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Preface

The calculus has been one of the areas of mathematics with a large number of
significant applications since its formal development in the seventeenth
century. With the recent development of the digital computer, the range of
applications of mathematics, including the calculus, has increased greatly
and now includes many disciplines that were formerly thought to be non-
quantitative. Some of the more traditional applications have been altered,
by the presence of a computer, to an extent such that many problems hitherto
felt to be intractable are now solvable.

This book has been written as a reaction to events that have altered the
applications of the calculus. The use of the computer is made possible at an
early point, although the extent to which the computer is used in the course
is subject to the decision of the instructor. Some less traditional applications
are included in order to provide some insight into the breadth of problems
that are now susceptible to mathematical solution. The Stieltjes integral
is introduced to provide for easier transition from the stated problem to its
mathematical formulation, and also to permit the use of functions like
step functions in later courses (such as statistics) with relative ease. The
course is designed to include all the background material ordinarily associa-
ted with the first course in the calculus, but it is also designed with the user
in mind. Thus, those topics that are felt to be most needed by the student
who will take only one term of calculus are introduced early, so that such
a student may be sure to have such materials before leaving the course. The
exponential is a case in point. The development is done with one eye on
rigor in order that students may see where the results originate. The amount
of rigor introduced in a particular classroom is, again, up to the instructor,
but the author and his colleagues have felt for some time that rigor should
not be avoided. It is to be anticipated that the students we teach today will
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viii Preface

be using the calculus in ways we cannot anticipate. It will be up to them to
know a sufficient amount of rigor to be able to determine whether the appli-
cation they propose is valid or not. Only with an understanding of the under-
lying theorems can one make such a decision.

The text is designed to give maximum flexibility to the instructor. The
first chapter includes those items that are needed throughout the remainder
of the book. The instructor can omit such of these items as he/she may feel
are not needed for a particular class. If more material of this variety is
required, there are appendices on trigonometry and analytic geometry,
each with exercises for the student. The programming languages are con-
tained in the appendices. If some language other than BASIC or FORTRAN
is to be used, there is nothing in the text, other than the abscence of a suit-
able appendix, to cause any problem.

This material has been taught in the classrooms of Ohio Wesleyan Uni-
versity since 1971. Prior to that time other material relating the computer
and the calculus was used and found to place too great an emphasis on the
computer. This book was designed to permit such emphasis as an instructor
may desire, but also to permit almost total disregard of the computer if this
be the desire of the instructor. The course at Ohio Wesleyan University
has usually spent one or two days early in the course, usually in the first
week, to introduce sufficient (and only sufficient) programming to handle
a very simple problem, such as adding all of the odd integers less than 100,000.
This serves to give all students some familiarity with a computer and with
the concept of writing a program. During the second week the students will
be asked to write a second program, perhaps one to solve an equation using
the method of bisection. By the third or fourth week they may be asked to
write a program which approximates the volume of a sphere by what amounts
to integration. At this point the students should be able to do any program-
ming required in the course without further training. If desired, this pace
could be slowed to a considerable extent. It is possible, of course, to require
a prerequisite or corequisite course in programming, but this has not
appeared to be necessary. With this approach, the computer takes little
extra time, and its judicious use will emphasize concepts at a later point to
the extent that this time may well be regained.

The introduction of the Stieltjes integral may be viewed with some
skepticism. It has been observed in the classroom that students who are
being introduced to the calculus for the first time find it no more difficult
to handle the Riemann-Stieltjes sum and integral than the Riemann sum
and integral. In fact, the presence of the function g(x) tends to make more
specific the role that is sometimes lost with the simpler identity function.
This is particularly true in understanding the proof of the fundamental
theorem. It is also true that problems involving the determination of volume
of revolution by the method of cylindrical shells is made easier to compre-
hend, for the function g(x) = nx? appears naturally and does not require
elaborate explanation as to why the inside of the rectangle travels through a
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smaller circumference than does the outside. The Stieltjes integral is also
helpful in such areas as substitution theorems and in many proofs, proofs
that are made much shorter and more direct by the presence of the more
general function g(x).

In order to emphasize the role of the fundamental theorem, much use
is made of this important result in using not only the anti-derivative, but
also the anti-integral, to obtain additional formal results. This has proven
to be a significant aid in obtaining a true understanding, of not only the
meaning of the integral and the derivative, but also their interrelationship.
In addition to achieving a deeper understanding, this also reduces the amount
of time required to develop some of the usual formulas for differentiation
and integration, thus permitting time for other topics.

In deference to the increasing use of the computer, chapters are included
on interpolation and regression and on numerical methods. The chapter on
interpolation and regression is of particular interest to those persons who
do not have the large number of theoretically derived formulas from which
to work. Such materials would be needed in most of the social sciences
and in many of the life sciences. The physicist, on the other hand, is much
more apt to have formulas that have been derived theoretically. Therefore,
the inclusion of this chapter may depend on the particular class involved.
Numerical methods are becoming increasingly important. It would be
neither desirable nor possible to include a course in numerical analysis,
but some of the more basic concepts of the subject will be needed by students
who do not have time in their programs for a numerical analysis course.
The inclusion of this chapter is, therefore, dependent on the particular
class and the goals that the students may have.

Sufficient information on partial derivatives and iterated integrals is
included to satify the needs of those students who may not continue through
a course in linear algebra and multivariable calculus. Such students may
have to use an occasional partial derivative, be concerned with extreme
values, or be required to handle a multiple integral. However, such a student
will probably need nothing more than some mechanical ability and an
intuitive understanding. This has been provided. Students should be warned
that if they will be making use of a great amount of analysis, they should
continue with a second course. This represents no change from the situation
occurring with the majority of courses designed for one year.

Once a text has been selected, the obvious choice for a syllabus is one that
starts at the beginning and proceeds from chapter to chapter. More often
than not, some modification of this procedure is desired. This book is
intended as a first course in calculus, and beginning with Chapter II we
will assume that certain basic mathematical information is familiar to the
student. The specific information required is included in Chapter I and in
Appendices A and B. The use of this material can be altered to fit a particular
class, as determined by the instructor. Some may wish to go through the
material in detail and others may feel that some, or perhaps all, of this
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material can be omitted. Chapters II and III introduce the Riemann-Stieltjes
integral through the use of summations. While limits lurk in the background,
the obvious mathematical material that is required includes only the least-
upper-bound axiom. There is little that can be omitted in these two chapters,
although the proofs can be de-emphasized if this is desired. Chapter IV
introduces the derivative. Except for a few references to earlier material,
there is no logical reason why this Chapter could not precede Chapters II
and III. The fundamental theorem with its relation between the integral
and the derivative is introduced in Chapter V, and the concept of inverse
operations can hardly be brought in before this point.

Chapter VI deals primarily with techniques for differentiation and inte-
gration. Thus, this is a chapter which the majority of students should reach as
soon as is feasible, since it will sharpen their skills in formal integration and
differentiation. Chapter VII returns to the more rigorous aspects of the
calculus and completes the work on limits and continuity which is taken
somewhat intuitively in the earlier portion of the book. Applications of
limits such as I’Hopital’s rule and improper integrals are included in this
chapter. Chapter VIII discusses interpolation and regression techniques
for finding functions that approximate given sets of data. There is no reason
why this chapter cannot follow Chapter VI or, for that matter, Chapter IV.
If it is included without Chapter VI, some care would be necessary to insure
that only problems involving known techniques are used. The partial
differentiation included in this chapter is intended to provide sufficient
information to assist those who rhay wish to use partial differentiation in
other courses before they have an opportunity to take further courses in
mathematics.

