parallelogram spanned by u
and v.

Proof. (1) This follows from the skew-symmetry of the determinant. For every
w € R3,

(v X u,wy = det(v, u, w) = — det(u,v,w) = —(u X v,wW) = (—u X v,w).

Since w is arbitrary, v X u = —u X v.

(2) For the first variable, this follows from the linearity of the determinant
in its first row-vector variable and the linearity of the inner product in its first
vector variable. Fix a,a’ € R, u,u/,v € R3. For every w € R?,

{(au+ a'u’) x v,w) = det(au + a'v’, v, w)
= adet(u,v,w) + a’ det(u’, v, w)
= alu x v,w) +a’ (v x v,w)
= {a(u xv)+a (v xv),w).

Since w is arbitrary, (au+ a’u’) X v = a(u x v) + a' (v’ x v). The proof for the
second variable follows from the result for the first variable and from (1).

(3) (u x v,u) = det(u,v,u) = 0 because the determinant of a matrix with
two equal rows vanishes. Similarly, (u x v,v) = 0.

(4) If u = av then for every w € R3,

(u x v,w) = {av X v,w) = det(av,v,w) = adet(v,v,w) = 0.

Since w is arbitrary, u x v = 0. And similarly if v = au.

Conversely, suppose that u and v are not collinear. Then they are linearly
independent, and so no element of R? can be written as a linear combination
of u and v in more than one way. The set {u,v} is not a basis of R?, because
every basis consists of three elements. Since no elements of R? can be written
as a linear combination of u and v in more than one way, and since {u, v}
is not a basis, the only possibility is that some w € R? cannot be written
as a linear combination of u and v at all. Thus the set {u,v,w} is a linearly
independent set of three elements, making it a basis of R3. Compute that
since {u,v,w} is a basis,

(u x v,wy = det(u, v, w) # 0.

Therefore u x v # 0.

(5) By (4), uxv # 0,50 0 < {(uXv,uxv) =det(u,v,uXv). By the results
on determinants and orientation, {u,v,u X v} is right-handed.

(6) By definition, |u x v|? = (u x v,u x v) = det(u,v,u x v). As discussed
earlier in this section, det(u, v, u x v) = areaP(u, v) |u x v|. The result follows
from dividing by |u x v| if it is nonzero, and from (4) otherwise. O
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Now we show that the characterizing property determines the cross prod-
uct uniquely. The idea is that a vector’s inner products with all other vectors
completely describe the vector itself. The observation to make is that for every
vector € R™ (n need not be 3 in this paragraph),

if {x,w) =0 for all w € R"™ then x = 0,,.

To justify this observation, specialize w to x to show that (x,z) = 0, giving the
result because 0,, is the only vector whose inner product with itself is 0. (Here
we use the nontrivial direction of the degeneracy condition in the positive
definiteness property of the inner product.) In consequence of the observation,
for any two vectors x, 2’ € R",

if (z,w) = (2/,w) for all w € R” then z = 2.

That is, the inner product values (x, w) for all w € R™ specify z, as anticipated.

To prove that the cross product exists, it suffices to write a formula for it
that satisfies the characterizing property in Definition 3.10.1. Since we need

(u x v,e1) = det(u,v,e1),
(u x v,e3) = det(u,v, ez),

(u X v,e3) = det(u,v,es),
the only possible formula is
u X v = (det(u, v, er),det(u, v, es),det(u, v, e3)).

This formula indeed satisfies the definition, because by definition of the inner
product and then by the linearity of the determinant in its third argument,
we have for every w = (w1, wa,w3) € R3,

(u x v,w) = det(u,v,eq) - wy + det(u,v, ea) - we + det(u, v, e3) - ws
= det(u, v, w1e1 + wees + wzes)

= det(u, v, w).

In coordinates, the formula for the cross product is

Uy U2 U3 Uy Uz U3 Uy U2 U3
uxv=_(det |vy vo v3|, det vy vo v3]|, det [v1 v2 v3]|)
100 010 001

= (ugv3 — Uzv2, U3V — UIV3, UV — UgV1).
A bit more conceptually, the cross product formula in coordinates is

Ul U2 U3
u X v =det |vy vy v3
€1 €9 €3
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The previous display is only a mnemonic device: strictly speaking, it doesn’t
lie within our grammar, because the entries of the bottom row are vectors
rather than scalars. But even so, its two terms ujvse3 — usvies do give the
third entry of the cross product, and similarly for the others. In Chapter 9,
where we will have to compromise our philosophy of working intrinsically
rather than in coordinates, this formula will be cited and generalized. In the
meantime, its details are not important except for mechanical calculations,
and we want to use it as little as possible, as with the determinant earlier.
Indeed, the display shows that the cross product is essentially a special case
of the determinant.
It is worth knowing the cross products of the standard basis pairs,

e Xep = 03, €1 X ey = €3, €1 Xez= —eq,
€y X €] = —€3, €3 X ey = 03, eq X ez = e,
ez X ey = e, €3 Xex=—€1, e3Xe3= 03.

Here e; X ej is 03 if ¢ = j, and e; X ¢; is the remaining standard basis vector
if i # j and 7 and j are in order in the diagram

52

-
N,

and e; X e; is minus the remaining standard basis vector if ¢ # j and ¢ and j
are out of order in the diagram.

The remainder of this section describes lines and planes in R3.

A line ¢ in R? is determined by a point p and a direction vector d. (See
Figure 3.23.) A point ¢ lies in the line exactly when it is a translation from p
by some multiple of d. Therefore the line ¢ is given by

lp,d)={p+td:teR}
In coordinates, a point (x,y, z) lies in £((Zp, Yp, 7p), (Td» Yd, 74)) exactly when
T=xp+trq, Y=yYp+tys, z=2p+1tzq forsometcR.

If the components of d are all nonzero then the relation between the coordi-
nates can be expressed without the parameter t,

Jffﬂjp_y*yp_,?}*Zp

Td Yd Zd
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p+d

/

Figure 3.23. Line in R®

For example, the line through (1,1,1) in the direction (1,2, 3) consists of all
points (x,y,z) satisfying « = 14+¢,y = 1+2t, 2 =143t for t € R, or
equivalently, satisfying z — 1= (y —1)/2= (2 —1)/3.

A plane P in R? is determined by a point p and a normal (orthogonal)
vector n. (See Figure 3.24.) A point q lies in the plane exactly when the vector
from p to ¢ is orthogonal to n. Therefore the plane P is given by

P(p,n) ={q € R®: (g —p,n) = 0}.
In coordinates, a point (z,y, z) lies in P((2p, Yp, 2p)s (Tns Yn, 2n)) exactly when

(@ —ap)xn+ (Y —Yp)yn + (2 — 2p)2n = 0.

Figure 3.24. Plane in R®

Exercises
3.10.1. Evaluate (2,0,—-1) x (1,-3,2).

3.10.2. Suppose that a vector v € R? takes the form v = u; X e; = us X e
for some u; and us. Describe v.
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3.10.3. True or false: For all u, v, w in R?, (u x v) x w=1u x (v X w).

3.10.4. Express (u + v) X (u — v) as a scalar multiple of u x v.

3.10.5. (a) Let U,V € M,(R) be skew-symmetric, meaning that UT = —U
and similarly for V, where U is the transpose of U (Exercise 3.2.4). Show that
aU is skew-symmetric for every a € R, and that U4V is skew-symmetric. Thus
the skew-symmetric matrices form a vector space. Show furthermore that the
Lie bracket [U,V] = UV — VU is skew-symmetric. One can optionally check
that although the Lie bracket product is not in general associative, it instead
satisfies the Jacobi identity,

[, [V, W]l + [V, W, U]] + W, [U, V]] = 0.

(b) Encode the vectors u = (u1,ug,us) and v = (v1, v, v3) as 3 x 3 skew-
symmetric matrices,

0 —U; —U 0 —vV1 —V2
U= (751 0 —us | , V= U1 0 —U3
Ug U3 0 Vg U3 0

Show that the Lie bracket product [U, V] encodes the cross product u X v.

3.10.6. Investigate the extent to which a cancellation law holds for the cross
product, as follows: for fixed u, v in R? with u # 0, describe the vectors w
satisfying the condition u X v = u X w.

3.10.7. What is the line specified by two points p and p’?

3.10.8. Give conditions on the points p, p’ and the directions d, d’ so that
L(p,d) =L(p',d).

3.10.9. Express the relation between the coordinates of a point on ¢(p, d) if
the z-component of d is 0.

3.10.10. What can you conclude about the lines

T —z — z2—z T —x — z—z
p _ Y~ Y _ i and p _ Y "YU _ P
Zd Yd Zd D YD ZD

given that xqxp + yayp + z4zp = 07 What can you conclude if z4/xp =
Ya/Yp = za/zp?

3.10.11. Show that £(p,d) and ¢(p’, d’) intersect if and only if the linear equa-
tion Dt = Ap is solvable, where D € M3 5(R) has columns d and d’, ¢ is the
column vector [g ], and Ap = p’ —p. For what points p and p’ do £(p, (1,2,2))
and £(p’, (2,—1,4)) intersect?
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3.10.12. Use vector geometry to show that the distance from the point ¢ to
the line ¢(p, d) is
(g —p) x d|
I

(Hint: what is the area of the parallelogram spanned by ¢ — p and d?) Find
the distance from the point (3,4, 5) to the line ¢((1,1,1), (1,2, 3)).

3.10.13. Show that the time of nearest approach of two particles whose po-
sitions are s(t) = p + tv, 5(t) = p+tv is t = —(Ap, Av)/|Av]?. (You may
assume that the particles are at their nearest approach when the difference of
their velocities is orthogonal to the difference of their positions.)

3.10.14. Write the equation of the plane through (1,2,3) with normal direc-
tion (1,1,1).

3.10.15. Where does the plane x/a + y/b+ z/c = 1 intersect each axis?

3.10.16. Specify the plane containing the point p and spanned by directions
d and d’'. Specify the plane containing the three points p, q, and r.

3.10.17. Use vector geometry to show that the distance from the point ¢ to
the plane P(p,n) is
(g — p,n)|
In|

(Hint: Resolve ¢ — p into components parallel and normal to n.) Find the
distance from the point (3,4, 5) to the plane P((1,1,1),(1,2,3)).
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The Derivative

In one-variable calculus the derivative is a limit of difference quotients, but
this idea does not generalize to many variables. The multivariable definition
of the derivative to be given in this chapter has three noteworthy features:

The derivative is defined as a linear mapping.
The derivative is characterized intrinsically rather than constructed in co-
ordinates.

e The derivative is characterized by the property of closely approximating
the original mapping near the point of approximation.

Section 4.1 shows that the familiar definition of the one-variable derivative
cannot scale up to many variables. Section 4.2 introduces a pandimensional
notation scheme that describes various closenesses of approximation. The no-
tation packages a range of ideas that arise in calculus, handling them uni-
formly. Section 4.3 revisits the one-variable derivative, rephrasing it in the
new scheme, and then scales it up to many variables. Handy basic properties
of the derivative follow immediately. Section 4.4 obtains some basic results
about the derivative intrinsically, notably the chain rule. Section 4.5 com-
putes with coordinates to calculate the derivative by considering one variable
at a time and using the techniques of one-variable calculus. This section also
obtains a coordinate-based version of the chain rule. Section 4.6 studies the
multivariable counterparts of higher-order derivatives from one-variable calcu-
lus. Section 4.7 discusses optimization of functions of many variables. Finally,
Section 4.8 discusses the rate of change of a function of many variables as its
input moves in any fixed direction, not necessarily parallel to a coordinate
axis.

© Springer International Publishing AG 2016 131
J. Shurman, Calculus and Analysis in Euclidean Space,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-49314-5_4



132 4 The Derivative

4.1 Trying to Extend the Symbol-Pattern: Immediate,
Irreparable Catastrophe

In one-variable calculus, the derivative of a function f : R — R at a point
a € R is defined as a limit,

Fla@) = 1 Tt = F@)

h—0 h

But for every integer n > 1, the corresponding expression makes no sense for
a mapping f : R — R™ and for a point a of R™. Indeed, the expression is

i L@+ 1) = F(a)

h—0,, h ’

but this is not even grammatically admissible—there is no notion of division by
the vector h. That is, the standard definition of derivative does not generalize
to more than one input variable.
The breakdown here cannot be repaired by any easy patch. We must re-
think the derivative altogether in order to extend it to many variables.
Fortunately, the reconceptualization is richly rewarding.

Exercise
4.1.1. For a mapping f : R® — R™ and a point a of R™, the repair-attempt

of defining f’(a) as
i J(eth) = f(a)
h—0, |h‘

is grammatically sensible. Does it reproduce the usual derivative if n = m = 1?7

4.2 New Environment: The Bachmann—Landau Notation

The notation to be introduced in this section, originally due to Bachmann late
in the nineteenth century, was also employed by Landau. It was significantly
repopularized in the 1960s by Knuth in his famous computer science books,
and it is now integral to mathematics, computer science, and mathematical
statistics.

Definition 4.2.1 (o(1)-mapping, O(h)-mapping, o(h)-mapping). Con-
sider a mapping from some ball about the origin in one FEuclidean space to a
second Euclidean space,

¢ : B(0,,e) — R™

where n and m are positive integers and € > 0 is a positive real number. The
mapping ¢ ts smaller than order 1 if
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for every ¢ > 0, |@(h)| < ¢ for all small enough h.
The mapping ¢ is of order h if
for some ¢ > 0, |p(h)| < clh| for all small enough h.
The mapping ¢ is smaller than order h if
for every ¢ > 0, |p(h)| < c|h| for all small enough h.

A mapping smaller than order 1 is denoted o(1), a mapping of order h is
denoted O(h), and a mapping smaller than order h is denoted o(h). Also o(1)
can denote the collection of o(1)-mappings, and similarly for O(h) and o(h).

The definition says that in terms of magnitudes, an o(1)-mapping is smaller
than every constant as h gets small, and an O(h)-mapping is at most some
constant multiple of h as h gets small, and an o(h)-mapping is smaller than
every constant multiple of i as h gets small. That is,

lo(1)| =0

O(h)] .
] is bounded ash— 0,

lo(R)]
] —0

but the definitions of O(h) and o(h) avoid the divisions in the previous display,
and the definitions further stipulate that every o(1)-mapping or O(h)-mapping
or o(h)-mapping takes the value 0 at h = 0. That is, beyond avoiding division,
the definitions are strictly speaking slightly stronger than the previous display.
Also, the definitions quickly give the containments

o(h) C O(h) C o(1),

meaning that every o(h)-mapping is an O(h)-mapping, and every O(h)-
mapping is an o(1)-mapping.
Visually, the idea is that:

e For every ¢ > 0, however small, close enough to the origin the graph of an
o(1)-mapping lies between the horizontal lines at height +¢, although the
requisite closeness of h to 0 can change as ¢ gets smaller.

e For some particular ¢ > 0, close enough to the origin the graph of an
O(h)-mapping lies inside the bow-tie-shaped envelope determined by the
lines y = +cx.

e For every ¢ > 0, however small, close enough to the origin the graph of
an o(h)-mapping lies inside the y = +cx bow-tie, although the requisite
closeness of h to 0 can change as ¢ gets smaller.
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These images are oversimplified, representing a mapping’s n-dimensional
domain-ball and m-dimensional codomain-space as axes, but still the im-
ages correctly suggest that the o(1) condition describes continuity in local
coordinates, and the O(h) condition describes at-most-linear growth in local
coordinates, and the o(h) condition describes smaller-than-linear growth in
local coordinates. (A local coordinate system has its origin placed at some
particular point of interest, allowing us to assume that the point is simply the
origin.)

The next proposition gives the important basic example to have at hand.

Proposition 4.2.2 (Basic family of Landau functions). Consider the
function

Ye :R" — R,  pc(z) =|z/° (where e > 0 is a real number).

Then

e is0(1) if e > 0,
we s O(h) ife > 1,
e is o(h) if e > 1.

The proof is Exercise 4.2.2. Examples are shown in Figure 4.1.

P1/2

®3

Figure 4.1. Basic o(1), O(h), and o(h) functions

Since Definition 4.2.1 stipulates growth-bounds, the following result is im-
mediate.

Proposition 4.2.3 (Dominance principle for the Landau spaces). Let
@ be o(1), and suppose that |(h)| < |p(h)| for all small enough h. Then also
¥ is o(1). And similarly for O(h) and for o(h).

For example, the function

h2sin(1/h) if h #0,

v:R—R, w(h)_{o i h=0
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is o(h) despite oscillating ever faster as h approaches 0, because |[¢| < |pa]
where ¢o(h) = h? is o(h) by Proposition 4.2.2. The reader should draw a
sketch of this situation.

Similarly, the functions v, ¢ : R> — R given by

1/J(h7 k) =h, ¢(h‘7 k) =k

are O((h,k)) because the size bounds say that they are bounded absolutely
by the O(h)-mapping ¢1(h,k) = |(h, k)|, i.e., [¥(h, k)| = |h] < |(h, k)| and
similarly for ¢. For general n and for every ¢ € {1,...,n}, now letting h
denote a vector again as usual rather than the first component of a vector as
it did a moment ago, the ith component function

v :R" —R, ¢h)=~h

is O(h) by the same argument. We will use this observation freely in the
sequel.

The o(1) and O(h) and o(h) conditions give rise to predictable closure
properties.

Proposition 4.2.4 (Vector space properties of the Landau spaces).
For every fized domain-ball B(0,,,¢) and codomain-space R™, the o(1)-map-
pings form a vector space, and O(h) forms a subspace, of which o(h) forms a
subspace in turn. Symbolically,

o(1) + o(1) = o(1), Ro(1) = o(1),
O(h) +O(h) = O(h),  RO(h) = O(h),
o(h) + o(h) = o(h), Ro(h) = o(h),

i.e., o(1) and O(h) and o(h) absorb addition and scalar multiplication.

The fact that o(1) forms a vector space encodes the rules that sums and
constant multiples of continuous mappings are again continuous.

Proof (Sketch). Consider any ¢, € o(1). For every ¢ > 0,
lp(h)] < ¢/2 and |(h)| < ¢/2 for all small enough h,
and so by the triangle inequality,
(¢ +9)(h)| <c for all small enough h.

(A fully quantified version of the argument is as follows. Let ¢ > 0 be given.
There exists d, > 0 such that [¢(h)| < ¢/2if |h| < d,, and there exists 6, > 0
such that |[1)(h)| < ¢/2if |h| < 6y. Let § = min{d,, dy}. Then [(p+1)(h)| < ¢
if |h| < 4.) Similarly, for every nonzero a € R,

|p(h)| < ¢/|a] for all small enough h,
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so that since the modulus is absolute-homogeneous,
[(ap)(h)] < ¢ for all small enough h.
If instead @, 1 € O(h) then for all small enough h,
lo(h)| < c|h| and |¢(h)| < ¢'|h|  for some ¢, ¢’ > 0,
so that for all small enough A,

(0 +¥)(h)| < (c+ Al

Similarly, for every nonzero a € R, for all small enough h,
() (R)] < ()[Rl
The argument for o(h) is similar to the argument for o(1) (Exercise 4.2.3). O
For example, the function
©:R" — R, o) =12]z|"? — 7|z| + 5|z|>/?

is an o(1)-function because all three of its terms are. It is not an O(h)-function
even though its second and third terms are, and it is not an o(h)-function even
though its third term is.

Another handy fact is the componentwise nature of the conditions o(1)
and O(h) and o(h). To see this, first note that every ¢ : B(0,,c) — R™ is
o(1) if and only if the corresponding absolute value |¢| : B(0,,e) — R is.
Now let ¢ have component functions @1, ..., @.,. For every h € B(0,,¢) and
for each j € {1,...,m}, the size bounds give

lpj ()] < ()] < Z|<Pi(h)|~

Using the left side of the size bounds and then the vector space properties of
o(1) and then the right side of the size bounds, we get

lp| is o(1) == each |p,| is o(1) = Z lpi] is 0o(1) = |¢| is o(1).
i=1

Thus |p| is o(1) if and only if each |p;| is. As explained just above, we may
drop the absolute values, and so in fact ¢ is o(1) if and only if each ¢; is,
as desired. The arguments for the O(h) and o(h) conditions are the same
(Exercise 4.2.4). The componentwise nature of the o(1) condition encodes the
componentwise nature of continuity.

The role of linear mappings in the Landau notation scheme is straightfor-
ward, affirming the previously mentioned intuition that the O(h) condition
describes at-most-linear growth and the o(h) condition describes smaller-than-
linear growth.
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Proposition 4.2.5. Every linear mapping is O(h). The only o(h) linear map-
ping is the zero mapping.

Proof. Let T : R® — R™ be a linear mapping. The unit sphere in R" is
compact and T is continuous, so the image of the unit sphere under T is
again compact, hence bounded. That is, some positive ¢ € R exists such that
|T'(ho)| < ¢ whenever |h,| = 1. The homogeneity of T' shows that |T'(h)| < c|h|
for all nonzero h: letting h, = h/|h|,

IT(h)| = [T(Ihlho)| = [ M T (ho) | = [R]|T(ho)| < clh].

And the inequality holds for h = 0 as well. Thus T is O(h).

Now assume that T' is not the zero mapping. Thus T'(h,) is nonzero for
some nonzero h,, and we may take |h,| = 1. Let ¢ = |T'(h,)|/2, a positive
real number. For every scalar multiple h = ah, of h,, however small, compute
(noting for the last step that |h| = |a|)

IT(h)| = [T(aho)] = [aT (ho)| = |a|T(ho)| = 2¢la] = 2¢[h].

That is, |T'(h)| > c|h| for some arbitrarily small h-values, i.e., it is not the
case that |T'(h)| < c|h| for all small enough h. Thus T fails the o(h) definition
for the particular constant ¢ = |T'(h,)|/2. O

For scalar-valued functions, a product property is useful to have at hand.

Proposition 4.2.6 (Product property for Landau functions). Consider
two scalar-valued functions and their product function,

<PM/MP1/J . B(On,E) — R.

If ¢ is o(1) and ¢ is O(h) then @y is o(h). Especially, the product of two
linear functions is o(h).

Proof. Let ¢ > 0 be given. For some d > 0, for all i close enough to 0,,,
lp(h)] < ¢/d and |¢(h)] < d|h],

and so
() (R)| < cfh].

The second statement of the proposition follows from its first statement and
the previous proposition. O

For two particular examples, consider the linear functions
m, 7y R2 — R, mi(h,k) =h, ma(h,k)=k.

The proposition combines with the vector space properties of o(h, k) to say
that the functions
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a,B:R2— R, alhk)=h>—k% B(hk)=hk

are both o(h, k).

Beyond their vector space properties, the Landau spaces carry composition
properties. If ¢ : B(0,,c) — R™ and v : B(0,,,p) — R’ are both o(1),
then after shrinking e if necessary, the composition 1 o ¢ : B(0,,,&) — R’ is
also defined. That is, composition of o(1)-mappings is defined after suitably
shrinking a domain-ball. From now on, we shrink domain-balls as necessary
without further comment.

Proposition 4.2.7 (Composition properties of the Landau spaces).
The composition of o(1)-mappings is again an o(1)-mapping. Also, the com-
position of O(h)-mappings is again an O(h)-mapping. Furthermore, the com-
position of an O(h)-mapping and an o(h)-mapping, in either order, is again
an o(h)-mapping. Symbolically,

o(o(1)) = o(1),
O(O(h)) = O(h),
0o(O(h)) = o(h),
O(o(h)) = ofh).

That is, o(1) and O(h) absorb themselves, and o(h) absorbs O(h) from either
side.

The rule o(o(1))
position.

o(1) encodes the persistence of continuity under com-

Proof. For example, to verify the third rule, suppose that ¢ : B(0,,&) — R™
is O(h) and that 1 : B(0,,,p) — R’ is o(k). Then

for some ¢ > 0, |¢(h)| < ¢|h] for all small enough h.
Thus if & is small then so is ¢(h), so that
for any d > 0, |(p(h))| < d|p(h)| for all small enough h.

Since c is some particular positive number and d can be any positive number,
cd again can be any positive number. That is, letting e = ¢d and combining
the previous two displays, we have

for every e > 0, (¢ o ¢)(h)| < e|h] for all small enough h.

Hence 9 o ¢ is o(h), as desired.
A fully quantified version of the argument is as follows. The hypotheses
are that

there exist ¢ > 0 and ¢ > 0 such that |¢@(h)| < c|h| if |h| <6
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and that
for every d > 0 there exists 4 > 0 such that |[i(k)| < d|k| if |k| < eq4.

Now let e > 0 be given. Define d = e¢/c and p. = min{d, e4/c}. Suppose that
|h| < pe. Then

lp(h)| < clh| <eq since |h| <6 and |h| < eq4/c,
and so
[W(p(M)| < dlp(h)| < cd|h|  since |p(h)] < eq and |p(h)| < c|h].

That is,
[(e(h))| < elh| since cd =e.

This shows that 1 o ¢ is o(h), since for every e > 0 there exists p, > 0 such
that | (10 )(h)] < elh] if |h] < pe.
The other rules are proved similarly (Exercise 4.2.5). O

Exercises

4.2.1. By analogy to Definition 4.2.1, give the appropriate definition of an
O(1)-mapping. What is the geometric interpretation of the definition? Need
an O(1)-mapping take 0 to 07

4.2.2. Let e be a nonnegative real number. Consider the function
ve :R" — R, ¢(x)=|z|°

(a) Suppose that e > 0. Let ¢ > 0 be given. If |h| < ¢'/¢ then what do we
know about |g.(h)| in comparison to ¢? What does this tell us about ¢.?

(b) Prove that ¢y is O(h).

(c) Suppose that e > 1. Combine parts (a) and (b) with the product
property for Landau functions (Proposition 4.2.6) to show that ¢ is o(h).

(d) Explain how parts (a), (b), and (c) have proved Proposition 4.2.2.

4.2.3. Complete the proof of Proposition 4.2.4.

4.2.4. Establish the componentwise nature of the O(h) condition, and estab-
lish the componentwise nature of the o(h) condition.

4.2.5. Complete the proof of Proposition 4.2.7.



140 4 The Derivative

4.3 One-Variable Revisionism: The Derivative Redefined

The one-variable derivative as recalled at the beginning of the chapter,

Fla) — 1 TOT1) = @

h—0 h ’

is a construction. To rethink the derivative, we should characterize it instead.

To think clearly about what it means for the graph of a function to have a
tangent of slope t at a point (a, f(a)), we should work in local coordinates and
normalize to the case of a horizontal tangent. That is, given a function f of
a-values near some point a, and given a candidate tangent-slope ¢ at (a, f(a)),
define a related function g of h-values near 0,

g(h) = f(a+h) — f(a) —th.

Thus g takes 0 to 0, and the graph of g near the origin is like the graph of f
near (a, f(a)) but with the line of slope t subtracted. To reiterate, the idea
that f has a tangent of slope t at (a, f(a)) has been normalized to the tidier
idea that g has slope 0 at the origin:

To say that the graph of g is horizontal at the origin is to say that for
every positive real number c, however small, the region between the
lines of slope +c contains the graph of g close enough to the origin.

That is:

The intuitive condition for the graph of g to be horizontal at the origin
is precisely that g is o(h). The horizontal nature of the graph of g at the
origin connotes that the graph of f has a tangent of slope t at (a, f(a)).

The symbolic connection between this characterization of the derivative
and the constructive definition is immediate. As always, the definition of f
having derivative f'(a) at a is

. fla+h)— f(a) ’
}{%T:f(a%

which is to say,

oy a0 = F@) = @ _
h—0 h
and indeed, this is precisely the o(h) condition on g. Figure 4.2 illustrates the
idea that when h is small, not only is the vertical distance f(a + h) — f(a) —
f'(a)h from the tangent line to the curve small as well, but it is small even
relative to the horizontal distance h.

We need to scale these ideas up to many dimensions. Instead of viewing
the one-variable derivative as the scalar f/(a), think of it as the corresponding
linear mapping T, : R — R, multiplication by f’(a). That is, think of it as
the mapping
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f(x)
fla+h)
f(a) + f'(a)h
f(a)
Z a—le—h =

Figure 4.2. Vertical distance from tangent line to curve

To(h) = f'(a)h  for all h € R.

Figure 4.3 incorporates this idea. The figure is similar to Figure 4.2, but it
shows the close approximation in the local coordinate system centered at the
point of tangency, and in the local coordinate system the tangent line is indeed
the graph of the linear mapping T,. The shaded axis-portions in the figure
are h horizontally and g(h) = f(a+h) — f(a) — f'(a)h vertically, and the fact
that the vertical portion is so much smaller illustrates that g(h) is o(h).

Figure 4.3. Vertical distance in local coordinates
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We are nearly ready to rewrite the derivative definition pandimensionally.
The small remaining preliminary matter is to take into account the local
nature of the characterizing condition: it depends on the behavior of f only
on an e-ball about a, but on the other hand, it does require an entire e-ball.
Thus the following definition is appropriate for our purposes.

Definition 4.3.1 (Interior point). Let A be a subset of R™, and let a be
a point of A. Then a is an interior point of A if some e-ball about a is a
subset of A. That is, a is an interior point of A if B(a,e) C A for some e > 0.

Now we can define the derivative in a way that encompasses many variables
and is suitably local.

Definition 4.3.2 (Derivative). Let A be a subset of R™, let f : A — R™
be a mapping, and let a be an interior point of A. Then f is differentiable
at a if there exists a linear mapping T, : R™ — R™ satisfying the condition

fla+h)— fla) = T,(h) is o(h). (4.1)

This T, is called the derivative of f at a, written Df, or (Df),. When f
is differentiable at a, the matriz of the linear mapping D f, is written f'(a)
and is called the Jacobian matrix of f at a.

Here are two points to note about Definition 4.3.2:

e Again, an assertion that a mapping is differentiable at a point has the
connotation that the point is an interior point of the mapping’s domain.
That is, if f is differentiable at a then B(a,e) C A for some £ > 0. In the
special case n = 1, we are disallowing the derivative at an endpoint of the
domain.

e The domain of the linear mapping 7T, is unrestricted even if f itself is
defined only locally about a. Indeed, the definition of linearity requires
that the linear mapping have all of R™ as its domain. Every linear mapping
is so uniform that in any case its behavior on all of R" is determined by its
behavior on any e-ball about 0,, (Exercise 4.3.1). In geometric terms, the
graph of T, the tangent object approximating the graph of f at (a, f(a)),
extends without bound, even if the graph of f itself is restricted to points
near (a, f(a)). But the approximation of the graph by the tangent object
needs to be close only near the point of tangency.

Returning to the idea of the derivative as a linear mapping, when n = 2
and m = 1 a function f : A — R is differentiable at an interior point
(a,b) of A if for small scalar values h and k, f(a + h,b+ k) — f(a,b) is well
approximated by a linear function

T(h, k) = ah + Bk

where « and § are scalars. Since the equation z = f(a, b) + ah + Bk describes
a plane in (z,y, 2)-space (where h = x —a and k =y — b), f is differentiable
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at (a,b) if its graph has a well-fitting tangent plane through (a,b, f(a,b)).
(See Figure 4.4.) Here the derivative of f at (a,b) is the linear mapping tak-
ing (h,k) to ah + Bk, and the Jacobian matrix of f at a is therefore [a, 3].
The tangent plane in the figure is not the graph of the derivative D f(, ),
but rather a translation of the graph. Another way to say this is that the
(hy ky D f(a,p)(h, k))-coordinate system has its origin at the point (a,b, f(a,b))
in the figure.

Figure 4.4. Graph and tangent plane

When n = 1 and m = 3, a mapping f : A — R? is differentiable at an
interior point a of A if f(a+h)— f(a) is closely approximated for small real h
by a linear mapping

T(h) = |8| h
g
for some scalars «, 3, and 7. As h varies through R, f(a)+ T (h) traverses the
line £ = ¢(f(a), (v, B,7)) in R? that is tangent at f(a) to the output curve
of f. (See Figure 4.5.) Here Df,(h) = {%} h, and the corresponding Jacobian

matrix is [%} Note that the figure does not show the domain of f, so it may

help to think of f as a time-dependent traversal of the curve rather than as
the curve itself. The figure does not have room for the (h, D f,(h))-coordinate
system (which is 4-dimensional), but the D f,(h)-coordinate system has its
origin at the point f(a).

For an example, let A = B((0,0),1) be the unit disk in R?, and consider
the function
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Figure 4.5. Tangent to a parametrized curve

frA—R,  f(z,y) =2" -y

We show that for every point (a,b) € A, f is differentiable at (a,b), and its
derivative is the linear mapping

Tiap) : R2— R, Tiap)(h, k) = 2ah — 2bk.

To verify this, we need to check Definition 4.3.2. The point that is written
in the definition intrinsically as a (where a is a vector) is written here in
coordinates as (a,b) (where a and b are scalars), and similarly the vector h in
the definition is written (h, k) here, because the definition is intrinsic, whereas
here we are going to compute. To check the definition, first note that every
point (a,b) of A is an interior point; the fact that every point of A is interior
doesn’t deserve a detailed proof right now, only a quick comment. Second,
confirm the derivative’s characterizing property (4.1) by calculating that

f(a+hab+k) _f(aab) _T(a,b)(hak)
=(a+h)?—(b+k)*—a®+b*—2ah + 2bk
=hn® -k

We saw immediately after the product property for Landau functions (Propo-
sition 4.2.6) that h? —k? is o(h, k). This is the desired result. Also, the calcula-
tion tacitly shows how the derivative was found for us to verify: the difference
fla+h,b+k)— f(a,b) is 2ah — 2bk + h? — k%, which as a function of h and k
has a linear part 2ah — 2bk and a quadratic part h? — k2 that is much smaller
when h and k are small. The linear approximation of the difference is the
derivative.

Before continuing, we need to settle a grammatical issue. Definition 4.3.2
refers to any linear mapping that satisfies condition (4.1) as the derivative of f
at a. Fortunately, the derivative, if it exists, is unique, justifying the definite
article. The uniqueness is geometrically plausible: if two straight objects (e.g.,
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lines or planes) approximate the graph of f well near (a, f(a)), then they
should also approximate each other well enough that straightness forces them
to coincide. The quantitative argument amounts to recalling that the only
linear o(h)-mapping is zero.

Proposition 4.3.3 (Uniqueness of the derivative). Let f : A — R™
(where A C R™) be differentiable at a. Then there is only one linear mapping
satisfying the definition of D f,.