Chapter XI discusses infinite series. This material requires work in limits
and various techniques of differentiation and integration. It is doubtful
whether this should be undertaken without having covered the material
in Chapters VI and VII. As with the material on partial differentiation, the
work on iterated integrals is intended to provide sufficient information to
permit such use as may be required by persons who are not able to take
further courses in mathematical analysis. The introduction of Fourier
series provides additional background for those who may need this material
before they would have it in other courses. The trigonometric series can
be omitted without doing damage to the further work in the text. Chapter X
deals with numerical techniques of differentiation and integration. It also
provides an introduction to the numerical solution of linear differential
equations. In view of the increasing breadth of applications, it is probable
that students will come up against material that could hardly be handled
in a formal way, as well as material that involves working with sets of data
obtained from other computations. If this be the case, some insight into
methods of handling such problems on a digital computer is highly desirable.
This chapter should not be attempted if the students are not familiar with
Taylor’s series with error terms.
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Chapter XI provides an introduction to the solution of the more common
differential equations. This chapter would probably be more useful for
students of physics and engineering, although differential equations appear
in an increasing number of fields these days. Finally, Chapter XII is intended
merely to inform students of material that might be useful to them in the
future. Several students in any class will ask, or might like to ask, questions
concerning further mathematics they might study, with a concern for the
content and the areas of application appropriate to the material involved.
It is suggested that students be reminded of the existence of this chapter near
the end of the course, and then be invited to ask the instructor for more
detailed information about local offerings if there is sufficient interest.

In particular, the flowchart shows some of the tracks that can be taught
from this book.

With this book, as with any effort of this kind, there are many people
involved. It would be impossible to mention all those who have had a part,
but I would like to single out a few. I would like to give particular thanks to
my colleagues at Ohio Wesleyan University and those who have born with me
during the period of preliminary editions. Their suggestions and comments
have been most helpful and appreciated. Professor S. B. Jackson read the
manuscript thoroughly and made many helpful suggestions for which I am
appreciative. Mrs. Marilyn Cryder has typed most of the manuscript for the
several editions, and the remaining manuscript was typed by Mrs. Shirley
Keller. They have put in many patient hours. The editorial and production
staffs of Springer-Verlag have been most helpful and understanding. Finally,
but most important, I would like toexpress my great appreciation to my wife,
Anna Katherine, and to my family for their understanding and patience
during the many occasions when the author was not available for family
affairs. Without their support, an effort such as this could never have come
to fruition.

Robert L. Wilson
Delaware, Ohio
September 1978
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CHAPTER 1

Prologue

I.1 A Preview

We are about to embark on an investigation of the calculus, a branch of
mathematics about which you have heard a great deal, but concerning which
you may possibly have some misgivings. The calculus deals with limiting
processes, and therefore can be quite different in some respects from the
algebra, geometry, and trigonometry with which you have had previous
contact. When you try to solve problems which involve an infinite number of
items, or which use limiting processes, strange things can happen. This
doesn’t mean that they always give unexpected results, but rather that you
have to be very careful that unexpected results do not slip by. In order to
illustrate this, let us consider an example.

ExampLE. The properties of the real numbers by which one can group terms
and change the order of addition without changing the results have been used
throughout most, if not all, of your mathematics. Let us see what happens
when we apply these to the expression
x=1-3+%5-F++-%+3-%+3%5-- (L1.1)
where the three dots are the mathematical equivalent of “etc.” and indicate
that we should continue to write terms using the indicated procedure without
stopping. We can re-write (1.1.1) as
x=U=-P+G-H+E-H+G-H+- A1)

in which case x is a sum of positive terms, since the number in each of the
indicated subtractions is positive. We can also write

x=1-G-H-G-H-G-H-G-H- @1y

1



2 1 Prologue

in which case x is the result of subtracting positive terms from one. Therefore,
x must be a number less than one. From (1.1.2) and (1.1.3) it is apparent that
x must be a number between zero and one (and this is correct). Now, let us
multiply both sides of (I.1.1) by two. We have (1.1.4)

2x=2—-1+3-45+%-3+3-4+%—-%+--. (114

If we rearrange the terms in (I.1.4) and group those with equal denominators,
we obtain

2=@-D-4+G-H-+G-H-f+- ALY
Upon simplifying the expressions in parentheses we have
x=1-3+3—-4+5-%+--. (1.1.6)

From (I.1.1) and (I.1.6) we observe that we have 2x = x. However, we have
shown.that x # 0, and hence division by x is possible, giving us the strange
result 2 = 1.

Rather clearly something seems to have gone wrong, despite the fact
that we were performing only familiar operations and in a manner which we
would expect to produce correct results. The difficulty here is a subtle
one, and one which we shall not attempt to explain at this point, other
than to say that this result could not have happened if we had only a finite
number of terms. This result does demonstrate, however, why it is necessary
to be very careful when we are considering any situation involving an infinite
number of terms. (The reason for this strange occurrance will be cleared up in
Chapter IX.)

Since the concepts that we will be dealing with must be handled with a
great deal of care, we shall consider in this chapter some fundamentals which
will be of assistance later on. It cannot be emphasized too strongly that your
primary concern in this chapter and throughout the calculus should be that of
understanding the concepts with which we are working rather than memorizing
any ordered set of words which come under the label of definition or theorem.
This will require attention to the fundamentals which underly the concepts.
In proofs and derivations your concern should be focused on learning how
to prove theorems and how to derive results. A computer can handle a
formula with greater speed and greater accuracy than can a human being,
but the computer is not able to determine which method can best be used in
a given situation, nor how a particular result should be pursued. It is also
true that with very few exceptions it is possible to prove theorems in a variety
of ways and to solve problems by diverse methods. Therefore, there is no
reason why your proof or solution must follow the same pattern you may
find in this book, or which you find given by your instructor, or your class-
mates. The only requirement is that the proof be logically complete and
correct or that the solution be one that can be defended if challenged.
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One final bit of advice concerning proofs and solutions is in order.
First read the theorem to be proven or the problem to be solved and be certain
that you understand it. Second think of some procedure which would seem to
provide a logical path from that which is given to that which is desired.
Only after you have completed these two steps should you start writing down
the proof or solution. By the time you have completed the first two steps you
will have a direction in which to proceed, and this is important. As a part of
the two steps given, if it is possible to draw a picture or sketch which is
meaningful in interpreting the theorem or problem, by all means draw
it—draw it large enough that you can label it clearly, and use this to aid your
intuition and your logic in arriving at the proof or solution.

EXERCISE
1. Explain in detail why (I.1.2) shows that x must be positive.
2. Explain in detail why (I.1.3) shows that x must be less than one.

3. Why isit important in obtaining the conclusion “2 = 1” that x is a number other than
zero?

4. Use an argument similar to that given in this section to show that x is greater than 1/2
and less than 5/6.

5. In what way would the argument of this section be made impossible if (I.1.1) had
twenty terms instead of an infinite number of terms?