Proof. Suppose that the linear mappings T, T, : R" —» R™ are both deriva-
tives of f at a. Then the two mappings

fla+h) = f(a) =Tu(h) and f(a+h)— f(a) —Ta(h)

are both o(h). By the vector space properties of o(h), so is their difference
(T, — T,)(h). Since the linear mappings from R™ to R™ form a vector space
as well, the difference T, — 7T}, is linear. But the only o(h) linear mapping is
the zero mapping, so T, =T, as desired. ]

Finally, another result is immediate in our setup.
Proposition 4.3.4. If f is differentiable at a then f is continuous at a.

Proof. Compute, using the differentiability of f at a and the fact that linear
mappings are O(h), then the containment o(h) C O(h) and the closure of O(h)
under addition, and finally the containment O(h) C o(1), that

flath)=f(a) = flath)=f(a)=Ta(h)+Ta(h) = o(h)+O(h) = O(h) = o(1).

Since the o(1) condition describes continuity, the argument is complete. O

We will study the derivative via two routes. On the one hand, the linear
mapping D f, : R® — R™ is specified by mn scalar entries of its matrix f'(a),
and so calculating the derivative is tantamount to determining these scalars
by using coordinates. On the other hand, developing conceptual theorems
without getting lost in coefficients and indices requires the intrinsic idea of
the derivative as a well-approximating linear mapping.

Exercises

4.3.1. Let T : R® — R™ be a linear mapping. Show that for every € > 0,
the behavior of T' on B(0,,¢) determines the behavior of T" everywhere.

4.3.2. Give a geometric interpretation of the derivative when n = m = 2.
Give a geometric interpretation of the derivative when n = 1 and m = 2.
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4.3.3.Let f : A — R™ (where A C R") have component functions
f1,---, fm, and let a be an interior point of A. Let T : R® — R™ be a linear
mapping with component functions 71, ..., 7T,,. Using the componentwise na-
ture of the o(h) condition, established in Section 4.2, prove the component-
wise nature of differentiability: f is differentiable at a with derivative T’
if and only if each component f; is differentiable at a with derivative T;.

4.3.4. Let f(z,y) = (22 —y?,22y). Show that Dfap)(h, k) = (2ah—2bk, 2bh+
2ak) for all (a,b) € R2. (By the previous problem, you may work component-
wise.)

4.3.5. Let g(z,y) = xe¥. Show that Dg, ) (h, k) = he® + kaeb for all (a,b) €
R2. (Note that because e” = 1 and because the derivative of the exponential
function at 0 is 1, the one-variable characterizing property says that e — 1 =

k+ o(k).)

4.3.6. Show that if f: R® — R™ satisfies |f(x)| < |z|? for all z € R™ then
f is differentiable at 0,,.

4.3.7. Show that the function f(z,y) = /|zy| for all (z,y) € R? is not
differentiable at (0,0). (First see what D f y(h,0) and D f(g,0)(0, k) need to
be.)

4.4 Basic Results and the Chain Rule

Before constructing the derivative coordinatewise via the Jacobian matrix, we
derive some results intrinsically from its characterizing property. We begin by
computing two explicit derivatives.

Proposition 4.4.1 (Derivatives of constant and linear mappings).

(1) Let C : A — R™ (where A C R™) be the constant mapping C(z) = ¢ for
all x € A, where ¢ is some fized value in R™. Then the derivative of C' at
every interior point a of A is the zero mapping.

(2) The derivative of a linear mapping T : R™ — R™ at every point a € R™
1s again T.

Proof. Both of these results hold essentially by grammar. In general, the
derivative of a mapping f at a is the linear mapping that well approximates
f(a+ h) = f(a) for h near 0,,. But C(a + h) — C(a) is the zero mapping for
all h € A, so it is well approximated near 0,, by the zero mapping on R™.
Similarly, T'(a + h) — T'(a) is T'(h) for all h € R™, and this linear mapping is
well approximated by itself near 0,,.

To prove (1) more symbolically, let Z : R* — R™ denote the zero map-
ping, Z(h) = 0,, for all h € R™. Then

Cla+h)—C(a)—Z(h)=c—c—0=0 forall h e R".
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Being the zero mapping, C(a + h) — C(a) — Z(h) is crushingly o(h), showing
that Z meets the condition to be DC,. And (2) is similar (Exercise 4.4.1). O

Of course, differentiation passes through addition and scalar multiplication
of mappings.

Proposition 4.4.2 (Linearity of the derivative). Let f : A — R™
(where A C R™) and g : B — R™ (where B C R™) be mappings, and let a be
a point of AN B. Suppose that f and g are differentiable at a with derivatives
Df, and Dg,. Then:

(1) The sum f+g¢g : AN B — R™ is differentiable at a with derivative
D(f+g)a = Dfa + Dga.-

(2) For every « € R, the scalar multiple af : A — R™ s differentiable at a
with deriwative D(af), = aDf,.

The proof is a matter of seeing that the vector space properties of o(h)
encode the sum rule and constant multiple rule for derivatives.

Proof. Since f and g are differentiable at a, some ball about a lies in A and
some ball about « lies in B. The smaller of these two balls lies in AN B. That
is, a is an interior point of the domain of f 4+ g. With this topological issue
settled, proving the proposition reduces to direct calculation. For (1),

(f+9)(a+h)—(f+g)(a) = (Dfa + Dga)(h)
= fla+h)— f(a) = Dfa(h) + gla+h) — g(a) — Dga(h)
= o(h) + o(h) = o(h).

And (2) is similar (Exercise 4.4.2). O

Elaborate mappings are built by composing simpler ones. The next theo-
rem is the important result that the derivative of a composition is the composi-
tion of the derivatives. That is, the best linear approximation of a composition
is the composition of the best linear approximations.

Theorem 4.4.3 (Chain rule). Let f : A — R™ (where A C R"™) be a
mapping, let B C R™ be a set containing f(A), and let g : B — R’ be a
mapping. Thus the composition gof : A — R is defined. If f is differentiable
at the point a € A, and g is differentiable at the point f(a) € B, then the
composition g o f is differentiable at the point a, and its derivative there is

D(go f)a=Dgga) o Dfa-

In terms of Jacobian matrices, since the matriz of a composition is the product
of the matrices, the chain rule is

(go ) (a) =4 (f(a)) f'(a).
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The fact that we can prove that the derivative of a composition is the
composition of the derivatives without an explicit formula for the derivative
is akin to the fact in the previous chapter that we could prove that the deter-
minant of the product is the product of the determinants without an explicit
formula for the determinant.

Proof. To showcase the true issues of the argument clearly, we reduce the
problem to a normalized situation. For simplicity, we first take a = 0,, and
f(a) = 0,,. So we are given that

and we need to show that

(g0 f)(h) = (T o S)(h) + o(h).
Compute that

g(f(h)) = g(Sh+ o(h)) by the first given
=TSh+T(o(h))+ o(Sh+ o(h)) by the second.

We know that Tk = O(k) and Sh = O(h), so the previous display gives
(g o f)(h) = (T o S)(h) + O(o(h)) + o(O(h) + o(h)).

Since o(h) C O(h) and O(h) is closed under addition, since o(h) absorbs O(h)
from either side, and since o(h) is closed under addition, the error (the last
two terms on the right side of the previous display) is

O(o(h)) + O(O(h) + o(h)) = O(o(h)) + o(O(h)) = o(h) + o(h) = o(h).
Therefore we have shown that
(go f)(h) = (T o S)(h) + o(h),

exactly as desired. The crux of the matter is that o(h) absorbs O(h) from
either side.

For the general case, no longer assuming that a = 0,, and f(a) = 0,,, we
are given that

fla+h) = f(a) + S(h) + o(h),
9(f(a) +k) = g(f(a)) + T(k) + o(k),

and we need to show that

(go fila+h)=(ge f)(a)+ (T o S)(h)+ o(h).
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Compute that

g(f(a+h)) = g(f(a) +Sh+ o(h)) by the first given
=g(f(a))+ TSh+T(o(h)) + o(Sh+ o(h)) by the second,

and from here the proof that the remainder term is o(h) is precisely as it is
in the normalized case. O

Two quick applications of the chain rule arise naturally for scalar-valued
functions. Given two such functions, not only is their sum defined, but because
R is a field (unlike R™ for m > 1), so is their product and so is their quotient at
points where g is nonzero. With some help from the chain rule, the derivative
laws for product and quotient follow easily from elementary calculations.

Lemma 4.4.4 (Derivatives of the product and reciprocal functions).
Define the product function,

p:R*—R,  plz,y)=ay,
and define the reciprocal function
r:R—{0} — R, r(z) =1/z.
Then:
(1) The derivative of p at every point (a,b) € R? exists and is
Dp(a b (h,k) = ak + bh.
(2) The derivative of v al every nonzero real number a exists and is
Dro(h) = —h/d®.
Proof. (1) Compute
pla+ h,b+ k) —p(a,b) — ak —bh = (a + h)(b+ k) — ab — ak — bh = hk.

By the size bounds, |h| < |(h, k)| and |k| < |(h, k)|, so |hk| = |h||k] < |(h, k)]2.
Since |(h, k)|? is @a(h, k) (where @, is the example from Proposition 4.2.2), it
is o(h, k).

Statement (2) is left as Exercise 4.4.3. O

Proposition 4.4.5 (Multivariable product and quotient rules). Let
f:A— R (where ACR") and g : B — R (where B C R™) be functions,
and let f and g differentiable at a. Then:

(1) fg is differentiable at a with derivative

D(fg)a = f(a)Dga + g(a)Dfa.
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(2) If g(a) # 0 then f/g is differentiable at a with derivative

D (£>a _ Q(G)sz(;)];(a)Dga.

Proof. (1) As explained in the proof of Proposition 4.4.2; a is an interior point
of the domain AN B of fg, so we have only to compute. The product function
fg is the composition p o (f,g), where (f,g) : AN B — R? is the mapping
with component functions f and g. For every h € R™, the chain rule and the
componentwise nature of differentiation (this was Exercise 4.3.3) give

D(fg)a(h) = D(po (f,9))a(h) = (Dp(s.g)(a) © D(f,9)a) ()
= Dp(f(a),g(a))(Dfa(h), Dga(h)),

and by the previous lemma,

Dp((a),g(a)) (D fa(h), Dga(h)) = f(a)Dga(h) + g(a)D fa(h)
= (f(a)Dga + g(a)Dfa)(h)'

This proves (1) since h is arbitrary. Statement (2) is similar (Exercise 4.4.4)
but with the wrinkle that one needs to show that since g(a) # 0 and since
Dy, exists, it follows that a is an interior point of the domain of f/g. Here
it is relevant that g must be continuous at a, and so by the persistence of
inequality principle (Proposition 2.3.10), ¢ is nonzero on some e-ball at a, as
desired. O

With the results accumulated so far, we can compute the derivative of
every mapping whose component functions are given by rational expressions
in its component input scalars. By the componentwise nature of differentiabil-
ity, it suffices to find the derivatives of the component functions. Since these
are compositions of sums, products, and reciprocals of constants and linear
functions, their derivatives are calculable with the existing machinery.

Suppose, for instance, that f(x,y) = (22 —y)/(y + 1) for all (z,y) € R?
such that y # —1. Note that every point of the domain of f is an interior
point. Rewrite f as
X2 Y

Y +1

where X is the linear function X (z,y) = 2 on R? and similarly Y (x,y) = y.
Applications of the chain rule and virtually every other result on derivatives so
far shows that at every point (a,b) in the domain of f, the derivative D f(, )
is given by (justify the steps)

=
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D f(ap)(h, k)
_ (T4 D@D = Ve ~ (X2 = V)@ H)DE +Diaw) o,
(Y + 1)(a,0))? ’

(b + 1)(D(X2)(a,b) — DY(a,b)) — (CL2 — b)(DY(a)b) + Dl(a,b))

- (b+1)2 (h, k)
B (b+1)(2X(a,0)DX(qp) —Y) — (a®> - b)Y
N (b+1)2 (h k)
(0 +1)(2aX -Y) — (a®> — b)Y
N (b+1)2 (h k)
_ (b+1)(2ah — k) — (a® — b)k
(b+1)2
2a a? +1 i

Th+1 (b+12

In practice, this method is too unwieldy for any functions beyond the simplest,
and in any case, it applies only to mappings with rational component func-
tions. But on the other hand, there is no reason to expect much in the way of
computational results from our methods so far, since we have been studying
the derivative based on its intrinsic characterization. In the next section we
will construct the derivative in coordinates, enabling us to compute easily by
drawing on the results of one-variable calculus.

For another application of the chain rule, let A and B be subsets of R™,
and suppose that f: A — B is invertible with inverse g : B — A. Suppose
further that f is differentiable at a € A and that g is differentiable at f(a).
The composition g o f is the identity mapping idg : A — A, which, being
the restriction of a linear mapping, has that linear mapping id : R® — R"
as its derivative at a. Therefore,

id=D(ida)e = D(go f)a = Dga) 0 D fa.

This argument partly shows that for invertible f as described, the linear map-
ping Df, is also invertible. A symmetric argument completes the proof by
showing that also id = Df, o Dgy(4). Because we have methods available to
check the invertibility of a linear map, we can apply this criterion once we
know how to compute derivatives.

Not too much should be made of this result, however; its hypotheses are
too strong. Even in the one-variable case, the function f(z) = z* from R
to R is invertible and yet has the noninvertible derivative 0 at = 0. (The
inverse, g(x) = ¥/, is not differentiable at 0, so the conditions above are not
met.) Besides, we would prefer a converse statement, that if the derivative is
invertible then so is the mapping. The converse statement is not true, but we
will see in Chapter 5 that it is locally true, i.e., it is true in the small.
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Exercises

4.4.1. Prove part (2) of Proposition 4.4.1.
4.4.2. Prove part (2) of Proposition 4.4.2.
4.4.3. Prove part (2) of Lemma 4.4.4.
4.4.4. Prove the quotient rule.

4.4.5. Let f(x,y,2) = ayz. Find Df ) for arbitrary (a,b,c) € R3. (Hint:
f is the product XY Z, where X is the linear function X(z,y,2) = x and
similarly for Y and Z.)

4.4.6. Define f(z,y) = zy*/(y — 1) on {(z,y) € R? : y # 1}. Find D f(, )
where (a,b) is a point in the domain of f.

4.4.7. (A generalization of the product rule.) Recall that a function
FiR" xR — R
is called bilinear if for all z,z’,y,y’ € R™ and all a € R,
fle+a'y) = flz,y) + (@),
[y +y) = flz.y) + fla,y),
flaz,y) = af(z,y) = f(z, o).

(a) Show that if f is bilinear then f(h, k) is o(h, k).
(2) Show that if f is bilinear then f is differentiable with D f(, ) (h, k) =
(

fla, k) + f(h,b).

¢) What does this exercise say about the inner product?
4.4.8. (A bigger generalization of the product rule.) A function
fR"x---xR" —R

(there are k copies of R™) is called multilinear if for each j € {1,...,k}, for
all x1,... 25,25, ..., 7 € R" and all @ € R,
f(a:l,...,xj+x;-,...,xk) :f(xl,...,azj,...,xk)—|—f(x1,...,a:;,...,xk)
flxe,. .0z, . xp) = af(x1,..., 25, ..., ).

(a) Show that if f is multilinear and aq,...,ag,h1,...,hx € R™ then
for i,j € {1,...,k} (distinct), f(a1,...,hi,... hj,... ar) is o(hi,..., hg).
(Use the previous problem.)

(b) Show that if f is multilinear then f is differentiable with

k
Df(al,...,ak)(hla ceey hk) = Zf(ah v 7aj717hj7aj+17 v 7ak)~

Jj=1

(¢) When k = n, what does this exercise say about the determinant?
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4.5 Calculating the Derivative

Working directly from Definition 4.3.2 of the multivariable derivative with-
out using coordinates has yielded some easy results and one harder one—the
chain rule—but no explicit description of the derivative except in the simplest
cases. We don’t even know that any multivariable derivatives exist except for
mappings with rational coefficient functions.

Following the general principle that necessary conditions are more easily
obtained than sufficient ones, we assume that the derivative exists and de-
termine what it then must be. Geometry provides the insight. By the usual
componentwise argument, there is no loss in studying a function f with scalar
output, i.e., we may take m = 1. Setting n = 2 fits the graph of f in R® where
we can see it. Thus take f : A — R where A C R2.

Suppose that f is differentiable at the point (a,b). Then the graph of f
has a well-fitting tangent plane P at the point (a,b, f(a,bd)), as shown ear-
lier, in Figure 4.4. To determine this plane, we need two of its lines through
(a,b, f(a,b)). The natural lines to consider are those whose (z, y)-shadows run
in the = and y directions. Call them ¢, and /,,. (See Figure 4.6.)

Figure 4.6. Cross-sectional lines

The line ¢, is tangent to a cross section of the graph of f. To see this cross
section, freeze the variable y at the value b and look at the resulting function
of one variable, p(z) = f(z,b). The slope of £, in the vertical (z,b, z)-plane
is precisely ¢’(a). A small technicality here is that since (a,b) is an interior
point of A, also a is an interior point of the domain of ¢.

Similarly, ¢, has slope ¢’ (b) where ¢ (y) = f(a,y). The linear function
approximating f(a + h,b + k) — f(a,b) for small (h,k) is now specified as
T(h,k) = ¢'(a)h 4 ' (b)k. Thus D f(,p) has matrix [¢'(a) '(b)]. Since the
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entries of this matrix are simply one-variable derivatives, this is something
that we can compute.

Definition 4.5.1 (Partial derivative). Let A be a subset of R™, let f :
A — R be a function, and let a = (a1, ...,a,) be an interior point of A. Fix
je{l,...,n}. Define

o(t) = flar,...,aj-1,t,aj41,...,a,) fort near a;.
Then the jth partial derivative of f at a is defined as
D;f(a) = ¢'(ay)
if ¢'(a;) exists. Here the prime signifies ordinary one-variable differentiation.

Equivalently, fla+te;) — f(a)
) a—+tej) — fla
D; f(a) = lim :

if the limit exists and it is not being taken at an endpoint of the domain of
the difference quotient.

Partial derivatives are easy to compute: fix all but one of the variables,
and then take the one-variable derivative with respect to the variable that
remains. For example, if

flx,y,2z) =eYcosz + 2

then

d
Dy f(a,b,c) = ﬁ(eb cosz + c)|1_=a = —ebsina,

Dy f(a,b,c) = e’ cosa,
Dgf(a, b, C) =1.

Theorem 4.5.2 (The derivative in coordinates: necessity). Let the
mapping f : A — R™ (where A C R™) be differentiable at the point a € A.
Then for eachi € {1,...,m} and j € {1,...,n}, the partial derivative D, f;(a)
exists. Furthermore, each Dj f;(a) is the (i, )th entry of the Jacobian matriz
of f at a. Thus the Jacobian matriz is

Difi(a) -+ Dnfi(a)
Difa(a) -+ Dnfa(a)

f'(a) =

D fn(a) -+ Dy fona)

Proof. The idea is to read off the (i, j)th entry of f/'(a) by studying the ith
component function of f and letting h — 0,, along the jth coordinate direction
in the defining property (4.1) of the derivative. The ensuing calculation will
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repeat the quick argument in Section 4.3 that the characterization of the
derivative subsumes the construction in the one-variable case.

The derivative of the component function f; at a is described by the ith
row of f’(a). Call the row entries d;1,d;2,...,d;,. Since linear of is matriz
times, it follows that

(Dfi)a(te;) = dijt  for all t € R.

Let h = te; with ¢ a variable real number, so that h — 0,, as ¢ — Or. Since
(Df;)a exists, we have as a particular instance of the characterizing property

that fi(a+h) — fia) — (Dfi)a(h) is o(h),
|fila + te;) — fila) — (Dfi)a(te;)l

0= lim
=0 ltej]
iy | fila Tt tes) — fila) — dijt
t—0 t
= hm fi(a + t6j) — fl(a) - dij .
t—0 t
That is,
i lej) — fi
lim fila +te;) = fi(a) = dyj.
t—0 t
The previous display says precisely that D; f;(a) exists and equals d;;. ]

So the existence of the derivative D f, makes necessary the existence of all
partial derivatives of all component functions of f at a. The natural question
is whether their existence is also sufficient for the existence of D f,. It is not.
The proof of Theorem 4.5.2 was akin to the straight line test from Section 2.3:
the general condition h — 0, was specialized to h = te;, ie., to letting
h approach 0,, only along the axes. The specialization let us show that the
derivative matrix entries are the partial derivatives of the component functions
of f. But the price for this specific information was loss of generality, enough
loss that the derived necessary conditions are not sufficient.

For example, the function

2o if (n,y) #(0,0),
0 if (2,9) = (0,0)

has for its first partial derivative at the origin

t t—0 t

f:R? R, f(m,y)z{

and similarly Dsf(0,0) = 0; but as discussed in Chapter 2, f is not contin-
uous at the origin, much less differentiable there. However, this example is
contrived, the sort of function that one sees only in a mathematics class, and
in fact a result in the spirit of the converse to Theorem 4.5.2 does hold, though
with stronger hypotheses.
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Theorem 4.5.3 (The derivative in coordinates: sufficiency). Let f :
A — R™ (where A C R™) be a mapping, and let a be an interior point of A.
Suppose that for each i € {1,...,m} and j € {1,...,n}, the partial derivative
Djfi exists not only at a but at all points in some e-ball about a, and the
partial derivative D; f; is continuous at a. Then f is differentiable at a.

Note that if f meets the conditions of Theorem 4.5.3 (all partial derivatives
of all component functions of f exist at and about a, and they are continuous
at a) then the theorem’s conclusion (f is differentiable at a) is the condition
of Theorem 4.5.2, so that the latter theorem tells us the derivative of f (the
entries of its matrix are the partial derivatives). But the example given just
before Theorem 4.5.3 shows that the converse fails: even if all partial deriva-
tives of all component functions of f exist at a, the function f need not be
differentiable at a.

The difference between the necessary conditions in Theorem 4.5.2 and the
sufficient conditions in Theorem 4.5.3 has a geometric interpretation when
n = 2 and m = 1. The necessary conditions in Theorem 4.5.2 are:

If a graph has a well-fitting plane at some point, then at that point
we see well-fitting lines in the cross sections parallel to the coordinate
azes.

The sufficient conditions in Theorem 4.5.3 are:

If a graph has well-fitting lines in the cross sections at and near the
point, and if those lines don’t change much as we move among cross
sections at and near the point, then the graph has a well-fitting plane.

But well-fitting cross-sectional lines at the point are not enough to guaran-
tee a well-fitting plane at the point. The multivariable derivative is truly a
pandimensional construct, not just an amalgamation of cross-sectional data.

Proof. It suffices to prove the differentiability of each component function f;,
so we may assume that m = 1, i.e., that f is scalar-valued. To thin out the
notation, the proof will be done for n = 3 (so for example, a = (a1, as, as)),
but its generality should be clear.

Theorem 4.5.2 says that if the derivative D f, exists then it is defined by
the matrix of partial derivatives D; f(a). The goal therefore is to show that
the linear mapping

To(h1,he,hs) = D1 f(a)hi + D2 f(a)he + D3 f(a)hs
satisfies the defining property of the derivative. That is, we need to show that
fla+h)— f(a) = D1f(a)hi + Daf(a)ha + D3 f(a)hs + o(h).

We may take h small enough that the partial derivatives D;f exist at all
points within distance |h| of a. Here we use the hypothesis that the partial
derivatives exist everywhere near a.
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The idea is to move from a to a + h in steps, changing one coordinate at
a time,

fla+h)— f(a) = f(ar + h1,a2 + ho, a3 + h3) — f(a1,az + ha,a3 + h3)
+ f(ai,a2 + ha,as + h3) — f(a1, a2, a3 + h3)
+ f(al,aQaaG + h3) - f(a17a27a3)'

Because the partial derivatives exist, we may apply the mean value theorem
in two directions and the one-variable derivative’s characterizing property in
the third,

fla+h) = f(a) = D1 f(ar + c1,a2 + ha, a3 + h3)hy
+ Dy f(a1,as + c2,a3 + h3)hs
+ D3 f(a1,az,a3)hs + o(hs),

where |¢;| < |h;| for i = 1,2. Since D;f and Dyf are continuous at the
point a = (a1, as,as), and since the condition h — 03 squeezes each h; and ¢;
to 0,

Dif(ar +c1,a2 + ha, a3 + hs) = D1 f(a) + o(1),
Dy f(a1, a2 + c2,a3 + hz) = Daf(a) + o(1).

Also, o(1)h; = o(h) for i = 1,2 and o(hs) = o(h), and so altogether we have
fla+h)— f(a) = D1 f(a)hi + D2 f(a)ha + D3 f(a)hs + o(h).
This is the desired result. O

Thus, to reiterate some earlier discussion and to amplify slightly:

e The differentiability of f at a implies the existence of all the partial deriva-
tives at a, and the partial derivatives are the entries of the derivative
matrix,

e while the existence of all the partial derivatives at and about a, and their
continuity at a, combine to imply the differentiability of f at a,

e but the existence of all partial derivatives at a need not imply the differ-
entiability of f at a.

e And in fact, the previous proof shows that we need to check the scope and
continuity only of all but one of the partial derivatives. The proof used
the existence of D3f at a but not its existence near a or its continuity
at a, and a variant argument or a reindexing shows that nothing is special
about the last variable. This observation is a bit of a relief, telling us that
in the case of one input variable, our methods do not need to assume that
the derivative exists at and about a point and is continuous at the point
in order to confirm merely that it exists at the point. We codify this bullet
as a variant sufficiency theorem:
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Theorem 4.5.4 (The derivative in coordinates: sufficiency). Let f :
A — R™ (where A C R™) be a mapping, and let a be an interior point of A.
Suppose that for each i € {1,...,m},

o foreach j € {1,...,n}, the partial derivative D; f;(a) exists,
o and for each but at most one j € {1,...,m}, the partial derivative D; f;
ezists in some e-ball about a and is continuous at a.

Then f is differentiable at a.

Note how all this compares to the discussion of the determinant in the
previous chapter. There we wanted the determinant to satisfy characterizing
properties. We found the only function that could possibly satisfy them, and
then we verified that it did. Here we wanted the derivative to satisfy a char-
acterizing property, and we found the only possibility for the derivative—the
linear mapping whose matrix consists of the partial derivatives, which must
exist if the derivative does. But analysis is more subtle than algebra: this linear
mapping need not satisfy the characterizing property of the derivative unless
we add further assumptions. The derivative-existence theorem, Theorem 4.5.3
or the slightly stronger Theorem 4.5.4, is the most substantial result so far
in this chapter. We have already seen a counterexample to the converse of
Theorem 4.5.3, in which the function had partial derivatives but wasn’t differ-
entiable because it wasn’t even continuous (page 155). For a one-dimensional
counterexample to the converse of Theorem 4.5.3, in which the derivative ex-
ists but is not continuous, see Exercise 4.5.3. The example in the exercise does
not contradict the weaker converse of the stronger Theorem 4.5.4.

To demonstrate the ideas of this section so far, consider the function

o i @y) #0,0),
f@:9) {0 if (z,y) = (0,0).

The top formula in the definition describes a rational function of x and y
on the punctured plane R? — {(0,0)}. Every rational function and all of its
partial derivatives are continuous on its domain (feel free to invoke this result),
and furthermore every point (a,b) away from (0,0) lies in some e-ball that
is also away from (0,0). That is, for every point (a,b) # (0,0), the partial
derivatives of f exist at and about (a,b) and they are continuous at (a,b).
Thus the conditions for Theorem 4.5.3 are met, and so its conclusion follows:
f is differentiable at (a,b). Now Theorem 4.5.2 says that the derivative matrix
at (a,b) is the matrix of partial derivatives,

2ab3 a?(a® — v?)
(a2 +02)2 (a2 +b?)2

f(a,b) = [le(a,b) Dgf(avb)] =

Consequently, the derivative of f at every nonzero (a,b) is the corresponding
linear map
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2ab? n a*(a® — b?)
(a2 + b2)2 (a2 + b2)2
However, this analysis breaks down at the point (a,b) = (0, 0). Here our only

recourse is to figure out whether a candidate derivative exists and then test
whether it works. The first partial derivative of f at (0,0) is

f(t,0) — £(0,0) . 0-0

t t—0 t

Df(a,b)(ha k) = k.

and similarly D5 f(0,0) = 0. So by Theorem 4.5.2, the only possibility for the
derivative of f at (0,0) is the zero mapping. Now the question is,

is  f(h,k) = £(0,0) =0 o(h,k)?

Because the denominator h? + k2 of f away from the origin is |(h, k)|?,
|2 ||
|(h, k)[?

Let (h, k) approach 0, along the line h = k. Because |h| = |(h, h)|/V/2,

|hf? |(h, 1))
Thus along this line, the condition |f(h,k) — f(0,0) — 0] < ¢|(h, k)| fails for
(say) ¢ =1/4, and so f(h,k)— f(0,0)—0 is not o(h, k). That is, the function f
is not differentiable at (0,0). And indeed, the graph of f near (0,0) shows a
surface that isn’t well approximated by any plane through its center, no matter
how closely we zoom in. (See Figure 4.7. The figure shows that the cross-
sectional slopes over the axes are 0, while the cross-sectional slopes over the
diagonals are not, confirming our symbolic calculations.) Here we have used
the straight line test to get a negative answer; but recall that the straight
line test alone cannot give a positive answer, so the method here would need
modification to show that a function is differentiable.

For another example, Exercise 4.3.4 used the characterizing property to
confirm the derivative of the function f(z,y) = (2% — y?,22y). Now we can
use the theorems of this section to obtain the derivative and know that it
works. The function f has domain R?, so every domain point is interior. Since
each component of f is a polynomial, so are all partial derivatives of the
components, making them continuous everywhere. Thus f is differentiable at
every point (a,b) € R?. The matrix of partial derivatives at (a,b) is

lel(a,b) Dgfl(a,b) _ 2a —2b
leg((l,b) Dgfg(a,b)] o |:2b 2a:| ’

and so the derivative of f at (a,b) is, as before,
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Figure 4.7. The crimped sheet is differentiable everywhere except at the origin

Doy (b, k) = (2ah — 20k, 2bh + 2ak).

Similarly, the function g(x,y) = xe¥ from Exercise 4.3.5 has domain R?,
all of whose points are interior, and its partial derivatives Dig(x,y) = e¥ and
Dyg(x,y) = xe¥ are continuous everywhere. Thus it is differentiable every-
where. Its matrix of partial derivatives at every point (a,b) is

[Dig(a,b) Dag(a,b)] =" ae],
and so its derivative at (a,b) is
Dgapy(h, k) = e’ h + ae’k.

The reader is encouraged to reproduce the derivative of the product func-
tion (Lemma 4.4.4, part (1)) similarly.

Returning to the discussion (at the end of the previous section) of invert-
ibility of a mapping and invertibility of its derivative, consider the mapping

f : Rz - {(an)} — Rz - {(an)}a f(x,y) = (x2 - y2,2my).

At every (z,y) where f is defined, the partial derivatives are D fi(x,y) =
2z, Dafi(x,y) = —2y, Difo(x,y) = 2y, and Dyfo(x,y) = 2. These are
continuous functions of (z,y), so for every (a,b) # (0,0), D f, ) exists and
its matrix is

p | Difi(a,b) Dafi(a,b)| _ [2a —2b
(@5 =1 D fo(ab) Difl(a,w] - {% 2a]'
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The matrix has determinant 4(a? 4+ b?) > 0, and hence it is always invertible.
On the other hand, the mapping f takes the same value at points (z,y)
and —(z,y), so it is definitely not invertible.

With the Jacobian matrix described explicitly, a more calculational version
of the chain rule is available.

Theorem 4.5.5 (Chain rule in coordinates). Let f: A — R™ (where
A C R™) be differentiable at the point a of A, and let g : f(A) — R’ be
differentiable at the point b = f(a). Then the composition go f : A — R is
differentiable at a, and its partial derivatives are

Dj(go f)ila) =Y Digi(b)D;fu(a) fori=1,....¢,j=1,...,n.
k=1

Proof. The composition is differentiable by the intrinsic chain rule. The Ja-
cobian matrix of g at b is

g'(b) = [Drgi(b)],y,, (row index i, column index k),
the Jacobian matrix of f at a is

f'(a) = [Djfe(a)],,, (row index k, column index j),
and the Jacobian matrix of go f at a is

(go f)(a)=[Dj(go fli(a)l,y, (row index i, column index j).
By the intrinsic chain rule,
(g0 £)'(a) = ¢'(b)f'(a).

Equate the (7, j)th entries to obtain the result. O

Notations for the partial derivative vary. A function is often described by
a formula such as w = f(x,y, z). Other notations for Dy f are

g ow

Wy —.
oz’ ’ Oz

f17 fxa

If z, y, z are in turn functions of s and ¢ then a classical formulation of the
chain rule would be

ow _8w% aw@ aw%

9 oot Tayor T on ot (4.2)

The formula is easily visualized as chasing back along all dependency chains
from ¢ to w in a diagram where an arrow means contributes to:
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z

Unfortunately, for all its mnemonic advantages, the classical notation is a
veritable minefield of misinterpretation. Formula (4.2) doesn’t indicate where
the various partial derivatives are to be evaluated, for one thing. Specifying the
variable of differentiation by name rather than by position also becomes con-
fusing when different symbols are substituted for the same variable, especially
since the symbols themselves may denote specific values or other variables.
For example, one can construe many different meanings for the expression

%(y,a&z).

Blurring the distinction between functions and the variables denoting their
outputs is even more problematic. If one has, say, z = f(x,t,u), = g(t, u),

t

x z

P

u

then chasing all paths from z back to t gives
0z 0z0x 0Oz

ot oz ot o
with “0z/0t” meaning something different on each side of the equality. While
the classical formulas are useful and perhaps simpler to apply in elementary
situations, they are not particularly robust until one has a solid understand-
ing of the chain rule. On the other hand, the classical formulas work fine
in straightforward applications, so several exercises are phrased in the older
language to give you practice with it.

For example, let
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(z,y) = f(r,0) = (rcosf,rsinf),
(z,w) = g(a,y) = (° -y, 22y).

We compute (0z/0r)(2,7/3). The chain rule in coordinates gives

0z/0r 02/00) _ [ 02/0x 0z/0y] [0x/0r 0x/00
{(Q)w/ar 8w/89] {810/5)96 aw/ay} {83}/87‘ 8y/69]

and the upper left entry is

0z 0z0x 0z0y
—=——+__——==2 6 — 2ysin 6.
or Oz Or + dy Or v eos ysi
We are given (r,0) = (2,7/3), and it follows that (z,%) = (1,v/3). So the

answer is 3
0z 1 3
—(2 =2.1--=-2- — =] =2.