1.2 Some Properties of Numbers

Since the word calculus is derived from the same root! as the word calculate,
it is not unreasonable to expect that we will be working with numbers,
either explicitly as constants or perhaps a bit less obviously through our
use of variables which represent numbers. You have worked with numbers for
many years, and are familiar with many types of numbers, such as the natural
numbers (the ones used for counting), the integers (which include the natural
numbers, zero, and the negatives of the natural numbers), and the real
numbers, among others. We shall not attempt in this section to go back and
investigate all of the facts that you have been told concerning numbers.
On the other hand, the example given in Section 1 indicates that some of the
things that we have been in the habit of doing must be done with caution,
particularly if we are dealing with an unlimited set of numbers in a given
computation. We intend to state those assumptions (or in more sophisticated
terms, those postulates) which we assume concerning the numbers we use.

! Both words are derived from calculi meaning pebbles. These pebbles would have been used on
sand or strung on wires for counting purposes, somewhat in the manner of the abacus of today.
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We will do this in a definition of a system that mathematicians call a number

field.
Before stating the definition, it would be well to mention briefly some of the

terms that are frequently used in connection with numbers. This should serve
to give some background for the more formal definition. We will be dealing
with a set (either finite or infinite in number) of elements which we usually
call numbers. We have an equivalence relation, which we denoted by “="
and this is defined in such a way that we can say “x = y” if and only if x and
y are the names (perhaps different ones) for the same number. Thus, to say
“a + b = ¢” requires that the number represented by “a + b” is the same
number as the one represented by “c¢”. There is nothing in this explanation
that differs from your previous experience, but it is well to set it forth so that
there is no misconception concerning the meaning of the symbols that we
use. We also have in most situations involving numbers two “binary”
operations. A binary operation is one that requires that two (not necessarily
distinct) numbers be given and which then specifies a unique third number
(again not necessarily distinct from the first two). Thus, addition requires
that we have two numbers, such as 2 and 3, and then produces a unique
third number, in this case 5. If we wish to add more than two numbers, we
erploy the associative property and effectively add two at one time and then
add the third to the sum of the first two. Thus, if we wish to add 2, 3, and 7, we
should have (2 + 3) + 7 = 5 + 7 = 12. The fact that we canadd in any order
is covered by the commutative and associative properties of numbers. Note
that in the definition these are stated for computations involving two or
three numbers. (It is the use of these operations with an infinite set of numbers
that causes trouble in the example of Section 1.) Finally, before stating the
definition, it is well to mention that the operations of subtraction and division
are given implicitly through the requirement that we have an inverse for
addition and multiplication, respectively. Thus, we would define subtraction
to be the operation of adding the additive inverse (or negative). This is
equivalent to the subtraction that you have used in the past, but it is much
easier to use the definition in this form. (For the purist we would note that we
are aware of a certain redundancy in this definition, but this will assist our
discussion here.)

Definition. A number field is a set of at least two elements (called numbers),
denoted bya, b, ¢, . .. ,an equivalence relation “=", and two binary operations
called addition (+) and multiplication (-) such that for any three numbers
a, b, and c the following assumptions hold:

1. Closure: a + b is a unique number; a- b is a unique number
2. Commutativity: a+ b=0>b + a; a-b=b-a

3. Associativity: (a+b)+c=a+b+c) (a-b)-c=a-(b-¢)

4. Identity: there is a unique number there is a unique number

Osuchthata + 0 =0+ 1suchthata -1 =
a=a l-a=a
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5. Inverse: for any number a thereis  for any number a # 0
a unique number “a such  there is a unique number
thata + “a= "a + a = 0; a~ ' such that

1 -1,

aa " =a a=1;

6. Distributive: a-b+c)=a-b+a-c

Note that property 5 provides us with a negative, ("a), and a reciprocal,
(a™ 1), the latter whenever we have a non-zero number, and these two assump-
tions give us the ability to subtract and to divide. We will define (a — b) as
meaning a + ("b) and (a + b) as meaning a- (b~ !). This very definitely
excludes division by zero as a result of property 5. Note also that the sign in
("b) applies to a single number. This use of the negative sign illustrates a
unary operator, or one that operates on a single number.

There are several sets of numbers that satisfy these properties. We will
customarily be dealing with the real numbers, and the set of all real numbers
constitute a number field. On the other hand, since the reciprocal of 2 is
1/2, and 1/2 is not an integer, the set of all integers do not form a number
field, for this set does not fulfill the assumption which says that every non-zero
number in the set has a reciprocal which is also in the set. The integers do
satisfy all of the other assumptions in our list, however. It is worth noting that
the set of all polynomials with real coefficients satisfy exactly the same set of
assumptions which the integers satisfy. We will have occasion to speak of the
rational numbers. This is the set of numbers, each of which is capable of being
expressed as the ratio of two integers (note the first five letters of the word
rational). These numbers also constitute a number field. There are many
other fields, and we will be looking at one additional field in this chapter.

The real numbers can be further distinguished by including some additional
properties concerning ordering of the numbers, but we will reserve these for
Section 3 of this chapter and for Section 5 of Chapter II.

We have given a definition of a number field which includes many proper-
ties of the two operations (+) and (-). In point of fact, these postulates
(or properties) which we have assumed are more far-reaching than is apparent
from reading them. For instance, these postulates cannot be true unless the
product ("a)("b) has the same value as the product (ab), where we have
implied the product by juxtaposition (or writing the two numbers without
any intervening symbols). (See Exercise 1.2.15). In order to indicate the
additional properties which we have assumed, we shall prove theorems which
are merely statements that are true because we have made these initial assump-
tions. The theorems are the consequences of the definitions and the postulates.
We will have occasion rather frequently to prove theorems (or derive results).

[Almost any theorem can be proven in a great variety of ways. As we stated
earlier, the proofs that you see in books and those presented in classrooms
and in lectures usually appear to be very straightforward, to economize on
the number of steps required, and to have an air of completeness and finality
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about them. In the majority of cases, including most of the proofs presented
in this book, the first version of the proof was very awkward, and while it did
prove what it set out to prove, it did not do it in a very nice, neat way. By going
back over the work, it was possible to find shorter proofs, neater proofs, and in
general to produce this nice finished air. Anyone trying to prove any result for
the first time, even though he may have had prior experience in proving things,
should not be surprised if the proof can be made shorter. If, however, your
succession of statements constitute a proof, you have succeeded in your
assignment, and you should not be concerned if your particular proof differs
from another proof of the same result. The only note of caution is to be certain
that you start with assumptions which are permissible and using only defini-
tions, postulates (or assumptions), and previously proven results (or theorems)
you are able to arrive at the conclusion using laws of logic which can be
supported at each step.]

As an illustration of a proof in which all reasons are given, we will consider
the following

ExXAMPLE 2.1. Prove the theorem: If x is any number in a number field and 0
is the additive identity, then x -0 = 0.

PRrROOF

Statement Reason

1. There is a number 0 in the field 1. The property of additive identity

suchthat1 + 0 = 1 from the field definition.
2. For any number x in the field, 2. The product of two numbers is
x(1+0=x-1 unique.
3.x-1+0=x-14+x-0 3. The distributive property of the
field.
4 x-14+x-0=x-1 4. Two things equal to the same
things are equal to each other.
5. There is a unique number 5. The additive inverse property
“(x-1) from the field.
6. "(x-D+[(x-D)+ (x-0)] 6. The result of addition is unique.
= "(x-D)+(x-1
T -+ x-D]+ (-0 7. The associative property of
="(x-D+(x-1 addition.
8 04+ (x-00=0 8. The property of the additive
inverse (or negative).
9. x-00=0 9. Property of additive identity
(zero). O

As an example of a slightly different type of proof, known as an indirect
method of proof we prove another theorem.
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ExAMPLE 2.2. Prove: The numbers 0 and 1 are distinct. (That is, 0 # 1.)

PROOF
Statement Reason
1. Either0 =1o0or0# 1 1. The determinative property of
equivalence.
2. Let x be a number such that 2. A number field has at least two
x#0 elements.
3.If1 =0,thenx-1=x-0 3. 1 = 0 is equivalent to stating
that 1 and O are different names
for the same number and
multiplication gives a unique
result.
4 x-1=x 4. Identity property of multiplica-
tion.
5.x-0=0 5. Example 2.1.
6. x=0 6. Replacement in 3 using 4 and 5.
7. Statements 2 and 6 are 7. By the determinative property
contradictory of equivalence.
8. Assumption 1 = 0 is false and 8. Since resulting conclusion is
0 # 1 must be true contradictory. ]

The examples given are illustrations and it is not implied that you would
have given the same proofs. In fact, it is worth noting that it is often more
difficult to find a method of proof for an obvious result than for one that
appears less likely to be true. The important point is that you reason carefully
and that you be able to give a reason for the validity of each step.

EXERCISE

1.

Classify each of the following as an integer, a rational number, a real number or a
specific combination of these types: 2, 7, \/3, 4.32,1.732, 0, —5, —3/7, 100/9,
3.1416, 22/7.

. Show that any terminating decimal (one with a finite number of decimal places)

is a rational number.

. Show that the set of real numbers form a number field. (That is, show that they

satisfy all of the postulates of a number field.)

. Show that the rational numbers form a number field.

. Prove that 0 does not have a multiplicative inverse. (Hint: in statements such as

the one you are to prove here, there are just two possible cases and it is frequently
easier to use the indirect method.)

. Prove that if @ and b are real numbers and a-b = 0, then eithera = O or b = 0.

How is this conclusion used in the solution of quadratic equations by factoring?
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10.

11.

12.

13.

15.
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Find all real numbers, x, for whichx® — 6x? + 1lx — 6 = (x — D)(x = 2)(x — 3)
= 0. Give a reason for each step in your solution. [Hint: apply Exercise 6.]

. Find all real numbers satisfying each of the following equations. Give a reason

for each step in your solution. [Hint: Apply Exercise 6.]

@ x*+3x=0

(b) x> +3x+2=0

() 2x24+3x+1=0

@ x> +6x? +1x+6=(0+Dx+2x+3)=0
(€) x2=9

() X*+4x+2=(x+2+/Dx+2-2)=0

. If a/b is a quotient of real numbers which is defined, and if a/b = 0, prove that

a=0.
Prove that if ¢ and b are real numbers then (Ta)-b = “(a- b).

Prove that if a is a real number, then “("a) = a.

If x and y are real numbers, prove:
@x-Cy=x+y

B x+=0x)+Cy

If x and y are real numbers, prove:

(@ x"H '=x
® -y t=x"ty!

. If x, y, and z are real numbers, prove:

(@) Ifx+z=y+ z,thenx = y.
(b) Ifx-z=y-z,and if z # 0, then x = y.

You have been asked to prove that if ¢ and b are real numbers then (Ta) - (7b) =
a - b. You have the following set of statements:

LICa)-Cb+Ca)bl+a-b=0Ca)-(Cb)+[(Ca)-b+a-b]
2Ca-[CH+b]l+ab=Ca-Ch)+[(Ca)+al-b
3.Ca)0+a-b=Ca)-(Cb)+0-b

4 04+a-b=(Ca)-(Cb)+0

5.a-b=(a) - (Cb)

For each statement give a reason which is correct and which follows either
from the hypothesis or from previous statements. Does this constitute a proof
of the desired conclusion? Does this prove that the assumption of the postulates
for a number field requires that the product of two negatives be a positive?
Why?



1.2 Some Properties of Numbers 9

16.

M17.

M18.

M19.

You find a piece of paper left by your roommate with the following outline of a
proof:

1. Let x and y be real numbers such that x = y
2. xx=Xx"-y

3.x2—yt=xy—y
Y=Y =y — )
S.x+y=y
6. x +x=x
7
8

2

'S

Give reasons where possible, and determine whether the reasons that your
roomate had in mind are correct or not. (In other words, if the proof is not
correct, where does it break down?) We seem to be forever proving that 2 = 1.
Show that if this proof were correct, then it would follow that 8 = 4, and that
13 = 9, and in general that each real number would be equal to every other real
number. What do these latter proofs tell us about a proof as a logical exercise
versus the truth of the conclusion?

If we consider a number system consisting of three numbers designated by the
symbols &, +, and A, and if in this system addition and multiplication are defined
by the following tables:

Addition & + A Multiplication & + A
& & + A & & & &
+ + A & + & + A
A A & + A & A +

Which of the properties of the definition of a field are satisfied? What symbol
would represent the zero and what symbol would represent the one?

If we consider a number system consisting of two numbers designated by the
symbols A and $, and if addition and multiplication are defined by the tables:

Addition A $ Multiplication A $

A A $ A A A
$ $ A $ A $

do we have a field? If so, what represents zero and what represents one?

If we were to replace the tables of Exercise 18 by

Addition A $ Multiplication A $
A A h) A A A
$ $ $ $ A $

would we have a field ? (This system is closely related to the one on which computer
logic is based.)
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1.3 Order Properties and Inequalities

As we have seen, the real numbers form a number field. However, the real
numbers, and several other number fields, have additional properties which
are very useful. One such property is that of order, that is given two numbers
in the field they must be equal or one is larger than the other. This is not a
property possessed by all fields. In the development of further results from
this basic property of order, it will be easier to state this basic property in a
form which does not use the terms greater than or larger. We note that in the
case of the real numbers there is a proper subset, that is a subset which does
not include all of the real numbers, such that both addition and multiplica-
tion are closed in that subset. The subset in this case is the subset of positive
real numbers. Note that while the sum and product of positive numbers
provide us again with positive numbers, the sum and product of negative
numbers would not provide us with negative numbers in all cases. Using this
information, we are now ready to state the order property.

Order property. A number field is an ordered field if and only if there is a
proper subset of the field called the positive numbers, which we shall designate
by P, such that

1. Closure:If aand b are two numbersin P,thena + banda-barein P,
2. Trichotomy: For each number, a, in the field exactly one of the following
three statements is true:
(i) aisin P,
(ii) —aisin P,
(iii)) a = 0.

A number in P is said to be a positive number. A number whose additive
inverse is in P is said to be a negative number. Any number field for which
the order properties hold is called an ordered field. The rational numbers
and the real numbers both provide us with examples of ordered fields. For
an example of a field that is not ordered, see Exercise 20 at the end of this
section. In an ordered field we distinguish three classes of numbers, by the
trichotomy (or three choice) property. These classes are called positive
(including just those numbers in P), negative (those numbers such that their
additive inverses are in P), and zero (this class contains only a single number).
Since P is a proper subset, we note that the set of positive numbers and the set
of negative numbers must be non-empty, and by the field properties we know
that there must be a number zero, hence each of the three possibilities in-
dicated in the trichotomy property is possible.