To confirm the result without using the chain rule, note that f is the polar-
to-Cartesian change of coordinates, and g is the complex squaring function in
Cartesian coordinates, so that the composition g o f is the squaring function
in polar coordinates. That is, the composition is

(z,w) = (g o f)(r,0) = (r* cos 20, r* sin 26).

Consequently 9z/0r = 2rcos 26, and substituting (r,0) = (2,7/3) gives in
particular (9z/0r)(2,7/3) =2-2cos2n/3 =2-2-(=1/2) = —2, as we know
it must.

Exercises

4.5.1. Explain why in the discussion beginning this section the tangent
plane P consists of all points (a,b, f(a,b)) + (h,k,T'(h,k)) where T'(h, k) =
¢'(a)h + ' (b)k.

4.5.2. This exercise shows that all partial derivatives of a function can exist at
and about a point without being continuous at the point. Define f : R2 — R

by
z.y) = ngglp if (z,y) # (0,0),
fz,y) {0 if (z,y) = (0,0).

(a) Show that Dy f(0,0) = D2f(0,0) = 0.

(b) Show that Dy f(a,b) and Ds f(a,b) exist and are continuous at all other
(a,0) eR

(c

) Show that Dy f and Do f are discontinuous at (0, 0).
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4.5.3. Define f : R — R by

2% sin < if z#0,

0 if z =0.
Show that f/(z) exists for all 2 but that f’ is discontinuous at 0. Explain how
this disproves the converse of Theorem 4.5.3.

4.5.4. Discuss the derivatives of the following mappings at the following
points.
2— . .
(a) f(z,y) = ”yﬂy on {(z,y) € R? : y # —1} at generic (a,b) with b # —1.
(After you are done, compare the effort of doing the problem now to the effort

of doing it as we did at the end of Section 4.4.)
(b) f(z,y) = ;”fyj on {(z,y) € R?:y # 1} at generic (a,b) with b # 1.

4] if (x, 0,0
(c¢) f(z,y) = {szﬂ/z _ (@ v) # (0,0 at generic (a,b) # (0,0) and at
0.0) 0 if (z,y) = (0,0)

For the rest of these exercises, assume as much differentiability as necessary.

4.5.5. For what differentiable mappings f : A — R™ is f/(a) a diagonal
matrix for all a € A? (A diagonal matrix is a matrix whose (4, j)th entries for
all i # j are 0.)

4.5.6. Show that if z = f(xy) then z, y, and z satisfy the differential equation
T2 —Y-zy =0.

4.5.7. Let w = F(xz,yz). Show that z - w, +y - wy = 2 - w,.
4.5.8. If z = f(ax + by), show that bz, = az,.

4.5.9. The function f : R2 — R is called homogeneous of degree k if
f(ta,ty) = t*f(x,y) for all scalars t and vectors (x,y). Letting fi and fo
denote the first and second partial derivatives of f, show that such f satisfies
the differential equation

xfl(x»y) +yf2(xay) = kf(x’y)

(Hint: First differentiate the homogeneity condition with respect to ¢, viewing
z and y as fixed but generic; the derivative of one side will require the chain
rule. Second, since the resulting condition holds for all scalars ¢, it holds for
any particular ¢ of your choosing.)

4.5.10. Let
f:R? >R

be a function such that for all (x,y) € R?, the integral
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y
F:R? — R, F(x,y):/ f(z,v)dv
v=0

exists and is differentiable with respect to x, its partial derivative with respect
to x being obtained by passing the z-derivative through the v-integral,

oF(xz,y) 0 [Y

e~ O Of(x,v) dv

i Yo +hvdv—fy f(x,v)dv

h—0

flz+ hyv) —

~

lim f (,0) 4
h—0

;/ lim f(x—|—h,v

v=0 h—0
voaf
=/ Oax(x ,v) do.

v

v;"‘

fav) |

v

>

(The “1” step requires justification, but under reasonable circumstances it can
be carried out.) Define a function

G:R —R, G(ac):/ﬂC f(z,v)dv
=0

Thus z affects G in two ways: as a parameter for the integrand, and as the
upper limit of integration. What is dG(x)/dx?

4.6 Higher-Order Derivatives

Partial differentiation can be carried out more than once on nice enough func-
tions. For example, if

flay) = r
then

le(l‘,y) = Sinyersiny, Dgf(l',y) — xcosyezsiny.

Taking partial derivatives again yields

Dlle(Z‘, y) sin yezsiny’

D1 Dyf(x,y) = cos ye®SMY 4 giny cos ye® MY,

DyD; f(x,y) = cosye® ™Y + xsiny cosye” ™Y = Dy Dy f(x,y),
DQDQf(.Z’,y) — Slnyexsmy + I cos yemsmy7

and some partial derivatives of these in turn are
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x siny
3

DDy Dy f(z,y) = 2siny cos ye® Y 4 zsin” y cos ye
DDy Dy f(x,y) = D1D1 Do f(2,y),
DDy Do f(2,y) = —sinye® ™Y + 2z cos? ye” 5"Y — rsin? ye” SV
+ 22 siny cos? ye® SV,
DyDy D f(z,y) = D2D1Ds f (2, y),
D1DyDs f(x,y) = —sinye” siny 4 9z cos? ye® MY — g sin? ye® SNV
+ 22 siny cos? ye® MY
= Dy D1Ds f(z,y),
DD D f(z,y) = 2siny cos ye® MY 4 zsin” y cos ye
= D1D1 Dy f(x,y).

x siny

Suspiciously many of these match. The result of two or three partial differen-
tiations seems to depend only on how many were taken with respect to x and
how many with respect to y, not on the order in which they were taken.

To analyze the situation, it suffices to consider only two differentiations.
Streamline the notation by writing Do D1 f as D1af. (The subscripts may look
reversed, but reading Do from left to right as D-one-two suggests the appro-
priate order of differentiating.) The definitions for D11 f, Doy f, and Dao f are
similar. These four functions are called the second-order partial derivatives
of f, and in particular Diof and Ds; f are the second-order mixed partial
derivatives. More generally, the kth-order partial derivatives of a function f are
those that come from k partial differentiations. A C*-function is a function
for which all the kth-order partial derivatives exist and are continuous. The
theorem is that with enough continuity, the order of differentiation doesn’t
matter. That is, the mixed partial derivatives agree.

Theorem 4.6.1 (Equality of mixed partial derivatives). Suppose that
f:A— R (where A C R?) is a C>-function. Then at every point (a,b) of A,

D1af(a,b) = Da1 f(a,b).
We might try to prove the theorem as follows:

Di2f(a,b) = Jim Dy f(a,b+ /2 — D1 f(a,b)

 limp g f(a+h,b+k2—f(a,b+k) ~ im0 f(a—&-h,b}z—f(a,b)

= lim
k—0 k

iy pig SRR (@b k) = flat D)+ fla,)
k—0 h—0 hk

and similarly

D21f(a,b)zllliir%)%%f(a+h’b+k)_f(a+z’l€b)_f(“’b"'k)‘*‘f(a’b).
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So, letting A(h, k) = f(a+ h,b+ k) — f(a,b+ k) — f(a+ h,b) + f(a,b), we
want to show that

o AK) L A(hk)
Jiny Yy —5 7= =l i =50

If the order of taking the limits doesn’t matter then we have the desired re-
sult. However, if f is not a C?-function then the order of taking the limits can
in fact matter, i.e., the two mixed partial derivatives can both exist but not
be equal (see Exercise 4.6.1 for an example). Thus a correct proof of Theo-
rem 4.6.1 requires a little care. The theorem is similar to Taylor’s theorem
from Section 1.3 in that both are stated entirely in terms of derivatives, but
they are most easily proved using integrals. The following proof uses integra-
tion to show that A(h,k)/(hk) is an average value of both Disf and Do f
near (a,b), and then letting h and k shrink to 0 forces Diof and Da;f to
agree at (a,b), as desired. That is, the proof shows that the two quantities in
the previous display are equal by showing that each of them equals a common
third quantity.

Proof. Since f is a C2-function on A, every point of A is interior. Take any
point (a,b) € A. Then some box B = [a,a + h] x [b,b+ k] lies in A. Compute

the nested integral
a+h btk a+h
/ / dydx:/ kdx = hk.
a b a

Also, by the fundamental theorem of integral calculus twice,

a+h  pb+k ath
/ [ Duf)dyds - / (Dyf(2,b+ k) — Dy f(z,b)) do
= fla+h,b+k)— fla,b+ k) — f(a+ h,b)+ f(a,b) = A(h, k).

(Thus the integral has reproduced the quantity that arose in the discussion
leading into this proof.) Let my, ; be the minimum value of D12 f on the box B,
and let My, i, be the maximum value. These exist by Theorem 2.4.15, because
B is nonempty and compact, and Dqof : B — R is continuous. Thus

mpk < Diaf(x,y) < My for all (z,y) € B.
Integrate this inequality, using the two previous calculations, to get
mh,khk S A(h, k‘) S Mh’khk,
or
A(h, k)
hk

As (h,k) — (07,07), the continuity of Di2f at (a,b) forces my, . and My,
to D1af(a,b), and hence

mpp < < My, k.
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A(h, k)
hk

But also, reversing the order of the integrations and of the partial derivatives
gives the symmetric calculations

b+k  path
/ / dedy = hk
b a

b+k a+h
/ / Doy f(z,y) dady = A(h, k),
b a

and so the same argument shows that

— Diaf(a,b) as (h,k) — (07,07).

and

A(:];k) — Doy f(a,b) as (h,k) — (07,07).
Because both Disf(a,b) and Da; f(a,b) are the limit of A(h,k)/(hk), they
are equal. O

Extending Theorem 4.6.1 to more variables and to higher derivatives is
straightforward, provided that one supplies enough continuity. The hypotheses
of the theorem can be weakened a bit, in which case a subtler proof is required,
but such technicalities are more distracting than useful.

Higher-order derivatives are written in many ways. If a function is de-
scribed by the equation w = f(z,y, z) then Dassf is also denoted

o (0 [of 3f
f2337 fyzzv E <8Z <8y>> 9 M7
RTTIE e
yzz 0z \0z\0y/))’ 0220y’

As with one derivative, these combine mnemonic advantages with conceptual
dangers.

A calculation using higher-order derivatives and the chain rule transforms
the heat equation of Laplace from Cartesian to polar coordinates. The C?
quantity v = f(z,y) depending on the Cartesian variables x and y satisfies
Laplace’s equation if (blurring the distinction between u and f)

o P
ox?  oy2

If instead wu is viewed as a function g(r,#) of the polar variables r and 6 then
how is Laplace’s equation expressed?
The Cartesian coordinates in terms of the polar coordinates are

xr=rcosf, y=rsind.
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Thus u = f(x,y) = f(rcosd,rsinf) = g(r,0), showing that u depends on r
and 6 via x and y:

r——

N
—

0 ———y
The chain rule begins a hieroglyphic calculation,
Up = Uz Ty + UyYr,

so that by the product rule,

Upyr = (uxxr + uyyr)'r

= UgrTr + Ugp Ty + UyrYr + Uy Yrr-

Since u, and u, depend on r and ¢ via = and y just as u does, each of them can
take the place of u in the diagram above, and the chain rule gives expansions
of uy, and uy, as it did for u,,

Upp = UgrTy + UgTrr + UyrYr + UyYrr
= (’U,MCLCT + uzyyr) Tr + Ug Ly + (Uyzxr + uyyyr) Yr + UyYpr

_ 2 2
= Uga Ty + UgyYrTr + UgpLpr + Uyae TrYr + Uyy Yy + Uy Yrr

2 2
Ugy Ty + 2uwyxryr + UyyYy + UgTrr + UyYrr-

Note the use of equality of mixed partial derivatives. The same calculation
with 6 instead of r gives

Upy = Uz Ty + 2UsyToYo + UyyYs + UsTop + UyYoo-
Because x = rcosf and y = rsin 6, we have the relations
T =z/r, yr=y/r, Tg=—Y, Yo=71,
ZTpy = 0, Yrr =0, Togg = —T, Yoo = —Y-
It follows that

2 2 2
T Upp = Ugz X + 2umymy + Uyyy~,
TUp = U T + UyY,

2 2
Ugg = Uzl — 2umyxy + UyyT™ — U — UyY,
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and so

2 2 2 2
T Uppr + TUpr + Ugyg = Ugz X~ + UyylY~ + Uz Y~ + UyyX

= (Uge + uyy)(ag2 + ZU2)~

2

Recall that the Cartesian form of Laplace’s equation is g, + uyy = 0. Now
the polar form follows:

2 Uy + Ty 4+ ugg = 0.

That is,
5 0%u  Ou  O%u
"o T oo
The point of this involved calculation is that having done it once, and only
once, we now can check directly whether any given function g of the polar
variables r and 6 satisfies Laplace’s equation. We no longer need to transform

each u = g(r,#) into Cartesian terms u = f(x,y) before checking.

=0.

An n x n matrix A is orthogonal if ATA = I. (This concept was in-
troduced in Exercise 3.5.5.) Let A be orthogonal and consider its associated
linear map,

Ta:R" — R", Ty(x)= Az

We show that prepending T4 to a twice-differentiable function on R™ is inde-
pendent of applying the Laplacian operator to the function. That is, letting
A denote the Laplacian operator on R",

A=D1+ D+ -+ Dy,
and taking any twice-differentiable function on R",
f:R* — R,

we show that
A(foTa)=AfoTy.

To see this, start by noting that for every = € R”, the chain rule and then
the fact that the derivative of every linear map is itself give two equalities of
linear mappings,

D(foTa)s = Dfr, ()0 D(Ta)s = Dfr, ()0 Ta.

In terms of matrices, the equality of the first and last quantities in the previous
display is an equality of row-vector-valued functions of x,

[Dl(foTA) Dn(foTA)}(x):([le an}oTA)(z)'A.

Because we view vectors as columns, transpose the quantities in the previ-
ous display, using the fact that A is orthogonal to write A~! for AT, and
universalize over x to get an equality of column-valued functions,
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D1(f oTy) Dy f
=Ty -10 oTy.
Dn(fOTA) an

The derivative matrix of the left side has as its rows the row vector derivative
matrices of its entries, while the derivative matrix of the right side is computed
by the chain rule and the fact that the derivative of every linear map is itself,

Duf o)l = A7 (Dol oTal ., - A

nxn

The trace of a square matrix was introduced in Exercise 3.2.5 as the sum of its
diagonal entries, and the fact that tr(A=1BA) = tr(B) if A is invertible was
noted just after the proof of Theorem 3.5.2. Equate the traces of the matrices
in the previous display to get the desired result,

A(foTa)=AfoTy.

To complement the proof just given in functional notation, here is a more
elementary second proof. Let the matrix A have entries a;;. For every z € R",
compute that for i =1,...,n,

n

D;(foTa) Z ijfZaﬂDfAm)

j=1 j=1
and thus
D;i(f oTa)( ZaﬂZD]kf Az)D;(Azx), = Z ajiari D f(Ax),
7j=1 7,k=1

and thus, because A is orthogonal, so that (AAT);; is 1 when j = k and 0
otherwise,

Z Qi Qi jkf A:E)

1i=1

A(f (e] TA
J

(AAT)jx Dji f (Az)
1

- RTM:

J

Dii f(Azx) = (Af o Ta)(z),

|

©
I
=

as desired.

Exercises

4.6.1. This exercise shows that continuity is necessary for the equality of
mixed partial derivatives. Let
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W =2 i (1) £ (0,0)
_ x4+ ’ ’ ’
f(@.y) {0 " i ey =0,0)

Away from (0,0), f is rational, and so it is continuous and all its partial
derivatives of all orders exist and are continuous. Show: (a) f is continuous
at (0,0), (b) D1 f and Dy f exist and are continuous at (0,0), (¢) D12f(0,0) =
1 £ —1= D, £(0,0).

For the rest of these exercises, assume as much differentiability as necessary.

4.6.2. Suppose u, as a function of x and y, satisfies the differential equation
Ugy — Uyy = 0. Make the change of variables x = s +t, y = s —t. What
corresponding differential equation does u satisfy when viewed as a function
of s and ¢7 (That is, find a nontrivial relation involving at least one of u, us,
U, Uss, e, aNd Ugg.)

4.6.3. (The wave equation) (a) Let ¢ be a constant, tacitly understood to
denote the speed of light. Let = and ¢ denote a space variable and a time
variable, and introduce variables

p=x+ct, q=x—ct.

Show that a quantity w, viewed as a function of x and ¢, satisfies the wave

equation,

2
C Wgy = Wit,

if and only if it satisfies the equation
Wpg = 0.

(b) Using part (a), show that in particular if w = F(z + ct) + G(x — ct)
(where F' and G are arbitrary C2-functions of one variable) then w satisfies
the wave equation.

(¢) Now let 0 < v < ¢ (both v and ¢ are constant), and define new space
and time variables in terms of the original ones by a Lorentz transformation,

y=v(x—ot), u=n~(t—(v/c*)x) where v = (1 —v?/c?) "2,
Show that
y+tceu=~(1—-v/c)(z+ct), y—cu=~v1+v/c)(z— ct),
so that consequently (y,u) has the same spacetime norm as (z,t),

2,2 2 2,42

y2—cu =a° —ct°.

(d) Recall the variables p = z + ¢t and ¢ = « — ¢t from part (a). Similarly,
let r = y+4cu and s = y — cu. Suppose that a quantity w, viewed as a function
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of p and g, satisfies the wave equation wy, = 0. Use the results r = y(1—v/c)p,
s =7(1+v/c)q from part (c) to show that it also satisfies the wave equation
in the (r, s)-coordinate system, w,.s = 0. Consequently, if w satisfies the wave
equation c?wg, = wy in the original space and time variables then it also
satisfies the wave equation cway = Wy in the new space and time variables.

4.6.4. Show that the substitution z = e®, y = ¢! converts the equation

mQum + y2uyy + zug +yuy =0

into Laplace’s equation ugs + ugy = 0.

4.6.5. (a) Show that the substitution & = s? — t2, y = 2st converts Laplace’s
equation Uz, + uyy = 0 back into Laplace’s equation s + ug = 0.

(b) Let k be a nonzero real number. Show that the substitution r = p*,
0 = k¢ converts the polar Laplace’s equation 72u,, 4+ 7u, + ugs = 0 back
into the polar Laplace’s equation pu,, + pu, + ugs = 0. (When k = 2 this
subsumes part (a), because the substitution here encodes the complex kth-
power function in polar coordinates while the substitution in part (a) encodes
the complex squaring function in Cartesian coordinates.)

4.6.6. Let u be a function of x and y, and suppose that x and y in turn depend

linearly on s and ¢,
T abl||s
M - [cd} M wd=be=t

. . 2 2
What is the relation between ugsuy — u%; and ugpgtyy — uw?

4.6.7. (a) Let H denote the set of points (z,y) € R? such that y > 0. Associate
to each point (z,y) € H another point,

(2, w) s
z,w) = :
’ 22 1 2" 22 + 12

You may take for granted or verify that

2y =22 —w?, 2y = 22w,  Zge =22(22 — 3w?), 2z, = —22(2* — 3w?)
and
wy = 2zw, wy =22 —w?  we, =2w(32% —w?), wy, = —2w(32% —w?).

Consider a quantity v = f(z,w), so that also u = f(z,y) for a different
function f. As usual, we have

2 2
Ugy = UzzZy + 2uzwzzwm + Uy Wy, + Uz Zpp + Uy Wey,

2 2
Uyy = UzzZy T+ 2UzwZy Wy + U Wy, + Uz Zyy + Uy Wyy-
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Show that

y2 (urr + Uyy) = U)2 (uzz + uww)-
The operator y?(9%/0x% + 92/0y?) on H is the hyperbolic Laplacian, de-
noted A™. We have just established the invariance of A* under the hyperbolic
transformation that takes (z,y) to (z,w) = (—z/(z% + v?),y/(z? + y?)).

(b) Show that the invariance relation y?(uzy + Uyy) = W (Uzz + Uww)
also holds when (z,w) = (x 4+ b,y) for every fixed real number b, and that
the relation also holds when (z,w) = (rz,ry) for every fixed positive real
number r. It is known that every hyperbolic transformation of H takes the
form (z,w) = ¢(x,y) where ¢ is a finite succession of transformations of the
type in part (a) or of the two types just addressed here. Note that consequently
this exercise has shown that the invariance relation holds for every hyperbolic
transformation of H. That is, for every hyperbolic transformation ¢ and for
every twice-differential function f : H — R we have, analogously to the
result at the very end of this section,

AM(fog)=A"fog.

4.6.8. Consider three matrices,

x=[a v=2) =39

Establish the relations
XY -YX=H, HX — XH =2X, HY —YH = -2Y.
Now consider three operators on smooth functions from R™ to R, reusing the

names X, Y, and H, and letting A = Dy; + Do + --- + D,,, denote the
Laplacian operator,

(X)) = 3l f(@),
(V) (@) = —34f (),

(Hf)(z) = 5f(z)+ Z%Dz‘f(ﬂﬁ)~

Establish the same relations as a moment ago,
XY -YX=H, HX — XH =2X, HY —YH = -2Y.

The three matrices generate a small instance of a Lie algebra, and this exercise
shows that the space of smooth functions on R™ can be made a representation
of the Lie algebra. Further show, partly by citing the work at the end of this
section, that the action of every orthogonal matrix A on smooth functions
commutes with the representation,

X(foTa) = (X[)oTa,

Y(foTa)=(Y[)oTa,
H(foTa) = (Hf)oTa.
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4.7 Extreme Values

In one-variable calculus the derivative is used to find maximum and minimum
values (extrema) of differentiable functions. Recall the following useful facts.

o (Extreme value theorem.) If f : [, 5] — R is continuous then it assumes
a maximum and a minimum on the interval [a, 5].

e (Critical point theorem.) Suppose that f : [a, 8] — R is differentiable
on (a,B) and that f assumes a maximum or minimum at an interior
point a of [a, ]. Then f/(a) = 0.

e (Second derivative test.) Suppose that f : [a, 8] — R is C% on («, 8) and
that f’(a) = 0 at an interior point a of [a, §]. If f”(a) > 0 then f(a) is a
local minimum of f, and if f”(a) < 0 then f(a) is a local maximum.

Geometrically the idea is that just as the affine function
A(a+h) = f(a)+ f'(a)h

specifies the tangent line to the graph of f at (a, f(a)), the quadratic function
1
Pla+h) = f(a)+ f'(a)h + §f"(a)h2

determines the best-fitting parabola. When f’(a) = 0, the tangent line is
horizontal and the sign of f”(a) specifies whether the parabola opens upward
or downward. When f’(a) = 0 and f”(a) = 0, the parabola degenerates to
the horizontal tangent line, and the second derivative provides no information.
(See Figure 4.8.)

Figure 4.8. Approximating parabolas

This section generalizes these facts to functions f of n variables. The ex-
treme value theorem has already generalized as Theorem 2.4.15: a continuous
function f on a compact subset of R” takes maximum and minimum values.
The critical point theorem also generalizes easily to say that each extreme
value of the function f : A — R that occurs at a point where f is differen-
tiable occurs at a critical point of f, meaning a point @ where Df, is the
zero function.
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Theorem 4.7.1 (Multivariable critical point theorem). Suppose that
the function f : A — R (where A C R™) takes an extreme value at the point a
of A, and suppose that f is differentiable at a. Then all partial derivatives of f
at a are zero.

Proof. For each j € {1,...,n}, the value f(a) is an extreme value for the one-
variable function ¢ from Definition 4.5.1 of the partial derivative D, f(a). By
the one-variable critical point theorem, ¢’(a;) = 0. That is, D, f(a) =0. 0O

The generalization of the second derivative test is more elaborate. From
now on, all functions are assumed to be of type C? on the interiors of their
domains, meaning that all their second-order partial derivatives exist and are
continuous.

Definition 4.7.2 (Second derivative matrix). Let f : A — R (where
A C R") be a function and let a be an interior point of A. The second
derivative matrix of f at a is the n X n matriz whose (i,j)th entry is the
second-order partial derivative D;; f(a). Thus

Dy1f(a) -+ Dinf(a)
f(a) = o
Dpif(a) -+ Dpnf(a)

By the equality of mixed partial derivatives, the second derivative matrix
is symmetric, i.e., f”(a)T = f”(a). Beware of confusing the second derivative
matrix and the Jacobian matrix: the second derivative matrix is a square
matrix defined only for scalar-valued functions and its entries are second-order
partial derivatives, while for scalar-valued functions the Jacobian matrix is the
row vector of first partial derivatives.

Irksomely, f” is not (f')’. The problem is that the seemingly reasonable
map f': A — R™ taking each point a € A to f’(a) does not fit correctly
into our conventions: each f’(a) is specifically a row vector, but we view the
elements of R™ either as ordered lists with no shape at all or as column vectors.
Thus (f’)’ does not even exist. The correction is that the map T A— R
taking each point a € A to f’(a)T does fit our scheme, and indeed

(f")(a) = f"(a) for interior points a of A.

The pettiness of this issue makes clear that eventually we should loosen our
conventions and freely transpose vectors and matrices as called for by context,
as indeed many software packages do. But since the conventions can be helpful
for a student who is seeing the material for the first time, we retain them for
now and grudgingly accept the transpose here.

As an example, if

flz,y) =sin®z + 2%y + ¢,
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then for every (a,b) € R?,
f'(a,b) = [sin2a + 2ab a® + 2b]

and
2cos2a + 2b 2(1

f//(aab) = |: 2 )

Every n X n matrix M determines a quadratic function
Qu :R" — R, Qu(h) =h"Mh.

Here h is viewed as a column vector. If M has entries m;; and h = (hq, ..., hy)
then the rules of matrix multiplication show that

mi1 - Min hi

i=1 j=1
Mp1 = Mnn hn ’ J

The function @j; is homogeneous of degree 2, meaning that each of its terms
has degree 2 in the entries of h and therefore Qs (th) = t2Qps(h) for all t € R
and h € R".

When M is the second derivative matrix of a function f at a point a, the
corresponding quadratic function is denoted @ f, rather than Qs (4. Just as
f(a) + Dfq(h) gives the best affine approximation of f(a + h) for small h,
fla)+ Dfa(h) + %Qfa(h) gives the best quadratic approximation.

In the example f(z,y) = sin®z + 22y + y?, the second derivative matrix
at a point (a,b) defines the quadratic function

Qfany(h. ) = [ K] {2 cos ;Z 12 2;] m

=2((cos2a + b) h* + 2a hk + k?) for (h, k) € R?,

and so the best quadratic approximation of f near, for instance, the point
(r/2,1) is

1
f(m/2+h 1+ k)~ f(7/2,1) + D f(x2,1)(h, k) + §Qf(7r/2,1)(h,k’)
=n2/4+ 24+ wh+ (72 /4 + 2)k + Thk + k2.

Suppose that f : A — R (where A C R?) has a critical point at (a,b),
ie., f'(a,b) = [0 0]. Working in local coordinates, we will approximate f
by a quadratic function on R? having a critical point at (0,0). The graphs of
nine such quadratic functions are shown in Figure 4.9. If the best quadratic
approximation of f at (a,b) is a bowl then f should have a minimum at (a, b).
Similarly for an inverted bowl and a maximum. If the best quadratic ap-
proximation is a saddle then there should be points (z,y) near (a,b) where
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Figure 4.9. Two bowls, two saddles, four half-pipes, and a plane

f(z,y) > f(a,b) and points (2/,y") near (a,b) where f(z',y") < f(a,b). In
this case, (a,b) is called for obvious reasons a saddle point of f.

Returning to the example f(z,y) = sin®x 4 x%y + »2, note that (0,0) is
a critical point of f because f'(0,0) = [0 0]. The second derivative matrix
f"(0,0) is [29], and so the quadratic function $Q f(o,0) is given by

s@i00 k=3 10k 23] [1] =ne a2

Thus the graph of f looks like a bowl near (0,0), and f(0,0) should be a local
minimum.

This discussion is not yet rigorous. Justifying the ideas and proving the
appropriate theorems will occupy the rest of this section. The first task is to
study quadratic approximation of C2-functions.

Proposition 4.7.3 (Special case of Taylor’s theorem). Let I be an open
interval in R containing [0,1]. Let ¢ : I — R be a C?-function. Then

1
p(1) = ¢(0) + #'(0) + 5¢"(c)  for some ¢ € [0,1].
The proposition follows from the general Taylor’s theorem in Section 1.3
because the first-degree Taylor polynomial of ¢ at 0 is T;(t) = ©(0) + ¢'(0)t,
so that in particular 71 (1) = ¢(0) + ¢’(0).
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Theorem 4.7.4 (Quadratic Taylor approximation). Let f : A — R
(where A C R™) be a C?-function on the interior points of A. Let a be an
interior point of A. Then for all small enough h € R™,

flat h) = £(@) + Dfalh) + 5Qasen(h) for some c € [0,1],
or, in matrices, viewing h as a column vector,
fla+h) = f(a) + f'(a)h + %hTf”(a +ch)h  for some c € [0,1].
Proof. Let I = (—&,1 + ¢) be a small superinterval of [0,1] in R. Define
v:I— A, ~(t)=a+th.
Thus v(0) = a, ¥(1) = a + h, and 4/(¢) = h for all ¢ € I. Further define
p=fory:I—R.

That is, ¢(t) = f(a + th) is the restriction of f to the line segment from a
to a + h. By the chain rule and the fact that ' = h,

©'(t)=(fo)(t) = f(v(t)h = Dfayen(h).

The previous display can be rephrased as ¢'(£) = (f'" (y(t)), k), and so the
chain rule, the irksome formula (f’ T)' = f” and the symmetry of " give

¢"(t) = (" (y(t)Dh,h) = KT f"(a + th)h = Qfasen(h).

Because f(a + h) = ¢(1), the special case of Taylor’s theorem says that for
some ¢ € [0, 1],

Flat 1) = 9(0) + ¢/ (0) + 50(€) = f(a) + Dfalh) + 3Qfaren(h),

giving the result. O

Thus, to study f near a critical point a € R™ where D f, is zero, we need to
look at the sign of @ fq+cn(h) for small vectors h. The next order of business
is therefore to discuss the values taken by a homogeneous quadratic function.

Definition 4.7.5 (Positive definite, negative definite, indefinite ma-
trix). The symmetric square n x n matrix M is called

e positive definite if Qp(h) > 0 for every nonzero h € R™,
e negative definite if Qy(h) < 0 for every nonzero h € R",
e indefinite if Qas(h) is positive for some h and negative for others.
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The identity matrix I is positive definite because hTIh = |h|? for all h. The
matrix [(1) _?] is indefinite. The general question whether a symmetric n x n
matrix is positive definite leads to an excursion into linear algebra too lengthy
for this course. (See Exercise 4.7.10 for the result without proof.) However,
in the special case of n = 2, basic methods give the answer. Recall that the
quadratic polynomial ah? + 28h + § takes positive and negative values if and
only if it has distinct real roots, i.e., ad — 52 < 0.

Proposition 4.7.6 (Two-by-two definiteness Test). Consider a matriz
M= [g {;] € My(R). Then

(1) M is positive definite if and only if & > 0 and ad — 3% > 0.
(2) M is negative definite if and only if « < 0 and ad — 32 > 0.
(3) M is indefinite if and only if ad — 3% < 0.

Proof. Since Qs (t(h, k) = t2Quns(h, k) for all real ¢, scaling the input vector
(h,k) by nonzero real numbers doesn’t affect the sign of the output. The
second entry k can therefore be scaled to 0 or 1, and if £ = 0 then the first
entry h can be scaled to 1. Therefore, to prove (1), reason that
M is positive definite <= Qp(1,0) > 0 and Qpr(h,1) >0 for all h € R
— a>0and ah®> +28h+5>0forall heR

< a>0and ad — %> 0.
Statement (2) is similar. As for (3),
M is indefinite <= ah® + 28h + § takes positive and negative values
— ad-p*<0.
O

The proposition provides no information if ad — 82 = 0. Geometrically,
the proposition gives conditions on M to determine that the graph of Qs is
a bowl, an inverted bowl, or a saddle. The condition ad — 32 = 0 indicates
a degenerate graph: a half-pipe (see Figure 4.9), an inverted half-pipe, or a
plane.

For nonzero «, the matrix calculation

53] = Lot [ omiai-m ] [54"]

gives a corresponding equality of quadratic functions,
az? +2Bzy + 0y? = az® + o Had — B2)y?, F=x+a By

That is, a change of variables eliminates the cross term, and the variant
quadratic function makes the results of the definiteness test clear.
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The positive definite, negative definite, or indefinite character of a matrix
is preserved if the matrix entries vary by small enough amounts. Again we
restrict our discussion to the 2 x 2 case. Here the result is plausible geometri-
cally, since it says that if the matrix M (a, b) defines a function whose graph is
(for example) a bowl, then matrices close to M (a,b) should define functions
with similar graphs, which thus should still be bowl-shaped. The same persis-
tence holds for a saddle, but a half-pipe can deform immediately into either
a bowl or a saddle, and so can a plane.

Proposition 4.7.7 (Persistence of definiteness). Let A be a subset of R?,
and let the matriz-valued mapping

a(z,y) B( )}

Bz, y) 6(x,y)

be continuous. Let (a,b) be an interior point of A. Suppose that the matriz
M (a,b) is positive definite. Then for all (x,y) in some e-ball about (a,b), the
matriz M (z,y) is also positive definite. Similar statements hold for negative
definite and indefinite matrices.

M:A— My(R), M(z,y)= [ ;”;/

Proof. By the persistence of inequality principle (Proposition 2.3.10), the cri-
teria a > 0 and ad — 32 > 0 remain valid if # and y vary by a small enough
amount. The other statements follow similarly. O

When a function f has continuous second-order partial derivatives, the
entries of the second derivative matrix f”(a) vary continuously with a. The
upshot of the last proposition is therefore that we may replace the nebulous
notion of @ fqycn for some ¢ with the explicit function @ f,.

Proposition 4.7.8 (Two-variable max/min test). Let f : A — R
(where A C R?) be C? on its interior points. Let (a,b) be an interior point

of A, and suppose that f'(a,b) =10 0]. Let f"(a,b) = [g ?} Then:

(1) If @ > 0 and ad — B2 > 0 then f(a,b) is a local minimum.
(2) If « < 0 and ad — B2 > 0 then f(a,b) is a local mazimum.
(3) If ad — B% < 0 then f(a,b) is a saddle point.

Proof. This follows from Theorem 4.7.4, Proposition 4.7.6, and Proposi-
tion 4.7.7. 0O

Again, the test gives no information if aé — 3% = 0.

Returning once again to the example f(z,y) = sin? z + 2%y + y? with its
critical point (0, 0) and second derivative matrix f”(0,0) = [2 Y], the max/min
test shows that f has a local minimum at (0, 0).