We now proceed to the definition of the phrase that we used intuitively
above, namely is greater than.

Definition. If a and b are numbers in an ordered field, then a is greater than
b,(a > b),ifa — b is positive, and a is less than b, (a < b), if b — ais positive.
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This definition makes it possible to put all statements concerning greater
than and less than into the context of the properties which apply to the
positive numbers. Thus 4 > —5 since 4 — (75) = +9 is positive. We will
use this definition in the following theorems to obtain information concerning
inequalities in a form which may be easier to apply. Note that in these
theorems we will be giving only a succession of statements, and will expect
you to provide the reasons. This is normal procedure in the majority of
proofs in mathematics books, and you might as well get used to it now. It is
suggested that you have a pad of paper available as you read this and that
you reproduce the proof complete with reasons.

Theorem 3.1 (Alternate Statement of Order Property). If a and b are two real
numbers,thena > b,a = b,or a < b,and exactly one of these statements is true.

PrOOF. Let ¢ = a — b. Now c is a real number, and hence c is positive,c = 0
or ~c is positive, but only one of these is true. If ¢ is positive, theri a > b.
If c=0, then a = b, if ¢ is positive, let d = b — a, and then d = "¢ is
positive and hence a < b. Each of these arguments can be reversed, and hence
the “exactly one of these statements is true” must hold. O

We have been using the phrase “c is positive” or “c is in P.” Each of
these is somewhat cumbersome, and it would be convenient to have an
abbreviated phrase to indicate when either of these statements is true. The
following theorem will be convenient.

Theorem 3.2. If ¢ is a positive real number, then ¢ > 0 and conversely.

Proor. If ¢ is a positive real number, then ¢ = ¢ — 0 is positive, and ¢ > 0.
If ¢ > 0, then ¢ — 0 = c is positive. O

In similar fashion we can show that “c is negative” is equivalent to the
relation ¢ < 0.

The problem of addition and subtraction of negative numbers is easily
taken care of since ~a is the additive inverse of a. We should investigate
the problem of multiplication, however. We have already shown (Exercise
1.2.15) that the product of additive inverses is equal to the product of the
numbers of which they were inverses. We now turn to the multiplication of
inequalities, and we find that we have two cases.

Theorem 3.3. If a, b, and c are real numbers such that a > b,
i. if ¢ > O then ac > bc,
il. if ¢ < Othen ac < be.

PROOF. Sincea > b,a — bis positive. If ¢ > 0, ¢ is positive and hence (a — b)c
= ac — bc is positive and ac > bc. If ¢ < 0, then (a — b)("¢) = a("¢) —
b("¢) = (Cac) — (Cbc) > 0. Then “[(Tac) — ("bc)] = "[(Cac) + bc] =
“(Tac) + ~(bc) = ac — bc < 0 or ac < bc. O

lif
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-5 -4 -3 -2 -1 0 +1 +2 +3 +4 45 +6
Figure 1.1

This last result can be summed up by saying that if we multiply an inequality
by a positive number, the products are unequal in the same order, but if we
multiply by a negative number, the products are unequal in reverse order.

It is frequently helpful to visualize the integers, rational numbers, or
real numbers with the use of a number line. Thus, in Figure 1.1 we see a line,
usually drawn horizontally, on which the larger numbers are to the right
of the smaller numbers. Note that the number a — b is the number of units
measured from the point representing b to the point representing a,and a — b
will be positive if movement implied is from left to right whereas a — b is
negative for all cases in which the movement is from right to left. It is also
worth noting that on this number line the integers occur with a distance of
one unit between consecutive integers, whereas there is a one-to-one cor-
respondence between the points on the number line and the real number.
Since there are real numbers that are not rational, there are points on the
number line for which no corresponding rational number exists, although
there is a point on the number line for each rational number.

We have now considered all of the properties of the real field that we
shall need to use with the exception of one which will be required in Section
5 of Chapter II and which will be given at that point. The fact that at least
one more characterizing property is necessary should be apparent from the
fact that both the real field and the rational field satisfy all of the properties
that we have given so far, and there should be some property which dis-
tinguishes between these two fields.

EXERCISE

1. Show that a > b implies that the point representing a on the number line is to the
right of the point representing b. Show that this is the case regardless of whether
a or b are both positive, both negative, or whether a is positive and b is negative.
Show that the case in which a is negative and b is positive does not occur under
the condition that a > b.

2. Which is the larger number in each of the following pairs? (Try this one without
the use of a calculator). (2.8, 29/11), (3, —9), (—0.47, —9/20), (22/7, 355/113),

2/7, 1), (—+/3, —3/4), (=32, —/10), (0.001, —1000), (/2, ¥3).
3. Describe the set of numbers which satisfies the following relations:

(@ x> -2,
(b) x < —15,

© x> \/5
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10.

11.

12.

13.
14.

15.

16.

17.

M18

. Put each of the following sets of numbers in ascending order.

@ /3. —2,722/7,0,28, —/5/2},
(b) {—3,3.1, —2.9,0.02, 1/25, 0}.

. (a) Show that (0.5)* < (0.5).

(b) Describe carefully the set of all real numbers, x, for which x? < x.

. If a > b, does it follow that a*> > b2? Prove your answer to be correct.

. (a) Show that the truth of the statement a? < a implies the truth of a® < 4.

{b) Show that there are some real numbers for which the converse of part (a)
does not hold.

. If0 < a < 1and ais areal number, showthat 0 < g’ <a* <a® <a’*<a< 1.

. (a) If you are given the fact that 3.1 < /10 < 3.2, what is the maximum amount

by which (3.1 + 3.2)/2 = 3.15 could differ from ,/10?
(b) If you are given the fact that 1.7320508 < \/5 < 1.7320509, what is the

maximum amount by which 1.73205085 would differ from \/3 ?

(c) If you are given the fact that 3.14 < n < 22/7, what value could you find
that would differ from 7 by the smallest possible amount, and what would
be the maximum value of this difference?

Consider 3 > "4 and 2 > ~3. Is it true that (3)(2) > ("4)("3)? Under what
additional conditions will a > b and ¢ > d assure that ac > bd?

If b # 0 and d # 0 and if a/b is defined to mean a- b~ !, find a relation involving
a, b, ¢, and d which is both necessary and sufficient to show that a/b > c/d. Prove
that your relationship satisfies the above requirements.

Use the relationship derived in Exercise 11 to determine the truth of each of the
following statements:

(a) 20/29 < 0.7,
(b) 17/12 < \/5. [Hint: Find a relationship which involves only rationals.]

Prove that if ¢ is a negative real number, than ¢ < 0 and conversely.

Prove that if g, b, and ¢ are real numbers such that a < band b < ¢, thena < c.
(This is called the “transitive” property.)

(a) Ifa, b, and ¢ are real number and a < b, provethata + ¢ < b + c.
(b) If a, b, and c are real numbers and a + ¢ < b + ¢, prove that a < b.

(a) If g and b are real numbers and a < b, show that there is a real number, c,
such that a < ¢ < b.

(b) Repeat part (a) replacing the word “real” with the word “rational .