Another example is to find the extrema of the function

f(z,y) =zy(z +y —3)



182 4 The Derivative
on the triangle
T={(z,y) €eR*:2>0,y>0,2+y <3}

To solve this, first note that T' is compact. Therefore f is guaranteed to take
a maximum and a minimum value on 7'. These are assumed either at interior
points of T or along the edge. Examining the signs of =, y, and z +y — 3
shows that f is zero at all points on the edge of T" and negative on the interior
of T'. Thus f assumes its maximum value—zero—along the boundary of T" and
must assume its minimum somewhere inside. (See Figure 4.10.) To find the
extrema of f inside T, we first find the critical points. The partial derivatives
of f (now viewed as a function only on the interior of T') are

and since z and y are nonzero on the interior of G, these are both zero only at
the unique solution (z,y) = (1,1) of the simultaneous equations 2z + y = 3,
x + 2y = 3. Therefore f(1,1) = —1 must be the minimum value of f. A quick
calculation shows that f”(1,1) = [2 1], and the max/min test confirms the
minimum at (1,1).

Figure 4.10. Zero on the boundary, negative on the interior

Another example is to find the extreme values of the function
2 L o L,
R — R, f(x,y):gx +a:y—2x—§y.

Since R? is not compact, there is no guarantee that f has any extrema. In fact,
for large x, f(x,0) gets arbitrarily large, and for large y, f(0,y) gets arbitrarily
large in the negative direction. So f has no global extrema. Nonetheless, there
may be local ones. Every point of R? is interior, so it suffices to examine the
critical points of f. The partial derivatives are

fx(x,y)zx—l-y—Q, fy(xay):m_ya
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and the only point where both of them vanish is (x,y) = (1,1). The second
derivative matrix is f”(1,1) = [{ _1], so the critical point (1,1) is a saddle

point. The function f has no extrema, local or global.

Exercises

4.7.1. Compute the best quadratic approximation of f(x,y) = e* cosy at the
point (07 0)7 f(h7 k) ~ f(Ov 0) + Df(O,O)(hv k) + %Qf(0,0)(hv k)

4.7.2. Compute the best quadratic approximation of f(z,y) = e**2Y at the
point (0, 0).
4.7.3. Explain, making whatever reasonable assumptions seem to be help-

ful, why the n-dimensional conceptual analogue of Figure 4.9 should have 3"
pictures. How does this relate to Figure 4.87

4.7.4. Find the extreme values taken by f(x,y) = xy(42? + y* — 16) on the
quarter-ellipse

E={(v,y) €R?: x>0,y > 0,42% + y* < 16}.

4.7.5. Find the local extrema of the function f(z,y) = #?+zy—4z+3y* — Ty
on R2.

4.7.6. Determine the nature of f(z,y) = 32+ 233 + (z — 2)? — (y + 4)? at
each of its critical points. Are there global extrema?

4.7.7. Find the critical points. Are they maxima, minima, or saddle points?
(The max/min test will not always help.)

flay) =2y +ay®,  g(zy) =, hz,y) =2’y + a2y’ +zy.

4.7.8. Discuss local and global extrema of f(z,y) = —1+ — —1= on the open

= z—1 y—1
ball B((0,0);1) in R2.

4.7.9. The graph of the function m(x,y) = 6xy? — 22° — 3y* is called a
monkey saddle. Find the three critical points of m and classify each as a
maximum, minimum, or saddle. (The max/min test will work on two. Study
m(z,0) and m(0, y) to classify the third.) Explain the name monkey saddle—a
computer picture may help.

4.7.10. Linear algebra readily addresses the question whether an n xn matrix
is positive definite, negative definite, or indefinite.

Definition 4.7.9 (Characteristic polynomial). Let M be an nx n matriz.
Its characteristic polynomial is

pa(N) = det(M — AI).

The characteristic polynomial of M is a polynomial of degree n in the scalar
variable .
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While the roots of a polynomial with real coefficients are in general com-
plex, the roots of the characteristic polynomial of a symmetric matrix in
M,,(R) are guaranteed to be real. The characterization we want is contained
in the following theorem.

Theorem 4.7.10 (Description of definite/indefinite matrices). Let M
be a symmetric matriz in M,,(R). Then:

(1) M is positive definite if and only if all the roots of par(N\) are positive.
(2) M is negative definite if and only if all the roots of par(N) are negative.
(3) M s indefinite if and only if par(A\) has positive roots and negative roots.

With this result one can extend the methods in this section to functions
of more than two variables.
(a) Let M be the symmetric matrix {g ﬂ € M(R). Show that

par(N) =A% — (a + O\ + (b — (7).

(b) Show that Theorem 4.7.10 is equivalent to Proposition 4.7.6 when
n=2.
(c) Classify the 3 x 3 matrices

1-10 010
-1 20/, 101
0 01 010

A generalization of Proposition 4.7.7 also holds, because the roots of a
polynomial vary continuously with the polynomial’s coefficients. The general-
ized proposition leads to the following result.

Proposition 4.7.11 (General max/min test). Let f : A — R (where
A C R") be C? on its interior points. Let a be an interior point of A, and
suppose that f'(a) = 0,,. Let the second derivative matriz f"(a) have charac-
teristic polynomial p(\).

(1) If all roots of p(\) are positive then f(a) is a local minimum.
(2) If all roots of p(\) are negative then f(a) is a local maximum.
(3) If p(\) has positive and negative roots then f(a) is a saddle point.

4.7.11. This exercise eliminates the cross terms from a quadratic function of
n variables, generalizing the calculation for n = 2 in this section. Throughout,
we abbreviate positive definite to positive. Let M be a positive n Xxn symmetric
matrix where n > 1. This exercise shows how to diagonalize M as a quadratic
function. (This is different from diagonalizing M as a transformation, as is
done in every linear algebra course.) Decompose M as

-]
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with @ > 0 and ¢ € R""! a column vector and N positive (n — 1) x (n — 1)
symmetric. Define
My =N —a tect,

again (n — 1) x (n — 1) symmetric, though we don’t yet know whether it is
positive. Check that

M— 1‘a‘1cT i a‘ o’ l‘a_lcT
~ 0] Ly 0[My| [O| I,y |’
Show that in terms of quadratic functions, this says (letting v = (1,...,z,)

and ve = (x2,...,2,) with these vectors viewed as columns, and letting & =
x1 +a"tcTvy) that

v Mv = ai? + v Myv,.

Consequently M, is positive: indeed, if the last term of the previous display
is nonpositive then setting z; = —a~'c"vy makes #; zero and thus makes
the entire right side nonpositive, so that v = 0,, because M is positive, and
consequently vo = 0,,_1. Repeating the process on M,, and so on, eventually
gives

v My =132 + - 4 4,32,

with all a; > 0 and with the vector © = (Z1,...,Z,) of modified variables the
image of the vector v of original variables by a linear transformation whose
matrix is upper triangular with 1’s on the diagonal.

4.8 Directional Derivatives and the Gradient

Let f be a scalar-valued function, f : A — R where A C R", and as-
sume that f is differentiable at a point a of A. While the derivative Df, is a
rather abstract object—the linear mapping that gives the best approximation
of f(a + h) — f(a) for small h—the partial derivatives D;f(a) are easy to
understand. The jth partial derivative of f at a,

D f(a) — 1 L0 100) = (@

t—0 t

)

measures the rate of change of f at a as its input varies in the jth direction.
Visually, D; f(a) gives the slope of the jth cross section through a of the graph
of f.

Analogous formulas measure the rate of change of f at a as its input varies
in a direction that doesn’t necessarily parallel a coordinate axis. A direction
in R™ is specified by a unit vector d, i.e., a vector d such that |d| = 1. As the
input to f moves a distance ¢ in the d direction, f changes by f(a+td)— f(a).
Thus the following definition is natural.
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Definition 4.8.1 (Directional derivative). Let f : A — R (where A C
R™) be a function, let a be an interior point of A, and let d € R™ be a unit
vector. The directional derivative of f at ¢ in the d direction is

_ . flattd) — f(a)
Ddf(a)—}g%%7

if this limit exists.

The directional derivatives of f in the standard basis vector directions are
simply the partial derivatives.

When n = 2 and f is differentiable at (a,b) € R?, its graph has a well-
fitting tangent plane through (a,b, f(a,b)). The plane is determined by the
two slopes Dj f(a,b) and D5 f(a,b), and it geometrically determines the rate of
increase of f in all other directions. (See Figure 4.11.) The geometry suggests
that if f: A — R (where A C R") is differentiable at a then all directional
derivatives are expressible in terms of the partial derivatives. This is true and
easy to show. A special case of the differentiability property (4.1) is

fla+1td) — f(a) — Df,(td) is o(td) = o(t),
or, since the constant ¢ passes through the linear map D f,,

lim w = Df.(d)

t—0 t ’

or, since the linear map D f, has matrix [Dyf(a),..., Dnf(a)],
Daf(a) =) _ D;f(a)d;
j=1

as desired.
The derivative matrix f’(a) of a scalar-valued function f at a is often
called the gradient of f at a and written V f(a). That is,

Vf(a) = f'(a) = [Dif(a),...,Duf(a)].
The previous calculation and this definition lead to the following theorem.

Theorem 4.8.2 (Directional derivative and gradient). Let the function
f:A— R (where A C R™) be differentiable at a, and let d € R™ be a unit
vector. Then the directional derivative of f at a in the d direction exists, and
it is equal to

n

Daf(a) = D;f(a)d; = (Vf(a),d) = |V f(a)| cos Oy f(a)a-

Jj=1

Therefore:
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Figure 4.11. General directional slope determined by axis-directional slopes

o The rate of increase of f at a in the d direction varies with d, from
—|Vf(a)] when d points in the direction opposite to V f(a), to |V f(a)]
when d points in the same direction as V f(a).

e In particular, the vector V f(a) points in the direction of greatest increase
of f at a, and its modulus |V f(a)| is precisely this greatest rate.

o Also, the directions orthogonal to V f(a) are the directions in which f
neither increases nor decreases at a.

This theorem gives necessary conditions that arise in consequence of the
derivative of f existing at a point a. As in Section 4.5, the converse statement,
that these conditions are sufficient to make the derivative of f exist at a, is
false. Each directional derivative Dy f(a) can exist without the derivative D f,
existing (Exercise 4.8.10). Furthermore, each directional derivative can exist
at a and satisfy the formula Dyf(a) = (Vf(a),d) in the theorem, but still
without the derivative Df, existing (Exercise 4.8.11). The existence of the
multivariable derivative D f, is a stronger condition than any amount of one-
variable cross-sectional derivative data at a.

For an example illustrating the theorem, if you are skiing on the quadratic
mountain f(z,y) = 9 — 2% — 2y? at the point (a, f(a)) = (1,1,6), then your
gradient meter shows

Vf(1,1) = (D:1f(1,1),D2f(1,1)) = (—2a, _4y)|(z,y):(1)1) = (—2,—-4).

Therefore the direction of steepest descent down the hillside is the (2,4)-
direction (this could be divided by its modulus v/20 to make it a unit vector),
and the slope of steepest descent is the absolute value |Vf(1,1)] = +/20.
On the other hand, cross-country skiing in the (2, —1)-direction, which is
orthogonal to V f(1,1), neither gains nor loses elevation immediately. (See
Figure 4.12.) The cross-country skiing trail that neither climbs nor descends
has a mathematical name.
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w

Figure 4.12. Gradient and its orthogonal vector for the parabolic mountain

Definition 4.8.3 (Level set). Let f : A — R (where A C R™) be a func-
tion. A level set of f is the set of points in A that map under f to some fized
value b in R,

L={xe€A: f(x) =10}.

The curves on a topographical map are level sets of the altitude function.
The isotherms on a weather map are level sets of the temperature function,
and the isobars on a weather map are level sets of the pressure function.
Indifference curves in economics are level sets of the utility function, and iso-
quants are level sets of the production function. Surfaces of constant potential
in physics are level sets of the potential function.

For example, on the mountain

f:Rz‘)Ra f(x,y):9fx272y2,
the level set for b = 5 is an ellipse in the plane,
L={(z,y) € R? : 2% + 2y* = 4}.

And similarly, the level set is an ellipse for every real number b up to 9. As
just mentioned, plotting the level sets of a function f of two variables gives a
topographical map description of f. The geometry is different for a function
of one variable: each level set is a subset of the line. For example, consider a
restriction of the sine function,

f:(00,7) — R, f(x) = sin(x).
The level set taken by f to 1/2 consists of two points,
L={r/6,57/6}.

For a function of three variables, each level set is a subset of space. For ex-
ample, if a, b, and ¢ are positive numbers, and the function is

fR—R,  fla,y,2) = (x/a)’ + (y/b)* + (z/0)?,
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» <

Figure 4.13. Level set and gradients for the sine function

then its level sets are ellipsoids. Specifically, for every positive r, the level set
of points taken by f to r is the ellipsoid of z-radius a+/r, y-radius by/7, and
z-radius cy/T,

2 2 2
x Yy z
L= Ly, z2) eRE [ —= < ) =14,
{@ wer: () (o) + (o) }
The third bullet in Theorem 4.8.2 says that the gradient is normal to the
level set. This fact may seem surprising, since the gradient is a version of the

derivative, and we think of the derivative as describing a tangent object to a
graph. The reason that the derivative has become a normal object is that

a level set is different from a graph.

A level set of f is a subset of the domain of f, whereas the graph of f, which
simultaneously shows the domain and the range of f, is a subset of a space that
is one dimension larger. For instance, if we think of f as measuring elevation,
then the graph of f is terrain in three-dimensional space, while a level set
of f is the set of points in the plane that lie beneath the terrain at some
constant altitude; the level set is typically a curve. Figure 4.12 illustrates the
difference in the case of the mountain function. Note that in the left part of the
figure, the gradient is orthogonal to the ellipse on which it starts. Similarly,
Figure 4.13 illustrates the difference in the case of the restricted sine function
from the previous paragraph. In the figure, the z-axis shows the two-point
level set from the previous paragraph and the gradient of f at each of the two
points. The fact that one gradient points rightward indicates that to climb
the graph of f over that point, one should move to the right, and the slope
to be encountered on the graph will be the length of the gradient on the axis.
Similarly, the other gradient points leftward, because to climb the graph over
the other point, one should move to the left. Here each gradient is trivially
orthogonal to the level set, because the level set consists of isolated points.
For the three-variable function from the previous paragraph, we still can see
the level sets—they are concentric ellipsoids—but not the graph, which would
require four dimensions. Instead, we can conceive of the function as measuring
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temperature in space, and of the gradient as pointing in the direction to move
for greatest rate of temperature-increase, with the length of the gradient being
that rate. Figure 4.14 shows a level set for the temperature function and
several gradients, visibly orthogonal to the level set.

Figure 4.14. Level set and gradients for the temperature function

Although Theorem 4.8.2 has already stated that the gradient is orthogonal
to the level set, we now amplify the argument. Let f : A — R (where
A C R"™) be given, and assume that it is differentiable. Let a be a point of A,
and let b = f(a). Consider the level set of f containing a,

L={ze€A: f(x)=0b} CR",

and consider any smooth curve from some interval into the level set, passing
through a,
yi(=ee) — L, A0)=a.
The composite function
fovy:(—ee)—R
is the constant function b, so that its derivative at 0 is 0. By the chain rule
this relation is

V() -7/(0) = 0.

Every tangent vector to L at a takes the form ~/(0) for some 7 of the sort that
we are considering. Therefore, V f(a) is orthogonal to every tangent vector
to L at a, i.e., Vf(a) is normal to L at a.

Before continuing to work with the gradient, we pause to remark that level
sets and graphs are related. For one thing:

The graph of a function is also the level set of a different function.

To see this, let n > 1, let Ay be a subset of R*~!, and let f : Ag — R be any
function. Given this information, let A = Ay x R and define a second function
g: A—R,
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g(x1, . 1, on) = f(T1, ..., Tpo1) — Tp.

Then the graph of f is a level of g, specifically the set of inputs that g takes
to 0,

graph(f) ={x € Ag xR : 2z, = f(z1,...,%n-1)}
={z e A:g(z) =0}

For example, the graph of the mountain function f(z,y) = 9 — 2% —2y? is also
a level set of the function g(z,y,2) = 9 — 22 — 2y? — 2. But in contrast to this
quick method of defining g explicitly in terms of f to show that every graph
is a level set, the converse question is much more subtle:

To what extent is some given level set also a graph?

For example, the level sets of the mountain function f are ellipses (as shown
in Figure 4.12), but an ellipse is not the graph of y as a function of x or
vice versa. This converse question will be addressed by the implicit function
theorem in the next chapter.

Returning to the gradient, the geometric fact that it is normal to the level
set makes it easy to find the tangent plane to a two-dimensional surface in R3.
For example, consider the surface

H={(z,y,2) €eR3: 2 +¢* - 2% =1}.

(This surface is a hyperboloid of one sheet.) The point (2v/2,3,4) belongs
to H. Note that H is a level set of the function f(z,y, z) = 2% + y? — 22, and
compute the gradient

Vf(2V2,3,4) = (4V2,6, —8).

Since this is the normal vector to H at (2v/2,3,4), the tangent plane equation
at the end of Section 3.10 shows that the equation of the tangent plane to H
at (2v/2,3,4) is

4V2(x —2v2) +6(y —3) —8(z —4) = 0.

If a function f : R™ — R has a continuous gradient, then from every
starting point a € R™ where the gradient V f(a) is nonzero, there is a path of
steepest ascent of f (called an integral curve of Vf) starting at a. If n = 2
and the graph of f is seen as a surface in 3-space, then the integral curve from
the point (a,b) € R? is the shadow of the path followed by a particle climbing
the graph, starting at (a,b, f(a,b)). If n = 2 or n = 3 and f is viewed as
temperature, then the integral curve is the path followed by a heat-seeking
bug.

To find the integral curve, we set up an equation that describes it. The
idea is to treat the gradient vector as a divining rod and follow it starting
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at a. Doing so produces a path in R™ that describes time-dependent motion,
always in the direction of the gradient, and always with speed equal to the
modulus of the gradient. Computing the path amounts to finding an interval
I C R containing 0 and a mapping

~v: I — R"
that satisfies the differential equation with initial conditions
V() =VI(v(),  ~(0)=a (4.3)

Whether (and how) one can solve this for 4 depends on the data f and a.

In the case of the mountain function f(z,y) = 9 — 2% — 2y2, with gradient
Vf(x,y) = (—2x,—4y), the path v has two components v, and 72, and the
differential equation and initial conditions (4.3) become

(1), 72() = (=2m(t), =4%2(t),  (11(0),72(0)) = (a,b),
to which the unique solution is
(M (t),72(1)) = (ae™  be™™).
Let = 1 (t) and y = v2(¢). Then the previous display shows that
a’y = ba?,

and so the integral curve lies on a parabola. The parabola is degenerate if the
starting point (a,b) lies on either axis. Every parabola that forms an integral
curve for the mountain function meets orthogonally with every ellipse that
forms a level set. (See Figure 4.15.)

Figure 4.15. Level sets and integral curves for the parabolic mountain

For another example, let f(z,y) = x® — y%. The level sets for this function
are hyperbolas having the 45 degree lines z = y and x = —y as asymptotes.
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The gradient of the function is Vf(x,y) = (22, —2y), so to find the integral
curve starting at (a,b), we need to solve the equations

(1 (®),72(1) = (1), =2%2(1),  (11(0),72(0)) = (a,b).

Thus (71(t),72(t)) = (ae?,be~2"), so that the integral curve lies on the hy-
perbola xy = ab having the axes x = 0 and y = 0 as asymptotes. The integral
curve hyperbola is orthogonal to the level set hyperbolas. (See Figure 4.16.)

Figure 4.16. Hyperbolic level sets and integral curves

For another example, let f(x,y) = e* — y. The level sets for this function
are the familiar exponential curve y = e” and all of its vertical translates. The
gradient of the function is V f(z,y) = (e*, —1), so to find the integral curve
starting at (0, 1), we need to solve the equations

(’Yi(t)a’}é(t)) = (671(26)) _1)7 (71(0)772(0)) = (07 1)
To find v, reason that
e WAl (t) =1 for all t > 0 where the system is sensible,

and so for all ¢ > 0 where the system is sensible,
t
/ e MMyl (rydr = t.
7=0

Integration gives
—e (@) 4 e = t,

and so, recalling that ~v1(0) = 0,
7)) =-In(l—-¢), 0<t<l.
Also, 72(t) = 1 — t. Thus the integral curve,

(m(t),72(t) =(-In(1—¢),1—-1), 0<t<1
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Figure 4.17. Negative exponential integral curve for exponential level sets

is the portion of the curve y = e~® where x > 0. (See Figure 4.17.) The entire
integral curve is traversed in one unit of time.

For another example, let f(z,y) = 2% + zy + y?. The level sets for this
function are tilted ellipses. The gradient of f is Vf(z,y) = 2z + y,z + 2y),
so to find the integral curve starting at (a,b), we need to solve the equations

V() =2m(t) + 2(t), 71(0)
Ya(t) = 71(t) + 272(2), 72(0)
Here the two differential equations are coupled, meaning that the derivative

of v; depends on both 7; and 2, and similarly for the derivative of v5. How-
ever, the system regroups conveniently,

a,
b.

(71 4+ 72)(t) = 3(n +72)(1), (71 +12)(0) =

+ b,
(m—7)'(t) = (m—2)1), (71 —72)(0) = b

a
¢

Thus

from which

71(t) = 2(a+b)e3 + L (a — b)e’,
() = Ha+ D) — Lo b)e!

(a+b)e¥ + $(a—b)e" =2y1(t) + 2(t),
(a+0b)e3t — L(a—Db)e! = ~i(t) +272(t).

2
fin
—
~
~— ~—
|
Nl Njw

The motion takes place along the cubic curve having equation
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sty _(x—y)’
a+b  (a—0b)3"

(See Figure 4.18.) The integral curves in the first two examples were quadratic
only by happenstance, in consequence of the functions 9 — 2 — 2y? and 22 —y?
having such simple coefficients. Changing the mountain function to 9—x2 —3y?
would produce cubic integral curves, and changing z2 — y? to 22 — 5y in the
second example would produce integral curves z’y = a°b.

N
N
N

.

AN

Figure 4.18. Cubic integral curve for elliptic level sets

For another example, suppose the temperature in space is given by
T(z,y,2) = 1/(x® + y* + 22). (This function blows up at the origin, so we
don’t work there.) The level sets of this function are spheres, and the integral
curves are rays going toward the origin. The level set passing through the
point (a,b, c) in space is again orthogonal to the integral curve through the
same point. In general, solving the vector differential equation (4.3) to find
the integral curves v of a function f can be difficult.

Exercises

4.8.1. Let f(x,y,2) = 2y® + yz. Find D %)f(L 1,2).

4.8.2. Let g(z,y, 2z) = zyz, and let d be the unit vector in the direction from
(1,2,3) to (3,1,5). Find Dg4g(1,2,3).

2 _
3 >

ol

4.8.3. Let f be differentiable at a point a, and let d = —eq, a unit vector. Are
the directional derivative D4f(a) and the partial derivative D;f(a) equal?
Explain.

4.8.4. Formulate and prove a version of Rolle’s theorem for functions of n
variables.

4.8.5. Show that if f: R® — R and g : R® — R are differentiable then so
is their product fg: R® — R, and V(fg) = fVg+ gV /.
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4.8.6. Find the tangent plane to the surface {(z,v, 2) : 22+2y?+322—10 = 0}
in R? at the point (1,2, %)

4.8.7. (a) Consider the surface S = {(z,y,2) € R®: 2y = z}. Let p = (a, b,¢)
be a generic point of S. Find the tangent plane 7, to S at p.
(b) Show that the intersection S N T, consists of two lines.

4.8.8. (a) Let A and « be nonzero constants. Solve the one-variable differential
equation
2 (t) = Aae™*® | 2(0) = 0.

(b) The pheromone concentration in the plane is given by f(z,y) = €2 +
4eY. What path does a bug take, starting from the origin?

4.8.9. (a) Sketch some level sets and integral curves for the function f(z,y) =
22 + 5. Find the integral curves analytically if you can.

(b) Sketch some level sets and integral curves for the function f(z,y) = zy.
Find the integral curves analytically if you can.

4.8.10. Recall the function f : R? — R whose graph is the crimped sheet,

z,y) = FLif (n,y) £ (0,0),
e {0 if (z,y) = (0,0).

(a) Show that f is continuous at (0,0).

(b) Find the partial derivatives Dy f(0,0) and D f(0,0).

(c) Let d be any unit vector in R? (thus d takes the form d = (cos 6, sin )
for some # € R). Show that Dyf(0,0) exists by finding it.

(d) Show that in spite of (¢), f is not differentiable at (0,0). (Use your re-
sults from parts (b) and (c) to contradict Theorem 4.8.2.) Thus, the existence
of every directional derivative at a point is not sufficient for differentiability
at the point.

4.8.11. Define f : R? — R by

1 if y = 22 and (z,y) # (0,0),
f@y) = {0 otherwise.

(a) Show that f is discontinuous at (0, 0). It follows that f is not differen-
tiable at (0, 0).

(b) Let d be any unit vector in R?. Show that D,f(0,0) = 0. Show that
consequently the formula D;f(0,0) = (V£(0,0),d) holds for every unit vec-
tor d. Thus, the existence of every directional derivative at a point and the
fact that each directional derivative satisfies the formula are still not sufficient
for differentiability at the point.
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4.8.12. Fix two real numbers a and b satisfying 0 < a < b. Define a mapping
T = (Tl,TQ,Tg) : R2 — Rd by

T(s,t) = ((b+ acoss)cost, (b+ acoss)sint,asin s).

(a) Describe the shape of the set in R?* mapped to by T. (The answer will
explain the name T'.)

(b) Find the points (s,t) € R? such that VT}(s,t) = 05. The points map
to only four image points p under 7. Show that one such p is a maximum
of T, another is a minimum, and the remaining two are saddle points.

(c) Find the points(s,t) € R? such that VT3(s,t) = 02 . To what points ¢
do these (s,t) map under T'? Which such ¢ are maxima of 737 Minima? Saddle
points?
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Inverse and Implicit Functions

The question whether a mapping f : A — R™ (where A C R") is globally
invertible is beyond the local techniques of differential calculus. However, a lo-
cal theorem is finally in reach. The idea sounds plausible: if the derivative of f
is invertible at the point a then f itself, being well approximated near a by its
derivative, should also be invertible in the small. However, it is by no means
a general principle that an approximated object must inherit the properties
of the object approximating it. On the contrary, mathematics often approx-
imates complicated objects by simpler ones. For instance, Taylor’s theorem
approximates any function that has many derivatives by a polynomial, but
this does not make the function itself a polynomial as well.

To further illustrate the issue via an example, consider an argument in
support of the one-variable critical point theorem. Let f : A — R (where
A C R) be differentiable, and let f’(a) be positive at an interior point a of A.
We might reason as follows:

f cannot have a maximum at a, because the tangent line to the graph
of f at (a, f(a)) has a positive slope, so that as we move our input
rightward from a, we climb.

But this reasoning is vague. What do we climb, the tangent line or the graph?
The argument linearizes the question by fitting the tangent line through the
graph, and then it solves the linearized problem instead by checking whether
we climb the tangent line rather than whether we climb the graph. The calcu-
lus is light and graceful. But strictly speaking, part of the argument is tacit:

Since the tangent line closely approximates the graph near the point of
tangency, the fact that we climb the tangent line means that we climb
the graph as well for a while.

And the tacit part of the argument is not fully quantitative. How does the
climbing property of the tangent line transfer to the graph? The mean value
theorem, and a stronger hypothesis that f’ is positive about a as well as at a,
resolve the question, since for x slightly larger than a,
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f@) = f(a) = f'(¢)(x —a) for some ¢ € (a,z),

and the right side is the product of two positive numbers, hence positive. But
the mean value theorem is an abstract existence theorem (“for some ¢”) whose
proof relies on foundational properties of the real number system. Thus, mov-
ing from the linearized problem to the actual problem is far more sophisticated
technically than linearizing the problem or solving the linearized problem. In
sum, this one-variable example is meant to amplify the point of the preced-
ing paragraph, that (now returning to n dimensions) if f : A — R”™ has
an invertible derivative at a then the inverse function theorem—that f itself
is invertible in the small near a—is surely inevitable, but its proof will be
technical and require strengthening our hypotheses.

Already in the one-variable case, the inverse function theorem relies on
foundational theorems about the real number system, on a property of con-
tinuous functions, and on a foundational theorem of differential calculus. We
quickly review the ideas. Let f : A — R (where A C R) be a function, let
a be an interior point of A, and let f be continuously differentiable on some
interval about a, meaning that f’ exists and is continuous on the interval.
Suppose that f’(a) > 0. Since f’ is continuous about a, the persistence of in-
equality principle (Proposition 2.3.10) says that f’ is positive on some closed
interval [a — J,a + d] about a. By an application of the mean value theorem
as in the previous paragraph, f is therefore strictly increasing on the interval,
and so its restriction to the interval does not take any value twice. By the
intermediate value theorem, f takes every value from f(a — d) to f(a + )
on the interval. Therefore f takes every such value exactly once, making it
locally invertible. A slightly subtle point is that the inverse function f~! is
continuous at f(a), but then a purely formal calculation with difference quo-
tients will verify that the derivative of f~! exists at f(a) and is 1/f/(a). Note
how heavily this proof relies on the fact that R is an ordered field. A proof of
the multivariable inverse function theorem must use other methods.

Although the proof to be given in this chapter is technical, its core idea
is simple common sense. Let a mapping f be given that takes z-values to y-
values and in particular takes a to b. Then the local inverse function must take
y-values near b to x-values near a, taking each such y back to the unique x
that f took to y in the first place. We need to determine conditions on f
that make us believe that a local inverse exists. As explained above, the basic
condition is that the derivative of f at a—giving a good approximation of f
near a, but easier to understand than f itself—should be invertible, and the
derivative should be continuous as well. With these conditions in hand, an
argument similar to that in the one-variable case (though more painstaking)
shows that f is locally injective:

e Given y near b, there is at most one x near a that f takes to y.
So the remaining problem is to show that f is locally surjective:

e Given y near b, show that there is some = near a that f takes to y.
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This problem decomposes into two subproblems. First:

e Given y near b, show that there is some x near a that f takes closest to y.
Then:

e Show that f takes this particular = ezactly to y.

And once the appropriate environment is established, solving each subprob-
lem is just a matter of applying the main theorems from the previous three
chapters.

Not only does the inverse function theorem have a proof that uses so
much previous work from this course so nicely, it also has useful consequences.
It leads easily to the implicit function theorem, which answers a different
question: when does a set of constraining relations among a set of variables
make some of the variables dependent on the others? The implicit function
theorem in turn fully justifies (rather than linearizing) the Lagrange multiplier
method, a technique for solving optimization problems with constraints. As
discussed in the preface to these notes, optimization with constraints has no
one-variable counterpart, and it can be viewed as the beginning of calculus
on curved spaces.

5.1 Preliminaries

The basic elements of topology in R™"—e-balls; limit points; closed, bounded,
and compact sets—were introduced in Section 2.4 to provide the environment
for the extreme value theorem. A little more topology is now needed before we
proceed to the inverse function theorem. Recall that for every point a € R™
and every radius € > 0, the e-ball at a is the set

B(a,e) ={z e R": |z — a| < €}

Recall also that a subset of R” is called closed if it contains all of its limit
points. Not unnaturally, a subset S of R™ is called open if its complement
5S¢ =R"— S is closed. A set, however, is not a door: it can be neither open
nor closed, and it can be both open and closed. (Examples?)

Proposition 5.1.1 (e-balls are open). For every a € R"™ and every e > 0,
the ball B(a,€) is open.

Proof. Let x be any point in B(a, ), and set § = £—|x —al, a positive number.
The triangle inequality shows that B(z,d) C B(a,e) (Exercise 5.1.1), and
therefore x is not a limit point of the complement B(a,e)°. Consequently all
limit points of B(a,€)¢ are in fact elements of B(a, )¢, which is thus closed,
making B(a,¢) itself open. O
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This proof shows that every point « € B(a,¢) is an interior point. In fact,
an equivalent definition of open is that a subset of R™ is open if each of its
points is interior (Exercise 5.1.2).

The closed e-ball at a, denoted B(a,¢), consists of the corresponding
open ball with its edge added in,

B(a,e) ={z eR": |z —a| <e}.

The boundary of the closed ball B(a,¢), denoted dB(a, €), is the set of points
on the edge,

0B(a,e) ={x e R" : |z — a| = €}.
(See Figure 5.1.) Every closed ball B and its boundary 0B are compact sets
(Exercise 5.1.3).

Figure 5.1. Open ball, closed ball, and boundary

Let f: A — R™ (where A C R™) be continuous, let W be an open subset
of R™, and let V' be the set of all points in A that f maps into W,

V={zeA: flx) e W}

The set V is called the inverse image of W under f; it is often denoted
f~Y(W), but this is a little misleading because f need not actually have an
inverse mapping f~'. For example, if f : R — R is the squaring function
f(z) = 22, then the inverse image of [4,9] is [-3, —2] U [2, 3], and this set is
denoted f~!([4,9]) even though f has no inverse. (See Figure 5.2, in which
f is not the squaring function, but the inverse image f~!(W) also has two
components.) The inverse image concept generalizes an idea that we saw in
Section 4.8: the inverse image of a one-point set under a mapping f is a level
set of f, as in Definition 4.8.3.

Although the forward image under a continuous function of an open set
need not be open (Exercise 5.1.4), inverse images behave more nicely. The
connection between continuous mappings and open sets is provided by the
following theorem.

Theorem 5.1.2 (Inverse image characterization of continuity). Let
f i+ A— R™ (where A is an open subset of R™) be continuous. Let W C R™
be open. Then f=1(W), the inverse image of W under f, is open.
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Figure 5.2. Inverse image with two components

Proof. Let a be a point of f~1(W). We want to show that it is an interior
point. Let w = f(a), a point of W. Since W is open, some ball B(w, p) is
contained in W. Consider the function

g:A—R,  gx)=p—|f(z)—wl|

This function is continuous, and it satisfies g(a) = p > 0, and so by a slight
variant of the persistence of inequality principle (Proposition 2.3.10) there
exists a ball B(a,e) C A on which g remains positive. That is,

f(z) € B(w,p) for all x € B(a,e).

Since B(w,p) C W, this shows that B(a,e) C f~1(W), making a an interior
point of f~1(W) as desired. O

The converse to Theorem 5.1.2 is also true and is Exercise 5.1.8. We need
one last technical result for the proof of the inverse function theorem.