(c) Show that the statement of part (a) is false if we replace “real numbers” with
“integers”.

(a) Show that 2 < 3 implies that —2 > —3.
(b) Show that x < y implies —x > —y.
(c) Show that x — 2 > 3 implies2 — x < —3.

. Is there a smallest real number, g, such that a > 0? Give a reason for your answer.



14 1 Prologue

19. If we consider time, we note that two o’clock follows one o’clock and also two
o’clock follows eleven o’clock. Is it possible to define a > b when a and b are
numbers to be read from the face of the clock ?

M20. The system consisting of five elements, a, b, c, d, and e, in which addition and
multiplication are defined by the following tables form a field.

Addition a b ¢ d e Multiplication a b ¢ d e
a a b ¢ d e a a a a a a
b b ¢ d e a b a b ¢ d e
c ¢c d e ab c a c e b d
d d e a b ¢ d ad b e ¢
e e a b ¢ d e a ed c b

The number a is the additive identity and b is the multiplicative identity. All of the
requirements for the field definition are met. Show that there is no proper subset
of this field which meets the requirements of P in our definition of positive numbers.
This field is not an ordered field.

1.4 Complex Numbers

In the development of numbers it would seem natural that man would first
learn to count, starting with the number one (probably counting on fingers)
and then (if the climate were warm enough) on toes. The fact that the Mayans
used a number system based on twenties would illustrate the latter observa-
tion. In some instances there is evidence that people even counted in terms of
twos (perhaps because they were near-sighted and could only distinguish
their two arms or fists). At some later point in history it was probably
necessary to introduce negative integers when the first person ran into debt
and found it necessary to borrow something. In other words, subtraction
indicated the necessity for negative numbers of some variety unless sub-
traction were to be limited to certain types of number pairs. By the time
man got around to paying off his debts, the amateur accountant was required
to be aware of the existence of something equivalent to the number we call
zero. In the next stage of development we can see our forefathers caught with
the necessity for dividing some object and hence the concept of a fraction
(or rational number) would come in. This was necessary if man was not to
limit the numbers upon which he could perform that latest mathematical
nightmare called division. Thus, it is reasonable, although we do not vouch
for the fact, that this was precisely the order in which these concepts were
developed, that the counting numbers were augmented throughout history
as new situations developed for which the existing number system was not
adequate.

At a later point in history man became interested in geometry and was
concerned with finding the number of units of length in the diagonal of a
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square of which each side was one unit long. This required a completely new
kind of number, one which we now call irrational, for it could not be expressed
as a ratio of integers, no matter how hard one might try nor how ingenious
the budding mathematicians might become. With the development of the
real numbers, man had come to a plateau, or so he thought, and it was
probably well for it took a great deal of effort to investigate the properties of
the real numbers to be certain that everything was as it should be. That is not
to say that the carpenter building the house was so concerned, but the
mathematicians were concerned that they would know what these new
numbers were all about. The fact that these numbers did not all come easily
may be deduced from the fact that many early mathematicians denoted such
numbers as (—2) by the name fictitious numbers. This name did not stick,
but the term negative could be considered to be an adjective which is some-
thing less than complimentary. With the development of the real numbers,
in answer to the need for being able to solve such equations as x> — 2 = 0,
it seemed to many at the time that man had gone about as far as he could
possibly go.

One of the difficulties at this stage of the development of numbers lay
in the fact that if one took the square of any negative number, the result was
a positive number. The nagging question arose in the mind of the very curious
(those who were not very curious were able to push such questions aside)
concerning the possibility of solving the equation x? + 1 = 0. This question
became a matter of wider concern with the development of a formula for
solving quadratic equations, and the consequent need to take a square root
of a number which in many cases turned out to be negative. Consequently
some brave soul (he must have been brave, for he most certainly had to
endure the ridicule of his colleagues) suggested the postulation of a new
number, usually designated i today, which would be the solution of this
unsolvable equation x2 4 1 = 0. This new number had been called imaginary,
and we frequently call i the imaginary unit. (In parallel fashion we would
denote the real unit by the number 1.) Since i2 + 1 = 0 by the very definition
of i, we know that i = —1, and i* = (i*)* = (—1)> = +1. In similar
fashion we can deal with higher powers of i. This is a good start, but this
does not take care of results such as those obtained by trying to solve x? —
4x + 9 = 0. One method of solution, using the old familiar factoring, would
have us writing

x2—dx+9=(x*—-4x+4+5
=(x—-2?—(=1)-5
=(x—-2)?%- (il).(\/E)Z since i = —1
= [(x — 2) + i\/51[(x — 2) — i/5]

We know (by Exercise 1.2.6) that one of the two factors must be zero if the
product is to be zero. Hence either

x—2+if=0, whencex=2—i\/§
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or
x—-2-i/5=0, and x=2+i/5

in order to be certain that these are solutions of the equation x? — 4x +

9 = 0, we can replace x by (2 + i\/g) and check to determine whether the
resulting mathematical statement is correct. Then we can do the same with

- i\/g). While this will use processes whose validity is established in

definitions and theorems to follow, we will proceed to check (2 — i\/g) both
to illustrate procedures for checking complex roots and to illustrate the

processes which we will later validate. Upon replacing x by 2 — i\/g) in
the given equation, we have

C-i/5P—-42-i/5)+9=(0@4—-4i/5+ 5% -8 —4i /5 +9
=4—-4i/5-5-8+4/5+9

=04 0i
= 0.

Again we have used the fact that i = —1. This shows that x = (2 — i\/g)
makes this equation a true statement. (It is always a good habit to check
solutions whenever possible to do so.)

We are able to produce solutions for a much larger number of quadratic
equations if we use complex numbers. The question arises, however, whether
we can invoke a theorem which was established for real numbers, namely the
one stating that ab = 0 if and only if either a = O or b = 0. Since this theorem
depended only on the postulates for a number field, we can determine that
this theorem will apply to complex numbers if the complex numbers obey
the field postulates. Before doing this, however, we must be more precise
in our definition of the complex numbers.

Definition 4.1. A number of the form a + bi is a complex number if a and b
are real numbers and i is a solution of the equation i + 1 = 0. If g = 0, the
number will be called a pure imaginary number.

In order to even consider whether the complex numbers form a field, it is
also necessary to have a definition for equality of these numbers and a
definition of what is meant by addition and multiplication of complex
numbers. We will cover these in the next two definitions.

Definition 4.2. Two complex numbers, a + bi and ¢ + di, are said to be equal
(thatis, a + bi = ¢ + di)ifand only if a = c and b = d.

Note that this reduces the determination of equality in the complex number
system to that of determining equality in the real number system, something
we have already considered.
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Definition 4.3, If a + bi and ¢ + di are two complex numbers, we define
addition and multiplication of complex numbers by the relations:

addition: (a+ b))+ (c+di)=(a+¢c)+ (b + di
multiplication: (a + bi)(c + di) = (ac — bd) + (ad + bc)i

If the coefficient of i is zero in each of these numbers, we note that they have
all of the attributes of the real numbers, and we can treat them as such.
Hence, we can consider the real numbers as though they were a subset of the
complex numbers. The definition of addition is a perfectly natural one.
Multiplication is also natural if one considers

(a + bi)(c + di) = ac + adi + bic + bidi,

whence, if we assume the postulate that the real numbers commute with the
imaginary unit, we have

(a + bi)(c + di) = (ac + bdi*) + (ad + bc)i
= (ac — bd) + (ad + bc)i

as a result of the relation i = —1.
We are now ready to consider whether the complex numbers form a field.