Lemma 5.1.3 (Difference magnification lemma). Let B be a closed ball
in R™ and let g be a differentiable mapping from an open superset of B in R™
to R™. Suppose that there is a number ¢ such that |D,g;(x)| < ¢ for all i,j €
{1,...,n} and all v € B. Then

lg(2) — g(x)| < n?c|li —z| forallx,7 € B.

A comment about the lemma’s environment might be helpful before we go
into the details of the proof. We know that continuous mappings behave well
on compact sets. On the other hand, since differentiability is sensible only at
interior points, differentiable mappings behave well on open sets. And so to
work effectively with differentiability, we want a mapping on a domain that is
open, allowing differentiability everywhere, but then we restrict our attention
to a compact subset of the domain so that continuity (which follows from
differentiability) will behave well too. The closed ball and its open superset
in the lemma arise from these considerations.
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Proof. Consider any two points x,# € B. The size bounds give

l9( |<Zlgz gi(x)l;

and so to prove the lemma it suffices to prove that
lg:(Z) — gi(z)| < nclz —x| fori=1,...,n.

Thus we have reduced the problem from vector output to scalar output. To
create an environment of scalar input as well, make the line segment from x
to T the image of a function of one variable,

~v:[0,1] — R", v(t) =x+t(& — ).

Note that v(0) = x, v(1) = Z, and 7/(t) = £ — « for all ¢t € (0,1). Fix any
1 € {1,...,n} and consider the restriction of g; to the segment, a scalar-valued
function of scalar input,

@:[0,1] — R, o(t) = (g 0)(t).
Thus ¢(0) = gi(z) and (1) = g;(Z). By the mean value theorem,
9i(%) — gi(x) = (1) — p(0) = ¢'(t) for some t € (0,1),
and so since ¢ = g; 0, the chain rule gives
9i(%) = gi(z) = (g5 0 7)'(t) = gi(v(1))'(t) = gi(v(£)) (@ — ).

Because g} (y(t)) is a row vector and Z—z is a column vector, the last quantity
in the previous display is their inner product. Hence the display and the
Cauchy—Schwarz inequality give

19:(%) = gi(2)] < lgi(v(®)| & — |-

For each j, the jth entry of the vector g/(y(¢)) is the partial derivative
D;gi(v(t)). And we are given that |D,;g;(y(t))| < ¢, so the size bounds show
that |gi(v(t))| < nc and therefore

|9:(2) = gi(x)| < ne|z — 2.

As explained at the beginning of the proof, the result follows. O

Exercises

5.1.1. Let « € B(a;¢) and let 6 = ¢ — |z — a|. Explain why ¢ > 0 and why
B(x;0) C Blase).
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5.1.2. Show that a subset of R™ is open if and only if each of its points is
interior.

5.1.3. Prove that every closed ball B is indeed a closed set, as is its boundary
0B. Show that every closed ball and its boundary are also bounded, hence
compact.

5.1.4. Find a continuous function f : R™ — R™ and an open set A C R"
such that the image f(A) C R™ of A under f is not open. Feel free to choose
n and m.

5.1.5. Define f : R — R by f(z) = 2% — 3z. Compute f(—1/2). Find
F71(0,11/8)), f71((0,2)), f~1((—o0,—11/8) U (11/8,00)). Does f~1 exist?

5.1.6. Show that for f : R™ — R™ and B C R™, the inverse image of the
complement is the complement of the inverse image,

f7UBY) = 4B
Does the analogous formula hold for forward images?

5.1.7. If f : R™ — R™ is continuous and B C R™ is closed, show that f~!(B)
is closed. What does this say about the level sets of continuous functions?

5.1.8. Prove the converse to Theorem 5.1.2: if f : A — R™ (where A C R"
is open) is such that for every open W C R™ also f~1(W) C A is open, then
f is continuous.

5.1.9. Let a and b be real numbers with a < b. Let n > 1, and suppose that
the mapping g : [a,b] — R™ is continuous and that ¢ is differentiable on
the open interval (a,b). It is tempting to generalize the mean value theorem
(Theorem 1.2.3) to the assertion

g(b) —g(a) = ¢'(c)(b—a) for some c € (a,b). (5.1)

The assertion is grammatically meaningful, since it posits an equality between
two n-vectors. The assertion would lead to a slight streamlining of the proof
of Lemma 5.1.3, since there would be no need to reduce to scalar output.
However, the assertion is false.

(a) Let g : [0,27r] — R? be g(t) = (cost,sint). Show that (5.1) fails for
this g. Describe the situation geometrically.

(b) Let g : [0,27] — R3 be g(t) = (cost,sint,t). Show that (5.1) fails for
this g. Describe the situation geometrically.

(c) Here is an attempt to prove (5.1): Let g = (g1,-..,9n). Since each g;
is scalar-valued, we have for i =1,...,n by the mean value theorem,

9:(b) — gi(a) = gi(c)(b—a) for some c € (a,b).

Assembling the scalar results gives the desired vector result.
What is the error here?
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5.2 The Inverse Function Theorem

Theorem 5.2.1 (Inverse function theorem). Let A be an open subset
of R", and let f : A — R™ have continuous partial derivatives at every point
of A. Let a be a point of A. Suppose that det f'(a) # 0. Then there erist an
open set V. C A containing a and an open set W C R™ containing f(a) such
that f : V. — W has a continuously differentiable inverse f=1 : W — V.
For each y = f(x) € W, the derivative of the inverse is the inverse of the
derivative,

D(f™hy = (Dfe) ™

Before the proof, it is worth remarking that the formula for the derivative
of the local inverse, and the fact that the derivative of the local inverse is
continuous, are easy to establish once everything else is in place. If the local
inverse f~! of f is known to exist and to be differentiable, then for every
x € V the fact that the identity mapping is its own derivative combines with
the chain rule to say that

id, = D(id,), = D(f o f)o = D(f )y 0o Df, where y = f(z),

and similarly id,, = D f,o(Df~!),, where this time id,, is the identity mapping
on y-space. The last formula in the theorem follows. In terms of matrices, the
formula is

(f7) () = f'(@)7" where y = f(x).

This formula combines with Corollary 3.7.3 (the entries of the inverse matrix
are continuous functions of the entries of the matrix) to show that since the
mapping is continuously differentiable and the local inverse is differentiable,
the local inverse is continuously differentiable. Thus we need to show only
that the local inverse exists and is differentiable.

Proof. The proof begins with a simplification. Let T' = D f,, a linear map-
ping from R™ to R™ that is invertible because its matrix f/(a) has nonzero
determinant. Let

f=T"tof.

By the chain rule, the derivative of f at a is
Dfy=D(T " of)a=DT )i oDfe=T""oT =id,.

Also, suppose we have a local inverse § of f, so that

go f =id, near a

and R R
fog=id, near f(a).
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The situation is shown in the following diagram, in which V' is an open set
containing a, W is an open set containing f(a), and W is an open set con-

taining T-1(f(a)) = f(a).

f
TN
/f T_l\/\_/
V—W—W
e
S~
g

The diagram shows that the way to invert f locally, going from W back to V/,
is to proceed through W: g = § o T~'. Indeed, since f =T o f,

gof=(GoT Yo (Tof)=id, near a,
and, since T~1(f(a)) = f(a),
fog=(Tof)o(joT ™) =id, near f(a).

That is, to invert f, it suffices to invert f . And if g is differentiable then so
is g = goT~!. The upshot is that we may prove the theorem for f rather
than f. Equivalently, we may assume with no loss of generality that Df, =
id, and therefore that f’(a) = I,,. This normalization will let us carry out
a clean, explicit computation in the following paragraph. (Note: With the
normalization complete, our use of the symbol g to denote a local inverse of f
now ends. The mapping to be called g in the following paragraph is unrelated
to the local inverse g in this paragraph.)

Next we find a closed ball B around a where the behavior of f is somewhat
controlled by the fact that f'(a) = I,. More specifically, we will quantify
the idea that since f'(x) = I, for x near a, also f(Z) — f(z) = & — « for
x,Z near a. Recall that the (4, j)th entry of I,, is d;; and that det(I,) = 1.
As x varies continuously near a, the (i,7)th entry D,f;(x) of f'(x) varies
continuously near ¢;;, and so the scalar det f’(x) varies continuously near 1.
Since D; fi(a) — d;; = 0 and since det f’(a) = 1, applying the persistence of
inequality principle (Proposition 2.3.10) n? + 1 times shows that there exists
a closed ball B about a small enough that

|D; fi(x) — 6;5] < foralli,j € {1,...,n} andz € B (5.2)

1
2n?2
and -

det f'(x) #0 for all z € B. (5.3)

Let g = f —id,,, a differentiable mapping near a, whose Jacobian matrix at z,
g'(x) = f'(z) — In, has (4, j)th entry D;g;(x) = D; fi(x) — 6;;. Equation (5.2)
and Lemma 5.1.3 (with ¢ = 1/(2n?)) show that for every two points = and &
in B,
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l9(2) — 9(2)| < 5|7 — 2,
and therefore, since f =id, + g,

1f(2) = f(2)| = [(Z — 2) + (9(Z) — g(2))]

> |7 — x| - [g(%) — g(2)]
1

> |z — x| - 5|# — x| (by the previous display)

=1z — z|.

The previous display shows that f is injective on B, i.e., every two distinct
points of B are taken by f to distinct points of R™. For future reference, we
note that the result of the previous calculation can be rearranged as

|7 — 2| <2|f(&) — f(z)| forall x,7 € B. (5.4)

The boundary OB of B is compact, and so is the image set f(9B) because f
is continuous. Also, f(a) ¢ f(OB) because f is injective on B. And f(a) is not
a limit point of f(9B) because f(0B), being compact, is closed. Consequently,
some open ball B(f(a),2¢) contains no point from f(dB). (See Figure 5.3.)

Figure 5.3. Ball about f(a) away from f(0B)

Let W = B(f(a),¢), the open ball with radius less than half the distance
from f(a) to f(0B). Thus

ly — f(a)| < |y — f(z)| forally € W and x € 0B. (5.5)

That is, every point y of W is closer to f(a) than it is to every point of f(0B).
(See Figure 5.4.)

The goal now is to exhibit a mapping on W that inverts f near a. In
other words, the goal is to show that for each y € W, there exists a unique x
interior to B such that f(z) = y. So fix an arbitrary y € W. Define a function
A : B — R that measures for each z the square of the distance from f(z)
to y,

n

Ale) =y — f(2)* =Y (i — fi(2))*.

i=1
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z /()

Figure 5.4. Ball closer to f(a) than to f(0B)

The idea is to show that for one and only one x near a, A(x) = 0. Because the
modulus is always nonnegative, the x we seek must minimize A. As mentioned
at the beginning of the chapter, this simple idea inside all the technicalities
is the heart of the proof: the = to be taken to y by f must be the x that is
taken closest to y by f.

The function A is continuous and B is compact, so the extreme value
theorem guarantees that A does indeed take a minimum on B. Condition (5.5)
guarantees that A takes no minimum on the boundary OB. Therefore the
minimum of A must occur at an interior point x of B; this interior point x
must be a critical point of A, so all partial derivatives of A vanish at x. Thus
by the chain rule,

n

0=D;A(x) = —22(% = fi(®))D;fi(x) forj=1,...,n.

=1

This condition is equivalent to the matrix equation

Difi(z) -+ Difu(z)] [v1 — fi(z) 0

or
@)y - f(x)) = 0,.

But det f/'(x)" = det f'(z) # 0 by condition (5.3), so f'(x)" is invertible, and
the only solution of the equation is y — f(x) = 0,. Thus our z is the desired x
interior to B such that y = f(x). And there is only one such z, because f is
injective on B. We no longer need the boundary 0B, whose role was to make
a set compact. In sum, we now know that f is injective on B and that f(B)
contains W.

Let V = f~1(W) N B, the set of all points € B such that f(z) € W.
(See Figure 5.5.) By the inverse image characterization of continuity (Theo-
rem 5.1.2), V is open. We have established that f : V — W is inverted by
frw—v.
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Figure 5.5. The sets V and W of the inverse function theorem

The last thing to prove is that f~! is differentiable on W. Again, reducing
the problem makes it easier. By (5.3), the condition det f/(z) # 0 is in effect
at each z € V. Therefore a is no longer a distinguished point of V', and it
suffices to prove that the local inverse f~! is differentiable at f(a). To reduce
the problem to working at the origin, consider the mapping f defined by the
formula f(z v) = f(z +a) —b. Because f(a) = b, it follows that £(0,) = 0,,,
and since f is f up to prepended and postpended translations, f is locally
invertible at 0,, and its derivative there is D fo = Df, = id,. The upshot is
that in proving that f~! is differentiable at f(a), there is no loss of generality
in normalizing to a = 0,, and f(a) = 0,, while also retaining the normalization
that Df, is the identity mapping.

So now we have that f(0,) =0, = f~1(0,) and

and we want to show that

“H(k) — k= o(k).

For every point k € W, let h = f~1(k). Note that |h| < 2|k| by condition (5.4)
with & = h and & = 0,, so that f(Z) = k and f(z) = 0,, and thus h = O(k).
So now we have

FHR) =k = =(f(h) = h) = —o(h) = o(h) = o(O(k)) = o(k),

exactly as desired. That is, f~! is indeed differentiable at 0,, with the identity
mapping for its derivative. For an unnormalized proof that f~! is differentiable
on W, see Exercise 5.2.9. O

Note the range of mathematical skills that this proof of the inverse func-
tion theorem required. The ideas were motivated and guided by pictures, but
the actual argument was symbolic. At the level of fine detail, we normalized
the derivative to the identity in order to reduce clutter, we made an adroit
choice of quantifier in choosing a small enough B to apply the difference mag-
nification lemma with ¢ = 1/(2n?), and we used the full triangle inequality to
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obtain (5.4). This technique sufficed to prove that f is locally injective. Since
the proof of the difference magnification lemma used the mean value theorem
many times, the role of the mean value theorem in the multivariable inverse
function theorem is thus similar to its role in the one-variable proof reviewed
at the beginning of this chapter. However, while the one-variable proof that
f is locally surjective relied on the intermediate value theorem, the multivari-
able argument was far more elaborate. The idea was that the putative x taken
by f to a given y must be the actual x taken by f closest to y. We exploited
this idea by working in broad strokes:

e The extreme value theorem from Chapter 2 guaranteed that there is such
an actual x.

e The critical point theorem and then the chain rule from Chapter 4 de-
scribed necessary conditions associated to x.

e And finally, the linear invertibility theorem from Chapter 3 showed that
f(z) = y as desired. Very satisfyingly, the hypothesis that the derivative is
invertible sealed the argument that the mapping itself is locally invertible.

Indeed, the proof of local surjectivity used nearly every significant result from
Chapters 2 through 4 of these notes.

For an example, define f : R2 — R? by f(x,y) = (2% — 2zy?, 2 +y). Is
f locally invertible at (1,—1)7 If so, what is the best affine approximation to
the inverse near f(1,—1)? To answer the first question, calculate the Jacobian

-1

This matrix is invertible with inverse f'(1,—1)"! = 1 [_% 7‘11]. Therefore

f is locally invertible at (1,—1), and the affine approximation to f~! near
f(1,-1) = (-1,0) is

2 9,2
ra-n = [

(z,y)=(1,-1)

1 1{-1 4| |h 1 4 1 1
“H=1+h,0+k) ~ = =1—-Zh+<k,—1+-h—Zk).
Frerenoen = | g T i = a-greghetegn-gn

The actual inverse function f~! about (-1, 0) may not be clear, but the inverse
function theorem guarantees its existence, and its affine approximation is easy
to find.

Exercises

5.2.1. Define f : R? — R? by f(z,y) = (2° + 22y + y%, 2% + y). Is f locally
invertible at (1,1)? If so, what is the best affine approximation to the inverse
near f(1,1)?

5.2.2. Same question for f(z,y) = (2% — y?,2zy) at (2,1).
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5.2.3. Same question for C(r,0) = (rcos,rsinf) at (1,0).

5.2.4. Same question for C(p,0,¢) = (pcosfsing, psinfsing, pcosd) at
(1,0,7/2).

5.2.5. At what points (a,b) € R? is each of the following mappings guaranteed
to be locally invertible by the inverse function theorem? In each case, find the
best affine approximation to the inverse near f(a,b).

(a) f(z,y) = (x +y,229%).

(b) f(z,y) = (sinx cosy + coszsiny, cosx cosy — sin rsiny).

5.2.6. Define f : R? — R? by f(z,y) = (e®cosy, e®siny). Show that f is
locally invertible at each point (a,b) € R?, but that f is not globally invertible.
Let (a,b) = (0, §); let (¢,d) = f(a,b); let g be the local inverse to f near (a,b).
Find an explicit formula for g, compute ¢'(c,d), and verify that it agrees with

f'(a,b)71

5.2.7. If f and ¢ are functions from R? to R, show that the mapping F =
(f, 9, f+g) : R® — R3 does not have a differentiable local inverse anywhere.

5.2.8. Define f : R — R by

x + 2z sin £ if x # 0,
flx) = S
0 if x =0.

(a) Show that f is differentiable at = 0 and that f/(0) # 0. (Because this
is a one-dimensional problem, you may verify the old definition of derivative
rather than the new one.)

(b) Despite the result from (a), show that f is not locally invertible at
x = 0. Why doesn’t this contradict the inverse function theorem?

5.2.9. The proof of the inverse function theorem ended with a normalized
argument that the inverse function on W is again differentiable. Supply ex-
planation as necessary to the unnormalized version of the argument, as follows.
Let y be a fixed point of W, and let y + k lie in W as well. Take x = f~1(y)
in V, and let f~!(y+k) = 2 + h, thus defining h = f~1(y+k)) — f~(y). We
know that f’(z) is invertible and that
f@+h) = f(z) = f(2)h = o(h).
We want to show that
FHy+k) = 1) = (@) k= o(k).

Compute,
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Using (5.4) yields |h| = |z +h —z| <2|f(z+ h) — f(z)] = 2|k| = O(k), so we
have

FHy+E) = ) = fl@) 7k = = f'(2) " o(O(k)) = —f' () olk).

Multiplication by the fixed matrix —f’(z)~! is a linear mapping, and every
linear mapping is O of its input. Altogether,

FHy+ k) = 7 y) = (@) 7k = —f'(2) " olk) = O(o(k)) = o(k),

as desired.

5.3 The Implicit Function Theorem

Let n and ¢ be positive integers with ¢ < n, and let r = n — ¢. This section
addresses the following question:

When do ¢ conditions on n variables locally specify c of the variables
in terms of the remaining r variables?

The symbols in this question will remain in play throughout this section. That
is:
n = 7 + c is the total number of variables;
¢ is the number of conditions, i.e., the number of constraints on the vari-
ables, and therefore the number of variables that might be dependent on
the others;
e and 7 is the number of remaining variables and therefore the number of
variables that might be free.

The word conditions (or constraints) provides a mnemonic for the symbol ¢,
and similarly remaining (or free) provides a mnemonic for 7.
The question can be rephrased:

When is a level set locally a graph?

To understand the rephrasing, we begin by reviewing the idea of a level set,
given here in a slightly more general form than in Definition 4.8.3.

Definition 5.3.1 (Level set). Let g : A — R™ (where A C R") be a
mapping. A level set of g is the set of points in A that map under g to some
fixed vector w in R™,

L={veA:g) =w}

That is, L is the inverse image under g of the one-point set {w}.
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Also, we review the argument in Section 4.8 that every graph is a level
set. Let Ay be a subset of R", and let f : Ag — R® be any mapping. Let
A = Ay x R¢ (a subset of R™) and define a second mapping g : A — R€,

g(z,y) = f(z) -y, (z,y) € Ap x R".

Then the graph of f is
graph(f) = {(z,y) € Ao x R : y = f(2)}

= {(xay) €EA: g(sc,y) = 06}7

and this is the set of inputs to g that g takes to 0., a level set of g as desired.

Now we return to rephrasing the question at the beginning of this sec-
tion. Let A be an open subset of R™, and let a mapping g : A — R have
continuous partial derivatives at every point of A. Points of A can be written

(z,y), z€R", yeR"

(Throughout this section, we routinely will view an n-vector as the concate-
nation of an r-vector and c-vector in this fashion.) Consider the level set

L= {((L‘,y) €eA: g(x,y) = Oc}'

The question was whether the ¢ scalar conditions g(z,y) = 0. on the n = c+r
scalar entries of (x,y) define the ¢ scalars of y in terms of the r scalars of x
near (a,b). That is, the question is whether the vector relation g(z,y) = O,
for (x,y) near (a,b) is equivalent to a vector relation y = ¢(z) for some
mapping ¢ that takes r-vectors near a to c-vectors near b. This is precisely
the question whether the level set L is locally the graph of such a mapping .
If the answer is yes, then we would like to understand ¢ as well as possible
by using the techniques of differential calculus. In this context we view the
mapping ¢ as implicit in the condition g = 0., explaining the name of the
pending implicit function theorem.

The first phrasing of the question, whether ¢ conditions on n variables
specify ¢ of the variables in terms of the remaining r variables, is easy to
answer when the conditions are affine. Affine conditions take the matrix form
Pv = w, where P € M. ,,(R), v € R"”, and w € R, and P and w are fixed
while v is the vector of variables. Partition the matrix P into a left ¢ x r
block M and a right square ¢ x ¢ block N, and partition the vector v into its
first r entries x and its last ¢ entries y. Then the relation Pv = w is

o[

that is,
Mz + Ny =w.
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Assume that N is invertible. Then subtracting Mz from both sides and then
left multiplying by N~! shows that the relation is

y=N"Yw— Mz).

Thus, when the right ¢ x ¢ submatrix of P is invertible, the relation Pv = w
explicitly specifies the last ¢ variables of v in terms of the first r variables.
A similar statement applies to every invertible ¢ x ¢ submatrix of P and the
corresponding variables. A special case of this calculation, the linear case,
will be used throughout this section: for every M € M, ,(R), invertible N &
M.(R), h € R", and k € R¢,

[M N| m =0, — k=—N""Mh. (5.6)

When the conditions are nonaffine, the situation is not so easy to analyze.
However:

e The problem is easy to linearize. That is, given a point (a,b) (where a € R”
and b € R°) on the level set {(z,y) : g(x,y) = w}, differential calculus
tells us how to describe the tangent object to the level set at the point.
Depending on the value of 7, the tangent object will be a line, or a plane,
or higher-dimensional. But regardless of its dimension, it is described by
the linear conditions ¢'(a,b)v = 0., and these conditions take the form
that we have just considered,

h

e ) |

] =0.,, MeM.,[R), NecMSR), heR", keR".
Thus if N is invertible then we can solve the linearized problem as in (5.6).
e The inverse function theorem says:
If the linearized inversion problem is solvable then the actual inver-
sion problem is locally solvable.
With a little work, we can use the inverse function theorem to establish
the implicit function theorem:
If the linearized level set is a graph then the actual level set is locally
a graph.
And in fact, the implicit function theorem will imply the inverse function
theorem as well.

For example, the unit circle C' is described by one constraint on two vari-
ables (n=2and c=1,s0r =1),

22 497 =1.

Globally (in the large), this relation specifies neither x as a function of y nor
y as a function of x. It can’t: the circle is visibly not the graph of a function of
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either sort—recall the vertical line test to check whether a curve is the graph
of a function y = @(z), and analogously for the horizontal line test. The
situation does give a function, however, if one works locally (in the small) by
looking only at part of the circle at a time. Every arc in the bottom half of
the circle is described by the function

y =)= —V1- .

Similarly, every arc in the right half is described by

r=1(y) =v1-y%

Every arc in the bottom right quarter is described by both functions. (See
Figure 5.6.) On the other hand, no arc of the circle about the point (a,b) =
(1,0) is described by a function y = ¢(x), and no arc about (a,b) = (0,1) is
described by a function z = ¥ (y). (See Figure 5.7.) Thus, about some points
(a,b), the circle relation 22 + y? = 1 contains the information to specify each
variable as a function of the other. These functions are implicit in the relation.
About other points, the relation implicitly defines one variable as a function
of the other, but not the second as a function of the first.

)

v =)
z=Y(y)

Figure 5.6. Arc of a circle

To bring differential calculus to bear on the situation, think of the circle
as a level set. Specifically, it is a level set of the function g(z,y) = 2% + y?,

C={(z,y): g(z,y) = 1}.
Let (a,b) be a point on the circle. The derivative of g at the point is
g'(a,b) = [2a 2b] .

The tangent line to the circle at (a, b) consists of the points (a + h,b+ k) such
that (h, k) is orthogonal to ¢'(a,b),

(24 28] m 0.
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x #1P(y)

y # »(x)

Figure 5.7. Trickier arcs of a circle

That is,
2ah + 2bk = 0.

Thus, whenever b # 0 we have
k= —(a/b)h,

showing that on the tangent line, the second coordinate is a linear function
of the first, and the function has derivative —a/b. And so on the circle it-
self near (a,b), plausibly the second coordinate is a function of the first as
well, provided that b # 0. Note that indeed this argument excludes the two
points (1,0) and (—1,0), about which g is not an implicit function of z. But
about points (a,b) € C where Dag(a,b) # 0, the circle relation should im-
plicitly define y as a function of z. And at such points (say, on the lower
half-circle), the function is explicitly

p(a) = —V/1 -2,

so that ¢/(z) = /v/1 — 22 = —x/y (the last minus sign is present because
the square root is positive but y is negative) and in particular,

¢'(a) = —a/b.

Thus ¢'(a) is exactly the slope that we found a moment earlier by solving
the linear problem ¢'(a,b)v = 0 where v = (h, k) is a column vector. That is,
using the constraint g(z,y) = 0 to set up and solve the linear problem, making
no reference in the process to the function ¢ implicitly defined by the con-
straint, we found the derivative ¢’(a) nonetheless. The procedure illustrates
the general idea of the pending implicit function theorem:

Constraining conditions locally define some wvariables implicitly in
terms of others, and the implicitly defined function can be differen-
tiated without being found explicitly.
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(And returning to the circle example, yet another way to find the derivative
is to differentiate the relation x? + 2 = 1 at a point (a,b) about which we
assume that y = p(z),

2a + 2by’ (a) = 0,

so that again ¢’(a) = —a/b. The reader may recall from elementary calculus
that this technique is called implicit differentiation.)

It may help the reader to visualize the situation if we revisit the idea of
the previous paragraph more geometrically. Since C' is a level set of g, the
gradient ¢'(a,b) is orthogonal to C at the point (a,b). When ¢'(a,b) has a
nonzero y-component, C' should locally have a big shadow on the z-axis, from
which there is a function ¢ back to C. (See Figure 5.8, in which the arrow
drawn is quite a bit shorter than the true gradient, for graphical reasons.)

Figure 5.8. Nonhorizontal gradient and z-shadow

Another set defined by a constraining relation is the unit sphere, also
specified as a level set. Let

g(x,y,2) = 2> +y* + 2°.

Then the sphere is
S={(z,y,2) : g(z,y,2) = 1}.

Imposing one condition on three variables should generally leave two of them
free (say, the first two) and define the remaining one in terms of the free ones.
That is, n = 3 and ¢ = 1, so that » = 2. And indeed, the sphere implicitly
describes z as a function ¢(z,y) about every point p = (a,b,c) € S off the
equator, where ¢ = 0. (So for this example we have just overridden the general
use of ¢ as the number of constraints; here c is the third coordinate of a point on
the level set.) The equator is precisely the points where D3g(p) = 2¢ vanishes.
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Again geometry makes this plausible. The gradient ¢’(p) is orthogonal to S
at p. When ¢'(p) has a nonzero z-component, S should locally have a big
shadow in the (z,y)-plane from which there is a function back to S and then
to the z-axis. (See Figure 5.9.)

Figure 5.9. Function from the (z,y)-plane to the z-axis via the sphere

The argument based on calculus and linear algebra to suggest that near
points (a,b,¢) € S such that D3g(a,b, c) # 0, z is implicitly a function ¢(x,y)
on S is similar to the case of the circle. The derivative of g at the point is

g'(a,b,c) = [2a 2b2c].

The tangent plane to the sphere at (a, b, ¢) consists of the points (a + h,b +
k,c+ ¢) such that (h,k,¥) is orthogonal to ¢'(a,b, c),

h
[2a 2b 2¢] k| =0.
¢

That is,
2ah + 2bk + 2¢f = 0.

Thus, whenever ¢ # 0 we have
L= —(a/e)h — (b/c)k,

showing that on the tangent plane, the third coordinate is a linear function
of the first two, and the function has partial derivatives —a/c and —b/c.
And so on the sphere itself near (a,b,c), plausibly the third coordinate is a
function of the first two as well, provided that ¢ # 0. This argument excludes
points on the equator, about which z is not an implicit function of (z,y). But
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about points (a,b,c) € S where Dsg(a,b,c) # 0, the sphere relation should
implicitly define z as a function of (z,y). And at such points (say, on the
upper hemisphere), the function is explicitly

ple,y) = V1-a2?—y?
so that ¢'(z,y) = —[z/\/1 — 22 —y2 y/\/1 — 22 —y2] = —[2/2 y/z], and in

particular,
¢'(a,b) = —[a/cb/c].

The partial derivatives are exactly as predicted by solving the linear problem
g'(a,b,c)v =0, where v = (h, k, ¢) is a column vector, with no reference to ¢.
(As with the circle, a third way to find the derivative is to differentiate the
sphere relation 22 + 3% + 22 = 1 at a point (a,b,c) about which we assume
that z = p(z,y), differentiating with respect to x and then with respect to v,

2a + 2¢D1p(a,b) =0, 2b+ 2cDyp(a,b) = 0.
Again we obtain ¢'(a,b) = —[a/c b/c].)

Next consider the intersection of the unit sphere and the 45-degree plane
z = —y. The intersection is a great circle, again naturally described as a level
set. That is, if we consider the mapping

9: R — R g(z,y,2) = (@ +y" + 22y +2),
then the great circle is a level set of g,

GC ={(z,y,2) : g(z,y,2) = (1,0)}.

The two conditions on the three variables should generally leave one variable
(say, the first one) free and define the other two variables in terms of it. That
is, n = 3 and ¢ = 2, so that » = 1. Indeed, GC is a circle that is orthogonal
to the plane of the page, and away from its two points (£1,0,0) that are
farthest in and out of the page, it does define (y, z) locally as functions of x.
(See Figure 5.10.) This time we first proceed by linearizing the problem to
obtain the derivatives of the implicit function without finding the implicit
function ¢ = (1, p2) itself. The derivative matrix of g at p is

, _|2a 2b2c
g(a,b,c)—{o 1 1:|

The level set GC is defined by the condition that g(x,y, z) remain constant
at (1,0) as (z,y,z) varies. Thus the tangent line to GC at a point (a,b,c)
consists of points (a + h,b + k,c + £) such that neither component function
of g is instantaneously changing in the (h, k, £)-direction,

2a 2b 2¢ Z_O
0116_0'
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The right 2 x 2 submatrix of ¢’(a,b,¢) has nonzero determinant whenever
b # ¢, that is, at all points of GC except the two aforementioned ex-
treme points (£1,0,0). Assuming that b # ¢, let M denote the first column
of ¢’(a,b,c) and let N denote the right 2 x 2 submatrix. Then by (5.6), the
linearized problem has solution

o)== g [ [5]= [F2)

(the condition ¢ = —b was used in the last step), or
a a
k= —%lu (= —%h. (5.7)

And so for all points (a + h,b+ k,c+ £) on the tangent line to GC' at (a, b, ¢),
the last two coordinate-offsets k& and ¢ are specified in terms of the first co-
ordinate offset h via (5.7), and the component functions have partial deriva-
tives —a/(2b) and —a/(2c). (And as with the circle and the sphere, the two
partial derivatives can be obtained by implicit differentiation as well.)

Figure 5.10. y and z locally as functions of = on a great circle

To make the implicit function in the great circle relations explicit, note
that near the point p = (a, b, ¢) in the figure,

(y:2) = (1(2), 2(x)) = (—\/1 ‘f‘ﬂw ‘f) .

At p the component functions have derivatives
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pila) = —— and  @ya) = ——

But 1 —a? = 2b? = 2¢2, and Vb2 = —b since b < 0, while V2 = ¢ since ¢ > 0,
so the derivatives are

"a) = — & "a) = - &
@)= =3 and  ghla) =~

Predictably enough, the implicitly calculated values displayed in (5.7) are
matched by these component derivatives of the true mapping ¢ that defines
y and z in terms of x for points near p on GC.

In the examples of the circle, the sphere, and the great circle, the functions
implicit in the defining relations could in fact be found explicitly. But in
general, relations may snarl the variables so badly that expressing some as
functions of the others is beyond our algebraic capacity. For instance, do the
simultaneous conditions

y? = e” cos(y + x?) and Y+ 22 =a? (5.8)

define y and z implicitly in terms of x near the point (1,—1,0)? (This point
meets both conditions.) Answering this directly by solving for y and z is
manifestly unappealing. But linearizing the problem is easy. At our point
(1,—1,0), the mapping

g(xayv Z) = (y2 —e? COS(y —+ x2)’y2 + 22 _ .’E2)
has derivative matrix

/(1 _1 0) o Qxezsin(y+x2) 2y + €7 Sin(y+x2) _GZCOS(y+:L'2)
S —2z 2y 2z

[ o0-2-1

T l-2-2 0]
Since the right 2 x 2 determinant is nonzero, we expect that indeed y and z
are implicit functions ¢1(z) and pa(x) near (1, —1,0). Furthermore, solving

the linearized problem as in the previous example with M and N similarly
defined suggests that if (y,z) = p(x) = (p1(x), p2(z)) then

—1
i e, [—2-1 0] 1o 1][ o] [-t
A1) = —NTM = [—20 2| T2 |2-2]|-2] 7| 2|

Thus for a point (z,y,2z) = (1 4+ h,—1+ k,0 + £) near (1,—1,0) satisfying

conditions (5.8), we expect that (k,¢) ~ (—h,2h), i.e.,

(1,-1,0)

forx=1+4+h, (y,2)=~(-1,0)4 (—h,2h).

The implicit function theorem fulfills these expectations.
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Theorem 5.3.2 (Implicit function theorem). Let ¢ and n be positive in-
tegers with n > ¢, and let r = n — c. Let A be an open subset of R™, and let
g : A — R have continuous partial derivatives at every point of A. Consider
the level set

L={veA:g()=0.}.

Let p be a point of L, i.e., let g(p) = O.. Let p = (a,b) where a € R" and
b e R and let ¢'(p) = [M N] where M is the left ¢ X r submatriz and N is
the remaining right square ¢ X ¢ submatrix.

If det N # 0 then the level set L is locally a graph mear p. That is, the
condition g(x,y) = 0. for (x,y) near (a,b) implicitly defines y as a function
y = p(x) where p takes r-vectors near a to c-vectors near b, and in particular
w(a) =b. The function @ is differentiable at a with derivative matriz

¢'(a) = -N"'M.
Hence ¢ is well approximated near a by its affine approximation,
ola+h)~b—N"'Mh.

We make three remarks before the proof.

e The condition g(z,y) = 0. could just as easily be g(z,y) = w for every
fixed point w € R¢ as in our earlier examples. Normalizing to w = 0,
amounts to replacing g by ¢ — w (with no effect on ¢’), which we do to
tidy up the statement of the theorem.

e The implicit function theorem gives no information when det N = 0. In
this case, the condition g(z,y) = 0, may or may not define y in terms of x.

e While the theorem strictly addresses only whether the last ¢ of n variables
subject to ¢ conditions depend on the first r variables, it can be suitably
modified to address whether any ¢ variables depend on the remaining ones
by checking the determinant of a suitable ¢ X ¢ submatrix of ¢’(p). The
modification is merely a matter of reindexing or permuting the variables,
not worth writing down formally in cumbersome notation, but the reader
should feel free to use the modified version.

Proof. Examining the derivative has already shown the theorem’s plausibility
in specific instances. Shoring up these considerations into a proof is easy with
a well-chosen change of variables and the inverse function theorem. For the
change of variables, define

G:A—R"

as follows: for all x € R" and y € R€ such that (z,y) € A,
Gz, y) = (2, 9(x,y))-

Note that G incorporates g, but unlike g it is a map between spaces of the
same dimension n. Note also that the augmentation that changes g into G is
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highly reversible, being the identity mapping on the z-coordinates. That is, it
is easy to recover g from G. The mapping G affects only y-coordinates, and it
is designed to take the level set L = {(z,y) € A : g(z,y) = 0.} to the x-axis.
(See Figure 5.11, in which the inputs and the outputs of G are shown in the
same copy of R™.)

Y
R¢ JS—
( A
y) §
G(z,y) = (z,9(z,y))
. . G(A) \} .
R’n \\‘\\_-> a /7‘/," Rr

Figure 5.11. Mapping A to R™ and the constrained set to z-space

The mapping G is differentiable at the point p = (a,b) with derivative
matrix
G'(a,b) = [I’“ Om] € M,.(R).

? M N n
This matrix has determinant det G'(a,b) = det N # 0, and so by the inverse
function theorem, G has a local inverse mapping @ defined near the point
G(a,b) = (a,0.). (See Figure 5.12.) Since the first 7 components of G are the
identity mapping, the same holds for the inverse. That is, the inverse takes
the form

P(z,y) = (z,9(z,y)),
where ¢ maps n-vectors near (a, 0.) to c-vectors near b. The inversion criterion
is that for all (x,y) near (a,b) and all (x, %) near (a,0.),

Glr,y) = (x,9) <= (,y) =2(z,7).

Equivalently, since neither G nor @ affects z-coordinates, for all x near a, y
near b, and ¢ near O,

g(xy) =79 <= y=0¢(=7). (5.9)
Also by the inverse function theorem and a short calculation,

IT' 07' X C:|

/ _ -1 _
#(0.00 = G = |y N
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RC

R™ w.a s R”

Figure 5.12. Local inverse of G

Now we can exhibit the desired mapping implicit in the original g. Define
a mapping
o(z) = ¢(x,0.) for x near a. (5.10)

The idea is that locally this lifts the 2-axis to the level set L where g(z,y) = 0,
and then projects horizontally to the y-axis. (See Figure 5.13.) For every (z,y)
near (a,b), a specialization of condition (5.9) combines with the definition
(5.10) of ¢ to give

g(x,y) =0. <= y=p).

This equivalence exhibits y as a local function of x on the level set of g, as
desired. And since by definition (5.10), ¢ is the last ¢ component functions
of @ restricted to the first r inputs to @, the derivative ¢’(a) is exactly the
lower left ¢ x 7 block of ' (a, 0,.), which is — N ~!M. This completes the proof.

O

Thus the implicit function theorem follows easily from the inverse function
theorem. The converse implication is even easier. Imagine a scenario in which
somehow we know the implicit function theorem but not the inverse function
theorem. Let f: A — R™ (where A C R™) be a mapping that satisfies the
hypotheses for the inverse function theorem at a point a € A. That is, f is
continuously differentiable in an open set containing a, and det f'(a) # 0.
Define a mapping

g: AxXR" —R",  g(z,y) = f(z) —v.

(This mapping should look familiar from the beginning of this section.) Let
b= f(a). Then g(a,b) = 0, and the derivative matrix of g at (a,b) is

g'(a,b) = [f'(a) —1,] .
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)
R
. M%m)/}/
p(x) @(z,0.) = (v, ¢(z,0))
" o R

Figure 5.13. The implicit mapping from z-space to y-space via the level set

Since f’(a) is invertible, we may apply the implicit function theorem, with
the roles of ¢, r, and n in the theorem taken by the values n, n, and 2n here,
and with the theorem modified as in the third remark before its proof so that
we are checking whether the first n variables depend on the last n values. The
theorem supplies us with a differentiable mapping ¢ defined for values of y
near b such that for all (x,y) near (a,b),

g(,y) =0 <= z=y).

But by the definition of g, this equivalence is

y=flx) <= z=09@).

That is, ¢ inverts f. Also by the implicit function theorem, ¢ is differentiable
at b with derivative

P'(b) = —f'(a) " (~1n) = ()7

(as it must be), and we have recovered the inverse function theorem. In a
nutshell, the argument converts the graph y = f(x) into a level set g(z,y) = 0,
and then the implicit function theorem says that locally the level set is also
the graph of = p(y). (See Figure 5.14.)

Rederiving the inverse function theorem so easily from the implicit function
theorem is not particularly impressive, since proving the implicit function
theorem without citing the inverse function theorem would be just as hard as
the route we took of proving the inverse function theorem first. The point is
that the two theorems have essentially the same content.

We end this section with one more example. Consider the function

g:R? =R, g(x,y) = (2®+y°)° -2 +4°
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Yy
.
, 1 W)y /
N @ @)
R2" a R

Figure 5.14. The inverse function theorem from the implicit function theorem

and the corresponding level set, a curve in the plane,

L={(z,y) € R?: g(x,y) = 0}.

The implicit function theorem lets us analyze L qualitatively. The derivative
matrix of g is

g'(z,y) = Ale((@® + ) = 1/2) y((@® +y?) +1/2)].

By the theorem, L is locally the graph of a function y = ¢(z) except possibly
at its points where y((22 + y?) + 1/2) = 0, which is to say y = 0. To find all
such points is to find all  such that g(x,0) = 0. This condition is 2* — 2% = 0,
or 2%(2%2 — 1) = 0, and so the points of L where locally it might not be the
graph of y = p(z) are (0,0) and (£1,0). Provisionally we imagine L to have
vertical tangents at these points.

Similarly, L is locally the graph of a function = ¢(y) except possibly at
its points where z((2? +y?) —1/2) = 0, which is to say z = 0 or 22 +y? = 1/2.
The condition g(0,y) = 0 is y* + y? = 0, whose only solution is y¥ = 0. And
if 22 + y? = 1/2 then g(z,y) = 1/4 — 22 + y?> = 3/4 — 222, which vanishes
for x = :&:\/3/787 also determining y = :I:\/l/i& Thus the points of L where
locally it might not be the graph of z = ¢(y) are (0,0) and (£+/3/8, £+/1/8)
with the two signs independent. Provisionally we imagine L to have horizontal
tangents at these points.

However, since also we imagined a vertical tangent at (0,0), this point
requires further analysis. Keeping only the lowest-order terms of the relation
g(z,y) = 0 gives y> ~ 2%, or y ~ 4z, and so L looks like two crossing
lines of slopes £1 near (0,0). This analysis suffices to sketch L, as shown in
Figure 5.15. The level set L is called a lemniscate. The lemniscate originated
in astronomy, and the study of its arc length led to profound mathematical
ideas by Gauss, Abel, and many others.
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Figure 5.15. Lemniscate

Exercises

5.3.1. Does the relation 22 + y + sin(xy) = 0 implicitly define y as a function
of x near the origin? If so, what is its best affine approximation? How about
x as a function of y and its affine approximation?

5.3.2. Does the relation zy — zIlny + e”* = 1 implicitly define z as a function
of (z,y) near (0,1,1)? How about y as a function of (z,z)? When possible,
give the affine approximation to the function.

5.3.3. Do the simultaneous conditions 2?(y? + 2?) =5 and (z — 2)? + y? = 2
implicitly define (y, z) as a function of = near (1,—1,2)? If so, then what is
the function’s affine approximation?

5.3.4. Same question for the conditions 22 + y? = 4 and 222 + y? + 822 = 8
near (2,0,0).

5.3.5. Do the simultaneous conditions xy + 2yz = 3zz and zyz +z —y =1
implicitly define (z,y) as a function of z near (1,1,1)? How about (z,z2) as a
function of y? How about (y, z) as a function of ? Give affine approximations
when possible.

5.3.6. Do the conditions zy? + zzu + yv? = 3 and w3yz + 2zv — u?v? = 2
implicitly define (u,v) in terms of (x,y, z) near the point (1,1,1,1,1)? If so,
what is the derivative matrix of the implicitly defined mapping at (1,1,1)?

5.3.7. Do the conditions 2% +yu+zv+w = 0 and x +y+uvw = —1 implicitly
define (z,y) in terms of (u,v,w) near (x,y,u,v,w) = (1,—1,1,1,—-1)7? If so,
what is the best affine approximation to the implicitly defined mapping?

5.3.8. Do the conditions
24+ y+2z+u—-—v=1
zy+z—u+2v=1
yz+zz4+ul+v=0

define the first three variables (z,y,z) as a function (u,v) near the point
(z,y,2,u,v) = (1,1,—1,1,1)? If so, find the derivative matrix ¢'(1,1).
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5.3.9. Define g : R?2 — R by g(z,y) = 223 — 322 + 2y + 33?2 and let L be
the level set {(x,y) : g(z,y) = 0}. Find those points of L about which y need
not be defined implicitly as a function of x, and find the points about which
x need not be defined implicitly as a function of y. Describe L precisely—the
result should explain the points you found.

5.4 Lagrange Multipliers: Geometric Motivation and
Specific Examples

How close does the intersection of the planes x+y+z =1 and x —y+2z = —1
in R3 come to the origin? This question is an example of an optimization prob-
lem with constraints. The goal in such problems is to maximize or minimize
some function, but with relations imposed on its variables. Equivalently, the
problem is to optimize some function whose domain is a level set.

A geometric solution of the sample problem just given is that the planes
intersect in a line through the point p = (0, 1,0) in the direction d = (1,1,1) x
(1,—1,2), so the point-to-line distance formula from Exercise 3.10.12 answers
the question. This method is easy and efficient.

A more generic method of solution is via substitution. The equations of
the constraining planes are x + y =1 — z and x — y = —1 — 22; adding gives
x = —3z/2, and subtracting gives y = 1+2z/2. To finish the problem, minimize
the function d?(z) = (=32/2)% + (1 + 2/2)? + 22, where d? denotes distance
squared from the origin. Minimizing d? rather than d avoids square roots.

Not all constrained problems yield readily to either of these methods. The
more irregular the conditions, the less amenable they are to geometry, and the
more tangled the variables, the less readily they distill. Merely adding more
variables to the previous problem produces a nuisance: How close does the
intersection of the planesv+w+x+y+z=1landv—w+2x—y+2z=—1
in R® come to the origin? Now no geometric procedure lies conveniently at
hand. As for substitution, linear algebra shows that

1 11 11
1-12-11

e 8 8 <
I
|
— =
—_

implies
A (R P ) e

Since the resulting function d2(z,y, z) = (—=3z/2 — 2)* + (1 + /2 — y)* + 2% +
y? + 22 is quadratic, partial differentiation and more linear algebra will find
its critical points. But the process is getting tedious.
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Let’s step back from specifics (but we will return to the currently unre-
solved example soon) and consider in general the necessary nature of a critical
point in a constrained problem. The discussion will take place in two stages:
first we consider the domain of the problem, and then we consider the critical
point.

The domain of the problem is the points in n-space that satisfy a set of ¢
constraints. To satisfy the constraints is to meet a condition

g(a:) = 0(:7

where g : A — R€ is a C'-mapping, with A C R™ an open set. That is, the
constrained set forming the domain in the problem is a level set L, the inter-
section of the level sets of the component functions g; of g. (See Figures 5.16
and 5.17. The first figure shows two individual level sets for scalar-valued
functions on R?, and the second figure shows them together and then shows
their intersection, the level set for a vector-valued mapping.)

Figure 5.16. Level sets for two scalar-valued functions on R3

At every point p € L, the set L must be locally orthogonal to each gradient
Vgi(p). (See Figures 5.18 and 5.19. The first figure shows the level sets for
the component functions of the constraint mapping, and the gradients of the
component functions at p, while the second figure shows the tangent line and
the normal plane to the level set at p. In the first figure, neither gradient is
tangent to the other surface, and so in the second figure the two gradients are
not normal to each other.) Therefore:

e [ is orthogonal at p to every linear combination of the gradients,
c
Z AiVgi(p) where Aq,..., . are scalars.
i=1

Equivalently:
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Figure 5.17. The intersection is a level set for a vector-valued mapping on R?

e Fvery such linear combination of gradients is orthogonal to L at p.
But we want to turn this idea around and assert the converse, that:
e Every vector that is orthogonal to L at p is such a linear combination.

However, the converse does not always follow. Intuitively, the argument is that
if the gradients Vg1 (p), ..., Vg.(p) are linearly independent (i.e., they point
in ¢ nonredundant directions) then the implicit function theorem should say
that the level set L therefore looks (n — ¢)-dimensional near p, so the space
of vectors orthogonal to L at p is c-dimensional, and so every such vector is
indeed a linear combination of the gradients. This intuitive argument is not a
proof, but for now it is a good heuristic.

[\ i:‘&é\\
=X
OO

OO

1N ;
[T\
B

Figure 5.18. Gradients to the level sets at a point of intersection

Proceeding to the second stage of the discussion, now suppose that p is
a critical point of the restriction to L of some C!-function f : A — R.
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Figure 5.19. Tangent line and normal plane to the intersection

(Thus f has the same domain A C R™ as g.) Then for every unit vector d
describing a direction in L at p, the directional derivative D4 f(p) must be 0.
But Dyf(p) = (Vf(p),d), so this means that:

e Vf(p) must be orthogonal to L at p.

This observation combines with our description of the most general vector
orthogonal to L at p, in the third bullet above, to give Lagrange’s condition:

Suppose that p is a critical point of the function f restricted to the
level set L = {x : g(x) = 0.} of g. If the gradients Vg;(p) are linearly
independent, then

Vi) = Z AiVgi(p) for some scalars Ay, ..., A,
i=1

and since p is in the level set, also

g(p) = O
Approaching a constrained problem by setting up these conditions and then
working with the new variables Ay, ..., A. is sometimes easier than the other

methods. The \; are useful but irrelevant constants.

This discussion has derived the Lagrange multiplier criterion for the lin-
earized version of the constrained problem. The next section will use the
implicit function theorem to derive the criterion for the actual constrained
problem, and then it will give some general examples. The remainder of this
section is dedicated to specific examples.

Returning to the unresolved second example at the beginning of this sec-
tion, the functions in question are
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flo,w,z,y,2) =v* +w? + 2% + y* + 22
91(7)7“)’1?7%2):U+w+x+y+z_1
gQ(vavxayvz) :v—w+2x—y+z+1

and the corresponding Lagrange condition and constraints are (after absorbing
a 2 into the \’s, whose particular values are irrelevant anyway)

(vavxayaz) :Al(lvlalalal)+/\2(17_1a2a_171)
= (M + A2, A1 — A2, A+ 229, A1 — A, A+ Ag)
v+wtzrz+y+z= 1
v—w+2x —y+z=—1.

Substitute the expressions from the Lagrange condition into the constraints
to get BA1 + 23 = 1 and 2\; + 8y = —1. That is,

b [l =)

and so, inverting the matrix to solve the system,

A1 7i 8 -2 1|  ]10/36
Aa| 36 |—2 5| |-1]  |-7/36|"
Note how much more convenient the two \’s are to work with than the five

original variables. Their values are auxiliary to the original problem, but sub-
stituting back now gives the nearest point to the origin,

1

3,17, —4,17,3
36( ) ) Y ) )7

(U7 w7 x? y7 Z) =
and its distance from the origin is v/612/36. This example is just one instance
of a general problem of finding the nearest point to the origin in R™ subject
to ¢ affine constraints. We will solve the general problem in the next section.

An example from geometry is Euclid’s least area problem. Given an angle
ABC and a point P interior to the angle as shown in Figure 5.20, what line
through P cuts off from the angle the triangle of least area?

Draw the line L through P parallel to AB and let D be its intersection
with AC. Let a denote the distance AD and let h denote the altitude from
AC to P. Both a and h are constants. Given any other line L’ through P,
let  denote its intersection with AC' and H denote the altitude from AC to
the intersection of L’ with AB. (See Figure 5.21.) The shaded triangle and its
subtriangle in the figure are similar, giving the relation z/H = (x — a)/h.

The problem is now to minimize the function f(z, H) = %xH subject to
the constraint g(z, H) = 0 where g(z, H) = (x — a)H — zh = 0. Lagrange’s
condition Vf(x,H) = AVg(z, H) and the constraint g(xz, H) = 0 become,
after absorbing a 2 into A,
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N
L
[ )

Q

Figure 5.20. Setup for Euclid’s least area problem

P,
D h
T —

|
1
a

Figure 5.21. Construction for Euclid’s least area problem

(H,z) = AH — h,z — a),
(x — a)H = zh.

The first relation quickly yields (z — a)H = x(H — h). Combining this with
the second shows that H — h = h, that is, H = 2h. The solution of Euclid’s
problem is, therefore, to take the segment that is bisected by P between the
two sides of the angle. (See Figure 5.22.)

Euclid’s least area problem has the interpretation of finding the point of
tangency between the level set g(z, H) = 0, a hyperbola having asymptotes
x = a and H = h, and the level sets of f(x,H) = (1/2)xH, a family of
hyperbolas having asymptotes x = 0 and H = 0. (See Figure 5.23, where
the dashed asymptotes meet at (a,h) and the point of tangency is visibly
(z,H) = (2a,2h).)
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Figure 5.22. Solution of Euclid’s least area problem

Figure 5.23. Level sets for Euclid’s least area problem

An example from optics is Snell’s law. A particle travels through medium 1
at speed v, and through medium 2 at speed w. If the particle travels from point
A to point B as shown (Figure 5.24) in the least possible amount of time, what
is the relation between angles o and 37

Because time is distance over speed, a little trigonometry shows that this
problem is equivalent to minimizing f(«, ) = aseca/v + bsec f/w subject
to the constraint g(«, 8) = atana + btan 8 = d (g measures lateral distance
traveled). The Lagrange condition V f(«, 8) = AVg(«, 5) is

a . b .
( sin asec? v, — sin 3 sec? B) = Masec? a, bsec? j3).
v w

Therefore A = sin /v = sin §/w, giving Snell’s famous relation,

sin o v

sinf  w’
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A atan(«)
medium 1
medium 2 b B bsec(f)
btan(B) ~ B

Figure 5.24. Geometry of Snell’s law

Figure 5.25 depicts the situation using the variables z = tan a and y = tan 3.
The level set of possible configurations becomes the portion of the line
ax + by = d in the first quadrant, and the function to be optimized becomes
av1l+z2/v+by/1+ y2/w. A level set for a large value of the function passes
through the point (0,d/b), the configuration with o = 0 in which the parti-
cle travels vertically in medium 1 and then travels a long path in medium 2,
and a level set for a smaller value of the function passes through the point
(d/a,0), the configuration with 8 = 0 in which the particle travels a long path
in medium 1 and then travels vertically in medium 2, while a level set for an
even smaller value of the function is tangent to the line segment at its point
that describes the optimal configuration specified by Snell’s law.

Figure 5.25. Level sets for the optics problem

For an example from analytic geometry, let the function f measure the
square of the distance between the points x = (x1,x2) and y = (y1,y2) in the
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plane,
@1, 22,91,92) = (31 — y1)? + (22 — y2)°.

Fix points a = (a1, az) and b = (b1, b2) in the plane, and fix positive numbers
r and s. Define

g1(z1,22) = (21 — a1)® + (22 — a2)® — 1%,
92(y1,92) = (Y1 — 51)2 + (y2 — 52)2 - 32»
g($1,$2,y1,y2) = (91($1,$2)792(y17y2))~

Then the set of four-tuples (z1, z2,y1,y2) such that

g(x1,22,91,2) = (0,0)

can be viewed as the set of pairs of points z and y that lie respectively on the
circles centered at a and b with radii r and s. Thus, to optimize the function f
subject to the constraint ¢ = 0 is to optimize the distance between pairs of
points on the circles. The rows of the 2 X 4 matrix

g,(xy)Zlefalngag 0 0
’ 0 0 y1—brys—bo

are linearly independent because z # a and y # b. The Lagrange condition
works out to

(x1 —y1, 22 — Yo, y1 — 21, Y2 — T2) = A (21 — a1, 22 — a2,0,0)
—A2(0,0,y1 — b1, y2 — b2),

or
(r —y,y —x) = A(7 — a,02) — A2(02,y — b).

The second half of the vector on the left is the additive inverse of the first, so
the condition can be rewritten as

r—y=A(z—a)=X(y—0).

If A1 =0 or Ay =0 then z = y and both \; are 0. Otherwise, A\; and Ay are
nonzero, forcing  and y to be distinct points such that

e—yllz—aly="b

and so the points x, y, a, and b are collinear. Granted, these results are obvious
geometrically, but it is pleasing to see them follow so easily from the Lagrange
multiplier condition. On the other hand, not all points  and y such that x,
y, a, and b are collinear are solutions to the problem. For example, if both
circles are bisected by the z-axis and neither circle sits inside the other, then
x and y could be the leftmost points of the circles, neither the closest nor the
farthest pair.
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The last example of this section begins by maximizing the geometric mean
of n nonnegative numbers,

f(x1,...,zn) = (x1---2)"", each x; >0,

subject to the constraint that their arithmetic mean is 1,

n

=1, eachx; >0.

The set of such (1, . .., x,)-vectors is compact, being a closed subset of [0, n]™.
Since f is continuous on its domain [0, c0)™, it is continuous on the constrained
set, and so it takes minimum and maximum values on the constrained set. At
every constrained point set having some x; = 0, the function-value f = 0 is the
minimum. All other constrained points, having each x; > 0, lie in the interior
of the domain of f. The upshot is that we may assume that all x; are positive
and expect the Lagrange multiplier method to produce the maximum value
of f among the values that it produces. Especially, if the Lagrange multiplier
method produces only one value (as it will) then that value must be the
maximum.

The constraining function is g(z1,...,2,) = (z1 + -+ + x,)/n, and the
gradients of f and g are

Vf(ml,...,xn)=W(l7--~71>7

X In
Vg(xi,...,zn) = —(1,...,1).
The Lagrange condition Vf = AVg shows that all z; are equal, and the

constraint g = 1 forces their value to be 1. Therefore, the maximum value of
the geometric mean when the arithmetic mean is 1 is the value

fa,...,D)=>0---1)Yr=1.

This Lagrange multiplier argument provides most of the proof of the following
theorem.

Theorem 5.4.1 (Arithmetic—geometric mean inequality). The geomet-
ric mean of n positive numbers is at most their arithmetic mean:

a PRI a
(ag--- an)l/" < Gt tan for all nonnegative ay, ..., a,.
n
Proof. If any a; = 0 then the inequality is clear. Given positive numbers
ai,...,an, let a = (a3 + -+ ay)/n and let x; = a;/a for i = 1,...,n. Then

(xl 4.+ xn)/n = 1’ and therefore

(ar--an) /™ = a(wy - ap) /" < g = BE T H 0
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Despite these pleasing examples, Lagrange multipliers are in general no
computational panacea. Some problems of optimization with constraint are
solved at least as easily by geometry or substitution. Nonetheless, Lagrange’s
method provides a unifying idea that addresses many different types of op-
timization problem without reference to geometry or physical considerations.
In the following exercises, use whatever methods you find convenient.

Exercises

5.4.1. Find the nearest point to the origin on the intersection of the hyper-
planesz +y+z2z—2w=1and z —y+ 2+ w =2 in R%

5.4.2. Find the nearest point on the ellipse 22 + 2y? = 1 to the line z +y = 4.

5.4.3. Minimize f(z,y,2) = z subject to the constraints 2x+4y = 5, 22+ 22 =
2y.

5.4.4. Maximize f(x,y,2) = zy + yz subject to the constraints z? + y? = 2,
Yz = 2.

5.4.5. Find the extrema of f(x,y, 2z) = xy+ 2z subject to the constraints x > 0,
y=20,zz+y=4,yz+ax =5

5.4.6. Find the rectangular box of greatest volume, having sides parallel to the
coordinate axes, that can be inscribed in the ellipsoid (%)2 + (%)2 + (5)2 =1.

c

5.4.7. The lengths of the twelve edges of a rectangular block sum to 4, and
the areas of the six faces sum to 4a. Find the lengths of the edges when the
excess of the block’s volume over that of a cube with edge equal to the least
edge of the block is greatest.

5.4.8. A cylindrical can (with top and bottom) has volume V. Subject to this
constraint, what dimensions give it the least surface area?

5.4.9. Find the distance in the plane from the point (0,1) to the parabola
y = axz? where a > 0. Note: the answer depends on whether a > 1/2 or 0 <
a<1/2.

5.4.10. This exercise extends the arithmetic—geometric mean inequality. Let
€1,...,e, be positive numbers with Z?:l e; = 1. Maximize the function
flz1, ... ,xn) = xf'---xt» (where each x; > 0) subject to the constraint
Z?:l e;x; = 1. Use your result to derive the weighted arithmetic-geometric

mean inequality,
ait---air <erap + -+ epan for all nonnegative a1, ..., ay,.

What values of the weights, eq,...,e, reduce this to the basic arithmetic—
geometric mean inequality?
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5.4.11. Let p and ¢ be positive numbers satisfying the equation % + é = 1.
Maximize the function of 2n variables f(z1,...,Zn, Y1, ,Yn) = Dory Tili
subject to the constraints » .~ 2¥ = 1 and Y. y! = 1. Derive H6lder’s

inequality: For all nonnegative a1,...,an,b1,...,by,
n n 1/p n 1/q
San< (Y] (L)
i=1 i=1 i=1

5.5 Lagrange Multipliers: Analytic Proof and General
Examples

Recall that the environment for optimization with constraints consists of

an open set A C R",

a constraining C*-mapping g : A — R¢,

the corresponding level set L = {v € A : g(v) = 0.},
and a C!-function f: A — R to optimize on L.

We have argued geometrically, and not fully rigorously, that if f on L is op-
timized at a point p € L then the gradient f’(p) is orthogonal to L at p.
Also, every linear combination of the gradients of the component functions
of g is orthogonal to L at p. We want to assert the converse, that every vector
that is orthogonal to L at p is such a linear combination. The desired con-
verse assertion does not always hold, but if it does then it gives the Lagrange
condition,

Vi) = Y ATal)

Here is the rigorous analytic justification that the Lagrange multiplier method
usually works. The implicit function theorem will do the heavy lifting, and it
will reaffirm that the method is guaranteed only where the gradients of the
component functions of g are linearly independent. The theorem makes the
rigorous proof of the Lagrange criterion easier and more persuasive—at least
in the author’s opinion—than the heuristic argument given earlier.

Theorem 5.5.1 (Lagrange multiplier condition). Letn and ¢ be positive
integers with n > c. Let g : A — R¢ (where A C R™) be a mapping that is
continuously differentiable at each interior point of A. Consider the level set

L={zeA:g(z)=0.}

Let f : A — R be a function. Suppose that the restriction of f to L has an
extreme value at a point p € L that is an interior point of A. Suppose that f is
differentiable at p, and suppose that the ¢ X n derivative matriz g'(p) contains
a ¢ X ¢ block that is invertible. Then the following conditions hold:
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Vf(p) =N (p) for some row vector X € R,
9(p) = 0.

The proof will culminate the ideas in this chapter as follows. The inverse
function theorem says:

1If the linearized inversion problem is solvable then the actual inversion
problem is locally solvable.

The inverse function theorem is equivalent to the implicit function theorem:

If the linearized level set is a graph then the actual level set is locally
a graph.

And finally, the idea for proving the Lagrange condition is:

Although the graph is a curved space, where the techniques of Chapter 4
do not apply, its domain is a straight space, where they do.

That is, the implicit function theorem lets us reduce optimization on the graph
to optimization on the domain, which we know how to do.

Proof. The second condition holds since p is a point in L. The first condition
needs to be proved. Let r = n — ¢, the number of variables that should remain
free under the constraint g(z) = 0., and notate the point p as p = (a,b),
where ¢ € R™ and b € R°. Using this notation, we have g(a,b) = 0., and
¢'(a,b) = [M NJ] where M is ¢ x r and N is ¢ x c and invertible. (We may
assume that N is the invertible block in the hypotheses to the theorem because
we may freely permute the variables.) The implicit function theorem gives a
mapping ¢ : Ag — R (where Ay C R" and a is an interior point of Ag)
with ¢(a) = b, ¢’(a) = —N"'M, and for all points (x,y) € A near (a,b),
g(x,y) = 0. if and only if y = ().
Make f depend only on the free variables by defining

fO:fo(id'r‘aSD) :A0_>Ra fO(x):f(xaso(x))

(See Figure 5.26.) Since the domain of fo doesn’t curve around in some larger
space, fo is optimized by the techniques from Chapter 4. That is, the implicit
function theorem has reduced optimization on the curved set to optimization
in Euclidean space. Specifically, the multivariable critical point theorem says
that fo has a critical point at a,

Vfo(a) = 0,.

Our task is to express the previous display in terms of the given data f and g.
Doing so will produce the Lagrange condition.

Because fy = f o (id,, ¢) is a composition, the chain rule says that the
condition V fy(a) = 0, is Vf(a, ¢(a)) - (id,, ¢)'(a) = 0,, or
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I
Vf(a,b S =0,
fl.t) L@’(a)}
Let Vf(a,b) = (u,v) where v € R" and v € R® are row vectors, and recall
that ¢'(a) = —N~'M. The previous display becomes
I,
ol |y = 0n

giving v = v N ~t M. This expression for u and the trivial identity v = vN ' N
combine to give in turn

[u v] =yN! [M N].

But [u v] = Vf(a,b) and [M N| = g¢'(a,b) and (a,b) = p. Soset A = vN~! (a
row vector in R¢), and the previous display is precisely Lagrange’s condition,

Vi) =X (p)

O
y
RC
o/
\f\
(idra 90) % R
T X

R™ Ay @ R"

Figure 5.26. The Lagrange multiplier criterion from the implicit function theorem

We have seen that the Lagrange multiplier condition is necessary but not
sufficient for an extreme value. That is, it can report a false positive, as in the
two-circle problem in the previous section. False positives are not a serious
problem, since inspecting all the points that meet the Lagrange condition will
determine which of them give the true extrema of f. A false negative would be
a worse situation, giving us no indication that an extreme value might exist,
much less how to find it. The following example shows that the false negative
scenario can arise without the invertible ¢ x ¢ block required in Theorem 5.5.1.

Let the temperature in the plane be given by

flz,y) =,
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Figure 5.27. Curve with cusp

and consider a plane set defined by one constraint on two variables,
L={(z.y) eR: y? = 2%},

(See Figure 5.27.) Since temperature increases as we move to the right, the
coldest point of L is its leftmost point, the cusp at (0,0). However, the La-
grange condition does not find this point. Indeed, the constraining function
is g(x,y) = 23 — y? (which does have continuous derivatives, notwithstanding
that its level set has a cusp: the graph of a smooth function is smooth, but
the level set of a smooth function need not be smooth—this is exactly the
issue addressed by the implicit function theorem). Therefore the Lagrange
condition and the constraint are

These equations have no solution. The problem is that the gradient at the cusp
is Vg(0,0) = (0,0), and neither of its 1 x 1 subblocks is invertible. In general,
the Lagrange multiplier condition will not report a false negative as long as we
remember that it only claims to check for extrema at the nonsingular points
of L, the points p such that ¢’(p) has an invertible ¢ x ¢ subblock.

The previous section gave specific examples of the Lagrange multiplier
method. This section now gives some general families of examples.

Recall that the previous section discussed the problem of optimizing the
distance between two points in the plane, each point lying on an associated
circle. Now, as the first general example of the Lagrange multiplier method,
let (z,y) € R™ xR™ denote a pair of points each from R", and let the function
f measure the square of the distance between such a pair,

fR"xR" — R, f(z,y) = |z —y|*

Note that V f(z,y) = [t —y y — x|, viewing = and y as row vectors. Given two
mappings g; : R — R and g : R® — R2, define

g:R" x R" — R*Fe2, 9(x,y) = (91(x), 92(v))-
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To optimize the function f subject to the constraint g(z,y) = (0, 0.,) is to
optimize the distance between pairs of points  and y on the respective level
sets cut out of R™ by the ¢; conditions ¢;(z) = 0., and the co conditions
92(y) = 0.,. Assuming that the Lagrange condition holds for the optimizing
pair, it is

fo=vy=r) =) = [ =] [ O

= )\1(91(%)7 062><n) - )\2(001 Xnvgé(y))v

where A\; € R and Ay € R are row vectors. The symmetry of V f reduces
this equality of 2n-vectors to an equality of n-vectors,

z =y =g (@) = Aags(y).
That is, either x = y or the line through = and y is normal to the first level
set at = and normal to the second level set at y, generalizing the result from

the two-circle problem. With this result in mind, you may want to revisit
Exercise 0.0.1 from the preface to these notes.

The remaining general Lagrange multiplier methods optimize a linear func-
tion or a quadratic function subject to affine constraints or a quadratic con-
straint. We gather the results in one theorem.

Theorem 5.5.2 (Low-degree optimization with constraints).

(1) Let f(x) = a"z (where a € R™) subject to the constraint Mx = b (where
M € M., (R) has linearly independent rows, with ¢ < n, and b € R°).
Check whether a"MT(MMT)"YM = a'. If so, then f subject to the con-
straint is identically a" MT(MMT)~'b; otherwise, f subject to the con-
straint has no optima.