Theorem 4.1. The complex numbers with the definition of equality given in
Definition 4.2 and the definition of addition and multiplication given in Definition
4.3 form a number field.

PrOOF. The verification of each of the postulates for the field can be made
directly, based upon the corresponding results for the real numbers. It should
be noted that O + 0i is the additive identity and 1 + 0i is the multiplicative
identity. The proof of the existence of an additive inverse of (a + bi) merely
requires the existence of a number (x + yi) such that(a + bi) + (x + yi) =0
+ 0i, and it is easily shown that this requires that ~(a + bi) = ("a + ~bi).
The proof of the existence of a multiplicative inverse of (a + bi) demands
that we obtain a number (x + yi) such that (a + bi)(x + yi) = (ax — by) +
(ay + bx)i = 1 + 0i, or

ax —by=1

bx 4+ ay = 0.

Solving for x and y in terms of a and b, we obtain x = a/(a* + b?) and
y = —b/(a®> + b?). Thus, we have

(@ +bi)! = a —bi a— bi B

= + = .
a?+b* A+ A+ b?

The numerator of this last expression, namely (@ — bi) is frequently
referred to as the complex conjugate of (a + bi). It is worth observing that
(a® + b?) appears in the denominators, and therefore should not be zero,
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Figure 1.2

since the division involved is real division. On the other hand, this merely
requires that a + bi # 0, or that we do not attempt to obtain the multiplica-
tive inverse of zero. Hence, the commandment “thou shalt not divide by
zero,” is just as necessary with complex numbers as with real numbers.

We pause for a moment to note that the use of i was introduced by
Leonard Euler (1707-1748). The physicists frequently use j since they are in
the habit of using i to represent the measure of current in an electrical
circuit, but there is seldom confusion, and we will use the letter i to denote the
imaginary unit. In an attempt to clarify the concept of a complex number,
the Norwegian mathematician Wessel in 1799 represented the complex
numbers graphically, using a horizontal axis to represent the real numbers and
a vertical axis to represent the number of imaginary units. The work of
Wessel seemed to have attracted very little attention, and the idea of a
graphical representation was rediscovered in 1806 by Jean Robert Argand.
This representation is now known under the name of the Argand Diagram.
If we wish to graph the number 3 + 4i, we can consider this as the point
(3, 4) in which the measurement along the axis of reals is of length 3 (the
number of real units) and the measurement along the axis of imaginaries is 4
(the number of imaginary units). See Figure 1.2. This uniquely determines a
vector (or directed line segment joining the origin (or point (0, 0)) and the
point (3, 4). Observe that the axis of reals is in fact the number line that we
had considered in the previous section, and for that matter the axis of
imaginaries is also a copy of the number line placed in the vertical position.
The vector of the preceding paragraph can now be described in its polar
form, as was done by Roger Cotes in 1710, and later by Abraham de Moivre
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(1730) and Euler (1743) by noting that the length of this vector is

5=./37 + 42,

and that the vector makes an angle 6§ with the positive real axis such that
cos 0 = 3/5 and sin 6 = 4/5. Hence we can write this number as

5(cos 0 + isin 8).

[Since cos @ = 0.6 and sin § = 0.8, we can determine from the tables in
Appendix C that 8 = 53°7'48". The angies 413°7'48” and — 306°52'12" would
also work in this case. Later on (in Section II1.5) we will find it profitable to
use radian measure for angles. In radian measure we would have 6 = 0.9273,
7.2105, and — 5.3559 for the angles given here in degrees.] The polar form can
be easily obtained by plotting the point on the Argand diagram corresponding
to the number and then noting the length of the vector involved and the angle
that the vector makes with the positive real axis. Note: If you feel the need for
either an introduction to trigonometry or a refresher in trigonometry, all
of the material you will need is included in Appendix A. The definition of the
sine and cosine and the other trigonometric functions are given there together
with many relations involving these functions. The method for converting
from degrees to radians and vice versa is also there.

ExaMpPLE 4.1. Evaluate
L. G-4)+Q+7)
. 3—4)— Q2+ 7)

ii. 3 —4)(2 + 7i)

iv. 3—4)=+ Q2+ T7)

Solution

OC-4+C+T) =033+ +[2+7i]
=@B+2)+(—4+ 7
=5+3
(ii)) (3 — 4i) — (2 + 7i) = a + bi is equivalent to the equation
(2 + 7i) + (a + bi) = (3 — 4i). This gives
C+a)+ (+7+b)i=3~—4i

or 2+a=3
+7+b= -4
whence a+bi=1-—11i

This can be done more quickly (but with less emphasis on the definition)
by considering(3 —4) — 2+ 7)) =G — 4) + (-2 — 7i)
=1- 11
(i) @ —4)2 + 7)) =[R2 — (=H(D] + [AD) + (=H D))
= (6 4+ 28) + (21 — 8)i
=34 + 13i
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@iv) (3 — 4i) = (2 + 7i) = (a + bi)is equivalent to the equation
(2 + 7i)(a + bi) = 3 — 4i. This gives

2a— Tb= 3
Ta+ 2b=—4
whence 4a —14b= 6
49qg + 14b = —28
or 53a = =22
Since a = —22/53,2b = —4 — 7(—22/53) = (—212 + 154)/53

= —58/53
or b= —29/53.

Therefore a + bi = —(22/53) — (29/53)i.

This can be done more quickly (but with less emphasis on definitions)
by considering

. N34
(3—41)-.-(2+7z)-2+7i
3—4i 27
247 2-Ti
_(3-4)2 -7
T QR+THR-T)
-2-29 1
= 2T (=22 —29)).
535500 53¢ %)

In this last solution we noted a number in the denominator of the form
(x + yi)and then multiplied both numerator and denominator by the complex
conjugate. Remember that the complex conjugate is obtained by replacing
the imaginary portion of the complex number by its negative. This assured
a real denominator since (x + yi)(x — yi) = (x* + y?) + 0i.

ExaMmPLE 4.2. Graph the complex number (7 — 2i) and determine its polar
form (see Figure 1.3).

Imaginaries
02/\| 2 4 6 8 Reals
k/ 0, :
i |
7, -2
7. =2 V7 — 2

Figure 1.3
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Solution. The real component of this number is 7 and the imaginary
component is (—2i). We therefore plot the point (7, —2) on the Argand
diagram. (Note the number of real and imaginary units are 7 and (—2)
respectively.) Either the point or the vector can be used as a representation

of the number (7 — 2i). The length of this vector is /7% + 2% = \/5>3 The
vector can then be written in polar form as \/ 53 (cos 6, + i sin 6,) where 6,
is the negative angle shown for which cos 8, = 7/\/5 andsin 6, = —2/\/5>3.
Upon using a table of trigonometric functions (Appendix C) we find that
#, = —15°56'43" or 6, = —.278297 radians. We could equally well have
used the form

/53 (cos 0, + isin 6,)

where 0, is a positive angle such that cos 8, = 7/,/53 andsin 8, = — 2/,/53.
Here we would have 6, = 344°3'17” or #, = 6.00489 radians. Note that in
each case the angle would appear in the fourth quadrant

ExaMPLE 4.3. Graph the complex number whose polar form is

s T+ 150
cos 6 i sin 6

and express this number in rectangular form (see Figure 1.4).