(2) Let f(x) = 27 Az (where A € M,,(R) is symmetric and invertible) subject
to the constraint Mz = b (where M € M, ,(R) has linearly independent
rows, with ¢ < m, and b € R®). The x that optimizes [ subject to the
constraint and the optimal value are

r=ATTMTY(MAT'M") " and f(z) =b" (MA M) b,
Especially when A = I, the point x such that Mx = b closest to the origin
and its square distance from the origin are

c=M"(MM")™'b and |z|> =b"(MMT") b

(3) Let f(z) = a'z (where a € R™) subject to the constraint v Mz = b (where
M € M,,(R) is symmetric and invertible, and b € R is nonzero). Check
whether a" M ~Yab > 0. If so, then the optimizing inputs and the optimal
values are

r=+M"tab/VaTM~tab and f(xr)=+VaTM-lab.

Otherwise, f subject to the constraint has no optima.
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(4) Let f(z) = 2" Az (where A € M, (R) is symmetric) subject to the con-
straint x"Mx = b (where M € M,(R) is symmetric and invertible,
and b € R is nonzero). The possible optimal values of f subject to the
constraint are

x) = \b  where \ is an eigenvalue of M ~LA.
f(x) 9

(The term “eigenvalue” will be explained in the proof.) Especially when
A =1, the nearest square-distances from the origin on the quadratic sur-
face £V Max = b take the form Ab where X is an eigenvalue of M1,

Proof. (1) The data are (viewing vectors as columns)

f:R" —R, f(z)=da'z where a € R",
g:R" — R g(x)=Mx—b where M € M., (R) and b € R°.

Here we assume that ¢ < n, i.e., there are fewer constraints than variables.
Also, we assume that the ¢ rows of M are linearly independent in R", or
equivalently (invoking a result from linear algebra), that some ¢ columns of M
are a basis of R¢, or equivalently, that some ¢Xx ¢ subblock of M (not necessarily
contiguous columns) has nonzero determinant. The Lagrange condition and
the constraints are

a' =AM where X € R®,
Mzx =b.

Before solving the problem, we need to consider the two relations in the pre-
vious display.

e The Lagrange condition a” = ATM is solvable for A exactly when a' is a
linear combination of the rows of M. Since M has ¢ rows, each of which is
a vector in R™, and since ¢ < n, generally a' is not a linear combination
of the rows of M, so the Lagrange conditions cannot be satisfied. That is:

Generally the constrained function has no optimum.
However, we will study the exceptional case, that a" is a linear combination
of the rows of M. In this case, the linear combination of the rows that
gives a' is unique because the rows are linearly independent. That is, if A
exists then it is uniquely determined.
To find the only candidate A, note that the Lagrange condition a™ = AT M
gives a"MT = A\TMMT, and thus AT = a"MT(MMT)~!. This calcula-
tion’s first step is not reversible, and so the calculation does not always
show that A exists. But it does show that to check whether a' is a linear
combination of the rows of M, one checks whether a' MT(MMT)"*M =
a', in which case A\T =a"MT(MMT)~1L.
Note that furthermore, the Lagrange condition a' = ATM makes no ref-
erence to x.
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e The constraining condition Mx = b has solutions x only if b is a linear
combination of the columns of M. Our assumptions about M guarantee
that this is the case.

With a' being a linear combination of the rows of M and with b being a linear
combination of the columns of M, the Lagrange condition and the constraints
immediately show that for every x in the constrained set,

f@)=a'z =AMz =A"b=a" M (MM")™'b.

That is, f subject to the constraint g = b is the constant = a' M T (M M)~ 1b.

For geometric insight into the calculation, envision the space of linear
combinations of the rows of M (a c-dimensional subspace of R™) as a plane,
and envision the space of vectors Z such that MZ = 0. (an (n— c)-dimensional
subspace of R") as an axis orthogonal to the plane. The condition a” = AT M
says that a lies in the plane, and the condition Mx = b says that = lies on an
axis parallel to the Z-axis. (From linear algebra, the solutions of Mz = b are
the vectors

T =2x9+ T,

where xq is the unique linear combination of the rows of M such that Mxy = b,
and 7 is any vector such that M# = 0..) The constant value of f is a'x for
every x on the axis. In particular, the value is a'xy where x is the point
where the axis meets the plane.

(2) Now we optimize a quadratic function subject to affine constraints.
Here the data are

f:R" —R, f(z)=xz"Az where A € M,(R) is symmetric,
g:R" — R g(z) =Mz —b where M € M, ,(R) and b € R°.

As in (1), we assume that ¢ < n, and we assume that the ¢ rows of M are
linearly independent in R", i.e., some ¢ columns of M are a basis of R¢, i.e.,
some ¢ X ¢ subblock of M has nonzero determinant. Thus the constraints
Mz = b have solutions z for every b € R¢.

To set up the Lagrange condition, we need to differentiate the quadratic
function f. Compute that

flx4+h)—fx)=(x+h)TA(x+h) — 2" Az = 22T Ah + h" Ah,

and so the best linear approximation of this difference is T'(h) = 2xT Ah. It
follows that
Vf(x) =2z A.

Returning to the optimization problem, the Lagrange condition and the
constraints are

z'A=A"M where \ € R,
Mx =0b.
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Having solved a particular problem of this sort in Section 5.4, we use its
particular solution to guide our solution of the general problem. The first step
was to express x in terms of A, so here we transpose the Lagrange condition to
get Az = M T\, then assume that A is invertible and thus get © = A~'MT\.
The second step was to write the constraint in terms of A and then solve
for A, so here we have b = Mz = MA“*MT), so that A\ = (MA=*MT)~1p,
assuming that the ¢ x ¢ matrix M A~ M7 is invertible. Now the optimizing
input x = A"'MT )\ is

r=A"TMT(MA™ M),
and the optimal function value f(x) = 2T Az = A\TMx = \Tb is
flx) =b"(MA™*MT) b

In particular, letting A = I, the closest point = to the origin such that Mz = b
and the square of its distance from the origin are

r=M"(MM")" b, lz[> =b"(MMT")~1b.
(3) Next we optimize a linear function subject to a quadratic constraint.

The data are

f:R" =R, f(zx)=a'x where a € R",
M € M, (R) is symmetric,

g:R" — R, g(x)=2"Mz—b where )
b € R is nonzero.
The Lagrange condition and the constraint are

a' =Xx"M where \ € R,
" Mz =b.

Therefore the possible optimized values of f are
fx)=a"z = x" Mz = b,

and so to find these values it suffices to find the possible values of A. Assuming
that M is invertible, the Lagrange condition is a" M~! = Xz, and hence

a' M~ lab = \zTab = \2b? = f(z)2.
Thus (assuming that a™ M ~'ab > 0) the optimal values are
f(z) =+tVaTM~tab.

The penultimate display also shows that A = £vaTM~1ab/b, so that the
Lagrange condition gives the optimizing z-values,
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x==+M‘tab/VaTM~tab.

One readily confirms that indeed 2" M2 = b for these x.

As a small geometric illustration of the sign-issues in this context, suppose
that n =2 and M = [{}], so that the quadratic constraint is 22122 = b. For
b > 0 the optimizing problem is thus set on a hyperbola in the first and third
quadrants of the plane. The function to be optimized is f(x,y) = a121 + a2
for some a;,ay € R. Since M is its own inverse, the quantity a” M ~'ab under
the square root is 2a;a2b, and thus the constrained optimization problem has
solutions only when ajas > 0. Meanwhile, the level sets of f are lines of
slope —aj/as, meaning that the problem has solutions only when the level
sets have negative slope. In that case, the solutions will be at the two points
where the hyperbola is tangent to a level set: a pair of opposite points, one in
the first quadrant and one in the third. For b < 0 the constraining hyperbola
moves to the second and fourth quadrants, and the problem has solutions
when the level sets of f have a positive slope.

(4) Finally, we optimize a quadratic function subject to a quadratic con-
straint. The data are

f:R" —R, f(z)=xz"Az where A € M,,(R) is symmetric,
M € M, (R) is symmetric,

g:R" — R, g(x)=2"Mz—b where { )
b € R is nonzero.

The Lagrange condition and the constraint are

2'A=Xe"M where A € R,
"Mz =b.

By the Lagrange condition and the constraint, the possible optimal values
of f take the form
f(z)=2TAz = Az" Mz = b,

which we will know as soon as we find the possible values of A, without needing
to find x. Assuming that M is invertible, the Lagrange condition gives

M~ YAz = \z.

In other words, x must satisfy the condition that multiplying x by M~1A
giwes a scalar multiple of x. Every nonzero vector x that satisfies this con-
dition is called an eigenvector of M~1A. The scalar multiple factor X is the
corresponding eigenvalue. We will end the section with a brief discussion of
eigenvalues. O

The eigenvalues of a square matrix B are found by a systematic procedure.
The first step is to observe that the condition Bx = Az is
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(B— M)z =0.

Since every eigenvector x is nonzero by definition, B — Al is not invertible,
ie.,

det(B — AI) = 0.

Conversely, for every A € R satisfying this equation there is at least one
eigenvector z of B, because the equation (B — AI)x = 0 has nonzero solutions.
And so the eigenvalues are the real roots of the polynomial

ps(\) = det(B — AI).

This polynomial is the characteristic polynomial of B, already discussed in
Exercise 4.7.10. For example, part (a) of that exercise covered the case n = 2,
showing that if B = [¢ 4] then

pe(\) = A2 — (a + d)A + (ad — b?).
The discriminant of this quadratic polynomial is
A= (a+d)?—4(ad — b*) = (a — d)* + 4V°.

Since A is nonnegative, all roots of the characteristic polynomial are real.
And a result of linear algebra says that for every positive n, all roots of
the characteristic polynomial of a symmetric n x n matrix B are real as well.
However, returning to our example, even though the square matrices A and M
are assumed to be symmetric, the product M~ A need not be.

As a particular case of Theorem 5.5.2, part (4), if A = I then finding the
eigenvectors of M encompasses finding the points of a quadric surface that
are closest to the origin or farthest from the origin. For instance, if n = 2 and
M = [‘g Z] then we are optimizing on the set of points (z1,z2) € R? such
that, say,

axf + 2bz1x9 + dxg =1.

The displayed equation is the equation of a conic section. When b = 0 we have
an unrotated ellipse or hyperbola, and the only possible optimal points will
be the scalar multiples of e; and es that lie on the curve. For an ellipse, a pair
of points on one axis is closest to the origin, and a pair on the other axis is
farthest; for a hyperbola, a pair on one axis is closest, and there are no points
on the other axis. In the case of a circle, the matrix M is a scalar multiple of
the identity matrix, and so all vectors are eigenvectors, compatibly with the
geometry that all points are equidistant from the origin. Similarly, if n = 3
then L is a surface such as an ellipsoid or a hyperboloid.

Exercises

5.5.1. Let f(z,y) = y and let g(x,y) = y> — 2. Graph the level set L =
{(z,y) : g(x,y) = 0}. Show that the Lagrange multiplier criterion does not find
any candidate points where f is optimized on L. Optimize f on L nonetheless.
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5.5.2. Consider the linear mapping
g(x,y,2) = (x + 2y + 3z, 4z + 5y + 62).

(a) Use Theorem 5.5.2, part (1), to optimize the linear function f(z,y, 2) =
6z + 9y + 12z subject to the affine constraint g(z,y, z) = (7,8).

(b) Verify without using the Lagrange multiplier method that the function
f subject to the constraint g = (7,8) (with f and g from part (a)) is constant,
always taking the value that you found in part (a).

(c¢) Show that the function f(z,y,2) = 5 + Ty + z cannot be optimized
subject to any constraint g(z,y, z) = b.

5.5.3. (a) Use Theorem 5.5.2, part (2), to minimize the quadratic function
f(x,y) = 22 + y? subject to the affine constraint 3z + 5y = 8.

(b) Use the same result to find the extrema of f(x,y, z) = 2zy+ 22 subject
to the constraints t+y+z2=1,z+y—2=0.

(c) Use the same result to find the nearest point to the origin on the
intersection of the hyperplanes t +y+ 2 —-2w=1land x —y+z+w = 2
in R*, reproducing your answer to Exercise 5.4.1.

5.5.4. (a) Use Theorem 5.5.2, part (3), to optimize f(z,y,2) = x — 2y + 2z
on the sphere of radius 3 centered at the origin.

(b) Use the same result to optimize the function f(z,y,z,w) = z+y—z—w
subject to the constraint g(z,y, z,w) = 1, g(z,y, z,w) = 2 /2 — y? + 22 — w?.

5.5.5. (a) Use Theorem 5.5.2, part (4), to optimize the function f(x,y) = 2zy
subject to the constraint g(x,y) = 1 where g(z,y) = 22 + 2y

(b) Use the same result to optimize the function f(z,y, 2) = 2(zy+yz+2x)
subject to the constraint g(x,y,z) = 1 where g(x,vy,2) = 22 + y* — 22.
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Multivariable Integral Calculus
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Integration

The integral of a scalar-valued function of many variables, taken over a box
of its inputs, is defined in Sections 6.1 and 6.2. Intuitively, the integral can
be understood as representing mass or volume, but the definition is purely
mathematical: the integral is a limit of sums, as in one-variable calculus.
Multivariable integration has many familiar properties—for example, the in-
tegral of a sum is the sum of the integrals. Section 6.3 shows that continuous
functions can be integrated over boxes. However, we want to carry out mul-
tivariable integration over more generally shaped regions. That is, the theory
has geometric aspects not present in the one-dimensional case, where inte-
gration is carried out over intervals. After a quick review of the one-variable
theory in Section 6.4, Section 6.5 shows that continuous functions can also be
integrated over nonboxes that have manageable shapes. The main tools for
evaluating multivariable integrals are Fubini’s theorem (Section 6.6), which
reduces an n-dimensional integral to an n-fold nesting of one-dimensional in-
tegrals, and the change of variable theorem (Section 6.7), which replaces one
multivariable integral by another that may be easier to evaluate. Section 6.8
provides some preliminaries for the proof of the change of variable theorem,
and then Section 6.9 gives the proof.

6.1 Machinery: Boxes, Partitions, and Sums

The integral represents physical ideas such as volume or mass or work, but
defining it properly in purely mathematical terms requires some care. Here is
some terminology that is standard from the calculus of one variable, except
perhaps compact (meaning closed and bounded) from Section 2.4 of these
notes. The language describes a domain of integration and the machinery to
subdivide it.

Definition 6.1.1 (Compact interval, length, partition, subinterval).
A nonempty compact interval in R is a set
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I=[a,b={reR:a<z<b},
where a and b are real numbers with a < b. The length of the interval is
length(I) = b — a.
A partition of I is a set of real numbers
P ={to,t1,...,tx}

satisfying
a=ty<t; <---<tp=h.

Such a partition divides I into k subintervals Jy, ..., J, where
Jj = [tj—1,t5], j=1,...,k.

A generic nonempty compact subinterval of I is denoted J. (See Fig-
ure 6.1.) Since the only intervals that we are interested in are nonempty and
compact, either or both of these properties will often be tacit from now on,
rather than stated again and again. As a special case, Definition 6.1.1 says
that every length-zero interval [a, a] has only one partition, P = {a}, which
divides it into no subintervals.

Figure 6.1. Interval and subintervals

The next definition puts an initial loose stipulation on functions to be
integrated.

Definition 6.1.2 (Bounded function). Let A be a subset of R, and let
f+A— R be a function. Then f is bounded if its range, {f(z) : x € A},
is bounded as a set in R, as in Definition 2.4.6. That is, f is bounded if there
exists some R > 0 such that |f(x)| < R for all x € A.

Visually, a function is bounded if its graph is contained inside a horizontal
strip. On the other hand, the graph of a bounded function needn’t be contained
in a vertical strip, because the domain (and therefore the graph) need not be
bounded. For example, these functions are bounded:

f(x) =sinz, flz)=1/(1+2%), f(z) = arctan x,
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and these functions are not:

f(z) =e", f(z) =1/z for z #£ 0.

However, since we want to integrate a bounded function over a compact in-
terval, the entire process is set inside a rectangle in the plane.

The next definition describes approximations of the integral by finite sums,
the integral to be a limit of such sums if it exists at all. The summands involve
limits, so already these sums are analytic constructs despite being finite.

Definition 6.1.3 (One-dimensional lower sum and upper sum). Let
I be a monempty compact interval in R, and let f : I — R be a bounded
function. For every nonempty subinterval J of I, the greatest lower bound of
the values taken by f on J is denoted my(f),

my(f) =inf {f(z):z € J},

and similarly, the least upper bound is denoted M;(f),

M;(f) =sup{f(z):z€J}.

Let P be a partition of I into subintervals J. The lower sum of f over P is

L(f,P) =Y my(f)length(J),
J

and the upper sum of f over P is

U(f,P) = _ M;(f)length(J).
J

If the interval I in Definition 6.1.3 has length zero, then the lower and
upper sums are empty, and so they are assigned the value 0 by convention.

The function f in Definition 6.1.3 is not required to be differentiable or
even continuous, only bounded. Even so, the values m;(f) and M;(f) in
the previous definition exist by the set-bound phrasing of the principle that
the real number system is complete. To review this idea, see Theorem 1.1.4.
When f is in fact continuous, the extreme value theorem (Theorem 2.4.15)
justifies substituting min and maz for inf and sup in the definitions of m ;(f)
and M ;(f), since each subinterval J is nonempty and compact. It may be
easiest at first to understand m ;(f) and M;(f) by imagining f to be contin-
uous and mentally substituting appropriately. But we will need to integrate
discontinuous functions f. Such functions may take no minimum or maximum
on J, and so we may run into a situation like the one pictured in Figure 6.2,
in which the values m;(f) and M;(f) are not actual outputs of f. Thus the
definition must be as given to make sense.

The technical properties of inf and sup will figure in Lemmas 6.1.6, 6.1.8,
and 6.2.2. To see them in isolation first, we rehearse them now. So, let S
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+ my(f)

Figure 6.2. Sup and inf but no max or min

and T be nonempty sets of real numbers, both bounded. In the context of
integration, S and T will be sets of outputs of a bounded function f. This
specific description of S and T is irrelevant for the moment, but it may help
you to see later how these ideas are used in context if you now imagine S
and T on a vertical axis, as in Figure 6.2, rather than on a horizontal one. In
any case, the necessary results are as follows.

inf(S) < sup(S). In fact every lower bound of S is at most as big as every
upper bound, because every element of S lies between them. In particular,
this argument applies to the greatest lower bound inf(S) and the least
upper bound sup(S), giving the stated inequality.

If S € T then inf(T) < inf(S) < sup(S) < sup(T). We already have the
middle inequality. To establish the others, the idea is that since S is a
subset, the bounds on S are innately at least as tight as those on T'. More
specifically, since inf(T") is a lower bound of T, it is a lower bound of the
subset S, and because inf(S) is the greatest lower bound of S, the first
inequality follows. The third inequality is similar.

In particular, let I be a compact interval, let f : I — R be a bounded
function, let J be a subinterval of I, let J’ be a subinterval of J in turn,
and then take S and T to be sets of output-values of f,

S={f(x):2eJ}, T={f(z):zeJ}

Then S C T because S is a set of fewer outputs than 7', and so this bullet
has shown that

my(f) <myp(f) < My (f) < M;(f).

If s <tforall s €S andt € T then sup(S) < inf(T). Imprecisely, the
idea is that S is entirely below T on the vertical axis, and so the smallest
number that traps S from above is still below the largest number that
traps T from below. A more careful proof is in the next section.

Graphing f over I in the usual fashion and interpreting the lower and upper

sum as sums of rectangle-areas shows that they are respectively too small
and too big to be the area under the graph. (See Figure 6.3.) Alternatively,
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Figure 6.3. Too small and too big

thinking of f as the density function of a wire stretched over the interval I
shows that the lower and upper sums are too small and too big to be the
mass of the wire. The hope is that the lower and upper sums are trapping a
yet-unknown quantity (possibly to be imagined as area or mass) from each
side, and that as the partition P becomes finer, the lower and upper sums will
actually converge to this value.

All the terminology so far generalizes easily from one dimension to many,
i.e., from R to R™. Recall that if Sy, Sy, ..., S, are subsets of R then their
Cartesian product is a subset of R",

SlXSQ><"'XSn:{(Sl,SQ,...,Sn)281651782652,...,SnESn}.

(See Figure 6.4, in which n = 2, and Sy has two components, and S5 has one
component, so that the Cartesian product S; x Sy has two components.)

Figure 6.4. Cartesian product
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Definition 6.1.4 (Compact box, box volume, partition, subbox). A
nonempty compact box in R” is a Cartesian product

B=11 xIyx---x1I,

of nonempty compact intervals I; for j =1,...,n. The volume of the box is
the product of the lengths of its sides,

vol(B) = [ ] length(I;).
j=1

A partition of B is a Cartesian product of partitions Pj of I; forj =1,...,n,
P=P x P, x---xP,.

Such a partition divides B into subboxes J, each such subbox being a Carte-
sian product of subintervals. By a slight abuse of language, these are called
the subboxes of P.

(See Figure 6.5, and imagine its three-dimensional Rubik’s cube counterpart.)
Every nonempty compact box in R™ has partitions, even such boxes with
some length-zero sides. This point will arise at the very beginning of the next
section.

Figure 6.5. Box and subboxes

The definition of a bounded function f : A — R, where now A is a subset
of R™, is virtually the same as earlier in the section: again the criterion is that
its range must be bounded as a set. (In fact, the definition extends just as
easily to mappings f : A — R™, but we need only scalar-valued functions
here.)
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Definition 6.1.5 (n-dimensional lower sum and upper sum). Let B be
a nonempty compact box in R™, and let f : B — R be a bounded function.
For every nonempty subbox J of B, define my(f) and M;(f) analogously as
before,

my(f) =inf{f(x):z € J} and My(f)=sup{f(z):z € J}.

Let P be a partition of B into subboxes J. The lower sum and upper sum
of f over P are similarly

L(f,P) =Y ms(f)vol())  and  U(f.P) =3 My(f)vol(J).
J J

With minor grammatical modifications, this terminology includes the pre-
vious definition as a special case when n = 1 (e.g., volume reverts to length,
as it should revert to area when n = 2), so from now on we work in R™.
However, keeping the cases n = 1 and n = 2 in mind should help to make
the pandimensional ideas of multivariable integration geometrically intuitive.
If the box B in Definition 6.1.5 has any sides of length zero then the upper
and lower sums are 0.

Graphing f over B in the usual fashion when n = 2 and interpreting the
lower and upper sum as sums of box-volumes shows that they are respectively
too small and too big to be the volume under the graph. (See Figure 6.6.)
Alternatively, if n = 2 or n = 3, then thinking of f as the density of a plate
or a block occupying the box B shows that the lower and upper sums are
too small and too big to be the object’s mass. Again, the hope is that as the
partitions become finer, the lower and upper sums will converge to a common
value that they are trapping from either side.

Figure 6.6. Too small and too big

The first result supports this intuition.
Lemma 6.1.6. For every box B, every partition P of B, and every bounded
function f: B — R,
L(f,P) <U(f,P).
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Proof. For every subbox J of P, my(f) < M;(f) by the first bullet from
earlier in this section with S = {f(x) : € J'}, while also vol(J) > 0, and
therefore m;(f) vol(J) < M;(f)vol(J). Sum this relation over all subboxes J
to get the result. ]

The next thing to do is express the notion of taking a finer partition.

Definition 6.1.7 (Refinement). Let P and P’ be partitions of B. Then P’
is a refinement of P if P’ D P.

Figure 6.7 illustrates the fact that if P’ refines P then every subbox of P’
is contained in a subbox of P. The literal manifestation in the figure of the
containment P’ D P is that the set of points where a horizontal line segment
and a vertical line segment meet in the right side of the figure subsumes the
set of such points in the left side.

Refining a partition brings the lower and upper sums nearer each other:

Figure 6.7. Refinement

Lemma 6.1.8. Suppose that P’ refines P as a partition of the box B. Then
L(f,P) < L(f,P")  and  U(f,P)<U(f,P).

See Figure 6.8 for a picture-proof for lower sums when n = 1, thinking of
the sums in terms of area. The formal proof is just a symbolic rendition of
the figure’s features.

Proof. Every subbox J of P divides further under the refinement P’ into
subboxes J'. Since each J' C J, we have my (f) > my(f) by the second
bullet from earlier in this section, but even without reference to the bullet the
idea is that
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/

A

Figure 6.8. Lower sum increasing under refinement

my (f) > my(f) because [ has less opportunity to be small on the
subbox J' of J.

Thus

> my(f)vol(J') = Y mu(f)vol(J')
J'cJ J'cJ

=my(f) Y vol(J') = m(f)vol(J).

J'cJ

Sum the relation }_ ;- ;my (f) vol(J') > my(f)vol(J) over all subboxes .J
of P to get L(f,P") > L(f, P). The argument is similar for upper sums. O

The proof uncritically assumes that the volumes of a box’s subboxes sum
to the volume of the box. This assumption is true, and left as an exercise.
The emphasis here isn’t on boxes (which are straightforward), but on defining
the integral of a function f whose domain is a box. The next result helps
investigate whether the lower and upper sums indeed trap some value from
both sides. First we need a definition.

Definition 6.1.9 (Common refinement). Given two partitions of B,
P=P xPyx---xP, and P =P xPyx---x P},
their common refinement is the partition
P"=(PLUP)) x (PUPy) x---x (P, UP)).

(See Figure 6.9.) The common refinement of two partitions P and P’ is
certainly a partition that refines both P and P’, and it is the smallest such
partition. The union P U P’ is not taken as the definition of the common
refinement because it need not be a partition at all. The common refinement
does all the work for the next result.
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Figure 6.9. Common refinement

Proposition 6.1.10 (Lower sums are at most upper sums). Let P and
P’ be partitions of the box B, and let f : B — R be any bounded function.
Then

L(f,P) <U(f, P").

Proof. Let P” be the common refinement of P and P’. By the two lemmas,
L(f,P) < L(f,P") <U(f,P") <U(f, P"),

proving the result. O

Exercises

6.1.1. (a) Let I =[0,1], let P ={0,1/2,1}, let P’ ={0,3/8,5/8,1}, and let
P be the common refinement of P and P’. What are the subintervals of P,
and what are their lengths? Same question for P’. Same question for P”.

(b) Let B=1x1I,let Q=P x{0,1/2,1}, let Q' = P’ x {0,1/2,1}, and
let Q" be the common refinement of ) and @’. What are the subboxes of @
and what are their areas? Same question for Q’. Same question for Q”.

6.1.2. Show that the lengths of the subintervals of every partition of [a, b]
sum to the length of [a, b]. Same for the areas of the subboxes of [a,b] x [c, d].
Generalize to R™.

6.1.3. Let J = [0,1]. Compute m;(f) and M;(f) for each of the following
functions f: J — R.

(a) f(z) =2(1 —x),
1 if z is irrational,
(b) f(z) = o .
1/m if x = n/m in lowest terms, n,m € Z and m > 0,
(1—-2)sin(l/z) ifz#0,

© f(x):{o if 2 = 0.
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6.1.4. (a) Let I, P, P, and P” be as in Exercise 6.1.1(a), and let f(z) = 22
on I. Compute the lower sums L(f, P), L(f, P"), L(f, P") and the correspond-
ing upper sums, and check that they conform to Lemma 6.1.6, Lemma 6.1.8,
and Proposition 6.1.10.
(b) Let B, Q, @', and Q" be as in Exercise 6.1.1(b), and define f : B — R
by
0 if0<az<1/2
Hay) = {1 if1/2<z<1.

Compute L(f,Q), L(f,Q"), L(f,Q"), and the corresponding upper sums,
and check that they conform to Lemma 6.1.6, Lemma 6.1.8, and Proposi-
tion 6.1.10.

6.1.5. Draw the Cartesian product ([a1, b1]U[e1, d1]) X ([az, ba]U]ca, da]) C R?
where a1 < by < ¢; < dy and similarly for the other subscript.

6.1.6. When is a Cartesian product empty?

6.1.7. Show that the union of partitions of a box B need not be a partition
of B.

6.1.8. Draw a picture illustrating the proof of Proposition 6.1.10 when n = 1.

6.2 Definition of the Integral

Fix a nonempty compact box B and a bounded function f : B — R. The
set of lower sums of f over all partitions P of B,

{L(f,P): P is a partition of B},

is nonempty because such partitions exist (as observed in the previous sec-
tion), and similarly for the set of upper sums. Proposition 6.1.10 shows that
the set of lower sums is bounded above by every upper sum, and similarly the
set of upper sums is bounded below. Thus the next definition is natural.

Definition 6.2.1 (Lower integral, upper integral, integrability, inte-
gral). The lower integral of f over B is the least upper bound of the lower
sums of f over all partitions P,

L/ f=sup{L(f,P): P is a partition of B}.
B

Similarly, the upper integral of f over B is the greatest lower bound of the
upper sums of f over all partitions P,

U/ f=mt{U(f, P): P is a partition of B}.
B

The function f is called integrable over B if the lower and upper integrals
are equal, i.e., ifoB f= UfB f- In this case, their shared value is called the
integral of f over B and written [, f.
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So we have a quantitative definition that seems appropriate. The integral,
if it exists, is at least as big as every lower sum and at least as small as
every upper sum; and it is specified as the common value that is approached
from below by lower sums and from above by upper sums. Less formally,
if quantities that we view as respectively too small and too big approach a
common value, then that value must be what we’re after.

The following lemma shows that L [, f < U [, f. Its proof provides an
example of how to work with lower and upper bounds. Note that the argument
does not require a contradiction or an €, but rather it goes directly to the point.

Lemma 6.2.2 (Persistence of order). Let £ and U be nonempty sets of
real numbers such that

C<u forallle L anduelU. (6.1)
Then sup(L) and inf(U) exist, and they satisfy
sup(£) < inf(U).
Proof. The given condition (6.1) can be rephrased as
foreach £ € L, (<wuforalluel,
meaning precisely that
each ¢ € L is a lower bound of U.

Since U is nonempty and has lower bounds, it has a greatest lower bound
inf(U). Since each ¢ € L is a lower bound and inf(i/) is the greatest lower
bound,

¢ <inf(Ud) foreachle L,

meaning precisely that
inf(U) is an upper bound of L.

Since £ is nonempty and has an upper bound, it has a least upper bound
sup(L). Since sup(L) is the least upper bound and inf (/) is an upper bound,

sup(£) < inf(U).
This is the desired result. O

Again let a nonempty compact box B and a bounded function f : B — R
be given. The lemma shows that L [ gl <U / p [ (exercise). Therefore, to
show that [ p [ exists, it suffices to show only that the reverse inequality

holds, L [, f > U [, f.

Not all bounded functions f : B — R are integrable. The standard
counterexample is the interval B = [0,1] and the function
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f:B —R, fz) = 1 %f x %S T‘atio.nad7
0 if z is irrational.

Chasing through the definitions shows that for this B and f, every lower
sum is L(f, P) = 0, so the lower integral is L [, f = sup {0} = 0. Similarly,
U f pJ = 1. Since the upper and lower integrals don’t agree, f g J does not
exist.

So the questions are, what functions are integrable, or at least, what are
some general classes of integrable functions, and how does one evaluate their
integrals? Working from the definitions, as in the last example, is a good
exercise in simple cases to get familiar with the machinery, but as a general
procedure it is hopelessly unwieldy. Here is one result that will help us in the
next section to show that continuous functions are integrable.

Proposition 6.2.3 (Integrability criterion). Let B be a box, and let f :
B — R be a bounded function. Then f is integrable over B if and only if for
every € > 0, there exists a partition P of B such that U(f,P) — L(f,P) < ¢.

Proof. ( = ) Let f be integrable over B and let ¢ > 0 be given. Since
fB f —€/2 is less than the least upper bound of the lower sums, it is not an
upper bound of the lower sums, and similarly | p f+¢€/2is not a lower bound
of the upper sums. Thus there exist partitions P and P’ of B such that

L(f,P)>/Bf—s/2 and U(f,P’)</Bf—|—5/2.

Let P” be the common refinement of P and P’. Then since refining increases
lower sums and decreases upper sums, also

L(f,P”)>/Bf—5/2 and U(f,P")</Bf—|—€/2.

This shows that U(f, P") — L(f, P") < e, as required.

(<= ) We need to show that U [, f — L [ f = 0. To do so, use the little
principle that to prove that a nonnegative number is zero, it suffices to show
that it is less than every positive number. Let € > 0 be given. By assumption
there exists a partition P such that

U(f,P) 7L(f,P) <§g,
and by the definition of upper and lower integral, also

L(f.P) gL/BfSU/BfSUU,P).

The last two displays combine to give

U/Bf—L/Bf<E.

Since the positive number ¢ is arbitrary, U [, f — L [, f = 0 as desired. O
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Here is an example of using the integrability criterion. It subsumes the
result from one-variable calculus that if fab f exists then also [ f and ff f

exist for every ¢ between a and b, and they they sum to ff f.

Proposition 6.2.4. Let B be a boz, let f : B — R be a bounded function,
and let P be a partition of B. If f is integrable over B then f is integrable
over each subbox J of P, in which case

Si=]

Proof. Consider any partition P’ of B that refines P. For each subbox .J of P,
let P; = P'NJ, a partition of J. Let the symbol J’ denote subboxes of P’,
and compute that

l>:zmjl( f)vol(J') = szjl f)vol(J ZL I, P)).
J’

J J'cJ

Similarly, U(f,P’) =", U(f, P}).
Suppose that f is integrable over B. Let an arbitrary € > 0 be given. By
“ =7 of the integrability criterion, there exists a partition P’ of B such that

U(f,P") = L(f.P') <e.

Since refining a partition cannot increase the difference between the upper and
lower sums, we may replace P’ by its common refinement with P and thus
assume that P’ refines P. Therefore the formulas from the previous paragraph

show that
> (U(f.Py) = L(f, Py)) < e
J
and so
U(f,P;) — L(f,P}) <e for each subbox J of B.

Therefore f is integrable over each subbox J of B by “ <= " of the integra-
bility criterion.

Now assume that f is integrable over B and hence over each subbox J.
Still letting P’ be any partition of B that refines P, the integral over each
subbox J lies between the corresponding lower and upper sums, and so

LUEP) =Y L) <3 [ 123 0GP = UG,
J g 7J J

Thus >, fJ fisan upper bound of all lower sums L(f, P') and a lower bound
of all upper sums U(f, P’), giving

/f<Z/f<U/f

But L [, f = U [zf = [5f because f is integrable over B, and so the
inequalities in the previous display collapse to give the desired result. O
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Similar techniques show that the converse of the proposition holds as well,
so that given B, f, and P, f is integrable over B if and only if f is integrable
over each subbox J, but we do not need this full result. Each of the proposition
and its converse requires both implications of the integrability criterion.

The symbol B denotes a box in the next set of exercises.

Exercises

6.2.1. Let f : B — R be a bounded function. Explain how Lemma 6.2.2
shows that L [, f <U [ f.

6.2.2. Let U and L be real numbers satisfying U > L. Show that U = L if
and only if forall e >0, U — L < e.

6.2.3. Let f : B — R be the constant function f(x) =k for all x € B. Show
that f is integrable over B and [, f =k - vol(B).

6.2.4. Granting that every interval of positive length contains both rational
and irrational numbers, fill in the details in the argument that the function
f:0,1] — R with f(z) = 1 for rational x and f(x) = 0 for irrational z is
not integrable over [0, 1].

6.2.5. Let B =[0,1] x [0,1] C R2. Define a function f: B — R by

0 if0<z<1/2
1 if1/2<z<1.

f(x,y>={

Show that f is integrable and [, f =1/2.

6.2.6. This exercise shows that integration is linear. Let f : B — R and
g : B — R be integrable.
(a) Let P be a partition of B and let J be some subbox of P. Show that

my(f)+my(g) <my(f+g9) < M;(f+9) < M;(f)+ M;(g).

Show that consequently,
L(f,P)+ L(g,P) S L(f + 9, P) <U(f + 9, P) <U(f, P) + U(g, P).

(b) Part (a) of this exercise obtained comparisons between lower and upper
sums, analogously to the first paragraph of the proof of Proposition 6.2.4.
Argue analogously to the rest of the proof to show that [, (f + g) exists and
equals f gft f 5 9- (One way to begin is to use the integrability criterion twice
and then a common refinement to show that there exists a partition P of B
such that U(f, P) — L(f,P) <e/2 and U(g, P) — L(g, P) < ¢/2.)

(c) Let ¢ > 0 be any constant. Let P be any partition of B. Show that for
every subbox J of P,
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my(cf) =cmy(f) and M;(cf)=cM,;(f).

Explain why consequently
L(cf,P)=cL(f.P) and Ulcf.P)=cU(f.P).

Explain why consequently

L/Bcfch/Bf and U/Bcf:cU/Bf.

Explain why consequently [ pcf exists and

/Bcf:c/Bf.

(d) Let P be any partition of B. Show that for every subbox J of P,

my(=f)=—-M;(f) and M;(—f)=-m;(f).

Explain why consequently
L(_f7P):_U(fvP) and U(_f7P>:_L(f7P)

Explain why consequently

pfen=-vfsmavfep=-rfr

Explain why consequently [, (—f) exists and

[en=-]+

Explain why the work so far here in part (d) combines with part (c) to show
that for every ¢ € R (positive, zero, or negative), || pcf exists and

/Bcf:c/Bf.

6.2.7. This exercise shows that integration preserves order. Let f: B — R
and g : B — R both be integrable, and suppose that f < g, meaning that
f(z) < g(x) for all € B. Show that [, f < [ g. (Comment: Even though
f(z) < g(z) for all z, upper sums for f can be bigger than upper sums for g (!),
so the argument requires a little finesse. Perhaps begin by explaining why the
previous exercise lets us show instead that f 5(9—f) > 0. That is, introducing
the function h = g — f, we have h(z) > 0 for all z and we need to show that
fB h > 0. This is precisely the original problem with ¢ = h and f = 0, so
once one has assimilated this idea, one often says in similar contexts, “We
may take f =0.")
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6.2.8. Suppose that f : B — R is integrable, and that so is |f|. Show that
o 1< [5lfl:

6.2.9. Prove the converse to Proposition 6.2.4: Let B be abox, let f : B — R
be a bounded function, and let P be a partition of B. If f is integrable over
each subbox J of P then f is integrable over B. (You may quote the formulas
from the first paragraph of the proof in the text, since that paragraph makes
no assumptions of integrability. It may help to let b denote the number of
subboxes J, so that this quantity has a handy name.)

6.3 Continuity and Integrability

Although the integrability criterion gives a test for the integrability of any
specific function f, it is cumbersome to apply case by case. But handily, it
will provide the punchline of the proof of the next theorem, which says that
a natural class of functions is integrable.

Theorem 6.3.1 (Continuity implies integrability). Let B be a box, and
let f: B — R be a continuous function. Then f is integrable over B.

To prove this theorem, as we will at the end of this section, we first need to
sharpen our understanding of continuity on boxes. The version of continuity
that we’re familiar with isn’t strong enough to prove certain theorems, this
one in particular. Formulating the stronger version of continuity requires first
revising the grammar of the familiar brand.

Definition 6.3.2 (Sequential continuity). Let S C R"™ be a set, and let
f: 8 — R™ be a mapping. For every x € S, f is sequentially continuous
at x if for every sequence {x,} in S converging to x, the sequence {f(z,)}
converges to f(x). The mapping f is sequentially continuous on S if f is
sequentially continuous at each point x in S.

Definition 6.3.3 (e-0 continuity). Let S C R™ be a set, and let f: S —
R™ be a mapping. For every x € S, f is e-0 continuous at x if for every
e > 0 there exists some 0 > 0 such that

ifz e S and |2 — x| < 0 then |f(Z) — f(x)] <e.

The mapping f is e- continuous on S if f is e-0 continuous at each point
xin S.

Both definitions of continuity at a point x capture the idea that as inputs
to f approach z, the corresponding outputs from f should approach f(x).
This idea is exactly the substance of sequential continuity. (See Figure 6.10.)
For e-9 continuity at x, imagine that someone has drawn a ball of radius ¢
(over which you have no control, and it’s probably quite small) about the
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Figure 6.10. Sequential continuity

point f(x) in R™. The idea is that in response, you can draw a ball of some
radius—this is the § in the definition—about the point = in S such that every
point in the d-ball about = gets taken by f into the e-ball about f(z). (See
Figure 6.11.)

Figure 6.11. -6 continuity

For example, the function f : R® — R given by f(x) = 2|z| is &-§
continuous on R™. To show this, consider any point x € R™, and let € > 0 be
given. Set ¢ = ¢/2. Then whenever |Z — z| < §, a calculation that uses the
generalized triangle inequality at the third step shows that

[f(@) = f(2)] = [2]2] = 2|2 = 2|[z] = ||| < 27 — 2] <26 =,

as needed. Thus f is -0 continuous at x, and since x is arbitrary, f is -0
continuous on R".

For another example, to prove that the function f : R — R given by
f(x) = 22 is e-6 continuous on R, consider any x € R and let £ > 0 be given.
This time set

0 =min{1,e/(1 + 2|z|)}.

This choice of § may look strange, but its first virtue is that since § < 1, for
every Z € R with | — x| < §, we have |Z+z| = |T —x+2z| < |T — 2|+ 22| <
1+ 2|z|; and its second virtue is that also § < e/(1 + 2|z|). These conditions
fit perfectly into the following calculation,
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f(2) = f(2)] = |2* — 27|
= |z +z||Z — 2|

€
< (1+2|z])

——— by thet irt fd
T+ 2] y the two virtues o

= E&.

And this is exactly what we needed to show that f is e-d continuous at z.
Since x is arbitrary, f is e-0 continuous on R.

The tricky part of writing this sort of proof is finding the right §. Doing
so generally requires some preliminary fiddling around on scratch paper. For
the proof just given, the initial scratch calculation would be

(@) = f(2)| = |7° = 2®| = |(& + 2) (& — )| = |& + 2| |Z — 2],

exhibiting the quantity that we need to bound by ¢ as a product of two terms,
the second bounded directly by whatever § we choose. The idea is initially
to make the first term reasonably small by stipulating that § be at most 1,
giving as in the previous paragraph

|z 4+ x| =% — x4 22| <|Z —z|+2lz| <1+ 2|z

Now |f(Z)— f(x)] < (142|z|)|Z —z|. Next we constrain ¢ further to make this
estimate less than € when |Z —x| < §. Stipulating that ¢ be at most €/(14+2|z|)
does so. Hence the choice of § in the proof.

To prove instead that the function f : R — R given by f(x) = 22 is
sequentially continuous on R, again take any x € R. Consider any sequence
{z,} in R converging to z. To show that the sequence {f(z,)} in R converges
to f(x), compute

{f(@) = f2)} = {2} —2®} = {(ws + 2) (2, —2)}.

That is, the sequence {f(z,) — f(z)} is the product of the sequences {z, + x}
and {z, — x}. Because the sequence {z,} converges, it is bounded, and the
constant sequence {z} is bounded as well, so the sum {z, + x} is bounded.
Also, because the sequence {z,} converges to z, the sequence {z, — x} is
null. A bounded sequence times a null sequence is again null, and hence alto-
gether the sequence in the previous display is null. That is, {f(z,)} converges
to f(x), showing that f is sequentially continuous at x. Since z is arbitrary,
f is sequentially continuous on R.

In fact, there is no need to continue distinguishing between sequential
continuity and e-J continuity, because each type of continuity implies the
other.

Proposition 6.3.4 (Sequential and e-d continuity are equivalent). For
every set S C R™ and every mapping f : S — R™, f is sequentially contin-
wous on S if and only if f is e-0 continuous on S.
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Proof. Let x be any point of S.

( <= ) Suppose that f is e-d continuous at x. We need to show that f is
sequentially continuous at x. So, let {x,} be a sequence in S converging to .
To show that {f(z,)} converges to f(x) means that given an arbitrary & > 0,
we need to exhibit a starting index N such that

forall v > N, |f(z,) — f(z)] <e.
The definition of e-§ continuity gives a § such that
if z €S and |z —z| < § then |f(Z) — f(z)] <e.
And since {z,} converges in S to z, there is some starting index N such that
forall v > N, |z, — z| < 4.

The last two displays combine to imply the first display, showing that f is
sequentially continuous at x.

(= ) Now suppose that f is not e-é continuous at x. Then for some € > 0,
no § > 0 satisfies the relevant conditions. In particular, 6 = 1/v fails the
conditions for v =1,2,3,.... So there is a sequence {z,} in S such that

|z, —z| <1/v and |f(z,) — f(x)|>e, v=123,....

The display shows that f is not sequentially continuous at x.
Since the two types on continuity imply each other at each point = of S,
they imply each other on S. O

The fact that the second half of this proof has to proceed by contrapo-
sition, whereas the first half is straightforward, shows that e-6 continuity is
a little more powerful than sequential continuity on the face of it, until we
do the work of showing that they are equivalent. Also, the very definition
of e-0 continuity seems harder for students than the definition of sequential
continuity, which is why these notes have used sequential continuity up to
now. However, the exceptionally alert reader may have recognized that the
second half of this proof is essentially identical to the proof of the persistence
of inequality principle (Proposition 2.3.10). Thus, the occasional arguments
in these notes that cited the persistence of inequality were tacitly using e-
continuity already, because sequential continuity was not transparently strong
enough for their purposes. The reader who dislikes redundancy is encouraged
to rewrite the second half of this proof to quote the persistence of inequality
rather than re-prove it.

The reason that we bother with this new e-§ type of continuity, despite
its equivalence to sequential continuity meaning that it is nothing new, is
that its grammar generalizes to describe the more powerful continuity that
we need. The two examples above of e-§ continuity differed: in the example
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f(x) = 22, the choice of § = min{1,e/(2|x| + 1)} for any given x and € to
satisfy the definition of e-§ continuity at x depended not only on € but on x
as well. In the example f(z) = 2|z|, the choice of § = ¢/2 for any given z
and ¢ depended only on ¢, i.e., it was independent of x. Here, one value of §
works simultaneously at all values of x once ¢ is specified. This technicality
has enormous consequences.

Definition 6.3.5 (Uniform continuity). Let S C R™ be a set, and let f :
S — R™ be a mapping. Then f is uniformly continuous on S if for every
e > 0 there exists some 0 > 0 such that

ifx,z €S and |T — x| < § then |f(Z) — f(x)] <e.

The nomenclature uniformly continuous on S is meant to emphasize that
given € > 0, a single, uniform value of § works in the definition of e-§ continuity
simultaneously for all points € S. The scope of its effectiveness is large-scale.
Uniform continuity depends on both the mapping f and the set S.

A visual image may help distinguish between the old notion of continuity
(henceforth called pointwise continuity) and the new, stronger notion of
uniform continuity. Imagine the graph of a function f : S — R (where
S C R), and take some input point x. Then f is pointwise continuous at x
if for every € > 0, one can draw a rectangle of height 2¢ centered at the
point (z, f(z)) that is narrow enough that the graph of f protrudes only from
the sides of the rectangle, not the top or bottom. The base of the rectangle
is 2§, where ¢ comes from e-0 continuity. Note that for a given e, one may
need rectangles of various widths at different points. A rectangle that works
at x may not be narrow enough to work again at some other point Z. (See
Figure 6.12, where ever-narrower rectangles are required as we move to the
left on the graph.) On the other hand, the function f is uniformly continuous
if given € > 0, there is a single 2¢ x 29 rectangle that can slide along the entire
graph of f with its centerpoint on the graph, and the graph never protruding
from the top or bottom. (See Figure 6.13. A tacit assumption here is that the
graph of f either doesn’t extend beyond the picture frame, or it continues to
rise and fall tamely if it does.) By contrast, no single rectangle will work in
Figure 6.12.

The domain of the nonuniformly continuous function f(z) = sin(1/x) in
Figure 6.12 is not compact, not being closed at its left endpoint. We are about
to prove that on a compact domain, uniform continuity follows for free from
pointwise continuity. In conjunction with the compactness of the boxes B over
which we integrate, this is the crucial ingredient for proving Theorem 6.3.1
(continuous functions are integrable over boxes), the goal of this section.

Theorem 6.3.6 (Continuity on compact sets is uniform). Let K C R"”
be compact, and let f: K — R™ be pointwise continuous on K. Then f is
uniformly continuous on K.
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Figure 6.12. One ¢ can require different values of ¢ at different points x

Figure 6.13. Or one § can work uniformly for € at all

As with the proof that sequential continuity implies e-§ continuity, we
proceed by contraposition. That is, we show that in the case of a compact
domain, if f is not uniformly continuous then f cannot be continuous either.

Proof. Suppose that f is not uniformly continuous. Then for some ¢ > 0
there exists no suitable uniform J, and so in particular no reciprocal positive
integer 1/v will serve as ¢ in the definition of uniform continuity. Thus for
each v € ZT there exist points x, and v, in K such that

[z =g <1/vand |f(z,) = f(y)] > & (6.2)

Consider the sequences {z,} and {y,} in K. By the sequential characteri-
zation of compactness (Theorem 2.4.13), {z,} has a convergent subsequence
converging in K; call it {z,, }. Throw away the rest of the x,’s and throw
away the y,’s of corresponding index, reindex the remaining terms of the two
sequences, and now {z,} converges to some p € K. Since |z, —y,| < 1/v for
each v (this remains true after the reindexing), {y,} converges to p as well.
So

limz, =p=limy,,

and thus
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fimz,) = f(limy,).
But the second condition in (6.2) shows that

lim f(z,) # lim f(y,),

i.e., even if both limits exist then they still cannot be equal. (If they both
exist and they agree then lim(f(z,) — f(y,)) = 0, but this is incompatible
with the second condition in (6.2), |f(z,) — f(y.)| > € for all v.) The previous
two displays combine to show that

lim f(z,) # f(limz,) or lim f(y,) # f(limy,),

i.e., at least one of the left sides in the previous display doesn’t match the
corresponding right side or doesn’t exist at all. Thus f is not continuous at p.
O

Recall the main result that we want: If B is a box in R” and f: B — R
is continuous then || p [ exists. The result is easy to prove now. The crucial
line of the proof is the opener.

Proof (of Theorem 6.3.1). The continuity of f on B is uniform. Thus, given
€ > 0, there exists § > 0 such that

vol(B)’

if x,# € B and |Z — x| < 0 then |f(Z) — f(z)| <

(We may take vol(B) > 0, making the volume safe to divide by, since otherwise
all lower sums and upper sums are 0, making the integral 0 as well, and there
is nothing to prove.) Take a partition P of B whose subboxes J have sides
of length less than §/n. By the size bounds (Proposition 2.2.7), all points x
and Z in a given subbox J satisfy |Z — z| <, so

€
vol(B)’

if x, & € J then |f(Z) — f(z)] <

Let « and Z vary over J, and cite the extreme value theorem (Theorem 2.4.15)
to show that

€
My(f) —my(f) < ol(B)’
Multiply by vol(J) to get
M (f)vol(J) — my(f)vol(J) < EVZ?(II(;)X

and sum this relation over subboxes J to get

The integrability criterion now shows that || p | exists. O
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Integration synthesizes local data at each point of a domain into one whole.
The idea of this section is that integrating a continuous function over a box
is more than a purely local process: it requires the uniform continuity of the
function all through the box, a large-scale simultaneous estimate that holds
in consequence of the box being compact.

Exercises

6.3.1. Reread the proof that sequential and e-§ continuity are equivalent; then
redo the proof with the book closed.

6.3.2. Let f : R — R be the cubing function f(z) = z3. Give a direct proof
that f is e-0 continuous on R. (Hint: A® — B® = (A — B)(A? + AB + B?).)

6.3.3. Here is a proof that the squaring function f(x) = x? is not uniformly
continuous on R. Suppose that some ¢ > 0 satisfies the definition of uniform
continuity fore = 1. Set x = 1/§ and & = 1/6+§/2. Then certainly |Z—z| < d,
but

1 2 1 52

5*24'1"‘1—? :1+Z>€.

Lo o
5 2 82|
This contradicts uniform continuity.

Is the cubing function of the previous exercise uniformly continuous on R?
On [0, 500]?

£ (@) = f(2)| =

6.3.4. (a) Show that if I C R is an interval (possibly all of R), f: T — R
is differentiable, and there exists a positive constant R such that |f'(z)] < R
for all x € I then f is uniformly continuous on I.

(b) Prove that sine and cosine are uniformly continuous on R.

6.3.5. Let f : [0,400) — R be the square root function f(x) = \/z. You
may take for granted that f is e-§ continuous on [0, +00).

(a) What does part (a) of the previous problem say about the uniform
continuity of f7

(b) Is f uniformly continuous?

6.3.6. Let J be a box in R™ with sides of length less than §/n. Show that all
points x and Z in J satisfy |z — z| < 6.

6.3.7. For fB f to exist, it is sufficient that f : B — R be continuous, but it
is not necessary. What preceding exercise provides an example of this? Here is
another example. Let B = [0, 1] and let f : B — R be monotonic increasing,
meaning that if £ < 29 in B then f(z1) < f(22). Show that such a function
is bounded, though it need not be continuous. Use the integrability criterion
to show that [, f exists.
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6.3.8. The natural logarithm is defined as an integral. Let r : RT — R be
the reciprocal function, r(x) = 1/x for > 0. The natural logarithm is

f[ll_]r ifx>1,

In:R" — R, In(z) = i
{—f[xJ]T ifo<z<l1.

We know that the integrals in the previous display exist, because the reciprocal

function is continuous.

(a) Show that lim, o In2/z = 0 as follows. Let some small € > 0 be given.
For x > 2/e, let u(x, ) denote the sum of the areas of the boxes [1,2/¢] x [0, 1]
and [2/e,z] x [0,£/2]. Show that u(z,e) > Inz. (Draw a figure showing the
boxes and the graph of r, and use the words upper sum in your answer.)
Compute lim,_, o u(e, z)/x (here € remains fixed), and use your result to show
that u(e,x)/x < ¢ for all large enough x. This shows that lim, . Inz/x = 0.

(b) Let @ > 0 and b > 1 be fixed real numbers. Part (a) shows that

Inz/z <Inb/(a+1) for all large z.
Explain why consequently
x?/b® < 1/x for all large x.

This proves that exponential growth dominates polynomial growth,
lim — =0, a>0,b>1.

Thus, for example,
1000000

lim — =0,

200 10000001
even though the values of 210%9%0/1.0000001* are enormous as z begins to
grow.

6.4 Integration of Functions of One Variable

In a first calculus course one learns to do computations such as the following:

to evaluate _—
/ (Inz) dr,
rx=1 z

let u = Inx; then du = da/x, and as x goes from 1 to e, u goes from 0 to 1,
so the integral equals

N

Or such as this: to evaluate
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/9 dz
o V1+z'
let u = y/1+ /2. Then some algebra shows that * = (u? — 1)?, and so

dr = 4(u? — 1)udu. Also, when z = 0, v = 1, and when z = 9, u = 2.
Therefore the integral is

2
A L T / (u? —1)du
1

16
1 3

I e

)

Although both of these examples use substitution, they differ from each
other in a way that a first calculus course may not explain. The first substitu-
tion involved picking an z-dependent u (i.e., v = Inz) where u/'(z) (i.e., 1/z)
was present in the integral and got absorbed by the substitution. The second
substitution took an opposite form to the first: this time the z-dependent
was inverted to produce a u-dependent x, and the factor «’(z) was introduced
into the integral rather than eliminated from it. Somehow, two different things
are going on under the guise of u-substitution.

In this section we specialize our theory of multivariable integration ton = 1
and review two tools for evaluating one-dimensional integrals, the fundamen-
tal theorem of integral calculus (FTIC) and the change of variable theorem.
Writing these down precisely will clarify the examples we just worked. More
importantly, generalizing these results appropriately to n dimensions is the
subject of the remainder of these notes.

2

The multivariable integral notation of this chapter, specialized to one di-
mension, is f[a 0] f. For familiarity, replace this by the usual notation,

/abfz f fora<b.

[a,?]

As matters stand, the redefined notation fj f makes sense only when a < b,
so extend its definition to

/f_—/f for a > b.

Once this is done, the same relation between signed integrals holds regardless
of which (if either) of a and b is larger,

b a
/f:—/f for all a and b.
a b

Something nontrivial is happening here: when the multivariable integration of
this chapter is specialized to one dimension, it can be extended to incorporate
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a sign convention to represent the order on R. If ¢ < b then f; describes
positive traversal along the real line from a up to b, while |, bu describes negative
traversal from b down to a. This sort of thing does not obviously generalize
to higher dimensions, because R" is not ordered.

Casewise inspection shows that for every three points a,b,c € R in any
order, and for every integrable function f : [min{a,b, ¢}, max{a,b,c}] — R,

/acf=/abf+/bcf-

Also, if f : [min{a, b}, max{a,b}] — R takes the constant value k then

/:fzk(b—a),

again regardless of which of a and b is larger. These facts generalize Proposi-
tion 6.2.4 and Exercise 6.2.3 to signed one-variable integration.

Each of the next two theorems describes a sense in which one-variable
differentiation and integration are inverse operations. Both are called the fun-
damental theorem of integral calculus, but the second is more deserving of
the title because of how far it generalizes.

Theorem 6.4.1. Let the function f : [a,b] — R be continuous. Define a
function

F:la,b] — R, F(x) :/ 1
Then F is differentiable on [a,b], and F' = f.

Proof. Let x and x + h lie in [a,b] with h # 0. Study the difference quotient

Fla+h)—F@) [T f-Jrf = f5+hf.

h h h

If h > 0 then mp ,on(f) - b < [T f < Myain(f) - h, and dividing
through by h shows that the difference quotient lies between my, ,n(f) and
My 241 (f). Thus the difference quotient is forced to f(x) as h goes to 0,
since f is continuous. A similar analysis applies when i < 0.

Alternatively, an argument using the characterizing property of the deriva-
tive and the Landau-Bachmann notation does not require separate cases de-
pending on the sign of h. Compute that

z+h xz+h
F(a+h) — F(x) - f()h = / (f - f(a)) = / o(1) = oh),

But here the reader needs to believe, or check, the last equality. O
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The alert reader will recall the convention in these notes that a mapping
can be differentiable only at an interior point of its domain. In particular,
the derivative of a function F : [a,b] — R is undefined at a and b. Hence
the statement of Theorem 6.4.1 is inconsistent with our usage, and strictly
speaking the theorem should conclude that F' is continuous on [a, b] and dif-
ferentiable on (a,b) with derivative F/ = f. The given proof does show this,
since the existence of the one-sided derivative of F' at each endpoint makes F
continuous there.

However, we prohibited derivatives at endpoints only to tidy up our state-
ments. An alternative would have been to make the definition that for every
compact, connected set K C R™ (both of these terms were discussed in Sec-
tion 2.4), a mapping f : K — R™ is differentiable on K if there exist an
open set A C R™ containing K and an extension of f to a differentiable map-
ping f : A —> R™. Here the word extension means that the new function f
on A has the same behavior on K as the old f. One reason that we avoided
this slightly more general definition is that it is tortuous to track through the
material in Chapter 4, especially for the student who is seeing the ideas for
the first time. Also, this definition requires that the critical point theorem
(stating that the extrema of a function occur at points where its derivative
is 0) be fussily rephrased to say that this criterion applies only to the extrema
that occur at the interior points of the domain. From the same preference for
tidy statements over fussy ones, we now allow the more general definition of
the derivative.

Proving the FTIC from Theorem 6.4.1 requires the observation that if two
functions Fy, F5 : [a,b] — R are differentiable, and F| = F, then F} = Fy+c¢
for some constant c. The observation follows from the mean value theorem and
is an exercise.

Theorem 6.4.2 (Fundamental theorem of integral calculus). Suppose
that the function F : [a,b] — R is differentiable and F' is continuous. Then

/bF’ = F(b) — F(a).

Proof. Define Fy : [a,b] — R by Fy(x) = ["F'. Then Fj = F’ by the
preceding theorem, so (Exercise 6.4.3) there exists a constant ¢ such that for
all z € [a, b],

Fy(z) = F(x) + c. (6.3)

Plug = a into (6.3) to get 0 = F'(a) + ¢, so ¢ = —F(a). Next plug in x = b

to get Fy(b) = F(b) — F(a). Since F»(b) = fj F’ by definition, the proof is
complete. ]

One can also prove the fundamental theorem with no reference to Theo-
rem 6.4.1, letting the mean value theorem do all the work instead. Compute
that for every partition P of [a, b], whose points are a = tg < t; < --- <t = b,
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k
F(b) — F(a) = Z F(t;) — F(t;—1) (telescoping sum)

k
= ZFI(CZ)(tZ — tifl) with each ¢; € (ti,hti), by the MVT
i=1
<U(F',P).

Since P is arbitrary, F'(b)— F(a) is a lower bound of the upper sums and hence

is at most the upper integral U f: F’. Since F” is continuous, its integral exists
and the upper integral is the integral. That is,

F(b) — F(a) < /b F.

A similar argument with lower sums gives the opposite inequality.

In one-variable calculus one learns various techniques to find antideriva-
tives; i.e., given continuous f, one finds F' such that F’ = f. Once this is done,
evaluating f: f is merely plugging in to the FTIC. But since not all continu-
ous functions have antiderivatives that are readily found, or even possible to
write in an elementary form (for example, try f(z) = e™® or f(z) = sin(z?)),
the FTIC has its limitations.

Another tool for evaluating one-dimensional integrals is the change of vari-
able theorem. The idea is to transform one integral to another that may be
better suited to the FTIC.

Theorem 6.4.3 (Change of variable theorem; forward substitution
formula). Let ¢ : [a,b] — R be differentiable with continuous derivative
and let f : ¢la,b] — R be continuous. Then

b o(b)
0p) - ¢ = f. 6.4
/a (f o) /¢ N (6.4)

Proof. Use Theorem 6.4.1 to define F : ¢[a,b] — R such that F’ = f. By
the chain rule, F o ¢ has derivative (F o) = (F'o¢)-¢' = (fo¢)- ¢, which
is continuous on [a, b]. Thus by the FTIC twice,

b b
/(f0¢)~¢’:/(FO¢)’:(FO¢)(6)*(FO¢)(a)

¢(b) ¢(b)
= F(8(b)) - F((a) = /¢ A

O

One way to apply the change of variable theorem to an integral f: g is to
recognize that the integrand takes the form g = (f o ¢) - ¢/, giving the left
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side of (6.4) for suitable f and ¢ such that the right side f(f((;)) f is easier
to evaluate. This method is called integration by forward substitution.
For instance, for the first integral [*_, ((Inz)?)/z)dz at the beginning of this
section, take

g: Rt — R, g(z) = (Inz)?/z.
To evaluate [, g, define
¢:RT — R, ¢(r) =Inz
and
f:R—R, fu) = u?
Then g = (fo¢) - ¢, and ¢(1) = 0, ¢(e) = 1, so by the change of variable

theorem, . . s )
[o=fueara=[ "s=[s

Since f has antiderivative F' where F(u) = u3/3, the last integral equals
F(1) — F(0) = 1/3 by the FTIC.

The second integral at the beginning of the section was evaluated not by
the change of variable theorem as given, but by a consequence of it:

Corollary 6.4.4 (Inverse substitution formula). Let ¢ : [a,b] — R be
continuous and let f : ¢pla,b] — R be continuous. Suppose further that ¢ is
invertible and that ¢~ is differentiable with continuous derivative. Then

/:(fwb) - /:j) fooly

The formula in the corollary is the formula for integration by inverse
substitution. To obtain it from (6.4), consider the diagrams for forward and
inverse substitution:

la,b] ———— [6(a), ()] [6(a), 6(b)] —— > [a,b]
>~ 7 N
R R

Noting where the various elements of the left diagram occur in the forward

substitution formula f;( fog) ¢ = ff((f)) f shows that applying the forward

substitution suitably to the right diagram gives f(f((f)) f(o7 )y = fab(f o ¢),
the inverse substitution formula as claimed.

To apply the formula in Corollary 6.4.4 to an integral ffg, write the
integrand as g = f o ¢, giving the left side, and then invert ¢ and differentiate
the inverse to see whether the right side is easier to evaluate. For instance, for

the second integral fog dz/+y/1+ y/x at the beginning of the section, define
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¢:R>o — Ry, ¢(z) =1+ Vz

fZRZl —)R, f(u)zl/u

and
Then the integral is . .
/ ﬂdfiﬁ S
u=o() = /14 Va.

Then a little algebra gives

Let

r=(—1)? =67 (u),

so that
(@71 (u) = du(u® - 1).
Since ¢(0) =1 and ¢(9) = 2, the integral becomes

u(u? —1)du

/09&—/09<fo¢)—/12f~<¢1>'_4/12u7

and as before, this evaluates easily to 16/3.

The variable-based notation used to work the two integrals at the begin-
ning of this section, with x and v and dz and du, is much easier mnemonically
than the function-based notation used to rework them with the change of vari-
able theorem and its corollary. But a purist would object to it on two counts.
First, expressions such as (Inx)?/x and u? are not functions, they are the out-
puts of functions, so strictly speaking we can’t integrate them. The problem
is not serious, it is mere pedantry: we simply need to loosen our notation to
let f::a f(z) be synonymous with f; f, at the cost of an unnecessary new
symbol z. This x is called a dummy variable, because another symbol would
do just as well: f;:a f(y) and f(l;:a f(Q) also denote f: f. At the theoret-
ical level, where we deal with functions as functions, this extra notation is
useless and cumbersome, but in any down-to-earth example it is in fact a con-
venience because describing functions by formulas is easier and more direct
than introducing new symbols to name them.

The second, more serious, objection to the variable-based notation is to
the dz, the du, and mysterious relations such as du = dz/z between them.
What kind of objects are dz and du? In a first calculus course they are typi-
cally described as infinitesimally small changes in  and u, but our theory of
integration is not based on such hazy notions; in fact, it was created in the
nineteenth century to answer objections to their validity. (Though infinitesi-
mals were revived and put on a firm footing in the 1960s, we have no business
with them here.) An alternative is to view dz and du as formal symbols that
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serve, along with the integral sign [, as bookends around the expression for the
function being integrated. This viewpoint leaves notation such as du = da/x
still meaningless in its own right. In a first calculus course it may be taught
as a procedure with no real justification, whereas by contrast, the revisited
versions of the two integral-calculations of this section are visibly applications
of results that have been proved. However, the classical method is probably
easier for most of us, its notational conventions dovetailing with the change
of variable theorem and its corollary so well. So feel free to continue using it.
(And remember to switch the limits of integration when you do.)

However, to underscore that dz is an unnecessary, meaningless symbol, it
will generally not be used in these notes until it is defined in Chapter 9, as
something called a differential form.

Exercises

6.4.1. (a) Show that for three points a,b,c € R in any order, and every
integrable function f : [min{a, b, ¢}, max{a,b,c}] — R, [ f = f:f + [5 f.

(b) Show that if f : [min{a, b}, max{a,b}] — R takes the constant value k
then f; f =k(b— a), regardless of which of a and b is larger.

6.4.2. Complete the proof of Theorem 6.4.1 by analyzing the case h < 0.

6.4.3. Show that if Fy, F; : [a,b] — R are differentiable and F] = F3, then
F, = F5 4+ C for some constant C. This result was used in this section to
prove the fundamental theorem of calculus (Theorem 6.4.2), so do not use
that theorem to address this exercise. However, this exercise does require a
theorem. Reducing to the case F» = 0, as in the comment in Exercise 6.2.7,
will make this exercise a bit tidier.

6.4.4. (a) Suppose that 0 < a < b and f : [a?,b*] — R is continuous. Define
F:la,b] — R by F(z) = f;; f. Does F’ exist, and if so then what is it?

(b) More generally, suppose f : R — R is continuous, and «, 5 : R — R
are differentiable. Define F : R — R by F(x) = fﬁ((z)) f. Does F’ exist, and
if so then what is it?

6.4.5. Let f : [0,1] — R be continuous and suppose that for all z € [0, 1],
[T f=[rf Whatis f?

6.4.6. Find all differentiable functions f : R>g — R such that for all z €
R>o, (f(2))* = fy [-

6.4.7. Define f : Rt — R by f(u) = e(“+%>/u and F: Rt — R by F(z) =
J; f- Show that F behaves somewhat like a logarithm in that F(1/x) = —F ()
for all x € R™. Interpret this property of F' as a statement about area under
the graph of f. (Hint: define ¢ : Rt — R™ by ¢(u) = 1/u, and show that
(fog) ¢ =—f)
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6.5 Integration over Nonboxes

So far, we know that fB f exists if B is a box and f: B — R is continuous
(Theorem 6.3.1). With some more work, the theorem can be refined to relax
these requirements. The basic idea is that |, p [ still exists if f is discontinuous
on a small enough subset of B. The idea isn’t hard conceptually, but its
justification requires some bookkeeping. Once it is established, integration
over compact sets K other than boxes is easy to define, provided that their
boundaries are suitably small.

To quantify the notion of small, and more generally the notion of set size,
let a set S C R™ be given. The characteristic function of S is

1 ifzes,
XS - R" — Ru XS(:E) = .
0 otherwise.

Suppose that S is bounded, meaning that S sits in some box B.

De