Solution. Draw a ray making an angle of 5x/6 radians with the positive
real axis. (57/6 radians = 5(180)/6 = 150 degrees). On this ray mark off a
vector 7 units long with the initial point at the origin. This vector represents
the given number. The coordinates of the end point of this vector are

(7 cos 56 7 sin 5—“) or (— z——\z/g, z)

6 2

Thus this number can be described as (— (7/2)\5 + (7/2)i). This same result
is obtained by writing

(oos T a5 ) = a(~ 21 0) = (- 224 T).

6 2 2
Imaginaries
Sn Sn
(7 cos < 7 sin F)
Sn

<

Figure 1.4

Reals
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The idea of imaginary or complex numbers seems strange at first to most
people, but the extension of the number system to include these numbers is a
natural extension in line withr the earlier extensions from natural number
to integer to rational to real. The complex numbers are a near necessity in
problems such as those relating to alternating electrical currents.

EXERCISES

1. Evaluate:

@ C+3)+(—1+2)

b)) (=3—-4D+ @O0 —1i)
©@A-D—-QC+3)+GB—4)

@ B—-4)+@B—-4)—@+3)+ @4+ 3

2. Evaluate:

@) (3 —2i)4 + 7i)
(b) (6 + 3i)(1 — 2i)

(c) 4(cos 30° + i sin 30°)(cos 60° + i sin 60°)
) 83 — 5i)

() i(4 — i)

 a+*

3. Evaluate:

(@) (3 — 20)/(5i — 12)

(b) (15 + 100)/(3 — 4i)

(©) (1/2)2 + 3i)

(@ C+d+[G—-4)1+TH/IA - D2+ D]
(e) 1/(cos 30° + i sin 30°)

4. Solve the following equations and check your work.

@ @G+i)+x=3=2
() Q+3)— @+ T)x=—27+i
© 2+ 3i) + (15 — 8i)x = 4 + 21i
d) @=3i)x+(I+i)=06x—(4—i
€ (1 +ix=03—4)+1—ix

5. Solve each of the following equations or show that no solution exists. Check each
of the solutions you obtain.

@ CQ-—ix+ @4 —4)=ix
®C+)-C—-dx=(>0—-2)
©A+D2—-ix=Q2+1

6. Solve the following quadratic equations and check all solutions:

@ x>*+6x+25=0
(b) 2x2 +7x =0
©) 3x2+10=0
d 4> +5x+6=0
(e x?+6x+15=0
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7.

10.

11.
12.
13.
14.
15.
16.

17.

18.

19.

Plot on the Argand diagram and then convert to polar form each of the following:

() (3 + 4i)
(b) —12 — 5i
() —6— 6i
) 4i

) 3+ 5i

() (5 — 6i)2

. Plot on the Argand diagram and then convert to rectangular form each of the

following:

(a) cos 150° — isin 150°
(b) cos(n/3)

(¢) 5(cos /4 + isin m/4)
(d) (cos 3n/4 + isin 37/4)/3

. Express each of the following in polar form:

(a) 8 — 15i

(b) 2 +2i/3

(© —3+2

d) —12 + 5i

() —4+ 0i

) 0—2i

Show that each of the following statements is correct:

(a) 5(cos m/3 + isin w/3) = 5(cos 7n/3 + i sin 7x/3)

(b) 2(cos n/4 + i sin n/4) = 2(cos 17n/4 + i sin 17n/4)

(¢) a[cos 0 + isin 6] = a[cos(f + 2nn) + i sin(6 + 2znn)] for any integer n
(d) 5(cos /3 — isin n/3) = 5(cos 5n/3 + isin 57/3). Note that n/3 + 57/3 = 2=n
(e) afcos B — isin 0] = a[cos(2r — 6) + isin2r — 0)]

Show that (cos 8 + i sin #)*> = cos 20 + i sin 20.

Show that (cos A + i sin A)(cos B + i sin B) = cos(4A + B) + isin(4 + B).
Show that (cos A + i sin A)™! = cos(—A) + isin(—A) = cos A — i sin 4.
Prove that the complex numbers satisfy the definition of a number field.

If a and b are real numbers, find the additive inverse of a + bi.

If @ and b are real numbers and not both zero, find the multiplicative inverse of
a + bi.

Show that (—1 + i\/g)3 =(-1- i\/§)3. What other number has the same
value for its cube?

Find a complex number z such that z(x + iy) is a real number (that is the co-
efficient of i is zero).

Show that if @ and b are two complex numbers, then the sum of their complex
conjugates is the complex conjugate of their sum and the product of their complex
conjugates is the complex conjugate of their product. [Hint: Let a = r + si and
b = x + yi where r, s, x, and y are real numbers.]
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20. What is the relation of the graph of a complex number and the graph of its complex
conjugate on the Argand diagram?

21. Ifwe consider the two forms of the complex number (x + yi)and r(cos 6 + isin 0),
find x and y in terms of r and 6, and find r and 0 in terms of x and y.

22. Plot any complex number on the Argand diagram, and then plot the result of
multiplying that number by i. What is the relation between the two numbers
geometrically? Does this depend on the particular complex number with which
you started?

23. Plot(2 + 3i)and (—3 + 4i)onthe Argand diagram. Also plot the sum and product
of these numbers. What are the geometric relationships involved between the two
given numbers and their sum? Between the two given numbers and their product?
What is the relation between the lengths of the given vectors and the lengths of
their sum and product? [Hint: for the sum consider the figure with vertices at the
origin, at the end of the two given vectors and at the end of the sum. For the
product compare the triangle with vertices at 0, 1, and (2 + 3i) with the triangle
having vertices 0, (—3 + 4i), and the product.]

24. Plot (5 — 2i) and (2 + i) on the Argand diagram. Also plot the difference,
[(5 — 2i)) — (2 + i)] and the quotient (5 — 2i)/(2 + i). Answer questions similar
to those of Exercise 23.

M25. Do you think it would be possible to find a proper subset of the complex numbers
which would fit the requirements for the set P as used in defining the order
relation? Give a reason for your conclusion.

1.5 Absolute Values and Intervals

We have seen that it is possible to associate any real or complex number
with a point on the Argand diagram. We can use this diagram to associate
with any real or complex number a unique, non-negative number by noting
the distance between the point on the Argand diagram and the origin or zero
point. Thus, in Figure 1.5 we note the points associated with +5, —5,
3 + 4i,4 — 3i,and — 5i,and we observe that in each of these cases the distance
between the point associated with the number and the origin is +5 units.
In many cases we will be primarily concerned with this distance. In fact, this
is of sufficient concern that we have given it a special name, as indicated in the
following definition.

Definition. The absolute value of a number, z, whether real or complex, is the
positive distance from the origin to the point which represents z on the Argand
diagram. The absolute value of z is denoted by the symbol | z|.

Pursuant to the discussion above, we note that |+5| = |—5| =3 + 4i| =
|4 — 3i] = | —5i| = +5,asshown in Figure L.5. Other definitions of absolute
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G + 4i)
5
s v/ s
-5 5 +5
5
(4